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Introduction

Today, advances in Artificial Intelligence (AI) have led to the emergence of
systems capable of automating complex processes, using models that may be
difficult for humans to understand [57, 70]. When humans use these AI sys-
tems, it is well known that they want to understand their behaviours and
actions [66, 94], as they have more confidence in the systems that can explain
their choices, assumptions and reasoning [64]. The explanatory capability of
systems has become a user requirement for acceptance of their use [1], es-
pecially in human risk environments such as with autonomous vehicles or in
medicine [74]. In this context, laws have recently reinforced the rights of users
and allow them to claim a right of explanation in AI [1, 83]. In application
of this legislation, the development of the explanatory capacity of AI systems
appears today as a necessity. This requirement appeared in conjunction with
the recent resurgence of interest of eXplainable Artificial Intelligence (abbre-
viated to XAI), a research field that aims to develop AI systems that can
explain their results in a way that is understandable to humans [14]. While
the first approaches for developing the explainability of AI systems date back
to the 70-80s [78], this field regained popularity with the recent launch of a
program by the Defense Advanced Research Projects Agency (DARPA) that
attempts to bring transparency to opaque AI models such as deep neural
networks [63]. Developments of principles, strategies and human-computer
interaction techniques to generate effective explanations of AI systems results
(see [4, 14, 73, 21]) address the emerging expectations and needs of stakehold-
ers for AI systems [68].

In [52], Dubois, Prade and Ughetto develop the idea that information encoded
on a computer may have a negative or a positive emphasis. Negative infor-
mation acts as constraints and corresponds to statements that exclude some
situations because they are impossible. Positive information models observa-
tions and corresponds to statements that describe what is possible for sure
because it has been observed. These two antagonistic points of view on in-
formation allow us to distinguish different types of if-then rules to represent
data and knowledge, which can be appropriately modeled in the framework of
Fuzzy sets Theory and Possibility Theory.
In this thesis, based on the works [45, 50, 52, 55], we introduce explanatory
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paradigms for two AI systems:

• a possibilistic rule-based system, where possibilistic rules encode nega-
tive information and

• a fuzzy rule-based system composed of possibility rules, which encode
positive information.

The explanatory capacities of these systems will be developed for the following
objectives:

1. the establishment of meeting points between Knowledge Representation
and Reasoning (KRR) and Machine Learning (ML). They have been
recently surveyed by [13].

2. the elaboration of a processing chain for XAI, which was proposed in
[16], in order to be able to generate natural language explanations of the
decisions of AI systems and to be able to evaluate the explanations.

Instantiated AI Model Explanation
Representation

Textual
Explanation

Justification
extraction

Text
generation

Evaluation

Figure 1: Proposed processing chain to generate and evaluate explanations [16]

This processing chain (Figure 1) involves at its center a representation of an
explanation and three tasks:

• the justification extraction of AI system results, in order to form the
content of an explanation [14, 21, 62],

• the text generation of an explanation, with Natural Language Generation
(NLG) techniques [59, 84],

• the evaluation of an explanation, see [42, 75, 97, 101].

The three tasks are separated into distinct processes in order to allow a spe-
cific development of each of them and to dissociate responsibilities. In this
thesis, in order to elaborate this processing chain, we focus on the task of
justification extraction and the definition of a graphical representation of an
explanation. From the representation, one may be able to generate natural
language explanations and evaluate these explanations.

The thesis is structured as follows. In Part A, Possibility Theory and Fuzzy
Set Theory are reminded. The notions of positive and negative information is
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presented, as well as fuzzy rule-based systems and possibilistic rule-based sys-
tems. We also give a brief review of explanatory approaches for these systems.
In Part B, in line with our first objective of establishing links between KRR
and ML, we develop a possibilistic interface between learning and if-then rea-
soning. Such an interface is constructed by generalizing the min-max equation
system of Farreny and Prade [55], which was developed for possibilistic rule-
based systems. Dubois and Prade think that this interface may allow the
development of possibilistic learning methods that would be consistent with
rule-based reasoning [50].
Parts C and D focus on the elaboration of the processing chain. In Part C,
we introduce methods for justifying the inference results of possibilistic and
fuzzy rule-based systems. Our methods allow us to form two explanations of an
inference result of a rule-based system: its justification and its unexpectedness
(a set of logical statements that are not involved in the determination of the
considered result while being related to it). The notion of unexpectedness
is inspired by that given in Simplicity Theory [40], where it aims to capture
exactly what people consider surprising in a given situation [85].
In Part D, we represent these explanations in terms of conceptual graphs [34].
We also represent an explanation that is the combination of a justification and
unexpectedness of an inference result. These representations let us graphically
see the results of multiple analytical operations performed to generate expla-
nations of inference decisions. From these representations, one could produce
explanations in natural language, by adapting NLG systems that produce text
from semantic web inputs [24, 58].
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PART A

Explainable Artificial
Intelligence

In this part, we give the necessary background for this thesis by reminding
Possibility Theory and Fuzzy Set Theory and presenting the notions of pos-
itive and negative information (Chapter 1). This leads us also to remind
possibilistic rule-based systems and fuzzy rule-based systems. We also present
conceptual graphs, which is a suitable framework for representing knowledge
by graphs. We then give a brief review of the explanatory approaches for
rule-based systems (Chapter 2). We start with an overview of early devel-
opments for classical expert systems. We then review some approaches to
develop the explanatory capabilities of fuzzy rule-based systems and possi-
bilistic rule-based systems.
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Chapter 1

Background

In this chapter, we give the necessary background for this thesis. We start
by reminding Possibility Theory, which is a well-known framework for the
handling of incomplete or imprecise information [43, 44] introduced by Zadeh
in 1978 [108]. In our study, we focus on the possibilistic handling of rule-based
systems, which was developed in the 80’s [53, 56].
We then continue by presenting Fuzzy logic, which was also introduced by
Zadeh [105]. It can be seen as an extension of Boolean logic, with partial
truth information. We present two different types of fuzzy rules: conjunctive
fuzzy rules and implicative fuzzy rules and remind how their semantics can be
captured in the framework of Possibility Theory.
Finally, to represent knowledge in terms of graphs, we present the framework
of conceptual graphs. In this thesis, conceptual graphs will allow us to give a
graphic representation of some of our results.

1.1 Possibility Theory
Initially introduced by Zadeh and considerably developed by Dubois and Prade
[43, 44], Possibility Theory is an uncertainty theory, which provides com-
putable methods for the representation of incomplete or imprecise information.
Basically, in Possibility Theory, uncertainty is modeled by two dual measures
called possibility and necessity, which allows us to distinguish what is possible
without being certain at all and what is certain to a some extent [50].
In the following, we give the necessary background on the possibilistic handling
of rule-based systems and study the case of a cascade i.e., when a possibilistic
rule-based system uses two chained sets of possibilistic rules. We also remind
the necessary notions for capturing the semantics of fuzzy rules in Possibility
Theory [100].
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1.1.1 Possibility and necessity measures
Let U be a set. Any subset A ⊆ U is called an event. In particular, for each
u ∈ U , the singleton {u} is called an elementary event. On the set 2U , a
possibility measure is defined by:

Definition 1.1 A possibility measure on U is a map Π : 2U → [0, 1], which
assigns a degree Π(A) to each event A ⊆ U in order to assess to what extent
the event A is possible. It satisfies the following conditions:

• Π(∅) = 0 and Π(U) = 1,

• For any subset {A1, A2, . . . , An} ⊆ 2U , Π(⋃n
i=1 Ai) = supi=1,2,...,n Π(Ai).

For any event A, if Π(A) is equal to 1, it means that A is possible, while if
Π(A) is equal to 0, it means that A is impossible. A possibility measure Π has
the following properties:

• Π(A ∪ A) = max(Π(A), Π(A)) = 1.

• For any A1, A2 ∈ 2U , if A1 ⊆ A2, then Π(A1) ≤ Π(A2). It follows that
for any A1, A2 ∈ 2U , we have Π(A1 ∩ A2) ≤ min(Π(A1), Π(A2)).

Likewise to the notion of possibility measure, a necessity measure is defined
by:

Definition 1.2 A necessity measure on U is a map N : 2U → [0, 1], which
assigns a degree N(A) to each event A ⊆ U in order to assess to what extent
the event A is certain. It satisfies:

• N(∅) = 0 and N(U) = 1,

• For any subset {A1, A2, . . . , An} ⊆ 2U , N(⋂n
i=1 Ai) = infi=1,2,...,n N(Ai).

If N(A) = 1, it means that A is certain. If N(A) = 0, the event A is not
certain, but this does not mean that A is impossible. The necessity measure
has the following properties:

• N(A ∩ A) = min(N(A), N(A)) = 0.

• For any A1, A2 ∈ 2U , if A1 ⊆ A2, then N(A1) ≤ N(A2). It follows that
for any A1, A2 ∈ 2U , we have N(A1 ∪ A2) ≥ max(N(A1), N(A2)).

These two notions are dual to each other in the following sense:
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• If Π is a possibility measure, then a necessity measure N is obtained by
the following formula:

N(A) := 1 − Π(A).

• Reciprocally, if N is a necessity measure, then a possibility measure Π
is obtained by the following formula:

Π(A) := 1 − N(A).

1.1.2 Possibility distribution
A possibility distribution on the set U is defined by:

Definition 1.3 A possibility distribution π is a map π : U → [0, 1], which
assigns to each element u ∈ U a possibility degree π(u) ∈ [0, 1]. The possi-
bility distribution is said to be normalized if ∃u ∈ U such that π(u) = 1.

Any possibility measure Π gives rise to a normalized possibility distribution π
defined by the formula:

π(u) = Π({u}), u ∈ U.

Therefore, for any subset A ⊆ U , we have:

Π(A) = sup
x∈A

π(x) and N(A) = 1 − Π(A) = inf
x/∈A

(1 − π(x)).

Reciprocally, a normalized possibility distribution π gives rise to a possibility
measure Π defined by the formula:

Π(A) = sup
x∈A

π(x), A ⊂ U.

If a possibility distribution is associated to a variable X which takes its values
on U , it is noted πX . We have the following interpretations:

• If πX(u) = 0 then it means that X = u is a forbidden value for X.

• If πX(u) = 1, it means that nothing prevents X from being equal to
u. It is therefore possible, but not guaranteed possible in the common
sense.

Possibility distributions were originally proposed to represent negative infor-
mation, in the sense that they are intended (essentially) to exclude impossible
elementary events [44].
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Example 1.1 Let us consider that we want to register to a mas-
ter’s degree course among U = { artificial_intelligence, cryptography,
high_performance_computing, programming_language_theory }. After re-
viewing our resume, the university gives us a possibility distribution πcourse
that allows us to know, for each course, the possibility degree of being admitted
to it:

• πcourse(artificial_intelligence) = 1,

• πcourse(cryptography) = 0.5,

• πcourse(high_performance_computing) = 0.3,

• πcourse(programming_language_theory) = 0.

As πcourse(artificial_intelligence) = 1, the possibility distribution is normal-
ized. The event A = {cryptography, high_performance_computing} is assessed
as possible with a degree of Π(A) = 0.5.

Guaranteed possibility distribution

By contrast to negative information, positive information is represented with
the help of a (guaranteed) possibility distribution, commonly denoted δ [46,
47]. For u ∈ U , we have the following interpretations [44]:

• δX(u) = 1 means that the X = u is really possible, i.e., it has really
been observed.

• δX(u) = 0 expresses ignorance: it means that X = u has not been
observed (yet: potential impossibility).

A (guaranteed) possibility distribution gives rise to a measure of guaranteed
possibility ∆, which differs from Π [44]. It is defined by:

Definition 1.4 The guaranteed possibility measure associated to the (guar-
anteed) possibility distribution δ is the map ∆ : 2U → [0, 1] defined by:

for any A ⊆ 2U , ∆(A) = inf
u∈A

δ(u).

∆ satisfies:

• ∆(∅) = 1 (convention),

• For any A1, A2 ∈ 2U , if A1 ⊆ A2, then ∆(A1) ≥ ∆(A2).

• For any A1, A2 ∈ 2U , ∆(A1 ∪ A2) = min(∆(A1), ∆(A2)).
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Joint possibility distribution

Let X and Y be two variables defined on U and V respectively. A joint
possibility distribution πX,Y for the pair of variables (X, Y ) is a map

πX,Y : U × V → [0, 1],

which assigns for any pair (u, v) ∈ U × V , a degree πX,Y (u, v) to state to
what extent X = u and Y = v are possible values of X and Y respectively.
The projections of πX,Y on each referential set are called marginal possibility
distributions:

∀u ∈ U, πX(u) = sup
v∈V

πX,Y (u, v) and ∀v ∈ V, πY (v) = sup
u∈U

πX,Y (u, v).

The joint possibility distribution πX,Y and its marginal possibility distributions
πX and πY are linked by the following relation:

∀(u, v) ∈ U × V, πX,Y (u, v) ≤ min(πX(u), πY (v)).

1.1.3 Possibilistic handling of rule-based system
A possibilistic rule-based system is composed of n if-then possibilistic rules
R1, R2, . . . , Rn. Each rule Ri has an uncertainty propagation matrix[

π(qi|pi) π(qi|¬pi)
π(¬qi|pi) π(¬qi|¬pi)

]
=

[
1 si

ri 1

]
,

which encodes the uncertainty of “if pi then qi” and of “if ¬pi then ¬qi”.
The premise pi is of the form pi = pi

1 ∧ pi
2 ∧ · · · ∧ pi

k, where each pi
j is a

proposition: “ai
j(x) ∈ P i

j ”. The attribute ai
j is applied to an item x, where

its information is represented by a possibility distribution πai
j(x) : Dai

j
→ [0, 1]

defined on its domain Dai
j
, which is supposed to be normalized i.e., ∃u ∈ Dai

j

such that πai
j(x)(u) = 1. The possibility degree of pi

j and that of its negation
are computed using the possibility measure Π by:

π(pi
j) = Π(P i

j ) = sup
u∈P i

j

πai
j(x)(u) and π(¬pi

j) = Π(P i
j ) = sup

u∈P i
j

πai
j(x)(u),

where P i
j ⊆ Dai

j
and P i

j is its complement. As πai
j(x) is normalized, we have

max(π(pi
j), π(¬pi

j)) = 1. The necessity degree of pi
j is defined with the neces-

sity measure N by n(pi
j) = N(P i

j ) = 1 − π(¬pi
j) = inf

u∈P i
j
(1 − πai

j(x)(u)).
The possibility degree of pi and that of its negation are defined by:

π(pi) =
k

min
j=1

π(pi
j) and π(¬pi) = kmax

j=1
π(¬pi

j).
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These formulas π(pi) and π(¬pi) preserve the normalization i.e., max(π(pi), π(¬pi)) =
1 and are respectively noted λi and ρi. The necessity degree of pi is n(pi) =
1 − π(¬pi) = mink

j=1(1 − π(¬pi
j)) = mink

j=1 n(pi
j). The degrees λi and ρi allow

to have the following interpretations of pi:
• π(pi) = λi estimates to what extent pi is possible,

• n(pi) = 1 − ρi estimates to what extent pi is certain.
The conclusion qi of Ri is of the form “b(x) ∈ Qi”, where Qi ⊆ Db. The
possibility degrees of qi and ¬qi are respectively noted αi and βi. They are
defined by:[

π(qi)
π(¬qi)

]
=

[
1 si

ri 1

]
□max

min

[
λi

ρi

]
,

where the operator □max
min uses min as the product and max as the addition.

We still have max(π(pi), π(¬pi)) = 1, which implies:
αi = max(si, λi) and βi = max(ri, ρi). (1.1)

The possibility distribution of the output attribute b associated with Ri is given
by π∗i

b(x)(u) = αiµQi
(u) + βiµQi

(u) for any u ∈ Db. With n rules, the output
possibility distribution is defined by a min-based conjunctive combination:

π∗
b(x)(u) = min(π∗1

b(x)(u), π∗2
b(x)(u), . . . , π∗n

b(x)(u)). (1.2)

1.1.4 Cascade
In this case, a possibilistic rule-based system relies on R1, R2, . . . , Rn and a
new set of m if-then possibilistic rules R′1, R′2, . . . , R′m, where both the conclu-
sions of the Ri and the premises of the R′j use the same attribute, establishing
a chaining of the two sets of rules. In fact, each rule R′j is of the form “if
p′

j then q′
j” where p′

j is a proposition “b(x) ∈ Q′
j”, Q′

j being a subset of Db.
The conclusion q′

j is of the form “c(x) ∈ Q′′
j ” where Q′′

j is a subset of Dc, the
domain of the attribute c.
The possibility degrees associated with R′j are calculated in the same way
as those of the rules Ri: λ′

j = π(p′
j) and ρ′

j = π(¬p′
j) as p′

j is a proposi-
tion. Similarly, R′j has an uncertainty propagation matrix with its associated
parameters s′

j, r′
j.

1.2 Fuzzy Set Theory and Fuzzy logic
In the following, we remind Fuzzy Set Theory and Fuzzy logic, which were
introduced by Zadeh [105]. The main goal of Fuzzy Set Theory is to represent
linguistic statements by fuzzy sets. Based on Fuzzy Set Theory, Fuzzy logic
extends Boolean logic with partial truth information and is able to deal with
the vagueness of natural language.
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1.2.1 Fuzzy sets
Let U be a set, which is sometimes called a reference set. The ordinary subsets
of U are completely determined by their characteristic functions (also called
membership functions): if A ⊂ U , the characteristic function 1A of A is the
function:

1A : U → {0, 1} : u 7→ 1A(u) =
{

1 if u ∈ A
0 if u /∈ A

. (1.3)

The notion of fuzzy subset of U consists in considering any function:

µ : U → [0, 1] : we replace in (1.3) the set {0, 1} by the interval [0, 1].

as a membership function of a fuzzy subset of U . In other words, to give a
fuzzy subset A of U is equivalent to give its fuzzy membership function:

µA : U → [0, 1] : u 7→ µA(u).

If A is a fuzzy subset of U with membership function µA : U → [0, 1] and B
is a fuzzy subset of U with membership function µB : U → [0, 1], we have by
definition:

A = B ⇐⇒ ∀u ∈ U, µA(u) = µB(u). (1.4)

An ordinary subset A ⊂ U is also a fuzzy subset of U with as “fuzzy” mem-
bership function its characteristic function 1A because {0, 1} ⊂ [0, 1].

Guaranteed possibility measure of a fuzzy set

In [49], the authors extend the definition of the guaranteed possibility mea-
sure (Definition 1.4) to the fuzzy case. Let δX be the (guaranteed) possibility
distribution associated to the variable X on the set U . The guaranteed possi-
bility measure of a fuzzy subset F of U , whose membership function is µF is
defined by:

∆(F ) = inf
u∈U

µF (u) →g δX(u), (1.5)

where →g is the Gödel implication defined by:

a →g b =
{

1 if a ≤ b
b if a > b

.

Then, given a number α ∈ [0, 1], the statement:

X is F is α − possible,

means that:

∆(F ) ≥ α.
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1.2.2 Linguistic variables
At the root of Fuzzy Set Theory, Zadeh introduced linguistic variables to de-
scribe a situation, phenomena, or processes such as temperature, age, speed,
etc. [106]. This notion models a variable (for example temperature) charac-
terized by linguistic descriptions (e.g. low, medium, high):

Definition 1.5 A linguistic variable is a triplet a = (X, U, Ta) in which:

1. X is the name of the variable (temperature, age, speed...).

2. U is the domain where the variable X takes its value. The set U is
called the universe of discourse.

3. Ta = {A1, A2, A3, . . . } is a set of fuzzy subsets of X where each fuzzy
set models a linguistic description or a label of X and is called a
linguistic term of the variable X.

Let us give an example of a linguistic variable:

Example 1.2 Let us consider a linguistic variable a = (X, U, Ta) of a vari-
able X =Temperature, which takes its values in U = [0, 100], and has three
linguistic terms Ta = {Low, Medium, High}. Its associated fuzzy partition is
given in Figure 1.1.

µ

0

1

25 50 75 100

Low Medium High

Figure 1.1: Fuzzy partition of the variable Temperature.

1.2.3 Fuzzy propositions
Let a = (X, U, Ta) be a linguistic variable. When the available knowledge
about the variable X is precise and certain, the statements that characterize
X take the form X = u where u ∈ U . When the available knowledge about
X is imprecise or uncertain, we use a fuzzy proposition of the form “X is A”,
where A ∈ Ta is a linguistic term of a.

Two different semantics can be associated to a fuzzy proposition “X is A”
[100]:
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• Statements of the form “X is A is possible” are modeled by:

∀u ∈ U, δX(u) ≥ µA(u),

where δX is a guaranteed possibility distribution for the variable X.
Such a statement “X is A is possible” indicates that the values in A are
possible to some extent. If δX(u) = 1 then X = u is a real situation,
while δX(u) = 0 means that no evidence for X = u has been collected.

• Statements of the form “X must be in A” are modeled by:

∀u ∈ U, πX(u) ≤ µA(u),

where πX is a possibility distribution for the variable X. Such a state-
ment represents a constraint i.e., a fuzzy restriction on a set of possible
situations: if µA(u) = 0 then X = u is an excluded value because
πX(u) = 0.

1.2.4 Fuzzy logic expressions
Fuzzy logic expressions that use the logical connectors “and”, “or” and “not”
can be formed from fuzzy propositions of different linguistic variables, such
as “X is A and Y is B”. Given two linguistic variables a = (X, Ua, Ta) and
b = (Y, Ub, Tb) with A ∈ Ta, ia ∈ Ua, B ∈ Tb and ib ∈ Ub, we compute the
truth value of fuzzy logic expressions as follows:

• The truth value of “X is A and Y is B” is T (µA(ia), µB(ib)), where T is
a t-norm.

• The truth value of “X is A or Y is B” is S(µA(ia), µB(ib)), where S is
the t-conorm associated to T .

• The truth value of “X is not A” is N(µA(ia)), where N is the negation
adapted to T and S.

In this thesis, we use the t-norm min and the t-conorm max, which are related
by the usual negation t : 7→ 1−t. From the above definitions, one can construct
fuzzy rules of the form “if p then q”, where p is a premise and q a conclusion,
that we remind in the following.

1.2.5 Fuzzy rules
Fuzzy rules are often advocated as the basic unit of fuzzy logic-based systems
[48, 100]. As we will see first in the case of a crisp rule in classical logic, a fuzzy
rule is underlying positive or negative information [52, 67]. This basic inter-
pretation leads to distinguish two distinct classes of fuzzy rules: conjunctive
fuzzy rules and implicative fuzzy rules.
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Negative and positive information

In [52], Dubois, Prade and Ughetto distinguish between the negative and pos-
itive information underlying a rule. This distinction was also revisited by [67].
A crisp rule in classical logic is of the form “if X is A then Z is O” where
A ⊆ U and O ⊆ V are subsets of the domain of the variable X and Z respec-
tively, links the two universes of discourse U and V by their local restrictions
A and O. One can interpret such a rule from two different points of view,
depending on whether one focuses on its examples or its counterexamples:

• Positive view: the rule is viewed as a condition of the form “if X is A
then Z can be O” and asserts that when X takes its value in A, then
any value in O is eligible for Z. The pairs (u, v) ∈ A × O form a set
of examples explicitly allowed by the rule. This view is the conjunctive
interpretation of the rule, emphasizing only its examples.

• Negative view: the rule is interpreted as a constraint of the form “if X
is A then Z must be O” and asserts in an implicitly negative way that
the values outside O are excluded when X takes its values in A. The
pairs (u, v) ∈ A × O form the set of counterexamples of the rule and are
explicitly forbidden by the rule, while the pairs of the set A × O form
the set of implicitly allowed pairs of values for (X, Z). As we have:

A × O = (A × V ) ∪ (U × O) = (A × V ) ∪ (A × O),

the set A × O (which will be noted A ∪ O in the sequel), is the disjoint
union of the set of examples A × O and the set A × V of pairs of values
uncommitted by the rule. This view is the implicative interpretation
of the rule, emphasizing only its counterexamples (the set A × O) and
clearly corresponds to the Boolean implication in classical logic.

In conclusion, the complete representation of the rule is the pair of graphs,
(A × O, A ∪ O) i.e, subsets of the cartesian product U × V , made of explicitly
and implicitly permitted values (u, v) (Figure 1.2). In Figure 1.2 (a), A × O
represents the examples of the rule, while values outside this set are considered
impossible by default [52]. In Figure 1.2 (b), A ∪ O represents the counterex-
amples of the rule and the values outside this set are considered as possible
by default [52].
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(a) Examples of the rule
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V

1
1

A

O

(b) Counterexamples of the rule

Figure 1.2: The complete representation of a crisp rule (A × O, A ∪ O).

To develop the case of fuzzy rules, we begin by giving some useful preliminaries
on fuzzy graphs. Then, we review the two types of fuzzy rules in the framework
of Possibility Theory.

Preliminaries on fuzzy graphs

In this thesis, a fuzzy graph F in a cartesian product U × V of classical sets
is simply a fuzzy subset of the set U × V . It is defined by its membership
function µF : U × V → [0, 1].
In the following, two particular examples of fuzzy graphs in the set U × V will
be considered: let A and O be two fuzzy subsets in U and V respectively. We
have:

• The fuzzy graph F = A×O whose membership function µA×O is defined
by:

∀u ∈ U, ∀v ∈ V, µA×O(u, v) = T (µA(u), µO(v)), (1.6)

where T is a t-norm.

• The fuzzy graph G = A∪O whose membership function µA∪O is defined
by:

∀u ∈ U, ∀v ∈ V, µA∪O(u, v) = µA(u) → µO(v), (1.7)

where → stands for a material implication. For the general definition of
a material implication, see [25, 45].

Composition of fuzzy graphs

Let F and G be fuzzy graphs in the sets U × V and V × W respectively. The
sup-min composition of F and G is the fuzzy graph in V × W , noted F ◦ G,
whose membership function µF ◦G is defined by:

∀u ∈ U, ∀w ∈ W, µF ◦G(u, w) = sup
v∈V

min(µF (u, v), µG(v, w)).
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The sup-min composition of fuzzy graphs is the main tool to state the compo-
sitional rule of inference introduced by Zadeh, see [45].
We note that if F and G are classical subsets of U ×V and V ×W , each subset
corresponds to a matrix, whose coefficients are in [0, 1]. Then, the sup-min
composition F ◦ G corresponds to the max-min matrix product between these
two matrices, in the same order, where the product and sum are respectively
replaced by the functions min and max.
As in the matrix product case, we have a left-sup-min composition of a fuzzy
subset A∗ in U and a fuzzy graph F in U × V , which is a fuzzy subset in V ,
noted A∗ ◦ F , whose membership function µA∗◦F is defined by:

∀v ∈ V, µA∗◦F (v) = sup
u∈U

min(µA∗(u), µF (u, v)).

The left-sup-min composition is useful to formulate the generalized modus
ponens inference pattern proposed by Zadeh and the inference of systems of
parallel fuzzy if-then rules.

Fundamental dichotomy for fuzzy if-then rules

Let us consider the if-then rule “if X is A then Z is O” where A and O are
fuzzy sets in the sets U and W respectively. By the choice of a t-norm T and
a material implication →, we extended the definition of the pair of graphs
(A×O, A∪O) to the fuzzy case, see (1.6) and (1.7). This pair of fuzzy graphs
(A × O, A ∪ O) in the set U × W can be understood as two modeling of the
operator then and leads to distinguish two classes of if-then rules:

• A conjunctive fuzzy rule “if X is A then Z is O” is represented by the
fuzzy graph A×O. This type of rule focus on examples which are positive
pieces of information, by gathering pairs of values (u, v) which are known
as (more or less) feasible for (X, Z). Note that Mamdani’s fuzzy inference
systems [71] use conjunctive rules, where the t-norm underlying their
definition is the t-norm min.

• An implicative fuzzy rule “if X is A then Z is O” is represented by
the fuzzy graph A ∪ O. Implicative fuzzy rules are more natural to
represent expert knowledge as they model constraints relating input and
output values: they express a more or less strict constraint on the values
allowed for Z, conditioned by the value taken by X. By focusing on
the fuzzy graph A × O of forbidden pairs of values, they correspond
to negative pieces of information. However, as there exist numerous
fuzzy extensions of the Boolean material implication, the modeling of the
fuzzy graph A ∪ O of implicitly allowed pairs of values (or equivalently
its complement A × O), is non trivial. Note that in Zadeh’s modus
ponens [107], an implicative fuzzy rule plays the same role as a Boolean
implication.
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In what follows, we give an example of a conjunctive fuzzy rule, called possi-
bility rule and an example of an implicative fuzzy rule called certainty rule.

Possibility rules

A conjunctive fuzzy rule “if X is A then Z is O” where the t-norm underlying
to the definition of the fuzzy graph A×O is the min norm, is called a possibility
rule. For such a conjunctive fuzzy rule, we have:

∀u ∈ U, ∀v ∈ W, µA×O(u, v) = min(µA(u), µO(v)).

In Possibility Theory, the operator then of a possibility rule “if X is A then
Z is O” is modeled by a joint possibility distribution πX,Z , which restricts the
possible values of the pair of variables (X, Z) and satisfies [45] :

∀u ∈ U, ∀v ∈ W, min(µA(u), µO(v)) ≤ πX,Z(u, v). (1.8)

Through a careful analysis [25, 45] of the relationship between the variables
(X, Z), this constraint assumption (1.8) allows to justify the semantics:

“the more X is A, the more possible Z is O”,

for the possibility rule “if X is A then Z is O”.

Certainty rules

An implicative fuzzy rule “if X is A then Z is O” where the material im-
plication → underlying to the definition of the fuzzy graph A ∪ O, is the
Kleene-Dienes S-implication generated by the t-norm min [25, 45], is called a
certainty rule. For such implicative fuzzy rule, we have:

∀u ∈ U, ∀v ∈ W, µA∪O(u, v) = max(1 − µA(u), µO(v)).

In Possibility Theory, the operator then of a certainty rule “if X is A then Z
is O” is modeled by a joint possibility distribution πX,Z , which restricts the
possible values of the pair of variables (X, Z) and satisfies [45] :

∀u ∈ U, ∀v ∈ W, πX,Z(u, v) ≤ max(1 − µA(u), µO(v)). (1.9)

As for the possibility rules, through a careful analysis [25, 45] of the relation-
ship between the variables (X, Z), this constraint assumption (1.9) allows to
justify the semantics:

“the more X is A, the more certain Z is O”,

for the certainty rule “if X is A then Z is O”.
Other types of conjunctive fuzzy rules and implicative fuzzy rules have been
defined, see [25].
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1.2.6 Inference mechanisms
In the following, we describe the inference mechanisms for a system of parallel
possibility rules and for a system of parallel certainty rules. A set of parallel
rules means that the rules are of the form “If X is Ai then Z is Oi” whose inputs
Ai (respectively, outputs Oi) are defined on the same universe U (respectively,
V ), which can be multidimensional for the premise [51].

Inference with a system of parallel possibility rules

Let R1, . . . , Rn be a system of possibility rules. Each rule Ri is represented by
a fuzzy graph Ai × Oi in U × V , where Ai and Oi are fuzzy subsets in U and
V respectively. The inference mechanism from a proposition “X is A∗”, where
A∗ is a fuzzy subset in U , produces “Z is O∗” defined by the left sup-min
composition O∗ = A∗ ◦ F , where the membership function of the fuzzy graph
F in U × V is:

∀u ∈ U, ∀v ∈ V, µF (u, v) = max
i

min(µAi
(u), µOi

(v)).

This is the FATI method (FATI for First Aggregate Then Infer). However, as
we have:

∀v ∈ V, µO∗(v) = sup
u∈U

min(µA∗(u), max
i

min(µAi
(u), µOi

(v))

= max
i

sup
u∈U

min(µA∗(u), min(µAi
(u), µOi

(v)).

We conclude that the output O∗ is also obtained by aggregating the out-
puts O∗

1, O∗
2, . . . , O∗

n respectively inferred from A∗ and each rule R1, R2, . . . , Rn.
This is the FITA method [100] (FITA for First Infer Then Aggregate), which
is the Mamdani’s inference method without any defuzzication (a process for
obtaining a crisp value from the output aggregated fuzzy set O∗) [102].

Inference with a system of parallel certainty rules

Let R1, . . . , Rn be a system of certainty rules. Each rule Ri is represented by
a fuzzy graph Ai ∪ Oi in U × V , where Ai and Oi are fuzzy subsets in U and
V respectively. The inference mechanism from a fact “X is A∗”, where A∗ is a
fuzzy subset in U , produces “Z is O∗” defined by the left sup-min composition
O∗ = A∗ ◦ G, where the membership function of the fuzzy graph G in U × V
is:

∀u ∈ U, ∀v ∈ V, µG(u, v) = min
i

max(1 − µAi
(u), µOi

(v)).

This is the FATI method where G = ∩i(Ai ∪ Oi) and we have:

∀v ∈ V, µO∗(v) = sup
u∈U

min(µA∗(u), min
i

max(1 − µAi
(u), µOi

(v)).
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The inference by the FITA method produces “Z is O′∗” defined by aggregating
n left sup-min compositions:

O′∗ = ∩iA
∗ ◦ (Ai ∪ Oi),

where A∗ ◦ (Ai ∪Oi) is the left-sup-min composition of A∗ and the fuzzy graph
Ai ∪ Oi. In the case of a single rule, the FATI and the FITA methods coincide
with Zadeh’s generalized modus ponens.
One can check the inclusion O∗ ⊆ O′∗ as fuzzy subsets in V . In fact, it
might be rather uninformative to perform each inference A∗ ◦ (Ai ∪ Oi) = O∗

i

separately and then combine O∗
1, O∗

2, . . . , O∗
n in a conjunctive manner to get

O′∗ = ∩iO
∗
i , see [25, 45]. Therefore, for implicative fuzzy rules, only the FATI

inference mechanism is used.
In the following, we study the inference of a system composed of possibility
rules. For the two following examples, we apply the inference mechanism to a
crisp value u0 ∈ U , i.e. we take A∗ = {u0}. We begin with the case of one rule.

Inference with one possibility rule A possibility rule “if X is A then Z is
O” is represented by the fuzzy graph F = A×O in U ×V , whose membership
function is defined by:

∀u ∈ U, ∀v ∈ V, µF (u, v) = min(µA(u), µO(v)).
The membership function of the left sup-min composition O∗ = A∗ ◦ F , which
defines the inferred conclusion Z is O∗ is given by:

∀u ∈ U, ∀v ∈ V, µO∗(v) = sup
u∈U

min(µA∗(u), min(µA(u), µO(v))

= min(µA(u0), µO(v)).
So, the fuzzy set O∗ is the truncated fuzzy set O at the level µA(u0). We con-
tinue with an example of the inference of a system composed of two possibility
rules.

Inference with two possibility rules Let the two possibility rules be
noted R1, R2. We have O∗ = A∗ ◦ F , with the fuzzy graph F in U × V whose
membership function is defined by:

∀u ∈ U, ∀v ∈ V, µF (u, v) = max[min(µA1(u), µO1(v)), min(µA2(u), µO2(v))].
The membership function of the left sup-min composition O∗ = A∗ ◦ F , which
defines the inferred conclusion Z is O∗ is given by:

∀v ∈ V, µO∗(v) = supu∈U min(µA∗(u), max
i=1,2

min(µAi
(u), µOi

(v)))

= max
i=1,2

sup
u∈U

min(µA∗(u), min(µAi
(u), µOi

(v)))

= max
i=1,2

min(µAi
(u0), µOi

(v)).
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So, the fuzzy set O∗ is the union of the truncated fuzzy set of O1 at the level
µA1(u0) and the truncated fuzzy set of O2 at the level µA2(u0).

For the case of a possibility rule with a compounded premise, we study in the
following its associated possibility distributions.

1.2.7 Possibility distributions associated to a possibility
rule with a compounded premise

Let R = (p, c) be a possibility rule such that:

p = X1 is A1 ∧ X2 is A2 ∧ · · · ∧ Xk is Ak, (1.10)

is a conjunction of k fuzzy propositions (Xj, Aj) defined by the linguistic
variables aj = (Xj, Uj, Taj

) and the terms Aj ∈ Taj
. The conclusion c is a

fuzzy proposition c = (Z, O) defined by a linguistic variable z = (Z, V, Tz) and
O ∈ Tz.

(Guaranteed) joint possibility distribution for the input variables

The (guaranteed) joint possibility distribution δX1,X2,...,Xk
for the variables

(X1, X2, . . . , Xk) that represent the premise p is defined on the set U1 × U2 ×
· · · × Uk by (see [25]):

∀(u1, u2, . . . , uk) ∈ U1 × U2 × · · · × Uk, δX1,X2,...,Xk
(u1, u2, . . . , uk) = min

j
µAj

(uj). (1.11)

From this definition, we describe as in [25, 45] the joint possibility distribu-
tion for the possibility rule R = (p, c) and the possibility distribution for the
conclusion c = (Z, O).

Joint possibility distribution for the rule

The (guaranteed) joint possibility distribution δX1,X2,...,Xk;Z for the possibility
rule R = (p, c), where p is a premise as in (1.10) and c = (Z, O), is defined on
the set U1 × U2 × · · · × Uk × V by (see [25, 45]):

∀(u1, . . . , uk, v) ∈ U1 × · · · × Uk × V, δX1,...,Xk;Z(u1, . . . , uk, v) = min(min
j

µAj
(uj), µO(v)). (1.12)

This relation (1.12) represents a conjunctive fuzzy rule with the choice of min
as t-norm [25, 45].

Possibility distribution for the conclusion

The possibility distribution δZ for the variable Z of the conclusion c = (Z, O) of
the possibility rule R = (p, c) is the marginal possibility distribution associated
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to the joint possibility distribution δX1,X2,...,Xk;Z and the conclusion variable
Z, see [25]:

∀v ∈ V, δZ(v) = sup
(u1,u2,...,uk)∈U1×U2×···×Uk

δX1,X2,...,Xk;Z(u1, u2, . . . , uk, v)

= sup
(u1,u2,...,uk)∈U1×U2×···×Uk

min(min
j

µAj
(uj), µO(v)). (1.13)

1.3 Conceptual graphs
In this thesis, some of our results are represented graphically. For this pur-
pose, we use Conceptual graphs, which have been proposed as a knowledge
representation and reasoning model mathematically founded on both logics
and graph theory [18]. Conceptual graphs are multi-graphs composed of con-
cept nodes representing entities and relation nodes representing relationships
between these entities. Unlike another well-known knowledge representation
formalism called RDF [65], conceptual graphs allow to represent naturally n-
ary relations between entities. Conceptual graphs were introduced by Sowa
[89] and enriched by Chein and Mugnier [34].
In what follows, we remind the conceptual graphs framework by studying how
to build conceptual graphs and how to nest them. We begin by presenting the
vocabulary used for constructing such graphs.

1.3.1 Vocabulary
A vocabulary is an ontology, which describes the different types of concepts
and their relations that exist in the application domain studied [34]:

Definition 1.6 A vocabulary V = (TC , TR, I, τ, σ) is composed of two par-
tially ordered sets TC and TR which are respectively the concept types and
relation symbols used and a set of individual markers I. The mapping
τ : I → TC is an individual typing function. The relation symbol signa-
ture σ gives for each relation symbol of TR the concept type of each of its
arguments.

An individual marker is an object or an entity of the application domain. For
TC and TR, the partial order represents a specialization. For example, if c and
c′ are two types of concepts with c′ < c, it means that each instance of concept
c′ is also an instance of concept c.

1.3.2 Basic conceptual graph
From a vocabulary V , one can construct a basic conceptual graph [34], which
is also abbreviated BG.
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Definition 1.7 A BG is a quadruplet G = (C, R, E, l) constructed from a
vocabulary V, where:

• (C, R, E) is a finite, undirected, bipartite multigraph, where C is the
set of concept nodes, R is the set of relation nodes and E is the set of
edges.

• l is a function for labeling nodes and edges which satisfies:

– a concept node c ∈ C is labeled by l(c) = (t, m) where t =
type(c) ∈ TC is a concept type and m = marker(c) ∈ I ∪ {∗} is
either the individual marker associated to the concept type t by
the individual typing function τ or the generic marker ∗ (no in-
dividual marker). A concept node that has no individual marker
is called a generic concept node.

– a relation node r ∈ R is labeled by l(r) = type(r) ∈ TR where
type(r) is a relation symbol of the vocabulary. The signature σ
of type(r) gives the types of the concept nodes to which r has to
be linked.

– The degree of a relation node r ∈ R is equal to the arity of
type(r),

– The edges of a relation node r ∈ R are totally ordered. Typically,
they are labeled from 1 (or 0) to arity(type(r)) (or arity(type(r))
- 1).

Example 1.3 Let us consider a vocabulary V, which is an ontology to rep-
resent two humans Alice and Bob, an amount of 200 euros, and a relation
borrow:

• TC = {Human, Amount},

• TR = {borrow} such that arity(borrow) = 3,

• I = {Alice, Bob, 200},

• τ : I → TC such that:

– Alice 7→ Human,
– Bob 7→ Human,
– 200 7→ Amount.

• The signature map σ is given by:

– σ(borrow) = (Human, Amount, Human).
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From the vocabulary V, let us represent the statement “Alice borrows 200 euros
to Bob” by a basic conceptual graph (Figure 1.3):

borrow

Human: Alice

Human: Bob

Amount: 200

0

2
1

Figure 1.3: Example of basic conceptual graph. Nodes with a rectangular
shape are concept nodes and those with an oval shape are relation nodes. The
edge labels correspond to the numbering of the edges between a relation node
and its neighbors.

A particular type of BG, called a star BG, has a single relation node:

Definition 1.8 A star BG is a BG restricted to a relation node and the
concept nodes that are its neighbors.

The graph in Figure 1.3 is a star BG.

1.3.3 Nested graphs
Nested graphs are a family of conceptual graphs that have been introduced
for the representation of structural information or specific contexts, zooming
in and out, and distinguishing between internal and external elements of a
situation. In nested graphs, a concept node can nest a concept graph.
Initially, multiple definitions of nested graphs were introduced (see [41, 61,
80, 90]). Michel Chein and Marie-Laure Mugnier proposed a definition that
generalizes nested graphs as a tree of conceptual graphs [33] with an associated
logical semantics [35]. This leads to the following definition of basic nested
graphs [35]:

Definition 1.9 Basic nested graphs (NBGs) are defined as follows:

• An elementary NBG is obtained by adding a third field to the label of
each concept node c of a basic conceptual graph named Desc(c) and
equal to ⋆⋆ (which means empty).

• Let G be an elementary NBG, c1, c2, . . . , ck be concept nodes of G
and G1, G2, . . . , Gk be NBGs. The graph obtained by replacing the
description ⋆⋆ of ci by Gi for all i = 1, . . . , k is an NBG.
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To each NBG G, we associate a rooted tree noted Tree(G) whose nodes are
labeled by NBGs, and its root is noted root(G) [35].

Definition 1.10 For an NBG G, Tree(G) is defined as follows:

• If G is an elementary NBG then Tree(G) is restricted to its root,
which is labeled by G.

• If G is the NBG obtained from the elementary NBG H, the concept
nodes c1, c2, . . . , ck of H and the NBGs H1, . . . , Hk, then Tree(G) is
constructed from Tree(H1), . . . , T ree(Hk) by adding root(H) as a root
node and the edges (root(H), ci, root(Hi)) for all i = 1, . . . , k.

This allows us to define an NBG by a tree of BGs [34].

Definition 1.11 A tree of BGs T = (VT , UT , lT ) constructs an NBG G
from a set of pairwise disjoint BGs {G1, . . . , Gk}. T is defined by:

• The set of nodes VT of T is in bijection with the set of graphs {G1,
. . . , Gk} such that for any i = 1, . . . , k, the node associated to Gi is
labeled Gi.

• UT is the set of arcs of T that are labeled by lT , such that for any arc
(Gi, Gj) ∈ UT , lT (Gi, Gj) is a concept node c in Gi that can be denoted
by (Gi, c, Gj).

• All labels are distinct, i.e. a concept node c appears at most once as
an arc label.

A logical semantics exists for NBGs, which is, for each of these graphs and
as for BGs, a formula of the positive, conjunctive and existential fragment of
first order logic [34].
Furthermore, there is a mapping that is called ng2bg of nested to non-nested
graphs. By the existence of this mapping and their respective logical seman-
tics, nested and non-nested graphs have the same descriptive power and are
somewhat equivalent [34].

Example 1.4 Let us consider two basic conceptual graphs G1 and G2 as
shown in Figure 1.4:
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borrow

Human: Alice

Human: Bob

Amount: 200

0

2
1

(a) G1

want

Teacher: Maths

Animal: Cat

0

1

(b) G2 that models “A math teacher
wants a cat”.

Figure 1.4: Examples of basic conceptual graphs.

We denote by c the concept node in G1 labeled by “Human: Alice”. We form
a NBG G by nesting the graph G2 in the concept node c of G1. The tree
associated to G Tree(G) = (VT , UT , lT ) is defined by VT = {G1, G2}, UT =
{(G1, G2)} and lT (G1, G2) = (G1, c, G2). It is represented in Figure 1.5.

G1

G2

c

Figure 1.5: Tree(G).

The resulting NBG G is represented in Figure 1.6.

Human: Alice

want

Teacher: Maths

Animal: Cat

0

1

borrowHuman: Bob

Amount: 200

1

2 0

Figure 1.6: An NBG that models “Alice, a math teacher who wants a cat,
borrows 200 euros to Bob”.

1.4 Conclusion
In this chapter, we reminded Possibility Theory, which is a suitable framework
for the representation of imprecise and incomplete information. The possibilis-
tic handling of rule-based system allows us to perform consistent reasoning.
From a possibilistic rule-based system, we will develop in Part B an inter-
face between learning and if-then rule-based reasoning. We will also study in
Chapter 4 how we can justify the inference results of possibilistic rule-based
systems.
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We reminded Fuzzy set theory and Fuzzy logic. This allowed us to survey the
two types of fuzzy rules, which are underlying positive and negative informa-
tion and to study how to capture the semantics of fuzzy rules in the framework
of Possibility Theory. We also presented two inference mechanisms of fuzzy
rule-based systems: FITA and FATI. For an explanatory purpose, we study
in Chapter 5 how we can justify the inference results of a fuzzy rule-based
system composed of possibility rules (Mamdani rules). For such system, we
investigate the semantics of its inferred conclusions.
Finally, we reminded the conceptual graph model, which allows us representing
appropriately knowledge in terms of graphs. However, one can notice that it
must be adapted to represent imprecise or uncertain knowledge. This will be
discussed in Part D, where we represent explanations of possibilistic and fuzzy
inference decisions.
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Chapter 2

Explainability of rule-based
systems

In this chapter, we start by giving an overview on the early developments of
explainable AI systems, which date back to the 70-80s (Section 2.1). In Section
2.2, we review some approaches for developing the explanatory capabilities of
fuzzy rule-based system composed of possibility rules. In Section 2.3, we
focus on the min-max equation system of Farreny and Prade for developing
the explanatory capabilities of a possibilistic rule-based system. Finally, we
conclude (Section 2.4).

2.1 Explainability of classical expert systems
Historically, the development of the explainability of intelligent systems fo-
cused first on expert systems [78]. The explanatory stake was highlighted by
the MYCIN system developed at Stanford University (an expert system al-
lowing to identify a bacterium responsible for an infection or a blood clotting
disease and to propose a treatment for it) [88]. This expert system provided
a good therapy in 65% of the cases, thus outperforming all the doctors of the
Stanford medical school [104]. This explanatory issue was also highlighted by
Teach and Shortliffe’s experiment [94], which aimed to determine physicians’
expectations of computerized consultation systems. Physicians were asked to
rank fifteen features that these systems could offer, and the explanatory ca-
pacity appeared to them as the most important and necessary when faced
with, for example, a diagnostic error.
Early on, researchers identified two explanatory needs for AI systems: ex-
plaining how a system works and explaining how a system takes a decision
[32]. These needs are sometimes referred to as global explanation and local
justification, respectively [78]. During the 70-80’s, the investigations lead to
distinguish three types of explanations that could be generated by an expert
system, in order to explain its behavior [32]:
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• Explanation of the inference results, using the execution trace of the
expert system, in which we find the sequence of rules applied in a rea-
soning. For instance, in MYCIN, if a user asks the system the question
“Why?”, the system answers by giving the user a tree structure contain-
ing the sequence of triggered rules [87]. When the user asks “How?”,
MYCIN allows the user to go into specific branches of the tree.

• Explanation of the (static) knowledge base of the expert system itself.
For instance, in XPLAIN [92], authors add a knowledge base to the
expert system, which contains descriptive facts about the application
domain.

• Explanation of the reasoning strategy. In NEOMYCIN [36], it consists
in the addition of meta-rules in the expert system, to explicitly represent
its strategy and the relationship between rules. Such meta-rules underlie
the reasoning assumptions of the system.

Following these first approaches, in the early 90s, researchers designed expert
systems in order to distinguish the different types of knowledge needed to
build their explanations, see [19, 81, 93]. For example, [19] separates knowl-
edge to build an explanation into three layers: reasoning, domain knowledge
and knowledge used to communicate. This kind of separation has the advan-
tage of making the systems more modular and easier to maintain [93].

As we have seen, early work on developing the explanatory capabilities of ex-
pert systems revealed that the knowledge bases of the first expert systems
were inadequate for producing explanations. Researchers stressed the impor-
tance of relying not only on the system’s execution trace but also on domain
knowledge, reasoning strategy, and communication knowledge.
We continue by studying approaches for the explainability of fuzzy systems.

2.2 Explainability of a fuzzy rule-based sys-
tem composed of possibility rules

Zadeh is recognized as a pioneer in the field of explainable artificial intelligence
[7, 26]. He introduced many paradigms that are of interest for the develop-
ment of automated systems intended to interact with human agents: fuzzy
sets, hedges and quantifiers, linguistic variables, approximate reasoning and
fuzzy logic, computation with words, etc. His seminal work is used to build
interpretable fuzzy systems [5] and is in line with the XAI challenges [26].

In what follows, we study how to explain to users the inference results of
a fuzzy rule-based system composed of possibility rules that do not use a
defuzzification process. To do so, we rely on the recent book by Alonso et
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al. [4] on the explainability of fuzzy systems. In this book, the authors
study the design of interpretable fuzzy systems [3] and develop a fuzzy rule-
based system offering a good compromise between interpretability/accuracy
and explanatory capabilities [2]. In [3], the author states that the behaviours
of a fuzzy rule based system depends on:

• its fuzzy inference process, which is set for a fuzzy rule-based system
composed of a possibility rules (min norm, FITA or FATI, see Chapter
1),

• the content of its Knowledge Base (KB), which is specific to the problem
domain. The KB is composed of a database (the linguistic variables and
their related fuzzy partitions) and a fuzzy rule base [5].

Building the KB involves: the selection of the relevant variables for the mod-
elling of the considered problem (for interpretability concern, the number of
variables should be as small as possible [3]), the construction of the database
(the modeling of linguistic variables, which implies the choice of the mem-
bership functions of its terms, the properties of the associated fuzzy partition
e.g. granularity, coverage, if it is strong etc.) and the construction of the rule
base (construction of the fuzzy propositions composing the fuzzy rules, from
the database).
The modelling of a fuzzy system is confronted with two main objectives: accu-
racy and interpretability [3], which often collide. Research has been conducted
to propose approaches that provide a good compromise of these two objectives,
see [9]. Among them, let us mention the HILK (Highly Interpretable Linguis-
tic Knowledge) method [6], which is an appropriate fuzzy modelling method
when the interpretability of a fuzzy system is the main concern.

In 2017, authors of [12] highlighted that decisions made by fuzzy systems
are better understood by users when they are explained in natural language.
Then, a bibliometric analysis put forward that the fuzzy inference system
seems to be a good candidate for the explainable artificial intelligence field
[10]. These studies led to many approaches to elaborate the explainability of
fuzzy systems:

• rLDCP [37], which is an automatic report generator for LDCP [98],
a framework for Linguistic Description of Complex Phenomena that is
based on the Computational Theory of Perceptions introduced by Zadeh
[109]. This R package let us model complex phenomena, interpreting in-
put data, and generating automatic reports adapted to the user needs.
Given input data, a set of complex phenomena and following the LDCP
methodology, it associates, to each phenomenon X, a linguistic descrip-
tion of the form “X is A” (for example, “the temperature is hot” for a
phenomenon temperature) which is consistent with the input data. A
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linguistic description of a phenomenon can be deduced by Mamdani’s
inference.

• ExpliClas [8], which is a software that generates a textual explanation
for explaining a classification made with a fuzzy rule base or a decision
tree. It has been extended to support fuzzy hoeffing decision trees [11].
ExpliClas is able to generate a global explanation and a local explanation
of a classification. The global explanation describes the behavior of
the classifier (the list of classes of the classifier, the reliability of the
classifier and an analysis of the confusion matrix). The local explanation
contains information about an instance of a classification, which thus
varies according to its results. If a class is inferred, the local explanation
is formed by the associated fuzzy rule (or a root-to-leaf decision path
for a decision tree). If a context of alternative exists with one or more
other classes, the local explanation is formed by selecting for each of
these classes, its name, the attribute that creates the ambiguity between
these classes, and the percentage of confusion between these classes.

• For a fuzzy decision tree (and its correspondence in terms of fuzzy rules),
a method for generating factual and counterfactual explanations [91].
A factual explanation is composed of feature-value pairs that together
justify the root-to-leaf decision path, while a counterfactual explanation
is obtained by selecting the nearest node where the root-to-leaf decision
path and a path to a different class leaf diverge.

To generate natural language explanations, these approaches rely on NLG
tools called surface realizers [84], e.g. SimpleNLG [60]. Such software can
perform the NLG task called linguistic realization [84]: producing a syntac-
tically, morphologically and orthographically correct text from linguistically
and syntactically represented knowledge.

In the end, the approaches emphasized that the paradigms introduced by
Zadeh play an important role in the construction of interpretable fuzzy systems
and in the development of their explanatory capabilities [25].
Note that Possibility Theory, which is an uncertainty theory also introduced
by Zadeh, also plays a role in XAI. We therefore continue by studying the
explanatory capabilities of a possibilistic rule-based system in the next section.

2.3 Min-max equation system for a possibilis-
tic rule-based system

Possibilistic rule-based systems were introduced in the 80’s [53, 56]. Then,
Farreny and Prade studied the problem of explaining the inference results of
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such systems. They considered six questions that could be asked by a user
and need to be answered by explanations:

• How is obtained the output possibility distribution?

• How, mainly, is the output possibility distribution obtained? According
to the authors, this question can be answered in two ways because of the
term mainly. First, what are the main rules (or possibilistic propositions
of the rules’ premises) that determine the output possibility distribution
? Second, what are the most surprising intermediate results in the rea-
soning?

• How and why do such elements of the output attribute domain have a
possibility degree of zero or so low?

• Which possibilistic propositions in the rule premises (if any) led to obtain
a possibility degree close to zero for an output attribute value?

• How would the output possibility distribution vary depending on the
possibility distribution of particular input attributes?

• Why did the system want to evaluate a particular possibilistic proposi-
tion?

From this study, these authors proposed to develop the explanatory capa-
bilities of possibilistic rule-based systems by relying on a min-max equation
system [55]. This equation system is denoted OV = MR IV, where OV and
IV are respectively named the output and the input vectors, and MR is a
matrix composed of the parameters of the rules. In [50], the equation system
for the case of two rules R1 and R2 is given:

Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)

 =


s1 1 s2 1
s1 1 1 r2
1 r1 s2 1
1 r1 1 r2

□min
max


λ1
ρ1
λ2
ρ2

 . (2.1)

The operator □min
max uses max as the product and min as the addition.

By performing the min-max products, the authors obtain Π(Q1 ∩ Q2) =
min(α1, α2), Π(Q1 ∩ Q2) = min(α1, β2), Π(Q1 ∩ Q2) = min(β1, α2) and Π(Q1 ∩
Q2) = min(β1, β2). The four sets used form a partition of the output attribute
domain Db constructed from the sets Q1, Q2 used in the conclusions q1, q2 of
R1 and R2, and their complements.

For an example of a system of three if-then possibilistic rules, the authors of
[55] show that the equation system describes the output possibility distribu-
tion. They also propose to use it to perform a sensitivity analysis, depending
on what is unknown (either IV or OV):
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• If IV is known, they show, using their example, that they can find the
possibility or necessity degrees of the rule premises, which are in IV, that
justify the possibility degree of an output attribute value.

• If OV is known, they show, for a particular output attribute value u of
their example and τ ∈ [0, 1], that we can give a sufficient condition to
obtain π∗

b(x)(u) > τ .

In the french version of [55], they also propose to perform sensitivity analysis
by leaving some rule parameters si, ri uninstantiated and observe their impact
on the output possibility distribution [54].
Finally in [55], they discuss two important points. First, how we can reduce a
rule premise p to return the possibilistic propositions composing the premise
that together are responsible for the degree π(p) or n(p)? Secondly, for a cas-
cade, they think it would be possible to establish an input-output relationship
between the equation systems associated with each set of rules of the system.

This last idea is echoed by [50]. They claim that the cascade construction
would have a structural resemblance to a min-max neural network. They also
put forward that such min-max equation system would be useful for developing
possibilistic learning methods consistent with if-then reasoning. Such develop-
ments are in line with current research on meeting points between Knowledge
Representation and Reasoning (KRR) and Machine Learning (ML) [13].

2.4 Conclusion
In this chapter, we have studied successively, the approaches to develop the
explanatory capacities of classical expert systems, fuzzy rule based systems
and possibilistic rule based systems. Early approaches to classical expert sys-
tems focused on building a knowledge base to construct adequate explanations
for users. The explainability of fuzzy rule-based systems focus on the develop-
ment of fuzzy systems that are interpretable and have explanatory capacity.
We have seen that for many fuzzy rule-based systems, it is also possible to
obtain explanations in natural language, using NLG tools.
Finally, we studied the min-max equation system associated with a possibilis-
tic rule-based system. This system allows describing the output possibility
distribution and to perform sensitivity analysis. The authors of [50] claim
that the development of this equation system would allow to have an interface
between learning and reasoning in a possibilistic setting.
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PART B

Possibilistic interface between
learning and reasoning

Recently, Dubois and Prade advocated the development of possibilistic learn-
ing methods that would be consistent with if-then rule-based reasoning [50].
For this purpose, the authors have proposed to represent a classification prob-
lem by the min-max equation system for a possibilistic rule-based system of
Farreny and Prade [55] (reminded in Chapter 2). In particular, they high-
lighted the importance of the equation system for a cascade i.e., when a pos-
sibilistic rule-based system uses two sets of if-then possibilistic rules consec-
utively, the rules of the second set being chained with those of the first set.
They suggested that the equation system associated to a cascade would have
a structure somewhat similar to a min-max neural network. In this part, we
give a canonical construction for the matrices governing the min-max equation
system of Farreny and Prade and tackle the case of cascade. Moreover, we
represent the cascade construction by a min-max neural network.
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Chapter 3

Generalized min-max equation
system for a possibilistic
rule-based system

The work in this chapter has led to the publication of two conference papers:

• Baaj, I., Poli, J. P., Ouerdane, W. & Maudet, N. (2021). Min-max in-
ference for possibilistic rule-based systems. In 2021 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE.

• Baaj, I., Poli, J. P., Ouerdane, W. & Maudet, N. (2021). Inférence min-
max pour un système à base de règles possibilistes @ In 2021 Rencontres
Francophones sur la Logique Floue et ses Applications (LFA).

In this chapter, we address a number of questions and issues raised in
[50, 55] by providing an in-depth study of the min-max equation system of
a possibilistic rule-based system, which we reminded in Section 2.3. This
equation system describes the output possibility distribution and has been
proposed to perform a sensitivity analysis [55]. In the case of n if-then possi-
bilistic rules, we give a canonical construction of the matrices of the equation
system (Section 3.1). This enables us to establish an additive formula for the
output possibility distribution (Section 3.2). The output possibility distri-
bution must be normalized for the consistency of the rules and to deal with
a cascade. Using the additive formula and the equation system, we give a
necessary and sufficient condition for the output possibility distribution to be
normalized (Section 3.2). We also determine minimal input solutions for the
normalization, when it is possible.
In Section 3.3, we calculate explicitly the measures of possibility and necessity
of any subset of the output attribute domain. All these works allow us to
deal with a cascade (Section 3.4) and we associate to the cascade construction
a min-max neural network that describes it. We end by giving a concrete
example, and some perspectives (Section 3.5).
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Before introducing our work, we give some notations. In this chapter, all the
matrices have their coefficients in [0, 1]. To any matrix A = [aij], we associate
the matrix A◦ = [1 − aij]. We have the following property: (A◦)◦ = A.
Let A and B be matrices of respective size (n, m) and (m, p). The transfor-
mation A 7→ A◦ switches the two matrix products in the following sense:

(A□min
maxB)◦ = A◦□max

min B◦ and (A□max
min B)◦ = A◦□min

maxB◦.

□min
max (resp. □max

min ) is the matricial product where we take min as addition and
max as product (resp. max as addition and min as product).
Finally, we introduce an operator denoted ⊡min that takes the mininum of the
coefficients of each row in a matrix.

3.1 Generalized equation system
In this section, we use a possibilistic rule-based system with a set of n if-
then possibilistic rules R1, R2, . . . , Rn. We introduce the generalized equation
system, which we note:

On = Mn□
min
maxIn.

For n = 2, our construction is equivalent to the construction previously re-
called, see (2.1). To understand the output vector On of the equation system,
we introduce an explicit partition of the output attribute domain Db. More-
over, this partition is directly linked to a matrix Bn (subsection 3.1.4) that we
construct inductively with respect to the number of rules.

3.1.1 Partition and settings
From the sets Q1, Q2, . . . , Qn used in the conclusions of the rules and their
complements, for each i = 1, 2, . . . , n, we define (E(i)

k )1≤k≤2i a partition of Db

by the following two conditions:

• E
(1)
1 = Q1 and E

(1)
2 = Q1 (3.1a)

and for i > 1:

• E
(i)
k =

{
E

(i−1)
k ∩ Qi if 1 ≤ k ≤ 2i−1

E
(i−1)
k−2i−1 ∩ Qi if 2i−1 < k ≤ 2i

. (3.1b)

For i = 1, 2, . . . , n, we define matrices Mi, Ii and Bi according to:

• the sequences s1, s2, . . . , si and r1, r2, . . . , ri for Mi,

• the sequences λ1, λ2, . . . , λi and ρ1, ρ2, . . . , ρi for Ii,

• the sequences α1, α2, . . . , αi and β1, β2, . . . , βi for Bi.

In the following, we construct the matrices Ii, Mi and Bi.
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3.1.2 Construction of Mi

For i = 1, we take M1 =
[
s1 1
1 r1

]
. For i > 1, we define Mi of size (2i, 2i) by

the following block matrix construction:

Mi =
[
Mi−1 Si

Mi−1 Ri

]
,

where Si =


si 1
si 1
... ...
si 1

 and Ri =


1 ri

1 ri
... ...
1 ri

 are of size (2i−1, 2).

We note N1, N2, . . . , N2i the rows of Mi.

3.1.3 Construction of Ii

For i = 1, we take I1 =
[
λ1
ρ1

]
. For i > 1, we define Ii of size (2i, 1):

Ii =

Ii−1
λi

ρi

 =


θ1
...

θ2i

 ,

where θ2j−1 = λj and θ2j = ρj for j = 1, 2, . . . , i.

3.1.4 Construction of Bi

For i = 1, we take B1 =
[
α1
β1

]
. For i > 1, we define Bi of size (2i, i) by the

following block matrix construction with Bi−1:

Bi =



Bi−1

αi

αi
...

αi

Bi−1

βi

βi
...

βi


.

We note that the rows L1, L2, . . . , L2i of Bi are related to the rows L′
1, L′

2, . . . , L′
2i−1

of Bi−1 by the following result:

Lk =
{

(L′
k, αi) if 1 ≤ k ≤ 2i−1

(L′
k−2i−1 , βi) if 2i−1 < k ≤ 2i . (3.2)
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3.1.5 Relations between Bi and Mi

We can recover the matrix Mi from the matrix Bi in an explicit way and vice
versa.
Remind that the size of Bi and the size of Mi are respectively equal to
(2i, i) and (2i, 2i). Let k be an integer in {1, 2, . . . , 2i}. Denote by Nk =[
t1 · · · tj · · · t2i−1 t2i

]
with tj ∈ {1, r∗, s∗} and Lk =

[
γ1 γ2 · · · γi

]
with γ ∈ {α, β}, the corresponding rows of Mi and Bi respectively.

For any j = 1, 2, . . . , i, we have:

(t2j−1, t2j) =
(sj, 1) if γj = αj

(1, rj) if γj = βj

and γj =
αj if (t2j−1, t2j) = (sj, 1)

βj if (t2j−1, t2j) = (1, rj)
.

In this reasoning, we ignore the particular expression that the parameters
αj, βj can have: αj = max(sj, λj) and βj = max(rj, ρj). All the above claims
can be easily proved by recurrence on i = 1, 2, . . . .

3.1.6 Relation between Bi and the partition

For k ∈ {1, 2, . . . , 2i}, let Lk =
[
γ1 γ2 · · · γi

]
be any row of the matrix Bi

with γ ∈ {α, β}. Then the corresponding set E
(i)
k of the partition is equal to:

E
(i)
k = T1 ∩ T2 · · · ∩ Ti with Tj =

Qj if γj = αj

Qj if γj = βj

. (3.3)

As it is clear for i = 1, this result is deduced from the description of the rows
of Bi by the rows of Bi−1, see (3.2).

3.1.7 Coefficients of ⊡minBi

For any i = 1, 2, . . . , n, we set:

⊡minBi = [o(i)
k ]1≤k≤2i .

For any k ∈ {1, 2, . . . , 2i}, we can deduce the following relations between the
coefficients of ⊡minBi and those of ⊡minBi−1:

o
(i)
k =

min(o(i−1)
k , αi) if 1 ≤ k ≤ 2i−1

min(o(i−1)
k−2i−1 , βi) if 2i−1 < k ≤ 2i

. (3.4)

This result is directly deduced from (3.2) and the associativity of the min
function. Finally, we obtain:
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Theorem 3.1 The min-max matrix product of Mi by the column-matrix Ii

is obtained by applying the operator ⊡min to the matrix Bi:

Mi□
min
maxIi = ⊡minBi. (3.5)

We prove (3.5) inductively:

Proof 3.1 For i = 1, M1□min
maxI1 =

[
α1
β1

]
= ⊡minB1.

Suppose that the relation (3.5) is true up to i − 1. We will show it for i.
So, for k = 1, 2, . . . , 2i−1 we have:

o
(i−1)
k = N ′

k□
min
maxIi−1.

where N ′
k is the k-th row of Mi−1.

For any k = 1, 2, . . . , 2i, let us prove that the coefficient o
(i)
k of ⊡minBi is

equal to Nk□min
maxIi, Nk being the k-th row of Mi:

• if 1 ≤ k ≤ 2i−1:

o
(i)
k = min(o(i−1)

k , αi)
= min(N ′

k□
min
maxIi−1, max(si, λi))

= min(N ′
k□

min
maxIi−1, max(si, λi), max(1, ρi))

= Nk□
min
maxIi.

• if 2i−1 < k ≤ 2i:

o
(i)
k = min(o(i−1)

k−2i−1 , βi)
= min(N ′

k−2i−1□min
maxIi−1, max(ri, ρi))

= min(N ′
k−2i−1□min

maxIi−1, max(1, λi), max(ri, ρi))
= Nk□

min
maxIi.

This proves coefficient by coefficient:

Oi = ⊡minBi,

which is exactly (3.5).

Let us illustrate the equation system by an example.

Example 3.1 We consider a possibilistic rule-based system composed of n = 3
rules. The sets of the partition (E(3)

k )1≤k≤8 are the following: Q1 ∩ Q2 ∩ Q3,
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Q1 ∩ Q2 ∩ Q3, Q1 ∩ Q2 ∩ Q3, Q1 ∩ Q2 ∩ Q3, Q1 ∩ Q2 ∩ Q3, Q1 ∩ Q2 ∩ Q3,
Q1 ∩ Q2 ∩ Q3 and Q1 ∩ Q2 ∩ Q3. We check (3.5) by direct calculation:

O3 = M3□
min
maxI3

=



s1 1 s2 1 s3 1
1 r1 s2 1 s3 1
s1 1 1 r2 s3 1
1 r1 1 r2 s3 1
s1 1 s2 1 1 r3
1 r1 s2 1 1 r3
s1 1 1 r2 1 r3
1 r1 1 r2 1 r3


□min

max



λ1
ρ1
λ2
ρ2
λ3
ρ3



=



min(α1, α2, α3)
min(β1, α2, α3)
min(α1, β2, α3)
min(β1, β2, α3)
min(α1, α2, β3)
min(β1, α2, β3)
min(α1, β2, β3)
min(β1, β2, β3)


= ⊡minB3.

3.2 Equation system properties
In this section, we study the properties of the equation system by first estab-
lishing an additive formula for π∗

b(x) from the partition (E(i)
k )1≤k≤2i . We give a

necessary and sufficient condition for the normalization of π∗
b(x). Then we show

that, by deleting the empty sets of the partition and the corresponding rows
of Oi, Mi and Bi, we get matrices Oi, Mi and Bi with a reasonable number
of rows. We also study the solutions for the normalization and how to rebuild
the equation system if we remove a rule.

3.2.1 Additive formula for π∗
b(x)

We use the coefficients of Oi = ⊡minBi, see (3.5), and introduce the character-
istic functions µ

E
(i)
1

, µ
E

(i)
2

, . . . , µ
E

(i)
2i

of the sets E
(i)
1 , E

(i)
2 , . . . , E

(i)
2i .
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Theorem 3.2 The output possibility distribution π∗
b(x),i associated to the

first i rules is:

π∗
b(x),i =

∑
1≤k≤2i

o
(i)
k µ

E
(i)
k

. (3.6)

We prove (3.6) inductively:

Proof 3.2 For i = 1, we have O1 =
[
α1
β1

]
, µ

E
(1)
1

= µQ1 and µ
E

(1)
2

= µQ1
.

The sum α1µQ1 + β1µQ1
is equal to π∗

b(x),1. Suppose that the relation (3.6)
is true up to i − 1 and show it for i. Let u ∈ Db, we must show, in the case
where we have i rules:

π∗
b(x),i(u) =

{
min(π∗

b(x),i−1(u), αi) if u ∈ Qi

min(π∗
b(x),i−1(u), βi) if u ∈ Qi

=
∑

1≤k≤2i

o
(i)
k µ

E
(i)
k

(u).

We remind that the sets (E(i)
k )1≤k≤2i form a partition of the set Db. There-

fore, there exists an unique index k0 such that u ∈ E
(i)
k0 . This means that we

can calculate µ
E

(i)
k

(u) for all 1 ≤ k ≤ 2i such that:

µ
E

(i)
k

(u) =
{

1 if k = k0
0 if k ̸= k0

.

So we can rewrite:

∑
1≤k≤2i

o
(i)
k µ

E
(i)
k

(u) = o
(i)
k0 =

 min(o(i−1)
k0 , αi) if u ∈ Qi

min(o(i−1)
k0−2i−1 , βi) if u ∈ Qi

.

To see that we have:

π∗
b(x),i(u) = o

(i)
k0 ,

we must distinguish two cases: if u ∈ Qi and if u ∈ Qi.
• If u ∈ Qi, we have 1 ≤ k0 ≤ 2i−1, E

(i)
k0 = E

(i−1)
k0 ∩ Qi and o

(i)
k0 =

min(o(i−1)
k0 , αi).

By the recurrence hypothesis, we have with i − 1 rules:

π∗
b(x),i−1(u) =

∑
1≤k≤2i−1

o
(i−1)
k µ

E
(i−1)
k

(u) = o
(i−1)
k0 .
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Finally, by associativity of the min function:

π∗
b(x),i(u) = min(π∗1

b(x)(u), π∗2
b(x)(u), . . . , π∗i

b(x)(u))
= min(min(π∗1

b(x)(u), π∗2
b(x)(u), . . . , π∗i−1

b(x) (u)), π∗i
b(x)(u))

= min(π∗
b(x),i−1(u), αi)

= min(o(i−1)
k0 , αi)

= o
(i)
k0 .

• If u ∈ Qi, we have 2i−1 < k0 ≤ 2i, E
(i)
k0 = E

(i−1)
k0−2i−1 ∩ Qi and o

(i)
k0 =

min(o(i−1)
k0−2i−1 , βi).

As u ∈ E
(i−1)
k0−2i−1, we have for all 1 ≤ k ≤ 2i−1:

µ
E

(i−1)
k

(u) =
{

1 if k = k0 − 2i−1

0 if k ̸= k0 − 2i−1 .

By the recurrence hypothesis, we have with i − 1 rules:

πb(x),i−1(u) =
∑

1≤k≤2i−1

o
(i−1)
k,j µ

E
(i−1)
k

(u) = o
(i−1)
k0−2i−1 .

Finally, by associativity of the min function:

π∗
b(x),i(u) = min(π∗1

b(x)(u), π∗2
b(x)(u), . . . , π∗i

b(x)(u))
= min(min(π∗1

b(x)(u), π∗2
b(x)(u), . . . , π∗i−1

b(x) (u)), π∗i
b(x)(u))

= min(π∗
b(x),i−1(u), βi)

= min(o(i−1)
k0−2i−1 , βi)

= o
(i)
k0 .

As a consequence, ∀u ∈ Db, there is a unique index k0 such that u ∈ E
(i)
k0 and

π∗
b(x),i(u) = o

(i)
k0 . From this, we deduce that π∗

b(x),i is normalized if and only if:

∃k ∈ {1, 2, . . . , 2i} such that E
(i)
k ̸= ∅ and o

(i)
k = 1. (3.7)

Moreover, from (3.6), we deduce that the possibility measure of each non-
empty set E

(i)
k of the partition is equal to o

(i)
k . It is then natural to introduce:

J =
{
k ∈ {1, 2, . . . , 2i}

∣∣∣ E
(i)
k ̸= ∅

}
and ω = card(J).

Considering card(Db) = d, we have ω ≤ min(d, 2i). We may arrange the
elements of J as a strictly increasing sequence: 1 ≤ k1 < k2 < · · · < kω ≤ 2i.
We have:

[Π(E(i)
k )]k∈J = [o(i)

k ]k∈J .
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Thus, in what follows, we note Oi, Mi and Bi, the matrices obtained from Oi,
Mi and Bi respectively, by deleting each row whose index is not in J .

Let us illustrate (3.6) with the following example:

Example 3.2 We continue with a possibilistic rule-based system composed
of n = 3 rules. The characteristic functions of the partition (E(3)

k )1≤k≤8 are
µQ1∩Q2∩Q3, µQ1∩Q2∩Q3

, µQ1∩Q2∩Q3
, µQ1∩Q2∩Q3

, µQ1∩Q2∩Q3
, µQ1∩Q2∩Q3

, µQ1∩Q2∩Q3
and µQ1∩Q2∩Q3

.
The output possibility distribution is:

π∗
b(x),3 = min(π∗1

b(x), π∗2
b(x), π∗3

b(x))
= min(α1, α2, α3)µQ1∩Q2∩Q3 + min(β1, α2, α3)µQ1∩Q2∩Q3

+ min(α1, β2, α3)µQ1∩Q2∩Q3
+ min(β1, β2, α3)µQ1∩Q2∩Q3

+ min(α1, α2, β3)µQ1∩Q2∩Q3
+ min(β1, α2, β3)µQ1∩Q2∩Q3

+ min(α1, β2, β3)µQ1∩Q2∩Q3
+ min(β1, β2, β3)µQ1∩Q2∩Q3

.

3.2.2 Solutions for π∗
b(x),i(u) = 1

In the following, we study how to get π∗
b(x),i(u) = 1 for a value u ∈ Db.

Combining (3.5) and (3.6), we have π∗
b(x),i(u) = N□min

maxIi, where N is a row of
Mi. Let us note:

N =
[
t1 t2 · · · t2i−1 t2i

]
where tj ∈ {1, r∗, s∗}.

Then we have π∗
b(x),i(u) = min1≤j≤2i max(tj, θj). So π∗

b(x),i(u) = 1 is equivalent
to ∀j ∈ E, θj = 1, where E = {j ∈ {1, 2, . . . , 2i} | tj < 1}. Thus, the
normalization of the possibility distribution of b can be established by the
resolution of an equation system with ω min-max equations, where the second
member of at least one equation has to be equal to 1. Therefore, it is interesting
to study if there are extremal solutions Ii to get π∗

b(x),i(u) = 1, as suggested
in [55].
In what follows, we will look for an input vector column X = [xj]1≤j≤2i,
with the normalization hypothesis of its components: ∀k ∈ {1, 2, . . . , i}:
max(x2k−1, x2k) = 1, that satisfies the following equation:

N□min
maxX = 1. (3.8)

We introduce the following order relation for solutions X = [xj]1≤j≤2i and
X ′ = [x′

j]1≤j≤2i:

X ≤ X ′, if only if ∀j ∈ {1, 2, . . . , 2i} : xj ≤ x′
j.

This allows us to look for a unique minimal solution that we note Smin or a
maximal one Smax, if they exist.
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Obviously, Smax = [θ∗
j ] where θ∗

j = 1 for each j = 1, 2, . . . , 2i. For this maximal
solution Smax, we notice that ∀k ∈ {1, 2, . . . , i}, (λk, ρk) = (1, 1): for each rule,
the premise is considered as unknown [50].
Let us look for a unique minimal solution:
• If we have:

∃k ∈ {1, 2, . . . , i} such that (t2k−1, t2k) = (1, 1), (3.9)

then equation (3.8) does not admit a minimal solution.
• If we suppose that:

∀k ∈ {1, 2, . . . , i} we have (t2k−1, t2k) ̸= (1, 1), (3.10)

then there is a unique minimal solution Smin = [θ∗
j ]1≤j≤2i where:

(θ∗
2k−1, θ∗

2k) =
(1, 0) if t2k = 1

(0, 1) if t2k−1 = 1
.

So, with the hypothesis (3.10), we give a sufficient condition for the normal-
ization of π∗

b(x),i.

3.2.3 Rebuild the equation system with a deleted rule
Let us delete a rule Rz from R1, R2, . . . , Ri and study the corresponding equa-
tion system. We denote by Bz

i the matrix associated to this system of i−1 rules
by the construction of subsection 3.1.4. We assert that the matrix Bz

i , which
is of size (2i−1, i − 1), can be obtained from the matrix Bi by the following
practical rule:

1. We delete the z-th column of Bi. Then, we obtain a matrix of size
(2i, i − 1), where each row is repeated once and only once.

2. In the resulting matrix, we delete the rows Lk′ within all the pairs of
rows (Lk, Lk′) where Lk = Lk′ and k < k′.

After these two operations, we get Bz
i .

To establish the pratical rule, let us take:

• the matrix Bi associated to the i rules R1, R2, . . . , Ri and z ∈ {1, 2, . . . , i}.
Bi is of the size (2i, i),

• the matrix Bz
i associated to the i − 1 rules R1, R2, . . . , where we deleted

the rule Rz. Bz
i is of size (2i−1, i − 1) and

• the matrix B′
i of size (2i, i−1), obtained from Bi by deleting the column

of index z.

We will first show the following lemma:
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Lemma 1 Each row of the matrix B′
i is repeated once and only once.

Let us keep in B′
i a single copy of each row respecting the order of appearance

of the rows (of course, we will keep the first row because it is at the top). We
thus form a new matrix of size (2i−1, i − 1) denoted B∗

i−1. By recurrence on i,
we will prove:

Theorem 3.3 The matrix Bz
i is equal to B∗

i−1:

Bz
i = B∗

i−1.

Such a result gives us a practical rule for obtaining the matrix Bz
i and thus

the matrix M z
i of the corresponding equation system.

Let us first prove Lemma 1 by recurrence on i = 2, 3, . . . :

Proof 3.3 Let us check the hypothesis for i = 2. If we take z = 1, we have:

B2 =


α1 α2
β1 α2
α1 β2
β1 β2

 ↷


α2
α2
β2
β2

 .

The rows L1 and L3 are identical to L2 and L4 respectively.
If we take z = 2, we have:

B2 =


α1 α2
β1 α2
α1 β2
β1 β2

 ↷


α1
β1
α1
β1

 .

The rows L1 and L2 are repeated in L3 and L4 respectively.
Let us suppose that the recurrence assumption is true up to i − 1: in the
matrix Bi−1 (which has 2i−1 rows), if we delete a column of index 1 ≤ z ≤
i − 1, in the remaining matrix (which has 2i−1 rows), each row is repeated
once and only once.
Let us show that it is the same for the matrix Bi. Let us delete a column of
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index 1 ≤ z ≤ i in the matrix Bi. We have:

Bi =



Bi−1

αi

αi
...

αi

Bi−1

βi

βi
...
βi


.

Let us distinguish two cases:

1. if z = i,

2. if 1 ≤ z ≤ i − 1.

1) If z = i, by deleting the last column in Bi, the remaining matrix is:[
Bi−1
Bi−1

]
.

We remind that in the matrix Bi−1 there is no row repetition. In the re-

maining matrix
[

Bi−1
Bi−1

]
, each row is repeated one and only one time:

L1 = L2i−1+1 , L2 = L2i−1+2, . . . , L2i−1 = L2i

Therefore, we have proved the property for Bi when we delete the column of
index z = i.
2) If 1 ≤ z ≤ i − 1, we will consider two remaining matrices:

• B′
i =



Bi−1

αi

αi
...

αi

Bi−1

βi

βi
...
βi


: the matrix Bi where the column with index z

has been removed.
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• B′
i−1 =


: the matrix Bi−1 where the column with index z has

been removed.

With these notations, we get:

B′
i =



B′
i−1

αi

αi
...

αi

B′
i−1

βi

βi
...
βi


.

Let us show that each row of B′
i is repeated once and only once.

We denote by L1, L2, . . . , L2i and N1, N2, . . . , N2i−1 the rows of B′
i and B′

i−1
respectively. Let k, k′ be two distinct indices in {1, 2, . . . , 2i}:

1. If in B′
i the row Lk coincides with the row Lk′, because of the last

column of the matrix B′
i, we necessarily have:

k and k′ in {1, 2, . . . , 2i−1} or k and k′ in {2i−1+1, 2i−1+2, . . . , 2i}.

2. If in B′
i, we have Lk = Lk′ and k, k′ are in {1, 2, . . . , 2i−1} then:

Lk = (Nk, αi) and Lk′ = (Nk′ , αi) with Nk = Nk′ .

The rows Nk, Nk′ of B′
i−1 coincide.

3. If in B′
i, we have Lk = Lk′ and k and k′ in {2i−1 + 1, 2i−1 + 2, . . . , 2i}

then:

Lk = (Nk−2i−1 , βi) and Lk′ = (Nk′−2i−1 , βi) with Nk−2i−1 = Nk′−2i−1 .

The rows Nk−2i−1 , Nk′−2i−1 of B′
i−1 coincide.

But the recurrence hypothesis states that in the remaining matrix B′
i−1 ob-

tained by deleting the column of index z in the matrix Bi−1, each row repeats
once and only once. We deduce by the previous considerations that in the re-
maining matrix B′

i obtained by deleting the column of index z in the matrix
Bi, each row is repeated once and only once.

Let us now proceed to the proof of Theorem 3.3 by recurrence on i = 2, 3, . . . :
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Proof 3.4 Let us check the hypothesis for i = 2:

• If we take z = 1, we have:

B2 =


α1 α2
β1 α2
α1 β2
β1 β2

 ↷ B′
2 =


α2
α2
β2
β2

 ↷ B1 =
[
α2
β2

]
, which is associated to R2

• Otherwise, if we take z = 2, we have:

B2 =


α1 α2
β1 α2
α1 β2
β1 β2

 ↷ B′
2 =


α1
β1
α1
β1

 ↷ B2 =
[
α1
β1

]
, which is associated to R1

Suppose that the recurrence hypothesis is true up to i − 1. We have:

Bi =



Bi−1

αi

αi
...

αi

Bi−1

βi

βi
...
βi


We distinguish two cases:

1. if z = i, by deleting the last rule Ri, by definition of the construction of
the matrices B∗ (subsection 3.1.4), the matrix associated to the rules
R1, R2, Ri−1 is Bi−1, so Bi

i = Bi−1. But, by deleting the column z = i
in the matrix Bi the remaining matrix B′

i is:

B′
i =

[
Bi−1
Bi−1

]
,

where each row is repeated once and only once (in Bi−1, there is no
repetition).
If in B′

i, we keep only one copy of each row (respecting the order of
appearance of the rows), the obtained matrix is exactly Bi−1 = Bi

i : we
have proved the property for Bi and z = i.
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2. If 1 ≤ z ≤ i − 1, we will consider the following two ordered sets of
rules:

• The ordered set of i − 1 rules R1, R2, . . . , Ri without the rule Rz,
whose associated matrix by the construction in subsection 3.1.4
is denoted Bz

i .
• The ordered set of i − 2 rules R1, R2, . . . , Ri−1 without the rule

Rz, whose associated matrix is Bz
i−1.

In the remaining matrix B′
i−1 =


 obtained from Bi−1 by deleting

the column of index z, let us keep only one copy of each row (respecting
the order of appearance of the rows). By the recurrence assumption,
the obtained matrix is the matrix Bz

i−1 associated with the set of i − 2
rules R1, R2, . . . , Ri−1 (without the rule Rz).
But, the set of i − 1 rules R1, R2, . . . , Ri (without the rule Rz) is ob-
tained from the set of i − 2 rules R1, R2, . . . , Ri−1 (without the rule
Rz) by adding the rule Ri. By the construction in subsection 3.1.4,
the matrix Bz

i is:

Bz
i =



Bz
i−1

αi

αi
...

αi

Bz
i−1

βi

βi
...
βi


.

Furthermore, in the remaining matrix:

B′
i =



Bi−1

αi

αi
...

αi

Bi−1

βi

βi
...
βi


,
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which is obtained from Bi by deleting the column of index z, each row
is repeated once and only once and, because of the last column, a row
and its copy are both either in the top block of size (2i−1, i − 1), or in
the block below. It follows that if we keep in B′

i a single copy of each
row (respecting the order of appearance of the rows), the remaining
matrix is:

B∗
i−1 =



Bz
i−1

αi

αi
...

αi

Bz
i−1

βi

βi
...
βi


= Bz

i .

Then, one can deduce the partition (Ez
k)1≤k≤2i−1 of Db from Bz

i by using the
relation (3.3). Its sets can also be determined directly from the partition
(E(i)

k )1≤k≤2i . In fact, for any k ∈ {1, 2, . . . , 2i−1}, we can find two indices
k′, k′′ ∈ {1, 2, . . . , 2i} such that:

Ez
k = E

(i)
k′ ∪ E

(i)
k′′ (3.11)

where, with respect to the notations of (3.3), E
(i)
k′ and E

(i)
k′′ differ only on the

component Tz, e.g. Tz = Qz for E
(i)
k′ , and Tz = Qz for E

(i)
k′′ . If Ez

k ̸= ∅,
the decomposition (3.11) is unique, where E

(i)
k′ and E

(i)
k′′ still satisfy the above

assumption. These two sets can be easily determined algorithmically.
Finally, we deduce from (3.11), that ωz ≤ ω, where ωz = card(Jz) and Jz ={
k ∈ {1, 2, . . . , 2i−1}

∣∣∣ Ez
k ̸= ∅

}
.

The partition (Ez
k)k∈Jz and the matrix Bz

i are particularly interesting for per-
forming a sensitivity analysis.

In the following, we illustrate the construction of Bz
i .
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Example 3.3 Let us take i = 3 and z = 2 and obtain Bz
3 :

α1 α2 α3

β1 α2 α3

α1 β2 α3

β1 β2 α3

α1 α2 β3

β1 α2 β3

α1 β2 β3

β1 β2 β3





↷

α1 α3

β1 α3

α1 α3

β1 α3

α1 β3

β1 β3

α1 β3

β1 β3





↷

α1 α3

β1 α3

α1 β3

β1 β3




= Bz

3 .

3.3 Possibility and necessity measures of any
subset of the output attribute domain

In this section, we study the case of a rule-based system of n if-then possibilistic
rules with its associated equation system, and denote by π∗

b(x) the output
possibility distribution of b.
Remind that the possibility measure Π∗ and the necessity measure N∗ associ-
ated to π∗

b(x) are defined by [43]:

Π∗ : P(Db) → [0, 1] : Q 7→ Π∗(Q) = max
u∈Q

π∗
b(x)(u),

N∗ : P(Db) → [0, 1] : Q 7→ N∗(Q) = 1 − Π∗(Q).

For a proposition p: “b(x) ∈ Q”, the possibility degree π(p) and its degree of
necessity n(p) are given by [43]:

π(p) = Π∗(Q) and n(p) = 1 − π(¬p) = N∗(Q).

In what follows, we deduce explicit formulas for Π∗(Q) and N∗(Q) from (3.6),
where we use a function ε, which checks if a set is not empty:

ε(T ) =
1 si T ̸= ∅

0 if T = ∅
.

3.3.1 Possibility measure

For any subset Q ⊆ Db, we have Q = ⋃
1≤i≤ω E

(n)
ki

∩ Q, and we know that
∀u ∈ E

(n)
ki

we have π∗
b(x)(u) = o

(n)
ki

(subsection 3.2.1). So we get the possibility

61



measure of Q by:

Π∗(Q) = max
u∈Q

π∗
b(x)(u) = max

1≤i≤ω s.t E
(n)
ki

∩Q ̸=∅
o

(n)
ki

.

Therefore we can restate this result as:

Π∗(Q) = max
1≤i≤ω

ε(E(n)
ki

∩ Q) · o
(n)
ki

= max
1≤i≤ω

min(ε(E(n)
ki

∩ Q), o
(n)
ki

). (3.12)

Let ∇Q be the matrix of size (1, ω) defined by:

∇Q =
[
ε(E(n)

k1 ∩ Q) ε(E(n)
k2 ∩ Q) · · · ε(E(n)

kω
∩ Q)

]
.

Then, equality (3.12) is exactly:

Π∗(Q) = ∇Q□
max
min On. (3.13)

3.3.2 Necessity measure
Using (3.13), we have for Q:

Π∗(Q) = ∇Q□
max
min On.

The necessity measure is then:

N∗(Q) = 1 − Π∗(Q) = (Π∗(Q))◦.

By the correspondences between □min
max and □max

min we obtain:

N∗(Q) = (∇Q□
max
min On)◦ = ∇Q

◦□min
maxOn

◦. (3.14)

3.4 Cascade
In this section, we use two sets of if-then possibilistic rules: the n rules
R1, R2, . . . , Rn and the m rules R′1, R′2, . . . , R′m. We form On = Mn□min

maxIn

for the first set of rules and O′
m = M′

m□
min
maxI ′

m for the second one, where
we consider that their associated partition of non-empty sets (E(n)

k )k∈J and
(E

′(m)
k )k∈J ′ have respective size ω and ω′. In what follows, we establish an

input-output relation between the two equation systems and associate to such
cascade construction a min-max neural network.
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3.4.1 I ′
m and O′

m results
Each premise p′

j of a rule R′
j is a proposition of the form “b(x) ∈ Q′

j”. There-
fore, we get λ′

j and ρ′
j by the calculation of the possibility measures of Q′

j and
Q′

j:

λ′
j = Π∗(Q′

j) and ρ′
j = Π∗(Q′

j).

By the equality (3.13), we define the input vector I ′
m of size (2m, 1), as a max-

min product between a matrix ∇ = [κt,k]1≤t≤2m,1≤k≤ω, and On of size (ω, 1):

I ′
m = ∇□max

min On. (3.15)

The coefficients of ∇ are 1 or 0, and are obtained as follows:

κt,k =
ε(E(n)

k ∩ Q′
j) if t = 2j − 1 and 1 ≤ j ≤ m

ε(E(n)
k ∩ Q′

j) if t = 2j and 1 ≤ j ≤ m
.

We note S1, S2, . . . , S2m the rows of ∇. Each row of ∇ is in fact ∇Q′ associated
to some set Q′ ⊆ Db as in (3.13):

∇ =



∇Q′
1

∇Q′
1...

∇Q′
m

∇Q′
m

 .

Thus, it establishes an input-output relation between the two equation sys-
tems. This yields the output vector O′

m of the second system from the first
system, ∇ and M′

m:

O′
m = M′

m□
min
maxI ′

m

= M′
m□

min
max(∇□max

min On)
= M′

m□
min
max(∇□max

min (Mn□
min
maxIn)).

3.4.2 Representation by a min-max neural network
In [50], the authors suggested that the system that can be built from a cascade
would have a structural resemblance with a min-max neural network. We show
that there is such a neural network, which gives an explicit representation of
the cascade construction.
With the help of the matrices In

◦, Mn
◦ and M′

m
◦, we can express the equations

involved in the cascade using only the operator (A□max
min B)◦:

On = (Mn
◦□max

min In
◦)◦,
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I ′
m

◦ = (∇□max
min On)◦

and

O′
m = (M′

m
◦□max

min I ′
m

◦)◦.

We define the four-layer min-max neural network as follows:

• the layer 1 has 2n input neurons: i1, i2, . . . , i2n with zi1 , zi2 , . . . , zi2n being
their respective output values,

• the layer 2 has ω hidden neurons: h1, h2, . . . , hω where Ih1 , Ih2 , . . . , Ihω

are their respective input values and zh1 , zh2 , . . . , zhω their respective
output values,

• the layer 3 has 2m hidden neurons: h′
1, h′

2, . . . , h′
2m where Ih′

1
, Ih′

2
, . . . , Ih′

2m

are their respective input values and zh′
1
, zh′

2
, . . . , zh′

2m
their respective

output values,

• the layer 4 has ω′ output neurons: o′
1, o′

2, . . . , o′
ω′ where Io′

1
, Io′

2
, . . . , Io′

ω′

are their respective input values and zo′
1
, zo′

2
, . . . , zo′

ω′
their respective

output values.

In this neural network, for each neuron, we obtain its input value with the
operator (A□max

min B)◦. Its output value is given by the activation function
which is f(x) = x.

x1

x2

· · ·

x2n

i1

i2

· · ·

i2n

h1

h2

· · ·

hω

v
(1)
1,1

v
(1)
2,1

v
(1)
2n,1

h′
1

h′
2

· · ·

h′
2m

v
(2)
1,1

v
(2)
2,1

v
(2)
ω,1

o′
1

o′
2

· · ·

o′
ω′

v
(3)
1,1

v
(3)
2,1

v
(3)
2m,1

Figure 3.1: Min-max neural network architecture

We explicit its architecture (Figure 3.1) and define the following edges by:

• xj = 1 − θj, a coefficient of In
◦ with 1 ≤ j ≤ 2n,

• v
(1)
i,j = 1 − tj,i, a coefficient of Mn

◦ with 1 ≤ j ≤ ω and 1 ≤ i ≤ 2n,

• v
(2)
i,j = κj,i, a coefficient of ∇ with 1 ≤ j ≤ 2m and 1 ≤ i ≤ ω,
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• v
(3)
i,j = 1 − t′

j,i, a coefficient of M′
m

◦ with 1 ≤ j ≤ ω′ and 1 ≤ i ≤ 2m.

The output value of an input neuron ik is zik
= f(xk) = 1 − θk. For each

hidden neuron hk, its output value zhk
= f(Ihk

) = Ihk
is a coefficient of On,

as Ihk
is obtained using a row Nk of Mn:

Ihk
= 1 − max

1≤j≤2n
min(v(1)

j,k , zij
) = Nk□

min
maxIn.

Each output value of a hidden neuron h′
k is a coefficient of I ′

m
◦. We use the

row Sk of ∇ to obtain Ih′
k
:

Ih′
k

= 1 − max
1≤j≤ω

min(v(2)
j,k , zhj

) = (Sk□
max
min On)◦.

We have zh′
k

= f(Ih′
k
) = Ih′

k
. Finally, Io′

k
corresponding to the output neuron

o′
k is obtained using the row N ′

k of M′
m:

Io′
k

= 1 − max
1≤j≤2m

min(v(3)
j,k , zh′

j
) = N ′

k□
min
maxI ′

m.

We get the output value of o′
k with zo′

k
= f(Io′

k
) = Io′

k
. So zo′

1
, zo′

2
, . . . , zo′

ω′
are

the coefficients of O′
m.

As characteristics, we notice that each edge v
(2)
i,j has a value equal to 0 or 1

with respect to the relation (3.15), while the values of the others are in [0, 1].
Furthermore, it has some resemblance with an hybrid fuzzy neural network
[28], where the t-norm min and its associated t-conorm max are used to get
the input value of a neuron. By using more layers, we can extend this min-max
neural network to take into account the λ, ρ calculations when the premises
are compounded.

3.4.3 Example
To illustrate the cascade, we use the example of [50], previously introduced
in the french version of [55]. It is a possibilistic rule-based system which
suggests to people professions with associated salaries, based on their tastes
and interests using two sets of if-then possibilistic rules.
Firstly, the inference of three possibilistic rules determine which professions
can be suggested to a person, according to her characteristics:

• R1: if a person likes meeting people, then recommended professions are
professor or business man or lawyer or doctor,

• R2: if a person is fond of creation/invention, then recommended profes-
sions are engineer or architect,

• R3: if a person looks for job security and is fond of intellectual specula-
tion, then recommended professions are professor or researcher.

65



The parameters of the rules are s1 = 1, r1 = 0.3, s2 = 0.2, r2 = 0.4, s3 = 1,
r3 = 0.3. These rules are constructed from four input attributes “likes meet-
ing people”, “fond of creation/invention”, “looks for job security”, “fond of
intellectual speculation” and one output attribute “profession”. The attribute
domains are: Dlikes meeting people = Dfond of creation/invention = Dlooks for job security =
Dfond of intellectual speculation = {yes, no} and Dprofession = {professor, business man,
lawyer, doctor, engineer, architect, researcher, others}.
For this set of rules, an equation system is formed, where On has five coef-
ficients. In fact, the eight possible professions are in five non-empty disjoint
sets which form a partition: E

(3)
k1 = {researcher}, E

(3)
k2 = {professor}, E

(3)
k3 =

{engineer, architect}, E
(3)
k4 = {business man, lawyer, doctor} and E

(3)
k5 = {others}.

With the possibility distributions of the input attributes of [55], we get λ1 =
1, ρ1 = 0.5, λ2 = 0.2, ρ2 = 1, λ3 = 1, ρ3 = 0.6. We form the equation system
On = Mn□min

maxIn and perform the matricial products:


Π(E(3)
k1 )

Π(E(3)
k2 )

Π(E(3)
k3 )

Π(E(3)
k4 )

Π(E(3)
k5 )

 =


1 r1 s2 1 s3 1
s1 1 1 r2 s3 1
1 r1 s2 1 1 r3
s1 1 1 r2 1 r3
1 r1 1 r2 1 r3

□min
max



λ1
ρ1
λ2
ρ2
λ3
ρ3


=


0.2
1

0.2
0.6
0.5

 .

We form On = ⊡minBn:

Π(E(3)
k1 )

Π(E(3)
k2 )

Π(E(3)
k3 )

Π(E(3)
k4 )

Π(E(3)
k5 )

 = ⊡min


β1 α2 α3
α1 β2 α3
β1 α2 β3
α1 β2 β3
β1 β2 β3

 =


0.2
1

0.2
0.6
0.5

 .

Then, based on this result, the system determines the salary she can expect
according to her profession, using three rules:

• R′1: if a person is a professor or a researcher, then her salary is low,

• R′2: if a person is an engineer, a lawyer or an architect then her salary
is average or high,

• R′3: if a person is a business man or a doctor, then her salary is high.

For the attribute salary, its domain is Dsalary = {low, average, low} and the
sets E

′(3)
k1 = {high}, E

′(3)
k2 = {average} and E

′(3)
k3 = {low} form the partition

of its domain. So O′
m, M′

m and B′
m have three rows. Using the partition of

the first system and the sets within the propositions p′
1, p′

2 and p′
3 of the three
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rules R′
1, R′

2 and R′
3 respectively, we get ∇:

∇ =



∇Q′
1

∇Q′
1

∇Q′
2

∇Q′
2

∇Q′
3

∇Q′
3



=



ε(E(3)
k1 ∩ Q1) ε(E(3)

k2 ∩ Q1) ε(E(3)
k3 ∩ Q1) ε(E(3)

k4 ∩ Q1) ε(E(3)
k5 ∩ Q1)

ε(E(3)
k1 ∩ Q1) ε(E(3)

k2 ∩ Q1) ε(E(3)
k3 ∩ Q1) ε(E(3)

k4 ∩ Q1) ε(E(3)
k5 ∩ Q1)

ε(E(3)
k1 ∩ Q2) ε(E(3)

k2 ∩ Q2) ε(E(3)
k3 ∩ Q2) ε(E(3)

k4 ∩ Q2) ε(E(3)
k5 ∩ Q2)

ε(E(3)
k1 ∩ Q2) ε(E(3)

k2 ∩ Q2) ε(E(3)
k3 ∩ Q2) ε(E(3)

k4 ∩ Q2) ε(E(3)
k5 ∩ Q2)

ε(E(3)
k1 ∩ Q3) ε(E(3)

k2 ∩ Q3) ε(E(3)
k3 ∩ Q3) ε(E(3)

k4 ∩ Q3) ε(E(3)
k5 ∩ Q3)

ε(E(3)
k1 ∩ Q3) ε(E(3)

k2 ∩ Q3) ε(E(3)
k3 ∩ Q3) ε(E(3)

k4 ∩ Q3) ε(E(3)
k5 ∩ Q3)



=



1 1 0 0 0
0 0 1 1 1
0 0 1 1 0
1 1 0 1 1
0 0 0 1 0
1 1 1 1 1


.

Then, we form I ′
m = ∇□max

min On:

I ′
m =



λ′
1

ρ′
1

λ′
2

ρ′
2

λ′
3

ρ′
3


=



∇Q′
1

∇Q′
1

∇Q′
2

∇Q′
2

∇Q′
3

∇Q′
3


□max

min



Π(E(3)
k1 )

Π(E(3)
k2 )

Π(E(3)
k3 )

Π(E(3)
k4 )

Π(E(3)
k5 )

 =



1
0.6
0.6
1

0.6
1


.

We arbitrarily set s′
1 = 1, r′

1 = 0.7, s′
2 = 0.8, r′

2 = 0.2, s′
3 = 0.6 and r′

3 = 0.4.
Thus, we now form O′

m = M′
m□

min
maxI ′

m and perform the matricial products:


Π(E

′(3)
k1 )

Π(E
′(3)
k2 )

Π(E
′(3)
k3 )

 =

 1 r′
1 s′

2 1 s′
3 1

1 r′
1 s′

2 1 1 r′
3

s′
1 1 1 r′

2 1 r′
3

□min
max



λ′
1

ρ′
1

λ′
2

ρ′
2

λ′
3

ρ′
3


=

0.6
0.7
1

 .

We form O′
m = ⊡minB′

m:
Π(E

′(3)
k1 )

Π(E
′(3)
k2 )

Π(E
′(3)
k3 )

 = ⊡min

β′
1 α′

2 α′
3

β′
1 α′

2 β′
3

α′
1 β′

2 β′
3

 =

0.6
0.7
1

 .
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Such cascade is represented by a min-max neural network (Figure 3.2).
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...
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o′
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o′
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v
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1,1

v
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2,1

...

v
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Figure 3.2: Min-max neural network architecture for the example.

The edges are computed with the help of the following matrices:

In
◦ =



0
0.5
0.8
0
0

0.4


,

Mn
◦ =


0 0.7 0.8 0 0 0
0 0 0 0.6 0 0
0 0.7 0.8 0 0 0.7
0 0 0 0.6 0 0.7
0 0.7 0 0.6 0 0.7

 and

M′
m

◦ =

0 0.3 0.2 0 0.4 0
0 0.3 0.2 0 0 0.6
0 0 0 0.8 0 0.6

 .

The output value of the input neurons i1, i2, . . . , i6 are zi1 = f(x1) = 0, zi2 =
0.5, zi3 = 0.8, zi4 = 0, zi5 = 0 and zi6 = 0.4. The output value of the hidden
neurons h1, h2, h3, h4 and h5 are zh1 = f(Ih1) = Ih1 , zh2 = Ih2 , zh3 = Ih3 , zh4 =
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Ih4 and zh5 = Ih5 . We compute Ih1 , Ih2 . . . , Ih5 as follows:

Ih1 = 1 − max
1≤j≤6

min(v(1)
j,1 , zij

) = 1 − max(0.5, 0.8) = 0.2.

Ih2 = 1.

Ih3 = 0.2.

Ih4 = 0.6.

Ih5 = 0.5.

So, zh1 , zh2 , zh3 , zh4 and zh5 are the coefficients of On. We compute Ih′
1
, Ih′

2
. . . , Ih′

6
for the hidden neurons h′

1, h′
2, . . . , h′

6:

Ih′
1

= 1 − max
1≤j≤5

min(v(2)
j,1 , zhj

) = 1 − max(0.2, 1) = 0.

Ih′
2

= 0.4.

Ih′
3

= 0.4.

Ih′
4

= 0.

Ih′
5

= 0.4.

Ih′
6

= 0.

The output value zh′
1

= f(Ih′
1
) = Ih′

1
= 0, zh′

2
= 0.4, zh′

3
= 0.4, zh′

4
= 0, zh′

5
=

0.4 and zh′
6

= 0 of the the hidden neurons h′
1, h′

2, . . . , h′
6 are the coefficients

of I ′
m

◦. Finally, we compute Io′
1
,Io′

2
and Io′

3
, which correspond to the output

neurons o′
1, o′

2 and o′
3 respectively:

Io′
1

= 1 − max
1≤j≤6

min(v(3)
j,1 , zh′

j
) = 1 − max(0.3, 0.2, 0, 4) = 0.6.

Io′
2

= 0.7.

Io′
3

= 1.

So, zo′
1

= f(Io′
1
) = Io′

1
= 0.6, zo′

2
= 0.7 and zo′

3
= 1 are the coefficients of O′

m.

3.5 Conclusion
In this chapter, we gave a canonical construction for the matrices governing the
min-max equation system of Farreny and Prade [55]. This equation system
was proposed for developing the explanatory capacities of possibilistic rule-
based system. From our generalized equation system, we obtained an explicit
formula for the output possibility distribution and computed the correspond-
ing possibility and necessity measures. We gave a necessary and sufficient
condition for the output possibility distribution to be normalized and deter-
mined, when it is possible, minimal input solutions for the normalization. We
defined an algorithm to rebuild the equation system when we remove a rule.

69



It outputs the equation system associated to the remaining subset of rules.
Therefore, this algorithm enables us to obtain all the equation subsystems of
an initial equation system.
We extended our equation system for the case of a cascade. We have defined
an input-output relation between the equation systems associated to each set
of rules: it links the output vector of the first system to the input vector of the
second system. Therefore, the output vector of the second system is described
by nested min-max products of the matrices of the two equation systems. Fi-
nally, we have shown that our cascade construction can be represented by an
explicit min-max neural network.
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PART C

Justification of the inference
results of fuzzy and possibilistic

rule-based systems

In this part, we present methods for extracting the content of explanations,
which constitute the first step of our processing chain for the production of
natural language explanations (Figure 1). We justify the inference results of
two rule-based systems: a possibilistic rule-based system (Chapter 4) and a
fuzzy rule-based system composed of possibility rules (Mamdani fuzzy infer-
ence system) (Chapter 5). For the case of a possibilistic rule-based system,
we rely on an early work by Farreny and Prade on the explainability of such
system [55], that we reminded in Chapter 2.
For both types of rule-based systems, we start by selecting the rule premises
that justify an inference result. Then, we introduce premise reduction func-
tions and apply them to the selected premises. This allows us to form two
explanations: the justification and the unexpectedness of an inference result.
The justification is a set of logical expressions sufficient to justify the con-
sidered inference result. The unexpectedness is a set of logical expressions,
which are not involved in the determination of the considered inference result,
although they may appear to be a potential incompatibility between them and
the considered inference result.
In Part D, a representation of these explanations in terms of conceptual graphs
will be defined.
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Chapter 4

Justification of possibilistic
rule-based system inference
results

The work in this chapter has led to the publication of a conference paper: Baaj,
I., Poli, J. P., Ouerdane, W. & Maudet, N. (2021, September). Representa-
tion of Explanations of Possibilistic Inference Decisions. In 2021 European
Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU).

In this chapter, we tackle the explainability of the inference results of a
possibilistic rule-based system. We rely on the Farreny and Prade’s approach
[55], which was reminded in Chapter 2. Using their min-max equation system,
the authors study two explanatory purposes for an output attribute value
u ∈ Db, which can be formulated as two questions:

(i) How to get π∗
b(x)(u) strictly greater or lower than a given τ ∈ [0, 1]?

(ii) What are the degrees of the premises justifying π∗
b(x)(u) = τ?

For these two questions, the parameters of the rules si and ri are set. The
authors of [55] give a sufficient condition to obtain π∗

b(x)(u) > τ for a particular
pair (u,τ) of their example. For the second question, they claim that one can
directly read the possibility degrees of the premises involved in the compu-
tation of the possibility degree of an output attribute value. Their claim is
sustained by a particular output attribute value u of their example.
In what follows, after introducing some notations and an example that will
be used to illustrate all our constructions (Section 4.1), we address these two
questions in the general case. For the first question, we give necessary and
sufficient conditions to obtain π∗

b(x)(u) > τ and π∗
b(x)(u) < τ according to the

degrees of premises (Section 4.2). For the second question, we give a necessary
and sufficient condition that allows us to justify π∗

b(x)(u) = τ by degrees of

73



premises (Section 4.3). This allows to extract the subset of premises whose
degrees are involved in the computation of π∗

b(x)(u) (Section 4.4).
We then define four premise reduction functions (Section 4.5) and apply them
to the obtained subset of premises related to π∗

b(x)(u). This leads us to form
two kinds of explanations of π∗

b(x)(u) (Section 4.6):

• The justification of π∗
b(x)(u), which is formed by reducing the selected

premises to the structure responsible for their possibility or necessity
degree. It uses two premise reduction functions.

• The unexpectedness of π∗
b(x)(u), which is a set of possible or certain pos-

sibilistic expressions related to the considered inference result in the
following sense: although there may appear to be a potential incompat-
ibility between each of the possibilistic expressions and the considered
inference result, they are not involved in the determination of the in-
ference result. They are extracted by applying the two other premise
reduction functions.

Finally, we illustrate our constructions by another example (Section 4.7) and
conclude with some perspectives (Section 4.8).

4.1 Notations
In this section, we introduce some notations that will be useful for studying the
explainability of possibilistic rule-based systems. For a set output attribute
value u ∈ Db, the computation of its possibility degree is given by:

π∗
b(x)(u) = min(γ1, γ2, . . . , γn), (4.1)

where γi = π∗i
b(x)(u) = max(ti, θi) with (ti, θi) =

(si, λi) if γi = αi

(ri, ρi) if γi = βi

. (4.2)

The relation (4.1) is a more convenient formulation of (1.2). According to (4.2),
for each i = 1, 2, . . . , n, we remark that ti denotes a parameter (si or ri) of the
rule Ri and θi denotes either the possibility degree λi of the premise pi of the
rule Ri or the possibility degree ρi of its negation.
For a premise of a possibilistic rule, the information given by its possibility
and necessity degrees can be represented by the following triplet:

Notation 1 For a premise p, the triplet (p, sem, d) denotes either (p, P, π(p))
or (p, C, n(p)), where sem ∈ {P, C} (P for possible, C for certain) is the se-
mantics attached to the degree d ∈ {π(p), n(p)}.
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We introduce the following triplets according to the γ1, γ2, . . . , γn appearing
in the relation (4.1). For i = 1, 2, . . . , n, we set:

(pi, semi, di) =
{

(pi, P, λi) if γi = αi

(pi, C, 1 − ρi) if γi = βi
. (4.3)

Our notations are illustrated by the following example of a possibilistic rule-
based system:

Example 4.1 Possibilistic rule-based systems have been used in medecine, for
instance DIABETO [29] enables an improvement in the dietetics of diabetic
patients [99]. We propose a possibilistic rule-based system for controlling the
blood sugar level of a patient with type 1 diabetes (Table 4.1), according to
some factors [27]:

activity (act) current-bloodsugar (cbs) future-bloodsugar (fbs)
R1 dinner, drink-coffee, lunch medium, high high
R2 long-sleep, sport, walking low, medium low
R3 alcohol-consumption, breakfast low, medium low, medium

Table 4.1: Rule base for the control of the blood sugar level.

The premises p1, p2 and p3 of the possibilistic rules R1, R2 and R3 are built
using two input attributes: activity (act) and current-bloodsugar (cbs). The
conclusions of the rules use the output attribute future-bloodsugar (fbs). We
have Dact = {alcohol-consumption, breakfast, dinner, drink-coffee, long-sleep,
lunch, sport, walking} and Dcbs = Dfbs = {low, medium, high}.
By the relation (4.1), the possibility degree of the three output attribute values
low, medium and high are:

• πfbs(x)(low) = min(γl
1, γl

2, γl
3), where γl

1 = β1 = max(r1, ρ1), γl
2 = α2 =

max(s2, λ2) and γl
3 = α3 = max(s3, λ3).

• πfbs(x)(medium) = min(γm
1 , γm

2 , γm
3 ), where γm

1 = β1, γm
2 = β2 = max(r2, ρ2)

and γm
3 = α3.

• πfbs(x)(high) = min(γh
1 , γh

2 , γh
3 ), where γh

1 = α1 = max(s1, λ1), γh
2 = β2

and γh
3 = β3 = max(r3, ρ3).

Using Notation 1, the following triplets are set (relation 4.3):

• for πfbs(x)(low): (p1, C, 1 − ρ1), (p2, P, λ2) and (p3, P, λ3).

• for πfbs(x)(medium): (p1, C, 1 − ρ1), (p2, C, 1 − ρ2) and (p3, P, λ3).

• for πfbs(x)(high): (p1, P, λ1), (p2, C, 1 − ρ2) and (p3, C, 1 − ρ3).

We give an example of inference of this blood sugar control system:
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Example 4.2 In our example 4.1, as parameters of the rules, we take:

s1 = 1, s2 = 0.7, s3 = 1 and r1 = r2 = r3 = 0.

The three rules are certain [53] because we have π(qi | pi) = 1 and ri = π(¬qi |
pi) = 0. Moreover, we assume that:

πact(x)(drink-coffee) = 1, πcbs(x)(medium) = 1 and πcbs(x)(low) = 0.3

while the other elements of the domains of the input attributes have a possibility
degree equal to zero. Then, by easy computations we get:

λ1 = 1, ρ1 = 0.3, λ2 = 0, ρ2 = 1, λ3 = 0 and ρ3 = 1.

The obtained output possibility distribution is:

π∗
fbs(x)(low) = 0.3, π∗

fbs(x)(medium) = 0.3 and π∗
fbs(x)(high) = 1.

4.2 How to get π∗
b(x)(u) strictly greater or lower

than a chosen τ ∈ [0, 1]?
Taking advantage of the notations (4.1) and (4.2), we note that π∗

b(x)(u) ranges
between ω = min(t1, t2, . . . , tn) and 1. Following this, a necessary and sufficient
condition to obtain π∗

b(x)(u) < τ with ω < τ ≤ 1 according to the degrees of
premises can be easily stated:

∃i ∈
{
j ∈ {1, 2, . . . , n} | tj < τ

}
such that θi < τ.

θi < τ is achieved by the following condition on the degrees of the propositions
composing the premise pi = pi

1 ∧ pi
2 ∧ · · · ∧ pi

k of the rule Ri, depending on
whether γi = αi or γi = βi:

• If γi = αi, the condition θi < τ relates on the possibility degree of the
premise pi, which has to be strictly lower than τ :

∃j ∈ {1, 2, . . . , k} such that π(pi
j) < τ.

• If γi = βi, the condition θi < τ relates on the possibility degree of the
negation of the premise pi. The negation of each proposition composing
pi must have a possibility degree strictly lower than τ :

∀j ∈ {1, 2, . . . , k}, π(¬pi
j) < τ.

Similarly, a necessary and sufficient condition to obtain π∗
b(x)(u) > τ with ω ≤

τ < 1 is:

∀i ∈
{
j ∈ {1, 2, . . . , n} | tj ≤ τ

}
, we have θi > τ.

θi > τ is achieved by conditions on the propositions composing the premise
pi = pi

1 ∧ pi
2 ∧ · · · ∧ pi

k, according to γi:
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• If γi = αi, the condition θi > τ relates on the possibility degree of the
premise pi. The possibility degree of each proposition composing pi must
be strictly greater than τ :

∀j ∈ {1, 2, . . . , k}, π(pi
j) > τ.

• If γi = βi, the condition θi > τ relates on the possibility degree of the
negation of the premise pi. There exists a proposition composing pi,
whose possibility degree of its negation is strictly greater than τ :

∃j ∈ {1, 2 . . . , k} such that π(¬pi
j) > τ.

The above conditions related to the propositions composing the premises of
the rules can be achieved in terms of the values of the possibility distributions
of the input attributes. For instance, for a proposition pi

j of the form “ai
j(x) ∈

P i
j ”, the condition π(pi

j) < τ is equivalent to ∀v ∈ P i
j , πai

j(x)(v) < τ .

Example 4.3 In our example 4.1, suppose we want to have π∗
fbs(x)(high) >

0.5. If we assume that:

s1 = 1, r2 = 0 and r3 = 0,

we have π∗
fbs(x)(high) > 0.5 iff ρ2 > 0.5 and ρ3 > 0.5.

To have ρ2 > 0.5, the negation of the proposition “act(x) ∈ {long-sleep, sport,
walking}” or the negation of “cbs(x) ∈ {low, medium}” must have a possibility
degree strictly greater than 0.5.
Similarly, to have ρ3 > 0.5, the negation of “act(x) ∈ {alcohol-consumption,
breakfast}” or the negation of “cbs(x) ∈ {low, medium}” must have a possibility
degree strictly greater than 0.5.
We note that if the negation of “cbs(x) ∈ {low, medium}” has a possibility
degree strictly greater than 0.5, then we have πcbs(x)(high) > 0.5.

4.3 Justify the possibility degree π∗
b(x)(u) = τ

To study how the possibility degree π∗
b(x)(u) = τ with ω ≤ τ ≤ 1 is obtained, we

introduce the following two sets JP and JR in order to compare the parameters
t1, t2, . . . tn of the rules to the degrees θ1, θ2, . . . , θn of the premises in the
relation (4.1). Intuitively, JP (resp. JR) collects indices where θi is greater
(resp. lower) than ti: in other words, γi = π∗i

b(x)(u) which is clearly related to
the rule Ri, can be explained by a degree of the premise (resp. by a parameter
of the rule):

JP = {i ∈ {1, 2, . . . , n} | ti ≤ θi} and JR = {i ∈ {1, 2, . . . , n} | ti ≥ θi}.
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We have {1, 2, . . . , n} = JP ∪ JR but JP or JR may be empty. With the
convention min∅ = 1, we take:

cθ = min
i∈JP

θi and ct = min
i∈JR

ti. (4.4)

For a given output attribute value, if JP ̸= ∅ (resp. JR ̸= ∅), cθ (resp. ct) is
the lowest possibility degree justifiable by premises (resp. by the parameters
of the rules).
With the notations (4.4) and using the properties of the min function, we
establish:

Proposition 4.1
τ = min(cθ, ct). (4.5)

Proof 4.1 We prove τ = min(cθ, ct) in two steps:

1. τ ≤ min(cθ, ct),

2. τ ≥ min(cθ, ct).

For the two steps, we remind that we have

τ = min(γ1, γ2, . . . , γn)

1) For the first step, it is equivalent to show that:

τ ≤ cθ and τ ≤ ct.

• τ ≤ cθ:
If cθ = 1, this inequality is clear because τ ≤ 1.
Otherwise, if cθ < 1 we have:

• JP ̸= ∅ as min∅ = 1.
• There exists an index i0 ∈ JP such that:

cθ = min
i∈JP

θi = θi0 .

By definition of the set JP , we deduce:

ti0 ≤ θi0 .

Therefore, we have:

γi0 = max(ti0 , θi0) = θi0 .
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Finally, we obtain:

τ ≤ γi0 = θi0 = cθ.

• τ ≤ ct:
If ct = 1, this inequality is clear because τ ≤ 1.
Otherwise, if ct < 1 we have:

• JR ̸= ∅ as min∅ = 1.
• There exists an index i0 ∈ JR such that:

ct = min
i∈JR

ti = ti0 .

By definition of the set JR, we deduce:

θi0 ≤ ti0 .

Therefore, we have:

γi0 = max(ti0 , θi0) = ti0 .

Finally, we obtain:

τ ≤ γi0 = ti0 = ct.

2) For the second step, as we have

τ = min(γ1, γ2, . . . , γn)

there exists an index i0 ∈ {1, 2, . . . , n} such that:

τ = min(γ1, γ2, . . . , γn) = γi0 .

As we have {1, 2, . . . , n} = JP ∪ JR, then either i0 ∈ JP or i0 ∈ JR.
In both cases i0 ∈ JP or i0 ∈ JR, we will show the intended inequality
τ ≥ min(cθ, ct):

• If i0 ∈ JP , we have ti0 ≤ θi0 and:

• cθ = mini∈JP θi ≤ θi0,
• γi0 = max(ti0 , θi0) = θi0.

By definition of the index i0, we finally have:

τ = γi0 = θi0 ≥ cθ ≥ min(cθ, ct).
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• If i0 ∈ JR, we have θi0 ≤ ti0 and:

• ct = mini∈JR ti ≤ ti0,
• γi0 = max(ti0 , θi0) = ti0.

By definition of the index i0, we finally have:

τ = γi0 = ti0 ≥ ct ≥ min(cθ, ct).

As suggested above, it may happen that we cannot justify π∗
b(x)(u) = τ by

degrees of premises. In fact, as the degrees θ1, θ2, . . . , θn of the premises are
computed using the possibility distributions of the input attributes, we may
have JP = ∅. In that case, cθ = 1, JR = {1, 2, . . . , n} and:

π∗
b(x)(u) = ct = min(t1, t2, . . . , tn). (4.6)

Clearly, it appears that π∗
b(x)(u) is independent from θ1, θ2, . . . , θn and we can-

not justify π∗
b(x)(u) = τ by degrees of premises.

Example 4.4 With the hypotheses of example 4.2, we form the following sets
using the relation (4.4) for each output attribute value:

• for low: JP
l = {1} and JR

l = {2, 3},

• for medium: JP
m = {1, 2} and JR

m = {3},

• for high: JP
h = {1, 2, 3} and JR

h = {1}.

Then, we deduce for each output attribute value:

• for low: cl
θ = 0.3 = πfbs(x)(low) and cl

t = 0.7.

• for medium: cm
θ = 0.3 = πfbs(x)(medium) and cm

t = 1.

• for high: ch
θ = ch

t = 1 = πfbs(x)(high).

4.4 Extraction of premises justifying π∗
b(x)(u) =

τ

To explain the inference results of our possibilistic rule-based system, we in-
troduce a threshold η > 0. Such threshold is set according to what is modeled
by the rule-base and has the following purpose:

Definition 4.1 If a possibility (resp. necessity) degree is higher than the
threshold η, it intuitively means that the information it models is relevantly
possible (resp. certain).
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We use the threshold η in a similar way as in [20]: given a possibility dis-
tribution π on the set Ω of interpretations of a propositional logic language,
{ω ∈ Ω | π(ω) ≥ η} is the set of most plausible interpretations. Moreover, if
ϕ is a language formula such that its necessity measure N(ϕ) = inf{1 − π(ω) |
ω |= ¬ϕ} verifies N(ϕ) ≥ η then ϕ is considered to be certain at least to the
degree η.

In the following, we extract the premises justifying π∗
b(x)(u) = τ according to

η. Two cases are encountered:
1. The possibility degree of “b(x) is u” is revelantly possible i.e., τ ≥ η.

In this case, we rely on the relation (4.5) to establish a necessary and
sufficient condition to justify π∗

b(x)(u) = τ by premises. Of course, this
requires that the set JP is non-empty, see (4.6).

2. The possibility degree of “b(x) is u” is not revelantly possible i.e., τ <
η. It always exists at least a premise justifying why “b(x) is u” is not
revelantly possible.

For a given output value u ∈ Db, let us remind that the triplets (pi, semi, di)
are defined in (4.3) according to (4.1) and (4.2). We select the rule premises
justifiying the possibility degree π∗

b(x)(u) = τ by the following formula:

Jb(x)(u) =


{
(pi, semi, di) | i ∈ JP and θi = τ

}
if τ ≥ η.{

(pi, semi, di) | i ∈ {1, 2, . . . , n} and γi < η
}

if τ < η.
(4.7)

If τ ≥ η and JP ̸= ∅ then, using (4.4), the equality (4.5) and the definition of
Jb(x)(u), one can check directly that we have:

Proposition 4.2 Jb(x)(u) ̸= ∅ ⇐⇒ π∗
b(x)(u) = cθ.

We prove this equivalence in two steps:

Proof 4.2

1. Jb(x)(u) ̸= ∅ =⇒ π∗
b(x)(u) = cθ:

As Jb(x)(u) ̸= ∅, there exists a triplet (pi0 , semi0 , di0) ∈ Jb(x)(u).
Therefore, we have ti0 ≤ θi0 = τ , which leads to:

i0 ∈ JP and cθ = min
i∈JP

θi ≤ θi0 = τ = min(cθ, ct) ≤ cθ.

So, τ = cθ.
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2. Jb(x)(u) ̸= ∅ ⇐= π∗
b(x)(u) = cθ:

By the assumption that JP is non empty, there exists an index i0 ∈ JP

such that:

cθ = min
i∈JP

θi = θi0 .

Let us show that (pi0 , semi0 , di0) ∈ Jb(x)(u) (and therefore Jb(x)(u) is
non-empty). We have:

i0 ∈ JP , so ti0 ≤ θi0 = cθ.

By hypothesis that τ = cθ, so ti0 ≤ θi0 = τ . Therefore, we have:

(pi0 , semi0 , di0) ∈ Jb(x)(u).

If τ ≥ η, JP ̸= ∅ and Jb(x)(u) ̸= ∅, the set Jb(x)(u) is formed by the premises
justifying π∗

b(x)(u) = τ , because if τ = cθ, π∗
b(x)(u) is the minimum of some

precise degrees θi of premises pi. However, if Jb(x)(u) = ∅, we have τ = ct < cθ

and then τ is the minimum of some parameters si or ri. In this case, there is
no way for deducing τ from θ1, θ2, . . . , θn.

Example 4.5 With the hypotheses of example 4.2, let us take η = 0.1. By
Definition (4.7), we obtain for each output attribute value:

• Jfbs(x)(low) = Jfbs(x)(medium) = {(p1, C, 0.7)},

• Jfbs(x)(high) = {(p1, P, 1), (p2, C, 0), (p3, C, 0)}.

If instead of r1 = 0, we take r1 > 0.3, then for u = low, (4.6) holds and the
corresponding set JP is empty: no justification in terms of premises could be
given in that case.

4.5 Premise reduction functions
In this section, we define four functions Rπ, Rn, Cπ and Cn that reduce a
compounded premise. Such premise reduction functions will be applied to the
triplets of Jb(x)(u), see (4.7) in the previous section, to form explanations of
the possibility degree of an output attribute value. To define these reduction
functions for premises, we first introduce two auxiliary functions Pπ and Pn

that are defined for propositions.

4.5.1 Pπ and Pn definitions
Let π : D → [0, 1] be a possibility distribution on a domain D. For each subset
P ⊆ D, we associate the following two subsets of D:
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• (P )π = {v ∈ P | π(v) = Π(P )},

• (P )n = P ∪ {v ∈ P | 1 − π(v) > N(P )}.

We have:

Lemma 2 (P )n = {v ∈ P | 1 − π(v) = N(P )}.

This result is a consequence of the definition of the necessity measure:

Proof 4.3 The definition of (P )n implies:

(P )n = P ∩ {v ∈ P | 1 − π(v) > N(P )}.

We have {v ∈ P | 1 − π(v) > N(P )} = P ∩ {v ∈ D | 1 − π(v) > N(P )}.
Therefore:

{v ∈ P | 1 − π(v) > N(P )} = P ∪ {v ∈ D | 1 − π(v) ≤ N(P )}.

This leads to:

(P )n = P ∩ {v ∈ P | 1 − π(v) > N(P )}
= P ∩ [P ∪ {v ∈ D | 1 − π(v) ≤ N(P )}]
= [P ∩ P ] ∪ [P ∩ {v ∈ D | 1 − π(v) ≤ N(P )}]
= ∅ ∪ {v ∈ P | 1 − π(v) ≤ N(P )}
= {v ∈ P | 1 − π(v) = N(P )} since N(P ) = min

v∈P
(1 − π(v)).

We have:

Lemma 3 (P )n = (P )π and (P )π = (P )n.

We prove the first relation then it will imply the second.

Proof 4.4
∀v ∈ D, we have:

v ∈ (P )π ⇐⇒ v ∈ P and π(v) = Π(P )
⇐⇒ v ∈ P and 1 − π(v) = 1 − Π(P )
⇐⇒ v ∈ P and 1 − π(v) = N(P )
⇐⇒ v ∈ (P )n thanks to Lemma 2.
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To prove the second relation, we substitute P to P in the first relation:

(P )n = (P )π.

Then, we take the complementary and obtain the second relation:

(P )n = (P )π.

Each of the relations in Lemma 3 means that the switch to the complementary
c : P 7→ P exchanges the operator s : P 7→ (P )n with the operator t : P 7→
(P )π:

s ◦ c = c ◦ t and t ◦ c = c ◦ s.

Therefore, the two constructions (P )n and (P )π are equivalent:

• The first relation is exactly (P )n = (P )π.

• The second relation is exactly (P )π = (P )n.

Example 4.6 In our example 4.1, let us take the possibility distribution π on
Dcbs = {low, medium, high} defined by:

π(low) = 0.3, π(medium) = 1, π(high) = 0.

Given P = {medium, high}, we have:

• (P )π = {medium},

• (P )n = P .

For P ′ = {low}, we have:

• (P ′)π = P ′,

• (P ′)n = {low, high}.

Let us now define the two auxiliary functions Pπ and Pn.
Let a be an attribute gifted with a normalized possibility distribution πa on
its domain Da and a proposition p of the form “a(x) ∈ P”, where P ⊆ Da.
The normalization ensures max(π(p), π(¬p)) = 1. We introduce the following
two propositions:

pπ : “a(x) ∈ (P )π” and pn : “a(x) ∈ (P )n”. (4.8)
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Definition 4.2 For the proposition p with its underlying set P and the
propositions (4.8), we set:

Pπ(p) =
pπ if π(p) ≥ η

p if π(p) < η
(4.9)

Pn(p) =
pn if n(p) ≥ η

p if n(p) < η
. (4.10)

We notice that Pπ preserves the possibility degree of p i.e. π(Pπ(p)) = π(p)
and possibly reduces p if π(p) ≥ η. Similarly, Pn preserves the necessity
degree of p i.e. n(Pn(p)) = n(p) and reduces P if n(p) ≥ η.
From Lemma 3, we deduce:

Proposition 4.3 If η ≤ π(p) ≤ 1 − η then we have:

Pπ(p) = ¬Pn(¬p), (4.11)

where ¬p is the proposition formed with P .

Proof 4.5 As π(p) ≥ η, we have Pπ(p) = pπ.
Then ¬Pπ(p) is the proposition “a(x) ∈ (P )π”.
As n(¬p) = 1 − π(p) ≥ η, then Pn(¬p) is the proposition “a(x) ∈ (P )n”.
By Lemma 3, we have (P )π = (P )n. Therefore, ¬Pπ(p) = Pn(¬p), which
is equivalent to Pπ(p) = ¬Pn(¬p).

Similarly, we also deduce from Lemma 3:

Proposition 4.4 if η ≤ n(p) ≤ 1 − η, then we have:

Pn(p) = ¬Pπ(¬p). (4.12)

Proof 4.6 As n(p) ≥ η, we have Pn(p) = pn.
Then ¬Pn(p) is the proposition “a(x) ∈ (P )n”.
As π(¬p) = 1 − n(p) ≥ η, then Pπ(¬p) is the proposition “a(x) ∈ (P )π”.
By Lemma 3, we have (P )n = (P )π. Therefore, ¬Pn(p) = Pπ(¬p), which
is equivalent to Pn(p) = ¬Pπ(¬p).
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Remark 4.1 To satisfy the hypothesis of Propositions 4.3 and 4.4, we assume
that η ≤ 0.5.
The normalization condition

max(π(p), π(¬p)) = max(π(p), 1 − n(p)) = 1

implies that the two hypotheses of Propositions 4.3 and 4.4 cannot be verified
at the same time.

Remark 4.2 If η ≤ π(p) ≤ 1 − η then the relation (4.11) holds i.e.,

Pπ(p) = ¬Pn(¬p).

The normalization condition implies:

n(p) = 1 − π(¬p) = 1 − 1 = 0 < η.

Therefore, we have Pn(p) = p. Let us compute in this case ¬Pπ(¬p).
We have π(¬p) = 1 ≥ η then Pπ(¬p) is the proposition “a(x) ∈ (P )π” from
which we deduce that ¬Pπ(¬p) is “a(x) ∈ (P )π” i.e., “a(x) ∈ (P )n”.
As (P )n = P ∪ {v ∈ P | 1 − πa(x)(v) > N(P )}, we may have (P )n ̸= P and
then Pn(p) ̸= ¬Pπ(¬p). Generally, we cannot have the relation (4.11) and
the relation (4.12) at the same time.

Example 4.7 In our example 4.2, the proposition “act(x) ∈ {dinner, drink-
coffee, lunch}” is reduced by Pπ to “act(x) ∈ {drink-coffee}” while Pn keeps
it as is.

Pπ and Pn are used in the definitions of the premise reduction functions. We
continue by defining subsets of propositions of a compounded premise, which
are also used in the definitions of the premise reduction functions.

4.5.2 Subsets of propositions of a compounded premise
In the following, let p = p1 ∧ p2 ∧ · · · ∧ pk be a compounded premise, where pj

for j = 1, 2, . . . , k, is a proposition of the form “aj(x) ∈ Pj” with Pj ⊆ Daj
.

When p is not considered as relevantly possible i.e., π(p) < η, we introduce
the following two sets of propositions extracted from p with respect to the
threshold η:

• a set of propositions that are relevantly possible:

Aπ
p =

{
pj | π(pj) ≥ η for j = 1, . . . , k

}
. (4.13)

• a set of propositions that are not considered relevantly possible:

Bπ
p =

{
pj | π(pj) < η for j = 1, . . . , k

}
. (4.14)
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Similarly, when p is not considered as relevantly certain i.e., n(p) < η, we
introduce the following two sets of propositions extracted from p with respect
to the threshold η:

• a set of propositions that are relevantly certain:

An
p =

{
pj | n(pj) ≥ η for j = 1, . . . , k

}
. (4.15)

• a set of propositions that are not considered relevantly certain:

Bn
p =

{
pj | n(pj) < η for j = 1, . . . , k

}
. (4.16)

These four sets of propositions are used in the definitions of the reduction
functions, which we now introduce.

4.5.3 Extracting justifications: Rπ function
Given the compounded premise p = p1 ∧ p2 ∧ · · · ∧ pk,the function Rπ returns
the structure responsible for π(p). If p is relevantly possible with respect to
the threshold η, Rπ returns the conjunction of the propositions Pπ(pj). Oth-
erwise, if p is not considered relevantly possible, Rπ returns the conjunction
of the propositions in Bπ

p , see (4.14). The reduction function Rπ extends Pπ

in the following sense:

Rπ(p) =


∧k
j=1 Pπ(pj) if π(p) ≥ η∧
pj∈Bπ

p
pj if π(p) < η

. (4.17)

We note that ∀pj ∈ Bπ
p Pπ(pj) = pj. In the two cases i.e. π(p) ≥ η and

π(p) < η, we have π(Rπ(p)) = π(p): the function Rπ preserves the possibility
degree of p.

Example 4.8 In our example 4.2:

• for the premise p1 of the rule R1, Rπ returns the conjunction of the
propositions “act(x) ∈ {drink-coffee}” and “cbs(x) ∈ {medium}”,

• for the premise p2 of R2, Rπ returns the proposition “act(x) ∈ {long-
sleep, sport, walking}” and

• for the premise p3 of R3, Rπ returns the proposition “act(x) ∈ {alcohol-
consumption, breakfast}”.
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4.5.4 Extracting justifications: Rn function
Similarly, the reduction function Rn returns the structure responsible for the
necessity degree n(p) of p, which is the conjunction of the propositions Pn(pj)
that make p relevantly certain or not. In particular, if p is not considered
relevantly certain, Rn returns the conjunction of the propositions in Bn

p , see
(4.16). The reduction function Rn extends Pn in the following sense:

Rn(p) =


∧k
j=1 Pn(pj) if n(p) ≥ η∧
pj∈Bn

p
pj if n(p) < η

. (4.18)

We note that ∀pj ∈ Bn
p , Pn(pj) = pj. Rn preserves the necessity degree of p

i.e., n(Rn(p)) = n(p).

Example 4.9 In our example 4.2:

• for the premise p1 of the rule R1, Rn returns p1 as it is,

• for the premise p2 of R2, Rn returns the proposition “act(x) ∈ {long-
sleep, sport, walking}” and

• for the premise p3 of R3, Rn returns the proposition “act(x) ∈ {alcohol-
consumption, breakfast}”.

4.5.5 Extracting unexpectedness: Cπ function
Intuitively, with respect to the threshold η, if p is not relevantly possible i.e,
π(p) < η, Cπ returns a conjunction of propositions, called an unexpectedness,
which is not involved in the determination of π(p) although relevantly possible.
To use Cπ, the set of relevantly possible propositions of p must be non-empty.
In other words, we suppose Aπ

p ̸= ∅, see (4.13).
The reduction function Cπ returns the conjunction of the propositions Pπ(pj)
such that π(pj) ≥ η:

Cπ(p) =
∧

pj∈Aπ
p

Pπ(pj). (4.19)

If π(p) < η, each proposition pj composing p, is either used in Rπ(p) or in
Cπ(p), according to its possibility degree π(pj).

Example 4.10 In our example 4.2, for the premises of R2 and R3, Cπ returns
for both “cbs(x) ∈ {medium}”.
In other words, although it may be otherwise, the fact that the current blood
glucose level is medium is not involved in determining the possibility degree of
the premise of R2 and that of the premise of R3.
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4.5.6 Extracting unexpectedness: Cn function
Similarly, if p is not relevantly certain i.e., n(p) < η, Cn returns a conjunc-
tion of propositions, called an unexpectedness, which is not involved in the
determination of n(p) although relevantly certain. Analogously, in order to
define Cn(p) we suppose An

p ̸= ∅, see (4.15), i.e., the set of relevantly certain
propositions of p is non-empty.
The function Cn returns the conjunction of the propositions Pn(pj) such
that n(pj) ≥ η:

Cn(p) =
∧

pj∈An
p

Pn(pj). (4.20)

We notice that if n(p) < η, each proposition pj composing p, is either used in
Rn(p) or in Cn(p), according to its necessity degree n(pj).

Example 4.11 In our example 4.2, for the premises of R2 and R3, Cn returns
for both “cbs(x) ∈ {low, medium}”.

4.6 Justification and unexpectedness of π∗
b(x)(u)

We remind that the triplets of Jb(x)(u) associated to π∗
b(x)(u), see Definition

(4.7), are of the form (p, sem, d), see Notation 1. In order to form a justification
of π∗

b(x)(u) and to extract the unexpectedness of π∗
b(x)(u), we will apply the

premise reduction functions to the triplets of Jb(x)(u).
To apply in an appropriate way the reduction functions Rπ and Rn to a triplet
(p, sem, d), we introduce the function SR :

SR(p, sem, d) =
(Rπ(p), P, d) if sem = P

(Rn(p), C, d) if sem = C
.

Similarly, to apply Cπ and Cn, we introduce the function SC , which relies on
the set of propositions Aπ

p and An
p , see (4.13) and (4.15):

SC (p, sem, d) =
(Cπ(p), P, π(Cπ(p))) if sem = P, d < η and Aπ

p ̸= ∅
(Cn(p), C, n(Cn(p))) if sem = C, d < η and An

p ̸= ∅
.

The justification of π∗
b(x)(u) is formed by applying SR to the triplets of Jb(x)(u),

see (4.7):

Justificationb(x)(u) = {SR(p, sem, d) | (p, sem, d) ∈ Jb(x)(u)}. (4.21)

The possibilistic expressions in the triplets of (4.21) are sufficient to justify
“b(x) is u at a possibility degree π∗

b(x)(u)”.
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Example 4.12 In our example 4.2, we form the justification for each output
attribute value and give, for each, an interpretation:

• Justificationfbs(x)(low) = Justificationfbs(x)(medium) = {(Rn(p1), C, 0.7)} =
{(p1, C, 0.7)}, which could be interpreted as:

“A future low (resp. medium) blood sugar level is evaluated
as not very possible. This is mainly due to the fact that it is
quite certain that the activity consists of drinking coffee, lunch
or dinner and that the current blood sugar level is medium or
high”.

• Justificationfbs(x)(high) = {(Rπ(p1), P, 1), (Rn(p2), C, 0), (Rn(p3), C, 0)}. A nat-
ural language explanation could be:

“It is possible that the patient’s blood sugar level will become
high. In fact, his activity is drinking coffee and his current
blood sugar level is medium. In addition, it is assessed as not
certain that he chose sport, walking, sleeping, eating breakfast
or drinking alcohol as an activity.”.

By using SC , we obtain the unexpectedness of π∗
b(x)(u) i.e., possible or certain

possibilistic expressions, which may appear to be incompatible with π∗
b(x)(u)

while not being involved in its determination:

Unexpectednessb(x)(u) = {SC (p, sem, d) | (p, sem, d) ∈ Jb(x)(u)}. (4.22)

The purpose of an unexpectedness X is to be able to formulate statements
such as “even if X, b(x) is u at a possibility degree π∗

b(x)(u)”. It is in the same
vein as the “even-if-because” statements studied in [39].

Remark 4.3 It is clear that any triplet of Jb(x)(u) is in the domain of the
function SR. It is not the same for the function SC : not all triplets of
Jb(x)(u) are necessarily in the domain of the function SC . For example, in the
case where τ < η, a triplet (pi, semi, di) ∈ Jb(x)(u) of the form:

(pi, semi, di) = (pi, C, n(pi))

is not in the domain of the function SC . Indeed, in this case, we have di > η
since:

di = 1 − ρi ≥ 1 − βi

= 1 − γi

> 1 − η ≥ η if η ≤ 0.5.
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Example 4.13 For our example 4.2, we form the unexpectedness of the pos-
sibility degree of each output attribute value. An unexpectedness exists for
π∗

fbs(x)(high). No unexpectedness exists for both π∗
fbs(x)(low) and π∗

fbs(x)(medium).
As Cn(p2) = Cn(p3), we obtain Unexpectednessfbs(x)(high) = {(Cn(p2), C, 1)}.
The interpretation is as follows:

“It is possible for the patient’s blood sugar level to become high even
if it is certain that the current blood sugar level is low or medium”.

4.7 Example
In the following, we propose another example of a possibilistic rule-based sys-
tem. It determines the insulin dose required by a patient according to some
factors [27].

4.7.1 Rule base
We consider nine input attributes: planned-foods (pf), planned-alcohol (pa),
current-bloodsugar (cbs), planned-physicalactivity (ppa), planned-sleep (ps),
water-intake (wi), last-hypoglycemia (lh), previous-slept-duration (psd) and
environmental-temperature (et). We have Dpf = {no, standard-meal, high-
fat-foods}, Dpa = {no, low, important}, Dcbs = {low, medium, high}, Dppa =
{no, short, long}, Dps = {no, short, long, very-long}, Dwi = {sufficient, insuf-
ficient}, Dlh = {no, long-time-ago, recent, very-recent}, Dpsd = {very-short,
short, long, very-long} and Det = {cold, warm, hot}. The output attribute is
named insulin-dose (id) such that Did = {low, medium, high}.
The rule base is composed of five rules (Table 4.2).

pf pa cbs ppa ps wi lh psd et id

R1 standard-meal,
high-fat-foods

no,
low

medium,
high

R2 high no,
short low

R3 no low,
medium

long,
very-long low

R4 sufficient no,
long-time-ago

long,
very-long

low,
medium

R5 cold,
warm

low,
medium

Table 4.2: Rule base for determining an insulin dose.

We arbitrarily take the following rule parameters s1 = 0.3, s2 = 1, s3 =
0.7, s4 = 0.4, s5 = r1 = r2 = r3 = r4 = 0 and r5 = 1.
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4.7.2 Inference
We assume that πpf(x) : ⟨no : 0, standard-meal : 1, high-fat-foods : 0.2⟩,
πpa(x) : ⟨no : 1, low : 0, important : 0⟩, πcbs(x) : ⟨low : 0.3, medium : 1, high : 0⟩,
πppa(x) : ⟨no : 1, short : 0, long : 0⟩, πps(x) : ⟨no : 1, short : 0, long : 0, very-long :
0⟩, πwi(x) : ⟨sufficient : 1, insufficient : 0.4⟩, πlh(x) : ⟨no : 0.3, long-time-ago :
1, recent : 0, very-recent : 0⟩, πpsd(x) : ⟨: very-short : 0, short : 1, long :
0.2, very-long : 0⟩ and πet(x) : ⟨cold : 0, warm : 1, hot : 0.2⟩.
For the premises of the rules, we get λ1 = 1, ρ1 = 0, λ2 = 0, ρ2 = 1, λ3 =
0, ρ3 = 1, λ4 = 0.2, ρ4 = 1, λ5 = 1, and ρ5 = 0.2. Therefore:

• π∗
id(x)(low) = min(β1, α2, α3, α4, α5) = min(0, 1, 0.7, 0.4, 1) = 0,

• π∗
id(x)(medium) = min(α1, β2, β3, α4, α5) = min(1, 1, 1, 0.4, 1) = 0.4 and

• π∗
id(x)(high) = min(α1, β2, β3, β4, β5) = min(1, 1, 1, 1, 1) = 1,

as α1 = max(s1, λ1) = max(0.3, 1) = 1, β1 = max(r1, ρ1) = max(0, 0) = 0,
α2 = max(s2, λ2) = max(1, 0) = 1, β2 = max(r2, ρ2) = max(0, 1) = 1,
α3 = max(s3, λ3) = max(0.7, 0) = 0.7, β3 = max(r3, ρ3) = max(0, 1) = 1
α4 = max(s4, λ4) = max(0.4, 0.2) = 0.4, β4 = max(r4, ρ4) = max(0, 1) = 1,
α5 = max(s5, λ5) = max(0, 1) = 1 and β5 = max(r5, ρ5) = max(1, 0.2) = 1.

4.7.3 Extraction of premises
Using the relation (4.4), we form the following sets associated to each output
attribute value:

• JP
l = {1, 5} and JR

l = {1, 2, 3, 4} for low,

• JP
m = {1, 2, 3, 5} and JR

m = {4} for medium,

• JP
h = {1, 2, 3, 4} and JR

h = {5} for high.
We deduce:

• cl
θ = cl

t = 0 = πid(x)(low).

• cm
θ = 1 and cm

t = 0.4 = πid(x)(medium).

• ch
θ = ch

t = 1 = πid(x)(high).
By Definition 4.7, we obtain for each output attribute value:

• Jid(x)(low) = {(p1, C, 1)},

• Jid(x)(medium) = ∅,

• Jid(x)(high) = {(p1, P, 1), (p2, C, 0), (p3, C, 0), (p4, C, 0)}.
We cannot form a justification or an unexpectedness for the output attribute
value medium because Jid(x)(medium) is empty.
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4.7.4 Application of premise reduction functions
In order to form the justification of the output attribute value low and that
of high, we apply Rπ and Rn to the selected premises in Jid(x)(low) and
Jid(x)(high), respectively:

• For the premise p1 of R1, Rπ returns the conjunction of the propositions
“pf(x) ∈ {standard-meal}” and “pa(x) ∈ {no}” while Rn returns p1 as
it is.

• For the premise of R2, Rn returns the proposition “cbs(x) ∈ {high}”.

• For the premise of R3, Rn returns the conjunction of the propositions
“pf(x) ∈ {no}” and “ps(x) ∈ {long,very-long}”.

• When we apply Rn to the premise of R4, we obtain the proposition
“psd(x) ∈ {long, very-long}”.

To obtain the unexpectedness for high, we apply Cn:

• For the premise of R2 Cn returns a proposition: “ppa(x) ∈ {no, short}”.

• For the premise of R3, Cn returns “cbs(x) ∈ {low,medium}”.

• For the premise of R4, Cn returns the conjunction of “lh(x) ∈ {no, long-
time-ago}” and “wi(x) ∈ {sufficient}”.

The other output attribute values have not an unexpectedness.

4.7.5 Justifications
We form the justification of low and high:

• Justificationid(x)(low) = {(Rn(p1), C, 1)} = {(p1, C, 1)}, which could be
interpreted as:

“It is not possible to provide a small dose of insulin to the
patient. This is mainly due to the fact that it is certain that
he wants a standard meal or high-fat foods. It is also certain
that he planned little or no alcohol”.

• Justificationid(x)(high) = {(Rπ(p1), P, 1), (Rn(p2), C, 0), (Rn(p3), C, 0),
(Rn(p4), C, 0)}. A natural language explanation could be:

“It is possible to administer a high dose of insulin to the pa-
tient. In fact, he planned to have a standard meal and no
alcohol. In addition, the following facts are assessed as not
certain: his current blood sugar level is high, he doesn’t plan
to eat, he wants to sleep a lot.”.
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4.7.6 Unexpectedness
We obtain the unexpectedness for high:

Unexpectednessid(x)(high) = {(Cn(p2), C, 1), (Cn(p3), C, 1), (Cn(p4), C, 0.6)}.

The interpretation is as follows:

“It is possible to administer a high dose of insulin to the patient
even though it is certain that he has planned to do little or no
physical activity, the current blood sugar level is low or medium,
his last hypoglycemia was a long time ago (or he did not have any)
and he drank enough water”.

4.8 Conclusion
In this chapter, we studied how to explain to end-users the inference results
of possibilistic rule-based systems. We formulate a necessary and sufficient
condition for justifying by a relevant subset of premises the possibility degree
of each output attribute value. We then performed reductions on the selected
premises, in order to form two kind of explanations: the justification and the
unexpectedness of the possibility degree of an output attribute value.
An evaluation of our explanations would be useful in order to know if they are
appropriate to the users’ needs and when they are expected by the user, espe-
cially for the unexpectedness. From each of the selected premise, our method
picks some of its propositions, and reduces or extends them. We should check
if this allows a better understanding of the decisions. We may also compare
our explanations with others, which would be generated by performing other
operations on the selected premises e.g., letting the propositions be as they
are. To go further in the evaluation process of our method, it would be in-
teresting to measure to what extent the parameter η has an impact on the
understanding of the decisions.
Finally, as the explanations are the outcomes of numerous analytical opera-
tions, and in order to facilitate the inspection of their content, they should be
represented in terms of graphs. In Part D, a representation of explanations
of possibilistic inference decisions is developed. It is based on the justification
and the unexpectedness of the possibility degree of an output attribute.
In the next chapter, similarly to the possibilistic case, we introduce methods
for extracting justifications and unexpectedness of inference results of a fuzzy
rule-based system composed of possibility rules.
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Chapter 5

Justification of fuzzy rule-based
system inference results

The work in this chapter is based on a paper published in a conference: Baaj,
I., & Poli, J. P. (2019, June). Natural language generation of explanations
of fuzzy inference decisions. In 2019 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE) (pp. 1-6). IEEE.

In this chapter, we elaborate on the explanatory capabilities of a fuzzy rule-
based system composed of possibility rules (Mamdani fuzzy inference system),
where the premises of the rules are conjunctions of fuzzy propositions. We
focus on explaining semantically the inferred conclusions of a Mamdani system,
without considering the use of a defuzzification process [102].
For this purpose, in Section 5.1, we set the notations used for the main objects
of an inference of a Mamdani system: activation degree of a rule, inferred con-
clusion and the possibility distribution of the variable of the rule conclusions.
Then, we state in Proposition 5.1 the main result: the total inferred conclusion
satisfies the semantics α∗-possible in the sense of Dubois-Prade [49], where α∗

is the maximum of the activation degrees of the rules. This result is proved
in two steps (Subsections 5.1.1 and 5.1.2). In Section 5.2, we begin by adding
some useful notations for justifying the inference results of a Mamdani system.
We introduce an example of such a system, which we will use to illustrate all
the constructions that follow. Then, we justify by a relevant subset of rule
premises each of the inferred conclusions of any Mamdani system. In Section
5.3, we introduce two premise reduction functions, which are similar to those
introduced for the possibilistic case (Chapter 4). By applying them to the
premises selected for justifying an inferred conclusion, such functions allow us
to form two types of explanations (Section 5.4):

• The justification of a conclusion, which is a set of fuzzy logic expressions
(conjunctions of fuzzy propositions) sufficient to justify, semantically,
the inferred conclusion. It is formed by applying a reduction function to
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the selected premises. Such reduction function is based on our previous
work, see [15].

• The unexpectedness of a conclusion, which is a set of fuzzy logic expres-
sions extracted by applying another premise reduction function to the
selected premises. Such fuzzy logic expressions are related to the consid-
ered conclusion in the following sense: although there may appear to be a
potential incompatibility between each of the fuzzy logic expressions and
the considered conclusion, they are not involved in the determination of
the inferred conclusion.

Such explanations are formulated by performing treatments on the rule premises,
which are conjunctions of fuzzy propositions. In Part D, such explanations
will be graphically represented by conceptual graphs. For this purpose, we
will show that we can naturally represent conjunctions of fuzzy propositions
by conceptual graphs. Note that such graphs do not allow representing log-
ical disjunctions, and only adopt a limited form of negation (called atomic
negation) [34].
Finally, we conclude with some perspectives (Section 5.5).

5.1 Semantics of the total inferred conclusion
of a Mamdani rule-based system

In this section, we study the semantics of the inferred conclusions of a Mam-
dani fuzzy inference system. Let R1, R2, . . . , Rn be the n rules of a Mamdani
system and u0 be a crisp input for the variables that appear in the n rules.
For each i = 1, 2, . . . , n, we set:

• Ri = (pi, ci), where the premise pi = pi
1 ∧pi

2 ∧· · ·∧pi
ki

is a conjunction of
fuzzy propositions and ci = (Z, Oi) is a fuzzy proposition with the same
variable Z of a linguistic variable z = (Z, V, Tz) and a term Oi ∈ Tz. Each
pi

j = (X i
j, Ai

j) is composed of the variable X i
j of a linguistic variable ai

j,
and a term Ai

j ∈ Tai
j
. Such proposition models the statement “X i

j is Ai
j

is possible”, using the (guaranteed) possibility distribution δXi
j

= µAi
j
.

• αpi
is the fuzzy degree of the premise pi (or the activation degree of the

rule Ri) deduced from the crisp input u0.

• O∗
i is the inferred fuzzy set of the conclusion that we get by firing the

rule Ri.

• δZ,i is the (guaranteed) possibility distribution associated to the propo-
sition “Z is O∗

i ” of the rule Ri [67, 100].
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Then, the main objects associated by the inference to the input u0 are:

• α∗ = maxi αpi
,

• O∗ = ∪iO
∗
i is the total inferred fuzzy set that we get by firing the n

rules. Such fuzzy set is sometimes called “Mamdani distribution” [76].

• δZ = maxi δZ,i is a natural (guaranteed) possibility distribution for Z
associated to the proposition “Z is O∗” [67, 100].

With these notations, we claim:

Proposition 5.1 Z is O∗ is α∗−possible in the sense of Dubois-Prade [49].

This result is already proven in [49] for a single rule R = (p, c) where p =
(X, A) is a fuzzy proposition. For the proof of the general case, we first
extend Dubois-Prade’s result for a single rule R = (p, c) where the premise p
is a conjunction of k fuzzy propositions, then we deduce the general case of a
system of n rules.

5.1.1 Single rule with a compounded premise
We remind that a Mamdani rule is a possibility rule, where the t-norm is the
min function (Chapter 1). Let R = (p, c) be a possibility rule such that:

p = X1 is A1 ∧ X2 is A2 ∧ · · · ∧ Xk is Ak, (5.1)

is a conjunction of k fuzzy propositions (Xj, Aj) defined by the linguistic
variables aj = (Xj, Uj, Taj

) and the terms Aj ∈ Taj
. The conclusion c is a

fuzzy proposition c = (Z, O) defined by a linguistic variable z = (Z, V, Tz) and
O ∈ Tz. Let u0 be a crisp input such that:

u0 = (u0
1, u0

2, . . . , u0
k) ∈ U1 × U2 × · · · × Uk.

The Mamdani inferred conclusion associated to these data is the fuzzy subset
O∗ of V whose membership function µO∗ is defined by:

∀v ∈ V, µO∗(v) = min(µO(v), αp) where αp = min
j

(µAj
(u0

j)). (5.2)

Let δZ be the possibility distribution of the conclusion variable Z of the rule
R (relation 1.13). Using the guaranteed possibility measure ∆ associated with
δZ evaluated with the fuzzy set O∗, see (1.5), we claim:

Proposition 5.2 Z is O∗ is αp − possible.

We prove the proposition 5.2 as follows:
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Proof 5.1 We must prove that ∆(O∗) ≥ αp, which is equivalent to:

∀v ∈ V, µO∗(v) →g δZ(v) ≥ αp.

Using the equivalence taken from [49]:

a → b ≥ c ⇐⇒ b ≥ min(a, c),

It is equivalent to prove:

∀v ∈ V, δZ(v) ≥ min(µO∗(v), αp).

As for any v ∈ V , we have µO∗(v) = min(µO(v), αp) = min(µO∗(v), αp), it
is sufficient to prove:

∀v ∈ V, δZ(v) ≥ min(µO(v), αp).

We have:

δZ(v) = sup
(u1,u2,...,uk)∈U1×U2×···×Uk

min(min
j

µAj
(uj), µO(v))

≥ min(min
j

µAj
(u0

j), µO(v)) = min(αp, µO(v)).

We have proven:

∀v ∈ V, δZ(v) ≥ µO∗(v) = min(αp, µO(v)). (5.3)

The inequality (5.3) means that δZ is a guaranteed possibility distribution for
the proposition “Z is O∗” [67, 100].

5.1.2 Mamdani fuzzy inference system of n rules
For the case of n rules, we adopt the notations of the beginning of the section.
We must prove that ∆(O∗) ≥ α∗:

Proof 5.2 To prove the inequality ∆(O∗) ≥ α∗ is equivalent to prove that:

∀v ∈ V, µO∗(v) →g δZ(v) ≥ α∗.

Using the equivalence:

a → b ≥ c ⇐⇒ b ≥ min(a, c),
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it is equivalent to prove:

∀v ∈ V, δZ(v) ≥ min(µO∗(v), α∗).

As for any v ∈ V , we have µO∗(v) = maxi(min(µOi
(v), αpi

)), we deduce:

∀v ∈ V, µO∗(v) ≤ α∗.

The possibility distribution δZ is the disjunctive combination of the (guar-
anteed) possibility distributions δZ,i for i = 1, 2, · · · , n, where each one is
associated to the proposition “Z is O∗

i ” of Ri:

δZ(v) = max
i

δZ,i(v).

For each i = 1, . . . , n, we have:

∀v ∈ V, δZ,i(v) ≥ min(µOi
(v), αpi

) = µO∗
i
(v).

We deduce:

∀v ∈ V, δZ(v) = max
i

δZ,i(v) ≥ max(µO∗
i
(v)) = µO∗(v) = min(µO∗(v), α∗). (5.4)

Therefore, (5.4) implies that δZ is a guaranteed possibility distribution for the
proposition “Z is O∗” [67, 100].

5.2 Justifying an inferred conclusion of a Mam-
dani fuzzy inference system

In this section, for the study of explainability of a Mamdani fuzzy inference
system, we slightly change some previous notations and add some new ones.
We give an example of a Mamdani system, which will be used to illustrate all
the constructions. Then, we introduce a method for justifying each inferred
conclusions of any Mamdani system by a relevant subset of rule premises.

We denote by O1, O2, . . . , Ok the distinct linguistic terms which appear in the
n conclusions of the system i.e., Oi ̸= Oj for i ̸= j. For j = 1, 2, . . . , k, let
B(Z,Oj) be the set of rules whose conclusion is (Z, Oj):

B(Z,Oj) = {Ri | Ri = (pi, ci) such that ci = (Z, Oj)}.

For the sake of simplicity, we denote by αe the fuzzy degree of any fuzzy logic
expression e. By definition, we have αRi = αpi

. Finally, for j = 1, 2, . . . , k
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we denote by α∗
(Z,Oj) the highest activation degree among all the activation

degrees of the fuzzy rules in B(Z,Oj):

α∗
(Z,Oj) = max

Ri∈B(Z,Oj )
αRi . (5.5)

For the interpretation and considering that we have described a Mamdani
system in terms of possibility rules in the previous section, one can notice
that the statements which are modeled by any fuzzy proposition in a premise
or a conclusion use the same semantics: possible, which we note P. From
this, one can represent the interpretation of the premise p of a possibility rule
R = (p, c) by the following triplet:

Notation 2 Let p = X1 is A1 ∧ X2 is A2 ∧ · · · ∧ Xk is Ak be a premise of
a possibility rule R = (p, c) whose (guaranteed) joint possibility distribution
is δX1,X2,··· ,Xk

(relation 1.11) and a crisp input u0 = (u0
1, u0

2, . . . , u0
k). The

triplet (p, sem, d) denotes (p, P, αp), where sem = P is the semantics at-
tached to the fuzzy degree αp = δX1,X2,...,Xk

(u0
1, u0

2, . . . , u0
k) = minj(µAj

(u0
j)).

A triplet (p, sem, d) may be used to interpret the premise of other fuzzy rules
such as certainty rules [100] but with an adapted semantics and degree.
Our notations are illustrated by the following example of a fuzzy rule-based
system:

Example 5.1 We consider a Mamdani fuzzy inference system that controls
the blood glucose level of a patient with type 1 diabetes. The prediction is
based on some factors identified by [27] that may affect the blood glucose
level. The rule base is composed of thirtheen rules built from five input linguis-
tic variables: activity (Act), current-bloodsugar (Cbs), last-hypoglycemia (Lh)
and sleep-quality (Sq), water-intake (Wi) and one output linguistic variable:
future-bloodsugar (Fbs). For simplicity, we describe in the following the lin-
guistic terms associated to each linguistic variable and denote the name of the
variable by its associated linguistic variable. Nine rules are used to predict the
future blood sugar level (Low, Medium, High) according to the chosen activ-
ity (Eat, Sport, AlcoholConsumption) and the current blood sugar level (Low,
Medium, High):

• R1: If Act is Eat and Cbs is Low then Fbs is Medium,

• R2: If Act is Eat and Cbs is Medium then Fbs is High,

• R3: If Act is Eat and Cbs is High then Fbs is High,

• R4: If Act is Sport and Cbs is Low then Fbs is Low,

• R5: If Act is Sport and Cbs is Medium then Fbs is Low,
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• R6: If Act is Sport and Cbs is High then Fbs is Medium,

• R7: If Act is AlcoholConsumption and Cbs is Low then Fbs is Low,

• R8: If Act is AlcoholConsumption and Cbs is Medium then Fbs is Low,

• R9: If Act is AlcoholConsumption and Cbs is High then Fbs is Medium.
Two rules help to predict a future lower blood sugar level if the last known
hypoglycemia is recent:

• R10: If Lh is Recent and Cbs is Medium then Fbs is Low,

• R11: If Lh is Recent and Cbs is High then Fbs is Medium.
Otherwise, if the last hypoglycemia occurred a long time ago, this would not
influence the prediction. In fact, if the patient has experienced a hypoglycemia
within twelve hours, it is possible that he or she will experience another one
[27, 38].
Two other rules check respectively if the patient has not slept enough or drunk
enough water. In both cases, the blood sugar level becomes high [27]:

• R12: If Sq is Bad then Fbs is High,

• R13: If Wi is Insufficient then Fbs is High.
The conclusions of the rule base are (Fbs, Low), (Fbs, Medium) and (Fbs, High).
We have B(Fbs,Low) = {R4, R5, R7, R8, R10}, B(Fbs,Medium) = {R1, R6, R9, R11}
and B(Fbs,High) = {R2, R3, R12, R13}.
The patient’s inputs are iAct, iCbs, iLh, iSq and iWi. In our example, the patient
wants to eat: µEat(iAct) = 1, µSport(iAct) = 0 and µAlcoholConsumption(iAct) = 0.
His or her current blood sugar level is considered as very low and very improb-
ably medium: µLow(iCbs) = 0.91, µMedium(iCbs) = 0.09 and µHigh(iCbs) = 0. His
or her last hypoglycemia was five hours ago: µRecent(iLh) = 0.8 and µOld(iLh) =
0.2. He or she had a short night’s sleep: µBad(iSq) = 0.6 and µGood(iSq) = 0.4.
He or she did not drink enough water during the day: µInsufficient(iWi) = 0.6
and µSufficient(iWi) = 0.4. We obtain α∗

(Fbs,Low) = 0.09, α∗
(Fbs,Medium) = 0.91 and

α∗
(Fbs,High) = 0.6.

We continue by studying the explainability of a Mamdani fuzzy inference sys-
tem. It follows from (proposition 5.1) that the semantic justification of a
conclusion “Z is O∗

j ” by a relevant subset of rule premises leads to the justifi-
cation of the degree α∗

(Z,Oj) by the same objects. We remind that the semantics
possible of a fuzzy logic expression (conjunction of propositions) e is associ-
ated to the joint possibility distribution (relation 1.11) representing e. For
the explainability of the inference results of our fuzzy rule-based system, we
introduce a threshold η > 0, which is set according to what is modeled by the
rule-base, for the following purpose:
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Definition 5.1 A fuzzy logic expression e is relevantly possible if we have
αe ≥ η. Otherwise, if αe < η, e is said to be not relevantly possible.

Given a conclusion (Z, Oj), and the fuzzy degree α∗
(Z,Oj) (relation 5.5), we

remind that the inferred fuzzy set O∗
j is the truncation of the fuzzy set Oj at

the level α∗
(Z,Oj). Thus, by justifying α∗

(Z,Oj), we justify the inferred result. For
this purpose, we select the rule premises that justify the fuzzy degree α∗

(Z,Oj)
of a conclusion (Z, Oj) according to η:

• If α∗
(Z,Oj) ≥ η, we select the rule premises whose conclusion is (Z, Oj) and

fuzzy degree is equal to α∗
(Z,Oj). Therefore, these premises are relevantly

possible.

• If α∗
(Z,Oj) < η, we select the premises of the rules in the set B(Z,Oj). In

this case, all these premises are not relevantly possible.

The rule premises justifying the degree α∗
(Z,Oj) of a conclusion (Z, Oj) are

captured with their semantics, using Notation 2. Formally, the selection is
performed by the following formula:

J(Z, Oj) =
{(pi, P, αpi

) | Ri = (pi, ci) ∈ B(Z,Oj) s.t. αRi = α∗
(Z,Oj)} if α∗

(Z,Oj) ≥ η

{(pi, P, αpi
) | Ri = (pi, ci) ∈ B(Z,Oj)} if α∗

(Z,Oj) < η.
(5.6)

We reminded in Chapter 1 that possibility rules are combined disjunctively.
The function J selects the fuzzy rules that achieve the combination, taking into
account the threshold. If we use implicative fuzzy rules, which are combined
conjunctively, the function J could be adapted to select the fuzzy rules whose
conclusion is (Z, Oj) and activation degree is equal to the lowest one.

Example 5.2 In our example 5.1, we arbitrarily set the threshold η at 0.1.
For each conclusion, we select the rule premises justifying its associated fuzzy
degree using the relation (5.6):

• J(Fbs, Low) = {(p4, P, 0), (p5, P, 0), (p7, P, 0), (p8, P, 0), (p10, P, 0.09)},

• J(Fbs, Medium) = {(p1, P, 0.91)},

• J(Fbs, High) = {(p12, P, 0.6), (p13, P, 0.6)}.

The premises of the rules r2, r3, r6, r9 and r11 are not used to justify an infer-
ence result.
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5.3 Premise reduction functions
In this section, we define two premise reduction functions R and C that reduce
a premise p = p1 ∧ p2 ∧ · · · ∧ pk of a possibility rule R = (p, c). Such functions
rely on the threshold η.
Given the premise p and using η, we can form two sets of propositions:

• a set of propositions that are relevantly possible:

Ap =
{

pj | αpj
≥ η for j = 1, . . . , k

}
. (5.7)

• a set of propositions that are not considered as relevantly possible:

Bp =
{

pj | αpj
< η for j = 1, . . . , k

}
. (5.8)

When p is relevantly possible i.e., αp ≥ η, the set Bp is empty. When p is not
relevantly possible, each proposition pj is either in Ap or in Bp. In this case,
Ap may be empty.
In what follows, we define the functions R and C . Such functions will be
applied to the rule premises in the triplets of J(Z, Oj), see equation (5.6), in
the next section.

5.3.1 Reduction function R

Given the premise p, the function R returns the structure responsible for αp,
which is the conjunction of propositions that make p relevantly possible or
not:

R(p) =
p if αp ≥ η∧

pj∈Bp
pj if αp < η

. (5.9)

With respect to the threshold η, if p is relevantly possible, R returns p as it
is. Otherwise, if αp < η, R reduces p to the conjunction of the propositions
in the set Bp, see (5.8).
Note that αR(p) = αp: by applying R to p, the fuzzy degree of p is preserved.

If αp < η, we see that p may be reduced in another way: we can extract its
propositions that are relevantly possible (if any). This is done by the second
premise reduction function C that we introduce.

Example 5.3 In our example 5.1, let us apply R to p1, p4, p5, p7, p8, p10,
p12 and p13: R(p1) = p1, R(p4) = (Act, Sport), R(p5) = p5, R(p7) =
(Act, AlcoholConsumption), R(p8) = p8, R(p10) = (Cbs, Medium), R(p12) =
p12, and R(p13) = p13.
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5.3.2 Reduction function C

Intuitively, with respect to the threshold η and for a premise p that is not rel-
evantly possible, C returns a conjunction of propositions, called an unexpect-
edness, which is not involved in the determination of αp, although relevantly
possible.

If αp < η and there exist relevantly possible propositions of p, i.e. Ap ̸= ∅, the
function C returns the conjunction of such propositions:

C (p) =
∧

pj∈Ap

pj. (5.10)

If αp < η, each proposition pj composing p appears either in R(p) or in C (p),
according to its fuzzy degree αpj

.

Example 5.4 In our example 5.1, we apply C to p4 and p10: C (p4) = C (p7) =
(Cbs, Low) and C (p10) = (Lh, Recent).

5.4 Justification and unexpectedness of a con-
clusion (Z, Oj)

For a conclusion (Z, Oj), by applying the premise reduction function R to the
premises of the triplets in J(Z, Oj), see (5.6), we obtain a justification of the
conclusion (Z, Oj):

Justification(Z, Oj) =
{

(R(p), sem, d) | (p, sem, d) ∈ J(Z, Oj)
}

. (5.11)

The set Justification(Z, Oj) contains fuzzy logic expressions which are suffi-
cient to justify “Z is O∗

j is α∗
(Z,Oj)-possible”.

Example 5.5 For each conclusion of our Mamdani system (Example 5.1),
we form its justification:

• Justification(Fbs, Low) = {(R(p4), P, 0),(R(p5), P, 0),(R(p7), P, 0),(R(p8),
P, 0), (R(p10), P, 0.09)}, which could be interpreted as:

“The blood sugar level will not be low because the activity is
not sport or alcohol consumption, and the current blood sugar
level is not medium.”

• Justification(Fbs, Medium) = {(R(p1), P, 0.91)}. It could be in natural
language:
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“It is very possible that the blood glucose level will be medium,
as the chosen activity is eating and the current blood glucose
level is considered low.”

• Justification(Fbs, High) = {(R(p12), P, 0.6), (R(p13), P, 0.6)}. From this
extraction, a natural language explanation could be:

“It is possible that the blood sugar level will be high because he
did not drink enough water and did not get enough sleep last
night.”

If α∗
(Z,Oj) < η, we can obtain unexpectedness of (Z, Oj) by applying, when it is

possible, the reduction function C to the premise of each triplet in J(Z, Oj):

Unexpectedness(Z, Oj) =
{

(C (p), sem, αC (p)) | (p, sem, d) ∈ J(Z, Oj), d < η, Ap ̸= ∅
}
. (5.12)

The fuzzy logic expressions in Unexpectedness(Z, Oj) are not involved in the
determination of α∗

(Z,Oj). Given an unexpectedness {(p′, sem, d)}, we can form
statements such as “even if p′ is relevantly possible, Z is O∗

j is not possible”.

Example 5.6 In our example 5.1, we extract the unexpectedness of the con-
clusion (Fbs, Low). We get:

Unexpectedness(Fbs, Low) = {(C (p4), P, 0.91), (C (p10), P, 0.8)}.

This could be interpreted in natural language as:

“The blood glucose level will not be low even if the last hypoglycemia
occurred very recently and the current blood glucose level is consid-
ered very low.”

5.5 Conclusion
In this chapter, we have studied how to justify the inferred conclusions of a
Mamdani fuzzy inference system. The method for generating explanations of
fuzzy inference decisions is similar to the one proposed for possibilistic rule-
based systems (Chapter 4).
We first investigated the semantics of the total inferred conclusion of a Mam-
dani system. For a conclusion (Z, Oj) of the fuzzy system, we then justified
the highest activation degree among all activation degrees of the fuzzy rules
of the conclusion (Z, Oj) by an adequate selection of rule premises. Therefore,
we justified the inferred fuzzy set O∗

j . We then applied reduction functions to
these selected premises, in order to form two explanations: the justification of
a conclusion and its unexpectedness. Such extractions rely on the threshold
η, which states if a fuzzy logic expression is relevantly possible. Therefore the
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change of this parameter leads to variations on the content of the explanations.
It must be set according to what the rule base models.

For our explanation generation processing chain, the methods introduced in
this chapter allow us to extract the content of explanations of fuzzy inference
decisions, which will be represented in terms of conceptual graphs in Part D.
The semantics associated to each fuzzy logic expression must be captured, in
order to represent graphically the semantics associated to each represented
fuzzy value.
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PART D

Representation of explanations
of possibilistic and fuzzy

rule-based system inference
decisions

For our processing chain for producing natural language explanations (Figure
1), we propose to represent by conceptual graphs, explanations of the infer-
ence results of two rule-based systems: a possibilistic rule-based system and
a Mamdani fuzzy inference system (a fuzzy rule-based system composed of
possibility rules). We rely on the explanation extraction methods developed
for these two systems that we introduced in Chapters 4 and 5, respectively.
In the following, we begin by introducing a general method for representing
explanations (Chapter 6). Then, we extend it to represent explanations of pos-
sibilistic inference decisions (Chapter 7) and explanations of fuzzy inference
decisions (Chapter 8). For each type of rule-based system, we represent three
explanations of an inference result: its justification, its unexpectedness and a
combination of its justification and its unexpectedness. Finally, our construc-
tions are illustrated by explanations of the inference results of the rule-based
systems used in the examples in Chapters 4 and 5.
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Chapter 6

A framework for the
representation of explanations

In this chapter, we elaborate a framework for representing explanations in
terms of conceptual graphs. We begin by setting out the objects that let us
form an explanation of an inference decision of a rule-based system. We state
that an explanation is composed of:

• m + 1 statements (m ≥ 1), where one is an observed phenomenon. The
other m statements are related to this phenomenon, and can be either
justifications for the phenomenon, or unexpectedness that do not prevent
the phenomenon from occurring.

• a link between the phenomenon and the other m statements to structure
the explanation. For example, such link may be denoted “isJustifiedBy”
or “evenIf”.

The representation of an explanation in terms of conceptual graphs is achieved
as follows. Given an explanation, each of its statements is represented by a
conceptual graph. To structure the explanation, the graphs representing the
statements are nested in a root conceptual graph that contains a relation node
representing the link between the statements. The resulting nested conceptual
graph is a representation of the explanation.

In what follows, we start by giving the minimal vocabulary (Section 6.1) to
build the root conceptual graph R of the representation. Then, assuming that
the minimal vocabulary is extended in order to represent the m+1 statements
by the conceptual graphs denoted D, N1, N2, . . . , Nm, we give the interpreta-
tion of each of the graphs composing the representation (Section 6.2). Then,
in Section 6.3, we define the nested conceptual graph representing the explana-
tion. Finally, our construction is illustrated with an example of an explanation
(Section 6.4) and we conclude (Section 6.5).

109



In Chapters 7 and 8, this framework is used to represent explanations of
possibilistic inference decisions and explanations of fuzzy inference decisions
respectively. The content of the represented explanations is extracted using
the methods (justification and unexpectedness) developed in Chapters 4 and
5 respectively. From these extractions, we form the statements composing a
considered explanation and use the framework presented in this chapter to
obtain a representation of this explanation.

6.1 Vocabulary
Let us define a minimal vocabulary V0 = (TC , TR, I, τ, σ) to represent the root
conceptual graph of the representation. We remind that TC is the set of con-
cept types, TR is the set of relation symbols, I is the set of individual markers,
τ : I → TC is an individual typing function and σ is a relation symbol signa-
ture, which gives for each relation symbol of TR the concept type of each of
its arguments [34].
The minimal vocabulary contains the objects for structuring the explanation.
It has two concept types: Phenomenon and e, a relation symbol t, and m + 1
individual markers that are named Statements. For an explanation, Phe-
nomenon and e are types of statements and the relation symbol t is the link
between the statement of type Phenomenon and the other m statements of
type e. The concept type e and the relation symbol t will be set according to
the explanation that we represent.
In a conceptual graph based on V0, we may find a concept node of type
Phenomenon and marker Statement0, m concept nodes of type e and marker
Statementi for i = 1, 2, . . . , m and a relation node of type t, which will be
linked by multi-edges to the m + 1 concept nodes that we just described.

Definition 6.1 We define V0 as follows:

• TC = {e} ∪ {Phenomenon},

• TR = {t} such that arity(t) = m + 1,

• I = {Statement0, Statement1, . . . , Statementm} with card(I) = m + 1,

• τ : I → TC such that:

– Statement0 7→ Phenomenon,
– Statementi 7→ e for i = 1, 2, . . . , m.

• The signature map σ is given by:

– σ(t) = (Phenomenon, e, e, . . . , e).
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6.2 Graphs of the representation
We consider a vocabulary VE that extends the minimal vocabulary V0 in order
to construct m + 2 conceptual graphs D, N1, N2, . . . , Nm, R. The graphs D,
N1, N2, . . . , Nm represent the m + 1 statements with the following interpre-
tations:

Definition 6.2 D is a conceptual graph built on VE . It is a graphical rep-
resentation of a statement, which describes an observed phenomenon.

Definition 6.3 For i = 1, 2, · · · , m, each Ni is a conceptual graph built
on VE that represents graphically a statement related to the phenomenon
represented by D. For instance, it can be a statement that justifies the
phenomenon or an unexpectedness statement.

We define the root conceptual graph R of the representation as follows:

Definition 6.4 The graph R is the star BG (Definition 1.8) built on VE

where the unique relation node r is of type t and the m+1 concept nodes are
noted c0, c1, . . . , cm, where c0 is of type Phenomenon and c1, c2, . . . , cm are
of type e. Their individual markers are respectively Statement0, Statement1,
. . . , Statementm. The multi-edges are labeled (r, j, cj) for j = 0, 1, . . . , m.
R structures the explanation by representing the link between the observed
phenomenon D and the statements N1, N2, . . . , Nm.

We note that R can be built on the minimal vocabulary V0. An example of a
graph R is given in Figure 6.1.

isJustifiedBy

Justification: Statement1

Justification: Statement2 Justification: Statement3

Phenomenon: Statement0

1

2 3

0

Figure 6.1: The graph R, with m = 3 and where e and t are noted “Justifica-
tion” and “isJustifiedBy” respectively.

We note that R can be adapted to represent more complex explanations. For
example, R can be extended in order to represent the combination of two
explanations that have the same observed phenomenon D. This will be shown
in the next chapters.
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6.3 Representation of an explanation
We define the representation of an explanation as a nested conceptual graph
G defined by its associated tree as in [34], which is denoted Tree(G) =
(VT , UT , lT ). For our representation, the conceptual graphs D, N1, N2, . . . , Nm

are nested in the concept nodes of R:

Definition 6.5 The tree associated to the NBG G, denoted Tree(G) =
(VT , UT , lT ) is given by:
• VT = {R, D, N1, N2, . . . , Nm} is the set of nodes,
• UT = {(R, D), (R, N1), (R, N2), . . . , (R, Nm)} is the set of edges and the
node R is the root of Tree(G),
• the labels of the edges are given by lT (R, D) = (R, c0, D) and lT (R, Ni) =
(R, ci, Ni) for i = 1, 2, . . . , m.

An example of the representation of an explanation, where e and t are set is
given in Figure 6.2.

Phenomenon: Statement0

Justification: Statement1

Justification: Statement2

...
Justification: StatementmisJustifiedBy

0
1

2...
m

Figure 6.2: Representation of an explanation where e and t are noted “Justi-
fication” and “isJustifiedBy” respectively.

6.4 Example
Let us represent the following natural language explanation in terms of con-
ceptual graphs:

Alice owes 20 euros to Bob because Alice borrowed 20 euros from Bob.

In our case, the explanation is formed by two statements (m = 1). “Alice
owes 20 euros to Bob” is the observed phenomenon, which is justified by the
statement “Alice borrowed 20 euros from Bob”. To represent this explanation,
we introduce an ad hoc vocabulary V E that extends V 0. We set e and t as
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“Justification” and “isJustifiedBy” respectively. We add Alice, Bob and the
value 20 to the set of individual markers. Their respective concept types are
Human, Human and Amount. Two relation symbols of arity 3 denoted owe
and borrow are introduced. We establish the vocabulary V E as follows:

• TC = {Justification, Phenomenon, Human, Amount},

• TR = {isJustifiedBy, owe, borrow} such that arity(isJustifiedBy) = 2 and
arity(owe) = arity(borrow) = 3,

• I = {Statement0, Statement1, Alice, Bob, 20},

• τ : I → TC such that:

– Statement0 7→ Phenomenon,
– Statement1 7→ Justification,
– Alice 7→ Human,
– Bob 7→ Human,
– 20 7→ Amount.

• The signature map σ is given by:

– σ(isJustifiedBy) = (Phenomenon, Justification),
– σ(owe) = σ(borrow) = (Human, Amount, Human).

We define D = (CD, RD, ED, lD) and N1 = (CN , RN , EN , lN) as star BGs.
The graph D is composed of an unique relation node rD of type owe and three
concept nodes c1, c2 and c3 of type Human, Amount, Human and marker Alice,
20, Bob. Similarly, the graph N1 is composed of an unique relation node rN

of type borrow and three concept nodes c′
1, c′

2 and c′
3 of type Human, Amount,

Human and marker Alice, 20, Bob.
For D (resp. N1) the multi-edges are labeled (rD, 0, c1), (rD, 1, c2) and (rD, 2, c3)
(resp. (rN , 0, c′

1), (rN , 1, c′
2) and (rN , 2, c′

3)). We form a root graph R (defini-
tion 6.4) and represent the explanation using Definition 6.5. The obtained
representation is given in Figure 6.3.
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Phenomenon: Statement0

owe

Human: Alice

Human: Bob

Amount: 20
0

2
1

Justification: Statement1

borrow

Human: Alice

Human: Bob

Amount: 20
0

2
1

isJustifiedBy
0

1

Figure 6.3: Representation of an explanation composed of two statements.

6.5 Conclusion
In this chapter, we elaborated a framework to represent explanations in terms
of conceptual graphs. The representation of the explanation is composed of
m+2 conceptual graphs D, N1, N2, . . . , Nm, R, where D, N1, N2, . . . , Nm repre-
sent each of the m+1 statements composing the explanation and R represents
the structure of the explanation. The resulting representation is a nested con-
ceptual graph, which we have defined by its associated tree. Finally, we have
illustrated our construction by representing a simple natural language expla-
nation.
In the following, we rely on this framework to represent explanations of pos-
sibilistic inference decisions (chapter 7) and explanations of fuzzy inference
decisions (chapter 8). The content of these explanations is extracted using the
methods introduced in chapters 4 and 5, respectively.
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Chapter 7

Representation of explanations
of possibilistic inference
decisions

The work in this chapter has led to the publication of a conference paper: Baaj,
I., Poli, J. P., Ouerdane, W. & Maudet, N. (2021, September). Representa-
tion of Explanations of Possibilistic Inference Decisions. In 2021 European
Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU).

In this chapter, we represent graphically two explanations: the justification
and the unexpectedness of the possibility degree π∗

b(x)(u) of an output attribute
value u (see equations (4.21) and (4.22) from Chapter 4). To represent these
explanations, we rely on our framework introduced in Chapter 6. The result-
ing conceptual graphs are visual representations of the outcomes of several
analytical operations performed on the possibilistic rule base that constitute
explanations.

Using our framework presented in Chapter 6, we start by specifying, in the
context of an explanation of a possibilistic inference decision, the objects that
compose it. For both explanations (justification and unexpectedness), the ob-
served phenomenom is the possibility degree π∗

b(x)(u) of an output attribute
value u. The other statements are the possible or certain possibilistic expres-
sions captured in the considered explanation.
This chapter is structured as follows. In Section 7.1, we introduce the notion
of a possibilistic conceptual graph, which is defined as a conceptual graph
where each concept node is gifted with a degree and a semantics. Such a
graph lets us represent graphically the observed phenomenon or each of the
possible or certain possibilistic expressions captured in a justification or in an
unexpectedness.
To build the vocabulary to represent an explanation, we must first perform a
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preprocessing step based on a justification or unexpectedness (Section 7.2). In
this step, we define a possibilistic explanation query, which is a structure that
can capture a justification or an unexpectedness and determine the explana-
tion statements. Starting from a possibilistic explanation query, we establish a
mapping between the attribute and the attribute subdomain underlying each
of the propositions composing the possibilistic expressions of the explanation.
Finally, we end this section by defining two explicit possibilistic explanation
queries: one for the justification of π∗

b(x)(u) and the other for its unexpected-
ness.
Each possibilistic explanation query gives rise to a vocabulary (Section 7.3).
From this vocabulary, we construct all the graphs composing the representa-
tion of an explanation (Section 7.4). Then, the representation of the explana-
tion is achieved by nesting the possibilistic conceptual graphs representing the
statements in the root conceptual graph, according to Definition 6.5 presented
in Chapter 6.
In Section 7.5, we extend the framework in order to represent an explana-
tion, which is the combination of the justification and the unexpectedness
of π∗

b(x)(u). To build such a representation, we combine the two possibilistic
explanation queries associated respectively with justification and unexpected-
ness into a new possibilistic explanation query. Then, we define a new root
graph for structuring this explanation.
All our constructions are illustrated (Section 7.6) by the explanations ex-
tracted from the two possibilistic rule-based systems used in the examples in
Chapter 4. Finally, we conclude with some perspectives (Section 7.7).

7.1 Possibilistic conceptual graphs
We introduce possibilistic conceptual graphs that extend basic conceptual
graphs (BG) [34] by adding two additional fields to the labels of concept
nodes:

Definition 7.1 A possibilistic conceptual graph (PCG) is a BG G = (C,
R, E, l), where C is the concept nodes set, R the relation nodes set, E is
the multi-edges set and the label function l is extended by allowing a degree
and a semantics in the label of any concept node c ∈ C:

l(c) = (type(c) : marker(c)|semc, dc),

where semc ∈ {P, C} and dc ∈ [0, 1].

The definition of a star BG (Definition 1.8) i.e., a BG restricted to a relation
node and its neighbors, is naturally extended as a star PCG.
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7.2 Possibilistic explanation query
To describe the vocabulary for representing an explanation, we introduce the
notion of a possibilistic explanation query:

Definition 7.2 A possibilistic explanation query is formed by a triplet E =
(T , b, u) such that:
• T = {(p, sem, d)} is a finite set of triplets (Notation 1),
• b is an attribute of domain Db with a possibility distribution π∗

b(x) : Db →
[0, 1],
• u ∈ Db is an attribute value for which the justification or the unexpected-
ness of its possibility degree π∗

b(x)(u) is requested.

Let us set a possibilistic explanation query E = (T , b, u), where m = card(T ) ≥
1. The possibilistic explanation query E is the input for representing an ex-
planation of a possibilistic inference decision composed of m + 1 statements.
The statement that is the observed phenomenom will be constructed using the
output attribute b, the value u and the possibility degree π∗

b(x)(u). We adopt
the following notations for E :

Notation 3 We index the triplets of T as follows:

T = {v(1), v(2), · · · , v(m)} ; v(i) = (p(i), sem(i), d(i)).

For each triplet v(i) = (p(i), sem(i), d(i)) ∈ T , we set a decomposition p(i) =
p

(i)
1 ∧ p

(i)
2 ∧ · · · ∧ p

(i)
ki

where for each j = 1, 2, · · · , ki we have:
• p

(i)
j is the proposition “a

(i)
j (x) ∈ P

(i)
j ”, where a

(i)
j is an attribute with a

normalized possibility distribution π
a

(i)
j

: D
a

(i)
j

→ [0, 1], P
(i)
j ⊆ D

a
(i)
j

and x is
an item.
• A(i) = {a

(i)
1 , a

(i)
2 , · · · , a

(i)
ki

} with card(A(i)) = ki,
• S(i) = {P

(i)
1 , P

(i)
2 , · · · , P

(i)
ki

} with card(S(i)) = ki.

We take the disjoint unions:

A =
⋃̇

1≤i≤m
A(i) and S =

⋃̇
1≤i≤m

S(i).

These disjoint unions will allow us to define an application τ : S → A verifying
τ(P (i)

j ) = a
(i)
j and are necessary because the domains of two distinct attributes

a
(i)
j and a

(i′)
j′ with i ̸= i′ may have a non-empty intersection. Therefore, the

sets P
(i)
j and P

(i′)
j′ of the two propositions p

(i)
j and p

(i′)
j′ may be equal.

From the content extracted for justifying the possibility degree π∗
b(x)(u) of an

output attribute value u, see (4.21) and its unexpectedness, see (4.22), we take
the following explanation queries:
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EJ = (Justificationb(x)(u), b, u) (7.1a)
and
EU = (Unexpectednessb(x)(u), b, u). (7.1b)

From each, we will be able to construct an associated vocabulary.

7.3 Vocabulary construction
Let VE = (TC , TR, I, τ, σ) be the vocabulary associated to the explanation
query E = (T , b, u) that extends the minimal vocabulary of the framework
(Definition 6.1). In VE , the attribute b and the attributes in A are concept
types. The set {u} is an individual marker representing the attribute value
u. The sets in S are individual markers. To any triplet v(i), we associate a
relation symbol inferredv(i) of arity ki + 1. Therefore, a conceptual graph
based on VE may contain:

• a concept node of type b and individual marker {u},

• a concept node of type a
(i)
j and individual marker P

(i)
j , which gives a

representation of the proposition p
(i)
j ,

• a relation node of type inferredv(i) , which will be linked by multi-edges
to the concept node of type b and the concept nodes representing the
propositions p

(i)
1 , p

(i)
2 , · · · , p

(i)
ki

.

The vocabulary VE includes the objects used to structure the explanation, as
in the minimal vocabulary of the framework (Definition 6.1). We explicitly
define VE as follows:

Definition 7.3 The vocabulary VE is defined by:
• TC = {b} ∪ A ∪ {e} ∪ {Phenomenon} with card(TC) = 3 + ∑m

i=1 ki.
• TR = {inferredv(i)|v(i) ∈ T } ∪ {t} with card(TR) = m + 1 and such that
arity(inferredv(i)) = ki + 1 and arity(t) = m + 1.
• I = {{u}}∪S∪{Statement0, Statement1, · · · , Statementm} with card(I) =
m + 2 + ∑m

i=1 ki.
• τ : I → TC such that:

• {u} 7→ b,

• P
(i)
j 7→ a

(i)
j ,

• Statement0 7→ Phenomenon,

• Statementi 7→ e for i = 1, 2, · · · , m.
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• The signature map σ is given by:

• σ(inferredv(i)) = (b, a
(i)
1 , a

(i)
2 , · · · , a

(i)
ki

) for v(i) ∈ T ,

• σ(t) = (Phenomenon, e, e, · · · , e).

In the vocabulary VEJ associated to the explanation query EJ , see (7.1), the
concept type e is noted “Justification” and the relation symbol t is noted
“isJustifiedBy”. In the vocabulary VEU associated to EU , see (7.1), we respec-
tively note them “Unexpectedness” and “evenIf”.

7.4 Conceptual graphs based on the vocabu-
lary VE

Given a possibilistic explanation query E = (T , b, u) (Definition 7.2), let us
specify, in a PCG G = (C, R, E, l) built on the vocabulary VE , the definition
of the labels of the following concept nodes:

• for a concept node c ∈ C such that type(c) = b and marker(c) = {u}, we
put:

semc = P and dc = π∗
b(x)(u). (7.2)

• for a concept node c ∈ C such that type(c) = a
(i)
j and marker(c) = P

(i)
j ,

we take:

semc = sem(i) and dc =
π(p(i)

j ) if sem(i) = P
n(p(i)

j ) if sem(i) = C
. (7.3)

For the other concept nodes, we specify neither a degree nor a semantics.
On the vocabulary VE , let us define m+1 PCG D, N1, N2, · · · , Nm:

Definition 7.4 D is defined as the PCG reduced to a single concept node
with label (b : {u} | P, π∗

b(x)(u)).

Definition 7.5 Each Ni is the star PCG where the unique relation node
ri is of type inferredv(i) with v(i) ∈ T . The graph Ni contains ki + 1
concept nodes: c

(i)
b , c(i)

a1 , c(i)
a2 , · · · , c(i)

aki
of type b, a

(i)
1 , a

(i)
2 , · · · , a

(i)
ki

and marker
{u}, P

(i)
1 , P

(i)
2 , · · · , P

(i)
ki

, as in (7.2), (7.3). The multi-edges are labeled
(ri, 0, c

(i)
b ) and (ri, j, c(i)

aj
) for j = 1, 2, · · · , ki.
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In Figure 7.1, we give an example of Ni.

inferred

Current-bloodsugar: {Medium} | P,1

activity: {Drink-coffee} | P, 1

Future-bloodsugar: {High} | P,1

1

2

0

Figure 7.1: Example of a graph Ni.

The root graph R is constructed according to Definition 6.4 of the framework,
using the vocabulary VE .
Finally we use Definition 6.5 to obtain the representation of the explanation
of a possibilistic inference decision.

From VEJ and VEU , we can construct the graphs of the representation of the
justification and the unexpected of π∗

b(x)(u). For each explanation, the nesting
of the graphs representing its statements in their respective root graph allows
us to obtain the representation of an explanation.

7.5 Representation of the combination of the
justification and the unexpectedness

For an output attribute value u and the two possibilistic explanation queries
EJ = (TJ , b, u) and EU = (TU , b, u) associated to its justification and its unex-
pectedness respectively, see (7.1), where mJ = card(TJ) and mU = card(TU),
we can represent an explanation of m + 1 = mJ + mU + 1 statements, which
is the combination of the two explanations.
This combination will allow us to formulate new natural language explana-
tions. Given an unexpected {(p1, sem1, d1)} of an output attribute value u
and its justification {(p2, sem2, d2)}, we can express an explanation such as:
“Even if p1, b(x) is u is possible to a degree π∗

b(x)(u) because of p2”.
To construct the representation of the combination, let us re-index the triplets
in TJ from 1 to mJ , i.e., TJ = {v(1), v(2), . . . , v(mJ )} and those of TU from
mJ + 1 to m = mJ + mU i.e., TU = {v(mJ +1), v(mJ +2), . . . , v(m)}. We form a
new possibilistic explanation query EJU such that:

EJU = (TJ ∪ TU , b, u) = (T , b, u), (7.4)

where T = TJ ∪ TU is a disjoint union. From EJU , we adopt Notation 3 and
obtain A and S. We form a new vocabulary, which extends the one presented
previously (Definition 7.3) in the following sense: we substitute the concept
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type e (resp. relation symbol t) by two concept types (resp. relation symbols)
named “Justification” and “Unexpectedness” (resp. “isJustifiedBy” of arity
mJ + 1 and “evenIf” of arity mU + 1). The individual typing function is
updated to link statements to their respective types. The signature map is
given for the two new relations symbols. We define VEJU as follows:

Definition 7.6 The vocabulary VEJU is defined by:
• TC = {b}∪A∪{Phenomenon, Justification, Unexpectedness} with card(TC)
= 4 + ∑m

i=1 ki.
• TR = {inferredv(i)|v(i) ∈ T } ∪ {isJustifiedBy, evenIf} with card(TR) =
m+2 and such that arity(inferredv(i)) = ki+1, arity(isJustifiedBy) = mJ+1
and arity(evenIf) = mU + 1.
• I = {{u}}∪S ∪{Statement0, Statement1, . . . , Statementm} with card(I) =
m + 2 + ∑m

i=1 ki.
• τ : I → TC such that:

• {u} 7→ b,

• P
(i)
j 7→ a

(i)
j ,

• Statement0 7→ Phenomenon,

• Statementi 7→ Justification for i = 1, 2, . . . , mJ .

• Statementi 7→ Unexpectedness for i = mJ + 1, mJ + 2, . . . , m = mJ +
mU .

• The signature map σ is given by:

• σ(inferredv(i)) = (b, a
(i)
1 , a

(i)
2 , · · · , a

(i)
ki

) for v(i) ∈ T ,

• σ(isJustifiedBy) = (Phenomenon, Justification, . . . , Justification).

• σ(evenIf) = (Phenomenon, Unexpectedness, . . . , Unexpectedness).

We define the graphs D, N1, N2, . . . , Nm using the vocabulary VEJU according
to Definitions 7.4 and 7.5. We give a new definition of the graph R, which is
now a BG that has two relation nodes:

Definition 7.7 The graph R is composed of two relation nodes r1 of type
isJustifiedBy and r2 of type evenIf. It has m + 1 concept nodes, which
are noted c0, c1, . . . , cm, where c0 is of type “Phenomenon”, c1, c2, . . . , cmJ

are of type Justification and cmJ +1, cmJ +2, . . . , cm are of type Unexpected-
ness. Their individual markers are respectively Statement0, Statement1, . . . ,
Statementm. The multi-edges from the relation node r1 (respectively r2) to
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its neighbors are labelled (r1, j, cj) with j = 0, 1, . . . , mJ (resp. (r2, 0, c0),
(r2, j, cmJ +j) with j = 1, . . . , mU).

Finally, we use Definition 6.5 to obtain the representation of this explanation.

7.6 Examples
We illustrate our constructions with the two possibilistic rule based systems
used in the examples in Chapter 4.

7.6.1 First example: representations of the explana-
tions of the inference results of the blood sugar
control system

We start with Example 4.1, which is a possibilistic rule-based system that con-
trols the blood sugar level of a patient with type 1 diabetes. In this system, we
remind that the output values of the output attribute future-blood-sugar (fbs)
are: low, medium and high. To represent the justification of π∗

fbs(x)(low), we
first form a possibilistic explanation query EJ = (Justificationfbs(x)(low), fbs, low)
according to Definition 7.1. This allows us to elaborate the vocabulary for con-
structing the graphs of the representation (Definition 7.3):

•TC = {Future-blood-sugar, Current-blood-sugar, Activity, Justification,
Phenomenon}.
• TR = {inferred, isJustifiedBy} such that

arity(inferred) = 3 and arity(isJustifiedBy) = 2.

• I ={{low},{drunk,drink-coffee,lunch}, {medium,high}, Statement0,
Statement1}.
• τ : I → TC such that:

• {low} 7→ Future-blood-sugar,

• {drunk,drink-coffee,lunch} 7→ Activity,

• {medium,high} 7→ Current-blood-sugar,

• Statement0 7→ Phenomenon,

• Statement1 7→ Justification.

• The signature map σ is given by:

• σ(inferred) = (Future-blood-sugar, Activity, Current-blood-sugar)

• σ(isJustifiedBy) = (Phenomenon, Justification).
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We construct the graphs D, N1 and R according to Definitions 7.4, 7.5 and
6.4 respectively. By nesting D and N1 in R (Definition 6.5), we obtain the
representation of the justification (Figure 7.2).

Phenomenon: Statement0

Future-blood-sugar: {low} |P, 0.3

Justification: Statement1

inferred

Future-blood-sugar: {low} |P, 0.3

Current-blood-sugar: {medium,high} |C, 0.7

Activity: {drunk,drink-coffee,lunch} |C, 1
0

2
1

isJustifiedBy
0

1

Figure 7.2: Representation of the justification of π∗
fbs(x)(low).

Similarly, we obtain the representation of justification of the output value
medium (Figure 7.3). We remind that the extracted justification for medium
is the same as for low.

Phenomenon: Statement0

Future-blood-sugar:{medium} |P, 0.3

Justification: Statement1

inferred

Future-blood-sugar:{medium} |P, 0.3

Current-blood-sugar: {medium,high} |C, 0.7

Activity: {drunk,drink-coffee,lunch} |C, 1
0

2
1

isJustifiedBy
0

1

Figure 7.3: Representation of the justification of π∗
fbs(x)(medium).

We represent the justification of the output attribute value high using five
graphs (Figure 7.4).
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Phenomenon: Statement0

Future-bloodsugar: {high} | P, 1

Justification: Statement1

inferredFuture-bloodsugar: {high} | P, 1
Current-bloodsugar: {medium} | P, 1

Activity: {drink-coffee} | P, 1
0 1

2

Justification: Statement2

inferred Activity: {sport, walking, long-sleep} | C, 0Future-bloodsugar: {high} | P, 1 0 1

Justification: Statement3

inferred Activity: {alcohol-consumption, breakfast} | C, 0Future-bloodsugar: {high} | P, 1 10
isJustifiedBy

0
1

2

3

Figure 7.4: Representation of the justification of π∗
fbs(x)(high).

To represent the unexpectedness of π∗
fbs(x)(high), we start by establishing its

corresponding possibilistic explanation query EU = (Unexpectednessfbs(x)(high),
fbs, high) according to Definition 7.1. This allows us to elaborate a vocabu-
lary (Definition 7.3), which is as follows:

• TC = {Future-blood-sugar, Current-blood-sugar, Unexpectedness, Phe-
nomenon}.
• TR = {inferred, evenIf} such that arity(inferred) = 2 and arity(evenIf) =
2.
• I = {{high}, {low,medium}, Statement0, Statement1}.
• τ : I → TC such that:

• {high} 7→ Future-blood-sugar,

• {low,medium} 7→ Current-blood-sugar,

• Statement0 7→ Phenomenon,

• Statement1 7→ Unexpectedness.

• The signature map σ is given by:

• σ(inferred) = (Future-blood-sugar, Current-blood-sugar)

• σ(evenIf) = (Phenomenon, Unexpectedness).

We construct the graphs of the representation using Definitions 7.4, 7.5 and 6.4
and nest the graphs representing the statements in the root graph (Definition
6.5). We obtain the representation of the unexpectedness for the value high
(Figure 7.5).
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Phenomenon: Statement0

Future-blood-sugar: {high} |P, 1

Unexpectedness: Statement1

inferred

Future-blood-sugar: {high} |P, 1

Current-blood-sugar: {low,medium} |C, 1

0

1

evenIf
0

1

Figure 7.5: Representation of the unexpectedness of π∗
fbs(x)(high).

To represent the combination of the justification and the unexpectedness of
π∗

fbs(x)(high), we use the equation 7.4 to combine their two associated possi-
bilistic explanation queries into one. From this, we obtain a new vocabulary
(Definition 7.6) to represent the explanation. The graph R of this explana-
tion is elaborated with two relation nodes and five concept nodes according to
Definition 7.7. We represent R in Figure 7.6.

isJustifiedBy

Justification: Statement1

Justification: Statement2 Justification: Statement3

Phenomenon: Statement0

1

2 3

0

evenIf

Unexpectedness: Statement4

0

1

Figure 7.6: Root graph R for the representation of the combination of the
justification and the unexpectedness of π∗

fbs(x)(high).

The combination of the justification of π∗
fbs(x)(high) and its unexpectedness is

represented in Figure 7.7.
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Phenomenon: Statement0

Future-blood-sugar: {high} |P, 1

Justification: Statement1

inferred

Future-blood-sugar: {high} |P, 1

Current-blood-sugar: {medium}|P, 1

Activity: {drink-coffee}|P, 1

0
1
2

Justification: Statement2

inferred

Future-blood-sugar: {high} |P, 1

Activity: {sport, walking, long-sleep} |C, 0

0

1

Justification: Statement3

inferred

Future-blood-sugar: {high} |P, 1

Activity: {alcoholConsumption,breakfast} |C, 0

0
1

Unexpectedness: Statement4

inferred

Future-blood-sugar: {high} |P, 1

Current-blood-sugar: {low,medium} |C, 1

0

1

isJustifiedBy

0 1

2

3

evenIf

0

1

Figure 7.7: Representation of the combination of the justification and the
unexpectedness of π∗

fbs(x)(high).

7.6.2 Second example: representation of the explana-
tions of the inference results of the insulin dose
delivery system

In the following, using the example of the possibilistic rule-based system
that determine the insulin dose needed by a patient (Section 4.7), we rep-
resent graphically explanations of its inference results. The output attribute
insulin − dose (id) has three values low, medium and high. The justification
of the possibility degree of low and high are represented in Figures 7.8 and
7.9 respectively. There is no justification for π∗

id(x)(medium).
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Phenomenon: Statement0

Insulin-dose: {Low} |P, 0

Justification: Statement1

inferred

Insulin-dose: {Low} |P, 0

Planned-alcohol: {no,low} |C, 1

Planned-foods: {standard-meal,high-fat-foods} |C, 1

0

2

1

isJustifiedBy
0

1

Figure 7.8: Representation of the justification of π∗
id(x)(low).

Phenomenon: Statement0

Insulin-dose:{high} |P, 1

Justification: Statement1

inferred

Insulin-dose:{high} |P, 1

Planned-foods: {standard-meal}| P, 1

Planned-alcohol: {no} |P, 1

0

2
1

Justification: Statement2

inferred

Insulin-dose:{high} |P, 1

Current-blood-sugar: {high} |C, 0

0

1

Justification: Statement3

inferred

Insulin-dose:{high} |P, 1

Planned-foods: {no}| C, 0

Planned-sleep: {long,very-long} |C, 0

0

2
1

Justification: Statement4

inferred

Insulin-dose:{high} |P, 1

Previous-sleep-duration: {long,very-long}| C, 0

0

1

isJustifiedBy

0 1

2

3

4

Figure 7.9: Representation of the justification of π∗
id(x)(high).

The unexpectedness of π∗
id(x)(high) is represented in Figure 7.10.

127



Phenomenon: Statement0

Insulin-dose:{high} |P, 1

Unexpectedness: Statement1

inferred

Insulin-dose:{high} |P, 1

Planned-physicalactivity: {no,short} |C, 1

0

1

Unexpectedness: Statement2

inferred

Insulin-dose:{high} |P, 1

Current-blood-sugar: {low,medium} |C, 1

0

1

Unexpectedness: Statement3

inferred

Insulin-dose:{high} |P, 1

Last-hypoglycemia: {no,long-time-ago}| C, 1

Water-intake: {sufficient} |C, 0.6

0

2
1

evenIf

0 1

2

3

Figure 7.10: Representation of the unexpectedness of π∗
id(x)(high).

Finally, the combination of the justification and the unexpectedness of π∗
id(x)(high)

is represented in Figure 7.11.
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Phenomenon: Statement0

Insulin-dose: {high} | P, 1

Justification: Statement1

inferred

Insulin-dose: {high} | P, 1

Planned-foods: {standard-meal} | P, 1

Planned-alcohol: {no} | P, 1

0

2
1

Justification: Statement2

inferredinferred

Insulin-dose: {high} | P, 1

Current-blood-sugar: {high} | C, 0

0

1

Justification: Statement3

inferred

Insulin-dose: {high} | P, 1

Planned-foods: {no} | C, 0

Planned-sleep: {long,very-long} | C, 0

0

2
1

Justification: Statement4

inferred

Insulin-dose: {high} | P, 1

Previous-sleep-duration: {long,very-long} | C, 0

0

1

Unexpectedness: Statement5

inferred

Insulin-dose: {high} | P, 1

Planned-physicalactivity: {no,short} | C, 1

0

1

Unexpectedness: Statement6

inferred

Insulin-dose: {high} | P, 1

Current-blood-sugar: {low,medium} | C, 1

0

1

Unexpectedness: Statement7

inferred

Insulin-dose: {high} | P, 1

Last-hypoglycemia: {no,long-time-ago} | C, 1

Water-intake: {sufficient} | C, 0.6

0

2
1

isJustifiedBy

0 1

2

3

4

evenIf

0

1 2

3

Figure 7.11: Representation of the combination of the justification and the
unexpectedness of π∗

id(x)(high).
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7.7 Conclusion
In this chapter, we have graphically represented explanations of possibilistic
inference decisions in terms of conceptual graphs. The methods for extracting
the explanations were introduced in Chapter 4. The represented explanations
are of three types: the justification of the possibility degree of an output
attribute value, its unexpectedness, and a combination of the justification and
the unexpectedness.
For representing the explanations, we used the framework presented in Chapter
6 that we extended by introducing possibilistic conceptual graphs to represent
the statements of these explanations.We specified an input for the represen-
tation of an explanation, called a possibilistic explanation query, which allows
us to determine the statements of the explanation and to construct the vo-
cabulary associated to its representation. From this vocabulary, we built all
the needed conceptual graphs of the representation. Then, by nesting the
possibilistic conceptual graphs representing the statements in the root graph
structuring the explanation, we obtained the representation of the explanation.

The representation of the combination of the justification and the unexpect-
edness of an output value is built similarly, but another root graph has to be
defined, which links the phenomenon to the statements of the justification and
those of the unexpectedness.
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Chapter 8

Representation of explanations
of fuzzy inference decisions

In this chapter, we represent graphically two explanations of the inference
results of a Mamdani fuzzy inference system (a fuzzy rule-based system com-
posed of possibility rules): the justification of a conclusion and its unexpect-
edness. The content of these explanations is extracted using the methods
introduced in Chapter 5. As for the explanations of possibilistic inference
decisions, we represent these explanations by conceptual graphs using the
framework presented in Chapter 6. The constructions are similar to those of
the explanations of possibilistic inference decisions that were represented in
the previous chapter.
We start by setting the objects that compose an explanation of a fuzzy infer-
ence decision. For both explanations (justification and unexpectedness), the
observed phenomenon is the fuzzy degree α∗

(Z,Oj) of the considered conclusion
(Z, Oj). Depending on the explanation that is represented, the other state-
ments are the fuzzy logic expressions (conjunction of propositions) that either
compose the justification of the conclusion or its unexpectedness.
In the following, we define a fuzzy conceptual graph as a conceptual graph
where each concept node is gifted with a fuzzy degree and a semantics (Sec-
tion 8.1). Each statement of an explanation will be represented by a fuzzy
conceptual graphs.
In Section 8.2, we specify the input of our representations, which we call a
fuzzy explanation query. A fuzzy explanation query captures a justification or
an unexpectedness, in order to establish the statements of the explanation.
In Section 8.3, from a fuzzy explanation query, we define a vocabulary that
extends the one of the framework (Definition 6.1). Given this vocabulary, we
construct fuzzy conceptual graphs representing the statements of an explana-
tion and the root conceptual graph of the representation (Section 8.4). By
nesting the fuzzy conceptual graphs representing the statements in the root
conceptual graph (Definition 6.5), we obtain the representation of an expla-
nation by a nested conceptual graph.
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In Section 8.5, we represent an explanation that is a combination of the justifi-
cation and the unexpectedness of a conclusion. This representation is obtained
by combining the two fuzzy explanation queries associated respectively to the
justification of a conclusion and to its unexpectedness into one and by using
a new root graph to structure the explanation.
Finally, in Section 8.6, our constructions are illustrated by the explanations of
the inference results of the Mamdani fuzzy inference system used as example
in Chapter 5.

8.1 Fuzzy conceptual graphs
Fuzzy conceptual graphs were introduced by Morton [77] and appear in several
works e.g. [30, 96, 103]. Compared to the previous approaches, we propose a
definition of a fuzzy conceptual graph adapted to our needs, where we represent
the semantics attached to a fuzzy degree of a concept node:

Definition 8.1 A fuzzy conceptual graph (FCG) is a BG G = (C, R, E, l),
where C is the concept nodes set, R the relation nodes set, E is the multi-
edges set and the label function l is extended by allowing a degree and a
semantics in the label of any concept node c ∈ C:

l(c) = (type(c) : marker(c)|semc, dc),

where dc ∈ [0, 1].

In our context of explanations of the inference results of a fuzzy rule-based
system composed of possibility rules, we will only use the semantics P, for
possible.
We naturally extend the definition of a star BG (Definition 1.8) i.e., a BG
restricted to a relation node and its neighbors as a star FCG.
In a FCG, a concept node can represent an assertion of the form “X is A is
possible to a degree d”, where in its label, X is interpreted as a concept type,
A as an individual marker, d as a degree and P is its semantics.

8.2 Fuzzy explanation query
To describe the vocabulary of an explanation, we introduce the notion of fuzzy
explanation query:

Definition 8.2 A fuzzy explanation query is formed by a triplet E = (T ,
Z, Oj) such that:
• T = {(p, sem, d)} is a finite set of triplets (Notation 2),
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• Z is the variable of an output linguistic variable z,
• Oj ∈ Tz is a linguistic term of z such that c = (Z, Oj) is a conclusion of
the fuzzy rule-based system for which the justification or the unexpectedness
of its fuzzy degree α∗

(Z,Oj) is requested.

Let us set a fuzzy explanation query E = (T , Z, Oj). To establish the settings
of the explanation associated to E according to the framework for representing
an explanation (Chapter 6), we state that the explanation is composed of
m + 1 = card(T ) + 1 statements. The observed phenomenon is constructed
using the variable Z, the linguistic term Oj and the fuzzy degree α∗

(Z,Oj). We
adopt the following notations for E :

Notation 4 We index the triplets of T as follows:

T = {v(1), v(2), . . . , v(m)} ; v(i) = (p(i), sem(i), d(i)).

For each triplet v(i) = (p(i), sem(i), d(i)) ∈ T , we set a decomposition p(i) =
p

(i)
1 ∧ p

(i)
2 ∧ · · · ∧ p

(i)
ki

where for each j = 1, 2, . . . , ki we have:
• p

(i)
j is the fuzzy proposition (X(i)

j , A
(i)
j ), where X

(i)
j is the variable of a

linguistic variable a
(i)
j , A

(i)
j ∈ T

a
(i)
j

is one of its terms and α
p

(i)
j

is its fuzzy
degree.
• X (i) = {X

(i)
1 , X

(i)
2 , . . . , X

(i)
ki

} with card(X (i)) = ki,
• S(i) = {A

(i)
1 , A

(i)
2 , . . . , A

(i)
ki

} with card(S(i)) = ki.

We take the disjoint unions:

X =
⋃̇

1≤i≤m
X (i) and S =

⋃̇
1≤i≤m

S(i).

From these disjoint unions, we can define an application τ : S → X such that
τ(A(i)

j ) = X
(i)
j . These disjoint unions are necessary because the terms A

(i)
j

and A
(i′)
j′ associated to two variables X

(i)
j and X

(i′)
j′ with i ̸= i′ in the two

propositions p
(i)
j and p

(i′)
j′ may be equal.

Using the justification and the unexpectedness of a conclusion (Z, Oj), see
equations (5.11) and (5.12), we form two distinct explanation queries:
EJ = (Justification(Z, Oj), Z, Oj) (8.1a)
and
EU = (Unexpectedness(Z, Oj), Z, Oj) (8.1b)

8.3 Vocabulary construction
In this Section, we define a vocabulary VE = (TC , TR, I, τ, σ) associated to a
fuzzy explanation query E = (T , Z, Oj). Such vocabulary extends the vocab-
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ulary of the framework (Definition 6.1). In VE , the variable Z and those in
X are concept types. The linguistic term Oj and those in S are individual
markers. To any triplet v(i), we associate a relation symbol inferredv(i) of
arity ki + 1. Therefore, a conceptual graph constructed from VE may contain:

• a concept node of type Z and individual marker Oj,

• a concept node of type X
(i)
j and individual marker A

(i)
j , which gives a

representation of the fuzzy proposition p
(i)
j ,

• a relation node of type inferredv(i) , which will be linked by multi-edges
to the concept node of type Z and the concept nodes representing the
propositions p

(i)
1 , p

(i)
2 , . . . , p

(i)
ki

.

The vocabulary VE includes the objects for constructing the root graph that
structures the explanation. These objects are contained in the vocabulary of
the framework (Definition 6.1).

Definition 8.3 The vocabulary VE is defined by:
• TC = {Z} ∪ X ∪ {e} ∪ {Phenomenon} with card(TC) = 3 + ∑m

i=1 ki.
• TR = {inferredv(i)|v(i) ∈ T } ∪ {t} with card(TR) = m + 1 and such that
arity(inferredv(i)) = ki + 1 and arity(t) = m + 1.
• I = {Oj} ∪ S ∪ {Statement0, Statement1, . . . , Statementm} with card(I) =
m + 2 + ∑m

i=1 ki.
• τ : I → TC such that:

• Oj 7→ Z,

• A
(i)
j 7→ X

(i)
j ,

• Statement0 7→ Phenomenon,

• Statementi 7→ e for i = 1, 2, . . . , m.

• The signature map σ is given by:

• σ(inferredv(i)) = (Z, X
(i)
1 , X

(i)
2 , . . . , X

(i)
ki

) for v(i) ∈ T ,

• σ(t) = (Phenomenon, e, e, . . . , e).

We form two vocabularies VEJ and VEU , which are associated to the two ex-
planation queries EJ and EU , see (8.1).
In the vocabulary VEJ , we note the concept type e: “Justification” and the
relation symbol t: “isJustifiedBy”. Similarly, in the vocabulary VEU , we note
e and t “Unexpectedness” and “evenIf” respectively.
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8.4 Conceptual graphs based on the vocabu-
lary VE

Let us specify, in a FCG G = (C, R, E, l) built on the vocabulary VE (Defini-
tion 8.3), the definition of the labels of the following concept nodes:

• for a concept node c ∈ C such that type(c) = Z and marker(c) = Oj, we
put:

semc = P and dc = α∗
(Z,Oj). (8.2)

• for a concept node c ∈ C such that type(c) = X
(i)
j and marker(c) = A

(i)
j ,

we take:

semc = sem(i) and dc = α(X(i)
j ,A

(i)
j ). (8.3)

For the other concept nodes, we specify neither a degree nor a semantics.
On the vocabulary VE , let us define m + 1 FCG D, N1, N2, . . . , Nm as fol-
lows:

Definition 8.4 D is defined as the FCG reduced to one concept node with
label (Z : Oj | P, α∗

(Z,Oj)).

Definition 8.5 Each Ni is the star FCG where the unique relation node
ri is of type inferredv(i) with v(i) ∈ T . The graph Ni contains ki + 1 con-
cept nodes: c

(i)
Z , c

(i)
X1 , c

(i)
X2 , . . . , c

(i)
Xki

of type Z, X
(i)
1 , X

(i)
2 , . . . , X

(i)
ki

and marker
Oj, A

(i)
1 , A

(i)
2 , . . . , A

(i)
ki

, as in (8.2), (8.3). The multi-edges are labeled (ri, 0,
c

(i)
Z ) and (ri, j, c

(i)
Xj

) for j = 1, 2, . . . , ki.

To construct the graph R, we use Definition 6.4.
Finally, we use Definition 6.5 to obtain the representation of an explanation:
the graphs D, N1, N2, . . . , Nm are nested in R.

8.5 Representation of the combination of the
justification and the unexpectedness

Given a conclusion (Z, Oj) and the two fuzzy explanation queries EJ = (TJ ,
Z, Oj) and EU = (TU , Z, Oj) associated to the justification of the conclusion
and its unexpectedness respectively, see (8.1), where mJ = card(TJ) and mU =
card(TU), we can represent an explanation of m+1 = mJ +mU +1 statements,
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which is the combination of the two explanations. Such combination allows
us to form new natural language explanations such as “even if p1, Z is Oj

is possible to a degree α∗
(Z,Oj) because of p2”, where {(p1, sem1, d1)} is an

unexpectedness of a conclusion (Z, Oj) and {(p2, sem2, d2)} is its justification.
To represent the combination, let us re-index the triplets in TJ from 1 to mJ ,
i.e., TJ = {v(1), v(2), . . . , v(mJ )} and those of TU from mJ + 1 to m = mJ + mU

i.e., TU = {v(mJ +1), v(mJ +2), . . . , v(m)}. We form a new fuzzy explanation query
EJU such that:

EJU = (TJ ∪ TU , Z, Oj) = (T , Z, Oj), (8.4)

where T = TJ ∪ TU is a disjoint union. From EJU , we adopt Notation 4 and
obtain X and S. We form a new vocabulary, which is slightly different from
the one previously introduced (Definition 8.3). The concept type e and the
relation symbol t are deleted. The new vocabulary contains two new concept
types “Justification” and “Unexpectedness” and two new relation symbols:
“isJustifiedBy” of arity mJ + 1 and “evenIf” of arity mU + 1. The mappings of
the vocabulary are updated. The individual typing function links statements
to their respective types, and the signature map is given for the two new
relations symbols.

Definition 8.6 The vocabulary VEJU is defined by:
• TC = {Z}∪X ∪{Phenomenon, Justification, Unexpectedness} with card(TC)
= 4 + ∑m

i=1 ki.
• TR = {inferredv(i) |v(i) ∈ T } ∪ {isJustifiedBy, evenIf} with card(TR) =
m+2 and such that arity(inferredv(i)) = ki+1, arity(isJustifiedBy) = mJ+1
and arity(evenIf) = mU + 1.
• I = {Oj} ∪ S ∪ {Statement0, Statement1, . . . , Statementm} with card(I) =
m + 2 + ∑m

i=1 ki.
• τ : I → TC such that:

• Oj 7→ Z,

• A
(i)
j 7→ X

(i)
j ,

• Statement0 7→ Phenomenon,

• Statementi 7→ Justification for i = 1, 2, . . . , mJ .

• Statementi 7→ Unexpectedness for i = mJ + 1, mJ + 2, . . . , m = mJ +
mU .

• The signature map σ is given by:

• σ(inferredv(i)) = (Z, X
(i)
1 , X

(i)
2 , . . . , X

(i)
ki

) for v(i) ∈ T ,
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• σ(isJustifiedBy) = (Phenomenon, Justification, . . . , Justification).

• σ(evenIf) = (Phenomenon, Unexpectedness, . . . , Unexpectedness).

From the vocabulary VEJU , we define the graphs of the representation. The
FCG D, N1, N2, . . . , Nm are constructed using Definitions 8.4 and 8.5. To build
the root graph R, we use the definition of the root graph used for represent-
ing the combination of the justification and unexpectedness of the possibility
degree of an output attribute value (Definition 7.7).
Finally, we use Definition 6.5 to obtain the representation of this explanation.

8.6 Examples
To illustrate our constructions, we rely on the fuzzy rule-based system used in
the examples of Chapter 5. We remind that we extracted the justification of
the three conclusions: (Fbs, Low), (Fbs, Medium) and (Fbs, High) (Example
5.5) and the unexpectedness of (Fbs, Low) (Example 5.6).
We start with the conclusion (Fbs, Medium). To represent its justification,
we formulate a fuzzy explanation query (Definition 8.1). Then, from it, we
obtain a vocabulary, according to Definition 8.3:

• TC = {Future-blood-sugar, Current-blood-sugar, Activity, Justification,
Phenomenon}.
• TR = {inferred, isJustifiedBy} such that:

arity(inferred) = 3 and arity(isJustifiedBy) = 2.

• I = {Medium, Eat, Low, Statement0, Statement1}.
• τ : I → TC such that:

• Medium 7→ Future-blood-sugar,

• Eat 7→ Activity,

• Low 7→ Current-blood-sugar,

• Statement0 7→ Phenomenon,

• Statement1 7→ Justification.

• The signature map σ is given by:

• σ(inferred) = (Future-blood-sugar, Activity, Current-blood-sugar)

• σ(isJustifiedBy) = (Phenomenon, Justification).
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We construct the graphs D, N1 and R according to Definitions 8.4, 8.5, and
6.4) respectively, and obtain the representation of this justification (Figure
8.1) by nesting D and N1 in R (Definition 6.5).

Phenomenon: Statement0

Future-blood-sugar: Medium |P, 0.91

Justification: Statement1

inferred

Future-blood-sugar: Medium |P, 0.91

Current-blood-sugar: Low |P, 0.91

Activity: Eat |P, 1
0

2
1

isJustifiedBy
0

1

Figure 8.1: Representation of the justification of (Fbs, Medium).

Similarly, we represent the justifications of (Fbs, High) and (Fbs, Low), in
Figures 8.2 and 8.3 respectively. For (Fbs, High) the representation is com-
posed of four graphs.

Phenomenon: Statement0

Future-blood-sugar: High |P, 0.6

Justification: Statement2

inferred

Future-blood-sugar: High |P, 0.6

WaterIntake: Insufficient |P, 0.6

0

1

Justification: Statement1

inferred

Future-blood-sugar: High |P, 0.6

Sleep-quality: Bad |P, 0.6

0

1

isJustifiedBy

0 1

2

Figure 8.2: Representation of the justification of (Fbs, High).

For representing the justification of (Fbs, Low), we construct seven graphs, as
we extracted five triplets.
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Phenomenon: Statement0

Future-blood-sugar: Low |P, 0.09

Justification: Statement1

inferred

Future-blood-sugar: Low |P, 0.09

Activity: Sport |P, 0

0
1

Justification: Statement2

inferred

Future-blood-sugar: Low |P, 0.09

Activity: Sport |P, 0

Current-blood-sugar: Medium |P, 0.09

01
2

Justification: Statement3

inferred

Future-blood-sugar: Low |P, 0.09

Activity: AlcoholConsumption |P, 0

0
1

Justification: Statement4

inferred

Future-blood-sugar: Low |P, 0.09

Activity: AlcoholConsumption |P, 0

Current-blood-sugar: Medium |P, 0.09

01
2

Justification: Statement5

inferred

Future-blood-sugar: Low |P, 0.09

Current-blood-sugar: Medium |P, 0.09

0

1

isJustifiedBy

0 1

2

3

4
5

Figure 8.3: Representation of the justification of (Fbs, Low).

From the unexpectedness of (Fbs, Low), we form a corresponding fuzzy expla-
nation query (Definition 8.1). It allows us to build an associated vocabulary,
according to Definition 8.3. From this vocabulary, we construct the needed
four graphs R, N1, N2, D to represent the explanation (Figure 8.4).
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Phenomenon: Statement0

Future-blood-sugar: Low |P, 0.09

Unexpectedness: Statement2

inferred

Future-blood-sugar: Low |P, 0.09

Last-hyplogycemia: Recent |P, 0.8

0

1

Unexpectedness: Statement1

inferred

Future-blood-sugar: Low |P, 0.09

Current-blood-sugar: Low |P, 0.91

0

1

evenIf

0 1

2

Figure 8.4: Representation of the unexpectedness of (Fbs, Low).

To represent the combination of the justification and the unexpectedness of
(Fbs, Low), we combine the two associated fuzzy explanation queries into one,
according to (8.4). Then, we obtain a new vocabulary (Definition 8.6). To
represent the explanation, we construct another root graph R which contains
two relation nodes and seven concept nodes (Definition 7.4). The conceptual
graph R is represented in Figure 8.5.

isJustifiedBy

Justification: Statement1

Justification: Statement2 Justification: Statement3

Phenomenon: Statement0

Justification: Statement4

1

2 3

4

0

evenIf

Unexpectedness: Statement5 Unexpectedness: Statement6

0

1 2

Figure 8.5: Graph R to represent the combination of the justification and the
unexpectedness of (Fbs, Low).

The combination of the justification and the unexpectedness of (Fbs, Low) is
represented in Figure 8.6.
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Phenomenon: Statement0

Future-blood-sugar: Low |P, 0.09

Justification: Statement1

inferred

Future-blood-sugar: Low |P, 0.09

Activity: Sport |P, 0

0
1

Justification: Statement2

inferred

Future-blood-sugar: Low |P, 0.09

Activity: Sport |P, 0

Current-blood-sugar: Medium |P, 0.09

01
2

Justification: Statement3

inferred

Future-blood-sugar: Low |P, 0.09

Activity: AlcoholConsumption |P, 0

0
1

Justification: Statement4

inferred

Future-blood-sugar: Low |P, 0.09

Activity: AlcoholConsumption |P, 0

Current-blood-sugar: Medium |P, 0.09

01
2

Justification: Statement5

inferred

Future-blood-sugar: Low |P, 0.09

Current-blood-sugar: Medium |P, 0.09

0

1

Unexpectedness: Statement6

inferred

Future-blood-sugar: Low |P, 0.09

Last-hyplogycemia: Recent |P, 0.8

0

1

Unexpectedness: Statement7

inferred

Future-blood-sugar: Low |P, 0.09

Current-blood-sugar: Low |P, 0.91

0

1

isJustifiedBy

0 1

2

3

4
5

evenIf

0

1

2

Figure 8.6: Representation of the combination of the justification and the
unexpectedness of (Fbs, Low).
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8.7 Conclusion
In this chapter, we represented three types of explanations of the inference
results of a Mamdani fuzzy inference system in terms of conceptual graphs:
the justification of a conclusion, its unexpectedness, and a combination of the
justification and the unexpectedness. It is based on the methods developed
in Chapter 5 for justifying the inference results of a Mamdani fuzzy inference
system.
The representations of explanations of fuzzy inference decisions use the frame-
work for representing the explanations developed in Chapter 6. We introduced
a notion of a fuzzy conceptual graph that allows us to represent a fuzzy logic
expression that is a conjunction of fuzzy propositions. We specified an input
for the representation of an explanation, which is called a fuzzy explanation
query. From a fuzzy explanation query, we built a vocabulary that allows us
to construct graphs of the representation. The representation is obtained by
nesting the graphs representing the statements in the root graph structuring
the explanation, according to the framework (Chapter 6).
For representing the combination of the justification and unexpectedness of
a conclusion, we combine their associated fuzzy explanation queries into one
and form another root graph. Similarly as before, a vocabulary is formed, and
it allows us to construct the graphs representing the statements that are then
nested in the root graph.
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Conclusion and Perspectives

In this thesis, we focused on two XAI objectives: the establishment of meeting
points between KRR and ML and the elaboration of a processing chain for gen-
erating and evaluating AI explanations (Figure 1). Our explanatory paradigms
were developed for two AI systems: a possibilistic rule-based system, where
possibilistic rules encode negative information and a fuzzy rule-based system
composed of possibility rules that encode positive information.

In Part B, for the first objective, we introduced a possibilistic interface between
learning and if-then reasoning. The interface was defined by generalizing the
min-max equation system of Farreny and Prade [55], which was proposed to
develop the explanatory capabilities of possibilistic rule-based systems. From
the generalized equation system, we obtained an explicit formula for the out-
put possibility distribution, which allowed us to compute the corresponding
possibility and necessity measures. We gave a necessary and sufficient condi-
tion for the output possibility distribution to be normalized and determined,
when it is possible, minimal input solutions for the normalization. We have
defined an algorithm to rebuild the equation system when we delete a rule.
This algorithm allows us to obtain all equation subsystems of an initial equa-
tion system. Finally, we have shown that the equation system associated to a
cascade can be represented by a min-max neural network.
From our generalized equation system, we may perform a sensitivity analysis,
by setting the values of the input or output vector. This idea was originally
suggested by Farreny and Prade [55]. To establish that a possibilistic rule
base is coherent [50] i.e., given that the possibility distributions of the input
attributes are normalized, the output possibility distribution must always be
normalized, we may look for general conditions on the degrees of premises and
parameters of rules. Finally, for developing possibilistic learning methods, it
would be interesting to adapt, for our neural network, a min-max gradient
descent method [22, 69, 95]. We may also consider using the learning method
of the NEFLCASS model [79], which represents a fuzzy system with min-max
common inference and uses a heuristic learning algorithm. Another approach
for learning the parameters of the rules could be to take advantage of the fact
that the equation system has the form of a system of fuzzy relation equations
[86]. Therefore, the learning may be done by using the algorithms for the reso-
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lution of fuzzy relation equations, see [82]. Approximation methods proposed
in [31] may also be useful.

In Part C, for the processing chain, we introduced explanatory paradigms to
justify the inference results of possibilistic and fuzzy rule-based systems. For
both types of rule-based systems, we developed a method for selecting the
rule premises that justify an inference result. Then, we defined premise reduc-
tion functions for both types of rule-based systems. By applying them to the
selected premises, this allowed us to form two kind of explanations of an infer-
ence result: its justification and its unexpectedness. As our approach is based
on a threshold that has a major impact on the content of the explanations,
we need to find means to determine it for a rule base. This could perhaps be
done in an incremental way.
It would also be important to evaluate the explanations to see if they are
suitable for users [42, 75]. Evaluation protocols have been proposed for the
explanations of the results of rule-based systems e.g., [15, 101]. We could also
evaluate the impact of some of our explanatory methods on the user, for exam-
ple, when does the user need the unexpectedness ? For possibilistic rule-based
systems, does the proposition reduction methods bring benefits to the user?

In Part D, we proposed a graphical representation of an explanation. Firstly,
we gave a general method for representing explanations in terms of conceptual
graphs. Then, we extended it to represent explanations of possibilistic and
fuzzy inference decisions. For each type of rule-based system, we represented
three explanations of an inference result: its justification, its unexpectedness
and a combination of its justification and its unexpectedness. For the repre-
sentation of these explanations, we have defined two types of graphs: possi-
bilistic conceptual graphs and fuzzy conceptual graphs, where each concept
node is provided with a degree and an associated semantics. For our intro-
duced graphs, we need to extend the work on classical conceptual graphs [34]
to provide them with a query mechanism and a logical interpretation.
The representation can be extended for other explanations. For example, we
may extend it to represent explanations of the inference results of a cascade
(perhaps by nesting representations) or explanations of the results of other AI
systems.
The representation may be used by natural language generation systems to
produce natural language explanations. This could be done by adapting NLG
systems that use semantic web inputs to produce text [24, 58]. Among them,
note that the FORGe system [72], which obtained the highest score in the hu-
man evaluation of the WebNLG challenge [58], is based on the MATE graph
transducer [23] that uses a conceptual graph as input.
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Appendix A

Publications

A.1 International Peer-Reviewed Conferences
• Baaj, I., Poli, J. P., Ouerdane, W., & Maudet, N. (2021, September).

Representation of Explanations of Possibilistic Inference Decisions. In
European Conference on Symbolic and Quantitative Approaches with
Uncertainty (pp. 513-527). Springer, Cham.

• Baaj, I., Poli, J. P., Ouerdane, W., & Maudet, N. (2021, July). Min-
max inference for Possibilistic Rule-Based System. In 2021 IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE.

• Baaj, I., Poli, J. P., & Ouerdane, W. (2019). Some insights towards a
unified semantic representation of explanation for explainable artificial
intelligence. In Proceedings of the 1st Workshop on Interactive Natural
Language Technology for Explainable Artificial Intelligence (NL4XAI
2019) (pp. 14-19).

• Baaj, I., & Poli, J. P. (2019, June). Natural language generation of
explanations of fuzzy inference decisions. In 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE.

A.2 National Peer-Reviewed Conferences
• Baaj, I., Poli, J. P., Ouerdane, W., & Maudet, N. (2021, October).

Inférence min-max pour un système à base de règles possibilistes. In
Rencontres francophones sur la logique floue et ses applications (pp.
233-240). Cepadues.
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Appendix B

Programs

The repo:

https://github.com/ibaaj/
explainability-of-possibilistic-rule-based-systems

contains three programs related to the paradigms presented in this thesis:

• The program in the “equation-system” folder allows us to construct the
equation system associated to a cascade (Chapter 3).

• The program in the “example-1” folder allows us to form explanations
of the inference results of the possibilistic rule-based system used as an
example in both [17] and in Chapter 4.

• The program in the “example-2” folder allows us to form the explanations
of the inference results of the second possibilistic rule-based system used
as an example in Chapter 4.

The programs were tested with Python 3.9.8 and Mac OSX 11.5.2.
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