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Résumé de la thèse

Motivation

Lorsque nous nous rendons d’un endroit à un autre, nous voulons généralement éviter autant que
possible les embouteillages, et nous avons souvent tendance à changer notre itinéraire prédestiné si
nous voyons que les mises à jour sur notre itinéraire choisi montrent un trafic important. Mais il
peut arriver que d’autres personnes, qui étaient déterminées à choisir le même itinéraire, voient
la même mise à jour, et changent leur itinéraire pour celui que nous sommes en train de changer.
Il en résulte une situation dans laquelle une route précédemment peu fréquentée devient plus
fréquentée, et une route plus fréquentée peut devenir moins fréquentée qu’auparavant. Et, nous
sommes de retour à la case départ.

Mais il peut y avoir des moyens de résoudre ce problème : (1) les navetteurs peuvent décider
entre eux qui changera et qui ne changera pas, ou (2) la mise à jour peut venir directement aux
navetteurs avec une solution de changement de manière à ce que s’ils suivent tous la suggestion,
ils deviennent en fait meilleurs. On peut se demander comment les navetteurs communiquent
et conduisent de manière coopérative afin de tirer profit de ce type de situation. Dans un avenir
prévisible avec les véhicules automatisés [30, 61], on imagine que les communications de véhicule
à véhicule (V2V) ou de véhicule à infrastructure (V2I) seront réalisables [46]. Dans cette thèse,
notre préoccupation n’est pas de savoir comment ces communications sont réalisables, nous nous
intéressons plutôt à des problèmes tels que, si une telle communication est effectivement établie,
quel type de solution une telle prise de décision coopérative garantirait la réduction de l’effet de
congestion, et comment synthétiser une telle planification des itinéraires pour les navetteurs, qui
assure cette garantie.

Tout comme le trafic routier, un autre domaine où le contrôle de la congestion est pertinent
dans notre vie quotidienne est l’internet. Comme nous passons de plus en plus de temps sur
l’internet (surtout depuis que la pandémie nous a tous condamnés), nous rencontrons chaque
jour un problème ou un autre. Un jour, nous devons éteindre notre appareil photo pendant une
réunion en ligne entre deux personnes, tandis qu’un autre jour de chance, nous participons à un
séminaire en ligne avec trente personnes. Télécharger un fichier aujourd’hui peut prendre deux
fois plus de temps qu’hier pour la même taille. Nous sommes tous passés par là.

Bien que les raisons de ce phénomène puissent être multiples, comme l’indisponibilité ou la
rupture de liaisons, les paquets de données peuvent traverser différents nœuds de réseau interne
(routeurs), mais l’une des principales raisons des fluctuations de performances sur l’internet est la
congestion du réseau. Le contrôle de la congestion est donc crucial dans l’Internet d’aujourd’hui.
La forme prédominante de contrôle de la congestion est incarnée par le protocole de contrôle de
la transmission (TCP) [32], qui fournit un moyen fiable de transmission des données de bout
en bout, et évite également tout congestion collapse. Intuitivement, ce protocole fonctionne dans
l’intérêt d’un réseau dans son ensemble (ou du moins d’une partie suffisamment grande), et par
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conséquent, du point de vue d’un point d’extrémité, il n’est pas toujours dans son intérêt de se
conformer au protocole. Cela donne lieu à une analyse de la théorie des jeux [1, 33, 34, 45] des
protocoles de type TCP dans la littérature : Akella et al. [1], en utilisant l’analyse de la théorie
des jeux de TCP, compare l’efficacité des comportements stables entre les variations récentes de
TCP (par ex. SACK) avec les variations traditionnelles, et concluent que les variations récentes
sont plus sensibles au comportement égoïste ; Lopez et al. [45] étudient le protocole basé sur
les fontaines (FBP), et comparent les performances du mécanisme stable entre FBP et TCP en
présence de congestion ; Kesselman et al. [34] mesurent la dégradation des performances à cause
de la congestion dans un modèle de trafic de type TCP, et proposent une politique de détection
précoce pour réduire la dégradation, et ce ne sont là que quelques exemples parmi une vaste
littérature sur l’analyse de la théorie des jeux des protocoles de type TCP. Il s’agit là de quelques
exemples tirés d’une vaste littérature sur l’analyse de la théorie des jeux des protocoles de type
TCP. L’un des points communs entre toutes ces études est qu’elles portent sur les performances
des comportements stables d’Internet dans des contextes différents mais spécifiques lorsque les
utilisateurs finaux interagissent de manière égoïste et provoquent des congestions. De plus, dans
ces contextes spécifiques, ces études se concentrent principalement sur la mesure du pire scénario
d’un modèle sans vérifier directement les propriétés d’une instance de ces modèles.

En théorie, ce type de scénarios pratiques est souvent abstrait dans des jeux de graphes, et des prob-
lèmes similaires sont étudiés sur ces graphes, qui commentent, le plus souvent, les pires/meilleurs
scénarios dans cette classe particulière de jeux. Nous en discutons davantage dans la section de ce
chapitre. Dans cette thèse, nous considérons ce domaine d’un point de vue méthodes formelles, où
au lieu de traiter le pire/meilleur scénario pour un modèle de jeu de congestion, nous sommes plus
intéressés par le type de performance de stabilité qui peut être garanti dans une instance donnée de
ce modèle. C’est pourquoi nous commençons par présenter les méthodes formelles et la manière
dont elles abordent les questions de théorie des jeux, avant d’examiner plus en détail la manière
dont nous abordons l’analyse des jeux de congestion dans une perspective de vérification.

Contexte

Méthodes formelles et théorie des jeux De nos jours, nous sommes fortement dépen-
dants des systèmes informatisés : du smartphone à la navette spatiale, du distributeur automatique
de billets au véhicule automatisé, du contrôle du trafic aux centrales nucléaires - la liste s’allonge
chaque jour, tout comme notre dépendance à leur égard. Nous voulons que ces systèmes soient à
l’abri des défaillances. Lorsqu’un système tombe en panne, nous sommes confrontés à des crises
allant de pertes financières à des pertes de vies humaines. Par exemple, un défaut fatal dans le
logiciel de contrôle [23] du missile Ariane-5 a provoqué un crash à peine 36 secondes après son
lancement le 4 juin 1996. Un défaut de logiciel dans la partie contrôle de l’appareil de radiothérapie
Therac-25 [44] a causé la mort de six patients cancéreux entre 1985 et 1987.

En informatique, méthodes formelles est un domaine dans lequel nous raisonnons formellement
sur un tel système informatisé : nous vérifions les propriétés d’un système donné (model checking), et
construisons des modèles qui sont corrects par construction (synthèse) à partir d’une spécification
donnée. Dans les problèmes de model checking, une entrée consiste généralement en un système
et une spécification logique (par exemple une formule en logique temporelle [54]), et le problème
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demande si le système satisfait la spécification. Selon le type de formules considérées comme
spécification, le problème de model checking demande si une ou toutes les exécutions du système
en question satisfont la spécification.

En réalité, un concepteur/contrôleur peut ne contrôler que des parties du système entier, et il
peut vouloir vérifier une spécification sur les exécutions du système qui implique ces parties. Par
exemple, considérons un ascenseur dans un bâtiment comme le système, et la spécification est que
lorsque quelqu’un appelle d’un certain étage, l’ascenseur doit s’arrêter à cet étage pour prendre cette
personne. Cette spécification concerne une partie particulière du système, qui n’a presque rien à
voir avec des exécutions telles que : ne pas rester coincé entre les étages, ouvrir la porte lorsqu’il
s’arrête à un étage ou ne pas ouvrir la porte lorsqu’il passe d’un étage à l’autre, etc. Par conséquent,
pour vérifier si l’ascenseur satisfait à la spécification, nous ne devons ni vérifier toutes les exécutions,
c’est suffisant, ni vérifier une seule exécution, ce qui ne peut garantir que l’arrêt d’un seul appel.

Ces types de problèmes dans les méthodes formelles sont résolus en utilisant l’approche de la
théorie des jeux : dans notre exemple, la personne qui appelle l’ascenseur est le environnement, et
l’ascenseur lui-même est le système. Dans ces jeux à deux joueurs entre le système et l’environnement,
l’environnement vise à montrer que le système est défectueux, tandis que le système tente d’établir
qu’il ne l’est pas. En d’autres termes, le problème de vérification exige que le concepteur/contrôleur
puisse faire en sorte que le système gagne contre tout comportement de l’environnement. Ces jeux
sont appelés jeux à somme nulle, et une solution dans un tel jeu est une stratégie gagnante.

D’autre part, il est possible que les concepteurs des différents composants d’un système soient
eux-mêmes en concurrence les uns avec les autres pour certaines ressources. Dans ce cas, au
lieu de gagner ou de perdre le jeu, chaque joueur obtient un gain. Le gain peut être positif, ce
que l’on appelle généralement une récompense, et il peut être négatif, ce que l’on appelle un coût.
Contrairement à la victoire dans un jeu, l’objectif du joueur est ici d’optimiser son gain : maximiser
s’il s’agit d’une récompense, minimiser s’il s’agit d’un coût. Ces jeux sont appelés jeux à somme non
nulle.

De plus, dans un jeu à somme non nulle, l’objectif des concepteurs des différents composants
d’un système peut être en contradiction directe avec l’intérêt général du système. Par conséquent,
alors qu’une solution du point de vue du système est un optimum social, du point de vue d’un
composant particulier, qui joue égoïstement, une solution serait un choix qui est le meilleur par
rapport aux choix de tous les autres joueurs. Comme cela est vrai pour tous les composants, ils
voudraient ensemble atteindre une certaine forme de stabilité dans leurs choix les uns par rapport
aux autres ; et ce serait la solution de leur point de vue. Toutefois, cette notion de stabilité n’est pas
unique.

Les équilibres de Nash (NE) [50], la notion de stabilité la plus courante, est le concept de solution
qui est immunisé contre toute déviation d’un seul joueur à n’importe quel moment du jeu si tous
les joueurs suivent leurs choix correspondants donnés par cette notion, depuis le début du jeu. Mais
il existe également d’autres notions, qui sont étudiées en fonction de divers contextes. Par exemple,
Subgame perfect Equilibria (SPE) (SPE) [51] est un concept de solution pour la stabilité, qui est
plus pertinent dans un contexte où chaque joueur peut prendre des décisions dynamiquement,
étape par étape, en voyant comment les autres joueurs réagissent. La stabilité est également assurée
contre toute déviation d’un seul joueur à n’importe quelle étape du jeu, comme l’EN, sauf qu’elle
l’est même si . Equilibres forts[5, 25] est une notion de stabilité qui est immunisée non seulement
contre les déviations d’un seul joueur mais aussi contre les déviations coordonnées de plusieurs
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joueurs, tandis que les équilibres de Stackelberg [26, 59] sont la solution stable lorsqu’il y a quelques
joueurs dont l’objectif est égal à celui du système lui-même (non égoïstement), tandis que d’autres
joueurs jouent dans leur propre intérêt.

Néanmoins, il n’est pas garanti que l’une ou l’autre notion d’ensemble stable de choix existe
toujours dans tous les jeux à somme non nulle. Par conséquent, l’une des tâches dans ce contexte est
toujours de trouver les notions qui conviennent le mieux à l’objectif, et si cette notion de stabilité
existe dans cette classe particulière de jeux à somme non nulle.

Jeux de congestion et routage égoïste Dans cette thèse, nous nous intéressons à
des jeux particuliers à somme non nulle, appelés jeux de congestion, joués sur un réseau. Les jeux
de congestion modélisent le partage égoïste des ressources entre plusieurs joueurs [56]. Un cas
particulier est celui des jeux de congestion jeux de congestion, dans lesquels les joueurs visent à
l’acheminement du trafic à travers un réseau encombré. Dans jeux de congestion de réseau, chaque
joueur choisit un ensemble de transitions, formant un chemin simple d’un état source à un état
cible, et le Le coût d’une transition augmente avec sa charge, c’est-à-dire avec le nombre de joueurs
qui l’utilisent. de joueurs qui l’utilisent. Dans la section suivante, nous passons en revue l’état de
l’art sur les jeux de congestion de réseau.

Travaux connexes sur les jeux de congestion de réseau

Les jeux de congestion de réseau peuvent être classés en variantes atomiques et non atomiques.
non atomiques. La sémantique non-atomique est appropriée pour de grandes populations de
joueurs. de joueurs et est donc considérée comme un continuum. On considère alors des portions
de la population qui appliquent des stratégies prédéfinies, et l’effet d’un joueur individuel l’effet
d’un joueur individuel sur le coût des autres. Sur En revanche, dans les jeux atomiques, le nombre
de joueurs est fixe, et chaque joueur peut avoir un impact significatif sur le coût supporté par les
autres joueurs. Nous nous concentrons uniquement sur les jeux atomiques dans cette thèse.

Jeux de congestion du réseau. Réseau congestion, également appelés jeux atomiques
de routage égoïste dans la littérature. dans la littérature, ont été étudiés pour la première fois par
Rosenthal [56]. Ces jeux sont définis par un graphe dirigé, un nombre de paires de sommets de
paires de sommets source-cible, et des fonctions de coût non décroissantes pour chaque arête du
graphe. Pour chaque paire source-cible, un joueur doit choisir une route de la source au sommet
cible. route de la source au sommet de la cible. Étant donné leur choix de chemins simples, le coût
encouru par un joueur dépend du nombre d’autres joueurs qui choisissent des chemins partageant
des arêtes avec lui. autres joueurs qui choisissent des chemins partageant des arêtes avec leur chemin,
et des fonctions de coût de ces bords. Dans ce contexte, un équilibre de Nash de Nash associe
chaque joueur à un chemin de telle sorte qu’aucun joueur n’a intérêt à s’en écarter. joueur n’est
incité à dévier : il ne peut pas diminuer son coût en choisissant un chemin différent.

Rosenthal Rosenthal a prouvé que les jeux de congestion de réseau sont des jeux potentiels, de
sorte que les équilibres de Nash existent toujours. existent toujours. Monderer et Shapley [48] ont
étudié d’une manière plus générale jeux potentiels, et ont expliqué comment utiliser itérativement
les meilleures stratégies de meilleure réponse pour converger vers un équilibre. Il est intéressant de
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noter que, sous des hypothèses raisonnables sur les fonctions de coût, Bertsekas et Tsitsiklis ont
établi qu’il existe une correspondance directe correspondance directe entre les équilibres du routage
égoïste et du routage distribué du plus court chemin, qui distribué, qui est utilisé en pratique pour
le routage des paquets dans les réseaux informatiques. réseaux informatiques [12]. Nous renvoyons
le lecteur intéressé à citeroughgarden-chap2007 pour une introduction et de nombreux résultats
de base sur les jeux de routage généraux.

Une question naturelle est de savoir si le routage égoïste est très différent d’une stratégie de routage
décidée par un organisme centralisé. stratégie de routage décidée par une autorité centralisée. En
d’autres termes, En d’autres termes, à quelle distance un optimum égoïste peut-il être de l’optimum
social, dans lequel les les joueurs coopéreraient. La notion de prix de l’anarchie, d’abord proposée
par Koutsoupias et Papadimitriou [39], est le rapport entre le pire coût d’un équilibre de Nash et le
coût de l’optimum social.

Cela permet de mesurer à quel point les équilibres de Nash peuvent être mauvais. Dans le
contexte des jeux de congestion de réseau, le prix de l’anarchie a été étudié pour la première fois par
Suri et al. [60], en établissant une limite supérieure de 5

2 lorsque toutes les fonctions de coût sont
affines. Une limite supérieure affinée a été fournie par Awerbuch et al. [9]. Bornes sur la notion
duale de prix de stabilité, qui est le rapport entre le coût d’un meilleur équilibre de Nash et le coût
de l’optimum social ont également été étudiés pour les jeux de jeux de routage [3].

Aspects du timing. Plusieurs travaux ont étudié des raffinements de ce cadre. Dans [31], les
auteurs étudient les jeux de congestion de réseau dans lesquels chaque bord est traversé avec une
durée fixe indépendante de sa charge, tandis que le coût de chaque bord dépend de la charge. On dit
donc que le modèle a des coûts dépendants du temps, puisque la charge dépend des moments où
les joueurs traversent un bord donné. auxquels les joueurs traversent un bord donné. Les auteurs
prouvent l’existence des équilibres de Nash par réduction au cadre de [56]. Une extension de ce
cadre avec des automates temporisés et des horloges contraintes temporelles a été étudiée dans [6,
7]. peuvent être imposées dans le graphe.

La mise en place de durées fixes avec des coûts dépendant du temps est intéressant dans les appli-
cations où les joueurs partageant une ressource (un bord) voient leur qualité de service diminuer.
ressource (un bord) voient leur qualité de service diminuer, alors que le temps d’utilisation de
la ressource n’est pas affecté. la ressource n’est pas affecté [7]. Cela peut être le cas, par exemple
dans certaines applications de télécommunication et de streaming multimédia. La temporisation
apparaît également, par exemple, dans les applications [40, 53] où la charge affecte les temps de
parcours et où l’objectif des joueurs est de minimiser le temps total de déplacement. D’autres
travaux se concentrent sur les modèles de flux avec un aspect temporel [13, 37].

Jeux dynamiques de congestion de réseau. Dans les jeux classiques de congestion de
réseau, les joueurs choisissent leurs stratégies (leurs chemins simples) en une seule fois. Cependant,
il peut être intéressant de laisser les agents choisir leurs chemins dynamiquement, c’est-à-dire étape
par étape, en observant les choix précédents des autres joueurs. Dans cet article, nous étudions
les jeux de congestion de réseau avec des coûts dépendant du temps comme dans [31], mais avec
des retards unitaires, et dans un cadre dynamique. Plus précisément, à chaque étape, chacun des
joueurs sélectionne simultanément le bord qu’il veut prendre ; chaque joueur doit ensuite payer
un coût qui dépend de la charge du bord qu’il a choisi. l’arête qu’il a choisie, et traverse cette

vi



Résumé de la thèse

arête en une seule étape. Nous nommons ces jeux : jeux dynamiques de congestion de réseaux
(dynamic NCG en abrégé) ; le comportement des joueurs dans ces jeux est formalisé au moyen de
stratégies, indiquant aux joueurs ce qu’ils doivent jouer en fonction de la configuration actuelle.
Remarquez que, puisque l’effet de congestion s’applique aux arêtes utilisées simultanément par
plusieurs joueurs, prendre des cycles peut être intéressant dans un NCG dynamique, ce qui rend
notre cadre plus complexe que la plupart des NCG. modèles [8, 31, 56, 57].

Un tel cadre dynamique a été étudié dans [8] pour les jeux d’allocation de ressources. d’allocation
des ressources, qui étend [56] aux choix dynamiques.

Concepts de solution standard . Nous étudions les concepts de solution classiques
sur les jeux dynamiques de congestion de réseau. réseau dynamique. Un profil de stratégie
(i.e., une fonction assignant une stratégie à chaque joueur) est un équilibre de Nash (NE) lorsque
chaque stratégie unique est une réponse optimale aux stratégies des autres joueurs. d’autres termes,
sous un tel profil stratégique, aucun joueur ne peut réduire ses baisser ses coûts en changeant
unilatéralement ses stratégies. Remarquez que les NE ne doivent pas nécessairement exister en
général, et lorsqu’ils existent, ils peuvent ne pas être uniques. être uniques. Dans le cadre des jeux
dynamiques, les équilibres de Nash sont généralement mis en œuvre en utilisant des stratégies
d’optimisation. généralement renforcés par des stratégies de punition, par lesquelles tout joueur
joueur qui dévie sera puni par tous les autres joueurs une fois que la déviation a été détectée.
Cependant, ces stratégies de punition peuvent aussi augmenter le coût encouru par les joueurs
qui punissent, et ne constituent donc pas une menace crédible. ne constituent pas une menace
crédible. Subgame-Perfect Equilibria (SPE) raffine NE et Nous abordons ce problème en exigeant
que le profil stratégique soit un NE le long de tout jeu.

NE et SPE visent à minimiser le coût individuel de chaque joueur (sans se soucier des coûts
des autres). sans se soucier des coûts des autres) ; dans un contexte de collaboration, les joueurs
peuvent plutôt essayer de réduire le coût social, c’est-à-dire la somme des coûts encourus par
tous les joueurs. encourus par tous les joueurs. Les profils stratégiques qui y parviennent sont
appelés social optima (SO). De toute évidence, le coût social de NE et SPE ne peut être inférieur à
celui de l’optimum social ; Le prix de l’anarchie mesure la gravité des comportements égoïstes par
rapport aux comportements collaboratifs. comportements égoïstes par rapport aux comportements
collaboratifs.

Parameterized network congestion games (jeux de congestion de réseau paramétrés)
Tous les problèmes ci-dessus ont été abordés en partant du principe que tous les joueurs (et les
contrôleurs, le cas échéant) connaissent le nombre de joueurs dans le réseau, ce qui est crucial pour
concevoir un équilibre ou un optimum social. Comme une solution pour un certain nombre de
joueurs apriori ne nous donne aucune information sur ce à quoi ressemblerait une solution pour
un autre nombre de joueurs, nous devrions la résoudre à partir de zéro sur le même réseau chaque
fois que le nombre de joueurs change.

L’étude de l’incertitude dans le trafic suscite un intérêt croissant. Une approche commune
pour traiter ce problème consiste à généraliser le cadre déterministe au cadre stochastique avec
un nombre inconnu de joueurs. Wang et al. [63] et Correa et al. [22] ont étudié le PoA pour les
jeux de congestion non atomiques avec demandes stochastiques. Cominetti et al. [21] ont étudié
le cadre atomique des jeux de congestion de Bernoulli dans lesquels chaque joueur participe au
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jeu avec une probabilité indépendante, et ont trouvé que la limite supérieure de la PoA pour les
modèles déterministes tient toujours. Cominetti et al. [20] a trouvé que de tels jeux de congestion
de Bernoulli convergent vers un ensemble de jeux de Poisson au sens de Myerson[49], lorsque les
probabilités de participation des joueurs tendent vers zéro. Wang et al. [62] étudie un autre modèle
pour les jeux de congestion de réseaux atomiques avec des demandes stochastiques, dans lequel au
lieu des probabilités de participation individuelles, ils considèrent les distributions du nombre de
joueurs comme une connaissance commune, ce qui suit le cadre de l’incertitude de la population
proposé par Myerson[49]. L’incertitude de la demande a également été considérée dans d’autres
jeux tels que les jeux d’allocation de ressources par Ashlagi et al. [4].

En dehors des approches stochastiques, il existe d’autres méthodes pour calculer directement
les équilibres dans un cadre paramétrique. Klimm et Wardo[36] ont trouvé que la complexité
du calcul des équilibres dans les jeux de congestion atomique avec des fonctions paramétriques
de coût-affine est PPAD-complète, en exprimant l’évolution des équilibres localement par une
nouvelle matrice Laplacienne en bloc.

Nous essayons d’aborder le même problème avec le nombre de joueurs comme paramètre en
exprimant le NE pour un grand nombre de joueurs en termes de NE pour un plus petit nombre
de joueurs en utilisant une propriété semi-linéaire, ce qui évite au contrôleur, qui assigne un profil
stable à tous les joueurs, de calculer le NE à partir de zéro. Malheureusement, le cas général reste
ouvert dans cette thèse, et nous donnons des résultats préliminaires pour les graphes series-parallèles.

Contributions

Dans la première partie, nous adoptons un point de vue de complexité informatique pour étudier
les jeux dynamiques de congestion des réseaux. jeux de congestion de réseaux dynamiques. Nous
établissons d’abord la complexité du calcul de l’optimum Nous montrons que le calcul de l’optimum
social est in PSPACE et NP-hard. Nous prouvons ensuite que les stratégies de meilleure réponse
peuvent être calculées en temps polynomial. temps polynomial, et que les GCN dynamiques
sont des jeux potentiels, montrant ainsi l’existence d’équilibres de Nash. montrant ainsi l’existence
d’équilibres de Nash dans tout GNC dynamique ; ceci montre également que certains équilibres
de Nash peuvent être calculés en temps pseudo-polynomial. Nous donnons ensuite un algorithme
EXPSPACE (resp. 2EXPSPACE) algorithme pour décider de l’existence d’équilibres de Nash
(resp. équilibres sous-jeux-parfaits) dont les coûts sociaux satisfont des limites données. Ce site
nous permet de calculer le meilleur et le pire de ces équilibres, puis le prix de l’anarchie et le prix de
la stabilité. Ces résultats sont publiés dans [11].

Notez que certaines des complexités élevées découlent du codage binaire du nombre de joueurs.
codage binaire du nombre de joueurs, qui est le principal paramètre d’entrée. Par exemple, la
complexité exponentielle de l’espace du NE contraint tombe à un temps pseudo-polynomial.
temps pseudo-polynomial pour un nombre fixe de joueurs. Ce paramètre devient important
puisque nous préconisons l’étude de problèmes de calcul, tels que le calcul des équations de Nash.
problèmes de calcul, tels que le calcul des équilibres de Nash avec une donné. Nous croyons
également que le calcul de valeurs précises pour le prix de l’anarchie et le prix de la stabilité est
important. prix de l’anarchie et le prix de la stabilité est intéressant, plutôt que de plutôt que de
fournir des limites sur l’ensemble de toutes les instances, comme dans le cas suivant e.g. [60].

viii



Résumé de la thèse

Dans la deuxième partie, nous nous limitons aux arènes de jeu qui sont des graphes série-
parallèles, et notre modèle au modèle communément étudié des jeux de congestion de réseau :
sans stratégies dynamiques et sans effet de congestion non-synchrone dans le calcul du coût. Dans
ce modèle, nous montrons que l’ensemble des profils NE est un ensemble semi-linéaire. De plus,
l’ensemble semi-linéaire a une structure spéciale : tout vecteur période de l’ensemble semi-linéaire
est un multiple d’un vecteur unique, que nous appelons le vecteur shift. De plus, nous émettons
également une conjecture selon laquelle ce vecteur dit de décalage est le seul vecteur de période de
l’ensemble semi-linéaire. Si cette conjecture s’avère vraie, nous montrons une manière très simple
de représenter l’ensemble de tous les profils NE, et nous donnons un algorithme pour calculer un
NE pour un grand nombre de joueurs en utilisant les vecteurs de décalage et le NE d’un nombre
relativement plus petit de joueurs.

Outline

Ce document est divisé en deux parties. Dans la partie I, qui est basée sur [11], nous étudions les jeux
dynamiques de congestion de réseau. Dans cette partie, au chapitre ??, nous fixons les notations et
adaptons les définitions de la littérature, qui seront utilisées dans les chapitres suivants. Dans le
chapitre 2, nous considérons le problème de l’optimum social contraint, et résolvons le problème
en PSPACE, tout en montrant que la borne inférieure est NP. Dans les chapitres 3 et 4, nous
considérons deux concepts de solution : Les équilibres de Nash et les équilibres parfaits de sous-jeu,
et nous résolvons le problème de décision sous contrainte pour chacun d’eux, ce qui nous permet
de conclure la partie I. Cette partie est principalement basée sur [11].

Dans la partie II du document, nous considérons des jeux paramétrés de congestion de réseau
sur des graphes série-parallèles, dans lesquels le nombre de joueurs est le paramètre. Ici, dans le
chapitre 5, nous introduisons les définitions que nous utilisons spécifiquement pour cette partie,
et dans le chapitre 6, notre objectif était d’obtenir un algorithme pour calculer les NE pour les
NCG avec beaucoup de joueurs à partir des NE des NCG avec moins de joueurs. Nous énumérons
quelques résultats dans ce sens, et nous formulons une conjecture qui, si elle est vraie, nous donne
une représentation de l’ensemble de tous les NE avec un nombre quelconque de joueurs en termes
d’un vecteur dit shift et de NE avec un certain nombre fini de joueurs.

Enfin, dans le chapitre 6.5, nous concluons en résumant brièvement tous les résultats, et en
fournissant une liste de suivis immédiats et d’objectifs futurs.
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Introduction

Motivation

When we commute from one place to another, usually we want to avoid as much traffic as possible,
and we often tend to change our predestined route if we see updates on our chosen route show a
heavy traffic. But it may happen that others too, who were determined to choose the same route,
see the same update, and switch their route to the one that we are changing into. As a result a
situation arises where a previously lighter traffic route becomes heavier, and a heavier traffic might
become lighter than before. And, we are back to square one.

But there might be ways to tackle this problem: (1) the commuters may decide among themselves
who will switch and who will not, or (2) the update might come to the commuters directly with a
solution to switch in a way such that if they all follow the suggestion, they actually become better
off. One might ask how the commuters communicate and drive cooperatively in order to benefit
in situations like this. In a foreseeable future with automated vehicles [30, 61], both vehicle to
vehicle (V2V) or vehicle to infrastructure (V2I) communications are imagined to be realizable
[46]. In this thesis, our concern is not how these communications are realizable, rather we are
interested in problems like if such a communication is indeed established what kind of solution
such a cooperative decision making would guarantee in lowering congestion effect, and how to
synthesize such a planning of routes for the commuters, which ensures the guarantee.

Like traffic on road, another area where congestion control is relevant in our daily life is the
internet. As we keep spending more and more time on the internet (specially after the pandemic
doomed us all), everyday we experience one problem or another. One day we need to turn off our
camera during an online meeting between two people, while on another lucky day, we participate
an online seminar with thirty people. Downloading a file today might take twice as much time as it
had taken yesterday for the same size. We all have been there.

While there might be many facets of reasons for these happening, like - unavailability/broken
links, packets that carry data may traverse different inner network nodes (‘routers’), but one of
the main reason behind the performance fluctuations on the internet happens due to network
congestion. Thus, controlling congestion is crucial in today’s Internet. The predominant form of
congestion control is embodied in Transmission Control Protocol (TCP) [32], which provides a
reliable way of end-to-end data transmission, and also avoiding any congestion collapse. Intuitively,
this protocol works in the interest of a network as a whole (or at least of a sufficiently large part),
and therefore from an end-point’s perspective it might not always be in their best interest to comply
with the protocol. This gives rise to game-theoretic analysis [1, 33, 34, 45] of TCP-like protocols
in the literature: Akella et al. [1], using game-theoretic analysis of TCP, compare efficiency of
stable behaviors between recent variations of TCP (e.g. SACK) with traditional variations, and
conclude that recent variations are more susceptible to selfish behavior; Lopez et al. [45] study the
Fountain Based Protocol (FBP), and compare the performance of stable mechanism between FBP
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and TCP in the presence of congestion; Kesselman et al. [34] measure degradation in performance
because of congestion in a TCP-like traffic model, and propose an early detection policy to reduce
degradation, and these are the few examples from a vast literature on game theoretic analysis of
TCP-like protocols. One of the commonalities between all these is that they are studying the
performance of stable behaviors of the internet in different but specific contexts when end-users
are interacting selfishly and causing congestion. Moreover, in those specific contexts these studies
focus mainly on measuring worst-case scenario of a model without directly checking the properties
of an instance of those models.

In theory, these kind of practical scenarios are often abstracted in graph games, and similar
problems are studied on those graphs, which comment on, more often than not, worst/best-case
scenarios in that particular class of games. We discuss more on this in Section of this chapter.
In this thesis, we view this area from a formal methods perspective, where instead of addressing
worst/best-case scenario for a congestion game model, we are more interested in what kind of
stability performance can be guaranteed in a given instance of this model. Therefore, we start with
introducing formal methods, how they address game theoretical questions, and then delve into
more details how we approach analyzing congestion games from a verification perspective.

Background

Formal methods and Game theory In today’s age, we are heavily dependent on com-
puterized systems: from smartphone to space-shuttle, from ATM to automated vehicle, from
traffic control to nuclear power plants - the list continues to grow each passing day, and so is our
dependency on them. We want these systems to be immune to failure. When a system fails, we face
crisis from financial loss to loss of lives. For example, a fatal defect in the control software [23] of
the Ariane-5 missile caused a crash just within 36 seconds of its launch on June 4, 1996. A software
flaw in the control part of the radiation therapy machine Therac-25 [44] caused the death of six
cancer patients between 1985 and 1987.

In computer science, formal methods is a field where we formally reason about such computerized
system: we verify properties for a given system (model checking), and build models which are correct
by construction (synthesis) from a given specification. In model checking problems, an input
usually consists of a system and a logical specification (for example a formula in temporal logic
[54]), and the problem asks whether the system satisfies the specification. Depending on what kind
of formulas are being considered as the specification, the model checking problem asks whether
one or all executions of the system in question satisfies the specification.

In reality, a designer/controller may control only parts of the whole system, and they might want
to verify a specification on the executions of the system which involves those parts. For instance,
consider an elevator in a building as the system, and the specification is whenever someone calls
from a certain floor, the elevator needs to stop at that floor eventually to pick up that person. Now,
this specification is concerned with a particular part of the system, which has almost nothing to do
with executions like : not getting stuck in between floors, opening the door when it stops at a floor
or, not opening the door when it is running between floor etc. Therefore, to check whether the
elevator satisfies the specification, we should neither check all executions, it is enough nor to check
a single execution, which can only guarantee for a single call to stop.

xi



Introduction

These types of problems in formal methods are solved using game-theoretic [43] approach: in
our example, the person who calls the elevator is the environment, and the elevator itself is the
system. In such two-player games between the system and the environment, the environment aims
to show that the system is faulty, while the system tries to establish that it is not. In other words, the
verification problem demands that the designer/controller can make sure the system wins against
any behaviour of the environment. These are called zero-sum games, and a solution in such a game
is a winning strategy.

On the other hand, it is possible that the designers of different components of a system themselves
compete with each other for certain resources. Here instead of either winning or loosing the game,
each player obtains some payoff. Payoff can be positive, which is generally referred to as a reward,
and it can be negative, which is referred to as a cost. Unlike winning a game, here a player’s objective
is to optimize their payoff: maximize if it is a reward, minimize if it is a cost. These games are called
non-zero sum games.

Moreover, in a non-zero sum game, the objective of designers of different components of a sys-
tem’s might be in direct contrast with the system’s overall best interest. Therefore, while a solution
from the system’s perspective is a social optimum, from a particular component’s perspective, who
is playing selfishly, a solution would be a choice that is best with respect to all other player’s choices.
Because this is true for all components, they together would like to achieve some kind of stability
in their choices with each other; and that would be the solution from their perspective. However,
this notion of stability is not unique.

Nash Equilibria (NE) [50], the most common notion of stability, is the solution concept which
is immune to any single player deviation at any point of the game if all players follow their cor-
responding choices given by it, from the beginning of the game. But there are other notions as
well, which are studied depending on various contexts. For example, Subgame perfect Equilibria
(SPE) [51] is a solution concept for stability, which is more relevant in a context where each player
can make decision dynamically, step by step, seeing how other players are responding. Strong
Equilibria[5, 25] is a notion of stability which is immune not only to single player deviations
but also to coordinated deviation of several players, while Stackelberg equilibria [26, 59] are the
stable solution when there are some players whose objective are on par with the system itself (not
selfishly), while some other players play in their self-interest.

Nonetheless, it is not guaranteed that one or another notion of stable set of choices always
exist in all non-zero sum games. Hence, one of the task in this context is always find out which
notions fits best for the purpose, and whether that notion of stability exists in that particular class
of non-zero sum game.

Congestion games and Selfish Routing. In this thesis, we focus on particular non-zero
sum games, called congestion games played on a network. Congestion games model selfish resource
sharing among several players [56]. A special case is the one of network congestion games, in which
players aim at routing traffic through a congested network. In network congestion games, each
player chooses a set of transitions, forming a simple path from a source state to a target state, and
the cost of a transition increases with its load, that is, with the number of players using it. In the
next section, we review the state of the art on network congestion games.
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Related works on Network Congestion Games

Network congestion games can be classified into atomic and non-atomic variants. Non-atomic
semantics is appropriate for large populations of players, thus seen as a continuum. One then
considers portions of the population that apply predefined strategies, and there is no such thing as
the effect of an individual player on the cost of others. In contrast, in atomic games, the number
of players is fixed, and each player may significantly impact the cost other players incur. We only
focus on atomic games in this thesis.

Network congestion games. Network congestion games, also called atomic selfish
routing games in the literature, were first considered by Rosenthal [56]. These games are defined by
a directed graph, a number of pairs of source-target vertices, and non-decreasing cost functions for
each edge in the graph. For each source-target pair, a player must choose a route from the source to
the target vertex. Given their choice of simple paths, the cost incurred by a player depends on the
number of other players that choose paths sharing edges with their path, and on the cost functions
of these edges. In this setting, a Nash equilibrium maps each player to a path in such a way that no
player has an incentive to deviate: they cannot decrease their cost by choosing a different path.

Rosenthal[56] proved that network congestion games are potential games, so that Nash equilibria
always exist. Monderer and Shapley [48] studied in a more general way potential games, and
explained how to iteratively use best-response strategies to converge to an equilibrium. Interestingly,
under reasonable assumptions on the cost functions, Bertsekas and Tsitsiklis established that there is
a direct correspondence between equilibria in selfish routing and distributed shortest-path routing,
which is used in practice for packet routing in computer networks [12]. We refer the interested
reader to [57] for an introduction and many basic results on general routing games.

A natural question is whether selfish routing is very different from a routing strategy decided
by a centralized authority. In other words, how far can a selfish optimum be from the social
optimum, in which players would cooperate. The notion of price of anarchy, first proposed by
Koutsoupias and Papadimitriou [39], is the ratio of the worst cost of a Nash equilibrium and the
cost of the social optimum. This measures how bad Nash equilibria can be. In the context of
network congestion games, the price of anarchy was first studied by Suri et al. [60], establishing
an upper bound of 5

2 when all cost functions are affine. A refined upper bound was provided by
Awerbuch et al. [9]. Bounds on the dual notion of price of stability, which is the ratio of the cost of
a best Nash equilibrium and the cost of the social optimum were also studied for routing games [3].

Timing aspects. Several works investigated refinements of this setting. In [31], the authors
study network congestion games in which each edge is traversed with a fixed duration independent
of its load, while the cost of each edge depends on the load. The model is thus said to have time-
dependent costs since the load depends on the times at which players traverse a given edge. The
authors prove the existence of Nash equilibria by reduction to the setting of [56]. An extension of
this setting with timed constraints was studied in [6, 7].

The setting of fixed durations with time-dependent costs is interesting in applications where the
players sharing a resource (an edge) see their quality of service decrease, while the time to use the
resource is unaffected [7]. This might be the case, for instance, in some telecommunication and
multimedia streaming applications. Timing also appears, for instance, in [40, 53] where the load
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affects travel times and players’ objective is to minimize the total travel time. Other works focus on
flow models with a timing aspect [13, 37].

Dynamic network congestion games. In classical network congestion games, players
choose their strategies (i.e., their simple paths) in one shot. However, it may be interesting to let
agents choose their paths dynamically, that is, step by step, by observing other players’ previous
choices. In this thesis, we study network congestion games with time-dependent costs as in [31],
but with unit delays, and in a dynamic setting. More precisely, at each step, each of the players
simultaneously selects the edge they want to take; each player is then charged a cost that depends
on the load of the edge they selected, and traverses that edge in one step. We name these games
dynamic network congestion games (dynamic NCG in short); the behaviour of the players in such
games is formalized by means of strategies, telling the players what to play depending of the current
configuration. Notice that, because the congestion effect applies to edges used simultaneously by
several players, taking cycles can be interesting in dynamic NCG, which makes our setting more
complex than most NCG models [8, 31, 56, 57].

Such a dynamic setting was studied in [8] for resource allocation games, which extends [56] with
dynamic choices.

Standard solution concepts. We study classical solution concepts on dynamic network
congestion games. A strategy profile (i.e., a function assigning a strategy to each player) is a Nash
Equilibrium (NE) when each single strategy is an optimal response to the strategies of the other
players; in other terms, under such a strategy profile, no player may lower their costs by unilaterally
changing their strategies. Notice that NE need not exist in general, and when they exist, they
may not be unique. In the setting of dynamic games, Nash Equilibria are usually enforced using
punishing strategies, by which any deviating player will be punished by all other players once the
deviation has been detected. However, such punishing strategies may also increase the cost incurred
by the punishing players, and hence do not form a credible threat. Subgame-Perfect Equilibria (SPE)
refine NE and address this issue by requiring that the strategy profile is an NE along any play.

NE and SPE aim at minimizing the individual cost of each player (without caring of the others’
costs); in a collaborative setting, the players may instead try to lower the social cost, i.e., the sum of
the costs incurred to all the players. Strategy profiles achieving this are called social optima (SO).
Obviously, the social cost of NE and SPE cannot be less than that of the social optimum; the price
of anarchy measures how bad selfish behaviours may be compared to collaborative ones.

Parameterized network congestion games All the above problems were addressed
on an underlying assumption that all the players (and controllers if any) know the number of
players in the network, which is crucial to design an equilibrium or social optimum. As a solution
for a certain number of players apriori does not give us any information about what a solution for
another number of players would look like, we would need to solve it from scratch on the same
network every time the number of players changes.

There has been a growing interest in investigating uncertainty in traffic. One common approach
to deal with this problem is to generalize the deterministic setting to the stochastic one with an
unknown number of players. Wang et al. [63] and Correa et al. [22] studied the PoA for non-atomic
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congestion games with stochastic demands. Cominetti et al. [21] studied the atomic setting of
Bernoulli congestion games in which each player participates in the game with an independent
probability, and found that the upper bound of the PoA for deterministic models still hold.
Cominetti et al. [20] found such Bernoulli congestion games converge to a set of Poisson games
in the sense of Myerson[49], when players’ participating probabilities tend to zero. Wang et al.
[62] studies another model for atomic network congestion games with stochastic demands, in
which instead of individual participation probabilities, they consider distributions of numbers of
players as common knowledge, which follows the framework of population uncertainty proposed
by Myerson[49]. Demand uncertainty has also been considered in other games such as resource
allocation games by Ashlagi et al. [4].

Apart from stochastic approaches, there have been other methods to directly compute equilibria
in parametric setting. Klimm and Wardo[36] found the complexity of computing Equilibria in
atomic congestion games with parametric cost-affine functions is PPAD-complete, by expressing
the evolution of equilibria locally by a novel block Laplacian matrix.

We try to approach the same problem with number of players as the parameter by expressing
NE for large number of players in terms of NE for smaller number of player using semi-linear
property, and this spares the controller, who assigns a stable profile to all players, to compute NE
from scratch. Unfortunately, the general case remains open in this thesis, and we give preliminary
results for series-parallel graphs.

Contributions

In the first part, we take a computational-complexity viewpoint to study dynamic network conges-
tion games. We first establish the complexity of computing the social optimum, which we show is
in PSPACE and NP-hard. We then prove that best-response strategies can be computed in polyno-
mial time, and that dynamic NCG are potential games, thereby showing the existence of Nash
equilibria in any dynamic NCG; this also shows that some Nash equilibrium can be computed in
pseudo-polynomial time. We then give an EXPSPACE (resp. 2EXPSPACE) algorithm to decide
the existence of Nash Equilibria (resp. Subgame-Perfect Equilibria) whose social costs satisfy given
bounds. This allows us to compute best and worst such equilibria, and then the price of anarchy
and the price of stability. These results are appeared in [11].

Note that some of the high complexities follow from the binary encoding of the number of
players, which is the main input parameter. For instance, the exponential-space complexity of
constrained NE drops to pseudo-polynomial time for a fixed number of players. This parameter
becomes important since we advocate the study of computational problems, such as computing
Nash equilibria with a given cost bound. We also believe that computing precise values for the
price of anarchy and the price of stability is interesting, rather than providing bounds on the set of
all instances as in e.g. [60].

In the second part, we restrict to game arena that are series-parallel graphs, and our model
to the commonly studied model of network congestion games: without dynamic strategies and
non-synchronous congestion effect in the cost computation. In that model, we show that the set
of NE profiles is a semi-linear set. Moreover, the semi-linear set has a special structure: any period
vector of the semi-linear set is a multiple of a single vector, which we call the shift- vector. Moreover,
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we also make a conjecture that this so-called shift vector is the sole period vector of the semi-linear
set. If this conjecture turns out to be true, then we show a very simple way to represent the set of
all NE profiles, and give an algorithm to compute an NE for a large number of players using the
shift vectors and the NE of relatively smaller number of players.

Outline

This document is divided into two parts. In Part I, which is based on [11], we study Dynamic
network congestion games. In that part, in Chapter 1, we fix the notations and adapt definitions
from literature, which will be used in the subsequent chapters. In Chapter 2, we consider the
constrained Social optimal problem, and solve the problem in PSPACE, while the lower bound is
shown to be NP. In Chapters 3 and 4, we consider two solution concepts: Nash Equilibria and
Subgame perfect Equilibria, and solve the constrained decision problem for each, and with this we
conclude Part I. This part is mostly based on [11].

In Part II of the document, we consider parameterized network congestion games on series-
parallel graphs, in which the number of players is the parameter. Here, in Chapter 5, we introduce
the definitions that we use specifically for this part, and in Chapter 6, our aim was to obtain an
algorithm to compute NE for NCG with many players from NE of NCG with fewer players. We
list out some results on that direction, and we formulate a conjecture which, if true, gives us a
representation of the set of all NE with any number of players in terms of a so-called shift vector
and NE with some finite number of players.

Finally, in Chapter 6.5, we conclude by summarizing all the results briefly, and by providing a
list of immediate follow-ups and future objectives.
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number of players
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1 Preliminaries

In the first part of this thesis, we consider dynamic Network Congestion Games (dynamic NCG)
with a fixed number of players. And, in the second part of this thesis, we consider Network conges-
tion games (NCG) with number of players as a parameter. Here, in this chapter, we introduce the
model for the first part only, and for the second part we have a respective chapter for preliminaries,
definitions etc.

Let F be a family of non-decreasing functions fromN toN, which are piecewise-affine, with
finitely many pieces. We assume that each f ∈ F is represented by the endpoints of the intervals,
and the coefficients, all encoded in binary.

1.1 Game Arena: Network with Cost Functions

An arena is a weighted graphA = ⟨V,E, src, tgt⟩, whereV is the set of vertices,E ⊆ V ×F×V
is a set of transitions labeled with non-decreasing piecewise affine cost functions, and src, tgt ⊆ V
are the sets of source and target vertices. In our discussion, we consider that each vertex except
possibly the vertices of tgt has at least one outgoing edge, and every target vertex t ∈ tgt is reachable
from every vertex v ∈ V .

1.2 Dynamic Congestion Games Played on a Network

Definition 1.1 (Network Congestion Game). A network congestion game (NCG) is a triplet
G = ⟨A, n, g⟩ where A is an arena as above, n ∈ N is the number of players, and g : src × tgt →
{0, . . . , n} maps each source-target vertex pair (s, t) to a number k ≤ n, which means k players
have s and t as their source and target vertices respectively.

Naturally, it is required that,
∑

(s,t)∈src×tgt
g(s, t) = n.

Assigning source-target to players. We assume an arbitrary order among the elements
of src and tgt. This gives us a lexicographic ordering among the elements of src× tgt. We use this
order to identify which player have which vertices among the source and target. To be fair, our
model is not specific to any player’s identity, hence we do not keep this order as a part of the syntax.

Let us consider the elements of src × tgt with the order are (s1, t1) < (s1, t2) < . . . <
(s|src|, t|tgt|). We consider (sl, tm), for l ≤ |src|,m ≤ |tgt|, to be the source-target vertex pair
for Player i if ∑

(s,t)<(sl,tm)

g(s, t) < i ≤
∑

(s,t)≤(sl,tm)

g(s, t)
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1 Preliminaries

Abusing notation, we denote the source and target vertex of Player i as src(i) and tgt(i).
It is noteworthy that, whenever we will take an instance of an NCG ⟨A, n, g⟩ as input, since

for all (s, t) ∈ src × tgt, g(s, t) ≤ n, the input size is logarithmic in n. This is clearly the case if
all players have same source and target, which we refer as symmetric network congestion games.
However, in case of non-symmetric games, where players do not have same source-target vertices,
one way to encode the input in such a case is to take a list of source-target vertex pairs for each
player. In such encoding, the input size os polynomial in n. But we can encode n in binary only
because in this model of congestion games, apart from the source-target pair of vertices, identity of
a player doesn’t matter. That is why, instead of associating each pair of source-target vertices to
each player, we chose to encode via a map which associates each pair of source-target vertex to the
number of players who use those as such.

Semantics. In a network congestion game, all players start from their source src(i) and
simultaneously select the edges they want to traverse in order to reach their target tgt(i). In this
journey from their source to target, each player pays some cost for traversing, and this cost depends
on the cost functions f encoded in the transitions of the form (v, f, v′), and in turn, may depend
on the number of players that also take the same edge, in case f is not a constant function.

Each player’s objective in an NCG is to traverse from its source to target with minimum individ-
ual accumulated cost.

In classical network congestion games[39, 57], each player selects a path from their source to
target at once, at the beginning of a play, and continue with that path till they reach their target
vertex. In that setting, we can also see that a player’s congestion cost is measured by taking into
account how many other players have taken the same edge throughout their traversal, and not
necessarily at the same step. On the contrary, in Part I of this thesis, we consider a setting which
differs from the classical model in two aspects:

• first, the game is played in rounds, during which all players take exactly one transition; the
number of players using an edge e is measured dynamically, at each round.

We can also view this difference in another perspective: while in our model of NCG, players
pay “immediately" for the congestion, in classical model players pay “at the end" by seeing
how many other players have also traversed the same edge.

• second, during the play, each player may adapt their choices depending on what the other
players have been doing in the previous rounds.

s

v1

v2

v3 t
x
7→
x

x 7→
5

x 7→ 6

x 7→
3x

x
7→
x

x 7→ 4x

Figure 1.1: An arena A for a dynamic NCG
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1.3 Concurrent Game Semantics For Dynamic NCG

Example 1.2. Consider the arena A = ⟨V,E, src = {s}, tgt = {t}⟩ depicted at Fig. 1.1. Note
that some of the edges like (s, x 7→ x, v1), (v2, x 7→ x, v3) are associated with linear cost functions,
in which f : x 7→ xmeans any player who takes this edge pays as much cost as the number of players
who take the same edge in their traversal. Other edges like (v1, x 7→ 6, v2) are associated with
constant cost functions, where each player who takes the edge (v1, x 7→ 6, v2) pays cost 6, no matter
how many other players also take the same in their traversal.

On this arena, we consider dynamic NCG ⟨A, 2, g⟩ with two players, where g(s, t) = 2. Assume
that Player 1 follows the path π1 : s→ v1 → v3 → t and Player 2 goes via π2 : s→ v1 → v2 →
v3 → t.

In classical NCGs, the cost for Player 1 would be 2 + 3 + 8 = 13, while for Player 2, it would be
2+ 6+ 1+ 8 = 17. Notice that, here, even though the edge v3 → t is not used simultaneously, both
players bear congestion effect in their payable cost due to this edge. On the contrary, in our model, this
gives rise to the following path (along with the costs):(
P1 7→ s
P2 7→ s

) P17→2
P27→2−−−−→

(
P1 7→ v1
P2 7→ v1

) P17→3
P27→6−−−−→

(
P1 7→ v3
P2 7→ v2

)
P17→4
P27→1−−−−→

(
P1 7→ t
P2 7→ v3

) P1 7→0
P27→4−−−−→

(
P1 7→ t
P2 7→ t

)

Here, inside the brackets, we depict the current positions of the players, for example
(
P1 7→ s
P2 7→ s

)
depicts that Player 1 and 2 both are at vertex s. On the other hand, labels over the transitions
depict how much cost each player pays for taking that particular transition, for example at the first
transition, both players observe congestion effect on their cost and each of them pays cost 2, according to
the associated cost function x 7→ x.

Notice how edge v3 → t of A is used by both players, but not simultaneously, so that the cost of
using that edge is 4 for each of them.

An example of a strategy that dynamically adapts to the other players’ behaviors, σ, consists in
first taking the transition s→ v1, and then either taking v1 → v3 if the other player took the same
initial transition, or taking v1 → v2 otherwise.

From hereon, we call this setting dynamic NCG in order to distinguish it from other network
congestion game models [39, 57], which we often refer to as simply NCG.

1.3 Concurrent Game Semantics For Dynamic NCG

In congestion games, each player selects their edges simultaneously in order to traverse from their
source to target, hence we can think of the dynamics of the game as a concurrent reachability game:
where from each location, each player chooses an action to decide next location, for each joint
action each player pays some individual cost, and their objective is to visit a designated location
with minimum accumulated individual cost. We describe below, formally, how we associate a
concurrent game structure with a dynamic NCG, and how we use that subsequently.
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1 Preliminaries

Configurations. For any n ∈ N, we write JnK = {i ∈ N : 1 ≤ i ≤ n} as the
set of n Players. A configuration of a dynamic network congestion game ⟨A, n, g⟩ is a mapping
c : JnK → V , indicating the position of each player in the arena. We define csrc : i ∈ JnK 7→ src(i)
and ctgt : i ∈ JnK 7→ tgt(i) as the initial and target configurations.

With G = ⟨A, n, g⟩, we associate a multi-weighted graph M = ⟨C, T ⟩, where C = V JnK

is the set of all configurations, and T ⊆ C × NJnK × C is a set of edges, where the n-tuple of
weights on an edge indicates individual accumulated cost for each player. Formally, there is an
edge (c, w, c′) in T if, and only if, there exists a collection e = (ei)i∈JnK of edges ofE such that
for all i ∈ JnK, writing ei = (vi, fi, v′i) and loadei(e) = #{j ∈ JnK | ej = ei} which denotes
the number of players taking edge ei simultaneously with Player i, we have c(i) = vi, c′(i) = v′i,
andw(i) = fi(loadei(e)). Moreover, if c(i) = tgt(i), then as the game has stopped for player
i, we know w(i) = 0, and c′(i) remains tgt(i). We denote this edge with c e

=⇒ c′. We may use

the notation costi(c
e
=⇒ c′) forw(i) depending on the context, to directly specify the associated

configurations and edge. We call M the configuration graph of the dynamic NCG G.

Remark 1.3. Here, we can note the difference in the way we compute cost between our model of
network congestion games and the classical congestion games played on network [39, 57]. If we try to
associate a configuration graph in the classical model to how we defined here, we can see that the edges
cannot be associated with costs (weights in M = ⟨C, T ⟩ for our model) of Players likewise. This is
due to the fact that, in the classical model, a player’s cost of taking an edge does not solely depend on
the current transition, rather takes into account how many players might have taken the same edge in
other transitions too, in the full-course of the game.

Two edges (c, w, c′) and (d, x, d′), in that order, are said to be consecutive whenever d = c′.
Given a configuration c, a path from c in a dynamic network congestion game is either the single
configuration c (we call this a trivial path) or a non-empty, finite (ρ = (tj)1≤j<|ρ|) or infinite
(ρ = (tj)j≥1) sequence of consecutive edges in M, where t1 is a transition from c; the size of a
path ρ is zero for trivial paths, and |ρ| ∈ N∪{+∞} otherwise. Extending the notation c e

=⇒ c′ of

an edge, we often refer a path ρ = (tj)1≤j<|ρ| by a sequence like c1
e1=⇒ c2

e2=⇒ . . . c|ρ|−1

e|ρ|−1
====⇒

c|ρ| where tj = (cj , wj , cj+1) andwj = costj(cj
ej
=⇒ cj+1).

We write Paths(⟨A, n, g⟩, c) and Pathsω(⟨A, n, g⟩, c) for the set of finite and infinite paths
from c in ⟨A, n, g⟩, respectively. A finite path ρ = (tj)1≤j≤|ρ| and another path (finite or infinite)
ρ′ = (t′j)j≥1 can be concatenated and can be written as ρ · ρ′ if t|ρ| and t′1 are consecutive.
Moreover, a finite path ρ = (tj)1≤j≤|ρ| ∈ Paths(⟨A,n, g⟩, c) is called complete if for t|ρ| =
(c, w, c′), c′(i) = tgt(i) for all i. When the configuration c is clear from the context, we simply
write PathsG for game G = ⟨A, n, g⟩.

Given a path ρ, an index 1 ≤ j ≤ |ρ| and a player i ∈ JnK, we write ρ(j) for the j-th
configuration of ρ, and ρ(j)(i) for the state of Player i in that configuration. For j ≥ 2, we
define ρ≤j as the prefix of ρ that ends in the j-th configuration; we let ρ≤1 = ρ(1). Similarly,
for 1 ≤ j ≤ |ρ| − 1, we let ρ≥j denote the suffix that starts at the j-th configuration. Finally,
if |ρ| is finite, we let ρ≥|ρ| = ρ(|ρ|).
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1.3 Concurrent Game Semantics For Dynamic NCG

Cost. With each path ρ = (cj , wj , c
′
j)j , and each player i ∈ JnK, we associate a cost, written

costi(ρ), which is zero for trivial paths, +∞ for infinite paths along which cj(i) ̸= tgt(i) for
all j, and

∑|ρ|−1
j=1 wj(i) otherwise. Moreover, when a player reaches their target vertex, they stay

there with cost 0. We define the social cost of ρ as

soccost(ρ) =
∑
i∈JnK

costi(ρ)

Concurrent Game We now extend the configuration graph to a concurrent game struc-
ture[18], which is a multi-agent extension of transition system[2].

A move for Player i ∈ JnK from configuration c is an edge e = (v, f, v′) ∈ E such that
v = c(i). A move vector from c is a sequence e = (ei)i∈JnK such that for all i ∈ JnK, ei is a move
for Player i from c.

Definition 1.4. The concurrent game structure (CGS) associated with a dynamic NCG G =
⟨A, n, g⟩ is a tuple S = ⟨C, T,M,U⟩, where

- ⟨C, T ⟩ is the configuration graph associated to G.

- M : C × JnK → 2E lists the set of available moves for each player from each configuration.

- U : C ×EJnK → T is the transition function such that for every configuration c and every
move vector e = (ei)i∈JnK with ei ∈M(c, i) for all i ∈ JnK,U(c, e) = c

e
=⇒ c′.

Strategy and outcome. A strategy for Player i inS from configuration c is a functionσi :
Paths(⟨A, n, g⟩, c) → E that associates, with any history h, which is finite path from c in S ,
a move for Player i from the last configuration of h. A strategy profile is a family σ = (σi)i∈JnK of
strategies, one for each player. We write Si for the set of Player i strategies, and Sn for the set of
strategy profiles.

Let c be a configuration, h be a history from c and a strategy profile σ = (σi)i∈JnK from c.
The residual strategy profile of σ after h is the strategy profile σh = (σhi )i∈JnK from the last
configuration of h defined by σhi (h′) = σi(h · h′).

The outcome of a strategy profile σ from c is the infinite path ρ = (ci, wi, ci+1)i≥1, here-
after denoted with outcome(σ), obtained by running the strategy profile; it is formally defined
as the only infinite path such that (c1, w1, c2) = U(c, σ(c)), and such that for any j ≥ 2,
(cj , wj , cj+1) = U(cj , σ(h

′)), where h′ = (c1, w1, c2) · · · (cj−1, wj−1, cj).
Pick a strategy profile σ = (σi)i∈JnK, and let ρ = (tj)j≥1 be its outcome, writing tj =

(cj , (w
i
j)i∈JnK, c

′
j) for all j ≥ 1. Let k ∈ JnK. If c′l(k) = tgt(k) for some l ∈ N, then

σk is said to be winning for Player k. In that case, we define costk(σ) as costk(outcome(σ)).
If c′l(i) = tgt(i) for all i ∈ JnK, we define the social cost of σ as soccost(σ) = soccost(ρ).

A strategy σi for Player i is called blind whenever the following holds: for any two finite paths ρ
andρ′ having same lengthk, and such that for any position0 ≤ j < kwe haveρ(j)(i) = ρ′(j)(i),
then σi(ρ) = σi(ρ

′).
Intuitively, this means that a blind strategy σi follows a path in A, independently of what the

other players do. A blind strategy can thus be represented as a path of the underlined arena A

7



1 Preliminaries

and we write |σi| for the length of that path (until its first visit to tgt, if any). A blind strategy
may not be complete, in the sense that it does not necessarily assign a move to all the paths of
Paths(⟨A, n, g⟩, c). We write B for the set of blind strategies.

1.4 Optimizing strategies

In this section, we recall some standard solution concepts for optimizing strategies which concern
with optimization of costs, individual or aggregate, depending on the context.

1.4.1 Social Optima

In a collaborative situation, all players want to collectively minimize the total cost for all of them
reaching their respective target vertex from their sources.

Definition 1.5. A strategy profile σ = (σi)i∈JnK is called a social optimum (SO) if

soccost(σ) = inf
τ∈Sn

soccost(τ)

Observation 1.6. We make the following two observations:

• In a dynamic NCG, there might be several SO profiles (See Example 1.7 below), nonetheless, all
of them have same social cost, by definition, even though individual costs of players might vary.

• If for two strategy profiles σ and σ′, outcome(σ) = outcome(σ′), then σ is an SO profile
if, and only if σ′ is an SO profile.

Example 1.7. Consider the dynamic NCG G = ⟨A2, 3, g⟩ played on arena A2, depicted in Fig
1.2a, where g(s, t) = 3. Consider the strategy profile σ = (σi)i∈JnK depicted in Fig 1.2b in which
σ1 = σ2. Here σ1 is a blind strategy represented by the path ρ1 = s1

e1−→ v1
e2−→ v2

e3−→ v3
e4−→ t

(depicted as the red path), while σ3 is also a blind strategy represented by the path ρ3 = s
e5−→

v4
e6−→ v5

e7−→ v6
e8−→ t, depicted as the green path in the figure. Following the profile σ, we have

cost1(σ) = cost2(σ) = 14, while cost3(σ) = 8.
We claim that this σ is an SO profile. To verify this, from observation 1.6, we know that it is

enough to compare with social costs of all the blind strategy profiles as outcome of any strategy profile
can be viewed as blind strategy profiles. Now, apart from the paths ρ1 and ρ3, mentioned just
above, the other paths that can represent a strategy are ρ2 = s

e1−→ v1
e9−→ v5

e7−→ v6
e8−→ t and

ρ4 = s
e1−→ v1

e2−→ v2
e10−−→ v6

e8−→ t. By directly representing a blind strategy profile by a 3-tuple
of paths, we have σ = (ρ1, ρ1, ρ3) and soccost(σ) = 14 × 2 + 8 = 36. The social costs for all
other blind strategy profiles are:

8



1.4 Optimizing strategies

soccost((ρ1, ρ2, ρ3)) = 37

soccost((ρ1, ρ4, ρ3)) = 36

soccost((ρ2, ρ4, ρ3)) = 45

soccost((ρ1, ρ1, ρ1))
soccost((ρ4, ρ4, ρ4))

}
= 54

soccost((ρ2, ρ2, ρ2)) = 63

soccost((ρ3, ρ3, ρ3)) = 72

soccost(ρ1, ρ1, ρ2) = 43

soccost((ρ1, ρ1, ρ4))
soccost((ρ2, ρ2, ρ1))
soccost((ρ4, ρ4, ρ1))

 = 46

soccost((ρ2, ρ2, ρ3)) = 52

soccost((ρ2, ρ2, ρ4)) = 58

soccost((ρ3, ρ3, ρ1)) = 42

soccost((ρ3, ρ3, ρ2)) = 55

soccost((ρ3, ρ3, ρ4)) = 50

soccost((ρ4, ρ4, ρ2)) = 51

soccost((ρ4, ρ4, ρ3)) = 47
The rest of the blind strategy profiles are just permutations of the above, for which soccost does not

change. Thus, σ is an SO profile.

1.4.2 Equilibria

In a selfish situation, each player aims at optimizing their individual accumulated cost. Despite
having only control over their own strategies (be it blind or dynamic), each player’s cost gets affected
by what other players chose. Hence, intuitively, optimizing individual cost can be thought of
as responding to other people’s strategies by an optimal choice of strategy. Following this, we
study best-response strategy, which is commonly used in the literature in the context of individual
cost-optimization for a quantitative non-zero sum multiplayer game.

Given a strategy profile σ = (σi)i∈JnK, a player k ∈ JnK, and a strategy σ′k ∈ S, we denote by
⟨σ−k, σ

′
k⟩ the strategy profile (τi)i∈JnK such that τk = σ′k and τi = σi for all i ∈ JnK \ {k}. The

strategy σk is a best-response to (σi)i∈JnK\{k} if costk(σ) = inf
τk∈S

costk(⟨σ−k, τk⟩).

Nash Equilibria

Definition 1.8. A strategy profile σ = (σi)i∈JnK is a Nash Equilibium (NE) if for every k ∈ JnK,
σk is a best-response to (σi)i∈JnK\{k}.

In such cases, there are no profitable unilateral deviations, i.e, no player can improve their cost
by switching from their current strategy alone.

NE can be defined for sub-classes of strategy profiles. In particular, a blind NE is a strategy
profile which is immune to any unilateral blind strategy deviation: formally, a strategy profile
σ = (σi)i∈JnK is a blind NE if for any player k ∈ JnK, costk(σ) = inf

τk∈B
costk(⟨σ−k, τk⟩).

A priori, a blind NE need not be an NE for general strategies. That is, from a blind strategy
profile, a player could have a profitable unilateral deviating strategy but not a profitable unilateral
blind deviating strategy. But in fact, we will see in Chapter 3 that all blind NE are general-strategy
NE for dynamic NCG.

Example 1.9. Consider the arena A2 displayed at Fig. 1.2a and the dynamic NCG G = ⟨A2, 3, g⟩,
where g(s, t) = 3 depicted at Fig 1.2b, illustrated with the NE profile σ = (σi)i∈J3K defined below.
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(b) Depiction of an SO profile in G = ⟨A2, 3, g⟩
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s

v1 v2 v3

v4 v5 v6

t

4
e1

3

e
5

3
e2

3
e3 4

e
4

e
9

e
10

1

e6

2

e7 2
e8

(c) Depiction of an NE profile in G = ⟨A2, 3, g⟩
where g(s, t) = 3

Figure 1.2: Example of an NE and an SO on arena A2

The strategies played by Player 1 and 2 are symmetric. Intuitively, each of these two players play
following the path s e1−→ v1

e2−→ v2
e3−→ v3

e4−→ t, unless one of them realizes at some point (either at
v1 or v2) that the other player has deviated (via e5 or e9 respectively). In that case, the current player
immediately follows the edge (e9 or e10 respectively) in order to “punish" the deviating player. Player
3 blindly follows the path s e5−→ v4

e6−→ v5
e7−→ v6

e8−→ t.

In Fig 1.2b, these strategies are depicted by the red arrows (dashed arrows depict the conditional
deviation) for Players 1 and 2, and green arrows for Player 3.

Note that,

outcome(σ) = (s, s, s)
(4,4,3)
====⇒ (v1, v1, v5)

(3,3,1)
====⇒ (v2, v2, v5)

(3,3,2)
====⇒(v3, v3, v6)

(4,4,2)
====⇒ (t, t, t)

which implies cost1(σ) = cost2(σ) = 14 and cost3(σ) = 8. Clearly, Player 3 doesn’t have any
unilateral deviation from which they can improve their cost. On the other hand, by design, if any
of Player 1 or 2 deviates from their current strategy at s or v1, the other player would punish by
deviating at the next vertex. Hence, their unilateral deviation only increases their own cost, making it
20 (for deviating at s) or 15 (for deviating at v1). Deviating at v2 also keeps the deviating player’s
cost at 14 without improving it. Hence, none of the players has a unilateral profitable deviation from
σ.

Therefore, σ is an NE profile.
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1.4 Optimizing strategies
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(b) outcome(σ, (v1, v1, v1))
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(c) outcome(σ, (v2, v2, v2))
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(d) outcome(σ, (v2, v2, v5))

Figure 1.3: Depiction of an SPE σ, explained in Example 1.12: Fig 1.3a represents the outcome, while Fig
1.3b, 1.3c and 1.3d represent outcome of σ when applied to the corresponding configurations

Subgame perfect Equilibria

In an NE, once a player deviated from their original strategy, other players can punish them even if
that increases their own cost. Indeed, the condition for being NE only requires that the deviation
should not be profitable for a deviating player. Subgame-perfect equilibrium (SPE) refines the
concept of NE and rules out such non-credible threats.

Definition 1.10. Fix an initial configuration, say c, then a Nash equilibrium profile from c is a
subgame perfect equilibria (SPE) if for any finite history h from c and ending at c′, the residual
strategy profile after h is an NE from c′.

By definition, any strategy of an SPE needs to be complete, i.e, the strategy needs to associate a
move to all the paths of Paths(⟨A, n, g⟩). Hence,

Remark 1.11. A blind NE, which only associates a path from a player’s source vertex to target,
generally is not an SPE, simply because the profile is not complete.

Example 1.12. Let us consider again the game G = ⟨A2, 3, g⟩ with g(s, t) = 3 as usual. Let us
consider the strategy profile σ = (σi)i∈J3K depicted in Fig 1.3.

Here,σ1 andσ2 map the empty path ϵ to edge e1, whileσ3 maps ϵ to e5. To describe rest of the strat-
egy profile, instead of explicitly writing each edge to which it maps a historyh of Paths(⟨A, 3, g⟩, csrc),
we associate a path π = (ej)j≥1 of A that is being followed by σi. We denote this new way of describ-
ingσ as σ̂. Intuitively, we write σ̂i(h) = π = (ej)j≥1 to denote the following, in short: σi(h) = e1,
and if for j ≥ 1, hj denotes the finite path after applying σ for j steps, then σi(hj) = ej+1.

11



1 Preliminaries

In the following, we define σ̂; moreover, for convenience we refer to Fig.1.3 rather than using formal
notation.

First, σ̂1((s, s, s)), σ̂2((s, s, s)) and σ̂3((s, s, s)) are shown as the red path (the only path in-
volving e3), blue path (involving e9) and green path (involving e5) respectively in Figure 1.3a; in
fact, Fig. 1.3a captures outcome(σ).

But this doesn’t make the definition of σ complete. For that, we need to define the residual strategies
σhi when h is not a prefix of outcome(σ). We also define those σh in terms of σ̂h.

Now, any path h ending at configuration c1 = (v1, v1, v1) is not prefix of outcome(σ), and we
define σ̂h1 (c1) to be the red path shown in Fig. 1.3b, and both σ̂h2 (c1) and σ̂h3 (c1) to be the blue path
shown on A2, shown in the same figure.

Similarly, for any path h ending at configuration c2 = (v2, v2, v2), we define σ̂h(c2) =
(σ̂hi (c2))i∈J3K to follow the red, blue and blue path respectively as shown in Fig. 1.3c.

Finally, for any path ending at c3 = (v2, v2, v5), we define σ̂h(c3) = (σ̂hi (c3))i∈J3K to follow
the red, blue and green path respectively as shown in Fig. 1.3d

1.5 Conclusion

In this Chapter, we have introduced a model of network congestion games, namely dynamic
NCG, which differs from commonly studied model of NCG in two aspects: (a) simultaneous cost-
computation, and (b) dynamic strategies. We believe worth considering. We have also discussed
briefly the solution concepts, mainly definitions and example, both for optimizing individual and
aggregate cost: namely Social optima, Nash equilibria and Subgame perfect equilibria.

Now, in the subsequent chapters of this part, we will study more on these solution concepts
one by one, while in Part II, we will be focusing on the model where the number of player is a
parameter.

12



2 Social Optima

In a congestion game, players play with the objective to traverse from their source to target vertex
with minimal individual accumulated cost. But, their selfishly chosen strategies may result in a
sub-optimal social cost. Therefore, a system which wants to optimize the overall cost, might be
interested in finding out a solution by which it can assign strategies to individual players in its
own interest. In this chapter, we address this problem for dynamic NCG by studying the optimal
solution concept for a system as a whole, namely Social optima (SO).

Here, we recall from Section 1.3 of Chapter 1, that for a strategy profile σ = (σi)i∈JnK, we
define the social cost of σ as soccost(σ) =

∑
i∈JnK costi(ρ), with ρ = outcome(σ).

In order to compute the optimal social cost for a dynamic NCG, we consider a decision version
of this problem (Problem 2.1 below). In this chapter, we show different approaches to solve
this problem. Starting with a brief explanation of a very naive approach at the very beginning of
Section 2.1, we go on to explain an abstract weighted graph approach in Section 2.1.1 for symmetric
NCG. Then, we explain why this approach fails for non-symmetric NCG on an example, and
subsequently we explain an adaptation called src-abstract weighted graph approach in Section
2.1.2 to finally solve for the non-symmetric case. We conclude the section by showing that the
decision problem can be solved in PSPACE. In section 2.2, we show a reduction from Partition
problem to symmetric NCG to conclude that the problem is NP-hard.

Problem 2.1 (CONSTRAINED-SO). Given a dynamic NCG G and a boundK ∈ N, does there exists a
strategy profile with social cost less than or equal toK?

Remark 2.2. Concerning CONSTRAINED-SO, some immediate observations are:

• We take a non-negative integerK as the bound in CONSTRAINED-SO because the cost functions,
f ∈ F , maps an edge to a non-negative integer by our assumption on the model. Hence,
the individual cost, costi(ρ) for any path is a non-negative integer too, so is the social cost
soccost(σ) of strategy profile σ.

• Once we are able to solve Problem 2.1, we can compute the optimal social cost of a dynamic
NCG G = ⟨A, n, g⟩ by the binary search Algorithm 1. Note that, the initial value forU (see
line 2 of Algorithm 1) is an upper bound of social cost for any strategy profile, hence the optimal
social cost must be less than or equal toU , which justifies the above binary search as a way to
compute the optimal social cost of G.

In section 2.1, we first give an algorithm to solve CONSTRAINED-SO in PSPACE, then we show
that even for symmetric dynamic NCGs, CONSTRAINED-SO is NP-hard.
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2 Social Optima

Algorithm 1 Binary search to compute optimal social cost
1: procedure Opt-soccost(G)
2: U =

∑
(v,f,v′)∈E

f(n)

3: L = 0;
4: whileL ≤ U do
5: if L = U − 1 then returnU
6: else
7: K :=

⌊
L+U
2

⌋
8: Solve CONSTRAINED-SO problem for G andK
9: if the answer is “Yes" then

10: U := K
11: else
12: L := K

2.1 Solving the CONSTRAINED-SO problem

To begin with, recall what we defined as the configuration graph M = ⟨C, T ⟩ associated to
G and thereafter its extension to a concurrent game structure (CGS) S from Section 1.3. Note
that, it suffices to find a path ρ in S with social cost less or equal to a given value K . Indeed,
for a path ρ = (cj , wj , cj+1)j≥1, we can define a blind strategy profile σ = (σi)i∈JnK such
that outcome(σ) = ρ as follows: by definition, each edge (cj , wj , cj+1) of ρ can be viewed as
U(cj , ej) for some edge vector ej = (vj,i, fj,i, v′j,i)i ∈ EJnK, and we define the blind strategy σi
(which can be written as path) to be (vj,i, fj,i, v′j,i)j≥1.

As the size of M (which is also the size of S) is O(|V |n), where the number of players n is
encoded in binary, this algorithm where we non-deterministically guess a path S , uses exponential
space in the number of bits needed to encode n. However, we may not need to use the exact
configuration to assert the existence of such a path. In the following, for pedagogical purposes,
we first define an abstract weighted graph associated with G, and solve the problem for symmetric
(where there is a unique source-target pair for all players) NCGs and then we extend the same
to what we call a src-abstract weighted graph associated with G and solve the same problem for
non-symmetric NCG.

2.1.1 Abstract Weighted graphs: Solving CONSTRAINED-SO for Symmetric
NCG

With a configuration c, we associate an abstract configuration c̄ ∈ JnKV , defined as c̄(v) = #{i ∈
JnK : c(i) = v}. The abstract weighted graph associated with an NCG (not necessarily symmetric)
G = ⟨A, n, g⟩ is a weighted graph P = ⟨A,B⟩, whereA contains all abstract configurations and
there is an edge (a,w, a′) ∈ B ⊆ A×N× A if, and only if, there is a mapping b : E → JnK
such that

∑
e∈E b(e) = n, which intuitively means that b(e) players are taking the edge e in the

current transition from abstract configuration a to a′. Moreover, they satisfy the following:

14



2.1 Solving the CONSTRAINED-SO problem

a(v) =
∑

e=(v,f,v′)

b(e) w =
∑

e=(v,f,v′)

b(e)× f(b(e)) a′(v) =
∑

e=(v′,f,v)

b(e).

Similarly to the CGS representation, an abstract path of a network congestion game is either a
single abstract configuration or a non-empty, finite or infinite sequence of consecutive edges in the
abstract weighted graph P . The cost of an abstract path is the sum of weights of its edges (if any).
Then we have,

Lemma 2.3. For NCG G, For anyw ∈ N∪ {+∞}, there is a path in M with social costw if, and
only if, there is an abstract path in P with the same costw.

Proof. From any path ρ = (ci, wi, ci+1)i≥0 in M, a path τ = (ai, wi, ai+1)i≥0 can be con-
structed in P , where the ai’s are Parikh images [41] of the ci’s.

For the other direction, let us consider a path τ = (ai, wi, ai+1)i≥0 of P . From this, we can
construct a path in M by starting with a configuration c0, of which a0 is the Parikh image and
then continuing with c′i for each i > 0 such that a′i’s are Parikh images of ci’s respectively. By
definition of P itself, we get the existence of such a c0, and subsequently ci for i > 0. Moreover,
wi’s remain unaltered as it is in the path in M. Note that, there might be multiple paths in M that
can be associated to a path in P in such a way, but existence of one suffices for our purpose.

With this, we consider a symmetric NCG G = ⟨A,n, g⟩, where there is a s in src and t in tgt
such that, g(s, t) = n. RecallK is the value in the CONSTRAINED-SO problem so that we look for a
strategy profile in G with social cost less or equal toK .

Algorithm. We consider the abstract weighted graph P = ⟨A,B⟩ associated with G, and start
a path finding algorithm from the vertex c̄s, where c̄s(s) = n, with a counterL initialized at 0. At
each step, from the current vertex a ofA, we guess an edge (a,w, a′) ∈ B, check whetherL+w
is still less or equal toK . If it is so, the guess is correct, hence we change the current configuration
to a′ and update the counter value to L+w. We keep another counter len, also initialized at
0, which we increment by 1 each time we make a successful guess. The algorithm terminates
whenever it reaches a′ such that a′(t) = n, or when len exceeds JnKV . As the counter is singly
exponential in size of the input (# of bits needed to encode n), this non-deterministic algorithm
runs in polynomial space. Hence, by Savitch’s theorem [58], the problem is in PSPACE.

When the algorithm terminates after reaching c̄t, we know that there is a path in P with cost
less or equal toK . By lemma 2.3, that means there is a path ρ in M with social cost less or equal
toK , which again asserts the existence of a strategy profile σ with soccost(σ) ≤ K .

Note that, in the algorithm, we look for a path of length up to JnKV , which is the maximum
length of any path without a cycle. Even though, any path in P corresponds to a path in M with
same social cost as stated in Lemma 2.3, it is also true that any cycle in P may not necessarily
correspond to a cycle in M, because two different configurations of M, which are permutations
of each other, correspond to same abstract configuration of P (because their Parikh images are
identical). However, in a symmetric network congestion game, as all players have same source-
target, a transition from one permutation to another permutation of positions between players
only contributes in increasing the social cost just like a cycle does. Hence, from an abstract path τ
of P containing a cycle, we can construct a path τ ′ of M with social cost less than that of ρ.
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The construction goes as follows. Let a ∈ A is the configuration of P , on which τ completes
its cycle. Let us also suppose that ρ is a path in M which corresponds to τ , by Lemma 2.3 we
know such a path exists. Now the cycle on a of τ corresponds to some path from c1 to c2 of
ρ, where for c1, c2 of C there is a permutation ϕ : JnK → JnK such that c1(i) = c2(π(i)) for
all i. This necessarily implies c̄1 = c̄2 = a. Let us assume in the path from csrc to c1 to c2 in
C , Player i follows the path s π1−→ ui

π2−→ vi, then by construction Player ϕ(i) follows the path

s
π′
1−→ vi

π′
2−→ ui. We construct the path ρ′ in C by letting Player i follow the path s

π′
1−→ vi,

and Player π(i) follow the path s π1−→ ui for each i, and this gives us a direct path from csrc to
c2 without occurring c1. For the rest, we let them follow their paths from c2 to ctgt of ρ. As we
remove some positive weighted parts of the path τ , the resulted path must have less weight than τ .
Again from Lemma 2.3, this means there is a path ρ′ with social cost less than that of ρ. Following
this construction for every cycle of τ until there is no cycle remains, we have,

Lemma 2.4. In symmetric NCG G, if an abstract path τ of P containing a cycle corresponds to a
path ρ in M, then there is a path τ ′ in M without any cycle and τ ′ has lower cost than that of τ ,
which also corresponds to a path ρ′ in M.

This justifies why we only guess a path in P without a cycle. But, Lemma 2.4 is not necessarily
true for non-symmetric NCG. Consider the following example which shows why it is not true for
a non-symmetric NCG.

Example 2.5. Consider the non-symmetric NCG G = ⟨A, 2, g⟩, depicted in Figure 2.1, where
g(s1, t2) = 1 and g(s2, t1) = 1. Here cost-functions f’s are omitted from the arena because they
are not relevant for current discussion. In the abstract weighted graph P associated to G, any path
that corresponds to a complete path of M contains a cycle (c̄, w, c̄), where c̄ = (0, 1, 1, 0) and w
depends on the f’s. Hence, the above algorithm discards any path containing a cycle, it would not
answer “yes", even though there might be a profile with social cost less than the givenK . In conclusion,
the algorithm is not sound for non-symmetric NCG.

Thus, we extend the abstract weighted graph to what we call src-abstract weighted graph in the
sequel and solve the general CONSTRAINED-SO problem based on this.

2.1.2 src-abstract Weighted Graphs: Solving CONSTRAINED-SO for NCG

An src-abstract weighted graph associated to an NCG is an extension of the abstract weighted
graph, where additional to the Parikh image of the configuration, we store information about the
source vertices of the players.

With a configuration c ∈ C of the multi-weighted configuration graph M associated to
G = ⟨A,n, g⟩, we associate an src-abstract configuration C , which is a (|src|+ 1)× |V | matrix
over JnK, and is defined as follows:

C (0, v) = #{i ∈ JnK : c(i) = v} for each v ∈ V, and
C (s, v) = #{i ∈ JnK : c(i) = v, src(i) = s} for each s ∈ src, v ∈ V

Here recall that we defined src(i) to be the source vertex of Player i, which we get from g and the
arbitrary ordering that we considered in Section 1.2. Intuitively, C (0, v) is the Parikh image of
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Figure 2.1: An example where a cycle appears in the abstract weighted graph for an SO
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the configuration c, just like c̄ of abstract weighted graph P , and C (s, v) is the number of players
who are at v in the configuration c, and whose source vertex is v′.

The src-abstract weighted graph associated to NCG G is P = ⟨A ,B⟩, where A is the set
of all src-abstract configurations and there is an edge (C , w,C ′) ∈ B ⊆ A ×N× A if, and
only if, there is a mapping b : src × E → JnK such that

∑
s∈src,e∈E

b(s, e) = n, which intuitively

means that b(s, e) players are assigned to take edge e and their source vertex is s. Moreover, for
every v ∈ V

C (s, v) =
∑

e=(v,f,v′)

b(s, e) w =
∑

s∈V,e∈E
b(s, e)× f(b(s, e)) C ′(s, v) =

∑
e=(v′,f,v)

b(s, e)

Similar to the abstract weighted graph, an src-abstract weighted path of an NCG is either a single
src-abstract configuration or a non-empty, finite or infinite sequence of consecutive edges in P .
The cost of an src-abstract weighted path is the sum of weightsw’s of its edges (if any). Therefore,
here we have a counterpart of Lemma 2.3 as follows:

Lemma 2.6. For anyw ∈ N∪ {+∞}, there is a path in M with social costw if, and only if, there
is an src-abstract weighted path in P with costw.

We now describe below an algorithm for solving the CONSTRAINED-SO problem forG = ⟨A,n, g⟩
andK ∈ N.

Algorithm. We consider the src-abstract weighted graph P = ⟨A ,B⟩ and start a path finding
algorithm from the vertex Csrc ∈ A , where Csrc is the src-abstract configuration corresponding
to csrc of C . Hence, by definition, for s ∈ src, Csrc(0, s) = Csrc(s, s) =

∑
t∈tgt

g(s, t) and for

v ∈ V \src, Csrc(0, v) = 0. Additionally, at each step of the algorithm, we maintain two counters
L, len, both of which initialized at 0, and a matrix of size |src| × |tgt|M which is initialized at all
zero entries. Here,L keeps track of the social cost up to the current step and len keeps track of the
length of ongoing the src-abstract weighted path. Starting from Csrc, at each step, we make a guess
(C , w,C ′) ∈ B. Then we check the following three things to declare the guess as “correct":

• Check whetherL+w ≤ K

• Check whether len ≤ JnK|V |2+|V |

• If for some s ∈ src, t ∈ tgt, C ′(s, t) > C (s, t), check whetherM(s, t) ≤ g(s, t).

The first two checks are to maintain that we are guessing a path without a cycle in P , and with
social cost less than the thresholdK . The third condition is to check when a new player reaches a
target vertex t, whether the number of players with source s and target t is being maintained.

If all the above checks answers positively, we update the current vertex from C to C ′, and
increment L and len byw and 1 respectively. Finally, for every s of src and t of tgt, we update
M(s, t) by adding C ′(s, t) − C (s, t). Then, we proceed to make the next guess unless ∀t ∈
tgt,C ′(0, t) =

∑
s∈src

g(s, t). If one of the checks fails, it means the guess is not correct.

Again, here we have relied upon the following fact:
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Figure 2.2: Depiction of a run of the CONSTRAINED-SO-algorithm on Example 2.5

Lemma 2.7. If there is a weighted path inMwith cost less or equal toK , then there is an src-abstract
weighted path without a cycle in P with social cost less or equal toK .

Proof. Suppose ρ = (ci, wi, ci+1)0≤i≤|ρ|−1 is a path in M with social cost less or equal to K .
First of all, we can assume that ρ contains no cycle, because if it does, we can remove the cycle and
get a path with lower social cost. Now our job is to show such a path inM has a corresponding path
in P , which also does not contain any cycle. This is not readily obvious because two configurations
c and c′ of M may have the same src-abstract configuration in P . Here, we show that if two such
configurations appear in ρ, we can construct a shorter path with less social cost. This construction
intuitively truncates the part between these two configurations, but this is not exactly the same as
removing a cycle, hence we need the following justification.

Let us assume there are two configurations cj and cl with j < l ≤ |ρ| − 1 such that there exists
a permutation map ϕ : JnK → JnK satisfying cl(ϕ(k)) = cj(k) for all k ∈ JnK. Then we can
assume that there must be an index k ∈ JnK such that Player k and Player ϕ(k) do not have same
source vertex. Because, if it is not the case , i.e, if for all k ∈ JnK src(ϕ(k)) = src(k), then we
could construct another path ρ̂ = (ĉi, wi, ĉi+1)0≤i≤|ρ′|−1 in M as follows: Suppose Player k’s
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path in ρ is s π1−→ u
π2−→ v and Player ϕ(k)’s path is s

π′
1−→ v

π′
2−→ u, then in ρ̂, we assign Player k’s

path to s
π′
1−→ v and Player ϕ(k)’ path to s π1−→ u, and so on for every such pair. Hence, we could

take ρ̂ instead of ρ.
Therefore, we assume for any two configurations cj and cl, with j < l, either they are not

permutations of each other, or if they are, then there is at least one pair of that players that
differ in their source vertex. From Lemma 2.6, we know there is a corresponding path τ =
(Ci, wi,Ci+1)1≤i≤|τ | in P with same social cost. Now, by construction, in τ , any two Cj and Cl

must differ at some (s, v) ∈ src × V . Hence, τ doesn’t contain a cycle.

As the size of P is at most JnK(|V |+1)×|V |, which is exponential in the input size, we need a
counter of size that is polynomial in the input. Therefore, the non-deterministic path finding
algorithm yields the following complexity result:

Theorem 2.8. CONSTRAINED-SO can be solved in PSPACE.

2.2 Complexity Lower Bound for CONSTRAINED-SO

In this section, we show that even for symmetric dynamic NCGs, the CONSTRAINED-SO problem is
NP-hard by reducing a well-known NP-complete problem, namely the Partition problem. The
reduction has been adapted from [47, Theorem 4.1] showing NP-hardness of the same problem in
classical (non-dynamic) NCG.

Theorem 2.9. The CONSTRAINED-SO problem is NP-hard in dynamic NCGs.

Proof. Recall[38] that the partition problem asks whether a given set of positive integers can be
partitioned into two subsets such that the sum of the numbers in the two subsets are equal.

Consider an instance L = (ri)i∈JmK of this Partition problem, and let S =
∑

ri∈L ri/2,
M = 14S+12m+1, and n = 2S+2m. For any r ∈ N, we define the threshold cost function
Tr as Tr(i) = 1 if i ≤ r, and Tr(i) = M otherwise. We construct a dynamic NCG arena AL

with verticesV = {src, tgt, d1, d2}∪{si, ai,1, ai,2}i∈JmK. The transitions are defined as follows:

• for each i ∈ JmK, there is a transition from src to si with cost function Tri+2;

• from each si, there is a transition to ai,1 and another one to ai,2 with the same cost function
that assigns cost 2 for one player, and 4 for more;

• for i ∈ JmK and j ∈ {1, 2}, there is a transition from ai,j to dj with constant cost 1, and a
transition to tgt with cost function T1

• from each dj , there is a transition to tgt with cost function TS .

The construction is illustrated in Figure 2.3.
We prove that there exists a strategy profile in GL = ⟨AL, n, g⟩ , where g(src, tgt) = n, with

social cost less thanM if, and only if,L is a positive instance of the partition problem. Assume
that the instanceL has a solution ⟨L1, L2⟩. We describe the behaviour of the strategy profile in GL

achieving social cost less thanM .
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src si

. . .

. . .

ai,1

ai,2

d1

d2

tgt
1 if x≤ri+2
M if x>ri+2

2 if x≤1
4 if x>1

2 if x≤1
4 if x>1

1
1

1 if x≤S
M if x>S

1 if x≤S
M if x>S

1 if x=1
M if x>1

1 if x=1
M if x>1

Figure 2.3: The reduction of Theorem 2.9. The figure shows the edges involving states si, ai,1, ai,2. The
full graph is obtained by reproducing the shown construction for all i ∈ JmK.

• Initially, all players are at src. During the first step, for each i ∈ JmK, (ri + 2) players move
to si. This incurs a total cost of

∑
i∈JmK ri + 2 =

∑
i∈JmK ri + 2×m = 2S + 2m;

• Consider i ∈ JmK, and let j ∈ {1, 2} be such that ri ∈ Lj . From state si we let ri + 1
players move to ai,j , and one player to ai,3−j . The ri + 1 players each pay a cost of 4, and
other player a cost of 2. Overall, we get a total cost of

∑
i∈JmK((ri + 1)× 4 + 1× 2) =

8S + 4m+ 2m = 8S + 6m;

• From each ai,j , one player takes the transition directly to tgt. All other players move to dj .
Overall, 2m players directly move to tgt, while all other players, that are 2S of them, move
to {d1, d2}. The total cost of this step is therefore 2S + 2m× 2 = 2S + 4m;

• From each dj , players necessarily move directly to tgt. For each i ∈ JmK and j ∈ {1, 2},
exactly ri players arrive to dj from ai,j . Thus there are exactly S players in each dj , so that
the total cost of this step is 2S.

Summing over all steps, the social cost of this strategy profile is 14S + 12m < M .
Now for the opposite direction, consider any strategy profile σ in ⟨A, n⟩, outcome of which is

π in the associated configuration graph, with social cost less thanM . We are going to construct a
partition ofL. First we divide the path taken by the players from src to tgt in three phases: Phase 1:
from src to some si; Phase 2: from some si to some ai,j ; Phase 3: from ai,j to tgt, either directly
or via dj . We now analyze the cost incurred by players under profile σ (or, in path π) in all three
phases.

In phase 1, each player pays either cost 1 or costM . By assumption on π, all players must have a
cost of 1, and this is only possible if ri + 2 players move to si, for each i ∈ JmK. The total cost of
this phase is thus 2S + 2m.

In phase 3, a player pays a cost of either 2,M orM + 1. The latter two cases are not possible
by assumption. So phase 3’s contribution to the social cost has to be 2× n = 4S + 4m. Then,
the social cost of phase 2 is strictly less than (14S + 12m+ 1)− (2S + 2m)− (4S + 4m) =
8S +6m+1. By phase 1, there are ri +2 players at each si, so the minimum contribution to the
social cost for these ri + 2 players is 2× 1 + 4× (ri + 2) = 4ri + 6. Summing over all i ∈ JmK,
this yields

∑
ri∈L(4ri + 6) = 8S + 6m. Thus, the social cost of phase 2 is 8S + 6m. But this

21



2 Social Optima

cost is achieved only when from each si exactly one transition is taken by one player and the other
transition is taken by ri + 1 players.

Therefore, each ai,j contains either one player or (ri + 1) players under σ. Given the cost
functions, at most 2S players can move to tgt via d1 or d2 (otherwise players would get a cost
ofM ). So 2m remaining players must take the transition from some ai,j to tgt. But at each ai,j ,
there is a unique player that takes this transition due to the cost function. If ai,j contains ri + 1
players, ri players take the path via dj , each paying a cost of 2. As there are in total 2S players taking
the route via some dj , and each dj can contain at most S players because of the cost functions,
there must be exactly S players which arrive at each dj under σ. That is, for each i, j, there are
exactly ri players coming from some ai,j to dj , and their total is S. This defines the required
partition ofL.

Finally, let us also point out that the reduction is polynomial. Indeed the size of the arena AL is
polynomial in the number of elements in the instanceL and the number of players in GL is exactly
the sum of the elements considered inL.

2.3 Conclusion

In this chapter, we consider the constrained SO problem, the decision version of which asks
whether there is a strategy profile with social cost less than or equal to the given threshold.

To solve this problem, we exploit the game structure, and using an abstraction of configurations,
we give a non-deterministic algorithm which verifies correctly if it is provided a strategy profile
which indeed has the social cost less than or equal to the threshold. Thus, the computational
complexity of the constrained SO problem lies in PSPACE. For lower bound, we show even for
the symmetric case, the problem is NP-hard. Therefore, a future work would be to reduce the
complexity gap for the constrained SO problem.
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3 Nash Equilibria

In this chapter, we will talk about one of the solution concepts that is most common in the
context of non-zero-sum multi-player games, namely Nash Equilibria. Here, in dynamic NCG, as
mentioned earlier, we can imagine each player plays selfishly, i.e, their objective is to go from their
source to target vertices with minimal accumulated individual cost. As a selfish player, each player
tries to choose their strategy in a way that changing this strategy would not benefit to themselves if
everyone else plays the same - this brings a stability in the players’ choices, and that is formalized in
a Nash equilibrium.

Recall Definition 1.8 from Chapter 1: a strategy profile is a Nash Equilibrium (NE) if each
player’s strategy in that profile is a best response to the rest of the players’ strategies. In other words,
no player can lower their cost by unilaterally deviating from it.

We first investigate whether NE exist in dynamic NCG in Section 3.1, and answer the question
positively. We then address the problem whether in a given dynamic NCG, given a boundK there
is a Nash equilibrium with social cost not more than K . We obtain complexity results on this
problem in Section 3.2.

3.1 Existence of Nash Equilibria

In order to show existence of dynamic NCG, we first establish that NE exist when the strategy
profiles, including deviations, are restricted to blind strategies, i.e, blind NE exist in dynamic NCG
(recall definitions from Section 1.4.2). With that, we will then show that those blind NE are in fact
NE in dynamic NCG.

To prove that blind Nash equilibria always exist, we establish that dynamic NCG with blind
strategies are potential games[48, 56] which are known to have Nash Equilibria.

3.1.1 Existence of blind Nash Equilibria in dynamic NCG

A potential function[48] is a function which associates a value to a strategy profile, which is also
referred to as a potential value of a strategy profile with respect to the corresponding function.
Potential function must satisfy the following property: when a player unilaterally deviates from
the strategy profile, the change in that player’s accumulated cost between both strategy profiles is
equal to the change in the potential value of the two profiles. A game is called a potential games if
there exists a potential function associated to the game.
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3 Nash Equilibria

Consider a dynamic NCG G = ⟨A, n, g⟩, a blind strategy profile π = (πi)i∈JnK, and letNπ

denote the maximum length of the paths prescribed by π. We define the following function, which
is an adaptation of that used in [56]:

ψ(π) =

Nπ∑
j=1

∑
e∈E

loade(π,j)∑
i=1

fe(i)

where loade(π, j) denotes the number of players who take the edge e at jth step of π, and fe is
the cost function on edge e.

Lemma 3.1. ψ is a potential function for G restricted to only blind strategies.

Proof. Here we consider a blind strategy profileπ = (πi)i∈JnK and another profileπ′ = (π′i, π−i),
where Player i deviates from πi to π′i. As earlier, we also denoteNπ andNπ′ to be the length of
longest paths prescribed by π and π′ respectively.

Now when Player i unilaterally deviates from its blind strategy πi to π′i, the only edges on which
a change in the number of players happens are the edges which are part of exactly one of πi and π′i.
Moreover, even on these edges the load differs by exactly 1: it gets increased on the edges which are
in π′i but not in πi, and gets decreased on the edges which are in πi but not in π′i. Therefore, we
have the following:

ψ(π)− ψ(π′) =

Nπ∑
j=1

∑
e∈E

loade(π,j)∑
i=1

fe(i)−
N ′

π∑
j=1

∑
e∈E

loade(π′,j)∑
i=1

fe(i)

=

|πi|∑
j=1

∑
e∈πi

fe(loade(πi, j))−
|π′

i|∑
j=1

∑
e∈π′

i

fe(loade(π′i, j))

= costi(π)− costi(π′)

Hence, ψ indeed is a potential function.

Using the above-defined potential function, one can derive an algorithm to find a Nash equilib-
rium, by a classical best-response iteration. Starting with an arbitrary blind strategy profile, at each
step we replace some player’s strategy with their best-response, and we continue as long as some
player’s cost can be decreased. When this procedure terminates, the profile at hand is a blind Nash
equilibrium. In this argument, what remains is to show that in dynamic NCG with blind strategy
profiles, best responses exist.

Lemma 3.2. Given a dynamic NCG G = ⟨A, n, g⟩, a blind strategy profile π, and i ∈ JnK,
Player i has a blind strategy π′i that is their best response to π. This strategy has a size at most
Nπ + |V | and can be computed in timeO(|V |2.N2

π).

Proof. We let A = ⟨V,E, src, tgt⟩. We define a weighted graph G obtained by concatenating
Nπ + 1 copies of A, in which the moves of all players but Player i are hard-coded. Formally,
S = ⟨V × JNπ + 1K, E′⟩ where:
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3.1 Existence of Nash Equilibria

• For each edge (v, f, v′) inE, there is an edge ((v,Nπ + 1), f(1), (v′, Nπ + 1)) inE′: this
encodes the fact that, afterNπ + 1 steps, all other players have reached the target state, and
Player i plays alone;

• For each edge e = (v, f, v′) in E and each index 1 ≤ k ≤ Nπ , there is an edge
((v, k), w, (v′, k + 1)) in E′ with w = f(loade(π−i, k) + 1), where loade(π−i, k) is
the number of players (except Player i) taking edge e at step k when followingπ−i. This way,
w corresponds to the cost incurred to Player i if they were to take edge e at step k.

By construction, any blind strategy π′i for Player i in ⟨A, n, g⟩ corresponds to a path ρ′ from
(src(i), 1) to (tgt(i), Nπ + 1) in S such that the weight of ρ′ is equal to costi(π−i, π

′
i): Player i

can follow the exact same path as they would in S by ignoring the second component in the state
space of S .

Conversely, any path inS from (src(i), 1) to (tgt(i), Nπ+1) corresponds to a path from src(i)
to tgt(i) in A, which is a blind strategy π′i. The cost of the path is equal to costi(σ−i, σ

′
i) by

construction.
This shows that the best-response strategy can be computed by a shortest weighted path compu-

tation in S . This path has size at mostNπ + |V |: afterNπ steps, the path enters configurations of
the form (c,Nπ + 1), so all other players have already reached the target; since the shortest path is
acyclic, the bound follows.

This computation can be done with Dijkstra’s algorithm, which runs inO((|V | ·Nπ)
2).

Finally, we have the following:

Theorem 3.3. In dynamic NCG, blind Nash equilibria always exist, and we can compute one in
pseudo-polynomial time.

Proof. We apply the previous lemma as follows. Consider an initial strategy profile π0 assigning
to each player any acyclic path (thus, of length at most |V |) from their corresponding source to
target. We have ψ(π0) ≤ |V | ·

∑
e∈E

∑n
i=1 fe(i) ≤ |V | · n ·maxe∈E fe(n). This quantity is

pseudo-polynomial in the size of ⟨A, n, g⟩.
Let π1, π2, . . . denote the strategy profiles generated by this iterative procedure. Letmi = Nπi .

By Lemma 3.2, we havemi ≤ m1 + (i− 1)|V |. We then have

k∑
i=1

|V |2m2
i ≤ |V |2

k∑
i=1

(m1 + i|V |)2

≤ |V |2
k∑

i=1

(n|V |+ i|V |)2

≤ |V |4 · k · (n+ k)2

where the second step follows fromm1 ≤ n|V |. Applying Lemma 3.2 again, the running time of
the iterative procedure until the k-th step isO(|V |4 · k · (n + k)2). In the worst case, we stop
after k = ψ(π0) steps, so that the algorithm runs in pseudo-polynomial time.
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Remark 3.4. As an alternative proof to existence of blind NE, we could have bounded the length
of outcomes of blind NE as follows: all players have a strategy realizing cost at most |V | · κ, where
κ = maxe∈E fe(n), since the shortest path from src(i) to tgt(i) has length at most |V |, and the cost
for a player at each step along edge e is at most κ. It follows that no path along which the cost for some
player is larger than |V | · κ can be the outcome of a blind NE. As a consequence, if a dynamic NCG
has a blind NE, then it has one of length at most |V | · κ · |V |n (by removing zero-cycles). Using this
bound, we can transform dynamic NCG into classical congestion games, in which blind NE always
exist [31, 56].

We now show that blind NE are in fact NE. This is proved using the observation that given a
blind strategy profile, the most profitable deviation for any player can be assumed to be a blind
strategy.

Lemma 3.5. In dynamic NCG, blind NE are NE.

Proof. Consider a blind NE π = (πi)i∈JnK for dynamic game G = ⟨A, n, g⟩. This means no
player has a unilateral deviating blind strategy by which they can improve their cost.

Let us suppose π is not an NE of G, which implies there is some player iwho has a unilateral de-
viating strategy σi such that costi(σi, π−i) < costi(π). Now, let us consider outcomei(σi, π−i)
which is a path from src(i) to tgt(i) in A. As all but Player i are playing with blind strategy profile,
if we replace Player i’s strategy σi by the blind strategy outcomei(σi, π−i), none of the players’
outcome and cost are going to change. Hence, costi(outcomei(σi, π−i), π−i) < costi(πi, π−i),
which is a contradiction to the fact that π is a blind NE. Therefore, π, a blind NE, is indeed an NE
for G.

Lemma 3.6. There exists a dynamic NCG with an NE σ such that for all blind NE π′, we have
cost(π) < cost(π′).

Proof. The proof is based on the dynamic NCG depicted on Fig. 3.1, for which we prove there is
an NE with total cost 36, while any blind NE has higher social cost.

We consider the arena A shown in Fig. 3.1 with n = 3 players, with g(s, t) = 3.

s

q1 q2 q3

q4 q5 q6

t
x 7→

2x

e1
x 7→

3xe5

x 7→ 3
e2

x 7→ 3
e3

x 7→
2xe4

x 7→ x
e6

x 7→ 2x
e7

x 7→
2x

e8

x 7→
x

pun
1

x 7→
3

pun
2

Figure 3.1: An arena on which blind Nash equilibria are sub-optimal.

The strategy profile σ = (σi)i∈J3K is defined as follows.
For i ∈ {1, 2}, strategy σi chooses e1e2e3e4 with the following exception: if Player 3 − i

picks e5 at s, then σi takes pun1 at q1; if Player 3− i picks pun1 at q1, then σi takes pun2 at q2.
Strategy σ3 follows e5e6e7e8.

We have costi(π) = 14 for i ∈ {1, 2}, and cost3(π) = 8, so cost(π) = 36.
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We first show that π is a Nash equilibrium.
First, Player 3 has no incentive to deviate since taking e1 at q0 would alone cost 6, and the rest

of the path, either through e2 or pun1e7, has a cost more than 3 so that the total cost is more
than cost3(π). For Players1 and2, there are three states where they can deviate. If Player i ∈ {1, 2}
chooses e5 at q0, then the cost is 6 + 2 + 6 + 6 = 20 as Player 3− i chooses pun1. Similarly, if
they choose pun1 at q1 then Player 3− i chooses pun2 at q2 which yields a cost of 4+1+4+6 =
15 > costi(π). Last, if Player i chooses pun2 at q2, their cost is 4 + 3 + 3 + 4 = 14 = costi(π).

We now show that the profile π has a lower cost than any blind Nash equilibrium.
There are only four possible blind strategies in our game following one of the four paths ρ1 =

e1e2e3e4, ρ2 = e5e6e7e8, ρ3 = e1pun1e7e8 and ρ4 = e1e2pun2e8. We will represent these
profiles as tuples of paths, e.g. (ρ1, ρ1, ρ2). We are going to consider all possible tuples and show
that each tuple is either not a Nash equilibrium or has cost more than cost(π) = 36.

Observe that when we permute the players in a Nash equilibrium, it remains a Nash equilibrium
with the same social cost. So we only need to consider the case where all players use the same
strategy (4 possibilities), the case where they all choose distinct strategies (

(
4
3

)
), and the case where

two of them choose the same strategy and the other one a different one (
(
4
1

)
×
(
3
1

)
). So there are

20 profiles to check, and the rest of the profiles are permutations of these.
The following is an exhaustive list of the costs of these profiles.

cost(ρ1, ρ1, ρ1) = 18× 3 = 54

cost(ρ2, ρ2, ρ2) = 24× 3 = 72

cost(ρ3, ρ3, ρ3) = 21× 3 = 63

cost(ρ4, ρ4, ρ4) = 18× 3 = 54

cost(ρ1, ρ2, ρ3) = 12 + 13 + 12 = 37

cost(ρ1, ρ3, ρ4) = 12 + 14 + 15 = 41

cost(ρ1, ρ2, ρ4) = 12 + 12 + 13 = 37

cost(ρ2, ρ3, ρ4) = 14 + 15 + 16 = 45

cost(ρ1, ρ1, ρ2) = 14× 2 + 8 = 36
cost(ρ1, ρ1, ρ3) = 16× 2 + 11 = 43

cost(ρ1, ρ1, ρ4) = 14× 2 + 14 = 42

cost(ρ2, ρ2, ρ1) = 16× 2 + 10 = 42

cost(ρ2, ρ2, ρ3) = 20× 2 + 15 = 55

cost(ρ2, ρ2, ρ4) = 18× 2 + 14 = 50

cost(ρ3, ρ3, ρ1) = 16× 2 + 14 = 46

cost(ρ3, ρ3, ρ2) = 18× 2 + 16 = 52

cost(ρ3, ρ3, ρ4) = 18× 2 + 15 = 51

cost(ρ4, ρ4, ρ1) = 16× 2 + 14 = 46

cost(ρ4, ρ4, ρ2) = 16× 2 + 12 = 44

cost(ρ4, ρ4, ρ3) = 18× 2 + 15 = 51

All profiles have cost at least 36, and the only one that matches 36 is (ρ1, ρ1, ρ2). However,
this is not a Nash equilibrium. In fact, the cost of Player 1 here is 14, but they could profit from
deviating to ρ3 since cost1(ρ3, ρ1, ρ2) = 13.

3.2 Constrained NE Problem

Computing some (blind) NE may not be satisfactory for two reasons: one might want to compute
the best (or the worst) NE in terms of the social cost; and as Lemma 3.6 claims, blind NE are
suboptimal, i.e., a lower social cost can be achieved by NE with general strategies. This justifies
the study of more complex strategy profiles. In this section, we address these two concerns by
considering a constrained NE problem, similar to CONSTRAINED-SO considered in the last chapter,
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3 Nash Equilibria

which decides existence of an NE with bounded social cost. As it has been shown in Chapter
2, a binary search using the solution to this decision problem gives us the optimal cost - here,
in particular, optimal social cost for an NE in a given dynamic NCG. Hence, we consider the
following problem:

Problem 3.7 (CONSTRAINED-NE). Given a dynamic NCG G and a boundK ∈ N, does there exist
an NE with social cost less than or equal toK?

We first characterize the outcome of any NE, and then we use the characterization both to decide
CONSTRAINED-NE and to define a strategy profile with the same outcome.

Characterization of outcomes of Nash Equilibria. Let us consider a dynamic
NCG ⟨A, n, g⟩, and the corresponding game structure S = ⟨C, T,M,U⟩. Given two configura-
tions c, c′ with c⇒ c′, we let costi(c, c′) denote the cost of Player i on this transition from c(i)
to c′(i). We define devi(c, c′) as the set of all configurations reachable when all players but Player i
choose moves prescribed by the given transition c⇒ c′:

devi(c, c′) = {c′′ ∈ C | c⇒ c′′ and ∀j ∈ JnK \ {i}. c′′(j) = c′(j)}.

Moreover, we define the value of configuration c for Player i is

vali,c = sup
σ−i∈S−i

inf
σi∈Si

costi((σ−i, σi), c).

where recall Si is the set of all Player i strategies, and we denote S−i to be the set of strategy
profiles for the coalition of all but Player i. Here, vali,c corresponds to the value of a two player
zero-sum game where Player i plays against the opposing coalition, starting at c. Intuitively, it is the
worst cost that Player i cannot avoid to pay when the opposing coalition plays against them from
configuration c. By [35], those values can be computed in polynomial time in the size of the game.

Lemma 3.8. For a dynamic NCG G = ⟨A, n, g⟩, the value of configuration c for Player i, vali,c,
can be computed in EXPTIME,

Proof. Here the two-player game between Player i and the opposing coalition is a game with state
space |V | × Jn− 1K|V |×(|V |+1) because each state keeps track of the position of Player i and the
abstract position of the coalition similar to what we defined as an src-abstract weighted graph in
Section 2.1.2. It follows that each vali,c can be computed in exponential time in the size of the
input ⟨A, n, g⟩.

Moreover, memoryless optimal strategies exist (in S), that is, the opposing coalition has a
memoryless strategy σ−i to ensure a cost of at least vali,c from c.

The characterization of Nash equilibria outcomes is given in the following lemma.

Lemma 3.9. For dynamic NCG G = ⟨A,n, g⟩, a path ρ in the corresponding concurrent game
structure S is the outcome of a Nash equilibrium if, and only if,

∀i ∈ JnK. ∀1 ≤ l < |ρ|. ∀c ∈ devi(ρ(l), ρ(l + 1)). costi(ρ≥l) ≤ vali,c + costi(ρ(l), c).
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The intuition is that if the suffix costi(ρ≥l) of ρ has cost more than vali,c + costi(ρ(l), c),
then Player i has a profitable deviation regardless of the strategy of the opposing coalition, since
vali,c is the maximum cost that the coalition can inflict to Player i at configuration cwhere the
deviation is observed. The lemma shows that the absence of such a suffix means that a NE with
given outcome exists, which the proof constructs.

Proof. Consider a Nash equilibrium σ = (σi)i∈JnK with outcome ρ. Consider any player i, and
any strategy σ′i for this player. Let ρ′ denote the outcome of σ[i → σ′i]. Let l denote the index
of the last configuration where ρ and ρ′ are identical. Since σ is a Nash equilibrium, we have
costi(ρ) ≤ costi(ρ′), that is,

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + costi(σ[i→ σ′i], ρ
′
≤l+1)

where costi(σ[i → σ′i], ρ
′
≤l+1) is the cost for Player i of the outcome of the residual strategy

(σ[i→ σ′i])
ρ′≤l+1 . Since the choice of σ′i is arbitrary here, we have,

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + inf
σ′
i∈S

costi(σ[i→ σ′i], ρ
′
≤l+1).

Moreover, we have infσ′
i∈S costi(π[i → σ′i], ρ

′
≤l+1) = infσ′

i∈S costi(π[i → σ′i], ρ
′(l + 1))

since memoryless strategies suffice to minimize the cost [35]. We then have

inf
σ′
i∈S

costi(π[i→ σ′i], ρ
′(l + 1)) ≤ sup

σ−i∈S−i

inf
σi∈S

costi((σ−i, σi), ρ
′(l + 1)).

We obtain the required inequality

costi(ρ≥l) ≤ costi(ρ(l), ρ′(l + 1)) + sup
σ−i∈S−i

inf
σi∈S

costi((σ−i, σi), ρ
′(l + 1))

≤ costi(ρ(l), c) + vali,c.

Conversely, consider a path ρ that satisfies the condition. We are going to construct a Nash
equilibrium having outcome ρ. The idea is that players will follow ρ, and if some player i deviates,
then the coalition −iwill apply a joint strategy to maximize the cost of Player i, thus achieving at
least vali,c, where c is the first configuration where deviation is detected.

Let us define the punishment function Pρ : Paths(⟨A, n, g⟩, csrc) → JnK∪{⊥} which keeps
track of the deviating players and the step where such a player has deviated, here csrc is the initial
configuration where Player i is at src(i). For path h′ = h(c, w, c′), we write

Pρ(h
′) =


⊥ if h′ ≤pref ρ,
i if h ≤pref ρ, h(c, w, c

′) ̸≤pref ρ, and i ∈ JnK min. s.t. c′(i) ̸= ρ(|h|+ 1)(i),
Pρ(h) otherwise.

Intuitively, ⊥ means that no players have deviated from ρ in the current path. If Pπ(h) = j, then
Player j was among the first players to deviate fromρ in the pathh; so for some l,h(l)(j) = ρ(l)(j)
but h(l + 1)(j) ̸= ρ(l + 1)(j). Notice that if several players deviate at the same step, there are
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3 Nash Equilibria

no conditions to be checked, and the strategy can be chosen arbitrarily. For each configuration c
and coalition −i, let σ−i,c be the strategy of coalition −i maximizing the cost of Player i from
configuration c; thus achieving at least vali,c. Player j’s strategy in this coalition, for j ̸= i, is
denoted σ−i,c,j . For path h′ = h(c, w, c′), define

τi(h
′) =


(c′(i),m(i), c′′(i)) if Pρ(h

′) = ⊥, ρ(|h′|+ 1) = (c′, w′, c′′),
andm ∈ En is such that T (c′,m) = (w′, c′′),

arbitrary if Pρ(h
′) = i,

σ−j,c,i(h
′) if Pρ(h

′) = j for some j ̸= i.

The first case ensures that the outcome of the profile (τi)i∈JnK is ρ. The third case means that
Player i follows the coalition strategy σ−j,c after Player j has deviated to configuration c. The
second case corresponds to the case where Player i has deviated: the precise definition of this part
of the strategy is irrelevant.

Let us show that this profile is indeed a Nash equilibrium. Consider any player j ∈ JnK and
any strategy τ ′j . Let ρ′ denote the outcome of (τ−j , τ

′
j), and l the index of the last configuration

where ρ and ρ′ are identical. We have

costj((τ−j , τ
′
j)) = costj(ρ≤l) + costj(ρ(l), ρ′(l + 1)) + costj((τ−j , τj), ρ

′
≤l+1)

≥ costj(ρ≤l) + costj(ρ(l), ρ′(l + 1)) + valj,ρ′(l+1)(j)

≥ costj((τi)i∈JnK),

where the second line follows from the fact that the coalition switches to a strategies ensuring
a cost of at least valj,ρ′(l)(j) at step l; and the third line is obtained by assumption. This shows
that (τi)i∈JnK is indeed a Nash equilibrium and concludes the proof.

Even though, in this chapter, our main concern is CONSTRAINED-NE, we can easily generalize the
problem with a bound, not just for the social cost, but also for any one or more player’s individual
accumulated cost. For an integer vector γ⃗ = (γi)i∈JnK, and for a path ρ in the multi-weighted
configuration graph M = ⟨C, T ⟩ associated to a dynamic NCG G, γ⃗-social cost is defined by:

soccostγ⃗(ρ) :=
∑
i∈JnK

γicosti(ρ)

Definition 3.10 (γ⃗-minimal NE). For an integer vector γ⃗ = (γi)i∈JnK, a strategy profile is called a
γ⃗-minimal NE if it is an NE with optimal γ⃗-social cost.

In the following, we describe how we compute γ⃗-minimal NE, which for γi = 1 for all i ∈ JnK
gives us the optimal NE.

Algorithm. We define a graph that describes the set of outcomes of Nash equilibria by aug-
menting the n-weighted configuration graph M = ⟨C, T ⟩. For any integer vector γ⃗ = (γi)i∈JnK,
we define the weighted graph M⟨A,n,g⟩,γ⃗ = ⟨C ′, T ′⟩ withC ′ = C × (JY K ∪ {0,∞})n where
Y = |V | ·maxe∈E fe(n), and T ′ ⊆ C ′ × N × C ′; remember that all players have a strategy

30



3.2 Constrained NE Problem

realizing cost at most Y in ⟨A, n, g⟩. The initial state is (csrc,∞n). The set of transitions T ′ is
defined as follows: ((c, b), z, (c′, b′)) ∈ T ′ if, and only if, there exists (c, w, c′) ∈ T , z = γ⃗ · w
(where · is dot product), and for all i ∈ JnK,

b′i = min(bi − wi, min
c′′∈devi(c(i),c′(i))

costi(c, c′′) + vali,c′′ − wi). (3.1)

Notice that by definition of C ′, b′i must be non-negative for all i ∈ JnK, so there are no transi-
tions ((c, b), z, (c′, b′)) if the above expression is negative for some i. Notice also that the size of
M⟨A,n,g⟩,γ⃗ is doubly-exponential in that of the input ⟨A, n⟩, since this is already the case forC ,
while Y is singly-exponential.

Intuitively, for any pathρ that visits some state (c, b) in this graph, in order forρ to be compatible
with a Nash equilibrium, each player imust have cost no more than bi in the rest of the path. In fact,
the second term of the minimum in (3.1) is the least cost Player i could guarantee by not following
(c, w, c′) but going to some other configuration c′′ ∈ devi(c, c′), so the bound bi is used to
guarantee that these deviations are not profitable. The definition of b′i in (3.1) is the minimum
of bi − wi and the aforementioned quantity since we check both the previous bound bi, updated
with the current cost wi (which gives the left term), and the non-profitability of a deviation at
the previous state (which is the right term). If this minimum becomes negative, this precisely
means that at an earlier point in the current path, there was a strategy for Player iwhich was more
profitable than the current path regardless of the strategies of other players; so the current path
cannot be the outcome of a Nash equilibrium. This is why the definition of M⟨A,n,g⟩,γ⃗ restricts
the state space to nonnegative values for the bi.

We prove that computing the cost of a Nash equilibrium minimizing the γ⃗-weighted social cost
reduces to computing a shortest path in M⟨A,n,g⟩,γ⃗ . In particular, letting γi = 1 for all i ∈ JnK,
a γ⃗-minimal Nash equilibrium is a best Nash equilibrium (minimizing the social cost), while taking
γi = −1 for all i ∈ JnK, we get a worst Nash equilibrium (maximizing the social cost).

Theorem 3.11. For dynamic NCG ⟨A, n, g⟩and vector γ⃗, the cost of the shortest path from (csrc,∞n)
to some (ctgt, b) in M⟨A,n,g⟩,γ⃗ is the cost of a γ⃗-minimal Nash equilibrium.

Proof. We show that for each path of ⟨A, n, g⟩ from csrc to ctgt, there is a path in M⟨A,n,g⟩,γ⃗
from (csrc,∞n) to some (ctgt, b) with the same cost, and vice versa.

Consider a Nash equilibriumπ = (σj)j∈JnK with outcomeρ = (cj , wj , cj+1)1≤j<l. We build
a sequence b1, b2, . . . such that ρ′ = ((cj , bj), γ⃗ ·wj , (cj+1, bj+1))1≤j<l is a path ofM⟨A,n,g⟩,γ⃗ .
We set b1(j) = ∞ for all j ∈ JnK. For j ≥ 1, define

bj+1(i) = min

(
bj(i)− wj(i), min

c′′∈devj(cj(i),cj+1(i))
costi(cj , c′′) + vali,c′′ − wj(i)

)
.

We are going to show that for all 1 ≤ j ≤ l, costi(ρ≥j) ≤ bj , which shows that bj ≥ 0, and
thus ρ′ is a path of M⟨A,n,g⟩,γ⃗ .
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3 Nash Equilibria

We show this by induction on j. This is clear for j = 1. Assume this holds up to j ≥ 1. We have,
by induction that costi(ρ≥j) ≤ bj(i) for all i ∈ JnK. Moreover, since π is a Nash equilibrium, by
Lemma 3.9,

∀i ∈ JnK, costi(ρ≥j) ≤ min
c′′∈devi(ρ(j),ρ(j+1))

vali,c′′ + costi(ρ(j), c′′).

Therefore,

costi(ρ≥j+1) = costi(ρ≥j)− wj(i)

≤ min(bj(i)− wj(i), min
c′′∈devi(ρ(j),ρ(j+1))

vali,c′′ + costi(ρ(j), c′′)− wj(i))

as required, and both paths have the same γ⃗-weighted cost.
Consider now a path ((ci, bi), zi, (ci+1, bi+1))1≤i<l inM⟨A,n,g⟩,γ⃗ . By the definition ofM⟨A,n,g⟩,γ⃗ ,

there existsw1, w2, . . . such that ρ = (cj , wj , cj+1)1≤j<l is a path of ⟨A, n, g⟩, and zj = γ⃗ ·wj .
So it only remains to show that that ρ is the outcome of a Nash equilibrium. We will show that ρ
satisfies the criterion of Lemma 3.9. We show by backwards induction on 1 ≤ j ≤ l that for all
i ∈ JnK,

1. costi(ρ≥j) ≤ bj(i),

2. costi(ρ≥j) ≤ min
c′′∈devi(ρ(j),c′′)

(
costi(ρ(j), c′′) + vali,c′′

)
.

For j = l, we have costi(ρ≥l) = 0 so this is trivial. Assume the property holds down to j + 1 for
some 1 ≤ j < l. By induction hypothesis, we have

costi(ρ≥j+1) ≤ bj+1(i) = min

(
bj(i)− wj(i), min

c′′∈devi(ρ(j),c′′)
costi(ρ(j), c′′) + vali,c′′ − wj(i)

)
.

Therefore,

costi(ρ≥j) = costi(ρ≥j+1)+wj(i) ≤ min

(
bj(i), min

c′′∈devi(ρ(j),c′′)
costi(ρ(j), c′′) + vali,c′′

)
,

as required. By Lemma 3.9, ρ is the outcome of a Nash equilibrium.

Thanks to Theorem 3.11, we can compute the costs of the best and worst NE of ⟨A, n, g⟩ in
exponential space. We can also decide the existence of an NE with constraints on the costs (both
social and individual), by non-deterministically guessing an outcome and checking in M⟨A,n,g⟩,γ⃗
that it is indeed an NE. We obtain the following conclusion:

Corollary 3.12. In dynamic NCG, the CONSTRAINED-NE problem is in EXPSPACE.

Proof. As noted earlier, the number of vertices in M⟨A,n,g⟩,γ⃗ is doubly exponential since |C| =
|V |n is doubly exponential. Storing a configuration and computing its successors can be performed
in exponential space. One can thus guess a path of size at most the size of the graph and check
whether its cost is less than the given bound. This can be done using counters that can be stored
(in binary) in exponential space. Hence, the overall algorithm lies in EXPSPACE.

32



3.3 Conclusion

Note that one can effectively compute a NE profile satisfying the constraints in doubly-exponential
time by finding the shortest path of M⟨A,n,g⟩,γ⃗ , and applying the construction of (the proof of)
Lemma 3.9.

3.3 Conclusion

To recap, in this chapter, we first obtained the existence of Nash equilibria in dynamic network
congestion games: first only for blind strategy profiles, and then establishing the fact that blind
NE are NE for dynamic NCG.

Subsequently, we observed that, there can be dynamic games with NE which are better than
any blind NE in that dynamic games: better in terms of social cost. Therefore, we investigated how
to tackle the following problem : Given a dynamic game and a constraint, does there exist an NE
with social cost upper-bounded by the constraint? or are there NE with social cost at least as much
as the given bound? We obtained upper-bound complexity results for the above problem, and
hardness results of these problem are yet to be answered.
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4 Subgame Perfect Equilibria

In the last chapter, we considered Nash Equilibria (NE) as a solution concept of congestion games.
Intuitively, such an equilibrium gives a recipe to the players such that if each player follows the
strategy, then they cannot do better by switching from it at any step. In other words, an NE is a
stable strategy profile, it is immune to any unilateral deviation at every step of its outcome. The
last point is crucial, i.e, it is stable with respect to any unilateral deviation only when a player tries
to deviate from a configuration which appears in a prefix of the outcome of the strategy profile.

In this chapter, we will be discussing another solution concept that we often consider in the
context of non-zero sum multi-player games: namely, Subgame perfect Equilibria (SPE). Intuitively
this is also a strategy profile in which no player would benefit by changing their strategy unilaterally
at any step of the play like NE. On top of that, if the players decide to play according to an SPE,
not necessarily from the configurations that are in a prefix of the outcome of the profile, but also
from any arbitrary configuration. When the players decide to play such a strategy profile, from
that step on ward, no player would benefit by switching their strategy from the one prescribed by
the profile.

This might make SPE to be an interesting solution concept to study on its own, but we explain
further in the following with an example why SPE is a necessary optimal solution concept in a
dynamic setting.

Non-credible threats. Let us first recall Example 1.9 where the arena and an NE are
shown again at Figure 4.1 here.
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(a) An arena A for a dynamic NCG
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(b) Depiction of an NE profile in an G = ⟨A, 3, g⟩
where g(s, t) = 3

Figure 4.1: An example of NE with non-credible threats

In this example, in the NE profile depicted in 4.1b, Players 1 and 2 (who are depicted by red
tokens) play a strategy in which they threat each other: to be specific, they “punish" the other
player by switching to the dotted edge immediately in the next step (from v1 or v2) if they see that
the other player had chosen to take the bottom path (from s or v1 respectively). By forcing them
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4.1 On Existence of SPE in Dynamic NCG

to take the above path together, these threats make both the players pay a higher cost than they
would have paid if they did not threaten to “punish" each other in the profile. These threats, which
are costlier for the player who threatens, are called non-credible threats, and may appear in an NE
profile which is supposed to be somewhat cost-effective for all players.

These threats appear in NE profiles, because intuitively, an NE profile keeps a player’s interest
only in those histories that are prefixes of the outcome of the profile itself, not in any other history.
For example, if we consider an history in the above game, in which Player 1 is at v1 already, and
Players 2 and 3 are at vertex v4, then starting from that history, applying the NE profile depicted in
Figure 4.1b is not a best-response for all players. The profile prescribes Player 1 to take edge e9 in
the next step, but the cheaper response would be to continue on the path v1

e2−→ v2
e3−→ v3

e4−→ t.
This example illustrates that when the players can take dynamic decisions, an SPE is a better fitted
solution concept for stability than an NE. This is why we consider studying SPE in this chapter.
Now, let us recall the definition from Chapter 1, which says, an NE profile σ is an SPE if for any
history h ending at any configuration c, the residual strategy σ|h is also NE from c.

In the next section, we briefly discuss the existence of SPE in dynamic NCG, which is an open
question. Next, in Section 4.2, we consider a decision problem like the ones that we considered in
case of SO and NE in earlier chapters, and give a 2EXPSPACE algorithm for solving it.

4.1 On Existence of SPE in Dynamic NCG

Like Nash Equilibria, the first natural question that arises for SPE is whether SPE always exist
in dynamic NCG. Unfortunately, this is still an open question for our model. For our running
example, the game of Figure 4.1a, we have already shown an SPE in Figure 1.3, in Chapter 1.

In the case of turn-based reachability games [17], existence of an SPE is shown by reducing
decision making at possibly infinitely many nodes of unraveling tree to decision making only at
finite nodes. Moreover, an SPE is defined by assigning plays from those finite nodes by applying
Kuhn’s Theorem[42] on an extensive game structure. We can not apply a similar argument because
our model is concurrent - hence we do not have an extensive game structure. On the other hand,
the closest model of ours, dynamic resource allocation games studied by Avni et al [8] shows an
example where SPE do not exist. Their model somewhat generalizes dynamic network congestion
games, and their example in which an SPE does not exist cannot be captured in a network game.

Nonetheless, we could always ask given a game and a bound whether there is an SPE with social
cost bounded by the given threshold. If in future, it turns out there is a game where SPE does not
exist, then for the above decision problem, for any threshold, the answer would always be No.

4.2 Constrained SPE problem

In this section, we address the associated constrained SPE problem, similar to what we did in the
case of Nash equilibria and Social optima:

Problem 4.1 (CONSTRAINED-SPE). Given a dynamic NCG G and a boundK ∈ N, decide if there
exist an SPE profile with social cost less or equal toK .
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To solve the above problem, we first characterize the outcome of an SPE, and then obtain an
algorithm for CONSTRAINED-SPE based on the characterization. But before that, let us first see the
main factors that differentiate this characterization with that of NE.

Difficulty of the characterization of SPE compared to NE. In order to charac-
terize a play as the outcome of an NE in Lemma 3.9, we needed to make sure that when a player
deviates, there exists a strategy profile of the other players by which the deviating player is made to
pay more cost than they would have if they had not deviated.

Note that, after a deviation, the strategy profile made of a coalition “punishing" strategies and
a deviating strategy has no other requirement to fulfill than to increase the cost of the deviating
player. Hence we could make use of the vali,c and the memoryless coalition strategy profile
which realizes vali,c as Player i (the deviating player)’s cost. Recall that vali,c is the cost that
the opposing coalition can force Player i to pay if they deviate from configuration c. In contrast,
when we characterize a play as the outcome of an SPE, additionally we need to make sure that the
profile made of the corresponding “punishing" coalition strategies and any deviating strategy is
an SPE. This additional condition makes the characterization of SPE outcomes technically more
challenging than that of its counterpart for NE.

The characterization we propose is inspired from the one in [15] for SPE of a turn-based quanti-
tative reachability game, where it is also guaranteed that SPE always exist [17]. Before going into
details of the characterization, we first introduce some notions and establish their connection with
SPE:

Weak SPE [16]. Intuitively, an SPE is immune to any single player deviation, from any step of
any history, which appears to be a strong requirement for a strategy profile (and hence its outcome).
In the following, we define a weak version of SPE, which is easier to characterize. Then we establish
an equivalence between this weak SPE and SPE, and hence reduce the characterization of SPE
outcomes to that of weak SPE outcomes.

A strategy σ′i is said to be first-shot deviating from another strategy σi if they coincide on all
histories except the empty history. With this, we first define a weak version of Nash equilibria, and
then refine later it to weak SPE, as follows:

Definition 4.2. A strategy profile σ = (σi)i∈JnK is called a weak NE if for all i ∈ JnK, for every
first-shot deviating strategy σ′i, it holds that costi(⟨σ−i, σ

′
i⟩) ≥ costi(σ).

Remark 4.3. In [16], weak NE is a profile which is immune to one-shot deviating strategies and
very-weak NE is a profile which is immune to first-shot deviating strategies; here we do not use one-shot
deviating strategies, hence in our terminology there are only weak NE (and weak SPE), which are
very-weak NE (and very-weak SPE respectively) in [16].

In general a weak NE is not an NE.

Lemma 4.4. There exists an NCG that admits a weak NE which is not an NE.

Proof. The simple idea is a strategy profile might be immune to single player deviation at its first
step, but that does not imply it will be immune to single player deviation at any step.
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Figure 4.2: An weak NE but not an NE

Consider the game from Figure 4.1a and a weak NE of the game depicted as in Figure 4.2. Here
two players decide at the beginning, and take the path colored in red, and another player takes the
green path. The first two players’ cost is 14, and the other player’s cost is 8. If one of the first two
players changes their strategy at the very first step, they will end up paying cost 16. One the other
hand, if the player who is currently taking the green path changes their strategy at the very step
and decides to take the red path, they will pay cost 18. Therefore, here no player has a first-shot
deviating strategy by which they can lower their current cost, so that the profile is a weak NE.

On the contrary, one of the players, who are currently taking the red path, can switch their path
from s

e1−→ v1
e2−→ v2

e3−→ v3
e4−→ t to s e1−→ v1

e9−→ v5
e7−→ v6

e8−→ t, and pay 13 which is lower
than their current cost. Therefore, the strategy profile depicted here is not an NE.

Definition 4.5. A strategy profile is a weak subgame-perfect equilibrium (wSPE) if it is a weak
NE from every finite history of the game.

In Lemma 4.4, we saw that a weak NE is not necessarily an NE. But, we will see that this is not
true for SPE, i.e, a weak SPE is actually an SPE. Intuitively, this is because if indeed there is a single
player deviation from some step (other than the first) of a weak SPE outcome, then from that step’s
point of view the deviation is a first-shot deviation. As weak SPE requires a profile to be a weak
NE from every step, a weak SPE would not have this single player deviation from any step, hence it
will actually be an SPE. Formally,

Theorem 4.6. In a dynamic NCG, a strategy profile is an SPE if, and only if, it is a weak SPE.

Proof. Recall from Chapter 1, given a strategy profile σ and a history h, we write outcome(σ, h)
for the outcome of the residual strategy σh from the last configuration of h. Similarly, we let
costk(σ, h) = costk(outcome(σ, h)).

It is easy to see that NEs are weak NEs, and subsequently SPEs are weak SPEs. This is because
if a strategy profile is immune to single player deviation from any step of its outcome, it surely is
immune to single player deviation from the first step.

For the opposite direction, let us consider a weak SPE σ = (σ)i∈JnK of a dynamic NCG G.
Suppose that σ is not an SPE; then there exists a history h of G such that the residual strategy σh is
not an NE from the last configuration of h.

This implies there is i, and a strategy σ′i of Player i with costi(σ, h) > costi(⟨σ−i, σ
′
i⟩, h).

In particular, costi(⟨σ−i, σ
′
i⟩, h) is finite, and along the outcome of this strategy profile, Player i

reaches tgt(i).
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We pick σ′i as a profitable deviating strategy (after history h) with minimum number of devia-
tions from σi. Because Player i reaches tgt(i) along outcome(⟨σ−i, σ

′
i⟩, h), there exist profitable

strategies with finitely many deviations.
We writeh′ for the longest finite history along the path outcome(⟨σ−i, σ

′
i⟩, h)whereσ′i deviates

from σi, i.e, σi(hh′) ̸= σ′i(hh
′) = c and outcome(σ, hh′c) = outcome(⟨σ−i, σ

′
i⟩, hh′c).

Now if costi(σ, hh′) ≤ costi(⟨σ−i, σ
′
i⟩, hh′), then deviating at history hh′ is unnecessary for

Player i for having profitable deviating strategy from h, and that contradicts the minimality of
the number of deviations of σ′i from σi. Hence we get costi(σ, hh′) > costi(⟨σ−i, σ

′
i⟩, hh′).

But that implies we have a first-shot profitable deviating strategy for Player i, σ′i, from history hh′,
which contradicts the assumption that σ is a weak SPE.

4.2.1 Characterization of the Outcomes of All SPE

In this section, we first informally explain how we characterize the outcomes of an SPE, then we
introduce formally the tools that we need for the characterization. Finally, in Theorem 4.10, we
state the characterization using those tools.

Therefore, before diving into technical jargon, let us first describe intuitively how we proceed:

• Broadly speaking, we associate a value through a function λ (and thus referring to them as
λ-values) to each player and each edge of the configuration graph, such that the λ-values
effectively capture the criteria for starting an SPE outcome from that edge. To be more
specific, similar to vali,c of the NE outcome characterization, though technically more
involved, these λ-values give an upper bound to the cost of each player in the outcome of
any SPE that starts from that edge.

• Obviously, the next question is: how do we define theseλ-values associated to a player and an
edge of the configuration graph? The one line answer is we start with some initial λ-values,
iteratively update them until they reach a fix-point. But, the main technical challenge lies in
how we update these λ-values iteratively. We do not update λ-values of all edges together
in the configuration graph, rather we only update in some part of the configuration graph.
When the λ-values reach their fix-point there, then only we proceed to some next part of the
graph where we use the values of a part which have been updated earlier. In the following,
we explain what these parts are in the configuration graph, then we discuss how we update
them inside an individual part, and thereafter we finally delve into more technical details.

One can imagine that the game is played in phases inside the configuration graph, where
each phase corresponds to the number of players that have already reached their target
vertices. A play transitions from one phase to the next when a player reaches their target
vertex. Intuitively, a play is split into these phases because once a player reaches their target,
the game stops there for that particular player, they do not contribute in congestion for any
other players any further, hence they also do not affect λ-values for the subsequent edges.

There can be multiple components in a single phase, each of which corresponds to a different
set of players (but same number of players) who are at their target vertex. Note that, there
is no edge between two such components of a single phase because from a configuration
where, say only Player 1 is at their target, there cannot be an edge to a configuration where

38



4.2 Constrained SPE problem

s t
x 7→ 3x
e2

x 7→ x
e1

(a) An NCG G = ⟨A, 3, g⟩, where g(s, t) = 3

(s, s, s)

(s, s, t)

(s, t, s)

(t, s, s)

(s, t, t)

(t, t, s)

(t, s, t)

(t, t, t)

X0 X1 X2 X3

7

7

7

4

4

4

4

4

4

3

3

3

3

2

2

2

1

1

1

(b) Configuration graph in stages

Figure 4.3: Illustration of an NCG with its configuration graph in phases
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only Player 2 is at their target, and so on. There will be at most n+1 such phases in the
configuration graph, where the first phase represents no player is at their target, and the last
phase represents all players are at their target vertices. These phases are in fact, referred to as
the parts of the configuration graph on which one update on λ-values happens at a time.
We start with some initial λ-values for all edges of every phases in the configuration graph,
then we start updating those values from the final phase, and moving backwards until the
first phase. Moreover, in each phase of the graph, we update the λ-values iteratively till they
reach a fix-point inside that phase. These updates in a phase depend on the λ-values of the
later phases. Note that, because there is no edge between different components of a single
phase of the configuration graph, the λ-values of an edge in one component do not affect
λ-values of another edge in another component of that same phase.

Tools that are needed: Definitions and properties Let us consider a dynamic
NCG ⟨A, n, g⟩which we fix for the following discussion. We denote the associated multi-weighted
configuration graph by M = ⟨C, T ⟩, where recall from Section 1.3, C ⊆ V JnK is the set of
configurations and T ⊆ C ×NJnK × C is the set of transitions in the configuration graph.

We partition the setC of configurations into (Xj)0≤j≤n such that a configuration c is inXj

if, and only if, j = #{i ∈ JnK | c(i) = tgt(i)}. Since tgt(i) is a sink state in A, if there is a
transition from some configuration inXj to some configuration inXk, then k ≥ j. We define
X≥j =

⋃
i≥j Xi, and Zj = {(c, w, c′) ∈ T | c ∈ Xj} and Z≥j = {(c, w, c′) ∈ T | c ∈

X≥j}.
In Figure 4.3, we depict such a partition of the configuration graphC of the NCG G considered.

For all0 ≤ j ≤ n, we inductively define a sequence of families of labeling functions ⟨λj∗⟩0≤j≤n,
where each λj

∗
= (λj

∗

i )i∈JnK is a family of labeling function, and for all i ∈ JnK,
λj

∗

i : Z≥j → N ∪ {−∞,+∞} is a labeling function associated to Player i, which maps an
edge fromZ≥j to its so-called λ-value.

Definition 4.7. For any family λ = ⟨λi⟩i∈JnK with λi : Z≥j → N ∪ {−∞,+∞} and any
c ∈ X≥j , a path ρ = (tk)k≥1 from c visiting ctgt is said to be λ-consistent if for any i ∈ JnK and
for any 1 ≤ k ≤ |ρ|, it holds that costi(ρ≥k) ≤ λi(tk). We write Γλ(c) to denote the set of all
λ-consistent paths from c.

We now define the sequence ⟨λj∗⟩0≤j≤n. For j = n, we have X≥n = {ctgt} and
Z≥n = {(ctgt, 0

n, ctgt)}; there is a single path, which obviously is the outcome of an SPE
since no deviations are possible. For all i ∈ JnK, we let λn∗

i (ctgt, 0
n, ctgt) = 0.

Now, fix j < n, assuming that λ(j+1)∗ has been defined, we go on to define λj∗ . In or-
der to define λj∗ , we introduced an intermediary sequence of families of labeling functions
µ = ⟨µk⟩k≥0,i∈JnK, where each family µk = (µki )i∈JnK comprises of µki : Z≥j → N ∪
{−∞,+∞}, of which (λj

∗

i )i∈JnK will be the limit. We call theseµk’s as theλj∗ -building functions.
For each of these λj∗ -building functions µk, from any configuration c ofZ≥j , we have the set of
µk-consistent paths denoted by Γµk(c)

Definition 4.8. For any 0 ≤ j ≤ n, we define λj∗ -building functions µk : Z≥j → N ∪
{−∞,+∞} as follows: they coincide with λ(j+1)∗ on Z≥j+1, i.e, for any e ∈ Z≥j+1, we let
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µki (e) = λ
(j+1)∗

i (e); and for e ∈ Zj = Z≥j \ Z≥j+1 they are defined inductively (induction on
k):

• for the base case:

µ0i (e) =

{
0 if c(i) = tgt(i),
+∞ otherwise

• for k > 0, assuming µk−1
i has been defined,

µki (e) =


0 if c(i) = tgt(i)

min
c′′∈devi(c,c′)

sup
ρ∈Γ

µk−1 (c′′)
(costi(c, c′′)+costi(ρ))

if for all (c, w̃, c̃) ∈ Z≥j . Γµk−1(c̃) ̸= ∅

−∞ otherwise
(4.1)

where devi(c, c′) = {c′′ ∈ C | c ⇒ c′′ and ∀j ∈ JnK \ {i}. c′′(j) = c′(j)} is the set of
configurations which can be obtained from Player i’s unilateral deviation from the transition
c to c′, and c′ itself.

Lemma 4.9. For any e ∈ Z≥j , any i ∈ JnK, and any k > 0, we have µki (e) ≤ µk−1
i (e).

Proof. We prove the statement by induction on k, starting with k = 1. Write e = (c, w, c′). If
c′ = tgt(i), then by definition µki (e) = µk−1

i (e) = 0; otherwise, µ0i (e) = ∞; in both cases,
the result holds.

Now, let us assume that for some k > 0, the following holds: for all i ∈ JnK and all e ∈ Z≥j ,
it holds µki (e) ≤ µk−1

i (e). Then for any c ∈ X≥j , it implies Γµk(c, w, c′) ⊆ Γµk−1(c, w, c′).
Fix an arbitrary e = (c, w, c′) ∈ T . For any c′′ ∈ devi(c, c′), c′′ also belongs toX≥j , hence,

by induction hypothesis, we have Γµk(c′′) ⊆ Γµk−1(c′′).
As supremum over a larger set would be at least as much as it is for a smaller set, we have:

sup
ρ∈Γ

µk
(c′′)

(costi(c, c′′) + costi(ρ)) ≤ sup
ρ∈Γ

µk−1 (c′′)
(costi(c, c′′) + costi(ρ)).

As the above is true for any c′′ ∈ devi(c, c′), it remains true for the minimum, hence:

min
c′′∈devi(c,c′)

sup
ρ∈Γ

µk
(c′′)

(costi(c, c′′) + costi(ρ))

≤ min
c′′∈devi(c,c′)

sup
ρ∈Γ

µk−1 (c′′)
(costi(c, c′′) + costi(ρ))

which implies µk+1(e) ≤ µk(e).

As the costs are non-negative integers, the µk values are bounded by 0 if it is not −∞, so they
cannot decrease arbitrarily. Therefore, µk indeed reaches a fix-point, which is by definition λj∗ .
Following this for each j from n to 0, we finally have λ0∗ , and we write Γ∗ for Γλ0∗ .
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Characterization As promised, we now characterize the outcomes of any SPE using the
λ-values as follows:

Theorem 4.10. A path ρ in the configuration graph of G = ⟨A, n, g⟩ is the outcome of an SPE if,
and only if, ρ ∈ Γ∗(csrc).

Proof. Let us first consider an SPE σ of G, of which ρ is the outcome. We shall show that for
any c and any history h ending in configuration c, outcome(σ, h) ∈ Γ∗(c). In fact, we prove by
induction on j that outcome(σ, h) ∈ Γλj∗ (c) if c ∈ Xj . Then, for h = csrc, we get the expected
result.

For j = n, for any historyh ending inXn, outcome(σ, h) is a path looping on ctgt. We defined
λn

∗
(e) = 0 for e ∈ Xn, so that the result holds.

Assume the statement is true for some j + 1 ≤ n: for any history h ending in some configura-
tion c ∈ Xj+1, outcome(σ, h) ∈ Γ(j+1)∗(c).

To prove the result at level j, we rely on the fact that λj∗ is the limit of sequence µk as defined
earlier, and we start another induction to show that for any k ≥ 0, for any history hwhose last
configuration c is inXj , the path outcome(σ, h) belongs to Γµk(c).

We begin with the case k = 0. Fix a history h ending in some c ∈ Xj . Write outcome(σ, h) =
(cr, wr, cr+1)r≥1. Let r′ be the least integer such that cr′ in outcome(σ, h) belongs to X>j .
We need to show that for any i ∈ JnK and any r, costi((outcome(σ, h))≥r) ≤ µ0i (cr, wr, cr+1).
If r < r′, then either µ0(cr, wr, cr+1) = +∞, or µ0(cr, wr, cr+1) = 0 and cr(i) = tgt(i);
in both cases, the result also holds. If r ≥ r′, we have µ0i (cr, wr, cr+1) = λ

(j+1)∗

i (cr, wr, cr+1),
and by our outer induction hypothesis, costi(outcome(σ, h)≥r) ≤ λ(j+1)∗((cr, wr, cr+1)).

We now prove the induction step. We assume that outcome(σ, h) ∈ Γµk−1(c) for any his-
tory h ending in c ∈ Xj . Write outcome(σ, h) = (cr, wr, cr+1)r≥1. We first observe that
µki (cr, wr, cr+1) ̸= −∞ for any r ≥ 1. This is because for any (cr, w̃, c̃) ∈ T and for any

csrc
h̃
=⇒ c̃, by our current induction hypothesis Γµk−1(c̃) contains outcome(σ, h̃), hence it is not

empty.
Therefore, the only thing left to show now is the following:

for all i ∈ JnK, For all r ≥ 1, costi(outcome(σ, h)≥r) ≤ µki (cr, wr, cr+1)

This is obvious if cr(i) = tgt(i). As previously, we let r′ be the least integer such that the
configuration cr′ along outcome(σ, h) belongs toX>j .

For r < r′: assume costi(outcome(σ, h)≥r) > µki (cr, wr, cr+1); then by definition of µki ,

costi(outcome(σ, h)≥r) > min
c′∈devi(cr,cr+1)

sup
ρ∈Γ

µk−1 (c′)
{costi(cr, c′) + costi(ρ)},

which implies the existence of an edge (cr(i), f, v′) inE such that

costi(outcome(σ, h)≥r) > costi(cr, cr+1[i→ v′]) + costi(σ, h · (cr, w′, cr+1[i→ v′])).
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Because of our induction hypothesis for k−1, we have,

outcome(σ, h · (cr, w′, cr+1[i→ v′])) ∈ Γµk−1(cr, w
′, cr+1[i→ v′])

This shows a profitable first-shot deviation for Player i, contradicting our hypothesis that σ is an
SPE.

Otherwise for r ≥ r′, the condition follows directly from the outer induction hypothesis,
because µk coincides with λj∗ for edges in those regions.

We now prove the converse implication.
Picking ρ ∈ Γ∗(csrc), we build a weak SPE σ = (σi)i∈JnK (which is an SPE by Theorem 4.6),

step-by-step; for notational convenience, instead of defining σi(h) for any history h, we directly
define what outcome(σ, h) would be.

As a first step, we let outcome(σ, csrc) = ρ. Now let us construct the rest of σ. Consider
an arbitrary history h′ = h · (c, w, c′), and suppose outcome(σ, h) is already defined to be
(cj , wj , cj+1)j≥1. Note that, here c1 = c because c is the last configuration of h by consideration.
Now, if c2 = c′, then we do not need to define outcome(σ, h′), as it is already defined from
h itself, and we have outcome(σ, h′) = (cj , wj , cj+1)j≥2. Otherwise c′ ̸= c2, and we define
outcome(σ, h′) in that case below.

If c′ is a configuration which is obtained by two or more players’ deviation from outcome(σ, h) ,
i.e, if there exists k ̸= l ∈ JnK such that c′(k) ̸= c2(l), then pick any ρ̃ ∈ Γ∗(c′) (which we know
is not empty) and define outcome(σ, h · (c, w, c′)) = ρ̃.

Otherwise c2 differs from c′ only at a single player’s position, say Player i’s. In that case we
define

outcome(σ, h · (c, w, c′)) = argmax
ρ∈Γ∗(c′)

{costi(c1, c′) + costi(ρ)}. (4.2)

Note that, here we can take argmax because λ∗i (e) is finite (which we shall establish in Corol-
lary 4.13) for any e ∈ E , so there are finitely many plays in Γ∗(c). This ends our definition of the
strategy profile σ, which we now prove is a weak SPE.

Consider an arbitrary history h and denote outcome(σ, h) by (cj , wj , cj+1)1≤j . Pick a con-
figuration c′ such that (c1, w′, c′) ∈ T , c′(j) = c2(j) for all j ̸= i, but c′(i) ̸= c2(i). That is,
c′ is a configuration obtained by Player i’s deviation from σi at the end of h.

We show that such a single player deviation is not profitable if, after that deviation, all players
continue to play following σ:

costi(c1, c′) + costi(σ, h · (c1, w′, c′)) = sup
ρ∈Γ∗(c′)

{costi(ρ) + costi(c1, c′)} (by (4.2))

≥ min
c̃∈devi(c1,c2)

sup
ρ∈Γ∗(c̃)

{costi(ρ) + costi(c, c̃)}

= λ∗i ((c1, w1, c2))

≥ costi(σ, h)
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4 Subgame Perfect Equilibria

So no such configuration c′ would be profitable for Player i. Hence from any history h, σ is a
weak NE. Therefore, we can conclude that σ is an SPE.

Some more properties Having the characterization of outcomes of SPE by the notion
of λ-consistency, we now are going to establish the upper bounds of the λ-values for an NCG G.
Remember, by definition a λ-value could be +∞, but the finite values that any λ-function maps
into is, in fact, bounded. Here, we show the upper bound on those finite values of λ.

A λ-map is nothing but a fix-point of so-called λ-building functions, denoted here by µk’s.
In Lemma 4.11, we establish the finite upper bound of µk’s after |V | iterations (V is the set of
vertices of the NCG under consideration). Corollary 4.12 tells us when a µk function reaches their
fix-point in a phaseZ≥j . Finally, combining these two together, we get Corollary 4.13 which gives
us an upper bound for λ-values.

Lemma 4.11. For any edge e = (c, w, c′) ∈ Zj , the (|V | + 1)th family µ|V | of λj∗ -building
functions satisfies µ|V |

i (e) ≤ |V | × κ, where κ = maxe∈Efe(n).

Proof. We prove a slightly stronger statement. Letm be the length of the shortest path from c(i)
to tgt in A. We show (by induction) that µmi (e) ≤ m× κ. Asm ≤ |V | and by Lemma 4.9, this
entails our current lemma.

Ifm = 1, then there is an edge e from c[i] to tgt in A. Let us consider an edge e′ = (c, w′, c′′)
such that c′′[j] = c′[j] for all j ̸= i, and c′′[i] = tgt(i). Now ifΓµm−1(c̃) = ∅ for any (c, w̃, c̃) ∈
T , then anywayµmi (e) = −∞, and the result holds. Otherwise, we have Γµm−1(c′′) ̸= ∅, and for
any ρ ∈ Γµm−1(c′′), we have costi(ρ) = 0. Therefore, µmi (e) = costi(c, c′′), which is bounded
by κ.

Now assume that the induction hypothesis holds up to stepm−1, and consider a configuration c
such that the length of a shortest path from c(i) to tgt(i) in A ism. Fix an edge (c, w, c′) ∈ T .
Write (c(i), f, v′) ∈ E for the first edge of a shortest path from c(i) to tgt. We consider a
configuration c′′ such that c′′(j) = c′(j) for all j ̸= i, and c′′(i) = v′. By construction,
there is a path from c′′(i) to tgt(i) of length ≤ m − 1. By induction hypothesis, for any edge
(c′′, w̃, c̃) ∈ T , we have µm−1

i ((c′′, w̃, c̃)) ≤ (m − 1) × κ. This implies that for any path
ρ = (tj)j≥1 ∈ Γµm−1(c′′), we have costi(ρ) ≤ µm−1

i (t1) ≤ (m − 1) × κ. Therefore,
µmi (c, w, c′) ≤ costi(c, c′′) + (m− 1)× κ ≤ m× κ.

Lemmas 4.9 and 4.11 provide a bound on the number of steps until any sequence ofλj∗ -building
functions stabilize:

Corollary 4.12. Any sequence (µk)k≥0 of λj∗ -building functions stabilizes after at most |V |(1 +
n · κ · |E|n) steps.

From Lemma 4.11, we also get that the sequence (µk)k≥0 built for computing λj∗ cannot
stabilize unless for all i ∈ JnK, for all e ∈ Z≥j , we have µki (e) ≤ |V | × κ. By Lemma 4.9:

Corollary 4.13. For any 0 ≤ i, j ≤ n, and any e ∈ Z≥j , we have λj∗i (e) ≤ |V | × κ.
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4.2.2 Using the Characterization for CONSTRAINED-SPE

With the characterization of the outcomes of all SPE (Theorem 4.10), what remains to solve
in CONSTRAINED-SPE is to check whether there is a path in Γ∗(csrc) with cost less than the given
threshold. Now, when we non-deterministically guess a play and verify whether the play is the
outcome of an SPE, at each step we check whether the play is fulfilling the condition for being
λ∗-consistent up to the current step. Moreover, at each step, while we guess a new configuration
from the current one, we also make sure that there is aλ-consistent play for a suitableλ from all the
configurations that are reachable (but not currently guessed) in one step. In order to perform these
λ-consistency checks at each step, we make use of an infinite graph structure, namely the counter
graph.

A counter graph is defined according to a family of labeling functions λ = ⟨λi⟩i∈JnK and a
configuration c such that any path from c to ctgt in the counter graph is actually λ-consistent. In
this section, after formally defining what a counter graph is, we establish this relation between
a path in the graph and a λ-consistent play in Lemma 4.15. In Lemma 4.16, we establish the
equivalence between the fact that supremum of Player i’s cost overµk-consistent plays is +∞ with
the existence of a cycle in the corresponding counter graph.

Moreover, in Lemma 4.17, we show an upper bound for the finite value that the intermediary
µk-functions can take. Recall, we establish an upper bound of the finite value that a λ-function
can take in Corollary 4.13, and also an upper bound for the finite values that a µk can map to,
when k ≥ |V |. Because the µk’s are non-increasing (Lemma 4.9), the intermediary µk-values
could be higher than that of when k ≥ |V |. Therefore, establishing this upper bound gives us
the necessary computations for the space we need for the CONSTRAINED-SPE algorithm, which we
describe in the final part of this section.

Counter Graph. We formally define a counter graph as follows:

Definition 4.14. With any family of labeling functions µ = ⟨µi⟩i∈JnK and configuration c, we
associate an infinite-state counter graphC[µ, c] = ⟨C ′, T ′⟩ to capture µ-consistent paths from c:

• the set of vertices isC ′ = C × (N ∪ {+∞,−∞})JnK

• T ′ contains all edges ((d, b), w, (d′, b′)) such that (d,w, d′) is an edge of M and for all i ∈
JnK, either b′(i) = 0 if d(i) = tgt(i), or b′i = min{bi −wi, µi(d,w, d

′)−wi} otherwise
(provided that b′i ≥ 0 for all i, in order for (d′, b′) to be an edge ofC[µ, c]).

Intuitively, in configuration (d, b) of the counter graph, b is used to enforce µ-consistency: each
edge taken along a path imposes a constraint on the cost of the players for the rest of the path; this
constraint is added to the constraints of the earlier edges, and propagated along the path.

With the initial configuration c, we associate bc such that bci = 0 if c(i) = tgt(i) and bci = +∞
otherwise: this configuration imposes no constraints since no edges have been taken yet. We call
(c, bc) to be the initial configuration of the counter graphC[µ, c].

Notice that C[µ, c] is infinite, but as we show below, only finitely many states are reachable
from the initial configuration. We write |C ′|reach for the number of reachable states inC ′.

We extend the region decomposition of M = ⟨C, T ⟩ to any counter graphC[µ, c] = ⟨C ′, T ′⟩
in the natural way: (c′, b′) ∈ X ′

j if c′ ∈ Xj , and an edge ((c′, b′), w′, (c′′, b′′)) ∈ Z ′
≥j if

(c′, w′, c′′) ∈ Z≥j .
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We call a path π from (c, bc) to (ctgt, b) (for some b) a valid path in C[µ, c]. For any path
π ∈ C[µ, c], where c ∈ Xj , we write π = π[j] · π[j + 1] · · ·π[n] where π[l] denotes the
(possibly empty) section of path in Z ′

l . We also use the notation maxbl(µ, c) to denote the
maximum finite counter value that appears in the vertices reachable from (c, bc) and belonging to
X ′

j . More precisely,

maxbl(µ, c) = max{m ∈ N | ∃(c′, b′) ∈ Xl s.t. (c, bc) →∗ (c′, b′) and ∃i ∈ JnK, b′(i) = m}

We extend this notation tomaxb≥l(µ, c), which denotesmax
j≥l

maxbj(µ, c). When all the counter

values are in {0,∞}, we let maxbl(µ, c) = 0.

Lemma 4.15. There exists a path π = ((cj , bj), wj(cj+1, bj+1))j from (c, bc) to a vertex (ctgt, b)
(for some b) in the counter graphC[λ, c] = ⟨C ′, T ′⟩ of G if, and only if, there is a λ-consistent path
ρ = (cj , wj , cj+1)j from c to ctgt in G.

Proof. Assume that such a path π exists. Along π, for each player i, let k(i) be the least index such
that ck(i)(i) = tgt(i). Then it is enough to show that for 1 ≤ k < k(i), we have costi(ρ≥k) ≤
λi(ck, wk, ck+1). And indeed we have

0 ≤ bk(i)(i) ≤ bk(i)−1(i)− costi(ck(i)−1, ck(i))

≤ bk(i)−2(i)− costi(ck(i)−2, ck(i)−1)− costi(ck(i)−1, ck(i))

...

≤ bk+1(i)−
k(i)−1∑
j=k+1

costi(cj , cj+1)

so that costi(ρ≥k) ≤ bk+1(i) ≤ λi(ck, wk, ck+1).

Conversely, if there is a λ-consistent path ρ = (cj , wj , cj+1)1≤j<|ρ| from c, we define π =
((cj , bj), wj , (cj+1, bj+1))1≤j<|ρ| with:

b1(i) =

{
0 if c1(i) = tgt(i)
+∞ otherwise

And for 1 ≤ j ≤ |ρ|,
bj(i) = min{bj−1(i)− costi(cj−1, cj), λi(cj−1, wj−1, cj)− costi(cj−1, cj)}

For π to be a valid path in C[λ, c], we have to prove that bj(i) ≥ 0 for all 1 < j ≤ |ρ| and all
i ∈ JnK. For j = 1, it is evident.

For j > 1, the second element of the minimum defining bj(i) is non-negative, because
costi(cj−1, cj) ≤ costi(ρ≥j−1) ≤ λi(cj−1, wj−1, cj). Suppose the first element bj−1(i) −
costi(cj−1, cj) is negative. Using definition of bj−1(i), we can say the above inequality can
be true only if either bj−2(i) −

∑j−1
k=j−2 costi(ck, ck+1) < 0, or λi(cj−2, wj−2, cj−1) −∑j−1

k=j−2 costi(ck, ck+1) < 0. But again the latter cannot be true because it directly contradictsλ-
consistency of ρ. Hence, our supposition can only be true if the former constraint holds. We repeat
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4.2 Constrained SPE problem

the process with bj−2(i), coming down to the condition b2(i)−
∑j−1

k=2 costi(ck, wk, ck+1) < 0
to make our supposition bj−1(i) − costi(cj−1, cj) < 0 true. But b2(i) = λi(c1, w1, c2) −

costi(c1, c2), so that the inequality above entails λi(c1, w1, c2) <
j−1∑
k=1

costi(ck, ck+1). This

contradicts the λ-consistency condition at the beginning of ρ. It follows that bj(i) ≥ 0 for all
1 ≤ j ≤ |ρ| and all i ∈ JnK.

Lemma 4.16. supρ∈Γ
µk

(c) costi(ρ) = +∞ if, and only if, there exists a valid path π inC[µk, c]
with the following conditions:

• π is of the form h · β · h′, where β is a cycle inC[µk, c];

• Player i’s (constant) counter value b(i) is positive throughout β.

Proof. supρ∈Γ
µk

(c) costi(ρ) = +∞ implies there exists a sequence of paths (ρm)m≥1 in Γµk(c)

such that costi(ρm) → ∞ as m grows. By Lemma 4.15, for each of those ρm, there exists
correspondingπm from (c, bc) to (ctgt, b) inC[µk, c]. As a player’s cost in a single edge is bounded,
the length of πm has to grow unboundedly. First of all, that is only possible if there is a cycle β in
C[µk, c] - we have the first condition now. Now Player i’s counter value cannot be 0 in β because
then the cycle doesn’t contribute to make costi(ρ) → +∞. Thus the second condition also holds.

Conversely, for π = h · β · h′ inC[µk, c], where β is a cycle and Player i’s cost> 0 in β, we
construct a sequence of paths πm = h · βm+1 · h′ form ≥ 0. By Lemma 4.15, corresponding
to this sequence of paths, there exists a sequence of paths (ρm)m≥0 in Γµk−1(c′′), and for those
paths, costi(ρm) → ∞ asm grows. Hence, µki (c, w, c′) = +∞ if these condition holds.

At this point, we have bounded the finite values that the λj∗ ’s can take. But in the transitioning
from λ(j+1)∗ to λj∗ , µki can take larger values when k < |V |. In the sequel, we bound the values
that any family µk = ⟨µki ⟩i∈JnK can return.

To this aim, we begin with working on the supremum of the cost for Player i of the paths
in Γµk(c).

When we consider a maxbl(µ
k, c) with c ∈ Xj of M, it is implicit that l ≥ j. For l > j, we

have
maxbl(µ

k, c) ≤ maxbl(µ
0, c) ≤ max

e∈Zl
i∈JnK

λl
∗
i (e) ≤ |V | × κ

because µki (e) = µ0i (e) = λl
∗
i (e) for those e ∈ Z≥l and for all i ∈ JnK. So it remains to bound

maxbj(µ
k, c); but for that too, when k ≥ |V |, we have maxbj(µ

k, c) ≤ |V | × κ. Therefore,
we only need to provide a bound for maxbj(µ

k, c) when k < |V |.

Lemma 4.17. For an edge e = (c, w, c′) ∈ Zj and a λj∗ -building function µk = ⟨µki ⟩i∈JnK, if
µki (e) is non-zero finite then

µki (e) ≤ (n|C|+ 2|V |)×
k∑

l=1

(n|C|)l−1 · κl.
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Moreover, the above bound also applies to maxbj(µ
k, c′′) for any c′′ ∈ Xj :

maxbj(µ
k, c) ≤ (n|C|+ 2|V |)×

k∑
l=1

(n|C|)l−1 · κl.

Proof. We can claim that the finite maximum counter value appearing inX ′
j of any counter graph

C[µk, c′′] (where c ∈ Xj) is bounded by the finite maximum µki (e) value appearing in the same
region (maximum over i and e ∈ Zj), i.e,

maxbj(µ
k, c′′) ≤ max{µki (c, w, c) ∈ N | ((c, b), w, (c′, b′)) ∈ Z ′

j ofC[µk, c′′], i ∈ JnK}.

This is justified because for the initial vertex (c, bc) ofX ′
j , bc ∈ {0,∞}. Hence, a counter value

becomes finite and non-zero, when some µki (e) for e ∈ Zj becomes finite and non-zero. But
by definition of counter graph, ((c, b), w, (c′, b′)) ∈ Z ′

j implies (c, w, c′) ∈ Zj , hence we can
obtain,

maxbj(µ
k, c′′) ≤ max{µki (c, w, c′) ∈ N | (c, w, c′) ∈ Zj , i ∈ JnK}.

By induction on k, we prove that for any c′′ ∈ Xj and any i ∈ JnK,

maxbj(µ
k, c′′) ≤ max{µki (e) ∈ N | e ∈ Zj} ≤ (n|C|+ 2|V |)×

k∑
l=1

(n|C|)l−1 · κl.

As µ0i (e) ∈ {0,∞} for all ∈Zj , the given bounds hold for k = 0.
We fix an arbitrary e = (c, w, c′) ∈ Zj and a player i ∈ JnK such that µki (e) ∈ N \ {0}. That

µki (e) is a non-zero finite value means that supρ∈Γ
µk−1(c̃)

costi(ρ) ∈ N for some c̃ ∈ devi(c, c′).
If c̃(i) = tgt(i) then supρ∈Γ

µk−1 (c̃)
costi(ρ) = 0, and that makes µki (e) ≤ costi(c, c̃) ≤ κ,

satisfying the given bound.
Otherwise, c̃(i) ̸= tgt, and depending whether c̃ belongs toXj orX>j , we analyze two cases:

• c̃ ∈ Xl for some l > j: Then

µki (e) ≤ sup
ρ∈Γ

µk−1 (c̃)
{costi(c, c̃) + costi(ρ)}

≤ costi(c, c̃) + max
e′∈Zl
i∈JnK

µk−1
i (e′) ≤ (1 + |V |)× κ.

• c̃ ∈ Xj : Now considerC[µk−1, c̃], and its initial vertex (c̃, bc̃). By Lemma 4.15, for any
path ρ ∈ Γµk−1(c̃), we have a corresponding valid path πρ inC[µk−1, c̃]. We also consider
the region decompositionπρ = πρ[j] . . . πρ[n]. From the fact that supρ∈Γ

µk−1 (c̃)
< +∞,

we argue that in πρ, from (c̃, bc̃) within each |C| step either one counter value strictly
decreases, or Player i reaches tgt(i). Otherwise, there would have been a cycle inC[µk−1, c̃]
resulting in the supremum being+∞ ( thanks to lemma 4.16). Recall by design, the counter
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4.2 Constrained SPE problem

values ofπρ inX ′
j lie in Jmaxbj(µ

k−1, c̃)K∪{0,+∞}, and when a counter value decreases
along an edge, it decreases at least by 1. Therefore, withinn×|C|× (maxbj(µ

k−1, c̃)+1)
steps from (c̃, bc̃) at least one of the counter value becomes 0. When a player-l counter
value becomes 0, πρ must reach the next region (making the corresponding c(l) = tgt(i)),
otherwise πρ is not a valid path. Moreover, from the next region, costi(ρ[j +1] . . . ρ[n]) is
bounded byµk−1

i (e′), wheree′ denotes the first edge of ρwhich belongs toZ>j . Therefore,

costi(ρ) ≤ (n× |C| × (maxbj(µ
k−1, c̃) + 1))× κ+max

l>j
maxbl(µ

k−1, c̃)

≤ (n× |C|+ |V |)× κ+ (n× |C|)×maxbj(µ
k−1, c̃)× κ.

If Player i reaches tgt withinX ′
j , costi(ρ) would be much smaller. In the above, we have

used the bound from Corollary 4.13 as µk−1(e) = λl
∗
(e) for e ∈ Xl for l > j. Now as

c̃ ∈ Xj , we can use the induction hypothesis for giving a bound to maxbj(µ
k−1, c̃). As

the above shown bound works for any ρ ∈ Γµk−1(c̃), it works for the supremum too, hence
we have

µki (c, w, c
′)

≤ sup
ρ∈Γ

µk−1 (c̃)
costi(c′, c̃) + costi(ρ)

≤ |V | × κ+ (n× |C|+ |V |)× κ+ (n× |C|)×maxbj(µ
k−1, c̃)× κ

≤ (n|C|+ 2|V |)× κ+ (n|C| × κ)× (n|C|+ 2|V |)×
k−1∑
l=1

(n|C|)l−1 · κl

= (n|C|+ 2|V |)×
k∑

l=1

(n|C|)l−1 · κl

This provides a bound for any maxbl(µ, c) for any λj∗ -building function µ, c ∈ Xj , and
l ≥ j. Hence, we can conclude that the counter graphC[µ, c] = ⟨C ′, T ′⟩ can be made finite, by
takingC ′ = {(d, b) ∈ C × ([0;Y ] ∪ {+∞})JnK | c ⇒∗ d}, with Y = n|V | · |V |n.|V | · κ|V |,
which is doubly-exponential in the encoding of n. Note that, this makes |C ′|reach at most double-
exponential too - which will be one of the key arguments in the complexity analysis of the final
algorithm.

Algorithm. With all these ingredients, we now describe a non-deterministic algorithm for
the decision problem CONSTRAINED-SPE. To be specific, if indeed there is an SPE with social cost less
than the thresholdK , then our algorithm can verify that. In this verification algorithm, a certificate
is a play (or alternatively a path in the configuration graph) which is potentially the outcome of an
SPE with social cost less thanK . At the end, we conclude the complexity of the above algorithm
in Theorem 4.18.
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To start with, we compute λ∗-values for each edge in the configuration graph. In order to do
that, we start with λn∗ , and inductively compute λj∗ = ⟨λj

∗

i ⟩i∈JnK from λ(j+1)∗ until j = 0.
When computingλj∗ fromλ(j+1)∗ , we use the intermediary family of labeling functionsµk. That
is, for each j ∈ JnK, starting from µ0 = ⟨µ0i ⟩i∈JnK, we compute µk+1 from µk until it becomes
µk = µk+1, i.e, reaches a fix-point. Then we declare λj∗ = µk.

Recall that, for any j, for any intermediary family of functions µk = ⟨µki ⟩i∈n, (where µki :
Z≥j → N ∪ {+∞,−∞}) we only need to compute µki (e) for e ∈ Zj because for e′ ∈ Z≥j+1,
µki (e

′) = λ
(j+1)∗

i (e′). In the following, we explain how we computeµki (c, w, c′) for (c, w, c′) ∈
Zj , assuming {µk−1

i (e) | e ∈ Z≥j} are stored:

• First we verify that whether µki (c, w, c′) is not −∞. By (4.1), we know that µk would be
−∞ only if there exists an edge (c, w′, c′′) ∈ Zj from c in the configuration graph such
that Γµk−1(c′′) is empty. Therefore, to verify this, we check for each edge (c, w′, c′′) ∈ Zj ,
whether Γµk−1

(c′′) is not empty. In order to do that,we guess a valid path (but do not store)
inC[µk−1, c′′]. If there is such a path inC[µk−1, c′′], there will be one of length bounded
by |C|, which is doubly-exponential in the size of the input. Hence we keep a counter which
we increase by 1 every time we correctly guess a new edge along the path, and the counter
stops either when we reach a (ctgt, b), or at the latest when it reaches |C|. As the length of
such a path is bounded by |C|, which is doubly exponential in the input size, we can encode
the necessary counter using only exponential space. Therefore, if indeed µki (c, w, c′) is not
−∞, we can verify that using exponential space.

• Once we verified the above, and concluded that µki (c, w, c′) is not −∞, we know that it
must be inN ∪ {+∞}.

Now, we first check whether µki (c, w, c′) is +∞. For that, we need to verify the conditions
stated in Lemma 4.16, i.e, for each c′′ ∈ devi(c, c′), we need a valid path π of the form
h ·β ·h′ inC[µk−1, c′′], where β is a cycle and Player i’s counter value is> 0 throughout β.

We guess such a path π inC[µk−1, c′′] for each edge (c, w′, c′′) ∈ devi(c, c′). Of this path.
we first guess the very first vertex of the cycle β, say (c1, b1) (with b1(i) > 0). Then we
guess the cycle itself, keeping only the currently guessed edge in memory at each step. Note
that, if there is a cycle on (c1, b1), there has to be one within length |C| because within a
cycle only the configurations change, not the counter-values. Then we guess a path from
(c′′, bc

′′
) to (c1, b1), and another path from (c1, b1) to (ctgt, b) (for some b).

The length of the part up to (c1, b1) is bounded by |C ′|reach, whilst we can always get a path
of length at most |C| (if it exists) from (c1, b1) to (ctgt, b). This discrepancy between the
two bounds is mainly because for the latter part of the path, we do not exactly fix the final
vertex (b can be any tuple of n non-negative values), we just want the first component to be
ctgt, while for the former part it gets fixed to (c1, b1).

If we can guess such a path π for each of c′′ ∈ devi(c, c′), we return µki (c, w, c′) = +∞.

• Otherwise, we have at least 1 and at most |V | configurations c′′ ∈ devi(c, c′) such that
supρ∈Γ

µk−1 (c′′) costi(ρ) ∈ N. We call this set of configurations as devi(c, c′)|finsup.
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4.3 Conclusion

To compute the finite value of µki (c, w, c′), we computeMj = supρ∈Γ
µk−1 (c

′′
j )

costi(ρ)
for each of c′′j ∈ devi(c, c′)|finsup, and then take the minimum. In order to computeMj ,
we first tentatively setMj = mine∈E fe(1), and proceed iteratively as follows: we guess a
valid path π of length at most |C ′|reach ofC[µk−1, c′′j ] such that costi(ρ) ≥Mj , where ρ
is the corresponding path of π in G. If such a path exists, we increaseMj by 1, and repeat.
At some point, we get Mj such that there doesn’t exist a valid path π of length at most
|C ′|reach with Player i’s cost larger than or equal to Mj + 1, but there exists a valid path
with Player i’s cost larger than or equal toMj . We store thatMj .

When all valuesMj have been computed, we return:

M = min
j∈J|devi(c,c′)|finsup|K

{costi(c, c′′j ) +Mj}.

We use at most doubly-exponential space in the procedure of guessing a path, and we reuse
that space for guessing the next path in the above algorithm.

We keep a binary counter throughout transitioning fromµk−1 toµk to flag whether the fixpoint
has been reached. Once we reach λ∗ = ⟨λ∗i ⟩, we finally check whether Γλ∗(csrc) is empty by
guessing a path inC[λ∗, csrc] from (csrc, b

csrc) to (ctgt, b).
In conclusion, we use doubly-exponential space: (1) to store {µk−1

i (e) | i ∈ JnK, e ∈ T}
which is double-exponential in the encoding of the number of players, and (2) to encode a counter
which keeps checking whether the length of our guessed paths does not exceed |C ′|reach.

Theorem 4.18. The existence of SPEs in a dynamic NCG can be decided in 2EXPSPACE.

4.3 Conclusion

In this chapter, we have studied SPE in dynamic network congestion games. Even though, we do
not have certain result whether SPE always exist in dynamic NCG or not, we have shown that how
constrained SPE can be of interest. Henceforth, we studied constrained SPE problem: first we
characterized the outcome of SPE, then based on the characterization, we developed an algorithm
which decides in 2EXPSPACE whether given a dynamic game and constraint, there exists an SPE
in the game with social cost less or equal to that constraint value.

The natural two problems that remain open are : (1) existence of SPE, (2) finding lower bound
complexity results for constrained SPE problem.
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Part II

Network Congestion games with number
of players as parameter
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5 Framework for parameterized games
on series-parallel graphs

In this part of the thesis, we continue our study on network congestion games, but from a different
perspective. Here, instead of fixing a number of players, we consider the number of players as a
parameter in the model. Our objective here is to study how the optimal strategy profiles behave
with this parameter.

But the scope of this part is restricted compared to Part I. That is why, in this chapter, we first
specify what the particular restrictions are, and what new notions we introduce for adjusting with
the new restricted setting for tackling network congestion game with the number of players as a
parameter.

Restrictions on the model. First of all, we remove the two specificities that we earlier
considered in Part I, namely: synchronous cost computation and dynamic strategies. This is solely
for technical reason, and we believe studying this problem on other model of congestion games
(including the one that we considered in Part I) could be a future work of interest. Here:

• costs are computed non-synchronously, as it is done in classical network congestion games [3,
39, 57]. That means two players bears congestion effect in their cost for an edge even if they
do not take that edge in their route at the same step.

• Strategies are just paths from source to target, unlike the dynamic strategies that we consid-
ered in Part I.

Therefore, both syntactically and semantically, we go back to network congestion games from the
literature. Moreover, we restrict the cost functions associated with the edges to linear functions
only, contrary to affine functions that we considered in Part I. Finally, we restrict the network
arena to only series-parallel graphs instead of any directed graphs that have been considered in
Part I. With this, let us introduce our setting formally, where some of the definitions might just be
inherited from Chapter 1, but recalled again anyway.

5.1 Definitions

Series-Parallel network Let H be a family of non-decreasing linear functions fromN
toN. Formally, a function h : N→ N of H is of the form h(x) = w · x, withw ≥ 0.

We first redefine our notion of a network in this part, which is a directed acyclic graph with a
single source-target vertex pair, contrary to multiple source-target vertex pairs considered in Part I.
Formally,
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Definition 5.1 (Network). A network is a tuple N = ⟨V,E, s, t⟩, where ⟨V,E⟩ forms a directed
acyclic graph, s and t are the source and target vertices respectively, and for every v ∈ V , there is a
path from s to v, and a path from v to t. Moreover, there is no incoming edge to s, and no outgoing
edge from t.

As mentioned before, here we restrict our study on series-parallel networks. In order to de-
fine series-parallel network, we first define two ways of composing any two networks: two net-
works N1 = ⟨V1, E1, s1, t1⟩ and N2 = ⟨V2, E2, s2, t2⟩, and they can be composed to form a
single network by:

• Series composition: Intuitively, two networks are composed to a single one by merging the
target vertex t1 of the former and the source vertex s2 of the latter to a new vertex. As the
new vertex is no longer a target vertex, the self-loop from t1 is also removed. We refer to this
network asN1 ⊕N2 Formally,N1 ⊕N2 = ⟨V,E, s, t⟩, where

V = V1 ∪ V2 ∪ {u} \ {t1, s2}
E = E1 ∪ E2 ∪ {(v, u) : (v, t1) ∈ E1} ∪ {(u, v) : (s2, v) ∈ E2}

and s = s1, and t = t2.

• Parallel composition: Intuitively, two networks are composed parallelly by merging the two
source vertices into a new source, and two target vertices into a new target vertex. We refer
the new network asN1 ∥N2. Formally,N1 ∥N2 = ⟨V,E, s, t⟩, where

V = V1 ∪ V2 ∪ {s, t} \ {s1, t2, s2, t2}
E = E1 ∪ E2 ∪ {(s, v) : (s1, v) ∈ E1} ∪ {(s, v) : (s2, v) ∈ E2}

∪ {(v, t) : (v, t1) ∈ E1} ∪ {(v, t) : (v, t2) ∈ E2}

Definition 5.2 (Series-Parallel Network). A network N = ⟨V,E, s, t⟩ is called a series-parallel
network if either it is a single edge (s, t), or series or parallel composition of two series-parallel
networks.

Example 5.3. Consider Figure 5.1. Here 5.1a is a single edge between source and target, the basic
unit for any series-parallel network. Any series-parallel network is built starting from single edge(s),
and composing them either in series or in parallel. For example, the network N1 ⊕ N2 of Figure
5.1d is built by composing N1 of 5.1b and N2 of 5.1c, while N1 ∥ N2 is built by composing them in
parallel.

Parameterized Network Congestion Games. We define parameterized network con-
gestion game (pNCG) on this series-parallel network, which is a network congestion game without
fixed number of players. Formally,

Definition 5.4 (Parameterized Network Congestion Game). A parameterized network congestion
game (pNCG) is a tuple G = ⟨V, T, s, t⟩, where V is the set of vertices, T ⊆ V ×H× V is the set
of transitions labeled by non-decreasing linear functions, and the underlying graph N = ⟨V,E,
s, t⟩, whereE = {(v, v′) : for each (v, h, v′) ∈ T}, is a series-parallel network.
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s t
e

(a) A single edge: smallest series-parallel network

s1 u t1
e1

e2 e3

(b) N1

s2 t2

e4

e5

(c) N2

s u v t
e1

e2 e3

e4

e5

(d) N1 ⊕N2

s u t

e1

e2
e3

e4

e5

(e) N1 ∥ N2

Figure 5.1: Series and Parallel composition of networks

Note that, syntactically a pNCG is no different from the underlying arena N on which the
game is defined. This is in contrast with the network congestion game (Definition 1.1) defined in
Chapter 1, where apart from the arena A, the number of players n, and a source-target assigning
map g were part of an instance.

Semantics. Intuitively, a pNCG captures infinitely many NCG , one for every integern ∈ N.
Hence, with a pNCGG, we associate infinitely many network congestion games, denoted byGn for
each n ∈ N \ {0}. Here Gn denotes the congestion game ⟨G, n, g⟩, where g(s, t) = n. Because,
a pNCG only associates with symmetric NCG, we omit g from the notation, and simply write
Gn = ⟨G, n⟩. This also means pNCG inherits the semantics, i.e, objective of a player, and how a
game proceeds in rounds, from NCG itself, as it is explained in the semantics part on Page 4.

Strategy. Because a pNCG captures a class of NCG, σ is a Player i strategy in a pNCG G
means σ is a Player i strategy in an NCG from the class that G represents. Moreover, as mentioned
earlier, in this part, we restrict the strategy space only to what we called earlier blind strategies.
Recall from Chapter 1, a blind strategy π is a path from s to t in the arena. A path π from s to t in
G is denoted as a sequence of the form s

e1−→ v1 . . .
e|π|−−→ t. For such a path π, we write ej ∈ π for

1 ≤ j ≤ |π|. We denote PathsG to be the set of all paths in G. As all the players in any associated
NCG Gn have same source-target vertex pair, a strategy can be directly associated to the pNCG G
itself.

A strategy profileσ ofGn for anyn ∈ N\{0} is an-tuple (πi)i∈JnK where eachπi is a strategy of
G. We call σ to be a strategy profile of G itself, if it is a strategy profile of Gn for some n ∈ N \ {0}.
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In the next chapter of this part, our main objective is to investigate how optimal strategy profile
for stability behaves as the parameter evolves. Hence, instead of denoting a strategy profile of Gn

as a n-tuple of paths in G, we use two notations that are more resilient to the change in n, and
therefore easier to observe if and how strategy profiles relate to each other when n varies:

• Path representation of a strategy profile: Here a strategy profile is a |PathsG|-tuple m⃗ =
(mπ)π∈PathsG , in whichmπ denotes the number of players taking path π in the strategy
profile. Necessarily, for a strategy profile m⃗ of Gn,

∑
π∈PathsG

mπ = n.

• Edge representation of a strategy profile: Here a strategy profile is a |E|-tuple n⃗ = (ne)e∈E ,
in which ne denotes the number of players taking e in their strategy in this profile. Here
necessarily for every vertex v ∈ V \ {s, t} the number players incoming to v in a strategy
profile has to match up to the number of players outgoing from v. Formally,

∑
e∈In(v)

ne =∑
e∈Out(v)

ne, where In(v) andOut(v) are the set of incoming and outgoing edges of v.

In both representations, we do not keep the information about which player is playing which
strategy as all of them has same source-target vertex pair, but this makes multiple strategy profiles to
have same path/edge representation. Two strategy profiles that have the same path representation
are isomorphic to each other up to permutation of the players. As a player’s identity does not
matter for our current context, we can consider path representation as a unique representation of a
strategy profile, and simply refer to a strategy profile unless otherwise mentioned. On the other
hand, that is not the case with edge representation.

Here is an example where two strategy profiles (path representation) have same edge representa-
tion.

Example 5.5. Consider a pNCG namely, say G, on network 5.1d from Figure 5.1, and consider the
associated NCG with three players G3 = ⟨G, 3⟩. In this network, the paths are π1 = s

e1−→ u
e3−→

v
e4−→ t, π2 = s

e1−→ u
e3−→ v

e5−→ t, π3 = s
e2−→ u

e3−→ v
e4−→ t, and π4 = s

e2−→ u
e3−→ v

e5−→ t.
Now consider two path-strategy profiles m⃗1 and m⃗2 as follows:

m1(π1) = 1 m2(π1) = 2
m1(π2) = 1 m2(π2) = 0
m1(π3) = 1 m2(π3) = 1
m1(π4) = 0 m2(π4) = 0

Both path profiles have the same edge-representation, which is n⃗ = (ne)e∈E , where ne1 = 2,
ne2 = 1, ne3 = 3, ne4 = 1 and ne5 = 2.

We write Bedge for the set of edge-representations of all strategy profiles, while we write Bpath

for the set of path-representations of all strategy profiles. Moreover, there is a map which associates
a path-strategy profile uniquely to its corresponding edge-strategy profile as follows:
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Definition 5.6. Γ : Bpath → Bedge maps each path-strategy profile m⃗ = (mπ)π∈PathsG to a
edge-strategy profile n⃗ = (ne)e∈E where:

ne =
∑
π:e∈π

mπ

To have a simpler notation without any further confusion, we always use m⃗ to denote a path
representation, while we use n⃗ to denote an edge-representation of a strategy profile.

Cost. As mentioned earlier, we get back to the non-synchrounous way of computing cost,
which has been usual in the literature [3, 9, 39, 57, 60] with few exceptions[6, 7]. To recall, here a
player bears congestion effect on their cost due to some other player if they both take that edge in
their path. With each path-strategy profile m⃗ ∈ Bpath, and each path π ∈ PathsG, we associate a
cost, written as costπ(m⃗) =

∑
e∈π he(Γ(m⃗)e), meaning a player who is taking path π in profile

m⃗ pays costπ(m⃗).
Subsequently, the social cost of a strategy profile m⃗ is

soccost(m⃗) =
∑

π∈PathsG
mπ · costπ(m⃗)

Similarly, from an edge-strategy profile too, a player’s cost can be defined, but we never use that
cost in the sequel, hence it is not being defined formally.

5.2 Conclusion

In this chapter, we have formally defined Parameterized network congestion games on series-
parallel network, in a restricted setting than Part I, putting restriction on (a) arena, and (b) types
of strategies. Moreover, the way of computing cost has also been altered from what it was in the
earlier part. Each of these restrictions rose from our technical limitations, and we will justify those
in details when we approach the problem that we study in the next chapter.
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6 Nash Equilibria for Parametric
Network congestion games

In this chapter, we study Nash Equilibria (NE) of parameterized network congestion games
(pNCG). Intuitively, a pNCG is a class of network congestion games, in which a game arena is
fixed and the number of players varies from one game to another. Hence, any NE for an NCG of
the class of games represented by a pNCG , is considered as an NE of that pNCG itself. Formally,

Definition 6.1 (path-NE). A path-strategy profile m⃗ = (mπ)π∈PG is an NE for pNCG G if it is
an NE of NCG ⟨G, k⟩, where k =

∑
π∈PathsG

mπ . We refer such m⃗ as a path NE of G.

Recall from Chapter 5, we defined a map Γ which associates each path-strategy profile to an
edge-strategy profile by counting how many players takes each edge in the path-strategy profile.
Using that map, we define the following:

Definition 6.2 (edge-NE). An edge-strategy profile n⃗ = (ne)e∈E is said to be an NE for pNCG
iff there exists a path-strategy profile m⃗ = (mπ)e∈PathsG such that Γ(m⃗) = n⃗ and m⃗ is an NE of
for G. Subsequently, we refer to such n⃗ as an edge NE of G.

We know NE always exists for an NCG[56], we have the following result regarding the existence
of an NE for a pNCG :

Corollary 6.3. Nash equilibria always exists for a parameterized network congestion games.

From hereon, we use Npath and Nedge to denote the set of path NE and edge NE profiles,
respectively.

From earlier chapter of this thesis, we know how to compute an NE for an NCG, and therefore
we can effectively compute NE for any game from the class of games represented by any given
pNCG . But from those algorithms, irrespective of the number of players, we essentially need to
follow the same method to compute an NE. A priori, we did not know whether an NE of one
game is somehow related to an NE of another game from the same class of games represented by a
given pNCG . And if they are, can we use that relation to compute an NE for a game from an NE
for another game without computing it from scratch?

More specifically, we are concerned with the problem if and how we can compute an NE for
a game with large number of players from NE of games with smaller number of players. In this
chapter, we investigate this problem for series-parallel network. Formally, we address the following
problem:

Definition 6.4 (Problem 1). Given a pNCG G on a series-parallel network, can we compute a finite
representation of a mapping NE : N→ N|E| such that NE(k) is an NE of ⟨G, k⟩.
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6 Nash Equilibria for Parametric Network congestion games

Remark 6.5. Even though currently, in this chapter, our objective is to study the problem only for
series-parallel graphs, many results that we obtain on the way are also true for general graphs. Hence,
we specify in the statements when we prove a result only for series-parallel graphs.

In the next section, we first characterize path NE profiles. From that characterization, we move
on to show that the set of edge NE profiles is a semi-linear set, so it has a finite basis and a finite
set of periods. We then compute the set of periods, the set of bases, and finally discuss about
computability and expressibility of NEs.

6.1 Characterization of NE Profiles: Path and Edge
Representations

Here, we first show when a path-strategy profile m⃗ is a path NE . Intuitively, m⃗ is a path NE iff
for a path π, which is taken by some player in the profile (i.e. mπ > 0), and for any other path π′
(which may or may not be taken by a player in m⃗), the cost that a player pays in π is less or equal to
the cost they would pay in π′ if they unilaterally deviate. Moreover, cost in π is sum of the cost of
each edge e of π, which in turn, is justwe · ne, where Γ(m⃗) = n⃗ = (ne)e∈E . Formally, we have
the following (here π \ π′ denotes the set of edges which are in π, but not in π′):

Theorem 6.6. In any networkG with linear cost functions, a path-strategy profile m⃗ = (mπ)π∈PathsG
is an NE iff

∀π, π′ ∈ PathsG, mπ > 0 =⇒
∑

e∈π\π′

we · ne ≤
∑

e∈π′\π

we · (ne + 1) (6.1)

where Γ(m⃗) = n⃗ = (ne)e∈E .

Proof. The proof is pretty straightforward. Consider a path-strategy profile m⃗ = (mπ)π∈PathsG
which satisfies (6.1). We also assume Γ(m⃗) = n⃗ = (ne)e∈E . If m⃗ is not a path NE , then
there exists i ∈ JnK such that Player i is a deviating player who benefits by unilaterally deviate
from their current strategy. Suppose π be the path Player i is currently taking in m⃗, and π′ be
a cost-effective unilateral deviation for Player i. Hence, mπ ≥ 1 (as Player i is taking π in m⃗)
and

∑
e∈π\π′

we · ne >
∑

e∈π′\π
we · ne, otherwise π′ is not more cost-effective than π. But, that

contradicts (6.1), hence m⃗ is an NE.
For the opposite direction, suppose a strategy profile m⃗ = (mπ)π∈PathsG is a path NE with

Γ(m⃗) = n⃗ = (ne)e∈E , and also suppose towards a contradiction that there are paths π, π′ ∈
PathsG such thatmπ > 0 and

∑
e∈π\π′

we · ne >
∑

e∈π′\π
we · (ne + 1). Now, if a player deviates

from π to π′, for the common part of the two paths, π ∩ π′, the number of players remain same.
Hence, a player who was taking π in m⃗ should deviate unilaterally from π to π′, and reduce their
own cost. That contradicts to our hypothesis that m⃗ is an NE profile.

Note that we have not used series-parallel graph in the above, which implies Theorem 6.6 holds
for any graph. This also holds true for the next section (6.2) too, but from Section 6.3 onward, we
will see results that are proven only on series-parallel network.
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6.2 Set of NE Profiles as a Semi-linear Set

6.2 Set of NE Profiles as a Semi-linear Set

A strategy profile in edge representation is a subset of N|E|. In this section, using the above
characterization, we establish that the set Nedge ⊆ N|E| of a pNCG G is a semi-linear set. Upon
proving this, we will be able to give a structure to Nedge , which in turn, enables us to compute an
NE for sufficiently large number of players from NE for comparatively small number of players.

First, we recall some definitions from the literature related to semi-linear sets [52]. Here, we are
only interested in semi-linear subsets ofN|E|, so we consider the definitions accordingly.

Definition 6.7. A set S ⊆ N|E| is called linear if there is a base vector b⃗ ∈ Nn and a finite set of
period vectors P = {p1, p2, . . . pm} such that

∀s ∈ S, ∀i ∈ [m], ∃λi ∈ N, s = b⃗+
∑
i∈JmK

λi · pi

Such a linear set S can also be written asL(b;P )

Definition 6.8. A set S ⊆ N|E| is said to be semi-linear if it is a finite union of linear sets.

Therefore, a semi-linear set S can be expressed as

S =
⋃
i∈I

L(bi;Pi)

where both |I|, |Pi| are finite.
Now, we show that the set of NE profiles of a pNCG is a semi-linear set.

Theorem 6.9. For a parameterized network congestion game, Nedge is a semi-linear set.

Proof. In order to prove this, we show that the set of NE profiles in edge-representation is definable
in Presburger arithmetic (PrA ). We know from [27] that a set definable in PrA is semi-linear, and
vice-versa.

We first recall the definitions from literature regarding PrA : it is the first-order theory of the
model (N,+,=). For every number n ∈ N, the relations <,≤, modulo comparison relation
≡m, for natural numbersn ≥ 1, and the functions x 7→ nx of multiplication by natural numbers
are definable in (N,+,=). Therefore, we show here how we can define Nedge using formulas in
PrA .

First, we write the formulas below, and then we justify that each component of each formula is
in PrA , in which we will be using the above symbols for having a shorter version of PrA formulas
instead of what we would have got if we use only (N,+,=).

EdgeProfile(n⃗ = (ne)e∈E) := ∀e ∈ E,
∑

e∈In(v)

ne =
∑

e∈Out(v)

ne

Here, universal quantification over a finite set corresponds to a conjunction over finitely many
formulas, each of which are PrA formulas, hence so is EdgeProfile(n⃗). Any n⃗ such that n⃗ |=
EdgeProfile(n⃗) is an edge profile of the network.
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6 Nash Equilibria for Parametric Network congestion games

Next, we enrich the grammar by introducing a unary operator Γ which mapsN|P| toN|E|,
and definable in (N,+,=):

Γ(m⃗ = (mπ)π∈P) := (ne)e∈E , where ne =
∑
e∈π

mπ

This unary operator maps a path profile to its corresponding edge profile in the network.
We further introduce two formulas which essentially capture the set of path NE and edge NE .

PathNE(m⃗ = (mπ)π∈P) := ∀π, π′ ∈ P, mπ > 0

=⇒
∑

e∈π\π′

we · Γ(m⃗) e ≤
∑

e∈π′\π

we · (Γ(m⃗) e + 1)

EdgeNE(n⃗ = (ne)e∈E) := EdgeProfile(n⃗)
∧ (∃m⃗ = (mπ)π∈P , (Γ(m⃗) = n⃗) ∧ PathNE(m⃗) )

Here, PathNE(m⃗) is only satisfied by path-representation of a strategy profile which is an NE
of G, and finally EdgeNE(n⃗) captures the edge representations of those strategy profiles which
are NE. Therefore, the set NG can be defined as:

NG := {(ne)e∈E ∈ N|E| : (ne)e∈E |= EdgeNE(n⃗) }

which shows it is a PrA -definable set, hence by [27], NG is a semi-linear set too.

6.3 Period vectors of edge NE profiles

As NG is a semi-linear set, and infinite (at least one NE for each ⟨G, k⟩) for any network G, there
exists at least one base vector b⃗ and one set of period vectors Pi which is non-empty, when we
express NG =

⋃
i∈I L(bi;Pi). Also note that, by definition a period vector d⃗ = (de)e∈E of G is

itself a strategy profile, i.e, d⃗ |= EdgeProfile(n⃗) (where EdgeProfile is the formula in the proof
of Theorem 6.9).

Our next objective is to characterize the period vectors for a given pNCG . Intuitively, we first
establish that in a period vector, the cost across any path is constant. This is the key component
that we establish only for series-parallel networks, hence restricting the full chapter to this class of
graphs.

Theorem 6.10. For pNCG G on a series-parallel network, for any period vector d⃗ = (de)e∈E , we
have the following:

∃κ
d⃗
∈ N ∀π ∈ PathsG ,

∑
e∈π

we · de = κ
d⃗

(6.2)

Proof. Recall from Definition 5.2 of Chapter 5, a series-parallel network is defined as either a single
edge between s and t, or series/parallel composition of two series-parallel networks. Here, in this
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6.3 Period vectors of edge NE profiles

proof, we use structural induction on that compositions of series-parallel networks. The base case
of this structural induction is a single edge.

For a network G comprised of a single edge e between s and t, the cost must be constant across
all paths as there is only one path.

To formalize the induction hypothesis, suppose G1 = ⟨V1, E1, s1, t1⟩ and G2 = ⟨V2, E2,

s2, t2⟩ are the two series-parallel graphs, and d⃗1, d⃗2 are the two period vectors associated with
these two networks respectively. Moreover, we denote P1 and P2 as the set of all paths from the
corresponding source to target in G1 and G2 respectively. As the induction hypothesis, we have the
following: for any period vector d⃗1 = (d

(1)
e )e∈E1 of G1 and similarly for d⃗2 = (d

(2)
e )e∈E2 of G2,

there are κ
d⃗1

and κ
d⃗2

such that:

∀π ∈ P1,
∑
e∈π

we · d(1)e = κ
d⃗1
, and (6.3)

∀π ∈ P2,
∑
e∈π

we · d(2)e = κ
d⃗2

(6.4)

In the induction step, one by one, we consider G first as the series composition G1 ⊕ G2 and
then as the parallel composition G1 ∥ G2, we denote the set of paths to be PathsG, and establish
that for any period vector d⃗ of G, there is a κ

d⃗
satisfying above.

Firstly, we consider G to be G1 ⊕ G2. From the series composition, we have t1 of G1 and s2 of
G2 merged into a single vertex, say v, of G. Therefore, any path π of PathsG can be thought of as
concatenating two paths π1 of P1 and π2 of P2, slightly abusing notations though.

Moreover, any period vector d⃗ = (de)e∈E of G can be expressed as (d⃗1 = (de)e∈E1 , d⃗2 =

(de)e∈E2), simply becauseE = E1 ⊔ E2, where d⃗1 and d⃗2 are the period vectors of G1 and G2

respectively. From the induction hypothesis, we haveκ
d⃗1
, κ

d⃗2
∈ N for these d⃗1, d⃗2. Therefore, for

any π ∈ P , we have
∑
e∈π

we · de =
∑
e∈π1

we · de +
∑
e∈π2

we · de = κ
d⃗1

+ κ
d⃗2

. So, κ = κ
d⃗1

+ κ
d⃗2

works!

Now we consider G = G1 ∥ G2, and a period vector d⃗ of G. Slightly abusing the notations, we
can say that the set of pathsPathsG can be decomposed into two disjoint sets: the set of paths inG1,
denoted by P1 and the set of paths in G2, denoted by P2. For d⃗ = (de)e∈E , from the induction
hypothesis, we have κ1 and κ2 such that ∀π ∈ P1

∑
e∈π

we ·de = κ1 and ∀π ∈ P2
∑
e∈π

we ·de =
κ2.

Now we consider two pathsπ1 ∈ P1 andπ2 ∈ P2. If we prove that
∑
e∈π1

we ·de =
∑
e∈π2

we ·de,

we are done.

Without loss of generality, suppose towards a contradiction that
∑
e∈π1

we · de >
∑
e∈π2

we · de,

and we denoteM =
∑
e∈π1

we · de −
∑
e∈π2

we · de > 0. Note that, even though we fix a π1 ∈ P1

and π2 ∈ P2, and defined M , this would remain the same if we take some other π′1 ∈ P1 and
π′2 ∈ P2 because of the induction hypothesis.

63



6 Nash Equilibria for Parametric Network congestion games

Now, we consider an NE profile n⃗ = (ne)e∈E ∈ NG , and also an arbitrary path NE m⃗ =
(mπ)π∈PathsG with Γ(m⃗) = n⃗. With this, we can take a path π ∈ P1 with mπ > 0. Now for
this π ∈ P1, and the π2 ∈ P2 that we fixed earlier, we have from (6.1):∑

e∈π\π2

we · ne ≤
∑

e∈π2\π

we · (ne + 1)

We denoteL =
∑

e∈π2\π
we · (ne + 1)−

∑
e∈π\π2

we · ne. By definition of period vector, for any

λ ∈ N, we have ∑
e∈π\π2

we · (ne + λde) ≤
∑

e∈π2\π

we · (ne + λde + 1)

We take λ =
⌈
L
M

⌉
Then,

∑
π\π2

we · ne −
∑
π2\π

we · (ne + 1) + λ

(∑
e∈π

we · de −
∑
e∈π2

we · de

)
= −L+

⌈
L

M

⌉
·M > 0

=⇒
∑

e∈π\π2

we · (ne + λde) >
∑

e∈π2\π

we · (ne + λde + 1)

This contradicts to the fact that n⃗ is an edge NE andmπ > 0. Hence,M must be 0, which implies
we can take κ

d⃗
= κ1 = κ2.

6.3.1 A System of Equations for Period Vectors

We now have two sets of linear equations that a period vector of a pNCG must satisfy, the first
one being the set of flow equations for the arena, and the second one, with a parameter κx, is the
one that we got from Theorem 6.10. We call the latter set of equations the κx-parameterized cost
equations. Together, we have:

Corollary 6.11. Any period vector d⃗ = (de)e∈E of a pNCG on a series-parallel network game is a
solution to the following system of linear equations:

• ∀v ∈ V \ {s, t}
∑

e∈In(v)
xe =

∑
e∈Out(v)

xe

• ∃κx∀π ∈ PathsG
∑
e∈π

we.xe = κx

We refer to the above system of equations as E(κx) with (xe)e∈E , corresponding to each edge,
and a parameter κx.

Note that, in E(κx) there are |V | − 2 many flow equations, |PathsG| many equations from
Theorem 6.10, and |E|many variables. If |V |−2+ |PathsG| > |E|, then the system of equations
may have multiple solutions. Consider Example 6.12, where this is indeed the case.
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s v t

x 7→ x
a

x 7→ 2x

b

x 7→ x
c

x 7→ 2x

d

Figure 6.1: An arena G to show S is a set of covering paths

Example 6.12. Consider the game G depicted in Figure 6.1. Here, the set of all paths PathsG =

{ac, bd, ad, bd}, where in our notation, formally, ac is the path s a−→ v
c−→ t, and so on. Moreover,

|V | = 3, |E| = 4, which makes |V | − 2 + |PathsG| > |E|.

As we see in the above example, the κx-parameterized cost equations may not be optimal as
a set, in the sense that there might be a smaller set of linear equations, which is a subset of κx-
parameterized cost equations and the set of solutions of whose coincides with the same.

In the following, we compute such a minimal set, and then go on to prove that together with
the flow equations, this set has a unique solution.

We define a set of covering paths for a pNCG G. Intuitively, this is a subset of PathsG such
that for a given strategy profile d⃗edge , if the cost across all the paths in this covering set of paths is
constant, then so is across all paths from s to t. Formally,

Definition 6.13. For pNCG G, we call a set CovP(G) ⊆ PathsG a set of covering paths of G if
for any strategy profile d⃗ = (de)e∈E

∀π, π′ ∈ CovP(G)
∑
e∈π

we · de =
∑
e∈π′

we · de =⇒

∀π, π′ ∈ PathsG
∑
e∈π

we · de =
∑
e∈π′

we · de

(6.5)

Note that, PathsG itself is a set of covering paths for G. But we are looking for a covering set of
a specific size |E| − |V |+ 2 for a given G = ⟨V,E⟩, and that is what we compute next.

Algorithm to compute CovP(G) Intuitively, we choose a subset of all paths in such a
way that cost of all the other paths in PathsG is already determined by the paths that are already
chosen in the set.

To construct such a set, for vertex v ∈ V , we first fix an ordering O among the outgoing edges
Out(v) from each vertex, and among its incoming edges In(v) of each vertex. With respect to
this ordering, for each v, we define two paths: a path from v to t, denoted by fst_fwd(v), and a
path from s to v, denoted by fst_bwd(v).

Intuitively, we construct these two paths for v ∈ V \ {s, t} in the following manner:

• fst_fwd(v): We build the path step by step, adding an edge at each step from v, till we reach
t. At the very first step, we start from vertex v, and consider the first edge, say e0 = (v, v1)

inOut(v) with respect to ordering O. If v1 = t, then fst_fwd(v) = v
e0−→ v1, otherwise
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6 Nash Equilibria for Parametric Network congestion games

we extend v e0−→ v1 by considering rest of the from v1 in following inductive way. At ith

step, say the currently built path is π = v
e0−→ . . .

ei−1−−−→ vi. If vi = t, then we declare π to
be fst_fwd(v), otherwise we add the first edge fromOut(vi) with respect to O to π, and
proceed to the next step.

• fst_bwd(v): Similarly, we build this path step by step too, except here, at each step we build
it in reverse order, starting from v, and terminating when we reach s.

Moreover, we define both fst_fwd(t) and fst_bwd(s) to be the empty path.

Example 6.14. Consider again the running example here: the game G depicted in Figure 6.1. We
take the ordering O on the edges as a ≺ b and c ≺ d. This is applied to In(u) andOut(u) for all
u ∈ V . Hence, fst_fwd(s) = fst_bwd(v) = a, and fst_bwd(t) = fst_fwd(v) = c.

With these two paths for each vertex v, we finally compute a set of covering paths as shown in
Algorithm 2. Intuitively, for each vertex v with out-degree ≥ 2, and for each outgoing edge in
Out(v), say v e−→ u, we consider the path fst_bwd(v) · e · fst_fwd(u), which is a path from s to
t, and add it to the set of covering paths.

Algorithm 2 Computing a set of covering paths for arena G
1: Initialize with S = ∅
2: for each vertex v with out-degree degv ≥ 2 do
3: if v is the source vertex s then
4: for 0 ≤ j ≤ degs − 1 do %Adding degs paths

5: Add ej · fst_fwd(uj) to S %s
ej−→ uj is the jth edge in Out(s)

6: else

7: for 1 ≤ j ≤ degv − 1 do %Adding degv − 1-many paths

8: Add fst_bwd(v) · ej · fst_fwd(uj) to S %v
ej−→ uj is the jth edge in Out(v)

9: return S

Lemma 6.15. For a pNCG G = ⟨V,E, s, t⟩, the set S computed in Algorithm 2 is a set of covering
paths CovP(G), and it is of size |E| − |V |+ 2.

Proof. We first show that the set S indeed satisfies (6.5), i.e, we need to show that for any strategy
profile if the cost across every path in S is the same in that profile, then the cost across all paths
(including those that are not in S) is the same too.

We fix a strategy profile d⃗ = (de)e∈E , and we denote κ
d⃗
=
∑
e∈π

we · de =
∑
e∈π′

we · de

for all π, π′ ∈ S . Suppose towards a contradiction that (6.5) is not true, i.e, there is a path
ρ = s

e0−→ v1
e1−→ . . . t ∈ PathsG for which

∑
e∈ρ

we ·de ̸= κ
d⃗

. We first consider
∑
e∈ρ

we ·de > κ
d⃗

, the other case is symmetric.
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With this assumption, we show the following by induction: For all 0 ≤ j ≤ |ρ| − 1, the path
πj = ej · fst_fwd(vj+1), which is a path from vj (of ρ) to t, satisfies∑

j≤i≤|ρ|−1

wei · dei >
∑
e∈πj

we · de

Once we prove this, we can actually show that there are two paths π, π′ in S, for which
∑
e∈π

we ·

de ̸=
∑
e∈π′

we · de, which is a contradiction, hence proving that such a ρ, for which the cost is not

same as that of κ
d⃗

, cannot exist.
As fst_fwd(v) = e · fst_fwd(u), where v e−→ u is the first edge in Out(v), we have

fst_bwd(v).fst_fwd(v) ∈ S for any v ∈ V .
Now, base case of the induction is j = 0: we have π0 = e0 · fst_fwd(v1). From our previous

assumption, we have
∑
e∈ρ

we · de > κ
d⃗
=
∑
e∈π0

we · de.

As the induction hypothesis, let us suppose the statement is true for some j < |ρ| − 1. Then to
show it is true for j + 1, we start with the induction hypothesis and proceed as follows:

∑
j≤i≤|ρ|−1

wei · dei >
∑
e∈πj

we · de

=⇒
∑

j≤i≤|ρ|−1

wei · dei − wej · dej >
∑
e∈πj

we · de − wej · dej

=⇒
∑

j+1≤i≤|ρ|−1

wei · dei >
∑

e∈fst_fwd(vj+1)

we · de

[From the fact πj = ej · fst_fwd(vj+1)]

Now adding an identical term to both sides, we get∑
e∈fst_bwd(vj+1)

we · de +
∑

j+1≤i≤|ρ|−1

wei · dei

>
∑

e∈fst_bwd(vj+1)

we · de +
∑

e∈fst_fwd(vj+1)

we · de

=
∑

e∈fst_bwd(vj+1)·fst_bwd(vj+1)

we · de = cx⃗ (*)

=⇒
∑

e∈fst_bwd(vj+1)

we · de +
∑

j+1≤i≤|ρ|−1

wei · dei >
∑

e∈fst_bwd(vj+1).πj+1

we · de

which finally implies:
∑

j+1≤i≤|ρ|−1

wei · dei >
∑

e∈πj+1

we · de

This ends the proof of the induction.

Now consider j = |ρ| − 1. As π|ρ|−1 = v|ρ|−1

e|ρ|−1−−−→ t, by the statement we just proved, we
havewe|ρ|−1

· de|ρ|−1
> we|ρ|−1

· de|ρ|−1
, which clearly is a contradiction.
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Hence, S satisfies (6.5).
Finally we will show now that the size of S is |E| − |V |+ 2. Note that in Algorithm 2, except

for s, for each vertex v with degree ≥ 2, we add deg(v)− 1 many paths to S. And for s, we add
deg(s) many paths. Moreover, any path in the set S, barring the very first one that gets added
in the procedure, has an unique identifying edge that is not shared by any other paths in the set.
And the path, that gets added first in the set, is the only path of which every edge is the “first"
outgoing edge (with respect to ordering O) of the corresponding vertex. This means at each step
the algorithm adds a new path in the set until it terminates. Therefore, the size of the set:

|S| =
∑

v:deg(v)≥2

(deg(v)− 1) + 1

=
∑

v∈V \{t}

(deg(v)− 1) + 1 [As t is the only vertex with no outgoing edge ]

= |E| − (|V | − 1) + 1 = |E| − |V |+ 2

Example 6.16. Let us consider the example in Figure 6.1. Here, the set of all paths PathsG =
{ac, bc, ad, bd}, where the set computed by applying algorithm 2, S = {ac, ad, bc}. In fact, this is
a minimal set satisfying (6.5), we consider the following sets S−ac, S−ad and S−bc, where S−π =
S \ {π} for π ∈ S. Now, we will show for each of these sets there exists a x⃗ = (xe)e∈E for which
∀π1, π2 ∈ S−π

∑
e∈π1

wexe =
∑
e∈π2

wexe holds but ∀π1, π2 ∈ PA
∑
e∈π1

wexe =
∑
e∈π2

wexe

doesn’t hold. Hence, none of them can be a set of covering paths, proving the minimality of S.
For this particular example, we write a candidate for period vector as x⃗ = (xa, xb, xc, xd). Now,

for S−ac, x⃗ = (3, 3, 1, 2) works as 2.3+ 1 = 3+ 2.2 but for the path ac, the value is 4. Similarly,
it is easy to check that for S−bd and S−bc, (2, 1, 3, 0) and (3, 0, 1, 2) works for supporting example
which makes that no S−π is a set of covering paths for π ∈ S.

Remark 6.17. In the following, in essence we are going to show that this minimality holds for all
graphs. We say this in essence because this is not the result we seek, rather our larger goal is to obtain
period vectors for the set of NE. As a mandatory byproduct, we can see that the covering set of paths
computed in Algorithm 2 is, in fact, a minimal set of covering paths.

“Small" system of linear equations. With this set of covering paths CovP(G) of size
|E| − |V |+ 2, we now have a reduced system of parameterized linear equations with parameter
κx, which a period vector of arena G satisfies:

• ∀v ∈ V \ {s, t}
∑

e∈In(v)
xe =

∑
e∈Out(v)

xe

• ∃κx ∀π ∈ CovP(G)
∑
e∈π

we.xe = κx

We refer to this system of equations as ECovP(κx). Here, we have |V | − 2 flow equations as
before, and |E|− |V |+2 κx-parameterized cost equations. This constitutes a system of |E| linear
equations over |E| unknowns and a parameter κx.
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We can also express this system of parameterized linear equations asMG ·X = b, whereMG
is an |E| × |E| matrix, which we refer to as the period-generator of G, with entries only from
{we : e ∈ E} ∪ {0,−1, 1}, b is a column matrix with |E| rows, in which the first |V | entries are
0 and rest of the entries are κx, and each of the |E| entries ofX is the unknown variable xe from
the linear equations, corresponding to each edge ofE.

Each column ofMG corresponds to an edge e ∈ E, the first |V | − 2 rows ofMG correspond to
each vertex v ∈ V \ {s, t}, and each of the rest of |E| − |V |+ 2 rows correspond to each of the
paths in CovP(G). Therefore, each entry ofMG can be referred to be either as the (v, e)th entry
for each v ∈ V \ {s, t} and e ∈ E, or as the (π, e)th entry for each π ∈ CovP(G) and e ∈ E.
To be specific, here we explain how exactlyMG looks like:

• Let us considermv,e to be the (v, e)th entry, then

mv,e =


1 if e ∈ In(v)

−1 if e ∈ Out(v)

0 otherwise
(6.6)

We denote the vth row ofMG by m⃗v .

• And for the (π, e)th entry, denoted bymπ,e, we have

mπ,e =

{
we if e ∈ π

0 otherwise
(6.7)

We denote the πth row ofMG by m⃗π for π ∈ CovP(G).

Theorem 6.18. For any networkG = ⟨V,E, s, t⟩, the |E|× |E| period-generatorMG is invertible.

Proof. Suppose there exists an f⃗ satisfyingMG · f⃗ = 0⃗. Then there are exactly three possibilities
regarding f⃗ :

• either f⃗ ≥ 0⃗, i.e, for all edges e ∈ E, fe ≥ 0, or

• f⃗ ≤ 0⃗, i.e, for all edges e ∈ E, fe ≤ 0, or

• there exists ei, ej ∈ CovP(G) such that fei > 0 and fej < 0.

In all three cases, we will reach a contradiction if f⃗ ̸= 0, henceforth proving thatMG · f⃗ = 0

implies f⃗ = 0.

Case 1: f⃗ ≥ 0.

Suppose towards contradiction that f⃗ ̸= 0⃗, and there is an edge e such that fe > 0. Let us
also assume π ∈ CovP(G) be a path of which e is an edge, and consider the row-matrix m⃗π

as it was defined in (6.7).

Now,MG · f⃗ = 0 implies m⃗π · f⃗ =
∑
e∈π

we · fe = 0.
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Because for all edges e′,we′ > 0, and fe′ ≥ 0, fe > 0 makes ρ⃗π.f⃗ =
∑
e∈π

we · fe greater

than 0 too. This contradicts with the hypothesisMG · f⃗ = 0. Therefore, there cannot be
such an edge ewith fe > 0, which means f⃗ ≥ 0⃗ implies f⃗ = 0⃗.

Case 2: f⃗ ≤ 0⃗.

This case is symmetric to Case 1, which means in this case also f⃗ has to be 0⃗.

s
+

+

+

+/0

+/0
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F 0
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+ +

+

+ +
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F 2

−
−

F 3

S3

−
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t

−

u v

−/0 −/0

Figure 6.2: In an arbitrary graph, howSm’s andFm’s would have been if Case 3 were true. Here, up to level
3 is shown, curved-arrows denote positive and negative paths with label + and − respectively,
and straight-arrows denote edges, Sm’s are the set of vertices in the enclosed area, and Fm’s are
the sum of absolute values in the area enclosed by dotted green lines

Case 3: ∃ei, ej ∈ E : (fei > 0) ∧ (fej < 0).

Before going into details, we first briefly summarize the main steps of the whole argument
by which we proceed with this case:
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Step I: We argue that there is a path π with ei, el ∈ π such that fei > 0 and fel < 0.

Step II: We define the notions of positive, negative and zero paths, and argue why all paths are,
in fact, zero paths fromMG · f⃗ = 0⃗.

Step III: We show the existence of either a positive or a negative path. To prove this, we build a
sequence of sets of vertices along with an increasing sequence of integers which are
bounded above, thus making it impossible to grow the sequence infinitely. But by
design, the sequence only stops if there is either a positive or a negative path.

Now, the existence of either path contradicts with Step II, thus concluding that the
hypothesis on the Case 3 itself is wrong.

Step I: We can easily conclude from Case 1 and 2 that, there cannot be a path π ∈
PathsG such that there is an edge e ∈ π with fe > 0 (or fe < 0 resp.), and for all other
paths e′ of π, fe′ ≥ 0 (or fe′ ≤ 0 resp).

Therefore, for any π ∈ CovP(G), either for all edges e ∈ π, fe = 0, or there are edges
e, e′ ∈ π such that fe > 0 and fe′ < 0. If indeed for all paths π, for all edges e ∈ π,
fe = 0, we have nothing to show further, Case 3 stops here. Hence, we can assume there
is a path π where the latter condition holds. We consider this path π ∈ CovP(G) in the
subsequent part of the discussion.

Step II: Here, we define some notions as follows: for any pathv σ
⇝ v′ , we callσ positive,

negative, and zero respectively if
∑
e∈σ

we · fe > 0,
∑
e∈σ

we · fe < 0, and
∑
e∈σ

we · fe = 0

respectively. An edge is just a path of length 1, hence an edge e is called positive (resp.
negative and zero) if fe > 0 (resp. fe < 0 and fe = 0).

BecauseMG · f⃗ = 0 implies for all π ∈ CovP(G), m⃗π · f⃗ =
∑
e∈π

we · fe = 0, in terms

of this notions, all paths σ ∈ CovP(G) are zero paths. Moreover, from the definition of
covering paths of a network, in fact, all paths σ ∈ PathsG are zero paths.

Step III: Now let’s get back to π considered in the first step. Without loss of generality,
we assume that the first non-zero (i.e, positive or negative) edge of π is positive.

Recall from the plan, here, our objective is to show that there exists either a positive or
negative path.

We construct an infinite sequence of non-empty sets of vertices ⟨Sl⟩l≥0, along with an-
other increasing sequence of non-negative integers ⟨Fl⟩l≥0. Moreover, we define the latter
sequence in such a way that each Fl is bounded above .

Hence, there is a contradiction because using only finitely many numbers it is not possible
to form an infinite increasing sequence!

We start with the construction of the sequences ⟨Sl⟩l≥0 and ⟨Fl⟩l≥0. In Lemma 6.19, we
show that Sl’s are non-empty, which is crucial to justify Fl’s are indeed well-defined. In
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Lemma 6.20, we prove that the sequence ⟨Fl⟩l≥0 are indeed increasing. We finally conclude
giving the bound for Fl’s, and with the argument how the contradiction comes in place.
Now, we start defining the sequence of sets of vertices as follows:

S0 = {v ∈ V : ∃ a path σ : s
σ
⇝ v such that

(∀e ∈ σ fe ≥ 0) and (∀e ∈ Out(v) , fe < 0)}

Intuitively, S0 is the set of vertices to which there is a path σ from s satisfying (a) all the
edges in σ are positive or zero, and (b) all the edges outgoing from v are strictly negative.
First, we claim that S0 is non-empty. We assumed the first non-zero edge of π to be positive.
Letu e−→ v be that edge, then if every outgoing edge ofv is negative, thenv is inS. Otherwise,
there is an edge v e′−→ v′ in Out(v), which is either positive or zero. This v′ might be a
candidate of S0, if all the outgoing edges of v′ are negative. If not, we take a non-negative
outgoing edge of v′, and continue. In this way, if we reach t before finding a v in S0, then
we have a positive path from s to t, a contradiction! Hence, S0 must be non-empty.
And we define,

F0 =
∑

u
e−→v∈E
v∈S0

fe

Here, we take the sum over all the fe-values of all edges that are incoming to vertices of S0.
As by definition, all the incoming fe’s are positive or zero for S0, we have F0 ≥ 0.
The sequence starts from S0, then for eachm ≥ 0, we inductively define S2m+1 from S2m
and S2m+2 from S2m as follows:

S2m+1 = {v ∈ V : ∃v′ ∈ S2m,∃ a path v σ
⇝ v′ such that for all e ∈ σ, fe ≤ 0}

S2m+2 = {v ∈ V : ∃v′ ∈ S2m+1,∃ a path v′ σ
⇝ v such that for all e ∈ σ, fe ≥ 0}

Moreover, we define:

F2m+1 =
∑

u
e−→v∈E

u∈S2m+1,v∈S2m

|fe| and F2m+2 =
∑

u
e−→v∈E

u∈S2m+1,v∈S2m+2

fe

Intuitively, here as F2m+1, we take the sum of all absolute values of fe over the set of
incoming edges fromS2m toS2m+1, while asF2m+2, we take the sum of all absolute values
of fe over the set of all outgoing edges from S2m+1 to S2m+1. Notice that in Figure 6.2,
that the first set of fe values are negative, while the latter set of fe values are positive.
To show that the sequence ⟨Fl⟩l≥0 is well-defined, we need to show thatSl is non-empty for
all l ≥ 0. Earlier, we established that S0 is non-empty. For the rest, consider the following
lemma:
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Lemma 6.19. For l ≥ 0, Sl is non-empty.

Proof. By induction on l, we, in fact, prove that: Sl is non-empty, and for every vertex v of
Sl, there is a positive path from s to v, and a negative path from v to t.

First consider l = 0. We already observed that S0 is non-empty. Moreover, by definition of
S0, for any vertex v ∈ S0, there is a positive pathσ+sv from s to v. Now, because for any path
πc ∈ CovP(G), ρ⃗πc · f⃗ =

∑
e∈πc

we · fe = 0, we have, in fact, for any path π ∈ PathsG:

∑
e∈π

we · fe = 0

Again, consider the positive path σ+sv from s to v, and let π be the path from s to t, via v
such that π = σ+sv · σ′ for some v σ

⇝ t. Then, from the above identity, we have∑
e∈π

we · fe =
∑
e∈σ+

sv

we · fe +
∑
e∈σ′

we · fe = 0

Hence, σ′, which is a path from v to t, is a negative path. Therefore, the base case of the
induction is done.

For the inductive step, we assume that the statement is true for l = 2m, i.e, S2m is non-
empty, and for every vertex v of S2m, there is a positive path from sσ+svv, and a negative
path from vσ−vtt.

Now, consider l = 2m+1. From the inductive hypothesis, we have thatS2m is non-empty,
however, we additionally claim that there is a vertex v in S2m such that for all outgoing
edges e ofOut(v), fe < 0. Suppose this is not the case. Then, starting from any v of S2m,
we can construct a path σ till t such that for all edges e ∈ σ, fe ≥ 0. But that constitutes a
positive path from s to t itself, which is a contradiction! Therefore, our claim is true.

Now, consider such a vertex v fromS2m, for which every outgoing edge e is negative, which
implies

∑
e∈Out(v)

fe < 0.

Because there is a positive path from s to every vertex of S2m, and a negative path from
every vertex to t, s and t themselves cannot be in S2m, i.e, the chosen v is in V \ {s, t}.
Hence, we can consider the row-vector ρ⃗v ofMG corresponding to vertex v. Now, from
ρ⃗v · f⃗ = 0, we have ∑

e∈In(v)

fe =
∑

e∈Out(v)

fe

which is negative. Hence, there has to be an edge u e−→ v for which fe < 0, which implies
u ∈ S2m+1. That is S2m+1 is non-empty.

Moreover, for every vertex u of S2m+1, by definition, there is a vertex v in S2m such that

there is a negative path u σ−
uv⇝ v. Therefore, adjoining σ−uv to the negative path v

σ−
vt⇝ t, we
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get a negative path, say σ−ut = σ−uv · σ−vt, form u to t. Now, to show there is a positive path
from s to u, we proceed similarly as we did when we ought to show that for every vertex v
of S0 has a negative path to t, except here is a change of sign. Consider a path π ∈ PathsG
via u such that π = σ · σ−ut for some σ. Then we have∑

e∈π
we · fe =

∑
e∈σ

we · fe +
∑
e∈σ−

ut

we · fe = 0

Hence, σ is a positive path indeed. This concludes proving the statement for l = 2m+ 1.

Finally, we need to show the same for l = 2m + 2, where we assume the statement is
true for l = 2m+ 1. Again we start with the argument that there is a vertex v in S2m+1

such that every incoming edge of v is positive. If not, then we can back track from v via
non-negative edges till we reach s, and this implies existence of a negative path form s to t,
hence a contradiction! Therefore, indeed there is a vertex v in S2m+1 such that every edges
of In(v) is positive.

Now, fix this vertex v from S2m+1, and we have
∑

e∈In(v)
fe > 0. Again, we have∑

e∈In(v)
fe =

∑
e∈Out(v)

fe, from which we get there must be an edge v e−→ u ∈ Out(v) such

that fe > 0. Hence, S2m+2 is non-empty.

For a vertex u in S2m+2, there is a vertex v in S2m+1, therefore we get a positive path σ+su
by simply adjoining the positive paths σ+sv and σ+vu. For the negative path, our argument
is exactly similar as it was in case of a vertex of S0. We consider a path π from s to t, that
extends σ+su by, say v σ

⇝ t. Therefore,
∑
e∈π

we · fe =
∑

e∈σ+
su

we · fe +
∑
e∈σ

we · fe = 0.

Hence, σ, which is a path from u to t, is a negative path.

As Sl is non-empty for all l ≥ 0, we establish that Fl is well-defined for all l ≥ 0. In the
following, we show that the sequence ⟨Fl⟩l≥0 is, in fact, an increasing sequence.

Lemma 6.20. For any l ≥ 0, Fl+1 > Fl.

Proof. We prove this by induction on l, the approach is quite similar to how we proved
Lemma 6.19.

First note that, fromMG · f⃗ = 0⃗, we have for any vertex v,
∑

e∈In(v)
fe =

∑
e∈Out(v)

fe, which

we can also write in terms of absolute value of fe’s as:∑
e∈In(v)
fe>0

|fe|+
∑

e∈Out(v)
fe<0

|fe| =
∑

e∈Out(v)
fe>0

|fe|+
∑

e∈In(v)
fe<0

|fe| (6.8)
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As this is true for any vertex v, it holds if we take a sum over any collection of vertices of V .
In particular, for all l ≥ 0,∑

v∈Sl

{ ∑
e∈In(v)
fe>0

|fe|+
∑

e∈Out(v)
fe<0

|fe|
}

=
∑
v∈Sl

{ ∑
e∈Out(v)

fe>0

|fe|+
∑

e∈In(v)
fe<0

|fe|
}

i.e,
∑

e∈In(v),fe>0
v∈Sl

|fe|+
∑

e∈Out(v),fe<0
v∈Sl

|fe| =
∑

e∈Out(v),fe>0
v∈Sl

|fe|+
∑

e∈In(v),fe<0
v∈Sl

|fe|

(6.9)

Now, for l = 0, in the left hand side (L.H.S) of identity (6.9), the first term is F0 and the
second term is strictly positive (as for all vertices in S0, all outgoing edges are negative).
Moreover, in the right hand side (R.H.S), the first term is 0 (because there is no positive
outgoing edge), and the second term is F1. Therefore, we have

F0 +M = 0 + F1

where M =
∑

e∈Out(v),fe<0
v∈S0

|fe| > 0. Hence, F1 > F0. Therefore, the base case of the

induction is done.

As the inductive hypothesis, we assume that the statement is true for l = 2m, which means:
F2m+1 > F2m.

For l = 2m+ 1, we consider (6.9) with substituting l by 2m+ 1, by which we get∑
e∈In(v),fe>0

v∈S2m+1

|fe|+
∑

e∈Out(v),fe<0
v∈S2m+1

|fe| =
∑

e∈Out(v),fe>0
v∈S2m+1

|fe|+
∑

e∈In(v),fe<0
v∈S2m+1

|fe|

Here, the first term in the L.H.S is positive from the fact that there is a vertex v in S2m+1

for which all the edges in In(v) is positive. We argued this inside the proof of Lemma 6.19,
the crux being otherwise we would have a negative path from s to t, which, in turn, would
give us a contradiction!

The second term of the L.H.S is at least F2m+1 because the term here is the sum of all the
|fe|’s of all negative outgoing edges of all vertices in S2m+1, while F2m+1 is just the sum
over a particular subset of those edges.

The first term of the R.H.S is exactly F2m+2 because for v ∈ S2m+1, for any edge v e−→ u
with fe > 0, we put u in S2m+2.

Finally, for the second term of R.H.S, note that for any v ∈ S2m+1, for any edge u e−→ v ∈
In(v), if fe < 0, then u also belongs toS2m+1. Therefore, that particular |fe| also appears
as a contributing factor when we consider outgoing edgesOut(u) of u. That means this
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quantity gets completely subsumed by the second term of the L.H.S. More specifically, we
can rewrite the above as:

P + (F2m+1 +Q+R) = F2m+2 +Q

where

P =
∑

e∈In(v),fe>0
v∈S2m+1

|fe| > 0

Q =
∑

e∈In(v),fe<0
v∈S2m+1

|fe| =
∑

v
e−→v′∈Out(v),fe<0

v∈S2m+1,v′∈S2m+1

|fe|

R =
∑

v
e−→v′∈Out(v),fe<0

v∈S2m+1,v′ /∈S2m+1

|fe|

Clearly, F2m+2 > F2m+1.

The remaining case is when l = 2m+ 2. Again we consider (6.9) with substituting l by
2m+ 2:∑

e∈In(v),fe>0
v∈S2m+2

|fe|+
∑

e∈Out(v),fe<0
v∈S2m+2

|fe| =
∑

e∈Out(v),fe>0
v∈S2m+2

|fe|+
∑

e∈In(v),fe<0
v∈S2m+2

|fe|

This case is similar to S0. Here the first term of the L.H.S is at least F2m+2, the second
term is positive just like it has been argued in case of S0. On the other hand, the first term
of the R.H.S takes care of the internal edges of S2m+2, and hence the whole terms gets
subsumed by the first term of the L.H.S. Finally, the second term of the R.H.S is exactly
F2m+3 because for any vertex v of S2m+2, by definition for any negative incoming edge
u

e−→ v, e is in S2m+3. Hence, here we can rewrite the above as:

(F2m+2 +Q′ +R′) + P ′ = Q′ + F2m+3

where

Q′ =
∑

e∈Out(v),fe>0
v∈S2m+2

|fe| =
∑

v
e−→v′∈In(v),fe<0

v∈S2m+2,v′∈S2m+2

|fe|

P ′ =
∑

e∈Out(v),fe<0
v∈S2m+2

|fe| > 0

R′ =
∑

v
e−→v′∈In(v),fe<0

v∈S2m+2,v′ /∈S2m+2

|fe|
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Therefore, F2m+3 > F2m+2.

As we mentioned briefly earlier, Fl for each l ≥ 0 belongs to a finite set. In particular,
it is easy to see that, Fl ∈ {

∑
e∈E′

|fe| : E′ ⊆ E}, which is a finite set. Therefore, an

infinitely-increasing sequence ⟨Fl⟩l≥0 cannot be possible.

Hence, our initial assumption that there exist edges ei, ej with fei > 0 and fej < 0 is
wrong.

So, we can conclude from the analyses of the above three cases, wheneverMG · f⃗ = 0⃗, f⃗ must
also be 0⃗. In other words,MG is invertible.

Co-linearity of the period vectors. Here, we will show that all the period vectors for
a NG are co-linear.

AsMG is invertible, we have a unique parameterized solution forMG ·X = b, and that is:

X =M−1
G

(
0⃗
κ⃗x

)
That is two period vectors differ from each other due to their corresponding value taken for the
parameter κx.

Suppose d⃗ and d⃗′ are the two period vectors, and c
d⃗

and c
d⃗′ are the values taken for the

parameter respectively. We haveMG(cd⃗′ .d⃗− c
d⃗
.d⃗′) = 0⃗. Moreover, becauseMG is invertible, we

have d⃗′ = c
d⃗

c
d⃗′
d⃗. And this is true for any two period vectors d⃗, d⃗′.

Now fix a period vector d⃗ and consider g = gcd
e∈E

de. Let us define δ⃗ = (δe)e∈E as δe = de
g ∀e ∈

E. Then,

Lemma 6.21. For any period vector d⃗′ of G, there existsm
d⃗′ ∈ N such that d⃗′ = m

d⃗′ δ⃗

Proof. Consider an arbitrary period vector d⃗′. Remember, we have already fixed a d⃗ from which we
defined δ⃗. Moreover, we had d⃗′ = c

d⃗′
c
d⃗
.d⃗, which we can write as d⃗′ = p

q .g.δ⃗, where gcd(p, q) = 1.
Also note that gcd

e∈E
δe = 1.

Now, if we can show q|g, we are done. Let us define g′ = gcd(g, q), and take m
n = g/g′

q/g′ , which
implies gcd(m,n) = 1. From this, we can further write d⃗′ = p.m

n δ⃗ where gcd(p.m, n) = 1.
Suppose n ̸= 1. In that case, from the fact d⃗′e ∈ N for all e ∈ E (by design), we have n|δe for

all e ∈ E, which essentially means gcd
e∈E

δe ≥ n > 1. Contradiction! That means n must be 1,

and we are through.

Therefore we have:

NG =
⋃
i∈I

L(bi, {mij · δ⃗ : 1 ≤ j ≤ |Pi|,mij ∈ N}) (6.10)
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Here, Base = {bi : i ∈ I} is the finite set of basis for some index set I , with |I| < ∞. Note
that, for any semi-linear set, the choice of basis and the set of period vectors may not necessarily be
unique. As of yet, we have established a property which every period vectors necessarily satisfies.

6.4 Discussion

From (6.10), we have m · δ⃗ for some m ∈ N as a period vector for some base vector b⃗. Here, b⃗
itself is an edge NE which means there is a path NE corresponding to it. And for any path-strategy
profile corresponding tom · δ⃗, we know that the costs across all paths are identical. With these,
and using the series/parallel composition, we thus formulate the following conjecture:

Conjecture 6.22. For series-parallel graph G, δ⃗ is a period vector for all the bases of Nedge
G .

Although, we do not have a proof for the above conjecture for the moment, which understand-
ably makes the rest of the part incomplete. Therefore, for the rest, we show what the consequences
are if it is indeed true.

First of all, then we can write:

NG =
⋃
i∈I

L(bi; {δ⃗}) (6.11)

where δ⃗ = M−1
G

(
0⃗
c⃗
δ⃗

)
in which c

δ⃗
is the smallest integer such that M−1

G ·
(
0⃗
c⃗
δ⃗

)
is a column

matrix of natural numbers.

Definition 6.23. For series-parallel graph G, δ⃗ =M−1
G

(
0⃗
c⃗
δ⃗

)
is called the shift vector for NE of G.

Note that, the sets of bases in (6.10) and (6.11) may not necessarily be identical. In the next
section, we embark upon to compute the set of bases in the latter case, to draw a complete picture
for the set of NE of an pNCG in a series-parallel graph (albeit the proof of conjecture).

6.4.1 Basis for the Set of all Edge NE profiles

Recall Problem 6.4 at the beginning of this Chapter. Our objective was to compute Nash equilibria
for sufficiently large number of k. In fact, we will represent the set of all NE, NG , by a finite
basis, and the sole period vector, from which the solution of the above problem comes as an easy
consequence.

First, we show that if one component of an NE profile of a series-parallel network G is bounded,
then so are all other components. In other words:

Lemma 6.24. The setBoundNE(e,M) = {n⃗ = (ne)e∈E ∈ NG : ne < M} is finite when
G is a series-parallel network.

Proof. In order to prove this, it is enough to show that for every edge e′ ∈ E, there exists a function
fe,e′ : N→ N such that for all NE n⃗with ne < M , ne′ < fe,e′(M).
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We prove the above by structural induction on G. The base case of this induction is when G is a
single parallel network. Now: we′ · ne′ ≤ we · (ne + 1)

Thus, fe,e′(M) =
we

we′
(M + 1) (6.12)

Series Composition. Suppose G1 and G2 are two series-parallel networks composed in
series at vertex v, yielding a network G. We also suppose that e is an edge of G1, and e′ is an edge of
G2. As an induction hypothesis, we assume that for every edge e′′ of G, there is a fe,e′′ . Then from
flow equations, a crude upper-bound for ne′ can be given as:

fe,e′(M) =
∑

e′′∈In(v)

fe,e′′(M)

Parallel Composition Suppose G1 and G2 are two series-parallel networks composed in
parallel, yielding a network G. We also suppose that e is an edge of G1 and e′ is an edge of G2. As
an induction hypothesis, we assume that for every edge e′′ of G1, there is a fe,e′′ , then∑

e∈E2

we · ne ≤
∑
e∈E1

we · (ne + 1)

Then, fe,e′(M) =

max
e′′∈E1

we′′fe,e′′(M)

min
ê∈E2

Therefore, for all pair of edgese, e′ in a series-parallel network fe,e′ exists, henceBoundNE(e,M)
is a finite set.

Hence, we can rewrite (6.12)

NG =
∑
e∈E

L(BoundNE(e, δe) , δ⃗) (6.13)

From this, we can finally have a finite representation of NE(k) as follows. We denote κ
δ⃗

to be
the number of players in δ⃗, then we takem =

⌊
k
κ
δ⃗

⌋
. Then, among k players, form · κδ players,

we consider δ⃗. And because k −m · κ
δ⃗
< κ

δ⃗
, for any edge NE n⃗with k −m · κ

δ⃗
players, there

has to be at least one e ∈ E such that ne < δe, i.e, n⃗ ∈ BoundNE(e, δe) .

6.5 Conclusion

In this chapter, we considered the problem which asks for a finite representation of a function
which maps an integer k to an edge NE profile with k players. We established that the set of edge
NE profiles is a semi-linear set, and we obtained a parameterized system of equations, of which
every period vectors of the semi-linear set is a solution. Then, we exploit the semantics of the system
of equations to show that given a parameter, there is a unique solution to the system of equations.
From this, because of the parameter, we established that all the period vectors of the semi-linear set
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6 Nash Equilibria for Parametric Network congestion games

that characterized the set of all NE, are co-linear. Finally, we formulate a conjecture which says
that not only all the period vectors are co-linear, there is a unique period vector which works for all
bases. If this conjecture turns out to be true, then we would have a finite representations of the set
of all NE of a pNCG, which easily answers the problem that we considered at the beginning of the
chapter.
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conclusion

In this chapter, we summarize the contributions of this thesis, discuss the shortcomings and try to
shed lights on what possible future directions can be taken from here.

Summary

Network Congestion Games with Fixed Number of Players

We defined a new model of network congestion games with two features: cost computation at
synchronized congestion only and dynamic strategies

In this model, we obtained algorithms for three constrained optimal problems: Social optima
(SO), Nash Equilibria (NE) and Subgame Perfect Equilibria (SPE) in Chapter 2, 3 and 4 respectively.
In the following, we briefly recall how we addressed these problems, and what complexity bounds
we obtained.

We started with the constrained social optimal problem, in which given an instance of a network
congestion game and a value, we asked whether there is a strategy profile with social cost less than
the given value. To solve this problem, a naive approach could to guess a play (aka a path in the
configuration graph), step by step, while maintaining a counter to keep in check the social cost
within the given threshold. This approach would give us a EXPSPACE complexity. To have a better
upper bound complexity result, we exploited the graph structure and the cost computation model,
and abstracted away exact configuration to their Parikh image. Then in that abstract configuration
graph, we non-deterministically guess a play, and check whether its social cost is less than the given
threshold. Because acyclic strategy profiles suffice, this yields a PSPACE-algorithm.

In case of Nash Equilibria (NE), we first showed the existence of NE in our model of network
congestion games, by showing convergence of the best-response dynamics. Then, we studied a similar
constrained problem for NE, where the input again is an instance of an NCG and a threshold.
Our approach to tackle this problem was similar to what we did for SO, except here we verify two
conditions. We non-deterministically, step by step, guess a play of the game, and at each step verify:
whether the cumulative social cost up to current step is still less than the threshold, and whether it
is going to be the outcome of an NE.

To check the first condition, just like the SO problem, we maintain a counter which stores the
cumulative social cost, and verify at each step.. For the second condition, our algorithm makes
use of a characterization of all NE outcomes. The characterization justifies that if a player were to
deviate, there is a response from the coalition of other players which would make this deviating
player’s cost worse than what would have been if they didn’t deviate.

Now, in the characterization itself, we made use of a two-player (zero-sum) total payoff game[35],
and the value in that game. This game is actually between a deviating player and the coalition of
all other players, and the value in that game is the worst cost that the deviating player may end
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up paying due to how the coalition punishes. Our algorithm maintains a counter for each player,
and verifies at each step whether the cost up to that step is less than the values of these two-player
games for each deviating player and for their all possible unilateral deviating configurations.

Because computing the value in the above-mentioned two player games can be done in EXP-
TIME, our algorithm has an EXPSPACE complexity.

Finally, we turned our focus to subgame perfect equilibria (SPE) - another solution concept for
stability, but more relevant in the dynamic setting. Unlike NE, in our model of NCG we have
neither a proof of existence of SPE, nor we have an example where we can show that SPE do not
exist.

Nonetheless, we considered the constrained SPE problem similar to that of SO and NE. Not
surprisingly this is technically more challenging than the earlier two. Again our basic approach
remains the same as it were for NE: we guess a play in the game, and verify whether it is an outcome
of an SPE with social cost less than the threshold given in the decision problem. To verify whether
the play is indeed an outcome of an SPE, we make use of a characterization of outcomes of SPE.

The main idea behind the characterization is to define a function which maps an edge to a so
called λ-value such that any SPE outcome starting from that edge must have cost less than that
λ-value, and then showing that any play is an outcome of an SPE iff it is so-called λ-consistent.
In fact, we build this λ-mapping recursively till it reaches a fix-point: the ith λ-value is defined
using the (i− 1)th λ-consistent plays, and so on. Initially, all plays are λ-consistent, at each step
when we update the λ-values, and subsequently the set of λ-consistent plays gets refined, which
finally, when reaches a fixed-point, gives exactly the set of outcomes of all SPE. One way to obtain a
negative instance on the existence of SPE problem (if exists) could be to see if there is an NCG, for
which at some step of updating λ-value, the set of λ-consistent plays became empty. Nonetheless,
at the end, we check whether the set corresponding to the fix-point contains a play with social cost
less than the bound given in question. This gives us EXPSPACE-membership of constrained SPE
problem.

Parameterized Network Congestion Games

In this second part of the thesis, we consider parametric network congestion game (pNCG) where
the number of players is a parameter. Our aim in this part has been to compute optimal strategy
profiles (NE, SO etc) for arbitrary large number of players from their counterpart in the same
network with small number of players.

We first introduced a necessary framework to study pNCG for series-parallel network. It is
noteworthy that for this part, we re-adjust the model to only consider path strategies and non-
synchronous path computation. As per our knowledge, it has not been studied how NE profiles
are related with each other when we vary the number of players in an instance of congestion games,
in any model. Therefore, we considered the classical model for the network congestion games , and
started studying the same on it; of course our future goal would be to extend it into our model of
NCG, mainly to incorporate the dynamic strategy structure.

Then we started studying NE for pNCG in series-parallel graph. The set of all NE is a semi-
linear set in the current framework, and we obtained a pattern on the set of period vectors of the
semi-linear set. At this point, we made a conjecture which says, in fact, there is a unique period
vector for a pNCG. If the conjecture turns out to be true, then we can compute each and every
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NE of the pNCG by a finite set of NE (for small number of players) and the unique period vector
(which we call the shift vector of pNCG). This will enable us to comment on best/worst NE in the
pNCG, how they evolve as the number of players change in an NCG.

Future Work

In this section, we first go through some of the follow-up questions that have come up in the earlier
chapters, and then we discuss some research directions that our work may embark upon.

Immediate follow ups

Matching complexity lower bound This thesis leaves several complexity questions
open. We have NP-hardness for Social optimal, but there too remains a gap with the PSPACE
membership. Hence, an immediate series of follow-up questions would be to find hardness
complexity results for NE and SPE problem, and/or to improve the upper bound complexity
results to close the gaps.

Existence of SPE problem Even though we obtained an algorithm for constraint SPE
problem, we haven’t managed to neither positively nor negatively answer whether SPE exists in
our model. In another dynamic model of congestion games, namely dynamic resource-allocation
games[8], there does not always exist an SPE. But in that game, the non-synchronous cost com-
putation model has been a major contributing factor in designing an instance where SPE doesn’t
exist, which has no immediate consequences in our setting. Therefore, it remains an open problem
in our model.

Parametrized Congestion games Regarding parametrized congestion games, one way
to go ahead is to prove the conjecture that we formulate, which says, there is an unique period
vector for a pNCG. As mentioned earlier, this completes studying the problem for NE, and an
immediate follow-up would be if similar results can be obtained for SO, which in turn might show
how Price of Anarchy (PoA)/Price of Stability(PoS) evolves as the number of players grows in an
NCG.

Even though some of the results on this part have been proven only for series-parallel graphs,
some other results, notably the most technically challenging result on this part have been shown
for any network arena whatsoever. This opens up a possibility to look at the problem for larger
class of arenas, and possibly extending to dynamic strategies.

Long-term Objectives

Congestion games with Imperfect information. In our model of NCG, the players
when they make their next move from a vertex, know where all the other players are, and take
their decision accordingly. This may not always be realistic. There might be scenario where one
or more player get to know only partial information about other players’ position, which should
leads us to study imperfect information games in the context of network congestion games. Both
in turn-based [10, 14, 24] and concurrent [19, 28, 29, 55] settings, imperfect information games
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have been studied extensively for different objectives. But, to the best of our knowledge, imperfect
information have not yet been studied in congestion games. To give a basic framework, we can start
with the concurrent game structure that we have associated with NCG, where a configuration
of the NCG represents a state of the concurrent game. We declare two states of the concurrent
game equivalent from the point of view of a player if in the respective configurations, the number
of players that they observe is the same. We have used similar information graph in our model
for solving the decision problem related to social optima. But for the equilibria we have used full
observations of a player, therefore we believe this is an interesting framework to investigate what
kind of stable profiles can be achieved when the information set is partial, and how well/bad it
might perform with respect to a profile which optimizes social cost.

Dynamic Timed Congestion games. In our model of NCG, there is no separate temporal
component. Similar to any other possible resources affected due to congestion, like fuel cost in case
of road-traffic, and connection/broadcast quality in case of internet, time here is also abstracted as
a part of the cost. A separate temporal component had been added and studied in the context of
congestion games in [6, 7, 31]. Avni et al. [6] compute congestion cost depending on how much
time (continuous) a player spend with another player together at some vertex. Cost functions
are associated with vertices, and there are conditions associated with edges which make players
stay at a vertex for some time. Because they consider continuous time-points, this framework
raises an uncountable strategy space for players. The setting is more general than what we have
considered here except they do not consider dynamic strategies. They have studied the existence
of NE, and then following the classical approach they comment on bounds of PoA/PoS for their
model. Hence, what we can propose for a future work is to study our constraint problems(SO,
NE, and SPE) in the timed setting with dynamic strategies. Notably, existence of SPE also needs to
be addressed when we extend timed setting into dynamic strategy space.

Both the above mentioned long-term objectives are related to our model described in Part I.
This is because, having only some preliminary results in Part II, we believe there are lots of gaps to
fill in here on its own, and then only we could provide a convincing argument to go forward on
that line of research. Nonetheless, we believe computing solution concepts for instances with many
players from instances with fewer players could be, in general, an interesting topic to investigate in
several contexts.
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Titre : Les jeux de congestion dans les réseaux sous l’angle de la vérification

Mot clés : Jeux de congestion, équilibres de Nash, équilibres parfaits en sous-jeux, jeux de

congestion paramétrés, théorie algorithmique des jeux

Résumé : Les jeux de congestion sont un domaine
de recherche bien étudié ; dans ce domaine, les jeux de
congestion dans les réseaux premettent de représenter
la congestion des réseaux de distribution, et d’étudier à
quel point un modèle de réseau est bon ou mauvais en
termes de coût total lorsque chaque joueur joue de façon
égoïste, cherchant uniquement à optimiser son propre
coût ; Nous considérons ces jeux de congestion du point
de vue des méthodes formelles, cherchant à vérifier par
exemple que, dans un réseaux fixé, il existe un profil de
stratégies optimal qui satisfasse une propriété donnée.

Nous définissons un modèle de jeux de congestion
avec deux particularités : d’une part, le calcul du coût
d’une transition dépend du nombre de joueurs utilisant
simultanément une arête ; d’autre part, les joueurs choi-
sissent leur chemin de façon dynamique en fonction des
choix des autres joueurs. Nous montrons que dans ce
modèle les équilibres de Nash existent toujours en mon-

trant la convergence de la dynamique de meilleure ré-
ponse. Nous étudions ensuite le problème de vérification
mentionné ci-dessus, résolvant le problème de l’exis-
tence d’un équilibre social, d’un équilibre de Nash ou
d’un équilibre parfait en sous-jeux ayant un côut borné.

Dans une deuxième partie, nous étudions les jeux
de congestion paramétrés, dans lesquels le nombre de
joueurs est un paramètre. Nous nous intéressons à
l’évolution des équilibres de Nash en fonction du nombre
de joueurs : notre objectif est de calculer efficacement
l’ensemble des équilibres de Nash pour un nombre ar-
bitrairement grand de joueurs, à partir des équilibres de
Nash pour de petits nombres de joueurs. Nos premiers
résultats portent sur les réseaux série-parall‘ele, sans
les particularités ci-dessus. Nous conjecturons que ces
résultats s’étendent à l’ensemble des graphes, ce qui
donnerait lieu à un calcul efficace de tous les équilibres
de Nash, quel que soit le nombre de joueurs.

Title: A Verification Viewpoint to Network Congestion Games

Keywords: Congestion games, Nash Equilibria, Subgame perfect Equilibria, Parametrized

congestion games, Algorithmic game theory

Abstract: Congestion games are a well-studied area
of research, and Network congestion games (NCG)
model the problem of congestion in flow networks.
The most common problem is to study, broadly speak-
ing, how well or how bad a model of NCG is in terms
of total cost for all players when each player plays self-
ishly. We view network congestion games from a formal-
methods standpoint, in which we are interested in prob-
lem like: given an instance (network and number of play-
ers fixed) of a chosen model of NCG and given a speci-
fication, does there exist an optimal profile satisfying the
specification?

We define a model of network congestion games
with two pecularities: first, the players bear congestion
effect on their cost for an edge only if they use that edge
with other players simultaneously; second, players can
choose their path dynamically, at each step of their route,
which differs from the classical setting where players
choose their path at the beginning. We show that in this

model Nash Equilibria always exist by showing conver-
gence of best-response dynamics. Then we study three
decision problems on Social optima, Nash Equilibria and
Subgame perfect Equilibria, each of which asks whether,
given an instance of our model and a bound, there is a
corresponding strategy profile with bounded social cost.

In the second part of the thesis, we study param-
eterized network congestion games, where the number
of players is left as a parameter. Our main problem here
is to compute Nash Equilibria for instances with many
players, from instances with fewer players, instead of
computing them from scratch. Here, we started solving
the problem for the classical model of NCG, without the
above mentioned two pecularities, and with the arena re-
stricted to series-parallel graph. We obtained some pre-
liminary results on this problem, and formulated a con-
jecture about how to efficiently compute all Nash equilib-
ria for any number of players.
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