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quelques mois plus tard. Je ne pense pas que j’aurais pu réussir à venir à bout de ces derniers
mois où nous nous levions à 7h47 tous les matins et où tu m’accompagnais à l’université que
ce soit pendant la semaine ou le week-end ou les jours fériés. C’était beaucoup plus facile de
mettre la tête dans la rédaction de ma thèse en me disant qu’à n’importe quel moment, la
porte du bureaux des doctorants pouvait s’ouvrir avec toi derrière, un coca ou des croissants et
chocolatines à la main pour me donner la force de continuer à travailler. Tes cadeaux surprises
et tes petits mots que je trouve souvent dans les poches de mon jean ou mon portefeuille
ou mes feuilles de calcul m’ont aidé à passer la plus belle année de ma vie alors que ça aurait
probablement été une année d’épuisement physique et moral autrement. Merci aussi de m’avoir
écouté plusieurs fois faire mon exposé de soutenance en notant à la seconde près le temps passé
sur chaque diapositive et d’avoir noté mon étang. Cet exposé est le plus stressant que j’aurai à
faire dans ma vie et il le sera beaucoup moins grâce à toi. Je t’aime et je te dédie cette thèse.
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0.1 Résumé en français de la thèse

Nous déterminons dans cette thèse l’image des groupes de Artin associés à des groupes de
Coxeter irréductibles dans leur algèbre de Iwahori-Hecke finie associée. Cela a été fait en type
A dans [11] et [12]. Dans le cas générique, la clôture de Zariski de l’image a été déterminée
dans tous les cas [34]. L’approximation forte suggère que les résultats devraient être similaire
dans le cas fini. Il est néanmoins impossible d’utiliser l’approximation forte sans utiliser de
lourdes hypothèses et limiter l’étendue des résultats. Nous démontrons dans cette thèse que
les résultats sont similaires mais que de nouveaux phénomènes interviennent de par la com-
plexification des extensions de corps considérées. Les arguments principaux proviennent de la
théorie des groupes finis. Nous utiliserons notamment un Théorème de Guralnick et Saxl [23]
qui utilise la classification des groups finis simples pour les représentations de hautes dimen-
sions. Ce théorème donne des conditions pour que des sous-groupes de groupes linéaires soient
des groupes classiques dans une représentation naturelle. En petite dimension, nous utiliserons
la classification des sous-groupes maximaux des groupes classiques de [9] pour les cas les plus
compliqués.

Les résultats que nous démontrons peuvent avoir diverses applications. Par exemple, des
groupes classiques finis ou des produits directs de groupes classiques finis apparaissent comme
des quotients finis des groupes de Artin. Ces derniers sont des groupes fondamentaux de variétés
algébriques donc cela définit des recouvrements finis de ces variétés qui peuvent être intéressant.
Comme ces variétés sont définies sur le corps des rationnels Q, cela peut avoir des applications
au problème de Galois inverse (voir par exemple [43] pour un exemple en type An).

Ces résultats sont aussi intéressants du point de vue des groupes finis classiques. En effet,
nous obtenons des générateurs explicites de ces groupes vérifiant les relations de tresses. Cela
entraine des constructions intéressantes de ces groupes et de certains de leurs sous-groupes
en s’intéressant à la restriction à des sous-groupes de Artin paraboliques. Nous obtenons par
exemple une desciption intéressante du group Spin+

8 (q) à l’aide des deux représentations de
dimension 8 en type H4 (voir section 8.4).

Dans cette thèse, nous donnerons tout d’abord dans la section 2.1 une introduction aux
groupes de Coxeter, aux groupes de Artin et aux algèbres de Iwahori-Hecke. Nous rappelerons
la classification des groupes de Coxeter finis. Il y a quatre familles infinies An, Bn, Dn et I2(n).
Les groupes restant sont les groupes de Coxeter finis exceptionnels et sont noté E6, E7, E8, F4,
H3 et H4. Ils correspondent tous à des objets géométriques et ont été classifiés en utilisant des
argument géométriques par Coxeter en 1932 [15]. Nous expliquerons ensuite comment définir
les algèbres de Iwahori-Hecke dans un cadre général avant de donner des définitions plus précises
sur les corps finis dans le chapitre correspondant à chaque type. Nous donnerons à la fin de
cette section une idée des modèles pour les représentations irréductibles de ces algèbres.

Nous donnerons ensuite dans la section 2.2 des rappels sur les algèbres symétriques et les
élements de Schur. Les éléments de Schur sont des outils qui permettent d’avoir un contrôle sur
la semi-simplicité des algèbres symétriques. Les algèbres de Hecke sont des algèbres symétriques
et leurs éléments de Schur dans le cas générique ont été déterminés dans tous les cas dans [20].
Nous démontrerons après ces rappels une version du Théorème de déformation de Tits. Nous
utiliserons cette version du théorème de Tits dans les différents chapitres pour montrer que
sous les bonnes conditions sur les paramètres et la caractéristique du corps fini, nous pouvons
spécialiser les modèles matriciels issus du cas générique aux corps finis Fq. Les algèbres de
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Iwahori-Hecke seront alors semi-simples déployées et serons donc isomorphes à ⊕
ρ irr

Mnρ(q).

Nous pourrons alors considérer le groupe multiplicatif AWn =< S1, S2, . . . , Sn > comme sous-
groupe des éléments inversibles de l’algèbre < S1, S2, . . . , Sn >. Ce groupe sera donc un sous-
groupes du produit ∏

ρ irr
GLnρ(q). Nous déterminerons à quoi ce groupe est isomorphe dans les

différents types.
Dans la section 2.3, nous rappelons le théorème de Aschbacher [4] sur les sous-groupes

maximaux des groupes classiques finis. Il définit dans ce théorème 8 classes de sous-groupes
géométriques noté Ci. Nous rappelons dans cette section une description rapide de ces classes.
Nous donnerons ensuite des théorèmes qui permettent d’identifier les groupes classiques finis
sous certaines conditions. Nous utiliserons ces théorèmes afin de déterminer l’image du groupe
AWn dans les diverses représentations irréductibles des algèbres de Hecke sur les corps finis où
AWn est le groupe dérivé de AWn .

Dans le chapitre 3, nous déterminons l’image du groupe ABn dans son algèbre de Iwahori-
Hecke associée. Nous définissons d’abord l’algèbre de Iwahori-Hecke finie sur le corps Fp(α, β).
Les représentations irréductibles en type Bn sont indexées par des doubles-partitions de n.
Les paramètres α et β correspondent aux déformations de la relation d’ordre 2 des groupes
de Coxeter dans les algèbres de Iwahori-Hecke finies. Il y a deux paramètres en type Bn car
les générateurs ne sont pas tous conjugués. Nous devons alors considérer l’extension de corps
Fp(α, β) au-dessus de Fp(α + α−1, β + β−1). Les doubles-partitions avec une composante vide
nous donne les mémes résultats qu’en type An. Ces résultats dépendent de l’extension de corps
Fp(α) au-dessus de Fp(α+α−1). Nous devrons alors distinguer les différents cas possibles pour
ces extensions de corps. Cela donne 6 possibilités et les résultats pour l’image de ABn sont
alors différents. La preuve est dans tous les cas basée sur une récurrence où nous déterminons
l’image pour n ≤ 5 de diverses manières en regardant les représentations irréductibles une à une.
Nous déterminons aussi les différentes factorisations (Proposition 3.2.4) entre les représentations
suivant les doubles-partitions qui les indexent. Ces factorisations dépendent des extensions de
corps considérées et permettent de deviner quelle sera l’image de ABn . Nous montrons ensuite
par récurrence que le résultat annoncé est bien correct. Nous démontrons que les hypothèses
du Théorème 2.3.2 sont vérifiées par ρ(ABn) pour chaque représentation irréductible ρ. Nous
donnons ci-dessous le résultat pour ce type dans le cas le plus simple et un des cas les plus
compliqués.

Notons A1,n = {(λ1, ∅), λ1 ` n}, A2,n = {(∅, λ2), λ2 ` n}, An = A1,n ∪A2,n. Aεn = {(λ1, ∅) ∈
A1,n, λ1 pas une équerre}, εn = {λ `` n, λ /∈ An, λ pas une équerre},Fq̃ = Fp(α).

Théorème 1. Si Fq = Fp(α, β) = Fp(α + α−1, β + β−1) et Fp(α) = Fp(α + α−1), alors le
morphisme : ABn → H×Bn,α,β '

∏
λ``n

GL(λ) se factorise à travers le morphisme surjectif

Φ1,n : ABn → SLn−1(q̃)×
∏

(λ1,∅)∈Aεn,λ1<λ′1

SLnλ(q̃)×
∏

(λ1,∅)∈Aεn,λ1=λ′1

OSP (λ)′×

SLn(q)2 ×
∏

λ∈εn,λ<λ′
SLnλ(q)×

∏
λ∈εn,λ=λ′

OSP (λ)′.

Théorème 2. Si Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α + α−1, β + β−1) et
Fp(α) = Fp(α + α−1), alors le morphisme ABn → H×Bn,α,β '

∏
λ``n

GL(λ) se factorise à travers
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le morphisme surjectif

Φ6,n : ABn → SLn−1(q̃)×
∏

(λ1,∅)∈Aεn,λ1<λ′1

SLnλ(q̃)×
∏

(λ1,∅)∈Aεn,λ1=λ′1

OSP (λ)′×

SLn(q)×
∏

λ∈εn,λ<λ′,λ<(λ′1,λ′2),λ 6=(λ2,λ1)
SLnλ(q)×

∏
λ∈εn,λ<λ′,λ=(λ2,λ1)

SLnλ(q 1
2 )×

∏
λ∈εn,λ<λ′,λ=(λ′1,λ′2)

SUnλ(q 1
2 )×

∏
λ∈εn,λ=λ′,λ<(λ′1,λ′2)

OSP (λ)′ ×
∏

λ∈εn,λ=λ′,λ=(λ′1,λ′2)
ÕSP (λ)′.

Dans le chapitre 4, nous déterminons l’image du groupe ADn dans son algèbre de Iwahori-
Hecke associée. Ici, l’algèbre est définie sur le corps Fp(α) où α correspond au paramètre de
déformation de la relation d’ordre 2. Il n’y a qu’un seul paramètre car tous les générateurs
sont conjugués. Cela rend les extensions de corps plus simples car il suffit de considérer Fp(α)
au-dessus de Fp(α). Il faut utiliser la Proposition 2.2.4 pour montrer que la spécialisation de
cette algèbre est semi-simple déployée dans le Théorème 4.1.1.

Les représentations sont encore indexées par des doubles-partitions de n. Il y a dans ce
cas-là un isomorphisme naturel entre la représentation indexée par la double-partition (λ1, λ2
et la représentation indexée par la représentation indexée par la double-partition (λ2, λ1) car
l’action sur le double-tableau (T1,T2) correspond à l’action sur le double-tableau (T2,T1).
Les représentations indexées par des doubles-partitions de type (λ1, λ1) ne sont alors plus
irréductibles, elles se scindent en deux représentations irréductibles de même dimension que
l’on note (λ1, λ1,+) et (λ1, λ1,−). La règle de branchement est ainsi plus complexe et est
donnée ci-dessous.

Lemme 1. Soit n ≥ 5 et (λ, µ)  n, λ > µ. On a alors :

1. Si nλ > nµ + 1, alors Vλ,µ|HDn−1,α
= ⊕

(λ̃,µ̃)⊂(λ,µ)
Vλ̃,µ̃.

2. Si nλ = nµ + 1 et µ 6⊂ λ, alors

Vλ,µ|HDn−1,α
= (

⊕
µ̃⊂µ

Vλ,µ̃)⊕ (
⊕
λ̃⊂λ
λ̃>µ

Vλ̃,µ)⊕ (
⊕
λ̃⊂λ
λ̃<µ

Vµ,λ̃).

3. Si nλ = nµ + 1 et µ ⊂ λ, alors

Vλ,µ|HDn−1,α
= (

⊕
µ̃⊂µ

Vλ,µ̃)⊕ (
⊕
λ̃⊂λ
λ̃>µ

Vλ̃,µ)⊕ (
⊕
λ̃⊂λ
λ̃<µ

Vµ,λ̃)⊕ Vµ,µ,+ ⊕ Vµ,µ,−.

4. Si nλ = nµ et λ > µ, alors Vλ,µ|HDn−1,α
= ( ⊕̃

µ⊂µ
Vλ,µ̃)⊕ ( ⊕̃

λ⊂λ
Vµ,λ̃).

5. Si λ = µ, alors Vλ,λ,+|HDn−1,α
= Vλ,λ,−|HDn−1,α

= ⊕̃
µ⊂µ

Vλ,µ̃.
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Cette règle de branchement permet de faire un raisonnement par récurrence comme dans
le chapitre 3. Il faut alors traiter déterminer l’image de ADn dans l’algèbre de Iwahori-Hecke
associée. On utilise pour cela les résultats de [12] et les classifications des sous-groupes maxi-
maux de certains groupes classiques sur des corps finis. La règle de branchement et le lemme
de Goursat permettent d’obtenir le résultat suivant.

On écrit A1,n = {(λ1, ∅), λ1 ` n}, A2,n = {(∅, λ2), λ2 ` n}, An = A1,n ∪ A2,n et
εn = {λ  n, λ not a hook}

Théorème 3. Si Fq = Fp(α) = Fp(α + α−1) et n est impair, alors le morphisme de ADn dans
H×Dn,α '

∏
λ``n
λ1>λ2

GLnλ(q) se factorise à travers le morphisme surjectif

Φ1′,n : ADn → SLn−1(q)× SLn(q)×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SLnλ(q)×
∏

λ∈εn,λ=ϕ(λ)
nλ>nµ

OSP (λ)′.

Si Fq = Fp(α) = Fp(α + α−1) et n ≡ 0 (mod 4), alors le morphisme de ADn dans H×Dn,α '∏
λ``n
λ1>λ2

GLnλ(Fq)×
∏

λ=(λ1,λ1)`n
GLnλ,+(q)×GLnλ,−(q) se factorise à travers le morphisme surjectif

Φ1′,n : ADn → SLn−1(q)× SLn(q)×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SLnλ(q)×
∏

λ∈εn,λ=ϕ(λ)
λ1>λ2

OSP (λ)′×

∏
λ=(λ1,λ1)∈εn

λ>ϕ(λ)

SLnλ
2

(q)2 ×
∏

λ=(λ1,λ1)∈εn
λ=ϕ(λ)

OSP (λ,+)′2.

Si Fq = Fp(α) = Fp(α + α−1) et n ≡ 2 (mod 4) alors le morphisme de ADn dans H×Dn,α '∏
λ``n
λ1>λ2

GLnλ(Fq)×
∏

λ=(λ1,λ1)`n
GLnλ,+(q)×GLnλ,−(q) se factorise à travers le morphisme surjectif

Φ1′,n : ADn → SLn−1(q)× SLn(q)×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SLnλ(q)×
∏

λ∈εn,λ=ϕ(λ)
λ1>λ2

OSP (λ)′×

∏
λ=(λ1,λ1)∈εn

λ>ϕ(λ)

SLnλ
2

(q)2 ×
∏

λ=(λ1,λ1)∈εn
λ=ϕ(λ)

SLnλ
2

(q).

Dans tout ce qui précéde, OSP (λ) désigne le groupe des isométries de la forme bilinéaire définie
en Proposition 4.1.3.

Le résultat correspondant dans le cas Fq = Fp(α) 6= Fp(α + α−1) est similaire. Les groupes
spéciaux linéaires sont alors remplacés par des groupes unitaires et les groupes symplectiques
et orthogonaux sont définis sur des corps plus petits. Le résultat est donné dans le théorème
4.2.3. Cela conclut l’étude pour les cas classiques.

La seule famille infinie restante et la famille I2(m),m ≥ 5. Dans le cas m impair, les deux
générateurs du groupe de Coxeter sont conjugués. Dans le cas m pair, ils ne le sont et on a donc
deux paramètres pour l’algèbre de Iwahori-Hecke. On sépare donc l’étude dans le chapitre 5 en
deux sections suivant la parité de m. Dans les deux cas, les représentations irréductibles sont de
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dimension 1 ou 2. Nous déterminons dans les théorèmes 5.1.2 et 5.2.2 alors l’image de ρ(AI2(m)
pour les représentations irréductibles de dimension 2 en utilisant le Théorème de Dickson (voir
[27] Théorème 8.27) qui classifie les sous-groupes de SL2(q). La difficulté principale pour ces
types provient des différentes factorisations possibles et de l’étude des extensions de corps
lorsque m est pair. Les différentes extensions de corps sont décrites dans les Figures 5.1 à 5.7.
Pour étudier les factorisations possibles, il faut introduire une relation d’équivalence sur les
entiers. Elle est donnée dans les lemmes suivants qui dépendent de la parité de m.

Lemme 2. Supposons m impair et ξj = θj + θ−j où θ est une racine primitive m-ième de
l’unité dans Fp. Soit j, l ∈ [[1, m−1

2 ]]2. Il existe un automorphisme Ψl,j de Fqj = Fp(α, ξj + ξ−j)
qui vérifie Ψl,j(α+α−1) = α+α−1 et Ψl,j(ξj + ξ−j) = ξl + ξ−l si et seulement si il existe r ∈ N
tel que jpr ≡ l (mod m) ou jpr ≡ −l (mod m) et (α + α−1)pr = α + α−1.

On dit que j ∼ l si une de ces conditions est vérifiée. Cela définit une relation d’équivalence
et lorsque j ∼ l, on a ρl|AI2(m) = Ψl,j ◦ ρj|AI2(m).

Lemme 3. Supposons m pair et ξj = θj + θ−j où θ est une racine primitive m-ième de l’unité
dans Fp. On dit que j ∼ l si Fp(α + α−1, β + β−1, ξj) ' Fp(α + α−1, β + β−1, ξj) et il existe
Φj,l ∈ Aut(Fqj) tel que Φj,l(α+ α−1) = α+ α−1), Φj,l(β + β−1) = β + β−1 et Φj,l(ξj) = ξl. Cela
définit une relation d’équivalence et si j ∼ l alors Φj,l ◦ ρj|AI2(m) ' ρl|AI2(m).

On a alors les théorèmes suivants

Théorème 4. Supposons m impair et que α vérifie les conditions données au début de la section
5.1. Pour j ∈ [[1, m−1

2 ]], on pose Gj = SL2(qj) si Fqj = Fp(α, θj + θ−j) = Fp(α + α−1, θj + θ−j)
et Gj ' SU2(q

1
2
j ) si Fqj = Fp(α, θj + θ−j) 6= Fp(α + α−1, θj + θ−j).

On a alors que le morphisme de AI2(m) dans H×I2(m),α ' GL1(qj)2 × ∏
j∈[[1,m−1

2 ]]
GL2(qj) se

factorise à travers le morphisme surjectif

Φ : AI2(m) →
∏

j∈[[1,m−1
2 ]]/∼

Gj.

Théorème 5. Supposons m pair et que α et β vérifient les conditions données au début de la
section 5.2. Pour j ∈ [[1, m−2

2 ]], on pose Gj = ρj([< Tt, Ts >,< Tt, Ts >]) .
On alors que le morphisme de AI2(m) dans H×I2(m),q ' GL1(qj)2× ∏

j∈[[1,m−1
2 ]]
GL2(qj) se factorise

par le morphisme surjectif
Φ : AI2(m) →

∏
j∈[[1,m−2

2 ]]/∼

Gj.

Cela conclut l’étude pour les familles infinies de groupes de Coxeter finis irréductibles. Il
reste ensuite à traiter les groupes de Coxeter exceptionnels. C’est à dire les algèbres de Hecke
associées aux groupes de Coxeter de type E6, E7, E8, H3, H4 et F4. Les représentations pour ces
algèbres de Hecke sont données par des W -graphes. Nous décrivons ces objets dans le chapitre
6. La définition est la suivante. Soit W un

Définition 1. Soit W un groupe de Coxeter, K ′ son corps de définition, H son algèbre de
Iwahori-Hecke de paramètres (αs)s∈S et K = K ′((αs)s∈S). Pour X un ensemble, on note
D(X) = {(x, x), x ∈ X} sa diagonale. Un W -graphe Γ est la donnée d’un triplet (X, I, µ) tel
que
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1. X est un ensemble et I est une application de X dans P(S),

2. µ est une application de (X ×X \D(X)× S) dans K stable par l’involution du corps K
qui envoie √αs sur

√
αs
−1.

Soit V le K ′((αs)s∈S)-espace vectoriel de base (ey)y∈X . Pour tout s ∈ S, on définit
ρs : V → V par

ey 7→ −ey if s ∈ I(y),
ey 7→ αsey + ∑

x∈X,s∈I(x)

√
αsµ

s
x,yex if s /∈ I(y).

3. L’application Ts 7→ ρs est une représenation de H.

On sait qu’un tel W -graphe existe pour n’importe quel représentation irréductible d’une al-
gèbre de Iwahori-Hecke [24]. Dans le chapitre 6, nous donnons des propriétés sur les représenta-
tions qui peuvent se déduire de ces modèles. La 2-colorabilité est une notion qui intervient dans
plusieurs propositions de ce chapitre. Les W -graphes 2-coloriables dans le cas des paramètres
égaux ont été classifié par Gyoja (Voir la remarque après le Théorème 6.1). Les notions de
W -graphe dual de [20] et de représentation auto-duale sont données dans la Proposition 6.4 et
la Définition 6.3. Le théorème principal de cette section est le suivant

Théorème 6. Soit Γ = (X, I, µ) un W -graphe associé à une représentation irréductible de H
tel que Γ soit 2-coloriable et tel que Γ soit isomorphe en tant que graphe orientée pondéré au
graphe (X, Ĩ,−µ̃).

Soit ϕ : X → X l’automorphisme de graphe de Γ dans (X, Ĩ,−µ̃) et x1, x2, . . . , xn une
numérotation de X telle que ϕ(xi) = xn+1−i.

Soit 〈., .〉 la forme bilinéaire définie par < exi , exj >= ω(exi)δi,n+1−j, où ω est un coloriage
de Γ par 1 et −1.

On a alors
∀s ∈ S,∀v1, v2 ∈ V, 〈ρΓ(Ts)v1, ρΓ(Ts)v2〉 = −α〈v1, v2〉.

Cette forme bilinéaire est non-dégénérée et elle est symétrique si ω(x1)ω(xn) = 1 et anti-
symétrique si ω(x1)ω(xn) = −1.

La représentation associée est alors auto-duale.

On dit ensuite qu’un W -graphe auto-dual est un W -graphe vérifiant les propriétés du
Théorème précédent. Cette propriété est vérifiée par certainsW -graphes associés à des représen-
tations irréductibles auto-duales des algèbres de Hecke mais pas par tous. Les W -graphes
n’étant pas unique pour une représentation donnée, on établit la conjecture suivante.

Conjecture 1. Soit W un groupe de Coxeter. Pour toute représentation irréductible auto-
duale, il existe un W -graphe auto-dual défini sur K assoicé cette représentation. Si il existe
un W -graphe Γ défini sur K ′ associé à la représentation alors il existe un W -graphe auto-dual
Γ′ associé à la représentation et une matrice M ∈ GL|X|(K̃) telle que pour tout h ∈ HK,
MρΓ(h)M−1 = ρΓ′(h).

La deuxième partie de la conjecture est formulée uniquement dans l’optique de montrer la
première partie de la conjecture. Afin d’utiliser cette deuxième partie, nous montrons deux con-
ditions restrictives pour deux W -graphes soient associés à la même représentation irréductible
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dans les Propositions 6.2 et 6.3. Nous avons ensuite démontré par des calculs avec la plateforme
de calcul HPC MatriCS [1] la conjecture pour les types E6, E7, E8, H3 et H4. Les W -graphes
auto-duaux obtenus peuvent être téléchargés sur [17].

Les résultats du chapitre 6 permettent d’étudier les types exceptionnels. Dans le chapitre
7, nous déterminons l’image de AE6 , AE7 et AE8 dans leur algèbre de Iwahori-Hecke associée.
Le groupe de Artin AD5 s’injecte naturellement dans le groupe de Artin AE6 . Cela permet
d’utiliser les résultats du chapitre 4 pour appliquer un raisonnement par récurrence.

Nous montrons dans un premier temps en utilisant la Proposition 2.2.4 et les éléments de
Schur des algèbres de Iwahori-Hecke dans le cas générique que ces algèbres de Iwahori-Hecke
sont semi-simples déployées après spécialisation sous les bonnes conditions sur les paramètres
de l’algèbre.

Dans la section 7.1, nous utilisons le Théorème 2.3.2 et les Théorème 4.2.2 et 4.2.3 pour
déterminer l’image deAE6 dans chaque représentation irréductible de l’algèbre de Iwahori-Hecke
HE6,α. Les W -graphes auto-duaux obtenus et disponibles sur [17] permettent de déterminer
quel type de forme bilinéaire est préservée par les ρ(AE6) pour les représentations irréductibles
auto-duales. Les nouveaux E6-graphes auto-duaux de dimension 10 et 20 sont donnés dans
la section 10.4. On voit sur ces figures que l’opération de symétrie sur les graphes inverse les
couleurs, les formes bilinéaires associées sont donc anti-symétriques. C’est le cas pour toutes
les représentations irréducibles auto-duales en type E6. On utilise enfin le Lemme de Goursat
(Lemme 3.3.1) pour récupérer l’image totale dans l’algèbre de Iwahori-Hecke AE6,α.

Théorème 7. Si Fq = Fp(α) = Fp(α + α−1), alors le morphisme de AE6 dans H?
E6,α '∏

ρ irr
GLnρ(q) se factorise à travers le morphisme surjectif

Φ : AE6 → SL6(q)× SP10(q)× SL15(q)2 × SL20(q)× SP20(q)× SL24(q)× SL30(q)

×SP60(q)× SL60(q)× SL64(q)× SP80(q)× SL81(q)× SP90(q).

Si Fq = Fp(α) 6= Fp(α + α−1), alors le morphisme de AE6 dans H?
E6,α '

∏
ρ irr

GLnρ(q) se

factorise à travers le morphisme

Φ : AE6 → SU6(q 1
2 )× SP10(q 1

2 )× SU15(q 1
2 )2 × SU20(q 1

2 )× SP20(q 1
2 )× SU24(q 1

2 )× SU30(q 1
2 )

×SP60(q 1
2 )× SU60(q 1

2 )× SU64(q 1
2 )× SP80(q 1

2 )× SU81(q 1
2 )× SP90(q 1

2 ).

Dans la section 7.2, nous utilisons les résultats montrés dans la section 7.1. Il n’existe
aucune représentation irréductible auto-duale de HE7,α. Ainsi, il n’y a aucune forme bilinéaire
à considérer dans ce cas-là. Le phénomène nouveau apparaissant dans le type E7 est l’existence
de deux représentations irréductibles de dimension 512 qui ne sont pas 2-coloriables. Il faut
alors considérer l’extension de corps Fp(

√
α) au-dessus de Fp(α) et l’automorphisme de corps

d’ordre 2 associé lorsque ces deux corps sont distincts. Les factorisations possibles sont alors
déterminées en utilisant la Proposition 2.1.2 et en calculant les traces d’éléments bien choisis
à l’aide du package CHEVIE [19]. Les arguments habituels permettent alors de démontrer le
résultat suivant.
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Théorème 8. Si Fq = Fp(
√
α) = Fp(α + α−1), alors le morphisme de AE7 dans H?

E7,α '∏
ρ irr

GLnρ(q) se factorise à travers le morphisme surjectif

Φ : AE7 → SL7(q)× SL15(q)× SL21(q)2 × SL27(q)× SL35(q)2 × SL56(q)× SL70(q)× SL84(q)

×SL105(q)3 × SL120(q)× SL168(q)× SL189(q)3 × SL210(q)2 × SL216(q)× SL280(q)2

×SL315(q)× SL336(q)× SL378(q)× SL405(q)× SL420(q)× SL512(q).
Si Fp(

√
α) 6= Fq = Fp(α) = Fp(α + α−1) alors le morphisme de AE7 dans H?

E7,α '∏
ρ irr

GLnρ(q) se factorise à travers le morphisme

Φ : AE7 → SL7(q)× SL15(q)× SL21(q)2 × SL27(q)× SL35(q)2 × SL56(q)× SL70(q)× SL84(q)

×SL105(q)3 × SL120(q)× SL168(q)× SL189(q)3 × SL210(q)2 × SL216(q)× SL280(q)2

×SL315(q)× SL336(q)× SL378(q)× SL405(q)× SL420(q)× SU512(q).
Si Fq = Fp(α) 6= Fp(α + α−1) alors le morphisme de AE7 dans H?

E7,α '
∏

ρ irr
GLnρ(q) se

factorise à travers le morphisme

Φ : AE7 → SU7(q
1
2 )×SU15(q

1
2 )×SU21(q

1
2 )2×SU27(q

1
2 )×SU35(q

1
2 )2×SU56(q

1
2 )×SU70(q

1
2 )×SU84(q

1
2 )

×SU105(q
1
2 )3 × SU120(q

1
2 )× SU168(q

1
2 )× SU189(q

1
2 )3 × SU210(q

1
2 )2 × SU216(q

1
2 )× SU280(q

1
2 )2

×SU315(q
1
2 )× SU336(q

1
2 )× SU378(q

1
2 )× SU405(q

1
2 )× SU420(q

1
2 )× SU512(q

1
2 ).

Dans la section 7.3, nous déterminons l’image de AE8 dans son algèbre de Iwahori-Hecke
associée. Les preuves se font par récurrence en utilisant les résultats de la section 7.2. La
difficulté provient principalement des dimensions des représentations irréductibles auto-duales.
La représentation irréductible auto-duale de plus haute dimension est de dimension 7168. En
utilisant la conjecture, l’obtention de la forme bilinéaire associée nécessite plus d’une semaine
de calcul. Nous avons utilisé la conjecture pour obtenir toutes les formes bilinéaires associées
aux représentations disponibles dans le package CHEVIE [19] de GAP. Une fois les formes
bilinéaires obtenues, nous avons démontré la conjecture pour chaque représentation irréductible
auto-duale. Les E8-graphes auto-duaux obtenus sont téléchargeables depuis [17]. Cela permet
d’obtenir les formes bilinéaires correspondantes en utilisant uniquement un 2-coloriage de la
représentation. En utilisant ces résultats, nous avons démontré le résultat suivant qui conclut
le chapitre 7.

Théorème 9. Soit A un ensemble de représentants de représentations irréductibles 2-coloriables
non auto-duales pour la relation d’équivalence ρ ≈ ϕ si ρ = ϕ′ et B l’ensemble des représenta-
tions irréductibles auto-duales.

Si Fp(
√
α) 6= Fq = Fp(α) = Fp(α + α−1) alors le morphisme de AE8 dans H?

E8,α '∏
ρ irr

GLnρ(q) se factorise à travers le morphisme surjectif

Φ : AE8 →
∏
ρ∈A

SLnρ(q)× SL4096(q2)×
∏
ρ∈B

Ω+
nρ(q).
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Si Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1), alors le morphisme de AE8 dans H?

E8,α '∏
ρ irr

GLnρ(q) se factorise à travers le morphisme surjectif

Φ : AE8 →
∏
ρ∈A

SLnρ(q)× SL4096(q)2 ×
∏
ρ∈B

Ω+
nρ(q).

Si Fq = Fp(α) 6= Fp(α + α−1), alors le morphisme de AE8 dans H?
E8,α '

∏
ρ irr

GLnρ(q) se

factorise à travers le morphisme surjectif

Φ : AE8 →
∏
ρ∈A

SUnρ(q
1
2 )× SU4096(q 1

2 )×
∏
ρ∈B

Ω+
nρ(q

1
2 ).

Dans le chapitre 8, nous considérons l’image des groupes AH3 et AH4 dans leur algèbre de
Iwahori-Hecke finie associée. L’inclusion naturelle de AI2(5) dans AH3 fait intervernir les résul-
tats de la section 5.1. Le corps de définition de H3 et de H4 est Q[

√
5], la relation d’équivalence

définie dans la section 5.1 appliquée au cas m = 5 sera alors nécessaire pour bien distinguer les
différents cas. Il y a peu de représentations irréductibles en type H3. En utilisant les résultats
de la section 5.1 et les classifications de sous-groupes maximaux classiques en petite dimension
[9], nous obtenons le résultat suivant.

Théorème 10. Supposons p /∈ {2, 5} et que l’ordre de α ne divise ni 6 ni 20.

1. Supposons 1 ∼ 2.

(a) Si Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1), alors le morphisme de AH3 dans H?

H3,α '
GL1(q)2×GL3(q)2×GL4(q)2×GL5(q) se factorise à travers le morphisme surjectif

Φ : AH3 → SL3(q2)× SL4(q)× SL5(q).

(b) Si Fq = Fp(
√
α) = Fp(α) 6= Fp(α+ α−1) et Φ1,2(

√
α) =

√
α
−1 alors le morphisme de

AH3 dans H?
H3,α ' GL1(q)2 ×GL3(q)2 ×GL4(q)2 ×GL5(q) se factorise à travers le

morphisme surjectif

Φ : AH3 → SL3(q)× SU4(q 1
2 )× SU5(q 1

2 ).

(c) Si Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) et Φ1,2(

√
α) = −

√
α
−1, alors le morphisme

de AH3 dans H?
H3,α ' GL1(q)2 ×GL3(q)2 ×GL4(q)2 ×GL5(q) se factorise à travers

le morphisme surjectif

Φ : AH3 → SL3(q)× SL4(q 1
2 )× SU5(q 1

2 ).

(d) Si Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α + α−1), alors le morphisme de AH3 dans H?

H3,α '
GL1(q)2×GL3(q)2×GL4(q)2×GL5(q) se factorise à travers le morphisme surjectif

Φ : AH3 → SL3(q2)× SU4(q)× SL5(q).

2. Supposons 1 � 2. Lorsqu’il existe, on note ε l’automorphisme d’ordre 2 de Fq.
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(a) Si Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) et ε(

√
α) =

√
α
−1, alors le morphisme de

AH3 dans H?
H3,α ' GL1(q)2 ×GL3(q)2 ×GL4(q)2 ×GL5(q) se factorise à travers le

morphisme surjectif

Φ : AH3 → SU3(q 1
2 )2 × SU4(q 1

2 )× SU5(q 1
2 ).

(b) Si Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) et ε(

√
α) = −

√
α
−1, alors le morphisme de

AH3 dans H?
H3,α ' GL1(q)2 ×GL3(q)2 ×GL4(q)2 ×GL5(q) se factorise à travers le

morphisme surjectif

Φ : AH3 → SU3(q 1
2 )2 × SL4(q 1

2 )× SU5(q 1
2 ).

L’étude en type H4 est nettement plus compliquée. De nombreuses représentations irré-
ductibles sont auto-duales. De plus, il y a quatre représenations irréductibles de dimension
16. Les H4-graphes sont donnés dans la section 10.2 de l’appendice. Il est clair en étudiant
la symétrie des graphes auto-duaux munis d’un 2-coloriage que les forme bilinéaires associées
sont toutes symétriques. En particulier, les deux représentations auto-duales de dimension 8
font intervenir le groupe Ω+

8 (q). Cela complique considérablement l’étude de l’image de AH4

au sein de ces représentations. On sépare donc l’étude de AH4 en 4 sous-sections.
Dans la section 8.2, nous démontrons que l’on a bien les propriétés voulus pour la spéciali-

sation du modèle aux corps finis. Nous montrons aussi certaines propriétés générales qui seront
utiles pour l’étude de chaque représentation.

Dans la section 8.3, nous déterminons l’image de AH4 dans les représentations de dimension
inférieures à 8. Pour déterminer ρ8r(AH4 , nous montrons que ce groupes contient un groupe
suffisament grand. Pour montrer cela, nous utilisons des preuves très calculatoires qui font
intervenir le Théorème de Dickson (voir [27] Théorème 8.27) et le Lemme de Goursat (voir
Lemme 3.3.1) à diverses reprises. Il faut alors montrer que des quantités sont non-nulles en
effectuant des opérations qui s’apparentent à des divisions euclidiennes de polynômes en α.
Certains de ces calculs ont été mis dans la section 10.3.

Dans la section 8.4, nous montrons que les représentations ρ8r et ρ8rr sont liées par la trialité.
Cela fait apparaître une construction intéressante du groupe Spin+

8 (q).
Enfin, dans la section 8.5, nous déterminons l’image de AH4 dans les représentations de

dimensions supérieures à 9. Nous concluons la section par l’image de AH4 dans toute l’algèbre
de Iwahori-Hecke. Un des cas pour la représentation de dimension 48 ne peut pas se traiter
à l’aide des arguments habituels. Nous émettons alors la conjecture 8.5.1 qui donne ce à quoi
devrait être isomorphe ρ48rr(AH4). Nous avons alors le résultat suivant qui conclut le chapitre
8.

Théorème 11. Supposons p /∈ {2, 3, 5} et α d’ordre ne divisant ni 20, ni 30, ni 48.

1. Supposons 1 ∼ 2 et que la conjecture 8.5.1 est vraie.

(a) Si Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1), alors le morphisme de AH4 dans H?

H4,α '∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) se factorise à travers le morphisme surjectif

Φ :→ SL4(q2)×Ω+
6 (q2)×Spin+

8 (q)×SL9(q2)×Ω+
10(q)×SL16(q)2×Ω+

16(q)×Ω+
18(q)

×Ω+
24(q)2 × SL25(q)× Ω+

30(q)× SL36(q)× Ω+
40(q)× Ω+

48(q 1
2 ).
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(b) Si Fq = Fp(
√
α) = Fp(α) 6= Fp(α+α−1) et Φ1,2(

√
α) =

√
α
−1, alors le morphisme de

AH4 dans H?
H4,α '

∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) se factorise à travers le morphisme

surjectif

Φ :→ SL4(q)×Ω+
6 (q)×Spin+

8 (q 1
2 )×SL9(q2)×Ω+

10(q 1
2 )×SU16(q 1

2 )2×Ω+
16(q 1

2 )×Ω+
18(q 1

2 )

×Ω+
24(q 1

2 )2 × SU25(q 1
2 )× Ω+

30(q 1
2 )× SU36(q 1

2 )× Ω+
40(q 1

2 )× Ω+
48(q 1

2 ).

(c) Si Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) et Φ1,2(

√
α) = −

√
α
−1, alors le morphisme

de AH4 dans H?
H4,α '

∏
ρ irr

GLnρ(Fp(
√
α, ξ+ξ−1)) se factorise à travers le morphisme

surjectif

Φ :→ SL4(q)×Ω+
6 (q)×Spin+

8 (q 1
2 )×SL9(q2)×Ω+

10(q 1
2 )×SL16(q)×Ω+

16(q 1
2 )×Ω+

18(q 1
2 )

×Ω+
24(q 1

2 )2 × SU25(q 1
2 )× Ω+

30(q 1
2 )× SU36(q 1

2 )× Ω+
40(q 1

2 )× Ω+
48(q 1

2 ).

(d) Si Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α + α−1), alors le morphisme de AH4 dans H?

H4,α '∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) se factorise à travers le morphisme surjectif

Φ :→ SL4(q2)×Ω+
6 (q2)×Spin+

8 (q)×SL9(q2)×Ω+
10(q)×SL16(q2)×Ω+

16(q)×Ω+
18(q)

×Ω+
24(q)2 × SL25(q)× Ω+

30(q)× SL36(q)× Ω+
40(q)× Ω+

48(q 1
2 ).

2. Supposons 1 � 2. Lorsqu’il existe, on note ε l’automorphisme d’ordre 2 de Fq.

(a) Si Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) et ε(

√
α) =

√
α
−1, alors le morphisme de

AH4 dans H?
H4,α '

∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) se factorise à travers le morphisme

surjectif

Φ :→ SU4(q 1
2 )2×Ω+

6 (q 1
2 )2×Spin+

8 (q 1
2 )×SU9(q 1

2 )2×Ω+
10(q 1

2 )×SU16(q 1
2 )2×Ω+

16(q 1
2 )2

×Ω+
18(q 1

2 )× Ω+
24(q 1

2 )4 × SU25(q 1
2 )× Ω+

30(q 1
2 )2 × SU36(q 1

2 )× Ω+
40(q 1

2 )× Ω+
48(q 1

2 ).

(b) Si Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) et ε(

√
α) = −

√
α
−1, alors le morphisme de

AH4 dans H?
H4,α '

∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) se factorise à travers le morphisme

surjectif

Φ :→ SU4(q 1
2 )2 × Ω+

6 (q 1
2 )2 × Spin+

8 (q 1
2 )× SU9(q 1

2 )2 × Ω+
10(q 1

2 )× SL16(q)× Ω+
16(q 1

2 )2

×Ω+
18(q 1

2 )× Ω+
24(q 1

2 )4 × SU25(q 1
2 )× Ω+

30(q 1
2 )2 × SU36(q 1

2 )× Ω+
40(q 1

2 )× Ω+
48(q 1

2 ).

Dans le chapitre 9, nous déterminons l’image de AF4 dans son algèbre de Iwahori-Hecke
associée. Il y a deux injections naturelles de AB3 dans AF4 donc nous utiliserons les résultats du
chapitre 3 pour démontrer les résultats. Il y a deux classes de conjugaison pour les générateurs
du groupe de Coxeter de type F4. L’algèbre de Iwahori-Hecke associée dépend alors de deux
paramètres α et β. Comme les représentations sont données par des F4-graphes, les modèles
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sont définis sur Fp(
√
α,
√
β). Il faut alors considérer l’extension de corps Fp(

√
α,
√
β) au-

dessus de Fp(α+α−1, β + β−1). Une liste exhaustive des tours d’extensions possible permet de
démontrer que cette extension est de degré au plus 2. Toutes les extensions sont décrites dans la
section 10.5. Les F4-graphes de [20] sont aussi rappelés dans cette section, ils sont présentés de
manière à faire apparaître les symétries pour les F4-graphes associés à des graphes auto-duaux.
Nous n’avons pas démontré la conjecture dans ce cas car les propriétés d’unicité démontrés
dans les propositions 6.2 et 6.3 ne sont démontrées que dans le cas des paramètres égaux. Les
représentations étant toutes de dimension associée inférieure à 16, on peut déterminer par le
calcul la forme bilinéaire associée sans émettre d’hypothèses supplémentaires. Le groupe AF4

n’est pas parfait et cela complique considérablement les preuves dans certains cas. De plus, les
restrictions aux sous-groupes paraboliques n’apportent pas autant d’informations que dans les
chapitres précédents car la clôture normale des sous-groupes paraboliques isomorphes à AB3

est différente de AF4 . Cela nécessite de nouveaux arguments dans ce chapitre avec des preuves
parfois plus calculatoires. Le théorème suivant donne l’image de AF4 dans son algèbre de
Iwahori-Hecke associée suivant les possibles tours d’extensions de corps considérées et conclut
le chapitre 9.
Théorème 12. On note Fq̃ = Fp(

√
α,
√
β), Frα = Fp(α + α−1) et Frβ = Fp(β + β−1).

Dans les cas 1, 4, 5 et 10, le morphisme de AF4 dans H?
F4,α,β '

∏
ρ irr

GLnρ(q̃) se factorise à

travers le morphisme surjectif

Φ : AF4 → (SL2(rα) ◦ SL2(rβ))× SL4(q)2 × Ω+
6 (q)2

×SL8(q)2 × SL9(q)2 × Ω+
12(q)× Ω+

16(q).
Dans les cas 11, 12, 13 et 16, le morphisme de AF4 dans H?

F4,α,β '
∏

ρ irr
GLnρ(q̃) se factorise à

travers le morphisme surjectif

Φ : AF4 → ×(SL2(rα) ◦ SL2(rβ))× SU4(q 1
2 )2 ××Ω+

6 (q 1
2 )2

×SU8(q 1
2 )2 × SU9(q 1

2 )2 × Ω+
12(q 1

2 )× Ω+
16(q 1

2 ).
Dans les cas 2, 6, 9 et 15, le morphisme de AF4 dans H?

F4,α,β '
∏

ρ irr
GLnρ(q̃) se factorise à

travers le morphisme surjectif

Φ : AF4 → (SL2(rα) ◦ SL2(rβ))× SL4(q)××Ω+
6 (q)

×SL8(q 1
2 )× SU8(q 1

2 )× SL9(q)× Ω+
12(q 1

2 )× Ω+
16(q 1

2 ).
Dans les cas 3, 7, 8 et 14, le morphisme de AF4 dans H?

F4,α,β '
∏

ρ irr
GLnρ(q̃) se factorise à

travers le morphisme surjectif

Φ : AF4 → (SL2(rα) ◦ SL2(rβ))× SL4(q)× Ω+
6 (q)

×SL8(q)× SU8(q 1
2 )× SL9(q)× Ω+

12(q 1
2 )× Ω+

16(q 1
2 ).

Pour finir, dans la section 10.1 de l’appendice, nous donnons un erratum des articles [11] et
[12]. Les résultats de ces articles sont utilisés à diverses reprises dans cette thèse, notamment
dans le chapitre 3. Les résultats de ces articles sont correctes mais certaines preuves sont
imprécises ou contiennent des erreurs qui sont listés dans cette section.

21



Chapter 1

Introduction

1.1 General Introduction

In this doctoral thesis, we will determine the image of Artin groups associated to all finite
irreducible Coxeter groups inside their associated finite Iwahori-Hecke algebra. This was done
in type A in [11] and [12]. The Zariski closure of the image was determined in the generic case
in [34]. It is suggested by strong approximation that the results should be similar in the finite
case. However, the conditions required to use are much too strong and would only provide a
portion of the results. We show in this thesis that they are but that new phenomena arise
from the different field factorizations. The techniques used in the finite case are very different
from the ones in the generic case. The main arguments come from finite group theory. In
high dimension, we will use a theorem by Guralnick-Saxl [23] which uses the classification of
finite simple groups to give a condition for subgroups of linear groups to be classical groups in
a natural representation. In low dimension, we will mainly use the classification of maximal
subgroups of classical groups in [9] for the complicated cases.

Our results about the image of Artin groups inside the finite Hecke algebras may have various
applications. For instance, finite classical groups and direct products of finite classical groups
appear in this way as finite quotients of the Artin groups. Since the latter are fundamental
groups of algebraic varieties, this also defines étale coverings of these varieties. Since these
varieties are defined over Q, this may have applications to the inverse Galois problem (see for
example [43] or [18] for applications in type An).

They also provide new information on the finite classical groups because we get explicit
generators verifying the braid relations for those groups. This can provide interesting con-
structions of these groups and some of their subgroups by looking at restrictions to parabolic
subgroups of the Artin groups. In particular, we get a somewhat unexpected description of the
8-dimensional spin group from the two 8-dimensional representations in type H4 (see section
8.4).

We find some new W -graphs in types H4, E6 and E8 which provide different information
from the usual ones. They are all associated in a natural way to a bilinear form which is very
complicated to obtain in the previous models. In this model, the bilinear form is obtained using
only the two-colorability and its matrix in a well chosen basis is anti-diagonal. The uniqueness
properties can probably be extended in a more general setting and understanding which setting
this is may be worth considering.
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1.2 Outline of the thesis

We will begin by giving an introduction of Coxeter groups, Artin groups and Iwahori-Hecke
algebras. We then recall some properties of symmetric algebras and show that Iwahori-Hecke
algebras are symmetric. In this section, we show a specialization result which we will use
throughout the thesis to show that under certain conditions, we can specialize the models for
Iwahori-Hecke algebras in the generic case to the finite case. We will then give Aschbacher’s
theorem [4] on maximal subgroups of classical groups and recall the different classes Ci and S
which are defined in this theorem.

We will then start by determining the image of Artin groups of classical types inside their
associated finite Iwahori-Hecke algebras. The matrix models in those types are given by double-
partitions of an integer n. The general idea of the proof is then similar to the proof in type A.
The image is first determined for small n. The branching rule is then used to give an inductive
proof on n to determine the image in the general case. It is first necessary to determine which
representations factor through each other via field automorphisms or the transposed inverse
automorphism. The second parameter in type B will give rise to new factorizations which did
not appear in the generic case. We will then have to separate the study in six different cases
for the field extensions which will give different results. We get that in type B, if the fields
extensions occuring are all trivial then the image of the representations associated to partitions
of n are special linear groups defined over Fq if λ 6= λ′ and symplectic or orthogonal groups if
λ = λ′. In the case when the field extensions are trivial, the only factorizations appearing are
between the representations labeled by hook partitions and between the representation labeled
by a partition and the representation labeled by its transposed partition. This is summarized in
Theorem 3.2.1. When the field extensions a more complex, we get more factorizations and we
get both unitary groups or special linear groups depending on the partition we are considering.
The result for those cases are then given in Theorem 3.2.2 to Theorem 3.2.6.

In type D, the matrix models are similar but there is only one conjugacy class for the
generators therefore the field extensions are less complicated. However, there are additional
factorizations appearing which make the branching rule more complex. The result is then
similar to the one in type B except there are more representations affording groups preserving
non-degenerate bilinear forms. The results for this chapter are given in Theorem 4.2.2 and
Theorem 4.2.3.

Those results will be useful for the groups of exceptional types because of the natural
inclusions of Coxeter groups of classical types inside the exceptional types. Before treating the
groups of type H, E and F , we will determine the image for dihedral groups and general results
and W -graphs which will give us the matrix models for those exceptional types.

All the representations are 1-dimensional or 2-dimensional in dihedral type therefore deter-
mining the images inside each given representation will not be too difficult. There is a theorem
by Dickson (see [27], Theorem 8.27) classifying the subgroups of PSL2(q) which we will use
to determine the images in those cases and for 2-dimensional representations in all types. The
difficulties will arise from the field extensions which depend on primitive roots of unity. This
will lead us to define an equivalence relation between integers. The results for I2(5) will then
be useful in type H since there is a natural inclusion from I2(5) to H3. Since SU2(q 1

2 ) is con-
jugate to SL2(q 1

2 ) inside GL2(q), we will have that the image inside every given representation
is conjugate to SL2(q 1

2 ) or SL2(q). The image inside the full Iwahori-Hecke is then given in
Theorem 5.1.3 and Theorem 5.2.3.
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The matrix models for exceptional types are given byW -graphs. We will recall some general
properties for those graphs. We will then prove some uniqueness properties and establish a
conjecture forW -graphs associated to self-dual representations (see Definition 6.3 in Conjecture
6.1. We proved the conjecture in types I, H and E by computation using the HPC platform
MatriCS [1]. We assume the conjecture is true in order to find non-degenerate bilinear forms
preserved by the image of derived subgroups of Artin groups under self-dual representations.
It is clear that such a bilinear form exists for self-dual representations, however it is hard to
determine the type of this bilinear form. The conjecture will allow us to determine explicitly
those bilinear forms and to give new W -graphs, where a condition on the 2-colorability of the
graph is sufficient to determine the type of the form. We draw them in type H4 and some of
them in type E6. The remaining ones can be downloaded from [17].

We then determine the image in type H using the results in type I2(5). In type H3, we
encounter some W -graphs which are not 2-colorable. It is then necessary to consider more
complicated field extensions. By simple computations, we can treat those more complicated
extensions and get the image inside the corresponding representations. As in the dihedral type,
we need to use the equivalence relation on integers defined in Lemma 5.1.1. In this case, we
only consider fifth roots of unity therefore the equivalence relation is only on 1 and 2. The
factorizations between the different representations will depend on whether 1 ∼ 2 or 1 � 2. All
the groups considered in typeH3 are linear or unitary depending on the field extensions. In type
H4, the dimensions of the representations go up to 48. There are many self-dual representations
for which we have verified the conjecture and found corresponding self-dual H4-graphs given
in the Appendix. The study of this type is quite complicated so we separate the study in four
parts. First, in section 8.2, we prove some general properties appearing in type H4 as in the
other types. Then, in section 8.3, we begin by considering the low-dimensional representations
with the representations of dimension going up to 8. In these cases, we cannot using Theorem
2.3.2 therefore we need to use some more elementary theorems and some computational proofs.
The image in the 8-dimensional representation is isomorphic to Ω+

8 (q) or Ω+
8 (q 1

2 ). It is very
difficult to exclude the case 2·Ω7(q). In order to do it, we provide a very computational proof
using some elements in the normalizer of the image of the derived subgroup of < S2, S3 >. Once
this result is proven, we get a nice description of the Spin+

8 (q) groups appearing via the two 8-
dimensional representations. We explain in section 8.4 how the triality automorphism appears
between the projections of the two 8-dimensional representations. We then prove that the image
of the derived subgroup AH4 inside the product of the two 8-dimensional representations is the
universal central extension of PΩ+

8 (q) which proves it is isomorphic to Spin+
8 (q). In section

8.5, we determine the image of AH4 inside the representations of dimension greater than 8
using Theorem 2.3.2. There are four 16-dimensional representations which are not 2-colorable
which makes the study slightly more complicated but using the usual arguments, we get the
image for all groups except for the image inside the 48-dimensional representation. We did
not succeed in proving that the image is what we expect for the 48-dimensional representation
but we conjecture it is. We then use Goursat’s Lemma to recover the image inside the full
Iwahori-Hecke algebra given in Theorem 8.5.1.

The image in type E is determined using the results in type D5. The main difficulty in this
type was to determine the types of the bilinear forms. The high-dimensional representations
required long computations using Matrics [1]. Those computations were done assuming the
conjecture was true and we then proved the conjecture is true. Another difficulty arose in the
proof that the specialization to finite fields still gave a split semisimple algebra. Some of the
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weights of the edges on the W -graphs considered vanish and it is then necessary to prove that
the graphs remain connected once those edges vanish. Once we know if the forms are symplectic
or orthogonal and the algebra is split semisimple, the usual arguments cover most of the proofs
in those types. There are two representations in type E7 which are not 2-colorable, we compute
the traces of well-chosen elements in order to treat those cases. The main results in this chapter
are given in Theorem 7.1.1, Theorem 7.2.1 and Theorem 7.3.1.

In type F4, there are two parameters and the representations are defined over Fp(
√
α,
√
β).

This makes the field extensions much more complex. We also have that the normal closure of
parabolic subgroups does verify the properties which we can observe and use in other types. The
derived subgroup AF4 is not perfect. This complicates the use of Goursat’s lemma to determine
the image inside the full Iwahori-Hecke algebra. The uniqueness properties for W -graphs are
only proven for one parameter. It seems they do not hold in type F4 and the 2-colorability of F4-
graphs may not be stable by isomorphism of representations. We did not prove the conjecture
in this type and it may not hold. Nevertheless, the representations are of dimension at most 16,
therefore we can determine by hand the non-degenerate bilinear forms preserved by the groups.
We still get the usual results depending on the field extensions except for the 4-dimensional
representation 41 which is the central product of the 2-dimensional representations 21 and 23.
The main result in this section is given in Theorem 9.1.

1.3 Perspectives
Conjecture 6.1 does not need to be proved for classical types in order to conclude the doctoral
thesis. After the Ph.D. is finished, one area to explore would be to prove Conjecture 6.1 for
types A, B and D. A description of W -graphs affording the representations given by the
combinatorial model associated to partitions in types A and B has been given by Naruse in
[38] and [37]. Using those descriptions and trying to extend his work to type D, we hope to be
able to prove the conjectures for types A, B and D.

The notion of Hecke algebras has been generalized to complex reflection groups by M.Broué,
G. Malle and R.Rouquier [10]. It has been conjectured that there exists a symmetrizing trace
for all those algebras. If that conjecture is true then it will be possible to use Schur elements to
determine when those algebras are semisimple and specialize those algebras to finite fields. In
type G(d, 1, n), the representations are known and are labeled by d-partitions of unity and we
know the Schur elements. It is then possible to study the image of the associated braid group
inside those representations and this work seems like a natural extension of the work done in
the Ph.D. The specialization to finite fields could become complicated due to the high number
of parameters involved.

It is still an open question whether Artin groups are linear or not. A linear group is a group
for which there exists a monomorphism into some group of invertible matrices. It is also an
open question whether the morphisms from the Artin groups onto the Iwahori-Hecke algebras
are one-to-one in the generic case. If we could determine the kernels of those morphism in the
finite case, it might be possible to find elements of the kernel in the generic case and show those
morphisms are not monomorphisms. We have found some interesting elements in the kernels
of some morphisms composed with projections upon irreducible representations in type H4 but
we have not yet had the opportunity to explore that question more.

In order to determine the image of the Artin group inside finite Iwahori-Hecke algebras,
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assumptions on the parameters were made for it to be semisimple. One could consider the cases
where those parameters are not semisimple and still study the same question. The Hoefsmit
models can only be specialized under some assumptions for the parameters which excludes most
of the semisimple cases. On the other hand, W -graphs afford well-defined representations for
nearly all possible representations.

The image of the Artin group inside each representation gives us a finite quotient of the Artin
group. Using rigidity techniques which can be found in [31] and [44], it should be possible to
get some results in inverse Galois theory using methods as in [43]. The key fact in this problem
is that Artin groups can be seen as fundamental groups of certain algebraic varieties defined
over Q.

1.4 Notations
We will use the following notations throughout the thesis

N? : positive integers
Z : ring of rational integers
Q : rational field
Sn : symmetric group
An : alternating group
λ ` n : λ is a partition of n
λ  n : λ is a double-partition of n
T ∈ λ : T is a tableau (resp double-tableau) associated to the partition

(resp double-partition) λ
[[a,b]] : set of integers in the interval [a, b]
Fq : finite field with q elements
Mn(q) : algebra of matrices over the field Fq
GLn(q) : group of invertible matrices over the field Fq
SLn(q) : group of invertible matrices of determinant 1 over Fq
SUn(q) : group of unitary matrices over Fq2

SPn(q) : group of symplectic matrices over Fq
Ωε
n(q) : kernel of the spinor norm of the orthogonal group of type ε

AWn : Artin group of type Wn

AWn : derived subgroup of the Artin group AWn

Z(G) : center of a group G
[G,G] : derived subgroup of a group G
(a, b) : gcd of a pair of integers (a,b)
In : identity matrix of size n x n
Ei,j : elementary matrix with non-zero coefficient in position (i,j)
λ′ : transposed partition (or double-partition) of λ
A : B : split normal extension of A by B
A·B : normal extension of A by B which is not split
A.B : normal extension of A by B which may be split
diag(a1, a2, . . . , an) : diagonal matrix with coefficients a1, a2, . . . , an
Φn : n-th cyclotomic polynomial
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Chapter 2

Preliminaries

2.1 Definitions and first properties of Coxeter groups,
Artin groups and Iwahori-Hecke algebras

We here recall the definitions of Coxeter groups, Artin groups and Iwahori-Hecke algebras
and give the classification of finite irreducible Coxeter groups. Those are the main objects
we will use throughout the thesis. They appear in many different fields, they can be seen as
groups generated by involutions verifying certain relations. They can also be considered as real
reflection groups as a subclass of the complex reflection groups.

Definition 2.1.1. Let W be a group with a generating set S of elements of order 2. For s, s′
in S, we write ms,s′ the order of ss′. We say that (W,S) is a Coxeter system if

< S|∀s ∈ S,∀s′ ∈ S \ {s}, s2 = 1, (ss′)mss′ = 1 > is a presentation of W .
The Dynkin diagram associated to a Coxeter system (W,S) is the graph with elements of S

as vertices. There are ms,t − 2 edges between s and t if ms,t ≤ 4 and one edge with weight ms,t

otherwise.
A Coxeter group is said to be irreducible if there exists no non-empty disjoint subsets S1

and S2 of S such that S = S1 ∪ S2 and for any pair (s1, s2) ∈ S1 × S2, we have s1s2 = s2s1.

The irreducible finite Coxeter groups have been classified by Coxeter [15] and are given in
Figure 2.1

Note that the Coxeter group of type An is the symmetric group Sn+1 generated by the
transpositions si = (i i + 1). The Coxeter group of type Bn is the group of symmetries of
the hypercube of dimension n. The Coxeter group of type I2(n) is the dihedral group with 2n
elements.

There are natural inclusions between the groups Wn and Wn+1 and between An−1 and Bn,
An−1 and Dn, I2(5) and H3, A3 and H4, D5 and E6, B3 and F4. We will use those inclusions
which remain in the Artin group context which we will define below.

Definition 2.1.2. Let (W,S) be a finite Coxeter system. To the Coxeter group W , we associate
the following Artin group AW , where the order 2 condition has been removed

< S,∀(s, t) ∈ S2, sts...︸ ︷︷ ︸
ms,t

= tst...︸ ︷︷ ︸
ms,t

>
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Figure 2.1: Classification of finite irreducible Coxeter groups

The Artin group AAn associated to the An type Coxeter group admits the following presen-
tation : AAn =< (si)i∈[[1,n]], sisi+1si = si+1sisi+1, |i− j| ≥ 2, sisj = sjsi >.

The Artin group ABn associated to the Bn type Coxeter group admits the following presen-
tation : ABn =< t, (si)i∈[[1,n−1]], ts1ts1 = s1ts1t, sisi+1si = si+1sisi+1, |i− j| ≥ 2, sisj = sjsi >.

Definition 2.1.3. Let A be an Artin group with generators {si}i∈[[1,n]]. Let a ∈ A, two expression
a = sik ..si1 and a = sjk ...sj1 of a are said to be equivalent if one can be deduced from the other
using the braid relations.

The following result is a fundamental result in the study of Iwahori-Hecke algebras, it can
be found for example in [20] (Theorem 1.2.2).

Theorem 2.1.1. (Matsumoto’s Theorem)
Let (W,S) be a Coxeter system with W a finite irreducible Coxeter group. We let A+

W be its
braid monoid (the monoid of positive words in the generators of AW ). A reduced expression
σ = sik ...si1 of an element σ in the braid monoid A+

W is an expression where k is the minimal
number of generators necessary to write the element σ in the braid monoid.

sik ...si1 and sjk ...sj1 are reduced expressions of the same element in an Artin monoid A+
W if

and only if they are equivalent.

We can now define the Iwahori-Hecke algebra associated to a given Coxeter group. The
Matsumoto theorem will enable us to see it is a free algebra. We define it here in a general
setting, we will give more precise definitions in the finite case in each type in the following
chapters.

Definition 2.1.4. Let (W,S) be a Coxeter system, W̃ the associated Artin group, R a ring and
(us)s∈S indeterminates such that αs = αt if s and t are conjugate in W .
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The R[u±1
s ]-Iwahori-Hecke Algebra HW,R,(us)s∈S associated to W is given by the following pre-

sentation

HW,R,(us)s∈S =< T1, ..., Tn|TiTjTi...︸ ︷︷ ︸
msi,sj

= TjTiTj...︸ ︷︷ ︸
msi,sj

, (Ti − αsi)(Ti + 1) = 0 >

By Theorem 2.1.1, we can define the element Tσ = Ti1 . . . Tir for σ = si1 . . . sir in a reduced
expression. The following proposition is then fairly easy to show

Proposition 2.1.1. The Iwahori-Hecke algebra HW,R,(us)s∈S is a free R[u±1
s ]-module of rank

|W |.

If we consider the case R = Z, we have that HW,Z,(us)s∈S is a split semi-simple algebra
and models for its representations are then known. In types An, Bn and Dn, the irreducible
representations are labeled by partitions or double-partitions of n. A partition of n is a non-
increasing sequence (λi)i∈N? such that

+∞∑
i=1
λi = n. To each partition of n, we can associate a

Young diagram which is a diagram with λi boxes in the ith row. We write [22, 1] the partition
of 5 with λ1 = λ2 = 2 and λ3 = 1. There are 5 partitions of 4 given by the Young diagrams

, , , ,

which we note respectively [14], [4], [3, 1], [2, 12] and [2, 2]. The irreducible representations of
the Iwahori-Hecke algebra of type An are labeled by partitions of n. There is a basis for each
module associated to a partition of n given by standard tableaux associated to that partition.
A tableau associated to a partition of n is numbering with the integers from 1 to n. A standard
tableau is a tableau such that the numbering is increasing towards the right and downwards.
The representations labeled by the above partitions are therefore of respective dimensions 1, 1,
3, 3 and 2. A basis for the representation labeled by the partition [3, 1] is given by the standard
tableaux

1 2 3
4 ,

1 2 4
3 ,

1 3 4
2 .

In type Bn and Dn, the irreducible representations are labeled by double-partitions of n.
A double-partition of n is pair (λ, µ) with λ a partition of r and µ a partition of n − r.
The double-diagram associated to the double-partition (λ, µ) is the pair given by the Young
diagrams associated to λ and µ. A standard double-tableau associated to a double-partition
is a numbering of the associated double-diagram with the integers from 1 to n increasingly
towards the right and downwards within each component of the double-diagram. There are 5
double-partitions of 2 given by the double-diagrams

( , ∅), ( , ∅), ( , ), (∅, ), (∅, )

which we note respectively ([12], ∅), ([2], ∅), ([1], [1]), (∅, [12]) and (∅, [2]). The representations
labeled by the above representations are of respective dimensions 1, 1, 2, 1 and 1. A basis for the
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representation labeled by the double-partition ([1], [1]) is given by the standard double-tableaux
( 1 , 2 ) ( 2 , 1 ).

We will give the explicit models in the following chapters.
The representations for Coxeter groups of exceptional types are afforded by W -graphs, they

will be explained in Chapter 6.
In the finite field setting, we will encounter some field automorphism through which the

representations will factor. We give here a condition for a field automorphism to give a repre-
sentation when composed with a representation of an Iwahori-Hecke algebra.

Proposition 2.1.2. Let (W,S) be a Coxeter system and H(αs)s∈S be a finite Iwahori-Hecke
Fp((αs)s∈S)-algebra. Let Φ ∈ Aut(Fq), where Fq = Fp((αs)s∈S) and ρ be a finite dimensional
representation of H(αs)s∈S . We then have that there exists a character η such that (Φ ◦ ρ)⊗ η is
a representation of H(αs)s∈S if and only if for all s ∈ S, Φ(αs) ∈ {αs, α−1

s }.
Moreover, if for all s ∈ S, Φ(αs) ∈ {αs, α−1

s }, then η(Ts) = 1 if Φ(αs) = αs and η(Ts) = −αs
if Φ(αs) = α−1

s .

Proof. Assume first that for all s ∈ S, we have Φ(αs) ∈ {αs, α−1
s }. It is clear that the braid

relations are verified so we only need to check that the deformations of the relations of order 2
are verified. Let s ∈ S, assume Φ(αs) = αs. Let η(Ts) = 1, we then have

(Φ(ρ(Ts))η(Ts)− αs)(Φ(ρ(Ts))η(Ts) + 1) = Φ((ρ(Ts)− αs)(ρ(Ts) + 1)) = Φ(0) = 0.

Assume Φ(αs) = α−1
s , let η(Ts) = −αs, we then have

(Φ ◦ ρ)(Ts))η(Ts)− αs)(Φ ◦ ρ(Ts)η(Ts) + 1) = Φ((−α−1
s ρ(Ts)− α−1

s )(−α−1
s ρ(Ts) + 1))

= Φ(−α−2
s (ρ(Ts) + 1)(ρ(Ts)− αs))

= Φ(0)
= 0.

This proves that (Φ ◦ ρ)⊗ η is a representation of H(αs)s∈S .

Assume now that there exists a character η such that (Φ ◦ ρ) ⊗ η is a representation of
H(αs)s∈S . Let s ∈ S, the eigenvalues of Φ(ρ(Ts))η(Ts) are then αs and −1. We also have that
the eigenvalues of Φ(ρ(Ts))η(Ts) are η(Ts)Φ(αs) and −η(Ts). It follows that either −η(Ts) = −1
and η(Ts)Φ(αs) = αs or −η(Ts) = αs and η(Ts)Φ(αs) = −1. This implies that either Φ(αs) = αs
or Φ(αs) = α−1

s . The proof is thus concluded.

2.2 Symmetric algebras and specializations
In this section, we recall the definition and some basic properties of symmetric algebras. We
then give a version of Tits deformation theorem, which we will need to prove that the finite
Iwahori-Hecke algebras are split semisimple under the right conditions. We then give a general
result on representations of finite Iwahori-Hecke algebras, which we will use throughout the
thesis.
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2.2.1 Definition and first properties
In this subsection, we define symmetric algebreas and give some elementary properties of the
corresponding trace. The results in this section are taken from Chapter 7 of [20]. Throughout
this section A is a commutative ring and H is an A-algebra of finite rank.

Definition 2.2.1. A linear form τ : H → A is said to be a trace if it verifies the following
condition

∀a, b ∈ H, τ(ab) = τ(ba).

If there exists a trace τ such that (x, y) 7→ τ(x, y) is non-degenerate then we say that H is a
symmetric A-algebra and τ is a symmetrizing trace.

Iwahori-Hecke algebras are symmetric algebras and the following proposition is given in [20]
(Proposition 8.1.1).

Proposition 2.2.1. Let W be a finite irreducible Coxeter group. The Iwahori-Hecke algebra
HW,R,(us)s∈S is then a symmetric R[u±1

s ] algebra with symmetrizing trace τ defined by τ(T0) = 1
and τ(Tσ) = 0 if σ 6= 1W .

In what follows H is a symmetric A-algebra of finite rank and τ is a trace of H.

Definition 2.2.2. Let B be a basis for H, its dual basis with regards to τ is defined to be (b̌)b∈B,
where for all b, b′ in B × B, we have τ(b̌b′) = δb,b′.

For σ = si1 . . . sin a reduced expression of σ, we define uσ = usi1 . . . usin . For the Iwahori-
Hecke algebra HW,R,(us)s∈S , (Tσ)σ∈W is a basis. Its dual basis with regards to τ is (uσ−1Tσ−1).

We now consider a fixed basis B of H in what follows.

Definition 2.2.3. Let V and V ′ be two right H-modules. For all ϕ ∈ HomA(V, V ′), we define
I(ϕ) from V to V ′ by I(ϕ)(v) = ∑

b∈B
ϕ(vb)b̌.

We consider A as a subset of H by considering that for a ∈ A, a = a.1H .

Proposition 2.2.2. Let V and V ′ be two right H-modules and ϕ ∈ HomA(V, V ′).
We then have that I(ϕ) is independant of the chosen basis and I(ϕ) ∈ HomH(V, V ′).

The previous proposition shows that I gives us a way to obtain H-linear map from A-linear
maps.

Proposition 2.2.3. Let V, V ′ and V ′′ be right H-modules and ϕ ∈ HomH(V, V ′),
ψ ∈ HomA(V ′, V ′′) and θ ∈ HomA(V ′′, V ). We have

I(ψ ◦ ϕ) = I(ψ) ◦ ϕ, I(ϕ ◦ θ) = ϕ ◦ I(θ).

Definition 2.2.4. We say an H-module V is projective if for every surjective H-module mor-
phism from M to V with M an H-module, there exists i ∈ HomH(V,M) such that π ◦ i = idV .

Lemma 2.2.1 (Gaschütz-Ikeda). Let V be an H-module which is projective as an A-module.
V is projective as an H-module if and only if there exists ϕ ∈ EndA(V ) such that I(ϕ) = idV .
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2.2.2 Schur elements
In this subsection, we recall the definition of Schur elements which will give us tools to under-
stand the specializations to finite fields of the irreducible representations.

Let K be a field and H a symmetric K-algebra with symmetrizing trace τ . We will use the
map I in order to define the Schur elements. We fix a K-basis B of H.

Definition 2.2.5. An H-module V is sais to be split semi-simple if it is simple and we
havedimK(EndH(V )) = 1.

A K-algebra H is said to be split if all its simple modules are split.

Theorem 2.2.1. Let V be a split simple H-module. There exists a unique cV ∈ K such that
for all ϕ ∈ EndK(V ), we have I(ϕ) = cV Tr(ϕ)idV and cV only depends on the isomorphism
class of V .

cV is called the Schur element of H associated to the isomorphism class of V .

Corollary 2.2.6. Let V and V ′ be two split simple H-modules with n = nV = dim(V ) and
m = nV ′ = dim(V ′). Let ρ(resp ρ′) be a representation of H in Mn(K)(resp Mm(K)), we then
have for all (i, l, k, j) ∈ [[1, n]]2 × [[1,m]]2

∑
b∈B
ρ(b)i,lρ′(b̌)k,j = δi,jδk,lcV if V is isomorphic to V’ ρ = ρ′,

= 0 if V is not isomorphic to V’.

We now recall Wedderburn’s theorem on semi-simple algebras.

Theorem 2.2.2. (Wedderburn)
Let H be a finite dimensional split semi-simple K-algebra. We then have H = ⊕

V
H(V ), where

the sum is over the isomorphism classes of simple H-modules. In the above, H(V ) 'MnV (DV ),
where we have DV = EndH(V ).

We now give a semi-simplicity criteria with a condition on the Schur elements.

Theorem 2.2.3. A split semi-simple H-module V is projective if and only if cV 6= 0.
If H is split then H split semi-simple if and only if all its Schur elements are non-zero and

we then have
τ =

∑
V

1
cV
χV .

where the sum is over the isomorphism classes of H-modules.

2.2.3 Specialization theorem
We now give a proposition which we will use to show that the specializations of the Iwahori-
Hecke algebras to finite fields remain split semisimple under the right conditions. This is a
version from specialization theory of symmetric algebras and Schur elements which we have not
found as such in the litterature.
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Proposition 2.2.4. Let A be a commutative integrally closed integral domain, F a field con-
taining A and H a free F -algebra of finite rank with a symetrizing trace τ .
We write FH = H⊗AF and consider H as a subset of FH. If B is a ring such that A ⊂ B ⊂ F ,
then we consider that H ⊂ BH ⊂ FH.
Let θ be a ring homomorphism from A to a field L such that L is the field of fractions of θ(A).

Let O be a valuation ring of F such that A ⊂ O and J (O) ∩ A = ker(θ), where J (O) is
the unique maximal ideal of O. Let k = O/J (O) be the residue field of O. The restriction to
A of the projection π from O to k has kernel equal to J (O) ∩ A = ker(θ). We can therefore
see L as a subfield of k.

Let F be the field of fractions of A and B the subring of F formed of elements of the form
a1
a2
, (a1, a2) ∈ A2 and θ(a2) 6= 0. Assume FH is split. We can define an extension θ̃ of θ to

B. Assume there exists a representation of every simple module V such that for (i, j) ∈ [[1, n]]2,
there exists b ∈ B such that θ̃(ρV (b)j,i) 6= 0. Assume there exists a basis B of BH such that
for all b ∈ B, b̌ ∈ BH and θ̃(b̌) 6= 0, where for b ∈ B, b̌ is the unique element in B such that
τ(bb̌) = 1.

We then have that LH is split semi-simple if and only if θ(cV ) 6= 0 for every simple FH-
module V

Proof. Assume θ(cV ) 6= 0 for every simple FH-module V . We then have that cV 6= 0 for all
FH-module simple V .

Let B be a basis as in the theorem, by Proposition 7.2.7 of [20],
(
ei,j,V = 1

cV

∑
b∈B
ρV (b)j,ib̌

)
i,j,V

is a basis of BH corresponding to the isomorphism BH '⊕
V
MnV (B).

We have that the θ̃(ei,j,V ) are in LH. Let us show that they give us a basis affording an
explicit isomorphism from LH to ⊕

V
MnV (L). Since L is the field of fractions of θ(A), θ̃ is a

surjective morphism from B to L and the θ̃(ei,j,V ) give us a generating family of LH.

We have the relations θ̃(ei,j,V )θ̃(ei′,j′,V ′) = δV,V ′δj,i′ θ̃(ei,j′,V ).

Let (ai,j,V ) ∈ L

∑
V

n2
V

, assume ∑
V

∑
1≤i,j≤nV

ai,j,V θ̃(ei,j,V ) = 0. Let V0 be a simple FH-module

and 1 ≤ i0, i1, j0, j1 ≤ nV0 . Multiplying by θ̃(ei0,j0,V0) on the right and θ̃(ei1,j1,V0) on the left, we
have that

0 =
∑
V

∑
1≤i,j≤nV

ai,j,V θ̃(ei1,j1,V0)θ̃(ei,j,V )θ̃(ei0,j0,V0),

0 =
nV0∑
i=1
ai,i0,V0 θ̃(ei1,j1,V0)θ̃(ei,j0,V0) = aj1,i0,V0 θ̃(ei1,j0,V0).

Since each θ̃(ei,j,V ) is non-zero, these vectors are linearly independent and the relations they
verify give us an isomorphism from LH to ⊕

V
MnV (L). It follows that LH is split semi-simple.

Assume now that LH is split semi-simple. By Tits’s deformation theorem (Theorem 7.4.6
of [20]), there is an isomorphism dkL between the Grothendieck groups of finite dimensional LH-
modules and finite dimensional kH-modules sending each isomorphism class of simple modules
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to a unique isomorphism class of simple modules. If V is a simple LH-module, the unique
kH-module V ′ such that [V ′] = dkL([V ]) verifies dimk(V ′) = dimL(V ). We have

dimk(kH) = dimL(LH) =
∑
V

dimL(V )2 =
∑
V ′

dimk(V ′)2 = dimk(kh/ rad(kH)).

kH is therefore semi-simple. Since LH is split, kH is split too. By Tits’s deformation theorem
applied to the specialization π from O to k, FH is semi-simple and there is an isomorphism
dπ sending isomorphism classes of FH-simple modules and isomorphism classes of simple kH-
modules.

Let V be a FH-module and ρV a representation of FH in MnV (F ) such that for all h ∈ H,
we have ρV (h) ∈ O. By Corollary 7.2.2 of [20], we have that∑

b∈B
ρV (b)1,1ρV (b̌)1,1 = cV ,

∑
b∈B
π(ρV (b)1,1)π(ρV (b̌)1,1) = π(cV ) = θ(cV ).

This equality corresponds to the relation verified by the Schur element of a kH simple
module V ′ = kṼ . We then have cV ′ = θ(cV ), therefore θ(cV ) 6= 0 because kH is split semi-
simple. This concludes the proof.

2.3 Maximal subgroups of classical groups
In this section, we recall Aschbacher’s theorem on maximal subgroups of classical groups [4]
and describe the different classes. We then give some important theorems about subgroups of
classical groups which we will use throughout the thesis.

We first recall the following definitions from [5]

Definition 2.3.1. Let G be a group.
A subnormal group H of G is a subgroup of G such that there exists a sequence H = G0 ⊂

G1 ⊂ ... ⊂ Gn = G and for all i ∈ [[1, n]], Gi−1 / Gi

A group G is quasisimple if it is perfect and G/Z(G) is simple.
The components of a group G are its subnormal quasisimple subgroups. Write Comp(X) for

the set of components of X and set E(X) = 〈Comp(X)〉.
The Fitting subgroup F (G) of G is the largest nilpotent normal subgroup of G.
The generalized Fitting group of G is the group F ?(G) = F (G)E(G).

We begin by stating Aschbacher’s theorem on maximal subgroups [4]

Theorem 2.3.1. Let G be a finite group whose generalized Fitting group is a simple classical
group G0 over a finite field such that G0 6' PΩ+

8 (q). Let H be a proper subgroup of G such that
G = HG0. Then either H belongs to one of the geometric classes (Ci)i∈[[1,8]] or H belongs to the
class S.

We will not use this theorem directly but results that follow from this theorem. In particular,
we will use many tables from [9] of the maximal subgroups of classical groups in low dimension,
where all the conjugacy classes of maximal subgroups are determined. In table 2.1, we copy
table 2.1 from [9] giving a rough description of the Aschbacher classes for classical groups over
Fq (the unitary groups SUn(q) are defined over Fq2).
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Ci Rough description
C1 stabilizers of totally singular or non-singular subspaces
C2 stabilizers of decompositions V =

t
⊕
i=1

, dim(Vi) = n
t

C3 stabilizers of extension fields of Fq of prime index dividing n
C4 stabilizers of tensor product decompositions V = V1 ⊗ V2
C5 stabilizers of subfields of Fq of prime index
C6 normalizers of symplectic-type or extraspecial groups in absolutely irreducible

representations
C7 stabilizers of decompositions V =

t
⊗
i=1
Vi, dim(Vi) = a, n = at

C8 groups of similarities of non-degenerate classical forms

Table 2.1: Description of the geometric Aschbacher classes

By definition of the classes, no irreducible group can be included in a group of class C1, no
primitive group can be included in a group of class C2, no group containing a transvection can
be included in a group of class C3, no tensor-indecomposable group can be included in a group
of class C4 and no group whose trace generate the field Fq can be included in a maximal group
of class C5. We will use this type of argument to reduce the lists of possible maximal groups
containing the groups we consider for groups of low dimension in the following sections.

The main theorem we will use in high dimension is a theorem by Guralnick and Saxl [23]
giving conditions for subgroups of the special linear group to be classical groups. The proof of
Theorem 2.3.2 uses the classification of finite simple groups.

Theorem 2.3.2 (Gulralnick-Saxl). Let V be a finite-dimensional vector space of dimension
d > 8, d 6= 10 or (d = 10 and p = 2) over an algebraically closed field Fp of characteristic
p > 0. Let G be a primitive tensor-indecomposable finite irreducible subgroup of GL(V ). We
write vG(V ) the minimal dimension of [βg, V ] = (βg − 1)V , for g ∈ G and β ∈ Fp such that
βg 6= 1. We then have either vG(V ) > max(2,

√
d

2 ) or one of the following assertions.

1. G is a classical group in a natural representation.

2. G is the alternating or the symmetric group of degree c and V is the permutation module
of dimension c− 1 or c− 2.

The other theorems we will use are on groups generated by long-root elements, we first
recall the definition of long-root elements.

Definition 2.3.2. If G ' SLn(q), G ' SUn(q) or G ' SPn(q) then a long-root element of G
is a transvection.

If G ' Ω+
n (q), n ≥ 4 then a long-root element x of G is an element of the form x(v) =

v−〈v, a〉b+〈v, b〉a for a, b in a totally singular 2-space T and 〈., .〉 the non-degenerate symmetric
bilinear form associated to G.

For example, if n = 2m ≥ 4 is an integer then elements conjugate to elements of the form(
Ta 0
0 t(Ta)−1

)
, where Ta is a transvection of SLm(q) are long-root elements of Ω+

4 (q).
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We can now state Kantor’s Theorem on subgroups of orthogonal groups generated by long
root elements [28]. We only consider the irreducible subgroups of Ω+

n (q) with q an odd prime
because it will be the only case we will need to consider in this thesis.

Theorem 2.3.3. Let G be an irreducible subgroup of Ω+
n (q), where n ≥ 4 and q = ps for some

prime p and positive integer s generated by a conjugacy class of long root elements, such that
Op(G) ≤ [G,G] ∩ Z(G).

We then have that G belongs to the following list

1. Ω±(q′) in a natural representation over Fq′, q′|q,

2. Ω−2m(q′ 12 ) ≤ Ω+
2m(q′), q′|q, n = 2m in a natural representation over Fq′,

3. SU2m(q′) ≤ Ω+
4m(q′), n = 4m in a natural representation over Fq′, q′|q

4. SU2m+1(q′) ≤ Ω4m+2(q′), n = 4m+ 2 in a natural representation over Fq′, q′|q,

5. G/Z(G) ' PΩ(7, q′), |Z(G)| = (2, q′ − 1), G ≤ Ω+
8 (q′) in a natural representation over

F′q, q′|q,

6. 3D4(q′) ≤ Ω+
8 (q′3) in a natural representation over Fq′3, q′3|q.

Finally we give a Theorem by Serezkin and Zaleskii for irreducible groups of the remaining
classical groups generated by transvections. (First theorem of [42]).

Theorem 2.3.4. If G is an irreducible subgroup of GLn(q) generated by transvections with
q = pr, p > 3, n > 2, then G is conjugate inside GLn(q) to SLn(q̃), Spn(q̃) or SUn(q̃ 1

2 ) for some
q̃ dividing q.
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Chapter 3

Type B

In this section, we will determine the image of the derived subgroup of the Artin group of
type Bn. This is a natural continuation of the work for type An in [11] and [12]. The general
outline of the proof is based on inductive reasoning. We first give the factorizations through field
automorphisms and the transposed inverse automorphisms between irreducible representations.
The main result concerning those factorizations is given in Proposition 3.2.4. This allows us to
determine what the image in the full finite Iwahori-Hecke algebra appears to be. The remainder
of the section is the proof that the image appearing is indeed the image of the derived subgroup
ABn of the Artin group. The main results of this section are given in Theorems 3.2.1 to 3.2.6.

Let p be a prime, n ≥ 2 be an integer, α ∈ Fp of order a greater than n and not in
{1, 2, 3, 4, 5, 6, 8, 10} and β ∈ Fp \ {−αi,−(n − 1) ≤ i ≤ n − 1} different from 1. We set Fq =
Fp(α, β). The Artin group of type B is the group generated by the elements T = S0, S1, . . . , Sn−1
verifying the relation S0S1S0S1 = S1S0S1S0, for i ∈ [[1, n − 2]], SiSi+1Si = Si+1SiSi+1 and for
(i, j) ∈ [[0, n− 1]] such that |i− j| ≥ 2, SiSj = SjSi. The associated Iwahori-Hecke Fq-algebra
HBn,α,β is defined by the generators indexed in the same way as for the Artin group and verifying
the previous relations and deformations of the relations of order 2 of the Coxeter groups :
(T−β)(T+1) = 0 and for i ∈ [[1, n−1]], (Si−α)(Si+1) = 0. In the sequel, we identify the Artin
group with its image inside the Iwahori-Hecke algebra. We write `1, `2 for the length functions
on ABn = 〈T, Si〉i∈[[1,n−1]] such that for all i ∈ [[1, n − 1]], `1(Si) = 1, `1(T ) = 0, `2(Si) = 0 and
`2(T ) = 1.

In Section 3.1 we give in Theorem 3.1.1 the irreducible representations described by the
Hoefsmit model given in [20] and [26] and define a weight on standard tableaux and double-
partitions of n which allows us to define in Proposition 3.1.1 a bilinear form verifying nice
properties.

In Section 3.2, we determine all the isomorphisms between different irreducible representa-
tions and then state the main results for type B in Theorems 3.2.1 up to 3.2.6.

In Section 3.3, we prove the result in all possible cases depending on the properties of the
field extensions Fq of Fp(α + α−1, β + β−1) and Fp(α) of Fp(α + α−1).

3.1 Hoefsmit model and first properties
In this section, we define the matrix model we will be considering throughout this section and
define a natural bilinear form appearing when we consider those models. This will establish
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the groundwork for the rest of this section.

Theorem 3.1.1. Assume α is of order greater than n and β ∈ Fp\{−αi,−(n−1) ≤ i ≤ n−1}.
The following matrix model gives a list of the pairwise non-isomorphic absolutely irreducible
modules Vλ of the Iwahori-Hecke algebra HBn,α,β labeled by double-partitions of n.
If T = (T1,T2) is a standard double-tableau, then

• if 1 ∈ T1, then T.T = βT,

• if 1 ∈ T2, then T.T = −T,

• Si.T = mi(T)T+ (1 +mi(T))T̃, where T̃ = Ti↔i+1 if Ti↔i+1 is standard and 0 otherwise.

Above, we have mi(T) = α−1
1− ct(T:i)

ct(T:i+1)
, ct(T : j) = αcj(T)−rj(T)β if j ∈ T1 and ct(T : j) =

−αcj(T)−rj(T) otherwise and rj(T) (resp cj(T)) is the row (resp column) of j in the tableau
of T containing j.

Proof. Let λ = (λ0, λ1)  n such that nλ = dim(Vλ) > 1.
We will show that ρλ(ABn) contains diagonal matrices generating the algebra of diagonal

matrices in GLn(q). By Proposition 5 of [32], it is sufficient to show that for any standard
double-tableau T associated to λ, there exist two diagonal invertible matrices D1 and D2 in the
basis of standard double-tableaux such that D1T = b1T and D2T = b2T and b1 6= b2.

By [32], it will then be sufficient to show that for any couple of standard double-tableaux
(Tρ,Tγ), there exists a matrix in ρλ(ABn) such that aρ,γ is non-zero.

In order to do that, we will use the Jucys-Murphy elements (a1, ..., an) whose expressions in
this model are given in [3, Prop 3.16] and are

ai.Tρ = uτ(i)α
ci−ri+i−1Tρ, where i is in box (ri, ci) of the τ(i)-th tableau of Tρ and (u1, u2) =

(β,−1).

Let Tρ = (Tρ1 ,Tρ2) ∈ λ. Since dim(Vλ) > 1, we can define ` = min{j ∈ [[1, n]], j /∈
Tρ,τ(1) or (j ∈ Tρ,τ(1) and (rj, cj) 6= (j, 1))} and we have ` ≥ 2.

We then have k ∈ Tρ,τ(1) and (rk, ck) = (k, 1) for all k < `. It follows that either ` ∈ Tρ,3−τ(1)
and (r`, c`) = (1, 1) or ` ∈ Tρ,τ(1) and (r`, c`) = (1, 2). We have

a1.Tρ = uτ(1)Tρ and a`.Tρ ∈ {u3−τ(1)α
`−1Tρ, uτ(1)α

`Tρ}, therefore a1.Tρ 6= a`.Tρ since the
order of α is strictly greater than n and β /∈ {−αi,−(n− 1) ≤ i ≤ n− 1}.

Let now (Tρ,Tγ) be a pair of standard double-tableaux associated to λ. There exists a
permutation of Sn which affords Tγ after permuting the numbers inside Tρ. We can decompose
this permutation in a product of transpositions (i, i + 1) such that the path given by the
successive standard double-tableaux is composed only of standard double-tableaux. It is thus
sufficient to show that for any i ∈ [[1, n]] and for any standard double-tableau Tρ such that
Tρ,i↔i+1 is standard, we have 1 +mi(Tρ) 6= 0.

We have mi(Tρ) = α−1

1−
uτ(i)α

ci−ri+ri+1−ci+1

uτ(i+1)

= −1 ⇔ uτ(i)
uτ(i+1)

= α1+ci+1−ri+1+ri−ci and uτ(i)
uτ(i+1)

∈

{1,−β,−β−1}. By the assumptions made on α and β, it now only remains to show that
−n ≤ 1 + ci+1− ri+1 + ri− ci ≤ n and 1 + ci+1− ri+1 + ri− ci 6= 0 if i and i+ 1 are in the same
tableau and −n+ 1 ≤ 1 + ci+1 − ri+1 + ri − ci ≤ n− 1 if i and i+ 1 are in different tableaux.

If i and i + 1 are in the same tableau, |ci+1 − ri+1 + ri − ci| + 1 represents the number of
boxes to go through vertically and horizontally in order to go from i to i+ 1, therefore we have

39



the required bounds. Moreover, this quantity is non-zero by the conditions for a tableau to be
standard and the fact that Tρ,i↔i+1 is standard.

If i and i+1 are in different tableaux of respective sizes j and n−j, we have 1−j ≤ ci−ri ≤
j − 1 and 1− (n− j) ≤ ri+1 − ci+1 ≤ n− j − 1 since 1 ≤ ci, ri ≤ j and 1 ≤ ci+1, ri+1 ≤ n− j.
It follows that −n+ 1 ≤ 3− n ≤ 1 + ci+1 − ri+1 + ri − ci ≤ n− 1.

The representations Vλ are therefore irreducible. We have the same dimensions over C by
taking α and β to be irreducible parameters and the same mode. It follows that we only need
to show that those modules are pairwise non-isomorphic to conclude the proof.

Let us show that Rλ ' Rµ ⇔ λ = µ. Assume Rλ ' Rµ, the eigenvalues of the Jucys-
Murphy elements must be the same for both representations. We then have that for any
i ∈ [[1, n]], {uτT(i)α

ci,T−ri,T+i−1,T ∈ λ} = {uτT̃(i)α
ci,T̃−ri,T̃+i−1, T̃ ∈ µ} and each of the elements

of those sets appear with the same multiplicity. We will show that this implies that for any
i ∈ [[1, n]]], γ ∈ Z, we have

card{T ∈ λ, uτT(i) = β, ci,T − ri,T = γ} = card{T̃ ∈ µ, uτT̃(i) = β, ci,T̃ − ri,T̃ = γ}
Let λ = (λ1, λ2), µ = (µ1, µ2), λ1 = (λ1,l)l∈N? , µ1 = (µ1,l)l∈N? and a(i, λ, β, γ) be the above

quantity.
We first show that r1 = r2, where λ1 ` r1 and λ2 ` r2. We have a(1, λ, β, 0) =

(
n−1
n−r1

)
Mλ1Mλ2 ,

where Mλi is the number of standard tableaux associated to the partition λi. This is true
because counting the number of double-tableaux with 1 in the left tableau is equivalent to
choosing n − r − 1 numbers in [[2, n]] and counting the number of ways the numbers can
be arranged in each tableau to get a standard double-tableau. In the same way, wa have
a(1, λ,−1, 0) =

(
n−1
r1

)
Mλ1Mλ2 . Since 1 is either in the first row and first column of the left

tableau or in the first row and first column of the right tableau for any standard double-tableau,
we have a(1, λ, β, 0) = a(1, µ, β, 0) and a(1, λ,−1, 0) = a(1, µ,−1, 0). It follows that(

n− 1
n− r1

)
Mλ1Mλ2

(
n− 1
r2

)
Mµ1Mµ2 =

(
n− 1
r1

)
Mλ1Mλ2

(
n− 1
n− r2

)
Mµ1Mµ2

(n− 1)!(n− 1)!
(n− r1)!(r1 − 1)!(n− 1− r2)!r2! = (n− 1)!(n− 1)!

r1!(n− r1 − 1)!(n− r2)!(r2 − 1)!
1

(n− r1)r2
= 1

r1(n− r2)
nr2 − r1r2 = nr1 − r1r2

r1 = r2.

In order to show that the quantities are equal, it is sufficient to show that for any i ∈ [[1, n]],
T ∈ λ and T̃ ∈ µ, we have uτT(i)α

ci,T−ri,T+i−1 = uτT̃(i)α
ci,T̃−ri,T̃+i−1 if and only if uτT(i) = uτT̃(i)

and ci,T − ri,T = ci,T̃ − ri,T̃. Let T ∈ λ, T̃ ∈ µ such that for all i ∈ [[1, n]], uτT(i)α
ci,T−ri,T+i−1 =

uτT̃(i)α
ci,T̃−ri,T̃+i−1.

Let i ∈ [[1, n]]. Assume by contradiction that uτT(i) 6= uτT̃(i). We then have that
αci,T̃−ri,T̃+ri,T−ci,T = uτT(i)

uτT̃(i)
∈ {−β,−β−1}. Since i is in a tableau on a different side for T and T̃ and

r = rλ = rµ, we have that either 1−r ≤ ri,T−ci,T ≤ r−1 and 1−(n−r) ≤ ci,T̃−ri,T̃ ≤ n−r−1
or 1− (n− r) ≤ ri,T − ci,T ≤ n− r − 1 and 1− r ≤ ci,T̃ − ri,T̃ ≤ r − 1. In both cases, we have
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2−n ≤ ci,T̃− ri,T̃ + ri,T− ci,T ≤ n− 2. By assumption, we have −β /∈ {−αi, 1−n ≤ i ≤ n− 1},
therefore it follows by contradiction that uτT(i) = uτT̃(i).

Let us show now that λ1,1 = µ1,1 and mλ = mµ.
Assume by contradiction that µ1,1 < λ1,1. We write i = µ1,1 + 1. By the equality of the

eigenvalues of the Jucys-Murphy elements, there exists T̃ ∈ µ such that uτT̃(i)α
ci,T̃−ri,T̃ = βαi−1

since there exists a standard double-tableau associated to λ with µ1,1+1 in box (1, µ1,1+1) of the
left tableau. By the above reasonning, we get that uτT̃(i) = β, therefore αµ1,1+ri,T̃−ci,T̃ = 1. For
any standard double-tableau associated to µ and for any number i in a box of its left tableau,
we have ci− ri ≤ µ1,1− 1 < µ1,1, therefore 0 < µ1,1 + ri,T̃− ci,T̃ ≤ 2n < 2a, where a is the order
of α. It follows that µ1,1 + ri,T̃ − ci,T̃ = a. We have in the same way that ri,T̃ − ci,T̃ ≤ mµ − 1,
where mµ is the number of boxes in the first column of µ1. Recall that by assumption, we have
a > n. It follows that n < a = µ1,1 + ri,T̃ − ci,T̃ ≤ µ1,1 + mµ − 1. We have that µ1,1 + mµ − 1
is equal to the number of boxes to go through horizontally and then vertically in order to get
from box (1, µ1,1) to box (mµ, 1), therefore µ1,1 +mµ − 1 ≤ n. This implies that n < n and we
get by contradiction that µ1,1 ≥ λ1,1. In the same way, we get λ1,1 ≥ µ1,1, therefore λ1,1 = µ1,1.

Assume by contradiction that mµ < mλ. We write i = mµ+1. There exists T̃ ∈ µ such that
uτT̃(i)α

ci,T̃−ri,T̃ = βα1−i since there exists a standard double-tableau associated to λ withmµ+1 in
box (mµ+1, 1). It follows that αci,T̃−ri,T̃+mµ = 1. We then get that 0 < ci,T̃−ri,T̃+mµ < 2n < 2a
since ci,T̃ − ri,T̃ ≥ 1−mµ > −mµ. It follows that n < a = ci,T̃ − ri,T̃ +mµ ≤ µ1,1 +mµ − 1 ≤ n.
This is a contradiction, therefore mλ ≤ mµ and in the same way mµ ≤ mλ, therefore mµ = mλ.
We can now complete the proof of the equalities of the quantities.

Let T ∈ λ, T̃ ∈ µ such that for all i ∈ [[1, n]], uτT(i)α
ci,T−ri,T+i−1 = uτT̃(i)α

ci,T̃−ri,T̃+i−1. Let
i ∈ [[1, n]], we have that uτT(i) = uτT̃(i) and αci,T−ri,T+ri,T̃−ci,T̃ = 1. We have that 1 − mλ ≤
ci,T−ri,T ≤ λ1,1−1 and 1−mµ ≤ ci,T̃−ri,T̃ ≤ µ1,1−1 so 1−n ≤ 2−mλ−λ1,1 = 2−mλ−µ1,1 ≤
ci,T − ri,T + ri,T̃ − ci,T̃ ≤ λ1,1 +mµ − 2 = λ1,1 +mλ − 2 ≤ n− 1. It follows by the assumptions
on the order of α that ci,T − ri,T = ci,T̃ − ri,T̃.

We have proved for all i ∈ [[1, n]] and γ ∈ Z that a(i, λ, β, γ) = a(i, µ, β, γ) and λ1,1 = µ1,1.
We will prove that this implies that λ1 = µ1.

Let (λ1,li , li)1≤i≤sλ (resp (µ1,ki , ki)1≤i≤sµ) be the extremal boxes of λ1 (resp µ1). For all
i, j ∈ [[1, sλ]] (resp [[1, sµ]]), i < j, we have that λ1,li − li > λ1,lj − lj (resp µ1,ki − ki > µ1,kj − kj).
We have that for all i ∈ [[1, sλ]], 0 6= a(n, λ, β, λ1,li−li) = a(n, µ, β, λ1,li−li) and for all i ∈ [[1, sµ]],
0 6= a(n, µ, β, µ1,ki−ki) = a(n, λ, β, µ1,ki−ki) since for any extremal box, there exists a tableau
with n in that box. It follows that sλ = sµ and for all i ∈ [[1, sλ]], λ1,li − li = µ1,ki − ki. Since
λ1,l1 = µ1,k1 , we have that k1 = l1.

Let us show by induction that for all i ∈ [[1, sλ]], we have li = ki and λ1,li = µ1,ki . Let
j ≥ 2, assume that for all i ≤ j − 1, (λ1,li , li) = (µ1,ki , ki). Assume by contradiction that
µ1,kj < λ1,lj . We then have kj < lj since µ1,kj − kj = λ1,lj − lj. We have that a(n − (kj −
lj−1), µ, β, µ1,kj − lj−1) = 0 since there are kj − lj−1 boxes below (lj−1, µ1,kj) and lj − lj−1 boxes
to its right and no boxes both below and to its right. On the other hand, there exist standard
double-tableaux associated to λ such that n− (kj − lj−1) is in box (lj − kj + lj−1, λ1,lj) because
lj > kj. It follows that a(n − (kj − lj−1), λ, β, λ1,lj − (lj − kj + lj−1)) 6= 0. We have that
λ1,lj − (lj − kj + lj−1 = µ1,kj − kj + kj − lj−1 = µ1,kj − lj−1, therefore we get a contradiction.
It follows that µ1,kj ≥ λ1,lj and in the same way, λ1,lj ≥ µ1,kj , therefore λ1,lj = µ1,kj . We then
have that kj = lj because λ1,lj − lj = µ1,kj − kj.
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We can then conclude by induction that λ1 have µ1 the same extremal boxes. This proves
that λ1 = µ1 because a partition is completely determined by its extremal boxes. We get in
the same way that λ2 = µ2, therefore λ = µ.

We now generalize the work done in [12] for type A to typeB, that is we define a bilinear form
which is fixed by the image of the derived subgroup of the Artin group of the Iwahori-Hecke
algebra. We define a weight by ω(T) = ω1(T)ω2(T)ω3(T), where ω1(T) = ∏

i<j,i∈T1,j∈T2
(−1),

ω2(T) = ∏
i<j,i,j∈T2,ri(T)>rj(T)

(−1) and ω3(T) = ∏
i<j,i,j∈T1,ri(T)>rj(T)

(−1). We then define a bilinear

form (.|.) by (T|T̃) = ω(T)δT′,T̃, where T′ = (T′2,T′1) for T = (T1,T2). In the same way
λ′ = (λ′2, λ′1) is the transpose of λ = (λ1, λ2).

If µ is a partition of an integer m with diagonal size b(µ) = max{i, µi ≥ i}, we let ν(µ) = 1
if m−b(µ)

2 is even and −1 otherwise. Note that by Lemma 6 of [33], if µ = µ′ then m−b(µ)
2 is an

integer and ν(µ) = (−1)
m−b(µ)

2 . If λ = (λ1, λ2) is a double-partition with λ1 a partition of r and
λ2 a partition of n− r, we let ν̃(λ) = ν(λ1)ν(λ2)(−1)r(n−r).

We now give a proposition similar to Proposition 3.1 in [12].

Proposition 3.1.1. For all standard double-tableaux T, T̃, we have the following properties.

1. (Si.T|Si.T̃) = (−α)(T|T̃) and (T.T|T.T̃) = (−β)(T|T̃).

2. For all b ∈ ABn , (b.T|b.T̃) = (T|T̃).

3. The restriction of (.|.) to Vλ when λ = λ′ and to Vλ ⊕ Vλ′ when λ 6= λ′ is non-degenerate.
Assume that λ = λ′. Then (., .) is symmetric on Vλ if ν̃(λ) = 1 and skew-symmetric
otherwise. Moreover, its Witt index is positive.

Proof. Let T and T̃ be two double standard-tableaux. Recall that for λ  n, T = (T1,T2) ∈ λ
and i ∈ [[1, n]], we write τT(i) = 1 if i ∈ T1 and τT(i) = 2 if i ∈ T2. We also recall that u1 = β
and u2 = −1.

1. We have (T.T|T.T̃) 6= 0 ⇔ (T|T̃) 6= 0 ⇔ T′ = T̃ ⇒ (T.T|T.T̃) = −β(T|T̃) because
τT(1) = 3 − τT′(1). Let i ∈ [[1, n − 1]], if τT(i) = τT(i + 1) then by [12, Prop 2.4.], we have
(Si.T|Si.T̃) = (T|T̃) because in the same way, we have ω(T) = −ω(Ti↔i+1) for any standard
double-tableau T and mi(T) = mi(TτT(i)) when τT(i) = τT(i+ 1).

We now assume that τT(i) 6= τT(i + 1). We have that Si.T = mi(T)T + (1 + mi(T))Ti↔i+1
and Si.T̃ = mi(T̃)T̃+ (1 +mi(T̃))T̃i↔i+1. It follows that

(Si.T|Si.T̃) = mi(T)mi(T̃)(T|T̃) + (1 +mi(T))mi(T̃)(Ti↔i+1, T̃) +
mi(T)(1 +mi(T̃))(T|T̃i↔i+1) + (1 +mi(T))(1 +mi(T̃))(Ti↔i+1|T̃i↔i+1).

This is non-zero only if T̃ = T′ or T̃ = T′i↔i+1. We now have two possible cases.
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The first case is T̃ = T′. We write a = ci − ri + ri+1 − ci+1 with (ri, ci) and (ri+1, ci+1) the
boxes in T, we then have

(Si.T|Si.T̃) = mi(T)mi(T′)ω(T) + (1 +mi(T))(1 +mi(T′))ω(Ti↔i+1)
= −ω(T)(1 +mi(T) +mi(T′))

= −ω(T)
1 + α− 1

1 + uτ(i)
uτ(i+1)

αa
+ α− 1

1 + uτ(i+1)
uτ(i)

α−a


= −ω(T)1 + (α− 1)

1 + uτ(i)
uτ(i+1)

αa + 1 + uτ(i+1)
uτ(i)

α−a

1 + uτ(i)
uτ(i+1)

αa + uτ(i+1)
uτ(i)

α−a + 1


= −α(T|T̃).

The second case is T̃ = T′i↔i+1, we then have

(Si.T|Si.T̃) = (1 +mi(T))(mi(T′i↔i+1))ω(Ti↔i+1) +mi(T)(1 +mi(T′i↔i+1))ω(T)
= −ω(T)(mi(T′i↔i+1)−mi(T))

= −ω(T)

 α− 1
1 + uτ(i)α

ri+1−ci+1

uτ(i+1)α
ri−ci

− α− 1
1 + uτ(i)α

ci−ri

uτ(i+1)α
ci+1−ri+1


= 0
= −α(T|T̃).

This concludes the proof of 1. 2 follows from 1.
3. By definition, the bilinear form is non-degenerate. Assume λ = (λ1, λ2) = λ′. We

consider T = (T1,T2) ∈ λ. Since substituting i1 < i2 < ... < il in T1 by 1 < 2 < ... < l does not
change the product and the weight ω on T ∈ µ for µ  n satisfies ω(T)ω(T′) = ν(µ) by Lemme
6 of [33], we have that ω(T)ω(T′) = ν(λ1)ν(λ2) ∏

i<j,i∈T1,j∈T2 or i∈T2,j∈T1
(−1). The cardinality of

the set {i < j, i ∈ T1, j ∈ T2 or i ∈ T2, j ∈ T1} is equal to the number of pairs (i, j) with
i in T1 and j in T2, which equals (n2 )2. It follows that ω(T)ω(T′) = ν̃(λ) for any standard
double-tableau T associated to λ. For any pair (T, T̃), we have that

(T̃|T) = ω(T̃)δT,T̃′ = ν̃(λ)ω(T̃′)δT,T̃′ = ν̃(λ)ω(T)δT̃,T′ = ν̃(λ)(T|T̃).

The Witt index is positive since the basis can be partitioned in pairs (T|T′).

We remark that we have proved that ω(T)ω(T′) = ν̃(λ) for any double-partition λ and any
standard double-tableau T in Vλ.

3.2 Factorization of the image of the Artin group in the
Iwahori-Hecke algebra

In this section, we first see how the different representations are related when restricted to the
derived subgroup. We see some factorisations appear between the representation associated to a
given double-partition λ and the representation associated to its transposed double-partition in
Proposition 3.2.1. We also see that when the field extension is non-trivial, we have factorizations
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through field automorphism. All those results are summarized in Proposition 3.2.4. Finally, we
see that all the representations associated to hook diagrams factor through two representations
as is shown in Proposition 3.2.5.

3.2.1 Isomorphisms between representations
Let L ∈ End(V ) be defined by T 7→ ω(T)T′. We give a generalization of Lemma 3.2. of [12].

Proposition 3.2.1. Let λ be a double-partition of n such that λ 6= λ′ (resp λ = λ′). The map
L induces an endomorphism of Vλ ⊕ Vλ′ (resp Vλ) which switches Vλ and Vλ′ (resp leaves Vλ
stable) such that the actions of Sr and T satisfy

LSrL−1(−α)−1 = tS−1
r ,LTL−1(−β)−1 = tT−1.

Proof. This follows directly from Proposition 3.1.1 by writing the matrix of the bilinear form
and the matrix of L.

We now suppose Fp(α, β) = Fp(α + α−1, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β + β−1).
We then have an Fq-automorphism ε of order 2 such that ε(α) = α−1 and ε(β) = β−1. In

[12], a function d was defined on any standard tableau T associated to a partition λ of n by
d(T) = ∏

i,j,ri>rj

αcj−rj−αci−ri+1

αcj−rj+1−αci−ri , where for i ∈ [[1, n]], ri denotes the row of i in T and ci denotes

the column of i in T.
Let 〈., .〉 be the hermitian form defined by 〈T, T̃〉 = d(T)δT,T̃, where

d(T) = d̃(T1)d̃(T2)
∏

i∈T1,j∈T2,i<j

2 + βαai,j−1 + β−1α1−ai,j

α + α−1 + βαai,j + β−1α−ai,j

with ai,j = ci − ri + rj − cj and d̃ induced by the d defined in [12] applied to T1 and T2 by
seeing them as standard tableaux using the ordered bijections onto [[1, r]] and [[1, n− r]].

We now check that d(T) is well-defined and non-zero for any standard double-tableau. We
prove in what follows that the big product in the expression of d is indeed well-defined and
non-zero for any double-tableau with no empty components.

Let λ  n,T = (T1,T2) ∈ λ and (i, j) a pair of integers such that i < j, i ∈ T1 and j ∈ T2.
We set r to be the number of boxes of T1, we have 1 − r ≤ ci − ri ≤ r − 1 and 1 − (n − r) ≤
cj−rj ≤ n−r−1, therefore 2−n ≤ a = ai,j ≤ n−2. We have α+α−1 +βαa+β−1α−a = α(1+
βαa−1)+α−aβ−1(1+βαa−1) = α(1+βαa−1)(1+α−a−1β−1). This product never cancels because
β /∈ {−αi, 1−n ≤ i ≤ n−1}. In the same way 2+βαa−1 +β−1α1−a = (1+βαa−1)(1+β−1α1−a)
never cancels.

Now we have defined this hermitian form, we can generalize Proposition 3.6 from [12].

Proposition 3.2.2. The group ABn acts in a unitary way on V with respect to this hermitian
form and this form is non-degenerate on Vλ for any double-partition λ of n. In particular,
for any double-partition λ of n, there exists a matrix P ∈ GLnλ(q) such that PRλ(T )P−1 =
ε(R?

λ(T )) = Rλ(T ) and PRλ(Sr)P−1 = ε(R?
λ(Sr)).

Proof. The action of T is indeed unitary with regards to this hermitian form because βε(β) =
(−1)ε(−1) = 1. Let T be a standard double-tableau and r ∈ [[1, n − 1]]. If τT(r) = τT(r + 1)
then the result is a consequence of Proposition 3.6. in [12].
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We now assume that τT(r) 6= τT(r + 1), up to switching T and Tr↔r+1 we can assume that
τT(r) = 1 and τT(r+ 1) = 2. It remains to show that 〈T,T〉 = 〈Sr.T, Sr.T〉, 〈Tr↔r+1,Tr↔r+1〉 =
〈Sr.Tr↔r+1, Sr.Tr↔r+1〉 and 〈Sr.T, Sr.Tr↔r+1〉 = 〈T,Tr↔r+1〉. In the following computation, we
write a = ai,i+1 and T̃ = Tr↔r+1. We have

〈Sr.T, Sr.T〉 = mr(T)ε(mr(T))d(T) + (1 +mr(T))ε(1 +mr(T))d(T̃)

= d(T)(mr(T)ε(mr(T)) +
(
α+ α−1 + βαa + β−1α−a

2 + βαa−1 + β−1α1−a (1 +mr(T))ε(1 +mr(T)))
)

= d(T)
(

α− 1
1 + βαa

α−1 − 1
1 + β−1α−a + α+ α−1 + βαa + β−1α−a

2 + βαa−1 + β−1α1−a
α+ βαa

1 + βαa
α−1 + β−1α−a

1 + β−1α−a

)
= d(T)

(
2− α− α−1

2 + βαa + β−1α−a + α+ α−1 + βαa + β−1α−a

2 + βαa + β−1α−a

)
= d(T)
= 〈T,T〉.

We also have

〈Sr.T̃, Sr.T̃〉 = mr(T̃)ε(mr(T̃))d(T̃) + (1 +mr(T̃))ε(1 +mr(T̃))d(T)

= d(T̃)
(

α− 1
1 + β−1α−a

α−1 − 1
1 + βαa

+ 2 + βαa−1 + β−1α1−a

α+ α−1 + βαa + β−1α−a
α+ β−1α−a

1 + β−1α−a
α−1 + βαa

1 + βαa

)
= d(T̃)

(
2− α− α−1

2 + βαa + β−1α−a+

4 + 2βαa+1 + 2β−1α−a−1 + 2βαa−1 + β2α2a + α−2 + 2β−1α1−a + α2 + β−2α−2a

(α+ α−1 + βαa + β−1α−a)(2 + βαa + β−1α−a)

)
= d(T̃)

(
2− α− α−1

2 + βαa + β−1α−a + (α+ α−1 + βαa + β−1α−a)2

(α+ α−1 + βαa + β−1α−a)(2 + βαa + β−1α−a)

)
= d(T̃)
= 〈T̃, T̃〉.

Finally, we have

〈Sr.T, Sr.T̃〉 = mr(T)ε(1 +mr(T̃))d(T) + (1 +mr(T))ε(mr(T̃))d(T̃)

= d(T)
(

α− 1
1 + βαa

α−1 + βαa

1 + βαa
+ α+ α−1 + βαa + β−1α−a

2 + βαa−1 + β−1α1−a
α+ βαa

1 + βαa
α−1 − 1
1 + βαa

)
= d(T) α− 1

(1 + βαa)2(2 + βαa−1 + β−1α1−a)
(
(α−1 + βαa)(2 + βαa−1 + β−1α1−a)−

α−1(α+ α−1 + βαa + β−1α−a)(α+ βαa)
)

= d(T) α− 1
(1 + βαa)2(2 + βαa−1 + β−1α1−a)

(
2α−1 + βαa−2 + β−1α−a + 2βαa+

β2α2a−1 + α− α− α−1 − βαa − β−1α−a − βαa − βαa−2 − β2α2a−1 − α−1)
= 0
= 〈T, T̃〉.

We recall that ABn = [ABn , ABn ] is the derived subgroup of ABn . When it exists, we write
ε for the automorphism of order 2 of Fq = Fp(α, β).

Lemma 3.2.1. If λ is a double-partition of n, then the restriction of Rλ to ABn is absolutely
irreducible.
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Proof. Assume first it is true for n = 2. Since ABn is generated by ABn−1 and ABn , we have
the result for n ≥ 3 by the same method as in the Lemma 3.4(i) of [12].

We now show the result is true for n = 2. We only have to show it for ([1], [1]) since the
other representations are 1-dimensional. We will show in Section 3.3 (Lemmas 3.3.2 and 3.3.8)
that R[1],[1](AB2) ' SL2(q′) for some q′. The irreducibility then follows.

We now show a lemma computing the normal closure of ABn . This is a generalization to
type B of Lemma 2.1 of [12]

Lemma 3.2.2. For n ≥ 4, the normal closure � ABn−1 �ABn of ABn−1 in ABn is ABn.

Proof. Let n ≥ 4. By Lemma 2.1 of [12], we have that AAn =� AAn−1 �AAn , where
AAn =< S1, S2, . . . , Sn−1 >≤ ABn . We have that ABn is generated by AAn and ABn−1 therefore
the result follows.

We now recall Lemma 2.2 of [12].

Lemma 3.2.3. Let G be a group, k a field and R1, R2 two representations of G in GLN(k) such
that the restrictions to the derived subgroup of G are equal and the restriction of at least one of
them is absolutely irreducible. There exists a character η : G→ k? such that R2 = R1 ⊗ η.

Proposition 3.2.3. If λ1 a partition of n then R(λ1,∅)|ABn ' R(∅,λ1)|ABn .

Proof. The action of T is diagonal and the action of Si on (T1, ∅) is identical to the one on
(∅,T1), therefore the proof of the result is straightforward.

We now give a proposition stating the different possible factorizations between double-
partitions of n. In Proposition 2.7 of [34], a version of this proposition is given in the generic
case. Note that the different possible field extensions in the finite case yield many additional
factorizations.

Proposition 3.2.4. Let λ and µ be double-partitions of n with no empty components. We then
have the following properties.

1. If Fq = Fp(α, β) = Fp(α + α−1, β + β−1), then

(a) Rλ|ABn ' Rµ|ABn ⇔ λ = µ,
(b) Rλ|ABn ' R?

µ|ABn
⇔ λ = µ′.

2. If Fq = Fp(α, β) = Fp(α + α−1, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β + β−1), then

(a) Rλ|ABn ' Rµ|ABn ⇔ λ = µ,
(b) Rλ|ABn ' R?

µ|ABn
⇔ λ = µ′,

(c) Rλ|ABn ' ε ◦Rµ|ABn ⇔ λ = µ′,
(d) Rλ|ABn ' ε ◦R?

µ|ABn
⇔ λ = µ.

3. If Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α + α−1, β + β−1), then

(a) Rλ|ABn ' Rµ|ABn ⇔ λ = µ,
(b) Rλ|ABn ' R?

µ|ABn
⇔ λ = µ′,
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(c) Rλ|ABn ' ε ◦Rµ|ABn ⇔ (λ1, λ2) = (µ′1, µ′2),
(d) Rλ|ABn ' ε ◦R?

µ|ABn
⇔ (λ1, λ2) = (µ2, µ1).

4. If Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α + α−1, β + β−1), then

(a) Rλ|ABn ' Rµ|ABn ⇔ λ = µ,
(b) Rλ|ABn ' R?

µ|ABn
⇔ λ = µ′,

(c) Rλ|ABn ' ε ◦Rµ|ABn ⇔ (λ1, λ2) = (µ2, µ1),
(d) Rλ|ABn ' ε ◦R?

µ|ABn
⇔ (λ1, λ2) = (µ′1, µ′2).

Proof. In all cases, (a) and (b) are the same and the proofs are identical.
(a) By Lemma 3.2.3 and Theorem 3.1.1, it is sufficient to show that if there exists η :

ABn → F?q such that Rλ ' Rµ ⊗ η, then λ = µ. Assume such a character exists, since the
abelianization of ABn is < T, S1 >' Z2, up to conjugation we have Rλ(b) = Rµ(b)u`1(b)v`2(b) for
some u, v ∈ F?q. Taking the eigenvalues of S1 and T on both sides of the equality we get that
{α,−1} = {uα,−u} and {β,−1} = {vβ,−v}. Since α2 6= 1 6= β2, we have u = v = 1 which
implies that Rλ and Rµ are isomorphic representations. By theorem 3.1.1, this implies λ = µ.

(b) The implication λ = µ′ ⇒ Rλ|ABn ' R?
µ|ABn

follows from Proposition 3.2.1.
Assume now Rλ|ABn ' R?

µ|ABn
, we then have Rλ′|ABn ' R?

λ|ABn
' (R?

µ|ABn
)? = Rµ|ABn . The

result follow from (a).
In the same way, it is enough to show the converse implication in the remainder of the proof.
2. d) This result follows directly from Proposition 3.2.2.
2. c) By 2. d) and 2. b), we have

ε ◦Rλ′|ABn ' ε ◦ (ε ◦R?
λ′|ABn ) = R?

λ′|ABn ' Rλ|ABn .

3) In this case ε(α) = α−1 and ε(β) = β.
3. c) For every standard double-tableau T = (T1,T2), we define T̃ by T̃ = (T′1,T′2). Let

η : ABn → F?q be the character of ABn defined by η(T ) = 1 and η(Sr) = −α for all r.
Let Q : V(λ1,λ2) → V(λ′1,λ′2), (T1,T2) 7→ (T′1,T′2), U : Vλ → Vλ,T 7→ ω(T)T.
Using the same notations as in Proposition 3.2.2, we will show that for all r ∈ [[1, n− 1]] :

Q−1(−α)ε(Rλ′1,λ
′
2
(Sr))Q = U−1PRλ(Sr)P−1U,Q−1ε(Rλ′1,λ

′
2
(T ))Q = U−1PRλ(T )P−1U.

Let T = (T1,T2) be a standard double-tableau. The second equality follows from the
equalities PRλ(T )P−1 = Rλ(T ) and ε(β) = β. If Tr↔r+1 is non-standard, the first equality is
verified by Sr. Assume Tr↔r+1 is standard, write a = ar,r+1. If τT(r) = τT(r + 1) then in the
basis (T,Tr↔r+1), we have :

Rλ(Sr) =
(

α−1
1−αa

α−α−a
1−α−a

α+αa
1−αa

α−1
1−α−a

)
, U−1PRλ(Sr)P−1U = −α

(
α−1−1
1−αa

α−1−α−a
1−α−a

α−1−αa
1−αa

α−1−1
1−α−a

)
,

−αQ−1ε(Rλ′1,λ
′
2
(Sr))Q = −αε(

(
α−1

1−α−a
α−αa
1−αa

α−α−a
1−α−a

α−1
1−αa

)
= U−1PRλ(Sr)P−1U.

If τT(r) = 1 and τT(r + 1) = 2 then we have
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Rλ(Sr) =
 α−1

1+βαa
α+β−1α−a

1+β−1α−a
α+βαa
1+βαa

α−1
1+β−1α−a

 , U−1PRλ(Sr)P−1U = −α
 α−1−1

1+βαa
β−1α−a+α−1

1+β−1α−a

βαa+α−1

1+βαa
α−1−1

1+β−1α−a

 ,

−αQ−1ε(Rλ′1,λ
′
2
)Q = −αε(

 α−1
1+βα−a

α+β−1αa

1+β−1αa

α+βα−a
1+βα−a

α−1
1+β−1αa

 = U−1PRλ(Sr)P−1U.

It follows that R(λ1,λ2)|ABn ' ε ◦R(λ′1,λ′2)|ABn .
3. d) This is a consequence of 3. c) and 3. b).
4. c) For each standard double tableau T = (T1,T2), we set T̃ = (T2,T1). Let η : ABn → F?q

be the character defined by η(T ) = −β and η(Sr) = 1 for all Sr.
Let Q : Vλ2,λ1 → Vλ1,λ2 be T 7→ T̃.
Let us show that R(λ1,λ2) = Q((ε ◦ R(λ2,λ1))

⊗
η)Q−1, where in this case ε(α) = α and

ε(β) = β−1. The proof of the result is straightforward for T . Let r ∈ [[1, n− 1]]. If r and r + 1
are in the same tableau then the result is clear. Assume r is in the right tableau, r + 1 is in
the left tableau and set a = ar,r+1. In the basis (T,Tr↔r+1), we have

Rλ(Sr) =
 α−1

1+βαa
α+β−1α−a

1+β−1α−a
α+βαa
1+βαa

α−1
1+β−1α−a



Q−1ε(Rλ2,λ1(Sr))Q = ε(
 α−1

1+β−1αa
α+βα−a
1+βα−a

α+β−1αa

1+β−1αa
α−1

1+βα−a

 = Rλ(Sr).

This proves that we have R(λ1,λ2)|ABn ' ε ◦R(λ2,λ1)|ABn .
4. d) This is a consequence of 4.c) and 4.b).

For r ∈ [[1, n− 1]], we define the double-partitions λ(r) = ([1n−r], [r]) and λ(r) = ([r], [1n−r]).
The following proposition is a generalization of Proposition 3.5 of [12]. The analogous propo-
sition in the generic case is given by Proposition 2.13 of [34].

Proposition 3.2.5. For r ∈ [[1, n− 1]], there exists η1,r, η2,r : ABn → F?q such that
Rλ(r) ' (ΛrRλ(1))⊗ η1,r and Rλ(r) ' (ΛrRλ(1))⊗ η2,r .

Proof. Every double-tableau associated with λ(r) or λ(r) can be mapped in a one-to-one way to
a set {i1, i2, ..., ir} ⊂ [[1, n]] such that i1 < i2 < ... < ir, where ik is the number in the k-th box
of the right component. We write vI the corresponding double-tableau and vi = v{i}.
After computation, for k ∈ [[1, n− 1]], we get the following properties.

1. If 1 ∈ I then Rλ(r)(T )vI = −vI .

2. If 1 /∈ I then Rλ(r)(T )vI = βvI .

3. If k, k + 1 /∈ I then Rλ(r)(Sk)vI = −vI .

4. If k, k + 1 ∈ I then Rλ(r)(Sk)vI = αvI .

5. If k ∈ I, k + 1 /∈ I then Rλ(r)(Sk)vI = α−1
1+β−1αk−1vI + α+β−1αk−1

1+β−1αk−1 vI∆{k,k+1}.

6. If k /∈ I, k + 1 ∈ I then Rλ(r)(Sk)vI = α−1
1+βα1−k vI + α+βα1−k

1+βα1−k vI∆{k,k+1}.
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Above, ∆ is the symmetric difference : A∆B = (A ∪B) \ (A ∩B).
To each set I = {i1, i2, ..., ir} can be given in a one-to-one way an element uI of ΛrRλ(1)

writing uI = vi1 ∧ vi2 ∧ ... ∧ vir and these uI form a basis.
For k ∈ [[1, n− 1]], we have the following properties.

1. If 1 ∈ I then ΛrRλ(1)(T )uI = −βr−1uI .

2. If 1 /∈ I then ΛrRλ(1)(T )uI = βruI .

3. If k, k + 1 /∈ I then ΛrRλ(1)(Sk)uI = (−1)ruI .

4. If k, k + 1 ∈ I then ΛrRλ(1)(Sk)uI = (−1)r−1αuI .

5. If k ∈ I, k + 1 /∈ I then

ΛrRλ(1)(Sk)uI = (−1)r−1 α− 1
1 + β−1αk−1uI + (−1)−r−1α + β−1αk−1

1 + β−1αk−1 uI∆{k,k+1}.

6. If k /∈ I, k + 1 ∈ I then ΛrRλ(1)(Sk)uI = (−1)r−1 α−1
1+βα1−kuI + (−1)r−1 α+βα1−k

1+βα1−k uI∆{k,k+1}.

Looking at the basis change vI 7→ uI and the character η1,r(h) = (−1)(r−1)`1(h)β(r−1)`2(h), we
have the first part of the proposition.

In the same way, writing η2,r(h) = (−1)(r−1)`1(h)(−1)(r−1)`2(h), we have the second part of
the proposition.

3.2.2 Factorization depending on the field
In this section, we use the work from the previous sections to state the main results in type B.
As for the factorizations shown in Proposition 3.2.4, we have to distinguish cases depending on
the field extensions appearing.

The result depends on the properties of the field extension Fq = Fp(α, β) of Fp(α+α−1, β+
β−1) and the field extension Fq̃ = Fp(α) of Fp(α+ α−1). Let us consider the Hasse diagram for
the field extension Fp(α, β) of Fp(α + α−1, β + β−1).

Fp(α, β)

Fp(α, β + β−1) Fp(α + α−1, β)

Fp(α + α−1, β + β−1)

All the extensions represented by edges are of degree at most 2 since X2−(α+α−1)X+1 and
X2− (β+β−1)X+1 are the polynomials involved. Note that if Fp(α, β+β−1) = Fp(α+α−1, β)
then β ∈ Fp(α, β + β−1). Therefore Fp(α, β + β−1) = Fp(α, β). This proves in particular that
Fp(α, β) cannot be an extension of degree 4 of Fp(α+α−1, β+β−1), otherwise we would have that
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Fp(α, β+ β−1) and Fp(α+α−1, β) are two subfields of degree 2 of Fp(α, β) and would therefore
be equal. This would then imply that they are equal to Fp(α, β) and contradict the fact that
the corresponding extensions are of degree 2. Note that Fp(α, β + β−1) 6= Fp(α+α−1, β + β−1)
implies that we have Fp(α) 6= Fp(α+ α−1). This proves that we have the six following cases to
consider

1. Fq = Fp(α, β) = Fp(α + α−1, β + β−1) and Fp(α) = Fp(α + α−1).

2. Fq = Fp(α, β) = Fp(α + α−1, β + β−1) and Fp(α) 6= Fp(α + α−1).

3. Fq = Fp(α, β) = Fp(α + α−1, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β + β−1).

4. Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α + α−1, β + β−1).

5. Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α + α−1, β + β−1) and Fp(α) 6=
Fp(α + α−1).

6. Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α + α−1, β + β−1) and Fp(α) =
Fp(α + α−1).

We remark that in the third and fourth cases, we have Fp(α) 6= Fp(α + α−1).
Before stating the main results for type B, we recall the two following lemmas, the first one

is Lemma 2.4 of [11] and the proof of the second one is included in the proof of Proposition 4.1
of [12].

Lemma 3.2.4. Let ρ be an absolutely irreducible representation of a group G in GLr(q), where
Fq is a finite field such that there exists an automorphism ε of order 2 of Fq. If ρ ' ε ◦ ρ?, then
there exists S ∈ GLr(q) such that S−1ρ(g)S ∈ GUr(q

1
2 ) for all g ∈ G.

Lemma 3.2.5. Let ρ and G be as in the previous lemma. If ρ ' ε ◦ ρ, then there exists
S ∈ GLr(q) such that S−1ρ(g)S ∈ GLr(q

1
2 ) for all g ∈ G.

In certain cases, (λ1, λ2) factorizes through (λ2, λ1) or (λ′1, λ′2), therefore we need a good
order on double-partitions of n. We first choose for r ≤ n an order on partitions of r such that if
r has 2l partitions different from their transpose {ai, ai′}i∈[[1,l]] and s partitions {al+i}i∈[[1,s]] equal
to their transpose then a1 < a′1 < a2 < a′2 < ... < al < a′l < al+1 = a′l+1 < ... < al+s = a′l+s. We
also require a1 = [r]. This gives us that λ < µ implies that λ′ < µ′ whenever λ 6= µ′. If λ  n1
and µ  n2 then we say λ > µ if n1 > n2 or n1 = n2 and λ > µ. We then define the order < on
double-partitions of n in the following way, where λ1 is a partition of rλ : (λ1, λ2) < (µ1, µ2) if
rλ < rµ or (rλ = rµ and λ1 < µ1) or (rλ = rµ, λ1 = µ1 and λ2 < µ2).

Lemma 3.2.6. If λ = (λ1, λ2) is a double-partition such that λ 6= λ′, λ 6= (λ2, λ1) and λ 6=
(λ′1, λ′2) then exactly one element of {λ, λ′, (λ′1, λ′2), (λ2, λ1)} verifies the property :

(∗) λ < λ′ and λ < (λ′1, λ′2).

Proof. Let λ = (λ1, λ2) be a double-partition verifying the conditions in the lemma. Assume
λ > λ′ and λ < (λ′1, λ′2). Since λ > λ′, we have rλ ≥ rλ′ and since rλ + r′λ = n, we get rλ ≥ n

2 .
Let’s show that either (λ′ < λ and λ′ < (λ2, λ1)) or ((λ2, λ1) < (λ′1, λ′2) and (λ2, λ1) < (λ′2, λ′1)),
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i.e. either λ′ verifies (∗) or (λ2, λ1) verifies (∗). Those two cases are indeed distinct because
either λ′ < (λ2, λ1) or (λ2, λ1) < λ′. If λ′ < (λ2, λ1) then we are in the first case because we
assumed λ > λ′. Let’s now assume λ′ > (λ2, λ1), we must show (λ2, λ1) < (λ′1, λ′2). This is
obvious if rλ > n

2 . If rλ = n
2 , then (λ1, λ2) = λ > λ′ = (λ′2, λ′1) implies that λ1 > λ′2 or (λ1 = λ′2

and λ2 > λ′1), which is a contradiction. Therefore λ1 > λ′2 and since λ1 6= λ2, this implies
λ′1 > λ2 by definition of our order on partitions of rλ. This shows that (λ2, λ1) < (λ′1, λ′2).

Assume λ > λ′ and λ > (λ′1, λ′2). We then have that either λ′ verifies (∗) or (λ2, λ1) verifies
(∗) in exactly the same way as in the previous case.

Assume λ < λ′ and λ > (λ′1, λ′2), let us show that (λ′1, λ′2) < (λ2, λ1) and (λ′1, λ′2) < (λ1, λ2),
i.e. (λ′1, λ′2) verifies (∗). It is enough to show the second inequality since we have the first one
by assumption. This is obvious if rλ < n

2 . If rλ = n
2 then λ1 < λ′2 because λ1 6= λ′2, therefore

λ′1 < λ2 because λ1 6= λ2 and (λ′1, λ′2) < (λ2, λ1).
Assume λ < λ′ and λ < (λ′1, λ′2). To conclude the proof, it is enough to show that not one

of λ′, (λ′1, λ′2) and (λ2, λ1) verifies (∗) in this case. It is obvious for λ′ and (λ′1, λ2). If rλ < n
2 , it

is also obvious for (λ2, λ1) since (λ2, λ1) > (λ′1, λ′2). If rλ = n
2 then since λ1 < λ′2 and λ1 6= λ′2,

we have that λ2 > λ′1, therefore (λ2, λ1) > (λ′1, λ′2).

We are now able to state the main results for type B which are a generalization of Theorem
1.1 of [12]. The end of the proof will be in the next section. The main difference arises from
the additional factorizations in the last cases for the field extensions explicited in six different
cases at the beginning of Section 3.2. The results are given in Theorems 3.2.1 up to 3.2.6. The
analogous versions of these theorems in the generic case can be seen in Theorem 2.21 of [34].
Note here again that in type B, the complexity of the field extensions involved yields a wider
variety of results.

We write A1,n = {(λ1, ∅), λ1 ` n}, A2,n = {(∅, λ2), λ2 ` n}, An = A1,n ∪ A2,n. Aεn =
{(λ1, ∅) ∈ A1,n, λ1 not a hook}, εn = {λ `` n, λ /∈ An, λ not a hook},Fq̃ = Fp(α).
Theorem 3.2.1. If Fq = Fp(α, β) = Fp(α + α−1, β + β−1) and Fp(α) = Fp(α + α−1), then the
morphism : ABn → H×Bn,α,β '

∏
λ``n

GL(λ) factors through the epimorphism

Φ1,n : ABn → SLn−1(q̃)×
∏

(λ1,∅)∈Aεn,λ1<λ′1

SLnλ(q̃)×
∏

(λ1,∅)∈Aεn,λ1=λ′1

OSP (λ)′×

SLn(q)2 ×
∏

λ∈εn,λ<λ′
SLnλ(q)×

∏
λ∈εn,λ=λ′

OSP (λ)′,

where OSP (λ) is the group of isometries of the bilinear form considered in Proposition 3.1.1.

Theorem 3.2.2. If Fq = Fp(α, β) = Fp(α + α−1, β + β−1) and Fp(α) 6= Fp(α + α−1), then the
morphism : ABn → H×Bn,α,β '

∏
λ``n

GL(λ) factors through the epimorphism

Φ2,n : ABn → SUn−1(q̃ 1
2 )×

∏
(λ1,∅)∈Aεn,λ1<λ′1

SUnλ(q̃ 1
2 )×

∏
(λ1,∅)∈Aεn,λ1=λ′1

ÕSP (λ)′×

SLn(q)2 ×
∏

λ∈εn,λ<λ′
SLnλ(q)×

∏
λ∈εn,λ=λ′

OSP (λ)′,

where OSP (λ) is the group of isometries of the bilinear form considered in Proposition 3.1.1
and ˜OSP (λ) is the group of isometries of a form of the same type but defined over subfield of
degree 2.

51



Theorem 3.2.3. If Fq = Fp(α, β) = Fp(α + α−1, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β + β−1),
then the morphism ABn → H×Bn,α,β '

∏
λ``n

GL(λ) factors through the epimorphism

Φ3,n : ABn → SUn−1(q̃ 1
2 )×

∏
(λ1,∅)∈Aεn,λ1<λ′1

SUnλ(q̃ 1
2 )×

∏
(λ1,∅)∈Aεn,λ1=λ′1

ÕSP (λ)′×

SUn(q 1
2 )2 ×

∏
λ∈εn,λ<λ′

SUnλ(q 1
2 )×

∏
λ∈εn,λ=λ′

ÕSP (λ)′,

where ÕSP (λ) is the group of isometries of a bilinear form of the same type as the one consid-
ered in proposition 3.1.1 but defined over F

q
1
2
.

By Proposition 3.2.4 and Lemmas 3.2.4 and 3.2.5, we have the following theorem

Theorem 3.2.4. If Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α + α−1, β + β−1),
then the morphism ABn → H×Bn,α,β '

∏
λ``n

GL(λ) factors through the epimorphism

Φ4,n : ABn → SUn−1(q̃ 1
2 )×

∏
(λ1,∅)∈Aεn,λ1<λ′1

SUnλ(q̃ 1
2 )×

∏
(λ1,∅)∈Aεn,λ1=λ′1

ÕSP (λ)′×

SLn(q)×
∏

λ∈εn,λ<λ′,λ<(λ′1,λ′2),λ 6=(λ2,λ1)
SLnλ(q)×

∏
λ∈εn,λ<λ′,λ=(λ2,λ1)

SUnλ(q 1
2 )×

∏
λ∈εn,λ<λ′,λ=(λ′1,λ′2)

SLnλ(q 1
2 )×

∏
λ∈εn,λ=λ′,λ<(λ′1,λ′2)

OSP (λ)′ ×
∏

λ∈εn,λ=λ′,λ=(λ′1,λ′2)
ÕSP (λ)′.

Theorem 3.2.5. If Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α + α−1, β + β−1)
and Fp(α) 6= Fp(α+ α−1), then the morphism ABn → H×Bn,α,β '

∏
λ``n

GL(λ) factors through the
epimorphism

Φ5,n : ABn → SUn−1(q̃ 1
2 )×

∏
(λ1,∅)∈Aεn,λ1<λ′1

SUnλ(q̃ 1
2 )×

∏
(λ1,∅)∈Aεn,λ1=λ′1

ÕSP (λ)′×

SLn(q)×
∏

λ∈εn,λ<λ′,λ<(λ′1,λ′2),λ 6=(λ2,λ1)
SLnλ(q)×

∏
λ∈εn,λ<λ′,λ=(λ2,λ1)

SLnλ(q 1
2 )×

∏
λ∈εn,λ<λ′,λ=(λ′1,λ′2)

SUnλ(q 1
2 )×

∏
λ∈εn,λ=λ′,λ<(λ′1,λ′2)

OSP (λ)′ ×
∏

λ∈εn,λ=λ′,λ=(λ′1,λ′2)
ÕSP (λ)′.

Theorem 3.2.6. If Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α + α−1, β + β−1)
and Fp(α) = Fp(α+ α−1), then the morphism ABn → H×Bn,α,β '

∏
λ``n

GL(λ) factors through the
epimorphism

Φ6,n : ABn → SLn−1(q̃)×
∏

(λ1,∅)∈Aεn,λ1<λ′1

SLnλ(q̃)×
∏

(λ1,∅)∈Aεn,λ1=λ′1

OSP (λ)′×

SLn(q)×
∏

λ∈εn,λ<λ′,λ<(λ′1,λ′2),λ 6=(λ2,λ1)
SLnλ(q)×

∏
λ∈εn,λ<λ′,λ=(λ2,λ1)

SLnλ(q 1
2 )×

∏
λ∈εn,λ<λ′,λ=(λ′1,λ′2)

SUnλ(q 1
2 )×

∏
λ∈εn,λ=λ′,λ<(λ′1,λ′2)

OSP (λ)′ ×
∏

λ∈εn,λ=λ′,λ=(λ′1,λ′2)
ÕSP (λ)′.
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3.3 Surjectivity of the morphisms Φi,n

In this section, we conclude the proof of the theorems in the previous section by showing that
for all i ∈ [[1, 6]], the morphism Φi,n is surjective. The core of the proof for all i will be in Section
2.3.1. However, for small n, the different factorizations which appear in cases 4, 5 and 6 of the
field extensions described at the beginning of Section 3.2.2 change the proofs for small cases.
They require to introduce new tools and consider the maximal subgroups of some classical
groups in low dimension. Those were classified in [9] and we will use their tables in order to
treat those cases. In all cases, the proof is based on inductive reasoning. We start by proving
the result for small n and we then use Goursat’s lemma and a Theorem by Guralnick and Saxl
[9] which relies on the classification of finite simple groups and gives us a list of conditions for
a group to be a classical group. Our induction assumptions will allow us to check that all the
conditions are verified. It will be more tricky to verify those conditions in cases 4, 5 and 6
because of the additional factorizations.

3.3.1 First case : Fq = Fp(α, β) = Fp(α+α−1, β+β−1), Fp(α) = Fp(α+α−1)
In this subsection, we prove the surjectivity of the morphism in the easiest case and establish
groundwork for the other cases. This will conclude the proof of Theorem 3.2.1. We first prove
the result for n ≤ 4 and then use induction to get the result for all n.

We recall Goursat’s Lemma also used in [11] and [12], it was originally proven in [22] and
an english version of the proof can be found in [6] (Lemma 2.3.5) or [41] Lemma 5.2.1:

Lemma 3.3.1 (Goursat’s Lemma). Let G1 and G2 be two groups, K ≤ G1 × G2, and write
πi : K −→ Gi the projection. Let Ki = πi(K) and Ki = ker(πi′) for {i, i′} = {1, 2}. There exists
an isomorphism ϕ : K1/K

1 → K2/K
2 such that K = {(k1, k2) ∈ K1 ×K2, ϕ(k1K

1) = k2K
2}.

We first prove that if for any λ  n, the composition of Rλ with the projection on its
corresponding quasi-simple factor is surjective, then Φ1,n is surjective. We will then prove by
induction that each composition is indeed surjective. In order to get the images of the hook
partitions it is enough to get the images inside the representations associated with the partitions
([1n−1], [1]) and ([1], [1n−1]) . We recall Wagner’s theorem which can be found for example in
[31, II, Theorem 2.3].

Theorem 3.3.1. Let Fr be a finite field, n ∈ N, n ≥ 3 and G ⊂ GLn(r) a primitive group
generated by pseudo-reflections of order greater than or equal to 3. Then one of the following
properties is true.

1. SLn(r̃) ⊂ G ⊂ GLn(r̃) for some r̃ dividing r.

2. SUn(r̃ 1
2 ) ⊂ G ⊂ GUn(r̃ 1

2 ) for some r̃ dividing r.

3. n ≤ 4 and the pseudo-reflections are of order 3 and G ' GUn(2).

Proposition 3.3.1. Let n ≥ 3 and R1 (resp R2) be the representation associated with the
double-partition ([1n−1], [1]) (resp ([1], [1n−1])). We have R1(ABn) ' R2(ABn) ' SLn(q).

Proof. Let n ≥ 3, we will use Theorem 3.3.1. The eigenvalues of R1(T ) are β with multiplicity
n − 1 and −1 with multiplicity 1. The eigenvalues of R1(Si) are α with multiplicity 1, and
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−1 with multiplicity n − 1. The group G = 〈β−1R1(T ),−R1(S1), ...,−R1(Sn−1)〉 is generated
by pseudo-reflections. To apply Wagner’s Theorem (Theorem 3.3.1), we must show that the
group is primitive. If G was imprimitive, we could write Fnq = V1 ⊕ V2 ⊕ ... ⊕ Vr, where for
all i and for all g ∈ G, there exists a j such that g.Vi = Vj. Since R1 is irreducible, either
β−1R1(T ).V1 6= V1 or there exists i ≤ n − 1 such that −R1(Si).V1 6= V1. Assume there exists
i such that −R1(Si).V1 6= V1. Up to reordering, we have V2 = −R(Si).V1. If dim(V1) ≥ 2,
then H−R1(Si) (the hyperplane fixed by −R1(Si)) has a non-empty intersection with V1. It
follows that V1 ∩ V2 6= ∅, which is a contradiction, which proves that dim(V1) = 1. This
reasoning is valid for any Vi, therefore they are all one-dimensional. Let x ∈ V1 be a non-zero
vector, it can be written in a unique way as x = x1 + x2 with x1 ∈ ker(R1(Si) + α) and
x2 ∈ H−R1(Si). We then have that −R1(Si)x = −αx1 +x2 and −R(Si)(−R(Si)x) = α2x1 +x2 =
α(x1 + x2) + (1 − α)(−αx1 + x2) ∈ V1 ⊕ V2. Since α /∈ {0, 1} this contradicts the fact that
there exists j such that −R(Si).V2 = Vj. If V1 6= β−1R1(T )V1 = V2, then if x = x1 + x2 6= 0
with x ∈ V1, x1 ∈ ker(R1(T ) + β)x2 ∈ Hβ−1R1(T ), we have that β−1R1(T )x = −β−1x1 + x2
and β−1R1(T )(β−1R1(T )x) = β−2x1 + x2 = β−1(x1 + x2) + (1− β−1)(−β−1x1 + x2) ∈ V1 ⊕ V2.
This is absurd because β−1 /∈ {0, 1}. This shows that G is primitive and in the same way,
G̃ = 〈−R2(T ),−R2(S1), ...,−R2(Sn−1)〉 is primitive and generated by pseudo-reflections of
order greater than or equal to 3. By Theorem 3.3.1, we have SLn(q̃) ⊂ G, G̃ ⊂ GLn(q̃) or
SUn(q̃ 1

2 ) ⊂ G, G̃ ⊂ GUn(q̃ 1
2 ) for some q̃ dividing q. If we were in the unitary case then there

would exist an automorphism ε of order 2 of Fq̃2 such that det(M) = ε(det(M))−1 for all M
in G or G̃. We also have det(β−1R1(T )) = −β−1, det(−R1(S1)) = det(−R2(S1)) = −α and
det(−R2(T )) = −β. If G or G̃ is unitary then ε(β) = β−1 and ε(α) = α−1, therefore α+α−1 and
β+β−1 are in Fq̃. This contradicts the fact that q̃2 divides q and Fq = Fp(α+α−1, β+β−1). This
proves we have SLn(q̃) ⊂ G, G̃ ⊂ GLn(q̃) for some q̃ dividing q. Using the determinants again,
we have α and β in Fq̃, therefore q̃ = q. We have SLn(q) = [G,G] = [R1(ABn), R1(ABn)] =
R1(ABn) and SLn(q) = [G̃, G̃] = [R2(ABn), R2(ABn)] = R2(ABn) which concludes the proof.

By [36], ABn is perfect for n ≥ 5 but not for n ≤ 4. Those cases must then be treated
separately.

Lemma 3.3.2. If n ≤ 4 then Φ1,n is surjective.

Proof. The representations labeled by double-partitions of n = 2 are all one-dimensional except
for ([1], [1]). We then only need to show that R[1],[1](AB2) = SL2(q). We write t = R[1],[1](T ) =(
β 0
0 −1

)
and s = R[1],[1](S1) = 1

β+1

(
α− 1 α + β
αβ + 1 αβ − β

)
. First note that if P =

(
1 1

αβ+1
α+β −1

)

then P−1tP = 1
α+1

(
β − 1 α + β
αβ + 1 βα− α

)
and P−1sP =

(
α 0
0 −1.

)
. This proves that the roles of

α and β are completely symmetrical in this case. It follows that up to conjugating by P , we
can exchange the conditions on α and the conditions on β. We write G =< t, s >. We have
det(t) = −β and det(s) = −α. Let (u, v) ∈ Fp

2 such that u2 = −β−1 and v2 = −α−1. We set
Fq′ = Fq(u, v). We then have G = 〈t, s〉 = 〈ut, vs〉 ⊂ PSL2(q′). We write Sn the permutation
group of n elements and An its derived subgroup. By Dickson’s Theorem [27, Chapter II,
HauptSatz 8.27], we have that G is either abelian by abelian or isomorphic to A5,S4, PSL2(q̃)
or PGL2(q̃) for a given q̃ greater than or equal to 4 and dividing q′.

If utr = 1 in PSL2(q′), then ((−u)r)2 = 1. Therefore βr = (−1)r and by the condition on
the order of α, G cannot be isomorphic to A4 or A5.

54



We now exclude the case G abelian by abelian. If G is abelian by abelian, then [G,G] is
abelian, i.e. ab = ba for all a, b ∈ [G,G] or equivalently ab = ±ba for all a, b ∈ [G,G]. We have
that (tst−1s−1)(s−1tst−1)− (s−1tst−1)(tst−1s−1) = − (β−1)(α−1)2(αβ+1)(α+β)

βα2(β+1) − (α2β2+αβ3−αβ2−α2β+αβ+β2−α−β)(α−1)(αβ+1)
βα2(β+1)

(α2β2+αβ3−αβ2−α2β+αβ+β2−α−β)(α−1)(α+β)
β2α2(β+1)

(β−1)(α−1)2(αβ+1)(α+β)
βα2(β+1)

 .
This matrix is non-zero because the diagonal coefficients are non-zero by the conditions on β.
This means that if [G,G] is abelian, then we have (tst−1s−1)(s−1tst−1)+(s−1tst−1)(tst−1s−1) =
0, but this matrix equalsα4β+α3β2−2α3β−2α2β2+α3+4α2β+αβ2−2α2−2αβ+α+β

α2β − (α2β+αβ2−2αβ+α+β)(α−1)(αβ+1)
α2β

− (α2β+αβ2−2αβ+α+β)(α+β)(α−1)
α2β2

α4β+α3β2−2α3β−2α2β2+α3+4α2β+αβ2−2α2−2αβ+α+β
α2β

 .

The non-diagonal coefficients are non-zero if A = α2β + αβ2 − 2αβ + α + β is non-zero. If
A = 0 then, the bottom right coefficient of (tst−1s−1)(st−1s−1t) + (st−1s−1t)(tst−1s−1) is equal
to − 1

(β+1)α2β2 multiplied by

α4β3 + α3β4 − α4β2 − 3α3β3 − 2α2β4 + 5α3β2 + 4α2β3+

αβ4 − 3α3β − 8α2β2 − 3αβ3 + 4α2β + 5αβ2 + β3 − 2α2 − 3αβ − β2 =
(α2β2 − α2β + 2αβ − 2α)A+ β((β − 1)A− 2α2(β3 + 1)) = −2βα2(β3 + 1).

This is non-zero by the condition on β. The diagonal coefficients of the difference of these two
commutators are identical to the ones of the difference of the previous commutators, therefore
they are non-zero. This proves that G is not abelian by abelian and there exists q̃ greater than
or equal to 4 such that [G,G] ' PSL2(q̃).

For H a group and A an H-module, we write Z2(H,A) = {f : H × H → A, ∀x, y, z ∈
H, z.f(x, y)f(xy, z) = f(y, z)f(xy, z)} the group of cocyles and B2(H,A) = {f : H × H →
A,∃t : H → A,∀x, y ∈ H, f(x, y) = t(y)t(xy)−1y.t(x)} the group of coboundaries. We
write M(H) = H2(H,C?) = H2(H,Z) its Schur multiplier. We have [G,G] = [G,G] ⊂
PSL2(q), this inclusion gives a projective representation of SL2(q̃) with associated cocyle
c ∈ Z2(SL2(Fq̃),F?q). We will show that H2(SL2(Fq̃),F?q) is trivial which is equivalent to
Z2(SL2(Fq̃),F?q) = B2(SL2(q̃),F?q) which implies that this cocycle is a coboundary. We write
H = SL2(q̃). By the Universal Coefficients Theorem [25, Theorem 3.2], we have the following
exact sequence

1→ Ext(H1(H,Z),F?q)→ H2(H,F?q)→ Hom(H2(H,Z),F?q)→ 1.

We have H1(H,Z) = H/[H,H] [29] and H2(H,Z) = M(H). Since q̃ ≥ 4, we have that SL2(q̃)
is perfect and the exact sequence becomes

1→ 1→ H2(H,F?q)→ Hom(M(H),F?q)→ 1.

By [29, Theorem 7.1.1], if q̃ /∈ {4, 9} then the Schur multiplier M(H) is trivial, therefore this
reduces to H2(H,F?q) ' {1}.

It remains to consider the cases q̃ = 4 and q̃ = 9. If q̃ = 4, we have M(H) = Z/2Z and
p = 2, therefore Hom(M(H),F?q) = 1. Indeed, every morphism ϕ from M(H) to F?q satisfies
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1 = ϕ(2x) = ϕ(x)2 for all x ∈ M(H). It follows that 0 = ϕ(x)2 − 1 = (ϕ(x) − 1)2 for all
x ∈M(H). This proves that ϕ is trivial. If q̃ = 9 then we have M(H) = Z/3Z and H2(H,F?q)
is trivial by the same reasoning as for q̃ = 4. In all cases, we can define a representation ρ of
SL2(q̃) in SL2(q).

By [8], any representation σ of SL2(q) in GL2(q) is up to conjugation of the form σ(M) =
ψ(M), where ψ(M) is the matrix obtained from M by applying ψ ∈ Aut(Fq) to all its coeffi-
cients. We have Fq = Fq̃(w) for any w generating the cyclic group F?q. There exists a homomor-
phism from Fq to Fq̃ sending 1 to w and stabilizing Fq̃. We define a representation ρ̃ of SL2(q) in
SL2(q) such that ρ̃(M) = ρ(M) for all M in SL2(q̃). We have ρ(M) = ρ̃(M) = ψ(M) for all M
in SL2(q̃). We have [G,G] ' PSL2(q̃), therefore ψ([G,G]) ' PSL2(q̃) is conjugate to PSL2(q̃)
in GL2(q′). We have ψ(tst−1s−1) ∈ ψ([G,G]), therefore its trace 2−(α+α−1 +β+β−1) belongs
to Fq̃. This shows that α+α−1 +β+β−1 ∈ Fq̃. We also have that the trace T1 of s2t−1s−2t and
the trace T2 of st−2s−1t2 are in Fq̃. We have T1 = α4β+α3β2−2α3β−2α2β2+α3+4α2β+αβ2−2α2−2αβ+α+β

α2β
.

We write B = α+α−1 +β+β−1. We then have T1 = (α+α−1)B−2B+2. The quantity T2 has
the same expression as T1 with α and β switched, therefore T2 = (β+β−1)B−2B+2. Since B, T1
and T2 are in Fq̃, we have (α+α−1)B and (β+β−1)B are in Fq̃. We have B = α+α−1 +β+β−1.
It follows that B = 0 implies α ∈ {−β,−β−1}; which contradicts the assumptions on α and β.
The quantity B is therefore non-zero, therefore α + α−1 and β + β−1 are in Fq̃, and Fq̃ = Fq.
We conclude using Lemma 2.1 of [11].

The double-partitions of n = 3 to consider are ([2, 1], ∅), ([1], [12]) and ([12], [1]). We want
to show that the image of Φ3 is equal to SL2(q̃) × SL3(q) × SL3(q). If we restrict ourselves
to the image inside SL3(q) × SL3(q), we show that it is SL3(q) × SL3(q). By Proposition
3.3.1, SL3(q) = R[12],[1](AB3) and R[1],[12](AB3) = SL3(q). We now use Goursat’s Lemma : we
write as in Lemma 3.3.1, K = R(AB3), K1 = R[12],[1](AB3), K2 = R[1],[12](AB3) π1 (resp π2) the
projection onto SL3(q)(corresponding to ([12], [1])) (resp SL3(q)) (corresponding to ([1], [12]))),
K1 = ker(π2), K2 = ker(π1) and ϕ the isomorphism given by Goursat’s Lemma. We have
K = {(x, y) ∈ K1 × K2, ϕ(xK1) = yK2}. By the same reasoning as the one in Proposition
3.1. of [11], either SL3(q) × SL3(q) ⊂ K or K1/K

1 is non-abelian and ϕ is an isomorphism
of PSL3(q) and using the same notations, up to conjugation R2(b) = Sφ(R1(b))z(b) for all
b ∈ AB3 (S = Id or S = M 7→ tM−1).

Let us show that the second possibility is absurd by choosing the right elements in AB3 .
For any element b of AB3 ,Tr(R[1],[12](b)) = z(b) Tr(Sφ(R[12],[1](b)). We write U = S1S

−1
2 , V =

TS1T
−1S−1

2 ,W = S2S1S
−2
2 and X = S2TS1T

−1S−2
2 , they are all elements of AB3 . By explicit

computation, for both choices of S, we have :

Tr(R[1],[12](U)) = Tr(R[1],[12](V )) = Tr(R[1],[12](W )) = Tr(R[1],[12](X)) = −(α− 1)2

α
,

Tr(S(R[12],[1](U))) = Tr(S(R[12],[1](V ))) = Tr(S(R[12],[1](W ))) = Tr(S(R[12],[1](X))) = − (α− 1)2

α
.

This shows that z(U) = z(V ) = z(W ) = z(X) and

1 = z(U)z(W )−1 = z(UW−1) =
− (α−1)2

α

φ(− (α−1)2

α
)
.
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This proves φ(α + α−1) = α + α−1. We also have

1 = z(UV −1) = 3− α− α−1 − β − β−1

φ(3− α− α−1 − β − β−1) .

Using φ(α+α−1) = α+α−1, we have φ(β + β−1) = β + β−1, therefore φ = 1. We deduce that

1 = z(UX−1) = (α− 1)(αβ2 − 2αβ + 2β − 1)
αβ

−αβ
(α− 1)(2αβ + β2 − α− 2β) = 1 + 2αβ − 2β − αβ2

β2 + 2αβ − 2β − α ,

1− αβ2 = β2 − α, (1− β2)(1 + α) = 0.
Since β2 6= 1 and α2 6= 1, we get a contradiction. This shows that SL3(q)× SL3(q) = R(AB3).

We now set G1 = SL3(q) × SL3(q) and G2 = SL2(q̃), the image of Φ3 is a subgroup
of G1 × G2 for which the projections onto G1 and G2 are surjective. Using again Goursat’s
Lemma and the notation there, we have K1/K

1 ' K2/K
2. We have a surjective morphism ψ

from K1 = G1 = SL3(q) × SL3(q) to K2/K
2, where K2 = SL2(q̃). If K2/K

2 was non-abelian
then we would have K2/K

2 ' PSL2(q̃). If the restriction ψ1 (resp ψ2) of ψ to SL([12], [1]) (resp
SL([1], [12])) was not trivial then ψ1 (resp ψ2) would factor into an isomorphism from PSL3(q)
onto PSL2(q) since the center of SL3(q) would again be in the center of ψ1 and ψ2.This would
lead to a contradiction, therefore their image is trivial and ψ is not surjective, therefore the
quotients are abelian. This shows that K1 = [K1, K1] ⊂ K1 and K2 = [K2, K2] ⊂ K2 then
using Goursat’s Lemma we conclude that the image of Φ3 is equal to G1×G2. This shows that
Φ3 is surjective.

The double-partitions of 4 in our decomposition are ([14], ∅), ([22], ∅), ([2, 1, 1], ∅), ([1], [13]),
([13], [1]), ([12], [12]) and ([2, 1], [1]) of respective dimensions 1, 2, 3, 4, 4, 6 and 8 (we removed
the hooks, ([3], [1]) and ([1], [3])). We know the restriction to the first five is surjective by
[12] and Proposition 3.3.1, therefore we only need to show that R[12],[12](AB4) = SL6(q) and
R([2,1],[1])(AB4) = SL8(q).

Let us first consider the double-partition ([12], [12]). By the branching rule and the case
n = 3 above, we have

SL3(q)× SL3(q) = R[12],[1](AB3)×R[1],[12](AB3) = R[12],[12](AB3) ⊂ R[12],[12](AB4) ⊂ SL6(q).

We can now use Theorem 3 from [11].
Theorem 3.3.2. Let Fr be a finite field and Γ < GLN(r) with N ≥ 5 and q > 3 such that

1. Γ is absolutely irreducible,

2. Γ contains SLa(r) in a natural representation with a ≥ N
2 .

If N 6= 2a, then Γ contains SLN(r). Otherwise, either Γ contains SLN(r), or Γ is a subgroup
of GLN

2
(r) oS2.

We use this theorem on R[12],[12](AB4). To get the desired result, we only need to show
that R[12],[12](AB4) cannot be a subgroup of GL3(r) o S2. If it were true, then we would have
R[12],[12](AB4) ⊂ SL3(q) × SL3(q) which would contradict the irreducibility shown in Lemma
3.2.1. This shows that we have R[12],[12](AB4) = SL6(q).
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We now consider the double-partition ([2, 1], [1]). Again by the branching rule and the case
n = 3, we have that the restriction to AB3 is SL3(q) × SL3(q) × SL2(q̃). We now use the
fact that each of these groups is generated by transvections and the fact that AB4 is normally
generated by AB3 . When the characteristic is different from 2, we can use Theorem 2.3.4

We write G = R([2,1],[1])(AB4), H = R([2,1],[1])(AB3) = SL3(q) × SL3(q) × SL2(q̃) and we
pick t1 (resp t2 (resp t3)) a transvection of SL3(q) × {I5} (resp {I3} × SL3(q) × {I2} (resp
{I6} × SL2(q̃)). We then have H = 〈htih−1, h ∈ H, i ∈ {1, 2, 3}〉, therefore G = 〈ghg−1, h ∈
H, g ∈ G〉 = 〈gtig−1, g ∈ G, i ∈ {1, 2, 3}〉 is generated by transvections and we can apply the
theorem. We also recall the following lemma [12, Lemma 5.6].

Lemma 3.3.3. For any prime p and m ≥ 2, the field generated over Fp by {Tr(g), g ∈ SLm(q)}
is Fq and for all m ≥ 3, the field generated over Fp by {Tr(g), g ∈ SUm(q 1

2 )} is Fq.

By Proposition 3.2.4, we know that R[2,1],[1](AB4) preserves no non-degenerate bilinear form.
It also shows that it can preserve no non-degenerate hermitian form. Indeed, if it were to
preserve a hermitian form then we would have Tr(M) = ε(Tr(t(M)−1)) for any M in G and we
have diag([α, α−1, 1, 1, 1, 1, 1, 1]) and diag([β, β−1, 1, 1, 1, 1, 1, 1]) in H ⊂ G. Therefore we would
have ε(α+α−1) = α+α−1 and ε(β+β−1) = β+β−1. Since Fq = Fp(α, β) = Fp(α+α−1, β+β−1),
the automorphism ε of order 2 would be trivial which is a contradiction. This proves that G
is conjugate in GL8(q) to SL8(q̃) for some q̃ dividing q. By Lemma 3.3.3, the field generated
over Fp by the traces of the elements of G is Fq̃, therefore q̃ = q because G contains SL3(q) in a
natural representation. This proves that the field generated by its elements contains Fq. This
shows that when p 6= 2, G = R([2,1],[1])(AB4) = SL8(q).

Assume now that p = 2, we can use the following theorem [40, Theorem 1].

Theorem 3.3.3. Let V be a Fq-vector space of dimension n ≥ 4 with q even. If G is an
irreductible proper subgroup of SL(V ) = SLn(q) generated by a set D of transvections of G,
then D is a conjugacy class of odd transpositions of G.

Assume that G = R([2,1],[1])(AB4) is different from SL8(q). We again have that G is generated
by transvections and by applying the above theorem, those transvections are in a single conju-
gacy class of G. Since Op(G) is normal in G and V = F8

q is an irreducible FqG-module, we apply
Clifford’s Theorem [16, Theorem 11.1] and get that ResGOp(G)(V ) is semisimple. Since Op(G) is
a p-group, the unique irreducible FqOp(G)-module is the trivial module, therefore Op(G) acts
trivially on V . It follows that Op(G) is trivial. We can thus apply Kantor’s Theorem [28,
Theorem II] :

Theorem 3.3.4. Let p be a prime and q = pl for some l ∈ N. Assume G is an irreducible
subgroup of SLN(q) generated by a conjugacy class of transvections, such that Op(G) ≤ [G,G]∩
Z(G). Then G is one of the following subgroups.

1. G = SLn(q′) or G ' SpN(q′) in SLN(q′) or G ' SUN(q′ 12 ) in SLN(q′), with q′|q.

2. G ' O±N(q′) < SLn(q′), with q′|q.

3. G ' Sn < SLN(2), where N = n− d and d = Gcd(n, 2).

4. G ' S2n in SL2n−1(2) or in SL2n(2).

5. G ' SL2(5) < SL2(9).
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6. G ' 3.PΩ−,π6 < SL6(4).

7. G ' SU4(2) < SL5(4).

8. G ' Ao SN in SLN(2i), where A is a subgroup of diagonal matrices.

Since α is of order greater than 4, we have q ≥ q̃ = 2r > 8. The group G contains
H = SL3(q) × SL3(q) × SL2(q̃), therefore cases (3) to (7) are excluded. If we were in case
(8), then G would have at mose (q − 1)10×9

2 = 45(q − 1) transvections (see proof of Theorem
1.3. page 661 of [11]). SL3(q) has (q3−1)(q2−1)

q−1 = (q − 1)(q2 + q + 1)(q + 1) transvections and
(q2 + q + 1)(q + 1) ≥ 847(q− 1) > 45(q− 1). For the same reasons as when p 6= 2, G is neither
unitary nor symplectic nor orthogonal. The only remaining possibility is G = SL8(q) which is
a contradiction since we assumed G 6= SL8(q). This proves that G = SL8(q).

The restriction to each double-partition of 4 is thus surjective, it remains to show that Φ1,4
is surjective using Goursat’s Lemma (Lemma 3.3.1). This means that we have to show that
the image is SL2(q̃)× SL3(q̃)× SL4(q)× SL4(q)× SL8(q).

By Theorem 1.2. of [11], the restriction to SL2(q̃) × SL3(q̃) is surjective. We write G1
the image of this restriction and G2 = R([1],[13])(AB4) = SL4(q). Let K be the image AB4 in
G1 ×G2, using the corresponding notations in Goursat’s Lemma, we have K1 = G1, K2 = G2
and K1/K

1 ' K2/K
2. If these quotients are abelian then the proof of K = G1 × G2 is

straightforward using Goursat’s Lemma. Since the only non-abelian decomposition factor of G2
is PSL4(q) and the only non-abelian decomposition factors of G1 are PSL2(q̃) and PSL3(q̃), we
have a contradiction if these quotients are non-abelian. Write now K̃ = R([1],[3])(AB4) = SL4(q)
and let us consider the image J of AB4 inside K × K̃. Using again Goursat’s Lemma, this
time with K1 = K,K2 = K̃, we have K1/K

1 ' K2/K
2. If the quotients are abelian then

J = K× K̃. If the quotients are non-abelian then there is an isomorphism Sφ from PSL4(q) to
PSL4(q), where the first one corresponds to R([1],[13])(AB4) and the second one to R([1],[3])(AB4).
This implies that there exists a character z from AB4 to F?q such that up to conjugation, for
every h ∈ H4, we have R[1],[13](h) = Sφ(R([1],[3])(h))z(h). The isomorphism Sφ is of the form
[46, Section 3.3.4] M 7→ φ(M) or M 7→ φ(t(M−1)), where φ is a field automorphism of Fq. We
would then have that for all h ∈ AB4 ,

Tr(R([13],[1])(h)) = φ(Tr(S(R([1],[3])(h)))z(h).

Writing U = S1S
−1
2 , V = TS1T

−1S−1
2 , X = S2TS1T

−1S−2
2 , P = S3S2S

−2
3 , Q = TS1T

−1S−1
3 ,

R1 = R([13],[1]) and R2 = R([1],[3]), we have

3− α− α−1 = Tr(R1(P )) = Tr(R1(PQ−1)) = Tr(R2(P )) = Tr(R2(PQ−1) = Tr(t(R2(PQ−1)−1)) = Tr(t(R2(PQ−1)−1).

It follows that z(PQ−1) = z(P ) = 3−α−α−1

Φ(3−α−α−1) . This shows that z(Q) = z(P )z(PQ−1)−1 = 1.
We also have Tr(R1(Q)) = Tr(R2(Q)) = Tr(t(R2(Q)−1)) = 2 − α − α−1, therefore 1 = z(Q) =

2−α−α−1

Φ(2−α−α−1) and Φ(α + α−1) = α + α−1. We have

Tr(R1(U)) = Tr(R1(V )) = Tr(R1(X)) = Tr(R2(U)) = Tr(R2(V )) = Tr(R2(X)) = Tr(t(R2(X)−1)) = Tr(t(R2(V )−1)) = Tr(t(R2(U)−1) = 3−α−α−1
.

This leads to z(U) = z(V ) = z(X) = 1. We have

Tr(R1(UV −1)) = Tr(R2(UV −1)) = Tr(t(R2(UV −1)−1)) = 4− α− α−1 − β − β−1.
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It follows that z(UV −1) = z(U)z(V )−1 = 1 = 4−(α+α−1)−(β+β−1)
Φ(4−(α+α−1)−(β+β−1)) , therefore Φ(β + β−1) =

β + β−1. Since Fq = Fp(α + α−1, β + β−1), we have Φ = Id.

Tr(R1(UX−1)) = −2α2β + αβ2 − α2 − 5αβ − β2 + α + 2β
αβ

,

Tr(R2(UX−1)) = Tr(t(R2(UX−1)−1))) = α2β2 − 2α2β − αβ2 + 5αβ − α− 2β + 1
αβ

.

Since z(UX−1) = z(U)z(X)−1 = 1 and Φ = Id, it follows that

α2β2 − 2α2β − αβ2 + 5αβ − α− 2β + 1 = −2α2β − αβ2 + α2 + 5αβ + β2 − α− 2β.

This shows that α2β2 + 1 = α2 + β2, therefore (α2 − 1)(β2 − 1) = 0. This contradicts the
conditions on α and β. This contradiction shows that J = K × K̃.

We conclude using Goursat’s Lemma with R([12],[12])(AB4) = SL6(q) and then with
R[2,1],[1](AB4) = SL8(q).

We now show for n ≥ 5 that if the representation associated with each double-partition is
surjective, then Φ1,n is surjective.

Lemma 3.3.4. If n ≥ 5,Fp(α, β) = Fp(α + α−1, β + β−1) and Fp(α) = Fp(α + α−1) and
the composition of Φ1,n and the projection upon each quasi-simple group associated with each
double-partition is surjective, then Φ1,n is surjective.

Proof. Let n ≥ 5, we know by [12, Theorem 1.1] that the restriction to double-partitions with
an empty component is surjective. We first show that we can add the hook partitions. We then
show by induction on the double-partitions using the order we defined that Φ1,n is surjective.

We write G0,0 = SLn−1(q̃)× ∏
(λ1,∅)∈Aεn,λ1<λ′1

SLnλ(q̃)× ∏
(λ1,∅)∈Aεn,λ1=λ′1

OSP ′(λ), where OSP ′(λ)

is the derived subgroup of the group of isometries of the Fq̃-bilinear form defined in [12], which
identifies to the one defined in this article. We then have by Theorem 1.1. of [12] that the
image of ABn inside G0,0 is G0,0. We have G0,1 = R[1],[n−1](AB4) = SLn(q) by Proposition
3.3.1. We use Goursat’s Lemma to show that the image of ABn inside G0,0 × G0,1 is equal
to G0,0 × G0,1. Using the notations in Goursat’s Lemma, we have K1 = G0,0, K2 = G0,1 and
K1/K

1 ' K2/K
2. If the quotients are abelian then we are done since the groups we consider

are perfect. We assume that they are non-abelian and show there is a contradiction. The only
non-abelian decomposition factor of K2 is PSLn(q). Since the finite classical simple groups are
non-isomorphic as long as n ≥ 4 and q ≥ 4 [46, Section 1.2], there would exist a decomposition
factor of K1 corresponding to a double-partition λ of n with its right component empty such
that PG(λ) = Rλ(ABn) ' PSLn(q) = R([1],[n−1])(ABn). Therefore, up to conjugation [46,
Section 3.3.4], we have that Rλ(h) = SΦ(R([1],[n−1])(h))z(h) for all h ∈ ABn with z : ABn → F?q,
Φ an automorphism of Fq and S being either the identity or the transpose of the inverse. Since
n ≥ 5, we have ABn perfect [36, Corollary], therefore z is trivial. By Lemma 3.2.3 and since the
abelianization of ABn is the group {T , S1} ' Z2, we have Rλ(h) = SΦ(R([1],[n−1])(h))u`1(h)v`2(h).
Since the right component of λ is empty, the only eigenvalue of Rλ(T ) is β. On the other hand,
the eigenvalues of Sφ(R([1],[n−1])(T ))v are equal to {vΦ(β),−v} or {vΦ(β−1),−v}. Therefore
we would have −v = vΦ(β) or −v = vΦ(β−1) which is not possible because we have β 6= −1.
This contradiction shows that the image is equal to G0,0 ×G0,1.
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Assume nowG0,2 = G0,0×G0,1 andG0,3 = R([1],[1n−1])(ABn) = SLn(q) and consider the image
of ABn inside G0 = G0,2 × G0,3. We use Goursat’s Lemma with K1 = G0,2 and K2 = G0,3.
In the same way as before, it is sufficient to show that the quotients K1/K

1 ' K2/K
2 are

abelian. The sets of eigenvalues of SΦ(R([1],[1n−1])(T ) are again {Φ(β),−1} or {Φ(β)−1,−1}.
If the quotients were non-abelian, we would have R([1],[n−1])(h) = Sφ(R([1],[1n−1])(h))z(h) for
all h ∈ ABn with S, φ and z as before. We have z trivial since ABn is perfect, therefore
R([1],[n−1])(h) = Sφ(R([1],[1n−1])(h))u`1(h)v`2(h). Let us show that Φ is trivial. We have that
R([1],[n−1])(T ) and R([1],[1n−1])(T ) both have for eigenvalues −1 with multiplicity n−1 and β with
multiplicity 1. This shows that either β = vΦ(β) and −1 = −v or β = vΦ(β)−1 and −1 = −v.
In both cases, v = 1 and Φ(β + β−1) = β + β−1. The eigenvalues of R([1],[n−1])(S1) are −1 with
multiplicity 1 and −α with multiplicity n − 1. The eigenvalues of R([1],[1n−1])(S1) are −1 with
multiplicity n−1 and α with multiplicity 1. Therefore we have either −1 = uΦ(α) and α = −u
or −1 = uΦ(α−1) and α = −u. In both cases u = −α and Φ(α + α−1) = α + α−1. We have Φ
trivial, therefore Fq = Fp(α+α−1, β+β−1). This would imply R([1],[n−1])|ABn ' S(R([1],[1n−1])|ABn )
but ([1], [1n−1]) /∈ {([1], [n−1]), ([1], [n−1])′} when n > 2. By Proposition 3.2.4, this is absurd.
This shows the image of ABn in G0 is equal to G0.

For λ0 ∈ εn = {λ `` n, λ /∈ An, λ not a hook}, we set

Gλ0 = SLn−1(q̃)×
∏

(λ1,∅)∈Aεn,λ1<λ′1

SLnλ(q̃)×
∏

(λ1,∅)∈Aεn,λ1=λ′1

OSP ′(λ)×

SLn(q)2 ×
∏

λ∈εn,λ<min(λ′,λ0)
SLnλ(q)×

∏
λ∈εn,λ=λ′<λ0

OSP ′(λ).

where OSP (λ) is the group of isometries of the bilinear form defined before Proposition 3.1.1.
For the minimal element λ0 of εn, we just showed the composition Φ1,n with the projection

onto Gλ0 = G0 is surjective. Let us show by induction (numbering the double-partitions of n
with the order defined previously) that for all λ0, the composition of Φ1,n with the projection
onto Gλ0 is surjective.

Let λ0 ∈ εn. Assume that the composition is surjective onto Gλ0 and let us show that the
composition onto Gλ0+1 = Gλ0 × G(λ0) is surjective, where G(λ0) = SLN(q) if λ0 6= λ′0 and
G(λ0) ' OSP ′(λ0) ∈ {SPN(q),Ω+

N(q)} if λ0 = λ′0. We use Goursat’s Lemma with K1 = Gλ0

and K2 = G(λ0) on the image Φ1,n in K1 × K2. As before, it is sufficient to show that the
quotients K1/K

1 ' K2/K
2 are abelian. Assume they are non-abelian. The only non-abelian

Jordan-Hölder factor of G(λ0) is PG(λ0), therefore there exists λ less than λ0 such that up to
conjugation (see [46] 3.3.4., 3.5.5. and 3.7.5) Rλ(h) = SΦ(Rλ0(h)z(h) for all h ∈ ABn (there is no
triality involved since if n ≥ 5, λ = λ′ and λ ∈ εn then dim(Vλ) > dim(V([2,1],[2,1])) = 80 > 8). By
the same arguments as in the induction initialization, we have that λ has no empty components.
Since n ≥ 5, ABn is perfect and z is trivial. We then have Rλ0|ABn ' SΦ(Rλ|ABn ). Let us show
that Φ is trivial. By Lemma 3.2.3, there exists u, v ∈ F?q such that up to conjugation, for
all h ∈ ABn , we have Rλ0(h) = SΦ(Rλ(h))u`1(h)v`2(h). Comparing eigenvalues of T , we get
either {β,−1} = {vΦ(β),−v} or {β,−1} = {vΦ(β−1),−v}. In the first case, either v = 1 and
Φ(β) = β or v = −β and −1 = vΦ(β), therefore Φ(β + β−1) = β + β−1. In the second case
either v = 1 and Φ(β−1) = β or v = −β and vΦ(β−1) = −1, therefore Φ(β + β−1) = β + β−1.
In the same way using S1, we show Φ(α+α−1) = α+α−1. This shows that Φ is trivial because
Fq = Fp(α + α−1, β + β−1). We then have Rλ0|ABn ' S(Rλ|ABn ) which contradicts Proposition
3.2.4 since λ < λ0 ≤ λ′0.
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To get that Φ1,n is surjective, it now only remains to show that what we assumed in Lemma
3.3.4 is true.

Theorem 3.3.5. If n ≥ 5 then for all λ `` n double-partitions in our decomposition, we have
Rλ(ABn) = G(λ), where G(λ) is the corresponding group in the following list.

1. SLn−1(q̃) if λ = ([n− 1, 1], ∅).

2. SLN(q̃) if λ = (λ1, ∅), λ1 < λ′1.

3. SPN(q̃) if λ = (λ1, ∅), λ1 = λ′1 and ( p = 2 or (p ≥ 3 and ν(λ1) = −1)).

4. Ω+
N(q̃) if λ = (λ1, ∅), λ1 = λ′1, p ≥ 3 and ν(λ1) = 1.

5. SLn(q) if λ ∈ {([1], [n− 1]), ([1], [1n−1])}.

6. SLN(q) if λ ∈ εn, λ < λ′.

7. SPN(q) if λ = λ′ and (p = 2 or ν̃(λ) = −1).

8. Ω+
N(q) if λ = λ′, p ≥ 3 and ν̃(λ) = 1.

Proof. Let n ≥ 5. By [11] (Theorem 1.1.), it is sufficient to show it for λ ∈ εn.
The result is true for n = 4, therefore we can use induction and assume Φn−1 is surjective.
The first thing to do is to take care of the double-partitions such that nλ > 8 and nλ 6= 10.

For n = 5, the double partitions to consider are ([13], [12]), ([12], [13]), ([1], [2, 2]), ([1], [2, 12]),
([1], [3, 1]), ([2], [2, 1]) and ([12], [2, 1]) of respective dimensions 10, 10, 10, 15, 15, 20 and 20. For
n = 6, they are ([12], [14]), ([14], [12]), ([13], [13]), ([1], [4, 1]), ([1], [2, 13]), ([1], [3, 2]), ([1], [22, 1]),
([1], [3, 1, 1]), ([2], [22]), ([12], [22]), ([2], [3, 1]), ([12], [3, 1]),
([2], [2, 12]), ([12], [2, 12]), ([3], [2, 1]), ([13], [2, 1]) and ([2, 1], [2, 1]) of respective dimensions 15,
15, 20, 24, 24, 30, 30, 36, 30, 30, 45, 45, 45, 45, 40, 40 and 80. We can now note that
if n = 6, we have nλ ≥ 15, therefore by the branching rule, if n ≥ 6 and λ is a double-
partition of εn then nλ ≥ 15. The only double-partitions λ such that nλ ≤ 8 or nλ = 10
are ([13], [12]), ([12], [13]) and ([1], [2, 2]) which are of dimension 10. By Lemma 3.3.2 and the
branching rule, we have that R[1],[2,2](AB4) = SL8(q)×SL2(q̃), R[13],[12](AB4) = SL4(q)×SL6(q)
and R[13],[12](AB4) = SL4(q) × SL6(q). By Theorem 3.3.2, we have that R([1],[2,2])(AB5) =
R[13],[12](AB5) = R[12],[13](AB5) ' SL10(q).

We now show in the same way as in [12] (Part 5), that the other assumptions of Theorem
2.3.2 are verified. In order to do this, we use the following results shown in [12].
Lemma 3.3.5. If d ≥ 6 and G ≤ GLd(q) contains an element conjugate to an element of the
form diag(ξ, ξ−1, 1, 1, ...) with ξ2 6= 1, then G is tensor-indecomposable.
Lemma 3.3.6. If d ≥ 16 and G ≤ GLd(q) contains an element of order prime to p conjugate to
an element of the form diag(ξ, ξ, ξ−1, ξ−1, 1, 1, .., 1) with ξ2 6= 1, then G is tensor-indecomposable
except possibly if G ≤ G1 ⊗G2 with G1 ≤ GL2(q).

For a block diagonal matrix with blocks B1, . . . , Br, we write diag(B1, . . . , Br).
Lemma 3.3.7. If G contains a natural SL2(q) and q ≥ 8 or G contains a twisted diagonal
embedding of SL2(q) (G ⊃ {diag(M, t(M−1), IN−4),M ∈ SL2(q)}), then case (2) of Theorem
2.3.2 is excluded.
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By the proof of the imprimitivity of G in [12], it is sufficient to show that ABn is normally
generated by ABn−1 and that G contains either a transvection or an element of Jordan form
diag(I2 + E1,2, I2 + E1,2, IN−4) to get that G is imprimitive.

In order to show that we are in case (1) of Theorem 2.3.2, we must show that for n ≥ 5,
that we have q ≥ 8 and that for any double-partition λ of n, G = Rλ(ABn) contains either a
natural SL2(q) and nλ > 6 or contains a twisted diagonal embedding of SL2(q) and nλ > 16.
We must also prove that ABn is normally generated ABn−1 and the exceptional case of Lemma
3.3.6 is impossible when nλ > 16, G contains a twisted diagonal embedding of SL2(q) but no
natural SL2(q) in an obvious way.

Let n ≥ 5, assume the lemma is true for all m ≤ n−1. By Lemmas 3.3.4 and 3.3.2, we have
Φm surjective for all m ≤ n − 1. By assumption, α is of order strictly greater than 5 and not
belonging to {1, 2, 3, 4, 5, 6, 8, 10}. This implies that α is of order at least 7 and that q ≥ 8. If
λ has at most two columns then since λ ∈ εn, λ contains a natural SL2(q). Assume now λ ∈ εn
has at least three rows or three columns.

Assume that for all µ ⊂ λ containing ([2, 1], [1]) or ([1], [2, 1]), we have µ′ ⊂ λ. We then
have that λ = λ′ and n is even. Since n is even, we have µ 6= µ′ for any double-partition
µ ⊂ λ. Since λ ∈ εn and contains strictly more than two rows and two columns, there exists
µ ⊂ λ containing ([1], [2, 1]) or ([2, 1], [1]). Since Φm−1 is surjective and µ′ ⊂ λ, we have a
twisted diagonal embedding of SLnµ(q) in G = Rλ(ABn) and since nµ ≥ 8 ≥ 2, we have a
twisted diagonal embedding of SL2(q). Otherwise there exists µ ⊂ λ containing ([2, 1], [1]) or
([1], [2, 1]) such that µ′ ⊂ λ. Since Φm−1 is surjective, we get that λ contains a natural SLnµ(q)
and, therefore contains a natural SL2(q). For double-partitions which are not of dimension
strictly greater than 16, i.e. ([1], [2, 12]) and ([1], [3, 1]), we are in the second case.

We now show that ABn is normally generated by ABn−1 for n ≥ 5. By [12, Lemma 2.1], we
have that AAn is normally generated by AAn−1 for n ≥ 4. Since T commutes with Si for all
i ≥ 2, we have the same result for ABn for n ≥ 4.

It now only remains to show that the exception of Lemma 3.3.6 is impossible when there
is no obvious natural SL2(q) in G. In order to do this, we show a proposition analogous to
Proposition 2.4. of [12].

Proposition 3.3.2. Let K be a field. If n ≥ 7 and ϕ : ABn → PSL2(K) is a group morphism
then ϕ = 1.

Proof. Let K be a field, n ≥ 7 and ϕ such a morphism. The restriction of ϕ to AAn ≤ ABn
is trivial by Proposition 2.4. of [12]. By Theorem 3.9. of [36], ABn is generated by p0 =
Sn−2S

−1
n−1, p1 = Sn−1Sn−2S

−2
n−1, q3 = Sn−3S

−1
n−1, b = Sn−2S

−1
n−1Sn−3S

−1
n−2, rl = T lS1T

−lSn−1, qi =
Sn−iS

−1
n−1, l ∈ Z, 4 ≤ i ≤ n− 2 and the following relations.

1. For 4 ≤ j ≤ n− 2, p0qj = qjp1 and p1qj = qjp
−1
0 p1.

2. For l ∈ Z, p0rl = rlp1 and p1rl = rlp
−1
0 p1.

3. For 3 ≤ i < j ≤ n− 2, |i− j| ≥ 2, qiqj = qjqi.

4. For 3 ≤ i ≤ n− 3, qirl = rlqi.

5. p0q3p
−1
0 = b, p0bp

−1
0 = b2q−1

3 b

6. p1q3p
−1
1 = q−1

3 b, p1bp
−1
1 = (q−1

3 b)3q−2
3 b.
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7. For 3 ≤ i ≤ n− 3, qiqi+1qi = qi+1qiqi+1.

8. For l ∈ Z, qn−2rlqn−2 = rlqn−2rl.

9. For l ∈ Z, rlrl+1 = rl+1rl+2.

By [12, Proposition 2.4], the images of all the generators except for (rl)l∈Z are trivial. By
the eighth relation, we get that the images of the rl are also trivial and the desired result
follows.

This shows that if n ≥ 7 and G ≤ G1⊗G2 with G1 ≤ GL2(q), then G ⊂ SLN
2

(q)×SLN
2

(q).
This contradicts the irreducibility. Since we need n ≥ 7 to apply this reasoning, we must
consider separately the cases where n ∈ {5, 6} andG does not contain a natural SL2(q). Looking
at all the cases enumerated previously, the only one to consider is λ = ([2, 1], [2, 1]). Up to
conjugation, we have H = R[2,1],[2,1](AB5) ' {diag(M, t(M−1), N, t(N−1)),M,N ∈ SL20(q)} '
SL20(q)× SL20(q).

Assume that G = R([2,1],[2,1])(AB6) ⊂ G1 ⊗ G2 and that G1 ⊂ GL2(q). We then have a
morphism θ from G to SL2(q) since ABn is perfect for n ≥ 5. If we consider the restriction of
θ to H, its kernel is a subgroup of H and its image is a subgroup of SL2(q). Since PSL20(q)
is the only non-abelian composition factor of H, we have that if the image is non-abelian then
there exists a subgroup of SL2(q) isomorphic to PSL20(q). This is absurd, therefore the image
is abelian and the kernel contains the derived subgroup of H which is equal to H since H
is perfect. In the same way, for all g ∈ G, the restriction of θ to gHg−1 is trivial. Since H
normally generates G, θ is trivial which contradicts the irreducibility of G in the same way as
in the proof of the previous proposition.

We have thus shown that we are in the first case of Theorem 2.3.2. By the same reasoning
as in [12, page 16], we have in all cases that q′ = q. If λ = λ′, we have G ⊂ G(λ) by
Proposition 3.2.1, therefore G = G(λ). If λ 6= λ′, G preserves no bilinear form since Rλ is
not isomorphic to R?

λ. If G preserves a hermitian form then there exists an automorphism
Φ of order 2 of Fq such that M is conjugate to Φ(t(M)−1) for all M ∈ G. Since G contains
a natural SL2(q), we then have Tr(diag(α, α−1, 1, 1, ..., 1)) = Φ(Tr(diag(α−1, α, 1, ..., 1))) and
Tr(diag(β, β−1, 1, 1, ..., 1)) = Φ(Tr(diag(β−1, β, 1, ..., 1))), therefore Φ(α + α−1) = α + α−1 and
Φ(β + β−1) = β + β−1. This implies that Φ = Id because Fq = Fp(α + α−1, β + β−1). This is
absurd and we conclude that G = SLnλ(q).

By Theorem 3.3.5, Lemma 3.3.2 and Lemma 3.3.4, we have that for all n,Φ1,n is surjective.

3.3.2 Cases (2) and (3)
We have shown the surjectivity of Φ1,n, this corresponds to the first of the six possible field
extension configurations described at the beginning of subsection 3.2.2. The proof in cases (2)
and (3) only requires small changes to the one in the first case, but the new factorizations
appearing in cases (4) to (6) require more work, especially for the low dimensional representa-
tions. We treat in this section cases (2) and (3) emphasizing on the differences with the first
case. This will conclude the proof of Theorem 3.2.3 and the corresponding statement in the
second of the six cases listed at the beginning of subsection 3.2.2.

In case (2), i.e., Fq = Fp(α, β) = Fp(α + α−1, β + β−1) and Fp(α) 6= Fp(α + α−1), the
same arguments as the ones in case 1 work at every step of the proof. Indeed, SU2(q̃ 1

2 ) is also
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generated by a conjugacy class of transvections. Since q̃ is a square and α is order not diving
8 by assumption, we have that q̃ ≥ 16 and q̃ 1

2 > 3. We also still have that SL8(q) × SU2(q̃ 1
2 )

contains SL8(q)× {I2}, therefore all the arguments work in the same way. This shows that in
case (2), Φ2,n is surjective for all n.

In case (3), i.e., Fq = Fp(α, β) = Fp(α + α−1, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β + β−1),
all representations are unitary. The main differences occur in the proof that when n = 4, the
direct product of two SU4(q 1

2 ) is in the image, and in the conclusion of the proof of this version
of Theorem 3.3.5.
Theorem 3.3.6. If n ≥ 5, then for all λ `` n in our decomposition, Rλ(ABn) = G(λ), where
G(λ) is the corresponding group in the following list.

1. SUn−1(q̃ 1
2 ) if λ = ([n− 1, 1], ∅).

2. SUN(q̃ 1
2 ) if λ = (λ1, ∅), λ1 < λ′1.

3. SPN(q̃ 1
2 ) if λ = (λ1, ∅), λ1 = λ′1 and ( p = 2 or (p ≥ 3 and ν(λ1) = −1)).

4. Ω+
N(q̃ 1

2 ) if λ = (λ1, ∅), λ1 = λ′1, p ≥ 3 and ν(λ1) = 1.

5. SUn(q 1
2 ) if λ ∈ {([1], [n− 1]), ([1], [1n−1])}.

6. SUN(q 1
2 ) if λ ∈ εn, λ < λ′.

7. SPN(q 1
2 ) if λ = λ′ and (p = 2 or (p ≥ 3 and ν̃(λ) = −1.

8. Ω+
N(q 1

2 ) if λ = λ′, p ≥ 3 and ν̃(λ) = 1.
Proof. We recall Proposition 4.1. of [12].
Proposition 3.3.3. Let q = u2, ϕ be a non-degenerate bilinear form over FNq , ψ a non-
degenerate hermitian form over FNq . If G ⊂ OSPN(ϕ) ∩ UN(ψ) is absolutely irreducible, then
there exists x ∈ GLN(q) and a non-degenerate bilinear form ϕ′ over FNu such that xG ⊂ OSP (ϕ′)
and ϕ′ is of the same type as ϕ.

When n = 4, the proof that Φ4 is surjective is the same up to the point, where we prove Φ
is trivial using Φ(α + α−1) = α + α−1 and Φ(β + β−1) = β + β−1. In case 3, Φ could also be
equal to the automorphism ε of order 2 of Fq. It is thus necessary to show that the following is
absurd :

α2β2 − 2α2β − αβ2 + 5αβ − α− 2β + 1
αβ

= ε(−2α2β − αβ2 + α2 + 5αβ + β2 − α− 2β
αβ

).

This would imply
α

2
β

2 − 2α2
β − αβ2 + 5αβ − α− 2β + 1 =

−2α−2β−1 − α−1β−2 + α−2 + 5α−1β−1 + β−2 − α−1 − 2β−1

α−2β−2

= −2β − α + β
2 + 5αβ + α

2 − αβ2 − 2α2
β.

This is absurd because it is the same equality we proved to be impossible in the first case.
We now adapt the end of the proof of the corresponding version of Theorem 3.3.5. By [12,

page 18], we are in case (1) of Theorem 2.3.2. If λ 6= λ′, G contains a natural SU3(q 1
2 ), therefore

q = q′ by Lemma 3.3.3. Since G ⊂ SUnλ(q 1
2 ) and G preserves no bilinear form by Proposition

3.2.4, we have G ' SUnλ(q 1
2 ). If λ = λ′, we use Proposition 3.3.3 to get that G ⊂ OSP (q 1

2 ). By
Lemma 3.3.3, we have that Fq′ contains {x + ε(x), x ∈ Fq}. This implies that q′ = q

1
2 because

Fq′ contains α + α−1 and β + β−1 and q′ divides q 1
2 . We conclude that G ' OSP ′(q 1

2 ).
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3.3.3 Cases (4), (5) and (6)
In this subsection, we finish the proof for type B by considering the last three cases for the
field extensions listed at the beginning of subsection 3.2.2. This will conclude the proofs of
Theorems 3.2.4, 3.2.5 and 3.2.6. In these cases more factorizations appear and this complicates
greatly the proof for small n. We will use the tables of maximal subgroups of finite classical
groups in low dimension from [9]. This gives interesting techniques to determine if a certain
subgroup G of a classical group is the group itself, when given information on the subgroups of
G.

In these cases, we can still use various arguments from the first case, but except for Propo-
sition 3.3.1 which remains true in all these cases, all the low-dimensional cases must be done
again. It is not necessary to use new arguments for Lemma 3.3.4. We start by studying the
case n ≤ 4.

Lemma 3.3.8. For i ∈ {4, 5, 6} and n ≤ 4, we have Φi,n surjective.

Proof. For n = 2, using the same arguments as in the first case and Lemma 3.2.5, we have that
Im(Φ2) ' SL2(q 1

2 ).
For n = 3, we have by the factorizations in Proposition 3.2.4 that in all cases Φ3 is surjective.
The only case left to consider is n = 4 and the double-partitions ([12], [12]) and ([1], [2, 1])

of respective dimensions 6 and 8. We have to prove that R([12],[12])(AB4) ' SL6(q 1
2 ) or SU6(q 1

2 )
and R([2,1],[1])(AB4) ' SL8(q 1

2 ) or SU8(q 1
2 ) depending on the case.

We start by G = R([12],[12])(H4) in case (5) or (6), where Fq = Fp(α, β) = Fp(α + α−1, β) 6=
Fp(α, β + β−1) = Fp(α + α−1, β + β−1). We then have H = R([12],[12])(AB3) ' SL3(q). Since
([12], [12]) = ([12], [12]), by Proposition 3.2.4 (4.c) and Lemma 3.2.5, up to conjugation, we have
G ⊂ SL6(q 1

2 ).
We use the classification of maximal subgroups SL6(q 1

2 ) [9, Tables 8.24 and 8.25] . Using
the fact that H is a subgroup of G, we exclude the possibility that G is included in all but two
of these groups, using the divisibility of the orders that would ensue. We start by considering
the sporadic maximal subgroups in Table 8.25 and get the orders of these groups using the
atlas [14]. We list below those groups and their order or a quantity their order divides

1. 2× 3.A6.23, 4320,

2. 2× 3.A6, 2160,

3. 6.A6, 2160,

4. (q 1
2 − 1, 6) ◦ 2.PSL2(11), 12× 660 = 7920,

5. 6.A7, 15120,

6. 6.PSL3(4).2−1 , 6× 2× 20160 = 241920,

7. 6.PSL3(4), 6× 20160 = 120960,

8. 2.M12, 2× 95040 = 190080,

9. 6.1PSU4(3).2−2 , 6× 2× 3265920 = 39191040,
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10. 6.1PSU4(3), 6× 3265920 = 19595520,

11. (q 1
2 − 1, 6) ◦ SL3(q 1

2 ), 6× q 3
2 (q − 1)(q 3

2 − 1).

Since q is a square and α is of order greater than 4, we have q ≥ 9. This implies that
|SL3(q)| = q3(q2 − 1)(q3 − 1) ≥ 93(92 − 1)(93 − 1) = 42456960, which is greater than all the
orders in the list (the last one is of order 6q 1

2 (q − 1)(q3 − 1) and 6 < q
3
2 (q + 1)(q 3

2 + 1)). We
now look at the list in table 8.24 of the 18 geometric maximal subgroups of SL6(q 1

2 ), which we
provide below with their order or a quantity which is divisible by their order

1. E5
q

1
2

: GL5(q 1
2 ), q 15

2 (q 5
2 − 1)(q2 − 1)(q 3

2 − 1)(q − 1)(q 1
2 − 1),

2. E8
q

1
2

: (SL4(q 1
2 )× SL2(q 1

2 )) : (q 1
2 − 1), q 15

2 (q2 − 1)(q 3
2 − 1)(q − 1)2(q 1

2 − 1),

3. E9
q

1
2

: (SL3(q 1
2 )× SL3(q 1

2 )) : (q 1
2 − 1), q 15

2 (q 3
2 − 1)2(q − 1)2(q 1

2 − 1),

4. E1+8
q

1
2

: (GL4(q 1
2 )× (q 1

2 − 1)), q 15
2 (q2 − 1)(q 3

2 − 1)(q − 1)(q 1
2 − 1)2,

5. E4+8
q

1
2

: SL2(q 1
2 )3 : (q 1

2 − 1)2, q
15
2 (q − 1)3(q 1

2 − 1),

6. GL5(q 1
2 ), q5(q 5

2 − 1)(q2 − 1)(q 3
2 − 1)(q − 1)(q 1

2 − 1),

7. (SL4(q 1
2 )× SL2(q 1

2 )) : (q 1
2 − 1), q 7

2 (q2 − 1)(q 3
2 − 1)(q − 1)2(q 1

2 − 1),

8. (q 1
2 − 1)5 ×S6, 6!(q 1

2 − 1)5,

9. SL2(q 1
2 )3 : (q 1

2 − 1)2.S3, 6q
3
2 (q 1

2 − 1)2(q − 1)3,

10. SL3(q 1
2 )2 : (q 1

2 − 1).S2, 2q
3
2 (q 3

2 − 1)(q − 1)(q 1
2 − 1),

11. SL3(q).(q 1
2 + 1).2, 2(q 1

2 + 1)|SL3(q)|,

12. SL2(q 3
2 ).(q + q

1
2 + 1).3, 3q 3

2 (q3 − 1)(q + q
1
2 + 1),

13. SL2(q 1
2 )× SL3(q 1

2 ), q2(q 3
2 − 1)(q − 1)2,

14. SL6(q0).[( q
1
2−1
q0−1 , 6)], where q 1

2 = qr0 and r prime, 6|SL6(q0)|,

15. (q 1
2 − 1, 3)× SO+

6 (q 1
2 ).2, q odd, 6q3(q2 − 1)(q 3

2 − 1)(q − 1),

16. (q 1
2 − 1, 3)× SO−6 (q 1

2 ).2, q odd, 6q3(q2 − 1)(q 3
2 + 1)(q − 1),

17. (q 1
2 − 1, 3)× SP6(q 1

2 ), 3q 9
2 (q − 1)(q2 − 1)(q3 − 1) = 3q 3

2 (q − 1)|SL3(q)|,

18. SU6(q 1
4 ).(q 1

4 − 1, 6), 6q 15
4 (q 3

2 − 1)(q 5
4 + 1)(q − 1)(q 3

4 + 1)(q 1
2 − 1).
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In cases 1, 2, 3, 4, 5, 6, 7 and 13, the order of the maximal subgroup divides q 15
2 (q 5

2 − 1)(q2−
1)(q 3

2 − 1)2(q − 1)2(q 1
2 − 1). This implies that it is sufficient to show that |SL3(q)| = q3(q3 −

1)(q2 − 1) does not divide this quantity to exclude these cases. It can be true only if q3 − 1
divides (q 5

2 −1)(q 3
2 −1)2(q−1)2(q 1

2 −1). The Euclidean remainder of those two quantities seen
as polynomials in q 1

2 is 4q 5
2 + 2q2 − 2q 3

2 − 4q − 2q 1
2 + 2. Therefore, if q3 − 1 divides the first

quantity then it divides the remainder, which is positive. Therefore it is less than or equal to
it. We have ε(α) = α−1 = αq

1
2 , therefore αq

1
2 +1 = 1. Since α is of order strictly greater than 6

by assumption, we have that q 1
2 ≥ 6 and 4q 5

2 + 2q2− q− 2q 3
2 − 4q− 2q 1

2 + 2 ≤ 4q 5
2 + 2q2 + 2 ≤

4q 5
2 + 3q2 ≤ 5q 5

2 < q3 − 1. This gives us the desired contradiction.
Cases 8, 9, 10 and 12 are excluded because q3 is coprime to qr − 1 and (q+ q

1
2 + 1) for every

integer r and q3 does not divide 6! or 6q 3
2 since q = (q 1

2 )2 ≥ 36.
In case 14, the order of the maximal subgroup M divides the quantity

6q 15
2r (q 3

r − 1)(q 5
2r − 1)(q 2

r − 1)(q 3
2r − 1)(q 1

r − 1),

where q 1
2r = q0 and r is a prime. If |SL3(q)| divides this quantity, then q3 divides 6q 15

2r . If r ≥ 3,
then 6q 15

2r ≤ 6q 15
6 < q3 because q 1

2 ≥ 8 > 6 when r ≥ 3.
It only remains to consider the case r = 2. We then have that (q 3

2 −1)(q 3
2 +1)(q−1) divides

6(q 3
2 − 1)(q 5

4 − 1)(q− 1)(q 3
4 − 1)(q 1

2 − 1), therefore q 3
2 + 1 divides 6(q 5

4 − 1)(q 3
4 − 1)(q 1

2 − 1). The
Euclidean remainder of the division of those two polynomials in q 1

4 is −6q 4
4 +6q 3

4 +12q 2
4 +6q 1

4−6.
This implies that q 3

2 + 1 divides the above quantity. We have q 1
2 ≥ 6 and it is a square when

r = 2. Therefore q 1
2 ≥ 9 and q 1

4 ≥ 3. It follows that−6q 4
4 +6q 3

4 +12q 2
4 +6q 1

4−6 ≤ −6q 4
4 +11q 3

4 ≤
−4q 4

4 < 0. We then have that q 3
2 + 1 divides 6q 4

4 − 6q 3
4 − 12q 2

4 − 6q 1
4 + 6 < 6q 4

4 ≤ 2q 5
4 < q

3
2 + 1,

which is absurd since both quantities are positive. Case 14 is therefore excluded.
The four last cases are of class C8, therefore they preserve a non-degenerate bilinear form.

We cannot have PGP−1 included in one of those groups because R[12],[12]|AB4
6' R?

[12],[12]|AB4
by

Proposition 3.2.4.
The only remaining case is now cases 11 which is SL3(q).(q 1

2 + 1).2. We know that H =
R([12],[12])(AB3) ' SL3(q) normally generates G = R([12],[12])(AB4) ⊂ P−1SL6(q 1

2 )P for a certain
matrix P in GL6(q). Assume PGP−1 is a subgroup of M = SL3(q).(q 1

2 + 1).2. Since SL3(q)
is perfect, PHP−1 is perfect and the image of PHP−1 in the quotient Z/2Z of M is trivial.
The group H is thus included in SL3(q).(q 1

2 + 1). Using the same argument, we have that
PHP−1 is included in the SL3(q) appearing in the expression of M , therefore PHP−1 is equal
to that SL3(q). For all g ∈ PGP−1, we can apply the same reasoning to gPHP−1g−1 =
SL3(q) = PHP−1. It follows that PGP−1 = SL3(q) = PHP−1 because H normally generates
G, therefore H = G. This leads to a contradiction because G is irreducible and H is not.

This concludes the study of double-partition ([12], [12]) in the field cases 5 and 6 and we
have R[12],[12](AB4) ' SL6(q 1

2 ) in those cases.

Assume now we are in case 4, i.e., Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β) =
Fp(α + α−1, β + β−1). Then by Lemma 3.2.4 and Proposition 3.2.4, there exists a matrix
P such that PGP−1 ⊂ SU6(q 1

2 ) and H ' SL3(q), writing again G = R([12],[12])(AB4) and
H = R([12],[12])(AB3). The goal this time is to show that PGP−1 ' SU6(q 1

2 ).
We first consider the maximal subgroups of class S of SU6(q 1

2 ) given in Table 8.27 of [9]
and give their order or a quantity their order divides.
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1. 2× 3.A6, 2160,

2. 2× 3.A6.23, 4320,

3. 6.A6, 2160,

4. (q 1
2 + 1, 6) ◦ 2.L2(11), 12× 660 = 7920,

5. 6.A7, 15120,

6. 6.PSL3(4), 6× 20160 = 120960,

7. 6.PSL3(4).2−1 , 241920,

8. 3.M22, 3 ∗ 443520 = 1330560,

9. 3.1U4(3) : 22, 6× 3265920 = 19595520,

10. 6.1U4(3), 19595520,

11. 6.1U4(3).2−2 , 39191040,

12. (q 1
2 + 1, 6) ◦ SU3(q 1

2 ), 6(q 3
2 (q − 1)(q 3

2 + 1).

As before, we have q ≥ 9. Therefore |SL3(q)| ≥ 42456960 and the last case is excluded since
q3 does not divide 6q 3

2 .

Consider now the maximal subgroups of geometric type. We here omit the groups of class
C1 because we know that PGP−1 is irreducible. The remaining maximal subgroups obtained
from Table 8.26. of [9] of SU6(q 1

2 ) are the following

1. (q 1
2 + 1)5.S6, 720(q 1

2 + 1)5,

2. SU2(q 1
2 )3 : (q 1

2 + 1)2.S3, 6q
3
2 (q 1

2 + 1)2(q − 1)3,

3. SU3(q 1
2 )2 : (q 1

2 + 1).S2, 2q3(q 1
2 + 1)(q − 1)2(q 3

2 + 1)2,

4. SL3(q).(q 1
2 − 1).2, 2(q 1

2 − 1)|SL3(Fq)|,

5. SU2(q 3
2 ).(q − q 1

2 + 1).3, 3q 3
2 (q3 − 1)(q − q 1

2 + 1),

6. SU2(q 1
2 )× SU3(q 1

2 ), q2(q − 1)2(q 3
2 + 1),

7. SU6(q0).[( q+1
q0+1 , 6)], q0 = q

1
2r , r odd prime, 6q15

0 (q2
0 − 1)(q3

0 − 1)(q4
0 − 1)(q5

0 − 1)(q6
0 − 1),

8. (q 1
2 + 1, 3)× SP6(q 1

2 ), 3q 3
2 (q − 1)|SL3(q)|,

9. (q 1
2 + 1, 3)× SO+

6 (q 1
2 ).2, 6q3(q2 − 1)(q 3

2 − 1)(q − 1),

10. (q 1
2 + 1, 3)× SO−6 (q 1

2 ).2, 6q3(q2 − 1)(q 3
2 + 1)(q − 1).
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In case 6, we have that the order of the maximal subgroup is q2(q− 1)2(q 3
2 + 1). If |SL3(q)|

divides this quantity, then q3 − 1 divides (q − 1)(q 3
2 + 1) = q

5
2 − q 3

2 + q − 1 < q
5
2 − 1 < q3 − 1.

This is absurd, therefore this case is excluded.
In case 1, we have that q3 divides 720 which is absurd since q ≥ 36. In the same way, cases

2 and 5 are excluded because q3 does not divide 6q 3
2 .

In case 3, we have that q3 − 1 divides 2(q 1
2 + 1)(q − 1)2(q 3

2 + 1). The Euclidean remainder
of the division of those two polynomials in q

1
2 is −4q 5

2 + 8q2 − 4q 3
2 − 4q + 8q 1

2 − 4n which is
negative. We have 4q 5

2 − 8q 4
2 + 4q 3

2 + 4q − 8q 1
2 + 4 ≤ 4q 5

2 + 6q 3
2 ≤ 5q 5

2 < q3 − 1 when q 1
2 ≤ 3.

This case is therefore also excluded.
In case 7, we have that q3 divides 6q15

0 = 6q 15
2r ≤ 6q 15

6 < q3 since q 1
2 = qr0 ≥ 8.

In cases 8, 9 and 10, we have PGP−1 included in a subgroup preserving a non-degenerate bi-
linear form. This would imply that ε◦R[12],[12]|AB4

' R[12],[12]|AB4
which is absurd by Proposition

3.2.4.
The last remaining case is case 4. In the same way as in case 11 when Fp(α, β) 6= Fp(α +

α−1, β), we would have that H 6= G because R([12],[12])(S2S
−1
3 ) ∈ G \ H. Since G is normally

generated by H and gHg−1 is perfect for all g ∈ G, we would have that G ⊂ SL3(q) and,
therefore G = H, which is absurd.

We have shown that PGP−1 cannot be included in any maximal subgroup of SU6(q 1
2 ). It

follows that PGP−1 ' SU6(q 1
2 ).

The only double-partition remaining for n ≤ 4 now is λ = ([2, 1], [1]). It affords a represen-
tation of dimension 8 and satisfies λ = (λ′1, λ′2).

We start by case 4, i.e., Fq = Fp(α, β) = Fp(α, β+ β−1) 6= Fp(α+α−1, β) = Fp(α+α−1, β+
β−1) and, therefore Fq̃ = Fp(α + α−1) 6= Fp(α). We then have by Goursat’s Lemma and
the result for n = 3 that H = R([2,1],[1])(AB3) ' SL3(q) × SU2(q̃ 1

2 ) ⊂ G = R([2,1],[1])(AB4).
By Proposition 3.2.4, we know that there exists P ∈ GL8(q) such that for all h ∈ H4,
PR([2,1],[1])(h)P−1 = ε(R([2,1],[1]))(h). By Lemma 3.2.5, this implies that there exists S ∈ GL8(q)
such that S−1R([2,1],[1])(AB4)S ⊂ GL8(q 1

2 ) with γ−1P = ε(S)S−1 and ε(P )P = ε(γ)γ.
We can use the arguments used previously to see that our group is primitive, irreducible,

tensor-indecomposable, preserves no symmetric, skew-symmetric or hermitian form over F
1
2
q

and cannot be included in GL8(q′) for q′ < q
1
2 . We then get that G is included in no maximal

subgroup of class C1, C2, C4, C5 and C8. It contains a transvection, therefore it cannot be
included in a maximal subgroup of class C3. We list below the maximal subgroups remaining
obtained from Tables 8.44 and 8.45 of [9]. We give the order of those groups or a quantity their
order divides.

1. ((8, q 1
2 + 1) ◦ 21+6).(SP6(2)), 2477260800

2. 4.1PSL3(4), 241920

3. ((8, q 1
2 + 1) ◦ 41).PSL3(4), 1935360

4. (8 ◦ 41).PSL3(4), 1935360

5. (8 ◦ 41).PSL3(4).23, 3870720
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We have that α is of order greater than or equal to 7 and ε(α) = α−1, where ε is the unique
automorphism of order 2 of Fq. It follows that αq

1
2 +1 = 1, therefore q 1

2 + 1 ≥ 7 and q 1
2 ≥ 6. We

have Fq̃ = Fp(α) 6= Fp(α + α−1), therefore ε̃(α) = α−1, where ε̃ is the unique automorphism of
order 2 of Fq̃. This implies that q̃ 1

2 ≥ 6. It follows that |H| ≥ 591963268176000. This excludes
all the maximal subgroups in the list. It follows that S−1GS is included in no maximal subgroup
of SL8(q 1

2 ), therefore G ' SL8(q 1
2 ).

We now consider cases 5 and 6, where our representation is now unitary by Proposition 3.2.4.
In both cases, there exists a matrix P such that PGP−1 ⊂ SU8(q 1

2 ) with G = R([2,1],[1])(AB4)
and we have H = R([2,1],[1])(AB3) ' SL3(q)×SU2(q̃ 1

2 ) (resp SL2(q̃)) in case 5 (resp case 6). This
proves that G contains either a natural SL2(q̃) or a natural SU2(q̃). We then have by Lemma
3.3.5 that G is tensor-indecomposable, therefore it is not included in any maximal subgroup of
class C4 of SU8(q 1

2 ). It contains a transvection, therefore it cannot be included in any group
of class C3. We also have that G is a primitive irreducible group preserving no symmetric or
skew-symmetric form over F

q
1
2
si G is included in no maximal subgroup of class C1 or C2 or C5

for q0 = q
1
2 . Consider now the maximal subgroups of SU8(q 1

2 ) which are not of class C1, C2, C3,
C4 or C5 with q0 = q

1
2 . They are given in Tables 8.46 and 8.47 of [9] and we list them below

with their order or a quantity their order divides

1. SU8(q0), q28
0

8∏
i=2

(qi0 − (−1)i) q 1
2 = qr0, r odd prime

2. ((8, q 1
2 + 1) ◦ 21+6).(SP6(2)), 2477260800

3. ((8, q 1
2 + 1) ◦ 41).PSL3(4), 1935360

4. (8 ◦ 41).PSL3(4).23, 3870720

We have that α of order greater than or equal to 7 and ε(α) = α, where α is the au-
tomorphism of order 2 of Fq. It follows that αq

1
2−1 = 1 and, therefore q

1
2 − 1 ≥ 7 and

q
1
2 ≥ 8. In case 5, we have Fq̃ = Fp(α) 6= Fp(α + α−1), therefore ε̃(α) = α−1, where ε̃ is

the automorphism of order 2 of Fq̃ and, therefore q̃ 1
2 ≥ 6. In case 6, we have that q̃ ≥ 7

because α is of order greater than or eaqual to 7. This proves that in both cases we have
|H| ≥ 6 × (62 − 1) × 643 × (642 − 1)(643 − 1) = 59095088588390400. This excludes the last
three cases.

Assume that G is included in the first maximal subgroup. Let r be the prime such that
qr0 = q

1
2 . We have that q3 divides q28

0 = q
28
2r = q

14
r . This implies that 3 ≤ 14

r
and, therefore

r ≤ 14
3 < 5. Since r is an odd prime, we have that r = 3. We then have that (q3 − 1)

divides
8∏
i=2

(q i6 − (−1)i). The Euclidean remainder of those two polynomials in q
1
6 is then

2q 17
6 −2q 16

6 +2q 15
6 −q 14

6 +q
13
6 −q 12

6 −q 11
6 +q

10
6 −q 9

6 −q 8
6 +q

7
6 −q 6

6 −q 5
6 +q

4
6 −q 3

6 +2q 2
6 −2q 1

6 +2.
The latter quantity is positive, therefore we have that q3 − 1 ≤ 2q 17

6 − q
16
6 < q3 − 1. This

contradiction shows that the first cases is also excluded, therefore G is included in no maximal
subgroup of SU8(q 1

2 ) and, therefore G ' SU8(q 1
2 ). This concludes the proof of the lemma.

We must now show that we can use Theorem 2.3.2. The factorizations of λ = (λ1, λ2)
by (λ′1, λ′2) and by (λ2, λ1) change the arguments for the natural SL2(q) and twisted diagonal
embeddings of SL3(q). Let λ = (λ1, λ2) be a double-partition of n ≥ 5.
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We then have five different cases.

1. λ 6= λ′, λ 6= (λ2, λ1) and λ 6= (λ′1, λ′2). Let us show Rλ(ABn) contains a natural SL3(q). It
is sufficient to show that there exists µ ⊂ λ such that µ′ 6⊂ λ, (µ2, µ1) 6⊂ λ and (µ′1, µ′2) 6⊂ λ.
We write λ1 partition of n1 and λ2 partition of n2 with n = n1 +n2 ≥ 5. We only consider
double-partitions with no empty component. This implies that n1 and n2 are greater
than or equal to 1. Since the roles of λ1 and λ2 are symmetrical for this, we can assume
without loss of generality n1 ≥ n2.

(a) n2 = 1, we then have that λ2 = λ′2, therefore λ1 6= λ′1. There exists µ1 ⊂ λ1 such
that µ′1 6⊂ λ1. We then have that µ = (µ1, λ2) ⊂ λ, but µ′ 6⊂ λ and (λ2, µ1) 6⊂ λ
because n1 − 1 ≥ 4 > 1 and (µ′1, λ′2) 6⊂ λ, because µ′1 6⊂ λ1.

(b) n1 > n2 = 2 and λ1 6= λ′1. We set µ = (λ1, [1]), we have µ′ and ([1], λ1) 6⊂ λ because
n1 > n2 and (λ′1, [1]) 6⊂ λ because λ′1 6= λ1.

(c) n1 > n2 = 2 and λ1 = λ′1. If for all µ1 ⊂ λ1, µ1 ⊂ λ2 or µ′1 ⊂ λ2, then n1 = 3 and
λ1 = [2, 1]. This implies that either ([2], [12]) ⊂ λ or ([12], [2]) ⊂ λ. By Proposition
3.2.5, Rλ(ABn) contains a natural SL3(q).

(d) n1 > n2 ≥ 3 and λ2 6= λ′2. There exists µ2 ⊂ λ2 such that µ′2 6⊂ λ2. We then
set µ = (λ1, µ2). We have that (µ2, λ1) 6⊂ λ, (µ′2, λ′1) 6⊂ λ because n1 > n2 and
(λ′1, µ′2) 6⊂ λ because µ′2 6⊂ λ2.

(e) n1 > n2 ≥ 3 and λ2 = λ′2, therefore λ1 6= λ′1. We know that there exists µ1 ⊂ λ1
such that µ′1 6⊂ λ1. If (λ2, µ1) ⊂ λ or (λ′2, µ′1) ⊂ λ, then µ1 = λ2 or µ′1 = λ2. We
have that λ2 = λ′2, therefore this contradicts µ′1 6⊂ λ1. This shows that µ1 6= µ′1. We
have that (µ′1, λ′2) 6⊂ λ because µ′1 6⊂ λ1.

(f) n1 = n2 ≥ 3. We then have that λ1 6= λ′1 or λ2 6= λ′2. If λ1 6= λ′1, we pick µ1 ⊂ λ1 such
that µ′1 6⊂ λ1 and set µ = (µ1, λ2), by the assumption on µ1, (µ′1, λ2) 6⊂ λ, (λ2, µ1) 6⊂ λ
and (λ′2, µ′1) 6⊂ λ because λ2 6= λ1 and λ′2 6= λ1. If λ2 6= λ′2, we pick µ2 ⊂ λ2 such
that µ′2 6⊂ λ2 and µ = (λ1, µ2) verifies the required property.

2. λ = (λ′1, λ′2), λ 6= (λ2, λ1) and λ 6= λ′. We then have that µ′1 ⊂ λ for all µ1 ⊂ λ1 and that
for all µ2 ⊂ λ2, µ′2 ⊂ λ2. We also have that n1 + n2 ≥ 5.

(a) n1 ≥ n2 = 1. Let µ1 ⊂ λ1, we set µ = (µ1, λ2). We have that (λ2, µ1) 6⊂ λ and
µ′ 6⊂ λ because n1 − 1 ≥ 3 > 1 and (µ′1, λ′2) ⊂ λ.

(b) n1 > n2 ≥ 2. We pick µ2 ⊂ λ2 and set µ = (λ1, µ2). We have that (µ2, λ1) 6⊂ λ and
µ′ 6⊂ λ because n1 > n2 and (λ′1, µ′2) ⊂ λ.

(c) n1 = n2 ≥ 2. We pick µ1 ⊂ λ1 and set µ = (µ1, λ2). We have that (λ2, µ1) 6⊂ λ
because λ2 6= λ1 and µ′ 6⊂ λ because λ′2 6= λ1 and (µ′1, µ′2) ⊂ λ.
In case 4 for the fields, i.e., Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β), if
µ 6= (µ′1, µ′2) then Rλ(ABn) contains up to conjugation {diag(M, ε(M), Inλ−6),M ∈
SL3(q)}, and a natural SL3(q 1

2 ) if µ = (µ′1, µ′2) (it is possible for this to be the case
for all µ ⊂ λ if we have square partitions).
In cases 5 and 6 for the fields, i.e., Fq = Fp(α, β) = Fp(α+α−1, β) 6= Fp(α, β+ β−1),
if µ 6= (µ′1, µ′2) then Rλ(ABn) contains up to conjugation
{diag(M, tε(M−1), Inλ−6),M ∈ SL3(q)}, and a natural SU3(q 1

2 ) if µ = (µ′1, µ′2).
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3. λ = (λ2, λ1) 6= λ′. We then have n1 = n2 ≥ 3 and λ1 = λ2 6= λ′1 because λ 6= λ′. We can
then pick µ1 ⊂ λ1 such that µ′1 6⊂ λ′1 and µ = (µ1, λ2). We have (µ′1, λ′2) 6⊂ λ and µ′ 6⊂ λ
because λ′2 6= λ1 = λ2 and (λ2, µ1) ⊂ λ but µ 6= (λ2, µ1) because n1 − 1 < n1 = n2.
In case 4 for the fields, Rλ(ABn) contains up to conjugation
{diag(M, tε(M−1), Inλ−6),M ∈ SL3(q)}.
In cases 5 and 6 for the fields, Rλ(ABn) contains up to conjugation
{diag(M, ε(M), Inλ−6),M ∈ SL3(q)}.

4. λ = λ′ 6= (λ′1, λ′2) = (λ2, λ1), we have n1 = n2 ≥ 3 and there exists µ1 ⊂ λ1 such that
µ1 6⊂ λ2 because λ1 6= λ2. We have µ′ ⊂ λ because µ′1 ⊂ λ′1 = λ2, (λ2, µ1) 6⊂ λ since
λ2 6= λ1 and (µ′1, λ′2) 6⊂ λ because λ′2 6= λ2 = λ′1. We have µ 6= µ′ because λ′2 6= µ1.
Rλ(ABn) contains up to conjugation {diag(M, t(M−1), Inλ−6),M ∈ SL3(q)}.

5. λ = λ′ = (λ2, λ1) = (λ′1, λ′2). We then have n1 = n2 ≥ 3. If λ1 and λ2 are square
partitions, then for all µ ⊂ λ, we have that µ = (µ′1, µ′2) 6= µ′ = (µ2, µ1), because
n1 = n2 > n1 − 1 = n2 − 1.
In case 4 for the fields, Rλ(ABn) contains up to conjugation
{diag(M, t(M−1), Inλ−6),M ∈ SU3(q 1

2 )}.
In cases 5 and 6 for the fields, Rλ(ABn) contains up to conjugation
{diag(M, t(M−1), Inλ−6),M ∈ SL3(q 1

2 )}.
If λ1 or λ2 is a square partition, then there exists µ ⊂ λ such that µ 6= µ′, µ 6= (µ2, µ1)
and µ 6= (µ′1, µ′2). This implies that Rλ(ABn) contains up to conjugation
{diag(M, t(M−1), ε(M), ε(t(M−1)), Inλ−12),M ∈ SL3(q)}.

We now use the notations of Theorem 2.3.2. In all of the above cases except for the last
one, there exists g in Rλ(ABn) such that [g, V ] ≤ 2. This implies that vG(V ) ≤ 2, therefore
vG(V ) ≤ max(2,

√
d

2 ). In the last case, we have in the same way an element g such that
[g, V ] = 4. We also have in that case that λ = λ′ = (λ1, λ2) and n ≥ 6,.This implies that
λ contains ([2, 1], [2, 1]), which is of dimension

(
6
3

)
× 2 × 2 = 80. It follows that d ≥ 80 and

√
d

2 ≥
√

80
2 > 4. This shows that we still have vG(V ) ≤ max(2,

√
d

2 ).

It remains to check that all the assumptions of the theorem are again verified and the
classical group we get is the one we want.

The first step is to take care separately of double-partitions λ such that nλ ≤ 10. If nλ = 10,
then by the conditions of Theorem 2.3.2, we can assume p 6= 2. The second step is to verify
that the remaining double-partitions are tensor-indecomposable. The third step is to verify
that they are imprimitive in the monomial case. The fourth step is to verify that they are
imprimitive in the non-monomial case. The fifth step is to check that we are not in case 2. of
Theorem 2.3.2. The sixth and last step is to verify that we have the desired classical groups in
each of the above cases.

First step. For n = 5, it is enough to consider ([2, 2], [1]), ([2, 1, 1], [1]), ([2, 1], [2]) and
([13], [12]), for which the respective nλ is 10, 15, 20 and 10.
We must show that R([13],[12])(AB5) = SL10(q) and R([2,2],[1])(AB5) ' SL10(q 1

2 ) in case 4 for
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the fields and R([2,2],[1])(AB5) ' SU10(q 1
2 ) in cases 5 and 6 for the fields. The other double-

partitions are of dimensions greater than 10. We know that G = R([13],[12])(AB5) contains
R([13],[12])(AB4) ' SL4(q) × SL6(q 1

2 ) and it is normally generated by this group, which is gen-
erated by transvections. Since p 6= 2, Theorem 2.3.4 implies that G is conjugate in GL10(q) to
SL10(q′), SP10(q′) or SU10(q′ 12 ) for some q′ dividing q. Lemma 3.3.3 implies that q′ = q. The
groups SP10(q) and SU10(q 1

2 ) are excluded by Proposition 3.2.4, because R([13],[12]) is not iso-
morphic to its dual representation or its dual representation composed with the automorphism
of order 2 of Fq. This shows that G = SL10(q). In case 4, we know that G = R([2,2],[1])(AB5)
is conjugate to a subgroup of SL10(q 1

2 ) by Proposition 3.2.4 and Lemma 3.2.5 and that G
contains R([2,2],[1])(AB4) ' SL8(q 1

2 )× SL2(q̃). It follows that it contains a natural SL8(q 1
2 ) and

we can apply Theorem 3.3.2 to get that G ' SL10(q 1
2 ). In cases 5 and 6, G = R([2,2],[1])(AB5)

is conjugate to a subgroup of SU10(q 1
2 ) by Proposition 3.2.4 and Lemma 3.2.4 and contains

R([2,2],[1])(AB4), which contains a natural SU8(q 1
2 ) in both cases. By Theorem 1.4 of [11], we

have indeed G ' SU10(q 1
2 ).

Second step. We now show that those representations are tensor-indecomposable. Since
([2, 1, 1], [1]) contains a natural SL3(q), doubles-partitions with at most two rows or at most
two columns are tensor-indecomposable by Lemmas 3.3.5 and 3.3.6. By the enumeration of
the different cases, those lemmas cover all double-partitions of n except if λ = (λ1, λ2) = λ′ =
(λ2, λ1) = (λ′1, λ′2) and neither λ1 nor λ2 contains a sub-partition µ such that µ = µ′. In such
a case, λ contains ([2, 1], [2, 1]) which is of dimension 80 and we can use the following lemma.

Lemma 3.3.9. If d ≥ 80 and G ⊂ GLd(q) contains an element of order coprime to p and
conjugate in GLd(q) to the diagonal matrix diag(ξ, ξ, ξ, ξ, ξ−1, ξ−1, ξ−1, ξ−1, 1, ..., 1) with ξ2 6= 1,
then G is tensor-indecomposable, except possibly if G ⊂ G1⊗G2 with G1 ⊂ GLa(q), a ∈ {2, 4}.

Proof. Let g = P diag(ξI4, ξ
−1I4, Id−8)P−1. Assume that g = g1 ⊗ g2 with g1 ∈ GLa(Fq), g2 ∈

GLb(Fq) with 3 ≤ a ≤ b and ab = d. We have that b ≥
√
d, therefore b ≥ 9 because d ≥ 80. We

write λ1, ..., λa the eigenvalues of g1 and µ1, ..., µb the eigenvalues of g2. We then have that ∀i ∈
[[1, a]], ∀j ∈ [[1, b]], λiµj ∈ {1, ξ, ξ−1}. The numbers ξ and ξ−1 only appear 4 times each. This im-
plies the number of couples (λ1µi, λ2µi) ∈ {(1, ξ), (ξ, 1), (ξ, ξ−1)} is less than or equal to 4 as is
the number of couples (λ1µi, λ2µi) ∈ {(1, ξ−1), (ξ−1, 1), (ξ−1, ξ)}. For any i ∈ [[1, a]], the inequal-
ity λ1µi 6= λ2µi implies that (λ1µi, λ2µi) ∈ {(1, ξ), (ξ, 1), (1, ξ−1), (ξ−1, 1), (ξ, ξ−1), (ξ−1, ξ)}. It
follows that there are at most 8 couples (λ1µi, λ2µi) such that λ1µi 6= λ2µi. Since b ≥ 9, there
exists i ∈ [[1, a]] such that λ1µi = λ2µi. It follows that λ1 = λ2. In the same way, we have
that λ1 = λj for all j ∈ [[1, a]]. Up to reordering, we can assume λ1µ1 = ξ. We then have
λ2µ1 = λ3µ1 = ξ. Since there are exactly 4 ways ξ appears as a λiµj, we have that a = 4.

By the assumptions on λ, H = Rλ(ABn−1) is a direct product of groups isomorphic to
some SLm(q) with m ≥ n([2,1],[2]) = 20. If G = Rλ(ABn) is not tensor-indecomposable, then
G ⊂ SL2(q)⊗SL d

2
(q) or G ⊂ SL4(q)⊗SL d

4
(q). We then have a morphism from G into SL2(q)

or SL4(q). If we consider the restriction of this morphism to H, its kernel is a normal subgroup
of H. The only non-abelian decomposition factors of H are PSLm(q) withm ≥ 20. If the image
is non-abelian, then there exists a subgroup of SL2(q) or a subgroup of SL4(q) isomorphic to
some PSLm(q). This leads to a contradiction because m ≥ 20. It follows that the image is
abelian and since H is perfect, the kernel is equal to H. Since H normally generates G, the
morphism is trivial on G which contradicts the irreducibility of G.
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Third step. In the monomial case, the only additional case to consider is the same one as
in the second step. Looking at the corresponding proof in [12, page 14], we get that (p−1)r ≤ 4
with q = pr. We know that q is a square, n ≥ 6, α is of order greater than n and ε(α) ∈ {α, α−1}.
Therefore αq

1
2−1 = 1 or αq

1
2 +1 = 1. In both cases q 1

2 + 1 > 6, and, therefore q 1
2 ≥ 6 and q ≥ 36.

The condition (p − 1)r ≤ 4 implies that q ≤ max(51, 41, 32, 24) = 16, therefore we have a
contradiction.

Fourth step. We know that there exists a matrix t of order p such as the one in [12, page
14] or with Jordan form diag(I2 + E1,2, I2 + E1,2, I2 + E1,2, I2 + E1,2, Inλ−8).

If p 6= 2, we can use the same arguments as in page 15 of [12] because we still have (t−1)2 = 0.
Assume now that p = 2. Assume that G ⊂ H o Sm = (H1 × H2 × · · · × Hm) o Sm

with H1, . . . Hm the m-copies of GLN/m(q) permuted by Sm, that V = U1 ⊕ U2 ⊕ · · · ⊕ Um
is the direct sum corresponding to the wreath product and that t /∈ H1 × · · · × Hm. Assume
t /∈ H1 × · · · × Hm. Up to reordering, we can assume tU1 = U2. If dim(Ui) ≥ 5 then we
can consider linearly independent vectors v1, v2, v3, v4, v5 in U1 and by completing the family of
vectors (v1, tv1, v2, tv2, v3, tv3, v4, tv4, v5, tv5) which are linearly independent because tU1 = U2 6=
U1, we get a basis upon which t acts as a matrix of the form M2 ⊕M2 ⊕M2 ⊕M2 ⊕M2 ⊕X

for a certain X with M2 =
(

0 1
1 0

)
. This implies that the rank of t− 1 is greater than or equal

to 5, which is a contradiction.
We can thus assume that dim(Ui) ≤ 4. Note that G = Rλ(ABn) and ABn is perfect

for n ≥ 5 [36], therefore G is perfect. If G ⊂ (H1 × H2 × · · · × Hm) o Sm, we get G ⊂
(H1 ×H2 × · · · ×Hm)o Am because [Sm,Sm] ⊂ Am.

If t is a transvection then by the same reasoning as above on the dimensions of Ui, we are
in the monomial case which was done in the third step.

If t is of rank 2, then either we are in the monomial case or dim(Ui) = 2. The monomial
case is done, therefore it is sufficient to prove that dim(Ui) = 2 leads to a contradiction. We
take t1 and t2 two such elements of rank 2. Assume dim(Ui) = 2, since we have t(U1) = U2 and
t1(U2) = t21(U1) = U1. If (ua, ub) are linearly independent then (t1ua − ua, t1ub − ub) is a basis
of Im(t1 − 1), which is of dimension 2 and included in U1 ⊕U2 for all i /∈ {1, 2}, ti(Ui) = Ui. It
follows that the projection of t1 upon Sm from the semi-direct product is a transposition. This
is a contradiction because the projection of G upon Sm is included in Am.

If t is of rank 4 and Rλ(ABn−1) does not contain in an obvious way any transvections or
elements t of rank 2, then G contains up to conjugation
{diag(M, t(M−1), ε(M), tε(M−1), Inλ−8),M ∈ SL2(q)}. We consider two elements t1 and t2 of
rank 4. If dim(U1) = 4, then if (u1, u2, u3, u4) is a basis of U1, (u1−t1u1, u2−t1u2, u3−t1u3, u4−
t1u4) is a basis of Im(t1 − 1), which is of dimension 4. It follows that the projection of t1 upon
Sm is a transposition, which is absurd.

If dim(U1) = 3, then if (u1, u2, u3) is a basis of U1, we have that Vect{t1u1 − u1, t1u2 −
u2, t1u3 − u3} ⊂ Im(t1 − 1). If there exists i /∈ {1, 2} such that ti(Ui) 6= Ui then in the same
way as before, there would exist a subspace of dimension 6 of Im(t1− 1), which is of dimension
4. This shows that the projection of t1 upon Sm is a transposition, which is absurd.

If dim(Ui) = 2, then we can take 4 distinct non-zero elements a1, a2, a3, a4 of Fq. This
is possible because q 1

2 ≥ 6. We know that G contains up to conjugation the elements tj for
j ∈ {1, 2, 3, 4} with tj = diag(I2+ajE1,2, I2+ajE1,2, I2+ε(aj)E1,2, I2+ε(aj)E1,2, Inλ−8). We have
that Im(tj − 1) is independent of j. We also have that t1(U1) = U2 and t1(U2) = t21(U1) = U1.
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Since Im(t1 − 1) ∩ U1 ⊕ U2 is then of dimension 2 and the projection of t1 upon Sm is not a
transposition, there exists i /∈ {1, 2} such that t1(Ui) 6= Ui. Up to reordering, we can assume
t1(U3) = U4 and t1(U4) = t21(U3) = U3. This shows that for all j ∈ {1, 2, 3, 4}, Im(tj − 1) =
Im(t1 − 1) ⊂ U1 ⊕ U2 ⊕ U3 ⊕ U4. Since each tj is of order 2, it follows writing π the projection
of G upon Sm that we have {π(t1), π(t2), π(t3), π(t4)} ⊂ {Id, (12)(34), (13)(24), (14)(23)}.

Let us show that π(tj) = Id for all j. They are all conjugate in G. Since H1 × H2 ×
· · · × Hm is a normal subgroup of (H1 × H2 × · · · × Hm) o Sm, it is sufficient to show it for
one of them. Assume it is false for all of them. We then have {π(t1), π(t2), π(t3), π(t4)} ⊂
{(12)(34), (13)(24), (14)(23)}. Therefore, there exists a pair (i, j), i 6= j such that π(ti) = π(tj)
and, therefore π(titj) = Id. But the matrix of titj in the basis we chose is diag(I2 + (ai +
aj)E1,2, I2 + (ai + aj)E1,2, I2 + ε(ai + aj)E1,2, I2 + ε(ai + aj)E1,2, Inλ−8). We have ai + aj 6= 0
because p = 2 and the elements al are pairwise distinct. It follows that titj is conjugate to each
tl, therefore we have a contradiction. This shows that for all j ∈ {1, 4}, π(tj) = Id. It follows
that tj ∈ H1 × H2 × · · · × Hm, which is normal in (H1 × H2 × · · · × Hm) o Sm. Since G is
normally generated by Rλ(ABn−1), which is normally generated by elements of the form tj, we
have that G ⊂ H1 × H2 × · · · × Hm. This contradicts the irreducibility of G. This is absurd
and it follows that G is a primitive group.

Fifth step. If G contains a natural SL2(q 1
2 ) or a natural SU2(q 1

2 ) then we can apply
the same arguments as in [12, page 13]. If G contains a twisted diagonal embedding or a
twisted diagonal embedding composed with the automorphism of order 2 of Fq of SL3(q), then
we can apply the arguments of [12, page 14]. If we are not in any of the above cases, then
λ = λ′ = (λ2, λ1), therefore n ≥ 6 and we are in one of the following cases.

1. Rλ(ABn) contains up to conjugation {diag(M, t(M−1), Inλ−6),M ∈ SU3(q 1
2 )}.

2. Rλ(ABn) contains up to conjugation {diag(M, t(M−1), Inλ−6),M ∈ SL3(q 1
2 )}.

3. Rλ(ABn) contains up to conjugation
{diag(M, t(M−1), ε(M), tε(M−1), Inλ−12),M ∈ SL3(q)}.

In the first two cases, we have an element g conjugate to diag(ξ, ξ, ξ−1, ξ−1, 1, . . . , 1) with ξ
of order q 1

2−1 but the order of α is less than or equal to q 1
2 +1 in both cases. If g is an element of

Snλ such that [g, V ] = 4, then we have (g = σ1σ2σ3σ4 is the product of 4 disjoint transpositions
and g is of order 2) or (g is the product of 2 disjoint 3-cycles and g is of order 3) or (g is a
5-cycle and g is of order 5) or (g is the disjoint product of 2 transpositions and a 3-cycle and g
is of order 6). Since nλ ≥ 6 and the order of α is greater than n, q 1

2 +1 > 7, therefore q 1
2 −1 > 5

which contradicts all the cases except for the last one. In the last case, we have that nλ ≥ 7 by
the decomposition of g. Since λ = λ′, nλ is even and q 1

2 − 1 = q
1
2 + 1− 2 > nλ − 2 > 6, which

contradicts the last case.
In the third case, we have an element g conjugate to

diag(ξ, ξ, ξ, ξ, ξ−1, ξ−1, ξ−1, ξ−1, 1, . . . , 1) which is of order o(g) = q − 1. However q 1
2 + 1 > 7,

therefore q > 36. Since q is an even power of a prime number, it follows that q > 49 and
q− 1 ≥ 49. We have [g, V ] = 8. By considering the decomposition into disjoint cycles of g and
using the fact that the rank of σ− 1 of a cycle σ is equal to the length of the cycle minus 1, we
get o(g) ∈ {lcm({ni + 1}i∈I),

∑
i∈I
ni = 8, ni ∈ N?}. It follows that o(g) ≤ 30 < 49 ≤ q − 1 = o(g)

which is a contradiction.
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Sixth step. We have shown that G = Rλ(ABn) is a classical group in a natural represen-
tation. The last step is to show that we have the following theorem.

Theorem 3.3.7. If n ≥ 5, then for all double-partition λ  n in our decomposition, Rλ(ABn) =
G(λ), where G(λ) is given by the following list.

1. When Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β), and Fq̃ = Fp(α) 6= Fp(α + α−1)

(a) SUn−1(q̃ 1
2 ) if λ = ([n− 1, 1], ∅).

(b) SUnλ(q̃ 1
2 ) if λ = (λ1, ∅), λ1 < λ′1.

(c) SPnλ(q̃ 1
2 ) if λ = (λ1, ∅), λ1 = λ′1 and ( p = 2 or (p ≥ 3 and ν(λ1) = −1)).

(d) Ω+
N(q̃ 1

2 ) if λ = (λ1, ∅), λ1 = λ′1, p ≥ 3 and ν(λ1) = 1.
(e) SLn(q) if λ = ([1], [n− 1]).
(f) SLnλ(q) if λ 6= λ′, λ 6= (λ′1, λ′2) and λ 6= (λ2, λ1).
(g) SUnλ(q 1

2 ), if λ = (λ2, λ1) 6= λ′.

(h) SLnλ(q 1
2 ),if λ = (λ′1, λ′2) 6= λ′.

(i) SPnλ(q), if λ = λ′ 6= (λ2, λ1) and (p = 2 or ν(λ) = −1).
(j) Ω+

nλ
(q),if λ = λ′ 6= (λ2, λ1), p 6= 2 and ν(λ) = 1.

(k) SPnλ(q 1
2 ), if λ = λ′ = (λ2, λ1) and (p = 2 or ν(λ) = −1).

(l) Ω+
nλ

(q 1
2 ) if λ = λ′ = (λ2, λ1), p 6= 2 and ν(λ) = 1.

2. When Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1),

(a) when Fq̃ = Fp(α) = Fp(α + α−1),
i. SLn−1(q̃) if λ = ([n− 1, 1], ∅).
ii. SLnλ(q̃) if λ = (λ1, ∅), λ1 < λ′1.
iii. SPnλ(q̃) if λ = (λ1, ∅), λ1 = λ′1 and (p = 2 or (p ≥ 3 and ν(λ1) = −1)).
iv. Ω+

N(q̃) if λ = (λ1, ∅), λ1 = λ′1, p ≥ 3 and ν(λ1) = 1.
(b) when Fq̃ = Fp(α) 6= Fp(α + α−1),

i. SUn−1(q̃ 1
2 ) if λ = ([n− 1, 1], ∅).

ii. SUnλ(q̃ 1
2 ) if λ = (λ1, ∅), λ1 < λ′1.

iii. SPnλ(q̃ 1
2 ) if λ = (λ1, ∅), λ1 = λ′1 and ( p = 2 or (p ≥ 3 and ν(λ1) = −1)).

iv. Ω+
N(q̃ 1

2 ) if λ = (λ1, ∅), λ1 = λ′1, p ≥ 3 and ν(λ1) = 1.
(c) SLn(q) if λ = ([1], [n− 1]),
(d) SLnλ(q) if λ 6= λ′, λ 6= (λ′1, λ′2) and λ 6= (λ2, λ1),
(e) SLnλ(F

q
1
2
) if λ = (λ2, λ1) 6= λ′,

(f) SUnλ(q 1
2 ) if λ = (λ′1, λ′2) 6= λ′,

(g) SPnλ(q) if λ = λ′ 6= (λ2, λ1) and (p = 2 or ν(λ) = −1),
(h) Ω+

nλ
(q) if λ = λ′ 6= (λ2, λ1), p 6= 2 and ν(λ) = 1,
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(i) SPnλ(q 1
2 ) if λ = λ′ = (λ2, λ1) and (p = 2 or ν(λ) = −1),

(j) Ω+
nλ

(q 1
2 ) if λ = λ′ = (λ2, λ1), p 6= 2 and ν(λ) = 1.

Proof. It is sufficient to prove the result for double-partitions with no empty components which
are not hooks. We know by Theorem 2.3.2 and the previous steps that G(λ) is a classical group
in a natural representation. The proof uses Proposition 3.2.4 and the separation of the cases
made before the enumeration of the six steps. We write Fq′ the field over which our classical
group is defined. In all cases G(λ) ⊂ SLn(q), therefore q′ divides q.

Assume Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β).

1. If λ 6= λ′, λ 6= (λ′1, λ′2) and λ 6= (λ2, λ1), then G(λ) contains a natural SL2(q). By Lemma
3.3.3, we have that q′ = q. By Proposition 3.2.4, G(λ) preserves no hermitian or bilinear
form, therefore G(λ) = SLnλ(q).

2. If λ = (λ2, λ1) 6= λ′, then by Proposition 3.2.4 and Lemma 3.2.4, we have up to conjuga-
tion G(λ) ⊂ SUnλ(q 1

2 ). Up to conjugation, G(λ) contains {diag(M, tε(M−1), Inλ−6),M ∈
SL3(q)}, therefore G(λ) contains {diag(M,M, Inλ−6),M ∈ SU3(q 1

2 )}.
Let ϕ be the natural representation of SU3(q 1

2 ) in GL3(Fp) and ρ the diagonal represen-
tation of SU3(q 1

2 ) in GLnλ(Fp), given by the above subgroup of G(λ).
We have ρ ' ϕ ⊕ ϕ ⊕ 1nλ−6 with 1 the trivial representation. Let σ be a generator of
Gal(Fq/Fq′). Since G(λ) is a classical group over Fq′ , we have that ρ ' ρσ, therefore
ϕ ' ϕσ. It follows that for every M ∈ SU3(q 1

2 ), we have σ(Tr(M)) = Tr(M). By Lemma
3.3.3, we have that Fq = FGal(Fq/Fq′ )

q and, therefore q′ = q. By Proposition 3.2.4, G(λ)
preserves no bilinear form, therefore G(λ) = SUnλ(q 1

2 ).

3. If λ = (λ′1, λ′2) 6= λ′, then by Proposition 3.2.4 and Lemma 3.2.5, up to conjugation, we
have that G(λ) ⊂ SLnλ(q 1

2 ). The group G(λ) contains either a natural SL3(q 1
2 ) or a

group of the form {diag(M, ε(M), Inλ−6),M ∈ SL3(q)}.
If G(λ) contains a natural SL3(q 1

2 ) then by Lemma 3.3.3, we have q′ = q
1
2 . We know by

Proposition 3.2.4 that G(λ) preserves no symmetric or skew-symmetric bilinear form. If
we had G(λ) ⊂ SUnλ(q 1

4 ), then the natural SL3(q 1
2 ) in G(λ) would inject itself in some

SU3(q 1
4 ). This is absurd because of their orders, therefore we have G(λ) ' SLnλ(q 1

2 ).
If G contains up to conjugation a group of the form {diag(M, ε(M), Inλ−6),M ∈ SL3(q)}
then it contains {diag(M,M, Inλ−6),M ∈ SL3(q 1

2 )}. Let ϕ be the natural representation
of SL3(q 1

2 ) in GL3(Fp) and ρ the diagonal representation of SL3(q 1
2 ) in GLnλ(Fp) given

by the above subgroup of G(λ). We then have ρ ' ϕ⊕ ϕ⊕ 1nλ−6. Let σ be a generator
of Gal(F

q
1
2
/Fq′). We have ρ ' ρσ, therefore ϕ ' ϕσ. By Lemma 3.3.3, we have that

F
q

1
2

= F
Gal(F

q
1
2
/Fq′ )

q
1
2

, therefore q′ = q
1
2 . We cannot have G(λ) ' SUnλ(q 1

4 ) because SL3(q)

would inject itself in SU6(q 1
4 ) and we know that |SU6(q

1
4 )|

q
15
4

< |SL3(q)|
q3 . By Proposition

3.2.4, G(λ) cannot preserve any symmetric or skew-symmetric bilinear form, therefore
G(λ) ' SLnλ(q 1

2 ).

4. Case 4 is analogous to Case 3.
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5. If λ = λ′ = (λ2, λ1), then by Proposition 3.2.4 and Proposition 3.3.3, G(λ) preserves a
bilinear form of the type given by Proposition 3.1.1 defined over F

q
1
2
. This shows that

q′ ≤ q
1
2 and it is enough to show that q′ = q

1
2 to conclude the proof.

If λ1 and λ2 are square partitions, then G(λ) contains up to conjugation the group
{diag(M, t(M−1), Inλ−6),M ∈ SU3(q 1

2 )}.

Let ϕ be the natural representation of SU3(q 1
2 ) in GL3(Fp), and ρ the twisted diagonal

representation of SU3(q 1
2 ) in GLnλ(Fp) given by the above subgroup of G(λ). We have

ρ ' ϕ⊕ϕ?⊕1nλ−6. Let σ be a generator of Gal(F
q

1
2
/Fq′). Since G(λ) is a classical group

over Fq′ , we have ρ ' ρσ. It follows that ϕ ' ϕσ or ϕ ' (ϕ?)σ. The first possibility

implies that F
q

1
2

= F
Gal(F

q
1
2
/Fq′ )

q
1
2

, therefore q′ = q
1
2 . The second possibility implies that

ϕ ' ϕσ
2 . Therefore q′ = q

1
2 or σ is of order 2 and SU3(q 1

2 ) injects into SU3(q 1
4 ), which is

a contradiction. In both cases, we have q′ = q
1
2 and the desired result follows.

If λ1 or λ2 is not a square partition, then G(λ) contains up to conjugation the group
{diag(M, t(M−1), ε(M), tε(M−1), Inλ−12),M ∈ SL3(q)}, and, therefore contains its sub-
group {diag(M, t(M−1),M, t(M−1), Inλ−12),M ∈ SL3(q 1

2 )}. Let ϕ be the natural repre-
sentation of SL3(q 1

2 ) in GL3(Fp) and ρ be the representation of SL3(q 1
2 ) in GLnλ(Fp)

given by the above subgroup G(λ). We have ρ ' ϕ ⊕ ϕ ⊕ ϕ? ⊕ ϕ? ⊕ 1nλ−6 . Let σ be a
generator of Gal(F

q
1
2
/Fq′). Since G(λ) is a classical group defined over Fq′ , we have that

ρ ' ρσ. It follows that ϕ ' ϕσ or ϕ ' (ϕ?)σ. By the same arguments as before, we have
q′ = q

1
2 or SL3(q 1

2 ) injects itself in SU3(q 1
4 ), which is not possible. This proves q′ = q

1
2

and concludes the case Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β).

If Fq = Fp(α, β) = Fp(α+α−1, β) 6= Fp(α, β+ β−1), then all the arguments are the same up
to permutation of the different cases.

We have determined the image of the derived subgroup of the Artin group in all cases in
type B. This is close to determining the image of the Artin group itself since ABn/ABn ' Z2.
We give in the following subsection an example of how to recover the group G = R(ABn) from
H = R(ABn) with the representation of HB2,α,β labeled by the double-partition ([1], [1]).

3.4 Image of the full Artin group for the 2-dimensional
representation of HB2,α,β

We first recall the results for the 2-dimensional representation depending on the fields.

Proposition 3.4.1. Assume the order of β does not belong to {1, 2, 3, 4, 5, 6, 10} or the order
of α does not belong to {1, 2, 3, 4, 5, 6, 10}

1. If Fq = Fp(α, β) = Fp(α + α−1, β + β−1) then R[1],[1](AB2) = SL2(q).

2. If Fq = Fp(α, β) = Fp(α, β + β−1) = Fp(α + α−1, β) 6= Fp(α + α−1, β + β−1) then
R[12],[12](AB2) ' SU2(q 1

2 ).
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3. If Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α + α−1, β + β−1) then
R[12],[12](AB2) ' SL2(q 1

2 ).

4. If Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α + α−1, β + β−1) then
R[12],[12](AB2) ' SL2(q 1

2 ).

Corollary 3.4.1. Under the same assumptions as in the previous proposition, we have that if
G = R[1],[1](AB2), a is the order of −α and b is the order of −β then

1. If Fq = Fp(α, β) = Fp(α + α−1, β + β−1) then G ' SL2(q)o Z/ lcm(a, b)Z.

2. Fp(α, β) = Fp(α, β + β−1) = Fp(α+ α−1, β) 6= Fp(α+ α−1, β + β−1) then G ' SU2(q 1
2 )o

Z/ lcm(a, b)Z.

Proof. We write s = R[1],[1](S1) =
(
α−1
β+1

αβ+1
β+1

α+β
β+1

αβ−β
β+1

)
and t = R[1],[1](T ) =

(
β 0
0 −1

)
.

Assume first that Fq = Fp(α, β) = Fp(α+ α−1, β + β−1). By Proposition 3.4.1 and the fact
that Det(s) = −α and Det(t) = −β, we have the following exact sequence

1 −→ SL2(q) −→ G
det−→< −α,−β >−→ 1.

In order to prove the result, we must show that the exact sequence is split and that <
−α,−β > is isomorphic to Z/ lcm(a, b)Z. We first show that the exact sequence is split.

This is equivalent to finding a subgroup N of G isomorphic to < −α,−β > and such that

Det(N) =< −α,−β >. We have SL2(q) ≤ G, therefore U =
(

0 1
−1 0

)
∈ G. It follows that

V = stsUt−1U =
(
−α 0
0 −α

)
∈ G. We also have sts =

(
−α 0
0 αβ

)
∈ G and −t =

(
−β 0
0 1

)
∈

G. We now distinguish five possibilities depending on the orders of α and the order of β. We
write c = 2`c′ (resp d = 2kd′) the order of α (resp β) with c′ (resp d′ odd).

First case : k = 1 or ` = 1. By symmetry of the roles of α and β, it is sufficient to show
the exact sequence is split when l = 1. We then have (−α) c2 = (−1)c′αc′ = 1, therefore −α is
of order m for some m dividing c

2 . We also have α2m = (−α)2m = 1, therefore c divides 2m.
It follows that m = c

2 . The order of α being even, we have that the order of α2 is also c
2 . The

subgroup generated by V and −t then verifies the desired conditions.
Second case : k = ` = 0. We then have that the order of −α is equal to the order of

−α2. We have (sts)cd =
(

(−1)cd(αc)d 0
0 (αc)d(βd)c

)
=
(
−1 0
0 1

)
, therefore M = (sts)cdV =(

α 0
0 −α

)
∈ G. The subgroup < M,−t > then verifies the desired conditions.

Third case : k > 1 > ` or ` > 1 > k. It is sufficient to consider the case k > 1 > l. We
then have that −α and −α2 have the same order since c is odd. We have t d2 =

(
β
d
2 0

0 (−1) d2

)
=(

−1 0
0 1

)
, therefore M = t

d
2V =

(
α 0
0 −α

)
∈ G0 The subgroup < M,−t > then verifies the

desired conditions.
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Fourth case : k > ` > 1 or ` > k > 1. It is sufficient to consider the case k > ` > 1. We
then have that the order of α is equal to the order of −α. We have t

d

2l =
(
β2k−ld′ 0

0 (−1)2k−ld′

)
=(

β2k−ld′ 0
0 1

)
. We set γ = β2k−ld′ , γ is then of order 2`. We have that γα2 is of order r, where r

is an integer dividing c. We also have that (γα2) c2 = γ2`−1c′αc = −1, therefore r does not divide
c
2 . This implies that there exists an odd integer c′′ such that r = 2`c′′ and c′′ divides c′. We
have 1 = (γα2)r = α2r and c divides 2r. Therefore c′ divides c′′ and γα2 is of order a. We then

set M = t
d

2l V =
(
−γα 0

0 −α

)
∈ G. The matrix M is of order c = a and its determinant is of

order a because it is equal to γα2. This proves that we can take < M,−t > as our subgroup.

Fifth case : k = l ≥ 2. We then have that −α is of order c. We have td′ =
(
βd
′ 0

0 (−1)d′
)

=(
βd
′ 0

0 −1

)
. We set γ = βd

′ , we have that the order of γ is 2k. The element −γα2 is then of

order c by the same reasonning as in the fourth case. We set M = td
′
V =

(
−γα 0

0 α

)
∈ G.

The matrix M is of order c, therefore the subgroup < M,−t > verifies the desired conditions.
This shows that G ' Go < −α,−β >. It now only remains to show that < −α,−β >'

Z/ lcm(a, b)Z.
Let n = q − 1, we have < −α,−β >'< n

a
, n
b
> when it is seen as a subgroup of Z/nZ. Let

ϕ : Z/aZ× Z/bZ→< n
a
, n
b
> be the map that maps (u, v) to un

a
+ v n

b
. The map ϕ is a group

epimorphism and its Kernel is ker(ϕ) = {(u, v) ∈ Z/aZ×Z/bZ, un
a
+v n

b
= 0}. Let d = Gcd(a, b).

We have a group isomorphism ψ from Z/dZ to ker(ϕ) defined by ψ(k) = (ka/d,−kb/d). The
map ψ is well-defined and is clearly one-to-one. We must show that it is onto. Let u ∈ Z, v ∈ Z
such that un

a
+ v n

b
= `n for some integer `. We have that unb = (`b − v)na and, therefore,

ub = (`b− v)na and u b
d

= (`b− v)a
d
. It follows that a

d
divides u b

d
and a

d
divides u. This implies

that there exists k ∈ Z such that u = k a
d
and the projection of u in Z/aZ only depends on the

projection of k in Z/dZ. It follows that ψ is indeed onto.
It follows that < −α,−β >' (Z/aZ × Z/bZ)/Z/dZ. Its order is therefore equal to ab

d
=

lcm(a, b). Since it is a subgroup of Z/nZ, it is cyclic and therefore isomorphic Z/ lcm(a, b)Z.
This concludes the proof for Fp(α, β) = Fp(α + α−1, β + β−1).

Assume now that Fp(α, β) = Fp(α, β + β−1) = Fp(α + α−1, β) 6= Fp(α + α−1, β + β−1).

Recall that ε(α) = α−1 and ε(β) = β−1. Let P =
(

α+β
αβ+1 0

0 1

)
, we then have PsP−1 = ε(ts−1)

and PtP−1 = ε(tt−1). If we set (X, Y ) =t ε(X)PY , then for all M ∈ G, X, Y ∈ F2
q, we have

(MX,MY ) = (X, Y ). This proves by Proposition 3.2.5 that there exists Q ∈ GL2(q) such
that G̃ = QGQ−1 is a subgroup of GU2(q 1

2 ). By Proposition 3.4.1, we have the following exact
sequence

1 −→ SU2(q 1
2 ) −→ G̃

det−→< −α,−β >−→ 1.
As in the previous case, it is sufficient to show that there is a splitting of < −α,−β > in G̃ or
in G since G ' Q−1G̃Q. We have that [G̃, G̃] ' SU2(q 1

2 ) and for M ∈ GL2(Fq), M ∈ GU2(q)
if and only if QMQ−1 stabilizes the sesquilinear form defined by (X, Y ) =t ε(X)PY . We have
that G contains all the matrices of determinant 1 preserving the above sesquilinear form. Let
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M =
(
β 0
0 β−1

)
. We have ε(t(M−1))P = MP = PM , therefore (MX,MY ) = (X, Y ). Since

det(M) = 1, we have that M ∈ G. In the same way, we have −I2 ∈ G. We then have that(
−α 0
0 −α

)
= Mstst−1 ∈ G and −t ∈ G. This proves that we can have all the matrices

appearing in the previous case in G and, therefore that there exists a splitting of < −α,−β >
in G. This concludes the proof in this case.

If Fq = Fp(α, β) = Fp(α, β+β−1) 6= Fp(α+α−1, β) = Fp(α+α−1, β+β−1) or Fq = Fp(α, β) =
Fp(α+α−1, β) 6= Fp(α, β + β−1) = Fp(α+α−1, β + β−1) then the exact sequence we consider is
not always split, therefore the situation is slightly more complex. The Gcd of the order of −α
and the order of −β then divides 2 as we prove in the following lemma.

Lemma 3.4.1. If Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α+ α−1, β) = Fp(α+ α−1, β + β−1) or
Fq = Fp(α, β) = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α + α−1, β + β−1) then Gcd(a, b) ≤ 2,
where a is the order of −α and b is the order of −β.

Proof. Since the roles of α and β are symmetric, we can assume that Fq = Fp(α, β) = Fp(α, β+
β−1) 6= Fp(α + α−1, β) = Fp(α + α−1, β + β−1).

Let a′ = a
d
and b′ = b

d
. The group F?q is isomorphic to Z/nZ, where n = q − 1. Since

−α is of order a, its image in Z/nZ is of the form un
a

with u coprime to a. The group
generated by β is mapped to the group generated by n

b
. The image of (−α)a′ is then equal to

ua′ n
a

= ua
d
n
a

= u b
d
n
b
∈< n

b
>. This proves that (−α)a′ ∈< −β >, therefore (−α)a′ ∈ F

q
1
2
. It

follows that the polynomial R(X) = Xa′ − (−α)a′ has its coefficients in F
q

1
2
.

Since Fp(α + α−1, β) 6= Fp(α, β), the polynomial X2 + (α + α−1)X + 1 is irreducible over
F
q

1
2
and the unique automorphism ε of order 2 of Fq verifies ε(−α) = −α−1. Since −α is

a root of R ∈ F
q

1
2
[X], ε(−α) = −α−1 is also a root of R. If k ∈ [[0, a′ − 1]], we have that

((−α)1+kd)a′ = (−α)a′ is a root of R and since kd ∈ [[0, a − d]], those roots are distinct. This
proves that those are all the roots of R since its degree is a′. It follows that there exists
k ∈ [[0, a′ − 1]] such that (−α)−1 = (−α)1+kd and, therefore (−α)2+kd = 1. It follows that a
divides 2 + kd. We have 2 ≤ 2 + kd ≤ 2 + (a′− 1)d = 2 + a− d and a > 1, therefore a = 2 + kd.
If d ≥ 3 then we have 2 + kd ≤ 2 + a− d ≤ a− 1 do we cannot have a = 2 + kd. This proves
by contradiction that d ≤ 2. Note that we can have d = 2 or d = 1 since 2 + 2(a′ − 1) = 2a′
and 2 + (a′ − 2) = a′.

Proposition 3.4.2. Assume Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α +
α−1, β + β−1) or Fq = Fp(α, β) = Fp(α+ α−1, β) 6= Fp(α, β + β−1) = Fp(α+ α−1, β + β−1). Let
d = Gcd(a, b) ≤ 2, where a is the order of −α and b is the order of −β.

If d = 1 then we have G ' (SL2(q 1
2 )o Z/abZ.

If d = 2, then we have G ' J o Z/ lcm(a, b)Z, where J = {M ∈ SL2(q),Mε(M)−1 ∈
{I2,−I2}} and ε is the unique automorphism of order 2 of Fq.

Proof. Again, we can assume Fq = Fp(α, β) = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α +

α−1, β + β−1). Let P =
(
− (α+β)(α−1)

α(β+1) 0
0 1

)
. We will first show that P [G,G]P−1 ⊂ SL2(q 1

2 ).
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Recall that we have t =
(
β 0
0 −1

)
and s =

 α−1
1+β

α+β−1

1+β−1
α+β
1+β

α−1
1+β−1

. Note that β ∈ F
q

1
2
, α+α−1 ∈ F

q
1
2

and for x ∈ Fq, x ∈ F
q

1
2
if and only if ε(x) = x with ε the unique automorphism of order 2 of

Fq. We have ε(β) = β and ε(α) = α−1. Let Q = ε(P−1)P , we have

Q =
(

α−1(β+1)
(α−1+β)(α−1−1)

(α+β)(α−1)
α(β+1) 0

0 1

)
=
( (β+1)(α+β)(α−1)

(αβ+1)(1−α)(β+1) 0
0 1

)
=
(
− α+β
αβ+1 0
0 1

)
.

We then have QtQ−1 = t = ε(t) and

QsQ−1 =
 α−1

β+1 −α+β
β+1

−αβ+1
β+1

(α−1)β
β+1

 =
−α(1−α−1)

1+β −−α(1+βα−1)
β+1

−α(β+α−1)
β+1

−α(1−α−1)
1+β−1

 = −αε(s).

It follows that for all g ∈ [G,G], QgQ−1 = ε(g) and, therefore ε(P−1)PgP−1ε(P ) = ε(g)
and ε(PgP−1) = PgP−1. This proves that we have P [G,G]P−1 ⊂ SL2(q 1

2 ). We write in the
following G̃ = PGP−1, s̃ the image of PsP−1 in G̃/[G̃, G̃] and t̃ the image of PtP−1 in G̃/[G̃, G̃].

We have by Proposition 3.4.1 that [G̃, G̃] ' SL2(q 1
2 ). We now show that a is the order of

s̃ and b is the order of t̃. Let r be the order of s̃. We have (PsP−1)r ∈ SL2(q 1
2 ), therefore

(−α)r = det(s)r = 1 and a divides r. We have (−α)a = 1, therefore αa = (−1)a. The
eigenvalues of PsP−1 are α−1 and −1, therefore (PsP−1)a is conjugate to the diagonal matrix
diag(α−a, (−1)a) = (−1)aI2 and, therefore (PsP−1)a = (−1)aI2 ∈ SL2(q 1

2 ). It follows that
s̃a = 1 and, therefore r divides a. This proves that r = a. In the same way, we have b is the
order of t̃.

We now determine G̃ in terms of G̃∩ SL2(q). The determinant gives us the following exact
sequence

1 −→ G̃ ∩ SL2(q) −→ G̃
det−→< −α,−β >−→ 1.

The matrix P commutes with all diagonal matrices, therefore sts =
(
−α 0
0 αβ

)
∈ G̃ and t ∈ G̃.

Moreover, since SL2(q 1
2 ) ⊂ G̃, we have u =

(
0 1
−1 0

)
∈ G̃ and, therefore ut−1u =

(
1 0
0 −β−1

)
∈

G̃. It follows that M = stsut−1u =
(
−α 0
0 −α

)
∈ G̃, t ∈ G̃ and −t ∈ G̃. It follows that we

can use the same arguments as for Fq = Fp(α, β) = Fp(α+ α−1, β + β−1) to get that there is a
splitting of < −α,−β > in G̃. This proves that G ' (G̃ ∩ SL2(q)oZ/ lcm(a, b)Z. It now only
remains to determine G̃ ∩ SL2(q) depending on d.

First case : d = 1. Since d = 1, we have lcm(a, b) = ab. It is thus sufficient to show
that SL2(q 1

2 ) ' [G̃, G̃] = G̃ ∩ SL2(q). The group [G̃, G̃] is a normal subgroup of G̃ ∩ SL2(q),
therefore we can consider the quotient of those two groups. Let M ∈ (G̃ ∩ SL2(Fq))/[G̃, G̃].
Since a is the order of s̃ and b is the order of t̃, we can write M as s̃k t̃` with 0 ≤ k ≤ a − 1
and 0 ≤ ` ≤ b− 1. The matrix M is of determinant 1, therefore (−α)k(−β)l = 1, which is only
possible if l = k = 0 since a and b are coprime. This proves that the quotient is trivial and,
therefore G̃ ∩ SL2(q) ' SL2(q 1

2 ). It follows that G ' SL2(q 1
2 )o Z/abZ.
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Second case : d = 2. Since [G̃, G̃] ' SL2(q 1
2 ), we have that SL2(q 1

2 ) / G̃ ∩ SL2(q). Let
M ∈ G̃ ∩ SL2(q) and A ∈ SL2(q 1

2 ), we then have ε(M)Aε(M)−1 = ε(MAM−1) = MAM−1

since ε stabilizes SL2(q 1
2 ).

It follows that ε(M)−1M belongs to the centralizer of SL2(q 1
2 ) in SL2(q) which is equal to

{I2,−I2}. It follows that G̃ ∩ SL2(q) ⊂ {M ∈ SL2(q), ε(M)−1M ∈ {I2,−I2}}. Let us show
that this inclusion is in fact an equality.

Let ϕ : G̃∩SL2(q)→ {I2,−I2} be the mapM 7→ ε(M)−1M . The above inclusion proves that
this map is a group morphism. We have ker(ϕ) = {M ∈ G̃ ∩ SL2(q), ε(M) = M} ⊂ SL2(q 1

2 )
and SL2(q 1

2 ) ⊂ G̃ ∩ SL2(q), therefore ker(ϕ) ' SL2(q 1
2 ). To conclude the proof, we only need

to show that there exists M ∈ G̃ ∩ SL2(q) such that ε(M)−1M = −I2.
We have that (−α)a2 = (−β) b2 = −1 and ε(α) = α−1. Let M = Ps

a
2 t

b
2P−1, we have

M =

 (−1)
a
2 β

b
2 +1α+β

b
2 α

a
2 +1+β

b
2 +1α

a
2 +β

b
2 (−1)

a
2

((α+1)(β+1)
−(α+β)(α−1)(αβ+1)((−1)

b
2 α

a
2−(−1)

b
2 +a

2 )
α(β+1)(αβ+α+β+1)

αβ
b
2 ((−1)

a
2−α

a
2 )

(α2−1)
(−1)

b
2 α

a
2 +1β+(−1)

b
2 +a

2 )α+(−1)
b
2 +a

2 )β+(−1)
b
2 α

a
2

αβ+α+β+1



=

 (−1)
a
2 + b

2 (−βα+α+β−1)
αβ+α+β+1

(−1)
b
2 +a

2 (2(α+β)(α−1)(αβ+1))
α(β+1)(αβ+α+β+1)

− (−1)
b
2 +a

2 2α
α2−1

(−1)
b
2 +a

2 (−αβ+α+β−1)
αβ+α+β+1


= (−1)

a+b
2

−βα+α+β+−1
αβ+α+β+1

2(α+β)(α−1)(αβ+1)
α(β+1)(αβ+α+β+1)

− 2α
α2−1

−αβ+α+β−1
αβ+α+β+1


ε(M) = (−1)

a+b
2

−βα−1+α−1+β−1
α−1β+α−1+β+1

2(α−1+β)(α−1−1)(α−1β+1)
α−1(β+1)(α−1β+α−1+β+1)

− 2α−1

α−2−1
−α−1β+α−1+β−1
α−1β+α−1+β+1


= (−1)

a+b
2

−β+1+βα−α
β+1+αβ+α

2(1+αβ)(1−α)(β+α)
α(β+1)(β+1+αβ+α)

− 2α
1−α2

−β+1+αβ−α
β+1+αβ+α


= −M.

It follows that ε(M)−1M = −I2 which concludes the proof.
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Chapter 4

Type D

In this section, we determine the image of the Artin group of type D inside its associated finite
Iwahori-Hecke algebra. The structure of this section is similar to the one in chapter 3 for type
B. We first define the model and prove some basic properties on the irreducible representations.
We then determine the different factorizations appearing, they will be similar to the last cases
we had to consider in type B. We then state the main results for type D in Theorem 4.2.2
and Theorem 4.2.3. The last two sections prove those theorems using induction. The main
differences which will arise come from the fact that we only have to consider one parameter.
The branching rule (Lemma 4.1.1) is quite a bit more complicated and we need to prove some
results on orthogonal groups defined over finite fields in a less general setting as we did in type
B.

4.1 Definition of the model
Let n ≥ 4, p a prime different from 2, α ∈ Fp of order greater than 2n. We set in this section
Fq = Fp(α). As in [20], we take for the Iwahori-Hecke algebra of type D, HDn,α the sub-algebra
ofHBn,α,1 generated by U = TS1T, S1, . . . Sn−1. More precisely, we have the following definition.

Definition 4.1.1. The Iwahori-Hecke algebra of HDn,α of type D is the subalgebra of HBn,α,1
generated by U = TS1T, S1, . . . Sn−1. We then have (see [20] 10.4) that HDn,α is the algebra
generated by the above generators and that they verify the following relations

1. U2 = (α− 1)U + α,

2. ∀i ∈ [[1, n− 1]], S2
i = (α− 1)Si + α,

3. ∀i ∈ [[1, n− 1]] \ {2}, USi = SiU ,

4. US2U = S2US2,

5. ∀i ∈ [[1, n− 2]], SiSi+1Si = Si+1SiSi+1,

6. ∀i, j ∈ [[1, n− 1]], |i− j| > 1, SiSj = SjSi.

We will now give a decomposition into irreducible modules of this algebra. In order to do
this, we give the action of HDn,α on modules generated by standard double-tableaux associated
to double-partitions of n.
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Proposition 4.1.1. Let λ = (λ1, λ2)  n and T ∈ λ. For i ∈ [[1, n − 1]], we write mi(T) =
α−1

1−(−1)δiαci−ri+ri+1−ci+1 , where i (resp i+ 1) is in box (ri, ci) (resp (ri+1, ci+1)) of a component of
T, δi = 0 if i and i+ 1 are in the same component and δi = 1 otherwise.

The action of the generators on the standard double-tableau T is then the following

1. U.T = m1(T)T− (1 +m1(T))T̃, with T̃ = 0 if T1↔2 not standard T̃ = T1↔2 otherwise.

2. ∀i ∈ [[1, n− 1]], Si.T = mi(T)T+ (1 +mi(T))T̃ with T̃ = 0 if Ti↔i+1 is not standard and
T̃ = Ti↔i+1 otherwise.

We write Vλ for the module generated by the standard double-tableaux associated to λ. By
[20] (prop 10.4.5), we have that the action on the generators of HDn,α commutes with the action
of σ defined by σ((T1,T2)) = (T2,T1). We then have that for any λ = (λ1, λ2)  n, V(λ1,λ2) is
isomorphic to V(λ2,λ1) as HDn,α-module.

If λ = (λ1, λ1), then we can consider a basis (T1,T2, . . . ,Tr, σ(T1), σ(T2), . . . , σ(Tr)) of Vλ.
We then have that Vλ,+ =< Ti + σ(Ti) >i∈[[1,r]] and Vλ,− =< Ti− σ(Ti) >i∈[[1,r]] are submodules
of Vλ.

We know by [20] (10.4) that the irreducible modules of the Iwahori-Hecke algebra of type D
in the generic case are the modules Vλ labeled by double-partitions (λ1, λ2) with λ1 < λ2 and
the modules V(λ1,λ1),+ and V(λ1,λ1),− for λ1 ` n

2 . We will use Proposition 2.2.4 in order to prove
that this is also the case in the finite field setting. The Schur elements are quite complicated
to write, therefore we need to introduce some new objects before giving the Schur elements.

Definition 4.1.2. Let (λ, µ)  n with λ = (λ1, . . . , λr, 0, . . . ) ` nλ and
µ = (µ1, . . . , µm, 0, . . . ) ` nµ.

If r ≤ m, then we set Xλ,µ = {λi+m−i}i∈[[1,r]]∪ [[0,m−r−1]] and Yλ,µ = {µi+m−i}i∈[[1,m]].
If m > r, then we set Xλ,µ = {λi + r − i}i∈[[1,r]] and Yλ,µ = {µi + r − i}i∈[[1,m]] ∪ [[0, r −m]].
For X ⊂ N and u a given parameter, we set ∆(X, u) = ∏

(k,l)∈X2,k>l
(uk − ul).

By [20] (10.5.7 and 9.3.6), we have the following proposition

Proposition 4.1.2. If (λ, µ)  n and λ 6= µ, then the Schur element cλ,µ associated to the
irreducible HDn,Z[u,u−1]-module Vλ,µ is

cλ,µ =
2b−1u

b(b−1)(4b−5)
6

∏
k∈Xλ,µ

k∏
h=1

(u2h − 1) ∏
l∈Yλ,µ

l∏
h=1

(u2h − 1)

(u− 1)n∆(Xλ,µ, u)∆(Yλ,µ, u) ∏
(k,l)∈Xλ,µ×Yλ,µ

(uk + ul)

where b = |Xλ,µ| = |Yλ,µ|.
If (λ, λ)  n, then the Schur elements associated to V(λ,λ),+ and V(λ,λ),− are equal and are

given by

cλ,λ =
2bu

b(b−1)(4b−5)
6

∏
k∈Xλ,λ

k∏
h=1

(u2h − 1) ∏
l∈Yλ,λ

l∏
h=1

(u2h − 1)

(u− 1)n∆(Xλ,λ, u)∆(Yλ,λ, u) ∏
(k,l)∈Xλ,λ×Yλ,λ

(uk + ul) .

We can now state the theorem giving the semi-simple decomposition of HDn,α.
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Theorem 4.1.1. Assume the order of α is greater than 2n. We then have that HDn,α is split
semi-simple and its pairwise non-isomorphic irreducibles modules are Vλ,µ (with λ > µ), Vλ,λ,+
and Vλ,λ,−.

In the following, we write V for the direct sum of these irreducible modules.

Proof. Let A = Z[u±1], θ : Z[u±1] → Fq defined by θ(k) = k for k ∈ Z and θ(u) = α. By
Proposition 2.2.4, it is sufficient to show that cλ,µ ∈ B with B as in Proposition 2.2.4, that
θ̃(cλ,µ) 6= 0 and (1 + mi(T))mi(T) 6= 0 and that they are well-defined for (λ, µ)  n, for
i ∈ [[1, n − 1]] and for T ∈ (λ, µ) such that Ti↔i+1 is also standard. The condition on the mi

implies that for any pair (i, j), there exists a matrix M in the representation associated to Vλ,µ
such that Mi,j 6= 0 since there exists a path between any pair of standard double-tableaux such
that any standard double-tableau in the path is obtained by transposing a pair (r, r + 1).

Let (λ, µ)  n as in Definition 4.1.2, i ∈ [[1, n− 1]] and T ∈ (λ, µ).

We first show that cλ,µ ∈ B, i.e. θ

(
(u− 1)n∆(Xλ,µ)∆(Yλ,µ) ∏

(k,`)∈Xλ,µ×Yλ,µ
(uk + u`)

)
6= 0.

We have that θ((u− 1)n) = (α− 1)n 6= 0.
We have ∆(Xλ,µ, u) = ∏

(k,`)∈X2
λ,µ

,k>`

(αk − α`). Let (k, `) ∈ X2
λ,µ such that k > `. We

have 0 ≤ ` < k ≤ λ1 + max(m, r) − 1 and, therefore k − ` ≤ λ1 + max(m, r) − 1. Since
λ1 + r − 1 is equal to the number of boxes in the first row of λ, we have that λ1 + r − 1 ≤ nλ.
Since m is the number of boxes in the first column of µ, we have that m ≤ nµ, therefore
λ1 + max(m, r) − 1 = λ1 + max(r − 1 + m − r, r − 1) ≤ nλ + nµ ≤ n < 2n. The equality
αk − α` = 0 implies that αk−` = 1. This quantity is therefore non-zero because the order of α
is greater than 2n.

In the same way, we have ∆(Yλ,µ, u) 6= 0.
Let (k, `) ∈ Xλ,µ × Yλ,µ. Assume by contradiction that θ(uk + u`) = 0. We then have

αk + α` = 0, therefore αk−` = −1 and α2(k−`) = 1. We have 0 ≤ k ≤ λ1 + max(r,m) − 1
and 0 ≤ ` ≤ µ1 + max(r,m) − 1. Therefore −2n ≤ 1 − max(m, r) − µ1 ≤ 2(k − `) ≤
2(λ1 + max(m, r)− 1) ≤ 2n and we have αk−` 6= 1 if k 6= ` since the order of α is greater than
to 2n. If k = `, then θ(uk + u`) = 2αk 6= 0 because p 6= 2.

It follows that cλ,µ ∈ B.

We now show that θ̃(cλ,µ) 6= 0, i.e.

θ

2bu
b(b−1)(4b−5)

6
∏

k∈Xλ,µ

k∏
h=1

(u2h − 1)
∏

l∈Yλ,µ

l∏
h=1

(u2h − 1)
 6= 0.

We have θ(2bu
b(b−1)(4b−5)

6 ) = 2bα
b(b−1)(4b−5)

6 6= 0 because p 6= 2. Let k ∈ N such that k ∈ Xλ,µ or
(k ∈ Yλ,µ and 0 ≤ h ≤ k). We have shown that k ≤ n, therefore θ(u2h − 1)) = α2h − 1 6= 0
because α is of order greater than 2n. It follows that θ̃(cλ,µ) 6= 0.

We now show that mi(T) is well-defined and non-zero.
We have that mi(T) = α−1

1−(−1)δiαci−ri+ri+1−ci+1 6= 0. It is sufficient to show that
1− (−1)δiαci−ri+ri+1−ci+1 6= 0 or αci−ri+ri+1−ci+1 6= (−1)δi .

If i and i + 1 are in the same component of T, then δi = 0 and |ci − ri + ri+1 − ci+1| =
|ci−ci+1+ri+1−ri| is less than the minimal number of boxes on a path within the Young diagram
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from the box where i is and the box where i+ 1 is. It follows that αci−ri+ri+1−ci+1 6= 1 because
α is of order greater than 2n > max(nλ, nµ) > |ci − ri + ri+1 − ci+1| and ci − ri 6= ci+1 − ri+1
because T is standard.

If i and i + 1 are in distinct components then we have that δi = 1. It is then sufficient
to show that −2n ≤ ci − ri + ri+1 − ci+1 ≤ 2n because p 6= 2. If i is in the left tableau
and i + 1 is in the right tableau then we have 1 − n ≤ 1 − r ≤ ci − ri ≤ λ1 − 1 ≤ n − 1 and
1−n ≤ 1−m ≤ ci+1−ri+1 ≤ µ1−1 ≤ n−1. It follows that 2−2n ≤ ci−ri+ri+1−ci+1 ≤ 2n−2
which proves that mi(T) is well-defined since α is of order greater than 2n. The same reasoning
shows that mi(T) is well-defined if i is in the right tableau and i+ 1 is in the left tableau.

Finally, we show that 1 +mi(T) 6= 0. We have

1 +mi(T) = 1 + α− 1
1− (−1)δiαci−ri+ri+1−ci+1

= α(1− (−1)δiαci−ri+ri+1−ci+1−1)
1− (−1)δiαci−ri+ri+1−ci+1

.

We have shown in the previous step that −2n + 2 ≤ ci − ri + ri+1 − ci+1 ≤ 2n − 2, therefore
−2n + 1 ≤ ci − ri + ri+1 − ci+1 ≤ 2n − 3. Since Ti↔i+1 is standard if i and i + 1 are in the
same component we have in that case that |ci − ri + ri+1 − ci+1| − 1 ≥ 2. This shows that
1 +mi(T) 6= 0 and concludes the proof.

The branching rule for type D is more complicated, therefore we recall it in the following
proposition (a proof in a more general setting can be found in [35]).

Lemma 4.1.1. Let n ≥ 5 and (λ, µ)  n, λ > µ. We then have:

1. If nλ > nµ + 1, then Vλ,µ|HDn−1,α
= ⊕

(λ̃,µ̃)⊂(λ,µ)
Vλ̃,µ̃.

2. If nλ = nµ + 1 and µ 6⊂ λ, then

Vλ,µ|HDn−1,α
= (

⊕
µ̃⊂µ

Vλ,µ̃)⊕ (
⊕
λ̃⊂λ
λ̃>µ

Vλ̃,µ)⊕ (
⊕
λ̃⊂λ
λ̃<µ

Vµ,λ̃).

3. If nλ = nµ + 1 and µ ⊂ λ, then

Vλ,µ|HDn−1,α
= (

⊕
µ̃⊂µ

Vλ,µ̃)⊕ (
⊕
λ̃⊂λ
λ̃>µ

Vλ̃,µ)⊕ (
⊕
λ̃⊂λ
λ̃<µ

Vµ,λ̃)⊕ Vµ,µ,+ ⊕ Vµ,µ,−.

4. If nλ = nµ and λ > µ, then Vλ,µ|HDn−1,α
= ( ⊕̃

µ⊂µ
Vλ,µ̃)⊕ ( ⊕̃

λ⊂λ
Vµ,λ̃).

5. If λ = µ, then Vλ,λ,+|HDn−1,α
= Vλ,λ,−|HDn−1,α

= ⊕̃
µ⊂µ

Vλ,µ̃.

Proof. Assume first that nλ > nµ + 1. We then have Vλ,µ = ⊕
T∈(λ,µ)

FqT. Let r be the number of

extremal boxes in the Young double-diagram associated to (λ, µ) (a box is said to be extremal
if there exists a standard double-tableau containing n in that box). We write (r`, c`, δ`)l∈[[1,r]]
the extremal box, where r` is the row and c` is the column of the box in the component the box
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belongs to and δ` indicates which component the box belongs to. We then have Vλ,µ =
r⊕
l=1

⊕
j∈Il
Tj,l

for Tj,l, j ∈ Il standard tableaux associated to (λ, µ) such that n is in box (rl, cl, δl).
We can then define a bijection from the basis of Vλ,µ to the standard double-tableaux basis

of ⊕
(λ̃,µ̃)⊂(λ,µ)

Vλ̃,µ̃ by mapping a standard double-tableau Tj,l to the standard double-tableau

Tj,l \ {(rl, cl, δl)} and we have λ̃ > µ̃ for any (λ̃, µ̃) ⊂ (λ, µ) since nλ̃ > nµ̃. By construction,
this bijection commutes with the action of HDn−1 because for any i ∈ [[1, n − 2]], the position
of i and i+ 1 is unchanged.

Assume now that nλ = nµ + 1 and µ 6⊂ λ. We can then apply a similar reasoning except
that we can have λ̃ < µ for some λ̃ ⊂ λ. We then map the standard tableau Tj,l to σ(Tj,l \
{(rl, cl, δl)}). The action of HDn−1,α then still commutes with the bijection since it commutes
with action of σ.

Assume now that nλ = nµ + 1 et µ ⊂ λ. We keep the same bijection as in the previous
case except for the extremal box (r`0 , c`0 , δ`0), which, when removed from the Yound double-
diagram (λ, µ), affords the Young double diagram associated to (µ, µ). We then map the
tableau Tj,`0 = (Tj,`0,1,Tj,`0,2) to Tj,`0 \ {(r`0 , c`0 , δ`0)}+ σ(Tj,`0 \ {(rl0 , cl0 , δl0)}) if τTj,`0 (1) = 1
and to Tj,`0 \ {(r`0 , c`0 , δ`0)} − σ(Tj,`0 \ {(r`0 , c`0 , δ`0)}) otherwise. The action of ADn,α then
again commutes with the bijection because it commutes with σ.

Assume now that nλ = nµ and λ > µ. The bijection is defined in the same way as before
except when λ̃ ⊂ λ, where we apply σ.

Assume now that λ = µ. We can then number the standard double-tableaux associated to
(λ, λ) by (T1,T2, . . . ,Tm, σ(T1), σ(T2), . . . , σ(Tm)) such that n is in left component of them first
ones and in the right component of the last m ones. We then have Vλ,λ,+ =

r⊕
j=1
Fq(Tj + σ(Tj))

and Vλ,λ,− =
r⊕
j=1
Fq(Tj − σ(Tj)).

For Vλ,λ,+, we map Tj + σ(Tj) to the standard double-tableau obtained by removing the
box of Tj containing n. We have to check that the action of HDn−1,α on Tj + σ(Tj) is the
same as the one on this tableau. We have mi(Tj) = mi(σ(Tj)), σ(Tj)i↔i+1 = σ(Tj)i↔i+1 and
Tj,i↔i+1 /∈ {Tj, σ(Tj)}, therefore the action is indeed identical.

For Vλ,λ,−, we map in the same way Tj − σ(Tj) to the standard double-tableau obtained
by removing the box of Tj containing n. In order to check that the action is the same, we can
use the same arguments as for Vλ,λ,+ and check that Tj,i↔i+1 ∈ {Tk}k∈[[1,m]]. This is true since
we chose a numbering such that n is in the left component only for the m first tableaux and n
stays in the same box after permutation of i and i+ 1 for any i ≤ n− 2.

Remark : The two submodules of Vλ,λ are not isomorphic, by the fact that n goes from
the left component to the right one or from the right component to the left one after applying
Sn−1.

We keep the same weight on double-tableaux as for type B. Let λ = (λ1, λ2)  n and
T = (T1,T2) ∈ λ. We define ϕ(T) to be T′ if µ′ > λ′ and σ(T′) otherwise. We define a new
ν̃(λ) to be ν(λ1)ν(λ2)(−1)nλ1 (n−nλ1 ) if λ′2 ≥ λ′1 and ν̃(λ) = ν(λ1)ν(λ2) otherwise. We define the
bilinear form (T|T̃) = ω(T)δϕ(T),T̃.
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Proposition 4.1.3. For any pair of standard double-tableaux (T, T̃), we have the following
properties.

1. (Si.T|Si.T̃) = (−α)(T|T̃) and (U.T|U.T̃) = (−α)(T|T̃).

2. For all d ∈ ADn, we have that (d.T|d.T̃) = (T|T̃).
Those relations stay true if we substitute one or two of the standard double-tableaux by the
elements σ(T)−T and σ(T)+T, which form bases for Vλ,+ and Vλ,− for double-partitions
λ of the form λ = (λ1, λ1).

3. The restriction of (., .) to Vλ if λ = ϕ(λ) 6= (λ2, λ1) and to Vλ⊕Vϕ(λ) if λ /∈ {ϕ(λ), (λ2, λ1)}
is non-degenerate with ϕ(λ) = λ′ if nλ = nµ and µ′ > λ′, and ϕ(λ) = (λ′1, λ′2) otherwise.
If λ = ϕ(λ) 6= (λ2, λ1) then (., .) is symmetric on Vλ if ν̃(λ) = 1 and skew-symmetric
otherwise.
Moreover, its Witt index is positive.

4. If n ≡ 0 (mod 4) and λ = (λ1, λ1), then the restriction of (., .) to Vλ,+ and Vλ,− if λ = λ′

and to Vλ,+ ⊕ Vλ,− if λ 6= λ′, is non-degenerate.
If λ = λ′ then (., .) is symmetric on Vλ,+ and Vλ,− if µ̃(λ) = 1 and skew-symmetric
otherwise. Moreover, its Witt index is positive.

5. If n ≡ 2 (mod 4) and λ = (λ1, λ1) then the restriction of (., .) to Vλ,+ ⊕ Vλ′,− is non-
degenerate.

Proof. For 1. and 2., we have mi(σ(T)) = mi(T), therefore the same proof as for Proposition
3.1.1 applies. The extension to elements of the bases of Vλ,+ and Vλ,− follows from the bilinearity
of (., .).

For 3., the same proof also applies because ν̃(λ) = ω(T)ω(ϕ(T)). This is true because when
ϕ(T) = T′, ν̃(λ) does not change from the one in type B and when ϕ(T) = σ(T′), ν̃(λ) is
multiplied by (−1)nλ1 (n−nλ1 ) = ω(T)ω(σ(T)).

4. We assume n ≡ 0 (mod 4). If λ = (λ1, λ1)  n and T ∈ λ then

ω(σ(T)) = (−1)nλ1 (n−nλ1))ω(T) = (−1)(n2 )2
ω(T) = ω(T).

For any standard double-tableaux T, T̃, we have that (T|T̃) = ω(T)δT,ϕ(T). Since λ =
(λ1, λ1), we have ϕ(λ) = λ′ and for all T ∈ λ and all T ∈ λ′, we have ϕ(T) = T′.

Let λ = (λ1, λ1) and λ̃ = (λ̃1, λ̃1) be double-partitions of n. If T ∈ λ and T̃ ∈ λ̃, then we
have

(T+ σ(T)|T̃+ σ(T̃)) = (T|T̃) + (T|σ(T̃)) + (σ(T)|T̃)) + (σ(T)|σ(T̃))
= ω(T)(δT,T̃′ + δT,σ(T̃)′) + ω(σ(T))(δσ(T),T̃′ + δσ(T),σ(T̃)′)
= (δT,T̃′ + δT,σ(T̃)′)(ω(T) + ω(σ(T))
= δT+σ(T),T̃′+σ(T̃′)(ω(T) + ω(σ(T)))
= 2ω(T)δT′+σ(T)′,T̃+σ(T̃).

In the same way, we have that (T+ σ(T)|T̃− σ(T̃)) = (T− σ(T)|T̃+ σ(T̃)) = 0 and
(T− σ(T)|T̃− σ(T̃)) = 2ω(T)δT′−σ(T)′,T̃−σ(T̃). The result follows.
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5. Assume n ≡ 2 (mod 4).
If λ = (λ1, λ1)  n and T ∈ λ, then ω(σ(T)) = (−1)nλ1 (n−nλ1))ω(T) = (−1)(n2 )2

ω(T) =
−ω(T). It follows that if λ̃ = (λ̃1, λ̃1)  n and T̃ ∈ λ̃, then (T + σ(T)|T̃ + σ(T̃)) = (T −
σ(T)|T̃ − σ(T̃)) = 0, (T + σ(T)|T̃ − σ(T̃)) = 2ω(T)δT′−σ(T)′,T̃−σ(T̃) and (T − σ(T)|T̃ + σ(T̃)) =
2ω(T)δT′+σ(T)′,T̃+σ(T̃). The result follows.

4.2 Factorization of the image of the Artin group inside
the finite Hecke algebra

In this section, we find the different factorizations between the irreducible representations of
ADn . Most of the factorization results are summarized in Proposition 4.2.4. We then state the
main results for type D in Theorems 4.2.2 and 4.2.3.

We define the linear map L from V to V which sends T to L(T) = ω(T)ϕ(T).
Proposition 4.2.1. Let r ∈ [[1, n− 1]] and T a standard double-tableau, we then have

LSrL−1(T) = (−α)t(S−1
r )(T),LUL−1 = (−α)t(U−1)(T).

Let λ = (λ1, λ2)  n. We have the following propositions.
1. If λ /∈ {ϕ(λ), (λ2, λ1)}, then L stabilizes Vλ ⊕ Vϕ(λ) and switches Vλ and Vϕ(λ).

2. If λ = ϕ(λ) 6= (λ2, λ1), then L stabilizes Vλ.

3. If n ≡ 0 (mod 4) and λ = (λ1, λ1) 6= (λ′1, λ′1), then L stabilizes Vλ,+ ⊕ Vλ′,+ (resp Vλ,− ⊕
Vλ′,−) and switches Vλ,+ and Vλ′,+ (resp Vλ,− and Vλ′,−).

4. If n ≡ 0 (mod 4) and λ = (λ1, λ1) = (λ′1, λ′1), then L stabilizes Vλ,+ and Vλ,−.

5. If n ≡ 2 (mod 4) and λ = (λ1, λ1), then L stabilizes Vλ,+ ⊕ Vλ′,− and switches Vλ,+ and
Vλ′,−.

Proof. This follows directly from Proposition 4.1.3 by writing the matrix of the bilinear form
and the matrix of L.
Proposition 4.2.2. For r ∈ [[1, n − 1]], we write λr the double-partition of n defined by λr =
([r], [1n−r]) if r ≥ n

2 and λr = ([1n−r], r) if r < n
2 . Taking the same notations as in Proposition

3.2.5 of type B, for all d ∈ ADn, we have η1,r(d) = η2,r(d) because the length in T of such an
element is even and we have β = 1. We define the character ηr of ADn by ηr(d) = η1,r(d) =
η2,r(d).

We then have by Proposition 3.2.5 that Rλr ' (ΛrRλ1)⊗ η1,r for all r ∈ [[1, n− 1]].
Assume Fq = Fp(α) 6= Fp(α + α−1). We write ε the unique automorphism of Fq of order 2.

We have that ε(α) = α−1. We then define for every standard double-tableau in the same way
as for type B,

d(T) = d̃(T1)d̃(T2)
∏

i∈T1,j∈T2
i<j

2 + αai,j−1 + α1−ai,j

α + α−1 + αai,j + α−ai,j

and the associated hermitian form 〈., .〉 defined by
〈T, T̃〉 = d(T)δT,T̃. We write Λ for the set of all double-partitions λ = (λ1, λ2) of n such
that λ1 ≥ λ2.
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Proposition 4.2.3. For all d ∈ ADn, λ ∈ Λ and T ∈ λ, we have 〈d.T, d.T̃〉 = 〈T, T̃〉. This
shows that ADn acts in a unitary way on those irreducible modules.

Proof. The proof of the first statement follows from Proposition 3.2.2 and the second follows
from the expression of the bases of Vλ,± and the Z-bilinearity of the hermitian form.

We now prove two lemmas which will allow us to restrict ourselves to the derived subgroup
ADn of ADn .

Lemma 4.2.1. If λ is a double-partition of n then the restriction of Rλ to ADn is absolutely
irreducible.

Proof. Assume first it is true for n = 2. Since ADn is generated by ADn−1 and ADn , we have
the result for n ≥ 3 by the same method as in the Lemma 3.4(i) of [12].

We now show the result is true for n = 2. We only have to show it for ([1], [1]) since the
other representations are 1-dimensional. We will show in Section 3.3 (Lemmas 3.3.2 and 3.3.8)
that R[1],[1](AD2) ' SL2(q′) for some q′. The irreducibility then follows.

We now show a lemma computing the normal closure of ADn . This is a generalization to
type D of Lemma 3.2.2

Lemma 4.2.2. For n ≥ 4, the normal closure � ADn−1 �ADn of ADn−1 in ADn is ADn.

Proof. Let n ≥ 4. By Lemma 2.1 of [12], we have that AAn =� AAn−1 �AAn , where
AAn =< S1, S2, . . . , Sn−1 >≤ ADn . We have that ADn is generated by AAn and ADn−1 therefore
the result follows.

The following proposition summarizes the results in this section :

Proposition 4.2.4. Let λ, µ, γ and δ be doubles-partitions of n such that dim(Vλ) > 1,
λ1 > λ2, µ1 > µ2, γ1 = γ2 and δ1 = δ2. We have the following properties.

1. The restrictions of Rλ, Rγ,+ and Rγ,− to ADn are absolutely irreducible.

2. Rλ|ADn ' Rµ|ADn ⇔ λ = µ.

3. Rλ|ADn 6' Rγ,±|ADn .

4. Rγ,±|ADn ' Rδ,±|ADn ⇔ γ = δ.

5. Rγ,±|ADn 6' Rδ,∓|ADn .

6. Rλ|ADn ' R?
µ|ADn

⇔ µ = ϕ(λ).

7. Rλ|ADn 6' R?
γ,±.

8. If n ≡ 0 (mod 4), then

(a) Rγ,±|ADn ' R?
δ,±|ADn

⇔ γ = ϕ(δ).
(b) Rγ,±|ADn 6' R?

δ,∓|ADn
.

9. If n ≡ 2 (mod 4), then
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(a) Rγ,±|ADn 6' R?
δ,±|ADn

.

(b) Rγ,±|ADn ' R?
δ,∓|ADn

⇔ γ = ϕ(δ).

10. If Fq = Fp(α) 6= Fp(α + α−1), then

(a) Rλ|ADn ' ε ◦R?
µ|ADn

⇔ λ = µ.

(b) Rλ|ADn 6' ε ◦Rγ,±.
(c) Rγ,±|ADn ' ε ◦R?

δ,±|ADn
⇔ γ = δ.

(d) Rγ,±|ADn 6' ε ◦R?
δ,∓|ADn

.

Proof. 1. is shown in the same way as Lemma 3.4. of [12], because ADn is generated by ADn
ans ADn−1 .

Using Propositions 4.2.3 and 4.2.1, it is sufficient to show 2,3,4 and 5 to conclude the proof.
In the same way as for type B, we need to use Lemma 3.2.3. If Rλ|ADn ' Rµ|ADn then there
exists a character η : ADn → F?q such that Rλ ' Rµ⊗ η. Since ADn/ADn =< S1 >, there exists
u ∈ F?q such that for all d ∈ ADn , η(d) = u`(d). We have Rλ(S1) = uRµ(S1). By considering the
eigenvalues, we have that {α,−1} = {uα,−u}. Therefore u = 1 or α2 = 1. By the conditions
on α, u = 1 and Rλ ' Rµ, therefore λ = µ. Since the set of eigenvalues is of Rγ,±(S1) is also
{α,−1}, the rest of the proof follows.

We now give a theorem for double-partitions with an empty component and then results
for hook partitions.

Theorem 4.2.1. Let λ = (λ1, ∅)  n with λ1 not a hook and G = Rλ(ADn). We then have the
following properties

1. If Fq = Fp(α) = Fp(α + α−1), then

(a) if λ1 6= λ′1, then G = SLnλ(q),
(b) if λ1 = λ′1 and ν̃(λ) = −1, then G ' SPnλ(q),
(c) if λ1 = λ′1 and ν̃(λ) = 1, then G ' Ω+

nλ
(q).

2. If Fq = Fp(α) 6= Fp(α + α−1), then

(a) if λ1 6= λ′1, then G ' SUnλ(q 1
2 ),

(b) if λ1 = λ′1 and ν̃(λ) = −1, then G ' SPnλ(q 1
2 ),

(c) if λ1 = λ′1 and ν̃(λ) = 1, then G ' Ω+
nλ

(q 1
2 ).

Proof. The restriction of Rλ to ADn is the same as the representation Rλ1 in type A. Since
ν̃(λ) = ν(λ1), the result follows directly from [12, Theorem 1.1] after noting that Rλ(AAn) ⊂
Rλ(ADn) and that we have the corresponding inclusions by Proposition 4.1.3.

Proposition 4.2.5. If Fq = Fp(α) = Fp(α + α−1), then R([1n−1],[1])(ADn) = SLn(q) and if
Fq = Fp(α) 6= Fp(α + α−1) then R([1n−1],[1])(ADn) ' SUn(q 1

2 ).

Proof. The proof is the same one as the proof of Proposition 3.3.1.

94



We write again A1,n = {(λ1, ∅), λ1 ` n}, A2,n = {(∅, λ2), λ2 ` n}, An = A1,n ∪ A2,n and
εn = {λ  n, λ not a hook}

Theorem 4.2.2. If Fq = Fp(α) = Fp(α + α−1) and n is odd, then the morphism from ADn to
H×Dn,α '

∏
λ``n
λ1>λ2

GLnλ(q) factorizes through the epimorphism

Φ1′,n : ADn → SLn−1(q)× SLn(q)×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SLnλ(q)×
∏

λ∈εn,λ=ϕ(λ)
nλ>nµ

OSP (λ)′.

If Fq = Fp(α) = Fp(α + α−1) and n ≡ 0 (mod 4), then the morphism from ADn to H×Dn,α '∏
λ``n
λ1>λ2

GLnλ(Fq)×
∏

λ=(λ1,λ1)`n
GLnλ,+(q)×GLnλ,−(q) factorizes through the epimorphism

Φ1′,n : ADn → SLn−1(q)× SLn(q)×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SLnλ(q)×
∏

λ∈εn,λ=ϕ(λ)
λ1>λ2

OSP (λ)′×

∏
λ=(λ1,λ1)∈εn

λ>ϕ(λ)

SLnλ
2

(q)2 ×
∏

λ=(λ1,λ1)∈εn
λ=ϕ(λ)

OSP (λ,+)′2.

If Fq = Fp(α) = Fp(α + α−1) and n ≡ 2 (mod 4) then the morphism from ADn to H×Dn,α '∏
λ``n
λ1>λ2

GLnλ(Fq)×
∏

λ=(λ1,λ1)`n
GLnλ,+(q)×GLnλ,−(q) factorizes through the epimorphism

Φ1′,n : ADn → SLn−1(q)× SLn(q)×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SLnλ(q)×
∏

λ∈εn,λ=ϕ(λ)
λ1>λ2

OSP (λ)′×

∏
λ=(λ1,λ1)∈εn

λ>ϕ(λ)

SLnλ
2

(q)2 ×
∏

λ=(λ1,λ1)∈εn
λ=ϕ(λ)

SLnλ
2

(q).

In all of the above, OSP (λ) is the group of isometries of the bilinear form defined in Proposition
4.1.3.

In the unitary case, we have an analogous result.

Theorem 4.2.3. If Fq = Fp(α) 6= Fp(α + α−1) and n is odd, then the morphism from ADn to
H×Dn,α '

∏
λ``n
λ1>λ2

GLnλ(q) factorizes through the morphism

Φ2′,n : ADn → SUn−1(q 1
2 )× SUn(q 1

2 )×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SUnλ(q 1
2 )×

∏
λ∈εn,λ=ϕ(λ)

nλ>nµ

ÕSP (λ)′.

If Fq = Fp(α) = Fp(α + α−1) and n ≡ 0 (mod 4), then the morphism from ADn to H×Dn,α '∏
λ``n
λ1>λ2

GLnλ(Fq)×
∏

λ=(λ1,λ1)`n
GLnλ,+(q)×GLnλ,−(q) factorizes through the morphism

Φ2′,n : ADn → SUn−1(q 1
2 )× SUn(q 1

2 )×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SUnλ(q 1
2 )×

∏
λ∈εn,λ=ϕ(λ)

λ1>λ2

ÕSP (λ)′×
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∏
λ=(λ1,λ1)∈εn

λ>ϕ(λ)

SUnλ
2

(q 1
2 )2 ×

∏
λ=(λ1,λ1)∈εn

λ=ϕ(λ)

ÕSP (λ,+)′2.

If Fq = Fp(α) = Fp(α + α−1) and n ≡ 2 (mod 4), then the morphism from ADn to H×Dn,α '∏
λ``n
λ1>λ2

GLnλ(Fq)×
∏

λ=(λ1,λ1)`n
GLnλ,+(q)×GLnλ,−(q) factorizes through the morphism

Φ2′,n : ADn → SUn−1(q 1
2 )× SUn(q 1

2 )×
∏

λ∈εn,λ>ϕ(λ)
λ1>λ2

SUnλ(q 1
2 )×

∏
λ∈εn,λ=ϕ(λ)

λ1>λ2

ÕSP (λ)′×

∏
λ=(λ1,λ1)∈εn

λ>ϕ(λ)

SUnλ
2

(q 1
2 )2 ×

∏
λ=(λ1,λ1)∈εn

λ=ϕ(λ)

SUnλ
2

(q 1
2 ).

In all of the above, ÕSP (λ) is the group of isometries associated with the bilinear form over
F
q

1
2
obtained from the one in Proposition 4.1.3 using Proposition 3.3.3.

Those two theorems (except for the surjectivity) follow from Propositions 4.1.3, 4.2.1, 4.2.2,
4.2.3, 4.2.5, Theorem 4.2.1 and Proposition 4.2.4. It now remains to check that Φ1′,n and Φ2′,n
are surjective in all cases.

4.3 The case n = 4
In this section, we prove the result for n = 4.

The double-partitions to consider for n = 4 are ([4], ∅), ([3, 1], ∅), ([2, 2], ∅), ([2, 1, 1], ∅),
([14], ∅), ([3], [1]), ([2, 1], [1]), ([13], [1]), ([2], [2]), ([2], [12]) and ([12], [12]).

By Proposition 4.2.1, if we know the image for λ, we know the image for ϕ(λ). By Propo-
sition 4.2.1, we know the image for doubles-partitions with an empty component. By Propo-
sition 4.2.5, we know the image for ([13], [1]) and by Proposition 4.2.2, we know the image for
([2], [12]) using the image of ([13], [1]). The only double-partitions left to consider are ([12], [12])
and ([2, 1], [1]).

Lemma 4.3.1. If Fq = Fp(α) = Fp(α + α−1), then R[2,1],[1](AD4) ' SP8(q).
If Fq = Fp(α) 6= Fp(α + α−1), then R[2,1],[1](AD4) ' SP8(q 1

2 ).

Proof. Assume first that Fq = Fp(α) = Fp(α + α−1). Using Proposition 4.1.3, there exists
P ∈ GL8(q) such that G = PR[2,1],[1](AD4)P−1 ⊂ SP8(q). Using Lemma 4.1.1, we have that
R[2,1],[1](AD3) = R[2],[1]×R[12],[1]×R[2,1],∅(AD3) ' SL3(q)×SL2(q), where SL3(q) is in a twisted
diagonal embedding and SL2(q) is in a natural representation using Goursat’s Lemma and the
previous arguments. Using the same arguments as before and Lemma 3.3.3 with the natural
representation of SL2(q), we know G is primitive, tensor-indecomposable, irreducible, perfect
and cannot be realized in a natural representation over a proper subfield of Fq. This implies
that G cannot be included in a maximal subgroup of class C1, C2, C4 or C5. Since it contains a
transvection of SL2(q), we have that it cannot be contained in a maximal group of class C3.
Assume that G is included in a maximal subgroup of SP8(q). By the Tables 8.48. and 8.49. in
[9], the only possible maximal subgroups and their order or a quantity their order divides are
given below
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1. 21+6.
− SO−6 (2), 51840

2. 21+6.
− Ω−6 (2), 25920

3. (SP2(q) ◦ SP2(q) ◦ SP2(q)).22.S3, 24q3(q2 − 1)3

4. 2.PSL2(7), 336

5. 2.PSL2(7).2, 672

6. 2.A6, 720

7. 2.A6.22, 1440

8. 2.PSL2(17), 4896

9. 2.PSL2(q), q(q2 − 1)

10. 2.PSL2(q3).3, 3q3(q6 − 1)

The order of SL3(q)×SL2(q) is q4(q2−1)2(q3−1), therefore cases 3, 9 and 10 are excluded.
We have that α is of order greater than 16 and p 6= 2, therefore we have that q > 17 and,
therefore q ≥ 19 and |G| ≥ 194(192 − 1)(193 − 1) = 115828887772800. This excludes all the
remaining cases. It follows that G can be included in no maximal subgroup of SP8(q), therefore
G = SP8(q).

Assume now that Fq = Fp(α) 6= Fp(α + α−1). There exists P ∈ GL8(q) such that
G = PR[2,1],[1](AD4)P−1 ⊂ SP8(q 1

2 ) and G contains H ' SU3(q 1
2 ) × SU2(q 1

2 ), where SU3(q 1
2 )

is in a twisted diagonal embedding and SU2(q 1
2 ) is in a natural representation. We can no

longer use Lemma 3.3.3 in this case, but since ε(α) = α−1, we have up to conjugation that

diag(I6,

(
α 0
0 α−1

)
) ∈ G. It follows that α+α−1 belongs to the field generated by the traces of

the elements of G. This shows that any field over which G is realized in a natural representation
contains F

q
1
2
. By the above, in this case, we have that G is primitive, tensor-indecomposable,

irreducible, perfect and cannot be realized in a natural representation over a proper subfield
of F

q
1
2
. This implies that G cannot be included in a maximal subgroup of SP8(q 1

2 ) of class
C1, C2, C4 or C5. It contains a transvection of SU2(q 1

2 ), therefore it cannot be included in a
maximal subgroup of class C3. Assume G is included in a maximal subgroup of SP8(q 1

2 ). We
list below the possible maximal subgroups and their order or a quantity their order divides

1. 21+6.
− SO−6 (2), 51840

2. 21+6.
− Ω−6 (2), 25920

3. (SP2(q 1
2 ) ◦ SP2(q 1

2 ) ◦ SP2(q 1
2 )).22.S3, 24q 3

2 (q − 1)3

4. 2.PSL2(7), 336

5. 2.PSL2(7).2, 672

6. 2.A6, 720
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7. 2.A6.22, 1440

8. 2.PSL2(17), 4896

9. 2.PSL2(q 1
2 ), q 1

2 (q − 1)

10. 2.PSL2(q3).3, 3q 3
2 (q3 − 1)

We have |H| = q2(q − 1)2(q 3
2 + 1). This excludes cases 3, 9 and 10. We have αq

1
2 =

ε(α) = α−1. It follows that q 1
2 + 1 > 16 and, therefore q 1

2 ≥ 17 because p 6= 2. This implies
that |H| ≥ 34042058459136. This proves that G = SP8(q 1

2 ) and concludes the proof of the
lemma.

Lemma 4.3.2. If Fq = Fp(α) = Fp(α + α−1), we have R([12],[12]),+(AD4) = R([12],[12]),−(AD4) =
SL3(q).

If Fq = Fp(α) 6= Fp(α + α−1), we have R([12],[12]),+(AD4) = R([12],[12]),−(AD4) ' SU3(q 1
2 ).

Proof. The result follows from Lemma 4.1.1 and the fact that R([12],[1])(AD3) is equal to the
group we want in both cases.

4.4 Surjectivity of Φ1′,n for n ≥ 5
In this section, we use results of the previous sections to prove by induction on n the main
results for type D. We will here conclude the proof of Theorem 4.2.2.

Assume first that Fq = Fp(α) = Fp(α + α−1). Using Proposition 4.2.4, by the same kind
of arguments as for type B, we can use Goursat’s Lemma to show the morphism is surjective
upon each component. This means it is sufficient to show the following theorem.

Theorem 4.4.1. Let λ = (λ1, λ2)  n not a hook, such that λ1 ≥ λ2. We write G(λ) =
Rλ(ADn) if λ1 > λ2, G(λ,+) = Rλ,+(ADn) and G(λ,−) = Rλ,−(ADn) otherwise. We then have
the following possibilities.

1. If λ = ([2, 1n−2], ∅), then G(λ) = SLn−1(q).

2. If λ = ([1n−1], [1]), then G(λ) = SLn(q),

3. If λ ∈ εn, λ1 > λ2 and λ > ϕ(λ), then G(λ) = SLnλ(q),

4. If λ ∈ εn, λ1 > λ2 and λ = ϕ(λ), then we have the following possibilities.

(a) If ν̃(λ) = −1, then G(λ) ' SPnλ(q).
(b) If ν̃(λ) = 1, then G(λ) ' Ω+

nλ
(q).

5. If λ = (λ1, λ1) ∈ εn, then we have the following possibilities.

(a) If ϕ(λ) > λ, then G(λ,+) = G(λ,−) ' SLnλ
2

(q).

(b) If ϕ(λ) = λ, then we have the following possibilities.
i. If n ≡ 0 (mod 4) then
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A. if ν̃(λ) = −1 then G(λ,+) = G(λ,−) ' SPnλ(q),
B. if ν̃(λ) = 1 then G(λ,+) = G(λ,−) ' Ω+

nλ
(q).

ii. If n ≡ 2 (mod 4) then G(λ,+) = G(λ,−) = SLnλ
2

(q).

Proof. For n = 4, we have the result by the previous section. Theorem 4.2.1 gives us the
result for double-partitions with an empty component and Proposition 4.2.5 gives us the result
for double-partitions with two rows or two columns and one of the components of size one.
For n ≥ 5, we proceed by induction but we must first treat the following cases separately :
([2, 2], [1]), ([13], [12]) and (([13], [13]),±).

By Lemma 4.3.1, Theorem 4.2.1, Lemma 4.1.1 and Goursat’s Lemma, we have that
R([2,2],[1])(AD4) ' SP8(q) × SP2(q). By Theorem 2.3.4 and Lemma 5.6. of [12], we have that
R([2,2],[1])(AD5) ∈ {SL10(q), SU10(q 1

2 ), SP10(q)}. We have that ([2, 2], [1]) = ϕ(([2, 2], [1])) and
ν̃([2, 2], [1]) = (−1) 4−2

2 (−1) 1−1
2 = −1. This implies by Proposition 4.1.3 that up to conjugation

in GL10(q), we have that R([2,2],[1])(AD5) ⊂ SP10(q), therefore we have that R([2,2],[1])(AD5) '
SP10(q).

In the same way, we have that R([13],[12])(AD4) ' SL4(q) × SL3(q) × SL3(q), therefore
G(([13], [12])) = R([13],[12])(AD5) is in {SL10(q), SU10(q 1

2 ), SP10(q)}. By Proposition 4.2.4, we
know that G(([13], [12])) preserves no bilinear form, therefore we only have to exclude the
unitary case. Assume that G(([13], [12])) is included up to conjugation in SU10(q 1

2 ). There then
exists an automorphism ε of order 2 of Fq such that each M in G(λ) is conjugate to tε((M−1)).

In particular G(([13], [12])) contains a natural SL2(q). This implies that diag(I8,

(
α 0
0 α−1

)
)

is conjugate to diag(I8,
tε((
(
α 0
0 α−1

)
)−1)). Taking the traces of those matrices implies that

ε(α + α−1 + 8) = α + α−1 + 8. We have that Fq = Fp(α) = Fp(α + α−1), therefore this shows
that ε is trivial which is a contradiction. It follows that G(([13], [12])) = SL10(q).

By Lemma 4.1.1 and the fact that R([13],[12])(AD5) = SL10(q), we have that SL10(q) ⊂
R([13],[13]),±(AD6) ⊂ SL10(q). It follows that R([13],[13]),±(AD6) = SL10(q).

We now proceed to the induction on n using Theorem 2.3.2.
Let n ≥ 5 and λ  n. Suppose the theorem is true for n − 1. We use Lemma 4.1.1 for

different possibilities to show that G(λ) or G(λ,±) contains a subgroup verifying the same
properties as in type B.

1. If λ = (λ1, λ2) and λ1 > λ2 and λ 6= ϕ(λ) then ϕ(λ) = (λ′1, λ′2) because the order we
defined for partitions of n

2 verifies that, if λ1 6= λ′2 and λ1 > λ2, then λ′1 > λ′2. We then
have λ1 6= λ′1 or λ2 6= λ′2.

(a) If λ′2 6= λ2, then there exists µ2 ⊂ λ2 such that µ′2 6⊂ λ2. We have that (λ′1, µ′2) 6⊂
(λ1, λ2) because µ′2 6⊂ λ2 and (µ′2, λ′1) 6⊂ (λ1, λ2) because otherwise λ′1 = λ2 and,
therefore λ′2 = λ1. This shows that G(λ) contains a natural SL3(q).

(b) If λ2 = λ′2 and λ1 6= λ′1, then there exists µ1 ⊂ λ1 such that µ′1 6⊂ λ1. We then have
(µ′1, λ′2) 6⊂ (λ1, λ2) because µ′1 6⊂ λ1 and (λ′2, µ′1) 6⊂ (λ1, λ2) because λ′2 6= λ1. This
shows that G(λ) also contains a natural SL3(q) in this case.

2. If λ = (λ1, λ2) = ϕ(λ) and λ1 > λ2, then

(a) If ϕ(λ) = (λ′1, λ′2), then
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i. If λ1 and λ2 are square partitions, then Rλ(ADn−1) = G(µ1, λ2)×G(λ1, µ2) and
since ν̃(µ1, λ2) = ν̃(λ1, µ2) = ν̃(λ), we have that :
A. If ν̃(λ) = 1, then Ω+

n(µ1,λ2)
(q)× Ω+

n(λ1,µ2)
(q) ⊂ G(λ) ⊂ Ω+

n(λ1,λ2)
(q).

B. If ν̃(λ) = −1 then SPn(µ,λ2)(q)× SPn(λ1,µ2)(q) ⊂ G(λ) ⊂ SPnλ(q). It follows
that G(λ) is an irreducible group generated by transvections because it is
normally generated by the group on the left of our inclusions, therefore by
Theorem 2.3.4, we have that G(λ) is equal to the group on the right and the
theorem is proved in this case.

ii. If λ1 or λ2 is not a square partition then there exists µ ⊂ λ such that ϕ(µ) 6= µ.
It follows that ϕ(µ) ⊂ λ or σ(ϕ(µ)) ⊂ λ, therefore G(λ) contains a twisted
diagonal SL3(q).

(b) If ϕ(λ) = (λ′2, λ′1), then if µ ⊂ λ2, we have that (λ1, µ) ⊂ (λ1, λ2), ϕ((λ1, µ)) =
(λ′1, µ′) 6⊂ (λ1, λ2) because λ1 6= λ′1. We have that (µ′, λ′1) ⊂ (λ1, λ2), therefore G(λ)
contains a twisted diagonal SL3(q).

3. If λ = (λ1, λ1) 6= (λ′1, λ′1), then there exists µ1 ⊂ λ1 such that µ′1 6⊂ λ1. It follows that
(λ′1, µ′1) 6⊂ (λ1, λ1) and (µ′1, λ′1) 6⊂ (λ1, λ1). This shows that G(λ,±) contains a natural
SL3(q).

4. If λ = (λ1, λ1) = (λ′1, λ1) and λ1 is not a square partition, then there exists µ1 ⊂ λ1 such
that µ1 6= µ′1, therefore (λ1, µ1) 6= ϕ((λ1, µ1)) = (λ′1, µ′1). We have that (µ′1, λ′1) ⊂ (λ1, λ1),
therefore G(λ,±) contains a twisted diagonal SL3(q).

5. If λ = (λ1, λ1) = (λ′1, λ′1) and λ1 is a square partition, then we have the two following
possibilities.

(a) If n ≡ 0 (mod 4), then for all µ ⊂ λ, we have that ν̃(λ) = ν(λ1)2(−1)(n2 )2 = 1 =
ν̃(µ). This is because if λ1 is a square, then the only sub-partition µ1 of λ1 verifies
ν(µ1) = ν(λ1). By the branching rule, we have that Ω+

nλ
2

(q) ⊂ G(λ,±) ⊂ Ω+
nλ
2

(q). It
follows that G(λ) ' Ω+

nλ
2

(q) and the theorem is proved in this case.

(b) If n ≡ 2 (mod 4), then ν̃(µ) = ν(λ1)2 = 1 for all µ ⊂ λ. The branching rule shows
that Ω+

nλ
2

(q) ⊂ G(λ,±) ⊂ SLnλ
2

(q). By Proposition 4.2.4, G(λ,±) preserves no
bilinear form, therefore G(λ,±) = SLnλ

2
(q).

In all the cases where G(λ) or G(λ,±) contains a natural SL3(q) or a twisted diagonal
SL3(q), we can use exactly the same arguments as in [12] because if the morphism AAn to ADn
defined by Si 7→ Si is trivial then ADn is trivial.

The only case we need to treat separately is (([2, 1], [2, 1]),±) because n = 6. We need
a separate argument to show that G(([2, 1], [2, 1]),±) is tensor-indecomposable. In this case
R([2,1],[2,1])(AD5) = G([2, 1], [12]) × G([2, 1], [2]) = SL20(q) × SL20(q). If G(([2, 1], [2, 1]),±) ⊂
SL40(q) ⊗ SL2(q), then the morphism from
R([2,1],[2,1])(AD5) to SL2(q) is trivial. SinceR([2,1],[2,1])(AD5) normally generatesG(([2, 1], [2, 1]),±),
G(([2, 1], [2, 1]),±) is included in SL40(q)× SL40(q). This contradicts its irreducibility.

This shows that it is sufficient to consider case 2.a.i.A. Assume we are in case 2.a.i.A.
We then have that G(λ) ⊂ Ω+

nλ
(q) is generated by a conjugacy class of long root elements

and G(λ) is irreducible. Since p 6= 2, if we check that Op(G(λ)) ⊂ [G,G] ∩ Z(G), then we
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can apply Theorem 2.3.3. Applying Clifford’s Theorem (Theorem 11.1 of [16]), we have that
Res

G(λ)
Op(G(λ))(V ) is semisimple and since Op(G(λ)) is a p-group, its only irreducible representation

over Fq is the trivial one. This shows that ResG(λ)
Op(G(λ))(V ) is trivial, therefore Op(G(λ)) = 1 and

all the assumptions of Theorem I of Kantor are verified (the minimal dimension in this case is
greater than or equal to the dimension of ([3, 3, 3], [2, 2]) and the dimension of ([4, 4, 4, 4], [1])
which are 42×2×

(
13
4

)
≥ 5 and 17×24024 ≥ 5). This shows that we are in one of the following

cases :

1. G(λ) ' Ω+
nλ

(q′), and q′|q,

2. G(λ) ' Ω−nλ(q′) ⊂ Ω+
nλ

(q′2), q′2|q and nλ is even,

3. G(λ) ' SUnλ
2

(q′) ⊂ Ω+
nλ

(q′), nλ ≡ 0 (mod 4) and q′|q,

4. G(λ) ⊂ Ω+
8 (q′) and q′|q,

5. G(λ) ' [G2(q′), G2(q′)] ⊂ Ω7(q′) and q′|q,

6. G ' 3D4(q′) ⊂ Ω+
8 (q′3) and q′3|q.

Since n ≥ 13, αq−1 = 1 and α is of order greater than 2n, we have q ≥ 29 and nλ ≥
min(84

(
13
4

)
, 17 × 24024). This proves that Cases 4, 5 and 6 are excluded by cardinality ar-

guments.
Let us show that 3. is also excluded by cardinality arguments. We write |G|p the order

of a Sylow p-subgroup of a group G, therefore that |SUnλ
2

(q′)|p = q′
nλ
2 (

nλ
2 −1)
2 . We know that

G(λ) contains Ω+
n1(q) × Ω+

n2(q). It follows that if λ1 is the square partition of r and λ2 is
the square partition of n − r < r, writing al for the number of standard tableaux associated
with a square partition of l ∈ N?, we have that nλ =

(
n
r

)
aran−r, n1 =

(
n−1
r−1

)
aran−r and

n2 =
(
n−1
r

)
aran−r. Note that ar is even because r > 1 and using the branching rule twice,

we get that ar is equal to twice the dimension of the two partitions we get by removing first
the only extremal node and then one of the two extremal nodes of the resulting partition. It
follows that |Ω+

n1(q)× Ω+
n2(q)|p = q

n1
2 (n1

2 −1)+n2
2 (n2

2 −1). To exclude 3, it is sufficient to show that

this quantity is strictly greater than q
nλ
2 (

nλ
2 −1)
2 . If we write A the q-logarithm of the quotient
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of those two quantities, we have that :

A = n1

2

(
n1

2 − 1
)

+ n2

2

(
n2

2 − 1
)
−

nλ
2 (nλ2 − 1)

2

= n1

2
2

+ n2

2
2
−

nλ
2

2

2 −
nλ
4

=
nλ
2

2

2 − 2n1

2
nλ − n1

2 − nλ
4

=
(nλ2 − n1)2

2 − nλ
4

=

((nr)aran−r
2 −

(
n−1
r−1

)
aran−r

)2

2 −

(
n
r

)
aran−r

4

= aran−r

(
(
n
r

)
(1

2 −
r
n
))2

2 aran−r −

(
n
r

)
4


= aran−r

4

(
n

r

)(
2aran−r

(
n

r

)(2r − n
2n

)2
− 1

)
.

This shows that A > 0 if and only if 2aran−r
(
n
r

)
(2r−n)2

4n2 > 1. Using the branching rule and the
hook formula, we get : a1 = 1, a4 = 2, a9 = 42, a16 = 16!

7×62×53×44×33×22 = 24024 > 81×162, a25 =
701149020 > 81 × 252 and a36 > 81 × 362. Let k ≥ 6, assume ak2 > 81(k2)2. The branching
rule shows that a(k+1)2 > 2ak2 > 81(2k4) > 81(k4 + 4k3 + 6k2 + 4k + 1) = 81((k + 1)2)2,
the last inequality being true because k ≥ 6. It follows that for all k ≥ 4, we have that
ak2 > 81 × (k2)2. In our case, we have that r ≥ 16 or r = 9 and n − r = 4. If r ≥ 16 and
n − r ≥ 2 then we have aranr ≥ r2(n − r)2 ≥ 4r2 ≥ 2r2 + 2r(n − r) ≥ (r + n − r)2 ≥ n2.
It follows that 2aran−r

(
n
r

)
(2r−n)2

4n2 ≥ 2n2
(
n
r

)
1

4n2 = (nr)
2 > 1. If r ≥ 16 and n − r = 1, then

2aran−r
(
n
r

)
(2r−n)2

4n2 = 8nan−1
4n2 = 2an−1

n
> 162 > 1. If r = 9 and n−r = 4, then 2aran−r

(
n
r

)
(2r−n)2

4n2 =
2× 42× 2

(
13
9

)
(18−13)2

4×132 > 1. This shows that independently of r and n− r, we have that A > 0.
This proves that 3. is excluded.

We have that |Ω+
nλ

(q 1
2 )|p = q

nλ
2 (

nλ
2 −1)
2 . The previous arguments show that 2. is also impos-

sible.
The only remaining possibility is 1 and using again the same arguments, we get q′ > q

1
2 ,

therefore q′ = q and this concludes the proof of Theorem 4.4.1.

In the unitary case, i.e. Fq = Fp(α) = Fp(α + α−1), all the arguments are analogous.
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Chapter 5

Type I2(m)

5.1 m odd
The main difficulty in finding the image of Artin groups of dihedral type inside their finite
Hecke algebras arises from the various field extensions which intervene. When m is even they
can be quite complex. In this section, we only consider m odd. The outline of the proof is to
first determine the image inside each 2-dimensional using Dickson’s Theorem and then recover
the image inside the full Iwahori-Hecke algebra using Goursat’s Lemma. The main difficulty
will be in the use of Goursat’s Lemma, we will need to introduce the equivalence relation from
Lemma 5.1.1 and the the proof will be computational. The image in type I2(5) will be useful
for inductive arguments in type H3.

Let m ≥ 5 be an odd integer and p a prime number such that there exists α ∈ (Fp)×
of order not dividing m and not in {1, 2, 3, 4, 5, 6, 10} and θ ∈ Fp a primitive m-th root of
unity. Moreover, we assume α + α−1 6= θj + θ−j for all j from 1 to m−1

2 . For j ∈ N, we write
Fqj = Fp(α, θj + θ−j). We write Fq for the smallest field containing all Fqj , for j between 1 and
m−1

2 .
Note that we have Fq = Fq1 , this can be seen using Chebyshev polynomials for example.
Note also that when Fqj = Fp(α, θj + θ−j) 6= Fp(α + α−1, θj + θ−j), the extension is always

of degree 2 since X2 − (α + α−1)X + 1 is an irreducible polynomial of degree 2 such that
Fp(α, θj + θ−j) = Fp(α+α−1, θj + θ−j)/(X2− (α+α−1)X + 1). This implies that qj is a prime
and q

1
2
j is well-defined.

Definition 5.1.1. The Iwahori-Hecke algebra of dihedral type I2(m) which we write HI2(m),q is
the Fq-algebra with the following presentation :

Generators : Tt, Ts.
Relations :
(Ts − α)(Ts + 1) = 0,
(Tt − α)(Tt + 1) = 0,
TsTtTs . . .︸ ︷︷ ︸

m

= TtTsTt . . .︸ ︷︷ ︸
m

.

We can then use the Kilomoyer-Solomon model [20] (Theorem 8.3.1).

Theorem 5.1.1. The following matrix model gives a decomposition into pairwise
non-isomorphic irreducible modules of HI2(m),q :
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1. Ind : Ts 7→ α, Tt 7→ α.

2. ε : Ts 7→ −1, Tt 7→ −1.

3. For j ∈ [[1, m−1
2 ]], Ts 7→ ρj(Ts) =

(
−1 0
1 α

)
, Tt 7→ ρj(Tt) =

(
α α(2 + θj + θ−j)
0 −1

)
.

Proof. We already know these models give us representations. It is thus sufficient to show that
they are still irreducible and pairwise non-isomorphic in the finite field case.

The two 1-dimensional representations are non-isomorphic because α 6= −1 by the condition
on its order.

Let us show that the 2-dimensional representations are indeed irreducible. Let j ∈ [[1, m−1
2 ]]

and V the associated HI2(m),q-module.
Let W be a HI2(m),q-submodule of V associated to the representation ρj and x = (x1, x2) ∈

W \ {(0, 0)}.
We have ρj(Ts).x + x = (0, x1 + (α + 1)x2) ∈ W , therefore it follows that (0, 1) ∈ W or

x1 + (α + 1)x2 = 0.
Assume first that (0, 1) ∈ W .
We have x = x1(1, 0) + x2(0, 1) ∈ W , therefore x1(1, 0) ∈ W , which implies that x1 = 0 or

(1, 0) ∈ W .
If (1, 0) ∈ W then since (0, 1) ∈ W , we have V = W .
If x1 = 0, then (1, 0) ∈ W or x2α(2 + θj + θ−j) = 0 since ρj(Tt).x = (αx1 + α(2 + θj +
θ−j)x2,−x2) ∈ V . If (1, 0) ∈ W , then V = W by the same reasoning as above. We have
2 + θj + θ−j = (1 + θj)(1 + θ−j) and θ2j 6= 1 because m is odd, j ∈ [[1, m−1

2 ]] and θ is a primitive
m-th root of unity. It follows that x2α(2+θj+θ−j) = 0 implies x2 = 0 and, therefore x = (0, 0),
which is absurd because we chose x ∈ W \ {(0, 0)}.

Assume now x1 + (α + 1)x2 = 0.
We have ρj(Tt).x + x = ((α + 1)x1 + α(2 + θj + θ−j)x2, 0) ∈ W , therefore (α + 1)x1 + α(2 +
θj + θ−j)x2 = 0 or (1, 0) ∈ W .
If (α+1)x1 +α(2+θj+θ−j)x2 = 0 then by substituting x1 by −(α+1)x2, we get x2(−α2−2α−
1 + 2α+α(θj + θ−j)) = 0, therefore x2 = 0 or α2−α(θj + θ−j) + 1 = (α− θj)(α− θ−j) = 0. We
cannot have x2 = 0 because otherwise x1 = −(α+1)x2 = 0 and x = (0, 0). We also cannot have
α = θ±j because otherwise the order of α would divide m which contradicts the assumption on
α.
If (1, 0) ∈ W , then x2 = 0 or (0, 1) ∈ W since x ∈ W . We therefore have x2 = x1 = 0 or
W = V .

This shows that in all cases W = V . This proves that V is indeed irreducible.
It now remains to show that these representations are non-isomorphic.
Let j and l be two integers such that 1 ≤ j ≤ ` ≤ m−1

2 . We have Tr(ρj(Ts)ρj(Tt)) =
α(θj + θ−j). This implies that if ρj is isomorphic to ρ` then α(θj + θ−j) = α(θ` + θ−`), therefore
θj + θ−j = θ` + θ−` and, therefore (θj − θl)(1 − θ−`−j) = 0. This implies that j = l because
0 ≤ `− j < m and 2 ≤ j + ` ≤ m− 1 < m.

Theorem 5.1.2. Let j ∈ [[1, m−1
2 ]]. If G = AI2(m), then

1. If Fqj = Fp(α, θj + θ−j) = Fp(α + α−1, θj + θ−j) then we have ρj(G) = SL2(qj).
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2. If Fqj = Fp(α, θj +θ−j) 6= Fp(α+α−1, θj +θ−j) then we have up to conjugation in GL2(qj)
that ρj(G) ' SU2(q

1
2
j ).

Proof. The proof of this result is done in the same way as Lemma 3.5. of [11]. The proof uses
Dickson’s theorem (see [27], Theorem 8.27. chapter 2) and shows that if we prove that ρj(G) is
not abelian by abelian, ρj(AI2(m) /∈ {S4,A5} up to isomorphism and that α+α−1 and θj + θ−j

belong to the field generated by the traces of the elements of ρj(G), then we have the result
stated in the proposition. We also need to show that in the second case ρj(G) ⊂ GU2(q

1
2
j ).

We need to show that the groups considered are not abelian by abelian. In order to do this,
we will show that in both cases, we have
A = [ρj(Ts), ρj(Tt)][ρj(Tt)−1, ρj(Ts)]− [ρj(Tt)−1, ρj(Ts)][ρj(Ts), ρj(Tt)] 6= 0 and
B = [ρj(Ts), ρj(Tt)][ρj(Tt)−1, ρj(Ts)] + [ρj(Tt)−1, ρj(Ts)][ρj(Ts), ρj(Tt)] 6= 0, where [x, y] = xyx−1y−1.

This will prove that [ρj(Ts), ρj(Tt)][ρj(Tt)−1, ρj(Ts)] 6= [ρj(Tt)−1, ρj(Ts)][ρj(Ts), ρj(Tt)]. If
ρj(G) is abelian by abelian then there exists an abelian normal subgroup H of ρj(G) such that
ρj(G)/H is abelian. This implies that the derived subgroup of ρj(G) is included in H and is
therefore abelian which contradicts the above inequality. We now prove that A 6= 0 and B 6= 0.
We have that the entry A1,2 of A verifies A1,2 = − (2+θj+θ−j)2(α−1)2(α−θj)(θ−j−α)

α3 , therefore A is
non-zero because we assumed that the order of α does not divide m and that θ is an m-th root
of unity.
Assume by contradiction thatB = 0. We write γj = θj+θ−j+2. We have γj = (θj+1)(θ−j+1) 6=
0.
We then have B1,2 = −γj(α2−1)(−α2γj+αγ2

j−2αγj+2α−γj)
α3 = 0, therefore −α2γj + αγ2

j − 2αγj + 2α−
γj = 0.
If p = 2 then γj(−α2 +αγj−1) = 0, therefore α2 +α(θj +θ−j +1) = 0 and (α+θj)(α+θ−j) = 0
This is absurd because αm 6= 1.
Assume now p 6= 2, we set a = α3A1,2

γj(α2−1) , b = α2A1,1 and c = −α2A2,2.
We then have 1

4(b+ 2(α2− 1)a− c−αa+a) = α(α2−α+ 1). However a = b = c = 0, therefore
α2 − α + 1 = 0. It follows that α6 − 1 = (α3 − 1)(α + 1)(α2 − α + 1) = 0, which is impossible
by the assumption on the order of α.

We need to prove that ρj(G) contains elements of order different from 1, 2, 3 and 5. This
will show that ρj(G) is not isomorphic to A5. We already have that it is not isomorphic to S4

since S4 is abelian by abelian. The eigenvalues of ρj(Ts) are −1 and α, therefore if ρj(Ts)
r = I2,

we have (αr, (−1)r) ∈ {(1, 1), (−1,−1)}, therefore α2r = 1 which implies that r /∈ {1, 2, 3, 5}
by the conditions on α.

We now show that α + α−1 and β + β−1 belong to the field generated by the traces of
elements of ρj(G).
We have Tr(ρj(TtT−1

s )) = γj − α− α−1 and Tr([ρj(Tt), ρj(Ts)])− 2 = γj(γj − (α + α−1)− 2).
We have γj − (α + α−1) − 2 = (θj − α)(1 − α−1θ−j) 6= 0, therefore γj and α + α−1 are indeed
in the field generated by traces of the elements of ρj(G).

It remains to show that if Fqj 6= Fp(α + α−1, θj + θ−j) then we have up to conjugation in
GL2(qj) that ρj(G) ⊂ GU2(q

1
2
j ).

By Lemma 2.4. of [11], it is sufficient to show that there exists a matrix P ∈ GL2(qj) such that
Pρj(Ts)P−1 = ε(tρj(Ts)−1) and Pρj(Tt)P−1 = ε(tρj(Tt)−1), where ε is the unique automorphism
of order 2 of Fqj . Since γj ∈ F

q
1
2
j

, we have ε(γj) = γj. We also have (X − α)(X − α−1) =
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X2 − (α + α−1)X + 1 ∈ F
q

1
2
j

and α /∈ F
q

1
2
j

, therefore we have ε(α) = α−1.

Set P =
(
α+1
γj

1
α α + 1

)
. We have det(P ) = (α−θj)(α−θ−j)

γj
6= 0. The matrix P verifies the desired

property and the result follows.

We now provide a field-theoretic lemma to see when the representations are linked by
composition with a field automorphism. This is necessary to determine the image of AI2(m)
inside the full Iwahori-Hecke algebra.

Lemma 5.1.1. Let j, l ∈ [[1, m−1
2 ]]2. There exists an automorphism Ψl,j of Fqj = Fp(α, ξj +ξ−j)

verifying Ψl,j(α+α−1) = α+α−1 and Ψl,j(ξj + ξ−j) = ξl + ξ−l if and only if there exists r ∈ N
such that jpr ≡ l (mod m) or jpr ≡ −l (mod m) and (α + α−1)pr = α + α−1.

We say that j ∼ l if one of those conditions is verified. This is an equivalence relation and
when j ∼ l, we have ρl|AI2(m) = Ψl,j ◦ ρj|AI2(m).

Proof. Assume there exists r ∈ N such that jpr ≡ l (mod m) or jpr ≡ −l (mod m) and
(α + α−1)pr = α + α−1. Let Ψ be the automorphism of Fqj defined by Ψ(x) = xp

r for all
x ∈ Fqj . We then have Ψ(α+ α−1) = α+ α−1 by assumption and Ψ(ξj + ξ−j) = (ξj + ξ−j)pr =
ξjp

r + ξ−jp
r = ξl + ξ−l.

Assume now that there exists an automorphism Ψ of Fqj = Fp(α, ξj + ξ−j) verifying Ψ(α+
α−1) = α + α−1 and Ψ(ξj + ξ−j) = ξl + ξ−l.

There exists r ∈ [[0, logp(q)− 1]] such that Ψ(x) = xp
r for all r ∈ N, therefore (α+ α−1)pr =

Ψ(α+α−1) = α+α−1. The map Ψ can be extended to an automorphism Ψ̃ of Fp by defining Ψ̃
to be the automorphism sending x to xpr for all x ∈ Fp. We then have ξl + ξ−l = Ψ(ξj + ξ−j) =
Ψ̃(ξj +ξ−j) = Ψ̃(ξj)+Ψ̃(ξ−j). It follows that (Ψ̃(ξj)ξl−1)(ξ−l−Ψ̃(ξ−j)) = 0, therefore Ψ̃(ξj) ∈
{ξl, ξ−l}. This proves that ξjpr ∈ {ξl, ξ−l}, therefore jpr ≡ l (mod m) or jpr ≡ −l (mod m).

The fact that ∼ is an equivalence relation follows from the fact that for all r ∈ N,
Gcd(m, pr) = 1.

Theorem 5.1.3. Assume m odd and α satisfies the conditions given at the beginning of this
section. For j ∈ [[1, m−1

2 ]], we set Gj = SL2(qj) if Fqj = Fp(α, θj + θ−j) = Fp(α+ α−1, θj + θ−j)
and Gj = SU2(q

1
2
j ) if Fqj = Fp(α, θj + θ−j) 6= Fp(α + α−1, θj + θ−j).

We then have that the morphism from AI2(m) to H×I2(m),α ' GL1(qj)2 × ∏
j∈[[1,m−1

2 ]]
GL2(qj)

factorizes through the surjective morphism :

Φ : AI2(m) →
∏

j∈[[1,m−1
2 ]]/∼

Gj.

Proof. We know by Theorem 5.1.2 that the composition of the morphism fromAI2(m) toH×I2(m),α
with the projection upon each representation is surjective. We also know by lemma 5.1.1 that
the morphism toH×I2(m),α factorizes through the morphism Φ. We will now use Goursat’s lemma
and induction on j ∈ [[1, m−1

2 ]] in order to conclude the proof of this theorem.
For j0 ∈ [[1, m−1

2 ]]. We define Φj0(AI2(m)) to be the image of AI2(m) inside
∏

j∈[[1,j0]]/∼
GL2(qj).

We know that Φ1(AI2(m)) = G1. Let j0 ∈ [[1, m−3
2 ]], assume that Φj0(AI2(m)) = ∏

j∈[[1,j0]]/∼
Gj.
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Consider Φj0+l(AI2(m)) ⊂
∏

j∈[[1,j0]]
Gj ×Gjl for ` the smallest positive integer such that j` � j for

all j ∈ [[1, j0]]. We know that the projection upon each factor is surjective. Let K1 = ∏
j∈[[1,j0]]

Gj

and K2 = Gj0+` as in Goursat’s Lemma. We then have K1/K
1 ' K2/K

2. If the quotients
are abelian then we are done since both groups are perfect. Assume that those quotients are
non-abelian. There is only one non-abelian decomposition factor of K2 and it is isomorphic to
PSL2(qj0+`) or PSU2(q

1
2
j0+`) depending on the field Fqj0+` . We write that decomposition factor

PGj0+`. The isomorphism then implies that there exists j1 ∈ [[1, j0]] such that ρj1(AI2(m) '
PGj1 ' ρj0+`(AI2(m). We then have that there exists z : AI2(m) → Fp

× and Ψ ∈ Aut(Fqj0+`)
such that up to conjugation, for all h ∈ AI2(m), ρj0+`(h) = Ψ(ρj1(h))z(h). We will prove this is
absurd by considering traces of some elements in AI2(m) under these representations. We may
first note that for allM ∈ SL2(Fq), we have 1 = det(z(h)M) = z(h)2 det(M) = z(h)2, therefore
for all h ∈ AI2(m), z(h) ∈ {−1, 1}. We write as before in the sequel γj0+` = θj0+` + θ−(j0+`) + 2
and γj1 = θj1 + θ−j1 + 2.

Assume first that z(TtT−1
s ) = z([Tt, Ts]) = 1. We then consider the traces of those two ele-

ments inside each representation, Tr(ρj0+`(TtT−1
s ) == Ψ(Tr(ρj1(TtT−1

s ))) and Tr(ρj0+`([Tt, Ts])) =
Ψ(Tr(ρj1([Tt, Ts]))). This implies that

−(α + α−1) + γj0+` = −Ψ(α + α−1) + Ψ(γj1)

γj0+`(−(α + α−1) + γj0+l − 2) + 2 = Ψ(γj1(−(α + α−1) + γj1 − 2) + 2).
Since α+α−1 + γj0+` 6= 0, it follows that Ψ(θj1 + θ−j1) = γj0+` and then Ψ(α+α−1) = α+α−1.
This implies j1 ∼ j0 + `, which is absurd by assumption.

Assume now z(TtT−1
s ) = −z([Tt, Ts]) = 1. By considering the traces of the same elements,

we get
A = −(α+ α−1) + γj0+` = −Ψ(α+ α−1) + Ψ(γj1) = Ψ(A1)

B = γj0+`(−(α+ α−1) + γj0+` − 2) + 2 = −Ψ(γj1(−(α+ α−1) + γj1 − 2) + 2) = −Ψ(B1).

We have z(TtT−1
s [Tt, Ts]) = −1, therefore

C = Tr(ρj0+`(TtT−1
1 [Tt, Ts])) = −Ψ(Tr(ρj1(TtT−1

s [Tt, Ts])))−Ψ(C1)

but C = AB − A and C1 = A1B1 − A1, therefore we have AB − A = C = −Ψ(C1) =
−Ψ(A1B1 − A1) = AB + A and it follows that A = 0, which is absurd as was proven before.

In the same way as above if z(TtT−1
s ) = z([Tt, Ts]) = 1, we have A = −Ψ(A1), B = −Ψ(B1)

and AB − A = Ψ(A1B1 − A1) = A1B1 + A1, therefore A = A1 = 0, which is absurd.
The last case remaining is −z(TtT−1

s ) = z([Tt, Ts]) = 1. We then have

−(α + α−1) + γj0+` = Ψ(α + α−1)−Ψ(γj1)

γj0+`(−(α + α−1) + γj0+` − 2) + 2 = Ψ(γj1(−(α + α−1) + γj1 − 2) + 2).
so

γj0+`(−(α + α−1) + γj0+` − 2) = Ψ(γj1)(α + α−1 − γj0+l − 2).
We consider a third element in this case and distinguish two possibilities.
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Assume first that z([T 2
t , Ts]) = 1. We then have that z([Tt, Ts][T 2

t , Ts]TtT−1
s ) = −1, therefore

E = Tr(ρj0+`([Tt, Ts][T 2
t , Ts]TtT−1

s )) = −Ψ(Tr(ρj1([Tt, Ts][T 2
t , Ts]TtT−1

s ))) = −Ψ(E1) and D =
Tr(ρj0+`([T 2

t , Ts])) = Ψ(Tr(ρj1([T 2
t , Ts]))) = Ψ(D1).

We also have ABD − AD − AB + D + A − 2 = E = −Ψ(A1B1D1) + Ψ(A1D1) + Ψ(A1B1) +
Ψ(D1)−Ψ(A1)− 2 and −Ψ(E1) = −Ψ(A1B1D1−A1D1−A1B1 +D1 +A1− 2). It follows that
2(Ψ(D1)− 2) = 0, therefore Ψ(D1 − 2) = 0. We then have 0 = D1 − 2 = γj1 (α−1)2(α2−αγj1+2α+1

α2 ,
therefore α + α−1 = γj1 − 2 = θj1 + θ−j1 . This would imply that α ∈ {θj1 , θ−j1} and, therefore
αm = 1 which contradicts our assumptions on α.

Assume now that z([T 2
t , Ts]) = −1. We then have z([T 2

t , Ts][Tt, Ts]) = −1, therefore F =
Tr(ρj0+`([T 2

t , Ts][Tt, Ts])) = −Ψ(Tr(ρj1([T 2
t , Ts][Tt, Ts]))) = −Ψ(F1). We also have F = BD −

B = −Ψ(B1D1) − Ψ(B1) and −Ψ(F1) = −Ψ(B1D1 − B1) = −Ψ(B1D1) + Ψ(B1). It follows
that Ψ(B1) = 0, therefore B1 = 0 and B = Ψ(B1) = 0.
We also have z([Tt, Ts][T 2

t , Ts](TtT−1
s )) = 1 and, therefore E = Ψ(E1). We have E = ABD −

AD−AB +D+A− 2 = −AD+D+A− 2 = −Ψ(A1D1)−Ψ(D1)−Ψ(A1)− 2 and Ψ(E1) =
Ψ(A1B1D1 −A1D1 −A1B1 +D1 +A1 − 2) = −Ψ(A1D1) + Ψ(D1) + Ψ(A1)− 2. It follows that
Ψ(A1 + D1) = 0, therefore A1 + D1 = 0. We then have 0 = α−1(α − 1)2B1 + (A1 + D1) =
α−2+α−1 +γj1 = 0, therefore α+α−1 = 2−γj1 . We then have 0 = B2 = −(α+α−1)γj1 +γ2

j1−
2γj1 + 2 = −(2− γj1)γj1 + γ2

j1 − 2γj1 + 2 = 2γ2
j1 − 4γ2

j1 + 2 = 2(γj1 − 1)2. It follows that γj1 = 1,
therefore α+ α−1 = 2− 1 = 1 and A1 = −α− α−1 + γj1 = 0. We then have A = −Ψ(A1) = 0,
therefore −α−α−1 + γj0+` = 0 and γj0+` = α+α−1 = γj1 . This implies that j0 + ` = j1, which
is absurd. This concludes the proof.

5.2 m even
Let m ≥ 5 even, p a prime, α, β ∈ Fp of orders not belonging to {1, 2, 3, 4, 5, 6, 10} and θ ∈ Fp
a primitive m-th root of unity. Note that p 6= 2 because there exists a primitive m − th root
of unity with m even. We assume that j ∈ [[1, m−2

2 ]], we have (α +
√
αβ(θj + θ−j) + β)(αβ −√

αβ(θj + θ−j) + 1) 6= 0. For j ∈ N, we write Fqj = Fp(α, β,
√
αβ(θj + θ−j)). We write Fq the

smallest field containing Fqj for j in [[1, m−2
2 ]]. Note that we have Fq = Fq1 as in section 5.1.

Definition 5.2.1. The Iwahori-Hecke algebra of dihedral type I2(m) which we write HI2(m),q is
the Fq-algebra with the following presentation

Generators : Tt, Ts.
Relations :
(Ts − α)(Ts + 1) = 0,
(Tt − β)(Tt + 1) = 0,
TsTtTs · · ·︸ ︷︷ ︸

m

= TtTsTt · · ·︸ ︷︷ ︸
m

.

We then give the Kilmoyer-Solomon matrix model given in [20] (Theorem 8.3.1) in the finite
field case.

Theorem 5.2.1. Under the assumptions made on α, β and θ, the following matrix model gives
us a decomposition into pairwise non-isomorphic irreducible HI2(m),q-modules

1. Ind : Ts 7→ α, Tt 7→ β.

2. ε : Ts 7→ −1, Tt 7→ −1.
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3. For j ∈ [[1, m−2
2 ]], Ts 7→ ρj(Ts) =

(
−1 0
1 α

)
, Tt 7→ ρj(Tt) =

(
β α +

√
αβ(θj + θ−j) + β

0 −1

)
.

Proof. We know that these models give us representations of HI2(m),q. It is thus sufficient to
show that they are irreducible and pairwise non-isomorphic. The two 1-dimensional represen-
tations are non isomorphic by the conditions on α and β. Let us show that the 2-dimensional
representations are irreducible. Let j ∈ [[1, m−1

2 ]]. Let W be a non-trivial HI2(m),q-submodule
of the module V associated to the representation ρj. Let x = (x1, x2) ∈ W \ {(0, 0)}. We have
that ρj(Ts) · x+ x = (0, x1 + (α + 1)x2) ∈ W , therefore (0, 1) ∈ W or x1 + (α + 1)x2 = 0.

Assume first that (0, 1) ∈ W . Since x ∈ W , we have that x1 = 0 or (1, 0) ∈ W .
If (1, 0) ∈ W then W = V .
Assume now x1 = 0. We then have that ρj(Tt) · x+ x = ((β + 1)x1 + (α+

√
αβ(θj + θ−j) +

β)x2, 0) ∈ W . It follows that (1, 0) ∈ W or (α+
√
αβ(θj +θ−j)+β)x2 = 0. By the assumptions

on α, β and θ, we have that α +
√
αβ(θj + θ−j) + β 6= 0, therefore the latter possibility would

imply x = (0, 0), which contradicts our assumptions. It follows that (1, 0) ∈ W and W = V .
Assume now that x1 + (α + 1)x2 = 0. We consider again ρj(Tt) · x + x and we get that

(1, 0) ∈ W or (β + 1)x1 + (α +
√
αβ(θj + θ−j) + β)x2 = 0.

Assume (1, 0) ∈ W . Since x ∈ W , we then have (0, 1) ∈ W or x2 = 0. The latter would
imply that x2 = x1 = 0 since x1 + (α + 1)x2 = 0. It follows that (0, 1) ∈ W and, therefore
V = W .

Assume now by contradiction that (β + 1)x1 + (α +
√
αβ(θj + θ−j) + β)x2 = 0. We have

x1 = −(α + 1)x2, it follows that (−αβ +
√
αβ(θj + θ−j) − 1)x2 = 0, therefore x2 = 0 and

x1 = x2 = 0. This is absurd, therefore we are in the first case and V = W .
This proves that in all cases, we have that W = V and ρj is therefore irreducible.

It remains to show that those representations are pairwise non-isomorphic. Let j and `
be two integers such that 1 ≤ j ≤ ` ≤ m−2

2 . We have Tr(ρj(Tt)ρj(Tt)) =
√
αβ(θj + θ−j)

and Tr(ρ`(Tt)ρ`(Tt)) =
√
αβ(θ` + θ−`). Assume now that those representations are isomorphic.

We then have that
√
αβ(θj + θ−j) =

√
αβ(θ` + θ−`). It follows that θj + θ−j = θ` + θ−`

and, therefore (θj − θ`)(1 − θ−`−j) = 0. This implies that j = ` since 0 ≤ ` − j ≤ m and
2 ≤ j + ` ≤ m− 2 < m.

The main difference between m even and m odd arises in the field extensions we have to
consider. We describe the different cases we encounter in what follows. First note that for j ∈

[[1, m−2
2 ]], if we set Pj =

(
0 α +

√
αβ(θj + θ−j)

1 0

)
then by the assumptions made on α, β and θ,

the matrix Pj is invertible. Moreover, we have that Pjρj(Ts)P−1
j =

(
α α +

√
αβ(θj + θ−j) + β

0 −1

)

and Pjρj(Tt)P−1
j =

(
−1 0
1 β

)
. This shows that the roles of α and β are perfectly symmetric.

We now fix a j ∈ [[1, m−2
2 ]] and we write γ =

√
αβ, uj = θj + θ−j and ξ = γuj(αβ−α−β+1)

αβ
.

We set L = Fp(α, β, γuj), L1 = Fp(α + α−1, β, γuj), L2 = Fp(α, β, ξ), L3 = Fp(α, β + β−1, ξ),
K1 = Fp(α + α−1, β, ξ), K2 = Fp(α + α−1, β + β−1, γuj), K3 = Fp(α, β + β−1, θ) and K =
Fp(α + α−1, β + β−1, ξ).

Note that L = L2 since αβ − α − β + 1 = (α − 1)(β − 1) 6= 0 and αβξ
αβ−α−β+1 = γuj. If

we consider the polynomials X2 − (α + α−1)X + 1 and X2 − (β + β−1)X + 1, we get that
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L

L1 L2 L3

K1 K2 K3

K

Figure 5.1: Field extensions in type I2(m), m even in case 1

([L : L1], [L : L3], [L2, K1], [L2, K3], [K1 : K], [K3 : K]) ∈ {1, 2}6. We then have the following
Hasse diagram

L

L1 L2 L3

K1 K2 K3

K

1
1, 2 1, 2

1, 2 1, 2

1, 2 1, 2

We then see that [L : K] = [L : L2][L2 : K1][K1 : K] ∈ {1, 2, 4}. Assume that [L : K] = 4,
we then have that [L2 : K1] = [L2 : K3] = 2. By unicity of the subfields of degree 2, we then
have K1 = K3 and, therefore α ∈ K1. It follows that K1 = L2 and, therefore [K1 : K1] = 2
which is a contradiction. This proves that [L : K] ∈ {1, 2}. By uniqueness of the subfields
of a given degree we cannot have [L : L1] = [L : L3] = 2 or [L1 : K1] = [L1 : K2] = 2 or
[L2 : K1] = [L2 : K3] = 2 or [L3 : K3] = [L3 : K2] = 2. It follows that the possible ways L
is an extension of K corresponds to Hasse diagrams described in Figures 5.1 to 5.7. We write
in dashed red lines the extensions of degree 2, in red the subfields of degree 2 of L, in dotted
black lines the extensions of degree 1 and in black the fields equal to L.

Theorem 5.2.2. For j ∈ [[1, m−2
2 ]], let G = [< Tt, Ts >,< Tt, Ts >]. We then have

1. In case 1, ρj(G) = SL2(qj).

2. In case 2, ρj(G) ' SU2(q
1
2
j ).

3. In case 3, ρj(G) ' SU2(q
1
2
j ).

4. In cases 4 and 5, ρj(G) ' SL2(q
1
2
j ).
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L

L1 L2 L3

K1 K2 K3

K

Figure 5.2: Field extensions in type I2(m), m even in case 2

L

L1 L2 L3

K1 K2 K3

K

Figure 5.3: Field extensions in type I2(m), m even in case 3

L

L1 L2 L3

K1 K2 K3

K

Figure 5.4: Field extensions in type I2(m), m even in case 4
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L

L1 L2 L3

K1 K2 K3

K

Figure 5.5: Field extensions in type I2(m), m even in case 5

L

L1 L2 L3

K1 K2 K3

K

Figure 5.6: Field extensions in type I2(m), m even in case 6

L

L1 L2 L3

K1 K2 K3

K

Figure 5.7: Field extensions in type I2(m), m even in case 7
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5. In cases 6 and 7, ρj(G) ' SU2(q
1
2
j ).

Proof. We write ε the unique automorphism of order 2 of Fqj when it exists. By symmetry
of the roles of α and β, it is sufficient to consider cases 1, 2, 3, 4 and 6. As for the proof of
Theorem 5.1.2, it is sufficient to show that

1. A = [ρj(Ts), ρj(Tt)][ρj(Tt)−1, ρj(Ts)]− [ρj(Tt)−1, ρj(Ts)][ρj(Ts), ρj(Tt)] 6= 0,

2. B = [ρj(Ts), ρj(Tt)][ρj(Tt)−1, ρj(Ts)] + [ρj(Tt)−1, ρj(Ts)][ρj(Ts), ρj(Tt)] 6= 0,

3. ρj(G) contains elements of order different from 1, 2, 3 and 5.

4. ξ, α + α−1 and β + β−1 are in the field LG generated by the traces of the elements of
ρj([G,G]),

5. In case 2 and 3, ρj ' ε ◦tρ−1
j ,

6. In case 4, ρj|[G,G] ' ε ◦ ρj|[G,G],

7. In case 6, ρj|[G,G] ' ε ◦tρ−1
j|[G,G].

We now prove these assertions.

1. We have that A1,2 = (β−1)(α−1)(αβ−γuj+1)(α+γuj+β)2

α2β2 6= 0 by the assumptions on α, β and θ.

2. We have that B1,2 = − (β−1)(α+1)(α+γuj+β)(α2β+αβ2+α+β−2αβ+(αβ−α−β+1−γuj)γuj)
α2β2 . It follows

that B1,2 = 0 implies t = α2β + αβ2 + α + β − 2αβ + (αβ − α− β + 1− γuj)γuj = 0.

If p 6= 2 then we have 0 = 1
2α

(
1
β
(α

2β2(B1,1+B2,2)
2α − t) + (2− β)t

)
= Φ6(β) .This is absurd

by the conditions on β.
If p = 2 then we have 0 = t = α2β + αβ2 + α + β + (αβ + α + β + 1 + γuj)γuj =
(α + γuj + β)(αβ + γuj + 1) which contradicts our assumptions.
It follows that B 6= 0.

3. We have (2 − tr([ρj(Ts), ρj(Tt)])(α + α−1 − 2) = tr([ρj(Ts)2, ρj(Tt)]) − 2 ∈ LG. We also
have C = 2− tr([rhoj(Ts), ρj(Tt)]) ∈ LG. We have C = (αβ−γuj+1)(α+γuj+β)

αβ
6= 0. It follows

that α + α−1 ∈ LG.
We have that C(β+β−1−2) = tr([ρj(Tt)2, ρj(Ts)])−2, therefore we also have β+β−1 ∈ LG.

We have ξ = C − (α + α−1 + β + β−1) + 2−tr([ρj(Ts)ρj(Tt)ρj(Ts),ρj(Tt)]
C

∈ LG. It follows that
K ⊂ LG as required.

4. We can use the same arguments as for the proof of Theorem 5.1.2 to get that ρj(G)
contains elements of order different from 1, 2, 3 and 5.

5. In case 2, we have L = L1 = L2 = L3 = K1 = K2 = K3 6= K, therefore ε(α) =
α−1, ε(β) = β−1 and ε(ξ) = ξ. It follows that ε(γuj)α

−1β−1−α−1−β−1+1
α−1β−1 = γuj

αβ−α−β+1
αβ

,
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therefore ε(γuj) = α−1β−1γuj. We then set P =
(

α(β+1)
α+γuj+β α

1 α + 1

)
. We have that

det(P ) = α(αβ−γuj+1)
αγuj+β 6= 0 and

Pρj(Ts)P−1 =
(
−1 α
0 α

)
= ε(

(
−1 α−1

0 α−1

)
) = ε(tρj(Ts)−1)

and
Pρj(Tt)P−1 =

(
β 0

α+γuj+β
α

−1

)
= ε(

(
β−1 0

β+γuj+α
β

−1

)
) = ε(tρj(Tt)−1).

It follows that ρj ' ε ◦tρ−1
j .

In case 3, we have L = L1 = L2 = L3 = K1 = K3 6= K = K2, therefore ε(α) = α−1,
ε(β) = β−1, ε(γuj) = γuj et ε(ξ) = ξ. It follows that γuj = αβγuj, therefore uj = 0 or
αβ = 1.
Assume first that uj = 0. We then have θj + θ−j = 0, therefore θ2j = −1 and θ4j = 1.

This implies that j = m
4 . Let P =

(
α(β+1)
α+β α

1 α + 1

)
. We have det(P ) = α(αβ+1)

α+β and

(Pρj(Ts)P−1, Pρj(Tt)P−1) = (ε(tρj(Ts)−1), ε(t(ρj(Tt)−1)).
Assume now that αβ = 1. We then have γ = 1, it follows that α2 + αuj + 1 = α(α +
uj + α−1) = α(α + γuj + β) 6= 0. Moreover, we have that uj − 2 = θj + θ−j − 2 =

(θj−1)(1−θ−j) 6= 0. Let P =
(

α(α+1)
α2+αuj+1 α

1 α + 1

)
, we then have det(P ) = − α2(uj−2)

α2+αuj+1 6= 0

and (Pρj(Ts)P−1, Pρj(Tt)P−1) = (ε(tρj(Ts)−1), ε(tρj(Tt)−1)).
We then have that in both cases ρj ' ε ◦tρ−1

j .

6. In case 4, we have L = L2 = L3 = K3 6= L1 = K1 = K2 = K, therefore ε(α) = α−1,
ε(β) = β, ε(γuj) = γuj and ε(ξ) = ξ. We have that γuj α

−1β−α−1−β+1
α−1β

= γuj
αβ−α−β+1

αβ
. It

follows that γuj(α − 1)2(1 − β) = 0, therefore uj = 0 and j = m
4 . Let P =

(
1 α + 1
0 −α

)
,

we have det(P ) = −α 6= 0. We have Pρj(Ts)P−1 =
(
α 0
−α −1

)
= −αε(ρj(Ts)) and

Pρj(Tt)P−1 =
(
β β + α−1

0 −1

)
= ε(ρj(Tt)). We then have that ρj|[G,G] ' ε ◦ ρj|[G,G].

7. In case 6, we have that L = L1 = L2 = L3 = K1 = K2 6= K = K3, therefore ε(α) = α,
ε(β = β−1) and ε(ξ) = ξ. It follows that ε(γuj) = αβ−1(αβ−α−β+1)

αβ(αβ−1−α−β−1+1)γuj = −β−1γuj. Let

P =
(

β + 1 α + γuj + β
αβ − γuj + 1 0

)
, we have that det(P ) = −(αβ−γuj+1)(α+γuj+β) 6=

0. We also have Pρj(Ts)P−1 = −αε(t(ρj(Ts)−1) and Pρj(Tt)P−1 = ε(t(ρj(Tt)−1). It
follows that ρj|[G,G] ' ε ◦t ρ−1

j|[G,G] and the proof is concluded.

Lemma 5.2.1. We say that j ∼ l if Fp(α + α−1, β + β−1, ξj) ' Fp(α + α−1, β + β−1, ξj) and
there exists Φj,l ∈ Aut(Fqj) such that Φj,l(α + α−1) = α + α−1), Φj,l(β + β−1) = β + β−1 and
Φj,l(ξj) = ξl. This defines an equivalence relation and if j ∼ l then Φj,l ◦ ρj|AI2(m) ' ρl|AI2(m).
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Proof. Let us show this is an equivalence relation. Let j, l, k ∈ [[1, m−2
2 ]]. We have j ∼ j. If

j ∼ l and l ∼ k then it it clear that j ∼ k. This relation is symmetric because Φl,j = Φ−1
j,l

verifies the desired conditions if j ∼ l.
By Theorem 5.2.2, the second part of the statement is also true because SU2(q 1

2 ) ' SL2(q 1
2 ).

We now give the image of the derived subgroup of the Artin group in the full Iwahori-Hecke
algebra.
Theorem 5.2.3. Assume m even and α and β verify the conditions given at the beginning of
this section. For j ∈ [[1, m−2

2 ]], we set Gj = ρj([< Tt, Ts >,< Tt, Ts >]) .
We then have that the morphism from AI2(m) to H×I2(m),q ' GL1(qj)2 × ∏

j∈[[1,m−1
2 ]]
GL2(qj)

factorizes through the surjective morphism

Φ : AI2(m) →
∏

j∈[[1,m−2
2 ]]/∼

Gj.

Proof. We know by Theorem 5.2.2 that the composition of the morphism fromAI2(m) toH×I2(m),q
with the projection upon each representation is surjective. We know by Lemma 5.2.1 that it
factorizes through the morphism. We will now use Goursat’s lemma and induction on j ∈
[[1, m−2

2 ]] in order to conclude the proof of this theorem. For j0 ∈ [[1, m−2
2 ]], we define Φj0(AI2(m))

to be the image of AI2(m) inside ∏
j∈[[1,j0]]/∼

GL2(qj). We know that Φ1(AI2(m)) = G1. Let j0 ∈

[[1, m−4
2 ]], assume Φj0(AI2(m)) = ∏

j∈[[1,j0]]/∼
Gj.

Consider Φj0+`(AI2(m)) ⊂
∏

j∈[[1,j0]]
Gj ×Gjl for ` the smallest positive integer such that j` � j for

all j ∈ [[1, j0]]. We know that the projection upon each factor is surjective. Let K1 = ∏
j∈[[1,j0]]

Gj

and K2 = Gj0+` as in Goursat’s Lemma. We then have K1/K
1 ' K2/K

2. If the quotients
are abelian then we are done since both groups are perfect. Assume that those quotients are
non-abelian. There is only one decomposition factor of K2 and it is equal to PSL2(qj0+`),
PSU2(q

1
2
j0+`) or PSL2(q

1
2
j0+`) depending on the field Fqj0+` . We write that decomposition factor

PGj0+`. The isomorphism then implies that there exists j1 ∈ [[1, j0]] such that Fp(α+ α−1, β +
β−1, ξj1) ' Fp(α + α−1, β + β−1, ξj0+`) and ρj1(AI2(m) ' PGj1 ' ρj0+`(AI2(m). We then have
that there exists z : AI2(m) → Fp

× and Ψ ∈ Aut(Fqj0+`) such that up to conjugation, for all
h ∈ AI2(m), ρj0+`(h) = Ψ(ρj1(h))z(h). We will prove this is absurd by considering traces of some
elements in AI2(m) under these representations. We may first note that for all M ∈ SL2(Fq),
we have 1 = det(z(h)M) = z(h)2 det(M) = z(h)2, therefore for all h ∈ AI2(m), z(h) ∈ {−1, 1}.
We write as before in what follows γ =

√
αβ, uj0+` = θj0+` + θ−(j0+`), uj1 = θj1 + θ−j1 ,

ξj1 = γuj1 (αβ−α−β+1)
αβ

and ξj0+` = γuj0+`(αβ−α−β+1)
αβ

.
1. Assume first that z([Tt, Ts]) = 1 and Tr(ρj1([Tt, Ts])) 6= 0. We then have that

A1 = Tr(ρj0+`([Tt, Ts])) = Φ(Tr(ρj1([Tt, Ts]))) = Φ(B1).

We have Tr(ρj0+`([T−1
t , Ts])) = Tr(ρj0+`([Tt, Ts])) and Tr(ρj1([T−1

t , Ts])) = Tr(ρj1([Tt, Ts])),
therefore z([T−1

t , Ts]) = 1 because Tr(ρj1([Tt, Ts])) 6= 0. It follows that z([Tt, Ts][T−1
t , Ts]) = 1.

We then have

A2 = Tr(ρj0+`([Tt, Ts][T−1
t , Ts])) = Φ(Tr(ρj0+`([Tt, Ts][T−1

t , Ts]))) = Φ(B2).
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We have A2 = A2
1 − (β + β−1 − 2)(A1 − 2) − 2 and B2 = B2

1 − (β + β−1 − 2)(B1 − 2) − 2. It
follows that

A2
1−(β+β−1−2)(A1−2)−2 = Φ(B2

1−(β+β−1−2)(B1−2)−2) = A2
1−Φ(β+β−1−2)(A1−2)−2.

((β + β−1)− Φ(β + β−1))(A1 − 2) = 0.

We have A1−2 = − (αβ−γuj+1)(α+γuj+β)
αβ

6= 0 by assumption, therefore Φ(β+β−1) = β+β−1. Note
that we also have A1 = Tr(ρj0+`([Ts, Tt])) = Tr(ρj0+`([T−1

s , Tt])) and B1 = Tr(ρj1([Ts, Tt])) =
Tr(ρj1([T−1

s , Tt])). It follows that z([Ts, Tt][T−1
s , Tt]) = 1 and

A3 = Tr(ρj0+`([Ts, Tt][T−1
s , Tt])) = Φ(Tr(ρj1([Ts, Tt][T−1

s , Tt]))) = Φ(B3).

We have A3 = A2
1 − (α + α−1 − 2)(A1 − 2) − 2 and B3 = B2

1 − (α + α−1 − 2)(B1 − 2) − 2. It
follows that by the same reasoning as before α + α−1 = Φ(α + α−1).

1.1. Assume now that z([TtTsTt, Ts]) = 1. We then have A4 = Tr(ρj0+`([TtTsTt, Ts])) =
Φ(tr(ρj1([TtTsTt, Ts]))) = Φ(B4). We also have ξj0+` = 2−A4

2−A1
+ 2 − A1 − (α + α−1 + β + β−1)

and ξj1 = 2−B4
2−B1

+ 2 − B1 − (α + α−1 + β + β−1). It follows that ξj0+` = Φ(ξj1) and, therefore
j0 + ` ' j1, which contradicts our assumptions.

1.2. Assume now that z([TtTsTt, Ts]) = −1. We then have A4 = Tr(ρj0+`([TtTsTt, Ts])) =
Φ(tr(ρj1([TtTsTt, Ts]))) = −Φ(B4). We have z([TtTsTt, Ts][Tt, Ts]) = −1, therefore A5 =
Tr(ρj0+`([TtTsTt, Ts][Tt, Ts])) = −Φ(tr(ρj1([TtTsTt, Ts][Tt, Ts]))) = −Φ(B5). We have A5 =
A4A1 −A1 and B5 = B4B1 −B1, therefore A4A1 −A1 = −Φ(B4)Φ(B1) + Φ(B1) = A4A1 +A1.
It follows that 2A1 = 0 which contradicts our assumption since p 6= 2.

2. Assume now that z([Tt, Ts]) = −1 and Tr(ρj1([Tt, Ts])) 6= 0. We have that A1 =
Tr(ρj1([Tt, Ts])) = −Φ(Tr(ρj1([Tt, Ts]))) = −Φ(B1).

We then have that z([Tt, Ts]) = z([T−1
t , Ts]) = z([T−1

s , Tt]).
It follows that z([Tt, Ts][T−1

t , Ts]) = z([Ts, Tt][T−1
s , Tt]) = 1. We then have

A2 = Tr(ρj0+`([Tt, Ts][T−1
t , Ts])) = Φ(Tr(ρj0+`([Tt, Ts][T−1

t , Ts]))) = Φ(B2),

A3 = Tr(ρj0+`([Ts, Tt][T−1
s , Tt])) = Φ(Tr(ρj1([Ts, Tt][T−1

s , Tt]))) = Φ(B3).

We have A2 = A2
1 − (β + β−1 − 2)(A1 − 2) − 2, B2 = B2

1 − (β + β−1 − 2)(B1 − 2) − 2,
A3 = A2

1− (α+α−1− 2)(A1− 2)− 2 and B3 = B2
1 − (α+α−1− 2)(B1− 2)− 2. It follows that

A2
1− (β+β−1− 2)(A1− 2)− 2 = Φ(B2

1)−Φ(β+β−1− 2)Φ(B1− 2)−Φ(2) = A2
1−Φ(β+β−1− 2)(−A1− 2)− 2

and

A2
1− (α+α−1− 2)(A1− 2)− 2 = Φ(B2

1)−Φ(α+α−1− 2)Φ(B1− 2)−Φ(2) = A2
1−Φ(α+α−1− 2)(−A1− 2)− 2

It follows that
(β + β−1 − 2) = Φ(β + β−1 − 2)−A1 − 2

A1 − 2
and

(α + α−1 − 2) = Φ(α + α−1 − 2)−A1 − 2
A1 − 2
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2.1. Assume now that z([T 2
t , T

2
s ]) = 1. We then have that A8 = Tr(ρj0+`([T 2

t , T
2
s ])) =

Φ(Tr(ρj1([T 2
t , T

2
s ]))) = Φ(B8). We have A8 = (β + β−1 − 2)(α + α−1 − 2)(A1 − 2) + 2 and

B8 = (β + β−1 − 2)(α + α−1 − 2)(B1 − 2) + 2. It follows that

(β + β−1 − 2)(α + α−1 − 2)(A1 − 2) + 2 = Φ(β + β−1 − 2)Φ(α + α−1 − 2)(Φ(B1)− 2) + 2

(β + β−1 − 2)(α + α−1 − 2)(A1 − 2) = (A1 − 2)2(−A1 − 2)
(−A1 − 2)5 (β + β−1 − 2)(α + α−1 − 2)

(A1 − 2)(−A1 − 2) = (A1 − 2)2

−A2
1 + 4 = A2

1 − 4A1 + 4
2(A2

1 − 2A1) = 0
2A1(A1 − 2) = 0.

This is a contradiction since p 6= 2, A1 6= 2 and, by assumption, A1 6= 0.
2.2. Assume now that z([T 2

t , T
2
s ]) = −1. We then have that

A8 = Tr(ρj0+`([T 2
t , T

2
s ])) = −Φ(Tr(ρj1([T 2

t , T
2
s ]))) = −Φ(B8).

We have A8 = (β+β−1−2)(α+α−1−2)(A1−2)+2 and B8 = (β+β−1−2)(α+α−1−2)(B1−2)+2.
It follows that

(β + β−1 − 2)(α+ α−1 − 2)(A1 − 2) + 2 = −Φ(β + β−1 − 2)Φ(α+ α−1 − 2)(Φ(B1)− 2)− 2

(β + β−1 − 2)(α+ α−1 − 2)(A1 − 2) + 2 = (A1 + 2)(A1 − 2)2

(A1 + 2)2 (β + β−1 − 2)(α+ α−1 − 2)− 2

(β + β−1 − 2)(α+ α−1 − 2)(A2
1 − 4−A2

1 + 4A1 − 4) = −4(A1 + 2)
(β + β−1 − 2)(α+ α−1 − 2)(A1 − 2) = −A1 − 2

A8 − 2 = −A1 − 2
A8 = −A1.

2.2.1. Assume now that z([TtTsTt, Ts]) = −1. We then have z([TtTsTt, Ts][Tt, Ts]) = 1,

A4 = Tr(ρj0+`([TtTsTt, Ts])) = Φ(tr(ρj1([TtTsTt, Ts]))) = −Φ(B4),

A5 = Tr(ρj0+`([TtTsTt, Ts][Tt, Ts])) = Φ(tr(ρj1([TtTsTt, Ts][Tt, Ts]))) = Φ(B5).
We have A5 = A4A1−A1 and B5 = B4B1−B1, therefore A4A1−A1 = Φ(B4)Φ(B1)−Φ(B1) =
A4A1 + A1. It follows that A4 = A1 which contradicts our assumptions.

2.2.2. Assume now that z([TtTsTt, Ts]) = 1. We then have A4 = Tr(ρj0+`([TtTsTt, Ts])) =
Φ(tr(ρj1([TtTsTt, Ts]))) = Φ(B4).

2.2.2.1. Assume that z([T 2
t , Ts]) = 1. We then have

A6 = Tr(ρj0+`([T 2
t , Ts])) = Φ(tr(ρj1([T 2

t , Ts]))) = Φ(B6).

We then have z([Tt, Ts][T 2
t , Ts][TtTsTt, Ts]) = −1, therefore

A7 = Tr(ρj0+`([Tt, Ts][T 2
t , Ts][TtTsTt, Ts])) = −Φ(Tr(ρj1([Tt, Ts][T 2

t , Ts][TtTsTt, Ts]))) = −Φ(B7).

We have A7 = A1A4A6−A1A4−A1A6−A1−ξj0+`(A1−2) and B7 = B1B4B6−B1B4−B1B6−
B1 − ξj1(B1 − 2). It follows that ξj0+` = Φ(ξj1)A1+2

A1−2 .
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We have z([T 2
t , T

2
s ][Tt, Ts]) = 1, therefore

A9 = Tr(ρj0+`([T 2
t , T

2
s ][Tt, Ts])) = Φ(Tr(ρj1([T 2

t , T
2
s ][Tt, Ts]))) = Φ(B9).

We also have A9 = A8A1 − A8 + (ξj0+` − 1)(A1 − 2) and B9 = B8B1 − B8 + (ξj1 − 1)(B1 − 2).
It follows that

A8A1 − A8 + (ξj0+` − 1)(A1 − 2) = Φ(B8B1 −B8 + (ξj1 − 1)(B1 − 2))
= A8A1 + A8 + (Φ(ξj1)− 1)(−A1 − 2)

= A8A1 − A1 + (ξj0+`
A1 − 2
A1 + 2 − 1)(−A1 − 2)

A1 + (ξj0+` − 1)(A1 − 2) = −A1 − (ξj0+`(A1 − 2)− A1 − 2)
A1 + ξj0+`(A1 − 2)− A1 + 2 = −A1 − ξj0+`(A1 − 2) + A1 + 2

2ξj0+`(A1 − 2) = 0.

This implies that ξj0+` = 0 = ξj1 . It then follows that uj0+` = 0 = uj1 . It follows that
θj0+` + θ−(j0+`) = θj1 + θ−j1 and, therefore (θj0+`+j1 − 1)(θ−j1 − θ−(j0+l)) = 0. Since we have
1 ≤ j0 + `, j1 ≤ m−2

2 , this implies that j0 + ` = j1 which contradicts our assumptions.
2.2.2.2. Assume now that z([T 2

t , Ts]) = −1. We then have

A6 = Tr(ρj0+`([T 2
t , Ts])) = −Φ(tr(ρj1([T 2

t , Ts]))) = −Φ(B6).

We then have z([T 2
t , Ts][Tt, Ts]) = 1, therefore

A10 = Tr(ρj0+`([T 2
t , Ts][Tt, Ts])) = Φ(Tr(ρj1([T 2

t , Ts][Tt, Ts]))) = Φ(B10).

We have A10 = A1A6−A1 and B10 = B1B6−B1. We then have A1A6−A1 = A10 = Φ(B10) =
A1A6 + A1, therefore 2A1 = 0 and A1 = 0. This contradicts our assumptions.

3. Assume now that A1 = Tr(ρj0+`([Tt, Ts])) = 0. We then have B1 = Tr(ρj1([Tt, Ts])) = 0.
3.1. Assume z([T 2

t , Ts]) = 1. We then haveA6 = Tr(ρj0+`([T 2
t , Ts])) = Φ(Tr(ρj1([T 2

t , Ts]))) =
Φ(B6). We also have A6 = 2(β + β−1 − 1) − A1(β + β−1 − 2) = 2(β + β−1 − 1) and
B6 = 2(β+β−1− 1)−B1(β+β−1− 2) = 2(β+β−1− 1). It follows that Φ(β+β−1) = β+β−1.

3.1.1. Assume z([T 2
t , T

2
s ]) = 1. We then have

A8 = Tr(ρj0+`([T 2
t , T

2
s ])) = Φ(Tr(ρj1([T 2

t , T
2
s ]))) = Φ(B8).

We have

A8 = (β + β−1 − 2)(α + α−1 − 2)(A1 − 2) + 2 = 2− 2(β + β−1 − 2)(α + α−1 − 2),

B8 = (β + β−1 − 2)(α + α−1 − 2)(B1 − 2) + 2 = 2− 2(β + β−1 − 2)(α + α−1 − 2).
It follows that α + α−1 = Φ(α + α−1).

3.1.1.1. Assume z([TtTsTt, Ts]) = 1. We then have

A4 = Tr(ρj0+`([TtTsTt, Ts])) = Φ(tr(ρj1([TtTsTt, Ts]))) = Φ(B4).

We have ξj0+` = 2−A4
2−A1

+2−A1−(α+α−1+β+β−1) and ξj1 = 2−B4
2−B1

+2−B1−(α+α−1+β+β−1).
It follows that ξj0+` = Φ(ξj1) and, therefore, j0 + ` ∼ j1. This contradicts our assumptions.
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3.1.1.2. Assume now z([TtTsTt, Ts]) = −1. We then have A4 = −Φ(B4). By the same
computations as in 3.1.1.1, we get that

ξj0+` = 2− A4

2 +2−(α+α−1 +β+β−1) = Φ(2 +B4

2 +2−(α+α−1 +β+β−1)) = Φ(ξj1)+Φ(B4).

We also have z([T 2
t , Ts][TtTsTt, Ts]) = −1, therefore A11 = Tr(ρj0+`([T 2

t , Ts][TtTsTt, Ts])) =
−Φ(Tr(ρj1([T 2

t , Ts][TtTsTt, Ts]))) = −Φ(B11). We also have A11 = A4A6−A4−A6 + ξj0+`(A1−
2) + 2 and B11 = B4B6 − B4 − B6 + ξj1(B1 − 2) + 2. It follows that ξj0+` = −A6 − Φ(ξj1) + 2.
We then have Φ(ξj1) = −A6− ξj0+` + 2 = ξj0+` +A4 and, therefore 2ξj0+` = −A6−A4− 2. We
have

−A6 − A4 + 2 = −A2
1 − ξj0+`A1 − (α + α−1 − 2)A1 + 2ξj0+` + 2(α + α−1 − 1).

It follows that α + α−1 − 1 = 0 and, therefore, 0 = α2 − α + 1 = Φ6(α), which contradicts our
assumptions.

3.1.2. Assume now z([T 2
t , T

2
s ]) = −1. We then have

A8 = Tr(ρj0+`([T 2
t , T

2
s ])) = −Φ(Tr(ρj1([T 2

t , T
2
s ]))) = −Φ(B8).

We have z([T 2
t , Ts][T 2

t , T
2
s ]) = −1, therefore

A12 = Tr(ρj0+`([T 2
t , T

2
s ][T 2

t , Ts])) = −Φ(Tr(ρj1([T 2
t , T

2
s ][T 2

t , Ts]))) = −Φ(B12).
We also have A12 = A8A6 − A6 and B12 = B8B6 − B6, therefore A8A6 − A6 = A8A6 + A6 and
A6 = 0. We then have

0 = A6 = −(β + β−1 − 2)A1 + 2(β + β−1 − 1) = 2
β

Φ6(β).

This contradicts our assumptions.
3.2. Assume now z([T 2

t , Ts]) = −1. We then have
A6 = Tr(ρj0+`([T 2

t , Ts])) = −Φ(Tr(ρj1([T 2
t , Ts])) = −Φ(B6).

We have A6 = 2(β+β−1−1) = B6, therefore Φ(β+β−1−1) = −(β+β−1−1). We have A6 6= 0,
Tr(ρj0+`(T−2

t , Ts])) = A6 and Tr(ρj1(T−2
t , Ts])) = B6. It follows that z([T−2

t , Ts]) = z([T 2
t , Ts]) =

−1 and z([T 2
t , Ts][T−2

t , Ts]) = 1. We then have A12 = Tr(ρj0+`([T 2
t , Ts][T−2

t , Ts])) = Φ(B12). We
also have A12 = A2

6 − (β + β−1)2(A6 − 2)− 2 = B12. It follows that

(A6

2 + 1)2(A6 − 2) = Φ
(

(A6

2 + 1)2(A6 − 2)
)

(A
2
6

4 + A6 + 1)(A6 − 2) = (A
2
6

4 − A6 + 1)(−A6 − 2)

A3
6

4 + A2
6 + A6 −

A2
6

2 − 2A6 − 2 = −A
3
6

4 + A2
6 − A6 −

A2
6

2 + 2A6 − 2

A3
6

2 − 2A6 = 0
A6

2 (A2
6 − 4) = 0

A6

2 (A6 − 2)(A6 + 2) = 0

4(β + β−1 − 1)(β + β−1 − 2)(β + β−1) = 0
4β−3Φ6(β)Φ1(β)2Φ4(β) = 0.
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This is a contradiction by the assumptions on the order of β. This concludes the proof.
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Chapter 6

W-graphs

Before extending our study to types H3 and H4, we need to introduce the notion of W -graphs
and give some properties which they verify. We also prove some new properties and propose a
new conjecture. In this section, (W,S) is a Coxeter system with W a finite Coxeter group, K ′
is the splitting field of W , K = K ′((√αs)s∈S), K̃ = K ′((αs)s∈S), C ′ is the ring of integers of
K ′ and C = C ′((√αs)s∈S). We consider the Iwahori-Hecke algebra given by the presentation
H = HW,(αs)s∈S =< T1, ..., Tn|TiTjTi...︸ ︷︷ ︸

msi,sj

= TjTiTj...︸ ︷︷ ︸
msi,sj

, (Ti − αsi)(Ti + 1) = 0 >, where αsi = αsj if

si and sj are in the same conjugacy class of W .
W-graphs were introduced in 1979 by Kazhdan-Lusztig [30] for one-parameter families and

the definition was extended to all Coxeter groups in [20]. We here give the definition from
[20]. We will prove some uniqueness properties (Proposition 6.2 and Proposition 6.3) in the
one-parameter case and establish a conjecture (Conjecture 6.1) for certain W -graphs.

We here give the definition of W -graphs which can be found in [20]

Definition 6.1. For X a set, we write D(X) = {(x, x), x ∈ X} its diagonal. A W -graph Γ is
given by a triple (X, I, µ) such that

1. X is a set and I is a map from X to P(S),

2. µ is a map from (X ×X \D(X)× S) to K stable by the field involution sending √αs to√
αs
−1. Let V be a K̃-vector space with basis (ey)y∈X . For all s ∈ S, we define ρs : V → V

by

ey 7→ −ey if s ∈ I(y),
ey 7→ αsey + ∑

x∈X,s∈I(x)

√
αsµ

s
x,yex if s /∈ I(y).

3. The map Ts 7→ ρs affords a representation of H.

For Γ a W -graph, we write ρΓ its associated representation and VΓ the corresponding
HK,(αs)s∈S -module.

Definition 6.2. A W -graph (X, I, µ) is said to be 2-colorable whenever there exists a map ω :
X → {−1, 1} such that for any (s, x, y) ∈ S×X2 verifying µs(x, y) 6= 0, we have ω(x) = −ω(y).
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The data given by the triple (X, I, µ) can be represented by a weighted oriented graph for
which the set X represents the vertices and the map I represents the weight of the vertices. The
non-zero values of the map µ represent the oriented weighted edges of the graph. After they
were introduced, it was shown by Alvis and Lusztig [2] that there exist W -graphs affording all
irreducible representations of Coxeter groups of types H3 and H4. Using those results, Gyoja
[24] showed that any irreducible representation of an Iwahori-Hecke algebra associated to a
finite non-crystalographic Coxeter group in the equal parameters case could be afforded by a
W -graph. Moreover, he showed the following result

Theorem 6.1. If all the parameters of the Hecke algebra are equal, then the following state-
ments hold

1. Every irreducible HK,α-module is afforded by VΓ for a W -graph Γ over C.

2. An irreducible Hq,K(W )-module is afforded by VΓ for a 2-colorableW -graph Γ over K(
√
α)

if and only it admits a form over K(
√
α). The representation is then said to be non-

exceptional.

Remark : He also classified all the exceptional representations for Iwahori-Hecke algebras,
that is, the ones which are not non-exceptional, and obtained

1. 2 irreducible representations of dimension 512 of E7,

2. 4 irreducible representations of dimension 4096 of E8,

3. 2 irreducible representations of dimension 4 of H3,

4. 4 irreducible representations of dimension 16 of H4,

The link between 2-colorable representations and non-exceptionality can be seen through
the following proposition.

Proposition 6.1. If (X, I, µ) is a 2-colorable W -graph then

ρ(X,I,µ) ' ρ(X,I,−µ).

If σ : K((√αs)s∈S) → K((√αs)s∈S) leaves K stable and maps √αs to −
√
αs for all s ∈ S

then ρ(X,I,−µ) = σ ◦ ρ(X,I,µ).

Proof. Let (X, I, µ) be a 2-colorable W -graph and ω : X → {−1, 1} be an associated coloring.
Let L : V → V be the linear map defined by L(ex) = ω(x)ex for all x ∈ X. We have L−1 = L.
Let s ∈ S and y ∈ X. If s ∈ I(y), then

L(ρ(X,I,µ)(L(ey))) = −ω(y)2ey

= −ey
= ρ(X,I,−µ)(ey).
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If s /∈ I(y) then

L(ρ(X,I,µ)(Ts)(L(ey))) = L(ω(y)αsey +
∑

x∈X,s∈I(x)

√
αsµ

s
x,yω(y)ex)

= ω(y)2αsey +
∑

x∈X,s∈I(x)

√
αsµ

s
x,yω(x)ω(y)ex

= αsey +
∑

x∈X,s∈I(x)

√
αs(−µsx,y)ex

= ρ(X,I,−µ)(Ts)(ey).

The second part of the proposition is proved in the same way.

Proposition 6.1 shows that two different W -graphs can give isomorphic representations. We
now provide some uniqueness conditions with the following propositions.

Proposition 6.2. If Γ1 = (X, I1, µ1) and Γ2 = (Y, I2, µ2) are W -graphs such that ρΓ1 ' ρΓ2

and ρΓ1 is irreducible, then there exists a bijection ϕ : X → Y such that for all x ∈ X we have
I2(ϕ(x)) = I1(x).

Proof. Let Γ1 and Γ2 be as above. If n = 1, then the result is straightforward. Let us assume
n ≥ 2. Let us show that for all S ′ ⊂ S, we have

dim( ∩
s∈S′

ker(ρΓ1(Ts) + 1)) = |{x ∈ X,S ′ ⊂ I(x)}|.

If there exists x0 ∈ X such that I(x0) = ∅, then by definition of a W -graph, we would have
that Ṽ = ⊕

x∈X\{x0}
Kex is a stable subvector-space of dimension n − 1 which contradicts the

irreducibility of ρΓ1 .
Let S ′ = {sil}l∈[[1,k]] ⊂ S for some k ∈ N?. We label the vertices {exi}i∈[[1,nΓ1 ]] in a such a

way that there exist rS′ ∈ N? verifying S ′ ⊂ I(xh) for all h ∈ [[1, rS′ ]] and S ′ 6⊂ I(xh) for all
h ∈ [[rS′ + 1, nΓ1 ]].

Let x ∈ ∩
s∈S′

ker(ρΓ1(Ts) + 1). There exists a unique family (λi)i∈[[1,nΓ1 ]] ∈ K̃nΓ1 such that
x = ∑

i∈[[1,nΓ1 ]]
λiexi .

Let h0 ∈ [[rS′ + 1, nΓ1 ]], we will show that λh0 = 0. There exists j ∈ [[1, k]] such that
sij /∈ I(xh0). We then have ρΓ1(Tsij )(x) = αsijλh0exh0

+ ∑
h6=h0

ahexh for some ah ∈ K̃.

Since x ∈ ker(ρΓ1(Tsij ) + 1), we also have ρΓ1(Tsij )(x) = −x = − ∑
i∈[[1,nΓ1 ]]

λiexi . This implies

that αsijλh0 = −λh0 , therefore λh0 = 0.
We then conclude that x ∈ VectK̃((exi)i∈[[1,rS′ ]]), therefore

∩
s∈S′

ker(ρΓ1(Ts) + 1) ⊂ VectK̃((exi)i∈[[1,rS′ ]]).

The reverse inclusion follows from the definition of rS′ .
This proves that dim( ∩

s∈S′
ker(ρΓ1(Ts) + 1)) = |{x ∈ X,S ′ ⊂ I(x)}|.

We now have that for all S ′ ⊂ S, |{x ∈ X,S ′ ⊂ I1(x)}| = |{x ∈ X,S ′ ⊂ I2(x)}| because
the representations are isomorphic. It follows by induction on |S| − |S ′| that for all S ′ ⊂ S,
|{x ∈ X,S ′ = I1(x)}| = |{x ∈ X,S ′ = I2(x)}| which concludes the proof.
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The next proposition gives a fairly good uniqueness property which will be used for the
computations on W -graphs.

Proposition 6.3. Let Γ1 = (X, I, µ) and Γ2 = (X ′, I ′, µ′) be W -graphs as above and ϕ : X →
X ′ be a bijection such that for all x ∈ X, I ′(ϕ(x)) = I(x). We assume that X and X ′ are
labeled in such a way that if I(xi) ( I(xj) then i < j and ϕ(xi) = x′i. We also assume that the
images of µ and µ′ are included in K̃ and that µ and µ′ are independent of S. We then write
µx,y instead of µsx,y.

If there exists M ∈ GLn(K̃) such that for all T ∈ HK̃, MρΓ1(T )M−1 = ρΓ2(T ) then M is
block diagonal with blocks of length |{x ∈ X, I1(x) = I1(xi)}|.

Proof. Note first that by Proposition 6.2, we can choose a labeling as required.
We can choose numberings verifying desired by Proposition 6.2. We write (ei)i∈[[1,m]] the

basis corresponding to Γ1 and (e′i)i∈[1,m]] the basis corresponding to Γ2. Assume there exists a
matrix M ∈ GLn(K̃) such that for all T ∈ HK̃ , MρΓ1(T )M−1 = ρΓ2(T ). We will first show
that the matrix M is block lower-triangular and then that it is diagonal in the basis indexed
by the numbering we chose on the vertices. We write ρ1 = ρΓ1 , ρ2 = ρΓ2 and m the dimension
of both representations for the remainder of the proof.

Let xj ∈ X. Let s ∈ I(xj). We then have Mρ1(Ts)(ej) = −Mej = −
m∑
i=1
mi,je

′
i. On the other

hand, we have ρ2(Ts)Mej =
m∑
i=1
mi,jρ2(Ts)e′i = − ∑

i∈[[1,m]],s∈I(xi)
aie
′
i + ∑

i∈[[1,m]],s/∈I(xi)
αsmi,je

′
i. Since

those two quantities are assumed to be equal, we have mi,j = 0 for all i ∈ [[1,m]] such that
s /∈ I(xi).

Let now (i, j) ∈ [[1,m]]2 be such that I(xi) 6= I(xj) and i < j. By the assumption on the
numbering, we have that there exists s ∈ I(xj) such that s /∈ I(xi). The above computation
implies that mi,j = 0, therefore M is block lower-triangular.

We have proven that for all i ∈ [[1,m]], Mei = ∑
j,I(xi)⊂I(xj)

mi,je
′
j. Let i ∈ [[1,m]] and j0 ∈

[[1,m]] such that I(xi) ( I(xj0) and s ∈ I(xj0) \ I(xi). We have

Mρ1(Ts)(ei) = M(αsei +√αs
∑
`

s∈I(x`)

µ`,iei)

= αs
∑
j

I(xi)⊂I(xj)

mi,je
′
j +√αs

∑
`

s∈I(x`)

µ`,i
∑
k

I(x`)⊂I(xk)

m`,ke
′
k

= αsmi,j0e
′
j0 + αs

∑
j 6=j0

I(xi)⊂I(xj)

mi,je
′
j +√αs

∑
`

s∈I(x`)

∑
k

I(xk)⊂I(x`)

µ`,im`,ke
′
k

=

αsmi,j0 +√αs
∑
`

s∈I(x`)⊂I(xj0 )

µ`,im`,j0

 e′j0 +
∑
l 6=j0

b`e
′
`.

where the coefficients b` are elements of K which can be deduced from the above equalities.
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We also have

ρ2(s)M(ei) = −
∑
j

I(xi)⊂I(xj)
s∈I(xj)

mi,je
′
j +

∑
j,I(xi)⊂I(xj),s/∈I(xj)

mi,j

αse′j +√αs
∑

`,s∈I(x`)
µ′`,je

′
`



=

−mi,j0 +√αs
∑
j

s/∈I(xj)

mi,jµ
′
j0,j

 e′j0 +
∑
`6=j0

c`e
′
`.

where the coefficients c` are elements of K which can be deduced from the above equalities.
Since we have assumed those two quantities to be equal, we get that

αsmi,j0 +√αs
∑
l

s∈I(xl)⊂I(xj0 )

µl,iml,j0 = −mi,j0 +√αs
∑
j

s/∈I(xj)

mi,jµ
′
j0,j.

Since 1 + αs and √αs are K̃-linearly independant, we get that mi,j0 = 0. This is true for
all (i, j) such that I(xi) ( I(xj0), therefore we have that the matrix M is block-diagonal.

Remark : To prove that the matrix is block lower-triangular, we don’t need to assume
anything on the images of µ or µ′ or on the independence with regards to S and we can take
M ∈ GLm(K). If we don’t assume that the image of µ′ is in K̃ then the result does not hold.
The two following W -graphs give us a counter-example in the more general setting

2 3 1 3

2 1

Γ

2 3 1 3

2 1

2

s2,−1
Γ′

The green dotted edges are of weight 1 +
√
α+
√
α
−1. The blue dashed edge indicates that

µs24,1 = −1 and µs14,1 = µs34,1 = 0.

Then the matrix M =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 verifies for all s ∈ S,

MρΓ(Ts)M−1 = ρΓ′(Ts).

We now give a proposition which can be found in [20] (11.1.7) providing a construction of
a W -graph associated to the dual representation of a W -graph.
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Proposition 6.4. Let Γ = (X, I, µ) be a W -graph. We define its dual W -graph Γ? = (X, Ĩ, µ̃)
by

1. ∀x ∈ X, Ĩ(x) = S \ I(x),

2. ∀(x, y, s) ∈ X ×X \D(X)× S, µ̃sx,y = −µsy,x.

We then have that ρΓ ' ρ?Γ?, where ρ?(Ts) = ρ(−αsT−1
s ).

Definition 6.3. We say a representation ρ of HK is self-dual if ρ ' ρ?.

Proposition 6.5. If ρ : HK → GLnρ(K) is an irreducible self-dual representation of a Iwahori-
Hecke algebra then there is either a symmetric or skew-symmetric non-degenerate bilinear form
〈., .〉 associated to ρ in the following way

∀s ∈ S,∀(u, v) ∈ V 2, 〈ρ(Ts)u, ρ(Ts)v〉 = 〈u, v〉.

Proof. Let ρ : HK → GLnρ(K) be a self-dual representation. Then there exists P ∈ GLn(k)
such that for all s ∈ S,

Pρ(Ts)P−1 = −αs tρ(Ts)−1.

This implies that Pρ(Ts)P−1 = −αs t(−αsP−1 tρ(Ts)−1P )−1 =tPρ(Ts)tP−1. It follows that for
all s ∈ S, tP−1Pρ(Ts)(tP−1P )−1 = ρ(Ts). Hence, for all h ∈ HK , tP−1Pρ(h)(tP−1P )−1 = ρ(h).
By Schur’s lemma, there exists λ ∈ Fq such that tP−1P = λ. Thus P = λtP = λt(λtP ) = λ2P .
It follows that λ ∈ {−1, 1}.

This bilinear form 〈.|.〉 associated to P is non-degenerate. It is symmetric when λ = 1
and skew-symmetric when λ = −1. For all s ∈ S, (u, v) ∈ V 2, we have 〈ρ(Ts)u, ρ(Ts)v〉 =t

(ρ(Ts)u)Pρ(Ts)v =tu(tρ(Ts)Pρ(Ts))v =tu(−αsP )v = −αs〈u, v〉. This concludes the proof.

Although such a bilinear form always exists for any given self-dual representation, it is
difficult to obtain the bilinear form explicitely and to determine whether it is symmetric or
anti-symmetric. Since there is a combinatorial way to define a dual W -graph, it is natural to
expect W -graphs affording self-dual representations to be isomorphic to their dual W -graph.
This seems to never be the case. Nevertheless, we have (X, I, µ) ' (X, Ĩ,−µ̃) in many cases.
We know by Proposition 6.1 that if (X, Ĩ,−µ̃) is 2-colorable, then we have ρ(X,Ĩ,−µ̃) ' ρ(X,Ĩ,µ̃).
When this is the case, we can define a bilinear form using only the 2-coloring of the graph. The
construction is given in the following theorem.

Theorem 6.2. Let Γ = (X, I, µ) be a W -graph affording an irreducible representation of H
such that Γ is 2-colorable and Γ is isomorphic as an oriented weighted graph to (X, Ĩ,−µ̃).

Let ϕ : X → X be the graph automorphism from Γ to (X, Ĩ,−µ̃) and x1, x2, . . . , xn be a
numbering of X such that ϕ(xi) = xn+1−i.

Let 〈., .〉 be the bilinear form defined by 〈exi , exj〉 = ω(exi)δi,n+1−j, where ω corresponds to a
coloring of Γ with 1 and −1.

We then have

∀s ∈ S,∀v1, v2 ∈ V, 〈ρΓ(Ts)v1, ρΓ(Ts)v2〉 = −α〈v1, v2〉.

This bilinear form is non-degenerate and it is symmetric if ω(x1)ω(xn) = 1 and skew-
symmetric if ω(x1)ω(xn) = −1.

The associated representation is then self-dual.
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Proof. Let Γ = (X, I, µ) be a W -graph as above and ω : X → {−1, 1} be the corresponding 2-
coloring. Let s ∈ S and x, y ∈ V . First note that since I(ϕ(x)) = S \ I(x), we have 〈ex, ez〉 = 0
for all z ∈ X such that I(z) 6= S \ I(x). We now have four different cases to consider.

If s ∈ I(x) ∩ I(y) then 〈ρΓ(Ts)ex, ρΓ(Ts)ey〉 = 〈−ex,−ey〉 = 〈ex, ey〉 = 0 = −αs〈ex, ey〉.
If s ∈ I(x), s /∈ I(y) then

〈ρΓ(Ts)ex, ρΓ(Ts)ey〉 = 〈−ex, αsey +√αs
∑

z∈X,s∈I(z)
µz,yez〉

= −αs〈ex, ey〉 −
√
αs

∑
z∈X,s∈I(z)

µz,y〈ex, ez〉

= −αs〈ex, ey〉.

If s /∈ I(x), s ∈ I(y) then

〈ρΓ(Ts)ex, ρΓ(Ts)ey〉 = 〈αsex +√αs
∑

z∈X,s∈I(z)
µz,xez,−ey〉

= −αs〈ex, ey〉 −
√
αs

∑
z∈X,s∈I(z)

〈ez, ey〉

= −αs〈ex, ey〉.

If s /∈ I(x) ∪ I(y) then we have 〈ex, ey〉 = 0 and

〈ρΓ(Ts)ex, ρΓ(Ts)ey〉 = 〈αsex +√αs
∑

z∈X,s∈I(z)
µz,xez, αsey +√αs

∑
z′∈X,s∈I(z′)

µz′,xez′〉

= √
αs

∑
z∈X,s∈I(z)

µz,x〈ez, ey〉+√αs
∑

z′∈X,s∈I(z′)
µz′,y〈ex, ez′〉

= √
αsµϕ(y),xω(ϕ(y)) +√αsµϕ(x),yω(x)

= √
αs(µϕ(y),ϕ(ϕ(x))ω(ϕ(y)) + µϕ(x),yω(x))

= √
αs(µϕ(x),yω(ϕ(y)) + µϕ(x),yω(x)

= √
αsµϕ(x),y(ω(ϕ(y)) + ω(x)).

If µϕ(x),y = 0 then the above quantity is equal to zero. If µϕ(x),y 6= 0 then µϕ(y),x 6= 0, therefore
ω(ϕ(y)) = −ω(x) and the above quantity is again zero.

This proves that in all cases, 〈ρΓ(Ts)ex, ρΓ(Ts)ey〉 = −αs〈ex, ey〉. It only remains to show
that this bilinear form is symmetric if ω(x1)ω(xn) = 1 and skew-symmetric if ω(x1)ω(xn) = −1.
To show this, we first prove that for all x ∈ X, we have ω(x)ω(ϕ(x)) = ω(x1)ω(xn). If Γ was
a disconnected graph, then ργ would be reducible, therefore Γ is connected. This means we
only need to show that for a given x, we have ω(y)ω(ϕ(y)) = ω(x)ω(ϕ(x)) for all y ∈ X such
that µx,y 6= 0 or µy,x 6= 0, . Let x ∈ X and y ∈ X such that µx,y 6= 0 or µy,x 6= 0. Then
µϕ(y),ϕ(x) 6= 0 or µϕ(x),ϕ(y) 6= 0. This implies that ω(y) = −ω(x) and ω(ϕ(y)) = −ω(ϕ(x)),
therefore ω(y)ω(ϕ(y)) = (−ω(x))(−ω(ϕ(x)) = ω(x)ω(ϕ(x)). This shows that for all x ∈ X,
we have ω(x)ω(ϕ(x)) = ω(x1)ω(xn). Let now (x, y) ∈ X2. We have 〈ex, ey〉 = ω(x)δy,ϕ(x) =
ω(x1)ω(xn)ω(ϕ(x))δϕ(y),x = ω(x1)ω(xn)ω(y)δx,ϕ(y) = ω(x1)ω(xn)〈ey, ex〉 as required.

Definition 6.4. A W -graph satisfying the conditions in Theorem 6.2 is said to be self-dual.

Not all W -graphs affording self-dual representations are self-dual. For example, in type
D4, there is an irreducible self-dual eight-dimensional representation which corresponds to the
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double Young diagram λ = ([2, 1], [1]). By Proposition 4.1.3, we know that the associated
bilinear form must be skew-symmetric since ν̃(λ) = ν([2, 1])ν([1]) = (−1) 3−1

2 (−1) 1−1
2 = −1.

We can associate to this representation the following W -graph which we determined using the
restrictions to the three different AA3 and A3

A1

3

1, 2

1, 3

1, 4

1, 2, 4

3, 4

2, 4

2, 3

2

2
2

Here theW -graphs are presented as in [20]. If I(x) = {s3}, then we write 3 inside the vertex
x. We don’t write the edges when µx,y = 0. If µx,y = µy,x, then we write non-oriented edges.
If µx,y = 1, then we do not write the weight on the edge and we write µx,y as a weight on the
edge otherwise. The W -graph does not satisfy the desired properties because the edge between
nodes 3 and 3, 4 is of weight 1 whereas the edge between notes 1, 2 and 1, 2, 4 is of weight 2.

However, since the properties appear to be natural and are verified by some W -graphs, we
propose the following conjecture.

Conjecture 6.1. Let W be a Coxeter group. For any irreducible self-dual representation, there
exists a self-dual W -graph defined over K. If there exists a W -graph Γ = (X, I, µ) defined
over K ′ then there exist a self-dual W -graph Γ′ = (X ′, I ′, µ′) defined over K ′ and a matrix
M ∈ GL|X|(K̃) such that for all h ∈ HK, MρΓ(h)M−1 = ρΓ′(h).

In order to prove the conjecture for exceptional groups, we effectively find the W -graphs
verifying the right properties by assuming they exist and finding the bilinear form preserving
the W -graph we are working with. This can be seen in the following proposition.

Proposition 6.6. Assume the conjecture holds and that αs = αs′ for all s, s′ ∈ S. We write
α for the unique parameter of the Iwahori-Hecke algebra. Then any bilinear form associated to
a W -graph affording an irreducible self-dual representation defined over K ′ is represented by a
block anti-diagonal matrix.

Proof. Assume the conjecture is true and that Γ = (X, I, µ) is a self-dualW -graph defined over
K ′. There exists Γ′ = (X ′, I ′, µ′) such that µ′(X × X \ D(X) × S) ⊂ K ′ and ρΓ ' ρΓ′ . We
order the vertices of X in order to have I(xi) = I(x′i) for all i, and if I(xi) ( I(xj) then i < j.
We consider the matrices with respect to the bases corresponding to those orders.

There exists M ∈ GL|X|(K̃) such that for all h ∈ HK , MρΓ(h)M−1 = ρΓ′(h). By Propo-
sitions 6.2 and 6.3, M is block-diagonal. Since Γ′ is self-dual, there exists an anti-diagonal

129



matrix P̃ corresponding to its 2-coloring such that for all s ∈ S, P̃ ρΓ′(Ts)P̃−1 = −α tρΓ′(Ts)−1.
We also have by Proposition 6.5 that there exists P ∈ GL|X|(K) such that for all s ∈ S,
PρΓ(Ts)P−1 = −αtρΓ(Ts)−1.

By substitutingMρΓ(Ts)M−1 = ρΓ′(Ts) in the first expression, we get P̃MρΓ(Ts)M−1P̃−1 =
−αt(MρΓ(Ts)M−1)−1 = −αtM−1 tρΓ(Ts)−1 tM . It follows that tMP̃MρΓ(Ts)(tMP̃M)−1 =
−αtρΓ(Ts)−1 = PρΓ(Ts)P−1. Hence, by Schur’s lemma, there exists λ ∈ Fp such that P =
λtMP̃M . Since M is block-diagonal and P̃ is anti-diagonal, we get that P is block anti-
diagonal.

Remark : This proposition can be useful to to find the matrix P after assuming the conjec-
ture is true. For the W -graph associated to ([2, 1], [1]), all the blocks are of size one, therefore
we only need to look for an anti-diagonal matrix. This means we have only 8 unknowns, as-
suming the 2-coloring is preserved up to permutation of vertices having the same image under
I, we get that P must be anti-symmetric, therefore we only have four unknowns.

After solving the equations afforded by each generator, we get

P =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 0
0 0 0 0 0 −2 0 0
0 0 0 0 2 0 0 0
0 0 0 −2 0 0 0 0
0 0 2 0 0 0 0 0
0 −2 0 0 0 0 0 0
−1 0 0 0 0 0 0 0



We then look for a matrix M such that tMP̃M = P .
Using Gaussian reduction for quadratic forms, we get

M =



1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



By computing Mρ(Ts)M−1 for all s, we obtain the following W -graph.
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We obtain in the same way self-dual W -graphs for all self-dual representations in types
I2(m), H3, H4, E6, E7 and E8. We give the new W -graphs in type H4 in the Appendix. All the
new W -graphs can be downloaded from [17].
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Chapter 7

Type E

In this section we determine the images of the Artin groups of type E inside their associated
Iwahori-Hecke algebras. Their representations are given by W -graphs, therefore we will use
the results from Chapter 6. We have defined in that chapter self-dual representations in Def-
inition 6.3 and self-dual W -graphs in Definition 6.4. We have established the Conjecture 6.1
which states that there exists a self-dual W -graph affording any self-dual representation of a
W -graph. There are no self-dual representations in type E7. In types E6 and E8, we have
proved the conjecture and obtained new W -graphs which are self-dual for each of the self-dual
representations. We only provide in this Appendix the graphs for the 10-dimensional self-dual
representation of E6 and its 20-dimensional self-dual representation. All the remaining ones
are of dimension greater than 60 and can be downloaded from [17].

7.1 Type E6

Let p /∈ {2, 3} be a prime and α ∈ Fp be of order not dividing 5, 8, 9 or 12. We write Fq =
Fp(α). There are 25 irreducible representations of the Iwahori-Hecke algebra HE6,α which we
define below. They are all of dimension less than or equal to 90 and there are 5 self-dual
representations, they associated to the E6-graphs 10s, 20s, 60s, 80s and 90s. We have found
self-dual E6-graphs [17] for each of these representations. Using the 2-coloring, the bilinear
form defined in Theorem 6.2 is skew-symmetric for each of those self-dual representations.

Definition 7.1.1. The Iwahori-Hecke algebra HE6,α of type E6 is the Fq-algebra generated by
S1, S2, S3, S4, S5, S6 and the following relations

1. ∀i ∈ {1, 2, 3, 4, 5, 6}, (Si − α)(Si + 1) = 0.

2. S1S3S1 = S3S1S3.

3. ∀i ∈ {2, 4, 5, 6}, S1Si = SiS1.

4. S2S4S2 = S4S2S4.

5. ∀i ∈ {3, 5, 6}, S2Si = SiS2.

6. ∀i ∈ {3, 4, 5}, SiSi+1Si = Si+1SiSi+1.

7. S3S5 = S5S3.
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8. S3S6 = S6S3.

9. S4S6 = S6S4.

For σ in the Coxeter group E6, we set Tσ = Si1 . . . Sik whenever σ = si1 . . . sik is a reduced
expression.

This means we consider E6 as in the CHEVIE package of GAP3 [19] with the following
Dynkin diagram

S1 S3 S4

S2

S5 S6

Proposition 7.1.1. Under our assumptions on p and α, HE6,α is split semisimple, the repre-
sentations afforded by the W -graphs are irreducible and pairwise non-isomorphic over Fq. The
restrictions of the irreducible representations of HE6,α to HD5,α are the same as in the generic
case.

Proof. We will apply Proposition 2.2.4. Let A = Z[
√
u
±1] and F = Q(

√
u). We have a

symetrizing trace defined by τ(T0) = 1 and τ(Tσ) = 0 for all σ ∈ E6 \ {1E6}. By [20], HE6,u is
then a free symmetric F -algebra of rank 51840. By [7] V.3. Corollary 1, A is integrally closed.
Let θ be the ring homomorphism from A to L = Fq defined by θ(u) = α and θ(k) = k. We
know FH is split. The basis formed by the elements Tσ, σ ∈ E6 verifies the conditions of the
Proposition 2.2.4. The E6-graphs are still connected after specialization since all the weights
are in {−6,−4,−3,−2,−3/2,−1,−1/2,−1/3,−1/6, 1/3, 1/2, 1, 3/2, 2, 3}.

It now only remains to check that the Schur elements associated to the specialized represen-
tations are in B and do not vanish under θ with B as in Proposition 2.2.4. The Schur elements
are given in Table 7.1. For a pair (ρ, ρ?) of representations, we only give the Schur element of
one of the representations since the other is obtained by applying the involution

√
u 7→

√
u
−1.

The conditions on α and p imply that the Schur elements verify the right conditions and the
proof is concluded.

Using the CHEVIE package of GAP3[19], we give in Table 7.2 the restriction table from
HE6,α to its subalgebra HD5,α generated by S1, S2, S3, S4 and S5 which is naturally isomorphic
to the Iwahori-Hecke of type D5 with parameter α. They correspond in the generic case to the
induction/restriction tables of the corresponding Coxeter groups.

Proposition 7.1.2. The restrictions to AE6 of the representations afforded by those E6-graphs
are absolutely irreducible and the representations of dimension greater than one are pairwise
non-isomorphic.

Proof. As in [12] Lemma 3.4, we only need to prove that AE6 is generated by AE5 and AE6.
This true because s6 = s6s

−1
1 s1, s6s

−1
1 ∈ AE6 and s1 ∈ AD5 .
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1p : (Φ4
2Φ3

3Φ2
4Φ5Φ2

6Φ8Φ9Φ12)(u).
6p : 1

u
(Φ4

2Φ3
3Φ2

4Φ5Φ2
6Φ12)(u).

10s : 3
u7 (Φ4

2Φ3
3Φ2

4)(u).
15p : 2

u3 (Φ4
2Φ3

3Φ2
4Φ12)(u).

15q : 2
u3 (Φ4

2Φ3
3Φ2

4Φ2
6)(u).

20p : 1
u2 (Φ4

2Φ3
3Φ4Φ2

6Φ9)(u).
20s : 6

u7 (Φ4
2Φ3

3Φ12)(u).
24p : 1

u6 (Φ4
2Φ3

3Φ5Φ2
6)(u).

30p : 2
u3 (Φ4

2Φ3
3Φ2

6Φ8)(u).
60s : 2

u7 (Φ4
2Φ3

3Φ2
6)(u).

60p : 1
u5 (Φ4

2Φ3
3Φ4Φ2

6)(u).
64p : 1

u4 (Φ2Φ3
3Φ5Φ9)(u).

80s : 6
u7 (Φ3

3Φ2
4Φ2

6)(u).
81p : 1

u6 (Φ4
2Φ2

4Φ5Φ8)(u).
90s : 3

u7 (Φ4
2Φ2

4Φ9)(u).

Table 7.1: Schur elements in type E6

1 1′ 4 4′ 51 5′1 52 5′2 6 101 10′1 102 10′2 103 15 15′ 20 20′
1p 1
6p 1 1
10s 1
15p 1 1
15q 1 1
20p 1 1 1 1
20s 1 1
24p 1 1
30p 1 1 1
60s 1 1 1 1 1
60p 1 1 1 1 1
64p 1 1 1 1 1 1
80s 1 1 1 1 1
81p 1 1 1 1 1 1
90s 1 1 1 1 1 1

1 : ([5], ∅), 4 : ([4, 1], ∅), 51 : ([3, 2], ∅), 52 : ([4], [1]), 6 : ([3, 12]), 101 : ([3], [12]), 102 : ([3], [2]),
103 : ([2, 2], [1]), 15 : ([3, 1], [1]) and 20 : [2, 1], [2]).

Table 7.2: Restriction table from HE6,α to HD5,α.

134



Let ρ1 and ρ2 be two irreducible representations of HE6,α such that ρ1|AE6
' ρ2|AE6

. We
have AE6/AE6 '< S1 >' Z. It follows by Lemma 3.2.3 that there exists x ∈ F?q such that
for all i ∈ [[1, 6]], we have ρ1(Si) conjugate to xρ2(Si). Since the representations are irreducible
we have that the set of eigenvalues of ρ1(Si) is {−1, α} and the set of eigenvalues of ρ2(Si)
is {−x, xα}. This implies that x = 1 or (x = −α and α2 = 1). The latter contradicts our
assumptions on α therefore x = 1 and ρ1 ' ρ2.

Before determining the image of the Artin groups inside this Iwahori-Hecke algebra, we need
as in the other cases a Lemma on Artin groups which will allow us to use the restriction from
HE6,α to HD5,α.

Lemma 7.1.1. The normal closure � AD5 �AE6
of AD5 inside AE6 is equal to AE6, where we

identify AD5 as a subgroup of AE6 using the natural isomorphism from AD5 to < Si, i ∈ [[1, 5]] >.

Proof. By [36], we have AD5 =< S3S
−1
1 , S1S3S

−1
1 , S4S

−1
1 , S2S

−1
1 S5S

−1
1 , S3S

−1
1 , S4S

−1
3 > and

AE6 =< S3S
−1
1 , S1S3S

−1
1 , S4S

−1
1 , S2S

−1
1 S5S

−1
1 , S3S

−1
1 , S4S

−1
3 , S6S

−1
1 >. This proves we only

need to show that S6S
−1
1 ∈� AD5 �AE6

. We have S6S5S6 = S5S6S5, therefore S6 =
S5S6S5(S5S6)−1 and

S6S
−1
1 = S5S6S5S

−1
1 (S5S6)−1 = ((S5S

−1
1 )(S6S

−1
1 ))(S5S

−1
1 )((S5S

−1
1 )(S6S

−1
1 ))−1.

This concludes the proof.

We will now use the above information and the usual techniques to determine the image of
the Artin group inside HE6,α.

Proposition 7.1.3. If Fq = Fp(α) = Fp(α + α−1) then we have

1. ρ6p(AE6) ' SL6(q),

2. ρ10s(AE6) ' SP10(q),

3. ρ15p(AE6) ' SL15(q),

4. ρ15q(AE6) ' SL15(q),

5. ρ20p(AE6) ' SL20(q),

6. ρ20s(AE6) ' SP20(q),

7. ρ24p(AE6) ' SL24(q),

8. ρ30p(AE6) ' SL30(q),

9. ρ60s(AE6) ' SP60(q),

10. ρ60p(AE6) ' SL60(q),

11. ρ64p(AE6) ' SL64(q),

12. ρ80s(AE6) ' SP80(q),

13. ρ81p(AE6) ' SL81(q),

135



14. ρ90s(AE6) ' SP90(q).

If Fq = Fp(α) 6= Fp(α + α−1) then we have

1. ρ6p(AE6) ' SU6(q 1
2 ),

2. ρ10s(AE6) ' SP10(q 1
2 ),

3. ρ15p(AE6) ' SU15(q 1
2 ),

4. ρ15q(AE6) ' SU15(q 1
2 ),

5. ρ20p(AE6) ' SU20(q 1
2 ),

6. ρ20s(AE6) ' SP20(q 1
2 ),

7. ρ24p(AE6) ' SU24(q 1
2 ),

8. ρ30p(AE6) ' SU30(q 1
2 ),

9. ρ60s(AE6) ' SP60(q 1
2 ),

10. ρ60p(AE6) ' SU60(q 1
2 ),

11. ρ64p(AE6) ' SU64(q 1
2 ),

12. ρ80s(AE6) ' SP80(q 1
2 ),

13. ρ81p(AE6) ' SU81(q 1
2 ),

14. ρ90s(AE6) ' SP90(q 1
2 ).

Proof. Assume first Fq = Fp(α) = Fp(α + α−1). The representations considered are all defined
over Fp(

√
α). If Fp(

√
α) 6= Fp(α) then X2 − α is an irreducible polynomial over Fp(α). The

unique automorphism σ of order 2 of Fp(
√
α) fixes Fp pointwise and verifies σ(

√
α) = −

√
α.

Hence, Proposition 6.1 and Lemma 3.2.5 imply that the representations can be considered to
be defined over Fq.

We have found non-degenerate skew-symmetric bilinear forms defined over Fp associated to
the representation ρ1̃0s , ρ2̃0s , ρ6̃0s , ρ8̃0s and ρ9̃0s , therefore we have all the corresponding inclusions
for the images of AE6 .

It now only remains to prove that all the inclusions are isomorphisms. We prove it separately
for 6p and 10s and we will use Theorem 2.3.2 for the remaining ones.

By Table 7.2 and Theorem 4.4.1, we have that ρ6p(AD5) ' SL5(q)×{1}. It follows by Lemma
7.1.1 that ρ6p(AE6) is generated by transvections. Theorem 2.3.4 then shows that there exists q′
such that up to conjugation in GL6(q), we have ρ6p(AE6) ∈ {SL6(q′), SP6(q′), SU6(q′ 12 )}. Since
it contains a natural SL5(q), we have that q′ = q and ρ6p(AE6) ' SL6(q).

By Table 7.2, we have that ρ10s(AD5) ' ρ[2,2],[1](AD5). We have ϕ([2, 2], [1]) = ([2, 2], [1]) and
ν̃([2, 2], [1]) = ν([2, 2])ν([1]) since [2, 2]′ > [1]′. It follows that ν̃([2, 2], [1]) = (−1) 4−2

2 (−1) 1−1
2 =

−1 and by Theorem 4.4.1, ρ[2,2],[1](AD5) ' SP10(q). It follows that ρ10s(AE6) ' SP10(q).
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By Table 7.2, the non self-dual representations contain a natural SL2(q) and the self-dual
ones contain a twisted diagonal SL3(q). We can therefore apply Theorem 2.3.2 and Lemmas
3.3.5, 3.3.6, 8.5.1 to conclude the proof.

Assume now Fq = Fp(α) 6= Fp(α+α−1). The representations can again be considered to be
defined over Fq. We have that X2 − (α + α−1)X + 1 is an irreducible Fp(α + α−1)-polynomial
over Fp, therefore we have an automorphism ε of order 2 of Fq mapping α to α−1. To conclude
the proof, we only need to use previous arguments if we prove that all the representations
considered verify ρ ' ε ◦ ρ?.

First consider the non self-dual representations of dimension different from 15, 20 and 60.
Let ρ be such a representation, we know that ε ◦ ρ? is an irreducible representation, therefore
we have ε ◦ ρ? ' ρ or ε ◦ ρ? ' ρ? since those are the only irreducible representations of the
same dimension. Assume ε ◦ ρ? ' ρ?. Then ρ ' ε ◦ ρ and Lemma 3.2.4 implies that up to
conjugation ρ ≤ SLnρ(q

1
2 ). By Table 7.2, those representations all contain a natural SUa(q

1
2 )

with multiplicity 1 for some a ≥ 5. This implies that SUa(q
1
2 ) is a subgroup of SLa(q

1
2 ) which is

absurd by simple cardinality arguments since a ≥ 3. It follows by contradiction that ρ ' ε ◦ ρ?.
The result is obvious for the self-dual representations of dimension different from 15, 20 and 60
because there is only one possibility when ρ ' ρ?.

Consider now the 60-dimensional representations, we have ρ60s ' ρ?60s and ρ60p 6' ρ?60p . We
know that ε ◦ ρ?60s ' ρ60s or ε ◦ ρ?60s ' ρ60p or ε ◦ ρ?60s ' ρ?60p . We have ε ◦ ρ?60s ' ε ◦ ρ60s '
(ε ◦ ρ?60s)?. This proves that the only possibility is the first one, therefore ε ◦ ρ?60s ' ρ60s . We
have ε ◦ ρ?60p ' ρ60p or ε ◦ ρ?60p ' ρ?60p or ε ◦ ρ?60p ' ρ60s . The second possibility is excluded by
the same reasonning as for the representations of dimension different from 15 or 20. The third
possibility would imply that ε ◦ ρ60s ' ρ?60p . By the above, this would imply ρ60s ' ρ?60p which
is absurd. It follows that ε ◦ ρ?60p ' ρ60p . The arguments are identical for the 20-dimensional
representations.

It only remains to consider the 15-dimensional representations. We have ρ15p 6' ρ?15p , ρ15q 6'
ρ?15q . The are therefore four 15-dimensional representations. We have ε ◦ ρ?15p ' ρ15p or ε ◦
ρ?15p ' ρ?15p or ε ◦ ρ?15p ' ρ15q or ε ◦ ρ?15p ' ρ?15q . Using the same arguments as before we
have ε ◦ ρ?15p 6' ρ?15p . Assume now ε ◦ ρ?15p ' ρ15q . We have that ρ15p|HD5,α

' ρ[4],[1] ⊕ ρ[3],[12]
and ρ15q |HD5,α

' ρ[3,2],∅ ⊕ ρ[3],[2]. We know by Proposition 4.2.3 that ε ◦ ρ? ' ρ for every
representation ρ of HD5 . This implies that under the assumption ε◦ρ?15p ' ρ15q , we would have
ρ[4],[1]⊕ ρ[3],[12] ' ρ[3,2],∅⊕ ρ[3],[2] which is absurd. We exclude in the same way ε ◦ ρ?15p ' ρ?15q . It
follows that ε ◦ ρ?15p ' ρ15p . In the same way ε ◦ ρ?15q ' ρ15q . This concludes the proof.

We now state the main theorem for type E6.

Theorem 7.1.1. Assume Fq = Fp(α) = Fp(α + α−1), we then have that the morphism from
AE6 to H?

E6,α '
∏

ρ irr
GLnρ(q) factorizes through the surjective morphism

Φ : AE6 → SL6(q)× SP10(q)× SL15(q)2 × SL20(q)× SP20(q)× SL24(q)× SL30(q)

×SP60(q)× SL60(q)× SL64(q)× SP80(q)× SL81(q)× SP90(q).

Assume Fq = Fp(α) 6= Fp(α + α−1), we then have that the morphism from AE6 to H?
E6,α '∏

ρ irr
GLnρ(q) factorizes through the surjective morphism
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Φ : AE6 → SU6(q 1
2 )× SP10(q 1

2 )× SU15(q 1
2 )2 × SU20(q 1

2 )× SP20(q 1
2 )× SU24(q 1

2 )× SU30(q 1
2 )

×SP60(q 1
2 )× SU60(q 1

2 )× SU64(q 1
2 )× SP80(q 1

2 )× SU81(q 1
2 )× SP90(q 1

2 ).

Proof. By [36], AE6 is perfect. Furthermore, Lemma 3.3.1 gives that the morphism is surjective
unless there exists two different representations ρ1 and ρ2 in the decomposition such that
Ψ ◦ ρ1|AH4

' ρ2|AH4
for some field automorphism Ψ. By Proposition 2.1.2, we have that

Ψ(α + α−1) = α + α−1. This shows that Ψ must be trivial over Fp(α + α−1). It follows by
the previous propositions that there are no such representations in the decompositions and the
proof is concluded.

7.2 Type E7

Let p be a prime different from 2 and 3 and α ∈ Fp of order not dividing 8, 10, 12, 14 and 18.
We write Fq = Fp(α). There are 60 irreducible representations of HE7,α, none of them are
self-dual. The highest dimensional representation is of dimension 512. They are all 2-colorable
except for the two 512-dimensional representations.

Definition 7.2.1. The Iwahori-Hecke algebra HE7,α of type E7 is the Fq-algebra generated by
S1, S2, S3, S4, S5, S6, S7 and the following relations

1. ∀i ∈ {1, 2, 3, 4, 5, 6, 7}, (Si − α)(Si + 1) = 0.

2. S1S3S1 = S3S1S3.

3. ∀i ∈ {2, 4, 5, 6, 7}, S1Si = SiS1.

4. S2S4S2 = S4S2S4.

5. ∀i ∈ {3, 5, 6, 7}, S2Si = SiS2.

6. ∀i ∈ {3, 4, 5, 6}, SiSi+1Si = Si+1SiSi+1.

7. S3S5 = S5S3.

8. S3S6 = S6S3.

9. S3S7 = S7S3.

10. S4S6 = S6S4.

11. S4S7 = S7S4. For σ in the Coxeter group E7, we set Tσ = Si1 . . . Sik for any reduced
expression σ = si1 . . . sik is a reduced expression.

This means we consider E7 as in the CHEVIE package of GAP3 [19] with the following
Dynkin diagram
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S1 S3 S4

S2

S5 S6 S7

Proposition 7.2.1. Under our assumptions on p and α, HE7,α is split semisimple, the repre-
sentations afforded by the W -graphs are irreducible and pairwise non-isomorphic over Fq. The
restrictions of the irreducible representations of HE7,α to HE6,α are the same as in the generic
case.

Proof. We will apply Proposition 2.2.4. Let A = Z[
√
u
±1] and F = Q(

√
u). We have a

symetrizing trace defined by τ(T0) = 1 and τ(Tσ) = 0 for all σ ∈ E7 \ {1E7}. By [20],
HE7,u is then a free symmetric F -algebra of rank 2903040. By [7] V.3. Corollary 1, A is
integrally closed. Let θ be the ring homomorphism from A to L = Fq defined by θ(u) = α and
θ(k) = k. We know FH is split. The basis formed by the elements Tσ, σ ∈ E7 verifies the
conditions of the Proposition 2.2.4. The E7-graphs remains connected since all the weights lie
in {−3,−2,−1, 1, 2, 3}.

It now only remains to check that the Schur elements associated to the specialized represen-
tations are in B and do not vanish under θ with B as in Proposition 2.2.4. The Schur elements
are given in Table 7.3. They were obtained using Proposition 9.3.6 and Table E.6 of [20]. For
a pair (ρ, ρ?) of representations, we only give the Schur element of one of the representations
since the other is obtained by applying the involution

√
u 7→

√
u
−1. The conditions on α and

p imply that the Schur elements verify the right conditions and the proof is concluded.

The restriction table from HE7,α to its subalgebra HE6,α generated by S1, S2, S3, S4, S5 and
S6 which is naturally isomorphic to the Iwahori-Hecke of type E6 with parameter α is then
given by Table 7.4. It is obtained using the CHEVIE package of GAP3 [19]. They correspond
in the generic case to the induction/restriction tables of the corresponding Coxeter groups.

Proposition 7.2.2. The restrictions to AE7 of the representations afforded by those E7-graphs
are absolutely irreducible and the representations of dimension greater than 1 are pairwise non-
isomorphic.

Proof. As in [12] Lemma 3.4, we only need to prove that AE7 is generated by AE6 and AE7 .
This true because s7 = s7s

−1
1 s1, s7s

−1
1 ∈ AE6 and s1 ∈ AE6 .

We now prove the second part of the statement. Let ρ1 and ρ2 be two irreducible representa-
tions of HE7,α such that ρ1|AE7

' ρ1|AE7
. By Lemma 3.2.3, there exists a character ξ : AE7 7→ F?q

such that ρ1 ' ρ2 ⊗ ξ. This means there exists x ∈ Fq such that for all i ∈ [[1, 7]], ρ1(Si) is
conjugate to xρ2(Si). We know for any representation ρ of dimension greater than 1, the set
of eigenvalues of ρ is equal to {α,−1}. This implies that {α,−1} = {xα,−x}. We then have
x = 1 or (x = −α and −α2 = −1). It follows that x = 1 and ρ1 ' ρ2.

We now prove the usual lemma computing the normal closure of AE6 inside AE7 .

Lemma 7.2.1. The normal closure � AE6 �AE7
of AE6 inside AE7 is equal to AE7, where we

identify AE6 as a subgroup of AE7 using the natural isomorphism from AE6 to < Si, i ∈ [[1, 6]] >.
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1a : (Φ7
2Φ3

3Φ2
4Φ5Φ3

6Φ7Φ8Φ9Φ10Φ12Φ14Φ18)(u).
7′a : 1

u
((Φ7

2Φ3
3Φ2

4Φ5Φ3
6Φ8Φ9Φ10Φ18)(u).

15′a : 2
u4 (Φ7

2Φ3
3Φ2

4Φ3
6Φ7)(u).

21a : 2
u3 (Φ7

2Φ3
3Φ2

4Φ5Φ3
6Φ18)(u).

21′b : 1
u3 (Φ7

2Φ3
3Φ2

4Φ5Φ3
6Φ8Φ10Φ12)(u).

27a : 1
u2 (Φ7

2Φ3Φ2
4Φ5Φ6Φ7Φ8Φ10Φ14)(u).

35′a : 6
u7 (Φ7

2Φ3
3Φ2

4Φ18)(u).
35b : 2

u3 (Φ7
2Φ3

3Φ2
4Φ3

6Φ9Φ10)(u).
56′a : 2

u3 (Φ3
2Φ3

3Φ2
4Φ5Φ6Φ8Φ9Φ12)(u).

70′a : 3
u7 (Φ7

2Φ3
3Φ2

4Φ3
6)(u).

84a : 2
u10 (Φ7

2Φ3
3Φ5Φ3

6)(u).
105′a : 2

u4 (Φ7
2Φ3

3Φ2
4Φ3

6Φ14)(u).
105b : 1

u6 (Φ7
2Φ3

3Φ2
4Φ3

6Φ8)(u).
105c : 1

u12 (Φ7
2Φ3

3Φ2
4Φ3

6Φ8)(u).
120a : 2

u4 (Φ3
2Φ3

3Φ2
4Φ6Φ7Φ8Φ12)(u).

168a : 1
u6 (Φ7

2Φ3
3Φ5Φ3

6Φ10)(u).
189a : 2

u8 (Φ7
2Φ3Φ2

4Φ5Φ14)(u).
189′b : 1

u5 (Φ7
2Φ3Φ2

4Φ5Φ6Φ8Φ10)(u).
189′c : 1

u7 (Φ7
2Φ3Φ2

4Φ5Φ6Φ8Φ10)(u).
210a : 1

u6 (Φ7
2Φ3

3Φ2
4Φ3

6Φ12)(u).
210b : 1

u10 (Φ7
2Φ3

3Φ2
4Φ3

6)(u).
216′a : 2

u8 (Φ3
2Φ3Φ2

4Φ5Φ7Φ8)(u).
280′a : 3

u7 (Φ7
2Φ3

3Φ3
6Φ12)(u).

280b : 2
u7 (Φ3

2Φ3
3Φ2

4Φ8Φ9)(u).
315′a : 6

u7 (Φ7
2Φ2

4Φ3
6Φ9)(u).

336′a : 2
u10 (Φ3

2Φ3
3Φ2

4Φ5Φ6Φ12)(u).
378′a : 1

u9 (Φ7
2Φ3Φ2

4Φ5Φ6Φ10)(u).
405a : 2

u8 (Φ7
2Φ2

4Φ6Φ7Φ10)(u).
420a : 2

u10 (Φ7
2Φ3

3Φ3
6Φ10)(u).

512′a : 2
u11 (Φ3

3Φ5Φ7Φ9)(u).

Table 7.3: Schur elements in type E7
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1p 1′p 6p 6′p 10s 15p 15′p 15q 15′q 20p 20′p 20s 24p 24′p 30p 30′p 60s 60p 60′p 64p 64′p 80s 81p 81′p 90s
1a 1
7′a 1 1
15′a 1
21a 1 1
21′b 1 1
27a 1 1 1
35′a 1 1
35b 1 1
56′a 1 1 1
70′a 1 1
84a 1 1
105′a 1 1 1 1
105b 1 1 1
105c 1 1
120a 1 1 1 1
168a 1 1 1 1
189a 1 1 1 1
189′b 1 1 1 1 1
189′c 1 1 1 1
210a 1 1 1 1 1
210b 1 1 1 1
216′a 1 1 1 1
280′a 1 1 1 1 1
280b 1 1 1 1 1
315′a 1 1 1 1 1
336′a 1 1 1 1 1
378′a 1 1 1 1 1 1
405a 1 1 1 1 1 1
420a 1 1 1 1 1 1
512′a 1 1 1 1 1 1 1

Table 7.4: Restriction table from HE7,α to HE6,α.
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Proof. By [36], we have AE7 =< S1S3S
−1
1 , S4S

−1
3 , SiS

−1
1 , i ∈ [[1, 7]] > and

AE6 =< S1S3S
−1
1 , S4S

−1
3 , SiS

−1
1 , i ∈ [[1, 6]] > .

This proves we only need to show that S7S
−1
1 ∈� AE6 �AE7

. We have S7S6S7 = S6S7S6,
therefore S7 = S6S7S6(S6S7)−1 and

S7S
−1
1 = S6S7S6S

−1
1 (S6S7)−1 = ((S6S

−1
1 )(S7S

−1
1 ))(S6S

−1
1 )((S6S

−1
1 )(S7S

−1
1 ))−1.

This concludes the proof.

Note now that there are no self-dual representations in type E7, they are all 2-colorable
except for the two representations of dimension 512. We then have the following proposition.

Proposition 7.2.3. If Fq = Fp(
√
α) = Fp(α) = Fp(α+ α−1) then for any irreducible represen-

tation ρ of HE7,α, ρ(AE7) ' SLnρ(q), where nρ = dim(ρ).
If Fp(

√
α) 6= Fq = Fp(α) = Fp(α + α−1) then for any irreducible representation ρ of HE7,α

such that nρ 6= 512, we have ρ(AE7) ' SLnρ(q). We have ρ512a(AE7) ' SU512(q).
If Fq = Fp(α) 6= Fp(α + α−1) then for any irreducible representation ρ of HE7,α, we have

ρ(AE7) ' SUnρ(q
1
2 ).

Proof. Assume first that Fq = Fp(α) = Fp(α + α−1). Let ρ be an irreducible representation
of HE7,α of dimension different from 7 and 512. The associated E7-graph is then 2-colorable,
therefore by Proposition 6.1, the image of AE7 under ρ is inluded up to conjugation in GLnρ(q)
even when Fp(

√
α) 6= Fp(α). By Table 7.2 and Proposition 7.1.3, ρ(AE7) contains a natural

SLr(q) for some r ≥ 6 whenever nρ > 1. We can therefore apply Theorem 2.3.2. We get that
ρ(AE7) is a classical group over Fq′ in a natural representation for some q′ dividing q. Since it
contains a natural SLr(q), we get q′ = q and the representation is not unitary. By Corollary
7.2.2, it cannot preserve a bilinear form, therefore we get ρ(AE7) ' SLnρ(q). We now have to
consider the 7-dimensional representations ρ7′a and ρ7a = ρ?7′a . By Lemma 7.2.1 and Proposition
7.1.3, ρ7a(AE7) is normally generated by a natural SL6(q). It follows by Corollary 7.2.2 that it
is an irreducible subgroup of SL7(q) generated by transvections. We can then apply Theorem
2.3.4 and the same arguments as above give ρ7′a(q) ' SL7(q). This concludes the proof for the
representations of dimension different from 512.

Consider now the representation ρ512′a . If Fp(
√
α) = Fp(α) then ρ(AE7) is included in

SL512(q). By Proposition 7.1.3, it contains a natural SP60(q), therefore we can apply the above
reasoning to get that ρ512′a(AE7) ' SL512(q). Assume now Fp(

√
α) 6= Fp(α). We then have that

X2−α is an irreducible polynomial of degree 2 of Fp(α) such that Fp(
√
α) = Fp(α)/(X2−α). It

follows that Fp(
√
α) is an extension of degree 2 of Fp(α) and there exists a unique automorphism

Ψ of Fp(
√
α) which fixes Fq pointwise and such that Ψ(

√
α) = −

√
α. Note that the restriction

of ρ512′a and ρ512a to AE6 are identical, therefore we cannot get any information from this
restriction. Using CHEVIE [19], we have

Tr(ρ512′a(S1S
−1
7 S6S

−1
2 S3S5S

−2
4 )) = 228 + 5α−4 − 34α−3 + 104α−2 − 189α−1

+
√
α
−1 −

√
α− 189α + 104α2 − 34α3 + 5α4.

It follows that ρ512′a ' Ψ ◦ ρ512′a then
√
α −

√
α
−1 = Ψ(

√
α
−1 −

√
α) =

√
α
−1 −

√
α.

Hence 2
√
α = 2

√
α
−1 and α = 1 which contradicts our assumptions on α. This proves that
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Ψ ◦ ρ512′a ' ρ512a = ρ?512′a . It follows that ρ512′a(AE7) is included in SU512(q) up to conjugation
in GL512(q2). Since ρ512a contains a natural SP60(q), we can apply Theorem 2.3.2 and ρ512a is a
classical group over Fq′ for some q′ dividing q2. However q divides q′ because ρ512′a(AE7) contains
a natural SP60(q), therefore q′ ∈ {q, q2}. We know ρ512a does not preserve any non-degenerate
bilinear form because ρ512a|AE7

6' ρ512′a|AE7
. It follows that up conjugation in GL512(q2), we have

ρ512a(AE7) ∈ {SL512(q), SU512(q 1
2 ), SL512(q2), SU512(q)}. Assume we are in one the first two

cases, we would then have using the trace of the same element as above that
√
α
−1−

√
α ∈ Fq.

This would imply that 1−α√
α
∈ Fq, therefore

√
α ∈ Fq since α 6= 1 and α ∈ Fq. The third

possibility is excluded since SL512(q2) cannot be injected inside SU512(q). We can then conclude
that ρ512a(AE7) ' SU512(q).

Assume now that Fq = Fp(α) 6= Fp(α+ α−1). Then X2 − (α+ α−1)X + 1 is a Fp(α+ α−1)-
irreducible polynomial of degree 2, andFq = Fp(α+α−1)/(X2− (α+α−1)X+1) is an extension
of degree 2. There is a unique automorphism ε of degree 2 of Fq. It fixes Fp(α+α−1) pointwise
and ε(α) = α−1. We can then consider the extension Fp(

√
α) of Fp(α). We have ε(

√
α)2 =

ε(α) = ε(α) = α−1, therefore ε(
√
α) ∈ {−

√
α
−1
,
√
α
−1}. It follows that ε2(

√
α) =

√
α which

implies that
√
α ∈ Fq, therefore Fp(α) = Fp(

√
α).

Let ρ be an irreducible representation of HE7,α of degree greater than 1. We have that ε◦ρ?
is an irreducible representation. Assume that the only representations of dimension nρ are ρ
and ρ?. We then have ε ◦ ρ? ' ρ or ε ◦ ρ? ' ρ?. The set of eigenvalues of ρS1 is {α,−1}.
In the second case we would have ε(tρ(Si)−1) conjugate to tρ(Si)−1, therefore {ε(−1, ε(α−1)} =
{−1, α} = {−1, α−1}, therefore α2 = 1 which contradicts our assumptions. It follows that
ρ ' ε ◦ ρ?, and Lemma 3.2.5 gives ρ(AE7) ⊂ SUnρ(q

1
2 ). We can then apply the same reasoning

as bove to conclude that ρ(AE7) ' SUnρ(q
1
2 ).

It only remains to consider the representations of dimension 21, 35, 105, 189, 210 and 280.
By Proposition 7.1.3, we only need to check that the restrictions to HE6,α are different for the
other representations of the same dimension. This is true by Table 7.4.

Theorem 7.2.1. Assume Fq = Fp(
√
α) = Fp(α + α−1). Then the morphism from AE7 to

H?
E7,α '

∏
ρ irr

GLnρ(q) factorizes through the surjective morphism

Φ : AE7 → SL7(q)× SL15(q)× SL21(q)2 × SL27(q)× SL35(q)2 × SL56(q)× SL70(q)× SL84(q)

×SL105(q)3 × SL120(q)× SL168(q)× SL189(q)3 × SL210(q)2 × SL216(q)× SL280(q)2

×SL315(q)× SL336(q)× SL378(q)× SL405(q)× SL420(q)× SL512(q).
Assume Fp(

√
α) 6= Fq = Fp(α) = Fp(α + α−1). Then the morphism from AE7 to H?

E7,α '∏
ρ irr

GLnρ(q) factorizes through the surjective morphism

Φ : AE7 → SL7(q)× SL15(q)× SL21(q)2 × SL27(q)× SL35(q)2 × SL56(q)× SL70(q)× SL84(q)

×SL105(q)3 × SL120(q)× SL168(q)× SL189(q)3 × SL210(q)2 × SL216(q)× SL280(q)2

×SL315(q)× SL336(q)× SL378(q)× SL405(q)× SL420(q)× SU512(q).
Assume Fq = Fp(α) 6= Fp(α + α−1). Then the morphism from AE7 to

H?
E7,α '

∏
ρ irr

GLnρ(q) factorizes through the surjective morphism
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Φ : AE7 → SU7(q
1
2 )×SU15(q

1
2 )×SU21(q

1
2 )2×SU27(q

1
2 )×SU35(q

1
2 )2×SU56(q

1
2 )×SU70(q

1
2 )×SU84(q

1
2 )

×SU105(q
1
2 )3 × SU120(q

1
2 )× SU168(q

1
2 )× SU189(q

1
2 )3 × SU210(q

1
2 )2 × SU216(q

1
2 )× SU280(q

1
2 )2

×SU315(q
1
2 )× SU336(q

1
2 )× SU378(q

1
2 )× SU405(q

1
2 )× SU420(q

1
2 )× SU512(q

1
2 ).

Proof. The proof of this theorem is very similar to the proof of Theorem 7.1.1.
By [36], AE7 is perfect. We have by Goursat’s Lemma 3.3.1 that the morphism is surjective

unless there exists two different representations ρ1 and ρ2 in the decomposition such that there
exists a field automorphism Ψ verifying Ψ◦ρ1|AE6

' ρ2|AE6
. By Proposition 2.1.2, we have that

Ψ(α + α−1) = α + α−1. This shows that Ψ must be trivial over Fp(α + α−1). It follows by
the previous propositions that there are no such representations in the decompositions and the
proof is concluded.

7.3 Type E8

Let p be a prime different from 2, 3 and 5 and α ∈ Fp of order not dividing 14, 18, 20, 24 and
30. We write Fq = Fp(α). There are 112 irreducible representations of HE8,α, 18 of them are
self-dual. For each self-dual representation, we have found a self dual-W-graph [17]. Using the
2-coloring of those graphs, we have that all of the associated bilinear forms are symmetric. The
highest dimensional representation is of dimension 7168.
Definition 7.3.1. The Iwahori-Hecke algebra HE8,α of type E8 is the Fq-algebra generated by
S1, S2, S3, S4, S5, S6, S7, S8 and the following relations

1. ∀i ∈ {1, 2, 3, 4, 5, 6, 7, 8}, (Si − α)(Si + 1) = 0.

2. S1S3S1 = S3S1S3.

3. ∀i ∈ {2, 4, 5, 6, 7, 8}, S1Si = SiS1.

4. S2S4S2 = S4S2S4.

5. ∀i ∈ {3, 5, 6, 7, 8}, S2Si = SiS2.

6. ∀i ∈ {3, 4, 5, 6, 7}, SiSi+1Si = Si+1SiSi+1.

7. ∀i ∈ {5, 6, 7, 8}, S3Si = SiS3.

8. ∀i ∈ {6, 7, 8}, S4Si = SiS4. For σ in the Coxeter group E8, if σ = si1 . . . sik is a reduced
expression we set Tσ = Si1 . . . Sik .

This means we consider E8 as in the CHEVIE package of GAP3 [19] with the following
Dynkin diagram

S1 S3 S4

S2

S5 S6 S7 S8
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Proposition 7.3.1. Under our assumptions on p and α, HE8,α is split semisimple, the repre-
sentations afforded by the W -graphs are irreducible and pairwise non-isomorphic over Fq. The
restrictions of the irreducible representations of HE8,α to HE7,α are the same as in the generic
case.
Proof. We will apply Proposition 2.2.4. Let A = Z[

√
u
±1] and F = Q(

√
u). We have a

symetrizing trace defined by τ(T0) = 1 and τ(Tσ) = 0 for all σ ∈ E8 \ {1E8}. By [20],
HE8,u is then a free symmetric F -algebra of rank 696729600. By [7] V.3. Corollary 1, A is
integrally closed. Let θ be the ring homomorphism from A to L = Fq defined by θ(u) =
α and θ(k) = k. We know FH is split. The basis formed by the elements Tσ, σ ∈ E8
satisfies the conditions of Proposition 2.2.4. We work with the E8-graphs implemented in
CHEVIE [19] for the non-self dual E8-graphs. For the self-dual ones, we use the new ones we
found [17] which we denote by ρ̃ if ρ is the initial representation, they verify the properties
of Theorem 6.2 and they all verify ω(ex1)ω(exn) = −1 for any 2-coloring ω. For the 4536-
dimensional representation, we need to define two different E8-graphs over Q(

√
u) because

the bilinear form is different for p = 11, therefore we work with the one in CHEVIE. Going
through the weights of the E8-graphs in CHEVIE [19] and [17], we see that most of the E8-
graphs considered remain connected since the weights of the E8-graphs which do not belong to
{2240x, 2240′x, 4200y, 4200′y, 4̃480y, 5̃670y, 7̃168w} belong to the set composed of −24, −16, −10,
−8, −20/3, −6, −5, −4, −10/3, −3, −8/3, −5/2, −2, −5/3, −3/2, −4/3, −5/4, −1, −8/9,
−5/6, −3/4, −2/3, −5/8, −3/5, −1/2, −5/12, −2/5, −3/8, −1/3, −1/4, −1/8, 1/9, 1/4, 1/3,
3/8, 2/5, 1/2, 5/8, 2/3, 3/4, 5/6, 8/9, 1, 4/3, 3/2, 5/3, 2, 5/2, 8/3, 3, 10/3, 4, 5, 6, 8.

We now consider the remaining E8-graphs separately. Consider first 2240x. We have four
weighted edges which vanish when p = 7 and none otherwise. Using CHEVIE [19], when p = 7,
the edges 1572 → 12, 2183 → 1, 2229 → 1 and 2229 → 121 all vanish, therefore we need to
prove the E8-graph remains connected when those edges vanish. The edge 1572 → 12 can be
replaced by the path 1572→ 24→ 100→ 12. The edge 2183→ 1 can be replaced by the path
2183 → 7 → 627 → 1. The edge 2229 → 1 can be replaced by 2229 → 22 → 59 → 1. The
edge 2229→ 121 can be replaced by the path 2229→ 2230→ 2234→ 121. This proves 2240x
remains connected, this is true as well for 2240′x because it is its dual E8-graph.

Consider now 4200y. When p 6= 7, none of the weights vanish, therefore all the edges
remain. For p = 7, the edges 2700 → 20, 3465 → 1, 3465 → 2, 4075 → 894, 4172 → 1,
4172 → 399, 4190 → 2, 4190 → 12 and 4190 → 399 are the only ones disappearing. The edge
2700 → 20 can be replaced by the path 2700 → 563 → 630 → 20. The edge 3465 → 1 can
be replaced by the path 3465 → 103 → 119 → 1. The edge 3465 → 2 can be replaced by the
path 3465 → 217 → 287 → 2. The edge 4075 → 894 can be replaced by the path 4075 →
908→ 2900→ 894. The edge 4172→ 1 can be replaced by the path 4172→ 141→ 178→ 1.
The edge 4172 → 399 can be replaced by the path 4172 → 432 → 2150 → 399. The edge
4190 → 2 can be replaced by the path 4190 → 68 → 197 → 2. The edge 4190 → 12 can be
replaced by the path 4190 → 31 → 136 → 12. The edge 4190 → 399 can be replaced by the
path 4190→ 385→ 20→ 399. This proves 4200y and 4200′y remain connected.

Consider now 4̃480y. When p /∈ {7, 11}, none of the weights vanish, therefore all the edges
remain and the specialization is still connected. We give the proof of the connectedness for
p ∈ {7, 11} in subsection 10.6.1 of the Appendix. The information is obtained using [17].

Consider now 5̃670y. When p 6= 7, none of the weights vanish, therefore all the edges remain.
We give the proof of the connectedness for p = 7 in subsection 10.6.2 of the Appendix.
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Consider now 7̃168w. When p 6= 7, none of the weights vanish, therefore the E8-graph
remains connected. We give the proof of the connectedness for p = 7 in subsection 10.6.3 of
the Appendix.

It now only remains to check that the Schur elements associated to the specialized rep-
resentations are in B and do not vanish under θ with B as in Proposition 2.2.4. The Schur
elements are given in Tables 7.5, 7.6 and 7.7. They were obtained using Proposition 9.3.6 and
Table E.7 of [20]. For a pair (ρ, ρ?) of representations, we only give the Schur element of one
of the representations since the other is obtained by applying the involution

√
u 7→

√
u
−1. The

conditions on α and p imply that the Schur elements verify the right conditions and the proof
is concluded.

The restriction table from HE8,α to its subalgebra HE7,α generated by S1, S2, S3, S4, S5, S6
and S7 which is naturally isomorphic to the Iwahori-Hecke of type E7 with parameter α is then
given by Tables 7.8 and 7.9. It is obtained using the CHEVIE package of GAP3 [19]. They
correspond in the generic case to the induction/restriction tables of the corresponding Coxeter
groups.

Proposition 7.3.2. The restrictions to AE8 of the representations afforded by those E8-graphs
are absolutely irreducible and the representations of dimension greater than 1 are pairwise non-
isomorphic.

Proof. As in [12] Lemma 3.4, we only need to prove that AE8 is generated by AE7 and AE8 .
This true because s8 = s8s

−1
1 s1, s8s

−1
1 ∈ AE7 and s1 ∈ AE7 .

We now prove the second part of the statement. Let ρ1 and ρ2 be two irreducible representa-
tions of HE8,α such that ρ1|AE8

' ρ1|AE8
. By Lemma 3.2.3,there exists a character ξ : AE8 7→ F?q

such that ρ1 ' ρ2 ⊗ ξ. This means there exists x ∈ Fq such that for all i ∈ [[1, 8]], ρ1(Si) is
conjugate to xρ2(Si). We know for any representation ρ of dimension greater than 1, the set
of eigenvalues of ρ is equal to {α,−1}. This implies that {α,−1} = {xα,−x}. We then have
x = 1 or (x = −α and −α2 = −1). It follows that x = 1 and ρ1 ' ρ2.

We now prove a lemma computing the normal closure of AE7 inside AE8 as we did in the
other types.

Lemma 7.3.1. The normal closure � AE7 �AE8
of AE7 inside AE8 is equal to AE8, where we

identify AE7 as a subgroup of AE8 using the natural isomorphism from AE7 to < Si, i ∈ [[1, 7]] >.

Proof. By [36], we have AE8 =< S1S3S
−1
1 , S4S

−1
3 , SiS

−1
1 , i ∈ [[2, 8]] > and

AE7 =< S1S3S
−1
1 , S4S

−1
3 , SiS

−1
1 , i ∈ [[2, 7]] > .

This proves we only need to show that S8S
−1
1 ∈� AE7 �AE8

. We have S8S7S8 = S7S8S7,
therefore S8 = S7S8S7(S7S8)−1 and

S8S
−1
1 = S7S8S7S

−1
1 (S7S8)−1 = ((S7S

−1
1 )(S8S

−1
1 ))(S7S

−1
1 )((S7S

−1
1 )(S8S

−1
1 ))−1.

This concludes the proof.
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1. 1x : (Φ8
2Φ4

3Φ4
4Φ2

5Φ4
6Φ7Φ2

8Φ9Φ2
10Φ2

12Φ14Φ15Φ18Φ20Φ24Φ30)(u).

2. 8z : 1
u
(Φ8

2Φ4
3Φ2

4Φ2
5Φ4

6Φ7Φ8Φ9Φ2
10Φ12Φ14Φ15Φ18Φ30)(u).

3. 28x : 2
u3 (Φ8

2Φ4
3Φ2

4Φ2
5Φ4

6Φ8Φ9Φ2
10Φ12Φ30)(u).

4. 35x : 1
u2 (Φ8

2Φ4
3Φ4

4Φ5Φ4
6Φ2

8Φ9Φ10Φ2
12Φ18Φ24)(u).

5. 50x : 2
u4 (Φ8

2Φ4
3Φ4

4Φ4
6Φ7Φ9Φ10Φ2

12)(u).

6. 56z : 6
u7 (Φ8

2Φ4
3Φ2

4Φ2
5Φ4

6Φ30)(u).

7. 84x : 2
u3 (Φ8

2Φ4
3Φ2

4Φ2
5Φ4

6Φ8Φ2
10Φ12Φ15Φ18)(u).

8. 112z : 2
u3 (Φ4

2Φ4
3Φ4

4Φ2
5Φ2

6Φ8Φ9Φ2
12Φ15Φ20)(u).

9. 160z : 2
u4 (Φ4

2Φ4
3Φ2

4Φ5Φ2
6Φ7Φ2

8Φ9Φ12Φ24)(u).

10. 175x : 3
u8 (Φ8

2Φ4
3Φ4

4Φ4
6Φ2

8)(u).

11. 210x : 2
u4 (Φ8

2Φ4
3Φ4

4Φ5Φ4
6Φ2

12Φ14Φ18)(u).

12. 300x : 2
u6 (Φ8

2Φ4
3Φ2

4Φ4
6Φ7Φ8Φ12Φ18)(u).

13. 350x : 6
u8 (Φ8

2Φ4
3Φ4

4Φ4
6Φ24)(u).

14. 400z : 2
u6 (Φ4

2Φ4
3Φ4

4Φ2
6Φ7Φ8Φ9Φ2

12)(u).

15. 448z : 3
u7 (Φ8

2Φ4
3Φ2

5Φ4
6Φ2

10Φ12)(u).

16. 525x : 1
u12 (Φ8

2Φ4
3Φ4

4Φ4
6Φ2

8Φ2
12)(u).

17. 560z : 1
u5 (Φ8

2Φ4
3Φ2

4Φ5Φ4
6Φ9Φ10Φ12Φ18)(u).

18. 567x : 1
u6 (Φ8

2Φ3Φ4
4Φ2

5Φ6Φ2
8Φ2

10Φ20)(u).

19. 700x : 2
u6 (Φ8

2Φ4
3Φ2

4Φ4
6Φ8Φ9Φ12Φ14)(u).

20. 700xx : (Φ8
2Φ4

3Φ2
4Φ8Φ9)(u).

21. 840x : 2
u12 (Φ8

2Φ4
3Φ2

4Φ5Φ4
6Φ12)(u).

22. 840z : 2
u10 (Φ8

2Φ4
3Φ2

4Φ5Φ4
6Φ18)(u).

23. 972x : 2
u10 (Φ8

2Φ2
4Φ2

5Φ6Φ7Φ8Φ2
10)(u).

24. 1008z : 3
u7 (Φ8

2Φ3Φ2
4Φ2

5Φ6Φ9Φ2
10Φ18)(u).

25. 1050x : 2
u8 (Φ8

2Φ4
3Φ4

4Φ4
6Φ2

12)(u).

26. 1296z : 2
u10 (Φ4

2Φ3Φ4
4Φ2

5Φ7Φ8Φ20)(u).

27. 1344x : 2
u7 (Φ4

2Φ4
3Φ2

4Φ2
5Φ2

6Φ8Φ12Φ15)(u).

Table 7.5: Schur elements for non self-dual representations in type E8
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1. 1400x : 6
u8 (Φ8

2Φ4
3Φ4

6Φ2
8Φ2

12)(u).

2. 1400z : 6
u7 (Φ8

2Φ4
3Φ2

4Φ4
6Φ2

10Φ15)(u).

3. 1400zz : 2
u10 (Φ8

2Φ4
3Φ2

4Φ4
6Φ9Φ10)(u).

4. 1575x : 3
u8 (Φ8

2Φ3Φ4
4Φ6Φ2

8Φ9Φ18)(u).

5. 2100x : 2
u13 (Φ8

2Φ4
3Φ2

4Φ4
6Φ8Φ18)(u).

6. 2240x : 2
u10 (Φ4

2Φ4
3Φ2

4Φ5Φ2
6Φ8Φ9Φ12)(u).

7. 2268x : 2
u10 (Φ8

2Φ3Φ2
4Φ2

5Φ8Φ2
10Φ14)(u).

8. 2400z : 2
u15 (Φ8

2Φ4
3Φ4

6Φ7Φ18)(u).

9. 2800z : 2
u13 (Φ4

2Φ4
3Φ4

4Φ8Φ9Φ2
12)(u).

10. 2835x : 1
u14 (Φ8

2Φ3Φ4
4Φ5Φ6Φ2

8Φ10)(u).

11. 3200x : 2
u15 (Φ4

2Φ4
3Φ2

4Φ2
6Φ7Φ9Φ12)(u).

12. 3240z : 1
u9 (Φ8

2Φ3Φ2
4Φ5Φ6Φ7Φ8Φ10Φ14)(u).

13. 3360z : 2
u12 (Φ4

2Φ4
3Φ4

4Φ5Φ2
6Φ2

12)(u).

14. 4096x : 2
u11 (Φ2Φ4

3Φ2
5Φ7Φ9Φ15)(u).

15. 4096z : 2
u11 (Φ2Φ4

3Φ2
5Φ7Φ9Φ15)(u).

16. 4200x : 2
u12 (Φ8

2Φ4
3Φ2

4Φ4
6Φ10Φ12)(u).

17. 4200z : 1
u15 (Φ8

2Φ4
3Φ2

4Φ4
6Φ8Φ12)(u).

18. 4536z : 1
u13 (Φ8

2Φ3Φ2
4Φ2

5Φ6Φ8Φ2
10)(u).

19. 5600z : 2
u15 (Φ8

2Φ4
3Φ4

6Φ9Φ14)(u).

20. 6075x : 1
u14 (Φ8

2Φ4
4Φ7Φ2

8Φ14)(u).

Table 7.6: Schur elements for non self-dual representations in type E8
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1. 70y : 30
u16 (Φ8

2Φ4
3Φ4

4Φ30)(u).

2. 168y : 8
u16 (Φ8

2Φ4
3Φ2

5Φ4
6)(u).

3. 420y : 5
u16 (Φ8

2Φ4
3Φ4

4Φ4
6)(u).

4. 448w : 12
u16 (Φ4

2Φ4
3Φ2

4Φ2
5Φ24)(u).

5. 1134y : 6
u16 (Φ8

2Φ4
4Φ2

5Φ6Φ18)(u).

6. 1344w : 4
u16 (Φ4

2Φ4
3Φ2

4Φ2
5Φ2

6Φ12)(u).

7. 1400y : 24
u16 (Φ8

2Φ4
3Φ2

10Φ2
12)(u).

8. 1680y : 20
u16 (Φ8

2Φ4
3Φ4

6Φ20)(u).

9. 2016w : 6
u16 (Φ4

2Φ3Φ2
4Φ2

5Φ2
8Φ9)(u).

10. 2100y : 1
u20 (Φ8

2Φ4
3Φ4

4Φ4
6Φ2

12)(u).

11. 2688y : 8
u16 (Φ4

3Φ4
4Φ2

5Φ2
12)(u).

12. 3150y : 6
u16 (Φ8

2Φ3Φ4
4Φ9Φ2

10)(u).

13. 4200y : 8
u16 (Φ8

2Φ4
3Φ4

6Φ2
10)(u).

14. 4480y : 120
u16 (Φ4

3Φ4
4Φ4

6Φ9Φ2
10)(u).

15. 4536y : 24
u16 (Φ8

2Φ2
5Φ4

6Φ2
12)(u).

16. 5600w : 6
u16 (Φ4

2Φ4
3Φ2

4Φ2
8Φ15)(u).

17. 5670y : 30
u16 (Φ8

2Φ4
4Φ4

6Φ15)(u).

18. 7168w : 12
u16 (Φ4

3Φ2
5Φ2

6Φ2
8Φ12)(u).

Table 7.7: Schur elements for self-dual representations in type E8
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1x = 1a
8z = 1a + 7′a
28x = 7′a + 21a
35x = 1a + 7′a + 27a
50x = 15′a + 35b
56z = 21a + 35′a
70y = 35a + 35′a
84x = 1a + 21′b + 27a + 35b
112z = 1a + 7′a + 21′b + 27a + 56′a
160z = 7′a + 21a + 27a + 105′a
168y = 84a + 84′a
175x = 70′a + 105b
210x = 7′a + 27a + 56′a + 120a
300x = 27a + 105′a + 168a
350x = 21a + 35′a + 105′a + 189a
400z = 15′a + 35b + 56′a + 105b + 189′b
420y = 210b + 210′b
448w = 35a + 35′a + 189a + 189′a
448z = 21′b + 70′a + 168a + 189′b
525x = 21′b + 105c + 189′c + 210a
560z = 7′a + 21′a + 27a + 35b + 56′a + 105′a + 120a + 189′b
567x = 7′a + 21a + 21′b + 27a + 56′a + 105′a + 120a + 210a
700x = 27a + 35b + 56′a + 105b + 120a + 168a + 189′b
700xx = 15′a + 84′a + 105c + 216′a + 280b
840x = 84a + 168a + 210b + 378′a
840z = 105′a + 168a + 189a + 378′a
972x = 35b + 84a + 168a + 189′c + 216′a + 280b
1008z = 21a + 27a + 56′a + 105′a + 120a + 189′c + 210a + 280′a
1050x = 15′a + 35b + 105b + 189′b + 210a + 216′a + 280b
1134y = 189a + 189′a + 378a + 378′a
1296z = 21a + 35′a + 105′a + 120a + 189a + 210a + 280′a + 336′a
1344x = 21′b + 27a + 35b + 105′a + 120a + 168a + 189′b + 189′c + 210a + 280b
1344w = 84a + 84′a + 210b + 210′b + 378a + 378′a
1400x = 56′a + 105b + 120a + 189′b + 210a + 315′a + 405a
1400y = 280a + 280′a + 420a + 420′a
1400z = 21′a + 27a + 56′a + 105′a + 120a + 168a + 189′b + 189′c + 210a + 315′a
1400zz = 15′a + 70′a + 105b + 189′b + 210b + 216′a + 280b + 315′a
1575x = 21a + 56′a + 105′a + 120a + 189a + 189′b + 210a + 280′a + 405a
1680y = 35a + 35′a + 189a + 189′a + 280a + 280′a + 336a + 336′a
2016w = 70a + 70′a + 210b + 210′b + 216a + 216′a + 512a + 512′a
2100x = 35′a + 105′a + 189a + 189′c + 210a + 280′a + 336a + 336′a + 420a
2100y = 105c + 105′c + 189c + 189′c + 336a + 336′a + 420a + 420′a

Table 7.8: Restriction table from HE8,α to HE7,α.
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2240x = 70′a + 105b + 120a + 168a + 189′b + 210b + 280b + 315′a + 378′a + 405a
2268x = 56′a + 105′a + 120a + 168a + 189′c + 210a + 280′a + 315′a + 405a + 420a
2400z = 35′a + 189a + 189′a + 210a + 280′a + 336a + 336′a + 405a + 420′a
2688y = 216a + 216′a + 280b + 280′b + 336a + 336′a + 512a + 512′a
2800z = 105c + 120a + 189′c + 210a + 280′a + 315′a + 336′a + 405a + 420a + 420′a
2835x = 70′a + 105b + 210b + 210′b + 216′a + 280b + 315′a + 405a + 512a + 512′a
3150y = 70a + 70′a + 210b + 210′b + 378a + 378′a + 405a + 405′a + 512a + 512′a
3200x = 84a + 105′c + 168a + 189′c + 216a + 280b + 336′a + 378′a + 420a + 512a + 512′a
3240z = 35b + 56′a + 105′a + 105b + 120a + 168a + 2× 189′b + 189′c + 210a

+216′a + 280′a + 280b + 315′a + 378′a + 405a
3360z = 105b + 189′b + 210a + 216′a + 280′a + 280b + 315′a + 336′a + 405a + 512a + 512′a
4096x = 105′a + 120a + 168a + 189a + 189′b + 189′c + 210a

+280′a + 280b + 315′a + 336′a + 378′a + 405a + 420a + 512a
4096z = 105′a + 120a + 168a + 189a + 189′b + 189′c + 210a

+280′a + 280b + 315′a + 336′a + 378′a + 405a + 420a + 512′a
4200x = 105b + 168a + 189′b + 210a + 210b + 216′a + 280′a + 280b + 315′a + 378′a + 405a

+420a + 512a + 512′a
4200y = 84a + 84′a + 210b + 210′b + 216a + 216′a + 280b + 280′b + 378a + 378′a

+420a + 420′a + 512a + 512′a
4200z = 84′a + 105b + 105c + 210a + 216′a + 280′a + 280b + 315′a + 378a + 378′a

+405a + 420′a + 512a + 512′a
4480y = 210b + 210′b + 315a + 315′a + 378a + 378′a + 405a + 405′a + 420a + 420′a + 512a + 512′a
4536y = 280a + 280′a + 315a + 315′a + 336a + 336′a + 405a + 405′a + 420a + 420′a + 512a + 512′a
4536z = 70′a + 84a + 168a + 189′b + 189′c + 210b + 210′b + 216′a + 280b + 315′a

+2× 378′a + 405a + 420a + 512a + 512′a
5600w = 189a + 189′a + 280a + 280′a + 280b + 280′b + 336a + 336′a + 378a + 378′a

+405a + 405′a + 420a + 420′a + 512a + 512′a
5600z = 105′c + 168a + 189a + 189′c + 210a + 280′a + 315′a + 336a + 336′a + 378′a + 405a + 405′a

+2× 420a + 420′a + 512a + 512′a
5670y = 189a + 189′a + 280a + 280′a + 315a + 315′a + 336a + 336′a + 378a + 378′a

+405a + 405′a + 420a + 420′a + 512a + 512′a
6075x = 105c + 189a + 189′b + 189′c + 210a + 216′a + 280′a + 280b + 315′a + 336a + 336′a

+378a + 378′a + 2× 405a + 420a + 420′a + 512a + 512′a
7168w = 210b + 210′b + 216a + 216′a + 280b + 280′b + 315a + 315′a + 336a + 336′a + 378a + 378′a

+405a + 405′a + 420a + 420′a + 2× 512a + 2× 512′a

Table 7.9: Restriction table from HE8,α to HE7,α
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We now determine the image of AE8 inside each given representation. Note that the new
self-dual W -graphs we found all verify ω(e1)ω(en) = 1 for any 2-coloring ω, therefore the
bilinear forms appearing are self-dual. For the self-dual representation of dimension 4536, since
we do not work with the new W -graph, we use the bilinear form which is availiable at [17] and
see that it is symmetric. The E8-graphs are all 2-colorable except for 4096x, 4096′x, 4096z and
4096′z.

Proposition 7.3.3. Assume Fp(
√
α) 6= Fq = Fp(α) = Fp(α+α−1). Let ρ be a representation of

dimension nρ associated to a W -graph. If ρ is not self-dual then ρ(AE8) ' SLnρ(q) if nρ 6= 4096
and ρ(AE8) =' SLnρ(q2) if nρ = 4096. If ρ is self-dual then ρ(AE8) ' Ω+

nρ(q).
Assume Fq = Fp(

√
α) = Fp(α) = Fp(α + α−1). Let ρ be a representation of dimension nρ

associated to a W -graph. If ρ is not self-dual then ρ(AE8) ' SLnρ(q). If ρ is self-dual then
ρ(AE8) ' Ω+

nρ(q).
Assume Fq = Fp(α) 6= Fp(α+α−1). Let ρ be a representation of dimension nρ associated to a

W -graph. If ρ is not self-dual then ρ(AE8) ' SUnρ(q
1
2 ). If ρ is self-dual then ρ(AE8) ' Ω+

nρ(q
1
2 ).

Proof. Assume first Fq = Fp(α) = Fp(α + α−1). Let ρ be a non-self-dual representation of
dimension nρ associated to a W -graph. Assume first that the corresponding E8-graph is 2-
colorable. We can then consider the representation is defined over Fq. If nρ ≥ 28 then we can
apply Theorem 2.3.2 since by Tables 7.8 and 7.9 and Proposition 7.2.3, ρ(AE7) contains a natural
SL7(q). It follows that ρ(AE8) is a classical group over Fq. We know that no non-degenerate
bilinear form is preserved by this group because the representation is not self-dual. It cannot
be unitary because it contains a natural SL7(q). We can then conclude that ρ(AE8) = SLnρ(q).
We know ρ8z(AE8) is an irreducible group normally generated by ρ8z(AE7). Since ρ8z(AE7)
is a natural SL7(q), we have that ρ8z(AE8) is an irreducible subgroup of GL8(q) generated
by transvections, therefore by Theorem 2.3.4, ρ8z(AE8) is isormorphic to SL8(q′), SU8(q′ 12 ) or
SP8(q′) for some q′ dividing q. It contains a natural SL7(q), therefore q′ = q and ρ8z(AE8) =
SL8(q). Assume now that the corresponding W -graph is not 2-colorable. The representations
we have to consider are then the representations of dimension 4096. If Fq = Fp(

√
α) = Fp(α)

then we can apply the previous reasoning. If Fp(
√
α) 6= Fq = Fp(α) = Fp(α+α−1) then X2−α

is an irreducible polynomial over Fq. We then have Fq2 = Fp(
√
α) = Fq/(X2 − α) and there is

a unique field automorphism Ψ of degree 2 of Fq2 , ot fixes Fq pointiwise and Ψ(
√
α) = −

√
α.

By Proposition 7.2.3, for any representation ϕ of dimension different from 512 of AE7 , we have
Ψ ◦ ϕ ' ϕ. We also have Ψ ◦ ρ512a ' ρ512′a . By Table 7.9, we have that Ψ ◦ ρ4096x is not
isomorphic to ρ4096x or ρ4096′z because otherwise we would have Ψ ◦ ρ512a ' ρ512a , therefore
ρ512a ' ρ512′a . We also have that Ψ ◦ ρ4096x is not isomorphic ρ4096′x because otherwise, we
would have Ψ ◦ ρ420a ◦ ρ420′a , therefore ρ420a ' ρ420′a . It follows that Ψ ◦ ρ4096x ' ρ4096z . We
know by the above reasonning that ρ4096x(AE8) is a classical group over Fq′ for some q′ dividing
q2. Furthermore, q divides q′ since it contains a natural SL420(q). It does not preserve any
non-degenerate bilinear form since ρ is not self-dual. We cannot have ρ4096x(AE8) ' SL4096(q)
because Ψ ◦ ρ4096x is not isomorphic to ρ4096x . We also cannot have ρ4096x(AE8) ' SU4096(q)
because ρ4096x is not isomorphic to Ψ ◦ ρ4096′x . It follows that ρ4096x(AE8) ' SL4096(q2). We get
the same result for the remaining representations of dimension 4096 using ρ4096′x ' ρ?4096x and
ρ4096z ' Ψ ◦ ρ4096x .

Assume now that Fq = Fp(α) 6= Fp(α + α−1). Then the same argument as in the proof of
Proposition 7.2.3 gives Fq = Fp(

√
α). Using the same reasoning as above, we only need to prove
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that for any representation ρ, we have ε ◦ ρ ' ρ, where ε is the unique field automorphism of
order 2 of Fq. The polynomial X2− (α+α−1)X+ 1 is an irreducible Fp(α+α−1)-polynomial of
degree 2, therefore we have ε(α) = α−1. We know by Proposition 7.2.3 that ε ◦ ϕ? ' ϕ for any
representation ϕ of AE7 . Finally, by Table 7.8 and Table 7.9, no pair of distinct representations
have the same restriction to AE7 . The result follows.

We can now state the main theorem for type E8.

Theorem 7.3.1. We let A be a set of representatives of the irreducible 2-colorable non self-
dual representations for the equivalence relation ρ ≈ ϕ if ρ = ϕ′ and B be the set of irreducible
self-dual representations.

Assume Fp(
√
α) 6= Fq = Fp(α) = Fp(α + α−1). Then the morphism from AE8 to H?

E8,α '∏
ρ irr

GLnρ(q) factorizes through the surjective morphism

Φ : AE8 →
∏
ρ∈A

SLnρ(q)× SL4096(q2)×
∏
ρ∈B

Ω+
nρ(q).

Assume Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1). Then the morphism from AE8 to H?

E8,α '∏
ρ irr

GLnρ(q) factorizes through the surjective morphism

Φ : AE8 →
∏
ρ∈A

SLnρ(q)× SL4096(q)2 ×
∏
ρ∈B

Ω+
nρ(q).

Assume Fq = Fp(α) 6= Fp(α+ α−1). Then the morphism from AE8 to H?
E8,α '

∏
ρ irr

GLnρ(q)

factorizes through the surjective morphism

Φ : AE8 →
∏
ρ∈A

SUnρ(q
1
2 )× SU4096(q 1

2 )×
∏
ρ∈B

Ω+
nρ(q

1
2 ).

Proof. By [36], AE8 is perfect. We can then apply exctly the same arguments as in the proof
of of Proposition 7.1.1.
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Chapter 8

Type H

In this section, we determine the images of the Artin groups in types H3 and H4. The main
difference with the other types is that in the generic case, some of the irreducible representations
are defined over Q[

√
5](
√
u) but not Q(

√
u). We therefore need arguments as in the dihedral

cases to understand the field extensions. Lemma 8.1.2 summarizes the information we need
about the field extensions. The proof is then similar to the proof in the other types. We
first determine the image inside each irreducible representation and then recover the full image
using Goursat’s Lemma. In order to determine the image inside each representation, we will
use inductive arguments using the image in type I2(5) for type H3 and the image in type
H3 for type H4. The main results in this section are in Theorems 8.1.1 and 8.5.1. The 8-
dimensional irreducible representations in type H4 use additional assumptions on the order
of α which might not be necessaray. The proof is highly computational, therefore it might
be complicated to ommit those assumptions on the order of α. The image in the product of
those representations gives rise to a nice description of the Spin+

8 (q) group as can be seen in
Proposition 8.4.3. This section uses many results from chapter 6. We proved Conjecture 6.1 in
type H4 and the self-dual H4-graphs we obtained are available in section 10.2 of the Appendix
and at [17].

8.1 Type H3

Let p be a prime number, p /∈ {2, 5} and α ∈ (Fp)× such that the order of α does not divide
20 and does not belong to {1, 2, 3, 4, 5, 6, 10}. Let ξ ∈ Fp be a primitive fifth-root of unity. We
set Fq = Fp(α) and Fr = Fp(α, ξ + ξ−1).

Definition 8.1.1. The Iwahori-Hecke HH3,α is the Fq-algebra generated by the generators
S1, S2, S3 and the following relations :

1. ∀i ∈ {1, 2, 3}, (Si − α)(Si + 1) = 0.

2. S1S2S1S2S1 = S2S1S2S1S2,

3. S1S3 = S3S1,

4. S2S3S2 = S3S2S3. For σ in the Coxeter group H3, if σ = si1 . . . sik is a reduced expression
we set Tσ = Si1 . . . Sik .
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1r : (Φ3
2Φ3Φ5Φ6Φ10)(u).

3′s : 5 +
√

5
2

Φ3
2(u)Φ5(u)Φ10(u)
uΦ5,b(u)Φ10,b(u) .

3s′ : 5−
√

5
2

Φ3
2(u)Φ5(u)Φ10(u)
uΦ5,b(u)Φ10,b(u) .

5r : 1
u2 Φ3

2(u)Φ3(u)Φ6(u).

4r′ : 2
u3 Φ3(u)Φ5(u).

Table 8.1: Schur elements in type H3

Proposition 8.1.1. Under the conditions we assumed on α, the Iwahori-Hecke algebra is split
semi-simple and the models given by specialization of the W -graphs are irreducible.

Proof. We want to apply Proposition 2.2.4. Let A = Z[1+
√

5
2 ][
√
u
±1], B = Frac(A) and F =

Q[
√

5](
√
u). We have a symetrizing trace defined by τ(T0) = 1 and τ(Tσ) = 0 for all σ ∈

H3 \ {1H3}. HH3,u is then a free F -algebra of rank 120. A is an integrally closed integral
domain because Z[1+

√
5

2 ] is integrally closed (see [7] V.3. Corollary 1 and [39] Theorem 9.20.).
Let θ be the ring homomorphism from A to L = Fq defined by θ(1+

√
5

2 ) = ξ + ξ−1 + 1,
θ(u) = α and θ(k) = k. We know FH is split. The basis formed by the elements Tσ, σ ∈ H3
verifies the conditions of the Proposition 2.2.4.

All the W -graphs are connected and remain connected after we specialize the weights be-
cause none of them vanishes under θ. Indeed, if they were not connected then they would afford
reducible representations over Q(

√
5)(
√
u).

We now only need to check that the Schur elements associated to these irreducible repre-
sentations are in B and don’t vanish under θ. For n ∈ N, Φn is the n-th cyclotomic polynomial
and Φ5,a(u) = u2 + 1+

√
5

2 u + 1,Φ5,b(u) = u2 + 1−
√

5
2 u + 1,Φ10,a(u) = u2 − 1+

√
5

2 u + 1 and
Φ10,b(u) = u2 +

√
5−1
2 u + 1. If χ is an irreducible character then the character χ? associated

to the dual representation of χ has a Schur element cχ? = a(cχ), where a is the involution of
Q(
√

5)(
√
u) sending

√
u to

√
u
−1. We define the field automorphism of Q(

√
5), written x 7→ x

by
√

5−1
2 = −1−

√
5

2 and q = q for all q ∈ Q. The Schur elements are given in Table 8.1 (obtained
using Table E.2. of the Appendix and corollary 9.3.6 of [20])

Since α is of order not dividing 20 and different from 6 and p 6= 2, we only need to check
that θ(5+

√
5

2 ) 6= 0, θ(5−
√

5
2 ) 6= 0, α2 ± (ξ + ξ−1)α + 1 6= 0, α2 ± (ξ + ξ−1 + 1)α + 1 6= 0,

α2 ∓ (ξ2 + ξ−2)α + 1 6= 0.
We have θ(5+

√
5

2 ) = ξ + ξ−1 + 3 = −ξ2 − ξ−2 + 2 = −(ξ − ξ−1)2 6= 0 and θ(5−
√

5
2 ) =

−ξ − ξ−1 + 2 = −(ξ2 − ξ−2)2 6= 0.
We also have α2 + (ξ + ξ−1)α+ 1 = (α+ ξ)(α+ ξ−1) 6= 0 because α is of order not dividing

20. In the same way, α2− (ξ + ξ−1)α+ 1 = (α− ξ)(α− ξ−1) 6= 0. The last two inequalities are
shown in exactly the same way because the order of ξ is the same as the order of ξ2.

We now show a lemma on the Artin groups AH3 and AI2(5) which will be useful later on.
Lemma 8.1.1. We write AH3 =< t, s1, s2, ts1ts1t = s1ts1ts1, s1s2s1 = s2s1s2, ts2 = s2t > and
AI2(5) its subgroup generated by t and s1. It is naturally isomorphic to the Artin group of type
I2(5).
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Figure 8.1: W -graphs in type H3

The derived subgroup AH3 is equal to the normal closure of AI2(5) in AH3.

Proof. By [36], we know that AI2(5) is generated by s1t
−1, ts1t

−2 and t2s1t
−3 and that AH3 is

generated by s1t
−1, ts1t

−2, t2s1t
−3 and s2t

−1.
It is thus sufficient to show that s2t

−1 can be written as a product of conjugates of the
generators of AI2(5) or of their inverses. We have

s2t
−1 = s1s2s1s

−1
2 s−1

1 t−1 = s1(t−1t)s2s1s
−1
2 (t−2t2)s−1

1 t−1 = (s1t
−1)s2(ts1t

−2)s−1
2 (ts1t

−2)−1.

Proposition 8.1.2. The restrictions to AH3 of the representations of dimension greater than
1 afforded by those W -graphs are absolutely irreducible and pairwise non-isomorphic.

Proof. As in [12] Lemma 3.4, we only need to prove that AH3 is generated by AI2(5) and AH3 in
order to prove the absolute irreducibility. This is true because s3 = s3s

−1
1 s1 and s3s

−1
1 ∈ AH3

and s1 ∈ AI2(5).
Let ρ1 and ρ2 be irreducible representations afforded by H3-graphs. Assume ρ1|AH3

' ρ2|AH3
.

By Lemma 3.2.3, we have that there exists a character η such that ρ1 ' ρ2 ⊗ η. We have
AH3/AH3 =< S1 >' Z. It follows that there exists u ∈ Fp

? such that ρ1(S1) is conjugate
to uρ2(S1). The eigenvalues of ρ1(S1) and ρ2(S1) are −1 and α. It follows that {−1, α} =
{−u, uα}. We then have either u = 1 or (u = −α and α2 = 1). The latter contradicts our
assumptions on the order of α therefore u = 1 and η is the trivial morphism. It follows that
ρ1 ' ρ2.

The four W -graphs provided in [20] (see Figure 8.1, where λ = ξ + ξ−1 + 1) then determine
all the irreducible representations of the Iwahori-Hecke algebra over Fq up to taking the dual
W -graph or the algebraic conjugate by the involution x 7→ x.

Before determining the image of the Artin groups inside each representation, we show that
we cannot always have 1 ∼ 2 as in Lemma 5.1.1. Recall that 1 ∼ 2 if there exists a field
automorphism Φ of Fp(α, ξ + ξ−1) such that Φ(α+ α−1) = α+ α−1 and Φ(ξ + ξ−1) = ξ2 + ξ−2.

Lemma 8.1.2. We have 1 ∼ 2 as in Lemma 5.1.1 if and only if Fp(α, ξ + ξ−1) = Fp(α +
α−1, ξ + ξ−1).

If 1 ∼ 2 and Fp(α) = Fp(α + α−1) then [Fp(α, ξ + ξ−1) : Fp(α)] = 2 and Φ1,2(α) = α.
If 1 ∼ 2 and Fp(α) 6= Fp(α + α−1) then [Fp(α, ξ + ξ−1) : Fp(α)] = 1 and Φ1,2(α) = α−1.
If 1 � 2 then Fp(α, ξ + ξ−1) = Fp(α) 6= Fp(α + α−1).
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Fp(α, ξ + ξ−1)

Fp(α + α−1, ξ + ξ−1) Fp(α)

Fp(α + α−1)

Figure 8.2: Field extensions in types H3 and H4.1

Proof. The Hasse diagram representing the inclusions between fields in this case can be found
in Figure 8.2. Note that when 1 ∼ 2, we have Fp(α + α−1, ξ + ξ−1) 6= Fp(α + α−1).

Assume by contradiction that 1 ∼ 2 and L1 = Fp(α, ξ + ξ−1) 6= Fp(α + α−1, ξ + ξ−1) = L2.
Since 1 ∼ 2, we have L2 = Fp(α + α−1, ξ + ξ−1) 6= Fp(α + α−1) = L4, because otherwise, Φ1,2
would stabilize Fp(α+ α−1, ξ + ξ−1). It follows that [L1 : L2] = [L2 : L4] = 2 and [L1 : L4] = 4.
Let L3 = Fp(α). We have [L1 : L3] ≤ 2, [L3 : L4] ≤ 2 and 4 = [L1 : L4] = [L1 : L3][L3 : L4].
This implies that [L1 : L3] = [L3 : L4] = 2. By uniqueness of the subfield of degree 2 of L1, we
have L2 = L3. It follows that α ∈ L2 = Fp(α + α−1, ξ + ξ−1), therefore we have that L2 = L1
which is a contradiction.

Assume now that Fp(α + α−1, ξ + ξ−1) 6= Fp(α + α−1). We then have that there exists an
automorphism Φ of order 2 of Fq permuting the roots of X2 + X − 1. We have (ξ2 + ξ−2)2 +
ξ2 + ξ−2− 1 = ξ+ ξ−1 + 2 + ξ2 + ξ−2− 1 = 0 so Φ(ξ2 + ξ−2) = ξ+ ξ−1. This proves by definition
of ∼ that 1 ∼ 2

Assume now 1 ∼ 2 and Fp(α) = Fp(α+ α−1). We have that Φ1,2 stabilizes Fp(α+ α−1) and
α ∈ Fp(α + α−1, therefore we have that Φ1,2(α) = α.

Assume now 1 ∼ 2 and Fp(α) 6= Fp(α + α−1). Using the notations of the first part of the
proof, we here have that [L2 : L4] = [L3 : L4] = 2. This implies that the unique automorphism
of order 2 of L3 is Φ1,2 and X2 − (α + α−1)X + 1 is an irreducible polynomial of L4[X]. It
follows that Φ1,2(α) = α−1.

Assume 1 � 2. We then have Fp(α, ξ + ξ−1) 6= Fp(α + α−1, ξ + ξ−1). This implies that
α /∈ Fp(α + α−1, ξ + ξ−1). It follows that Fp(α) = Fp(α, ξ + ξ−1). We then have by the Hasse
diagram in Figure 8.2 that Fp(α) 6= Fp(α + α−1).

We now determine the image in each of those representations before determining the image
in the full Iwahori-Hecke algebra.

Proposition 8.1.3. If Fr = Fp(α, ξ + ξ−1) = Fp(α + α−1, ξ + ξ−1), then we have
ρ3′s(AH3) ' SL3(r) and ρ3′s(AH3) = SL3(r).

If Fr = Fp(α, ξ + ξ−1) 6= Fp(α + α−1, ξ + ξ−1), then we have ρ3′s(AH3) ' SU3(r 1
2 ) and

ρ3′s(AH3) ' SU3(r 1
2 ).

If 1 ∼ 2 and Fp(α) = Fp(α + α−1), then Φ1,2 ◦ ρ3′s|AH3
' ρ3′s|AH3

.
If 1 ∼ 2 and Fp(α) 6= Fp(α + α−1), then Φ1,2 ◦ ρ3′s|AH3

' ρ3s|AH3
.
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If Fp(α) = Fp(α + α−1), then r = q2.
If Fp(α) 6= Fp(α + α−1), then r = q.

Proof. First note that by Proposition 6.1 above and Proposition 4.1. of [12], we can see this
representation as a representation over Fq even if Fp(

√
α, ξ + ξ−1) 6= Fr = Fp(α, ξ + ξ−1).

Let G̃ =< α−1ρ3′s(S1), α−1ρ3′s(S2), α−1ρ3′s(S3) >. Let us show that it is primitive. If G̃
was imprimitive, we could write Fnr = V1 ⊕ V2 ⊕ ... ⊕ Vr, where for all i and for all g ∈ G,
there exists a j such that g.Vi = Vj. Since R1 is irreducible, there exists i ∈ [[1, 3]] such that
−R1(Si).V1 6= V1. Assume there exists i such that −R1(Si).V1 6= V1. Up to reordering, we have
V2 = −R(Si).V1. If dim(V1) ≥ 2 then H−R1(Si) (the hyperplane fixed by −R1(Si)) has a non-
empty intersection with V1, therefore V1∩V2 6= ∅ which is a contradiction, therefore dim(V1) = 1.
This reasoning is valid for any Vi, therefore they are all one-dimensional. Let x ∈ V1 be a non-
zero vector, it can be written in a unique way as x = x1 + x2 with x1 ∈ ker(R1(Si) + α) and
x2 ∈ H−R1(Si). We then have that −R1(Si)x = −αx1 +x2 and −R(Si)(−R(Si)x) = α2x1 +x2 =
α(x1 +x2) + (1−α)(−αx1 +x2) ∈ V1⊕V2. Since α /∈ {0, 1} this contradicts the fact that there
exists j such that −R(Si).V2 = Vj. This shows that G̃ is primitive.

By Wagner’s theorem on groups generated by reflections ([45] and Theorem 2.3. of [31]),
since G̃ is primitive and is generated by pseudo-reflections, there exists r′ dividing r such that
SL3(r′) ≤ G̃ ≤ GL3(r′) or SU3(r′ 12 ) ≤ G̃ ≤ GU3(r′ 12 ).

We now show that r′ must be equal to r. We have det(α−1ρ3′s(S1)) = −α−1, therefore
α ∈ Fr′ . We also have Tr((α−1ρ3′s(S1)α−1ρ3′s(S2)) = 1 − 2α−1 + α−1((ξ + ξ−1 + 1)2) ∈ Fr′ ,
therefore (ξ+ξ−1 +1)2 ∈ Fr′ . We have (ξ+ξ−1 +1)2 = ξ2 +ξ−2 +1+2ξ+2ξ−1 +2 = ξ+ξ−1 +2,
therefore it follows that ξ + ξ−1 ∈ Fr′ . Since Fr = Fp(α, ξ + ξ−1), we have r′ = r.

Assume now Fr = Fp(α, ξ + ξ−1) = Fp(α + α−1, ξ + ξ−1). If G̃ ≤ GU3(r 1
2 ), we let ε be

the automorphism of order 2 of Fr. We then have ε(det(α−1ρ3′s(S1)) = det(t(α−1ρ3′s(S1))−1),
therefore ε(−α−1) = −α and ε(α + α−1) = α + α−1.

We also have ε(Tr((α−1ρ3′s(S1)α−1ρ3′s(S2)))) = Tr(t(α−1ρ3′s(S1)α−1ρ3′s(S2))−1), therefore ε(1−
2α−1 + α−1(ξ + ξ−1 + 1)2) = 1 − 2α + α(ξ + ξ−1 + 1)2. This implies that ε((ξ + ξ−1 + 1)2) =
(ξ + ξ−1 + 1)2, therefore ε(ξ + ξ−1) = ξ + ξ−1. This would imply that ξ + ξ−1 ∈ F

r
1
2
, therefore

Fr = F
r

1
2
which is absurd.

It follows that SL3(r) ≤ G̃ ≤ GL3(r), therefore ρ3′s(AH3) = [ρ3′s(AH3), ρ3′s(AH3)] = [G̃, G̃] =
SL3(r).

Assume now Fr = Fp(α, ξ + ξ−1) 6= Fp(α + α−1, ξ + ξ−1). The unique automorphism of
order 2 of Fr stabilizes Fp and verifies ε(α) = α−1 and ε(ξ + ξ−1) = ξ + ξ−1. By Lemma 2.4.
of [11], we only need to show that ρ3′s ' ε ◦ ρ?3s in order to prove that ρ3′s(AH3) ≤ GU3(r 1

2 ).
Once this is shown, we will have that there exists P ∈ GL3(r) such that for all i ∈ {1, 2, 3},
Pρ3′s(Si)P−1 = ε(tρ3′s(Si)−1). We then have that for all i ∈ {1, 2, 3}, P (α−1ρ3′s(Ts))P−1 =
α−1ε(tρ3′s(Si)−1) = ε(α−1)−1ε(tρ3′s(Si)−1) = ε(t(α−1ρ3′s(Si))−1), therefore G̃ ≤ GU3(r 1

2 ).
We have ε(α) = α−1, therefore ε(

√
α

2) = ε(
√
α)2 =

√
α
−2 and (ε(

√
α) −

√
α
−1)(ε(

√
α) +√

α
−1) = 0. It follows that ε(

√
α) ∈ {±

√
α
−1}. We will show that ρ3′s ' ε ◦ ρ?3′s in both cases

and the proof will be completed.
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Assume ε(
√
α) =

√
α
−1. Let P =


−α+1√

α
λ 0

λ −α+1√
α

1
0 1 −α+1√

α

, we have for all i ∈ {1, 2, 3},

Pρ3′s(Si)P−1 = ε(tρ3′s(Si)−1). Note that the matrix is invertible in Fr because det(P ) =
− (α+1)(−αλ2+α2+α+1)

α
√
α

= 0 would imply−ξ2−ξ−2+1 = λ2 = α+α−1+1 and then α ∈ {−ξ2,−ξ−2}
which is absurd.

Assume ε(
√
α) = −

√
α
−1. Let P =


1 −λ

√
α

α+1 0
λ
√
α

α+1 −1
√
α

α+1
0 −

√
α

α+1 1

. It verifies the same conditions as

in the previous case and the determinant is again non-zero, therefore the proof is completed
for the W -graph 3′s.

The proof is identical for 3′s. Assume now 1 ∼ 2.

Assume first that Fp(α) = Fp(α + α−1). By Lemma 8.1.2, we have that Φ1,2(α) = α and
Φ1,2(λ) = Φ1,2(ξ + ξ−1 + 1) = ξ2 + ξ−2 + 1 = −ξ − ξ−1 = 1− λ. It follows by Proposition 2.1.2
that there exists a character η : AH3 → F×r such that Φ1,2◦ρ3′s is an irreducible representation of
HH3,α. We have ρ3′s|AI2(5) ' ρ3s|AI2(5) ' ρ1× 1, ρ3′s|AI2(5)

' ρ3s|AI2(5)
' ρ2× 1, where 1 represents

the trivial representation and Φ1,2 ◦ ρ2 ' ρ1. It follows that either Φ1,2 ◦ ρ3′s|AH3
' ρ3′s|AH3

or
Φ1,2 ◦ ρ3′s|AH3

' ρ3s|AH3
. We have Tr(ρ3′s(S1S2S

−2
3 )) = α2 − α + 1− λα−1. It follows that

Φ1,2(Tr(ρ3′s(S1S2S
−2
3 ))) = α2 − α + 1 + (λ− 1)α−1.

We have Tr(ρ3′s(S1S2S
−2
3 )) = α2 − α + 1 + (λ− 1)α−1 and Tr(ρ3s(S1S2S

−2
3 )) = (λ− 1)α + 1−

α−1 + α−2. Assume by contradiction that Φ1,2 ◦ ρ3′s|AH3
' ρ3s|AH3

. We then have

α2 − α + 1 + (λ− 1)α−1 = (λ− 1)α + 1− α−1 + α−2

α2 − α−2 = λα− λα−1

(α− α−1)(α + α−1) = λ(α− α−1)
α + α−1 = −ξ2 − ξ−2

(αξ2 + 1)(ξ−2 + α−1) = 0.

It then follows that α10 = 1 which contradicts our assumptions on the order of α. This proves
that Φ1,2 ◦ ρ3′s|AH3

' ρ3′s|AH3
.

Assume now that Fp(α) 6= Fp(α + α−1). By Lemma 8.1.2, we have that Φ1,2(α) = α−1

and Φ1,2(λ) = 1 − λ. By the same arguments as in the previous case, we have that either
Φ1,2 ◦ρ3′s|AH3

' ρ3′s|AH3
or Φ1,2 ◦ρ3′s|AH3

' ρ3s|AH3
. Assume by contradiction that Φ1,2 ◦ρ3′s|AH3

'
ρ3′s|AH3

. We then have

α−2 − α−1 + 1 + (λ− 1)α = Φ1,2(Tr(ρ3′s
(S1S2S

−2
3 ))) = Tr(ρ3′s(S1S2S

−2
3 )) = α2 − α+ 1 + (λ− 1)α−1.

The same computation as in the previous case shows this is a contradiction and the proof is
thus completed.

We now show that r = q2 if Fp(α) = Fp(α + α−1) and r = q if Fp(α) 6= Fp(α + α−1).
If 1 ∼ 2, then the result follows by Lemma 8.1.2. Assume now that 1 � 2. Note that
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Fp(α) = Fp(α+α−1, ξ+ξ−1) then Fp(α) = Fp(α, ξ+ξ−1) therefore the two former fields cannot be
simultaneously subfields of degree 2 of the latter. This implies that [Fp(α, ξ+ ξ−1) : Fp(α)] ≤ 2.
By Lemma 8.1.2, we have Fp(α, ξ + ξ−1) 6= Fp(α + α−1, ξ + ξ−1). The result then follows from
the fact that [Fp(α, ξ + ξ−1) : Fp(α)] = 2

[Fp(α) : Fp(α + α−1)] .

Proposition 8.1.4. If Fq = Fp(
√
α) = Fp(α) = Fp(α+α−1), then we have ρ4′r(AH3) = SL4(q).

Assume that Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and ε is the unique automorphism of

order 2 of Fq.
If ε(
√
α) =

√
α
−1, then we have ρ4′r(AH3) ' SU4(q 1

2 ).
If ε(
√
α) = −

√
α
−1, then we have ρ4′r(AH3) ' SL4(q 1

2 ).
If Fq′ = Fp(

√
α) 6= Fq = Fp(α) = Fp(α + α−1), then we have ρ4′r(AH3) = SU4(q).

Proof. Let β = ξ + ξ−1 and M =


1 −

√
α(3+2β)

(α+1)(β+1)
β+2
β+1 −

√
α(2+β)

(α+1)(β+1)
− 1
α+1

1√
α

− 2+β
(α+1)(1+β)

1√
α(β+1)

1 −
√
αβ2

α+1 −β
√
αβ

(α+1)
− 1
α+1

1√
α

β
α+1 − 1√

αβ

, we have

det(M) = 5(β + 1)Φ5(α)
α(α + 1)4(1 + β)2β

.
Let ρ1 and ρ2 be the two 2-dimensional irreducible representations of HI2(5) =< S1, S2 >

defined by ρ1(S1) =
(
−1 0
1 α

)
, ρ1(S2) =

(
−1 0
1 α

)
, ρ2(S1) =

(
α α(2 + β)
0 −1

)
and ρ2(S2) =(

α αβ2

0 −1

)
. We then have

M(ρ4′r(S1))M−1 =
(
ρ1(S1) 0

0 ρ2(S1)

)
,M(ρ4′r(S2))M−1 =

(
ρ1(S2) 0

0 ρ2(S2)

)
.

We set H = (ρ1 × ρ2)(AI2(5)) and G = ρ4′r(AH3).

Assume first that Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1) and 1 ∼ 2. By Theorem 5.1.3, we

have ρ(AI2(5)) ' SL2(q2). More precisely, we have that ρ4′r(AI2(5)) = {
(
N 0
0 Φ1,2(N)

)
, N ∈

SL2(q2)} ⊂ MGM−1. Consider now the maximal subgroups of SL4(q). They are given in
Tables 8.8 and 8.9 of [9]. Since our group is irreducible, we can remove the groups of class
C1. We can also remove the groups of class C5 because the field generated by the traces of
the elements of our group if Fq. Note that ξ + ξ−1 /∈ Fq so q is an odd power of p and the
representation is not self-dual. It follows that MGM−1 is included in no maximal subgroup
of C8. The only remaining maximal subgroups are listed below with their order or a quantity
their order divides.

1. (q − 1)3.S4, 24(q − 1)3

2. SL2(q)2 : (q − 1).2, 2q2(q2 − 1)2(q − 1)

3. SL2(q2).(q + 1).2, 2(q + 1)q2(q4 − 1)

4. (4 ◦ 21+4).S6, 92160
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5. (4 ◦ 21+4).A6, 46080

6. (q − 1, 4) ◦ 2.PSL2(7), 1344

7. (q − 1, 4) ◦ 2.A7, 20160

8. (q − 1, 4) ◦ 2.PSU4(2), 103680.

By the conditions on the order of α, we have q ≥ 8 and q 6= 11. Since p 6= 2 and q
is an odd power of p, we have q ≥ 13. It follows that |H| = q2(q4 − 1) ≥ 4826640. This
implies that cases 4, 5, 6, 7 and 8 are excluded. If we were in case 1, we would have that
q2 divides 24 which is absurd since p 6= 2. In case 2, we would have that q2 + 1 divides
2(q2 − 1)(q − 1) = 2(q2 + 1)(q − 1) − 4(q − 1), therefore we would have that q2 + 1 divides
4(q − 1) < q2 + 1 since q ≥ 13.

The only remaining case is case 3. By [36], AH3 is perfect, it would then follow that
G ' SL2(q2). This would imply that G = ρ4′r(AI2(5)). The coefficient on the first row and third
column of Mρ4′r(S1S

−1
3 )M−1 is equal to 1

5(−α− 3
√
α− 1)β − (3α− 4

√
α− 3).

If this is equal to zero and −α− 3
√
α− 1 6= 0, then β = −3α+4

√
α+3

α+3
√
α+1 ∈ Fp which is false.

If the coefficient is equal to zero and −α − 3
√
α − 1 = 0 then α + 1 = −3

√
α, therefore

the coefficient is equal to 5
√
α 6= 0 which is absurd. This proves that Mρ4′r(S1S

−1
3 )M−1 /∈

ρ4′r(AI2(5)). This proves that if Fq = Fp(
√
α) = Fp(α) = Fp(α+α−1) and 1 ∼ 2 thenG = SL4(q).

Assume now that Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1) and 1 � 2. By Theorem 5.1.3, we

have ρ(AI2(5)) ' SL2(q′) × SL2(q′), where Fq′ = Fp(α, ξ + ξ−1) = Fp(α + α−1, ξ + ξ−1). By
Lemma 8.1.2, we have that Fq = F′q. By Lemma 8.1.1, G is generated by transvections. We
can then apply Theorem 2.3.4 to get that G ∈ {SL4(q̃), SU4(q̃ 1

2 ), SP4(q̃)} for some q̃ dividing
q. We have q̃ = q because G contains a natural SL2(q). We have that G cannot be preserved
by any non-degenerate bilinear form because ρ4′r is not self-dual. Assume by contradiction that
G ' SU4(q 1

2 ). There exists an automorphism ε of order 2 of Fq such that ε ◦ ρ?4′r ' ρ4′r . By
Lemma 3.2.3, we can apply Proposition 2.1.2 to ε. It follows that we have that ε(α) ∈ {α, α−1},
therefore ε(α+ α−1) = α+ α−1. This implies that ε is of order 1 since Fq = Fp(α+ α−1). This
is a contradiction, therefore G = SL4(q).

Assume now Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and 1 ∼ 2. We have Φ1,2(α) = α−1,

therefore Φ1,2(
√
α) ∈ {±

√
α
−1}. By Theorem 5.1.3, we have H ' SL2(q).

Assume first Φ1,2(
√
α) =

√
α
−1. Let R =



α−
√
α+1√
α

1 1
√
α

α+1

1 α+1√
α

α+
√
α+1

α+1 1
1 α+

√
α+1

α+1
α+1√
α

1
√
α

α+1 1 1 α−
√
α+1√
α

. We have

det(R) = Φ5(
√
α)Φ10(

√
α)3

α2(α+1)4 6= 0 and

(R−1ρ4′r(S1)R,R−1ρ4′r(S2)R,R−1ρ4′r(S3)R) = (ε(tρ4′r(S1)−1), ε(tρ4′r(S2)−1), ε(tρ4′r(S3)−1)).

It follows by Lemma 3.2.4 that up to conjugation in GL4(q), we have G ≤ SU4(q 1
2 ). We know G

is irreducible so it is included in no subgroup of class C1. We list below the remaining maximal
subgroups of SU4(q 1

2 ) with their order or a quantity their order divides. The tables are obtained
using Table 8.10 and 8.11 of [9].
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1. (q 1
2 + 1)3.S4, 24(q 1

2 + 1)3

2. SU2(q 1
2 )2 : (q 1

2 + 1).2, 2q(q 1
2 + 1)(q − 1)2

3. SL2(q).(q 1
2 − 1).2, 2(q 1

2 − 1)|SL2(q)|

4. SU4(q0), q 1
2 = qr0, r odd prime, q6

0(q2
0 − 1)(q3

0 + 1)(q4
0 − 1)

5. SO+
4 (q 1

2 ).[(q 1
2 + 1, 4)], 4q(q − 1)2

6. SO−4 (q 1
2 ).[(q 1

2 + 1, 4)], 4q(q2 − 1)

7. (4 ◦ 21+4).S6, 92160

8. (4 ◦ 21+4).S6, 46080

9. (q 1
2 + 1, 4) ◦ 2.PSL2(7), 1344

10. (q 1
2 + 1, 4) ◦ 2.A7, 20160

11. 4.2PSL3(4), 5040

12. (q 1
2 + 1, 4) ◦ 2.PSU4(2), 207360

We have |H| = q(q2 − 1). We have Φ1,2(α) = α−1 so αq
1
2 +1 = 1. This implies that q 1

2 + 1 ≥ 7,
therefore we have that q ≥ 49. It follows that |H| ≥ 117600. This excludes cases 7 to 11.
We have that q is a square and p is odd, therefore q ≥ 49 implies that q = 49 or q ≥ 81. If
q = 49 then |H| = 117600 does not divide 207360, therefore case 12 is excluded. If q ≥ 81 then
|H| ≥ 531360. Therefore, case 12 is excluded for any q.

Assume by contradiction that we are in case 1. We then have that q divides 24 which is a
contradiction. Case 1 is therefore excluded.

Assume by contradiction that we are in case 2. We then have that q+1 divides (q 1
2 +1)(q−1).

It follows that q+ 1 divides (q 1
2 + 1)(q+ 1)− (q 1

2 + 1)(q− 1) = 2q 1
2 < q+ 1. This contradiction

proves that case 2 is excluded.
Assume by contradiction that we are in case 4. We then have that q divides q6

0 = q
3
r . This

implies that r = 3, therefore (q2−1) divides (q 2
3 −1)(q+1)(q 4

3 −1). It follows that q−1 divides
(q 2

3 − 1)(q 4
3 − 1) = q2− q 4

3 − q 2
3 + 1 = q2− 1− q 1

3 (q− 1)− q 2
3 − q 1

3 + 2. This implies that q− 1
divides q 2

3 + q
1
3 − 2 < q − 1. This contradiction proves that case 4 is also excluded.

Assume now by contradiction that we are in case 3. Since G is perfect, we have that
G ≤ SL2(q). It follows that G = H but this is absurd by the computations made when
Fq = Fp(

√
α) = Fp(α) = Fp(α + α−1) and 1 ∼ 2.

Assume by contradiction that we are in case 5 or 6. By [36], we have that AH3 is perfect.
It follows that we would have G ≤ SO±4 (q 1

2 ). This contradicts the fact that ρ4′r is not self-dual.
It follows that G is included in no maximal subgroup of SU4(q 1

2 ). This implies that G '
SU4(q 1

2 ).
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Assume now Φ1,2(
√
α) = −

√
α
−1. Let R′ =



√
α

α+1 1 1 α−
√
α+1√
α

1 α+
√
α+1

α+1
α+1√
α

1
1 α+1√

α
α+
√
α+1

α+1 1
α−
√
α+1√
α

1 1
√
α

α+1

. We

have det(R′) = det(R) 6= 0 and

(R′−1ρ4′r(T )R′, R′−1ρ4′r(S1)R′, R′−1ρ4′r(S2)R′) = (−αε(ρ4′r(T )),−αε(ρ4′r(S1)),−αε(ρ4′r(S2))).

It follows by Lemma 3.2.4 that up to conjugation in GL4(q), we have G ≤ SL4(q 1
2 ). We have

here q ≥ 49 so |H| ≥ 117600. We can then apply the same reasoning as for Fq = Fp(
√
α) =

Fp(α) = Fp(α + α−1) and 1 ∼ 2 to prove that G ' SL4(q 1
2 ).

Assume Fq = Fp(
√
α) = Fp(α) 6= Fp(α+α−1) and 1 � 2. Let ε be the unique automorphism

of order 2 of Fq. By the same arguments as in the previous case, if ε(
√
α) =

√
α
−1 then we

have that up to conjugation, G ≤ SU4(q 1
2 ). If ε(

√
α) = −

√
α
−1, then we have that, up to

conjugation, G ≤ SL4(q 1
2 ). We have H ' SU2(q 1

2 )× SU2(q 1
2 ). By Lemma 8.1.1, we have that

G is normally generated by H. It follows that G is an irreducible subgroup of GL4(q) generated
by transvections.

Assume ε(
√
α) =

√
α
−1. By Theorem 2.3.4, we have that G is conjugate in GL4(q) to

SU4(q′ 12 ), SP4(q′) or SL4(q′) for some q′ dividing q. We know that G contains a natural
SU2(q 1

2 ). By Lemma 3.3.3, we have that q 1
2 divides q. ρ4′r is not self-dual so the symplectic case

is excluded. The groups SL4(q) and SL4(q 1
2 ) are not included in SU4(q 1

2 ), therefore we have
G ' SU4(q 1

4 ) or G ' SU4(q 1
2 ). The natural SU2(q 1

2 ) cannot be included in SU4(q 1
4 ), therefore

we have that G ' SU4(q 1
2 ).

Assume now that ε(
√
α) = −

√
α
−1. By Theorem 2.3.4 and the facts that G contains a

natural SU2(q 1
2 ) and ρ4′r not self-dual, we have that G is conjugate in GL4(q) to SU4(q 1

2 ),
SL4(q 1

2 ) or SL4(q). G is conjugate to a subgroup of SL4(q 1
2 ) therefore we have that G '

SL4(q 1
2 ).

Assume now that Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α+α−1) and 1 ∼ 2. By Lemma 8.1.2, we have

that the unique automorphism of order 2 of Fq2 is Φ1,2 and Φ1,2(α) = α. The polynomial X2−α
is irreducible in Fq[X], therefore we have that Φ1,2(

√
α) = −

√
α. LetQ = E1,4+E2,3+E3,2+E4,1,

we have that

(Qρ4′r (S1)Q−1, Qρ4′r (S2)Q−1, Qρ4′r (S3)Q−1) = (−αε(t(ρ4′r (S1)−1)),−αε(t(ρ4′r (S2)−1)),−αε(t(ρ4′r (S3)−1)).

It follows by Lemma 3.2.4 that up to conjugation in GL4(q2), we have that G ≤ SU4(q). We
have H ' SL2(q2). We have here Φ1,2(α) = α, therefore αq−1 = 1. This implies that q ≥ 8
and q 6= 11. We also have that q is not a square since ξ + ξ−1 /∈ Fq. It follows that q ≥ 13 and
we can apply the same reasonning as when Fq = Fp(

√
α) = Fp(α) 6= Fp(α + α−1), 1 ∼ 2 and

Φ1,2(
√
α) =

√
α
−1 to conclude that G ' SU4(q).

Assume now that Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α + α−1) and 1 � 2. The unique automor-

phism ε of order 2 of Fq still verifies ε(
√
α) = −

√
α, therefore we have that G ≤ SU4(q)

up to conjugation in GL4(q2). By Lemma 8.1.2 and Theorem 5.1.3, we have that H '
SU2(q) × SU2(q). By Lemma 8.2.1, we have that AH3 is normally generated by AI2(5). It
follows that ρ4′r(AH3) is generated by transvections. The group G contains a natural SU2(q),
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therefore by Lemma 3.3.3, we have that the field generated by the traces of the elements of
G contains F

1
2
q . We also have that G preserves no non-degenerate bilinear form because ρ4′r is

not self-dual. By Theorem 2.3.4, we have that G is conjugate in GL4(q2) to SL4(q), SU4(q) or
SL4(q2). We can then conclude that G ' SU4(q) conclude from the fact that G ≤ SU4(q).

Proposition 8.1.5. If Fq = Fp(α) = Fp(α + α−1), then we have ρ5r(AH3) ' SL5(q). If
Fq = Fp(α) 6= Fp(α + α−1), then we have ρ5r(AH3) ' SU5(q 1

2 )

Proof. Let G = ρ5r(AH3) and H = ρ5r(AI2(5)). First note that by Proposition 6.1, we can
assume G ≤ SL5(q). Let us now consider the restriction to AI2(5). Let M be the following
matrix

√
α(α + 1)(β + 1) −α(β + 2)(β + 1)

√
α(α + 1)(β + 2) −α(β + 2) 0

−
√
α(β + 1) (α + 1)(β + 1) −

√
α(β + 2) α + 1 −

√
α

β(α + 1) −
√
αβ3 β(β2 − 1)(α + 1) −

√
αβ(β2 − 1) 0

−β β α+1√
α

−β(β2 − 1) (β2−1)(α+1)√
αβ

−β2−1
β

0 0 0 0 1

 .

We then have det(M) = 5Φ5(α) 6= 0 and for all h ∈ HI2(5),α,

Mρ5s(h)M−1 =

ρ1(h) 0 0
0 ρ2(h) 0
0 0 Ind(h)

 .
The representations above are given in Theorem 5.1.1.

Assume now Fq = Fp(α) = Fp(α+α−1) and 1 ∼ 2. We then have q is an odd power of p. By
Lemma 8.1.2 and Theorem 5.1.3, we have that H ' SL2(q2). We now consider the maximal
subgroups of SL5(q) given in Tables 8.18 and 8.19 of [9]. We know that G is irreducible,
therefore it cannot be contained in any group of class C1. Since G contains H, we have that the
field generated by the elements of G contains Fq, therefore we have that G cannot be included
in any group of class C5. The group G contains a SL2(q2) twisted by the field automorphism
of degree 2 of Fq2 , therefore it cannot be a subgroup of SU5(q 1

2 ). We know that ρ5r is not self-
dual, therefore G cannot preserve any non-degenerate bilinear form. It follows that G cannot
be included in any group of class C8. We list below the remaining maximal subgroups remaining
and their order or a quantity their order divides.

1. (q − 1)4 : S5, 120(q − 1)4

2. q5−1
q−1 : 5, 5(q4 + q3 + q2 + q + 1)

3. 51+2
+ : Sp2(5), 15000

4. (q − 1, 5)× PSL2(11), 3300

5. M11, 7920

6. (q − 1, 5)× PSU4(2), 129600
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We have αq−1 = 1 so q − 1 ≥ 7. It follows that q ≥ 9 and |H| ≥ 531360. This excludes
cases 3 to 6.

Assume we are in case 1 or 2. We have |H| = q2(q4 − 1). It follows that q2 divides 120.
This is absurd because p 6= 2.

It follows that G ' SL5(q).
Assume now Fq = Fp(α) = Fp(α + α−1) and 1 � 2. We then have that ρ5s(AI2(5)) '

SU2(q)× SU2(q). The group G is then irreducible and generated by transvections. Therefore,
by Theorem 2.3.4, we have that G ∈ {SL5(q′)Sp5(q′), SU5(q′ 12 ), q′|q}. Since G contains a natural
SL2(q), we have that q′ = q. We have G 6= SU5(q 1

2 ) because G contains a natural SU2(q) and
G 6= Sp5(q) because ρ5s 6' ρ?5s . This proves that G ' SL5(q).

Assume now that Fq = Fp(α) 6= Fp(α + α−1) and 1 ∼ 2. By Lemma 8.1.2 and Theorem
5.1.3, we have that H ' SL2(q) and Φ1,2 is the unique automorphism of order 2 of Fq. We
have Φ1,2(α) = α−1, therefore by Proposition 2.1.2, we have that Φ1,2 ◦ ρ5r|AH3

' ρ5r|AH3
or

Φ1,2 ◦ ρ5r|AH3
' ρ5′r|AH3

. We have

Tr(ρ5r(S1S2S
−2
3 )) = α2 − 2α + 2− α−1

Φ1,2(Tr(ρ5r(S1S2S
−2
3 ))) = α−2 − 2α−1 + 2− α

Tr(ρ5′r(S1S2S
−2
3 )) = α−2 − 2α−1 + 2− α

If α2 − 2α + 2− α−1 = α−2 − 2α−1 + 2− α, then

0 = α2 − α−2 − (α− α−1) = (α− α−1)(α + α−1 − 1) = α−2(α2 − 1)Φ6(α).

This proves that Φ1,2 ◦ ρ5r|AH3
' ρ5′r|AH3

, therefore we have that Φ1,2 ◦ ρ?5r|AH3
' ρ5r|AH3

. By
Lemma 3.2.4, we have that G is conjugate in GL5(q) to a subgroup of SU5(q 1

2 ).
We now consider the maximal subgroups of SU5(q 1

2 ) given in Tables 8.20 and 8.21 of [9]. G
is irreducible so it cannot be included in a maximal subgroup of class C1. It contains a diagonal
SL2(q) twisted by ε, therefore it cannot be included in a maximal subgroup of class C5. We list
below the remaining maximal subgroups with their order or a quantity their order divides.

1. (q 1
2 + 1)4 : S5, 120(q 1

2 + 1)4

2. q5+1
q+1 : 5, 5(q4 − q3 + q2 − q + 1)

3. 51+2
+ : SP2(5), 15000

4. (q 1
2 + 1, 5)× PSL2(11), 3300

5. (q 1
2 + 1, 5)× PSU4(2), 129600

We have |H| = q(q2 − 1). We have αq
1
2 +1 = 1, therefore q 1

2 ≥ 6. This implies that q 1
2 ≥ 7

and q ≥ 49. This implies that q = 49 or q ≥ 81 since q is as square and p 6= 2. We then have
that |H| = 117600 or |H| ≥ 531360. Cases 3, 4 and 5 are therefore excluded. We have that q
is a square and p 6= 2, therefore q does not divide 120 and cases 1 and 2 are excluded.

It follows that G ' SU5(q 1
2 ).
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Assume now that Fq = Fp(α) 6= Fp(α + α−1) and 1 � 2. We then have by the same
arguments as in the previous case that G is conjugate in GL5(q) to a subgroup of SU5(q 1

2 ).
We have H ' SU2(q 1

2 )× SU2(q 1
2 ). By Lemma 8.1.1, we have that G is normally generated by

H. This implies that G is an irreducible group generated by transvections. We also have that
G contains a natural SU2(q 1

2 ) and ρ5r is not self-dual. It follows by Theorem 2.3.4 that G is
conjugate in GL5(q) to SU5(q 1

2 ), SL5(q 1
2 ) or SL5(q). G is conjugate to a subgroup of SU5(q 1

2 )
so G ' SU5(q 1

2 ) and the proof is concluded.

Theorem 8.1.1. Under the assumptions on α and p, we have the following results.

1. Assume 1 ∼ 2.

(a) If Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1), then the morphism from AH3 to H?

H3,α '
GL1(q)2 ×GL3(q)2 ×GL4(q)2 ×GL5(q) factorizes through the surjective morphism

Φ : AH3 → SL3(q2)× SL4(q)× SL5(q).

(b) If Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and Φ1,2(

√
α) =

√
α
−1, then the morphism

from AH3 to H?
H3,α ' GL1(q)2×GL3(q)2×GL4(q)2×GL5(q) factorizes through the

surjective morphism

Φ : AH3 → SL3(q)× SU4(q 1
2 )× SU5(q 1

2 ).

(c) If Fq = Fp(
√
α) = Fp(α) 6= Fp(α+α−1) and Φ1,2(

√
α) = −

√
α
−1, then the morphism

from AH3 to H?
H3,α ' GL1(q)2×GL3(q)2×GL4(q)2×GL5(q) factorizes through the

surjective morphism

Φ : AH3 → SL3(q)× SL4(q 1
2 )× SU5(q 1

2 ).

(d) If Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α + α−1), then the morphism from AH3 to H?

H3,α '
GL1(q)2 ×GL3(q)2 ×GL4(q)2 ×GL5(q) factorizes through the surjective morphism

Φ : AH3 → SL3(q2)× SU4(q)× SL5(q).

2. Assume 1 � 2. When it exists, we write ε the automorphism of order 2 of Fq.

(a) If Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and ε(

√
α) =

√
α
−1, then the morphism

from AH3 to H?
H3,α ' GL1(q)2×GL3(q)2×GL4(q)2×GL5(q) factorizes through the

surjective morphism

Φ : AH3 → SU3(q 1
2 )2 × SU4(q 1

2 )× SU5(q 1
2 ).

(b) If Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and ε(

√
α) = −

√
α
−1, then the morphism

from AH3 to H?
H3,α ' GL1(q)2×GL3(q)2×GL4(q)2×GL5(q) factorizes through the

surjective morphism

Φ : AH3 → SU3(q 1
2 )2 × SL4(q 1

2 )× SU5(q 1
2 ).
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Proof. Assume first that 1 ∼ 2. We then have the result by Lemmas 3.3.1 and 8.1.2 and
Propositions 8.1.3, 8.1.4 and 8.1.5.

Assume now that 1 � 2. By [36], AH3 is perfect, it follows that by Lemmas 3.3.1 and 8.1.2
and Propositions 8.1.3, 8.1.4 and 8.1.5, we only need to prove that in all cases there exists no
non-trivial field automorphism ϕ of Fp(α) such that ϕ◦ρ3s|AH3

' ρ3s|AH3
or ϕ◦ρ3s|AH3

' ρ3′s|AH3
to conclude the proof. Assume there exists such an automorphism ϕ. By Proposition 2.1.2 and
Lemma 3.2.3, we have that ϕ(α) ∈ {α, α−1}. It follows that ϕ(α + α−1) = α + α−1. If
Fp(α) = Fp(α + α−1), this proves that ϕ is trivial. If Fp(α) 6= Fp(α + α−1), then ϕ = ε and
ϕ ◦ ρ3s|AH3

' ρ3′s|AH3
. The result thus follows from Proposition 8.1.2.

8.2 Type H4, general aspects
Let p be a prime number, p /∈ {2, 3, 5} and α ∈ Fp such that the order of does not divide 20,
30 or 48. Let ξ ∈ Fp be a primitive fifth-root of unity. We set Fq = Fp(α). The irreducible
representations are given by the H4-graphs in subsection 10.2 of the Appendix. The highest
dimensional representation is of dimension 48 and our results for this representation are still
conjectural in some cases.

Definition 8.2.1. The Iwahori-Hecke HH4,α is the Fq-algebra generated by the generators
S1, S2, S3, S4 and the following relations :

1. ∀i ∈ {1, 2, 3, 4}, (Si − α)(Si + 1) = 0.

2. S1S2S1S2S1 = S2S1S2S1S2,

3. S1S3 = S3S1,

4. S1S4 = S4S1,

5. S2S3S2 = S3S2S4,

6. S2S4 = S4S2,

7. S3S4S3 = S4S3S4. For σ in the Coxeter group H4, if σ = si1 . . . sik is a reduced expression
we set Tσ = Si1 . . . Sik .

We then use the W -graphs given in the Appendix which are the W -graphs given in [20]
together with the new ones verifying the conditions in Theorem 6.2.

Proposition 8.2.1. If the order of α does not divide 12, 20 or 30 then the Iwahori-Hecke algebra
is split semi-simple and the models given by specialization of the W -graphs are irreducible
and pairwise non-isomorphic. The restriction rules from the generic case then apply to the
specialized case.

Proof. As in type H3, we let A = Z[1+
√

5
2 ][
√
u
±1] and F = Q[

√
5](
√
u). We have a symetrizing

trace defined by τ(T0) = 1 and τ(Tσ) = 0 for all σ ∈ H4 \ {1H4}. The algebra HH4,u is then a
free F -algebra of rank 14400. We have that A is an integrally closed integral domain because
Z[1+

√
5

2 ] is integrally closed (see [7] V.3. Corollary 1 and [39] Theorem 9.20.).
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Let θ be the ring homomorphism from A to L = Fq defined by θ(1+
√

5
2 ) = ξ + ξ−1 + 1,

θ(u) = α and θ(k) = k. We know FH is split. The basis formed by the elements Tσ, σ ∈ H4
verifies the conditions of the Proposition 2.2.4.

We now only need to check that the Schur elements associated to these irreducible repre-
sentations are in B and don’t vanish when specialized under θ. For n ∈ N, Φn is the n-th
cyclotomic polynomial and Φ5,a(u) = u2 + 1+

√
5

2 u + 1, Φ5,b(u) = u2 + 1−
√

5
2 u + 1, Φ10,a(u) =

u2 − 1+
√

5
2 u + 1, Φ10,b(u) = u2 +

√
5−1
2 u + 1, Φ15,a(u) = u4 − 1+

√
5

2 u3 + 1+
√

5
2 u2 − 1+

√
5

2 u + 1,
Φ15,b(u) = u4+

√
5−1
2 u3+ 1−

√
5

2 u2+
√

5−1
2 u+1, Φ20,a(u) = u4− 1+

√
5

2 u2+1, Φ20,b(u) = u4+
√

5−1
2 u2+1,

Φ30,a(u) = u4 + 1+
√

5
2 u3 + 1+

√
5

2 u2 + 1+
√

5
2 u+ 1 and Φ30,b(u) = u4 + 1−

√
5

2 u3 + 1−
√

5
2 u2 + 1−

√
5

2 u+ 1.
If χ is an irreducible character then the character χ? associated to the dual representation of χ
has a Schur element cχ? = a(cχ), where a is the involution of Q(

√
5)(
√
u) sending

√
u to

√
u
−1.

We define the field automorphism of Q(
√

5), written x 7→ x by
√

5−1
2 = −1−

√
5

2 and k = k for
all k ∈ Q. They are given Table 8.2 (obtained using Table E.2. of the Appendix and Corollary
9.3.6 of [20]).

It then only remains to check that the H4-graphs are still connected after specialization.
We must then check which weights vanish under θ since they are connected in the generic case.
The 48-dimensional H4-graph we found verifying the conditions of Theorem 6.2 is not defined
for p = 29. We therefore only use the bilinear form obtained using its existence. We consider
the one found in [2] which is also available in [20] and the CHEVIE Package of GAP3 [19].
Recall that β = ξ + ξ−1 + 1 and p /∈ {2, 3, 5}. We first prove that for p 6= 19, we have

(1− β)(β + 1)(2β + 3)(β + 2)(3β + 4)(2β + 1)(β + 3)(β + 5) 6= 0.

We have 1− β = 1− ξ − ξ−1 = −ξ−1(ξ2 − ξ + 1) = −ξ−1(Φ6(ξ)) 6= 0.
λ+ 1 = ξ−1Φ3(ξ) 6= 0, λ+ 2 = ξ−1Φ2(ξ) 6= 0 and λ = ξ−1Φ4(ξ) 6= 0.

Assume by contradiction that 2β + 3 = 0. We then have β = −3
2 . We have β2 + β − 1 = 0.

It follows that 0 = 9
4 −

3
2 − 1 = 9−6−4

4 = −1
4 , which is absurd.

Assume by contradiction that 3β + 4 = 0. We then have β = −4
3 . It follows that 0 =

16
9 −

4
3 − 1 = −5

9 , which is absurd.
Assume by contradiction that 2β + 1 = 0. We then have β = −1

2 . It follows that 0 =
1
4 −

1
2 − 1 = −5

4 , which is absurd.
Assume by contradiction that β + 3 = 0. We then have ξ + ξ−1 = −3, therefore 0 =

9− 3− 1 = 5, which is absurd.
Assume by contradiction that β + 5 = 0. We then have ξ + ξ−1 = −5 therefore 0 =

25− 5− 1 = 19. This implies that p = 19, which contradicts our assumption on p.
For the 40-dimensional representation, the only weight which can vanish is 7

3 . We have that
none of the weights vanish for p /∈ {7, 19}.

For p = 7, only the brown edges in the figure in the Appendix vanish for the 40-dimensional
representation. There are only 2 such edges in the H4-graph 4̃0r. Since the graph is symmetric,
we only need to check that the path represented by one of the brown edges can be replaced.
One of the brown edges connects the right vertex x with I(x) = {s1, s2, s4} to a vertex y with
I(y) = {s2, s4}. It can be replaced by the path going through yellow then green then black
edges with vertices x0 = x, x1, x2 and x3 = y such that I(x1) = {s2, s4} and I(x2) = {s3}.

For p = 19, we only need to consider the H4-graph ˜30s. Only the blue edges vanish and it is
clear from the figure in the Appendix that the graph remains connected without those edges.
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1r : (Φ4
2Φ2

3Φ2
4Φ2

5Φ2
6Φ2

10Φ12Φ15Φ20Φ30)(u).

4t : 5 +
√

5
2

(Φ4
2Φ2

3Φ2
5Φ2

6Φ2
10Φ15Φ30)(u)

uΦ5,a(u)Φ10,a(u)Φ15,a(u)Φ30,a(u)

4t : 5−
√

5
2

(Φ4
2Φ2

3Φ2
5Φ2

6Φ2
10Φ15Φ30)(u)

uΦ5,b(u)Φ10,b(u)Φ15,b(u)Φ30,b(u)

9s : 5 +
√

5
2

(Φ4
2Φ2

4Φ2
5Φ2

10Φ20)(u)
u2Φ5,a(u)Φ10,a)(u)Φ20,b(u)

9s : 5−
√

5
2

(Φ4
2Φ2

4Φ2
5Φ2

10Φ20)(u)
u2Φ5,b(u)Φ10,b(u)Φ20,a(u)

16rr : 2(Φ2Φ2
3Φ2

5Φ15)(u)
u3

16r : 2(Φ2Φ2
3Φ2

5Φ15)(u)
u3

25r : (Φ4
2Φ2

3Φ2
4Φ2

6Φ12)(u)
u4

36rr : (Φ4
2Φ2

5Φ2
10)(u)

u5

24s : 120(18 + 8
√

5
2 ) (Φ2

5Φ2
6Φ2

10)(u)
u6Φ2

5,a(u)Φ2
10,b(u)

24s : 120(18− 8
√

5
2 ) (Φ2

5Φ2
6Φ2

10)(u)
u6Φ2

5,b(u)Φ2
10,a(u)

24t : 30(7− 3
√

5
2 ) (Φ2

4Φ2
5Φ15)(u)

u6Φ5,b(u)2Φ15,a(u)

24t : 30(7 + 3
√

5
2 ) (Φ2

4Φ2
5Φ15)(u)

u6Φ5,a(u)2Φ15,b(u)
40r : 40

u6 (Φ2
3Φ2

10)(u)

48rr : 12
u6 (Φ2

5Φ12)(u)

18r : 10
u6 (Φ4

2Φ5Φ2
6)(u)

30s : 30(3−
√

5
2 ) (Φ4

2Φ2
10Φ15)(u)

u6Φ2
10,a(u)Φ15,b(u)

30s : 30(3 +
√

5
2 ) (Φ4

2Φ2
10Φ15)(u)

u6Φ2
10,b(u)Φ15,a(u)

16t : 20(Φ2
3Φ2

5Φ20)(u)
u6Φ5,b(u)2Φ20,b(u)

16t : 20(Φ2
3Φ2

5Φ20)(u)
u6Φ5,a(u)2Φ20,a(u)

6s : 30(3 +
√

5
2 ) (Φ4

2Φ2
5Φ30)(u)

u6Φ5,b(u)2Φ30,a(u)

6s : 30(3−
√

5
2 ) (Φ4

2Φ2
5Φ30)(u)

u6Φ5,a(u)2Φ30,b(u)
8r : 8

u6 (Φ2
3Φ2

4Φ5)(u)

8rr : 8
u6 (Φ2

3Φ2
5)(u)

10r : 10
u6 (Φ4

2Φ2
3Φ10)(u)

Table 8.2: Schur elements in type H4
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We now prove that the Schur elements do not vanish under θ. The first 9 representations
are not self-dual and all the remaining ones are. The representations ρ are stable by the field
automorphism sending

√
5 to −

√
5 if and only if the representation ρ does not appear in the

list in Table 8.2.
By the conditions on α, none of the cyclotomic polynomials appearing in 8.2 cancel α. We

have Φ5,aΦ5,b = Φ5, Φ10,aΦ10,b = Φ10, Φ15,aΦ15,b = Φ15, Φ20,aΦ20,b = Φ20 and Φ30,aΦ30,b = Φ30,
therefore none these polynomials cancel α.

The roles of ξ+ξ−1 and ξ2+ξ−2 are symmetric, therefore it remains to check that 3+ξ+ξ−1 6=
0, 5− 8(ξ + ξ−1) 6= 0, 2− 3(ξ + ξ−1) 6= 0 and 1− ξ − ξ−1 6= 0.

If 3 + ξ + ξ−1 = 0, then 2− ξ2 − ξ−2 = 0. Therefore (1− ξ)(1− ξ−1) = 0, which is absurd.
If 5 − 8(ξ + ξ−1) = 0, then ξ + ξ−1 = 5

8 . Therefore (5
8)2 + 5

8 − 1 = 0 and 25 + 40 − 8 = 0,
which implies that 57 = 0. We then have 19 = 0 because p 6= 3. In F19, we have 42 + 4− 1 = 0
and (−5)2 + (−5) − 1 = 0, therefore ξ + ξ−1 ∈ {4, 14}. It follows that 5 − 8(ξ + ξ−1) ∈
{5− 8× 4, 5− 8× (−5)} = {−27, 45}. Therefore 27 = 0 or 45 = 0 in F19, which is absurd.

If 2 − 3(ξ + ξ−1) = 0, then ξ + ξ−1 = 2
3 . Therefore (2

3)2 + 2
3 − 1 = 0 and 4 + 6 − 3 = 0.

This would imply 7 = 0, therefore p = 7. Note that X2 +X − 1 has no roots in F7 and ξ + ξ−1

cancels X2 + X − 1, therefore ξ + ξ−1 /∈ F7 and ξ + ξ−1 = 2
3 = 10 = 3. This implies 3 /∈ F7

which is absurd.
If 1− ξ − ξ−1 = 0, then 2 + ξ2 + ξ−2 = 0. Therefore (1 + ξ)(1 + ξ−1) = 0, which is absurd.

This concludes the proof.

The restrictions of the representations to HH3 available in the CHEVIE package of GAP3
[19] are given in Table 8.3 (we don’t write the restriction of a dual representation or a rep-
resentation obtained after applying the field automorphism sending ξ + ξ−1 to ξ2 + ξ−2 if the
restriction of the representation is already given), where for a representation R, the dual repre-
sentation is denoted by R′. In the generic case, they are the same as the induction/restriction
tables of the corresponding finite Coxeter groups, therefore they can be computed easily.

Lemma 8.2.1. The normal closure � AH3 �AH4
of AH3 inside AH4 is equal to AH4.

Proof. We note s1, s2, s3 and s4 the Coxeter generators of AH4 such that s1, s2 and s3 generate
AH3 and s1s2s1s2s1 = s2s1s2s1s2. By [36], we have

AH3 =< s1s
−1
2 , s2s1s

−2
2 , s2

2s1s
−3
2 , s3

2s1s
−4
2 , s3s

−1
1 >,

AH4 =< s1s
−1
2 , s2s1s

−2
2 , s2

2s1s
−3
2 , s3

2s1s
−4
2 , s3s

−1
1 , s4s

−1
1 > .

It follows that we only need to show that s4s
−1
1 ∈� AH3 �AH4

. This is true because

s4s
−1
1 = s3s4s3(s3s4)−1s−1

1 = (s3s4)(s3s
−1
1 )(s3s4)−1 = (s3s

−1
1 s4s

−1
1 )(s3s

−1
1 )(s3s

−1
1 s4s

−1
1 )−1.

Proposition 8.2.2. The restrictions of the irreducible representations of dimension greater
than 1 of HH4,α to AH4 are absolutely irreducible and pairwise non-isomorphic.

Proof. As in [12] Lemma 3.4, we only need to prove that AH3 is generated by AH3 and AH4 .
This true because s4 = s4s

−1
1 s1 and s4s

−1
1 ∈ AH4 and s1 ∈ AH3 .

The proof of the second part of the statement is the same as for Proposition 8.1.2.
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1r 1′r 3s 3′s 3s 3′s 4r 4′r 5r 5′r
1r 1 0 0 0 0 0 0 0 0 0
4t 1 0 0 1 0 0 0 0 0 0
9s 1 0 0 1 0 0 0 0 1 0
16rr 1 0 0 1 0 1 0 1 1 0
16r 1 0 0 1 0 1 1 0 1 0
25r 1 0 0 1 0 1 1 1 2 0
36rr 1 0 0 2 0 2 1 1 2 1
24s 0 0 0 0 1 1 1 1 1 1
24t 0 0 0 0 1 1 1 1 1 1
40r 0 0 1 1 1 1 1 1 2 2
48rr 0 0 1 1 1 1 2 2 2 2
18r 0 0 0 0 0 0 1 1 1 1
30s 0 0 1 1 1 1 1 1 1 1
16t 0 0 1 1 0 0 0 0 1 1
6s 0 0 1 1 0 0 0 0 0 0
8r 0 0 0 0 0 0 1 1 0 0
8rr 0 0 0 0 0 0 1 1 0 0
10r 0 0 0 0 0 0 0 0 1 1

Table 8.3: Restriction from HH4,α to HH3,α.

8.3 Type H4, low dimensional representations
We now determine the image of the Artin group of type H4 inside the low-dimensional repre-
sentations of the Iwahori-Hecke algebra.

Proposition 8.3.1.

1. Assume 1 ∼ 2.

(a) If Fq = Fp(α) = Fp(α + α−1), then ρ4t(AH4) ' SL4(q2).
(b) If Fq = Fp(α) 6= Fp(α + α−1), then ρ4t(AH4) ' SL4(q).

2. If 1 � 2, then ρ4t(AH4) ' SU4(q 1
2 ).

If 1 ∼ 2 and Fp(α) = Fp(α + α−1), then Φ1,2 ◦ ρ4t|AH3
' ρ4t|AH3

.
If 1 ∼ 2 and Fp(α) 6= Fp(α + α−1), then Φ1,2 ◦ ρ4t|AH3

' ρ4′t|AH3
.

Proof. The proof of the first part of the statement is identical to the proof of Proposition 8.1.3.
The proof of the second part of the statement follows from Proposition 8.1.3 and Table

8.3.

Proposition 8.3.2.

1. Assume 1 ∼ 2.

(a) If Fq = Fp(α) = Fp(α + α−1), then ρ6s(AH4) ' Ω+
6 (q2).
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(b) If Fq = Fp(α) 6= Fp(α + α−1), then ρ6s(AH4) ' Ω+
6 (q).

(c) We have Φ1,2 ◦ ρ6s|AH4
' ρ6s|AH4

.

2. Assume 1 � 2. We then have ρ6s(AH4) ' Ω+
6 (q 1

2 ).

Proof. Let Fr = Fp(α, ξ + ξ−1). By Proposition 6.2, we have ρ6s(AH4) ≤ Ω+
6 (q′), where Fq′ =

Fp(
√
α, ξ + ξ−1). By Proposition 6.1, we also have ρ6s ' σ ◦ ρ6s , where σ = IdFr if F′q = Fr and

σ is the automorphism of order 2 of Fq′ otherwise. We then have by Proposition 4.1 of [12] that
up to conjugation, we have ρ6s(AH4) ≤ Ω+

6 (r).
Assume first that 1 ∼ 2. By Proposition 8.1.2, we have that Fp(α, ξ+ξ−1) = Fp(α+α−1, ξ+

ξ−1). By Table 8.3 and Theorem 8.1.1, we have that ρ6s(AH3) is up to conjugation a twisted
SL3(r). It follows that ρ6s(AH4) is an irreducible subgroup of Ω+

6 (r) generated by long root
elements. By Kantor’s Theorem 2.3.3, we have that ρ6s(AH4) is conjugate in GL6(r) to one of
the following groups

1. Ω±6 (r),

2. Ω−6 (
√
r) ≤ Ω+

6 (r).

We have |Ω−6 (
√
r)| =

√
r

6(
√
r

3 + 1)(
√
r

4 − 1)(
√
r

2 − 1)/2. This means that if ρ6s(AH4 was
isomorphic to Ω−6 (

√
r) then we would have that r3(r2−1)(r3−1) would divide r3(

√
r

3 +1)(r2−
1)(r − 1), therefore r3 − 1 would divide (r 3

2 + 1)(r − 1) = r
5
2 − r 3

2 + r − 1 < r3 − 1 which is
absurd because both quantities are positive.

We cannot have ρ6s(AH4) ' Ω−6 (r) because otherwise we would have Ω−6 (r) ≤ Ω+
6 (r),

therefore r6(r3 + 1)(r4 − 1)(r2 − 1) would divide r6(r3 − 1)(r4 − 1)(r2 − 1). This would imply
that r3 + 1 divides r3 − 1 which is absurd.

This implies that ρ6s(AH4) ' Ω+
6 (r).

We know that Φ1,2 ◦ ρ6s|AH4
' ρ6s|AH4

or Φ1,2 ◦ ρ6s|AH4
' ρ6s|AH4

. The Table 8.3 and
Proposition 8.1.3 imply that the latter possibility is the only one possible.

Assume now 1 � 2. By Proposition 8.1.2, we have that Fp(α, ξ+ξ−1) 6= Fp(α+α−1, ξ+ξ−1).
There exists then a unique automorphism ε of order 2 of Fr. We have ε(α) = α−1. It follows by
Proposition 2.1.2 that ε◦ρ6s|AH4

' ρ6s|AH4
or ε◦ρ6s|AH4

' ρ6s|AH4
. By Table 8.3 and Proposition

8.1.3, we have that ε ◦ ρ6s|AH4
' ρ6s|AH4

. This implies by Proposition 4.1 of [12] that, up to
conjugation in GL4(r), we have ρ6s|AH4

≤ Ω+
6 (r 1

2 ). By Proposition 8.1.3 and Table 8.3, we have
that ρ6s(AH3 ' SU3(r 1

2 ). We can again apply Theorem 2.3.3, and we have that ρ6s(AH4) is
conjugate in GL6(r) to one of the following groups

1. Ω+
6 (r 1

2 ),

2. Ω−6 (r 1
4 ) ≤ Ω+

6 (r).

We have |SU3(r 1
2 )| = r

3
2 (r − 1)(r 3

2 + 1) and |Ω−6 (r 1
4 )| = r

3
2 (r 3

4 + 1)(r − 1)(r 1
2 − 1)/2.

Assume by contradiction that we are in the second case. We then have that (r 3
2 + 1) divides

(r 3
4 + 1)(r 1

2 − 1)/2 = 1
2(r 5

4 − r 3
4 + r

1
2 − 1) < r

3
2 + 1. This is a contradiction, therefore we have

that ρ6s(AH4) ' Ω+
6 (r 1

2 ).
The proof is then concluded by Proposition 8.1.3.
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Proposition 8.3.3. If Fq = Fp(α) = Fp(α + α−1), then we have ρ8r(AH4) ' Ω+
8 (q).

If Fq = Fp(α) 6= Fp(α + α−1), then we have ρ8r(AH4) ' Ω+
8 (q 1

2 ).

Proof. Assume first that Fp(α) = Fp(α + α−1). By Proposition 6.2, we have that G =
ρ8r(AH4) ≤ Ω+

8 (q) up to conjugation in GL8(q). We will use the same theorem as for the
6-dimensional representation but one of the cases will be much more technical to exclude. We
have by Table 8.3 and Theorem 8.1.1 that ρ8r(AH3) is conjugate in GL8(q) to a twisted diago-
nal SL4(q). It follows that G is irreducible and generated by long root elements. By Theorem
2.3.3, we have that G belongs to the following list

1. Ω+
8 (q)

2. Ω−8 (√q)

3. SU4(q)

4. G/Z(G) = PΩ7(q), Z(G) = 2

5. 3D4( 3
√
q)

We first exclude cases 2, 3 and 5 because they cannot occur by simple cardinality arguments.
We will then exclude case 4 showing that G contains a group which cannot be contained in a
group of the same order as in case 4. We have |SL4(q)| = q6(q2 − 1)(q3 − 1)(q4 − 1).

We have |Ω−8 (√q)| = √q12(√q4 + 1)(√q2 − 1)(√q4 − 1)(√q6 − 1) = q6(q2 + 1)(q − 1)(q2 −
1)(q3 − 1) = |SL4(q)| (q

2+1)(q−1)
q4−1 < |SL4(q)|, therefore the second case is excluded.

We have |SU4(q)| = q6(q2 − 1)(q3 + 1)(q4 − 1) and q3 − 1 cannot divide q3 + 1 because it is
greater than 2, therefore the third case is excluded.

We have |3D4( 3
√
q)| = 3

√
q12( 3
√
q8 + 3

√
q4 + 1)( 3

√
q6 − 1)( 3

√
q2 − 1), therefore it cannot contain

a group isomorphic to SL4(q) because q6 does not divide q4.

We now want to show that the fourth case is also excluded but it can contain a twisted
diagonal SL4(q). We therefore have to construct a different subgroup of our group G.

We order the vertices with the graded lexicographic order (I(x1) = {s1}, I(x2) = {s2},
I(x3) = {s1, s3}, I(x4) = {s1, s4}, I(x5) = {s2, s3}, I(x6) = {s2, s4}, I(x7) = {s1, s3, s4} and
I(x8) = {s2, s3, s4}) and consider the matrices with respect to the associated basis ordered the
same way.

Let P =



1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 −1
0 0 −1 0 0 0 1 0
0 1 0 0 0 −1 0 0
−1 0 0 1 0 0 0 0


and
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X =



1 0 −v2−v+1
v

0 0 0 0 0
1 −v2−v+1

v
0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 −v2+1

v
−v2+1

v
v4+v3+2v2+v+1

v2 0 0 0 0
0 0 0 0 0 0 1 v

v2+v+1
0 0 0 0 0 1 0 0 v

v2+v+1
0 0 0 0 1 v

v2−v+1
v

v2−v+1
v2

(v2+1)(v2−v+1)
0 0 0 0 0 0 0 1


.

We then have for i ∈ {1, 2, 3}, Pρ8r(Si)P−1 =
(
ρ4′r(Si) 0

0 −α tρ4′r(Si)−1

)
.

We also have for i ∈ {2, 3}, (XP )ρ8r(Si)(XP )−1 =


ρ2r(Si) 0

0
(
ρ1r(Si) 0

0 −α tρ1r(Si)−1

) 0

0

−α
tρ2r(Si)−1 0

0
(
−α tρ1r(Si)−1 0

0 ρ1r(Si)

)


where 2r and 1r are given by the following W-graphs and the bases are ordered in the anti-
lexicographic way for 2r (I(ex1) = {s3} and I(ex2) = {s2})

∅

1r

2 3

2r

We have ρ4′r(AH4) = SL4(q) and by Lemma 3.5 of [11], ρ2r(AA2) = SL2(q), where AA2 =<
S2, S3 >. We note H = (XP )ρ8r(AA2)(XP )−1. We will consider a large subgroup of the
normalizer of H and show it cannot be contained in a group corresponding to the fourth case
of our list. Let

n = (XP )ρ8r((S1S3S2)5(S2S3S2)−5)(XP )−1,

m = (XP )ρ8r((S3S2S4)4(S2S3S2)−4)(XP )−1.

Let then u = [n,m]. We have for i ∈ {2, 3},

(XP )−1u(XP )ρ8r(Si) = ρ8r(Si)(XP )−1u(XP ), (XP )−1m(XP )ρ8r(Si) = ρ8r(Si)(XP )−1m(XP ).

This shows that N1 =< u,m >≤ CG(H). We will now determine what this group N1 is. If
we let

R =



1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 −1 0 0
1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1
0 0 1 −1 0 0 0 0


,
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we have

R−1N1R ⊂ {


M1 0 0 0
0 M2 0 0
0 0 M3 0
0 0 0 M4

 ,M1,M2,M3,M4 ∈ GL2(q)}.

Let π1, π2, π3 and π4 be the corresponding projections and u′ = R−1uR,m′ = R−1mR and
N ′1 =< u′,m′ >. We will first show that π1(N ′1) = SL2(q) then determine the images under
the other projections and then determine fully N ′1 using Goursat’s Lemma.

Let u1 = π1(u′) and n1 = π1(m′). We have det(u1) = det(n1) = 1. As in the proof of
Theorem 5.1.2, if we prove that G1 =< u1,m1 > contains elements whose traces generate Fq,
that G1 /∈ {A5,S4} and that G1 is not abelian by abelian, then we have G1 = SL2(q).

Let us first show that G1 is not abelian by abelian. Assume by contradiction that G1
is abelian by abelian, we would then have [u1, n1][u1, n

−1
1 ] ∈ {±[u1, n

−1
1 ][u1, n1]}. Let A1 =

[u1, n1][u1, n
−1
1 ] + [u1, n

−1
1 ][u1, n1] and A2 = [u1, n1][u1, n

−1
1 ]− [u1, n

−1
1 ][u1, n1].

Assume A1 = 0, we then have a1 = 4A1[1,1]α15

(α−1)5(α2+1)5(α4+1)Φ3(
√
α)Φ6(

√
α) = 0 and

a2 = − 4A1[1,2]α15

(α−1)6(α2+1)5(α4+1)Φ3(
√
α)Φ6(

√
α) = 0, where A1[i, j] is the coefficient in row i and column j

of A1. If we let v =
√
α, we have

a1 = v18 + v17 − v16 + 2v14 − 2v12 + 2v11 + 2v10 + 2v9 − 2v8 + 2v7 + 2v6 − 2v4 + v2 + v − 1,

a2 = v16− v15 + 2v14− v13 + 2v12− v11 + 2v10 + v9 + 2v8− v7 + 2v6 + v5 + 2v4 + v3 + 2v2 + v+ 1.
We will show that for any prime p, those two polynomials in Fp[v] are coprime. We write

Rem the Euclidean remainder in Fp[v]. We have

a3 = 1
4v3 Rem(a1, a2) = −v12 + v11 − v10 − v8 − v4 − v2 − v − 1,

a4 = Rem(a2, a3) = −v11 + v10 + v9 + v8 − v7 + v2 + v + 1,
a5 = Rem(a3, a4) = −2v10 − v9 − v4 − v3 − 2v2 − 2v − 1,
a6 = 4 Rem(a4, a5) = v9 + 4v8 − 4v7 + 2v5 − v4 + v3 + 2v2 + 1,
a7 = Rem(a5, a6) = −36v8 + 28v7 + 4v6 − 16v5 + 8v4 − 4v3 − 16v2 − 8,
a8 = 81× Rem(a6, a7) = −14v7 + 7v6 + 8v5 − 4v4 + 2v3 − 10v2 − 18v − 5,
a9 = 7

81 Rem(a7, a8) = −v6 + 2v3 + 2v2 − 1,
a10 = 1

4 Rem(a8, a9) = 2v5 − 8v4 − 3v3 + v2 − v − 3,
a11 = 2

7 Rem(a9, a10) = −5v4 − v3 + v2 − v − 2,
a12 = 25× Rem(a10, a11) = −23v3 − 27v2 − 3v + 9,
a13 = 232

50 Rem(a11, a12) = −43v2 − 38v − 1,
a14 = 432

4×232 Rem(a12, a13) = 3v + 8,
a15 = − 9

432 Rem(a13, a14) = 1.

These computations are only correct if p /∈ {2, 3, 5, 7, 23, 43} because the computations are
made inQ[v] and they can only be specialized if the polynomials considered are of same degree in
Fp and in Q. We have p /∈ {2, 3, 5} by assumption. We check the remaining cases using the Gcd
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function in GAP4 with a1 and a2 polynomials in the indeterminate v:=Indeterminate(GF(p)).
This shows that A1 cannot be equal to zero.

Assume now A2 = 0, we then have b1 = 4α15A2[1,1]
α2−α+1 = 0, b2 = − 4α15A2[1,2]

(α2−α+1)(α−1)3(α2+1)3 = 0 and
b3 = 4α15A2[1,2]

(α2−α+1)(α−1)3(α2+1)3(α+1)2 = 0. We then have that
b4 = Rem(Rem(b2,b3)

8 , 9 Rem(b3,
Rem(b2,b3)

8 ))× 1
−9v(v2+v+1)(v4+1) = 0.

We then show using the same techniques as for A1 that b1 and b4 are coprime for
p /∈ {2, 3, 5, 7, 11, 13, 17, 47, 167, 233, 293, 449, 5303, 13649, 15797, 25913, 245071}. Again, by as-
sumption, we have p /∈ {2, 3, 5} and using GAP4, we get that b1 and b4 are coprime except for
p = 11. For p = 11, we have Gcd(b1, b4) = v4 + 6v2 + 1 = (v2 − 6v − 1)(v2 + 6v − 1). Again,
using GAP4, we see that this polynomial divides v24 − 1 in F11[v], therefore if

√
α is a root

of this polynomial then α12 = 1 which contradicts our assumptions. This concludes the proof
that G1 is not abelian by abelian.

Assume now that G1 ∈ {A5,S4}. We then have that its elements are of order less than or
equal to 5. The eigenvalues of n1 are α2 and α−2, therefore if n1

r = I2 then α2r ∈ {−1, 1},
therefore α4r = 1 and r ≥ 7 by the assumptions on α. This is absurd since the elements in
G1 are of order less than or equal to 5. It also implies that G1 ' S4 because A5 contains no
element of order 4. We have shown above that the commutator subgroup of G1 was not abelian.
This leads to a contradiction because the commutator subgroup of S4 is the Klein group of
order 4, which is abelian.

It only remains to show that Fq is generated by traces of elements in G1. We have Tr(n1) =
α2 + α−2 and Tr(u1) = α4 + α−4 − (α3 + α−3) + 2(α2 + α−2)− 3(α2 + α−2) + 4. We then have
Tr(n1) + 2 = (α + α−1)2 6= 0 and

Trn1
2 + 2 Tr(n1) + 2− Tr(u1)

Tr(n1) + 2 = α + α−1.

This shows that α + α−1 belongs to the field generated by traces of the elements of G1,
therefore Fq is generated by traces of the elements of G1. It follows that G1 = SL2(q).

If u3 = π3(u′), n3 = π3(m′) and C13 =
(

0 1
1 0

)
, then we have that C13u1C

−1
13 = u3 and

C13n1C
−1
13 = n3. We therefore get that G3 =< u3, n3 >= SL2(q) and the representation π3 of

N ′1 factors through π1.

We now show that if u2 = π2(u′) and n2 = π2(m′) then G2 =< u2, n2 >' SL2(q). < α4 >,
where SL2(q). < α4 > denotes a group having SL2(q) as a normal subgroup and the subgroup
of F?q generated by α4 as its quotient group by SL2(q). Again as in the proof of Theorem
5.1.2, to prove that G2 contains SL2(q) as a normal subgroup, we only need to show that G2
is not abelian by abelian, that G2 contains elements of order greater than 6 and that the field
generated by the traces of elements of [G2, G2] is Fq.

We first show that G2 is not abelian by abelian. Assume G2 is abelian by abelian. We then
have B1 = [u2, n2][u2, n

−1
2 ]− [u2, n

−1
2 ][u2, n2] = 0 or B2 = [u2, n2][u2, n

−1
2 ] + [u2, n

−1
2 ][u2, n2] = 0.

Assume B1 = 0, we then have 0 = B1[1, 2] = (α3−1)(α5−1)(α−1)3(α4+1)2
√
α

15 , which is absurd.

AssumeB2 = 0. We then have 0 = b2 =
√
α

15
B2[1,2]

(α2−α+1)(α−1)3(α4+1) and 0 = b3 =
√
α

23
B2[2,1]

(α2−α+1)(α8−1)(α−1)2 .
It follows that
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0 = b2 = (α4 − α3 − α2 − α + 1)(α6 + 2α5 + 3α4 + 2α3 + 3α2 + 2α + 1).

0 = b3 = (α4 + α2 + α + 1)(α4 − α3 − α2 − α + 1).
We then have 0 = b4 = 1

(α+1)(α−
√
α+1)(α+

√
α+1) Rem(b2, b3) = α4 − α3 − α2 − α + 1.

We also have b1 = α9B2[1,1]
α2−α+1 = 0, therefore

0 = α17−2α16−α14 +α13−α12 +2α11 +α10−2α9 +3α8−3α7 +α6−α5 +5α8−2α3−α2−α+1.

We then have

b5 = 1
2 Rem(b1, b4) = 83α3 + 60α2 + 20α− 48

b6 = 832 Rem(b4, b5) = 31α2 − 45α + 25
b7 = 312 Rem(b5, b6) = 2× 3× 5× 832α− 186003
b8 = 22×52

312 Rem(b6, b7) = 1.

Those computations show that 1 = 0 for p /∈ {31, 83}. For p ∈ {31, 83}, we check using
GAP4 that b1 and b4 are coprime in Fp[v]. It follows that B2 6= 0 and G2 is not abelian by
abelian.

We must now show that G2 /∈ {A5,S4}. Assume G2 ∈ {A5,S4}. We have that the order
of n2 must belong to {1, 2, 3, 5}. The eigenvalues of n2 are 1 and α−4. Therefore, if n2

r = I2,
then we have α4r = 1r ∈ {−1, 1}. It follows that α4r = 1. By the assumptions on the order of
α, we cannot have r ∈ {1, 2, 3, 4, 5}, therefore we have a contradiction.

We now show that the traces of the elements of [G2, G2] generate Fq. Let F be the field
generated by those traces. We have C1 = −(Tr([u2, n2])− 4) = α5 +α−5− 2(α4 +α−4) + (α3 +
α−3)− (α2 + α−2) + 2(α + α−1) ∈ F. We then have C1 − 2 = (α3−1)(α5−1)(α−1)2

α5 6= 0, therefore

C2 = Tr([[u2, n2], n2])− C2
1 + 6C1 − 10

C1 − 2 = α4 + α−4 ∈ F.

It follows by induction that α4r + α−4r ∈ F for all r ∈ N.
We then have C3 = C1 + 2C2 = α5 + α−5 + α3 + α−3 − (α2 + α−2) + 2(α + α−1) ∈ F.
We also have C4 = Tr([n2, u2][u−1

2 , n2]+(C1−2)(α8+α−8)−2C2
1 +11C1−(α4+α−4)−16 ∈ F,

therefore

C4 = α7 + α−7 − 2(α6 + α−6) + 2(α3 + α−3)− 3(α2 + α−2) + α + α−1 ∈ F.

We then have

C5 = 1
24 × 3(Tr([[[u2, n2], n2], n2])−(α20+α−20)−52(α16+α−16)+(6C4+34C3−427)(α12+α−12))+

(60C4 − 5C2
3 + 255C3 − 1601)(α8 + α−8) + (210C4 − 13C2

3 + 726C3 − 16× 211)(α4 + α−4)+

336C4 + 1034C3 − 16× 269) ∈ F.
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Since C5 = α2 + α−2, we get that α2 + α−2 ∈ F. We then have C3+C5
C2

5
= α + α−1 ∈ F. It

follows that F = Fq and we have G2 = SL2(q).

Let u4 = π4(u′) and n4 = π4(m′).

Let C24 =
(
v4 + v3 + 3v2 + v + 1 v4 + v3 + v2 + v + 1
−v4 − v3 − v2 − v − 1 −v4 − v3 − 3v2 − v − 1

)
, we have det(C24) = −4α(α+

1)(v2 + v + 1).
We also have C24u2C

−1
24 =tu−1

4 and C24n2C
−1
24 =tn−1

4 .

By what has been done above, we have that N ′1 =< u′,m′ >' π1 × π2(N ′1) ≤ SL2(q) ×
GL2(q), π1(N ′1) = SL2(q) and SL2(q) ⊂ π2(N ′1). We will show that [N ′1, N ′1] ' SL2(q)×SL2(q).
By Goursat’s lemma, we only need to show that we cannot have π1 ' Φ(π2), which is equivalent
to π1 ' Φ(π2) ⊗ χ, where χ : N ′1 → F×q is a character of N ′1 and Φ ∈ Aut(Fq). Assume such
a character exists, the following proof will be quite computational. We have that there exists
M ∈ GL2(q) such that for all h ∈ [N ′1, N ′1], Tr(π1(h)) = Φ(Tr(π2(h)))χ(h) and χ(h) ∈ {−1, 1}.

Let D1 = Tr([u1, n1]) and E1 = Tr([u2, n2]). We have

− v14

Φ6(α)D1 = v24− 2v22 + 4v20− 8v18 + 9v16− 12v14 + 14v12− 12v10 + 9v8− 8v6 + 4v4− 2v2 + 1,

− v10

Φ6(α)Φ8(α)E1 = v8 − v6 − v4 − v2 + 1.

We have D1 = Φ(E1) or D1 = −Φ(E1). If one of them vanishes, then they both vanish
because Φ is an automorphism. This proves it is sufficient to show that they cannot vanish at
the same time to prove that neither of them vanishes. Assume D1 = E1 = 0. We then have
that the following quantities vanish

v1 = Rem(− v14

Φ6(α)D1,− v10

Φ6(α)Φ8(α)E1) = 20v6 + 10v4 + 5v2 − 10

v2 = 23 Rem(− v10

Φ6(α)Φ8(α)E1, v1) = −4v4 − v2 + 2

v3 = 22

5 Rem(v1, v2) = 11v2 − 6
v4 = 112

25 Rem(v2, v3) = 1.

For any p 6= 2, this proves that 0 = 1 which is absurd. It follows that neither of them van-
ishes, therefore χ([u,m′]) = Φ(E1)

D1
. We have D1 = Tr([u−1

1 , n1]) and E1 = Tr([u−1
2 , n2]), there-

fore χ([u1, n1]) = χ([u−1
1 , n1]) and χ([u1, n1][u−1

1 n1]) = 1. We let D2 = Tr(χ([u1, n1][u−1
1 n1])

and E2 = Tr(χ([u2, n2][u−1
2 n2]). We have D2 = Φ(E2).

Let D3 = Tr([u1, n
2
1]) and E3 = [u2, n

2
2]. We have D3 = Φ(E3) or D3 = −Φ(E3), therefore if

we show that they cannot vanish simultaneously, then we have that neither of them vanishes.
Assume by contradiction that D3 = E3 = 0. We then use the Euclidean algorithm to prove
that 1 = 0 modifying it slightly using the conditions on α to dividing by non-zero quantities.
In order to complete the algorithm, we need to invert the primes 7, 13, 17, 19, 23, 47, 53, 193,
599, 881, 1471, 2503, 3559, 13967, 44101, 180811, 382843 and 981391. See subsection 10.3.1 for
the detailed computation. We check using GAP4 that those polynomials remain coprime when
p is a prime in the previous list. This is true except for p = 599.
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For p = 599, we have Gcd(− v22

Φ6(α)D3,− v18

Φ6(α)E3) = v4 + 394v2 + 1 = 0. Let v59901 =
v4+394v2+1

v2 = 0. We then have

D1 = D1 − (−(v12 + v
−12) + 397(v10 + v

−10)− 156424(v8 + v
−8) + 61630673(v6 + v

−6)− 24282328759(v4 + v
−4)

+9567175900402(v2 + v
−2)− 3769443022429664)v59901 − 2479367974099310× 599)

= 160
∈ ±Φ(E1)

∈ ±Φ(E1 − (−v8 − v−8 + 396(v6 + v
−6)− 156024(v4 + v

−4) + 61473061(v2 + v
−2)− 24220230012)v59901 − 15930964405× 599)

∈ ±Φ(15)
∈ ±15.

We then have 145 = 0 or 175 = 0. This concludes the proof that D3 and E3 are non-zero.

Case 1 : D1 = Φ(E1).

Case 1.1 : D3 = Tr([u1, n
2
1]) = Φ(Tr([u2, n

2
2])) = Φ(E3).

We then have D4 = D3
1 + D1D2 − 4D1D3 + D2

3 − 2D2 = Φ(E4), where E4 = E3
1 + E1E2 −

4E1E3 + E2
3 − 2E2. We have

0 =
v46(E5

1 − 4E3
1E3 + 36E3

1 + 7E2
1E3 + 6E1E

2
3 − 58E2

1 + 18E1E2 − 116E1E3 − 6E1E4 + 5E2E3)
(v2 − 1)8(v4 + 1)12(v6 − 1)4Φ6(v2)

+
v46(E2E4 − 4E3E4 + 76E1 − 42E2 + 50E3 − 10E4 − 36)

(v2 − 1)8(v4 + 1)12(v6 − 1)4Φ6(v2)
.

It follows that the same expression, where the E is replaced by D, is equal to zero but this
is equal to

(v12−2v10+4v8−2v6+4v4−2v2+1)(v16−v14+2v12−3v10+6v8−3v6+2v4−v2+1)(v16−4v14+8v12−8v10+7v8−8v6+8v4−4v2+1)
v22

This means that one of those three factors must vanish, we therefore treat those three cases
separately.

Cases 1.1.1 : D5 = v12−2v10+4v8−2v6+4v4−2v2+1
v6 = 0. We then define the following elements

in order to get another polynomial in v which will vanish and we will then prove that the two
polynomials obtained this way cannot simultaneously vanish. Let us assume first that p 6= 7.
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D401 = −
1
7

(D1 − (−(v8 + v
−8) + (v6 + v

−6)− (v4 + v
−4) + 6(v2 + v

−2) + 1)D5)

=
v8 + v6 + 2v4 + v2 + 1

v4

= −
1
7

Φ(E1)

D402 =
1
2

(D2 − (v24 + v
−24 − 2(v22 + v

−22 + 4(v20 + v
−20)− 12(v18 + v

−18) + 14(v16 + v
−16)− 22(v14 + v

−14)

+52(v12 + v
−12)− 30(v10 + v

−10) + 55(v8 + v
−8)− 158(v6 + v

−6)− 56(v4 + v
−4)− 118(v2 + v

−2) + 508)D5)

=
479v8 − 598v6 + 311v4 − 598v2 + 479

v4

=
1
2

Φ(E2)

D403 = D3 − (
−(v32 + 1) + (v30 + v2)− (v28 + v4) + 6(v26 + v6)− (v24 + v8) + v22 + v10 − 24(v20 + v12)− 17(v18 + v14) + v16

v16
D5)

=
121v8 − 55v6 + 146v4 − 55v2 + 121

v4

= Φ(E3)
D201 = 479D401 −D402

=
1077v4 + 647v2 + 1077

v2

= Φ(−
479
7
E1 −

1
2
E2)

D202 =
1
24

(121D401 −D403)

=
11v4 + 6v2 + 11

v2

= Φ(−
121
112

E1 −
1
16
E3)

D101 = 7124
v

26(1077D202 − 11D201 + 655)
= 0
= −v26(46013E1 + 7539E3 − 616E2 − 73360)

= 616(v52 + 1)− 1232(v50 + v
2) + 616(v48 + v

4)− 1232(v46 + v
6) + 11235(v44 + v

8)− 20006(v42 + v
10) + 11851(v40 + v

12)

−12467(v38 + v
14) + 84793(v36 + v

16)− 148348(v34 + v
18) + 86025(v32 + v

20)− 77254(v30 + v
22) + 148964(v28 + v

24)

−199634v26

We then let F1 = v6D5 and F2 = −v26(46013E1 + 7539E3 − 616E2 − 73360). Those two
polynomials in v vanish. Let us prove that this is absurd using the Euclidean algorithm.

F3 =
1
24

Rem(F1, F2)

= −1560220v10 − 984236v8 − 1419140v6 − 109343v4 − 108563v2 − 272023
F4 = 225218124312 Rem(F2, F3)

= 2890736267584v8 + 196484466595v6 + 2504145304402v4 − 1211843170318v2 + 887713181987

F5 =
210112372412532510712

5218124312
Rem(F3, F4)

= −108261500375317071v6 − 36647807575597274v4 + 33134576659475654v2 − 32149953533188943

F6 =
321012349210237784558932

210112372412532510712
Rem(F4, F5)

= 20498163516987363083353v4 − 12957989741793097471291v2 + 6283381428888280265305

F7 =
204981635169873630833532

233272101213913492262400449110237784558932
Rem(F5, F6)

= −275631295456v2 + 156402674859

F8 =
210112472166604992

204981635169873630833532
Rem(F6, F7)

= 1.

This leads to the contradiction 1 = 0 if p is different from 7, 11, 37, 41, 47, 53, 101, 139,
181, 349, 431, 51071, 16660499, 262400449, 1023778455893 or 20498163516987363083353. We
are under the assumption that p 6= 7, therefore we first check the other primes. Using GAP4,
we see that F1 and F2 are coprime unless p ∈ {139, 262400449}.
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For p = 139, we have Gcd(F1, F2) = v4 + 82v2 + 1. Let then F13901 = v2 + v−2 + 82 = 0. We
have

D1 = D1 − (−(v12 + v
−12) + 85(v10 + v

−10)− 6976(v8 + v
−8) + 571961(v6 + v

−6)− 46893847(v4 + v
−4)

+3844723522(v2 + v
−2)− 315220434992)F13901 − 185902059153× 139

= 71
= Φ(E1)

= Φ(E1 − (−(v8 + v
−8) + 84(v6 + v

−6)− 6888(v4 + v
−4) + 564733(v2 + v

−2)− 46301220)F13901 − 27306263× 139)
= Φ(21)
= 21.

This implies 71 = 21, therefore 50 = 0 which is a contradiction since p = 139.
For p = 262400449, we have Gcd(F1, F2) = v4 + 144711873v2 + 1. Let then F26240044901 =

v2 + v−2 + 144711873 = 0. We have

D1 = D1 − (−(v12 + v
−12 + 144711876(v10 + v

−10)− 20941526621303754(v8 + v
−8) + 3030487540848227798559380(v6 + v

−6)

−438547528139311032518667960215007(v4 + v
−4) + 63463034196559901414852807139575347118760(v2 + v

−2)
−9183854544847233051891171601164688387512952822508)F26240044901

−5064826670873590871335015289738121630701687311347× 262400449
= 19405199
= Φ(E1)

= Φ(E1 − (−(v8 + v
−8) + 144711875(v6 + v

−6)− 20941526476591875(v4 + v
−4) + 3030487519906700743120001(v2 + v

−2)
−438547525108823428845860731880000)F26240044901 − 241855659926909504463506824998245× 262400449)

= Φ(212787997)
= 212787997.

This implies 212787997 = 19405199, therefore 193382798 = 0 which is a contradiction since
p = 262400449.

The only remaining prime is p = 7. We have

D1 = D1 − (−(v8 + v
−8) + (v6 + v

−6)− (v4 + v
−4) + 6(v2 + v

−2) + 1)D5

= −
7(v8 + v6 + 2v4 + v2 + 1)

v4

= 0.

This leads to a contradiction because we have proven that D1 6= 0. This concludes the proof
of case 1.1.1.

Case 1.1.2 : D6 = v16−v14+2v12−3v10+6v8−3v6+2v4−v2+1
v8 = 0.

We then have
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D601 = D1 − (−(v6 + v
−6) + 2(v4 + v

−4)− 3(v2 + v
−2) + 4)D6

=
2(2v12 − 4v10 + 6v8 − 7v6 + 6v4 − 4v2 + 2)

v6

= Φ(E1)

D602 = D2 − (v22 + v
−22 − 3(v20 + v

−20) + 7(v18 + v
−18)− 14(v16 + v

−16) + 19(v14 + v
−14)− 27(v12 + v

−12) + 37(v10 + v
−10)

−48(v8 + v
−8) + 74(v6 + v

−6)− 82(v4 + v
−4) + 70(v2 + v

−2)− 52)D6

= −
2(24v12 − 16v10 − 24v8 + 63v6 − 24v4 − 16v2 + 24)

v6

= Φ(E2)

D603 = D3 − (−(v14 + v
−14) + 2(v12 + v

−12)− 3(v10 + v
−10) + 4(v8 + v

−8)− (v6 + v
−6) + 2(v4 + v

−4)− 7(v2 + v
−2) + 12)D6

= −
2(6v12 − 4v10 − 6v8 + 15v6 − 6v4 − 4v2 + 6)

v6

= Φ(E3)
D404 = −12D601 −D602

=
2(32v8 − 96v6 + 147v4 − 96v2 + 32)

v4

= Φ(−12E1 − E2)
D405 = −3D601 −D603

=
8(2v8 − 6v6 + 9v4 − 6v2 + 2)

v4

= Φ(−3E1 − E3)
D102 = D404 − 4D405 − 6

= 0
= Φ(−E2 + 4E3 − 6)

= −Φ(
(v6 − 1)(v10 − 1)(v8 + 1)2(v2 − 1)2(v8 − v5 + v3 + 1)(v8 + v5 − v3 + 1)

v26
)

Since Φ is an automorphism, we have that G2 = (v8 − v5 + v3 + 1)(v8 + v5 − v3 + 1) = 0.
We also have by assumption G1 = v6D6 = 0. The Euclidean remainder of the division of G1
by G2 as polynomials in v is equal to −v2(v6− 1)Φ6(v2)(v2− 1)2. This leads to a contradiction
by the assumptions on α since α = v2.

Case 1.1.3 : D7 = v16−4v14+8v12−8v10+7v8−8v6+8v4−4v2+1
v8 = 0.

Assume first p /∈ {11, 13}. We now define new quantities which will permit us to find
polynomials which vanish in v.
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D604 = D1 − (−v6 − v−6 − v4 − v−4 − 3(v2 + v
−2) + 2)D7

= −
13v12 − 23v10 + 23v8 − 16v6 + 23v4 − 23v2 + 13

v6

= Φ(E1)

D605 = D2 − (v22 + v
−22 + 4(v18 + v

−18)− 6(v16 + v
−16)− v14 − v−14 − 32(v12 + v

−12)− 7(v10 + v
−10)− 10(v8 + v

−8)

+137(v6 + v
−6) + 232(v4 + v

−4) + 331(v2 + v
−2)− 158)D − 7

= −
476v12 − 751v10 + 838v8 − 645v6 + 838v4 − 751v2 + 476

v6

= Φ(E2)

D606 = D3 − (−v14 − v−14 − v12 − v−12 − 3(v10 + v
−10) + 2(v8 + v

−8) + 8(v6 + v
−6) + 26(v4 + v

−4) + 28(v2 + v
−2)− 2)D7

= −
149v12 − 271v10 + 283v8 − 208v6 + 283v4 − 271v2 + 149

v6

= Φ(E3)

D607 = D
2
1 − (v20 + v

−20 − 2(v18 + v
−18) + 7(v16 + v

−16)− 18(v14 + v
−14) + 24(v12 + v

−12)− 62(v10 + v
−10) + 77(v8 + v

−8)

−82(v6 + v
−6) + 224(v4 + v

−4)− 30(v2 + v
−2) + 207)D7

= −
476v12 − 751v10 + 838v8 − 645v6 + 838v4 − 751v2 + 476

v6

= Φ(E2
1)

D406 = 1697D604 + 13D605

=
3245v8 − 4025v6 + 3736v4 − 4025v2 + 3245

v4

= Φ(1697E1 + 13E2)

D407 =
1
4

(149D604 + 13D606)

=
24v8 − 63v6 + 80v4 − 63v2 + 24

v4

=
1
4

Φ(149E1 + 13E3)

D408 = −13D605 − 476D604

=
1185v8 − 54v6 − 769v4 − 54v2 + 1185

v4

= Φ(−13E2
1 − 476E1)

D203 =
1
13

(24D406 − 3245D407)

=
8295v4 − 13072v2 + 8295

v2

= Φ(−
24661

4
E1 + 24E2 −

3245
4

E3)

D204 =
1

32111131
(−1185D407 + 24D408)

=
57v4 − 88v2 + 57

v2

= Φ(−
395

2231111
E3 −

5699
2231111

E1 −
8

31111
E

2
1)

D103 = 57D203 − 8295D204 + 15144
= 0

= Φ(
73822

11
E1 + 1368E2 −

235610
11

E3 +
22120

11
E

2
1 + 15144)

= Φ(
2

11v26
(7524v36 − 45144v34 + 127908v32 − 214660v30 + 262569v28 − 329886v26 + 445989v24 − 513465v22 + 494686v20

−471434v18 + 494686v16 − 513465v14 + 445989v12 − 329886v10 + 262569v8 − 214660v6 + 127908v4 − 45144v2 + 7524)

(v16 + 4v14 + 8v12 + 8v10 + 7v8 + 8v6 + 8v4 + 4v2 + 1)).

It follows that one of the two factors inside the last expression vanishes. We separate the
two possibilities in order to make the computations easier.

Case 1.1.3.1 : H2 = v16 + 4v14 + 8v12 + 8v10 + 7v8 + 8v6 + 8v4 + 4v2 + 1 = 0. We set
H1 = v6D7 = 0. We then use the Euclidean algorithm to obtain a contradiction.
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H3 = −1
8 Rem(H1, H2) = v14 + 2v10 + 2v6 + v2

H4 = Rem(H2, H3) = 6v12 + 5v8 + 7v4 + 1
H5 = 6 Rem(H3, H4) = 7v10 + 5v6 + 5v2

H6 = 7 Rem(H4, H5) = 5v8 + 19v4 + 7
H7 = 5 Rem(H5, H6) = −108v6 − 24v2

H8 = 9 Rem(H6, H7, v) = 161v4 + 63
H9 = 23 Rem(H7, H8, v) = 420v2

H10 = 1
3271 Rem(H8, H9, v) = 1.

For p = 23, we get H8 = 63 = 17 6= 0, therefore for any prime different from 7, we get
a contradiction. Using GAP4, we get for p = 7 that Gcd(H1, H2) = v4 + 1, which is also a
contradiction.

Case 1.1.3.2 : I2 = 7524(v36 + 1)− 45144(v34 + v2) + 127908(v32 + v4)− 214660(v30 + v6) + 262569(v28 + v8)− 329886(v26 + v10) +

445989(v24 + v12)− 513465(v22 + v14) + 494686(v20 + v16)− 471434v18 = 0. We set again I1 = v6D7. We then prove that
0 = 1 for most primes using the Euclidean algorithm

I3 = Rem(I2, I1)

= 214002v14 − 916685v12 + 1035136v10 − 754561v8 + 879809v6 − 1139783v4 + 640260v2 − 178015

I4 = 223813212 Rem(I1, I3)

= 200475369505v12 − 267706231982v10 + 178081604207v8 − 175843177159v6 + 298516540603v4 − 183940914006v2 + 56598272159

I5 =
52137290023232512

223813212
Rem(I3, I4)

= 2229625335992657v10 − 5627663796526377v8 + 6805441741717849v6 − 3483903150258508v4 + 844734325177536v2

+92479019896356

I6 =
31238947196321846692

52137290023232512
Rem(I4, I5)

= 20737893552210092217v8 − 72972566540716005022v6 + 73587018705359365791v4 − 34948076592200136378v2

+5778167564925374963

I7 =
32232292103637648936582172

7111131238947196321846692
Rem(I5, I6)

= 7525561044044520343864v6 − 8534947218256775108025v4 + 4450478132504667710979v2 − 590406861955024796687

I8 =
26149734405326282424728112

32232292103637648936582172
Rem(I6, I7)

= 689630866150855463473281v4 − 536688784588813135219275v2 + 249996942573872461979743

I9 =
31792599418320761723248544312

27103115907362824247281121497344053290023
Rem(I7, I8)

= −343470144464v2 + 361073206339

I10 =
28214668840292

792599418320761723248544312
Rem(I8, I9)

= 1.

This leads to a contradiction if p is different from 7, 23, 29, 31, 79, 103, 137, 1321, 3251,
90023, 159073, 184669, 4854431, 10363764893658217, 1497344053, 21466884029, 389471963,
599418320761723 and 628242472811. We check using GAP4 that I1 and I2 remain coprime
except for p ∈ {7, 103, 90023, 159073}.

For p = 7, we have Gcd(I1, I2) = v8 + v6 + 4v4 + v2 + 1 = (v2 + v − 1)2(v2 − v − 1)2.
If v2 = 1 − v, then v4 = 1 + v2 − 2v = 2 − 3v, v8 = 4 + 9v2 − 12v = 13 − 21v = 13 = −1

and v16 = 1, which contradicts the fact that α is of order not dividing 8.
If v2 = v + 1, then v4 = v2 + 2v + 1 = 2 + 3v, v8 = 4 + 9v2 + 12v = 13 + 21v = 13 = −1,

v16 = 1, which is a contradiction.
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For p = 103, we have Gcd(I1, I2) = v4 +60v2 +1. Let then I10301 = v4+60v2+1
v2 . We then have

D1 = D1 − (−v12 − v−12 + 63(v10 + v
−10)− 3786(v8 + v

−8) + 227111(v6 + v
−6)− 13622895(v4 + v

−4) + 817146618(v2 + v
−2)

−49015174220)I10301 − 28536661747× 103
= 61
= Φ(E1)

= Φ(E1 − (−v8 − v−8 + 62(v6 + v
−6)− 3720(v4 + v

−4) + 223139(v2 + v
−2)− 26692311)I10301 − 7792534× 103)

= Φ(44)
= 44.

This would imply 17 = 0 which is absurd since p = 103.
For p = 90023, we have Gcd(I1, I2) = v4 + 18030v2 + 1. Let then I9002301 = v4+18030v2+1

v2 . We
then have

D1 = D1 − (−v12 − v−12 + 18033(v10 + v
−10)− 325134996(v8 + v

−8) + 5862183959861(v6 + v
−6)− 105695176471158855(v4 + v

−4)

+1905684025912810195818(v2 + v
−2)− 34359482881512791359439720)I9002301 − 6881591066086528735823931× 90023

= 19589
= Φ(E1)

= Φ(E1 − (−v8 − v−8 + 18032(v6 + v
−6)− 325116960(v4 + v

−4) + 5861858770769(v2 + v
−2)− 105689313311848112)I9002301

−21167682784276284× 90023)
= Φ(3294)
= 3294.

This would imply that 16295 = 0 which is absurd since p = 90023.
For p = 159073, we have Gcd(I1, I2) = v4 + 69018v2 + 1. Let then I15907301 = v4+69018v2+1

v2 .
We then have

D1 = D1 − (−v12 − v−12 + 69021(v10 + v
−10)− 4763691384(v8 + v

−8) + 328780451871905(v6 + v
−6)

−22691769222531447927(v4 + v
−4) + 1566140527871895021153810(v2 + v

−2)
−108091886929970681347462210688)I15907301 − 46898504768253791840823752710× 159073

= 118972
= Φ(E1)

= Φ(E1 − (−v8 − v−8 + 69020(v6 + v
−6)− 4763622360(v4 + v

−4) + 328775687973461(v2 + v
−2)

−22691440427788708940)I15907301 − 9845277544193984759× 159073)
= Φ(105595)
= 105595.

This would imply that 13377 = 0, which is absurd since p = 159073.
It now only remains to consider p ∈ {11, 13} to conclude Case 1.1.3.
Assume first p = 13. We have, using the same notations as before, that 24D406−3245D407 =

0 = Φ(24E1 − 3245E2). Therefore H1301 = v26(24E1 − 3245E2) = 0. We let H1302 = v8D7 = 0.
We then have using GAP4 that Gcd(H1301, H1302) = 1 which leads to a contradiction.

Assume now p = 11. We have, using the same notations as before, that −1185D407 +
24D408) = 0 = Φ(−1185E2 + 24E3). Therefore H1101 = v26(−1185E2 + 24E3) = 0. We let
H1102 = v8D7 = 0. We then have using GAP4 that Gcd(H1101, H1102) = 1 which leads to a
contradiction.

Case 1.2 : D3 = Tr([u1, n
2
1]) = −Φ(Tr([u2, n

2
2])) = −Φ(E3).

We haveD3E3D1E1 6= 0, therefore in this case, we have χ([u′,m′2]) = −1 and χ([u′,m′]) = 1.
Therefore χ([u′,m′][u′,m′2]) = −1. It follows that

D8 = Tr([u1, n1][u1, n
2
1]) = −Φ(Tr([u2, n2][u2, n

2
2])) = −Φ(E8).
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We then have 0 = D1D3 − D8 − D1 = Φ(−E1E3 + E8 − E1) = 2Φ(E1). It follows that
E1 = 0, which is absurd by what was proven before case 1.

Case 2 : D1 = −Φ(E1).
Case 2.1 : D3 = Φ(E3).
This is the worst case in terms of computations, we will not write all the polynomials

appearing because their degree can be very high. We will give all the necessary elements to
consider and the final results of the computations. We have 2 − E1 = (v10−1)(v6−1)(v2−1)2

v10 6= 0,
therefore D1 +2 = Φ−1(2−E1) 6= 0. The elements defined in subsection 10.3.2 of the Appendix
and the corresponding computations then lead us to the contradiction 1 = 0 except for the
primes which we needed to invert in order to do the computations. We check using GAP4 that
v86D13 and v70D12 are coprime for the primes p we inverted in the computations. It is true
except for p ∈ {7, 17, 43, 79, 1013, 1747}.

For p = 7, we have Gcd(v86D13, v
70D12) = (v2 + v − 1)3(v2 − v − 1)3(v8 + v6 − v4 + v2 + 1),

therefore v8 + v6 − v4 + v2 + 1 = 0, because (v2 + v − 1)(v2 − v − 1) = 0 would imply v16 = 1
as we have seen in case 1.1.3.2. Let now K701 = v8+v6−v4+v2+1

v4 . We then have

D1 = D1 − (−(v10 + v
−10 + 4(v8 + v

−8)− 12(v6 + v
−6) + 31(v4 + v

−4)− 67(v2 + v
−2) + 135)K701 = −

7(27v4 − 35v2 + 27)
v2

= 0.

This is absurd because we proved that we cannot have D1 = 0.
For p = 17, we have Gcd(v86D13, v

70D12) = Φ6(α) 6= 0, which is a contradiction.
For p = 43, we have Gcd(v86D13, v

70D12) = v4 + 10v2 + 1. We then set K4301 = v4+10v2+1
v2 .

We have

D1 = D1 − (−(v12 + v
−12 + 13(v10 + v

−10)− 136(v8 + v
−8) + 1361(v6 + v

−6)− 13495(v4 + v
−4)

+133618(v2 + v
−2)− 1322720)K4301 − 301395× 43

= 17
= −Φ(E1)

= −Φ(E1 − (−(v8 + v
−8) + 12(v6 + v

−6)− 120(v4 + v
−4) + 1189(v2 + v

−2)− 11772)K4301 − 2682× 43)
= −Φ(20)
= −20.

This implies that 37 = 0 which is a contradiction because p = 43.
For p = 79, we have Gcd(v86D13, v

70D12) = v4 + 4v2 + 1. Let K7901 = v4+4v2+1
v2 , we then

have a contradiction because

D1 = D1 − (−(v12 + v
−12) + 7(v10 + v

−10)− 34(v8 + v
−8) + 143(v6 + v

−6)− 559(v4 + v
−4) + 2122(v2 + v

−2)− 7964)K7901 − 350× 79 = 0.

For p = 1013, we have Gcd(v86D13, v
70D12) = v4 + 179v2 + 1. Let K101301 = v4+179v2+1

v2 , we
have

D1 = D1 − (−(v12 + v
−12) + 182(v10 + v

−10)− 32584(v8 + v
−8) + 5832368(v6 + v

−6)− 1043961309(v4 + v
−4)

+186863241972(v2 + v
−2)− 33447476351714)K101301 − 5909895893852× 1013

= 824
= −Φ(E1)

= −Φ(E1 − (−(v8 + v
−8) + 181(v6 + v

−6)− 32399(v4 + v
−4) + 5799241(v2 + v

−2)− 1038031742)K101301 − 183411730× 1013)
= −Φ(850)
= 163.
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This would imply that 661 = 0 which is absurd because p = 1013.
For p = 1747, we have Gcd(v86D13, v

70D12) = v4 + 482v2 + 1. Let K174701 = v4+482v2+1
v2 , we

have

D1 = D1 − (−v12 − v−12 + 485(v10 + v
−10)− 233776(v8 + v

−8) + 112679561(v6 + v
−6)− 54311314647(v4 + v

−4)

+26177940980322(v2 + v
−2)− 12617713241200592)K174701 − 3481216614983814× 1747

= 1680
= −Φ(E1)

= −Φ(E1 − (−(v8 + v
−8) + 484(v6 + v

−6)− 233288(v4 + v
−4) + 112444333(v2 + v

−2)− 54197935220)K174701 − 14953165361× 1747)
= −Φ(1711)
= 36

This would imply 1644 = 0 which is absurd because p = 1747. This shows that Case 2.1 is
absurd.

Case 2.2 : D3 = −Φ(E3).
We then have D8 = Tr([u1, n1][u1, n

2
1]) = Φ(E8) = Φ(Tr([u2, n2][u2, n

2
2]). We have as in case

1.2, D1D3−D8−D1 = 0 = Φ(E1E3−E8 +E1) and E1E3−E8−E1 = 0, therefore Φ(2E1) = 0
and E1 = 0 which is absurd.

We have proven (π1 × π2)([N ′1, N ′1]) = SL2(q) × SL2(q). We now want to determine (π1 ×
π2)(N ′1). Since det(u1) = det(u2) = det(n1) = 1 and det(n2) = 1

v8 , we have that det((π1 ×
π2)(N ′1)) '< v8 >' Z/ o(α)

Gcd(o(α),4)Z, where o(α) is the order of α. Since (π1 × π2)(N ′1) ≤
SL2(q)×GL2(q), we have that the kernel of the determinant is contained in SL2(q)×SL2(q) and
since (π1×π2)([N ′1, N ′1]) = SL2(q)×SL2(q), we get that the kernel is equal to SL2(q)×SL2(q).
This shows that it is a normal subgroup of (π1×π2)(N ′1), the resulting quotient is a cyclic group
of order o(α)

Gcd(o(α),4) . It follows that N ′1 ' (SL2(q) × SL2(q)).Z/ o(α)
Gcd(o(α),4)Z, where this denotes

an extension which may be split.
Recall now that H = (XP )ρ8r(AA2)(XP )−1 ' SL2(q), N1 ' N ′1 and N1 ≤ CG(H). It

follows that the order |HN1| is equal to |H||N1|
|H∩N1| . The intersection of H and N1 is at most

Z/2Z. By noting that R−1


−I2 0 0 0

0 I2 0 0
0 0 −I2 0
0 0 0 I2

R =


−I2 0 0 0

0 I2 0 0
0 0 −I2 0
0 0 0 I2

 ∈ N ′1, we get that the
intersection is exactly Z/2Z. It follows that the order of HN1 is equal to 1

2 |SL2(q)3| o(α)
Gcd(o(α),4) =

1
2 Gcd(o(α),4)q

3(q2−1)3o(α). Assume now that we are in the fourth case of Theorem 2.3.3, we would
have G ' 2·Ω7(q). It would follow that 1

2 Gcd(o(α),4)q
3(q2 − 1)3o(α) divides 2q9(q2−1)(q4−1)(q6−1)

Gcd(2,q−1) =
q9(q2 − 1)3(q2 + 1)(q4 + q2 + 1). We would then have that o(α) divides 2 Gcd(o(α), 4)(q2 +
1)(q4 + q2 + 1) which divides 8(q2 + 1)(q4 + q2 + 1). Since o(α) divides q2−1, q2 + 1 = q2−1 + 2
and q4 + q2 + 1 = q4 − 1 + q2 − 1 + 3, we would have o(α) divides 48 which contradicts our
assumptions on α.

Assume now that Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α + α−1). We have, by Table 8.3 and

Proposition 8.1.4, that ρ8r(AH3) ' SU4(q). It follows that G is again an irreducible group
generated by long root elements. By Propositions 6.1 and 6.2, we have that G ≤ Ω+

8 (q), up
to conjugation in GL8(q2). It follows by Theorem 2.3.3 that G is isomorphic to one of the
following groups

187



1. Ω+
8 (q)

2. Ω−8 (√q)

3. SU4(q)

4. G/Z(G) = PΩ7(q), Z(G) = 2

5. 3D4( 3
√
q)

By Lemma 3.5 of [11], we again have ρ8r(AA2,1) ' SL2(q), where AA2,1 =< S2, S3 >. This
proves that we again have a subgroup of G of order 1

2 Gcd(o(α),4)q
3(q2 − 1)3o(α). This excludes

the fourth case by the same arguments as before. We also have that G contains a subgroup of
order equal to q6(q2 − 1)(q3 + 1)(q4 − 1).

Assume now by contradiction that G ' Ω−8 (√q). We then have |G| = q6(q2 + 1)(q− 1)(q2−
1)(q3− 1). It then follows that (q2− 1) divides 8(q2 + 1)(q2− q+ 1). We then have that q2− 1
divides 8(q2 + 1)(q2 − q + 1)− 8(q2 − 1)(q2 − q + 1) = 16(q2 − q + 1), therefore q2 − 1 divides
−16(q2 − q + 1) + 16(q2 − 1) = 16(q − 2) = 16q − 32. We have 16q − 32 < q2 − 1 if q ≥ 16,
therefore q ≤ 15. By the conditions on α and p, this is absurd.

Assume now by contradiction that G '3D4( 3
√
q). We then have |G| = 3

√
q12( 3
√
q8 + 3

√
q4 +

1)( 3
√
q6 − 1)( 3

√
q2 − 1). This is absurd because q6 does not divide q4.

Assume now by contradiction that G ' SU4(q). We then have |G| = q6(q2 − 1)(q3 +
1)(q4 − 1). It follows that (q2 − 1) divides 8(q3 + 1)(q2 + 1). This implies that (q2 − 1)
divides 8(q3 + 1)(q2 + 1) − 8(q3 + 1)(q2 − 1) = 16(q3 + 1). We then have that q2 − 1 divides
16(q3 + 1) − 16(q3 − q) = 16(q + 1). It follows that q − 1 divides 16 which is absurd by the
conditions on α and p.

This proves that we also have G ' Ω+
8 (q) when Fq2 = Fp(

√
α) 6= Fp(α) = Fp(α + α−1).

Assume now that Fq = Fp(
√
α) = Fp(α) 6= Fp(α+α−1). Let ε be the unique automorphism

of order 2 of Fq. We have ε(α) = α−1. It follows by Proposition 2.1.2 that ε ◦ ρ8r|AH4
' ρ8r|AH4

or ε ◦ ρ8r|AH4
' ρ8rr|AH4

. We have

Tr(ρ8r(S1S3S
−1
2 S−1

4 )) = α2 + α−2 − 5(α + α−1) + 8 (8.1)
ε(Tr(ρ8r(S1S3S

−1
2 S−1

4 ))) = α2 + α−2 − 5(α + α−1) + 8 (8.2)
Tr(ρ8rr(S1S3S

−1
2 S−1

4 )) = α2 + α−2 − 5(α + α−1) + 7 (8.3)

It follows that ε ◦ ρ8r|AH4
' ρ8r|AH4

. We then have by Proposition 4.1 of [12] that up to
conjugation in GL8(q), we have G ≤ Ω+

8 (q 1
2 ). By Proposition 8.1.4, we have that ρ8r(AH3) '

SU4(q 1
2 ) or ρ8r(AH3) ' SL4(q 1

2 ). The computations in the first case show here that G contains
a subgroup of order divisible by 1

2 |SL2(q 1
2 )3| o(α)

Gcd(o(α),4) . By the same arguments as for the case
Fp(α) = Fp(α + α−1), we have that G ' Ω+

8 (q 1
2 ).

8.4 Triality automorphism and the two 8-dimensional
representations

The two 8-dimensional representations being linked through triality, we first recall a few facts
about triality and we will then determine the image of the Artin group inside ρ8r × ρ8rr . We
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use the following notations, definitions and results of [13]. This phenomenon was also observed
in the generic case in Proposition 6.7 of [34].

Definition 8.4.1. Let A =
(

0 I4
I4 0

)
. The simple Lie algebra L of type D4 over C is the matrix

algebra {T ∈ M8(C),tTA + AT = 0}. We write (Ei,j)1≤i,j≤4 the basis of elementary matrices
ofM8(C).

Its Cartan decomposition is given by L = h⊕ ⊕
r∈Φ

Lr, where Φ = {±εi ± εj, 1 ≤ i < j ≤ 4},
for 1 ≤ i < j ≤ 4,

1. eεi−εj = Ei,j − E4+j,4+i,

2. eεj−εi = E4+i,4+j + Ej,i,

3. eεi+εj = Ei,4+j − Ej,4+i,

4. e−εi−εj = −E4+i,j + E4+j,i.

Lr = Cer and h =






λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 0

0


−λ1 0 0 0

0 −λ2 0 0
0 0 −λ3 0
0 0 0 −λ4




, (λ1, λ2, λ3, λ4) ∈ C4


.

We let r1 = −ε1 − ε2, r2 = ε1 − ε2, r3 = ε2 − ε3 and r4 = ε3 − ε4 be the positive simple roots
of Φ and π = {r1, r2, r3, r4}. They correspond to the following Dynkin diagram

r1

r2

r3 r4

The 24 roots can then be expressed in terms of r1, r2, r3 and r4. We list here the twelve
positive roots : r1, r2, r3, r4, r1 + r3, r2 + r3, r3 + r4, r1 + r2 + r3, r1 + r3 + r4, r2 + r3 + r4,
r1 + r2 + r3 + r4, r1 + r2 + 2r3 + r4.

We have then fixed the constant structures {Nr,s, r, s ∈ Φ, r + s ∈ Φ}, which are defined by
the relation [er, es] = Nr,ser+s. They have the following values :
Nr1,r3 = Nr2,r3 = Nr3,r4 = Nr1+r3,r4 = Nr1+r3,r2 = Nr2+r3,r4 = Nr1,r3+r4 = Nr2+r3,r1 = Nr2,r3+r4 =
Nr2+r3+r4,r1 = Nr1+r3+r4,r2 = Nr1+r2+r3,r4 = Nr1+r2+r3+r4,r3 = 1.

We get the remaining ones using the facts that Ns,r = −Nr,s and N−r,−s = −Nr,s.
We write LZ = VectZ(hr, r ∈ π, es, s ∈ Φ}. We then call (hr, r ∈ π, es, s ∈ Φ) the Chevalley

basis of L.
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For an element x ∈ L, we write ad(x) : L→ L, ad(x)(y) = [x, y] = xy−yx. For each r ∈ Φ,
since ad(er) is a nilpotent endomorphism, we can define an element xr(t) of EndQ[[t]](LZ ⊗Z
Q[[t]]) by xr(t) = exp(t ad(er)). We check on the Chevalley basis that xr(t) is actually an
element of GLZ[t](LZ ⊗Z [t]).

We write LFq = Fq ⊗ LZ. For an element u ∈ Fq, let θu be the morphism from Z[t] to Fq
by θu(k) = k and θu(t) = u. We can extend θu to a morphism θ̃u from GLZ[t](LZ ⊗Z [t]) to
Aut(LFq). We then define for r ∈ Φ and u ∈ Fq the elements xr(u) = θ̃u(xr(t)) ∈ Aut(LFq).

The adjoint Chevalley group L(Fq) is then defined to be < xr(u), r ∈ Φ, u ∈ Fq >.

We now determine an isomorphism between the Chevalley group L(Fq) and PΩ+
8 (q), it can

be found in [13]. We have the following classical lemma

Lemma 8.4.1. Let A be a matrix algebra over Fq with Lie bracket defined the usual way. We
then have that for any nilpotent matrix y and any matrix x,

exp(ad(y))(x) = exp(y)x exp(y)−1.

Proposition 8.4.1. We have PΩ+
8 (q) ' L(Fq).

Proof. The group Ω+
8 (q) is generated by long root elements which are elements of the form

I8 + uer with r ∈ Φ and u ∈ Fq (See for example [46] 3.7.3). Since e2
r = 0, we have exp(uer) =

I8 + uer. We define the morphism Ψ from Ω+
8 (q) to L(Fq) on those generators by

Ψ(I8 + uer) = (x 7→ (I8 + uer)x(I8 + uer)−1 = exp(uer)x exp(uer)−1 = exp(ad(uer))(x), where
the last equality follows from Lemma 8.4.1.

We then have Ψ(I8 +uer) = xr(u), therefore the morphism is surjective. Let y ∈ ker(Ψ), we
have yxy−1 = x for all x ∈ LFq , therefore y ∈ F?qI8, where F?q is the group of invertible elements
of Fq. It follows that ker(Ψ) = Z(Ω+

8 (q)) and we get the desired isomorphism.

We now recall Proposition 12.2.3. of [13].

Proposition 8.4.2. Suppose all the roots of L have the same length and let r 7→ τ(r) be a
map of Φ into itself arising from a symmetry of the Dynkin diagram of L. Then there exists
numbers γr = ±1 such that the map xr(u) 7→ xτ (r)(γru) can be extended to an automorphism
of L(K). The γr can be chosen, therefore that γr = 1 for all r ∈ π ∪ −π. For r = r1 + r2, we
have γr = γr1γr2Nτ(r1),τ(r2)

Nr1,r2
.

We now apply this proposition with τ the following triality automorphism of the Dynkin
diagram of type D4

r1

r2

r3 r4

τ
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We choose as in the proposition γr = 1 for all r ∈ π ∪ −π. We can then compute the
remaining γr using the induction relation in the proposition. We get
−γr1+r3 = γr2+r3 = −γr3+r4 = 1,

γr1+r2+r3 = γr2+r3+r4 = γr1+r3+r4 = γr1+r2+r3+r4 = γr1+r2+2r3+r4 = 1. For the negative roots, we
use the fact that γ−r = γr for all r ∈ Φ.

We write in the following Tr(u) = I8 + uer. By Proposition 8.4.1, we get an isomorphism of
PΩ+

8 (q) defined on the generators Tr(u) by τ(Tτ(r)(γru)).

Proposition 8.4.3. Assume Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1). Let G = ρ8r × ρ8rr(AH4).

We have that τ ◦ ρ8rr|AH4
' ρ8r|AH4

.
If Fq = Fp(α) = Fp(α + α−1), then G ' Spin+

8 (q).
If Fq = Fp(α) 6= Fp(α + α−1), then G ' Spin+

8 (q 1
2 ).

Proof. Let us first show the first statement. By [36], we have that AH4 is generated by u0 =
Ts1T

−1
s2 , u1 = Ts2Ts1T

−2
s2 , u2 = T 2

s2Ts1T
−3
s2 , u3 = T 3

s2Ts1T
−4
s2 , u4 = Ts3T

−1
s1 and u5 = Ts4T

−1
s1 . We

want to consider the image of ρ8(ui) under the triality isomorphism for all i ∈ [[0, 5]]. We first
have to write those elements as products of the generators Tr(u). We order lexicographically
the vertices {xi, i ∈ [[1, 8]]} and {yi, i ∈ [[1, 8]]} of the graphs of 8r and 8rr respectively, i.e.
I(x1) = I(y1) = {s1}, I(x2) = I(y2) = {s2}, I(x3) = I(y3) = {s1, s3}, I(x4) = I(y4) = {s2, s3},
I(x5) = I(y5) = {s1, s4}, I(x6) = I(y6) = {s2, s4}, I(x7) = I(y7) = {s1, s3, s4} and I(x8) =
I(y8) = {s2, s3, s4}.

By Theorem 6.2, we have that for all i ∈ [[0, 5]], Pρ8r(ui)P−1 = tρ8r(ui)−1 and

Pρ8rr(ui)P−1 = tρ8rr(ui)−1, where P =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


.

In order to write those elements in terms of the generators, we first need to work in the

right basis. Let M =



0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, we then have

A(Mρ8r(ui)M−1)A−1 =t (Mρ8r(ui)M−1)−1

and
A(Mρ8rr(ui)M−1)A−1 =t (Mρ8r(ui)M−1)−1

, where A =
(

0 I4
I4 0

)
as in Definition 8.4.1.
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Let now Ui = Mρ8rr(ui)M−1 and Ũi = Mρ8r(ui)M−1 for all i ∈ [[0, 5]]. We check that
τ(Ui) = Ũi for all i ∈ [[0, 5]] by explicit computations given in subsection 10.3.3 of the Appendix.

This proves that τ ◦ ρ8r |AH4 ' ρ8rr |AH4 .
It follows that if Fp(α) = Fp(α + α−1) then ρ8rr(AH4) ' Ω+

8 (q) and if Fp(α) 6= Fp(α + α−1)
then ρ8rr(AH4) ' Ω+

8 (q 1
2 ) since it is generated by long root elements and irreducible.

Assume now that Fq = Fp(α) = Fp(α + α−1). We now want to use Goursat’s Lemma (see
Lemma 3.3.1). We consider G as a subgroup of Ω+

8 (q)×Ω+
8 (q). We write π1 the projection upon

the first factor and π2 the projection upon the second factor. We write K1 = π1(G) ' Ω+
8 (q),

K2 = π2(G) ' Ω+
8 (q), K1 = ker(π2) and K2 = ker(π1). By Goursat’s Lemma, there exists an

isomorphism ϕ such that G = {(x, y) ∈ K1 ×K2, ϕ(xK1) = ϕ(yK2)}.
Let x ∈ ker(π1), we have π1(x) = I8. We know that projectively, we have τ(π1(x)) = π2(x),

therefore π2(x) = I8 and π2(x) ∈ {±I8}.
This proves that K2 ≤ {I8} × {±I8} and K1 ≤ {±I8} × {I8}.
We have ρ8r((Ts1Ts3Ts2Ts4)15(Ts1Ts3Ts2)−20) = I8 = −ρ8rr((Ts1Ts3Ts2Ts4)15(Ts1Ts3Ts2)−20).

It follows that I8 × (−I8) ∈ G, therefore K2 = I8 × (−I8) and K2/K
2 ' PΩ+

8 (q). This implies
that K1/K

1 ' PΩ+
8 (q) and K1 = (−I8)× I8.

For every x ∈ K1, we have exactly two elements of K2 such that ϕ(x) = y. This implies
that |G| = 2|Ω+

8 (q)|. We also know that for all x ∈ Ω+
8 (q), there exists yx ∈ Ω+

8 (q) such that
τ(x) = yx and (x, yx) ∈ G. We know there exists h ∈ AH4 such that

x = ρ8r(h)ρ8r((Ts1Ts3Ts2Ts4)15(Ts1Ts3Ts2)−20)

, therefore
(x, ρ8rr(h)ρ8rr((Ts1Ts3Ts2Ts4)15(Ts1Ts3Ts2)−20)) = (x,−yx) ∈ G.

This proves that G contains {(x, y) ∈ K1 ×K2, τ(x) = y}. It follows using the cardinality of
those two sets that G = {(x, y) ∈ K1 ×K2, τ(x) = y}.

We also have that the center Z(G) of G is equal to {±I8}×{±I8} since this group is included
in G and Z(Ω+

8 (q)) = {±I8}. It follows that G/Z(G) = {(x, τ(x)), x ∈ Ω+
8 (q)} ' PΩ+

8 (q).
We also have that G has two normal subgroups Z1 and Z2 of order 2, Z1 = {±I8} × {I8}

and Z2 = {I8}× {±I8} such that G/Z1 ' G/Z2 ' Ω+
8 (q). This proves that G is a double cover

of Ω+
8 (q).
We recall here the definitions of a central extension and of a universal central extension from

[5]. A central extension of a group Γ is a pair (H, π), where H is a group and Π : H → Γ is a
surjective homomorphism with ker(π) ≤ Z(H). A morphism α : (Γ1, π1) → (Γ2, π2) of central
extensions of Γ is a group homomorphism α : Γ1 → Γ2 with π1 = π2α. A central extension
(Γ̃, π) of Γ is universal if for each central extension (H, σ) of G there exists a unique morphism
α : (Γ̃, π) → (H, σ) of central extensions. By [5] (33.1), there exists at most one universal
central extension of a group Γ. By [5] (33.4), any perfect group posseses a universal central
extension. The universal central extension Γ̃ is then called the universal covering group of Γ
and ker(π) is the Schur multiplier of Γ.

We now show that G is the universal covering group of PΩ+
8 (q). We have by [21] (Theorem

6.1.4 and Table 6.1.2) that the Schur multiplier of PΩ+
8 (q) is (Z/2Z)2. By Theorem 1.10.7 of

[21], we have that the universal cover of PΩ+
8 (q) is Spin+

8 (q).
By [36], AH4 is perfect, it follows that G is perfect. We have shown above that G/Z(G) '

PΩ+
8 (q), this proves that G is a perfect central extension of G. We have Z(G) ' (Z/2Z)2
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therefore |G| = |Spin+
8 (q)|. By [5] (33.8), there exists an onto morphism from Spin+

8 (q) to G.
This proves they are isomorphic since their order is equal.

All the arguments are identical for Fp(α) 6= Fp(α + α−1).

Remark : Note that the restrictions to AH3 of ρ8r and ρ8rr are identical (this can be
seen on the W -graphs by removing 4 from the vertices and deleting the edges from x to y
if I(x) = I(y)), this proves that the projective twisted diagonal PSL4(q) inside PΩ+

8 (q) is
stabilized by the triality automorphism.

We also have that τ does not extend to a morphism from Ω+
8 (q) into itself. Assume it does,

there exists Ψ from K1 ' Ω+
8 (q) to K2 ' Ω+

8 (q) such that τ(x) = Ψ(x) for all x ∈ K1. We then
have that ρ8rr(ui) = τ(ρ8r(ui)) = Ψ(ρ8r(ui) for all i ∈ [[1, 6]], therefore there exists εi ∈ {−1, 1}
such that ρ8rr(ui) = εiΨ(ρ8r(ui)). By [36], we have that AH4 is perfect, therefore εi = 1 for all
i ∈ [[1, 6]] and for all h ∈ AH4 , we have Ψ(ρ8r(h)) = ρ8rr(h). This is absurd because
ρ8r((Ts1Ts3Ts2Ts4)15(Ts1Ts3Ts2)−20) = I8 = −ρ8rr((Ts1Ts3Ts2Ts4)15(Ts1Ts3Ts2)−20).

8.5 Type H4, high-dimensional representations
We now give two propositions, where we determine the image ofAH4 in the remaining irreducible
representations. We could use the theorem by Guralnick and Saxl [23] for all of them but we
use arguments not requiring the classification of finite simple groups to determine those images
when possible. The first of the two following propositions does not use the classification and
the second one does.

Proposition 8.5.1. Assume 1 ∼ 2.

1. If Fq = Fp(α) = Fp(α + α−1), then ρ9s(AH4) ' SL9(q2) and ρ9s(AH4) ' SL9(q2). We
also have that Φ1,2 ◦ ρ9s|AH4

' ρ9s|AH4
.

2. If Fq = Fp(α) 6= Fp(α + α−1), then ρ9s(AH4) ' SL9(q2) and ρ9s(AH4) ' SL9(q2). We
also have that Φ1,2 ◦ ρ9s|AH4

' ρ9′s|AH4
.

If 1 � 2 then we have ρ9s(AH4) ' SU9(q 1
2 ) and ρ9s(AH4) ' SU9(q 1

2 ).
If Fq = Fp(α) = Fp(α + α−1) then ρ10r(AH4) ' Ω+

10(q).
If Fq = Fp(α) 6= Fp(α + α−1) then ρ10r(AH4) ' Ω+

10(q 1
2 ).

Proof. Assume 1 ∼ 2 and Fp(α) = Fp(α + α−1). By Table 8.3 and Theorem 8.1.1, we have
ρ9s(AH3) ' SL3(q2) × SL5(q) in a natural representation. By Lemma 8.2.1, we then have
that ρ9s(AH4) is an irreducible group generated by transvections. We also have that ρ9s is not
self-dual, therefore ρ9s(AH4) is included in no symplectic group. We also have that the field
generated by the traces of the elements of ρ9s(AH4) contains Fq2 . It follows by Theorem 2.3.4
that ρ9s(AH4) ' SL9(q2).

Assume 1 ∼ 2 and Fp(α) 6= Fp(α+α−1). We then have by Lemma 8.1.2 that Fp(α, ξ+ξ−1) =
Fp(α). We have by Theorem 8.1.1 that ρ9s(AH3) ' SL3(q)×SU5(q 1

2 ). It follows that ρ9s(AH4)
is neither unitary nor symplectic and is an irreducible group generated by transvections. We
also have that the field generated by the traces of its elements contains Fq. We also have by
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Proposition 6.1 that it is conjugate to a subgroup of SL9(q). It follows by Theorem 2.3.4 that
ρ9s(AH4) ' SL9(q).

If 1 ∼ 2, we have that Φ1,2(α) ∈ {α, α−1}. It follows by Proposition 2.1.2 that Φ1,2◦ρ9s|AH4
is

isomorphic to the restriction of an irreducible representation of HH4,α to AH4 . The factorization
result then follows by Table 8.3 and Proposition 8.1.3.

Assume now 1 � 2. We have by Theorem 8.1.1 that ρ9s(AH4) ' SU3(q 1
2 ) × SU5(q 1

2 ) in a
natural representation. Let ε be the unique automorphism of order 2 of Fq. We have ε(α) = α−1.
It follows by Proposition 2.1.2 that ε ◦ ρ9′s|AH4

is isomorphic to the restriction of an irreducible
representation of HH4,α to AH4 . By Table 8.3, this implies that ε ◦ ρ9′s|AH4

' ρ9s|AH4
. It follows

by Lemma 3.2.4 that up to conjugation in GL9(q), we have ρ9s(AH4) ≤ SU9(q 1
2 ). We have,

by Lemma 3.3.3, that the field generated by the traces of the elements of ρ9s(AH4) contains
Fq. It follows by Theorem 2.3.4 that ρ9s(AH4) ' SU9(q 1

2 ). The same arguments show that
ρ9s(AH4) ' SU9(q 1

2 )

Consider now the 10-dimensional representation ρ10r . Let G = ρ10r(AH4). By Proposition
6.1, we can assume that it is defined over Fq.

Assume first that Fq = Fp(α) = Fp(α + α−1). By Table 8.3 and Theorem 8.1.1, we have
that ρ10r(AH3) ' SL5(q) in a twisted diagonal representation. We have by Proposition 6.2 that
up to conjugation in GL10(q), we have G ≤ Ω+

10(q). It follows by Lemma 8.2.1 that G is an
irreducible subgroup of Ω+

10(q) generated by long root elements. It follows by Theorem 2.3.3
that G is isomorphic to one of the following groups

1. Ω+
10(q)

2. Ω−10(q 1
2 )

If ρ10r(AH4) was conjugate to Ω−10(q 1
2 ), then we would have that |SL5(q)| = q10(q2− 1)(q3−

1)(q4 − 1)(q5 − 1) divides |Ω−10(q 1
2 )| = q10(q 5

2 + 1)(q4 − 1)(q3 − 1)(q2 − 1)(q − 1). This would
imply that q5− 1 divides (q 5

2 + 1)(q− 1) = q
7
2 − q 5

2 + q− 1 < q
7
2 − 1 = q5− 1, which is absurd.

This proves that ρ10r(AH4) = Ω+
10(q).

Assume now that Fq = Fp(α) 6= Fp(α+ α−1). Let ε be the unique automorphism of order 2
of Fq, we have ε(α) = α−1. It follows by Proposition 2.1.2 that ε ◦ ρ10r ' ρ10r . We then have
by Proposition 4.1 of [12] that up to conjugation in GL10(q), we have G ≤ Ω+

10(q 1
2 ). We have

ρ10r(AH3) ' SU5(q 1
2 ) in a twisted diagonal representation. By the same arguments as above,

we have G ' Ω+
10(q 1

2 ) or G ' Ω−10(q 1
4 ).

Assume by contradiction that G ' Ω−10(q 1
4 ). We then have that |SU5(q 1

2 )| = q5(q − 1)(q 3
2 +

1)(q2 − 1)(q 5
2 + 1) divides |Ω−10(q 1

4 )| = q5(q 5
4 + 1)(q2 − 1)(q 3

2 − 1)(q − 1)(q 1
2 − 1). This implies

that q 5
2 + 1 divides (q 5

4 + 1)(q 3
2 − 1)(q 1

2 − 1). It follows that q 5
2 + 1 divides (q 5

2 + 1)(q 3
2 − 1)(q 1

2 −
1)− (q 5

4 + 1)(q 5
4 − 1)(q 3

2 − 1)(q 1
2 − 1) = 2(q 3

2 − 1)(q 1
2 − 1) = 2q2− 2q 3

2 − 2q 1
2 + 2 < q

5
2 + 1 which

is absurd. It follows that G ' Ω+
10(q 1

2 ).

The remaining cases will be proved as in [12] and types B and D using Theorem 2.3.2. We
first give a Lemma which will help us prove that the groups considered are tensor-indecomposable.

Lemma 8.5.1. Let ` = pk with p /∈ {2, 3, 5} a prime and k ≥ 1. If r ≥ 3 then there exists
no non-trivial morphism from SLr(`′) to SL2(`4) if `′ ∈ {`, `2, `4} or SUr(`′) to SL2(`4) if
`′ ∈ {`, `2}.
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Proof. Let θ be a morphism from SL3(`) to SL2(`4). We have that ker(θ) is a normal subgroup
of SL3(`).

Assume this kernel is different from SL3(`). The image of θ is then non-abelian. We get an
isomorphism from PSL3(`) to a subgroup of SL2(`4). We have |PSL3(`)| = 1

Gcd(3,`−1)`
3(`2 −

1)(`3− 1) and |SL2(`4)| = `4(`8− 1). It follows that `3− 1 divides 3(`8− 1). This implies that
`3 − 1 divides 3(`8 − 1) − 3`2(`6 − 1) = 3(`2 − 1). We have ` > 3 since p /∈ {2, 3, 5}, therefore
3`2 − 3 < `3 − 1 which is a contradiction. This proves that there is no non-trivial morphsim
from SL3(`) to SL2(`4). This implies in the same way that there exists no non-trivial morphism
from SLr(`′) to SL2(`4) if r ≥ 3 and `′ ∈ {`, `2, `4}.

In the same way, if there was a non trivial morphism from SUr(`′) to SL2(`4) for r ≥ 3 and
q′ ∈ {`, `2} then we would have that `3 + 1 divides 3(`2 − 1) which is also absurd.

Proposition 8.5.2. We write ε the unique automorphism of order 2 of Fq when it exists. We
then have the following results.

1. If Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1), then ρ16r(AH4) = SL16(q) and ρ16rr(AH4) =

SL16(q).

2. If Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α + α−1), then ρ16r(AH4) ' SL16(q2) and ρ16rr|AH4

'
ϕ ◦ ρ16r|AH4

, where ϕ is the unique automorphism of order 2 of Fq2.

3. If Fq = Fp(α) = Fp(
√
α) 6= Fp(α + α−1) and ε(

√
α) =

√
α
−1, then ρ16r(AH4) ' SU16(q 1

2 )
and ρ16rr(AH4) ' SU16(q 1

2 ).

4. If Fq = Fp(α) = Fp(
√
α) 6= Fp(α + α−1) and ε(

√
α) = −

√
α
−1, then ρ16r(AH4) ' SL16(q)

and ρ16′rr|AH4
' ε ◦ ρ16r|AH4

.

Assume 1 ∼ 2. We then have the following results

1. We have Φ1,2 ◦ ρ16t|AH4
' ρ16t|AH4

, Φ1,2 ◦ ρ24s|AH4
' ρ24s|AH4

, Φ1,2 ◦ ρ24t|AH4
' ρ24t|AH4

and
Φ1,2 ◦ ρ30s|AH4

' ρ30s|AH4
.

2. If Fq = Fp(α) = Fp(α + α−1), then ρ16t(AH4) ' Ω+
16(q), ρ24s(AH4) ' Ω+

24(q), ρ24t(AH4) '
Ω+

24(q) and ρ30s(AH4) ' Ω+
30(q).

3. If Fq = Fp(α) 6= Fp(α+α−1), then ρ16t(AH4) ' Ω+
16(q 1

2 ), ρ24s(AH4) ' Ω+
24(q 1

2 ), ρ24t(AH4) '
Ω+

24(q 1
2 ) and ρ30s(AH4) ' Ω+

30(q 1
2 ).

Assume 1 � 2. We then have ρ16t(AH4) ' Ω+
16(q 1

2 ), ρ24s(AH4) ' Ω+
24(q 1

2 ), ρ24t(AH4) '
Ω+

24(q 1
2 ) and ρ30s(AH4) ' Ω+

30(q 1
2 ).

If Fq = Fp(α) = Fp(α + α−1), then ρ18r(AH4) ' Ω+
18(q), ρ25r(AH4) ' SL25(q), ρ36rr(AH4) '

SL36(q) and ρ40r(AH4) ' Ω+
40(q).

If Fq = Fp(α) 6= Fp(α+α−1), then ρ18r(AH4) ' Ω+
18(q 1

2 ), ρ25r(AH4) ' SU25(q 1
2 ), ρ36rr(AH4) '

SU36(q 1
2 ) and ρ40r(AH4) ' Ω+

40(q 1
2 ).
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Proof. We first check that in all cases, the assumptions of Theorem 2.3.2 are verified. We have
as in the proof of primitivity in [12] and in type B that all the groups considered are primitive
finite irreducible subgroup of GL(V ) by considering Table 8.3, because they contain either a
natural SL2(q′) or a twisted diagonal SL3(q′) or SU3(q′) for q′ ∈ {q 1

2 , q, q2}. Using again Table
8.3 and Lemmas 3.3.5, 3.3.6 and 8.5.1, all the groups considered are tensor-indecomposable.
We also have vG(V ) ≤ 2 ≤ max(2,

√
d

2 ). As in page 13 of [12], the restriction also shows us that
we are not in case 2 of Theorem 2.3.2. This shows that they are classical groups in a natural
representation.

Consider first the H4-graphs 16r and 16rr. They are not 2-colorable, therefore we cannot
apply Proposition 6.1.

Assume Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1). We then have by Theorem 8.1.1 that

ρ16r(AH4) contains a natural SL5(q), therefore the field generated by the traces of its elements
contains Fq. It follows that it is a classical group in a natural representation over Fq. The natural
SL5(q) also shows that it is preserves no non-degenerate bilinear or hermitian form over Fq. It
follows that ρ16r(AH4) = SL16(q). The same arguments show that ρ16rr(AH4) = SL16(q).

Assume now Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α + α−1). By Theorem 8.1.1, we have that

ρ16r(AH4) contains a natural SU4(q). It follows by Lemma 3.3.3 that it is a classical group in
a natural representation over Fq2 .

Let then ϕ be the unique automorphism of order 2 of Fq2 . We have ϕ(
√
α) = −

√
α and

ϕ(α) = α. It follows by Proposition 2.1.2 that ϕ ◦ ρ16r|AH4
is isomorphic to the restriction of

an irreducible representation of HH4,α. By Table 8.3 and Propositions 8.1.3 and 8.1.4, we have
that ϕ ◦ ρ16r|AH4

' ρ16rr|AH4
. This proves by Proposition 8.2.2 that ϕ ◦ ρ?16r|AH4

6' ρ?16r|AH4
. We

also have that ρ16r is not self-dual therefore ρ16r(AH4) = SL16(q2). The result for 16rr follows
from the factorization.

Assume now Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and ε(

√
α) =

√
α
−1. By Lemma 8.1.2,

we have 1 ∼ 2, ε = Φ1,2 and Φ1,2(α) = α−1. It follows by Proposition 2.1.2 that Φ1,2 ◦ ρ16r|AH4
is isomorphic to the restriction of an irreducible representation of HH4,α. By Table 8.3, we
have ρ16r|AH3

' ρ3′s × ρ3′s × ρ4r × ρ5r . It follows by Propositions 8.1.3, 8.1.4 and 8.1.5 that
Φ1,2 ◦ ρ16r|AH3

' ρ3s × ρ3s × ρ4′r × ρ5′r . It follows by Table 8.3 that Φ1,2 ◦ ρ16r|AH3
' ρ16′r . By

Lemma 3.2.4, we have that ρ16r(AH4) ≤ SU16(q 1
2 ), up to conjugation in GL16(q). It contains a

natural SU5(q 1
2 ), therefore it is a classical group in a natural representation over Fq. It follows

that ρ16r(AH4) ' SU16(q 1
2 ). The same arguments show that ρ16rr(AH4) ' SU16(q 1

2 ).
Assume Fq = Fp(

√
α) = Fp(α) 6= Fp(α + α−1) and ε(

√
α) = −

√
α
−1. We apply here the

same reasoning as before and we get that Φ1,2 ◦ ρ16r|AH3
' ρ3s × ρ3s × ρ4r × ρ5′r . It follows by

Table 8.3 that Φ1,2 ◦ ρ16r|AH4
' ρ16′rr|AH4

. It follows that ρ16r(AH4) preserves no non-degenerate
bilinear or hermitian form over Fq. It contains a natural SU5(q 1

2 ) therefore it is a classical group
over Fq. It follows that ρ16r(AH4) = SL16(q). The result for 16rr follows from the factorization.

All the remaining H4-graphs are 2-colorable therefore we can assume they are defined over
Fp(α, ξ+ξ−1). We know they are classical groups in a natural representation. We will show that
they are the groups given in the proposition. We first consider the H4-graphs which contain
weights in Fp(ξ + ξ−1) i.e. 1̃6t, 2̃4s, 2̃4t and 3̃0s. Note first that all of those representations are
self-dual, and by Proposition 6.2 and the H4-graphs given in the Appendix, we have that they
preserve a non-degenerate symmetric bilinear form.
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Assume first 1 ∼ 2 and Fq = Fp(α) = Fp(α + α−1). We then have by Lemma 8.1.2 that
Fq2 = Fp(α, ξ + ξ−1) = Fp(α+ α−1, ξ + ξ−1), Φ1,2 is the unique automorphism of order 2 of Fq2

and Φ1,2(α) = α.
Since ρ16t is the only 16-dimensional self-dual representation, we have by Proposition 2.1.2

that Φ1,2 ◦ ρ16t|AH4
' ρ16t|AH4

. The representation ρ30s is the unique 30-dimensional irreducible
representation therefore we have Φ1,2 ◦ρ30s|AH4

' ρ30s|AH4
. It follows by Proposition 4.1. of [12]

that up to conjugation, we have that ρ16t(AH4) ≤ Ω+
16(q) and ρ30s(AH4) ≤ Ω+

30(q). They both
contain a twisted diagonal SL5(q) therefore ρ16t(AH4) contains an element conjugate to
diag(diag(α, α−1, 1, 1, 1), diag(α, α−1, 1, 1, 1), I6) and ρ30s(AH4) contains an element conjugate
to diag(diag(α, α−1, 1, 1, 1), diag(α, α−1, 1, 1, 1), I20). It follows that the field generated by the
traces of their elements contains 2(α+α−1). This implies that they are classical groups defined
in a natural representation over Fq. It follows that ρ16t(AF4) ' Ω+

16(q) and ρ30s(AF4) ' Ω+
30(q).

By Proposition 8.1.3, we have Φ1,2 ◦ ρ3s ' ρ3s and Φ1,2 ◦ ρ3′s ' ρ3′s . It follows that Φ1,2 ◦
ρ24s|AH4

' ρ24s|AH4
or Φ1,2 ◦ ρ24s|AH4

' ρ24t|AH4
. We have

Tr(ρ24s(S1S3S
−1
2 S−1

4 )) = 4(α2 + α−2) + (ξ + ξ−1 − 15)(α + α−1) + 22− 3(ξ + ξ−1)
Φ1,2(Tr(ρ24s(S1S3S

−1
2 S−1

4 ))) = 4(α2 + α−2) + (ξ2 + ξ−2 − 15)(α + α−1) + 22− 3(ξ2 + ξ−2)
Tr(ρ24t(S1S3S

−1
2 S−1

4 )) = 4(α2 + α−2) + (ξ2 + ξ−2 − 15)(α + α−1) + 21− 2(ξ2 + ξ−2).

It follows that Φ1,2 ◦ρ24s|AH4
' ρ24t|AH4

would imply that 0 = 1−ξ−ξ−1 = −ξ−1Φ6(ξ), which is
absurd. This proves that Φ1,2 ◦ ρ24s|AH4

' ρ24s|AH4
. It follows by the same arguments as before

that ρ24s(AH4) ' Ω+
24(q) and ρ24t(AH4) ' Ω+

24(q).
Assume now 1 ∼ 2 and Fq = Fp(α) 6= Fp(α + α−1). We then have by Proposition 8.1.2

that Fp(α, ξ + ξ−1) = Fq and Φ1,2 is the unique automorphism of order 2 of Fq. We then
have using the same arguments as before that each of the groups considered preserves a non-
degenerate bilinear form over F

q
1
2
. They each contain a twised diagonal SU5(q 1

2 ), therefore they
are classical groups in a natural representation over F

q
1
2
. The result then follows.

Assume now 1 � 2. By Lemma 8.1.2, we have Fp(α, ξ + ξ−1) = Fp(α) 6= Fp(α+ α−1). Let ε
be the unique automorphism of order 2 of Fq. We have ε(α) = α−1. It follows by Lemma 2.1.2
that ε ◦ ρ16t|AH4

' ρ16t|AH4
and ε ◦ ρ30s|AH4

' ρ30s|AH4
.

By Proposition 8.1.3 and Table 8.3, we have that ε ◦ ρ24s|AH4
' ρ24s|AH4

or ε ◦ ρ24s|AH4
'

ρ24t|AH4
. We have

Tr(ρ24t(S1S3S
−1
2 S−1

4 )) = 4(α2 + α−2) + (ξ + ξ−1 − 15)(α + α−1) + 21− 2(ξ + ξ−1).

Since ξ + ξ−1 ∈ F
q

1
2
, we have ε(ξ + ξ−1) = ξ + ξ−1. It follows by the same computation as in

the previous case that ε ◦ ρ24s|AH4
' ρ24s|AH4

. The result then follows from the same arguments
as before.

The only remaining H4-graphs to consider are 1̃8r, 25r, 36rr and 4̃0r. By Proposition 6.1, we
can assume they are defined over Fq = Fp(α). By Proposition 6.2, we have up to conjugation
in GL18(q) that ρ18r(AH4) ≤ Ω+

18(q) and up to conjugation in GL40(q) that ρ40r(AH4) ≤ Ω+
40(q).

Assume Fp(α) = Fp(α + α−1). By Table 8.3 and Theorem 8.1.1, we have that each of the
groups associated to those representations contains a twisted diagonal SL4(q). It follows by
the same arguments as before that the field generated by the traces of their elements contains
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Fp(α + α−1) = Fq. By Proposition 2.1.2, if there is a field automorphism ϕ and a character η
such that (ϕ ◦ ρ)⊗ η is an irreducible representation of HH4,α then ϕ(α+α−1) = α+α−1. This
proves that such an automorphism must be trivial. The result then follows.

Assume now Fq = Fp(α) 6= Fp(α+α−1). Let ε be the unique automorphism of order 2 of Fq.
By Proposition 8.1.5, we have that ε◦ρ5r|AH3

' ρ5′r|AH3
. It follows by Table 8.3 and Proposition

2.1.2 that all the representations considered are unitary. We have by the same arguments
as before that the field generated by the traces of its elements contains F

q
1
2
. It follows that

ρ18r(AH4) ' Ω+
18(q 1

2 ) and ρ40r(AH4) ' Ω+
40(q 1

2 ). We also have that ε◦ρ25r|AH4
6' ρ25r|AH4

and ε◦
ρ36rr|AH4

6' ρ36rr|AH4
. It follows that they cannot be classical groups in a natural representation

over F
q

1
2
. This implies that they are classical groups in a natural representation over Fq,

therefore ρ25r(AH4) ' SU25(q 1
2 ) and ρ36rr(AH4) ' SU36(q 1

2 ) and the proof is concluded.

There is now only one case remaining. We cannot apply the previous theorem to it because
the restriction to AH3 only shows that vG(v) ≤ 4 and max(2,

√
48
2 ) =

√
12 ≤ 4.

Proposition 8.5.3. If 1 � 2 then we have ρ48rr(AH4) ' Ω+
48(q 1

2 ).

Proof. By Proposition 6.1, we can assume that the representation is defined over Fp(α). Let
G = ρ48r(AH4).

Assume now 1 � 2. By Lemma 8.1.2, we have Fp(α, ξ + ξ−1) = Fq = Fp(α) 6= Fp(α + α−1).
Let ε be the unique automorphism of Fq. We have ε(α) = α−1. It follows by Proposition 2.1.2
that ε ◦ ρ48r|AH4

' ρ48r|AH4
. Since we have found a symmetric non-degenerate bilinear form

preserved by G, we have by Proposition 4.1. of [12] that up to conjugation in GL48(q), we have
that G ≤ Ω+

48(q 1
2 ). By Theorem 8.1.1, we have that G contains a twisted diagonal SU3(q 1

2 ) and
ρ48r(AH3) ' SU3(q 1

2 ) × SU4(q 1
2 ) × SU5(q 1

2 ) or ρ48r(AH3) ' SU3(q 1
2 ) × SL4(q 1

2 ) × SU5(q 1
2 ). It

follows by Lemma 3.3.6 and 8.5.1 that G is tensor-indecomposable. We have with the same
arguments as in the previous proposition that G is a classical group in a natural representation
over F

q
1
2
therefore G ' Ω+

48(q 1
2 ).

Conjecture 8.5.1. If 1 ∼ 2 then we have ρ48rr(AH4) ' Ω+
48(q 1

2 ).

Assuming the previous proposition is correct and has been proved. We show the following
theorem which gives us the image of AH4 inside the full Iwahori-Hecke algebra.

Theorem 8.5.1. Under our assumptions on α and p, we have the following results.

1. Assume 1 ∼ 2 and Conjecture 8.5.1 is true.

(a) If Fq = Fp(
√
α) = Fp(α) = Fp(α + α−1), then the morphism from AH4 to H?

H4,α '∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) factorizes through the surjective morphism

Φ :→ SL4(q2)×Ω+
6 (q2)×Spin+

8 (q)×SL9(q2)×Ω+
10(q)×SL16(q)2×Ω+

16(q)×Ω+
18(q)

×Ω+
24(q)2 × SL25(q)× Ω+

30(q)× SL36(q)× Ω+
40(q)× Ω+

48(q 1
2 ).
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(b) If Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and Φ1,2(

√
α) =

√
α
−1, then the morphism

from AH4 to H?
H4,α '

∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) factorizes through the surjective

morphism

Φ :→ SL4(q)×Ω+
6 (q)×Spin+

8 (q 1
2 )×SL9(q2)×Ω+

10(q 1
2 )×SU16(q 1

2 )2×Ω+
16(q 1

2 )×Ω+
18(q 1

2 )

×Ω+
24(q 1

2 )2 × SU25(q 1
2 )× Ω+

30(q 1
2 )× SU36(q 1

2 )× Ω+
40(q 1

2 )× Ω+
48(q 1

2 ).

(c) If Fq = Fp(
√
α) = Fp(α) 6= Fp(α+α−1) and Φ1,2(

√
α) = −

√
α
−1, then the morphism

from AH4 to H?
H4,α '

∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) factorizes through the surjective

morphism

Φ :→ SL4(q)×Ω+
6 (q)×Spin+

8 (q 1
2 )×SL9(q2)×Ω+

10(q 1
2 )×SL16(q)×Ω+

16(q 1
2 )×Ω+

18(q 1
2 )

×Ω+
24(q 1

2 )2 × SU25(q 1
2 )× Ω+

30(q 1
2 )× SU36(q 1

2 )× Ω+
40(q 1

2 )× Ω+
48(q 1

2 ).

(d) If Fq2 = Fp(
√
α) 6= Fp(α) = Fp(α + α−1), then the morphism from AH4 to H?

H4,α '∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) factorizes through the surjective morphism

Φ :→ SL4(q2)×Ω+
6 (q2)×Spin+

8 (q)×SL9(q2)×Ω+
10(q)×SL16(q2)×Ω+

16(q)×Ω+
18(q)

×Ω+
24(q)2 × SL25(q)× Ω+

30(q)× SL36(q)× Ω+
40(q)× Ω+

48(q 1
2 ).

2. Assume 1 � 2. We write ε the unique automorphism of order 2 of Fq.

(a) If Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and ε(

√
α) =

√
α
−1, then the morphism

from AH4 to H?
H4,α '

∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) factorizes through the surjective

morphism

Φ :→ SU4(q 1
2 )2×Ω+

6 (q 1
2 )2×Spin+

8 (q 1
2 )×SU9(q 1

2 )2×Ω+
10(q 1

2 )×SU16(q 1
2 )2×Ω+

16(q 1
2 )2

×Ω+
18(q 1

2 )× Ω+
24(q 1

2 )4 × SU25(q 1
2 )× Ω+

30(q 1
2 )2 × SU36(q 1

2 )× Ω+
40(q 1

2 )× Ω+
48(q 1

2 ).

(b) If Fq = Fp(
√
α) = Fp(α) 6= Fp(α + α−1) and ε(

√
α) = −

√
α
−1, then the morphism

from AH4 to H?
H4,α '

∏
ρ irr

GLnρ(Fp(
√
α, ξ + ξ−1)) factorizes through the surjective

morphism

Φ :→ SU4(q 1
2 )2 × Ω+

6 (q 1
2 )2 × Spin+

8 (q 1
2 )× SU9(q 1

2 )2 × Ω+
10(q 1

2 )× SL16(q)× Ω+
16(q 1

2 )2

×Ω+
18(q 1

2 )× Ω+
24(q 1

2 )4 × SU25(q 1
2 )× Ω+

30(q 1
2 )2 × SU36(q 1

2 )× Ω+
40(q 1

2 )× Ω+
48(q 1

2 ).

Proof. We have the factorizations by the previous propositions. We thus only have to show that
the considered morphisms are surjective. Since AH4 is perfect, we have by Goursat’s Lemma
3.3.1 that the morphism is surjective unless there exists two different representations ρ1 and ρ2
in the decomposition such that there exists a field automorphism Ψ verifying Ψ◦ρ1|AH4

' ρ2|AH4
.

By Proposition 2.1.2, we have that Ψ(α + α−1) = α + α−1. This shows that Ψ must be trivial
over Fp(α+α−1). It follows by the previous propositions that there are no such representations
in the decompositions and the proof is concluded.
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Chapter 9

Type F4

In this section, we determine the image of the Artin group of type F4. This group contains
in a natural way two groups isomorphic to AB3 . We will therefore use some results from the
type B section. The F4-graphs are graphs with two parameters since there are two conjugacy
classes in type F4. This makes the uniqueness conditions proven in the section on W -graphs
fail. The irreducible representations are all in low dimension. We can therefore compute easily
the bilinear forms for the self-dual representations and it is not necessary to use the conjecture
onW -graphs associated to self-dual representations. It is unclear whether the conjecture is true
in type F4 because of the lack of rigidity when there are two parameters. The field extensions
involved in type F4 are quite complicated, we have to distinguish 15 cases which are described in
the Appendix. Determining the image inside each representation uses arguments similar to the
other cases. The main difference comes from the fact that AF4 is not the normal closure of AB3

in AF4 , we use the fact that there are two copies of AB3 inside AF4 for the inductive arguments.
The image inside the full Iwahori-Hecke algebra is also slightly more complicated because AF4

is not perfect. This requires some additional computations for the proof of Theorem 9.1.

Let p be a prime different from 2 and 3. Let α, β ∈ Fp
? such that α4 6= 1, α6 6= 1, α10 6= 1,

β4 6= 1, β6 6= 1, β10 = 1, (α
β
)6 6= 1, (α

β
)4 6= 1, (αβ)6 6= 1, (αβ)4 6= 1, α /∈ {−β2,−β−2} and

β /∈ {−α2,−α−2}. Write Fq = Fp(α, β).
There are 25 irreducible representations of HF4,α,β. The highest dimensional one is of di-

mension 16. Five of them are self-dual and they are represented by the F4-graphs 41, 61, 62, 12
and 16 given in section 10.5 of the Appendix.

Definition 9.1. The Iwahori-Hecke algebra HF4,α,β of type F4 is the Fq-algebra generated by
the generators S1, S2, S3, S4 and the following relations

1. (S1 − α)(S1 + 1) = (S2 − α)(S2 + 1) = 0.

2. (S3 − β)(S3 + 1) = (S4 − β)(S4 + 1) = 0.

3. S1S2S1 = S2S1S2.

4. S1S3 = S3S1.

5. S1S4 = S4S1.

6. S2S3S2S3 = S3S2S3S2.
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7. S2S4 = S4S2.

8. S3S4S3 = S4S3S4. For σ in the Coxeter group F4, if σ = si1 . . . sik is a reduced expression
we set Tσ = Si1 . . . Sik .

Note that we have two parameters here, therefore most of the results from the Chapter 6 do
not hold. Moreover, we have to consider the different ways Fp(

√
α,
√
β) can be a field extension

of Fp(α + α−1, β + β−1). The Hasse diagram representing the setup of the field extensions
involved is given Figure 10.4.

Note that all the extensions represented by edges are of degree at most 2 because they involve
of the following polynomials : X2−(

√
β+
√
β
−1)X+1, X2−α, X2−β, X2−(

√
α+
√
α
−1)X+1,

X2 − (β + β−1 + 2), X2 − (β + β−1)X + 1, X2 − (α + α−1)X + 1, X2 − (α + α−1 + 2). The
roles of α and β are perfectly symmetric in the graph, therefore we only have to consider the
cases up to permutation of α and β. We now try to establish what all the possibilities are. Set
Fq′ = Fp(

√
α,
√
β).

Assume first that Fp(
√
α,
√
β) 6= Fp(

√
α,
√
β +
√
β
−1). We write q̃ = q′

1
2 . Then Fq̃2 =

Fp(
√
α,
√
β) = Fp(

√
α,
√
β +
√
β
−1)/(X2 − (

√
β +
√
β
−1)X + 1). The field Fq̃2 has a unique

subfield of degree 2 and it is equal to Fq̃. We have that
√
β does not belong to Fq̃, therefore

Fq̃ 6= Fp(
√
α+
√
α
−1
,
√
β) and Fq̃ 6= Fp(α,

√
β). Note that in this case, we also have that β /∈ Fq̃

because otherwise, we would have
√
β =

√
β 1+β−1

1+β−1 =
√
β+
√
β
−1

1+β−1 ∈ Fq̃. It follows that Fq̃ 6=
Fp(
√
α, β), and that Fq̃2 = Fp(

√
α,
√
β) = F′p

√
α, β) = Fp(α,

√
β) = Fp(

√
α +
√
α
−1
,
√
β). We

have in the same way Fq̃2 = Fp(
√
α+
√
α
−1
, β) = Fp(α, β) = Fp(α+α−1,

√
β) = Fp(α+α−1, β).

This implies that Fp(
√
α,
√
β) is an extension of degree at most 2 of Fp(α + α−1, β + β−1).

Fp(α + α−1, β + β−1) is included in Fp(
√
α,
√
β +
√
β
−1) = Fq̃, therefore it is equal to Fq̃. We

can now complete all the edges in the Hasse diagram where we put dotted edges for extensions
of degree 1, full edges for extensions of degree 2, fields equal to Fq̃2 in blue and fields equal to
Fq̃ in red. This can be seen in Figure 10.5.

We get by symmetry that if Fp(
√
α,
√
β) 6= Fp(

√
α +
√
α
−1
,
√
β) then we have the Hasse

diagram of Figure 10.6.
We can now assume that Fp(

√
α,
√
β) = Fp(

√
α,
√
β +

√
β
−1) = Fp(

√
α +

√
α
−1
,
√
β).

Assume Fp(
√
α,
√
β) 6= Fp(

√
α, β). We then write Fq̃ = Fp(

√
α, β) and Fq̃2 = Fp(

√
α,
√
β).

We then have that
√
β /∈ Fq̃, therefore Fq̃2 = Fp(α,

√
β) = Fp(α + α−1,

√
β). Note that

√
β =

√
β+
√
β
−1

1+β−1 , therefore
√
β +
√
β
−1

/∈ Fq̃. It follows that Fq̃2 = Fp(α,
√
β +
√
β +
√
β
−1) =

Fp(α + α−1,
√
β +
√
β
−1). This proves also that Fq̃ = Fp(α + α−1, β + β−1). The only Hasse

diagram possible is then given in Figure 10.7.
We get by symmetry that if Fp(

√
α,
√
β) 6= Fp(α,

√
β) then we have the Hasse diagram in

Figure 10.8.
We can now assume that Fp(

√
α,
√
β) = Fp(

√
α,
√
β+
√
β+
√
β
−1) = Fp(

√
α, β) = Fp(α,

√
β) =

Fp(
√
α +
√
α
−1
,
√
β). Assume Fq̃ = Fp(

√
α, β + β−1) 6= Fq′ . We then get that β /∈ Fq̃ and√

β +
√
β
−1

/∈ Fq̃. The only Hasse diagram possible is then given in Figure 10.9.
We get by symmetry that if Fp(α+ α−1,

√
β) 6= Fq′ then we get the Hasse diagram given in

Figure 10.10.
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Assume now that Fq̃ = Fp(
√
α+
√
α
−1
, β) 6= Fq′ . We then have that

√
α /∈ Fq̃ and

√
β /∈ Fq̃.

It follows that α /∈ Fq̃ since
√
α =

√
α+
√
α
−1

1+α−1 . We also have that
√
β +

√
β
−1

/∈ Fq̃ since
√
β =

√
β+
√
β
−1

1+β−1 . The only Hasse diagram possible is then given in Figure 10.11.

By symmetry, if Fp(α,
√
β +
√
β
−1) 6= Fq′ then we get the Hasse diagram given in Figure

10.12.
Assume now Fq̃ = Fp(α, β) 6= Fq′ . We then get that

√
α+
√
α
−1

/∈ Fq̃ and
√
β+
√
β
−1

/∈ Fq̃.
We then get the Hasse diagram given in Figure 10.13.

Assume now Fq̃ = Fp(
√
α +
√
α
−1
,
√
β +
√
β
−1) 6= Fq′ . We have α /∈ Fq̃ and β /∈ Fq̃. We

then get the Hasse diagram given in Figure 10.14.
We can now assume that Fq′ = Fp(

√
α, β+β−1) = Fp(

√
α+
√
α
−1
, β) = Fp(

√
α+
√
α
−1
,
√
β+√

β
−1) = Fp(α, β) = Fp(α,

√
β+
√
β
−1) = Fp(α+α−1). Assume Fq̃ = Fp(

√
α+
√
α
−1
, β+β−1) 6=

F′q. We then have α /∈ Fq̃, β /∈ Fq̃ and
√
β +
√
β
−1

/∈ Fq̃. This gives us the Hasse diagram in
Figure 10.15.

By symmetry, if Fp(α + α−1,
√
β +
√
β
−1) 6= Fq′ then we get in Hasse diagram given in

Figure 10.16.
Assume now Fq̃ = Fp(α+α−1, β) 6= Fq′ . We have α /∈ Fq̃,

√
α+
√
α
−1

/∈ Fq̃ and
√
β+
√
β
−1

/∈
Fq̃. We then get the Hasse diagram given in Figure 10.17.

By symmetry, if Fp(α, β + β−1) 6= Fq′ we get the Hasse diagram given in Figure 10.18.
We can now assume Fq′ = Fp(

√
α +
√
α
−1
, β + β−1) = Fp(α + α−1, β) = Fp(α, β + β−1) =

Fp(α + α−1,
√
β +
√
β
−1). We then either have case 1 which is Fp(

√
α,
√
β) = Fp(α, β) or the

Hasse diagram given in Figure 10.19.
The F4-graphs we will be considering are given in Figures 10.1, 10.2 and 10.3. They are

taken from [20] (11.3.2). They are slightly different because we consider left-actions instead of
right actions. We here have two parameters, therefore the rules to read the F4-graphs are more
complicated. When there is an edge between x and y in the graph then as in [20], we use the
following conventions

1. µsx,y = 0 if one of the following is satisfied

(a) I(x) consists of three elements, I(y) consists of one element and s = s1.
(b) s = s2, {s2, s4} ⊂ I(x) and I(y) contains s3 but not s4.

2. If the above conditions are not verified then µsx,y = 1 except if

(a) The is an integer labeling the edge between x and y, then µsx,y is equal to that integer.
(b) If s ∈ {s3, s4} and there is a label on the edge between x and y which is not an

integer, then µsx,y is equal to that label, where

a =
√
u
√
v
−1 +

√
v
√
u
−1
, b = u

√
v
−1 +

√
vu−1

f =
√
u+
√
u
−1
, g = u+ u−1, h =

√
u

3 +
√
u
−3

.

We now prove that the algebra is split semisimple as we did with the other types using the
Schur elements.
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Proposition 9.1. Under our assumptions on p, α and β, HF4,α,β is split semisimple over
Fp(
√
α,
√
β), the representations afforded by the W -graphs are irreducible and pairwise non-

isomorphic over Fq. The restrictions of the irreducible representations of HF4,α,β to HB3,α,β are
the same as in the generic case.

Proof. We will apply Proposition 2.2.4. Let A = Z[
√
u
±1
,
√
v
±1] and F = Q(

√
u,
√
v). We have

a symetrizing trace defined by τ(T0) = 1 and τ(Tσ) = 0 for all σ ∈ F4 \ {1F4}. HF4,u,v is then a
free symmetric F -algebra of rank 1152. A is integrally closed. Let θ be the ring homomorphism
from A to L = Fq defined by θ(

√
u) =

√
α, θ(

√
v) =

√
β and θ(k) = k. We know FH is split.

The basis formed by the elements Tσ, σ ∈ F4 verifies the conditions of the Proposition 2.2.4.
The F4-graphs considered remain connected since the weights don’t vanish after specialization.
In order to verify this, we only need to check that θ(a) 6= 0, θ(b) 6= 0, θ(f) 6= 0, θ(g + 1) 6= 0,
θ(2 − g) 6= 0 and θ(h) 6= 0. We have θ(a) =

√
α
√
β
−1 +

√
β
√
α
−1 =

√
α
−1√

βΦ2(α
β
) 6= 0,

θ(b) = α
√
β
−1 +

√
βα−1 = α

√
β
−1(1 + βα−2) 6= 0, θ(f) =

√
α +
√
α
−1 =

√
α
−1Φ2(α) 6= 0,

θ(g + 1) = α + α−1 + 1 = α−1Φ3(α) 6= 0, θ(2 − g) = 2 − α − α−1 = (1 − α)(1 − α−1) and
θ(
√
u

3 +
√
u
−3) =

√
α

3 +
√
α
−3 =

√
α
−3(α3 + 1) 6= 0.

We now only need to check that the Schur elements can be specialized and do not vanish
under the specialization. This is clear from Table 9.1. (This table is taken from Table 11.1.
[20])

Proposition 9.2. The restrictions to AF4 of the representations afforded by those W -graphs
are absolutely irreducible and the representations of dimension greater than one are pairwise
non-isomorphic.

Proof. As in [12] Lemma 3.4, we only need to prove that AF4 =< s1, s2, s3, s4 > is generated
by AB3 =< s1, s2, s3 > and AF4 . This true because s4 = s4s

−1
3 s3, s4s

−1
3 ∈ AF4 and s3 ∈ AB3 .

Let now ρ and ρ′ be two representations of HF4,α,β such that ρ|AF4
' ρ′|AF4

. We know by
Lemma 3.2.3 that there exists a character χ;AF4 → Fq such that ρ ' ρ′⊗χ. Since F4/AF4 '<
s1, s3 >' Z2, there exists (x, y) ∈ F2

q such that ρ(S1) = xρ′(S1) and ρ(S3) = yρ′(S3). The
eigenvalues of ρ(S1) are −1 and α, therefore {−1, α} = {−x, xα}. It follows that x = 1 since
α2 6= 1. In the same way y = 1 since β2 6= 1. It follows that ρ ' ρ′.

Before determining the image of the Artin groups inside this Iwahori-Hecke algebra, we need
as in the other cases a Lemma on Artin groups which will allow us to use the restriction from
E6 to D5.

Lemma 9.1. AF4 is generated by AB3,1 and AB3,2, where we identify AB3,1 (resp AB3,2) as a
subgroup of AF4 using the natural isomorphism from AB3 to < s1, s2, s3 > (resp < s2, s3, s4 >).

Proof. By [36], we have that AF4 is generated by s2s
−1
1 , s1s2s

−2
1 , s3s

−1
4 and s4s3s

−2
4 . We have

that s2s
−1
1 and s1s2s

−2
1 belong to AB3,1 and s3s

−1
4 and s4s3s

−2
4 are in AB3,2, therefore the proof

is complete.

We now give a proposition where we determine the image of AF4 with respect to the repre-
sentations ρ23 , ρ41 and ρ42 . The special phenomenon appearing for the representation ρ41 was
also observed in the generic case, see Lemma 2.22 of [34] for an analogous result.
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1. 11 : Φ2(u)Φ2(v)Φ3(u)Φ3(v)(uv2 + 1)(u2v + 1)Φ4(uv)Φ6(uv)Φ2(uv)2.

2. 13 : u−6Φ2(u)Φ2(v)Φ3(u)Φ3(v)(u+ v2)(u2 + v)Φ4( v
u
)Φ6( v

u
)Φ2( v

u
)2.

3. 21 : v−2Φ2(u)2Φ3(u)Φ6(u)Φ3(v)Φ2(uv)Φ2(u
v
)(1 + u2v)(u2 + v).

4. 23 : u−2Φ2(v)2Φ3(v)Φ6(v)Φ3(u)Φ2(uv)Φ2( v
u
)(u+ v2)(uv2 + 1).

5. 41 : 2u−1v−3Φ3(u)Φ3(v)Φ2( v
u
)2Φ2(uv)2.

6. 42 : v−1Φ2(u)Φ2(v)Φ3(u)Φ3(v)Φ2( v
u
)Φ6(uv)Φ2(uv)2.

7. 44 : u−3v−1Φ2(u)Φ2(v)Φ3(u)Φ3(v)Φ2(uv)Φ6( v
u
)Φ2( v

u
)2.

8. 61 : 3u−1v−3Φ2(u)2Φ2(v)2Φ6( v
u
)Φ2(uv)2.

9. 62 : 3u−1v−3Φ2(u)2Φ2(v)2Φ6(uv)Φ2( v
u
)2.

10. 81 : u−1v−3Φ2(u)2Φ3(u)Φ6(u)Φ3(v)(u+ v2)(uv2 + 1).

11. 83 : u−3v−1Φ3(u)Φ2(v)2Φ3(v)Φ6(v)(u2 + v)(u2v + 1).

12. 91 : (uv)−2Φ2(u)Φ2(v)(u+ v2)(u2 + v)Φ4(uv)Φ2(uv)2.

13. 92 : (uv)−2Φ2(u)Φ2(v)(1 + uv2)(1 + u2v)Φ4(u
v
)Φ2( v

u
)2.

14. 12 : 6u−1v−3Φ6(u)Φ6(v)Φ2( v
u
)2Φ2(uv)2.

15. 16 : 2u−1v−3Φ3(u)Φ3(v)Φ4(uv)Φ4( v
u
).

Table 9.1: Schur elements in type F4
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Proposition 9.3. If Fq̃ = Fp(α) = Fp(α + α−1) then ρ23(AF4) ' SL2(q̃).
If Fq̃ = Fp(α) 6= Fp(α + α−1) then ρ23(AF4) ' SU2(q̃ 1

2 ).
If Fq̃ = Fp(β) = Fp(β + β−1) then ρ23(AF4) ' SL2(q̃).
If Fq̃ = Fp(β) 6= Fp(β + β−1) then ρ23(AF4) ' SU2(q̃ 1

2 ).
If Fq̃1 = Fp(α) = Fp(α + α−1) and Fq̃2 = Fp(β) = Fp(β + β−1) then ρ41(AF4) ' SL2(q̃1) ◦

SL2(q̃2).
If Fq̃1 = Fp(α) 6= Fp(α + α−1) and Fq̃2 = Fp(β) = Fp(β + β−1) then ρ41(AF4) = SU2(q̃

1
2
1 ) ◦

SL2(q̃2).
If Fq̃1 = Fp(α) 6= Fp(α + α−1) and Fq̃2 = Fp(β) 6= Fp(β + β−1) then ρ41(AF4) = SU2(q̃

1
2
1 ) ◦

SU2(q̃
1
2
2 ).

In cases 11, 12, 13 and 16, we have ρ42(AF4) ' SU4(q 1
2 ) and ρ44(AF4) ' SU4(q 1

2 ). In all
the remaining cases, we have ρ42(AF4) ' SL4(q) and ρ44(AF4) ' SL4(q).

Proof. We have that ρ23|HA2,1
is isomorphic to the representation ρ[2,1] of HA2,α and ρ21|HA2,2

is
isomorphic to the representation ρ[2,1] ofHA2,β, whereAA2,1 =< S1, S2 > andAA2,2 =< S3, S4 >.

We have ρ23(S3) = ρ23(S4) =
(
β 0
0 β

)
and ρ21(S1) = ρ21(S2) =

(
α 0
0 α

)
. It then follows that

ρ23(AF4) = ρ23(AA2,1) and ρ23(AF4) = ρ23(AA2,2). The result then follows from Lemma 3.5 of
[11].

We now consider the representation ρ41 . We order the basis indexed by the vertices in
the lexicographic way, i.e. I(x1) = {s1, s3}, I(x2) = {s1, s4}, I(x3) = {s2, s3} and I(x4) =

{s2, s4}. Let X =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

. We then have ρ41|HA2,1
= X

(
ρ23|HA2,1

0
0 ρ23|HA2,1

)
X−1

and ρ41|HA2,2
=
(
ρ21|HA2,2

0
0 ρ21|HA2,2

)
. Note now that for any matrices M,N ∈ GL2(Fp), we

have that [X
(
M 0
0 M

)
X−1,

(
N 0
0 N

)
] = I4. We also have that if {X

(
N1 0
0 N1

)
X−1, N1 ∈

SL2(Fp)} ∩ {
(
N2 0
0 N2

)
, N2 ∈ SL2(Fp)} = {±I4}. We have by [36] that AF4 is generated by

s2s
−1
1 , s1s2s

−2
1 , s3s

−1
4 and s4s3s

−2
4 . The result then follows from what was proven above for 21

and 23.
Consider now the representation ρ42 . We know, using Table 9.1 and Table 9.2, that ρ42|HB3,1

is isomorphic to the representation ρ[2],[1] ⊗ ρ[3],∅ of HB3,α,β and ρ42|HB3,2
is isomorphic to the

representation ρ[2],[1] ⊗ ρ[3],∅ of HB3,β,α.
By Lemmas 3.3.2 and 3.3.8, ρ42(AB3,1) ∈ {SL3(q), SU3(q 1

2 )}, ρ42(AB3,2) ∈ {SL3(q), SU3(q 1
2 )}

and ρ42(AB2) ∈ {SL2(q), SL2(q 1
2 ), SU2(q 1

2 )}. Take now a transvection t of ρ42(AB2). We know
that for i ∈ {1, 2}, ρ42(AB3,i) is normally generated by that transvection in ρ42(AB3,i. Since AF4

is generated by AB3,1 and AB3,2, we have that the normal closure in ρ42(AF4) of t is equal to
ρ42(AF4). This proves that ρ(AF4) is an irreducible subgroup of SL4(Fp(

√
α,
√
β)) generated by

transvections. We can now use Theorem 2.3.4. Let Fq0 = Fp(
√
α,
√
β). There exists q′ dividing

q0 such that ρ42(AF4) is conjugate in GL4(q0) to SL4(q′), SU4(q′ 12 ) or SP4(q′). We also have
that ρ42 6' ρ?42 , therefore the symplectic case is excluded. Note that ρ42(AF4) contains either a
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(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
41 1 1
42 1 1
4′2 1 1
44 1 1
4′4 1 1

Figure 9.1: Restriction of the 4-dimensional representations to HB3,1 ' HB3,α,β

(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
41 1 1
42 1 1
4′2 1 1
44 1 1
4′4 1 1

Figure 9.2: Restriction of the 4-dimensional representations to HB3,2 ' HB3,β,α

natural SL3(q) or a natural SU3(q 1
2 ), therefore we have that q divides q′ and q′ ∈ {q, q0}.

It now only remains to show that we have the correct groups. Assume Fq2 = Fp(
√
α,
√
β) 6=

Fp(α, β) = Fq. We then have Fq = Fp(α+ α−1, β + β−1), therefore ρ42(AF4) contains a natural
SL3(q). There exists then a unique automorphism ε of order 2 of Fq2 . Since Fq is fixed by ε, we
have that ε ◦ ρ42 ' ρ42 by considering the restriction to AB3,1. It follows by Lemma 3.2.5 that
up to conjugation, we have ρ42(AF4) ≤ SL4(q). This proves that q′ = q and ρ42(AF4) ' SL4(q)
in cases 4, 5 and 10. We can now assume Fp(

√
α,
√
β) = Fp(α, β), this implies that q0 = q,

therefore q′ = q. This implies that ρ42(AF4) is conjugate in GL4(q) to SL4(q) or SU4(q 1
2 ).

If Fp(α, β) = Fp(α + α−1, β + β−1) then we have again q′ = q and ρ42(AF4) ' SL4(q). If
Fp(α, β) = Fp(α + α−1, β) 6= Fp(α + α−1, β + β−1) then we have that there exists a unique
automorphism ε of order 2 of Fq and that for all representation ϕ of HB3,α,β, we have ε◦ϕ? ' ϕ.
This implies that ε ◦ ρ?42 ' ρ42 . It follows that ρ42(AF4) ' SU4(q 1

2 ). Finally, if Fp(α, β) =
Fp(α, β+β−1) 6= Fp(α+α−1, β) = Fp(α+α−1, β+β−1) then ρ42(AF4) contains a natural SL3(q),
therefore ρ42(AF4) ' SL4(q). The only remaining possibility is Fp(α, β) = Fp(α + α−1, β) 6=
Fp(α, β + β−1) = Fp(α + α−1, β + β−1). The arguments are identical to the previous case.
To conclude, we have ρ42(AF4) ' SU4(q 1

2 ) in cases 11, 12, 13 and 16 and ρ42(AF4) ' SL4(q)
otherwise. By the restriction table, we can apply the same reasoning to ρ44 and we get the
same result.

Proposition 9.4. In cases 1, 4, 5 and 10, we have ρ82(AF4) ' SL8(q) and ρ83(AF4) ' SL8(q).
In cases 11, 12, 13 and 16, we have ρ82(AF4) ' SU8(q 1

2 ) and ρ83(AF4) ' SU8(q 1
2 ).

In cases 2, 6, 9 and 15, we have ρ82(AF4) ' SU8(q 1
2 ) and ρ83(AF4) ' SL8(q 1

2 ).
In cases 3, 7, 8 and 14, we have ρ82(AF4) ' SL8(q 1

2 ) and ρ83(AF4) ' SU8(q 1
2 ).

Proof. Let Fq̃ = Fp(
√
α,
√
β) and G82 = ρ82(AF4). Consider now the representation ρ82 . We

have in cases 1, 4, 5, 10, 11, 12, 13 and 16 by Tables 9.2 and 9.3 and Lemmas 3.3.2 and 3.3.8
that ρ82(AB3,1) and ρ82(AB3,2) are generated by transvections. Since AF4 is generated by AB3,1
and AB3,2, we have that G82 is generated by transvections. We can then apply Theorem 2.3.4.
We get that there exists q′ dividing q̃ such that ρ82(AF4) is conjugate in GL8(q̃) to SL8(q′),

(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
82 1 1 1
8′2 1 1 1
83 1 1 1 1
8′3 1 1 1 1

Table 9.2: Restriction of the 8-dimensional representations to HB3,1 ' HB3,α,β.
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(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
82 1 1 1 1
8′2 1 1 1 1
83 1 1 1
8′3 1 1 1

Table 9.3: Restriction of the 8-dimensional representations to HB3,2 ' HB3,β,α.

SU8(q′ 12 ) or SP8(q′). The symplectic case is exluded because ρ82 6' ρ?82 . In cases 4, 5 and
10, we have q̃ = q2 and ρ82(AB3,1) ' SL3(q)2 × SL2(r) if Fr = Fp(α) = Fp(α + α−1) and
ρ82(AB3,1) ' SL3(q)2 × SU2(r 1

2 ) if Fr = Fp(α) 6= Fp(α+ α−1). It follows that q divides q′ since
G82 contains a natural SL3(q). Since q̃ = q2, there exists a unique automorphism Φ of order
2 of Fq2 . For any representation ϕ of HB3,1, we have Φ ◦ ϕ ' ϕ, therefore by Table 9.2, we
have that Φ ◦ ρ82 ' ρ82 . It follows by Lemma 3.2.5 that up to conjugation in GL8(q2), G82 is a
subgroup of SL8(q). Furthermore, G82 ' SL8(q) because SU8(q 1

2 ) is not conjugate in GL8(q2)
to a subgroup of SL8(q).

In cases 1, 11, 12, 13 and 16, we have q̃ = q and G82 contains either a natural SL3(q) or a
natural SU3(q 1

2 ). We then have by Lemma 3.3.3 that q′ = q. Hence G82 = SL8(q) in case 1
and G82 ' SU8(q 1

2 ) in cases 11, 12, 13 and 16.
Assume now Fp(

√
α,
√
β) = Fp(α, β) = Fq = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α +

α−1, β + β−1). Then ρ82(AB3,1) ' SL3(q) × SU2(r 1
2 ) if Fr = Fp(α) 6= Fp(α + α−1) and

ρ82(AB3,1) ' SL3(q) × SL2(r) if Fr = Fp(α) = Fp(α + α−1). There exists a unique auto-
morphism ε of order 2 of Fq and if we consider the representations appearing in the restriction
of ρ82 to HB3,1, then ε◦ρ[2],[1] ' ρ[1],[2] and ε◦ρ[12],[1] ' ρ[1],[12] by Proposition 3.2.4. Hence Table
9.2 gives ε ◦ ρ82 ' ρ8′2 ' ρ?82 , and it follows that ε ◦ ρ?82 ' ρ82 . By Lemma 3.2.4, we have that
up to conjugation in GL8(q), G82 is a subgroup of SU8(q 1

2 ). By the exact same arguments as
in the proof of Lemma 3.3.8, we conclude that G82 ' SU8(q 1

2 ). This corresponds to cases 2, 6,
9 and 15.

Assume now Fp(
√
α,
√
β) = Fp(α, β) = Fq = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α +

α−1, β + β−1). Then ρ82(AB3,1) ' SL3(q)× SU2(r 1
2 ), where Fr = Fp(α) 6= Fp(α + α−1). There

exists a unique automorphism ε of order 2 of Fq and if we consider the representations appearing
in the restriction of ρ82 to HB3,1, ε ◦ ρ[2,1] ' ρ[12],[1] and ε ◦ ρ[12],[1] ' ρ[2],[1] by Proposition 3.2.4.
It follows by Table 9.2 that ε ◦ρ82 ' ρ82 . We then have by Lemma 3.2.5 that up to conjugation
in GL8(q), G82 is a subgroup of SL8(q 1

2 ). We can then again use the arguments of the proof of
Lemma 3.3.8 to get that G82 ' SL8(q 1

2 ). This corresponds to cases 3, 7, 8 and 14.
The results for the representation ρ83 are symmetric with regards to α and β to the results

for ρ82 since Tables 9.2 and 9.3 are identical after permutation of 82 and 83.

Proposition 9.5. In cases 11, 12, 13 and 16, we have ρ91(AF4) ' SU9(q 1
2 ) and ρ92(AF4) '

SU9(q 1
2 ).

In all the remaining case, we have ρ91(AF4) ' SL9(q) and ρ92(AF4) ' SL9(q).
In cases 2, 6, 9 and 15, if ε is the unique automorphism of order 2 of Fq then ε ◦ ρ91|AF4

'
ρ92|AF4

.
In cases 3, 7, 8 and 14, if ε is the unique automorphism of order 2 of Fq then ε ◦ ρ91|AF4

'
ρ9′2|AF4

.

Proof. Let Fq̃ = Fp(
√
α,
√
β) and G91 = ρ91(AF4). By Tables 9.4 and 9.5, in cases 1, 4, 5, 10,

11, 12, 13 and 16, ρ91(AB3,1) and ρ92(AB3,2) are generated by transvections. It follows that
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(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
91 1 1 1 1
9′1 1 1 1 1
92 1 1 1 1
9′2 1 1 1 1

Table 9.4: Restriction of the 9-dimensional representations to HB3,1 ' HB3,α,β.

(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
91 1 1 1 1
9′1 1 1 1 1
92 1 1 1 1
9′2 1 1 1 1

Table 9.5: Restriction of the 9-dimensional representations to HB3,2 ' HB3,β,α.

ρ91(AF4) is generated by transvections. We get by Theorem 2.3.4 that there exists q′ dividing
q̃ such that G91 is conjugate in GL9(q̃) to SL9(q′), SU9(q′ 12 ) or SP9(q′). The symplectic case is
excluded since we have ρ91 6' ρ?91 . In case 1, we have q̃ = q and Fp(α, β) = Fp(α+α−1, β+β−1).
By Theorem 3.2.1, G91 contains a natural SL3(q), therefore q′ = q and G91 = SL9(q). In
cases 4, 5 and 10, we have q̃ = q2 and Fq = Fp(α, β) = Fp(α + α−1, β + β−1). We then have
again by Theorem 3.2.1 that G91 contains a natural SL3(q), therefore q′ ∈ {q, q2}. There
exists a unique automorphism Φ of order 2 of Fq2 and if we consider the restrictions of ρ91

to HB3,1, then Φ ◦ ρ[2],[1]|AF4
' ρ[2],[1]|AF4

and Φ ◦ ρ[1],[2]|AF4
' ρ[1],[2]|AF4

. By Table 9.4, we
have either Φ ◦ ρ91|AF4

' ρ91|AF4
or Φ ◦ ρ91|AF4

' ρ92|AF4
. Assume now by contradiction that

Φ ◦ ρ91|AF4
' ρ92|AF4

. There exists a character χ from AF4 to Fq2 such that Φ ◦ ρ91 ' ρ92 ⊗ χ
by Lemma 3.2.3. Since AF4/AF4 '< S2, S3 >, it follows that there exists y ∈ Fq2 such that
Φ(ρ91(S3)) is conjugate in GL9(q) to yρ92(S3). The eigenvalues of ρ91(S3) are β with multiplicity
3 and −1 with multiplicity 6, therefore the eigenvalues of Φ(ρ91(S3)) are β with multiplicity
6 and −1 with multiplicity 3. On the other hand, the eigenvalues of yρ92(S3) are yβ with
multiplicity 3 and −y with multiplicity 6. This implies that yβ = −1 and −y = β. It follows
that y = −β = −β−1, therefore β2 = 1 which is absurd. This proves that Φ ◦ ρ91 ' ρ91 . Hence,
up to conjugation in GL9(q), G91 is a subgroup of SL9(q) by Lemma 3.2.4. It follows that
G91 ' SL9(q) in cases 4, 5 and 10.

In cases 11, 12, 13 and 16 we have q̃ = q and G91 contains a natural SU3(q 1
2 ). By Lemma

3.3.3, we have q′ = q. There exists a unique automorphism ε of order 2 of Fq and for any
representation ϕ appearing in the decomposition of the restriction of ρ91 from HF4 to HB3,1,
we have ε ◦ ϕ? ' ϕ. It follows that ε ◦ ρ?91 ' ρ91 or ε ◦ ρ?91 ' ρ92 . The eigenvalues of ε(ρ?91(S3))
are β−1 with multiplicity 3 and −1 with multiplicity 6, whereas the eigenvalues of vρ92(S3) are
vβ with multiplicity 3 and −v with multiplicity 6. We get in the same way as in cases 4, 5 and
10 that ε ◦ ρ?91 ' ρ91 . By Lemma 3.2.5, we get that G92 is conjugate to a subgroup of SU9(q 1

2 ),
therefore G92 ' SU9(q 1

2 ).

Assume now Fp(
√
α,
√
β) = Fp(α, β) = Fq = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α +

α−1, β + β−1). We then have ρ91(AB3,1) ' SL3(q)× SU2(r 1
2 ) if Fr = Fp(α) 6= Fp(α + α−1) and

ρ91(AB3,1) ' SL3(q)×SL2(r) if Fr = Fp(α) = Fp(α+α−1). There exists a unique automorphism
ε of order 2 of Fq and if we consider the representations appearing in the restriction of ρ91 to
HB3,1, we have by Proposition 3.2.4 that ε◦ρ[2],[1] ' ρ[1],[2] and ε◦ρ[1],[2] ' ρ[2],[1]. It follows that
ε◦ρ91|AF4

' ρ91|AF4
or ε◦ρ91|AF4

' ρ92|AF4
. We have here ε(α) = α and ε(β) = β−1. Assume now

by contradiction that ε ◦ ρ91|AF4
' ρ91|AF4

. There exists v ∈ Fq such that ε(ρ91)(S3) conjugate
to vρ91(S3). The eigenvalues of ε(ρ91(S3)) are β−1 with multiplicity 6 and −1 with multiplicity
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3 and the eigenvalues of vρ91(S1) are vβ with multiplicity 6 and −v with multiplicity 3. This
implies that v = 1 = β−2, therefore β2 = 1 which is absurd. This implies that ε ◦ ρ91|AF4

'
ρ92|AF4

. We will now use Theorem 2.3.2. We have thatG91 contains a natural SL2(r) or a natural
SU2(r 1

2 ). This implies that vG91
(V ) ≤ 2 = max(2,

√
9

2 ) and that we are not in the second case
of Theorem 2.3.2. It also implies by Lemma 3.3.5 that G91 is tensor-indecomposable. However,
AF4 is not normally generated by AB3 , therefore we cannot use the same arguments as before to
show thatG91 is primitive in the non-monomial case. Nevertheless, we can show in the same way
that if G91 ⊂ (GL3(q)×GL3(q)×GL3(q))oS3 then ρ91(AB3,1) ⊂ GL3(q)×GL3(q)×GL3(q) and
ρ91(AB3,2) ⊂ GL3(q)×GL3(q)×GL3(q). Since G91 is generated by ρ91(AB3,1) and ρ91(AB3,2),
this contradicts the irreducibility, and G91 is therefore primitive. It follows that G91 is a classical
group over Fq′ for some q′ dividing q in a natural representation. We have that ρ91|AF4

6' ρ?91|AF4
,

therefore G91 preserves no non-degenerate bilinear form. We have that G91 contains ρ91(AB3,1)

which is equal up to conjugation to



M 0 0 0
0 ε(M) 0 0
0 0 N 0
0 0 0 1

 ,M ∈ SL3(q), N ∈ SL2(r̃)

, where
r̃ = r if Fr = Fp(α) = Fp(α + α−1) and r̃ = r

1
2 otherwise. It follows that G91 contains up to

conjugation diag(α, α−1, 1, α, α−1, 1, 1, 1, 1) and diag(β, β−1, 1, β, β−1, 1, 1, 1, 1). Thus, the field
generated by the traces of the elements of G91 contains 5 + 2(α + α−1) and 5 + 2(β + β−1).
Since p 6= 2, this field contains α+ α−1 and β + β−1, therefore q 1

2 divides q′. This implies that
G91 is conjugate to SU9(q 1

4 ), SL9(q 1
2 ), SU9(q 1

2 ) or SL9(q). We have ε ◦ ρ91|AF4
' ρ92 , therefore

ε ◦ ρ?91|AF4
' ρ?92 ' ρ9′2 . We have by Proposition 9.2 that ρ92|AF4

6' ρ91|AF4
and ρ9′2|AF4

6' ρ91|AF4
.

It follows that G91 ' SL9(q). This corresponds to cases 2, 6, 9 and 15.
Assume now Fp(

√
α,
√
β) = Fp(α, β) = Fq = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α +

α−1, β+β−1). We then have ρ91(AB3,1) ' SL3(q)×SU2(r 1
2 ), where Fr = Fp(α) 6= Fp(α+α−1).

There exists a unique automorphism ε of order 2 of Fq and if we consider the representations
appearing in the restriction of ρ91 toHB3,1, ε◦ρ[2,1] ' ρ[12],[1] and ε◦ρ[1],[2] ' ρ[1],[12] by Proposition
3.2.4. It follows that ε ◦ ρ91|AF4

' ρ9′1|AF4
or ε ◦ ρ91|AF4

' ρ9′2|AF4
. We have here ε(α) = α−1 and

ε(β) = β. We have

Tr(ρ91(S1S
−1
2 S3S

−1
4 )) = α2β2 − 3α2β − 2αβ2 + 2α2 + 5αβ + β2 − 3α− 2β + 1

αβ

ε(Tr(ρ91(S1S
−1
2 S3S

−1
4 ))) = α2 − 2α2β − 2αβ2 + α2 + 5αβ + β2 − 3α− 3β + 2

αβ

Tr(ρ9′1(S1S
−1
2 S3S

−1
4 )) = α2β2 − 2α2β − 3αβ2 + α2 + 5αβ + 2β − 2α− 3β + 1

αβ

It follows that

ε(Tr(ρ91(S1S
−1
2 S3S

−1
4 )))− Tr(ρ9′1(S1S

−1
2 S3S

−1
4 )) = (α− 1)(β2 − 1)

αβ
6= 0.

This implies that ε ◦ ρ91|AF4
6' ρ9′1|AF4

, therefore ε ◦ ρ91|AF4
' ρ9′2|AF4

. We then get in the
same ways as in cases 2, 6, 9 and 15 that we can apply Theorem 2.3.2 to get that G91 is a
classical group over Fq′ in a natural representation and that q 1

2 divides q′. This implies that
G91 is conjugate to SU9(q 1

4 ), SL9(q 1
2 ), SU9(q 1

2 ) or SL9(q). We have ε ◦ ρ91|AF4
' ρ9′2|AF4

6' ρ91
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(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
61 1 1
62 1 1

Table 9.6: Restriction of the 6-dimensional representations to HB3,1 ' HB3,α,β.

(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
61 1 1
62 1 1

Table 9.7: Restriction of the 6-dimensional representations to HB3,1 ' HB3,α,β.

and ε ◦ ρ?91|AF4
' ρ92|AF4

6' ρ91 . It follows that G91 is conjugate to SL9(q). This corresponds to
cases 3, 7, 8 and 14.

By what was proven in cases 2, 3, 6, 7, 8, 9, 14 and 15 and Table 9.5, we have the second
part of the proposition.

Proposition 9.6. In cases 11, 12, 13 and 16, we have ρ61(AF4) ' Ω+
6 (q 1

2 ) and ρ62(AF4) '
Ω+

6 (q 1
2 ).

In all the remaining cases, we have ρ61(AF4) ' Ω+
6 (q) and ρ62(AF4) ' Ω+

6 (q).

Proof. Let Fq̃ = Fp(
√
α,
√
β), G61 = ρ61(AF4) and G62 = ρ62(AF4).

Let P1 be the anti-diagonal matrix with coefficients (1,−1, 1, 1,−1, 1). We write the matrices
of ρ61 with respect to the basis (ex1 , ex2 , ex3 , ex4 , ex5 , ex6), where I(x1) = {s1, s3, s4}, I(x2) =
{s2, s4}, I(x3) = {s3} and I(xj) = {s1, s2, s3, s4} \ I(x6−j) for j ∈ {4, 5, 6}. We then have for
all g ∈ G61 , P1gP

−1
1 =t g−1. This proves that up to conjugation in GL6(q̃), G61 ≤ Ω+

6 (q̃). By
Proposition 6.2, we have that up to conjugation, G62 ≤ Ω+

6 (q̃).
By Tables 9.6 and 9.7 and Theorems 3.2.1 to 3.2.6, we have that (ρ61(AB3,1) ' SL3(q)

or ρ61(AB3,1) ' SU3(q 1
2 )), (ρ61(AB3,2) ' SL3(q) or ρ61(AB3,1) ' SU3(q 1

2 )) and (ρ61(AB2) '
SL2(q) or ρ61(AB2) ' SL2(q 1

2 ). Note that those isomorphisms are given by twisted diagonal
embeddings, therefore a transvection in SL3(q) is mapped to a long root element of Ω+

6 (q) by the
isomorphism ρ61(AB3,1) ' SL3(q). This proves that ρ61(AB3,1) and ρ61(AB3,2) are generated by
long root elements. If t is a long root element of ρ61(AB2) then its normal closure in ρ61(AB3,1)
is equal to ρ61(AB3,1) and its normal closure in ρ61(AB3,2) is equal to ρ61(AB3,2). It follows that
the normal closure of t in G61 is equal to G61 since by Lemma 9.1, AB3,1 and AB3,2 generate
AF4 . This proves that G61 is an irreducible subgroup of Ω+

6 (q̃) generated by a conjugacy class of
long root elements. Since Op(G61) is normal in G61 and V = F6

q is an irreducible FqG61-module,
we apply Clifford’s Theorem [16, Theorem 11.1] and get that ResG61

Op(G61 )(V ) is semisimple.
Since Op(G61) is a p-group, the unique irreducible FqOp(G61)-module is the trivial module,
therefore Op(G61) acts trivially on V . It follows that Op(G61) is trivial. By Theorem 2.3.3, G61

is isomorphic to one of the following groups for some q′ dividing q̃

1. Ω+
6 (q′) in a natural representation,

2. Ω−6 (q′ 12 ) as a subgroup of Ω+
6 (q′), where Ω+

6 (q′) is in a natural representation,

3. SU3(q′) as a subgroup of Ω+
6 (q′), where Ω+

6 (q′) is in a natural representation.

Assume now that we are in cases 4, 5 or 10. We have q̃ = q2 and Fq = Fp(α, β) =
Fp(α + α−1, β + β−1). There exists a unique automorphism Φ of order 2 of Fq. We have
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Φ◦ρ61|AF4
' ρ61|AF4

or Φ◦ρ61|AF4
' ρ62|AF4

. By Table 9.6, we cannot have Φ◦ρ61|AF4
' ρ62|AF4

.
It follows that Φ ◦ ρ61|AF4

' ρ61|AF4
. Hence, by Lemma 3.2.4, G61 is conjugate in GL6(q2) to a

subgroup of Ω+
6 (q). Since it contains up to conjuugation a twisted diagonal SL3(q), it contains

up to conjugation diag(α, α−1, 1, α−1, α, 1) and diag(β, β−1, 1, β−1, β, 1). This implies the field
generated by the traces of its elements contains 2(α + α−1) + 2 and 2(β + β−1) + 2. It follows
that q′ = q.

If G61 ' SU3(q) then we would have that SL3(q) is isomorphic to a subgroup of SU3(q),
therefore q3(q2 − 1)(q3 − 1) divides q3(q2 − 1)(q3 + 1). This would imply that q3 − 1 divides
q3 + 1, therefore q3 − 1 divides q3 + 1− (q3 − 1) = 2. This is absurd, therefore G61 6' SU3(q).

Assume now by contradiction that G61 ' Ω−6 (q 1
2 ). We have |Ω−6 (q 1

2 )| = 1
2q

3(q 3
2 + 1)(q −

1)(q2 − 1) and |SL3(q)| = q3(q2 − 1)(q3 − 1). Since Gcd(q3 − 1, q3) = 1, q3 − 1 divides
(q 3

2 + 1)(q − 1) = q
5
2 − q 3

2 + q − 1 < q
5
2 − 1 < q3 − 1. This is absurd, therefore G61 6' Ω−6 (q 1

2 ).
It follows that in cases 4, 5 and 10 , we have G61 ' Ω+

6 (q).

We can now assume q̃ = q, therefore q′ divides q. By the same reasoning as above using
Lemma 3.3.3, we have that Fq′ contains Fp(α+α−1, β+β−1) in all the remaining cases. In case
1, we can apply the same reasoning as above to get that G61 ' Ω+

6 (q).
In cases 11, 12, 13 and 16, there exists a unique automorphism ε of order 2 of Fq and for

any representation ϕ of HB3,1, we have ε◦ϕ? ' ϕ. It then follows by Table 9.6 that ε◦ρ?61|AF4
'

ρ61|AF4
. Then, by [12] (Proposition 4.1.), G61 is conjugate in GL6(q) to a subgroup of Ω+

6 (q 1
2 ).

It follows that q′ divides q 1
2 , therefore q′ = q

1
2 since Fq′ contains Fp(α + α−1, β + β−1) = F

q
1
2
.

This proves that G61 is isomorphic to one of the following groups

1. Ω+
6 (q 1

2 ) in a natural representation,

2. Ω−6 (q 1
4 ) as a subgroup of Ω+

6 (q 1
2 ), where Ω+

6 (q 1
2 ) is in a natural representation,

3. SU3(q 1
2 ) as a subgroup of Ω+

6 (q 1
2 ), where Ω+

6 (q 1
2 ) in a natural representation.

Assume now by contradiction that G61 ' SU3(q 1
2 ). We know that ρ61(AB3,1) ' SU3(q 1

2 ).
We only need to show that ρ61(AB3,1) 6= G61 .

LetX =



0 1 0 0 0 α2+β
α
√
β√

α(β+1)
αβ+1 − α+β

αβ+1 0 0 (β+1)(α2+β)
√
α
√
β(αβ+1)

− (α+β)(α2+β)
α
√
β(αβ+1)

− α2+β√
α(αβ+1) 0 (α2+β)(α+β)

α
√
β(αβ+1)

0 − (α4+β)2

α
√
α
√
β(αβ+1)

0

1 − α+β√
α(β+1) 0 α2+β

α(β+1) 0 0
0 αβ+1√

α(β+1) 0 − (αβ+1)(α2+β)
α(α+β)(β+1) 0 0

0 0 0 αβ+1
α+β 0 0


.

We have with respect to the previous basis that for all g ∈ AB3,1,

Xρ61(g)X−1 =
(
ρ[1],[2](g) 0

0 ρ[12],[1](g)

)
.

Note that here, the matrix ρ61(q) with respect to the previous basis is again denoted by the
same symbol in order to simplify the notations.
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We have (Xρ61(S3S
−1
4 )X−1)2,6 = − α3+β3

√
α(αβ+1)2β

6= 0. This proves that ρ61(S3S
−1
4 ) /∈ ρ61(AB3,1),

therefore G61 6' SU3(q 1
2 ).

Assume by contradiction that G61 ' Ω−6 (q 1
4 ). Then |Ω−6 (q 1

4 )| = 1
2q

3
2 (q 3

4 + 1)(q 1
2 − 1)(q − 1),

|SU3(q 1
2 )| = q

3
2 (q − 1)(q 3

2 + 1)|, and q 3
2 + 1 divides (q 3

4 + 1)(q − 1)1
2 . Therefore, q

3
2 + 1 divides

(q 3
4 +1)(q−1)1

2−(q 3
4−1)(q−1)1

2 = q−1 < q
3
2 +1. This is absurd. Thus, we have G61 ' Ω+

6 (q 1
2 ).

Assume now Fp(
√
α,
√
β) = Fp(α, β) = Fq = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α +

α−1, β + β−1). There exists then a unique automorphism ε of order 2 of Fq. We have by
Proposition 3.2.4 that ε ◦ ρ[1],[2]|AB3,1

' ρ[2],[1]|AB3,1
. This proves that ε ◦ ρ61|AF4

' ρ62|AF4
by

Table 9.6. We know that q′ ∈ {q 1
2 , q}. We have by Proposition 9.2 that ε ◦ ρ61|AF4

6' ρ61|AF4
,

therefore we cannot have q′ = q
1
2 . It follows that q′ = q. The proof then uses the same

arguments as in case 1, therefore we get that G61 ' Ω+
6 (q) in cases 2, 6, 9 and 15.

Finally, assume Fp(
√
α,
√
β) = Fp(α, β) = Fq = Fp(α, β + β−1) 6= Fp(α + α−1, β) = Fp(α +

α−1, β + β−1). There exists then a unique automorphism ε of order 2 of Fq. We have by
Proposition 3.2.4 that ε ◦ ρ[1],[2]|AB3,1

' ρ[1],[12]|AB3,1
. This proves that ε ◦ ρ61|AF4

' ρ62|AF4
by

Table 9.6. We know that q′ ∈ {q 1
2 , q}. We have by Proposition 9.2 that ε ◦ ρ61|AF4

6' ρ61|AF4
,

therefore we cannot have q′ = q
1
2 . It follows that q′ = q. The proof then uses the same

arguments as in case 1, therefore we get that G61 ' Ω+
6 (q) in cases 3, 7, 8 and 14.

By Tables 9.6 and 9.7, we only need to check that ρ62(AF4) 6= ρ62(AB3,1) to get the same
results for the representation ρ62 . Let

Y =



0 0 0 0 α+ β
√
α(β + 1)

0 0
√
α(β + 1) 0 −αβ − 1 0

0 0 −α2β+1√
α

0 0 0

1 0 −
√
α
√
β(α+1)

α2β+1 0
√
βα

α2β+1 0

− α+β
αβ+1

√
α(β+1)
αβ+1 −

√
α
√
β

αβ+1 0 −
√
βα(α+β)

(α2β+1)(αβ+1) − α
√
α
√
β(β+1)

(α2β+1)(αβ+1)
α(β+1)(α+β)

(α2β+1)(αβ+1) −
√
αα(β+1)2

(αβ+1)(α2β+1)

√
αα
√
β(β+1)

(αβ+1)(α2β+1)
α(β+1)
α2β+1 −α

√
β(α+1)(β+1)

(α2β+1)(αβ+1) −
√
α
√
βα(β+1)

(α2β+1)(αβ+1)


.

We consider the matrices corresponding to the representation ρ62 with respect to the basis
(ex1 , ex2 , ex3 , ex4 , ex5 , ex6) with I(x1) = {s1, s2}, I(x2) = {s1, s3}, I(x3) = {s1, s4}, I(x4) =
{s2, s3}, I(x5) = {s2, s4}, I(x6) = {s3, s4}. We then have that for all g ∈ HB3,1,

Y ρ62(g)Y −1 =
(
ρ[1],[2](g) 0

0 ρ[2],[12](g)

)
.

We have that (Y ρ62(S3S
−1
4 )Y −1)1,5 = −α+β√

β
6= 0, therefore G62 6= ρ62(AB3,1) and the proof is

concluded.

Proposition 9.7. In cases 1, 4, 5 and 10, we have ρ12(AF4) ' Ω+
12(q) and ρ16(AF4) ' Ω+

16(q).
In all the remaining cases, we have ρ12(AF4) ' Ω+

12(q 1
2 ) and ρ16(AF4) ' Ω+

16(q).

Proof. Let Fq̃ = Fp(
√
α,
√
β), G12 = ρ12(AF4) and G16 = ρ16(AF4). In cases 1, 4, 5, 10, 11, 12,

13 and 16, G12 contains a twisted diagonal SL3(q) or a twisted diagonal SU3(q 1
2 ) by Table 9.8
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(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
12 1 1 1 1
16 1 1 1 1 1 1

Table 9.8: Restriction of the high dimensional representations to HB3,1 ' HB3,α,β

(∅, [13]) ([3], ∅) ([13], ∅) (∅, [3]) ([2, 1], ∅) (∅, [2, 1]) ([2], [1]) ([1], [12]) ([1], [2]) ([12], [1])
12 1 1 1 1
16 1 1 1 1 1 1

Table 9.9: Restriction of the high dimensional representations to HB3,2 ' HB3,β,α

and Theorems 3.2.1 and 3.2.3. Note that in cases 4, 5 and 10 we have that Φ◦ρ12|AF4
' ρ12|AF4

,
where Φ is the unique automorphism of order 2 of Fq̃. It follows by Lemma 3.2.5 that in
cases 4, 5 and 10, G12 is conjugate in GL12(q̃) to a subgroup of GL12(q). We then have that
vG12(v) ≤ 2 = max(2,

√
12
2 ), G12 is primitive and we are not in case (2) of Theorem 2.3.2. In

order to apply the theorem we have to prove that G12 is tensor-indecomposable but we cannot
use Lemma 3.3.6 because 12 ≤ 16. The arguments in the proof of Lemma 3.3.6 [12] only
require d ≥ 16 in order to have a ≥ 3 and b ≥ 4 if a, b ≥ 3. This is still true for d ≤ 16 unless
d = 9, therefore we can still apply Lemma 3.3.6. We still have to prove that we do not have
G12 ≤ GL2(q)⊗GL6(q). Assume by contradiction that G12 ≤ GL2(q)⊗GL6(q). We then have a
morphim from G12 toGL2(q). Consider the restriction of this morphism to ρ12(AB3,1). Table 9.8
and Propositions 3.3.2 and 3.3.8 give us a morphism from SL3(q)×SL3(q) or SU3(q 1

2 )×SU3(q 1
2 )

to GL2(q). We can consider the restriction to each factor and we get a morphism from SL3(q)
to GL2(q) or a morphism from SU3(q 1

2 ) to GL2(q). If this morphism is non-trivial then we
get an isomorphism from PSL3(q) to a subgroup of GL2(q) or an isomorphism form PSU3(q 1

2 )
to a subgroup of GL2(q). This would imply by considering the orders of those groups that

1
(3,q−1)q

3(q2 − 1)(q3 − 1) or 1
(3,q−1)q

3(q2 − 1)(q3 + 1) divides q2(q2 − 1)(q − 1) which is absurd
since q3 cannot divide q2. This proves that the restriction of this morphism to each factor is
trivial, therefore the restriction of this morphism to ρ12(AB3,1) is trivial. The restriction to
ρ12(AB3,2) is also trivial by Table 9.9 and the same arguments as above. This would imply by
Lemma 9.1 that this morphism is trivial, which contradicts the irreducibility of G12. Therefore
G12 is tensor-indecomposable. So, we can apply Theorem 2.3.2 and we get that G12 is a
classical group in a natural representation. Consider now this representation with respect to
the basis (exi)i∈[[1,12]], where I(x1) = {s2}, I(x2) = {s3}, I(x3) = {s1, s2}, I(x4) = {s1, s3},
I(x5) = {s1, s3}, I(x6) = {s1, s4} and for j ∈ [[7, 12]], I(xj) = {s1, s2, s3, s4} \ {I(x13−j)}. Let P
be the anti-diagonal matrix with coefficients (3, 3,−1, 1,−3,−1,−1,−3, 1,−1, 3, 3). We then
have for all i ∈ {1, 2} that Pρ12(Si)P−1 = −αtρ12(Si)−1 and for all j ∈ {3, 4}, Pρ12(Sj)P−1 =
−βtρ12(Sj). This proves that G12 is conjugate in GL12(q̃) to a subgroup of Ω+

12(q). Since it
contains a twisted diagonal SL3(q) or a twisted diagonal SU3(q 1

2 ), the field generated by its
traces contains Fp(α + α−1, β + β−1). In case 1, 4, 5 and 10 this proves that G12 is a classical
group over Fq and since G12 is conjugate to a subgroup of Ω+

12(q), we get G12 ' Ω+
12(q).

Assume now that we are in case 11, 12, 13 or 16. Then there exists an automorphism ε of
order 2 of Fq, and ε ◦ ρ12|AF4

' ρ12|AF4
. It follows by Lemma 3.2.5 that G12 is conjugate to

a subgroup of Ω+
12(q 1

2 ). Hence, G12 is a classical group in a natural representation over F
q

1
2
,

therefore G12 ' Ω+
12(q 1

2 ).
Assume now Fp(

√
α,
√
β) = Fp(α, β) = Fq = Fp(α + α−1, β) 6= Fp(α, β + β−1) = Fp(α +

α−1, β+β−1). There exists then a unique automorphism ε of order 2 of Fq. We have ε◦ρ12|AF4
'
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ρ12|AF4
. This implies by Lemma 3.2.5 that G12 is conjugate to a subgroup of Ω+

12(q 1
2 ). We know

by Theorem 3.2.5 and Tables 9.8 and 9.9 that ρ12(AB3,1) ' SL3(q) and ρ12(AB3,2) ' SL3(q).
We have that G12 is primitive, irreducible and that the field generated by its traces contains
F
q

1
2
. Let us show that G12 is also tensor-indecomposable. If it was tensor-decomposable then

we would have G12 ≤ GL2(q 1
2 )⊗GL6(q 1

2 ) or G12 ≤ GL3(q 1
2 )⊗GL4(q 1

2 ). By the same argument
as in the above cases, we have that G12 ≤ GL2(q 1

2 )⊗GL6(q 1
2 ) is impossible.

Assume now by contradiction that G12 ≤ GL3(q 1
2 ) ⊗ GL4(q 1

2 ). We would then have a
morphism from G12 to GL3(q 1

2 ). The restriction of this morphism from G12 to ρ12(AB3,1) or to
ρ12(AB3,2) gives us a morphism from SL3(q) to GL3(q 1

2 ). If this morphism is non-trivial, we
get an isomorphism from PSL3(q) to a subgroup of GL3(q 1

2 ). This is absurd since |PSL3(q)| =
1

(3,q−1)q
3(q2− 1)(q3− 1), |GL3(q 1

2 )| = q
3
2 (q 1

2 − 1)(q− 1)(q 3
2 − 1) and q3 does not divide q 3

2 . This
proves that the restriction of this morphism to ρ12(AB3,1) and ρ12(AB3,2) is trivial. It follows
by Lemma 9.1 that this morphism is trivial and it contradicts the irreducibility of G12. This
proves that G12 is tensor-indecomposable. We will now explicitely find a matrix g ∈ G12 such
that dim(g − I12) = 2. We consider our matrices in the same basis as before.

Let X = (X1X2X3) and Y = (Y1Y2Y3Y4), where X1, X2, X3 and Y1, Y2, Y3 and Y4 are given
in section 10.7 of the Appendix.

We then have that Xρ12|AB3,1
X−1 =


ρ[2],[1] 0 0 0

0 ρ?[2],[1] 0 0
0 0 ε ◦ ρ[2],[1] 0
0 0 0 ε ◦ ρ?[2],[1]

 and

Y −1ρ12|AB3,2
Y =


ρ[2],[1] 0 0 0

0 ρ?[2],[1] 0 0
0 0 ε ◦ ρ[2],[1] 0
0 0 0 ε ◦ ρ?[2],[1]

 .

It follows that

L1 = (XY )(I12 + E2,3 − E6,5 + E8,9 − E12,11)(XY )−1 ∈ XG12X
−1

and
L2 = I12 + E2,3 − E6,5 + E8,9 − E12,11 ∈ XG12X

−1.

We then have L3 = [L2, L1] ∈ XG12X
−1. We have

L3 = I12 + 2 Φ6(α)Φ2(αβ)
(α2β + 1)(β + 1)(α + 1)2E6,9 − 2

√
αΦ6(α)Φ2(αβ)2

Φ2(α)3(α + β)Φ2(α2β)Φ2(β)E12,3.

Hence, dim((L3 − I12)V ) = 2. We can then apply Theorem 2.3.2 to get that G12 is a classical
group in a natural representation over Fq′ for some q′ dividing q. We have that q′ divides q 1

2

since G12 is conjugate to a subgroup of Ω+
12(q 1

2 ). We have

diag(α, α−1, 1, α−1, α, 1, α, α−1, 1, α−1, α, 1) ∈ XG12X
−1,

diag(β, β−1, 1, β−1, β, 1, β−1, β, 1, β, β−1, 1) ∈ XG12X
−1
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therefore the field Fq′ generated by the traces of the elements of G12 contains 4(α + α−1 + 1)
and 4(β + β−1 + 1). It follows that Fq′ contains Fp(α+ α−1, β + β−1) = F

q
1
2
, therefore q′ = q

1
2 .

We can then conclude that G12 ' Ω+
12(q 1

2 ).
By complete symmetry of α and β for the 12-dimensional representation, we get that in

cases 3, 7, 8 and 14, we have G12 ' Ω+
12(q 1

2 ).

Consider now the 16-dimensional representation. We consider the matrices corresponding
to the representation ρ16 with respect to the basis (exi)i∈[[1,16]], where (I(xi))i∈[[1,16]] is ordered
lexicographically i.e. I(x1) = {s2}, I(x2) = {s3}, I(x3) = {s1, s2}, I(x4) = I(x5) = I(x6) =
{s1, s3}, I(x7) = I(x8) = {s2, s4} and I(xi) = {s1, s2, s3, s4} \ I(x17−i) for all i ∈ [[9, 16]] and
such that µs1x4,x2 = 1, µs3x5,x3 = −1, µs2x10,x2 = 1, µs2x15,x7 = 1, µs3x14,x11 = 2 and µs1x15,x13 = 1.
Let P16 be the symmetric antidiagonal matrix with coefficients with coefficients in the first
8 rows respectively equal to 1, 1, −1, −1, 1, −2, −1 and 2. We then have for all g ∈ G16,
PgP−1 =t g−1. Since P is symmetric, we get that G16 is up to conjugation a subgroup of
Ω+

16(q̃). Note that by Table 9.8 and Theorem 4.2.1, G16 contains up to conjugation a diagonal
SL2(r) or a diagonal SL2(r 1

2 ), where Fr = Fp(α) in all cases. It follows that G16 is irreducible,
primitive, vG16(V ) ≤ 2 and we are not in the second case of Theorem 2.3.2. It only remains to
show that G16 is tensor-indecomposable in order to apply Theorem 2.3.2. Note that in cases 4,
5 and 10, we have Φ ◦ ρ16|AF4

' ρ16|AF4
, therefore G16 is conjugate to a subgroup of Ω+

16(q). In
all the remaining cases, we have q̃ = q. By Lemma 3.3.6, we have G16 tensor-indecomposable or
G16 ≤ GL2(q)⊗GL8(q). Depending on the cases, we have that G16 contains up to conjugation
either

H1 =


M 0 0

0 tM−1 0
0 0 I10

 ,M ∈ SL3(q)

 ,

H2 =


M 0 0

0 tM−1 0
0 0 I10

 ,M ∈ SL3(q)


or

H3 =




M 0 0 0 0
0 tM−1 0 0 0
0 0 ε(M) 0 0
0 0 0 ε(tM−1) 0
0 0 0 0 I4

 ,M ∈ SL3(q)


where ε is the unique automorphism of Fq (H2 and H3 only appear when Fp(α, β) 6= Fp(α +
α−1, β + β−1)). Assume by contradiction that G16 ≤ GL2(q) ⊗ GL8(q). The restriction of
the morphism from G16 to GL2(q) to H1, H2 or H3 is then trivial since |PSL3(q)| does not
divide |GL2(q)|. This implies that the eigenvalues of semisimple elements of H1, H2 or H3 all
have multiplicity divisible by 8. This is absurd because there exists ξ ∈ F?q such that ξ2 6= 1,
H1 and H2 contain elements conjugate to diag(ξ, ξ, ξ−1, ξ−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) or H3
contains an element conjugate to diag(ξ, ξ, ξ, ξ, ξ−1, ξ−1, ξ−1, ξ−1, 1, 1, 1, 1, 1, 1, 1, 1). It follows
that G16 is tensor-indecomposable in all cases. We also have that in all cases G16 contains up
to conjugation diag(α, α, α, α, α−1, α−1, α−1, α−1, 1, 1, 1, 1, 1, 1, 1, 1) and
diag(β, β, β, β, β−1, β−1, β−1, β−1, 1, 1, 1, 1, 1, 1, 1, 1), therefore the field Fq′ generated by the
traces of the elements of G16 contains Fp(α + α−1, β + β−1). Hence, by Theorem 2.3.2, G16 is
a classical group in a natural representation over Fq′ .
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Assume now we are in case 1, 4, 5 or 10. We have Fq = Fp(α + α−1, β + β−1), therefore
q′ = q and G16 is a classical group in a natural representation over Fq. Since G16 is conjugate
to a subgroup of Ω+

16(q), we get that G16 ' Ω+
16(q).

In all the remaining cases, there exists a unique automorphism ε of order 2 of Fq and
ε ◦ ρ16|AF4

' ρ16|AF4
. It follows that G16 is conjugate to a subgroup of Ω+

16(q 1
2 ). It then follows

that q′ = q
1
2 , therefore G16 ' Ω+

16(q 1
2 ).

Theorem 9.1. We write Fq̃ = Fp(
√
α,
√
β), Frα = Fp(α + α−1) and Frβ = Fp(β + β−1).

In cases 1, 4, 5 and 10, the morphism from AF4 to H?
F4,α,β '

∏
ρ irr

GLnρ(q̃) factorizes through

the surjective morphism

Φ : AF4 → (SL2(rα) ◦ SL2(rβ))× SL4(q)2 × Ω+
6 (q)2

×SL8(q)2 × SL9(q)2 × Ω+
12(q)× Ω+

16(q).
In cases 11, 12, 13 and 16, the morphism from AF4 to H?

F4,α,β '
∏

ρ irr
GLnρ(q̃) factorizes through

the surjective morphism

Φ : AF4 → ×(SL2(rα) ◦ SL2(rβ))× SU4(q 1
2 )2 ××Ω+

6 (q 1
2 )2

×SU8(q 1
2 )2 × SU9(q 1

2 )2 × Ω+
12(q 1

2 )× Ω+
16(q 1

2 ).
In cases 2, 6, 9 and 15, the morphism from AF4 to H?

F4,α,β '
∏

ρ irr
GLnρ(q̃) factorizes through

the surjective morphism

Φ : AF4 → (SL2(rα) ◦ SL2(rβ))× SL4(q)××Ω+
6 (q)

×SL8(q 1
2 )× SU8(q 1

2 )× SL9(q)× Ω+
12(q 1

2 )× Ω+
16(q 1

2 ).
In cases 3, 7, 8 and 14, the morphism from AF4 to H?

F4,α,β '
∏

ρ irr
GLnρ(q̃) factorizes through

the surjective morphism

Φ : AF4 → (SL2(rα) ◦ SL2(rβ))× SL4(q)× Ω+
6 (q)

×SL8(q)× SU8(q 1
2 )× SL9(q)× Ω+

12(q 1
2 )× Ω+

16(q 1
2 ).

Proof. Note the by [36], AF4 is not perfect, this makes the proof of this theorem more complex
than for the previous types. The result follows easily from Goursat’s Lemma in cases 2, 3, 6,
7, 8, 9, 14 and 15.

Assume now we are in case 1, 4 5 or 10. We must show that there exists no field au-
tomorphism Ψ and no character z : AF4 → F?q such that ρ42|AF4

' (Ψ ◦ ρ44|AF4
) ⊗ z or

ρ42|AF4
' (Ψ ◦ ρ4′4|AF4

) ⊗ z or ρ61|AF4
' (Ψ ◦ ρ62|AF4

) ⊗ z or ρ81|AF4
' (Ψ ◦ ρ82|AF4

) ⊗ z or
ρ81|AF4

' (Ψ◦ρ8′2|AF4
)⊗z or ρ91|AF4

' (Ψ◦ρ92|AF4
)⊗z or ρ91|AF4

' (Ψ◦ρ9′2|AF4
)⊗z. Assume by

contradiction that there exists such a field automorphism Ψ and such a character z. By [36],
AF4 is generated by p0 = S2S

−1
1 , p1 = S1S2S

−2
1 , q0 = S3S

−1
4 and q1 = S4S3S

−2
4 .

Assume first that ρ42|AF4
' (Ψ ◦ ρ44|AF4

)⊗ z. We have Tr(ρ42(p0)) = Tr(ρ44(p0)) = 3− (α+
α−1) and Tr(ρ42(q0)) = Tr(ρ44(q0)) = 3− (β + β−1)
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1. Assume 3− α− α−1 6= 0. We have

Tr(ρ42(p1)) = Tr(ρ44(p1)) = Tr(ρ42(p0p
−1
1 )) = Tr(ρ44(p0p

−1
1 )) = 3− α− α−1 6= 0.

It follows that z(p0) = z(p1) = z(p0p
−1
1 ) = 3−α−α−1

Ψ(3−α−α−1) therefore z(p1)−1 = 1 and z(p0) =
z(p1) = 1.

1.1. Assume 3− (β + β−1) 6= 0. We have

Tr(ρ42(q1)) = Tr(ρ44(q1)) = Tr(ρ42(q0q
−1
1 )) = Tr(ρ44(q0q

−1
1 )) = 3− β − β−1 6= 0.

It follows that z(q0) = z(q1) = z(q0q
−1
1 ) = 3−β−β−1

Ψ(3−β−β−1) therefore z(q1)−1 = 1 and z(q0) = z(q1) =
1. This proves that z is the trivial character. It follows that Ψ(α + α−1) = α + α−1 and
Ψ(β + β−1) = β + β−1. This implies that Ψ is the trivial automorphism. This would imply
that ρ42|AF4

' ρ44|AF4
which is absurd by Proposition 8.2.2.

1.2. Assume A = 3− β − β−1 = 0. We have

Tr(ρ42(q2
0)) = Tr(ρ44(q2

0)) = Tr(ρ42(q2
1)) = Tr(ρ44(q2

1)) = (A− 2)2 = 4 6= 0.

It follows that z(q2
0) = z(q2

1) = 4
Ψ(4) = 1. This implies that z(q0) ∈ {±1}. We have

Tr(ρ42(q0q
2
1)) = Tr(ρ44(q0q

2
1)) = A3 − 7A2 + 15A− 8 = −8.

It follows that z(q0q
2
1) = 1 therefore z(q0) = 1. We also have

Tr(ρ42(q1q
2
0)) = Tr(ρ44(q1q

2
0)) = A3 − 7A2 + 15A− 8 = −8

therefore z(q1) = 1. We get as before that z is trivial. This implies that ρ42|AF4
' Ψ ◦ ρ44|AF4

.
It then follows from Proposition 2.1.2 that Ψ is trivial which is absurd by Proposition 8.2.2.

2. Assume B = 3− α− α−1 = 0. We have

Tr(ρ42(p2
0)) = Tr(ρ44(p2

0)) = Tr(ρ42(p2
1)) = Tr(ρ44(p2

1)) = (B − 2)2 = 4 6= 0.

It follows that z(p2
0) = z(p2

1) = 4
Ψ(4) = 1. This implies that z(p0) ∈ {±1}. We have

Tr(ρ42(p0p
2
1)) = Tr(ρ44(p0p

2
1)) = B3 − 7B2 + 15B − 8 = −8.

It follows that z(p0p
2
1) = 1 therefore z(p0) = 1. We also have

Tr(ρ42(p1p
2
0)) = Tr(ρ44(p1p

2
0)) = B3 − 7B2 + 15B − 8 = −8

therefore z(p1) = 1.
2.1. Assume 3 − β − β−1 6= 0. By the same computations as in 1.1. we have that

z(q0) = z(q1) = 1. It follows that z is trivial. This implies that ρ42|AF4
' Ψ ◦ ρ44|AF4

. It then
follows from Proposition 2.1.2 that Ψ is trivial which is absurd by Proposition 8.2.2.

2.2. Assume 3 − β − β−1 = 0. We then have α + α−1 = 3 = β + β−1. This implies that
α ∈ {β, β−1} and contradicts our assumptions on α and β.

Note that all the computations above were made in AA2,1 or AA2,2. Since the restrictions
to those subgroups are stable by the transposed inverse operation, we have that ρ42|AF4

'
(Ψ ◦ ρ4′4|AF4

)⊗ z.
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Assume now ρ61|AF4
' (Ψ ◦ ρ62|AF4

)⊗ z. We have

Tr(ρ61 (p0)) = Tr(ρ61 (p1)) = Tr(ρ61 (p0p
−1
1 )) = Tr(ρ62 (p0)) = Tr(ρ62 (p1)) = Tr(ρ62 (p0p

−1
1 )) = −2α−1(α− 1)2 6= 0.

Tr(ρ61 (q0)) = Tr(ρ61 (q1)) = Tr(ρ61 (q0q
−1
1 )) = Tr(ρ62 (q0)) = Tr(ρ62 (q1)) = Tr(ρ62 (q0q

−1
1 )) = −2β−1(β − 1)2 6= 0.

It follows that z(p0) = z(p1) = z(q0) = z(q1) = 1. We then have by Proposition 2.1.2 that Ψ
is trivial therefore ρ61|AF4

' ρ62|AF4
.

Assume now ρ82|AF4
' (Ψ ◦ ρ83|AF4

)⊗ z. We have

Tr(ρ82(p0)) = Tr(ρ82(p1)) = Tr(ρ82(p0p
−1
1 )) = 6− 2(α + α−1),

Tr(ρ83(p0)) = Tr(ρ83(p1)) = Tr(ρ83(p0p
−1
1 )) = 5− 3(α + α−1).

Note that those quantities are non-zero because we have

Tr(ρ82(p0)) = z(p0)Ψ(Tr(ρ83(p0))),

3 Tr(ρ82(p0))− 2 Tr(ρ82(p0)) = 18− 10 = 8 6= 0.

It follows that z(p0) = z(p1) = z(p0p
−1
1 ) = 1. We also have

Tr(ρ82(q0)) = Tr(ρ82(q1)) = Tr(ρ82(q0q
−1
1 )) = 6− 2(β + β−1),

Tr(ρ83(q0)) = Tr(ρ83(q1)) = Tr(ρ83(q0q
−1
1 )) = 5− 3(β + β−1).

It follows that z(q0) = z(q1) = 1. We then have that z is trivial and Ψ is trivial therefore
ρ82|AF4

' ρ83|AF4
which contradicts Proposition 8.2.2.

All the computations above give the same results if we substitute ρ83 by ρ8′3|? therefore
ρ82|AF4

6' (Ψ ◦ ρ8′3|AF4
)⊗ z.

Assume now ρ91|AF4
' (Ψ ◦ ρ92|AF4

)⊗ z. We have

Tr(ρ91(p0)) = Tr(ρ91(p1)) = Tr(ρ91(p0p
−1
1 )) = Tr(ρ92(p0)) = Tr(ρ92(p1)) = Tr(ρ92(p0p

−1
1 )) = −3α−1(α−1)2 6= 0.

Tr(ρ91(q0)) = Tr(ρ91(q1)) = Tr(ρ91(q0q
−1
1 )) = Tr(ρ92(q0)) = Tr(ρ92(q1)) = Tr(ρ92(q0q

−1
1 )) = −3β−1(β−1)2 6= 0.

It follows that z(p0) = z(p1) = z(q0) = z(q1) = 1. We then have by Proposition 2.1.2 that Ψ is
trivial therefore ρ91|AF4

' ρ92|AF4
. All the computations give the same results if we substitute

ρ93 by ρ9′3 . This concludes the proof in cases 1, 4, 5 and 10.

In cases 11, 12, 13 and 16, we have the result using the same computations since Ψ is either
the trivial automorphism or the unique automorphism ε of order 2 of Fq if z is trivial.
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Chapter 10

Appendix

10.1 Erratum of the papers [11] and [12] in type A
This Ph.D. thesis is mainly based on [11] and [12]. It uses many results from those papers. All
the results are correct, however some proofs are incomplete. We give here a few corrections of
those papers.

In the proof of Proposition 3.1 of [11], Bn−1 should be replaced by Bn.
In section 3.2. of [11], R(B) should be replaced by −R(Bn). The determinant of a matrix

M ∈ GUn(q 1
2 ) does not verify ε(det(M)) = det(M) but ε(det(M)) = det(M)−1. We have

det(−R(σi)) = −α therefore ε(−α) = −α−1. It follows that ε(α + α−1) = α + α−1 and the
conclusion remains true since Fq = Fp(α + α−1).

In the proof of Lemma 3.5 of [11], in order to prove that [G,G] is not abelian by abelian,
it is necessary to check that (s1s

−1
2 )(s−1

1 s2) ± (s−1
1 s2)(s1s

−1
2 ) 6= 0. In the paper, it was only

checked that (s1s
−1
2 )(s−1

1 s2)− (s−1
1 s2)(s1s

−1
2 ) 6= 0 and the matrix given is wrong. We have

(s1s
−1
2 )(s−1

1 s2)− (s−1
1 s2)(s1s

−1
2 ) =

(
α4+α3−α−1

α2
α3−1
α2

−α5+α4+α3−α2−α−1
α2 −α4+α3−α−1

α2

)

This matrix is non-zero because it is assumed in the Lemma that the order of α is not in
{1, 2, 3, 4, 5, 6, 10}. We have

(s1s
−1
2 )(s−1

1 s2) + (s−1
1 s2)(s1s

−1
2 ) =

(
α4−α3+2α2−α+1

α2
α3+1
α2

−α5+α4+α3+α2+α+1
α2 −α4+α3+α+1

α2

)

This matrix is also non-zero by the conditions on the order of α.
In the proof of Proposition 3.7, it is not proved that ε ◦ ρ? is a representation of the Hecke

algebra. However, it is true by Proposition 2.1.2 of this Ph.D. thesis since ε(α) = α−1.
In the proof of section 4, it should be k = pN2 q instead of k = xN2 y in order to prove that

Gr 6' A oSN has less transvection than the natural SLaq with a ≥ N
2 . The proof for N = 5

then becomes a subcase of the proof for N ≥ 6 because we have that k = 3 when N = 5.
In Lemma 3.2 of [12], the action of L satisfies LsrL−1

−α =t s−1
r but not LsrL−1

−αν(λ) =t s−1
r .

After Theorem 5.1 and Lemma 5.5 of [11] it should say that we need to prove that G is
primitive not imprimitive.
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In [11], after Lemma 5.3, Proposition 2.4. is used in order to show that a morphism from
R(AAn) to PSL2(q) must be trivial. It is used for n ≥ 6 eventhough Proposition 2.4 is only valid
for n ≥ 7. The proof is therefore not correct for n = 6. The only partition to consider is [3, 2, 1]
which is of dimension 16. By the induction assumption, we haveR[3,2,1](AA5) ' SL5(q)×SL6(q).
It follows by Lemma 8.5.1 of this Ph.D. thesis that the morphism to SL2(q) is indeed trivial
and concludes the proof.

10.2 H4-graphs
Below are the W -graphs we use for type H4, they are taken from [20] except for the new ones
we found verifying the properties of Theorem 6.2 (1̃6t, 1̃8r, 2̃4s, 2̃4t, 3̃0s, 4̃0r and 4̃8rr. We
rearranged the vertices in the ones taken from [20] in order to male the connected components
of the restrictions to AH3 appear. In what follows β = ξ + ξ−1 and if the graph is 2-colorable
then we give a possible coloring.

∅
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1 2 3 4
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4 3 2 1 2 1 3 1 4 2 4 3
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In the 40-dimensional H4-graph, the blue edges are of weight 2, the red edges are of weight
4
3 , the cyan edges are of weight 6

5 , the orange edges are of weight 5
6 , the green edges are of

weight 2
3 , the dark yellow edges are of weight 3

2 , the purple edges are of weight −2
3 , the dark

gray edges are of weight −1
2 , the yellow edges are of werght −5

9 , the dark green edges are of
weight 5

3 , the teal edges are of weight 3, the lime edges are of weight 4
9 , the pink edges are of

weight −4
5 , the brown edges are of weight 7

3 and the olive edges are of weight −2.

In the 48-dimensional H4-graph, we have omitted the weights on the edges for clarity. One
can still observe the symmetry appearing in this self-dual H4-graph.

10.3 Computations in type H4

10.3.1 Proof that E3 and D3 cannot vanish simultaneously

− v22

Φ6(α)D3 = v40 − 2v38 + 4v36 − 8v34 + 11v32 − 16v30 + 22v28 − 26v26 + 30v24 − 34v22 + 34v20 − 34v18

+ 30v16 − 26v14 + 22v12 − 16v10 + 11v8 − 8v6 + 4v4 − 2v2 + 1

− v18

Φ6(α)E3 = v32 − v30 − v28 − v26 + 4v24 − v22 − v20 − 3v18 + 4v16 − 3v14 − v12 − v10 + 4v8 − v6 − v4 − v2 + 1.
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v5 = Rem(−
v22

Φ6(α)
D3,−

v18

Φ6(α)
E3)

= −5v30 + 8v28 + 2v26 − v24 − 13v22 + 10v20 + 12v18 − 7v16 − 3v14 + 8v12 + 10v10 − 15v8 − v6 + 2v4 + 8v2 − 5

v6 = 52 Rem(−
v18

Φ6(α)
E3)

= 9v28 − 24v26 + 32v24 − 14v22 + 65v20 − 74v18 + 64v16 − 44v14 + 49v12 − 70v10 + 50v8 − 18v6 + 21v4 − 26v2 + 10

v7 =
33

52
Rem(v5, v6)

= 6v26 + 11v24 + 16v22 + 8v20 + 4v18 + 7v16 − 2v14 − 2v12 − 4v10 + 5v8 − 2v2 + 1

v8 = 22 Rem(v6, v7)

= 329v24 + 328v22 + 452v20 − 230v18 + 457v16 − 218v14 + 166v12 − 418v10 + 335v8 − 72v6 + 96v4 − 164v2 + 67

v9 =
72472

2333
Rem(v7, v8)

= 1380v22 + 2656v20 − 414v18 + 2007v16 − 853v14 + 1549v12 − 1871v10 + 603v8 − 327v6 + 765v4 − 361v2 − 11

v10 =
223252232

72472
Rem(v8, v9)

= 5006v20 − 3519v18 + 4857v16 − 3413v14 + 4199v12 − 4291v10 + 2403v8 − 1437v6 + 1545v4 − 1061v2 + 284

v11 =
25032

3252232
Rem(v9, v10)

= 41901v18 − 30018v16 + 24300v14 − 16298v12 + 30252v10 − 39028v8 + 15158v6 − 3244v4 + 17330v2 − 11407

v12 =
31139672

25032
Rem(v10, v11)

= 187017v16 − 140575v14 + 57067v12 + 30187v10 + 61161v8 − 100305v6 − 48597v4 + 25593v2 + 28241

v13 =
311721921932

22139672
Rem(v11, v12)

= 188627v14 − 351293v12 + 243691v10 − 254562v8 + 400992v6 − 128403v4 + 161367v2 − 173764

v14 =
53235592

311721921932
Rem(v12, v13)

= 617414v12 + 43395v10 − 171149v8 − 1265240v6 − 205046v4 + 61567v2 + 670171

v15 =
2272441012

3153235592
Rem(v13, v14)

= 1148529v10 + 110455v8 − 1012180v6 − 958108v4 − 25091v2 + 792599

v16 =
323828432

2272441012
Rem(v14, v15)

= 1295951v8 − 2644727v6 − 709010v4 − 1262572v2 + 2357251

v17 =
881214712

323828432
Rem(v15, v16)

= 5888346v6 + 1914360v4 + 352576v2 − 4674729

v18 =
21319813912

881214712
Rem(v16, v17)

= 723244v4 − 172511v2 − 264507

v19 =
231808112

59919813912
Rem(v17, v18)

= 1495v2 − 1569

v20 =
52132232

23311808112
Rem(v18, v19)

= 1.
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10.3.2 Computations in case 2.1.

E9 = −
10− 6(4− E1) + E3 − E2

1 + (4− E1)2

2− E1

= v
8 + v

−8

D9 = −
10− 6(4 +D1) +D3 −D2

1 + (4 +D1)2

2 +D1
= Φ(E9)

E10 = Tr([n2, u2][u−1
2 , n2])− E1E

2
9 − 2E2

1 + 2E2
9

D10 = Tr([n1, u1][u−1
1 , n1]) +D1D

2
9 − 2D2

1 + 2D2
9

= Φ(E10)

E11 = E
3
9 + 4E2

1 + E1E10 − 14E1E9 − 4E10E9 − 2E2
9 − 10E10

D11 = D
3
9 + 4D2

1 −D1D10 + 14D1D9 − 4D10D9 − 2D2
9 − 10D10

= Φ(E11)

E12 = E1E10 + E
3
9 + 4E1E11 − 180E2

1 + 18E1E9 − 2E2
9 − 18E10 − 9E11 + (856)E1 − 40E9 − 208

= 0

D12 =
(D1 + 2)v2(−D1D10 +D3

9 − 4D1D11 − 180D2
1 − 18D1D9 − 2D2

9 − 18D10 − 9D11 − (856)D1 − 40D9 − 208)
4Φ6(α)

= 0
E13 = −E2

1E9 + 34E2
1 + 12E1E10 + 4E1E9 + E

2
10 − 64E1 − 12E10 − 4E9 + 28

= 0

D13 =
v2(D1 + 2)2(−D2

1D9 + 34D2
1 − 12D1D10 − 4D1D9 +D2

10 + 64D1 − 12D10 − 4D9 + 28)
Φ6(α)

D14 = −
1
2

(D13 − (2(v16 + v
−16)− v12 − v−12 − 4(v10 + v

−10)− 26(v8 + v
−8)

+4(v6 + v
−6) + 13(v4 + v

−4) + 152(v2 + v
−2) + 184)D12)

D15 = 76((219)D12 − (v2 + v
−2)D14) + 787D14

D16 = −
1

23192
(453385(453385D14 − (76(v2 + v

−2))D15)− 250464003D15)

D17 =
1

2152906772
(805808162(805808162D15 − (453385(v2 + v

−2))D16)− 245248536209874D16)

D18 = −
1

4029040812
(109342364049/2(437369456196D16 − (805808162(v2 + v

−2))D17)− 57979709384117131616D17)

D19 = −
1

3813499057292
(1835659768232(1835659768232D17 − (109342364049(v2 + v

−2))D18)

−470719001514611845893347D18)

D20 =
1

2523329847960132
(26716821821819(26716821821819D18 − (1835659768232(v2 + v

−2))D19)

+246084500040920924910400141D19)

D21 =
1

12912206946722092
(7431837830116907(37159189150584535D19 − (106867287287276(v2 + v

−2))D20)

−161710748575151990511450485922D20)

D22 =
1

2164271236295323185892
(207561548775276615471(207561548775276615471D20 − (37159189150584535(v2 + v

−2))D21)

−(212489945002283355770270866923659197255)D21)

D23 =
1

(21325122923021274363541144332
(32987388636176124480235619(32987388636176124480235619D21

−(207561548775276615471(v2 + v
−2))D22) + (212206056324453264983259133859103049535987217108)D22)

D24 =
1

247215232310682812995939068689592
(185954429283234131709345979553(557863287849702395128037938659D22

−(32987388636176124480235619(v2 + v
−2))D23)− 2739412859329752149612296806686633985128432534267734101D23)

D25 = −
1

73225284900439221330668861813247232
(202259863244780558381860453499585(202259863244780558381860453499585D23

−(557863287849702395128037938659(v2 + v
−2))D24)

−92984479634762534856210727781070979304376139845640812904182336D24),
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D26 = −
1

315267722246992107081935767713472248332572
(66321637240913770895312913339793214

(66321637240913770895312913339793214D24 − (202259863244780558381860453499585(v2 + v
−2))D25)

−14465919591689307128573983437824887265672029343238691854081861559749D25)

D27 =
1

22223259748285953922488828259073315655312

(2019335401386293786207166724075859341(2019335401386293786207166724075859341D25 −

(66321637240913770895312913339793214(v2 + v
−2))D26)

+297580655462944983601072219405031933105913989851705016725521711922510649D26)

D28 =
1

56921439224662403487413684153919214110512

(4412343134447284474117530515743496149(61772803882261982637645427220408946086D26

−(2019335401386293786207166724075859341(v2 + v
−2))D27)

+13337596486249616633416128365715003750495014302489045160099715949334689029D27)

D29 =
1

3122180691712287211960551728052092227253612

(763361856645910935772663964451373952681(763361856645910935772663964451373952681D27

−(61772803882261982637645427220408946086(v2 + v
−2))D28)

−149724800808298139234895716448044923226445865165412568988595381125439091482374D28)

D30 = −
1

2171419255983012115501032255171203042162323631230412

(1126366500715763371124174330938368977431333(1126366500715763371124174330938368977431333D28

−((v2 + v
−2)763361856645910935772663964451373952681)D29)

+156243595081359809872606121440348819964297847254205462786652267503931502270227271D29)

D31 =
1

2219232698356548553405114442551945118570721813012

(88867285707427504552815003873633980867964653(88867285707427504552815003873633980867964653D29

−(1126366500715763371124174330938368977431333(v2 + v
−2))D30)

−123184813670701842459356619811841515374511032937050012802961098943874095248072007393959D30)

D32 =
1

222924492109121841402323397223697457042565252981899012

(1713951505154451849278412459322972408517919889(1713951505154451849278412459322972408517919889D30

−(88867285707427504552815003873633980867964653(v2 + v
−2))D31)

+(21213353666340007623638526192809579151292119580681379269874979045556633724290006464855951269)D31)

D33 = −
1

432972735706212263969549189533492130471771241572286212

(29676624191545618144648111624944621294859696166(29676624191545618144648111624944621294859696166D31

−((v2 + v
−2)1713951505154451849278412459322972408517919889)D32)

+8239748870740490166734825221497528333002908462542913649313150812445359919137914031034615093D32)

D34 =
1

225321070733912308029662847171992356447960075328488572

(1202360930403560931030222837534182401486698364611(1202360930403560931030222837534182401486698364611D32

−(29676624191545618144648111624944621294859696166(v2 + v
−2))D33)

+101467727823064281002362989326473766812185962223175981805992928804837837463110204469450768695497D33)

D35 =
1

3210725763912995787672274076093229094205921393122865722041372

(50592899583888726481372641670551635013829487634578(50592899583888726481372641670551635013829487634578D33

−(1202360930403560931030222837534182401486698364611(v2 + v
−2))D34)

−18716563042659124012459968685711353673244482249337370871121262458352499400472107136941540852623D34)

D36 =
1

24292118725223002211972769440457357892187623971921828587012

(857145950896171400671963795556989894042194131289487(857145950896171400671963795556989894042194131289487D34

−(50592899583888726481372641670551635013829487634578(v2 + v
−2))D35)

+4411923185656392383365159760236306142723974489779682676837077861812027157604126881190104182451178043D35),
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D37 =
1

7213112581032933831571957087950835786855389205982216472

(189712945006349928111821235829016019978456271676888(189712945006349928111821235829016019978456271676888D35

−(857145950896171400671963795556989894042194131289487(v2 + v
−2))D36)

−3888871381671794196458802315710490482078226712051900740103091728501684497594902265929767805231194888739D36)

D38 = −
1

212612128478995994071230258333811000351190256763428908812

(24773656778414901634803870348969176884565517861269127(24773656778414901634803870348969176884565517861269127D36

−(189712945006349928111821235829016019978456271676888(v2 + v
−2))D37)

+116014108817226025636250906637610633082682989655401422927845421603685431302028558553419600166912131824443D37)

D39 =
1

32232149322830547254491771323159831430322453588782233280722011012

(1462774104358166447320328081145651681708102851750470(1462774104358166447320328081145651681708102851750470D37

−(24773656778414901634803870348969176884565517861269127(v2 + v
−2))D38)

−107114048131428196602036042282893363776335322672552405610021367908555000955590515740746720015779761857821D38)

D40 =
1

2252472233067233518864102128866129241268240628383154124812

(447126463542130736420808986261322507372482025744507(447126463542130736420808986261322507372482025744507D38

−(1462774104358166447320328081145651681708102851750470(v2 + v
−2))D39)

+1362236736392092735711595816371027107045738556864046551337719758325370857704119596126985689847376416801D39)

D41 =
1

32827806522674447055124566184955538414377682528233239432

(7693200087216050876804839304036908158990939786094(7693200087216050876804839304036908158990939786094D39

−(447126463542130736420808986261322507372482025744507(v2 + v
−2))D40)

+12380421501975427887574839221558916249368633135750618849551513659803018520966646313776000175920433209D40)

D42 =
1

242322877529793924535455640432395676408814166303321281472

(444262371078411275036530891280549760044894125887(444262371078411275036530891280549760044894125887D40

−(7693200087216050876804839304036908158990939786094(v2 + v
−2))D41)

+1359689975955312021939066413608950103421830908431132145007295475564434519858469029413502565524083D41)

D43 =
1

2232532496094396713466071756792563220020477497968175672

(2598201402519308463837536678307826538637637361(12991007012596542319187683391539132693188186805D41

−(444262371078411275036530891280549760044894125887(v2 + v
−2))D42)

−1423853873843032305071517991227836398944647254463545764863856507677353245106560774424962103775D42)

D44 =
1

71926121852334493853886020612121023570829127176519392

(5724569388018125395560846055677725147411014(5724569388018125395560846055677725147411014D42

−(12991007012596542319187683391539132693188186805(v2 + v
−2))D43)

−(7116858333738933659887870586331090479589286797477594035643445468458518447355054012844780395)D43)

D45 =
1

5122532540053715850766546751023212799785391265192

(173537434709794154672446152614045596469(173537434709794154672446152614045596469D43

−(5724569388018125395560846055677725147411014(v2 + v
−2))D44)

+(51729710475616727676629256114810220610438295967049693913920779869327786123824237459)D44)

D46 =
1

71118369987512146605941556877802759553702192

(472466105843823212817581554083188(58585797124634078389380112706315312D44

−(173537434709794154672446152614045596469(v2 + v
−2))D45)

−486773091634646981124420181550725259305095623574103826313324090433645617D45)

D47 =
1

231181165264609558032043953885207972

(7735916375013449867448090407(7735916375013449867448090407D45

−(14646449281158519597345028176578828(v2 + v
−2))D46)

−297284847843573291454908916261083417941832630990370255741557001D46),

D48 =
1

741722923114379110131365376612368487522735331219813217472

(2976484557725606944157223(2976484557725606944157223D46 − (30943665500053799469792361628(v2 + v
−2))D47)

+99497340316827556722995396776286275093114733864673142D47)
= 1.
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10.3.3 Computations on triality

U0 = Tr1 (−v − v−1)Tr1+r3 (−1− v−2)T−r1 (v)Tr3+r4 (1)T−r3−r4 (1)T−r3 (−v)Tr4 (−v − v−1)T−r4 (v)Tr4 (−2v−3)

Tr3+r4 (v−2)Tr1 (−v−3)

τ(U0) = Tr4 (−v − v−1) Tr3+r4 (1 + v−2) T−r4 (v) Tr1+r3 (−1) T−r1−r3 (−1) T−r3 (−v) Tr1 (−v − v−1) T−r1 (v) Tr1 (−2v−3)

Tr1+r3 (−v−2) Tr4 (−v−3)

= Ũ0.

U1 = T−r1−r3 (v−2 − 1)Tr1+r3 (−v2 + 1)Tr1 (−
v4 − v2 + 1

v3
)Tr1+r3+r4 (v−1 − v − 1)T−r1−r3−r4 (2)Tr1+r3+r4 (−1)

Tr3+r4 (v−2 − 2)T−r3−r4 (−v2)Tr3+r4 (2)T−r3−r4 (−1)T−r3 (
3v6 − 4v4 + 3v2 − 1

v5
)Tr4 (−

6v10 − 11v8 + 15v6 − 11v4 + 4v2 − 1
v4(v5 − v3 + v)

)

T−r4 (−v5 + v
3 − v)Tr4 (

v8 − 2v6 + 5v4 − 3v2 + 1
v5(v4 − v2 + 1)

)Tr3+r4 (−
2v8 − 3v6 + 6v4 − 3v2 + 1

v4
)Tr3 (−2v5 + v

3 − v)

T−r1−r3−r4 (−2v4 − v3 + 4v2 + v − 2)T−r1−r3 (
2v8 + v7 − 6v6 − 3v5 + 10v4 + 3v3 − 6v2 − v + 2

v5
)T−r1 (v − 2)

τ(U1) = T−r3−r4 (1− v−2) Tr3+r4 (v2 − 1) Tr4 (−
v4 − v2 + 1

v3
) Tr1+r3+r4 (v−1 − v − 1) T−r1−r3−r4 (2) Tr1+r3+r4 (−1)

Tr1+r3 (2− v−2) T−r1−r3 (v2) Tr1+r3 (−2) T−r1−r3 (1) T−r3 (
3v6 − 4v4 + 3v2 − 1

v5
) Tr1 (−

6v10 − 11v8 + 15v6 − 11v4 + 4v2 − 1
v4(v5 − v3 + v)

)

T−r1 (−v5 + v3 − v) Tr1 (
v8 − 2v6 + 5v4 − 3v2 + 1

v5(v4 − v2 + 1)
) Tr1+r3 (

2v8 − 3v6 + 6v4 − 3v2 + 1
v4

) Tr3 (−2v5 + v3 − v)

T−r1−r3−r4 (−2v4 − v3 + 4v2 + v − 2) T−r3−r4 (−
2v8 + v7 − 6v6 − 3v5 + 10v4 + 3v3 − 6v2 − v + 2

v5
) T−r4 (v − 2)

= Ũ1.

U2 = T−r1−r3 (−
v6 − v4 − 1

v2(v4 − v2 + 1)
)Tr1+r3 (−v4 + v

2 − 1)Tr1 (−
2v8 − 3v6 + 3v4 − 2v2 + 1

v5
)Tr1+r3+r4 (−

(v2 − 1)(v4 − v2 + 1)
v3

)

Tr3+r4 (
2v6 − 2v4 + v2 − 1
v2(v4 − v2 + 1)

)T−r3−r4 (v4 − v2 + 1)T−r3 (−
(5v14 − 13v12 + 19v10 − 20v8 + 15v6 − 8v4 + 3v2 − 1

v7(v4 − v2 + 1)
)

Tr4 (−
5v16 − 18v14 + 30v12 − 34v10 + 31v8 − 21v6 + 10v4 − 3v2 + 1)

(v4 − v2 + 1)2v7(v2 − 1)
)T−r4 (v3(v6 − v4 + v

2 − 1))

Tr4 (
v8 − 2v6 + 2v4 − 3v2 + 1

v7(v2 − 1)
)Tr3+r4 (−

v12 − 2v10 + 2v8 − 4v6 + 3v4 − 2v2 + 1
v4(v4 − v2 + 1

)Tr3 (−
(v6 − v4 − 1)v3

v4 − v2 + 1
)

T−r1−r3−r4 (−
(v6 − v4 − 1)v3

v4 − v2 + 1
)T−r1−r3 (

v12 − 2v10 + v8 − 3v6 + 2v4 − 2v2 + 1
v4(v4 − v2 + 1)

)T−r1 (
v3(v2 + 1)
v4 − v2 + 1

)

τ(U2) = T−r3−r4 (
v6 − v4 − 1

v2(v4 − v2 + 1)
) Tr3+r4 (v4 − v2 + 1) Tr4 (−

2v8 − 3v6 + 3v4 − 2v2 + 1
v5

) Tr1+r3+r4 (−
(v2 − 1)(v4 − v2 + 1)

v3
)

Tr1+r3 (−
2v6 − 2v4 + v2 − 1
v2(v4 − v2 + 1)

) T−r1−r3 (−v4 + v2 − 1)T−r3 (−
(5v14 − 13v12 + 19v10 − 20v8 + 15v6 − 8v4 + 3v2 − 1

v7(v4 − v2 + 1)
)

Tr1 (−
5v16 − 18v14 + 30v12 − 34v10 + 31v8 − 21v6 + 10v4 − 3v2 + 1)

(v4 − v2 + 1)2v7(v2 − 1)
) T−r1 (v3(v6 − v4 + v2 − 1))

Tr1 (
v8 − 2v6 + 2v4 − 3v2 + 1

v7(v2 − 1)
) Tr1+r3 (

v12 − 2v10 + 2v8 − 4v6 + 3v4 − 2v2 + 1
v4(v4 − v2 + 1)

) Tr3 (−
(v6 − v4 − 1)v3

v4 − v2 + 1
)

T−r1−r3−r4 (−
(v6 − v4 − 1)v3

v4 − v2 + 1
) T−r3−r4 (−

v12 − 2v10 + v8 − 3v6 + 2v4 − 2v2 + 1
v4(v4 − v2 + 1)

) T−r4 (
v3(v2 + 1)
v4 − v2 + 1

)

= Ũ2.
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U3 = T−r1−r3 (−
v8 − v6 + v4 + 1

v2(v6 − v4 + v2 − 1)
)Tr1 (

2v12 − 4v10 + 5v8 − 5v6 + 4v4 − 2v2 + 1
v7

)Tr1+r3 (v6 − v4 + v
2 − 1)

Tr1+r3+r4 (
(v4 − v2 + 1)(v6 − v4 + v2 − 1)

v5
)Tr3+r4 (

2v8 − 2v6 + 2v4 − v2 + 1
v2(v6 − v4 + v2 − 1)

)

T−r3 (
5v20 − 15v18 + 28v16 − 39v14 + 44v12 − 40v10 + 30v8 − 18v6 + 9v4 − 3v2 + 1

v9(v6 − v4 + v2 − 1)
)T−r3−r4 (−v6 + v

4 − v2 + 1)

Tr4 (−
5v28 − 20v26 + 48v24 − 85v22 + 125v20 − 155v18 + 167v16 − 155v14 + 126v12 − 89v10 + 54v8 − 27v6 + 12v4 − 3v2 + 1

v9(v8 − v6 + v4 − v2 + 1)(v6 − v4 + v2 − 1)2
)

T−r4 (v13 − v11 + v
9 − v7 + v

5)Tr4 (
v16 − 2v14 + 3v12 − 4v10 + 6v8 − 5v6 + 3v4 − 3v2 + 1

v9(v8 − v6 + v4 − v2 + 1)
)

Tr3+r4 (
v16 − 2v14 + 3v12 − 3v10 + 5v8 − 4v6 + 3v4 − 2v2 + 1

v4(v6 − v4 + v2 − 1)
)Tr3 (

(v8 − v6 + v4 + 1)v5

v6 − v4 + v2 − 1
)T−r1−r3−r4 (

(v8 − v6 + v4 + 1)v5

v6 − v4 + v2 − 1
)

T−r1−r3 (−
v16 − 2v14 + 3v12 − 2v10 + 4v8 − 3v6 + 2v4 − 2v2 + 1

v4(v6 − v4 + v2 − 1)
)T−r1 (

v5(v2 + 1)
v6 − v4 + v2 − 1

)

τ(U3) = T−r3−r4 (
v8 − v6 + v4 + 1

v2(v6 − v4 + v2 − 1)
) Tr4 (

2v12 − 4v10 + 5v8 − 5v6 + 4v4 − 2v2 + 1
v7

) Tr3+r4 (−v6 + v4 − v2 + 1)

Tr1+r3+r4 (
(v4 − v2 + 1)(v6 − v4 + v2 − 1)

v5
) Tr1+r3 (−

2v8 − 2v6 + 2v4 − v2 + 1
v2(v6 − v4 + v2 − 1)

)

T−r3 (
5v20 − 15v18 + 28v16 − 39v14 + 44v12 − 40v10 + 30v8 − 18v6 + 9v4 − 3v2 + 1

v9(v6 − v4 + v2 − 1)
)T−r1−r3 (v6 − v4 + v2 − 1)

Tr1 (−
5v28 − 20v26 + 48v24 − 85v22 + 125v20 − 155v18 + 167v16 − 155v14 + 126v12 − 89v10 + 54v8 − 27v6 + 12v4 − 3v2 + 1

v9(v8 − v6 + v4 − v2 + 1)(v6 − v4 + v2 − 1)2
)

T−r1 (v13 − v11 + v9 − v7 + v5)Tr1 (
v16 − 2v14 + 3v12 − 4v10 + 6v8 − 5v6 + 3v4 − 3v2 + 1

v9(v8 − v6 + v4 − v2 + 1)
)

Tr1+r3 (−
v16 − 2v14 + 3v12 − 3v10 + 5v8 − 4v6 + 3v4 − 2v2 + 1

v4(v6 − v4 + v2 − 1)
) Tr3 (

(v8 − v6 + v4 + 1)v5

v6 − v4 + v2 − 1
) T−r1−r3−r4 (

(v8 − v6 + v4 + 1)v5

v6 − v4 + v2 − 1
)

T−r3−r4 (
v16 − 2v14 + 3v12 − 2v10 + 4v8 − 3v6 + 2v4 − 2v2 + 1

v4(v6 − v4 + v2 − 1)
) T−r4 (

v5(v2 + 1)
v6 − v4 + v2 − 1

)

= Ũ3.

U4 = Tr1+r3+r4 (v−2)T−r1−r3−r4 (−v2 − 1)T−r2 (v)Tr1+r3+r4 (1)T−r4 (v−1)Tr1+r2+2r3+r4 (v)T−r1−r2−r3−r4 (v + v
−1)

Tr3 (v2 + 1)T−r1 (v−1)Tr2+r3 (−v − v−1)T−r1−r3−r4 (−1− v−2)

τ(U4) = Tr1+r3+r4 (v−2) T−r1−r3−r4 (−v2 − 1) T−r2 (v) Tr1+r3+r4 (1) T−r1 (v−1) Tr1+r2+2r3+r4 (v) T−r1−r2−r3−r4 (v + v−1)

Tr3 (v2 + 1) T−r4 (v−1) Tr2+r3 (−v − v−1) T−r1−r3−r4 (−1− v−2)

= Ũ4.

U5 = T−r1−r2−r3−r4 (−1)Tr1+r2+r3+r4 (v2 + 1)Tr1+r2+r3 (v3 + v)T−r4 (−v)Tr1+r2+2r3+r4 (v(v2 + 2))T−r1−r2−r3−r4 (−v−2)

Tr3 (−v − v−1)T−r1 (v−1)Tr2+r3+r4 (v3)Tr2 (v)Tr1+r2+r3+r4 (v4 + v
2)

τ(U5) = T−r1−r2−r3−r4 (−1) Tr1+r2+r3+r4 (v2 + 1) Tr1+r2+r3 (v3 + v) T−r1 (−v) Tr1+r2+2r3+r4 (v(v2 + 2)) T−r1−r2−r3−r4 (−v−2)

Tr3 (−v − v−1) T−r4 (v−1) Tr1+r2+r3 (v3) Tr2 (v) Tr1+r2+r3+r4 (v4 + v2)

= Ũ5.

10.4 E6-graphs

We give in this section the E6-graphs 1̃0s and 2̃0s which verify the properties of Theorem 6.2.
We do not give the other new E6-graphs and E8-graphs which were obtained because of the
large number of vertices and edges. They can be downloaded at [17].
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10.5 F4-graphs and field extensions
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Figure 10.1: F4-graphs
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Figure 10.2: F4-graphs
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Figure 10.3: F4-graphs
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Figure 10.4: Field extensions in type F4
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Figure 10.5: Field extensions in type F4 in case 2
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Figure 10.6: Field extensions in type F4 in case 3
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Figure 10.7: Field extensions in type F4 in case 4
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Figure 10.8: Field extensions in type F4 in case 5
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Figure 10.9: Field extensions in type F4 in case 6
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Figure 10.10: Field extensions in type F4 in case 7
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Figure 10.11: Field extensions in type F4 in case 8
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Figure 10.12: Field extensions in type F4 in case 9
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Figure 10.13: Field extensions in type F4 in case 10
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Figure 10.14: Field extensions in type F4 in case 11
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Figure 10.15: Field extensions in type F4 in case 12
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Figure 10.16: Field extensions in type F4 in case 13

10.6 Connectedness of the E8-graphs

10.6.1 4̃480y
If p = 7 then the edges disappearing are 493 → 50, 570 → 26, 598 → 27, 1313 → 26,
1313 → 293, 1372 → 27, 1372 → 328, 1398 → 389, 1477 → 424, 1495 → 419, 1526 → 441,
2026 → 357, 2102 → 371, 2283 → 779, 2323 → 26, 2323 → 843, 2361 → 874, 2416 → 646,
2416 → 891, 2421 → 27, 2421 → 886, 2474 → 926, 2504 → 680, 2504 → 962, 2530 → 977,
2618 → 996, 2667 → 646, 2688 → 680, 2734 → 691, 2933 → 57, 2933 → 119, 3011 → 63,
3011 → 136, 3475 → 27, 3485 → 646, 3485 → 1863, 3504 → 680, 3504 → 1951, 3519 → 1977,
3555 → 27, 3555 → 2007, 3559 → 27, 3590 → 2065, 3595 → 154, 3595 → 691, 3595 → 2060,
3601 → 691, 3607 → 691, 3607 → 2120, 3638 → 2158, 3702 → 2198, 3790 → 61, 3790 → 328,
3790 → 424, 3790 → 874, 3790 → 880, 3790 → 886, 3790 → 1747, 3801 → 47, 3801 → 50,
3801→ 977, 3801→ 1793, 3801→ 1977, 3835→ 14, 3835→ 996, 3835→ 1814, 3835→ 2065,
3864 → 424, 3870 → 441, 4040 → 26, 4040 → 27, 4040 → 611, 4040 → 2955, 4057 → 617,
4057 → 691, 4057 → 3004, 4062 → 15, 4062 → 2986, 4078 → 26, 4092 → 27, 4092 → 3083,
4110→ 2379, 4124→ 2455, 4153→ 691, 4153→ 3109, 4188→ 3168, 4245→ 27, 4312→ 112,
4327 → 886, 4345 → 57, 4345 → 1470, 4362 → 63, 4362 → 1548, 4369 → 15, 4369 → 169,
4418 → 3, 4418 → 119, 4418 → 1470, 4421 → 3, 4420 → 691, 4424 → 136, 4424 → 1548,
4431 → 27, 4431 → 680, 4431 → 3988, 4434 → 27, 4434 → 680, 4450 → 27, 4454 → 31,
4454 → 47, 4454 → 50, 4454 → 236, 4454 → 389, 4454 → 441, 4454 → 922, 4454 → 926,
4454 → 1006, 4454 → 2060, 4454 → 3109, 4454 → 3883, 4455 → 403, 4455 → 441, 4455 →
2158, 4455 → 3168, 4455 → 3911, 4466 → 112, 4466 → 419, 4467 → 646, 4478 → 60 and
4478→ 63.

They can be replaced by the paths 493 → 739 → 80 → 2323 → 515 → 50, 570 → 80 →
2323 → 2416 → 4040 → 2247 → 504 → 26, 598 → 124 → 2421 → 2530 → 523 → 27,
1313 → 80 → 2323 → 2416 → 4040 → 2247 → 504 → 26, 1313 → 1398 → 1843 → 293,
1372 → 124 → 2421 → 2530 → 523 → 27, 1372 → 3315 → 3790 → 3801 → 1668 → 328,
1398 → 178 → 293 → 389, 1477 → 1853 → 1976 → 293 → 1863 → 424, 1495 → 1875 →
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Figure 10.17: Field extensions in type F4 in case 14
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Figure 10.18: Field extensions in type F4 in case 15
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Figure 10.19: Field extensions in type F4 in case 16
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2009 → 3666 → 2196 → 419, 1526 → 1939 → 2125 → 4378 → 3870 → 3913 → 2234 → 441,
2026 → 255 → 1888 → 357, 2102 → 261 → 357 → 371, 2283 → 2361 → 3485 → 1465 →
1885 → 2858 → 874 → 1863 → 328 → 779, 2323 → 2416 → 4040 → 2247 → 504 → 26,
2323 → 2416 → 4040 → 2247 → 504 → 26 → 90 → 843, 2361 → 2474 → 4062 → 493 →
739 → 80 → 2323 → 515 → 50 → 874, 2416 → 4040 → 2247 → 504 → 26 → 646,
2416 → 4040 → 2247 → 504 → 26 → 90 → 843 → 891, 2421 → 2530 → 523 → 27,
2421 → 2530 → 523 → 27 → 112 → 886, 2474 → 2911 → 2980 → 4144 → 3119 → 926,
2504 → 4057 → 2286 → 550 → 617 → 680, 2504 → 4057 → 2618 → 4188 → 2505 → 962,
2530 → 2618 → 4188 → 2638 → 3083 → 3168 → 886 → 977, 2618 → 3000 → 3139 → 962 →
3004 → 996, 2667 → 603 → 2424 → 646, 2688 → 2734 → 617 → 680, 2734 → 2813 →
680 → 691, 2933 → 3011 → 56 → 57, 2933 → 3011 → 92 → 119, 3011 → 3066 → 57 → 63,
3011 → 3066 → 1201 → 136, 3475 → 1499 → 197 → 27, 3485 → 1465 → 2374 → 646,
3485 → 1465 → 1885 → 2858 → 874 → 1863, 3504 → 1558 → 2491 → 680, 3504 → 1558 →
1941 → 2897 → 926 → 1951, 3519 → 178 → 293 → 1863 → 424 → 1977, 3555 → 1584 →
2540 → 27, 3555 → 1584 → 1990 → 2923 → 977 → 2007, 3559 → 2708 → 686 → 27, 3590 →
3638 → 4391 → 1526 → 1939 → 2125 → 4378 → 3870 → 3913 → 2234 → 441 → 2065,
3595 → 4062 → 455 → 475 → 15 → 154, 3595 → 4062 → 2570 → 691, 3595 → 4369 →
4454 → 3795 → 1951 → 2060, 3601 → 2743 → 2806 → 691, 3607 → 1623 → 2596 → 691,
3607 → 1623 → 2107 → 3016 → 996 → 2120, 3638 → 4391 → 4455 → 3850 → 3904 →
3168 → 3988 → 2158, 3702 → 4153 → 2618 → 3000 → 3139 → 962 → 3004 → 996 →
2120 → 2198, 3790 → 1749 → 229 → 61, 3790 → 3801 → 1668 → 328, 3790 → 3801 →
3864 → 3870 → 389 → 424, 3790 → 1885 → 2858 → 874, 3790 → 1675 → 1738 → 880,
3790 → 310 → 112 → 886, 3790 → 3801 → 1668 → 1747, 3801 → 285 → 743 → 47,
3801 → 285 → 743 → 50, 3801 → 1990 → 2923 → 977, 3801 → 3864 → 1747 → 1793,
3801 → 3864 → 3870 → 389 → 424 → 1977, 3835 → 1800 → 450 → 14, 3835 → 2107 →
3016 → 996, 3835 → 2057 → 3878 → 1814, 3835 → 3870 → 3913 → 2234 → 441 → 2065,
3864 → 3870 → 389 → 424, 3870 → 3913 → 2234 → 441, 4040 → 2247 → 504 → 26,
4040 → 2281 → 523 → 27, 4040 → 2247 → 568 → 611, 4040 → 2247 → 504 → 26 → 90 →
843 → 891 → 2955, 4057 → 2286 → 550 → 617, 4057 → 2586 → 2734 → 2813 → 680 → 691,
4057 → 2618 → 4188 → 2505 → 2628 → 3004, 4062 → 455 → 475 → 15, 4062 → 2285 →
815 → 2472 → 2606 → 2986, 4078 → 93 → 2326 → 26, 4092 → 2281 → 523 → 27,
4092 → 4188 → 4303 → 3083, 4110 → 4124 → 4220 → 2379, 4124 → 2310 → 2379 → 2455,
4153 → 2504 → 4057 → 2286 → 550 → 617 → 680 → 691, 4153 → 2504 → 4057 → 2286 →
550 → 617 → 680 → 691 → 1166 → 3109, 4188 → 2638 → 3083 → 3168, 4245 → 2549 →
686 → 27, 4312 → 2944 → 1137 → 112, 4327 → 4466 → 3197 → 1035 → 112 → 886,
4345 → 3280 → 56 → 57, 4345 → 3280 → 1415 → 1470, 4362 → 3351 → 1754 → 63,
4362→ 3439→ 4398→ 1548, 4369→ 473→ 480→ 15, 4369→ 2474→ 3504→ 169, 4418→
2675 → 22 → 3, 4418 → 2662 → 92 → 119, 4418 → 3477 → 357 → 1470, 4420 → 2813 →
680→ 691, 4421→ 139→ 142→ 3, 4424→ 2701→ 622→ 136, 4424→ 3514→ 371→ 1548,
4431 → 3485 → 1465 → 2374 → 646 → 27, 4431 → 3485 → 1465 → 2374 → 646 → 680,
4431 → 3628 → 2158 → 4401 → 3168 → 3988, 4434 → 2678 → 646 → 27, 4434 → 2678 →
646 → 680, 4450 → 2798 → 646 → 27, 4454 → 39 → 749 → 31, 4454 → 285 → 743 → 47,
4454 → 285 → 743 → 50, 4454 → 1691 → 207 → 236, 4454 → 3783 → 1692 → 389,
4454 → 3793 → 1763 → 441, 4454 → 1941 → 2897 → 922, 4454 → 1941 → 2897 → 926,
4454 → 3051 → 3133 → 1006, 4454 → 3795 → 1951 → 2060, 4454 → 2071 → 3892 → 3109,
4454 → 3795 → 3817 → 3883, 4455 → 3155 → 3986 → 403, 4455 → 3790 → 3801 →
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3864 → 3870 → 389 → 424 → 441, 4455 → 3850 → 3904 → 3168 → 3988 → 2158, 4455 →
3850 → 3904 → 3168, 4455 → 3850 → 3904 → 3168 → 3988 → 2158 → 4401 → 3911,
4466 → 3197 → 1035 → 112, 4466 → 3976 → 2228 → 419, 4467 → 103 → 2356 → 646,
4478 → 2540 → 2923 → 60 and 4478 → 2506 → 57 → 63. This proves that this E8-graph
remains connected after specialization for p = 7.

If p = 11 then the edges disappearing are 3790→ 57, 4418→ 26, 4418→ 27, 4424→ 691,
4425 → 27, 4454 → 56, 4454 → 63, 4455 → 63, 4449 → 27 and 4454 → 32. They can be
replaced by the paths 3790 → 351 → 800 → 57, 4418 → 2715 → 568 → 26, 4418 → 2675 →
646 → 27, 4424 → 2701 → 680 → 691, 4425 → 2776 → 698 → 27, 4454 → 39 → 749 → 56,
4454 → 369 → 820 → 63, 4455 → 369 → 820 → 63, 4449 → 2708 → 686 → 27 and 4454 →
1691 → 207 → 32. This proves that this E8-graph remains connected after specialization for
p = 11.

10.6.2 5̃670y
If p = 7 then the edges disappearing are 257 → 66, 1474 → 156, 1481 → 141, 1485 → 156,
1485 → 538, 1540 → 243, 1545 → 244, 1556 → 191, 1565 → 1724, 1571 → 247, 1610 → 171,
1610 → 280, 1634 → 171, 1686 → 191, 1724 → 1642, 1766 → 171, 1790 → 473, 1923 → 801,
1968→ 505, 1984→ 822, 2068→ 894, 2090→ 927, 2112→ 2227, 2133→ 2056, 2133→ 2324,
2141 → 1014, 2166 → 473, 2195 → 244, 2369 → 473, 2409 → 382, 2410 → 1835, 2477 → 425,
2765 → 505, 2833 → 516, 2843 → 856, 2873 → 616, 2873 → 714, 2931 → 1020, 2955 →
746, 2955 → 1019, 3040 → 631, 3063 → 1075, 3347 → 3538, 3444 → 3559, 3479 → 818,
3497→ 1417, 3570→ 793, 3591→ 818, 3615→ 3538, 3642→ 890, 3642→ 1019, 3706→ 984,
3706 → 1103, 3836 → 3261, 3947 → 4106, 3967 → 1083, 3978 → 1103, 4029 → 1192,
4029 → 3947, 4210 → 141, 4210 → 191, 4254 → 191, 4254 → 2174, 4479 → 1642, 4568 →
1693, 4568 → 1965, 4588 → 1704, 4596 → 206, 4596 → 2608, 4651 → 2740, 4652 → 2029,
4652 → 2716, 4657 → 3530, 4687 → 1965, 4744 → 3581, 4777 → 3603, 4781 → 2029,
4815 → 2828, 4849 → 3687, 4853 → 2080, 4853 → 2192, 4870 → 3748, 4878 → 243, 4878 →
2101, 4925 → 243, 4925 → 2716, 4957 → 2798, 5040 → 2631, 5055 → 2798, 5133 → 4186,
5155 → 2838, 5166 → 2906, 5166 → 3703, 5198 → 3302, 5198 → 3505, 5198 → 3881,
5246 → 3194, 5289 → 3262, 5391 → 4061, 5424 → 4100, 5427 → 3476, 5427 → 4126,
5428 → 746, 5428 → 793, 5428 → 4131, 5465 → 1075, 5480 → 1417, 5480 → 1461, 5480 →
3985, 5480 → 4115, 5500 → 3905, 5500 → 4037, 5500 → 4061, 5515 → 4186, 5515 → 4197,
5530→ 1461, 5530→ 4190 and 5605→ 5414.

They can be replaced by the paths 257 → 58 → 77 → 66, 1474 → 551 → 1585 → 156,
1481 → 1580 → 1479 → 141, 1485 → 215 → 250 → 156, 1485 → 4204 → 1478 → 538,
1540 → 2097 → 1534 → 243, 1545 → 1693 → 377 → 244, 1556 → 1692 → 1538 → 191,
1565 → 1532 → 1563 → 1724, , 1610 → 335 → 4241 → 171, 1610 → 1760 → 440 → 280,
1634 → 335 → 4241 → 171, 1686 → 399 → 4254 → 4379 → 4542 → 191, 1724 → 1667 →
1636 → 1642, 1766 → 2332 → 279 → 171, 1790 → 1921 → 485 → 473, 1923 → 2441 →
1302 → 801, 1968 → 3220 → 1141 → 505, 1984 → 1959 → 807 → 822, 2068 → 870 → 562 →
894, 2090→ 4904→ 2076→ 927, 2112→ 421→ 4346→ 2227, 2133→ 2197→ 2085→ 2056,
2133 → 2197 → 2411 → 2324, 2141 → 2313 → 1219 → 1014, 2166 → 4878 → 2537 → 473,
2195 → 2409 → 377 → 244, 2369 → 2534 → 5546 → 473, 2409 → 2477 → 409 → 382,
2410 → 2470 → 2395 → 1835, 2477 → 405 → 962 → 425, 2765 → 3967 → 1141 → 505,
2833 → 4097 → 1179 → 516, 2843 → 850 → 587 → 856, 2873 → 5189 → 3328 → 616,
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2873 → 5189 → 3524 → 714, 2931 → 3376 → 1223 → 1020, 2955 → 3059 → 2975 → 746,
2955 → 3059 → 2975 → 1019, 3040 → 619 → 584 → 631, 3063 → 3161 → 3082 → 1075,
3347 → 3260 → 3474 → 3538, 3444 → 1325 → 5250 → 3559, 3479 → 5447 → 3620 → 818,
3497 → 3435 → 1292 → 1417, 3570 → 3561 → 765 → 793, 3591 → 3606 → 3630 → 818,
3615 → 3630 → 3616 → 3538, 3642 → 3700 → 916 → 890, 3642 → 3700 → 3644 → 1019,
3706 → 959 → 409 → 984, 3706 → 1102 → 496 → 1103, 3836 → 2605 → 2020 → 3261,
3947 → 3767 → 3943 → 4106, 3967 → 1031 → 1241 → 1083, 3978 → 4126 → 1288 → 1103,
4029 → 4035 → 4004 → 1192, 4029 → 4035 → 4004 → 3947, 4210 → 4222 → 1568 → 141,
4210 → 4220 → 4217 → 191, 4254 → 4379 → 4542 → 191, 4254 → 4379 → 2236 → 2174,
4479 → 5157 → 4501 → 1642, 4568 → 5177 → 2872 → 1693, 4568 → 4588 → 1994 → 1965,
4588 → 4430 → 4640 → 1704, 4596 → 4437 → 4624 → 206, 4596 → 4437 → 2283 → 2608,
4651 → 4448 → 2295 → 2740, 4652 → 5231 → 4667 → 2029, 4652 → 5231 → 4667 → 2716,
4657 → 4452 → 3358 → 3530, 4687 → 5035 → 4712 → 1965, 4744 → 5332 → 4745 → 3581,
4777 → 5109 → 4801 → 3603, 4781 → 4755 → 1971 → 2029, 4815 → 5084 → 4821 → 2828,
4849 → 4864 → 3712 → 3687, 4853 → 4859 → 2117 → 2080, 4853 → 4859 → 2226 → 2192,
4870 → 4369 → 3230 → 3748, 4878 → 4906 → 2290 → 243, 4878 → 4906 → 2110 → 2101,
4925 → 4988 → 2147 → 243, 4925 → 4986 → 4934 → 2716, 4957 → 3980 → 5055 →
2343 → 482 → 2798, 5040 → 4755 → 1994 → 2631, 5055 → 2343 → 482 → 2798, 5133 →
5514 → 5146 → 4186, 5155 → 4492 → 1574 → 2838, 5166 → 5217 → 5168 → 2906,
5166 → 5217 → 5168 → 3703, 5198 → 3134 → 5223 → 3302, 5198 → 3134 → 793 → 3505,
5198 → 3134 → 1103 → 3881, 5246 → 3063 → 5177 → 3194, 5289 → 3161 → 5203 → 3262,
5391 → 3297 → 1185 → 4061, , 5427 → 5294 → 3262 → 3476, 5427 → 5442 → 4165 → 4126,
5428 → 4137 → 3574 → 746, 5428 → 3479 → 5447 → 793, 5428 → 4137 → 3574 → 4131,
5465 → 5035 → 473 → 1075, 5480 → 3873 → 2686 → 1417, 5480 → 4007 → 2772 → 1461,
5480 → 4015 → 3837 → 3985, 5480 → 4133 → 3578 → 4115, 5500 → 5116 → 2745 → 3905,
5500 → 5515 → 4086 → 4037, 5500 → 4074 → 4166 → 4061, 5515 → 5421 → 5456 → 4186,
5515 → 4199 → 4150 → 4197, 5530 → 4103 → 1449 → 1461, 5530 → 5527 → 4097 →
4190 and 5605 → 5594 → 5613 → 5414. This proves this E8-graph remains connected after
specialization when p = 7.

10.6.3 ˜7168
For p = 7, the edges disappearing are 3397 → 403, 3995 → 4, 4205 → 772, 4795 → 86,
4795 → 157, 4993 → 4, 5755 → 157, 5755 → 300, 5938 → 4, 6397 → 2964, 6498 → 157,
6538 → 181, 6766 → 3772, 6869 → 4, 6869 → 181, 6869 → 1414, 6988 → 86, 6988 → 300,
6988 → 631, 7012 → 4, 7012 → 671, 7012 → 1414, 7012 → 2374, 7071 → 4, 7083 → 4,
7083 → 181, 7083 → 2374, 7165 → 86, 7165 → 98, 7165 → 157, 7165 → 300, 7165 → 1231,
7165→ 2176 and 7165→ 3174.

They can be replaced by the paths 3397→ 4795→ 1156→ 1362→ 86→ 403, 3995→ 30→
106 → 4, 4205 → 4795 → 4993 → 48 → 106 → 4 → 157 → 772, 4795 → 1156 → 1362 → 86,
4795 → 4993 → 48 → 106 → 4 → 157, 4993 → 48 → 106 → 4, 5755 → 2109 → 453 → 157,
5755 → 470 → 2264 → 300, 5938 → 30 → 106 → 4, 6397 → 6869 → 4877 → 5085 →
1414 → 2964, 6498 → 3593 → 916 → 157, 6538 → 3627 → 972 → 181, 6766 → 6869 →
4592 → 1234 → 181 → 3772, 6869 → 48 → 106 → 4, 6869 → 4592 → 1234 → 181,
6869 → 4877 → 5085 → 1414, 6988 → 2009 → 344 → 86, 6988 → 3719 → 2278 → 300,
6988 → 4969 → 3533 → 631, 7012 → 18 → 49 → 4, 7012 → 1439 → 3015 → 671, 7012 →
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5264 → 3772 → 1414, 7012 → 6766 → 7083 → 5796 → 2176 → 2374, 7071 → 30 → 106 → 4,
7083 → 30 → 106 → 4, 7083 → 2166 → 510 → 181, 7083 → 5796 → 2176 → 2374,
7165 → 2009 → 344 → 86, 7165 → 81 → 91 → 98, 7165 → 418 → 1148 → 157, 7165 →
2522 → 2577 → 300, 7165 → 2022 → 2667 → 1231, 7165 → 2022 → 854 → 2176 and
7165→ 5406→ 5623→ 3174. This proves this E8-graph remains connected after specialization
when p = 7.

10.7 Matrices for the 12-dimensional representation of
HF4,α,β

X1, X2 and X3 are respectively
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and Y1, Y2, Y3 and Y4 are respectively
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