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Abstract

Language is an essential component of human life because of its central role in social interac-
tion, cultural transmission, and for structuring our thoughts. Through developmental disorders
of spoken and written language studies such as dyslexia, a growing number of genes have been
identified and labelled as implicated in language etiology. Case-control studies suffering from
a lack of statistical power, struggle to uncover significant variants. In parallel, neuroimaging
studies have significantly contributed to the understanding of structural and functional aspects
of language in the human brain. The recent availability of large-scale cohorts comprising both
neuroimaging and genetics data such as the UK Biobank and the Human Connectome Project,
have made it possible to study language in the general population via image-derived pheno-
types (IDP). Indeed, these IDPs give access to biologically relevant measurements of individual
variability and are consequently suitable for the search of genetic associations. In this thesis,
we aim to first, highlight the inter-individual variation in brain structure and/or function of
language; second, take advantage of this variability to study the genetic basis of the brain’s
infrastructure for language. For this, we used task-free functional connectivity (FC), extracted
from perisylvian cortical regions as well as from anatomical connectivity (AC) measured using
well-known language related white matter bundles determined from diffusion MRI. First, we
present an in-depth study of language heritability using human language connectome as en-
dophenotypes extracted from the two aforementioned large-scale cohorts. The results found
are consistent with the heritability estimates reported in the literature and support that the
language-related brain organization is partly underpinned by genetic. Secondly, using the sig-
nificantly heritable FC endophenotypes, we performed a multivariate genome-wide association
study on 32,186 participants from UK Biobank. Twenty genomic loci were found significantly
associated with language FCs, out of which three were replicated in an independent sample (the
UK Biobank non-British sample, N=4.754). The functional annotation highlighted noticeably
the EPHA 3 gene associated with FCs of the fronto-parieto-temporal semantic network, and the
THBS1 gene with a potential role in the perceptual-motor interaction required for language
processing. Finally, using the significantly heritable AC endophenotypes, we performed a mul-
tivariate genome-wide association study on 31.775 participants from UK Biobank. 278 genomic
loci were found significantly associated with language ACs including those previously associated

with FC endophenotypes. As a conclusion, this work contributed to uncovering the neurobiology
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iv Abstract

of human language using state-of-the-art genomic approaches and by developing novel language
endophenotypes. The genes pinpointed in this work open new leads for investigations of neuro-
biology of language using animal and cellular models. Furthermore, as more and more cohorts
are being built in the general population, this work strengthens our belief that multi-modal
data collection in large-scale cohorts allow us to increase statistical power and to circumvent
the small effect sizes in neuroimaging in order to investigate open neuroscience questions. Many

other neuroscience fields could probably benefit from this type of methodology.



Résumé

Le langage est une composante essentielle de la vie humaine en raison de son role central dans
les interactions sociales, la transmission culturelle, et la structuration de nos pensées. Gréace a
I’étude des troubles du développement du langage parlé et écrit, tel que la dyslexie, un nombre
croissant de genes ont été identifiés et étiquetés comme étant impliqués dans leurs étiologies. Des
études d’association cas-témoins sont mises en ceuvre, mais souffrent d’un manque de puissance
statistique et peinent & produire des résultats significatifs. Parallelement a cela, des études de
neuro-imagerie ont contribué de maniere significative a la compréhension des aspects structurels
et fonctionnels du langage dans le cerveau. La disponibilité récente des cohortes de grande taille
comportant & la fois de la neuro-imagerie et de la génétique tels que “UK Biobank” et le “Human
Connectome Project” a rendu possible I’étude du langage dans les populations générales via des
phénotypes intermédiaires (endophénotypes). En effet, ceux-1a donnent acces a des mesures
biologiquement pertinentes de la variabilité individuelle des supports structurels et fonctionnels
du langage et sont par conséquent adaptés a la recherche d’associations génétiques. Dans cette
these, nous souhaitons d’une part, mettre en évidence la variation interindividuelle de la struc-
ture et/ou de la fonction cérébrale qui reflete des traits neurocognitifs spécifiques; d’autre part,
tirer profit de cette variabilité pour mettre en évidence la base génétique de leur architecture
cérébrale. Pour ce faire, nous avons étudié la neurobiologie du langage a ’aide de la connectiv-
ité fonctionnelle (CF) des régions corticales périsylviennes mesurée a 1’état de repos, ainsi qu’a
partir de la connectivité anatomique (CA) mesuré sur des faisceaux de matiére blanche déterminé
par 'IRM de diffusion et connus comme étant liés au langage. Tout d’abord, nous présentons
une étude approfondie de I'héritabilité du langage en exploitant des endophénotypes du conn-
ectome du langage humain extraits des deux cohortes susmentionnées. Les résultats obtenus
sont conformes aux estimations de I’héritabilité rapportées dans la littérature et confirment que
Iorganisation cérébrale liée au langage est en partie sous-tendue par la génétique. Deuxiém-
ement, pour les endophénotypes de CF avec une héritabilité significative, nous avons réalisé une
étude d’association multivariée pangénomique sur 32.186 participants de la cohorte UK Biobank.
Vingt loci sont significativement associés aux CF du langage, dont trois sont répliqués dans un
échantillon indépendant (ethnicité non britannique de UKB, N=4.754). L’annotation fonction-
nelle approfondie pointe notamment vers le gene EPHA 3 avec un réle dans le réseau sémantique

fronto-pariéto-temporal, et le gene THBS1 avec un role dans 'interaction perception-moteur,



vi Résumé

requise dans le langage. Enfin, de la méme maniere, pour les endophénotypes de CA avec une
héritabilité significative, nous avons effectué une étude d’association multivariée pangénomique
sur 31.775 participants de la cohorte UK Biobank. 278 loci sont significativement associés aux
CA du langage, dont ceux précédemment associés a des endophénotypes de CF. En conclusion,
ce travail a permis d’étudier les bases génétiques du langage humain en utilisant des approches
génomiques a 1’état de 'art et ce, en développant des endophénotypes originaux associés au
langage. Les genes suggérés par ’analyse fournissent des pistes d’investigation dans des modeles
animaux ou cellulaires du langage. Aussi, alors que de plus en plus de cohortes sont construites
en population générale, ce travail renforce notre conviction que ce type de cohortes “multi-
phénotypées” permet d’augmenter la puissance statistique et de pallier les faibles tailles d’effet
en neuro-imagerie afin d’étudier des questions ouvertes en neuroscience. De nombreux autres

domaines des neurosciences pourraient probablement bénéficier de ce type de méthodologie.
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Neuroanatomy of language (Source: [Friederici, 2017]). Anatomical and
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Overview of the meta-analysis (Source: [Vigneau et al.,, 2006, 2011]).
Each foci is color-coded according to its language components category: phono-
logy (blue), semantic (red), and syntax (green). A) Distribution of the peaks in
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and sentence and text processing in green (bottom row). For this last component,
peaks corresponding to contrast investigating comprehension are in green and those
investigating syntax are in white. Peaks are projected onto a lateral view of the
MNTI single subject. B)Top: sagittal projection map of the 730 activation peaks.
Bottom: clusters identified for phonological (blue), semantic (red), and syntactic
(green) processing and obtained from the spatial clustering of the peaks. Clusters of
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correspond to twice the standard error on the y and z stereotactic coordinates. The
left hemisphere lateral surface rendering of the MNI single-subject brain template,
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of the left inferior frontal gyrus; F3op, pars opercularis of the left inferior frontal
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gyrus; PT, planum temporale; T1, superior temporal gyrus; T2, middle temporal
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Tractography-based reconstruction of the language networks from clas-

sical models to contemporary neurolinguistics (Source: [Catani and Forkel,

2019]). (A) Classical language model with the arcuate fasciculus connecting
Broca’s region in the inferior frontal gyrus to Wernicke’s region in the superior
temporal gyrus. (B) Extension of the classical arcuate fasciculus sense strictu to
include the anterior segment, connecting inferior frontal to inferior parietal lobe,
and the posterior segment linking the inferior parietal to the temporal lobes. (C)
Current model of an extended language network beyond the three segments of the
arcuate fasciculus. The frontal aslant tract (FAT) connects the inferior frontal
gyrus to the pre-supplementary motor cortex. The ventral network includes the
uncinate fasciculus between the anterior temporal lobe and the orbital frontal and
inferior frontal cortex, the temporal longitudinal fasciculus (TLF) between the pos-
terior temporal lobe and the temporal pole, the inferior fronto-occipital fasciculus
(IFOF) connecting the ventral frontal cortex to the occipital cortex, and the inferior

longitudinal fasciculus (ILF) between the occipital and anterior temporal cortex.
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Parent-offspring correlations for factor scores for specific cognitive abil-
ities for adoptive, biological, and control parents and their children at
3,4, 7, 9, 10, 12, 14, and 16 years (source: [Stromswold, 2001]). Correl-
ations are shown for verbal ability (a), spatial ability (b), speed of processing(c),
and recognition memory (d). Parent-offspring correlations are weighted averages
for mothers and fathers. The number of individuals range from 33 to 44 for bio-
logical fathers, 159 to 180 for biological mothers, 153 to 197 for adoptive parents,
and 136 to 217 for control parents.

Overview of the regions obtained from [Pallier et al., 2011]. Each language seed is color-coded
according to its language category: phonology (blue), semantic (red), and syntax (green). ROIs of differ-
ent components that were not spatially distinct are color-coded as pink (semantic/syntax), cyan (phon-
ology/semantic) and white for the three language component. Different gyri and sulcus, known to be
relevant for language: the inferior frontal gyrus (IFG), middle temporal gyrus (MTG), superior temporal
gyrus (STG), and superior temporal sulcus (STS), are color-coded. Numbers in the left hemisphere (LH)
represents language-relevant Brodmann areas (BA) which were defined on the basis of cytoarchitectonic
characteristics. The pars opercularis (BA 44), the pars triangularis (BA 45) represents Broca’s area. The
pars orbitalis (BA 47) is located anterior to Broca’s area. BA 42 and BA 22 represents Wernicke’s area
Friederici [2011]. Both supramarginal gyrus (BA40) and angular gyrus (BA39), also known as Geschwind’s
territory, are represented by green and yellow colors respectively. The primary motor cortex (BA4), the

premotor cortex and the supplementary motor area (B6) are colored in orange. Within the left hemisphere,

dorsal and ventral long-range fiber bundles connect language areas and are indicated by color-coded arrows.

Overview of the regions obtained from the meta-analysis. Each language seed is colour-coded
according to its language category: phonology (blue), semantic (red), and syntax (green). ROIs of different
components that were not spatially distinct are colour-coded as pink (semantic/syntax), cyan (phono-
logy /semantic) and white for the three language component. For the sake of ROIs figure visibility, the
coordinates were modified. The exact coordinates for each ROI are available in Table 2.2. Different gyri
and sulcus, known to be relevant for language: the inferior frontal gyrus (IFG), middle temporal gyrus
(MTGQG), superior temporal gyrus (STG), and superior temporal sulcus (STS), are color-coded. Numbers
in the left hemisphere (LH) represents language-relevant Brodmann areas (BA) which were defined on the
basis of cytoarchitectonic characteristics. Numbers in the right hemisphere (RH) represents the language-
relevant BA counterpart. The pars opercularis (BA 44), the pars triangularis (BA 45) represents Broca’s
area. The pars orbitalis (BA 47) is located anterior to Broca’s area. BA 42 and BA 22 represents Wer-
nicke’s area [Friederici, 2011]. Both supramarginal gyrus (BA40) and angular gyrus (BA39), also known as
Geschwind’s territory, are represented by green and yellow colours respectively. The primary motor cortex
(BA4), the premotor cortex and the supplementary motor area (B6) are coloured in orange. Within the
left hemisphere, dorsal and ventral long-range fibre bundles connect language areas and are indicated by

colour-coded arrows. .
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Spherical deconvolution tractography of frontal white matter connections. (Source: [Rojkova
et al., 2016]) For each tract a single participant map is supplied as a representative example of the
individual anatomy. First (SLF I, light blue, no. 1), second (SLF II, dark blue, no. 2) and third (SLF
ITI, pink, no. 3) branches of the superior longitudinal fasciculus; cingulum (yellow, no. 4); uncinate (pink,
no. 5); long (LS, red, no. 6) and anterior (AS, green, no. 7) segments of the arcuate fasciculus; inferior
fronto-occipital fasciculus (IFOF, no. 8); frontal corpus callosum (CC, no. 9); corticospinal tract (CST, no.
10); fronto-thalamic projections or anterior thalamic radiations (blue, no. 11); fronto-striatal projections
(yellow, no. 12); fronto-pontine projections (no. 13); paracentral U tract (pink, no. 14); hand superior
(green, no. 15), middle (yellow, no. 16) and inferior (red, no. 17) U tract; face U tract (blue, no. 18);
frontal aslant tract (pink, no. 19); fronto-insular tract 1 (FIT 1, light blue, no. 20), 2 (FIT 2, dark blue,
no. 21), 3 (FIT 3, red, no. 22), 4 (FIT 4, yellow, no. 23) and 5 (FIT 5, green, no. 24); frontal superior
longitudinal (F'SL, light blue, no. 25); frontal inferior longitudinal (FIL, pink, no. 26), frontal orbito-polar
tract (FOP, yellow, no. 27) and fronto-marginal tract (FMT, red, no. 28). The overall visualization and

screenshots were performed in Anatomist (http://brainvisa.info).

Distribution of the NIH measures collected by HCP team independently from the
language fMRI task . . . .

Distribution of behavioral scores collected by HCP team during the language fMRI
task, composed of MATH and STORY tasks .

First level model. A) Design matrix used in the first level model. Predictors
includes fMRI events and derivatives, twelve movement regressors and four drift
features. B) Coeflicients of the contrast, indexed by the names of the columns of

the design matrix.

Group analysis language task activation maps. Group average activations
for the HCP language task: story versus baseline is shown with a lower threshold
of z = £10.

Functional connectome extraction pipeline with two main steps: 1) Map
of brain regions already defined on resting-state fMRI images. 2) Extraction of
mean BOLD signal for each ROIs and quantifying functional interactions from
these time series signal extracted. At the end of the second step, we obtain a
functional connectome for each participants where each cell represents a resting-

state functional connectivity.

Functional connectome visualisation Mean functional connectivity of the 300
and 15 endophenotypes, calculated using a shrinked estimate of partial correla-
tion Marrelec et al. [20006] (estimated with a Ledoit-Wolf estimator Ledoit and
Wolf [2004]) over 32,186 and 778 individuals using both UKB and HCP rsfMRI
participants respectively. (a) Circos plot represents the mean FC estimated using
SmPSS ROIs on UK Biobank. (b) Circos plot represents the mean FC estimated
using SmPSS ROIs on HCP. (c¢) Circos plot represents the mean FC estimated using
OcSS ROIs on UK Biobank. . . . .
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Anatomical connectome extraction pipeline with one main steps consisting
on mapping brain tracts of interest already defined on skeletonised images and
extracting mean value for each tract of interest. At the end, we obtain an ana-
tomical connectome for each participants where each cell represents an anatomical

connectivity. .

Pedigree-based heritabilities of brain functional connectivities extracted using SmPSS ROIs.
Circle plot where all 25 regions are represented (19 ROIs on the left represent the left hemisphere and
6 ROIs on the right represent the right hemisphere) illustrating the FCs with significant pedigree-based
heritability after false discovery rate correction at p < 0.05. Each link between two regions represents an
endophenotype. The intensity of the color between two regions represents the pedigree-based heritability of
an endophenotype as defined by the color bar. Please refer to Table B.1 for all pedigree-based heritability

values. .

SNP-based heritabilities of brain functional connectivities extracted using OcSS ROIs. Circle
plot where all 6 regions are represented (6 ROIs on the left represent the left hemisphere. No region in the
right hemisphere are included in OcSS ROIs.) illustrating the FCs with significant SNP-based heritability
after false discovery rate correction at p < 0.05. Each link between two regions represents an endophenotype.
The intensity of the color between two regions represents the SNP-based heritability of an endophenotype

as defined by the color bar. Please refer to Table B.2 for all SNP-based heritability values.

SNP-based heritabilities of brain functional connectivities extracted using SmPSS ROIs.
Circle plot where all 25 regions are represented (19 ROIs on the left represent the left hemisphere and 6 ROIs
on the right represent the right hemisphere) illustrating the FCs with significant SNP-based heritability after
false discovery rate correction at p < 0.05. Each link between two regions represents an endophenotype.
The intensity of the color between two regions represents the SNP-based heritability of an endophenotype

as defined by the color bar. Please refer to Table B.3 for all SNP-based heritability values.

Comparison of heritabilities estimated according to different design para-
meters. The endophenotypes extracted using SmPSS ROIs. Boxplots 1 and 2 dis-
play the heritability distributions estimated on UKB (using GCTA) and HCP (using
SOLAR) respectively. Boxplot 3 : HCP-FCs using GCTA. Boxplot 4 : HCP-FCs
using GCTA and considering the household effect. Boxplots 5 to 7 : HCP (using
SOLAR) on rsfMRI sessions with the same duration as in UBK (6 min). .
Comparison between heritabilities obtained with SOLAR on HCP (concatenation
of the 4 runs) and the ones obtained with : (a) GCTA on HCP, (b) SOLAR on HCP
taking into account the shared environment, (¢) GCTA on UKB, (d) SOLAR on
HCP (6 first minutes of the signal), (¢) SOLAR on HCP (6 minutes in the middle
of the signal), (f) SOLAR on HCP (6 last minutes of the signal)

Different cut of the resting-state time serie (6 minutes) obtained from HCP cohort.

Multivariate GWAS analysis of the SmPSS resting state functional con-
nectivity in 32,186 participants. Manhattan plot for multivariate GWAS ac-
cross 142 FCs. The red dashed line indicates the genome-wide significance threshold

p = be—8. The Quantile-quantile plot is also shown.
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Locus Zoom of the significant loci identified by the multiariate GWAS for functional

connectivity. .

Genomic loci, eQTL associations and chromatin interactions identified
via multivariate GWAS for functional connectivity. Circos plot representing
the genomic risk loci, and the genes associated with the loci by chromatin inter-
actions and eQTLs. From outer layer to inner layer: Manhattan plot. Genomic
risk loci are in blue. Genes mapped by chromatin interaction are in orange. Genes
mapped by eQTL are in green. Genes mapped by both are in red. Chromatin

interaction and eQTLs links follows the same color coding presented above.

Multivariate GWAS analysis of the OcSS resting state functional connectivity in
32,186 participants. Manhattan plot for multivariate GWAS accross 14 FCs. The
red dashed line indicates the genome-wide significance threshold p = 5e—8. The

Quantile-quantile plot is also shown.

Regional effects. Circle plot where all 25 regions are represented (19 ROIs on
the left represent the left hemisphere and 6 ROIs on the right represent the right
hemisphere) illustrating the lead SNPs identified from the multivariate GWAS for
functional connectivity. Each link between two regions represents an endopheno-
type. The intensity of the color between two regions represents the Z-values from
the univariate GWAS for each FCs as defined by the color bar. The absolute Z-
values scaling is clipped at 8 (p = 1.2e—15). Positif effects of carrying the minor

allele are shown in red, and negative in blue.

Main results for the 15g14 locus. A) The two pairs of ROIs that forms the endpoints of the asso-
ciated FCs reported as black bold lines. B) Effect sizes of the SNP rsi440802 for the two connections:
(Prec<+F3opd) FC in green and (PrecR<»RolS) FC in yellow. C) Locus Zoom of the genomic region iden-
tified by the mvGWAS. Chromatin state of the genomic region. Brain tissue name abbreviations are the
following; Eo54:Ganglion Eminence derived primary cultured neurospheres, Eo53: Cortex derived primary
cultured neurospheres, Eo71: Brain Hippocampus Middle, Eo74: Brain Substantia Nigra, Eo68: Brain
Anterior Caudate, Eo69: Brain Cingulate Gyrus, Eo72: Brain Inferior Temporal Lobe, Eo67:Brain Angu-
lar Gyrus, Eo73: Brain Dorsolateral Prefrontal Cortex, Eo7o: Brain Germinal Matrix, Eo82: Fetal Brain
Female, Eo81: Fetal Brain Male, E125: NH-A Astrocytes Primary Cells. The state abbreviations are the
following; TssA: active transcription start site (T'SS), TssFlnk: Flanking Active T'SS, TxFlnk: Transcription
at gene 5/ and 3/, Tx: Strong transcription, TxWk: Weak transcription, EnhG: Genic enhancers, Enh: En-
hancers, ZNF/Rpts: ZNF genes & repeats, Het: Heterochromatin, TssBiv: Bivalent/Poised TSS, BivFInk:
Flanking Bivalent TSS/Enh, EnhBiv: Bivalent Enhancer, ReprPC: Repressed PolyComb, ReprPCWk:
Weak Repressed PolyComb, Quies: Quiescent/Low. Expression quantitative trait loci (eQTL) associations
(data source: eQTLGen [Vosa et al., 2018], PsychENCODE[Wang et al., 2018], DICE [Schmiedel et al.,
2018], BIOS QTL browser [Zhernakova et al., 2017], GTEx/v8 [Consortium et al., 2017], eQTLcatalogue).
D) Overlap of the genomic region risk region identified from FUMA for MOSTest results, (Prec<>F3opd)

and (PrecR<»>RolS). E) Gene expression from BrainSpan for the interesting genes prioritised by FUMA.
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Main results for the 3pl11.1 locus. A) The pairs of ROIs that forms the endpoints of the associated FCs
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Multivariate GWAS analysis of the anatomical connectivity in 31,753
participants. Manhattan plot for multivariate GWAS accross 313 FCs. The
red dashed line indicates the genome-wide significance threshold p = 5e—8. The

Quantile-quantile plot is also shown.

Genomic loci, eQTL associations and chromatin interactions identified
via multivariate GWAS for anatomical connectivity. Circos plot repres-
enting the genomic risk loci, and the genes associated with the loci by chromatin
interactions and eQTLs. From outer layer to inner layer: Manhattan plot. Genomic
risk loci are in blue. Genes mapped by chromatin interaction are in orange. Genes
mapped by eQTL are in green. Genes mapped by both are in red. Chromatin
interaction and eQTLs links follows the same color coding presented above. Due
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Language is a central component of human life. We live immersed in language as it underlies
most human interactions; we use it to structure our thoughts, to communicate and interact
with each other. Because it is so ubiquitous, it can seem simple, yet language is insufficiently
understood as a phenomenon and process. Across different contexts and forms, researchers
emphasize the special character of language compared to other human capacities. Accordingly,
many difficult questions surround the topic of language. One of these concerns its origin: nature
versus nurture. Language has an inherent dimension of learning, but also a natural instinctive
tendency that is proven by the babbling of infants, for instance. Interestingly, this is not observed
for other cultural practices and is specific to language. Language therefore exists in a unique
space, at a junction between nature and culture, between individual and society.

As language is a phenomenon that is both biological and social, it can be approached with a
wide variety of methods that includes methods and explanatory models of the formal and natural
sciences, as well as the tools offered by the human and social sciences. The first approach focuses
on the cognitive bases of language and the different aspects of the biological endowment that
allow human species to learn and use languages. It weaves privileged relationships with cognitive
neuroscience, human biology and also formal sciences which provides precise instruments for its
modeling. The second approach on the other hand, will focus on the relationship between
language and society, history, philologies, and literatures. The very nature of language, its
complexity, its hybrid status justifies a plurality of approaches and methods [Luigi, 2021]. The
present thesis is part of the first aforementioned approach and its main goal is to modestly
contribute to the neurobiology of language question.

Interest in mapping genes for language skills has largely been driven by the need to understand
the biological causes of language disability. Indeed, until recently, the biological foundations
for language were mainly sought in lesion studies, where patients showed specific language
impairments such as developmental language disorders and dyslexia. Imaging-genetics is an
emerging scientific field that benefits from the maturity of non-invasive imaging techniques such
as magnetic resonance imaging and high-throughput genotyping by DNA chips or sequencing.
These techniques allow the systematic acquisition of anatomical and functional characteristics
of an individual’s brain along with its genotype. The ability to acquire these data in general
population allows studies to be conducted on open questions of clinical or basic neuroscience.
Data science tools - from big data hardware to analysis algorithms - open up the possibility
of studying how genetics and environment modulate human brain function or anatomy and
behaviour. With the recent availability of large-scale cohorts, it has made it possible to study
language in the general population. The specific objective of this thesis is to highlight genes that
underlie human language, contributing thus to our understanding of different processes required

for language.

1.1 Genetic basis

In this section, we will present basic principles of genetics useful for understanding imaging-
genetic studies. It has no intention to cover the genetic complexity but intend to provide brief

definition of genetic terms necessary for the comprehension of the present work.
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1.1.1  The genome and inter-individual variability

Genetic information is encoded in a macro-molecule called deoxyribonucleic acid (DNA). It is
present in almost all living organisms, present in every cell (except for enucleated cells)) and
identical throughout the body (except for gametes). A nucleotide is the basic building block
of nucleic acids. DNA consists in two complementary strands of nucleotides. Its double helix
structure was discovered in 1953 by Watson and Crick [Pray, 2008]. In human DNA, each
strand comprises approximately 3,200,000,000 nucleotides. It is made up of four elementary
bases called nucleosides: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C) associated
with a sugar (deoxyribose) and a triphosphate, the whole forming nucleotides. These bases work
in pairs, one purine (Adenine or Guanine) paired with one pyrimidine (Thymine and Cytosine
respectively) which allows physical stability of the molecule formed. The DNA macro-molecule
is divided in humans into 22 pairs of autosomes (non-sexual chromosomes) and 1 pair of sexual
chromosomes (XX or XY) (Fig. 1.1).

chromosome
nucleus —
telomere
1 )
ﬂfﬁ} ﬂ centromere

cell \
chromatids )~ telomere

double helix

Figure 1.1 — Description of the chromosome structure. (Source: ht-
tps://www.genome.gov/).

Along the DNA molecules, the genome has functional units called genes. These genes are DNA
sequences made of exons and introns, transcribed into RiboNucleic Acids (RNA). Subsequently,

only exons are translated into proteins. The human genome is estimated to contain approxim-
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ately 23,000 genes. And these genes are separated by intergenic regions or non-coding DNA
containing expression regulatory sequences such as promoters and enhancers and thus are in-
volved in regulation of nearby genes expression. Nonetheless, the function of the major part of
this non-coding DNA is still unknown. The sequence of nucleotide bases is important regarding
the integrity of the genome. Its alteration can have consequences on the functional units pro-
duced. Genetic variations from a human reference sequence exist for each individual and are
called genetic polymorphisms. Multiple mechanisms of polymorphisms are known. Relevant to
our work, Single Nucleotide Polymorphisms (SNPs) are the smallest form of polymorphism and
affects only one base pair. Except for rare cases, SNPs are bi-allelic polymorphisms. They rep-
resent markers of choice for researchers in order to establish a dense and precise mapping of the
genome variations such as dbSNP [Sherry et al., 2001}, HapMap [Gibbs et al., 2003], the 1000
genomes project [Consortium et al., 2015] . A SNP is categorised as common or rare variant
and is characterised by its chromosomal position, its alleles and its minor allele frequency (See

below for a definition).

More definitions to understand imaging-genetics

e Imputation is the process consisting in statistical inference of unobserved genotypes.

o Linkage disequilibrium (LD) is the non-random association of alleles from two or more

polymorphic loci.

e Linkage analysis is a genetic approach aiming at establishing linkage between genetic
markers and traits or diseases by examining patterns of inheritance among individuals
within a family who exhibit the trait of interest and testing whether they co-segregate

with the trait of interest, in a manner that is unlikely to have occurred by chance.

o Population stratification or genetic structure represents the presence of differences in al-
lele frequencies between sub-populations in the studied population, due to their different

genetic ancestries and can cause false positives in association studies.

o Hardy-Weinberg equilibrium models the behaviour of allelic and genotypic frequencies
for a polymorphism. It states, under certain assumptions, that the allelic and genotypic

frequencies of a polymorphism are stable within the population over generations.

o Minor allele frequency (MAF) is the frequency of the less frequent allele of a bi-allelic SNP,

and it can vary depending on the considered population.

o epistasis is the phenomenon that describes an interaction between genes and/or genetic

variations.

« pleiotropy is defined as the fact that one gene can have several different effects or functions,

non necessarily independent from one another.
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1.1.2 From genotypes to phenotype

Understanding the path from genotype to observable characteristics —phenotypes— is a major
concern of molecular biology. A phenotype is almost always a multifactorial trait and results
from the contribution of many proteins. The proteins are biological macro-molecules, made of a
chain of amino acids and present in all living cells. A gene code for one protein, according to the
genetic code: each amino acid in a protein is encoded by one or several triplets of nucleotides
or codons. The process by which a gene is expressed into a protein is made of several steps:
from each gene many messenger RNAs (ribonucleic acids) are produced (transcription), and
are then edited (alternative splicing), translated into amino acid macro-molecules (translation)
and finally matured in proteins (maturation). Interactions between proteins are important as
they play a crucial role in cellular functions and biological processes, and produce phenotypes.
Phenotype variability depends on the nature and/or the (relative) quantity of the potentially

23,000 concerned proteins.

Research on gene-phenotype association test for a non-random correlations between a phenotypic
trait (qualitative or quantitative) and specific allelic variants. It can be carried out for just a
single genetic marker (SNP), multiple sites within a gene, or across the entire genome. The
research about mechanism underlying gene to phenotype manifestation is, on the other hand,

beyond the scope of this study.

1.2 Neuroanatomy basics

The human brain is composed of three main parts: the cerebrum, cerebellum, and brainstem
(Fig. 1.2a). The cerebrum is the largest part of the human brain and is made of two cereb-
ral hemispheres separated by a deep longitudinal fissure, but remain connected via the corpus
callosum. It has a folded appearance and is involved in higher functioning. It controls soma-
tosensory, motor, language, cognitive thought, memory, emotions, hearing, and vision. Each
hemisphere has a number of folds called gyri separated by grooves called sulci. They are di-
vided into four main lobes separated by the central sulcus, parieto-occipital sulcus, and lateral
fissure (Sylvian fissure). The frontal lobe is situated anterior to the central sulcus while the
parietal lobe is posterior to the central sulcus. The temporal lobe is separated from the frontal
and parietal lobes by the lateral sulcus. Finally, the occipital lobe, located at the rear of the
cerebrum, is separated from the parietal lobe by the parieto-occipital sulcus. These lobes, named

after the bones of the skull that overlie them are distinguished by colors in Fig. 1.2b.
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{— Cerebral peduncle
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Figure 1.2 — Neuroanatomy of the brain ([Bui and Nguyen, 2019]). A) Brain, Enceph-
alon, Connections of the several parts of the brain, Cerebrum, Cerebellum, Pons, Cerebral;
Superior; Middle; Inferior Peduncle, Medulla oblongata. B) Principal fissures and lobes of the
cerebrum viewed laterally, Frontal Lobe, Parietal Lobe, Temporal Lobe, Occipital Lobe.

1.2.1 Grey and white matter

At a macroscopic scale, the human brain appears to be composed of grey matter and white matter
(See Fig. 1.3a). The grey matter contains the neuronal cell bodies of the central nervous system
and serves to process information. It is located on the surface of the gyri and nuclei (collection
of neurons in the central nervous system). A distinction is made between cortical grey matter
located in the cerebral cortex and subcortical ones. The latter are a group of diverse neural
formations that lie beneath the cerebral cortex which includes the Hippocampus, Amygdala, and
the basal ganglia. The white matter contains the fibre tracts of the neuronal axons wrapped
in myelin and is found in the inner layer of the cortex. It is essential for impulse conduction
as it supports the communication between various grey matter areas. It is composed of three
types of fibres: commissural fibres, projection fibres, and association fibres. Commissural fibres
connect the left-right cerebral hemispheres and are composed of anterior forceps that connect
the lateral and medial surfaces of the two frontal lobes, and posterior forceps that connect the
two occipital lobes. Projection fibres consist of efferent and afferent fibres that connect higher
and lower brain centres. Association fibres interconnect lobes on the same side. Two subtypes
of these association fibres exist: short association fibres — also called 'U’-fibres— lie beneath the
grey substance of the cortex and connect adjacent gyri, while long association fibres connect

distant areas of the same hemisphere.

1.2.2  Gyri and Sulci

The surface of the cerebrum is folded with a large number of gyri and sulci that give it its

wrinkled appearance (Fig. 1.3b). These cortical foldings are variable from one individual to
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another. The folding of the cerebral cortex creates gyri and grooves (sulci) that separate brain
regions and increase the cortical surface area. This increasing of the surface area of the brain

allows more neurons to be packed into the cortex so that it can process more information.

Gray matter White matter

Figure 1.3 — Brain basics. Example of a) the grey and white matter of the central nervous
system (source : https://difference.guru/difference-between-white-and-gray-matter/), b) sulcus
and gyrus.

1.2.3 Cells of the brain: From molecule to neurons and from neurons to brain

The central nervous system is made up of neurons and glial cells. Neurons are excitable cells,
they vary in shape and size and can be classified according to their morphology and function.
They have three basic parts: a cell body and two extensions called an axon and a dendrite. A
nucleus is within the cell body, which controls the cell’s activities and contains the cell’s genetic
material. Synapse is a structure that permit a transmission of signals (electric or chemical) from
one neuron to another. The axon carries the information to another nerve cell (post synaptic
neurons), while the dendrite receive information from other nerve cells (presynaptic neurons).
Glial cells are nerve cells. Different types of glial cells are present in the central nervous system
(CNS) and the peripheral nervous system (PNS). There are four types of glial cells in the CNS
including oligodendrocytes, astrocytes, Ependymal and microglia. The microglia is found in all
regions of the brain and spinal cord. It is implicated in the immunity process and plays an
important role in neuron pruning during the neurodevelopment process. The oligodendrocytes
and Schwann cells are found in the CNS and PNS respectively. They provide myelination to
axons in the central and peripheral nervous system, respectively. The astrocytes are the most
abundant type of macroglial cells in the central nervous system. The major nervous cell types
are depicted schematically in the Fig. 1.4a.

The network of neurons is organised in a hierarchical way at different scales. Although this
network is highly structured, it is important to note that the details of the structure can vary,
both between individuals of the same species and over time in a given individual due to synaptic
plasticity. Our understanding of the organisation and function of the different levels is strongly

influenced by the available experimental techniques that will be described in the next section.
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Figure 1.4 — Schematic representation of the major cellular elements of the white
matter (Source: [Johansen-Berg and Behrens, 2013]). In this drawing, a neuronal cell
body in the grey matter extends several short dendritic processes and a single, long axonal pro-
cess. The axon, in the white matter, is surrounded by an insulating myelin sheath. This sheath
is produced by oligodendrocytes. Generally, oligodendrocytes extend many processes, each of
which wraps around a segment of an axon to form an internode. Internodes are separated from
each other by small amyelinated regions called nodes of Ranvier. This specialized organisation
of the myelin sheaths promotes saltatory conduction whereby electrical impulses “jump” from
node to node as they pass along the axon from the neuronal cell body to the axon terminus.
The white matter also contains astrocytes and microglia. Astrocytes are star-shaped glial cells
that help maintain homeostasis by regulating local ion concentrations and extracellular fluid
volume within the CNS. In the whiter matter, they extend processes to nodes of Ranvier and
to blood vessels, where they contribute to blood—brain barrier function. Microglial cells, which
are considered the immune cells of the CNS, help “mop up” debris and dying cells.

1.3 How to determine the brain architecture? A neuroimaging

approach

The last century has witnessed the development of brain investigation techniques that include the
use of various systems such as the positron emission tomography (PET), single photon emission
computed tomography (SPECT), magnetic resonance imaging (MRI), functional MRI (fMRI),
electroencephalography (EEG), or magnetoencephalography (MEG). These in-vivo predominant
approaches are usually coupled with behavioural and cognitive ones to study how the brain
functions [Friston, 2009]. They make it possible to discover different maps in the brain and can
be used to determine the cognitive brain architecture by understanding the brain organisation
such as brain connectivity, or spatiotemporal dynamics underlying cognitive functions [Friston,
1904, Liang and Lauterbur, 2000]. Relevant to this study, we will focus in this section on the

presentation of the structural and functional MRI techniques.
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Voxel-wise approach was for a long time the dominant approach to analyse brain images [Fris-
ton et al.; 1994]. Such an approach requires massive computational and memory resources. In
order to make inference with this approach it is usually necessary to correct drastically for a
huge number of multiple comparisons which leads to low statistical power. Image derived
phenotypes (IDP) approach has gained popularity and is increasingly used in the context of
population imaging. Indeed, this approach that consists on summarising distinct measures of
brain structure and function such as volume of grey matter in distinct brain regions, structural
and functional connectivity metrics [Alfaro-Almagro et al., 2018, Elliott et al., 2018, Miller
et al., 2016], can easily be shared by the neuroscience research community and alleviates the
limitations of the voxel-wise approach: it mitigates the loss of statistical power compared to
voxel-wise approach. For example assessing the functional connectome between region of in-
terests significantly reduces the number of variables making it computationally and statistically
more within our reach; For predictive modelling, it certainly has statistical benefits. The high
dimensionality of the signal is a challenge in machine learning and IDPs approach is one way to

circumvent it.

1.3.1  Structural Neuroimaging

Structural magnetic resonance imaging. Structural magnetic resonance imaging provides

anatomical images with high contrast between grey and white matter.

Morphometric analysis of the structural neuroimaging is widely used for the study of the cortex;
the fine layer of gray matter. Multiple IDPs might be derived using different softwares like
Freesurfer (gray matter volume, surface local gyrification index) [Fischl and Dale, 2000] (ht-
tps://surfer.nmr.mgh.harvard.edu/), Morphologist (sulcal size, pits, depth or number of plis
de passage) (https://brainvisa.info/web/morphologist.html)to neuropathologies or behaviour
[Lerch et al., 2017]. These features are obtained at the voxel-level and can be analyzed us-
ing either a voxel-wise [Ashburner and Friston, 2000] or pre-defined region of interest [Desikan
et al., 2000] approaches. Multiple applications are possible, such as: cognitive ageing [Ritchie
et al., 2015], brain evolution across species [Evans et al.; 2006], general intelligence [Cox et al.,

2019], and brain disease [Thompson et al., 2007].

Diffusion-weighted magnetic resonance imaging. Diffusion-weighted imaging is a nonin-
vasive, in vivo MRI technique that quantifies water diffusion in biological tissues. It is used to
measures and map the local structures by tracking the movement of the water molecules along

the white matter bundles. It is used to identify the different fibber tracts in the human brain.

In general, the diffusion in brain tissue differentiate between tissues based on the diffusion of
water molecules within them. The diffusion process is different depending on which type of tissue
it is observed. Regarding the grey matter, the diffusion is unrestricted -isotropic diffusion-; the
water molecules move in any possible direction. Concerning the white matter, the diffusion is
restricted -anisotropic diffusion-; the displacement of water molecules is not random due to the

presence of biological structures such as cell membranes, filaments, and nuclei (See Fig. 1.5).
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Figure 1.5 — Isotropic and anisotropic diffusion in the brain (Source: [Pandit et al.,
2013]). Fractional anisotropy image of a preterm born child reveals the nature of water diffusion
within different brain tissue compartments (a). In the white matter of the corpus callosum (red),
diffusion occurs preferentially along the axonal fibres, resulting in anisotropic diffusion (b). In
the ventricular cerebro-spinal fluid (CSF; green), diffusion is unhindered and can be described
as isotropic (c). Diffusion tensor ellipsoids representing anisotropic and isotropic diffusion are
shown in b and c, respectively. Each tensor is expressed by three eigenvectors with values A1,
A2 and A3. In isotropic diffusion A1 = A2 = A3, whereas in anisotropic diffusion the long axis of
the ellipsoid aligns with the underlying white matter, and Al is greater than A2 and 3.

Within a single voxel, the shape of the diffusion profile can be described geometrically as an
ellipsoid (the tensor) calculated from the diffusion coefficient values (eigenvalues, A1 — A3) and
orientations (eigenvectors, v1—v3) of its three principal axes (Fig. 1.6) [Catani and Forkel, 2019)].
The mean diffusivity which represents the average water molecular displacement within a voxel,
is obtained by taking the mean of the three eigenvalues (A1, A\2,andA3). The degree to which
diffusion is directionnally constrained can be determined based on the ratio of the eigenvalues
to one another (e.g. fractional anisotropy). Overall, these indices provides complementary
information about white matter micro-structures [O'Donnell and Westin, 2011, Thomason and

Thompson, 2011].
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Figure 1.6 — Principles of diffusion tensor imaging (DTI) tractography (Source:
[Catani and Forkel, 2019]). (A) Visualization of the diffusion tensor as an ellipsoid. The size
and the shape of the tensor are defined by the three eigenvalues (1, 2, 3 in red), while the spatial
orientation is described by the three eigenvectors (vi, v2, v3 in blue). In biological tissues, the
tensor can vary between three possible configurations: (1) isotropy or weak anisotropy (equal
or similar diffusivity along the three eigenvalues) is commonly observed, for example, inside
the ventricles (isotropy) or in the gray matter (weak anisotropy); (2) planar anisotropy (un-
equal diffusivity between of one eigenvalue and the other two) is common in voxels containing,
for example, two groups of crossing or diverging fibers; and (3) axial anisotropy is typical of
voxels containing parallel fibers (unequal diffusivity between the axial eigenvalue and the two
perpendicular eigenvalues). (B) Exemplified indices extracted from diffusion data, such as mean
diffusivity (MD), fractional anisotropy (FA), principle eigenvector, and color-coded FA maps.
(C) Streamline tractography is based on the assumption that in each white matter voxel the
principal eigenvector (black arrows) is tangent to the main trajectory of the underlying fibers
(black lines). Starting from a region of interest (red circle), the tractography algorithm propag-
ates, voxel by voxel, a streamline (red) by piecing together neighboring principal eigenvectors.
An example is shown in the neighboring panel where the streamlines are tracked on a principal
eigenvector map and the tractography reconstruction of the arcuate fasciculus is visualized as
3D streamtubes.
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1.3.2 Functional Neuroimaging

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique that measures brain
activity over time by detecting changes in blood-oxygen level dependent (BOLD) signal. The
local oxygen level in the brain is coupled to the metabolic needs of neurons while these metabolic
changes can be consequent due to task-induced cognitive state changes such as language or visual
task. BOLD signal variations can also be observed in the case of free processes in the brain of

an individual at rest [Glover, 2011].

Task-oriented functional magnetic resonance imaging. The conventional task-evoked
fMRI experiments use different stimuli such as visual or auditory to alternately induce two
or more different cognitive states of the brain. For example in a two-condition design, one
state is called the experimental condition, while the other is denoted the control condition.
The goal is to test the hypothesis that the signals differ between the two states [Glover, 2011].
For example, the individual perform a task ’A’ involving processes 'P1’, 'P2’, 'P3’, a task 'B’
involving processes 'P1’, 'P2’. The subtraction of the brain activation images obtained in tasks
’A” and "B’ makes it possible to isolate the region carrying out the "P3’ process (See Fig.1.7). This
typical fMRI experiments allowed great progress in the understanding of the brain organisation.
Nevertheless, task-induced fMRI experiments has revealed limits. The association between a
high level function and a brain region is much more complex than what the subtractive approach
can reveal. A brain region can be characterised by its multi-functional profile. Meta-analysis of
a large number of studies on cognitive traits such as language are crucial to determine the degree
of involvement of brain regions and give us a more global view. Moreover, the manifestation of

a cognitive trait is the result of interaction within a network rather than a single area.
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Figure 1.7 — Figure extracted from [Glover, 2011]. Block design fMRI experiment. A neural
response to the state change from A to B in the stimulus is accompanied by a hemodynamic
response that is detected by the rapid and continuous acquisition of MR images sensitised to
BOLD signal changes. Using single- or multi-variate time series analysis methods, the average
signal difference between the two states is computed for the scan and a contrast map generated.
A statistical activation map is finally obtained using a suitable threshold for the difference; the
map depicts the probability that a voxel is activated given the uncertainty due to noise and the
small BOLD signal differences.

1.3.2.1 Resting-state functional magnetic resonance imaging

Resting-state functional MR images captures low-frequency fluctuation (< 0.1 Hz) in blood
oxygenation and the significance of these fluctuation was initially presented by [Biswal et al.,
1995). It is paradigm free and as such it is easier to implement in very large cohorts like the
UK Biobank. Indeed, during the resting-state scan, no explicit task is being performed and
depending on the experience protocol, the participants are instructed to keep their eyes fixated
on a crosshair, to relax, and to think of nothing in particular [Miller et al.; 2016].

Functional images acquired during rest has recently emerged as a powerful tool and is a prom-
ising universal marker of brain function [Biswal et al., 2010]. Different network were identified
using a paradigm free approach including the well known default mode network (See Fig. 1.8).
This resting-state network was initially identified by [Raichle et al., 2001] using PET data and
was further identified by fMRI by [Greicius et al., 2003]. In [Raichle et al., 2001] work, the
researchers highlighted brain regions that were more active at rest than during task-oriented

experience and observed that their activity decrease when cognitive tasks were performed. This
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led to the hypothesis that a ’default mode’ of the brain remained active in an organised fashion

during the resting state.

Figure 1.8 — Figure extracted from [Lee et al., 2013]. Surface plots of resting-state
networks. A: Default mode network, B: Somatomotor network, C: Visual network, D: Language
network, E: Dorsal attention network, F: ventral attention network, G: Fronto-parietal control
network.

Despite low frequency blood-oxygen-level-dependent (BOLD) signals acquired in resting state
condition and that rsfMRI does reflect large-scale circuit organisation [Biswal et al., 1995, Fox
and Raichle, 2007], they are less used to study specific brain functions. However, a growing
body of evidence suggests that there is a close correspondence between resting state networks
and known cognitive task activation maps [Cole et al., 2014, Smith et al., 2009]. For example,
[Tavor et al., 2016] showed that a prediction model relating FC estimated from rsfMRI to
task-based activations can accurately predict individual differences in brain activity for unseen
participants. In the [Smith et al.,; 2009] work, the authors analysed data from healthy volunteers
comprising task maps from BrainMap database of functional imaging studies and resting-state
fMRI maps. These maps were then associated with each other using (Pearson) spatial cross-
correlation. They found close correspondence between the independent analyses of resting and
activation brain dynamics. For example, the resting-state ’default mode network’ were found to
correspond to negative contrasts in cognitive paradigms. More specifically regarding language,

several studies sought the brain dynamics and showed that resting-state FC map could map
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language networks previously identified in task-based imaging studies [Hampson et al., 2000,
Kelly et al., 2010, Koyama et al., 2010, Xiang et al., 2010]. Especially, [Xiang et al., 2010] used
resting-state FC to infer the functional organisation of Broca’s area and the perisylvian language
networks by investigating their functional correlations and reported a clear topographical FC
pattern in the left middle frontal, parietal, and temporal areas. On the other side, several studies
have examined the relationship between resting-state FC and behavioural scores. Relevant to our
work, these studies have shown that language-related performances like basic reading abilities are
correlated to the strength of resting-state FC [Cheema et al., 2021, Cross et al., 2021, Koyama
et al., 2011, Stevens et al., 2017]. [Koyama et al., 2011] reported a positive correlation between
the reading scores and the resting-state FC between the fusiform gyrus and the inferior frontal
gyrus (IFG) -pars opercularis-, belonging to the reading network (RAN). [Cheema et al., 2021]
reported a positive correlation between reading fluency and the strength of FC between the
left IFG and left supplementary motor area in a group without reading impairment. They also
found that the stronger the FC between the supramarginal and the angular gyri, the higher is the
word recognition accuracy score. Moreover, [Cross et al., 2021] showed that the FC between the
pars triangularis and the right fusiform gyrus was positively correlated with rapid automatized
naming performance. Finally, [Stevens et al.; 2017] reported a positive correlation between
accuracy on word classification and resting-state FC strength of the left occipitotemporal sulcus
and Wernicke’s area. Although the resting-state FC and behavioural (especially reading abilities)
relationship are consistent through studies, the generalization of these findings should be taken
with caution. First, the results might be sample dependant and not representative of the larger
population of adult reader. Second, the reading tests represents relatively simple reading process
and might not be generalized for more complex process (i.e. reading comprehension). Next,
recent works suggest that mapping perisylvian language regions can be accomplished using
either tbfMRI or rsfMRI [Branco et al., 2016, Jones et al., 2017, Lemée et al., 2019, Lu et al.,
2017, Park et al., 2020, Tie et al.; 2014]. Indeed, rsfMRI has been applied to mapping eloquent
areas in surgical patients [Jones et al.,; 2017] and stroke patients [Klingbeil et al., 2019], where
performing tbfMRI is not an option. Overall, these studies investigated the relevance of the
rsfMRI approach in studying specific brain functions such as language, including its relationship
with behavioral scores, task-based network at both individual and group levels. They also
highlighted its advantages over task-based design, when certain population has difficulties to

engage in specific tasks.

State-of-the-art analysis methods.

The preprocessing of resting-state functional MR images generally includes slice-timing cor-
rection, realignment, motion correction, high-pass temporal filtering, brain masking, spatial
smoothing, co-registration to individual space using T1 template and registration to the MNI

space to achieve spatial concordance between subjects.

Once these preprocessing steps are achieved, several methods can be used to analyse resting-
state data. Each one has its own inherent advantages and disadvantages. In this section, we
will provide a brief overview of some of the statistical and mathematical state-of-art approaches

previously applied to rsfMRI data (For further discussion, see [Lee et al., 2013]).
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o Data-driven approaches based on k-means or Ward clustering [Thirion et al.; 2014], In-
dependent Component Analysis (ICA) approaches [Beckmann and Smith, 2004, Calhoun

et al., 2001], or dictionary learning [Mensch et al., 2016].

o Pre-defined reference anatomical atlases such as Automated Anatomical Labeling (AAL)
[Tzourio-Mazoyer et al., 2002], or connectivity-based cortical landmarks such as SENtence
Supramodal Areas AtlaS (SENSAAS) [Labache et al.; 2019], Atlas of Intrinsic Connectivity
of Homotopic Areas (AICHA) [Joliot et al., 2015], Word-list Multimodal Cortical Atlas
(WMCA) [Hesling et al., 2019)].

e Spheres of radius centred at coordinates identified using probabilistic activation maps

identified during task-oriented fMRI experiments [Power et al., 2011].

1.4 A basic introduction to quantitative and molecular genetics

methodology

In this section, we will briefly introduce basic genetic concepts useful for understanding imaging-
genetic studies. Its unique aim is to provide the reader with sufficient knowledge to well under-

stood the different studies presented further and is therefore not intended to be exhaustive.

1.4.1 Heritability

A pivotal question in biology is the heritability of a particular trait. In quantitative genetics,
neuroimaging endophenotypes variance (among other traits) can be attributed to either genetic
or environmental factors or their interactions. Heritability is defined as the proportion of vari-
ance for a particular phenotype, measured at a particular age, that is attributable to genetic
variation [Visscher et al.; 2008]. An observed phenotype is usually represented as the sum of the
unobserved genotype (G) and unobserved environmental factors (E): Phenotype (P) = Genotype
(G) + Environment (E). Likewise, the phenotypic variance of the observable phenotypes (c%)
can be expressed as the sum of effects: 0% = 02 + 0%. The broad sense heritability of a trait
(H?) is the proportion of phenotypic variance attributable to all sources of genetic variance:
H? = ¢%/0%. The genetic variance can be partitioned into the variance of additive genetic
effects (breeding values; ¢%), of dominance (interactions between alleles at the same locus) ge-
netic effects (03), and of epistatic (interactions between alleles at different loci) genetic effects
(02) [Visscher et al., 2008]: 02 = 04 + 0%, + o2. The narrow-sens heritability of a trait (h?) is
the proportion of phenotypic variance attributable to additive genetic: h? = U% / 012;. It is the
focus of most modern genetic investigation as a high proportion of genetic variance is additive
[Hill et al., 2008]. Heritability estimates vary between o and 1 indicating either no genetic in-
fluence at all or complete genetic determination. In order to judge the value of endophenotypes
and prioritise their study, it is common to rely on its heritability estimates. Indeed, a large
and significant measure of heritability indicates that the trait of interest is significantly under
genetic control and might be eligible for more extensive molecular genetic studies. Heritabil-

ity is an important genetic concept however, its interpretation should be taken with caution.
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First, heritability might be population-dependant in such, it summarises the strength of genetic
influence on a specific trait measured in a specific population and may not be generalised to
other cohorts where environmental influences and ancestry may differ [Thompson et al., 2013].
Second, heritability estimates is not much informative about which specific genes contribute to
a trait, how many genes are involved, or the impact of any gene on it [Thompson et al., 2013].
For example, human height is a trait that is influenced by many genes with small effect [Yang

et al., 2010].

1.4.2 Endophenotypes

Behaviour measures like language performance scores are not the direct expression of genetic
effects. It is the manifestation of the combination of physiological characteristics as a result of
molecular and cellular effects in the brain. Sometimes the physiological characteristic deficiencies
may precede illness symptoms [Glahn et al.; 2007, Gottesman and Gould, 2003] and they may
be considered as biomarkers. The idea behind the concept of endophenotype is that these
quantitative biomarkers considered as intermediate phenotype are more closely associated with
gene effects than the complex phenotypic expression of a disease. The endophenotypes, like
phenotypes, can be studied as regards heritability or genetic association. Such measures help
our understanding of the individual neuroimaging variability and provide insight into genetic
effects on the central nervous system. A certain number of putative endophenotypes have
been proposed for functional and structural brain such as measures of structural and functional

connectivity, and brain asymmetry.

1.4.3 Pleiotropy

Pleiotropy refers to the genetic effect of a single gene on two or more (endo)phenotypes. Neuroima-
ging allows us to generate numerous endophenotypes at a time regarding one individual. Pleio-
tropic effects have been observed in imgaging-genetic studies when considering phenome-wide
association studies. Indeed, these ones allow us to identify association of a locus with interrelated

endophenotypes.

1.4.4 Candidate genes

The candidate-gene (CG) design was the first and is still a widely used approach in neuroimaging-
genetics field. It involves genotyped markers in genes chosen a priori and hypothetically related
to the trait of interest. For example and relevant to our study, the well-known language related
gene FOXPg2 was identified in the KE family, in which multiple close relatives suffered from
similar disruptions of speech and language skills [Fisher et al.; 1998]. Further candidate-gene
studies focused on this particular gene because of a priori hypotheses about its etiological role
in developmental language disorders (DLD). The candidate-gene design consists in comparing
between groups classified according to their alleles on a specific gene (AA, AB, BB). The presence
of a specific allele can be associated quantitatively and linearly with the trait of interest and

several models can be adjusted to this end. The CG design is simple and offers relatively
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straightforward interpretability of results; the gene of interest is generally well-known and its
effect is often well-characterised. Despite these strengths, CG studies have been subject to
important criticism. The significant findings of association regarding candidate genes approach
have not been replicated when followed up in subsequent association studies. Additionally, in
most cases, the biological mechanism of these candidate genes is poorly understood and only few
have direct effect on the trait of interest. Indeed, most genes have indirect effects by modulating
others mainly at the level of transcription, (post)translation in such proteins can have altered

function in the presence of absence of others.

1.4.5 Genome-wide association study

Genome-wide association studies (GWAS) aim to identify associations of genotypes with (inter-
mediate) phenotypes. GWAS can consider different type of genetic information; copy-number
variants (CNV), sequence variations, or single nucleotide polymorphisms (SNP). The predom-
inant strategy for identifying genomic loci associated with complex traits is through a massive
univariate-imaging univariate-genetic association study. Univariate approaches involve the as-
sociation between a single phenotype and each of millions isolated genetic variants. According
to the nature of the endophenotype of interest -binary or continuous value-, various models can
be adjusted. An example with endophenotypes extracted using fMRI data can be appreciated
in the Fig. 1.9.

This state-of-the-art massive univariate approach results in a total of more than one million
statistical tests. To assess significance, a consensus threshold p = 5e — 8 is considered by the
genomic community. It is comparable to a Bonferroni correction of the traditional 0.05 type 1
error rate for one million statistical tests. Furthermore, a massive univariate approach ignores
the biological information shared across multiple traits -the phenomenon called pleiotropy (See
section 1.4.3)-. When several (endo)phenotypes are of interest, the number of tests significantly
increase and it forces the users to adopt a stringent multiple comparison correction of the p-
values to control the family-wise error rate. The colossal correction for multiple tests often
leaves no significant associations. This limitation has led to the emergence of new multivariate
statistical methods, designed to take into account the correlations among the biologically related

(endo)pheontypes, classically encountered in imaging-genetic studies.
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Figure 1.9 — Principles of GWA illustrated with an example of a continuous en-
dophenotype: a functional measure of the brain. On the top figure, the y-axis is the
endophenotype measure, and the x-axis represents the targeted genetic variant. This variant
has two possible alleles: C and T. Each individual in the cohort will have a combination of
CC, CT, TT alleles coded as 0, 1 or 2. The lower figure represent a Manhattan plot and is a
figure-of-merit of GWASes. The y-axis is the -logio of the p-value of the association, and the
x-axis represents the SNP location along the genome. The most significant associations will have
the smallest p-values and the -logio of these p-values will have the highest height in the graph.
The red dashed line corresponds to the 5e — 8 genomic threshold. The points above correspond
to the genetic variants significantly associated with the studied phenotype.

Multivariate approaches quantify the simultaneous contributions of loci to multiple traits by tak-
ing advantage of their genotypic-phenotypic structures. Importantly, in the case of multivariate-
imaging univariate-genetic association frameworks, several advantages are observable. First, by

taking into account the cross-trait covariance, multivariate analyses increase the statistical power
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in case of the presence of genetic correlation between the different traits [Allison et al., 1998,
Zhu and Zhang, 2009]. Second, by performing a single test for association with a set of traits,
multivariate procedures alleviate the multiple comparison correction [Ilei et al., 2008, Zhu and
Zhang, 2009]. Third, it improves the ability to detect susceptible genetic variants whose effects
are too small to be detected in univariate analysis. Fourth, contrary to the massive univari-
ate approach, multivariate GWASes have the advantage of leveraging the distributed nature
of genetic effects and the presence of pleiotropy across modalities and is thus, more consistent
with biology [Chavali et al., 2010]. More details about multivariate methods that exists in the

litterature are presented in the chapter 2.6

1.5 What are the bases of human language? A review of language

approaches in human neurosciences

Language is complex and multi-faceted. Its study is conducted within many different disciplines
and from different theoretical angles such as descriptive linguistics, theoretical linguistics, soci-
olinguistics, computational linguistics, historical linguistics, and neurolinguistics. The present
thesis, following on the neurolinguistics approach, addresses the historical and relevant aspects
of the language-brain relationship. Historically, neurolinguistics is rooted in the development of
aphasiology, the study of linguistic deficits occurring as the result of brain damage. With the
emergence of new brain imaging technologies, our understanding of the anatomical organisation
of linguistic functions has greatly matured. In the following sections, we will attempt to produce
a basic summary of our current knowledge about the language-brain relationship. These ones
do not claim to be exhaustive and are only intended to provide the reader with the necessary
background to understand the aspects that we addressed and studied in the rest of the present

manuscript.

1.5.1 Understanding language from aphasia

Most of the early knowledge about the language-brain relationship comes from the examination
of individuals with language impairments following brain injury caused by accidents or diseases.
Several types of aphasia exist suggesting that language processes undergo several stages and
take place in different brain regions. Based on these aphasiology discoveries, Broca and Wer-
nicke (and Lichtheim and many others) offered fundamental knowledge about language-brain
relationship. Accordingly, a language neurobiology model have been proposed; the well-known
"Broca-Wernicke-Lichtheim-Geschwind model". This classical model, yet obsolete, will be fur-

thermore, briefly described.

1.5.1.1  The Broca-Wernicke-Lichtheim-Geschwind classical model

During the 19th century, language-brain researches were mainly post mortem driven. Based
on aphasiology, neurologists like Broca and Wernicke offered fundamental knowledge about
language-brain relationship. Historically, Broca first described the association between motor

aphasia and a lesion in the middle part of 'tan’ patient’s left frontal lobe (Broca’s aphasia)
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shortly followed by Wernicke who reported a damage in the left posterior superior temporal
gyrus, resulting in deficits in language comprehension (Wernicke’s aphasia). He proposed that
a disconnection between these both language brain areas lead to aphasia. Afterward, Lud-
wig Lichtheim and Norman Geschwind expanded his work and proposed the "Broca-Wernicke-
Lichtheim-Geschwind" model, widely known as the "Wernicke-Geschwind" classical model. Two
main functions are modelised through this model, comprehension and responding to the written
words as well as comprehension and responding to spoken language. According to this model,
the sounds of the words are transferred through the auditory pathways to the primary auditory
cortex and then to Wernicke’s area, where the meaning of the words is extracted. In order for a
person to produce speech, from Wernicke’s area to Broca’s area via the arcuate fasciculus white
matter tract, the meanings of words are sent. Next, morphemes are formed and then passed
on to the motor cortex. Concerning the written word, information is transferred through the
primary visual cortex to the angular gyrus and from there to the Wernicke’s area. The Broca-
Wernicke-Lichtheim-Geschwind model is now considered to be too simplified and to contain a
certain number of errors. For example, this model is based on both Broca’s and Wernicke’s areas
connected by the arcuate fasciculus. The localisation of these cortical region is still a matter of
ambiguity. Furthermore, studies showed evidence that there is no single area in our brain ded-
icated to language processing such as speech comprehension but a set of cortical sites [Mesulam
et al., 2015]. Due to its simplicity and usefulness for understanding the classical categorization
of aphasic syndromes, this classical model remains widely studied. However, researchers believe
that it should be re-evaluated [Dronkers, 2000, Nasios et al., 2019, Tremblay and Dick, 2016,

Vigneau et al., 2006].

1.5.2 Understanding language by brain imaging

Until recently, language-related brain processes were mainly investigated using association between
language deficits and post-mortem analysis of brain lesions. Today, advances in structural
and functional imaging techniques have provided new insights into our understanding of brain-
language relationship. In many aspects, the data obtained by these imaging methods confirmed
what was known from studies about language impairments. However, these also demonstrate

that language processing may be even more complex than previously thought.

Modular paradigm has shaped our understanding of brain-language function. However, ac-
cumulating evidence suggest that cognition in the brain is supported by an overlapping and
interactive large-scale cognitive networks rather than modules [Fuster, 2002, Mesulam, 199o].
Contrary to single-study analysis, meta analysis approaches provide empirical support for this
theoretical shift and has the advantage of identifying previously neglected regions involved in
language processing. Here, we will start on reporting the state-of-the-art language brain areas
and large-scale cognitive networks proposed by [Vigneau et al.; 2006, 2011] in terms of cortical
regions. Next, we will briefly introduce the Hickok and Poeppel’s dual stream model as a modern

network-based model as well as the language-relevant white matter tracts.
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1.5.2.1 From Broca and Wernicke to the neuromodulation era: a brief neuroanatomy of
language

In order to map the language network in the human brain, we need a coordinate system that
subdivides the brain into relevant parts and applies labels to these parts. In this section and
throughout the manuscript, to refer to the neuroanatomical location of a given function, we
use the different gyri and sulci in the cortex. The anatomical details of both left and right
hemisphere are represented in the Fig. 1.10. Furthermore, an old, yet still valid, widely used
parcellation provided by Korbian Brodmann in 1909 is the cytoarchitectonic description of the

cortical structure [Brodmann, 1909)].
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Figure 1.10 — Neuroanatomy of language (Source: [Friederici, 2017]). Anatomical and
cytoarchitectonic details of the left hemisphere (LH). Top: The different lobes (frontal, tem-
poral, parietal, occipital) are marked by colored borders. Major language-relevant gyri (inferior
frontal gyrus (IFG), superior temporal gyrus (STG), middle temporal gyrus (MTGQG)) are color-
coded, superior temporal sulcus (STS) located between STG and MTG is marked by an asterisk.
Numbers indicate language-relevant Brodmann areas (BA) that Brodmann (1909) defined on
the basis of cytoarchitectonic characteristics. The coordinate labels (see bottom left) superior
(dorsal) /inferior (ventral) indicate the position of the gyrus within a lobe (e.g., superior tem-
poral gyrus) or within a BA (e.g., superior BA 44). The horizontal coordinate labels anterior
(rostral) /posterior (caudal) indicate the position within a gyrus (e.g., anterior superior temporal
gyrus). Broca’s area consists of the pars opercularis (BA 44) and the pars triangularis (BA 45).
Located anterior to Broca’s area is the pars orbitalis (BA 47). The frontal operculum (FOP) is
located ventrally and medially to BA 44, BA 45. The premotor cortex (PMC) is located in BA
6. Wernicke’s area is defined as BA 42 and BA 22. The primary auditory cortex (PAC) and
Heschl’s gyrus (HG) are located in a lateral to medial orientation in the temporal lobe. White
matter fiber tracts, i.e., the dorsal and ventral pathways connecting the language-relevant brain
regions are indicated by color-coded arrows (see bottom right). Reprinted from Friederici [2011].
The brain basis of language processing: From structure to function. Physiological Reviews, g1

(4): 13571392
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Based on Brodmann’s cytoarchitectonic parcellation, Broca’s area for example, was subdivided
into a posterior part (BA 44) and a anterior part (BA45) of the IFG. A subdivision that coincides
with the neuroanatomical separation into pars opercularis and pars triangularis, respectively.
A novel synthesis of old and new knowledge about the architecture of the language processing
network is provided by the work of Vigneau et al. [2000, 2011]. In this study, the authors
performed a large-scale meta-analysis of 946 brain language activation peaks collected from 129
task-based fMRI language studies from the literature (See Fig. 1.11a). This meta-analysis aimed
at defining the composition of the phonological, semantic, and sentence processing networks in
the fronto-parieto-temporal regions of the both cerebral hemispheres (See Fig. 1.11b). This work
offers a global view of the language processing beyond the modular paradigm and accordingly,
argues for large-scale architecture networks rather than modular organisation of language. The
connections between different language regions distributed across the parieto-fronto-temporal
cortex are ensured by the white matter bundles [Catani and Forkel, 2019, Catani et al., 2005].
These neuroanatomical white matter tracts can connect quite distant region and guarantee the
information transfer between them. This short description show the complexity of the language

brain relationship. More details about language-relevant fiber tracts will be given below.
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Figure 1.11 — Overview of the meta-analysis (Source: [Vigneau et al., 2006, 2011]).
Each foci is color-coded according to its language components category: phonology (blue), se-
mantic (red), and syntax (green). A) Distribution of the peaks in each hemisphere for each
component. The 128 neuroimaging studies selected for our previous meta-analysis reported
728 activation peaks in the left hemisphere (left column). Among the 128, 59 studies reported
218 activation peaks in the right hemisphere (right column). Activation peaks detected during
phonological tasks are indicated in blue (top row), lexico-semantic tasks in red (middle row)
and sentence and text processing in green (bottom row). For this last component, peaks cor-
responding to contrast investigating comprehension are in green and those investigating syntax
are in white. Peaks are projected onto a lateral view of the MNI single subject. B)Top: sagittal
projection map of the 730 activation peaks. Bottom: clusters identified for phonological (blue),
semantic (red), and syntactic (green) processing and obtained from the spatial clustering of the
peaks. Clusters of different components that were not spatially distinct are circled (yellow).
Error bars correspond to twice the standard error on the y and z stereotactic coordinates. The
left hemisphere lateral surface rendering of the MNI single-subject brain template, together with
the corresponding stereotactic grid, is displayed for anatomical reference. RolS, Rolandic sulcus;
RolOp, Rolandic operculum; F3t, pars triangularis of the left inferior frontal gyrus; F3op, pars
opercularis of the left inferior frontal gyrus; F3orb, pars orbitaris of the left inferior frontal
gyrus; SMG@G, supramarginalis gyrus; PT, planum temporale; T1, superior temporal gyrus; T2,
middle temporal gyrus; T3, inferior temporal gyrus; Prec, precentral gyrus; F2, middle frontal
gyrus; PrFgop, precentral gyrus/F3op junction; STS, superior temporal sulcus; AG, angular
gyrus; Fusa: anterior fusiform gyrus; a, anterior; p, posterior; I, lateral; m, middle; d, dorsal; v,
ventral.



26 State of the art

1.5.2.2 The neuroanatomical pathways of language

Despite the huge amount of knowledge accumulated the last past decades regarding the language-
brain relationship, no large-scale models of the functional anatomy of language has been pro-
posed beyond the Broca-Wernicke-Lichtheim-Geschwind classical model. To remedy this situ-
ation, Hickok and Poeppel’s [Hickok and Poeppel, 2004] proposed a model, free of fiber tracts
connecting the language-related brain regions but by thinking of aspects of language processing
in terms of sensory—conceptual mapping of speech and sensory—motor mapping. This model
consists on a dual stream model — analogous to the visual system [Hickok and Poeppel, 2004],
which emphasize speech processing during perception and production in "dorsal and 'ventral"
pathways (streams). Each of the pathways consists of more than one fiber bundle terminating
in different cortical regions. In the recent years, with the advent of new imaging techniques,
such as diffusion-weighted magnetic resonance imaging, researchers addressed this question by
tracking in vivo in human brain the white matter fiber bundles and the results supported Hickok
and Poeppel’s dual stream model [Hickok and Poeppel, 2007], as detailed below.

The dorsal pathway involves a left hemispheric structure, the arcuate fasciculus (AF), that
connects Broca’s region in the posterior frontal lobe to Wernicke’s region in the posterior
dorsal temporal lobe as stipulated in the Broca-Wernicke-Lichtheim-Geschwind model. How-
ever, [Catani et al.; 2005] tracked the arcuate fasciculus using dMRI and suggested two dorsal,
direct and indirect, pathways. The direct pathway known as the arcuate fasciculus -long
segment- connects Wernicke’s region with Broca’s region, and the indirect pathway is medi-
ated by the inferior parietal cortex. It consists of the arcuate fasciculus -anterior segment-,
linking Broca’s region to Geschwind’s region (encompassing the angular (BA 39) and supramar-
ginal (BA 40) gyrus), and the arcuate fasciculus -posterior segment- between Geschwind’s
region and Wernicke’s region. The superior longitudinal fasciculus (SLF) is also a dorsal
tract composed of three parallel longitudinal branches connecting the parietal and the frontal
lobes. Historically, this fasciculus has been referred to as (AF/SLF) because both the AF and
the SLF run partly in parallel. The superior branch (SLF I) runs from the superior parietal
lobule and the precuneus to the superior frontal gyrus. The middle branch (SLF II) connects the
angular gyrus (BA39) to the posterior regions of the middle frontal gyrus (BA6). The inferior
branch (SLF III) connects the supramarginal gyrus and Broca’s area (the pars opercularis, the
pars triangularis and the pars orbitalis) [Rojkova et al., 2016].

The ventral pathway involves bilaterally distributed hemispheric structures. It was originally
viewed as a unifunctional tract but was later revisited and several ventral fiber tracts were
assigned as subserving sound-to-meaning mapping, specifically the inferior fronto-occipital
fasciculus, a long-ranged tract connecting the inferior frontal regions (BA45 et BA47) with the
temporal and occipital cortex, the uncinate fasciculus which connects the anterior temporal
lobe (BA38) to the frontal operculum, and the inferior longitudinal fasciculus that connects

the occipital and anterior temporal cortex.
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Figure 1.12 — Tractography-based reconstruction of the language networks from clas-
sical models to contemporary neurolinguistics (Source: [Catani and Forkel, 2019]).
(A) Classical language model with the arcuate fasciculus connecting Broca’s region in the inferior
frontal gyrus to Wernicke’s region in the superior temporal gyrus. (B) Extension of the classical
arcuate fasciculus sense strictu to include the anterior segment, connecting inferior frontal to
inferior parietal lobe, and the posterior segment linking the inferior parietal to the temporal
lobes. (C) Current model of an extended language network beyond the three segments of the
arcuate fasciculus. The frontal aslant tract (FAT) connects the inferior frontal gyrus to the pre-
supplementary motor cortex. The ventral network includes the uncinate fasciculus between the
anterior temporal lobe and the orbital frontal and inferior frontal cortex, the temporal longit-
udinal fasciculus (TLF) between the posterior temporal lobe and the temporal pole, the inferior
fronto-occipital fasciculus (IFOF) connecting the ventral frontal cortex to the occipital cortex,
and the inferior longitudinal fasciculus (ILF) between the occipital and anterior temporal cortex.

Additional structural networks relevant for communication are proposed [Catani and Bambini,
2014, Catani and Forkel, 2019, Rojkova et al., 2016]: ¢) the frontal aslant tract (FAT)
is a recently described pathway that connects Broca’s region to the supplementary and pre-
supplementary motor area (BAG6);ii) the temporal longitudinal fasciculus (TLF) is a
recently described fasciculus connecting Wernicke’s region to the anterior temporal pole; iii)
The fronto-insular tracts (FIT) is a system composed of five U-shaped tracts that connects
the frontal operculum to the insula. The four most anterior tracts link respectively the pars
orbitalis -BA47- (FIT 1), the pars triangularis -BA45- (FIT 2), the pars opercularis -BA44-
(FIT 3) and the precentral gyrus -BA6- (FIT 4) of the frontal lobe with the anterior insula.
The most posterior tract (FIT 5) connects the subcentral gyrus -BA43- to the posterior insula.

The Fig. 1.12 summarises these language-relevant white matter tracts.
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What about the pathways in the right hemisphere and cross-hemispheric pathways?
The search of the implication of the right hemisphere in language have been, for a long time,
neglected. Recent studies have demonstrate its involvement after aphasia resulting from left
hemisphere but also its involvement alone or in interaction with the left hemisphere during
auditory language comprehension in healthy individuals. These findings called for a structural
description of the pathways within the right hemisphere and cross-hemispheric ones. Similar to
the left hemisphere, the right hemisphere shows a dual-stream model with a lower density of
fiber bundles compared to their left counterpart. The cross-hemispheric pathways is the corpus
callosum. Its anterior and posterior parts have been discussed to be involved in language-related

processes.

1.5.2.3 The neural bases of language processing networks

In [Vigneau et al., 2006], the authors identified and revisited different language processing

networks. These are briefly described below.

Fronto-temporal auditory—motor network.

The motor theory of speech perception has been quite an old debate [Flinker et al., 2015,
Galantucci et al., 2006, Liberman and Mattingly, 1985, Schwartz et al., 2008, Whalen, 2019].
[Vigneau et al.; 20006] advocate for an audio—motor loop that includes an upper motor area
for mouth motion control, a lower premotor area in the precentral gyrus that is dedicated to
pharynx and tongue fine-movement coordination, and a sensory—motor integration region in the
Rolandic operculum in the frontal lobe as well as the left planum temporale and Heschl’s gyrus
in the temporal lobe. These fronto-temporal areas, support of a perception—action cycle, are

supposed to be connected through the arcuate fasciculus fibers [Vigneau et al.; 2006].

Fronto-parietal working memory loops.

The phonological working-memory loop connects the dorsal part of the pars triangularis of the
inferior frontal gyrus in the frontal lobe and the supramarginal gyrus in the parietal lobe connec-
ted by both the arcuate fasciculus [Catani et al., 2005] and U-fibers [Duffau et al., 2003]. These
regions constitute the neural basis of a perception—action cycle defined above for phonological
working memory.

The semantics working-memory loop includes a frontal area at the junction of the precentral
gyrus and opercular part of the inferior frontal gyrus and the angular gyrus in the parietal lobe
connected by the arcuate fasciculus. These regions constitute the perception—action cycle for
semantic working memory.

The sentence and text comprehension working-memory loop includes the posterior part of the
middle frontal gyrus and the posterior part of the superior temporal sulcus connected by the

arcuate fasciculus.

Fronto-parieto-temporal semantic network
Research studies described the general semantic network to typically include left parieto-frontal-
temporal areas [Binder et al., 2009]. [Vigneau et al., 2006] and [Lau et al., 2008] proposed

neuroanatomical model for semantic processing that includes the angular gyrus in the posterior
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inferior parietal lobe, the lateral temporal lobe, including the middle temporal gyrus, the anterior

temporal cortex and the fusiform gyrus, the anterior and posterior inferior frontal gyrus.

1.6 Complex and multifactorial aetiology: the pursuit of

brain—language-genetics relationships

Multiple factors influence language process. Both environment and genetics plays a crucial role.
Environmental factors include home literacy environment, socio-economic status, and parental
education [Peterson and Pennington, 2015]. Genetic factors also affect variation as language
disabilities such as dyslexia are familial. Genetic factors are not restricted to language disabilities
but also affect normal variation that support language performance. The molecular genetic
framework underlying language genetic component is complex and heterogenic. Many genes are
likely to contribute to it. Indeed, Today, there is broad agreement that language is a complex and
multifactorial trait and is unlikely to be associated to only few genes but rather to many related
genes and their interactions, contributing to neural pathways that are important to normal brain
maturation and possibly language development (i.e. neuronal differentiation, migration, and
connectivity), together with experience-dependent contributions from the environment [Fisher
and Vernes, 2015]. Here, we will briefly summarise the results found to date regarding both

heritability of multiple language subcomponent and genes supporting this trait.
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1.6.1 Heritability of language

A pivotal question in biology is the heritability of a particular trait. It provide a quantitative
estimation of its association with a set of genetic markers and thus, informs us about the
richness of its contribution in the trait of interest. How much of language is genetic and how
much learned? The heritability of language has been extensively reported in the literature and
the work of [Stromswold, 2001] provides a meta-analysis of the available evidence concerning
a possible genetic basis for human language. These previous studies have mainly focused on

twins, adoption, and linkage studies of language.

Twin studies are based on the difference between monozygotic (MZ) and dizygotic (DZ) twins.
The assumption underlying these studies is that MZ twins share 100% of their genetic material,
whereas DZ twins share only 50% of their genetic material. In both cases, the twins share a
substantially similar environment as they were raised by the same parents in the same house-
hold. If language has a genetic component, then language abilities of MZ twins should be more
similar to each other than DZ are to each others. If no difference is observed, this suggests
that the heritability of language is negligible. Different linguistic ability are reviewed for both
individuals with or without developmental language disorders such as dyslexia and specific lan-
guage impairments. These includes spoken and non spoken vocabulary, phenoeme, phonology,
articulation, auditory and phonological short-term memory, articulation, morphology, syntax,
reading and spelling (syntactic comprehension and production). These studies strongly suggest
that genetic factors account for some of the individual differences in linguistic ability for both

people with or without developmental language disorders [Stromswold, 2001].

The adoption studies compare adopted children’s linguistic abilities with those of their adopted
and biological relatives. If language has a genetic component, then linguistics ability of adopted
children should resemble more to their biological relatives than to their adopted ones. Database
such as the Colorado Adoption Project (CAP) [Rhea et al., 2013] offer a unique opportunity to
disentangle nature and nurture regarding cognitive abilities including language trait. Taken as
a whole, the adoption studies also suggest that genetic factors affect language abilities and more

specifically, verbal performance (See Fig. 1.13).

Overall these results advocate for a genetic predetermination and heritability of human language.
Depending on the language score test, age of the volunteers, or the methodology adopted, these
genetic studies of language acquisition estimate the heritability of language to be between 1
and 82% [Dale et al., 2000, Ganger et al., 2002, Reznick et al., 1997, Stromswold, 2001].
Nevertheless, these results should be taken with caution. One limitation of these studies is
regarding the generalizability of their results. Indeed, most of the twin studies included in
this review involved relatively small numbers of twins. Regarding adopted studies, The results
are mainly obtained using data from the same group of adopted children (CAP cohort), which
can or cannot be representative of the general population. Furthermore, most of these studies
did not take into account corrections regarding the multiple tests performed and thus, call for

replications.
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Figure 1.13 — Parent-offspring correlations for factor scores for specific cognitive abil-
ities for adoptive, biological, and control parents and their children at 3, 4, 7, 9, 10,
12, 14, and 16 years (source: [Stromswold, 2001]). Correlations are shown for verbal abil-
ity (a), spatial ability (b), speed of processing(c), and recognition memory (d). Parent-offspring
correlations are weighted averages for mothers and fathers. The number of individuals range
from 33 to 44 for biological fathers, 159 to 180 for biological mothers, 153 to 197 for adoptive
parents, and 136 to 217 for control parents.

To date, behavioural genetics investigations are the main type of studies that address this
question. The recently available large-scale imaging-genetics cohorts provide an illuminating
new tool to explore this question. Contrary to prior studies, recent studies propose to use image-
derived phenotypes to explore this question by taking advantage of the UK Biobank cohort, a
large-scale imaging-genetics resources constituted of unrelated volunteers introduced in the 2.1.1.
The left-right hemispheric asymmetry is an important aspect of healthy brain organization for
many functions including language. These studies focused on this aspect of the brain and
reported the heritability of endophenotypes extracted from structural MRI [Carrion-Castillo
et al., 2020, Le Guen et al., 2020, Sha et al., 2021]. Carrion-Castillo et al. [2020] evaluated
the association between the planum temporale volume asymmetry with neurodevelopmental
disorders including dyslexia, schizophrenia and autism and estimated its narrow-sens heritability
to roughly 14%. Le Guen et al. [2020] evaluated the superior temporal assymetrical pit and
estimated its narrow-sens heritability to 11%. The work of [Sha et al., 2021] offers a more
general view of the left—right hemispheric asymmetry. They reported a significant narrow-sens
heritability ranging from 2.2% for the assymetry index (AI) of entorhinal cortical thickness to
9.4% for the AT of superior temporal surface area. A discrepency between heritabilities reported
by both [Carrion-Castillo et al., 2020, Le Guen et al., 2020] and [Sha et al., 2021] can be
explained by the difference of phenotypes studies as well as the sample size used. Indeed, while

[Carrion-Castillo et al.; 2020, Le Guen et al., 2020] used a sample size of 18,057 and 16,515



32 State of the art

participants respectively, [Sha et al., 2021] take advantages of a more recent release of 32,256
participants from the UK Biobank. Regarding functional brain aspect and to our knowledge,
there is no study that extensively explored the heritability of human language. That being
that, the heritability of functional MRI derived phenotypes in a brain-wide context has been
evaluated by [Elliott et al.; 2018] and although not specific to language cognitive trait, it allow
us to frame the orders of magnitude of the heritability estimates. According to Elliott et al.
[2018], the resting-state fMRI functional connectivity show the lowest levels of SNP heritability,

compared to structural IDP.

1.6.2 Developmental language disorder related loci

Historically, before the emergence of the genotyping technology, genetic linkage was the only
affordable method able to interrogate genetics regarding trait of interest. Consequently, the
candidate genes that has been targeted for reading and language impairments has arisen from

linkage analysis. These findings are briefly presented in the Table 1.1.

Table 1.1 — Summary of the linkage regions to reading disability (RD) and Specific language
impairment (SLI) and the candidate genes within them (Source: Hagoort [2019]).

Classification Locus name cytogenetic position Candidate gene  Associated phenotypes  Reference
Dyslexia DYX1 15021 DYX1C1 RD [Taipale et al., 2003]
DCDCz2, [Kaplan et al., 2002],
DYxz 0p23-213 KIAAo0319 RD [Deffenbacher et al., 2004]
MRPL1o, .
DYX3 2p15-16 C20RF3 RD [Anthoni et al., 2007]
2pi11 RD [Kaminen et al., 2003]
DYX4 6q11.2—q12 RD [Petryshen et al., 2001]
DYX5 3p12—q13 ROBO1 RD [Hannula-Jouppi et al., 2005]
DYX6 18p11.2 RD [Fisher et al., 2002]
DYX7 11p15.5 RD [Hsiung et al., 2004]
DYX8 1p36 KIAAo319L RD [Couto et al., 2008]
DYXg Xq27.2—q28 RD [De Kovel et al., 2004]

Specific language Phonological memory

impairment (SLI) SLIx 16023.1-q24 CMIP, ATP2C2 in an SLI cohort [Newbury et al., 2009]
SLl2 19q13.13—q13.41 SLI [Consortium et al., 2004]
SLI3 13q14.3—q31.1 SLI [Consortium et al., 2004]

Reading-1Q discrepancy

in an SLI cohort [Bartlett et al., 2002]

Phonological memory
in an SLI cohort
SLlg 7931—q36 CNTNAP2 including nonaffected [Vernes et al., 2008]

family members

Language delay;
exon 3 deletion
co-segregated with

SLlg 2936 TM4SF20 language delay [Wiszniewski et al., 2013]
in Southeast
Asian families
Other 2p22 SLI [Bartlett et al., 2004]
Reading-1Q
17923 discrepancy in [Bartlett et al., 2004]

an SLI cohort

7931 FOXP2 [Fisher et al., 1998]
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1.6.3 Genome-wide association studies of language abilities

Genome-wide association studies of reading and language abilities have used quantitative traits
from both general population and case-control designs. The results are summarised in Table

1.2.
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Table 1.2 — Summary of the top genome-wide association signals from studies of reading and
language traits (Source: Hagoort [2019]).

Cytogenetic

Closest

position SNP known gene Trait SNP test, N Total N Reference
Single word 2,373,249 6,135 individuals
1p13.1 rs4839516 reading imputed (children and [Luciano et al., 2013]
adolescents)
Language 1,724,317 2,329 N
2q31 rs12474600 CCDC141 factor imputed children [Harlaar et al., 2014]
Expressive vocabulary 2,449,665 8,889 individuals ) N
3p12.3 rs7642482 ROBO2 in 15 month olds imputed/ genotyped (toddlers) [5t Pourcain et al., 2014]
Single word 2,373,249 6,135 individuals
4p15.3 rs11945798 reading imputed (children and [Luciano et al., 2013]
adolescents)
163 SLI
00 2 (based on
4926 rs482700 SLI 500,527 test performance) [Eicher et al., 2013]
genotyped
and 4,117 controls
(children)
5p13 rs1353835 sLi 614,937 278 families [Nudel et al., 2014]
(maternal effect) genotyped (297 SLI children) s
125,047 718 families )
5935.1 rs9313548 FGF18 RD autosomal SNPs (400 with RD) [Field et al., 2013]
Readi d 5 5 6,127 individuals
6p24 rs479526 cacing an 373,249 (children and [Luciano et al., 2013]
spelling factors imputed
adolescents)
Phonological 2,373,249 6,583 individuals
7p21 rs6954796 o (children and [Luciano et al., 2013]
memory imputed
adolescents)
Reading and spelling 5 5 6,127 individuals
7p21 rs13307587 factors; single . '37?;'d49 (children and [Luciano et al., 2013]
word reading fmpute adolescents)
. 1,862 SLI/RD
7432 rs59197085 CCDC136 Reading and ,5’51&496 children and their [Gialluisi et al., 2014]
language factor imputed s
nonaffected siblings
353 SLI
00 52 (based on
8q24.1 rs2590673 RD 500,527 test performance) [Eicher et al., 2013]
genotyped
and 4,117 controls
(children)
Reading and s 5 6,127 individuals
10p15 rsi7135159 e 373,249 (children and [Luciano et al., 2013]
spelling factors imputed
adolescents)
1,724,317 2,329 .
10423.3 rs1326167 Language factor imputed children [Harlaar et al., 2014]
353 SLI
0052 (based on
10q25.3 rs180950 RD 500,527 test performance) [Eicher et al., 2013]
genotyped
and 4,117 controls
(children)
Reading and s R 6,127 individuals
10q21.2 rs3213056 CDK1 N8 2:373,249 (children and [Luciano et al., 2013]
spelling factor imputed
adolescents)
) 2,449,665 T
Expressive vocabulary ) 8,889 individuals . N
11p15.2 rs10734234 INSC in 15 month olds imputed/ (toddlers) [St Pourcain et al., 2014]
genotyped
: 2,449,665 T
Expressive vocabulary . 8,889 individuals ) .
12q15 rs11176749 CAND1 in 15 month olds imputed/ (toddlers) [St Pourcain et al., 2014]
genotyped
Single word s R 6,135 individuals
13q21.3 rs1928007 & 2373249 (children and [Luciano et al., 2013]
reading imputed
adolescents)
rs11158632 614,937 278 families N
14q12 (paternal effect) St genotyped (297 SLI children) [Nudel et al., 2014]
Sinele word s s 6,135 individuals
14923 rs11158345 PRKCH e 373,249 (children and [Luciano et al., 2013]
reading imputed
adolescents)
Single word 2,373,240 6,135 individuals
16922 rs764255 Ci6orfs7 reading imputed (children and [Luciano et al., 2013]

adolescents)
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Cyt.ogenenc SNP Closest Trait SNP test, N Total N Reference
position known gene
Single word 5 5 6,135 individuals
16923 rs7187223 & 2:373,249 (children and [Luciano et al., 2013]
reading imputed
adolescents)
. 2,449,665 oo
Expressive vocabulary 8,889 individuals . R
19p13.3 rs1654584 DAPK3 in 15 month olds imputed/ (toddlers) [St Pourcain et al., 2014]
genotyped
Reading and spelling 5 5 6,127 individuals
19p13.3 rs4807927 DAZAP1 factors; single 2:373,249 (children and [Luciano et al., 2013]
. imputed
word reading adolescents)
5 5 6,583 individuals
21q11.2 rs2192161  ABCCi3 Phonological memory ir;1373t"d49 (children and [Luciano et al., 2013]
pute adolescents)
. 1,862 SLI/RD
Reading and 5,518,496 . . o .
22q12.3 rs5095177 RBFOX2 language factors imputed children and their [Gialluisi et al., 2014]

non-affected siblings

Bold entries achieved genome-wide significance. Note that a comprehensive summary of the effect allele effect size and P value is given in
Carrion-Castillo et al. (2016) along with replication results for many of these SNPs.
Located within the gene.

1.6.4 Moving Forward: Emergence of imaging-genetics approach

The emerging field of neuroimgaing genetics seek to better understand the language-brain-genetic
relationships by establishing intermediate phenotypes at the neural level. As for linkage mapping
and candidate gene approaches, the predominant research were regarding language impairments
such as reading disability and developmental language disorder. Going forward, and with the
recent availability of large-scale cohorts such as UK Biobank 2.1.1, more and more research
focus on normal population and novel candidate genes arised from large GWASes. Indeed,
GWASes of normal variation have been successful in demonstrating the importance of common
SNP variation (minor allele frequency > 0.01) [Davies et al., 2016]. Findings from these both

approaches are detailed below.

1.6.4.1  Neuroimaging genetics studies in developmental disorders

A comprehensive summary of research employing a neuroimaging genetic approach to study
neurodevelopmental disorders of spoken and written language is given in [Landi and Perdue,
2019]. In this work, the authors have limited their review to studies that includes population with
specific reading disability (SRD) and developmental language disorder (DLD) and no additional

neurological or psychiatric diagnosis. The table 1.3 reports these findings.
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Table 1.3 — Summary of imaging genetics findings related to reading/language. (Source: Landi
and Perdue [2019].)

Phenotype

Gene Chr Location Function Design Imaging N Age Ethnic Background (language,/reading) References
70 Caucasian
Neuronal survival; 1 African-American
BDNF 11p13 Neuronal proliferation; Continuous fMRI 81 6-10 2 Hispanic Reading [Jasinska et al., 2016]
Synaptic growth 3 Asian
5 Mixed ethnicity
C2orfz/ MRI:
GCFC2/ 2p11-q11.2 Unknown Continuous ! 332 3-20 European Reading [Eicher et al., 2016]
DTI
MRPL1g
Continuous 76 6-25 98%European [Scerri et al., 2012]
CMIP 16q23.2-q23.3  T-cell signaling Case/control  MRI 54 5-12 NR Reading [Skeide et al., 2016]
Type IV
COL4A2 13934 collagen subunit Case/control  MRI 54 5-12 NR Reading [Skeide et al., 2016]
encoding
. . 83 Caucasian . . i
COMT 22q11.21 Dopamine metabolism Case/control  fMRI 86 6-10 3 African-American Reading [Landi et al., 2013]
NRSN1 6p22.3 Neurite growth Case/control  MRI 54 5-12 NR Reading [Skeide et al., 2016]
ROBO1 3p12.3 gjzzogj:d?;‘i;amn; Case/control MEG 10 19-51 Finnish Reading [Lamminmaki et al., 2012]
CCDC136/ FLNC 79321 Unknown Continuous ~ MRI 1275 18-35 NR Reading/ [Gialluisi et al., 2017]
Language !
N . . Reading/
DCDC2 6p22 Neuronal migration Continuous fMRI 82 7-12 EuropeanAmerican Language [Cope et al., 2012]
SRD EEG 200 8-19 German [Czamara et al., 2011]
Continuous ~ MRI DTI 76 6-25 98% European [Darki et al., 2012]
Continuous ~ MRI DTI 76 6-25 98% European [Darki et al., 2014]
Continuous ~ MRI DTI 332 3-20 European [Eicher et al., 2016]
Case/control  DTI 47 16-21 NR [Marino et al., 2014]
Continuous MRI 56 19-85 NR [Meda et al., 2008]
DYX1C1 15321.3 Neuronal migration Continuous MRI DTI 76 6-25 98% European E::;Lnagg/e [Darki et al., 2012]
Continuous ~ MRI DTI 76 6-25 98% European [Darki et al., 2014]
Transcriptional regulation
FOXP2 7931 Neurogenesis Case/control  MRI 34 9-27 European [Belton et al., 2003]
Case/control  fMRI 20 19-56 European [Liégeois et al., 2003]
. _ Reading/ N s
Continuous ~ fMRI 94 M = 24.7 European Language [Pinel et al., 2012]
Continuous ~ MRI 54 5-12 NR [Skeide et al., 2016]
Case/control  PET MRI 34 NR European [Vargha-Khadem et al., 1998]
Case/control  MRI 34 927 European [Watkins et al., 2002]
Case/control  fMRI 33 M= German [Wilcke et al., 2012]
Continuous ~ MRI DTI 76 6-25 98% European [Darki et al., 2012]
KIAAo0319 6p22 Neuronal migration Continuous ~ MRI DTI 76 6-25 98% European E:::L:gg/e [Darki et al., 2014]
Continuous ~ MRI DTI 332 320 European [Eicher et al., 2016]
Continuous ~ fMRI 94 M = 24.7 Primarily Caucasian [Pinel et al., 2012]
Alternative exon . Reading/ ;
RBFOX2 22q12.3 splicing regulation Continuous ~ MRI 1275 18-35 NR Language [Gialluisi et al., 2017]
116 Caucasian
DNA replication, 2 African American
apoptosis, . . 3 Hispanic Reading/ X N
SETBP1 18q12.3 transcription, Continuous  fMRI 73 5-12 1 Asian Language [Perdue et al., 2019]
nucleosome assembly 8 mixed
2 unreported
SLC2A 21 Neural glucose SRD EEG 200 841 German Reading/ [Roeske et al., 2011]
3 4932 transport regulation 9 erma Language '
Continuous  rsfMRI DTl 34 9-12 NR [Skeide et al., 2015]
ACOT13/THEM2 6p22.3 Cell proliferation Continuous ~ MRI; DTI 332 320 European E::;Lr;gg/e [Eicher et al., 2016]
Continuous ~ fMRI 94 M = 24.7 Primarily Caucasian [Pinel et al., 2012]
CNTNAP2 Cell adhesion Continuous ~ DTI 28 M=2 Caucasian Language [Dennis et al., 2011]
7435 Voltage-gated 3 =234 B2 s
Continuous  fMRI 108 M =26.3 Japanese [Koeda et al., 2015]
Continuous ~ MRI 54 5-12 NR [Skeide et al., 2016]
Continuous ~ MRI DTI 14 NR NR [Tan et al., 2010]
. _ Primarily European . N
Continuous ~ MRI 1717 M =243 Caucasian [Uddén et al., 2017]
Continuous ~ fMRI 66 M = 20.5 Caucasian [Whalley et al., 2011]

1.6.4.2

Neuroimaging genetics studies in general population

Recent works investigate the language-brain-genetics relationships in general population and

novel potential genes arising from GWASes have been proposed. These studies with a main

focus on the brain asymmetry. [Carrion-Castillo et al., 2020] reported two loci (2q37 and 10p14)

significantly associated with the planum temporale volumetric asymmetry including a coding

polymorphism within the gene ITTHg that is predicted to affect the protein’s function and to be
deleterious and a locus that affects the expression of the genes BOK and DTYMK. Additionally,

[Le Guen et al., 2020] reported a locus near DACT1 to be associate with the superior temporal
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sulcus depth. Both finding based on structural IDPs were emphasised by [Sha et al., 2021] who
through a multivariate analysis, identified twenty-one loci involved in the left-right asymmetry,
an important aspect of healthy brain organisation for many functions including language. These
authors yield broader insights into biological pathways by proposing a role of the cytoskeleton®
in the left-right axis determination. Although these results are particularly interesting, the
relationship between brain asymmetry and language is still poorly understood. The table 1.4

summarise these findings.

*Cytoskeleton have an essential role in many cellular processes, such as cellular division, migration, and
intracellular transport.
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Table 1.4 — Summary of the genome-wide association signals from studies of left-right asymmetry
(source: Sha et al. [2021]).

Cytogenetic Functional Effect allele  mvGWAS

- SNP Effect allele Nearest gene  Trait N SNP Total N Samples Design Reference
position category frequency P value
NcRNA Thalamus (SUB), UKB Multivariate L
2p23.3 rs62130503 intronic T 0.05 1.2210e10 MAPRE3 parahippocampal (SA) 9,803,522 32,256 british sample-  GWAS [Sha et al., 2021]

Inferior temporal (SA),
2p23.3 rs12617392  Intronic A 0.44 4.0210e11  CGREF1 caudal anterior cingulate (SA), 0,803,522 32,256
isthmus of cingulate (SA)

UKB Multivariate

Sha et al., 202:
british sample-  GWAS [Sha et al., 2021]

Univariate

2q37 157420166 intronic A 0.26 7.5410e10 BOK Planum temporale asymmetry 8,011,019 16,515 GWAS

[Carrion-Castillo et al., 2020]

Isthmus of cingulate (CT) ,
precuneus (SA) , UKB Multivariate

U 26 n(] S et al., 202
3924 52279829 3UTR T 0.22 1.2610e9  ZIC4 posterior cingulate (CT) | 9.803,522 32,256 british sample-  GWAS [Sha et al., 2021]
fusiform (SA)
) Inferior parietal (SA), UKB Multivariate T
5015 1869210775 Intergenic T 014 3.0610e9  NRaF1 transveres temporel (54) 0803522 32256 iy s [Sha et al., 2021]
Isthmus of cingulate (CT), .
6p2133  rs7781 Downstream G 0.24 1.6210e10 TUBB rostral anterior cingulate (CT),  g.803,522 32,256 L0 Multivariate 1, . ot al, 2021]
. . -british sample- GWAS
pars triangularis (SA)
) Banks of the superior UKB Multivariate
138100 Sha et al., 202
7p14.3 rs6947352  Intronic A 031 4.3810e8  BBSg tomporal suleus (5) 0803522 32256 i e [Sha et al., 2021]
Inferior parietal (SA),
isthmus of cingulate (SA) ,
) : precuneus (SA), UKB Multivariate .
9922.33 5911934 Intergenic G 0.70 2.3910e15 GALNT12 paracentral (SA), 9,803,522 32,256 british sample-  GWAS [Sha et al., 2021]
supramarginal (SA),
entorhinal (CT)
Superior temporal (SA) ,
parahippocampal (SA),
10p14 1541208373 Exonic A 0.10 47510e38  ITIHs fusiform (SA) , 0.803.522 32,256 UKD Multivariate 1\ . ot al., 2021]
Justo “british sample-  GWAS
inferior temporal (CT) ,
transverse temporal (SA)
Univariate N
5 arrior asf o et a 2020
2.0110e15 Planum temporale asymmetry 15,120,452 18,057 Vs [Carrion-Castillo et al., 2020]
Superior frontal (SA),
12q1312 1510783306  Intergenic  C 0.33 0.0910e12 TUBAg  entorhinal (SA), 0,803,522 32256 ORB Multivariate 1\ . ot al., 2021]

medial orbitofrontal (SA),
pars triangularis (SA)
Banks of the superior
temporal sulcus (SA), UKB Multivariate

-british sample-  GWAS

i 19810612 aet al, 202
14923.1 5160459 Intergenic C 0.46 4.9810e12  DACT1 transverse temporal (SA), 9,803,522 32,256 _british sample-  GWAS [Sha et al., 2021]
pericalcarine (SA)
4.2010e12 superior temporal asymmetrical pit 8,011,019 16,515 g\’}\'/‘/fs”m [Le Guen et al., 2020]
Paracentral (SA), .
16q24.3  rs72813426  Intronic G 0.24 2.4510e14  SPIRE2 isthmus of cingulate (SA), 0.803.522 32,256 KD Multivariate 15\ . ot 41, 2021]
“british sample-  GWAS
middle temporal (SA)
Isthmus of cingulate (CT),
16924.3  rs111398992  Intronic T 013 5.9910c15 TUBB3 fusiform (SA), 0,803,522 32256 O1D Multivariate g\ . ot al., 2021]

rostral anterior cingulate (CT),
pericalcarine (SA)
Parahippocampal (SA),
NCRNA middle temporal (SA),
17921.31 rs55938136 . . G 0.22 4.9110e15 CRHR1 pallidum (SUB), 9,803,522 32,256
intronic N
hippocampus (SUB),
pars triangularis (SA)
Supramarginal (SA), UKB Multivariate

-british sample-  GWAS

UKB Multivariate

british sample-  GWAS [ha etal, z021]

. 34106 Sha et al., 202
1792131 rs35908989  Intronic C 0.23 1341068  MAPT caudate (SUB) 9803.522 32256 ko Gwas [Sha et al., 2021]
Parahippocampal (SA),
middle temporal (SA), .
17921.31 rs80103986  Intronic T 0.20 5.1610e16  KANSL1 pallidum (SUB), 9,803,522 32,256 UKB Multivariate [Sha et al., 2021]
“british sample-  GWAS
hippocampus (SUB),
pars triangularis (SA)
Isthmus of cingulate (CT), -
10p13.3 1511672092 Intronic T 0.22 5.6910e10 TUBB4A lateral orbitofrontal (SA), 0.803.522 32,256 UXB Multivariate (). ot al., 2021]
. -british sample-  GWAS
middle temporal (SA)
) Pericalcarine (SA), UKB Multivariate .
20p12.1 rs6135555 Intronic A 0.39 7.0010e¢9  MACROD2 caudate (SUB) 9,803,522 32,256 _british sample-  GWAS [Sha et al., 2021]
) P Supramarginal (SA), UKB Multivariate T
21q22.3 57283026 Intronic C 0.27 8.4210el0 COL18A1 transverse temporal (SA) 9,803,522 32,256 british sample-  GWAS [Sha et al., 2021]
. E Isthmus of cingulate (CT), UKB Multivariate
> ot a
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Bold entries were replicated in an external sample

1.6.4.3 Discussion

Several approaches combined with a variety of (endo)phenotypes have been considered for the
language-brain-genetic study. Through linkage analysis and after with genome-wide association
studies, numerous findings were highlighted regarding language trait. These illustrate the com-
plex neurobiological underpinnings of human language. Whether regarding targeted genetic
association or exploratory genome-wide association study, replication of genetic associations
with language (endo)phenotypes has emerged as an important limitation in the literature. Ad-
ditional concerns regarding sample size and power, correction for multiple testing, unreported
effect size have been arised regarding neuroimaging field. Accordingly, language-brain studies
should be interpreted with caution.

Notwithstanding the literature regarding genetic of human language is quite rich, we are still
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quite far from understanding which part of the genome codes for language, or how genetic

differences lead to different language abilities.

1.7 Aim of this thesis

The main aim of this thesis was to improve our understanding of the genetic underpinnings
of human language. To this end, we investigated common genetic variants that might affect
human language related quantitative trait. We determined the inter-individual variations in
brain function and structure that reflect specific language as neurocognitive traits and studied
the potential associations between the observed inter-individual variability of language trait and
the genotype profile. This study took advantage of two well known large-scale cohorts suitable
for imaging-genetic studies; the UK Biobank and the Human Connectome Project. These two
large-scale cohorts comprise detailed genotyping and a wide variety of endophenotypes ranging
from health/activity questionnaires, extended demographics to neuroimaging and clinical health
records.

First, in chapter 3, we present an experimental design set up to highlight interesting endophen-
otypes representative of human language. Different imaging modalities were considered. Us-
ing resting-state fMRI, we built endophenotypes estimating rsfMRI functional connectivities
between perisylvian cortical ROIs drawn from an exhaustive meta-analysis of task-based fMRI
language studies. Using diffusion MRI, we determined endophenotypes from well-known lan-
guage related white matter bundles. Using task-based fMRI, we extracted language-brain ac-
tivation using the perisylvian cortical ROI aforementioned.

Second, in chapter 4, we provided a contribution to the study of human language heritability by
presenting in-depth results on it using both psychometric and imaging derived endophenotypes as
presented in the chapter 3 using the two aforementioned large-scale resources currently available.
Third, in chapter 5, we performed bivariate genetic analyses to quantify the shared genetic in-
fluence between human language performance, and brain functional manifestations of language
represented by both neural activation measured in language task fMRI experiments and func-
tional connectivity estimated in resting-state fMRI. To this end, we took advantage of the Human
Connectome Project cohort which comprises language-related scores, language task-based fMRI
data as well as resting-state {MRI data.

Fourth, in chapter 6, we contributed to enlighten the genetic architecture of language functional
connectivity by exhibiting potential key genes related to language processing. We performed
a multivariate genome-wide association study on 32,186 participants from UK Biobank using
significantly heritable resting-state FC endophenotypes as highlighted in the chapter 4. The
results obtained were then subjected to a replication study in an independent sample (N=4,754).
Next we performed an extensive functional annotations of each genomic risk locus which allowed
us to suggest new genes with a role in different aspects of the language processing system.
Fifth, in Chapter 7, we adopted a similar experimental design than the one presented in the
chapter 6 to study the genetic architecture of anatomical connectivity. We performed a mvG-

WAS between genetic variants and diffusion features measured in well-known language-related
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white matter bundles, on 31,775 participants from UK Biobank. The findings suggested new
candidate genes involved in different brain organisation.

Finally, in the general conclusion, we have summarised and reviewed the main findings of the
experimental chapters (i.e. chapter 4 to 7), and discussed future perspectives of the genetics
of human language, in relation to the complementary approaches that were considered within

these studies.
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In this chapter, we present the two cohorts and the statistical methods that we used to answer
the questions regarding the genes that underlie human language processing in order to see how
genetic variation influences this system variation. In the first part of this chapter, we introduce
the two imaging-genetics cohorts used in the manuscript. We provide as well, details on the
demographics, the neuroimaging and the genetic data available in both UK Biobank (UKB) and
the Human Connectome Project (HCP). The second part of this chapter concerns the definition
of the regions of interest that underlie language in human brain. This step is crucial and difficult
to determine as the adequate choice of ROIs may vary depending on different conditions such
as the experimental design or pathologies. This choice constitutes the entry point of our study
and will lay the foundations for the neuroimaging genetic studies performed. Image-derived
phenotypes will be extracted using these ROIs. Details on the standard methods used in the
literature to estimate these endophenotypes will be discussed further. The next sections of this
chapter describe the state-of-the-art genetic methods that are today largely adopted by the
imaging-genetics community. More precisely, the heritability and genetic correlation estimation,
as well as genome-wide association studies (GWAS) using massive univariate methods will be
described. Also, innovative multivariate approaches for GWAS will be presented. Finally, the
last part is dedicated to presenting how to relate the candidate variants identified from GWAS to
biological functions or processes. This step is performed through a statistical fine-mapping and
proteomics interactions. It is essential in order to select and prioritise genetic variants linked to

language.

2.1 Cohorts

To investigate the neurobiology of language in human brain, we took advantage of two well known
large-scale cohorts; the UK Biobank and the Human Connectome Project. These open-acces co-
horts comprises detailed genotyping, neuroimaging data and cognitive-behavioural assessments

which make them suitable for imaging-genetics studies.

2.1.1 UK Biobank

The UK Biobank is an open-access longitudinal population-wide cohort that includes 500k par-
ticipants from all over the United Kingdom [Sudlow et al., 2015]. Data collection comprises
detailed genotyping and a wide variety of endophenotypes ranging from health/activity ques-
tionnaires, extended demographics to neuroimaging and clinical health records. All participants
provided informed consent and the study was approved by the North West Multi-Centre Re-
search Ethics Committee (MREC).

This study used the February 2020 release (UK BioBank application number #64984). This
release consisted of 41,670 participants, age range between 40 to 70 years (21,135 females,
mean age=r4.9 +7.47 years), with genotyping and brain imaging data including resting-state
functional MRI and/or diffusion MRI. Furthermore, to avoid any possible confounding effects
related to ancestry, we restricted our analysis to individuals with British ancestry using the

sample quality control information provided by UK Biobank [Bycroft et al., 2018]. A final
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cohort of 35,366 volunteers (18,298 females, mean age = 55.1 £7.43 years) were included. The
potential remaining cryptic population structure can be a severe confound to genetic association
studies [Marchini et al., 2004]. It was accounted for by considering the first ten principal
components (Data field 22009) of the principal component analysis of the genetic data and
were included as covariates. We used the 5,286 non-British individuals drawn from the UK
Biobank as an independent replication dataset. The age range of these participants was 40 to
70 (2,837 females, mean age = 53 +7.59 years). It is noteworthy that UK Biobank uses its 22
centres across the UK to collect brain imaging. Three scanning centres were represented in our
sample (Cheadle, Reading, and Newcastle). This difference in scanning hardware may lead to
a site-specific variability in the imaging. To overcome this limitation, we identified the imaging
centre information (Data field 54) and considered the scanning site as a confound-regressor
variable. Details about data acquisition parameters, data processing of multi-modalities of MRI
images used in our studies as well as details about genetic data and the quality control applied
will be summarised and presented below. For additional technical details, refer to the UK
Biobank Brain Imaging Documentation (v.1.7, January 2020) as well as to [Alfaro-Almagro

et al., 2018, Miller et al., 2016].

2.1.1.1 Data acquisition details on UKB samples

Two MRI modalities were considered throughout the manuscript as each of them potentially
captures unique neurobiological details: resting state functional MRI (rsfMRI) and diffusion-
weighted MRI (DW-MRI). The acquisition parameters used for each modality are described

here.

Resting-state functional MRI data. Resting-state functional MRI (rsfMRI) captures low-
frequency fluctuations in blood oxygenation from which functional connectivity is then estimated
Biswal et al. [1995]. rsfMRI data were acquired on 3T Siemens Skyra scanner using the following

parameters:
e Resolution: 2.4 x 2.4 x 2.4mm3,

Field-of-view matrix: 88 x 88 x 64 ,

Repetition time (TR) = 0.735 s,
e Echo time (TE) = 39 ms,
¢ Acquisition time = 6 min.

As a result, 3D volumes of the volunteers’ brain are acquired every 0.735s during 6 minutes
resulting in 490 brain volumes in time represented by a 4D image. All images were acquired
in Anterior-Posterior phase encoding direction. During the resting-state scan, participants were
instructed to keep their eyes fixated on a crosshair, to relax, and to think of nothing in particular
[Miller et al., 2016].

Diffusion-weighted MRI data. Diffusion-weighted imaging is a noninvasive, in vivo MRI

technique that quantifies water diffusion in biological tissues. It is used to map structures and
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measures their local organisation by tracking the movements of water molecules contained in
the brain tissues. The Diffusion-weighted MRI (DW-MRI) images were acquired using a 3T

Siemens Skyra scanner with the following parameters;

Resolution: 2 x 2 x 2mm?,

« Five non diffusion-weighted image b=0 s/mm?,

Diffusion-weighting of b=1000, and 2000 s/mm? with 50 directions each,

Acquisition time: 7 min,

2.1.1.2 Data processing details on UKB samples

All the MRI data preprocessing steps were carried out by UK Biobank brain imaging team using
FSL software (http://www.fmrib.ox.ac.uk/fsl). The preprocessing applied to each modality is

described here.

Resting-state functional MRI data. We applied the following preprocessing pipeline on
rsfMRI data before we extracted the IDPs. It includes motion correction using MCFLIRT [Jen-
kinson et al., 2002], grand-mean intensity normalisation, high-pass temporal filtering (Gaussian-
weighted least-squares straight line fitting, with ¢ = 50.0 s) including the unwarping of EPI
(echo planar imaging) and co-registration to T1 template and gradient non-linearity distor-
tion correction (GDC), brain masking, and registration to the MNI (Montreal Neurological
Institute-Hospital) space. The rsfMRI volumes were further cleaned using ICA-FIX (Independ-
ent Component Analysis followed by FMRIB’s ICA-based X-noiseifier [Beckmann and Smith,
2004, Griffanti et al., 2014, Salimi-Khorshidi et al., 2014] for automatically identifying and

removing artefacts.

Diffusion-weighted MRI data. We applied the following preprocessing pipeline on dMRI
data before we extracted the IDPs. It includes: correction for eddy current distortions, head
motion and has outlier-slices (individual slices in the 4D data) corrected, using Eddy (ht-
tps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY) [Andersson and Sotiropoulos, 2015]. A gradient dis-
tortion correction (GDC) is applied to these corrected images, resulting in the 4D output file.
The preprocessed images were then further fed into the software DTIFIT (Diffusion Tensor
Imaging Fitting procedure from FSL) to model the 5o diffusion directions to generate DTT out-
puts, e.g. FA (fractional anisotropy), MO (tensor mode), MD (mean diffusivity). In addition to
the DTI fitting, the preprocessed images were fed into NODDI (Neurite Orientation Dispersion
and Density Imaging) [Zhang et al., 2012] estimates using AMICO (Accelerated Microstructure
Imaging via Convex Optimization) [Daducci et al., 2015]. This enabled modeling the biological
properties of fiber tracts visible in the form of ICVF (intra-cellular volume fraction - an index of
white matter neurite density), ISOVF (isotropic or free water volume fraction) and OD (orient-
ation dispersion index, a measure of within-voxel tract disorganisation). Furthermore, in order
to facilitate cross-subject comparisons on fiber tract based IDPs, all the outputs were aligned

onto a common space with TBSS (Tract-Based Spatial Statistics) [Smith et al., 2006].
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2.1.1.3 Genetic data: genotyping and imputation

The UK Biobank genetic data contain genotypes for 488,377 participants. Genotyping was
performed using the UK BiLEVE Axiom array by Affymetrix [Wain et al., 2015] on a subset
of 49,950 participants (807,411 markers) and the UK Biobank Axiom array on 438,427 parti-
cipants (825,927 markers). Both arrays are extremely similar and share 95% of common SNP
probes. Further details are available in [Bycroft et al.; 2018]. Genotype imputation is the pro-
cess of statistically infer unobserved genotypes using a reference panel haplotypes. It densifies
the number of SNPs that can be tested, and facilitates combining GWAS summary statistics
across studies. The process of imputation is twofold: pre-phasing, and imputation. First, in
the pre-phasing step, a statistical method is applied to genotype data to infer the underlying
haplotypes of each individual. Second, the inferred haplotypes are combined with a reference
panel (UK10K haplotype reference merged with 1000 Genomes Phase 3 reference panel) and the
unobserved genotypes are predicted (imputed). The imputation process is extensively described
here https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/impute, kb, 1.pdf. Imputation was carried
out with the IMPUTE4 program (https://jmarchini.org/software/). The result of the imputa-
tion process is a dataset with 93,095,623 autosomal SNPs, short indels and large structural
variants in 487,442 individuals. The imputed genotypes, obtained from the UK Biobank repos-
itory, were provided in BGEN file format (https://enkre.net/cgi-bin/code/bgen/dir?ci=trunk)
and consisted of 93,095,623 autosomal SNPs, short indels, and large structural variants. See

[Bycroft et al., 2018] for more details.

Quality control protocol. Before all analyses, the genetic data underwent a stringent quality
control protocol, excluding participants with unusual heterozygosity, high missingness (Data
field 22027), sex mismatches, such as discrepancy between genetically inferred sex (Data field
22001) and self-reported sex (Data field 31). Variants with minor allele frequency (MAF) < 0.01
were filtered out from the imputed genotyping data using PLINK 1.9 [Chang et al., 2015] to

retain the common variants only.

2.1.2 Human Connectome Project

The Human Connectome Project (HCP) is an open-access population-wide cohort study that
includes 1,206 participants with extensive MRI, behavioural measurements, and whole genome
genotyping data, released in April 2018 [Van Essen et al., 2013]. All participant are healthy
young adult twins and non-twin siblings ranged in age from 22 to 37 years old and free from
current psychiatric or neurological illnesses. They provided informed consent and the study was
approved by the Institutional Review Board of Washington University.

This study used the HCP Si1200 release. This release consisted of 1,113 volunteers, age range
between 22 to 37 years (606 females, mean age=28.8+3.7 years), who underwent an MRI exper-
ience. Furthermore, to avoid any possible confounding effects related to ancestry, we restricted
our analysis to individuals identified as Caucasian using the sample quality control information
provided by the Human Connectome Project [Van Essen et al., 2013]. The potential remaining

cryptic population structure were accounted for by considering the first four principal compon-
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ents of the principal component analysis of the genotype data covering 78.75% of the explained
variance (See Fig. A.1). These were included as covariates. Details about data acquisition para-
meters, data processing of multi-modalities of MRI images used in our studies as well as details
about genetic data and the quality control applied will be summarised and presented below.
For additional technical details, refer to the the Human Connectome Project S1200 Subjects
Data Release Reference Manual (10 April 2018) (https://www.humanconnectome.org/) and to

[Van Essen et al., 2013].

2.1.2.1 Data acquisition details on HCP samples

Two MR imaging modalities were considered in the manuscript as each of them potentially
captures unique neurobiological details: resting state functional MRI (rsfMRI) and task-based
functional MRI (tfMRI). Briefly, the acquisition parameters used for each modality are described

here.

Resting-state functional MRI data.
Resting-state functional MRI (rsfMRI) data were acquired on 3T Siemens "Connectom Skyra'

scanner using the following parameters:

Resolution: 2.0 x 2.0 x 2.0mm53,

Field-of-view matrix: 208 x 180mm,

Repetition time (TR) = 720ms,

Echo time (TE) = 33.1ms,

Acquisition time = 14 : 33 min.

As a result, 3D volumes of the volunteers’ brain are acquired every 720 ms during 14:33 minutes
resulting in 1200 brain volumes in time represented by a 4D image. All images were collected
over two scanning sessions. Each session consists of two runs that were acquired in an alternate
opposite phase encoding directions (right-to-left (RL) and left-to-right (LR)), for a total of
approximately 1 h of resting-state data collected for each participant. During the resting-state
scan, participants were instructed to keep their eyes open with relaxed fixation on a projected
bright cross-hair on a dark background and presented in a darkened room [Van Essen et al.,

2013].

Task-based functional MRI data.

Task-based functional MRI images captures changes in the activity of the neuronal populations
and seek to induce different neural states in the brain [Logothetis, 2008]. The task-based
functional MRI (tfMRI) images were acquired on 3T Siemens "Connectom Skyra" scanner with

the same EPI pulse sequence parameters as for rsfMRI data:

« Resolution: 2.0 x 2.0 x 2.0mm?,

o Field-of-view matrix: 208 x 180mm,
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o Repetition time (TR) = 720ms,
o Echo time (TE) = 33.1ms,

e Acquisition time = 14 : 33 min.

Seven tasks of two runs each were acquired in an alternate opposite phase encoding directions
(L/R, R/L): Working Memory (Duration=5:01 min, Frames per run=405), Gambling (Dur-
ation=3:12 min, Frames per run=253), Motor (Duration=3:34 min, Frames per run=284),
Language (Duration=3:57 min, Frames per run=316), Social Cognition (Duration=3:27 min,
Frames per run=274), Relational Processing (Duration=2:56 min, Frames per run=232), Emo-
tion Processing (Duration=2:16 min, Frames per run=176). These tasks are described in more
detail in [Barch et al., 2013]. During the task-based experience, stimuli were projected onto a
computer screen behind the volunteer’s head and the screen was viewed by a mirror positioned
approximately 8 cm above the volunteer’s face. Relevant to our work, we will describe the

language task experiment implemented in the HCP cohort.

The language task.

The language task implemented in the Human Connectome Project cohort was developed by
Binder and colleagues [Binder et al.; 2011]. Tt consists of two runs that each interleaves 4 blocks of
a story task and 4 blocks of a mathematics task. The story task presents participants with brief
auditory stories adapted from Aesop’s fables, followed by a 2-alternative forced choice question
about the topic of the story. The example provided in the original Binder paper (p. 1466)
is "For example, after a story about an eagle that saves a man who had done him a favour,
participants were asked, “Was that about revenge or reciprocity?"'. The math task aurally
presents to participants a series of arithmetic operations (e.g., "fourteen plus twelve"), followed
by "equals" and then two choices (e.g., "twenty-nine or twenty-six"). Participants requires to
complete these arithmetic operations. The math task is adaptive in order to try to maintain
a similar level of difficulty across participants. The length of each block varies (average of
approximately 30 seconds), but the task was designed so that both task blocks length match.
Refer to [Binder et al., 2011] and to HCP manual (https://www.humanconnectome.org/) for

more details.

2.1.2.2 Data processing details on HCP samples

All the MR data preprocessing steps were carried out by the HCP brain imaging team using
the minimal preprocessing pipeline described in [Glasser et al., 2013]. Briefly, the preprocessing
of resting-state functional MR images includes correction for Bo distortion, registration to the
participant’s structural scan, normalisation to the 4D mean, brain masking, and non linear
warping to MNI space. The volumes were denoised as well by using 24 confound time series
derived from the motion estimation (3 rotations, 3 translations, their first derivatives and all 12
resulting regressors squared) followed by ICA-FIX denoising. The spatial preprocessing steps
for task-based functional MRI are identical to those used for rsfMRI.
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2.1.2.3 Genetic data: genotyping

The HCP genetic data contain genotypes for 1,142 of the 1206 total released participants, in-
cluding 149 pairs of genetically-confirmed monozygotic twins (298 participants) and g4 pairs of
genetically-confirmed dizygotic twins (188 participants). Overall, there are 457 different famil-
ies in the study, as determined by genetic analysis. These data were released on the database
of Genotypes and Phenotypes (dbGaP) on March 1st, 2018. Genotyping data were obtained
under dbGaP application number #17771 (dbGaP Study Accession: phso01364.v1.p1). Geno-
typing completed on Infinium Multi-Ethnic Genotyping Array (MEGA) chip with PsychChip
and ImmunoChip content (2,052,643 markers). Further details are available in [Elam et al.,

2021, Van Essen et al.,; 2012] and https://www.ncbi.nlm.nih.gov/.

2.2 Definition of brain regions and tracts of interest

In the chapter 1.3, we introduced state-of-art methods that are generally used to analyse MRI
data. In this work, we have chosen to address the genetics of the human language connectome
using the region of interest approach. The first step of this approach consists on identifying a
set of functional regions of interest that fits our needs. This step is an important, albeit difficult,
choice. In this section, we provide details about the choice of the ROIs and the tools used to

generate them regarding both human language functional and anatomical connectivity.

2.2.1 Functional connectomes

Different methods to estimate the functional connectomes exists in the literature (see chapter
1.3.2 for more details). During my thesis, we focused on the ROIs-based approach. This choice
was motivated by two complementary reasons. First, as participants during resting-state are not
engaged in any language task-experiments, the use of regions identified through task paradigm,
ensures the validity of the resting-state signal masked regarding language processing. Second,
this approach provides a greater interpretability regarding the different subprocesses implied by
these regions. This is achieved by taking advantage of the richness of the knowledge acquired
during task experiences and the derived contrasts. In this work, two sets of regions of interest
were employed for defining the language network. At the beginning of this thesis, we had
chosen a set of regions of interest that includes the perisylvian regions which cover both Broca
and Wernicke’s areas. Later, we decided to look at a more extended language network and
identified a meta-analysis regrouping and analysing a significant number of scientific reports.
This meta-analysis offered a more general view of the language regions, a rich interpretation of
the regions’ classification regarding language components (phonology, semantic and syntax) and
more importantly, it offers potentially a more consensual set of ROIs within the neuroscientific
community. These sets of regions will be successively defined below. To refer to the regions
defined under each set of ROIs, we use the following terms: Supramodal phonology, semantics
and sentence processing (SmPSS) for the latter one, and one-contrast sentences structure (OcSS)
for the former one. The core steps of the used pipeline for the functional connectome estimation

are common to both UK Biobank and HCP imaging data. It is estimated from each set of brain
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ROIs that form brain parcellations (nodes) by measuring their pairwise interactions termed as
functional connectivity (edges). It is worth noting that all regions with less than 100 voxels

were excluded from the derived analyses.

One-contrast sentences structure (OcSS). OcSS was defined based on the probabilistic
activation map of a single fMRI contrast [Pallier et al., 2011]. This atlas of 7 supramodal
areas, estimated on a group of 20 healthy participants, is based on activation during language
comprehension. These regions of interest are located in the frontal and temporal lobe and refer
to the inferior frontal activations centred on the pars triangularis (BA45/44) and pars orbitalis
(BA 45/47) and along the superior temporal sulcus from its anterior part to the temporal pole

junction. These ROIs are summarised in Fig. 2.1.

Broca's area
(BA 44/45)

BA 44, pars opercularis M Superior temporal gyrus (STG) Dorsal Pathways Ventral Pathways
EJ:Jiso(rll:fgt:)ntal |: BA 45, pars triangularis W Middle temporal gyrus (MTG) == Arcuate fasciculus «= Inferior fronto-occipital fasciculus
BA 47, pars orbitalis W Inferior temporal gyrus (ITG) == Superiorlongitudinal == Uncinate fasciculus
W Superior temporal sulcus (STS) fasciculus

Figure 2.1 — Overview of the regions obtained from [Pallier et al., 2011]. Each language seed is color-coded
according to its language category: phonology (blue), semantic (red), and syntax (green). ROIs of different components
that were not spatially distinct are color-coded as pink (semantic/syntax), cyan (phonology/semantic) and white for the
three language component. Different gyri and sulcus, known to be relevant for language: the inferior frontal gyrus (IFG),
middle temporal gyrus (MTG), superior temporal gyrus (STG), and superior temporal sulcus (STS), are color-coded.
Numbers in the left hemisphere (LH) represents language-relevant Brodmann areas (BA) which were defined on the basis
of cytoarchitectonic characteristics. The pars opercularis (BA 44), the pars triangularis (BA 45) represents Broca’s area.
The pars orbitalis (BA 47) is located anterior to Broca’s area. BA 42 and BA 22 represents Wernicke’s area Friederici
[2z011]. Both supramarginal gyrus (BA40) and angular gyrus (BA39), also known as Geschwind’s territory, are represented
by green and yellow colors respectively. The primary motor cortex (BA4), the premotor cortex and the supplementary
motor area (B6) are colored in orange. Within the left hemisphere, dorsal and ventral long-range fiber bundles connect
language areas and are indicated by color-coded arrows.

Supramodal areas: phonology, semantics and sentence processing (SmPSS). We lever-
age a large-scale meta-analysis of 946 activation peaks (728 peaks in the left hemisphere, 218
peaks in the right hemisphere) obtained from a meta-analysis of 129 task-based fMRI language
studies [Vigneau et al., 20006, 2011]. The identified fronto-parietal-temporal activation foci re-
vealed via a hierarchical clustering analysis, 50 distinct, albeit partially overlapping, clusters of
activation foci for phonology, semantics, and sentence processing: 30 clusters in the left hemi-
sphere and 20 in the right hemisphere.

Because this overlap could unduly increase the co-activation between regions and to avoid a de-

convolution bias in the estimation of the functional connectivity, we proceeded as follows. First,
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because the clustering process was performed for each component independently, we checked
whether pairs of clusters belonging to different language-component networks were spatially
distinct considering the significance of their mean Euclidean distance with paired t-tests. We
identified areas that are common to multiple language components; in the temporal lobe, the
anterior part of the superior temporal gyrus (T1a) area appears to be common to all three lan-
guage components, the anterior part of the superior temporal sulcus (Pole) and Lateral/middle
part of the middle temporal gyrus (T2ml) are common to semantic and sentence’s clusters and
the posterior part of the left inferior temporal gyrus (T3p) to semantic and phonology clusters.
In the frontal lobe, the L|R dorsal part of the pars opercularis (F3opd) and the ventral part of
the pars triangularis (F3tv) are common to semantic and syntactic clusters. In these cases, we
retained the larger cluster and assigned it multiple labels. Second, ROIs were obtained for each
cluster by building a 3D convex-hull of the peaks in the MNI space and were then subjected
to a morphological opening operation. Third, in case of overlap between the convex-hull ROIs,
the common region between the two ROIs was attributed to the most representative in terms
of the number of peaks. This preprocessing resulted in 25 multilabelled ROIs: 19 in the left

hemisphere and 6 in the right hemisphere which are summarised in Fig. 2.2 and Table 2.1.

Wernicke's area
Broca's area (BA 42/22)

(BA 44/45)

BA 44, pars opercularis B Superior temporal gyrus (STG) Dorsal Pathways Ventral Pathways
Inferior frontal |: BA 45, pars triangularis B Middle temporal gyrus (MTG) = Arcuate fasciculus « Inferior fronto-occipital fasciculus

gyrus (IFG) A culu - onteo
BA 47, pars orbitalis W Inferior temporal gyrus (ITG) — Sup?nur longitudinal == Uncinate fasciculus
W superior temporal sulcus (STS) fasciculus

Figure 2.2 — Overview of the regions obtained from the meta-analysis. Each language seed is colour-coded
according to its language category: phonology (blue), semantic (red), and syntax (green). ROIs of different components
that were not spatially distinct are colour-coded as pink (semantic/syntax), cyan (phonology/semantic) and white for the
three language component. For the sake of ROIs figure visibility, the coordinates were modified. The exact coordinates
for each ROI are available in Table 2.2. Different gyri and sulcus, known to be relevant for language: the inferior frontal
gyrus (IFG), middle temporal gyrus (MTG), superior temporal gyrus (STG), and superior temporal sulcus (STS), are color-
coded. Numbers in the left hemisphere (LH) represents language-relevant Brodmann areas (BA) which were defined on
the basis of cytoarchitectonic characteristics. Numbers in the right hemisphere (RH) represents the language-relevant BA
counterpart. The pars opercularis (BA 44), the pars triangularis (BA 45) represents Broca’s area. The pars orbitalis (BA
47) is located anterior to Broca’s area. BA 42 and BA 22 represents Wernicke’s area [Friederici, 2011]. Both supramarginal
gyrus (BA40) and angular gyrus (BA39), also known as Geschwind’s territory, are represented by green and yellow colours
respectively. The primary motor cortex (BA4), the premotor cortex and the supplementary motor area (B6) are coloured
in orange. Within the left hemisphere, dorsal and ventral long-range fibre bundles connect language areas and are indicated
by colour-coded arrows.
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Table 2.1 — Overview of the regions obtained from the meta-analysis. Each ROI is character-
ised by its abbreviated anatomical label defined by Vigneau et al. [2006, 2011] and is labelled

according to the language component it belongs to: phonology, semantic, and syntax.

Hemisphere Regions of interest Phonology Semantic  Sentence
Planum temporale (PT) v
Rolandic sulcus (RolS)
Superior temporal gyrus (T1) v
Supramarginalis gyrus (SMG) v
Precentral gyrus (Prec)
Dorsal part of the pars triangularis of the inferior frontal gyrus (F3td) v
Anterior fusiform gyrus (Fusa)
Opercular part of the inferior frontal gyrus (PrF3op)
Angular gyrus (AG)

Left hemisphere  Pars orbitaris of the left inferior frontal gyrus (F3orb)
Posterior part of the middle frontal gyrus (F2p)
Posterior ending of the superior temporal gyrus (STSp)
Posterior part of the middle temporal gyrus (T2p)
Temporal pole (Pole)
Lateral/middle part of T2 (T2ml)
Posterior part of the left inferior temporal gyrus (T3p) v
Dorsal part of the pars opercularis (F30pd)
Ventral part of the pars triangularis (F3tv)
Anterior part of T1 (T1a) v
Anterior part of the middle frontal gyrus (F2antR) v
Precentral gyrus (PrecR)

Right hemisphere Anteri.or part of tT1 overlapping the Heschl's gyrus (T1a/HeschIR) v
Superior temporal gyrus (T1R) v

Middle part of the STS (T2pR)
Upper part of the pars opercularis of F3 (F30pdR)
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Table 2.2 — Centre of mass of the language processing regions of interests retained in both left
and right hemispheres. Each ROI is characterised by its abbreviated anatomical label defined
by [Vigneau et al., 20006, 2011] and its centre of mass MNI stereotactic coordinates (x, y, z, in
mm).

Hemisphere ROls X y z
Prec -46.76 2.01 25.85
RolS -45.28  -09.40  44.17
F3orb -35.82  35.30 -10.77
T3p -45.90 -56.48  -7.35
F3td -42.15  25.10 14.54
Tzp -39.30 -65.25 2.05
SMG -40.68 -50.25 40.86
Tia -54.07 -11.85 -5.85
F3tv -45.20 14.24 4.23

Left hemisphere STSp -47.12 -56.92  24.07

PrF3op -39.61 2.00 390.34
Fusa -35.27 -37.17 -12.89
T -50.46 -38.56 14.32
Taml -54.09 -39.62 -2.84
F2p -34.72 10.94 48.80
F3opd -43.00 21.97 25.70
PT -59.89 -28.11 8.67
Pole -45.00 5.19 -26.79
AG -43.93 -70.85 22.20
TiR 51.84 -38.51 3.40

F3o0pdR 49.67 14.93 27.48

Right hemisphere F2antR 46.64 39.80 5.06

T2pR 54.76  -42.11 -7.73
Tia/HeschlR  56.54 -13.38 0.81
PrecR 52.68 -1.49  24.15

2.2.2 Anatomical connectomes

The core steps of a pipeline for the anatomical connectivity estimation are common to both
UK Biobank and HCP imaging data. Although the UK Biobank team provides two types of
meaningful diffusion IDPs, these do not include all key language white matter tracts making
them not the most adapted to our study. Starting from this observation, we identified one set
of tracts of interest that comprises well-known language white matter bundles and used it as a

standard-space mask. Details about this atlas are provided below.

Atlas of Human-language Brain Connections Spherical deconvolution tractography of
frontal white matter connections was performed by [Rojkova et al., 2016], resulting in a probab-
ilistic atlas of the interlobar, commissural, projection and short U-shaped tracts in a population
with a large age range. This atlas provides probabilistic maps of the well known white matter
tracts that connects the different brain areas including language brain areas. The latter are
represented by the three branches of the superior longitudinal fasciculus (SLF I, II, III), the

uncinate fasciculus, the three segments of the arcuate fasciculus (anterior, long, posterior), the
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inferior fronto-occipital fasciculus (IFOF), the frontal U-shaped tracts, the frontal aslant tract
(FAT), five U-shaped fronto-insular tracts (FITs) and the frontal corpus callosum which connect

both hemispheres. These tracts are summarised in Fig.2.3
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FRONTAL ASSOCIATION TRACTS

=

Figure 2.3 — Spherical deconvolution tractography of frontal white matter connections. (Source: [Rojkova
et al., 2016]) For each tract a single participant map is supplied as a representative example of the individual anatomy.
First (SLF I, light blue, no. 1), second (SLF II, dark blue, no. 2) and third (SLF III, pink, no. 3) branches of the superior
longitudinal fasciculus; cingulum (yellow, no. 4); uncinate (pink, no. 5); long (LS, red, no. 6) and anterior (AS, green, no.
7) segments of the arcuate fasciculus; inferior fronto-occipital fasciculus (IFOF, no. 8); frontal corpus callosum (CC, no. 9);
corticospinal tract (CST, no. 10); fronto-thalamic projections or anterior thalamic radiations (blue, no. 11); fronto-striatal
projections (yellow, no. 12); fronto-pontine projections (no. 13); paracentral U tract (pink, no. 14); hand superior (green,
no. 15), middle (yellow, no. 16) and inferior (red, no. 17) U tract; face U tract (blue, no. 18); frontal aslant tract (pink, no.
19); fronto-insular tract 1 (FIT 1, light blue, no. 20), 2 (FIT 2, dark blue, no. 21), 3 (FIT 3, red, no. 22), 4 (FIT 4, yellow,
no. 23) and 5 (FIT 5, green, no. 24); frontal superior longitudinal (FSL, light blue, no. 25); frontal inferior longitudinal
(FIL, pink, no. 26), frontal orbito-polar tract (FOP, yellow, no. 27) and fronto-marginal tract (FMT, red, no. 28). The
overall visualization and screenshots were performed in Anatomist (http://brainvisa.info).
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2.3 Rank-based inverse-normal transformation

The rank-based inverse normal transformation (INT) [Beasley et al, 2009] transforms the
sample distribution of a continuous variable to make it appear more normally distributed. It is
commonly used in genetic researches and applied during genome-wide association studies of non-
normally distributed traits. It consists on creating a modified rank variable and then computing

a new transformed value of the phenotype for the ith individual:

/ T; —C
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where r; is the ordinary rank of the measure for ith individual, N represents the sample size,

®~! denotes the standard normal quantile, y; is the value after transformation, and ¢ = % as

),c €0, %} (2.1)

recommended by [Blom, 1958]. Other such INTs are minor variations, with ¢ replaced by other

values. In MOSTest [van der Meer et al., 2020], the authors used ¢ = %

2.4 Heritability

Heritability is defined as the proportion of a variance for a particular phenotype, measured at
a particular age, that is attributable to genetic variation [Visscher et al., 2008]. Please refer
to chapter 1.4.1 for more details on its definition. This section is dedicated to the approaches
and bioinformatic tools that are usually used by the genetic community for the heritability
estimation. The proportion of additive genetic variance in the neuroimaging phenotypic variance,
also called narrow-sense heritability, can be estimated using either the pedigree information using
SOLAR (Sequential Oligogenic Linkage Analysis Routines) or the genotyped SNPs information
from common genetic variant using genome-based restricted maximum likelihood (GREML)

[Yang et al.,; 2011]. Briefly, these are detailed below.

Pedigree analysis.

The heritability estimation for imaging-genetic cohorts that include groups of related individuals
is performed using extended pedigrees. The pedigree based variance components linkage method,
as implemented in the SOLAR software [Almasy and Blangero, 1998], estimates the narrow-
sense heritability defined as the proportion of the phenotypic variance explained by the additive
genetic variance: h? = Z—% The variance of a quantitative phenotype is given by 012) = 03 + 102,
where ag is the genetic variance due to the additive genetic factors and o2 is the variance due
to individual environment.

Assuming that all environmental effects are uncorrelated among family members, the covariance
matrix € for a pedigree of individuals is given by Q = 2 @03 + I o2, where ® is the kinship
matrix representing the pairwise kinship coefficient among all individuals. It is noteworthy that
it is a strong assumption that in many situation will not hold. Significance of the estimated
heritability is determined by testing the null hypothesis U; = 0 (no linkage). In order to do that,

a comparison is done between the likelihood of the model in which 03 is constrained to zero with

2
g

adjusted with respect to both sex and age covariates. In this thesis, we used SOLAR software

that of the model where oZ is estimated. Prior to heritability estimation, phenotype values were
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package [Almasy and Blangero, 1998] to estimate the heritability from the pedigree information.
Outputs from SOLAR comprise the heritability value, the significant p-value and the standard
error (SE) for a given phenotype.

SNP-based heritability estimation.

Contrary to the pedigree analysis, this approach computes the narrow-sense heritability based
only on the genotyping data which is used to estimate the degree of relationship between un-
related individuals: the so-called genetic relationship matrix (GRM). It is noteworthy that the
independence between participant is critical for the validity of the SNP-based heritability. In
order to do that, the following steps are followed: first, a quantitative control consisting in
filtering the SNPs is done via PLINK [Purcell et al., 2007]. The following parameters were
used: missing genotype < 5%, minor allele frequency < 1%, Hardy-Weinberg equilibrium <
1075, The SNPs in moderate linkage disequilibrium (with a 720£0.9)) are kept. Next, the GRM
is first estimated with the remaining SNPs and is then fitted by a mixed effect linear model
(MLM) in order to identify the amount of variance attributed to the selected set of SNPs via
the restricted maximum likelihood (REML) method. Prior to heritability estimation, pheno-
type values were adjusted for sex, genotype array type, age, agcuisition center and the first
10 genetic principal components provided by UK Biobank to account for population structure.
In this thesis, we used the Genome-wide complex trait analysis (GCTA) Yang et al. [2011] to
estimate the heritability from the single nucleotide polymorphisms (SNPs) genotyped inform-
ation. Similarly to SOLAR Almasy and Blangero [1998], outputs from GCTA comprise the
heritability value, the significant p-value and the standard error (SE) for a given phenotype.

2.5 Genetic correlation

Genetic correlation is a key population parameter that describes the shared genetic architec-
ture of complex traits and diseases [Ni et al., 2018]. It is the proportion of additive genetic
covariance of pairs of endophenotypes. It can be estimated by current state-of-the-art meth-
ods, i.e., Bivariate genome-based restricted maximum likelihood (Bivariate GREML) [Lee et al.,
2012] (https://cnsgenomics.com/software/geta/Overview), linkage disequilibrium score regres-
sion (LDSC) [Bulik-Sullivan et al., 2015] (https://github.com/bulik/ldsc), or independent SNP
Effect Concordance Analysis (iISECA) (https://neurogenetics.qimrberghofer.edu.au/iSECA/) [Nyholt,
2014]. The bivariate-GREML approach requires individual-level population-based SNPs geno-
type data while the two latter do not require individual-level genotype data but instead use

GWAS summary statistics.

2.6 Massive univariate and multivariate genome-wide association
study
As stated in chapter 1.4.5, the predominant strategy for identifying genomic loci associated

with complex traits is through massive univariate genome-wide association studies (GWAS).

Univariate approaches involve the association between a single phenotype and each of millions
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isolated genetic variants. According to the nature of the endophenotype of interest -binary or
continuous value-, various models can be adjusted. For example, for quantitative phenotypes,

the following linear model is fitted:

y=GBc+ XBx +e (2.2)

where y is the phenotype vector, GG is the genotype matrix for the current variant, X is the
fixed-covariate matrix and contains an intercept column, and e is the error term subject to

least-squares minimisation.

This state-of-the-art massive univariate approach results in a total of more than one million
statistical tests. To assess significance, a consensus threshold p = 5e — 8 is considered by the
genomic community. It is comparable to a Bonferroni correction of the traditional 0.05 type 1
error rate for one million statistical tests. However, this approach raise a certain number of limit-
ations. A massive univariate approach ignores the biological information shared across multiple
traits -the phenomenon called pleiotropy (See section 1.4.3)-. When several (endo)phenotypes
are of interest, the number of tests significantly increase and it forces the users to adopt a
stringent multiple comparison correction of the p-values to control the family-wise error rate.
The colossal correction for multiple tests often leaves no significant associations. This limitation
has led to the emergence of new multivariate statistical methods, designed to take into ac-
count the correlations among the biologically related (endo)pheontypes, classically encountered

in imaging-genetic studies.

On the other hand, multivariate approaches quantify the simultaneous contributions of loci
to multiple traits by taking advantage of their genotypic-phenotypic structures. Importantly,
multivariate frameworks offer several advantages. These were listed in chapter 1.4.5 and we
will take the liberty of listing them here as well for the sake of clarity. First, by taking into
account the cross-trait covariance, multivariate analyses increase the statistical power in case
of the presence of genetic correlation between the different traits [Allison et al., 1998, Zhu
and Zhang, 2009]. Second, by performing a single test for association with a set of traits,
multivariate procedures alleviate the multiple comparison correction [Ilei et al., 2008, Zhu and
Zhang, 2009]. Third, it improves the ability to detect susceptible genetic variants whose effects
are too small to be detected in univariate analysis. Fourth, contrary to the massive univariate
approach, multivariate GWASes have the advantage of leveraging the distributed nature of
genetic effects and the presence of pleiotropy across modalities and is thus, more consistent with
biology [Chavali et al., 2010].

To date, several multivariate approaches to genome-wide association study have been proposed;
MQFAM implemented in the genetic association analysis software PLINK (MV-PLINK) [Fer-
reira and Purcell, 2009] is based on canonical correlation analysis, a Bayesian multiple phen-
otype test implemented in SNPTEST (MV-SNPTEST) [Marchini et al., 2007], the R package
MultiPhen (MultiPhen) [O'Reilly et al., 2012] tests the linear combination of phenotypes for
each SNP by performing ordinal regression, a Bayesian model comparison and model averaging
for multivariate regression in BIMBAM (MV-BIMBAM) [Guan and Stephens, 2008, Stephens,
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2013], the Principal Component of Heritability Association Test (PCHAT) [KKlei et al., 2008],
a Trait-based Association Test that uses Extended Simes procedure (TATES) [Van der Sluis
et al., 2013], MultiABEL implements Pillai’s trace MANOVA [Pillai, 1955] to calculate mul-
tivariate p-value from summary statistics, adaptive multi-trait association test (aMAT) [Wu,
2020], Multi-Trait Analysis of GWAS (MTAG) [Turley et al., 2018], METAL [Willer et al.,
2010], genome-wide association meta-analysis (GWAMA) [Migi and Morris, 2010], Joint Ana-
lysis of GWAS Summary Statistics (JASS) [Julienne et al.; 2020] and Multivariate Omnibus
Statistical Test (MOSTest) [van der Meer et al., 2020].

Comparative studies have shown the utility of multivariate methods listed as it substantially
boost statistical power and gene discovery over univariate tests [Galesloot et al., 2014, Porter
and O’Reilly, 2017]. However, imaging-genetic community struggles to adopt these methods
due to the lack of interpretation. Indeed, an important challenge is to identify "central" pheno-
types driving the multivariate association from ones with minor contributions to the genotype-
phenotypes association statistic. To date and to our knowledge, there is one bioinformatic tool;
Meta-Phenotype Association Tracer (MetaPhat) [Lin et al., 2020] that address this issue by
performing decomposition and tracing the traits of highest and lowest statistical importance to

identify subsets of central traits at each associated variant.

In our work, we used the Multivariate Omnibus Statistical Test (MOSTest) [van der Meer et al.,
2020] to conduct our multivariate analysis. Briefly, MOSTest is a twofold method. First, a
univariate GWAS on each of pre-residualised and normalised (rank-based inverse-normal trans-
formation) endophenotypes is carried out using a standard additive model of linear association
between genotypes and each phenotype. Statistical significance was assessed from Pearson’s
correlation coefficient. Second, the MOSTest statistic Xj2a for the jth SNP is calculated as a
Mahalanobis norm Xj2 = sz’lzj, where 2 = (21],...,2Kj) is the vector of z-scores of jth
SNP across K phenotypes and R is the K-by-K correlation matrix of Z; matrix of z-scores,

calculated from association tests on a randomly permuted genotype vector of each SNP.

In this thesis, we performed a multivariate genome-wide association study (mvGWAS) between
the filtered imputed genotypes described in the genetic quality control section 2.1.1.3 and the
significantly heritable endophenotypes (see chapter 4), using MOSTest [van der Meer et al.,
2020] described above. All endophenotypes were pre-residualised controlling for covariates in-
cluding sex, genotype array type, age, recruitment site, and first ten genetic principal com-
ponents provided by UK Biobank. In addition, as mentioned above, MOSTest performs a
rank-based inverse-normal transformation (see section 2.3) of the residualised endophenotypes
to ensure that the inputs are normally distributed. The distributions across the participants
of all endophenotypes were visually inspected before and after covariate adjustment. MOSTest
generated summary statistics that capture the significance of the association across language
endophenotypes. To account for multiple testing over the whole genome, statistically significant

SNPs were considered as those reaching the genome-wide threshold p = 5e—8.
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2.7 Fine-mapping: identification of genomic risk loci and functional

annotations

To further process the output from the multivariate genome-wide association study, the FUMA
online platform vi.3.6a [Watanabe et al., 2017] with default parameters was used. FUMA
aims to use functional, biological information to prioritise genes based on GWAS outcomes. It
is organised as two separate processes; SNP2GENE and GENE2FUNC. Details of these two

processes are presented below.

2.7.1  FUMA: SNP2GENE

SNP2GENE consists in a multi-step process which characterises genomic loci, annotates candid-
ate SNPs in genomic loci and performs a SNP-to-gene mapping using three different strategies. It
also perform gene-based and gene-set genome-wide association analyses using MAGMA [de Lecuw

et al., 2015]

Characterization of significant hits.

The SNP2GENE process allows us to identify distinct, significantly associated genomic loci, and
independent lead SNPs within those loci.

The characterization of significant hits process allows us to identify distinct, significantly as-
sociated genomic loci, and independent lead SNPs within those loci. UKB release2b 10k white
British is used as a reference panel to calculate LD across SNPs and genes. SNPs with genome-
wide significant mvGWAS p-values p < 5e—8 and independent from each other at r? < 0.6 were
identified. For each of these SNPs, all known SNPs, regardless of being available in the input,
that had r2 > 0.6 with them were included for further annotation (candidate SNPs). Based on
the identified independent significant SNPs, independent lead SNPs were also defined among
them as having low LD (r? < 0.1) with any others. Additionally, each genomic locus can con-
tain multiple independent significant SNPs and lead SNPs. Indeed, if LD blocks of independent
significant SNPs are closely located to each other (< 250kb, default parameter), they are merged
into one genomic locus.

SNPs were annotated for functional consequences on gene functions using ANNOVAR [Wang
et al., 2010], Combined Annotation Dependent Depletion (CADD) scores [IKircher et al., 2014],
and 15-core chromatin state prediction by ChromHMM [Ernst and Kellis, 2012] by matching
chromosome, position, reference, and alternative alleles.

Additionally, RegulomeDB v2.0 [Boyle et al., 2012] was queried externally to annotate SNP.
Coding hit SNPs are also annotated with polymorphism phenotyping v2 (Polyphen-2) [Ra-
mensky et al., 2002].

SNPs were mapped to genes at significant mvGWAS loci using three different strategies; posi-

tional mapping, expression quantitative trait loci (eQTL) mapping, and chromatin interaction

mapping.

Gene-level analyses.
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FUMA implements different methods that enable to summarise SNP associations at the gene
level and to associate the set of genes to biological pathways.

Gene-based association analysis was performed using mvGWAS summary statistics as input
into MAGMA [de Leeuw et al., 2015]. This process examines the joint association signals of all
SNPs within a given gene (including 50 kb upstream to 50 kb downstream of the gene), while
considering the LD between the SNPs. FUMA applies a Bonferroni correction for the number
of tested genes to identify significant gene associations.

Gene-set enrichment analysis was performed using MAGMA [de Leeuw et al., 2015], to test
for enrichment of association of predefined gene sets. This process is performed for curated gene
sets and the Gene Ontology (GO) terms [gen, 2021, Ashburner et al., 2000] obtained from the
Molecular Signatures Database (MsigDB) [Subramanian et al., 2005]. A Bonferroni correction
is applied considering all tested gene sets.

Gene-property analysis was performed using MAGMA [de Leeuw et al., 2015] to test if genes
are over-represented in developmental stages and considering gene expression from BrainSpan
data source from 11 developmental stages (from early prenatal to middle adulthood) and 29
different age groups (from 8 post-conceptional weeks to 40 years old). An FDR correction was

used to correct for multiple testing.

2.7.2 FUMA: GENE2FUNC

GENE2FUNC provides information on expression of prioritised genes and tests for enrichment of
the set of genes in pre-defined pathways. It offers four main views regarding gene expression per
tissue types (GTEx) or developmental stage (BrainSpan), enrichment of differentially expressed
gene (DEG) sets in a certain tissue compared to all other tissue types, enrichment of input genes
in gene sets using hypergeometric tests, and gene table with input genes mapped to OMIM ID,
UniProt ID, Drug ID of DrugBank and linked to GeneCards.

2.8 Protein networks

Interactions between proteins are important as they play a crucial role in cellular functions and
biological processes. Multiple databases track the protein-protein interaction network using both
physical interaction and functional associations. For example, the STRING database [Szklarczyk
et al., 2017] gathers interaction experiments where physical interactions are identified and take

into account experimental evidence that includes:

o Conserved neighbourhood: genes that occur repeatedly in close neighbourhood in (proka-

ryotic) genomes
e Co-occurrence: the presence or absence of linked proteins across species.
e Fusion: individual gene fusion events per species.

e Co-expression: identify genes that show similar expression pattern across many different

conditions.
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o Experiments: significant protein interaction datasets, gathered from other protein-protein

interaction databases.

e Databases: curated knowledge from manually annotated databases of protein complexes

as well as molecular pathways.

e Automatic text mining: process the vast biomedical literature and extract from the ab-

stracts of scientific literature.

In this work, we used curated experimental protein-protein interaction (PPI) observations from
the STRING [Szklarczyk et al.; 2017] database (https://string-db.org/, version 11.5), and sought

for a functional enrichment through this analysis.
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64 Human language endophenotypes

In chapters 1 and 2, we presented basic principles of imaging and genetics useful for understand-
ing imaging-genetic studies as well as the data and statistical methods explored. Large-scale
neuroimaging studies usually summarise the imaging data into image-derived phenotypes (IDPs),
which reduces raw data into a compact set of biologically meaningful measures. Compared to
the traditional voxel level approach, the IDPs approach is simple, and effectively reduces the
high-dimensional data into interpretable, compact, convenient features. However, IDPs remain
indirect measures of the biological process of interest and meaningful interpretation requires
care. Here, we provide the standard pipelines used to extract novel endophenotypes covering
both psychometric and image derived phenotypes that encompass the human language connec-
tome. To this end, the two well-known large-scale UK Biobank and HCP cohorts were used.
These endophenotypes will be subjects to heritability analysis and genetic association studies
as described further in the chapters 4 to 7. Genetic association analysis with complex cognitive

traits can be enriched through the use of different information on trait development.

3.1 Psychometric measures

Two types of behavioural scores are available in the HCP cohort. Cognitive performance scores
measured during the MRI session and psychometric measures acquired using standardized tests
from the National Institute of Health (NIH), independently from the task performed inside the
MRI scanner. These latter ones includes fluid intelligence, working memory, and language assess-
ments such as vocabulary comprehension and oral reading decoding. A brief description taken as
it is from (https://nihtoolbox.force.com/s/article/nih-toolbox-scoring-and-interpretation-guide)

is presented below. The NIH measure consists of:

¢ Oral reading recognition: measured by the oral reading recognition Test. The participants
are asked to read and pronounce letters and words as accurately as possible. Higher scores

indicate better reading ability.

e Vocabulary Comprehension: measured by the Picture Vocabulary Test. The participants
are presented with an audio recording of a word and four photographic images on the
computer screen and is asked to select the picture that most closely matches the meaning

of the word. Higher scores indicate higher vocabulary ability.

o Fluid Intelligence: measured by the Penn Matrix Test (PMAT) which measures fluid
intelligence via non-verbal reasoning. Participants are presented with patterns made up of
2x2, 3x3 or 1x§ arrangements of squares, with one of the squares missing. They must pick
one of five response choices that best fits the missing square on the pattern. Two features
are declined from this test: the number of correct answers and the median reaction time

(RT) for correct answers.

e Working Memory: measured by the List Sorting Working Memory Test. The participants
sequence different visually and orally presented stimuli. Pictures of different foods and
animals are displayed with both a sound clip and written text that name the item. The

task has two different conditions: 1-List and 2-List. In the 1-List condition, participants
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are required to order a series of objects (either food or animals) in size order from smallest
to largest. In the 2-List condition, participants are presented both food and animals and

are asked to report the food in size order, followed by the animals in size order.

The distribution of these psychometric measures can be appreciated in Fig.3.1
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Figure 3.1 — Distribution of the NIH measures collected by HCP team independently from the
language fMRI task

The cognitive performance scores measured during the MRI session consist of:

o Language task math: three features are measured, namely the accuracy percentage during
math condition in language task, the median reaction time for correct trials and the average

difficulty level of the presented stimuli.

o Language task overall: three features are measured, namely the average of accuracy from
each condition in language task, the average of median reaction time from each condition

in language task.

o Language task story: three features are measured, namely the accuracy percentage during
story condition in language task, the median reaction time for correct trials and the average

difficulty level of the presented stimuli.
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The distribution of these psychometric measures can be appreciated in Fig.3.2
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Figure 3.2 — Distribution of behavioral scores collected by HCP team during the language fMRI
task, composed of MATH and STORY tasks
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3.2 Language neural activation: a volume-based analysis

As described in the chapter 1.3.2, task-based fMRI (tfMRI) measures BOLD signal changes
between task-stimulated states such as visual, auditory, or language and control states (resting
state). These data are presented as a succession of 3D images that vary in time (4D image) and
which reflect the state of the brain at a given moment regarding the cerebral stimulation of the
experiment set up. The analysis of task-based fMRI data consist of participant-level and group-
level analyses. The participant-level known as the first level consists of fitting a general linear
model (GLM) using the task-based fMRI data and performing a t-test or an F-test according
to the condition one wants to highlight; either a condition versus baseline or a combination of
conditions (possibly two-, three- or higher-dimensional) that explains a significant proportion of
the signal. The group-level, also known as the second level consists on averaging the activation
across participants. Both first-level and second-level analysis are described in the chapter 1.3.2.
In this section, we will describe the methodology applied to analyse the language task-based
fMRI data in the HCP cohort and the pipeline used to extract the endophenotypes related to
language.

Concerning the first level, activity estimates were computed for the preprocessed functional time
series (4D image) using a GLM implemented in Nilearn. Two predictors of interest were included
in the GLM model design: the story predictor covered the variable duration of a short story,
question, and response period (~ 30s), and the math predictor covered the duration of a set of
math questions designed to roughly match the duration of the story blocks. These predictors
were convolved with a double gamma “canonical” hemodynamic response function (HRF) to
generate the main model regressors. To compensate for slice-timing differences and variability
in the HRF delay across regions, temporal derivative terms derived from each predictor were
added and were treated as confounds of no interest. A cosine drift model was used. To correct
for autocorrelations in the fMRI data, an autoregressive AR1 noise model was used. Finally,
we applied to the task-volume, a spatial smoothing using an unconstrained 3D Gaussian kernel
of full width at half maximum (FWHM) = 4mm. The Fig.3.3 represents the design matrix
used to fit the GLM model. At the end, we obtain a S-map for each participants. To access
the estimated ( coefficients of the GLM model, we used the contrast represented in the Fig.3.3
to perform a story versus baseline contrast. The role of the contrast is to select columns of
the model —and potentially weight them— to study the associated statistics. In order to get
statistical significance, we form a t-statistic, and convert it into z-scale. The values are scaled
across voxels to match a standard Gaussian distribution (mean=o, variance=1). At the end, we
obtain a z-map for each individuals.

Regarding the second level, activity estimates were computed for the individual S-maps using
a GLM implemented in Nilearn followed by a ¢ contrast. The Fig3.4 shows the activations
for the story versus baseline (The intercept of the general linear model being considered as
baseline). The intercept reflects the mean of the residual BOLD time series after removing

variance explained by all other regressors.
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Figure 3.3 — First level model.

Figure 3.4 — Group analysis language task activation maps. Group average activations
for the HCP language task: story versus baseline is shown with a lower threshold of z = £10.
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Estimating neural activation endophenotypes.

In this work, we estimated task-based neural activation in HCP, using perisylvian cortical areas
as regions of interest (ROI) introduced in chapter 2.2.1. The obtained first-level z maps were
masked using the ROIs and averaged for each individual. This resulted in 25 language neural

activation regarding the SmPSS set of regions.

3.3 Resting-state functional connectome

As discussed in the chapter 1.3.2, intrinsic brain activity assessed while at rest can recover specific
brain functional activations making it a good surrogate of functional neuronal processes. The
identification of brain networks from fMRI data whether from resting-state or task-based, is often
attempted by first, identifying a set of functional "nodes" such as ICAs maps or spatial ROIs.
Next, conducting a connectivity analysis between the regions, based on the fMRI time-course
signal averaged in each region. In the next section, we will summarise the pipeline undertaken

in this work for the functional connectivity estimation.

Estimating functional connectome endophenotypes.

In this work, we estimated task-free FC in UK Biobank [Bycroft et al., 2018], using perisylvian
cortical areas as regions of interest (ROI) introduced in chapter 2.2.1. Different measures can
be considered regarding the estimation of the connectivity between nodes as highlighted in the
chapter 1.3.2. General correlation-based approaches are known to be quite successful [Smith
et al., 2011]. The simplest measure of pairwise similarity between two timeseries is covariance
and in case of normalisation of the timeseries, we refer to it as full correlation. The correlation
between two timeseries does not imply that the functional connection between two nodes is
direct. Indeed, the correlation coefficient might give misleading results if there is a third node
that is numerically related to both initial nodes. Partial correlation overcomes this limitation
by ruling out indirect effects in the correlation structure. In this thesis, we chose to use the
Partial correlation as it offers a more accurate interpretation of our results.

Overall, the functional connectivity estimation was performed by applying the following steps:
the preprocessed resting-state BOLD signal was masked using the ROIs and averaged at each
time volume. A connectome matrix was computed using Nilearn [Abraham et al.; 2014] for each
participant using a shrunk [Ledoit and Wolf, 2004] estimate of partial correlation [Marrelec
et al.,, 2006] (See Fig. 3.5). This resulted in 300 (= 25 x 24/2) and 15 (= 6 x 5/2) edges
connecting language ROIs for each individual for both the SmPSS and OcSS sets of regions,
respectively. Each edge —also denoted functional connectivity (FC)— is further considered as

a candidate endophenotype.
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Figure 3.5 — Functional connectome extraction pipeline with two main steps: 1) Map of
brain regions already defined on resting-state fMRI images. 2) Extraction of mean BOLD signal
for each ROIs and quantifying functional interactions from these time series signal extracted.
At the end of the second step, we obtain a functional connectome for each participants where
each cell represents a resting-state functional connectivity.

This pipeline was applied to both UKB and HCP cohorts and the endophenotypes extracted
can be appreciated in the Fig.3.6
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Figure 3.6 — Functional connectome visualisation Mean functional connectivity of the 300
and 15 endophenotypes, calculated using a shrinked estimate of partial correlation Marrelec
ot al. [2000] (estimated with a Ledoit-Wolf estimator Ledoit and Wolf [2004]) over 32,186
and 778 individuals using both UKB and HCP rsfMRI participants respectively. (a) Circos
plot represents the mean FC estimated using SmPSS ROIs on UK Biobank. (b) Circos plot
represents the mean FC estimated using SmPSS ROIs on HCP. (c¢) Circos plot represents the
mean FC estimated using OcSS ROIs on UK Biobank.

3.4 Anatomical connectome

Diffusion-weighted imaging quantifies water diffusion in biological tissues and is used to identify
the different fibber tracts in the human brain by tracking the directional diffusion of water
in the brain. It provides a number of measures that can be used for statistical and genetic
analyses. Regarding the heritability of structural connectivity, several genetic studies showed

that DTI measures are heritable and therefore worthy targets for more in-depth genetic analysis.
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More details are provided in the chapter 1.3.1. In the next section, we will summarize the

methodological steps undertaken for the endophenotypes estimation.

Estimating anatomical connectome endophenotypes.

The anatomical connectivity endophenotypes are estimated using a set of 35 white matter
tract masks defined from the probabilistic atlas [Rojkova et al., 2016] introduced in the chapter
1.5.2.2 and that are enumerated below: The arcuate fasciculus (long, anterior, and posterior
segments), the superior longitudinal fasciculus (I, II, III), the inferior fronto-occipital fasciculus,
the uncinate fasciculus, the frontal inferior longitudinal, the frontal superior longitudinal, the
inferior longitudinal fasciculus, the frontal aslant tract, the fronto-insular tracts (1-5) and the
corpus callosum.

In this thesis, we mainly conduct phenotypic multivariate analysis. Overlapping white matter
tracts might be a serious limitation regarding the interpretation of the mvGWAS results. Indeed,
the identification of the set of tracts that weight the most in the multivariate association becomes
difficult. In light of this observation, we apply a stringent threshold at 9o% of probabilities,
defined after a visual inspection, in order to reduce significantly the overlap and allow us a
fine interpretation of our results. Finally, the images derived phenotypes (IDPs) are estimated
as follow: first, a binarisation of the set of 35 white matter tracts is performed to generate
the tract-masks. Next, for each individuals, and for each DTI/NODDI output image type, an
IDPs is generated by averaging the skeletonised images across the set of the tracts of interest.
As these structural white matter tracts are assessed by 9 indices: fractional anisotropy (FA)
maps, tensor mode (MO), mean diffusivity (MD), intracellular volume fraction (ICVF), isotropic
volume fraction (ISOVF), mean eigenvectors (L1, L2, L3), and orientation dispersion index
(OD), 315 = 35 x 9 dMRI endophenotypes are derived. Fig.3.7 summarize the methodological

steps for the endophenotypes estimation.
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Figure 3.7 — Anatomical connectome extraction pipeline with one main steps consisting
on mapping brain tracts of interest already defined on skeletonised images and extracting mean
value for each tract of interest. At the end, we obtain an anatomical connectome for each
participants where each cell represents an anatomical connectivity.

3.5 Conclusion

Multi-modal data collection in large-scale cohorts offers us a great opportunity to investigate
open neuroscience questions from different perspectives. A valuable aspect of this work has
been to exhibit different (endo)phenotypes regarding human language trait. These quantitative
endophenotypes reflects human brain inter-individual variability. In order to ensure that these
endophenotypes represents human language as cognitive process of interest, we adopted a region
of interest approach. Whether for cortical regions or white matter tracts, the ROIs were carefully
chosen. These ones were previously associated with language impairment, and/or identified in
task based fMRI as supporting language and in case of WM tracts, reach language cortical
regions. In the next chapter, we will investigate and show that many of these (endo)phenotypes

are heritable and therefore worthy targets for more in-depth genetic analysis.
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How do we decide if a cognitive trait such as language is genetically influenced? In quantitative
genetics, heritability reflect cognitive traits variance that can be attributed to genetics versus
environmental factors or their interactions. The traits may be either language related behaviour
or language brain image derive measures (IDP). In chapter 1.4.1, the heritability concept has been
detailed. Relevant to our study, heritability of human language has been extensively reported
in the literature as revealed by reviews of the field [Stromswold, 2001]. Previous studies have
mainly focused on twins, adoption, and linkage studies of language. The predominant genetics
investigations concerns behavioural traits. With the recent availability of large-scale imaging-
genetics cohorts, researches have addressed the heritability of language hypothesis regarding the
left-right hemispheric asymmetry measured from neuroimaging [Carrion-Castillo et al., 2020,
Le Guen et al.; 2020, Sha et al.; 2021]. Details about all these studies are provided in the chapter
1.6.1. However, we could not help but notice a lack of researches of the heritability of language
regarding other available modalities. Thus, the present contribution seeks to provide elements of
answers regarding this scientific question by taking advantage of the different (endo)phenotypes
exhibited during this thesis and presented in the previous chapter. In this chapter, we use
pedigree and real whole genome genotyping data as well as psychometric measures (chapter 3.1)
and MRI data including task-based fMRI (see chapter 3.2), resting-state fMRI (see chapter 3.3),
and diffusion-weighted MRI (see chapter 3.4) from the two cohorts introduced in the chapter
2.1; the Human Connectome Project (HCP) and the UK Biobank (UKB).

The objective of the present work is two-fold: 7) to contribute to the study of language heritability
and compare the obtained results with the literature; i) to filter the endophenotypes for the
multivariate genome-wide association study presented in both chapter 6 and 7.

Furthermore, the estimation of heritability reported by pedigree studies have been subject of
multiple concerns as the estimation might be inflated [Hofer et al., 2018, Stromswold, 2001,

van der Lee et al., 2017]. The possible origins of these discrepancies will be further discussed.
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4.1 Pedigree-based heritability of behavioural and neuroimaging

(endo)phenotypes: a twin study

Using SOLAR, we estimated the pedigree-based heritabilities of each endophenotypes. As cov-
ariates, the sex, the age, the ethnicity (Hispanic or not), and the first four principal components
of the principal component analysis of the genetic data were considered. To account for multiple

tests, a 0.05 threshold on False Discovery Rate (FDR) adjusted p-values was applied.

4.1.1 Cognitive behavioural assessment

The pedigree-based heritability (h?) was estimated for each of the language scores we described
in the chapter 3.1. After a FDR correction for multiple testing, all language scores have a
significant pedigree-based heritability (Table 4.1), ranging from 19.4% for the language task

math median reaction time to 71.7% for the oral reading recognition.

Table 4.1 — Heritabilities of language related behavioral scores. Endophenotypes in bold
represent language related behavioral scores with significant heritability after false discovery
rate correction at p < 0.05.

Endophenotype heritability P value SE FDR P value
Oral reading recognition 71.7% 4.74E-30 0.038 6.16E-29
Vocabulary Comprehension 64.2% 1.78E-24 0.045 1.16E-23
Fluid Intelligence 60.0% 9.54E-19 o0.055 4.13E-18
Working Memory 50.2% 5.50E-15 0.058 1.79E-14
Language task math accuracy 43.5% 8.39E-12 0.061 2.18E-11
Language task overall accuracy 41.5% 3.94E-10 0.065 8.54E-10
Language task story difficulty level 36.9% 1.00E-07 o0.069 1.86E-07
Fluid Intelligence reaction time 34.0% 3.00E-07 0.069 4.87E-07
Language task math difficulty level 34.1% 1.30E-06 o0.071 1.88E-06
Language task story accuracy 19.9% 1.38E-03 0.068 1.64E-03
Language task overall median reaction 20.6% 1.38E-03 o0.072 1.64E-03
Language task story median reaction time 19.5% 1.68E-03 0.069 1.82E-03

Language task math median reaction time 19.4% 2.87E-03 0.072 2.87E-03
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4.1.2 Brain neural activation

The pedigree-based heritability (h?) was estimated for each of the neural activations measured
in the 25 SmPSS regions. In order to take into account the multiple tests, FDR correction on
the p values was applied. This revealed 16 regions out of the 25, whose language activation
displays a significant pedigree-based heritability (Table 4.2), ranging from 14.4% for the T2pR
to 34.9% for the T1.

Table 4.2 — Heritabilities of language task activation. Bold endophenotypes represents
language task activation with significant heritability after false discovery rate correction at
p<0.05.

Endophenotype heritability P value SE FDR P value

F2p 32.9% 2.00E-07 0.065 1.25E-06
TiR 32.3% 2.00E-07 0.064 1.25E-06
T1 34.9% 1.00E-07 0.065 1.25E-06
T2ml 33.0% 2.00E-07 0.064 1.25E-06
SMG 31.1% 5.00E-07 0.064 2.50E-06
Tia.HeschlR  30.5% 1.10E-06 0.066 4.58E-06
Pole 31.1% 4.90E-06 0.070 1.75E-05
AG 27.2% 7.90E-06 0.064 2.47E-o05
Tia 27.9% 1.07E-05 0.066 2.97E-05
STSp 28.0% 7.34E-05 0.076 1.83E-04
PT 23.4% 1.47E-04 0.066 3.34E-04
PrF3op 21.2% 2.40E-04 0.062 £5.00E-04
F3orb 19.8% 1.66E-03 0.070 3.19E-03
F3o0pdR 17.8% 3.22E-03 0.067 5.76E-03
F3opd 16.2% 5.39E-03 0.065 8.98E-03
T2pR 14.5% 8.50E-03 0.063 1.33E-02
F2antR 11.0% 4.50E-02 0.067 6.57E-02
Fusa 10.9% 4.73E-02  0.068 6.57E-02
PrecR 10.6% 6.05E-02 0.070 7.96E-02
F3td 8.7% 8.10E-02 0.064 1.01E-01
Prec 7.7% 1.05E-01  0.063 1.25E-01
T3p 7.5% 1.18E-01  0.065 1.34E-01
T2p 5.4% 1.99E-01  0.065 2.16E-01
F3tv 4.6% 2.40E-01 0.066 2.50E-01
RolS 4.1% 2.54E-01  0.063 2.54E-01

4.1.3 Functional connectome

The pedigree-based heritability (h?) was estimated for each of the 300 functional connectivity
extracted from SmPSS set of ROIs. In order to take into account the multiple tests, FDR
correction on the p values was applied. This revealed 217 FCs with a significant pedigree-based

heritabilities (Fig. 4.1, Table B.1), ranging from 11.4% for the F2p«<F3td to 48.7% for the
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F3tveF3orb FCs.

Figure 4.1 — Pedigree-based heritabilities of brain functional connectivities extracted using SmPSS ROIs.
Circle plot where all 25 regions are represented (19 ROIs on the left represent the left hemisphere and 6 ROIs on the right
represent the right hemisphere) illustrating the FCs with significant pedigree-based heritability after false discovery rate
correction at p < 0.05. Each link between two regions represents an endophenotype. The intensity of the color between two
regions represents the pedigree-based heritability of an endophenotype as defined by the color bar. Please refer to Table
B.1 for all pedigree-based heritability values.

4.2 SNP-based heritability of neuroimaging endophenotypes: a

general population study

Using GCTA, genomic-relatedness-based restricted maximum-likelihood (GREML) analyses were
performed to estimate the SNP-based heritabilities of each endophenotypes. These ones were
pre-residualised controlling for covariates including sex, genotype array type, age, recruitment
site, and ten genetic principal components provided by UK Biobank. In addition, we performed
a rank-based inverse-normal transformation of the residualised endophenotypes to ensure that
the inputs are normally distributed. To account for multiple tests, a 0.05 threshold on False

Discovery Rate (FDR) adjusted p-values was applied.

4.2.1 Functional connectome

The SNP-based heritability of the resting-state functional connectome was investigated using

two set of ROIs introduced in the chapter 2.2.1. These are presented below.

4.2.1.1  Functional connectivity extracted using OcSS ROls

The single-nucleotide polymorphism (SNP)-based heritability (h?) was estimated for each of
the 15 functional connectivity extracted from the OcSS set of ROIs. In order to take into

account the multiple tests, FDR correction on the p values was applied. This revealed 14 FCs
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with a significant SNP-based heritabilities (Fig. 4.2, Table B.2), ranging from 4.9% for the
IFGtri<»pSTS to 12% for the IFGtri<+IFGorb FCs.

Figure 4.2 — SNP-based heritabilities of brain functional connectivities extracted using OcSS ROIs. Circle
plot where all 6 regions are represented (6 ROIs on the left represent the left hemisphere. No region in the right hemisphere
are included in OcSS ROIs.) illustrating the FCs with significant SNP-based heritability after false discovery rate correction
at p < 0.05. Each link between two regions represents an endophenotype. The intensity of the color between two regions
represents the SNP-based heritability of an endophenotype as defined by the color bar. Please refer to Table B.2 for all
SNP-based heritability values.

4.2.1.2 Functional connectivity extracted using SmPSS ROls

The single-nucleotide polymorphism (SNP)-based heritability (h?) was estimated for each of the
300 functional connectivity extracted from SmPSS set of ROIs. In order to take into account
the multiple tests, a FDR correction on the p-values was applied. This revealed 142 FCs with a
significant SNP-based heritabilities (Fig. 4.3, Table B.3), ranging from 3.5% for the SMG+T1
to 14.3% for the SMG+F30opd FCs.
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Figure 4.3 — SNP-based heritabilities of brain functional connectivities extracted using SmPSS ROIs.
Circle plot where all 25 regions are represented (19 ROIs on the left represent the left hemisphere and 6 ROIs on the
right represent the right hemisphere) illustrating the FCs with significant SNP-based heritability after false discovery rate
correction at p < 0.05. Each link between two regions represents an endophenotype. The intensity of the color between two
regions represents the SNP-based heritability of an endophenotype as defined by the color bar. Please refer to Table B.3

for all SNP-based heritability values.
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4.2.2 Anatomical connectome

The single-nucleotide polymorphism (SNP)-based heritability (h?) was estimated for each of the
315 bilateral bundles extracted measures of brain anatomical connectivity. All but two ACs
(313) showed significant SNP-based heritability (False discovery rate (FDR)-corrected p < 0.05)
(Table B.4), ranging from 3.8% for the left fronto Insular tract number 4 measured with OD to

62.7% for the corpus callosum measured with ICVF.

4.3 Discussion

A pivotal question in biology is the heritability of a particular trait. It provides a quantit-
ative estimation of its association with a set of genetic markers and thus, informs us about
the richness of its contribution in the trait of interest. We observed a hierarchy of language
heritability estimates from the Human Connectome Project (twin study) with 19.4-71.7% for
language-behavioural scores, 11.4-48.7% for resting-state FC, and 14.4-34.9% for language-task
activations. In terms of heritability ranking, the resting-state functional connectivity edges
show low levels of heritability compared to behavioural scores. This observation was also made
regarding structural features such as cortical or white matter tracts features (in UKB [Elliott
et al., 2018]). Overall, we show evidence that human language is, to some extent, under genetic
control. Furthermore, we observed a discrepancy between both SNP-based and Pedigree-based

heritabilities. The possible origins of these discrepancies will be further discussed.

4.4 Are heritability estimates inflated in twin studies?

We estimated the heritability of human language considering differents endophenotypes. These
ones displayed a substantial genetic influence. We noticed a discrepancy between heritability
estimates depending on the cohort used, with higher estimates using the HCP compared to the
UK Biobank. For the sake of clarity, we focus here on the heritability estimates of the brain

functional connectivities extracted using SmPSS ROlIs.

The origin of this discrepancy may be related to differences in either the design parameters of
the analyses, or the cohorts’ environmental conditions which differ significantly. As regards the
design parameters like the length of the rsfMRI used to compute the FC, global effects can be
seen in Fig. 4.4 which highlights the heritability differences. This figure also reports the global
minor differences in heritability estimates when using SOLAR or GCTA in a same cohort (HCP)

for which both genotyping and pedigree information were available.
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Figure 4.4 — Comparison of heritabilities estimated according to different design para-
meters. The endophenotypes extracted using SmPSS ROIs. Boxplots 1 and 2 display the her-
itability distributions estimated on UKB (using GCTA) and HCP (using SOLAR) respectively.
Boxplot 3 : HCP-FCs using GCTA. Boxplot 4 : HCP-FCs using GCTA and considering the
household effect. Boxplots 5 to 7 : HCP (using SOLAR) on rsfMRI sessions with the same
duration as in UBK (6 min).

In order to shed lights on the origin of the observed heritability gap, we attempted to rule

out a certain number of hypotheses supposed to be at the origin of these discrepancies. First,

we investigated whether the observed gap is due to the difference of genetic information (pedi-
gree/genotyping data) between both cohorts. As both genetic information are available in the
HCP cohort, we computed the heritability of FCs using pedigree in one hand and using the
genotyping data in an other hand. We observed that the heritability computed on HCP gen-
otyped SNPs are slightly higher than those obtained with pedigrees (See Fig.4.4). Although,
these estimations are highly correlated (r = 0.97,p = 1.1e — 209, Fig.4.5¢), it is noteworthy that
the SNP-based heritability estimation does not capture all genetic information. Indeed, only
common SNPs are considered in our analysis. Rare SNPs variants, epigenetic variations, copy
number variation are not modelised in the analysis. Additionally, genotype-based heritability
with GCTA assume no shared environment. In practice, this is achieved by using unrelated
individual. As HCP cohort is composed of twins and siblings, this HCP-GCTA analysis do
not follow that standard and its derived results can be biased. These results should be taken
with caution. Furthermore, while SNP-based GCTA heritability captures the SNP heritability,
pedigree-based SOLAR heritability captures a much broader version of the heritability includ-
ing for example non-additive effect [Manolio et al.; 2009]. Starting from this observation, the

comparison between both estimates became hard to do and irrelevant.
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Figure 4.5 — Comparison between heritabilities obtained with SOLAR on HCP (concatenation
of the 4 runs) and the ones obtained with : (a) GCTA on HCP, (b) SOLAR on HCP taking
into account the shared environment, (¢) GCTA on UKB, (d) SOLAR on HCP (6 first minutes
of the signal), (e) SOLAR on HCP (6 minutes in the middle of the signal), (f) SOLAR on HCP
(6 last minutes of the signal)

Second, we took into account the shared environment effect in the HCP cohort and found
that the heritability estimations remained highly similar (r = 0.87,p = 1.3e—97) to the ones
estimated without modeling the shared environment (See Fig.4.5b). These results could, to
some extent, be compared to the adoption studies presented in chapter 1.6.1. The adoption
studies compare adopted children’s linguistic abilities with those of their adopted and biological
relatives. Taken as a whole, these studies suggest that genetic factors affect language abilities.
This observation is in line with our findings. However, this results should be taken with caution.

One question arises: To what extent the household feature capture the environment variable
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and to what extent, should we compare it to adoption studies which are certainly more relevant

for the estimation of the human language environment part?

Third, as highlighted by [Elliott et al., 2019], long resting-state time series allow a better
estimation of intrinsic connectivity and thus higher estimates of heritability. The resting-state
time series last longer in HCP compared to UKB. We thus cut the time series the HCP’s
participants and considered the 6 first minutes, the 6 minutes in the middle and finally the
6 last minutes as shown in the Fig.4.6. We calculated resting-state FC endophenotypes and
estimated their heritabilities. As in [Elliott et al., 2019], we observe that the values of h2 are
higher for the whole uncut sessions compared to the 6-minute sessions in HCP (See Fig.4.5d,
4.5, 4.5f). This suggest that long resting-state fMRI time series improve the reliability of

intrinsic connectivity estimates and subsequently, it better captures inter-individual differences.
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Figure 4.6 — Different cut of the resting-state time serie (6 minutes) obtained from HCP cohort.

Fourth, we compared the heritability of FC obtained from HCP cohort (6 first minutes, 6
minutes in the middle and 6 last minutes) using genotyping data (GCTA [Yang et al., 2011])
with the heritability of FC obtained from UKB cohort (6 minutes) using genotyping data as
well (GCTA [Yang et al., 2011]). Although the session lengths are now comparable, a significant
discrepancy between hg values remains (See Fig.4.5g, 4.5h, 4.51). Nevertheless, the overall
pattern remains correlated: UKB/HCP-(6 first minutes) r = 0.55, p = 2.9e — 25; UKB/HCP-(6
minutes in the middle) r = 0.53,p = 1.6e — 23; UKB/HCP-(6 last minutes) r = 0.43,p =
2.6e — 15. One potential explanation of this observed gap concerns the age of the participants in
each cohort. Contrary to UK Biobank which constitutes a relatively old sample (mean age=54
+7.45 years), participants in HCP cohort are younger (mean age=29 +3.56 years) and thus, the
influence of the environmental factors may differ. A growing body of literature examines changes
in heritability estimates over time [Bergen et al., 2007]. For example [Bouchard, 2013] show
evidence that the heritability of 1Q increases with age. It reaches an asymptote at about 0.80 at
18720 years of age and continuing at that level well into adulthood. Furthermore, the heritability
of IQ appears to diminish with advancing age. In a sample of adult twins (aged from 27 to 59) and
older cohort (aged from 60 to 94), a decrease of verbal and performance 1Q heritability measures
was observed with 70%, 73% and 56% and 60% respectively [Finkel and McGue, 1998]. [Bergen

et al., 2007] suggests that beyond the tumultuous formative years, environmental effects may
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begin to accumulate and form a larger proportion of the total phenotypic variance. Too little
research has been done to deduce the overall pattern of heritability changes in later adulthood.
Future studies that cover different developmental stages; i.e. adolescence and late adulthood,

will inform us whether the observed heritability reflect some age-related specificity.

Overall, these different hypotheses contributed to explain the gap observed between both SNP-
based and pedigree-based human language heritability estimates. The results obtained are in line
with [Le Guen et al., 2019] work that used surface area and cortical thickness as endophenotypes.
Although these different hypotheses helped to explain the observed discrepancy between the two
heritability estimates, this experimental design does not allow us to present a definitive answer

that would explain this phenomenon.

4.5 Conclusion

We observed significant heritabilities of the language (endo)phenotypes. These heritabilities
display a large range of values depending on the trait considered but also the design of the
cohort: twin versus general population cohorts. This work emphasises that human language
brain organisation is under relatively strong genetic control. We found lower levels of SNP
heritability for functional connectivity compared to heritability estimated in twin cohorts. This
is a frequently voiced concern and typical of many traits in the literature [Elliott et al., 2018,
Yang et al., 2015]. It may results from upward bias in twin study estimates due to gene—gene
and gene—environment interactions [Purcell, 2002, Zuk et al., 2012], and/or downward bias of

SNP heritability due to uncaptured rare genetic variation.
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In the previous chapter, we estimated the human language heritability in both psychometric
and imaging approaches. We used two large-scale resources currently available, namely the
Human Connectome Project (HCP) and the UK Biobank (UKB) introduced in the chapter
2.1 to contribute to the study of language heritability. We observed a hierarchy of language
heritability estimates from the Human Connectome Project (twin study) with 19.4-71.7% for
language-behavioural scores, 11.4-48.7% for resting-state FC, and 14.4-34.9% for language-task
activations. In terms of heritability ranking, the resting-state functional connectivity edges
show low levels of heritability compared to behavioural scores. This observation was also made
regarding structural features such as cortical or white matter tracts features (in UKB [Elliott
et al., 2018]).

Although functional MR imaging is recognised to produce valuable endophenotypes [Elliott
et al., 2018], resting-state FCs between language regions represent remote measures of language
as the participants are not engaged in any language task-experiments and simply stay at rest. As
stated in the chapter 1.3.2.1, previous works reported that resting-state derived endophenotypes
are correlated with behavioural language processing [Cheema et al., 2021, Cross et al., 2021,
Koyama et al., 2011, Stevens et al., 2017]. However, with the current release, no behavioural
language scores were provided in the UK Biobank cohort. We were thus unable to confirm
the observed correlations between resting-state FC endophenotypes and language behavioural

scores.

In this chapter, we want to take advantage of the Human Connectome Project cohort which
comprises language-related scores, language task-based fMRI data as well as resting-state fMRI
data to calibrate the relevance of the resting-state image derived endophenotypes in the human
language context through a bivariate heritability study. To do so, we performed bivariate ge-
netic analyses to quantify the shared genetic influence between human language measure. In
this chapter, we use pedigree and psychometric measures (chapter 3.1) and MRI data including
neural activation measured in language task fMRI experiment (see chapter 3.2), functional con-
nectivity estimated in resting-state fMRI (see chapter 3.3) from the Human Connectome Project
(HCP) cohorts introduced in the chapter 2.1. We restricted our analysis to a small number of
cognitive performance scores measured during the MRI session and considered the most repres-
entative of the human language. We used the average of accuracy of both conditions (STORY
and MATH) in the language task to characterise the individual performance. Regarding the NTH
behavioural scores, the working memory, the oral reading recognition, and the vocabulary com-
prehension scores were further considered in this analysis. All of these features are well detailed
in the chapter 3. A large number of endophenotypes are derived from these three modalities.
This methodological choice aims to reduce the number of tests to be performed and alleviates
the correction for multiple tests. Furthermore, and for the sake of multiple corrections, we
first conducted a (endo)phenotypic correlation to quantify the relationship between the human
language performances (scores), and the two functional traits derived from the imaging. The
significant (endo)phenotype pairs were subjected to a bivariate genetic analysis. The latter one
quantify the shared genetic part taken in the correlation of these (endo)phenotypes pairs. As

covariates, the sex, age, the ethnicity (Hispanic or not), and the first four principal components
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of the principal component analysis of the genetic data were considered. Furthermore, to define
significantly phenotypically and genetically correlated (endo)phenotypes, a 0.05 threshold on
False Discovery Rate (FDR) adjusted p-values was applied to account for multiple testing on
the paired (endo)phenotypes for both pheonotypic and genotypic correlation analysis.

5.1 Shared heritability between both resting-state functional

connectivity and neural activations

We computed the endophenotypic correlation between resting-state functional connectivity (300
FCs) and neural activations (25). Table C.1 summarises the endophenotypic correlation and
their associated p-values. P-values correction for multiple testing revealed 215 among 7500 =
300%25 paired FCs-neural activations endophenotypes ranging from r = —0.34, pppr = 4.76e—19
for the PrF3op<+SMG with PrF3op to r = 0.11,prpr = 4.95e—02 for the F3td<+>RolS with
F3td. Next, we performed a bivariate genetic analysis using these 215 paired endophenotypes.
The shared genetic variance estimates for these endophenotypes are presented in the Table
5.1 P-values correction for multiple testing revealed 12 among 215 significantly correlated en-
dophenotypes pairs ranging from rg = 0.89, prpr = 3.19e—2 for the T1+>F2antR with T1 to
rg = 0.48, prpr = 3.19e—02 for the Pole<+AG with AG.

Table 5.1 — Shared heritabilities between both resting-state functional connectivity
and neural activations. Bold rows represents pairs of endophenotypes with significant shared
heritability after false discovery rate correction at p < 0.05. For the sake of readability, only
significant results are displayed. Pearson Correlation between pairs of endophenotypes are also
shown. The asterisk represent significant endophenotypic correlation after false discovery rate
correction at p < 0.05. Table C.1 summarises the endophenotypic correlation and their associ-
ated p-values.

Endophenotypic  Genetic

Endophenotype 1 Endophenotype 2 correlation correlation P value SE FDR P value
F2p<~SMG F3td 0.128* 100.0% 1.03E-03  Not Computable 3.19E-02
F3td<-T3p F3td -0.115* -100.0% 2.16E-03 Not Computable 3.84E-02
Ti+F2antR T1 -0.177* -89.0% 1.51E-03 0.376 3.19E-02
Prec+»F2antR PrF3op -0.124* -76.6% 6.29E-04 o0.242 3.19E-02
T2aml<~F3o0pdR Taml -0.137* -74.9% 9.93E-04 0.263 3.19E-02
Pole«+F30pd F3o0pd 0.254%* 74.4% 1.10E-04 o0.173 2.35E-02
F30pd«~SMG F3opd -0.238* -65.2% 4.15E-04 o0.172 3.19E-02
Fusa~T3p PT 0.137* 57-4% 1.22E-03 0.176 3.19E-02
Ti-Tia.HeschIR T 0.197* 53.6% 1.64E-03 o0.172 3.19E-02
PT&Ta TiR 0.181* 50.2% 1.36E-03 0.148 3.19E-02
AG«+F3orb AG 0.149* 49.6% 1.37E-03  o0.154 3.19E-02

Pole«~+AG AG 0.154% 48.2% 7.46E-04 0.138 3.19E-02
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5.2 Shared heritability between both resting-state functional

connectivity and language-related scores

We computed the endophenotypic correlation between human language performances (4 language-
related scores), and the functional connectivity estimated in resting-state fMRI (300 FCs).
Table C.2 summarises the endophenotypic correlation and their associated p-values. None of
the 1200 = 300 * 4 pairs FCs-language-related scores endophenotypes passed the correction for

multiple testing.

5.3 Shared heritability between both task activations and
language-related scores

We computed the endophenotypic correlation between human language performances (4 language-
related scores) and neural activations (25). Table C.3 summarises the endophenotypic correla-
tion and their associated p-values. P-values correction for multiple testing revealed 28 among
100 = 25 % 4 pairs FCs-neural activations endophenotypes ranging from r = 0.24,pppr =
1.09e—09 for the vocabulary comprehension and Pole to r = 0.09,prpr = 3.78e—02 for the
oral reading recognition and PT. Next, we performed a bivariate genetic analysis using these
28 pairs of endophenotypes. The shared genetic variance estimates for these endophenotypes
are presented in the Table 5.2. P-values correction for multiple testing revealed 23 among 28
significantly correlated endophenotypes pairs ranging from rg = 0.61, prpr = 4.05e—4 for the
Language task accuracy and the temporal pole to rg = 0.26, prpr = 2e—02 for the vocabulary

comprehension and T2ml.
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Table 5.2 — Shared heritabilities between both task activations and language-related
scores. Bold rows represents pairs of endophenotypes with significant shared heritability after
false discovery rate correction at p < 0.05. For the sake of readability, only significant results are
displayed. Pearson Correlation between pairs of endophenotypes are also shown. The asterisk
represent significant endophenotypic correlation after false discovery rate correction at p < 0.05.
Table C.3 summarises the endophenotypic correlation and their associated p-values.

Endophenotypic  Genetic

Endophenotype 1 Endophenotype 2 P value SE FDR P value

correlation correlation
Pole Language task overall accuracy o0.217* 61.8% 7.23E-05 0.155 4.05E-04
STSp Language task overall accuracy 0.130%* 61.1% 2.18E-04 o0.175 8.72E-04
TiR Working Memory 0.147* 59.3% 5.83E-06 0.134 8.16E-05
Pole Working Memory 0.148* 57.0% 3.23E-05 0.142 2.26E-04
Pole Vocabulary Comprehension 0.239%* 56.3% 7.36E-07 o0.112 2.06E-05
TiR Language task overall accuracy 0.095* 53.3% 5.67E-04 0.167 1.30E-03
Taml Working Memory 0.145* 53.0% 2.41E-05 o0.125 2.25E-04
PT Working Memory 0.115%* 50.9% 4.75E-04 0.146 1.23E-03
Taml Language task overall accuracy 0.142* 50.8% 3.83E-04 0.143 1.19E-03
STSp Working Memory 0.133* 49.9% 4.82E-04 o0.145 1.23E-03
T1ia Language task overall accuracy o0.175* 49.0% 2.27E-03 0.162 4.24E-03
STSp Vocabulary Comprehension 0.183* 44.8% 3.48E-04 0.131 1.19E-03
Pole Oral reading recognition 0.176* 41.8% 1.15E-04 0.108 §5.36E-04
Ta Language task overall accuracy 0.093* 39.6% 3.82E-03 0.139 6.69E-03
Tia Working Memory 0.142* 35.6% 1.04E-02  0.132 1.46E-02
TiR Vocabulary Comprehension o.105% 34.9% 1.78E-03 o0.115 3.56E-03
Taml Oral reading recognition 0.142* 34.8% 6.02E-04 0.103 1.30E-03
T1 Working Memory 0.113* 34.7% 4.59E-03 0.122  7.14E-03
STSp Oral reading recognition 0.108%* 31.2% 6.97E-03 0.120 1.03E-02
TiR Oral reading recognition 0.165* 30.0% 4.12E-03  0.000 6.79E-03
Tia Vocabulary Comprehension 0.138% 29.9% 1.31E-02  0.122  1.74E-02
T1a.HeschlR Working Memory 0.093* 28.0% 3.45E-02 0.132 4.21E-02
Taml Vocabulary Comprehension 0.126* 26.4% 1.58E-02 0.110 2.01E-02

5.4 Discussion

In the previous chapter, we showed that language related psychometric measures and image
derived phenotypes are heritable. Although resting state fMRI data are reported as heritable,
little is known about their relation to the language-related cognitive process. In this chapter, we
address this question regarding the shared genetics between these ones and direct measures of
language as cognitive process. To do so, we estimated phenotypic correlations between cognitive
abilities, neural activations and task-free data in language. Moreover, we estimated the genetic
proportion in these phenotypic correlations. Hence, we showed a shared aetiology between
resting-state functional connectivity and neural activations. This work advocate for the existence
of a link between resting-state and task-based data both phenotypically and genetically regarding

human language brain organisation.






CHAPTER 6

The genetic architecture of human
language functional connectome

Chapter Outline

6.1 Multivariate genome-wide association analysis. . . . . . . . . . . . . 97

6.2 Unraveling the genome: Evaluation of results from mvGWAS study of human
language. . . . . . . . L L L L oo o oo oo 107

6.3 Limitations. . . . . . . . . . . . .. L L L 121

6.4 Conclusions . . . . . . . . . .. 122


Yasmina Nozha Mekki


92 The genetic architecture of human language functional connectome

In the chapter 3, we exhibited different (endo)phenotypes including resting-state functional
connectome regarding human language traits. In the chapter 4, we brought out that resting-
state FC are, to some extent, under genetic control. This reinforce our belief that resting state
FC endophenotypes capture inter-individual variation in brain function, and thus, are worthy
targets for more in-depth genetic analysis. To date, no gene discovery experiments have been
reported using resting-state functional MRI derived traits. Our study is therefore an attempt
to fill this observed gap in the literature and to verify the relevance of task-free paradigm for
the study of complex cognitive trait such as language.

Notwithstanding that rsfMRI FC are heritable, they are reported as showing the lowest levels of
SNP heritability among available IDPs in UKB [Elliott et al.,; 2018]. In a massively univariate
framework, it would be really difficult to disentangle the genetic associations with each FC signal
and reach genome-wide statistical significance. Language-related brain regions share information
across components and scales that support language, and genetic variants are supposed to have
distributed effect across regions. Contrary to the massive univariate approach, multivariate
GWASes have the advantage of leveraging the distributed nature of genetic effects and the
presence of pleiotropy across modalities and is thus, more consistent with biology. Therefore,
we consider globally this synergistic system and perform a multivariate approach with MOSTest
[van der Meer et al., 2020]. This method introduced in the chapter 2.6 considers the distributed
nature of genetic signals shared across brain regions and aggregates effects across spatially
distributed traits of interest.

As mentioned in the chapter 2.2.1, in this thesis, two sets of regions of interest were employed for
defining the language network. The first one named -Ocss- is defined based on the probabilistic
activation map of a single fMRI contrast and includes the perisylvian regions which cover both
Broca and Wernicke’s areas. The second one named -SmPSS- represents a more extended lan-
guage network and is a results of a meta-analysis regrouping and analysing a significant number
of scientific reports. The latter one offers a more general view of the language regions, a rich
interpretation of the regions’ classification regarding language components (phonology, semantic
and syntax) and more importantly, it offers potentially a more consensual set of ROIs within the
neuroscientific community. In the chapter 4, we estimated the human language heritability using
both resting-state functional connectivity extracted these two sets of ROIs. In this chapter, the
same experimental design was applied to these two sets of endophenotypes. The obtained results
will be compared to each other and will allow us to judge how representative the SmPSS set of
ROIs actually is. Therefore, we performed a multivariate genetic association of the significantly
heritable FC endophenotypes of each set separately. These consists on 142 FCs and 14 FCs ex-
tracted from both SmPSS and OcSS ROIs (see chapter 4.2.1). The results from these analyses
were subjected to a replication study in an independent sample (N=4,754). Additionally, as the
connections between different language regions are ensured by the white matter fiber bundles
[Catani and Forkel, 2019, Catani et al., 2005], we hypothesised that the hit SNPs associated
with the hit FCs could be associated with neuroanatomical white matter tracts that supports
the information transmission between the regions that compose these hit-FCs. Therefore, we
tested the potential associations of the hit SNPs with the following white matter bundles: the

corpus callosum, the left frontal aslant tract, the left arcuate anterior/long/posterior segment,
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the left inferior fronto-occipital fasciculus, the left uncinate tract (See Chapter 2.2.2 for more

details). We used the endophenotypes resulting from the TBSS analysis described in the chapter
3.4.

6.1 Multivariate genome-wide association analysis

We performed a multivariate genome-wide association studies (mvGWAS) between the filtered
imputed genotypes and the two sets of significantly heritable endophenotypes highlighted in the
chapter 4.2.1.2, using the Multivariate Omnibus Statistical Test (MOSTest) [van der Meer et al.,
2020]. As stated in the chapter 2.6, all endophenotypes were pre-residualised with covariates
including sex, genotype array type, age, recruitment site, and ten first genetic principal com-
ponents provided by UK Biobank. In addition, MOSTest performs a rank-based inverse-normal
transformation of the residualised endophenotypes to ensure that the inputs are normally dis-
tributed. The distributions across the participants of all endophenotypes were visually inspected
before and after covariate adjustment. MOSTest generated multivariate summary statistics that
capture the significance of the association across all heritable language endophenotypes. To ac-
count for multiple testing over the whole genome, statistically significant SNPs were considered

as those reaching the genome-wide threshold p = 5e—8.

GWAS using FCs derived from SmPSS set of ROIs. Concerning the FCs derived using
SmPSS ROIs, we performed a mvGWAS with the 142 FCs with significant SNP-based herit-
ability. This analysis tested each SNP separately for its simultaneous association with the 142
FCs and yielded 4566 significant SNPs at a genomic threshold, distributed on chromosomes
2, 3, 5, 6, 10, 11, 14, 15, 17, 18 and 22. FUMA [Watanabe et al., 2017] software was used to
analyse mvGWAS results and identified lead SNPs at each associated locus. Considering the
genome-wide significance threshold p = 5e—8, there were 20 distinct genomic loci distributed on
the 11 chromosomes, associated with different aspects of language FC (Fig.6.1a, Table 6.1 and

Supplementary Fig. 6.2, 6.3, 6.1b, and 6.5) and represented by 20 lead SNPs.
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Figure 6.1 — Multivariate GWAS analysis of the SmPSS resting state functional con-
nectivity in 32,186 participants. Manhattan plot for multivariate GWAS accross 142 FCs.
The red dashed line indicates the genome-wide significance threshold p = 5e—8. The Quantile-
quantile plot is also shown.



94

The genetic architecture of human language functional connectome

.
i
2
g @ Top lead NP
B Lead SNPs.
S U ——
T e i cotrg e
L B e s o
soahoo  seichan  seaeoms  saatoocs  seadhone  000h00
Crvomesame 2
.
B
| ]
:,
o
EH m ot
H o
2 . 01
E X @ oplesasip
" Gl eueasws
. b
o e ™
J— R
A T T Mot coaog g
acioasz vu‘cuva_ Non-mapped non-coding genes.
‘
17 oo Lo o0 Tathano
Chvamosome 3
B
X
: B
; 8
I &
I B
i o
= 4
EN P
2 HS
:
.
e i conggree
-
slsdoon 20000 S0 5260000
‘Chromosome 3
i
.
i
2

© Toplead snp
ad

@ Independent significant SPs

xascezs = Mapped genes
s Nor-mapped protein coding genes

WmosPI2- ANKRD32-.

cwere
"

carkores
o aspcazz-
S
[

93,850,000 93,900,000 93,950,000 94,000,000 94,050,000

Chromosome 5

lead SNP: 5:94068140__AC_A

.
.
L
2 6
i s
R
£ 3
:
:
- —
S e
ST
! 48,200,000 48,250,000 48,300,000
lead SNP: rs62141276

L
o
o
o
o
e 8 % o g
0
o
o
5

A g “ee 33 i

@ Toplead NP
o SNPs

-log10 Pvalue

R
v Gwre s e
-®_ .
oo sameidt 2d .
)

o iy

=n za1-

@ Independent significant SNPs

s Mapped genes
s Normapped protein coding genes.
m Nor-mapped non-coding genes

147,200,000 147,250,000

Chromosome 3

147,100,000 147,150,000

lead SNP: rs2279829

-

® Topleaa NP

10910 Pvalue

Lead snps
@ Independent signficant SNPs

s Mapped genes
s Non-mapped protein coding genes.
s Norvmapped non-coding genes

114,090,000 114,110,000

Chromosome 2

114,070,000 112,080,000 112,100,000

lead SNP: rs62158166

@ Toplead NP
© Lead sirs
© Independent significant SNPs

10910 Pvalue

P

eRPLL3I8L

s Mapped genes
s Nor-mapped protein coding genes.
mm Norvmapped non-coding genes

cnT2A

93,200,000 93,400,000 93,600,000

Chromosome 5

92,800,000 93,000,000

lead SNP: rs145120402



6.1.

Multivariate genome-wide

association analysis

95

s
s
;
g
Z s
EES
RN
>
1
o
" 96,830,000 96,900,000 96,950,000 97,000,000 97050000
Chromosome 5
aen

4
2
g
Bt enceLast e
Pucels
96,000,000 96,050,000 96,100,000
Chromosome 10
s
1
10 ®, .
1 . .o
ER N
T 7 .o .
. N
2 s ¢ N .
g 4
T3 .
2-1e . . .
by oY) . oo °
50065000  59.070.000 59075000  50.080000  59.085.000  50,090.000
Chromosome 14
8
7
. 6
3 s
<4
% s
2
1
0
rmasie onms1a AP11.20824.6- sz
i (4 i
a0 riom2 ey
ReLZ00EAL oriz024. 1 Rerz00245+ Frox-

T

b et
RPl120820.6+
]

JPTS co —

27,200,000

27,250,000 27,300,000

Chromosome 17

lead SNP: rs34039488

Top lead SNP
© Lezd sps
@ Independent significant SHPs

= Mapped genes
= Non-mapped protein coding genes
mm Nor-mapped non-coding genes

2

[

-log10 Pvalue

2

@ Topleas snp
o

1
0.
o
o
o
0
0
o
o
o

@ Independent sigrificant SNPs

-UNCO1165  mmm Mapped genes

1432245
—

134,280,000 134,300,000

Chromosome 10

134,320,000

s Normapped protein coding genes.
mm Nor-mapped non-coding genes

lead SNP: rs11146399

2

|

e e
5 5
8 8
% . %
st f st
o H ot
H : ¢
83 i 82
5 H %
@ Toplead SNP g @ Top lead SNP
Hwir : ol
Hev— A —
— JE— JE——
e espasarasncotng g Jre— L eyt e o gnes
i |
ladieem oo imilso  izitocs  Lzitesm 122200000
Chromosoma 11
- .
s
.
s
| . .
i 7 B
8 82
3 L 1 N o8
¢ f 88
83 . 8
L5 s o
a . 63
P - 5
» g @ Top lead SNP
& i st s £, s
- . . © Independent significant SNPs
2 . .
w—Mapped genes. u - .
st cotng g - S
= S Ner s rte ot gres
pfritieiostobominetides
s14foon sLeTa00 SLABo00 SLaToo0  SLaZRo00  LaZeonn 91478000
Chromosome 15
i
1 B
M s
2 o3
F ot
T 10 . g;
. i TR
B : L
2 . ) .
o2 g s ‘2 . @ oo leas P
% ) . . s
98 LA R & ® independentsignificant SNPs
& 2 ' .
- :
0.1 o
- s —
ol AN NI CURLL HATAS STt AL <AMS P A L o o o Togpe e cog s
@ independent significant SNPs. cactstin  Res2ees Shhiace waer~ AT L0ty Ann PI1995c1s 2+ = Nor-apped non-coding genes
e
o Miese | wiemeewiels o
s Non-mapped protein coding genes. +CTB-39G8.2-LRRCI7A4P  ~RP11.293E1.1 RP11:259G18.1+
oo e
i ger s
3500000 44000000 44300000

Chromosome 17

lead SNP: 17:44270659_G_A



96 The genetic architecture of human language functional connectome

1 o of |
10

o
Seoe
AN .o

e . 52
e P Mer o o

-10g10 Pvalue
-10g10 Pvalue

p
.
@ Top lead SNP

o © Lea s

3 . o s stmo o
N . @ Independent sgifcant NP te. o ) - omgs 2
A o 2ol
0% o, J $e . .
° P = ol e, ® o RAmedtatyees

— Mappe TBCI0220-

= Nonm:

— Nonm:

73,102,000  73,104000 73106000 73108000 73,110,000 73,112,000 73,114,000 47170000 47,180,000 47,190,000 47200000  47.210,000 47,220,000
Chromosome 18 Chromosome 22

lead SNP: rs7234875 lead SNP: rs2542028

Figure 6.2 — Locus Zoom of the significant loci identified by the multiariate GWAS for functional
connectivity.
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chromosome 2

chromosome 6

chromosome 17

chromosome 18 chromosome 22

Figure 6.3 — Genomic loci, eQTL associations and chromatin interactions identified
via multivariate GWAS for functional connectivity. Circos plot representing the genomic
risk loci, and the genes associated with the loci by chromatin interactions and eQTLs. From
outer layer to inner layer: Manhattan plot. Genomic risk loci are in blue. Genes mapped by
chromatin interaction are in orange. Genes mapped by eQTL are in green. Genes mapped by
both are in red. Chromatin interaction and eQTLs links follows the same color coding presented
above.



98 The genetic architecture of human language functional connectome

GWAS using FCs derived from OcSS set of ROIs. Concerning the FCs derived using OcSS
ROIs, we performed a multivariate genome-wide association study with the 14 heritable FCs.
This analysis yielded 125 significant SNPs at a genomic threshold, distributed on chromosomes
3, 10, 14. FUMA identified 4 distinct genomic loci distributed on the 3 chromosomes, associated
with different aspects of brain language cognitive activities (Fig.6.4, Table 6.2) and represented
by 4 lead SNPs.

14

12 '

lue

-log10 P-value

Observed -Iog10 P-val

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19202122
Chromosome Expected -log10 P-value

Figure 6.4 — Multivariate GWAS analysis of the OcSS resting state functional connectivity in
32,186 participants. Manhattan plot for multivariate GWAS accross 14 FCs. The red dashed
line indicates the genome-wide significance threshold p = 5e—8. The Quantile-quantile plot is
also shown.

Validation of lead SNPs associated with rsfMRI FCs. The multivariate genome-wide
association results were replicated in an independent non-British sample considering the nominal
significance threshold p < 0.05. Following the same pre-processing steps as for the primary
sample, the non-British replication sample consists in 4,754 individuals with a mean age of 53
years (£7.55) and 2,601 female.

Concerning the -SmPSS-FCs, three lead SNPs out of twenty were replicated at the nominal
significance level (p < 5e—2) on multivariate test in the independent non-British replication
dataset: rs1440802(p = 9.58e—3), rs$35124509(p = 3.25e—3), rs11187838(p = 2.92e—2). Table
6.1 summarises these results. Moreover, these lead SNP showed association at p < 0.05 on

univariate testing of all but three specific central traits identified in the discovery mvGWAS.
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Table 6.1 — Genomic loci associated with heritable language functional connectivities
(SmPSS ROIs) using MOSTest. Lead SNP: ID of the lead SNPs within each locus. Position:
position of the SNP in the hg1g human reference genome. mvgwasP discovery -British-: MOST-
est association P value obtained using the discovery sample. mvgwasP replication -non British-:
MOSTest association P value obtained using the independent replication sample. Functionnal
category: Functional consequence of the SNP on the gene obtained from ANNOVAR. ’Central’
phenotypes: the phenotypes that contributed most to the multivariate association considering
the genome-wide association threshold (p = 5e — 8).

mvgwasP

mvgwasP

Eenomlc Lead SNP Chr  Position Eu:ctlonal nﬁnl effect E]ItlfeICt MAF (discovery (replication gearest c;ntril
ocus ategory allele allele ~British-) “non British-) ene phenotypes
1 rs62141276 2 48214217 ?nct'§<!\‘n|Ac A G 0367 p=326e-9 p=0.27 ACo79807.4 -
2 152717046 2 58041936 intergenic T C 0380 p=750e—14 p=0.95 CTD-2026C7.1 -
3 rs62158166 2 114077218  intergenic C G 0.223 p=28.69—-10 p=0.38 PAX8 RolS+PrecR
4 rs67851870 3 17554860 intronic G A 0.322 p=6.57e-16 p=0.35 TBC1D5 -
AG++F30rb,pSTS+Pole,
Pole«>T2ml, T1a+>STSp
5 rs35124509 3 89521693 exonic (o} T o0.401 p=2895e—-59 p=3.25e-3 EPHA3 STSp«+F30rb,SMG-T3p,
AG+STSp,F2p+AG,
T2ml-SMG
6 rs62266110 3 93537923  intergenic A G 0319 p=117e—-09 p=10.93 RNU6-488P -
_ w _ T2ml«PrF3op,Prec«+F30pd,
7 rs2279829 3 147106319  UTR3 T C o0.212 p="757e-21 p=0.68 ZICq Fapo>STSp.SMGeF2antR,
5145120402 5 03174765 intronic C A 0.0433 p=183-9 p=0.10 FAM172A -
9 5:04068140_AC_A 5 94068140 intronic A AC o0.209 p=6.79%—-9 p=0.30 ANKRD32:MCTP1 -
10 154262195 6 96920475 :‘;’fxﬁ C T 0181 p="719%-9 p=0.70 UFL1-AS1 -
11 rs11187838 10 96038686 intronic A G 0.435 p=42%—-14 p=292e-2 PLCE1 -
12 1511146399 10 134308479 intergenic T C 0457 p=>5.50e—16 p=0.28 RP11-432J24.5 RolS++PrecR
13 1511218557 11 122099839 |nnct'§<:\|‘1|Ac C T 04579 p=124e-8 p=0.77 RP11-820L6.1 -
14 5186347 14 59072226  intergenic T G 0458 p=208e—11 p=0.92 DACT1 Pole<>T2aml
ncRNA _ Car Prec+~F3opd,
15 51440802 15 39635124 intronic C T o0.090 p=1le-31 p=9.58¢—3 RP11-624L4.1 PrecRGRolS
16 rs4702 15 91426560 UTR3 A G 0442 p=3T7e-13 p=042 FURIN -
17 134039488 17 27320232  intronic A G 0162 p=474e—-8 p=0.46 PIPOX:SEZ6 -
18 17:44270659_G_A 17 44270659 intronic A G 0399 p=>5.36e—16 p=045 KANSL1 -
19 157234875 18 73114340 intergenic C T 0399 p=5T7le=14 p=0.82 RP11-321M21.3 F3tveSMG
20 rs2542028 22 47196524 intronic G A 0.268 p=3.06e—12 p=0.60 TBCiD22A -
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Concerning the -OcSS-FCs, one lead SNP was replicated at the nominal significance level (p <
5e—2) on multivariate test in the independent non-British replication dataset (rs7917322(p =
3.16e—2)) while the lead SNP rs7650184(p = 6.43e—2) showed a tentative association in the

multivariate level. Table 6.2 summarises these results.

Table 6.2 — Genomic loci associated with heritable language functional connectivities
(OcSS ROIs) using MOSTest. Lead SNP: ID of the lead SNPs within each locus. Position:
position of the SNP in the hgig human reference genome. mvgwasP discovery -British-: MOST-
est association P value obtained using the discovery sample. mvgwasP replication -non British-:
MOSTest association P value obtained using the independent replication sample. Functionnal
category: Functional consequence of the SNP on the gene obtained from ANNOVAR. ’Central’
phenotypes: the phenotypes that contributed most to the multivariate association considering
the genome-wide association threshold (5e — 8).

mvgwasP mvgwasP

chcnjsm '© Lead SNP Chr  Position EZ:eC;oor;al :Icltl :fFeCt j{:lcet MAF (discovery (replication 2::& pc:::(r)il/pes
-British-) -non British-)
1 rs35124509 3 3p11 exonic C T o0.4018 6.125755e-12  3.74e-1 EPHA3 -
2 rs11187838 10  10923.33 intronic A G 0.4354 2.122796e-11 5.64e-2 PLCEz1 TP<+aSTS
3 rs67221163 10 10q26.3  intergenic G C  0.4547 1.841408e-10 4.65e-1 RP11-432J24.5 -
4 rs160459 14 14923 intergenic C A 04588 4.155101e-15 3.50e-4 DACT1 TP+pSTS

The obtained results regarding the multivariate genome-wide association study with the 14
heritable FCs -OcSS- represented by 4 distinct genomic loci distributed on the § chromosomes
are included in the results obtained from the multivariate genome-wide association study with
the 142 heritable FCs -SmPSS-. In the following, for the sake of readability, we will only present
the results of the FCs from this set ROIs.

Regional effect. Such a multivariate approach has the advantage of leveraging the distributed
nature of genetic effects and the presence of pleiotropy across endophenotypes. Loci respect-
ively identified by MOSTest as associated with several FCs made clear that these SNPs have
distributed effects, often with mixed directions, across regions and FCs. Fig. 6.1 shows the FCs

associations with each of the twenty lead SNPs loci.
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Figure 6.5 — Regional effects. Circle plot where all 25 regions are represented (19 ROIs on
the left represent the left hemisphere and 6 ROIs on the right represent the right hemisphere)
illustrating the lead SNPs identified from the multivariate GWAS for functional connectivity.
FEach link between two regions represents an endophenotype. The intensity of the color between
two regions represents the Z-values from the univariate GWAS for each FCs as defined by the

color bar. The absolute Z-values scaling is clipped at 8 (p = 1.2e—15). Positif effects of carrying
the minor allele are shown in red, and negative in blue.
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6.2 Unraveling the genome: Evaluation of results from mvGWAS

study of human language

In order to interpret this wealth of results, we proceed as follow:

e First, for each lead SNP, we defined the ’central’ endophenotypes that contributed the
most in the multivariate association by using the individual univariate summary statistics
performed by MOSTest and by considering the genome-wide significance threshold (p <
5e — 8) (Supplementary Table 6.1).

o Second, the SNP-based genetic correlation was estimated (using GCTA [Lee et al., 2012]

software) for each pair of central FCs associated to each genetic loci.

e Third, we hypothesised that the genetic variants significantly associated with the language
FCs could be associated with neuroanatomical tracts that support the information trans-
mission between language areas. Therefore, we tested the potential associations between
the hit SNPs with the average values of dMRI relevant white matter tracts.

In what follows, we will review the associations that were replicated which includes these three
genomic loci: 15¢14, 3p11.1 and 10¢23.33.

6.2.1  Perceptual motor interactions process driven by THBS1 gene

Identification of ’central’ endophenotypes associated with 15¢14 genomic risk region.
On 15¢14, the lead SNP rs1440802 had two central FCs (that contributed the most in the
multivariate association, see 6.2). The minor allele was associated with the partial correlation

between:

(i) The precentral gyrus and the dorsal pars opercularis (Prec<»F3opd). Both connected re-
gions are in the left frontal lobe, and are labelled with a phonological linguistic component

(Prec) and multi-labelled with semantic and sentence language processing (F3opd).

(ii) The (PrecR<«+RolS) corresponds to the partial correlation between the precentral gyrus
and the Rolandic sulcus. Both regions are identified in the right and left frontal lobes
respectively, and are labelled as phonological linguistic component (Fig. 6.6a and Supple-

mentary Table 6.1).

These edges have previously been described in FC studies dedicated to language and more
specifically in the perceptual motor interactions [Fridriksson et al., 2009, Nishitani and Hari,

2000, Schwartz et al., 2008, 2012, Turner et al., 2009)].

SNP-based genetic correlation of the ’central’ endophenotypes.
Both (Prec<»F3opd) and (PrecR<»RolS) ’central’ endophenotypes displays a non-significant
genetic correlation (rg = 16.9 £ 0.13, p = 9.80e — 02, N = 32,186). Table 6.3 reports genetic

correlations for the 'central’ endophenotypes identified in the three replicated genomic loci.
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Table 6.3 — The SNP-based genetic correlation analysis was estimated using GCTA
software, for each pair of central FCs associated to 15¢14, 3pll.1 or 10¢23.33 genetic
loci. Bold phenotypes represents pair of FCs with significant genetic correlation after false
discovery rate correction at p < 0.05.

Endophenotype 1 Endophenotype 2 P value rG SE FDR P value
T1a<STSp Pole<~+STSp 2.29E-05 54.8% 0.132 8.47E-04
SMG«+T3p AG«+STSp 9.78E-05 65.6% 0.192 1.81E-03
STSp«+F3orb Pole<+STSp 2.21E-04 40.4% o0.a11  2.72E-03
AG+F3orb T2ml+-SMG 1.01E-03  -46.9% 0.158 9.39E-03
AG«F3orb SMG+~T3p 3.76E-03 53.6% o0.211 1.39E-02
Pole<~>T2ml STSp+F3orb 3.25E-03 -31.4% o0.113 1.39E-02
AG<+F3orb T1a+>STSp 2.84E-03 -52.5% 0.196 1.39E-02
Pole~T2ml AG+STSp 2.85E-03 36.2% 0.32 1.39E-02
Pole<~T2ml T2ml«-SMG 2.52E-03 -30.5% 0.109 1.39E-02
Pole+~>T2ml Pole<~~STSp 3.53E-03 -28.7% o0.099 1.39E-02
AG«F3orb Pole<>STSp 6.34E-03 -36.5% o0.150 1.80E-02
Pole~~»T2ml SMG+T3p 6.81E-03 35.1% 0.146 1.80E-02
F2p<~AG AG«+STSp 6.39E-03 54.5% 0.250 1.80E-02
SMG+~T3p STSp«+~F3orb 5.53E-03 -39.6% o0.160 1.80E-02
F2p+—AG T1a+STSp 1.07E-02  -51.2% o0.225 2.58E-02
AG+F3orb STSp«+F3orb 1.12E-02  -38.2% o0.142 2.58E-02
T1a-STSp STSp«+F3o0rb 1.21E-02  32.9% o0.153 2.63E-02
AG+F3orb F2p+~AG 1.39E-02  53.5% 0.243 2.85E-02
Pole<~+STSp T2ml+SMG 1.68E-02 22.9% o0.109 3.16E-02
T1a+STSp SMG+T3p 1.71E-02  -38.3% 0.187 3.16E-02
F2p+~AG Ta2ml+-SMG 2.40E-02 -34.9% 0.180 4.04E-02
SMG«+T3p T2mlk-SMG 2.33E-02 -29.0% 0.144 4.04E-02
STSp<«+F3orb T2ml<-SMG 3.98E-02 20.7% 0.120 6.40E-02
AG-STSp T2ml<-SMG 4.84E-02 -22.3% 0.137 7.46E-02
T1a<»STSp Toml+SMG 5.60E-02 21.9% 0.37 8.28E-02
SMG«+T3p Pole<»STSp 6.05E-02 -21.8% 0.142 8.61E-02
AG«+»STSp Pole«»STSp 7.06E-02 -19.3% o0.127 9.68E-02
AG+STSp STSp«+F3orb 8.66E-02 -19.6% 0.139 1.14E-01
Fop<AG SMG+T3p 9.02E-02 311% 0.232 115E-01
Prec<+F30pd RolS<+PrecR 9.80E-02 16.9% o0.131 1.21E-01
Pole<»T2ml T1a<>STSp 1.08E-01  -16.6% o0.135 1.29E-01
AG<«>F3orb AG+STSp 1.91E-01  16.0% 0.184 2.21E-01
F2op<AG Pole«+STSp 2.08E-01 14.0% 0176 2.33E-01
Pole<T2ml Fop«+AG 2.15E-01  -13.7% 0.176 2.34E-01
T1a<>STSp AG+STSp 2.22E-01 -12.8% 0.164 2.34E-01
Fop<AG STSp«+F3o0rb 3.88E-01  5.4% 0.189 3.99E-o01
Pole<»T2ml AG<>F3orb 4.56E-01  1.6% 0.148 4.56E-o01

Validation of lead SNPs using diffusion imaging derived endophenotypes. we tested
the potential associations between the hit SNPs with the average values of dMRI relevant white
matter tracts; 3 white matter tracts to be tested with locus on 15¢14: the white matter tracts

linking the regions of the (Prec<»F3opd) consists of the i) arcuate anterior segment fasciculus
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(AF) dorsal pathway [Catani et al., 2005], 4) the frontal aslant tract (FAT) which is reported as
connecting Broca’s region (BA44/45) with dorsal medial frontal areas including supplementary
and pre-supplementary motor area (BA6) [Catani and Forkel, 2019, Rojkova et al., 2016] while
the anatomical connectivity underlying the (PrecR«+RolS) FC endophenotype consists of iii)
the corpus callosum which interconnects both hemispheres.

The MO measured in the FAT and the OD measured in the anterior segment of AF are associated
with the rs1440802 SNP with p = 3.33e—6 and p = 2.47e—65, respectively. The corpus callosum

exhibits no significant association (See Table 6.4).
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Table 6.4 — Univariate associations of 2 lead SNPs with diffusion MRI indices. Bold
phenotypes represents tracts significantly associated with the lead SNP after Bonferroni correc-
tion (p = 6.94e — 4(0.05/(3 %9 + 5% 9))

CHR SNP Endophenotype Metric Beta P Z

15 rs1440802  Corpus callosum L3 -0.034427736 0.0128030706756605 -2.4892006
Corpus callosum ISOVF  -0.03349017 0.015433186438535 -2.422051
Corpus callosum FA 0.032574 0.0185153496000616 2.3551476
Corpus callosum MD -0.0320895 0.0203348456808069 -2.3201115
Corpus callosum L2 -0.03150293 0.0227447878217582 -2.2776945
Corpus callosum L1 -0.024801464 0.0710201471926044 -1.7996233
Corpus callosum ICVF  0.020728022 0.1339805874968674 1.4985878
Corpus callosum MO -0.007192162 0.6030911735857749 -0.5199604
Corpus callosum oD -0.0071261316 0.6064225847816228 -0.51518667
Frontal Aslant Tract Left MO -0.064280435 3.339583634083396e-06 -4.6487465
Frontal Aslant Tract Left oD 0.05600727 5.1190567913113231e-05 4.0501003
Frontal Aslant Tract Left L1 -0.05497112 7.033938936284984e-05 -3.9751348
Frontal Aslant Tract Left ISOVF  -0.03451673 0.0125731467908473 -2.4956362
Frontal Aslant Tract Left MD -0.030007247 0.030041806799683 -2.16095387
Frontal Aslant Tract Left L3 -0.019929217 0.1496320442788888 -1.4408324
Frontal Aslant Tract Left ICVF  0.009302874 0.5012200542417216 0.6725572
Frontal Aslant Tract Left FA -0.00893621 0.5182478779915272 -0.6460486
Frontal Aslant Tract Left L2 -0.0038335118 0.7816691369948107 -0.27714452
Arcuate Anterior Segment Left oD -0.23503968 2.4731891328416e-65 -17.070208
Arcuate Anterior Segment Left MO 0.200940934 3.8547792195026509e-52  15.194348
Arcuate Anterior Segment Left FA 0.14841966 5.053674748880015e-27  10.749573
Arcuate Anterior Segment Left L2 -0.14630064 3.124967969997189e-26  -10.595551
Arcuate Anterior Segment Left L1 0.10824838 4.748243823784488e-15  7.833407
Arcuate Anterior Segment Left L3 -0.048699692 0.000429210896869 -3.5214393
Arcuate Anterior Segment Left ISOVF  -0.04646888 0.000779221912092 -3.360072
Arcuate Anterior Segment Left MD -0.03227475 0.0196215356697533 -2.3335073
Arcuate Anterior Segment Left ICVF  0.01887147 0.1724557985221415 1.3643552

3 rs35124509 Inferior Fronto Occipital fasciculus Left MO 0.041906517 2.497821751857874e-07 5.1578646
Inferior Fronto Occipital fasciculus Left oD -0.032216765 7.352872189541101e-05 -3.0645689
Inferior Fronto Occipital fasciculus Left L1 0.020603567 0.0112419137853251 2.5350878
Inferior Fronto Occipital fasciculus Left FA 0.011022241 0.1750600434483398 1.3560019
Inferior Fronto Occipital fasciculus Left MD 0.008882381 0.2744777383394011 1.0928088
Inferior Fronto Occipital fasciculus Left ISOVF  0.004858134 0.5500444614237823 0.5976935
Inferior Fronto Occipital fasciculus Left L2 -0.0047178925 0.5616182288559746 -0.58043957
Inferior Fronto Occipital fasciculus Left L3 0.004688471 0.5640612077910263 0.5768198
Inferior Fronto Occipital fasciculus Left ICVF  -0.0037015 0.6488269473186558 -0.45539242
Uncinate Left MO 0.04215374 2.1220118223943872e-07 5.1883187
Uncinate Left oD -0.023885116 0.003203203051305 -2.9389555
Uncinate Left L1 0.022804746 0.0050162697429167 2.8059871
Uncinate Left FA 0.0124250045 0.1263415538835854 1.528689
Uncinate Left MD 0.009754712 0.2300860378190222 1.2001373
Uncinate Left ICVF  -0.008374233 0.3028745596840176 -1.0302886
Uncinate Left L3 0.0072252634 0.3740427072882268 0.88892627
Uncinate Left L2 -0.0059861178 0.4614441477476281 -0.73647094
Uncinate Left ISOVF  -0.00015708078 0.9845814785319852 -0.010325454
Arcuate Anterior Segment Left MO -0.023604663 0.0036791304163527 -2.004438
Arcuate Anterior Segment Left L2 0.02263006 0.0053612311006976 2.784488
Arcuate Anterior Segment Left FA -0.016705215 0.03098443764601674 -2.0553586
Arcuate Anterior Segment Left ISOVF  0.012345138 0.1287972035080454 1.5188621
Arcuate Anterior Segment Left MD 0.010159739 0.2113101729791165 1.2499709
Arcuate Anterior Segment Left ICVF  -0.010145878 0.2119338859324724 -1.2482654
Arcuate Anterior Segment Left L3 0.007130031 0.3803728653956867 0.8772095
Arcuate Anterior Segment Left oD 0.0058026165 0.4752024638259838 0.7138044
Arcuate Anterior Segment Left L1 -0.00077840226 0.9237065215197204 -0.095765874
Arcuate Long Segment Left oD -0.036813475 5.882222834891848e-06 -4.530579
Arcuate Long Segment Left L1 0.020133851 0.0132387238045088 2.477282
Arcuate Long Segment Left MO 0.014724737 0.0700387951827605 1.8116597
Arcuate Long Segment Left MD 0.012832667 0.11437070509249424 1.578849
Arcuate Long Segment Left ISOVF  0.012217956 0.1327840217022739 1.5032134
Arcuate Long Segment Left L3 0.007494609 0.3564947860978851 0.9220648
Arcuate Long Segment Left ICVF  -0.006647461 0.4134499954108012 -0.8178375
Arcuate Long Segment Left FA 0.003683449 0.6504251731527789 0.4531716

Arcuate Long Segment Left L2 0.0017721133 0.827412710308558 0.21802105
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Arcuate Posterior Segment Left L3 0.041222345  3.903850074370563e-07  5.0735874
Arcuate Posterior Segment Left ICVF  -0.038005184 2.90620129195227e-06 -4.67734

Arcuate Posterior Segment Left MD 0.036748115 6.110479990305916e-06 4.52253

Arcuate Posterior Segment Left FA -0.03642834  7.3540024549896465e-06 -4.4831505
Arcuate Posterior Segment Left L2 0.030796966 0.0001507877719798 3.7897685
Arcuate Posterior Segment Left L1 0.021983918  0.0068311464928437 2.7049656
Arcuate Posterior Segment Left MO 0.016925715  0.0372975642974694 2.0824919
Arcuate Posterior Segment Left ISOVF 0.014387828 0.0766931917480869 1.7702038
Arcuate Posterior Segment Left oD 0.00464435 0.5677342741085722 0.5713915

Functional annotation: Locus in 15¢14 associated to (Prec<»F3opd) and (PrecR+«+RolS)
endophenotypes. Four independent SNPs were identified in locus 15¢14 (rs1440802, rs11629938,
rs773225188, rs34680120) (Fig. 6.6¢). Regarding eQTL annotations, we explored tissue-specific
gene expression resources, including both brain tissues and blood - considered as a good proxy

when brain tissues are not available [Qi et al., 2018]. Significant results were obtained:

e The four independant SNPs are cis-eQTL of THBS1 gene in eQTLGen, BIOSQTL and
GTEx/v8 . Additionally, rs34680120 is eQTL of RP11-37C7.1 gene (peq; < 1.02e—3) in
PsychENCODE and eQTL of CTD-2033D15.1 gene (pqq; < 6.0e—6) in BIOSQTL; see
Fig.6.6¢. Overall, the variants of this genomic risk region are found 72 times as eQTL of

genes from different data sources.

e Based on the human gene expression data from the Brainspan database, we found that
THBS1 gene has relatively high mRNA expression during early mid-prenatal to late pren-

atal stages, from 16 to 37 post-conceptional weeks; see Fig. 6.6e.

¢ Indirect predictions might be added from the following annotation. For instance, RASGRP1,
identified by chromatin interaction mapping and which also appears to be under control of
temporal expression during neurodevelopment, is reported as over-expressed in the peri-
sylvian language areas [Johnson et al., 2009] and as up-regulated in the dorsal striatum

[Cirnaru et al., 2020].

Fig. 6.6 summarises these results, found by mvGWAS, associated to (Prec<»F3opd) and
(PrecR<«»RolS) FC endophenotypes. These pinpoint THBS1 as the possible gene underlying

this association signal.

Locus regulating THBS1 associated with the perceptual motor interactions process
In our results, a locus in 15¢14 was associated with the precentral-opercularis FC (Prec<»F3opd)
and the precentral-Rolandic FC endophenotypes (PrecR<+RolS). In the literature, the L|R Prec
regions in the ventral precentral gyrus are both associated with phonology language component
and considered relevant for pharynx and tongue fine-movement coordination in the human and
non-human primates [Belyk and Brown, 2017, Kumar et al.,; 2016, Vigneau et al., 2006]. RolS
in the dorsal Rolandic sulcus is attributed to the phonology component and matches the mouth
primary motor area but also the perception of syllables [Fadiga et al., 2002, Vigneau et al.,

20006, Wilson et al., 2004]. F3opd in the dorsal pars opercularis (BA44/45) is associated with
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semantic/sentence processing. The motor theory of speech perception has been quite an old
debate [Flinker et al., 2015, Galantucci et al., 2006, Liberman and Mattingly, 1985, Schwartz
et al., 2008, Whalen, 2019]. In this study, we report a locus in 15¢14 (lead SNP rsi440802)
associated with both this FC between the motor and Broca’s areas and the frontal aslant tract
connecting directly (pre)supplementary motor area with the opercular part of inferior frontal
gyrus [Catani et al., 2012, Vergani et al., 2014], in line with this perception—motor link.

SNPs in high LD with rsi440802 in the genomic region have already been linked to several
other structural features (surface area and cortical thickness) including primary motor cortex,
primary somatosensory cortex [Elliott et al.; 2018, van der Meer et al., 2020], supramarginal,
and pars opercularis [van der Meer et al.; 2020], supporting a common genetic influence of the
sensory-motor interaction.

The lead SNP rsi440802 and SNPs in LD that we have shown to be associated with both
(Prec<+F3opd) and (PrecR<«+RolS) are found to be eQTL of THBS1 gene in the blood with high
confidence. The thrombospondin-1 protein encoded by THBS1 gene is a member of the throm-
bospondin family, a glycoprotein expressed in the extracellular matrix. It has been implicated in
synaptogenesis [Christopherson et al., 2005] and regulates the differentiation and proliferation
of neural progenitor cells [Lu and Kipnis, 2010], and has been involved in human neocortical
evolution [Cdceres et al., 2003, 2007]. Other members of the thrombospondin’s family, THBS2
and THBS4, have been shown to be over-expressed in the adult human cerebral cortex compared
to chimpanzees and macaques [Cdceres et al., 2007]. Their increased expression suggests that
human brain might display distinctive features involving enhanced synaptic plasticity in adult-
hood which may contribute to cognitive and linguistic abilities [Sherwood et al., 2008]. From a
developmental point of view, THBS1 appears to be under control of temporal expression during
development, as revealed by BrainSpan data (See Fig. 6.6e. THBS1 expression was studied from
the longitudinal transcriptomic profile resource of the developing human brain (18, 19, 21, 23
weeks of gestation) [Johnson et al., 2009]. Its expression is reported as over-expressed in the neo-
cortex, including the perisylvian language areas, compared to phylogenetically older parts of the
brain such as the striatum, thalamus and cerebellum [Johnson et al., 2009]. Thrombospondin-1
have also been linked to Autism spectrum disorder [Lu et al., 2014], Alzheimer’s disease [Ko

et al., 2015], and Schizophrenia [Park et al.; 2012].

Taken together, these results indicate that THBS1, modulated by a lead SNP in the 15¢14 locus,
could be prioritised in the study of key genes playing a role in the functional connectivity part
of the perceptual motor interaction required for language, and with the anatomical connectivity

that supports their interactions.
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Figure 6.6 — Main results for the 15¢14 locus. A) The two pairs of ROIs that forms the endpoints of the associated
FCs reported as black bold lines. B) Effect sizes of the SNP rs1440802 for the two connections: (Prec<+F3opd) FC in green
and (PrecR«>RolS) FC in yellow. C) Locus Zoom of the genomic region identified by the mvGWAS. Chromatin state of
the genomic region. Brain tissue name abbreviations are the following; Eo54:Ganglion Eminence derived primary cultured
neurospheres, Eor3: Cortex derived primary cultured neurospheres, Eo7i: Brain Hippocampus Middle, Eo74: Brain
Substantia Nigra, Eo68: Brain Anterior Caudate, Eo69: Brain Cingulate Gyrus, Eo72: Brain Inferior Temporal Lobe,
Eo067:Brain Angular Gyrus, Eo73: Brain Dorsolateral Prefrontal Cortex, Eo7o: Brain Germinal Matrix, Eo82: Fetal Brain
Female, Eo81: Fetal Brain Male, E125: NH-A Astrocytes Primary Cells. The state abbreviations are the following; TssA:
active transcription start site (T'SS), TssFlnk: Flanking Active TSS, TxFlnk: Transcription at gene 5/ and 3/, Tx: Strong
transcription, TxWk: Weak transcription, EnhG: Genic enhancers, Enh: Enhancers, ZNF/Rpts: ZNF genes & repeats,
Het: Heterochromatin, TssBiv: Bivalent/Poised TSS, BivFInk: Flanking Bivalent TSS/Enh, EnhBiv: Bivalent Enhancer,
ReprPC: Repressed PolyComb, ReprPCWk: Weak Repressed PolyComb, Quies: Quiescent/Low. Expression quantitative
trait loci (eQTL) associations (data source: eQTLGen [Vosa et al., 2018], PsychENCODE[Wang et al., 2018], DICE
[Schmiedel et al., 2018], BIOS QTL browser [Zhernakova et al., 2017], GTEx/v8 [Consortium et al., 2017], eQTLcatalogue).
D) Overlap of the genomic region risk region identified from FUMA for MOSTest results, (Prec<+F3opd) and (PrecR<>RolS).
E) Gene expression from BrainSpan for the interesting genes prioritised by FUMA.

6.2.2 Fronto-temporal semantic network driven by EPHA3 gene

Identification of ’central’ endophenotypes associated with 3p11.1 genomic risk region.
On 3pll.1, the lead SNP rs35124509 had nine central FCs (that contributed the most in the
multivariate association, see 6.2). The minor allele was associated with the partial correlation

between:

o the left posterior part of the superior temporal sulcus and the left temporal pole (Pole<+STSp),

o the left temporal pole and the lateral /middle part of the middle temporal gyrus (Pole<»T2ml),
o the angular gyrus and the pars orbitalis of the left inferior frontal gyrus (AG<«F3orb),

« the anterior part of the Superior temporal gyrus and the left posterior part of the superior

temporal sulcus (T1a<+>STSp),

e the left posterior part of the superior temporal sulcus and the pars orbitalis of the left

inferior frontal gyrus (STSp<+>F3orb),

o the supramarginal gyrus and the posterior part of the left inferior temporal gyrus (SMG+«+T3p),

o the angular gyrus and the left posterior part of the superior temporal sulcus (AG<+STSp),

o the Posterior part of the middle frontal gyrus and the angular gyrus (F2p<AG),

o the lateral/middle part of the middle temporal gyrus and the supramarginal gyrus (T2ml«SMG)

See also Fig. 6.7a and Supplementary Table 6.1. These connected regions are located across
the left parieto-fronto-temporal lobe, and are mainly labelled as semantic language processing.
These edges have previously been described in FC studies dedicated to language and especially
to the semantic component. This component typically includes the inferior frontal gyrus, the left
temporal cortex (i.e. temporal pole, middle temporal gyrus, fusiform gyrus) and the left angular
gyrus [Binder et al., 2009, Jackson et al., 2016, Vigneau et al., 2006]. At the univariate level,

these loci associated to central endophenotypes display an important overlap; See Fig 6.7d.

SNP-based genetic correlation of the ’central’ endophenotypes.
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The SNP-based genetic correlation was estimated for each pair of central FCs associated to
3p11.1 genetic loci, indicating overlapping genetic contributions among several FCs (Table 6.3).
A negative genetic correlation between some FCs has been observed which indicates that variants

can have antagonistic effects on the co-activations of these regions.

Validation of lead SNPs using diffusion imaging derived endophenotypes.

We tested the potential associations between the hit SNPs with the average values of dMRI
relevant white matter tracts; 5 white matter tracts, to be tested with locus on 3pl1.1, were
selected according to the nine central endophenotypes associated with the 3pl11.1 locus. The
anatomical connectivity underlying these connections consists of the ¢) inferior fronto-occipital
fasciculus (IFOF) which connects the inferior frontal regions with the temporal and occipital
cortex [Forkel et al., 2014], %) uncinate fasciculus (UF) which is reported to connect the anterior
temporal lobe to the orbital region and part of the inferior frontal [Catani and De Schotten,
2008, Catani and Forkel, 2019, Friederici, 2017, Vigneau et al., 2006], and i) arcuate long seg-
ment fasciculus (AF), iv) anterior segment of arcuate fasciculus, v)posterior segment of arcuate
fasciculus [Catani et al., 2005].

The MO measured in the IFOF and UF is associated with the rsg5i124509 SNPs with p =
2.49e—7 and p = 2.12e—7, respectively. Both long and posterior segment of AF are associated
with rs35124509 SNPs with p = 5.88e—6 (OD) and p = 3.90e—7(L3), while the anterior segment
of AF exhibits no significant association (See Table 6.4).

Functional annotation: Locus in 3pll.1 associated to semantic-language related en-
dophenotypes.
Fourteen independent SNPs were identified in locus 3p11.1 (Fig. 6.7¢).

e The rs35124509 SNP is a non-synonymous variant within exon 16 of EPHAg protein-
coding gene. The subregion around rs35124509 and rs113141104 has its chromatin state
annotated as (weak) actively-transcribed states (Tx, TxWXk) in the brain tissues, spe-
cifically in the Brain Germinal Matrix, the Ganglion Eminence derived primary cultured

neurospheres, and in the Fetal Brain Female.

e Concerning the subregion around rs6551410, it has its chromatin state annotated as Weak
transcription (TxWk) in the Fetal Brain Female, enhancer (enh) in the Brain Germinal
Matrix and Repressed PolyComb (ReprPC) in both the Ganglion Eminence and Cortex
derived primary cultured neurospheres. Additionally, the subregion around rs6551407
has its chromatin state annotated as Weak transcription (TxWk) in the Brain Germinal
Matrix, Fetal Brain Male and Fetal Brain Male. Overall, this reveals a genomic region

involved in fine regulation mechanisms of brain development.

o Considering the rs35124509 SNP and variants in linkage disequilibrium (LD) with it in the
genomic risk region, we scrutinised CADD and RDB scores, precise genomic positions and
risk prediction, and we noticed some remarkable SNPs. We observed two exonic variants:
i) The SNP 151054750 (LD,s35124509 72 > 0.99, prwawas = 6.65e — 34) is a synonymous

variant within exon 16 of FPHA3. ii) the already mentioned non-synonymous lead SNP
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1835124509 (Pmvawas = 8.95e — 59), the minor allele results in a substitution in the
protein from tryptophan (W) residue (large size and aromatic) into an arginine (R) (large
size and basic) at position 924 (W924R, p.Trpg24Arg) in the Sterile Alpha Motif (SAM)
domain. This SNP is not predicted to alter protein function (Polyphen-2 = "benign")
but is predicted to be potentially a regulatory element by several tools (RDB score = 3a,
CADD = 22.3 - when CADDyppesn, = 12.37 for deleterious effect as suggested by Kircher
et al. [2014])

o Moreover, we observed eight SNP (rs28623022, rs7650184, rs7650466, rs73139147, rs3762717,
1873139144, 1573139148, 15566480002) (LD; 35124500 72 > 0.73, Prwawas < 4.46e — 20)
located in 3’-UTR of EPHAg which could affect its expression by modulating miRNA
binding [Popp et al., 2016].

o The hit-SNP rs35124509 and the rest of highlighted SNPs act as eQTL for EPHAg3 in

different tissues including brain cerebellum (prpr < 5e—2 in GTEx/v8 data source).

Fig. 6.7 summarises the functional annotations in 3p11.1 associated to multiple FC endophen-
otypes in semantic component of language. These functional characterization supports FPHAg

as a possible gene with a key role in language development in humans.

Locus in EPHA 3 associated with the fronto-temporal semantic network In our results,
a locus in 3pl11.1 is found associated with nine fronto-parietal-temporal endophenotypes. In the
literature, The angular gyrus (AG) has been shown to activate during functional imaging tasks
probing semantics and involved in conceptual knowledge [Vigneau et al., 2006]. F3orb in the
pars orbitalis in the inferior frontal gyrus is labelled semantic for its involvement in semantic
retrieval in spoken and sign language [Ronnberg et al.; 2004]. It has also been associated with
categorisation, association, and word generation tasks [Booth et al., 2002, Gurd et al., 2002,
Noppeney and Price, 2004]. The temporal pole region, located in the anterior temporal lobe,
is associated with semantic and sentence processing [Vigneau et al., 2006] and the posterior
superior temporal sulcus (pSTS) is reported to be implicated in syntactic complexity [Constable
et al., 2004] but also process the semantic integration of complex linguistic material [Vigneau
et al., 2006]. Both pSTS and the angular gyrus overlap with the Geschwind’s territory (See
Fig. 2.2). The lateral/middle part of the middle temporal gyrus is devoted to verbal knowledge
[Vigneau et al., 2006]. These regions and their corresponding endophenotypes fit rather well
with the fronto-temporal semantic system described in [Vigneau et al., 2006] facilitating the as-
sociation of integrated input messages with internal knowledge. The anterior part of the superior
temporal gyrus and the posterior part of the inferior temporal gyrus are phonological-semantic
interface areas processing. [Vigneau et al., 2006] propose that these ones are transitional zones
between the perception and semantic integration of language stimuli and are crucial during the
development of language.

SNPs of this genomic region in high LD with the lead SNP rsg5124509 have already been found
associated with: rsfMRI ICA functional connectivity (edge 387, 383, 399, and ICA-features
3); see [Elliott et al., 2018]. The ICA maps used for these FC estimations partially-overlap
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semantic language areas including the angular gyrus, the most anterior part of the STS, the
anterior fusiform gyrus, the lateral-middle part of T2, the ventral part of the pars triangularis
and the pars orbitalis of the left inferior frontal gyrus. Regarding cognitive traits, this locus was
associated to intelligence [Savage et al., 2018]. Finally, other SNPs, in strong LD with the lead
SNP rs35124509, consistently act as an eQTL of EPHA3 in brain tissues.

The ephrin type-A receptor 3 protein encoded by FPHAg gene belongs to the ephrin receptor
family that can bind the ephrins subfamily of the tyrosine kinase protein family. EPH receptors
and their ligands were found to play important roles in multiple developmental processes, in-
cluding tissue morphogenesis, embryogenesis, neurogenesis, vascular network formation, neural
crest cell migration, axon fasciculation, axon guidance, and topographic neural map forma-
tion [Gerstmann and Zimmer, 2018, Gibson and Ma, 2011, Pasquale, 2008]. EPHA3 binds
predominantly EFNA5 and plays a role in the segregation of motor and sensory axons during
neuromuscular circuit development [Lawrenson et al., 2002]. In [Johnson et al.; 2009], EPHA3
is reported as over-expressed in the fetal rhesus macaque monkey neocortex (NCTX) and espe-
cially in the occipital lobe compared to the other NCTX areas. Noticeably, its ligand EFNAg is
over-expressed in perisylvian areas and is located in a human accelerated conserved non-coding
sequence (haCNS704) [Johnson et al., 2009]. EPH receptors have been linked to neurodevel-
opmental disorders, including schizophrenia [Zhang et al., 2010] and autism spectrum disorder
[Casey et al., 2012]. Moreover, in [Rudov et al., 2013], EPHA3 is found in silico, as putative gene
implicated in dyspraxia, dyslexia and specific language impairment (SLI). Finally, we observed
that FPHAg9 is expressed in the human brain, in a consistent manner across developmental

stages from early prenatal to late-mid prenatal (8-24 pcw, BrainSpan ; see Fig. 6.7e.

Taken together, these results indicate that FPHAg in the 3p11.1 locus, could be prioritised in
the study of key genes playing a role in the fronto-temporal semantic network, and with the

anatomical connectivity support of this network.
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Figure 67 — Main results for the 3pll.1 locus. A) The pairs of ROIs that forms the endpoints of the associ-
ated FCs reported as black bold lines. B) Effect sizes of the SNP rs35124509 for the nine connections: (AG<+F3orb),
(Pole++STSp), (Pole<»T2ml), (T1a<>STSp), (STSp«++>F3orb), (SMG+T3p), (AG+STSp), (F2p<>AG) and (T2ml«-SMG)
FCs. C) Locus Zoom of the genomic region identified by the mvGWAS. Chromatin state of the genomic region. Brain
tissue name abbreviations are the following; Eog4:Ganglion Eminence derived primary cultured neurospheres, Eog3: Cortex
derived primary cultured neurospheres, Eo71: Brain Hippocampus Middle, Eo74: Brain Substantia Nigra, Eo68: Brain
Anterior Caudate, Eo69: Brain Cingulate Gyrus, Eo72: Brain Inferior Temporal Lobe, Eo67:Brain Angular Gyrus, Eo73:
Brain Dorsolateral Prefrontal Cortex, Eo7o: Brain Germinal Matrix, Eo82: Fetal Brain Female, E081: Fetal Brain Male,
Ei125: NH-A Astrocytes Primary Cells. The state abbreviations are the following; TssA: active transcription start site
(TSS), TssFlnk: Flanking Active T'SS, TxFlnk: Transcription at gene 5/ and 3/, Tx: Strong transcription, TxWk: Weak
transcription, EnhG: Genic enhancers, Enh: Enhancers, ZNF/Rpts: ZNF genes & repeats, Het: Heterochromatin, TssBiv:
Bivalent/Poised TSS, BivFInk: Flanking Bivalent TSS/Enh, EnhBiv: Bivalent Enhancer, ReprPC: Repressed PolyComb,
ReprPCWk: Weak Repressed PolyComb, Quies: Quiescent/Low. Expression quantitative trait loci (eQTL) associations
(data source: eQTLGen [Vosa et al., 2018], PsychENCODE[Wang et al., 2018], DICE [Schmiedel et al., 2018], BIOS QTL
browser [Zhernakova et al., 2017], GTEx/v8 [Consortium et al., 2017], eQTLcatalogue). D) Overlap of the genomic re-
gion risk region identified from FUMA for MOSTest results and the nine FCs mentioned above. E) Gene expression from
BrainSpan for the interesting genes prioritised by FUMA.

6.2.3 PrecR<RolS and T1a<»T1a/HeschlR endophenotypes driven by PLCE1,
NOC3L and HELLS genes

Identification of ’central’ endophenotypes associated with 10¢23.33 genomic risk re-
gion.

A locus in 10¢23.33 was highlighted by the mvGWAS. At the univariate level, no endophenotype
reached the genome-wide significance threshold for the lead SNP in this locus (rs11187838).
Consequently, we did not perform the genetic correlation study, nor perform a post hoc study

on potential supporting anatomical tracts from dMRI data.

Functional annotation: Locus in 10¢23.33 associated to PrecR+>RolS T1a+T1a/HeschlR
endophenotypes. Four independent SNPs were identified in locus 10¢23.33 (rs11187838,
rs17109875, rs11187844, 1s20772180).

o The subregion around all four SNPs has its chromatin state annotated as (weak) actively-
transcribed states (Tx, TxWXk) in the brain tissues, specifically in the ganglion emin-
ence and cortex derived primary cultured neurospheres, hippocampus (middle), substan-
tia nigra, anterior caudate, angular gyrus, Dorsolateral /Prefrontal cortex, brain germinal

matrix, fetal brain female/male and NH-A astrocytes primary cells.

o Two exonic variants are noteworthy: The rs2274224 (LD;s11187838 72 > 0.99, Prwaw AS =
5.04e — 14) and rs11187895 (LD,s17100875 72 > 0.6, Pmwgwas = 3.08e — 7) SNPs are
nonsynonymous SNV within exon 19 of PLCFE1 and exon 11 of NOC39L and are both not
predicted to alter protein function (Polyphen-2="benign”) but are predicted to have a
deleterious effect (CADD = 17.35, CADD = 19.24).

o Moreover, we observed three SNP (rs11187870, rs11187877, rs145707916) (LD;s17100875
72 > 0.66, pmuawas < 7.546e — 7) located in 3-UTR of PLCE1:NOC3L.

e Regarding eQTL annotations, the variants in the 10¢23.33 locus act as eQTL for HELLS,
NOC3L and PLCEF1 genes in different brain tissues including brain cerebellum, brain cere-
bellar hemisphere, Brain nucleus accumbens basal ganglia, hippocampus (prpr < 5e—2
in GTEx/v8 data source).
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These functional characterisation highlight these three genes (HELLS, NOC3L and PLCE1) that

may influence the FCs related to language processing in humans.

Locus regulating PLCFEi1, NOC3L and HELLS associated with PrecR<«RolS and
Tia<T1a.HeschlR.

A locus in 10¢23.33 was highlighted by the mvGWAS. At the univariate level, no endophenotype
reached the genome-wide significance threshold. But looking at the suggestive threshold p = le—
5, we pinpoint putative 'central’ endophenotypes to aid interpretation of the processes underlying
this association signal. Two bilateral fronto-temporal endophenotypes were the most associated
to rs11187838: the precentral-Rolandic FC endophenotypes (PrecR«+RolS, p = 1.85e — 07)
and the right anterior part of the superior temporal gyrus (T1aR) overlapping Heschl’s gyrus
(T1a/HeschlR) and its homotopic areas of LH primary auditory regions (T1a<>Tia/HeschlR,
p = 9.61le — 06). All these regions participate in an elementary audio—motor loop involved in
both comprehension and production of syllables forming a bilateral fronto-temporal network
activated by the auditory representation of speech sounds [Vigneau et al., 2006, 2011]. SNPs of
this genomic region in high LD with the lead rs11187838 act as an eQTL of HELLS, NOC3L,
PLCE1 genes in multiple brain tissues The HELLS gene encodes the lymphoid-specific helicase
(Lsh), a member of the SNF2 helicase family of chromatin remodeling proteins. Patients with
a genetic mutation of HELLS present psychomotor retardation including slow cognitive, motor
development and psychomotor impairment [Thijssen et al., 2015]. The Lsh protein might play
a role as epigenetic regulator in neural cells [Han et al.; 2017]. Finally, we observed that the
three genes (NOC3L, PLCE1, HELLS) are expressed in the human brain, across developmental

stages from early prenatal to early mid prenatal (8-17 pcw, BrainSpan).

Taken together, these results indicate that the three highlighted genes (PLCE1, NOC3L and
HELLS) in the 10¢23.33 locus, as potential candidates in the study of key genes playing a role

in the bilateral fronto-temporal auditory-motor network.
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6.3 Limitations

Although functional MR imaging is recognised to produce valuable endophenotypes [Flliott
et al., 2018], resting-state FC represent remote measures of language as the participants are
not engaged in any language task-experiments and simply stay at rest. Yet, as stated in the
introduction 1.3.2.1, previous works reported that resting-state derived endophenotypes are cor-
related with behavioural language processing [Cheema et al., 2021, Cross et al., 2021, Koyama
et al., 2011, Stevens et al., 2017]. However, with the UK Biobank release at hand in this study,
no behavioural language scores were provided. We were thus unable to check the correlations
between our resting-state FC endophenotypes and language behavioural scores. Moreover, we
observed a hierarchy of language heritability estimates from the Human Connectome Project
(twin study) with 18-72% for language-behavioural scores, 11.6-34.6% for language-task activ-
ations [Le Guen et al., 2018] and 11.6-49.8% for resting-state FC, making resting-state FC not
the most suitable endophenotype for an association study about language.

The lack of a large, age-matched replication sample represents one major limitation of the present
study in the sense that we could not reproduce all our results.

Multivariate methods display a modest improvement in power as compared to univariate ap-
proach, and sometimes display lower power. Additionally, the results are less straightforward to
interpret. We have addressed this issue by assessing each of the prioritized loci at the univariate
level, to pinpoint at central endophenotypes that are contributing the most to the multivariate
signal. Such a complex trait as language may be driven by a lot of interacting genes, a multivari-
ate approach on the SNPs side is highly desired to uncover relevant gene pathways in language
development and processing.

Compared to structural endophenotypes, the FCs have low amplitude which hinders the study
in terms of statistical power. This observation constitute another limitation that is somehow
surpassed when working on large scale cohorts and using multivariate approaches.

Another potential limitation is the UK Biobank dataset in which this study is based. It should be
noted that the UKB constitutes a relatively old sample. Future studies in other developmental
stages (i.e. children, adolescent, young-adult) will inform us whether the observed associations

are stable across development, or whether they reflect some age-related specificity.
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6.4 Conclusions

In this study, we extracted language endophenotypes from rsfMRI acquisitions in the largest
imaging-genetic cohort on general population to date. To make these endophenotypes as closer as
possible to language function in the brain, we adopted a ROI-based approach for FC estimation
with language ROIs derived from an comprehensive meta-analysis of tbfMRI studies on language.
This approach makes the endophenotypes comparable across individuals and thus suitable for
an association study. After filtering on heritability significance, we performed a multivariate
GWAS technique in order to take advantage of the correlation structure among rsfMRI FC and
uncover potential pleiotropic loci.

Thereby, we highlighted potential key genes related to language processing including FPHAg
gene in the 3pll.1 locus with a role in the fronto-temporal semantic network, THBS1 gene,
modulated by the 15¢14 locus, associated with the functional connectivity part of the perceptual
motor interaction required for language, and PLCE1 gene in the 10¢23.33 locus with a potential
role in the bilateral fronto-temporal auditory-motor network. These genes could be prioritized
to study language in suitable genetic model.

Furthermore, two results that have not shown significant association in the replication sample,
have been reported in previous works; a 3q24 locus in ZIC4 which is involved in visual and
auditory pathway development [Horng et al., 2009] has been associated with brain assymetry
[Sha et al., 2021]; a 14q23.1 locus near DACT1 has been reported to be associate with the STAP
[Le Guen et al., 2018] and superior temporal sulcus surface area [Sha et al., 2021]. Altogether,
theses results provide an novel insight into the genetic architecture of the language in humans.
A growing number of works claim that language studies should consider task-free fMRI data in
general population in order to really focus on the neurobiological organization of language and
how it supports natural language, i.e. as it is used in everyday life [Hasson et al., 2018]. On a
clinical side, such research settings are highly desirable as there is a need to map language areas
in patients unable to perform language tasks [Branco et al.; 2016, Klingbeil et al., 2019, Park
et al., 2020, Ramage et al., 2020]. By validating our findings in rsfMRI FC endophenotypes with
dMRI-derived endophenotypes, we tried to provide both a functional and structural connectome

point of view of the language organisation in the brain.

Finally, recent imaging-genetic approaches such as multivariate GWAS, allowed us to increase
in statistical power and circumvent the small effect sizes of these original endophenotypes. We
believe that such approaches are really promising and will broadly disseminate in the imaging-
genetic field and beyond. With the presented approach, we tried to contribute to these innovative
trends and to pave the way to other alternative task-free approaches to study natural language

and its genetic underpinnings.
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In the chapter 6, we used resting-state fMRI in a discovery sample of 32,186 healthy volunteers
from the UK Biobank [Sudlow et al., 2015], the compiled information of a large-scale meta-
analysis on language components [Vigneau et al.; 20006, 2011] and performed a multivariate
genetic association of human language functional connectome endophenotypes filtered based on

heritability significance presented in the chapter 4.

In the present chapter, the same experimental design is implemented regarding anatomical
connectivity (AC) as it can be measured from dMRI. Using the significantly heritable AC
endophenotypes, we performed a multivariate genome-wide association study on 31.775 par-
ticipants from UK Biobank. Briefly, these ACs endophenotypes consists on nine measures (MD,
FA, ICVF, ISOVF, L1, L2, L3, MO, OD) of the following bilateral white matter tracts: arcuate
anterior/long/posterior segment, the frontal aslant tract, the frontal inferior longitudinal, the
frontal superior longitudinal, fronto insular tract 1 to 5, the inferior fronto occipital fasciculus,

inferior longitudinal, superior londgitudinal fasciculus I-I1II, uncinate and the corpus callosum.

The results from this analysis were subjected to a replication study in an independent sample
(N=4,672). Finally, these results were functionally annotated and compared with genes identi-

fied as language-related in the literature.

7-1 Multivariate genome-wide association studies

We performed a multivariate genome-wide association studies (mvGWAS) between the filtered
imputed genotypes and the set of significantly heritable endophenotypes ACs highlighted in the
chapter 4.2.2, using the Multivariate Omnibus Statistical Test (MOSTest) [van der Meer et al.,
2020].

As described in the Chapter 2.6, all endophenotypes were pre-residualised with covariates includ-
ing sex, genotype array type, age, recruitment site, and ten first genetic principal components
provided by UK Biobank. In addition, MOSTest performs a rank-based inverse-normal trans-
formation of the residualised endophenotypes to ensure that the inputs are normally distributed.
The distributions across the participants of all endophenotypes were visually inspected before
and after covariate adjustment. MOSTest generated multivariate summary statistics that cap-
ture the significance of the association across all heritable language endophenotypes. To account
for multiple testing over the whole genome, statistically significant SNPs were considered as those

reaching the genome-wide threshold p = 5e—S8.
More specifically, we performed a mvGWAS with the 313 ACs with significant SNP-based her-

itability. This analysis tested each SNP separately for its simultaneous association with the 313
ACs and yielded 34,881 significant SNPs at a genomic threshold, distributed on all autosomal

chromosomes.

FUMA [Watanabe et al., 2017] software was used to analyse mvGWAS results and identify lead
SNPs at each associated locus. Considering the genome-wide significance threshold p = 5e—8,
there were 285 distinct genomic loci distributed on 21 chromosomes, associated with different

aspects of brain-language AC and represented by 367 lead SNPs. (Fig.7.1, 7.2, Table 7.1).
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