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UNIVERSITÉ DE BOLOGNE
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Introduction

The visual system is one of the most studied part of the brain and, in particular,

the LGN and V1, which are the first layers that analyze the visual stimulus, are

some of the best understood visual areas. The first description of the early visual

pathway and its corresponding geometry was proposed by D. H. Hubel and T.

N. Wiesel in the ’60s and further developed in the subsequent years [Hubel and

Wiesel, 1962, 1977; Hubel, 1987]. The retinal input is first processed by the radially

symmetric families of cells present in the LGN who are responsible of human

contrast perception. Then it reaches V1, whose neurons are not only sensitive

to the light intensity of the visual stimulus, but they also show a selectivity to

other features, such as e.g. orientation, scale, velocity. Indeed, every cell presents

in the visual cortices reacts to a local area of the visual stimulus called receptive

field (RF), whereas the function that describes its activation in the presence of a

visual stimulus is called receptive profile (RP) and it will be denoted as Ψ. Every

retinal location is associated to an entire set of neurons of V1 called hyper-columns,

sensitive to all possible instances of the corresponding variable, organized in the so

called orientation maps.

From the mathematical point of view, several neuromathematical models based

on classical differential geometry and Lie groups have been proposed. In the ’80s Jan

Koenderink in [Koenderink and van Doom, 1987] studied perceptual spaces using

differential geometry and William Hoffman in [Hoffman, 1989] developed a model of

the visual cortex as a fiber bundle equipped with a contact structure. In the same

period Steven Zucker observed experimentally the relation between the measurement

of Euclidean curvature and the role of end-stopping cells [Dobbins et al., 1987].
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These first models raised the idea that the visual system was a ”geometric machine”

leading in the ’90s to the development of several phenomenological models of vision

based on calculus of variations and parabolic partial differential equations: to cite

just some pioneering papers, the segmentation model of Mumford-Shah [Mumford

and Shah, 1989] and the multiscale analysis of Alvarez, Lions, Morel [Alvarez et al.,

1992]. Moreover, in the same years, some neuromathematical models presenting a

double neuro-psycho nature have been proposed. David Mumford in [Mumford,

1994] modeled perceptual illusory contours through its elastica curves which are

still at the center of contemporary research, but rethought in new mathematical

setting. Thus, in ’95 in [Williams and Jacobs, 1997] a first stochastic model of

illusory contours in the space of position and orientation was proposed by Williams

and Jacobs. At the end of the ’90s a fundamental contribution of Jean Petitot and

Yannick Tondut in [Petitot and Tondut, 1999] reconsidered the Hoffman model of

the cortex as a contact bundle, computing the geodesic curves of the non-integrable

structure and showing that the curves modeled the perceptual association fields,

measured by Fields, Heyes and Hess in [Field et al., 1993]. In this way, they were

able to predict the shape of an illusory contour, given its inducturs, and Petitot

explicitly introduced the word Neurogeometry to denote the inner geometry of

cortical connectivity. In the subsequent years Jean Petitot has further developed

his model contributing massively to the progress of this field of research [Petitot,

2003, 2008, 2017].

In the new century, Govanna Citti and Alessandro Sarti in [Sarti et al., 2003;

Citti and Sarti, 2006] observed that the cortical structure is actually defined

in the SE(2) Euclidean group of rotation and translation equipped with a sub-

Riemannian metric. In this fiber bundle structure, they expressed the cortico-

cortical propagation in terms of sub-Riemannian diffusion PDE in order to model the

image completion phenomenon. Bressloff and Cowan in [Bressloff and Cowan, 2003]

studied the dynamics of neural population, modeling the cortex in the same SE(2)

group. An impressive result was obtained when the activation map was computed

in absence of an external input; indeed, they simulated the effects of chemical

drugs obtaining an activation distribution corresponding to visual hallucinations,
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as reported in classical literature. In [Duits and Franken, 2010a,b] Remco Duits

shifted the focus by working in the SE(2) group from an image processing point

of view. He lifted and propagated the visual signal in the R2 × S1 space and, by

applying invertible kernels, was able to reconstruct the stimulus without loss of

information in the 2D image plane. A phenomenological approach can be found

in the entire work of Jean-Michel Morel and his computational Gestalt group [see

e.g. Delsolneux et al., 2008; Morel et al., 2010; Limare et al., 2011]. Indeed, he

found in the Helmoltz principle the basis of the classical theory of Gestalt obtaining

deep theoretical and computational results. Daniel Bennequin approached several

neuromathematical problems in terms of invariance, symmetry and ambiguity: in

particular, he formalized these problems with principles of “information topology”

theory, a new co-homology theory of information based on probability and entropy

theory [see e.g. Pham and Bennequin, 2012; Bennequin, 2014]. James Bednar

reproduced the geometric morphologies of the visual cortex through brain plasticity

principles, recovering the main characteristics of the functional architecture of

the visual cortex by a process of learning on a suitable set of stimuli [Stevens

et al., 2013; Antoĺık et al., 2016]. In more recent years, further research has been

carried out leading to several developments in this field: in [Citti and Sarti, 2013;

Sarti and Citti, 2015; Favali et al., 2017; Boscain et al., 2018; Boscain, Ugo et al.,

2018; Baspinar, 2021; Galyaev and Mashtakov, 2021; Jumakulyyev and Schultz,

2021] the authors faced the perceptual completion of figures task on SE(2) group;

perception of contours in motion and trajectories has been studied in [Barbieri

et al., 2014b]; applications in vessel segmentation have been analyzed in [Zhang

et al., 2016; Bekkers et al., 2017; Abbasi-Sureshjani et al., 2018; Yu et al., 2021]; an

orientation-dependent contrast perception model inspired by Wilson–Cowan-type

equations has been proposed in [Bertalmı́o et al., 2019; Bertalmı́o et al., 2021] a

model of the functional architecture of V1 from the RPs of simple cells have been

proposed in [Montobbio et al., 2019b, 2020].

In particular, in these models the feature space G usually has the product form

R2 × F , where the parameters (x0, y0) ∈ R2 indicate the retinal location where

each RP is centered, while f ∈ F encodes the selectivity of the neurons to other
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local features of the image.

A visual stimulus can be represented as a function I = I(x, y), where (x, y)

represents a retinal location and I(x, y) the corresponding light. Its action z,

associated to a kernel defined as Ψ = Ψ(x, y), can be modeled as a linear integral

operator as follows

z(I) := I ∗Ψ.

In the case of simple cells of V1 F = S1, i.e. each neuron responds maximally

to a certain orientation θ at a specific retinal location (x, y).

Furthermore, in V1 there is experimental evidence of the existence of connections

between simple cells of different hyper-columns with similar orientation, called

long-range horizontal connectivity [see e.g. Ts’o et al., 1986; Bosking et al., 1997].

The connectivity has been described in [Citti and Sarti, 2006] as families of integral

curves of two vector fields in the sub-Riemannian structure on R2×S1. This model

has been further developed in [Sanguinetti et al., 2010] where the authors proposed

to model connectivity as suitable geometric kernels. In particular, in [Montobbio

et al., 2019b] it is proposed to directly relate the shape of connectivity kernels in a

family of cells to their RPs {Ψp}p∈G as follows:

K(p, p0) := Re

(∫
R2

Ψp(x, y)Ψp0(x, y)dxdy

)
,

Many efforts have been made to relate cortical architectures with Convolutional

Neural Networks (CNNs). Indeed, the first neural networks have been inspired

by a simplification of the structure of the visual system, presenting a hierarchical

structure, where each layer receives input from the previous one and provides output

to the next one. Despite this simplification, they reached optimal performances

in processes typical of the natural visual system, as for example object-detection

[Redmon et al., 2016; Ren et al., 2017] or image classification [He et al., 2015;

Simonyan and Zisserman, 2015].

More recently, relations between CNNs and human visual system have been

widely studied, with the ultimate scope of making the CNN even more efficient

in specific tasks. A model of the first cortical layers described as layers of a CNN

has been studied in [Serre et al., 2007], whereas in [Yamins et al., 2015; Yamins
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and DiCarlo, 2016] the authors were able to study higher areas by focusing on the

encoding and decoding ability of the visual system. Recurrent Neural networks

have been introduced to implement the horizontal connectivity [e.g. Sherstinsky,

2020], or feedback terms [e.g. Liang and Hu, 2015]. A modification of these nets,

more geometric and more similar to the structure of the brain, has been recently

proposed in [Montobbio et al., 2019a].

Furthermore, it is well known that both V1 RPs and the first convolutional layer

of a CNN are mainly composed by Gabor filters. Biological based models of V1 in

terms of Gabor filters have been made in [Serre et al., 2007; Zhang et al., 2019] and

the statistic of the RFPs of a macaque’s V1 was studied in [Ringach, 2002], but

a comparison between these results and the statistics of learned filters is still missing.

Our scope in this thesis is to propose architectures of CNNs in such a way to

model the early visual pathway, including the Lateral Geniculate Nucleus and the

Horizontal Connectivity of the primary visual cortex. Moreover, we will show how

cortically inspired architectures allow to perform contrast perceptual invariance as

well as grouping and the emergence of visual percepts. Particularly, the LGN is

modeled with a first layer `0 containing a single filter Ψ0 that pre-filters the image

I. Since the RPs of the LGN cells can be modeled as a LoG, we expect to obtain a

radially symmetric filter with a similar shape; to this end, we prove the rotational

invariance of Ψ0 and we study the influence of this filter to the subsequent layer.

Indeed, we compare the statistic distribution of the filters in the second layer `1 of

our architecture with the statistic distribution of the RPs of V1 cells of a macaque

studied in [Ringach, 2002].

Then, we model the horizontal connectivity of V1 implementing a transition

kernel K1 to the layer `1. In this setting, we study the vector fields and the

association fields induced by the connectivity kernel K1. To this end, we first

approximate the filters bank in `1 with a Gabor function and use the parameters

just found to re-parameterize the kernel. Thanks to this step, the kernel is now

re-parameterized into a sub-Riemmanian space R2 × S1. Now we are able to

compare the vector and association fields induced by K1 with the models of the
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horizontal connectivity.

The Retinex theory, proposed by Land [Land, 1964], describes the contrast

perception phenomenon. Later, he developed this theory with J. McCann in [Land

and McCann, 1971], proposing an algorithm and a computer program designed to

simulate the Retinex processes taking place in the visual system : it associated to an

image I the perceived Ĩ. In the following years several works have contributed to the

development of the Retinex theory and its application [among others Enroth-Cugell

and Robson, 1966; Brainard and Wandell, 1986; Provenzi et al., 2005; Solomon

et al., 2006; Lei et al., 2007; Valberg and Seim, 2013; Yeonan-Kim and Bertalmı́o,

2017]. Some variational approaches have been proposed for example by [Kimmel

et al., 2003; Morel et al., 2010; Limare et al., 2011]. In the last two works the

authors have formalized the Retinex theory as the solution of the following discrete

Poisson PDE

−∆dĨ = M(I)

where ∆d is the classical discrete Laplacian and M is a modified version of the

discrete Laplacian. More recently, a geometrical model relating the architecture of

the visual system and the invariances of RPs has been presented in [Citti and Sarti,

2013]. Our scope will be to adapt this approach by using kernels and structures

learned by the CNN, instead of modelled kernels.

We will apply cortical inspired CNN to grouping, i.e. the ability of the visual

system to perceive the elements in the image as distinct. The main principles that

rule how we perceive the elements were described by Kanizsa [Kanizsa et al., 1979]

through the Gestalt laws. Then, several models have been proposed to connect the

cortical activity with these phenomena [see e.g. Hoffman, 1989; Weiss, 1999; Shi

and Malik, 2000]. In [Sarti and Citti, 2015; Favali et al., 2017] the authors put in

relation the meanfield equation of Ermentrout and Cowan [Ermentrout and Cowan,

1980] and Bressloff and Cowan [Bressloff et al., 2002; Bressloff and Cowan, 2003]

which describes the evolution of the cortical activity depending on a connectivity

kernel and the eigenvectors of the affinity matrix. In particular, they proved that

the eigenvectors, ordered w.r.t. the corresponding eigenvalues in decreasing order,

represent the most salient objects in the image.
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The last part of our work is aimed to show that filters and kernels learned by

the LGN-CNN with the connectivity layer are able to reproduce visual perceptual

phenomena, namely contrast perception, whose main model is the Retinex theory

and grouping, whose properties are governed by Gestalt laws. Our purpose is to

substitute the action of the RP with the filter learned by the LGN-CNN. If the

filter becomes a good good approximation of the associated ∆Gσ, then we shall

expect that its inverse will allow to recover the perceived image Ĩ in problems of

contrast perception. Indeed, we propose a Retinex algorithm for a learned kernel

and apply it to the LGN inspired learned filter Ψ0 comparing the results with

the classical ones. We show that our model reaches similar Retinex abilities with

respect to the classical theory and the LoG, the model of the LGN RPs.

On the other hand, we perform the grouping with learned kernels. Indeed,

we propose an algorithm that allows to generate an affinity matrix from a bank

of filters and, then, finding the first eigenvectors, to locate the perceptual units.

We first test our algorithm with a modeled bank of Gabor filters, showing good

performances in the case of position-oriented elements but bad ones in the case of

clouds of points. Then, we test our algorithm on several learned CNN architecture,

generating the affinity matrix from one or more convolutional layers. We show that,

thanks to the presence of both Gaussian and Gabor like filters, the kernel generated

from these banks of filters are able to detect both position-oriented elements and

clouds of points. Furthermore, the use of more convolutional layers enhances the

grouping ability of the kernels.

The thesis is organized as follows. The first three chapters contain an overview

of the existing literature. Namely, the first chapter contains an overview of the

structure of the visual pathway and the group symmetries presents there, as well

as a review of the mathematical models of the functional architecture of the visual

cortex. In the second chapter, we present the contrast perception phenomena and

the grouping, whereas in the third one the main structures of the CNN architectures

and the analogies with the visual system. Then, in the fourth and fifth chapters

we describe the biologically inspired CNN architectures, one with the LGN layer
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[proposed in Bertoni et al., 2022] and one with the transition kernel too [proposed

in Bertoni et al., 2021]. Here we show the invariances arising in these models.

In the last two chapters we test the ability of filters and kernels learned in CNNs

to reproduce perceptual phenomena typical of brain architectures. In the sixth

chapter we study the Retinex effects on the LGN inspired learned filter, whereas in

the last one we show the grouping results on kernels learned in different CNNs.



Resumé

Le système visuel est l’une des parties du cerveau les plus étudiées et, en

particulier, le corps géniculé latéral (CGL) et le cortex visuel primaire (V1), qui

sont les premières couches qui analysent le stimulus visuel, sont parmi les zones

visuelles les mieux comprises. La première description du premier parcours visuel et

de sa géométrie correspondante a été proposée par D. H. Hubel et T. N. Wiesel dans

les années 60 et les années suivantes [Hubel and Wiesel, 1962, 1977; Hubel, 1987].

L’entrée rétinienne est d’abord traitée par les familles radialement symétriques

des cellules présentes dans le CGL qui sont responsables de la perception du

contraste humain. Puis il atteint V1, dont les neurones ne sont pas seulement

sensibles à l’intensité lumineuse du stimulus visuel, mais ils montrent également une

sélectivité à d’autres caractéristiques, telles que l’orientation, l’échelle, la vitesse.

En effet, chaque cellule présente dans les cortices visuels réagit à une zone locale

du stimulus visuel appelé champ récepteur (CR), alors que la fonction qui décrit

son activation en présence d’un stimulus visuel est appelée profil réceptif (PR) et

sera désignée comme Ψ. Chaque emplacement rétinien est associé à un ensemble

entier de neurones de V1 appelés colonne corticale, sensibles à toutes les instances

possibles de la variable correspondante, organisés dans les soi-disant emphcartes

d’orientation.

Du point de vue mathématique, plusieurs modèles neuromathématiques basés

sur la géométrie différentielle classique et les groupes de Lie ont été proposés.

Dans les années 80, Jan Koenderink dans [Koenderink and van Doom, 1987]

a étudié les espaces perceptifs à l’aide de la géométrie différentielle et William

Hoffman dans [Hoffman, 1989] a développé un modèle du cortex visuel sous la

ix
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forme d’un faisceau de fibres équipé d’une structure de contact. Dans la même

période, Steven Zucker a observé expérimentalement la relation entre la mesure

de la courbure euclidienne et le rôle des cellules terminales [Dobbins et al., 1987].

Ces premiers modèles ont soulevé l’idée que le système visuel était une ”machine

géométrique”, ce qui a conduit dans les années 90 au développement de plusieurs

modèles phénoménologiques de la vision basés sur le calcul des variations et les

équations aux dérivées partielles paraboliques : pour ne citer que quelques articles

pionniers, le modèle de segmentation de Mumford-Shah [Mumford and Shah, 1989]

et l’analyse multi-échelle d’Alvarez, Lions, Morel [Alvarez et al., 1992]. De plus,

dans les mêmes années, des modèles neuromathématiques aiant une double nature

neuro-psychologique ont été proposés. David Mumford dans [Mumford, 1994] a

modélisé des contours illusoires perceptifs à travers ses courbes élastiques qui sont

toujours au centre de la recherche contemporaine, mais repensées dans un nouveau

cadre mathématique. Ainsi, en 1995 dans [Williams and Jacobs, 1997] un premier

modèle stochastique de contours illusoires dans l’espace de position et d’orientation

a été proposé par Williams et Jacobs. A la fin des années 90, une contribution

fondamentale de Jean Petitot et Yannick Tondut dans [Petitot and Tondut, 1999] a

reconsidéré le modèle de Hoffman du cortex comme structure de contact, calculant

les courbes géodésiques de la structure non intégrable et montrant que les courbes

modélisées les champs d’association perceptifs, mesurés par Fields, Heyes et Hess

dans [Field et al., 1993]. De cette façon, ils ont pu prédire la forme d’un contour

illusoire, compte tenu de ses inductances, et Petitot a explicitement introduit le mot

Neurogéométrie pour désigner la géométrie interne de la connectivité corticale. Au

cours des années suivantes, Jean Petitot a fait évoluer son modèle en contribuant

massivement aux progrès de ce domaine de recherche [Petitot, 2003, 2008, 2017].

Au nouveau siècle, Govanna Citti et Alessandro Sarti dans [Sarti et al., 2003;

Citti and Sarti, 2006] ont observé que la structure corticale est en fait définie

dans le groupe de rotation et de translation euclidien SE(2) doté d’une métrique

sous-riemannienne. Dans cette structure de faisceaux de fibres, ils ont exprimé

la propagation corticale en termes de diffusion sous-riemannienne d’EDP afin de

modéliser le phénomène de complétion d’image. Bressloff et Cowan dans [Bressloff
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and Cowan, 2003] ont étudié la dynamique de la population neuronale, modélisant

le cortex dans le même groupe SE(2). Un résultat impressionnant a été obtenu

lorsque la carte d’activation a été calculée en l’absence d’une entrée externe ; en

effet, ils ont simulé les effets de drogues chimiques en obtenant une distribution

d’activation correspondant à des hallucinations visuelles, comme on a rapporté

dans la littérature classique. Dans [Duits and Franken, 2010a,b] Remco Duits a

déplacé l’attention travaillant dans le groupe SE(2) du point de vue du traitement

d’image. Il a soulevé et propagé le signal visuel dans l’espace R2×S1 et, appliquant

des noyaux inversibles, a pu reconstruire le stimulus sans perte d’information dans

le plan image 2D. Une approche phénoménologique se retrouve dans l’ensemble de

l’œuvre de Jean-Michel Morel et de son groupe computationnel de Gestalt [voir par

exemple Delsolneux et al., 2008; Morel et al., 2010; Limare et al., 2011]. En effet, il

a trouvé dans le principe de Helmoltz la base de la théorie classique de la Gestalt

obtenant des résultats théoriques et informatiques approfondis. Daniel Bennequin

a abordé plusieurs problèmes neuromathématiques en termes d’invariance, de

symétrie et d’ambigüıté : il a notamment formalisé ces problèmes avec les principes

de la théorie de la ”topologie de l’information”, une nouvelle théorie de la co-

homologie de l’information basée sur la théorie des probabilités et de l’entropie

[voir par exemple Pham and Bennequin, 2012; Bennequin, 2014]. James Bednar a

reproduit les morphologies géométriques du cortex visuel à travers les principes

de plasticité cérébrale, récupérant les principales caractéristiques de l’architecture

fonctionnelle du cortex visuel par un processus d’apprentissage sur un approprié

ensemble de stimuli [Stevens et al., 2013; Antoĺık et al., 2016]. Ces dernières

années, d’autres recherches ont été menées aboutissant à plusieurs développements

dans ce domaine : dans [Citti and Sarti, 2013; Sarti and Citti, 2015; Favali et al.,

2017; Boscain et al., 2018; Boscain, Ugo et al., 2018; Baspinar, 2021; Galyaev and

Mashtakov, 2021; Jumakulyyev and Schultz, 2021], les auteurs ont été confrontés

à la tâche d’achèvement perceptif des figures sur le groupe SE(2) ; la perception

des contours en mouvement et des trajectoires a été étudiée dans [Barbieri et al.,

2014b] ; applications dans la segmentation des vaisseaux ont été analysées dans

[Zhang et al., 2016; Bekkers et al., 2017; Abbasi-Sureshjani et al., 2018; Yu et al.,
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2021] ; un modèle de perception de contraste dépendant de l’orientation inspiré

des équations de type Wilson – Cowan a été proposé dans [Bertalmı́o et al., 2019;

Bertalmı́o et al., 2021] un modèle de l’architecture fonctionnelle de V1 à partir des

PR de cellules simples a été proposé dans [Montobbio et al., 2019b, 2020].

En conséquence, l’espace de fonction G a généralement la forme du produit

R2×F , où les paramètres (x0, y0) ∈ R2 indiquent l’emplacement rétinien où chaque

PR est centré, tandis que f ∈ F encode la sélectivité des neurones vers d’autres

caractéristiques locales de l’image.

Un stimulus visuel peut être représenté comme une fonction I = I(x, y), où

(x, y) représente un emplacement rétinien et I(x, y) la lumière correspondante. Son

action z, associée à un noyau défini comme Ψ = Ψ(x, y), peut être modélisée en

tant qu’un opérateur intégral linéaire comme suit

z(I) := I ∗Ψ.

Dans le cas des cellules simples de V1 F = S1, i.e. chaque neurone répond au

maximum à une certaine orientation θ à un emplacement rétinien spécifique (x, y).

En outre, dans V1 il y a des preuves expérimentales de l’existence des connexions

entre des cellules simples qui appartiennent à différentes colonnes corticales avec une

orientation similaire, appelée connectivité horizontale à longue portée [par example

Ts’o et al., 1986; Bosking et al., 1997]. La connectivité a été décrite dans [Citti and

Sarti, 2006] comme des familles de courbes intégrales des deux champs vectoriels

dans la structure sous-riemannienne sur R2 × S1. Ce modèle a été développé dans

[Sanguinetti et al., 2010] où les auteurs ont proposé de modéliser la connectivité

comme noyaux géométriques appropriés. En particulier, dans [Montobbio et al.,

2019b] il est proposé de relier directement la forme des noyaux de connectivité dans

une famille de cellules à leur PRs {Ψp}p∈G comme suit :

K(p, p0) := Re

(∫
R2

Ψp(x, y)Ψp0(x, y)dxdy

)
,

Des nombreux efforts ont été faits pour relier les architectures corticales avec les

réseaux neuronaux convolutifs (CNNs). En effet, les premiers réseaux neuronaux

ont été inspirés par une simplification de la structure du système visuel, présentant
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une structure hiérarchique, où chaque couche reçoit l’entrée de la précédente et

fournit la sortie à la suivante. Malgré cette simplification, ils ont atteint des

valeurs optimales dans les processus typiques du système visuel naturel, comme

par exemple la détection d’objets [Redmon et al., 2016; Ren et al., 2017] ou la

classification d’images [He et al., 2015; Simonyan and Zisserman, 2015].

Plus récemment, les relations entre les CNNs et le système visuel humain ont

été largement étudiées, dans le but ultime de rendre le CNN encore plus efficace

dans des tâches spécifiques. Un modèle de premières couches corticales décrites

comme couches d’un CNN a été étudié dans [Serre et al., 2007], alors que dans

[Yamins et al., 2015; Yamins and DiCarlo, 2016] les auteurs ont pu étudier des

zones plus élevées en se concentrant sur l’encodage et la capacité de décodage du

système visuel. Des réseaux neuronaux récurrents ont été introduits pour mettre

en œuvre la connectivité horizontale [par exemple Sherstinsky, 2020], ou termes de

rétroaction [par exemple Liang and Hu, 2015]. Une modification de ces filtres, plus

géométrique et plus similaire à la structure du cerveau, a été récemment proposée

dans [Montobbio et al., 2019a]. De plus, il est bien connu que les V1 PRs et la

première couche convolutionnelle d’un CNN sont principalement composées de

filtres de Gabor. Des modèles biologiques de V1 en termes des filtres de Gabor

ont été réalisés dans [Serre et al., 2007; Zhang et al., 2019] et la statistique des

PRs de la V1 d’un macaque a été étudiée dans [Ringach, 2002], néanmoins une

comparaison entre ces résultats et les statistiques des filtres appris est toujours

manquante.

Notre but dans cette thèse est de proposer des architectures de CNN afin de

modéliser la première voie visuelle, y compris le noyau géniculé latéral et la con-

nectivité horizontale du cortex visuel primaire. En outre, nous allons montrer com-

ment les architectures d’inspiration corticale permettent d’effectuer de l’invariance

perceptuelle au contraste ainsi que le groupement et l’émergence des perceptions

visuelles. En particulier, la CGL est modélisée avec une première couche `0

contenant un seul filtre Ψ0 qui pré-filtre l’image I. Comme les PR des cellules CGL

peuvent être modélisées en tant que LoG, nous nous attendons à obtenir un filtre
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radialement symétrique de forme similaire ; à cette fin, nous prouvons l’invariance

rotationnelle de Ψ0 et nous étudions l’influence de ce filtre sur la couche suivante.

En effet, nous comparons la distribution statistique des filtres de la deuxième

couche `1 de notre architecture avec la distribution statistique des PR des cellules

V1 d’un macaque étudiée dans [Ringach, 2002].

Ensuite, nous modélisons la connectivité horizontale de V1 implémentant un

noyau de transition K1 vers la couche `1. Dans ce cadre, nous étudions les champs

vectoriels et les champs d’association induits par le noyau de connectivité K1. À

cette fin, nous rapprochons d’abord la banque de filtres en `1 avec une fonction

de Gabor et utilisons les paramètres trouvés pour reconfigurer le noyau. Grâce à

cette étape, le noyau est maintenant reconfiguré dans un espace sous-Riemmanien

R2× S1. Nous sommes maintenant en mesure de comparer les champs vectoriels et

d’association induits par K1 avec les modèles de la connectivité horizontale.

La théorie Retinex, proposée par Land [Land, 1964], décrit le phénomène de

perception de contraste. Plus tard, il a développé cette théorie avec J. McCann dans

[Land and McCann, 1971], proposant un algorithme et un programme informatique

conçu pour simuler les processus Retinex se déroulant dans le système visuel: il

associait à une image I la perception Ĩ. Dans les années suivantes, plusieurs travaux

ont contribué au développement de la théorie Retinex et son application [entre

autres Enroth-Cugell and Robson, 1966; Brainard and Wandell, 1986; Provenzi

et al., 2005; Solomon et al., 2006; Lei et al., 2007; Valberg and Seim, 2013; Yeonan-

Kim and Bertalmı́o, 2017]. Certaines approches variationnelles ont été proposées

par exemple par [Kimmel et al., 2003; Morel et al., 2010; Limare et al., 2011]. Dans

les deux derniers travaux, les auteurs ont formalisé la théorie de Retinex comme

solution du discret Poisson EDP suivant

−∆dĨ = M(I)

où ∆d est le Laplacien discret classique et M est une version modifiée du

Laplacien discret. Plus récemment, un modèle géométrique relatif à l’architecture

du système visuel et aux invariances des PRs a été présenté dans [Citti and Sarti,

2013]. Notre objectif sera d’adapter cette approche en utilisant des noyaux et des

structures apprises par CNN, au lieu des noyaux modélisés.
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Nous appliquerons des CNNs inspirées aux corticales pour le regroupement, c.-

à-d. la capacité du système visuel de percevoir les éléments de l’image comme étant

distincts. Les principes fondamentaux qui régissent la façon dont nous percevons

les éléments ont été décrits par Kanizsa [Kanizsa et al., 1979] à travers les lois de la

Gestalt. Ensuite, plusieurs modèles ont été proposés pour relier l’activité corticale

à ces phénomènes [voir par ex. Hoffman, 1989; Weiss, 1999; Shi and Malik, 2000].

Dans [Sarti and Citti, 2015; Favali et al., 2017] les auteurs mettent en relation

l’équation ”meanfield” d’Ermentrout et de Cowan [Ermentrout and Cowan, 1980]

et Bressloff et Cowan [Bressloff et al., 2002; Bressloff and Cowan, 2003] qui décrit

l’évolution de l’activité corticale en fonction d’un noyau de connectivité et des

vecteurs propres de la matrice d’affinité. En particulier, ils ont prouvé que les

vecteurs propres, ont commandé par rapport aux correspondant valeurs propres

par ordre décroissant, représentent les objets les plus saillants dans l’image.

La dernière partie de notre travail vise à montrer que les filtres et les noyaux

appris par la CGL-CNN avec la couche de connectivité sont capables de reproduire

des phénomènes perceptifs visuels, notamment la perception du contraste, dont

le modèle principal est la théorie et le regroupement Retinex, dont les propriétés

sont régies par les lois de la Gestalt. Notre but est de substituer l’action de la

PR au filtre appris par la CGL-CNN. Si le filtre devient une bonne approximation

du ∆Gσ associé, alors on s’attendra à ce que son inverse permette de récupérer

l’image perçue Ĩ en problèmes de perception du contraste. En effet, nous proposons

un algorithme Retinex pour un noyau entrâıné et l’appliquons au filtre entrâıné

Ψ0 inspiré de CGL, en comparant les résultats avec les résultats classiques. Nous

montrons que notre modèle atteint des capacités Retinex similaires par rapport à

la théorie classique et au LoG, le modèle des PR CGL.

D’autre part, nous effectuons le regroupement avec des noyaux appris. En

effet, nous proposons un algorithme qui permet de générer une matrice d’affinité à

partir d’une banque de filtres et, ensuite, de trouver les premiers vecteurs propres,

de localiser les unités perceptuelles. Nous testons d’abord notre algorithme avec

une banque modélisée de filtres Gabor, montrant de bonnes performances dans
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le cas d’éléments orientés position, tandis que de mauvaises performances dans

le cas de nuages de points. Ensuite, nous testons notre algorithme sur plusieurs

architectures CNN apprises, générant la matrice d’affinité à partir d’une ou de

plusieurs couches convolutionnelles. Nous montrons que, grâce à la présence de

filtres gaussiens et Gabor, le noyau généré à partir de ces banques de filtres est

capable de détecter à la fois des éléments orientés position et des nuages de points.

En outre, l’utilisation des couches plus convolutionnelles améliore la capacité de

regroupement des noyaux.

La thèse est organisée comme suit. Les trois premiers chapitres contiennent

une vue d’ensemble de la littérature existante. Notamment, le premier chapitre

présente un aperçu de la structure de la voie visuelle et des symétries de groupe qui

y sont présentées, ainsi qu’un examen des modèles mathématiques de l’architecture

fonctionnelle du cortex visuel. Dans le deuxième chapitre, nous présentons les

phénomènes de perception du contraste et le regroupement, tandis que dans le

troisième, les principales structures des architectures CNN et les analogies avec le

système visuel. Ensuite, dans les quatrième et cinquième chapitres, nous décrivons

les architectures CNN inspirées biologiquement, l’une avec la couche CGL [proposée

dans Bertoni et al., 2022] et l’autre en ajoutant le noyau de transition [proposée

dans Bertoni et al., 2021]. Ici, nous montrons les invariances qui surgissent dans

ces modèles. Dans les deux derniers chapitres, nous testons la capacité des filtres et

des noyaux appris dans les CNNs à reproduire les phénomènes perceptifs typiques

des architectures cérébrales. Dans le sixième chapitre, nous étudions les effets

Retinex sur le filtre CGL inspiré appris, alors que dans le dernier nous montrons

les résultats de regroupement sur les noyaux appris dans différents CNNs.
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3 Convolutional Neural Networks 23

3.1 The architecture of a CNN . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 The multilayered structure . . . . . . . . . . . . . . . . . . . 24

3.1.2 The artificial neuron . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 The pooling operation . . . . . . . . . . . . . . . . . . . . . 26

3.1.4 The fully-connected step . . . . . . . . . . . . . . . . . . . . 27

3.1.5 The loss functional . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.6 The learning phase . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Analogy between the visual system and CNNs . . . . . . . . . . . . 29

3.3 Invariance properties of CNNs . . . . . . . . . . . . . . . . . . . . . 30

4 A biologically inspired CNN architecture: LGN-CNN 33

4.1 LGN in a CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 The LGN-CNN architecture . . . . . . . . . . . . . . . . . . . . . . 35

4.3 The filters of the LGN-CNN architecture . . . . . . . . . . . . . . . 39

4.3.1 The layer `0 of LGN-CNN . . . . . . . . . . . . . . . . . . . 39

4.3.2 Rotation invariance proof of Ψ0 . . . . . . . . . . . . . . . . 43

4.3.3 The layer `1 of the LGN-CNN . . . . . . . . . . . . . . . . . 47

5 The LGN-CNN architecture with the transition kernel 51

5.1 Horizontal connectivity of V1 in a CNN . . . . . . . . . . . . . . . . 51

5.2 The proposed architecture . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Results on the LGN-CNN with transition kernel K1 . . . . . . . . . 57

5.3.1 Emergence of rotational symmetry in the LGN layer . . . . . 57

5.3.2 Emergence of Gabor-like filters in the first layer . . . . . . . 58

5.3.3 Re-parameterization of the connectivity kernel using the first

layer approximation . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.4 Non-maximal suppression within orientation hypercolumns . 63

5.3.5 Association fields induced by the connectivity kernel . . . . 63

5.3.6 Comparison of transition kernel with the solution of the heat

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



INDEX xix

6 The Retinex effects of LGN-type learned filters 67

6.1 Retinex algorithm via learned kernels . . . . . . . . . . . . . . . . . 67

6.2 Application of the algorithm . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Detect the inverse operators . . . . . . . . . . . . . . . . . . 69

6.2.2 Circles on a gradient background . . . . . . . . . . . . . . . 70

6.2.3 Adelson’s checker . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Information transmission efficiency . . . . . . . . . . . . . . . . . . 73

7 Perceptual grouping with learned kernels 77

7.1 A general method of group detection . . . . . . . . . . . . . . . . . 77

7.2 Modeled kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.1 Kernel computed from Gabor filters . . . . . . . . . . . . . . 78

7.3 Bank of learned filters . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3.1 Perceptual grouping with GoogLeNet . . . . . . . . . . . . . 84

7.3.2 Perceptual grouping with neural networks trained on MNIST 89

7.3.3 Comparison between the two trained architectures . . . . . . 91

8 Conclusions 95





List of Figures

1.1 On the left: RFP of an LGN cell where the excitatory area is in white

and the inhibitory one is in gray. On the right: Its approximation

by a LoG. From: [DeAngelis et al., 1995]. . . . . . . . . . . . . . . 3

1.2 First row: RFPs of two simple cells of V1 where the excitatory area

is in white and the inhibitory one is in black. Second row: their

approximations by Gabor functions. From: [Sarti and Citti, 2011]. 3

1.3 Cube scheme of V1 by Hubel and Wiesel. Cells belonging to the

same column have a similar receptive profiles, the orientation hyper-

columns are arranged tangentially to the cortical sheet. From:

[Hubel, 1987]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 (A) Images obtained for four stimulus angles θ = 0, 45, 90, 135 de-

grees. Dark areas were preferentially activated by a stimulus with

orientation θ; light areas were active during presentation of the

orthogonal angle. (B) The orientation map obtained by vector sum-

mation of data obtained for each angle. The orientation preference

of each location (x, y) is color-coded according to the key shown

below. (C) Enlarged portions of the map show linear two zones

(left) and two pinwheel arrangements (right). From: [Bosking et al.,

1997]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

xxi



xxii LIST OF FIGURES

1.5 (A) Association fields from the experiment of Field, Hayes and Hess,

from [Field et al., 1993]. (B) 3D representation of the association

field with contact planes of integral curves of the fields (1.6) with

varying values of the parameter k, from [Citti and Sarti, 2006]. (C)

Integral curves of the fields (1.6) with varying k, from [Citti and

Sarti, 2006]. (D) The vector field of unitary vectors oriented with

the maximal edge co-occurrence probability (red) with superimposed

its integral curves (blue), from [Sanguinetti et al., 2010]. . . . . . . 8

2.1 Examples of Gestalt laws. . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Square of Kanizsa. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 First line: starting images. Second line: corresponding grouping

with Gaussian kernel. If the first three eigenvectors are displayed

they are red, green and blue respectively. Columns: (A) image

containing three clouds of points; (B) image containing collinear

and cocircular oriented elements; (C) image containing two clouds

of points and a set of collinear segments. . . . . . . . . . . . . . . . 21

2.4 Grouping with stochastic kernel performed on image with position-

orientation elements. From: [Barbieri et al., 2014b]. . . . . . . . . 22

2.5 Grouping with modeled kernel on different image. This kernel allows

to recover the curvature at each spatial location. From: [Abbasi-

Sureshjani et al., 2018]. . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Scheme of the LGN and V1 in parallel with the first two layers `0

and `1 of the LGN-CNN architecture. . . . . . . . . . . . . . . . . . 35

4.2 Architecture of LGN-CNN. . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Comparison between the filter Ψ0 and minus the LoG. The two have

a high correlation of 95.21% computed using the built-in function of

MatLab corr2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 The first figure shows the 7× 7 filter Ψ0 of the LGN-CNN. To better

visualize the filter Ψ0, we provide an approximating 280× 280 filter

and minus the LoG. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



INDEX xxiii

4.5 On-center/off-surround and off-center/on-surround filters of `0 with

2 filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Filter Ψ0 of LGN-CNN obtains after training. . . . . . . . . . . . . 46

4.7 Comparison between the filter Ψ0 and a Gaussian. We can see that

Ψ0 is really close to a discrete approximation of a Gaussian fitted to

the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 On the left: filters from LGN-CNN. On the right: their approxima-

tion with the function (1.2). . . . . . . . . . . . . . . . . . . . . . . 48

4.9 On the left: filters from classical CNN. On the right: their approxi-

mation with the function (1.2). . . . . . . . . . . . . . . . . . . . . 48

4.10 Comparison between the statistical distribution on (nx, ny) plane of

filters of a classical CNN, of the LGN-CNN architecture and of RPs

of real data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Scheme of the CNN architecture. Convolutional layers are numbered

from `0 to `10, fully connected classification layers are denoted as

FC1, FC2, FC3. Horizontal connections governed by the connectiv-

ity kernel K1 are represented as an operator acting on the feature

space associated with layer `1. . . . . . . . . . . . . . . . . . . . . . 53

5.2 Behavior of the mean testing accuracy w.r.t. the number of layers

(A) and units (B), for both classical CNNs and LGN-CNNs, with and

without the lateral connectivity. Error bars represent the standard

error of the mean over 20 trainings. The selected LGN-CNN with

transition kernel is the one marked by a red star in both plots. (A)

The x-axis represents the number of ”standard” convolutional layers.

(B) The x-axis represents the number of filters in each convolutional

layer, expressed as a percentage w.r.t. the number of filters in the

selected model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 (A) The learned filter Ψ0 of the LGN-CNN architecture with transi-

tion kernel. (B) Its approximation as a LoG, with optimal σ = 0.184,

yielding a correlation of 93.67% with the learned filter. . . . . . . . 58



xxiv LIST OF FIGURES

5.4 (A) Learned filters of `1 of our CNN architecture. (B) Learned

filters of `1 of the same CNN architecture, but without `0. . . . . . 59

5.5 (A): the learned filters of `1 with odd parity, ordered w.r.t. the

orientation θ obtained from the Gabor approximation. (B): the

approximating odd Gabor filters, labelled by their orientation. . . . 61

5.6 (A): the learned filters of `1 with even parity, ordered w.r.t. the

orientation θ obtained from the Gabor approximation. (B): the

approximating even Gabor filters, labelled by their orientation. . . . 61

5.7 Behavior of learned short-range intracortical connections w.r.t. the

relative orientation. The curve displays the strength of interaction

between the filter Ψf with orientation θf = 2π
5

and the other filters Ψg

centered at the same point (i.e. with relative displacement = (0, 0))

as a function of their orientation θg. The curve has been smoothed

using the MatLab built-in function smoothdata. . . . . . . . . . . . 62

5.8 (A) The 7× 7 filter Ψf , with orientation θf = 3π
10

. (B) The vector

field V and its integral curves obtained from the kernel K1 computed

around Ψf , with θf = 3π
10

. (C) The association field of the transition

kernel K1 (blue), and its approximation using the integral curves

defined in (1.7) (red). For better visualization the kernel has been

resized by a factor of 10 using the built-in Matlab function imresize. 65

5.9 (A) In blue: the vector field of the transition kernel K1 around Ψf .

In red: the vector field of the best-fitting fundamental solution of

the sub-Riemannian heat equation, with α = 4.40. (B) In green:

the vector field of the best-fitting fundamental solution of the sub-

Riemannian heat equation over a wider spatial region. In red: the

local vector field fitted to the learned kernel. . . . . . . . . . . . . . 66

6.1 Comparison between inverse operators. First row: inverse of the

discrete Laplacian and its exact inverse operator. Second row: inverse

operators of a discrete LoG and the first filter Ψ0 of an LGN-CNN. 69

6.2 Retinex effects of some inverse operators on starting image 6.2a. . . 71



INDEX xxv

6.3 Comparison between the Retinex effects of some operators on grayscale

Adelson’s checker shadow illusion. . . . . . . . . . . . . . . . . . . . 74

6.4 On the left: a gray-scale image I, the convolved image Ĩ and the
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Chapter 1

The functional architecture of the

Visual System

In this chapter we recall some of the main properties of the visual system that

are useful for our research and refer the reader for a more general description to

[E. R. Kandel and Jessell., 1993; Nolte and Sundsten, 2002]. We briefly summarize

the structure of the visual system focusing on the Lateral Geniculate Nucleus (LGN)

and the Primary Visual Cortex (V1) and we describe the geometric properties of

the Receptive Profiles (RPs) of cells in both structures.

1.1 Architecture of the visual system

The visual system is one of the most studied and most understood part of the

brain, composed by many cortices that elaborate the visual signal. The first element

of this structure is the retina, a light-sensitive layer of tissue which receives the

visual stimulus and translates it into electrical impulses. The latter first reach the

LGN whose cells pre-process the visual stimulus and send the elaborated impulse

to V1. Here the cells of V1 process the information and send the output to all the

other layers of the visual system. Furthermore, each cortex receives information

from other cortices, processes it through horizontal connectivity that allows cells of

the same cortex to communicate with each others, forwards it to higher areas and

1



2 1. The functional architecture of the Visual System

sends feedback to previous ones. The structure is very complex and not totally

ordered as physiologically described for example in [Hubel, 1987].

1.1.1 Receptive Profiles of the LGN and V1 cells

Our main interest lies in the cells of the LGN and in the simple cells of V1.

Each cell in the visual system receives the electrical impulse from a portion of the

retina Ω called receptive field (RF). The RF of each cell is divided in excitatory

and inhibitory areas, activated by the light. As a result, the behavior of each

cell can be modeled as a function Ψ : Ω ⊂ R2 → R called receptive profile (RP),

positive in excitatory areas and negative in the inhibitory ones. If the excitatory

areas are activated the firing rate of the cell increases whereas it decreases in case

of inhibitory areas activation.

As concern the LGN, figure 1.1 on the left shows a recording of the RP of one

cell and on the right its approximation [see e.g. DeAngelis et al., 1995]. Indeed,

the RP of LGN cells can be modeled as a Laplacian of Gaussian (LoG):

ΨLoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 , (1.1)

where σ denotes the standard deviation of the Gaussian function [see e.g. Petitot

and Tondut, 1999; Petitot, 2008, 2017]. Furthermore, in the LGN there are two

types of cells RPs, respectively with excitatory or inhibitory internal region. In the

second case the RP can be modeled by minus the LoG.

As concern V1, there exist several types of cells with different RPs, called

simple cells and complex cells. We are mainly interested in the first kind that

has sharply-tuned RPs with a preferred orientation. Figure 1.2 shows in the first

row the RPs of two simple cells of V1 and in the second one their approximation.

Indeed, an established model for V1 simple cells is represented by a bank of Gabor

filters {Ψx0,y0,θ,σ}(x0,y0,θ,σ)∈R2×S1×R2
+

built by translations T(x0,y0), rotations Rθ and

dilations Dσx,σy of the filter

Ψ0,0,0,1(x, y) = Ae−
x2+y2

2 cos(2πfx+ φ), (1.2)
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Figure 1.1 – On the left: RFP of an LGN cell where the excitatory area is in white

and the inhibitory one is in gray. On the right: Its approximation by a LoG. From:

[DeAngelis et al., 1995].

Figure 1.2 – First row: RFPs of two simple cells of V1 where the excitatory area is

in white and the inhibitory one is in black. Second row: their approximations by

Gabor functions. From: [Sarti and Citti, 2011].

where A is the amplitude and f is the frequency of the filter and φ is the phase

which indicates if the Gabor filter is even or odd. See e.g. [Daugman, 1985] and

[Lee, 1996].

Furthermore, several classes of visual cells, as e.g. the ones just described, are

shown to act, to a first approximation, as linear filters on an optic signal: the

response of this kind of cells to a visual stimulus, defined as a function on the retina

I : Ω ⊂ R2 → R, is given by the integral of I against the RP Ψ of the neuron:

z(I) :=

∫
I(x, y)Ψ(x, y)dxdy. (1.3)
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Figure 1.3 – Cube scheme of V1 by Hubel and Wiesel. Cells belonging to the

same column have a similar receptive profiles, the orientation hyper-columns are

arranged tangentially to the cortical sheet. From: [Hubel, 1987].

1.1.2 The hyper-columnar structure and non maxima sup-

pression

In the 70s Hubel and Wiesel discovered that V1 is organized in the so called

hyper-columnar structure [Hubel and Wiesel, 1962]. This means that for each

retinal point (x, y) there is an entire set of cells each one sensitive to a specific

instance of the considered feature, organized in “pinwheel” arrangements. The

set of RPs of cells reacting to a specific retinal region is usually represented by a

bank of linear filters {Ψp}p∈G ⊆ L2(R2) [for some references see e.g. Petitot and

Tondut, 1999; Citti and Sarti, 2006; Sarti et al., 2008; Petitot, 2008, 2003]. The

feature space G is typically described as a group of transformations of the plane

{Tp, p ∈ G} under which the entire filter bank is invariant. Indeed, each profile

Ψp can be obtained from any other profile Ψq through the transformation Tp−q.

Furthermore, the feature space G usually has the product form R2 ×F 3 (x, y, f),

where the parameters (x, y) ∈ R2 indicate the retinal location where each RP is

centered, while f ∈ F encodes the selectivity of the neurons to other local features

of the image, such as orientation and scale.

The figure 1.3 is a scheme of the hyper-columnar structure when the considered

feature is orientation. In this case the space of feature can be modelled by F = S1

and so the higher dimensional cortical space is given by G = R2 × S1. At a certain

scale and resolution there exists a set of neurons centered at the same retinal



1.1 Architecture of the visual system 5

position (x, y) in which each neuron responds maximally to a certain orientation θ.

All the possible orientations are expressed and a triple (x, y, θ) can be associated

to each neuron.

When a visual stimulus is projected on a retinal point (x, y) all neurons belonging

to the hyper-column over the point (x, y) will be activated and provide the response

given by the formula (1.3). The one with the same orientation of the stimulus

is maximally activated, giving rise to orientation selectivity. Indeed the cortex

is equipped with a neural circuitry, called intracortical circuitry, that is able to

keep the orientation of maximal response of cells’ outputs. Furthermore, among

the cells in the same hyper-column is present a short-range connectivity that

induces excitation between cells with close orientation and inhibition between cells

with different orientation. This kind of connectivity for V1 simple cells has been

modelled as a ”Mexican hat”-like function in [Bressloff and Cowan, 2002]. For a

general feature described by a space F the process is the same and the non maxima

suppression principle is modelled by:

z(I)(x0, y0, f 0) = max
f0∈F

z(I)(x0, y0, f0) (1.4)

where (x0, y0) is the considered retinal position and F represents the set of all pos-

sible instances. Within each hyper-column the feature associated to the maximum

output is selected and all the others are suppressed, leading to the selection of

the maximal responding feature. In this way our brain is able to locally detect a

specific feature and to discard all the other possibility.

1.1.3 Statistics of V1 simple cells RPs

As just described, the RPs of V1 cells can be modeled as Gabor functions (1.2).

Recently, Ringach in [Ringach, 2002] has proved that the RPs are not uniformly

distributed with respect to all the Gabor parameters, but they have a very particular

statistic. Indeed, Ringach defines two coefficients nx and ny which estimate the

elongation in x and y directions respectively

(nx, ny) = (σx · f, σy · f). (1.5)
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In particular, if f = 0 the Gabor function in (1.2) simplifies to a Gaussian since

the cosine becomes a constant. Otherwise the Gabor function is elongated in its

preferred orientation θ. In order to study the statistics of recorded RPs of V1

simple cells, Ringach has followed these steps:

• Fitting the RPs with Gabor function Ψx0,y0,θ,σ built by translation T(x0,y0),

rotation Rθ and dilation Dσx,σy of the filter defined in eq. (1.2);

• Comparing the results on (nx, ny) = (σx · f, σy · f) plane.

Figure 4.10c shows the statistical distribution of RPs of V1 cells in monkeys

in (nx, ny) plane obtained by Ringach in [Ringach, 2002]. In [Barbieri et al.,

2014a] the authors have studied the same statistical distribution with respect to the

Uncertainty Principle associated to the task of detection of position and orientation.

1.2 The horizontal connectivity

From the neurophysiological point of view, there is experimental evidence of the

existence of connections between simple cells of different hyper-columns. It is the so

called long-range horizontal connectivity that is responsible for the cortico-cortical

propagation of the neural activity between hyper-columns.

In [Ts’o et al., 1986] correlation techniques have been used in order to estimate

the correlation between connectivity and orientation of cells. Recently techniques

of optical imaging allowed to measure the horizontal connectivity (see figure 1.4)

by injecting a tracer (biocytin) in a simple cell and recording the trajectory of the

tracer [see Bosking et al., 1997]. In this way it has been possible to clarify properties

of horizontal connections on V1 of the tree shrew and it has been revealed that the

linked cells of different hyper-columns not only share the angle of tuning but also

the axis corresponding to the orientation is roughly the same.

It is believed that the long-range horizontal connections of V1 constitutes the

neural implementation of contour completion, i.e. the ability to group
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Figure 1.4 – (A) Images obtained for four stimulus angles θ = 0, 45, 90, 135 degrees.

Dark areas were preferentially activated by a stimulus with orientation θ; light areas

were active during presentation of the orthogonal angle. (B) The orientation map

obtained by vector summation of data obtained for each angle. The orientation

preference of each location (x, y) is color-coded according to the key shown below.

(C) Enlarged portions of the map show linear two zones (left) and two pinwheel

arrangements (right). From: [Bosking et al., 1997].

local edge items into extended curves. This perceptual phenomenon has been

described through association fields [Field et al., 1993], characterizing the geometry

of the mutual influences between oriented local elements. See for example figure 1.5A

from the experiment of Field, Heyes and Hess. Then, Petitot and Tondut in [Petitot

and Tondut, 1999] proposed a geometric model of the functional architecture of V1

that also models the association fields. More recently, association fields have been

described in Citti and Sarti [2006] as families of integral curves of the two vector

fields

~X1 = (cos θ, sin θ, 0), ~X2 = (0, 0, 1) (1.6)

that generates the sub-Riemannian structure on R2 × S1. Figure 1.5B shows the

3-D constant coefficients integral curves of the vector fields (1.6) and figure 1.5C

their 2-D projection. These integral curves can be also modeled as the solution of

the following ordinary differential equation:

γ′(t) = X1(γ(t)) + kX2(γ(t)).
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Figure 1.5 – (A) Association fields from the experiment of Field, Hayes and Hess,

from [Field et al., 1993]. (B) 3D representation of the association field with contact

planes of integral curves of the fields (1.6) with varying values of the parameter k,

from [Citti and Sarti, 2006]. (C) Integral curves of the fields (1.6) with varying k,

from [Citti and Sarti, 2006]. (D) The vector field of unitary vectors oriented with

the maximal edge co-occurrence probability (red) with superimposed its integral

curves (blue), from [Sanguinetti et al., 2010].

The curves starting from (0, 0, 0) can be rewritten explicitly in the following

way:

x =
1

k
sin(kt), y =

1

k
(1− cos(kt)), θ = kt. (1.7)

while integral curves starting from a general point (x0, y0, θ0) can be obtained from

equations (1.7) by translations T(x0,y0) and rotations Rθ.

The probability of reaching a point (x, y, θ) starting from the origin and moving

along the stochastic counterpart of these curves can be characterized as the funda-

mental solution of a second order differential operator expressed in terms of the

vector fields ~X1, ~X2. This is why the fundamental solution of the sub-Riemannian
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heat kernel or Fokker Planck (FP) kernel have been proposed as alternative models

of the cortical connectivity.

This viewpoint based on connectivity kernels was further exploited in [Montobbio

et al., 2020]: the model of the cortex was reformulated in terms of metric spaces,

and the long range connectivity kernel directly expressed in terms of the cells RPs:

in this way a strong link was established between the geometry of long range and

feedforward cortical connectivity. Finally, in Sanguinetti et al. [2010] an important

relation between these models of cortical connectivity and statistics of edge co-

occurrence in natural images was proved; indeed, the FP fundamental solution has

become a good model also for the natural image statistics. Moreover, thanks to a

parameterization of the connectivity kernel in terms of position and orientation, in

Sanguinetti et al. [2010] they obtained the 2-D vector field represented in red in

figure 1.5D , whose integral curves (depicted in blue) offer an alternative model of

association fields, learned from images.

1.2.1 A metric model of cortical connectivity

Let us recall the metric model of the cortex proposed in [Montobbio et al.,

2019b]. First, we would like to choose a bank of linear, real or complex valued,

filters that model the RPs of a set of simple cells of V1. In order to do so we can fix

a feature space G that in general has the form G = R2×F . Then we can introduce

the following bank of filters:

{Ψp}p∈G ⊆ L2(R2)

where each point (x, y) ∈ R2 indicates the retinal position at which the filter is

centered whereas f ∈ F encodes the specific feature that our bank of filters will

detect. In the case of Gabor filters the space F = S1 but we can consider any other

spaces. For example, we can consider filters modelling other types of cells or even

filters learned by automatic algorithms.

The idea is now to understand how each pair of filters is correlated with each

other. In the case of Gabor filters we know for example that filters that share a

similar orientation can communicate. Then we can define for every p, p0 ∈ G the



10 1. The functional architecture of the Visual System

generating kernel as:

K(p, p0) := Re

(∫
R2

Ψp(x, y)Ψp0(x, y)dxdy

)
, (1.8)

which expresses the strength of correlation between them. Since we would

like to obtain a connectivity kernel that mimics the behaviour of the horizontal

connectivity we have introduced an iterative procedure. This idea follows from the

reproducing property of the kernel of a heat equation [see Montobbio et al., 2020].

Indeed, fixing a point p0 and considering the generating kernel computed around it

p 7−→ K(p, p0) =: Kp0
1 (p),

we can define the connectivity kernel at the n-th step as

Kp0
n+1(p) :=

∫
G
K(p, q)ν(Kp0

n (q))dµ(q) (1.9)

where ν is a non-linear activation function and µ is a suitable measure defined

on G [see Montobbio et al., 2020]. Furthermore this approach allows to gain more

information about the correlation between pairs of filters and in presence of a visual

stimulus I we can use the connectivity kernel to express the correlation between

points of I. Note that we will apply this method also to learned filters which are

represented as small matrices (e.g. 7× 7, 5× 5) and it will allow to enlarge the

area in which points can communicate with each other.

1.3 Group symmetries in the early visual path-

way

Over the years, numerous models of the functional architecture of the early

visual pathway has been proposed in terms of geometric invariances arising in its

organization, e.g. in the spatial arrangement of cell tuning across retinal locations,

or in the local configuration of single neuron selectivity. Many classes of visual cells

act as linear filters on a visual stimulus I defined as the function (1.3). This is the

case for cells in the LGN and for simple cells in V1 [see e.g. Petitot and Tondut,
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1999; Citti and Sarti, 2006; Petitot, 2008, 2017] that reacts to specific retinal

regions, i.e. the RFs. Each localized area of the retina is known to be associated

with a bank of similarly tuned cells [see e.g. Hubel and Wiesel, 1977; Sarti and

Citti, 2015], yielding an approximate invariance of their RPs under translations.

Furthermore, the RPs of the cells can usually be embedded in a feature space

G = R2 ×F , where F encodes the selectivity of the neurons to other local features

of the image w.r.t. the bank of cells is usually invariant.

1.3.1 Rotational symmetry in the LGN

An essential elaboration step for human contrast perception is represented by

the processing of retinal inputs via the radially symmetric families of cells present

in the LGN [Hubel and Wiesel, 1977; Hubel, 1987]. The RPs of such cells can

be approximated by a LoG (1.1). A model of human contrast perception, called

Retinex theory, has been proposed by Land in [Land, 1964]. We describe it more

in detail in chapter 2.

1.3.2 Roto-translation symmetries in V1 and the lateral

connectivity

Several mathematical models have been proposed to describe the invariances in

the functional architecture of V1. The sharp orientation tuning of simple cells is

the starting point of most descriptions. This orientation selectivity characterizes

the response of each neuron to feedforward inputs; however, it is also present in

the horizontal connections taking place between neurons of V1. These connections

grant facilitatory influences for cells that are similarly oriented; furthermore, the

connections departing from each neuron spread anisotropically, concentrating along

the axis of its preferred orientation [see e.g. Bosking et al., 1997].

The evolution in time t 7→ h(p, t) of the activity of the neural population at

p ∈ R2 ×F is assumed in [Bressloff and Cowan, 2003] to satisfy a Wilson-Cowan
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equation [Wilson and Cowan, 1972]:

∂th(p, t) = −α h(p, t) + s

(∫
K(p, p′)h(p′, t)dp′ + z(p, t)

)
. (1.10)

Let us observe that, if K(p, p′) is of the special form K(p− p′), then the integral

in Eq. (1.10) becomes a convolution as follows

∂th(p, t) = −α h(p, t) + s(K ∗ h+ z). (1.11)

In the Wilson-Cowan equation, s is an activation function; α is a decay rate; z is

the feedforward input corresponding to the response of the simple cells in presence

of a visual stimulus, as in Eq. (1.3); and the kernel K represents the strength

of horizontal connections between p and p′. The form of this connectivity kernel

has been investigated in several studies employing differential geometry tools. A

breakthrough idea in this direction has been the description of the feature space as

a fiber bundle with basis R2 and fiber F . This approach appeared firstly in the

works of [Koenderink and van Doom, 1987] and [Ferraro and Caelli, 1994]. Then,

it was further developed by [Petitot and Tondut, 1999; Petitot, 2008, 2017], where

they showed that the simple cells of V1 induce a fibration of orientations. Then, in

[Citti and Sarti, 2006] the model is described as a sub-Riemannian structure on the

Lie group R2×S1 by requiring the invariance under roto-translations. Other works

have extended this approach by inserting other variables such as scale, curvature,

velocity [see e.g. Sarti et al., 2008; Barbieri et al., 2014b; Abbasi-Sureshjani et al.,

2018].



Chapter 2

Contrast perception phenomena

and grouping

In this chapter we introduce some visual perception phenomena that we will

study in the following chapters. We first describe the Retinex theory of Land and

some recent developments in this field. Moreover, we recall the Gestalt laws and a

model and the corresponding numerical approach that describes how the visual

system analyzes globally a visual stimulus, finding the perceptual units or percepts,

i.e. the elements in the image perceived as distinct.

2.1 Contrast perception

2.1.1 The Retinex theory of Land

The Retinex theory has been formulated by E. H. Land in [Land, 1964] to

describe the phenomenon of color constancy, in particular how the perceived color

of objects, varying illumination conditions, remains relatively constant. Indeed,

Land realized that, even if no green or blue wavelengths are present in a visual

stimulus, the visual system would still perceive them as green or blue by overlooking

the red illumination.

He has demonstrated this effect performing a famous experiment. First, he

13
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showed to a subject a display called a ’Mondrian’, i.e. an image composed by

several colored patches named after Piet Mondrian, whose paintings are really

similar. This display is illuminated by three white lights, whose intensity can be

modified by the subject, each one projected through a different filter, a red, a green

and a blue one respectively. Thus, Land asked the subject to adjust the intensity

of the lights so that a specific patch in the image appears white and measured the

intensities of red, green, and blue lights reflected from this white-appearing patch.

After this step, the subject had to identify the color of a neighboring patch, which,

e.g., appeared red. Then Land adjusted the light intensities in such a way that

the red patch reflected the same red, blue, and green light intensities measured

from the white patch. Eventually, The subject showed color constancy: indeed, the

white patch continued to appear white, the red patch continued to appear red and

all the other patches continued to show their original colors.

Some years later, Land further developed his theory with J. McCann in [Land

and McCann, 1971], proposing an algorithm and a computer program designed

to simulate the Retinex processes taking place in the visual system. Indeed, the

algorithm associated to an image I : Ω ⊂ R2 → R the perceived image Ĩ.

2.1.2 The development of the Retinex model

After the work of Land, many developments and algorithms have been proposed

to describe the Retinex theory [e.g. Brainard and Wandell, 1986; Provenzi et al.,

2005; Lei et al., 2007, among others]. A further analysis of the retinal and cortical

components causing Retinex effects has been performed by several research teams

in the past years [as e.g. Valberg and Seim, 2013; Yeonan-Kim and Bertalmı́o,

2017]. Furthermore, it has been demonstrated in [Enroth-Cugell and Robson, 1966;

Solomon et al., 2006] that the Magnocellular cells are the ones involved in contrast

perception.

Some variational approaches have been proposed for example by [Kimmel et al.,

2003; Morel et al., 2010; Limare et al., 2011]. In particular, in the last two works

the authors have formalized the Retinex theory as the solution of the following
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discrete Poisson PDE

−∆dĨ = M(I) (2.1)

where ∆d is the classical discrete Laplacian and M is a modified version of the

discrete Laplacian where at each difference between the central pixel and one in

proximity is applied a threshold function.

More recently, a geometrical model making a first step in relating the architecture

of the visual system and the invariances of RPs has been presented in [Citti and

Sarti, 2013]. The RP of the LGN cell which takes in input the visual signal acting

by convolution on it, modeled as a modified discrete LoG, M(Gσ) ≈ ∆Gσ, where

Gσ is a Gaussian bell. Thus, the action on an input image I is the following:

OutLGN(I) = ∆(Gσ ∗ I) ≈ ∆I

Also the horizontal connectivity in this layer is radially symmetric and modeled

as the fundamental solution T = log(
√
x2 + y2) whose associated operator is the

inverse of the Laplacian ∆−1 and allows to recover the function Ĩ:

Ĩ = T ∗OutLGN(I).

As a result

∆Ĩ = OutLGN(I) ≈ ∆I,

becomes the Retinex equation. In general, Ĩ does not coincide with I, but differs

by a harmonic function.

2.2 Perceptual grouping

2.2.1 The Gestalt laws

So far we have described only local aspects of perception but now we introduce

some global perception phenomena, as e.g. the individuation of perceptual units.

In particular, V1 is able to analyze more global feature of the visual stimulus thanks

to the long-range connectivity and distinguishes the different percepts. Indeed, a

model for the functional architecture of V1 should reproduce this mechanism.
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The main principles that describe how our visual system perceives the elements

in a scene are called Gestalt laws of grouping. Here we summarize some of them,

following [Kanizsa et al., 1979]:

• Law of Similarity states that perception tends to group together elements that

physically resemble each other as part of the same object and to recognize

as distinct elements that are different. The visual system is then able

to distinguish between adjacent and overlapping objects thanks to similar

features;

• Law of Proximity states that objects or shapes that are close to one another

appear to form a group. In particular, we can group together close objects

even if they are different in shape and size;

• Law of Good continuation states that objects intersecting with each other

are perceived as single uninterrupted objects. Indeed, we have a tendency to

group lines and curves with similar direction over those with sharp changes

of direction;

• Law of Closure states that the visual system tends to complete figures or

forms even if they are incomplete, partially hidden or some information misses.

Therefore, there exists a natural tendency to recognize patterns familiar to

us and to fill missing information;

• Law of Symmetry states that elements symmetrical with each other are

perceived as a unified group. This principle has a central role in determining

figure-ground perception;

• Law of periodicity states that the visual system tends to detect periodicity

patterns grouping them together. Therefore, if an element in the image breaks

this periodicity the visual system easily distinguishes it among all the other

elements.

In figure 2.1 there are some examples of Gestalt laws just listed. At this point we

do not want to give a deep explanation of all Gestalt laws but only the idea behind

them in order to describe which are the main tasks the visual system faces.
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Figure 2.1 – Examples of Gestalt laws.

On the other hand, we display a famous example by Kanizsa [see Kanizsa et al.,

1979]. Figure 2.2 shows the square of Kanizsa in which there are 4 black circles

with a white quarter; the radii that delimit the white quarters are collinear and

forms a square shape. If we look at this image we should not detect the four circles

as distinct perceptual units but we should see the white square delimited by the

radii of the squares. This is due to the good continuation law.

2.2.2 A neural model of perceptual units

In this section we present a neural mechanism responsible to perceptual unit

constitution, and provide a model in terms of spectral analysis The most classi-

cal equation describing the cortical activity is the mean field equation (1.10) of

Ermentrout and Cowan [Ermentrout and Cowan, 1980] and Bressloff and Cowan

[Bressloff et al., 2002; Bressloff and Cowan, 2003]. This equation describes the

evolution of the cortical activity depending on a connectivity kernel.

In the work of [Sarti and Citti, 2015] the authors find a relation between the

stable states of this equation and perceptual units of the input We refer also to



18 2. Contrast perception phenomena and grouping

Figure 2.2 – Square of Kanizsa.

[Hoffman, 1989; Weiss, 1999; Shi and Malik, 2000; Favali et al., 2017].Let us fix the

cortical space G = R2 ×F where p = (x, y, f) is a point on this space and consider

the mean field eq. (1.10).

The input configurations are constituted by a finite number N of elements

pi = (xi, yi, fi) and their responses to a visual stimulus I is given by the function z

defined in equation (1.3). We can define the set of cells activated by the image I

as the set where the output of simple cells is over a fixed threshold:

ΩI = {p0|zI(p0) > ε} ⊂ G.

In this way the responses of all the cells that have a low response or a negative

one are set to zero; from a neurophysiological point of view a neuron fires only if

its excitation is strong enough and our model mimics this particular behaviour.

Furthermore, the cells communicate with each others through the horizontal

connectivity (as described in section 1.2). Indeed, between each couple of cells RPs

Ψpi ,Ψpj it can be defined a kernel K(pi, pj), as in eq. (1.9), expressing this relation.

Therefore, the cortical connectivity on an image I restricted on this set defines a

neural affinity matrix AI :

AI(i, j) = K(pi, pj)I(xi, yi)I(xj, yj), i, j = 1, . . . N (2.2)

In general the kernel K will have the anysotropic pattern of the considered

family of cells. Kernels can be sensible to position alone, or position and orientation,
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curvature or movement if the metric of simple cell is considered [Citti and Sarti,

2006; Barbieri et al., 2014b; Abbasi-Sureshjani et al., 2018]

In this discrete setting, the mean field equation (1.10) reduces to:

dh(i)

dt
= −λIh(i) +

N∑
j=1

AI(i, j)h(j) i = 1, . . . , N, (2.3)

where λI is a physiological parameter, whose value can be modulated by the

image. We can also perform the stability analysis of equation (2.3), namely we set
dh
dt

= 0 obtaining

N∑
j=1

AI(i, j)h(j) = λIh(i), i = 1, . . . , N, (2.4)

and then we can rewrite it as the eigenvalue problem

AIh
k = λkIh

k, (2.5)

where hk is the k-th eigenvectors of the affinity matrix AI associated to the

eigenvalue λkI .

The eigenvectors describe the stationary states of the mean field equation hence

the emergent perceptual units; in this way it is possible to select them in the

scene and segment it. Indeed, we can order the eigenvectors in decreasing order

with respect to the corresponding eigenvalues and, in particular, the first one will

correspond to the most salient object in the image.

2.2.3 Grouping with the geometric kernel

The first family of cells that can be considered is the retinal one, whose RPs

are radially symmetric. Thus, the connectivity kernel associated to these cells is,

in turn, radially symmetric and we can assume it is a Gaussian one defined on

G = R2:

Kx0,y0(x, y) =
1

4πt
exp

(
−(x− x0)2 + (y − y0)2

4t

)
(2.6)

centered at the point (x0, y0). This particular connectivity kernel has only the

position and t as parameters; indeed it will correlate points that are close with each
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others. The parameter t will enlarge or shrink the area of influence of the kernel.

Indeed this connectivity kernel can detect objects with different sizes depending on

the choice of t. We can calculate the affinity matrix between each pair of points

pi = (xi, yi) and pj = (xj, yj) using the formula (2.6) for the kernel:

AI(i, j) = Kxi,yi(xj, yj) · I(xi, yi) · I(xj, yj),

where I(x, y) is the value at the position (x, y) of the image. This matrix is

equivalent to the affinity matrix introduced by Perona and Freeman in [Perona and

Freeman, 1998] to perform perceptual grouping. They modeled the affinity matrix

in term of an heuristic distance d(p) that gives high correlation to collinear and

cocircular couple of elements. In particular, the affinity matrix was defined as

A(i, j) = e
−
d2(pi,pj)

d20
−

(I(pi)−I(pj))
2

dI0 .

where d0 = 3 and dI0 were constant values. Note that the images are gray-scale

ones represented by a N ×N matrix, i.e. with N2 pixels; indeed 0 ≤ I(x, y) ≤ 1

where I(x, y) = 0 if the pixel is black and I(x, y) = 1 if the pixel is white. Since

the this kernel has a Gaussian shape it will assume high values when the point pi

is close to pj and lower values when it is far. Therefore, there is no orientation

selectivity but the only criterion is the closeness of points. This is why this kernel

is mainly used for grouping clouds of points as we can see in figure 2.3A where

there are represented the first three eigenvectors in red, green and blue that clearly

detect the 3 clouds of points of the image.

On the other hand if we try to use this kernel on an image with position-

orientation elements the kernel can not find the contours. On the other hand it

selects the areas with the highest number of white pixels, see the first eigenvector

in red in figure 2.3B. Similar results are obtained with both cloud of points and

position-orientation elements (see figure 2.3C). Therefore, the Gaussian kernel does

not show the grouping properties stated by the the Gestalt law of good continuation

as described in section 2.2.1. It is also well known that it poorly performs on more

general images. Furthermore, the usual technique used in literature introduces

different ad hoc geometry and kernels for every family of images. For example, in
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Figure 2.3 – First line: starting images. Second line: corresponding grouping with

Gaussian kernel. If the first three eigenvectors are displayed they are red, green

and blue respectively. Columns: (A) image containing three clouds of points; (B)

image containing collinear and cocircular oriented elements; (C) image containing

two clouds of points and a set of collinear segments.

[Barbieri et al., 2014b] the authors proposed an algorithm for the individuation of

perceptual units in images with position-orientation elements through a stochastic

kernel (see figure 2.4). On the other hand, in [Abbasi-Sureshjani et al., 2018] the

authors modeled a kernel that was able to detect the curvature at each spatial

location and then performed grouping (see figure 2.5). This necessity of introducing

specific geometry and kernels for each kind of images places a problem on the

grouping task.
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Figure 2.4 – Grouping with stochastic kernel performed on image with position-

orientation elements. From: [Barbieri et al., 2014b].

Figure 2.5 – Grouping with modeled kernel on different image. This kernel allows

to recover the curvature at each spatial location. From: [Abbasi-Sureshjani et al.,

2018].



Chapter 3

Convolutional Neural Networks

Artificial neural networks (ANNs) are computing systems inspired by biological

neural networks of the brain, able to perform several tasks. The first classical

model of perceptron have been introduced around 1958 by Frank Rosenblatt [see

Rosenblatt, 1958] who also developed some of the main concepts of deeplearning

in [Rosenblatt, 1962]. However, the first working learning algorithm for super-

vised, deep, feedforward, multilayer perceptrons was published in 1967 by Alexey

Ivakhnenko and Lapa [Ivakhnenko et al., 1967]. Only after the introduction of CPU

these models have been systematically implemented with great results on different

tasks. We refer to [Girosi et al., 1995; Cucker and Smale, 2001; Szegedy et al.,

2014; Higham and Higham, 2018] for a recent review. A Convolutional Neural

Network (CNN) is a particular class of Artificial Neural Network (ANN) that can

be used to face different tasks, usually related to visual imagery as for example

object-detection [Redmon et al., 2016; Ren et al., 2017] or image classification [He

et al., 2015; Simonyan and Zisserman, 2015]. For more detailed information about

CNNs [see e.g. Lawrence et al., 1997; LeCun et al., 1998].

3.1 The architecture of a CNN

The CNN architecture is a machine learning procedure inspired by the visual

cortices that approximates a functional y : V 0 → H, known only on a subset of

23
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the domain called training set, through a minimization process of a loss functional.

More precisely, a CNN is obtained by the sequentially application of a linear

functional, a non linear one and a pooling operator. Then, to describe the CNN

we recall:

• The structure of an artificial neuron that, as just said, has inspired the CNNs;

• The description of the layers that compose the CNN: the convolutional layer,

the non linear layer and the pooling one. The last layers of a CNN are instead

fully-connected;

• The description of a loss functional

• The training and test sets;

• The overfitting problem and the choice of the hyperparameters.

3.1.1 The multilayered structure

Since the whole neural network is composed by multiple layers we can express

it as a composition of different functionals. If TΨif
: V i−1 → V i represents the i-th

convolutional layer, Θ : V i → V i a non linear layer, Π : V i → V i a pooling layer

and Υ1 : V L → H and Υj : H → H, (j = 2, . . . , k) the fully connected layers, then

the CNN can be expressed as a functional

FΨ0
f ,...,Ψ

L
f ,ϕ

1,...,ϕk : V 0 −→ H

FΨ0
f ,...,Ψ

L
f ,ϕ

1,...,ϕk(I) = Υk ◦ · · ·Υ1 ◦ Π ◦Θ ◦ TΨLf
◦ · · ·Π ◦Θ ◦ TΨ0

f
(3.1)

3.1.2 The artificial neuron

Considering the linear filter model (1.3) and the subsequent suppression step

(1.4), the output of each neuron is given by the function

z(x, y, f) = max((Ψf ∗ I)(x, y) + bf (x, y), 0), (3.2)
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where Ψf is the f -th filter and bf the corresponding bias term. Indeed, an artificial

neuron, which formally generalizes this structure, is composed by a linear transfor-

mation, followed by a non-linear one. Considering the i-th artificial neuron, the

linear operator becomes

TΨf : V i−1 → V i TΨf (I) = Ψf ∗ I + bf . (3.3)

On the other hand, the non linear step becomes

Θ : V i → V i Θ(z)(x) = σ(z(x)),

where σ is the associated activation function. As result the model of the i-th

artificial neuron will be

Θ ◦ TΨif
: V i−1 → V i

The convolutional layer

The discrete formalization of the linear step is the convolutional layer which

gives the name to this particular kind of ANNs. Indeed, it is a tensor of size

s× s× ni × no where s is the spatial size of the layer, ni is the number of channels

of the previous convolutional layer and no is the number of channels of the current

convolutional layer. Fixing one channel of the last dimension of the tensor, we

obtain a tensor of size s×s×ni called filter. The filter is indeed convolved with the

input of the layer, allowing the structure to be equivariant to translation [see e.g.

Cohen and Welling, 2016; Cohen et al., 2020]. The output of the i-th convolutional

layer, following eq. (3.3) becomes

ziI(x, y, f) = TΨif
(I)(x, y)

where ziI is a [n× n× no] tensor, where n is the spatial dimension of the input.

The non linear layer

The non linear step can be modelled via the application of a function σ called

activation function. A typical choice of this function can be the ReLU (rectified
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linear unit) function:

σ : R→ R, σ(x) = max(0, x). (3.4)

Indeed, a neuron fires if the received input is large enough, otherwise remains

inactive; indeed a step function is a natural model for a neuron, giving x when

firing, zero when not. We can generalize the definition of the ReLU function in a

multi dimensional space. Thus, considering x ∈ Rm, σ : Rm → Rm is defined by

applying the one dimensional ReLU to each component, i.e.

(σ(x))i = σ(xi).

3.1.3 The pooling operation

The pooling operation allows the CNN to decrease the spatial dimensions of

the input and can be modeled as a functional

Π : V i → V i.

Since the image I has a compact support, we can assume that the input to Π has

still a compact support Ω ⊆ R2 in the spatial dimensions. Then, we can split Ω in

r mutually disjoint open sets {Ωj}j=1,...,r and we can choose a function τ (e.g. the

max function). We should also consider a function $ : V i → V i that rescales of a

parameter α the support of a given function, i.e. $(z(x, y)) = z(αx, αy). Then,

the output of the pooling operator becomes

Π(z)(x, y, f) = $(τ(z(ξ, η, f))) , for (ξ, η) ∈ Ωj 3 (x, y) , j = 1, . . . , r

The pooling layer

The discrete formulation of the pooling operation is the pooling layer. A

common approach is to split the spatial dimensions (width, height) in s× s boxes

and shrink them to a single value applying the function τ (e.g. mean or max) to

the function zI(x, y, f) on each box Bx,y,f where x, y = 1, . . . , n and are even and

f = 1, . . . ,m. In particular,

Π(zI)(x, y, f) = τ(zI(ξ, η, f) : (ξ, η) ∈ Bx,y,f ),
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As a result this operator changes the size of the tensor to [n/s× n/s× no]. The

pooling layer is not always applied after an artificial neuron and a specific choice can

be done for each CNN architecture; however, if it is applied, the output becomes

hiI(x, y, f) = Π(Θ(TΨif
(zi−1
I (x, y, f))(x, y)).

3.1.4 The fully-connected step

At the end of the CNN architecture, several fully-connected layers are usually

applied to modify the output sizes. The fully-connected layer can be modeled as a

function

Υj(z)(η) =

∫
G
ϕη(p)z(p)dµ(p)

where G = V L for j = 1 and G = H for j = 2, . . . , k. Similarly, ϕη : V L → V L

for j = 1 and ϕη : H → H for j = 2, . . . , k.

The fully-connected layer

The fully connected layer is a classical layer that connects each neuron in one

layer to any neuron in another layer. The discrete formulation of the j-th one is

hj(z)(η) =
∑
p∈G

ϕη(p)z(p)

for the different choice of G. The output of each fully-connected layer becomes a

tensor of size [1× 1×M j]. In the case of j = k, i.e. the last fully-connected layer,

Mk = M , i.e. the number of the categories of the classification task.

3.1.5 The loss functional

The CNN, modeled as a functional F = FΨ0
f ,...,Ψ

L
f ,ϕ

1,...,ϕk , contains unknown

a-priori weights, in particular in the convolutional and fully-connected layers;

furthermore, it should approximate the operator y : V 0 −→ H. The latter is

a-priori known over a subset Γ of the domain space V 0, called training set. This is

a finite set of N samples in V 1, (I i), i = 1, . . . , N and the corresponding outputs
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y(I i), i = 1, . . . , N in H. Thus, we should define a loss function that estimates

the error between F and y. Various loss functions, depending on the specific task,

can be used. For example, in the case of a classification task, the softmax loss

function is commonly used. This is defined as follow:

L(F (I), y(I)) = log(
M∑
u=1

e(Fu(I)−Fũ(I))) + Fũ(I)− Fy(I)(I) (3.5)

where ũ is the label selected by the neural network among M labels and y(I) is

the true one. The choice of this training set and the regularity of the operator F

should ensure that the operator itself remains a good approximating on the whole

set of images. This extension process is called generalization.

3.1.6 The learning phase

During the learning phase all the weights in the CNN are updated in order

to diminishing the loss function (3.5). This is done through some optimization

algorithm, for example the steepest descent. However, the reduction of the loss

function on the training set Γ does not always imply good performances on the

entire set V 0. To control if the neural network is able to generalize to never seen

images, it is tested during the training phase on a test set Γ̃ ⊆ V 0 disjoint with

the training set, i.e. Γ̃ ∩ Γ = ∅. Indeed, it is possible that the neural network

performance increases on the training set but remains stable or decreases on the

test set, leading to overfitting. If the performances continue to decrease on the test

set is possible to adjust some parameters of the training or stop the training and

selecting the CNN weights that give highest performances.

Furthermore, the architecture of a CNN has to be determined before the training

phase. Modifying the number of layers, the sizes of the tensors of the convolutional

layers and any other parameters of the architecture could lead to an improvement

or a worsening of the performance of the architecture. All these hyperparameters

are hard to determine and many trainings are usually done to find the ones that

lead to the highest performance. There exists some other methods to increase

performance, e.g. the dropout (that also avoids overfitting). At each training stage,
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each node is either dropped out (i.e. ignored) with probability 1− p or kept with

probability p. Indeed, a different reduced CNN is left at each stage; this allows

to reduce node interactions, leading them to learn more robust features and then,

generalizing better to new input data.

3.2 Analogy between the visual system and CNNs

We are now interested to analyze the connections between the visual system

and CNNs. The first neural nets have been inspired by a simplification of the

structure of the biological visual system, presenting a hierarchical structure, where

each layer receives input from the previous one and gives output to the next one.

Despite such simplification, CNNs have reached optimal performances in processes

typical of the human visual system, as e.g. object-detection [Redmon et al., 2016;

Ren et al., 2017] or image classification [He et al., 2015; Simonyan and Zisserman,

2015]. Along with the hierarchical organization, translation invariance is present

in CNNs thanks to local convolutional windows shifting over the spatial domain.

This structure was first inspired by the localized RF of cells in the early visual

pathways, and by the approximate translation invariance in their tuning.

In more recent years relationships between CNNs and the visual system have

been further studied, with the eventual goal of making the CNNs even more efficient

in specific tasks. To this end, a model of the first cortical layers described as layers

of a CNN has been proposed in [Serre et al., 2007]. In [Yamins et al., 2015; Yamins

and DiCarlo, 2016] the authors were also able to study higher areas by focusing

on the encoding and decoding ability of the visual system. In the last years,

Recurrent Neural Networks (RNNs) have been proposed to implement horizontal

connections [e.g. Sherstinsky, 2020], or feedback terms [e.g. Liang and Hu, 2015]. A

modification of these neural networks, more geometric and closer to the structure

of the visual system, have been recently proposed in [Montobbio et al., 2019a]. In

particular, they have modeled the horizontal connectivity of V1 cells, implementing

a connectivity kernel between each pair of filters in a single layer that estimates

their similarities.
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Moreover, it is well known that both V1 RPs and the first convolutional layer of

a CNN are mainly composed by Gabor filters. To this end, biological based models

of V1 cells RPs in terms of Gabor filters have been proposed in [Serre et al., 2007;

Zhang et al., 2019] and the statistic of the RPs of a macaque’s V1 was studied in

[Ringach, 2002]; however a comparison between these results and the statistics of

learned filters in CNNs is still missing.

3.3 Invariance properties of CNNs

In this last section we are going to describe some invariance properties of CNNs.

We first remind that Gabor functions, i.e. a model of V1 cells RPs, are mainly

invariance with respect to translation and rotations. On the other hand CNNs are

translation equivariant since they are defined in terms of convolutional kernels [see

Cohen and Welling, 2016; Cohen et al., 2020].

Other invariance properties, strictly related to the invariances of the Gabor

filters, can be imposed to optimize the training phase. In [Wu et al., 2015; Marcos

et al., 2016] the authors learned just a small number of filters, and then obtained

an entire bank of filters by rotation. In [Barnard and Casasent, 1991] the authors

have studied invariances of neural nets with respect to specific feature spaces.

Another method for introducing invariances is data augmentation, which consists

in incrementing the number of training images by flipping, rotating, rescaling,

cropping, adding gaussian noise to them. In this way the neural network is trained

on a larger set of images and can learn different kinds of invariances. A way to

achieve rotation invariance in classification task is to rotate every test image by

S different angles as performed in [Fasel and Gatica-Perez, 2006; Dieleman et al.,

2015]. In [Gens and Domingos, 2014; Dieleman et al., 2016; Laptev et al., 2016]

the authors introduce one or more novel layers to face the rotation invariance

problem. In [Dieleman et al., 2016] they propose four different layers that work

on the input rotated by 0, 90, 180 and 270 degrees. A different kind of pooling is

used in [Laptev et al., 2016] before the fully connected layers in order to obtain

invariance with respect to different features. A kernel that finds out symmetries
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in the input connecting consecutive layers is introduced in [Gens and Domingos,

2014].
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Chapter 4

A biologically inspired CNN

architecture: LGN-CNN

In this chapter we introduce one of the novelty of our work, a CNN architecture

inspired by the structure of the visual system, proposed in [Bertoni et al., 2022]. To

begin with, we will introduce a first convolutional layer that mimics the role of the

LGN and that eventually will approximate the LGN cells’ RP, i.e. a LoG. Then, in

next chapter, we will add a kernel to the second convolutional layer mimicking the

horizontal connections of the V1 cells as proposed by Montobbio in [Montobbio

et al., 2019a]. Finally, we will study how the filters approximate LGN and V1 cells

RPs, how the kernel approximates the connectivity kernel of V1, if some Retinex

effects occur and we perform grouping.

4.1 LGN in a CNN

As far as we know, the action of the LGN has not been implemented in a CNN.

As we have already discussed in section 1 the LGN receives the visual stimulus

from the retina and processes it through its cells. Each cell, connected to its RF,

acts as a linear filter that can be modeled as a LoG. Our aim is to build a CNN

architecture that takes into account this behavior; indeed, it should contain a first

layer that pre-processes the visual stimulus before it reaches the second layer that,

33
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in turn, should mimic V1. We have called this neural network architecture as

Lateral Geniculate Nucleus Convolutional Neural Network (LGN-CNN).

The RPs of LGN cells can be modeled as a LoG which is a rotationally symmetric

function. Thus, the first convolutional layer `0, that models the LGN, should contain

just a single filter that eventually should obtain a LoG shape. On the contrary,

the second convolutional layer `1, that models V1, should contain several filters

that eventually should obtain Gabor shapes with different orientations. Figure 4.1

shows a scheme of the first layers of the visual pathway in comparison with the

first layers of the LGN-CNN architecture.

As described in chapter 3, CNNs are architectures composed by several con-

volutional layers, each containing many filters. Indeed, given a classical CNN

architecture, we can add before the other convolutional layers, a layer `0 composed

by only one filter Ψ0 of size s0 × s0 and a ReLU function. In this way the first two

convolutional layers `0 and `1 of this new CNN architecture model the first stages

of the visual pathway. Furthermore, the introduction of `0 does not change the rest

of the neural network since the input of `1 keeps the same dimensions as before.

Thus, our model of LGN can be easily implemented to any CNN architecture by

adding `0 and a ReLU function. Moreover, the number of parameters of the neural

network is just increased by s0 × s0.

We expect the first filter Ψ0 to be a good model of the RP of LGN cells thank

to a simple result on rotational symmetric convex functionals. Indeed, let us

consider a rotational symmetric convex functional F with a unique minimum ω;

then ω is also rotational symmetric. In particular, since F is rotational symmetric,

F (ω ◦ g) = F (ω) for a rotation g of an angle θ. Furthermore, since the minimum is

unique, ω = ω ◦ g and this implies the rotation symmetry of the solution. Many

results on symmetries of minima of functionals can be found for example in [Gidas

et al., 1981; Lopes, 1996]. Our purpose is to extend these theoretical results on the

LGN-CNN architecture. Thus, the filter Ψ0 should attain a rotational symmetric

pattern and should eventually approximate a LoG if the LGN-CNN architecture

we have proposed is a good model of the first stages of the visual pathways.
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Figure 4.1 – Scheme of the LGN and V1 in parallel with the first two layers `0 and

`1 of the LGN-CNN architecture.

4.2 The LGN-CNN architecture

In this section we are going to introduce the first LGN-CNN architecture and

the settings in which we have trained and analyzed it. For this architecture we

have used MatLab2019b for academic use.

Let us start by describing the neural network architecture shown in figure

4.2. The LGN-CNN acts on an input image of size 64 × 64 × 1 through the

application of 5 different convolutional layers that modify the dimensions of the

tensor. In light blue it is shown one filter of a given convolutional layer and in red

its corresponding application in a specific spatial coordinate. The last three vectors

are three fully-connected layers.

More in details, the first convolutional layer `0 is composed by a single filter Ψ0

of size 7× 7, followed by a batch normalization layer b1 and by a ReLU R. Thus,

the second convolutional layer `1 receives as input a tensor of size 64× 64× 1. We

do not insert a pooling layer after the first layer `0, i.e. this layer does not change
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Figure 4.2 – Architecture of LGN-CNN.

the dimension of the input image.

The second convolutional layer `1 is composed by 64 filters of size 11 × 11

and its stride is 2, halving the spatial dimensions. After `1 it is applied a batch

normalization layer b64, a ReLU R and a max POOLING p2
m with squares of

size 2× 2. Then, the third convolutional layer `2, composed by 32 filters of size

5 × 5 × 64, is followed by a batch normalization layer b32, a ReLU function R

and a max POOLING p2
m. Thus, the fourth convolutional layer `3 is composed by

32 filters of size 3 × 3 × 32 followed by a batch normalization layer b32, a ReLU

function R and a max POOLING p2
m. Finally, the last convolutional layer `4 has

32 filters of size 3 × 3 × 32 followed by a batch normalization layer b32, a ReLU

function R and a max POOLING p2
m.

Eventually three fully-connected (FC1, FC2, FC3) layers of size 1000, 500 and

10 respectively are applied giving as output a vector of length 10. As a last step, a

softmax σ is applied to the output vector of size 10 giving a probability distribution

over the 10 classes. The functional that models this neural network is the following

F (I) :=(σ ◦ FC3 ◦ FC2 ◦ FC1◦

p2
m ◦R ◦ b32 ◦ `4 ◦ p2

m ◦R◦

b32 ◦ `3 ◦ p2
m ◦R ◦ b32 ◦ `2◦

p2
m ◦R ◦ b64 ◦ `1 ◦R ◦ b1 ◦ `0)(I)

(4.1)

A cross-entropy loss for softmax function defined as in equation (4.2) is applied
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to the functional (4.1) where ũ is the label selected by the neural network and y(I)

is the true label.

L(F (I), y(I)) = log(
∑
u

e(Fu(I)−Fũ(I))) + Fũ(I)− Fy(I) (4.2)

As just described, after each convolutional layer there is a batch normalization

layer b with the same size of the number of filters of the corresponding convolu-

tional layer. In particular, the batch normalization layer b1 after `0 performs a

normalization similar to the one that the retina performs as described in [Carandini

and Heeger, 2011]. One of the main difference is the subtraction of the mean value

µ performed by the batch normalization layer defined as follows

x̂i =
xi − µ√
σ2 + ε

,

where xi is the element to normalize, µ is the mean value of the batch, σ

is the standard deviation of the batch and ε is a small value that prevents bad

normalization in case of small standard deviation. However, the input images

have zero mean which imply that the convolution with Ψ0 have still zero mean.

Thus, the batch normalization layer between `0 and `1 has similar characteristics

as the biological one. In spite of this, the two approaches differ since the statistical

parameters (µ, σ) of b1 are calculated channel-wise over all input of the batch,

while in the biological normalization described in [Carandini and Heeger, 2011]

the σ value is calculated from a single input instance over a restricted spatial

neighborhood. However, we expect that the final result will not differ heavily

applying the batch normalization layer.

We trained our LGN-CNN architecture on a dataset of natural images called

STL-10 [see Coates et al., 2011] that contains 5000 training images divided in 10

different classes. The steps we have followed for modifying the training set are:

• Changing the images from RGB color to grayscale color using the built-in

function rgb2gray of MatLab;

• Applying a circular mask to each image, leaving unchanged the image in the

circle and putting the external value to zero;
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LGN + 4CL LGN + 8CL LGN + 12CL

70.41% 72.73 % 73.61 %

Table 4.1 – Mean performances of several architectures over 10 different trainings

with LGN layer plus 4, 8 and 12 other convolutional layers (CL).

• Rotating each image by 5 random angles augmenting the dataset to 25000

images; thanks to the previous step no boundary effects are present;

• Cropping the 64× 64 centered square that does not contain the black bound-

aries;

• Subtraction of the mean value in order to have zero mean input images.

Thus, after these steps we have obtained a rotation invariant training set

composed by 25000 64× 64 images. We have applied the same steps to the test set

but we have rotated each image to just one random angle. Since the images are

64× 64 we have decided to use quite large filters in the first and second layer (7× 7

and 11× 11 respectively) in order to obtain more information about their shapes.

We have trained the neural network for 30 epochs with an initial learning rate of

0.01, a learning rate drop factor of 0.97 and a piecewise learning rate schedule with

a learning rate drop period of 1. The mini batch size is 128 with an every-epoch

shuffle, the L2 regularization term is 0.02 and the momentum is 0.9.

In Table 4.1 there are summarized the mean performances over 10 different

trainings of three CNN architectures with the LGN layer `0 plus several convolu-

tional layers (4, 8 and 12 respectively). As expected, the performance increases

when the architecture is deeper. We stress out that the results obtained on the

LGN layer and the first convolutional layer are not affected from the rest of the

neural network. Indeed, it is possible to add more layers and build more deeper

architectures to obtain better results on the classification task without losing the

properties of the first layers of the LGN-CNN. Since our focus was to analyze the

structures that arises in the first two layers, we have not further investigated the

performance of the CNN.
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(a) Filter Ψ0 of first layer of LGN-CNN. (b) Minus the Laplacian of Gaussian (LoG).

Figure 4.3 – Comparison between the filter Ψ0 and minus the LoG. The two have a

high correlation of 95.21% computed using the built-in function of MatLab corr2.

4.3 The filters of the LGN-CNN architecture

4.3.1 The layer `0 of LGN-CNN

In this section we focus on the filter Ψ0 of the layer `0. Indeed, we are interested

in analyzing its symmetry properties.

Figure 4.3 shows the 3D filter Ψ0 obtained after the training phase. Then,

figure 4.3b shows its approximation with minus the LoG.The two have a high

correlation of 95.21% computed using the built-in function of MatLab corr2. Thus,

Ψ0 spontaneously attains a LoG shape, modeling the RPs of LGN cells.

Moreover, figure 4.4a shows the 2D image of Ψ0 obtained after the training

phase. Then, in figures 4.4b and 4.4c we plot a 2D approximation of Ψ0 as a

280× 280 filter and minus the LoG which shows the rotational symmetric pattern

of Ψ0.

So far we have modeled the RPs of LGN cells with a single filter Ψ0. However it

is well known that in the LGN there exists both cells with on-center/off-surround

as well as off-center/on-surround RPs. In order to model these two kinds of cells

we modify the current LGN-CNN architecture by adding a second filter in the

layer `0. This is not the case and figure 4.5 shows the on-center/off-surround and
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(a) Filter Ψ0 of first layer of

LGN-CNN.

(b) Approximation of the fil-

ter Ψ0 of first layer of LGN-

CNN.

(c) Minus the Laplacian of

Gaussian (LoG).

Figure 4.4 – The first figure shows the 7× 7 filter Ψ0 of the LGN-CNN. To better

visualize the filter Ψ0, we provide an approximating 280× 280 filter and minus the

LoG.

off-center/on-surround obtained after the training phase. However, for simplicity,

we consider the model with a single filter.

Since we are interested in the rotational properties of Ψ0, we aim to quantify

them. To this end, we can generate a new filter Ψ0
S from Ψ0 via a rotation

invariance symmetrization. In particular, the normalized rotational invariant filter

Ψ0
S is obtained by the following procedure:

• Using the function imresize with scale 3 and bilinear method to enlarge the

Figure 4.5 – On-center/off-surround and off-center/on-surround filters of `0 with 2

filters.
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filter;

• Rotating the filter with imrotate by 360 discrete angles between 1 and 360

degrees and summing them up;

• Applying again the function imresize with scale 1/3 and nearest method to

recover a filter with the same size of Ψ0;

• Normalizing the filter by subtracting the mean and dividing it by L2 norm.

Then, we compute the correlation between Ψ0
S and the normalized Ψ0 using the

Matlab function corr2 in order to quantify the rotational invariance of Ψ0. Indeed,

the computed correlation estimates how close the normalized filter Ψ0 is w.r.t its

corresponding normalized rotational invariant filter.

Thank to this tool we are now able to test the behavior of the first filter Ψ0

of LGN-CNN for different values of the L2 regularization term and adding more

convolutional layers. In particular, we add to the previous architecture described

in chapter 4.2 two convolutional layers composed by 32 filters of size 3× 3× 32

(each one followed by a batch normalization layer b and ReLU R ) after the third

layer `3. We also add other two convolutional layers with the same characteristics

after the layer `4.

L2 term LGN + 4 layers LGN + 8 layers

0.01 88.3 % 85.40 %

0.02 97.15 % 90.79 %

0.03 93.06 % 91.41 %

0.04 95.61% 92.58 %

0.045 93.55 % 94.79 %

0.05 95.44 % 94.11 %

Table 4.2 – Correlation between Ψ0 and Ψ0
S varying the L2 regularization term and

the number of layers of the LGN-CNN architecture. Best rotational symmetric

filters are selected in cyan for both architectures.
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No DA Mild DA Hard DA

LoG corr 93.77 % 93.68 % 95.21 %

Ψ0
S corr 93.92 % 94.16 % 97.15 %

Table 4.3 – Correlation between Ψ0 and its LoG approximation and between Ψ0

and Ψ0
S varying the data augmentation (DA) applied to the dataset.

In Table 4.2 we report the correlations with different values of L2 regularization

term and for two LGN-CNN architectures, the one introduced in section 4.2 which

is indicated by ’LGN + 4 layers’ and the deeper one described above indicated by

’LGN + 8 layers’. All the other training parameters are provided in section 4.2.

As we can see for ’LGN + 4 layers’ architecture the L2 regularization term that

let Ψ0 to be the closest rotational symmetric filter is 0.02. This is the filter we

have shown in figures 4.3 and 4.4. On the other hand, in the case of ’LGN + 8

layers’ architecture the more rotationally symmetric filter is the one with 0.045

as the L2 regularization term. This behavior suggests that the architecture of

LGN-CNN influences directly the properties of the filters. Furthermore, the Table

4.2 shows that the rotational symmetry of Ψ0 is stable with respect to variations of

L2 regularization term and adding convolutional layers.

Furthermore, we study the properties of Ψ0 varying the data augmentation

(DA) applied to the dataset. Table 4.3 shows the correlation of Ψ0 with the LoG

and the correlation of Ψ0 with Ψ0
S with three different DA applied to the dataset.

In the first one we do not apply any DA (No DA); in the second one we randomly

rotate the images of an angle of 0, π
2
, π, 3π

2
radiant (Mild DA); in the third one

we apply the DA described in section 4.2 (Hard DA). From Table 4.3 it emerges

that the introduction of rotation invariances in the dataset by rotating the images

lightly affects the correlation with the LoG but gives stability to Ψ0 allowing the

filter to be more rotational symmetric.

In conclusion, thanks to the analysis performed on the properties of Ψ0, we

can argue that the structure of the architecture itself influences the shape of the

filters and that the introduction of `0 with a single filter Ψ0 is a good model of the
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LGN. In the next section we are going to prove that Ψ0 is rotational invariant for

a specific architecture whereas in chapter 6 we will study the Retinex effects of Ψ0.

4.3.2 Rotation invariance proof of Ψ0

We first define the setting in which we study the rotation symmetry of Ψ0.

Let us consider the architecture of an LGN-CNN in which we can split the first

convolutional layer composed by only one filter from the rest of the neural network

which will be fixed. Thus, this first layer can be approximated by a function

Ψ0 : R2 → R, assuming Ψ0 ∈ L1(R2). A general image is defined as a function

I : R2 → R where we assume I ∈ L1(R2). We consider a subset Γ of all the

images where, for each image I, is defined a labelling y : Γ→ R, where y(I) is the

corresponding label to the image I.

We require some rotational invariant properties on this set Γ. In particular, let

us consider a rotation Rθ of an angle θ on R2 plane around its center; then, the

composition Iθ = Rθ(I) = I(R−θ(x)) is still an image and we can also assume that

Iθ ∈ Γ (i.e., that the subset Γ is close under rotation). Furthermore, the rotated

image should maintain the same label, i.e., y(Iθ) = y(I). Since the images we

consider in this problem are gray-scale ones (thus with values between 0 and 1) we

can also assume that the images are normalized with ||I||L1 ≤ 1. Summarizing all

these properties we assume that Γ = {I ∈ L1(R2) : ||I||L1 ≤ 1} Thus, the rest of

the neural network is defined by a convex regularization C of the ReLU function σ

defined in eq. (3.4)

C : R2 → R2, s.t. ||C(x)− σ(x)||L1 < ε (4.3)

for a small enough ε > 0. And then we can define

F : L1(R2)× L1(R2)→ R

F (I,Ψ0) :=

∫
R2

C
(
(I ∗Ψ0)(z)

)
dz.

(4.4)

Then F (I,Ψ0) is the label that the LGN-CNN architecture associates to the image

I and should eventually approximates y(I).
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Thus, our aim is to minimize the following functional

min
Ψ0∈L1(Ω̃)

∫
Γ

|F (I,Ψ0)− y(I)|dµ(I) (4.5)

where the integral done over the set Γ is a Bochner’s integral (see e.g., section

5 of chapter V of [Mikusiński, 1978; Yosida, 1995].

Thus, the function Ψ0 attains the minimum of (4.5) where F is defined in (4.4)

and C is defined in (4.3). We aim to find out if there exist any rotational invariant

properties on the function Ψ0. Indeed, the functional defined in (4.5) is convex

thanks to the convexity of the function C defined in (4.3) and continuous. Then,

the existence and uniqueness of a solution is guaranteed [see e.g., section 1.4 of

Brezis, 2010].

Remark 1. Let us consider two function f, g ∈ L1(R2) and a rotation Rθ of an

angle θ. Then

f ∗Rθ(g)(x) = (R−θ(f) ∗ g)(R−θ(x))

Proof.

f ∗Rθ(g)(x) =

∫
R2

f(x− y)Rθ(g(y))dy

=

∫
R2

f(x− y)g(R−θ(y))dy =

then we substitute y′ = R−θ(y) whose Jacobian has determinant equal to 1

=

∫
R2

f(x−Rθ(y
′))g(y′)dy′

=

∫
R2

f(Rθ(R−θ(x))−Rθ(y
′))g(y′)dy′

=

∫
R2

f(Rθ(R−θ(x)− y′))g(y′)dy′

=

∫
R2

R−θ(f(R−θ(x)− y′))g(y′)dy′ =

then we substitute y′′ = R−θ(x)− y′ whose Jacobian has determinant equal to 1

=

∫
R2

R−θ(f(y′′))g(R−θ(x)− y′′)dy′′

=(R−θ(f) ∗ g)(R−θ(x))

and this concludes the proof.
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Thanks to this Remark we are now able to demonstrate the rotational invariance

of Ψ0.

Theorem 4.3.1. Let Ψ0 be a solution to the problem (4.5) where F is defined in

(4.4) and C is defined in (4.3). Then Ψ0 is rotational invariant.

Proof. Let us consider the rotated solution Rθ(Ψ
0) of an angle θ ∈ [0, 2π].

∫
Γ

|
∫
R2

C
(
(I ∗Rθ(Ψ

0))(z)
)
dz − y(I)|dµ(I) =

and because of remark 1

=

∫
Γ

|
∫
R2

C
(
(R−θ(I) ∗Ψ0)(R−θ(z))

)
dz − y(I)|dµ(I)

Since for a general f ∈ L1(R2) it holds∫
R2

f(Rθ(x))dx =

∫
R2

f(x)dx,

then

=

∫
Γ

|
∫
R2

C
(
(R−θ(I) ∗Ψ0)(z)

)
dz − y(I)|dµ(I) =

Finally, since Γ is close under rotation and y(I) = y(R−θ(I)) by hypothesis

=

∫
Γ

|
∫
R2

C
(
((I) ∗Ψ0)(z)

)
dz − y(I)|dµ(I)

Thus, Rθ(Ψ
0) attains the same value of Ψ0 for every choice of θ. But thanks to the

uniqueness of the solution of this problem because of the compactness of Γ and

convexity of the functional (4.5), Ψ0 = Rθ(Ψ
0) ∀θ ∈ [0, 2π] and this concludes the

proof.

Remark 2. Let us note that the first part of the proof of theorem 4.3.1 is valid for

a general LGN-CNN architecture. In particular, if we have a solution Ψ0 to the

minimization problem (4.5), then every rotation Rθ(Ψ
0) of an angle θ ∈ [0, 2π] is

still a solution. The uniqueness of solution in theorem 4.3.1 guarantees that Ψ0 is

rotational invariant whereas for a general LGN-CNN this does not hold.
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Figure 4.6 – Filter Ψ0 of LGN-CNN obtains after training.

Testing the theorem on the LGN-CNN architecture

We aim now to test the theorem just proved on the LGN-CNN architecture used

in the theorem itself. In particular, we aim to see if `0 becomes rotational invariant;

however, since we train a simple architecture composed by a single convolutional

layer `0 with a single filter Ψ0 and a ReLU we do not expect to obtain a LoG shape

filter as for the LGN-CNN defined in chapter 4.2. Indeed, in the previous case the

LGN-CNN architecture has other convolutional layers whose purpose is to further

analyze the image and in particular the contours of the objects. For this reason we

expect in that case that the LGN-CNN behave similarly to the LGN and the V1,

i.e., Ψ0 has a LoG shape. On the other hand, in the test we perform now we can

only expect a rotational invariant filter as stated in theorem 4.3.1.

To perform this test we build a new dataset of images starting from the dataset

MNIST [a set of digits images, see LeCun and Cortes, 2010] and the dataset

Fashion-MNIST [a set of cloths images, see Xiao et al., 2017]. They are two similar

datasets, composed by gray-scale images of size 28 × 28. The purpose of our

LGN-CNN is to classify the input as a digit or a cloth, indeed if the image belongs

to MNIST or Fashion-MNIST dataset. The new training set is built by taking the

first half of MNIST dataset (30000 images) and the first half of Fashion-MNIST

dataset (30000 images), for a total of 60000 images. We follow the same steps for

the test set (for a total of 10000 images) and we randomly sort the training and

test sets. Then each image is labeled by 0 if it is a digit and by 1 if it is a cloth.

The LGN-CNN is a really simple architecture that contains only a first layer
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(a) Filter Ψ0 of first layer of LGN-CNN. (b) Gaussian function.

Figure 4.7 – Comparison between the filter Ψ0 and a Gaussian. We can see that

Ψ0 is really close to a discrete approximation of a Gaussian fitted to the data.

with a single filter Ψ0 of size 13× 13 followed by a ReLU and by a fully connected

layer. We train this neural network for a total of 25 epochs obtaining an accuracy

of 98.55 % on the classification task. Figure 4.6 shows Ψ0 of this LGN-CNN

architecture. We can observe that it has a rotational invariant shape as we expect

from theorem 4.3.1. Then, we approximate the filter Ψ0 with a Gaussian function

defined by the following formula G(x, y) = αe
−x2−y2

2σ2 . Figure 4.7 shows Ψ0 and

its approximation. The rotation invariance of Ψ0 is now enforced thanks to the

approximation obtained with a rotational invariant function as the Gaussian.

4.3.3 The layer `1 of the LGN-CNN

Now we aim to study the second layer `1 of the architecture. As described in

chapter 3, the first layer of a classical CNN contains filters approximated by Gabor

functions (1.2). Thus, to enforce the relation between our architecture and the

structure of the visual system, we compare the filters in `1 with the statistics of

RPs shape from [Ringach, 2002]. To this end, we train two different CNNs, an

LGN-CNN defined by the functional (4.6)

F (I) := (σ ◦ FC1 ◦R ◦ `3 ◦ p4
a ◦R ◦ `2 ◦ p4

m ◦R ◦ `1 ◦R ◦ `0)(I) (4.6)

and a classical CNN defined by the functional (4.7) in which we eliminate
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Figure 4.8 – On the left: filters from LGN-CNN. On the right: their approximation

with the function (1.2).

Figure 4.9 – On the left: filters from classical CNN. On the right: their approxima-

tion with the function (1.2).

the first convolutional layer `0 and its following ReLU R, characteristic of our

architecture.

F (I) := (σ ◦ FC1 ◦R ◦ `3 ◦ p4
a ◦R ◦ `2 ◦ p4

m ◦R ◦ `1)(I) (4.7)

As expected, in both architectures `1 contains filters with Gabor-like shapes

after the training phase. Thus, we study the statistical distribution of these banks

of filters comparing the results with the real data of Ringach. We aim to see if

the introduction of `0 influences in any way the filters of `1. Since the filters in a

standard CNN have input on the retina, we will construct analogous filters in the



4.3 The filters of the LGN-CNN architecture 49

(a) Distribution of filters in `1

of classical CNN defined by

functional (4.7).

(b) Distribution of filters in `1

of LGN-CNN defined by

functional (4.6).

(c) Distribution of RPs of

simple cells, from: [Ringach,

2002].

Figure 4.10 – Comparison between the statistical distribution on (nx, ny) plane of

filters of a classical CNN, of the LGN-CNN architecture and of RPs of real data.

LGN-CNN architecture. Consequently we do not consider the filters in `1 but the

filters obtained by the convolution with Ψ0.

As a first step, we need to approximate the filters in `1 using the function (1.2);

in this way we are able to obtain for each filter the parameters defined in eq. (1.5)

that Ringach has used for the statistical comparison as described in chapter 1.

Figure 4.8 shows some of the `1 filters of the LGN-CNN and their approximation;

the same occurs in figure 4.9 in the case of classical CNN. As a first result, the

mean correlation estimated with the built-in MatLab function corr2 increases

from classical CNN to LGN-CNN from just 71.62% to 93.50%. This suggests

that introducing the layer `0 with a single filter better regularize the filters in the

following convolutional layer `1.

To compare the statistical distributions of the `1 filters of the classical CNN

and the LGN-CNN with the real data from Ringach we follow the same step in

[Ringach, 2002], described in chapter 1. Indeed, we plot the distribution in the

(nx, ny) plane and approximate the data with two lines in the following way. We

first approximate the points closer to the origin with a line y = αx and then the

rest of the points are approximated with a line starting from the end of the previous
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one.

Figure 4.10 shows the three plots. As a first result, the introduction of `0

modifies the elongation of Gabor filters in `1. In particular, in classical CNN the

filters are often more elongated in the x direction as we can see from the slope

of the interpolating line in figure 4.10a. In figure 4.10b we can see that the slope

changes greatly and that the filters become much more elongated in the y direction.

This behavior is similar to the RPs of simple cells in V1 as can be observed from

the distribution of Ringach in figure 4.10c. Indeed, the slopes of the interpolating

lines of Ringach distribution and of LGN-CNN `1 distribution are quite close. This

enforces even more the link between the LGN-CNN and the structure of the visual

system motivating us to pursue in this direction.



Chapter 5

The LGN-CNN architecture with

the transition kernel

5.1 Horizontal connectivity of V1 in a CNN

Even if the analogy with biological vision is strong, CNN architectures contains a

simplified feedforward mechanism that ignores many of the main processes allowing

the visual system to interpret a visual scene. Thus, we insert a mechanism of

horizontal propagation first proposed in [Montobbio et al., 2019a]. In particular,

this mechanism is defined by entirely learned connectivity kernels which will be

analyzed in terms of invariance patterns we expect to arise as a result of learning

from natural images. The connectivity kernel will be implemented only in the layer

`1 and it should express long range connections between the learned filters of `1.

Some implementations of horizontal connections of convolutional type have been

already proposed by [Liang and Hu, 2015; Spoerer et al., 2017]. In particular, they

have applied a recurrent formula analogous to (1.10), describing an evolution in

time. However, the horizontal kernels employed in these works are very localized, so

that the lateral kernels applied at each step only capture the connections between

neurons very close-by in space.

More recently, Montobbio in [Montobbio et al., 2019a] has proposed a two-step

version of this model that allows the kernel to express long range connections

51
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between neurons. In the first step, the output of the first layer `1 is mapped to

the corresponding feature space through the feedforward stream, leading to an

activation pattern h1 = ReLU(z1); then it is convolved with a connectivity kernel

K1 with a wider support. In the second step, the new output h̃1 is obtained by

averaging between this propagated activation K1 ∗ h1 and the original activation

h1. Indeed, the update rule reads:

h̃1 =
1

2

(
K1 ∗ h1 + h1

)
. (5.1)

We stress out that the entire CNN architecture is first trained over a classification

task, with the exception of the lateral kernel K1. In a second step, the rest of

the architecture is kept fixed and only the connectivity kernel K1 is updated.

From a physiological point of view it means that in an embryo first there is the

formation of filters, and then the connectivity between them. This is proved by

experiments which show that there is no lateral connectivity in animal who do

not seen alignments in the beginning of their life. Thanks to this procedure it is

possible to easily add the lateral kernel to a pretrained CNN without any strong

modifications. Furthermore, this two-step training allows the filters of `1 to be

trained freely without any constraints from K1. In fact, since at the beginning of

the first training all the filters are initialized randomly, training K1 simultaneously

with the filters of `1 could force them to attain particular shapes. However, our

purpose is to extract long range information from the bank of filters without

imposing any constraints on them.

Let us describe in more details the connectivity kernel K1. K1 is a 4-dimensional

tensor parameterized by 2-D spatial coordinates (i, j) and by the indices (f, g)

corresponding to all pairs of `1 filters. Indeed, for fixed f and g filters, the function

(i, j) 7→ K1(i, j, f, g) (5.2)

expresses the strength of connectivity between the filters Ψf and Ψg, where

the spatial coordinates (i, j) indicate the displacement in space between the two

filters. In order to express all possible displacements between filters, the spatial

dimensions of K1 are almost doubled with respect to the filters ones. The idea
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Figure 5.1 – Scheme of the CNN architecture. Convolutional layers are numbered

from `0 to `10, fully connected classification layers are denoted as FC1, FC2, FC3.

Horizontal connections governed by the connectivity kernel K1 are represented as

an operator acting on the feature space associated with layer `1.

behind this model is that K1 behaves like a ’transition kernel’ on the feature space

of `1 and modifies the feedforward output according to the learned connectivity

between filters. Thus, similarly to the horizontal connectivity of cells in V1, a filter

activation increases the activation of the filters strongly related with it.

Let us also observe that K1 takes the form of a linear propagation applied before

the nonlinear activation function of `1. Indeed, an even wider connectivity may be

modelled by iterating the process, obtaining a larger kernel in spatial dimensions.

This can be obtained via ’self-replication’ by convolving K1 against itself in the

following way:

1

2

(
K1 ∗ h̃1 + h̃1

)
=

1

4

(
K1 ∗K1 ∗ h1 + 2K1 ∗ h1 + h1

)
.

5.2 The proposed architecture

In this section we give a detailed overview of the LGN-CNN architecture with

a transition kernel in the second convolutional layer,proposed in [Bertoni et al.,

2021], as well as the data and training scheme employed.
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The architecture is composed by 11 convolutional layers, each one followed by

a ReLU function and a batch normalization layer; at the end of the architecture

3 fully-connected layers are present. Appropriate zero padding are applied in

order to keep the spatial dimensions unchanged after each convolutional layer.

Figure 5.1 shows the network architecture whose layers are listed below. Convolu-

tional layers are denoted by `0, . . . , `10, whereas fully connected layers are denoted

by FC1, FC2, FC3. For simplicity we omit the ReLU function and the batch

normalization layer.

`0 LGN layer: a single filter Ψ0 of size 11× 11;

`1 64 filters of size 7× 7;

lateral connectivity kernel K1 of size 13× 13× 64× 64;

max pooling of square size 2;

`2 64 filters of size 5× 5× 64;

`3, `4 64 filters of size 3× 3× 64;

max pooling of square size 2;

`5, `6 64 filters of size 3× 3× 64;

`7 128 filters of size 3× 3× 64;

max pooling of square size 2;

`8, `9, `10 128 filters of size 3× 3× 128;

max pooling of square size 2;

FC1, FC2, FC3 1000, 200 and 10 output units respectively.

Since the neural network should receive as input a gray scale image, we transform

the CIFAR-10 dataset into gray scale images. All the parameters except the kernels

K1 were first pre-trained in the absence of lateral connections for a maximum of

800 epochs, with early stopping when validation accuracy failed to increase for

80 consecutive epochs. After the pre-training we add the lateral connections in

layer `1, thus employing the full update rule in Eq. (5.1), and implement a second
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training stage: we re-update the whole architecture including the lateral kernel K1

for a maximum of 800 epochs with early stopping as in the first phase. The initial

purely feedforward training is intended both to obtain more stable learning of the

receptive profiles, and to simulate the pre-existing orientation tuning of receptive

profiles in V1 prior to the development of horizontal connections [Espinosa and

Stryker, 2012]. However, after the ”initialization” stage, all the network weights

are trained jointly: this allows the feedforward weights to possibly readjust in the

presence of lateral connections.

In order to enhance the generalization ability of the neural network, along with

the weight regularization and the batch normalization layers, we apply dropout with

dropping probability equal to 0.5 after the convolutional layer `10. This dropout

is intended to reduce overfitting in the final classification layers by weakening the

reciprocal dependencies between weights of the same layer: this allows the network

to have a more stable selection of the features relevant for image classification

[Srivastava et al., 2014]. We also apply dropout with dropping probability 0.2 when

applying the kernel K1 [see also Semeniuta et al., 2016] in the second training.

Randomly dropping 20% of the lateral connections at each weight update has the

purpose of avoiding co-adaptation of the connectivity weights, thus reinforcing their

dependency on the intrinsic geometric properties of the receptive profiles. Applying

dropout increase the performance on the test set from 72.24% to 80.28%. The

network architecture and optimization procedure are coded using Pytorch [Paszke

et al., 2017].

The performance of the neural network are quantified as accuracy (fraction of

correctly predicted examples) on the CIFAR-10 testing dataset. We train several

CNN architectures varying the number of layers and features. For the analyses

described in section 5, we select the architecture that have reached the best mean

performances (80.28%± 0.17 over 20 trained instances of the
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Figure 5.2 – Behavior of the mean testing accuracy w.r.t. the number of layers

(A) and units (B), for both classical CNNs and LGN-CNNs, with and without

the lateral connectivity. Error bars represent the standard error of the mean over

20 trainings. The selected LGN-CNN with transition kernel is the one marked

by a red star in both plots. (A) The x-axis represents the number of ”standard”

convolutional layers. (B) The x-axis represents the number of filters in each

convolutional layer, expressed as a percentage w.r.t. the number of filters in the

selected model.

model), i.e. the one detailed above. Figure 5.2 shows the mean testing accuracy

of several CNNs varying the number of layers and units, for both classical CNNs

and LGN-CNNs, with and without the lateral connectivity. As expected, increasing

the number of convolutional layers lead to better performances – see panel A,

plotting the accuracy varying the number of standard convolutional layers (i.e. not

including `0 or lateral connections). The same happens varying the number of units

of each convolutional layer: panel B compares the mean performance of the selected

model (marked by a star in both plots) with CNN architectures including only the

25% and 50% of the number of convolutional filters in each layer (e.g. each curve

shows the accuracy values for architectures that have 16, 32 and 64 filters in `1

respectively). Let us note that, since we are mainly interested in the emergence of

symmetries, we do not focus on reaching state-of-the-art performances on classifying

the CIFAR-10 dataset. However, our architecture reaches fair performances that
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can be increased by adding further convolutional layers and/or increasing the

number of units.Furthermore, we observe that all the architectures examined show

comparable behaviors as regards the invariance properties of the convolutional

layers `0 and `1 and the connectivity kernel K1. Therefore, it is reasonable to

expect a similar behavior also when further increasing the complexity of the model.

5.3 Results on the LGN-CNN with transition

kernel K1

5.3.1 Emergence of rotational symmetry in the LGN layer

As described in [Bertoni et al., 2022] and shown in chapter 4 the introduction

of a convolutional layer `0 containing a single filter Ψ0 models the role of the LGN.

This first layer acts as a pre-filtering step of the input visual stimulus before it

reaches the V1 cells. We have also shown that a rotational invariant pattern is

attained by Ψ0, arguing that such behavior should be present also for deeper and

more complex architectures. In this section we are going to see if this behavior

persists.

Figure 5.3A shows the filter Ψ0 obtained after the training phase. As expected

it has a radially symmetric pattern and its maximum absolute value is attained in

the center. Thus, we approximate the filter with the classical LoG model for the

RP of an LGN cell. To do so, we find the optimal value for the parameter σ in Eq.

(1.1) by using the built-in function optimize.curve fit from the Python library SciPy.

Figure 5.3B shows its approximation with σ = 0.184. The two functions have a

high correlation of 93.67%, obtained by applying the built-in function corrcoef

from the Python library NumPy.

This result enforces the one obtained in the LGN-CNN architecture described

in chapter 4.2. Indeed, Ψ0 spontaneously evolves into a radially symmetric pattern

during the training phase, and more specifically its shape approximates the typical

geometry of the RPs of LGN cells.
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Figure 5.3 – (A) The learned filter Ψ0 of the LGN-CNN architecture with transition

kernel. (B) Its approximation as a LoG, with optimal σ = 0.184, yielding a

correlation of 93.67% with the learned filter.

5.3.2 Emergence of Gabor-like filters in the first layer

As introduced in section 1, the RPs of V1 simple cells can be modeled as

Gabor functions by Eq. (1.2). Furthermore, the first convolutional layer of a

classical CNN architecture usually shows Gabor-like filters [see e.g. Serre et al.,

2007]. This behavior suggests that the first convolutional layer of classical CNNs

assumes a role analogous to V1 orientation-selective cells. In this section, we first

approximate the filters of `1 as a bank of Gabor filters. This allows us to obtain a

parameterization in terms of position (x0, y0), orientation θ and parity φ of each

filter. Thus, the parameterization will provide a suitable set of coordinates for

studying the corresponding lateral kernel in the R2 × S1 domain in the following

sections.

After the training phase, Gabor-like filters emerge spontaneously in `1 as

expected (see figure 5.4A). We approximate the filters in `1 with the Gabor

function in Eq. (1.2), where all the parameters are found using the built-in function

optimize.curve fit from the Python library SciPy. The obtained approximation is

significant; indeed, the mean Pearson’s correlation coefficient (obtained using the

built-in function pearsonr from the Python library SciPy)
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Figure 5.4 – (A) Learned filters of `1 of our CNN architecture. (B) Learned filters

of `1 of the same CNN architecture, but without `0.

between the filters and their Gabor approximations is 89.14%. Furthermore, all

correlation values are statistically significant (p < .001). This step is crucial for

the analysis of the kernel K1 since a good approximation of `1 filters will allow us

to re-parameterize the kernel itself in the space R2 × S1.

We also expect that the introduction of the pre-filtering layer `0 should influence

the filters of the following layer `1. Since Ψ0 acts as a LoG on the input image we

expect that `1 filters should not show any Gaussian-like filters. Indeed, as shown

in figure 5.4A, the layer `1 only contains filters sharply tuned for orientation, with

no Gaussian-like filters. On the other hand, by removing `0, the two types of
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filters are mixed up in the same layer. Figure 5.4B shows the `1 filters of a trained

classical CNN with the same architecture, but without `0, where there are several

Gaussian-like filters. However, we can observe from figure 5.4A that some filters of

the LGN-CNN architecture with transition kernel have more complex shapes that

are neither Gaussian-, nor Gabor-like; indeed, since we have not introduced other

geometric structures on following layers, it is reasonable to observe the emergence

of more complex patterns.

As a last step, we decide to re-organized the filters of `1 in a different way. We

first split the bank in odd and even filters using the parameter φ and then we

reordered them w.r.t. the orientation θ. The interest of the organization in odd

and even filters comes from comparison with neurophysiological data. Indeed, it

is well known that the RPs of simple cells are organized in odd and even profiles,

with different functionality. The odd ones are responsible for boundary detection,

the even ones for the interior. The reorganization w.r.t. θ is useful to see if all the

orientations are analyzed by the filter bank and to rearrange the kernel K1 w.r.t.

that parameter.

Indeed, we split the filter bank of `1 w.r.t. the parity of their approximation,

indicated by the parameter φ, that was forced to be between −π and π. Specifically,

we labelled a filter as odd if π
4
< |φ| < 3π

4
, as even if 0 < |φ| < π

4
or 3π

4
< |φ| < π.

Figures 5.5 and 5.6 show the odd and even filters rearranged w.r.t. the orientation θ.

For the sake of visualization, the even filters whose central lobe have negative values

are multiplied by -1. The orientation values are quite evenly sampled, allowing the

neural network to detect even small orientation differences. Most of the filters have

high frequencies, allowing them to detect thin boundaries, but some low-frequency

filters are still present.

5.3.3 Re-parameterization of the connectivity kernel using

the first layer approximation

In this section, we examine the learned transition kernel K1, to investigate

whether it shows any invariances compatible with the known properties of the

lateral connectivity of V1. In order to study the selectivity of the connectivity
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Figure 5.5 – (A): the learned filters of `1 with odd parity, ordered w.r.t. the

orientation θ obtained from the Gabor approximation. (B): the approximating

odd Gabor filters, labelled by their orientation.

Figure 5.6 – (A): the learned filters of `1 with even parity, ordered w.r.t. the

orientation θ obtained from the Gabor approximation. (B): the approximating

even Gabor filters, labelled by their orientation.

kernel to the properties of `1 filters, we first rearrange it based on the set of

coordinates in R2 × S1 induced by the Gabor approximation of the filters.

We first split the kernel w.r.t. the parity of `1 filters, resulting in two separate

connectivity kernels for even (figure 5.6A) and odd (figure 5.5A) filters. We then

adjust the spatial coordinates of each kernel using the estimated Gabor filter centers

(x0, y0) in order to re-center the kernel of each filter w.r.t. any other filter of `1.

Specifically, for each f, g in {1, . . . , n}, we shift the kernel K1(·, ·, f, g) of Eq. (5.2)

so that a displacement of (i, j) = (0, 0) corresponds to the situation where the

centers of the filters Ψf and Ψg coincide.

So far we have re-organized each kernel w.r.t. the spatial domain R2 without

modifying the third dimension. Indeed, the original ordering of f, g in {1, . . . , n}
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Figure 5.7 – Behavior of learned short-range intracortical connections w.r.t. the

relative orientation. The curve displays the strength of interaction between the

filter Ψf with orientation θf = 2π
5

and the other filters Ψg centered at the same

point (i.e. with relative displacement = (0, 0)) as a function of their orientation θg.

The curve has been smoothed using the MatLab built-in function smoothdata.

has no geometric meaning. However, each filter Ψf is now associated with an

orientation θf obtained from the Gabor approximation. Therefore, we are able

to rearrange the slices of K1 so that the f and g coordinates are ordered by the

corresponding orientations θf and θg. Indeed we expect a high correlation between

filters with similar orientation and a low correlation between filters with different

orientation as it happens in the horizontal connectivity of V1 cells. By fixing one

filter Ψf , we then obtain a 3-D kernel

(i, j, g) 7→ K1(i, j, f, g) (5.3)

defined on R2 × S1, describing the connectivity between Ψf and all the other `1

filters, each shifted by a set of local displacements (i, j) ∈ {−6, . . . , 6}×{−6, . . . , 6}.
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5.3.4 Non-maximal suppression within orientation hyper-

columns

The re-parameterized connectivity kernel K1 describes the strength of interac-

tion as a function of relative displacement and relative orientation of the profiles.

In this section, we restrict ourselves to the case of a displacement (i, j) = (0, 0),

i.e. the case of profiles belonging to the same hypercolumn of orientation. We thus

study, for fixed f , the function

θg 7→ K1(0, 0, f, g) = K1(0, 0, θf , θg). (5.4)

This function, plotted in figure 5.7, describes the learned pattern of excitation

and inhibition between the profiles Ψf and Ψg as a function of the orientation

θg. Notably, the resulting interaction profile showed a “Mexican hat”-like shape,

indicating an enhancement of the response to the optimal orientation and a sup-

pression of the response to non-optimal orientations. This type of profile has been

shown to yield a sharpening of the orientation tuning [Bressloff and Cowan, 2002].

5.3.5 Association fields induced by the connectivity kernel

We are now interested in the analysis of the re-parameterized kernel in terms

of the association fields induced by the kernel itself. Indeed, starting from the

re-parameterized kernel centered around a filter Ψf as in Eq. (5.3), we use the

θ-coordinates to construct a 2-D association field as in [Sanguinetti et al., 2010].

We first define a 2-D vector field by projecting down the orientation coordinates

weighted by the kernel values. Specifically, for each spatial location (i, j), we define

V (i, j) := max
g
K1(i, j, f, g) ·

∑n
g=1K

1(i, j, f, g)vg

‖
∑n

g=1K
1(i, j, f, g)vg‖

, (5.5)

where vg ∈ R2 is a unitary vector with orientation θg. This yields for each spatial

point (i, j) a vector whose orientation is essentially determined by the leading θ

values in the fiber, i.e. the ones where the kernel has the highest values. The norm

of the vector is determined by the maximum kernel value over (i, j). Finally, we
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defined the association field as the integral curves of the so-obtained vector field V

starting from points along the trans-axial direction in a neighborhood of (0, 0).

Figure 5.8B shows the association field obtained from the kernel computed

around the filter Ψf in figure 5.8A, with orientation θf = 3π
10

. The vector field V is

plotted using the Matlab function quiver, and the integral curves are computed

using the Matlab function streamline. The vectors and curves are plotted over a

2-D projection of the kernel. The latter is obtained by first resizing the kernel by a

factor of 10 using the built-in Matlab function imresize for better visualization,

and then projecting down on the spatial coordinates by taking the maximum over

g. Note that around (0, 0) the association field is aligned with the orientation of

the starting filter Ψf , while it starts to rotate when it moves away from the center.

This behavior is consistent with the typical shape of psychophysical association

fields of the horizontal connectivity of V1 cells, see section 1.

We can also note that a similar pattern arises with the integral curves of

[Sanguinetti et al., 2010], see figure 1.5D. However, in our case the rotation is less

evident since the spatial displacement encoded in the kernel K1 is more localized

than the edge co-occurrence kernel constructed in [Sanguinetti et al., 2010]. In

spite of that, we approximate each integral curve as a circular arc, obtained by

fitting the parameter k of Eq. (1.7) to minimize the distance between the two

curves. Figure 5.8C shows in red the approximation of each integral curve. The

empirical curves induced by the learned connectivity kernel are very close to the

theoretical curves, with a mean Euclidean distance of 0.0036. Indeed, the learned

kernel generates a good approximation of the theoretical integral curves; in the

next section we are going to see if also the vector field is well modelled by the

theoretical one.

5.3.6 Comparison of transition kernel with the solution of

the heat equation

As recalled in chapter 1, there exists a relationship between connectivity kernel

and the fundamental solution of Sub-Riemannian operators. In analogy with this

relation, we compare the learned transition kernel K1 with the fundamental solution
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Figure 5.8 – (A) The 7 × 7 filter Ψf , with orientation θf = 3π
10

. (B) The vector

field V and its integral curves obtained from the kernel K1 computed around

Ψf , with θf = 3π
10

. (C) The association field of the transition kernel K1 (blue),

and its approximation using the integral curves defined in (1.7) (red). For better

visualization the kernel has been resized by a factor of 10 using the built-in Matlab

function imresize.

of the sub-Riemannian heat equation in R2 × S1

∂u

∂t
= −α∆X1,X2u = −α

(
X2

1u+X2
2u
)
, (5.6)

where the sub-Laplacian operator is generated by the vector fields introduced in

[Citti and Sarti, 2006] and defined by Eq. (1.6). To this end, we fit the parameter

α by comparing the vector field V generated from the kernel K1 described in the

previous section with the 2-D vector field obtained with the same procedure from

the fundamental solution of (5.6). More precisely, the optimal parameter α is

chosen as the one minimizing the mean angular difference between the two vector

fields. We obtain an optimal value α = 4.40, with a mean angular difference of

0.0340. Figure 5.9A shows the vector field V in blue, and the sub-Riemannian

vector field with optimal α in red. As already observed, the learned kernel K1

captures the connections over a localized spatial area. Figure 5.9B shows in green

the sub-Riemannian vector field over a wider spatial region, with the local area

that best fits the vector field V highlighted in red.
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Figure 5.9 – (A) In blue: the vector field of the transition kernel K1 around Ψf . In

red: the vector field of the best-fitting fundamental solution of the sub-Riemannian

heat equation, with α = 4.40. (B) In green: the vector field of the best-fitting

fundamental solution of the sub-Riemannian heat equation over a wider spatial

region. In red: the local vector field fitted to the learned kernel.



Chapter 6

The Retinex effects of LGN-type

learned filters

In this chapter we focus on testing the rotational symmetric filter Ψ0 of the

LGN-CNN architecture described in chapter 4 on Retinex effects and contrast-based

illusions. In chapter 2 we have described how the model of [Morel et al., 2010]

have been neurally interpreted in [Citti and Sarti, 2013] and applied to LoG. Our

purpose is to extend this algorithm to a general operator and to test it on Ψ0.

6.1 Retinex algorithm via learned kernels

We now introduce the Retinex algorithm we apply to the operator Ψ0. Indeed,

our approach aims to find the perceived image Ĩ starting from a visual stimulus I.

We represent the action of the cortical RPs as a convolutional operator

OM : L2(R2)→ L2(R2), (6.1)

associated to a kernel

M : Γ ⊂ R2 → R. (6.2)

Hence the action of the input image will be represented as

OM(I) = M ∗ I. (6.3)

67
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We assume that the perceived image is obtained via the application of another

operator associated to a kernel

M̃ : Γ ⊂ R2 → R (6.4)

via the following equation

Ĩ = M̃ ∗ (M ∗ I). (6.5)

We also impose that M̃ is the kernel associated to the inverse operator to OM ,

so that

M ∗ M̃ = δ. (6.6)

Consequently

M ∗ Ĩ = M ∗ I. (6.7)

We observe that one main difference between our approach and the one proposed

by Morel regards the Neumann boundary conditions. Indeed, Morel imposes

directly the Neumann boundary conditions to the Poisson equation whereas, in our

algorithm, the Neumann boundary conditions imposed to the filter are inherited

from the inverse operator itself. In order to compare our algorithm with the Morel

one we face the problem for a Laplacian operator as performed in [Morel et al.,

2010]. As we will see the results for a Laplacian operator are comparable.

6.2 Application of the algorithm

We can now test our algorithm to different operators and see if Retinex effects

occur. We start by finding the inverse operators of some modeled and learned

operators; then, we test the algorithm on two images. We point out that the

Retinex model is an algorithm of contrast perception and does not try to improve

the image quality.
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(a) Exact inverse of a Laplacian

log(
√
x2 + y2) in the interval [−5, 5].

(b) Inverse of discrete Laplacian.

(c) Inverse of LoG. (d) Inverse of the first layer of an LGN-CNN.

Figure 6.1 – Comparison between inverse operators. First row: inverse of the

discrete Laplacian and its exact inverse operator. Second row: inverse operators of

a discrete LoG and the first filter Ψ0 of an LGN-CNN.

6.2.1 Detect the inverse operators

Applying the steepest descent method, we obtain an iterative process, which

can be formally expressed as

M̃t+1 = M̃t + dt · (M ∗ M̃t − δ). (6.8)

The algorithm stops at time T when
||M̃T+1−M̃T ||L1

dt
< ε, for a fixed error ε > 0.

Thus, ||M ∗ M̃T − δ||L1 < ε and indeed M̃T becomes a good approximation of M̃ .



70 6. The Retinex effects of LGN-type learned filters

Finally, we can compare the image I with the reconstructed one Ĩ and see if any

Retinex effects occur.

We show the inverse operators obtained through the algorithm described by

equation (6.8). We start from the classical discrete Laplacian operator and then we

move to some convolutional operators, in particular a discrete LoG and the filter

Ψ0 of the LGN-CNN. In order to compare the inverse operators, we show the 2D

plots obtained by selecting a slice of the 3D inverse operator itself.

We first compare the inverse of the discrete Laplacian w.r.t. its exact inverse

operator given by the function log(
√
x2 + y2). Figure 6.1b shows the approximation

of the inverse of the discrete Laplacian and 6.1a shows the exact inverse in the

interval [−5, 5]. We observe that the approximation is close to the exact one.

In the second row of figure 6.1 we compare the inverse operators of the LoG and

Ψ0 where figure 6.1c shows the LoG inverse operator and figure 6.1d shows the Ψ0

inverse operator. Indeed, since we have shown in chapter 4 that Ψ0 approximates

the LoG we should expect similar inverse operators. In the next section we will see

if also the Retinex effects are similar.

6.2.2 Circles on a gradient background

We start with a simple gray-scale image (see figure 6.2a) in order to see how

the different operators work. We use the same image as in [Morel et al., 2010;

Limare et al., 2011] in which they obtain remarkable Retinex effects. It has a

background that shifts from white (value 1) to black (value -1) maintaining the

gradient constant from left to right. There are also two gray dots (same value 0),

the left one with a brighter background, the right one with a darker one. Because

of the different backgrounds, our visual system perceives the two dots differently:

the left one is perceived as darker with respect to its true color; the right one is

perceived as brighter.

We first consider the discrete Laplacian operator since we expect to obtain the

same Retinex effects as in [Morel et al., 2010]. Figure 6.2c shows the
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(a) Starting image with two gray dots

on a gradient background.

(b) Retinex effects of exact inverse of

Laplacian.

(c) Retinex effects of discrete Lapla-

cian.

(d) Retinex effects of LoG. (e) Retinex effects of Ψ0 of LGN-CNN.

Figure 6.2 – Retinex effects of some inverse operators on starting image 6.2a.

result obtained with our method. It is clearly the same result of the experiments

performed by Morel and the values obtained in the position of the dots are close to

-0.9 and 0.9 (indeed really close to completely black and white dots) whereas the

entire background is gray with 0 value.

Thus, we apply the algorithm to the exact inverse of the Laplacian operator

log(
√
x2 + y2). From figure 6.2b it is clear that the Retinex effects occur to the

gray dots. Furthermore, we can observe that the contours of the two dots are more

defined w.r.t. the discrete Laplacian operator. Also in this case the values in the

position of the dots are close to -0.9 and 0.9.
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Then, we perform our experiment with the inverse of a LoG. We can note from

figure 6.2d that the Retinex effects occur also in this case (with values close to -0.9

and 0.9), similarly to the Retinex effects of the discrete Laplacian. Also in this

case the contours of the dots are not completely clear.

Finally, we test the inverse of the convolutional operator Ψ0 of the LGN-CNN

introduced in chapter 4.2. In figure 6.2e we see that this operator shows Retinex

effects where the values of the dots are close to -0.9 and 0.9. In this case the

contours of the dots are even clearer than the ones obtained with the LoG and the

discrete Laplacian.

To summarize, we have shown that our algorithm reproduces the same results

of [Morel et al., 2010] in the case of the Laplacian operator. Furthermore, we

have tested it on other operators obtaining remarkable results. It is particularly

interested the case of the convolutional operator Ψ0 since it is able to show Retinex

effects even if it is a learned filter with no a-priori structure, enforcing the link

between the LGN-CNN architecture and the visual system.

6.2.3 Adelson’s checker

We can also test our algorithm on the Adelson’s checker shadow illusion as in

[Morel et al., 2010; Limare et al., 2011]. Since we are more interested in the Retinex

effects of LoG and Ψ0 operators we analyze their behaviors on the gray-scale image

(see figure 6.3a). It shows a checkerboard with light gray and dark gray squares with

a cylinder on it that shadows a part of the squares. In particular, the square labeled

’A’ and the square labeled ’B’ have the same gray-scale value (in our case, since -1

is black and 1 is white, they have -0,4953 value). The illusion is built in such a way

that, even if they have the same value, they are perceived in a completely different

way. Indeed square ’A’, which is outside the shadow and surrounded by light gray

squares, is perceived as a dark gray square. On the other hand, square ’B’, which is

inside the shadow and is surrounded by dark gray squares, is perceived as lighter.

We expect that the two operators should reproduce the same behavior of our

perception, in particular square ’A’ should have a smaller value whereas square ’B’

should have a bigger value. Figure 6.3c shows the Retinex effects obtained with
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the LoG operator. In particular, the value of square ’A’ changes to -0,6553 whereas

the value of square ’B’ changes to 0,02351. Thus, we study the behavior of Ψ0

operator whose results are shown in figure 6.3e. Even in this case Retinex effects

occur where the value of square ’A’ changes to -0,6035 and the value of ’B’ changes

to 0,2348.

Figures 6.3d, 6.3d and 6.3f highlight the two squares ’A’ and ’B’ in the starting

image and in the recovered images using the LoG and Ψ0 operators. In this way it

is clearer that the Retinex effects occur in both cases.

To summarize, we have shown that the filter Ψ0 considered as a convolution

operator shows Retinex effects really closed to the Retinex effects of the LoG. This

enforces again the link between the structure of the LGN-CNN architecture and

the structure of LGN.

6.3 Information transmission efficiency

We are now interested to analyze the information transmission efficiency prop-

erties of the filter Ψ0 and compare them to the LGN ones, expecting a similar

behavior. Indeed, it is well established (see e.g. [see e.g. Reinagel and Reid, 2000;

Zaghloul et al., 2003; Uglesich et al., 2009; Im and Fried, 2015; Pregowska et al.,

2019] that the average firing rate of the retinal neurons that drive information to

the LGN is much bigger than that of the LGN. In particular, LGN is able to delete

spikes preserving the more informative ones leading to a loss of information.

Thus, we study the information loss on the 8000 images of STL10 test set by

convolving each image with Ψ0 and computing the entropy from the histogram

of the gray-scale values via the built-in MatLab function entropy. It turns out

that on average the entropy decreases from 7.04 to 5.97 with a loss of 15.27 % of

the information. Thus, we reconstruct the images using the Retinex algorithm

described in section 6.1. The average entropy increases to 6.92 leading to a loss

of just 1.83% of the information w.r.t. the original dataset. This suggests that

almost the entire information contained in the visual stimulus can be reconstructed

via some feedback or horizontal connections, where the reconstructed stimulus
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(a) Grayscale Adelson’s checker

shadow illusion.

(b) Grayscale Adelson’s checker

shadow illusion: the two squares.

(c) Retinex effects of LoG. (d) Retinex effects of LoG: the two squares.

(e) Retinex effects of Ψ0 of LGN-CNN. (f) Retinex effects of Ψ0 of LGN-CNN: the

two squares.

Figure 6.3 – Comparison between the Retinex effects of some operators on grayscale

Adelson’s checker shadow illusion.
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Figure 6.4 – On the left: a gray-scale image I, the convolved image Ĩ and the

reconstructed image Ĩ via eq. (6.7). On the right: the corresponding histograms of

the gray-scale values.

becomes invariant w.r.t. lightness constancy. Figure 6.4 shows an example of the

convolution and the reconstruction performed on an image of the dataset with the

corresponding gray-scale values histogram with respect to the entropy is calculated.





Chapter 7

Perceptual grouping with learned

kernels

In this chapter we propose a generalization of the algorithm proposed in chapter

2, for detection of perceptual units. Up to now it has been proved that different

kernels have different grouping capabilities. Hence, for every different problem it

was necessary to introduce an ad hoc kernel. We propose to learn directly the

kernels from a set of images with a neural network and to combine the kernels

found at different layers.

7.1 A general method of group detection

Thus, we can now describe the general algorithm we can use to find the

perceptual units on the images.

The method:

1. Choose a bank of filters;

2. Define a kernel with respect to the chosen bank;

3. Apply at each spatial location of the image all the filters and select the one

with the best response (if necessary);

77
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Figure 7.1 – Bank of 31 11× 11 Gabor filters with σ = 1 and λ = 1.

4. Create an affinity matrix N × N , where N is the number of pixels of the

image, expressing the correlation between each pair of points, considering the

kernel and the filters with best responses;

5. Find the eigenvectors with the highest eigenvalues that represent the main

perceptual units of the image.

7.2 Modeled kernel

7.2.1 Kernel computed from Gabor filters

In this section we will generate a kernel from a bank of Gabor filters using the

procedure introduce in section 1.2.1. First, we consider a bank of Gabor filters

(Ψp) = (Ψx,y,θ),

as defined in equation (1.2), where p = (x, y, θ) ∈ G = R2 × S1. In the present

case we consider Gabor filters defined in the interval [−1.5, 1.5] × [−1.5, 1.5] ×
[−1.5, 1.5] with σ = 1 and λ = 1. The step in each spatial dimension is 0.3 and in

the third dimension is 0.1; in this way our bank of filters is composed of 31 filters

of size 11× 11 (see figure 7.1).

We can now compute the generation kernel defined by equation (1.8) which can
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be expressed in the case of Gabor filters by the following analytic formula:

K(p, 0) = σ2π exp

(
−x

2 + y2

4σ2
− 2σ2π2(1− cos θ)

λ2

)
cos

(
π
x(1 + cos θ) + y sin θ

λ

)
.

(7.1)

Note that this formula expresses the correlation between a generic point p =

(x, y, θ) and the point (0, 0, 0). If we compute the kernel K(p, p0) for a generic

point p0 = (x0, y0, θ0) we can apply a rotation and a translation similarly to the

generation of a Gabor filter described in section 1.3.2. Denoting (x0, y0, θ0)−1
G the

inverse in the group G, we impose:

K((x, y, θ), (x0, y0, θ0)) = K((x0, y0, θ0)−1
G (x, y, θ), (0, 0, 0)).

Then, starting from this kernel we can define the connectivity kernel through the

iterating procedure introduced in equation (1.9). In figure 7.2 it is displayed the

second iteration starting from the filter with θ = 0; in particular, we select at

each position the filter with the highest correlation and we visualize only the ones

that reach a certain minimum value of correlation. Note that there is a central

connectivity area that has a similar behaviour with respect to the integral curves

displayed in figure 1.5. Furthermore, there are two lateral lobes that represent

the connectivity with filters with a similar direction at a certain distance; indeed

neurally there exists a link between cells with collinear receptive profiles at a certain

frequency distance. From a perceptive point of view this correlation permits to

analyze visual stimuli containing parallel lines at the same distance.

In figure 7.3 we can see that the isosurface computed on this connectivity

kernel is a good approximation of the solution of the heat equation. In particular

the isosurface in the center is the approximation we consider whereas the lateral

surfaces are due to the connections with collinear filters we have just explained.

Then, in presence of an image I, we apply the spectral grouping algorithm

explained in section 2.2.2 with the resulting kernel K. The main difference between

applying this connectivity kernel and the previous example is the presence of the

direction of Gabor filters, so that the associated kernel acts on R2 × S1. Indeed

Gabor filters lift the input image defined on R2 to an output zI = zI(x, y, θ) defined

on the cortical plane via equation (1.3). Equation (1.4) allows to associate an
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Figure 7.2 – 2 iterations Kernel with respect to the filter with θ = 0.
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Figure 7.3 – (a) Solution of the heat equation. From: [Favali, 2017]. (b) Isosurface

computed on the connectivity kernel iteratively generated from equation (7.1).
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Figure 7.4 – On the left image containing collinear and cocircular oriented elements.

On the right the grouping operated via a connectivity kernel generated by a bank

of Gabor filters. In order: red and green eigenvectors.

orientation θ̄ = θ̄(x, y) to each point (x, y) selecting the highest response. Then we

apply equation (2.2) obtaining the affinity matrix on the set ΩI and we compute

the eigenvectors.

Figure 7.4 displays the first two eigenvectors in red and green obtained through

the algorithm; in particular, the image contains both collinear and cocircular

orientation elements that represent a line and a arc of a circumference and this

kernel clearly detects them. However, if we try to use this kernel in presence of

clouds of points we can see that the results are completely different as the ones

obtained using the Gaussian kernel. Figure 7.5 displays the first three eigenvectors.

We can note that the three clouds are not perceived as distinct but the eigenvectors

cross each other and the kernel seems to select orientation patterns. This result is

reasonable since Gabor filters are able to detect the orientation of boundaries but

not clumps of points.

Finally, we test this kernel with an image containing two clouds of points and

a set of collinear segments. Figure 7.6 shows the grouping. The first eigenvector

selects an orientation pattern in the bigger clouds of points and the second one

represents the line with a set of points in the bigger cloud that are almost parallel

with the line. Indeed, since the first eigenvector has not selected the entire cloud the



82 7. Perceptual grouping with learned kernels

Figure 7.5 – On the left image containing three clouds of points. On the right its

grouping operated via a connectivity kernel generated by a bank of Gabor filters.

In order: red, green and blue eigenvectors.

algorithm has considered the remaining points and the line as the same perceptual

unit. The third eigenvector has an orientation shape similar to the first one. With

such an image the algorithm is not able to distinguish the three percepts but tries

to find orientation patterns in the image.

7.3 Bank of learned filters

Now we test our algorithm with some learned banks of filters. We first describe

the architectures of the neural networks and then we analyze their behavior on

different images. We use different neural networks: a pre-trained one called

GoogLeNet model imported from the Princeton version [DagNN format] [see

Szegedy et al., 2014] and two neural networks we train on a set of gray-scale images

containing numbers from 0 to 9 called MNIST [Deng, 2012].

GoogLeNet is a CNN trained on a set of RGB images for a classification task

and it is composed of 2 convolutional layers: the first one is a bank of 64 filters

of [7 × 7 × 3] sizes and the second one a bank of 192 filters of [3 × 3 × 64] sizes.

After each convolutional layer it is applied a POOLING; then there is a sequence

of 9 inception layers with a POOLING after the first two and before the last two.
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Figure 7.6 – On the left image containing two clouds of points and a set of collinear

segments. On the right its grouping operated via a kernel generated from a bank

of Gabor filters. In order: red, green and blue eigenvectors.

In particular we are interested in the first two convolutional layers that we use to

find the perceptual units on the images. Furthermore the visual input is composed

by a [224 × 224 × 3] image and the output is a vector of 1000 size in which the

n-th component represents the probability of the image to be the n-th label of the

classification task.

On the other hand, the two CNN architectures are trained for a classification

task on MNIST In particular, MNIST is a set of 70′000 gray-scale images of sizes

28 × 28 representing a number from 0 to 9, divided in a training set of 60′000

images and a test set of 10′000 images. The objective of the neural networks is to

detect the number that is displayed on the image and give it as the answer.

The first architecture is composed of three convolutional layers without 0-

padding followed by a RELU or a POOLING. In particular, the first convolutional

layer, which receives a 28× 28 input, is composed of 128 filters of 5× 5 sizes. The

output of the first convolutional layer is indeed a tensor of size [24× 24× 128] and

after a POOLING it becomes a [12× 12× 128] input for the second convolutional

layer. The latter is composed again of 128 filters but with sizes [5× 5× 128] and

therefore its output is a [8× 8× 128] tensor. Then, after another POOLING, there

is a third convolutional layer that, receiving a [4 × 4 × 128] input, is composed
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of 500 layers of sizes [4× 4× 128] that gives an output of sizes [1× 1× 500]. At

this point a RELU is used and a fully connected layer is applied, modifying the

length of the output vector to 10. Finally a softmax loss is used to calculate the

error done to each batch during the training session. The output represents the

probabilities of the image to be a number from 0 to 9 and the CNN selects the

label with the highest probability.

The main difference between the first architecture and the second one is that

the latter has a higher number of layers and receives larger images as input. In

particular, the first convolutional layer, composed by 32 9 × 9 filters, receives

a 56 × 56 gray-scale image. Then, a POOLING and a convolutional layer with

64 [5 × 5 × 32] filters are applied; after them another POOLING and another

convolutional layer with 64 [5× 5× 64] filters are used. After the last POOLING

and a convolutional layer composed by 500 [3× 3× 64] filters a RELU is applied.

Finally, it is applied a fully-connected layer, giving an output of length 10, and the

error is calculated using a softmax loss.

7.3.1 Perceptual grouping with GoogLeNet

In this section we analyze the kernels generated from the first two banks of

learned filters of GoogLeNet. We consider the first bank whose red canal is displayed

in figure 7.7. The space in which the bank is defined is G1 = R2 ×F0 ×F1 where

F0 = 1 . . . 3 refers to 3 color canals (RGB) and F1 = 1 . . . 64 labels the entire set

of filters. Indeed, we can translate in the x-y direction each filter obtaining the

following set

(Ψ1
p) = (Ψ1

x,y,f0,f1),

where p = (x, y, f 0, f 1) ∈ G1. Then we compute the connectivity kernel applying

the iterating procedure introduced in equation (1.9).
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Figure 7.7 – Bank of 64 [7 × 7] filters of the red canal of the first convolutional

layer of GoogLeNet.

Similarly, considering the second convolutional layer, we can define the space

G2 = R2×F1×F2 where F 1 is the space of features of the first layer defined above

and F2 = 1 . . . 192 labels the second bank of filters. Therefore, the second layer

is composed of 192 [3× 3× 64] filters that can be translated in the x-y direction,

obtaining

(Ψ2
p) = (Ψ2

x,y,f1,f2),

where p = (x, y, f 1, f 2) ∈ G2. Also in this case we compute the connectivity

kernel applying the iterating procedure introduced in equation (1.9).

Now let us consider a visual stimulus I to which we apply the spectral grouping

algorithm explained in section 2.2.2. In the present case we should consider the

presence of the parameter f 1 ∈ F1 that labels the set of filters and also the presence

of the 3 canals of colours. Since we are not interested in the differences between

each colour in the image we ignore that parameter and, thus, we can associate at

each position (x, y) ∈ R2 the filter that gives the highest response, i.e. the maxima
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suppression principle becomes:

z1
I (x, y, f

1
) = max

f1i ∈F1
z1
I (x, y, f

1
i ), (7.2)

where, analogously to equation (1.3), we can define

z1
I (x0, y0, f

1
0 ) =

∫
D

Ψ1
x0,y0,f0,f10

(x, y, f 0)I(x, y, f 0)dxdydµ(f 0), (7.3)

which expresses the response of a filter to a visual stimulus. The second layer

receives an input of sizes [112 × 112 × 64] after I has passed through the first

convolutional layer and a POOLING. Analogously to the first layer we can define

the function z2
I and the maxima suppression principle as follows:

z2
I (x0, y0, f

2
0 ) =

∫
D

Ψ1
x0,y0,f1,f20

(x, y, f 1)z1
I (x, y, f

1)dxdydµ(f 1), (7.4)

z2
I (x, y, f

2
) = max

f2i ∈F2
z2
I (x, y, f

2
i ). (7.5)

Now we can build the two affinity matrices, A1
I for the first layer applying

equations (7.3) and (7.2) and A2
I for the second one applying equations (7.4) and

(7.5) as described in section 2.2.2. In this way we can use one matrix at a time to

find the perceptual units of the image or weighting them together. In particular

we define the two layers affinity matrix as

ÃαI = αA1
I + (1− α)A2

I , (7.6)

where 0 ≤ α ≤ 1. Note that Ã0
I = A2

I and Ã1
I = A1

I . In figure 7.8 we can see the

first perceptual unit detected using Ã1
I = A1

I , i.e. considering only the first layer,

and Ã
1
2
I = 1

2
(A1

I + A2
I), i.e. a combination of the two layers. Note that there is a

good improvement considering two layers instead of only one; however, none of

them gives good results as the ones obtained using a kernel generated from a bank

of Gabor filters. This is reasonable since some of the learned filters have a Gabor

shape but not many orientations are present as we can see in figure 7.7.

In section 7.2.1, the kernel computed from a bank of Gabor filters was unable

to detect clouds of points (see figure 7.5). Then, the idea is to use the two layers
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Figure 7.8 – On the left image containing collinear and cocircular oriented elements.

In the center first eigenvector obtained with only the first layer. On the right first

eigenvector obtained with a weighted combination of two layers.

of GoogLeNet to approach the same task since in this case we do not have only

Gabor filters. Figure 7.9 represents the three eigenvectors obtained in this case. If

we compare this result with respect to the Gaussian kernel one (see figure 2.3A)

we can see that they are really similar and the eigenvectors are also in the same

order.

Eventually, we use the two layered structure with an image containing both

clouds of points and collinear elements. Figure 7.10 displays the grouping. We

can see that the first two eigenvectors are the two clouds of points (however the

first one does not contain the upper part of the cloud) and the third one is the

line. Therefore the two layers structure of GoogLeNet is extremely flexible and

can face completely different problems with better results with respect to the

ones obtained with the models of section 7.2 thanks to the heterogeneity of the

filters. Furthermore we have seen that using two layers gives better results than a

single one; in section 7.3.2 we are going to study deeply this correlation for two

multi-layered architectures.
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Figure 7.9 – On the left image containing three clouds of points. On the right its

grouping operated via a weghted combination of two layers. In order: red, green

and blue eigenvectors.

Figure 7.10 – On the left image containing two clouds of points and a set of collinear

segments. On the right its grouping operated via a weighted combination of two

layers of GoogLeNet. In order: red, green and blue eigenvectors.
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7.3.2 Perceptual grouping with neural networks trained on

MNIST

We can now study the perceptual grouping ability of two trained CNNs. Since

they have several layers we can analyze their behaviors varying the number of

layers involved in the task.

Let us consider the first architecture trained on MNIST. We analyze just the

behaviour of the first two layers since the third one is extremely local (recall that

the spatial dimension of the input is 4 as the spatial dimension of the filters).

Therefore, we can consider the first bank of filters

(Ψ1
p) = (Ψ1

x,y,f1)

defined on G1 = R2 ×F1 where F1 = 1 . . . 128 labels the filters and the second

bank of filters

(Ψ2
p) = (Ψ2

x,y,f1,f2)

defined on G2 = R2 × F1 × F2 where F2 = 1 . . . 128. Then, given an input I

we can define

z1
I (x0, y0, f

1
0 ) =

∫
D

Ψx0,y0,f10
(x, y)I(x, y)dxdy,

and the principle of maxima suppression as

z1
I (x, y, f

1
) = max

f1i ∈F1
z1
I (x, y, f

1
i ).

For the second layer we can give similar definitions

z2
I (x0, y0, f

2
0 ) =

∫
D

Ψx0,y0,f1,f20
(x, y, f 1)z1

I (x, y, f
1)dxdydµ(f 1),

z2
I (x, y, f

2
) = max

f2i ∈F2
z2
I (x, y, f

2
i ).

Then, as in section 7.3.1 we can apply the perceptual grouping algorithm defined

in section 2.2.2 for each layer obtaining two affinity matrices A1
I and A2

I that can

be combined in a unique matrix

ÃαI = αA1
I + (1− α)A2

I , (7.7)
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Figure 7.11 – On the left image containing two clouds of points and a set of collinear

segments. On the right its grouping operated via a weighted combination of two

layers. In order: red, green, blue and yellow eigenvectors.

with 0 ≤ α ≤ 1. Then we first test this architecture on the image with two clouds

of points and collinear segments. Figure 7.11 displays the grouping result. The first

and third eigenvectors represent the bigger clouds of points split into two parts.

The second eigenvector contains the smaller cloud of points with a missing part

and the last one the set of collinear segments. The grouping results are comparable

with the one obtained using GoogLeNet architecture but they can be improved

using a structure with more layers.

Now let us consider the second architecture and, in particular, the first three

banks of filters Ψ1, Ψ2 and Ψ3. In this case we have three spaces G1 = R2 × F1,

G2 = R2 ×F1 ×F2 and G3 = R2 ×F2 ×F3 and we can give similar definitions for

h1
I , h

2
I and h3

I and the corresponding maxima suppression principles as for the first

architecture. We can apply the perceptual grouping algorithm defined in section

2.2.2 to every layer obtaining three affinity matrices A1
I , A

2
I and A3

I . Then we can

define a linear combination of them as

Ãα,βI = αA1
I + βA2

I + (1− α− β)A3
I , (7.8)

where 0 ≤ α, β, α+ β ≤ 1. In this setting we approach the same problem as before

using the image with two clouds of points and a set of collinear segments to test
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Figure 7.12 – On the left image containing two clouds of points and a set of collinear

segments. On the right its grouping operated via a weighted combination of three

layers. In order: red, green and blue eigenvectors.

the flexibility of the three layers structure. Figure 7.12 shows the grouping results.

We can see that the three eigenvectors represents the two clouds of points and

the line. Therefore also in this case the kernels are extremely flexible, adapting

to different type of percepts, and they give better results than the ones obtained

using the two layered architecture of GoogLeNet and the previous one.

7.3.3 Comparison between the two trained architectures

Here we test the two architectures on some simple images in order to understand

how the first eigenvector changes and how far points can communicate.

Let us start with the 2 layers architecture. First, we consider a set of images

containing two collinear segments at different distances, then a set containing the

four corners of a square at different distances. The perceptual units obtained on the

first set of images are displayed in figure 7.13 in which the first column represents

the set of images whereas the other 3 columns the first eigenvector obtained using

different choices of α in equation (7.7). In particular the second column uses only

the first layer (i.e. α = 1), the third
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Figure 7.13 – First column: starting images with 2 segments at different distances.

Second column: first eigenvector of first layer. Third column: first eigenvector of

second layer. Fourth column: first eigenvector of first and second layers applied

together.

column only the second layer (i.e. α = 0) and the last column a weighted

combination of the two layers (i.e. α = 1
2
).

Looking carefully to the perceptual units, we can see that in the first three

rows the two segments are seen as the same percepts for each choice of α. Then,

increasing a bit the distance in the fourth row, the first layer becomes unable to

link the two segments but can perceive only one. This means that at this distance

for the first layer is hard to connect collinear segments. Besides, the second layer

and the combination of them are still able to detect the two segments. When the

segments become too far the second layer and the combination of layers can only

detect a single segments as we can see in the last two rows. Note that this is an

important result since there are experimental clues that suggest that the second

cortical layer can connect points that are more distant than the first cortical layer

alone.

A similar result is displayed in figure 7.14. Indeed in the second and third row

the first eigenvector of the first layer is only a corner whereas the second
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Figure 7.14 – First column: starting images with corners of a square at different

distances. Second column: first eigenvector of first layer. Third column: first

eigenvector of second layer. Fourth column: first eigenvector of first and second

layers applied together.

layer and the combination can detect the entire square. In the last row the

second layer and the combination can perceive three corners which is still far better

than the eigenvector obtained using only the first layer. Note also that in this

row the combination of the first two layers seems to work slightly better than only

the second layer. This suggests that using many layers at the same time should

improve the performances of the algorithm. However this is not enough to give

such a conclusion and we should try to use an architecture with more layers.

Let us consider the 3 layers architecture and approach the same problem as

before using a set of images representing the corners of a square at different distances.

The perceptual grouping results are displayed in figure 7.15 considering the affinity

matrix defined in equation (7.8). The second, third and fourth columns represent

the first eigenvector obtained using respectively the first layer (i.e. α = 1, β = 0),

the second layer (i.e. α = 0, β = 1) and the third layer (i.e. α = 0, β = 0). Moreover,
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Figure 7.15 – First column: starting images with corners of a square at different

distances. Second column: first eigenvector of first layer. Third column: first

eigenvector of second layer. Fourth column: first eigenvector of third layers. Fifth

column: first eigenvector of first and second layers applied together. Sixth column:

first eigenvector of first, second and third layers applied together.

the fifth column represents the eigenvector obtained through a combination of the

first two layers (i.e. α = 1
2
, β = 1

2
) and the last one a combination of all three layers

(i.e. α = 1
3
, β = 1

3
).

The hypothesis suggested by the first architecture in this case are reinforced.

Indeed we can see that the first layer gives worse results than the others two even

applied alone. Moreover, if we use the first two layers or all three layers at the

same time we obtain better results in general. Finally, the last row gives us a

strong suggestion. Indeed, we can see that the first two layers detect only three

corners whereas the combination of all three layers is able to perceive the entire

square. This result is even clearer than the previous one and suggests that using

more layers leads to better result on perceptual grouping.
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Conclusions

We introduced a biologically inspired CNN architecture able to correctly model

the early visual pathway and tested the efficiency of the learned kernels on two

perceptual problems: Retinex effects and individuation of perceptual units.

We have first described some state-of-the-art topics useful in the subsequent

chapters. We started from the main structures of the visual system, focusing on the

LGN and V1 and analyzing the group symmetries present in these layers. Then,

we have recalled the Gestalt laws with the related grouping and the Retinex theory

of Land with its more recent developments. Thus, we have introduced the main

structures composing the CNNs, analyzing the similarities with the visual system

and the invariance properties.

Then, we have moved towards our contributions. To begin with, we have

proposed a biologically inspired CNN with a first layer `0, mimicking the role of the

LGN. This layer contained a single filter Ψ0 that has turned out to be rotational

invariant and to approximate a LoG. We have proved the rotation invariance

of Ψ0 and we have studied the statistical distribution of the subsequent layer `1

with respect to the recordings of the neurons of a macaque’s V1. Thus, we have

introduced an LGN-CNN architecture with a transition kernel K1, mimicking the

role of the long-range horizontal connectivity of V1. We have studied the emergence

of a rotational symmetric filter in `0 and of Gabor filters in `1. Then, thanks to the

approximation of `1 filters with a Gabor function, we have re-parameterized the

95
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transition kernel and we have studied its properties. We have first analyzed the

association fields induced by the connectivity kernel and, then, the vector fields

with the solution of the heat equation.

In the last chapters we have presented two applications on learned filters. We

have described an algorithm for the Retinex effects via learned kernels, through

the application of an inverse operator. Thus, we have applied our algorithm

to two different images using different kernels and, in particular, the filter Ψ0,

comparing the corresponding Retinex effects. We have also studied the information

transmission efficiency of the filter Ψ0. Then, we have moved towards the problem

of grouping. We have first analyzed the grouping obtained with a modeled kernel

generated from a bank of Gabor filters. Then, we have put forward the results

obtained with different banks of learned filters, showing a good flexibility due to

the presence of different kinds of filters.

In the future, there are several possible research paths. Indeed, we could face

the theoretical problem regarding the rotation symmetry of the first convolutional

layer for a general LGN-CNN architecture. We could also introduce an autoencoder

associated to this architecture, which can reconstruct perceived images with the

Retinex effect. Furthermore, since the learned connectivity kernel K1 describes

the strength of interactions between filters shifted by up to 6 pixels w.r.t. one

another in each direction, we could introduce a wider connectivity, modelled by

taking further propagation steps. Thanks to the linearity, this composition would

be equivalent to propagate the long-range kernel 2K1 + K1 ∗K1, obtained via

”self-replication” from K1 through convolution against itself. Indeed, the update

rule becomes:

1

2

(
h̃1 + K1 ∗ h̃1

)
=

1

4

(
h1 + 2K1 ∗ h1 + K1 ∗K1 ∗ h1

)
.

Therefore, we could consider larger natural images and examine wider horizontal

connectivity obtained via multiple diffusion steps – as well as to compare the

propagated long-range connectivity kernels with theoretical kernels.

As other future perspectives, we would like to extend our study by considering

a wider range of features; therefore, we could find a finer characterization of the

geometry of first layer filters, including more complex types of receptive profiles.
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Finally, we could extend our model to other convolutional layers, comparing their

properties with higher cortices of the visual system.



98 8. Conclusions



Bibliography

Abbasi-Sureshjani, S., Favali, M., Citti, G., Sarti, A., and ter Haar Romeny, B. M.

(2018). Curvature integration in a 5d kernel for extracting vessel connections in

retinal images. IEEE Trans Image Process, 27:606–621.

Alvarez, L., Lions, P.-L., and Morel, J.-M. (1992). Image selective smoothing and

edge detection by nonlinear diffusion. ii. SIAM Journal on Numerical Analysis,

29(3):845–866.
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