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We explore the various types of electrostatic interaction between charges in thin films with high dielectric permittivity, including the special case of the two-dimensional logarithmic Coulomb interaction, and propose a method of tuning the interaction regime using the external gate electrode. Changing the gate-to-film distance, one may alter the electrostatic screening length of the dielectric sample and control the ranges of different interaction types.

We investigate next the electrostatics of extended charges in dielectric media, modeling the electrostatic potential distribution for charged wires, stripes and domain walls, with either homogeneous or periodic linear charge density. Basing on the calculated dependencies of the potential on the system geometry and material parameters, we discuss several possible applications: i ) we suggest the non-destructive method for measuring the dielectric constant of substratedeposited thin films by a two-wire capacitor; ii ) we study the domain structure formation in ferroelectric films with in-plane polarization.

We show that for the in-plane striped 180 • domain structure, induced by the discontinuity of the order parameter at the film edge, the equilibrium domain width violates the Kittel's square root law, being instead inversely proportional to the film thickness. The calculations for the in-plane domains, generated by the microscope tip or charged domain wall in the ferroelectric slab, demonstrate the conformity of the optimal domain length to the characteristic electrostatic length of the sample, and accord with the experimental data.

Électrostatique des charges dans les couches minces diélectriques et ferroélectriques -R ÉSUM É -Nous explorons la variété des types d'interactions électrostatiques entre les charges dans des films minces à haute permittivité diélectrique, y compris l'interaction de Coulomb bidimensionnel logarithmique. Nous proposons une méthode de réglage du régime d'interaction dans le couche à l'aide de l'électrode externe. Nous étudions ensuite les électrostatiques des charges étendues dans les matériaux diélectriques: des fils et des bandes chargés de manière homogène ou périodique. En s'appuyant sur les potentiels électrostatiques calculés de ces objets, nous abordons plusieurs applications possibles. Tout d'abord, nous suggérons la méthode non destructive pour mesurer la constante diélectrique des films minces déposés par un substrat par un condensateur à deux fils.

Ensuite, nous étudions la formation des domaines dans des films ferroélectriques avec la polarisation dans le plan. L'apparition de la texture en domaines est causée soit par le bord chargé d'un échantillon de taille finie, soit par l'existence d'une paroi de domaine chargé dans le film. Les deux phénomènes augmentent l'énergie électrostatique de l'échantillon, ce qui stimule l'apparence des domaines pour minimiser l'énergie totale. Nous montrons que la taille équilibre du domaine dépend de la géométrie de l'échantillon et, pour les domaines dans le plan, elle viole la loi racine carrée de Kittel, étant inversement proportionnelle à l'épaisseur du film.

Mots-Clés: interaction électrostatique, charge, diélectrique, ferroélectrique, domaine.

Les travaux de recherche étaient financés par le Projet Européen FP7-MC-ITN-NOTEDEV. iv Résumé v La dimensionnalité plus petite que trois des diélectriques nanométriques présente les propriétés électrostatiques uniques. Comme exemple frappant, nous discutons de l'apparition du confinement logarithmique bidimensionnel des charges dans des couches diélectriques minces [Baturina2013, Rytova1967], par opposition à l'interaction Coulomb tridimensionnelle conventionnelle. L'aperçu de ce phénomène, ainsi que les notions et notations pertinentes, est donné dans le Chapitre 1.

La propriété distinctive des couches minces à la haute permittivité diélectrique (high-κ) est l'existence de divers types d'interactions électrostatiques entre les charges. En fonction de la combinaison des paramètres géométriques et matériels du système, l'interaction entre deux charges dans un film peut soit suivre la loi tridimensionnelle de Coulomb, soit avoir le caractère logarithmique bidimensionnel. Il est possible de régler le type d'interaction avec l'électrode externe (Fig. 1).

De plus, la présence de l'électrode dans le système dévoile les nouveaux types d'interaction: dipôle et exponentiel. Cette variété remarquable permet d'étudier plus profondément les phénomènes connexes, y compris les transitions des phases topologiques et le piégeage des charges (charge trapping) dans les nanoéléments de mémoire, et autres applications prometteuses.

Les détails de cette recherche sont décrits dans le Chapitre 2, dans lequel on develope théorie du comportement électrostatique des charges dans le système bidimensionnel high-κ en présence de l'électrode, en se basant sur la modélisation numérique et analytique du potentiel électrostatique.

Ensuite, nous explorons les types d'interactions électrostatiques. En fonction des relations entre les paramètres géométriques du système, on obtient (Λ κh est la longueur caractéristique du système): soit ρ < a et ρ < Λ: l'interaction logarithmique bidimensionnel; soit Λ < ρ < a: l'interaction tridimensionnelle de Coulomb. L'interaction des charges contrôlée par l'électrode dans un high-κ film: la géométrie du système. Un film mince d'épaisseur h avec la constante diélectrique κ est déposé sur le substrat avec la constante diélectrique κ b . L'électrode métallique en haut (gate) est séparée du film par l'espaceur d'épaisseur a avec la constante diélectrique κ a . Les charges qui interagissent, e, sont situées au milieu du film. L'origine du système de coordonnées cylindriques, (ρ, θ, z), ρ étant la coordonnée latérale, est choisie à l'emplacement de la charge générant le champ électrique; z est perpendiculaire au plan de film.

Lorsque l'électrode est présente dans le système, la longueur caractéristique Λ se divise en trois paramètres Λ 1,2,3 , en séparant les régions avec les différents types d'interaction [Kondovych2017a] (voir Fig. 2). Alors, soit ρ > a et ρ < Λ 1,3 : l'interaction logarithmique bidimensionnel; soit ρ > a et ρ > Λ 2,3 : l'interaction dipôle; soit ρ > a et Λ 1 < ρ < Λ 2 : l'interaction tridimensionnelle de Coulomb.

Tous les régimes d'interaction possibles sont analysés et assemblés sous la forme de diagramme dans Fig. 
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Figure 2: Les régimes d'interactions électrostatiques. La carte visualise les différents régimes d'interaction entre les charges dans les coordonnées a -ρ. Le régime dominé par l'électrode a lieu à ρ < a, au-dessus de la ligne diagonale pointillée. Au-dessous de cette ligne, l'interaction n'est que légèrement affectée par l'électrode. Les régions avec l'interaction logarithmique, se trouvant à petit ρ sont mises en évidence par les couleurs bleuâtres. Cette interaction logarithmique 2D devient projetée à des distances supérieures à la longueur caractéristique Λ. Ce dernier peut acquérir l'une ou l'autre des valeurs Λ, Λ 1 ou Λ 3 , selon les paramètres du système. Affecté par l'électrode, les charges interagissent soit en tant que charges de points 3D (région grise, à droite de la ligne de séparation Λ 2 ), soit en tant que diples électriques (région jaunâtre, à gauche de Λ 2 ). À très petite séparation de l'électrode, la forte dépendance exponentielle a lieu (le pétale violet). Les nombres romains gris correspondent aux formules analytiques de la Table 2.1 dans le Chapitre 2.

Résumé viii pour la détermination de la constante diélectrique des films minces déposés par substrat par mesure de capacitance avec deux fils parallèles placés sur le dessus du film (Fig. 3). La formule analytique exacte pour la capacitance de ce système est dérivée [Kondovych2017b]:

C -1 l = (πε 0 ) -1 ε 1 + ε 3 ln A d Λ + 1 - h Λ β g d Λ ,
ici, C -1 l est la capacitance inverse par unité de longueur de fil, ε 3,2,1 sont les constantes diélectriques du substrat, du film et du milieu environnant, respectivement, d est la distance entre deux fils, Λ est la longueur caractéristique du systéme ε-dépendante, β décode l'anisotropie de la constante diélectrique du film, ε 0 est la permittivité du vide, A est une constante sans importance pour l'analyse, et g est la fonction auxiliaire trigonométrique intégrale [Abramowitz1965]. Les cas limites de la bande infiniment large et du fil très mince sont analysés.

Le premier se convertit en la structure de domaine hors-plan connue de Kittel obéissant à la dépendance de la racine carrée de la période de domaine sur experimental data [Lu2015] fit with Eq.(4.24) i) on propose un modèle de l'apparence des domaines tête-à-tête et queue-àqueue près des parois de domaines chargées induites par la pointe du microscope dans des films ferroélectriques avec une polarisation dans le plan. Il est démontré que la distance latérale optimale de la croissance du domaine est l'ordre de la longueur caractéristique du systme, Λ ∼ εh, où ε est la constante diélectrique du matériau et h est l'épaisseur du film (Fig. 5);

Résumé xiii

ii) l'expression de la dépendance de la distance latérale de la croissance du domaine l induite par la pointe du microscope sur le voltage appliqué V est dérivée,

V -1 = V -1 0 ln A Λ √ h -Φ -1 (l/Λ) + 1 2 ,
démontrant le bon accord avec les données expérimentales (Fig. 6). La fonction Electrostatics is one of the pillars of natural sciences. Its role can't be overestimated, as it deals with one of four existing interaction types, the electrostatic interaction, that is crucial for the existence of matter itself.

In spite of the long history of the electrostatics, still, there are many unexplored questions related to it. One of them arised recently, with the beginning of the era of nanotechnology, when it appeared that properties of thin films and other meso-and nanoobjects differ from those in the bulk, and the question is, -how exactly they are different. Large variety of phenomena connected to the small size and low dimensionality of the meso-and nanosystems has been observed and explained; many others, though obtained in the experiments, still are not fully understood and need detailed theoretical investigation. Starting with the basic brick of electrostatics, the electrostatic interaction between charges, my hope is to get closer to this understanding.

1.1 Charges in three dimensions 1.1.1 Where electrostatic begins

The electrostatic interaction force between two stationery point charges q 1 (located in a point of space with the radius vector r 1 ) and q 2 (located in r 2 ) in a vacuum obeys the Coulomb's law,

F = kq 1 q 2 r 2 -r 1 |r 2 -r 1 | 3 , (1.1)
where k is a constant that depends on the chosen system of units (e.g. k = 1 in the SGS units, k = (4πε 0 ) -1 in the SI units, ε 0 is the vacuum permittivity).

In this Thesis, we work within the SI system of measurement.

For a huge set of problems, the expression (1.1) is a primary means to model and describe the electrostatic phenomena. For the simplest case of one charge q, placed in the origin of the coordinate system, the electric field related to it, is a force that a test charge located in r experiences,

E = kq r |r| 3 .
(1.2)

When it comes to a number of charges interacting in vacuum, distributed with the spatial density q Ω in the volume Ω, we can apply the superposition principle, in order to determine the force acting on a probe charge:

E(r) = k Ω q Ω (r ) r -r |r -r | 3 d 3 r .
(1.3) Such summation appears to be quite complicated mathematically, except for a few well-known problems with simple geometry and homogeneous charge distribution. In a real material, one should take into account the interaction between all the particles, which is often hard to solve even numerically. However, there are several analytical tools of electrostatics that might help.

Maxwell and Poisson equations

In the electrostatic approximation, the electric field satisfies the following Maxwell's equations (in the differential form):

divE = 4πkq Ω , rotE = 0. (1.4)
The first is called the Maxwell-Gauss equation. The second, Maxwell-Faraday equation, shows that the electric field is irrotational, thus the gradient exists:

E = -∇ϕ. (1.5)
Combined with the first equation in (1.4), it provides the relation between the potential and the charge density: the Poisson's equation (or Laplace equation, if q Ω = 0).

∇ 2 ϕ = -4πkq Ω .
(1.6)

Electrostatic potential distribution

Recovering the solution of the Poisson's equation (1.6), thus determining the electric field (or potential) in every point of space given the spatial density of the distributed free charge (on the surface of conductors) constitute the main problem of electrostatics. The uniqueness theorem for Poisson's equation claims, that once the function for the potential is found (up to a constant) and it satisfies the requirements of the continuity and smoothness, which are often referred to as boundary conditions, that is the right and unique solution. This fact generated the variety of analytical methods for obtaining the potential distribution in a given system, among which:

-the Fourier transform method, the Wiener-Hopf method, and other mathematical methods for solving the differential equations;

-the method of images;

-the conformal mapping techniques; -simple guess; and others.

The Poisson's equation may be as well solved numerically in many cases.

A charge inside a bulk dielectric

Now, let us put a point charge in an infinite bulk dielectric material. The electric field induced by the charge causes dielectric polarization in the material:

positive charges shift toward the field, while negative charges shift oppositely.

The density of created dipole moments is called the electric polarization and is usually denoted as P.

The polarizability of the material, i.e. the measure of how easily it polarizes in the electric field, is determined by the dielectric susceptibility χ, which is a tensor in general case of anisotropic material: P = ε 0 χE.

In its turn, χ determines the dielectric permeability (dielectric constant) ε = χ + 1. In the isotropic case, this remarkable characteristic of the dielectric material simply lowers the electric field by ε times. Thus, the Poisson's equation inside the isotropic dielectric will acquire the form:

∇ 2 ϕ = - 4πk ε q Ω ,
and its solution for the case of a point charge q in an infinite 3D bulk dielectric:

ϕ = kq εr ; E = kq ε r |r| 3 .
In the following Section it is discussed, how this ∝ 1/r behavior of the electrostatic potential changes when the charge is placed in a thin dielectric film instead of the bulk.

Charge interaction in dielectric thin film

q h ε 1 ε 2 ε 3 ρ z Figure 1
.1: Charged particle in the middle of a three-layer dielectric structure. Thin film of thickness h with the dielectric constant ε 2 is sandwiched between two thicker layers with dielectric constants ε 1 (above) and ε 3 (below the film). A point charge, q, is situated inside the the film, in the origin of the cylindrical coordinate system, (ρ, θ, z), where ρ is the lateral coordinate, and the z-axis is perpendicular to the film's plane.

Let us consider a three-layer dielectric structure with dielectric constants of materials being ε 1 , ε 2 , and ε 3 (Fig. 1.1). A point charge q is placed inside the middle layer, which is the film of thickness h and dielectric constant ε 2 .

The origin of the cylindrical coordinate system (ρ, θ, z) is in the location of the charge, z-axis is perpendicular to the film plane. The boundaries between the different materials, z = ±h/2, separate the three regions of the system, in which the corresponding Poisson's equations are:

1 ρ ∂ ρ (ρ∂ ρ ϕ 1 ) + ∂ 2 z ϕ 1 = 0, z > h/2 1 ρ ∂ ρ (ρ∂ ρ ϕ 2 ) + ∂ 2 z ϕ 2 = - q ε 2 ε 0 δ 3 (ρ, z), |z| < h/2, (1.7) 1 ρ ∂ ρ (ρ∂ ρ ϕ 3 ) + ∂ 2 z ϕ 3 = 0, z < -h/2 .
here, ϕ 1,2,3 are the electric potentials in three regions (1, 2, 3 from top to bottom in Fig. 1.1), δ 3 (ρ, z) is the Dirac delta-function in the cylindrical coordinates, ε 0 is the vacuum permittivity (we work in the SI units from now on). The boundary conditions at the material interfaces (z = ±h/2) are:

ϕ 1 = ϕ 2 ; ε 2 ∂ z ϕ 2 = ε 1 ∂ z ϕ 1 , z = +h/2, (1.8) ϕ 2 = ϕ 3 ; ε 2 ∂ z ϕ 2 = ε 3 ∂ z ϕ 3 , z = -h/2 .
We look for the solution of equations (1.7) in the form:

ϕ 1 = ∞ 0
A 1 e -kz J 0 (kρ) dk;

(1.9)

ϕ 2 = q 4πε 0 ε 2 ∞ 0 e -k|z| J 0 (kρ) dk + ∞ 0 B 1 e -kz J 0 (kρ) dk + ∞ 0 B 2 e kz J 0 (kρ) dk; ϕ 3 = ∞ 0 A 2 e kz J 0 (kρ) dk.
Here, J 0 is the zero order Bessel function. Applying the boundary conditions (1.8), we obtain the set of four linear equations. Solving them gives us the unknown coefficients A 1 (k) , A 2 (k) , B 1 (k) , B 2 (k). Since we are interested in the potential ϕ 2 inside the film, the coefficients we need:

B 1 = - q 4πε 0 ε 2 β 3 β 1 + e kh β 1 β 3 -e 2kh , B 2 = - q 4πε 0 ε 2 β 1 β 3 + e kh β 1 β 3 -e 2kh , (1.10) 
with

β 1 = 1 -ε 1 /ε 2 1 + ε 1 /ε 2 and β 3 = 1 -ε 3 /ε 2 1 + ε 3 /ε 2 . (1.11)
Then, the potential inside the film reads as:

ϕ 2 = - q 4πε 0 ε 2 ∞ 0 -e -k|z| + β 3 β 1 + e kh β 1 β 3 -e 2kh e -kz +
β 1 β 3 + e kh β 1 β 3 -e 2kh e kz J 0 (kρ) dk.

(1.12)

Employing the sum of a geometric series and using the following table integral [Gradshteyn2014],

∞ 0 e -px J 0 (bx) dx = 1

p 2 + b 2 ,
we can find the solution in the following form:

ϕ 2 = q 4πε 0 ε 2 1 ρ 2 + z 2 + (1.13) + q 4πε 0 ε 2 Ξ(2h + z) + Ξ(2h -z) + 1 β 1 Ξ(h + z) + 1 β 3 Ξ(h -z) ,
where

Ξ(ξ) = ∞ m=0 (β 1 β 3 ) m+1 ρ 2 + (2mh + ξ) 2 (1.14)
Albeit the expression (1.14) gives the exact formula for the electrostatic potential induced by a point charge in thin film, it needs some further simplifications to extract the peculiar features of the potential behaviour at various distances.

First, we argue that the distance between interacting free charges in a film is much larger than the film thickness, ρ h. This allows to neglect the dependence on z coordinate (we take z = 0), and to expand the integral expression

(1.12) over the small parameter kh 1:

ϕ 2 (ρ) = 1 4πε 0 2q ε 1 + ε 3 ∞ 0 J 0 (kρ) kΛ + 1 dk, (1.15)
where the characteristic length of the system, Λ, is introduced:

Λ = (ε 2 + ε 1 ) (ε 2 + ε 3 ) ε 2 (ε 1 + ε 3 ) h. (1.16)
Hereupon the potential can be easily integrated:

ϕ 2 (ρ) = qΛ -1 4ε 0 (ε 1 + ε 3 ) H 0 ρ Λ -Y 0 ρ Λ .
(1.17)

The similar result for the potential at ρ h, but for the particular case of ε 1 = ε 3 and ε 2 ε 1,3 was obtained in [Rytova1967]. Here, H 0 (x) and N 0 (x) are the zero order Struve and Neumann functions, respectively [Abramowitz1965].

Since this difference of two special functions will often appear while solving 2D electrostatic problems, it is reasonable to establish the notation: Its small-x asymptote corresponds to the logarithmic potential at small distances (dashed black line), and the large-x asymptote shows the ∼ 1/x dependence at big distances (dashed blue line). ln c 0.577 is the Euler's constant.

Φ 0 (x) = H 0 (x) -N 0 (x) . (1.18) x 0 1 2 3 4 5 0 1 2 3 Φ 0 (x)=H 0 (x)-N 0 (x) -(2/π)ln(cx/2) 2/(πx)
The asymptotic expansions of Φ 0 (x) are found from the table properties of H 0

and N 0 [Abramowitz1965], Φ 0 (x) - 2 π ln cx 2 , x 1; Φ 0 (x) → 2 π 1 x - 1 x 3 , x 1.
see also Fig. 1.2; here, c = e γ 1.781 is the exponent of the Euler constant.

For the details of Φ-function of a complex argument, see Appendix A.

Thus we find that for the relatively small distances from the charge, in the "intermediate" region h ρ < Λ, the expression (2.9) provides the logarithmic spatial dependence. This special type of the two-dimensional electrostatic interaction has a number of far reaching applications, see e.g. [Baturina2013, Zhao2014], some of which will be discussed in Chapter 2. Note that at large distances from the charge the field lines leave the film and one has the usual 3D Coulomb decay of the potential.

State of the art and objectives

The particular cases for the potential (1.15) were calculated and analyzed in [Rytova1967, Baturina2013], and the manifestation of the 2D Coulomb behaviour through the transition to the superinsulating state in the superconducting materials was presented in [Baturina2008, Vinokur2008, Baturina2013].

We are interested in the possibility of tuning the interaction type, and plan to perform it by introducing the metallic gate in the system at the alternating distance to the film. We aim to analyze the conditions at which the various regimes of interaction may occur in the gate-film system.

Generalizing the problem from the electrostatic potential of a point charge to the linearly charged wire, we target to propose the method of measuring the dielectric constant of the material by a two-wire capacitor. Compared to the existing methods of the capacitance measurement, such as via the planar capacitor [Vendik1999] or using the nanoscale capacitance microscopy [Shao2003, Gomila2008], require the conductive substrate as the bottom electrode, which may be in the disagreement with the functionality of the device. We argue that for the in-plane stripe domain structure the dependence of the optimal domain size on the sample size and material constants will differ from the out-of-plane one. We aim to obtain the corresponding expression, using the calculated in the first Chapters electrostatic potential of the 0D and 1D charges.

To summarize, the objectives of this Thesis are:

• to contribute to a theory of the electrostatic interactions between point charges in thin films and study the possibility to control the regime of interaction;

• to generalize the calculations for the point charge on the case of extended charges in thin dielectric and ferroelectric films, particularly charged wires, stripes and domain walls;

• to suggest possible topical applications of the obtained results; namely, the attention is paid to the capacitance measurements of the dielectric constant and the domain structure formation in ferroic films with the in-plane anisotropy.

Chapter 2

Charge confinement in high-κ dielectric films

Dielectric thin films with the high value of dielectric constant are often referred to as "high-κ" thin films and attract intense experimental and theoretical attention, see Ref. [Osada2012] and references therein. Following this established term, the notation of the dielectric constant (dielectric permeability) in this

Chapter is replaced by "κ" instead of traditional notation, "ε", which is used in the rest of the Thesis, while both relate to the same physical quantity.

The interest to high-κ 2D systems is motivated by their high technological perspective for design and fabrication of nanoscale devices. They cover a wide spectrum of physical systems [Baturina2013, Castner1975, Grannan1981, Hess1982, Yakimov1997, Watanabe2000] ranging from traditional dielectrics and ferroelectrics to strongly disordered thin metallic and superconducting films experiencing metal-insulator and superconductor-insulator transitions, respectively.

The major feature of high-κ systems leading to their unique properties, is that the electric field induced by the trapped charge remains confined within the film. This ensures the electrostatic integrity and stability with respect to external perturbations and gives rise to the 2D character of the Coulomb interactions between the charges [Rytova1967, Chaplik1972, Keldysh1979]. Namely, the potential produced by the charge, located inside the high-κ sheet of thickness h, sandwiched between media with κ a and κ b permeabilities, exhibits the logarithmic distance dependence, ϕ(ρ) ∝ ln(ρ/Λ), extending till the fundamental screening length of the potential dimensional crossover (1.16), which in the notations of this Chapter is written as

Λ = κh κ a + κ b . (2.1)
The screening length, Λ, is a major parameter controlling the electric properties of the high-κ films. Thus, their applications require reliable and simple ways of tuning Λ which, at the same time, maintain robustness of the underlying dielectric properties of the system. As it is shown below, this is achieved by the clever location of the control gate. Adjusting the distance between the high-κ film and the gate, we vary the screening length of the logarithmic interaction and obtain a wealth of the electrostatic behaviors at different spatial scales, enabling to control the scalability and capacitance of the system. In what follows we describe the electrostatic properties of the generic high-κ device with the tunable distance to the control gate.

Model: a point charge in a high-κ film

The geometry of the system is presented in Fig. 2.1. A point charge, e < 0, is located inside a high-κ film of the thickness h, deposited on a dielectric substrate with the dielectric constant κ b . Above the film, there is a metallic gate, which is separated from the film by a layer of the thickness a with the dielectric constant κ a .

h

κ a κ κ b ρ a GATE e z Figure 2
.1: Gate-controlled charge interaction in a high-κ film: system geometry. Thin film of thickness h with the dielectric constant κ is deposited on the substrate with the dielectric constant κ b . The metallic gate on top is separated from the film by the spacer of thickness a with the dielectric constant κ a . Interacting charges, e, are located in the middle of the film. The origin of the cylindrical coordinate system, ρ, θ, z, with ρ being the lateral coordinate, is chosen at the location of the charge generating the electric field; the z-axis is perpendicular to the film plane.

The origin of the cylindrical coordinate system, (ρ, θ, z), is placed at the charge location (Fig. 2.1). The z-axis is perpendicular to the film's plane. In very thin films, which are the main focus of our study, we disregard the distances smaller than the film thickness and thus consider ρ > h. The relevant physical characteristic scale controlling the electrostatic properties of the system is the screening length Λ (2.1).

The Poisson equations defining the potential distribution created by the charge take the form:

1 ρ ∂ ρ (ρ∂ ρ ϕ) + ∂ 2 z ϕ = 4π q κ δ 3 (ρ, z), |z| < h/2, (2.2) 1 ρ ∂ ρ (ρ∂ ρ ϕ a,b ) + ∂ 2 z ϕ a,b = 0, |z| > h/2 .
Here, ϕ is the electric potential inside the film, ϕ a and ϕ b are the potentials in the regions above and below the film, respectively,

δ 3 (ρ, z) = δ(ρ)δ(z)/2πρ
is the 3D Dirac delta-function in the cylindrical coordinates, q = e and q = e/4πε 0 in CGS and SI systems respectively, ε 0 is the vacuum permittivity (for simplicity, the notation from Chapter 1, q/(4πε 0 ), is replaced by q here). The electrostatic boundary conditions at the film surfaces (z = ±h/2) are:

ϕ = ϕ a ; κ∂ z ϕ = κ a ∂ z ϕ a , z = +h/2, (2.3) ϕ = ϕ b ; κ∂ z ϕ = κ b ∂ z ϕ b , z = -h/2 ,
and ϕ a = 0 at z = a + h/2 at the interface with the electrode.

Then, the energy of the interaction with the second identical electron located at the distance ρ (see Fig. 

Electrostatic potential 2.2.1 Numerical solution of Poisson equations

Results of the numerical solution to Eqs. (2.2) are shown in Fig. 2.2 and Fig. 2.3.

The space coordinates are measured in units of Λ, defined as (2.1). The color code for the potential is shown in Fig. 2.3 c, given in units of q/κh. 

Analytical solution and the interaction diagram

To investigate the ϕ(ρ) dependence inside the film in detail, we find the analytical solution to the system (2.2).

We seek the solution of equations (2.2) in the form:

ϕ a = ∞ 0 A 1 (k) e -kz J 0 (kρ) dk + ∞ 0 A 2 (k) e kz J 0 (kρ) dk; (2.4) ϕ = q κ ∞ 0 e -k|z| J 0 (kρ) dk + ∞ 0 B 1 (k) e -kz J 0 (kρ) dk + ∞ 0 B 2 (k) e kz J 0 (kρ) dk; ϕ b = ∞ 0 D (k) e kz J 0 (kρ) dk.
Here J 0 is the zero order Bessel function. Making use the electrostatic boundary conditions (2.3) we get a system of linear equations for coefficients A 1,2 , B 1,2 and D:

q κ + B 1 + B 2 e kh = A 1 + A 2 e kh , q κ + B 1 -B 2 e kh = κ a κ A 1 - κ a κ A 2 e kh , q κ + B 1 e kh + B 2 = D, (2.5) q κ -B 1 e kh + B 2 = κ b κ D, A 1 + A 2 e 2ka e kh = 0.
In particularly, for B 1,2 we obtain:

B 1,2 = - q κ β 1,2 β 2,1 + e kh β 1 β 2 -e 2kh , (2.6) 
with

β 1 = 1 -κ b /κ 1 + κ b /κ and β 2 = tanh ka -κ a /κ tanh ka + κ a /κ . (2.7)
We are interested in distances, ρ, larger than the film thickness h. In this case, the main contribution to integrals (2.4) is coming from k h -1 . Expanding

(2.6) over the small parameter kh, assuming that κ κ a , κ b in (2.7) and substituting the resulting coefficients B 1,2 into the integral for ϕ in (2.4) we obtain the following expression:

ϕ(ρ) = 2 q κh ∞ 0 J 0 (kρ) k + κa coth(ka)+κ b κh dk.
(2.8) Shown in Fig. 2.4 is the semi-log plot of the potential versus the distance calculated for the same parameters as in Fig. 2.2. We clearly observe the change of behaviour from the logarithmic one to the fast decay at longer distances. The corresponding screening length at which the crossover occurs, Λ * , is evaluated via the abscissa section by the straight line corresponding to ϕ(ρ) ∝ ln(ρ/Λ * ) at small ρ.

Plotting the dependance of Λ * on a in a double-log scale (Fig. 2.5), we find Λ * ∝ √ a at a 10 -1 Λ. At larger a, the Λ * (a) dependence starts to deviate from the square root behaviour, and, eventually, at sufficiently large a the influence of the gate vanishes and Λ * saturates to Λ. Inspecting more carefully the transition region around a ∼ 10 -1 Λ, one observes that the functional dependence of the screened potential changes its character. At these scales the potential is pretty well described as ϕ(ρ) ∝ exp(-ρ/Λ * ) with the same Λ * ∝ √ a (see Fig. 2.4) at a 10 -1 Λ. At a 10 -1 Λ the potential decays as a power ϕ(ρ) ∝ ρ -n , with n 3.

A zoo of interaction regimes

To gain insight into the observed behaviours of the potential, we undertake the detailed analysis of two asymptotic cases, ρ > a and ρ < a, in which the exact formulae for ϕ(ρ) can be obtained. Considering possible relations between a and other relevant spatial scales, we derive, with the logarithmic accuracy, the -10
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Figure 2.4: The electrostatic potential in the presence of the gate.

Semi-log plots of the electrostatic potential of the point charge placed in the middle of the film as functions of the distance for various values of the spacer, a/Λ, increasing from the top to the bottom. The straight dashed lines are fits to ∝ ln(ρ/Λ * ) dependencies at small distances from which we determine the screening lengths Λ * at different a. The dotted lines stand for the ∝ ρ -1/2 exp(-ρ/Λ * ) dependencies, which provide pretty fair fits for the long-distance behaviour of ϕ(ρ) at small a 10 -2 Λ. The material dielectric parameters are the same as in Fig. 2.2. The distances are measured in units of the fundamental screening length Λ and the potential in units q/κh. asymptotic behaviour of ϕ(ρ) for the corresponding sub-cases. Our findings are summarized in Table 2.1.

(A) At distances less than the film-electrode separation, ρ < a, we assume that

Λ* (aΛ) 1/2 a /Λ Λ* / Λ 10 -4 10 -2 1 10 -2 10 -1 1 Figure 2.5:
The square root law for the gate-dependent screening length. The log-log plot of the screening length Λ * vs. a; the dependence is determined from the data given in Fig. 2.4. At small separations between the gate and the film, a 10 -2 Λ, the effective screening length follows the law Λ * √ Λa, at larger a the noticeable deviation from this dependence is observed and at a Λ it tends to Λ * → Λ.

coth (ka) 1 in Eq. (2.8) and recover the well-known result for the system without gate [Rytova1967, Chaplik1972, Keldysh1979]:

ϕ(ρ) = π q κh Φ 0 ρ Λ , (2.9) 
where Φ 0 (x) = H 0 (x) -N 0 (x) is the difference of the zero order Struve and

Neumann functions [Abramowitz1965, Gradshteyn2014]. Making use of the asymptotes for Φ 0 given in Appendix A we find that at short distances, ρ < Λ, one obtains the logarithmic behavior of Eq. (2.9), while at large distances the field lines leave the film and one has the 3D Coulomb decay of the potential.

(B) For ρ > a we find

ϕ(ρ) = π q κh 1 ξ 1 -ξ 2 ξ 1 Φ 0 ξ 1 ρ Λ -ξ 2 Φ 0 ξ 2 ρ Λ , (2.10) ρ < a (i) ρ < Λ ϕ(ρ) -2 q κh ln Cρ 2Λ (ii) ρ > Λ ϕ(ρ) 2 q (κa+κ b )ρ ρ > a a > 4hκκa κ 2 b (iii) ρ < Λ 1 < Λ 2 ϕ -2 q κh ln Cρ 2Λ 1 (iv) Λ 1 < ρ < Λ 2 ϕ 2 (κ 2 b -4κaκ h/a) 1/2 q ρ (v) Λ 1 < Λ 2 < ρ ϕ 2 κ b κ 2 a qa 2 ρ 3 a < 4hκκa κ 2 b (vi) ρ < Λ 3 ϕ -2 q κh ln Cρ 2Λ 3 (vii) ρ > Λ 3 ϕ 2 κ b κ 2 a qa 2 ρ 3
Table 2.1: Regimes of the interaction. There are two major regions, short distances, ρ < a, where interaction is only weakly influenced by the gate (upper panel), and large distances, ρ > a, where the gate presence renormalizes the interaction (bottom panel). Logarithmic dependence on ρ appears below the respective screening lengths, Λ, Λ 1 and Λ 3 . Above these lengths the potential decays according to the power law. The constant C = e γ 1.781... is the exponent of the Euler constant γ.

where

ξ 1,2 = 1 2(κ a + κ b ) κ b ± κ 2 b -4κ a κ h/a .
Depending on a, the length-scaling parameters, ξ 1 and ξ 2 can be either the real numbers, if a > 4hκκ a /κ 2 b , or the complex mutually conjugated numbers, if a < 4hκκ a /κ 2 b . This leads to the different regimes of the potential decay (see Table 1) that are controlled by the new screening lengths, Λ 1,2 = Λ/ξ 1,2 (Λ 1 < Λ 2 ) in the former case and Λ 3 = Λ/ |ξ 1 | = Λ/ |ξ 2 | in the latter one.

In particular, the logarithmic behaviour presented in sections (iii) and (vi) of Table 2.1, perfectly reproduces the results of computations shown in Fig. 2.4.

For small a < 4hκκ a /κ 2 b the empirical screening length Λ * acquires the form Λ 3 = (κ/κ a ) ha, corresponding to the small-a square-root behaviour inferred from the curve of Fig. 2.5. For a > 4hκκ a /κ 2 b the logarithmic behaviour persists but with Λ * = Λ 1 , which saturates to Λ with growing thickness of the spacer, a, between the film and the gate. At large scales above Λ * , the screened charge potential decays following the power law, ϕ(ρ) ∝ ρ -n , where the exponent varies from n = 1 (3D Coulomb charge interaction) to n = 3 (dipole-like interaction), in accord with the computational results discussed above. Which of the scenarios is realized, depends on the ratio of ρ to Λ 1 , Λ 2 , and Λ 3 , see Table 2.1. Finally, for the small spacer thickness, the power-law screening transforms into the exponential one,

ϕ(ρ) ∝ 2q κh π 2 Λ 3
ρ e -ρ/Λ 3 , see Appendix A. This evolution is well seen in the Fig. 2.4, as improving fits of the potential curves to the exponential dependencies (shown by dashed lines) upon decreasing a.

The interrelation between the regimes presented in the Table 2.1 is illustrated in Fig. 2.6 showing the map of the interaction regimes [Kondovych2017] drawn for the InO/SiO 2 heterostructure parameters. Note that the specific structure of the map depends on the particular values of the parameters of the system controlling the ratios between the different screening lengths Λ, Λ 1 , Λ 2 , and Λ 3 . The lines visualizing these lengths mark crossovers between different interaction regimes. The gray roman numerals correspond to the regimes listed in the Table 2.1. The colors highlight the basic functional forms of interactions between the charges. The bluish area marks the manifestly high-κ regions of the unscreened 2D logarithmic Coulomb interaction. As the distance to the gate becomes less than the separation between the interacting charges, the screening length restricting the logarithmic interaction regimes renormalizes from Λ to either Λ 1 or Λ 3 . The line Λ 2 delimits the large-scale point-like and dipolar-like interaction regimes. At very small a, a petal-shaped region appears in which the potential drops exponentially with the distance at ρ > Λ 3 . 

Λ (i) (ii) (iv) (v) (vii) (vi) (iii) Λ 1
Figure 2.6: Sketch of the regimes of electrostatic interactions. The map visualizing the different interaction regimes between charges in the a-ρ coordinates. The gate-dominated regime takes place at ρ < a, i.e. above the dashed diagonal line. Below this line the interaction is only slightly affected by the gate. The regions with the logarithmic interaction, lying at small ρ are highlighted by the blueish colours. This 2D logarithmic interaction becomes screened at distances beyond the screening length. The latter can acquire either of the values Λ, Λ 1 or Λ 3 , depending on the parameters of the system. In the screened regime, the charges interact either as 3D point charges (grayish region, on the right of the separating line Λ 2 ) or as the gate-imaged electric dipoles (yellowish region, on the left of Λ 2 ). At very small gate separation the strong exponential screening takes place (the violet petal). Gray roman numbers correspond to analytical formulae in Table 2.1.

Discussion and experimental outlook

The achieved results, summarized in Table 2.1 as well as conveniently sketched in Fig. 2.6, describe a wealth of electrostatic regimes in which the high-κ sheets can operate depending on the distance to the control gate.

The implications of the tunability of the electrostatic interaction type are far Once the electrostatics of a charged wire is known, one example of the possible application could be the use of two interacting wires as a capacitor, allowing the determination of the material dielectric constant via capacitance measurement.

The details of the corresponding analytical modeling constitute the essence of this Chapter. The arising difficulty, however, is that the conventional technique for measurement of ε, consisting in the determination of capacitance of a two-electrode plate capacitor, C = ε 0 εS/h (where ε 0 is the vacuum permittivity, S is the electrode surface and h is the distance between plates), is not suitable here. The bottom-electrode deposition at the film-substrate interface, if ever possible, perturbs the functionality and integrity of the device, whereas the top-electrode can influence the optical characterization of the system. In addition, defectprovided leakage currents across thin film can distort the results. The emergent technique of nanoscale capacitance microscopy [Shao2003, Gomila2008] that measures the capacitance between an atomic force microscope tip and the film is also limited by the same requirement of film deposition on a conductive substrate.

Capacitance measurement methods in thin dielectric films

A non-destructive way to overcome these difficulties consists in employing a capacitor in which both electrodes are located outside but in close proximity to the film. The capacitance of the system will depend on its geometry and in particular on the dielectric constants of film and substrate that finally permits to measure ε. However, determination of such functional dependence is the complicated electrostatic problem that, in general, requires cumbersome numerical calculations. The semi-analytical method of capacitance calculation for a particular case of planar capacitor in which two semi-infinite electrode plates with parallel, linearly aligned edges are deposited on the top of the film was proposed by Vendik et al. [Vendik1999]. This geometry attracted the experimental audience due to the simplicity and intuitive clarity of the resulting formula. Under the reasonable experimental conditions, the capacitance of the planar capacitor was found to be inversely proportional to the width of the edge-separated gap transmission line, d, and can be approximated as C = ε 0 εS/d where S is the cross-sectional area of the film below the electrode edge. This expression is formally equivalent to the capacitance of a parallel-plate capacitor of thickness d, in which the electrodes correspond to the cross-sectional regions.

Note, however, that Vendik's method is limited to the case when the dielectric constant of the film (we set it as ε 2 ) is much bigger than the dielectric constants of the environment media, ε 1 , and the substrate, ε 3 , and when the transmission gap is thinner than the film thickness [Deleniv1999]. This restriction is related to the used "partial capacitance" or "magnetic wall" approximations in which the film, the substrate and the environment space are assumed to be electrostatically independent of each other and the electric field lines do not emerge from the deposited film. Being justified for the upper subspace, which is normally air with ε 1 = 1, the partial capacitance approximation can be not accurate enough if the dielectric constant of the substrate is bigger than (or comparable to) that of the film.

The objective of the present work is to propose the procedure for non-destructive measurements of the dielectric constant of the films, valid for any types of the substrate and environment media. We consider the geometry in which two parallel wire electrodes are placed on top of the film and derive the exact formula for the capacitance of such system. Our calculations don't imply the partial capacitance approximation and therefore are valid for nanofilm-substrate devices based on the vast class of materials, extending from semiconductors to oxide multiferroics.

Electrostatics of a charged wire in a dielectric thin film

The geometry of the system is shown in Fig. 3.1. Two parallel wires with opposite linear charge densities, ±q l , are located on top of the ferroelectric film. The distance between the wires, d, is much larger than their radius, R, and the film thickness, h. We also account for anisotropy of the film, assuming that the in-plane (transverse) dielectric constant differs from the out-of-plane (longitudinal) one, ε 2 , by the anisotropy factor η 2 and is equal to η 2 ε 2 . The origin of the rectangular coordinate system is selected in the middle of the film, just below the left wire. The z-axis is directed perpendicular to the film plane, the y-axis is directed along the wires and the x-axis is perpendicular to them. Thus, left and right wires have the coordinates (0, y, h/2) and (d, y, h/2) correspondingly. The translational symmetry of this system in y-direction permits to reduce the consideration to the 2D space, (x, z).

Using the methods of electrostatics we calculate the distribution of the electrostatic potential induced by one of the wires (left one in Fig. 3.1). The corresponding Poisson equations have to be written separately for each constituent part of the system -the external environment space (region 1), film Two parallel oppositely charged wires with linear charge densities ±q l and of radius R (not shown) are placed on top of the film. The distance between wires, d, is much larger than h and R. The z-axis of the cartesian coordinate system is directed across the film plane, the in-plane x-axis is perpendicular to the wires, and the y-axis is directed along the wires. Measuring C l , the capacitance (per unit of length) of the two-wire system, allows to find ε 2 .

(2) and substrate (3) :

∂ 2 x ϕ 1 + ∂ 2 z ϕ 1 = -1 ε 0 ε 1 ρ(x, z), z > h/2, η 2 ∂ 2 x ϕ 2 + ∂ 2 z ϕ 2 = 0, |z| < h/2, ∂ 2 x ϕ 3 + ∂ 2 z ϕ 3 = 0, z<-h/2, (3.1)
where ρ(x, z) = q l δ(x)δ(zh/2) is the charge distribution of the wire. The electrostatic boundary conditions are applied at the interfaces between the regions. We set

ϕ 1 = ϕ 2 and ε 1 ∂ z ϕ 1 = ε 2 ∂ z ϕ 2 for the located at z = h/2
environment -film interface, (1)-(2), and

ϕ 2 = ϕ 3 and ε 2 ∂ z ϕ 2 = ε 3 ∂ z ϕ 3 for the located at z = -h/2 film -substrate interface, (2)-(3).
The Fourier method, similar to the one applied in [Rytova1967, Baturina2013] for point charges, is used to solve the system (3.1) and find the relevant asymptotes. Following this method, we perform the cos-Fourier transform of the equations (3.1), apply the corresponding boundary conditions, and solve the 

(a) ε 2 ≥ ε 3 ε 1 (b) ε 3 ≥ ε 2 ε 1
ϕ 2 = q l e ηkh/2 2ε 0 k (ε 2 + ε 1 ) ε 2 -ε 3 ε 2 +ε 3 e -kz + e ηkh e kz e 2ηkh -1 + 2η h Λ . (3.2)
Here, Λ is a characteristic length of the system,

Λ = η (ε 2 + ε 1 ) (ε 2 + ε 3 ) ε 2 (ε 1 + ε 3 ) h, (3.3) 
that will be used below to delimit the regions with a different spatial decay of ϕ 2 in the x-direction. The inverse transformation of Eq. (3.2),

ϕ 2 = 2 π ∞ 0 ϕ 2 cos (kx) dk, (3.4) 
permits to find the expression for ϕ 2 (x, z). Similar calculations can be done for ϕ 1 (x, z) and ϕ 3 (x, z). The results of the numerical solution of Eqs. (3.1) for two typical sets of dielectric constants ε 1 , ε 2 and ε 3 are presented in Fig. 3.2.

Two-wire capacitance measurement

Having calculated the potential induced by one of the wires and taking into account their equivalence we can find the capacitance of the system per unit of length as C l = q l /∆ϕ where ∆ϕ = ϕ 2 (R, h/2) -ϕ 2 (d -R, h/2) is the potential difference between the wires. For the large wire separation, d h, R, the first term in ∆ϕ contributes as the d-independent cutoff constant, whereas the second one can be calculated analytically, by an expansion of (3.2) in series over the small parameter kh 1 that allows for exact integration in Eq. (3.4).

Finally, we obtain the following expression for the inverse capacitance,

C -1 l = (πε 0 ) -1 ε 1 + ε 3 ln A d Λ + 1 - h Λ β g d Λ , (3.5) 
where A is the non-essential for further analysis constant that comprises the wire-scale cut-off, Given by Eq. (3.5) dependence of the system capacitance on the distance between the wires presents the basic result for determination of the dielectric constant of the film that enters there through two fitting parameters, Λ(ε 2 ) and β(ε 2 ). We discuss now in detail how this procedure can be implemented in practice, considering for simplicity the isotropic film with η = 1, encompassed by the external environment with ε 1 ε 2 , ε 3 that gives β = 1 + ε 3 /ε 2 and Λ = (1 + ε 2 /ε 3 ) h. We analyze separately the cases of high-ε and lowε films (with ε 2 ≥ ε 3 ε 1 and ε 3 ≥ ε 2 ε 1 correspondingly) that have different electrostatic behavior. As shown in Fig. 3.2, wires-induced electric field lines are "repelled" from the film in the first case (Fig. 3.2,a) and "captured" by the film in the second one (Fig. 3.2,b). Fig. 3.4 presents given by Eq. (3.2) dependence of the inverse capacitance C -1 l , measured in units (πε 0 ε 3 ) -1 = 3.6 × 10 4 ε -1 3 µm/pF, on the relative distance between the wires, d/h, for both cases.

β = η + ε 3 2ε 2 (1 + η) (3.

High

-ε film, ε 2 ≥ ε 3 ε 1
For a large ratio ε 2 /ε 3 the characteristic scale λ can be comparable and even larger than the linear size of the system, and therefore the g-function can be expanded over the small parameter d/Λ as g (d/Λ) -ln (cd/Λ) + πd/2Λ

[Abramowitz1965], (Fig. 3.3), where ln c is the Euler's constant, ln c n→∞ = Σ n k=1 k -1 -ln n 0.577. Then, the resulting expression for C -1 l can be simplified to:

C -1 l = const + 1 ε 0 ε 2 d 2h , (3.8) 
that permits to measure ε 2 via the linear slope of dependence C -1 l (d) at d → 0 (Fig. 3.4,a). This method is analogous to that for geometry of planar capacitor with semi-infinite plates [Vendik1999] due to the similar linear dependence on the distance between electrodes. Presented in Fig. 3.4,a numerical analysis shows, however, some restrictions for the application of this method. The distance between electrodes at which the linearity is manifested should be rather small (but still larger than R and h) and the parameter ε 2 /ε 3 should be large enough. l , in units (πε 0 ε 3 ) -1 , as a function of the relative distance between the wires, d/h, for different ratios of the film and substrate dielectric constants, ε 2 /ε 3 . The dielectric constant of the environment media is assumed to be small, ε 1 1. (a) For the high-ε film with

ε 3 ≥ ε 2 ε 1 ε 2 /ε 3 =
ε 2 ≥ ε 3 ε 1 . (b) For the low-ε film with ε 3 ≥ ε 2 ε 1 . 3.3.2 Low-ε film, ε 3 ≥ ε 2 ε 1
For small ε 2 /ε 3 the opposite situation, d > Λ, takes place and the large-scale approximation for the g-function [Abramowitz1965] can be used, g (d/Λ) (Λ/d) 2 . Then, Eq. (3.5) is simplified to: 

C -1 l 1 πε 0 ε 3 ln A d h - ε 3 ε 2 h 2 d 2 , ( 3 
C l = C ∞ l -C l , is
given by the simple dependence C l = πε 0 ε 2 (d/h) 2 , independent of the value of ε 3 . Then, the dielectric constant, ε 2 , can be extracted from the slope of C l , plotted in units πε 0 as a function of (d/h) 2 (Inset to Fig. 3.5,b).

Note that for the low-ε films the small ratio d/Λ < 1 can be realized only for the distances d much smaller than the cutoff lengths, R and h. Therefore the linear approximation over d/Λ, used in [Vendik1999], makes no sense here.

Discussion and experimental outlook

The explicit analytical expression (3.5) derived for the capacitance of two parallel wires placed on top of the substrate-deposited film gives a way for experimental non-destructive measurements of the dielectric constant of this film, evading the necessity of the deposition on the conductive substrate. Note that in general case, the formula (3.5) works for any values of the dielectric constants of the film and surrounding media, and takes into account the possible The inverse capacitance of the system, C -1 l , is measured in units (πε 0 ε 3 ) -1 and is plotted as a function of the logarithm of the relative distance, d/h, between the wires (orange solid line). Then, it is extracted from the linear background (purple dashed line), determined from the slope of C -1 l at d → ∞. The resulting capacitance, C , is plotted in units πε 0 as a function of (d/h) 2 , giving the straight line (inset). The tangent coefficient corresponds to the film dielectric constant ε 2 (here, ε 2 = 100).

q l d -q l ε 3 >ε 2 ε 2 C (a) (b)
anisotropy of dielectric permeability. The expression permits the extraction of the functional dependence between the capacitance and the dielectric constant of the film for the vast set of parameters where previously proposed approximate methods are less efficient, and it can be effectively simplified or generalized for the particular cases of the multilayered systems.

For the experimental implementation, it can be convenient to deposit the system of equidistant wires and measure consequently the capacitance between them (Fig. 3.5,a). The technical procedure consists in the determination of the capacitance as a function of the distance between the wires with subsequent comparison (fit) with functional dependence, given by Eq. (3.5). Simple and intuitively clear realizations of this method for high-ε and low-ε films (with respect to substrate) are proposed.

The suggested procedure is based on the exact expression that permits to measure the dielectric constant for those systems in which traditionally used techniques are less precise or even fail because of the uncontrolled approximations.

Chapter 4

In-plane domains and domain

walls in ferroic films

Nano-sized particles, wires and thin films, which are the common parts of modern nanoelectronic devices, possess a number of peculiar physical properties compared with bulk materials, due to significant increase of the surface/interface impact [Dawber2005, Scott2007]. In ferroic materials at mesoand nanoscale, the finite-size, shape and surface effects highly influence the equilibrium state of the sample, including the domain structure formation. Consider a thin film (thickness h, linear size l h) with the uniaxial inplane anisotropy (electric or magnetic) of the order parameter P, which in the case of the ferroelectric material denotes the electric polarization P, and can be replaced by the magnetization vector M for magnetic systems with ε = 1. Analogously to the conventional problem with out-of-plane geometry, we argue that the discontinuity of the order parameter at the film's edge produces magnetic field, which enhances energy of the system. In order to diminish the total energy, the striped in-plane periodic domain structure occurs in the film (Fig. 4.1,a), with the period 2d. In this Chapter we work within the Kittel approximation [Kittel1949], assuming the temperatures much lower than the transition temperature. To determine the energy that arises from the uncompensated order parameter field at the boundary, we map this task onto the equivalent electrostatic problem of a thin finite-size plate with two charged edges, possessing the linear charge distribution that displays the order parameter pattern. Hence we consider the plate edge as a 2d-periodically charged wire with the linear charge density λ (Fig. 4.1,b):

High sensitivity of domain

λ ≡ ∂ y q = +λ 0 , y ∈ (-d/2, d/2]; -λ 0 , y ∈ (d/2, 3d/2]. (4.1)
Expanding (4.1) in the Fourier series:

λ = ∞ n=1 λ 0n cos πn d y = 4λ 0 π ∞ n=1 1 n sin πn 2 cos πn d y, (4.2) 
We now consider the case of the film with ε = 1 (i.e. magnetic domains). Note that the method of electrostatic mapping works as well for the FE domains, ε 1, but the necessity to fulfill the boundary conditions for the potential significantly complicates the solution of the problem.

To find the potential distribution in such geometry, we need to overcome the logarithmic singularity that appears in the vicinity of the wire. The common regularization technique involves modification of the Coulomb's law (1.2) with a small constant α:

E = qρ ρ 3 = lim α→0 qρ (ρ 2 + α 2 ) 3/2 .
Integrating charges along the wire, we obtain the electric field (at some point at distance ρ = |ρ| = (x 2 + z 2 ) from Oy axis): in the cylindrical coordinates (ρ, φ, y):

E y = 8λ 0 d ∞ n=1 K 0 k n ρ 2 + α 2 sin πn 2 sin k n y; E ρ = 8λ 0 d ρ ρ 2 + α 2 ∞ n=1 K 1 k n ρ 2 + α 2 sin πn 2 cos k n y.
Here, K ν is the modified Bessel function of the second kind (or Macdonald function) of order ν, k n = πn/d.

Assuming ϕ → 0 if ρ → ∞, for the electric potential of the periodically charged wire (Fig. 4.2,a) we get: y-axis of the Cartesian coordinate system is directed along the wire (stripe); the stripe thickness h defines the direction of z-axis.

ϕ(y, ρ) = 8λ 0 π ∞ n=1 1 n K 0 k n ρ 2 + α 2 sin πn 2 cos k n y.

General expression for the electrostatic energy of the periodically charged stripe

The result 4.3 for the charged wire is helpful for the problem in Fig. 4.1, when the film is very thin, h l, so that we are allowed to neglect the size of the charged edge. However, it is interesting to generalize the problem for the thicker films and study the influence of the edge size on the final result. So, the objective is to find the electrostatic potential distribution created by the periodically charged stripe of width h shown in Fig. 4.2,b.

One way to obtain the sought-for potential (denoted as φ) is to integrate the already found expression for the charged wire (4.3) along the stripe width h,

φ = dϕ(y, ρ) = (4.4) = 8λ 0 πh ∞ n=1 1 n sin πn 2 cos (k n y) h/2 -h/2 K 0 k n x 2 + (z -z ) 2 + α 2 dz ,
Denoting the integral in the expression above as S,

S (x, z) = h/2 -h/2 K 0 k n x 2 + (z -z ) 2 + α 2 dz ,
we may find the energy per unit of length along the charged plate, averaged on period, in the form (for derivation, see Appendix B, part B.1):

F el = 1 2 φdq = 8λ 2 0 π 2 h 2 ∞ n=1 1 n 2 sin 2 πn 2 h/2 -h/2 S (x = 0, z) dz. (4.5)
Taking into account the the regularization constant α is small compared to system size, the integral in (4.5) can be estimated as (see Appendix B, part B.2):

h/2 -h/2 S (x = 0, z) dz ≈ -h 2 2 k 2 n h 2 + 1 2k n h G k 2 n h 2 4 . (4.6) 
Here, G denotes a particular case of Meijer G-function [Abramowitz1965]:

G k 2 n h 2 4 ≡ G 2,1 1,3 1; - -1 2 , 1 2 ; 0 k 2 n h 2 4 , (4.7) 
which has the following asymptotics (Fig. 4.3):

ξ → 0 : G 2,1 1,3 1; - -1 2 , 1 2 ; 0 ξ 2 ∼ - 2 ξ -6ξ + 4ξ ln cξ; ξ → ∞ : G 2,1 1,3 1; - -1 2 , 1 2 ; 0 ξ 2 → -2π. (4.8)
With this estimation, the electrostatic energy per unit of stripe length (4.5) acquires the form:

F el = - 4λ 2 0 π 2 ∞ n=1 1 n 2 sin 2 πn 2 4 k 2 n h 2 + 1 k n h G k 2 n h 2 4 . (4.9) ξ 0 1 2 3 4 5 -15 -10 -5 G 1,3 2,1 ( 1;- -1/2,1/2;0 | ξ 2 ) -2/ξ -2π Figure 4.3: Meijer G-function. A particular case of the Meijer G- function G 2,1 1,3 1; - -1 2 , 1 2 ; 0
ξ 2 and its small-ξ and large-ξ asymptotes.

Optimal domain size

To minimize the total energy of the sample, the 180 • stripe domain structure with period 2d forms in the film. The interplay between the electrostatic energy density, F el , and the energy density of the domain wall (DW) creation, F DW , determines the optimal (equilibrium) domain structure period, d opt .

Let σ DW be the surface energy density (surface tension) of the domain wall.

Then the DW energy density per unit of length is written as:

F DW = σ DW lh d . (4.10) 
The total energy density in a plate per unit of length (along y-axis), neglecting the interaction between two "wires" at plate sides (due to d, h l), is found as the sum of two electrostatic contributions from plate edges and the DW energy density:

F total = 2F el + F DW . (4.11)
Minimization of the total energy (4.11) with respect to the domain structure half-period d allows to obtain the expression for the optimal domain width d opt (for derivation see Appendix B, part B.3):

d 2 opt ∞ n=1 1 n 3 f πnh d opt sin 2 πn 2 = π 3 h 2 σ DW 32λ 2 0 l, (4.12) 
where we use the notation

f πnh d = f (k n h) = K 1 (k n h) - 2 k n h - 1 4 G k 2 n h 2 4 .
Next, we consider two limit cases, in which the expression (4.12) simplifies:

1) very thick charged edge; and 2) narrow, wire-like charged edge.

Wide charged edge: transition to the Kittel's problem

In the case of the large stripe width, h l, the task converts to a wellknown problem of the out-of-plane stripe domain structure. It is easy to show, limiting the film thickness in the expression (4.12) to infinity, h → ∞, then K 1 is exponentially small and f πnh d → π/2 hence:

d 2 opt ∞ n=1 1 n 3 sin 2 πn 2 = π 2 h 2 σ DW 16λ 2 0 l. (4.13)
Note that for the case of an infinitely large plate, h → ∞, the integral in (4.5) is known (see Appendix B, part B.2), and leads to the same expression. Next, taking into account that

∞ n=1 1 n 3 sin 2 πn 2 = ∞ m=0 1 (2m + 1) 3 = 7 8 ζ(3), ζ (3) 
≈ 1.202 is a Riemann zeta function, and DW surface tension for 180 • domain walls can be estimated using the order parameter P as σ DW ∼ P 2 ∆ [Landau1984], with ∆ being a DW thickness, ∆ d. Also, the performed electrostatic mapping (Fig. 4.1) implies λ 0 ∼ Ph, and hence

d 2 opt = 8 7ζ(3) π 2 h 2 σ DW 16λ 2 0 l π 2 ∆ 14ζ(3) l, (4.14) 
we obtain the famous Kittel's square root law [Kittel1946, Kittel1949]:

d opt π 2 14ζ(3) √ l∆ = 0.77 √ l∆. (4.15)
4.1.3.2 Narrow charged edge: in-plane domains in thin film

The second limit case of the expression (4.12) turns us back to the main objective of this Chapter: study of in-plane 180 • domain structure in thin films. When h l, d, then using (4.8) and the series representation K 1 (ξ)

1 ξ + ξ 2 ln cξ 2 -ξ 4 , we get f πnh d πnh 2d
and the expression (4.12) simplifies to:

d opt ∞ n=1 1 n 2 sin 2 πn 2 = π 2 hσ DW 16λ 2 0 l. (4.16) 
The sum in (4.16) gives another Riemann zeta function,

∞ n=1 1 n 2 sin 2 πn 2 = ∞ m=0 1 (2m + 1) 2 = 3 4 ζ(2), ζ (2) 
= π 2 6 . Substituting everything to the expression gives:

d opt ∆ 2 l h .
(4.17)

Note that this result can be also directly obtained using the expression (4.3)

for the charged wire potential. Similar calculations were performed and discussed in [Gulyaev2002] for the in-plane ferromagnetic domain structure. The electrostatic energy density per unit of wire length can be written as:

F el = 1 2 ϕdq = 1 2 1 2d 2d 0 (ϕλ) ρ=0 dy = 8λ 2 0 π 2 ∞ m=0 1 (2m + 1) 2 K 0 π (2m + 1) d α .
Recalling that α is a small regularization parameter, we may expand the Macdonald function in series K 0 (ξ) -ln cξ 2 , and get

F el - 8λ 2 0 π 2 ln cπα 2d ∞ m=0 1 (2m + 1) 2 + ∞ m=0 ln (2m + 1) (2m + 1) 2 .
here, c ≈ 1.781 is the exponential of the Euler constant. Using the relations [Prudnikov1986]: andζ(2) = π 2 /6, we finally obtain:

∞ k=0 1 (2k + 1) 2 = 3 4 ζ(2), ∞ k=0 ln (2k + 1) (2k + 1) 2 = - 1 4 ζ (2) ln 2 - 3 4 ζ (2) ,
F el = λ 2 0 ln Ad α , where A ≡ 2 3 √ 2 cπ exp 6 π 2 ζ
(2) unites all the numerical constants. Note that the singularity is hidden in the term -λ 2 0 ln α, which limits to the infinity if α → 0, but this term does not depend on the system's geometry and thus will not affect the equilibrium domain structure.

The total energy density of the film can thus be written as:

F = 2F el + F DW = 2λ 2 0 ln Ad α + σ DW lh d ,
and after the minimization we get the equilibrium domain period, similar to the previously obtained (4.17) from the general formula (4.12):

d opt = σ DW h 2λ 2 0 l ∆ 2 l h .
Thus, the optimal domain width in the thin film with in-plane domain structure depends linearly on the film's size, inversely on its thickness and doesn't follow the Kittel-Landau square root law. This result seems to be intuitively clear:

enlarging the linear size of the sample doesn't affect the electrostatic energy much, but increases the specific DW energy, thus leading to the appearance of fewer domains with the larger period. On the other hand, the thicker the film is, the larger its electrostatic energy becomes (∼ h 2 ) due to the uncompensated order parameter vector field at the edge; the DW energy also increases with the film thickness (∼ h), but still more domains (with smaller period) should appear to decrease the total energy per unit of film's length.

Note that the analytical calculations above rely on the assumption of thin-film study, h l, in which case we treat film's edge as a wire. With the growth of h, the dependence of F el on d changes, causing the deviation from the obtained inversely proportional dependence between d opt and h. For any finite h, the expression (4.12) allows to derive d opt numerically; for the infinitely large h we arrive again at the out-of-plane Kittel's problem with d ∼ √ l∆.

Generalizing this result on the case of the similar domain structure in FE material, ε 1 is quite a challenging task due to the electrostatic boundary conditions at the film surfaces. However, the results of the calculations performed in Chapters 2 and 3 of this Thesis, allow for modeling of the in-plane stripe domains in FE that appear not due to the uncompensated order parameter at the sample edge, but owing to the creation of a charged domain wall In this Section, we model the static domain structure generated in DIPA-B through creating a charged domain wall (CDW) by the electrically-biased PFM tip and estimate the characteristic length of the forward (perpendicular to the CDW) domain growth, l opt .

Model of the striped domains in DIPA-B

To model the formation of the domain structure in DIPA-B microcrystals, let us consider a sample of the thickness h and dielectric tensor main components (ε 2x , ε 2y , ε 2z ) deposited on the substrate with the dielectric constant ε 3 and surrounded by medium with the dielectric constant ε 1 (usually air with ε 1 = 1).

In the experimental work [Lu2015] the substrate is Pt-coated Si, thus there is a conducting layer under the FE slab, which we will take into account later.

Assume that there is a tip-induced CDW along (0, y, [-h/2 h/2]) with the surface charge density q s . Fig. 4.4c shows the sample from above: the z-axis of the Cartesian coordinate system is perpendicular to the picture plane, thus the sample thickness h is not shown. The y-axis goes along the CDW, while the x-axis is perpendicular to it. The domains grow from the CDW along the The model of such a system resembles the one described in Chapter 3, however, there are several nuances we need to take into account. First, we consider having a wide (almost the thickness of the film h) CDW tail-to-tail (or head-tohead) instead of the near-surface charged "wire" (with the coordinates (0, y, a)

and the linear charge density q l ), as it was in the previous Chapter. The second difference is due to the properties of the material: DIPA-B is a uniaxial ferroelectric with the in-plane polar axis in the slab (x-axis in Fig. 4.4c), so (above the slab, in the slab, and in the substrate, respectively) then transform into: 

ε 2y = ε 2z = ε 2x
∂ 2 x ϕ 1 + ∂ 2 z ϕ 1 = 0, z > h/2, ε 2x ∂ 2 x ϕ 2 + ε 2z ∂ 2 z ϕ 2 = -qs ε 0 δ(x), |z| < h/2, ∂ 2 x ϕ 3 + ∂ 2 z ϕ 3 = 0, z < -h/2,
ε 1 ∂ z ϕ 1 = ε 2z ∂ z ϕ 2 at z = h/2; ϕ 2 = ϕ 3 and ε 2z ∂ z ϕ 2 = ε 3 ∂ z ϕ 3 at z = -h/2.
Using the Fourier method and applying the BCs, we reconstruct the expression for the cos-Fourier transform of the electrostatic potential ϕ 2 at the surface of the film (z = h/2) induced by a charged stripe, at distances larger than the film thickness (x h):

ϕ 2 q s h 2ε 0 (ε 1 + ε 3 ) 1 k (kΛ + 1)
.

Here, the characteristic length (3.3) with the anisotropic factor appears:

Λ = η (ε 2z + ε 1 ) (ε 2z + ε 3 ) ε 2z (ε 1 + ε 3 ) h. (4.19) 
The inverse cos-Fourier transform leads to the answer for the potential,

ϕ 2 = - q s h πε 0 (ε 1 + ε 3 ) ln c x Λ + g x Λ ,
where ln c is the Euler's constant, ln c n→∞ = Σ n k=1 k -1 -ln n 0.577; and the g-function, defined as g (t) = π 2 -Si t sin t -Ci t cos t, is one of the auxiliary trigonometric integral functions, see Fig. 3.3.

Note that for the discussed case of the ferroelectric plate deposited on the conducting substrate, we may apply the method of images and solve for the "mirrored" in the conducting layer system instead; then, h → 2h, ε 3 = ε 1 . The parameters for the DIPA-B system from [Lu2015]:

ε 2z ≈ 40, ε 2x ≈ 80, ε 1 = 1, thus ε 2x,z
ε 1 , then the characteristic length, Λ, simplifies to: Λ = ηε 2z h = √ ε 2x ε 2z h, and the resulting expression for the potential:

ϕ 2 = - q s h πε 0 ln c x √ ε 2x ε 2z h + g x √ ε 2x ε 2z h .

Electrostatic energy and domain growth distance

To compensate the large electrostatic energy of the generated CDW (modelled here as a charged stripe inside the FE film), there appears the domain structure, shown in Fig. 4.4. We assume that the instability of order of correlation radius ξ 0 of the dielectric material (∼ 1 nm) leads to the creation of narrow in-plane domains, the geometry of which is illustrated in Fig. 4.4,c, with length l, and width d ∼ ξ 0 .

The electrostatic energy density (per unit of length of the CDW) can be found as:

F el = 1 2 ϕdq = 1 2 (2hϕ 2 q s ) = - q 2 s h 2 πε 0 ln c l √ ε 2x ε 2z h + g l √ ε 2x ε 2z h ;
note that here we again mapped h → 2h to account for the conducting surface, and thus the surface charge density is 2hq s , and the DW energy density (of the created stripe polarization domain, per unit of length):

F DW = σ DW 2h d l.
The total energy density:

F = 2F el + F DW = - 2q 2 s h 2 πε 0 ln c l √ ε 2x ε 2z h + g l √ ε 2x ε 2z h + σ DW 2h d l.
To estimate the distance at which domains grow from the CDW, we minimize the total energy, taking the derivative with respect to the domain length l.

Note that g (t) = -1 t + f (t), where f (t) is the second auxiliary trigonometric integral function [Abramowitz1965], f (t) = π 2 -Si t cos t + Ci t sin t. So, the minimization condition,

∂ l (2F el + F DW ) = - 2q 2 s h 2 πε 0 √ ε 2x ε 2z h f l √ ε 2x ε 2z h + σ DW 2h d = 0,
brings us to the following relation: 

f l √ ε 2x ε 2z h = σ DW πε 0 √ ε 2x ε 2z q 2 s d , or, in terms of the characteristic length Λ = √ ε 2x ε 2z h, f l Λ = σ DW πε 0 Λ q 2 s hd . ( 4 
f ( l Λ ) = π 2 -Si l Λ cos l Λ + Ci l Λ sin l
Λ is given by the Eq.(4.20) and defines the equilibrium domain size in the system. For a DIPA-B sample [Lu2015], this value is estimated around 0.56 (dashed horizontal black line), thus the optimal domain length l opt is of order of the characteristic length Λ, approximately equal to 1.2Λ (dashed vertical blue line).

For the parameters from [Lu2015], the sample thickness h = 0.15 µm, the dielectric constants ε 2x ≈ 80, ε 2z ≈ 40, then the screening length Λ = √ ε 2x ε 2z h ≈ 8 µm. This distance is shown in Fig. 4.4,b by the purple arrow and it marks the average length of the formed domains. Let us demonstrate that the optimal domain length is indeed of order of Λ.

Given that the surface tension of domain walls is connected to the polarization as [Luk'yanchuk2014b] σ DW ξ 0 ε 0 ε 2x P 2 , and the surface charge density may be estimated as q 2 s = 4P 2 , we obtain:

f l Λ = π ε 2z ε 2x ξ 0 4d .
Assuming that the domain width is of order of the correlation radius, d ∼ ξ 0 , the approximate value of the function is:

f l Λ ≈ 0.56,
which gives for the optimal domain length:

l opt ≈ 1.2Λ.
Note that the distance of forward domain growth is mainly defined by the thickness of the slab, which Λ is proportional to, the interrelation between the domain width and the correlation radius, which we assume to be of the same order, and of the dielectric permeability of the material.

The estimation hereinabove is in the agreement with the result that was experimentally observed in [Lu2015]: the growth of the in-plain domains from the tip-generated CDW is favourable up to the lengths around the characteristic length Λ. The modeling geometry of a domain is shown in Fig. 4.6,c: a stripe of length l and width d is assumed to be created by two interacting charges, ±q at the distance l from each other, which is the length of the domain. For this system, it is helpful to employ the results discussed in Chapters 1 and 2.

To model the equilibrium domain size, we start with the expression (1.15)

for the electrostatic potential of a charge q inside the film of thickness h at distances x h:

ϕ(x) = 1 4πε 0 2q ε 1 + ε 3 ∞ 0 J 0 (kx) kΛ + 1 dk, (4.21) 
here, we replace the characteristic length Λ (1.16) with its anisotropic modification (4.19):

Λ = ε 2x ε 2z (ε 2z + ε 1 ) (ε 2z + ε 3 ) ε 2z (ε 1 + ε 3 ) h.
In the case under study, DIPA-B deposited on the conducting surface, we apply the method of images: h → 2h, ε 3 = ε 1 , ε 2x,z ε 1 , as in the previous Section.

Then Λ simplifies to Λ = √ ε 2x ε 2z h, and the potential (4.21) reads as:

ϕ(x) = q 4πε 0 ∞ 0 J 0 (kx) kΛ + 1 dk.
The electrostatic energy of a charge at the distance l from it:

F el = 1 2 ϕdq = q 2 8πε 0 ∞ 0 J 0 (kx) kΛ + 1 dk.
The total energy of the system includes the electrostatic energy of two interacting charges (Fig. 4.6,c) and the energy of two created DWs:

F = 2F el + 2F DW = q 2 4πε 0 ∞ 0 J 0 (kl) kΛ + 1 dk + 4σ DW hl. (4.22)
Using the following integral [Prudnikov1986]:

∞ 0 ξ ξ + z J 1 (bξ) dξ = - πz 2 Φ -1 (bz) ,
(for the properties of the difference of the Struve and Neumann functions,

Φ -1 (z) = H -1 (z) -N -1 (z), see Appendix A)
, we minimize the total energy (4.22) with respect to the domain length l:

∂ l F = - q 2 4πε 0 Λ ∞ 0 kJ 1 (kl) k + 1/Λ dk + 4σ DW h = 0,
and the resulting expression,

Φ -1 l opt Λ = -32ε 0 σ DW q 2 hΛ 2 , (4.23) 
provides the equation for the optimal domain length l opt .

To analyze the limit cases of (4.23), we use the series representation and asymptotic expansion of the function Φ -1 (ξ):

Φ -1 (ξ) - 2 πξ , ξ 1; Φ -1 (ξ) → - 2 πξ 2 1 - 3 ξ 2 , ξ 1.
In the lower limit, for the relatively small lengths that fall into the intermediate region h l Λ, the equilibrium domain length is inversely proportional to the squared film thickness:

l opt q 2 16πε 0 σ DW 1 hΛ = q 2 (ε 2x ε 2z ) -1/2 16πε 0 σ DW 1 h 2 ,
whereas, at large lengths, l Λ, it is inversely proportional to the square root of thickness,

l opt q √ 16πε 0 σ DW 1 √ h .
In the experimental setup in [Lu2015], the domains of different lengths are obtained at various voltage rates, see Fig. 4.6,b, taken from this article. To compare the experimental data with the analytically calculated result (4.23),

we assume that the charge accumulated near the tip depends on the applied voltage, V , (due to the exponential dependence of the emission current on voltage [Kohlstedt2005, Grossmann2002]) as:

q = -q 0 + 2q 0 exp (- V 0 V ),
where q 0 is the charge in the absence of applied voltage, associated with the existence of the spontaneous polarization, P s , and V 0 is the is the minimum voltage required for domain formation. We rewrite then equation (4.23) in the following form:

V -1 = V -1 0 ln A Λ √ h -Φ -1 (l/Λ) + 1 2 , ( 4 

.24)

where A = √ 8ε 0 σ DW /q 0 unites the numerical and material constants.

Given that for the DIPA-B the critical voltage is V 0 = 9.261 (see the Supplementary Materials in [Lu2015]), and fitting the parameter A (rough estimation gives A 0.07, best fit with A = 0.057), we plot the dependence of the domain length on the applied voltage, see Fig. Note that the limit case approximations discussed here are not marked in 

Discussion and experimental outlook

In this Chapter, several noticeable results were obtained. First, we derived the general analytical expression for the equilibrium domain width (4.12), which

shows the dependence on the sample geometry and material constants. Performing the analysis of two limit cases demonstrated that the formula converts to the Kittel square root law for the out-of-plane structure (as a particular case), and allowed to capture the inverse dependence of the domain width on the sample thickness in a thin film with the in-plane anisotropy. The calculated dependence permits for further study of geometry-dependent properties in the domain-textured samples [Seidel2016, Prosandeev2016], e.g. the domain wall dynamics. The expression can be generalized for the different domain structures other than the stripe-like one, by adjusting the distribution of the charge in the electrostatic mapping method.

Next, for the domain structure formed by a head-to-head (or tail-to-tail) charged domain wall, induced in an organic ferroelectric thin slab by the electrically-biased microscope tip, we estimate the average growth distance of the stripe domains to be of order of the characteristic length of the system Λ (4.19). This emphasizes the fundamental meaning of this parameter, which separates different types of the electrostatic interaction in nanofilms, as was discussed in Chapters 1 and 2.

Lastly, we analytically derived the expression (4.24) defining the relation between the length of a single tip-induced domain and the voltage applied to the tip. It allowed for the comparison with the experimentally measured data from [Lu2015] and demonstrated a good agreement of theory and measurements.

The expressions and reasoning of this Chapter may be in use for further studies of domain-patterned ferroic films with in-plane anisotropy of the order parameter, for different geometries and various material parameters.

Conclusions and main results

The lower dimensionality of the nanosized dielectrics brings up the unique electrostatic properties. As a pronounced example, we have discussed the appearance of the two-dimensional logarithmic confinement of the charges in thin dielectric films, as opposed to the conventional three-dimensional Coulomb interaction. The overview of this phenomena, along with the relevant notions and notations, is given in Chapter 1.

The distinctive property of high dielectric permittivity (high-κ) thin films is the existence of various types of electrostatic interactions between charges.

Depending on the combination of the geometric and material parameters of the system, the interaction between two charges in a film can either follow the three-dimensional Coulomb law, or have the two-dimensional logarithmic character. It is possible to tune the range of interaction with the external gate electrode; moreover, the presence of the gate in the system unravels the new interaction types: dipole-like and exponential screening. This remarkable variety opens a way to further study of related phenomena, including the topological phase transitions and the scalability and charge-trapping in nanosized memory elements, and hopefully resulting in the promising applications. The details of this research are outlined in Chapter 2, in which:

• a theory of the electrostatic behavior of charges in the two-dimensional high-κ system in the presence of the gate is developed, basing on the numerical and analytical modeling of the electrostatic potential;

• the types of the electrostatic interactions, depending on the relations between the material and geometric parameters of the system, are analyzed and assembled in Table 2.1 and Fig. 2.6.

The calculations performed in Chapter 2 provide the foundation for the investigation of the extended charges interacting in thin dielectric and ferroelectric films. Particularly, in Chapter 3:

• the electrostatic potential of a homogeneously charged wire placed on the substrate-deposited thin film was calculated for the arbitrary values of the dielectric constants of the film, substrate and surrounding medium;

• the exact analytical expression for capacitance of the system of two parallel wires is derived;

• a method for the determination of the dielectric constant ε of thin films is proposed, based on the capacitance measurement with the two-wire capacitor. The limit cases of high-ε and low-ε films are analyzed.

Finally, in Chapter 4, we study the formation of stripe-like in-plane domains in thin films with in-plane uniaxial anisotropy of the order parameter.

The discontinuity of the order parameter (polarization or magnetization) near the film edge results in appearance of depolarizing (demagnetizing) fields, thus enhancing the sample energy, which can make the existence of domains in the system energetically favourable and lead to the domain structure formation.

To find the equilibrium domain size, we move to the electrostatic problem of a periodically charged wire or stripe, the linear charge density of which resem- • the electrostatic energy of a periodically step-like charged stripe at the edge of magnetic film (ε=1) is calculated for the arbitrary stripe width, and the optimal domain size dependence on the sample geometry is derived. The limit cases of the infinitely wide stripe and the thin wire are analyzed. The former converts to the known Kittel's out-of-plain domain structure obeying the square root dependence of the domain period on the film thickness, whereas the latter demonstrates the linear proportionality of the domain period on the films size and the inverse proportionality on its thickness;

• a model of the appearance of the head-to-head and tail-to-tail domains near the tip-induced charged domain walls in ferroelectric films with in-plane polarization is proposed. It is shown that the optimal lateral distance of domain growth is of order of the characteristic length of the system, Λ ∼ εh, where ε is the dielectric constant of the material and h is the film thickness;

• the expression for the dependence of the equilibrium distance of the tipinduced domain growth on the applied voltage is derived, demonstrating the good agreement with the experimental data. Now, the integral in (2.8), ∞ 0 J 0 (kρ) k + κa coth(ka)+κ b κh dk, can be evaluated using the integral (A.1) in two limit cases.

i) In the limit ρ < a the main contribution to (2.8) comes from the high values of k, ka 1. Assuming then coth (ka) 1 we can reduce the integral (2.8) to (A.1) and immediately obtain the expression (2.9).

ii) In the limit ρ > a the main role is played by the low-k region, ka 1.

Then we can expand coth (ka) 1/ka and calculate the integral (2.8) by the partial fraction decomposition onto two integrals,

ϕ(ρ) 2 q κh 1 ξ 1 -ξ 2   ∞ 0 ξ 1 J 0 (kρ) k + ξ 1 Λ -1 dk - ∞ 0 ξ 2 J 0 (kρ) k + ξ 2 Λ -1 dk   , (A.3)
where ξ 1,2 are given by the solutions of the characteristic quadratic equation,

Λξ 2 + κ b κ a + κ b ξ + κ a h -1 κ a + κ b = 0.
Each of these integrals is of the type (A.1) that allows us to obtain (2.10).

The second integral, (A.2), is used to minimize the electrostatic energy (4.22).

It appears when differentiating the integral (A.1) with respect to b, taking into account that ∂ z J 0 (z) = -J 1 (z):

∂ b ∞ 0 1 x + z J 0 (bx) dx = - ∞ 0 x x + z J 1 (bx) dx = πz 2 Φ -1 (bz) ,
thus leading to the expression (4.23) for the optimal domain length.

Limit expansions. The series representation for the function of complex variable Φ n (z) can be found from the corresponding properties of H n and N n [Abramowitz1965, Gradshteyn2014]. In the case of zero order function Φ 0 (z) it can be approximated at small z as:

Φ 0 (z) - 2 π ln cz 2 ,
where c = e γ 1.781 is the exponent of the Euler constant. The limit expansions for Φ 0 (z) are also shown in Fig. 1.2.

For small z, the Struve function H -1 (z) → 2 π , hence the series for the Φ -1 (z) are mainly defined by the Neumann function N -1 (z), Φ -1 (z) N -1 (z) 2 πz .

At large |z| 1 there exists the asymptotic expansion (here, Γ denotes the gamma function),

Φ n (z) → 1 π k-1 m=0 Γ m + 1 2 (z/2) n-1-2m √ πΓ n + 1 2 -m + O |z| n-1-2k .
For example, for the zero order Φ the above expression is reduced to:

Φ 0 (z) 2 π z -1 -z -3 ,
which is suitable over the whole complex plane except the vicinity of the imag- 1; --1 2 , 1 2 ; 0 ξ 2 , substituting them, we arrive at the result (4.6), k n = πn d :

h/2 -h/2 S (x = 0, z) dz ≈ -h 2 2 k 2 n h 2 + 1 2k n h G 2,1 1,3 1; - -1 2 , 1 2 ; 0 k 2 n h 2 4 .
Notations: I ν is the modified Bessel function of order ν; L ν is the modified Struve function or order ν; p,q -the hypergeometric function, G 2,1 1,3 is the Meijer G-function (see Fig. 4.3). For the properties of the mentioned functions see [Abramowitz1965].

B.3 Total energy minimization and the optimal domain size

To find the equilibrium domain width, let us differentiate the total energy (4.11) with respect to the domain structure half-period d and equate it to zero:

∂ d (2F el + F DW ) = 0.
Find the derivatives of two energies separately. The electrostatic energy is given by (4.9):

F el = - 4λ 2 0 π 2 ∞ n=1 1 n 2 sin 2 πn 2 2d πnh 2 + d πnh G 2,1 1,3 1; - -1 2 , 1 2 ; 0 πnh 2d 2 .
Here, G 2,1 1,3 is the Meijer G-function (see Fig. 4.3). Making use of its property [Abramowitz1965]:

∂ ξ G 2,1 1,3 1; - -1 2 , 1 2 ; 0 ξ 2 = 2 ξ G 2,0 0,2 - -1 2 , 1 2 ξ 2 = 4 ξ K 1 (2ξ) ,
with K 1 being the first order modified Bessel function of the second kind (Macdonald function), we find that:

∂ d F el = - 16λ 2 0 π 3 h ∞ n=1 1 n 3 sin 2 πn 2 2 k n h + 1 4 G k 2 n h 2 4 -K 1 (k n h) .
Here, k n = πnh d , and

G k 2 n h 2 4 ≡ G 2,1 1,3 1; - -1 2 , 1 2 ; 0 k 2 n h 2 4
.

For the energy of the domain wall (4.10) we get:

∂ d F DW = -σ DW lh d 2 .

  Figure1: L'interaction des charges contrôlée par l'électrode dans un high-κ film: la géométrie du système. Un film mince d'épaisseur h avec la constante diélectrique κ est déposé sur le substrat avec la constante diélectrique κ b . L'électrode métallique en haut (gate) est séparée du film par l'espaceur d'épaisseur a avec la constante diélectrique κ a . Les charges qui interagissent, e, sont situées au milieu du film. L'origine du système de coordonnées cylindriques, (ρ, θ, z), ρ étant la coordonnée latérale, est choisie à l'emplacement de la charge générant le champ électrique; z est perpendiculaire au plan de film.

  2. C'est le résultat principal du Chapitre 2. Les calculs effectués dans le Chapitre 2 fournissent les bases de l'étude des charges étendues interagissant dans des films minces diélectriques et ferroélectriques. En particulier, dans le Chapitre 3, nous suggérons la méthode non destructive
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 3 Figure 3: Lignes de champ électrique d'un condensateur à deux fils, désigné pour la mesure de la constante diélectrique du film déposé par un substrat.
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 45 Figure 4: Analogie électrostatique de la structure de domaines dans le plane dans un couche mince ferroïque. Géométrie du système: un film mince de l'épaisseur h, taille linéaire l h et constante diélectrique ε. (a) Pour minimiser l'énergie totale du film, le paramètre d'ordre P (flèches rouges) forme la structure de domaines dans le plan avec la période 2d. (b) Le modèle électrostatique: deux fils chargs 2d-périodiquement à la distance l l'un de l'autre. La distribution des paramètres d'ordre au bord du film correspond à la densité linéaire de charge dans les fils: ±P → ±λ 0 . Le potentiel électrostatique ϕ induit dans le film dépend de la géométrie du système et permet de récupérer les paramètres de la structure du domaines d'équilibre.
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 12 Figure 1.2: Special function describing the dependence of the potential on the distance. Plot of the difference between the zero order Struve and Neumann functions, Φ 0 (x) = H 0 (x) -N 0 (x) (solid red line).Its small-x asymptote corresponds to the logarithmic potential at small distances (dashed black line), and the large-x asymptote shows the ∼ 1/x dependence at big distances (dashed blue line). ln c 0.577 is the Euler's constant.

  The method we tend to propose is non-destructive and doesn't have the limitations on the values of material constants and distances between the elements.The formation of the domain structure in ferroic films may also be studied by the methods of the electrostatics. Mapping the order parameter texture on the according electrostatic potential distribution allows to recover the solution from the Poisson equation. In this way, the optimal domain size was calculated in out-of-plane 180 • stripe domain structures in ferromagnetic [Landau1935,Kittel1946, Kittel1949] and ferroelectric [Bratkovsky2000, Stephanovich2005, Luk'yanchuk2009, Sené2010] films. The obtained dependence of the domain width on the film thickness and material parameters allowed for the theoretical study of the terahertz dynamics and the negative capacitance in thin ferroelectric layer of the multilayered structure [Luk'yanchuk2014], which is in a good agreement with experimental[Zubko2016] and ab-initio[Zhang2011] works.

  2.1, the test electron is shown by a dashed circle) isgiven by U (ρ) = 2eϕ (ρ). For numerical calculations we use typical values of parameters for a InO film deposited on the SiO 2 substrate [Baturina2013]: the film dielectric constant, κ 10 4 , the substrate dielectric constant, κ b = 4, and the dielectric constant for the air gap between the film and the gate, κ a = 1.

Fig. 2 .Figure 2 . 2 :

 222 Fig. 2.2 presents the ϕ(ρ) plots calculated for the realistic InO/SiO 2 structure and different distances between the gate and the film. We may observe how the potential acquires more and more local character as the gate approaches the film surface. The red line corresponds to the infinitely distant gate, a → ∞, and depicts the solution (1.15) discussed in Chapter 1 (without the gate). The closer the gate is to the film, the faster the potential decays with the distance from the charge.

c

  Figure 2.3: Spatial distribution of the potential. Electric field lines (white) and the color map of the electrostatic potential induced by the charge e < 0 in the cross-sectional plane. Panel (a) displays the field and potential without the gate; panel (b) shows the same in the presence of the gate. In the panels (a) and (b) we take κ = 100, κ a = 1, κ b = 1. The color code for the values of the potential is shown in the panel (c).

  reaching. The possibility to drive the electrostatic properties of the high-κ 2D systems generates the technological advantages for their use as nanoscale capacitor components, novel memory elements and switching devices of enhanced performance. The profound application of the high-κ sheets is the fabrication of the charge-trapping memory (CTM) units[Zhao2014], enabling the storage of the multiple bits in a single memory cell, thus overcoming the scalability limit of a standard flash memory. The challenging task crucial to the device realization is establishing the effective tunability of CTM units allowing for controlling the strength and spatial scale of charge distribution. Based on the results hereinabove, one possible solution is to introduce the controlled gate in the system and govern the charge density in the film by changing the distance to the gate thus adjusting the length of the electrostatic screening. The reduction of the Coulomb repulsion from the 2D long-range logarithmic to the point-or dipolar-and even to the exponential ones will crucially scale down the memory element size, increasing the capacity and reliability of the high-κ films-based flash memory circuits.A striking manifestation of the 2D logarithmic Coulomb behaviour is the phenomenon of superinsulation in strongly disordered superconducting films[Vinokur2008, Baturina2013, Baturina2008, Kalok2012]. There, in the critical vicinity of the superconductor-insulator transition, the superconducting film acquires an anomalously high dielectric constant κ, the Cooper pairs interact according to the logarithmic law, and the system experiences the charge Berezinskii-Kosterlitz-Thouless (BKT) transition into a state with the infinite resistance. The general consequence of the logarithmic Coulomb interaction, is that the high-κ sheets exhibit the so-called phenomenon of the global Coulomb blockade resulting in a logarithmic scaling of characteristic energies of the system with the relevant screening length, which is the smallest of either Λ or the lateral system size. In the CTM element discussed before, this is the logarithmic scaling of its capacitance. In the Cooper pair insulator, this comes out as the logarithmic scaling of the energy controlling the in-plane tunneling conductivity[Fistul2008, Vinokur2008, Baturina2011], thus being the foundation of the charge BKT transition. Adjusting the gate spacer, one can can regulate the effects of diverging dielectric constant near the metal-and superconductorinsulator transitions[Baturina2013]. Tuning the range of the charge confinement offers a perfect laboratory for the study of effects of screening on the BKT transition and related phenomena.Chapter 3 Extended linear charges in dielectric filmsCharge carrying elements are usual parts of novel nanodevices, thus requiring the careful investigation of their physical properties and their impact on the other parts of the device and on the overall functionality of the system. To describe properly the electrostatic interactions between the extended charges in materials, we utilize the methods and results discussed in Chapters 1 and 2, generalizing the calculations from zero-dimensional to one-dimensional systems, namely linear charges. The next two Chapters are devoted to the derivation of the electrostatic potential distribution created by linear charged objects, -such as charged wires, stripes, and charged domain walls, -inside dielectric and ferroelectric materials.

  Miniaturization of electronic devices down to the nano-scale has become possible by achieving the unprecedentedly efficient material functionalities not available in bulk systems. A large variety of novel nanoscale materials extends from thin films and superlattices [Shi2003, Lakhtakia2005, Ramesh2007, Zhang2010, Hass2013], nanowires[Zhang2016], to nanoparticles and particle composites (see e.g.[Chatzigeorgiou2015] and references therein), the unique properties of which open a way to various implementations for nanoelectronics. In particular, tailoring the properties of substrate-deposited thin films by strain has attracted particular attention due to technological feasibility and various potential applications such as sensors, actuators, nonvolatile memories, bio-membranes, photovoltaic cells, tunable microwave circuits and microand nano-electromechanical systems[Shi2003, Lakhtakia2005, Ramesh2007, Zhang2010, Hass2013]. Control and measurement of the dielectric constant ε of thin films present one of the major objectives of strain-engineering technology to achieve the optimal dielectric properties of constructed nanodevices.

Figure 3 . 1 :

 31 Figure 3.1: Model of a two-wire capacitor. Thin film of thickness h with dielectric constant ε 2 (region (2)) is deposited on a substrate with dielectric constant ε 3 (region (3) at the bottom) and is surrounded by the external environment with dielectric constant ε 1 (region (1) at the top).Two parallel oppositely charged wires with linear charge densities ±q l and of radius R (not shown) are placed on top of the film. The distance between wires, d, is much larger than h and R. The z-axis of the cartesian coordinate system is directed across the film plane, the in-plane x-axis is perpendicular to the wires, and the y-axis is directed along the wires. Measuring C l , the capacitance (per unit of length) of the two-wire system, allows to find ε 2 .
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 3202 Figure 3.2: Spatial distribution of the electrostatic potential for a two-wire system. Electric field lines and corresponding electrostatic potential (colour map) induced by two oppositely charged parallel wires located on top of the substrate-deposited film and directed perpendicular to the figure plane. The geometry of the system is depicted in Fig. 3.1. (a) For the high-ε film with ε 2 ≥ ε 3 ε 1 . (b) For the low-ε film with ε 3 ≥ ε 2 ε 1
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 33 Figure 3.3: Plot and asymptotes of the auxiliary trigonometric integral function g(ξ). Auxiliary function g(ξ) = π2 -Si ξ sin ξ -Ci ξ cos ξ and its small-ξ and large-ξ asymptotes. ln c 0.577 is the Euler's constant.
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 34 Figure 3.4: Dependence of the capacitance on the distance between the wires for various values of dielectric constants. The inverse capacitance of the system, C -1l , in units (πε 0 ε 3 ) -1 , as a function of the relative distance between the wires, d/h, for different ratios of the film and substrate dielectric constants, ε 2 /ε 3 . The dielectric constant of the environment media is assumed to be small, ε 1 1. (a) For the high-ε film with ε 2 ≥ ε 3 ε 1 . (b) For the low-ε film with ε 3 ≥ ε 2 ε 1 .

  .9) the corresponding dependencies C -1 l (d/h) being shown in Fig. 3.4,b. To extract the value of ε 2 from experimental data one should first get rid of the ε 2 -independent contribution presented by the logarithmic term in Eq. (3.9), which contains the unknown cut-off constant. For this, one can plot C -1 l in units (πε 0 ε 3 ) -1 vs. ln(d/h) as shown in Fig. 3.5,b and subtract the linear background, manifested at d → ∞. The residual contribution to the capacitance,

Figure 3 . 5 :

 35 Figure 3.5: Determination of the dielectric constant of the low-ε film. (a) Possible scenario of the method application: measuring the capacitance consequently between the pairs of equidistantly placed oppositely charged wires. (b) The inverse capacitance of the system, C -1l , is measured in units (πε 0 ε 3 ) -1 and is plotted as a function of the logarithm of the relative distance, d/h, between the wires (orange solid line). Then, it is extracted from the linear background (purple dashed line), determined from the slope of C -1

  -patterned thin ferroic films to external fields allows to drive and control their functionalities for implementation into up-to-date technologies, e.g. information storage devices, terahertz emitters and detectors, nanoantennas etc. Ferromagnetic (FM), ferroelectric (FE) and multiferroic films often perform as field-tuned parts of multilayered heterostructures, and thus domain distribution in one layer can affect the state of the other layer, or domain dynamics in the ferroic layer may change the dynamic properties of the whole structure. Great variety of domain structure types and their dependance on many parameters (crystal anisotropy, temperature, sample geometry, mechanical stress, external fields applied etc.) make domain-textured materials attractive not only for industrial applications, but also for fundamental studies in material physics. Stripe-like 180 • domain structure in thin FM, and, in recent years, FE films and multilayers with out-of-plane uniaxial anisotropy is being intensively studied, showing a wealth of unique properties. The periodic out-of plain domain texture was observed in thin films and superlattices, [Streiffer2002, Zubko2010, Zubko2012, Hruszkewycz2013], and its behaviour is in agreement with theoretical models [Bratkovsky2000, Kornev2004, Stephanovich2005, Luk'yanchuk2009, Sené2010, Mokrý2004, Aguado-Puente2008] As the most striking example of the discovered phenomena we may cite the recently theoretically predicted [Luk'yanchuk2014a] and experimentally confirmed [Zubko2016] existence of the negative capacitance in thin ferroelectric domain-patterned layer. For the striped out-of-plane domain structures in FM and FE thin films, the equilibrium domain width d depends on film's thikhness h as d ∼ √ h, as it was predicted for ferromagnets by Landau and Lifshitz [Landau1935] and Kittel [Kittel1946, Kittel1949]. Though this square-root law is suitable in many cases, and was approved and specified for particular systems, it should be stressed that for thin FM and FE films with in-plane magnetization/polarization easy axis, the relation between the domain period and sample size can differ. In this Chapter, we use the methods of electrostatics to perform the analytical calculation and capture this difference in the domain distribution law between the out-of-plane and in-plane orientations of the order parameter in ferroic materials. Note that we consider two ways of the in-plane domain structure formation. The first is based on the finite sample size, and domains appear due to the existence of the discontinuity of the order parameter at the sample edge. Such finite-size-induced in-plane domain formation was discussed for the FM (see, e.g. [Kashuba1993, Gulyaev2002]) and antiferromagnetic (AFM) [Folven2010, Gomonay2014] flat nanoparticles. The modeling of the in-plane magnetic domain structure is performed in the first Section of this Chapter. The second possible way to induce the striped domain structure appearance is to create a domain wall inside a sample by the external means. For example, generating a charged domain wall (CDW) in the FE slab with the electrically biased microscope tip [Lu2015] caused the formation of head-to-head (or tail-to-tail, depending on the charge of the CDW) stripe domains, which are modelled in the second Section. The analysis of a particular case of the tipinduced polarization switching and hence creation of a single in-plane domain completes the Chapter. 4.1 Periodic Kittel domain structure in thin ferroic films with in-plane anisotropy 4.1.1 In-plane 180 • stripe domains: geometry and model

Figure 4 . 1 :

 41 Figure 4.1: Electrostatic mapping of the in-plane stripe domain structure in a ferroic thin film. Geometry of the system: a thin film of the thickness h, linear size l h and dielectric constant ε. (a) To minimize the total energy of the film, the order parameter P (red arrows) forms the in-plane domain structure with the period 2d. (b) The electrostatic model: two 2d-periodically charged wires at the distance l from each other. The order parameter distribution at the film's edge maps to the linear charge density in the wires: ±P → ±λ 0 . The electrostatic potential ϕ induced in the film depends on the geometry of the system and allows to recover the parameters of the equilibrium domain structure.

Figure 4 . 2 :

 42 Figure 4.2: Periodically charged linear systems. The simplest model for the periodically charged edge: (a) charged wire or (b) charged stripe with the linear charge density being the rectangular function ±λ 0 with period 2d. y-axis of the Cartesian coordinate system is directed along the wire (stripe);the stripe thickness h defines the direction of z-axis.

(

  CDW) in a ferroelectric with the in-plane polarization anisotropy. The next Section presents a model for this type of the domain structure.

4. 2 Figure 4

 24 Figure 4.4: Head-to-head and tail-to-tail in-plane domains in the organic ferroelectric DIPA-B. Blue arrows indicate the polarization direction, distinguishing between yellow and brown regions. (a) and (b) are adapted from [Lu2015]. (a) As-grown stripe domain structure in a DIPA-B sample. (b) PFM tip-generated head-to-head (red dotted line) and tail-totail (blue dotted lines) charged domain walls. Λ is the characteristic system length, which defines the optimal domain size. (c) Modeling geometry of one in-plane domain of width d and length l growing from the charged DW. The y-axis is directed along the charged domain wall, x is the domain elongation axis, and z is perpendicular to the picture (and sample) plane.

x

  -axis; one of them is shown schematically in the Figure, having the width d and length l.

  , and we need to include the dielectric constant anisotropy factor η 2 = ε 2x /ε 2z . The equations (3.1) for the electrostatic potential ϕ 1,2,3

  is the Dirac delta-function. The boundary conditions are: ϕ 1 = ϕ 2 and

  .20) The solution of this equation gives the favourable value of domain length l = l opt . Depending on the geometric and material parameters, the right side of the equation (4.20) will define the value of the function f (l/Λ) (see Fig. 4.5), which allows to extract the corresponding value of l opt . /Λ) ≈ 0.56 l opt ≈ 1.2Λ

Figure 4 . 5 :

 45 Figure 4.5: Auxiliary trigonometric integral function f (l/Λ) and extracting the optimal domain length. The value of the auxiliary functionf ( l Λ ) = π 2 -Si l Λ cos l Λ + Ci l Λ sin lΛ is given by the Eq.(4.20) and defines the equilibrium domain size in the system. For a DIPA-B sample[Lu2015], this value is estimated around 0.56 (dashed horizontal black line), thus the optimal domain length l opt is of order of the characteristic length Λ, approximately equal to 1.2Λ (dashed vertical blue line).

4. 3 Figure 4 . 6 :

 346 Figure 4.6: Modeling of the tip-induced in-plane domains in DIPA-B. Blue arrows indicate the polarization direction, distinguishing between yellow and brown regions. (a) and (b) are adapted from [Lu2015]. (a) Growth dynamics of the domains as a function of applied voltage. (b) Domain length and width dependencies on the applied voltage (for the fixed pulse duration). (c) Modeling geometry: two interacting charges ±q create a domain of width d and length l. The origin of the coordinate system is in the location of the positive charge (PFM tip). The x-axis is directed along the domain, z-axis (not shown) is perpendicular to the plane of the sample.

  4.7, and compare it with the experimental data (Fig. 4.6,b). The obtained dependence (red curve in Fig. 4.7) is in a good agreement with the measured results in [Lu2015] (black dots).

Fig. 4 .Figure 4 . 7 :

 447 Fig. 4.7 since the experimental points don't fall in the small-distance or largedistance regions, their values are of order of the characteristic length Λ, thereby following the general expression (4.23).

  bles the distribution of the order parameter at the film edge. This maps the polarization (magnetization) texture of the film on the electrostatic potential created by the wire or stripe, allowing to extend the methods and calculations of the previous Chapters on the problem of the in-plane striped domain structure formation.Another way to obtain the in-plane domains in thin films is to create a domain wall in the material. For example, the charged domain wall, induced in the molecular ferroelectric DIPA-B by the tip of piezoresponse force microscope, causes the appearance of head-to-head (or tail-to-tail, depending on the domain wall charge) stripe in-plane domains. In another experiment, accumulating the charge below the microscope tip leads to the growth of a single in-plane domain, the length and width of which depend on the voltage applied. The research work performed in Chapter 4 contributes to the theory of the discussed phenomena, specifically:

  inary axis z = iy, where the real part of this expansion vanishes and the nonanalytic contribution prevails. The latter can be accounted for, by presentingRe Φ 0 (iy) via the Macdonald function K 0 , Re Φ 0 (iy) = 2 π K 0 (y) ,Having calculated the following sums separately (ξ≡ πnh 2d ): 1) 2 (k!) 2 = 1 ξ 2 [I 0 (2ξ) -1] ; ∞ k=0 ξ 2k (2k + 1) (k!) 2 = I 0 (2ξ) + π 2 I 0 (2ξ) L 1 (2ξ) -π 2 I 1 (2ξ) L 0 (2ξ) ; ∞ k=0 ξ 2k (2k + 1) 2 (k!) 2 = 0 (2t) L 1 (2t) -I 1 (2t) L 0 (2t)] dt + 2ξ) L 1 (2ξ) -π 2 I 1 (2ξ) L 0 (2ξ) ln ξ 2 -
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Properties of the function Φ n (z)

Integral representations. The function Φ n (z) is defined as the difference between the Struve and Neumann functions of order n (H n (z) and N n (z), respectively):

Φ n (z) ≡ H n (z) -N n (z), here, z = x + iy is the complex variable.

The following integral [Prudnikov1986]:

gives the integral representation of the functions Φ 0 (z) and Φ -1 (z). Here, the constant b > 0, and J ν is the Bessel function of the first kind of order ν.

that is approximated at y 1 as K 0 (y)

2 πy e -y .

And finally, for the function Φ -1 (z) the asymptotic expansion reads as:

allowing us to analyze the expression for the optimal domain length (4.23).

---------------------------------- 

Appendix B

Optimal domain size in the in-plane domain structure

B.1 Electrostatic energy derivation

To find the electrostatic energy (4.5) per unit of length along the periodically charged plate (Fig. 4.1,b), averaged on period, we start with the general expression:

and substitute the expressions for the linear charge density (4.2) and the potential (4.5), taken for x = 0:

where

Find the expression to integrate:

and note that this expression is non-zero only if n = m. Thus,

Now for the energy we get:

The square bracket in the expression above is averaging the cosine squared over a period, which is equal to 1/2, and we finally arrive at the formula (4.5):

S (x = 0, z) dz.

B.2 Analysis of the integral expressions

We examine the following integral separately:

For the problem of the charged stripe potential (Section 4.1),

For an infinitely large plate (h → ∞), the answer can be found using the table

hence (taking into account that the regularization constant α is small):

which makes use for deriving the expression (4.13).

For the case of the finite plate, we can analyze the integral (B.1), using the series representation of the zero order Macdonald function K 0 [Gradshteyn2014]:

where ψ denotes the digamma function.

Substituting, for our case, s = πn d (z -z ) 2 + x 2 + α 2 , we can integrate each term of the sum. For the sake of convenience, note that we are interested in the integral S (x = 0, z), so take x = 0, c 2 = x 2 + α 2 → α 2 . The result is:

Here,

, and the limits of integration are from ξ = z -h

The next step is to integrate the obtained expression, which means to find the electrostatic energy (4.5). At this step, we neglect the terms of order of the small cutoff parameter α and higher. We end up with a relatively simple relation:

Hence, the minimization of the total energy results in the following equation for the optimal domain width d opt :

where k n = πnh dopt and we use the notation

Thus we arrived to the result (4.12):

----------------------------------