Keywords: resolution of protein assembly, structural biology, complexity, algorithm, graph, hypergraph, coloring

To explain the biological function of a molecular assembly (MA), one has to know its structural description. It may be ascribed to two levels of resolution: low resolution (i.e. molecular interactions) and high resolution (i.e. relative position and orientation of each molecular subunit, called conformation). Our thesis aims to address the two problems from graph aspects.

The first part focuses on low resolution problem. Assume that the composition (complexes) of a MA is known, we want to determine all interactions of subunits in the MA which satisfies some property. It can be modeled as a graph problem by representing a subunit as a vertex, then a subunit-interaction is an edge, and a complex is an induced subgraph. In our work, we use the fact that a subunit has a bounded number of interactions. It leads to overlaying graph with bounded maximum degree. For a graph family F and a fixed integer k, given a hypergraph H = (V (H), E(H)) (whose edges are subsets of vertices) and an integer s, MAX (∆ ≤ k)-F -OVERLAY consists in deciding whether there exists a graph with degree at most k such that there are at least s hyperedges in which the subgraph induced by each hyperedge (complex) contains an element of F.

The second part presents our works motivated by high resolution problem. Assume that we are given a graph representing the interactions of subunits, a finite set of conformations for each subunit and a weight function assessing the quality of the contact between two subunits positioned in the assembly. Discrete Optimization of Multiple INteracting Objects (DOMINO) aims to find conformations for the subunits maximizing a global utility function. We propose a new approach based on this problem in which the weight function is relaxed, CONFLICT COLORING. We present studies from both theoretical and experimental points of view. Regarding the theory, we provide a complexity dichotomy result and also algorithmic methods (approximation and fixed paramater tracktability). Regarding the experiments, we build instances of CONFLICT COLORING associated with Voronoi diagrams in the plane. The obtained statistics provide information on the dependencies of the existences of a solution, to parameters used in our experimental setup.

Résumé

Pour comprendre les fonctions biologiques d'un assemblage moléculaire (AM), il est utile d'en avoir une représentation structurale. Celle-ci peut avoir deux niveaux de résolution : basse résolution (i.e. interactions moléculaires) et haute résolution (i.e. position relative et orientation de chaque sous-unité, appelée conformation). Cette thèse s'intéresse à trouver de telles représentations à l'aide de graphes.

Dans la première partie, nous cherchons des représentations basse résolution.

Etant donné la composition des complexes d'un AM, notre but est de déterminer les interactions entre ses différentes sous-unités. Nous modélisons l'AM à l'aide d'un graphe : les sous-unités sont les sommets, les interactions entre elles sont les arêtes et un complexe est un sous-graphe induit. Utilisant le fait qu'une sous-unité n'a qu'un nombre limité d'interactions, nous arrivons au problème suivant. Pour un graphe F et un entier k fixés, étant donné un hypergraphe H et un entier s, MAX (∆ ≤ k)-F -OVERLAY consiste à décider s'il existe un graphe de degré au plus k tel qu'au moins s hyperarêtes de H induisent un sous-graphe contenant F (en tant que sous-graphe).

La restriction au cas s = |E(H)| est appelée (∆ ≤ k)-F -OVERLAY. Nous donnons une dichotomie de complexité (P vs. NP-complet) pour MAX (∆ ≤ k)-F -OVERLAY et (∆ ≤ k)-F -OVERLAY en fonction du couple (F, k).

Dans la seconde partie, nous nous attaquons à la haute résolution. Nous sont donnés un graphe représentant les interactions entre sous-unités, un ensemble de conformations possibles pour chaque sous-unité et une fonction de poids représentant la qualité de contact entre les conformations de deux sous-unités interagissant dans l'assemblage. Le problème Discrete Optimization of Multiple INteracting Objects (DOMINO) consiste alors à trouver les conformations pour les sous-unités qui maximise une fonction d'utilité globale. Nous proposons une nouvelle approche à ce problème en relâchant la fonction de poids, ce qui mène au problème de graphe CONFLICT COLORING. Nous donnons tout d'abord des résultats de complexité et des algorithmes (d'approximation et à paramètre fixé). Nous menons ensuite des expérimentations sur des instances de CONFLICT COLORING associées à des diagrammes de Voronoi dans le plan. Les statistiques obtenues nous informent sur comment les parmètres de notre montage expérimental influe sur l'existence d'une solution.

Mots clés: résolution d'assemblage de protéines, biologie structurale, complexité, algorithme, graphe, hypergraphe, coloration.

Chapter 1 Introduction

Structural biology context to Graph Model

Structural modeling of macromolecular assemblies. All biological phenomena (cognition, immune response, metabolism, etc) are based on structural description of macromolecular assemblies (MA): complexes of interacting molecules (subunit), namely proteins or nucleic acids [START_REF] Fersht | Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding[END_REF]. As conveyed by the simplistic lock-and-key model, the association of two or more molecules forming a complex requires these partners to be complementary. In fact, structural studies of molecules are carried out under the structure-dynamics-function paradigm, as it is the structure and the dynamics of molecules which explain biological functions. However, while genome sequencing projects have produced hundreds of millions of genes, there are only of the order of 10 5 structures in the Protein Data Bank (https://www.rcsb.org/). Thus, little is known in terms of macro-molecular interactions, at the structural level. Structures of molecules and complexes may be ascribed to two levels of resolution. At low resolution, the only information available may consists of the pairwise interactions of the subunits in the MA. A higher resolution, the relative position and orientation of the individual subunits may be known. Such models culminate with atomic resolution models, where individual atomic positions are known precisely. Because each atom has three Cartesian coordinates, such systems involve hundreds of thousands of degrees of freedom. This high dimensionality is naturally very challenging from the modeling standpoint. Structure determination is equally challenging from the experimental / structural biology standpoint. There are a number of experimental techniques which help providing structural information both at low and high resolution. We now discuss them in the context of low and high resolution models.

CHAPTER 1. INTRODUCTION

Low resolution problem. Native mass spectrometry is an experimental technique well suited to gather low resolution information. Assume that the composition of a MA, in terms of individual subunits, is known. A given assembly can be chemically split into complexes by manipulating chemical conditions, and measuring the mass of these complexes makes it possible to infer which subunits participate to each complex. In this context, the CONNECTIVITY INFERENCE (CI) problem [START_REF] Agarwal | Unveiling Contacts within Macro-molecular assemblies by solving Minimum Weight Connectivity Inference Problems[END_REF] aims at inferring plausible pairwise contacts between subunits in the MA, given the composition (in terms of subunits) of the individual complexes. Additional biological constraints can also be incorporated [CHM + 19, HMNW20]. This problem can be conveniently modeled by graphs and hypergraphs. We consider the hypergraph H whose vertices represent the subunits and whose hyperedges are the complexes. We are then looking for a graph G with the same vertex set as H whose edges represent the contacts between subunits, and satisfying some properties based on biological structure constraints. Solving CONNECTIVITY INFERENCE yields an interaction graph G = (V, E) that represents the macromolecular assembly. The vertices are the subunits (e.g. proteins) and the edges are the (plausible) connections between subunits.

However, such a graph falls short from providing high-resolution information.

High resolution problem. The main techniques to gather high resolution information are X ray crystallography, nuclear magnetic resonance (NMR), an elite club recently joined by cryo-electron microscopy. These techniques usually deliver static snapshots of molecules and complexes. Therefore, understanding dynamic processes requires building and animate models from these static complexes. A convenient way to do so consists of synergizing two types of models, namely a low resolution model for a MA, and high resolution (atomic) models for its subunits. Assume that the low resolution model provides the interaction graph of its subunits. Also assume that a finite set of high resolution conformations has been computed for each of the individual subunits. A route of choice to build a high resolution model of the MA consists of choosing and assembling individual conformations for each subunit. In doing so, we assume that a scoring function assessing the quality of the contact between two subunits positioned in the assembly is available. This problem was formalized using Discrete Optimization of Multiple INteracting Objects (DOMINO) in [START_REF] Lasker | Inferential optimization for simultaneous fitting of multiple components into a cryoem map of their assembly[END_REF], so as to pick positions for the subunits maximizing a global utility function.

Indeed, the higher the score, the better connection of an assembly in global. A way to see this as a graph problem is using coloring where a set of conformations for each subunit is represented as a color set of the corresponding vertex in the interaction graph. We are given a graph, each vertex v receives a set of possible colors C(v), and a function w that assigns a weight w((u, i), (v, j)) in R ∪ {-∞}, for each edge uv ∈ E(G), and every pair of colors i ∈ C(v), j ∈ C(u). Hence, for each coloring of the graph, every edge is assigned a weight, and the DOMINO problem consists in deciding whether there exists a coloring of G which satisfies some properties.

Outline of this thesis

In this thesis, there are two parts corresponding to the previously mentioned two problems.

In Part I, we investigate the low resolution problem. Let G and H be respectively a graph and a hypergraph defined on a same set of vertices, and let F be a fixed graph.

We say that G F -overlays a hyperedge S of H if F is a spanning subgraph of the subgraph of G induced by S (i.e. |S| = |F | and G[S] has a copy of F as a subgraph), and that G F -overlays H if it F -overlays every hyperedge of H. We exploit the fact that the number of contacts of a subunit is bounded, then the interaction graph has a bounded maximum degree. We study the computational complexity the following problem.

Given a fixed graph F and a fixed integer k, MAX (∆ ≤ k)-F -OVERLAY, is given a hypergraph H and an integer s, consists in deciding whether there is a graph with maximum degree at most k that F -overlays at least s hyperedges of H. And a particular case when s = |E(H)|, (∆ ≤ k)-F -OVERLAY consists in deciding whether there is a graph with maximum degree at most k that F -overlays H. These problems will be precisely presented in Chapter 2. We give a complete polynomial/NP-complete dichotomy for the MAX (∆ ≤ k)-F -OVERLAY problems depending on the pairs (F, k).

Then we study (∆ ≤ k)-F -OVERLAY in the next chapter which includes polynomial proofs of several pairs (F, k) in Section 4.1 but mainly in the next two sections, we aim to prove that for any graph F which is neither complete nor anticomplete, there exists a positive integer k 0 such that (∆ ≤ k)-F -OVERLAY is NP-complete for all k ≥ k 0 .

Last, we investigate (∆ ≤ k)-F -OVERLAY restricted on the class of hypergraphs called neat hypergraphs (in which any two hyperedges intersect in at most one vertex).

In Part II, the high resolution problem is studied by first introducing formally DOMINO and then giving a new approach based this problem in which the weight function is relaxed. We denote by [k] the set of integers {1, . . . , k}. In DOMINO, given a graph G, each edge uv ∈ E(G) is given an edge-weighted complete bipartite graph K k uv (which is the complete bipartite graph K k,k on vertex sets ([k], [k]) with an edgeweighted function). We denote by (u, i) the color i at vertex v in this graph, for i ∈ [k].

In the latter, the edge-weighted function is reduced by fixing a weight threshold λ.

For any edge uv ∈ E(G) with K k uv , an edge (u, i)(v, j) is then fulfilled if its weight is at least λ and conflict otherwise. And so the graph which contains all the conflict edges is called the conflict graph of the edge uv. Given a graph G and two integers k, q, and the set of conflict graphs the FULFILL COLORING problem consists in determining whether there is a coloring of G such that the number of fulfilled edges is at least q, and CONFLICT COLORING consists in deciding whether there exists a coloring of G with non-conflict edges. The particular case of these problems when k is fixed CHAPTER 1. INTRODUCTION are called FULFILL k-COLORING, CONFLICT k-COLORING. We then establish the complexity dichotomies (P vs NP-complete) for FULFILL k-COLORING, CONFLICT k-COLORING and some of their restrictions in Chapter 6. The next chapter includes some algorithms which we give an approximation one to FULFILL 2-COLORING and show a polynomial-time algorithm that solves DOMINO for graphs with bounded treewidth. Finally, in Chapter 8, we present experimental works in which we build instances of CONFLICT COLORING associated with Voronoi diagrams in the plane. The obtained statistics provide information on the dependencies of the existences of a solution, to parameters used in our experimental setup.

Preliminaries 1.3.1 Definitions

Graphs

A graph G is an order pair (V, E) where V is the finite set of elements called vertices and E is the set of edges in which each is a pair of vertices, which are also called endvertices (or endpoints). The vertex set and edge set are respectively referred to as V (G) and E(G). We denote by |G| the order of G which is the size of the vertex set |V (G)|. For an edge uv, we say u, v are adjacent to each other and are neighbors. The neighborhood of a vertex v, denoted by N G (v), or simply N (v) when G is clear from the context, is the set of vertices adjacent to v and its degree, denoted by d G (v) or simply d(v), is the cardinality of N G (v). If G is such that all its vertices have the same degree r, then G is an r-regular graph. A vertex is isolated in G if it has degree 0. The minimum and maximum degree of G are respectively denoted by δ(G) and ∆(G). Hence a graph F has no isolated vertices if and only if δ(F) ≥ 1. We denote by V i (resp. V ≤i , V ≥i) the set of vertices of G that has degree exactly (resp. at most, at least)

i in G. A graph H is a subgraph of G if V (H) ⊆ and E(H) ⊆ E(G). If E(H) = {uv ∈ E(G) | u, v ∈ V (H)},
then H is an induced subgraph of G. A connected component is an induced subgraph in which there is a path between any two vertices.

An independent set of graph is a set of pairwise non-adjacent vertices. A graph is complete (resp. anticomplete) if its vertices are pairwise adjacent (resp. non-adjacent).

The complete (resp. anticomplete) graph on p vertices is denoted by K p (resp. K p).

Since the latter has no edges, it is also called an edgeless graph. We denote by P t the path on t vertices. For v ∈ V (G), Gv is the graph obtained by removing v and its incident edges. The disjoint union of two graphs G 1 , G 2 is denoted by

G 1 + G 2 .
A matching of a graph is a set of independent edges (i.e. pairwise non-intersecting edges). A matching is maximum if it contains the largest possible of edges. A graph G is bipartite if its vertex set V = A ∪ B a partition into two disjoint sets A, B and any edge has an endvertex in A and the other in B, often write G = ((A, B), E)

A directed graph consists of a vertex set and a set of directed edges (arcs). A strongly connected component (for directed graph) is a subgraph in which there is a directed path from every vertex to every other.

Hypergraphs

Let a hypergraph H. We denote by V (H) and E(H) respectively its sets of vertices and hyperedges where a hyperedge is a subset of vertices. A hypergraph is p-uniform for some p ∈ N, if all its hyperedge have exactly p vertices. A hypergraph is neat if any two distinct hyperedges intersect in at most one vertex. We denote by K(H), the graph obtained by replacing each hyperedge by a complete graph. In other words, V (K(H)) = V (H) and E(K(H)) = {xy | ∃S ∈ E(H), {x, y} ⊆ S}. The edge-weight function induced by H on K(H), denoted by w H , is defined by w H (e) = |{S ∈ E(H) | e ⊆ S}|. In words, w H (e) is the number of hyperedges of H containing e. A hypergraph H is connected if K(H) is connected, and the connected components of a hypergraph H are the connected components of K(H).

Complexity classes P and NP

In computational complexity theory, P is one of fundamental class where any decision problem in this class can be solved in polynomial time. Many problems are known in P including the decision versions such as finding a maximum matching of a graph [START_REF] Schrijver | Combinatorial optimization. Polyhedra and efficiency[END_REF], and deciding whether two given vertices of a directed graph are in the same strongly connected component [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF].

NP is the class of decision problems in which any "yes" instance has a polynomial size certificate and certificates can be checked in polynomial time. Thus P is included in NP. The hardest problems in NP are NP-complete, a notion first introduced in 1971 by Cook and Levin [START_REF] Cook | The complexity of theorem-proving procedures[END_REF]. A decision problem is NP-hard if any NP problem can be reduced to it in polynomial time, and NP-complete if it is also in NP. As a fundamental consequence, if we can solve efficiently (i.e. in polynomial time) any NP-complete problem, so do we for all NP problem.

A problem is proven to be in P by either directly giving a polynomial time algorithm or reducing to a P problem. In this case the reduction from problem A to problem B in P gives an upper bound on the complexity of problem A. However, NP-completeness gives the lower bound of complexity because showing the NP-completeness of a problem B, we build a polynomial time reduction from a NPcomplete problem A to B which implies that B is at least as difficult as A. The first NP-complete problem, known as SAT (see section 1.3.3 below), was directly proven from the definition of NP using Turing machines.

In this thesis, we use complexity results of some typical problems for our complexity proofs. The problem INDEPENDENT SET (decision version) is given a graph and CHAPTER 1. INTRODUCTION an integer α, decides that there exists an independent set with at least α vertices.

It is proven by Karp in [Kar72], to be NP-complete even for cubic graphs (i.e. 3regular graphs). And mostly, we use 3-SAT, (PROPER) COLORING for reductions in NP-complete proofs and MATCHING for polynomial results.

Matching problems

A matching in a graph is a set of pairwise non-intersecting edges. For the sake of simplicity, we say that a vertex belongs to a matching M when it is an endvertex of an edge in M .We also say that it is matched (covered or saturated). A vertex that is not matched by M is unmatched. A matching is maximal if it is not included in any other matching; and a matching is maximum if it contains the largest possible number of edges, so obviously maximal. A matching which covers all vertices of a graph is a perfect matching. A maximal matching can easily be found using a greedy algorithm: start from an empty set M , and as long as it is possible, add to M an edge in G which is independent (i.e. has no common endvertex) with all the edges already in M . But in many problems, we need to find a maximal matching that optimizes some properties. A first example is the problem MAXIMUM MATCHING which consists in finding a maximum matching that is an a maximal matching with the maximum number of edges. A generalization of MAXIMUM MATCHING to edge-weighted graphs (that graphs equipped with a weight function on the edges) is MAXIMUM-WEIGHT MATCHING: given an edge-weighted graph, find a matching with maximum weight (i.e. sum of weights of its edges).

MAXIMUM MATCHING. This problem is a very classic optimization problem in graph theory which finds a maximum matching of given a graph. It can be solved in polynomial time. A key notion to do so, is the one of "augmenting path". Let M be a matching in a graph G. An M -alternating path is a path along which the edges are alternately in M and not in M . An M -augmenting path is an alternating path whose endvertices are unmatched. Let P be an M -augmenting path, a new matching M is obtained by replacing edges in P ∩ M by all edges in E(P) \ (E(P) ∩ M). Thus M = (M \ (E(P) ∩ M) ∪ (E(P) \ M)) = M E(P) and we have |M | = |M | + 1 (Figure 1.1). Hence, if a matching is maximum, then there is no augmenting paths. By Berge's lemma, this necessary condition is also sufficient.

Lemma 1 ([Ber57]

). M is maximum if and only if there is no M -augmenting paths. This is the main idea of many polynomial-time algorithms for finding a maximum matching. And we can describe an algorithm as follows.

1. Initialize a matching M := ∅.

2. While there exists an M -augmenting path P do M := M E(P). In the figure to the left, there is a matching M of two blue edges, the two red vertices are unmatched, and there is an M -augmenting path P (dashed red) between these two unmatched vertices. We obtain a new matching with one more edge by removing blue edges in P from M and adding the other black edges in P to M . We then get the matching depicted in blue on the figure to the right.

In bipartite graphs. MATCHING in bipartite graphs is an important special case by its practical roles in real world [START_REF] Robinson | Are medical students meeting their (best possible) match?[END_REF] and even is the first studies of MATCHING problems in general, known as Hall's (marriage) theorem. Imagine that there are two groups of men and women. Each woman has a set of men, any of which and the woman are happy to marry. The marriage theorem answers whether it is possible to match the woman and man so that everyone is happy.

Let a bipartite graph G = ((A, B), E) with |A| < |B|. If there is a matching covering all vertices of A then it is maximum. Hence, we want to answer whether there exists a matching which covers A. It is necessary that for any S ⊆ A, |S| ≤ |N (S)| where N (S) is the set of vertices that are adjacent to at least one vertex of S. The fact that this is also sufficient is known as Hall's theorem. Theorem 2 [START_REF] Hall | On representatives of subsets[END_REF]). Let G = ((A, B), E) be a bipartite graph. G has a matching covering all vertices of A if and only if |N (S)| ≥ |S| for all S ⊆ A.

When |A| = |B|, his result applies to perfect matching. In bipartite graphs, in order to find a maximum matching in the view of Lemma 1, we have to find augmenting paths. There is a simple way to solve it as follows: given G = ((A, B), E) and M an arbitrary matching, we build a directed graph D M by orienting any edge uv (for In general graphs. The idea of using augmenting path is still a key for finding a maximum matching in general graphs. As described in the algorithm above, in bi-CHAPTER 1. INTRODUCTION partite graphs, we can always orient the edges, whereas we cannot in general graphs (because of odd cycles). To solve this problem, Edmonds introduced in 1965 the term blossom. An M -alternating path P = v 0 v 1 . . . v t where t is odd, v 0 , . . . v t-1 are distinct, v 0 is unmatched by M and v t = v i for some even i < t. The cycle v i v i+1 . . . v t is an Mblossom. Observe that if there is an augmenting path v 0 v 1 . . . v i . . . v j v j+1 . . . v t where v i . . . v j is a subpath of P , and we identify all vertices in the blossom to a new vertex v B (so contract the blossom), then we have v 0 . . . v B v j+1 . . . v t which is also an augmenting path (see Figure 1.2 for an example). It is the core of Edmonds' algorithm.

u ∈ A, u ∈ B) from v to u if uv ∈ M , otherwise from u to v. Now, finding a directed path in D M from a vertex in A \ M to a vertex in B \ M if
Define G the contracted graph obtained from G by contracting an M -blossom, and M is the matching M ∩ G . We have the following.

Theorem 3. G has an M -augmenting path if and only if G has an M -augmenting path. The following problems are two of generalizations of MAXIMUM MATCHING.

v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 0 v 1 v B v 7
MAXIMUM k-MATCHING Given a graph G, a k-matching M is a subgraph of G with maximum degree at most k. Thus, a matching is the case when k = 1. MAXIMUM k-MATCHING is the problem of finding a k-matching with the maximum number of edges. There are several poly-time algorithms for finding a maximum k-matching.

An easy one is to reduce it to MATCHING. Given a graph G, we build a graph G as follows. For each vertex v ∈ V (G), we add k vertices v 1 , . . . , v k to V (G); and for each edge uv ∈ E(G), we add k 2 edges connecting the k vertices corresponding to u to those corresponding to v.

Note that this construction also work to find a subgraph of a bipartite graph G = ((A, B), E) such that all vertices in A have degree at most a and those in B have degree at most b.

MAXIMUM-WEIGHT MATCHING

Let G be a graph with edge-weighted function, the problem finds a matching with maximum weight. MATCHING is the case when the weight of every edge is 1. In MAXIMUM-WEIGHT MATCHING, the notation of augmenting path is the same which is a path alternating edges in and not in a matching and its two endpoints are unmatched. In bipartite graph, it is ASSIGNMENT PROB-LEM and typically Hugarian's method is one of algorithms solving this problem. This algorithm finds augmenting paths by using a modified shortest path search. Given a bipartite graph G = ((A, B), E) with an edge-weighted function w and a matching M . Let D M be the directed graph obtained from G by orienting each edge uv ∈ M (for u ∈ A, v ∈ B) from v to u with length l-→ vu := w uv , otherwise from u to v with length l-→ uv := -w uv . Hence, we aim to find a shortest path P from A \ M to B \ M (so P is an augmenting path) with negative length (which then increases the total weight of new matching after exchanging edges in P).

In non-bipartite graphs, the problem is much more complicated. And it can be solve by using the unweighted Edmonds' algorithm as a subroutine.

Boolean Satisfiability

Boolean Satisfiability problem (SAT) determines, given a boolean formula, if there exists an assignment which satisfies the formula. It is known as the first NP-complete problem, proved by Cook-Levin in 1970s [START_REF] Cook | The complexity of theorem-proving procedures[END_REF]. An instance of SAT is combined from variables and operators (disjunction ∨, conjunction ∧, negation ¬) with parentheses. Note that, we use both ¬x, x as the negation of a variable x).

SAT for disjuntive normal form is obvious, indeed such a formula is satisfiable if and only if at least one clause is satisfiable which is equivalent to that no variable and its negation belong to the same clause.

Every SAT formula can be transformed to an equivalent conjunctive normal form (CNF) (which may be exponentially longer). The complexity results are related to SAT for CNF formulas, which is also called CNF-SAT. Hence, when we say a SAT instance, we mean a CNF-SAT one.

A restriction of the problem is on the number of literal per clause. k-SAT is when the number of literal per clause is exactly k. As shown by Cook [START_REF] Cook | The complexity of theorem-proving procedures[END_REF], 3-SAT is NPcomplete which is the tightest possible on the number of variables per clause because 2-SAT is in P.

Theorem 4 ([ES76]

). 2-SAT is in P.

Proof sketch. We use an implication graph which is a directed graph. There are two vertices per variable (one for this variable x i and one for its negation ¬x i). Each clause gives pair of implications on its two variables (e.g. (x 1 ∨ ¬x 2) gives arcs ¬x 1 → ¬x 2 and x 2 → ¬x 1). We can build such an implication graph from any instance of 2-SAT, in polynomial time. An instance is satisfiable if and only if no variable and its negated are in the same strongly connected component of the implication graph. This can be checked in linear time [START_REF] Aspvall | A linear-time algorithm for testing the truth of certain quantified boolean formulas[END_REF].

CHAPTER 1. INTRODUCTION

According to the algorithm used in [START_REF] Aspvall | A linear-time algorithm for testing the truth of certain quantified boolean formulas[END_REF], if a 2-SAT formula is satisfiable, then we can also find in linear time an assignment satisfying it. The implication graph of a formula gives chains of implications which help to order variables and make choice to them.

3-SAT can be seen as the starting point leading to a number of problems which are NP-complete. Those first ones are Karp's list of NP-complete problems [START_REF] Karp | Reducibility among Combinatorial Problems[END_REF] and then many of studied problems are variants of 3-SAT. It is pointed out that studies on the dichotomy of (strongest possible) restrictions of a problem help understanding the boundary between P and NP-complete cases of a problem, as well as establishing the NP-completeness of problems which may be easier to reduce from, for future studies [START_REF] Horowitz | Fundamentals of computer algorithms[END_REF]. (r,k)-SAT is the class of instances of k-SAT where every variable appears in at most r clauses. It is proven in [START_REF] Tovey | A simplified NP-complete satisfiability problem[END_REF] that (3,4)-SAT is NP-complete.

Theorem 5 [START_REF] Tovey | A simplified NP-complete satisfiability problem[END_REF]). (3,4)-SAT is NP-complete.

A usual way to transform a SAT formula to another formula with restrictions on the number of literals per clause or the number of occurrences of a variable, is to add new variables in order to validate these conditions, and then add new clauses enforcing constraints on these new variables.

Proof sketch. A reduction from 3-SAT. Let Φ be a formula of this problem with n variables and m clauses. We build a formula Φ of (3,4)-SAT as follows. For each variable x which appears in r ∈ [4] clauses, create r new vertices x 1 , . . . , x r and replace the i-th occurrence of x with x i in Φ . There are m clauses.

We want that x i for i ∈ [r] are all true or all false, so that they correspond to one original variable. To enforce this, we use the following structure: i∈[r] (x i ∨ xi+1) with subscripts taken modulo r. Since each of these clauses (x i ∨ xi+1) has only two literals, we introduce a new literal y i , and add the clause (x i ∨ xi+1 ∨ ȳi) to Φ . There are 3m clauses.

We now enforce y i to be true by adding the following clauses to Φ :

• (y i ∨ a i ∨ b j) for j ∈ [3], • (d j ∨ a j ∨ b j), (d j ∨ a j ∨ bj), (d j ∨ āj ∨ b j) for j ∈ [3],
• (d1 ∨ d2 ∨ d3).

There are 13 clauses for each y i , and there are 3m such variables. Thus, Φ contains 43m clauses in total. And Φ is satisfiable if and only if so is Φ.

If repetitions of a variable in a clause is not allowed, then Theorem 5 is optimal, because (r,r)-SAT is solvable in constant time (Theorem 6 below). Note however that if clauses are allowed to have size 2 or 3, then the satisfaction problem with at most 3 occurrences per variable is NP-complete [START_REF] Tovey | A simplified NP-complete satisfiability problem[END_REF].

Theorem 6 [START_REF] Tovey | A simplified NP-complete satisfiability problem[END_REF]). (r,r)-SAT is satisfiable for any integer r.

Proof sketch. Let Φ be a formula with the set X of n variables and the set C of m clauses. We construct the bipartite graph G such that the vertex set is X ∪ C and there is an edge between variable x i ∈ X and clause c j ∈ C if and only if a literal of x i belongs to c j in Φ. Now (r,r)-SAT is satisfiable if and only if there exists a C-perfect For these mentioned problems, the two first are NP-complete and the latter three are in P. The restrictions above are particular cases of Schaefer's dichotomy theorem which states necessary and sufficient conditions, such that a finite set of relations over Boolean domain generates a SAT variant which is NP-complete or solvable in polynomial time. Schaefer's dichotomy theorem allows us to determine the complexity results of many variants of SAT problems, but it does not apply to all variants: (r, k)-SAT is a typical example because given a set of relations, there is no way to restrict the occurrences of a variable.

matching
Remark that not all problems may be either in P or NP-hard. Ladner's theorem states that, under the assumption P = NP, there exits an infinite hierarchy of classes between P and NP (called NP-intermediate, problems in NP but neither in P nor NPhard).

Graph coloring

A coloring of G is a function from V (G) to a finite set of labels, called colors.

(v) = 1 (resp. 2) if φ(x v) = true (resp. f alse).
Hence a 2-coloring can be found through a satisfying assignment of a 2-SAT formula. Alternatively, we can also find a 2-coloring by partitioning the vertex set into two subsets (bipartite graph).

However, only these two cases which are polynomial-time solvable.

Theorem 8 ([GJS76]

). 3-COLORING is NP-complete.

Proof. A reduction from 3-SAT. Given a formula Φ of this problem with n variable x i for i ∈ [n] and m clauses, we construct a graph G as follows. The vertex set V (G) contains 3 vertices t, f, b; two vertices v i , vi for each variable x i ; and six vertices y j , y 1 j , . . . , y 5 j for each clause C j . G has two types of gadgets as described in Figure 1.3: one variable gadget and a clause gadget for each clause. And, we add edges y j b, y j f for

j ∈ [m]. t f b v 1 v1 v 2 v2
v n vn First, G can be build in polynomial time. Observe that t, f, b must have 3 different colors 1, 2, 3 respectively, hence every y j has color 1 since it is adjacent to b and f . By the construct of clause gadgets, any 3-coloring of this gadget satisfies that y has color 1 if and only if there exists i ∈ [3] such that l i has color 1. Now, let c be a coloring of G, we define an assignment φ of Φ by taking φ(x i) = true

(resp. f alse) if c(v i) = 1 (resp.
2). And so φ satisfies Φ.

Let φ be an assignment satisfying Φ, a coloring c of G is defined by taking c(v i) = 1

(resp. 2) if φ(x i) = true (resp. f alse).
Since there is at least one true literal in each clause, then the corresponding vertex has color 1 which implies that the output vertex is colored 1 by c. Thus, c is a 3-coloring of G.

In 1941, Brooks gave a relationship between the maximum degree of a graph and its chromatic number.

Theorem 9 ([Bro41]

). Let G be a connected graph, then χ(G) ≤ ∆(G), except for G an odd cycle or a complete graph, χ(G) = ∆(G) + 1.

According to this theorem, every connected cubic graph except K 4 is 3-colorable.

However, it becomes hard for graphs of maximum degree 4.

Theorem 10 ([Hol81]

). 3-COLORING is NP-complete on 4-regular graphs.

We then obtain that k-COLORING is NP-complete for any k ≥ 4 by an inductive proof whose base case is 3-COLORING. From a graph G of (k -1)-COLORING, we can construct a graph G of k-COLORING by adding a universal vertex (this new vertex connects to every vertex of G). Then, it must be colored by a new color k. Therefore,

χ(G) = χ(G) + 1. Corollary 11. k-COLORING is NP-complete for k ≥ 3.
A graph is planar if it can be drawn in the plane without any edge crossing. Related to these graphs, Euler's formula is a very well-known equation which relates the number of vertices, edges and faces in planar graphs, respectively denoted by n, m, f :

n -m + f = 2.
Since a face is bound by at least 3 edges and any two adjacent faces share an edge, then 3f ≥ 2m. Using Euler's formula, we obtain 3n -6 ≥ m as a corollary. Moreover, gathering with the following fact that the total degree of vertices is twice the number of edges, v∈V (G) d(v) = 2m, as a consequence there is a vertex in G of degree at most 5. The Five Color Theorem was found down in 1890 by P.J. Heawood.

Theorem 12 [START_REF] Heawood | Map colour theorem[END_REF]). Every planar graph is 5-colorable.

v v 2 v 3 v 4 v 5 v 1 v v 2 v 3 v 4 v 5 v 1 Figure 1.4: Example of coloring vertex v. v
is not yet colored and 5 neighbors of v have different colors (left). Since there is no path between v 2 and v 4 in the induced subgraph by yellow and blue, then recolor v 4 (and yellow vertices in the subgraph) blue and color v yellow (right).

Proof. By induction on the number of vertices.

First, it is obvious to color a graph with at most 5 vertices using 5 colors. Suppose that n > 5. Assume that v is a vertex of degree at most 5. By induction, we know that Gv is 5-colorable.

If d(v) ≤ 4, then we color v with a color different from its neighbors, which is a 5coloring of G. If d(v) = 5, and if its neighbors are colored with at most 4 colors, then it is easy to color v. Assume now the neighbors of v, say v 1 , . . . , v 5 (in clockwise order) have colors 1,. . . ,5, respectively. Let G ij be the induced subgraph of G on vertices having colors i, j. If there is no path from v 1 to v 3 in G 13 , then we can change the color of v 1 to 3, and switch colors of vertices in the same component as v 1 in G 13 , so we can give color 1 to vertex v.

If v 1 , v 3 are in the same connected component of G 13 , then there is no path between v 2 to neither v 4 nor v 5 because of the planarity of G (Figure 1.4). Hence, we can apply the same reasoning as the previous case.

While the Five Color Theorem is rather simple, it is not the case for the Four Color Theorem. It was first proven by Appel and Haken around a century later, in 1976.

Theorem 13 ([AH89, AH77a, AH77b]). Every planar graph is 4-colorable.

In 1996, [START_REF] Robertson | Efficiently fourcoloring planar graphs[END_REF] presented a quadratic-time algorithm finding a 4-coloring on planar graphs, they also gave a linear-time algorithm which finds a 5-coloring on these graphs. One year later, they improved the proof of the Four Color Theorem shown by Appel and Haken, with a simpler and clearer proof. In spite of that, 3coloring on planar graphs is NP-complete. Namely, Theorem 14 [START_REF] Dailey | Uniqueness of colorability and colorability of planar 4regular graphs are NP-complete[END_REF]). 3-COLORING is NP-complete on planar 4-regular graphs.

There are many other studies of the coloring problem on particular families of graphs: dense graphs [START_REF] Edwards | The complexity of colouring problems on dense graphs[END_REF], and recently graphs of H-free subgraphs [HKL + 10, BCM + 18, GJPS17].

Reasearchers have also generalized the coloring problem. For example, PRECOL-ORING EXTENSION where a coloring c is given on a subset of vertices of a graph G and decides whether c can be extended to a coloring of G [START_REF] Bodlaender | A linear time algorithm for finding treedecompositions of small treewidth[END_REF] (in coloring problem the precoloring c is empty), LIST COLORING where each vertex is given a list of admissible colors and the coloring must give to each vertex a color from its list [START_REF] Golovach | A survey on the computational complexity of colouring graphs with forbidden subgraphs[END_REF] (in k-coloring problem the list of each vertex is [k]), or H-coloring which is a coloring with respect to a fixed graph H whose vertices represent colors and edges give the binary relation of allowed neighboring colors [START_REF] Pavol | On the complexity of H-coloring[END_REF] (in k-coloring problem we have H = K k). In Part II of this thesis, we investigate another generalization of coloring problem, CONFLICT COLORING.

Part I

Overlaying a hypergraph with a graph

Chapter 2

Introduction

Approaches of Connectivity Inference problem

In order to obtain the low resolution structure of molecule-macro assemblies, the following problem, known as CONNECTIVITY INFERENCE arose. The list of subunits is known, and given a set of complexes, one has to determine the plausible contacts between subunits of an assembly. This problem can be modeled using a hypergraph: each of its vertices represents a subunit and a hyperedge represents a complex. Then the aim is to find a graph G on the same vertex set whose edges associate to contacts between subunits and so must satisfy (i) some local properties for every complex (i.e. hyperedge), and (ii) some other global properties.

For example, consider the following properties: (i) the subset of vertices of every hyperedge must form a connected subgraph of G and (ii) there is an upper bound on the degree of any vertex. The first property comes from the fact that the complexes obtained (e.g. by native mass spectrometry) are connected components of a given assembly. The second property is deduced from a limited number of contacts of a subunit to the other in an assembly in practice. In our example in Figure 2.1, we use the first property and assume that the degree of every vertex does not exceed 3.

Consider a hypergraph H whose hyperedges are

{v 1 , v 2 , v 3 }, {v 2 , v 4 , v 5 }, {v 3 , v 4 , v 5 },
and {v 4 , v 5 , v 6 , v 7 } as depicted in Figure 2.1 (left) in which a vertex labeled i represents v i . The graph G described in Figure 2.1 (right) satisfies the previous properties: the induced subgraph of G on every hyperedge is connected and the maximum degree of G is 3.

We first focus on the local properties. They are usually modeled by a (possibly infinite) family F of admissible graphs to which each complex must belong: to this As said previously, the graph sought will also have to satisfy some global constraints. Since in a macro-molecular assembly the number of contacts is small, the first natural idea is to look for a graph G with the minimum number of edges. This leads to the MIN-F -OVERLAY problem: given a hypergraph H and an integer m, decide if there exists a graph G F-overlaying H such that |E(G)| ≤ m.

A typical example of a family F is the set of all connected graphs, in which case M(F) is the set of all trees. In In [CHM + 17, CHM + 19], Cohen et al. presented a dichotomy regarding the polynomial vs. NP-hard status with respect to the considered family F. Roughly speaking, they showed that the easy cases one can think of (e.g. when edgeless graphs of the right sizes are in F, or if F contains only cliques) are the only families giving rise to a polynomial-time solvable problem: all others are NP-complete. They also considered the FPT/W[1]-hard dichotomy for several families F.

Overlaying graph with bounded maximum degree

In this part of the thesis, we consider the variant in which the additional constraint is that G must have a bounded maximum degree: this constraint is motivated by the context of structural biology, since a subunit (e.g. a protein) cannot be connected to many other subunits. This yields the following problem for any family F of graphs and an integer k.

(∆ ≤ k)-F -OVERLAY Input: A hypergraph H. Question: Does there exist a graph G F-overlaying H such that ∆(G) ≤ k ?
We denote a graph G F-overlaying H with maximum degree at most k by (F, H, k)graph (resp. (F, H, k)-graph) for F is a graph family (resp. F a graph).

And we call over F (H, G) the number of hyperedges of H that are F-overlaid by G.

A natural generalization is to find over F (H, k), the maximum number of hyperedges F-overlaid by a graph with maximum degree at most k.

MAX (∆ ≤ k)-F -OVERLAY

Input: A hypergraph H and a positive integer s.

Question: Does there exist a graph G such that ∆(G) ≤ k and over F (H, G) ≥ s?

Observe that there is an obvious reduction from

(∆ ≤ k)-F -OVERLAY to MAX (∆ ≤ k)-F -OVERLAY (by setting s = |E(H)|).

Overview of this part

Our contribution is to provide the dichotomy of complexity (P vs NP) for MAX (∆ ≤ k)-F -OVERLAY and (∆ ≤ k)-F -OVERLAY considering pairs (F, k). We mainly consider the case when the family F contains a unique graph F . We abbreviate (∆ ≤ k)-{F }-OVERLAY and MAX (∆ ≤ k)-{F }-OVERLAY to (∆ ≤ k)-F -OVERLAY and MAX (∆ ≤ k)-F -OVERLAY, respectively. By definition those two problems really make sense only for |F |-uniform hypergraphs i.e. hypergraphs whose hyperedges are of size |F |. Therefore, we work often with hypergraphs that are uniform, without specifying it.

Remark 16. If F is a graph with maximum degree greater than k, then solving (∆ ≤ k)-F -OVERLAY or MAX (∆ ≤ k)-F -OVERLAY is trivial as the answer is always 'No'. So we only study the problems when ∆(F) ≤ k.

If F is an anticomplete graph (i.e. with no edges), then MAX (∆ ≤ k)-F -OVERLAY is also trivial, because for any hypergraph H, the anticomplete graph on V (H) vertices F -overlays H. Hence the first natural interesting cases are the graphs with one edge which in Section 2.4, we present the complete dichotomy for this graph family.

Then, in Chapter 3, we give a complete polynomial/NP-complete dichotomy for the MAX (∆ ≤ k)-F -OVERLAY problems.

In Chapter 4, we investigate the complexity of (∆ ≤ k)-F -OVERLAY problem. We believe that each such problem is either polynomial-time solvable or NP-complete.

However the dichotomy seems to be more complicated than the one for MAX (∆ ≤ k)-F -OVERLAY. So we first exhibit several pairs (F, k) such that (∆ ≤ k)-F -OVERLAY is polynomial-time solvable, while MAX (∆ ≤ k)-F -OVERLAY is NP-complete in Section 4.1. In the next two sections, we present the NP-complete results of (∆ ≤ k)-F -OVERLAY problem which we prove that except when F is complete or anticomplete, if k is large enough (with respect to F), then (∆ ≤ k)-F -OVERLAY is NP-complete.

Remark 17. Our aim is to prove that (∆ ≤ k)-F -OVERLAY is NP-complete under some assumptions on k and F . Observe that, given a graph G, we can easily check whether G F -overlays H or not in polynomial-time solvable, thus the problem is clearly in NP. Therefore, we only need to prove that the problem is NP-hard.

Warm up: graphs with one edge

In this section, we consider graphs with one edge which for each on p ≥ 2 vertices, we denote by O p , then we establish the following dichotomy theorem.

Theorem 18. Let k ≥ 1 and p ≥ 2 be integers. If p = 2 or if k = 1 and p = 3, then MAX (∆ ≤ k)-O p -OVERLAY and (∆ ≤ k)-O p -OVERLAY are polynomial-time solvable. Otherwise, they are NP-complete.

Let p ≥ 2, and H be a p-uniform hypergraph. Consider the edge-weighted graph (K(H), w H). For every matching M with at least one edge of this graph, let G M = (V (H), M). Every hyperedge O p -overlaid by G M is a superset of at least one edge of M and at most p 2 edges of M . We thus have the following:

Observation 1. For every matching M of K(H), we have: Proof. We reduce 3-SAT to (∆ ≤ 1)-O 4 -OVERLAY.

1 p 2 w H (M) ≤ over Op (H, G M) ≤ w H (M), (
We shall need the following gadget hypergraph

J = J(A, B). V (J) = A ∪ B with |A| = 3 and |B| = 4 and E(J) = {A ∪ {b} | b ∈ B}.
Claim 21.1. Every (O 4 , J, 1)-graph contains exactly one edge with both endvertices in A.

Proof of claim:

Let G be an (O 4 , J, 1)-graph. Each hyperedge of J contains an edge of G, which necessarily has an endvertex in A. Since ∆(G) ≤ 1, G has at most three edges with an endvertex in A. Since J has four hyperedges, there is an edge of G contained in two hyperedges of J. The two endvertices of this edge are in A.

Let Φ be an instance of 3-SAT with m clauses C 1 , . . . , C m on n variables x 1 , . . . , x n .

Let H = H(Φ) be the 4-uniform hypergraph constructed as follows (see Figure 2

.3). CHAPTER 2. INTRODUCTION v u v w w w w w B z 1 t 1 1 t 1 2 t 1 3 s 1 u 1 v 1 s 4 u 4 v4 s 5 u 5 v5
Figure 2.3: The construction in the reduction. In a variable gadget (left), a blue (resp. red) edge corresponds to that the variable is true (resp. f alse). And an example of clause gadget of C 1 = (x 1 ∨ x4 ∨ x5) (right) with three edges u 1 v 1 , u 4 v4 , u 5 v5 which corresponds to an assignment φ such that φ(x 1) = φ(x 4) = φ(x 5) = true.

-For each variable x i , we create the variable gadget V G i as follows.

Its vertex set is {u i , v i , vi , w i , wi , w i , w i , u i }∪B i , with |B i | = 4. We add the hyper-

edges of J({u i , v i , vi }, B i), J({v i , w i , w i }, B i), J({v i , wi , w i }, B i), and J({u i , w i , w i }, B i).
-For each clause C j = 1 ∨ 2 ∨ 3 , we create the clause hypergraph CG j . Its vertex

set is {z j } ∪ 3 k=1 {s k j , t k j , u k j , v k j }. Set Z j = {t 1 j , t 2 j , t 3 j , z j } and for k ∈ {1, 2, 3}, set T k j = {s k j , t k j , u k j , v k j }.
The hyperedge set of CG j is {Z j , T 1 j , T 2 j , T 3 j }. Then for each k ∈ {1, 2, 3}, we identify u k j and v k j with u i and v i if k = x i and with u i and vi if k = xi .

Let us prove that there is an (O 4 , H, 1)-graph if and only if Φ is satisfiable. The general idea of the proof is that the variable gadget enforces only one of edges u i v i , u i vi to belongs G and that u i v i ∈ E(G) (resp. u i vi ∈ E(G)) if and only if the corresponding variable x i is true (resp. f alse), thus the appearance of such an edge in a clause gadget implies that there is a true literal in the clause.

Assume first that there is an (O 4 , H, 1)-graph G.

Claim 21.2. For each 1 ≤ i ≤ n, G contains either the edge u i v i or the edge u i vi . Moreover, for each x ∈ {u i , v i , v i } there is some x ∈ V G i such that x and x are adjacent in G.

Proof of claim: Since V G i contains J({u i , w i , w i }, B i), by Claim 21.1, G contains an edge e with both endvertices in {u i , w i , w i }. Assume that e is incident to w i . Now V G i contains J({v i , w i , w i }, B i). So, by Claim 21.1, G contains an edge e with both endvertices in {v i , w i , w i }. Since ∆(G) ≤ 1, e is not incident to w i , so e = v i w i . Now V G i contains J({u i , v i , vi }, B i). So, by Claim 21.1, G contains an edge e with both endvertices in {u i , v i , vi }. This edge is not incident to v i , so e = u i vi . Similarly, we get that G contains vi wi and u i v i if e is incident to w i .

In view of this claim, one defines the truth assignment φ by φ(

x i) = true if u i v i ∈ E(G) and φ(x i) = f alse if u i vi ∈ E(G).
Let us prove that it satisfies Φ. Consider a clause C j = 1 ∨ 2 ∨ 3 and its corresponding clause gadget CG j . If there is none of u k j v k j in E(G) (for all k ∈ {1, 2, 3}), that means both u k j and v k j are incident to an edge which is incident to a vertex in the variable gadget it they belongs to, T k j must be O 4 -overlaid by the edge s k j t k j . So, t k j (for all k ∈ {1, 2, 3}) has degree one in G. However, the hyperedge Z j is O 4 -overlaid by z j t k j or t k j t k j for k = k and k, k ∈ {1, 2, 3}, which implies that there is one of vertices t k j which is of degree one in G[Z j]. It is a contradiction, thus there is an edge u k j v k j ∈ E(G) (for some k ∈ {1, 2, 3}). Hence φ(k) = true. Hence φ satisfies Φ.

Conversely, assume φ is an assignment satisfying Φ. Let G be the graph with vertex set V (H) and whose edge set is constructed as follows. For every 1 ≤ i ≤ n, We reduce 3-SAT to (∆ ≤ 2)-O 3 -OVERLAY WITH HANDICAP. Let Φ be an instance of 3-SAT with m clauses C 1 , . . . , C m on n variables x 1 , . . . , x n . We construct a 3uniform hypergraph H as follows (see Figure 2.4 for an example).

add {u i v i , w i w i , u i w i , wi vi } to E(G) if φ(x i) = true and {u i vi , wi w i , u i w i , w i v i } to E(G) if φ(x i) = f alse. For every clause C j = 1 ∨ 2 ∨ 3 ,
-For every variable x i , we create a variable gadget V G i composed of vertices

a 1 i , . . . , a p i i , α 1 i , . . . , α p i i , b 1 i , . . . , b p i i , β 1 i , . . . , β p i i , z 1 i , . . . , z p i i , and ζ 1 i , . . . , ζ p i i
where p i is the number of clauses where x i appears. Then, for every j ∈ [p i], we create the following hyperedges (additions in superscripts are modulo p i , and we write p i instead of 0):

h 1 i,j = {z j i , a j i , α j i }, h 2 i,j = {z j i , b j i , β j i }, h 3 i,j = {a j i , z j i , b j i }, h 4 i,j = {z j i , b j i , ζ j i }, h 5 i,j = {b j i , ζ j i , a j+1 i }, h 6 i,j = {ζ j i , a j+1 i , z j+1 i }.
Moreover, all vertices z 1 i , . . . , z p i i , and ζ 1 i , . . . , ζ p i i are handicap vertices. -For every clause C j , we create a clause gadget CG j composed of vertices c 1 j , . . . , c 5 j , and, for every p ∈ [5], of the hyperedge {c p j , c p+1 j , c p+3 j } (additions are modulo 5, and we write 5 instead of 0). The vertices c 4 j and c 5 j are handicap vertices.

= (x 1 ∨ x 2 ∨ x3) ∧ (x2 ∨ x 3 ∨ x 4).
The dotted lines join two vertices that are identified. The thick red lines indicate the handicap vertices.

-Finally, for every clause C j = 1 ∨ 2 ∨ 3 , if p = x i (resp. p = xi) for some p ∈ {1, 2, 3}, then we identify the vertex c p j of CG j with the vertex α j i (resp.

β j i) of V G i .
The general idea of the proof is the following. There are only two possibilities to overlay a variable gadget V G i (either by a set T i or a set F i of edges) (see Claim 22.1). This two possibilities correspond to the two possible values (true or f alse) of the variable x i . Then a clause gagdet CG j imposes that not all literals of the clauses are assigned f alse with this correspondence.

Assume first that there is an (O 3 , H, 2)-graph G such that all handicap vertices have degree at most 1.

For i ∈ [n], let T i = p i j=1 {z j i a j i , b j i β j i , b j i ζ j i } and F i = p i j=1 {a j i α j i , z j i b j i , ζ j i a j+1 i }. Claim 22.1. Let i ∈ [n].
We have the following:

(i) z j i ζ j i / ∈ E(G) and ζ j i z j+1 i / ∈ E(G), j ∈ [m]. (ii) Either T i ⊆ E(G) or F i ⊆ E(G).
Proof of claim: (i) Assume for a contradiction that z j i ζ j i ∈ E(G). Since z j i and ζ j i are handicap vertices, the hyperedges h 2 i,j ,h 3 i,j , h 5 i,j must be O 3 -overlaid by the edges b j i β j i ,

a j i b j i , b j i a j+1 i
, respectively, contradicting the fact that b j i has degree 2 in G.

Similarly, if ζ j i z j+1 i ∈ E(G), then the hyperedges h 5 i,j ,h 1 i,j+1 , h 3 i,j+1 must be O 3 -overlaid by the edges b j i a j+1 i , a j+1 i α j i , a j+1 i b j+1 i
, respectively, a contradiction.

(ii) By (i) the hyperedge h 4 i,j is O 3 -overlaid by z j i b j i or ζ j i b j i . In the first case z j i b j i ∈ E(G), since z j i is a handicap vertex, the hyperedge h 6 i,j-1 must be O 3 -overlaid by ζ j-1 i a j i , and so hyperedge

h 3 i,j-1 is O 3 -overlaid by z j-1 i b j-1 i .
And by induction, we get that m j=1 {ζ j i a j+1 i , z j i b j i } ⊆ E(G). Since the z j i are handicap vertices, the hyperedge h 1 i,j is O 3 -overlaid by a j i α j i . Hence F i ⊆ E(G). In the second case

ζ j i b j i ∈ E(G), a symmetrical argument shows T i ⊆ E(G).
We define the truth assignment φ by φ(

x i) = true if T i ⊆ E(G) and φ(x i) = f alse if F i ⊆ E(G)
. This is well-defined by Claim 22.1 and the fact that E(G) cannot contain both T i and F i because it has maximum degree 2. Now, for any j ∈ [m], there exists p ∈ {1, 2, 3} such that c p j has degree 2 in G[CG j] (If not, then there are at most 2 edges. Hence there is a vertex c p j of degree 0, and thus there is a hyperedge containing c p j which is not overlaid). Therefore, it has degree 0 in the variable gadget c p j belongs to. By our definition of φ, we get that φ(p) = true. Hence φ satisfies Φ.

Suppose now that φ : {x 1 , . . . , x n } → {true, f alse} is an assignment satisfying Φ.

Let us first select a set of edges in the variable gadgets. For every i ∈

[n], if φ(x i) = true, then select edges {z j i , a j i }, {b j i , β j i } and {ζ j i , b j i } for all j ∈ [p i]. If φ(x i) = f alse, then select edges {z j i , b j i }, {a j i , α j i } and {ζ j i , a j+1 i } for all j ∈ [p i] (additions are modulo p i)
. Let E 1 be the set of selected edges, and

G 1 = (V (H), E 1). Observe that G 1 O 3 -
overlays the hyperedges of all variable gadgets: for every i ∈ [n] and every j ∈ [p i],

h 1 i,j contains the edge {z j i , a j i } if φ(x i) = true, and the edge

{a j i , α j i } otherwise. -h 2 i,j contains the edge {b j i , β j i } if φ(x i) = true, and the edge {z j i , b j i } otherwise. -h 3 i,j contains the edge {z j i , a j i } if φ(x i) = true, and the edge {z j i , b j i } otherwise. -h 4 i,j contains the edge {ζ j i , b j i } if φ(x i) = true, and the edge {z j i , b j i } otherwise. -h 5 i,j contains the edge {ζ j i , b j i } if φ(x i) = true, and the edge {ζ j i , a j+1 i } otherwise. -h 6 i,j contains the edge {z j+1 i , a j+1 i } if φ(x i) = true, and the edge {ζ j i , a j+1 i } oth- erwise.
Moreover the vertices z 1 i , . . . , z p i i , and ζ 1 i , . . . , ζ p i i have degree 1 in G 1 and the vertices α j i have degree 0 in G 1 if and only if φ(x i) = true and the vertices β j i have degree 0 in G 1 if and only if φ(x i) = f alse.

We now select a set of edges in the clause gadgets for every clause

C j = 1 ∨ 2 ∨ 3 . Since φ satisfies Φ, there exists p = p j ∈ {1, 2, 3} such that φ(p) =
, j ∈ [m], have degree 1 in G 2 . Moreover, for all j ∈ [m] the vertex c p j j is identified with the vertex α j i or β j i , which has degree 0 in G 1 since φ(p) = true. Thus G := (V (H), E 1 ∪ E 2) has maximum degree 2, which proves that it is an (O 3 , H, 2)-graph. Lemma 23. If (∆ ≤ k)-O p -OVERLAY is NP-complete, then (∆ ≤ k)-O p+1 -OVERLAY and (∆ ≤ k + 1)-O p -OVERLAY are NP-complete.
Let k and p be two positive integers with p ≥ 2, let H k,p be the p-uniform hypergraph on (k + 1)(p -1) vertices whose hyperedge set contains all possible p-subsets of vertices.

We first need the following claim in order to prove Lemma 23.

CHAPTER 2. INTRODUCTION Claim 23.1. Every (O p , H k,p , k)-graph is k-regular. Moreover, there exists an (O p , H k,p , k)- graph. Proof of claim: Let G be an (O p , H k,p , k)-graph. Assume for a contradiction that it has a vertex v of degree at most k -1. Then, observe that |V (G) \ N [v]| ≥ (k + 1)(p -2) + 1.
Now, by removing successively the closed neighborhood of a vertex of the graph (chosen arbitrarily) until the graph is anticomplete, we can construct, together with v,

an independent set S of G of size p. This is impossible, since S is a hyperedge of H k,p which is not O p -overlaid by G. Finally, observe that the disjoint union of p-1 cliques of size k +1 is a k-regular graph which O p -overlays H k,p .
Proof of Lemma 23. First, we will reduce from

(∆ ≤ k)-O p -OVERLAY to (∆ ≤ k)-O p+1 - OVERLAY.
Let H be a p-uniform hypergraph. We construct a (p + 1)-uniform hypergraph H * from a copy of H and replace, for every hyperedge S, a hyperedge S = S ∪ {v s }. We also add, for every hyperedge S, a set of (k + 1)p -1 new vertices N S , and form, together with v S , a hypergraph

H S isomorphic to H k,p+1 . Let G be an (O p , H, k)-graph. Construct G * from G by adding, for every hyper- edge S of H, a disjoint union of p cliques of size k + 1 on the vertices N S ∪ {v S }. Clearly, G * is an (O p+1 , H * , k)-graph. Conversely, if G * is an (O p+1 , H * , k)-graph,

Now, we reduce

(∆ ≤ k)-O p -OVERLAY to (∆ ≤ k + 1)-O p -OVERLAY.
Let H be a p-uniform hypergraph. Let H be the p-uniform hypergraph obtained from H by doing the following for each vertex v ∈ V (H):

-add the vertices x v , y v 1 , . . . , y v p-2 and the hyperedge

S v = {v, x v , y v 1 , . . . , y v p-2 }. -for any i = {1, . . . , p -2}, add a copy H v i of H k+1,p whose vertices are y v i and (p -1)(k + 2) -1 new vertices. Assume that G is an (O p , H , k + 1)-graph. By Claim 23.1, the graph induced by G on V (H v i) is (k + 1)-regular, for all v ∈ V (H), 1 ≤ i ≤ p -2. Therefore each y v i has k + 1-neighbors outside the hyperedge S v . Hence G must contain the edge vx v because it O p -overlays S v . Thus the subgraph G = G [V (H)] has maximum degree at most ∆(G) -1 ≤ k and G O p -overlays H. In other words, G is an (O p , H, k)-graph.
Conversely, assume G is an (O p , H, k)-graph. Let G be the graph with vertex set V (H) and whose edge set is the union of Chapter 3

E(G), {vx v | v ∈ V (H)},

MAX (∆ ≤ k)-F -OVERLAY

In this chapter, we address the complexity of MAX (∆ ≤ k)-F -OVERLAY and prove the following theorem.

Theorem 24. MAX (∆ ≤ k)-F -OVERLAY is polynomial-time solvable if either ∆(F) > k, or F is an anticomplete graph, or F = O 2 , or k = 1 and F = O 3 . Otherwise it is NP- complete.

Proof overview

Polynomial cases. As noticed in Section

2.3, if ∆(F) > k or F is an anticomplete graph then MAX (∆ ≤ k)-F -OVERLAY is trivially polynomial-time solvable.
Moreover, by Propositions 19 and 20, MAX (∆ ≤ 1)-O 3 -OVERLAY and MAX (∆ ≤ k)-O 2 -OVERLAY (for all positive integers k) are also polynomial-time solvable.

NP-completeness. It suffices now to prove that MAX

(∆ ≤ k)-F -OVERLAY is NP- complete when ∆(F) ≤ k, F = K |F | , |F | ≥ 3 and (F, k) = (O 3 , 1).
Let F be the graph induced by the non-isolated vertices of F . Then

F = F + K q with q = |F | -|F |. If |F | = 2, then F = O |F | ,

NP-completeness

We first establish the NP-completeness when F has no isolated vertices.

Theorem 25. Let F be a graph on at least three vertices with no isolated vertices.

If k ≥ ∆(F), then MAX (∆ ≤ k)-F -OVERLAY is NP-complete on neat hypergraphs. Proof. Assume k ≥ ∆(F). Let n = |F |, a 1 , . . . , a n be an ordering of the vertices of F such that δ(F) = d(a 1) ≤ d(a 2) ≤ • • • ≤ d(a n) = ∆(F). Let γ = k/δ(F) -1, β = k -γδ(F). Observe that δ(F) ≤ β ≤ 2δ(F) -1.
We shall give a reduction from INDEPENDENT SET for cubic graphs [START_REF] Karp | Reducibility among Combinatorial Problems[END_REF]. We distinguish two cases depending on whether d(a 2) > β or not. Let γ 2 = (kd(a 2))/δ(F) and γ 3 = (kd(a 3))/δ(F) . And we define the value γ 2 as follows.

-

If d(a 2) > β, let γ 1 = γ 2 . -If d(a 2) ≤ β, let γ 1 = (k -d(a 1))/δ(F) .
Let Γ be a cubic graph. For each vertex v ∈ V (Γ), let (e 1 (v), e 2 (v), e 3 (v)) be an ordering of the edges incident to v. We shall construct the neat hypergraph H = H(Γ) as follows.

• For each vertex v ∈ Γ, we create a hyperedge S v = {a v 1 , . . . , a v n }. Then, for 1 ≤ i ≤ 3, we add γ i a v i -leaves, that are hyperedges containing a v i and n -1 new vertices.

• For each edge e = uv ∈ Γ, let i and j be the indices such that e = e i (u) = e j (v).

We create a new vertex z e and hyperedges S e u (S e v) containing z e , a u i (a v j), and n -2 new vertices, respectively. Then, we add γ z e -leaves, that are hyperedges containing z e and n -1 new vertices.

From the construction, observe that γ i will be useful to enforce the degree of vertex a v i for v ∈ V (G) which could have degree at most d(a 3) in the hypergraph. We shall prove that over

F (H, k) = (γ 1 + γ 2 + γ 3)|V (Γ)| + (γ + 1)|E(Γ)| + α(Γ), where α(Γ)
denotes the cardinality of a maximum independent set in Γ.

The following claim shows that there are optimal solutions with specific structure. This leads to the inequality:

over F (H, k) ≤ (γ 1 + γ 2 + γ 3)|V (Γ)| + (γ + 1)|E(Γ)| + α(Γ) Claim 25.1. There is a graph G with ∆(G) ≤ k that F -overlays over F (H, k) hyperedges of H such that: (a) each x-leaf L is F -overlaid and x is incident to δ(F) edges in G[L] (with x = a v i or x = z e).
(b) for each edge e = uv ∈ E(Γ), exactly one of the two hyperedges S e u and

S e v is F - overlaid. Moreover if S e u (S e v) is F -overlaid, then a u i (a v j) is incident to at most d(a 2) edges in S e u (S e v), respectively. (c) the set of vertices v such that S v is F -overlaid is an independent set in Γ.
Proof of claim: (a) Let G be a graph with ∆(G) ≤ k that F -overlays over F (H, k) hyperedges of H. Observe first that since H is a neat hypergraph, we may assume that, for

every hyperedge S of H, G[S] = F if S is F -overlaid and G[S] has no edge otherwise.
Therefore if an x-leaf L is F -overlaid, then replacing G[L] by a copy of F in which x has degree δ(F), we obtain another graph with maximum degree at most k that Foverlays over F (H, k) hyperedges of H. Henceforth we may assume that if an x-leaf is F -overlaid then x is incident to δ(F) edges included in it. Now assume that the z e -leaf L, for e ∈ E(Γ), is not F -overlaid by G. We have d G (z e) > kδ(F) for otherwise adding on L the edges of a copy of F in which z e has degree δ(F), we obtain a graph F -overlaying more hyperedges than G. But since there are γ z e -leaves and z e is incident to δ(F) edges in each of them, at least one of the hyperedges S e u and S e v is F -overlaid. Now replacing the edges of G in this hyperedge by those of a copy of F in L, in which z e has degree δ(F), we obtain another graph with maximum degree at most k that F -overlays over F (H, k) hyperedges of H.

Henceforth we may assume that every z e -leaf is F -overlaid.

A similar reasoning shows that every

a v i -leaf is F -overlaid, for all v ∈ V (Γ), i ∈ {1, 2, 3}. (b) Now by (a) each vertex z e is incident to γδ(F) = k -β > k -2δ(F) edges in the z e -leaves. Thus z e is incident to at most β edges in S e u ∪ S e v . Since β ≤ 2δ(F) -1, at most one of S e u and S e v is F -overlaid. Moreover, if S e u is F -overlaid and β < d(a 2) (resp. d(a 2) ≤ β), then z e must have degree d(a 1) (resp. at most d(a 2)) in G[S e u]
. Assume now that none of S e u , S e v is F -overlaid, and let e = e i (u), a u i has γ i a u i -leaves, so a u i is incident to γ i δ(F) ≤ kd(a i) edges in these leaves. Thus, replacing the edges of G in S e u by those of a copy of F , in which

-if d(a 2) > β, we have d G (a u i) ≤ k -d(a 2),
then z e has degree δ(F) and a u i has degree d(a 2).

-if d(a 2) ≤ β, since d G (a u 1) ≤ k -d(a 1
), then for i = 1, a u i must have degree d(a 1), so z e has degree d(a 2). And for i = {2, 3}, let d(z e) = d(a 1), d(a u i) = d(a 2). Hence, we obtain another graph with maximum degree at most k that F -overlays over F (H, k) hyperedges of H. Henceforth, we may assume that at least one of S e u and S e v is F -overlaid.

(c) Consider now a vertex v ∈ V (Γ) such that S v is F -overlaid. We distinguish the following cases. -If d(a 2) > β, then by (a), vertex a v 1 is incident to γ 1 δ(F) edges in the a v 1 -leaves and at least δ(F) ∈ S v . Therefore S e 1 (v) v cannot be F -overlaid for otherwise, by (b), a v 1 would have degree at least γ 1 δ(F) + δ(F) + d(a 2) > k. Similarly, S e 2 (v) v cannot be F -overlaid.
Assume now for a contradiction that S

e 3 (v) v is F -overlaid. By (a) and (b), a v 3 is incident to γ 3 δ(F) edges in the a v 3 -leaves and at least d(a 2) ∈ S e 3 (v) v . Since γ 3 δ(F) + d(a 2) + d(a 3) > k, a v 3 is incident to less than d(a 3) edges in S v . Thus, there is a vertex a ∈ {a v 1 , a v 2 } which is incident to at least d(a 3) edges in S v and CHAPTER 3. MAX (∆ ≤ K)-F -OVERLAY thus at least γ 1 δ(F)+d(a 3) edges in G. But a v 3 is adjacent to at least δ(F) edges in S v so at least γ 3 δ(F)+d(a 2)+δ(F) edges in total. Thus γ 3 δ(F)+d(a 2)+δ(F) ≤ k, so γ 3 ≤ γ 1 -1. Thus a is adjacent to at least (γ 3 + 1)δ(F) + d(a 3) > k edges, a contradiction. -If d(a 2) ≤ β, then by (a), vertex a v 1 is incident to γ 1 δ(F) edges in the a v 1 -leaves and at least δ(F) ∈ S v . If S e 1 (v) v is F -overlaid, then (b) yields d(a v i) = γ i δ(F) + δ(F) + δ(F) > k, a contradiction. If S e 2 (v) v is F -overlaid, then d(a v 2) = δ in G[S v]. We obtain that d(a v 2) = γ 2 δ + d(a 2) + δ ≤ k which implies that γ 2 ≤ γ 2 -1, a contradiction. If S e 3 (v) v
is F -overlaid, then we get a contradiction in the same way as that in the case d(a 2) > β.

To summarize, if S v is F -overlaid, then none of S e 1 (v) v , S e 2 (v) v , S e 3 (v) v is F -overlaid.
Together with (b), this implies (c).

Conversely, consider W a maximum independent set of Γ.

Let G be the graph with vertex V (H) which is the union of the following subgraphs :

• for each x-leaf L, we add a copy of F on L in which x has degree δ(F);

• for each vertex v ∈ W , we add a copy of F on S v in which a v i has degree d(a i) for all 1 ≤ i ≤ n.

• for each edge e ∈ E(Γ), we choose an endvertex u of e such that u / ∈ W , and add a copy of F in which z e has degree d(a 1) and a u i has degree d(a 2) (with i the index such that e i (u) = e) except the case when d(a 2) ≤ β and i = 1, we do that but d(z e) = d(a 2) and d(a

u 1) = d(a 1) in G[S e 1 (u) u].
It is simple matter to check that ∆(G) ≤ k and that G F -overlays

(γ 1 + γ 2 + γ 3)|V (Γ)| + (γ + 1)|E(Γ)| + α(Γ) hyperedges of H. Thus over F (H, k) ≥ (γ 1 + γ 2 + γ 3)|V (Γ)| + (γ + 1)|E(Γ)| + α(Γ).
We then investigate the problem when F has isolated vertices. In order to prove it, we exploit the induction method by using Theorem 25 as the base case, and the induction part is the following.

Lemma 26. Let k be a positive integer, let F be a graph with δ(F) ≥ 1, and let q be a non-negative integer.

If MAX (∆ ≤ k)-(F + K q)-OVERLAY is NP-complete, then MAX (∆ ≤ k)-(F + K q+1)-OVERLAY is also NP-complete. Proof. We shall reduce MAX (∆ ≤ k)-(F +K q)-OVERLAY to MAX (∆ ≤ k)-(F +K q+1)- OVERLAY. Set p = |V (F)| and r = k/δ(F) . Note that r ≥ 1, for otherwise MAX (∆ ≤ k)-(F + K q)-OVERLAY would trivially be polynomial-time solvable.
Let H be a (p + q)-uniform hypergraph. Let H be the (p + q + 1)-uniform hypergraph obtained from H as follows. Its vertex set is partitioned into V (H), P 1 , . . . , P r , K, and {z} with |P i | = p -1 for all 1 ≤ i ≤ r and |K| = (m + 1)(k + 1) + kp with m = max{|E(H)|, q + 1}. The hyperedge set of H contains Q ∪ P i ∪ {z} for all (q + 1)-subsets Q of K and all 1 ≤ i ≤ r, and S ∪ {z} for all S ∈ E(H).

The reduction can be performed in polynomial time, because for each hyperedge in H we construct a polynomial number of hyperedges in H (recall that q is fixed), and each of them is straightforward to obtain. We shall now prove that

over F +K q+1 (H, k) = over F +Kq (H , k) + r |K| q+1 . Let G 0 be a graph with V (G 0) = V (H) and ∆(G 0) ≤ k that (F + K q)-overlays over F +Kq (H , k) hyperedges of H . For 1 ≤ i ≤ r, let F i be a copy of F on P i ∪ {z} in which z has degree δ(F). Let G 0 be the graph defined by V (G 0) = V (H) and E(G 0)∪ r i=1 E(F i). Clearly, ∆(G 0) ≤ k and G 0 F -overlays all hyperedges of H except hyperedges S∪{z} in which S ∈ E(H) are not overlaid by G 0 . So over F +K q+1 (H, k) ≥ over F +Kq (H , k) + r |K| q+1 .
Conversely, let G be a graph with V (G) = V (H) and ∆(G) ≤ k that maximizes the number of (F + E q+1)-overlaid hyperedges.

Claim 26.1. In G, vertex z has at least δ(F) neighbors in each

P i , 1 ≤ i ≤ r.
Proof of claim: Suppose for a contradiction that z has less than δ(F) neighbors in P i .

Since ∆(G) ≤ k, at most kp vertices of K are incident to an edge with an endvertex in P i ∪ {z}. Thus there is a subset R of K of (m + 1)(k + 1) vertices non-adjacent to all

vertices of P i ∪ {z}. Now G[R] has maximum degree k and is thus (k + 1)-colorable.
Hence G[R] has an independent set S of size m+1. Observe that for each (q+1)-subset Q of S, the subgraph G[Q∪P i ∪{z}] has q +2 vertices of degree less than δ(F) (namely the ones of Q ∪ {z}), and so the hyperedge

Q ∪ P i ∪ {z} is not (F + K q+1)-overlaid.
Thus there are at least m + 1 ≥ |E(H)| + 1 hyperedges not (F + K q+1)-overlaid by G. This contradicts the maximality of G as G 0 overlays more hyperedges of H. Now z has degree at least rδ(F) in r i=1 P i and so less than δ(F) in each hyperedge

S ∪ {z} for S ∈ E(H). Hence if G (F + K q+1)-overlays S ∪ z, it must also (F + K q)- overlay S. Thus over F +K q+1 (H, k) ≤ over F +Kq (H , k) + r |K| q+1 .
Chapter 4

(∆ ≤ k)-F -OVERLAY
In this chapter, we investigate the complexity of we aim to prove that for a graph F , which is is neither a complete nor an anticomplete graph, there is

(∆ ≤ k)-F -OVERLAY problem. Un- like MAX (∆ ≤ k)-F -OVERLAY
k 0 = k 0 (F) such that (∆ ≤ k)-F -OVERLAY is NP-complete for all k ≥ k 0 .
A graph F having this property is called ultimately NP-complete.

In Section 4.4, we study the restriction of (∆ ≤ k)-F -OVERLAY on neat hypergraphs.

This problem is called NEAT (∆ ≤ k)-F -OVERLAY.

In the final section, we give some remarks and present some open questions for further research.

Polynomial results

Recall the dichotomy for graphs O p in Section 2.4.

(∆ ≤ k)-O p -OVERLAY is polynomial-
time solvable (if and only if under the assumption P = NP) when p = 2 or when p = 3 and k = 1. We now exhibit more pairs (F, k) such that (∆ ≤ k)-F -OVERLAY is polynomial-time solvable. Precisely, it is the case for some regular graphs and paths.

Regular graphs

Proposition 27. For every complete graph K and every positive integer k,

(∆ ≤ k)-K- OVERLAY is polynomial-time solvable. Proof. Observe that a |V (K)|-uniform hypergraph H is a positive instance of (∆ ≤ k)- K-OVERLAY if and only if K(H) is a (K, H, k)-graph.
Proposition 28. For every connected k-regular graph F , (∆ ≤ k)-F -OVERLAY is polynomialtime solvable.

Proof. One easily sees that a |V (F)|-uniform hypergraph H admits an (F, H, k)-graph if and only if the hyperedges of H are pairwise non-intersecting.

Let C 4 denote the cycle on 4 vertices. Proposition 28 implies that

(∆ ≤ 2)-C 4 - OVERLAY is polynomial-time solvable. We now show that (∆ ≤ 3)-C 4 -OVERLAY is also polynomial-time solvable. Theorem 29. (∆ ≤ 3)-C 4 -OVERLAY is polynomial-time solvable.
Proof. Let H be a 4-uniform hypergraph.

Let us describe an algorithm to decide whether there is a (C 4 , H, 3)-graph. It is sufficient to do it when H is connected since the disjoint union of the (C 4 , K, 3)-graphs

for connected components K of H is a (C 4 , H, 3)-graph.
Observe first that if two hyperedges of H intersect in exactly one vertex u, then no such graph exists, since u must have degree 2 in each of the hyperedges if they are C 4 -overlaid, and thus degree 4 in total. Therefore if there are two such hyperedges, we return 'No'. At this point we may assume that |E(H)| ≥ 2 for otherwise we return 'Yes'.

From now on we may assume that two hyperedges either do not intersect, or are adjacent (intersect on at least two vertices).

Claim 29.1. If two hyperedges S 1 and S 2 intersect on three vertices and there is a

(C 4 , H, 3)- graph G, then |V (H)| ≤ 6. Proof of claim: Assume S 1 = {a 1 , b, c, d} and S 2 = {a 2 , b, c, d}. Let G be a (C 4 , H, 3)- graph.
Observe that a 1 and a 2 must have two common neighbors, say b, c, in common in {b, c, d}, for otherwise their unique common vertex would have degree 4 in G. This forces d to be also adjacent to b and c.

Consider a hyperedge S 3 intersecting S 1 ∪ S 2 . Since it is C 4 -overlaid by G, at least two edges connect S 3 ∩ (S 1 ∪ S 2) to S 3 \ (S 1 ∪ S 2).
G[S 1 ∪ S 2 ∪ S 3 ∪ S 4] is 3-regular, so G = G[S 1 ∪ S 2 ∪ S 3 ∪ S 4]. If G
does not contain gh, then the only vertices of degree 2 in G[S 1 ∪ S 2 ∪ S 3 ∪ S 4] are g and h, and they are at distance at least 3 in this graph. Thus every hyperedge intersecting

S 1 ∪ S 2 ∪ S 3 ∪ S 4 is contained in this set, so |V (H)| = 8.
Assume now that H is a superset of only one of S 3 , S 4 . Without loss of generality, we may assume that this is S 3 . Hence G also contains the edges ag and eg. Clearly, the above-described algorithm runs in polynomial time.

If V (G) = S 1 ∪ S 2 ∪ S 3 ,

Paths

Let P be the set of all paths. We have the following:

Theorem 30. (∆ ≤ 2)-P -OVERLAY is linear-time solvable.
Proof. Clearly, if H is not connected, it suffices to solve the problem on each of the components and to return 'No' if the answer is negative for at least one of the components, and 'Yes' otherwise. Henceforth, we shall now assume that H is connected. In such a case, a (P, H, 2)-graph is either a path or a cycle. However, if H is P-overlaid by a path P , then it is also P-overlaid by the cycle obtained from P by adding an edge between its two endvertices. Thus, we focus on the case where G is a cycle.

Let S be a family of sets. The intersection graph of a family S is the graph IG(S)

whose vertices are the sets of S, and in which two vertices are adjacent if the corresponding sets in S intersect.

The intersection graph of a hypergraph H, denoted by IG(H), is the intersection graph of its hyperedge set. We define two functions l H and s H as follows:

l H (S) = |S| -1 for all S ∈ E(H) and s H (S, S) = |S ∩ S | -1 for all S, S ∈ E(H).
Let C be the circle of circumference . We identify the points of C with the integer numbers (points) of the segment [0,], (with 0 identified with). A circular-arc graph is the intersection graph of a set of arcs on C . A set A of arcs such that IG(A) = G is called an arc representation of G. We denote by A v the arc corresponding to v in A. Let G be a graph and let l : V (G) → N and s : E(G) → N be two functions. to rotate all intervals, we may assume that

An arc representation

A of G is l-respecting if A v has length l(v) for any v ∈ V (G), s-respecting if A v ∩ A u has length s(u, v) for all uv ∈ E(G),
A S 0 is [1, |S 0 |]. Now since A is (l H , s H)-
respecting and H is connected, we deduce that the extremities of A S are integers for all S ∈ E(H). Let v 1 be a vertex of H that belongs to the hyperedges whose corresponding arcs of A contain 1. Then for all i = 2 to n = |V (H)|, denote by v i an arbitrary vertex not in {v 1 , . . . , v i-1 } that belongs to the hyperedges whose corresponding arcs of A contain i. Such a vertex exists because A is (l H , s H)-respecting.

Observe that such a construction yields S = {v i | i ∈ A S } for all S ∈ E(H). Furthermore, the cycle C = (v 1 , . . . , v n , v 1) P-overlays H. Indeed, for each

S ∈ E(H), C[S] is the subpath corresponding to A S , that is V (C[S]) = {v i | i ∈ A S } and E(C[S]) = {v i v i+1 | [i, i + 1] ⊆ A S }.
The algorithm to solve (∆ ≤ 2)-P -OVERLAY for a connected hypergraph H in linear time is thus the following:

Ultimate NP-completeness

The aim of this section is to show that for a fixed graph F ,

(∆ ≤ k)-F -OVERLAY is NP-complete when k ≥ k 0 (that k 0 depends of F), then it is ultimately NP-complete CHAPTER 4. (∆ ≤ K)-F -OVERLAY (according to k).
We thus define np(F) the minimum integer k 0 such that (∆ ≤ k)-F -OVERLAY is NPcomplete for all k ≥ k 0 or +∞ if no such k 0 exists. Determining the value np(F) for some F is interesting in order to answer the complexity dichotomy of (∆ ≤ k)-F -OVERLAY.

Theorem 32. np(F) = +∞ if and only if F is complete or anticomplete.

Let H be a p-uniform hypergraph. The anticomplete graph on V (H) vertices K p -overlays H. Thus, for any non-negative integer k, the answer to (∆ ≤ k)-K p -OVERLAY is always affirmative, and so this problem can be trivially solved in polynomial time. Hence, np(K p) = +∞ for all positive integer p.

If K p is complete, then let G be te graph with vertex V (H) in which two vertices are adjacent if and only if they belong to a same hyperedge of H. Obviously, a graph K p -overlays H if and only if it contains G as a subgraph. Hence, to solve (∆ ≤ k)-K p -OVERLAY it suffices to build G and to check whether ∆(G) ≤ k, which can be done in polynomial time. Thus np(K p) = +∞ for all positive integer p.

The next is for the remaining graphs.

Theorem 33. If F is neither a complete graph nor an anticomplete graph, then np(F) < +∞.

We first show it is sufficient to prove Theorem 33 for F with no isolated vertices.

Then we prove in Lemma 40 that for such a graph F , as soon as there exists k such that (∆ ≤ k)-F -OVERLAY is NP-complete, then np(F) < +∞. It then remains to prove the following one.

Theorem 34. Let F be a graph with no isolated vertex and which is not complete. There exists k such that (∆ ≤ k)-F -OVERLAY is NP-complete.

In Section 4.2.2, we first prove Theorem 34 when F is in some particular classes of graphs : F is regular (Theorem 41), F is a complete graph K minus an edge, denoted by K -(Theorem 42), and F is the complete bipartite graph K a,a+1 (Theorem 43).

Then, in Section 4.3, we prove Theorem 34 in full. Its proof requires the previously established particular cases and uses the techniques introduced in proving them.

Some notations and definitions

In the previous sections, we obtained the complexity results which for graphs with specific structures. Such structure are an advantage to exploit and provide the proofs.

In this section, the result is general and so we cannot look at every graph and use its own structure. Instead, we use some characteristic of graphs, the degree of each vertex in a graph.

The degree sequence of a graph F is the non-decreasing sequence d = {d 1 , d 2 , . . . , d p } such that there exists an ordering (v 1 , . . . , v p) of the vertices of

F such that d(v i) = d i for all i ∈ [p]. We denote by λ 1 < λ 2 < • • • < λ t the different values of d (that are
the integers λ in which there exists j such that d j = λ). We also denote by α i the multiplicity or number of occurrences of λ i in d :

α i = |{j | d j = λ i }|. Observe that d 1 = λ 1 = δ(F) and d p = λ t = ∆(F). The degree of a vertex v in H, denoted by d H (v) or simply d(v) if H is clear from the context, is the number of hyperedges of H containing v. In a hypergraph H, a hyperedge S is pendant at a vertex x, if d H (v) = 1 for all v ∈ S \ {x}.
Let F be a graph, H a hypergraph, and G a graph F -overlaying H. For each hyperedge S ∈ E(H), one can choose a copy F S of F which is a subgraph of G[S]. We then say that v is a λ i -vertex in S or has degree λ i in S if v has degree λ i in F S .

Reduction to Theorem 34

Graphs with isolated vertices

Lemma 35. Let F be a graph. If (∆ ≤ k)-F -OVERLAY is NP-complete, then (∆ ≤ k)- (F + K 1)-OVERLAY is also NP-complete.
Proof. We shall give a reduction from

(∆ ≤ k)-F -OVERLAY to (∆ ≤ k)-(F + K 1)- OVERLAY.
Let d be the (non-decreasing) degree sequence of F , and let λ + be the first non-zero value in this sequence. (λ + = λ 1 if F has no isolated vertex, and λ + = λ 2 otherwise.)

Let H be an |F |-uniform hypergraph. We construct an (|F | + 1)-uniform hypergraph H as follows.

-Let H 1 , . . . , H t be t

= k λ + |E(H)| + 1 disjoint copies of H. We add V (H i) to V (H) for all i ∈ [t].
-For any S ∈ E(H), we add a new vertex v S to V (H). For all i ∈ [t], denoting by S i the copy of S in H i , we add the hyperedge S i = S i ∪ {v S } to H .

We shall prove that there is an (F, H, k)-graph G if and only if there exists an

(F + K 1 , H , k)-graph G .
Assume first that there is an (F, H, k)-graph. We build a graph G by taking

G [H i] = G for any i ∈ [t]. Observe that G [S i] is (F + K 1)-overlaid since G[S i] is F -overlaid and v S is an isolated vertex. Furthermore G has at most degree k. Thus, G is an (F + K 1 , H , k)-graph.
Conversely, assume that there exists an (F + K 1 , H , k)-graph G . We will prove that there exists a copy

H i of H such that G [H i] is an (F, H, k)-graph. Observe that,
for any S ∈ E(H), the vertex v S is either isolated or has degree at least λ + in each G [S i] for i ∈ [t]. Thus, v S is not a 0-vertex in at most k λ + hyperedges. Since there are |E(H)| such vertices, there exists a copy H i of H such that for any

S ∈ E(H), v S is a 0-vertex in all hyperedges G [S i]. Thus G [H i] is an (F, H, k)-graph. CHAPTER 4. (∆ ≤ K)-F -OVERLAY
Applying the lemma several times, we get the following.

Corollary 36. Let F be a graph and q a positive integer.

If (∆ ≤ k)-F -OVERLAY is NP- complete, then (∆ ≤ k)-(F + K q)-OVERLAY is also NP-complete. Hence np(F + K q) ≤ np(F).
The family of graphs with isolated vertices to which this result does not apply is K p + K q because (∆ ≤ k)-K p -OVERLAY is in P. We then need the following.

Theorem 37. np(K p + K 1) ≤ 2p -2 for all p ≥ 2. Proof. Let p ≥ 2 and k ≥ 2p -2. We shall prove that (∆ ≤ k)-(K p + K 1)-OVERLAY is NP-complete.
Let q and r be the integers such that k = (p -1)q + r with 0 ≤ r < p -1. Note that q ≥ 2 since k ≥ 2(p -1).

We need the following gadget. Let u be a vertex. A (p -1)-gadget at u is the hypergraph H u constructed as follows. The vertex set of H u is the disjoint union of {u, v} and q + 1 sets U 1 , . . . , U q+1 of p -1 vertices, and its hyperedges are {u, v}

∪ U i for i ∈ [q + 1], see Figure 4.2. Claim 37.1. Let H u be a (p -1)-gadget at u. (i) u has degree at least p -1 in every (F, H u , k)-graph.
(ii) There is an (F, H u , k)-graph in which u has degree p -1.

v u U 1 U 2 U q+1 Figure 4.2:
The gadget H u at vertex u. An example of an (F, H u , k)-graph where v has degree p -1 in each of hyperedges U 1 , . . . , U q and u has degree p -1 in U q+1 .

Proof of claim: (i) Let G u be an (F, H u , k)-graph. Assume for a contradiction that u has degree less than p -1. Then u must be a 0-vertex in each S i , i ∈ [q + 1]. Hence v must be adjacent to the p -1 vertices of U i in each S i . Thus v as degree at least

(p -1)(q + 1) > k in G u , a contradiction.
(ii) For i ∈ Q, let F i be a copy of K p + K 1 in which u is isolated, and let F q+1 be a copy of

K p + K 1 in which v is isolated, and let G u = ß∈[q+1] F i . Clearly, G u F -overlays H u , v has degree q(p -1) ≤ k in G u and u has degree p -1 in G u . So G u is the desired (F, H u , k)-graph.
We give a reduction from 3-COLORING on 4-regular graphs.

Given a 4-regular graph G, we build a p-uniform hypergraph H as follows. v , c 2 v , c 3 v can be a (p -1)-vertex in its parent hyperedge. At each of c i v , we add to binary tree (middle) where every couple of red edges are replaced by an x-edge-gadget (right) which enforces vertex children having the same degree as its vertex parent in their parent hyperedges. A vertex c i v is a (p -1)-vertex in its parent hyperedge S i v if and only if v has color i in a proper coloring.

c v c 1 v c 2 v c 3 v c i v a i v b i v l i,1 v l i,2 v l i,3 v l i,4 v c i v a i v b i v Y c i v
• For each vertex v ∈ V (G), we create a vertex gadget V G v with three hyperedges

S i v = {c v , c i v } ∪ X i v for i ∈ [3] where |X i v | = p -2. We add q -2 (p -1)-gadgets at c v . We say that S i v is the parent hyperedge of c i v for each i ∈ [3]. • For each vertex v and each i ∈ [3], we construct a color gadget CG i v for i ∈ [3] as follows.
-We create a binary tree

T i v with vertex set {c i v , a i v , b i v , i,1 v , i,2 v , i,3 v , i,4 v } and edge set {c i v a i v , c i v b i v , a i v i,1 v , a i v i,2 v , b i v i,3 v , b i v i,4
v }, rooted at c i v . In this tree, a i v and b i v are the children of c i v , i,1 v and i,2 v are the children of a i v , and i,3 v and i,4

v are the children of b i v . -For any vertex x ∈ {c i v , a i v , b i v }, let y 1 , y 2 be its children in T i v ,
and let e 1 = xy 1 , e 2 = xy 2 . We construct an x-edge-gadget as follows: we add a set Y x of p -2 new vertices, the hyperedges S(e 1) = {x, y 1 } ∪ Y x and S(e 2) = {x, y 2 }∪Y x . For convenience, we say that S(xy 1) (resp. S(xy 2)) is the parent hyperedge of y 1 (resp. y 2). Moreover, for any leaf i,j v , we denote by S i,j v the hyperedge containing the vertex i,j v . We then add q -1 (p -1)-gadgets at x.

• For every vertex v ∈ V (G), let e 1
v , e 2 v , e 3 v , e 4 v , be an ordering of the edges incident to v. For each edge uv ∈ E(G), let j u and j v be the indices such that uv = e ju u = e jv v . Then, for all i ∈ [3], we identify the vertices i,ju u and i,jv v and we add q -1 (p -1)-gadgets at this vertex.

Let us now prove that there is a proper 3-coloring of G if and only if there is an

(F, H, k)-graph G * .
Assume first that there is an (F, H, k)-graph G * . Let v ∈ V (G). By Claim 37.1 (i), the vertex c v has degree at least p -1 in each of its (p -1)-gadgets. Thus it has degree at most 2(p -

1) + r in S 1 v ∪ S 2 v ∪ S 3 v . But those hyperedges pairwise intersect in {c v }. Thus there is i ∈ [3] such that c v is a 0-vertex in S i v .
Since we have only one 0-vertex in S i v , thus c i v must be a (p -1)-vertex in S i v . Therefore, we can define a 3-coloring φ by φ(v) = i where i is an index such that c i v is a (p -1)-vertex in S i v . Let us now prove that φ is proper. We need the following claim.

Claim 37.2. Let v ∈ V (G) and i ∈ [3]. If c i v is a (p -1)-vertex in S i v , then so is the leaf i,j v in S i,j v for all j ∈ [4].
Proof of claim: It suffices to prove that for any

x ∈ {c i v , b i v , a i v }, if x is a (p -1)
-vertex in its parent hyperedge, then so are both y 1 , y 2 in their parent hyperedges.

Assume that x is a (p -1)-vertex in its parent hyperedge. Since x has degree at least p -1 in each of its (p -1)-gadgets by Claim 37.1 (i), it has degree at most r in S(xy 1) ∪ S(xy 2). It implies that x is a 0-vertex in both S(xy 1), S(xy 2). Hence, the vertex y 1 (resp. y 2) must be a (p -1)-vertex in S(xy 1) (resp. S(xy 2)).

Consider an edge uv ∈ E(G), i ∈ [3]. By Claim 37.1 (i), the vertex = i,ju u = i,jv v has degree at least p-1 in each of its q-1 (p-1)-gadgets. Thus it has at most (p-1)+r

neighbors in S i,ju u ∪ S i,jv v .
As is the unique common vertex of S i,ju u and S i,jv v , it is a (p -1)-vertex in at most one of those. Hence, by the Claim 37.2, at most one of c i u , c i v is a (p -1)-vertex in its parent hyperedge. Thus at most one of u, v is colored i by φ.

Therefore, φ is a proper 3-coloring of G.

Conversely, let φ be a proper 3-coloring of G. We construct a graph G * as follows.

• For any vertex gadget

V G v , i ∈ [3], let G * [S i v]
be a copy of F in which every vertex in X i v is a (p -1)-vertex, and c v is a 0-vertex (resp. (p -1)-vertex) and

c i v is a (p -1)-vertex (resp. 0-vertex) in S i v if φ(v) = i (resp. φ(v) = i). • In every color gadget CG i v , for x ∈ {c i v , b i v , a i v }
with children y 1 and y 2 , let G * [S(xy 1)] and G * [S(xy 2)]) be two similar copies of F such that: every vertex in Y x is a p -1 vertex in both S(xy 1) and S(xy 2) and so has degree at most p in G * [S(xy 1) ∪ S(xy 2)]; • For any (p -1)-gadget H x at vertex some x, we let G * [V (H x)] be an (F, H x , k)graph in which v has degree p -1. Such a copy exists by Claim 37.1 (ii).

-if i = φ(v), then x has degree p -1 in G * [S(

By construction, G

* F -overlays H. Let us check that ∆(G *) ≤ k. Let u be a vertex of G * .
-If u is in at most two hyperedges (in particular, if u is in X i v or u is in Y x for x internal vertex in some T i v or u is only in a (p -1)-gadget), then u has degree at most 2(p -1), and so at most k.

-Assume now that u ∈ {c i v , a i v , b i v } for i ∈ [3]
with u parent of y 1 , y 2 . Then u has degree p -1 in each of its q -2 (p -1)-gadgets. Moreover if i = φ(v) (resp. i = φ(v)), then u has degree p -1 (resp. 0) in its parent hyperedge and p -1

(resp. 0) in G * [S 1 uy 1 ∪ S 1 uy 2]
. Hence u has degree at most (q -1)(p -1) + (p -1) = q(p -1) ≤ k.

-Assume that u is the identification of i,jv v and i,iw w for an edge vw ∈ E(G). First, u has degree p -1 in each of its q -1 (p -1)-gadget. Moreover, since either φ(v) = i or φ(w) = i, then u has degree p -1 in at most one of S i,jv v , S i,jw w and 0 in the other. Therefore, u has degree at most q(p -

1) ≤ k in G * .
Consequently, G * is an (F, H, k)-graph.

Corollary 36 and Theorem 37 directly imply the following.

Corollary 38. Theorem 33 holds if and only if it holds for graphs with no isolated vertices.

Reduction to Theorem 34

By Corollary 38, one can restrict our study to graphs F with δ(F) ≥ 1. We shall now prove that for such an F , we have np(F) ≤ +∞ as soon as there is some k for which (∆ ≤ k)-F -OVERLAY is NP-complete. To prove this, we introduce the notion of degree-gadget that will be useful in almost all the later proofs.

Let F be graph with δ(F) ≥ 1. Lemma 40. Let F be a graph with δ(F

) ≥ 1. Assume that (∆ ≤ k 0)-F -OVERLAY is NP-complete. (i) If δ(F) = 1, then np(F) ≤ k 0 . (ii) np(F) ≤ max{k 0 + δ(F), 2∆(F) -1}.
Proof. Observe that k 0 ≥ ∆(F), because (∆ ≤ k)-F -OVERLAY is trivially polynomialtime solvable for every k < ∆(F).

(i) Let k > k 0 . We shall prove that (∆ ≤ k)-F -OVERLAY is NP-complete. We give a reduction from (∆ ≤ k 0)-F -OVERLAY. Let H 0 be an |F |-uniform hypergraph. Let H be the hypergraph obtained from H 0 by adding a (kk 0)-degree-gadget DG v on every vertex v. Such a degree-gadget exists because kk 0 ≥ 1 = δ(F). Let us prove that there is an (F, H 0 , k 0)-graph G 0 if and only if there exists an (F, H, k)-graph G.

Assume there is an (F, H 0 , k 0)-graph G 0 . By Proposition 39-(ii), for every v ∈ V (H 0), there is a graph G v that F -overlays DG v , in which v has degree kk 0 ., and every other vertex as degree at most ∆(F)

≤ k 0 . Consider G = G 0 ∪ v∈V (H 0) G v .
Clearly, G is an (F, H, k)-graph.

Conversely, assume that there is an (F, H, k)-graph G. By Proposition 39-(i), every

vertex v of V (H 0) has degree at least k -k 0 in DG v . Thus it has degree at most k 0 in G[V (H 0)]. Therefore, G[V (H 0)] is an (F, H 0 , k 0)-graph.
(ii) The proof is identical to (i). Taking k ≥ max{k 0 + δ(F), 2∆(F) -1} and using the same reduction as above we get that

(∆ ≤ k)-F -OVERLAY is NP-complete. Note that (k -k 0)-degree-gadgets exist because k -k 0 ≥ δ(F).
By this lemma, in order to prove that (∆ ≤ k)-F -OVERLAY is NP-complete for any k ≥ k 0 for some k 0 , it suffices to prove that (∆ ≤ k 0)-F -OVERLAY is NP-complete and thus it is an upper bound of np(F).

Particular cases

In this section, we prove the NP-completeness of (∆ ≤ k)-F -OVERLAY for pairs (F, k)

where F is either a regular graph, or a complete graph minus an edge K -(i.e. it is obtained by removing an edge from K p) or a complete bipartite graphs K a,a+1 , and k is an integer (depending on F).

Regular graphs

Theorem 41. Let λ be a positive integer, and let F be a λ-regular graph which is not complete.

Then (∆ ≤ 6λ -1)-F -OVERLAY is NP-complete.

Proof. Set p = |F |. Since F is not complete, we have p > λ + 1.

We give a reduction from (3,4)-SAT to (∆ ≤ 6λ -1)-F -OVERLAY.

Given a formula Φ of (3,4)-SAT with n variables x t , t ∈ [n], and m clauses C j , j ∈ [m], we construct a p-uniform hypergraph H as follows.

• For each variable x t , we construct a variable gadget H t as follows. We first create a center vertex w t , a set of 4p -4 vertices U t = {u 1 t , . . . , u 4p-4 t }, and 4p -4 hyperedges S j t = {w t , u j t , . . . , u j+p-2 t } (superscripts are modulo 4)

for j ∈ [4p -4].
We then add a (2λ -1)-degree-gadget at w t and a 4λ-degree-gadget on each u

(p-1)i-j t for any i ∈ [4] and j ∈ [λ -1]. For r ∈ [4] let x r t = u r(p-1)-p+2 t and xr t = u r(p-1)-p+3 t . Set X t = {x 1 t , x 2 t , x 3 t , x 4 t } and X t = {x 1 t , x2 t , x3 t , x4 t }.
The vertices of X t (resp. X t) are called the non-negated (resp. negated) literal vertices of H t . See Figure 4.5.

x 1 t x1 t λ -1 x 2 t x2 t λ -1 x 3 t x3 t λ -1 x 4 t x4 t λ -1 w t Figure 4
.5: The variable gadget H t . The center vertex w t is in a (2λ-1)-degree-gadget. There are four sets of λ -1 vertices (in black) adjacent to the center vertex w t ; each of them is in a 4λ-degree-gadget. Blue and red vertices are respectively non-negated and negated literal vertices. All blue ones (resp. red ones) are adjacent to w t if and only if φ(x t) = true (resp. f alse).

• For each clause C j = (1 ∨ 2 ∨ 3) we identify y 1 , y 2 , y 3 into a clause vertex c j , where y i = x r t if i = x t and i is the r-th occurrence of x t , and y i = xr t if i = xt and is the r-th occurrence of x t .

We will prove that there exists an assignment φ satisfying Φ if and only if there is an (F, H, 6λ -1)-graph G. The general idea is that a variable x t = true (resp. f alse) if and only if the vertices of X t (resp. X t) have degree 2λ -1 in G[V (H t)] and so they are adjacent to the center vertex while those one of the other set are not. CHAPTER 4. (∆ ≤ K)-F -OVERLAY Assume that there exists an assignment φ satisfying Φ. Let G be the graph obtained as follows.

For each t ∈ [n], let (v 0 , v 1 , . . . , v p-1) be an ordering of V (F) such that N F (v 0) = {v p-λ+1 , . . . , v p-1 } ∪ {v 1 } if φ(x t) = true and N F (v 0) = {v p-λ+1 , . . . , v p-1 } ∪ {v 2 } if φ(x t) = f alse. For every j ∈ [4p -4], we let G[S j
t] be the copy of F in which w t corresponds to v 0 and u i t for i ∈ {j . . . , j + p -1} corresponds to the vertex v i such that i ≡ i mod (p -1). Observe that each u i t corresponds to the same vertex of F in all the p -1 copies of F induced by the S j t to which it belongs. Therefore either u i t is not adjacent to w t and it has 2λ neighbors in G[H t] or u i t is adjacent to w t and it has 2λ - Let us check that every vertex has degree at most 6λ -1 in G.

1 neighbors in G[H t]. In particular, if φ(x t) = true (resp. φ(x t) = f alse), then all vertices of X t (resp. X t) have degree 2λ -1 in G[H t]
• Each center vertex w t has degree 2λ -1 in its (2λ -1)-degree-gadget and it is adjacent to 4λ vertices in H t , so 6λ -1 in total.

• Every vertex in {u

(p-1)i-j t | i ∈ [4] and j ∈ [λ -1]} has 2λ -1 neighbors in H t
and 4λ other in its 4λ-degree-gadget. Hence its total degree is 6λ -1.

• Every vertex in U t \ {u (p-1)i-j t | i ∈ [4] and j ∈ [λ -1]} which is not identified in
a clause vertex has only neighbors in H t and thus degree at most 2λ < 6λ -1.

• Each clause vertex is the identification of three literal vertices which have degree 2λ or 2λ-1 in their variable gadgets. Moreover, at least one of the literals is true, so at least one of those vertices has only 2λ -1 neighbors in its variable gadget.

Hence its degree in G is at most 6λ -1.

Hence, G is an (F, H, 6λ -1)-graph.

Conversely, assume that G is an (F, H, 6λ -1)-graph.

Consider a variable gadget H t . The center vertex w t has degree at least 2λ -1 in its (2λ -1)-degree-gadget, so it has at most 4λ neighbors in H t . Since w t has degree at least λ in each of the S j t ; and hyperedges S j t , S j+p-1 t , S j+2p-2 t , S j+3p-3 t pairwise intersect only in w t . So this vertex has exactly λ neighbors in each of these sets. Hence w t has exactly λ neighbors in each S j t . Furthermore, if u j t is adjacent to w t , then w t has λ -1 neighbors in {u j+1 t , . . . , u j+p-2 t } and so u j+p-1 t is adjacent to w t because S j+1 t contains λ neighbors of w t . In particular, the vertices of X t (resp. X t) are either all adjacent to w t or all non-adjacent to w t . Now each of the λ -1 vertices in {u p-r+2 t , . . . , u p-1 t } is in a 4λ-gadget in which it has degree 4λ. Therefore, it has degree 2λ -1 in H t and must be adjacent to w t . Hence at most one vertex in {x 1 t , xt 1 } is adjacent to w t . Thus the vertices of X t and those of X t cannot be simultaneously adjacent to w t .

Let φ be the truth assignment defined by φ(x t) = true if w t is adjacent to X t , and φ(x t) = f alse otherwise. In any clause vertex c j , we identified three literal vertices corresponding to the three literals. But c j has degree at most 6λ -1, so there is at least one literal vertex having degree 2λ -1 in its variable gadget. This implies that this literal is true. Therefore, φ satisfies Φ.

Complete graph minus an edge

Theorem 42. (∆ ≤ 3p -1)-K - p -OVERLAY is NP-complete for all p ≥ 3.

Proof. Reduction from (3,4)-SAT. Given a formula Φ of this problem, we build a hypergraph H as follows.

for i ∈ [8]. Set X t = {u 2i-1 t | i ∈ [4]} and X t = {u 2i t | i ∈ [4]}.
The vertices of X t (resp. X t) are called the non-negated literal vertices (resp. negated literal vertices).

• For each clause C j = (1 ∨ 2 ∨ 3), we add a clause vertex c j in which, for each literal i which is the r-th occurrence of the variable x t , we identify u 2r-1 t (resp.

u 2r t) if i = x t (resp. i = xt). • In any center set C t , if p = 3 which |C t | = 1,
we add a (2p -2)-degree-gadget at this vertex; if p ≥ 4, we add a (2p -4)-degree-gadget at max{0, 6 -p} vertices and (2p -5)-degree-gadget at min{4, 2p -8} vertices among the other ones.

We will show that there is an assignment φ satisfying Φ if and only there is a (K - p , H, 3p -1)-graph G.

Assume that φ satisfies Φ, then we construct G as follows.

In a variable gadget H t , for every i ∈ [8], we let G[S i t] be a copy of K - p in which G[H t] is such that -every vertex in C t which is not in any degree-gadget is a (p -1)-vertex, so it is adjacent to all vertices in H t ; -if φ(x t) = true (resp. φ(x t) = f alse), then each vertex in X t (resp. X t) is a (p -2)-vertex in every hyperedge containing it and each vertex in X t (resp. X t) is a (p -1)-vertex in every hyperedge containing it.

-any vertex in C t which is in a d-degree-gadget is adjacent to all vertices in H t except p + 5 -(3p -1d) literal vertices in exactly one of the two sets X t , X t .

For any d-degree-gadget D at a vertex v, let G[V (D)] be a (K - p , D, 3p -1)-graph in which v has degree d.

Let us check that ∆(G) ≤ 3p -1.

-Each vertex in C t which is not in any degree-gadget is adjacent to all vertices in H t . So it has degree at most p + 5 in G.

-Each vertex in C t which is in a d-degree-gadget has degree d in its degree-gadget and is adjacent to 3p -1d vertices in H t . So it has degree 3p -1 in G.

CHAPTER 4. (∆ ≤ K)-F -OVERLAY -Any literal vertex which is not identified in any clause vertex has degree either p -1 or p in its variable gadget (adjacent to p -3 vertices of C t and two literal vertices which each is in the same hyperedge). Thus, it has degree less than 3p -1.

-Each clause vertex is the identification of three literal vertices. Each of those has degree either p-1 or p in its variable gadget. Moreover at least one of the literals is true so its corresponding literal vertex has degree p -1 in its variable gadget.

Therefore the clause vertex has degree at most 3p -1.

-Any vertex which is in a degree-gadget but in no variable gadget belongs to at most two hyperedges, then it has degree at most 2(p -1) < 3p -1.

Hence, G is a (K - p , H, 3p -1)-graph.

Conversely, assume that G is a (K - p , H, 3p -1)-graph. For every hyperedge S of H, let F S be a subgraph of G[S] isomorphic to K - p .

Claim 42.1. Any G[H t] satisfies the following.) for some w ∈ C t and it belongs to a degree-gadget, so u i t is p -2 in hyperedges which contain it. Thus, there are four none-edges and all vertices of exactly one of the sets X t , X t are (p -2)-vertices in hyperedges it belong and those of the other set are (p -1)-vertices.

(i) G[C t] is complete. (ii) For i ∈ [8], u i t u i+1 t ∈ E(G[H t]) (
By Claim 42.1, we define an assignment φ by φ(x t) = true (resp. φ(x t) = f alse) if all vertices in X t are (p -2)-vertices (resp. (p -1)-vertices) in the hyperedges of H t to which they belong.

Observe that, each of these (p -2)-vertices has degree p -1 (it is adjacent to p -3 vertices of C t and two literal vertices) and each of those (p -1)-vertices has degree p (it is adjacent to all vertices of C t and two literal vertices

) in G[H t].
A clause vertex c j is the identification of three literal vertices. Since it has degree at most 3p -1, then at least one of those literal vertices has degree at most p -1 in its variable gadget. Hence, this vertex is a (p-2)-vertex in the hyperedges of H t to which it belongs. Thus this vertex corresponds to a true literal in the clause C j . Therefore, φ satisfies Φ.

Complete bipartite graph K a,a+1

Theorem 43. (∆ ≤ 3a + 5)-K a,a+1 -OVERLAY is NP-complete.

Proof. Reduction from (3,4)-SAT. Given a formula Φ of this problem, we build a hypergraph H as follows.

• • For each clause C j = (1 ∨ 2 ∨ 3), we add a clause vertex c j in which, for each literal i which is the r-th occurrence of the variable x t , we identify u 2r-1 t (resp. u 2r t) if i = x t (resp. i = xt). • We add degree-gadgets on some vertices:

we add a (2a + 2)-degree-gadget at each of vertices in C 1 t . -we add a (2a + 1)-degree-gadget at each of vertices in C 2 t . We will show that there is an assignment φ satisfying Φ if and only there is a (K a,a+1 , H, 3a + 5)-graph G.

Assume that φ satisfies Φ, then we construct G as follows.

In a variable gadget H t , for every i ∈ [8], we let G[S i t] be a copy of K a,a+1 such that -every vertex in C 1 t is an a-vertex and each vertex in Let us check that ∆(G) ≤ 3a + 5.

C 2 t is an (a + 1)-vertex (so G[C t] is K a,a-1 with partition (C 1 t , C 2 t)); -if φ(x t) = true (resp. φ(x t) = f alse, then each vertex in X t (resp. X t)
-Each vertex in C 1 t has degree 2a + 2 in its (2a + 2)-degree-gadget. It is also adjacent the a -1 vertices in C 2 t , and to the four vertices of exactly one of the two sets X t , X t . Thus, this vertex has degree 3a + 5 in G.

-Each vertex in C 2 t has degree 2a + 1 in its (2a + 1)-degree-gadget. It is also adjacent the a vertices in C 1 t and to the four vertices in exactly one of sets X t , X t . Hence, it has degree 3a + 5.

-Any literal vertex which is not identified in any clause vertex has degree has degree at most a + 2 in its variable gadget. So, it has degree a + 2 < 3a + 5 in G.

-Each clause vertex is the identification of three literal vertices. Each of those has degree either a + 1 or a + 2 in its variable gadget. Moreover at least one of the literals is true so its corresponding literal vertex has degree a + 1 in its variable gadget. Therefore the clause vertex has degree at most 2(a + 2) + a + 1 = 3a + 5.

-Any vertex which is in a degree-gadget but in no variable gadget has degree at most 2(a + 1) < 3a + 5 since it belongs to at most two hyperedges.

Hence, G is a (K a,a+1 , H, 3a + 5)-graph.

Conversely, assume that G is a (K a,a+1 , H, 3a + 5)-graph. For every hyperedge S of H, let F S be a subgraph of G[S] isomorphic to K a,a+1 . Free to remove some edges, we may assume that G is the union of the F S for every hyperedge S of H. We have the following.

Claim 43.1. Any G[H t] satisfies the following.

(i) In a hyperedge S i t of H t , the two literal vertices cannot be both a-vertices or both (a+1)vertices.

(ii) In every hyperedge of H t , the vertices in C 1 t are a-vertices and the vertices in C 2 t are (a + 1)-vertices.

(iii) The vertices of one of the two sets X t , X t are a-vertices in all hyperedges of H t to which they belong, and the vertices of the other of those sets are (a + 1)-vertices in all hyperedges of H t .

Proof t , S i+4 t , S i+6 t } such that v is adjacent to no literal vertex of S and S . Now in each of those two hyperedges, v has degree exactly a. Hence it must be an a-vertex, and each of its neighbors, including u, is an (a + 1)-vertex and thus is adjacent to the two literal vertices. Hence u is adjacent to at least a + 4 vertices in G[H t] (at least a in S i t plus the four literal vertices of S and S). This is a contradiction.

• If v is adjacent to a + 1 vertices in C 1 t ∪ C 2 t ,
then there are two vertices u, u in C 1 t \ {v} which are adjacent to v and each of them has degree at least a in S i t . Since v has degree a + 2 in S i t ∪ C 1 t ∪ C 2 t , it is not adjacent to any of the six other literal vertices than u i t , u i+1 t . Consider the three hyperedges S i+2 t , S i+4 t , S i+6 t ; -if v is an (a + 1)-vertex in one of these hyperedges, then u, u must be avertices and thus adjacent to the two literal vertices in this hyperedge.

if v is an a-vertex in one of those hyperedges, then at least one of u, u is an (a + 1)-vertex in this hyperedge and is adjacent to its two literal vertex. t . Thus the literal vertices of the hyperedge S (resp. S) are both in a same part of F S (resp. F S), and so they are (a + 1)-vertices. Now in each hyperedege of H t , there are more a-vertices than (a + 1)-vertices. Thus there is a vertex z which is an a-vertex in at least three hyperedges S 1 , S 2 , S 3 in

S i t ∪ S i+2 t ∪ S i+4 t ∪ S i+6
t . In any of these hyperedges at least one of the literal vertices is an (a + 1)-vertex, and in at least two of them the two literal vertices are (a + 1)-vertices.

Hence z is adjacent to at least five literal vertices. Moreover, as above, we can show that z has at least a neighbors in C 1 t ∪ C 2 t . Thus z has degree at least a + 5 in G[H t], a contradiction. This completes the proof of (i).

(ii) Assume for a contradiction that a vertex w ∈ C 1 t is an (a + 1)-vertex in S i t . By (i), w is adjacent to a literal vertex in S i t , and so it is adjacent to a other vertices in C 1 t ∪ C 2 t . Furthermore, by (i), in each hyperedge of H t , w is adjacent to a literal vertex (either to an a-vertex or an (a + 1)-vertex). Thus w is adjacent to four literal vertices in H t , and so has degree at least a + 4 in G[H t], a contradiction. Therefore the a vertices of C 1 t are a-vertices. Moreover, by (i), one of the literal vertex of each S i t is an a-vertex. Therefore all vertices of C 2 t must be (a + 1)-vertices.

(iii) Let v be a vertex in C 1 t . It is an a-vertex in each S i t , so by (i) it is adjacent to one vertex in {u i t , u i+1 t } for all i ∈ [8] and it is adjacent to the a -1 vertices of C 2 t . But v has degree at most a + 3 in G[H t], so v is either adjacent to all vertices of X t and non-adjacent to all vertices of X t , or non-adjacent to all vertices of X t and adjacent to all vertices of X t . By Claim 43.1, we define an assignment φ by φ(x t) = true (resp. φ(x t) = f alse) if all vertices in X t are a-vertices (resp. (a + 1)-vertices) in the hyperedges of H t to which they belong.

Observe that, by Claim 43.1, if a literal vertex u i t is an (a + 1)-vertex in the hyperedges of H t to which it belongs then it has degree at least a + 2 in G[H t] because it is adjacent to the a vertices of C 1 t and the two literal vertices u i-1 t , u i+1 t .

A clause vertex c j is the identification of three literal vertices. Since it has degree at most 3a + 5, then at least one of those literal vertices has degree at most a + 1 in its variable gadget. By the above observation, this vertex is an a-vertex in the hyperedges of H t to which it belongs. Thus this vertex corresponds to a true literal in the clause C j . Therefore, φ satisfies Φ.

Proof of Theorem 34

The aim of this section is to prove Theorem 34. The proof divides into four cases, Theorem 41, Theorem 44, Theorem 45 and Theorem 46 as follows.

Proof of Theorem 34 (assuming Theorems 44, 45 and 46). Let F be a graph with degree

values 1 ≤ δ(F) = λ 1 < • • • < λ t = ∆(F).
If t = 1, (i.e. F is regular), then we have the result by Theorem 41. Henceforth, we may assume that t ≥ 2.

If there exists i ∈ [t -1] such that λ i+1 > λ i + 1, then Theorem 44 yields the result.

Henceforth, we may assume that

λ i+1 = λ i + 1 for all i ∈ [t -1].
If t ≥ 3, then λ t + λ 1 ≥ 2λ 2 and Theorem 45 yields the result. Henceforth, we may assume that t = 2 which we then have the result by Theorem 46.

It thus remains to prove Theorems 44, 45 and 46.

The proofs of the first two are reductions from 3-COLORING on 4-regular graphs which are similar to the one used to prove Theorem 37. Given a 4-regular graph G, we build a hypergraph H which includes, for each vertex v ∈ V (G), a vertex gadget with three hyperedges which makes three choices of degrees on vertices c 1 v , c 2 v , c 3 v (as three colors labeled 1, 2, 3 of vertex v) and a color gadget represented as a binary tree with 4 leaves which copies each choice to four (leaves) vertices in other hyperedges (with respect to four neighbors of v ∈ V (G)). For any edge uv, we simply identifies the two leaves of u, v. The idea is that for a proper coloring c of G, c(v) corresponds to a vertex c i v having a certain degree d; then c(v) = i if and only if c i v as degree d in its vertex gadget (see Figure 4.7). However, the set of hyperedges which are in a color gadget of the two theorems are different, see

≤ λ 1 < • • • < λ t . If there exists i * ∈ {2, . . . , t} such that λ i * ≥ λ i * -1 + 2, then there is k such that (∆ ≤ k)-F - OVERLAY is NP-complete.
Proof. Set k = max{2λ t , 2λ i * + λ i * -1 + λ 1 }. We give a reduction from 3-COLORING on 4-regular graphs.

Given a 4-regular graph G, we build a hypergraph H as follows.

CHAPTER 4. (∆ ≤ K)-F -OVERLAY c v c 1 v c 2 v c 3 v c i v a i v b i v l i,1 v l i,2 v l i,3 v l i,4 v Figure 4
.7: The construction of the reduction. The vertex gadget for vertex v (left) and the color gadget represented as a binary tree with 4 leaves (right). In the construction, each edge of this tree is replaced by hyperedges such that the degree of the root c i v is transmitted to all its descendants.

• For each vertex v ∈ V (G), we create a vertex gadget H v with three hyperedges

S i v = {c v , c i v } ∪ X i v ∪ Y i v for i ∈ [3] where |X i v | = i * -1 j=1 α j -1, |Y i v | = p -|X i v | -2. We add a (k -λ i * + 1)-degree-gadget at each vertex x ∈ X i v for i ∈ [3], a (k - 2λ i * -λ i * -1)-degree-gadget at c v . We say that S i v is the parent hyperedge of c i v for each i ∈ [3]. • For each vertex v and each i ∈ [3], we construct a color gadget H i v for i ∈ [3] as follows.
-We create a binary tree

T i v with vertex set {c i v , a i v , b i v , i,1 v , i,2 v , i,3 v , i,4 v } and edge set {c i v a i v , c i v b i v , a i v i,1 v , a i v i,2 v , b i v i,3 v , b i v i,4
v }, rooted at c i v . In this tree, a i v and b i v are the children of c i v , i,1 v and i,2 v are the children of a i v , and i,3 v and i,4

v are the children of b i v . -For any vertex x ∈ {c i v , a i v , b i v }, let y 1 , y 2 be its children in T i v , and let e 1 = xy 1 , e 2 = xy 2 . We first add a (k -2λ i * + 1)-degree-gadget at x. Then we construct an x-edge-gadget as follows: we add a set A x of i * -1 j=1 α j -1 new vertices and a set B x of p -|A x | -2 new vertices, the hyperedges S(e 1) = {x, y 1 } ∪ A x ∪ B x and S(e 2) = {x, y 2 } ∪ A x ∪ B x , and a (kλ i * + 1)degree-gadget at every vertex a ∈ A x . For convenience, we say that S(xy 1) (resp. S(xy 2)) is the parent hyperedge of y 1 (resp. y 2). Moreover, for any leaf i,j v , we denote by S i,j v the hyperedge containing the vertex i,j v . • For every vertex v ∈ V (G), let e 1 v , e 2 v , e 3 v , e 4 v , be an ordering of the edges incident to v. For each edge uv ∈ E(G), let j u and j v be the indices such that uv = e ju u = e jv v . Then, for all i ∈ [3], we identify the vertices i,ju u and i,jv v and we add a (kλ i *λ 1)-degree-vertex at this vertex.

Note that each of the d-degree-gadgets exists because we have d ≥ λ 1 by our choice of k.

Let us now prove that there is a proper 3-coloring of G if and only if there is an (F, H, k)-graph G * . Assume first that there is an (F, H, k)-graph G * . For sake of clarity, we say that a vertex has degree d in a set S if it has degree

d in G * [S]. c i v a i v b i v l i,1 v l i,2 v l i,3 v l i,4 v c i v a i v b i v Y c i v
Let v ∈ V (G). The vertex c v has degree at least (k -2λ i * -λ i * -1) in its (k -2λ i * - λ i * -1)-degree-gadget. Hence c v has degree at most 2λ i * + λ i * -1 in S 1 v ∪ S 2 v ∪ S 3 v . But those hyperedges pairwise intersect in {c v }. Thus there is i ∈ [3] such that c v has degree less than λ i * in S i v .
Moreover, since any vertex x ∈ X i v has degree at least kλ i * + 1 in its (kλ i * + 1)-degree-gadget, so it has degree less than λ i * in S i v . Thus c i v must have degree at least λ i * in S i v . Therefore, we can define a 3-coloring φ by φ(v) = i where i is an index such that c i v has degree at least λ i * in S i v . Let us now prove that φ is proper. We need the following claim.

Claim 44.1. Let v ∈ V (G) and i ∈ [3]. If c i v has degree at least λ i * in S i v , then so does the leaf i,j v in S i,j v for all j ∈ [4].
Proof of claim: It suffices to prove that for any x ∈ {c i v , b i v , a i v }, if x has degree at least λ i * in its parent hyperedge, then both y 1 , y 2 have degree at least λ i * in their parent hyperedges.

Assume that x has degree at least λ i * in its parent hyperedge. Since x has degree at least k -2λ i * + 1 in its (k -2λ i * + 1)-degree-gadget, it has degree at most λ i * -1 in S(xy 1)∪S(xy 2). Moreover, any a ∈ A x has degree at least k -λ i * +1 in its (k -λ i * +1)degree-gadget and so has degree less than λ i * in S(xy 1) ∪ S(xy 2) and so in each of S(xy 1), S(xy 2). Since A x is of size i * -1 j=1 α 1 -1, the vertex y 1 (resp. y 2) must have degree at least λ i * in S(xy 1) (resp. S(xy 2)).

Consider an edge uv

∈ E(G), i ∈ [3]. The vertex = i,ju u = i,jv v has degree at least k -λ i * -λ 1 in its (k -λ i * -λ 1)-
degree-gadget and is the unique common vertex of the hyperedges S i,ju u and S i,jv v . Therefore it has degree λ i * in at most one of S i,ju u , S i,jv v . Hence, by the Claim 44.1, at most one of c i u , c i v has degree λ i * in its parent hyperedge. Thus at most one of u, v is colored i by φ. Therefore, φ is a proper 3-coloring of G.

Assume now that φ is a proper 3-coloring of G. We construct a graph G * as follows.

• For any vertex gadget

H v , i ∈ [3], let G * [S i v]
be a copy of F in which every vertex in X i v has degree at most λ i * -1 , every vertex in Y i v has degree at least λ i * , and

CHAPTER 4. (∆ ≤ K)-F -OVERLAY c v has degree λ i * -1 (resp. λ i *) and c i v has degree λ 1 (resp. λ i *) in S i v if φ(v) = i (resp. φ(v) = i). • In every color gadget H i v , for x ∈ {c i v , b i v , a i v }
with children y 1 and y 2 , let G * [S(xy 1)] and G * [S(xy 2)]) be two similar copies of F such that:

-if i = φ(v), then x has degree λ i * in G * [S(

By construction, G

* F -overlays H. Let us check that ∆(G *) ≤ k. Let u be a vertex of G * . -If u is in at most two hyperedges (in particular, if = u is in Y i v or u is in B x for x internal vertex in some T i v or u is only in a d-degree-gadget), then u has degree at most 2λ t ≤ k. -If u ∈ X i v for v ∈ V (G)
, then u has degree kλ i * + 1 in its (kλ i * + 1)-degreegadget and at most λ i * -1 in S i v], thus u has degree at most k -λ i * +λ i * -1 +1 ≤ k. -If u ∈ A x for v ∈ V (G) and x internal vertex in some tree T i v , then u has degree kλ i * + 1 in its (kλ i * + 1)-degree-gadget and at most

λ i * -1 + 1 in G * [S(xy 1) ∪ S(xy 1)], thus u has degree at most k -λ i * + λ i * -1 + 2 ≤ k. -For u ∈ {c i v , a i v , b i v } for i ∈ [3]
with u parent of y 1 , y 2 , it has degree k -2λ i * + 1 in its (k -2λ i * + 1)-degree-gadget. And if i = φ(v) (resp. i = φ(v)), then u has degree λ i * (resp. λ 1) in its parent hyperedge and λ i * -1 + 1 (resp.

λ i * + 1) in G * [S 1 uy 1 ∪ S 1 uy 2]. Hence u has degree at most k -λ i * + λ i * -1 + 2 ≤ k.
-Assume that u is the identification of i,jv v and i,iw w for an edge vw ∈ E(G). First, u has degree kλ i *λ 1 in its (kλ i *λ 1)-degree-gadget. Moreover, since either φ(v) = i or φ(w) = i, then u has degree λ 1 in one of S i,jv v , S i,jw w and at most λ i * in the other. Therefore, u has degree at most k in G * . Consequently, G * is an (F, H, k)-graph.

Theorem 45. Let a graph F on p vertices with degree sequence d = (d 1 , . . . , d p) such that λ t + λ 1 ≥ 2λ 2 . Then there exists k such that (∆ ≤ k)-F -OVERLAY is NP-complete.

Proof. Observe that the condition λ

t + λ 1 ≥ 2λ 2 implies t ≥ 3. Set k = 2λ t + λ t-1 .
We give a reduction from 3-COLORING on 4-regular graphs.

Given a 4-regular graph G, we build a p-uniform hypergraph H as follows.

• For each vertex v ∈ V (G), we create a vertex gadget H v with three hyperedges

S i v = {c v , c i v } ∪ X i v ∪ Y i v for i ∈ [3] where |X i v | = t-1 i=1 α i -1, |Y i v | = p -α t -1. For i ∈ [3], we add a (k -λ t-1)-degree-gadget at each vertex x ∈ X i v We say that S i v is the parent hyperedge of each c i v , i ∈ [3]. • For each vertex v ∈ V (G) and each i ∈ [3], we construct a color gadget H i v for i ∈ [3] as follows.
-We create a binary tree e of size α t -1. We add the hyperedges S 1 e = {x, z e } ∪ U 1 e ∪ W 1 e and S 2 e = {z e , y} ∪ U 2 e ∪ W 2 e . We finally add a (kλ t -2λ 1)-degree-gadget at x, a (kλ 1)-degree-gadget at each vertex of U 1 e , a (kλ t + 1)-degree-gadget at each of U 2 e , and a (kλ 2λ t + 1)-degree-gadget pendant at z e . • For every vertex v ∈ V (G), let e 1 v , e 2 v , e 3 v , e 4 v , be an ordering of the edges incident to v. For each edge uv ∈ E(G), let j u and j v be the indices such that uv = e ju u = e jv v . Then, for all i ∈ [3], we identify the vertices i,ju u and i,jv v and we add a (k -2λ t + 1)-degree-gadget at this vertex.

T i v with vertex set {c i v , a i v , b i v , i,1 v , i,2 v , i,3 v , i,4 v } and edge set {c i v a i v , c i v b i v , a i v i,1 v , a i v i,2 v , b i v i,3 v , b i v i,4 v }, rooted at c i v . In
c i v a i v b i v l i,1 v l i,2 v l i,3 v l i,4 v c i v a i v b i v Figure 4
.9: The binary tree T i v and an example of the edge-gadget at vertex c i v (corresponding to red edges).

Let us now prove that there is a proper 3-coloring of G if and only if there is an

(F, H, k)-graph G * .
Assume first that there is an (F, H, k)-graph G * . For sake of clarity, we say that a vertex has degree

d in a set S if it has degree d in G * [S]. Let v ∈ V (G). The vertex c v has degree at most 2λ t +λ t-1 in S 1 v ∪S 2 v ∪S 3 v .
But those hyperedges pairwise intersect in {c v }. Thus there is i ∈ [3] such that c v has degree less than λ t in S i v . Moreover, each vertex x ∈ X i v has degree at least kλ t-1 in its (kλ t-1)-degree-gadget, and so at most λ t-1 in S i v . Together with c v , there are t-1 i=1 α t vertices of degree at most λ t-1 in S i v . Thus c i v have degree λ t in its parent hyperedge S i v . Therefore, we can define a 3-coloring φ by φ(v) = i where i is an index such that c i v has degree λ t in S i v . Let us now prove that φ is proper. We need the following claim.

Claim 45.1. Let v ∈ V (G) and i ∈ [3]. If c i v has degree λ t in S i v , then so does any leaf i,j v in S i,j v for j ∈ [4].
Proof of claim: It suffices to prove that for any

x ∈ {c i v , b i v , a i v }, if
x has degree λ t in its parent hyperedge, then both y 1 , y 2 have degree λ t in their parent hyperedges.

Assume that x is a λ t -vertex in its parent hyperedge. Since x has degree at least kλ t -2λ 1 in its (kλ t -2λ 1)-degree-gadget, and degree λ t in its parent hyperedge, it has has degree at most 2λ 1 in S 1 xy 1 ∪ S 1 xy 2 , and so λ 1 in each of S 1 xy 1 , S 1 xy 2 . Let e = xy be one of the two edges xy 1 , xy 2 . Any vertex in U 1 e has degree at least kλ 1 in its (kλ 1)-degree-gadget, and thus λ 1 in S 1 e . It implies that z e has degree at least λ 2 in S 1 e . Since it is also in a (kλ 2λ t + 1)-degree-gadget, z e has degree less than λ t in S 2 e . Moreover, any vertex in U 2 e is in a (kλ t + 1)-degree-gadget, then none of them has degree λ t in S 2 e except those in W 2 e which is of size α t -1. Thus, y must have degree λ t in S 2 e .

Consider an edge uv ∈ E(G), i ∈ [3]. The vertex = i,ju u = i,jv v has degree at least k -2λ t + 1 in its (k -2λ t + 1)-degree-gadget and is the unique common vertex of the hyperedges S i,ju u and S i,jv v . Therefore it has degree λ t in at most one of S i,ju u and G * S i,jv v . Hence, by Claim 45.1, at most one of c i u , c i v has degree λ t in its parent hyperedge. Thus at most one of u, v is colored i by φ. Therefore, φ is a proper 3coloring of G.

Assume now that φ is a proper 3-coloring of G. We construct a graph G * as follows.

• For any vertex gadget H

v , i ∈ [3], let G * [S i
v] be a copy of F in which every vertex in X i v has degree at most λ t-1 , every vertex in Y i v has degree λ t , and c v has degree λ t-1 (resp. λ t) and c i v has degree λ t (resp.

λ 1) if φ(v) = i (resp. φ(v) = i). • In every color gadget H i v , for each edge e = xy of T i v with x parent of y, let G * [S 1 e], G * [S 2
e] be a copies of F such that: -every vertex in U 1 e has degree λ 1 ; -every vertex in U 2 e has degree at most λ t-1 ; -every vertex in W 2 e has degree λ t ; -if i = φ(v), then x has degree λ 1 in S 1 e , z e has degree λ 2 in S 1 e and λ t-1 in S 2 e , and y has degree λ t in S 2 e ;

if i = φ(v), then x has degree λ 2 in S 1 e , z e has degree λ 1 in S 1 e and λ t in S 2 e , and y has degree λ 1 in S 2 e .. • For any d-degree-gadget D at vertex v, we let G * [V (D)] be an (F, D, k)-graph in which v has degree d.

By construction, G

* F -overlays H. Let us check that ∆(G *) ≤ k. Let u be a vertex of G * . -If u is in at most two hyperedges, (in particular if u is in Y i v , in W 1 e ∪ W 2
e in an edge-gadget or only in a degree-gadget), then u has degree at most 2λ t < k in G * .

-If u = c v , then it has degree λ t-1 in S i v for the index i = φ(v), and λ t in S i v for the

two indices i = φ(v). Hence c v has degree 2λ 1 + λ t-1 = k. -If u ∈ X i v for v ∈ V (G), then u has degree k -λ t-1 in its (k -λ t-1)-degree-gadget and at most λ t-1 in S i v , thus u has degree at most k in G * . -If u ∈ U 1
e for some edge e of T i v , then u has degree kλ 1 in its degree-gadget and λ 1 in S 1 e , thus u has degree k in G * . -If u ∈ U 2 e , then u has degree kλ t + 1 in its degree-gadget and at most λ t-1 in S 2 e , thus u has degree at most k in

G * . -If u ∈ {c i v , a i v , b i v } for i ∈ [3] with children y 1 , y 2 , then u has degree k -λ t -2λ 1 in its (k -λ t -2λ 1)-degree-gadget. Moreover, if i = φ(v) (resp. i = φ(v)),
then u has degree λ t (resp. λ 1) in its parent hyperedge and λ 1 (resp. λ 2) in both S 1 uy 1 , S 1 uy 2 . Hence u has degree at most k -

λ t -2λ 1 + λ t + 2λ 1 = k (resp. k -λ t -2λ 1 + λ 1 + 2λ 2 ≤ k by the assumption λ t + λ 1 ≥ 2λ 2) in G * .
-If u = z e for some edge e of T i v , then u has degree kλ 2λ t + 1 in its (kλ 2λ t + 1)-degree-gadget. Moreover, if i = φ(v) (resp. i = φ(v)), then u has degree λ 2 (resp. λ 1) in S 1 e and λ t-1 (resp. λ t) in S 2 e . Hence, u has degree at most

k -λ 2 -λ t + 1 + λ 2 + λ t-1 ≤ k (resp. k -λ 2 -λ t + 1 + λ 1 + λ t ≤ k) in G * .
-Assume that u is the identification of i,jv v and i,iw w for an edge vw ∈ E(G). First, u has degree k -2λ t + 1 in its (k -2λ t + 1)-degree-gadget. Moreover, since either φ(v) = i or φ(w) = i, then u has degree less than λ t in one of S i,jv v , S i,jw w . Therefore, u has degree at most k in G * . Consequently, G * is an (F, H, k)-graph.

Theorem 46. Let F be a graph with α 1 vertices of positive degree λ 1 and α 2 = p-α 1 vertices of degree λ 2 = λ 1 + 1. Then (∆ ≤ k)-F -OVERLAY is NP-complete for some k.

There are several cases in the proof, depending on the structure of graph F . In each case, we give a reduction from (3,4)-SAT problem, which follows the same general idea as the proof of Theorem 41 : we construct variable gadgets H t containing some negated and non-negated literal vertices and identify some of them in such a way that for an assignment φ satisfying Φ of (3,4)-SAT problem, φ(x t) = true (resp. CHAPTER 4. (∆ ≤ K)-F -OVERLAY f alse) if and only if non-negated (resp. negated) literal vertices in the variable gadget are adjacent to w t in an (F, H, k)-graph.

Lemma 47. Let F be a graph on p vertices with α 1 vertices of degree λ 1 and α 2 = pα 1 vertices of degree λ 2 > λ 1 such that F [V λ 2] is µ-regular but neither complete nor anticomplete.

Then there exists k such that (∆ ≤ k)-F -OVERLAY is NP-complete.

Proof. Set γ = λ 2 -µ and k = max{4γ(α 2 -1) + 4µ + λ 1 , 3γ(α 2 -1) + 6µ -1 + λ 1 }.
We give a reduction from (3,4)-SAT. Given a formula Φ of this problem, we construct a hypergraph H as follows.

1. For each variable x t , we construct a variable gadget H t in the following way.

We first create a center vertex w t , a set of 4(α 2 -1) vertices U t = {u 1 t , . . . , u

4(α 2 -1) t },
and for each i ∈ [4(α 2 -1)], create a set of α 1 new vertices W i t , and a hyperedge

S i t = W i t ∪ {w t , u i t , . . . , u i+α 2 -2 t } (superscripts are modulo 4(α 2 -1)). For r ∈ [4], let x r t = u r(α 2 -1)-α 2 +2 t and xr t = u r(α 2 -1)-α 2 +3 t . Set X t = {x 1 t , x 2 t , x 3 t , x 4 t } and X t = {x 1 t , x2 t , x3 t , x4 t }.
The vertices of X t (resp. X t) are called the non-negated (resp. negated) literal vertices of H t .

2. For each clause C j = (1 ∨ 2 ∨ 3), we identify y 1 , y 2 , y 3 into a clause vertex c j , where y i = x r t if i = x t and i is the r-th occurrence of x t , and y i = xr t if i = xt and is the r-th occurrence of x t .

3. Finally, we add degree-gadgets on some vertices.

-We add a (k -4γ(α 2 -1) -4µ)-degree gadget on vertex w t .

-We add a (k -λ 1)-degree gadget at every vertex in W i t for all i ∈ [4(α 2 -1)]. -For i ∈ [µ -1], we add a (kγ(α 2 -1) -2µ + 1)-degree-gadget on each u

(α 2 -1)r-j t for r ∈ [4].
Observe that every vertex in W i t , for i ∈ [4(α 2 -1)], has degree at least kλ 1 in its (kλ 1)-degree-gadget, and so degree at most λ 1 in S i t . Thus, each of those vertices must have degree λ 1 in S i t . It implies that all the other vertices must have degree at least λ 2 in any hyperedge of H t . In particular, w t has degree λ 2 in any hyperedge of H t . Since w t is in a (k -4γ(α 2 -1) -4µ)-degree-gadget and is adjacent to γ vertices in every

W i t for i ∈ [4(α 2 -1)], it has degree at most 4µ in 4(α 2 -1) i=1 S i t \ W i t .
Moreover, each vertex u i t ∈ U t is a λ 2 -vertex in every hyperedge S i t of H t containing it, and so adjacent to γ vertices in

W i t . Since u i t belongs to α 2 -1 hyperedges of H t , thus u i t is adjacent to γ(α 2 -1) vertices in 4(α 2 -1) i =1 W i t . For i ∈ [µ -1], u (α 2 -1)r-i is in a (k -γ(α 2 -1) -2µ + 1
)-degree-gadget, then it has degree at most γ(α 2 -1) + 2µ -1 in H t , and so at most 2µ -1 in

4(α 2 -1) i =1 S i t . Moreover, F [V λ 2
] is µ-regular (but not complete or anticomplete). The following is then similar to the proof of Theorem 41 for F [V λ 2]. So we just sketch it.

Assume that there exists an assignment φ satisfying Φ. Let G be the graph obtained as follows.

We let (v 0 , v 1 , . . . , v α 2 -1) be an ordering of

V λ 2 such that N F (v 0) = {v α 2 -µ+1 , . . . , v α 2 -1 }∪ {v 1 } if φ(x t) = true and such that N F (v 0) = {v α 2 -µ+1 , . . . , v α 2 -1 } ∪ {v 2 } if φ(x t) = f alse). For every i ∈ [4α 2 -4], we let G[S i
t] be the copy of F in which every vertex in W i t is a λ 1 -vertex, w t corresponds to v 0 and u i t for i ∈ {i, . . . , i + α 2 -1} corresponds to the vertex v i such that i ≡ i mod α 2 -1. In addition, for every d-degree-gadget D at some vertex v, we let G[V (D)] be an (F, D, k)-graph in which v has degree d.

The graph G F -overlays H and one can check that ∆(F) ≤ k.

Conversely, assume that G is an (F, H, k)-graph. One can prove the following claim.

Claim 47.1. Every subgraph G[H t] satisfies the following.

(a) Every vertex in

W i t for i ∈ [4α 2 -4] is a λ 1 -vertex in S i t . (b) w t is a λ 2 -vertex
in every hyperedges of H t . Furthermore, it is adjacent to γ vertices in each W i t and the vertices u

(α 2 -1)r-i t for r ∈ [4], i ∈ [µ -1].
Therefore the truth assignment φ defined by φ(x t) = true (resp. f alse) if w t is adjacent to X t (resp. X t), satisfies Φ.

Proof of Theorem 46. Let V d be the set of vertices of degree d in F and d = (d 1 , . . . , d p)

be the non-decreasing degree sequence of F . Let N s be the set of vertices of V λ 2 having exactly s neighbors in V λ 1 , and let N ≥s = s ≥s N s .

For technical reasons, we distinguish several cases as follows.

If

F [V λ 1] is not anticomplete, then see Case A. Otherwise, F [V λ 1] is anticomplete. Assume first that F [V λ 2] is regular. If F [V λ 2] is
neither complete nor anticomplete, then we have the result by Lemma 47. If F [V λ 2] is anticomplete, then F = K λ 1 ,λ 1 +1 and we have the result by Theorem 43.

Hence we may assume that F [V λ 2] is complete. Observe α 2 ≥ λ 1 because a vertex of V λ 1 has all its neighbors in V λ 2 and α 2 ≤ λ 1 + 1 because every vertex of V λ 2 is adjacent to all other vertices of V λ 2 and at least one in V λ 1 . If α 2 = λ 1 + 1, then every vertex of V λ 2 has exactly one neighbor in V λ 1 , and so α 2 = λ 1 × α 1 . Hence α 2 = 2 = α 1 and λ 1 = 1. Thus F = K - 3 and we have the result by Theorem 42. If

α 2 = λ 1 , then every vertex of V λ 1 is adjacent to all vertices of V λ 2 . Thus F is K - λ 1 +2
and we have the result by Theorem 42. Henceforth, we may assume that

F [V λ 2] is not regular, that is F [V λ 2]
has at least two degree values. In particular, α 2 ≥ 2.

If N ≥2 is empty, then V λ 2 = N 0 ∪ N 1 and both N 0 , N 1 are non-empty. See Case

B-(i).

If there is a vertex in N ≥2 which is not adjacent to a vertex in V λ 1 , see Case C-(i).

Otherwise, every vertex in N ≥2 is adjacent to all vertices in V λ 1 (so here

N ≥2 = N α 1 with α 1 ≥ 2). If N 1 = ∅, then see Case C-(ii). Otherwise, N 1 = ∅ and any vertex in V λ 1
is not adjacent to all vertices in N 1 , see Case B.

Case A:

We set k depending on the subgraph

F [V λ 1] of F .
w t is adjacent to 4λ 1 vertices in H t and one more in W t ⊂ V (S t), and it has degree k -4λ 1 -1 in its degree-gadget. Thus w t has degree k in total.

-Any literal vertex which is not identified to any clause vertex and is not in S t has degree has degree at most 2λ 2 in its variable gadget. So, it has degree less than k.

-Any literal vertex which is in S t has degree has degree at most 2λ 2 in its variable gadget and it is adjacent to at most λ 1 vertices in W t . So, it has degree less than k.

-Each clause vertex c j is in three literal variable gadgets. In Case A-(1) (resp.

Case A-(2)), c j has degree at most 2λ 1 (resp. 2λ 2) in each variable gadget. Moreover at least one of the literals is true so its corresponding literal vertex has degree 2λ 1 -1 (resp. 2λ 2 -1) Therefore c j has degree at most 6λ 1 -1 (resp. 6λ 2 -1) in its variable gadget. Now it has degree k -6λ 1 + 1 (resp. k -6λ 2 + 1)

in its degree-gadget, and so at most k in total.

-Any vertex which is in a degree-gadget but in no variable gadget has degree at most 2λ t ≤ k since it belongs to at most two hyperedges.

-Any vertex in W t has degree at most λ 2 < k.

Hence, G is an (F, H, k)-graph.

Conversely, let G be an (F, H, k)-graph.

Claim 47.2. Any G[H t] satisfies the following.

(a) w t has degree 4λ 1 in H t and w t has degree exactly λ 1 in every hyperedge containing it. Proof of claim: Observe that w t is in a (k -4λ 1 -1)-degree-gadget, so it has degree at most 4λ 1 + 1 in H t ∪ S t . Since w t is in S t which intersects S 1 t in λ 1 -1 vertices and it is at least λ 1 in S t , then w t is adjacent to at least one vertex in W t ⊂ V (S t). Thus, w t has degree at most 4λ 1 in H t . Now for every i ∈ [p -1], w t belongs to the four hyperedges S (p-1)r-i t , r ∈ [4], which pairwise intersect in {w t }. Hence w t has degree exactly λ 1 in each S (p-1)r-i t and then 4λ 1 in H t . This proves (a). Now, if a vertex u i t is adjacent to w t , then so is u i+p-1 t because w t has degree exactly λ 1 in both S i t and S i+1 t . Therefore there is

I ∈ [p -1] of size λ 1 such that w t is adjacent to u (p-1)r-i+1 t for all i ∈ I and r ∈ [4].
Since w t has degree 4λ 1 in H t , then w t is adjacent to exactly one vertex in W t and so must be adjacent to λ 1 -1 vertices in S t \ W t which are u p-1 t , . . . , u p-λ 1 +1 . It implies that [λ 1 -1] ⊂ I. This proves (b).

Claim 47.2 implies that the vertices of X t (resp. X t) are either all adjacent to w t or all non-adjacent to w t . Moreover, w t is adjacent to λ 1 -1 vertices not in X t ∪X t . Hence if the vertices of X t are adjacent to w t , the vertices of X t are not (and vice-versa). CHAPTER 4. (∆ ≤ K)-F -OVERLAY Let φ be the truth assignment defined by φ(x t) = true if w t is adjacent to H t , and φ(x t) = f alse otherwise. In any clause vertex c j , we identified three literal vertices corresponding to the three literals.

-In Case A-(1), c j has degree at most k = 6λ 1 -1, so it has degree less than 2λ 1 in one of its three variable gadgets H t . Since any vertex u i t for i ∈ [4p -4] belongs to two hyperedges S i t and S i-p+2 t which intersect in {u i t , w t } and has degree at least λ 1 in each, then it has degree 2λ 1 -1 in H t only if it is adjacent to w t . Hence, c j is adjacent to w t .

-In Case A-(2), c j has degree at most k = 6λ 1 + 3 < 6λ 2 , so it has degree less than 2λ 2 in one of its three variable gadgets H t .

Moreover, F [V λ 1] is complete, then w t is adjacent to all λ 1 -vertices in every hyperedges of H t (because it is a λ 1 -vertex in every hyperedge of H t). If c j is not adjacent to no center vertex of the three variable gadgets it belongs to, then it must be a λ 2 -vertex in each hyperedge of those gadgets. Thus it has degree at least 2λ 2 in each variable gadget and so at least 6λ 2 in total, a contradiction.

Thus c j is adjacent to the center of at least one variable gadget w t .

Hence, the corresponding literal to the literal vertex adjacent to w t for variable x t is true and clause C j is satisfied.

Consequently, φ satisfies Φ.

Case B:

Recall that in that case

N 1 = ∅. Let γ = max{|N (v) ∩ V λ 1 | | v ∈ V λ 2 }. We have V λ 2 = γ s=0 N s . Let k as follows. (i) If N 0 = ∅, then set k = max{6λ 2 -1 + λ 1 , γα 2 + 2(λ 2 -γ) + λ 1 }. (ii) If N 0 = ∅, N ≥2 = ∅ and every vertex of N ≥2 is adjacent to all vertices of V λ 1 , then set k = max{6λ 1 + 3α 2 -1 + λ 1 , γα 2 + 2(λ 2 -γ) + λ 1 }. Note that in that case every vertex in V λ 1 is adjacent to a vertex in N 1 but not all.
We give a reduction from (3,4)-SAT.

Given a formula Φ of this problem, we build a hypergraph as follows.

1. For each variable x t , we construct a variable gadget H t in the following way.

We first create a center vertex w t , 4α 2 sets of α 1 -1 vertices

A i t for i ∈ [4α 2], a set of 4α 2 vertices U i = {u 1 t , . . . , u 4α 2 t }, and 4α 2 hyperedges S i t = A i t ∪{w t , u i t , . . . , u i+α 2 -1 t } (superscripts are modulo 4α 2) for i ∈ [4α 2]. For r ∈ [4], let x r t = u α 2 (r-1)+1 t and xr t = u α 2 (r-1)+2 t . Set X t = {x 1 t , x 2 t , x 3 t , x 4 t } and X t = {x 1 t , x2 t , x3 t , x4 t }.
The vertices of X t (resp. X t) are called the non-negated (resp. negated) literal vertices of H t .

2. For each variable x t , -we create a set of p-λ 1 vertices B t and a hyperedge S t = B t ∪{w t , u α 2 t , . . . , u α 2 -λ 1 +2 t }.

-add a (k -4λ 1 -1)-degree-gadget on w t .

-add a (kλ 1)-degree-gadget on every vertex in

A i t for i ∈ [4α 2].
3. For each clause C j = (1 ∨ 2 ∨ 3), we identify y 1 , y 2 , y 3 into a clause vertex c j , where y i = x r t if i = x t and i is the r-th occurrence of x t , and y i = xr t if i = xt and is the r-th occurrence of x t . We also add a (k -6λ 2 -1)-degree vertex at c j in Case B-(i), and a (k -6λ 1 -3α 2 + 1)-degree vertex at c j in Case B-(ii).

We will show that there is an assignment φ satisfying Φ if and only there is an (F, H, k)-graph G.

Let z be a vertex in V λ 1 adjacent to a vertex y in N 1 and let ȳ be a vertex in N 0 in Case B-(i) or a vertex in N 1 not adjacent to z in Case B-(ii). Note that ȳ and z are not adjacent. Let (y 1 , . . . , y α 2 -2) be an ordering of V λ 2 \ {y, ȳ} such that y 1 , . . . , y λ 1 -1 are adjacent to z and y λ 1 , . . . , y α 2 -2 are not adjacent to z.

Assume that there is φ satisfying Φ, we construct a graph G as follows. Let G[S t] be a copy of F such that w t has degree λ 1 and is adjacent to the λ 1 -1 vertices

u α 2 t , . . . , u α 2 -λ 1 +2 t .
In a variable gadget H t , for every i ∈ [4α 2], we let G[S i t] be a copy of F such that w t corresponds to the vertex z, and

-A i t corresponds to V λ 1 \ {z}. -if φ(x t) = true (resp. φ(x t) = f alse), then each vertex in X t (resp. X t) corre-
sponds to y, and each vertex in X t (resp. X t) to ȳ. w t is adjacent to 4λ 1 vertices in H t and one more in W t ⊂ V (S t), and it has degree k -4λ 1 -1 in its degree-gadget, then w t has degree k in total.

-for i ∈ [α 2 -2], u
-Any literal vertex which is not identified to any clause vertex and not in S t has degree at most γα 2 + 2(λ 2γ) in its variable gadget (it is adjacent to at most γ vertices in each A i t in a hyperedge to which it belongs and there are α 2 such hyperedges; and f (x) = xα 2 + 2(λ 2x) is increasing). So, it has degree less than k.

-Any literal vertex which is not identified to any clause vertex and in S t has degree at most γα 2 + 2(λ 2γ) in its variable gadget and is adjacent to at most λ 1 vertices in B t . So it has degree at most k.

-Each clause vertex c j is in three variable gadget. In Case B-(i), c j (resp. Case B-(ii)), in each of these gadgets, c j has degree either 2λ 2 -1 if it is adjacent to w t or 2λ 2 (resp. α 2 +2(λ 2 -1) otherwise. Moreover at least one of the literals is true, its corresponding literal vertex has degree 2λ 2 -1 in its variable gadget. Therefore c j at most 6λ 2 -1 neighbors (resp. 2α 2 + 6(λ 2 -1) + 1) in variable gadgets. It also has k -6λ 2 + 1 (resp. k -6λ 1 -3α 2 + 1) neighbors in its degree-gadget.

Hence, in G, it has degree at most k. CHAPTER 4. (∆ ≤ K)-F -OVERLAY -Any vertex which is in a degree-gadget but in no variable gadget has degree at most 2λ t ≤ k since it belongs to at most two hyperedges.

-Any vertex in B t has degree at most λ 2 < k.

Hence, G is an (F, H, k)-graph.
Conversely, let G be an (F, H, k)-graph.

Observe that any vertex in A i t for i ∈ [4α 2] is in a (kλ 1)-degree-gadget, then it has degree at most λ 1 in S i t . Since any vertex has degree at least λ 1 in a hyperedge, then every vertex in 4α 2 i=1 A i t is a λ 1 -vertex in any hyperedge to which it belongs.

Claim 47.3. Any G[H t] satisfies the following.

(a) w t has degree 4λ 1 in H t and w t is a λ 1 -vertex in every hyperedge of H t .

(b) There is

I ∈ [α 2] of size λ 1 such that for all i ∈ I and r ∈ [4], u α 2 r-i+1 t is adjacent to w t ; and [λ 1 -1] ⊂ I.
This claim can be proved in exactly the same way as Claim 47.2.

We have that every vertex in U t is a λ 2 -vertex in any hyperedge to which it belongs (since w t and α 1 -1 vertices of A i t for i ∈ [4α 2] are λ 1 -vertices). Claim 47.3 implies that the vertices of X t (resp. X t) are either all adjacent to w t or all non-adjacent to w t . Moreover, w t is adjacent to λ 1 -1 vertices in U t but not in X t ∪ X t . Hence if the vertices of X t are adjacent to w t , the vertices of X t are not (and vice-versa).

Let φ be the truth assignment defined by φ(x t) = true if w t is adjacent to all vertices of X t in H t , and φ(x t) = f alse otherwise.

A clause vertex c j has degree at most k. Because of its degree-gadget, in Case B-(i) (resp. Case B-(ii)), it has degree at most 6λ 2 -1 (resp. 6λ 1 + 3α 2 -1) in H t . Now, since it is the identification of three literal vertices, c j has degree less than 2λ 2 (resp.

2λ 1 + α 2) in one variable gadget H t . Claim 47.4. Let i ∈ [4α 2]. If u i
t is not adjacent to w t , then the following holds.

(i) u i t has degree at least 2λ 2 in G[H t]; (ii) If N 0 = ∅, then u i t has degree at least 2λ 1 + α 2 in G[H t];
Proof of claim: u i t has at least λ 2 neighbors in each of S i t and S i-α 1 +1 t . But the intersection of those hyperedges is {w t , u i t }. As it is not adjacent to w t , u i t has at least 2λ 2 neighbors in S i t ∪ S i-α 1 +1 t . This proves (i).

If N 0 = ∅, then for all iα 2 + 1 < i < i. u i t must be adjacent to at least one λ 1 -vertex of S i t which is in

A i t . Hence u t i has at least α 2 -2 in i-α 2 +1<i <i A i t which is disjoint from S i t ∪ S i-α 1 +1 t . Hence u i t has degree at least 2λ 2 + α 2 -2 = 2λ 1 + α 2 in G[H t]. This proves (ii).
This claim implies that there is at least one variable gadget H t in which c j is adjacent to w t . It implies that the corresponding literal of this vertex in C j is true, and so C j is satisfied.

Consequently, φ satisfies Φ.

Case C:

In this case, F [V λ 1] is anticomplete, F [V λ 2]
is not regular, and V λ 2 satisfies one of the following.

(i) there is a vertex of N ≥2 that is not adjacent to all vertices in V λ 1 in F .

(ii) V λ 2 = N ≥2 ∪ N 0 and every vertex of N ≥2 is adjacent to all vertices of V λ 1 . Since F [V λ 2] is not complete, then there is a vertex in N ≥2 which is not adjacent to a vertex in either N 0 Case C-(ii)-a or N ≥2 Case C-(ii)-b.
We set a = max

u∈V λ 1 v∈N (u) N (v) ∩ N (u) , and let k = 4(p -2)(2λ 1 -a) + 4λ 1 + 1.
For conveniences, we denote some vertices of graph F as follows. Let z 0 be a vertex in N ≥2 such that there is

z 1 ∈ V λ 1 adjacent to z 0 with a = |N (z 0) ∩ N (z 1)|. Let z ∈ N ≥2
which is adjacent to the minimum number of vertices in N 0 , and y, y ∈ V λ 1 be vertices adjacent to z and

• in Case C-(i), let ȳ ∈ V λ 1 be a vertex not adjacent to z.
• in Case C-(ii), let ȳ be a vertex not adjacent to z such that ȳ ∈ N 0 if z is not adjacent to all vertices in N 0 and ȳ ∈ N ≥2 otherwise.

We give a reduction from (3,4)-SAT.

Given a formula Φ of this problem, we build a hypergraph as follows.

1. For each variable x t , we construct a variable gadget H t in the following way.

We first create a center vertex w t , a set of 4(p -2) vertices D t = {d 1 t , . . . , d

4(p-2) t }, a set of 4(p -2) vertices U t = {u 1 t , . . . , u 4(p-2) t }, and 4(p -2) hyperedges S i t = {w t , d i t , u i t , . . . , u i+p-3 t } (superscripts are modulo 4(p -2)) for i ∈ [4(p -2)]. For r ∈ [4], let x r t = u r(p-2)-p+3 t and xr t = u r(p-2)-p+4 t . Set X t = {x 1 t , x 2 t , x 3 t , x 4 t } and X t = {x 1 t , x2 t , x3 t , x4 t }.
The vertices of X t (resp. X t) are called the non-negated (resp. negated) literal vertices of H t .

For each variable

x t , -We create a set Y t of p -λ 1 vertices and a hyperedge S t = Y t ∪ {w t } ∪ {u p-2 t , . . . , u p-λ 1 t }.
-For any i ∈ [4(p -2)], we add two sets of pλ 1 -1 vertices A i t , B i t and a set of λ 1 -1 vertices C i t , and two hyperedges

A i t ∪ C i t ∪ {d i t , w t } and B i t ∪ C i t ∪ {d i t , w t }.
We call this a fickle-gadget F i t . -We add a (k -2λ 1 + 1)-degree-gadget on every vertex in D t .

3. For each clause C j = (1 ∨ 2 ∨ 3), we identify y 1 , y 2 , y 3 into a clause vertex c j , where y i = x r t if i = x t and i is the r-th occurrence of x t , and y i = xr t if i = xt and is the r-th occurrence of x t . We also add at c j a (k-6λ 1 +1)-degree-gadget in Case C-(i), a (k -6λ 1 -3)-degree-gadget in Case C-(ii)-a, and a (k

-6λ 1 -3p+6)- degree-gadget in Case C-(ii)-b. CHAPTER 4. (∆ ≤ K)-F -OVERLAY
We will show that there is an assignment φ satisfying Φ if and only if there is an (F, H, k)-graph G.

Assume that there is φ satisfying Φ, we construct a graph G as follows.

Let (y 1 . . . , y p-4) be an ordering of V (F) \ {z, y, y , ȳ} such that y 1 , . . . , y λ 1 -2 are adjacent to z and y λ 1 -1 , . . . , y p-4 are not adjacent to z.

In both hyperedges of any fickle-gadget F i t , w t corresponds to z 0 and d i t corresponds z 1 . d i t is adjacent to w t and all vertices in C i t , while w t is adjacent to a vertices in C i t and λ 2a other ones in each of A i t , B i t . Let G[S t] be a copy of F such that w t has degree λ 1 and is adjacent to the λ 1 -1 vertices u p-2 t , . . . , u p-λ 1 t .

For each variable gadget H t , for every

i ∈ 4[α 2], let G[S i
t] be a copy of F such that w t corresponds to z, and -if φ(x t) = true (resp. f alse), then each vertex of X t (resp. X t) corresponds to y and each vertex of X t (resp. X t) corresponds to ȳ.

-in any S i t ,

d i t corresponds to y . -for i ∈ [p -4] and r ∈ [4], u (p-2)r+1-i t corresponds to y i . For any d-degree-gadget D at a vertex v, let G[V (D)] be an (F, D, k)-graph in which v has degree d.
Let us check that G has degree at most k.

-Any vertex d i t ∈ D t has degree (k -2λ 1 + 1) in its degree-gadget and λ 1 in the fickle-gadget F i t and λ 1 -1 other vertices in V (S i t \ {w t }), thus it has degree k. -Any vertex in Y t ⊂ V (S t) has degree at most λ 2 .

w t has (2λ 1a) neighbor in each of the 4(p -2) fickle-gadgets and is adjacent to 4λ 1 vertices in U t and one more in Y t . Thus it has degree k in G.

-Any vertex in a degree-gadget which is not in H t has degree at most 2λ 2 .

-Any vertex in U t but not in X t ∪X t ∪S t has degree at most 2λ 2 if it is not adjacent to any vertex in D t or at most 2λ 2 + p -2 if adjacent to a vertex in D t for each hyperedge to which it belongs.

-Any vertex in U t ∩ S t has degree at most 2λ 1 + p -2 in H t and it is adjacent to at most λ 1 vertices in Y t , so it has degree less than k.

-Any clause vertex c j has degree d in its d-degree-gadget. Moreover, in each of its variable gadget, c j has degree either 2λ 1 -1 if it adajcent to the center vertex or

2λ 1 in Case C-(i), 2λ 2 in Case C-(ii)-a, and 2λ 1 + p -2 in Case C-(ii)-b otherwise.
Since there at least one of three literals of the clause C j is true, c j has 2λ 1 -1 in one of its variable gadget, and thus degree at most k in total.

Hence, G is an (F, H, k)-graph.

Conversely, let G be an (F, H, k)-graph.

Claim 47.5. For any variable x t , we have the following.

(a) For all i ∈ [4(p -2)], d i t is adjacent to w t and has degree λ 1 in any hyperedge of F i t ∪ S i t .

(b) w t is a λ 2 -vertex in every hyperedge of H t . Furthermore, there is I ∈ [p -2] of size λ 1 such that for all i ∈ I and r ∈ [4], u (p-2)r-i+1 is adjacent to w t and [λ 1 -1] ⊂ I.

(c) w t has degree k in G.

Proof of claim: Observe that any vertex

d i t ∈ X t is in a (k -2λ 1 + 1)-degree-gadget, then it has degree at most 2λ 1 -1 in G[F i t ∪ S i t]
. Since S i t and F i t intersect only in {d i t , w t } and d i t has degree at least λ 1 in each, then

d i t has degree at least 2λ 1 -1 in G[F i t ∪ S i t]
. The equality holds when d i t is adjacent to w t and λ 1 -1 vertices in C i t . Thus, d i t has degree λ 1 in all hyperedges of F i t ∪ S i t and is adjacent to w t . This proves (a).

In any fickle-gadget F i t , from (a), every vertex in {w t } ∪ C i t is adjacent to d i t and must be a λ 2 -vertex in the two hyperedges of F i t . Thus, w t is adjacent to at most a vertices in C i t , and so has degree at least

2λ 2 -a in G[F i t]. Since w t is in 4(p -2) fickle- gadgets, then it has degree at least 4(p -2)(2λ 2 -a) in G[4(p-2) i=1 F i t]. Moreover, from (a), for i ∈ [4(p -2)], w t is adjacent to d i t which has degree λ 1 in S i t . Thus w t must be a λ 2 -vertex in S i t because F is anticomplete. Since w t is in S t which intersects H t in λ 1 -1 vertices and w t must have degree at least λ 1 in G[S t], then it is adjacent to at least one vertex in Y t ⊂ V (S t). Therefore, w t is adjacent to at most k -4(p -2)(2λ 2 -a) -1 = 4λ 1 vertices in H t . Now for every i ∈ [p -2], w t belongs to four hyperedges S (p-2)r-i t , r ∈ [4], which pair- wise intersect in {w t }. Hence w t has degree exactly λ 1 in each S (p-2)r-i \ {d (p-2)r-i t }
and then is adjacent to 4λ 1 vertices in U t .

If a vertex u i t is adjacent to w t , then so is u i+p-2 t because w t has degree exactly λ 1 in both S i t \ {d i t } and S i+1 t \ {d i+1 t }. Therefore there is I ∈ [p -2] of size λ 1 such that w t is adjacent to u (p-2)r-i+1 t for all i ∈ I and r ∈ [4].

Since w t has degree 4λ 1 in H t , then w t is adjacent to exactly one vertex in Y t and so must be adjacent to λ 1 -1 vertices in S t \ Y t which are u p-2 t , . . . , u p-λ 1 t . It implies that [λ 1 -1] ⊂ I. This completes the proof of (b).

From (a), (b) we have that w t has degree

4(p -2)(2λ 2 -a) in G[4(p-2) i=1 F i t],
it is adjacent to 4λ 1 vertices in U t and one in Y t . Thus, w t has degree k in total. This proves (c).

Claim 47.5(b) implies that the vertices of X t (resp. X t) are either all adjacent to w t or all non-adjacent to w t . Moreover, w t is adjacent to 4(λ 1 -1) vertices in U t \(X t ∪X t).

Hence if the vertices of X t are adjacent to w t , the vertices of X t are not (and viceversa).

Let φ be the truth assignment defined by φ(x t) = true if w t is adjacent to all vertices of X t in H t , and φ(x t) = f alse otherwise. Observe the following.

• In Case C-(i), any clause vertex c j is in a (k -6λ 1 + 1)-degree-gadget, so it has degree at most 6λ 1 -1 in the union of its three variable gadgets. Thus it has degree less than 2λ 1 in one of its variable gadgets H t . Since any vertex in U t Theorem 51 (Folklore). Let degree sequence (d 1 , . . . , d n) is potentially connected if and only if d 1 ≥ 1 and n i=1 d i ≥ 2(n -1).

Many results obtained from the previous sections for (∆ ≤ k)-F -OVERLAY can be adapted to NEAT (∆ ≤ k)-F -OVERLAY and (d, k)-SPLITTING. For F with isolated vertices and F is the induced subgraph of F by non-isolated vertices, Corollary 36 gives a sufficient condition in which the NP-completeness of (∆ ≤ k)-F -OVERLAY implies that of (∆ ≤ k)-F -OVERLAY. It is also true for (d, k)-SPLITTING and even stronger on neat hypergraphs.

Corollary 52. Let F be a graph, d a non-negative sequence, and q a positive integer.

(i) If (d, k)-SPLITTING is NP-complete, then (0 q • d, k)-SPLITTING is also NP-complete. (ii) If NEAT (∆ ≤ k)-F -OVERLAY is NP-complete, then (∆ ≤ k)-(F + E q)-OVERLAY is also NP-complete.

Polynomial results

Observe that for F an r-regular graph, NEAT (∆ ≤ k)-F -OVERLAY is simple. Since a hyperedge intersects another in at most one vertex in a neat hypergraph, then the total degree of a vertex v in a graph G F -overlays H must be rd H (v). Therefore, if the maximum degree of a vertex in H is at most k r , then there exists an (F, H, k)-graph for the problem. We then provide a proof when F has two degree values.

Theorem 53. Let F be a graph with degree values λ 1 < λ 2 and k be a non-negative integer.

NEAT (∆ ≤ k)-F -OVERLAY is in P. Proof. Let H be a neat |F |-uniform hypergraph.
If there is a vertex v such that λ 1 • d H (v) > k, then we answer 'No'. Indeed in an (F, H, k)-graph G, the vertex v has degree at least λ 1 in each subgraph of G induced by a hyperedge to which it belongs, and so degree at least

λ 1 • d H (v) in G because H is neat. Hence, we assume that λ 1 • d H (v) ≤ k for every vertex.
Let B(H) be the incidence graph of H: its vertex set is E(H) ∪ V (H) and there is an edge between a hyperedge S ∈ E(H) and a vertex v ∈ V (H) if and only if v ∈ S.

Claim 53.1.

There is an (H, F, k)-graph if and only if B(H) has a subgraph in which every hyperedge vertex has degree α 2 and every vertex has degree at most

k-λ 1 •d H (v) λ 2 -λ 1 .
Proof of claim: Assume that there is an (H, F, k)-graph G. Observe that since H is a neat hypergraph, free to remove some edges, we may assume that G[S] is isomorphic to F for every hyperedge S of H. Let B be the subgraph of B(H) in which a vertex v is adjacent to a hyperedge S if and only if v has degree λ 2 in S. By definition every hyperedge has degree α 2 in B . Consider now a vertex v. Its degree in G is the sum of its degree in the subgraphs induced by the hyperedges S to which it belongs because

H is neat. Hence d G (v) = λ 2 •d B (v)+λ 1 (d H (v)-d B (v)) = λ 1 •d H (v)+(λ 2 -λ 1)d B (v). But G is an (F, H, k)-graph, so d G (v) ≤ k. With the previous equality, this yields d B (v) ≤ k-λ 1 •d H (v) λ 2 -i 1 , and so d B (v) ≤ k-λ 1 •d H (v) λ 2 -λ 1 .
Conversely, assume B(H) has a subgraph B in which every S ∈ E(H) has degree α 2 and any v ∈ V (H) has degree at most

k-λ 1 •d H (v) λ 2 -λ 1
. We construct G as follows: for each hyperedge S, the induced subgraph G[S] is a copy of F such that any vertex v where (S, v) ∈ E(B) is of degree λ 2 (there are α 2 such vertices) and the remaining vertices have degree λ 1 . Clearly, G F -overlays H. Moreover every vertex v ∈ V (H) By Corollary 49, we obtain the following.

has degree λ 2 in at most k-λ 1 •d H (v)
Corollary 54. Let F be a family of graphs with the same degree sequence such that it has only one value λ or exactly two degree values λ 1 < λ 2 , and k be a non-negative integer.

(∆ ≤ k)-F -OVERLAY is in P.
The theorem also implies the following.

Corollary 55. Let F be a graph with degree values λ 1 < λ 2 and k be a non-negative integer. If F is such that all vertices of V λ 1 ∪ V λ 2 have the same number of neighbors in V λ 3 and k < λ 3 + λ 1 , then one can solve (∆ ≤ k)-F -OVERLAY in polynomial time.

Proof. Let j be the number of neighbors in V λ 3 that each vertex of V λ 1 ∪ V λ 2 has.

Let H be an |F |-uniform hypergraph. Observe that if a vertex has degree λ 3 in the subgraph induced by a hyperedge, then it cannot be in any other hyperedge, for otherwise it would have degree at least λ 3 +λ 1 > k. Therefore, we first check whether every hyperedge S contains a set I(S) of |V λ 3 | vertices that are uniquely in S. If not, then we return 'No'. If it is the case, let F = F -V λ 3 and H be the hypergraph whose

vertex set is V (H) \ S∈E(H) I(S) and whose hyperedge set is {S \ I(S) | S ∈ E(H)},
and let k (v) = k -j • d H (v) for every v ∈ V (H). Since all vertices of V λ 1 ∪ V λ 2 have exactly j neighbors in V λ 3 ,
it is then easy to prove the following claim: Claim 55.1. There is an (F, H, k)-graph G if and only if there is a graph G F -overlaying

H such that d G (v) ≤ k (v) for all v ∈ V (H).
Deciding whether such a graph G exists can be done similarly as the proof of Theorem 53 replacing k by k (v).

The proofs of Theorem 53 and Corollary 55 directly generalize to (d, k)-SPLITTING for general hypergraphs.

It suffices now to prove for d with three values. Let F be a graph with the degree sequence d which has three degree values 1 = λ 1 < λ 2 < λ 3 . We will prove the NP-completeness of NEAT (∆ ≤ k)-F -OVERLAY Hence, it implies for NEAT (d, k)-SPLITTING.

Theorem 59. Let d = (d 1 , . . . , d p) be a non-decreasing sequence with exactly three values

1 = λ 1 < λ 2 < λ 3 . Then np (d) ≤ max{λ 2 + λ 3 , d 2 + 2λ 2 }. Proof. Let k ≥ max{λ 2 + λ 3 , d 2 + 2λ 2 }. Set δ = k -λ 2 -λ 3 + 1, β = k -λ 3 + 1, γ = k -λ 2 + 1, and θ = max{0, k -2λ 3 + 1}.
We give a reduction from 3-COLORING on 4-regular graphs to (d, k)-SPLITTING.

Given a graph 4-regular G, we construct a p-uniform hypergraph H as follows.

• For each vertex v ∈ V (G), create a vertex gadget H v as follows.

-We first create a hyperedge

S v = {c 1 v , c 2 v , c 3 v } ∪ X v ∪ Y v with |Y v | = α 3 -1 and |X v | = p -α 3 -2,
and then add β hyperedges pendant at each vertex

x v ∈ X v .
-We create a binary tree

T i v with vertex set {c i v , a i v , b i v , i,1 v , i,2 v , i,3 v , i,4 v } for each i ∈ [3], and edge set {c i v a i v , c i v b i v , a i v i, 1 v , a i v i,2 v , b i v i,3 v , b i v i,4
v }. In this tree, c i v is the parent of a i v and b i v , a i v is the parent of i,1 v and i,2 v , and b i v is the parent of i,3 v and i,4 v . -For each edge e = xy of T i v with x the parent of y in T i v , we construct an edgegadget containing x, y, a new vertex z e , and four disjoint sets U 1 e , W 1 e , U 2 e , W 2 e of new vertices, U 1 e of size α 1 -1, W 1 e of size pα 1 -1, U 2 e of size pα 3 -1, W 2 e of size α 3 -1. We add the hyperedges S 1 e = {x, z e } ∪ U 1 e ∪ W 1 e and S 2 e = {z e , y} ∪ U 2 e ∪ W 2 e . We add δ hyperedges pendant at x, γ pendant hyperedges at each vertex of U 1 e and β hyperedges pendant at each of U 2 e , δ hyperedges pendant at z e .

For convenience, for any leaf i,j v , we denote by S i,j v the hyperedge containing the vertex i,j v . • For every vertex v ∈ V (G), let e 1 v , e 2 v , e 3 v , e 4 , be an ordering of the edges incident to v. For each edge vw ∈ E(G), let j v and j w be the indices such that vw = e jv v = e jw w . Then, for all i ∈ [3], we identify the vertices i,jv v and i,jw w , and at such a vertex, we add θ pendant hyperedges.

Let us prove that there is a 3-coloring of G if and only if there is a (d, k)-splitting

∂ of H. Assume first that there is a (d, k)-splitting ∂ of H. Observe that for any v ∈ V (G),
no vertex in X v can be λ 3 -vertex since there are β pendant hyperedges at such a vertex in which it has value at least 1. Therefore, at least one vertex of {c 1 v , c 2 v , c 3 v } is a λ 3 -vertex in S v . Moreover, since the vertices of Y v are contained in exactly one hyperedge, we may assume that all vertices of Y v are λ 3 -vertices. Hence, exactly one vertex

of {c 1 v , c 2 v , c 3 v } is a λ 3 -vertex in S v .
Let φ be the 3-coloring of G defined by φ(v) = i if c i v is a λ 3 -vertex of S v . We will prove that φ is proper. We need the following claim.

We have the following claim.

Claim 59.1. Let v ∈ V (G) and i ∈ {1, 2, 3} .If c i v is a λ 3 -vertex of S v , then i,j v is a λ 3 -vertex of S i,j v for all j ∈ [4].
Proof of claim: It suffices to prove that if e = xy is an edge of T i v with x the parent of y in T i v and x is a λ 3 -vertex of its parent hyperedge (that is

S v if x = c i v or S 2
wx with w the parent of x in T i v) then y is a λ 3 -vertex of S 2 e . Assume that x is a λ 3 -vertex of its parent hyperedge. Then x must be a 1-vertex in S 1 e for otherwise Σ ∂ (v) would be greater than k. Moreover any u ∈ U 1 e must be a 1-vertex in S 1 e because it is in γ pendant hyperedges. Therefore z e is not λ 1 -vertex and so has value at least λ 2 in S 1 e . Now because there are pendant hype δ pendant hyperedges at z e , this vertex is not a λ 3 -vertex of S 2 e . Moreover no vertex of U 2 e is a λ 3 -vertex of S 2 e because each of them is in β pendant hyperedges. Therefore y must be a λ 3 -vertex of S 2 e .

Consider now an edge vw in E(G) and i ∈ {1, 2, 3}. By construction the vertices i,jv v and i,jw w are identified. This vertex is in θ pendant hyperedges, so it cannot be λ 3 -vertex in both S i,jv v , S i,jw w . Thus, by Claim 59.1, either c i v is not a λ 3 -vertex of S v or c i w is not a λ t -vertex of S w . Hence, there is no i ∈ [3] such that c i v is a λ 3 -vertex of S v and c i w is an λ 3 -vertex of S w . In other words, φ(v) = φ(w). Therefore the 3-coloring is proper, and so G is 3-colorable.

Conversely, assume that G has a proper 3-coloring φ. Let us define ∂ = {∂ S) | S ∈ E(H)} by doing the following for every v ∈ V (G) with i = φ(v) and Let us check that ∂ is a (d, k)-splitting of H.

J = {j 1 , j 2 } = [3] \ {i}. -Pick a bijection ∂ Sv from S v into d such that ∂ Sv (c i v) = λ 3 , ∂ Sv (c j 1 v) = d 1 , ∂ Sv (c j 2 v) = d 2 ,
Let u be a vertex of H. We need to check that Σ ∂ (u) ≤ k. (see below Table 4.1 for the definitions of the notations) P and NP-complete results are respectively corresponding to pairs (F , k) and (F , k). For k < ∆ -1, the problem is in P (red box) but is it NP-complete for k ≥ 8|F |δ (blue box). For a pair (F , k), k is an upper bound of np(F).

∆-1 ∆ P O 3 c.r.g C 4 ∆+1 O p>3 2∆ K p +K q 3∆-1 F d≥3 3∆+2 K - p K a,a+1 4∆
∆, δ ∆(F), δ(F) the maximum and minimum degree of F O p>3 the graph on p vertices and one edge with p > 3 (c.)r.g (connected) regular graphs K p + K q disjoint union of K p and K q F d≥3 the family of graphs with at least three degree values

K - p K p minus one edge F d>1
the family of graphs F with d such that ∃i,

d i -d i-1 > 1 F d=1
the family of graphs F with d such that ∀i, Problem 64. Let F be a family such that

d i -d i-1 = 1
(∆ ≤ k F)-F -OVERLAY is in P for F ∈ F, is (∆ ≤ k)-F -OVERLAY in P for some max F ∈F ∆(F) ≤ k ≤ max F ∈F k F ?
For F a family of graphs with the same degree sequence such that it has at most two degree values, NEAT (∆ ≤ k)-F -OVERLAY is in P by Corollary 54. Now, let F = {K 2 , C 4 } and k = 2, we know that (∆ ≤ 2)-F -OVERLAY is in P for any F in F. For a hypergraph H in which its hyperedges are of size either 2 or 4, it is easy to overlay all hyperedges of size 2 (by taking the edge between the two vertices of a hyperedge). Thus, these edges are sure in G and we have to complete G using these edges. It motives the following question.

Problem 65. let H be a hypergraph and a graph G (which overlays a subset of hyperedges of H), can G extend to an (F, H, k)-graph?

Let H be a hypergraph and a graph G (which overlays a subset of hyperedges of H), can G extend to an (F, H, k)-graph? Furthermore, by the set of given edges of G, we can compute the remaining degree of a vertex which would be used to extend G to a graph F-overlaying H (for an example with F above, after overlaying all hyperedges of size 2, this leaves hyperedges of size 4 and the remaining degree of any vertex is either 0, 1 or 2 (it is when this vertex respectively, belongs to 2, 1 or no hyperedges of size 2). Thus, it leads to the following problem.

Problem 66. Given a hypergraph H and a function f :

V (H) → [k], does it exist a graph G F -overlaying H such that d G (v) ≤ f (v)?
In the end, we have studied the restriction of (∆ ≤ k)-F -OVERLAY to neat hy- Assume that the low resolution model of a molecular assembly (MA) provides the interaction graph of its subunits. We are given a finite set of conformations for each subunits. A scoring function measures the quality of the contact between two conformations of a subunit-contact in the assembly. An issue of determining the high resolution model for a MA is to chose a conformation for each subunit in which together, they are well structured in the whole MA. This problem was defined using DOMINO [START_REF] Lasker | Inferential optimization for simultaneous fitting of multiple components into a cryoem map of their assembly[END_REF] which outputs a set of conformations for subunits maximizing a global function. This can be modeled as a coloring problem as the following.

Let G = (V, E) be an interaction graph representing a given assembly in which V represents the set of subunits and E is the set of contacts between them. We label the set of conformations for each subunit to a color set of the corresponding vertex in V . We assume that every vertex has the same number of colors which is an integer k, hence the set of colors is [k] = {1, 2, . . . , k}. For every uv ∈ E, the scoring function provides the edge-weighted complete bipartite graph K k uv which is defined as follows: Hence, for every vertex v ∈ V , the vertex set {(v, i), i ∈ [k]} represents the k possible conformations of the subunit associated with v. For every uv ∈ E, the weight w k uv ((u, i)(v, j)) represents the score between the i-conformation of u and the j-one of v. Meaning by the scoring function, the higher the score, the better the connection between the two associated subunits.

V (K k uv) = {(u, i), i ∈ [k]}∪{(v, j), j ∈ [k]}, E(K k uv) = {(u, i)(v, j), i, j ∈ [k]},

CHAPTER 5. INTRODUCTION

In general, the number of colors is not the same for all vertices. However, we can easily change it so that all vertices have the same number k of colors: it suffices to add extra "fake" colors and to assign weight -∞ to all edges incident with these colors in the graph K k uv . It explains our assumption of the same number of colors for all vertices.

We are now able to formalize DOMINO as a graph coloring problem, which consists in finding a coloring such that the sum of the weights is at least a given lowerbound.

DOMINO.

Input: A graph G = (V, E), an integer k ≥ 1, a set of weight functions w k , and γ ∈ R. DOMINO with additional weights on the vertices, has been mostly studied from biology point of view and some works are related to computational approaches. As a corollary of NP-completeness of DOMINO, this closely related problem is also NPcomplete, which has been proven in [START_REF] Lathrop | The protein threading problem with sequence amino acid interaction preferences is NP-complete[END_REF]. There are also methods to solve this latter problem with heuristic approaches, using tree decomposition [START_REF] Lasker | Inferential optimization for simultaneous fitting of multiple components into a cryoem map of their assembly[END_REF][START_REF] Xu | A tree-decomposition approach to protein structure prediction[END_REF] or linear programming [START_REF] Xu | Raptor: optimal protein threading by linear programming[END_REF].

Conflict coloring

An important constraint, from computational structural biology, consists in having a lower bound λ ∈ R on the weight of every edge uv ∈ E. More precisely, the coloring c must satisfy w k uv ((u, c(u)), (v, c(v))) ≥ λ for every uv ∈ E. This constraint may imply a stable structure of the macromolecular assembly, that is without "bad connection" between two subunits.

To take into account such a constraint, we define a conflict k-graph M λ uv for every edge uv ∈ E as follows. M λ uv is the subgraph of K k uv such that (u, c(u))(v, c(v)) ∈ E(M λ uv) if and only if w k uv ((u, c(u)), (v, c(v))) < λ. We denote by M λ = {M λ e for all e ∈ E}, the set of conflict k-graphs (k-SoC). An edge uv ∈ E is M λ -conflicting for a k-

coloring c if (u, c(u))(v, c(v)) ∈ E(M λ uv), otherwise it is M λ -fulfilled.
It leads to the following problem with M = M λ .

FULFILL COLORING.

Input: A graph G = (V, E), an integer k, a k-SoC M, and a positive integer q.

Question: Does there exist a k-coloring c of G with at least q M-fulfilled edges ?

An important particular case of this problem is when q = |E|. In that case, the problem, called CONFLICT COLORING, is to determine whether G is M-conflict colorable, that is whether it admits a k-coloring with no M-conflict edges. Such a coloring is called an M-conflict coloring. This notion of conflict coloring was introduced by Dvořák and Postle [START_REF] Dvořák | Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8[END_REF] and Fraigniaud et al. [START_REF] Fraigniaud | Local conflict coloring[END_REF].

We shall consider the restrictions of FULFILL COLORING, and CONFLICT COLOR-ING to the case when k is fixed. These are called FULFILL k-COLORING, and CONFLICT k-COLORING, respectively.

Observe that FULFILL COLORING is the particular case of DOMINO for which γ = q and w k ((u, c(u

)(v, c(v))) = 1 if ((u, c(u)(v, c(v)) / ∈ E(M uv) and w k ((u, c(u)(v, c(v))) = 0 otherwise.
We finally define variants of FULFILL COLORING and its restrictions, in which M is contained in some restricted family B of bipartite graphs. For example, B-

Related problems

We have seen (PROPER) COLORING problem in Section 1.3.4. A generalization of this problem is LIST COLORING which is formally defined as follows: for a graph G, a list assignment L is a function from any vertex v ∈ V (G) to L(v) a list of colors; an L-coloring c of G is a proper coloring such that c(v) ∈ L(v) for every v ∈ V (G). The problem consists, given a graph G and a list assignment L to decide whether there is an L-coloring of G. A problem which is more general than LIST COLORING is CORRE-SPONDENCE COLORING (DP-COLORING), first defined in [START_REF] Dvořák | Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8[END_REF]. Given a graph G, a list assignment L and a function C from any edge uv ∈ E(G) to a matching C uv of the complete bipartite graph K

L(u),L(v) uv (the vertex set is {(u, i), i ∈ [L(u)]} ∪ {(v, j), j ∈ [L(v)]} and the edge set is {(u, i)(v, j), i ∈ [L(u)], j ∈ [L(v)]}. An (L, C)-coloring c of G is an L-coloring such that (u, c(u))(v, c(v)) ∈ E(C uv) for every edge uv ∈ E(G).
Hence, DP-COLORING generalizes LIST COLORING which is when C uv contains only edges of the same colors in L(u) and L(v) for any uv ∈ E(G). Furthermore DP-COLORING is a particular case of CONFLICT COLORING, since in this latter we can choose an arbitrary conflict graph rather than a matching.

Complexity dichotomies of some generalizations of coloring problems have been obtained. A typical example is H -COLORING.

H -COLORING and Constraint Satisfaction Problem (CSP)

Let H be a fixed graph (possibly directed and loops are allowed), whose vertices are colors. An H-coloring of a graph G is a coloring c assigning to each vertex of G a vertex of H such that c(u)c(v) ∈ E(H) for any uv ∈ E(G). Observe that k-COLORING is the case when H is the complete graph K k . For a fixed (directed) graph H, H -COLORING problem is to decide whether a given (directed) graph G admits an Hcoloring. A complexity dichotomy for such problems with H undirected has been known for several decades.

Theorem 69 ([HN90]

). Let H be an undirected graph. H -COLORING problem is polynomialtime solvable if H is bipartite or has a loop, and NP-complete otherwise.

CSP is a very general problem which an instance is defined by a triple (V, D, C) where V = {V 1 , . . . , V n } is a set of variables, D = {D 1 , . . . , D n } is a domain of values and C = {C 1 , . . . , C m } is a set of constraints. Each variable V i can take a value in its domain D i . Every constraint C j is a triple (r j , t j , R j) where r j is a positive integer called arity of the constraint, t j is an r j -tuple of variables and R j is an r j -ary relation on t j . An evaluation satisfies a constraint (r j , t j , R j) if the variables of t j are assigned values which satisfies R j . An evaluation which satisfies all constraints is called a solution. Observe that H -COLORING and CONFLICT COLORING are particular cases of binary CSP where all constraints are binary relations (on variable domains corresponding to the vertex colors).

A finite constraint language Γ is a finite domain and a finite set of relations over this domain. CSP(Γ) is the constraint satisfaction problem where instances are only allowed to use constraints in Γ. This problem is equivalent to some H -COLORING for some directed graph in [START_REF] Feder | The computational structure of monotone monadic SNP and Constraint Satisfaction: A study through datalog and group theory[END_REF] by Feder and Vardi in 1998. They conjectured that CSP(Γ) is either in P or NP-complete (CSP conjecture). In 2017, this conjecture was independently proven by Zhuk [START_REF] Zhuk | A proof of the CSP dichotomy conjecture[END_REF] and Bulatov [START_REF] Bulatov | A dichotomy theorem for nonuniform CSPs[END_REF] and yielded the following corollary for H -COLORING with directed graph H.

Corollary 70. For a fixed directed graph H, H -COLORING is either in P or NP-complete.

CONFLICT COLORING and comparisons to H -COLORING and CSP

For any graph H with vertex set [k], we define the bipartite graph B H as follows: the vertex set is A ∪ B in which A, B copies of [k] and their vertices are respectively

denoted by i A , j B for i, j ∈ [k]; if there is an (undirected) edge ij ∈ E(H) (resp. directed - → ij ∈ E(H)), then i A j B , i B j A ∈ E(B H) (resp. i A j B ∈ E(B H)).
P P k = 2 NP-complete P k ≥ 3 NP-complete NP-complete B(k, m)-FULFILL B(k, m)-CONFLICT k-COLORING k-COLORING m = 0 P P 1 ≤ m ≤ k 2 -3 NP-complete NP-complete m ∈ {k 2 -1, k 2 -2} NP-complete P m = k 2 P P
Table 5.1: Dichotomy results on conflict coloring.

that MAX CUT is 0.87856-approximable using semidefinite programming. In Section 7.1, we use their approach to construct approximation algorithms for finding a coloring with maximum number of fulfilled edges (optimization version of FULFILL 2-COLORING).

Next, in Section 7.2, we show a polynomial-time algorithm that solves the maximization version of DOMINO for graphs with bounded treewidth. Similarly, we prove a polynomial-time algorithm that solves the problem (for bounded treewidth graphs) that consists in determining the maximum threshold λ for which, given a graph G, integers k, q, a set of weight functions w k , there is a k-coloring of G that M λ -fulfills all edges. For these studies on algorithms, we later know that there already exists an algorithm using tree decomposition for the optimization of DOMINO with additional weights on the vertices in computational biology communities. And we have mentioned the article in the end of Section 5.1.

The last chapter describes an experimental works. We first introduce our setup to construct (geometric) instances of CONFLICT COLORING and then present some statistics which we obtain from our experiments. Namely, instances of CONFLICT COLORING are associated with Voronoi diagrams in the plane in which we retain as vertices those data points have a finite Voronoi region. Then, we build a k-SoC M by generating a set of k (randomly) perturbed polygons of the finite Voronoi polygon of a point, and given an intersection area threshold τ c , a conflict between two perturbed polygons of adjacent Voronoi regions is when their intersection area is greater than τ c (detail in Section 8.1). Hence, a random instance and a threshold τ c yield a set of conflicts. The obtained statistics provide information on the relationship between the existence of a solution and thresholds which are derived from some local conditions.

v 1 1 v 1 2 v 2 2 v 2 3 v1 v 1 11 v 1 12 v2 v 1 21 v 1 22 v 2 21 v 2 22 v3 v 2 31 v 2 32 v 1 11 v 1 12 v1 v 1 21 v 1 22 v2 v 1 1 v 1 2 Figure 6.1: An example of the construction for Φ = (x 1 ∨ x 2) ∧ (x 2 ∨ x 3)).
The graph G (left) and the corresponding conflict 2-graphs of edges in the dashed box (colors 1, 2 are respectively blue, red).

edge) uv ∈ {v t v r t1 , v r t1 v r t2 , v r t2 v t }, M uv contains only edge (u, 2)(v, 1). For conveniences, we call the subgraph on four vertices v t , v r t1 , v r t2 , v r t is a v r t -graph for every r ∈ [α t].

• For each clause, assume that C = (1 ∨ 2) where 1 , 2 are respectively the r 1 -th occurrence of x p , r 2 -th occurrence of x q in C. We add to E(G) the clause edge e = v r 1 p v r 2 q , and create its conflict 2-graph M e as follows:

-If 1 = x p and 2 = x q , then (v r 1 p , 2)(v r 2 q , 2) ∈ M e . -If 1 = x p and 2 = xq , then (v r 1 p , 2)(v r 2 q , 1) ∈ M e . -If 1 = xp and 2 = x q , then (v r 1 p , 1)(v r 2 q , 2) ∈ M e . -If 1 = xp and 2 = xq , then (v r 1
p , 1)(v r 2 q , 1) ∈ M e . We shall prove that Φ admits an assignment which satisfies at least k clauses if and only if there is a 2-coloring c which fulfills at least 10l + k edges of G.

Assume that we have an assignment φ satisfying at least k clauses of Φ. Then, we take a coloring as follows:

-if x t = true (resp. f alse), then c(v t) = 1 (resp. c(v t) = 2).

-all its copies v r t1 , v r t2 , v r t for r ∈ [α t] have color c(v t). We now check that there are at least 10l + k fulfilled edges in G. Indeed, for each satisfied clause, the corresponding clause edge in E(G) is fulfilled, then we have at least k such edges. For each variable x t , and r ∈ [α t], the v r t -graph has all 5 fulfilled edges. There are 2l such graphs which have totally 10l fulfilled edges. Therefore, c fulfills at least k + 10l edges of G.

Conversely, let a coloring c which fulfills at least 10l + k edges of G.

Remark 76. We can easily check the following: all five edges in a v r t -graph are fulfilled if and only if its four vertices have the same colors.

Claim 76.1. There is always a coloring c such that it fulfills all edges of v r t -graphs (for t ∈

[N], r ∈ [α t]).
Proof of claim: Assume a coloring in which there is a v r t -graph which has a conflict edge. Observe that if v r t has at least two conflict edges or the clause edge at v r t is conflict, then we can fulfill all edges of v r t -graph by Remark 76 and obtain more fulfilled edges which contradicts to the maximality of c. Hence, v t r -graph contains only one conflict edge and the clause edge at v r t is fulfilled by c. We can fulfill all edges of this graph by changing the color of v t r , which leads to the following cases: 1. The clause edge v j i u j is still fulfilled, and we obtain more fulfilled edges which is a contradiction (Figure 6.2). t -graph has one conflict (dashed) edge and the clause edge at v r t is fulfilled (left). After changing the color of v r t , the clause edge is still fulfilled and all edges of v r t -graph are now fulfilled (right).

2. The clause edge at v r t changes to a conflict edge, and we still have the same number of fulfilled edges of G (Figure 6.3). Therefore, there is a coloring which fulfills all edges of v r t -graphs.

From a coloring c satisfying Claim 76.1, we define φ by taking φ(x t) = true (resp. f alse) if c(v t) = 1 (resp. c(v t) = 2). Since c fulfills all edges of v r t -graphs (10l in total), then c fulfills at least k clause edges in G. Thus, φ satisfies at least k clauses of Φ.

2. B(2, 3)-FULFILL 2-COLORING is NP-hard.
We reduce from 3-SAT. Given a formula Φ of this problem with N variables x t , t ∈ [N] and l clauses C i , i ∈ [l], we construct a graph G and M e for any e ∈ E(G) as follows (see Figure 6.4 for an example).

• For each variable x t , create a vertex v t ∈ V (G).

• For each clause C i , we create a clause gadget X i which contains six vertices c i 1 , . . . , c i 6 . We add (ordered) edges c i 4 c i 5 , c i 5 c i 6 , c i 6 c i 4 and for each edge uv of them, M uv has three edges which are not (u, 1)(v, 2). And add (ordered) edges c i 1 c i 4 , c i 2 c i 5 , c i 3 c i 6 and for each edge uv of them, M uv has three edges which are not (u, 2)(v, 2). If

C i = (1 ∨ 2 ∨ 3)
where each i is a literal of variable x t i , we then add a set

v1 v2 v3 v4 v1 v2 v3 v4 E(K k uv) = {(u, i)(v, j), i, j ∈ [k]}.
We reduce from k-COLORING and the proof includes the three following cases.

Case 1: k 2 ≤ m ≤ (k -1) 2 : Given a graph G = (V, E) of k-COLORING, we construct, for B(k, m)-CONFLICT k- COLORING, a graph G = (V , E
) and a k-SoC M as follows (Figure 6.5):

• For each v ∈ V , we add to V a vertex v , and for each edge uv ∈ E, add k vertices a uv 1 , . . . , a uv k . We set Observe that by the construction of the set M, the value m is at most (k -1) 2 , because for any edge uv ∈ E and i ∈

E uv = {ua uv i , va uv i | i ∈ [k]} and add it to E . • For any uv ∈ E and i ∈ [k], M ua uv i contains t = min{m, k -1} edges (u, i)(a uv i , j) for j ∈ [t] and t = m -(k -1) (if t > 0)
[k], M ua uv i and M va uv i contains at most k -1 + |E(B u)| = k -1 + |E(B u)| = (k -1) 2 edges. We shall prove that G is k-colorable if and only if G is M-conflict colorable.
Assume that c is a k-coloring of G, then we can construct a coloring c of G as follows:

c (v) = c(v) for any v ∈ V , c (a e i) = k for all e ∈ E, i ∈ [k].
We can check easily that c fulfills all edges of G .

Conversely, there is an

M-conflict coloring c of G . Observe that if c (u) = i (for some i ∈ [k]), then c (a uv i) ∈ [t, k]. It implies that c (v) = i because otherwise t ≥ k/2, so va uv i is not fulfilled . Thus, c (u) = c (v) and we then obtain a coloring c of G by taking c(v) = c (v) for every v ∈ V . Case 2: 1 ≤ m < k 2 :
We need the following lemma.

Lemma 79. There is a graph family {G(k, m)} for any k, m ≥ 1 such that G(k, m) is not B(k, m)-conflict k-colorable.

Proof. Given m ≥ 1, we shall construct a family {G(k, m)} and a k-SoC M by induction on k.

Let G(k, m) = (V (k, m), E(k, m)). Consider the following cases.

(i) For m = k 2 , let G(k, m) on 2 vertices a 1 , a 2 and it has one edge a 1 a 2 . And let the conflict k-graph M a 1 a 2 = K k a 1 a 2 (Figure 6.6). (iii) For k > m, G(k, m) is build as follows (Figure 6.8). We add k + 1 vertices a, a 1 , . . . , a k to V (k, m), and add k edges aa i for all i ∈ [k] to E(k, m). Now, for each vertex a i , add a set X i of |G(km, m)| -1 new vertices, and let a copy C i of the graph G(km, m) on a i ∪ X i . Then, connect a to all vertices of this copy C i . Now, we construct a set of conflict k-graphs for G(k, m). For each edge ab (for In case (ii), G(k, m) has no conflict coloring, since choosing any color i ∈ [k] for a implies that edge aa i is not fulfilled. In case (iii), by the construction, colors of a 1 , . . . , a k are not in [m]. However, if we choose a color for each a i in [m + 1, k], then it can not fulfill all edges of the copy C i because G(km, m) is not conflict colorable with its (km)-SoC. Thus, the graphs of this case have no conflict coloring.

every b ∈ C i , 1 ≤ i ≤ k), the conflict k-graph M ab contains m edges (a, i)(b, j) for all j ∈ [m]. In each copy C i , we apply (k -m)-SoC M of graph G(k -m, m) for k -m colors {m + 1, . . . , k}, if m ≥ (k -m) 2 ,

Now, we give a reduction from

k-COLORING problem to B(k, m)-CONFLICT k- COLORING for 1 ≤ m < k/2.
Given a graph G = (V, E), we construct a graph G = (V , E) and a k-SoC M as follows.

• Let A be a copy of V and add A to V . For each edge uv ∈ E with u , v ∈ A copies of u, v, we add k copies C uv 1 , . . . , C uv k of the graph G(k -2m, m), and add edges from each u , v to all vertices in these k copies. Let

V uv = {u , v , V (C uv 1), . . . , V (C uv k)}. • For any induced subgraph G [V uv], u ∈ A, a ∈ V (C uv i) and i ∈ [k],
the conflict k-graph M u a has m edges (u, i)(a, 1), . . . , (u, i)(a, m); and the conflict k-graph

M v b for any b ∈ V (C uv j), j ∈ [k] has m edges (v, j)(b, k), . . . , (v, j)(b, k -m + 1). In each C uv i , we apply the (k -2m)-SoC of the graph G(k -2m, m) for k -2m colors [m + 1, k -m].
If G has a k-coloring c then we have c for G as follows: for each

V uv , let c (v) = c(v), c (u) = c (a) = c(u) for all a ∈ i∈[k]\c(u) V (C uv i) and c (a) ∈ [k, k -m + 1] for all a ∈ V (C uv c(u)). Hence, c is a conflict coloring of G . Conversely, assume G has a k-coloring c , then we prove that c (u) = c (v) for all u , v ∈ A ∩ V uv . Observe that for any a ∈ V (C uv c (u)), its color is not in [k, k -m + 1] because of the construction of C uv c(u) . Moreover, if a ∈ C uv i has color j ∈ {m+1, . . . , k - m}, then (a, j) is either adjacent to (u , i) in the conflict k-graph M ua or (v, i) in M va for i ∈ [k]. Thus c (u) = c (v)
. Therefore, we take c(v) = c (v) for all v the copy of v and it is a k-coloring of G.

Chapter 7

Algorithms

In this chapter, we investigate algorithm techniques to solve FULFILL 2-COLORING and DOMINO. Namely, the first section present an approximation algorithm for FUL-FILL 2-COLORING. And in the next section, we give an FPT algorithm parameterized by treewidth for solving MAX DOMINO, the optimization version of DOMINO and a similar one for MAX THRESHOLD CONFLICT COLORING which outputs the maximum threshold value such that there exists a coloring which fulfills all edges of G.

Approximation algorithm for FULFILL 2-COLORING using Semidefinite programming (SDP)

Observe that MAX CUT is a particular case of FULFILL 2-COLORING in which the conflict 2-graph of any edge uv contains two edges (u, 1)(v, 1) and (u, 2)(v, 2). Goemans and Williamson showed a 0.87856-approximation algorithm for MAX CUT based on SDP [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF]. In this section, we show how this method can be adapted to construct an approximation algorithm for FULFILL 2-COLORING. We will prove the following result.

Theorem 82. FULFILL 2-COLORING is 0.79607-approximable.

Proof. Let V = {v 1 , . . . , v n } be the set of vertices of a given a graph G. Let y i ∈ {-1, 1} be a variable corresponding to v i . Let y 0 be an additional variable which determines if y i = 1 corresponds to color c(v i) = 1 or 2. Precisely, y i = y 0 if and only if v i has color 1.

Let e be an edge of G. We shall define a formula f (e) depending on M e which is equal to 1 (resp. 0) if the edge is fulfilled (resp. conflict). M e is one of the conflict 2-1. Solve (P) 2. Take a uniformly random vector r on the unit sphere S n . 3. For 0 ≤ i ≤ n, set y i = -1 if x i r < 0, and y i = +1 otherwise. 4. For 1 ≤ i ≤ n, set c(v i) = 1 if y i y 0 = 1 and c(v i) = 2 otherwise. y i may be seen as the sign of x i r. By Step 3 and 4, two vertices v i and v j have different colors if and only if y i = y j . This happens with probability θ ij π where θ ij is the angle between x i , x j . Note that x i x j = cos θ ij .

Let

S a = i,j a ij (1 -y i y j), S b = i,j b ij (1 + y i y j), S c = i,j,k c ijk (1 -y i y j -y i y k + y j y k) and S d = i,j,k d ijk (1 + y i y j + y i y k + y j y k). We have S = S a + S b + S c + S d , so by linearity of the expectation E(S) = E(S a) + E(S b) + E(S c) + E(S d). E(S a) = 2 i,j a ij P(y i = y j) = 2 i,j a ij θ ij π ≥ α i,j a ij (1 -cos θ ij) = α i,j a ij (1 -x i x j) where α = min 0≤θ≤π 2 π θ 1 -cos θ > 0.87856 . Similarly, E(S b) ≥ α i,j b ij (1 + x i x j). E(S c) = 4 i,j,k c ijk P(y i = y j = y k) ≥ 4 i,j,k c ijk θ ik + θ jk -θ jk 2π ≥ β i,j,k c ijk (1 -x i x j -x i x k + x j x k) where β = min 0≤θ≤arccos(-1/3) 2 π 2π -3θ 1 + 3 cos θ > 0.79607 as shown in [GW95]. Similarly, E(S d) ≥ β i,j,k d ijk (1 + x i x j + x i x k + x j x k). Hence E(S) ≥ α i,j a ij (1 -x i x j) + b ij (1 + x i x j) +β i,j,k c ijk (1 -x i x j -x i x k + x j x k) + d ijk (1 + x i x j + x i x k + x j x k) ≥ βS
But the x i have been computed to give the maxi the optimization version ofmum value OPT(P) of S , so E(S) ≥ βOPT(P) ≥ βOPT(P). Therefore, the algorithm is a β-approximation of FULFILL 2-COLORING.

Polynomial-time algorithms for graphs with bounded treewidth

In this section, we give a polynomial-time algorithm that solves the maximization version of DOMINO, called MAX DOMINO, when the treewidth of the graph is bounded.

In a similar way, we can prove that for each fixed positive integer τ , there is a polynomialtime algorithm that solves MAX THRESHOLD CONFLICT COLORING, when the treewidth of the graph is at most τ . Given a graph G, integers k, q, and a set of weight functions w k , MAX THRESHOLD CONFLICT COLORING consists in determining the maximum threshold λ for which there is a k-coloring that M λ -fulfills all edges of G.

Nice tree decomposition

A tree decomposition of a graph G = (V, E) is a pair T = (T, X), where T is a tree and

X = {X x | x ∈ V (T)} is a family of subsets of V , called bags.
1. Every graph vertex v ∈ V is in at least one bag;

2. For every edge uv ∈ E, there is at least one bag that contains both u and v;

3. For every graph vertex v ∈ V , the subgraph induced by the nodes whose bag contains v is a subtree T v of T .

The width of a tree decomposition T is τ (T) = max B∈X |B| -1, and the treewidth of a graph G, denoted by tw(G), is the minimum width among all the possible tree decompositions of G. In order to keep our algorithm and its analysis simple, we use a particular kind of tree decompositions called nice tree decompositions. A nice tree decomposition T = (T, X) is a tree decomposition such that T is rooted at a node r and satisfies the following conditions:

1. If x ∈ V (T) is a leaf or the root, then X x = ∅. 2. Every other node x of T is one of the three following types: a) x is an introduce node if x has a unique child y in T and X x = X y ∪ {v} for some v ∈ V (G) \ X y . We say that v is introduced at x.

b)

x is a join node if x has two children x 1 and x 2 in T and X

x = X x 1 = X x 2 . c)
x is a forget node if x has a unique child y in T and X x = X y \ {v} for some v ∈ X y . We say that v is forgotten at x.

MAX DOMINO

Theorem 84. Given a graph G = (V, E) with treewidth at most τ , an integer k ≥ 1, a set of weight functions w k , the problem MAX DOMINO can be solved in time

O(τ 2 • k τ +2 • |V |).
In order to prove this theorem, we need some definitions and observations. Let T = (T, X) be a nice tree decomposition of G and let r be the root of T . Let x be a node of T . We denote by T x the subtree of T rooted at x and containing all the descendants of x. We construct the graph G x = (V x , E x) as follows. V x = y∈Tx X y and E x is constructed as follows.

1. If x is a leaf of T , then E x = ∅.

If

x is an introduce node with child y, then E x = E y .

3. If x is a forget node with child y, then

E x = E y ∪ {vw ∈ E(G) | w ∈ X x } with {v} = X y \ X x .
4. If x is a join node of T with children x 1 and x 2 , then E

x = E x 1 ∪ E x 2 . Note that V x = V x 1 ∪ V x 2 .
By the construction of G x , every edge of G x has an endvertex that has been forgotten.

Given a node x ∈ V (T) and a k-coloring c x : X Proof. (a) Suppose x is a join node with children x 1 and x 2 . We have X x = X x 1 = X x 2 and, by definition of a tree decomposition, any node in V x 1 \ X x (resp. V x 2 \ X x) is not in X x 2 (resp. X x 1). Thus S(x, c x) = S(x 1 , c x) + S(x 2 , c x). Proof of Theorem 84. The algorithm is the following:

1. Compute a nice tree decomposition T = (T, X) of G with width at most τ .

2. Compute the value of S(x, c x) for all node x of T and all k-coloring c x of X x .

3. Return the maximum value of S(r, c r) over all k-colorings c r of the bag X r of the root r.

At

Step 2, each value S(x, c x) is computed using the formulas of Lemma 85. If x is a leaf, a join node or an introduce node, then the value of S(x, c x) is obtained

MAX THRESHOLD CONFLICT COLORING

In this section, we will prove the following theorem. We are now able to prove Theorem 86 (the proof is similar to that of Theorem 84).

Proof of Theorem 86. The algorithm is the following:

1. Compute a nice tree decomposition T = (T, X) of G with width at most τ .

2. Compute the value of λ(x, c x) for all node x of T and all k-coloring c x of X x .

3. Return the maximum value of λ(r, c r) over all k-colorings c r of the bag X r of the root r.

The running time is obtained by the same explanation of which in Theorem 84. CHAPTER 8. EXPERIMENTS (perturbed) polygon for p. The set of all perturbed regions (polygons) for point p, denoted C[p], defines its colors. • (Conflict) Consider two Voronoi regions V (p) ∈ C[p] and V (q) ∈ C[q] of two neighboring points in DT. We compute the surface area of the intersection of these two regions, denoted ia(V (p), V (q)) for intersection area. The regions V (p) and V (q) are termed in conflict if ia(V (p), V (q)) ≥ τ c , for some threshold τ c . Summarizing, a random instance is defined by the four tuple: I = (P, δ, C, τ c) with P = {p 1 , . . . , p N } a set of N points, δ the radius used to perturb the Voronoi vertices, c the number of colors/randomly perturbed Voronoi regions, and τ c the threshold to define conflicts. Remark 88. (Implementation notes.) Recall that a polygon is termed simple if two of its edges do not intersect, except possibly at their endpoints. In this work, we use polygon representation provided by the Computational Geometry Algorithm Library [cga], see CGAL-doc. For the sake of simplicity, in sampling conformations, we retain simple polygons only.

Parameters monitored

A random instance and a threshold τ c yield a set of conflicts. We wish to get insights on the relationship between the value of τ c derived from local sufficient conditions, and the existence of global solutions.

Local constraints based on min intersection areas. We use the topological information contained in the DT to derive sufficient conditions on the existence of local solutions. More specifically, we consider three nested local levels:

• Edges. For an edge p i p j of the DT, the reference regions V r (p i) and V r (p j) share a Voronoi edge, and the perturbed regions may overlap. For this edge, we compute the minimum intersection area τ 2 (p i p j) of their perturbed regions, which ensures the existence of a local solution, this can be formalized as follows:

τ 2 (p i p j) = min

V i ∈C[p i] V j ∈C[p j] min V i ∈C[p i] V j ∈C[p j] min V i ∈C[p i] V j ∈C[p j]
ia(V i , V j).

(8.1)

The max value obtained over all edges is denoted τ Max-Min 2 . • Triangles. Consider a triangle (p i p j p k) (face) in DT. In a manner analogous to edges, we compute the minimum value τ 3 (p i p j p k) required have a local solution for this triple. Formally:

τ 3 (p i p j p k) = min V i ∈C[p i] V j ∈C[p j] V k ∈C[p k] min V i ∈C[p i] V j ∈C[p j] V k ∈C[p k] min V i ∈C[p i] V j ∈C[p j] V k ∈C[p k] max{ia(V i , V j), ia(V i , V k), ia(V j , V k)}.
(8.2)

The max value obtained over all triangles is denoted τ Max-Min For each instance, we compute the values of τ min c and τ mean c . We retain random instances whose τ Max-Min loc.

≤ 100 (thus at most 1% of the expected area of a VD polygon).

The number of colors used in the experiments varies in the set C ∈ {5, 10, 15, 50, 100}.

The multiplicative factors vary m ∈ m 1 = {1.01, 1.5, 2, 3, . . . , 10} for τ min c and m ∈ m 2 = {0.1, 0.4, 0.7, . . . , 2.2, 3, 5} for τ mean c .

Conflict coloring is hard

Statistic. A combinatorial problem may display a phase transition [START_REF] Hartmann | Phase transitions in combinatorial optimization problems: basics, algorithms and statistical mechanics[END_REF], with instances moving from easy to hard when the parameters evolve. We study the hardness of conflict coloring in this respect, using the fraction of valid configurations f c,m , namely fraction of valid configurations over the entire search space . On the other hand, τ Max-Mean loc.

being defined from average values, one expect its value to be less sensitive to the number of colors (Figure 8.7). This lesser sensitivity is obvious from the violin plots associated with τ mean c , since these are much less sensitive to the number of colors. , it does so for τ Max-Min loc.

Existence of one solution

. Namely, in using τ Max-Min loc.

, s c,m decreases when increasing the number of colors. More precisely, our experiment shows that for c ∈ {5, 10, 15, 50, 100}, the average of τ Max-mean loc.

is respectively around (120, 100, 97, 90, 91) and (38, 40, 11, 1.3, 0.05) for τ Max-min loc.

. It explains the statistics of s c,m (Figure 8.4) and also f c,m (Figure 8.3). (right) (in second). Total run of R = 100.

Values and thresholds: upper bounds, lower bounds, and solutions

From our experimental work, the statistics provide useful information about the relation between local constraints and global solutions.

Application-wise, an important question is the adjustment of lower and upper values for the thresholds τ c , in order to get useful information. In the sequel, we explain how to infer such values via the choice of the multiplicative factor m, for the case of τ Max-mean loc.

-that of τ Max-min loc.

is similar.

The upper bound is generally application dependent. Large values of τ c are such that most colorings are valid, yet, such large τ c may be irrelevant application-wise. . And the density expects to increase when c increases (but m does not) for τ Max-min loc.

but it keeps stable for τ Max-mean loc.

when c increases. In this latter case, a high fraction of conflict edges does not jeopardize the existence of solutions, as evidenced e.g. by the pair (c = 100, m = 0.1) (fraction of conflict edges ∼ 0.8 and s 100,0.1 = 1). For the path P n , it is easy to find a conflict coloring of P n and we can even count the number of conflict colorings of P n , both can be done in linear time. If the number of solutions is O(c n), then we can enumerate all solutions of P n in O(nc n). Therefore, it can be helpful to start this problem with some simple graphs G.

With Min values

Regarding the experimental part, our geometric setup is associated with Voronoi diagrams in 2-dimension. The statistics give several relations between considered parameters. It would be similar if the setup is 3-dimensional. Hence, our experiments allow us to estimate, in another setup, dependencies of parameters (which are used in our setup).

To structural biology, a central motivation for this work is the reconstruction of atomic models of macromolecular assemblies, based on (i) the interaction graph between subunits, and (ii) one set of conformations (colors) for each subunit. Two subunits in contact must exhibit a high steric complementarity, with in particular little overlap between atoms -that would otherwise, the interaction between two subunits becomes competitive and unbalanced. For this reason, the resulting conflict k-graphs are almost complete bipartite conflict k-graphs. We have noticed that in processing instances defined from the Delaunay-Voronoi setting, which mimics subunits with controlled overlap, a high fraction of conflict edges does not harm the existence of solutions. In our experimental settings, such a fraction can be at least 0.8 in average (i.e.

80% edges of the complete bipartite graph are in the conflict graph), and solutions are still found. It may be interesting to investigate further the frontier of density starting from which solutions cease to exist.

In practice, there are instances for which it is hard or even impossible to define the conflict graph of an edge. This is related to local properties of an input. For example, when all pairs of colors of an edge have similar weights which are much smaller compared to those of other edges, then choosing a global threshold may give complete conflict graphs for such edges. In this case, a possibility may be to use local thresholds, for example based on some local structural properties.

Moreover, an important issue in practice is to enumerate all sets of conformations for an assembly, because it presents different states of the assembly at times. Though this is very hard from a theoretical point of view, our experiments show that it is possible to enumerate all solutions for instances with moderate number of subunits.

Therefore, our further work would try to process cases with the order of tens of subunits, each exhibiting up to hundreds of conformations.

Figure 1 . 1 :

 11 Figure 1.1: Example of an M -augmenting path.In the figure to the left, there is a matching M of two blue edges, the two red vertices are unmatched, and there is an M -augmenting path P (dashed red) between these two unmatched vertices. We obtain a new matching with one more edge by removing blue edges in P from M and adding the other black edges in P to M . We then get the matching depicted in blue on the figure to the right.

 any is equivalent to finding an M -augmenting path. Since such a path can be found in time O(|E|) (e.g. by using breadth first search) and there are at most |A| such paths. A maximum matching in a bipartite graph can be found in time O(|E||V |). There are many faster algorithms than this one to solve MAXIMUM MATCHING. One of them, due to Hopcroft and Karp in 1973 [HK73] runs in O(|E| |V |). This improvement searches for a maximal set of augmenting paths, and makes only O(|V |) such searches.

Figure 1 . 2 :

 12 Figure 1.2: Example of blossom. The cycle B = v 2 . . . v 6 v 2 is a blossom with respect to a matching in blue and there is an augmenting path P (dashed red) (left figure). The right figure shows the contraction of the blossom to a new vertex v B . This changes P to P which is still an augmenting path.

 of G, i.e. every vertex of C is in the matching. It turns out that such a matching exists, by Hall's marriage theorem: for any C ⊆ C we have |C | ≤ |N (C)|, otherwise a vertex in X has degree strictly bigger than r, i.e. a variable has strictly more than r occurrences. Many other variants of SAT were studied which relate to the constraints on solutions, instances or operators such as 1-IN-3-SAT (exactly one true literal per clause), NAE-3-SAT (no clause has all three true literals), HORN-SAT (each clause has at most one positive literal), XOR-SAT (each clause contains XOR rather than OR operators).

Figure 1 . 3 :

 13 Figure 1.3: Construction of graph G. Variable gadget (left) and a clause gadget for(1 ∨ 2 ∨ 3) (right)where each literal i is corresponding to a literal vertex i for i ∈ [3] and the output of the clause is represented by the output vertex y.

Figure 2 . 1 :

 21 Figure 2.1: Example of a hypergraph and an inference graph. A hypergraph composed of seven vertices and four hyperedges (left). A graph G satisfying local properties (every hyperedge induces a connected subgraph in G) and a global property (every vertex has degree at most a given number which is 3 in this case).

 [ACCC15], Agarwal et al. focused on MIN-M(F)-OVERLAY for this particular family in the aforementioned context of structural biology. However, this problem was previously studied by several communities in other domains [CKN + 15]. Indeed, it is also known as SUBSET INTERCONNECTION DESIGN, MINIMUM TOPIC-CONNECTED OVERLAY or INTERCONNECTION GRAPH PROBLEM, and was considered (among others) in the design of vacuum systems [DK95, DM88], scalable overlay networks [CMTV07, HHI + 12, OR11], and reconfigurable interconnection networks [FHWE08, FW08]. Some variants have also been considered in the contexts of inferring a most likely social network [AAR10], determining winners of combinatorial auctions [CDS04], as well as drawing hypergraphs [BCPS10, JP87, KS03].

Figure 2 . 2 :

 22 Figure 2.2: Examples of (∆ ≤ k)-F -OVERLAY and MAX (∆ ≤ k)-F -OVERLAY. In the figure, an instance H (left), a graph G with ∆(G) ≤ 1 that O 3 -overlays H (with O 3 being the graph with three vertices and one edge) (center), and a (C 3 , H, 3)-graph to MAX (∆ ≤ 3)-C 3 -OVERLAY (with C 3 being the cycle on three vertices) (right).

Figure 2 . 4 :

 24 Figure 2.4: An example of the reduction for Φ= (x 1 ∨ x 2 ∨ x3) ∧ (x2 ∨ x 3 ∨ x 4).The dotted lines join two vertices that are identified. The thick red lines indicate the handicap vertices.

 Let E 2 be the set of selected edges in clause gadgets, and G 2 = (V (H), E 2). Clearly, G 2 O 3 -overlays all hyperedges of the clause gadgets and the vertices c 4 j and c 5 j

 then, by Claim 23.1, v S must have degree k in N S for every hyperedge S of H. Thus, the restriction of G * to the vertices of H is an (O p , H, k)-graph.

 and we have the result by Theorem 18. If |F | ≥ 3, then we can conclude using Theorem 25 and Lemma 26 which are described in the next section.

 which is very hard so leads to a simple dichotomy, (∆ ≤ k)-F -OVERLAY should have a more complicated one. As a consequence, we first present in Section 4.1 several pairs (F, k) for which (∆ ≤ k)-F -OVERLAY is in P. NP-completeness results are then proved in Sections 4.2, 4.3. Through both sections,

Figure 4 . 1 :

 41 Figure 4.1: Example of an intersection graph and a corresponding circular representation.Given a hypergraph H (left), we determine its graph IG(H) (middle) with each vertex represents the hyperedge of the same color in which the value of any vertex S ∈ V (H) is l H (S) and the weight of an edge between S, S is s H (S, S). And a circular arc representation (each arc is associated to a hyperedge of the same color) is shown in the right which is (l, s)-respecting.

Figure 4 . 3 :

 43 Figure 4.3: The construction in the reduction. The vertex gadget V G v in the left with 3 hyperedges (left) in which at least one of c 1v , c 2 v , c 3 v can be a (p -1)-vertex in its parent hyperedge. At each of c i v , we add to binary tree (middle) where every couple of red edges are replaced by an x-edge-gadget (right) which enforces vertex children having the same degree as its vertex parent in their parent hyperedges. A vertex c i

 xy 1)] and G * [S(xy 2)]; y 1 and y 2 are 0-vertices in G * [S(xy 1)] and G * [S(xy 2)], respectively (so x has degree p -1 in G * [S(xy 1) ∪ S(xy 2)]). -if i = φ(v), then x has degree 0 in G * [S(xy 1)] and G * [S(xy 2)]; y 1 and y 2 are (p -1)-vertices in S(xy 1) and S(xy 2), respectively (so x has degree at most p -1 in G * [S(xy 1) ∪ S(xy 2)]).

IFigure 4 . 4 :

 44 Figure 4.4: A d-degree-gadget D at vertex v. The set I = ∅ is the intersection of the two blue hyperedges. β = 0 when I is different from these two hyperedges; and β = 0 when I and the two blue hyperedges are equal.

(i)

 i In any graph G that F -overlays D(d, v), vertex v has degree at least d.(ii) There is a graph G v that F -overlays D(d, v) in which v has degree exactly d, and every other vertex has degree at most ∆(F) if δ(F) divides d (i.e. β = 0) and at most 2∆(F) -1 otherwise.

 In addition, for every d-degreegadget D at some vertex v, we let G[V (D)] be an (F, D, 6λ -1)-graph in which v has degree d.

 Figure 4.8 in Theorem 44 and Figure 4.9 in Theorem 45. Theorem 44. Let F be a graph on p vertices with degree values 1

Figure 4 . 8 :

 48 Figure 4.8: The binary tree T i v and an example of the edge-gadget at vertex c i v (corresponding to red edges).

(b)

 b There is I ∈ [p -1] of size λ 1 such that for all i ∈ I and r ∈ [4], u (p-1)r-i+1 t is adjacent to w t ; and [λ 1 -1] ⊂ I.

 (p-1)r-i+1 t corresponds to y i . For any d-degree-gadget D at a vertex v, let G[V (D)] be an (F, D, k)-graph in which v has degree d. Let us check that ∆(G) ≤ k.

λ 2

 2 -λ 1 subgraphs and degree λ 1 in the remaining subgraphs induced by hyperedges to which it belongs. Hence v has degree at most k in G. Therefore G is an (F, H, k)-graph. Now the existence of a subgraph of B(H) as shown in Claim 53.1 can be done in polynomial time (see [HHKL90] Chap. 10).

 and ∂ Sv (u) = λ 3 for all u ∈ Y v . -For each edge e = xy of T i v with x parent of y, pick a bijection ∂ S 1 e from S 1 e into d such that ∂ S 1 e (u) = 1 for all u ∈ U 1 e ∪ {x} and ∂ S 1 e (z e) = λ 2 , and pick a bijection ∂ S 2 e from S 2 e into d such that ∂ S 2 e (z e) = 1 and ∂ S 2 e (u) = λ 3 for every u ∈ W 2 e ∪{y}. -For each j ∈ J and each edge e = xy of T j v with x parent of y, pick a bijection ∂ S 1 e from S 1 e into d such that ∂ S 1 e (u) = 1 for all u ∈ U 1 e ∪ {z e } and ∂ S 1 e (x) = λ 2 , and pick a bijection ∂ S 2 e from S 2 e into d such that ∂ S 2 e (u) = λ 3 for every u ∈ W 2 e ∪ {z e } and ∂ S 2 e (y) = λ 1 . -Finally for each hyperedge S pendant at a vertex x, we pick a bijection ∂ S from S into d such that ∂ S (x) = λ 1 .

Figure 4 . 10 :

 410 Figure 4.10: The complexity dichotomy of (∆ ≤ k)-F -OVERLAY for F standard. (see below Table4.1 for the definitions of the notations) P and NP-complete results are respectively corresponding to pairs (F , k) and (F , k). For k < ∆ -1, the problem is in P (red box) but is it NP-complete for k ≥ 8|F |δ (blue box). For a pair (F , k), k is an upper bound of np(F).

Figure 4. 10 .

 10 np(F) ≤ 6|F | or even np(F) ≤ 6∆(F) (see Figure 4.10 for a description of results). It motivates the following question. Problem 62. Does there exist a constant c such that np(F) ≤ c • ∆(F) for every standard graph F ? Getting lower bounds would also be interesting. The trivial lower bound is np(F) ≥ ∆(F). There are graphs for which this lower bound is attained, the graphs with one edge of at least 4 vertices for example. It would be nice to characterize the graphs corresponding to the difference np(F) -∆(F). The largest known value is 2 for C 4 , the cycle on four vertices by Theorem 29. The results for F = {F } of size 1 are useful because the NP-completeness of the problems for F implies the NP-completeness for the families F such that F ∈ F and |F | = |F | for all other F ∈ F. It would be nice to answer whether we can also extend the ultimate NP-completeness of a standard graph F to a family containing F . Conjecture 63. If F contains a standard graph F and both K |F | , K |F | are not in F, then np(F) < +∞. This is far from trivial for many graph families. For example, depending on the degree sequences of graphs in a family F. Let F, F ∈ F whose degree sequences respectively d, d such that |F | = |F | and d i ≤ d i for all i ∈ [|F |], then it be easier to use only F overtime to overlay a hyperedge rather than F . Otherwise, it is difficult to decide whether a hyperedge should be F -overlaid or F -overlaid.Since the NP-completeness results for many family F are obtained from the NPcompleteness of a graph F ∈ F, an interesting question is to ask for polynomiality results associated to k ≥ max F ∈F ∆(F).

 pergraphs NEAT (∆ ≤ k)-F -OVERLAY and (d, k)-SPLITTING. Its restriction on neat hypergraphs is NEAT (d, k)-SPLITTING is equivalent to NEAT (∆ ≤ k)-F -OVERLAY for F the graph family with degree sequence d. We conjecture the following. Conjecture 67. (d, k)-SPLITTING is NP-complete if and only if NEAT (d, k)-SPLITTING is NP-complete. We have seen NEAT (∆ ≤ k)-F -OVERLAY and (d, k)-SPLITTING are in P for d having at most two values; or d with three values and k < λ 3 + λ 1 . For d with at least three values and if λ 1 = 1, then they are ultimately NP-complete which is precisely Determining the high resolution model with DOMINO

 and the weight function w k uv : E(K k uv) → R ∪ {-∞}. We denote by w k = {w k uv , uv ∈ E} the set of weight functions over all the edges uv ∈ E.

Question:

 Does there exist a coloring c of G such thatuv∈E w k uv ((u, c(u))(v, c(v))) ≥ γ ?In structural biology, conformations of subunits are compatible according to the lock-and-key model. Thus, the total score of a set of conformations reflects whether the assembly defined by this set is well constructed and robust. It is the property used to define DOMINO.DOMINO is clearly in NP. We can easily construct a reduction from k-coloring, as follows. Given a graph G, we define the weight function by taking, for any uv ∈ E(G), w k uv ((u, i)(v, i)) = 0 and w k uv ((u, i)(v, j)) = 1 for j = i. Then G is k-colorable if and only if it has a coloring c with total weight at least γ = |E(G)|.

Figure 5 . 1 :

 51 Figure 5.1: Example of conflict coloring. A graph G on four vertices (left) and a 3-SoC M of G (right) with 3 colors yellow, blue and red; M e ∈ B(3, 2): for every e ∈ E(G) contains two edges. An M-Conflict Coloring c of G is c(a) = c(c) = c(d) = "blue", c(b) ="red". Coloring c is a solution of B(3, 2)-CONFLICT 3-COLORING.

Figure 5 . 2 :

 52 Figure 5.2: Convert H -COLORING to CONFLICT |V (H)|-COLORING.If H 1 = K 3 , then the corresponding conflict graph is a subgraph of K 3,3 which contains three edges of same colors (two leftmost). The conflict graph associated to the second graph H 2 contains conflict (incompatible) edges which are complement to H. Note that first two graphs H are undirected, then their conflict graphs of an edge uv are symmetric but it is not true if H is directed, then it implicitly implies an orientation of edge uv to apply the conflict graph to uv. An example is shown in the last graph H 3 directed and its conflict graph.

Figure 6 . 2 :

 62 Figure 6.2: Corresponding to a color at each vertex, v rt -graph has one conflict (dashed) edge and the clause edge at v r t is fulfilled (left). After changing the color of v r t , the clause edge is still fulfilled and all edges of v r t -graph are now fulfilled (right).

Figure 6 . 3 :

 63 Figure6.3: The case after changing the color of v r t , the clause edge becoms a conflict (dashed) edge and all edges of v t r -graph are now fulfilled (right).

Figure 6 . 5 :

 65 Figure 6.5: An example of the construction when k = 5. An edge uv ∈ E and its set E uv (left). The conflict k-graphs of red edges ua uv 3 , va uv 3 when m = 3 (third graph); and if m > 4, there are t = 4 black edges and the t = mk + 1 other edges are chosen among grey edges (rightmost).

Figure 6 . 6 :(Figure 6 . 7 :

 6667 Figure 6.6: Graph G(k, k 2).

 then the conflict (km)graph M uv for uv ∈ C i contains the complete bipartite on two sets {(u, m + 1), . . . , (u, k)}, {(v, m + 1), . . . , (v, k)} and m -(km) 2 remaining edges are taken in K m uv . Trivially, graphs in case (i) have no M-conflict coloring.

Figure 6 . 8 :

 68 Figure 6.8: An example of graph G(5, 3). A copy C i = G(2, 3) for all i ∈ [5]. The conflict k-graph of red edges and copy C 2 (right): vertex (a, 2) connects threes first vertices (b, 1), (b, 2), (b, 3) (presented as blue, red, yellow) and the set 2-SoC of G(2, 3) is applied to vertices (b, 4), (b, 5) (presented as green, white) for any b ∈ V (C 2).

 Figure 7.2 depicts an example of a graph and a tree decomposition of width 2.

Figure 7 . 2 :

 72 Figure 7.2: A graph and a tree decomposition of this graph.

Figure 7 . 3 :

 73 Figure 7.3: The nice tree decomposition of the tree graph depicted in Figure 7.2. The two leaves (leftmost nodes) and the root (rightmost node) are empty nodes, introduce nodes are blue, forget nodes are red and a join node is yellow.

Figure 7 .

 7 Figure 7.3 describes an example of nice tree decomposition of the graph depicted in Figure 7.2.Note that any graph vertex is forgotten only once (by Condition 3 of a tree decomposition) but may be introduced several times.

 x → [k], we define S(x, c x) as the value of an optimal solution for MAX DOMINO problem for the graph G x with the additional constraint that c(b) = c x (b) for every b ∈ X x . Formally, S(x, c x) = max c:Vx→[k] ∀b∈Xx,c(b)=cx(b) uv∈Ex w k ((u, c(u))(v, c(v))). (7.1) By convention we set S(x, c x) = 0 when x is a leaf. We are now able to precisely design our dynamic programming algorithm, called MAX DOMINO ALGORITHM, that consists of computing S(x, c x) for every x ∈ V (T) and every k-coloring c x of X x . Lemma 85 shows the formulas allowing such a computation. Lemma 85. Let x be a node of T and c x a k-coloring of X x . (a) If x is a join node with children x 1 and x 2 , then S(x, c x) = S(x 1 , c x) + S(x 2 , c x). (b) If x is an introduce node with child y, then S(x, c x) = S(y, c y), where c y is the kcoloring of X y such that c y (v) = c x (v) for all v ∈ X y . (c) If x is a forget node with child y, then S(x, c x) = max cy∈C(cx) S(y, c y) + w∈Xx vw∈Ex w k ((v, c y (v))(w, c y (w)) where {v} = X y \ X x and C(c x) is the set of k-colorings of X y such that c y (b) = c x (b)for all b ∈ X x .

(b)

 b Suppose x is an introduce node with child y. Then by definition,E x = E y . So clearly S(x, c x) = S(y, c y). (c) Suppose x is a forget node with child y. Let {v} = X y \ X x . By definition G x = G y ∪ {vw ∈ E(G) | w ∈ X x }. Let c * be a k-coloring of V x such that S(x, c x) =ab∈Ex w k ((a, c * (a))(b, c * (b))) and let c y be the restriction of c * to X y . Note that c y ∈ C(c x). Then S(x, c x) = ab∈Ey w k ((a, c * (a))(b, c * (b))) + vw∈E(G) w∈Xx w k ((v, c * (v))(w, c * (w))) = ab∈Ey w k ((a, c * (a))(b, c * (b))) + vw∈E(G) w∈Xx w k ((v, c y (v))(w, c y (w))) Since c * maximizes this sum and the second term is the same for all coloring whose restriction to X y is c y , we get S(x, c x) = S(y, c y) + vw∈E(G) w∈Xx w k ((v, c y (v))(w, c y (w))). Therefore S(x, c x) = max cy∈C(cx) S(y, c y) + w∈Xx vw∈Ex w k ((v, c y (v))(w, c y (w))

 in constant time by the formula. If x is a forget node, then the algorithm takes the maximum over k values because |C(c x)| = k (there are k possible colors for the vertex v of X y \ X x). The number of edge weights in the sum is upper-bounded by the size of X x . Hence the value can be computed in O(τ • k) time. Now for each node x, there are at most k τ +1 possible k-colorings of X x , so there areat most k τ +1 • |V (T)| values S(x, c x), so at most O(τ • k τ +1 • |V |) values by Lemma 83. As each of these values is computed in O(τ • k) time, Step 2 runs in O(τ 2 • k τ +2 • |V |) time.Clearly Step 1 and 3 can be done faster than Step 2, so the total running time of our algorithm is O(τ 2 • k τ +2 • |V |).

Theorem 86 .

 86 Given a graph G = (V, E) with treewidth at most τ , an integer k ≥ 1, a set of weight functions w k , the problem MAX THRESHOLD CONFLICT COLORING can be solvedin time O(τ 2 • k τ +2 • |V |). Given a node x ∈ V (T), a k-coloring c x : X x → [k],we define λ(x, c x) as the maximum threshold for MAX THRESHOLD CONFLICT COLORING for graph G x with the constraint that c(b) = c x (b) for all b ∈ X x . Observe that, the objective of the problem is to maximize minuv∈Exw k ((u, c(u))(v, c(v))). Formally, we have λ(x, c x) = max c:Vx→[k] ∀b∈Xx,c(b)=cx(b) min uv∈Ex w k ((u, c(u))(v, c(v))). (7.2) We set λ(x, c x) = +∞ if x is a leaf.We are now able to precisely design our dynamic programming algorithm, called MAX THRESHOLD CONFLICT COLORING CHAPTER 7. ALGORITHMS ALGORITHM, that consists of computing λ(x, c x) for every x ∈ V (T) and every kcoloring c x of X x . Lemma 87 shows the formulas allowing such a computation. Lemma 87. Let x be a node of T and c x a k-coloring of X x . (a) If x is a join node with children x 1 and x 2 , then λ(x, c x) = min i∈{1,2} {λ(x i , c x)}. (b) If x is an introduce node with child y, then λ(x, c x) = λ(y, c y), where c y is the kcoloring of X y such that c y (v) = c x (v) for all v ∈ X y . (c) If x is a forget node with child y, then λ(x, c x) = max cy∈C(cx) min λ(y, c y), min w∈Xx vw∈Ex w k ((v, c y (v))(w, c y (w)) where {v} = X y \ X x and C(c x) is the set of k-colorings of X y such that c y (b) = c x (b) for all b ∈ X x . Proof. Similarly as in Lemma 85, (a) and (b) are easily obtained. (c) For x a forget node with child y, let v = X y \ X x . λ(x, c x) = max c:Vx→[k] ∀b∈Xx,c(b)=cx(b) min uv∈Ex w k ((u, c(u))(v, c(v))) = max c:Vx→[k] ∀b∈Xx,c(b)=cx(b) min min uv∈Ey w k ((u, c(u))(v, c(v))), min w∈Xx vw∈Ex w k ((v, c y (v))(w, c y (w))) = max cy∈C(cx) min λ(y, c y), min w∈Xx vw∈Ex w k ((v, c y (v))(w, c y (w)) .

Figure 8 . 1 :

 81 Figure 8.1: Random instance of color matching defined from perturbations of a 2D Voronoi diagram. (A) In a random 2D Voronoi diagram, points with a finite Voronoi cell (bold cells) a retained -p 1 , . . . , p 7 in the example; each such point corresponds to the vertices in the considered graph. The dotted line segments represent the Delaunay triangulation. (B) To create the colors associated with a node p of the graph, for each Voronoi vertex v of the Voronoi cell V r (p), a perturbed point of p is uniformly chosen at random in D(v, δ) \ V r (p).

Figure 8 . 2 :

 82 Figure 8.2: Instances corresponding to the construction of Fig. 8.1 upon varying the perturbation radius δ. Perturbed random polygons of the finite Voronoi regions (thick black polygons) given a data points of size N = 15 after generating with perturbed radius δ = 0.5 (left), δ = 1 (middle) and δ = 2 (right) respectively and c = 5.

 p i ∈P C[p i]. We compute the value of f c,m (given the values of τ min c and τ mean c), by enumerating all these configurations. We repeat the calculation R = 100, and make a violin plot of the values obtained 1 . Results. The results show a marked difference for values of τ min c vs. τ mean c (Figure 8.3). For the former, values of f 1.01 and f 2 are very small, and overall, the distribution of f c,m is shifted towards smaller values when the number of colors c increases. This is sound, as increasing the number of colors is expected to decrease the intersection area, whence the value of τ Max-Min loc.

Statistic.

 Our second analysis focuses on the existence of at least one solution, depending of our global thresholds τ min c and τ mean c (Equation 8.6). We run our algorithm on R = 100 instances, and define the success rate as s c,m = #cases with one solution/R. Results. Statistics on s c,m complement those on f c,m Consider first the multiplicative factors m. It clearly appears that s c,m increases when increasing m, for both τ Max-Mean loc. and τ Max-Min loc. (Figure 8.4). Consider next the number of colors c. While the statistic s c,m hardly depends on the number of colors c for τ Max-Mean loc.

Figure 8 . 5 :

 85 Figure 8.5: Heat map representing the fraction of conflict edges, averaged over all edges of the Delaunay triangulation. (Note that for a Delaunay edge, there are at most c 2 conflict edges.) Total run of R = 100. Pink color maps to values in [0, 10 -3).

Figure 8 . 6 :

 86 Figure 8.6: Tables of average running times checking the existence of one solution for τ Max-Min loc.

 For example, transposing our Delaunay-Voronoi setting to molecular modeling, large intersection volumes between atomic representations (the equivalent of the intersection area used in this work) directly translate into prohibitive van der Waals interaction energies [?] (which explains interactions of subunits from physical aspects).To choose a lower bound, one seeks the smallest value of m yielding the desired value of s c,m . In our experiments, for s c,m = 1, m ≤ 0.7 suffices whatever the value of c (the right plot of Figure8.4). For s c,m = s 0 (< 1), relevant pairs (c, m) are obtained by seeking the smallest values of m and c such that s c,m ≥ s 0 .In addition, we provide Figure8.5 which shows the density of conflict graphs corresponding to pairs (c, m). In fact, the statistics of density is opposite to the one of s c,m (i.e. for a fixed c, when m increases, a conflict graph is clearly sparser and it is the contrary for a fixed m and when c increases). Regarding pairs (c, m) whose s c,m = 1, the statistics show that the density is at most 47% when (c = 15, m = 4) for τ Max-min loc.and at most 78% when (c = 100, m = 0.1) for τ Max-mean loc.

Figure 8 . 7 :

 87 Figure 8.7: Distribution of intersection areas ia(•, •) for Min (top row) and Mean values (bottom row). The three plots correspond to τ 2 , τ 3 and τ * , respectively. A total of R = 100 random instances were used. Note that y-axis presents the average number of edges, faces or stars of an instance; and x-axis infers values ia(•, •) .

 and the edge set of an (O p , H i One easily checks that G is (O p , H , k + 1)-graph. Therefore, there is an (O

v , k + 1)-graph (which exists by Claim 23.1), for all v ∈ V (H), 1 ≤ i ≤ p -2. p , H, k)graph if and only if there is an (O p , H , k + 1)-graph. Propositions 19 and 20, Theorems 21 and 22, and Lemma 23 imply Theorem 18.

 The endvertices of those edges in S 1 ∪ S 2 must have degree 2 in G[S 1 ∪ S 2]. Hence, without loss of generality, there is a vertex e not in S 1 ∪ S 2 such that either S 3 = {a 1 , a 2 , b, e} and {a 1 e, a 1 e} ⊆ E(G),In view of Claim 29.1, if there are two hyperedges with three vertices in common, either we return 'No' if |V (H)| > 6, or we check all possibilities (or follow the proof of the above claim) to return the correct answer otherwise. Henceforth, we may assume that any two adjacent hyperedges intersect in exactly two vertices.Let S 1 and S 2 be two adjacent hyperedges, say S 1 = {a, b, c, d} and S 2 = {c, d, e, f }.Note that every (C 4 , H, 3)-graph contains the edges ab, cd and ef , and that N (c) ∪ N (d) = S 1 ∪ S 2 in this (C 4 , H, 3)-graph. If there is another hyperedge than S 1 and S 2 containing c or d, and there is a (C 4 , H, 3)-graph G, then |V (H)| ≤ 8.

	Claim 29.2.

or S 3 = {a 1 , b, d, e} and {a 1 e, de} ⊆ E(G). Now no hyperedge can both intersect S 1 ∪S 2 ∪S 3 and contain a vertex not in S 1 ∪S 2 ∪S 3 , for such a hyperedge must contain either the vertices d, e or a 2 , e which are at distance 3 in G[S 1 ∪ S 2 ∪ S 3]. (However there can be more hyperedges contained in S 1 ∪ S 2 ∪ S 3 .) Hence |V (H)| ≤ 6. Proof of claim: Without loss of generality, we may assume that G contains the cycle (a, b, d, f, e, c, a) and the edge cd. Hence the only possible hyperedges containing c or d and a vertex not in S 1 ∪S 2 are S 3 = {a, c, e, g} for some g / ∈ S 1 ∪S 2 and S 4 = {b, d, f, h}

for some h / ∈ S 1 ∪ S 2 .

If H contains both S 3 and S 4 , then G contains the edges ag, eg, bh and hf . If G contains also gh, then

 • For each variable x t , we add a variable gadget H t containing a center set C t of size p -2, a set U t of 8 vertices U t = {u 1 t , . . . , u 8 t }, and 8 hyperedges S i t = C t ∪ {u i t , u i+1 t } (superscripts are modulo 8)

 Hence, they must be non-adjacent to at least 4 literal vertices which is a contradiction.(iii) By (ii), there are at least four none-edges and they are not in G[C t] by (i), then each of them is between a literal vertex and a vertex in C t which belongs to a degreegadget (there are at most 4 such vertices). Moreover, since any hyperedge S i t for i ∈ [8] is F -overlaid, then there is at most one non-edge in G[S i

superscripts are modulo 8).

(iii) All vertices of exactly one of X t , X t are (p -2)-vertices in all hyperedges of H t which it belongs and those of the other are (p -1)-vertices. Proof of claim: (i) Assume that G[C t] is not complete, then there is an edge uv ∈ G[C t] for u, v ∈ V (C t). Since all hyperedges of H t is F -overlaying and F is a clique minus an edge, so the edge uv is the removing edge from the clique K p in all hyperedges of H t . It implies that in any hyperedge containing a literal vertex, this one must be adjacent to all vertices. Hence every literal vertex has degree p in G[H t] and thus any clause vertex must have degree 3p > 3p -1 which is a contradiction. (ii) Assume for a contradiction that there is i ∈ [8] such that u i t u i+1 t is not an edge of G[H t]. Thus, with the six other literal vertices, there are at most three non-edges between them to vertices in C t (because otherwise, there are two non-edges in an induced subgraph of G[H t] by a hyperedge). However, since any vertex in C t which is in a d-degree-gadget has degree at least d in its degree-gadget, at most 3p -1d in G[H t]. t]. Assume wu i t ∈ E(G[H t]

 The variable gadget H t of variable x t . Blue and red vertices are respectively non-negated and negated literal vertices.

	u 1 t	u 2 t
	u 8 t	u 3 t
	C 1 t	C 2 t
	u 7 t	u 4 t
	u 6 t	u 5 t
	Figure 4.6:	

is an a-vertex in every hyperedge containing it and each vertex in X t (resp. X t) is an (a + 1)-vertex in every hyperedge containing it.

For any d-degree-gadget D at a vertex v, let G[V (D)] be a (K a,a+1 , D, 3a+5)-graph in which v has degree d.

 of claim: Observe that any vertex in C 1 t is in a (2a + 2)-degree-gadget, so it has degree at most a+3 in G[H t]. Similarly, any vertex in C 2 t is in a (2a+1)-degree-gadget, so it has degree at most a + 4 in G[H t]. Assume for a contradiction that v is adjacent to exactly a -1 vertices in C 1 t ∪ C 2 t . Then because v has degree at least a in every hyperedge, it must be adjacent to at least one literal vertex in each S i

	(i) Let us first prove that, in a hyperedge, two literal vertices cannot be both a-
	t , u i+1 t vertices. Assume for a contradiction that there is i ∈ [8] such that u i t . Thus, at least one vertex v in C 1 are both t is a-vertices. There are a -1 other a-vertices in S i an (a + 1)-vertex in S i t , and thus adjacent to u i t , u i+1 t and the a -1 other a-vertices in S i t which are in C 1 t ∪ C 2 t .
	i t ∪ C 1 t ∪ C 2 t , it is adjacent to at most one vertex, among the six literal vertices u i+1+j t , j ∈ [6]. Hence there are two hyperedges S, S in {S i+2

t for all i ∈ [8]. In particular v is adjacent to at least one literal vertex in S i+2 t , S i+4 t , and S i+6 t . Hence v has degree a+4 in G[H t], a contradiction to the above observation.

Consequently, v is adjacent to at least a and at most a + 1 vertices in

C 1 t ∪ C 2 t . • If v is adjacent to exactly a vertices in C 1 t ∪ C 2 t ,

then there is a vertex u in C 1 t \ {v} which is adjacent to v since there are only a -1 vertices in C 2 t . Vertex u has degree at least a in S i t . Since v has degree a + 2 in S

 Let us now prove that two literal vertices in a hyperedge of H t cannot be both (a + 1)-vertices. Assume for a contradiction that there is i ∈ [8] such that u i

	t , u i+1 t	are
	both (a + 1)-vertices. Any a-vertex x in S i t is adjacent to u i t , u i+1 t vertices in C 1 t ∪ C 2 t . If x is adjacent to exactly a -2 (resp. a -1) vertices in C 1 and at least a -2 t , t ∪ C 2 then, since it has degree at least a in any hyperedge, it is adjacent to all six (resp. at
	least three) literal vertices in S i+2 t G[H t], a contradiction. Hence every a-vertex in S i ∪ S i+4 t t . Thus x has degree a + 6 (resp. a + 4) in ∪ S i+6 t has at least a neighbors in C 1 t . t ∪ C 2 There are a+1 a-vertices in S i t , so there must be one, say v, in C 1 t . It has degree at most
	a + 3 in G[H t] and at least a + 2 in S i t . Thus it is adjacent to at most one literal vertex
	in S i+2 t S, S in S i+2 ∪ S i+4 t t ∪ S i+4 t . Hence v is not adjacent to the literal vertices of two hyperedges ∪ S i+6 t ∪ S i+6

Thus at least one of u,u is adjacent to at least four literal vertices in

S i+2 t ∪ S i+4 t ∪ S i+6

t , and so has degree at least a + 4, a contradiction.

CHAPTER 4. (∆ ≤ K)-F -OVERLAY

This proves that two literal vertices of a hyperedge are not both a-vertices.

 xy 1)] and G * [S(xy 2)] (and so at most λ i * + 1 in G * [S(xy 1) ∪ S(xy 2)]) and y 1 and y 2 have degree λ 1 in G [S(xy 2)] (and so at most λ i * -1 + 1 in G * [S(xy 1) ∪ S(xy 2)]) and y 1 and y 2 have degree λ i * in G * [S(xy 1)] and G * [S(xy 2)] respectively.every vertex in A x has degree at most λ i * -1 in both G * [S(xy 1)] and G * [S(xy 2)] and so at most λ i

* [S(xy 1)] and G * [S(xy 2)] respectively.

if i = φ(v), then x has degree λ i * -1 in G * [S(xy 1)] and G * * + 1 in G [S(xy 1) ∪ S(xy 2)]; -every vertex in B x is degree at least λ i * in both G * [S(

xy 1)] and G * [S(xy 2)] and so at most λ t + 1 in G * [S(xy 1) ∪ S(xy 2)]; • For any d-degree-gadget D at vertex v, we let G * [V (D)] be an (F, D, k)-graph in which v has degree d.

 For each edge e = xy of T i v with x the parent of y in T i v , we construct an edgegadget containing x, y, a new vertex z e , and four disjoint sets U 1

	this tree, a i v and b i v are
	the children of c i v , i,1 v and i,2 v are the children of a i v , and i,3 v and i,4 v are the
	children of b i v .
	-e W 1 e , U 2 e , W 2

e of new vertices, U 1 e of size α 1 -1, W 1 e of size p-|U 1 e |-1, U 2 e of size p-α t -1, W 2

Table 4 .

 4

1: Table of notations in

 Thus, the H -COLORING problem is equivalent to CONFLICT k-COLORING with k = |V (H)| and the k-SoC containing only the complement B H of B H (i.e. V (B H) = V (B H) and E(B H) = {uv | ∀uv ∈ E(B H)}), see Figure 5.2. Hence, this problem and even its restriction B(k, |E(H)|)-CONFLICT k-COLORING are more general than H -COLORING.

 edges of B u where B u is the complete bipartite graph whose vertex sets are j∈[k]\{i} {(u, j)} and j∈[2,k-1] {(a uv i , j)}. The conflict graph M va uv i contains t edges (v, i)(a uv i , k), . . . , (v, i)(a uv , kt + 1) and t (if t > 0) edges of B v where B v is the complete bipartite graph whose vertex sets are j∈[k]\{i} {(v, j)} and j∈[2,k-1] {(a uv i , j)}.

			u		
	u				
	a uv 1	a uv 2	a uv 3	a uv 4	a uv 5
	v				
			v		

To run the algorithm, we use Choco-a CSP solver see[START_REF] Jussien | Choco: an open source java constraint programming library[END_REF].

(2) If F [V λ 1] is complete, then every vertex of V λ 1 is not adjacent to some vertex in V λ 2 . We set k = 6λ 1 + 3.

We give a reduction from (3,4)-SAT .

Given a formula Φ of this problem, we build a hypergraph H as follows.

1. For each variable x t , we construct a variable gadget H t in the following way.

We first create a center vertex w t , a set of 4p -4 vertices U t = {u 1 t , . . . , u 2. For each variable x t , we add a set of pλ 1 vertices W t , and a hyperedge S t = W t ∪ {u p-1 t , . . . , u p-λ 1 +1 t } and we add a (k -4λ 1 -1)-degree-gadget at w t .

3. For each clause C j = (1 ∨ 2 ∨ 3), we identify y 1 , y 2 , y 3 into a clause vertex c j , where for all i ∈ [3], y i = x r t if i = x t and i is the r-th occurrence of x t , and y i = xr t if i = xt and is the r-th occurrence of x t .

Let z be a vertex in V λ 1 which is adjacent to the minimum number a > 0 of vertices in this set. Let (z, z 1 , . . . , z p-1) be an ordering of F such that :

z j has degree λ 1 and is adjacent to z for all j ∈ [a],

z j has degree λ 1 and is not adjacent to z for all a + 1 ≤ j ≤ α 1 -1, -z j has degree λ 2 and is adjacent to z for all α 1 ≤ j ≤ α 1 + λ 1a -1.

z j has degree λ 2 and is not adjacent to z for all α 1 + λ 1a ≤ j ≤ p -1.

We will show that there is an assignment φ satisfying Φ if and only there is an (F, H, k)-graph G.

Assume that φ satisfies Φ, then we construct G as follows. For all i ∈ [4p -4], let G[S i t] be copies of F such that w t corresponds to the vertex z and the following hold.

In Case A-(1), -if φ(x t) = true (resp. φ(x t) = f alse), then each vertex in X t (resp. X t) corresponds to z 1 , and each of X t (resp. X t) corresponds to z α 1 -1 .

-for all r ∈ [4] and 2 ≤ i ≤ α 1 -2, u (p-1)r+1-i corresponds to z i .

-for all r ∈ [4] and α 1 ≤ i ≤ p -1, u (p-1)r+2-i corresponds to z i .

In Case A-(2), -if φ(x t) = true (resp. φ(x t) = f alse), then each vertex in X t (resp. X t) corresponds to z 1 , and each of X t (resp. X t) corresponds to z p-1 .

-for all r ∈ [4] and 2 ≤ i ≤ p -2], u (p-1)r+1-i corresponds to z i .

For any d-degree-gadget D at a vertex v, let G[V (D)] be an (F, D, k)-graph in which v has degree d.

Let us check that ∆(G) ≤ k.

CHAPTER 4. (∆ ≤ K)-F -OVERLAY has degree at least 2λ 1 -1 in G[H t], with equality only if it is adjacent to w t , the vertex c j is adjacent to w t . Hence, the corresponding literal to this literal vertex is true and so C j is satisfied. • In Case C-(ii), any clause vertex c j is in a (kd)-degree-gadget, then has degree at most d in the union of its three variable gadgets. Hence c j has degree at most d/3 neighbors in one of those variable gadget, say H t . Let i be the index such that c j = u i t .

Suppose for a contradiction that c j is not adjacent to w t . Then it is a λ 2 -vertex in every hyperedge of H t .

Vertex c j has at least λ 2 neighbors in each of S i t and S i-p-3 t which intersect in {c j , w t }. Hence c j has at least 2λ 2 neighbors in S i t ∪ S i-p-3 . In Case C-(ii)-a, d/3 = 2λ 1 + 1 < 2λ 2 , so we get a contradiction.

In Case C-(ii)-b, since w t is adjacent to all d i t by Claim 47.5 (b), c j corresponds to a vertex in N ≥2 in every hyperedge of H t to which it belongs. Therefore it is adjacent to all λ 1 -vertices in these hyperedges and thus in particular to all d i t for all ip + 3 < i < i. Hence c j has degree at least

In both subcases, the vertex c j is adjacent to w t . Hence, the corresponding literal to this literal vertex is true and so C j is satisfied.

Consequently, φ satisfies Φ.

On neat hypergraphs

In this section, we consider the problem on a neat hypergraph which is a hypergraph in which any two hyperedges intersect in at most one vertex. We reuse the notions of degree sequence d of a graph F and the multiplicity numbers of degrees in d. The restriction of (∆ ≤ k)-F -OVERLAY to neat hypergraphs is called NEAT (∆ ≤ k)-F -OVERLAY.

Equivalence with NEAT (d, k)-SPLITTING

Let d = (d 1 , . . . , d p) be p-uple of positive non-decreasing integers and k be a positive

We thus have the following problem : Proof. Assume first that there is an (F, H, k)-graph G. Since H is neat, free to remove some edges, we may assume that G[S] is a copy of F for all hyperedge S. Hence the

For every hyperedge S, take a copy of F S of F such that d F S (v) = d S (v). Let G be the union of the F S . By construction, G F -overlays H. Moreover, since H is neat, for each

Corollary 49. If two graphs F 1 and F 2 have the same degree sequence d, then NEAT (∆ ≤ k)-F 1 -OVERLAY and NEAT (∆ ≤ k)-F 2 -OVERLAY have the same complexity, the one of

Remark 50. Note that (NEAT) (d, k)-SPLITTING is also defined for sequences d which are not degree sequences. In particular, we might allow the elements of d to be negative. However, we shall restrict ourselves to non-negative sequences, which are sequences all elements of which are non-negative.. (ii) If d is a non-decreasing sequence with three values λ 1 < λ 2 < λ 3 , then (d, k)-SPLITTING is polynomial-time solvable for k < λ 3 + λ 1 .

4.4.3 NP-completeness for graphs with λ 1 = 1

The previous section showed that (

Proof. Let H be a p -uniform hypergraph with hyperedges S 1 , . . . , S m . Let H be the p-uniform hypergraph obtained from H as follows: for each j ∈ [m], we add a set

} of pp new vertices and define S j = S j ∪ X j . Assume that there is a (d , k)-splitting ∂ of H . Let ∂ be defined as follows. For

Reciprocally, assume that there is a (d, k)-splitting ∂ of H. An inversion of ∂ is a pair of vertices (v, x) with v ∈ S j and x ∈ X j for some j such that

. Without loss of generality, we may assume that ∂ is the (d, k)-splitting of H with the minimum number of inversions. Then ∂ has no inversion (v, x) for otherwise replacing ∂ S j by the bijection obtained from it by swapping the images of v and x yields a (d, k)-splitting of H with less inversions. Henceforth for each j ∈

Thus there is a (d, k)-splitting ∂ of H if and only if there is a (d , k)-splitting ∂ of H . This proves (i).

Observe that if H is neat then H is also neat. This the above reduction also yields (ii).

Assume now that u is in two vertex-gadgets H v and H w . By construction, vw is an edge of G and there is i such that u = i,jv v = i,jw w . Moreover, since φ is a proper 3-coloring of G, either φ(v) = i or φ(w) = i. Thus by definition of ∂, u is a 1-vertex in one of S i,jv v , S i,jw w . Therefore,

Henceforth we may assume that u is a unique vertex gadget

e for some edge e of some

e for some edge e of some

Theorem 59 and Lemma 58 immediately imply Theorem 57.

Conclusion of Part I

The first part was to study the complexity dichotomy of Overlaying problems which we aim to answer the general following problem.

Problem 60. Characterize the pairs (F, k) for which MAX (∆ ≤ k)-F -OVERLAY or (∆ ≤ k)-F -OVERLAY is polynomial-time solvable and those for which it is NP-complete.

A first step to answer this problem is to address it with a graph F . We gave the complete dichotomy of both problems for F = O p the graph on p vertices with one edge. Theorem 24 characterizes the complexity of MAX (∆ ≤ k)-F -OVERLAY which left us to study on (∆ ≤ k)-F -OVERLAY. It is more complicated for (∆ ≤ k)-F -OVERLAY, some evidences are given in Section 4.1 which presents several polynomial cases for k ≥ ∆(F). In order to attack the problem, it would be helpful to prove the following conjecture.

We gave several evidences to this conjecture. We first showed that the NP-completeness for k implies one for k + δ(F). In particular, the conjecture holds for δ(F) = 1.

We devoted a partial answer to Problem 60 for (∆ ≤ k)-F -OVERLAY which is the ultimate NP-completeness of the problem for every graph F different from K p and K p in Section 4.2. Precisely, we proved that np(F) < +∞ if and only if F is standard, that is neither a complete graph nor an anticomplete graph. It would be nice to get the characterization asked by this problem. Such a characterization might be complicated and hard to obtain, but we can certainly obtain further results. Indeed, in our proof, we made no attempt to minimize the upper bound on np(F), but just to prove such a bound exists. In fact, our proof shows the general upper bound np(F) ≤ 8|F |δ(F) for every standard graph F . However, there are many graphs for which the proof shows By Lemma 58, it suffices to prove the conjecture for sequences with only three values and the greatest one appearing only once.

Determining the complexity is a first step of studying problems. We know how to solve those in P. For an NP-complete problem, it would be interesting to design algorithms solving the problem. As a start, we can build heuristic algorithms or a simple greedy algorithm which can be helpful to compute an approximation-ratio to study on approximation algorithms.

Furthermore, these problems are motivated by biology problems, it is necessary to attack on problems with instances restricted to biological properties (e.g. an upper bound on the maximum degree k, typical numbers of subunits per complex).

Conflict Coloring problems

vertices which is the union of M 1 , . . . , M (because CSP is a conjunction of constraints).

From this reasoning we deduce the following:

As a consequence, complexity upper bounds on CSP(Γ B) apply to B-CONFLICT k-COLORING, and complexity lower bounds on B-CONFLICT k-COLORING apply to CSP(Γ B). In particular, when B is not closed by union, we cannot immediately apply the complexity lower bound results from CSP(Γ B).

Our contributions

We first study the computational complexity of FULFILL-k-COLORING, CONFLICT-k-COLORING and their restrictions on graph families B(k, m) in Chapter 6.

If for every uv ∈ E(G), the edge set of M uv is the matching

Henceforth, the problems CONFLICT k-COLORING and FULFILL k-COLORING are NP-complete for all k ≥ 3. Thus, the problems CONFLICT COLORING and FULFILL COLORING are NP-complete. We prove in Theorem 73 that CONFLICT 2-COLORING is polynomialtime solvable. On the other hand, FULFILL 2-COLORING is more general than MAX CUT (decision version). This problem is given a graph and an integer, and aims to determine whether there is a partition of vertices into two disjoint sets such that there number of edges between them is at least the number. It is known to be NPcomplete [START_REF] Karp | Reducibility among Combinatorial Problems[END_REF]. Therefore FULFILL 2-COLORING is also NP-complete.

We next study B(k, m)-FULFILL k-COLORING and B(k, m)-CONFLICT k-COLORING.

We prove polynomial vs. NP dichotomy results with respect to the considered values k and m. All those complexity results are summarized in Table 5.1.

Remark 72. Given a coloring, we can easily check whether it satisfies the problems FULFILL-COLORING or CONFLICT-COLORING in polynomial time. Thus, these two problems are in NP and we only prove the NP-hardness of NP-complete results.

In Chapter 7, we expose several algorithms solving the problems. As the decision problem MAX CUT is a particular case of FULFILL 2-COLORING, we investigate whether results for MAX CUT (for decision or optimization problem) can be also generalized to our problem on two colors. Hadlock [START_REF] Hadlock | Finding a maximum cut of a planar graph in polynomial time[END_REF] showed that MAX CUT is polynomial-time solvable for planar graphs. In contrast, we observe that FULFILL 2-COLORING is NP-complete (Remark 77). Goemans and Williamson [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF] proved Chapter 6

Complexity results

The aim of this chapter is to prove results in Table 5.1.

Unrestricted conflict coloring

We first establish the complexity of CONFLICT k-COLORING and FULFILL k-COLORING, and then consider the restrictions of the problems to the family B(k, m).

CONFLICT 1-COLORING and FULFILL 1-COLORING are trivial: there is only one possible color for each vertex, we just need to check which edges e are fulfilled, that is such that M e is edgeless.

We now consider CONFLICT 2-COLORING and obtain the following.

Theorem 73. CONFLICT 2-COLORING is polynomial-time solvable.

Proof. Let G = (V, E) be a graph and let M uv be the conflict 2-graph for each edge uv ∈ E. If there is an edge e ∈ E such that M e = K 2,2 , then the answer is 'No' because e cannot be fulfilled. If there is an edge e ∈ E such that M e = K 2,0 (edgeless graph), then e is always fulfilled. Without loss of generality, we assume that the conflict 2graph of every edge is neither K 2,2 nor K 2,0 . Now, from G and the set of conflict 2-graphs M uv for each edge uv ∈ E, we construct a 2-SAT formula Φ as follows.

1. For a vertex v ∈ V and a color in {1, 2}, create a variable x v for (v, 1) and xv for (v, 2). So we denote by i v a literal of variable x v , in which

CHAPTER 6. COMPLEXITY RESULTS

We will prove that G admits a conflict coloring c if and only if there is an assignment φ satisfying Φ.

Observe that, for any uv ∈ E(G), the clause gadget C uv contains a clause for each edge (u, i)(v, j) ∈ M uv which is the negation of (i u ∧ j v). It implies that c does not conflict on uv by edge (u, i)(v, j) ∈ M uv if and only if ¬(i u ∧ j v) is satisfiable by φ. Thus, uv is fulfilled by c if and only if C uv is satisfiable by φ.

Therefore, one can determine c from φ by taking c

In contrast to CONFLICT 2-COLORING, FULFILL 2-COLORING generalizes the wellknown NP-complete problem MAX CUT, and thus it is also NP-complete. For k ≥ 3, CONFLICT k-COLORING generalizes the NP-complete problem k-COLORING and so is NP-complete. Hence, FULFILL k-COLORING is also NP-complete.

Restrictions to the family B(k, m)

Now, we look at the restrictions of those problems when every conflict k-graph M e is in B(k, m), that is a bipartite graph with k vertices in each part and m edges. We assume that k ≥ 2. If m = 0 (resp. m = k 2), then the conflict k-graphs are edgeless (resp. complete bipartite) and so every k-coloring fulfills all edges (resp. no edges). Proof. An easy observation is that B(2, 2)-FULFILL 2-COLORING is NP-complete since it generalizes MAX CUT. Thus, we now prove for graph classes B(2, 1) and B(2, 3).

A reduction from MAX-2-SAT problem which is known to be NP-hard [START_REF] Garey | Some simplified NPcomplete graph problems[END_REF].

Given a 2-SAT formula Φ with N variables x 1 , . . . , x N and l clauses, each contains exactly 2 literals. We construct a graph G and the conflict 2-graph M e for any e ∈ E(G) as follows (see Figure 6.1 for an example):

• For each variable x t , we create a vertex v t , and if x i appears in α t clauses, then we create three copies v r t1 , v r t2 , v r t for each r-occurrence of

we create a cycle on vertices v t , v r t1 , v r t2 , and for (ordered

) and an example of graphs M e for e ∈ E(G). Note color 1 (resp. 2) is presented as blue (resp. red).

has three edges which are not (v t j , 1)(c i j , 1) (resp. (v t j , 2)(c i j , 1)) if j = x t j (resp. j = xt j). For conveniences, for a clause C i , the edge set which contains all edges of X i and Y i is called clause-edge set, denoted by S i .

We can easily check by hand the following.

Claim 76.2. For each clause C i , a coloring fulfills no edges in Y i if and only if it can fulfill at most three edges in S i . Furthermore, there exists a coloring which fulfills four edges in S i in which at least one of them is in Y i .

We shall show that there is φ satisfying Φ if and only if there is a 2-coloring of G with 4l fulfilled edges. The idea is that a variable φ(x t) = true (resp. f alse) when c(v t) = 1 (resp. c(v t) = 2), and a literal j = x t (resp. j = xt) is true in a clause C i when the edge v t c i j ∈ Y i is fulfilled and then v t is colored 1 (resp. 2). Assume that there is an assignment φ satisfying Φ. We define a coloring c of G by taking c(v t) = 1 if φ(x t) = true or c(v t) = 2 if φ(x t) = f alse, and we complete c such that if C i is true, then c fulfills four edges of S i which includes the variable-clause edge of every true literal in C i ; otherwise, c fulfills three edges in S i and none of them is in Y i . This can be done by Claim 76.2. Since there are l clauses of Φ which are true, then c fulfills 4l edges.

Conversely, assume that we have a 2-coloring c of G with 4l fulfilled edges. By Claim 76.2, c must fulfill at least one edge in Y i for any clause C i . As a consequence, we obtain φ by taking φ(x t) = true (resp. f alse) if c(v t) = 1 (resp. 2), hence φ satisfies Φ.

Remark 77. MAX CUT can be solved in polynomial time for planar graphs [START_REF] Hadlock | Finding a maximum cut of a planar graph in polynomial time[END_REF]. In contrast, B(2, 3)-FULFILL 2-COLORING is NP-complete on planar graphs by reducing from PLANAR 3-SAT which is NP-complete [START_REF] Lichtenstein | Planar formulae and their uses[END_REF] with the same reduction in Theorem 75-2.

When k ≥ 3, we use reductions from k-COLORING to establish the following.

The proof is separated to several cases depending of m.

Polynomial cases when m ∈ {k 2 -1, k 2 -2}. Given a graph G, we shall find a conflict k-coloring c of G if it exists.

If m = k 2 -1, in order to fulfill an edge uv ∈ E, we have to take c(u) = i, c(v) = j for the only edge (u, i)(v, j) ∈ M uv . If we can assign a color to every vertex, then we obtain a conflict k-coloring of G. Otherwise, G is not conflict colorable.

If m = k 2 -2, the problem can be solved as follows. Initially, let c(v) = ∅ for every v ∈ V . We sequentially apply the following rules for all vertices.

Rule 1: For every edge uv ∈ E, if there is i ∈ [k] such that the two edges

If there is a vertex v such that |c(v)| ≥ 2, then there is no coloring c because v needs two colors to fulfill all its incident edges. Otherwise, let

We sequentially apply the following for all vertices V \ S.

Rule 2: For every vertex v with all its neighbors {u 1 , . . . , u q } and for every color

Observe that |c(v)| ≤ 2 for every v ∈ V . If there is a vertex v ∈ V such that c(v) = ∅, then there is no conflict coloring for G because there is no color for v that allows to fulfill all its incident edges. Without loss of generality, we assume that G[V \ S] is connected (otherwise, we repeat the following for all the connected components). There are two cases:

be the ordering obtained by a breadth-first search algorithm in G[V \ S].

By construction of S, and V \ S, this ordering gives a unique color for all vertices of V \S, that is c(v 1) = c(v 1), and c(v i) = c i with c i the unique color such that For an edge uv, we reuse the notation K k uv which is the complete bipartite with the vertex set

We use an induction on k 2m as follows. The base case is when k = 3 and 1 ≤ m ≤ 6. From these two cases above, it suffices to prove for m ∈ {5, 6}.

The inductive result is obtained by the following.

) and any m-3 other edges in K 3

By the construction of M, each conflict graph M e ∈ M needs at least three conflict edges and at least three edges not in M e . Thus, 3 ≤ m ≤ 6.

We prove now G is 3-colorable if and only if there is c which fulfills all edges of G .

If G has a k-coloring c, then G has also a conflict k-coloring by, for all G uv , taking

Proof of Claim 79.2. Let a graph G and a k-SoC M for B(k, m)-CONFLICT k-COLORING.

We will construct for B(k , m)-CONFLICT k -COLORING, a graph G = (V , E) and M , as follows:

• Let G be a copy of G (i.e. V , E are respectively copies of V and E.

• For each edge u v of G , M u v contains the following: a copy of the conflict graph M uv for colors in [k], the complete bipartite graph between two sets {(u, i)

If c be a coloring which fulfills all edges of G, then taking c (v) = c(v) for all v ∈ V copy of c ∈ V . Thus, c also fulfills all edges of G .

Conversely, there is a coloring c which fulfills all edges of G . Consider that for

for all v ∈ V . Let c be a coloring of G by taking c(v) = c (v) for v ∈ V , thus c fulfills all edges of G . Therefore, we complete the proof of Theorem 78. It implies that B(k, m)-FULFILL k-COLORING is NP-complete for k ≥ 3 and 1 ≤ m ≤ k 2 -3. Moreover, by using the same construction in Claim 79.2, we make a reduction from B(2,

We obtain the following. Observe that if M e = M 0 , then e is fulfilled, so we set f (e) = 1, and if M e = M 4 , then e is never fulfilled, so we set f (e) = 0.

f (e) = 1 + y 0 y iy 0 y jy i y j 4 if M e = M 3 3 . Note that if M e ∈ {M 1 1 , M 2 1 , M 3 1 }, then the formulas are the ones for MAX 2-SAT (where c(u) = 1 corresponds to u being true and c(u) = 2 to u being false), if M e ∈ {M 1 2 , M 2 2 }, then the formulas are the ones for MAX CUT, and if M e ∈ {M 1 3 , M 2 3 , M 3 3 }, then the formulas are similar to those of MAX DICUT [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF].

We formulate our problem as an integer programming problem (P) which maximizes S = e∈E(G) f (e) subject to y i ∈ {-1, 1}. Since in any case f (e) is a nonnegative linear combination of 1-y i y j , 1+y i y j and 1-y i y j -y i y k +y j y k , 1+y i y j +y i y k +y j y k , there are nonnegative coefficient a ij , b ij , c ijk and d ijk such that S = 0≤i,j,k≤n a ij (1-y i y j)+b ij (1+y i y j)+c ijk (1-y i y j -y i y k +y j y k)+d ijk (1+y i y j +y i y k +y j y k).

We can relax (P) by replacing every y i to a unit vector x i ∈ S n , the n-dimentional unit sphere. This results in the problem (P) which maximizes

subject to x i ∈ S n . This is a SDP problem with positive semidefinite matrix X with X ij = x i x j . Using the method of Goemans and Williamson, we have the following algorithm. • Stars. Finally, we consider the star centered at each data point p i , that contains p i and its set of neighbors N (p i) in the DT with finite dual Voronoi cell. We compute the minimum value τ * (p i) of the threshold, which ensures the existence of a local solution of the star. Formally:

(8.3)

The max value obtained over all stars is denoted τ Max-Min * .

The values τ 2 (p i p j), τ 3 (p i p j p k) and τ * (p i) provide local necessary conditions. Observe that, in order to have a global solution for an instance, the threshold δ c must be at least all these local values. We therefore define τ Max-min loc. . (8.6)

= max{τ

Remark 89. In sampling data points in a square of side √ N * 100, the expected area for each VD region is 10 4 , the threshold values are in unit and we may mention also in brackets the fraction of a threshold value over the expected area, for example τ loc. = 100 (1% of the expected area of a VD region).

Results

Setup. We consider two complementary analysis: the fraction of solutions in the entire search space, and the existence of at least one solution.

The , or m 2 for τ Max-Mean loc.

. Each violin plot corresponds to R = 100 random instances. These experiments involve N = 8 finite Voronoi regions.

Running times

We provide the running times of checking the existence of one solution for τ Max-min loc.

and τ Max-mean loc.

, see Figure 8.6. Clearly, the running augments when increasing c in general. Figure 8.6 also show that the time lines corresponding to values m in the

Conclusion of Part II

In this part, we studied coloring problems based on DOMINO. We gave a complexity dichotomy for FULFILL COLORING, CONFLICT COLORING and their restriction to graph families B(k, m) of conflict k-graphs.

We have shown that the coloring problems are very hard in most graph families B(k, m). For a family B such that B-FULFILL-k-COLORING is NP-complete and B-CONFLICT-k-COLORING is in P, we can exploit the latter to build an algorithm for solving the former. Assume that B has the following property: each color of one vertex typically pairs up with only one color of the other, this yields the conflict graph which is a complete bipartite graph minus a matching. Let A the set of graphs obtained from K k,k by deleting a matching. One can show that A-CONFLICT COLORING is polynomial-time solvable. Hence, although A-FULFILL k-COLORING is NP-complete, when the number q of fulfilled edges is fixed, the problem can be solved in polynomial time. Indeed, for each of the O(m q) possible subgraphs F of G, one can test in polynomial time if F admits a k-coloring with no conflict edges. In Section 7.1, we gave a 0.79607-approximation algorithm for FULFILL 2-COLORING. This approximation ratio is proved using an algorithm and analysis which are similar to the ones for MAX DICUT in [START_REF] Goemans | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF]. Better SDP-based approximation algorithm for MAX DICUT have been shown. The current best one has an approximation ratio of 0.863 [START_REF] Matuura | 0.863-approximation algorithm for MAX DI-CUT[END_REF]. It would be interesting to investigate whether their technique can be generalized for FULFILL 2-COLORING. It is natural to study approximation algorithms for large value of k, that is to approximate FULFILL k-COLORING.

Further, more than finding a solution, it would be interesting to enumerate all possible solutions. Theoretically, it is NP-hard, then takes exponential time, so it would be useful to find moderately exponential algorithms. Problem 90. Is there a constant c k such that all conflict k-colorings of a graph can be enumerated in O(f (n)c n k) time where n is the number of vertices and f is a polynomial