
HAL Id: tel-03648408
https://theses.hal.science/tel-03648408

Submitted on 21 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning algorithms for behavior prediction in
cloud computing architectures

Matías Ezequiel Callara

To cite this version:
Matías Ezequiel Callara. Machine learning algorithms for behavior prediction in cloud computing
architectures. Databases [cs.DB]. Université de Haute Alsace - Mulhouse, 2019. English. �NNT :
2019MULH0621�. �tel-03648408�

https://theses.hal.science/tel-03648408
https://hal.archives-ouvertes.fr

Université de Haute-Alsace

École Doctorale Mathématiques, Sciences de l’Information et de l’Ingénieur
(MSII, ED 269)

Institut de Recherche en Informatique, Mathématiques, Automatique et Signal
(IRIMAS, EA 7499)

Machine Learning Algorithms for Behavior
Prediction in Cloud Computing Architectures
Algorithmes d’apprentissage automatique pour la prédiction de comportement dans

les architectures de Cloud Computing

Thèse

préparée par

Matías Ezequiel CALLARA

présentée pour obtenir le grade de
Docteur de l’Université de Haute-Alsace

Discipline : Génie Informatique

soutenue publiquement le 23 Septembre 2019 devant le jury composé de :
Dr. HDR, Armelle Brun, Université de Lorraine (rapporteure)
Pr. Abderrafiaa Koukam, Université de Technologie de Belfort-Montbéliard (rapporteur)
Pr. Michel Hassenforder, Université de Haute-Alsace
Dr. Christophe Corne, Systancia (invité)
Pr. Patrice Wira, Université de Haute-Alsace (directeur de thèse)

Dedicada a mi Alala.

Résumé

Les solutions de cloud computing fournissent des applications, des capac-
ités de stockage et des ressources de calcul via un réseau. Les multiples
avantages de ces technologies les ont rendues omniprésentes. Aujourd’hui,
la virtualisation permet aux utilisateurs d’accéder à des applications gour-
mandes en ressources à partir d’une grande variété de périphériques tels que
smartphones, tablettes, ordinateurs portables, ordinateurs de bureau, car ils
n’ont pas besoin d’être installés ou exécutés localement. Cependant, des
temps de chargement de plusieurs secondes de ces services peuvent compro-
mettre l’expérience des utilisateurs. L’idée est d’analyser le comportement
des utilisateurs pour prévoir l’utilisation des applications et réduire consid-
érablement leur temps de lancement en les chargeant à l’avance.

Un logiciel de virtualisation collecte et centralise les actions des utilisa-
teurs dans une base de données. En particulier, les données contiennent
un identifiant unique pour chaque application et des horodatages indiquant
quand elles ont été utilisées. Dans ce travail, nous avons décrit comment
utiliser les horodatages et les variables qualitatives pour le profilage des util-
isateurs en générant des plongements basés sur différentes caractéristiques
comportementales ; par exemple, la fréquence relative d’utilisation des appli-
cations. Nous avons ensuite appliqué et comparé les résultats de différentes
techniques de réduction de dimensionnalité (par exemple, ACP, Isomaps,
LLE et t-SNE) pour créer des visualisations éloquentes des plongements.
Nous avons montré comment identifier des utilisateurs similaires et créer des
groupes en mesurant la distance qui les sépare et en appliquant différentes
techniques de classification (telles que les k plus proches voisins et le parti-
tionnement spectral). Toutes ces techniques nous ont permis de créer des in-
terfaces graphiques qui améliorent et simplifient le travail de l’administrateur
système.

Nous avons également proposé un pipeline de modélisation et de pré-
diction du comportement des utilisateurs qui réduit le temps de lancement
des applications. Le pipeline proposé est composé d’une chaîne de cinq
modules. Le premier module identifie les fréquences principales dans le com-
portement de l’utilisateur en analysant les pics du périodogramme et sélec-
tionne la fréquence la plus pertinente à prendre en compte dans le modèle de
l’utilisateur. Cette dernière est utilisée dans le second module pour constru-

i

ire un modèle probabiliste en estimant la fonction de densité de probabilité
de son activité. Dans ce contexte, nous avons notamment décrit les avan-
tages des approches bayésienne et fréquentiste, et en particulier des méthodes
paramétriques et non paramétriques, telles que l’estimation de la densité par
noyau. Le troisième module contrôle la qualité du modèle de l’utilisateur au
fil du temps, à mesure que de nouvelles données arrivent. Le quatrième mod-
ule génère une prédiction sous la forme d’intervalles de temps dans lesquels
nous nous attendons à ce que l’utilisateur lance une application. Enfin, le
cinquième module optimise le temps d’application de lancement pour un
groupe d’utilisateurs, définit au préalable par l’administrateur système.

Notre approche présente plusieurs avantages. Il convient parfaitement
aux clients disposant de peu de données (par exemple, de nouveaux clients),
car il permet d’introduire une connaissance du domaine ou des conditions
définies. Pour avoir de bonnes performances, il n’est pas nécessaire que les
données soient partagées par les clients (en conformité aux normes en matière
de politiques de confidentialité des données). Il permet aussi de choisir entre
l’approche d’estimation par lots ou en ligne et le temps de calcul augmente
de façon linéaire avec le nombre d’utilisateurs. L’architecture modulaire de
notre solution la rend robuste, facile à débuguer et permet une amélioration
progressive du système. La solution reste générale et peut également être
appliquée à la prédiction d’autres types d’événements (l’heure et la date des
événements étant la seule condition nécessaire au bon fonctionnement de
notre pipeline).

Après avoir testé les performances du pipeline avec des données réelles,
nous avons pu, avec une initialisation par défaut des paramètres, diviser par
deux le temps de lancement moyen d’un groupe de 13 s à 6, 5 s avec au max-
imum 20% de consommation de ressources additionnelles, et si nécessaire,
même atteindre 2, 6 s avec au maximum 40% de consommation de ressources
additionnelles. Le pipeline est également accompagné d’une interface utilisa-
teur graphique qui permet à l’administrateur système de régler l’ajustement
entre la réduction souhaitée du temps de chargement et le coût de calcul
supplémentaire généré par les applications préchargées.

Enfin, la solution proposée a été mise en œuvre et entièrement intégrée
dans un logiciel de virtualisation d’applications déployé auprès de clients du
monde entier et testée à plusieurs reprises dans des conditions réelles pour
valider les performances.

Mots clés
1. Prédiction de comportement 2. Modélisation utilisateur 3. Analyse du

comportement des utilisateurs 4. Cloud computing 5. Estimation par noyau
6. Technique d’estimation adaptative 7. Extraction de motifs temporels 8.
Prédiction des lancements d’applications 9. Performance de prédiction 10.
Ingénierie des données

ii

Abstract

Cloud computing solutions provide applications, storage capabilities, and
computational resources through a network. The multiple advantages of
these technologies have made them ubiquitous. Today, virtualization lets
users access resource-intensive applications from a wide variety of devices
like smartphones, tablets, laptops, desktop computers since they do not need
to be installed or run locally. However, loading times of several seconds of
these services can jeopardize the users’ experience. The idea is to analyze
the user behavior to predict the utilization of applications and significantly
reduce its launching time by loading them in advance.

A virtualization software collects and centralizes the users’ actions in a
database. In particular, the data contains a unique identifier for each ap-
plication and timestamps that indicate its launching time. In this work,
we described how to use the timestamps and categorical variables to profile
the users by generating embeddings based on different behavioral charac-
teristics; for instance, the relative frequency of the applications’ utilization.
We applied and compared the results of different dimensionality reduction
techniques (e.g., PCA, Isomaps, LLE, and t-SNE) to create compelling visu-
alizations of the embeddings. We showed how to identify similar users and
create groups by measuring the distance between them and applying different
clustering techniques (such as k-nearest neighbors and spectral clustering).
All these techniques allowed us to create better graphical interfaces that
improved and simplified the work of the systems administrator.

We also proposed a modeling and user behavior prediction pipeline that
reduces the launching time of applications. The proposed pipeline is com-
posed of a chain of five modules. The first module identifies the size of the
periodic patterns in the user behavior by analyzing the peaks in the peri-
odogram and selects the most relevant frequency to be considered in the user
model. The second module constructs a probabilistic user model by estimat-
ing the probability density function of the user activity. We described the
advantages of applying Bayesian and frequentist approaches, including both
parametric and non-parametric methods, such as Kernel Density Estimation
(KDE). The third module controls the quality of the user model over time
as new data arrives. The fourth module generates a prediction in the form
of time intervals in which we expect the user to launch an application. Fi-

iii

nally, the fifth module optimizes the launching application time for a group
of users that the administrator of the system can define.

Our approach shows several advantages. It is well suited for customers
with scarce data (e.g., new customers) since it allows to introduce domain
knowledge or set conditions. It does not require the data to leave the cus-
tomers to perform well (complying with high standards on data privacy poli-
cies). It allows to change the estimation approach to switch from batch to
on-line training and scale linearly as the number of user increases. The mod-
ular architecture of our solution makes it robust, easy to debug, and allows
for progressive improvement of the system. The solution remains general,
and it can also be applied to the prediction of other types of events (with
the time and date of the events being the only requirement for our pipeline
to work).

After testing the performance of the pipeline with real-world data, we
found that under a default initialization of the parameters, we can half the
average launching time of a group from 13s to 6.5s with at most 20The
pipeline was also accompanied by a graphical user interface that allowed
the system administrator to adjust the trade-off between the desired loading
time reduction and the extra computational cost generated by the pre-loaded
applications.

Finally, the proposed solution was implemented and fully integrated into
an application virtualization software, deployed to customers around the
world, and repeatedly tested under real conditions to validate the perfor-
mance.

Keywords
1.Behavior prediction 2.User modeling 3.User Behavior Analytics (UBA)

4.Cloud computing 5.Kernel Density Estimation (KDE) 6.Adaptive estima-
tion technique 7.Temporal patterns extraction 8.Prediction of application
launches 9.Prediction performance 10.Data engineering

iv

Contents

Résumé i

Abstract iii

Introduction 1

1 Cloud computing and virtualization 7
1.1 Cloud computing . 7

1.1.1 Cloud deployments models 8
1.1.2 Cloud service models 8

1.2 Virtualization . 9
1.2.1 Desktop and application virtualization 9
1.2.2 Server-Based Computing (SBC) 10
1.2.3 Virtual Desktop Interface (VDI) 11

1.3 Cloud computing and energy management 11
1.4 Advantages and drawbacks of cloud computing and virtual-

ization . 12
1.5 Systancia’s solution: AppliDis 14
1.6 AppliDis’ architecture . 14

1.6.1 Server components . 14
1.6.2 Client component . 16
1.6.3 AppliDis’ load balancing 18

1.7 Login and application launching management 19
1.7.1 Phase 1: Login . 19
1.7.2 Phase 2: Launching an application 19
1.7.3 Phase 3: Utilization of the application 20

1.8 AppliDis Booster . 20
1.8.1 Profile virtualization 22
1.8.2 Pre-loading . 22
1.8.3 Post-loading . 22
1.8.4 AppliDis Booster performance measures and statistics

display . 23
1.9 AppliDis databases . 23

v

Contents

1.10 Summary . 25

2 Approaches for User Modeling (UM) and Behavior Predic-
tion (BP) 27
2.1 Introduction . 27
2.2 Data for UM and BP problems 28
2.3 Relevant approaches to UM and BP 29

2.3.1 Time series analysis and signal processing 29
2.3.2 Expert systems and Bayesian networks 32
2.3.3 Association rule mining 32
2.3.4 Sequential pattern mining 33
2.3.5 Probabilistic models 35
2.3.6 Deep learning models 36
2.3.7 Other models . 38

2.4 Applications of UM in the industry 39
2.4.1 Faster application launching 39
2.4.2 Personal digital assistants 40
2.4.3 Recommendation systems 41
2.4.4 Online social networks and media 42

2.5 Limits of predictability . 44
2.6 Conclusion . 45

3 Exploratory Data Analysis (EDA) and user profiling 47
3.1 Database exploration . 47

3.1.1 Shortlisted tables . 47
3.1.2 Proposed new table UtilisateurLogins 48
3.1.3 Enhancement of the existing table useruseappli . . . 49
3.1.4 Other Booster tables 49
3.1.5 Improving the data quality 50

3.2 EDA of the user activity . 50
3.2.1 Session logins . 52
3.2.2 Application launches 54
3.2.3 Database visualization tool 56

3.3 Feature engineering . 56
3.3.1 Categorical variables 57
3.3.2 Timestamps . 58
3.3.3 Continuous variables 58
3.3.4 Relative features . 59

3.4 Entropy of the behavior . 59
3.4.1 Entropy . 60
3.4.2 Mutual information . 62
3.4.3 Behavior entropy analysis 62

3.5 Learning representations and user profiling 64
3.5.1 Eigenbehaviors . 64

vi

Contents

3.5.2 User profiling . 66
3.5.3 Clustering . 67

3.6 Discussion . 71
3.7 Conclusion . 71

4 User modeling and behavior prediction in cloud computing
architectures 73
4.1 Introduction . 73
4.2 User modeling and statistical decision theory 74

4.2.1 Statistical experiment 74
4.2.2 Objective . 75
4.2.3 Decision rule (estimator) 75
4.2.4 Loss function . 75
4.2.5 Risk function . 75
4.2.6 Evaluating the estimator 75

4.3 Behavior prediction . 77
4.3.1 Prediction: Linking probabilities with intervals 78
4.3.2 Prediction: Use modes 81
4.3.3 Applying the proposed pipeline: Controlling the aver-

age application start-up time 81
4.3.4 The behavior periodicity 84
4.3.5 Analysis of periodicity (defining T) 85

4.4 Modeling the application launches 87
4.4.1 Modeling with a discrete distribution: Categorical dis-

tribution . 88
4.4.2 Modeling applications with a continuous distribution:

Kernel Density Estimation (KDE) 91
4.4.3 Model selection - defining h 93
4.4.4 Incorporating a PID controller to improve results . . . 94

4.5 Results . 95
4.5.1 User model evaluation 95
4.5.2 Summarizing the user model 99

4.6 Implementation in production 100
4.6.1 C++ implementation 101
4.6.2 Controlling the algorithm from AppliDis: Booster GUI 101
4.6.3 C++ simulator implementation 103

4.7 Future work . 106

Conclusion 107

List of acronyms 111

Bibliography 126

vii

Contents

viii

Introduction

Human behavior is predictable. Although at first, this assertion could sound
somewhat striking, once we think about what implies it becomes almost
trivial. As human beings, we are subject to constraints, and we practice
certain activities with some regularity. The patterns or structures that are
present to some degree in our behavior make us (in some measure) pre-
dictable. However, the natural next question is: How can we take advantage
of this structure? Along this thesis, we will work not only on trying to an-
swer this question but on how we can do it by learning from data. This last
activity is at the center of different fields like statistics, data mining, sta-
tistical learning, pattern recognition, and Machine Learning (ML). We will
use the term data science to refer to this particular interdisciplinary activity
that intersects and gather all of them.

While a data science project can focus purely on research, our objective
is to develop a data-driven software product. However, different companies
have also faced the challenge of combining pure research and software devel-
opment. To facilitate this endeavor, in 1996, a group of companies created
the Cross-Industry Standard Process for Data Mining (CRISP-DM) [36].
This standard can be seen as a process model of a data science product life
cycle, or as a methodology that describes the most common phases in a data
science project.

Fig. 1 shows the phases of the CRISP-DM methodology and their rela-
tionship. In the diagram, the arrows that connect the phases represent the
most common sequential order between them. The big external arrows show
that this process is iterative. E.g., after the release of the first version of the
analytic product, the main insights and takeaways can be used to improve
the product. Translating these insights into a new improved version of the
product can generate a new project that will itself follow the CRISP-DM
process. To gain a better understanding of the whole model, we describe one
by one its main phases.

Business understanding

The first phase focuses on understanding the problem from the business
point of view and translating it into an ML problem. To do so, we need to

1

Introduction

Data
Understanding

Business
Understanding

Data
Preparation

Modeling

Evaluation

Deployment Data

Figure 1 – CRISP-DM methodology (based on figure in [36])

state the objective in business terms and identify the success criteria. This
will require understanding the business terminology, the associated risks of
the decisions that solutions will support or generate, assumptions, trade-offs,
existing solutions, and possible benchmarks.

Data understanding

Once the problem is framed, we need to gather and inspect the data. Since
the data documentation can be poor or non-existent, getting in contact with
data engineers and business experts can help to generate a good description
of the data. Once we have a well-documented dataset, we can perform
Exploratory Data Analysis (EDA) [129] by sampling data to construct tables
and different kinds of visualizations. This exploration will allow to generate
insights and hypothesis while facilitating quality assessment of the data (e.g.,
detecting missing values and outliers).

Data preparation

Data preparation encompasses all the tasks that need to be performed to
convert the raw data into an analytical dataset that will be feed to the model.
Some of these tasks are data cleansing, which consists in removing outliers
and filling missing values, feature selection, and feature engineering, which
includes decomposing features (e.g., in categorical, timestamps, numeric),
transforming or aggregating features.

2

Introduction

Modeling

During the modeling phase, candidate algorithms are selected, trained, and
fine-tuned by adjusting their hyperparameters. Since, at this point, we may
need to modify features from the analytical dataset, this phase can lead back
to the data preparation phase.

Evaluation

The validated trained models need still to be evaluated from the business
point of view. This is to verify that they achieve the business objective that
has been set during the business understanding phase.

Deployment

The selected models that pass the evaluation phase will then be delivered to
the final customer, who will use them regularly (applying the model on new
data). This phase will usually require creating user interfaces that make the
models usable by the final customer. It can also require code refactoring to
reduce the complexity of the code, making maintenance easier, or improving
the execution performance. Finally, changes in the phenomena that produce
the data (or even in the software or databases that interact with it) can make
the performance of the model decrease over time. This is why it is crucial
to create monitoring functions and maintain the models (for instance, by
retraining the models with a certain periodicity [135]).

Since the different version of the data-driven application that result from
the work of this thesis has been developed following this methodology, the
chapters of this manuscript follows the order of the CRISP-DM process
model. Chapter 1 summarizes most of the business understanding, chap-
ter 2 provides the theoretical context of the techniques and models applied,
chapter 3 details the data understanding, data preparation and the first set of
models, chapter 4 develops the ideas and results of the modeling, evaluation
and deployment phases.

Objective of this work

This research work is the product of a public-private partnership research
between the Systancia company and the IRIMAS (Institut de Recherche en
Informatique, Mathématiques, Automatique et Signal) laboratory from the
Université de Haute-Alsace in the context of a CIFRE thesis. In French,
CIFRE stands for Conventions Industrielles de Formation par la Recherche
(Industrial Agreements for Training through Research). The CIFRE subsi-
dizes French companies that employ doctoral students and directly involve

3

Introduction

them in research partnerships with state laboratories.
This thesis proposes methods to automatically learn behavior models of

the users of a cloud computing service and predict when they will initiate
sessions or launch applications. This allows to reduce the loading times
while keeping the energy cost associated with these activities as reduced as
possible. This improves the user experience when accessing remote applica-
tions and services. The results of this research have been implemented in
Systancia’s main virtualization product AppliDis Fusion that is deployed to
customers with thousands of users around the world.

Publications and authors’ contribution

The research activities in this thesis were presented in the following publi-
cations:

Posters presented in scientific meetings

• M. Callara, "Identifying the periodicity of mixed periodic patterns for
user behavior prediction" in Machine Learning Summer School, Are-
quipa, Peru, 2-13 August 2016.

• M. Callara and P. Wira, "Machine learning algorithms for behavior pre-
diction and resources optimization in cloud computing architectures,"
in Journée Doctorale Sciences Exactes à l’Université de Haute-Alsace,
Mulhouse, France, 2 June 2017.

Conference papers published in national conferences with re-
view and proceedings

• M. Callara and P. Wira, "Machine learning pour l’analyse de com-
portements et la classification d’utilisateurs," in Congrès National de
la Recherche des IUT (CNRIUT’2017), Auxerre, France, 4-5 May 2017.
[26]

Conference papers published in international conferences with
review and proceedings

• M. Callara and P. Wira, "User behavior analysis with machine learning
techniques in cloud computing architectures," in International Confer-
ence on Applied Smart Systems (ICASS 2018), Medea, Algeria, 24-25
November 2018. [27]

• M. Callara and P. Wira, "A probabilistic learning approach for predict-
ing application launches in cloud computing architectures," In IEEE/SICE
International Symposium on System Integration (SII 2019), Paris, France,
14-16 January 2019. [29]

4

Introduction

• M. Callara and P. Wira, "A data-driven approach for user behavior
prediction to boost productivity and sustainability of data centers and
cloud-supported working environments," In European International
Conference on Transforming Urban Systems (EICTUS 2019), Stras-
bourg, France, 26-28 June 2019. [28]

Article submitted to international journals

• M. Callara and P. Wira, "Machine learning paradigms for user be-
havior modeling: An overview." Journal of Applied Computer Science
Methods, submitted, 2019. [30]

Organization of this thesis

This thesis is organized as follows.
Chapter 1 describes the state of the art of cloud computing and virtu-

alization technologies. Indeed, the main cloud computing models are listed,
and the principle of desktop virtualization and application virtualization are
detailed with a focus on server-based computing and virtual desktop inter-
faces. Their advantages and drawbacks are investigated, and the link be-
tween cloud computing and energy management is also discussed. The main
components of Systancia’s AppliDis solution are fully detailed: The global
architecture with the server and client software components’ functionalities,
the integrated load balancing system, the login and application launching
management process, the Booster module and the involved databases.

Chapter 2 reviews the main approaches to User Modeling (UM) and
Behavior Prediction (BP) and, in particular, the methods suited for the
type of data related to the problem described in this work. In this chapter,
we can also find a discussion about the use and implementation of these
methods in the industry and their limitations. Limits of the user behavior’s
predictability are briefly tackled.

Chapter 3 describes the necessary preliminary work that enabled the de-
velopment of the thesis and presents our proposed approach to user profiling.
This means that the enhancements of existing tables that are necessary to
allow the implementation of classification and prediction algorithms are high-
lighted. Features and entropy of the behavior are introduced. Furthermore,
learning representations and user profiling strategies are fully developed. Re-
sults in user profiling and behavior clustering are presented and discussed.

Chapter 4 presents our proposed approach to user behavior prediction
and describes its complete implementation in a specific cloud computing ar-
chitecture. After presenting the user modeling and statistical decision theory
that are used, a user behavior prediction strategy is proposed. The behav-
ior periodicity is extracted by a self-adaptive algorithm. Then, it is used

5

Introduction

and applied for modeling application launches through a distribution de-
fined by a probability density function. Modeling is achieved by a discrete,
i.e., categorical, distribution, or by a continuous distribution that relies on
the kernel density estimator. Model selection techniques are proposed; they
rely on the rule-of-thumb method and the cross-validation method. A PID
controller has also been inserted in the prediction process to improve the re-
sults by compensating for the prediction biases of the probability estimators.
Implementation in production and results obtained in a cloud computing ar-
chitecture under real conditions are presented, and the performances are
discussed. The launching of applications by users and even group of users
has been automatized. Additionally, tools for the cloud computing architec-
ture administrator have been proposed for monitoring and tuning purposes.

Finally, the Conclusion provides an overall summary of the thesis, and the
main contributions are discussed. Some recommendations and perspectives
are also provided.

An Appendix section recapitulates the definitions of the acronyms that
have been used along this document.

6

Chapter 1

Cloud computing and
virtualization

In the last 20 years, general and professional users have embraced a new
paradigm related to the existence, operation, and management of the re-
sources that make up the Information Technology (IT) infrastructures they
use every day. The advances in communication technologies have made cloud
computing ubiquitous, and today it is used in a tremendous variety of con-
texts, for instance, to store email securely or to run complex applications,
process images, play games, or watch movies.

1.1 Cloud computing

According to [95], cloud computing [73, 140, 67] is a model for enabling
"on-demand network access to a shared pool of configurable computing re-
sources". The definition is based on five characteristics:

• On-demand self-service. The user can provision herself the resources
as she requires them.

• Broad network access. The resources are accessed over the network
through a wide variety of clients.

• Resource pooling. Resources are assigned dynamically according to
different criteria established by the service provider.

• Rapid elasticity. From the user point of view, the resources seem to be
unlimited, providing the freedom of rapidly augmenting or decreasing
the amount of consumed resources at any moment in time.

• Measured service. The consumption of the resources can be tracked
at different levels of granularity, providing expenditure control to the
user.

7

1.1 Cloud computing

Cloud Type provisioned for owned, managed
and operated by installed

Private cloud single organization organization, third party
or combination on or off premises

Community cloud community subset of the community,
third party or combination on or off premises

Public cloud general public cloud provider cloud provider premises

Table 1.1 – Types of cloud deployments.

1.1.1 Cloud deployments models

According to the deployment model we can classify the types of clouds as
public, community (a group of organizations with shared concerns) and pri-
vate. A detailed comparison is shown in Table 1.1 [95].

By sharing data and applications between the different described types
of clouds, we can create a fourth type of cloud known as a hybrid cloud.

1.1.2 Cloud service models

Following the Service-Oriented Architecture style of software design, cloud
service providers can offer independent components of functionalities that
address specific concerns. These components are known as services. This
paradigm is based on the idea of seeing the services as a way of approaching
a particular organizational need and getting a desired outcome. The service
should be self-contained and let its users consume it without any knowledge
of the internal mechanisms that make it work. The three standard models
are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS) [95, 73, 140].

Software as a service (SaaS)

One of the most common ways of using software involves paying a fixed price
for a perpetual license that provides use and redistribution rights that then
allows the user to install the software in her infrastructure to finally work
with it. In the SaaS service model [106], the perpetual license is replaced
by another type of license based on a different pricing model (e.g., a regular
fee or the freemium model) and the cloud provider delivers the required
infrastructure and installation. The user only has control over the software
settings.

Platform as a service (PaaS)

In this service model, the cloud provider delivers a cloud platform (this is
a set of defined networks, servers, storage, and computing resources). The
user can then use it to deploy her software [32].

8

1. Cloud computing and virtualization

Infrastructure as a service (IaaS)

The cloud provider provisions processing, storage, and networks. In this
case, the user can set the operating systems, storage, deploy applications
and select networking components, and specialized hardware.

Major providers of public cloud services

Most of the cloud users today interact directly or indirectly with public cloud
services. Some of the major providers today are Amazon, Google, Microsoft,
and IBM. Amazon Web Services (AWS) started offering public cloud ser-
vices on March 19, 2006, with Simple Storage Service (S3). During that
year, they also added products like Amazon Simple Queue Service (SQS)
and Amazon Elastic Compute Cloud (EC2). Google Cloud Platform started
on April 7, 2008, with the Google App Engine, a PaaS product that lets the
user run her applications on the Google platform. On February 1, 2010, Mi-
crosoft joined the cloud business launching Windows Azure (lately renamed
Microsoft Azure on March 25, 2014). Finally, on June 4, 2013, IBM acquires
SoftLayer creating IBM Cloud, helping them to gain a better position in the
market. All of them have progressively incremented the number of services,
and today, we can find equivalent products between them in diverse cate-
gories as IaaS, PaaS, ML, virtual reality, developer tools, and Internet of
Things (IoT).

1.2 Virtualization

One of the key concepts of the cloud computing paradigm is virtualization
[80]. This term is used with two different meanings, one related to the idea
of abstraction and the other related to the idea of encapsulation. In hard-
ware virtualization, a resource is decoupled (or abstracted) from the physical
hardware by generating a logical view. E.g., one physical server can be used
to generate several "virtual" servers, each one with their independent con-
figuration (which is known as server virtualization). The same can be done
with a hard drive (storage virtualization) or other hardware. On the other
hand, there is a kind of virtualization related to the concept of encapsula-
tion, as in the case where we separate an application from the underlying
operating system (application virtualization) or when we detach a desktop
environment from the physical client (desktop virtualization).

1.2.1 Desktop and application virtualization

Both desktop and application virtualization relies on the client-server model.
In which we can identify two components, one that provides a resource (the
server) and the other that requests it (the client). The communication be-
tween them will be established on a network.

9

1.2 Virtualization

Figure 1.1 – Computer network diagrams showing instances of the server-
based computing model.

There are two main ways of providing desktop (and in term application)
virtualization to the clients, which are the Server-Based Computing (SBC)
and the Virtual Desktop Interface (VDI).

1.2.2 Server-Based Computing (SBC)

In the SBC model [101], the server can host multiple client sessions in the
operating system. When a client requests a session, the server can initiate
it and present a desktop interface to the client, as if it were running on its
side.

One example of a software that uses the SBC model is Microsoft’s Re-
mote Desktop Services (RDS), formerly Terminal Services, which allows the
user to initiate/take control of a session on a remote computer (the server)
or a virtual machine (in a server). The request of the session is sent via
the client known as Remote Desktop Connection, which uses the Remote
Desktop Protocol to establish the communication with the server. Once the
communication is established, the server provides to the client the desktop
interface, and the client transmits to the server the encrypted data of key-
board and mouse (as well as other resources on the client side like USB
devices).

In this model, the applications that the user wants to run are imple-
mented, controlled, supported, and functioned in the application server. The
user interacts with a virtual representation in the terminal (client worksta-
tion). This representation is generated with data that is transmitted on the
network. Since the application runs on the application server, it only needs
to be compatible with the operating system of the server. In Figure 1.1, we
see that different kinds of clients can be used to connect to a server.

10

1. Cloud computing and virtualization

1.2.3 Virtual Desktop Interface (VDI)

Instead of sessions, the Virtual Desktop Interface (VDI) [101] approach con-
sists of offering the client a whole independent operating system instance
for each user. This is the reason that makes it an excellent solution when
we need to test an application in a specific environment (specific operative
system, CPU, RAM) because we do not need to have a physical computer
with this setting. On the other hand, it will usually consume more resources
and licenses.

To summarize, while both SBC and VDI rely on the server-client model,
SBC provides one session on the operating system of the server, while VDI
can provide individual instances of different operating systems.

1.3 Cloud computing and energy management

Any cloud service (private, public, or hybrid) will require electrical energy
to function. The energy efficiency of this system will be a quantity that
relates the useful power (consumed in memory and computations) and the
total power input, where the difference between these two values will be due
to the energy loss in the form of heat. A significant part of this loss is usually
produced at the power supply that converts AC voltage to low DC voltage.
As a consequence, extra energy is consumed to keep its temperature under
safety thresholds and to ensure the correct functioning of these systems.
Since cloud computing servers usually share the same premises, we can apply
energy management policies that would make no sense in the context of a
single personal computer. Machine learning techniques have shown to be
effective in improving these policies [50].

As explained in [85], energy management techniques mainly focus on two
goals limiting the maximum power consumption to maintain the reliability
and improving energy efficiency. Virtualization can produce benefits in both
aspects because it allows quick and easy redistribution and accumulation of
workloads improving the utilization rates of the servers [109].

Some energy management policies rely on an accurate model of the en-
ergy consumption of the servers. In [142], the authors proposed a model in
which parameters can be automatically recovered from historical data of the
utilization of the servers. Other policies consider static characteristics of the
servers like CPU processing capabilities [104]. The virtualization component
of the power consumption of the servers can also be integrated into the model
of the server power consumption, as proposed by [143].

11

1.4 Advantages and drawbacks of cloud computing and
virtualization

1.4 Advantages and drawbacks of cloud computing
and virtualization

To let the reader get a better understanding of the applicability of these
technologies, we list different aspects to consider when using cloud architec-
tures.

Capabilities

Since the application servers can have a great amount of resources, we can
assign to a client machine a big amount of computational and memory (disk
and RAM) resources. This will let us run applications that would have been
impossible to run in a standard desktop machine. The same principle applies
to special hardware (e.g., GPUs, which is a requirement of deep learning
models).

Economy of resources

When each employee has an individual machine with a significant amount
of resources available, the utilization factor is usually low. An application
server allows us to improve the utilization factor by allocating resources as
they are needed (on-demand). Other source of economy is related to the use
of big files or databases that can be shared among different users avoiding
replications and saving disk space.

Collaboration and co-working

Some specific applications for the cloud, allow their users to work on the
same file at the same time by finding ways to resolve in an online fashion the
collisions that are produced by the modifications introduced by the users on
the same file.

Compatibility

Desktop Virtualization allows the user to run applications on different oper-
ating systems avoiding compatibility issues. This is also useful in the context
of software testing, where we require to set up a system with a particular
software configuration to test the compatibility of a version or reproduce a
bug.

Virtualization

Not all software or hardware can be virtualized. This is the case of applica-
tions that cannot be successfully isolated from their environment.

12

1. Cloud computing and virtualization

Maintainability

The system maintenance is much easier when all the resources are central-
ized. It requires less downtime and reduce the impact on the productivity
of the users.

Licensing

The same principle of economy of hardware applies to software. Since usually
the amount of people working at the same time with the same application
is much lower than the total amount of people that use the application, we
can satisfy the demand of the software with a smaller amount of licenses.

Data Security

All the data can be duplicated and distributed in servers in different phys-
ical locations to reduce the probability of permanently losing data. The
frequency, at which we will save the data, can be set either at every modifi-
cation that the user produces, generating what we know as Continuous Data
Protection (CDP) or at fixed time intervals generating near-continuous back-
ups.

On the other hand, if the data of several users is gathered in one physical
unit, a failure will affect all of them.

Stronger measures on data security could also be put in place to avoid
security attacks. This same strength could easily become a weakness since
if once a person gains unauthorized access to the server, all the data can be
compromised.

Data Privacy

As we will see along this work, much can be said about an organization if we
exploit the traces that result from the interaction of it with a cloud system.
Data privacy is a subject that is particularly relevant in the context of cloud
computing since independently of the type of deployment (see section 1.1.1),
organizations will be in general exposing data to the cloud service provider
either directly or indirectly.

Learning curve

The use of tools on the cloud could require learning a big amount of mate-
rial. The learning curve could become steep. AppliDis try to solve this by
generating intuitive interfaces that simplify the task of working with these
systems.

13

1.5 Systancia’s solution: AppliDis

Complexity

The complexity of the system requires expert knowledge that could be dif-
ficult for enterprises to found and motivates companies to offer different
components of the cloud as a service.

Latency

The high latency associated with physical distance can prevent the use of
some applications.

1.5 Systancia’s solution: AppliDis

Systancia is a French software company whose main product, AppliDis Fu-
sion, provides a private cloud computing solution. The choice of the word
"fusion" in the name of AppliDis is since the product offers a mix of SBC
and VDI functionalities.

When an organization buys AppliDis Fusion, it will be installed by the
administrator of the infrastructure, who is usually a member of the orga-
nization. Along the installation process, the administrator will have the
responsibility of making different decisions that will impact the experience
of the users. Some of these decisions will be related to the architecture of
the system.

At any moment, the administrator can use the administration console to:

• make new applications available to the users by publishing them in
AppliDis,

• control the access right of the users or group of users,

• change configuration options and

• find useful statistics that help to manage the system.

1.6 AppliDis’ architecture

Since AppliDis use a client-server model as described in the section 1.2.1 to
provide the SBC and VDI services. We will describe first the different main
types of servers we can find in a general installation of the product and,
finally, the four types of clients.

1.6.1 Server components

Management server

The management server is one of the fundamental components of AppliDis
because it acts as a coordinator of all the other components of the system.

14

1. Cloud computing and virtualization

Its main functions are to:

• grant access to the administrator portal and the user portal,

• centralize the information collected by the application server,

• manage the Balancing Load and the statistics of the application servers,

• manage the published applications, users and access rights, and

• manage the replications of the SQL ODBC bases.

An AppliDis installation should always have a management server.

Application server

The application server is the one in charge of hosting the different users’
sessions. Its main functions are:

• Manage the published applications.

• Inform the change of state to the management server when the appli-
cation server is started by sending an XML Query.

• Inform the state of the application server (load, number of open ses-
sions) to the Management Server.

While the basic installation of AppliDis requires only one Application
server, it is possible to install several and create a silo. This is a set of
application servers that share a common group of deployed applications.
The main advantage is to avoid overloading a server by distributing the
load. Silos also increment the reliability of the system because it increments
the probability of finding a server where the application can be run, even if
a server fails or need to be maintained.

Gateway server

The function of the Gateway Server is to enable authorized users that con-
nect from an external network to communicate (through RDP) with the
Application Server(s). There are two options: either the AppliDis client can
indicate to the Gateway Server the reference of the Administration Server
or the Gateway can query the Management Server to which Administration
Server to connect.

Finally, it is worth noticing that one server can perform all these different
roles. This is especially the case in small organizations that have a small basic
infrastructure.

15

1.6 AppliDis’ architecture

Figure 1.2 – Example of the Web Portal AppliDis client. On the center of
the screen, icons of the available applications.

1.6.2 Client component

The user of AppliDis can choose between four different ways of starting an
AppliDis session.

Web portal AppliDis client

The easiest way of accessing AppliDis is by using a web browser and installing
a plugin (called "Client AppliDis Internet") that allows the user to access the
Web Portal, where a list of her available applications (published applications)
will appear, as shown in Figure 1.2. The applications will open in a seamless
mode.

Desktop AppliDis client

Another way of using AppliDis consists in installing a Desktop client on the
computer. This will usually run automatically and display the icons of the
available applications on the desktop, as shown in Figure 1.3, and the user
can open them as if they were installed on the computer. At least until
version Fusion 4, logged-in users are not visible for the administrator in the
Admin Console.

In Figure 1.3, we see a screen capture of the display of a logged-in App-
liDis user. Even though it resembles a regular Windows desktop, the icons
on the left side of the screen are not common Windows application icons but
AppliDis Desktop client icons. They indicate which applications are avail-
able for that user on the application server. Finally, the green light in the
taskbar on the right bottom corner indicates that the user is logged in, and
the client has successfully connected to the server.

16

1. Cloud computing and virtualization

Figure 1.3 – Example of the AppliDis Desktop Client. On the left part of
the screen, the icons of the available applications. In the task bar, the icon
of the AppliDis Desktop showing a green light.

17

1.6 AppliDis’ architecture

Figure 1.4 – Components of the AppliDis Server.

In Figure 1.4, we can see an instance of a functional AppliDis architecture
that includes most of the elements we described in this section.

AppliDis command-line launcher

Finally, the user can launch applications with a client accessible via a command-
line interface by providing the name of the application that has been pub-
lished in AppliDis as well as the login data.

1.6.3 AppliDis’ load balancing

After the user informs AppliDis the intention of launching an application,
the load balancer will be in charge of selecting the best available application
server to run it.

The priority ranking to select the best available application will be based
on:

1. Static characteristics of the servers: These are the characteristics re-
lated to the hardware setup that do not change over time, e.g., the
installed CPU and the total RAM.

2. Dynamic characteristics of the servers: There are the characteristics
that do change over time, e.g., the utilization factor of the CPU and

18

1. Cloud computing and virtualization

RAM. These are updated every 30 seconds (overwriting the old records).

3. Open sessions on the servers: The amount of sessions and, in particular,
in which servers the user has currently opened sessions.

4. Priority ranking of the servers according to the note generated by the
load balancer.

1.7 Login and application launching management

Between the four client options described in section 1.6.2, the desktop Ap-
pliDis client and the web portal are the most popular ones. In Figure 1.5,
we show the interactions between the main components of the architecture
[139] during the login and launching process of an application using these
clients. We describe in detail the elements of each phase in the following
subsections.

1.7.1 Phase 1: Login

Client start, login request : The login starts when the user chooses a client
to send a login request to the management server. By default, the desktop
client is launch during the Windows startup, and it automatically sends the
login request while the web portal should be reached via the browser and is
the user who needs to enter their credentials (username and password).

Login verification, login validation: Once the management server receives
the request, it starts the user’s login verification process by communicating
with the domain controller that will let validate the login. In a Windows
domain network, the authentication and authorization of users rely on Mi-
crosoft Windows’ Active Directory (AD) service.

Groups verification, groups list : Next, the management server will query
the database and recover the groups that correspond to the user. Generation
of the application menu: With this list, the management server will be able
to build the list of all the available applications for the user.

Display of the application menu: Finally, the list of available applications
will be displayed in the browser or will appear as icons on the desktop, along
with the green light login status indicator, as shown in Figure 1.3.

1.7.2 Phase 2: Launching an application

Clicking over application: The application launching process starts with the
user clicking the icon of the desired application. This will make the client
send an application request to the management server.

License verification: The management server verifies again that the user
has the access rights to the application by verifying the list of contracts and
the available licenses.

19

1.8 AppliDis Booster

Balancing load : The management server sends a request to the balancing
loader to verify the availability of the application servers and rights of the
servers to execute the requested application. If more than one application
server is available, the balancing loader will use the statistics of them to
determine and select the best and send a launching notification to the client.
Once the application server is chosen, it sends a launching notification to the
client.

Request forwarding : The client establish a communication channel with
the selected application server, and it will forward the launching notification
to the application server.

login, authentication: The user will be logged into the application server
using the active directory authentication. Session start, application start:
Then, a session will be initialized on the application server, and the applica-
tion will be launched. Then the server sends the graphical interface to the
client where a component that is running in the background will crop and
show to the user only the parts of the interface that show the application
and discard the rest.

1.7.3 Phase 3: Utilization of the application

Session: The application is now ready to use. Once the client access the
application, the statistics of the launched application will be registered.

Working with more than one application simultaneously If the application
can be opened in the same application server that is currently running a
session for the user. The part of the login and session start of the Figure
1.5 can be avoided, resulting in the process we show in Figure 1.6. It is
possible to set the load balancer to assign priority to the application server
that already has an open session.

The statistics related to the login and application process are updated
after every login and application launch in the database. At regular time
intervals, the statistics are used to compute the load status of the system.
The load balancer uses the load status to assign a note to each application
server generating a priority ranking. Since the ranking is not updated in
real-time, a mechanism avoids the overload of an application server if several
applications are launched in a very short period.

1.8 AppliDis Booster

As we have seen in Section 1.7, the process of launching an application is
complex and can take several seconds to be completed. This is especially the
case for the launching of the first application. If the secondary application is
launched in the same server as the first one, the waiting time of a secondary
application will be shorter because the user do not need to wait for the

20

1. Cloud computing and virtualization

clients
application

servers
management

servers other servers

client start
login request

login verification

login validation

groups verification

groups list

generetion of the
application menu

display of the
application menu

clicking
over application

license verification

sessionsession

session start
application start

authentication

login

balancing load

request forwarding

Phase 1

Login

Phase 2
 Application
launching

Phase 3
Application
utilization

Figure 1.5 – Login and application launching process for the first application
of the session.

clients
application

servers
management

servers other servers

clicking
over application

license verification

sessionsession

application start
(current

open session)

balancing load

request forwarding

Phase 1
user currently
working with one
application

Phase 2
launching of of a
new application

Phase 3
utilization of
the applications

session session

Figure 1.6 – Application launching process for supplementary application in
a session.

21

1.8 AppliDis Booster

RDP channel between the client and the server to be established and for the
generation of the new session in the application server.

When a group of application servers has the same published applications,
we say that it is a homogeneous group (also known as silo). As the quan-
tity of applications servers that compose the silo increase, the probability of
the load balancer choosing another application server for launching a sec-
ondary application on a different server also increases (since the number of
application servers that can be chosen will be greater).

AppliDis Fusion 4 already has three different features that try to improve
the delay in the application launching process. The settings of all of them
can be controlled via the Booster Control Panel shown in Figure 1.7.

1.8.1 Profile virtualization

To run the application on an application server, we first need to have an
initiated Remote Desktop Session on that Application Server. If it has not
been initiated, AppliDis will first start the Remote Desktop Session, and
the associated profile data will be downloaded to that particular applica-
tion server. This is one of the most time-consuming processes in the whole
launching sequence.

The profile virtualization creates "ghost files", empty versions of the
original profile files, on the Application Server, where the Remote Desktop
Session is initiated to avoid the time-consuming activity of downloading the
original files, and the real files are downloaded just when they are needed.

1.8.2 Pre-loading

After the user authentication is completed, the pre-loading component will
automatically start a "ghost" session in one of the application servers. By
doing that, if the user now launches an application that is present on that
application server, there will be a reduction on the launching time since the
session will be already initiated. The "ghost" sessions usually are set to
remain open a short amount of time (a few seconds) to avoid overloading
the application servers.

1.8.3 Post-loading

When an application is closed, a "ghost" application is launched to keep
the session active and ready to continue if the user decides to reopen the
application. The component in charge of performing this task is known as
AppliDisKeepAlive.

All the Booster options can be set either at the level of individual users
or groups. The silo configuration, described in section 1.6.1 can also have
an impact in the boosting of sessions due to the fact that if the users’ appli-
cations are shared by a bigger amount of application servers, there will be a

22

1. Cloud computing and virtualization

Figure 1.7 – Original control panel of Booster.

bigger probability of the load balancer choosing a server where a new session
needs to be initiated.

1.8.4 AppliDis Booster performance measures and statistics
display

The time savings of applying any combination of the AppliDis Booster com-
ponents are displayed in an aggregated way according to a group of users to
the system administrator in the Administration console, as shown in Figure
1.8. To visualize the savings, one user must have at least logged in once
without using AppliDis Booster.

1.9 AppliDis databases

It is necessary to define what is known as the main AppliDis database to
complete a successful installation of AppliDis. This database store all the
necessary data for the correct functioning of AppliDis (e.g., list of applica-
tions, or which user can access them) as well as the data that will feed the
functions that generate the statistics of use (date and time of the launching
of an application).

The main AppliDis database has a master role. Other secondary databases,
known as slaves, can be used to improve data availability via replication. Ap-
pliDis guarantee the replication and the maintenance of the data coherence.
In general, new records are inserted first in the master and then replicated
in the slaves’ databases. AppliDis databases are, in general, SQL databases.

We have presented all the components of the AppliDis architecture. We
now focus on the way these components are related from the database point
of view. AppliDis use contracts to establish relationships between all the

23

1.9 AppliDis databases

Figure 1.8 – Original Statistics Panel of Booster.

main components of the system. A contract is a way of grouping User(s),
App(s), App Server(s), and VM host(s). Let us first consider one of the
simplest cases, which is the one-to-one relationship. E.g., if we want to state
that User 1 has the right to access App 2, we will create a contract on the
database. The same contract could also be used to limit the amount of
servers in which the App 2 for User 1 could run. This is, instead of looking
for all the servers where the app is available, we can limit it to, for example,
Server 3. Now the contract would link User, App, and Server. Similarly, we
can establish a many-to-many relationship by using Groups. This option is
available for Apps and Users.

AppliDis’ update process

There are two main ways of modifying AppliDis. The first one is with the
launch of a new AppliDis version and the second one with the distribution
of a hotfix. A hotfix usually gathers several modifications and bug fixes,
and the word "hot" refers to the fact that customers usually install these
patches in systems that are currently running. During the project, the most
significant update was going from AppliDis Fusion 4 to AppliDis Fusion 5. In
general, the biggest changes will be introduced in a new version, and minor
changes will be introduced in the form of a hotfix.

In the case of a modification to the database (e.g., adding a column to a
table), the process involves first implementing the modification, then it will

24

1. Cloud computing and virtualization

go through the testing stage where possible compatibility issues are verified,
and automatic tests check the presence of bugs. Finally, a package is gen-
erated that will be made available to the customer to update their systems.
Good practices of Customer Relationship Management (CRM) were crucial
to guarantee that decision-makers on the customer side had all the needed in-
formation (advantages and technical details) to install the released hotfixes
and keep their system up-to-date. In particular, it is important to notice
that the availability of complete data was directly related to the amount of
customers installing the hotfix and how early they did it. To automatically
and unequivocally define which are the modifications that are available in
the database and decide which are the components of the analysis that can
be run. We look for a field defining the AppliDis version and id of the last
hotfix. Since we were not able to find it in the database, we proposed to
add it. Then, in the Online AppliDis’ Databases Visualization Tool, each
modification that was proposed was listed along a way of verifying if it was
present in the system. This way, the tool let us the user to quickly determine
which set of analysis could be performed in the database.

During the project, we introduced modifications to the database, and
different components of AppliDis, Booster being the most important.

1.10 Summary

In this chapter, we have introduced the reader to the concepts of cloud com-
puting and virtualization. We showed their benefits and how the industry
and, in particular, Systancia have built their services and products around
them while trying to reduce the impact of the drawbacks. To gain a better
understanding of one of such products, we have chosen to study in-depth
AppliDis, the private cloud computing solution of Systancia. Starting with
a description of the roles of the main components of the architecture (server
and client side), we continued with an analysis of the interaction between
them while logging in and launching an application (the main functionality
of the product). We explained that a critical component of the user’s experi-
ence is the launching time and detailed Systancia’s solution to this problem
(Booster). Since, during the thesis, we will analyze ML algorithm that will
exploit data collected by AppliDis to improve the launching time, we ex-
plained the role of the database while the update process of AppliDis will
let us better understand how the proposed improvements along this work
were integrated to the product. Finally, since the behavior of the users is
linked to the activity they develop, we carry out a customer analysis and
segmentation.

25

1.10 Summary

26

Chapter 2

Approaches for User Modeling
(UM) and Behavior Prediction
(BP)

In this chapter, we review the progress of the User Modeling (UM) and
Behavior Prediction (BP) techniques. It is organized as follows. In Section
2.2, we investigate the different kinds of data that we can encounter and
the related approaches. In Section 2.3, we describe and review the most
relevant set of methods that are: designed for the particular type of data
we are interested in (sequential data) and for modeling the main features of
the process that generate it (user behavior). In Section 2.4, we discuss how
these techniques have been applied in the industry. Finally, in Section 2.5,
we analyze the effect of the entropy in the behavior and how it affects the
performance of any method.

2.1 Introduction

A User Model (UM) is a representation of the user (or group of users) of a
computer system. As explained in [76], the first applications of user models
are traced to the development of natural dialogue systems [105, 39, 8, 110].
These systems replicated the human behavior in a conversation and tried to
improve the users’ experience (e.g., assisting the user, answering questions,
facilitating transactions, or teaching).

UM, as a discipline, focus on gathering data to construct models that
can be exploited to build an adaptive system. These models can be useful
by themselves since, for example, will let us classify our users, or we can use
them as an intermediary step to solve other tasks, like making predictions
about the user. Naturally, to tackle these tasks, researchers have been trying
to apply techniques from other fields which focus is learning from data like
statistics, pattern recognition, data mining, and ML [30].

27

2.2 Data for UM and BP problems

Although, as explained by [145], ML researchers used to be confronted
with issues like:

1. availability of large data sets,

2. need of labeled data,

3. capacity of the algorithm to adapt to a changing behavior ("concept
drift"), and

4. computational complexity.

Nowadays, we have sensors, computing power, and storage capacity to
produce data at very high rates (big velocity) and store enormous bodies
of data (big volume). Crowd-sourcing Internet marketplaces, like Amazon
Mechanical Turk, make easy to contract human workers to label datasets
for a reasonable price, and many behavior-related problems can be framed
as non-supervised problems [72] (avoiding the need of labeled data). Tech-
niques that let us train algorithms in an online fashion, making it possible
to detect and adapt to changes in the behavior. Finally, the development of
specialized software (like the CUDA library [100]) and hardware (like GPUs,
TPUs [71]) for processing ML related computations combined with the avail-
ability through cloud computing services, let us tackle problems that were
not accessible in the past.

2.2 Data for UM and BP problems

The characteristics of the data will have a big impact on the framing of the
problem. For instance, since behavioral data is inherently sequential in most
cases, we will generally found algorithms that will require sequential data
as inputs. As explained in [82], sequential data consist of a set of records
ordered according to some index. A special case is temporal data (time
series) where records are ordered according to time.

Temporal data can be obtained by sampling a signal at a particular rate
(e.g., collecting temperature measurement each hour), or it can be the result
of recording an event as it happens (e.g., recording a timestamp when a user
logs into a computer system). Time series usually require the observations
to have a fixed sampling frequency. It is also important to notice that in
any case, there will always be a limit on the precision associated with the
time measurement of an event (for instance, timestamps generally have a
precision to the millisecond).

We usually associate big data with a dataset that have a huge amount of
samples. However, this is not the only relevant characteristic. Big data
can also be high dimensional. This means that we can potentially find
cases from a dozen to hundreds (e.g., medical diagnosis) or thousands of

28

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

features (e.g., videos from surveillance cameras or functional magnetic res-
onance imaging) for each event. Another important aspect is the velocity
of the data. For instance, a high-speed camera can record an astonishing
amount of high-resolution frames in a second. So, as we see, the device (e.g.,
laptop, smartphone, or smartwatch) and the sensor will have a great impact
on the characteristics of the data being captured.

When events are combined with a duration, we get intervals (e.g., the
use of an application). Although there are algorithms specially crafted for
interval-based data, which allow the extraction of temporal patterns [55], the
relational algebra proposed by [7] let express relationships between intervals,
use them for reasoning and extend algorithms that were initially designed
for events.

In some cases, the learning algorithms can be modified to deal either with
desegregated or aggregated data (e.g., when analyzing the eigenbehavior of
students or groups of students [44]). In some cases, the data is already
aggregated when it is collected (e.g., queries of search engines [107]).

2.3 Relevant approaches to UM and BP

This section review different approaches to user modeling and behavior pre-
diction and other related methods that will be of interest in the development
of this thesis. Although it is sometimes difficult to establish clear temporal
boundaries to the development of certain methods, based on chronological
order of major advancements and picks in popularity, we decide to group
and present them in the following order:

• Time series analysis and signal processing

• Expert systems and Bayesian networks

• Association rule mining

• Sequential pattern mining

• Probabilistic models

• Deep Learning

• Other methods

2.3.1 Time series analysis and signal processing

Time series analysis will try to separate the noise from the patterns (in our
case, this is the user behavior from the randomness).

We can also think of a time series as the realization of a stochastic pro-
cess X, which is a sequence of random variables {Xt}t∈T , indexed by T

29

2.3 Relevant approaches to UM and BP

where T = 1, ..., N . In this case, we cannot assume that samples will be
independent and identically distributed. For instance, for a given user, we
would expect the number of applications open at time t to be related in some
way to the number of applications open at time t + 1. We know that the
covariance is a way of measuring a linear dependence between two random
variables. In a time series, the autocovariance

C(t, s) = cov(Xt, Xs) = E[(Xt − E[Xt])(Xs − E[Xs])], (2.1)

will measure the linear dependence between two points (s,t) of the time
series. We can also use the autocovariance to define the Autocorrelation
Function (ACF)

ρ(t, s) =
C(t, s)√

C(s, s)C(t, t)
. (2.2)

If the distribution of the random variables do not change over time, we
say that the process is stationary. As a consequence, the mean, the variance
over time, and the autocovariance will be constant. In our example, if the
behavior of the user changes over time, this process will be nonstationary.
Since several techniques rely on the assumption of the series being station-
ary, we can apply different transformations to the original series to respect
this assumption. The most common one is based on differences between
subsequent observations. This is to generate a new time series

Yt = Xt −Xt−1. (2.3)

We can apply this technique several times until getting a stationary se-
ries, but usually, one time suffice. The second one is to fit a curve and
model the residuals to remove the trend of the data. Finally, logarithmic
transformations can help with non-homogeneous variance over time.

As explained in [113], we can differentiate two complementary approaches
for time series analysis, the time domain approach, and the frequency domain
approach.

Time domain approach

The time-domain approach models a given value of a time series as a para-
metric function of its past values. To capture the linear dependence between
a value and the p past values, we can use an autoregressive model of order
p, AR(p):

Xt = δ + φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt (2.4)

30

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

where Xt is the time series, εt is white noise, and

δ = (1−
p∑
i=1

φi)µ (2.5)

with µ denoting the process mean.
On the other hand, a Moving Average model of order q also known as

MA(q) which is defined as

Xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q (2.6)

use the past white noise error terms εt, εt−1, . . . , εt−q to model the of the
series at time t.

As proposed by [21], we can use use the ACF to define the appropriate or-
der q of the MA model and the Partial Autocorrelation Function (PACF) to
choose the order of p of the AR model and combine them in what is known as
an ARMA(p,q) model. Other models that fall into the time domain approach
category are the Autoregressive Integrated Moving Average (ARIMA), multi-
variate ARIMA, Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) [18] , and state-space models [107].

Frequency domain approach

The frequency-domain approach focus on finding periodic variations in the
time series. The Fourier transform represents the original time series (signal)
as a linear combination of complex sinusoids.

In particular, the normalized Discrete Fourier Transform (DFT) of a
sequence X(n), n = 0, 1, . . . , N − 1 is a sequence of complex numbers x(k):

x(k) =
1√
N

N−1∑
n=0

X(n)e−2πi
kn
N , k = 0, 1, . . . , N − 1 (2.7)

The weight of each of these complex sinusoids let us separately evaluate
the variance associated with each periodicity.

The periodogram

P (k) = ‖x(k)‖2, k = 0, 1, . . . ,

⌈
N − 1

2

⌉
, (2.8)

let us estimate the energy of each frequency.
The spectral analysis studies the profile of the signal over the frequency

domain. The power spectral density can be estimated trough the Peri-
odogram and trough the Autocorrelation Function. The frequency approach
usually need long time series.

31

2.3 Relevant approaches to UM and BP

In the ML context, these tools could be used to generate features and
compare time series through a metric (distance function). E.g., in [136],[137]
we can find the application of the periodogram and autocorrelation to dis-
cover relevant periods in aggregated behavior of search engines queries, "bursts"
of activity, use the feature for classifications via dendrograms. Defining met-
rics between time series let also apply k-spectral clustering techniques as in
[147] to twitter data, or for spatio-temporal prediction [112].

The methods from time analysis and the ones of signal processing are
intimately related. This means that while in statistics (time series analysis),
we study a stochastic process and its realization, in signal processing, we
study a signal. The methods and the mathematics remains almost the same,
with just some adjustments (e.g., normalization).

2.3.2 Expert systems and Bayesian networks

Although there are different definitions of an expert system [128, 68], we
will focus on the one that says that they are computer systems that solve
a complex problem that requires expert knowledge [47]. These systems will
need to perform inference (reasoning to arrive at conclusions from evidence)
to accomplish this task, usually dealing with uncertainty and indicating the
best decisions. We will also expect these systems to perform at a comparable
level (or even better) than a human expert, either replacing or supporting
him/her in the decision process.

While the first approaches to expert system consisted of hand-coding a
set of fact-based rules and heuristics (knowledge engineering) [46], during
the 1980s, the use of probabilistic graphical models become a popular in the
design of expert systems [66].

Along with the most popular types of graphical models we find, what
is known as, Bayesian Networks (BN) [103], which provides a way of repre-
senting the decomposing a joint probability distribution. Some of the most
iconic applications of BNs were in medical diagnosis with the Pathfinder
project (that applied first Naive Bayes models and later similarity networks
[77] during Pathfinder IV) and troubleshooting [22].

Today, BNs are still in use, and we can find applications in user modeling
[99] and behavior prediction like, for instance, in online shopping prediction
[78].

2.3.3 Association rule mining

In the context of commercial applications, [4] studied the problem of finding
relationships between products in a shopping list, for instance, products
that are usually acquired together. The objective was to find what are
called association rules [89] of the type X ⇒ Y (where X is known as the

32

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

antecedent, and Y is the consequent), meaning that if the customer buy a
set of items X, then the customer buy item Y .

The sales data can be organized in the form of what is known as a trans-
action database. This is a set of transactions made by different customers
where each transaction is the set of items that the customer bought in a
particular visit to the shop. Since a non-empty set of items is also know as
an itemset, transactions are also itemsets.

Usually, the rules will need to respect certain conditions to be relevant.
In general, the antecedent will need to have a support greater than a certain
threshold where the absolute support of an itemsetX, supp(X), with respect
to a set of transactions T is defined as the number of transactions in T
that contain the itemset X. The relative support is defined as the absolute
support divided by the total number of transactions in T (the cardinality of
T).

Other common properties that are used to define the relevant rules are:

• Confidence [4]: The confidence of a rule, X ⇒ Y , with respect to a set
of transactions T is defined as

conf(X ⇒ Y) =
supp(X ∪ Y)

supp(X)
=
P (X,Y)

P (X)
= P (Y |X) (2.9)

• Lift: It measures how many times more often X and Y occur together
than expected if they were statistically independent.

lift(X ⇒ Y) =
supp(X ∪ Y)

supp(X)× supp(Y)
(2.10)

• Conviction [24]: It has been proposed as an improvement of the con-
fidence since indicates how dependent is the consequent on the an-
tecedent (being directional). High conviction values indicates high de-
pendence and takes the value 1 if the items are independent.

conv(X ⇒ Y) =
1− supp(Y)

1− conf(X ⇒ Y)
. (2.11)

2.3.4 Sequential pattern mining

In many different applications (e.g., DNA sequencing, commerce, and we-
blogs), datasets can be structured in a particular way, known as a sequence
database.

A sequence database is an ordered set of sequences, where each sequence
is an ordered list of itemsets. Table 2.1 shows a sequence database that
contains four sequences where each sequence is formed by a combination of
different amounts of item lists in sequential order.

33

2.3 Relevant approaches to UM and BP

ID Sequence

1 ({1,3,8},{5},{7,9})
2 ({2},{1},{2,3,9},{3,8})
3 ({1},{3},{8})
4 ({9},{5},{4,6,7,9})

Table 2.1 – An example of a sequence database.

In the case of the AppliDis applications’ and sessions’ logs, we can gener-
ate a sequence database if we structure the IDs of the applications launched
during a session as an itemset and generate a sequence for each user with
the data of all their sessions.

Similarly to the case of the support of an itemset for the association rule
mining, we can define the support of a sequence, we will need first to define
the concept of containment. We say that a sequence sa = (a1, a2, . . . , an) is
contained in a sequence sb = (b1, b2, . . . , bm) if there exist integers i1 < i2 <
. . . < in such that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . Now, we can define the
support of a sequence, supp(sa), with respect to a sequence database S as
the number of sequences in S that contain sa.

Then a frequent sequence (or frequent sequential pattern) can be defined
as a sequence for which supp(seq) is greater or equal to a certain threshold
minsup. This is that the sequence is contained in at leastminsup sequences.

A sequential pattern would be maximal when it is not included in an-
other frequent sequential pattern. Sequential pattern mining, as introduced
in [6], is the task of finding all frequent sequences in a sequence database.
There are two main approaches. The apriori-based approach identifies the
sequential patterns by building up a set of candidates (starting from sin-
gletons) and pruning the set by enforcing the support constraint at each
step. It presents a high time and space complexity since it usually creates
a big number of candidates and requires to scan the whole database each
time we increase the size of the patterns. If additional constraints (like on
the maximum or minimum size of the gaps between elements) need to be
applied, then a generalized version of this algorithm, named GSP (General-
ized Sequential Pattern) [5], can be used. To reduce the space complexity,
a second approach known as pattern growth based, narrow the search space
by projecting and dividing the original sequence database at each step. In
recent years, tackling bigger databases have been possible thanks to the
introduction of more efficient algorithms such as CM-SPADE, CM-SPAM
[48], FCloSM, and FGenSM [83] and algorithms that can benefit of parallel
computing [49].

34

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

2.3.5 Probabilistic models

We say that a model is deterministic if every state of the model is uniquely
determined by its parameters and initial conditions. These kinds of models
are well suited when we can measure those initial conditions, and we have
a good understanding of the process we want to model. However, when
modeling behavior, measurements are usually noisy, and we have no perfect
knowledge of the underlying process. So to deal with this uncertainty, prob-
abilistic models, incorporate random variables and probability distributions.
In this section, we review different techniques to model-specific features of
the processes related to human behavior. A very important one is that these
processes will present recurrent patterns over different intervals of time (e.g.,
days, weeks, and months). This can be captured with the use of different
Probability Density Functions (PDFs) [34] over different circular manifolds
(e.g., the circle, the n-dimensional sphere or the torus)[3]. For instance, Ker-
nel Density Estimation technique (KDE) can be combined with a circular
distribution (the wrapped normal) as basis functions to model the behavior
of smartphone users [81]. This method also allows for the use of other basis
functions as von Mises, circular uniform, wrapped Cauchy, or wrapped Lévy.
Sometimes the need for circular distributions can be avoided, as shown in
[120], where a tangent space over the n-dimensional sphere and a Dirichlet
process are combined to keep the method tractable. Since in this work, we
will study the opening of sessions or the launching applications, we will also
be interested in the ability of modeling events that seem to happen at a
random rate. This is, for instance, the case of phone calls [57] that can be
described with Poisson processes, although it is also important to consider
that behavior can sometimes present non-Poisson characteristics [138].

We expect sequential data to show a correlation between observations
that are close in time. In the most general case, we can think of a particular
value in the sequence as depending on all the values that come before it.
This means that given a sequence {x1, . . . , xN} we can factorize the joint
PDF as

P (x1, . . . , xN) =

N∏
n=1

P (xn|x1, . . . , xn−1). (2.12)

However, conditioning on all the previous observations can be intractable
very fast. So instead, we can assume that each value depends only on the
previous N observations:

P (x1, . . . , xN) = P (x1)

N∏
n=2

P (xn|xn−1), (2.13)

35

2.3 Relevant approaches to UM and BP

This model is known as Markov Chain [93] and, in particular, if N = 1
we call it a first-order Markov chain. Markov Chains have been successfully
applied to behavioral models, with web utilization [150] being a clear ex-
ample, and it can also be integrated with other methods as clustering and
association rules [74].

If, for each observation, we add a latent variable and take away the
Markov property from the observations and put it on the latent variables,
we get a State Space Model (SSM)[43]. A Hidden Markov Model (HMM)
[38] can be seen as an SSM where the latent variables are discrete or as a
mixture model [25] where the choice of the mixture component from where
the next observation will be drawn depends on the component that have been
previously selected. Since training this kind of models can be expensive,
incremental training approaches for HMMs [75], deal with the problem of
retraining. On the other hand, when both latent and observed variables are
Gaussian, we get what is known as a Linear Dynamical System (LDS) [16].

2.3.6 Deep learning models

Traditional ML algorithms learn to map manually engineered features to
the output. In this section, we will discuss algorithms that will also be
able to learn to extract the appropriate features from the input. In general,
these algorithms belong to the subfield of representation learning, which
contains deep learning, where several levels of features with different levels
of abstraction are learned [52]. Some of the more relevant deep learning
algorithms can be mapped to one of the following families:

Multilayer Perceptrons (MLP)

The Multilayer Perceptrons (MLP) [58] are feedforward artificial neural net-
works that have an input layer, one or several hidden layers, and an output
layer. A network with just one hidden layer would be considered a shal-
low network, while the depth of the network will increase with the number
of hidden layers. The neurons that compose a hidden layer will usually be
connected to all the neurons in the previous layer (fully-connected layer)
and apply non-linear activation functions (e.g., logistic function, hyperbolic
tangent, or rectified linear units). The combination of the several levels of
layers and the non-linear activation function will make the network capable
of learning complex non-linear functions to solve classification and regression
problems.

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) [84] are feedforward artificial neural
networks that apply a special kind of layer known as convolutional layers.
While in a fully-connected layer, a neuron is connected to all the neurons in

36

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

the previous layer, in a convolutional layer, a network is connected to a small
set of neurons in the previous layer (known as the receptive field). A set of
parameters (weights and bias) shared by the neurons will be used to generate
what is known as a feature map. A convolutional layer will be composed of
a set of feature maps.

Autoencoder (AE)

Autoencoders (AE) [60] are unsupervised generative models based on the
feedforward neural network that tries to reconstruct the input after com-
pressing it in its hidden layers. The learned features can then be used in
different applications.

Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machines (RBM) [61] are unsupervised generative
models based on a network composed by a visible layer and a hidden layer
which are fully connected. While Boltzman Machines allow for connection
between the neurons in the same layer, RBMs do not. This makes them
suitable for applying a particular training algorithm named contrastive di-
vergence [33]. RBMs can be stacked to build a deep model (since we say
that a model gets deeper as the number of layers increase).

Recurrent Neural Network (RNN)

While the MLP only allowed for feedforward connections, Recurrent Neural
Networks (RNNs) [122] allow cycles in the connections between neurons.
This makes them especially suitable for modeling sequential data since they
can accept input of variable length. However, vanilla RNNs suffer from what
is known as the vanishing or exploding gradient problem.

This is, the exponential explosion or decay of the gradient when propa-
gating trough time [62, 12]. To deal with this problem, some architectures
as the Long Short-Term Memory (LSTM) [63] or the Gated Recurrent Unit
(GRU) [37], use a memory state and gates to act on it and allow the gradient
to flow unchanged.

RNNs can also deal with complex probability distributions when com-
bined with energy-based models as the RBM [20, 121].

Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [53] are unsupervised generative
models that use two neural networks, one known as the generator network
that generates samples and another known as the discriminator network
which task is to tell apart samples from the dataset and samples produced
by the generator. Since the task of the generator is to increase the error

37

2.3 Relevant approaches to UM and BP

rate of the discriminator when both networks are trained to become better
into their adversarial task, they can achieve an equilibrium point, and the
generator can learn an approximation of the probability distribution of the
dataset.

Deep Reinforcement Learning (RL)

In the decision theory framework [108], we generate a probabilistic model
of reality, and we decide which action to take (the decision) optimizing a
Loss function. In this sense, the problem is static. On the other hand, the
Reinforcement Learning (RL) framework [123, 114] incorporate two relevant
features (characteristics). The first is that it is dynamic. Each decision
(action) takes us to a new state where we take a new action (decision). The
second is that since we do not know the transition model, we will learn it
from the data. That makes this framework ideal for solving problems as in
[126].

2.3.7 Other models

We briefly describe some work related to the user modeling and behavior pre-
diction tasks that apply other relevant models that have not been described
in the preceding sections.

• Logistic Regression [34], this algorithm has been applied in the context
of social media to model the probability of the user accessing multi-
media content [141]. The prediction of this model was then combined
with other models to decide which and when the content should be
prefetched by combining data from the user and the state and evolu-
tion of the internet connectivity (i.e., speed of the connection and cost
of downloading data). It has also been applied to the analysis of online
purchases, modeling the probability of a user buying a product given
a log of the user activity [91].

• Support Vector Machines (SVM) [134], this classification algorithm has
been applied, for instance, to predict purchasing behavior [124].

• Decision Trees (DT) [131], in particular, classification decision trees,
have been applied to predicting clicks on adds in the context of social
networks [59].

• Ensembles, which are the family of methods to combine different mod-
els (e.g., Logistic Regression, SVM, DT, and others) to improve the
quality of the prediction. For instance, it has been used for the predic-
tion of commercial transactions [19].

38

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

2.4 Applications of UM in the industry

2.4.1 Faster application launching

The notion of making a resource available before it is needed is known as
prefetching. In the context of computer systems, data is a resource that
can take a long time to retrieve from hard drives. So instead, a smaller
and faster memory, named cache can be used to prefetch data. Intel Turbo
Memory is a technology presented in 2005 and made available in 2007 that
relied on caching data into a flash memory to allow faster boot-up, faster
application launches, and power-saving since it avoided spinning the hard
drive disks when accessing applications. Microsoft also developed a similar
caching technology based on flash memory named ReadyBoost and another
based on hybrid drives named ReadyDrive. Both of these technologies, relied
on SuperFetch [65] a prefetching system, developed for Windows Vista and
Windows OS operative systems, that exploited the user behavior (e.g., the
user most used applications according to weekday and time of the day).
While Falcon [146], for Windows Phone systems, was designed for learning
behavioral patterns of mobile phone users.

The problem of predicting the next application launch in the context of
mobile phones is closely related to the one we are trying to tackle. Some
important similarities are that 20-second launching delay is not uncommon
[146], which is close to the estimates Systancia has of average time for ap-
plications in the cloud.

Some relevant differences are that smartphones provide a big set of built-
in sensors like microphones, cameras, light detector, GPS, accelerometers,
gyroscopes, and even WiFi antennas that can be used as sensors. The UM
and BP algorithms can exploit all the data generated from these sensors. In
our case, the available data sources are much more restricted.

From the application point of view, the mean interaction time of the
user with the applications is significantly shorter in mobiles phones. Mobile
Applications tend to be used in "burst". A mobile phone will usually be
idle until some event "ignite" an active period (like an incoming SMS) that
is then chained with the use of some applications before going back to idle.
For a greater interval of time, certain applications are download and use very
frequently for a short interval of time and then "forgotten" by the user. The
energy and memory cost of caching an application on a mobile phone is not
negligible. Thus this should also be considered in a utility function when
evaluating the performance of false-positive predictions.

Falcon extract different features that will be used for the prediction.
Since the activity is expected to appear in the form of burst or as they call
them "sessions", the idea is to classify applications in two categories, trigger
applications (that start the activity) and follower applications (that tend
to be used after). Location is estimated by minimizing the distance to the

39

2.4 Applications of UM in the industry

center of the geolocation traces. Another feature that is computed is the
burst, computing the starting point and duration of the activity burst for
each application with a wavelet detection algorithm.

These features feed a decision function that, in turn, feeds an optimiza-
tion algorithm (0-1 Knapsack problem) to optimize the utility function that
takes into consideration the energy and memory cost. The algorithm is
trained tabula rasa for each user and requires two months of activity to yield
good results.

2.4.2 Personal digital assistants

One of the first massively distributed personal digital assistant was the one
included in Microsoft Office 97. This personal assistant was required to
exploit data to find the correct answer to the queries of the user related to
the use of the Office suite products. Behind the early development of the
necessary algorithms was the Lumière Project, which had several objectives,
as explained in [64]. The approach was based on a Bayesian Networks. These
networks helped the assistant to reason about the actions of the user, the
answer for the queries, and to build a user model. This model evolved by
acquiring new data from the applications and system events.

The Microsoft Office assistant provided passive assistance in the sense
that it acted upon requirement via a query from the user. Today, several
companies provide proactive assistants meaning that they can predict and
provide useful assistance even before it is required by the user. Some of them
are:

• Microsoft: Cortana (Windows 8).

• Apple: Siri Suggestions (Apps suggestion for Iphone). [102] A menu
for smartphones similar to siri suggestions.

• Google: Google Now, replaced by Google Assistant. [54]

• Facebook: M.

• Amazon: Alexa (used in the Echo product).

• Samsung S voice.

Most of the services that these companies provide are not linked to a
specific device. This means that, for instance, we can access Facebook from a
laptop, desktop computer, or a mobile phone. This lets them build a general
profile of the user not necessary linked to a specific device and improve the
performance of the prediction. To make this possible, they also need to store
the generated profile in the cloud.

40

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

Since most of these companies also provide a suite of products, is from
the combination of different facets of the user behavior that they will be able
to provide richer results. Next, we explore some of the data sources they use.

Companies that do provide an email service (like Microsoft and Google)
had historically exploited the content of the email to provide targeted adver-
tisement. However, companies that do not provide an email service can still
benefit from email content if they store it in their devices (as in the case of
Apple). The latest generation of assistants can now use this data to detect
dates and codes that indicate plans, flights, and even mail packages to dis-
play it, for instance, in the calendar service or launch associated services like
maps. Email can also be used to train language models customized to the
user and propose short answers for incoming emails. Microsoft and Google
both have the possibility of generating suggestions based on the search ac-
tivity in their internet browsers and their search engines. Mobile operating
systems also apply some form of recommendation system to choose what
news to display to the user.

One of the most exploited data sources across different predictive task is
location data, which can be extracted from different sensors. Human behav-
ior is strongly correlated with location. One of the most direct applications
is to generate a location profile to predict where the user is heading next
and show useful information like the traffic state in the usual route or the
estimated arrival time to destination. These systems can also classify the
locations and identify common categories like home or work. This data can
be combined with accelerometer data to identify activities like sleeping or ex-
ercising. Activity detection is also enhanced by comprehensive data sources
like specialized gadgets that can measure precise location, heart rate, or
sleeping patterns. Since most of this specialized gadgets prose the use of
their applications, operative systems like Apple iOS, propose an applica-
tion to gather all these data coming from different sources. Location data
also feed application utilization prediction. On this last task, some of the
assistants will also exploit third-party application data.

As we have seen, the richness of the data these companies can gather
make them possible to generate incredibly detailed models of their user,
which they can, in turn, use to generate accurate predictions.

2.4.3 Recommendation systems

According to [2], although related techniques can be traced to other fields,
recommender systems appeared as a subfield in the mid-1990s with work
in collaborative filtering. The problem could be informally stated as, based
on the ratings that users assigned to different items and maybe other data,
estimate the ratings that the users will assign items that they did not rate.
In turn, these estimations could be used to rank the items and recommend
them to the users. We can identify three general approaches. The content-

41

2.4 Applications of UM in the industry

based approach compares the item we want to rate to other items that the
user has already rated. The collaborative recommendation approach looks
for the ratings of other users to similar items. Finally, the hybrid approaches
combine the benefits of the former two approaches (for instance, defining a
method for combining the estimation of the two separate approaches). More
in-depth descriptions of the recommender system approaches can be found
in different general surveys [17, 15].

One well-known application of recommender system is predicting movie
ratings. Netflix, a media service provider, held a competition between 2006
and 2009 to improve the accuracy of their recommendation system [11].
The datasets of the competition and other related (like the Large Movie
Review Dataset [92]) are still used for benchmark purposes. Another very
relevant industrial application that provides interesting datasets and fosters
the development of this subfield is the e-commerce (e.g., Amazon [116] or
Alibaba), where we need to propose products to the customer based on their
activity and products they like or buy.

In recent years, deep learning techniques have also been applied to rec-
ommender systems, improving their results [149].

2.4.4 Online social networks and media

The common characteristic of online social networks and media is that they
allow users to share content and participate in social networking. Just to
name some categories [86]:

• Social networks: Facebook, Twitter, Linkedin, Google +.

• Blogging and Microblogging Platforms: WordPress, Blogger, Tumblr.

• Wikis: Wikipedia, Encyclopedia of Mathematics.

• Rating and Reviews: Yelp, TripAdvisor.

• Instant messaging: Whatsapp, Facebook Messenger, Viber, Skype.

• Sharing sites: Instagram, Flickr, Youtube.

• Question and Answer Platforms: Quora, Yahoo! Answers.

All these platforms possess millions of users that create a huge amount of
data and enormous social graphs. They also present a big variety of different
problems that can be tackled with ML (e.g., UM and profiling [1], BP [51],
sentiment analysis, recommendation, malicious activity detection [90]). We
can say that a significant part of the latest advancement in the field of ML
had come from researchers working for online social networks and media
companies. Next, we will cover some interesting application in the context
of UM.

42

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

The development of user profiling algorithms is based on exploiting dif-
ferent data sources that can be separated into two categories. On the one
hand, we have the data provided by the user (e.g., demographic data, com-
ments, posts, likes, rates,status updates, answers, searches, tags) and on the
other hand the data that corresponds to the user activity which results from
the use of the platform (e.g., chosen content, time spent, mouse activity and
eye movement).

One of the key element of any online social network is the relationship
between the users. A common representation of the connection between users
is to construct what is known as a social graph, where the nodes represent
users and the edges represent some relationships that the platform allows
between users [144] (e.g., Facebook friendship can be represented with an
undirected edge, while the concept of following another user on Twitter can
be represented with a directed edge). Social graphs, for instance, can also
include places, events, organizations, or other entities as nodes, and edges
can then represent endorsement of the user to a certain organization or other
actions like visiting a place.

These social graphs allow researchers to study the profile of the users and
a wide variety of phenomena related to their behavior. Many of the interest-
ing characteristics that we can measure in the social graphs are quantities
that have been defined in the context of graph theory. Some of them are:

• Degree distribution[130]: which is the distribution of the number of
relationships that each user has.

• Homophily: that describes to which degree the users’ present relation-
ships with users with similar profiles.

• Multiplexity: which describes the strength of the relationship between
users.

• Density: which is the ratio between the quantity of relationships and
the quantity of all possible relationships between the users.

• Distance and shortest path between users: which is the number of users
between two users.

• Cliques: which is the number of groups of users that are pairwise
connected between each other.

• Structural cohesion: which is the number of users that we need to
eliminate to disconnect two groups of users.

All the characteristics of the graph that we have presented can be com-
puted over the graph at a given moment in time. However, we can also
consider the evolution of the graph over time [94].

43

2.5 Limits of predictability

• Evolution of the structure over time.

• Velocity of the changes.

• Which properties are preserved.

• Finding features that help to predict future relationships.

• In which degree a user influence other users.

A social graph for N users can be encoded as a square matrix A of size
N , such as the element Aij is equal to one if there is an edge between the user
i and the user j and zero otherwise. This matrix is known as the adjacency
matrix which we can combine with the degree matrix (a diagonal matrix D
of size N such as Aii is equal to the degree of the user i) to construct what
is known as the Laplacian matrix L = D − A. This last matrix is useful
for the application of the spectral clustering techniques [79] that let us find
communities in the social graph.

2.5 Limits of predictability

Two important factors will affect the performance of any behavior prediction
algorithm. The first one is the amount of structure that there is in the
behavior of the subject that we are studying (or the amount of randomness,
since the combination of the structured behavior and the random behavior
will give us the behavior we observe). The second one is the capacity of the
algorithm itself to find this structure.

We can focus on the first factor by assuming that we have an algorithm
that will be able to exploit all the structure present in the behavior and
establish an upper limit for the performance of our prediction algorithm.
Instead of trying to predict the amount of structure, we can estimate a lower
bound to the amount of randomness by measuring the entropy of different
probability distribution of the user behavior.

[118] used a database of the geographical location of 50000 cellphone
users for three months to established a limit to the predictability of these
users independently of the algorithm applied for the prediction. The result
showed that the distribution of maximum potential predictability picked at
approximately 93%, which means that for the users in that database, inde-
pendently of the technique we use, the distribution of the minimal amount
of wrong location predictions for a user has a mode at 7%.

As the estimation of the entropy is directly linked to the amount of
structure in the behavior that we can capture, they computed three different
values of entropy capturing different relationships between the locations the
user visited (and therefore different amount of structure). The first one
(and the one capturing the smallest amount of structure) considered only

44

2. Approaches for User Modeling (UM) and Behavior Prediction
(BP)

the total amount of locations that the user visited during the three months
of the study and assumed a uniform distribution over all the locations. The
second one replaced the uniform distribution for the empirical distribution
(relative frequency) of the locations. The last one considered not only the
total amount of locations but the sequential relationship between them by
applying a method based on the Lempel-Ziv compression algorithm. This
approach is also similar to the applied by other authors [69, 88] that studied
location data from GPS sensors.

Considering our problem, this would mean that we can establish three
different measures of entropy. One, considering the total amount of applica-
tions launched by the user. A second one, considering the relative frequency
of the launched apps. And finally, a third one, considering the sequential
relationship between the use of the different applications.

One difference we would notice between the locations and the applica-
tions is that while the user can only be in one place at a time, a user can
launch several applications at the same time. A naive way of solving this
difference would be to generate a new symbol to represent the state of a
specific combination of applications.

A critical point in the estimation of the entropy of the users via a sample
is that we do not have any guarantee that the user has visited all the locations
she will ever visit. We can improve the estimation of the entropy if we try to
add an estimation of the locations that the user will still visit even though
we did not observe that in our sample [132]. The problem of estimating the
entropy of the user behavior in the cloud will be explored in Chapter 4.

All the discussed estimation tried to established an upper bound to the
predictability without taking into consideration the capacity of the predic-
tion algorithms. For instance, [119] studied the limits of the predictability
in particular for Markov models using location captured by Wi-Fi and [87]
shows that the mutual information between symbols in a sequence decays
exponentially with the distance for Markov processes while only logarithmi-
cally for deep architectures, what explain why deep learning methods can
present and advantage for sequential predictions.

Finally, in all the studies discussed before in this section, the location
of the user was model as a discrete sequence of locations. In [118], the fact
that the location is continuous is captured by modeling human mobility as
a continuous-time random-walk.

2.6 Conclusion

From the devices and sensors that capture the data to the computational
resources that process it, today, new technologies allow us to overcome big
barriers and apply techniques to UM and BP that were not at reach a couple
of decades ago.

45

2.6 Conclusion

While in the past, we mostly rely on divide-and-conquer approaches,
some new methods can deal with highly complex problems and get better
results when trained end-to-end. On the other hand, these methods will
usually require a big amount of data. So it is also essential to keep in mind
the value of being able to deal with small dataset which are still very common
in some industrial applications as our.

Since there is a wide variety of techniques that can help to improve
the user experience and they do not share a common framework or directly
translate to our problem, it is not trivial to establish a baseline. This is a
significant difference when comparing, for instance, to image classification
problems where there are standard datasets and performance measures that
are widely accepted and used in the community. This is why in this work
we will propose a solution to this problem.

The enormous economic value in behavior modeling and prediction mo-
tivates big companies to invest heavily in the development of new methods
and related technologies and make them, at last, an important development
driver. However, even though the technological advances in the field are
astonishing, they are maybe not as deep as the cultural changes that make
devices and sensors ubiquitous today. Human behavior has been, without
any doubt, affected by these technologies, and it seems that this is still a
process in progress.

46

Chapter 3

Exploratory Data Analysis
(EDA) and user profiling

Following the order of the phases of the CRISP-DM process model (shown
in Figure 1), in Chapter 1 the business understanding phase was completed
by framing the business problem. Now, this chapter develops the next two
phases of the model, the data understanding, and data preparation phases.

First, in Section 3.1, we will analyze the structure of the database that
is used to gather data to then explore the data itself in Section 3.2. While
exploring the data, we will highlight the need for transforming the original
data to apply different ML algorithms. We will propose some useful transfor-
mations in Section 3.3. Then, in Section 3.4, we will introduce the definition
of entropy and other related concepts that will prove fundamental for our
understanding of behaviors of users and for generating a measure of distance
that will help us generate user profiles in Section 3.5.

3.1 Database exploration

The first part of the exploratory work was to inspect all the tables of the
AppliDis SQL database and shortlist the ones that potentially included any
data related to the activity of the users.

3.1.1 Shortlisted tables

We started from analyzing the database of a customer with AppliDis Fusion
4 and we shortlisted 11 from a total of 78 tables:

• useruseappli

• app

• machine

47

3.1 Database exploration

• machine2

• utilisateurs

• grpapp

• grpuser

• contratlocatif

• liaisgrpapp

• liaisgrpuser

• liaissrvgpusr

For each table, the columns and values were inspected. During this
process, all tables and columns were renamed to keep a naming convention
that would make it easier to identify.

As a result of the exploratory work and as to be able to recover interesting
data for the study of the behavior and the use of the prediction algorithms
introduced in Booster, we proposed modifications to the database.

The list of tables added to the database during the project are the fol-
lowing:

• UtilisateursLogins

• boosterappstat

• boosterpredictionoptions

• usagepredictionparam

• sendstatbooster

The objectives of these new tables are explained in the following subsec-
tions.

3.1.2 Proposed new table UtilisateurLogins

Since any application can be launched without a session, the first proposed
modification was to create a table named UtilisateurLogins to track the
sessions of the users. This allows to determine the start and finish date of
the session (moment in which the user opened and closed the web portal
or connected or disconnected from the desktops client), the type of client
used to start the session and finally, the IP address of the device as a way of
keeping track of the different devices used by the user.

These modifications were documented in Systancia’s internal reports:

48

3. Exploratory Data Analysis (EDA) and user profiling

• ADIS-10319 added the UtilisateursLogins table to the database,
which allows us to record when a User started an AppliDis Sessions.

• ADIS-15618 added LogoutDate (end of the AppliDis Session) to Util-
isateursLogins to compute the duration of the Sessions.

• ADIS-15375 added two new columns to the table UtilisateursLogins,
PredictedLogoutDate, and IspredictedSession to distinguish between
sessions started by the user and sessions possibly started by Booster.

• ADIS-15625 added a new encoding to the column ConectionType, to
recover the AppliDis client used to start the session.

3.1.3 Enhancement of the existing table useruseappli

This table contains the data related to the application launches. We no-
ticed that the applications launched by Booster Preloader or that remained
opened with Booster Postloader where not distinguished from the appli-
cations launched by the user. In particular, Booster uses an application
named keepalive that refers to the function of keeping the session "alive".
Although it was possible to identify the keepalive application by its appli-
cation ID, we decided to add a column to encode information about which
Booster mode was responsible for launching it.

These modifications were documented in internal reports:

• ADIS-12978 added the keepalive column that lets us distinguish ap-
plications launched by the user from applications launched by different
Booster components.

• ADIS-15652 improved the keepalive column encoding system.

3.1.4 Other Booster tables

In order to keep track of the Booster settings chosen by the administra-
tor of ApplDis over time. We created a set of tables (boosterappstat,
boosterpredictionoptions, usagepredictionparam, sendstatbooster).

This modifications were documented in internal reports:

• ADIS-15408 added sendstatbooster table to save the hyperparame-
ters of the models used by Booster Prediction.

• ADIS-15375 added boosterappstat table to save Booster basic statis-
tics (e.g., the total amount of time gain due to Booster).

49

3.2 EDA of the user activity

3.1.5 Improving the data quality

As a result of the study of the database structure and data, we found im-
provement opportunities that were exploited to guarantee the data quality.
The application of best practices simplify the development of new algorithms
and avoid bugs that could be potentially difficult to spot. For instance, we
noticed that the useruseappli table used a date convention in which, while
an application is open, the end date takes the value of start date minus one
day. E.g., if an application is opened on 2016-02-09 15:50:12.520, while it is
open, the end date takes the value 2016-02-08 15:50:12.520. This is not a
good practice since any data analyst that is not aware of this way of encod-
ing information could easily miss compute statistics of the end date. In this
case, the use of a "non-available" value is recommended, because it avoids
the use of incorrect values in the computation of statistics.

Some other minor bugs that affected the data quality were documented
in internal reports and fixed:

• ABVLR-16009 showed that after closing the session from the desktop
client, the logout date field was not updated.

• ABVLR-16010 showed that after closing the browser window of the
web client, the logout date field was not updated.

• ABVLR-16012 showed that when connecting from web client, the ma-
chine name field was not correctly populated.

3.2 EDA of the user activity

As to gain insights about the user activity we will explore the user ses-
sion logins and applications launches gathered in the SessionLogins and
ApplicationLaunches tables.

Figure 3.1 shows the relationship between these two tables and the other
tables of the database utilizing an entity-relationship diagram.

We notice that even though an application is always open inside a session,
this is not reflected in the data model. This would be possible by adding,
for instance, the foreign key SessionId into the ApplicationLaunches table.
In the case of a UML Diagram, this would be reflected by a composition
relationship, meaning that the application launch could not exist without a
session.

Although, we can try to recover this relationship from the data, by as-
signing each application at the current open session, this approach will only
work if there are not simultaneous open sessions for a given user (which is
not the case since a user can connect to AppliDis from different devices at
the same time). It is also important to notice that since the administrator
of the system can erase data from the database to free memory space at any

50

3. Exploratory Data Analysis (EDA) and user profiling

Figure 3.1 – Entity-relationship diagram of the data.

51

3.2 EDA of the user activity

SessionId UserId LoginDate ConnectionType MachineName Ip

15 876 2015-02-09 14:38:55.400 2 SOI8001 125.0.2.28
16 876 2015-02-09 14:39:29.890 2 SOI8001 125.0.2.28
497 159 2015-02-10 09:54:35.100 2 SOIXP216 125.0.2.48
699 876 2015-02-10 14:47:42.740 2 SOI8001 125.0.2.28
959 876 2015-02-11 08:35:14.350 2 SOI8001 125.0.2.28

Table 3.1 – Selection of instances from the SessionLogins table.

Figure 3.2 – Histogram of the quantity of logins by user.

time will make impossible to us to tell at a certain moment if the user is
really not active (i.e., she has no open sessions at a given moment).

3.2.1 Session logins

In Table 3.1, we show 5 instances taken from the total of 187091 records in
the SessionLogins table from the Hospital Center X. The data points were
collected over 366 days from 2016-02-09 to 2015-02-09.

The table contains the sessions logins of 927 users. Figure 3.2 shows the
histogram of the number of logins by user (mean = 200 and median = 162)
and we see that it has a long tail. The user with the biggest amount of logins
has a total of 1485. Since this quantity is much higher than the average (more
than 7 times higher), we suppose that these user credentials are being shared
by several people.

Combining the features Day, Month, and Y ear, we can gain some in-

52

3. Exploratory Data Analysis (EDA) and user profiling

Figure 3.3 – Quantity of logins by day of the year.

Figure 3.4 – Quantity of logins by weekday.

sights about the monthly behavior. In Figure 3.3, we observe that the busiest
month is October, while August, with 30% fewer logins than October, is the
month with the lowest activity level. A lower level of activity can also be
observed in the last days of December. This is consistent with the holiday
periods in the northern hemisphere, and we observe a similar pattern for
different customers of AppliDis independently of the type of organization.
We also observe specific days with low levels of activity, which are consistent
with french bank holidays (e.g., 2015-11-11).

The analysis of the weekly quantity of logins in Figure 3.4 shows a clear
difference between weekends and working days.

The same analysis but by hour of day, in Figure 3.5, shows that the daily
behavior is bimodal, with a strong peak in the morning and the second one
after midday. This bimodality seems to be present in all the days of the
week, as shown in Figure 3.6, although the low-level activity of the weekend

53

3.2 EDA of the user activity

Figure 3.5 – Quantity of logins for the 24 hours of the day where common
working hours are marked in orange.

does not let us verify this assumption.
As we have shown, for all the different analyzed periods (monthly, weekly,

and daily), we can confirm the presence of expected behaviors. These are
holiday periods (like bank, summer, Christmas, and new year’s holidays),
weekends, and associated customs (e.g., leaving early on Fridays), and finally,
lunch breaks.

3.2.2 Application launches

Now we focus our attention on the application launches, in particular, the
ApplicationLaunches table of two customers that belong to different indus-
try segments. The first one is a software development company (Systancia),
and the second one is the same hospital that we used for the logins anal-
ysis (Hospital Center X). Some instances for this last customer have been
selected and shown in Table 3.2. Although no application can be launched
without a server (to run on), we found that for Hospital Center X, about
8.9% of the applications launched have a ServerId equal to None, while for
Systancia all application launches have a corresponding ServerId value.

To better understand the complexity of the predictive task, we investi-
gate the amount of users, applications, and servers. The results for both
customers are summarized in Table 3.3.

54

3. Exploratory Data Analysis (EDA) and user profiling

Figure 3.6 – Comparison of the logins quantity for the 7 days of the week
for the Hospital Center X.

LaunchId AppId UserId ServerId AppStartDate AppEndDate ActiveTime

0 28 5 68 2014-10-09 14:47:50.930 2014-10-09 19:43:03.067 17713
1 188 174 43 2014-10-09 14:47:52.417 2014-10-09 15:27:17.730 2365
2 139 146 41 2014-10-09 14:48:01.587 2014-10-09 16:16:56.433 5335
3 102 899 41 2014-10-09 14:48:12.227 2014-10-09 15:06:00.733 1068
4 115 922 None 2014-10-09 14:48:14.240 2014-10-09 17:04:42.733 8188

Table 3.2 – First 5 instances the table ApplicationLaunches of Hospital
Center X. We observe the presence of None values.

Hospital Center X Systancia

Quantity of Users 765 84
Quantity of Apps 108 24
Quantity of Servers 37 3
Quantity of Launches 384251 15709
Quantity of days of data 229 545

Table 3.3 – Comparison between the tables ApplicationLaunches of Hospi-
tal Center X and Systancia.

55

3.3 Feature engineering

3.2.3 Database visualization tool

The results of the EDA of these two databases proved to be useful also for
the development process of the new Booster components. Since we needed
to apply it regularly to other databases, we designed and implemented a web
application known as the Database Visualization Tool. For its development,
different frameworks (i.e., D3 and Bootstrap) were used, while the back-end
was mostly developed in Python. Finally, a set of SQL queries to generate
clean views of the data were developed.

Some of the mean features of the tool are:

• Remote connectivity: that allows to connect to any remote AppliDis
SQL database without the need of previously installing the AppliDis
Client.

• Compatibility verification: tat allows to verify the presence of tables
that have been implemented during the project and of interest for
different user behavior analysis.

• Activity calendar: that allows us to visualize in a calendar format
(similar to Figure 3.3) that let us quickly determine the interval of
time for which data was available and detect any anomalies in the
database (e.g., periods with low or no activity).

• Custom queries: that allows us to visualize the results of customs
queries on the browser.

3.3 Feature engineering

Most of the data in the tables of the database correspond to values that we
can measure directly (e.g., the IDs of the entities, the timestamp). Each of
these measurable characteristics are known as features. In particular, the
ones we have described are known as raw features, while the ones that result
from transforming or combining raw features are known as extracted features.
In a relational database, each column of a table represents a feature, and the
values, in each row, are samples.

The process of extracting new features is known as feature engineering.
This part of an ML project is crucial because:

• the performance of the model depends on the inputted features,

• some models rely on features that respect certain conditions, and

• training some models without previously precomputing features can be
excessively expensive.

According to the variable data type, we can distinguish different trans-
formations.

56

3. Exploratory Data Analysis (EDA) and user profiling

3.3.1 Categorical variables

Categorical or discrete variables take values from a countable set (or cat-
egories). E.g., the feature Weekday can take values in the set {"Mon-
day","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"}).
Since algorithms, in general, need to deal with numeric data types. We need
to find a way of transforming these chains of characters. We notice that in
our problem, most of the data we gather is categorical (e.g., UserId, AppId,
ServerId, IP , and MachineName). Although in practical business prob-
lems, categorical data is ubiquitous, it is difficult to find techniques to deal
with this kind of data types in the literature. Next, we discuss some tech-
niques, with progressively higher complexity, that let transform categorical
non-numeric data to numeric values.

The simplest way of achieving this last objective is by assigning integer
values to each element of the set. In our example of the Weekday, for
instance, we can assign values from 1 to 7 to each weekday. However, this
assignment depends on an arbitrary decision. A completely different valid
option would have been to choose values {5, 2, 1, 3, 10, 87, 13}. The problem
with this representation is that, in general, algorithms will interpret the
magnitude of the values as information about the relationship between the
categories. In this last example, the algorithm could interpret that Monday
with value 5 "is half" Friday with value 10.

One way of solving this issue is by using a "one-hot encoding". This is
replacing each category with a vector, with as many components as cate-
gories, a value of 1 in only one component, and zero in the others. E.g., we
would associate Monday with the vector (1, 0, 0, 0, 0, 0, 0). With this rep-
resentation, each vector is independent of each other and do not share any
information. The problem now is that for features with a big amount of
categories our vectors would get big (e.g., for the feature "MachineName"
we would need one component for each different name in the database). At
the same time, if we generate our vectors, and later a new machine name
appears, we would need to increment the size of all our vectors (and modify
our model).

The third problem is that sometimes, the categories do have a relation-
ship with each other that we would like to model and exploit. E.g., notice
that although we can model the sequence order between the weekdays from
Monday to Sunday by assigning values from 0 to 6, it would be impossi-
ble also to capture the fact that Sunday comes before Monday just with a
scalar. On the other hand, we can capture this relationship by using a vector
with two components, like in Figure 3.7.

While in the last example, the relationship we wanted to model was easy
enough to design it by hand, in the general case, we would like our algorithms
to learn these representations itself. In the Section 3.5, we will discuss some
techniques that let the model learn the transformations of the raw data.

57

3.3 Feature engineering

Tuesday : (0.781,0.623)

Monday : (0,1)

Wednesday : (0.974,-0.222)

Thursday : (0.433,-0.9)

Sunday : (-0.781, 0.623)

Saturday : (-0.974, -0.222)

Friday : (-0.433,-0.9)

Figure 3.7 – Seven unit vectors representing the weekdays on the plane. The
cyclical relationship between them is conserved as opposed if we represent
them with scalar values.

year month day hour date time dayofyear weekofyear

2015 2 9 14 2015-02-09 14:38:55.400000 40 7

week weekday day_name

7 0 Monday

Table 3.4 – Generated features after transforming the timestamp 2015-02-09
14:38:55.400.

3.3.2 Timestamps

As we have seen in the exploratory analysis, most of our data is in the form
of timestamps. This is a combination of a date and a time with millisecond
precision. Although there are algorithms that have the capacity to find
complex relationships in the data. In practice, we notice that it may require
considerable large datasets. One way to facilitate the learning task is by
decomposing the timestamp in several features that capture different periodic
characteristics. In Table 3.4 we show the resulting features after decomposing
the timestamp 2015-02-09 14:38:55.400.

Another popular way of working with timestamp is by generating rela-
tive features like time differences calculated by measuring the distance with
respect to a reference point (usually the first timestamp on the list).

3.3.3 Continuous variables

When the feature measured can be associated with a real number, we call it
a continuous variable. To represent this real number, we generally use a float

58

3. Exploratory Data Analysis (EDA) and user profiling

data type. Since the memory and the computing power is always limited,
we can only represent real numbers up to a certain precision.

Since there is an extensive literature about how to derive features [56,
96, 35] from the continuous variables and considering that in our problem
this kind of data do not play a central role, we will not extend any further
into the discussion of them.

3.3.4 Relative features

Sometimes, as to make the raw features useful, we need to transform them
from absolute features into relative features. For instance, in our problem,
in the general case, different customers will not share the same applications.
Even if they do share some, the AppId assigned to a common application
will be usually different in each database. One way of dealing with this is,
instead of counting the frequency of each AppId, we can first map the AppId
to the frequency of use. So, instead of having the frequency by AppId, we
will have the frequency of the most used application, of the second most
used application, and so on. After this transformation, we can compute the
frequency. By doing so, there will be two advantages. The first one is that
now, what we learn about one database can be applied to other databases,
with different applications, transferring learning. The second one is that this
knowledge can also be used as a prior for other models.

3.4 Entropy of the behavior

If we review the figures we got as a result of the analysis in Section 3.2,
we will notice that all of them can be seen as the realization of a random
variable. This random variable will have a certain associated probability
distribution. For instance, if we normalize the values of Figure 3.5, we get a
discrete probability distribution describing the probability of the user logging
in at each of the 24 hours of the day (period T = 24).

Let us suppose that we observe the behavior of two users for a long
interval of time and that user 1 present logins over all hours of the day
and that user 2 present logins only at one hour of the day. If someone
asks us to predict when these two users will log in next, we would think
that it is much easier to guess the hour for user 2 correctly. This "level
of predictability" linked to the concentration of the mass of the probability
distribution is formally quantified by, what is known as, the entropy of the
random variable.

Now, we will define some concepts as found in [40], that will help us to
formalize our intuitions and quantify them.

59

3.4 Entropy of the behavior

3.4.1 Entropy

The entropy of a discrete random variableX with alphabet X and probability
mass function P (x) is defined by

H(X) =
∑
x∈X

[− logP (x)]P (x). (3.1)

Since limp→0− log p = 0, we should consider P (x)[− logP (x)] = 0 when
P(x)=0.

To understand why the entropy defined like this will help measure the
concentration of the probability mass, let first focus on the − log(y). In
particular, since our distribution is discrete P (x) can only take values in the
interval [0, 1], so the range of − log(y) will be [0,∞), in particular, it will take
the value 0 only if P (x) = 1 and a take values closer to∞ as it gets far away
from 1. Finally, we see that we apply a weighted sum over all the possible
values of x. So in the extreme case of only one value of x having P (x) = 1,
the entropy will be 0. On the opposite case, if we distribution is uniform
(all values of x with equal probability), we will have the greatest value of
entropy. Finally, since we are summing positive numbers, the entropy will
always be positive or zero.

The reader may also notice that we do not specify the base of the log.
The reason is that in our application, the result does not depend on the
base of the log, although we will usually use the natural logarithm. For
completion, when the base of the log is 2, the entropy is expressed in bits,
and when it is e, the entropy is expressed in nats.

Now we define the differential entropy,

h(X) = −
∫
f(x) log f(x)dx, (3.2)

that we will use when dealing with a continuous random variable X with
probability density function f .

In this case, we can use the same intuition as for the entropy, although
now, since the density can take values greater than 1, the differential entropy
can take negative values.

All the following definitions will be expressed for the case of a discrete
random variable. Since we only need to replace the sums by integrals to
generate the corresponding definition for a continuous random variable.

If we measure the entropy of the conditional probability distribution
P (X|Y) of a pair of discrete random variables (X,Y) with joint distribu-
tion P (X,Y), we get the conditional entropy

H(X|Y) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (x|y) (3.3)

60

3. Exploratory Data Analysis (EDA) and user profiling

and, by the same logic, we define the joint entropy H(X,Y) as

H(X,Y) = −
∑
x∈X

∑
y∈Y

P (x, y) log P (x, y). (3.4)

Since by the product rule P (X,Y) = P (X|Y)P (Y), we can show that

H(X,Y) = H(X|Y)H(Y). (3.5)

If we think of entropy as the information quantity required to describe a
random variable, we can interpret Eq. 3.5 as showing that the information
we need to describe X and Y is equal to the information to describe X given
Y plus the information to describe Y [16].

A last relevant quantity is the cross-entropy defined as

H(P ||Q) = −
∑
x∈X

P (x) logQ(x) (3.6)

Kullback-Leibler Divergence (relative entropy)

Let us now assume that we have two distributions P and Q defined over
the same domain. We can use the concept of entropy to generate a measure
of "distance" between these two distributions. E.g., in our case, we could
be interested in generating a notion of similarity between the probability
distribution of launching the different applications available to two different
users.

The Kullback-Leiber Divergence (KLD) is defined as

KLD(P‖Q) =
∑
x∈X

P (x) logP (x)−
∑
x∈X

P (x) logQ(x) (3.7)

=
∑
x∈X

P (x) log
P (x)

Q(x)
, (3.8)

The relative entropy KLD(P ||Q) is a "measure" of the inefficiency of
assuming that the distribution is Q when the true distribution is P .

Jensen-Shannon Divergence

The KLD is not a metric. For instance, it is not symmetric (KLD(P‖Q) 6=
KLD(Q‖P)). By defining a new quantity known as the Jensen-Shannon
Divergence (JSD)

61

3.4 Entropy of the behavior

JSD(P‖Q) =
1

2
KLD(P‖M) +

1

2
KLD(M‖P) (3.9)

= JSD(Q‖P), (3.10)

where M = 1
2(P + Q), we can respect the symmetry condition. Re-

grettably, we will still be missing a last condition (the triangle inequality).
To respect this last condition, we can use the squared root of the JSD, as
suggested in [45].

3.4.2 Mutual information

Consider two random variables X and Y with a joint probability mass func-
tion P (x, y) and marginal probability mass function P (x) and P (y). The
mutual information I(X;Y) is the relative entropy between the joint distri-
bution and the product distribution P (x)P (y):

I(X;Y) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
= KLD(P (x, y)||P (x)P (y)) (3.11)

The relative entropy is the “extra” entropy that we will have because we
use Q instead of P (is relative because it is not the total entropy but the
extra after the level of entropy of P). So the total entropy or “inefficiency”
will be H(P) +KLD(P ||Q).

3.4.3 Behavior entropy analysis

We applied these concepts to the analysis of the user behavior by building
a tool to estimate the (differential) entropy of the user activity for different
intervals of time T . To do so, we use a simple (naïve) technique. In the
first stage, we estimate the probability density, and then we estimate the
differential entropy from the estimated density.

Figure 3.8 shows the results of these estimations. We see that the entropy
is strongly related to the periodicity of the behavior. This is because points
will tend to align for the true period of the behavior, generating distributions
with lower entropy. Figure 3.9 shows a comparison between an arbitrary
value of T and T ≈ 24, which is the period that produces the minimal
differential entropy for this particular user. It is also important to notice that
this is the case because we are normalizing to 1 the length of all periods to
make them comparable. Without this normalization, as the period increases,
the domain of the distribution would also grow.

62

3. Exploratory Data Analysis (EDA) and user profiling

Figure 3.8 – Entropy analysis. Estimated differential entropy of the real user
behavior (session logins) for different periods. The orange circles mark the
value for T ≈ 7.35 hs and T ≈ 24 that which are compared in Figure 3.9

(a) (b)

Figure 3.9 – Comparison of the results for (a) T ≈ 7.35 hs and (b) T ≈ 24 hs
which is the period with minimal differential entropy. The numbered orange
circles represent the logins as they appear in the dataset and the blue line
represents the estimated density.

63

3.5 Learning representations and user profiling

AppId 4 8 10 13 14 15 17 18 19 21 23 25 26 27 28

Count 5.0 1.0 1.0 2.0 5.0 1.0 8.0 1.0 9.0 16.0 16.0 17.0 134.0 7.0 71.0

Table 3.5 – Count of launches by application for user 2 from Systancia.

3.5 Learning representations and user profiling

While in the previous section, we focused on hand-crafted transformations,
in this section, we will explore techniques that will let the algorithm learn
the representations. An in-depth review of different techniques can be found
in [13]. We will show how this learned representations will help us with the
task of profiling users. This is, to use features of the users (mostly related
to their behavior) to identify subgroups of users.

Let us start with a concrete example of the kind of behavioral vectors
that we can associate to a user. First, we need a criterion to define which
aspect of the behavior we want to focus on. So let us focus on the role of the
user in the organization. In the case of a hospital, this would mean to be
able to group physicians, administrative staff, and other roles. If we assume
that the set of applications a person use are linked with their function in
the organization (e.i., physicians would use specific applications for their
function or will follow specific patterns when using them) we can define the
behavioral vector of the user, for instance, as the quantity of times she use
a certain application on a given period of time (like we show in Table 3.5).

Of course, the type and complexity of the features that compose the be-
havioral vector will allow us to capture different levels of relationship between
the user.

3.5.1 Eigenbehaviors

Let us assume we have a dataset D = {x1, . . . ,xN} composed by column
vectors of D components with zero mean (without lack of generality since
we can always subtract the mean vector x̄ = 1

N

∑N
i=1 xi to each vector). We

can think of the dataset as a cloud of points in a D-dimensional space, where
each one of the D components of a data point represent the magnitude of a
feature for that point.

In general, it is interesting to know the covariance between the features.
So if we want to compute the covariance matrix of the features, we can first
construct a matrix X by "stacking" the transposed N column vectors in a
way that the ith row of the matrix contains the ith vector (this matrix is
known as the "design matrix") and compute the covariance as

S =
1

N
XTX (3.12)

64

3. Exploratory Data Analysis (EDA) and user profiling

Although the covariance matrix is interesting in itself, it can also be used
to find projections of data in spaces of dimension M (with M < D). This
is because the directions of the greatest variance will be the ones with the
smaller error when projecting the data, and we will be keeping as much of
the original structure (in the sense of the covariance) as possible. So now we
try to find the direction of the greatest covariance

u1 = arg max
‖u‖=1

uTSu. (3.13)

Solving this constrained optimization problem (introducing a Lagrange
multiplier λ), we find that u1 should satisfy

Su1 = λ1u1 (3.14)

what indicates that u1 should be an eigenvector of S, and since uTSu
is the covariance of the direction u, to choose the one with the greatest
covariance, we will choose the eigenvector with the greatest eigenvalue.

If we proceed and compute all the eigenvectors and eigenvalues, we will
be able to decompose S as

S = UΛUT (3.15)

where U is the matrix which columns are the eigenvectors, and Λ is
a diagonal matrix which values are their corresponding eigenvalues. This
decomposition is known as Principal Component Analysis (PCA) [70].

Although this is a general technique for matrix decomposition when the
design matrix is constructed by combining vectors that encode some aspect
of the user behavior, we obtain a tool for behavior analysis. For instance, a
design matrix composed by vectors of 24 components representing the hours
of a day (and a binary value at each component representing if the user was
present at that location) was used in [44] to obtain the "eigenbehaviors" of
the users (principal components of the design matrix). A similar analysis for
behavior prediction can be found in [42].

Group behavior

Instead of constructing the design matrix with samples of the behavior of
the user over time, another possibility is to consider a mean behavior for
each user and sample different users. By doing so, we get the eigenbehavior
of the group. By measuring the distance between the behavior of a new user
and the eigenbehaviors associated with each group, we can classify them.

65

3.5 Learning representations and user profiling

(a) (b)

Figure 3.10 – Comparison of PCA results. (a) PCA applied to the matrix of
distributions (b) PCA applied to the distance matrix

3.5.2 User profiling

We will compare two different embeddings, one embedding generated by
normalizing the vector of counts of the application launches, as shown in
Table 3.5. This is equivalent to computing the parameters of a categorical
distribution over the applications by maximum likelihood. As a result, for
each user, we will have one distribution over the set of applications. A second
embedding, will result from using the square root of the JSD (described in
3.4.1) as a metric to measure the distance between the distribution associated
with each user and generate a distance matrix. A square matrix D = (dij)
where each dij =

√
JSD(Pi‖Pj) and size U equal to the quantity of users.

Although we can cluster the users in the original space, we would like to
generate visualizations that could be presented to the administrator of the
system. In the rest of this section, all the visualizations will be based on the
Hospital Center X dataset unless specified otherwise [27].

We applied the PCA technique, as explained in Sec. 3.10a. We noticed
that although the result when using the distance matrix (Figure 3.10b) is
better than the one obtained by using the distributions (Figure3.10a), neither
of them let us clearly group users. Since PCA is a linear technique, we explore
non-linear techniques to try to improve our results.

Different manifold learning techniques will give priority to different char-
acteristics of the original structure. Isomaps [125] (see Figure 3.11b) tempts
retain as much global structure as possible by using the geodesic distance
while Local Linear Embedding (LLE) [111] (see Figure 3.11c) tries to keep
the local structure. Finally, when we try Multidimensional Scaling (MDS)

66

3. Exploratory Data Analysis (EDA) and user profiling

(a) (b) (c)

Figure 3.11 – Comparison of the results of (a) MDS, (b) Isomap and (c) LLE
applied to the distance matrix.

[41], we observe a well-known phenomenon of getting a "ball" where all
points are uniformly spread in the plane.

A technique proposed by [133], the t-Distributed Stochastic Neighbor
Embedding (t-SNE), tries to tackle this problem. We test this approach,
and we get to generate clearly defined groups, as shown in Figure 3.12.
Although, we see that the results we get for the distance matrix (Figure
3.12b) are superior.

The final result of the t-SNE technique strongly depends on the hy-
perparameters of the model (perplexity, early exaggeration, and number of
iterations). In Figure 3.13, we can see the effect of different values of the
perplexity.

3.5.3 Clustering

There are different techniques that we can use to associate each point to
a group. We will start by exploring the most common one, the k-means
algorithm [27]. We show our result in Figure 3.14a, we see that since k-
means work by associating points with respect to the distance to the centroid
of the cluster, it can produce results that will not follow our intuition. In
particular, we can see that effect for the yellow cluster in Figure 3.14a. To
avoid this problem, we can use spectral clustering [98], which construct an
adjacency graph. We see in Figure 3.14b, that the problem of the yellow
cluster is solved. But we noticed that the final result strongly depends on
the initialization.

In both of these techniques, we need to specify a priori the number of
clusters. A possible solution to avoid the need of administrator defining this
parameter consist of using a nonparametric approach like a Dirichlet process
[97].

In Figure 3.14, we use the methods discussed above for the Systancia
database, which have less than one hundred users. Now we can clearly display

67

3.5 Learning representations and user profiling

(a) (b)

Figure 3.12 – Comparison of t-SNE results. (a) t-SNE applied to the matrix
of distributions (b) t-SNE applied to the distance matrix.

Figure 3.13 – Effect of the perplexity for t-SNE applied on the distance
matrix.

68

3. Exploratory Data Analysis (EDA) and user profiling

(a) (b)

Figure 3.14 – Comparison of the clusters obtained by (a) k-means and (b)
spectral clustering.

User 55 3 112 79

55 0 1.446 0.499 1.411
3 1.446 0 1.207 0.493
112 0.499 1.207 0 1.473
79 1.411 0.493 1.473 0

Table 3.6 – Distances between selected users of Systancia

the IDs for each user. To explore the difference between points depending on
their location we will consider two arbitrary distant pairs of close points in
the plane, users 55 and 112 which are close in the upper part of the Figure
3.14 and users 3 and 79 which are close in the left bottom corner.

In Figure 3.16, we can compare the distributions for each of the users.
We see that the closeness between user 55 and 112 is mostly due to the
application 28, which is the most launched application for both of them.
While, users 3 and 79 share in common the use of applications 6, 7, 21 and
23. In the reduced distance matrix values (Table 3.6) we can see how the
fact that users 3 and 79 do not share any common application with user 55
and that user 3 and 112 do share in common application 16 is capture by
assigning to the first two relationships similar values of about 1.4 while for
the last one it assign a smaller value of 1.2.

Finally, to get a better understanding of the distance between them, we
show in Table 3.6 the resulting distance matrix.

69

3.5 Learning representations and user profiling

Figure 3.15 – Resulting clusters after applying t-SNE and k-means on Sys-
tancia’s matrix of distributions.

70

3. Exploratory Data Analysis (EDA) and user profiling

Figure 3.16 – Comparison between the distributions of different users

3.6 Discussion

It is known that the results of the k-means algorithm depend on the initial
conditions. The problem with this approach is that it is sensitive to outliers.
The final partition is not always optimal.

To evaluate the clustering, an objective function that measures its qual-
ity is required. Most of them try to optimize the inter and intra-cluster dis-
tances, for instance, by computing some metric like the quantization error,
Davies–Bouldin index, Silhouette index, or other clustering indices [148, 9].

3.7 Conclusion

Any software product developed along several years by different people is
susceptible to presenting data quality issues or inefficiencies. The detailed
scrutiny of the databases and the data itself in a data science project generate
an opportunity for improvement. After noticing that our problem shows a
particularly intensive use of categorical data, we developed different methods
for exploiting it. Although some of them seem to be extensively applied in
the industry, they do not seem to have been study in depth in academia,
hence the relevance of this analysis. Finally, in section 3.5, we have shown
how to combine general ML methods to solve the problem of generating
profiles of users based on behavioral characteristics.

71

3.7 Conclusion

72

Chapter 4

User modeling and behavior
prediction in cloud computing
architectures

4.1 Introduction

Opening sessions and remote applications implies to load a non-negligible
amount of data, parameters, and services. Therefore, desktop and applica-
tion virtualization suffers from delay. The launching time of the applications
can be reduced by predicting the future activity of the users and loading the
required resources in advance.

In this chapter, the modeling of the user behavior will be framed as a
statistical decision theory [108] problem which main component is the density
estimation problem. Under this framework, the distribution of the session
and application launches are estimated from recorded data. The estimated
distribution is then used to decide where to establish the intervals in which
we will execute an action (launching sessions or applications).

Implemented in a cloud computing product (AppliDis), this solution has
been deployed to production for customers (thousands of users, hundreds of
applications, tens of servers) around the world and tested over an interval of
time bigger than one year.

This chapter is organized as follows. Section 4.2 describes the essential
elements of statistical decision framework that support our methods. Section
4.3 shows how the user model can be used for predicting user activity, present
different use modes of the proposed solution, and proposes a method to find
an interval of time that captures most of the structure of the recurrent pat-
terns of the behavior. Section 4.4 presents different approaches to modeling
the PDF that describe the user behavior and propose a method to improve
the modeling results when only small datasets are available. In Section 4.5,
the performance of the proposed system is evaluated and a way of comparing

73

4.2 User modeling and statistical decision theory

different behavior prediction algorithms is proposed. Section 4.6 describes
the implementation of the system and the necessary GUI before being de-
ployed in production. Finally, Section 4.7 describes some preliminary results
of applying deep learning techniques to our problem.

4.2 User modeling and statistical decision theory

In the context of session opening and remote application launching, we define
user behavior as a combination of regular activity patterns over time that
will generally present a certain stochasticity. For instance, for a user who
works from Monday to Friday from 8 a.m. to 5 p.m., we expect to see some
opening of the sessions on Monday around 8 a.m. with a certain variability
related to different events that affect her punctuality. A probability model
can be used to capture this random phenomenon, and the activity data will
allow us to estimate the parameters generating the user model.

UM can be framed as a statistical decision problem where the objective is
to infer the distribution of the activity from data. This is known as inference.

We can differentiate two approaches based on their interpretation of the
probabilities, the parameters, and the data.

In a frequentist approach, the data D = {X1, . . . , XN} is a random sam-
ple drawn from a distribution indexed by an unknown fixed parameter θ. We
infer θ by looking for the value that maximizes the plausibility of the data.

θ̂ = arg max
θ

P (D|θ). (4.1)

While in a Bayesian approach, the unknown parameter θ is a random
variable, which distribution (called prior) reflects a subjective degree of belief
of the parameter having a certain value. Utilizing Bayes’ rule, this subjective
distribution is updated given the data (producing a posterior distribution).

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (4.2)

4.2.1 Statistical experiment

A statistical experiment is a family of probability distributions P = {Pθ :
θ ∈ Θ} parameterized by θ that belongs to the set of possible parameters
Θ. The selection of this family of distributions is based on assumptions. We
say that the family is flexible if it includes a great number of distribution,
and we assume that it will be big enough to contain the true distribution (or
at least a good enough approximation). As we will see later, there are also
drawbacks to the selection of a family of distributions that is too big.

74

4. User modeling and behavior prediction in cloud computing
architectures

4.2.2 Objective

The objective of a statistical decision theory problem is what we are trying
to infer. In our case,

T : Θ→ Y, θ 7→ T (θ) (4.3)

will be the identity function, because we are interested in the value of θ.
However, we could be interested in estimating any other function of θ, e.g.,
some norm of it.

4.2.3 Decision rule (estimator)

The decision rule or estimator

δ : X → Ŷ, X 7→ δ(X) (4.4)

is a function of the sample. The range of this function does not need to
be equal to the range of our objective function.

4.2.4 Loss function

The loss function

L : Y × Ŷ → R, (T (θ), δ(X)) 7→ L(T (θ), δ(X)) (4.5)

will encode a notion of cost associated to the estimation made by the
decision rule.

4.2.5 Risk function

Finally the risk function

R{T (θ), δ(X)} = Eθ [L{T (θ), δ(X)}] (4.6)

indicate the global cost we pay for choosing a decision rule δ.

4.2.6 Evaluating the estimator

Consistency

One of the first intuitive requirements for an estimator would be that the
estimate improves as the sample size increases. This notion is captured by
the consistency. As with any random variable, we can also define consistency
for an estimator. An estimator is weakly-pointwise consistent if p̂(x)→ p(x)
in probability for every x ∈ R and strogly-pointwise consistent if p̂(x)→ p(x)
almost surely.

75

4.2 User modeling and statistical decision theory

Bias of an estimator

If we consider the frequentist approach, the estimator is a random variable
that depends on the realizations of the data, and the uncertainty is embedded
in the distribution of this random variable. The first thing we could ask
ourselves is which is the accuracy of this estimator, this is, if we repeat the
process of applying the estimator to a sample, what would be the difference
between the mean value of the estimator and the parameter we want to
estimate. So, the bias of a point estimator δ of a parameter θ is defined as

Biasθδ = Eθ(δ)− θ (4.7)

So in the case of the estimator returning a distribution, we can use this
same definition in a point-wise fashion and we say that p̂(x) is an unbiassed
estimator of p(x) if for all x ∈ RN , Epp̂(x) = p(x).

Variance of an estimator

The variance,

V ar(δ) = Eθ{(Eθδ − δ)2}, (4.8)

will give the precision of the estimator.

Bias-variance trade-off

As we have seen before, we can use a loss function to establish a notion
of "distance" between the estimate (given by the estimator) and the true
probability density (which is unknown).

First we define in which space our densities will live. We will work with
the space

L2(a, b) :=

{
f :]a, b[→ R|

∫ b

a
|f(x)|2dx <∞

}
. (4.9)

This means that our densities will be square-integrable functions. When
equipped with the inner product

〈f, g〉 =

∫ b

a
f(x)g(x)dx, f, g ∈ L2(a, b), (4.10)

L2(a, b) is a Hilbert space with the associated L2 − norm defined as:

‖f‖L2(a,b)=

√∫ b

a
|f(x)|2dx, f ∈ L2(a, b). (4.11)

76

4. User modeling and behavior prediction in cloud computing
architectures

Now we can use this norm to measure the distance between the estimate
and the true density. The square root of the L2 − norm is the Integrated
Squared Error (ISE):

ISE(p̂, p) =

∫ b

a
[p̂(x)− p(x)]2 dx. (4.12)

But the ISE will be a random variable that will depend on the sample
we use to compute the estimate p̂, so in order to eliminate that dependence
we can compute the expected value of the ISE an get the Mean Integrated
Squared Error (MISE) defined as:

MISE(p̂, p) = E
[∫ b

a
[p̂(x)− p(x)]2 dx

]
(4.13)

Another possibility is to measure the expected squared error at each
point, which leads to the Mean Squared Error (MSE):

MSE(p̂, p, x) = E [p̂(x)− p(x)]2 = var [p̂(x)] + {bias[p̂(x)]}2 (4.14)

var{p̂} = Ep [p̂(x)− Ep {p̂(x)}]2 (4.15)

bias{p̂(x)} = E [p̂(x)]− p(x) (4.16)

If MSE(x)→ 0 for all x ∈ R as n→∞ then p̂ is said to be a point-wise
consistent estimator of p in quadratic mean.

If we integrate the MSE, we get

IMSE(p̂, p) =

∫ b

a
E [p̂(x)− p(x)]2 dx (4.17)

where thanks to Fubini’s theorem [127] we can show that MISE =
IMSE.

4.3 Behavior prediction

Behavior prediction, in this context, means to be able to use the UM (we
obtain thanks to the process defined in Section 4.2) to indicate a time in-
terval (or several intervals) in which the user will be active with a certain
probability. In Figure 4.1, we show that to generate the prediction, we need
to combine the model with some criteria that will allow to define the start-
ing and ending points of such intervals. In this section, we will define these
criteria.

77

4.3 Behavior prediction

Data
User

Modelling
Behavior
Prediction

Prediction
(Interval)

Model

Criteria

Figure 4.1 – Schema of the use of the UM for Prediction. User data is
processed to find a model of the activity which is then combined with some
criteria to produce a prediction.

Table 4.1 – Applications data.

x P (x)

0 0.05
1 0.05
2 0.3
3 0.2
4 0.4

4.3.1 Prediction: Linking probabilities with intervals

The UMs that we will generate will be represented either by a discrete or
a continuous probability distribution. One possible criterion, to choose the
interval that will cover a certain amount of probability mass m, could be to
choose a central interval which is defined as the interval that left two tails of
massm/2 at each side of the distribution. The problem with central intervals
is that for certain distribution, it is possible to find smaller intervals that
cover the same amount of probability mass m. Since in our case, the size of
the intervals is associated to the use of resources (a session or an application
in idle state waiting for the user to connect) we want to define a criterion
that will guarantee that this interval is the smallest for the given probability
mass m.

Intervals for the discrete model

For the case of a discrete distribution, we will explain the mechanism that
will let us find the smallest interval that covers at least a probability mass
m with the following example. Let us assume that we have the discrete
distribution as defined in Table 4.1 over a finite domain.

We can generate a mapping as shown in Table 4.2 between probabilities
and intervals by first ordering Table 4.1 in descending order by P (x) and
by x and then progressively adding the different values of x to an empty set
(note, that since we also order in descending order by x we first added 1 to
the set and then 0).

We see that in the discrete case, this method only offers a finite amount
of intervals that cover specific amounts of probability mass m (in this case,

78

4. User modeling and behavior prediction in cloud computing
architectures

Table 4.2

P (I) I
0 {}
0.4 {4}
0.7 {4, 2}
0.9 {4, 2, 3}
0.95 {4, 2, 3, 1}
1 {4, 2, 3, 1, 0}

0, 0.4, 0.7, 0.9, 0.95 and 1). To allow our model to choose between the con-
tinuous of values in (0, 1) we need to consider what happens when we select
intervals over time. This aspect of the problem will be covered later in this
chapter, but we introduce the notion of the solution also with an example.
To solve this problem, we need to introduce the idea of randomization. Let
us assume that we want to fix m = 0.8. In that case, a solution is to launch
50% of the time the interval that corresponds with a probability mass of 0.7
({4, 2}) and 50% of the time the interval that correspond with a probability
mass of 0.9 ({4, 2, 3}).

Intervals for continuous model

In the case of a continuous distribution, applying the same criterion of choos-
ing the smallest interval that cover the required amount of probability mass
m becomes, some how, easier to state. Starting by the user model in the
form of a PDF (represented by the yellow curve in Figure 4.2), we can use a
threshold 0 ≤ T3 <∞ to define a prediction interval,

I = {θ : p̂σ(θ) ≥ T3} , (4.18)

where we see that T3 let us control the interval size (s):

s = S(T3) =

∫
I

1

T
dθ (4.19)

and the probability mass (m) associated with the prediction interval:

m = M(T3) =

∫
I
p̂σ(θ) dθ. (4.20)

With this two functions we can define a parametric curve

C :

{
s = S(T3)

m = M(T3)
; 0 ≤ T3 ≤ max(p̂σ), (4.21)

79

4.3 Behavior prediction

0 5 10 15 20

time (h)

0.0

0.2

0.4

0.6

0.8

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

Probability Mass (M):0.74
Interval Size (S) (as % of T):0.11
Control Threshold (T3):0.18

Launches distribution over period T=24h

Figure 4.2 – The resulting PDF (orange curve) for an office user for a pe-
riodicity T = 24. This was inferred with the first 12 application launches.
The threshold T3 (blue dashed line), the probability mass m (integral of the
blue region), the effect of the bandwidth h, the interval I and its size s.

where each point will be associated with an interval I of size s that will
cover a probability mass m.

Considering that m is the probability of the user being active inside the
interval (according to the user model), the first thing to notice is that by
defining I as in Eq. 4.18, for a certain probability mass m we are minimizing
the interval size s. This means that I will be the smallest interval that will
let us cover m percentage of the user activity, and its size will be s.

Noticing that the range of S and M is [0, 1] we can consider two extreme
cases: if T3 = 0 ⇒ s = 1,m = 1 and the prediction interval I = [0, T]. On
the other hand, if T3 = max(p̂σ)⇒ s = 0,m = 0 and the prediction interval
I = ∅.

Since the intervals are associated with the cost of the utilization of re-
sources (like CPU and RAM) to preload a session or an application and
covering a certain amount of the user activity is related with the savings of
the time gain. We see that there is a trade-off between resource utilization
and time saving.

Also, the reader who is familiar with the Bayesian approach to statistics
will recognize that our criterion is equivalent to the method for the selection
of the Highest Posterior Density (HPD) region [97].

80

4. User modeling and behavior prediction in cloud computing
architectures

4.3.2 Prediction: Use modes

The pipeline we have described applies to individual users. When we consider
the whole set of users of an AppliDis’ system installed at a given customer
we can think about three different use modes [28]:

• A first use mode, where the administrator of the system wants to set
the expected value of the covered probability of the whole system to a
certain value, in this case, we can minimize the sum of all the interval
sizes.

• A second one, where the administrator wants to use a certain amount
of the idle computing power of the whole system.

• A third one, based on finding the optimal balance between the last two
modes. To choose T3 we can solve an optimization problem with cost
function:

J(T3) = α1S(T3)− α2M(T3), (4.22)

where α1 and α2 are positive constants that quantify the willingness
of trading size of the interval for probability of covering the launch
of a session or application. In particular, α1 can be related to the
computational cost (CPU and RAM) of keeping a session or application
idle, and α2 can be related to the cost associated to the waiting time
of the user.

Minimizing eq. 4.22 analytically,

r =
α1

α2
=
M ′(T3)

S′(T3)
(4.23)

shows that the minimum of the cost function will be at the point where
the ratio between α1 and α2 equals the ratio between the first derivatives of
M and S with respect to T3.

On a more general framework, we can define the cost function J to be a
non-linear function of s and m.

4.3.3 Applying the proposed pipeline: Controlling the aver-
age application start-up time

Although the parameters m and s allow to control the system in a very
flexible way and for different use modes (as shown in Section 4.3.2), they
are not intuitive for the administrator of the system. Much more intuitive
quantities are the resource consumption (like CPU and RAM consumption)

81

4.3 Behavior prediction

and the time gain. This is why, in this section, we present the link between
these quantities first considering just an individual user, and then we discuss
an approach to solve the problem for a group of users.

The application start-up time is the time between the moment the user
opens the application until it is ready to be used. This time depends on
the application, the server resources (available at the time the application is
launch), and other factors (as the network load). All these random factors
will make the start-up time non-deterministic. Hence, we will consider it
as a random variable. For the same reasons, each time the application is
correctly predicted, and we reduce the start-up time, the resulting time gain
will also be random. To eliminate this randomness from the estimate of the
start-up time, we will compute the expected value of this quantity for each
user.

Expected start-up time for a user

The expected start-up time of the applications for a given user will be given
by

ti = ciBTi + (1− ci)NBTi = NBTi − ci (NBTi −BTi), (4.24)

where

• ci, is the average percentage of correct predictions (this is the percent-
age of the launched sessions or applications that have been correctly
predicted and therefore boosted).

• NBTi, is the average of non-boosted applications’ start-up time.

• BTi, is the average of boosted applications’ launch time and

• ti is the expected start-up time of the applications.

All the previously defined quantities are for user i. E.g., let us assume
that our algorithm is able to correctly predict 80% of all the launches (ci =
0.8) of the user i and that the expected value of the start-up time of an
application without any acceleration is 15 seconds (NBTi = 15) and the
expected value of the start-up time of an application that has been correctly
predicted and therefore boosted is 3 seconds (BTi = 3). Then the expected
start-up time is

ti = (0.8) 3 + (1− 0.8) 15 = 15− 0.8 (15− 3) = 5.4s. (4.25)

Eq. 4.24 can also be used to compute the required average of correct
predictions to achieve a certain wished expected start-up time of the appli-
cations (ti) by solving for ci. For a given start-up time ti,

82

4. User modeling and behavior prediction in cloud computing
architectures

ci =
(NBTi − ti)

(NBTi −BTi)
. (4.26)

In that case, we only need to plug the value of the wished expected start-
up time of the applications (ti) in Eq. 4.26 and recover NBTi and BTi
from the historical data. Then we set the target of correct prediction of our
algorithm to the value ci.

As we can see, these results would depend on the assumption that our
user model is correct, this is that c ≈ m. Later in this chapter, we will show
how we can asses this assumption.

Average start-up time for a group

Usually, the administrators of the systems are not focused on the start-up
time of individual users but on the start-up time of a group of users. We now
propose some approaches to tackle the problem of optimizing the start-up
time for a group of users [29].

Let G be the set of users {ui}Ni=1. The expected application start-up time
for a group of users can be defined as:

GT =
1

|G|
∑
G

Ti(ci|BTi, NBTi) (4.27)

where |G| is the cardinality of the set G (quantity of users in the group),
and Ti is a function parameterized by BTi and NBTi that returns the time
associated to the average percentage of correct prediction (ci).

If we want to make GT equal to the group average wished start-up time
(TT) we can either,

• set all Ti to the same value or

• we can set an optimization problem (a relaxed nonlinear continuous
knapsack problem):

minimize
N∑
i=1

Ri(ci) (4.28)

subject to
N∑
i=1

Ti(ci|BTi, NBTi) = TT. (4.29)

0 ≤ ci ≤ 1 , i = 1, . . . , N (4.30)

Where, Ri is a non-linear function that returns the resource cost associ-
ated with the level of correct prediction ci. To find an approximate solution,
we can use a heuristic, e.g., a greedy algorithm [23].

83

4.3 Behavior prediction

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

time t (hours)

Figure 4.3 – The user activity can be plotted over a time starting from
an arbitrary reference at a given point in time. In this figure, each star
represents an activity event (for instance, an application launched by the
user) between 12 and 28 hours since an arbitrary reference t = 0.

4.3.4 The behavior periodicity

Section 4.3.1 shows how, assuming knowledge of the true probability dis-
tribution of the behavior (session or application launches) over an interval
of time T , we can tell which is the probability of the session or application
launches to fall inside any region of the domain. Moreover, it shows that
we can identify the smallest region that covers any arbitrary probability and
that the size of this region will be proportional to the probability covered.
Now, in this section, we will focus on how to define a suitable interval of time
T that will serve as the domain of the probability distribution that defines
the user model.

If we observe the activity of the user over a period T , as represented in
Fig. 4.3, we will notice that the application launches tend to be clustered.
Usually, when the user starts a session, she will use a set of applications
to perform some tasks, and then a period of inactivity will follow. This
means that the activity events (opening sessions or launching applications)
are not independent of each other. In the case of models that are based on
independence assumptions (like,for instance, the ones we use) we have (at
least) two different options: the first option is just to relax the independence
assumption and see if the results remain useful even though this condition is
violated and second one is to condition on a subset of the events for which
the independence assumption still holds (for instance, in most cases, the
first application launches of a particular weekday will usually be mutually
independent being normally distributed around the time the user is supposed
to initiate her activity).

Another relevant point to notice is that, in general, the distribution of
events over an interval of time, will not be unimodal. For instance, if we
consider the intervals of T = 1 hour in Fig. 4.3, we will see that the activity
events will tend to accumulate at the beginning and the end of the hour,
generating two modes.

84

4. User modeling and behavior prediction in cloud computing
architectures

Apr 2016 May 2016 Jun 2016 Jul 2016 Aug 2016 Sep 2016 Oct 2016 Nov 2016 Dec 2016 Jan 2017
Date

0

5

10

15

20

25

30

35

40

Q
u
a
n
ti
ty

Simultaneous Applications

Figure 4.4 – Quantity of simultaneously open applications for a user over a
period of 10 months.

4.3.5 Analysis of periodicity (defining T)

In this section, we will study the periodicity of the behavior and develop a
method to detect the best value for T automatically.

Starting with a signal that represents the number of simultaneous appli-
cations open at a given moment, as shown in Fig. 4.4, we will try to identify
the period that accounts for the biggest amount of behavioral patterns and
use this value to set the domain of the distribution.

Since the data has a precision of milliseconds, we cannot recover vari-
ations over periods of less than a millisecond. However, since we measure
human activity, we can assume that there will not be any significant use of
an application with a total duration of less than a minute. For this reason,
we choose a minute granularity so that the signal will count the amount
of simultaneous open applications for any given minute for a time interval
defined by the date of the earliest application launch (AppStartDate) and
the latest application launch (AppEndDate) of a particular user.

Following the same approach as in [136], this signal will be transformed
utilizing the normalized Discrete Fourier Transform (DFT).

Given a sequence x(n) with n = 0, . . . , N − 1 the DFT of the sequence
x(n) will be a vector X(k) ∈ CN :

X(k) =
1√
N

N−1∑
n=0

x(n)e−2πikn/N , k = 0, . . . , N − 1 (4.31)

then, utilizing the periodogram, which is defined as

85

4.3 Behavior prediction

P (k) = ‖X(k)‖2, k = 0, . . .,dN − 1

2
e (4.32)

we can estimate the Power Spectral Density (PSD), which gives the power
at each frequency.

The interesting frequencies will be the ones with high power in the PSD
and to select them, we can apply different methods to generate thresholds:

1. Permutations.

2. A white noise process.

3. Standard deviation.

The first method is based on permutations and estimates the maximum
power in the periodogram that corresponds to our sequence after elimination
of the periodic structure by permutation.

pmax = arg max
f

‖Xper(f)‖2 (4.33)

The second approach relies on a white noise process and computes the
maximum power in the periodogram of a process where Xt is normally dis-
tributed with mean µ and variance σ equal to the estimated values of mean
and variance of the sequence x(n).

Finally, the third approach consists in measuring the standard deviation
σ from a moving mean and choose the values that deviate more than d =
c σ (being c a fixed constant) from the moving mean. The benefit of this
approach is that, in this case, the threshold is not a single value and adapts
to the variations of the signal like we see in Fig. 4.5.

It is also important to notice that there are two points (related to the
two extremes of the frequency spectra) to consider when analyzing which
patterns we will be able to detect. As to being able to detect patterns that
repeat within a short interval of time (high-frequency patterns), there will
be a minimum sampling rate to ensure that the reconstruction is good (this
means to get the same result as if the signal would be continuous). E.g.,
if we are sampling each minute how many applications are open, and the
user open and close an application in a fraction of a second (between two
sampled points) we will miss that open and close. This means that we will
not have information about this behavior that has a very high frequency
(period very short). On the other hand, to detect patterns that repeat over
a long interval of time (low-frequency patterns), there will be a minimum
time we have to record launches to detect this periodic pattern [26]. E.g.,
if we want to detect a pattern with a period of one year, we need at least
to record more than one year of data (it is not possible to detect a periodic
pattern from just one sample).

86

4. User modeling and behavior prediction in cloud computing
architectures

Frequency [Hz]

0.4

D
en

si
ty

24.02h

28.03h

11.99h21.02h

6.00h

8.00h
15.26h
14.33h 11.19h
12.94h

4.00h4.80h9.71h 9.33h 3.43h7.30h

Periodogram
Limit
Relevant frequencies

0.3

0.2

0.1

0
0 0.00002 0.00004 0.00006 0.00008 0.000010

Figure 4.5 – Periodogram, limit and selected frequencies for an office user.

4.4 Modeling the application launches

We choose to start by generating a user model of the distribution of the first
session login over a period T = 24h based on the observation that:

• human behavior tend to naturally present daily patterns,

• the distribution of the first session logins tends to be unimodal for a
given weekday,

• the samples seem to be independent of each other and

• the fact that first session logins belong to the group of activities that
report the greater time gain when recovered.

In the dataset, we have for each session login the user U , the weekday
WD , and the hour H (extracted from the timestamps). In particular, we
will keep just the data points that correspond to the first session login of
each day.

These three random variables will have a joint probability distribution
P (U,WD , H), and we can represent one of the possible factorizations with
a simple Bayesian network, as shown in Fig. 4.6.

In particular, the graphical model in Fig. 4.6 implies the following fac-
torization:

P (U,WD , H) = P (H|WD , U)P (WD , U) (4.34)
= P (H|WD , U)P (WD |U)P (U). (4.35)

87

4.4 Modeling the application launches

Figure 4.6 – Simple graphical model of the considered variables.

To approach our problem, in the following sections, we will define differ-
ent statistical models of P (H|WD , U), which is the conditional probability
of having the first session login at a certain hour given the weekday.

4.4.1 Modeling with a discrete distribution: Categorical dis-
tribution

Let us assume that we have a sequence of discrete random variablesX1, . . . , XN .
The sample space Ω = {0, . . . , 23} represents the 24 hours of the day. This
means that the variables can take on one of K = 24 mutually exclusive
states. A realization of X can be represented with a one-hot encoded vector
(e.g., x = (0, 0, 1, . . . , 0, 0)T), this is, a vector of size K that takes the value
1 in the position that corresponds to the outcome while all other values are
0 and satisfy

∑
k xk = 1.

We can now generate a parameter vector θ where each component θk
will denote the probability of xk = 1 (imposing θk ≥ 0 and

∑
k θk = 1) and

define the distribution of x given θ as:

P (x|θ) =
∏
k

θxkk (4.36)

The fact that
∑

x P (x|θ) = 1 is easy to show, since
∑

x P (x|θ) =
∑

k θk
and we imposed

∑
k θk = 1. This distribution P (x|θ) is known as the cate-

gorical distribution [16].
Let us assume we have a sequence of observations D = {x1, . . . ,xN}.

The likelihood function of the data given the parameter vector is given by

P (D|θ) = P (x1|θ)P (x2|θ,x2)

N∏
n=3

P (xn|θ,x1, . . . ,xn−1) (4.37)

where by assuming that the observations are independent, we can avoid
considering the dependence on the previous observations, and we get:

88

4. User modeling and behavior prediction in cloud computing
architectures

P (D|θ) =
N∏
n=1

P (xn|θ) (4.38)

=
∏
n

∏
k

θxnkk (4.39)

=
∏
k

θ
∑
n xnk

k (4.40)

The log-likelihood will be then:

logP (D|θ) =
∑
k

Nk log θk (4.41)

where Nk =
∑

n xnk.

Frequentist approach to the parameter estimation: Maximum Like-
lihood Estimator (MLE)

To derive the maximum likelihood estimator of the parameter vector θ, we
need to look for the value of θ that maximizes the likelihood (or the log-
likelihood).

θMLE = arg max
θ

P (D|θ) (4.42)

s.t.

K∑
k=1

θk = 1 (4.43)

Since this is a constrained optimization problem, we can use a Lagrange
multiplier λ to find the maximum of this function with respect to θk. This
is, to find the maximum of

K∑
k=1

Nk ln θk + λ

(
K∑
k=1

θk − 1

)
, (4.44)

we set the derive of 4.44 with respect to θk to zero

Nk

θ1
− λ = 0 (4.45)

solving for θk and replacing in 4.43 we get

89

4.4 Modeling the application launches

θMLE
k =

Nk

N
. (4.46)

This means that the maximum likelihood estimator of the vector param-
eter θ is given by the relative frequency of the hours of first session logins.
Since all the information about the vector of parameters θ is summarized
in the vector of sums of the number of logins for each hour (making it a
sufficient statistic), we do not need to keep any other data.

The MLE is a consistent estimator. This means that as the size of the
dataset increase, the estimator tends in probability to the true value of the
parameter θ.

Bayesian approach to the parameter estimation: Maximum a pos-
teriori (MAP)

As explained in Section 4.2, another way of learning from the data is by
applying a Bayesian framework. In this case, we will start by defining a
prior over the set of the 24 hours of the day.

A valid candidate for the prior p(θ) is the Dirichlet distribution

Dir(θ|α) =
1

B(α)

∏
k

θαk−1k (4.47)

where

∑
k

θk = 1 and θi ≥ 0 for all k ∈ [1,K], (4.48)

which also provides the benefit of being conjugate of the multinomial.
By multiplying the prior and the likelihood, defined in Equation 4.4.1,

P (D|θ) =
∏
k

θ
∑
n xnk

k =
∏
k

θNkk (4.49)

we get the unnormalized posterior, which is proportional to the posterior

p(θ|D) ∝ p(D|θ)p(θ) (4.50)
= Dir(θ|α1 +N1, . . . , αK +NK) (4.51)

This model is known as the Dirichlet-multinomial model [97].
To obtain the MAP estimator we now look for the parameter vector θ

that maximize the posterior distribution, this is

90

4. User modeling and behavior prediction in cloud computing
architectures

θMAP = arg max
θ

p(θ|D) (4.52)

s.t.

K∑
k=1

θk = 1. (4.53)

To solve for θ we can, once again, use a Lagrange multiplier yielding

θMAP
k =

Nk + α1 − 1

N + α0 −K
(4.54)

where

α0 =
∑
k

αk. (4.55)

The main benefits of this approach are that:

• it allows to use prior knowledge (e.g., for an office we do not expect
to see activity during the weekends) or the relative frequency observed
on other customers as a prior distribution,

• it is naturally suitable for online learning and

• it provides a measure of confidence over the parameter of the user
model.

4.4.2 Modeling applications with a continuous distribution:
Kernel Density Estimation (KDE)

Although in Section 4.4.1 the study focused on modeling the user behavior
over a period of 24 hours by using a discrete distribution, we now show an
approach based on a continuous distribution that will allow us to construct
a user model that

• can identify the adequate main period for the user model,

• produces several intervals inside that period if needed,

• can produce intervals of any size,

• with any granularity (not just hourly),

• and to provide an isomorphic mapping between the intervals and the
probabilities.

91

4.4 Modeling the application launches

To estimate the PDF of the user model representing the user activity at
time t, we propose to use a Kernel Density Estimator (KDE) [97]. A KDE
is a non-parametric density model with a particular kind of kernel function
named smoothing kernel kh that satisfy:

∫
kh(t)dt = 1, (4.56)

∫
tkh(t)dt = 0, (4.57)

∫
t2kh(t)dt > 0. (4.58)

where h > 0 is a smoothing parameter called the bandwidth that let us
control the smoothness of the PDF by modifying the width of the kernel
[31]. Given a dataset of N samples, the PDF can be estimated by centering
a kernel function on each data point (ti):

p̂(t) =
1

N

∑N

i=1
kh(t− ti). (4.59)

To take into account the periodicity of the data, we can choose as basis
function a circular distribution. In our work, we choose the normal distribu-
tion wrapped around a circle of diameter T , known as a wrapped Gaussian
and defined as

WN (θ;µ, σ) =
1√

2πσ2

∞∑
k=−∞

exp

[
−(θ − µ+ Tk)2

2σ2

]
, (4.60)

where µ is the mean and σ is the standard deviation of the normal dis-
tribution (and will play de role of the bandwidth).

After transforming each ti via the mapping ti 7→ θi , θi = timodT . We
estimate the probability distribution of the data,

p̂σ(θ) =
1

n

n∑
i=1

WN (θ; θi, σ), (4.61)

by centering over each data point θi a wrapped Gaussian.

92

4. User modeling and behavior prediction in cloud computing
architectures

4.4.3 Model selection - defining h

Rule-of-thumb method

For a Gaussian kernel and assuming p to be normal, we can show that
minimizing the approximate mean integrated squared error yields

hopt =

(
4

3

) 1
5

σn−
1
5 ≈ 1.06σn−

1
5 . (4.62)

Where σ can be replaced with an estimate of the standard deviation
σ̂. [115] show that this method will tend to over smooth. Specifically, he
showed for a bimodal distribution how as the distance between the modes
gets larger, the over smoothing effect augments.

When visually inspecting the dataset and choosing T = 24, we see a
bimodal distribution with modes centered at the beginning of the morning
shift and the afternoon after launch. For this particular choice of T , with
the wrapped Gaussian kernel, even if we notice a tendency to over smooth,
we get acceptable results.

Cross-validation method

Another popular method to find the bandwidth h is based on minimizing
the ISE that can be expanded as,

ISE =

∫
[p̂(x)]2 dx+ 2

∫
p̂(x)p(x)dx+

∫
[p(x)]2 dx, (4.63)

where the last term does not depend on h. Additionally we can estimate
the second term using leave-one-out cross-validation [81].

From our dataset X1, . . . , Xn we remove Xi and use the remaining sam-
ples to compute the density estimate at the point Xi

p̂−i(Xi) =
1

(n− 1)h

∑
j 6=i

k

(
Xi −Xj

h

)
. (4.64)

Which is used to compute the unbiased cross-validation score (UCV)

UCV (h) =

∫
p̂2(x)dx− 2

n

n∑
i=1

p̂−i(Xi), (4.65)

for different values of h and select

h∗ = arg min
h

UCV (h). (4.66)

93

4.4 Modeling the application launches

4.4.4 Incorporating a PID controller to improve results

Even though we can re-estimate the value of the kernel bandwidth as new
observations of the application launches are gathered, it is normal to expect
the estimation of the PDF to present some deviation from the real underlying
PDF. This means that a certain interval I intended to cover a probability
mass m (based on our estimated PDF) will be, in general, finally covering
a probability mass m′ different from the expected m. This effect will be
particularly strong when just a very small dataset is available, for instance,
when we start collecting data for a new user.

To diminish this effect, we introduced a PID controller to the pipeline
that after each application launch, will measure the deviation of the current
correct prediction moving average from the target and adjust the threshold
T3. The controller output is equal to the sum of three terms, each one
parameterized by a gain (named proportional gain kp, integral gain ki and
derivative gain kd). The proportional term relates to the time the system
will need to reach the target and the error in the steady state, the integral
term relates to the bias (the residual steady-state error), and the derivative
term relates to the oscillation in the transient state.

The diagram in Fig. 4.7 shows the estimation process that starts when
the PID is initialized when the targetm is fed to the UpdatePID() function.
This value could be either a wished target (e.g., during the initialization) or
be the result of the computation of the current correct predictions moving
average. The PID will then compute and output the necessary modification
to the previous value of controlm that we call ∆ controlm. The new value
of controlm is computed by adding the proposed modification ∆ controlm
and clipped to ensure that the final new controlm value belongs to the in-
terval of admissible values (between 0 and 1). The new controlm allows the
Validation() function to compute a prediction interval for the next applica-
tion launch, test if it falls inside it and output a Boolean value (correct?)
indicating if it has been correctly predicted. Finally, the UpdateCurrentm()
function takes this last result and updates the new correct prediction moving
average, generating a new value of currentm, and closing the feedback loop.

current_m
(PID input)

UpdatePID()

∆ control m
(PID output)

control mi−1 + ∆ control m Clipping()

control m

Validation()
correct?

UpdateCurrentm()

target m
(PID initialization)

Figure 4.7 – Diagram showing the role of the PID controller and the feedback
loop.

94

4. User modeling and behavior prediction in cloud computing
architectures

4.5 Results

To test the performance of our proposed pipeline, we will now use the two
application launches datasets described in Section 3.2.2 to run what we call
a simulation since it allows us to verify the results that we would obtain
if the pipeline would be active at the customer. One by one, the applica-
tion launches will be provided to the pipeline for training and generation
of a prediction interval that will be tested with the next application launch
(effectively dividing our dataset in train and test subsets at each iteration).

One part of each dataset will be used for hyperparameter tuning, while
another part will be held out to get the final results once the hyperparameter
of the system have been selected.

For each simulation, we need to define the following inputs:

• the database,

• the set of considered users,

• the period T over which we will generate the user model,

• the three gains of the PID (kp, ki, kd), and

• a list of targets for the average of correct predictions.

The targets that we expect our algorithm to attain and hold as the user/s
launch their applications will usually be set of values from 0 to 1 with incre-
ments of 0.1 to be able to evaluate the performance properly.

As a result, the simulation returns a dictionary of sequences that can be
used to generate a plot similar to the one we see in Figure 4.8 containing:

• the target for the average correct predictions (dashed black line)

• moving average of the percentage of correct predictions (solid green
line)

• moving average of the percentage of time that the applications re-
mained idle waiting for the user to launch it (solid red line)

• size of the prediction interval as a fraction of T (dotted red line)

• probability mass m covered by the interval (dotted blue line)

4.5.1 User model evaluation

First, we evaluate the performance of the user models (rule-of-thumb and
the cross-validation) alone. This means making the PID controller inactive
by setting all the gains to 0. We verify the presence of the issues described in

95

4.5 Results

Section 4.4.4, being that a significant number of launches were needed to sta-
bilize the moving average number of correct predictions, and a non-negligible
bias was present. Figure 4.8 shows the result of one of such simulations for
one user and a target of average correct predictions of 70% [29]. In this case,
we observe a difference of about 10% after the moving average stabilize.

0 50 100

Number of application launches

0.8

1.0

M
ov

in
g
 a

ve
ra

g
es

0.6

0.4

0.2

0.0
150 200 250 300

Figure 4.8 – Simulation results setting a target of 70% of correct predic-
tions and without PID showing the target for the average correct predictions
(dashed black line), the moving average of the percentage of correct predic-
tions (solid green line), the moving average of the percentage of time that
the applications remained idle waiting for the user to launch it (solid red
line), the size of the prediction interval as a fraction of T (dotted red line)
and the probability mass m covered by the interval (dotted blue line).

Next, we explore the effect of the different components of the PID on the
validation dataset and look for a suitable set of values by performing a grid
search. The results for a particular set of parameters is shown in Figure 4.9.

Setting the constrain of avoiding big variations around the target yield
the selection of the gain values: kp = 0.5, ki = 0, kd = 0.

Since we would like the system to be capable of getting better estimates
of the underlying probability density as more application launches are used
for training. We verified how fast it converges to a reliable user model and
we show the results for the rule-of-thumb (Figure 4.10) and cross-validation
method (Figure 4.11). These figures overlay two different set of plots. The
green curves show target (x-axis) versus moving average of correct predic-
tions (y-axis), while the red curves show target (x-axis) versus proportion
of resources consumed for different dataset sizes (10, 50 and 100 application
launches). As a reference, the expected result of an ideal model is indicated

96

4. User modeling and behavior prediction in cloud computing
architectures

0 50 100

Number of application launches

0.8

1.0

M
ov

in
g
 a

ve
ra

g
es

0.6

0.4

0.2

0.0
150 200 250 300

(a)

Oct 2015 Dec 2015 Feb 2016 Apr 2016 Jun 2016 Aug 2016 Oct 2016 Dec 2016

0.8

1.0

M
ov

in
g
 a

ve
ra

g
es

0.6

0.4

0.2

0.0

Date

(b)

Figure 4.9 – Results of the simulation after incorporating the PID controller
showing the target for the average correct predictions (dashed black line), the
moving average of the percentage of correct predictions (solid green line), the
moving average of the percentage of time that the applications remained idle
waiting for the user to launch it (solid red line), the size of the prediction
interval as a fraction of T (dotted red line) and the probability mass m
covered by the interval (dotted blue line). The results can be plotted by (a)
application launch or (b) over time.

by a dashed black line.
We observe that:

• While both methods (rule-of-thumb and cross-validation) present diffi-
culties to attain high targets (between 0.8 and 1), the cross-validation
method is about 150% more efficient (when comparing the moving av-
erage proportion of correct prediction and the proportion of resources
consumed).

• The rule-of-thumb method seems to converge faster but tends to con-
sume more resources making it suitable for users with little data.

• The cross-validation method with the PID can produce about 80% of
correct predictions while keeping the overhead below 40% and can get
more than 50% of correct predictions with less than 20% overhead.

Although the rule-of-thumb is indeed a less computationally expensive
method, in general, it is not a problem for the cloud to distribute the extra
load associated with training the cross-validation method during an interval
of time where the computational demand of the servers is low.

We conclude that the recommended default setting for the pipeline will
be to set the values of the PID gains to kp = 0.5, ki = 0, kd = 0, and apply
the cross-validation method.

97

4.5 Results

0.0 0.2 0.4 0.6 0.8 1.0
Target proportion of correct prediction

0.0

0.2

0.4

0.6

0.8

1.0

At
te

in
ed

 p
ro

po
rti

on
 o

f c
or

re
ct

 p
re

di
ct

io
n

\
 P

ro
po

rti
on

 o
f c

on
su

m
ed

 re
so

ur
ce

s

After 10 launches
After 10 launches
After 50 launches
After 50 launches
After 100 launches
After 100 launches

(a) Group 0

0.0 0.2 0.4 0.6 0.8 1.0
Target proportion of correct prediction

0.0

0.2

0.4

0.6

0.8

1.0

At
te

in
ed

 p
ro

po
rti

on
 o

f c
or

re
ct

 p
re

di
ct

io
n

\
 P

ro
po

rti
on

 o
f c

on
su

m
ed

 re
so

ur
ce

s

After 10 launches
After 10 launches
After 50 launches
After 50 launches
After 100 launches
After 100 launches

(b) Group 1

Figure 4.10 – Results of applying the rule-of-thumb method for two different
user groups of Systancia with PID (kp = 0.5, ki = 0, kd = 0) and T = 24
hours.

0.0 0.2 0.4 0.6 0.8 1.0
Target proportion of correct prediction

0.0

0.2

0.4

0.6

0.8

1.0

At
te

in
ed

 p
ro

po
rti

on
 o

f c
or

re
ct

 p
re

di
ct

io
n

\
 P

ro
po

rti
on

 o
f c

on
su

m
ed

 re
so

ur
ce

s

After 10 launches
After 10 launches
After 50 launches
After 50 launches
After 100 launches
After 100 launches

(a) Group 0

0.0 0.2 0.4 0.6 0.8 1.0
Target proportion of correct prediction

0.0

0.2

0.4

0.6

0.8

1.0

At
te

in
ed

 p
ro

po
rti

on
 o

f c
or

re
ct

 p
re

di
ct

io
n

\
 P

ro
po

rti
on

 o
f c

on
su

m
ed

 re
so

ur
ce

s

After 10 launches
After 10 launches
After 50 launches
After 50 launches
After 100 launches
After 100 launches

(b) Group 1

Figure 4.11 – Results applying the cross-validation method for two different
user groups of Systancia with PID (kp = 0.5, ki = 0, kd = 0) and T = 24
hours.

98

4. User modeling and behavior prediction in cloud computing
architectures

0.0 0.2 0.4 0.6 0.8 1.0
Interval size (percentage of total size)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
b

a
b

ili
ty

 m
a
ss

AUC: 0.91

(a) Office

0.0 0.2 0.4 0.6 0.8 1.0
Interval size (percentage of total size)

0.0

0.2

0.4

0.6

0.8

1.0

P
o
b

a
b

ili
ty

 m
a
ss

AUC: 0.69

(b) Hospital

Figure 4.12 – AUC values for two different customers, (a) office and (b)
hospital.

4.5.2 Summarizing the user model

In the last sections, we focus on a set of values to evaluate our user models
and predictive performance. However, we can simplify the model comparison
by reducing that set of numbers to a single scalar value. To accomplish this
objective we can consider the curve defined by Equation 4.21 (and depicted
in blue in Figure 4.12) that relates the interval size and probability mass
associated to that interval (which is equivalent to the amount of application
launches covered by that interval) and compute the area below to summarize
the trade-off between them.

Then (for user models defined by a continuous distribution), the area
under the curve (AUC) will be defined as

AUC =

∫ max(p̂σ)

0
M(T3)|S′(T3)| dT3 (4.67)

where, as described in Section 4.3.2 ,T3 is the threshold that defines the
interval size S(T3) and the probability mass M(T3).

Figure 4.12, compares the AUC values for two different kinds of cus-
tomers, office, and hospital. We see that the result agrees with the intuition
that predicting behavior in the case of the office will be easier since the
behavior of the users usually presents less entropy.

Then an AUC close to 1 will indicate that we can cover a significant
number of applications launches with small intervals. This is the same as
saying that the probability mass gets concentrated into small regions of our
domain, which in that case, will result in small values of differential entropy.
The differential entropy of the behavior will always generate an upper bound
to the accuracy of our predictions. However, we cannot precisely determine
the entropy of the behavior (to do so, we need to know the exact probability

99

4.6 Implementation in production

distribution). So in our case, as in other studies [117], we can use estimates
of the entropy and mutual information to establish limits to the prediction
accuracy. The estimated entropy could also be used as a criterion to decide
for which users we do not want to generate a prediction.

4.6 Implementation in production

The ideas and algorithms developed in this chapter were implemented and
shipped to the customer as a new module of Booster, named Booster Pre-
diction in AppliDis Fusion 5.

As any failure could seriously damage the trust of the customer, we de-
cided that the best strategy was to start by first implementing the algorithm
described in Section 4.4.1, which is conceptually simpler to later add the
more complex kernel-based approach of Section 4.4.2. This decision let us:

• detect missing supporting components in the system,

• reduce failure modes and generate a minimal set of unit test, and

• establish a benchmark.

Successfully implementing a prediction algorithm in production requires
that all the components of the system that will support and interact with the
algorithm work properly. For instance, if the prediction algorithm is based
on the principle of launching "ghost" sessions and applications to reduce the
waiting time, we need to have complete control of them, this is, being able
to launch, identify and close them at any time (what was not actually the
case when we started the project, in particular, for closing a session).

A simple model let us uncover the whole general structure of the com-
ponents that need to be developed and their complexity. By treating each
component as a black box, we were able to focus later in improving them
individually. The approach of separating each component let us find bugs
and analyze failure modes more easily.

By generating a first benchmark, we established a reference for compar-
ison, and speed up the development process by facilitating design decisions.

At the same time, since there is a clear difference between the prediction
algorithm objective and how we can use this result to approach the business
problem. It was essential for us to decouple these two different problems.
Decoupling the results from specific characteristics of the AppliDis problem
let us: propose general application algorithms and ignore details of each cus-
tomer or the implementation aspects of AppliDis that would make impossible
the comparison of results between customers between AppliDis versions and
over time. E.g., the time gain is linked to the application average launching
time, servers static and dynamic characteristic, load balancing parameters,

100

4. User modeling and behavior prediction in cloud computing
architectures

and way of working. This is why it was essential for us to developed a gen-
eral algorithm and to report a measure of performance that is independent
of all these variables. For instance, if tomorrow something changes about
how the balancing loader (e.g., the way we choose the server in which it will
launch the next application), we will still be able to compare results between
different versions of AppliDis.

4.6.1 C++ implementation

In Figure 4.13 we show the GUI of the first C++ implementation of the
algorithm of Section 4.4.1. This GUI is based on the Microsoft Foundation
Class (MFC) Library and was divided into six parts that let us input the
control parameters and visualize the results.

To compute and display the predicted intervals for the different users, we
needed to:

1. Connect to the remote SQL AppliDis database by inputting the database
login data in the "Connection" section.

2. Then the amount of training data could be selected by setting the start
and end dates of the time interval we wanted to use for training (in
the section "Time Interval for Training") and the hyperparameters of
the model could be set in the section "Parameters".

3. The algorithm was trained by clicking on the "Training" section.

4. After either inputting the User Id or the User Name and clicking on
the "Show User Info"; the last login, the frequency matrix, the sum
by weekday, the sum by hour of the day are displayed in the section
"User Information".

5. Finally, the predicted intervals, along with the percentage of sessions
launched inside that interval was then displayed in the "Prediction
Information" section.

After several tests, this implementation was converted to a service appli-
cation and added to AppliDis.

4.6.2 Controlling the algorithm from AppliDis: Booster GUI

To control the service application, we started the development phase of the
Graphical User Interface to give to the AppliDis’ administrator control over
the algorithm.

In Figure 4.14 we show the Prediction Management tab of the imple-
mented AppliDis Booster Control Panel with the corresponding other avail-
able tabs: Activation ("Activation"), Static Management ("Gestion Sta-
tique"), Prediction Management ("Gestion prédictive") and Booster Im-
provement Program ("Amélioration AppliDis Booster").

101

4.6 Implementation in production

Figure 4.13 – GUI of the first C++ implementation of the algorithm of
Section 4.4.1.

102

4. User modeling and behavior prediction in cloud computing
architectures

Figure 4.14 – GUI of the implemented control for the Booster prediction
component.

Since directly exposing the hyperparameters of the model can be con-
fusing for the administrator, we decided to expose the trade-off between
launching time and resources, which is much more relevant and intuitive.
Figure 4.14, shows the green control that allows to set the desired launching
time for each group of users, while the estimation of the necessary resources
are computed in an online fashion and accordingly reflected by updating the
positions of the RAM and CPU sliders. Finally, the grey sliders show the
observed average launching time for the selected group and the observed
CPU and RAM consumption.

Finally, the Booster Improvement Program ("Amélioration AppliDis Booster")
lets the administrator of the system send stats of the time gains to Systancia
via the tab shown in Figure 4.15. The administrator of the system could
also see a list of the data gathered, as shown in Figure 4.16.

4.6.3 C++ simulator implementation

To generate a tool that validates the results of the proposed algorithms and
to show to the AppliDis’ customer the benefits of activating Booster, we
developed a Booster Simulator. The simulator displayed the results based
on time gains and overhead generated by the algorithm, which are the key

103

4.6 Implementation in production

Figure 4.15 – Tab of the improvement program.

Figure 4.16 – List of data sent by the system administrator as a part of the
improvement program.

104

4. User modeling and behavior prediction in cloud computing
architectures

Figure 4.17 – Booster simulator GUI. The launching time (in seconds) of
a group (blue curve) is compared with the launching time without Booster
(grey curve).

performance indicators for the system administrator. As shown in Figure
4.17, the minimum, average, maximum, and total time gains of a group of
users for a given interval of time were displayed and could be visualized as
a graph.

Since the simulation relies on historical data, we motivated the system
administrators to keep the activity records gathered by AppliDis.

Computational performance improvements

Since the simulations were computational intensive, we look for different
methods to reduce the computing time. We decided to avoid the use of
special hardware (e.g., GPUs) since we wanted the simulator to be available
to any customer. The reduction of computing time was based on two main
improvements.

The first improvement was to re-implement the most computational ex-
pensive Python function of the simulator in pure C. This change let us run
our code 10 times faster. Unlike C, which is a statically typed language,
Python is a dynamically typed language and needs to inspect the variables
type creating a considerable overhead. To make the re-implementation easy

105

4.7 Future work

to maintain, we used Cython [10], a superset of Python.
The application of parallel computing generated the second reduction of

the computation time.

4.7 Future work

As discussed in Section 2.3.6, a natural next step would be to explore an
artificial neural networks approach, in particular, recurrent neural networks.
The results of the first steps in this direction could be found in [14], where
the author took sequences that represented the quantity of simultaneously
open applications for a user over a period as shown in section 4.3.5 and tried
to predict the last part of the sequence. Different architectures were tested,
mainly vanilla one layer RNNs and three-layer RNNs. Even though these
are valuable first steps, there is still much research and work to do. Mainly,
an in-depth analysis of the impact of different initialization, testing other
architectures like LSTM or bi-LSTM and analyzing different regularization
methods. Since, at the moment of the development of that project, Sys-
tancia’s GPUs were not available, these models were trained with a CPU.
Using the available GPU could substantially improve the results by testing
a broader set of models.

106

Conclusion

As the adoption of cloud computing architectures moves into more and
more organizations, virtualization applications and software virtualization
becomes a major and decisive issue in terms of performance. Indeed, cloud
computing provides applications, storage capabilities, and computational re-
sources easily to the users through a network. However, long start-up times
of these services can jeopardize the user’s experience. At the same time, there
is a growing necessity in collecting data from the users. These heterogeneous
and complex data is generally only stored in databases and data centers. In
this thesis, we propose to not only store but also to exploit the data in real
time with ML algorithms. The loading of an application takes between 15
and 20 seconds. The users do not appreciate to wait so long. Based on
ML algorithms that analyze user usage to predict its behavior, key features
are extracted, and a prediction module provides near-immediate access to
applications while leaving the decision-making power of the administrator
to control the consumption of resources. Chapter 1 provides an overview of
cloud computing and virtualization architectures with a focus on Systancia’s
solution: AppliDis.

As discussed in Chapter 2, predicting human behavior is a problem of
a great and growing economic value that is relevant to a big amount of
different high social impact industries. This diversity of industries translates
into a rich set of complex data sources that can be used to generate an
enormous spectrum of features. The complexity of these data sources makes
the creation of a good data model a fundamental step that will allow not
only an efficient design of the physical database schema but a better analysis
and knowledge extraction.

Chapter 3 provides a concrete example of how the data understanding
phase can help us improve the way we organize the data and its quality to
obtain a better input for our models. It also shows how different types of
variables (continuous, categorical, and timestamps) in the databases can be
transformed into informative features that will make the models easier to
train and achieve better performance. In the context of our problem, we
proposed an approach for user profiling based on these features that can
be used to automatically group users with similar behavioral patterns and
simplify the task of manually grouping users to the system administrators.

107

The grouping criterion is flexible since it can be adapted by selecting features
that focus on specific characteristics of the users that may be of interest.
This approach can also be used to detect anomalies, for instance, the use
of applications that do not match the user profile or excessive time spent
in particular applications can indicate the misused of a user account. The
resulting visualizations can also be used in a dashboard as an appealing way
of display information about the users of the system.

Even though predicting human behavior is an interesting problem by
itself, the goal of this thesis is to use the extracted behavioral patterns to
improve the user experience. To do so, in Chapter 4, we proposed a pipeline
that allows the administrator of cloud computing systems to accelerate the
launching time of applications while keeping the resource consumption low.
The high value of accelerating the launching time becomes apparent after
considering the fact that an important amount of French hospitals use App-
liDis as their cloud computing solution, where even a small reduction of the
launching time can produce a dramatic difference in time-sensitive activities.

The proposed pipeline is composed of:

• a module that study the size of the periodic patterns in the user behav-
ior and finds an interval of time that captures most of the structure,

• a module that constructs a user model by estimating a PDF,

• a module that control the accuracy of the user model,

• a module that generates a prediction in the form of an interval in which
we expect the user to launch an application, and

• a module that optimizes the launching application time for a group of
users.

Where each component of the pipeline can be associated with a set of
methods and techniques:

• To study the periodicity of the behavior, we apply Spectral Analysis
techniques and the theory of Stochastic Processes.

• To construct the user model, we apply Bayesian, and frequentist ap-
proaches to density estimation, including both parametric and non-
parametric approaches, with Kernel Density Estimation (KDE) be-
longing to the latter category. In the case of the KDE, to define the
appropriate size for the kernel bandwidth, we apply the cross-validation
method (which is used in Machine Learning to find the best hyperpa-
rameters of a model).

• To control the accuracy of the user model, we apply methods from
control theory.

108

Conclusion

• To optimize the launching application time, we proposed the use of
heuristics and techniques from linear and nonlinear programming.

Since, by default, after each application launch, the performance of the
model is checked after each, and the model updated the proposed pipeline
adapts quickly to changes of the user behavior (concept drift). The pre-
dictive system allows for three different use modes which are: achieving a
certain average launching time, spending a fixed resource budget, or find-
ing a balance between the last two. As explained before, in the context of
time-sensitive activities, it is sometimes desirable to prioritize specific users
or groups. Our proposed solution takes this into consideration and provides
the system administrator a way of distributing the computational resources
and of reducing the launching time of specific users or groups.

As described in the Section 4.5, applying KDE with the cross-validation
method and a default initialization of the PID, allowed us to generate ac-
curate models of the user behavior that can correctly predict about 80% of
the events with an overhead less than 40%. In cases where the resources are
limited, we can still get more than 50% of correct predictions with less than
20% overhead. For a customer with an average launching time of about 13s
(like in the case of Systancia), this would imply reducing the launching time
to about 2.6s and 6.5s, respectively.

The modular architecture of our solution makes it robust, easy to debug,
and allows for progressive improvement of the system since we can focus
on particular components with clearly defined functions. The proposed ap-
proach is well suited for customers with scarce data (e.g., new customers)
since it allows the introduction of prior knowledge or set conditions. At the
same time, to comply with the highest standards on data privacy policies,
our approach does not require the data to leave the customers to perform
well. The estimation approach can also be changed as needed switching be-
tween methods that allow batch and online training and scale well as the
number of users increases.

Although our solution has been described and applied in the context of
a very specific problem, it remains general and can also be applied to the
prediction of other types of events (with the time and date of the events
being the only requirement for our pipeline to work). This idea motivated
the introduction of a performance measure that allows comparing results
independently of the application context.

All the features described above proved to play a key role in the success
of the solution that has been implemented and deployed to thousands of
customers around the world as a component of Systancia’s AppliDis. Using
machine learning algorithms to analyze user usage and to predict its behavior
will offer a wide range of new cloud services to meet the needs of each.

109

110

List of acronyms

AC Autocorellation
ACF Autocorrelation function
AE Autoencoder
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
AUC Area Under Curve
BN Bayesian Network
BP Behavior Prediction
CDP Continuous Data Protection
CNN Convolutional Neural Network
CPU Central Processing Unit
CRM Customer Relationship Management
CUDA Compute Unified Device Architecture
DFT Discrete Fourier Transform
DNA Deoxyribonucleic Acid
DT Decision Trees
EDA Exploratory Data Analysis
GAN Generative Adversarial Networks
GARCH Generalized Autoregressive Conditional Heteroskedasticity
GPS Global Positioning System
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
GSP Generalized Sequential Pattern
GUI Graphical User Interface
HMM Hidden Markov Model
HPD Highest Posterior Density
IaaS Infrastructure as a Service
ISE Integrated Squared Error
IT Information Technology
JSD Jensen Shannon Divergence

111

KDE Kernel Density Estimation
KLD Kullback–Leibler Divergence
LDS Linear Dynamical System
LLE Locally Linear Embedding
LSTM Long Short-Term Memory
MAP Maximum a posteriori
MDS Multidimensional Scaling
MISE Mean Integrated Squared Error
ML Machine Learning
MLE Maximum Likelihood Estimator
MLP Multilayer Perceptron
ODBC Open Database Connectivity
PaaS Platform as a Service
PACF Partial Autocorrelation Function
PC Personal Computer
PCA Principal Component Analysis
PDF Probability Distribution Function
PID Proportional–Integral–Derivative
RAM Random-Access Memory
RBM Restricted Boltzmann Machine
RDP Remote Desktop Protocol
RDS Remote Desktop Services
RL Reinforcement Learning
RNN Recurrent Neural Network
SaaS Service as a Service
SB Server Based
SBC Server-Based Computing
SID Security Identifier
SMS Short Message Service
SPADE Sequential Pattern Discovery using Equivalence classes
SPAM Sequential Pattern Discovery
SQL Structured Query Language
SSM State Space Model
SVM Support Vector Machine
t-SNE t-distributed Stochastic Neighbor Embedding
TPU Tensor Processing Unit
UCV Unbiased Cross-Validation
UM User Model or User Modeling
UML Unified Modeling Language
USB Universal Serial Bus
VDI Virtual Desktop Interface
VM Virtual Machine
XML Extensible Markup Language

112

Bibliography

[1] Ahmad Abdel-Hafez and Yue Xu. A survey of user modelling in social
media websites. Computer and Information Science, 6(4):59, 2013.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of rec-
ommender systems: a survey of the state-of-the-art and possible ex-
tensions. IEEE Transactions on Knowledge and Data Engineering,
17(6):734–749, June 2005.

[3] Yannis Agiomyrgiannakis and Yannis Stylianou. Wrapped Gaussian
Mixture Models for Modeling and High-Rate Quantization of Phase
Data of Speech. IEEE Transactions on Audio, Speech, and Language
Processing, 17(4):775–786, May 2009.

[4] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining associ-
ation rules between sets of items in large databases. In International
Conference on Management of Data (SIGMOD), pages 207–216. ACM,
1993.

[5] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu
Toivonen, A Inkeri Verkamo, et al. Fast discovery of association
rules. Advances in knowledge discovery and data mining, 12(1):307–
328, 1996.

[6] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential pat-
terns. In Data Engineering, 1995. Proceedings of the Eleventh Inter-
national Conference on, pages 3–14. IEEE, 1995.

[7] James F. Allen. An interval-based representation of temporal knowl-
edge. In Proceedings of the 7th International Joint Conference on Arti-
ficial Intelligence - Volume 1, IJCAI’81, pages 221–226, San Francisco,
CA, USA, 1981. Morgan Kaufmann Publishers Inc.

[8] James Frederick Allen. A Plan-based Approach to Speech Act Recog-
nition. PhD thesis, University of Toronto Department of Computer
Science, 1979. AAI0532011.

113

Bibliography

[9] Olatz Arbelaitz, Ibai Gurrutxaga, Javier Muguerza, Jesús M. Pérez,
and Iñigo Perona. An extensive comparative study of cluster validity
indices. Pattern Recognition, 46(1):243 – 256, 2013.

[10] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and
K. Smith. Cython: The best of both worlds. Computing in Science
Engineering, 13(2):31 –39, march-april 2011.

[11] Robert M Bell, Yehuda Koren, and Chris Volinsky. All together now:
A perspective on the netflix prize. Chance, 23(1):24–29, 2010.

[12] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, March 1994.

[13] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised
feature learning and deep learning: A review and new perspectives.
CoRR, abs/1206.5538, 2012.

[14] Kenza Benzaoui. Paradigmes d’apprentissage machine pour l’analyse
de comportements utilisateurs – applications à la prédiction de lance-
ments d’applications virtualisées. Report, Université de Technologie
de Belfort Montbéliard, 2017. Mémoire de Master 2 AII (Automatique
et Informatique Industrielle) spécialité SEC : Systèmes embarqués et
communicants.

[15] Nachiket Sadashiv Bhosale and Sachin S Pande. A survey on recom-
mendation system for big data applications. Data Mining and Knowl-
edge Engineering, 7(1):42–44, 2015.

[16] Christopher Bishop. Pattern Recognition and Machine Learning.
Springer, 2007.

[17] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham
Gutiérrez. Recommender systems survey. Knowledge-based systems,
46:109–132, 2013.

[18] Tim Bollerslev. Generalized autoregressive conditional heteroskedas-
ticity. Journal of Econometrics, 31(3):307 – 327, 1986.

[19] E. Gohari Boroujerdi, S. Mehri, S. Sadeghi Garmaroudi, M. Pezeshki,
F. Rashidi Mehrabadi, S. Malakouti, and S. Khadivi. A study on pre-
diction of user’s tendency toward purchases in websites based on be-
havior models. In 2014 6th Conference on Information and Knowledge
Technology (IKT), pages 61–66, May 2014.

114

Bibliography

[20] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent.
Modeling temporal dependencies in high-dimensional sequences: Ap-
plication to polyphonic music generation and transcription. arXiv
preprint arXiv:1206.6392, 2012.

[21] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. Time series analysis: forecasting and control. John Wiley &
Sons, 2015.

[22] John S. Breese and David Heckerman. Decision-Theoretic Trou-
bleshooting: A Framework for Repair and Experiment, pages 271–287.
Springer US, Boston, MA, 1999.

[23] Kurt M Bretthauer and Bala Shetty. The nonlinear knapsack prob-
lem – algorithms and applications. European Journal of Operational
Research, 138(3):459 – 472, 2002.

[24] Sergey Brin, Rajeev Motwani, Jeffrey D Ullman, and Shalom Tsur. Dy-
namic itemset counting and implication rules for market basket data.
Acm Sigmod Record, 26(2):255–264, 1997.

[25] Igor Cadez, David Heckerman, Christopher Meek, Padhraic Smyth,
and Steven White. Model-based clustering and visualization of navi-
gation patterns on a web site. Data Mining and Knowledge Discovery,
7(4):399–424, 2003.

[26] Matias Callara and Patrice Wira. Machine learning pour l’analyse de
comportements et la classification d’utilisateurs. In Congrès National
de la Recherche des IUT (CNRIUT’2017), Auxerre, France, 2017.

[27] Matias Callara and Patrice Wira. User behavior analysis with machine
learning techniques in cloud computing architectures. In International
Conference on Applied Smart Systems (ICASS 2018), Medea, Algeria,
2018.

[28] Matias Callara and Patrice Wira. A data-driven approach for user
behavior prediction to boost productivity and sustainability of data
centers and cloud-supported working environments. In European Inter-
national Conference on Transforming Urban Systems (EICTUS 2019),
Strasbourg, France, 2019.

[29] Matias Callara and Patrice Wira. A probabilistic learning approach
for predicting application launches in cloud computing architectures.
In IEEE/SICE International Symposium on System Integration (SII
2019), Paris, France, 2019.

115

Bibliography

[30] Matias Callara and Patrice Wira. Machine learning paradigms for user
behavior modeling: An overview. Journal of Applied Computer Science
Methods, submitted, 2019.

[31] Ricardo Cao, Antonio Cuevas, and Wensceslao González Manteiga. A
comparative study of several smoothing methods in density estimation.
Computational Statistics & Data Analysis, 17(2):153–176, 1994.

[32] Lucas Carlson. Programming for PaaS. O’Reilly Media, Inc, Se-
bastopol, California, first edition edition, 2013. OCLC: ocn818415020.

[33] Miguel A Carreira-Perpinan and Geoffrey E Hinton. On contrastive
divergence learning. In Aistats, volume 10, pages 33–40. Citeseer, 2005.

[34] George Casella and Roger Berger. Statistical Inference. Duxbury Re-
source Center, June 2001.

[35] Silvia Cateni, Marco Vannucci, Marco Vannocci, and Valentina Colla.
Variable selection and feature extraction through artificial intelligence
techniques. In Multivariate Analysis in Management, Engineering and
the Sciences. IntechOpen, 2013.

[36] Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza,
Thomas Reinartz, Colin Shearer, and Rüdiger Wirth. The crisp-dm
user guide. In 4th CRISP-DM SIG Workshop in Brussels in March,
volume 1999, 1999.

[37] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine trans-
lation. CoRR, abs/1406.1078, 2014.

[38] Pau-Choo Chung and Chin-De Liu. A daily behavior enabled hidden
Markov model for human behavior understanding. Pattern Recogni-
tion, 41(5):1572–1580, May 2008.

[39] Philip R. Cohen and C. Raymond Perrault. Elements of a plan-based
theory of speech acts. Cognitive Science, 3(3):177–212, 1979.

[40] Thomas M. Cover and Joy A. Thomas. Elements of Information
Theory (Wiley Series in Telecommunications and Signal Processing).
Wiley-Interscience, 2006.

[41] Trevor F. Cox and Michael A. A. Cox. Multidimensional scaling. Num-
ber 88 in Monographs on statistics and applied probability. Chapman
& Hall/CRC, Boca Raton, Fla., 2. ed edition, 2001.

116

Bibliography

[42] Peng Dai, Shen-Shyang Ho, and Frank Rudzicz. Sequential behavior
prediction based on hybrid similarity and cross-user activity transfer.
Knowledge-Based Systems, 9(6):91–126, March 2015.

[43] J. Durbin and S. J. Koopman. Time series analysis by state space
methods. Number 38 in Oxford statistical science series. Oxford Uni-
versity Press, Oxford, 2nd ed edition, 2012.

[44] Nathan Eagle and Alex Sandy Pentland. Eigenbehaviors: identifying
structure in routine. Behavioral Ecology and Sociobiology, 63(7):1057–
1066, May 2009.

[45] D. M. Endres and J. E. Schindelin. A new metric for probability
distributions. IEEE Trans. Inf. Theor., 49(7):1858–1860, September
2006.

[46] E.A. Feigenbaum, P. McCorduck, and P. Nii. The Rise of the Expert
Company: How Visionary Companies are Using Artificial Intelligence
to Achieve Higher Productivity and Profits. Macmillan, 1988.

[47] Edward A Feigenbaum. Expert systems in the 1980s. State of the art
report on machine intelligence. Maidenhead: Pergamon-Infotech, 1981.

[48] Philippe Fournier-Viger, Antonio Gomariz, Manuel Campos, and
Rincy Thomas. Fast vertical mining of sequential patterns using co-
occurrence information. In Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pages 40–52. Springer, 2014.

[49] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-
Chieh Chao, and Philip S Yu. A survey of parallel sequential pattern
mining. arXiv preprint arXiv:1805.10515, 2018.

[50] Jim Gao. Machine learning applications for data center optimization,
2014.

[51] Sharad Goel and Daniel G Goldstein. Predicting individual behavior
with social networks. Marketing Science, 33(1):82–93, 2013.

[52] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in neural information pro-
cessing systems, pages 2672–2680, 2014.

[54] Ramanathan Guha, Vineet Gupta, Vivek Raghunathan, and Ramakr-
ishnan Srikant. User modeling for a personal assistant. In Proceedings

117

Bibliography

of the Eighth ACM International Conference on Web Search and Data
Mining, pages 275–284. ACM, 2015.

[55] Thomas Guyet and René Quiniou. Extracting temporal patterns from
interval-based sequences. In Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence - Volume Volume
Two, IJCAI’11, pages 1306–1311. AAAI Press, 2011.

[56] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A
Zadeh. Feature extraction: foundations and applications, volume 207.
Springer, 2008.

[57] Mohamed Ramzi Haddad, Hajer Baazaoui, Djemel Ziou, and Henda
Ben Ghezala. A predictive model for recurrent consumption behavior:
An application on phone calls. Knowledge-Based Systems, 64:32–43,
July 2014.

[58] S. Haykin and R. Gwynn. Neural Networks and Learning Machines.
Prentice Hall, 3rd edition, 2009.

[59] Xinran He, Stuart Bowers, Joaquin Quiñonero Candela, Junfeng Pan,
Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah,
and Ralf Herbrich. Practical Lessons from Predicting Clicks on Ads
at Facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising, pages 1–9. ACM Press, 2014.

[60] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, 2006.

[61] Geoffrey E Hinton. A practical guide to training restricted boltzmann
machines. In Neural networks: Tricks of the trade, pages 599–619.
Springer, 2012.

[62] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen net-
zen. Master’s thesis, Institut fur Informatik, Technische Universitat,
Munchen, 1991.

[63] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, November 1997.

[64] Eric Horvitz, Jack Breese, David Heckerman, David Hovel, and Koos
Rommelse. The lumière project: Bayesian user modeling for inferring
the goals and needs of software users. In Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence, UAI’98,
pages 256–265, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

118

Bibliography

[65] Eric J. Horvitz. Machine learning, reasoning, and intelligence in daily
life: Directions and challenges (invited talk). In Proceedings of Artifi-
cial Intelligence Techniques for Ambient Intelligence, January 2007.

[66] Eric J. Horvitz, John S. Breese, and Max Henrion. Decision theory
in expert systems and artificial intelligence. International Journal of
Approximate Reasoning, 2(3):247 – 302, 1988.

[67] Kevin L Jackson and Scott Goessling. Architecting cloud computing
solutions: build cloud strategies that align technology and economics
while effectively managing risk. Packt, 2018. OCLC: 1005108907.

[68] Peter Jackson. Introduction to expert systems. Addison-Wesley Long-
man Publishing Co., Inc., 1998.

[69] B. Jensen, Jakob Eg Larsen, Kristian Jensen, Jan Larsen, and Lars Kai
Hansen. Estimating human predictability from mobile sensor data. In
Machine Learning for Signal Processing (MLSP), 2010 IEEE Interna-
tional Workshop on. IEEE, pages 196–201, 2010.

[70] I. T. Jolliffe. Principal component analysis. Springer series in statistics.
Springer, New York, 2nd ed edition, 2002.

[71] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
datacenter performance analysis of a tensor processing unit. In Pro-
ceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 1–12, New York, NY, USA, 2017. ACM.

[72] V. M. Katsageorgiou, M. Zanotto, H. Huang, V. Ferretti, F. Papaleo,
D. Sona, and V. Murino. Unsupervised mouse behavior analysis: A

119

Bibliography

data-driven study of mice interactions. In 2016 23rd International
Conference on Pattern Recognition (ICPR), pages 925–930, Dec 2016.

[73] Michael Kavis. Architecting the cloud: design decisions for cloud com-
puting service models (SaaS, PaaS, and IaaS). The Wiley CIO series.
Wiley, Hoboken, New Jersey, 2014.

[74] Faten Khalil, Jiuyong Li, and Hua Wang. Integrating recommendation
models for improved web page prediction accuracy. In Proceedings of
the thirty-first Australasian conference on Computer science-Volume
74, pages 91–100. Australian Computer Society, Inc., 2008.

[75] Wael Khreich, Eric Granger, Ali Miri, and Robert Sabourin. A survey
of techniques for incremental learning of HMM parameters. Informa-
tion Sciences, 197:105–130, August 2012.

[76] Alfred Kobsa. Generic user modeling systems. User Modeling and
User-Adapted Interaction, 11(1-2):49–63, March 2001.

[77] Daphne Koller and Nir Friedman. Probabilistic Graphical Mod-
els: Principles and Techniques - Adaptive Computation and Machine
Learning. The MIT Press, 2009.

[78] Farshad Kooti, Kristina Lerman, Luca Maria Aiello, Mihajlo Grbovic,
Nemanja Djuric, and Vladan Radosavljevic. Portrait of an online shop-
per: Understanding and predicting consumer behavior. In Proceedings
of the Ninth ACM International Conference on Web Search and Data
Mining, pages 205–214. ACM, 2016.

[79] Miklós Kurucz, András A Benczúr, Károly Csalogány, and László
Lukács. Spectral clustering in social networks. In Advances in Web
Mining and Web Usage Analysis, pages 1–20. Springer, 2009.

[80] Dan Kusnetzky. Virtualization: a manager’s guide. O’Reilly, Beijing ;
Sebastopol, first edition edition, 2011.

[81] Neil D. Lawrence, Antony I. T. Rowstron, Christopher M. Bishop,
and Michael J. Taylor. Optimising synchronisation times for mobile
devices. In Proceedings of the 14th International Conference on Neu-
ral Information Processing Systems: Natural and Synthetic, NIPS’01,
pages 1401–1408, Cambridge, MA, USA, 2001. MIT Press.

[82] Srivatsan Laxman and P. Shanti Sastry. A survey of temporal data
mining. Sadhana, 31(2):173–198, 2006.

[83] Bac Le, Hai Duong, Tin Truong, and Philippe Fournier-Viger. Fclosm,
fgensm: two efficient algorithms for mining frequent closed and gener-
ator sequences using the local pruning strategy. Knowledge and Infor-
mation Systems, 53(1):71–107, 2017.

120

Bibliography

[84] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[85] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter,
Michael Kistler, and Tom W Keller. Energy management for commer-
cial servers. Computer, 36(12):39–48, 2003.

[86] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining
Social-Network Graphs, page 325–383. Cambridge University Press, 2
edition, 2014.

[87] Henry Lin and Max Tegmark. Critical Behavior from Deep Dy-
namics: A Hidden Dimension in Natural Language. arXiv preprint
arXiv:1606.06737, 2016.

[88] Miao Lin, Wen-Jing Hsu, and Zhuo Qi Lee. Predictability of individ-
uals’ mobility with high-resolution positioning data. In Proceedings of
the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12,
pages 381–390, New York, NY, USA, 2012. ACM.

[89] Bing Liu. Association Rules and Sequential Patterns, pages 17–62.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[90] Yan Liu and Sanjay Chawla. Social media anomaly detection: Chal-
lenges and solutions. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pages 817–818. ACM,
2017.

[91] Caroline Lo, Dan Frankowski, and Jure Leskovec. Understanding be-
haviors that lead to purchasing: A case study of pinterest. In Proceed-
ings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 531–540. ACM, 2016.

[92] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang,
Andrew Y. Ng, and Christopher Potts. Learning word vectors for sen-
timent analysis. In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technolo-
gies, pages 142–150, Portland, Oregon, USA, June 2011. Association
for Computational Linguistics.

[93] Eren Manavoglu, Dmitry Pavlov, and C. Lee Giles. Probabilistic user
behavior models. In Data Mining, 2003. ICDM 2003. Third IEEE
International Conference on, pages 203–210. IEEE, 2003.

[94] Mary McGlohon, Leman Akoglu, and Christos Faloutsos. Statistical
properties of social networks. In Social network data analytics, pages
17–42. Springer, 2011.

121

Bibliography

[95] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of
cloud computing. Technical report, National Institute of Standards &
Technology, Gaithersburg, MD, United States, 2011.

[96] Hiroshi Motoda and Huan Liu. Feature selection, extraction and con-
struction. Communication of IICM (Institute of Information and Com-
puting Machinery, Taiwan) Vol, 5(67-72):2, 2002.

[97] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[98] Andrew Y Ng, Michael I. Jordan, and Yair Weiss. On spectral clus-
tering: Analysis and an algorithm. In Advances in neural information
processing systems, pages 849–856, 2002.

[99] Loc Nguyen and Phung Do. Combination of Bayesian network and
overlay model in user modeling. In International Conference on Com-
putational Science, pages 5–14. Springer, 2009.

[100] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scal-
able parallel programming with cuda. Queue, 6(2):40–53, March 2008.

[101] Peter von Oven and Barry Coombs. Mastering VMware Horizon 7:
learn advanced desktop virtualization techniques and strategies and dive
deeper into VMware Horizon 7, take responsibility for optimizing your
end user experience. Packt, Birmingham Mumbai, second edition edi-
tion, 2016. OCLC: 1059536849.

[102] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and
Benjamin M. Marlin. Practical prediction and prefetch for faster access
to applications on mobile phones. In Proceedings of the 2013 ACM
international joint conference on Pervasive and ubiquitous computing,
page 275. ACM Press, 2013.

[103] J. Pearl. Bayesian Networks: A Model of Self-activated Memory for
Evidential Reasoning. Report. UCLA, Computer Science Department,
1985.

[104] Cathryn Peoples, Gerard Parr, Sally McClean, Bryan Scotney, Philip
Morrow, SK Chaudhari, and Ravi Theja. An energy aware network
management approach using server profiling in ’green’ clouds. In 2012
Second Symposium on Network Cloud Computing and Applications
(NCCA), pages 17–24. IEEE, 2012.

[105] C. Raymond Perrault, James F. Allen, and Philip R. Cohen. Speech
acts as a basis for understanding dialogue coherence. In Proceedings

122

Bibliography

of the 1978 Workshop on Theoretical Issues in Natural Language Pro-
cessing, TINLAP ’78, pages 125–132, Stroudsburg, PA, USA, 1978.
Association for Computational Linguistics.

[106] Sankaran Prithviraj. Architecting Cloud SaaS software - solutions or
products engineering multi-tenanted distributed architecture software.
Pearson, Chennai, 2016. OCLC: 1078361255.

[107] Kira Radinsky, Krysta Svore, Susan Dumais, Jaime Teevan, Alex
Bocharov, and Eric Horvitz. Modeling and predicting behavioral dy-
namics on the web. In Proceedings of the 21st international conference
on World Wide Web, pages 599–608. ACM, 2012.

[108] Howard Raiffa and Robert Schlaifer. Applied statistical decision the-
ory. Wiley classics library. Wiley, New York, wiley classics library ed
edition, 2000.

[109] K. Thirupathi Rao, P. Sai Kiran, and L. Siva Shanker Reddy. Energy
efficiency in datacenters through virtualization: A case study. Global
Journal of Computer Science and Technology, 2010.

[110] Elaine Rich. User modeling via stereotypes. Cognitive Science, 3(4):329
– 354, 1979.

[111] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. science, 290(5500):2323–2326, 2000.

[112] Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and
Andrew T. Campbell. NextPlace: a spatio-temporal prediction frame-
work for pervasive systems. In International Conference on Pervasive
Computing, pages 152–169. Springer, 2011.

[113] Robert H. Shumway and David S. Stoffer. Time Series Analysis and
Its Applications (Springer Texts in Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

[114] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

[115] Bernard W. Silverman. Density Estimation for Statistics and Data
Analysis. Chapman & Hall/CRC, London, 1986.

[116] Brent Smith and Greg Linden. Two decades of recommender systems
at amazon. com. Ieee internet computing, 21(3):12–18, 2017.

[117] C. Song, Z. Qu, N. Blumm, and A.-L. Barabasi. Limits of Predictability
in Human Mobility. Science, 327(5968):1018–1021, February 2010.

123

Bibliography

[118] Chaoming Song, Tal Koren, Pu Wang, and Albert-László Barabási.
Modelling the scaling properties of human mobility. Nature Physics,
6(10):818–823, October 2010.

[119] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating lo-
cation predictors with extensive Wi-Fi mobility data. In INFOCOM
2004. Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, volume 2, pages 1414–1424. IEEE,
2004.

[120] Julian Straub, Jason Chang, Oren Freifeld, and John W. Fisher III.
A Dirichlet Process Mixture Model for Spherical Data. In AISTATS,
2015.

[121] Ilya Sutskever and Geoffrey E. Hinton. Learning Multilevel Distributed
Representations for High-Dimensional Sequences. In AISTATS, vol-
ume 2, pages 548–555, 2007.

[122] Ilya Sutskever, Geoffrey E. Hinton, and GrahamW. Taylor. The Recur-
rent Temporal Restricted Boltzmann Machine. In D. Koller, D. Schu-
urmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Infor-
mation Processing Systems 21, pages 1601–1608. Curran Associates,
Inc., 2009.

[123] R.S. Sutton, A.G. Barto, and F. Bach. Reinforcement Learning: An In-
troduction. Adaptive Computation and Machine Learning. MIT Press,
2018.

[124] Ling Tang, Anying Wang, Zhenjing Xu, and Jian Li. Online-purchasing
behavior forecasting with a firefly algorithm-based svm model consid-
ering shopping cart use. Eurasia Journal of Mathematics, Science and
Technology Education, 13(12):7967–7983, 2017.

[125] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global
geometric framework for nonlinear dimensionality reduction. science,
290(5500):2319–2323, 2000.

[126] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N.
Bennani. A hybrid reinforcement learning approach to autonomic re-
source allocation. In 2006 IEEE International Conference on Auto-
nomic Computing, pages 65–73. IEEE, 2006.

[127] George B. Thomas, Ross L. Finney, and Maurice D. Weir. Calculus
and analytic geometry, page 919. Addison-Wesley, Reading, Mass, 9th
ed edition, 1996.

124

Bibliography

[128] B.S. Todd. An Introduction to Expert Systems. Number no. 95 in An
introduction to expert systems. Oxford University Computing Labo-
ratory, Programming Research Group, 1992.

[129] John Wilder Tukey. Exploratory data analysis. Addison-Wesley series
in behavioral science. Addison-Wesley Pub. Co, Reading, Mass, 1977.

[130] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow.
The anatomy of the facebook social graph. CoRR, abs/1111.4503,
2011.

[131] Paul E. Utgoff. Incremental induction of decision trees. Machine Learn-
ing, 4(2):161–186, Nov 1989.

[132] Gregory Valiant and Paul Valiant. Estimating the unseen: improved
estimators for entropy and other properties. In Advances in Neural
Information Processing Systems, pages 2157–2165, 2013.

[133] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of Machine Learning Research, 9:2579–2605, 2008.

[134] Vladimir Naumovich Vapnik. Statistical learning theory. Adaptive and
learning systems for signal processing, communications, and control.
Wiley, New York, 1998.

[135] Emre Velipasaoglu. Machine-learned model quality monitoring in fast
data and streaming applications. Strata Data Conference, 2018.

[136] Michail Vlachos, Christopher Meek, Zografoula Vagena, and Dimitrios
Gunopulos. Identifying similarities, periodicities and bursts for online
search queries. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 131–142. ACM, 2004.

[137] Michail Vlachos, S. Yu Philip, and Vittorio Castelli. On Periodicity
Detection and Structural Periodic Similarity. In SDM, volume 5, pages
449–460. SIAM, 2005.

[138] Milan Vojnovic. On mobile user behaviour patterns. In 2008 IEEE
International Zurich Seminar on Communications, pages 26–29. IEEE,
2008.

[139] Laurent Voneau. Architecture AppliDis (AD00020). Technical report,
Systancia, July 2004.

[140] Lizhe Wang. Cloud computing: methodology, system, and applications.
CRC Press, 2017. OCLC: 1017818602.

125

Bibliography

[141] Yichuan Wang, Xin Liu, David Chu, and Yunxin Liu. EarlyBird: Mo-
bile Prefetching of Social Network Feeds via Content Preference Mining
and Usage Pattern Analysis. In Proceedings of the 16th ACM Inter-
national Symposium on Mobile Ad Hoc Networking and Computing,
pages 67–76. ACM Press, 2015.

[142] Ghaith Warkozek, Vincent Debusschere, and Seddik Bacha. Auto-
mated parameters retrieval for energetic model identification of servers
in datacenters. In PowerTech (POWERTECH), 2013 IEEE Grenoble,
pages 1–6. IEEE, 2013.

[143] Ghaith Warkozek, Elisabeth Drayer, Vincent Debusschere, and Seddik
Bacha. A new approach to model energy consumption of servers in
data centers. In 2012 IEEE International Conference on Industrial
Technology (ICIT), pages 211–216. IEEE, 2012.

[144] Stanley Wasserman and Katherine Faust. Social network analysis:
Methods and applications, volume 8. Cambridge university press, 1994.

[145] Geoffrey I. Webb, Michael J. Pazzani, and Daniel Billsus. Machine
learning for user modeling. User modeling and user-adapted interac-
tion, 11(1-2):19–29, 2001.

[146] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu.
Fast app launching for mobile devices using predictive user context. In
Proceedings of the 10th international conference on Mobile systems,
applications, and services, pages 113–126. ACM, 2012.

[147] Jaewon Yang and Jure Leskovec. Patterns of temporal variation in on-
line media. In Proceedings of the fourth ACM international conference
on Web search and data mining, pages 177–186. ACM, 2011.

[148] Faraz Zaidi and Guy Melançon. Evaluating the Quality of Clustering
Algorithms using Cluster Path Lengths. In 10th Industrial Conference,
ICDM, volume 6171/2010 of Advances in data mining. Applications
and theoretical aspects, pages 42–56, Berlin, Germany, 2010. Springer.

[149] Shuai Zhang, Lina Yao, and Aixin Sun. Deep learning based rec-
ommender system: A survey and new perspectives. arXiv preprint
arXiv:1707.07435, 2017.

[150] Ingrid Zukerman, David W. Albrecht, and Ann E. Nicholson. Predict-
ing users’ requests on the WWW. Springer, 1999.

126

