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Résumé.

Nous étudions plusieurs aspects de la théorie du pluripotentiel sur un corps
non-archimédien, en elle-même et à travers ses liens avec la géométrie com-
plexe. Les objets centraux en sont les métriques plurisousharmoniques (ou
psh) sur un �bré en droites L au-dessus d'une variété X sur un corps non-
archimédien, dont la théorie globale a récemment été développée par Boucksom-
Eriksson-Favre-Jonsson et al. Le cas le plus étudié est celui où le corps K
est doté de la valeur absolue triviale ; dans cette thèse, nous nous concen-
trerons particulièrement sur les cas où la valeur absolue n'est pas triviale.
Nous étudions dans un premier temps l'image de l'opérateur de Fubini-
Study asymptotique sur des corps non-archimédiens généraux, qui permet
d'approcher des métriques plurisousharmoniques sur un �bré en droites am-
ple à l'aide de normes agissant sur les sections de ses puissances. Ensuite,
nous construisons des géodésiques plurisousharmoniques dans les espaces de
métriques non-archimédiennes psh d'énergie �nie sur un �bré ample, et étu-
dions leurs propriétés de régularité, ce qui étend des constructions classiques
du monde complexe au monde non-archimédien. En�n, nous considérons
une dégénérescence analytique de variétés complexes X sur le disque unité,
que nous identi�ons avec une variété XK sur le corps non-archimédien K des
séries de Laurent à coe�cients complexes. Etant donné un �bré en droites
relativement ample L sur X, nous construisons l'espace métrique géodésique
des métriques relativement maximales d'énergie �nie sur L. Nous montrons
que l'espace des métriques d'énergie �nie non-archimédiennes sur LK (ayant
également identi�é L avec une variété sur le corps K) se plonge isométrique-
ment et géodésiquement dans le précédent, ce qui permet de déduire la con-
vexité d'incarnations non-archimédiennes de diverses fonctionnelles en lien
avec la K-stabilité.
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Abstract.

We study and develop pluripotential theory over a non-Archimedean �eld, in
itself, and through its interactions with complex geometry. Its main objects
are plurisubharmonic (or psh) metrics on a line bundle L over a variety X
over a non-Archimedean �eld. The global theory of such psh metrics has re-
cently been developed by Boucksom-Eriksson-Favre-Jonsson et al. The most
well known case is that of a �eld K endowed with the trivial absolute value;
in this thesis, we will focus on �elds endowed with nontrivial absolute values.
We �rst look into the image of the asymptotic Fubini-Study operator over
general non-Archimedean �elds, which allows us to approximate plurisubhar-
monic (psh) metrics on an ample line bundle L using norms acting on the
sections of the tensor powers of L. Then, extending an important construction
from complex geometry to the non-Archimedean world, we show that there
exist plurisubharmonic geodesics in spaces of �nite-energy psh metrics on an
ample line bundle, and study their regularity properties with respect to the
regularity of their endpoints. Finally, we consider an analytic degeneration
of complex varieties, X, �bred over the unit disc, which we identify with a
variety XK over the non-Archimedean �eld of complex Laurent series. Given
a relatively ample line bundle on X, we construct the geodesic metric space
of relatively maximal �nite-energy metrics on L. We show that the space
of non-Archimedean �nite-energy metrics on LK (having once again identi-
�ed L with a variety over the �eld K) embeds isometrically and geodesically
into the former, allowing us to deduce convexity of some non-Archimedean
versions of various functionals related to K-stability.
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Introduction en français.

Le sujet d'étude principal de cette thèse est la théorie du pluripotentiel non-
archimédien, dont les objets centraux sont les métriques (pluri)sousharmoniques
non-archimédiennes. Nous expliquerons bientôt plus en détail ces termes.
Nous développons cette théorie en suivant deux axes.

Premièrement, en elle-même: ses fondements sont récents ([BFJ15], [BJ21],
[BE]), et particulièrement dans le cas de valuation non triviale, beaucoup
d'aspects demeurent mystérieux. Il est donc de mise d'essayer de transposer
divers concepts et énoncés du monde complexe au monde non-archimédien, ce
qui est parfois très délicat. Dans plusieurs cas, le comportement de certains
objets diverge complètement du cas complexe, ce qui donne de nouvelles
perspectives intéressantes.

Ensuite, nous l'étudions à travers ses applications à la géométrie complexe,
puisque dans certains cas, la géométrie non-archimédienne encode de manière
très e�cace des phénomènes singuliers ou asymptotiques liés à des objets
complexes. Dans ce cadre, nous nous spécialiserons au cas où le corps de
base est soit le corps C muni de la valeur absolue triviale, ou le corps C((t))
des séries formelles à coe�cients complexes, muni de sa valeur absolue t-
adique usuelle.
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De la géométrie complexe à la géométrie non-

Archimédienne.

Le principe GAGA pour les variétés algébriques sur un
corps non-archimédien.

SoitX une variété algébrique projective sur C. Le célèbre théorème "GAGA"
de Serre ([SerGAGA]) a�rme que l'on peut lui associer une variété analytique
projective complexe, Xan, en en préservant les propriétés topologiques essen-
tielles (connexité, séparation, compacité), ainsi que les données des faisceaux
cohérents. Cela permet d'importer des techniques analytiques puissantes,
venues de l'analyse complexe et de la géométrie di�érentielle, a�n d'étudier
des problèmes de nature algébrique.

Soit maintenant X une variété algébrique projective sur un corps K non-
archimédien, c'est-à-dire un corps muni d'une valeur absolue |·|, complet pour
la topologie induite par celle-ci, et dont l'inégalité triangulaire est ra�née en
l'inégalité ultramétrique: pour tous x, y dans K,

|x+ y| ≤ max(|x|, |y|).

Des exemples fondamentaux de tels corps sont:

1. C((t)), le corps des séries de Laurent formelles sur C, muni de la valeur
absolue t-adique;

2. pour p premier, Qp, le corps des p-adiques, muni de la valeur absolue
p-adique;

3. pour p premier, Fp((t)), le corps des séries de Laurent formelles à co-
e�cients dans le corps �ni Fp, que l'on munit également de la valeur
absolue t-adique;

4. tout corps K peut être muni de la valeur absolue triviale, égale à 1 sur
K×, qui est non-archimédienne.

Ces exemples mettent en valeur la diversité et l'utilité du monde non-archimédien.
Les corps p-adiques sont omniprésents en théorie des nombres (on notera
des résultats classiques comme le principe de Hasse-Minkowski, le lemme
d'Hensel, le théorème de Mahler, mais aussi des applications aux équations
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di�érentielles p-adiques, et à la théorie du potentiel p-adique) et leurs ex-
tensions perfectoïdes ont donné naissance à une théorie fertile ([Scholze],
[FF] ). Le corps Fp((t)) permet de dé�nir des voisinages formels de courbes
arithmétiques. La classe des variétés sur le corps C((t)), nous y revien-
drons longuement au cours de cette thèse, contient comme cas particulier les
dégénérescences de variétés analytiques complexes. Le cas de valuation triv-
iale en�n, malgré sa dénomination, a un fort intérêt géométrique, sur lequel
nous travaillerons également.

Il paraît souhaitable d'avoir à disposition un arsenal analytique similaire à
celui du monde complexe pour les K-variétés. Cependant, des di�cultés se
manifestent rapidement. En premier lieu, l'inégalité ultramétrique a des con-
séquences notables sur la topologie de K : celle-ci est totalement discontinue,
c'est-à-dire que ses seuls connexes sont les points et l'ensemble vide. Se pose
ensuite le problème de dé�nir une notion de variété analytique, et donc de
fonction analytique, sur K. La manière naïve de procéder consiste à imiter le
cas complexe, en dé�nissant une fonction analytique sur Kd comme une série
entière convergente à coe�cients dans K, puis de procéder par recollements.
Le résultat est catastrophique : Serre ([Ser65]) montre que toute variété com-
pacte en ce sens est isomorphe à une union disjointe de boules {|x| ≤ 1}. Il
n'est pas acceptable qu'un tel objet puisse être l'analyti�cation d'une variété
algébrique sur K!

Nous observons à travers ces phénomènes, comme l'a fait Berkovich en son
temps, qu'il convient de "rajouter des points" à un candidat pour la putative
analyti�cation Xan de X. Nous ne décrirons pas la procédure en détail dans
cette introduction ; brièvement, l'analyti�é dit de Berkovich Xan s'identi�e à
la compacti�cation d'un ensemble de valuations d'origine géométrique. Les
points cruciaux de cette construction sont les suivants :

1. elle préserve les propriétés topologiques de connexité, séparation, com-
pacité;

2. elle réalise une équivalence de catégories entre les catégories de fais-
ceaux cohérents sur X et Xan;

3. elle s'étend aux variétés sur C, auquel cas elle coïncide avec l'analyti�cation
usuelle au sens de Serre.
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En particulier, si le corps K de base est de valuation triviale, alors Xan

s'identi�e à l'ensemble des valuations sur les corps de fractions K(Y ), pour
toutes les sous-variétés irréductibles Y ⊂ X.

Théorie du pluripotentiel géométrique.

Le point de départ est le suivant. Etant donné un domaine Ω ⊂ Cd, une
fonction f lisse (ou simplement deux fois dérivable) à valeurs réelles sur Ω est
dite plurisousharmonique si sa hessienne complexe est une matrice positive.
Cette dé�nition peut être comprise comme généralisant la notion de fonction
convexe (lisse ou deux fois dérivable) de variables réelles, et de telles fonctions
jouissent de propriétés similaires.

Plus généralement, une fonction f semi-continue supérieurement et locale-
ment intégrable sur Ω est dite plurisousharmonique si elle peut être écrite
comme limite décroissante d'un �let de fonctions lisses plurisousharmoniques
; ou, de manière équivalente, si sa hessienne complexe au sens des distribu-
tions est une mesure positive.

De telles fonctions admettent une généralisation naturelle aux variétés com-
plexes, et aux �brés en droites sur celles-ci. Commençons par supposer qu'X
est une variété projective complexe compacte, de dimension d, que l'on munit
d'un �bré en droites L ample. Qu'L soit ample équivaut à demander que,
pour tous entiers k assez grand, le produit tensoriel L⊗k (que l'on notera ad-

ditivement par kL) dispose d'une base (si)
dimH0(X,kL)
i=1 de l'espace H0(X, kL)

de ses sections, tels que l'application

x 7→ [s1(x), . . . , sdimH0(X,kL)(x)]

soit un plongement dans l'espace projectif PdimH0(X,kL)−1.

Soit τΩ une trivialisation L|Ω ' C × Ω de L. Une métrique singulière sur
L est une métrique φ qui s'écrit, pour toutes telles trivialisations et pour
(`, x) ∈ C× Ω,

|τΩ(`)| e−φΩ(x) = `,

où les poids locaux φΩ appartiennent à L1
loc(Ω). Le courant de courbure de

L, qui est donné par c1(L) = ddcφ (qui est bien dé�ni en vertu de la con-
dition d'intégrabilité locale) et est en fait indépendant de φ, est positif (au
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sens français) si et seulement si les poids locaux φΩ sont tous plurisoushar-
moniques, auquel cas l'on dira que la métrique est elle-même plurisoushar-
monique, et l'on écrira φ ∈ PSH(X,L).

Grâce aux résultats de Demailly, nous pouvons en fait caractériser la classe
des métriques psh sur L comme la plus petite classe de métriques singulières
sur L qui:

1. est stable par maxima �nis;

2. est stable par limites décroissantes de �lets;

3. est stable par addition de constantes réelles;

4. contient toutes les métriques de type Fubini-Study, c'est-à-dire les métriques
de la forme

φ =
1

2k
log
∑
i

|si|2e2λi ,

où les si forment une base de sections d'une puissance kL, sans point-
base, et les λi sont des constantes réelles.

Supposons maintenant qu'X est une variété sur un corps non-archimédien K.
Sur un espace de Berkovich, il n'y a pas de calcul di�érentiel à proprement
parler. Nous ne pouvons donc pas utiliser de caractérisations locales pour
dé�nir des métriques plurisousharmoniques sur Lan, comme nous l'avons fait
dans le cas complexe.

Il faut donc être plus astucieux: nous allons imiter a posteriori comme dé�-
nition d'une métrique psh non-archimédienne, l'énoncé du résultat précédent
de Demailly. Le seul ingrédient manquant dans le cas non-archimédien est la
notion de métrique Fubini-Study. A�n d'avoir les mêmes propriétés, il con-
vient de remplacer les sommes de carrés par des maxima (un thème récurrent,
comme nous le verrons).

De�nition 0.0.0.1. Soit K un corps non-archimédien, X une K-variété pro-
jective compacte et L un �bré en droites ample sur X. Une métrique φ sur
Lan est dite de Fubini-Study si elle peut s'écrire de la forme

φ =
1

k
log max

i
|si|eλi ,
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où les si forment une base de sections d'une puissance kL, sans point-base,
et les λi sont des constantes réelles. Nous noterons FS(Lan) cette classe.

De�nition 0.0.0.2. Avec les conventions de la précédente dé�nition, une
métrique φ sur Lan est dite plurisousharmonique si elle peut s'écrire comme
la limite décroissante d'un �let de métriques Fubini-Study sur Lan. Nous
noterons PSH(Lan) cette classe.

Il est alors possible de voir qu'est vraie la même caractérisation que dans le
cas complexe: la classe des métriques psh sur Lan est la plus petite classe de
métriques singulières sur Lan qui:

1. est stable par maxima �nis;

2. est stable par limites décroissantes de �lets;

3. est stable par addition de constantes réelles;

4. contient toutes les métriques de type Fubini-Study sur Lan.

Métriques d'énergie �nie.

Un objet fondamental dans l'étude des métriques psh sur un �bré en droites
holomorphe est l'opérateur de Monge-Ampère, qui associe à une métrique psh
lisse φ le produit (ddcφ)d. Dans le cas où φ n'est plus lisse (ou du moins C2),
ddcφ est strictement un courant et non plus une forme di�érentielle : leur
produit n'est plus dé�ni. Le travail remarquable de Bedford-Taylor ([BT]) a
permis d'étendre cet opérateur (ainsi que des produits plus généraux de la
forme (ddcφ1) ∧ · · · ∧ (ddcφd)) à la classe des métriques localement bornées.
Cela empêche toutefois de considérer des métriques singulières ; cependant,
des décennies plus tard, cet opérateur sera étendu par Boucksom-Eyssidieux-
Guedj-Zeriahi ([BEGZ]) à la classe E1(X,L) de métriques d'énergie �nie, que
nous dé�nissons maintenant.

Posons deux métriques φ0 et φ1, lisses, et dé�nissons leur énergie de Monge-
Ampère ainsi :

E(φ0, φ1) = (d+ 1)−1

d∑
i=0

(φ0 − φ1) (ddcφ0)i ∧ (ddcφ1)d−i.
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Il est remarquable qu'ayant �xé la métrique φ1, l'expression

φ 7→ E(φ, φ1)

est décroissante en φ. Par le théorème de régularisation de Demailly ([Dem92],
[BK07]), toute métrique psh sur L peut être réalisée comme une suite décrois-
sante de métriques psh lisses, et l'on peut dé�nir une extension de E à
PSH(X,L) en posant

E(φ, φ1) = lim
k→∞

E(φk, φ1)

pour φ ∈ PSH(X,L), et k 7→ φk une suite de métriques psh lisses sur L
décroissant vers φ. Notons que cette énergie peut alors prendre la valeur
−∞.

Nous pouvons ainsi dé�nir l'espace des métriques plurisousharmoniques d'énergie
�nie sur L:

E1(X,L) = {φ ∈ PSH(X,L), E(φ, φ1) > −∞, ∀φ1 ∈ C∞ ∩ PSH(X,L)}.

Notons que E satisfait la propriété de cocycle

E(φ0, φ1) = E(φ0, φ2) + E(φ2, φ1),

comme il peut se voir sur des métriques lisses, puis par régularisation ; ce qui
implique que la classe E1 est indépendante du choix de métrique de référence,
ce qui est mis en évidence par notre notation.

La classe E1 contient strictement la classe des métriques localement bornées
: en particulier, elle contient "beaucoup" de métriques psh singulières. C'est
une classe qui est intrinsèquement intéressante, de surcroît grâce à [BEGZ],
où l'opérateur de Monge-Ampère y est comme promis étendu.

Il a été observé par Darvas ([Dar17]) que cette classe pouvait être dotée d'une
structure d'espace métrique complet, comme suit : l'on dé�nit l'enveloppe
"toit" (rooftop) de deux métriques φ0, φ1 dans E1(X,L) comme la régulari-
sation semi-continue supérieurement

P (φ0, φ1) = usc sup{ψ ∈ PSH(X,L), ψ ≤ φ0, φ1}.
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C'est la généralisation de l'enveloppe convexe de deux fonctions convexes ; si
les deux métriques sont d'énergie �nie, alors leur enveloppe toit est également
d'énergie �nie, et l'on écrit

d1(φ0, φ1) = E(φ0, P (φ0, φ1)) + E(φ1, P (φ0, φ1)).

Il est également possible de dé�nir les opérateurs de Monge-Ampère asso-
ciés à des métriques continues psh non-archimédiennes, par la théorie de
l'intersection (suivant Gubler, Boucksom-Eriksson-Favre) ou bien la théorie
des formes di�érentielles sur les espaces de Berkovich (d'après Chambert-Loir
et Ducros, se basant sur les superformes de Lagerberg).

Cela nous permet de dé�nir l'énergie de Monge-Ampère en imitant exacte-
ment le cas complexe, ainsi que la classe

E1(Lan)

des métriques psh d'énergie �nie sur Lan. De la même manière, nous pouvons
introduire la distance d1 (comme fait dans [BJ21], [Reb20b]) sur E1(Lan), en
utilisant les enveloppes psh non-archimédiennes. Nous nous heurtons ici à un
premier problème : celui de la continuité des enveloppes, c'est-à-dire le fait
que l'enveloppe psh d'une métrique continue est elle-même continue. C'est
une propriété de la paire (X,L), qui est classique dans le cas complexe si
X est (par exemple) normale et L est ample ; dans le cas non-archimédien,
cette propriété est partiellement conjecturale sous les mêmes hypothèses.
Elle est connue, au moins, dans tous les cas pertinents aux applications à la
géométrie complexe (c'est-à-dire dans le cas où le corps de base est le corps
des complexes muni de la valeur absolue triviale, ou bien le corps des séries
formelles à coe�cients complexes). Nous passons en revue les cas connus dans
la Section du Chapitre 2 dédiée aux enveloppes psh non-archimédiennes.

Pour conclure ces préliminaires, décrivons brièvement une application ré-
cente de la théorie du pluripotentiel non-archimédien à la géométrie com-
plexe, suivant les travaux de Berman, Boucksom, et Jonsson : une approche
variationnelle à la conjecture de Yau-Tian-Donaldson.

L'existence de métriques à courbure constante (en divers sens) est un �l
rouge de la géométrie di�érentielle depuis de nombreuses décennies. Un prob-
lème particulièrement intéressant est celui de l'existence de métriques Kähler-
Einstein sur une variété Kählérienne compacte X, c'est-à-dire une métrique
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φ lisse et strictement psh sur le �bré canonique KX , dont la (1, 1)-forme ω
associée est proportionnelle à sa courbure de Ricci Ric(ω). L'existence d'une
métrique Kähler-Einstein est une condition très forte, et nécessite un sub-
strat topologique adéquat : elle nécessite que la classe c1(X) soit elle-même
signée.

D'après les travaux d'Aubin et Yau, l'on sait que si X est canoniquement
polarisée (i.e. KX est ample), ou Calabi-Yau (KX est trivial), il existe néces-
sairement une métrique Kähler-Einstein sur X. Dans le cas canoniquement
polarisé, une telle métrique est de surcroît unique.

Le cas Fano (KX antiample) est notoirement plus di�cile.

Inspiré par diverses métaphores mathématiques (la théorie des quotients
GIT, plus particulièrement le théorème de Kempf-Ness et ses conséquences
en géométrie symplectique ; ainsi que l'alors récent résultat de Donaldson-
Uhlenbeck-Yau, démontrant équivalence entre une notion algébrique de sta-
bilité de �brés vectoriels holomorphes et l'existence de connexions hermiti-
ennes de Yang-Mills sur ceux-ci), Donaldson formule alors une conjecture,
par la suite ra�née et désormais connue sous le nom de conjecture de Yau-
Tian-Donaldson. Selon celle-ci, l'existence de métriques Kähler-Einstein sur
une Fano X équivaudrait à la positivité de certaines quantités purement
algébriques, les invariants de Futaki, de toutes les con�gurations test de X,
c'est-à-dire des dégénérescences C∗-équivariantes de X. Elle a été prouvée de
nombreuses fois, en premier lieu par Chen-Donaldson-Sun ([CDS1], [CDS2],
[CDS3]), puis dans [DZ], [CSW], [BBJ], [Zha].

Les travaux de Berman-Boucksom-Jonsson ([BBJ]), dont nous généralisons
certaines lignes au cours de cette thèse, en donnent une formulation non-
archimédienne ([BBJ, Theorem A, Corollary 5.2]) : l'existence d'une métrique
Kähler-Einstein sur X est équivalente à la coercivité d'une fonctionnelle (la
fonctionnelle de Ding) sur l'espace des métriques psh non-archimédiennes
sur l'analyti�é de KX par rapport à la valeur absolue triviale sur C. No-
tons que des généralisations de cette conjecture ont par la suite été étudiés,
comme l'existence de métriques cscK qui a été récemment réduit par Li ([Li])
à une conjecture purement de pluripotentiel non-archimédien ; et le cas, plus
général, des solitons a été étudié de manière similaire par Han-Li ([HL20]).
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Résumé des résultats obtenus.

Quanti�cation de métriques non-Archimédiennes par des
espaces de normes.

Depuis les travaux de Bouche-Tian-Catlin-Zelditch, il est connu que l'on peut
approximer uniformément une métrique continue psh φ (complexe) par des
métriques Fubini-Study φk associées à φ.

Plus précisément, on peut construire pour tout k une norme hermitienne ζk
sur l'espace des sections H0(kL+KX), donnée par

ζk(s)
2 =

ˆ
X

|s|2e−kφ :

en e�et, |s|2e−kφ dé�nit bien une mesure sur X. Si l'on prend une base (sj)j
de cet espace de sections, qui est orthonormale pour ζk, on dé�nit son noyau
de Bergman

Bφ,k :=
∑
j

|sj|2.

Ce noyau est en fait indépendant du choix d'une telle base, et la métrique

φk =
1

k
logBφk

est une métrique Fubini-Study. Nous avons alors que les φk convergent uni-
formément vers la métrique d'origine, φ.

Le but de l'article [Reb20a] est d'étudier des problèmes de nature similaire,
dans le cas non-archimédien. Nous allons en fait, à l'aide d'une procédure
de quanti�cation comme au-dessus, caractériser une classe de métriques psh
non-archimédiennes à l'aide de données purement algébriques. Nous rendons
cette promesse plus précise sous peu.

Fixons un corps K non-archimédien et non trivialement valué. Au lieu
d'admettre comme donnée initiale une métrique continue sur Lan, nous con-
sidérons plutôt une suite ζ• = (ζk)k de normes (ultramétriques) sur chaque
pièce graduée H0(kL) de l'algèbre des sections de L, satisfaisant à une con-
dition de compatibilité avec l'opération de multiplication des sections : notre
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suite de normes doit être sous-multiplicative, c'est-à-dire que pour toute paire
de sections sk ∈ H0(kL), s` ∈ H0(`L), nous avons

ζk+`(sk · s`) ≤ ζk(sk) · ζ`(s`).

A chacune de ces normes nous associons une métrique de Fubini-Study

FSk(ζk) =
1

k
log sup

s∈H0(kL)

|s|/ζk(s).

Si la norme graduée véri�e une condition de croissance (que nous n'expliciterons
pas ici), auquel cas nous parlerons de norme graduée bornée (éventuellement
sur L), la condition de sous-multiplicativité implique via le lemme de Fekete
que la limite

lim
k

FSk(ζk)

existe. Sa régularisation semi-continue supérieurement est alors une métrique
psh non-archimédienne, que nous noterons

FS•(ζ•) = usc (lim
k

FSk(ζk)).

L'opérateur FS•, que nous appellerons opérateur de Fubini-Study asymp-
totique, n'est pas injectif sur l'espace des normes graduées bornées sur L.
Cependant, il devient injectif si l'on prend le quotient cet espace par une
relation d'équivalence algébrique, que l'on décrit maintenant.

Tout espace de normes N (V ) sur un K-espace vectoriel V de dimension �nie
peut être muni d'une distance d1, modélisée sur la distance d1 dans les espaces
euclidiens. Si L possède de bonnes propriétés de positivité, alors la limite
des distances d1,k sur les N (H0(kL)) "converge" en une semi-distance sur
l'espace des normes graduées bornées sur L, c'est-à-dire que pour deux telles
normes graduées ζ•, ζ ′•, la limite

d1(ζ•, ζ
′
•) := lim

k
d1,k(ζk, ζ

′
k)

existe, et satisfait l'inégalité triangulaire et la symétrie. Notons pour simpli-
�er N̂ (L) l'espace quotient pour la relation

d1(ζ•, ζ
′
•) = 0.

Nous prouvons alors au Chapitre 3 :
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Theorem 0.0.0.3. L'opérateur de Fubini-Study asymptotique réalise un bi-
jection entre son image PSH↑(Lan) et l'espace N̂ (L), qui est de surcroît une
isométrie.

Ici, les distances considérées sont la distance de Darvas héritée de E1(Lan) ⊃
PSH↑(Lan) à gauche, et la distance quotient de d1 à droite. L'image PSH↑(Lan)
peut être caractérisée comme l'ensemble des métriques psh sur Lan approchables
par en-dessous, soit les métriques qui sont limites croissantes de �lets de
métriques psh.

Ce résultat est la version non-trivialement valuée d'un résultat de Boucksom-
Jonsson dans [BJ18a]. Nous nous appuyons fondamentalement sur l'article
[CM15], en en utilisant les résultats concernant l'asymptotique de fonctions
superadditives sur les corps d'Okounkov. Nous nous basons également sur le
formalisme développé dans [BE].

Géodésiques et segments maximaux dans les espaces de
métriques non-Archimédiennes.

Dans [Reb20b], ici le Chapitre 4, nous nous intéressons à la transposition
dans le monde non-Archimédien d'objets essentiels en géométrie complexe :
les géodésiques dans les espaces de métriques plurisousharmoniques.

Commençons par décrire la situation dans le monde complexe pour un in-
stant. C'est encore une fois la recherche de métriques Kähler-Einstein qui est
à l'origine de l'intérêt de la construction de géodésiques dans l'espace H(L)
des métriques lisses et strictement psh sur L. L'équation Kähler-Einstein ad-
met une certaine fonctionnelle, l'énergie K de Mabuchi, comme fonctionnelle
d'Euler-Lagrange, c'est-à-dire que les points critiques de cette fonctionnelle
sont les solutions de l'équation en question. A�n de poursuivre la stratégie
variationnelle, il serait donc désirable que K soit convexe le long de cer-
tains rayons distingués de métriques dans H(L). Les candidats idéaux sont
les droites a�nes dans H(L) (qui est un espace convexe), mais ceux-ci mal-
heureusement n'ont pas cette propriété. Il se trouve que K est convexe
pour une autre structure riemannienne sur H(L), découverte par Mabuchi
([Mab]), et dont les géodésiques sont données par une certaine équation de
Monge-Ampère (d'après Semmes ([Sem]), Donaldson ([Don99])). X.X. Chen
([CX00]) a le premier montré l'existence de telles géodésiques dans H(L).
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Ces géodésiques sont caractérisées par leurmaximalité: �xons deux métriques
lisses et strictement psh φ0, φ1 sur L. Nous noterons [0, 1] 3 t 7→ φt la
géodésique de Mabuchi entre ces deux métriques. Il est possible de la voir
comme une métrique psh, invariante par rotation, sur le produit L × A →
X × A, où A est l'anneau

A = {e−1 ≤ |z| ≤ 1}

en posant t = − log |z|. Alors, pour toute métrique psh A 3 z 7→ ψz invari-
ante par rotation sur L×A, que l'on peut également voir comme un segment
psh t 7→ ψt, si l'on a ψ0 ≤ φ0 et ψ1 ≤ φ1, alors pour tout t dans [0, 1],

ψt ≤ φt.

Cette propriété caractérise les segments géodésiques de Mabuchi. Nous pou-
vons donc les réaliser comme l'enveloppe

sup{ψ segment psh, ψ0 ≤ φ0, ψ1 ≤ φ1}.

Il se trouve que cette dé�nition a du sens plus généralement si les métriques au
bord ne sont plus continues : c'est l'approche utilisée par Darvas pour parler
de géodésiques faibles dans E1(L). Notons qu'une caractérisation alternative
est que φ est un segment psh le long duquel l'énergie de Monge-Ampère est
a�ne.

Supposons maintenant que (X,L) est une variété compacte polarisée sur un
corps K non-archimédien. Evidemment, il n'est plus possible de dé�nir une
notion de géodésique dans PSH(Lan) au sens riemannien. Cependant, nous
pouvons dé�nir une classe de segments Fubini-Study assez naturelle, qui sont
des maxima �nis de segments de la forme

[0, 1] 3 t 7→ 1

k
max
i

(log |si|+ tλi + (1− t)λ′i),

où les (si)i forment encore une base de sections sans point-base d'une puis-
sance kL, et les λi, λ′i sont des constantes réelles. Ensuite, nous dé�nissons
un segment psh comme une limite décroissante de segments Fubini-Study.

En s'inspirant de la caractérisation extrémale du côté complexe, nous dévelop-
pons dans [Reb20b] (ici le Chapitre 4) une théorie des géodésiques dans les
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espaces de métriques d'énergie �nie non-archimédiennes. On traite d'abord
le cas de géodésiques entre deux métriques continues, où l'on dé�nit les
géodésiques comme un supremum, et où l'on montre via une transformée
de Legendre que celles-ci restent également continues en temps et en espace.

On montre ensuite, en adaptant l'approche quanti�ée de Darvas-Lu-Rubinstein
à notre contexte, que l'énergie est a�ne le long de ces géodésiques, et qu'elles
satisfont bien l'équation géodésique. Du côté algébrique, on obtient de
manière équivalente des géodésiques au sens fort entre des normes graduées
bornées.

En�n, on étend la construction au cas de deux métriques φ0, φ1 générales
d'énergie �nie, en les approchant par des suites décroissantes de métriques
continues φk0, φ

k
1, et en dé�nissant la géodésique entre φ0 et φ1 comme la limite

(nécessairement décroissante, par la caractérisation extrémale mentionnée ci-
dessus) des géodésiques t 7→ φkt . A�n de montrer que cette limite existe et
est unique, on développe certaines propriétés de l'espace E1 non-archimédien.
Résumons nos résultats en un énoncé compact :

Theorem 0.0.0.4. Etant donné φ0, φ1 ∈ E1(L), nous posons

d1(φ0, φ1) = E(φ0, P (φ0, φ1)) + E(φ1, P (φ0, φ1))

. Alors,

1. (E1(L), d1) est un espace métrique;

2. il existe un segment psh maximal t 7→ φt joignant φ0 et φ1;

3. φt ∈ E1(L) pour tout t ∈ [0, 1];

4. le segment φt est une géodésique (au sens métrique) pour la distance
d1, c'est-à-dire qu'il existe c ≥ 0 satisfaisant

d1(φt, φs) = c · |t− s|

pour tous t, s ∈ [0, 1];

5. l'énergie de Monge-Ampère est a�ne le long du segment φt, et ce seg-
ment est l'unique segment psh joignant φ0 et φ1 satisfaisant cette pro-
priété.

Si de surcroît les métriques φ0 et φ1 sont continues, alors le segment psh
maximal les joignant est également continu, en temps et espace.
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Espaces de métriques sur des dégénérescences de variétés
complexes.

De nombreux travaux au cours de la précédente décennie, dus notamment à
Berman-Boucksom-Favre-Hisamoto-Jonsson et al. ont été dédiés à l'étude de
limites non-archimédiennes de rayons géodésiques de métriques plurisoushar-
moniques. Plus particulièrement, étant donné une variété projective com-
pacte X munie d'un �bré en droites ample L, un rayon géodésique

(0,∞] 3 t 7→ φt ∈ PSH(X,L)

est identi�é à une métrique psh Φ S1-invariante sur le tiré en arrière de L au
produit trivial D∗×X, où la variable z donnée par la première projection est
identi�ée à notre t via t = − log |z|. La limite en t → ∞ dé�nit, via l'étude
des singularités de Φ, une métrique non-Archimédienne sur l'analyti�é de X
par rapport à la valeur absolue triviale sur C. Cette approche a culminé en
la preuve variationnelle de la conjecture de Yau-Tian-Donaldson dans [BBJ].

Le but de mon article [Reb21], ici le Chapitre 5, est de pousser cette étude
au cas plus général d'une dégénérescence arbitraire π : X → D∗ de variétés
projectives complexes, pas nécessairement S1-invariante ni même isotriviale,
munie d'un �bré en droits relativement ample L. Il est toujours possible de
réaliser X comme une variété algébrique sur le corps C((t)), et un modèle
analytique X (i.e. un espace analytique possiblement singulier relatif à D,
isomorphe à X en-dehors de sa �bre centrale) avec un modèle algébrique,
dé�ni sur l'anneau de valuation C[[t]].

On dé�nit premièrement une notion de métrique psh adaptée à ce contexte
: on requiert que nos métriques admettent une extension psh à un certain
modèle analytique (X ,L) de (X,L). On notera PSH(L) cet espace. En
parallèle avec les travaux de Berman-Darvas-Lu ([BDL]), qui dé�nissent une
distance d1 radiale sur l'espace des rayons géodésiques d'énergie �nie via

d1(φ, ψ) = lim
t

d1(φt, ψt)

t

(les d1 à droite sont les distances d1 "classiques" introduites par Darvas
dans les espaces de métriques psh sur un �bré �xé), on montre que prendre
un certain nombre de Lelong de l'application dé�nie sur le disque D∗ par
les distances d1 �bre-à-�bre dé�nit bien une distance sur la sous-classe de
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métriques relativement maximales (c'est-à-dire maximales sur toute préimage
d'un ouvert relativement compact dans le disque épointé) et d'énergie �nie
de PSH(L). Notons Ê1(L) cette classe de métriques, et d̂1 cette distance.

Theorem 0.0.0.5. L'espace (Ê1(L), d̂1) est un espace métrique géodésique et
complet. Il admet de surcroît des segments d̂1-geodésiques maximaux parmi
tous les segments géodésiques, qui peuvent être construits comme familles de
segments géodésiques �bre à �bre.

Ensuite, à toute métrique φNA d'énergie �nie dans PSH(L), on associe une
métrique non-Archimédienne sur l'analyti�é Lan de L vu comme une variété
sur C((t)). Sur un point divisoriel deXan, qui est associé à un diviseurD dans
la �bre centrale d'un modèle de X, la valeur de φNA correspond au nombre
de Lelong générique de φ le long de D. Elle est étendue de manière unique
par une propriété générale des fonctions psh non-Archimédiennes: elles sont
dé�nies de manière unique par leurs valeurs aux points divisoriels.

On étudie ensuite l'évolution de l'énergie de Monge-Ampère le long d'une
métrique φ ∈ Ê1(L), particulièrement quand z → 0. Plus précisément, on
étudie la métrique

E(φ) : z 7→ 〈φd+1
z 〉 = E(φz)

sur le �bré 〈L〉 sur le disque épointé, qui peut être vue comme une famille
d'énergies de Monge-Ampère intrinsèques. On montre que, dans le cas où φ
s'étend de manière localement bornée sur un modèle analytique de (X,L),
on a :

(E(φ))NA = ENA(φNA),

ce qui peut être interprété comme disant que le nombre de Lelong des énergies
�bre à �bre coïncide avec l'énergie de Monge-Ampère non-archimédienne de
φNA. Cela généralise le cas classique, puisqu'un nombre de Lelong n'est
qu'une pente à l'in�ni généralisée.

Cette égalité n'est pas vraie dans le cas général. La classe de métriques de
Ê1(L) satisfaisant à

(E(φ))NA = ENA(φNA),

est dé�nie comme la classe des métriques hybridement maximales Ê1
hyb(L),

et généralise la classe des rayons géodésiques maximaux de [BBJ]. On ob-
tient une caractérisation extrémale de ces métriques, et on montre que cette
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classe est isométrique à la classe des métriques non-Archimédiennes E1(Lan).
On obtient comme conséquence un résultat heuristique sur la convexité de
fonctionnelles non-Archimédiennes.

Theorem 0.0.0.6. • Il y a un plongement isométrique de (E1(Lan), dNA
1 )

dans (Ê1(L), d̂1) avec pour image Ê1
hyb(L).

• Un segment psh dans Ê1
hyb(L) est une géodésique psh si et seulement si

son image dans E1(Lan
K ) est une géodésique psh non-archimédienne au

sens du Chapitre 4.

• L'on dispose d'une propriété générale d' "extension de plurifonction-
nelles" : étant donné d + 1 �brés relativement amples Li sur X, pour
tout (d+ 1)-uplet de métriques φi ∈ Ê1

hyb(Li), on a

(〈φ0, . . . , φd〉X/D∗)
NA = 〈φNA

0 , . . . , φNA
d 〉.
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Plan du manuscrit.

Au Chapitre 1, nous développons les préliminaires purement algébriques
nécessaires à cette thèse. Nous commençons par des généralités sur les corps
non-archimédiens. Ensuite, ayant �xé un tel corps K, nous étudions les
propriétés métriques et spectrales des espaces de normes sur les K-espaces
vectoriels de dimension �nie. En�n, nous étendons cette étude aux espaces de
normes graduées sur des K-algèbres graduées engendrées en degré un. Cette
dernière partie contient quelques résultats de [Reb20b], ainsi qu'un résultat
non publié sur la complétude d'un certain espace de normes graduées pour
une distance de type d∞.

Au Chapitre 2, nous nous penchons sur les aspects géométriques des prélim-
inaires. Après avoir brièvement rappelé la construction de Berkovich, nous
nous penchons sur plusieurs types de métriques sur des analyti�cations de
�brés en K-droites. Nous expliquons également les bases de la théorie du
pluripotentiel non-archimédien.

Les Chapitres 3, 4, et 5 consistent essentiellement des résultats de (respec-
tivement) [Reb20a], [Reb20b], et [Reb21], comme expliqué précédemment.
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Introduction.

The main subject of this thesis is non-Archimedean pluripotential theory, in
which the role of central object is played by non-Archimedean (pluri)subharmonic
metrics. Naturally, we will explain those terms in due time. We shall develop
this theory along two axes.

We shall �rst study it in and for itself: the foundations are recent ([BFJ15],
[BJ21], [BE]), and many aspects remain mysterious, especially in the case of
nontrivial valuation. It seems therefore appropriate to try and transpose var-
ious concepts and results from the complex to the non-Archimedean world.
This is often more delicate than it seems. In many cases, the behaviour of
some objects is completely di�erent from the complex case, opening interest-
ing directions of research.

Secondly, we will study non-Archimedean pluripotential theory through its
applications to complex geometry. Indeed, in certain cases, non-Archimedean
geometry is a very e�cient way to encode singular or asymptotic behaviours
of complex objects. For this approach, we will specialize to the case where
the base �eld is either C together with its trivial absolute value, or the �eld
C((t)) of complex Laurent series together with its t-adic absolute value.
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From complex geometry to non-Archimedean ge-

ometry.

The GAGA principle for varieties over a non-Archimedean
�eld.

Let X be a projective algebraic variety over the �eld C. The now-famous
GAGA principle of Serre ([SerGAGA]) asserts that one can associate to such
X a projective complex manifold, Xan, preserving its essential topological
properties (such as connectedness, separatedness, and compactness), as well
as data given by coherent sheaves (in the sense that there is an equivalence of
categories between the categories of coherent sheaves on X and Xan). This
allows one to use powerful analytic methods coming from complex analysis
and di�erential geometry in order to study problems of algebraic nature.

Consider now a projective algebraic variety X over a non-Archimedean �eld
K, i.e. a �eld together with an absolute value | · |, which is furthermore
complete with respect to the topology induced by the latter, and satisfying
the ultrametric inequality re�ning the triangle inequality: for all x, y in K,

|x+ y| ≤ max(|x|, |y|).

Fundamental examples of such �elds include:

1. C((t)), the �eld of Laurent series with coe�cients in C, together with
the t-adic absolute value;

2. given p prime, Qp, the �eld of p-adics, together with the p-adic absolute
value;

3. given p prime, Fp((t)), the �eld of Laurent series with coe�cients in
the �nite �eld Fp, with the t-adic absolute value;

4. any �eld K with the trivial absolute value, equal to 1 on K×, which is
non-Archimedean.

Such examples shed some light on the diversity of the non-Archimedean
world. Uses for such �elds are many: p-adic �elds are ubiquitous in num-
ber theory (note the Hasse-Minkowski principle, Hensel's Lemma, Mahler's
Theorem; as well as applications to p-adic di�erential equations and p-adic
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potential theory); and their perfectoid extensions have recently been at the
heart of a very rich theory developed by Scholze and others ([Scholze], [FF]
). The �eld Fp((t)) is used to de�ne formal neighbourhoods of arithmetic
curves. The class of varieties over C((t)), as we shall explain in much detail
over the course of this manuscript, contains as a particular case degenera-
tions of complex manifolds. Finally, the case of trivial valuation holds much
geometric importance, in spite of its name; we will work on this side of the
story as well.

It therefore seems appropriate to have at hand analytic tools the likes of which
are available in the complex world. Many di�culties arise shortly. First of
all, the ultrametric inequality has notable consequences on the topology of
K, for it is totally discontinuous (i.e. its only connected sets are the null sets
and singletons). One also needs to de�ne a notion of an analytic space (and
also of analytic functions) over K. Naively, one would mimick the complex
case, by de�ning an analytic function on Kd to be a converging power series
with coe�cients in K; then, to de�ne analytic spaces via gluing. The result
is rather catastrophic: Serre ([Ser65]) shows that any compact analytic space
in this sense is a disjoint union of unit balls; a notably poor candidate for
the analyti�cation of a K-algebraic variety!

As Berkovich in his time, we then notice that our putative analyti�cation
Xan of X needs "additional points". Although we will not explain the exact
procedure here, we shall describe it brie�y: Xan is roughly identi�ed with
the compacti�cation of valuations of geometric origin on K(X). The points
of utmost importance are as follows:

1. the analyti�cation preserves topological properties such as connected-
ness, separatedness, and compactness;

2. it realizes an equivalence of categories between the categories of coher-
ent sheaves on X and Xan;

3. it is also de�ned for varieties over Archimedean �elds - in particular C,
where it coincides with the usual analyti�cation in the sense of Serre.

In particular, if the base �eld K is trivially valued, then Xan corresponds to
the space of valuations on �elds of fractions K(Y ) for all irreducible subvari-
eties Y ⊂ X, endowed with the topology of pointwise convergence.
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Geometric pluripotential theory.

Given a domain Ω ⊂ Cd, a smooth (or twice di�erentiable) function f :
Ω→ R is plurisubharmonic if its complex Hessian is a positive matrix. One
can see this de�nition to generalize the notion of a convex (smooth or twice
di�erentiable) function, and indeed plurisubharmonic functions share many
properties with convex functions.

More generally, an upper semicontinuous and locally integrable real-valued
function f on Ω is plurisubharmonic if it can be realized as a decreasing limit
of a net of smooth plurisubharmonic metrics ; or equivalently, if its complex
Hessian in the sense of distributions de�nes a positive measure.

The de�nition of such functions naturally extends to complex varieties, and
to line bundles on them. Let us begin by �xing a complex compact projective
manifold X, of dimension d, endowed with an ample line bundle L. We recall
that L is ample if and only if, for all large enough integers k, the k-fold tensor
product L⊗k (denoted additively kL) admits a basis of sections (si)

dimH0(X,kL)
i=1

such that the map

x 7→ [s1(x), . . . , sdimH0(X,kL)(x)]

de�nes an embedding in projective space PdimH0(X,kL)−1.

Let τΩ be a trivialization L|Ω ' C × Ω of L. A singular metric on L is a
metric φ on L which can be written, in all such trivializations and for all
(`, x) ∈ C× Ω, as

|τΩ(`)| e−φΩ(x) = `,

where the local weights φΩ belong to L1
loc(Ω). The curvature current of L,

given by c1(L) = ddcφ (which one notices to be well-de�ned due to the local
integrability condition) turns out to be independent of φ, and is (french-
ly) positive if and only if the local weights φΩ are all plurisubharmonic, in
which case we shall say that φ is itself plurisubharmonic, and we shall write
φ ∈ PSH(X,L).

Due to results of Demailly, we may in fact characterize the class of plurisub-
harmonic (psh) metrics on L as the smallest class of singular metrics on L
which:

1. is closed under �nite maxima;
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2. is closed under decreasing limits of nets;

3. is closed under addition of real constants;

4. contains all Fubini-Study metrics, i.e. metrics written as

φ =
1

2k
log
∑
i

|si|2e2λi ,

where the si are a basepoint-free basis of sections of kL, and the λi are
real constants.

Let us now assume X to be a variety over a non-Archimedean �eld K. On a
Berkovich space, there is no notion of di�erential calculus. We thus cannot
use local characterizations as before to de�ne plurisubharmonic functions on
Xan and metrics on Lan, as is done in the complex case.

We will thus mimick a posteriori the statement of Demailly's result to take as
our de�nition of a non-Archimedean psh metric. The only missing ingredient
remains the notion of a Fubini-Study metric. As we will notice to be a
recurrent theme, we simply "replace sums of squares with maxima".

De�nition 0.0.0.7. Let K be a non-Archimedean �eld, X a compact pro-
jective K-variety, and L an ample line bundle on X. A metric φ on Lan is
Fubini-Study provided one can write it as

φ =
1

k
log max

i
|si|eλi ,

where the si are a basepoint-free basis of some power kL, and the λi are real
constants. We will denote this class of metrics by FS(Lan).

De�nition 0.0.0.8. With the conventions of the previous De�nition, a met-
ric φ on Lan is plurisubharmonic if it can be written as the decreasing limit
of a net of Fubini-Study metrics on Lan. We will denote this class of metrics
by PSH(Lan).

One can then see that the same characterization of the class of psh metrics
holds as in the complex case: it is the smallest class of singular metrics on
Lan which:
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1. is closed under �nite maxima;

2. is closed under decreasing limits of nets;

3. is closed under addition of real constants;

4. contains all Fubini-Study metrics on Lan.

Finite-energy metrics.

A fundamental object in the study of psh metrics on a holomorphic line bun-
dle is theMonge-Ampère operator, associating to a smooth metric φ the prod-
uct (ddcφ)d. In the case where φ is no longer smooth (or twice di�erentiable),
ddcφ is strictly a current and no longer a di�erential form: such a product is
therefore no longer de�ned. The remarkable work of Bedford-Taylor ([BT])
allowed to extend this operator (as well as more general products of the form
(ddcφ1)∧· · ·∧ (ddcφd)) to the class of locally bounded metrics. This still pre-
vents us from considering possibly singular metrics; however, decades later,
this operator will be extended by the work of Boucksom-Eyssidieux-Guedj-
Zeriahi ([BEGZ]) to the class E1(X,L) of �nite-energy metrics, which we
describe now.

Let us �x two smooth psh metrics φ0 and φ1, and let us de�ne their Monge-
Ampère energy as follows:

E(φ0, φ1) = (d+ 1)−1

d∑
i=0

(φ0 − φ1) (ddcφ0)i ∧ (ddcφ1)d−i.

Remarkably, having �xed the right-hand metric φ1, the expression

φ 7→ E(φ, φ1)

is decreasing in φ. By the Demailly regularization Theorem ([Dem92], [BK07]),
any psh metric on L can be realized as a decreasing limit of smooth psh met-
rics, so that one can extend E to PSH(X,L) by setting

E(φ, φ1) = lim
k→∞

E(φk, φ1)

for φ ∈ PSH(X,L), and k 7→ φk a sequence of smooth psh metrics on L
decreasing to φ. Let us note that this energy can possibly take the value
−∞.
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We therefore de�ne the space of �nite-energy metrics on L:

E1(X,L) = {φ ∈ PSH(X,L), E(φ, φ1) > −∞, ∀φ1 ∈ C∞ ∩ PSH(X,L)}.

Note that E satis�es the cocycle property:

E(φ0, φ1) = E(φ0, φ2) + E(φ2, φ1),

as one can see on smooth metrics, then by regularization; this implies the
class E1 to be independent of the choice of a reference metric.

Darvas ([Dar17]) later observed that this class could be endowed with the
structure of a complete metric space, as follows: we de�ne the "rooftop"
envelope of two metrics φ0, φ1 in E1(X,L) as the usc regularization

P (φ0, φ1) = usc sup{ψ ∈ PSH(X,L), ψ ≤ φ0, φ1}.

This generalizes the convex envelope of two convex functions; if both metrics
have �nite energy, then their envelope also has �nite energy, and we write

d1(φ0, φ1) = E(φ0, P (φ0, φ1)) + E(φ1, P (φ0, φ1)).

One may also de�ne Monge-Ampère operators associated to continuous non-
Archimedean psh metrics, using either intersection theory (Gubler, Boucksom-
Eriksson-Favre) or di�erential forms on Berkovich spaces (Chambert-Loir and
Ducros, building on the superforms of Lagerberg).

By mimicking exactly the de�nition in the complex case, we may then de�ne
the Monge-Ampère energy as well as the class

E1(Lan)

of �nite-energy psh metrics on Lan. Similarly, we may introduce the distance
d1 (as in [BJ21], [Reb20b]) on E1(Lan), using non-Archimedean psh envelopes.
We run into a �rst problem: that of continuity of envelopes, that is: the fact
that the psh envelope of a continuous metric is itself continuous. This is
a property of the pair (X,L), classically true in the complex case if X is
(say) normal and L is ample; in the non-Archimedean case, this property is
partially conjectural, under similar hypotheses. It is currently known in all
cases useful for applications to complex geometry, i.e. when the base �eld
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is either C with its trivial absolute value, of C((t)) with its natural absolute
value. We review the currently known cases in the Section in Chapter 2
dedicated to non-Archimedean psh envelopes.

Concluding our preliminaries, we brie�y describe a recent application of
non-Archimedean pluripotential theory to complex geometry, after Berman,
Boucksom, and Jonsson: a variational approach to the Yau-Tian-Donaldson
conjecture.

The existence of constant curvature metrics (in all possible �avours) has been
a recurring theme in di�erential geometry for many decades. A problem
of particular interest is that of existence of Kähler-Einstein metrics on a
compact Kähler manifold X, i.e. a smooth strictly psh metric φ on the
canonical bundle KX , whose associated (1, 1)-form ω is proportional to its
Ricci curvature Ric(ω). The existence of such a metric is a very strong
condition, subordinate to topological conditions: the class c1(X) itself has to
be signed.

By the works of Aubin and Yau, it is known that if X is canonically polarized
(with ample canonical bundle) or Calabi-Yau (with trivial canonical bundle),
there exists a Kähler-Einstein metric on X, which is furthermore unique in
the former case.

The Fano case (with antiample canonical bundle) is notoriously more di�cult.

Inspired by various ideas (from GIT quotient theory, in particular the Kempf-
Ness Theorem and its consequences in symplectic geometry; as well as the
then recent result of Donaldson-Uhlenbeck-Yau proving equivalence between
an algebraic notion of stability for holomorphic vector bundles and the exis-
tence of Hermitian Yang-Mills connections on them), Donaldson formulates
a conjecture, further and further re�ned, known by the name of Yau-Tian-
Donaldson conjecture, according to which existence of a Kähler-Einstein met-
ric on X is equivalent to the positivity of some purely algebraic quantities
(so-called Futaki invariants). It has now been proven several times, �rst by
Chen-Donaldson-Sun ([CDS1], [CDS2], [CDS3]), then in [DZ], [CSW], [BBJ],
[Zha].

The works of Berman-Boucksom-Jonsson ([BBJ]), some parts of which we
generalize over the course of this thesis, give a non-Archimedean formulation
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of the aforementioned conjecture ([BBJ, Theorem A, Corollary 5.2]): exis-
tence of a Kähler-Einstein metric on X is equivalent to coercivity of some
functional (the Ding functional) on the space of non-Archimedean psh metrics
on Kan

X , the analyti�cation of KX with respect to the trivial absolute value
on C. Generalizations of this conjecture have also been studied, most funda-
mentally the existence of cscK metrics which has recently been reduced by Li
([Li]) to a conjecture purely in the domain of non-Archimedean pluripoten-
tial theory; and the more general case of solitons has similarly been studied
by Han-Li ([HL20]).
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Summary of the main results.

Quantization of non-Archimedean metrics via spaces of
norms.

Since the works of Bouche-Tian-Catlin-Zelditch, it is known that a (complex)
continuous psh metric φ can uniformly be approximated by Fubini-Study
metrics φk associated to φ.

Precisely, one can construct for all k a Hermitian norm ζk on the space of
sections H0(kL+KX), given by

ζk(s)
2 =

ˆ
X

|s|2e−kφ :

indeed, |s|2e−kφ does de�ne a measure on X. Picking a basis (sj)j of this
space of sections, orthonormal for ζk, one de�nes its Bergman kernel

Bφ,k :=
∑
j

|sj|2.

This kernel is in fact independent of the choice of such a basis, and the metric

φk =
1

k
logBφk

is Fubini-Study. We then have that the φk converge uniformly to the original
metric, φ.

The purpose of the article [Reb20a] is to study problems of similar nature in
the non-Archimedean setting. Using a "quantization" procedure as above,
we will also characterize a class of non-Archimedean psh metrics using purely
algebraic data.

Let us �x a non-Archimedean, nontrivially valued �eld K. Instead of having
as initial data a continuous metric on Lan, we shall rather consider a sequence
ζ• = (ζk)k of ultrametric norms on each graded piece H0(kL) of the section
algebra of L, further satisfying a compatibility condition with respect to
multiplication of sections: it must be submultiplicative, i.e. for any two
sections sk ∈ H0(kL), s` ∈ H0(`L), we have that

ζk+`(sk · s`) ≤ ζk(sk) · ζ`(s`).
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To each such norm we associate a Fubini-Study metric by setting

FSk(ζk) =
1

k
log sup

s∈H0(kL)

|s|/ζk(s).

Assuming our graded norm to satisfy an additional growth condition (which
we shall not make explicit here, but roughly ensuring that it does not "blow
up"), in which case we shall speak of a bounded graded norm, the submulti-
plicativity condition implies via Fekete's Lemma that the limit

lim
k

FSk(ζk)

exists. Its usc regularization is then a non-Archimedean psh metric which
we denote

FS•(ζ•) = usc (lim
k

FSk(ζk)).

The operator FS• so de�ned, which we will call the asymptotic Fubini-Study
operator, is not in general injective on the space of bounded graded norms on
L. It however becomes injective by taking the quotient of this space under
some algebraic equivalence relation, which we describe now.

Any space of norms N (V ) on a K-vector space v of �nite dimension can be
endowed with a distance, d1, modelled on the distance d1 in Euclidean spaces.
If L has su�cient positivity properties, the limit of the distances d1,k on each
N (H0(kL)) "converges" to a pseudodistance on the space of bounded graded
norms on L, in the sense that for any two such graded norms ζ•, ζ ′•, the limit

d1(ζ•, ζ
′
•) := lim

k
d1,k(ζk, ζ

′
k)

exists, and satis�es the symmetry property as well as the triangle inequality.
Let us write for clarity N̂ (L) for the quotient space under the relation

d1(ζ•, ζ
′
•) = 0.

In Chapter 3, we prove the following:

Theorem 0.0.0.9. The asymptotic Fubini-Study operator realizes a bijection
between its image PSH↑(Lan) and the space N̂ (L), which is furthermore an
isometry.
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Here, the distances in question in the isometry statement are the Darvas
distance inherited from E1(Lan) ⊃ PSH↑(Lan) on the left, and the quotient
d1 distance on the right. The image PSH↑(Lan) can be characterized as the
set of psh metrics on Lan approximable by below, i.e. metrics that are limits
of increasing nets of psh metrics.

This result is the nontrivially-valued version of a result of Boucksom-Jonsson
in [BJ18a]. We extensively use the results of [CM15]concerning asymptotics
of superadditive functions on Okounkov bodies. We also build on the for-
malism developed in [BE].

Geodesics in spaces of non-Archimedean metrics.

In [Reb20b], or in this thesis Chapter 4, we transpose essential objects from
the complex to the non-Archimedean world: geodesics in spaces of plurisub-
harmonic metrics.

Let us begin with the complex case. The purpose of such geodesics is again
sparked by the search for Kähler-Einstein metrics in the space H(KX) of
smooth and strictly psh metrics on the canonical bundle. The Kähler-
Einstein equation admits a certain functional, the K-energy of Mabuchi, as
its Euler-Lagrange equation; in other words, critical points of the K-energy
are solutions to the Kähler-Einstein problem. In order to continue the varia-
tional approach, it would be desirable that K be convex along certain distin-
guished segments of metrics in H(KX). The ideal candidates would be a�ne
lines, for H is a convex set, but they do not satisfy that property. Instead, K
is convex with respect to another Riemannian structure on H, by the work
of Mabuchi ([Mab]), whose geodesics are given by a Monge-Ampère equation
(see Semmes ([Sem]), Donaldson ([Don99])). X.X. Chen ([CX00]) was the
�rst to show existence of such geodesics in H.

Such geodesics are characterized by their maximality, as we explain. Pick
two smooth, strictly psh metrics φ0, φ1 on KX , and denote by [0, 1] 3 t 7→ φt
the Mabuchi geodesic joining them. One can see it as a rotation-invariant
psh metric on the product KX × A→ X × A, where A is the annulus

A = {e−1 ≤ |z| ≤ 1},

upon setting t = − log |z|. We then have that, for any rotation-invariant psh
metric A 3 z 7→ ψz on KX ×A (which we can similarly see as a psh segment
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t 7→ ψt), if ψ0 ≤ φ0 and ψ1 ≤ φ1, then for all t in [0, 1],

ψt ≤ φt.

This property completely characterizes Mabuchi geodesic segments, which
are for this reason sometimes called "maximal psh segments". We can fur-
thermore realize them as the envelope

sup{ψ segment psh, ψ0 ≤ φ0, ψ1 ≤ φ1}.

As it turns out, this de�nition also makes sense more generally on any line
bundle L on X, and also if the endpoint metrics are no longer continuous:
this is the approach of Darvas to de�ne weak geodesics in E1(L). Finally, a
last characterization of such geodesics is that φ is a psh segment along which
the Monge-Ampère energy is a�ne.

Let us now assume (X,L) to be a polarized variety over a non-Archimedean
�eld K. Obviously, geodesics in PSH(Lan) in the Riemannian sense can no
longer be de�ned. However, we may still de�ne a rather natural class of
Fubini-Study segments, as �nite maxima of segments of the form

[0, 1] 3 t 7→ 1

k
max
i

(log |si|+ tλi + (1− t)λ′i),

where (si)i is again a basepoint-free basis of some H0(kL), and the λi, λ′i are
real constants. One then de�nes psh segments as decreasing limits of nets
of Fubini-Study segments. Then, inspired by the extremal characterization
in the complex case, we develop in [Reb20b] (Chapter 4 of this manuscript)
a theory for geodesics in spaces of non-Archimedean �nite-energy metrics.
We �rst treat the case where the endpoint metrics are continuous, where we
de�ne our geodesic as an envelope as above, and we show via a Legendre
transform that such a geodesic remains continuous in time and space.

Then, adapting the quantization approach of Darvas-Lu-Rubinstein in our
context, we show that the Monge-Ampère energy is a�ne along such geodesics,
and that they do de�ne metric geodesics with respect to the non-Archimedean
d1 distance. On the algebraic side, we construct geodesics between bounded
graded norms.

Finally, we extend our construction to the case of �nite-energy endpoints,
via decreasing approximations. Our results may be summarized as follows:
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Theorem 0.0.0.10. Given φ0, φ1 ∈ E1(L), and setting

d1(φ0, φ1) = E(φ0, P (φ0, φ1)) + E(φ1, P (φ0, φ1)),

we have that:

1. (E1(L), d1) is a metric space;

2. there exists a unique maximal psh segment t 7→ φt joining φ0 and φ1;

3. φt ∈ E1(L) for all t ∈ [0, 1];

4. the segment φt is a metric geodesic with respect to the d1 distance de-
�ned above, i.e. there exists c ≥ 0 with

d1(φt, φs) = c · |t− s|

for all t, s ∈ [0, 1];

5. the Monge-Ampère energy is a�ne along the segment φt, and any psh
segment satisfying such a property with endpoints φ0 and φ1 has to
coincide with the geodesic segment joining φ0 et φ1.

If the endpoint metrics φ0 and φ1 are furthermore continuous, then the max-
imal psh segment joining them is also continuous in time and space.

Spaces of metrics on degenerations of complex manifolds.

Many recent works over the course of the previous decade, notably by Berman-
Boucksom-Favre-Hisamoto-Jonsson et al., have been dedicated to the study
of non-Archimedean limits of plurisubharmonic geodesic rays. Precisely,
given a compact projective complex manifold X with an ample line bun-
dle L, a geodesic ray

[0,∞) 3 t 7→ φt ∈ PSH(X,L)

is identi�ed with a rotation-invariant psh metric Φ on the pullback of L to
the trivial product D∗×X, where the variable z given by the �rst projection
is identi�ed with t via t = − log |z|. The limit as t→∞ de�nes, on studying
the singularities of Φ along certain compacti�cations of the product, a non-
Archimedean metric on the analyti�cation of X with respect to the trivial
absolute value on C, as explained before.
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The purpose of [Reb21], Chapter 5 in this thesis, is to generalize such consid-
erations to the case of an arbitrary degeneration π : X → D∗ of complex pro-
jective manifolds without necessarily assuming S1-invariance, or even isotriv-
iality. Non-Archimedean phenomena immediately arise: one can realize such
a degeneration as a variety over the �eld C((t)).

We �rst de�ne a notion of a (family of) psh metrics adapted to this context.
Let L be a relatively ample line bundle on X. We denote by PSH(L) the
space of psh metrics which can be extended to some analytic model (X ,L)
of (X,L), i.e. to a polarized complex analytic space (X ,L) �bred over the
unpunctured unit disc, which is isomorphic to (X,L) outside of its �bre over
zero. Generalizing the work of Berman-Darvas-Lu ([BDL]), who de�ne a
radial d1 distance on the space of �nite-energy psh rays via

d1(φ, ψ) = lim
t

d1(φt, ψt)

t

(the d1 in the right-hand side being the "classical" Darvas distances), we show
that taking a generalized Lelong number of the map de�ned on D∗ of �brewise
d1 distances also de�nes a distance on the space of "relatively maximal"
�brewise �nite-energy metrics in PSH(L). The notion of relative maximality
essentially states that they are maximal in the usual pluripotential theory
sense over all preimages of relatively compact open sets in the punctured
disc. We will write Ê1(L) for this class of metrics, and d̂1 for this distance.
We then show the following:

Theorem 0.0.0.11. The space (Ê1(L), d̂1) is a complete, geodesic metric
space. There furthermore exist distinguished d̂1-geodesic segments, maximal
among all geodesic segments, which can be constructed as �brewise families
of geodesic segments in each E1(Lz).

Then, to any �brewise �nite-energy metric φ in PSH(L), we associate a non-
Archimedean metric φNA on the analyti�cation Lan of L seen as a variety
over C((t)). On a divisorial point of Xan, associated to a divisor D inside
the central �bre of some analytic model of X, the value of φNA roughly
corresponds to the generic Lelong number of φ along D.

We then study the singular limit of the �brewise Monge-Ampère energy along
a �brewise �nite-energy metric in PSH(L), i.e. the metric

E(φ) : z 7→ 〈φd+1
z 〉 = E(φz)
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on the Deligne pairing bundle 〈L〉 over the punctured disc. We show that,
if φ extends as a locally bounded metric to some analytic model of (X,L),
then

(E(φ))NA = ENA(φNA),

i.e. the Lelong number of the �brewise Monge-Ampère energies corresponds
with the non-Archimedean Monge-Ampère energy of φNA.

Such an equality does not hold in general. The class of metrics inside Ê1(L)
satisfying

(E(φ))NA = ENA(φNA),

is what we de�ne to be the class of "hybrid maximal" metrics Ê1
hyb(L). One

can see this to generalize the maximal geodesic rays of Berman-Boucksom-
Jonsson, as a Lelong number is merely a generalized slope at in�nity. We
then obtain an extremal characterization of such metrics, and show that this
class is isometric to the class E1(Lan): we have realized non-Archimedean
metrics as purely complex geometric objects. As a consequence, we obtain
a heuristic result regarding proving convexity of non-Archimedean energy
functionals. Our second main result is the following:

Theorem 0.0.0.12. • There exists an isometric embedding (E1(Lan), dNA
1 )

in (Ê1(L), d̂1) with image Ê1
hyb(L).

• A psh segment Ê1
hyb(L) is geodesic if and only if its image E1(Lan

K ) is a
non-Archimedean geodesic in the sense of Chapter 4.

• One has a general "plurifunctional extension property": given d + 1
relatively ample line bundles Li on X, for all (d + 1)-uple of metrics
φi ∈ Ê1

hyb(Li), we have

(〈φ0, . . . , φd〉X/D∗)
NA = 〈φNA

0 , . . . , φNA
d 〉.
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Organization of the manuscript.

In Chapter 1, we develop algebraic preliminaries necessary for the main re-
sults of this manuscript. We begin with generalities on non-Archimedean
�elds. Then, given such a �eld K, we study metric and spectral properties
of spaces of norms on �nite-dimensional K-vector spaces. Finally, we extend
this study to the case of graded norms on K-graded algebras generated in
degree one. This last part contains some results from [Reb20b], as well as
an unpublished result regarding completeness of a certain space of graded
norms with respect to a d∞-type distance.

In Chapter 2, we look into geometric preliminaries. After brie�y recalling
Berkovich's construction, we focus on various types of metrics on analyti-
�cations of K-line bundles, and explain basic notions of non-Archimedean
pluripotential theory.

Finally, Chapters 3, 4, et 5 essentially contain the results of respectively
[Reb20a], [Reb20b], and [Reb21], as previously explained.
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Chapter 1

Algebraic preliminaries.

As a convention throughout this manuscript, rings and �elds shall be assumed
to be commutative.

1.1 Non-Archimedean �elds.

1.1.1 Basic de�nitions.

De�nition 1.1.1.1. Let R be any ring. A multiplicative seminorm on R
is a function

| · | : R→ R+

satisfying the following properties:

(i) |0| = 0, |1| = 1;

(ii) |xy| = |x| · |y|, for x, y ∈ R;

(iii) |x+ y| ≤ |x|+ |y|, for x, y ∈ R.

It is furthermore ultrametric or non-Archimedean if the triangle inequal-
ity (iii) is re�ned to the ultrametric inequality :

(iiib) |x+ y| ≤ max{|x|, |y|}, for x, y ∈ R.

If R is a �eld, in which case we will usually denote it by K, a multiplicative
seminorm on K will be referred to as an absolute value on K, and an ultra-
metric multiplicative seminorm as an ultrametric or a non-Archimedean

absolute value on K. A �eld K endowed with an absolute value shall be
referred to as a valued �eld.
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Example 1.1.1.2. An example to keep in mind is the trivial absolute
value, de�ned as

|x|0 = 1, x 6= 0,

which is non-Archimedean, and well-de�ned for any �eld K, by the �eld
axioms.

Remark 1.1.1.3. To any absolute value | · | on a �eld K is associated its
valuation ν(·) := − log | · |.

To make sense of the following de�nition, note that an absolute value on a
�eld K always endows it with a topology, induced by the distance

d(x, y) := |x− y|,

for x, y ∈ K.

De�nition 1.1.1.4. We will de�ne a non-Archimedean �eld to be a �eld
K which is Cauchy-complete with respect to the topology induced by a non-
Archimedean absolute value | · |. We de�ne an Archimedean �eld to be a
�eld K which is Cauchy-complete with respect to the topology induced by
an absolute value | · | which is not non-Archimedean.

1.1.2 Classi�cation of complete valued �elds.

For the remainder of this Section, we shall �x a valued �eld (K, | · |).

As we see from the classical Gelfand-Mazur Theorem, the classi�cation of
Archimedean �elds is very simple.

Theorem 1.1.2.1 ([AC5-7, VI, $6, Théorème 1]). If (K, |·|) is an Archimedean
�eld, then it is isomorphic to either R or C endowed with their usual Archimedean
absolute values.

The non-Archimedean case has more structure: they are classi�ed by bichar-
acteristic and by their value group, as we now explain. We assume for
now that K is non-Archimedean.

Consider the valuation ν(·) = − log | · | associated to the absolute value on K.
By the absolute value axioms, its possible values de�ne an additive subgroup
of R, the value group of (K, |·|). It is a well-known fact that such subgroups
are either trivial, nontrivial discrete, or dense.
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De�nition 1.1.2.2. We say that K is:

• trivially valued if its value group is trivial (equivalently if it is en-
dowed with the trivial absolute value);

• discretely valued if its value group is nontrivial and discrete;

• densely valued if its value group is dense.

We now look into the second way to classify non-Archimedean �elds: the
pair given by their characteristic, and the characteristic of their residue �eld.

De�nition 1.1.2.3. To any non-Archimedean �eld K, one may associate the
following objects:

• its valuation ring K◦, de�ned as the set of elements in K with absolute
value ≤ 1;

• the maximal ideal of K◦, K◦◦, characterized as the set of elements in
K◦ (or K) with absolute value < 1;

• its residue �eld K̃ = K◦/K◦◦.

Only three cases are possible, by which we say that:

• K has equicharacteristic 0 if K and K̃ are of characteristic 0;

• K has mixed chracteristic if K is of characteristic 0 and K̃ is of
characteristic p, p prime;

• K has equicharacteristic p if K and K̃ are of characteristic p, p prime.

Remark 1.1.2.4. One can see that the valuation ring of a non-Archimedean
�eld is Noetherian if and only if the �eld is discretely valued.

We are now equipped to understand the main examples of non-Archimedean
�elds.

Example 1.1.2.5. We �rst look at the discretely-valued case.

• the �eld C((t)) of complex formal Laurent series is discretely valued,
and has equicharacteristic 0, for its residue �eld is C;
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• the �eld Qp of p-adics, p prime, is discretely valued and has mixed
characteristic, for its residue �eld is Fp;

• the �eld Fp((t)) of formal Laurent series over the �nite �eld Fp, p prime,
is discretely valued, and has equicharacteristic p, for its residue �eld is
Fp.

The densely valued world is "wilder". Fields of Puiseux series (i.e. series with
exponents bounded below in Q) over C and Fp are well-known examples,
but they are not Cauchy complete! In the mixed characteristic case, the
fundamental example is the �eld Cp of complex p-adics; though recently,
much attention has been brought to perfectoid �elds, i.e. densely valued
mixed characteristic non-Archimedean �elds with surjective Frobenius on
K◦ mod p. We will give examples closer to our considerations in the next
Subsection.

We �nally mention a last classi�cation result, of potential interest to the
reader.

Theorem 1.1.2.6 (Cohen's structure Theorem, [SerBook, $4, Théorème 2]).
If K is an equicharacteristic discretely valued non-Archimedean �eld, then it
is isomorphic to the �eld K̃((t)), the �eld of formal Laurent series over its
residue �eld.

1.1.3 Maximal completeness.

We brie�y review a property for non-Archimedean �eld which will be essential
in our study of norms on K-vector spaces later on. For this section, our
references are [Poo93] and [CS18].

De�nition 1.1.3.1. Let (K, | · |) be a non-Archimedean �eld. Let (L, | · |′)
be a valued �eld extension of (K, | · |). We say that it is an immediate

extension if the value groups of K and L are isomorphic, and if K̃ and L̃ are
isomorphic.

De�nition 1.1.3.2. A non-Archimedean �eld which admits no immediate
extension will be called a maximally complete �eld.

Example 1.1.3.3. Any equicharacteristic discretely valued �eld is maxi-
mally complete. The �eld Qp, p prime, is also maximally complete.
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Our claim is then the following:

Proposition 1.1.3.4. Any nontrivially valued non-Archimedean �eld can be
embedded into a �eld which is:

1. densely valued;

2. Cauchy-complete;

3. algebraically closed;

4. maximally complete;

5. of the same bicharacteristic as the original �eld.

Proof. Let K be as in the above statement. Let K̂ be the Cauchy completion
of the algebraic closure of K. Taking algebraic closures in the discretely or
densely valued case already yields a densely valued �eld. K̂ still has the same
bicharacteristic as K. Then, [Kap42, Theorem 5] ensures that there exists a
maximally complete immediate extension of K̂, which then has the desired
properties by de�nition.

Example 1.1.3.5. Let us begin with a �eld of complex formal Laurent series
C((t)). The �eld of formal Puiseux series is an algebraic closure thereof, but
as mentioned before, it is not Cauchy-complete. The Levi-Civita �eld L[Q,C]
of formal complex power series P with supp(P )∪ (−∞, k] �nite for all k ∈ Z
is then a Cauchy closure of the �eld of complex Puiseux series. Its maximally
complete immediate extension is given by the �eld of Hahn series C((Q)) of
formal complex power series P with supp(P ) well-ordered in Q. If one were
to start from Fp instead, one would have to �rst pass to an algebraic closure
of Fp, and proceed as before ([CS18, Theorem 7.2]). If one started from Qp,
one would obtain a p-adic Mal'cev-Neumann �eld as in [Poo93, Section 4].

1.2 Spaces of norms on vector spaces over non-

Archimedean �elds.

Throughout this Section, unless otherwise speci�ed, we �x a non-Archimedean
�eld K, with absolute value | · |; and a �nite-dimensional vector space V over
K, of dimension d.
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1.2.1 Spaces of norms.

De�nition 1.2.1.1. A norm on V is a function

ζ : V → R+,

satisfying the following properties:

• ζ(v) = 0 if and only if v = 0V ;

• ζ(λ · v) = |λ| · ζ(v), for λ ∈ K, v ∈ V ;

• ζ(v + w) ≤ max{ζ(v), ζ(w)}, for v, w ∈ V .

We denote by
N (V )

the set of norms on V . This space is closed under the (pointwise) maximum
operation, which we denote

ζ ∨ ζ ′ = max(ζ, ζ ′),

for any two norms ζ, ζ ′ ∈ N (V ).

De�nition 1.2.1.2. A norm ζ ∈ N (V ) is diagonalizable if there exists a
basis (e1, . . . , ed) of V such that, for all

v =
∑

viei,

with vi ∈ K for all i, we have that

ζ(v) = max
i
|vi| · ζ(ei).

We also say that this basis is orthogonal for ζ. We say that it is a lattice
norm, or a pure diagonalizable norm, if, for all i, ζ(ei) = 1. We de�ne

N diag(V ), N latt(V )

as respectively the set of diagonalizable norms and the set of lattice norms
on V .

Remark 1.2.1.3. In our conventions, we will de�ne a lattice of V to be
a submodule L of V of �nite type over K◦, such that L ⊗Ko K = V . In
particular, the unit ball of a lattice norm is always a lattice, justifying the
terminology.
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Remark 1.2.1.4. It is also common practice to use the terminology of
cartesian bases, see e.g. [BGR, Ch. 2].

We note that, when K is maximally complete, we know from [BGR, 2.4.4]
(see also [BE, Lemma 1.12]) that any norm ζ on V admits an orthogonal
basis. Further emphasizing the di�erence between the possible value groups,
we have:

Lemma 1.2.1.5 ([BE, L1.29]). Let K be nontrivially valued.

• if K is discretely valued, the unit ball of any diagonalizable norm is a
lattice of V ;

• if K is densely valued, the unit ball of a norm ζ ∈ N (V ) is a lattice if
and only if ζ is a lattice norm.

There are many ways to construct norms from pre-existing ones. The two
building blocks are the following:

• let W ⊂ V be a subspace; any norm ζ induces a quotient norm ζV/W
on V/W , as follows: given [v] ∈ V/W ,

ζV/W ([v]) = inf
w∈W

ζ(v + w);

• a norm ζ on V induces a norm ζ⊗n on any tensor power V ⊗n of V , by
setting, for each v ∈ V ⊗n,

ζ⊗n(v) = inf
v=

∑
i v
i
1⊗···⊗vin

max
i

(ζ(vi1)× · · · × ζ(vin)),

where we take the in�mum over all possible decompositions of v of the
form

∑
i v

i
1⊗ · · ·⊗ vin, where the sum over i is �nite, and vik ∈ V for all

i, k.

We may combine these constructions. Let n be an integer, λ be a partition
of n, and let Sλ denote the Schur functor associated to λ. Then a norm ζ ∈
N (V ) de�nes a norm ζλ ∈ N (Sλ(V )), as this vector space is a composition
of quotients of tensor products. In particular, ζ ∈ N (V ) induces:

• a norm ζ∧n on the n-fold exterior product V ∧n;

• a norm ζ�n on the n-fold symmetric product V �n.
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1.2.2 Relative spectra.

Generalizing the set of eigenvalues of the transition matrix between to jointly
orthonormalized complex Hermitian norms, we introduce the relative spec-
trum of two norms ζ, ζ ′ ∈ N (V ).

De�nition 1.2.2.1. The relative spectrum of ζ and ζ ′ is the set (counting
multiplicities) Sp(ζ, ζ ′) which contains all real numbers of the form

λi(ζ, ζ
′) = sup

W∈
⋃
i≤r≤dimV GrK(r,V )

inf
w∈W−{0}

[log ζ ′(w)− log ζ(w)],

where
GrK(r, V )

denotes the r-th Grassmannian of V .

Remark 1.2.2.2. When K is maximally complete, again from [BGR, 2.4.4],
for any two norms, there exists a basis diagonalizing both of them (we shall
in that case speak of codiagonalizing bases).

By [BE, P2.24], if both norms are diagonalizable by a basis (si), ordered such
that

i > j ⇒ ζ ′(si)

ζ(si)
≥ ζ ′(sj)

ζ(sj)
,

then
λi(ζ, ζ

′) = log ζ ′(si)− log ζ(si).

Due to the diagonalizability issues explained before in non-maximally com-
plete �elds, it will be desirable to pass to a maximally complete �eld exten-
sion, such as one of the lovely �elds promised by Proposition 1.1.3.4. We
now see how to extend norms, and how spectra behave under this operation.

De�nition 1.2.2.3. Let L/K be a non-Archimedean �eld extension. Let
ζ be a non-Archimedean norm on V . The ground �eld extension ζL on
VL = V ⊗K L is de�ned as

ζL(v′) = inf max
i
|a′i| · ζ(vi),

for any v′ ∈ VL, where the inf is de�ned over all representations

v′ =
∑
i

a′i · vi,

with coe�cients a′i in L and vi ∈ V .
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This de�nes by [BE, Proposition 1.24(i)] a non-Archimedean norm on VL,
which coincides with the original norm ζ on V . Two essential results for us
are as follows:

Proposition 1.2.2.4 ([BE, Lemma 1.25, Proposition 2.14(v)]). Let L/K be
a �eld extension. Let ζ be a norm on V , with ground �eld extension ζL on
VL. We then have:

• if ζ is diagonalizable with basis (ei), then ζL is also diagonalizable with
basis (ei ⊗ 1);

• the relative spectra of ground �eld extensions of norms coincides with
with the relative spectra of original norms: for any other norm ζ ′ with
ground �eld extension ζ ′L, we have

Sp(ζ, ζ ′) = Sp(ζL, ζ
′
L).

The second point follows from the �rst, and the fact that the ground �eld
extension of a norm coincides with the original norm on V .

1.2.3 Spectral measures, volumes, and metric structures
on N (V )

De�nition 1.2.3.1. The relative spectral measure

σ(ζ, ζ ′)

of ζ and ζ ′ is de�ned to be the discrete probability measure supported on
Sp(ζ, ζ ′), that is:

σ(ζ, ζ ′) = d−1
∑

δλi(ζ,ζ′),

where we recall that d = dimK V .

De�nition 1.2.3.2. Let p ∈ [1,∞). The dp-distance of ζ and ζ ′ is de�ned
by:

dp(ζ, ζ
′)p =

ˆ
R
|λ|p dσ(ζ, ζ ′).

We furthermore de�ne

d∞(ζ, ζ ′) = max
λ∈Sp(ζ,ζ′)

|λ|.
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Of utmost interest for our considerations are the cases d1 and d∞, which have
more practical expressions:

d∞(ζ, ζ ′) = sup
v∈V−{0}

| log ζ ′(v)− log ζ(v)|,

and
d1(ζ, ζ ′) = d−1

∑
λi(ζ, ζ

′),

where d = dimK V . The distance d2 also has some importance in the Eu-
clidean picture, which we lightly touch on in the next Subsection.

Remark 1.2.3.3 (Important characterization of the distance d∞). The dis-
tance d∞(ζ, ζ ′) is equivalently characterized as the maximal exponential dis-
torsion between the two norms, or in other words best constant C > 0 such
that for all v ∈ V ,

e−Cζ ′(v) ≤ ζ(v) ≤ eCζ ′(v).

Closely related to the distance d1 (see Theorem 1.2.3.6 below), the relative
volume of norms generalizes ratios of volumes of balls of holomorphic sections,
originally studied in [BB10].

De�nition 1.2.3.4. The relative volume of ζ and ζ ′ ∈ N (V ) is de�ned as

vol(ζ, ζ ′) =

ˆ
R
λ dσ(ζ, ζ ′),

that is: the mean value of the relative spectrum of those norms. Note that
we normalize our spectral measure by d, while the authors in [BE, T2.25] do
not.

Remark 1.2.3.5. In particular, if ζ ≤ ζ ′, then

vol(ζ, ζ ′) = d1(ζ, ζ ′),

and, reversing the inequality, we obtain

− vol(ζ, ζ ′) = d1(ζ, ζ ′).

Theorem 1.2.3.6 ([BE, T2.25]). Let {e1, . . . , ed} be a basis of V . We have
that

vol(ζ, ζ ′) =
1

d

[
log ζ ′

∧d
(e1 ∧ · · · ∧ ed)− log ζ∧d(e1 ∧ · · · ∧ ed)

]
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Corollary 1.2.3.7. Volumes satisfy a cocycle property: given a third norm
ζ ′′ ∈ N (V ),

vol(ζ, ζ ′) = vol(ζ, ζ ′′) + vol(ζ ′′, ζ ′).

Proposition 1.2.3.8 ([BE, P1.8, T1.19, L1.29]). With respect to the distance
d∞ on N (V ), we have that:

(i) N (V ) is complete;

(ii) N diag(V ) is dense in N (V ), with equality if K is discretely valued;

(iii) if K is discretely valued, N latt(V ) is discrete and closed in N (V );

(iv) if K is densely valued, N latt(V ) is dense in N diag(V ).

We note that relative volumes behave well with respect to the d∞ distance.

Lemma 1.2.3.9 (Volumes are Lipschitz, [BE, P2.14]). The mapping vol is 1-
Lipschitz in both variables, and thus Lipschitz on the product N (V )×N (V ).
In other words, given two pairs of norms (ζ0, ζ1) and (ζ ′0, ζ

′
1) acting on V , we

have
| vol(ζ0, ζ1)− vol(ζ ′0, ζ

′
1)| ≤ d∞(ζ0, ζ

′
0) + d∞(ζ1, ζ

′
1).

Finally, we see that taking quotients of norms is a contracting operation for
the d∞ distance.

Proposition 1.2.3.10 (Quotients decrease distance). Let W ⊂ V be a
proper linear subspace of V , let ζ and ζ ′ be norms on V . Denote ζ̃ and
ζ̃ ′ the induced quotient norms on V/W . We then have that:

d∞(ζ̃ , ζ̃ ′) ≤ d∞(ζ, ζ ′).

Proof. Fix a = d∞(ζ, ζ ′), and ṽ ∈ V/W . It is enough to show that

e−aζ̃ ′(ṽ) ≤ ζ̃(ṽ) ≤ eaζ̃(ṽ).

We lift ṽ to a sum v + w with v ∈ V −W and w ∈ W . Note that

e−aζ ′(v + w) ≤ ζ(v + w),

for all such lifts, so that we can pass to the inf and get that

e−aζ̃ ′(ṽ) ≤ ζ̃(ṽ).

Similarly, we get that
e−aζ̃(ṽ) ≤ ζ̃ ′(ṽ).

The result follows.
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1.2.4 Apartments.

Norms oftentimes like to be roommates. This a�nity gives insight into the
building-like structure of the space of diagonalizable norms on the vector
space V . Pick a basis s = (si)i of V , and the projection

ιs : Rd → N (V ) = N diag(V )

de�ned by sending a vector α = (α1, . . . , αd) to the unique norm ζ diagonal-
ized in the basis s, and with

ζ(si) = e−αi

for all i. The image of this injection map is called the apartment As associated
to the basis s. It inherits the geometry of Rd, in the sense that for any distance
dp, p ∈ [1,∞], ιS realizes an isometry onto its image for the distances dp as
de�ned in the previous section.

The space of diagonalizable norms N diag(V ), as the (non-disjoint!) union of
all the apartments ⋃

s basis of V

As

then inherits a complete Euclidean building structure for p = 2, in the sense
of [RTW15]. As two diagonalizable norms may be diagonalized in the same
basis, it follows that any pair of norms share some apartment in the building
N diag(V ). If K is maximally complete, all norms are diagonalizable, so that
N diag(V ) = N (V ).

As a Euclidean building, N (V ) therefore has the nice property that dp-
geodesics always exist: given two norms ζ, ζ ′ codiagonalized by a basis s,
a geodesic segment connecting them may be obtained as the image through
ιs of a dp-geodesic segment connecting ι−1

s (ζ) and ι−1
s (ζ ′) in Rd. We give an

explicit description of such geodesics in what follows. The reader might be
interested in consulting the article [Gér81].

1.2.5 Norm geodesics.

Pick a basis s = (si)i of V . In the apartment As, there is what we call a
norm geodesic

t ∈ [0, 1] 7→ ζt
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de�ned as follows: for all i, ζt(si) = ζ0(si)
1−t · ζ1(si)

t. From an elementary
computation it follows that it is geodesic for all distances dp.

Remark 1.2.5.1. In the case p > 1, the norm geodesic is the only geodesic
segment between two norms. However, if p = 1, there are in�nitely many
geodesic segments between two norms, re�ecting the d1 geometry of Rd.

Consider now two non-necessarily diagonalizable norms ζ0 and ζ1 ∈ N (V ),
and approximations by diagonalizable norms ζn0 , ζ

n
1 such that

d1(ζni , ζi) ≤
1

n

for i = 0, 1. De�ne
ζt = lim

n
ζnt ,

where t 7→ ζnt is the norm geodesic de�ned above joining ζn0 and ζn1 . We make
the following claim:

Proposition 1.2.5.2. The limit ζt above exists, and satis�es the following
properties:

1. it is independent of the approximation;

2. it is controlled uniformly by the endpoints: given approximations (ζmi )m,
i = 0, 1, of the bounds, we have

d1(ζt, ζ
m
t ) ≤ (1− t)d1(ζ0, ζ

m
0 ) + td1(ζ1, ζ

m
1 );

3. ζt is the pointwise limit of the approximating norms: for s ∈ V ,

ζt(s) = lim
m
ζmt (s).

This claim relies on the diagonalizable case of Corollary 1.2.5.8, which has
yet to be proven. However, all the results in this Section hold in the general
non-necessarily diagonalizable case. In order to avoid writing each state-
ment twice, we �rst prove Proposition 1.2.5.2 using the diagonalizable case
of Corollary 1.2.5.8, and then state each result of this Section in the gen-
eral case. Circular reasoning is avoided by following the logical order "proof
of a result in the diagonalizable case" → "proof of Corollary 1.2.5.8 and
Proposition 1.2.5.2" → "proof of a result in the non-diagonalizable case".
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Proof. Pick m, n ≥ 0, and write using Corollary 1.2.5.8:

d1(ζmt , ζ
n
t ) ≤ (1− t)d1(ζm0 , ζ

n
0 ) + td1(ζm1 , ζ

n
1 )

which establishes that the sequence (ζnt ) is d1-Cauchy, thus has a limit in
N (V ). This also establishes the statement about uniform approximation by
passing to the limit in n in the previous inequality. Pick now a second pair
of approximations (ζ ′n0 ), (ζ ′n1 ), and write ζ ′nt for the norm geodesic between
the adequate bounds for all n. Then,

d1(ζnt , ζ
′n
t ) ≤ (1− t)d1(ζn0 , ζ

′n
0 ) + td1(ζn1 , ζ

′n
1 )

which vanishes as n→∞ since both pairs of approximations have the same
limits. For the third point, we recall that all metric structures dp, p ∈
[1,∞] are equivalent on spaces of norms (see [BE, 3.1]). In particular, d1-
convergence is equivalent to d∞-convergence, where

d∞(ζ, ζ ′) = log sup
s∈V

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ,
which gives pointwise convergence.

A fundamental property of norm geodesics is the following:

Lemma 1.2.5.3 (Log-convexity of norm geodesics). Let t ∈ [0, 1], let V be a
d-dimensional K-vector space. Pick two norms ζ0, ζ1 ∈ N (V ), and let t 7→ ζt
denote the norm geodesic as de�ned above. Let s ∈ V . We then have that
log ζt(s) is a convex function of t:

ζt(s) ≤ ζ0(s)1−tζ1(s)t.

Proof. Let (si) be a basis codiagonalizing the endpoints, and write s as
∑
ai ·

si, so that

ζt(s) = max
i
|ai| · ζt(si)

= max
i
|ai| · ζ0(si)

1−tζ1(si)
t

= max
i
|ai|1−tζ0(si)

1−t · |ai|tζ1(si)
t

≤ (max
i
|ai| · ζ0(si))

1−t · (max
i
|ai| · ζ1(si))

t = ζ0(s)1−tζ1(s)t.
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The non-diagonalizable case follows upon approximation with diagonalizable
norms and passing to the pointwise limit in the log-convexity inequalities

ζmt (s) ≤ ζm0 (s)1−tζm1 (s)t.

We now prove an important comparison inequality concerning norm geodesics
with comparable endpoints. They will be crucial in proving many later re-
sults, including the metric convexity of d1 in spaces of norms.

Proposition 1.2.5.4 (Monotonicity of norm geodesics with respect to end-
points). Let k ∈ N, and set two couples of norms (ζ0, ζ1) and (ζ ′0, ζ

′
1) acting

on H0(kL). If
ζ ′0 ≤ ζ0 and ζ ′1 ≤ ζ1,

we then have that for all t
ζ ′t ≤ ζt.

Proof. Assume �rst all norms to be diagonalizable. Write then a section s of
inH0(kL) as s =

∑
aisi where (si) is a basis codiagonalizing ζ0 and ζ1 (hence

all the ζt), so that

ζ ′t(s) ≤ max
i
|ai| · ζ ′t(si)

≤ max
i
|ai| · ζ ′0(si)

1−tζ ′1(si)
t

≤ max
i
|ai| · ζ0(si)

1−tζ1(si)
t = ζt(s),

where we have used the ultrametric inequality, log-convexity of ζ ′t, the in-
equalities in the hypotheses, then the de�nition of a basis diagonalizing ζt.
This concludes the proof. If we do not have diagonalizability, one uses ap-
proximations by diagonalizable norms and Proposition 1.2.5.2(iii) to con-
clude.

As explained before, one can take determinants of norms on V . We now look
into the behaviour of geodesics under this operation, which will allow us to
prove metric convexity of geodesics. We �rst recall the following result from
[BE]:
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Lemma 1.2.5.5. Let ζ be a norm on a d-dimensional K-vector space V , and
let s = (si)i be a basis of V . If s diagonalizes ζ, then

det ζ(s1 ∧ · · · ∧ sd) =
d∏
i=1

ζ(si).

We recall that the determinant of a norm ζ on V is the norm induced by ζ
on detV = V ∧d.

Lemma 1.2.5.6. Let t 7→ ζt be a norm geodesic in V . Then,

t 7→ det ζt

is the one-dimensional norm geodesic joining det ζ0 and det ζ1 in detV .

Proof. By density, we may assume that there exists a basis s = (si)i of V
diagonalizing the ζt for all t. We have:

det ζt(s1 ∧ · · · ∧ sd) =
∏

ζt(si)

=
∏

ζ0(si)
1−tζ1(si)

t

= (det ζ0(s1 ∧ · · · ∧ sd))1−t(det ζ1(s1 ∧ · · · ∧ sd))t,

which by de�nition proves the statement. We have used Lemma 1.2.5.5
for the �rst equality, the diagonalizing property of (si) for the second, and
Lemma 1.2.5.5 again for the third.

This yields a proof that the relative volume of geodesics is a�ne:

Corollary 1.2.5.7. Given two norm geodesics t 7→ ζt, t 7→ ζ ′t in V , the
function

vol(ζt, ζ
′
t) = t 7→ log

det ζ ′t
det ζt

is a�ne.

Proof. By density again, without loss of generality we can assume that we
can pick a basis s = (si)i diagonalizing ζt for all t. We then have that for all
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t,

det ζt(s1 ∧ · · · ∧ sd) =
d∏
i=1

ζt(si)

=
d∏
i=1

ζ0(si)
1−tζ1(si)

t

= (det ζ0(s1 ∧ · · · ∧ sd))1−t(det ζ1(s1 ∧ · · · ∧ sd))t.

Furthermore, from Lemma 1.2.5.3 and Lemma 1.2.5.6 we have that the func-
tions t 7→ det ζt and t 7→ det ζ ′t are log-convex. Combining this with the
equality above, we �nd

log
det ζ ′t
det ζt

≤ log
(det ζ ′0(s1 ∧ · · · ∧ sd))1−t(det ζ ′1(s1 ∧ · · · ∧ sd))t

(det ζ0(s1 ∧ · · · ∧ sd))1−t(det ζ1(s1 ∧ · · · ∧ sd))t
,

i.e. the function t 7→ vol(ζt, ζ
′
t) is convex. Note that the argument applies

symmetrically to show convexity of t 7→ vol(ζ ′t, ζt) = − vol(ζt, ζ
′
t), i.e. that

t 7→ vol(ζt, ζ
′
t) is also concave, proving a�neness.

We may now establish the following result, building on the proof of [BDL,
Proposition 5.1]:

Corollary 1.2.5.8 (Metric convexity of norm geodesics). Given two norm
geodesics t 7→ ζt, t 7→ ζ ′t in V , we have

d1(ζt, ζ
′
t) ≤ (1− t)d1(ζ0, ζ

′
0) + td1(ζ1, ζ

′
1).

Proof. If the endpoints are comparable in the same order, i.e. ζ0 ≥ ζ ′0 and
ζ1 ≥ ζ ′1; or ζ0 ≤ ζ ′0 and ζ1 ≤ ζ ′1, this follows immediately from the previous
Corollary. In the general case, we have to be careful, as the maximum of
norm geodesics is not a priori a norm geodesic. However, from Proposition
1.2.5.4, we have that the geodesic

t 7→ χt

joining ζ0 ∨ ζ ′0 and ζ1 ∨ ζ ′1 satis�es

χt ≥ ζt, ζ
′
t
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for all t, i.e.
χt ≥ ζt ∨ ζ ′t.

Therefore, vol(χt, ζt ∨ ζ ′t) ≤ 0, and we have

d1(ζt, ζ
′
t) = vol(ζt, ζt ∨ ζ ′t) + vol(ζ ′t, ζt ∨ ζ ′t)

= vol(ζt, χt) + vol(χt, ζt ∨ ζ ′t) + vol(ζ ′t, χt) + vol(χt, ζt ∨ ζ ′t)
≤ vol(ζt, χt) + vol(ζ ′t, χt).

Since ζt, ζ ′t ≤ χt, the statement of the corollary holds for the volumes above,
and we have

d1(ζt, ζ
′
t) ≤ (1− t) vol(ζ0, ζ0 ∨ ζ ′0) + t vol(ζ1, ζ1 ∨ ζ ′1)

+ (1− t) vol(ζ ′0, ζ0 ∨ ζ ′0) + t vol(ζ ′1, ζ1 ∨ ζ ′1)

= (1− t)d1(ζ0, ζ
′
0) + td1(ζ1, ζ

′
1),

proving the general statement.

Remark 1.2.5.9. From the general theory of metric spaces, a result such as
Corollary 1.2.5.8 ensures existence and good properties of the "cone at in�n-
ity" or boundary at in�nity of N (V ), which can be described as equivalence
classes of (norm) geodesic rays in N (V ) staying at bounded distance.

The same result holds in d∞ distance:

Lemma 1.2.5.10 (Convexity of d∞ along norm geodesics). Let ζ0, ζ1 and ζ ′0,
ζ ′1 be four norms on V , and denote by ζt, resp. ζ ′t the norm geodesic joining
the �rst two, resp. the last two. Then,

d∞(ζt, ζ
′
t) ≤ (1− t)d∞(ζ0, ζ

′
0) + td∞(ζ1, ζ

′
1).

Proof. As usual, the general case follows from the diagonalizable case by
approximation, therefore we make this assumption. We have that

d∞(ζt, ζ
′
t) = max

i
|λi(ζt, ζ ′t)|

= max
i
|(1− t)λi(ζ0, ζ

′
0) + tλi(ζ1, ζ

′
1)|

≤ (1− t) max
i
|λi(ζ0, ζ

′
0)|+ tmax

i
|λi(ζ1, ζ

′
1)|,

and the last term is simply (1−t)d∞(ζ0, ζ
′
0)+td∞(ζ1, ζ

′
1), which is the desired

result.
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1.3 Spaces of norms on graded algebras over

non-Archimedean �elds.

Throughout this Section, (K, | · |) will be a non-Archimedean �eld, and V•
will denote a graded K-algebra

V• =
⊕
k∈N

Vk,

such that V0 = K, each Vk is a �nite-dimensional K-vector space. We assume
that V• is furthermore generated in degree one in that the multiplication
morphisms

V �k1 → Vk

(where � denotes the symmetric product) are surjective for all k ∈ N∗.

1.3.1 Bounded graded norms.

An algebra norm on V• compatible with the grading may be characterized
as the data of norms ζ• = (ζk)k acting on each Vk, satisfying the following
submultiplicativity condition: given vk ∈ Vk and v` ∈ V`, we must have
that

ζk+`(vk · v`) ≤ ζk(vk) · ζ`(v`).

A sequence of norms on V• satisfying this condition is called a graded norm.
In order to study asymptotic properties of graded norms, using e.g. Fekete's
lemma, we will need a growth condition that is both natural and ensures that
the graded norms does not "blow up". We explain here how to formulate
such a condition algebraically. This requires an additional de�nition.

De�nition 1.3.1.1. We shall say that a graded norm ζ• on V• is generated
in degree one if, for all k ∈ N∗, ζk is the quotient norm induced by the
surjective symmetry morphism V �k1 → Vk.

Example 1.3.1.2. If K is trivially valued, the most simple example of a
graded norm generated in degree one is the trivial graded norm ζtriv,•,
given by ζtriv,k(vk) = 1 for all vk ∈ Vk − {0Vk}. Later on, we will see how
graded norms generated in degree one naturally arise in a geometric context.
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De�nition 1.3.1.3. We will say that a graded norm ζ• on V• is a bounded
graded norm if it has at most exponential distorsion with respect to a
norm generated in degree one, i.e. there exists a graded norm ζ ′• generated
in degree one on V•, and a constant C > 0 with

e−kCζ ′m ≤ ζk ≤ ekCζ ′m

for all k ∈ N∗. We denote by N•(V•) the set of such graded norms.

1.3.2 Asymptotic spectral measures, volumes, and met-
ric structures on N•(V•)

We now see how to transpose the constructions of Section 1.2.3.

Theorem 1.3.2.1. Fix two bounded graded norms ζ•, ζ ′• ∈ N•(V•). Then,
the sequence of rescaled measures

(k · dimK(Vk))
−1
∗ σ(ζk, ζ

′
k)

weakly converges to a compactly supported probability measure. We call this
limit measure the relative spectral measure of ζ• and ζ ′•:

σ(ζ•, ζ
′
•) = lim

k
(k · dimK(Vk))

−1
∗ σ(ζk, ζ

′
k).

Remark 1.3.2.2. This Theorem is proven in [CM15, Theorem 5.2], see also
[BE, Theorem 9.5] and the similar statement in [Reb20a], building on ideas
of [Nys09]. The trivially-valued case is proven in [BJ18a, Theorem 3.2]. We
will state this result in larger generality in Chapter 3.

De�nition 1.3.2.3. Fix two bounded graded norms ζ•, ζ ′• ∈ N•(V•). We
de�ne:

• for p ∈ [1,∞), their asymptotic dp-distance by:

d1(ζ•, ζ
′
•) =

ˆ
R
|λ| dσ(ζ•, ζ

′
•);

• their asymptotic d∞-distance by:

d∞(ζ•, ζ
′
•) = sup

k∈N∗
k−1d∞(ζk, ζ

′
k);
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• their asymptotic relative volume by:

vol(ζ•, ζ
′
•) =

ˆ
R
λ dσ(ζ•, ζ

′
•).

One then sees that the asymptotic dp-distances may be recovered as the limit
of the �nite-dimensional distances

k−1dp(ζk, ζ
′
k)
p = k−1

ˆ
R
|λ|p dσ(ζk, ζ

′
k).

Similarly, the asymptotic relative volume is recovered as

vol(ζ•, ζ
′
•) = lim

k
k−1 vol(ζk, ζ

′
k).

It therefore has the same algebraic properties of �nite-dimensional volumes,
i.e. the cocycle property and antisymmetry.

Note that the dp "distances" above are merely pseudodistances: for example,
since for any two norms ζk, ζ ′k on a �xed Vk,

d1(ζk, ζ
′
k) ≤ d∞(ζk, ζ

′
k),

then if two bounded graded norms have at most subexponential growth in k,
we have

d1(ζ•, ζ
′
•) ≤ lim

k
k−1d∞(ζk, ζ

′
k) = 0.

Even worse: there exist bounded graded norms such that k−1d∞(ζk, ζ
′
k) →

C > 0 but d1(ζ•, ζ
′
•) = 0, see e.g. [BJ18a, R3.8]. This justi�es the following

de�nition.

De�nition 1.3.2.4. We say that two bounded graded norms ζ• and ζ ′• on
V• are asymptotically equivalent, and we write

ζ• ∼ ζ ′•,

if and only if
d1(ζ•, ζ

′
•) = 0.

We then have that
(N•(L)/ ∼, d1)

with the induced d1 distance, is a bona �de metric space.
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Remark 1.3.2.5. One has that ζ• ∼ ζ ′• if one of the three following equiva-
lent conditions is realized:

• for some p ∈ [1,∞),
´
R |λ|

p dσ(ζ•, ζ
′
•) = 0;

• for all p ∈ [1,∞),
´
R |λ|

p dσ(ζ•, ζ
′
•) = 0;

• the asymptotic spectral measure σ(ζ•, ζ
′
•) is the Dirac measure δ0.

This is proven in the trivially valued case in [BJ18a, Section 3.6], and the
proofs are identical in the nontrivially valued case. In particular, this justi�es
our choice of notation for ∼, which does not emphasize the choice of a p ∈
[1,∞).

Remark 1.3.2.6. Note that, since d∞ is de�ned as a sup rather than as a
limit, it de�nes a genuine distance on N•(L).

Finally, we check that bounded graded norms remain bounded graded after
piecewise ground �eld extension. This is a result of Boucksom-Eriksson:

Lemma 1.3.2.7 ([BE, L9.4]). Set ζ•, ζ ′• ∈ N•(V•). Let L/K be a complete
�eld extension, and consider the sequences of ground �eld extensions

ζL,•, ζ
′
L,•.

Then, those sequences are bounded graded norms, and furthermore

σ(ζL,•, ζ
′
L,•) = σ(ζ•, ζ

′
•),

which implies stability of the asymptotic volumes and dp-distances under
base change.

1.3.3 Geodesics between bounded graded norms.

In [Reb20b], we extend the classical results of Section 1.2.5 to the context of
bounded graded norms. Namely, given two bounded graded norms ζ0

• and
ζ1
• , one wonders whether there exists a geodesic of graded norms in N•(V•)
for the asymptotic d1-distance (or dp, p <∞). It seems obvious to consider,
for all k, the norm geodesic ζtk joining ζ

0
k and ζ1

k in Vk, and to set, for all t,

ζt• = (ζtk)k.
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There are two points to show here: submultiplicativity, and geodesicity. The
latter is rather simple: by de�nition of our norm geodesics, we have that, for
t, t′ ∈ [0, 1],

dp(ζ
t
k, ζ

t′

k ) = |t− t′| · dp(ζ0
k , ζ

1
k),

so that geodesicity follows upon taking the limit in k. Showing submulti-
plicativity is a bit trickier.

Theorem 1.3.3.1. For all t ∈ [0, 1], the sequence of norms ζt• de�ned above
is submultiplicative.

Proof of Theorem 1.3.3.1. We assume at �rst that all norms involved are
diagonalizable. We start with the following case: let vm belong to a basis of
Vm orthogonal for ζ0

m and ζ1
m. De�ne in in the same way sn ∈ Vn. We then

have that

ζtm+n(vm · vn) ≤ ζ0
m+n(vm · vn)1−tζ1

m+n(vm · vn)t

≤ ζ0
m(vm)1−tζ0

n(vn)1−tζ1
m(vm)tζ1

n(vn)t

= ζtm(vm) · ζtn(vn),

where we have used log-convexity (Lemma 1.2.5.3) in the �rst inequality,
submultiplicativity of the endpoints in the second inequality, and �nally the
fact that vm and vn belong to bases codiagonalizing the endpoints, so that
ζtm(vm) = ζ0

m(vm)1−tζ1
m(vm)t, and the same holds for n.

To pass to the general case, write

vm =
∑

aivm,i, vn =
∑

bjvn,j,

in their adapted bases, and note that

ζtm+n(vm · vn) ≤ max
i,j
|ai| · |bj| · ζtm+n(vm,i · vn,j)

≤ max
i,j
|ai| · |bj| · ζtm(vm,i) · ζtn(vn,j)

≤ (max
i
|ai| · ζtm(vm,i)) · (max

j
|bj| · ζtn(vn,j))

≤ ζtm(vm) · ζtn(vn).

The second inequality follows from the result we just proved, which applies
to the vm,i and the vn,j; the fourth inequality follows from the fact that those
bases diagonalize ζtm and ζtn. This proves the desired result.
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Finally, if the norms are not diagonalizable, pick, for i = 0, 1, ε > 0, and all
m ∈ N∗, diagonalizable norms ζ i,εm such that

d∞(ζ i,εm , ζ
i
m) < ε.

Those always exist by d∞-density of the set of diagonalizable norms on a
�nite-dimensional K-vector space. By the distortion characterization of d∞,
we then have that, for all m:

e−εζ im ≤ ζ i,εm ≤ eεζ im. (1.1)

Pick sections vm ∈ Vm, v` ∈ V`. We then have that

ζ i,εm+`(vm · v`) ≤ eεζ im+`(vm · v`)
≤ eεζ im(vm) · ζ i`(v`)
≤ e3εζ i,εm (vm) · ζ i,ε` (v`).

We have used the right-hand side of (1.1) for the �rst inequality; submul-
tiplicativity of ζ i• for the second inequality, and �nally the left-hand side of
(1.1) for the third one. Multiplying both sides by e3ε we then have that

e3εζ i,εm+`(vm · v`) ≤ e6εζ i,εm (vm) · ζ i,ε` (v`),

i.e. the sequence of norms e3εζ i,ε• is submultiplicative. As

d∞(e3εζ i,εm , ζ
i
m) = 3ε+ d∞(ζ i,εm , ζ

i
m) < 4ε,

one can see the e3εζt,εm to be the norm geodesics joining the e3εζ i,εm , and also
actually e3ε times the geodesic joining the ζ i,εm ). We �nd

d∞(e3εζt,εm , ζ
t
m) ≤ (1− t)d∞(e3εζ0,ε

m , ζ0
m) + td∞(e3εζ1,ε

m , ζ1
m) < 4ε,

thanks to metric convexity of d∞ (Lemma 1.2.5.10). This states that e3εζt,εm
converges pointwise to ζtm for all m. As e3εζ i,εm is diagonalizable for all m, by
the previous case, e3εζt,ε• is submultiplicative, and in particular we have

e3εζt,εm+`(vm · v`) ≤ e6εζt,εm (vm)ζt,ε` (v`)

Using the pointwise convergence found above to pass to the limit as ε → 0,
this proves the Theorem.

73



We remark that the last part of the above proof also shows the following:

Proposition 1.3.3.2. Let ζ• be a bounded graded norm on V•. Then, there
exist bounded graded norms ζε• on V•, for all ε > 0, satisfying the following
properties:

• ζεm is diagonalizable for all m;

• d∞(ζεm, ζm) < ε for all m.

1.3.4 Completeness of N•with respect to the d∞ dis-
tance.

To conclude this Chapter, we prove the following unpublished result.

Theorem 1.3.4.1. The metric space (N•(V•), d∞) is complete.

Proof. Let k 7→ ζk• be a Cauchy sequence of bounded graded norms with
respect to the d∞ distance. Then, for all ε > 0, there exist an kε > 0 such
that for all m, n > kε,

sup
p∈N∗

k−1d∞(ζmp , ζ
n
p ) < ε,

which implies that for all integers k,

d∞(ζmp , ζ
n
p ) < p · ε.

In other words, the sequence k 7→ ζkp is Cauchy with respect to the d∞
distance on N (Vp). Since spaces of norms on �nite-dimensional vector spaces
are complete with respect to d∞, there exists a d∞-limit ζp ∈ N (Vp) to this
sequence. The family of norms ζ• : p 7→ ζp ∈ N (Vp) is then by de�nition a
d∞-limit to the sequence of bounded graded norms (ζk• )k.

We claim that ζ• is bounded graded. Boundedness follows from the triangle
inequality, and we must therefore show that ζ• is graded. This will follow
from the "submultiplicativity trick" from the proof of submultiplicativity of
geodesics in N•(L). We thus �rst choose an ε > 0 and pick k large enough
so that

d∞(ζk• , ζ•) < ε.
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For all integers p, this yields

d∞(ζkp , ζp) < p · ε,

and using the fact that d∞ is the maximal exponential distorsion between
two norms, we �nd

e−p·εζkp ≤ ζk ≤ ep·εζkp ,

for all p uniformly. We now pick p, q integers, and elements vp ∈ Vp, vq ∈ Vq.
Using submultiplicativity of ζk• , we �nd:

ζp+q(vp · vq) ≤ ep·εζkp+q(vp · vq)
≤ ep·εζkp (vp)ζ

k
q (vq)

≤ e3p·εζp(vp)ζq(vq).

Since, for all ε > 0, we can �nd a k such that this works, this proves that

ζp+q(vp · vq) ≤ ζp(vp)ζq(vq).

Remark 1.3.4.2. It is expected that the quotient spaces N•(V•)/ ∼ are not
complete with respect to any of the dp distances, p <∞. In the case where
K is trivially valued and p = 1, the completion has been characterized by
Boucksom-Jonsson ([BJ21]).
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Chapter 2

Geometric preliminaries.

Conventions.

Throughout this Chapter, K will be a complete valued �eld. A variety X
over K will be a geometrically integral, separated scheme, of �nite type over
K.

2.1 Analytic geometry over non-Archimedean

�elds.

2.1.1 The Berkovich analyti�cation.

In analogy with the fundamental GAGA principle of Serre ([SerGAGA]),
Berkovich de�nes in [BerkBook] an analyti�cation functor sending a K-
variety X to its Berkovich analyti�cation Xan. It is a K-analytic space
in the sense of [BerkBook], but we shall not develop this aspect here, and
rather focus on the topological space Xan.

The a�ne case. Assume X to be the spectrum SpecA of an algebra A
of �nite type over K. Then, the underlying set of (SpecA)an is the set of
multiplicative seminorms on A which extend the absolute value on K.

The topology on (SpecA)an is the topology of pointwise convergence, that
is: the coarsest topology such that, for all a ∈ A, the evaluation map

Xan 3 | · |A 7→ |a|A
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is continuous.

This construction gives a natural kernel map from (SpecA)an to SpecA,
as follows. Let | · | be a point in SpecA. One associates to it the ideal
a|·| := {a ∈ A, |a| = 0}. This is a prime ideal, and therefore de�nes a scheme
point. The mapping

ker(| · |) = a|·|

is then well-de�ned, and continuous by de�nition.

The general case. If X is an abstract variety, we proceed by gluing the
a�ne construction above. We cover X by a�nes Ui = SpecAi. By [Berk93,
Proposition 1.3.3], one can glue together the Uan

i provided each Uij := Ui∩Uj
is a�ne. This is ensured by separatedness of X. The kernel maps keri :
Uan
i → Ui glue together as well to a global kernel map ker : Xan → X.

We then have the following:

Theorem 2.1.1.1 ([BerkBook, Theorems 3.4.1, 3.4.8, 3.5.1, 3.5.3]). Assume
X to be a connected projective K-variety. The mapping X 7→ Xan realizes
an equivalence of categories between the categories of coherent sheaves on X
and Xan. Furthermore, Xan is compact, connected, and Hausdor�.

Example 2.1.1.2. Assume K to be C endowed with its Archimedean ab-
solute value. Then, Xan is isomorphic to the usual analyti�cation of the
complex variety X in the sense of Serre ([SerGAGA]).

Example 2.1.1.3. Assume K to be trivially valued. Then, the points of Xan

are identi�ed with the set of semivaluations on X, i.e. the set of valuations
on K(Y ) for all irreducible subvarieties Y of X.

Example 2.1.1.4. If K is non-Archimedean, in general, one identi�es Xan

with pairs (a, νa), where a is a scheme point of X, and νa is a valuation on
the residue �eld of that point, extending the valuation − log | · | on K.

Example 2.1.1.5. If X = Spec K, then its analyti�cation is again a point,
corresponding to the absolute value on K.

This analyti�cation is, as mentioned, functorial : this implies that, given a
morphism of K-schemes f : X → Y , one obtains a morphism f an : Xan →
Y an compatible with the analytic structure morphisms.
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2.1.2 Models and divisorial points.

We now assume K to be non-Archimedean, and X to be a connected projec-
tive K-variety.

De�nition 2.1.2.1. A model of X is the data of:

1. a �at scheme X of �nite type over the valuation ring K◦;

2. an isomorphism X ×K◦ K→ X as schemes over K.

Example 2.1.2.2. If K is trivially valued, the only model of X is X itself,
up to automorphisms. We will need an alternative de�nition, that of a test
con�guration. This will be considered in the next Subsection.

For the remainder of this Subsection, we assume K to be nontrivially valued.

De�nition 2.1.2.3. As a scheme, Spec K◦ has two points: the generic

point corresponding to the ideal {0}, with residue �eld K, and a closed point,
the special point, corresponding to K◦◦, with residue �eld K̃. Changing the
base to K, resp. K̃, amounts to taking the generic �bre XK, resp. special
�bre or central �bre Xs (we will sometimes also denote it by X0).

Remark 2.1.2.4. Note that, if K is discretely valued, K◦ is a discrete val-
uation ring. On the other hand, if K is densely valued, K◦ can never be
Noetherian. This implies that, over densely valued �elds, we will have to
work with non-Noetherian schemes.

De�nition 2.1.2.5. We say that a model X ′ dominates (resp. properly
dominates) a model X if there exists a morphism (resp. a proper morphism)
X ′ → X . Any two models may always be jointly dominated by a third.

De�nition 2.1.2.6. Let X be a model of X. Let x = (a, νa) be a point
of Xan, identi�ed with a scheme point of X together with a valuation on
the residue �eld at a extending the underlying absolute value on K. Let Ra

denote the associated valuation ring in the residue �eld K(ker a) at ker a.
The valuative criterion for properness ensures that there exists a unique lift
of the map Spec Ra → Spec K◦ to Spec Ra → X . We denote by redX (a) the
image of the closed point K◦◦ by this lift. The map redX so de�ned is called
the reduction map associated to X . We shall say that a point in x ∈ Xan

is divisorial or Shilov, and we will write x ∈ Xdiv, if there exists a model
X such that redX (x) is a generic point of the special �bre Xs. The set of
divisorial points is dense in Xan.
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Example 2.1.2.7. If K is discretely valued, and if we pick a normal model
X of X, then Xs decomposes as a Weil divisor

Xs =
∑

aiEi,

each Ei an irreducible component of the special �bre; furthermore, the Ei
each de�ne a unique divisorial point xEi , such that redX (xEi) the generic
point of Ei, de�ned as follows. Let r be the smallest nonzero positive element
in the value group of K. Then,

xEi = rordEi (·)/ai ,

where ai is the coe�cient of Ei in the Weil decomposition of the special �bre.

We now assume K to be trivially valued. We then de�ne the set Xdiv of
divisorial points inside the analyti�cation Xan of X with respect to the trivial
absolute value on K, to be the set of points of the form

c · ordE(·),

where c is a positive rational constant, and E is a prime divisor in a projective,
normal birational model

E ⊂ Y → X

of X. It is again dense in Xan, provided X has nonzero dimension. We will
not study here the notion of test con�guration, which plays the role of models
in the trivially-valued case.

2.2 Metrization of analyti�cations of line bun-

dles.

2.2.1 Line bundles and models thereof.

We will �x X as usual, and let L be a line bundle on X. We will denote by

H0(X,L),

or simply H0(L), its space of sections. Its dimension will be written as

h0(X,L).
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Finally, we use additive notation for tensor powers of line bundles, which
means that we write

L⊗k ⊗M⊗−1 = kL−M,

given another line bundle M on X.

We shall occasionally speak of Q-line bundles, by which we mean formally
an element of Pic(X) ⊗ Q. For all divisible enough m, mL is therefore a
genuine line bundle on X.

We will say that a line bundle L is:

1. very ample if its sections de�ne a closed immersion ofX into Ph0(X,L)−1;

2. ample if mL is very ample for large enough m;

3. basepoint-free if there is no point x ∈ X such that all sections of L
vanish at x;

4. semiample if mL is basepoint-free for large enough m.

We will say that a Q-line bundle L is:

1. ample if mL is very ample for divisible enough m;

2. semiample if mL is basepoint-free for divisible enough m.

We now turn to polarized models.

De�nition 2.2.1.1. Let L be a line bundle on X. Amodel (X ,L) of (X,L)
is the data of:

1. a model X of X, projective over K◦;

2. a line bundle L on X ;

3. an isomorphism LK ' L compatible with the isomorphism XK ' X.

One then says that L is a model of L determined on X . Denote by π :
X → Spec K◦ the structure morphism. We will say that a model (X ,L) of
(X,L) is:

1. very ample if L is π-very ample;
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2. ample if mL is π-very ample for large enough m;

3. basepoint-free if the morphism π∗π∗L → L is surjective;

4. semiample if mL is basepoint-free for large enough m;

5. nef if L · C ≥ 0 for all projective curves in the special �bre Xs.
De�nition 2.2.1.2. Let L be a Q-line bundle on X. A Q-model (X ,L) is
the data of:

1. a model X of X, projective over K◦;

2. a Q-line bundle L on X such that (X ,mL) is a model of (X,mL) for
divisible enough m.

One then says that L is a Q-model of L determined on X . We will say
that a Q-model (X ,L) of (X,L) is ample (resp. semiample) if for divisible
enough m, mL is ample (resp. semiample).

Example 2.2.1.3. If L = OX , one can identify models of L determined on
X with vertical Cartier divisors on X , i.e. Cartier divisors supported in
the special �bre of X .

2.2.2 Metrics over analyti�cations of K-line bundles.

For x ∈ Xan, we will denote by H(x) the completion of the residue �eld at
x, endowed with its canonical absolute value.

De�nition 2.2.2.1. A continuous metric φ on L is de�ned by the data
of a collection of norms

| · |φx
on each L ⊗ H(x), indexed over x ∈ Xan, such that for any section sU ∈
H0(U,L) over a Zariski open set U , the composition

|sU |φ : Uan (sU )an

−−−→ (L|U)an |·|φ−→ R≥0

is continuous. We will denote the space of continuous metrics on Lan by
C0(Lan). More generally, we can de�ne a singular metric to be a sum of
the form φ+ u, where φ is a continuous metric on Lan, and u is any function
u : Xan → [−∞,∞). Whenever we shall speak of metrics in the remainder
of this thesis, we will assume that they can be singular. Similarly, we may
de�ne:
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1. the spaces L∞(Lan) and L∞loc(L
an) of bounded, resp. locally bounded

metrics on Lan, which are written φ + u for φ ∈ C0(Lan) and u a
function Xan → R which is bounded, resp. locally bounded;

2. given a Radon measure µ with �nite total mass on Xan, the spaces
L1(µ, Lan) and L1

loc(µ, L
an) of integrable, resp. locally integrable

metrics on Lan with respect to µ, which are written φ + u for φ ∈
C0(Lan) and u a function Xan → R in L1(µ,Xan), resp. L1

loc(µ,X
an).

Fix a reference continuous metric φref on Lan. We also use additive conven-
tions for metrics, which implies that, given two line bundles L and M on
X,

• given metrics φ on Lan and φ′ onMan, the induced metric on (kL−M)an

is written as kφ− φ′;

• we may identify a metric φ with the (possibly singular) function− log |1|φ−φref

on Xan, since a metric on (OX)an canonically identi�es with a function
on Xan.

In particular, by noticing that two metrics φ, φ′ on Lan transform as | · |φ =
| · |ψeφ

′−φ, we can see the spaces C0(Lan), L∞(Lan), L∞loc(L
an), L1(µ, Lan), and

L1
loc(µ, L

an) as a�ne spaces modelled on respectively C0(Xan), L∞(Xan),
L∞loc(X

an), L1(µ,Xan), and L1
loc(µ,X

an).

We shall write for the rest of this Chapter

|s| = |s|φref

for any section s ∈ H0(L).

2.2.3 Model metrics.

Given an ample line bundle L on X, we now de�ne a class of metrics de�ned
using very explicit algebraic data: that given by a model (X ,L) of (X,L) -
generalizing the idea that a K◦-lattice in a K-vector space canonically de�nes
a norm. Throughout this Subsection, we will use many results from (and
follow) [BE, Section 5.3].
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De�nition 2.2.3.1. Let (X ,L) be a model of (X,L). We de�ne the model

metric φL ∈ C0(Lan) as follows. Pick x ∈ Xan, and recall that there is
associated to X its reduction map redX : Xan → Xs. Pick a section sU of
L over a Zariski neighbourhood of redX (x), which does not vanish at the
reduction of x. Using the identi�cation XK ' X, we may then consider the
analyti�cation (X ∩ U)an 3 x, and notice the analyti�cation (sU)an to be
nonvanishing at x. We may therefore require that

|sU |φL ≡ 1

on (X ∩ U)an. This gives a well-de�ned continuous metric on Lan: given
another section s′U of L over U nonvanishing at redX (x), then there exists a
unit u ∈ O×X (U) such that s′U = u·sU , which implies that |s′U |φL = |sU |φL ≡ 1.

While this de�nition seems rather abstract, we will see in the next Section
that, if L has nice positivity properties, then model metrics on Lan can be
recovered as more familiar objects.

Example 2.2.3.2. If K is trivially valued, and (X,L) has no automorphisms,
so that the only model of (X,L) is itself, the associated model metric is the
trivial metric on Lan. This gives some insight into how to generalize certain
results from the trivially valued to the nontrivially valued case: model metrics
can be seen as playing the role of the trivial metric in the case there is no
canonical trivial model.

In order to de�ne model metrics associated to Q-models, we shall need the
following result:

Lemma 2.2.3.3 ([BE, Lemma 5.10]). If (X ,L) is a model of (X,L), then:

1. for all integers m, φmL = mφL;

2. if a model (Y ,M) dominates a model (X ,L) via π : Y → X , then
φπ∗L = φL;

3. in particular, if (X ,L) and (X ′,L′) are two models of (X,L), then
φL = φL′ if and only if one can dominate both models by a third model
(Y ,M) with π : Y → X , π′ : Y → X ′, and such that π∗L = π′∗L′.

De�nition 2.2.3.4. Let L be a Q-line bundle, and (X ,L) be a Q-model of
(X,L). We de�ne φL = m−1φmL for any m divisible so that mL is a line
bundle; this is well-de�ned by the �rst point of the above Lemma.
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Given L, M two Q-line bundles on X, and model metrics φL, φM on Lan

and Man, as well as a rational r ∈ Q, then rφL − φM is a model metric on
rL−M .

Remark 2.2.3.5. We may now begin to explain the sibylline remark at the
beginning of our talk on models. Given a model (X ,L) of (X,L), the space
of sections H0(X ,L) determines a K◦-lattice the K-vector space H0(X,L),
and therefore a lattice norm on N (H0(X,L)). We will see shortly how to
associate to such norms a metric on Lan, and we will in fact see that it will
coincide with the metric φL in nice cases.

2.2.4 Metrization of the canonical line bundle, after Temkin.

A surprising fact of life in the non-Archimedean world is that the (powers
of the) canonical line bundle can always be endowed with a special metric,
generalizing the log-discrepancy on the valuation space of a variety. This
construction is due to Temkin ([Tem]). The details in the general case are
rather complicated and out of the scope of this manuscript, and we there-
fore direct the reader to Temkin's original article (see also an exposition in
Stevenson's thesis [StevThesis]). We will therefore focus on the special cases
of a trivially-valued �eld, and a discretely-valued �eld of equal characteristic
zero. Other references for this Subsection are [JM12], [BJ17], [BJ18a].

The trivially-valued case. If the base �eld is trivially-valued, any line
bundle L on a projective K-variety X admits a trivial metric φtriv, character-
ized as the model metric associated to the unique (trivial) model of (X,L),
by which one may canonically identify metrics on Lan with functions on Xan.
Temkin's metric φTem on Kan

X is then characterized as

φTem = φtriv + AX ,

where φtriv is thus the trivial metric on Kan
X , and AX is the log-discrepancy

function on Xan, whose de�nition we recall now. Given a divisorial point x
on Xan, which is by de�nition an exponential of a valuation of the form

c · ordE(·),

where c ∈ Q>0, and E is a prime divisor in a projective, normal birational
model π : Y → X. Then, we set

AX(x) = c · (1 + ordE(KY − π∗KX)).
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This is extended to a lsc function on all of Xan, which is characterized as the
largest lsc extension of AX , as in [BJ18a, Theorem 2.1]. As we shall now see,
a similar characterization holds in the discretely-valued case.

The discretely-valued, equal characteristic zero case. There are now
no longer any "canonical" models of the canonical bundle, and therefore now
longer a trivial metric. Pick therefore a proper model X of X, and denote
by s : X → Spec K◦ its structure morphism.

Ingredient 1: the model metric. As in [MN12, (4.1.1)] and [BJ17, (5.3)],
one can de�ne the relative canonical divisor KX/ Spec K◦ associated to the
morphism s, and thus the relative log canonical divisor

K log
X/ Spec K◦ = KX/ Spec K◦ + (Xs)red −Xs,

where (Xs)red denotes the reduction (in the sense of scheme theory) of the
special �bre of X . Those are Weil divisors; if we furthermore assume one
(hence both) to be (Q-)Cartier, the relative log canonical divisor is then a
model of KX , de�ning a model metric φKlog

X/ Spec K◦
.

Ingredient 2: the log-discrepancy function. To X is also associated a log-
discrepancy function AX , characterized on divisorial points as follows: let
ρ : Y → X be some model dominating X . Since any two models can be
jointly dominated by a third model, any point in cXdiv is a valuation νE
associated to a divisor a the central �bre Ys =

∑
i aiEi of such models. The

value of the log discrepancy function against such a divisorial point is thus
fully characterized via the formula

KY + Ys = ρ∗(KX + Xs) +
∑
i

AX (νEi)aiEi.

This is then extended as before to a maximal lsc function AX on Xan, as in
[BJ17, (5.6)]. Temkin's metric is recovered as

φTem = φKlog
X/ Spec K◦

+ AX ,

A striking observation is that this is independent of the choice of a model
X (using the formula above characterizing AX , and the fact that the model
metric of a dominating model is the model metric of the original model),
thus giving a very natural new metric on Kan

X .
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2.3 Pluripotential theory over nontrivially val-

ued �elds

2.3.1 Fubini-Study and plurisubharmonic metrics.

In the complex setting, due to the work of Demailly, the class of psh metrics
on a holomorphic line bundle L is characterized as the smallest class stable
under �nite maxima, addition of constants, and decreasing limits, of metrics
containing all Fubini-Study metrics, that is, metrics of the form

φ = log
1

2k

h0(kL)∑
j=1

|sj|2e2λj ,

where the sj are a basepoint-free basis of sections of kL, and the λj are real
constants. We will therefore de�ne non-Archimedean metrics similarly, using
an adequate "non-Archimedean version" of Fubini-Study metrics.

De�nition 2.3.1.1. Let L be a Q-line bundle on X. We de�ne a Fubini-
Study metric on Lan to be a metric of the form

φ =
1

k
log max

j=1,...,h0(kL)
|sj|eλj ,

where the sj are a basepoint-free basis of sections of kL, and the λj are real
constants. We furthermore say that such a metric is:

• a Q-Fubini-Study metric if the λj are all rational;

• a K-rational Fubini-Study metric if the λj belong to the value group
of K;

• a pure Fubini-Study metric if the λj are all equal to zero.

We shall write FS(Lan), FSQ(Lan), FSΓ(K)(L
an), and FS0(Lan) for those classes,

respectively. More generally, as in [BE], we can de�ne the class FSΓ(Lan) of
Γ-Fubini-Study metrics, for any subgroup Γ of the real line.

We look at some immediate properties of Fubini-Study metrics.

Proposition 2.3.1.2 ([BE, Proposition 5.4]). Given a subgroup Γ of R, two
line bundles L and M on X, and a positive integer k, then:
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1. FSΓ(Lan) + FSΓ(Man) ⊂ FSΓ(Lan +Man);

2. FSΓ(mLan) = mFSΓ(Lan);

3. FSΓ(Lan) = FSQ(Γ+Γ(K))(L
an);

4. FSΓ(Lan) is stable under �nite maxima.

Remark 2.3.1.3. As a consequence of the third point above, we have

FS0(Lan) = FSQ(Γ(K))(L
an).

This implies that, after a large enough ground �eld extension, any Fubini-
Study metric becomes pure.

As it turns out, "positive" model metrics are in correspondence with Fubini-
Study metrics.

Theorem 2.3.1.4 ([BE, Theorem 5.14, Corollary 7.9]). Let L be a Q-line
bundle. Set a metric φ ∈ C0(Lan). We then have that:

• φ is a pure Fubini-Study metric if and only if it coincides with the model
metric φL associated to a semiample Q-model L of L;

• φ is a Fubini-Study metric if and only if it coincides with the model
metric φL associated to a nef Q-model L of L.

We now take the statement of the complex regularization Theorem to be our
de�nition of a non-Archimedean plurisubharmonic metric:

De�nition 2.3.1.5. A metric φ on the analyti�cation Lan a Q-line bundle
L is plurisubharmonic or psh if it can be written as a decreasing net
of Fubini-Study metrics on L, and is not identically −∞. We denote by
PSH(Lan) the class of plurisubharmonic metrics on Lan.

Proposition 2.3.1.6 ([BJ21, Theorem 4.5]). Let L, M be Q-line bundles.
The class PSH satis�es the following properties:

1. it contains all Fubini-Study metrics on Lan;

2. it is stable under:

(a) taking �nite maxima;
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(b) addition of a real constant;

(c) limits of decreasing nets;

3. the convex combination of two psh metrics on Lan is a psh metric on
Lan;

4. PSH(Lan) + PSH(Man) ⊂ PSH(Lan +Man);

5. if a net of psh metrics on Lan converges uniformly to a limit metric,
then this limit metric is psh.

Note that most of those properties follow directly from the de�nition, but
2(c) is not immediate, as we consider not only decreasing sequences, but
decreasing limits of decreasing nets. We have cited [BJ21], which details the
trivially valued case, but the proofs follow the same lines in the nontrivially
valued case.

As desired, we then have a similar characterization as in the complex case:

Proposition 2.3.1.7 ([BJ21, Corollary 4.16]). The class PSH(Lan) is the
smallest class of metrics on L satisfying properties 1. and 2. above.

We endow PSH(Lan) with the topology of pointwise convergence on the set
of divisorial points Xdiv ⊂ Xan: a net φi in PSH(Lan) is said to converge to
φ ∈ PSH(Lan) if and only if φi(x)→ φ(x) for all x ∈ Xdiv. It is important to
note that psh metrics are uniquely determined by their restriction to Xdiv.

2.3.2 The Fubini-Study and supnorm operators.

We now introduce the Fubini-Study operators, which give a way to turn norms
into Fubini-Study metrics:

De�nition 2.3.2.1. We de�ne the (m-th) Fubini-Study operator as fol-
lows:

FSm : N (H0(mL))→ C0(Lan),

ζ 7→ FSm(ζ) =
1

m
log sup

s∈H0(mL)−{0}

|s|
ζ(s)

.

The implicit claim that metrics in the image of FSm are continuous is a
consequence of [BE, Theorem 7.16].
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Fubini-Study operators behave well under ground �eld extension:

Lemma 2.3.2.2 ([BE, Lemma 7.20]). Let K′/K be a complete �eld exten-
sion. Let ζ ∈ N (H0(kL)) for some k. Let LK′ denote the base change
of L to K′, and ζK′ the ground �eld extension of ζ to the base change
H0(kLK′) = H0(kL)K′ . Then, FSk(ζK′) coincides with the pullback of FSk(ζ)
to Lan

K′ .

There is a nice way to compute the Fubini-Study operators restricted to each
N diag(H0(mL)). Indeed, assume (si) diagonalizes a norm ζ on H0(mL) for
some large m. We then have that:

FSm(ζ) =
1

m
log max

i

|si|
ζ(si)

.

This remark combined with the above Lemma allows us to ensure that our
Fubini-Study operators work as intended:

Corollary 2.3.2.3. A metric in the image of some Fubini-Study operator is
Fubini-Study.

Proof. This is only nontrivial if K is not maximally complete, since not all
norms on K-vector spaces are diagonalizable. But we can pick a maximally
complete extension L of K, where all norms on K-vector spaces are diago-
nalizable, and the above Lemma proves our result.

Remark 2.3.2.4. It follows that pure Fubini-Study metrics are characterized
as those metrics φ which belong to the image of some Fubini-Study operator
restricted to the set of lattice norms on some space of plurisections of L.

We now construct operators going the other way around: from the space of
continuous metrics on Lan to spaces of norms on the H0(mL).

De�nition 2.3.2.5. The m-th supnorm operator Nm sends φ ∈ C0(Lan)
to the norm on H0(mL) de�ned as

Nm(φ)(s) = sup
Xan

|s|mφ,

for s ∈ H0(mL).

It it straightforward from the de�nitions to see the following:
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Proposition 2.3.2.6 (Lipschitz-like properties of FS and N). Consider two
continuous metrics φ, φ′ on L, and two norms ζ and ζ ′ on some H0(mL).
We then have that:

• d∞(Nm(φ),Nm(φ′)) ≤ m · supXan |φ′ − φ|;

• supX |FSm(ζ ′)− FSm(ζ)| ≤ m−1 · d∞(ζ, ζ ′).

2.3.3 Plurisubharmonic envelopes.

Given a function f : Rd → R, one can construct its convex envelope as the
largest convex function bounded above by f . Given a metric on a holomor-
phic line bundle, one can again construct its plurisubharmonic envelope; it is
a classical result from pluripotential theory that this envelope is continuous
provided the original metric is continuous. We look here into similar prob-
lems in the non-Archimedean world. Throughout this Subsection, L is a line
bundle on a projective K-variety X, with K non-Archimedean.

De�nition 2.3.3.1. Let φ be a bounded metric on Lan. The psh envelope

of φ is de�ned as

P (φ) = sup{φ′ ∈ PSH(Lan), φ′ ≤ φ}.

The regular psh envelope of φ is de�ned as

Q(φ) = sup{φ′ ∈ PSH(Lan) ∩ C0(Lan), φ′ ≤ φ}.

De�nition 2.3.3.2 (Continuity of envelopes). We say that the pair (X,L)
admits continuity of envelopes if the following property holds true:

• if φ is a continuous metric on L, then P (φ) is continuous.

Example 2.3.3.3. By [BJ18b], a smooth, projective variety X de�ned over
any �eld K which satis�es all of the following properties:

• K is of equal characteristic 0;

• K is either trivially or discretely valued,

admits continuity of envelopes for any ample line bundle L over X. Further-
more, by [GJKM19], continuity of envelopes also holds:
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• for any line bundle on a curve, over any �eld (from the work of Thuil-
lier);

• for all line bundles on a d-dimensional variety X over K, where K is
a discretely valued �eld of positive characteristic p, provided we have
resolution of singularities over K in dimension d+ 1.

It is expected in general that, for X unibranch (in particular, normal) and
L ample, over any non-Archimedean �eld, continuity of envelopes holds for
(X,L).

One can show the following:

Theorem 2.3.3.4 ([BE, Theorem 7.26]). Let φ be a bounded on Lan. Then,

lim
m

FSm(Nm(φ)) = Q(φ).

Here, the limit is taken over a divisible sequence of integers so that the asso-
ciated power of L is always globally generated. Furthermore, the convergence
is uniform if and only if Q(φ) is continuous.

We then have that:

Proposition 2.3.3.5. The following are equivalent:

1. continuity of envelopes holds for (X,L);

2. for all continuous metrics φ on Lan, P (φ) = Q(φ);

3. for all continuous metrics φ on Lan, limm FSm(Nm(φ)) = P (φ);

4. the sequence m 7→ FSm(Nm(φ)) converges uniformly;

5. given any family (φi)i∈I of psh metrics on Lan uniformly bounded above,
the usc regularization of the upper envelope

usc(sup
i∈I

φi)

is psh.

Proof. That (2) and (3) are equivalent follows from Theorem 2.3.3.4. That
(1) and (2) are equivalent is immediate. That (1) and (4) are equivalent
follows from Theorem 2.3.3.4 again and Dini's Lemma. Finally, equivalence
of (1) and (5) is the statement of [BE, Lemma 7.29].
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This is the foundation for the quantization principle: approximating bounded
psh metrics from below with metrics coming from norms (our space of Fubini-
Study metrics!), which has proven its usefulness multiple times in complex
geometry.

De�nition 2.3.3.6. The asymptotic Fubini-Study operator is de�ned
on the set of bounded graded norms on L as the usc regularization

FS(ζ•) = usc
(

lim
m

FSm(ζm)
)
.

Remark 2.3.3.7. The asymptotic Fubini-Study operator is well-de�ned and
de�nes a bounded psh metric provided that (X,L) admits continuity of en-
velopes, as, by Fekete's lemma,

lim
m

FSm(ζm) = sup
m

FSm(ζm).

We shall also de�ne its brother:

De�nition 2.3.3.8. The graded supnorm operator

N•

sends a bounded metric φ to the bounded graded norm (Nm(φ))m.

De�nition 2.3.3.9. We say that a plurisubharmonic metric φ on Lan is
regularizable from below, and we write

φ ∈ PSH↑(Lan),

if and only if φ is the pointwise limit on Xdiv of an increasing net of Fubini-
Study metrics, equivalently of an increasing net of continuous, psh metrics.

Remark 2.3.3.10. We then have that φ is the usc regularized supremum of
such a net. Furthermore, φ ∈ PSH↑(Lan) if and only if φ = uscQ(φ).

We then show that PSH↑(Lan) coincides with the image of the asymptotic
Fubini-Study operator.

Theorem 2.3.3.11. A metric φ belongs to PSH↑(Lan) if and only if there
exists a bounded graded norm ζ• such that FS(ζ•) = φ.
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Proof. Assume φ is the image of some bounded graded norm ζ• by the asymp-
totic Fubini-Study operator, i.e. φ = usc (limm FSm(ζm)). In particular, φ is
psh, by continuity of envelopes. By the remark above, it is then enough to
show that φ = uscQ(φ), which is clear by construction.

We now assume φ to be regularizable from below. By Theorem 2.3.3.4,
Q(φ) = limm FSm(Nm(φ)). Then, by de�nition, uscQ(φ) = FS(N•(φ)). Since
φ ∈ PSH↑(Lan), we have that φ = uscQ(φ), thus

φ = FS(N•(φ)),

which proves the Theorem.

The purpose of Chapter 3, and indeed the paper [Reb20a], is to reverse this
characterization: we show that the asymptotic Fubini-Study operator in fact
de�nes a bijection between PSH↑(Lan), and the space of bounded graded
norms on L modulo asymptotic equivalence.

2.4 The space of �nite-energy plurisubharmonic

metrics.

We conclude this preliminary Chapter by studying the space of non-Archimedean
�nite-energy metrics, in analogy with the works of Darvas and Berman-
Boucksom-Eyssidieux-Guedj-Zeriahi in the complex case ([Dar17], [BBEGZ],
[BBGZ]). We will again focus on the case where the base �eld K is nontriv-
ially valued; the trivially-valued situation has been treated in much detail in
[BJ21]. We again assume, throughout this Section, that X is a projective
K-variety.

2.4.1 Monge-Ampère operators and Deligne pairings.

We begin with a discussion of Monge-Ampère operators in non-Archimedean
pluripotential theory. Using either intersection pairings ([Gub], [BE]), or the
theory of di�erential forms on Berkovich spaces developed by A. Chambert-
Loir and A. Ducros in [CLD, 5, 6], one may de�ne a Radon probability mea-
sure associated to d = dimX continuous plurisubharmonic metrics φ1, . . . , φd
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on analyti�cations of ample line bundles L1, . . . , Ld over the analytic space
Xan, denoted

MA(φ1, . . . , φd) = V −1 · ddcφ1 ∧ · · · ∧ ddcφd ∧ δX ,

with V the intersection number of the Li. For short, if (e.g.) the metric φ1

appears n times in the expression, we write

MA(φ
(n)
1 , . . . ) = V −1 · (ddcφ1)n ∧ · · · ∧ δX ,

and so on; and we set

MA(φ) = MA(φ(d)) = V −1 · (ddcφ)d ∧ δX .

Proposition 2.4.1.1 ([BE, P8.3(iv)]). Let K′/K be a non-Archimedean �eld
extension. Consider the cartesian diagram:

Xan
K′ Xan

(Spec K′)an (Spec K)an

π1

π2

We then have that:

π1∗ (ddc(π∗1φ1) ∧ · · · ∧ ddc(π∗1φd)) = ddcφ1 ∧ · · · ∧ ddcφd.

An elegant way to encode information given by mixed Monge-Ampère oper-
ators is through the (metrized) Deligne pairing construction. it has a long
history, starting from the complex case in Deligne's original article, treat-
ing the case of relative dimension 1 ([Del]), further generalized by Elkik in
[Elk89], [Elk90]. Its use to formulate functionals arising complex geometry
has been popularized via [PRS], and recently, Deligne pairings have also been
shown to be of great use in non-Archimedean geometry ([BHJ16], [BE], see
also [PRS, Remark 6]). The non-Archimedean case over a point has been
thoroughly developed in [BE]. This is the case which we review now.

Consider a (d+ 1)-uple L0, . . . , Ld of ample line bundles on X. To this data,
we can associate a line bundle 〈L0, . . . , Ld〉 on Spec K (i.e. a K-line), given
by

〈L0, . . . , Ld〉 =
∑

I⊂{0,...,d}

(−1)d+1−|I|
d+1∑
j=1

(−1)j detHj

(∑
i∈I

Li

)
,
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i.e. the top-iterated di�erence of the determinant of cohomology. This con-
struction has the property that it is symmetric and multilinear; furthermore,
given a regular section s of L0, we have an isomorphism

〈L0, . . . , Ld〉 ' 〈L1|div s, . . . , Ld|div s〉.

By multilinearity and symmetry, the di�erence

〈L0, . . . , Ld〉 − 〈M0, . . . ,Md〉

can be identi�ed with the trivial line 〈OX , . . . ,OX〉 on Spec K as soon as
there exists some j with Lj = Mj. Recalling that (Spec K)an is a point,
a non-Archimedean metric on the analyti�cation of such a di�erence can
then be identi�ed with a genuine real number. Consider now, for each i, a
continuous psh metric φi on Lan

i .

Theorem 2.4.1.2 ([BE, Theorem 8.16]). To the data above, one can asso-
ciate a metric 〈φ0, . . . , φd〉 on 〈L0, . . . , Ld〉an, which is uniquely characterized
by the following properties:

1. the association of 〈φ0, . . . , φd〉 to (φ0, . . . , φd) is symmetric and multi-
linear;

2. if s is a regular section of L0, then

〈φ0, . . . , φd〉 = 〈φ1|div s, . . . , φd|div s〉 −
ˆ
X

log |s|φ0 dd
cφ1 ∧ · · · ∧ ddcφd.

Remark 2.4.1.3. In particular, one obtains the change of metric formula:
given another continuous psh metric φ′0 on Lan

0 , we have

〈φ0, . . . , φd〉 − 〈φ′0, . . . , φd〉 =

ˆ
X

(φ0 − φ′0) ddcφ1 ∧ · · · ∧ ddcφd.

2.4.2 The Monge-Ampère energy.

In the previous Section, we have seen that (continuous or bounded) psh
metrics and bounded graded norms were closely related. It turns out that
there are also natural objects mimicking the relative volumes and d1-distances
on spaces of norms.
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Fix an ample line bundle L on X. We de�ne, given two continuous psh
metrics φ0, φ1 on Lan, their relative Monge-Ampère energy:

E(φ0, φ1) =
1

d+ 1

d∑
i=0

ˆ
X

(φ0 − φ1) MA(φ
(i)
0 , φ

(d−i)
1 ).

Note that this is always �nite as the metrics are continuous. Of interest to
us are the following properties: given φ0, φ1, φ2 a triple of continuous psh
metrics on Lan, we have

• antisymmetry: E(φ0, φ1) = −E(φ1, φ0);

• a cocycle property: E(φ0, φ1) = E(φ0, φ2) + E(φ2, φ1);

• increasingness in the �rst argument: if φ0 ≤ φ1, then E(φ0, φ2) ≤
E(φ1, φ2).

Remark 2.4.2.1. We would like to brie�y address the issue of conventions:
we follow those of [BJ18a], wherein the Monge-Ampère energy is normalized
by the volume of L. This is not the case in [BE].

The Monge-Ampère energy admits an extension to the class PSH(Lan) via

E(φ, φref) = inf{E(ψ, φref), ψ ≥ φ, ψ ∈ C0(Lan) ∩ PSH(Lan)}

for a �xed continuous psh metric φref . We can also partially extend the
relative Monge-Ampère energy, by setting

E(φ, φ′) = E(φ, φref)− E(φ′, φref)

for φ, φ′ ∈ PSH(L), which is de�ned whenever at least one of the two terms in
the right-hand side is �nite. This extended relative Monge-Ampère energy
can therefore take −∞ or ∞ as values. This makes E continuous along
decreasing nets.

De�nition 2.4.2.2. The class E1(Lan) of �nite-energy plurisubharmonic

metrics is de�ned as the set of psh metrics φ on Lan satisfying

E(φ, φref) > −∞

for a reference continuous psh metric φref .
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Due to the cocycle property of the energy, the class E1(L) is in fact indepen-
dent of the choice of a reference metric, justifying our choice of notation for
this class of metrics of �nite energy.

Remark 2.4.2.3. A strong motivation to study this class is that mixed
Monge-Ampère operators can be extended to E1, by the work of Boucksom-
Favre-Jonsson (see [BFJ15, Section 6.3]).

As one can see, the relative Monge-Ampère energy shares some properties
with the relative volume of bounded graded norms. In fact, we have the
following results:

Theorem 2.4.2.4 ([BE, Theorem 9.15], [Reb20a, Theorem B]). Let L be a
semiample Q-line bundle on X. Let ζ•, ζ ′• ∈ N•(L). We then have:

lim
m
E(FSm(ζm),FSm(ζ ′m)) = vol(ζ•, ζ

′
•).

Conversely, given two continuous psh metrics φ and φ′ on Lan, we have

E(φ, φ′) = vol(N•(φ), N•(φ
′)).

The �rst part of the statement will be proven in the next Chapter. It will be
helpful in proving that the asymptotic Fubini-Study operator is injective on
the space of bounded graded norms modulo asymptotic equivalence.

2.4.3 The metric space of �nite-energy psh metrics.

From now on, unless stated otherwise, we will assume that continuity of
envelopes holds for (X,L). The space C0(Lan) ∩ PSH(Lan) can be endowed
with a metric structure as follows:

De�nition 2.4.3.1. Consider two metrics φ0, φ1 ∈ C0(L) ∩ PSH(L). We
de�ne

d1(φ0, φ1) = d1(N•(φ0),N•(φ1)),

where the distance in the right-hand side is the distance d1 on bounded
graded norms.

Remark 2.4.3.2. De�ne for ease of notation

vol(φ0, φ1) = vol(N•(φ0),N•(φ1)).
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It follows (see e.g. [Reb20b, Remark 5.4.5]) that we have the formula

d1(φ0, φ1) = vol(φ0, P (φ0, φ1)) + vol(φ1, P (φ0, φ1)).

By the results from the previous Subsection, this is also equal to

d1(φ0, φ1) = E(φ0, P (φ0, φ1)) + E(φ1, P (φ0, φ1)).

This distance is sometimes called the Darvas distance, as it was introduced
in [Dar15] in the complex case. We will see that, as in [Dar15], it extends as
a distance on the space of �nite-energy metrics.

Proposition 2.4.3.3. The d1 distance de�ned above is indeed a distance on
the set of continuous psh metrics.

Proof. Symmetry is immediate. The triangle inequality follows from taking
the limit in the �nite-dimensional triangle inequalities

k−1d1(ζk, ζ
′
k) ≤ k−1d1(ζk, ζ

′′
k ) + k−1d1(ζ ′′k , ζ

′
k)

for any three bounded graded norms ζ•, ζ ′•, ζ
′′
• ∈ N•(R). If d1(φ, φ′) = 0,

then N•(φ) and N•(φ
′) belong by de�nition to the same equivalence class

of bounded graded norms. Since FS• ◦ N• is the identity on continuous
psh metrics and FS• factors through asymptotic equivalence, it follows that
φ = φ′. Finally, if φ = φ′, then their distance is naturally zero.

We now turn to the case of �nite-energy metrics.

Theorem 2.4.3.4. Assume continuity of envelopes to hold for (X,L). Then,
(E1(Lan), d1) is a metric space.

Remark 2.4.3.5. In [BJ21], Boucksom-Jonsson prove completeness of (E1(Lan), d1)
in the trivially valued case, if and only if continuity of envelope holds. Their
proof relies on deep results concerning spaces of measures of �nite-energy on
Berkovich spaces. The author expects to help in developing similar theory
for the nontrivially-valued setting.

In order to prove the Theorem, we �rst show that our distance is well-de�ned:

Proposition 2.4.3.6. Given two metrics φ0, φ1 ∈ E1(Lan), P (φ0, φ1) belongs
to E1(Lan).
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Proof. Fix a continuous Lan-psh reference metric φref . Let, for i = 0, 1,
k 7→ φki be sequences of continuous psh metrics decreasing to φi. Assuming
φref ≥ φk0 for all (large enough) k, we then have from Lemma 2.4.3.7 and the
fact that the distance of two comparable metrics is a volume:

0 ≤ vol(P (φk0, φ
k
1), P (φref , φ

k
1)) = E(P (φk0, φ

k
1), P (φref , φ

k
1))

≤ E(φk0, φref),

Since E and P are continuous along decreasing nets, this gives at the limit

0 ≤ E(P (φ0, φ1), P (φref , φ1)) ≤ E(φ0, φref) <∞.

In particular, using the cocycle property, E(P (φ0, φ1), φref) is �nite for any
continuous psh reference metric, hence P (φ0, φ1) ∈ E1(Lan).

The following Lemma was used in the proof of the previous Proposition.

Lemma 2.4.3.7. Let φ0, φ1 be continuous Lan-psh metrics. Then, for any
continuous Lan-psh metric φ, we have

d1(P (φ0, φ), P (φ1, φ)) ≤ d1(φ0, φ1).

Proof. This is essentially an asymptotic version of [BJ18a, Lemma 3.1]. By
continuity of envelopes, the two metrics in the left-hand side are continuous
(and psh), so that they de�ne bounded graded supnorms via the N• operator.
By [BE, Theorem 7.27],

P (φ0, φ) = FS•(N•(φ0 ∧ φ))

= FS•(N•(φ0) ∨ N•(φ))

(note that the statement of [BE, Theorem 7.27] uses the envelope Q which
corresponds to the envelope de�ned by Fubini-Study metrics; but for contin-
uous metrics, P = Q by [BE, Proposition 7.26]). Similarly,

P (φ1, φ) = FS•(N•(φ1) ∨ N•(φ)),

i.e.
N•(P (φ0, φ)) = N•(φ0) ∨ N•(φ)

and
N•(P (φ1, φ)) = N•(φ1) ∨ N•(φ).
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Now, for all m, by [BJ18a, Lemma 3.1],

d1(Nm(φ0) ∨ Nm(φ),Nm(φ1) ∨ Nm(φ)) ≤ d1(Nm(φ0),Nm(φ1)),

which at the limit and using the equalities above yields

d1(N•(P (φ0, φ)),N•(P (φ1, φ))) ≤ d1(N•(φ0),N•(φ1)),

i.e. by de�nition

d1(P (φ0, φ), P (φ1, φ)) ≤ d1(φ0, φ1),

as promised.

In order to prove that d1 satis�es the triangle inequality, and also to make
some later results easier to prove, we will approximate the d1 distance as
follows. We approximate two metrics φ0 and φ1 in E1(Lan) by sequences
(φk0), (φk1) in C0(Lan) ∩ PSH(Lan). We will show that

d1(φ0, φ1) = lim
k
d1(φk0, φ

k
1).

Proposition 2.4.3.8. Given two metrics φ0, φ1 ∈ E1(Lan), and nets (φk0),
(φk1) in C0(Lan) ∩ PSH(Lan) decreasing to φ0, φ1 we have

d1(φ0, φ1) = lim
k
d1(φk0, φ

k
1).

Proof. By [Reb20b, Remark 5.4.5], i.e. the Darvas formula for d1 on contin-
uous psh metrics, we have for all k

d1(φk0, φ
k
1) = E(φk0, P (φk0, φ

k
1)) + E(φk1, P (φk0, φ

k
1)).

P is continuous along monotone (hence decreasing) nets, so that P (φk0, φ
k
1)

decreases to P (φ0, φ1) ∈ E1(Lan), and the result follows by continuity of the
energy along decreasing nets.

We may now show that E1(Lan), endowed with d1, is a metric space.

Proof of Theorem 2.4.3.4. Symmetry is immediate. The triangle inequality
follows from Proposition 2.4.3.8 and the triangle inequality of d1 on continu-
ous psh metrics, so that we only have to show that our distance does indeed
separate points.
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Assume �rst that φ0 ≥ φ1, so that the distance is in fact a Monge-Ampère
energy. Then, Proposition 4.2.6.2 gives φ0 = φ1.

In the general case, we use Corollary 2.4.3.8 to �nd

0 = d1(φ0, φ1) = E(φ0, P (φ0, φ1)) + E(φ1, P (φ0, φ1)).

Both quantities on the right-hand side are positive, which yields

φ0 = P (φ0, φ1) = φ1,

by the previous argument, proving our result.
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Chapter 3

The range of the asymptotic

Fubini-Study operator over

general non-Archimedean �elds.

The main result.

In this Chapter, we will concern ourselves with proving the following result:

Theorem 3.0.0.1. Let X be a projective K-variety, endowed with a semi-
ample line bundle L. Assume (X,L) to admit continuity of envelopes. The
asymptotic Fubini-Study operator FS then de�nes a bijection:

FS : N•(L)/ ∼→ PSH↑(L).

This is a generalization of [BJ18a, Theorem 4.16], which treats the trivially-
valued case. The main ingredient in the proof is the following result:

Theorem 3.0.0.2. Assume (X,L) to admit continuity of envelopes. Then,
given two bounded graded norms ζ•, ζ ′• ∈ N•(L), we have that

E(FS(ζ•),FS(ζ ′•)) = vol(ζ•, ζ
′
•).

The idea of proof is as follows. In the case where FS(ζ•) and FS(ζ ′•) are model
metrics, this is essentially proven in [BE]. If ζ• is merely �nitely generated,
we then show that it can be nicely approximated by graded norms giving
rise to model metrics, thereby extending the Theorem to this case. In the
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general case, inspired by Fujita's lemma, we show that we can approximate
the volume of ζ• by the volumes of the ζ(r)

• , which are graded norms on
R(X, rL) generated in degree r by propagating ζr through the surjective
multiplication morphisms. This result builds on the theory of superadditive
functions on Okounkov bodies developed in [CM15].

3.1 Some preliminary results on approximations

of bounded graded norms.

We begin with some preliminary results on bounded graded norms, focusing
especially on �nitely generated norms. As a convention, we will assume L to
be a semiample Q-line bundle.

3.1.1 Bounded graded norms on section rings of semi-
ample Q-line bundles.

Since L is a semiample Q-line bundle, there always exists a r such that
R(X, rL) is generated in degree one. Thus, while norms generated in degree
one may not necessarily exist (as they require by de�nition R(X,L) to be
generated in degree one), the following class is always nonempty:

De�nition 3.1.1.1. We say that a graded norm ζ• on some subalgebra
R(X, kL) of R(X,L) is �nitely generated if it is generated in degree one
on R(X, kL).

We may therefore extend the de�nition of a bounded graded norm to graded
norms on R(X,L):

De�nition 3.1.1.2. A bounded graded norm on R(X,L) is a graded
norm ζ• on R(X,L) such that there exists a �nitely generated graded norm
ζ ′•, generated in degree one on R(X, kL) for some k, such that

d∞(ζk•, ζ
′
•) <∞.

The proof of existence of a spectral measure , as we will show, still works in
such generality, and we may similarly de�ne the dp distances.
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3.1.2 Okounkov bodies associated to section rings.

Throughout this Subsection, we follow [Bou12] and [KK12]. We begin with
the following de�nition.

De�nition 3.1.2.1. A valuation with one-dimensional leaves with val-
ues in an totally ordered group (G,<) on R(X,L) is a valuation

ν : R(X,L)→ G,

such that for all α ∈ G, and all positive integers k, the quotient vector spaces
(or leaves)

grk,α(R(X,L)) := {s ∈ H0(kL), ν(s) ≥ α}/
⋃
α′>α

{s ∈ H0(kL), ν(s) ≥ α′}

have either dimension zero or one. In fact ([KK12, Proposition 2.4]), each
graded piece H0(kL) decomposes as a sum of �nitely many such leaves.

We will mostly be interested in valuations with value group Zd.

De�nition 3.1.2.2. Let ν be a valuation with one-dimensional leaves, taking
values in (Zd, <) for some total order < on Zd. We de�ne the sub-semigroup
Γ(H0(kL)) ⊆ Nd of possible values of ν:

Γ(H0(kL)) = ν(H0(kL)),

and �nally the semigroup of integral points of (R(X,L), ν), denoted by
Γ(R(X,L)) as the graded sub-semigroup of Nd+1 de�ned as follows:

Γ(R(X,L)) = {(k, α) ∈ N× Nd, α ∈ Γ(H0(kL))}.

It then follows that (k, α) ∈ Γ(R(X,L)) if and only if dim grk,α(R(X,L)) = 1.
For brevity, we will write

Γ(R(X,L)) = Γ(L).

Note that it still depends on the choice of a valuation.

Lemma 3.1.2.3 ([Bou12, L2.11, P3.3]). The semigroup Γ(L) satis�es the
following properties:
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(i) linear growth: Γ(L) is contained within a �nitely generated monoid
〈a1, . . . , ak〉, k <∞, where for all i, ai ∈ {1} × Nd;

(ii) bigness: Γ(L) generates Nd+1 as a group.

De�nition 3.1.2.4. We will de�ne a convex body in Rd to be a subset of
Rd which is compact, convex, and has nonempty interior.

De�nition 3.1.2.5. As a consequence of the previous Lemma, one can de�ne
a convex body in Rd by projecting the base of the convex cone Cone(Γ(L))
to the last d variables:

∆(L) = Cone(Γ(L)) ∩ ({1} × Rd).

This is the Okounkov body of Γ(L). Again, ∆(L) depends on the choice
of ν.

Remark 3.1.2.6. This construction generalizes the moment polytope of a
polarized toric variety, as in [LM09, Section 6.1].

We now prove a result which is similar in spirit to Fujita's approximation
Theorem, which will be of use in the third Chapter. We �rst start by recalling
the following result:

Theorem 3.1.2.7 ([Bou12, L1.13]). Let Γ• be a sub-graded semigroup of
Nd+1 satisfying conditions (i)-(ii) of Lemma 3.1.2.3, and let K be a compact
convex subset of Rd contained in the interior of the Okounkov body ∆(Γ•).
For all large enough integers m, we then have that:

K ∩ Γm
m

= K ∩ Zd

m
,

where Γm is the m-th graded piece of Γ•.

We now prove the approximation result in question, which can also be seen
as an ad hoc version of [Bou12, L1.21].

Lemma 3.1.2.8. Let Γk• be a sub-graded semigroup of some sub-graded
semigroup Γ• of Rd+1, such that:

• Γk1 = Γk,

• Γkr ⊆ Γkr for all r ≥ 1,
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• Γ• satis�es the properties (i) and (ii) of linear growth and bigness as
in Section 4.1.

We then have that

k−d vol(∆(Γk•))→k→∞ vol(∆(Γ•)).

Proof. First remark that, by the inclusion property

Γkr ⊆ Γkr,

we have that, for all k ≥ 1,

∆(Γk•)

k
⊆ ∆(Γ•).

If we can show that any compact (convex) subsetK of ∆(Γ•)
o is also included

in ∆(Γk•)
k

for large enough k, then our assertion would be true. Pick such a
compact K, and embed it into another compact convex subset L ⊂ ∆(Γ•)

o

such that the number

d(K, ∂L) = inf {d(x, `), x ∈ K, ` ∈ ∂L}
is (strictly) positive. We then have compact inclusions

K ⊂ L ⊂ ∆(Γ•)
o,

with K not "touching" the boundary of L.
By the bigness hypothesis, Γ• generates Zd+1 as a group. Then, the regular-
ization of Γk is Zd, whence, for all large enough k,(

L ∩ Γk
k

)
=

(
L ∩ Zd

k

)
,

(by Theorem 3.1.2.7), so that the convex hull of
(

Γk
k

)
naturally contains K.

(It does not necessarily contain L.) Now, since

Γk1 = Γk,

the convex hull of
(

Γk
k

)
is contained in the scaled Okounkov body

∆(Γk•)

k
.

To conclude, we have a chain of compact inclusions

K ⊂ Hull

(
Γk
k

)
⊂ ∆(Γk•)

k
,

from which follows the desired inclusion of K.
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3.1.3 Okounkov bodies and limit measures.

We now apply the constructions of the previous Subsection to a more precise
geometric context.

Let x be a regular K-rational point of X, and pick a regular sequence
(z1, . . . , zd) in the local ring OX,x. By Cohen's structure Theorem, any ele-
ment f ∈ OX,x may then be written as a formal power series

f =
∑
α∈Nd

fαz
α,

where the coe�cients fα belong to K. Pick a monomial valuation ν on
K[[t1, . . . , td]]. Given a section s ∈ H0(X,L), one may pick a trivialization
of L at x, so that s de�nes an element sx ∈ OX,x, and we proceed similarly
for plurisections of L, allowing us to identify R(X,L) with a subalgebra of
K[[t1, . . . , td]]. Note that this is independent of the choice of a trivialization.
We may now apply the constructions of the previous Subsection provided we
have a good choice of a valuation with one-dimensional leaves.

We �rst begin with the following de�nition.

De�nition 3.1.3.1. Amonomial order on Nd is de�ned to be a total order
≤ satisfying the following properties:

1. given any α ∈ Nd, 0Nd ≤ α;

2. given any α ∈ Nd, for all α0, α1 ∈ Nd with α0 ≤ α1, we have

α0 + α ≤ α1 + α.

Note that such an order naturally extends to Zd.

De�nition 3.1.3.2. A monomial valuation or Gröbner valuation on
R(X,L) is a valuation of the form

ν

(∑
α∈Zd

fαz
α

)
= min ≤{α ∈ Zd, fα 6= 0},

with ≤ a monomial order on Nd, and where we expand an element of the
algebra R(X,L) as a power series as above. Since the transcendence degree
of the residue �eld of the valuation is 0, ν has one-dimensional leaves.
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Since the leaves of a monomial valuation are one-dimensional, there exist
elements s in each nonzero-dimensional grk,α which can be expanded as

s = zα +
∑
β≥α

vβz
β,

i.e. with monomial �rst term. Given a bounded graded norm ζ• on L, the
individual norm ζk induces a quotient norm ζk,α on grk,α(L). Given any s
with a Taylor expansion as above, it is immediate that its class [s]k,α =: sk,α
in grk,α(V•) contains all elements with such an expansion, and we de�ne

Φ : Γ(L)→ R
k, α 7→ − log [ ζk,α (sk,α) ] .

By submultiplicativity of ζ• and the fact that

sk,α · s`,β = sk+`,α+β

in the algebra ⊕
k∈N

⊕
α∈Γ(H0(kL))

grk,α(L),

the function Φ so de�ned is then superadditive on the semigroup Γ(L).

Theorem 3.1.3.3. Let ζ•, ζ ′• be bounded graded norms on R(X,L). Then,
the sequence of their relative spectral measures σk(ζk, ζ ′k) converges weakly to
a compactly supported measure on R.

Proof. By [CM15, T5.2], our desired limit measure exists provided the hy-
potheses of [CM15, T4.5] are veri�ed, which means the following:

(1) ζ• and ζ ′• are submultiplicative graded norms;

(2) limm→∞m
−1d∞(ζm, ζ

′
m) <∞;

(3) there exists a uniform positive constant C such that

inf
α∈Γ(H0(kL))

−Φ(k, α) ≥ −Cn,

where Φ is de�ned as above, and similarly for Φ′ de�ned using the
graded norm ζ ′•.
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The criteria (1) and (2) are by de�nition true. What remains is to prove
(3) which is equivalent to showing that (k, α) 7→ Φ(k, α) is linearly bounded
above in the �rst variable, i.e. there exists a uniform positive constant C
such that

Φ(k, ·) ≤ C · k.
By de�nition of the quotient norm ζk,α, it is enough to show that there exists
C such that

− log ζk(v) ≤ C · k
holds for all s of the form

s = zα +
∑
β≥α

sβz
β. (3.1)

By the �nite growth property of Γ(L), we know that there exists a uniform
positive constant C ′ such that

α ∈ Γ(H0(kL))⇒ |α| ≤ C ′ · k. (3.2)

Thus, it is enough to show that

− log ζk(s) ≤ C(k + |α|) (3.3)

for all such s. We �rst assume that ζ• = ζ•φ for some bounded metric φ
on L. Now, we know that we can �nd a trivialization τx of L and analytic
isomorphisms from a neighborhood U of a regular rational point x ∈ X to an
open polydisc D =

∏d
1 D(ri) ⊂ Kd, such that a section s ∈ H0(nL) satis�es

log |s|nφ = log |sU |+ n log |τx|φ,

for some analytic function sU of the form

sU(z) = zα +
∑
β≥α

sβz
β.

Since φ is bounded on U , so is the term n log |τx|φ, and by the maximum
principle, applied in each variable, we have that

r|α| ≤ sup
U
|sU |,

and �nally (3.3) follows. In general, since our norms are bounded graded,
they are at linearly bounded distance from a norm of the form ζ•φ, thereby
showing that Φ satis�es 3.3, and proving the Theorem.
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Since we no longer restrict ourselves to algebras generated in degree one, it
should be interesting to understand the behaviour of the asymptotic spectral
measure restricted to subalgebras. We have the following results:

Proposition 3.1.3.4. Recall that, given any measure µ on the reals and any
µ-measurable function f : R → R, f∗µ denotes the pushforward of µ by f .
Set ζ•, ζ ′• ∈ N•(L). We then have that:

• f(λ) = −λ⇒ f∗σ(ζ•, ζ
′
•) = σ(ζ ′•, ζ•);

• for any c ∈ R, f(λ) = λ+ c⇒ f∗σ(ζ•, ζ
′
•) = σ(e−cζ•, ζ

′
•);

• for any r ∈ N∗, f(λ) = rλ⇒ f∗σ(ζ•, ζ
′
•) = σ(ζr•, ζ

′
r•),

where ζr• denotes the restriction of ζ• to the subalgebra R(X, rL).

This Proposition is the non-trivially valued equivalent of Propositions 3.4
and 3.5 of [BJ18a], and are proven in the same manner.

3.1.4 Equidistribution of Okounkov points of superaddi-
tive functions associated to bounded graded norms.

We now prove a "norm-volume" version of the Fujita approximation Theo-
rem, i.e. that the asymptotic relative volumes between two bounded graded
norms can be approximated using the asymptotic relative volumes between
their �nitely generated approximations. We begin by recalling the following
Proposition:

Proposition 3.1.4.1 ([CM15, L4.1, T4.3]). Assume Φ is a superadditive
function

Φ : Γ(L)→ R,

such that Φ(0, 0Nd) = 0. For any t ∈ R, set

ΓΦ,≥t = {(n, α) ∈ Γ(L), Φ(n, α) ≥ n · t}.

Then, ΓΦ,≥t is a sub-semigroup of Γ(L) satisfying properties (i)-(ii) of Lemma
3.1.2.3 whenever

t < θ = lim
n→∞

sup
α∈Γn(L)

n−1Φ(n, α).
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Remark 3.1.4.2. It is immediate that

l < t⇒ ΓΦ,≥l ⊆ ΓΦ,≥t.

De�nition 3.1.4.3. Let Φ be a superadditive function on Γ(L). We set

GΦ : ∆(Γ(L))→ R ∪ {−∞},

(n, α) 7→ sup{t ∈ R ∪ {−∞}, (n, α) ∈ ∆(ΓΦ,≥t)}.
The function GΦ is the Chebyshev function of the semigroup Γ(L) (asso-
ciated to Φ). The term concave transform is also common in the literature,
see e.g. [Nys09] and [KMR19].

Remark 3.1.4.4. By [BC11] this function is concave, hence continuous, on
the interior of ∆(Γ(L)).

The proof of our main result relies on the following equidistribution Theo-
rem for the values of a superadditive function de�ned on an Okounkov body:

Theorem 3.1.4.5 ([CM15, T4.3, R4.4]). Let Φ be a superadditive function
from Γ(L) to R, whose lim sup we denote by θ as previously. Let µ(k) be the
�nitely supported probability measure on R de�ned as

µ(k) =
∑

α∈Γk(L)

δk−1Φ(k,α).

This sequence then converges to a compactly supported probability measure µ
on R satisfying

µ([t,∞)) =
vol(∆(ΓΦ,≥t

• ))

vol(∆(Γ•))
,

for any t ≤ θ. Furthermore, µ is equal to the pushforward of the normalized
Lebesgue measure on the Okounkov body ∆(Γ(L)) by the Chebyshev function
GΦ.

If Φ is a superadditive function de�ned on an Okounkov body, associated to
a bounded graded norm ζ• as before, we denote the limit measure obtained
in the previous Theorem by

µ(ζ•),

and the measures µ(k) as
µ(ζk).
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Proposition 3.1.4.6. Let L be such that R(X,L) is generated in degree one.
Let ζ• be a bounded graded norm on R(X,L). Consider, for each k ∈ N∗,
the bounded graded norm ζ

(k)
• on R(X, kL) generated in degree one by ζk, i.e.

the sequence of quotient norms induced by ζk and the symmetry morphisms

H0(kL)�r � H0(rkL)

for all r ∈ N∗. Set

Γ(kL) = {(n, α) ∈ Γ(L), k|n}.

We then have
µ(ζ(k)
• ) ⇀k→∞ µ(ζ•),

where ⇀ denotes weak convergence of measures, in particular: the sequence
of functions t 7→

´ t
−∞ dµ(ζ

(k)
• ) converges pointwise to t 7→

´ t
−∞ dµ(ζ•).

Proof. Let Φ and Φk be the superadditive functions associated to the norms
ζ• and ζ

(k)
• . We �rst notice the following properties of Φ and the Φk:

(i) Φk(k, α) = Φ(k, α), for all (k, α) ∈ Γk;

(ii) Φk(kn, α) ≤ Φ(kn, α), for all (kn, α) ∈ Γk•;

(iii) if d|k, then Φd(kn, α) ≤ Φk(kn, α), for all (kn, α) ∈ Γk•.

Let θk and θ be the above bounds on the supports of the appropriate mea-
sures. We then show that

µ(ζ(k)
• )([t, θ])→ µ(ζ•)([t, θ]),

for all t ∈ [−∞, θ].
Now, since

µ(ζ(k)
• )([t, θ]) =

vol
(

∆(ΓΦk,≥t
k• )

)
vol(∆(Γk•))

,

and
vol(∆(Γk•))

−1 = vol(∆(Γ•))
−1,

the problem reduces to showing that the sequence of functions (vk)k, de�ned
as

vk : t 7→ vol
(

∆(ΓΦk,≥t
k• )

)
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converges pointwise to
v : t 7→ vol(∆(ΓΦ,≥t

• )).

Note that (ii), (iii), and the expressions

θ = lim
n→∞

sup
Γn

Φ(n, α)

n
<∞,

and

θk = lim
n→∞

sup
(kn,α)∈Γkn

Φk(kn, α)

n
<∞

imply that (θk)k is an increasing sequence converging to θ.

Finally, the semigroups Γ
Φ(k!),≥t
(k)• and ΓΦ,≥t

• , satisfy the hypotheses of Lemma
3.1.2.8 (note (i)), which yields

vk(t)→ v(t),

concluding the proof.

We may now prove our desired Theorem.

Theorem 3.1.4.7. Let L be such that R(X,L) is generated in degree one.
Let ζ•, ζ ′• be two bounded graded norms on L, and for each k ∈ N∗, let ζ(k)

•
and ζ ′•

(k) denote the bounded graded norms on R(X, kL) generated in degree
one by ζk and ζ ′k respectively. Then, we have that:

vol(ζ(k)
• , ζ ′•

(k))→k→∞ vol(ζ•, ζ
′
•).

Proof. Let Φ′ and for all k, Φ′k be the superadditive functions associated to
the norms ζ ′• and ζ

′(k)
• ) respectively.

Recall the identity

vol(ζ•, ζ
′
•) = lim

m→∞
m−1 vol(ζ•, ζ

′
•).

Note thatˆ
R
λ dµ(ζm)−

ˆ
R
λ dµ(ζ ′m) = m−1

∑
α∈Γm(L)

[Φ(m,α)− Φ′(m,α)] ,
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where µ(ζm) and µ(ζ ′m) are de�ned as the �nitely supported measures as in
Theorem 3.1.4.5. By [CM15, (29)], the quantity on the right is identi�ed
with

m−1 vol(ζm, ζ
′
m),

so that at the limit,ˆ
R
λ dµ(ζ•)−

ˆ
R
λ dµ(ζ ′•) = vol(ζ•, ζ

′
•).

Doing the same process with ζ(k)
• and ζ ′(k)

• , we then �nd thatˆ
R
λ dµ(ζ(k)

• )−
ˆ
R
λ dµ(ζ ′(k)

• ) = vol(ζ(k)
• , ζ ′•

(k)).

An application of Theorem 3.1.4.6 then yields the desired convergence.

3.1.5 Approximation of graded norms generated in de-
gree one via graded norms coming from models.

It is important to emphasize that bounded graded norms ζ• generated in
degree one are very easy to study: their asymptotic behaviour is heavily
controlled by that of ζ1 and of the asymptotic structure of the underlying
algebra, as one can see from the following result:

Lemma 3.1.5.1. Let V• be a graded K-algebra generated in degree one. Let
ζ•, ζ ′• ∈ N•(V•) be generated in degree one. We then have that:

d∞(ζ•, ζ
′
•) = d∞(ζ1, ζ

′
1).

Proof. This follows on repeatedly applying Proposition 1.2.3.10. Set a =
d∞(ζ1, ζ

′
1). For any m > 1, we have that

φm : V �m1 → Vm

is surjective. Consider v ∈ Vm, and lifts ṽ of v in V �m1 , which themselves lift
to ˜̃v ∈ V ⊗m1 . We naturally have that

e−ma(ζ ′1)⊗m(˜̃v) ≤ (ζ1)⊗m(˜̃v) ≤ ema(ζ ′1)⊗m(˜̃v),

so that, applying the above Proposition,

e−ma(ζ ′1)�m(ṽ) ≤ (ζ1)�m(ṽ) ≤ ema(ζ ′1)�m(ṽ),
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and �nally, since a graded norm generated in degree one is a quotient,

e−ma(ζ ′m)(s) ≤ (ζm)(v) ≤ ema(ζ ′v)(s).

This establishes
d∞(ζ•, ζ

′
•) ≤ d∞(ζ1, ζ

′
1),

and since the d∞ distance is de�ned as a sup, we in fact have equality.

The main result of this Subsection will then be a powerful approximation
Theorem for graded norms generated in degree one. It requires speci�c con-
structions of certain bounded graded norms, which cannot in general be as-
sumed to be being generated in degree one; however, they will coincide in all
high enough degrees with one such norm. Hence, we introduce the following
de�nition, to make our later statements lighter.

De�nition 3.1.5.2. We say that a bounded graded norm ζ• is eventually
generated in degree one if there exists a norm generated in degree one
ζo• , and a positive integer r, such that for all m ≥ r,

ζm = ζom.

We will say that ζ• eventually coincides with ζo• .

Let L be an ample line bundle on X whose algebra of sections is generated in
degree one. We now describe how to construct, starting from a lattice norm
on H0(L), a model (X ,L) of (X,L), such that the bounded graded norm
associated to the sections of L is eventually generated in degree one.

Let ζ thus be a lattice norm on H0(L), which as we recall means that there
exists a basis of sections (si) of H0(L) which is orthonormal for ζ. Denote V1

the K◦-submodule of H0(L) generated by this basis of sections, i.e. the unit
ball of ζ. Then, the surjective symmetry morphisms φr : H0(L)�r → H0(rL)
of R(X,L) being surjective for all r ≥ 1, V1 induces a K◦-subalgebra V• of
R(X,L), which is furthermore generated in degree one, and torsion-free. The
scheme

X = Proj V• (3.4)

is then �at and projective over K◦. Let L be its twisting sheaf OX (1). (X ,L)
is a model of (X,L). Furthermore, for all m large enough, H0(mL) coincides
with Vm (see [Har77, Ex. II-5.14]). In particular, the sequence of norms

(ζH0(mL))m
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is eventually generated in degree one, and the norm generated in degree one
with which it eventually coincides is generated by ζ.

We may then prove the following result:

Proposition 3.1.5.3. Assume K to be densely valued, and let ζ• be generated
in degree one. Then, for all ε > 0, there exists a model (X ε,Lε) of (X,L),
such that, for large enough m,

d∞(ζm, ζH0(mLε)) < mε.

Proof. Since K is densely valued, for all ε > 0, there exists a lattice norm ζε

with
d∞(ζ1, ζ

ε) < ε.

Being a lattice norm, we associate to ζε a model (X ε,Lε) as in the construc-
tion (3.4) above, whose associated graded norm ζH0(•Lε) eventually coincides
with the norm generated in degree one by ζε.

Since ζ• and ζH0(•Lε) are both eventually generated in degree one, we have
that

d∞(ζm, ζH0(mLε)) ≤ md∞(ζ1, ζ
ε) < mε

for all m large enough.

Finally, we may prove the main Theorem of this section.

Theorem 3.1.5.4. Assume K to be densely valued, and assume L to be such
that R(X,L) is generated in degree one. Let ζ•, ζ ′• be bounded graded norms
generated in degree one on L. Then, for all ε > 0, there exist models (X ε,Lε)
and (Yε,Mε) of (X,L), such that:

vol(ζH0(•Lε), ζH0(•Mε))→ε→0 vol(ζ•, ζ
′
•).

Proof. We pick sequences of models (X ε,Lε) and (Yε,Mε) of (X,L) as in
Proposition 3.1.5.3. Using the cocycle condition on volumes, we have that

vol(ζ•, ζ
′
•) = vol(ζ•, ζH0(•Lε)) + vol(ζH0(•Lε), ζH0(•Mε)) + vol(ζH0(•Mε), ζ

′
•),

so that it is then enough to prove

vol(ζ•, ζH0(•Lε))→ε→0 0.
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(The proof for L being also valid forM.) Since volumes respect a Lipschitz
property with respect to the d∞-distance (Proposition 1.2.3.9), we have

| vol(ζ•, ζH0(•Lε))| = | vol(ζ•, ζH0(•Lε))−vol(ζ•, ζ•)| ≤ lim sup
m

m−1d∞(ζm, ζH0(mLε)).

In light of Proposition 3.1.5.3, we then have that

| vol(ζ•, ζH0(•Lε))| ≤ d∞(ζ1, ζH0(L)) < ε,

which concludes the proof.

3.2 The range of the asymptotic Fubini-Study

operator.

3.2.1 Relating asymptotic volumes and Monge-Ampère
energies.

The goal of this Subsection is to prove the following Theorem, a generaliza-
tion of [BJ18a, T4.13], where we consider a general non-Archimedean �eld,
rather than one which is trivially valued.

Theorem 3.2.1.1. Let L be a semiample Q-line bundle on a projective K-
variety X. Let ζ•, ζ ′• ∈ N•(L). We then have:

lim
m
E(FSm(ζm),FSm(ζ ′m)) = vol(ζ•, ζ

′
•).

As a �rst reduction, note that we can assume L to be a globally generated
(genuine) line bundle and the algebra of sections to be generated in degree
one, thanks to Proposition 3.1.3.4.

We now show that we can reduce to the case where K is a maximally com-
plete, algebraically closed, densely valued �eld, as in Proposition 1.1.3.4.

Lemma 3.2.1.2. Assume K to be any non-trivially valued, non-Archimedean
�eld, and that Theorem 3.2.1.1 holds for the base change of XK′ to an alge-
braically closed extension K′ of K. Then, Theorem B holds for X.
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Proof. By invariance of �nite-dimensional volumes under ground �eld exten-
sion, the right-hand side is indeed invariant under ground �eld extension,
so that we only have to take care of the energy side of the equation. Con-
sider the base change XK′ and its pullback line bundle LK′ . Note that the
ground �eld extension R(X,L)K′ of the algebra of sections of L coincides
with R(XK′ , LK′). Consider the associated norms ζ•,K′ and ζ ′•,K′ .

• by Proposition 1.2.2.4, the Fubini-Study operators associated to each
individual norm coincide with those associated to their ground �eld
extension, and that (say)

FSm(ζm,K′) = π1
∗FSm(ζm);

• by Proposition 2.4.1.1,

π1∗MA(FSm(ζm,K′),FSm(ζ ′m,K′)) = MA(FSm(ζm),FS′m(ζm)),

where MA(φ, φ′) denotes any mixed Monge-Ampère measure involving
only φ and φ′.

It follows that both quantities in the assertion of Theorem B are invariant
under ground �eld extension. Using that the Theorem then holds over XK′ ,
this �nishes the proof.

From now on, assume K to be as in Proposition 1.1.3.4.

Lemma 3.2.1.3. Theorem 3.2.1.1 holds whenever ζ• and ζ ′• are both graded
norms generated in degree one.

Proof. Pick approximations ζH0(•Lε) and ζH0(•Mε) as in Theorem 3.1.5.4. By
Lemma 3.2.1.4 below, we have, for all ε > 0,

E(φLε , φMε) = vol(ζH0(•Lε), ζH0(•Mε)).

Now, the statement of Theorem 3.1.5.4 is that

vol(ζH0(•Lε), ζH0(•Mε))→ε→0 vol(ζ•, ζ
′
•).

In particular, by construction, we have that

lim
m

FSm(ζH0(mLε)) = FS1(ζH0(Lε)) = φLε ,
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so that the Lemma is proven once we show that

lim
m
E(FSm(ζH0(mLε)),FSm(ζH0(mMε)))→ε→0 lim

m
E(FSm(ζm),FSm(ζ ′m)).

But using the 1-Lipschitz property of the operator FSm with respect to the
sup norm of metrics and the d∞-distance, we �nd that for all m, for all ε > 0,

sup
X
|FSm(ζH0(mLε))− FSm(ζm)| ≤ ε,

so that �nally,
lim
m

FSm(ζH0(mLε))→ε→0 lim
m

FSm(ζm),

uniformly. Proceeding similarly for M, and then using continuity of the
Monge-Ampère energy along uniform limits, we �nd the desired result.

We then have the following Lemma, as promised.

Lemma 3.2.1.4. Assume (X ,L), (Y ,M) to be semiample models of L de-
�ned on the same model X of X. Denoting φL and φM their associated
model metrics, we then have that

E(φL, φM) = vol(ζH0(•L), ζH0(•M)).

Proof. We �rst start by stating the following equality ([BE, L9.17]):

vol(ζH0(•L), ζH0(•M)) = vol(N•(φL),N•(φM)).

Note that our conventions for the volume and energy are di�erent from those
of [BE], but as

lim
h0(mL)

mdimX
= vol(L),

the changes cancel out. Furthermore, their notation

vol(L, φ, ψ)

corresponds to
vol(N•(φ),N•(ψ))

in our case.
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The above equality follows from earlier results of [BE], wherein it is shown
that

d∞(ζH0(mL),Nm(φL)) = O(1),

([BE, T6.4]) so that Lipschitz continuity of the volume with respect to the
d∞-distance concludes. Then, the Lemma is proven by applying Theorem
9.15 of [BE] to φL and φM.

We now prove the main Theorem.

Proof. Assume now that both norms are not necessarily �nitely generated.
By surjectivity of H0(kL)�m → H0(kmL) for large and divisible enough k,
m > 0, we may endow each H0(kmL) with the quotient norm induced by
this morphism using the norms ζk, ζ ′k. We denote these norms ζ(k)

m , ζ ′(k)
m .

These de�ne graded norms, generated in degree one, on R(X, kL). Consider
their associated Fubini-Study metrics:

FSk(ζ
(k)
• )

and
FSk(ζ

′(k)
• ).

Recall that the Theorem holds for those norms. Now, since (FSk(ζ
(k)
• ))k,

resp. (FSk(ζ
′(k)
• ))k are decreasing nets, by continuity of E along decreasing

nets follows:

lim
k→∞

E
(
FSk(ζ

(k)
• ),FSk(ζ

′(k)
• )

)
= E(lim

k
FSk(ζk),FSk(ζ

′
k)).

The right-hand side limit, that is,

lim
k→∞

vol(ζ(k)
• , ζ ′

(k)
• ) = vol(ζ•, ζ

′
•),

is the statement of Theorem 3.1.4.7.

3.2.2 The asymptotic Fubini-Study operator descends
to a bijection.

We now prove the following Theorem, which is a generalization of [BJ18a,
T4.16] to the nontrivially-valued case:
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Theorem 3.2.2.1. Let (X,L) admit continuity of envelopes, with L ample.
The asymptotic Fubini-Study operator FS then de�nes a bijection

N•(L)/ ∼→ PSH↑(L).

The proof follows that of the aforementioned theorem. We start with prepara-
tory lemmas:

Lemma 3.2.2.2. Assume that ζ• ≥ ζ ′• pointwise. Then,

d1(ζ•, ζ
′
•) = 0⇔ FS(ζ•) = FS(ζ ′•).

Proof. We �rst notice that, since ζ• ≤ ζ ′• pointwise, the de�nition of d1 using
successive minima implies

d1(ζ•, ζ
′
•) = vol(ζ•, ζ

′
•),

and this volume is equal to 0 by our hypothesis. Using Theorem 3.2.1.1, we
then have that

E(FS(ζ•),FS(ζ ′•)) = 0.

But since ζ• ≥ ζ ′•, FS(ζ•) and FS(ζ ′•) are comparable, and [Reb20b, P6.3.2]
implies that FS(ζ ′•) = FS(ζ•).

Lemma 3.2.2.3. Let ζ• be an element of N•(L), and assume continuity
of envelopes to hold for (X,L). We then have that ζ• ≥ N•(FS(ζ•)), and
furthermore those norms are equivalent.

Proof. The �rst assertion follows from [BE, L7.23] (and its proof). To show
asymptotic equivalence, by the previous lemma, it is thus enough to show
that FS(N•(FS(ζ•))) = FS(ζ•). But, by [BE, T7.26],

FS(N•(FS(ζ•))) = Q(FS(ζ•)),

which in turn is equal to FS(ζ•) itself, since it is a limit of an increasing net
of Fubini-Study potentials.

We now prove Theorem 3.2.2.1.

Proof. Note that

d1(ζ•, ζ
′
•) = vol(ζ•, ζ• ∨ ζ ′•) + vol(ζ ′•, ζ• ∨ ζ ′•),

121



and by Theorem 3.2.1.1, the right-hand side is in fact equal to

E(FS(ζ•),FS(ζ• ∨ ζ ′•)) + E(FS(ζ ′•),FS(ζ• ∨ ζ ′•)). (3.5)

The trick is now to prove the following:

FS(ζ• ∨ ζ ′•) = Q(FS(ζ•) ∧ FS(ζ ′•)),

where ∧ denotes the min operator. Since, by Lemma 3.2.2.3,

ζ• ≥ N•(FS(ζ•)),

ζ• ∼ N•(FS(ζ•)),

and the same holds for ζ ′•, then

ζ• ∨ ζ ′• ≥ N•(FS(ζ•)) ∨ N•(FS(ζ ′•)),

ζ• ∨ ζ ′• ∼ N•(FS(ζ•)) ∨ N•(FS(ζ ′•)),

and furthermore, by [BJ18a, (4.4)],

N•(FS(ζ•)) ∨ N•(FS(ζ ′•)) = N•(FS(ζ•) ∧ FS(ζ ′•)).

Lemma 3.2.2.2 then implies

FS(N•(FS(ζ•) ∧ FS(ζ ′•))) = FS(ζ• ∨ ζ ′•),

and the left-hand side is equal to Q(FS(ζ•) ∧ FS(ζ ′•)), by [BE, T7.26]. We
may now rewrite (3.5) as:

d1(ζ•, ζ
′
•) = E(FS(ζ•), Q(FS(ζ•) ∧ FS(ζ ′•))) + E(FS(ζ ′•), Q(FS(ζ•) ∧ FS(ζ ′•))).

Now,
FS(ζ•) ≥ Q(FS(ζ•) ∧ FS(ζ ′•))

and
FS(ζ ′•) ≥ Q(FS(ζ•) ∧ FS(ζ ′•)),

so that the two energies above have the same sign. In particular, the distance
d1(ζ•, ζ

′
•) vanishes if and only if the energies vanish, and we conclude using

Lemma 3.2.2.2.
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Remark 3.2.2.4. Note that the previous proof shows that there is an expres-
sion of the d1 distance using Monge-Ampère energies, analogous to [BJ18a,
C4.21]:

d1(ζ•, ζ
′
•) = E(FS(ζ•), Q(FS(ζ•) ∧ FS(ζ ′•))) + E(FS(ζ ′•), Q(FS(ζ•) ∧ FS(ζ ′•))).

Remark 3.2.2.5. One can see the asymptotic Fubini-Study operator as giv-
ing an injective isometry with dense image of the space of �nitely-generated
graded norms modulo asymptotic equivalence, into the metric space E1(L).
Since it is not known whether the envelope P coincides with the envelope
Q for general metrics approachable from below, such a result does not hold
a priori for the entire space of bounded graded norm modulo asymptotic
equivalence, although it is conjectured that this is true.
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Chapter 4

Geodesics in non-Archimedean

pluripotential theory.

Summary of the main results.

This Chapter focuses on the main results of [Reb20b]. Namely, we de�ne
a class of non-Archimedean plurisubharmonic segments, mimicking the a
posteriori characterization thereof in the complex case, and we prove the
following:

Theorem 4.0.0.1. Given φ0, φ1 ∈ E1(L), we set

d1(φ0, φ1) = E(φ0, P (φ0, φ1)) + E(φ1, P (φ0, φ1))

. Then,

1. (E1(L), d1) is a metric space;

2. there exists a maximal psh segment t 7→ φt joining φ0 and φ1;

3. φt ∈ E1(L) for all t;

4. the segment φt is a (constant speed) metric geodesic for d1, i.e. there
exists a real constant c ≥ 0 such that

d1(φt, φs) = c · |t− s|

for all t, s ∈ [0, 1];
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5. the Monge-Ampère energy is a�ne along φt, and it is the unique psh
segment joining φ0 and φ1 with this property.

If the endpoints are continuous, this maximal psh segment is furthermore
continuous in time and space.

4.1 Plurisubharmonic segments in non-Archimedean

geometry.

4.1.1 Fubini-Study segments, plurisubharmonic segments.

The basic building block for our plurisubharmonic segments are what we call
Fubini-Study segments, which we de�ne as follows.

De�nition 4.1.1.1. A Fubini-Study segment is a map

[0, 1] 3 t 7→ φt ∈ H(L)

such that there exist a �nite basepoint-free collection of sections (si) of some
H0(kL), and for each i, real constants λi and λ′i ∈ R such that for all t,

φt = k−1 max
i

log |si|+ (1− t)λi + tλ′i.

Note the similarity with our de�nition of Fubini-Study metrics. Again, such
segments are immediately seen to be convex in t, stable under �nite maxima
and addition of constants.

Remark 4.1.1.2. In particular, the image by the operator FSk of some norm
geodesic t 7→ ζt inH0(X, kL), with ζ0,1 diagonalizable, de�nes a Fubini-Study
segment: indeed, given a basis s = (si)i codiagonalizing the endpoints, we
have for all t, i

ζt(si) = ζ0(si)
1−tζ1(si)

t

so that

FSk(ζt) = max
i

(log |si| − (1− t) log ζ0(si)− t log ζ1(si)) .

Then, following the idea that psh metrics are decreasing limits of Fubini-
Study metrics, we de�ne
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De�nition 4.1.1.3. A plurisubharmonic segment or psh segment is a map
[0, 1]→ PSH(L) which is a decreasing limit of a net Fubini-Study segments.

Proposition 4.1.1.4. The class of psh segments is the smallest class of
segments

[0, 1]→ PSH(L)

which contains all segments of the form

t 7→ k−1(log |s|+ (1− t)λ+ tλ′),

for s a section of some kL and λ, λ′ ∈ R, is stable under �nite maxima,
addition of constants, and decreasing limits of nets.

Proof. If we can show that the set of psh segments on L satis�es all those
properties, then it will by de�nition be the smallest such class. As was the
case for the proof of the same result for psh metrics rather than segments,
only the property of being stable under decreasing limits is not immediate
from the de�nition. However, using the trick from the proof of [BJ21, Propo-
sition 5.6(vi)], we can reduce to the case of a decreasing net of Fubini-Study
paths, and by stability under maximum we may also assume that our net
(φt,α)α only contains segments of the form

t 7→ φt,α = k−1
α (log |sα|+ (1− t)λα + tλ′α).

Since our segments are assumed to be decreasing along the net, �xing t gives
a decreasing net (φt,α)α of L-psh metrics, which then converges to a L-psh
metric φt. Therefore, for all t ∈ [0, 1], φt is not identically −∞. The problem
is that we do not know whether the nets of constants converge to �nite values.
But taking t = 0, 1 yields in particular that the nets k−1

α (log |sα| + λα) and
k−1
α (log |sα|+ λ′α) decrease to the L-psh metrics φ0 and φ1. Let x be a point
on which φ0 and φ1 are nonsingular. Then,

γ = φ1(x)− φ0(x) = lim
α

(λ′α − λα)

is �nite, and constant on the set of all such x. Performing this argument for
all pairs a < b ∈ [0, 1] shows that φt corresponds to the segment

t 7→ φ0 + γ · t,

which is a psh segment, as desired.
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Finally, we show that our segments also satisfy the remaining properties of
Proposition 2.3.1.6.

Proposition 4.1.1.5. Plurisubharmonic segments satisfy the following prop-
erties:

1. the convex combination of two psh segments is a psh segment;

2. the addition of a L-psh segment and a M-psh segment is a L+M-psh
segment;

3. if a net of psh segments converges uniformly to a limit segment, then
this limit segment is psh.

Proof. We start with (2). The statement follows from the case of Fubini-
Study segments. Consider thus two such segments

t 7→ φt = k−1 max
i

log |si|+ (1− t)λi + tλ′i

and
t 7→ ψt = `−1 max

j
log |tj|+ (1− t)γj + tγ′j.

Then

φt + ψt = (k`−1)(max
i

(log |s`i |+ (1− t)`λi + t`λ′i)

+ max
j

(log |tkj |+ (1− t)kγj + tkγ′j))

= (k`−1)(max
i,j

log |s`itkj |+ (1− t)(`λi + kγj) + t(`λ′i + kγ′j)),

which is a Fubini-Study segment on (k`)(M + L).

The third point follows from noticing that we can use sequences rather than
nets when dealing with uniform convergence, and then adding constants to
reduce to the case of a decreasing limit of psh segments, which converges by
de�nition to a psh segment. Finally, the �rst point follows again from the
Fubini-Study case, from a simple computation similar to the proof of (2).
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4.1.2 A maximum principle for Fubini-Study segments.

The Fubini-Study operators FSk are not injective. Hence, it is pleasant to
consider a "minimal" norm in the �bre of a Fubini-Study metric, correspond-
ing to its image by Nk. The following result shows that Fubini-Study seg-
ments obtained as the image of a norm geodesic joining two such minimal
norms is maximal (compare with [Berndt09, Proposition 3.1]):

Lemma 4.1.2.1 (Maximum principle for norm geodesics). Set two metrics
φ0, φ1 in H(L) de�ned by sections in H0(kL). Let φ̃t be the Fubini-Study
segment obtained as the image by FSk of the norm segment joining Nk(φ0)
and Nk(φ1). Then, for all t, and for all Fubini-Study segments in the image
of FSk joining φ0 and φ1, we have

φt ≤ φ̃t.

Proof. Note that FSk(Nk(φi)) = φi for i = 0, 1 by [BE, Lemma 7.23(ii)]. By
de�nition of a Fubini-Study metric, we can write

φ0 = max
i

log |si|+ λi

and
φ1 = max

i
log |ti|+ λ′j

where (si) and (ti) are basepoint-free bases of H0(kL). By monotonicity of
norm geodesics in the form of Proposition 1.2.5.4, it is enough to show that

Nk(φ0,1) ≤ ζ0,1,

but by [BE, Lemma 7.23(i),(iii)] and anti-monotonicity of the Nk operator,
we have

Nk(φ0) = Nk(FSk(ζ0)) ≤ ζ0,

and similarly for ζ1, which proves the result.

4.1.3 Maximal psh segments.

We conclude this section by stating a central Theorem in this article:

Theorem 4.1.3.1. Let φ0, φ1 be any two psh metrics on L. Then,

• either there exists no psh segment between φ0 and φ1,
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• or there exists a unique maximal psh segment t 7→ φt between φ0 and
φ1.

We will prove this result in Section 4.3.2. In what follows, we will state and
prove versions of this result in larger and larger classes of metrics, starting
from the continuous psh case, then �nite-energy metrics, and �nally general
psh metrics. In each case, we show that the maximal segment remains in the
same class as the endpoints, for all t.

4.2 Geodesics between continuous psh metrics.

Throughout this Section, we assume that L is an ample line bundle over a
projective K-varietyX, K non-Archimedean, and that continuity of envelopes
holds for (X,L).

4.2.1 Main Theorem for continuous psh metrics.

We start by studying maximal psh segments in the space of continuous psh
metrics. The main Theorem of this section is then the following:

Theorem 4.2.1.1. Let φ0, φ1 be two continuous psh metrics on L. Then,

1. there exists a (unique) maximal psh segment (t, x) 7→ φt(x) joining φ0

and φ1;

2. this segment is continuous in both variables;

3. this segment is a geodesic segment for the distance d1;

4. the Monge-Ampère energy is a�ne along this segment, and it is the
unique psh segment joining φ0 and φ1 with this property.

4.2.2 A non-Archimedean Kiselman minimum princi-
ple.

In this Subsection, we prove an auxiliary result, of independent interest, that
will help us prove the �rst two points of Theorem 4.2.1.1.
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Given a convex function f : Rp × Rq → R ∪ {∞}, it is well-known that the
in�mum of the marginals

Rq 3 y 7→ inf
x∈Rp

f(x, y)

is also convex. This generalizes in multiple ways, as Prekopa's theorem
([Pré73]), but also to plurisubharmonic functions (independent of the imag-
inary part of the variable over which the in�mum is taken). This is the
well-known Kiselman minimum principle ([Kis78], [Kis94]), and a crucial
tool in the study of plurisubharmonic functions. We propose here a non-
Archimedean version of this result.

Lemma 4.2.2.1 (Non-Archimedean Kiselman minimum principle). Let [0, 1] 3
t 7→ φt be a psh segment in PSH(L). Then, for each τ ∈ R, the Legendre
transform

φ̂τ : x 7→ inf
t∈[0,1]

φt(x)− tτ

is in PSH(L). Furthermore, by Legendre duality,

φt = sup
τ∈R

φ̂τ + tτ.

Proof. Since a psh segment on L is a global decreasing limit of Fubini-Study
segments, and one notices the map between segments of psh metrics

(t 7→ φt) 7→ (τ 7→ φ̂τ )

to be continuous along decreasing sequences of segments (by its de�nition as
an in�mum over t of psh metrics), it is enough to consider the case where
t 7→ φt is a Fubini-Study segment, i.e. there exists a �nite basepoint-free
collection of sections (si)i∈I of H0(kL) for some k such that

φt = max
i∈I

(log |si|+ tλi + ci),

with �xed constants (λi) and (ci).

Set τ ∈ R, and consider the functions

f : [0, 1]× R|I| → R, (t, s) 7→ k−1 max
i
s+ t(λi − τ) + ci
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and
g : R|I| → R, s 7→ inf

t∈[0,1]
f(t, s).

It is clear that φ̂τ is the composition of g and the formal tropicalization map

trop : X 3 x 7→
(
log |s1|(x), . . . , log

∣∣s|I|∣∣ (x)
)
∈ (R ∪ {−∞})|I|.

We �rst show that g is a piecewise-linear convex map, and we will explain
how from this result we can prove that φ̂τ is Fubini-Study.

The strict epigraph of g

Eg = {(s, y) ∈ R|I| × R, g(s) < y}

is the image under the projection p : [0, 1] × R|I| × R → R|I| × R of the
epigraph of f

Ef = {(t, s, y) ∈ [0, 1]× R|I| × R, f(t, s) < y}.

One notices that, since f is piecewise-linear and convex in all variables, Ef is
convex and its closure is a piecewise-linear set. Since both of those properties
are preserved under linear maps, Eg is also convex and PL. This implies
that the same holds for the function g. (In particular, putting aside the
PL hypothesis, this is precisely the standard proof of the convex in�mum
principle for marginals.)

Note that our convex PL function g is increasing in each variable and satis�es,
for any real constant C,

g(s1 + C, . . . , s|I| + C) = g(s1, . . . , s|I|) + k−1C,

because those properties are satis�ed by f in the |I| last coordinates, and
are preserved upon taking the in�mum over the �rst coordinate. Composing
such a function with our formal tropicalization map naturally yields a psh
metric (by Remark 4.2.2.2 below), which proves our result.

Remark 4.2.2.2. We have claimed that, given a basepoint-free basis of
sections s = (si)i∈I of H0(kL) and a convex PL function f of p = |I| real
variables, increasing in each variable, and satisfying

f(z1 + C, . . . , zp + C) = f(z1, . . . , zp) + k−1C,
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for all real constants C, then f(log |s1|, . . . , log |sp|) is a Fubini-Study metric.
We will show this with k = 1 for clarity, and all the arguments below can
be adapted for general k upon dividing where needed. Indeed, since f is
convex, PL, and satis�es the property above, there exist �nitely many a�ne
functions fj such that

f = max
j
fj

and
fj(z1, . . . , zp) =

∑
i

αi,jzi + b

with
∑

i ai,j = 1. Since a maximum of psh metrics is psh, it is enough to
prove that fj(log |s1|, . . . , log |sp|) is psh. We will therefore drop the subscript
j and write ai for the coe�cients above.

Now, the monotonicity condition ensures that the ai all belong to [0, 1], i.e.
the vector (ai)i is in the p-dimensional simplex. We assume at �rst that
ai = pi/qi ∈ Q ∩ [0, 1]. Denote

αi = pi · q−1
i ·

∏
j

qj

and remark that, by the simplex condition,∑
i

αi =
∏
i

qi.

Then,

f(log |s1|, . . . , log |sp|) = b+
∑
i

ai log |si|

=
b ·
∏

i qi∏
i qi

+
1∏
i qi

log
∏
i

|sαii |.

Now,
∏

i s
αi
i is a section of (

∑
i αi)L = (

∏
i qi)L. Therefore, f is in the image

of FS∏
i qi
, i.e. it is a Fubini-Study metric. If some of the coe�cients are

irrational, then f can be uniformly approximated by a function with rational
coe�cients satisfying all the conditions above, i.e. f(log |s1|, . . . , log |sp|) can
be uniformly approximated by Fubini-Study metrics, which shows that it is
psh.
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Remark 4.2.2.3. We have stated our minimum principle so as to match the
form it will be used in, in the next subsection. A brief look at the proof shows
that it can be generalized to the following statement: given a Fubini-Study
"polyhedron" (or psh, upon taking decreasing limits) parameterized as

φt : P ×X 3 (t, x) 7→ max
i

log |si|+ 〈αi, t〉+ bi,

where P is a convex polyhedral subset of Rd for some d, αi ∈ Rd, bi ∈ R, and
the si are sections of some H0(kL), we have that for all α ∈ Rd,

inf
t∈P

φt(x)− 〈τ, t〉

is psh for all τ ∈ Rd.

4.2.3 Proof of Theorem 4.2.1.1, (1) and (2).

With this principle in hand, we can now prove the �rst two points of Theorem
4.2.1.1, following ideas from e.g. [Dar19] and [RWN14] in the complex case.
Consider the envelope

φ̂τ = P (φ0, φ1 − τ)

for τ ∈ R. By continuity of envelopes, this de�nes a continuous psh metric.
The two next lemmas essentially prove our result:

Lemma 4.2.3.1. If φ0, φ1 ∈ C0(L)∩PSH(L), the map t 7→ φt de�ned as the
Legendre transform

φt = sup
τ∈R

(tτ + φ̂τ )

is a psh segment, which is continuous on [0, 1]×Xan.

Proof. We start with continuity. Since φ0, φ1 are continuous, by continuity
of envelopes P (φ0, φ1 − τ) is continuous for all τ as well. Start by choosing
a compact interval

S = [a, b] ⊂ (0, 1).

• for large positive τ , and for all t ∈ S, φ1 − τ ≤ φ0 (since φ0, φ1 are
continuous, thus bounded) and

tτ + P (φ0, φ1 − τ) = tτ + P (φ1 − τ) = P (φ1) + (t− 1)τ.

Since t − 1 < 0, (t − 1)τ is very negative while P (φ1) is bounded, so
that tτ + φ̂τ does not contribute to the supremum;
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• for large negative τ , by boundedness again we have φ0 ≤ φ1− τ so that

tτ + P (φ0, φ1 − τ) = tτ + P (φ0) ≤ P (φ0).

Therefore, for some constant C(S) > 0, and for all t ∈ S,

φt = sup
τ∈[−C(S),C(S)]

tτ + φ̂τ ,

a supremum of continuous functions over a compact set, which is therefore
continuous. We have proven that (t, x) 7→ φt(x) is continuous on (0, 1)×X.

We now prove that it is continuous up to the boundary. We start with
the case t = 0. For very small values of t, very positive values of τ will
never contribute to the supremum, so that we need only consider values of τ
bounded above by some constant C0. Since we always have

P (φ0, φ1 − τ) ≤ P (φ0) = φ0,

it follows that for very small values of t,

tτ + φ̂τ ≤ tC0 + P (φ0, φ1 − τ) ≤ tC0 + φ0.

Taking the supremum, we thus have

φt − φ0 ≤ tC0. (4.1)

By boundedness of φ1, there exists a negative enough value of τ , say C ′0, such
that φ̂C′0 = P (φ0) = φ0, i.e. for all small enough t, there exist some τ with

C ′0t+ φ0 ≤ tτ + φ̂τ

which implies
C ′0t ≤ φt − φ0.

Combining this with (4.1) shows that φt converges uniformly to φ0 for small
enough t, which proves continuity at t = 0. If t is very close to 1, the
argument proceeds in the same way, by noticing that

P (φ0, φ1 − τ) = P (φ0 + τ, φ1)− τ.
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To show that t 7→ φt is a psh segment, we consider the net of psh segments

I 7→ max
τ∈I

(t 7→ tτ + φ̂τ ),

where I belongs to the set of �nite collections of elements in R, directed by
inclusion. This does indeed de�ne a psh segment for all such I, as a �nite
maximum of psh segments. By de�nition, the limit of this net is t 7→ φt, and
it is naturally increasing along inclusion. By Dini's Theorem, this gives a
sequence of psh segments converging uniformly to t 7→ φt, which is equivalent
to saying that it is a psh segment, proving our result.

Lemma 4.2.3.2. The curve

t 7→ φt = sup
τ∈R

tτ + φ̂τ

is the largest psh segment joining φ0 and φ1.

Proof. We �rst show that φt bounds from above all psh segments between
the endpoints. Plurisubharmonic segments are de�ned as decreasing limits
of Fubini-Study segments. Therefore, at the endpoints, Dini's theorem gives
uniform convergence, ensuring that if k 7→ ψkt is a sequence of Fubini-Study
segments decreasing to a psh segment ψt with ψ0,1 ≤ φ0,1, then we can assume
that for all large enough k, ψk0,1 ≤ φ0,1. Therefore, it is enough to treat the
case of Fubini-Study segments.

Consider therefore a Fubini-Study segment t 7→ ψt with ψ0 ≤ φ0, ψ1 ≤ φ1.
Let

R 3 τ 7→ ψ̂τ = inf
t∈[0,1]

ψt − tτ

be its Legendre transform. By the minimum principle Lemma 4.2.2.1, ψ̂τ ∈
H(L) for all τ . Taking t = 0, 1 we have

ψ̂τ ≤ ψ0 ≤ φ0

and
ψ̂τ ≤ ψ1 − τ ≤ φ1 − τ.

As ψ̂τ is psh, we then have

ψ̂τ ≤ φ̂τ = P (φ0, φ1 − τ).
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Taking the Legendre transform again, we �nd

ψt = sup
τ∈R

ψ̂τ + tτ ≤ sup
τ∈R

φ̂τ + tτ = φt,

which establishes our �rst desired result: φt bounds all psh segments by
above. By Lemma 4.2.3.1, φt is itself a psh segment, which concludes the
proof.

We then have all the tools in hand to prove the Theorem.

Proof of Theorem 4.2.1.1 (1)-(2). By Lemma 4.2.3.2, the curve

t 7→ φt = sup
τ∈R

tτ + φ̂τ

is equal to
sup{φt, φt psh segment joining φ0, φ1},

and by Lemma 4.2.3.1, this segment is a psh segment joining φ0 and φ1.
Therefore, it is a maximal psh segment, and hence is unique. This establishes
(1). The continuity statement (2) also follows from Lemma 4.2.3.1.

4.2.4 Quantization with geodesics of bounded graded
norms.

We now turn to the statements (3) and (4) of Theorem 4.2.1.1. From our
de�nition of the maximal psh segment as a Perron envelope, it is not obvious
how to recover the desired properties. Instead, we will obtain a "quantized"
characterization of that segment, using sequences of Fubini-Study segments.

Let φ0, φ1 be two continuous psh metrics as before. To those metrics, we
can associate the bounded graded norms N•(φi), i = 0, 1. They can be
joined by the geodesic of graded norms ζt•, where ζ

t
k is the norm geodesic

joining the Nk(φi), as in the �rst Chapter. By Theorem 1.3.3.1, for all t, ζt•
is submultiplicative, so that the limit

Φt : t 7→ lim
k

FSk(ζ
t
k)

exists for all t by Fekete's lemma. By the same lemma, this is in fact a
supremum over k. We claim that this limit coincides with the maximal psh
segment φt joining φ0 and φ1. To that end, we show that Φt bounds all psh
segments by above.
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Proposition 4.2.4.1. Let ψt be a plurisubharmonic segment joining two
metrics ψ0 ≤ φ0 and ψ1 ≤ φ1 in C0(L) ∩ PSH(L). We then have that

ψt ≤ Φt

for all t ∈ [0, 1].

Proof. As in the proof of Lemma 4.2.3.2, Dini's theorem gives uniform con-
vergence of a sequence k 7→ ψkt of Fubini-Study segments decreasing to ψt,
so that for all large enough k, ψk0,1 ≤ φ0,1, since we have assumed ψ0,1 ≤ φ0,1.

Therefore, it enough to prove the result for all Fubini-Study segments ψt with
ψ0,1 ≤ φ0,1. The argument is similar to that of [DLR20, Proposition 2.12].

We start by �xing some notation. As we have just said, we can assume
t 7→ ψt to be a Fubini-Study segment in the image of some FSk, with ψ0 ≤ φ0,
ψ1 ≤ φ1. Denote by:

• t 7→ ψ̃t the image by FSk of the norm geodesic inH0(kL) joining Nk(ψ0)
and Nk(ψ1);

• t 7→ Φk
t the image by FSk of the norm geodesic in H0(kL) joining

Nk(φ0) and Nk(φ1).

By de�nition, since Φt = supm Φm
t , we have

Φk
t ≤ Φt. (4.2)

Since ψ0 = ψ̃0, ψ1 = ψ̃1, by the maximum principle for norm geodesics
Lemma 4.1.2.1, we have

ψt ≤ ψ̃t. (4.3)

Since the composition of FSk ◦ Nk preserves inequalities while Nk and FSk
reverse them, and since we have

ψ̃0 = FSk(Nk(ψ0)) and ψ̃1 = FSk(Nk(ψ1))

as well as
Φk

0 = FSk(Nk(φ0)) and Φk
1 = FSk(Nk(φ1)),

we then have
ψ̃0 ≤ Φk

0 and ψ̃1 ≤ Φk
1,
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so that, by monotonicity of norm geodesics in the form of Proposition 1.2.5.4
(applied to the Nk(ψ0,1) ≥ Nk(φ0,1)), we have

ψ̃t ≤ Φk
t . (4.4)

Combining (4.3), (4.4), and (4.2), we �nally have

ψt ≤ Φt,

as desired.

Theorem 4.2.4.2. Let φ0, φ1 be two continuous psh metrics. The segment

Φt : t 7→ lim
k

FSk(ζ
t
k),

where t 7→ ζtk is the norm geodesic joining Nk(φ0) and Nk(φ1), coincides with
the maximal psh segment φt joining φ0 and φ1.

Proof. By Proposition 4.2.4.1, we have Φt ≥ φt, since in particular φt is a psh
segment joining φ0 and φ1. But, by Fekete's lemma, the limit of the sequence
k 7→ FSk(ζ

t
k) is in fact a supremum, i.e. Φt is a supremum of a subset of the

set of psh segments below φ0 and φ1. This gives Φt ≤ φt, which proves our
result.

4.2.5 Proof of Theorem 4.2.1.1, (3) and (4).

Using our newfound expression for φt, we may now �nish the proof of the
Theorem.

Proof of Theorem 4.2.1.1 (3)-(4). We start with (4). By the cocycle prop-
erty, we can set φref = φ1. By [BE, Theorem 9.15],

E(φt, φ1) = vol(φt, φ1).

For any k, let ζtk be the norm geodesic joining Nk(φ0) and Nk(φ1), and write

vol(ζtk, ζ
1
k) = h0(kL)−1

∑
λi,k(ζ

t
k, ζ

1
k)

= (1− t)h0(kL)−1
∑

λi,k(ζ
0
k , ζ

1
k)

= (1− t) vol(ζ0
k , ζ

1
k).
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Taking the limit, we have

vol(ζt•, ζ
1
• ) = vol(φt, φ1) = (1− t) vol(φ0, φ1).

By [BE] again, this is equal to the energy:

E(φt, φ1) = vol(φt, φ1).

The energy is then a�ne in the diagonalizable case. If the norms are not
diagonalizable, we simply note that the geodesics ζtk can be approximated by
diagonalizable geodesics ζtk,ε for which

vol(ζtk,ε, ζ
1
k,ε) = (1− t) vol(ζ0

k,ε, ζ
1
k,ε)

so that at the limit

vol(ζtk, ζ
1
k) = (1− t) vol(ζ0

k , ζ
1
k)

still holds for all k, proving our result.

We now show that such a psh segment is unique. Fix a reference metric
φref ∈ C0(L) ∩ PSH(L). Assume t 7→ ψt is another such segment joining two
metrics φ0, φ1 ∈ C0(L) ∩ PSH(L), i.e. it is a psh segment along which the
energy is a�ne. By the maximum principle Theorem 4.1.3.1, we then have

ψt ≤ φt

for all t, and t 7→ E(φt, φref), t 7→ E(ψt, φref) are then a�ne functions with
the same endpoints, hence for all t

E(φt, φref) = E(ψt, φref).

By Proposition 4.2.6.2, since ψt ≤ φt and the energies coincide, we have
ψt = φt.

Finally, for (3), the same idea as in (4) works: for all k, and for all t and t′

in [0, 1] we �nd
d1(ζtk, ζ

t′

k ) = |t− t′|d1(ζ0
k , ζ

1
k),

and we conclude by passing to the limit.

Remark 4.2.5.1. However, re�ecting the d1-geometry of real Euclidean
space, there are many more d1-geodesics than just the unique psh geodesic
(e.g., take the reparametrization of the concatenation of the geodesic join-
ing φ0 and P (φ0, φ1), and the geodesic joining P (φ0, φ1) and φ1). The fact
that our segment is maximal at least ensures that it is maximal in the set of
d1-geodesics which are also psh segments.
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4.2.6 A result concerning comparable metrics with zero
relative energy.

We have used, in the proof of Theorem 4.2.1.1, the fact that if two comparable
metrics have the same Monge-Ampère energy, then they are equal. The most
natural setting for this result is that of �nite-energy metrics, and indeed we
will use it in its full generality in the proof of Theorem 4.3.1.1. In this section,
we prove this result. We will need another bifunctional acting on continuous
psh metrics, the I energy.

De�nition 4.2.6.1. Let φ0, φ1 be two continuous Lan-psh metrics. Their
relative I-energy is de�ned as

I(φ0, φ1) =

ˆ
X

(φ0 − φ1)( MA(φ1)− MA(φ0)).

Their relative J-energy is de�ned as

J(φ0, φ1) = −E(φ0, φ1) +

ˆ
X

(φ0 − φ1) MA(φ1).

Given a reference metric φref , we write

I(φ0) = I(φ0, φref)

and
J(φ0) = J(φ0, φref).

By [BJ21, Section 6.3], the functionals I and J also admit an extension to
E1(Lan), which is continuous along decreasing nets.

Note that we have by [BJ21, (3.15)]
ˆ
X

(φ0 − φ1) MA(φ0) ≤ E(φ0, φ1) ≤
ˆ
X

(φ0 − φ1) MA(φ0),

so that the I-energy is always nonnegative. This result relies on a special case
of the local Hodge index theorem, as in [BJ21, Proposition 3.5]. That the J-
energy is nonnegative follows from the very expression of the Monge-Ampère
energy.

Proposition 4.2.6.2. Let φ0, φ1 ∈ E1(Lan). If E(φ0, φ1) = 0 and φ0 ≥ φ1,
then φ0 = φ1.
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Proof. The main argument has been communicated to the author by S.
Boucksom and M. Jonsson, as part of works on �nite-energy spaces currently
in writing.

Approximate φ0 and φ1 by decreasing nets φk0, φ
k
1 ∈ C0(Lan)∩PSH(Lan). Up

to taking the maximum of the two sequences, we can assume without loss of
generality that for all k, φk0 ≥ φk1. We have that

E(φk0, φ
k
1) =

1

dimX + 1

∑
i

ˆ
X

(φk0 − φk1) MA(φk0
(i), φk1

(dimX−i)).

Since φ0 ≥ φ1, all of the terms in the above sum are integrals against positive
measures of nonnegative functions, hence they are all positive. In particular,

0 ≤ I(φk0, φ
k
1) =

ˆ
X

(φk0 − φk1) MA(φk1) ≤ (dimX + 1)E(φk0, φ
k
1)→ 0,

where the vanishing follows from continuity of E along decreasing nets, and
the fact that E(φ0, φ1) = 0.

Pick any positive measure µ that can be expressed as MA(φ) for some φ ∈
C0(Lan) ∩ PSH(Lan), and write for x ∈ Xan

µ({x})(φk0(x)− φk1(x))−
ˆ
X

(φk0 − φk1) MA(φk1)

=

ˆ
X

µ({x})(φk0 − φk1)δx −
ˆ
X

(φk0 − φk1) MA(φk1)

≤
ˆ
X

(φk0 − φk1)µ−
ˆ
X

(φk0 − φk1) MA(φk1)

≤
ˆ
X

(φk0 − φk1)(µ− MA(φk1)).

By [BJ21, Corollary 3.20], given four Fubini-Study metrics φi ∈ H(L), i ∈
{0, 1, 2, 3} there exists constants C, a, b depending only on dimX such that
ˆ
X

(φ0 − φ1)( MA(φ2)− MA(φ3)) ≤ C · I(φ0, φ1)a · I(φ2, φ3)a ·max
i
J(φi)

b.

In our case, we then haveˆ
X

(φk0−φk1)(µ−MA(φk1)) ≤ C ·I(φk0, φ
k
1)a·I(φ, φk1)a·max(J(φk0), J(φk1), J(φ))b,
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recalling that we have de�ned µ = MA(φ). Now, by continuity of the exten-
sions of I and J along decreasing nets,

I(φ, φk1)a ·max(J(φk0), J(φk1), J(φ))b → I(φ, φ1)a ·max(J(φ0), J(φ1), J(φ))b

while we have established before that

I(φk0, φ
k
1)→ 0.

We then �nd that

µ({x})(φk0(x)− φk1(x))−
ˆ
X

(φk0 − φk1) MA(φk1) ≤ C · I(φk0, φ
k
1)a · I(φ, φk1)a

·max(J(φk0), J(φk1), J(φ))b

and the right-hand side vanishes, while the left-hand side converges as k →∞
to the nonnegative quantity

µ({x})(φ0(x)− φ1(x)).

The key point now is to solve the non-Archimedean Monge-Ampère equation
in order to �nd a measure µ = MA(φ) with positive Dirac mass at x. Now,
we recall that a psh function is uniquely determined by its restriction to the
set of divisorial points in Xan, and that for any such point x we may �nd a
Monge-Ampère measure µx associated to a projective model of X which has
an atom at x, as in [BE, Example 8.11]. As we then have

0 ≤ µx({x})(φ0(x)− φ1(x)) = 0,

and µx({x}) > 0, we have that φ0 = φ1 on all divisorial points of Xan, hence
on Xan.

4.2.7 A simple example.

Consider the symmetric algebra Sym•(V ) of some �nite-dimensional K-vector
space V . One can easily see that the k-th symmetric power of a geodesic
segment in N (V ) is a geodesic segment in N (V �k) = N (Symk(V )). Using
this result together with our quantization results, we have a nice example: on
projective spaces, Fubini-Study segments are in fact maximal psh segments.
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Corollary 4.2.7.1. Let X = Pn for some positive integer n and L = OPn(m)
for some positive integer m. Let ζt be a norm geodesic in H0(L). Then, the
psh geodesic t 7→ φt joining FS1(ζ0) and FS1(ζ1) corresponds to t 7→ FS1(ζt).

This does not hold in general: even if the boundary norms are generated in
degree m for some m, the geodesic is not necessarily in degree m for all t,
and thus the result only holds "at in�nity".

Proof. Since R(X,L) = 〈(xI)I∈T�m〉�•K , with x = (x0, . . . , xn), we have that
a geodesic t 7→ ζt in H0(L) induces a geodesic t 7→ ζ�kt in H0(kL) for all k
through the k-th symmetric powers, as discussed above. Therefore, for all t,
the geodesic is generated in degree one, and we have

FSk(ζ
�k
t ) = FS1(ζt),

proving our result.

4.3 Geodesics between �nite-energy metrics.

4.3.1 Main Theorem for �nite-energy metrics.

Our main Theorem in this Section is the following.

Theorem 4.3.1.1. Given φ0, φ1 in the metric space (E1(L), d1), we have
that:

1. there exists a maximal psh segment t 7→ φt joining φ0 and φ1;

2. φt ∈ E1(L) for all t;

3. the segment φt is a (constant speed) metric geodesic for d1, i.e. there
exists a real constant c ≥ 0 such that

d1(φt, φs) = c · |t− s|

for all t, s ∈ [0, 1];

4. the Monge-Ampère energy is a�ne along φt, and it is the unique psh
segment joining φ0 and φ1 with this property.
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4.3.2 Proof of Theorem 4.1.3.1.

Consider now two metrics φ0, φ1 ∈ PSH(L), and pick decreasing nets φk0, φ
k
1

in C0(L) ∩ PSH(L) converging to φ0, φ1.

Lemma 4.3.2.1. Let φ0 ≤ φ′0, φ1 ≤ φ′1 be continuous psh metrics, and
denote by φt, φ′t the maximal psh segments joining them. Then, for all t,
φt ≤ φ′t.

Proof. By de�nition, if φ′t is maximal, it bounds from above all segments
joining endpoints bounded above by φ′0, φ

′
1, and the result follows.

Therefore, the net k 7→ φkt is monotonous, where φkt is the maximal psh
segment joining φk0 and φk1. We claim that

φt : t 7→ lim
k
φkt

is our desired geodesic segment.

Proof of Theorem 4.1.3.1. If no psh segment exists between φ0 and φ1, the
�rst statement of the Theorem is proven.

Assume now that there exist psh segments between φ0 and φ1. Let t 7→ ψt
be such a segment. It is then a decreasing limit of a net of psh segments
t 7→ ψkt . For all k, let t 7→ ψ′kt denote the maximal psh segment joining ψk0
and ψk1 . By maximality, we have for all t, k,

ψkt ≤ ψ′kt .

In particular, limk ψ
k
t ≤ limk ψ

′k
t , and both are psh segments between φ0 and

φ1. This shows that one needs only consider limits of maximal psh segments.
Furthermore, by the same argument, one needs only consider sequences with
endpoints equal to φ0 and φ1.

Therefore, we must show that given any two nets of maximal segments φkt ,
ψkt , such that the endpoints converge to φ0 and φ1, the limits are equal for
all t:

lim
k
φkt = lim

k
ψkt .

But
lim
k
φkt = lim

n
sup{ϕkt psh segment between φk0 and φk1},
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and similarly for ψkt . Both nets converge to the limit

sup{ϕt psh segment between φ0 and φ1},

which depends only of the endpoints φ0 and φ1, proving the Theorem.

4.3.3 Proof of Theorem 4.3.1.1.

From the previous section, the unique maximal psh segment joining two
�nite-energy metrics φ0, φ1 can be recovered as the limit φt of maximal
segments φkt joining decreasing approximations φk0, φ

k
1 of those metrics, in

C0(L) ∩ PSH(L). It could a priori be the case that this leaves the class
E1(L). Theorem 4.3.1.1(3) will ensure that this is not the case.

Proof of Theorem 4.3.1.1 (2)-(5). As we have just discussed, existence (i.e.
(2) in the Theorem) is ensured by Theorem 4.1.3.1. For all k, and for any
reference metric φref ∈ C0(L) ∩ PSH(L),

t 7→ E(φkt , φref)

is a�ne, with coe�cient equal to E(φk1, φ
k
0). By continuity of the energy

along decreasing nets, the limit function

t 7→ E(φt, φref)

is therefore a�ne, with coe�cient equal to the (�nite) energy E(φ0, φ1). This
gives (3).

Furthermore, by Proposition 4.2.6.2, that φt is the only possible psh segment
with the property that the Monge-Ampère energy is a�ne along it is proven
using the same arguments as the proof of Theorem 4.2.1.1(4), establishing
(5). To show that they are geodesics for our extended d1 distance on E1(L)
again follows from the fact that the segments φkt are d1-geodesic, by Theorem
4.2.1.1: for all t, t′,

d1(φkt , φ
k
t′) = |t− t′|d1(φk0, φ

k
1),

and taking the limit in k, using Proposition 2.4.3.8.
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Chapter 5

The space of �nite-energy metrics

over a degeneration.

Summary of the main results.

This Chapter covers the results of [Reb21], which is concerned with general-
izing the formalism of plurisubharmonic geodesic rays to the case of arbitrary
(non-isotrivial) degenerations over the punctured unit disc, and studying non-
Archimedean interpretations, building on the work of Darvas-Lu ([DL20])
and Berman-Boucksom-Jonsson ([BBJ]).

At least half of this Chapter takes place in the complex world; we have
observed silence regarding complex pluripotential theory in this manuscript,
rather focusing on the non-Archimedean case. Whenever necessary (and
indeed this is where we shall begin), we will recall relevant notions in their
right context.

5.1 Relative �nite-energy spaces.

5.1.1 Reminders on �nite-energy spaces in complex ge-
ometry.

We begin with some reminders concerning d1-structures on spaces of �nite-
energy metrics in the classical setting. We thus consider a �xed compact
Kähler manifold X, with dimX =: d, endowed with an ample line bundle L.
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Consider two metrics φ0, φ1 ∈ C0 ∩ PSH(L). Their relative Monge-Ampère
energy is the quantity

E(φ0, φ1) =
1

(Ld)(d+ 1)

d∑
i=0

ˆ
X

(φ0 − φ1) (ddcφ0)i ∧ (ddcφ1)d−i.

Note that we have a cocycle identity

E(φ0, φ1) = E(φ0, φ
′) + E(φ′, φ1)

for any other continuous psh metric φ′. Having �xed a continuous psh metric
φref on the right, E(φ) := E(φ, φref) can be seen as an operator on C0 ∩
PSH(L) which is also a primitive of the Monge-Ampère operator MA : φ 7→
(ddcφ)d. It admits a (possibly in�nite) extension to PSH(L) via

E(φ) = lim
k→∞

E(φk),

where φk is a net of continuous psh metrics decreasing to φ, which always
exists by [BK07], [Dem92]. The space of �nite-energy metrics is the space

E1(L) = {φ ∈ PSH(L), E(φ) is �nite}.

By the cocycle identity, this space does not depend on the choice of a reference
metric. From the work of Darvas, we know this space to admit (amongst
others) a d1-type complete metric space structure via

d1(φ0, φ1) = E(φ0) + E(φ1)− 2E(P (φ0, φ1)),

where P (φ0, φ1) is the envelope

P (φ0, φ1) = sup {φ ∈ PSH(L), φ ≤ min(φ0, φ1)).

It will be more practical to use a di�erent expression of the Monge-Ampère
energy, just as we did in the non-Archimedean case, as a di�erence of absolute
Deligne pairings.

5.1.2 Relative �nite-energy metrics and extended Deligne
pairings.

We consider a holomorphic submersion between complex manifolds

π : X → Y
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of relative dimension d. Pick d + 1 pairs (Li, φi), where Li is a relatively
ample line bundle over X, and φi is a continuous psh metric on Li. To this
data, one associates a line bundle over Y ,

〈L0, . . . , Ld〉X/Y ,

together with a metric
〈φ0, . . . , φd〉X/Y

in a way that is multi-additive, symmetric; the construction furthermore
commutes with base change (in particular, is stable upon restriction to an
open set on the base), and satis�es

• the change of metric formula: given another continuous psh metric φ′0
on L0, we have

〈φ0, . . . , φd〉X/Y −〈φ′0, . . . , φd〉X/Y = π∗ ((φ0 − φ′0)(ddcφ1 ∧ · · · ∧ ddcφd))
(5.1)

(see [Elk90, Théorème I.1.1(d)]);

• the curvature formula

ddc〈φ0, . . . , φd〉X/Y = π∗(dd
cφ0 ∧ · · · ∧ ddcφd) (5.2)

(see [Elk90, Théorème I.1.1(d)]).

The last formula shows that the metric 〈φ0, . . . , φd〉X/Y is positive. One also
notices that a metric on a trivial Deligne pairing

〈OX , L1, . . . , Ld〉X/Y

can be identi�ed with a genuine function on the base Y , upon evaluation
against the trivial section 1.

Assume for the moment that Y is a point. In that case, Deligne pairings can
be seen as complex lines together with a Hermitian norm. In this setting, we
will omit the subscript ·X/Y . Using the change of metric formula, one can
see the relative Monge-Ampère energy between two continuous psh metrics
on a �xed line bundle L over X as a di�erence of Deligne pairings:

(d+ 1)E(φ0, φ1) = 〈φd+1
0 〉 − 〈φd+1

1 〉,
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which suggests that the Monge-Ampère energy should be seen intrinsically
as a genuine (Hermitian) metric

(d+ 1)E(φ) = 〈φd+1〉

on the line 〈Ld+1〉.

We now return to arbitrary Y . The change of metric formula suggests that
the Deligne pairing construction could possibly make sense in a larger class
of metrics, where each φi has �brewise �nite energy. This motivates the
following de�nition.

De�nition 5.1.2.1. Let L be a relatively ample line bundle on X. We de�ne
the class of relative �nite-energy metrics

E1
X/Y (L)

to be the class of plurisubharmonic metrics φ on L such that, for all y ∈ Y ,
φy ∈ E1(Ly). Here, Ly is the restriction of L to the �bre π−1(y).

Since we have required plurisubharmonicity on all of L, it follows that any
metric in E1

X/Y (L) can be approximated by a decreasing net of continuous
psh metrics on L. In particular, such metrics admit Deligne pairings.

Theorem 5.1.2.2. Let π : X → Y be a holomorphic submersion between
complex manifolds of relative dimension d, and let (Li)

d
i=0 be a collection of

d + 1 relatively ample line bundles on X. There exists a unique extension
of the Deligne pairing construction to metrics in E1(Li)X/Y , which is multi-
linear, symmetric, stable upon restriction to a smaller open set on the base,
and such that the change of metric formula (5.1) holds.

Proof. We �rst restrict to an open set U on the base Y , so that we may apply
Demailly regularization on π−1(U). Fix for each i a metric φi ∈ E1

X/U(Li),
and let k 7→ φki be a sequence of continuous psh metrics on Li decreasing to
φi. We claim that the sequence

k 7→ 〈φk0, . . . , φkd〉X/U

decreases to a �nite-valued metric on U , independent of the choices of approx-
imating sequences, which de�nes our construction restricted to U . Assuming
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this convergence to hold, one sees that this construction is multilinear, sym-
metric, satis�es the change of metric formula. Uniqueness follows from the
change of metric formula, which itself shows that the construction glues well
over X.

That it would de�ne a �nite-valued metric on U follows from Lemma 5.1.2.3
below, so that all that is left in order to prove the Theorem is that the limit in
question is decreasing. We proceed by induction on the number n of indices
i ∈ {0, . . . , d + 1} such that φi belongs to E1

X/U(Li) − C0 ∩ PSH(Li). In the
case n = 0, all metrics are continuous psh and this is the classical Deligne
pairing, so that we have nothing more to prove.

Assume thus that the assertion holds for some d + 1 > n > 0. Assume the
metrics φi, i = 1, . . . , d + 1 − n to belong to C0 ∩ PSH(Li), and the n + 1
other metrics φi to belong strictly to E1

X/U(Li), i = 0 or i = d+ 2− n, . . . , d.
(We can do this without loss of generality, by symmetry and up to reordering
the indices.) We approximate φ0 and the (φi)

d
i=d+2−n by sequences k 7→ φki of

continuous psh metrics. For a �xed ` ∈ N∗ and by the induction assumption,
the sequence

k 7→ 〈φ`0, φ1, . . . , φd+1−n, φ
k
d+2−n, . . . , φ

k
d〉X/Y

is decreasing and converges to a limit 〈φ`0, φ1, . . . , φd+1−n, φd+2−n, . . . , φd〉X/U .
This limit satis�es, for any �xed metric φ′0 ∈ C0 ∩ PSH(L0) the formula

〈φ`0, φ1, . . . , φd+1−n, φd+2−n, . . . , φd〉X/U − 〈φ′0, φ1, . . . , φd+1−n, φd+2−n, . . . , φd〉X/U

=

ˆ
X/U

(φ`0 − φ′0) ddcφ1 ∧ · · · ∧ ddcφd+1−n ∧ ddcφd+2−n ∧ · · · ∧ ddcφd.

Now, this expression yields a decreasing net as ` increases, and its limit is
�nite. In particular, it be seen to be the decreasing limit of

k 7→ 〈φ`0, φ1, . . . , φd+1−n, φ
k
d+2−n, . . . , φ

k
d〉X/U ,

which proves our desired statement by induction.

Along the way, we have used the following Lemma regarding �niteness of
products of absolute �nite-energy classes. The proof follows from exactly
the arguments of [BJ21, Theorem 5.8], therefore we leave the details to the
interested reader.
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Lemma 5.1.2.3. Let X be a compact Kähler manifold of dimension d, and
let (Li) be a collection of d + 1 ample line bundles on X. Fix, for all i =
0, . . . , d, a metric φi ∈ E1(Li), and a continuous metric φ′0 ∈ E1(L0). Then,
the integral ˆ

X

(φ0 − φ′0) ddcφ1 ∧ · · · ∧ ddcφd

is �nite.

5.1.3 Relative plurisubharmonic segments.

In the case where Y is a point (the absolute setting), it is well-known
([Dar15]) that any two metrics φ0, φ1 in E1

X/Y (L) = E1(X,L) can be joined
by a plurisubharmonic geodesic segment in E1(X,L), in the following sense.
There exists a S1-invariant plurisubharmonic metric Φ on the product L×A
(where A is the annulus {e−1 ≤ |z| ≤ 1}) identi�ed via t = − log |z| with a
segment

[0, 1] 3 t 7→ Φt ∈ E1(X,L),

such that Φ bounds by above all other such segments Ψ with Ψ0 ≤ φ0 and
Ψ1 ≤ φ1. We now look at what happens when Y is no longer a point. Given
φ0, φ1 ∈ E1

X/Y (L), and a point y ∈ Y on the base, there exists by the previous
discussion a plurisubharmonic geodesic segment t 7→ φt,y joining φ0,y and φ1,y

in E1(Xy, Ly). Varying y, this gives a collection of plurisubharmonic geodesic
segments t 7→ φt. It is not obvious that, for given t, φt has plurisubharmonic
variation with respect to Y . We thus claim the following:

Theorem 5.1.3.1. Given any φ0, φ1 ∈ E1
X/Y (L), the collection [0, 1] 3 t 7→

φt of �brewise psh geodesic segments belongs to E1
X/Y (L). Furthermore, iden-

tifying the collection t 7→ φt with a S1-invariant metric Φ on L × A, Φ is
plurisubharmonic, and is the unique psh metric on L × D∗ such that for all
y ∈ Y ,

ddct(πy)∗〈Φd+1〉X×A/Y×A = 0,

where πy : X×A → {y}×A is the projection to the point y. Such a segment
will be called a psh geodesic segment in E1

X/Y (L).

The last statement can be interpreted as saying that the Monge-Ampère
energy along the psh geodesic segment is �brewise a�ne.
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This Theorem is proven via families of Bergman kernels. We recall some facts
on this topic. For all z on the base, picking a smooth, strictly psh metric φ
on L endows the H0(kLz+KXz) (for all positive integers k) with a Hermitian
norm

‖sz‖2
φ,z,k =

ˆ
X

|sz|2e−kφz ,

for |sz|2e−kφz is indeed a measure on Xz. We may now pick a basis (sj,z)
which is orthonormal for ζφ,z,k, and de�ne the Bergman kernel

Bφ,z,k :=
∑
j

|sj,z|2.

There are two key points regarding this object. The �rst one, which is easier
to see, is that Bφ,z,k is independent of the choice of such a basis. The second,
much deeper point is that as we move on the base, the Fubini-Study metrics

φk : z 7→ FSk(ζφ,z,k) := k−1 logBt,z,k

vary plurisubharmonically, i.e. de�ne a globally psh metric on L. This is a
particular case of [BP08, Theorem 0.1]. We will return to this construction
shortly.

We now turn to some facts regarding spaces of norms. Given any two Her-
mitian norms ζ0, ζ1 acting on a complex �nite-dimensional vector space V , it
is a well-known fact that one may �nd a basis (sj)j of V which is orthonor-
mal for ζ0 and also orthogonal for ζ1. One may then de�ne a distinguished
segment t 7→ ζt of Hermitian norms by requiring ζt to be the unique norm
orthogonal in the basis (sj)j, and such that for all j,

‖sj‖t = ‖sj‖t1.

Such segments are in fact geodesic for various dp-type metric structures on
the space of Hermitian norms on V , but we will not need that fact.

We can consider as before the psh geodesic t 7→ φt,z joining φ0,z and φ1,z in
E1(Lz). Then, a result of Berndtsson ([Berndt09, Theorem 1.2]) states that
the Fubini-Study metrics from before approximate the geodesic φt uniformly
in t: there exists a constant c = c(z) such that

|FSk(ζt,k,z)− φt,z| ≤ c(z) · k−1 log k. (5.3)
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One would like to have such an approximation to be (Y -locally) indepen-
dent of the variable on the base. Firstly, on reading the proof of [Berndt09,
Theorem 1.2], one notices that the constant c depends only on the endpoints
φ0,z and φ1,z, so that our problem reduces to knowing whether one can �nd
c such that, for all z in some compact U in Y ,

|FSk(ζ0,k,z)− φ0,z| ≤ c · k−1 log k

(and similarly for t = 1; the proof is symmetric.) This follows from adapting
the general uniform Bergman kernel asymptotics result [MMBook, Theorem
4.1.1] to the case of varying complex structure, along the same lines as ex-
plained in the proof of [MZ, Theorem 1.6]. The proof of Theorem 5.1.3.1 is
now a matter of adequately piecing together all the previous results.

Proof of Theorem 5.1.3.1. Let φ0, φ1 ∈ E1
X/Y (L), which we assume to be

smooth and strictly psh (while the general case follows from regularization),
and consider the families of �brewise psh geodesics t 7→ φt. As explained
before, for any compact U on the base, and all z ∈ U , there exists a c
independent of z such that

|FSk(ζt,k,z)− φt,z| ≤ c · k−1 log k,

by [Berndt09, Theorem 1.2] and the uniform Bergman kernel asymptotics.
Furthermore, as also discussed, the families

(t, z) 7→ FSk(ζt,k,z)

have plurisubharmonic variation in z and t. Combined with the above esti-
mates, this means that, over π−1(U)×A (where π : X → Y is the structure
morphism of X over Y , and A is the annulus corresponding to [0, 1]), the
segment t 7→ φt seen as a metric on L×A can be uniformly approximated by
continuous psh metrics on L×A, furthermore S1-invariant under the second
variable. This settles the �rst statement of the Theorem.

That φt would be the unique segment such that

ddct(πy)∗〈Φd+1〉X×A/Y×A = 0

for all y ∈ Y follows by de�nition of the �brewise psh geodesic segments (they
are themselves characterized as the unique segments in each E1(Xy, Ly) along
which the Monge-Ampère energy is a�ne).

153



5.1.4 Relatively maximal metrics.

De�nition 5.1.4.1. Let π : X → Y be a holomorphic submersion with
compact Kähler �bres. Let L be a relatively ample line bundle on X. We
say that a metric φ on L is relatively maximal if it is maximal in the usual
sense of Sadullaev (e.g. [KliBook]) on the preimage of any relatively compact
open subset of Y . In other words, φ is relatively maximal if and only if, for
any relatively compact open subset U of Y , for any relatively compact open
subset V of π−1(U), and for any psh metric ψ on the restriction of L to
π−1(U) such that

lim supψ(z)− φ(z) ≤ 0

as z approaches the boundary of π−1(U), then

ψ(z) ≤ φ(z)

for all z in π−1(U).

Remark 5.1.4.2. One sees from this de�nition that a decreasing limit of
relatively maximal psh metric is also relatively maximal.

Remark 5.1.4.3. Let M be a compact Kähler manifold together with an
ample line bundle LM . Let [0,∞) 3 t 7→ φt be a psh ray of psh metrics on
LM . Seen as a S1-invariant psh metric on the product L×D∗, φ is relatively
maximal in our sense if and only if it is "geodesic" in the sense of [BBJ].

A nice way to generate relatively maximal metrics is via Perron-Bremmermann
envelopes, as we now prove. We extend our setting slightly, to allow for sin-
gular �bres, which will be useful later on. We state our result in maximal
generality, but the case to keep in mind is that of a holomorphic submersion
over the punctured disc with a singular �bre over zero.

Theorem 5.1.4.4. Let π : X → Y be a holomorphic projective surjective
morphism. Let Ω be a relatively compact, smooth open subset of Y , such that
π is a submersion above (hence near) ∂Ω. Let L be a π-ample line bundle
on X. Let φ be a continuous collection of �brewise psh metrics on π−1(∂Ω).
We then have that:

1. if there exists a continuous psh extension of φ to all of π−1(Ω), then
there exists a (unique) relatively maximal continuous psh extension of
φ to all of π−1(Ω);
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2. if Ω is de�ned as {ρ < 0}, where ρ is a smooth strictly psh function on
Y , such that ∇ρ 6= 0 whenever ρ = 0, then a continuous psh extension
as above exists.

Remark 5.1.4.5. An open subset that satis�es the second point above is
sometimes called a hyperconvex open subset. In particular, D and annuli
centered at zero are such open sets. The proof of the �rst point follows some
ideas dating back to the work of Bedford-Taylor ([BT]), see e.g. [BBGZ,
Proposition 6.3], [PS].

Proof of Theorem 5.1.4.4. The hypotheses in the Theorem give that π−1(Ω̄)
is a manifold with boundary, which we denote M := π−1(Ω̄), and whose
boundary is π−1(∂Ω), which we denote ∂M := π−1(Ω̄). We will �nally write
M̄ := π−1(Ω̄).

1. Existence of a continuous relatively maximal metric, assuming existence
of a subsolution.
We claim that the envelope

Pφ = sup ∗{ψ ∈ C0 ∩ PSH(L|M), ψ ≤ φ on L|∂M}

is our desired relatively maximal, continuous metric on L|M which coincides
with φ on L|∂M . By de�nition, Pφ is relatively maximal; furthermore, since
there exists a continuous subsolution, i.e. a candidate ψ to the envelope
which coincides with φ on L|∂M , Pφ also has the correct boundary values.
We are therefore left to show continuity.

We begin with a continuity estimate near the boundary. Having �xed a
reference smooth, strictly psh metric φref on L, and setting ω = ddcφref , we
can see any candidate ψ for the envelope Pφ as a continuous ω-psh function
g = ψ − φref . Fix such a g, and set

f0 = φ− (φref)|∂M .

Since ddg ≥ −ω, the Laplacian ∆ωg of g with respect to ω is bounded below
by −d−1. Let f be the (continuous) solution on M̄ to the Dirichlet problem

∆ωf + (d+ 1) = 0, f |∂M = f0.

We then have that ∆ω(g − f) ≥ 0, which implies by the maximum principle
that

sup
M

(g − f) = sup
∂M

(g − f),
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while this supremum is nonpositive since ψ = g + φref is a candidate for the
envelope Pφ. We then have that

g ≤ f

on all of M̄ , and this is true for any candidate ψ, so that

Pφ ≤ φref + f

on X̄.

We now look at continuity on M . Let φ̃ denote a continuous psh extension
of φ to L|M . We �x a very small ε > 0, and de�ne

U = {Pφ∗ < φ̃+ ε},

which is the complement of a small compact set containing ∂Ω. By regulariza-
tion (e.g. [BouL2, Theorem 3.8]), we can �nd a sequence ψk ∈ C0∩PSH(L|U)
which decreases to Pφ. Now, by Dini, using compactness, we have that U is
covered by �nitely many of the

Uk = {ψk < φ̃+ ε}

(since such inequality holds, for all z ∈ M , and for all large enough kz).
In particular, for large enough k, one has ψk < φ̃ + ε. We now de�ne
ψ̃k := max(ψk−ε, φ̃), which is de�ned on all ofM . For all k, ψ̃k is continuous,
as ψk is continuous away from the boundary and φ̃ is continuous everywhere
(in particular, near and up to the boundary). Furthermore, ψ̃k is equal to φ
on the boundary, so that

ψk − ε ≤ ψ̃k ≤ Pφ ≤ Pφ∗ ≤ ψk.

This implies that ψk converges uniformly to Pφ, i.e. Pφ is continuous on M .
Furthermore, since:

1. Pφ ≤ φref + f , as at the end of the �rst point of the proof;

2. φref + f converges continuously to φ near the boundary, and Pφ is
continuous on M ;

3. there exists a psh extension φ̃, ensuring that Pφ = φ on the boundary,
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then Pφ is continuous up to the boundary.

2. Construction of a subsolution under the hyperconvexity assumption.
The second point of the Theorem will follow from a more general principle:
consider the class C(L|∂M) consisting of continuous, �brewise psh metrics
on L|∂M admitting a continuous psh extension (hence a relatively maximal
continuous extension, by the �rst point) to all of L|M . Then, this class is
stable under uniform limits, which follows from seeing that the mapping
C(L|∂M) 3 φ 7→ Pφ from the �rst part of the proof is continuous under
uniform convergence.

To prove the second point, we therefore have to show that there exists a
sequence φk ∈ C(L|∂M) converging uniformly to our boundary data φ. We
proceed bu Bergman kernel approximation. Since L is π-ample, the sheaves
π∗(kL) are locally free for all k large enough, and correspond to the sec-
tions of a vector bundle Ek whose �bres are the H0(kLz =, z ∈ M . The
collection of L2-norms Nk(φ) associated to kφ then de�ne a continuous col-
lection of Hermitian metrics hk on Ek|∂Ω. We pick a sequence of smooth
families of Hermitian metrics (hk,j)j on π∗(kL) so that hk,j → hk uniformly
on π∗(kL)|∂Ω. The associated collection of metrics

φk,j,z = FSk(hk,j,z)

vary smoothly on L. Since they are �brewise smooth and strictly psh (both
of which are necessary conditions for the following argument), we may com-
pensate for the lack of plurisubharmonicity in the direction of z, by pulling
back a high enough multiple mk,jπ

∗ρ of the de�ning function ρ of Ω, which
as we recall vanishes on the boundary of Ω. We therefore have a continuous
psh extension

φk,j +mk,jπ
∗ρ

of (φk,j)|∂M . This implies that φk,j ∈ C(L|∂M); furthermore, (φk,j)|∂M →
φk uniformly, which implies that φk ∈ C(L|∂M). Now, by Bergman kernel
approximation, the φk themselves converge uniformly and increasingly to φ,
which implies φ ∈ C(L|∂M), concluding the proof.

Remark 5.1.4.6. By adapting classical arguments of pluripotential the-
ory, one shows that a continuous psh metric on L is relatively maximal i�
(ddcφ)d+1 = 0 on X, i� it coincides over each relative open subset with its
Perron-Bremmermann envelope as in the above Theorem.
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We now characterize relatively maximal metrics of relative �nite energy.

Proposition 5.1.4.7. Let φ be a metric in E1
X/Y (L). Assume that Y is

covered by relatively compact hyperconvex smooth open subsets. Then, φ is
relatively maximal if and only if 〈φd+1〉X/Y has zero curvature.

Proof. Assume φ to be relatively maximal. Since the Deligne pairing con-
struction is stable upon restriction to an open set, we will work over the
preimage U of some smooth hyperconvex relatively compact open set in Y .
If φ is continuous, we have just mentioned that (ddcφ)d+1 = 0 there, so that
by (5.2), it follows that ddcE(φ) ≡ 0. The non-continuous case follows from
regularization on U : pick a sequence of continuous metrics φk decreasing to
φ on U ; by Theorem 5.1.4.4, there exists a continuous, relatively maximal
psh metric Φk coinciding with φk on L|π−1(∂U). By maximality, the sequence
Φk necessarily converges to φ (since φ is assumed to be relatively maximal),
and continuity of Deligne pairings along decreasing nets ensures 〈φd+1〉X/Y
to have zero curvature.

Conversely, assume 〈φd+1〉X/Y to have zero curvature. In the continuous case,
using (5.2) again, it follows that (ddcφ)d+1 = 0, as it is a nonnegative mea-
sure. In the general case, we again proceed base-locally, and approximate
φ on the preimage of a relatively compact open subset U via a decreasing
sequence of continuous psh metrics k 7→ φk. Let Φk be for each k the unique
continuous and relatively maximal metric on U with prescribed boundary
condition φk|π−1(∂U), given by Theorem 5.1.4.4. Let Φ denote the limit of
the decreasing sequence k 7→ Φk, which is relatively maximal. By continuity
of the Deligne pairing along decreasing nets, this sequence also de�nes a de-
creasing sequence of zero curvature metrics 〈Φd+1

k 〉X/U which has to converge
to the metric

〈Φd+1〉X/U ,

which is a zero curvature metric φ̃ on U , coinciding on ∂U with 〈φd+1〉X/U .
Since 〈φd+1〉X/U also has zero curvature, we have to have

〈Φd+1〉X/U = 〈φd+1〉X/U
on all of U . Fix z in U , and note that this implies

E(Φz) = E(φz),

while by relative maximality of Φ, φz ≤ Φz, which implies Φz = φz, thus
concluding our proof.
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5.2 Finite-energy metrics over degenerations.

5.2.1 Analytic models and degenerations.

We now turn to our main setting. We will consider the base Y to be the
punctured unit disc, and we will assume that our family degenerates (mero-
morphically) as one approaches zero.

De�nition 5.2.1.1. Consider a holomorphic submersion π : X → D∗ with
compact Kähler �bres, and a relatively ample line bundle L on X. An
analytic model (or simply a model) of X is a normal complex analytic space
X , together with a �at, proper holomorphic morphism π : X → D, realizing
an isomorphism X ' π−1(D∗). An analytic model of (X,L) is the data of
an analytic model X on X, and an ample line bundle L over X such that
L restricted to π−1(D∗) is isomorphic to L. We de�ne a degeneration (or a
degeneration with meromorphic singularities) to be a morphism π : X → D∗

as above, such that there exists an analytic model of (X,L).

Example 5.2.1.2. This construction specializes to the following well-known
cases:

• if all the �bres of X are isomorphic to M , a model X can simply be
viewed as a compacti�cation of an isotrivial degeneration of M ;

• if the above condition holds, and furthermore the isomorphism is gener-
ated by a C∗-action, this is simply a (real) one-parameter degeneration
of (M,L|M), i.e. a test con�guration for (M,L|M).

The central �bre of a model of X is the space X0 = π−1({0}). If the degen-
eration X → D∗ is isotrivial, we say that M , the �bre over 1, is the generic
�bre of X.

5.2.2 Generalized slopes and Lelong numbers.

As we will be working with (generalized) subharmonic functions on the base
D∗, we will often have to work with some notions of Lelong numbers. We
review some (old and new) facts in this Section.

De�nition 5.2.2.1. We say that a subharmonic function f on D∗ has loga-
rithmic growth (near zero) if there exists a real number a such that f(z) +
a log |z| is bounded above near zero.
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In particular, a subharmonic function f with logarithmic growth can be
extended as a subharmonic function over the entire disc. In this case, one
can de�ne its generalized (in the sense that it is possibly signed) Lelong
number, as follows. Pick a number a as above. The function

g(t) := sup
|z|=e−t

(f(z) + a log |z|),

for t ∈ [0,∞), is then a convex function of t, and the rate of change

g(t)− g(0)

t

is thus an increasing nonnegative function of t, which has a �nite value as
t→∞. This corresponds to saying that the limit

lim
r→0

sup|z|=r f(z) + a log |z|
− log r

exists and is �nite.

De�nition 5.2.2.2. Given a subharmonic function f with logarithmic growth
on D∗, we de�ne its generalized slope (or generalized Lelong number at zero)
to be the value

f̂ := lim
r→0

sup|z|=r f(z) + a log |z|
− log r

+ a,

where a is a real such that f + a log |z| is bounded near zero. In particular,
f̂ is independent of the choice of such an a.

Example 5.2.2.3. In the case of an S1-invariant subharmonic function f ,
i.e. a convex function on [0,∞), this simply computes the slope at in�nity

lim
t→∞

f(t)

t
.

Remark 5.2.2.4. As a consequence of Harnack's inequality, f̂ may equiva-
lently be computed using the integrals

 
|z|=r

f(z) dz

in place of the suprema.
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The following estimate will be very useful later on.

Lemma 5.2.2.5. Let f a subharmonic function f with logarithmic growth
on D∗. Then, for all z, we have

f(z) ≤ log(1/|z|) · f̂ + c,

where c = sup|z|=1 f(z).

Proof. De�ne the function

g(t) := sup
|z|=e−t

(f(z) + a log |z|)

as before. Since the rate of change

g(t)− g(0)

t

is an increasing function of t, we have for all s ∈ [0,∞), all |z| = e−s and
since, having �xed our boundary data, v(0) = 0, we have

f(z) + a · log |z| − g(0)

− log |z|
≤ g(s)− g(0)

s
≤ lim

t→∞

g(t)

t
= f̂ − a.

Adding a then concludes the proof.

5.2.3 Plurisubharmonic metrics on degenerations.

Fix now a degeneration π : X → D∗, endowed with a relatively ample line
bundle L. We will take our interest to plurisubharmonic metrics on L, and
in particular their singularities. However, a general psh metric on a degen-
eration can behave very poorly near the singularity, even though we have
assumed existence of an analytic model of X. Thus, we need to enforce a
rather natural growth condition on such psh metrics, akin to that of linear
growth for geodesic rays.

De�nition 5.2.3.1. We say that a psh metric φ on L has logarithmic growth
if there exists a model (X ,L) of (X,L) such that φ extends as a psh metric
on L.
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We will write PSH(L) for the space of psh metrics of logarithmic growth
on L. If it comes to be necessary, we will rather write PSH(X,L) when
considering the space of (non-necessarily of logarithmic growth) psh metrics
on L. We will soon show that PSH(L) has many desirable properties. We
will also shortly explain our terminology. We begin with the following result:

Lemma 5.2.3.2. Given a psh metric φ on L, the following are equivalent:

(i) φ has logarithmic growth, i.e. there exists a model (X ,L) such that φ
extends to a psh metric on L;

(ii) for all models (X ,L) of (X,L), there exists a constant c = c(X ,L) such
that φ+ c · log |z| extends to a psh metric on L;

(iii) there exists a model (X ,L) and a smooth metric φref on L such that

ρ∗φ(z) ≤ φref(z) +O(log |z|)

as z → 0, where ρ denotes the isomorphism between X and X − X0;

(iv) for all models (X ,L) of (X,L) and all smooth metrics φref on L, (iv)
holds.

Proof. By classical results of pluripotential theory, (i)⇔(iii) and (ii)⇔(iv).
Since (iv)⇒(iii) is immediate, we only need to prove (iii)⇒(iv). Assume that

ρ∗φ(z) ≤ φL(z) +O(log |z|)

for a smooth reference metric φL on L. Pick another model (Y ,M) together
with a smooth metric φM. Note that the equation above holds if and only if
the same equation holds for the pullbacks of φL and ρ∗φ to a higher model.
Thus, we pick a model (Z,N ) dominating both via πX : Z → X , πY : Z → Y .
There exists a unique Cartier divisorD supported on the special �bre Z0 such
that

π∗XL+D = π∗YM,

and given a local equation fD for D, we have

π∗XφL ≤ π∗YφM − log |fD|+O(1) ≤ π∗YφM +O(log |z|).

Thus,
π∗Xρ

∗φ ≤ π∗XφL +O(log |z|) ≤ π∗YφM +O(log |z|),
as desired.
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Remark 5.2.3.3. The above result shows that one could equivalently de�ne
our growth condition using some �xed reference data (Xref ,Lref), using e.g.
point (ii). In the isotrivial case, there furthermore exists some very natural
reference data: the "trivial model" given by the product family of the generic
�bre with the whole disc.

Example 5.2.3.4. Let [0,∞) 3 t 7→ φt be a ray of psh metrics on an ample
line bundle L over a �xed variety X. It may be identi�ed as a psh metric Φ
over the trivial model (X×D∗, L×D∗), by setting Φz = φ− log |z|. In this case,
the logarithmic growth condition is merely the usual linear growth condition
on psh rays.

We then have as an immediate Corollary:

Corollary 5.2.3.5. The space PSH(L) is stable under limits of decreasing
nets, �nite maxima, and addition of constants. It is furthermore the small-
est such set containing all psh metrics on L which admit a locally bounded
extension to some model (X ,L) of (X,L).

Proof. All of those properties are seen to preserve characterization (iv) above,
having �xed some reference model. To show that it is the smallest set closed
under those operations, only the statement about decreasing nets could a
priori be delicate. Given a metric φ ∈ PSH(L), (i) shows that it extends as a
genuine metric on some model (X ,L), and Demailly's regularization Theorem
yields a decreasing sequence of smooth (in particular locally bounded) psh
metrics decreasing to the extension of φ, which shows in particular that φ
belongs to the closure of the set of locally bounded psh metrics on L, proving
our result.

5.2.4 The main setting, and some important examples.

We begin with some notation. Let π : X → D∗ be a degeneration together
with a relatively ample line bundle L. We now, and for the remainder of this
article, �x some reference boundary data φ∂, which is the restriction to the
boundary π−1(S1) of a smooth psh metric on L. This is a minor distinction
which will allow us to later obtain a genuine metric structure on a particular
subspace of PSH(L), rather than a pseudometric structure, and therefore we
will assume that a metric in PSH(L) has boundary data equal to φ∂. We will
de�ne

E1(L) = E1
X/D∗(L) ∩ PSH(L)
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to be the space of �brewise �nite-energy metrics in PSH(L). We also set

Ê1(L) = {φ ∈ E1(L), φ is relatively maximal}.

Example 5.2.4.1. Although those are seemingly restrictive conditions, they
are in fact general enough to encompass the study of maximal geodesic rays.
Let (X,L) be a product family (M×D∗, LM ×D∗). For a S1-invariant metric
φ on LM × D∗, seen as a ray [0,∞) 3 t 7→ φt,

1. being in PSH(L) corresponds to the usual linear growth condition;

2. being relatively maximal corresponds to being a geodesic ray in the
sense of [BBJ];

3. being in E1(L) corresponds to having �brewise �nite-energy and linear
growth;

4. therefore, belonging to Ê1(L) corresponds to being a �brewise �nite-
energy geodesic rays with linear growth emanating from a given point
- exactly the space of rays R1(L) considered in [DL20].

Example 5.2.4.2 (Relative dimension zero, part 1). Consider the case of
relative dimension zero with a trivial line bundle L over X ' D∗. Then,

1. PSH(L) corresponds to the set of subharmonic functions with logarith-
mic growth on D∗;

2. the class of relatively maximal metrics in PSH(L) corresponds to the
class of harmonic functions;

3. E1(L) corresponds to �nite-valued subharmonic functions with loga-
rithmic growth;

4. �nally, Ê1(L) corresponds to �nite-valued harmonic functions with log-
arithmic growth.

It well-known that any harmonic function on the punctured disc decomposes
as a sum of a multiple of log |z| and the real part of an analytic function.
This is where our general setting starts diverging from the better-behaved
S1-invariant. Indeed, by [BBJ, Proposition 4.1], for rays of metrics of �nite
energy, maximality implies linear growth. However, in our case, maximality
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plus �nite energy no longer implies logarithmic growth, since there exist har-
monic functions on the punctured disc that do not have logarithmic growth
at zero (e.g. the real part of z 7→ e1/z)!

Assuming logarithmic growth, we then have a full description of Ê1(L) in
relative dimension zero, since we then see that any (�nite-valued) harmonic
function with logarithmic growth has to be of the form c·log |z|+H(z), where
H(z) is the solution of the generalized Dirichlet problem over the whole disc
with the given boundary data. In particular, it is an a�ne space isomorphic
to R! This agrees with the radial case, where E1(L) is simply the set of a�ne
functions on [0,∞) emanating from the same point, which is isomorphic to
the set of possible slopes.

Example 5.2.4.3 (Relative dimension zero, part 2). We now consider what
will be a model case for many future considerations: we still work in relative
dimension zero over D∗, but we choose a nontrivial line bundle on D∗. The
existence of a model for (D∗, L) means that there is a relatively ample exten-
sion L → D. We can now pick a trivialization τ of L over D, which allows us
to identify a metric φ ∈ PSH(L) (extended to L via the logarithmic growth
condition!) with the function

u = − log |τ |φ

on D. By the discussion above, if ddcφ = 0, then u decomposes as

u(z) = c · log |z|+H(z),

where H is bounded on D. This decomposition (in particular, c and H)
depends on τ ; but the fact that φ can be decomposed in any trivialization in
such a way does not!

This is a nice model case for us, because the Deligne pairing construction (in
our setting of �brations over D∗) naturally gives line bundles over D∗, as we
see in action now.

Corollary 5.2.4.4. The relative maximality condition for metrics in E1(L)
can be pushed forward to the base via the Deligne pairing, i.e. we have a
well-de�ned map

Ê1(L)→ Ê1(〈Ld+1〉X/D∗).
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Furthermore, a metric φ ∈ E1(L) belongs to Ê1(L) if and only if, for any
model (X ,L) of (X,L) and any trivialization of the Deligne pairing 〈Ld+1〉X/D,
denoting u = − log |τ |〈φd+1〉X/D, one has

u(z) = c · log |z|+H(z),

where c is a real constant and H is a harmonic function on D depending only
on τ and the boundary data.

Proof. The map above is naturally given by

φ 7→ 〈φd+1〉X/D∗ ,

in which case both statements are corollaries of Proposition 5.1.4.7 and the
two examples above.

5.2.5 Metrization.

As an important, and somewhat surprising consequence of our previous re-
sults, we may de�ne a metric structure on the space Ê1(L). This generalizes
e.g. [DL20], in which the authors endow the space of maximal psh rays with
the distance

d̂1(φ0, φ1) = lim
t→∞

d1(φ0,t, φ1,t)

t
.

In the next Sections, we will show that this structure furthermore satis�es
some good properties, namely completeness and geodesicity.

Theorem 5.2.5.1. The space Ê1(L) can be endowed with a metric space
structure, de�ned by the generalized slope d̂1(φ0, φ1).

Naturally, this suggests that the d1-distance is subharmonic with logarithmic
growth along metrics in Ê1(L), a fact that we prove now.

Proposition 5.2.5.2. Let φ0, φ1 ∈ Ê1(L). Then, the map

z 7→ d1(φ0,z, φ1,z)

is subharmonic with logarithmic growth on D∗.
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Proof. By the formula for d1,

d1(φ0,z, φ1,z) = 〈φd+1
0,z 〉+ 〈φd+1

1,z 〉 − 2〈P (φ0,z, φ1,z)
d+1〉.

By Proposition 5.1.4.7, the �rst two metrics on the right-hand side have zero
curvature, therefore we are left to show that the metric 〈P (φ0, φ1)d+1〉X/D∗ is
superharmonic. We pick any zero curvature metric φref on D∗, and note that
〈P (φ0, φ1)d+1〉X/D∗ is superharmonic if and only if 〈P (φ0, φ1)d+1〉X/D∗−φref is
a superharmonic function. Fix a ∈ D∗ and let r > 0 be such that D(a, r) =
{|z − a| ≤ r} ⊂ D∗. Let ψ be the relatively maximal psh metric on D(a, r)
and with boundary data

φ(z) = P (φ0,z, φ1,z), ∀z ∈ S(a, r). (5.4)

Such a metric is given by Theorem 5.1.4.4. We now deduce the two following
facts:

(i) by maximality of ψ, if follows from Proposition 5.1.4.7 that

z 7→ 〈ψd+1〉X/D∗

has zero curvature;

(ii) since on the boundary S(a, r) we have ψ(z) ≤ φ0,z, φ1,z, and φ0, φ1 are
relatively maximal, we have

ψz ≤ φ0,z, φ1,z

for all z ∈ D(a, r), thus ψz ≤ P (φ0,z, φ1,z) and �nally

〈ψd+1
z 〉 ≤ 〈P (φ0,z, φ1,z)

d+1〉

by monotonicity of the Monge-Ampère energy.

Using (5.4), (i), and (ii) in order, we �nd:
 
S(a,r)

〈P (φ0,z, φ1,z)
d+1〉 − φref,z =

 
S(a,r)

〈ψd+1
z 〉 − φref,z

= 〈ψd+1
a 〉 − φref,a

≤ 〈P (φ0,a, φ1,a)
d+1〉 − φref,a.

167



As the inequality is true for all a, our metric 〈P (φ0, φ1)d+1〉X/D∗ is then
superharmonic.

We now show that there exists a real number a ∈ R such that

z 7→ d1(φ0,z, φ1,z) + a log |z|

is bounded above. By Lemma 5.2.3.2(iv), for any model (X ,L) of (X,L),
�xing a reference metric φref ∈ Ê1(L) which is locally bounded on L, one has
(up to adding large enough constants)

φ0 ≤ φref + c · log |z|

for some real constant c. In this case,

d1(φ0,z − c · log |z|, φref,z) = 〈(φ0,z − c · log |z|)d+1〉 − 〈φd+1
ref,z〉,

and the term on the right-hand side is a harmonic function with logarithmic
singularities at the origin, so that substracting constants the result also holds
for z 7→ d1(φ0,z, φref,z). Proceeding similarly for φ1, our result then follows
from the triangle inequality.

Finally, we note an immediate consequence of Lemma 5.2.2.5 together with
the previous Proposition 5.2.5.2.

Lemma 5.2.5.3. Let φ0, φ1 ∈ Ê1(L). Then, for all z on the base, we have

d1(φ0,z, φ1,z) ≤ d̂1(φ0, φ1) log(1/|z|).

Remark 5.2.5.4. Had we not �xed boundary data, we would have an ad-
ditional error term in the above expression, corresponding exactly to the
supremum of z 7→ d1(φ0,z, φ1,z) for z ∈ S1.

We are now equipped to endow the space Ê1(L) with a metric structure.

Proof of Theorem 5.2.5.1. That d̂1(φ, φ) = 0 and d̂1(φ0, φ1) = d̂1(φ1, φ0) are
immediate statements, and nonnegativity will follow from the triangle in-
equality and the former statement. Therefore, we must show that for any
other φ2 ∈ Ê1(L), we have

d̂1(φ0, φ1) ≤ d̂1(φ0, φ2) + d̂1(φ2, φ1).
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Let a01 be such that d1(φ0,z, φ1,z) + a01 log |z| is bounded above on the punc-
tured disc, and de�ne similarly a02, a21. We have by the triangle inequality
of the �brewise metric d1

d1(φ0,z, φ1,z) ≤ d1(φ0,z, φ2,z) + d1(φ2,z, φ1,z)

for all z in D∗, and in particular

d1(φ0,z, φ1,z)+(a02+a21) log |z| ≤ d1(φ0,z, φ2,z)+d1(φ2,z, φ1,z)+(a02+a21) log |z|.

Upon taking (negative) Lelong numbers and adding constants, we �nd

a02 + a21 − ν0(d1(φ0,z, φ1,z) + (a02 + a21) log |z|)
≤ a02 − ν0(d1(φ0,z, φ2,z) + a02 log |z|) + a21 − ν0(d1(φ2,z, φ1,z) + a21 log |z|).

Since
z 7→ d1(φ0,z, φ1,z) + (a02 + a21) log |z|

is bounded above, the previous equation is by the very de�nition of d1 equiv-
alent to

d̂1(φ0, φ1) ≤ d̂1(φ0, φ2) + d̂1(φ2, φ1),

as desired. Finally, assuming d̂1(φ0, φ1) = 0, Lemma 5.2.5.3 shows that we
must have φ0 = φ1.

5.2.6 Completeness.

We now prove completeness of our space.

Theorem 5.2.6.1. The metric space (Ê1(L), d̂1) is complete.

In order to prove this, discuss possible topologies for E1(L).

Remark 5.2.6.2 (Topologies on E1(L)). We have already considered the
topology of �brewise d1-convergence on E1(L). There is a yet �ner topology,
that of locally uniform �brewise d1-convergence, by which φk converges to φ
if, for all relatively compact open sets U in X, d1(φk,z, φz)→ 0 uniformly in
z on U . In between the two, there is the topology of "base-locally" uniform
�brewise d1-convergence, which is the same but over the π−1(U) with U rel-
atively compact open in D∗. By the previous Lemma, the latter is equivalent
to the topology induced by d̂1 on Ê1(L)!
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Proposition 5.2.6.3. Let φk be a sequence of metrics in Ê1(L) converging
to some metric φ on L for the topology of base-locally uniform �brewise d1

convergence. Then, φ belongs to Ê1(L).

Proof. Pick a sequence k 7→ φk ∈ Ê1(L) and a �xed metric φ in E1(L).
Assume that, for a relatively compact open U ⊂ D∗ we have

d1(φk,z, φz)→ 0

uniformly in z ∈ π−1(U). Since convergence in Monge-Ampère energy is
subordinate to d1-convergence we have that

〈φd+1
k,z 〉 → 〈φ

d+1
z 〉

again uniformly in z; by maximality, the metrics 〈φd+1
k 〉X/D∗ are zero curva-

ture, and an uniform limit of such is again zero curvature. As having zero
curvature is a local property and the π−1(U) cover X, we then have that
〈φd+1〉X/D∗ has zero curvature on all of X. By virtue of being in E1(L), this
implies φ to be relatively maximal by 5.1.4.7, as long as we can show that
the limit is psh. On π−1(U), there exists c > 0 independent of z ∈ U such
that ˆ

(φk,z − φz) dµz ≤ c · d1(φk,z, φz) ≤ c · c′

against a �xed smooth family of volume forms z 7→ µz, so that uniform
�brewise d1-convergence implies L1 convergence of φk to φ on π−1(U), which
establishes plurisubharmonicity of the limit there, hence on X.

We may now prove completeness.

Proof of Theorem 5.2.6.1. Consider a Cauchy sequence m 7→ φm ∈ Ê1(L).
For all ε and all large enough m, n,

d̂1(φm, φn) ≤ ε,

which by Lemma 5.2.5.3 implies the individual sequences m 7→ φm,z to be
d1-Cauchy. By completeness of the �brewise E1 spaces ([Dar19, Theorem
3.36]), those sequences d1-converge to a unique �nite-energy metric φ(z),
and in fact this convergence is seen to hold base-locally uniformly �brewise.
The mapping

z 7→ φ(z)

is therefore a metric in Ê1(L) by Proposition 5.2.6.3.
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5.2.7 Geodesics.

We now show that, much as in the absolute E1 setting, one can �nd geodesics
in Ê1(L).

Theorem 5.2.7.1. Given any φ0, φ1 ∈ Ê1(L), the psh geodesic segment
t 7→ φt joining them, given by Theorem 5.1.3.1, is d̂1-geodesic in the metric
sense, i.e.

d̂1(φt, φs) = |t− s|d̂1(φ0, φ1).

Furthermore, given any model (X ,L) of (X,L) and a trivialization τ of
〈Ld+1〉 over D, setting

ut := − log |τ |φt ,

the segment of generalized slopes

t 7→ ût

is a�ne on [0, 1]; and t 7→ φt is uniquely characterized by this property among
psh segments.

Proof of Theorem 5.2.7.1. Let φ0, φ1 ∈ Ê1(L). We consider as in Theorem
5.1.3.1 the family of �brewise maximal geodesics

t 7→ φt,z.

To show that it belongs to Ê1(L), we must make sure that it has logarithmic
growth and is relatively maximal. The former is due to Lemma 5.2.3.2(ii),
since for �xed x ∈ X, φt(x) ≤ (1− t)φ0(x) + tφ1(x) by convexity of maximal
segments, so that if there exist ai, i = 0, 1 such that φi+ai log |z| are bounded
above near the central �bre of some model, then so is φt + (1 − t)a0 + a1.
Regarding maximality, 〈φd+1

t 〉X/D∗ is a convex combination of zero curva-
ture metrics with logarithmic growth, hence φt is also relatively maximal by
Proposition 5.1.4.7.

That t 7→ φt is d̂1-geodesic is a consequence of the fact that, for all z, t 7→
φt,z is d1,z-geodesic. Finally, the statement regarding the Monge-Ampère
energy follows upon taking generalized slopes in the statement of Theorem
5.1.3.1.
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5.2.8 Extension of the distance to E1(L)

In this Section, we construct a "maximal envelope" map, which will allow us
to extend the d1-distance as a pseudodistance to all of E1(L).

Proposition 5.2.8.1. For all φ ∈ E1(L), there exists a unique smallest
relatively maximal metric P̂ (φ) ∈ Ê1(L) with φ ≤ P̂ (φ) and

d1(φz, P̂ (φ)z) = o (log |z|)

as z → 0. This de�nes a natural projection

P̂ : E1(L)→ Ê1(L).

Before proving this result, we note this immediate Corollary:

Corollary 5.2.8.2. The mapping

d̂1(φ0, φ1) = d̂1(P̂ (φ0), P̂ (φ1))

de�nes a pseudodistance on E1(L).

Proof of Proposition 5.2.8.1. Let φ ∈ E1(L) ∩ C0(L), and, for all r ∈ (0, 1),
let Ur denote the annulus {r < |z| < 1} ⊂ D∗, and Vr = π−1(Ur) ⊂ X. Let
φr be the relatively maximal metric on Vr, coinciding with φ on ∂Vr, given by
Theorem 5.1.4.4. Fixing z on the base, the sequence r 7→ φr,z is an increasing
sequence of psh metrics in E1(Lz). We claim that the limit family

z 7→
(

lim
r→0

∗φr,z

)
is the desired envelope P̂ (φ). Denote this limit φ̂ for the moment. Fix
some r. By construction, φ̂ restricted to Vr coincides everywhere with its
Perron-Bremmermann envelope; furthermore, it is locally bounded (since it
is approximable from below). By the discussion in Section 5.1.4, since this
holds for all r, φ̂ is relatively maximal. Furthermore, by construction again,
it satis�es φ ≤ φ̂ and is the smallest such relatively maximal metric. We
are therefore only left to prove that d1(φ̂z, φz) = O(log |z|) as z → 0. As in
Corollary 5.2.4.4, we pick a model (X ,L) of (X,L), and we extend 〈φd+1〉
to the trivializable line bundle 〈Ld+1〉. Picking a trivialization τ allows us
to identify the energies 〈φ̂d+1〉 and the 〈φd+1

r 〉 with functions u and ur on D
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and Ur respectively. By Proposition 5.1.4.7, those functions are harmonic,
and for all s ∈ (0, 1), the functions ur, r > s increase over Us to u, which
implies the convergence to be uniform (as an increasing sequence of harmonic
functions over a compact set). Now, by harmonicity, for r > s, the integrals 

|z|=r
us(z) dz

are a�ne functions of log r. Writing

v = − log |τ |〈φd+1〉,

we then have 
|z|=r

us(z) dz =
log r

log s

 
|z|=s

v(z) dz +

(
1− log r

log s

)
·
 
|z|=1

v(z) dz,

(recall how we have de�ned φs and us!). Taking the limit s → 0 using the
uniform convergence discussed above yields 

|z|=r
us(z) dz = −(log r) v̂ +

 
|z|=1

v(z) dz,

where v̂ denotes the generalized slope of the subharmonic function v. Taking
slopes in this equality, one then �nds

v̂ = û.

Now, since φ ≤ φ̂, we have

d1(φz, φ̂z) = u(z)− v(z),

whose slopes we have seen to coincide, proving our statement that d1(φ̂z, φz) =
O(log |z|). Therefore, φ̂ is our desired envelope P̂ (φ). Finally, if φ is not con-
tinuous, we extend it to some model (X ,L), and a decreasing approximation
by continuous metrics φi on L gives a sequence of relatively maximal met-
rics φ̂i decreasing to some relatively maximal metric φ̂ which has the desired
properties, as we show now: de�ne ui, uir and v

i as above for φi, and u, ur
and v for φ. By monotonicity of Deligne pairings along decreasing nets, we
have that ui → u, uir → ur and vi → v decreasingly; we then have for all
r > s ∈ (0, 1) and all positive integers i that 

|z|=r
uis(z) dz =

log r

log s

 
|z|=s

vi(z) dz +

(
1− log r

log s

)
·
 
|z|=1

vi(z) dz;
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furthermore, we may normalize all our sequences so that all the functions
involved are nonpositive, thereby allowing us to use monotone convergence
and �nd

 
|z|=r

us(z) dz =
log r

log s

 
|z|=s

v(z) dz +

(
1− log r

log s

)
·
 
|z|=1

v(z) dz,

so that we may proceed using the same argument as before to show that
d1(φ̂z, φz) = O(log |z|); that φ̂ is the smallest relatively maximal metric
bounded below by φ and satisfying this equality follows again by construc-
tion, since decreasing limits of relatively maximal metrics over annuli remain
relatively maximal.

5.3 The non-Archimedean limit.

We move away from relatively maximal and �nite-energy metrics for the
moment, and focus on the space PSH(L). The purpose of this Section is
to show that there is a natural map from this space to a certain space of
non-Archimedean metrics.

5.3.1 Degenerations as varieties over discretely valued
�elds.

Dating back to ideas of Berkovich ([Berk94], [Berk09]), objects such as de-
generations and analytic models thereof can be interpreted as varieties over
the �eld C((t)) (see also [Fav], [BJ17]). For clarity, we will from now on write
K = C((t)) and R = C[[t]].

Pick a degeneration π : X → D∗ and an analytic model π : X → D of X. As
X is projective, it can be embedded in some Pn × D, where it is presented
by a �nite number of homogeneous polynomials with coe�cients in the set
of holomorphic functions on D∗ that are meromorphic at zero. Since this
set of functions can be identi�ed with the �eld K of complex Laurent series,
one can then view X as a variety XK over the �eld K. Similarly, X can
be presented by �nitely many homogeneous polynomials with coe�cients in
O(D), i.e. holomorphic functions over the disc, so that it can be identi�ed
with a variety XR over R.
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Example 5.3.1.1. In the case of an isotrivial degeneration X ' M × D∗
for some complex projective manifold M , X can be identi�ed with the base
change of M to the �eld K. In particular, there exists a "trivial" algebraic
model, de�ned by taking the base change of M to R, which corresponds to
the product analytic family over D.

K is a (non-Archimedean) valued �eld, with valuation

ν0(Σait
i) = min{i, ai 6= 0}.

This also de�nes a valuation on the Noetherian ring R. From the general
work of Berkovich ([BerkBook]), one can associate to a scheme X over a
valued ring R, in a functorial way, its analyti�cation Xan with respect to the
given valuation on the base. The underlying points of this analyti�cation
roughly correspond to valuations on the function �eld K(X) extending the
base valuation on K, and the topology is that of pointwise convergence.

In our setting, the Berkovich analyti�cationXan
K ofXK contains an important

dense subset: the set of divisorial points Xdiv. It is described as follows. Let
X be an analytic model of X. By Noetherianity and normality, the �bre of
X over 0 is then a Cartier divisor which decomposes as the Weil divisor

X0 =
∑
i

aiEi,

with each Ei irreducible. Each component of such a decomposition de�nes a
valuation νEi on K(X) as follows: for all f ∈ K(X),

νEi(f) = ordEi(f)/ai.

All divisorial points of Xan
K are then obtained in this manner.

5.3.2 Relating non-Archimedean psh functions and mod-
els.

Let X be a degeneration with a line bundle L on X. Let (X ,L) be a model
of (X,L). Recall that to L one can associate a model metric φL on Lan

K ,
(as explained, for example, in detail in [BFJ16]). Such a metric is uniquely
characterized as follows: given an open set U ⊂ X and a nonvanishing section
of the restriction of L to U , then we require that |s|φL = 1 on (UK ∩XK)an.
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Fixing a psh model metric φL on Lan
K , one can identify psh metrics on Lan

K

with "L-psh" functions on Xan
K , via φ ↔ φ − φL. We de�ne more generally

the set of L-psh functions to be the reunions of all L-psh functions for all nef
models L of L.

Any vertical ideal sheaf a on a model X of X de�nes a function log |a| on X,
via

log |a|(x) = max{log |f(x)|},
where the f run over a set of local generators for a. (In particular, any
vertical Cartier divisor D on a model de�nes such a function.) We then have
the following crucial result:

Lemma 5.3.2.1 ([BFJ16]). Let (X ,L) be a model of (X,L). Let a be
a vertical ideal sheaf on X , such that L ⊗ a is globally generated. Then,
φL + log |a| is a psh metric on Lan

K .

5.3.3 The main result.

We are now equipped to describe the main construction of this Section. We
�x a metric φ ∈ PSH(L). Given any divisorial point νE associated to the
component E of a model X ofX, we know that φ+a log |z| extends to a metric
over E for some a ∈ R. Pick a psh metric φE with divisorial singularities of
type Ei on X , i.e. locally of the form

φE = log |fE|+O(1),

where fE is a local equation for E. We can then de�ne a generic (signed)
Lelong number

ϕNA(νE) = ordE(φ) := − sup{c ≥ 0, φ+a log |z| ≤ c ·φE +O(1) near E}+a.
(5.5)

By linearity, this is independent of the choice of such an a. Performing
this construction over all possible E captures the singularities of φ along all
possible models of X . Our main result for this Section is then the following:

Theorem 5.3.3.1. Let X be a degeneration together with a relatively ample
line bundle L. The Lelong numbers of a metric φ ∈ PSH(L) de�ne a function
on Xdiv, which admits a unique L-psh extension, giving a map

(·)NA : PSH(L)→ PSH(Lan
K ),

which is furthermore lower semicontinuous and order-preserving.
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5.3.4 Some preliminaries.

We now prove some auxiliary results that will be useful in the proof of The-
orem 5.3.3.1. We �rst show that multiplier ideals of psh metrics on L give
Lan

K -psh functions.

Lemma 5.3.4.1. Let φ be a metric in E1(L). Let (X ,L) be a model of
(X,L) such that φ extends as a psh metric on L. Then, up to restricting to
a slightly smaller disc, for all m, the multiplier ideal

am = J (mφ)

is vertical, and there exists an integer m0 (depending only on L and not on
m or φ) such that (m+m0)L ⊗ J (φ) is globally generated on X .

Proof. Since φ in particular has �brewise �nite energy, it has zero Lelong
numbers on all �bres. As a consequence, φ has zero Lelong numbers on
all of X − X0, as Lelong numbers cannot increase upon evaluating them on
a larger space. Skoda's integrability theorem ([Sko, Theorem 1], see also
[Dem12, Lemma 5.6(a)]) then yields local L1-integrability of e−φ, which in
turn implies local Lp-integrability of e−φ for all∞ > p ≥ 1, and in particular,
for all positive integers m, L1-integrability of e−mφ. By [Dem12, Lemma
5.6(a)] again, the multiplier ideals satisfy

am,x = OX ,x

for all m and for all x outside of the central �bre, i.e. am is cosupported on
the central �bre.

Now, the global generation statement, follows from a relative equivalent of
[Dem12, Proposition 6.27]. We can in fact argue just as in [BBJ, Lemma 5.6]:
we must prove that there existsm0 such that the sheaf (m+m0)L⊗J (φ) is π-
globally generated. By the relative Castelnuovo-Mumford criterion, having
picked a relatively very ample line bundle V on X and an m0 such that
m0 · L − KX − (d + 1)V is relatively ample (after possibly restricting to a
smaller disc), it is enough to show that for all j = 1, . . . , d,

Rjπ∗(((m+m0)L − jV )⊗ J (φ)) = 0

on the disc, which follows from Kodaira and Nadel vanishing.
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We thus obtain the following:

Corollary 5.3.4.2. For any metric φ ∈ PSH(L), and any model (X ,L) of
(X,L) such that φ extends as a psh metric on L, there exists an integer m0

such that the function

(m+m0)−1 log |mJ (φ)|

is L-psh for all positive integers m.

Proof. In the case where φ also has �brewise �nite energy, this follows from
the previous Lemma. In the general case, one can approximate φ on L by a
decreasing sequence of (e.g.) locally bounded metrics φk. Since the integer
m0 depends only on L, the sequence

k 7→ φ̃k := (m+m0)−1 log |mJ (φk)|

is then a sequence of L-psh functions. Since the sequence φk is decreasing, we
have for all k that J (φk+1) ⊆ J (φk), i.e. the sequence φ̃k is also decreasing,
which implies its limit (m+m0)−1 log |mJ (φ)| to be L-psh, as desired.

5.3.5 Proof of Theorem 5.3.3.1.

We may now prove Theorem 5.3.3.1.

Proof. We �x a metric φ ∈ PSH(L). We need to show that the function
de�ned on Xdiv by

φNA : νE 7→ ordE(φ),

where νE corresponds to a divisorial valuation and ordE is de�ned as a generic
Lelong number as in (5.5), admits a psh extension on Xan

K . Since a non-
Archimedean psh function is uniquely de�ned on the set of divisorial points,
it is then though to show that φNA can be approximated by a decreasing
sequence of psh model functions on Xan

K . Note that, by construction, the
map φ 7→ φNA is lsc and order preserving.

By Corollary 5.3.4.2, the metric

ψm = (m+m0)−1um,

where um is the model function log |J (mφ)|, is Lan
R -psh. Pick a divisorial

point νE ∈ Xdiv associated to a component in the central �bre of an analytic
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model (X ,L) of (X,L). Using a version of the estimate [BBJ, Lemma B.4]
(which is proven exactly as in the trivially valued case), one has

m · ϕNA(νE) ≤ um(νE) ≤ m · ϕNA(νE) + AX (νE),

where AX is the log discrepancy function as before. The sequence ψm is
therefore a sequence of Lan

R -psh functions converging pointwise on Xdiv to
ϕNA. To show that ϕNA is Lan

R -psh, it is then enough to prove that we can
have this sequence be decreasing. By subadditivity of multiplier ideals we
have

J (2mφ) ⊆ J (mφ)2,

thus
ψ2m ≤ 2ψm,

and as φm ≤ 0,

ψ2m ≤
2(m+m0)

2m+m0

ψm ≤ ψm.

Picking the subsequence i 7→ ψ2i therefore yields a decreasing subsequence
converging to ϕNA, as desired. We then set

φNA := ϕNA + φL,

which concludes our proof.

5.3.6 Locally bounded metrics in the non-Archimedean
limit.

We now begin studying the behaviour under the map (·)NA of the class of
metrics φ, such that there exists a model (X ,L) of (X,L) on which φ admits
a locally bounded extension.

Proposition 5.3.6.1. Let φ ∈ PSH(L). Then,

1. φ extends to a psh metric on a model (Y ,M) of (X,L) if and only if
φNA ≤ φM;

2. φ extends to a locally bounded psh metric on (Y ,M) if and only if
φNA = φM.
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Proof. Note that it is equivalent to show the following: given (X ,L) an
analytic model of (X,L) and ψ be a reference metric admitting a locally
bounded extension to L, (1) holds if and only if φNA − ψNA ≤ φM − φL, and
(2) if and only if we have equality. This will allow us to work at the level of
functions and relatively to another model, which is easier.

Assume �rst φ to extend to a psh metric onM. Let Z dominate both models
via πX : Z → X and πY : Z → Y , and we have

π∗YM = π∗XL+D

for a unique Cartier divisor D supported in the special �bre Z0. Since φ
extends to a psh metric on (Y ,M) if and only if it extends to a psh metric
on any model dominating (Y ,M), we may without loss of generality focus
on Z. Picking a local equation fD for the divisor D obtained as above, φ
extends to π∗YM if

φ− ψ ≤ − log |fD|+ C

near Z0. Taking generic Lelong numbers with respect to the underlying
divisor of a divisorial point ν gives

ν(φ)− ν(ψ) ≥ −ν(D),

i.e.
φNA(ν)− ψNA(ν) ≤ φM(x)− φL(x).

In the case where φ admits a locally bounded extension, then there is also a
lower bound, which shows by the same argument that φNA = φM − φL. The
converse is obtained by uniqueness of the Siu decomposition of φ on X .

5.4 Finite-energy spaces and the Monge-Ampère

extension property.

5.4.1 The Monge-Ampère energy in the non-Archimedean
limit.

In the trivially-valued setting, we have already seen that a metric in E1(L)
coincides with a �nite-energy psh geodesic ray t 7→ φt. Two natural "asymp-
totic" energies arise:
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1. the radial limit limt
E(φt)
t

;

2. the non-Archimedean energy of the non-Archimedean metric φNA as-
sociated to φ.

In [BBJ], it is established that if φ extends to a locally bounded metric on a
test con�guration, then those two quantities coincide. This is not the case in
general, however. In this Section, we generalize those results to our relatively
maximal psh metrics on degenerations. It will be clearer to express this using
the relative dimension zero case of the construction from the previous Section.

Remark 5.4.1.1 (Relative dimension zero and the non-Archimedean limit).
As mentioned in Example 5.2.4.3 and Corollary 5.2.4.4, given a model (X ,L)
of (X,L) and a metric φ ∈ Ê1(L), one can identify the Monge-Ampère energy
〈φd+1〉X/D∗ of φ with a function on the punctured disc, by picking a trivial-
ization τ of 〈Ld+1〉 and setting u = − log |τ |φ. The function u then has a
�nite generalized slope (or Lelong number) at zero, but this Lelong number
depends on the choice of a trivialization. A nice way of capturing all possible
such Lelong numbers is by looking directly at the metric (〈φd+1〉X/D∗)NA on

〈Ld+1
K 〉! The Lelong number of u speci�cally is then recovered as the dif-

ference of Deligne pairings (〈φd+1〉X/D∗)NA − 〈φd+1
L 〉, where φL is the model

metric associated to L on Lan
K .

Theorem 5.4.1.2. For all φ ∈ E1(L) admitting a locally bounded extension
to some model (X ,L), we have

(〈φd+1〉X/D∗)
NA = 〈(φNA)d+1〉,

as non-Archimedean metrics on the Deligne pairing 〈Lan〉 over Spec K.

Proof. Note that the metric 〈φd+1〉X/D∗ is subharmonic by (5.2), so that
the left-hand side is well-de�ned (this is the relative dimension zero case
of Example 5.2.4.3).

We pick a model (X ,L) such that φ extends to a locally bounded metric on
L. By Proposition 5.3.6.1, we necessarily have φNA = φL, the model metric
on Lan

K associated to L, so that we are left to show that, given a trivialization
τ of 〈Ld+1〉X/D and setting u(z) = − log |τ(z)|〈φd+1

z 〉, we have

û = 0
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(recall how we de�ned the model metric φL in Section 5.3.2). But φ is locally
bounded near the central �bre of L, so that u is locally bounded near zero,
which implies û = 0 as desired.

Remark 5.4.1.3. We will occasionally refer to a metric satisfying the state-
ment of Theorem 5.4.1.2 as satisfying the Monge-Ampère extension property.
We also remark that the proof of the Theorem works more generally for ar-
bitrary Deligne pairings(!): given d+ 1 pairs of relatively ample line bundles
Li on X and metrics φi ∈ E1(Li) admitting locally bounded extensions to
some model of Li, one has

(〈φ0, . . . , φd〉X/D∗)
NA = 〈φNA

0 , . . . , φNA
d 〉.

The fact that the slopes are well-de�ned follows as in the proof of the above
Theorem from the general property (5.2) of Deligne pairings! In Section
5.4.4, we will show how to extend this result to the class of metrics satisfying
the Monge-Ampère extension property.

5.4.2 Hybrid maximal metrics: existence and unique-
ness.

We now study hybrid maximal metrics. Such metrics can be described as
being relatively maximal, but with boundary values prescribed both at the
complex boundary ofX and at the "asymptotic" or non-Archimedean bound-
ary. We will then see that they correspond exactly to metrics satisfying the
Monge-Ampère extension property.

De�nition 5.4.2.1. Let φ ∈ Ê1(L). We say that φ is hybrid maximal if
for any ψ ∈ E1(L) such that ψNA ≤ φNA and lim sup(ψ − φ) ≤ 0 near the
boundary of X, we have ψ ≤ φ.

Remark 5.4.2.2. We show how to relate our terminology with that of [BBJ],
which deals with special cases of our objects:

• a geodesic ray in [BBJ] is a relatively maximal C∗-invariant (logarithmic
growth) psh metric on a line bundle over a test con�guration in our
article;

• a maximal geodesic ray in [BBJ] is a hybrid maximal C∗-invariant (log-
arithmic growth) psh metric on a line bundle over a test con�guration
in our article.
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The "hybrid" refers to (e.g.) the work of Boucksom-Jonsson, in which a
hybrid property is a property that passes well from the complex setting to
the non-Archimedean limit. Other possible denominations could be "Lelong-
maximal" or "maximal in the non-Archimedean limit", but both of those
seem to focus more on the limit behaviour while we require our metric to
also be maximal in the complex world.

Theorem 5.4.2.3. For any ΦNA ∈ E1(Lan), there exists a unique metric
φ ∈ Ê1(L) such that φNA = ΦNA.

Proof. The proof is in two parts. We begin with the assumption that the non-
Archimedean metric is a model metric, and construct the unique solution via
adapted envelope techniques (inspired by [Berm16, Proposition 2.7]). Then,
for the general case, we use properties of the Monge-Ampère energy.

First step: the model case. Assume thus ΦNA to be a model metric corre-
sponding to a model (X ,L) of (X,L). Denote by φ the "Perron-Bremmermann-
Lelong" envelope de�ned as the supremum of all metrics ψ ∈ E1(L) with

lim
z→ξ

ψ(z) ≤ φz

for all ξ ∈ ∂X, and
ψNA ≤ φNA.

We begin with a claim that φ so de�ned belongs to E1(L). Note that if
we can show that it is plurisubharmonic, then it necessarily has logarithmic
growth, as the supremum of a family of metrics with logarithmic growth,
and it is by de�nition relatively maximal. Furthermore, the �brewise �nite-
energy condition will also immediately follow, so that we need to focus on the
plurisubharmonicity. Let ψ be in the class of contributions to the supremum
above. The hypothesis that ψNA ≤ ΦNA implies via Proposition 5.3.6.1 that
ψ extends with at worst analytic singularities as a psh metric on L. We
therefore see φ to be the restriction of a metric φX de�ned as the supremum
of all metrics on L, with the same boundary conditions as above on ∂X ,
and extending with at worst analytic singularities over the central �bre of X .
That the envelope satis�es our claim is then a particular case of Theorem
5.1.4.4 (which allows singular �bres!).

Finally, the second case of Proposition 5.3.6.1 together with the non-Archimedean
maximality assumption ensure that it is hybrid maximal, provided we can
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show that for any model metric ΦNA there exists a metric ψNA ∈ E1(L) with
ψNA = ΦNA. But this also follows from the same Lemma, since one only has
to choose ψ to be a psh metric with a locally bounded extension to L. That
φ is the unique hybrid metric given our data follows again from the extremal
characterization.

Second step: the general case. The general case again proceeds by approxima-
tion: we pick a sequence of model metrics φNA

i decreasing to ΦNA, and their
associated hybrid maximal metrics φi in Ê1(L), which exist and are unique
by the �rst part of the proof. The φi then give a decreasing sequence of met-
rics by maximality. We write φ for their limit and φNA the non-Archimedean
metric it de�nes. Since the mappings φ 7→ φNA are order-preserving, we �nd

φNA ≤ φNA
k

for all k, i.e.
φNA ≤ ΦNA. (5.6)

Fix a model (X ,L) of (X,L), so that φ and the φk extend to L (with singu-
larities). Fix a trivialization τ of 〈Ld+1〉X/D, and set

E(φz) := − log |τ(z)|〈φd+1
z 〉,

E(φk,z) := − log |τ(z)|〈φd+1
k,z 〉

.

We will also denote as usual by ENA(φNA) the metric 〈(φNA)d+1〉. Now, by
Corollary 5.2.4.4, and Theorem 5.4.1.2, we have for all k

E(φk,z) = ck · log |z|+H(z), (5.7)

where H = H(φ∂) is some function bounded near zero and independent of
k. In fact, one can see that

ck = −(〈(φNA
k )d+1〉 − 〈φd+1

L 〉) = −(ENA(φNA
k )− ENA(φL)).

Since the (Archimedean and non-Archimedean) Monge-Ampère energies are
continuous along decreasing nets, we have

ENA(φNA
k )→ ENA(φNA)

while
E(φk,z)→ E(φ̃z)

184



for all z. Combining those with (5.7), one �nds

E(φz) = −(ENA(φNA
k )− ENA(φL)) · log |z|+H(z), (5.8)

which by Corollary 5.2.4.4 shows that φ is a relatively maximal metric. Fur-
thermore, we know that PSH(L) is closed under decreasing limits: φ thus
has logarithmic growth. To establish existence, i.e. to show that φ is our
desired solution, we now only have to show that φNA = ΦNA. Using [Reb20b,
Proposition 6.3.2], this is proven provided we can show that

ENA(φNA) = ENA(ΦNA) (5.9)

by (5.6). One inequality is immediate from the same equation (5.6) and
monotonicity of ENA:

ENA(φNA) ≤ ENA(ΦNA).

From (5.8) we have

Ê(φ) = ENA(ΦNA)− ENA(φL), (5.10)

so that we have the other inequality (hence (5.9)), provided we can show that

Ê(φ) ≤ ENA(φNA)− ENA(φL). (5.11)

This inequality follows from a similar argument. Let ψNA
k be a decreasing

sequence of model metrics approximating φNA. Let ψk denote their associated
hybrid maximal metric, and de�ne E(ψk) as before. Now, since for all k
φNA ≤ ψNA

k , by maximality, we have

φ ≤ ψk (5.12)

whence
E(φz) ≤ E(ψk,z). (5.13)

Taking negative Lelong numbers,

Ê(φ) ≤ Ê(ψk). (5.14)

By Theorem 5.4.1.2 and the arguments above, Ê(ψk) = ENA(ψNA
k )−ENA(φL)

which again upon taking the decreasing limit in the right-hand side (along
which ENA is continuous) establishes

Ê(φ) ≤ lim
k
ENA(ψNA

k ))− ENA(φL) = ENA(φNA)− ENA(φL) (5.15)

185



by de�nition of the ψNA
k . This establishes (5.11) as desired, hence existence of

a hybrid maximal metric with non-Archimedean metric equal to ΦNA. That
such a segment is unique is then a consequence of the extremal de�nition of
hybrid maximality.

Corollary 5.4.2.4. The space E1(L) is mapped by (·)NA to E1(Lan
K ); further-

more, for any φ ∈ E1(L), we have

(〈φd+1〉X/D∗)
NA ≤ 〈(φNA)d+1〉.

In other words, we do not have non-Archimedean extension of the Monge-
Ampère energy in E1(L), but simply an inequality.

Proof. We start by picking a metric φ ∈ E1(L), and we de�ne Φ to be the
hybrid maximal metric with ΦNA = φNA obtained from Theorem 5.4.2.3.
Then, since Φ is relatively maximal, φ ≤ Φ, so that by monotonicity of
φ 7→ φNA,

(〈φd+1〉X/D∗)
NA ≤ (〈Φd+1〉X/D∗)

NA

while (〈Φd+1〉X/D∗)NA = 〈(ΦNA)d+1〉 by hybrid maximality, proving our in-
equality. To prove the �rst statement, it is enough to notice that the logarith-
mic growth condition built into E1(L) forces (〈φd+1〉X/D∗)NA to be �nite.

5.4.3 The isometric embedding.

We denote by
Ê1

hyb(L)

the subspace of hybrid maximal metrics in Ê1(L). Our main Theorem is the
following:

Theorem 5.4.3.1. The inverse of the mapping (·) 7→ (·)NA given by Theo-
rem 5.4.2.3 is an isometric embedding of (E1(Lan), dNA

1 ) into (Ê1(L), d̂1) with
image Ê1

hyb(L). Furthermore, a psh segment in E1(Lan) is a psh geodesic if
and only if its image is a psh geodesic.

Remark 5.4.3.2. The �rst statement of the Theorem can be thought of
as saying that hybrid maximal metrics have the d1-extension property. The
whole of Theorem 5.4.3.1 essentially means that we realize the (non-Archimedean)
space E1(Lan) as a purely complex geometric object!
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Proof. We thus �rst show that our mapping preserves psh geodesic seg-
ments. Pick a psh geodesic segment φNA

t between two metrics φNA
0 and

φNA
1 in E1(Lan

K ), and consider for all t ∈ [0, 1] the hybrid maximal met-
ric φt with (φt)

NA = φNA
t . By Theorem 5.2.7.1, it is enough to show that

t 7→ (〈φd+1
t 〉X/D∗)NA is a�ne; by the Monge-Ampère energy extension prop-

erty, this is equivalent to asking that t 7→ 〈φNA
t 〉 is a�ne, which holds by

[Reb20b]. The reverse implication is proved in the same way.

We now prove the isometry statement. Pick φ0, φ1 in Ê1
hyb(L). We assume

both metrics to be continuous, and the general result will proceed as usual
from regularization. Using Theorem 5.4.2.3 together with the expressions of
the distances and additivity of Lelong numbers,

dNA
1 (φNA

0 , φNA
1 ) = 〈(φNA

0 )d+1〉+ 〈(φNA
1 )d+1〉 − 2〈(P (φNA

0 , φNA
1 )d+1〉,

d1(φ0,z, φ1,z) = 〈φd+1
0,z 〉+ 〈φd+1

1,z 〉 − 2〈P (φ0,z, φ1,z)
d+1〉,

we only have to show that

(−〈P (φ0, φ1)d+1〉X/D∗)
NA = −〈P (φNA

0 , φNA
1 )d+1〉.

Recall that we have seen z 7→ 〈P (φ0,z, φ1,z)
d+1〉 to be superharmonic, so that

the left-hand side is well-de�ned.

Set some r ∈ (0, 1). We consider the relatively maximal metric ψr on the
preimage Ur of the annulus {r ≤ z ≤ 1} with boundary data given by
z 7→ P (φ0,z, φ1,z) for z ∈ ∂Ur, which exists by Theorem 5.1.4.4. Having �xed
z ∈ X, the sequence r 7→ ψr,z, r ≤ |π(z)|, is decreasing as r decreases, and
therefore the limit limr→0 ψr =: ψ is still a relatively maximal metric. As we
have, for all |π(z)| = r,

〈ψd+1
r,z 〉 = 〈P (φ0,z, φ1,z)

d+1〉,

it follows that

−(〈ψd+1〉X/D∗)
NA = (−〈P (φ0, φ1)d+1〉X/D∗)

NA.

We must now prove that

(〈ψd+1〉X/D∗)
NA = 〈P (φNA

0 , φNA
1 )d+1〉.
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We �rst claim that ψ realizes the supremum

ψ = sup{ϕ ∈ PSH(L), ϕ ≤ φ0, φ1}.

Since ψ is itself such a metric, it is enough to show that for all candidates ϕ,
we have ϕ ≤ ψ. But for all z ∈ X, since ϕz ≤ φ0,z, φ1,z, we have

ϕz ≤ P (φ0,z, φ1,z)

hence
ϕz ≤ ψr,z

and �nally
ϕz ≤ lim

r
ψr,z = ψz.

We now conclude: by this extremal characterization of ψ, we have that
ϕNA ≤ ψNA for all ϕ ≤ φ0, φ1. In particular, since the construction is order-
preserving, the hybrid maximal metric Ψ with ΨNA = P (φNA

0 , φNA
1 ) satis�es

Ψ ≤ ψ, so that
P (φNA

0 , φNA
1 ) ≤ ψNA,

while on the other hand, ψ ≤ φ0, φ1, hence ψNA ≤ φNA
0 , φNA

1 and �nally

ψNA ≤ P (φNA
0 , φNA

1 ).

Remark 5.4.3.3. The proof of the above result in the case of geodesic rays,
which does not appear explicitly in the literature (but is based on some ideas
from [BDL]), was nicely explained to the author by Tamas Darvas.

Remark 5.4.3.4. In the above proof, we implicitly de�ned an envelope op-
erator sending two metrics φ0, φ1 in Ê1

hyb(L) to the largest metric P̂ (φ0, φ1)

in Ê1
hyb(L) bounded above by φ0 and φ1. In [Xia, Example 3.3], this construc-

tion appears already in the case of geodesic rays, and Xia uses this envelope
to de�ne alternative distance

d̂′1(φ0, φ1) := lim
t
t−1(E(φ0,t) + E(φ1,t)− 2E(P̂ (φ0, φ1)t),

which (a specialization of) our proof shows to coincide with the usual distance
d̂1. In fact, Xia de�nes this envelope more generally in [Xia, Example 3.2],
in the radial equivalent of the space Ê1(L). It is likely that this construction
generalizes to metrics in Ê1(L) in our setting, although this is outside the
scope of the present article.
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5.4.4 Non-Archimedean extension of generalized func-
tionals.

In Theorem 5.1.2.2, we have seen that the �brewise �nite energy condition
is the adequate condition for �niteness of �brewise Deligne pairings. Further
following the mantra that properties pertaining to the energy govern the same
properties for more general Deligne pairings, we show that non-Archimedean
extension of generalized energy functionals in the sense of Remark 5.4.1.3
holds for our class of hybrid maximal metrics, i.e. metrics satisfying the
Monge-Ampère extension property.

Proposition 5.4.4.1. Suppose given d + 1 relatively ample line bundles Li
on X. Then, for any (d+ 1)-uple of metrics φi ∈ Ê1

hyb(Li), we have

(〈φ0, . . . , φd〉X/D∗)
NA = 〈φNA

0 , . . . , φNA
d 〉.

Proof. We approximate each of the φNA
i by a decreasing sequence of model

metrics φNA
i,k , and denote by φi,k their associated hybrid maximal metrics. By

our previous results, φi,k decreases to φi by hybrid maximality. Since Deligne
pairings are decreasing along (mixed) decreasing limits, using the estimates
[BBJ, Lemma A.1, Lemma A.2], we �nd for all z in X

0 ≤ 〈φ0,k,z, . . . , φd,k,z〉 − 〈φ0,z, . . . , φd,z〉 ≤ C(z) ·max
i
d1(φi,k,z, φi,z),

where the slope of C(z), Ĉ, is a �nite real constant. Indeed, C(z) is a
maximum of a collection of functionals expressed as Deligne pairings, which
are all subharmonic along relatively maximal metrics. We take generalized
slopes in the above inequality to �nd

0 ≤ (〈φ0,k, . . . , φd,k〉X/D∗)
NA− (〈φ0, . . . , φd〉X/D∗)

NA ≤ Ĉ ·max
i
dNA

1 (φNA
i,k , φ

NA
i ),

where we have used the d1-extension property of hybrid maximal metrics.
Using Remark 5.4.1.3, we then have that

0 ≤ 〈φNA
0,k , . . . , φ

NA
d,k 〉 − (〈φ0, . . . , φd〉X/D∗)

NA ≤ Ĉ ·max
i
dNA

1 (φNA
i,k , φ

NA
i ),

and taking the limit in k in the above inequality �nally gives our result.

Example 5.4.4.2. Many functionals acting on PSH(L) satisfy the statement
of the above Proposition. Having �xed some reference metric φref ∈ Ê1

hyb(L),
some among the most important are:
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1. the I-functional, which appeared in the estimates mentioned in the
above proof, is de�ned as

I(φ) = 〈φ− φref , φ
d
ref〉X/D∗ − 〈φ− φref , φ

d〉X/D∗ ,

which has many important norm-like properties and is commonly used
to study properties of �nite-energy spaces ([BBEGZ], [BHJ16], see also
[BJ21] for the non-Archimedean trivially-valued case);

2. the J-functional, de�ned as

J(φ) = 〈φ, φdref〉X/D∗ − 〈φ
d+1
ref 〉X/D∗ − (d+ 1)−1(E(φ)− E(φref)),

which can be seen as a corrected relative Monge-Ampère energy which
is translation invariant;

3. the twisted energy functionals, de�ned as

Eψ(φ) = 〈ψ, φd〉X/D∗ ,

for ψ ∈ Ê1
hyb(L′), where L′ is another line bundle on X. A special

case of it appears in the expression of the Mabuchi K-energy, and the
study of its slopes in the trivially-valued case is essential to establish
the general (cscK) case of the Yau-Tian-Donaldson conjecture, as in
[Li].

5.4.5 Test con�gurations and the trivially valued case.

All of our previous results encapsulate the trivially valued case, as we explain
now. Let π : X → D∗ be now a polarized test con�guration, i.e. a degener-
ation with relatively ample line bundle L such that π and L are equivariant
under some C∗-action (forcing all �bre pairs (Xz, Lz) to be isomorphic). One
may then choose a reference continuous psh metric φref on the �bre at 1 and
require our psh metrics φ to satisfy φz = iz

∗φref for z ∈ S1, and with

iz : Xz → X1

the isomorphism as mentioned above. The authors in [BBJ] (e.g.) study
the space E1

0 (Xan
1 ) of �nite-energy metrics over the analyti�cation of X1 with

respect to the trivial absolute value on C. We denote by R1(L1) the space of
hybrid maximal �nite-energy rays in PSH(L1) emanating from φref (where,
as mentioned before, a hybrid maximal ray corresponds in the terminology
of [BBJ] to a maximal psh geodesic ray). We then claim the following:
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Proposition 5.4.5.1. There is a sequence of distance-preserving maps

E1
0 (Lan

1 ) ' R1(L1) ↪→ Ê1
hyb(L) ' E1(Lan),

where the �rst and last maps are bijective (i.e. isometries), while the middle
map is injective.

Proof. The case of the last map has been treated by Theorem 5.4.3.1. The
rest of the proof is merely a matter of correctly de�ning our maps.

For the �rst map, the bijection is given by [BBJ, Theorem 6.6]. The metriza-
tion of the space E1

0 (Lan
1 ) is described in a [BJ21], but proceeds much as the

metrization of E1(Lan) in [Reb20b], while we recall that we metrize the space
of maximal rays by

d̂1,0(φ, φ′) = lim
t
t−1d1(φt, φ

′
t)

and take equivalence classes to yield the space R1(L1). (We direct the reader
to e.g. [BDL]. Note that in the cited article, the authors consider the space
of all (non-necessarily hybrid) maximal psh rays.) Proving the distance-
preservingness of the isomorphism is then essentially a simpler version of
Theorem 5.4.3.1, which we leave to the interested reader.

We claim that the middle map, which we will denote ι0, can be represented
as follows: let φ : t 7→ φt be a hybrid maximal psh geodesic ray in X1. Let iz
be as before the isomorphism iz : Xz → X1, and de�ne ι0(φ) to be the metric

z 7→ iz
∗(φ− log |z|).

The distance-preservingness is immediate(!), so that we are left to check that
ι0(φ) is a hybrid maximal metric. By [BBJ, Corollary 6.7],

t 7→ E(φt)

is a�ne, which implies by invariance of the energy under polarized isomor-
phisms that

z 7→ ι0(φ)(z)

is harmonic on D∗, proving maximality by Proposition 5.1.4.7, and hybrid
maximality is given by construction.
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Remark 5.4.5.2. One also notices (by mimicking our proofs in the discretely
valued case) there to be under the above maps a correspondance

{non-Archimedean maximal psh segments in E1
0 (Lan

1 )}

'

{rays of complex geodesics between two rays in R1(L1)}

↪→

{discs of complex geodesics between two metrics in Ê1
hyb(L)}

'
{non-Archimedean maximal psh segments in E1(Lan)}.

We may state the most interesting part of this result as follows.

Proposition 5.4.5.3. Let t 7→ φ0,t, t 7→ φ1,t be maximal psh geodesic rays
in the sense of [BBJ]. Let, for all t,

[0, 1] 3 s 7→ φs,t

be the maximal psh segment joining φ0,t and φ1,t. Then, for all s ∈ [0, 1],
t 7→ φs,t is a maximal psh geodesic ray in the sense of [BBJ].

Furthermore, let for all s ∈ [0, 1], φNA
s be the non-Archimedean metric asso-

ciated to the psh geodesic ray s 7→ φs,t. Then,

s 7→ φNA
s

is the maximal non-Archimedean psh geodesic joining φNA
0 and φNA

1 in the
sense of [Reb20b].

5.4.6 Convexity of non-Archimedean functionals.

Via the isometry ι given by Theorem 5.4.3.1, it is now clear what we mean by
"a functional on the space of hybrid maximal metrics", since Ê1

hyb(L) inherits

a K-vector space structure by setting, for all φ, ψ ∈ Ê1(L), and λ ∈ K,

φ+ λ · ψ = ι−1(ι(φ) + λ · ι(ψ)).

(In particular, one can see multiplication by a scalar in K as a �brewise
scaling of the metrics, varying meromorphically.)
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De�nition 5.4.6.1. Let F̂ be a functional on Ê1
hyb(L) and FNA be a func-

tional on E1(Lan). We say that FNA is a non-Archimedean extension of F̂ if
the diagram

Ê1(L) E1(Lan)

R

ι

F̂ FNA

commutes.

Example 5.4.6.2. By construction, ENA is a non-Archimedean extension of
the "discal" energy Ê. Furthermore, all "generalized energy" functionals of
Proposition 5.4.4.1 and Example 5.4.4.2 admit non-Archimedean extensions.

By Theorem 5.4.3.1, we get "for free" a way to study convexity of non-
Archimedean functionals.

Heuristic 5.4.6.3. Let F be a functional that is convex along complex psh
geodesics, F̂ its "discal" version, and FNA a non-Archimedean extension of
F̂ . Then FNA is convex along maximal non-Archimedean psh geodesics in
E1(Lan).

Proof. Given a non-Archimedean maximal psh segment φNA
t joining φNA

0 and
φNA

1 ∈ E1(Lan), we can write using Theorem 5.4.3.1 φt := ι−1(φNA
t ) using the

maximal psh segments t 7→ φt,z joining the φ0,z and φ1,z. We then simply
write for all z

F (φt,z) ≤ (1 + t)F (φ0,z) + tF (φ1,z),

and take the limit to �nd

F̂ (φt) ≤ (1 + t)F̂ (φ0) + tF̂ (φ1),

which by the de�nition of a non-Archimedean extension together with ι(ι−1(φNA)) =
φNA) gives

FNA(φNA
t ) ≤ (1 + t)FNA(φNA

0 ) + tFNA(φNA
1 )

as desired.

Remark 5.4.6.4. Using Proposition 5.4.5.3, the same results also hold mu-
tatis mutandis in the trivially-valued case.
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Example 5.4.6.5. This allows us to obtain convexity of the (trivially-valued)
non-Archimedean K-energy modulo the entropy approximation conjecture,
as follows. Pick a compact Kähler manifold X1 together with an ample
line bundle L1, and consider the trivially-valued analyti�cation (Xan

1 , Lan
1 ) as

before. One then introduces the non-Archimedean entropy as

HNA(φNA) =

ˆ
X

AX MA(φNA),

where AX is the log-discrepancy function on Xan identi�ed with a space
of semivaluations ([BJ18a]), and φ ∈ E1

0 (Lan
1 ). The entropy approximation

conjecture states that, given φNA ∈ E1
0 (Lan

1 ), there exists a sequence φNA
k of

model metrics converging to φNA such that HNA(φNA
k )→ HNA(φ).

Now, Chi Li ([Li, Conjecture 1.6]) shows that, assuming this conjecture,
the entropy HNA is exactly the non-Archimedean (radial) extension of the
usual complex entropy functional. Adding the energy part that makes up
the Mabuchi K-energy, which is convex along complex geodesics, and using
Example 5.4.4.2, our previous result shows that the non-Archimedean K-
energy is convex along non-Archimedean geodesics if the conjecture holds.

As things currently stand, extension of the K-energy is only known for rays
that generate model metrics, via [BHJ16, Theorem 3.6]. However, the non-
Archimedean geodesics of [Reb20b] do not remain in the space of model met-
rics even if the endpoints are, much as geodesics between Kähler potentials
are merely C1,1̄.

Example 5.4.6.6. In [BLXZ], Blum-Liu-Xu-Zhuang prove, using algebraic
techniques, convexity of the non-Archimedean Ding energy (and other func-
tionals) along geodesics between test con�gurations ([BLXZ, Theorem 3.7]).
Our heuristic allows us to also recover this result: convexity of the complex
Ding energy is a result of Berndtsson ([Berndt15]) while the non-Archimedean
extension of the Ding energy follows from [BHJ16].

Remark 5.4.6.7. As a Corollary, existence and uniqueness of minimizers
for non-Archimedean energy functionals can also be detected strict convexity
results in the complex setting, but some form of uniform strict convexity (in
|z|) is required to ensure strict convexity of the limit.
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5.4.7 Kähler-Einstein metrics in families.

LetM be a complex projective manifold with ample canonical bundleKM . It
is a consequence of the by now classical Aubin-Yau Theorem that M carries
a Kähler-Einstein metric. If X is more generally a family of canonically po-
larized projective manifolds, the family z 7→ φz of �brewise Kähler-Einstein
metrics is known to have plurisubharmonic variation (from the work of e.g.
Schumacher [Sch12]) and to have logarithmic growth ([Sch08, Theorem 3]).
In particular, φ de�nes a metric in our class E1(KX). Interpreting the work
of Pille-Schneider through our lens, one can see [Pil-S, Theorem A] to essen-
tially imply that φNA corresponds to a model metric in H(Kan

X ) associated
to a distinguished model of (X,KX) (see e.g. [Tia93], [Song]).

An immediate question arises: how does the metric φ relate to our rel-
atively maximal metrics framework? In particular, how does φ relate to
the hybrid maximal metric Φ corresponding to φNA? Interestingly, φ is not
even relatively maximal when the Kodaira-Spencer class of the family X is
nontrivial, by [Sch12, Main Theorem], since φ will be strictly positive (in
particular, cannot satisfy MA(φ) = 0). As a consequence, we have that
ddcd1(φ,Φ) = ddc(E(Φ) − E(φ)) is given explicitly by the formula of Schu-
macher, using the pushforward formula for Deligne pairings.

Naturally, it would be interesting to know whether one could detect via non-
Archimedean tools the existence of a family of Kähler-Einstein metrics in
the class of a hybrid maximal metric. This seems a bit ambitious, since
one only captures the "asymptotic" behaviour of a family of metrics when
considering non-Archimedean data. A more realistic (and perhaps just as
interesting) problem would be solving the following hybrid "almost Kähler-
Einstein" problem: to �nd φ ∈ Ê1

hyb(KX), such that φNA = ψNA where ψNA

is an "almost Kähler-Einstein metric":

(ωz + i∂∂̄ψz)
d − ehωz+ψzωz

d →z→0 0.

The upshot is that this problem gives, intuitively, a purely non-Archimedean
criterion for the existence of a family of complex manifolds degenerating to
a Kähler-Einstein manifolds! (Of course, the same problem arises in the
(possibly twisted) Fano case.)

Finally, we brie�y mention an additional di�culty in the Calabi-Yau case. By
a counterexample of Cao-Guenancia-Paun, we know that a family φ = (φz)z
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of Kähler-Einstein metrics on a degeneration of Calabi-Yau manifolds does
not necessarily vary plurisubharmonically ([CGP19, Theorem 3.1]). One can
however take the plurisubharmonic envelope P (φ) of φ, and then the hybrid
maximal metric Φ with ΦNA = P (φ)NA. In [BJ17], Boucksom-Jonsson show
that the family of measures MA(φz) converge in a certain sense to the non-
Archimedean Monge-Ampère measure of some metric ψNA. We therefore
formulate the following result, which would connect our hybrid maximal set-
ting with degenerations of Kähler-Einstein metrics on Calabi-Yau manifolds:

Conjecture 5.4.7.1. ψNA = P (φ)NA = ΦNA.
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