
HAL Id: tel-03650414
https://theses.hal.science/tel-03650414v1

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to solving the combinatorial optimization
problems : case of the problem of K-clusters in a

bipartite graph and the quadratic knapsack problem
Najat Hameed Qasim Al-Iedani

To cite this version:
Najat Hameed Qasim Al-Iedani. Contribution to solving the combinatorial optimization problems :
case of the problem of K-clusters in a bipartite graph and the quadratic knapsack problem. Other
[cs.OH]. Université de Picardie Jules Verne, 2017. English. �NNT : 2017AMIE0035�. �tel-03650414�

https://theses.hal.science/tel-03650414v1
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Spécialité Informatique

 présentée à l'Ecole Doctorale en Sciences Technologie et Santé (ED 585)

de l’Université de Picardie Jules Verne

par

Najat Hameed Qasim Al-Iedani

pour obtenir le grade de Docteur de l'Université de Picardie Jules Verne

Contribution à la résolution des problèmes d’optimisation

combinatoire: cas du problème des k-clusters dans un

graphe biparti et du problème de sac à dos quadratique

Soutenue le 14/11/2017 après avis des rapporteurs, devant le jury d’examen :

M. Jérôme BOSCHE, Maître de Conférences Examinateur

M. Haoxun CHEN, Professeur Rapporteur

M. Mhand HIFI, Professeur Directeur

M. Imed KACEM, Professeur Président

M. Anass NAGIH, Professeur Rapporteur

M. Toufik SAADI , Maître de Conférences Directeur

Preface

This thesis has been performed at the unite of researches (EPROAD EA 4669)1

in the University of Picardie Jules Verne(UPJV), since the December 2014 to
October 2017. The work has been supervised by professor Mhand Hifi2 and
M.Toufik Saadi3.

Our work deals with the combinatorial optimization problems that we have
been presented within a general introduction, a state of the art and two separate
papers.
First: considering a problem within theK-clusters in the bipartite graph, (Neigh-
borhood Search-based Heuristic for the K-Clustering Minimum Biclique Com-
pletion Problem). This part of the thesis has been published in an international
conference with proceedings, the 3rd IEEE, International Conference on Control,
Decision and Information Technologies (CoDIT-2016), (see Hifi et al. [54]). And
was presented during the 17th and 18th Conference of the French Society for
Operational Research and Decision, ROADEF-2016 [55], ROADEF-2017 [56].
Second: considering a problem within the quadratic knapsack problem, (Re-
active Search for the Quadratic Knapsack Problem). This part of the thesis
we have been presented in chapter 6 that has been published in an international
conference with proceedings, the 4th IEEE, International Conference on Control,
Decision and Information Technologies (CoDIT-2017), (see Hifi et al. [57]).

Acknowledgment

I would like to thank Professor Mhand Hifi and Doctor Toufik Saadi, for them
advice and support to advances in this work.

I would like to express my gratitude to the ministry of higher education and
for the martyrs foundation of Iraq, for supported by research grants that nancing
my study. Finally, i am very grateful to my family, especially my late parents,
my martyr brother and to my husband who has supported me and bore with me
during these last years and unconditional support and patience over the years.
Thanks for their motivating me the rest of the time and offering comfort when
necessary.

1Eco-Procédés, Optimization et Aide à la Décision
2Professor at the University of Picardie Jules Verne
3Associate professor at the University of Picardie Jules Verne

iii

Résumé

Titre: Contribution à la résolution des problèmes d’optimisation com-
binatoire: cas du problème des K-clusters dans un graphe biparti et
du problème de sac à dos quadratique.

Les problèmes d’optimisation combinatoire sont d’un grand intérêt à la fois
pour le monde scientifique et le monde industriel. Les enjeux scientifiques,
économiques, environnementaux et sociaux sont très nombreux et très impor-
tants. C’est pour cela que la communauté scientifique mondiale recherche depuis
longtemps des méthodes de modélisation, de simplification et de résolution de
ces problèmes.

Parmi les problèmes combinatoires les plus connus se trouvent les problèmes
de sac à dos et les problèmes liés aux décompositions des graphes. Nous nous
sommes intéressés dans cette thèse à deux problèmes importants :

• Le problème de regroupement dans un graphe biparti;

• Le problème de sac à dos quadratique;

Le problème de regroupement dans un graphe biparti a de nombreuses appli-
cations dans le domaine des télécommunications. Il a également un grand intérêt
théorique dans la modélisation, la décomposition et la résolution de plusieurs
autres problèmes combinatoires. Le problème de sac à dos quadratique a un
large champ d’applications théoriques et pratiques dans nombreux domaines. Il
est très utile dans la modélisation et la résolution dans un contexte de gestion
des exclusions par exemple.

Ces deux problèmes sont hautement combinatoires et sont très difficiles à
résoudre d’une manière optimale d’un point de vue informatique. La résolution
de ce type de problèmes peut se faire de deux manières :

• La résolution optimale, dite également exacte, qui s’appuie sur des mod-
élisations et des méthodes mathématiques puissantes dont l’objectif est
d’identifier une solution optimale du problème traité.

• La résolution approchée, qui s’appuie principalement sur des algorithmes
capables d’approcher la solution optimale du problème traité mais sans
garantir l’optimalité du résultat.

Les méthodes approchées sont les plus utilisées par les informaticiens dans la
résolution des problèmes issus de l’industrie et des services car ces méthodes per-
mettent de résoudre des problèmes de grande taille et de répondre aux exigences
fonctionnelles des donneurs d’ordres.

v

vi

Il existe aussi des méthodes de résolution hydrides qui peuvent combiner
plusieurs méthodes de résolution approchées ou exactes et qui utilisent générale-
ment des techniques de décomposition du problème initial pour permettre l’hybridation.
C’est dans ce sens que s’oriente cette thèse.

Nous proposons dans cette thèse deux méthodes de résolution hydriques :

• Une première méthode hydride pour le problème de regroupement dans un
graphe biparti qui combine une recherche par voisinage et un algorithme
approché complémentaire.

• Une deuxième méthode hybride pour le problème du sac à dos quadratique
qui combine une recherche par voisinage et une méthode de réduction/fix-
ation des variables.

Mots clés: Biclique, Cluster, Optimisation Combinatoire, Greedy, Heuris-
tique, K-CmBCP, Recherche Locale, Recherche Opérationnelle, QKP, Réduc-
tion, Recherche réactive, sac à dos quadratique.

vii

Abstract

Title: Contribution to solving the combinatorial optimization prob-
lems: case of the problem of K-clusters in a bipartite graph and the
quadratic knapsack problem.
Since long time, the scientific world has sought for modeling, simplification and
resolution of combinatorial optimization problems, because of these problems are
most interest for the scientific and the industrial world and for the fields of op-
erational research and computer science.
The objective of this thesis is to solve the difficult combinatorial optimization
problems using approximate resolution methods. And, we were interested on two
important problems that find several significant applications in real world.
The first part of the thesis is devoted to the K-clusters in a bipartite graph that
has been applied in the field of telecommunication. The second part of the thesis
addresses to the quadratic knapsack problem that can be used to accommodate
a wide range of practical applications in numerous fields. On the other hand,
these problems are highly combinatorial and difficult to solve from computational
perspective.
The K-clustering minimum bi-clique completion problem (K - CmBCP) was pre-
sented in the latest date and it is very significant in real world and it has been
applied to several real applications such as aggregation of multicast sessions.
Since telecommunication network cannot manage many multicast sessions at the
same time, it is hence necessary to group the sessions into a limited number of
clusters.
We note that, the hybrid resolution methods can combine several approximate
resolution methods or optimal resolution and approximate resolution and which
generally use decomposition techniques of the initial problem to allow hybrida-
tion. In this thesis, we propose two hybrid resolution methods: A first hybrid
method for the problem of K-clusters in a bipartite graph that combines a neigh-
borhood search and a complementary algorithm. A second hybrid method for the
quadratic knapsack problem which combines a large neighborhood search with a
variable reduction / fixing method. The proposed algorithm is capable of solving
the small, large and very large size instances of the QKP that cannot be solved
by Cplex solver or by other methods.
Keywords: Biclique, bipartite, Cluster, Combinatorial Optimization, Greedy,
Heuristics, K-CmBCP, local search, Operations Research, QKP, Reduction, re-
active search, quadratic knapsack .

Contents

1 Résumé de thèse en Français 3
1.1 Introduction . 3
1.2 Le problème de K-clusters dans un graphe biparti 5

1.2.1 Definition le K-CmBCP 5
1.2.2 Modélisation du problème K-clusters dans un graphe biparti 6
1.2.3 Résolution hybride . 8
1.2.4 Phase de construction d’une solution de départ 8
1.2.5 phase d’intensification . 9
1.2.6 Phase de diversification des solutions 10

1.3 le problème du sac à dos quadratique 10
1.3.1 Définition . 11
1.3.2 Modélisation du problème du sac à dos quadratique à vari-

ables binaires . 12
1.3.3 Recherche réactive pour résoudre le problème du sac à dos

quadratique . 12
1.3.4 Méthodes glouton pour construction d’une solution de départ 12
1.3.5 Recherche par voisinage pour améliorer la solution de départ 13
1.3.6 La réduction de variables 15

1.4 Conclusion . 15

2 General Introduction 19

I The problem of K-clusters in a bipartite graph 23

3 Literature Review 27
3.1 Graph notions . 27
3.2 Definition of the problem of K-clusters in a bipartite graph . . . 29
3.3 The resolution methods and applications for K-CmBCP 30
3.4 Mathematical programming formulations for (K-CmBCP) 33

3.4.1 First formulation . 33
3.4.2 Second formulation . 35
3.4.3 Third formulation . 36
3.4.4 Fourth formulation . 37
3.4.5 Fifth formulation . 38

3.5 Conclusion . 39

4 Variable Neighborhood Search-based Heuristic for the problem
of K-clusters in a bipartite graph 43
4.1 Introduction . 44

ix

x Contents

4.2 The mathematical model used . 45
4.2.1 Example with two clusters (K = 2) 45
4.2.2 The mathematical formulation 45

4.3 Neighborhood search-based heuristic for the problem (K-CmBCP) 47
4.3.1 Construction of a starting solution for K-CmBCP 47
4.3.2 A local search heuristic to improve the quality of a starting

solution. 49
4.3.3 Perturbation method for solutions diversification 50

4.4 Computational results . 52
4.4.1 Description of the instances of K-CmBCP 52
4.4.2 Parameter settings . 52
4.4.3 Test the performance of the proposed methods 53
4.4.4 Effect of the destroy and repair process 55
4.4.5 Test the performance of proposed method with the large

sizes instances: . 56
4.5 Conclusion . 59

II The Quadratic Knapsack Problem(QKP) 63

5 Quadratic knapsack problems and resolution methods 65
5.1 Introduction . 65
5.2 Definition . 67

5.2.1 Notions about Linear Programming 67
5.2.2 0-1 Quadratic knapsack problem (QKP) 68

5.3 The classical resolution methods 69
5.3.1 The exact methods . 69
5.3.2 The approximate methods 70

5.4 Conclusion . 75

6 Reactive Search for the Quadratic knapsack Problem 79
6.1 Introduction . 79
6.2 Reactive search for the quadratic knapsack problem 80

6.2.1 Greedy algorithm to construct a starting solution 81
6.2.2 Neighborhood search to improve a starting solution 82

6.3 Computational experiments . 84
6.4 Benchmark instances . 84

6.4.1 Parameter settings . 85
6.4.2 Test the performance of proposed methods 85
6.4.3 Effect of the destroy and repair process 86

6.5 Conclusion . 88

Contents xi

7 Solution of Large-sized Quadratic Knapsack Problems Through
Variables Reduction Search 93
7.1 Introduction . 94
7.2 Large neighborhood search(LNS) 94
7.3 Variables reduction search(VRS) 95
7.4 Computational results . 96

7.4.1 Comparative results on small and medium instances of
Group I . 98

7.4.2 Comparative results of HLNS on large sized instances of
Group II . 99

7.4.3 Comparative results of HLNS on 40 very large instances of
Group III . 99

7.5 Conclusion . 100

8 General conclusion 103

Bibliography 107

List of Figures

1.1 Exemple illustre le problème avec 2 clusters 6
1.2 Example : illustre le problème du sac à dos 11

3.1 An example of K-CmBCP for 2-cluster in a bipartite graph G. . 30
3.2 An example of the MPP problem 32
3.3 Two sessions are grouped in cluster for the previous MPP example. 32

4.1 Graph representation of the K-CmBCP. 45
4.2 Construction of two solutions with two bicliques. 46

5.1 An example of variable neighbourhood of different diameters. . . 72

xiii

List of Tables

4.1 The description of instances for the K-CmBCP. 53
4.2 Performance of sequential algorithm, Cplex solver and neighbor-

hood search with single iteration 54
4.3 Performance of perturbation method with the random selection

policy and 100 seconds cpu time limit 56
4.4 Comparison of the some solutions that are obtained with the ILPM

and literatures solutions . 57
4.5 Performance of sequential algorithm, ILPM Cplex solver and neigh-

borhood search with large sizes instances 57
4.6 Comparison of some numerical results obtained by perturbation

method with the ILPM and literatures solutions 58

6.1 The description of instances for the QKP 85
6.2 Performance of the greedy algorithm on 100 benchmark instances

with single iteration . 86
6.3 Performance of reactive search results with random selection policy

and 20 seconds cpu time limit . 87
6.4 Average cpu time of the computational results for reactive search 87
6.5 Comparison of some numerical results obtained by (RS) versus

Cplex solver and literature . 88

7.1 Comparison results of both RS and HLNS with the Cplex solver
for 20 seconds cpu time limit . 97

7.2 Comparative results of HLNS on small and medium benchmark
instances of Group I . 98

7.3 Performance of HLNS with 30 seconds cpu time limit on the large-
sized instances of Group II. 99

7.4 Performance of HLNS with 300 seconds cpu time limit on 40 very
large-sized instances of Group III. 100

xv

Chapter 1

1

Chapter 1

Résumé de thèse en Français

1.1 Introduction

La communauté scientifique mondiale recherche depuis longtemps des méthodes
de modélisation, de simplification et de résolution des problèmes d’optimisation
combinatoire car les enjeux scientifiques, économiques, environnementaux et so-
ciaux de ces problèmes sont très importants.

Suivant l’objectif de la résolution et la taille des problèmes à traiter, ce type
de problèmes peut être traité par deux familles de méthodes: (i) résoudre ces
problèmes de façon optimale, en utilisant des méthodes exactes et (ii) chercher
les solutions d’approximation en utilisant les méthodes heuristiques.
Les méthodes heuristiques ont reçu plus d’attention de la part des chercheurs.
Néanmoins, nous notons qu’il existe d’autres méthodes de résolution, appelées
méthodes hybrides qui combinent deux ou plusieurs méthodes qui peuvent être
exactes ou approchées.
Nous nous sommes intéressés dans cette thèse à deux problèmes importants de
l’optimisation combinatoires bien connus en recherche opérationnelle et qui trou-
vent plusieurs applications dans le domaine des télécommunications et la logis-
tique.
La première partie de la thèse est consacrée au problème de k-clusters dans un
graphe bipartite. La deuxième partie traite le problème de sac à dos quadratique.
Les deux problèmes sont difficiles à résoudre d’un point de vue informatique et
sont très utiles dans de nombreux domaines scientifiques et applicatifs.

Pour ces deux problèmes, nous proposons une méthodologie de résolution
hybride qui combine des heuristiques et les méthodes de recherche par voisinage.
Ce chapitre fournit une vue panoramique du contenu de ce mémoire de thèse et
montre quelques domaines d’application des deux problèmes traités.

Organisation de la thèse

Cette thèse comporte deux parties:

• La première partie est composée de deux chapitres. Elle présente nos
travaux et résultats sur le problème de K-clusters dans un graphe biparti.

• La deuxième partie comporte trois chapitres. Elle présente nos travaux et
résultats sur problème du sac à dos quadratique.

3

4 Résumé de thèse en Français

Plus précisément, cette thèse est organisée comme suit. La première partie
présente un état de l’art du problème de K-clusters dans un graphe biparti,
qui consiste à trouver un nombre K de clusters minimisant le nombre d’arrêtes
à ajouter pour obtenir K bicliques. Ce problème est plus connu sous le nom
de K-Clustering minimum Biclique Completion Problem (noté: K-CmBCP) et
il est NP-difficile, (vois [81]). Dans ce chapitre, nous commençons d’abord par
rappeler quelques notions de la théorie des graphes afin d’établir la notation qui
sera utilisée tout au long de cette partie de la thèse. Ensuite, nous présentons
le problème. Nous présentons, ensuite, les méthodes de résolution utilisées dans
la littérature, ainsi que quelques exemples d’applications et les principaux mod-
èles mathématiques. Enfin, nous présentons la méthode de résolution que nous
proposons pour ce problème. Le deuxième chapitre présente une méthode hy-
bride qui combine les méthodes heuristiques et les méthodes de recherche par
voisinage pour résoudre approximativement le problème du K-clusters dans un
graphe biparti.

La deuxième partie de cette thèse comporte trois chapitres et elle concerne
l’étude du problème du sac à dos quadratique. Dans le chapitre 5, nous abor-
dons les méthodes de résolution des problèmes combinatoires qui peuvent être
classées en deux catégories: Les méthodes exactes qui garantissent l’optimalité
et les méthodes approchées (heuristiques et méta-heuristiques) qui donnent des
solutions approchées.

Dans le chapitre 6, nous présentons le premier algorithme réactive pour ré-
soudre le problème du sac à dos quadratique. Cet algorithme comporte deux
méthodes: une première méthode gloutonne basée sur les principes de résolution
de problème de sac-à-dos binaire (noté 0 − 1 QKP), et une deuxième méthode
qui comporte, elle aussi, deux étapes complémentaires: une première étape de
destruction et une deuxième étape de reconstruction (ou de ré-optimisation). La
méthode de résolution proposée peut être vue comme une méthode de recherche
aléatoire par voisinage. En effet, l’objectif principal de ce travail est de présenter
un algorithme efficace qui permet de produire des solutions de bonne qualité en
un temps d’exécution raisonnable. Ainsi, l’étape de ré-optimisation est composée
de deux procédures: une première procédure qui fournit une solution réalisable
et une deuxième procédure qui s’intéresse à l’amélioration de la qualité de la
solution. L’étape de destruction effectue une suppression aléatoire d’un nombre
d’éléments appartenant à la solution dans le but de construire une nouvelle so-
lution dans le voisinage. Notons que cette étape est considérée comme la plus
importante car elle permet d’élargir l’espace de recherche tout en gardant cer-
tains éléments de la solution courante. En plus, cette étape a pour but d’éviter
une série d’optima-locaux lors de la recherche. En effet, la solution produite
par l’étape de destruction est traitée comme un problème réduit qui peut être
optimisé par diverses approches.

Dans le chapitre 7, nous présentons le deuxième algorithme réactive pour
résoudre le problème du sac à dos quadratique. Cette méthode est capable de
guider le processus de recherche vers de nouveaux espaces de recherche et combine

1.2. Le problème de K-clusters dans un graphe biparti 5

le principe d’une recherche par voisinage et d’une stratégie de réduction des
variables. La stratégie de réduction des variables est utilisée pour construire une
série de sous-problèmes. Ensuite, la méthode utilise une optimisation exacte pour
résoudre d’une manière exacte les sous problèmes identifiés.

Finalement, le chapitre 8 donne une conclusion générale, dans laquelle nous
présentons les résultats obtenus ainsi qu’une orientation et perspectives pour des
travaux futurs dans ce domaine.

1.2 Le problème de K-clusters dans un graphe biparti

Le problème deK-clusters dans un graphe biparti, qui est un problème d’optimisation
combinatoire peu étudié dans la littérature. Dans ce problème, l’objectif consiste
à répartir un nombre de services entre deux groupes (clusters), où chaque clus-
ter peut contenir des services et des clients. Chacun des services doit satisfaire
au moins un client. Ce problème peut être représenté sous forme d’un graphe
biparti, où les services représentent les sommets du côté gauche du graphe et les
clients représentent les sommets du côté droit du graphe biparti. Ainsi, afin de
contribuer à la résolution de ce problème, nous avons proposé une méthode de
résolution approchée déterminant le meilleur partitionnement des services per-
mettant de satisfaire les clients à moindre coût [51].

Comme décrit dans Gualandi et al [80], le K-CmBCP a de nombreuses ap-
plications réelles comme le partitionnement des canaux pour les transmissions
multidiffusions. Dans cette application, le premier groupe correspond à un en-
semble de client et le deuxième groupe correspond à un ensemble de services
demandé par ces clients. L’objectif de l’optimisation est de déterminer le nombre
de sessions multicast permettant le partitionnement de l’ensemble des demandes.
Ainsi, chaque service considéré doit appartenir à une session multicast tandis que
chaque client peut être dans plusieurs sessions.

1.2.1 Definition le K-CmBCP

Nous considérerons un graphe biparti G = (S, T,E) où S représente l’ensemble
des services i ∈ I, T représente l’ensemble des clients j ∈ J , E représente
l’ensemble des arêtes (i, j) du graphe biparti, Ē représente l’ensemble des ar-
rêtes du graphe biparti complémentaire, c’est-à-dire que Ē = {S × T}\E et
enfin, K = {1, ..., k} qui représente l’ensemble des indices des K clusters prédéfi-
nis dans le problème. Le graphe considéré étant non orienté, les clusters doivent
induire une partition des services. En d’autres termes, chaque fois qu’un cluster
est identifié, nous considérons toutes les arêtes reliant les services1 appartenant à
ce cluster, avec les clients correspondants. La figure 1.1 illustre le problème avec
2 clusters: 2-CmBCP.

1Dans notre cas, les sommets du côté gauche du graphe biparti, sont appelés les Services

(S) et les sommets du côté droit du graphe biparti, sont appelés les Clients (T)

6 Résumé de thèse en Français

Figure 1.1: Exemple illustre le problème avec 2 clusters

La figure 1.1 est composée de deux parties: la partie (a), montre un graphe
G bipartite avec les services (S) = {1, ..., 4} et clients (T) = {5, ..., 8} et deux
possibilités de cluster S1 = {1, 2} et S2 = {3, 4}. Les arêtes en pointillées ap-
partiennent au premier cluster induit par S1 et les arêtes en gras quant à elles,
appartiennent au second cluster induit par S2 et enfin, la partie (b), représente
le graphe complémentaire G′ permettant de former 2-bicliques.

La pénalité de ces 2-clusters est égale à trois, ceci est modélisé par deux arêtes
manquantes dans le premier cluster et une arête manquante dans le deuxième
cluster. Ainsi, les arêtes manquantes pour les deux clusters sont respectivement,
les arêtes (1, 7), (2, 5), et (4, 8).

L’existence de biclique contraint à ce que toutes ses arêtes soient présentes
dans le graphe. Ainsi, les arêtes manquantes dans une solution réalisable génèrent
des pénalités. Dans ce contexte l’objectif de la résolution est de trouver une façon
de partitionner les services en minimisant les pénalités.

1.2.2 Modélisation du problème K-clusters dans un graphe bi-
parti

Le modèle mathématique le plus utilisé du problème deK-clusters dans un graphe
biparti peut être présenté comme suit:

xik =

{
1 Si le service i est couvert par le cluster k
0 Sinon

(1.1)

1.2. Le problème de K-clusters dans un graphe biparti 7

yjk =

{
1 Si le client j est couvert par le cluster k
0 Sinon

(1.2)

soit zijk une variable binaire égale à 1, lorsque xik = 1 et yjk = 1.

zijk =

{
1 Si les noeuds i et j sont tous les deux affectés au cluster k
0 Sinon

(1.3)

En utilisant les techniques de linéarisation sur le modèle mathématique le plus
utilisé dans la littérature (vois [66,68,80,81]) on obtient la formulation suivante:

(ILPM) : min
∑
k∈K

∑
(i,j)∈Ē

zijk (1.4)

sous contraintes:

xik + yjk ≤ 1 + zijk ∀(i, j) ∈ Ē, ∀ k∈ K (1.5)

∑
k∈K

xik = 1 ∀ i ∈ S (1.6)

xik ≤ yjk, ∀ (i, j) ∈ E, ∀ k ∈ K (1.7)

xik.yjk ∈ {0, 1}, ∀ i ∈ S, ∀ j ∈ T , ∀ k ∈ K (1.8)

zijk ∈ {0, 1}, ∀ (i, j) ∈ Ē, ∀ k ∈ K (1.9)

Où:
L’équation 1.4 représente la fonction-objectif qui minimise la pénalité totale

de l’ensemble des K clusters. La contrainte 1.5 est la contrainte qui lie la variable
zijk aux variables xik et yjk en mettant zijk à 1 lorsque les deux autres le sont
aussi. La contrainte 1.6 est la contrainte permettant d’attribuer chaque service
i ∈ S à un et un seul cluster. La contrainte 1.7 force chaque client j ∈ T affecte au
cluster k d’être dans le même cluster qu’un service i ∈ S lorsque j est adjacent
à i dans E. Et enfin, les contraintes 1.8 et 1.9 sont des variables binaires du
problème.

8 Résumé de thèse en Français

1.2.3 Résolution hybride

Dans cette section, nous proposons de résoudre approximativement le K-CmBCP
en utilisant des méthodes hydrides qui combinent les méthodes heuristiques et
les méthodes de recherche par voisinage. Nous proposons de résoudre le K-
CmBCP par application d’une hybridation de trois méthodes et qui s’appuie sur
le principe de la coopération entre une recherche gloutonne, une intensification
et une diversification. Cette approche utilise trois phases complémentaires :

• Phase 1 : La première phase construit une solution réalisable de départ.

• Phase 2 : La deuxième phase tente d’améliorer la qualité de la solution de
départ par une intensification de la recherche dans une zone de l’espace de
recherche.

• Phase 3 : La troisième et dernière phase introduit une diversification dans
le but d’atteindre certains sous-espaces d’une manière efficace : dans cette
phase des dégradations et reconstructions sont utilisées pour améliorer la
qualité des solutions. Le processus utilisé dans cette phase est basé sur le
principe de la recherche à large voisinage.

1.2.4 Phase de construction d’une solution de départ

Il existe plusieurs façons de construire une solution de départ, mais, nous avons
proposé la procédure gloutonne basée sur le principe de l’algorithme séquentiel
pour partitionner l’ensemble des services du graphique biparti et pour distribuer
des services à leurs clusters par méthode séquentielle. La méthode séquentielle
peut être décrite dans l’algorithme 1 qui résume la construction d’une solution
de départ.

Algorithm 1 Construction d’une solution de départ
Entrées: Une instance de k − CmBC.
Sorties: Une solution de départ.

1: s← 1;
2: while (chaque service s ≤ N) do
3: k ← 1;
4: for (chaque cluster k ≤ K) do
5: Affecter le service s au cluster k
6: Incrémenter s
7: if (s > N) then
8: Sortie
9: end if

10: end for
11: end while

1.2. Le problème de K-clusters dans un graphe biparti 9

1.2.5 phase d’intensification

Généralement l’amélioration de la qualité des solutions est réalisée par application
de certaines procédures standards comme la recherche locale qui s’appuie sur des
permutations des sommets et dont le but est d’effectuer une recherche sur des
séries de voisinages. Dans notre cas, la phase d’intensification introduite est
basée sur la stratégie de permutation de 2 éléments à la fois. Cette stratégie est
notée par 2-opt. La procédure 2 présente la procédure d’améliorer de la solution
de départ.

Algorithm 2 Recherche par voisinage pour améliorer une solution de départ.
Entrées: Une solution de départ.
Sorties: Une solution réalisable.

1: while (Le critère d’arrêt n’est pas effectué) do
2: Procédure – échang deux cluster;
3: Tri décroissant de tous les clusters K;
4: Tri décroissant de tous les services de chaque cluster;
5: k1 ← 1 , où k1 ∈ {1, ...,K};
6: for (chaque services i = {1...S1}), où S1 désigne le nombre des services

du cluster k1 do
7: for (chaque cluster q = {K...k2}), où q 6= k1 do
8: for (chaque services j = {S2...1}),où S2 désigne le nombre des ser-

vices du cluster q do
9: échange du service i avec le service j;

10: Trouvez la nouvelle solution (Sol′);
11: if (V al(Sol′) ≤ V al(Sol)) then
12: Sol← Sol′;
13: Retri décroissant les services des clusters k1 et q;
14: else
15: Rechercher dans les voisinage du service j;
16: end if
17: end for
18: end for
19: end for
20: fin Procédure
21: end while

Comme on peut le voir, le processus de classification et sélection est effectué
de tous les clusters et leurs services avant le mouvement de les services entre
deux clusters. Les classifications et le processus de sélection sont en fonction du
nombre de bords manquants ajoutés pour compléter la solution. La stratégie de
permutation est utilisée entre certains services des différents clusters que forment
l’ensemble S. Un sous-ensemble de services voisins, qui peuvent être déplacés
individuellement d’un cluster vers d’autres clusters. A partir de la meilleure

10 Résumé de thèse en Français

solution obtenue dans le voisinage, ce processus peut être réitéré. Ce dernier
s’arrête après avoir exploré un certain nombre de voisinages ou après un nombre
d’itérations paramétrable.

1.2.6 Phase de diversification des solutions

Dans cette section, nous montrons comment appliquer le principe de diversifica-
tion pour rechercher une série de nouvelles solutions. La phase d’intensification
peut améliorer les solutions si elle explore une série de voisinages très proches.
Cependant, la reconfiguration de l’espace de recherche peut permettre l’exploration
de nouveaux voisinages et donc l’émergence de meilleures solutions. La variante
de la recherche dans un large voisinage introduite ici, est basée sur la stratégie
de dégradation et la stratégie de reconstruction (Comme utilisée dans Hifi et
Michrafy [53]). Après avoir appliqué les deux stratégies, la phase d’intensification
est appelée de nouveau, afin d’améliorer la qualité de la solution courante.

Algorithm 3 dégradation et reconstruction stratégie
Entrées: Une solution réalisable Sol′. Max: est numéro d’itération maximum.
Sorties: Une solution approchée Solglobal

1: Solbest ← Sol′;
2: while (Le critére d’arrêt n’est pas effectué) do
3: Solglobal ← Solbest;
4: while (LocalIteration < Max) do
5: Sollocal ← Solbest;
6: Détruire (α%) de Sollocal, appliquer la stratégie de dégradation sur la solution

courante Sollocal;
7: réparation (Sollocal), appeler la stratégie de reconstruction pour compléter la

solution partielle et Réaliser une nouvelle solution (Solcurrent);
8: if (Solcurrent < Solbest) then
9: Solbest ← Solcurrent;

10: end if
11: end while
12: end while

1.3 le problème du sac à dos quadratique

Les problèmes du type sac à dos (noté: Knapsack Problems) ont été étudiés depuis
plus d’un siècle (voir Matheows [29]), et plus intensément après les travaux de
Dantzig (voir Dantzig [15]). Cela est dû au fait que non seulement ils possèdent de
nombreuses applications pratiques importantes tant dans l’industrie que dans la
gestion financière, mais aussi pour des raisons théoriques. En effet, ces probléma-
tiques se produisent fréquemment en tant que sous-problème dans les procédures
de résolution de problèmes plus complexes (voir Hifi et al. [50]; Pisinger [16]), ce
qui rend leurs modèles théoriques très importants pour la communautés scien-
tifique (voir Pisinger et al. [17]).

1.3. le problème du sac à dos quadratique 11

Les problèmes de sac à dos quadratiques (noté QKP) contiennent une famille
de problèmes de sac à dos classique avec une fonction objectif quadratique. Les
problèmes de sac à dos quadratique est bien étudié que l’optimisation combina-
toire et ont des nombreuses applications en théorie et en pratique. Une variété de
procédures de limitation, heuristiques et algorithmes exacts sont disponibles pour
cela. Bien que QKP n’ait pas été étudié aussi intensément, mais, des nombreux
articles traitant du problème ont été présentés au cours des dernières années.
Première introduction par Gallo et al. en 1980 [28] ont inventé le QKP et ont
présenté une famille de limites supérieures en fonction des plans supérieurs, qui
sont des fonctions linéaires des variables binaires que leur valeur est inférieure à
la fonction objective QKP sur l’ensemble des solutions possibles.

1.3.1 Définition

Dans toutes les variantes du problème de sac à dos quadratique, pour un en-
semble d’éléments donnés, les bénéfices ne sont pas seulement attribués à des
objets individuels mais aussi à des paires d’entre eux. Le profit par paire est
ajouté à la valeur d’objectif quadratique uniquement lorsque les deux éléments
correspondants sont tous deux inclus dans le même sac à dos.

Soit un sac à dos quadratique avec une capacité fixe c et un ensemble de
candidats objets (ou éléments), un ensemble I = 1, 2, ..., n, où chaque élément
i ∈ I est caractérisé par un positif poids wi et un profit pij . La matrice entière
positive n× n, P = (Pij) est supposée donnée, où pij + pji est un profit obtenu
en sélectionnant deux éléments différents i et j. Si élément i est sélectionné, il
génère un profit pij . Le profit pair Pji est ajouté à la valeur d’objectif quadratique
uniquement lorsque l’objet j est inclus dans le même sac à dos et pour chaque
paire d’objets i et j (1 ≤ i 6= j ≤ n). L’objectif du problème est de sélectionner
un sous-ensemble d’éléments de sorte que la somme des profits des éléments
choisis soit maximum sans que la somme des poids ne dépasse la capacité c. La
Figure 1.2 donne un exemple illustrant le problème du sac à dos.

Figure 1.2: Example : illustre le problème du sac à dos

12 Résumé de thèse en Français

1.3.2 Modélisation du problème du sac à dos quadratique à vari-
ables binaires

Le problème du sac à dos à variables binaires est souvent représenté par le modèle
simple suivant :

max : f(x) =
n∑
i=1

n∑
j=1

Pijxixj (1.10)

s.t.
n∑
j=1

wjxj ≤ c (1.11)

x ∈ {0, 1} ∀i ∈ I = {1, ..., n} (1.12)

où xi représente la variable de décision telle que :

xi =

{
1 si l’objet i est placé dans le sac
0 sinon

Ce modèle est représenté par une fonction objectif (Eq. 1.10), une contrainte
dite de knapsack ou de capacité (Eq. 1.11) et les contraintes d’intégralité sur les
variables de décision (Eq. 1.12). L’objectif du problème est de sélectionner un
sous-ensemble d’éléments, permettant de maximiser la somme totale des profits
tout en satisfaisant la contrainte de capacité. Notons qu’afin d’éviter les cas
triviaux, on suppose que :

• Toutes les valuers c, pi, wi, ∀i = 1, . . . , n, sont des entiers positifs.

•
∑

i∈nwi > c, permettant d’éviter les solutions triviales.

1.3.3 Recherche réactive pour résoudre le problème du sac à dos
quadratique

Dans cette section, nous présentons le premier algorithme réactif pour résoudre
le problème du sac à dos quadratique. Cet algorithme comporte deux méthodes:
une première méthode gloutonne qui ignore la contrainte quadratique et une
deuxième méthode qui comporte deux étapes complémentaires: une première
étape de destruction et une deuxième étape de reconstruction. Cet algorithme
peut être vu comme une méthode de recherche aléatoire par voisinage.

1.3.4 Méthodes glouton pour construction d’une solution de dé-
part

Parmi les méthodes heuristiques, nous citons une méthode basée sur le principe
glouton (voir Dasgupta et al. [78]). Les méthodes gloutonnes des méthodes

1.3. le problème du sac à dos quadratique 13

heuristiques qui construisent une solution en se basant sur une amélioration
courante. C’est-à-dire que, l’algorithme choisit toujours un optimum local dans
l’espoir de trouver un optimum global dans la suite des développements.

Dans ce qui suit, nous présentons, une méthode gloutonne basée sur les
principes proposés par Dantzig (voir Dantzig [15]) pour résoudre le 0-1 KP.

Premièrement, tous les éléments sont triés par ordre décroissant en fonction
de leur rapport du profit sur le poids (pi/wi), tel que:

p1

w1
≥ p2

w2
≥ ... ≥ pn

wn

Ainsi, à chaque étape, sélectionner de façon gloutonne un élément selon l’ordre
défini précédemment. Si l’élément est recevable, cela veut dire si son poids ne
dépasse pas la capacité du sac après fixation des autres éléments, alors, il est
placé dans le sac à dos. Sinon, nous sélectionnons l’élément suivant qui peut être
placé, et ainsi de suite, jusqu’au remplissage du sac à dos. (voir Algorithme 4).

Algorithm 4 Une méthode gloutonne pour QKP

Entrées: Une instance de QKP.
Sorties: Une solution de départ S.

1: Soit c le capacitéde sac à dos;
2: Tri décroissant (ei = pi

wi
);

3: Mettre Z ← 0 (profit);
4: for (chaque élément i ≤ N) do
5: for (chaque élément j 6= i) do
6: if (wi ≤ c) then
7: xi = 1;
8: c = c− wi;
9: Z = Z + Pij + Pji;

10: else
11: xi = 0;
12: end if
13: end for
14: end for

Il convient de noter que, cette méthode n’est pas la seule méthode gloutonne
pour le problème de sac à dos. Ainsi, il existe plusieurs autres versions et amélio-
rations par rapport à cette simple méthode (voir Kellerer et al. [33]).

1.3.5 Recherche par voisinage pour améliorer la solution de dé-
part

Dans cette section nous pouvons améliorer la solution de départ en utilisant une
recherche par voisinage qui combine deux stratégies: degradant et re−construire
stratégies (comme utilisé dans Hifi et Michrafy [52]), mais, nous avons amélioré

14 Résumé de thèse en Français

ce processus en réajustant la solution globale et en intégrant une liste d’éléments
à ne pas inclure dans la sélection. Dans ce qui suit, nous montrerons comment
combiner les deux stratégies pour la recherche d’une série de nouvelles solutions.
Soit S la solution de départ obtenue à partir de l’algorithme 4. Soit α une
constante, de sorte que α ∈ [0, ..., 100], indiquant le pourcentage des éléments
emballés de l’ensemble N , soit certains éléments sont chargés dans le sac à dos
selon la solution actuelle S. Ensuite, la procédure de diversification peut être
considérée comme une autre approche qui est réalisée en utilisant deux procédures
qui sont:

• La stratégie degradant est utilisée pour fixer α% articles de la solution
actuelle pour extraire une solution partielle S′ .

• La stratégie re− construction est utilisée pour compléter la solution par-
tielle obtenue après la destruction et ré-optimiser la solution complémen-
taire S′′ par application le solveur Cplex sur le sous-ensemble S′′ et pour
améliorer la solution actuelle. Cette procédure est basée sur la destruction
d’un certain nombre d’éléments de la solution actuelle et remplacée par les
éléments de ses voisins dont le poids total ne dépasse pas une capacité de
knapsack donnée (voir. Algorithme 5).

Algorithm 5 L’algorithm de recherche par voisinage.
Entrées: Une solution de départ S 0-1 QKP.
Sorties: Une meilleure solution Sglobal.

1: Sglobal ← S.
2: while (Le critère d’arrêt n’est pas effectué) do
3: Slocal ← Sglobal
4: while (I < MaxIteration) do
5: Appeler la procédure de dégradation afin de fournir une solution par-

tielle S′

6: Appeler ré-optimiser la solution complémentaire S′′ pour réaliser une
nouvelle solution Slocal

7: if (V al(Slocal) > V al(Sglobal)) then
8: Sglobal ← Slocal
9: end if

10: end while
11: end while

Du travail présenté dans cette thèse, il faut attirer l’attention sur l’objectif
principal considéré lors de la mise en route de cette recherche.

En effet, l’objectif principal était de développer des approches basées sur des
techniques de recherche par voisinage conçues pour optimiser les cas problèmes
de grande taille. Le résultat général des analyses expérimentales que nous avons

1.4. Conclusion 15

mené sur les exemples de référence de la littérature, montre que les techniques de
recherche par voisinage réussissent à développer des solutions de bonne qualité.

Afin de développer notre algorithme, nous proposons une autre direction de
recherche pour résoudre les problèmes de knapsack quadratique (en particulier
pour les instances de grande taille), à travers la recherche de réduction des vari-
ables 1.3.3. Nous présenterons ce travail dans la section suivante.

1.3.6 La réduction de variables

Dans cette section, nous proposons une réduction de variables pour résoudre les
problèmes de grande taille. A partir du travail présenté dans la section 1.3.3 et
selon l’analyse expérimentale sur toutes les instances de référence de la littérature,
il est nécessaire d’introduire un certain développement sur notre algorithme pour
fournir une méthode de résolution efficace fournissant des solutions de haute
qualité avec un temps d’exécution rapide.

Les résultats expérimentaux montrent l’efficacité de la recherche réactive pro-
posée pour fournir des solutions de bonne qualité. Les résultats expérimentaux
montrent que l’algorithme proposé est capable de résoudre les très grandes in-
stances qui ne peuvent être résolues par le solveur Cplex (voir Algorithme 6).

La figure suivante montre le principe algorithmique de la réduction des vari-
ables que nous avons appliqué.

1.4 Conclusion

Nous avons proposé dans le cadre de cette thèse plusieurs méthodes de résolution
hybrides et approchées pour résoudre deux problèmes combinatoires. La première
partie de la thèse est consacrée au problème de k-clusters dans un graphe bipar-
tite. La deuxième partie traite le problème de sac à dos quadratique. Les deux
problèmes sont difficiles à résoudre d’un point de vue informatique et sont très
utiles dans de nombreux domaines scientifiques et applicatifs. Les résultats ex-
périmentaux que nous avons menés sur des instances connues de la littérature
montrent l’efficacité des méthodes proposées dans l’optimisation des problèmes
de grande taille. Plusieurs pistes d’amélioration et de perfectionnement restent
possibles dans la mécanique interne des méthodes proposées. Voici quelques
pistes qui méritent d’être explorer à court terme. Pour le problème de k-clusters
dans un graphe bipartite : - Etendre la sélection à plusieurs éléments en cours de
résolution dans la deuxième phase de l’algorithme hybride - Rendre la sélection
du voisinage plus intelligente - Explorer le développement parallèle de plusieurs
partitionnements. Pour le problème de sac à dos quadratique : - Améliorer le
principe de permutations et l’étendre à plusieurs éléments à la fois. - Améliorer
la fixation (réduction du problème) et concevoir une méthode complémentaire
avec la possibilité de faire des retours arrières plus maitrisés lors de la résolution.

16 Chapter 1. Résumé de thèse en Français

Algorithm 6 Réduction des variables de la solution de départ S.
Entrées: Une solution de départ S 0-1.
Sorties: Une meilleure solution Sglobal.

1: Sglobal ← S.
2: while (Le critère d’arrêt n’est pas effectué) do
3: Slocal ← Sglobal.
4: while (I < MaxIteration) do
5: α← [0,, 100].
6: β ← [0,, 100].
7: Soit Xj comme ensemble des élément emballés associé à la solution

courante Slocal.
8: Sélectionner α% ∈ Xj appartenant à la solution actuelle Slocal, où

Xj = 1.
9: Sélectionner β% ∈ Xj appartenant à la solution actuelle Slocal, où

Xj = 0.
10: Fixer α% des variables Xj évalués à 1.
11: Fixer β% des variables Xj évalués à 0.
12: if (α% > 0) et (β% > 0) then
13: Extraire la solution partielle S′

14: Trouve la solution complémentaire S′′

15: Appeler ré-optimiser la solution complémentaire S′′ pour déterminer
une nouvelle solution Slocal.

16: if (V al(Slocal) > V al(Sglobal)) then
17: Sglobal ← Slocal.
18: end if
19: end if
20: end while
21: end while

Chapter 2

17

Chapter 2

General Introduction

There are numerous practical situations that can be formulated as combinatorial
optimization problems. Among these ones, we interested with some problems
such as the K-clustering minimum bi-clique completion problem (K-CmBCP)
and the quadratic knapsack problem(QKP), that are very significant in real world
and that have been applied to several real applications. On the other hand, these
problems are highly combinatorial and difficult to solve from computational per-
spective.
In order to solve such problems two directions of researches can be followed: (i)
Find the optimum solutions for a given problem using exact methods. (ii) search-
ing near optimal solutions using approximate methods. The basic principle of
an exact algorithm is in general, the enumeration of the set of solutions in the
search space implicitly. Often, this type of algorithms solves the small problems
only. Otherwise, the computing time increases exponentially with the size of the
problem. However, for extensive problems, an exact method may be expended
exponential computing time. This often induces to large computing time for the
practical situation. Thus, the evolution of heuristic methods has accounted for
more consideration in the last decades. So that, there are other solution methods
that combine several resolution methods such as (heuristic, meta heuristics and
exact), these methods, known as hybrid methods, that are approximate methods
more powerful than the other methods using for solving combinatorial optimiza-
tion problems.
Conversely, the hybrid approximate methods are designed to produce solutions
of good quality with a reasonable resolution time, but not necessarily optimal.
Thus, the approximate methods local heuristics, local searches that give a se-
quence of solutions up to the local optimum.
So that, our work focuses on using the hybrid methods for approximating a par-
ticular problems such as the K-clustering minimum bi-clique completion problem
and the quadratic knapsack problem. The K-clustering minimum bi-clique com-
pletion problem (K-CmBCP) has many applications, especially in the field of
telecommunication, since telecommunication network cannot manage many mul-
ticast sessions at the same time, it is hence necessary to group the sessions into
a limited number of clusters. Nowadays, operational research on such problems
is very important because it allows the design of critical information systems
in a decision making. Indeed, these systems are used to model and treat the
company’s information flow in order to help decision making knowing that the
ultimate goal is to satisfy customers, within the constraints and, at lower cost.

19

20 Chapter 2. General Introduction

On the other hand, the quadratic knapsack problem can be used to accommo-
date a wide range of practical applications in numerous domains especially in
transport logistics.
This thesis presents two hybrid methods based upon neighborhood search tech-
niques. These methods are designed for optimizing the large size instances of a
combinatorial problems. The first hybrid method is to solve the (K-CmBCP), al-
though such technique produce approximate solution, it allows us to present fast
algorithm that yield interesting solutions within a short average running time.
Furthermore, we introduced the second hybrid method to solve the quadratic
knapsack problem that is mainly based on two complementary phases. The
method combines the principle of a neighborhood search and a strategy of vari-
ables reduction search. Although such technique produces approximate solutions,
it is capable of solving the small, large and very large size instances of the QKP
that cannot be solved by Cplex solver and by other methods.
Consequently, our work may be interested in the progress of optimization tech-
niques that can be applied to handle large size instances of different combinatorial
optimization problems.

Thesis organization

The thesis contains two main parts. The first part of this thesis consists of two
chapters devoted to study of the K-clusters in a bipartite graph. The second
part of this thesis consists of three chapters devoted to study of the quadratic
knapsack problem.

More specifically, this thesis is organized as follows. The first part(chapter 3)
presents the state of the art for K-clusters in a bipartite graph problems, which
is after finding the number of K-clusters that minimizes the number of added
edges to get K bi-cliques. First, it begins by recalling some graph notions theory
in order to establish the notation that will be used throughout of this part of the
thesis. Second, a brief overview of the K-clusters problem in a bipartite graph is
presented. Third, details of the resolution methods used in the literature to solve
this problem, some examples of K-CmBCP and the main mathematical models.
And finally, we illustrate our proposed method to solve this problem. Chapter 4,
presents a hybrid method that combined heuristic and the neighborhood search
methods to approximately solving the problem of K clusters in the bipartite
graph.

The second part of this thesis contains three chapters: (chapter 5, chapter 6
and chapter 7). In chapter 5, we discuss some of methods used in the literature
to solve the combinatorial optimization problems. These methods can be classi-
fied into two categories: methods which guarantee the optimality of solution and
the approximated methods (heuristic and meta heuristic) that give approximate
solutions.

21

In chapter 6, we present our first reactive algorithm to solve the quadratic knap-
sack problem. Herein we use a combination of a greedy algorithm and a neigh-
borhood search techniques in order to produce quick solutions with high quality.
This algorithm is composed of two phases : the first phase serves to provide the
starting solution using the greedy algorithm based on the principles of efficiency
items for filling the knapsack where all items are sorted by decreasing order as a
function of the profit to weight ratio (ei = pi/wi). While the second phase serves
to improve the quality of starting solution using two complementary strategies:
a first strategy for destruction and the second strategy for re-optimization. The
destroy strategy performs randomly in order to produce a new neighborhood
solution. This strategy is very important, where it controls the efficiency of algo-
rithm and increases the search space. Moreover, it helps to escape from a series
of local optimum. Actually, the solution produced by the destroy strategy is
processed as a reduced problem, that will be re-optimized. Indeed, re-optimizing
strategy consists of two procedures, the first procedure serves to provide a fea-
sible solution while the second procedure serves to improve the quality of such
solution.
Chapter 7 presents the second hybrid reactive algorithm to solve the quadratic
knapsack problem. In fact, the goal is to propose an efficient algorithm that
is capable of guiding the search process towards new research spaces with high
quality solutions. This method combines the principle of the large neighborhood
search and the variables reduction strategy. More precisely, the reduction strat-
egy is used to yield a sub-solution space, while, LNS is then applied in order to
explor and improve the current local optimum in its neighborhood.
However, the solution space of the quadratic knapsack problem might be too
large, to be efficiently searched by an algorithm, the size of the quadratic knap-
sack problem may be greatly reduced using some reduction techniques such that,
one may obtain a feasible solution by truncating some variables from the search
space [73]. In this chapter, to further reduce the search space to explore, we
fix some variables to a manageable size. Although such technique produces ap-
proximate solutions, it is capable of solving the small, large and very large size
instances of the QKP that cannot be solved by Cplex solver and by other meth-
ods. The performance of this hybrid algorithm is tested and evaluated in this
chapter.

Finally, chapter 8 summarizes the general conclusion obtained and indicates
some viewpoints for the future works in this area.

Part I

The problem of K-clusters in a
bipartite graph

23

Chapter 3

25

Chapter 3

Literature Review

Contents
3.1 Graph notions . 27

3.2 Definition of the problem of K-clusters in a bipartite
graph . 29

3.3 The resolution methods and applications for K-CmBCP 30

3.4 Mathematical programming formulations for (K-CmBCP) 33

3.4.1 First formulation . 33

3.4.2 Second formulation . 35

3.4.3 Third formulation . 36

3.4.4 Fourth formulation . 37

3.4.5 Fifth formulation . 38

3.5 Conclusion . 39

This chapter presents a state of the art of the problemK-clusters in a bipartite
graph, which consists of finding K- clusters that minimizing the number of edges
to be add to get K bi-cliques. This problem is known as K-clustering minimum
biclique completion problem (noted: K-CmBCP) and it has been shown to be
NP-hard (see Gualandi et al. [80]).

In this chapter, we begin by recalling some notions of the graph theory that
will allow to establish the notation used throughout this part of the thesis.

Then, the section 3.2 will give an overview of the problem K-clusters in
a bipartite graph. Section 3.3 will present the resolution methods used in the
literature to solve this problem and some examples ofK-CmBCP. Section 3.4 will
detail the main mathematical models. And finally, Section 3.5 will summarize
this chapter and introduce the resolution method we proposed for this problem.

3.1 Graph notions

An undirected graph G (generally called simply graph) is a pair (V,E) where V
is a finite set of vertices, and E ⊆ V × V is a finite set of edges (pairs of vertices
(i, j) ∈ V ×V). An edge is a pair of vertices that are called the endpoints of the
edge.
A graph can be directed or not:

27

28 Chapter 3. Literature Review

• In a directed graph, the pairs (i, j)∈ E are directed, ie (i, j) is an ordered
pair, where i is the initial vertex, and j is the terminal vertex. In this case,
a pair (i, j) is called an arc, and is represented graphically by (i −→ j).

• In an undirected graph, the pairs (i, j) ∈ E are not directed ie (i, j) is
equivalent to (j, i). In this case, a pair (i, j) is named an edge, and is
graphically represented by (i j).
However, we shall refer to undirected graphs only, since our work is based
on this notion (see [13]).

Terminology

• Two vertices are adjacent or connected if there is an edge between them. It
is up to a vertex i is said to be adjacent (or neighbouring) to another vertex
j, if there exists an edge between i and j. In undirected graph G = (V,E),
the neighborhood of a vertex i ∈ V , is denoted NG(i) = {j : (i, j) ∈ E}.

• The order of a graph is the number of its vertices |V |.

• The degree d(i) of a vertex i is the number of edges connecting this vertex
to the others neighbour.

• G′ = (V ′, E′) is called a sub-graph of undirected graph G = (V,E) if
V ′ ⊆ V and E′ ⊆ E.

• Undirected graph G = (V,E) is said to be connected, whatever the vertices
i and j of V , there exists a chain from i to j. That is, if there exists a
sequence of edges to reach j from i (or i from j).

• Undirected graph is said to be complete, if for all the pairs of distinct
vertices i and j there exists an edge between i and j. We can also say that
a graph is complete, if all its vertices are adjacent.

• Undirected graphG = (V,E) can be equivalently described by its adjacency
matrix A defined by:

A
[
i, j

]
=

{
1 If (i, j) ∈ E
0 Otherwise

(3.1)

• A clique in an undirected graph G = (V,E) is a subset of vertices set of
this graph whose induced sub-graph is complete, that is to say that two
peaks of the clique are always adjacent. The size of a clique is the number
of vertices it contains.

• A graph G = (V,E) is called a bipartite graph if the set of vertices V
can be partitioned into two disjoint non-empty subsets S and T such that,
V = S ∪ T and S ∩ T = ∅ and every edge in E connects a vertex in S and
a vertex in T . The bipartite graph G is denoted by G = (S, T,E) where, S

3.2. Definition of the problem of K-clusters in a bipartite graph 29

and T , in our case, are called services and clients respectively. It should
be noted that in one bipartite graph, there is no edge in E connecting two
vertices within S or two vertices within T .

• The complete bipartite graph G = (S, T,E) is a bipartite graph that con-
tains the maximum number of edges. This means that, ∀ i ∈ S and ∀
j ∈ T , there is an edge between i and j. A complete bipartite graph is also
called a biclique.

• In the problem of K-clusters in a bipartite graph, a cluster is a sub-set of
services S1 ⊂ S, such that |S1| ≥ 1 service.
If we consider a bipartite graph G = (S ∪ T,E), where S and T are two
sets of vertices of the bipartite graph and E is the set of edges between S
and T . The cluster {S1, T1} with S1 ⊂ S and T1 ⊂ T is a biclique if the
sub-graph induced from G by S1 ∪ T1 is complete.

To transform K-clusters into K bicliques, we can add or remove edges. In the
case of the problem of K-clusters, the objective is to find the minimum number
of edges that must be added to form K bicliques [66].

3.2 Definition of the problem of K-clusters in a bipar-
tite graph

The problem we are dealing with in this part of the thesis is the K-Clustering
minimum Biclique Completion Problem denoted: K-CmBCP, defined on bipar-
tite graphs. The goal of solving this problem is to group the nodes of the services
into K-clusters, so that the number of edges that must be added to form K bi-
cliques is minimum. Since the graph considered is undirected, the clusters must
induce a partition of the nodes of services. In other words, whenever a cluster is
identified, we consider all the possible edges connecting the services that belong-
ing to this cluster, with clients corresponding. We note that a biclique requires
that all its edges be presented in the graph, thus, the missing edges in a feasible
solution are considered as penalties. The objective is to find the way to partition
the nodes of services in order to have the lowest total cost or penalty. Figure 3.1
illustrates the problem with 2 clusters: 2-CmBCP.

Thus, Figure 3.1 is composed of two parts: part (a), shows a bipartite graphG
with the services (S) = {1, ..., 4} and clients (T) = {5, ..., 8}, and two possibilities
of cluster S1 = {1, 2} and S2 = {3, 4}. The dashed edges belong to the first
cluster induced by S1 and the edges in bold, belong to the second cluster induced
by S2 and finally the part (b) represents the complementary graph G′ allowing
to form 2-bicliques.

The penalty of these 2-clusters is equal to three, this is given by two missing
edges in the first cluster and one missing edge in the second cluster. Thus, the
missing edges for two clusters, that are, respectively: (1, 7), (2, 5), and (4, 8), [55].

30 Chapter 3. Literature Review

Figure 3.1: An example of K-CmBCP for 2-cluster in a bipartite graph G.

In the literature, there are several problems concerning the bicliques in a
bipartite graphs. Some use a single biclique, this is the case of the problem
consisting of finding the maximum biclique in number of edges (noted: MEB1)
which has been proved NP-complete in Peeters [74].

However, other problems take into account several bicliques in the bipartite
graph. For example, the problem of coverage by a minimum of bicliques, known
as the "minimum biclique cover", which consists of finding a set of bicliques of G
such that each edge e ∈ E belongs to at less a biclique. The problem of coverage
by a minimum of biclique, is also NP-complete (see Orlin [43]).

In the next section, we provide an overview on the resolution methods and
applications for K-CmBCP.

3.3 The resolution methods and applications for K-
CmBCP

In this section, first we will give the few solving methods we have found in the
literature to deal with the problem of K-clustering in a bipartite graph. And
then, we will give the fields of application for this problem. To our knowledge,
the K-CmBCP is very little studied in the literature, only some papers concern-
ing it are available in the literature to date. Among these papers we mention:

1MEB:= Maximum Edge Biclique problem

3.3. The resolution methods and applications for K-CmBCP 31

The paper of Faure et al. [68] in which the authors proposed a model of linear
programming to solve small-sized instances with optimality and in the same pa-
per, the authors also proposed a heuristic based on columns-generating approach,
where certain instances of large sizes have been resolved.
The paper of Gualandi [80] which addressed the problem of K-CmBCP using
a hybrid approach that combines constraint programming and semidefinite pro-
gramming exact approach. It should be noted that although the method proposed
in this paper is outside the scope of our study, it is one of the few works on this
problem, which should be mentioned.
To our knowledge, the method introduced by Gualandi et al. [81], based on the
principle of branch and price to accelerate the search process and to improve the
quality of solutions obtained by Cplex solver that based on the mathematical
model (ILP) to solve K-CmBCP.
Concerning the fields of application, the problem of K-clusters in a bipartite
graph is the basis of several industrial applications that have brought the atten-
tion of researchers deals with telecommunications. Thus, one of the applications
that made K-CmBCP known to researchers is the problem of aggregation of
multicast sessions in telecommunication. In this case, a multicast session is de-
fined as a subset of clients requiring the same information. Also, each client can
require several multicast sessions. Since the telecommunication network cannot
manage many multicast sessions at the same time, it became necessary to collect
number of sessions in the limited clusters. The problem then consists in aggre-
gating the sessions into clusters to limit the number of unnecessary information
sent to clients.
The variant we deal with in this part of the thesis requires the clusters to define a
partition on the set of sessions. This variant is inspired by problems like the Mul-
ticast Partition Problem: MPP (see Suh et al. [64]). Since this application was
the first one that brought the K-CmBCP to attention, Figure 3.2 illustrates an
example of the MPP in which we use the same representation as the K-CmBCP.
Thus, on the left side of the bipartite graph, there are three sessions A, B and
C, which send multicast information to clients 1, 2, 3 and 4 (on the right side
of the bipartite graph). Each client requests a certain number of sessions which
are mentioned on its right.

32 Chapter 3. Literature Review

 Figure 3.2: An example of the MPP problem .

Figure 3.3 shows the same example of the MPP , by grouping sessions A
and B sets and which now become a single multicast source allowing to send all
the information that sessions A and B sent separately. Thus, client 1 receives
session B although it does not request it. The same can be said for client 3 with
session A. It is noted that this union, allowed the gain of a link while respecting
the requests of the customers.

Figure 3.3: Two sessions are grouped in cluster for the previous MPP example.

Other thanMPP , applications of K-CmBCP exist in domains such as: com-
putational biology, the network security analysis or data mining where clustering
or grouping is a very important method.

The following section gives the main mathematical formulations for the prob-
lem of K-clusters in a bipartite graph.

3.4. Mathematical programming formulations for (K-CmBCP) 33

3.4 Mathematical programming formulations for (K-
CmBCP)

This section is devoted to the description of different mathematical formulations
of cluster problem in a bipartite graph as shown in Magni et al. [66]. The problem
ofK-clusters in a bipartite graph is a problem of optimization combinatorics with
several types of mathematical formulations:

1. Assignment formulations, in which clusters are indicated explicitly and the
vertices are assigned to these clusters.

2. Representative formulations, where clusters are indicated by a representa-
tive node that is noted "Head" and all other vertices are assigned to their
vertex.

3. Column generation formulations, where configurations of clusters are con-
sidered and the number of variables is exponential.

In the following sections of this chapter, we will present five mathematical for-
mulations for K-clusters problem in a bipartite graph. For all the mathematical
formulations, we will consider: A bipartite graph G = (S, T,E) where S repre-
sents the set of services i and T represents the set of clients j. E represents the
set of edges (i, j) of the bipartite graph, Ē represents the set of edges of the
complementary bipartite graph, i.e Ē = {S × T}\E and finally K = {1, ..., k}
represents the set of indices of the predefined K-clusters in the problem.

In order to obtain clarity, we use the terminology of the Magni et al. [66] and
Gualandi et al. [80].

3.4.1 First formulation

This first formulation is certainly the most obvious and the most used in the lit-
erature, Faure et al. [68] and Gualandi et al. [80,81], and it is probably the most
immediate to derive. It is quadratic, with both linear and non linear constraints.
The binary variables are:

xik =

{
1 if the service i belong to cluster k
0 otherwise

(3.2)

yjk =

{
1 if the client j belong to cluster k
0 otherwise

(3.3)

When the service i and client j are in the cluster k, and if xik = yjk = 1 and
the edge (i, j) /∈ E (or (i, j) ∈ Ē), then, the edge (i, j) is counted as a penalty.

34 Chapter 3. Literature Review

The objective function is obtained by the sum of all the edges that are added,
thus they can be expressed in the following equation:

min
∑

(i,j)∈Ē

∑
k∈K

xikyjk (3.4)

with constraints: ∑
k∈K

xikyjk = 1 ∀ (i, j) ∈ E (3.5)

∑
k∈K

xik = 1 ∀ i ∈ S (3.6)

∑
i∈S

xik ≥ 1 ∀ k ∈ K (3.7)

xik, yjk ∈ {0, 1} ∀ i ∈ S, j ∈ T, k ∈ K (3.8)

The first constraint (3.5) expresses the covering of all the demands. For
example, each edge (i, j), must ensure that service i and client j belong to one
cluster at most. The second constraint (3.6) expresses the partition of services
in clusters. This constraint requires that a service i belong to a single cluster
at a time. The third constraint (3.7) ensures that there are no empty clusters,
requires the use of all K-clusters and finally the fourth and last constraint (3.8)
denotes the binary variables.

The above model of this type with non-linear constraints is very difficult to
solve. However, by keeping the constraint (3.6) and by combining the constraints
(3.5) and (3.7), the model can be linearised by introducing a third binary variable
zijk that expresses the product of xikyjk. In this case, the new binary variable
will be:

zijk =

{
1 if the service i and the client j are both in cluster k
0 otherwise

(3.9)

and the mathematical model can be rewritten under a quadratic formulation,
with linear constraints . Thus, the obtained linear formulation can be stated as
follows :

min
∑

(i,j)∈Ē

∑
k∈K

zijk (3.10)

with constraints:

yjk ≥ xik ∀ (i, j) ∈ E, k ∈ K (3.11)

3.4. Mathematical programming formulations for (K-CmBCP) 35

∑
k∈K

xik = 1 ∀ i ∈ S (3.12)

zijk ≥ xik + yjk − 1 ∀ i ∈ S, j ∈ T , k ∈ K (3.13)

xik, yjk, zijk ∈ {0, 1} ∀ i ∈ S, j ∈ T , k ∈ K (3.14)

In this last formulation, the constraint (3.11) makes it possible to cover all
the applications. The constraint (3.12) assigns each service i of S to a single
cluster at a time. The constraint (3.13) is used to present the linear equation,
and finally the last constraint (3.14) denotes the binary variables of the problem.

3.4.2 Second formulation

Here, we present a different non-linear formulation that interprets the problem as
a min-max model (see Meka [7], Magni et al. [66] and Gualandi et al. [80]). The
xi variables are the same as the previous model, but a variable zij introduced as
the following:

zij =

{
1 if the edge (i, j) is added.
0 Otherwise

(3.15)

Note that an edge (i, j) ∈ Ē is added or is counted as a penalty if and only
if there is at least a service l, connected to the client j and the service l is in the
same cluster k as service i.

On the other hand, if N(j) indicates the neighbourhood of clients j, such
that N(j) = {i | (i, j) ∈ E}, so, this constraint can be written as:

zij = max
l∈N(j)

{xik xlk} ∀ l 6= i (3.16)

This constraint can be rewritten as a set of constraints
zij ≥ xik xlk, which are easily made linear with: zij ≥ xik + xlk − 1.

So, the linear formulation for the problem K-clusters in a bipartite graph
using the Min-Max model is:

min
∑

(i,j)∈Ē

zij (3.17)

with constraints:

∑
k∈K

xik = 1 ∀ i ∈ S (3.18)

36 Chapter 3. Literature Review

zij ≥ xik + xlk − 1 ∀ (i, j) ∈ Ē, (l, j) ∈ E, k ∈ K (3.19)

xik, zij ∈ {0, 1} ∀ i ∈ S, j ∈ T , k ∈ K (3.20)

Constraint (3.18) expresses the partition of services, while constraint (3.19)
is the linearization of the min-max (3.16) constraint defined above and the con-
straint (3.20) gives the binary variables of the problem.

3.4.3 Third formulation

The third model uses concept of representative as the node identifying a cluster.
Thus, service node is selected as representative of a cluster and all other services
belonging to the same cluster must express their assignment to the representative.
The construction is done in any order. So, in this model, the first service of each
cluster becomes its representative.

This model is useful to eliminate symmetries. The binary variables for this
model are:

xil =

{
1 if the service i is representative of the service l
0 Otherwise

(3.21)

zij =

{
1 if the edge (i, j) is added
0 Otherwise

(3.22)

The objective function is straightforward, thanks to the variable z. But, we
need a constraint to ensure that K clusters are identified. And other one to
assign each service to a single representative, thus to a single cluster. Another
constraint is required to correctly link the variables x to each other (that is, if
a service l is assigned to a representative i, then i must be a representative and
cannot be a simple node). The last constraint for setting the binary variable zij ;
it must be set to 1 if the edge (i, j) is to be added to complete a cluster (i.e. to
obtain a biclique).

min
∑

(i,j)∈Ē

zij (3.23)

with constraints:

∑
i∈S

xii = K (3.24)

∑
i∈S, i≤l

xil = 1 ∀ l ∈ S (3.25)

3.4. Mathematical programming formulations for (K-CmBCP) 37

xil ≤ xii ∀ i ∈ S, l ∈ S (3.26)

zij ≥ xhi + xhl − 1 ∀ (i, j) ∈ Ē, h ∈ S, (l, j) ∈ E (3.27)

xil, zij ∈ {0, 1} ∀ i ∈ S, l ∈ S, j ∈ T (3.28)

Constraint (3.24) ensures that we actually group the services in K-clusters.
Constraint (3.25) ensures that each service has one and only one representative,
which can be translated as each service being in exactly one cluster. Constraint
(3.26) forces a service that is representative of another one to be representative of
itself too. The constraint (3.27) forces creating an biclique, when the right con-
dition is met, the last constraint(3.28) gives the binary variables of the problem,
(see Magni et al. [66] and Gualandi et al. [80, 81]).

3.4.4 Fourth formulation

In this model the clusters are considered as combinatorial objects.
Let H = {(St, Tt)} be the set of every possible cluster, where St and Tt are

respectively, the set of left nodes (services) and right nodes (clients) belonging
to cluster t (St ⊆ S) and (Tt ⊆ T).

t represents the characteristic vector of a cluster, that is : ti = 1, if i ∈ St,
and ti = 0 otherwise.

Let ct = |(St × Tt)
⋂
Ē|, denote the penalty of cluster t and ait = 1, if

i ∈ St, t ∈ {1, ..., |H|}.

We define the following variable:

λt =

{
1 if the cluster t is selected.
0 Otherwise

(3.29)

The linear formulation for the column generation is :

min
∑
t∈H

ctλt (3.30)

with constraints:

∑
t∈H

aitλt = 1 ∀ i ∈ S (3.31)

∑
t∈H

λt = K (3.32)

38 Chapter 3. Literature Review

λt ∈ {0, 1} ∀ t ∈ H (3.33)

Constraint (3.31) expresses the partition of the services. Constraint (3.32) en-
sures that the number of clusters used is exactlyK. Constraint (3.33) presents the
binary variable of the problem, (see Magni et al. [66] and Gualandi et al. [80,81]).

3.4.5 Fifth formulation

This model is based on integer variables and the clusters are identified by a
number from 1 to k. This model suffers from symmetrical solutions. Furthermore
it is the most difficult to linearize. Therefore, to linearize this mathematical
model, so-called "ad-hoc" techniques must be used to reduce this problem to a
formulation similar to (third model). Here, xi is equal to the number of the
cluster to which service i belongs and the binary variable zij is the following:

zij =

{
0 if the edge (i, j) is added
1 Otherwise

(3.34)

This model use the mathematical way to test whether two services (i and j)
are in the same cluster k doing by taking the difference of the relative x variables
(xi − xj). If the difference is zero, then, both services i and j share the same
cluster. This formulation can be seen as the following:

min
∑

(i,j)∈Ē

(1− zij) (3.35)

with constraints:

zij ≤ | xi − xl | ∀ (i, j) ∈ Ē, (l, j) ∈ E (3.36)

xi ∈ {1, ..., k} ∀ i ∈ S (3.37)

zij ∈ {0, 1} ∀ i ∈ S, j ∈ T (3.38)

Constraint (3.36) forces zij to take value 0 when the edge (i, j) is added to
form the biclique. Constraint (3.37) restricts the domain of variable x inside the
range of clusters [1 to k]. The constraint (3.38) presents the binary variable zij ,
(see Magni et al. [66] and Gualandi et al. [80, 81]).

3.5. Conclusion 39

3.5 Conclusion

In this chapter, we have first recalled some notions on the graphs theory in order
to lay the foundations for the problems addressed in this first part of the thesis.

Then, we gave an overview of the problem K-clusters in a bipartite graph.
This allowed us to detail some aspects of this problem and especially to introduce
the approach that we propose to solve this problem approximately.

The second section of this chapter allowed us, on the one hand, to cite some
research works of the literature which treated the problem of K-clusters in a
bipartite graph and on the other hand, to cite applications of K -CMBCP in the
industrial world.

In the last section of this chapter, we are interested in the main mathematical
models. Thus, we note that these models represent a basis for some important
characteristics in the literature (see Magni et al. [66]) and which we have chosen
to enumerate to conclude this chapter:

• Property 1.The optimal solution always uses all the K clusters.
• Property 2. The total penalty for overlapping K-clusters2 is greater than

or equal to those K-clusters that do not overlap.
• Property 3. The continuous relaxation of the first mathematical model

generates a solution.
• Property 4. The solution of the first model is integral, when the variables

yjk and zijk are continuous over the interval [0 1].
• Property 5. The solution of the fifth mathematical model is completed, the

variable zij is continuous over the interval [0 1].
In the next chapter, we will propose a variable neighborhood search-based

heuristic to approximately solving the problem ofK-clusters in a bipartite graph.

2 It is said that two clusters overlap, when they have a share of common services

Chapter 4

41

Chapter 4

Variable Neighborhood
Search-based Heuristic for the

problem of K-clusters in a
bipartite graph

Contents
4.1 Introduction . 44

4.2 The mathematical model used 45

4.2.1 Example with two clusters (K = 2) 45

4.2.2 The mathematical formulation 45

4.3 Neighborhood search-based heuristic for the problem
(K-CmBCP) . 47

4.3.1 Construction of a starting solution for K-CmBCP 47

4.3.2 A local search heuristic to improve the quality of a starting
solution. 49

4.3.3 Perturbation method for solutions diversification 50

4.4 Computational results . 52

4.4.1 Description of the instances of K-CmBCP 52

4.4.2 Parameter settings . 52

4.4.3 Test the performance of the proposed methods 53

4.4.4 Effect of the destroy and repair process 55

4.4.5 Test the performance of proposed method with the large
sizes instances: . 56

4.5 Conclusion . 59

This chapter presents the method of a variable neighbourhood search-based
heuristic for approximately solving the K-clustering minimum biclique comple-
tion problem. The K-CmBCP consists in partitioning a bipartite undirected
graph into K clusters such that the sum of the edges that complete each cluster
into a biclique is minimum.

The proposed method is mainly based on three complementary phases. The
first phase serves to distribute the services of a bipartite graph to their clusters
by sequentially, using a greedy algorithm in order to build a starting solutions.

43

44
Chapter 4. Variable Neighborhood Search-based Heuristic for the

problem of K-clusters in a bipartite graph

The second phase, a local search heuristic is performed to improve the quality
of the starting solutions. The third and last phase react by considering both
diversification and intensification strategies.

The proposed method is evaluated on the set of the standard benchmark
instances of the literature. The obtained results are compared with the best
results of the literature and the results reached by the Cplex 12.6 solver [41] for
a linear mathematical model based on the formulation presented in the previous
chapter.

4.1 Introduction

The instance of the K-CmBCP is defined by a bipartite graph G(V,E), where V
is the set of vertices such that: V = S ∪ T and S ∩ T = ∅ and E represents the
set of edges. We also remind that if (S, T) is a biclique, then each vertex of S
(respectively of T) is connected to all vertices of T (respectively of S). Therefore,
if the graph consists of K clusters:

(
(S1, T1), (S2, T2), . . . , (Sk, Tk)

)
, then all the

vertices of each pair (Sk, Tk) are interconnected ∀ k = {1, . . . ,K}.
Since the bipartite graph G(V,E) under consideration is undirected, search

K-clusters is to look for K bipartite sub graph of G with the addition of a mini-
mum of edges that do not belong to E. Similarly, we can say that the goal of the
problem is to minimize the total number of missing edges needed to make each
cluster is completed by find the best partition of the set S into K clusters.
As described in Gualandi et al. [81], K-CmBCP has many applications such as
channel partitioning for multi-broadcast transmissions. In this application, given
a set of services requested by the clients, the objective is to find K-multicast ses-
sions that partition the set of demands. Consequently, each service should be
belonged to one of multicast session while, each client can appear in more than
one session [54].
The outline of this chapter is organized as follows: in section 4.2.2, we will present
an example of 2-CmBCP and presents these integer linear programming formu-
lations of problem that we solve in the experimental part using the Cplex solver.
Section 4.3 will explain the detail of our proposed heuristics forK-CmBCP. Thus,
in this section, we will first start by constructing the starting solution using a
greedy procedure that builds a solution sequentially, then we will improve this
solution by using intensification strategies that include both local search and a
neighbourhood search. Finally, we will analyse the performance and results of
our approach by comparing it with the best results of the literature and also with
the results of the Cplex solver when it is provided the ILP model (see equations
(4.2) to (4.7)). The final section concludes this chapter by summarizing the main
contribution of this approach to solve the K-CmBCP.

4.2. The mathematical model used 45

4.2 The mathematical model used

In this section, we first construct an example of two feasible solutions for a
K-CmBCP, then we present the mathematical formulation of integer linear pro-
gramming (ILPM) which will be solved in the experimental part using the Cplex
12.6 solver.

4.2.1 Example with two clusters (K = 2)

Figure 4.1 shows a bipartite graph representing an instance of the K-CmBCP.
So, in this bipartite graph the services (vertices on the left shore) are represented
by the set {i1, i2, i3 and i4} and the clients (vertices on the right shore) are
represented by the set {j1, j2, j3, j4, j5 and j6}.

Figure 4.1: Graph representation of the K-CmBCP.

Figure 4.2 provides two possible solutions of the same instance of Figure 4.1
with two bicliques. Such that, the set of services (the left shore vertices):{i1, i2, i3 and i4}
is partitioned into 2- disjoint clusters. Thus, the number of edges to be added to
form 2- bicliques is minimum.

In Figure 4.2, the 2-clusters are represented as boxes around the vertices while
the additional edges needed to form the two bicliques are represented by dashed
arrows and therefore the penalty of each cluster is the sum of its dashed arrows.

The total penalty to the 2-CmBCP for each example of the partitioning (a)
and (b) in the Figure 4.2 is the sum of the penalties for all its clusters (see
Figure 4.2 (a) and (b)).

4.2.2 The mathematical formulation

In the following, we present a mathematical model from the first model presented
in section 3.4.1 of chapter 3, having an integer linear formulation.

Thus, the mathematical model of the problem K-clusters in a bipartite graph
be formed as following:

46
Chapter 4. Variable Neighborhood Search-based Heuristic for the

problem of K-clusters in a bipartite graph

Pénalité = 5

2

3

Pénalité = 7

0

7

(a) (b)

Figure 4.2: Construction of two solutions with two bicliques.

Let the binary variable zijk be equal to 1 whenever both variables xik and
yjk are equal to 1.

zijk =

{
1 If the nodes i and j are both assigned to cluster k
0 Otherwise

(4.1)

Using the linear formulation on the first mathematical model, we obtain the
following formulation:

(ILPM) : min
∑
k∈K

∑
(i,j)∈Ē

zijk (4.2)

with constraints:

xik + yjk ≤ 1 + zijk ∀(i, j) ∈ Ē, ∀ k∈ K (4.3)

∑
k∈K

xik = 1 ∀ i ∈ S (4.4)

xik ≤ yjk, ∀ (i, j) ∈ E, ∀ k ∈ K (4.5)

xik, yjk ∈ {0, 1}, ∀ i ∈ S, ∀ j ∈ T , ∀ k ∈ K (4.6)

4.3. Neighborhood search-based heuristic for the problem
(K-CmBCP) 47

zijk ∈ {0, 1}, ∀ (i, j) ∈ Ē, ∀ k ∈ K (4.7)

where :
Constraint 4.2 represents the objective function that minimizes the total

penalty of all clusters K. The constraint 4.3 is the constraint that links the
variable zijk to both xik and yjk variables by setting zijk to 1 when the other
two variables are equal to 1. The constraint 4.4 is the constraint for assigning
each service i ∈ S to a single cluster. The constraint 4.5 forces each client j ∈ T
assigned to the cluster k to be in the same cluster as a service i ∈ S when j is
adjacent to i in E. Finally, constraints 4.6 and 4.7 are binary variables of the
problem.

4.3 Neighborhood search-based heuristic for the prob-
lem (K-CmBCP)

The main goal of this work is to develop effective methods allowing to solve the
problem of K-CmBCP. In this section, we propose approximately solving to the
K-CmBCP by using a neighbourhood search heuristic. In this work we propose
and implemented three approaches, a heuristic approach based on the principle
of cooperation between greedy search, intensification and diversification search.
This approach uses three complementary phases:

• Phase 1: The first phase builds a starting solution by sequentially using
a greedy strategy.

• Phase 2: The second phase tries to improve the quality of the starting
solution using an intensification strategy.

• Phase 3: The third and final phase introduces diversification in order to
achieve certain subspaces in an efficient way. Diversification of solutions is
considered by applying a process based on the neighborhood search heuris-
tic to improve the feasible solutions, using the perturbation method that
consists of two strategies: degradation and reconstruction strategies.

4.3.1 Construction of a starting solution for K-CmBCP

There are several ways to define a starting solution, but, we proposed the greedy
procedure to partition the set of services S of the bipartite graph G and dis-
tribute it to their clusters sequentially. Then, in order to provide the penalty of
the starting solution reached by the greedy procedure, we use some of computa-
tional steps in order to complete each created cluster with the additional edges
that forms the K bicliques for G. The sequential method can be described in
algorithm 7 which summarizes the construction of a starting solution.

In order to improve the quality of solutions, several methods can be used. In
our case, we settle for a sequential scan of the original problem.

48
Chapter 4. Variable Neighborhood Search-based Heuristic for the

problem of K-clusters in a bipartite graph

We note, also, that Cplex solver can be used to obtain a starting solution.
From a classification of services, according to a degree of each service, allocation
of services to clusters is determined. This award carries a feasible solution for
the K-CmBC problem, where the content of all clusters is assumed balanced.

As can be seen, the quality of the solution depends on the classification,
but the classification is performed before resolution and does not impact the
algorithm process.

In our algorithm below, we focus on the sequence order of each cluster for
distributing all the services to their clusters.

Algorithm 7 Sequential procedure for K-CmBC Problem

Input: K-CmBC instance.
Output: Starting solution (Sol).

1: s← 1;
2: while (each service s ≤ N) do
3: k ← 1;
4: for (each cluster k ≤ K) do
5: Assign the service s to the cluster k
6: Increment s
7: if (s > N) then
8: Exit
9: end if

10: end for
11: end while

As we see above, the algorithm 7 builds the set of service nodes represented
by the index set S = {1, ..., N}, where N represents the number of service in a
bipartite graph and k = {1, ...,K}, be the set of clusters indices, where K is the
number of cluster in a bipartite graph. The solution of the problem starts from
the empty set. In this procedure we begin with the first cluster k1 to assign the
first service s1, then, we assign the second service s2 to the second cluster k2 and
so on until we reach the last one K.

Similarly, this process can be repeated from the (step 2). For example if we
have five cluster (K = 5), the service s6 must be assigned to the first cluster k1,
while, the service s7 will be assigned to the second cluster k2 and so on, until
the stopping constraint of this procedure is performed, when all services S are
distributed to their clusters (see step 6).
A starting solution must be generated in order to even start a local search. It
is important that the method used is fast to execute and easy to implement. In
fact, sequential procedure is usually extremely fast, yields the same solution at
every execution on the same instance. That is different from some methods that
generate several solutions randomly. This may be yielded a different solutions at
every execution (see [29], [71]).

4.3. Neighborhood search-based heuristic for the problem
(K-CmBCP) 49

4.3.2 A local search heuristic to improve the quality of a starting
solution.

To improve the quality of a starting solution, there are some procedures are intro-
duced such as, the local search based on number of movements for some services
between clusters (k-optimization). Where its aim is to perform an interesting
search on a series of neighbourhoods. In our procedure, the substitution among
some vertices of services is employed between two different clusters. Thus, we use
two optimization to improve the quality of the starting solution. Similarly, these
interchanges can be generalized to an σ -neighbourhoods, where σ is a subset of
adjacent services, which can be displaced by group to other clusters. From the
best solution obtained in these neighborhoods, this process can be repeated. It
stops after exploring a number of neighbourhoods (or number of experimentally
defined iterations) [61]. We describe in the following the procedure that we use
to improve the starting solution.

Algorithm 8 Neighborhood search to improve a starting solution.

Input: Starting solution (Sol).
Output: Feasible solution (Sol′).

1: while (stopping criterion is not performed) do
2: Procedure –Swap Two Cluster.
3: Sort all the clusters K in decreasing order.
4: Sort the services of each cluster in decreasing order.
5: Set k1 ← 1, where k1 ∈ {1, ...,K}
6: for (each services i = {1...S1}), where S1 denotes the services of k1 do
7: for (each cluster q = {K...k2}), where q 6= k1 do
8: for (each services j = {S2...1}), where S2 denotes the services of q do
9: Swap the service i with the service j.

10: Find new solution(Sol′).
11: if (V al(Sol′) ≤ V al(Sol)) then
12: Sol← Sol′.
13: Resort the services of clusters (k1, q).
14: else
15: Search in neighborhood of the service j.
16: end if
17: end for
18: end for
19: end for
20: end procedure
21: end while

Algorithm 8 describes the main steps of the intensification procedure which
is used for improving the quality of the solutions at hand. Indeed, the input of
the algorithm is the solution provided by the sequential procedure. The first
loop in (line 1) is used to stop the resolution when the local search is able to find
a feasible solution with a lower penalty. The stop criterion is also consolidated

50
Chapter 4. Variable Neighborhood Search-based Heuristic for the

problem of K-clusters in a bipartite graph

with the limit number of iterations that frame exploration of the neighbourhood.
As we can see, the classification and selection process are performed for all clus-
ters and their services before any movement for services between two selection
clusters. As can be seen in (line 3, 4), in our algorithm, the classifications and
selection process are based on the number of the missing edges added to com-
plete each cluster (i.e. to become a biclique). Then, an exchanging steps are
considered as follows:

1. A vertex i belonging to a cluster k1 can be exchanged with another
vertex j that belongs to another cluster q (see line 9), the solution is
updated when the new solution improves the quality of the current
solution of the neighborhood. Then, we will re-sort the set of the
services of clusters k1 and q in decreasing order based the number of
missing edges (see line 13).

2. When the previous step fails to provide a better solution then, the
search process will be applied with the other neighborhoods services
that have up degree of the service j, (see line 8, 15). This process can
be repeated, it stops whenever the local search is able to provide a
new feasible solution.
In the V NS search, the services can be moved into another cluster
are not limited, and are based on the solutions obtained by moving
one service to another cluster at a time.
It is important that the above proposed algorithm is very fast and
efficient for improving the starting solution and producing the best
feasible solution.

4.3.3 Perturbation method for solutions diversification

In a search process, we often find treatments that serve to diversify solutions.
This diversification aims to explore other research sub-areas, which probably
have not been visited. Among these diversification processes, there are proce-
dures based on disturbances of solutions. In our study, we were more interested
in the disruption of solutions, which is to disturb the neighborhood of current
solutions. In this work, we can improve the feasible solution by using the per-
turbation method that combines two strategies: degrading and re-constructing
strategies (as used in Hifi and Michrafy [52]). After applying both strategies, the
intensification step (algorithm 8) is recalled in order to improve the quality of
each solution at hand.

In the following, we will show how to combine both strategies for searching
a series of new solutions. Let (Sol′) be the current feasible solution obtained
from algorithm 8. Let α be a constant, such that α ∈ [0, 100], denoting the
percentage of free vertices of the set S, i.e., some vertices are free according to
the current solution Sol′. Then, the diversification procedure can be considered
as an alternate approach which is performed by using two procedures that are:

4.3. Neighborhood search-based heuristic for the problem
(K-CmBCP) 51

• The degrading strategy: is used to destroy α% elements randomly from the
current feasible solution for extracting a partial solution P .

• The re-constructing strategy: is used to complete the partial solution ob-
tained after destruction and re-optimize the complementary solution P ′ by
application the Cplex solver and to improve the current solution. This pro-
cedure is based on destroying a part of the current solution and substituting
with the elements of its neighbours.

Algorithm 9 Destroy and repair process

Input: Feasible solution (Sol′) obtained by VNS, Max: Maximum iteration number.
Output: An approximate solution Solglobal.

1: Solbest ← Sol′.
2: while (stopping criterion is not performed) do
3: Solglobal ← Solbest.
4: while (LocalIteration < Max) do
5: Sollocal ← Solbest.
6: Destroy(α%) from (Sollocal, call degrading procedure in order to provide a

partial solution P .
7: Repair(P), re-optimize the complementary solution P

′
for realizing a new so-

lution (Solcurrent).
8: if (Solcurrent < Solbest) then
9: Solbest ← Solcurrent.

10: end if
11: end while
12: end while

the details of this procedure presented in algorithm 9 that started by consider
the current solution obtained by algorithm 8 as a best solution and it is setting
to Solbest in (line 1) as a global solution we want to optimize by combining both
degrading and re-optimizing strategies. The first loop in (line 2) is used to stop
the search process, when the stopping criteria is performed; herein, a maximum
number of iterations is considered. The second loop in (line 4) serves as local loop
for search the best solution on a series of neighborhoods. Next, the degrading
procedure is called in (line 6) a local loop for randomly removing α% of the
elements from the current solution and trying to improve the quality of solution
by the re-optimization procedure in (line 7). Then, the best solution is compared
with the current solution for extracting the best feasible solution. Similarly, this
approach can be repeated until a maximum number of diversification or limiting
overall execution time for the judgement of the method.

52
Chapter 4. Variable Neighborhood Search-based Heuristic for the

problem of K-clusters in a bipartite graph

4.4 Computational results

In this section, the most significant results are presented. Our goal is to show
and discuss the results of the proposed algorithms in section 4.3 that effectively
allows to approximately solving the K-CmBCP. Our computational results are
presented in series of three parts:
The first part presented in table 4.2 shows solutions of sequential procedure
presented in algorithm 7. The results of second part presented in tables 4.2 and
4.5 show the solutions of neighborhood search presented in algorithm 8. The
third part presented in tables 4.3 and 4.6 investigates effect of destroying process
on the quality of the final solution produced by perturbation search presented in
algorithm 9.

4.4.1 Description of the instances of K-CmBCP

Two types of instances can be considered: symmetric instances, where the num-
ber of services |S| and the number of clients |T | are equal and non-symmetric
instances where sometimes the number of clients is greater than the number of
services (or vice versa).
Note that, in this part of thesis, we considered symmetric instances. The ta-
ble 4.1 describes the main characteristics of the instances tested that extracted
by Gualandi et al. [81]. Column 1 indicates the label of the instance, the columns
from 2 to 4 respectively display the number of services |S|, the number of clients
|T | and the number of clusters |K| and finally, column 5 tallies the density d of
the associated bipartite graph for each instance.
Note also, the K-CmBCP instances are composed of several subgroups according
to the variation of the number of services |S|, number of clients |T |, the number
of clusters |K| and the density d (d = 0.3, d = 0.5, d = 0.7) of its corresponding
graph.

4.4.2 Parameter settings

The numerical results obtained by Cplex solver [41] version 12.6 was executed
on a multi-users windows laptop (2.8 GHz, 4 Gb), with 3600 seconds cpu time
limit, based on the model in section 4.2.2. The proposed algorithms was coded
in C++ and executed on the same machine with 100 seconds cpu time limit. So,
for test both (Cplex and proposed algorithms), we use the instances of Gualandi
et al. [81], (see table 4.1).
On the other hand, in the numerical results, there are two main parameters
should be taken into account by our proposed method: the stopping criterion
and the percentage of the removed vertices belonging to the current solution. In
order to maintain the diversity of solutions, we set the local stopping criterion
to 20 iterations and the maximum number of global iterations was fixed to 50.

4.4. Computational results 53

Inst. S T k d

I1.1 15 15 2 0.3
I1.2 15 15 2 0.5
I1.3 15 15 2 0.7
I2.1 15 15 5 0.3
I2.2 15 15 5 0.5
I2.3 15 15 5 0.7
I3.1 18 18 2 0.3
I3.2 18 18 2 0.5
I3.3 18 18 2 0.7
I4.1 18 18 5 0.3
I4.2 18 18 5 0.5
I4.3 18 18 5 0.7
I5.1 20 20 5 0.3
I5.2 20 20 5 0.5
I5.3 20 20 5 0.7
I6.1 50 50 5 0.3
I6.2 50 50 5 0.5
I6.3 50 50 5 0.7
I7.1 50 50 10 0.3
I7.2 50 50 10 0.5
I7.3 50 50 10 0.7
I8.1 80 80 5 0.3
I8.2 80 80 5 0.5
I8.3 80 80 5 0.7
I9.1 80 80 10 0.3
I9.2 80 80 10 0.5
I9.3 80 80 10 0.7
I10.1 100 100 5 0.3
I10.2 100 100 5 0.5
I10.3 100 100 5 0.7
I11.1 100 100 10 0.3
I11.2 100 100 10 0.5
I11.3 100 100 10 0.7

Table 4.1: The description of instances for the K-CmBCP.

In our numerical results, four values of the parameter α were considered: α ∈
{2%; 5%; 10%; 15%}.

4.4.3 Test the performance of the proposed methods

Table 4.2 summarizes the results obtained in initialization mode with our se-
quential approach (algorithm 7), ILPM Cplex solver and with our neighborhood
search algorithm. Table 4.2 compares the average performance of these three
methods.
Column 1 displays the name of each instance. The objective values of the best

54
Chapter 4. Variable Neighborhood Search-based Heuristic for the

problem of K-clusters in a bipartite graph

solutions are presented in column 2. Columns 3 and 4 display the solutions and
run time of the sequential algorithm for each instance. Column 5 reports the
objective value of the best solutions provided by Cplex solver within 3600 sec-
onds. Columns 6 and 7 show respectively the objective values and the real run
time realized by our variable neighborhood search based on a starting solution
provided by sequential algorithm. The last two rows show the averages values
for all solutions and their cpu times.

Inst. Best SEQUENTIAL ILPM VNS

Sol. Cpu. Cplex Sol. Cpu.

I1.1 115 156 0.03 115 123 0.01
I1.2 93 113 0.01 93 95 0.01
I1.3 63 71 0.01 63 63 0.01
I2.1 52 90 0.01 52 71 0.02
I2.2 51 80 0.001 51 62 0.02
I2.3 41 65 0.001 41 43 0.02
I3.1 180 204 0.001 180 190 0.02
I3.2 127 156 0.001 127 136 0.02
I3.3 89 99 0.001 89 89 0.02
I4.1 94 138 0.001 94 126 0.04
I4.2 87 137 0.001 87 96 0.04
I4.3 63 96 0.01 63 65 0.04
I5.1 120 179 0.03 120 174 0.05
I5.2 124 164 0.001 124 132 0.05
I5.3 90 128 0.01 92 90 0.05
I6.1 1484 1651 0.03 1485 1484 0.46
I6.2 1092 1244 0.01 1100 1092 0.5
I6.3 675 761 0.02 685 675 0.47
I7.1 1151 1316 0.02 1151 1201 1.05
I7.2 924 1154 0.01 936 924 1.15
I7.3 582 746 0.01 588 582 1.11

Avg Sol. 416.57 349.33 357.76
Avg cpu. 0.01 3600.00 0.26

Table 4.2: Performance of sequential algorithm, Cplex solver and neighborhood
search with single iteration

The analysis of table 4.2 is as follows:

1. We recall that our problem is a minimization problem. In the context of
the quality of solutions, the average value produced by Cplex solver are
better than the average values produced by other approaches, though, the
resolution time is 3600 seconds for each instances. While, we can observe
the acceleration of the average runtime of the sequential procedure to 0.01

seconds and the average runtime of variable neighborhood search to 0.26

seconds.

2. We note that neighborhood search actually improves the performance of

4.4. Computational results 55

sequential resolution and this from the first iteration. The average solutions
of the neighborhood search approach decreases at 14% compared with the
average solutions of sequential algorithm.

3. One can observe that neighborhood search algorithm is able to reach and
improves the best solution provides by Cplex solver for some instances. In
fact, VNS realizes 8 best solutions out of 21.

4.4.4 Effect of the destroy and repair process

This section evaluates the effect of degradation and reconstruction procedures
on our approach. Recall that the proposed approach works as follows: First, the
current feasible solution is degraded by removing α% from the fixed variables.
Then, the partial solution obtained is reconstructed using the greedy procedure
and enhanced using the Cplex solver and intensification phase. Finally, the same
resolution on the last solution until there is no better solution or until the max-
imum number of iterations is reached.

Table 4.3 summarizes the results obtained when we vary the destroy per-
centage. Column 3 shows the quality of the final solution when the random
destruction percentage is 2%, column 4 shows the quality of the final solution
when the random destruction percentage is 5%, column 5 shows the quality of
the final solution when the random destruction percentage is 10% and finally,
column 6 shows the quality of the final solution when the random destruction
percentage is 15%.
The analysis of table 4.3 shows that destroy of 2% of the previous iteration
solution seems the most effective setting.

Table 4.4 shows comparison of some results realized by VNS and those ex-
tracted by the best method of the literature Gualandi et al. [81] (noted GMM).
And also we can observe the solutions obtained by the mathematical model ILPM
(see section 4.2.2), when solved using the Cplex 12.6 solver (note that we have
limited the resolution time of the Cplex solver to one hour). Column 1 of this
table represents the label of the instance, Column 2 and 3 display the best so-
lutions and resolution times provided by VNS, Column 4 shows the solutions
obtained by the Cplex solver on the mathematical model ILPM, Column 5 and
6 display the best solutions of the literature (Gualandi et al. [81]).

The analysis of table 4.4 shows that:

1. We can observe the inferiority of Cplex solver since it is not able to match
the best solutions of the literature.

2. The best solutions realize by VNS are better than the solutions reached by
cplex solver. Indeed, VNS is able to realize or approximate the solutions
of the literature with minimum run time.

56
Chapter 4. Variable Neighborhood Search-based Heuristic for the

problem of K-clusters in a bipartite graph

Inst. Best α%

2% 5% 10% 15%

I1.1 115 115 115 115 115
I1.2 92 93 93 92 92
I1.3 63 63 63 63 63
I2.1 52 52 52 52 52
I2.2 51 51 51 51 51
I2.3 40 40 40 40 40
I3.1 179 180 179 180 184
I3.2 127 127 127 127 127
I3.3 89 89 89 89 89
I4.1 94 94 94 94 94
I4.2 87 87 87 87 88
I4.3 63 63 63 63 64
I5.1 120 120 120 121 120
I5.2 123 123 126 123 123
I5.3 82 82 82 82 82
I6.1 1401 1401 1418 1425 1467
I6.2 1090 1090 1094 1100 1092
I6.3 675 675 676 676 676
I7.1 1110 1137 1110 1196 1191
I7.2 920 920 922 922 920
I7.3 582 582 584 591 596

AV Sol. 340.7 342.10 342.14 347.09 348.71
AV cpu. 100.00 100.00 100.00 100.00

Table 4.3: Performance of perturbation method with the random selection policy
and 100 seconds cpu time limit

4.4.5 Test the performance of proposed method with the large
sizes instances:

Table 4.5 summarizes the results obtained when we apply sequential algorithm,
ILPM Cplex solver and our neighborhood search algorithm on large instances
extracted by Gualandi et al. [81].

Columns 3 and 4 respectively give solutions and resolution times obtained
by sequential algorithm, column 5 gives the results obtained by the Cplex solver
within 14400 seconds, columns 6 and 7 respectively give solutions and resolution
times obtained by neighborhood search algorithm.

Table 4.6 shows the solutions found when applies perturbation method to
large instances: column 2 gives solutions obtained when the random destruction
percentage is α = 2%, column 3 gives solutions obtained when the random de-
struction percentage is α = 5% and column 4 gives the solutions obtained when
the random destruction percentage is α = 10% and column 5 gives the solutions

4.4. Computational results 57

Inst. UBV NS CPUV NS ILPMcplex UBGMM CPUGMM

I2.1 52 0.13 52 51 8.11
I2.2 51 0.121 51 50 7.91
I2.3 40 0.121 41 39 7.17
I4.1 94 0.141 94 92 40.17
I4.2 87 0.141 87 86 58.02
I4.3 63 0.15 63 63 29.06
I5.1 120 0.18 120 119 183.32
I5.2 123 0.151 124 123 119.09
I5.3 82 0.16 92 82 131.31
I6.1 1401 0.59 1485 1321 107
I6.2 1090 0.61 1100 1072 11
I6.3 675 0.59 685 672 16
I7.1 1110 1.17 1151 938 137
I7.2 920 1.26 936 876 50
I7.3 582 1.22 588 577 43

Avg. 432.66 0.4389 444.6 410.73 63.2106

Table 4.4: Comparison of the some solutions that are obtained with the ILPM
and literatures solutions

obtained when the random destruction percentage is α = 15%. We can compare
our results presented in column 6 with those realized by the literature and with
the results obtained by the Cplex solver in columns 7, 9.

Inst. Best SEQUENTIAL ILPM VNS
Sol. Cpu. Cplex Sol. Cpu.

I6.1 1423 1651 0.03 1423 1484 0.58
I6.2 1091 1244 0.01 1091 1092 0.62
I6.3 675 761 0.02 676 675 0.62
I7.1 1135 71316 0.02 1135 1201 1.28
I7.2 924 1154 0.01 930 924 1.40
I7.3 582 746 0.01 587 582 1.64
I8.1 4037 4459 0.022 4166 4037 2.37
I8.2 2880 3132 0.026 2931 2880 2.75
I8.3 1771 1901 0.028 1775 1771 2.62
I9.1 3601 4123 0.025 3735 3601 6.26
I9.2 2618 3116 0.026 2675 2618 6.90
I9.3 1619 1901 0.028 1634 1619 7.42
I10.1 6484 7034 0.030 6645 6484 4.94
I10.2 4682 4968 0.031 4716 4682 5.49
I10.3 2842 3003 0.035 2854 2842 4.93
I11.1 5874 6734 0.031 6119 5874 12.90
I11.2 8812 9990 0.038 9111 8812 27.10
I11.3 2654 3003 0.040 2704 2654 14.75
Avg. 3346.44 0.04 3050.39 2990.67 5.81

Table 4.5: Performance of sequential algorithm, ILPM Cplex solver and neigh-
borhood search with large sizes instances

58
Chapter 4. Variable Neighborhood Search-based Heuristic for the

problem of K-clusters in a bipartite graph

Variation of α for large instances vs Cplex and literature.

#Inst UB2% UB5% UB10% UB15% UBBest UBGMM CPUGMM UBCplex

I6.1 1401 1418 1425 1467 1401 1321 107 1423
I6.2 1090 1094 1100 1092 1090 1072 11 1091
I6.3 675 676 676 676 675 672 16 676
I7.1 1137 1110 1196 1191 1110 938 137 1135
I7.2 920 922 922 920 920 876 50 930
I7.3 582 584 591 596 582 577 43 587
I8.1 4037 4139 4037 4035 4035 3819 872 4166
I8.2 2864 2880 2880 2880 2864 2862 167 2931
I8.3 1771 1782 1771 1771 1771 1769 46 1775
I9.1 3587 3733 3739 3739 3587 3202 780 3735
I9.2 2612 2739 2785 2785 2612 2571 400 2675
I9.3 1618 1646 1696 1619 1618 1618 144 1634
I10.1 6484 6513 6513 6513 6484 6248 452 6645
I10.2 4682 4702 4684 4684 4682 4658 198 4716
I10.3 2842 2842 2842 2842 2842 2842 87 2854
I11.1 5874 5921 4298 4298 5874 4298 893 6119
I11.2 8788 8796 8796 8796 8788 5428 5427 9111
I11.3 2654 2872 2654 2654 2654 2644 441 2704
Avg. 2978.78 3020.50 3012.67 3010.06 2977.17 2634.17 570.61 3050.39

Table 4.6: Comparison of some numerical results obtained by perturbation
method with the ILPM and literatures solutions

The analysis of tables (4.5 and 4.6) shows that:

1. The solutions provided by our approach VNS in table 4.5 are better than
those obtained by the Cplex 12.6 solver (see column 5 and Column 6).

2. The resolution times that spend by our VNS are very small vs those reso-
lution times spent by the Cplex 12.6 solver (see column 7).

3. The encouraging results of neighborhood search, push us to go further in
setting the resolution parameters. In fact, the previous results are relative
to a destroy of 2% of the feasible solution. We studied as in the following,
the performance of perturbation search when we vary percentage of items
to be destroyed from 2% to 15%, staying on a random selection policy
with 100 seconds cpu time limit. These results are shown in the table 4.3
and table 4.6. The effect of the variation of α, concerning, the solution on
large instances of table 4.6 is almost the same as on the small instances of
table 4.3. It is also noted that, for all large instances that we have tested,
the solutions obtained with α = 2% are better than or match to those
obtained with α = 5%, α = 10% and α = 15%.

However, we can easily observe that, overall, the quality of the solutions
obtained for large instances, is better when, we fix α to 2%.

4.5. Conclusion 59

4.5 Conclusion

In this chapter we proposed a new variable neighborhood search-based heuris-
tic for approximately solving to the K-clustering minimum bi-clique completion
problem. This approach is based on some procedures: a greedy procedure that
used for partition the services according to their clusters, hybrid method that
combines the neighbourhood search based heuristic and perturbation procedure
both serves to intensify and diversify the search process. Our approach uses
phases which is a local search that will try to improve the quality of a series of
solutions.

The numerical results showed that the proposed approach provides encourag-
ing results by improving the quality of solutions for known instances of the litera-
ture (Gualandi et al. [81] and the quality of solutions provided by the Cplex.12.6
solver on the mathematical model used (see section 4.2.2) for large size instances.

The heuristic was published in an international conference with proceedings
3rd IEEE International Conference on Control, Decision and Information Tech-
nologies, CoDIT 2016 (Hifi et al.. [54]). And was presented during the 17th and
18th Conference of the French Society for Operational Research and Decision,
ROADEF 2016 [55], ROADEF 2017 [56].

Chapter 5

61

Part II

The Quadratic Knapsack
Problem(QKP)

63

Chapter 5

Quadratic knapsack problems
and resolution methods

Contents
5.1 Introduction . 65

5.2 Definition . 67

5.2.1 Notions about Linear Programming 67

5.2.2 0-1 Quadratic knapsack problem (QKP) 68

5.3 The classical resolution methods 69

5.3.1 The exact methods . 69

5.3.2 The approximate methods 70

5.4 Conclusion . 75

In this chapter we first recall the state of the art of some combinatorial
optimization problems belonging to the quadratic knapsack family. Next, we
present some notions about linear programming. Moreover, we discuss several
resolution methods to solve the combinatorial optimization problems which can
be divided into two categories: The exact methods which promise the optimality
of the solution and the approximate methods such as: hybrid, heuristics and
meta-heuristic methods produce an approximate solutions.

5.1 Introduction

Knapsack problems (namely KPs)have been studied for more than a century,
that is because they have widely significant applications in numerous domains,
particularly in the transport logistics, industry, financial management [33]. Quadratic
knapsack problems(QKP) contain a family of knapsack problems with quadratic
objective functions. The QKP is a well-studied combinatorial optimisation prob-
lem and has been shown strongly NP-hard. This problem has been applied with
a variety of important applications, such as, in the location of satellites, air-
ports, railway stations or freight terminals. In the literature, there are different
kinds of problems of knapsack model like (QKP). A variety of resolution methods
are available to solve it also such as: exact and approximate, heuristics, meta-
heuristic and hybrid. Although QKP has not been studied as intensively, the
related numerous papers dealing with the problem have been introduced during
the last years. In 1980, Gallo et al. [28] invented the QKP and presented a family

65

66 Chapter 5. Quadratic knapsack problems and resolution methods

of upper bounds based on upper planes, which are linear functions of the binary
variables satisfying that their value is not smaller than the QKP objective func-
tion over the set of feasible QKP solutions. Johnson et al. [48] considered the
graph version of the QKP. After linearization of the objective function, the model
is solved by a branch-and-cut system in which tree inequalities and star inequali-
ties are used to tighten the formulation. Billionnet and Calmels [4] used a classical
linearization technique of the objective function to obtain an ILP formulation. As
the linearized model may grow quite large, a delayed formulation method is used
in a branch-and-cut manner. Lagrangian relaxation approaches are described by
Chaillou et al. [60]. Relaxing the capacity constraint, a quadratic optimization
problem appears which is solvable in polynomial time through a maximum flow
problem. Michelon and Veilleux [63] used a Lagrangian decomposition technique
to split the problem into a quadratic 0-1 optimization problem and a KP. Léto-
cart and Nagih [49] introduced reoptimization in Lagrangian methods for the 0-1
quadratic knapsack problem. The quadratic optimization problem has some suit-
able properties, which makes it solvable by use of the techniques introduced by
Chaillou et al.. Hammer and Rader [70] used the upper bound by Chaillou et al.
in their computational study, but improved the algorithm by using order relations
to fix variables inside a branch-and-bound algorithm. Hammer and Rader also
presented an improved heuristic based on the best linear approximation of QKP.
Helmberg et al. [10] consider a more general version of the problem where P may
have negative entries. Several upper bounds are presented based on a cascade of
semidefinite programming relaxations. To strengthen the formulation, a number
of valid inequalities are derived based on the ordinary KP polyhedron, as well as
specific inequalities for the QKP polyhedron. Caprara et al. [5] used Lagrangian
relaxation of the symmetry constraint xixj = xjxi to reach a reformulation of
the problem through sub-gradient optimization. Using the reformulated problem,
upper bounds tighter than those presented by Gallo, Hammer, Simeone can be
derived in O(n) expected time inside a branch-and-bound algorithm. Billionnet
et al. [2] presented a bound based on the partitioning of N into m disjoint classes.
Using Lagrangian decomposition, the problem can be split into m independent
sub-problems, which are easier to solve. Rader and Woeginger [42] finally pre-
sented a fully polynomial approximation scheme for a QKP defined on an edge
series parallel graph. They also proved that QKP with positive and negative
profits does not have any polynomial time approximation algorithm with fixed
approximation ratio. A greedy genetic algorithm is proposed by Julstrom [44].
As one might expect, due to its generality, QKP has a wide spectrum of applica-
tions. Witzgall [82] presented a problem which arises in telecommunications when
a number of sites for satellite stations have to be selected, such that the global
traffic between these stations is maximized and a budget constraint is respected.
This problem appears to be a QKP. Similar models arise when considering the
location of airports, railway stations or freight handling terminals [75]. Johnson
et al. mention a compiler design problem which may be formulated as a QKP,
as described in [10]. Dijkhuizen and Faigle [27] and Park et al. [45] consider

5.2. Definition 67

the weighted maximum biclique problem. If all edge weights are non-negative,
this problem is the special case of QKP arising when wj = 1 for j ∈ N and
b = c. Ferreira et al. [9] consider a problem in VLSI design where large graphs
need to be decomposed into smaller graphs of tractable size. The corresponding
optimization problem for a single sub-graph can be recognized as a QKP in the
minimization form. On the other hand, QKP is shown as the pricing problem
for solving a graph partitioning problem using column generation method as de-
scribed in Johnson et al. [48]. Finally, in 2016, Yuning et al. [35] presented the
memetic search for the generalized quadratic multiple knapsack problem.

5.2 Definition

In all variants of the quadratic knapsack problems, for a set of given items, profits
are not only assigned to individual items but also to pairs of them. The pairwise
profit is added to the quadratic objective value only when two corresponding
items are included in the same knapsack.
Assume a quadratic knapsack with a fixed capacity c and a set of candidate
objects (or items), that a set N = 1, 2, ..., n, where each item i posses a positive
weight wi and a profit pij . The n× n positive integer matrix P = Pij are given,
where pij + pji is a profit achieved by selecting two different items i and j. If
i is selected, generates an object profit pij and the pairwise profit pji which is
added to the quadratic objective value only when any other selected object j
is included in the same knapsack. In addition, each pair of objects i and j are
(1 ≤ i 6= j ≤ n).
The objective of this problem is to select a subset of objects for including into
knapsack, so as to maximize the overall profit P , while the overall weight does
not exceed the knapsack capacity c. Assume that maxi∈N wi ≤ c <

∑
i∈N wi. If

the first inequality is violated, i.e. if wi > c for some i, we may fix the decision
variable xi to value 0. If the second inequality is violated a trivial solution exists
with all items chosen. The problem is well presented in [14,24,34].

5.2.1 Notions about Linear Programming

A mathematical program is said to be presented in the form of a linear program
(denoted by LP) when its objective function and its constraints are linear. A
linear programming problem consists of minimizing (or maximizing) a linear
function under certain linear constraints. Thus, a form of a linear program in
the case of a maximizing, is the following:

(P)



max f(x)

Subject To :

gi(x) ≥ 0, i = 1, ...,M

x ∈ (x1, x2, ..., xN) ∈ R

(5.1)

68 Chapter 5. Quadratic knapsack problems and resolution methods

Where the functions f and gi are linear functions with variables xi,..., xN .
The function f is called objective-function and the conditions represent the con-
straints of the problem (P). A solution to the problem (P) is a vector that
satisfies all constraints. The cost of a solution is the value of the objective func-
tion f . An optimal solution of the problem (P) is the solution that maximizes
the value of f(x) among all feasible solutions.

On the other hand, it is said that a mathematical program is an integer linear
program (noted: ILP) [41] when the values of the variables of the linear program
are integers. Note that a mathematical program can also be presented in the
form of a mixed linear program (noted MLP). The latter is obtained when some
of the variables of the problem are integer and others are not.

5.2.2 0-1 Quadratic knapsack problem (QKP)

The "0-1" quadratic knapsack problem (QKP) can be settled by introducing the
binary decision variables xi for indicating if the item i is selected (see section
5.2), [3, 19,63].
This problem can be formulated as the following:

max : f(x) =
n∑
i=1

n∑
j=1

Pijxixj (5.2)

s.t.
n∑
j=1

wjxj ≤ c (5.3)

x ∈ {0, 1} ∀i ∈ N = {1, ..., n} (5.4)

where xi is a binary variable, that can be formed as the following:

xi =

{
1 if item i is included in the knapsack
0 otherwise.

As we can see, there are three equations for formulating the quadratic knap-
sack problem. The first equation (5.2) is the objective function that maximizes
the total profit Pij of items included in the QKP based on two constraints. The
first constraint (5.3) is defined as the capacity constraint, which forces that the
weights’ sum of the chosen items does not exceed the knapsack capacity. While,
the second constraint (5.4) gives the binary variable of the problem and expresses
the items that are to be included or not in the knapsack (i.e. it does not include
any trivial item) where, it is assumed that:

• Specified the positive integers for all input data c, pij , wi, ∀i ∈ N .

•
∑

i∈N wi > c avoiding this solutions.

5.3. The classical resolution methods 69

5.3 The classical resolution methods

Methods for solving optimization problems such as quadratic knapsack problem
(QKP) are generally divided into two categories: the exact and the approximate
methods (heuristics and metaheuristics) designed to find an optimum of a prob-
lem. The exact methods often have calculation times that increase exponentially
with the size of the problems they are trying to resolve. Therefore, they must be
stopped prematurely. In this case, the exact methods produce only minor called
lower bounds or major called upper bounds.

The computation of the upper and lower bounds permits you to frame the
value of the optimal solution of a problem being addressed (i.e. limits the range
of values that contain the optimal solution). Thus, they can give an indication
of how far away we are from the optimal solution and how one should proceed to
construct an improved solution. Indeed, these bounds can be used for the devel-
opment of exact solution methods based in general on an enumeration procedure.

The choice of the bounding methods is usually a trade off between the tight-
ness of the bound such obtained and the computation time to achieve it. As
concerns, the 0-1 quadratic knapsack problem, the upper bounds produced by
the known exact approaches are based on Lagrangian relaxation and decompo-
sition (see [5, 49,63]).

Conversely, the approximate methods are designed to produce solutions of
good quality with a reasonable resolution time, but not necessarily optimal.
Thus, the approximate methods include heuristics, local searches that give a
sequence of decreasing (or increasing) cost solutions up to the local optimum,
and finally metaheuristics that use various mechanisms to get away from local
optima.

5.3.1 The exact methods

The basic principle of an exact algorithm is, in general, the enumeration of the set
of solutions in the search space implicitly. Often, this type of algorithms solves
the small problems only. Otherwise, the computing time increases exponentially
with the size of the problem. There are numerous exact methods have been
presented to find the optimum solutions of a quadratic knapsack problem such
as: branch and bound and dynamic programming (see [1, 2, 5]).

Branch and bound method

The goal of a branch-and-bound algorithm is to find a value x that maximizes
or minimizes the value of a real-valued function f(x), called an objective func-
tion, among some set S of admissible, or candidate solutions. The set S is called
the search space. The concept of branch and bound methods are focused on
enumeration of the search space then selecting the best solution to a given prob-
lem [46,47].
The branch and bound algorithm is that recursively splits the search space into

70 Chapter 5. Quadratic knapsack problems and resolution methods

smaller spaces to simplify testing them. Branching is termed to generate new
branches in the enumeration tree. To improve the performance of a branch-and-
bound, algorithm keeps track of bounds on the minimum that it is trying to find,
and uses these bounds to "prune" the search space, eliminating candidate solu-
tions that it can prove will not contain an optimal solution. There are several
strategies to choose the next node in the search tree such as: depth first and best
first strategies [51]. The branch and bound algorithm for the QKP are proposed
and several developments have been introduced later in the literature, for more
details see section 5.1.

Dynamic programming

The dynamic programming is a method for solving a complex problem by break-
ing it down into a collection of simpler subproblems, solving each of those sub-
problems just once, and storing their solutions. This method is invented by
Bellman [76], who defined it as both an optimization method that operates in
sequences and whose efficiency is based on the principle of Bellman optimality,
that an optimal sequence is composed of optimal sub-sequences. Thus, this prin-
ciple gives a method of ascending resolution that determines the optimal solution
to a problem(see [59]). This approach consists in partition of the problem into
simpler sub-problems, and solving of all its sub-problems that begin with the
smallest sub-problems and then go back to the most difficult sub-problems by
taking advantage of the results of the problems already solved and then, col-
lecting the sub-solutions to obtain the overall solution. In 2014 Fomeni et al.
presented a dynamic programming heuristic for the quadratic knapsack problem
(see [21]).

5.3.2 The approximate methods

The approximate methods are considered as an interesting alternative to solve
large optimization problems since in this case optimality is not paramount. These
methods include: heuristics and metaheuristics represented mainly by neighbour-
hood methods (local search, simulated annealing, tabu search) and evolutionary
algorithms (genetic algorithms, ant colonies, etc.). In this way:

• Empirically, by comparing its result (ie, the computation time and the value
of the solution obtained) with the best known solution or with a lower or
upper bound (depending on the objective of the problem).

• Mathematically, calculating the ratio in the worst case between the opti-
mum and the value of the solution obtained.

Heuristic methods

A constructive heuristic aims to provide in a polynomial time a good solution
to an optimization problem but without guarantee of optimality (see [22]). For

5.3. The classical resolution methods 71

the quadratic knapsack problems, among the heuristic methods, we cite here a
method based on the greedy principle proposed by (Dasgupta et al. [78]). The
greedy methods are a class of heuristic methods that build a solution by focusing
entirely on immediate improvement that yields a starting solution for the QKP.

Reactive search

Reactive search finds feasible solutions if it exists, and it is generally very efficient,
yielding a best solution in a relatively short amount of time, but the quality of a
solution changes a lot based on the problem and the chosen evaluation method
used during solving, (see [71, 72]).

Intelligent optimization, a superset of reactive search optimization, refers to
a more extended area of research, including online and off-line schemes based
on the use of memory, adaptation, incremental development of models experi-
ment [77]. The metaphors for reactive search are derived from the way human
brain learns and makes decisions based on previous experience or facts. One
of the human learning processes is called "observational learning" or famously
known as "learning by example". Human brain learns by observation and re-
peats the learned subject by repetition. This is the main inspiration source for
inserting machine learning into the optimization engine of reactive search. In
searching for solutions, many alternative solutions are tested in the exploration
of a search space. Intelligent optimization is a perfect introduction to the es-
sential of reactive search, as well as an effort to develop some fresh intuition
for the approaches. There are specific problems have been widely studied by
reactive search and heuristics intelligent optimization such as: reacting on the
neighbourhood.

In the search space, x(i) the current solution at iteration number i. N(x(i)) is
the neighborhood of point x(i), obtained by applying a set of basic replacement
{r0 , r1, ..., rR} to the current configuration: N(x(i)) = {x ∈ X such that x =

rj(x
(i)), j = {0, ..., R}} local search starts from an admissible configuration x(0)

and builds a search trajectory x(0), ..., x(i+1). The successor of the current point
is a point in the neighborhood with an upper value of the function f to be
maximized. If no neighbour has this property, i.e., if the configuration is a local
maximum, the search stops.

Figure 5.1 illustrates the reactive strategy: point a corresponds to local min-
imum, point b is the best point in neighborhood N1, and point c the best point
in N2. The value of point c is still worse, but the point is in a different attraction
basin so that a better e could now be reached by the default local search. The
best point d in N3 is already improving on a, [77].

Diversifying methods

Another essential heuristic approach is a local search that enhances the quality
of the initial solution that is obtained by the greedy algorithm. Diversifying

72 Chapter 5. Quadratic knapsack problems and resolution methods

Figure 5.1: An example of variable neighbourhood of different diameters.

methods are research in nearby neighborhoods or distant to improve the current
solution. Thus, if the search is carried out in a close neighborhood, the method is
called local search and is noted, LS (Local Search) and in the case where research
is carried out in a wider neighborhood, the method is called: the research in a
broad neighborhood and is noted, LNS (Large Neighborhood Search). Neverthe-
less, it is also possible to mix all the neighborhoods research, in this case we are
talking about research in a variable neighborhood VNS (Variable Neighborhood
Search). For more details on the most widespread diversifying methods, (see
Siarry [65]).
In a research process, we often find treatments that serve to diversify solutions.
This diversification aims to explore other research sub-areas, which probably
have not been visited. Among these diversification process, there are procedures
based on disturbances of solutions. In our study, we were more interested in the
disruption of solutions, which is to disturb the neighbourhood of current solu-
tions [38].
In general, in order to improve the solution obtained by diversifying method,
we start with the solution obtained by the greedy algorithm and if it is possi-
ble, choice set of components by the random method and apply these steps with
several times, keeping each time the best solution obtained.

In QKP, binary solution are represented by item i (where i ≤ n), a binary
variable xi is fixed to the value 1 (if it is involved in the solution) or to the value
0 (otherwise). Certainly, if its weight is less than or sufficient for the remaining
capacity of the knapsack and also if it is compatible with the already fixed items,
consequently, item i is contributed in the solution.

5.3. The classical resolution methods 73

Diversifying approach seems to us more reliable, since we had well setting for the
parameters related to the disturbance.
We denote with Nk (k = 1, ..., kmax), a finite set of pre-selected neighborhood
structures, and with Nk(x) the set of solutions in the kth neighborhood of x. So,
we select the set of neighborhood structures Nk,k = 1, ..., kmax, that will be used
in the search.

Then, we start with the initial solution x and we choose a stopping condition.
Let: k ← 1; l after, we repeat the following steps until the stopping condition is
performed:

• Generate the solution x′ from kth neighborhood of x (x′ ∈Nk(x)).

• Achieve the local search approach by x′ as initial solution to obtain x′′ as
local optimum.

• If this local optimum is better than the incumbent, move there (x ← x
′′),

and continue the search with N1(k ← 1), otherwise set (k ← k + 1).

• Until (k = kmax).

Metaheuristic methods

The term metaheuristic was first introduced in Glover [23]. Metaheuristic is a
higher-level procedure or advanced heuristics for many combinatorial optimiza-
tion problems. So, it encourages and guides the search process to explore new
regions in the solution space beyond local optimum. Then, it produces high-
quality solutions and not necessarily optimal. In general, metaheuristics are
based on two mechanisms:

• intensification, which is the mechanism by which they find the local opti-
mum of the current solution (intensification often amounts to local search).

• diversification, which is the mechanism allowing the metaheuristics to leave
the neighborhood of this local minimum (diversification varies from one
algorithm to another).

The best metaheuristics methods gives an excellent results on large-scale
problems with reasonable run times which is contrary to the exact methods.

We noticed two large families of metaheuristics: metaheuristics that manipu-
late one solution at a time, called metaheuristic "single solution" and metaheuris-
tics that manipulate a multitude of solutions, called metaheuristics to "popula-
tion of solutions" (multi-solutions).

There are several mtaheuristic methods with single solution that well-known
in literature (see Siarry [65]), such as: the procedure of greedy search randomise,
note: GRASP (Greedy Randomized Adaptive Search Procedure), itrative local
search, note: ILS (Iterated Local Search), variable neighborhood search, note:

74 Chapter 5. Quadratic knapsack problems and resolution methods

VNS (Variable Neighborhood Search), simulated annealing, not: SA (Simulated
annealing) and the tabu search, note: TS (Tabu Search)(see [25]).
We summarize the principles of these single solution metaheuristics in the fol-
lowing lines:
GRASP which is introduced in Feo et al. [6], creates a new solution to each it-
eration using a random greedy algorithm and improves this solution with a local
search. Metaheuristics (GRASP) stops after a predefined number of iterations
and the best solution found during the different iterations is saved as a result.

With regard to iterative local search (ILS), the principle is similar to that of
GRASP, except that the initial solution of each iteration is obtained by applying
a random turbation to the best solution found so far. The idea is to keep some
features of the best solution [40].

Variable Neighborhood Search (VNS) presented in Mladenovic and Hansen [69],
is also inspired by GRASP, but uses a series of k neighborhoods. The draw of the
new solution and the local search are carried out alternatively on the different
neighborhoods. Knowing that several variables of a local optimal solution keep
the same value in a global optimal solution, so, exploring different neighborhoods
set of variables at once, in order to find the global optimum.
Simulated annealing (SA) is inspired by the thermal annealing process used in
metallurgy in order to reduce the energy of a material by alternating phases slow
cooling and reheating phases (annealing). It was introduced in combinatorial
optimization as metaheuristic in [79].
The tabu search (TS), is a metaheuristic that consists in traversing all the neigh-
borhood of the current solution, then apply to it bans on the return, even if
the latter degrades the objective function. This metaheuristic was introduced in
Glover and Laguna [25].
The representative applications of TS or tabu mechanism to quadratic knapsack
problems include GRASP+tabu algorithm for the QKP, and the tabu enhanced
iterated greedy algorithm (see Yuning et al. [37]).

The most popular solutions to population problems are: search scattered,
note: SS (Scatter Search), swarm optimization of particles, note: PSO (Parti-
cle Swarm Optimization) [83], optimization by ant colonies, notes: ACO (Ant
Colony Optimization) and the genetic algorithm, not: GA (Genetic Algorithm).
For more details on these metaheuristics, (see Siarry [65], [11]).
In follows, we will recall the principles of metaheuristics to populations of solu-
tions:
Scattered Search (SS) is a population-based method that uses local search and
other operators allowing a combination of solutions (see Marì et al. [26]). Thus,
at each iteration, a subset of solutions of which the elements meet quality and
diversity criteria is selected and, is called reference set. The solutions of the
different reference sets are then combined to give new solutions, which are then
improved by local search.
Particle swarm optimization (PSO) algorithms are inspired by insects swarms
and their coordinated movements. Of the same way that these birds move in

5.4. Conclusion 75

groups to find food or to avoid predators, particle swarm algorithms are looking
for solutions for an optimization problem. The individuals in the algorithm rep-
resent solutions and are called particles, while the entire population is called a
swarm [8].
The genetic algorithm (GA), presented in Holland [31], is inspired by the genet-
ics and natural evolution of species that use crosses, selections and mutations to
move towards optimum, a population of solutions represented as chromosomes.
The genetic algorithm stops after a predefined number of iterations. At each
iteration, two parent chromosomes of the population are selected favouring the
most promising, then crossed to obtain one or two child chromosomes combining
the characteristics of the parents. However, mutations can be applied to children
as diversification to avoid premature convergence of the population. (for more
details on GA, the reader can refer to the book [31]).
In fact, there are several metaheuristics methods in existence, while a new vari-
ants are continually being proposed. So, some of them are developed and applied
to a variety of combinatorial optimization problems such as: Osman et al. [62],
Vaessens et al. [39], Hifi et al. [52], Blum et al. [12], Akeb et al. [32].

5.4 Conclusion

In this chapter we recover the literature review over the main resolution methods
used to solve the combinatorial optimization problems.
In fact, we have underlined the remarkable evolution in the last few decades.
Thus, we have presented some of resolution methods used to solve combinatorial
optimization problems in general, and the quadratic knapsack problems in par-
ticular.
The models and algorithms presented are stepping-stones on which improvements
in the solution of combinatorial optimization problems can always be used to find
better solutions.

In the next chapter, we successfully applied a combination of some diversifying
methods to approximately solve the problem of QKP.

Chapter 6

77

Chapter 6

Reactive Search for the
Quadratic knapsack Problem

Contents
6.1 Introduction . 79
6.2 Reactive search for the quadratic knapsack problem . . 80

6.2.1 Greedy algorithm to construct a starting solution 81
6.2.2 Neighborhood search to improve a starting solution 82

6.3 Computational experiments 84
6.4 Benchmark instances . 84

6.4.1 Parameter settings . 85
6.4.2 Test the performance of proposed methods 85
6.4.3 Effect of the destroy and repair process 86

6.5 Conclusion . 88

In this chapter, we introduce a reactive method to solve the quadratic knap-
sack problem (noted QKP). The proposed method is mainly based on two com-
plementary phases. In the first phase we use a greedy algorithm to provide the
starting solution. In the second phase we improved the quality of the starting
solution based on a reactive search with applying a destroy and repair process,
tries to diversify and to enhance the solutions by using some parameters. The
proposed algorithm is based both diversification and intensification strategy that
computationally analyzed on a set of benchmark instances known in the liter-
ature. The results obtained are compared to those achieve by both the Cplex
solver and a recent algorithm of the literature.

6.1 Introduction

In all the variants of the knapsack problems considered so far the profit of se-
lecting a specific item was independent of the other selected items. One possible
formulation of such an interdependence is the quadratic knapsack problem (QKP)
in which an item has a corresponding profit and an additional profit is retrieved
if the item is chosen together with another one. (see section 5.2 in chapter 5).
In fact, the quadratic knapsack problem was first introduced by Gallo, Hammer
and Simeone. It has been studied intensively in the last decade due to its simple
structure and challenging difficulty and broadly applicability in both practical

79

80 Chapter 6. Reactive Search for the Quadratic knapsack Problem

and theoretical problems (see section 5.1 in chapter 5).
Therefore, to solve the quadratic knapsack problem, we investigate the use an
adaptation of the reactive method. Our approach can be summarized in two
complementary phases.

• The first phase serves to provide a starting solution using a greedy proce-
dure that inserts an item which has best efficiency into the knapsack until
filling it.

• The second phase is constructed by an intensification procedure in the
neighborhood of the current solution. The neighborhood is obtained by re-
moving some items from the current solution and inserting other ones whose
overall weight does not exceed a given knapsack capacity (see section 5.3.2
in chapter 5).

The remainder of the chapter is organized as follows:
Section 6.2 explains the steps of the proposed reactive search. Subsection 6.2.1

presents the principle of the greedy algorithm that we used to construct a starting
solution. Subsection 6.2.2 presents the steps of the reactive algorithm that we
used to improve the starting solution. Section 6.3 analyses the performance and
results of the proposed approach. Section 6.4 gives a description of instances
used in this thesis including those commonly used in the literature and some new
large instances proposed. And finally, section 6.5 concludes by summarizing the
main contribution of this method.

6.2 Reactive search for the quadratic knapsack prob-
lem

The main objective of this work is to develop effective methods to solve large
QKP cases in a limited time. For this end, we implemented an adaptation of
reactive method. The adaptation we have implemented is mixed and it is based
on neighborhood search to improve the starting solution of the problem. A
neighborhood search that embeds a new local search is performed through diver-
sification of an initial solution obtained by an greedy search. This approach uses
two complementary procedures:

• (1) Greedy algorithm to construct the starting solution. This procedure
builds a solution by selecting an efficient item i from set of candidates and
introduces it into the knapsack until filling it and sets it to the starting
solutions.

• (2) Reactive search tries to improve the quality of the starting solutions.
This procedure uses a perturbation method that consist of two strategies:

1. Degrading strategy: Destroy part of the current solution in order to
provide a partial solution.

6.2. Reactive search for the quadratic knapsack problem 81

2. Reconstruction strategy: Complete the current partial solution in order
to provide a complementary solution and re-optimize it by linear optimiza-
tion program to provide a new diversified solution.
Concerning the diversification of the solutions, we applied a process based
on the neighborhood search. This method discovers a set of solutions that
are in the neighborhood of current solution during solving. For more details
about diversification strategy (see algorithm 11).

6.2.1 Greedy algorithm to construct a starting solution

There are several ways to define a starting solutions of the QKP, but we used
an intuitive approach considering the profit to weight ratio ei of each item, also
called the efficiency of an item (see [78]). We can formulated as the follows:

ei = pi
wi

and we try to include items with highest efficiency into the knapsack. Clearly,
these items generate the highest profit while consuming the lowest amount of
capacity. Therefore, all items are sorted in descending order according to their
efficiency as :

p1

w1
≥ p2

w2
≥ ... ≥ pn

wn

Algorithm 10 summarizes the construction of a starting solution.

Algorithm 10 Greedy method

Input: Instance of QKP.
Output: Starting solution (S).

1: Let c the capacity of the knapsack;
2: Sort (ei = pi

wi
) in decreasing order;

3: Let Z ← 0;
4: for (each item i ≤ N) do
5: for (each item j 6= i) do
6: if (wi ≤ c) then
7: xi = 1;
8: c = c− wi;
9: Z = Z + Pij + Pji;

10: else
11: xi = 0;
12: end if
13: end for
14: end for

82 Chapter 6. Reactive Search for the Quadratic knapsack Problem

As can be seen in our algorithm above, we focus on the descending order
of efficiency items to fill the knapsack. The idea of the greedy algorithm with
solution value is to start with an empty knapsack and simply through the items
in this descending order of efficiencies. In each step, an item under consideration
is selected, then it is included in the knapsack if the capacity constraint is not
violated thereby. Otherwise, we select the next item that may be acceptable. This
process is repeated until filling of the knapsack (see section 5.2 in chapter 5).

A starting solution must be generated in order to even start a reactive search.
Greedy methods are a class of heuristic (or approximate) solution methods that
construct a solution by immediate improvement without considering the conse-
quences. In other words, they make always, a local optimum choice in the hope
of reaching a global optimum solution.

It is important that the method used is usually extremely fast, yield the same
solution at every execution on the same instance and it is the most immediate
way to determine a feasible solution.

6.2.2 Neighborhood search to improve a starting solution

In this work, we can improve the starting solution by using the neighborhood al-
gorithm that combines two strategies: degrading and re−constructing strategies
(as used in Hifi and Michrafy [52]), but we have improved this process by making
a re-optimization of the overall solution and by integrating a list of elements not
to be included in the selection.

In the following, we will show how to combine both strategies for searching a
series of new solutions. Let S be the starting solution obtained from algorithm 10.
Let α be a constant, such that α ∈ [0, ..., 100], denoting the percentage of packed
items of the set N , i.e., some items are loaded to knapsack according to the
current solution S. Then, the diversification procedure can be considered as an
alternate approach which is performed by using two procedures that are:

• The degrading strategy is used to fixed α% items from the current solution
for extract a partial solution S′

.

• The re− constructing strategy is used to complete the partial solution
obtained after destruction and re-optimize the complementary solution S′′

by application the Cplex solver on the subset S′′ and to improve the current
solution. This procedure is based on destroy of a some items from the
current solution and replaced with the items of its neighbours whose overall
weight does not exceed a given knapsack capacity.

The details of this procedure presented in algorithm 11 that started by con-
sider the starting solution obtained by algorithm 10 as a best global solution.
The first loop in line 2 is used to stop the search when the stopping criteria
is performed; herein, a maximum number of iterations is considered. The best
solution is setting to Slocal in line 3 as global solution we want to optimize by

6.2. Reactive search for the quadratic knapsack problem 83

Algorithm 11 Neighbourhood algorithm

Input: Starting solution S of greedy algorithm 10.
Output: An approximate solution Sglobal.

1: Sglobal ←S
2: while (Stopping criterion is not performed) do
3: Slocal ← Sglobal

4: while (I < MaxIteration) do
5: Call degrading procedure in order to provide a partial solution S

′

6: Call re-optimize procedure in order to provide the complementary solution S
′′

and for realizing a new solution Slocal

7: if (Slocal > Sglobal) then
8: Sglobal ← Slocal

9: end if
10: end while
11: end while

Algorithm 12 Degrading Procedure

Input : Slocal local solution of algorithm 11.
Output : S

′
partial solution of Slocal .

1: α← [0, ..., 100].
2: Consider Xj as the packed items set associated to the current solution Slocal.
3: Select α% ∈ Xj belonging to the current solution Slocal.
4: Fixed α% of variables Xj to value 1.
5: Extract the partial solution S

′
.

Algorithm 13 Re-optimize Procedure

Input : S
′
partial solution of algorithm 12.

Output: Slocal new local solution .

1: Find the complementary solution S
′′
.

2: Call Cplex solver to optimize the complementary solution.S
′′
.

3: Combine both partial solution S
′
and complementary solution S

′′
for realizing a new

solution Slocal

combining both degrading and re-optimizing strategies. The second loop in line 4

serves as local loop for search the best local solution on a series of neighborhoods.
Next, the degrading procedure is called in line 5 in a local loop for fixing α%

of variables that have value 1 from the current solution and replace the others
items with new ones that are not included in the knapsack, trying to improve
the quality of solution by the re-optimization procedure in line 6. Then, the best
global solution is compared with the best local solution to extract the best feasi-
ble solution. Similarly, this approach can be repeated until reaching a maximum
number of diversification or limiting overall execution time for the judgement of
the method.

84 Chapter 6. Reactive Search for the Quadratic knapsack Problem

6.3 Computational experiments

In this section, the most significant results are presented. Our goal is to show and
discuss the results of the above algorithms in section 6.2 that effectively allows
to approximately solving the quadratic knapsack problem(QKP). The computa-
tional results are divided into two parts:

• The first part presented in table 6.2, shows solutions of greedy algorithm
presented in algorithm 10.

• The results of second part presents the results for the reactive algorithm
presented in algorithm 11. This part studies effect of destroy process on the
quality of the final solution produced by neighborhood search algorithm(see
table 6.3).

6.4 Benchmark instances

The benchmark instances used in this thesis include those commonly used in the
literature and some new large instances proposed. The instances that we used
to test our proposed algorithm for the QKP can be divided into three sets:

• QKPSet I. This set is composed of 100 small and medium sized benchmark
instances generated randomly by Alain Billionnet and Eric Soutif [2]. These
instances are very popular and used to test many QKP algorithms. These
instances are characterized by their number of objects n ∈ {100, 200, 300},
density d ∈ {25%, 50%, 75%, 100%}. Each (n, d) combination involves 10

different instances distinguished by their labels except for (300, 75%) and
(300, 100%) where instances are missing. Optimal solutions are known for
these instances.

Table 6.1 describes the main characteristics of these set of instances. Col-
umn 1 of the table indicates the label of instance. Column 2 indicates the
number of items for each instance, column 3 indicates the density (d) that
associated to each class of the instance .

• QKPSet II. The second set includes 80 large-sized benchmark instances
which are recently generated by Yuning et al. [34]. These instances have
a number of objects from 1000 to 2000, a value of density from 25% to
100%. Due to their large size, optimal solutions are still unknown for these
instances.

• QKPSet III. This set is composed of 40 new instances of very large sizes
that are proposed by Yang Chen [34]. They are characterized by their num-
ber of objects n ∈ {5000, 6000} and density d ∈ {25%, 50%, 75%, 100%}.
For each (n, d) combination, 5 instances were proposed.

6.4. Benchmark instances 85

Inst. N Density

I1.1 100 25
I1.2 100 50
I1.3 100 75
I1.4 100 100
I2.1 200 25
I2.2 200 50
I2.3 200 75
I2.4 200 100
I3.1 300 25
I3.2 300 50
I4.1 1000 25
I4.2 1000 50
I4.3 1000 75
I4.4 1000 100
I5.1 2000 25
I5.2 2000 50
I5.3 2000 75
I5.4 2000 100
I6.1 5000 25
I6.2 5000 50
I6.3 5000 75
I6.4 5000 100
I7.1 6000 25
I7.2 6000 50
I7.3 6000 75
I7.4 6000 100

Table 6.1: The description of instances for the QKP

6.4.1 Parameter settings

We note that Cplex 12.6, [41] was run on a multi-users ubuntu laptop (2.5 GHz,
5 Gb), with 3600 seconds cpu time limit. The proposed algorithms was coded
in C++ and run on the same machine with cpu time limit of, 20 seconds for all
instances. In this chapter, for both (Cplex and proposed algorithms), we use the
instances of Billionnet et al. [2].

6.4.2 Test the performance of proposed methods

In this section, we investigate the behaviour of our method, the first experiment is
performed on the benchmark instances of QKPSet I. (see section 6.4). Table 6.2
summarizes the results obtained in initialization mode using greedy algorithm on
100 benchmark instances with single iteration.

86 Chapter 6. Reactive Search for the Quadratic knapsack Problem

Column 1 displays the label of each class. The averages values of the starting
solutions are presented in column 2. Column 3 displays the averages run time
for each class.
Note that:

• The instance (100 − 100 − 4) is not available and is not considered when
we calculate the average value for the instance class (100− 100).

• The instance (300− 25− 3) is not available and is not considered when we
calculate the average value for the instance class (300− 25).

The analysis of table 6.2 as:

1. We recall that our problem is a maximization problem. In this context,
quality of solutions produced by a greedy search actually a good solutions.

2. We note that the average runtime of a greedy search is very small for all
instances.

Inst. Avg.Sol. Avg.t(s)

I1.1 22157.8 0.003
I1.2 45863.7 0.001
I1.3 74274.5 0.001
I1.4 133138.56 0.002
I2.1 88289 0.003
I2.2 193709 0.003
I2.3 183731.6 0.004
I2.4 413627.2 0.003
I3.1 157334.67 0.007
I3.2 410492.3 0.006
Avg. 172261.8 0.003

Table 6.2: Performance of the greedy algorithm on 100 benchmark instances with
single iteration

6.4.3 Effect of the destroy and repair process

In this section, reactive search results are presented that provided by al-
gorithm 11. Herein, it is able to interpret the effect of remove some items
from the current solution on the quality and speedy of the final solution.
However, the reduction process greatly accelerates the execution of our al-
gorithm especially for QKPSet I. This set is composed of 100 small and
medium sized benchmark instances. Table 6.3 summarizes the results ob-
tained when we vary the destroy percentage. Column 3 shows the quality
of the final solution when the random destruction percentage is α = 5%,

6.4. Benchmark instances 87

column 4 shows the quality of the final solution when the random destruc-
tion percentage is α = 10%, and finally, column 5 shows the quality of the
final solution when the random destruction percentage is α = 20%. The
analysis of table 6.3 shows that destroy of α = 20% of the previous solution
seems the most effective setting.
Table 6.4 summarizes a comparison of the average cpu time of the com-
putational results obtained for each percentage. We note, also, that the
percentage of α = 20%, provided the better solution and less runtime com-
pared with the solutions and runtime generated in the case percentage of
α = 5% and α = 10%.

Average solutions with variation of α%

Inst. Best %5 %10 %20

I1.1 32254.8 32254.8 32254.8 32254.8
I1.2 66571.85 66571.85 66549.75 66511.05
I1.3 96992.55 96992.55 96992.55 96992.55
I1.4 144569.78 144545.56 144559.78 144569.78
I2.1 126890.65 126651.15 126762.85 126890.65
I2.2 287388.6 287359.9 287374.8 287388.6
I2.3 281742.1 281324.4 281561.5 281742.1
I2.4 468591.9 467646.5 468351.1 468591.9
I3.1 241039.11 240819 240974.89 241039.11
I3.2 583125.2 581905.3 582838 583125.2
Avg. 232916.65 232607.10 232822.00 232910.57

Table 6.3: Performance of reactive search results with random selection policy
and 20 seconds cpu time limit

Average time with variation of α%

Inst. Best t(s)%5 t(s)%10 t(s)%20

I1.1 1.65 2.35 2.06 1.65
I1.2 10.16 10.16 10.21 7.96
I1.3 23.34 66.50 44.87 23.34
I1.4 35.30 63.70 50.90 35.30
I2.1 36.86 42.99 41.56 36.86
I2.2 108.94 129.93 110.60 108.94
I2.3 176.60 135.20 164.20 176.60
I2.4 169.91 180.37 122.37 169.91
I3.1 58.14 80.70 89.33 58.14
I3.2 237.11 236.08 232.18 237.11
Avg. 85.80 94.80 86.83 85.58

Table 6.4: Average cpu time of the computational results for reactive search

88 Chapter 6. Reactive Search for the Quadratic knapsack Problem

Table 6.5 shows some results of the best method in the literature (Alain
Billionnet and Eric Soutif [2]). Noted that, the solution provide by our
approach is approximated to the optimal solution realized by Cplex solver
and the best solutions given by the literature, with less run time. We
can observe the Cplex solver is able to match the best solutions of the
literature, but with more runtime especially with the large size instances.
In the other hand, our approach can lead to an efficient and fast solution
when the solution given by the first phase is good.

Inst. Sol.RS CpuRS Optcplex OptLit CpuLit.
I1.1 32254.8 1.65 32254.8 32254.8 108.18
I2.4 468591.9 169.91 468919 468914.80 70633.00
I3.1 241039.11 58.14 241044.78 241044.78 2074,09
I3.2 583125.2 237.11 583270 583270 2889.927
Avg. 331252.75 116.70 331372.15 331371.10 24543.70

Table 6.5: Comparison of some numerical results obtained by (RS) versus Cplex
solver and literature

6.5 Conclusion

In this chapter, we are introduced a reactive search to solve the quadratic
knapsack problem that is mainly based on two complementary phases such
as:

• A greedy strategy that include an item with highest efficiency into the
knapsack to construct a starting solutions.

• A Neighborhood search to improve the quality of the starting solu-
tions.

We use a hybrid method by combining two phases, both serves to inten-
sify and diversify the search process. The proposed approach begins by
constructing an initial solution using a greedy strategy with one iteration.
After, we used the neighborhood search to improve the quality of solutions
and produce the best solutions. So, the proposed approach implements
a diversification of solutions with fixed iteration number. The numerical
results showed that the proposed approach provides encouraging results
by improving the quality of solutions for known instances of the literature
(Alain Billionnet and Eric Soutif [2]) that compared with the solutions pro-
vided by Cplex.12.6 solver. The performance of the proposed approach was
evaluated based on the set of the benchmark instances of the literature.

As shown from the experimental results, according to our preliminary com-
putational results, the behaviour of the cooperation is encouraging. The

6.5. Conclusion 89

obtained results were compared to those reached by known literature, this
results are efficient and fast when the solution given by the greedy proce-
dure is good. Further, from the experimental results, the quality of solu-
tions based on the well setting of the parameters such as (α, cpu time and
iterations number) that are experimentally based the characteristics of the
instances.

The reactive search is published in an international conference with pro-
ceedings 4th IEEE Control, Decision and Information Technologies, (CoDIT
2017) [57].
From the work presented in this chapter it is necessary to draw atten-
tion to the primary goal that was considered when this research started.
The primary goal was to develop solution approaches based upon neigh-
borhood search techniques tailored for optimizing large size instances of
combinatorial optimization problems. The general outcome, according to
the experimental analysis on benchmarks instances of the literature, is that
neighborhood search solution techniques are successful in developing better
algorithms to approximate large and very large size instances of the con-
sidered problem in this work.
In order to develop our algorithm we propose another direction of search
to solve quadratic knapsack problems (especially for large and very large
size instances (see section 6.4) through variables reduction search based
upon fix α and β variables from the binary solutions of reactive search,
section 6.2. we will present this work in the following chapter.

Chapter 7

91

Chapter 7

Solution of Large-sized
Quadratic Knapsack Problems
Through Variables Reduction

Search

Contents
7.1 Introduction . 94
7.2 Large neighborhood search(LNS) 94
7.3 Variables reduction search(VRS) 95
7.4 Computational results 96

7.4.1 Comparative results on small and medium instances
of Group I . 98

7.4.2 Comparative results of HLNS on large sized instances
of Group II . 99

7.4.3 Comparative results of HLNS on 40 very large in-
stances of Group III 99

7.5 Conclusion . 100

From the work presented in chapter 6 and according to the experimen-
tal analysis on all benchmarks instances of the literature, it is necessary
to introduce some development on our algorithm to provide an efficient
resolution method yielding high quality solutions with fast runtime to ap-
proximate large-size and very large instances of the quadratic knapsack
problem (QKP).
In this chapter we propose a hybrid algorithm to solve the quadratic knap-
sack problem (QKP). The aim of this algorithm is to improve our algorithm
that is able to guide the search process towards new search spaces. The
method combines the principle of a neighborhood search and a strategy of
variables reduction search. First, the strategy of variable reduction is used
to construct a series of sub-problems to solve. Then, the method uses an
optimization by ILP, Cplex solver.
Consequently, the experimental results show the effectiveness of the pro-
posed approach to provide optimal solutions for 100 small and medium
sized benchmark instances that were investigated in chapter 6. As shown

93

94
Chapter 7. Solution of Large-sized Quadratic Knapsack Problems

Through Variables Reduction Search

from the computational results, the proposed algorithm is capable of solv-
ing the small, large and very large size instances of the QKP that cannot
be solved by Cplex solver and by other methods of the literature.

7.1 Introduction

The quadratic knapsack problem (QKP) is the generalization of the classi-
cal 0-1 knapsack problem obtained when the objective function is permitted
to be quadratic (see chapter 5). Several reduction methods used for fixing
some of the decision variables at their optimal value, have been presented
for the QKP (see Caprara, Pisinger and Toth [5])and (P.L. Hammer and
D.J. Rader Jr [70]). Recent advances in the solution of difficult NP-hard
optimization problems have shown the importance of good reduction tech-
niques. These 0-1 QKP can be solved by a specialized dynamic program-
ming or branch-and-bound algorithm (see Billionnet, Faye and Soutif [1]),
but in practice, one can often solve them easily and quickly using a general-
purpose ILP solver.
Following this direction of research; in this chapter, we present an approx-
imate approach to solve the QKP, where reduction plays a key role in the
solution process. However, it is much fast and simpler, since it does not
require more complex procedures. The proposed approach is based on the
same algorithms as those presented in chapter 6 of this thesis, and we ap-
plied some modifications that will be presented in the following sections.
The remainder of this chapter is organized as follows: section 7.2 reviews
the principles of the large neighborhood search. Section 7.3 describes the
principle of the proposed approach. In section 7.4, the performance of the
proposed approach is evaluated on a number of instances of the literature,
and analyzes the obtained results. Finally, section 7.5 summarizes the
contents of the chapter.

7.2 Large neighborhood search(LNS)

Solving combinatorial optimization problems using exact methods becomes
discouraged when the structure of problems is complex. Indeed, proving op-
timality of problems requires generally a huge computational resource (Pa-
padimitriou and Steiglitz [30]). Contrast to the fact that the exact meth-
ods aim at solving problems by proving their optimality, the approximative
methods focus only on the computation of high quality solutions (near op-
timal) with reasonable computational effort. Large Neighborhood Search
(LNS), proposed by Shaw [67], has been considered as one of the most effi-
cient algorithms for solving large-scale optimization problems (Ahuja and
Ergun [58]).

7.3. Variables reduction search(VRS) 95

Unlike the approximate methods that explore generally the whole solution
space, LNS consists of finding high quality solutions by randomly exploring
a series of sub-solution spaces, where each subspace is characterized by a
neighborhood of a local optimum [18].
Generic schema of LNS consists of two strategies: reduction strategy and
exploring strategy. More precisely, the reduction strategy is used to yield
a sub-solution space (i.e., the neighborhood of the local optimum) while,
the exploring strategy is then applied in order to improve the current local
optimum in its neighborhood [53].

7.3 Variables reduction search(VRS)

The binary quadratic knapsack problem (QKP) was introduced by Gallo
et al. [28], formally as we defined it in chapter 5. The decision variables xi
at their optimal value, we have presented for the QKP in chapter 6, that
have either the values 1 (xi = 1), when choosing the item to include in
the knapsack or the values 0, (xi = 0), when choosing the item to exclude
in the knapsack. The binary feasible solution can be represented by series
of the binary variables xi takes the value 1 if and only if the ith item is
inserted into the knapsack.
However, the solution space of the problem QKP might be too large, to
be efficiently searched by an algorithm, the size of a QKP problem may
be considerably reduced by using some reduction rules such that, one may
obtain a feasible solution by truncating the some variables from the search
space [73].
To further reduce the search space to explore, we fix some variables to
a manageable size. The reduction, including an improved version of our
algorithm we have presented for the QKP in chapter 6, that fix α% from
the binary variables xi that takes the value 1, to further reduce the search
space to explore, we fix β% from the binary variables xi that takes the
value 0. Consequently, the remaining set of variables are easily handled
through the Cplex solver [41]. Algorithm 14 summarizes the main steps of
a generic schema of a hybrid algorithm (noted as HLNS).

The main loop (steps 2-20) of HLNS applies alternatively the reduction
strategy (steps 5-13) and the exploring strategy (step 14) in order to im-
prove the current local optimum. The reduction procedure (steps 5-13)
serves to fix randomly a limited number of items, its decision variables val-
ues have been determined, in order to yield a reduce solution of QKP and
a partial solution (i.e., with some decision variables have been set free).
The exploring procedure (step 14) aims to improve the current local op-
timum by exploring the solution space yielded from (steps 5-13). HLNS
(algorithm 14) exits with the best solution found so far when the iteration
limit is reached.

96
Chapter 7. Solution of Large-sized Quadratic Knapsack Problems

Through Variables Reduction Search

Algorithm 14 An hybrid algorithm to solve the quadratic knapsack problem
(QKP)

Input: A starting feasible solution S 0-1 QKP
Output: A best global solution Sglobal

1: Sglobal ← S
2: while (the iteration limit is not performed) do
3: Slocal ← Sglobal
4: while (I < MaxIteration) do
5: α← [0,, 100]

6: β ← [0,, 100]

7: Consider Xi as the packed items set associated to the current solution
Slocal

8: select α% ∈ Xi belonging to the current solution Slocal,where Xi = 1;
9: select β% ∈ Xi belonging to the current solution Slocal,where Xi = 0;

10: Fixed α% of variables Xi to value 1

11: Fixed β% of variables Xi to value 0

12: if (α% > 0) and (β% > 0) then
13: Extract the partial solution S′

14: Apply Cplex solver on the reduced binary solution in order to com-
plete the partial solution S

′′ and for realizing a new solution Slocal

15: if (Slocal > Sglobal) then
16: Sglobal ← Slocal
17: end if
18: end if
19: end while
20: end while

7.4 Computational results

This section evaluates the effectiveness of the proposed Hybrid Large Neigh-
borhood Search-Based Variables Reduction (HLNS) on three sets of bench-
mark instances those presented in chapter 6 of this thesis.
The first group contains 100 small and medium sized benchmark instances
generated randomly by Alain Billionnet and Eric Soutif [2], with n ∈
{100, 200, 300} items, density d ∈ {25%, 50%, 75%, 100%} (see table 7.1)
and the second group contains 80 large-sized benchmark instances which
are recently generated by Yuning et al. [34], where each instance contains
1000 to 2000 items, a value of density from 25% to 100% and, the third
group contains 40 new instances of very large sizes that are proposed by
Yuning Chen [34], where each instance contains n ∈ {5000, 6000} items and
density d ∈ {25%, 50%, 75%, 100%}.

7.4. Computational results 97

Table 7.1 summarizes the average solution values realized by HLNS when
compared to the average solution values obtained by reactive search within
20 seconds cpu time limit. Table 7.1 showed the average objective values

CPLEX RS HLNS BEST
Sol Sol time Sol time Sol time

Inst. 15000s 20s 20s 20s
I1.1 32254.8 32254.8 1.65 32254.8 0.87 32254.8 0.87
I1.2 66571.85 66571.85 10.16 66571.85 1.41 66571.85 1.41
I1.3 96992.55 96992.55 23.34 96992.55 2.01 96992.55 2.01
I1.4 144570.22 144569.78 35.30 144570.22 1.31 144570.22 1.31
I2.1 126963.65 126890.65 36.86 126963.65 4.23 126963.65 4.23
I2.2 287390.8 287388.6 108.94 287390.8 7.24 287390.8 7.24
I2.3 281742.7 281742.1 176.60 281742.7 14.16 281742.7 14.16
I2.4 468918.9 468591.9 169.91 468918.9 23.82 468918.9 23.82
I3.1 241044.78 241039.11 58.14 241044.78 7.01 241044.78 7.01
I3.2 583270 583125.2 237.11 583270 23.10 583270 23.10
Av. 232972.025 232916.65 85.80 232972.025 8.516 232972.025 8.516

Table 7.1: Comparison results of both RS and HLNS with the Cplex solver for
20 seconds cpu time limit

(i.e., on each class of the benchmark instances) related to the best solu-
tions when applying the Cplex solver (version 12.6), reactive search (RS)
and HLNS respectively. Column 1 displays the name of each class of the
benchmark instances. The average solution values provided by Cplex solver
within 15000 seconds are shown in column 2. As VRS applies a random
strategy to fix items, 20 independent trials of HLNS were performed for
each instance with a runtime limit fixed to 20 seconds. According to the
numerical results, the number of items to be fixed is experimentally limited
to α% and β% respectively, where α% denotes the number of variables be-
longing to the set of binary decision variables xi that will be fixed to value
1 and β% denotes the number of variables belonging to the set of binary
decision variables xi that will be fixed to value 0. Column 3 and column 4

tally respectively the average solution values and the average runtime of
the reactive search algorithm with the 20 trials. In order to evaluate the
performance of HLNS, the CPU runtime is limited to 20 seconds (i.e., the
same value used by RS) whereas the maximum number of fixed items per-
formed by HLNS on each instance is randomly generated in discrete interval
[0,, 100]. Column 5 and column 6 show respectively the average solution
values and the real run times realized by HLNS.
We also reported in column 7 and column 8 respectively the average of
best solution and the average of best runtime over 20 trials for our HLNS
algorithm.
As shown in table 7.1, the results provided by HLNS outperform generally
those provided by the RS. On the other hand, HLNS matches the average
solution values reached by Cplex solver. However, HLNS is much faster.

98
Chapter 7. Solution of Large-sized Quadratic Knapsack Problems

Through Variables Reduction Search

From table 7.1, we observed that our HLNS algorithm attains the known
optimal values with a successful rate of 100% for all these instances with
an average computing time 8.516 seconds. Another interesting feature of
HLNS is that its average computing time is approximately linear relative
to the size of the instance.

7.4.1 Comparative results on small and medium instances
of Group I

The experiment is performed on the benchmark instances of Group I. These
instances were first solved to optimality by the exact algorithm of [2]. Sev-
eral recent heuristic approaches are able to attain these optimal solutions.
To evaluate the performance of our HLNS algorithm, three leading heuris-
tic methods were considered for our comparison: DP+FE algorithm [21],
GRASP+tabu [20] and IHEA [36]. Table 7.2 shows our HLNS when com-
pared with 3 state-of-the-art algorithms on the 100 benchmark instances
of Group I. The results of the reference algorithms are extracted from the
corresponding papers [20,21,36]. Where the relative percentage deviation
(RPD), the average gap between the best lower bound and the best solu-
tion value in percentage over 100 trials.1

DP+FE [21] GRASP+tabu [20] IHEA [36] HLNS Opt
Inst. t(s) RPD t(s) RPD t(s) RPD t(s) RPD Avg(best)

I1.1 0.697 0.319 0.060 0.000 0.325 0.000 0.87 0.000 32254.8
I1.2 0.708 0.018 0.057 0.000 0.253 0.000 1.41 0.000 66571.85
I1.3 0.704 0.008 0.052 0.000 0.334 0.000 2.01 0.000 96992.55
I1.4 0.657 0.005 0.048 0.000 0.248 0.000 1.31 0.000 144570.22
I2.1 7.341 0.056 0.286 0.000 0.714 0.000 4.23 0.00 126963.65
I2.2 8.239 0.009 0.301 0.4E-6 0.827 0.000 7.24 0.000 287390.8
I2.3 7.055 0.010 0.318 0.000 0.946 0.000 14.16 0.000 281742.7
I2.4 6.683 0.004 0.251 0.000 0.722 0.000 23.82 0.000 468918.9
I3.1 28.341 0.061 0.735 0.001 1.122 0.000 7.009 0.000 241044.78
I3.2 31.324 0.003 0.763 0.000 1.156 0.000 23.10 0.000 583270
Av. 9.18 0.29 0.67 8.52 232972.025

Table 7.2: Comparative results of HLNS on small and medium benchmark in-
stances of Group I

From table 7.2, we can observe that: HLNS dominates the deterministic
DP+FE algorithm in terms of both quality of solution and computational
efficiency. Compared to GRASP+tabu which is one of the current best
performing heuristic algorithms, IHEA remains very competitive since it
solves all these instances to optimality.

1The gap is calculated by ((fLB − fbest)/fLB × 100).

7.4. Computational results 99

7.4.2 Comparative results of HLNS on large sized instances
of Group II

In this section, in order to highlight the effectiveness of the proposed ap-
proach, the second experiment we are performed to investigate the behavior
of our algorithm on the second group of 80 large instances (n = 1000 or
2000) items (QKPSet II. (see chapter 6)). Moreover, we decided to com-
pare the results provided by HLNS to the best solutions of the literature
(table 7.3). Table 7.3 shows performance of our HLNS when compared to

DP+FE [21] GRASP+tabu [20] IHEA [36] HLNS
Inst. Avg.Best Avg.t(s) Avg.Best Avg.t(s) Avg.Best Avg.t(s) Avg.Best Avg.t(s)

I4.1 2016881.6 2441.353 2016960.7 21.868 2016960.7 5.489 2016960.7 562.813
I4.2 5118780.3 2862.216 5118953.9 31.173 5118953.9 6.022 5118956.9 1322.954
I4.3 5900488.2 3143.037 5900733 26.281 5900793.2 6.39 5900796.2 10615.923
I4.4 7476295.3 3224.189 7476264.3 32.533 7476457.7 6.117 7476472 2924.653
I5.1 7841070.5 50528.385 7841340.4 295.865 7841340.4 22.244 7841340.4 2957.049
I5.2 18616684.3 50427.949 18617353.5 352.216 18617410.4 23.240 18617420.1 7621.856
I5.3 24676067.1 52334.3 24675823 287.102 24676371.6 22.718 24676371.6 28670.069
I5.4 21220000 53492.382 21218680.5 383.415 21220476.4 22.719 21220476.5 10799.255
Avg. 11608283.413 27306.727 11608263.663 178.807 11608595.538 14.367 11608599.3 8184.321

Table 7.3: Performance of HLNS with 30 seconds cpu time limit on the large-sized
instances of Group II.

3 state-of-the-art algorithms on the 80 benchmark instances of Group II.
Table 7.3 summarizes the results based on average best solution value
(Avg.Best) and average computing time (Avg.t(s)) respectively. Column 1

displays the name of each class of the instances. The last row of the table,
(Avg.) indicates the average of the listed values of each column.
From table 7.3, we can observe that:

(a) As shown from the experimental results, the HLNS was able to provide
high quality solutions for all large size instances.

(b) We observed in this table, the results provided by HLNS outperform-
ing generally those provided by the literature DP+FE [21] for all in-
stances.

(c) The average solution value realized by HLNS is better than the average
solution value of both GRASP+tabu [20] and IHEA [36].

7.4.3 Comparative results of HLNS on 40 very large in-
stances of Group III

Table 7.4 shows performance of our HLNS when compared to the best
algorithms of the literature IHEA [36] on the 40 very large-sized instances
of Group III.

100
Chapter 7. Solution of Large-sized Quadratic Knapsack Problems

Through Variables Reduction Search

• As shown from the first experimental results, the HLNS was able to
provide high quality solutions for all class of the instances.

• On the other hand, the high quality solutions provided by HLNS to
solve very large-sized instances can be realized by extending the cpu
run time limit to 300 second.

IHEA [36] HLNS
Inst. Avg.Best Avg.t(s) Avg.Best Avg.t(s)

I6.1 34655399.6 130.41 34655402.8 57446.26
I6.2 91637046.6 128.05 91637183.2 54756.05
I6.3 116348325.2 135.5 116348331.2 43717.52
I6.4 87540027.8 109.40 87540027.8 58568.91
I7.1 76096536.8 204.39 76096544 52270.39
I7.2 163300152 218.40 163300154.4 69258.95
I7.3 208559651.2 226.30 208559651.2 40881.87
I7.4 386197890.2 240.13 386197890.2 51329.59
Avg. 145541878.675 174.075 145541898.1 53528.69

Table 7.4: Performance of HLNS with 300 seconds cpu time limit on 40 very
large-sized instances of Group III.

7.5 Conclusion

In this chapter, we proposed a hybrid algorithm to solve the quadratic
knapsack problem (QKP). This algorithm is able to guide the search pro-
cess towards new search spaces. The hybrid method is based upon the
principle of a large neighborhood search and a strategy of variables reduc-
tion search.
The proposed approach was introduced in order to develop our algorithm
(RS) for providing an efficient resolution method yielding high quality so-
lutions with fast runtime to approximate large-size and very large instances
of the quadratic knapsack problem (QKP).
The performance of the proposed method was evaluated on the three sets
of the standard benchmark instances of the literature. Then, the computa-
tional results showed that the proposed method is very competitive when
compared to the Cplex solver and to the best recent method available in the
literature. As shown from the experimental results, the proposed method
was able to provide high quality solutions within fast runtime for the small,
medium, and large instances, but with more runtime with the very large
sized instances.

Chapter 8

101

Chapter 8

General conclusion

In this general conclusion, we present a brief summary and outline only the
principal contributions of this work, since the detailed discussion of each
contribution is presented as a final section of the corresponding chapter. In
addition, we draw some perspectives on future work.

In this thesis, we studied two combinatorial optimization problems such:
The problem ofK-clusters in a bipartite graph, also known as "K-Clustering
minimum Biclique Completion Problem (K-CmBCP)" and "The quadratic
knapsack problem(QKP)".

At first, in order to draw some conclusions from the work presented in this
thesis, it is necessary to draw attention to the primary goal of our work is
essentially based on the propose approximate methods to effectively solve
the two problems we are addressing.

Principles contributions of this work

In the first part of this thesis, our research concentrate on solving the
problem of K-clusters in a bipartite graph. In chapter 3, after an overview
the state of the art for the problem of K-clusters in a bipartite graph,
we presented five mathematical models for the K-CmBCP, from which we
obtained the linear mathematical model in (ILPM) which was then used in
chapter 4 to obtain numerical results with the Cplex 12.6 solver based on
the K-CmBCP instances that extracted from the literature.

In chapter 4, we proposed a hybrid method for approximately solving to the
K-clustering minimum biclique completion problem. This approach uses a
combination of three phases:

• In the first phase we proposed the sequential procedure that used for
partition the services according to their clusters, and introduced the
starting solution.

• In the second phase we proposed a neighbourhood search based heuris-
tic as a local search that try to improve the quality of solutions.

• In the third phase, we used a perturbation procedure serve to intensify
and diversify the search process.

103

104 General conclusion

The numerical results showed that the proposed approach provides encour-
aging results by improving the quality of solutions of the known literature
and the quality of solutions provided by the Cplex.12.6 solver.

In the second part of this thesis, our research focused on the development of
heuristic approaches to approximate large-size instances of NP-hard com-
binatorial optimization problems. Herein, we cited several algorithms for
approximating a particular problem belonging to the knapsack family, the
quadratic knapsack problem (QKP). In chapter 6, we introduced a hybrid
reactive search to solve the quadratic knapsack problem that is mainly
based on two complementary phases such as:

• A greedy procedure that iteratively introduces an item with best effi-
ciency into the knapsack to construct a starting solutions.

• A neighbourhood search to improve the quality of the starting solu-
tions.

The performance of the proposed method was evaluated on the set of the
standard benchmark instances of the literature. From the experimental
results, according to our preliminary computational results, the behaviour
of the cooperation is encouraging the obtained results, when compared to
those reached by Cplex solver and those solutions provided by known lit-
erature.
In order to develop our algorithm presented in (section 6.2 in chapter 6),
in chapter 7, we proposed a hybrid algorithm to solve the quadratic knap-
sack problem (QKP). The proposed algorithm based upon the principle of
a large neighborhood search and a strategy of variables reduction search
(HLNS). This algorithm is able to guide the search process towards new
search spaces.
The performance of the proposed algorithm was evaluated on the sets of
the standard benchmark instances of the literature. The computational
results showed the efficiency of the proposed algorithm when compared to
the Cplex solver and to the best methods available in the literature.

The general outcome, according to the experimental analysis on bench-
marks instances of the literature, is that hybrid search solution techniques
are successful in developing better algorithms to approximate small and
large-size instances of the considered problems in this work.

Perspective and future work

The work presented in this thesis would be adapted for the further de-
velopment as well as, in order to improve our algorithm. We propose an
approximate method to solve the problem ofK-clusters in a bipartite graph:
it is also interesting to consider other methods in order degradation and

105

reconstruction without using Cplex solver.
On the other hand, in order to improve our algorithm (HLNS) to solve
quadratic knapsack problems, we consider another strategy to fix the best
elements of binary solution to value 1 and to fix the worse elements of
binary solution to value 0. Another suggested work is to consider other
methods in order to develop our algorithm (HLNS) such as tabu search,
genetic algorithm.

Bibliography

[1] Billionnet A., Faye A., and Soutif E. A new upper-bound and an exact
algorithm for the 0-1 quadratic knapsack problem. European Journal
of Operational Research, 112:664–6727, 1999.

[2] Billionnet A. and Soutif E. An exact method based on lagrangean de-
composition for the 0-1 quadratic knapsack problem. European Journal
of Operational Research, 157(3):565–575, 2004.

[3] Billionnet A. and Soutif E. Using a mixed integer programming tool
for solving the 0-1 quadratic knapsack problem. INFORMS Journal
On Computing, 16(2):188–197, 2004.

[4] Billionnet A. and Calmels F. Linear programming for the 0-1 quadratic
knapsack problem. European Journal of Operational Research, 92:310–
325, 1996.

[5] Caprara A., Pisinger D., and Toth P. Exact solution of the quadratic
knapsack problem. INFORMS Journal on Computing, 11:125–137,
1999.

[6] Feo Thomas A, Resende Mauricio GC, and Smith Stuart H. A greedy
randomized adaptive search procedure for maximum independent set.
Operations Research, 42(5):860–878, 1994.

[7] Meka Anand. Distributed algorithms for summarizing and querying
spatio-temporal data in sensor networks. ProQuest, 2007.

[8] Eberhart Russ C and Kennedy James. A new optimizer using particle
swarm theory. In Proceedings of the sixth international symposium on
micro machine and human science, volume 1, pages 39–43. New York,
NY, 1995.

[9] Ferreira C., Martin A., De Souza C., and Wolsey L. Weismantel R.
Formulations and valid inequalities for node capacitated graph parti-
tioning. Mathematical programming, 74:247–266, 1996.

[10] Helmberg C., Rendl F., and Weismantel R. Quadratic knapsack re-
laxations using cutting planes and semidefinite programming. In 1996
Fifth IPCO Conference, volume 1084, pages 175–189. Springer Verlag,
1996.

[11] Cotta Carlos, Mendes Alexandre, and Moscato Pablo. Memetic algo-
rithms. In New optimization techniques in engineering, pages 53–85.
Springer, 2004.

[12] Blum Christian, Roli Andrea, and Sampels Michael. Hybrid meta-
heuristics: an emerging approach to optimization, volume 114.
Springer, 2008.

107

108 Bibliography

[13] Berge Claude. Théorie générale des jeux à n personnes, volume 138.
Gauthier-Villars Paris, 1957.

[14] Pisinger D., Rasmussen A., and Sandvik R. Solution of large quadratic
knapsack problems through aggressive reduction. INFORMS Journal
on Computing, 19(2):280–290, 2007.

[15] George Dantzig. Discrete-variable extremum problems. Operations
research, 5(2):266–288, 1957.

[16] Pisinger David. Algorithms for knapsack problems. PhD thesis, Uni-
versity of Copenhagen, 1995.

[17] Pisinger David and Toth Paolo. Knapsack problems. In Handbook of
combinatorial optimization, pages 299–428. Springer, 1999.

[18] Pisinger David and Ropke Stefan. Large neighborhood search. In
Handbook of metaheuristics, pages 399–419. Springer, 2010.

[19] Alain F., Elloumi S., and Eric S. Decomposition and linearization for
0-1 quadratic programming. Annals of Operations Research, 99:79–93,
2000.

[20] Chu F., Wang G., and Yang Z. An effective grasp and tabu search for
the 0-1 quadratic knapsack problem. Computers Operations Research,
40:1176–1185, 2013.

[21] Fomeni F.D. and Letchford A.N. A dynamic programming heuristic for
the quadratic knapsack problem. INFORMS Journal on Computing,
26(1):173–182, 2014.

[22] Glover Fred. Heuristics for integer programming using surrogate con-
straints. Decision Sciences, 8(1):156–166, 1977.

[23] Glover Fred. Future paths for integer programming and links to artifi-
cial intelligence. Computers and Operations Research, 13(5):533–549,
1986.

[24] Glover Fred., Jin-Kao Hao, and Yuning Chen. An evolutionary
path relinking approach for the quadratic multiple knapsack problem.
Knowledge-Based Systems, 92:23–34, 2016.

[25] Glover Fred and Laguna Manuel. Tabu search. Springer, 1999.

[26] Glover Fred, Laguna Manuel, and Martí Rafael. Principles of scatter
search. European Journal of Operational Research, 169(2):359–372,
2006.

[27] Dijkhuizen G. and Faigle U. A cutting-plane approach to the edge-
weighted maximal clique problem. European Journal of Operational
Research, 69:121–130, 1993.

[28] Gallo G., Hammer P.L., and B. Simeone. Quadratic knapsack prob-
lems. Mathematical Programming Study, 12:132–149, 1980.

Bibliography 109

[29] Mathews GB. On the partition of numbers. Proceedings of the London
Mathematical Society, 1(1):486–490, 1896.

[30] Christos H., Papadimitriou, and Steiglitz Kenneth. Combinatorial op-
timization: algorithms and complexity. Courier Dover Publications,
1998.

[31] Holland John H. Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[32] Akeb Hakim, Hifi Mhand, Mohamed Elhafedh, and Ould Ahmed
Mounir. Local branching-based algorithms for the disjunctively con-
strained knapsack problem. Computers & Industrial Engineering,
60(4):811–820, 2011.

[33] Kellerer Hans, Pisinger David, and Pferschy Ulrich. Knapsack prob-
lems. Springer, 2004.

[34] Jin-Kao Hao and Yuning Chen. Iterated responsive threshold search
for the quadratic multiple knapsack problem. Annals of Operations
Research, 226(1):101–131, 2015.

[35] Jin-Kao Hao and Yuning Chen. Memetic search for the generalized
quadratic multiple knapsack problem. IEEE Transactions on Evolu-
tionary Computation, 20(6):908–923, 2016.

[36] Jin-Kao Hao and Yuning Chen. An iterated “hyperplane exploration”
approach for the quadratic knapsack problem. Computers Operations
Research, 77:226–239, 2017.

[37] Jin-Kao Hao. and Chen. Yuning. The bi-objective quadratic multiple
knapsack problem, model and heuristics. Knowledge-Based Systems,
97:89–100, 2016.

[38] Keld Helsgaun. An effective implementation of K-opt moves for the
Lin- Kernighan TSP heuristic. PhD thesis, Roskilde University. De-
partment of Computer Science, 2006.

[39] Aarts Emile HL, Lenstra Jan Karel, and Vaessens Rob JM. A local
search template. Computers & Operations Research, 25(11):969–979,
1998.

[40] Cowling Peter I and Keuthen Ralf. Embedded local search approaches
for routing optimization. Computers & operations research, 32(3):465–
490, 2005.

[41] ILOG IBM. Inc. cplex 12.5 user manual, 2012.

[42] David J., Gerhard J., Jr. Rader, and Woeginger. The quadratic 0–1
knapsack problem with series–parallel support. Operations Research
Letters, 30(3):159–166, 2002.

110 Bibliography

[43] Orlin James. Contentment in graph theory: covering graphs with
cliques. In Indagationes Mathematicae (Proceedings), volume 80, pages
406–424. Elsevier, 1977.

[44] Bryant A Julstrom. Greedy, genetic, and greedy genetic algorithms
for the quadratic knapsack problem. pages 607–614. ACM, 2005.

[45] Lee K., Park K., and Park S. An extended formulation approach
to the edge-weighted maximal clique problem. European Journal of
Operational Research, 95:671–682, 1996.

[46] Kolesar and Peter J. A branch and bound algorithm for the knapsack
problem. Management Science, 13(9):723–735, 1967.

[47] Eugene L. and Wood David E. Branch-and-bound methods: A survey.
Operations research, 14(4):699–719, 1966.

[48] Johnson L., Mehrotra A., and Nemhauser G.L. Min-cut clustering.
Mathematical programming, 62(1-3):133–151, 1993.

[49] Létocart L., Nagih A., and Plateau G. Reoptimization in lagrangian
methods for the 0-1 quadratic knapsack problem. Computers and Op-
erations Research, 39:12–18, 2012.

[50] Hifi Mhand and Roucairol Catherine. Approximate and exact algo-
rithms for constrained (un) weighted two-dimensional two-staged cut-
ting stock problems. Journal of combinatorial optimization, 5(4):465–
494, 2001.

[51] Hifi Mhand, Moussa Ibrahim, and Saadi Toufik. Modèles de résolution
approchée et efficace pour les problèmes des réseaux de transport et de
télécommunication. PhD thesis, Université de Picardie Jules Verne
d’Amiens, 2015.

[52] Hifi Mhand and Michrafy Mustapha. A reactive local search-based
algorithm for the disjunctively constrained knapsack problem. Journal
of the Operational Research Society, 57(6):718–726, 2006.

[53] Hifi Mhand and Michrafy Mustapha. Reduction strategies and exact
algorithms for the disjunctively constrained knapsack problem. Com-
puters & Operations Research, 34(9):2657–2673, 2007.

[54] Al-Iedani Najat, Hifi Mhand, and Saadi Toufik. Neighborhood search-
based heuristic for the k-clustering minimum biclique completion prob-
lem. volume 272, pages 639–643. IEEE, 2016.

[55] Al-Iedani Najat, Hifi Mhand, and Saadi Toufik. Recherche par voisi-
nage pour le problème de k-clusters dans un graphe biparti. volume
206, pages 396–398, 2016.

[56] Al-Iedani Najat, Hifi Mhand, and Saadi Toufik. M’ethode hybride
pour le problème de regroupement dans un graphe biparti. volume
117, 2017.

Bibliography 111

[57] Al-Iedani Najat, Hifi Mhand, and Saadi Toufik. A reactive search for
the quadratic knapsack problem. volume 190. IEEE, 2017.

[58] Ergun Özlem, Ahuja Ravindra Kand, Orlin James B, and Pun-
nen Abraham P. A survey of very large-scale neighborhood search
techniques. Discrete Applied Mathematics, 123(1):75–102, 2002.

[59] Bertsekas Dimitri P. Dynamic programming and optimal control, vol-
ume 1. Athena Scientific Belmont, MA, 1995.

[60] Chaillou P., Hansen P., and Mahieu Y. Best network flow bound for
the quadratic knapsack problem. in b. simeone, editor. Combinatorial
Optimization, 1403:225–235, 1989.

[61] Hansen P. and Mladenović N. Variable neighborhood search: Prin-
ciples and applications. European Journal of Operational Research,
130:449±467, 2001.

[62] James P., Kelly H., and Osman Ibrahim. Meta-heuristics: theory and
applications. Springer, 1996.

[63] Michelon P. and Veilleux L. Lagrangean methods for the 0-1 quadratic
knapsack problem. European Journal of Operational Research, 92:326–
341, 1996.

[64] Jong Hyuk Park, Jeong-Jun Suh, Jong-Kuk Park, Shan Guo Quan,
and Young Yong Kim. Multicast partition problem for smart home
applications. In Hybrid Information Technology, 2006. ICHIT’06. In-
ternational Conference on, volume 2, pages 284–291. IEEE, 2006.

[65] Siarry Patrick. Métaheuristiques: Recuits simulé, recherche avec
tabous, recherche à voisinages variables, méthodes GRASP, algo-
rithmes évolutionnaires, fourmis artificielles, essaims particulaires et
autres méthodes d’optimisation. Editions Eyrolles, 2014.

[66] Magni Claudio Patrizio. Biclique completion problem: models and
algorithms. Master Project, Politecnico di Milano, 2009.

[67] Shaw Paul. Using constraint programming and local search methods
to solve vehicle routing problems. In Principles and Practice of Con-
straint Programming—CP98, pages 417–431. Springer, 1998.

[68] Chrétienne Philippe, Gourdin Eric, Faure Nathalie, and Sourd Francis.
Biclique completion problems for multicast network design. Discrete
Optimization, 4(3):360–377, 2007.

[69] Hansen Pierre and Mladenović Nenad. Variable neighborhood search.
Computers & Operations Research, 24(11):1097–1100, 1997.

[70] Hammer P.L. and D.J. Rader Jr. Efficient methods for solving
quadratic 0-1 knapsack problems. INFOR, 35:170–182, 1997.

[71] Battiti R. and Bertossi A. Greedy, prohibition, and reactive heuristics
for graph partitioning. IEEE Transactions on Computers, 48(4):361–
385, 1999.

112 Bibliography

[72] Battiti R. and Tecchiolli G. The reactive tabu search. ORSA Journal
on Computing, 6(2):126–140, 1994.

[73] Anders Bo Rasmussen, Pisinger David, and Rune Sandvik. Solution of
large-sized quadratic knapsack problems through aggressive reduction.
pages 0107–8283, 2004.

[74] Peeters René. The maximum edge biclique problem is np-complete.
Discrete Applied Mathematics, 131(3):651–654, 2003.

[75] JMW Rhys. A selection problem of shared fixed costs and network
flows. Management Science, 17(3):200–207, 1970.

[76] Bellman Richard. Dynamic programming and lagrange multipliers.
Proceedings of the National Academy of Sciences of the United States
of America, 42(10):767, 1956.

[77] Battiti Robeto, Brunato Mauro, and Mascia Franco. Reactive Search
and Intelligent Optimization, volume 45. Springer, 2008.

[78] Dasgupta Sanjoy, Papadimitriou Christos H, and Vazirani Umesh. Al-
gorithms. McGraw-Hill, Inc., 2006.

[79] Kirkpatrick Scott, Vecchi MP, et al. Optimization by simmulated
annealing. science, 220(4598):671–680, 1983.

[80] Gualandi Stefano. k-clustering minimum biclique completion via a
hybrid cp and sdp approach. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems,
pages 87–101. Springer, 2009.

[81] Gualandi Stefano, Magni Claudio, and Maffioli Francesco. A branch-
and-price approach to k-clustering minimum biclique completion prob-
lem. International Transactions in Operational Research, 20(1):101–
117, 2013.

[82] Christoph Witzgall. Mathematical methods of site selection for elec-
tronic message systems (ems). NASA STI/Recon Technical Report N,
76:18321, 1975.

[83] Jiming Liu Xiao-Feng Xie. Mini-swarm for the quadratic knapsack
problem. Honolulu, HI, USA, pages 190–197, 2007.

	Résumé de thèse en Français
	Introduction
	Le problème de K-clusters dans un graphe biparti
	Definition le K-CmBCP
	Modélisation du problème K-clusters dans un graphe biparti
	Résolution hybride
	Phase de construction d'une solution de départ
	phase d'intensification
	Phase de diversification des solutions

	le problème du sac à dos quadratique
	Définition
	Modélisation du problème du sac à dos quadratique à variables binaires
	Recherche réactive pour résoudre le problème du sac à dos quadratique
	Méthodes glouton pour construction d'une solution de départ
	Recherche par voisinage pour améliorer la solution de départ
	La réduction de variables

	Conclusion

	General Introduction
	I The problem of K-clusters in a bipartite graph
	Literature Review
	Graph notions
	Definition of the problem of K-clusters in a bipartite graph
	The resolution methods and applications for K-CmBCP
	Mathematical programming formulations for (K-CmBCP)
	First formulation
	Second formulation
	Third formulation
	Fourth formulation
	Fifth formulation

	Conclusion

	Variable Neighborhood Search-based Heuristic for the problem of K-clusters in a bipartite graph
	Introduction
	The mathematical model used
	Example with two clusters (K=2)
	The mathematical formulation

	Neighborhood search-based heuristic for the problem (K-CmBCP)
	Construction of a starting solution for K-CmBCP
	A local search heuristic to improve the quality of a starting solution.
	Perturbation method for solutions diversification

	 Computational results
	Description of the instances of K-CmBCP
	Parameter settings
	Test the performance of the proposed methods
	Effect of the destroy and repair process
	Test the performance of proposed method with the large sizes instances:

	Conclusion

	II The Quadratic Knapsack Problem(QKP)
	Quadratic knapsack problems and resolution methods
	Introduction
	Definition
	Notions about Linear Programming
	 0-1 Quadratic knapsack problem (QKP)

	The classical resolution methods
	The exact methods
	The approximate methods

	Conclusion

	Reactive Search for the Quadratic knapsack Problem
	Introduction
	Reactive search for the quadratic knapsack problem
	Greedy algorithm to construct a starting solution
	Neighborhood search to improve a starting solution

	Computational experiments
	Benchmark instances
	Parameter settings
	Test the performance of proposed methods
	Effect of the destroy and repair process

	Conclusion

	Solution of Large-sized Quadratic Knapsack Problems Through Variables Reduction Search
	Introduction
	Large neighborhood search(LNS)
	Variables reduction search(VRS)
	Computational results
	Comparative results on small and medium instances of Group I
	Comparative results of HLNS on large sized instances of Group II
	Comparative results of HLNS on 40 very large instances of Group III

	Conclusion

	General conclusion
	Bibliography

