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Dans cette thèse, nous décrivons une réalisation géométrique des carquois de
type Dynkin, et certains carquois euclidiens. Nous traitons le cas D̃n en profondeur
et démontrons quelques résultats complémentaires aux travaux de Baur, Marsh et
Torkildsen sur les réalisations géométriques des catégories amassées supérieures.
Pour le cas D̃n, on trouve la �gure qui correspond à l'étude, on démontre la compa-
tibilité entre le �ip d'une (m+2)-angulation, et la mutation de carquois coloré. On
trouve une bijection entre les objets m-rigides et chaque arc dit admissible, puis
entre les objets amas-basculants et les (m+ 2)-angulations. De plus, on démontre
la compatibilité entre la réduction d'Iyama-Yoshino, et le fait de couper le long
d'un arc, qu'on dé�nira formellement.

Nous démontrons aussi qu'une catégorie exacte est une catégorie de pré�bration
au sens de Anderson-Brown-Cisinski, qui véri�e le théorème de Quillen, et une
catégorie de Frobenius est munie d'une structure de modèle, compatible avec le
passage à la catégorie stable, qui est triangulée.

We show that a subcategory of the m-cluster category of type D̃n is isomorphic
to a category consisting of arcs in an (n− 2)m-gon with two central (m− 1)-gons
inside of it. We show that the mutation of colored quivers and m-cluster-tilting
objects is compatible with the �ip of an (m+ 2)-angulation.

In this thesis, we study the geometric realizations of m-cluster categories of
Dynkin types A, D, Ã and D̃. We show, in those four cases, that there is a bijection
between (m+2)-angulations and isoclasses of basicm-cluster tilting objects. Under
these bijections, �ips of (m+ 2)-angulations correspond to mutations of m-cluster
tilting objects. Our strategy consists in showing that certain Iyama-Yoshino re-
ductions of the m-cluster categories under consideration can be described in terms
of cutting along an arc the corresponding geometric realizations. This allows to
infer results from small cases to the general ones.

Let E be a weakly idempotent complete exact category with enough injective
and projective objects. Assume thatM⊆ E is a rigid, contravariantly �nite sub-
category of E containing all the injective and projective objects, and stable under
taking direct sums and summands. In this paper, E is equipped with the structure
of a pre�bration category with co�brant replacements. As a corollary, we show,
using the results of Demonet and Liu in [DL13], that the category of �nite presen-
tation modules on the costable categoryM is a localization of E . We also deduce
that E → modM admits a calculus of fractions up to homotopy. These two corol-
laries are analogues for exact categories of results of Buan and Marsh in [BM13],
[BM12] (see also [Bel13]) that hold for triangulated categories.

If E is a Frobenius exact category, we enhance its structure of pre�bration
category to the structure of a model category (see the article of Palu in [?] for the
case of triangulated categories). This last result applies in particular when E is any
of the Hom-�nite Frobenius categories appearing in relation to cluster algebras.



Chapitre 1
Introduction

1.1 Vers les catégories amassées supérieures

Le concept d'algèbre amassée est né au début des années 2000, introduit par
Fomin et Zelevinsky dans [FZ02], a�n entre autres, de donner un cadre combina-
toire pour étudier les bases canoniques et la positivité totale, deux sujets de théorie
de Lie algébrique.

Il s'est avéré plus tard que les algèbres amassées répondaient à beaucoup
d'autres questions, notamment en théorie des représentations des carquois et al-
gèbres de dimensions �nie. Une belle introduction des algèbres amassées est donnée
par Keller dans [Kel11].

Une algèbre amassée est une Q-algèbre commutative, munie de générateurs
appelés variables d'amas, regroupés en amas, possédant toujours le même nombre
de variables. Ces amas sont construits à partir de mutations successives d'un amas
particulier appelé graine initiale, contenant un carquois à n sommets et n variables.
Ainsi, l'ensemble des variables d'amas peut être �ni ou in�ni. Fomin et Zelevinsky
ont démontré dans [FZ03] que l'algèbre amassée contient un nombre �ni de va-
riables d'amas si et seulement si le carquois de la graine initiale est équivalent par
mutation à un carquois de type Dynkin (où il est à noter que l'algèbre amassée est
un invariant de la classe de mutation du carquois initial).

A�n de démontrer certains résultats liés aux algèbres amassées, il a été néces-
saire de catégoriser cette notion. Dans le cas où Q est un carquois acyclique (et
k un corps algébriquement clos), la catégorie amassée associée à Q a été créée en
2006 par Buan, Marsh, Reineke, Reiten et Todorov (voir [BMR+06] pour plus de
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8 Chapitre 1. Introduction

détails). Il s'agit de la catégorie d'orbite

Db(kQ)/τ−1[1]

où Db(kQ) désigne la catégorie dérivée associée à l'algèbre kQ, τ est la translation
d'Auslander-Reiten et [1] le shift. Les détails seront fournis dans les préliminaires.
Le cas où Q est de type An fut traité en détail par Caldero, Chapoton et Schif-
�er dans [CCS06]. Le lien entre catégories amassées et algèbres amassées est le
suivant : via l'application de Caldero-Chapoton (voir [CC06]), il y a une bijection
explicite entre les amas et les objets amas-basculants (basiques), et entre les va-
riables d'amas et les objets rigides indécomposables. Pour une étude détaillée, voir
l'article de Keller, [Kel11]. Peu après la dé�nition de catégories amassées au sens
de [BMR+06], Keller a prouvé que ces catégories étaient triangulées dans l'article
[Kel05]. Il a en réalité démontré un résultat plus général. Sous certaines conditions,
la catégorie d'orbite d'une catégorie dérivée associée à une algèbre héréditaire par
une gentille auto-équivalence est une catégorie triangulée. Cet article a notamment
attiré l'attention d'autres catégories, les

Db(kQ)/τ−1[m]

où m est un entier naturel non nul. Elle sont alors baptisées catégories amassées
supérieures.

L'étude des catégories amassées supérieures peut commencer. Dans son article
[Tho07], Thomas en donne une dé�nition formelle, où les objetsm-amas basculants
correspondent aux m-amas (dé�nis par Fomin et Reading dans l'article [FR05]),
de la même manière que, dans les catégories amassées, les objets amas basculants
correspondent aux amas de l'algèbre amassée. On dé�nit les catégories amassées
supérieures à la section 3.2

En 2009, Amiot dans [Ami11] a dé�ni les catégories amassées généralisées, pour
un carquois quelconque en tant que localisation de Verdier, puis Guo, en 2010,
dé�nit les catégories m-amassées généralisées associées à une algèbre satisfaisant
certaines conditions.

1.2 Réalisation géométrique des catégories amas-

sées (supérieures)

La dé�nition de catégorie amassée de Caldero-Chapoton-Schi�er dans l'article
[CCS06] a suscité chez certains l'envie de trouver une description géométrique de
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ces catégories dans les cas les plus simples de carquois, d'abord, les carquois de
Dynkin, le type A ayant déjà été traité, puis dans le cas Ã. Pour plus de détails,
voir la section 3.5.

Dans tous les cas, il s'agit de trouver une surface simple, d'e�ectuer sur celle-ci
des triangulations, puis de démontrer que chaque triangulation est isomorphe à un
objet amas basculant. Pour le cas An, il s'agit d'un polygone à n + 3 côtés. Voici
un exemple de triangulation :

Le cas Dn a été traité par Schi�er dans [Sch08]. Cette fois-ci, un polygone ne
su�sait pas à illustrer le carquois, donc il y a rajouté une ponction au centre. Voici
un exemple de triangulation :

Fomin, Schapiro et Thurston dans l'article [FST08], généralisèrent des résultats
au cas d'une surface marquée épointée (sans ponction). Brüstle et Zhang (voir
[BZ11] pour plus de détails) catégorisent ces résultats. Marsh et Palu dans [MP14]
démontrent la compatibilité de cette réalisation géométrique avec les mutations
de carquois et la réduction d'Iyama-Yoshino. Ils utilisent la dé�nition de catégorie
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amassée généralisée d'Amiot, et un résultat de Keller-Yang montrant l'invariance
de la catégorie amassée par mutation de carquois.

Baur et Marsh, quant à eux, s'intéressèrent au cas des catégories amassées
supérieures, et plutôt que d'utiliser des triangulations, tracèrent des (m + 2)-
angulations, pour une catégorie m-amassée (de la même manière que l'on trace
des triangles pour une catégorie amassée). Le cas An a été traité dans [BM08], et
le cas Dn dans [BM07].

Torkildsen traita le cas Ãn dans le cas général, en illustrant par un "anneau"
formé de deux polygones l'un dans l'autre, le premier ayant p sommets, où p
est le nombre de �èches dans le carquois allant dans un sens, et le second q, où
q = n+ 1− p (qui correspond au nombre de �èches dans l'autre sens). On pourra
consulter [Tor12a] pour une étude en détail.

Dans cette thèse, nous traitons le cas D̃n en profondeur et démontrons quelques
résultats additionnels aux travaux de Baur, Marsh et Torkildsen sur les réalisations
géométriques des catégories amassées supérieures. Pour le cas D̃n, on trouve la
�gure qui correspond à l'étude, on démontre la compatibilité entre le �ip d'une
(m+2)-angulation, et la mutation de carquois coloré au théorème 2.1.4. On trouve
une bijection entre les objets m-rigides et chaque arc dit admissible, puis entre les
objets amas-basculants et les (m + 2)-angulations au théorème 2.1.8. De plus, on
démontre la compatibilité entre la réduction d'Iyama-Yoshino, et le fait de couper
le long d'un arc, qu'on dé�nira formellement. Ceci est fait au théorème 2.1.6.

1.3 Catégories triangulées, algèbre homotopique et

généralisation aux catégories exactes

Buan, Marsh et Reiten dans [BMR07], souhaitent retrouver les di�érentes ca-
tégories de modules sur les algèbres d'endomorphismes des objets amas basculants
à partir de la catégorie amassée. Ils ont démontré que le quotient d'une catégorie
amassée par le shift d'un objet amas basculant était une catégorie de module. Buan
et Marsh ont généralisé ce résultat aux catégories triangulées dans l'article [BM13],
et la localisation d'une catégorie triangulée est une catégorie de module. Puis, Palu
étudia le problème d'un point de vue algèbre homotopique, et démontra en 2014
dans [Pal14] qu'on pouvait munir une catégorie triangulée d'une structure de mo-
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dèle faible, ce qui permettait de respecter les hypothèses du théorème de Quillen
sur l'algèbre homotopique (voir ici le théorème 3.12.3 ou [Qui67]). On rappelle que
ce théorème donne le résultat suivant : pour une catégorie de modèle faible C, il
existe une équivalence de catégorie entre la sous-catégorie des objets �brants et
co�brants modulo une relation d'homotopie, et la catégorie homotopique de C.

La ré�exion part de ce constat : La catégorie stable d'une catégorie de Frobe-
nius est munie d'une structure triangulée (voir pour une démonstration l'excellent
[Hap88] de Happel). Et celles-ci sont (faiblement) des catégories de modèle, et
respectent le théorème de Buan et Marsh. Est-il alors possible de "remonter" aux
catégories de Frobenius, et, plus encore, aux catégories exactes contenant assez
d'injectifs (ou de projectifs) ?

C'est le but de la seconde partie de cette thèse. Nous démontrons qu'une caté-
gorie exacte est une catégorie de pré�bration au sens de Anderson-Brown-Cisinski
(voir 2.2.2), qui véri�e le théorème de Quillen, et une catégorie de Frobenius est
munie d'une structure de modèle (voir 2.2.8), compatible avec le passage à la
catégorie stable, qui est triangulée.
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Chapter 2
Summary of results

All throughout this thesis, if C is a category, we denote by C(X, Y ) the set of
morphisms from X to Y . All the notions will be introduced properly in chapter 3.

2.1 Geometric realization of a higher cluster cate-

gory of type An, Dn, Ãn and D̃n

In the �rst part of this thesis, we are interested in geometric realizations of
higher cluster categories in di�erent cases. Indeed, though the cases An, Dn, and
Ãn have been treated respectively by Baur and Marsh in [BM08] and [BM07],
and by Torkildsen in [Tor12a], we show on these cases that the Iyama-Yoshino
reduction corresponds to cutting along an arc. Moreover, we treat the case D̃n,
by giving an explicit bijection between rigid objects and admissible arcs. We also
show that cutting along an arc corresponds to Iyama-Yohsino reduction.

2.1.1 Notation

The letter K denotes a �eld (we prefer to use the small letter k for an integer).
For a triangulated category C endowed with a shift functor Σ, we consider that
the sets Ext1(X, Y ) and C(X,ΣY ) are the same.

We denote by Q a quiver. In this part, n and m are integers, where n is the
number of vertices of Q, n ≥ 4.

If A is an object in a category C, A⊥ is the class of all objects X such that
Exti(X,A) = 0 for all i ∈ {1, · · · ,m}. For a quiver Q (respectively for an (m+ 2)-
angulation ∆), we note µk(Q) (respectively µk(∆) the mutation (respectively the
�ip) at vertex k (respectively at arc k) of Q (respectively ∆).

13
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We denote by mod(KQ) the category of �nitely generated right modules over
the path algebra KQ. The letter τ stands for the Auslander-Reiten translation.
The application [1] is the shift functor of the (triangulated) higher cluster category.

2.1.2 Results

We start with a de�nition, common to all cases, of an (m+ 2)-angulation.

De�nition 2.1.1. Let n be a positive integer, and let Cm be the higher cluster
category associated with a quiver Q of type An, Dn, Ãn or D̃n. Let P be:

� A polygon with nm+ 2 sides for case An.

� A polygon with nm−m+ 1 sides for case Dn.

� An annulus with p+q marked points, where p and q are the number of arrows
in one direction and the other for type Ãn.

� An (n− 2)m-gon with two (m+ 1)-gon inside of it for case D̃n.

An (m+ 2)-angulation of P is a maximal set of noncrossing m-diagonals.

Remark 2.1.2. The notion of m-diagonal is de�ned di�erently in each case.

As Buan and Thomas de�ned a colored quiver from an m-cluster-tilting object,
with each (m+ 2)-angulation, we de�ne a colored quiver.

De�nition 2.1.3. Let ∆ be an (m + 2)-angulation of the �gure P in one of the
above cases. We de�ne the colored quiver Q∆ associated with ∆ in the following
way:

1. The vertices of Q∆ are in bijection with the m-diagonals of ∆.

2. If i and j form two sides of the same polygon and only one, then we draw
an arrow from i to j. The color of the corresponding arrow is the number of
edges between both m-diagonals, counted clockwise from i.

As Buan and Thomas de�ned the mutation of colored quiver, we can de�ne
the �ip of an (m+ 2)-angulation. An important result in this thesis, is that both
notions coincide.

Theorem 2.1.4. Let n be a positive integer, and let Cm be the higher cluster
category associated with a quiver Q of type An, Dn, Ãn or D̃n. Let P be as in
de�nition 2.1.1.

Let ∆ be any (m+ 2)-angulation of P . Let Q∆ be the colored quiver associated
with ∆. Then, for any k ∈ {1, · · · , n}, we have the equality

µk(Q∆) = Qµk(∆).
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From the m-diagonals we de�ne in this thesis, we can build a new category as
the mesh category of m-diagonals, with well-chosen morphisms between the arcs.
This gives rise to an equivalence of categories between the category of arcs, and
a subcategory of the higher cluster category. Moreover, with each m-diagonal α,
we can associate an m-rigid object Xα. The following theorem helps to build a
bijection between m-cluster-tilting objects and (m+ 2)-angulations.

Theorem 2.1.5. Let α and β be two arcs in the �gure P . Let Xα and Xβ be the
m-rigid objects associated with. Then, ∀i ∈ {1, · · · ,m},ExtiC(Xα, Xβ) = 0 if and
only if α and β do not cross each other.

The following theorem shows that cutting along an arc corresponds to Iyama-
Yoshino reduction, as in the paper of Marsh and Palu, [MP14, Section 4].

Theorem 2.1.6. Let C be the m-cluster category of type An, Dn, Ãn or D̃n.
Let α be an m-ear. Let Xα be the m-rigid object associated with α. Let U =
{Y ∈ C, ExtiC(Xα, Y ) = 0}. Let C ′ be the Iyama-Yoshino reduction of C, i.e.
C ′ = U/(Xα). Then, we have the following equivalence of categories :

C ′ ' C(m)
Q/α

where Q/α is the quiver obtained from Q by removing α and all its incident
arrows.

Finally, as Buan and Thomas showed that there was a compatibility between
mutation of m-cluster-tilting objects and colored quivers, we show that the �ip of
an (m+ 2)-angulation and mutation of m-cluster-tilting object is compatible.

This was not obvious. Indeed, a colored quiver is not associated with a unique
m-cluster-tilting object (or (m + 2)-angulation, as we will see at theorem 2.1.8).
There can be several m-cluster-tilting objects associated with the same colored
quiver. Then two compatibilities did not imply directly the third.

Theorem 2.1.7. Let X be anm-cluster-tilting object in C. Let ∆X be its associated
(m+ 2)-angulation. Let µi be the �ip at the arc αi in ∆X as well as the mutation
of the m-cluster-tilting object X at summand i. Then we have:

µi(∆X) = ∆µi(X)

Theorem 2.1.8. There is a bijection between (m+ 2)-angulations and m-cluster-
tilting objects.

Th corollary of the theorem is that the quivers of an (m + 2)-angulation and
of an m-cluster-tilting object coincide.
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Theorem 2.1.9. Let ∆ be an (m+2)-angulation. Let Q∆ be the associated coloured
quiver. Let X∆ be the m-cluster-tilting object associated with ∆, and let QX∆

be
the quiver associated with X∆ in the sense of Buan and Thomas in [BT09]. Then

Q∆ = QX∆

We also work on a deeper study of case D̃n which had not been treated yet:
we give the admissible arcs corresponding to projective modules, injective modules
and regular modules. We give an isomorphism between regular modules and some
particular m-diagonals in the geometric realization.

2.2 On the homotopy category of an exact cate-

gory

The end of the thesis is devoted to the construction of a model structure on
exact categories. Indeed, Demonet and Liu in [DL13] showed that the quotient of
an exact category E by a homotopy relation is a module category. The goal of this
second part is to show that this quotient is actually the homotopy category of E .
This permits to satisfy the hypotheses of the theorem of Quillen, and to provide
an explicit homotopy category.

In the same way Palu in [Pal14] showed that a triangulated category was
equipped with a weak model structure, we show that a Frobenius category is
equipped with a model structure, thus checks the hypotheses of the theorem of
Quillen, and then we show that an exact category E (under some quite nice as-
sumptions) is a pre�bration category, which still permits to apply the theorem of
Quillen.

2.2.1 Notations

We denote by E an exact category. Let f : X → Y and g : A → B be two
morphisms in E . We say that f�g when, for any commutative square

A //

��

X

��
B //

>>

Y

there exists a morphism B → X such that both triangles commute. For a set A
of morphisms of E , we call by

A� = {g, ∀f ∈ A, f�g} and �A = {f, ∀g ∈ A, f�g}.
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2.2.2 Results

This part of the thesis is devoted to the study of exact categories in a homotopi-
cal point of view. Indeed, we show the theorem of Quillen on homotopy theory for
exact categories. Moreover, we show that there is a pre�bration structure on such
categories, and that Frobenius categories are equipped with a model structure.

Lemma 2.2.1. Let E be a weakly idempotent complete exact category with enough
injective and projective objects. Assume that M ⊆ E is a rigid, contravariantly
�nite subcategory of E containing all the injective and projective objects, and stable
under taking direct sums and summands. Let

prM = {X ∈ E ,∃M1,M0 ∈M, 0→M1 →M0 → X → 0}

and
fM = {X ∈ E ,∃M ∈M, I ∈ Inj, 0→M → I → X → 0}.

Then, there exist some prM-approximation.

Theorem 2.2.2. Let E be a weakly idempotent complete exact category with enough
injective objects. Assume thatM⊆ E is a rigid, contravariantly �nite subcategory
of E containing all the injective objects, and stable under taking direct sums and
summands.

Then there exist two classes of morphisms F ib and W (the same weak equiva-
lences as in the Frobenius case) such that (E ,F ib,W) has a pre�bration sutrcture
in the sense of Anderson-Brown-Cisinski (see [RB06] for a deeper study). All
the objects are �brant, and an object is co�brant if and only if it belongs to prM.
Moreover, under the assumption thatM contains the projective objects, there exist
some co�brant replacements for any object of E.

Corollary 2.2.3. Let E be a weakly idempotent complete exact category with
enough injective objects. Assume that M ⊆ E is a rigid, contravariantly �nite
subcategory of E containing all the injective objects, and stable under taking direct
sums and summands. Suppose moreover that M contains the projective objects,
and that there exist some fM-approximation. Let

prM = {X ∈ E ,∃M1,M0 ∈M, 0→M1 →M0 → X → 0}

and
fM = {X ∈ E ,∃M ∈M, I ∈ Inj, 0→M → I → X → 0}.

Let
G : E → ModM

X 7→ E(−, X)/M
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which induces the following equivalence of categories

prM/fM' mod M.

Then the homotopy category is equivalent to mod M.

Corollary 2.2.4. We deduce from this that there is a homotopy calculus of frac-
tions in the sense of Radulescu-Banu in [RB06].

The theorem 2.2.2 not only shows the previous result. It shows that the objects
of prM are exactly the �brant and co�brant objects (as all objects are �brant, we
say that the subcatebory prM is the subcategory of co�brant objects).

Theorem 2.2.5. Each object of an exact category E satisfying the hypotheses of
corollary 2.2.3 has a co�brant replacement. This means that prM-approximations
are weak equivalences (they even are trivial �brations).

We also characterize trivial co�brations (morphisms which satisfy a lift prop-
erty on �brations):

Lemma 2.2.6. Suppose that fM → Y is a right fM-approximation. A mor-
phism f : X → Y is in �(J�) if and only if it is a retract of the canonical injection
X → X ⊕ fM .

We �nd a homotopy relation on morphisms of the category E , compatible with
the usual notion of left and right homotopy.

Lemma 2.2.7. For two morphisms f and g from an object X to Y ,f and g are

homotopic if and only if f − g factorizes throughM⊥
.

Next, from now we suppose that E is a Frobenius category. As it has much
more properties, we can equip it with a stronger structure : a model structure.

Theorem 2.2.8. Let E be a Frobenius category. Let M be a full subcategory of
E containing the injective objects, and assume that M is contravariantly �nite.
Then, there exist three classes of morphisms, F ib, Cof and W (the last one being
the weak equivalences, which means the morphisms such that their image under the
functor G is an isomorphism), forming a model structure on E. More precisely, all
the objects are �brant, and an object is co�brant if and only if it belongs to prM.

We characterize precisely weak equivalences, �brations and trivial �brations:
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Lemma 2.2.9. Let X, Y ∈ E. Let f : X → Y . Then f is a weak equivalence if
and only if, for

X
f //

ιX
��

Y

g

��
IX

u //

πX
��

Z

��
fX fX

we have IX ⊕ Y
(u g) // Z ∈M⊥

and, for

X
f // Y

Z //

g̃

OO

PY

OO

fY

OO

fY

OO

we have Z // X ⊕ PY ∈M
⊥
.

Lemma 2.2.10. Suppose that E is a weakly idempotent complete category (see the
article of Bühler, [Büh10]). Then f is a �bration if and only if f is a de�ation,

and g ∈ fM⊥
, where g is a cone of f , de�ned by

X
f //

ιX
��

Y

g

��
IX

u //

πM
��

Z

��
fX fX

.

Note that all these results are compatible by studying the stable category,
which is triangulated (it means that, stabilizing the Frobenius category E , we �nd
back the results of Palu in [Pal14]).
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Chapter 3
Preliminaries

3.1 Triangulated categories

Triangulated categories behave like exact categories. Triangles are the equiv-
alent for short exact sequences in exact categories. For a gentle introduction to
triangulated categories, see the book of Holm and Jorgensen [HJ10]. For a deeper
study of triangulated categories, see the book of Zimmermann, [Zim14].

3.1.1 Axioms of a triangulated category

De�nition 3.1.1. Let C be an additive category. Let Σ be an automorphism of
C, called the suspension functor. We call by triangles the diagrams of the form
X → Y → Z → ΣX, stables under isomorphisms. Then C, endowed with such
triangles is triangulated if it satis�es the following axioms :

TR 1 For any morphism X → Y , there exists a triangle X → Y → Z → ΣX.

For any XinC, the diagram X
1 // X // 0 // ΣX is a triangle.

TR 2 The diagram X
f // Y

g // Z
h // ΣX is a triangle is and only if the

diagram Y
g // Z

h // ΣX
−Σf // ΣY .

TR 3 For any triangles

X
f // Y

g // Z h // ΣX

and X ′
f ′ // Y ′

g′ // Z ′ h′ // ΣX ′ , for any commutative square

X
f //

α
��

Y

β
��

X ′
f ′ // Y ′

,

21
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there exists γ : Z → Z ′ such that

X
f //

α
��

Y
g //

β
��

Z
h //

γ
��

ΣX

Σα
��

X ′
f ′ // Y ′

g′ // Z ′
h′ // ΣX ′

is a morphism of triangle.

TR 4 Suppose that there exist three triangles

X
a // Y

b // Z ′
c // ΣX ,

Y
α // Z

β // X ′
γ // ΣY

and

X
µ // Z

ν // Y ′
ξ // ΣX

such that µ = α ◦ a.
Then there exists a triangle

Z ′
d // Y ′

e // X ′
f // ΣZ ′

such that 

d ◦ b = ν ◦ α
c = ξ ◦ d

b[1] ◦ γ = f

a[1] ◦ ξ = γ ◦ e
e ◦ ν = β

(3.1)

We can illustrate this axiom by the following diagram: if we have the full
arrows, then we have the dotted arrows.

Σ−1X ′

Σ−1γ
��

Σ−1X ′

Σ−1f
��

X
d // Y

α
��

b // Z ′

d
��

c // ΣX

X
µ // Z

β
��

ν // Y ′

e
��

ξ // ΣX

X ′ X ′

with all the squares commutative.
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Remark 3.1.2. The last axiom is called the octahedral axiom. It can be formulated
di�erently. The following one illustrates well the name of the axiom:

Z ′

d

��

β

��
Y ′

e //

ξ~~

X ′

γ
}}

f

��

X

µ

CC

a // Y

b

��

α

OO

Z ′

c

YY
d

OO

but here the triangles are quite di�cult to see.

Remark 3.1.3. The morphism in TR 3 is unique, up to non-unique isomorphism.
This causes many problems we do not have in abelian categories.

3.1.2 Some properties of triangulated categories

Throughout this section, C is a triangulated category.

Lemma 3.1.4 (May's lemma). The axiom TR 3 is a consequence of the axioms
TR 1, TR 2 and TR 4.

It is thought that axiom TR 4 is a consequence of TR1, TR 2 and TR 3, but
the question is still without any answer.

Proposition 3.1.5. Let X
f // Y

g // Z h // ΣX be a triangle. Then we have

g ◦ f = 0 and h ◦ g = 0.

Lemma 3.1.6 (Triangulated �ve lemma). Let

X
f //

α
��

Y
g //

β
��

Z
h //

γ
��

ΣX

Σα
��

X ′
f ′ // Y ′

g′ // Z ′
h′ // ΣX ′

be a morphism of triangle. If two of the vertical arrows are isomorphisms, then
the third one is one too.
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We now tell a useful lemma about long exact sequences.

Lemma 3.1.7. Let X
f // Y

g // Z
h // ΣX be a triangle. Then, we have a

long exact sequence:

· · · → C(U,Σ−1Z)→ C(U,X)→ C(U, Y )→ C(U,Z)→ C(U,ΣX)→ · · ·

for any U ∈ C. We also have

· · · → C(ΣX,U)→ C(Z,U)→ C(Y, U)→ C(X,U)→ C(Σ−1X,U)→ · · ·

for any U ∈ C.

3.1.3 Examples of triangulated categories

Now, the category C is not necessarily triangulated anymore.

Derived categories

Historically, derived categories are the �rst example of triangulated categories,
due to Verdier in his posthumous printed thesis [Ver96]. Here, we de�ne derived
categories. For a nive lecture note, see [Kel96]. For a deep study of derived
categories, see [Zim14].

De�nition 3.1.8. Let C be an abelian category (we often study mod A, which is
the category of �nitely generated right modules over a �nite dimensional k-algebra,
where k is an algebraically closed �eld). We introduce C(C) the new category of
complexes, given by:

� Objects: Complexes of objects of C.
� Morphisms: morphisms of degree 0, which commute with the di�erential.

� Natural composition.

From this category, we de�ne another category, the homotopy category K(C).

De�nition 3.1.9. Let f : M → N be a morphism of complexes. The morphisms
f is said to be null-homotopic if there exists a morphism h : M → N , of degree
−1, such that f = d ◦ h+ h ◦ d, chere d is the di�erential.

The homotopy category K(C) is de�ned in the following way:

� Objects: same as the ones of C.
� Morphisms: classes of morphisms of C(C) modulo the null-homotopic rela-

tion.

� Natural composition.
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Now we can de�ne the derived category of C.

De�nition 3.1.10. The morphisms which induce isomorphisms in homology are
called quasi-isomorphisms.

The derived category D(C) is the localization of K(C) with respect to the class
of quasi-isomorphisms.

Let us explain the morphisms of D(C): a morphisms from X to Y in D(C) is
the class of diagrams of the type

X ′

w

~~

f

  
X Y

where f ∈ K(X ′, Y ), and w is a quasi-isomorphism.
Two such diagrams are called equivalent when there exists a commutative di-

agram:

X ′

}} !!
X Z

OO

��

oo // Y

X ′′

aa ==

The composition of two diagrams is given by the following diagram:

X ′′′

""}}
X ′

~~ ""

X ′′

||   
X Y Z

Theorem 3.1.11 (Verdier, [Ver96]). Let C be an additive category. Then the
derived category D(C) of C is triangulated.

For more details, see the excellent book of Alexander Zimmermann, [Zim14].

The stable category of a Frobenius category

We de�ne at section 3.6 what a Frobenius category is. In his book [Hap88],
Happel discovered a new example of triangulated categories.
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De�nition 3.1.12. Let E be a Frobenius category. For any two objects A and
B, we denote by I(A,B) the subgroup of morphisms from A to B which factors
through an injective object.

The stable category E, associated with E, is the category whose objects are the
same as the ones of E, and the set of morphisms, is

E(A,B) = E(A,B)/I(A,B).

The following theorem is due to Happel.

Theorem 3.1.13 (Happel, [Hap88]). The stable category of a Frobenius category
is triangulated, with suspension functor the object ΣA appearing in the triple

A� IA � ΣA.

Remark 3.1.14. The homotopy category, as above, is the stable category of a
Frobenius category. Then it is automatically a triangulated category.

3.2 Higher cluster categories

In this thesis, we are interested in higher cluster categories. Cluster categories
have been de�ned in [BMR+06], in order to categorify the concept of cluster al-
gebras, Keller in [Kel05] studied these and also higher cluster categories. For a
survey of the two next section, see the article of Buan, [Bua11].

3.2.1 De�nition of higher cluster categories

We recall the de�nition of a cluster category: Consider H a basic hereditary
�nite dimensional algebra over an algebraically closed �eld k. Let Db(H) be the
bounded derived category of H. For convenience, we denote by [1] the shift functor
ofDb(H), and τ the Auslander-Reiten translation on the derived category. We refer
to [Zim14] for a deeper study of derived categories. The cluster category associated
with H is the orbit category Db(H)/τ−1[1].

De�nition 3.2.1. Let H be a basic hereditary �nite dimensional algebra over an
algebraically closed �eld k. Let Db(H) be the bounded derived category of H. Then
the m-cluster category associated with H of degree m is de�ned by

C(m)
H = Db(H)/τ−1[m]

where [m] is the functor [1] repeated m times.

Theorem 3.2.2 (Keller, [Kel05]). The higher cluster category is triangulated.

Theorem 3.2.3 (Buan, Marsh, Reineke, Reiten, Todorov, [BMR+06]). The higher
cluster category is Krull-Schmidt.
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3.2.2 Example of a 2-cluster category

We take this example from Buan, in [Bua11]. Let Q be the quiver

1 // 2 3oo // 4 .

Let A be the path algebra kQ. We draw the in�nite Auslander-Reiten quiver of
Q:

I1[−1]

""

P1

��

I4

��

P4[1]

##
I2[−1]

::

$$

P2

��

??

M

��

??

I3

!!

==

P3[1]

· · · I3[−1]

<<

""

P3

??

��

I2

@@

��

P2[1]

;;

##

· · ·

I4[−1]

::

P4

??

N

??

I1

==

P1[1]

Then, the 2-cluster category of Q consists in taking each object and the �rst
copy (�rst shift) of each object. Then, it is composed of 24 indecomposable objects
(10 plus 10 shifts plus one additional copy of the projective objects shifted twice).

The Auslander-Reiten quiver of the higher cluster category is thus cyclic:

P1

��

I4

��

P4[1]

##

Y [1]

""

I1[1]

""

P1[2]

!!

P1

P2

��

??

M

��

??

I3

!!

==

P3[1]

##

;;

I2[1]

""

<<

P2[2]

##

;;

P2

��

??

P3

??

��

I2

@@

��

P2[1]

;;

##

X[1]

""

<<

I3[1]

""

<<

P3[2]

!!

==

P3

P4

??

N

??

I1

==

P1[1]

;;

I4[1]

<<

P4[2]

;;

P4

??

The left and right most objects are identi�ed.

3.3 Cluster-tilting subcategories

In triangulated categories, there are some interesting objects or subcategories,
which reveal the category, and helps to understand it: the cluster-tilting objects
(or subcategories). In this section, we present this.
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3.3.1 De�nition of cluster-tilting categories

De�nition 3.3.1. Let k be a �eld, and let C be a triangulated k-linear category
with split idempotents and a suspension functor [1]. We suppose that C is Hom-
�nite, and admits a Serre functor S. Then C is said to be (m + 1)-Calabi-Yau if
there exists an isomorphism

[m+ 1] ' S.

We now de�ne m-cluster-tilting subcategory.

De�nition 3.3.2. Let T be a subcategory of C. We say that T is an m-cluster-
tilting subcategory if it satis�es the following:

� The category T is a k-linear subcategory.

� The functors C(−, X)|T and C(X,−)|T are �nitely generated for any X ∈ C.
� For all i ∈ {1, · · · ,m}, and any T, T ′ ∈ T , we have Exti(T, T ′) = 0.

� For X ∈ C, if Exti(T,X) = 0 for all i ∈ {1, · · · ,m} and any T ∈ T , then
X ∈ T .

De�nition 3.3.3. Let C be an m-cluster category. An object T of C is called rigid
if

ExtiC(T, T ) = 0

for all i ∈ {1, · · · ,m}. An m-cluster-tilting object is a rigid object T satisfying
moreover the following property:

∀X ∈ C,ExtiC(T,X) = 0 ∀i ∈ {1, · · · ,m} =⇒ X ∈ addT.

Remark 3.3.4. We note that, if T ∈ C, then T is rigid if and only if the above
implication is an equivalence. Zhu in [Zhu08] and Wraalsen in [Wr �a09] showed
independently that maximal rigid objects and m-cluster-tilting objects coincide. If
A is a �nite dimensional hereditary algebra containing exactly n simple modules
up to isomorphism, they also showed that a rigid object T is m-cluster-tilting if
and only if it has n isomorphism classes of indecomposable direct summands.

3.3.2 Some properties of m-cluster-tilting objects

Theorem 3.3.5 (Wraalsen, Zhou-Zhu, [Wr �a09],[ZZ09]). Let T = ⊕Tk be an m-
cluster-tilting object. We denote by Bk = T/Tk an almost m-cluster-tilting object.
The objects X such that Bk⊕X is an m-cluster-tilting object are called complement
to Bk. Then Bk has m+ 1 complements.

De�nition 3.3.6. Let T = ⊕Tk be an m-cluster-tilting object in a triangulated
category C. Then the map f : Tk → B′k is a minimal left add Bk-approximation of
Tk if:
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� B′k ∈ add Bk

� Any map Tk → B, B ∈ add Bk factors through f .

� If, for any g : B′k → B′k, g ◦ f = f , then the map g is an isomorphism.

By TR 1 in the category C, we have the following triangle

Tk → B′k → T ∗k → Tk[1].

This triangle is called an exchange triangle.

Theorem 3.3.7 (Iyama-Yoshino, [IY08]). The m + 1 complements found in the

previous theorem appear in the m+1 exchange triangles. They are exactly the T
(c)
k

for c ∈ {0, · · · ,m} occurring in the exchange triangles

T
(c)
k → B

(c)
k → T

(c+1)
k → T

(c)
k [1].

Here we only cite a very useful theorem of Keller and Reiten in [KR08], we will
use all throughout the �rst part of the thesis.

Theorem 3.3.8. [KR08, Theorem 4.2] Let C be a Hom-�nite algebraic (m + 1)-
Calabi-Yau category. Let T be an m-cluster-tilting object in C, such that ∀i ∈
{1, · · · ,m} Ext−iC (T, T ) = 0 and EndC(T ) ' KQT , for some quiver QT .

Then C ' CmQT .

Remark 3.3.9. These categories from theorem 3.3.8 are Iyama-Yoshino reduc-
tions. They are algebraic (see the article of Buan, Iyama, Reiten and Scott
[BIRS09, Theorem I.1.8] for example).

Remark 3.3.10. In his paper [Kel05], Keller has shown that orbit categories are
also algebraic.

3.3.3 Example

We still take the previous example due to Buan. Let B = I4 ⊕ I1 ⊕ Y [1] be an
almost m-cluster-tilting object. Then it has three complements which are given
by the exchange triangles. They are X,P2[1] and I3[1].

3.4 Quivers and colored quivers

Before de�ning colored quivers, let us introduce the mutation of a classic
Gabriel quiver.
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De�nition 3.4.1. Let Q be a quiver, it means a set of vertices Q0, a set of arrows
Q1 and two maps s and t from Q1 to Q0, which associate respectively with an arrow
its source and its target. Then the mutation at vertex i of the quiver Q, denoted
as µi(Q) is given by:

� Replace each j → i→ k by an arrow j → k.

� Reverse all arrow coming from or going to i.

� Remove all 2-cycles.

3.4.1 De�nition of a colored quiver

A deeper study on colored quivers can be found in [BT09] written by Buan
and Thomas.

De�nition 3.4.2. Let m,n be positive integers. An m-colored quiver consists of:

� A set Q0 of n vertices.

� A set Q1 of arrows.

� Two maps s, t : Q1 → Q0 which associate with each arrow respectively the
source and the target.

� A map Q1 → {1, · · · ,m} which associates with each arrow a color c ∈
{1, · · · ,m}.

We write the color above the arrow. The term q
(c)
ij corresponds to the number of

arrows from i to j of color c.

For the study, we ask our colored quivers to satisfy the following properties:

� No loops which means that q
(c)
ii = 0 for all c ∈ {1, · · · ,m} and i ∈ {1, · · · , n}.

� Monochromaticity which means that if q
(c)
ij 6= 0, then q

(c′)
ij = 0 for all c′ 6= c.

� Skew-symmetry which means that q
(c)
ij = q

(m−c)
ji .

We now de�ne the mutation of colored quivers.

De�nition 3.4.3. [BT09] Let Q be a colored quiver, and let k be a vertex of Q.
We de�ne the new quiver µk(Q) with the same vertices, and the new number of

arrows q̃
(c)
ij given by:

q̃
(c)
ij =


q

(c+1)
ij if j = k

q
(c−1)
ij if i = k

max{0, q(c)
ij −

∑
t6=c q

(t)
ij + (q

(c)
ik − q

(c−1)
ik )q

(0)
kj + q

(m)
ik (q

(c)
kj − q

(c+1)
kj )} else.

In section 3.4.3, an example is shown.
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3.4.2 Main theorem about colored quivers

In this section, if T is an m-cluster-tilting object, we de�ne T ′, the m-cluster-
tilting object which is obtained by mutation of T . Unfortunately, if QT is the
Gabriel quiver associated with T , form > 1, there does not exist a quiver mutation
µj such that QT ′ = µj(QT ). Then, to remedy this lack, Buan and Thomas in
[BT09] built a new quiver from T , which is denoted as the colored quiver associated
with T .

Proposition 3.4.4. Mutating a colored quiver as in de�nition 3.4.3 is equivalent
to the following procedure:

1. For any i
(c) //k

(0) //j , if i 6= j and c is an integer in {0, · · · ,m}, then draw

an arrow i
(c) //j and an arrow j

(m−c) //i.

2. If condition 2 of monochromaticity in the restriction of colored quivers is not
satis�ed anymore from one vertex i to one vertex j, then remove the same
number of arrows of each colour, in order to restore the condition.

3. For any arrow i
(c) //k , add 1 to the color c, and for any arrow k

(c) //j ,
subtract 1 to the color c.

We recall from Buan and Thomas in [BT09] that there are exchange triangles

T
(c)
k

f
(c)
k // B

(c)
k

g
(c+1)
k // T

(c+1)
k

h
(c+1)
k // T

(c)
k [1] (3.2)

With any m-cluster-tilting object T in the m-cluster category, we associate a
corresponding colored quiver QT such that:

1. The vertices of QT are the integers from 1 to n where n is the number of
indecomposable summands of T .

2. The number q
(c)
ij is the multiplicity of Tj in B

(c)
i in the exchange triangle

(2.13).

We now state the main theorem about colored quivers and m-cluster-tilting
objects a proof of which can be found in [BT09]:

Theorem 3.4.5. [BT09, Theorem 2.1] Let T =
⊕n

i=1 Ti and T
′ = T/Tk

⊕
T

(1)
k be

m-cluster-tilting objects, where there is an exchange triangle Tk → B
(0)
k → T

(1)
k →

Tk[1]. Then
QT ′ = µk(QT ).

Remark 3.4.6. In particular, the coloured quiver QT ′ only depends on the colored
quiver QT .
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3.4.3 Example of the mutation of colored quivers

We give here a simple example of the mutation of a colored quiver:

4
(3)

��

2

(3)��
1

(0)

^^ (0)
@@

(0)

��(0)��5

(3)
@@

3
(3)

^^

mutation at 3−−−−−−−→ 4
(3)

��

2

(3)��
1

(0)

^^ (0)
@@

(1)

��(0)��5

(3)
@@

3
(2)

^^

3.5 Geometric realization of cluster categories of

type A, D, Ã and marked surfaces

This section is more an explanation of what have been done until now than a
real preliminary background, necessary to understand the results of this thesis.

Researchers have tried to give a geometric realization of cluster categories,
which could explain some curious results such as how the morphisms in the Auslander-
Reiten quiver are set, and give a visual understanding of these categories. We now
consider the cases A, D, and the very general case of marked surfaces.

3.5.1 Case A

This is the �rst case studied, by Caldero, Chapoton and Schi�er in [CCS06].
Let Q be a quiver of type An. Let P be the regular (n + 3)-gon. Then with
each diagonal (we keep the vocabulary of [CCS06]) of a triangulation of P , we can
associate a vertex of Q. We can draw arrows between diagonals (indeed, we draw
an arrow from one diagonal to another if they are consecutive clockwise). This
makes the triangulation correspond to a quiver.

We introduce the �ip of a triangulation in the following way: let T be a tri-
angulation. Let i be a diagonal of T . Then, the new triangulation T ′ = µi(T ),
�ipped at vertex i, is de�ned in the following way: T ′ contains all the diagonals of
T except i. The diagonal i′ obtained by removing i and taking the other diagonal
of the quadrilateral created by removing i completes the triangulation T ′. In this
situation, Caldero, Chapoton and Schi�er in [CCS06] show the following lemma:

Lemma 3.5.1. Let Q be a quiver of type An. Let P be the regular (n + 3)-
gon. Let T be the triangulation corresponding to Q in P . Let i be a vertex of Q,
corresponding to a diagonal of T . Then,

µi(Q) = µi(T ).
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Continuing from this, Caldero Chapoton and Schi�er built a new category
where the objects arise from diagonals in P and where the irreducible morphisms
arise from the arrows between diagonals, with morphisms arising from composi-
tions of arrows between the objects, modulo mesh relations. They showed the
following theorem:

Theorem 3.5.2 (Caldero-Chapoton-Schi�er, Theorem 2.14, [CCS06]). There is
an equivalence of categories between the cluster category of type A and the category
geometrically built from diagonals.

They even showed more than this: particular objects such as injective, projec-
tive, corresponded to special diagonals in the polygon P .

3.5.2 Case D

After this, Schi�er in [Sch08] provided a model for type Dn, for n ≥ 4. Now,
P is a polygon with n vertices, and one puncture in its center. Schi�er de�nes
what is an admissible diagonal, and elementary moves between two diagonals. In
the same way as in case An, he shows the following lemma:

Lemma 3.5.3. Let Q be a quiver of type Dn. Let P be the regular n-gon with one
puncture. Let T be the triangulation corresponding to Q in P . Let i be a vertex of
Q, corresponding to a diagonal of T . Then,

µi(Q) = µi(T ).

Finally, by building a category whose objects arise from the diagonals, and the
morphisms the composition of elementary moves, modulo mesh relations, he shows
the following theorem:

Theorem 3.5.4 (Schi�er, Theorem 3.3, [Sch08]). There is an equivalence of cat-
egory between the category of diagonals, and the cluster category of type D.

3.5.3 Case Ã

This case has been treated by Torkildsen in [Tor12a]. He shows similar results,
taking into account the di�erent form of the Auslander-Reiten quiver of Q (pres-
ence of tubes, which must correspond to regular modules). For a deeper study of
these Euclidean quivers, see the book [SS07].

The �rst part of his thesis consists in �nding these results for case Ãn, and to
show that cutting along an arc corresponds to apply Iyama-Yoshino reduction.



34 Chapter 3. Preliminaries

3.5.4 General case of the marked surface

Brüstle and Zhang in [BZ11], introduce the cluster category associated with
a marked surface. Marsh and Palu in [MP14] generalized the results given above
for these generalized cluster categories. Indeed, they use a theorem of Keller and
Yang (see [KY11]). Before giving it, we need to see the de�nition of the generalized
cluster category.

De�nition 3.5.5. Let Q be a quiver, associated with a potential W (a linear
combination of cycles in Q, up to cyclic permutation). We de�ne the Ginzburg
dg algebra Γ(Q,W ) as follows: First de�ne a graded quiver Q which arrows are
de�ned as follows:

� The arrows of Q, of degree 0

� For each arrow α : i→ j, add an arrow α∗ : j → i of degree −1.

� For each vertex i of Q, add a loop e∗i at i of degree −2.

The Ginzburg dg algebra is the path algebra of the graded quiver.

We now de�ne the cluster category for an arbitrary quiver Q (without assuming
acyclicity).

De�nition 3.5.6 (Amiot). The generalized cluster category CQ associated with Q
is the Verdier localization

perΓ(Q,W )/Db(Γ(Q,W )).

Amiot has shown that this category corresponds in the acyclic case to the clas-
sical cluster category. One can de�ne a quiver with potential from a triangulation
of a marked surface. Then, Keller and Yang have shown this powerful theorem:

Theorem 3.5.7 (Keller-Yang, [KY11]). Let T be a triangulation, and (QT ,WT )
be the associated quiver with potential. Then, for any arc i of T , if µi(T ) is the
new triangulation obtained from �ipping the arc i, there is a triangle equivalence:
Then we have the equivalence

CQT ' CQµi(T )
.

This theorem permits to associate with a surface, a unique cluster category.
Indeed, Marsh and Palu show the following result:

Theorem 3.5.8. There is a bijection between the arcs of the triangulation of a
marked surface, and the cluster-tilting objects of the associated cluster category.
Moreover, cutting along an arc corresponds to Iyama-Yoshino reduction. Finally,
the quiver mutation is compatible with �ip, as in the An and Dn cases.
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3.6 Exact and Frobenius categories

In this section, we introduce exact and Frobenius categories as in Bühler (see
[Büh10]). Exact categories have been invented by Quillen in [Qui10] in order to
generalize the notion of short exact sequences in abelian categories.

3.6.1 Axioms of exact categories

In this section, we choose as a reference the article of Bühler [Büh10].

De�nition 3.6.1. Let E be an additive category. A short exact sequence (i, p) in

E is a pair of composable morphisms A
i // A′

p // A′′ such that i is a kernel of
p and p is a cokernel of i. If a class C of short exact sequences on E is �xed, an
in�ation is a morphism i for which there exists a morphism p such that (i, p) ∈ C.
De�ations are de�ned dually.

An exact structure on E is a class C of short exact sequences, which is closed
under isomorphisms and satis�es the following axioms:

E0 The identity morphism is an in�ation.

E0' The identity morphism is a de�ation.

E1 The class of in�ations is closed under composition.

E1' The class of de�ations is closed under composition.

E2 The push-out of an in�ation along an arbitrary morphism exists and yields an
in�ation.

E2' The pull-back of a de�ation along an arbitrary morphism exists and yields a
de�ation.

Remark 3.6.2 (Vocabulary). Short exact sequences are also called kernel-cokernel
pairs. Moreover, there exists a further pair of notions for in�ation and de�ation,
which is admissible monic and admissible epic. Here we prefer to use the notations
of Keller.

Remark 3.6.3. In order to be clear, we note in�ation with an arrow � and a
de�ation with an arrow �.

3.6.2 Some properties of exact categories

Let E be an exact category. To have proofs of these properties, we refer to
Bühler ([Büh10])
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Proposition 3.6.4. For any objects A and B, the diagram

A //
(1
0)
// A⊕B(0 1) // // B

is a short exact sequence.

Proposition 3.6.5. The direct sum of two short exact sequences is short exact.

Proposition 3.6.6. Consider the following commutative square:

A //
i //

f
��

B

f ′

��
A′ //

i′ // B′

.

Suppose that the horizontal arrows are in�ations. Then the following assertions
are equivalent:

i The square is a push-out

ii The sequence

A //
(i−f )
// B ⊕ A′(f

′ i′) // // B′

is short exact.

iii The square is both a push-out and a pull-back.

iv The square makes part of a commutative diagram

A //
i //

f
��

B

f ′

��

p // // C

A′ //
i′ // B′

p′ // // C

where the rows are short exact.

Proposition 3.6.7. The pull-back of an in�ation along a de�ation yields an in-
�ation.

3.6.3 Examples of exact categories

1. We remark that any abelian category is in particular exact.

2. Any full, closed under extension subcategory of an abelian category is exact.

3. If C is a category which has �nite limits, is cartesian closed, and has a sub-
object classi�er (it is a morphism such that any monomorphism in the topos
is the pullback of this morphism along a unique morphism), the category C
is called a topos, then C is an exact category.
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3.6.4 The particular case of Frobenius categories

Now we recall the de�nition of a Frobenius category. For further information,
see the book of Happel, [Hap88].

De�nition 3.6.8. Let E be an additive category.
An object P ∈ E is said to be projective if, for any de�ation π : A � B, and

any morphism f : P → B, there exists a lift g : P → A such that π ◦ g = f .
An object I ∈ E is said to be injective if, for any in�ation ι : A� B, and any

morphism f : A→ I, there exists a lift g : B → I such that ι ◦ g = f .

De�nition 3.6.9. An additive category E has enough projective objects if, for any
B ∈ E, there exists a de�ation π : P � B with P projective.

An additive category E has enough injective objects if, for any A ∈ E, there
exists an in�ation ι : A� I with I injective.

De�nition 3.6.10. An exact category E is said to be Frobenius if is has enough
projective and injective objects, and if the projective coincide with the injective.

3.7 Weakly idempotent complete categories

We now see a particularity of some categories, which we will use for exact
categories (See [Büh10, Section 7]). This type of categories permits to build easily
short exact sequences.

De�nition 3.7.1. In a category E (not necessarily exact), a morphism r : A→ B
is called a retraction if there exists a section s : B → A such that r ◦ s = 1B.
Dually, a morphism c : A → B is a coretraction if there exists a section s :→ A
such that s ◦ c = 1.

Proposition 3.7.2. If E is an additive category (not necessarily exact), the fol-
lowing are equivalent:

(i) Any coretration has a cokernel

(ii) Any retraction has a kernel

De�nition 3.7.3. If one of the conditions of the previous lemma holds, then the
category E is said to be weakly idempotent complete.

We now have the following useful proposition:

Proposition 3.7.4. Let E be an exact category. Then the following are equivalent:

(i) The category E is weakly idempotent complete.

(ii) For any two morphisms f : A → B and g : B → C, if g ◦ f : A � C is a
de�ation then g is a de�ation.
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3.8 Quotient of exact categories by cluster-tilting

subcategories as module categories

In 2007, Buan, Marsh and Reiten in [BMR07] showed that we can pass from
triangulated categories to abelian categories by factoring out any cluster-tilting
subcategory. The aim of this section is to present the analogous result shown by
Demonet and Liu in [DL13] for exact categories. In fact, the main theom is more
interesting than that, and this thesis uses it a lot in order to prove the theorem of
Quillen in some cases (see the dedicated section on preliminaries).

Theorem 3.8.1 ([DL13]). Let E be an exact category. Let M be a full rigid
subcategory which contains the injective objects. Let

prM = {X ∈ E ,∃M1,M0 ∈M, 0→M1 →M0 → X → 0}

and
fM = {X ∈ E ,∃M ∈M, I ∈ Inj, 0→M → I → X → 0}.

These are short exact sequences. Let G be the following functor:

G : E → ModM
X 7→ E(−, X)/M

Then, the functor G induces the following equivalence:

prM/fM' modM.

They show analogously:

Theorem 3.8.2 ([DL13]). Let E be an exact category. Let M be a full rigid
subcategory which contains the projective objects. Let

coprM = {X ∈ E ,∃M1,M0 ∈M, 0→ X →M0 →M1 → 0}

and
ΩM = {X ∈ E , ∃M ∈M, P ∈ Proj, 0→ X → P → X →M}.

These are short exact sequences. Let H be the following functor:

H : E → ModM
X 7→ Ext1

E(−, X)/M

Then, the functor H induces the following equivalence:

coprM/ΩM' modM.
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This has important consequences:

Corollary 3.8.3. In the �rst case, if we denote byM⊥
the set {X ∈ E , E(M, X) =

0}, then we have that

fM =M⊥ ∩ prM.

In the dual case, if M is rigid and contravariantly �nite (it means that there
exist someM-approximations), then the quotient category coprM/ΩM is abelian.

3.9 Localization of triangulated categories

In their article [BM13], Buan and Marsh built an equivalence of categories
between a localization of a triangulated category, and a module category. This is
what we generalize to Frobenius categories, and then exact categories.

Theorem 3.9.1 (Buan-Marsh, [BM13]). Let C be a skeletally small, Hom-�nite,
Krull-Schmidt triangulated category with a rigid object T . Let χT be the full sub-
category of C whose objects are the objects of C having no non-zero maps from
T . Let S̃ be the class of maps f that can be completed to a triangle f, g, h in
which g, h ∈ (χT ). Then, the induced functor G : CS̃ → mod EndC(T )op is an
equivalence.

3.10 Model categories

Model categories have been invented in order to give a reasonable context to
do homotopy theory. It has been developed by Quillen in [Qui67]. For a gentle
introduction, see [DS95], or for a deeper study, see the book of Hovey, [Hov99].

3.10.1 De�nition of a model category

We start with a preliminary de�nition.

De�nition 3.10.1. Given a commutative diagram

A
a //

h
��

X

f
��

B
b
// Y

a lift of the diagram is a morphism g : B → X such that g ◦ h = a and f ◦ g = b
(we say that both triangles commute).
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De�nition 3.10.2. Let C be a category. Let W be the class of weak equivalences,
F ib be the class of �brations, and Cof be the class of co�brations. We call an
element of F ib∩W (respectively an element of Cof ∩W) an acyclic �bration (re-
spectively an acyclic co�bration). The category C is said to have a model structure
if the triple (W ,F ib, Cof) and C satisfy the following properties:

MC 1 Finite limits and colimits exist in C.
MC 2 W has the "two-out-of-three" property, it means that, for two composable

maps g and f , if two of the three maps f , g or gf are in W, so is the third.

MC 3 The three sets F ib, Cof and W are stable under retracts.

MC 4 For a commutative diagram

A a //

h
��

X

f
��

B
b
//

>>

Y

a lift exists if: either h is a co�bration and f is an acyclic �bration (meaning
that f ∈ F ib ∩W) or h is an acyclic co�bration and f is a �bration.

MC 5 Any morphism can be factored in two ways: a co�bration followed by an
acyclic �bration, and an acyclic co�bration followed by a �bration.

Remark 3.10.3. Here, we observe that this is in fact the de�nition of a closed
model category. Indeed, all throughout this thesis, we only work with closed model
categories.

Proposition 3.10.4. If C is a model category, then Cop is also a model category,
with �brations and co�brations exchanged.

De�nition 3.10.5. An object X of a model category C is said to be �brant if the
morphism X → ∗ is a �bration (where ∗ is the terminal object of C, existing from
MC 1). It is said to be co�brant if the morphism ∅ → X is a co�bration (where ∅
is the initial object of C).

3.10.2 Some properties of model categories

The following lemma is actually a corollary of the retract argument, which we
do not need here.

Lemma 3.10.6. If C is a model category, then co�brations (and acyclic co�bra-
tions) are closed under pushouts. That is to say, if we have a diagram

A
a //

h
��

X

f
��

B
b
// Y

,
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if h is a co�bration (respectively an acyclic co�bration), then f is one too. Dually,
�brations (and acyclic �brations) are closed under pullbacks.

In his book [Hov99], Hovey showed a very useful theorem about model cate-
gories. He has shown an equivalent de�nition for categories with all small limits
and colimits.

Theorem 3.10.7 ([Hov99]). Let C be a category. Let W, F ib, Cof be three classes
of morphisms, where F ib (respectively Cof) is obtained from an orthogonal relation
� on a set of morphisms J (respectively I). Then there is a model structure on C
if and only if:

(i) The set of morphisms W has the "two-out-of-three" property, and is stable
under retracts.

(ii) We have J� ∩W = I�.

(iii) We have �(J�) ⊆ W ∩ �(I�).

(iv) Any morphism can be factored through a weak co�bration followed by a �bra-
tion. Any morphism can be factored through a co�bration followed by a weak
�bration.

Remark 3.10.8. In his article, Hovey does not write the theorem in this way. As
he uses the small object argument, he does not need the factorizations, but he needs
that the domains of I (respectively J) are small relative to the class of colimits of
elements of I (respectively J). It is this way he �nds the factorizations.

We did not use it like this, because in some examples (for instance, see [BIKR08]),
we do not have all the colimits. Then, we �nd directly the factorization without
using the small object argument.

3.10.3 Examples of model categories

The category of topological spaces Top is equipped with a structure of model
category with:

� The morphism f is a weak equivalence if it is a weak homotopy equivalence.

� The morphism f : X → Y is a co�bration if it is a retract of a map X → Y ′,
where Y ′ is obtained from X by attaching cells.

� The �brations are Serre �brations.

If C and D are model categories, we can construct C×D, the product category,
which is, in the natural way, a model category.
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3.11 Pre�bration and preco�bration categories

Some categories are not nice enough in order to build a model structure on
them. For example, one can have co�brations, but no �brations. Then, to deal with
such situations, Anderson, Brown and Cisinski have given axioms for preco�bration
categories, and pre�bration categories. This section is dedicated to this. A quick
de�nition is given by Brown in [Bro73]. For a further study, see the book of
Radulescu [RB06].

3.11.1 De�nition of pre�bration and preco�bration categories

De�nition 3.11.1. An ABC pre�bration category (ABC stands for Anderson-
Brown-Cisinski) consists of a category E, with two classes of maps, the �brations
F ib and the weak equivalences W satisfying the following axioms:

F 1 E has a �nal object which is �brant. Fibrations are stable under composition.
All isomorphisms are weak equivalences, and all isomorphisms with �brant
codomain are trivial functions (�brations which are also weak equivalences).

F 2 W has the "two-out-of-three" property, meaning that, for two composable
maps g and f , if two of the three maps f , g or gf are in W, so is the
third.

F 3 For any diagram

A a //

h ����

X

f
����

B
b
// Y

the pullback exists in E. Moreover, if f is a �bration (respectively a trivial
�bration), then h is a �bration (respectively a trivial �bration).

F 4 Any morphism f : A → B, with B �brant, can be factored through a weak
equivalence followed by a �bration.

Dually, one can de�ne preco�bration categories.

De�nition 3.11.2. An ABC preco�bration category consists of a category E, with
two classes of maps, the co�brations Cof and the weak equivalences W satisfying
the following axioms:

COF 1 E has an initial object which is co�brant. Co�brations are stable under
composition. All isomorphisms are weak equivalences, and all isomorphisms
with co�brant domain are trivial functions (co�brations which are also weak
equivalences).
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COF 2 W has the "two-out-of-three" property, meaning that, for two composable
maps g and f , if two of the three maps f , g or gf are in W, so is the third.

COF 3 For any diagram

A
a //

��

h
��

X��

f
��

B
b
// Y

the pushout exists in E. Moreover, if f is a co�bration (respectively a trivial
co�bration), then h is a co�bration (respectively a trivial co�bration).

COF 4 Any morphism f : A → B, with A co�brant, can be factored through a
co�bration followed by a weak equivalence.

3.11.2 Properties of such categories

In the following theorem, C does not need to be a pre�bration (or preco�bra-
tion) category.

Theorem 3.11.3 (Radulescu-Banu,[RB06], Theorem 6.4.2). If E ,W is a category
pair satisfying the following:

1. The two-of-the-three axiom.

2. For a diagram

A a //

h
��

X

f
��

B
b
// Y

the pullback exists in E. Moreover, if f is a weak equivalence, then h is a
weak equivalence.

3. For any maps A
f //

g
// B

t // B′ with t ∈ W, and t ◦ f = t ◦ g, there exists

t′ : A′ → A ∈ W such that f ◦ t′ = g ◦ t′.

Then, we have the following results:

1. Each map h : A → B in the homotopy category can be written as a right
fraction f ◦ s−1, with s ∈ W.

2. Two fractions f ◦ s−1 and g ◦ s−1 are equal in the homotopy category if and
only if there exist weak equivalences s′, t′, as in the diagram below, and such
that s ◦ s′ = t ◦ t′ and f ◦ s′ = g ◦ t′:
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A′′′

s′

}}

t′

!!
A′

s

~~ f
**

A′′

g

  

t

ttA B

3.12 The homotopy category of a model category

In this section, we explain the main theorem of Quillen on homotopy categories.
He actually shows that the homotopy category of a nice category C is equivalent to
the category of �brant and co�brant objects quotiented by a homotopy relation.
This result needs a litte bit of background on homotopy categories. For the reader
who wants to know more, see [DS95] of [Hov99].

3.12.1 De�nition of the homotopy category

This de�nition comes from Hovey in [Hov99].

De�nition 3.12.1. Let C be a category which contains a subcategory of weak
equivalences, called W. Let us form the free category FC de�ned in the following
way: the objects of FC are the same as the ones of C. A morphism of FC is a �nite
string of composable elementary morphism where the elementary morphisms are
either morphisms of C or weak inverses of morphisms of W. The empty string is
the identity, and the composition is de�ned naturally by the composition of strings.

Then the homotopy category Ho C of C is the quotient of FC by the relations
(the notation dom f stands for the domain of f , and codom f stands for the
codomain of f):

� 1A = (1A) ∀A ∈ C
� (f, g) = (g ◦ f) for any composable f, g

� 1dom f = (f, f−1) for all f ∈ W
� 1codom f = (f−1, f) for all f ∈ W.

At this moment, we do not know that Ho C is a category. Indeed, the class of
morphisms is not a set. The theorem of Quillen will tell us that , if C is a model
category, then Ho C is a category. If C is not a model category, it is necessary to
�nd a higher universe to consider Ho C as a category. We do not consider universe
problems, and then we assume Ho C is a category.
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De�nition 3.12.2. Let C be a model category. We call by Ccf the full subcategory
of C containing the objects which are both �brant and co�brant.

Theorem 3.12.3. There is an equivalence of categories

Ho Ccf → Ho C.

Now we de�ne cylinder and path objects.

De�nition 3.12.4. Let X ∈ E. A cylinder object for X is a factorization of the
morphism ∇ : X ⊕X → X (which is the identity on each copy of X).

Let f, g : X → Y be two morphisms. A left homotopy from f to g is a morphism
h : X ′ → Y , where X ′ is a cylinder object for X, such that h ◦ ∇ = (f g).

Dually, we can de�ne path objects and right homotopies.

De�nition 3.12.5. Let Y ∈ E. A path object for Y is a factorization of the
morphism ∆ : Y → Y ⊕ Y (which is the identity on each copy of Y ).

Let f, g : X → Y be two morphisms. A right homotopy from f to g is a

morphism k : X → Y ′, where Y ′ is a path object for Y , such that ∆ ◦ k =

(
f
g

)
.

De�nition 3.12.6. Two morphisms f and g are said to be homotopic if they are
both right and left homotopic. We note f ∼ g.

We say that a morphism f : A → B is a homotopy equivalence if there exists
g : B → A such that g ◦ f ∼ 1 and f ◦ g ∼ 1.

3.12.2 Theorem of Quillen

Before claiming the theorem, we start with a useful lemma.

Lemma 3.12.7. The homotopy relation on the morphisms of Ccf is an equivalence
relation compatible with composition. Thus, the category Ccf/ ∼ exists.

Moreover, weak equivalences are exactly homotopy equivalences.

Theorem 3.12.8 (Quillen, [Qui67]). Let C be a model category. Then there is an
equivalence of categories

Ccf/ ∼ ∼ // Ho C .

Isomorphisms in the homotopy category are exactly weak equivalences.

Remark 3.12.9. In his proof in [Hov99], Hovey only needs the existence of the
second factorization on co�brant objects.
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3.13 A weak model structure on triangulated cat-

egories

In his paper [Pal14], Palu has shown that there was a weak model structure on
triangulated categories, which satisfy the theorem of Quillen.

Theorem 3.13.1 (Palu,[Pal14]). Let C be a triangulated category with a covari-
antly �nite, rigid subcategory T . There is a left-weak model category structure on
C. It means that C contains three classes of morphisms W, F ib, Cof such that:

1. Pullbacks of trivial �brations along de�ations exist and are trivial �brations.

2. If A is co�brant, then for any co�bration A → B, B is co�brant. If B is
co�brant, then the inclusions A→ A⊕B and A→ B ⊕ A are co�brations.

3. The class W has the "two-out-of-three" property.

4. The three classes W, F ib, Cof contain identity, are stable under retracts and
composition.

5. We have W ∩ Cof ⊆� F ib and Cof ⊆� (W ∩F ib)
6. Any morphism can be factored through a weak co�bration followed by a �-

bration. Any morphism with co�brant domain can be factored through a
co�bration followed by a weak �bration.

3.14 Some examples of such categories

As it has been said in the introduction, there are several examples of applica-
tions of this article.

De�nition 3.14.1. Let A be a �nite-dimensional algebra over an algebraically
closed �eld K. Let Q = (Q0, Q1, s, t) be a Dynkin quiver. Let Q be the quiver
obtained from Q by adding, for each arrow α of Q from i to j, an arrow α∗ from j
to i. Let KQ be the path algebra over Q. Then the preprojective algebra associated
with Q is de�ned as

ΛQ = KQ/I

where I is the ideal generated by the element∑
α∈Q1

(α∗ ◦ α− α ◦ α∗).

Lemma 3.14.2. Let Q and Q′ be two quivers of the same Dynkin type. Then ΛQ

is isomorphic to ΛQ′.



3.14. Some examples of such categories 47

Theorem 3.14.3. Let T be a maximal rigid Λ-module. Then the functor

HomΛ(−, T ) : mod(Λ)→ mod(EndΛ(T ))

is fully faithful, and its image is the category of EndΛ(T )-modules of projective
dimension at most one.

Moreover, if T1 and T2 are two maximal rigid modules, then EndΛ(T1) and
EndΛ(T2) are derived equivalent.

They also have shown similar results about more general quivers.

De�nition 3.14.4. Let Q be a �nite connected quiver without oriented cycles and
n vertices, and let Λ be its associated preprojective algebra. As KQ is a subalgebra
of Λ, we can introduce πQ : mod(Λ)→ mod(KQ) as the restriction functor.

Let M be a KQ-module. Then M is called terminal if the following hold:

� M is preinjective

� If X is an indecomposable KQ-module, with HomKQ(M,X) 6= 0, then X ∈
add M .

� Any indecomposable injective KQ-module belongs to add M .

Theorem 3.14.5. Let CM be the subcategory of all Λ-modules which image under
πQ belongs to add M . Then the following holds:

� The category CM is Frobenius with n indecomposable projectives.

� The stable category of CM is 2-Calabi-Yau.

If we consider the non-Frobenius case, Adachi in [Ada15] has shown the follow-
ing results:

Theorem 3.14.6. Let Λ be a �nite-dimensional algebra with radical square zero.
Then the following are equivalent:

1. The algebra Λ is τ -rigid-�nite

2. Any single subquiver of the separated quiver for Λ is a disjoint union of
Dynkin quivers.

Corollary 3.14.7. Under the same assumptions, if any indecomposable Λ-module
is τ -rigid, then Λ is representation-�nite.
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Chapter 1
A geometric realization of the m-cluster

categories of type D̃n

1.1 How to associate a colored quiver with an (m+

2)-angulation

In this section we introduce the geometric realizations. We de�ne the �ip of
an (m + 2)-angulation, and build a colored quiver from an (m + 2)-angulation.
The main theorem of the section, namely theorem 2.1.12, states the compatibility
between the �ip of an (m+2)-angulation and the mutation of the associated colored
quiver.

1.1.1 Geometric realization and �ips

Let n > 4 and m be a positive integer. Let P be an (n − 2)m-gon with two
central (m − 1)-gons R and S inside of it (cf �gure 1.1). We replace each vertex
of R and S by a disk, which we henceforth call a thick vertex. If m = 1, then we
consider an (n− 2)-gon with two disks inside of it.

We now de�ne the notion of a tangent arc.

De�nition 1.1.1. Consider one moment an arc starting at an arbitrary vertex of
P , and ending at a thick vertex of P is called to be left tangent at R if this arc is
C∞, tangent to a thick vertex, and if there exists a neighborhood of this arc such
that the thick vertex of R is situated at the right of the arc. We similarly de�ne
right tangency.

De�nition 1.1.2. Let us number the vertices of the polygon P from P1 to P(n−2)m

clockwise. Then, an admissible arc between Pi and Pj is de�ned in the following
way:

51
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Figure 1.1 � The (n− 2)m-gon with two digons. Here m = 3 and n = 4.

1. If i 6= j, then an admissible arc is an oriented path from Pi to Pj, lying inside
of P , which does not cross any of the two inner polygons, satisfying one of
the following conditions:

� Either the arc crosses the space between both central polygons and cuts
the �gure into a km+1-gon and a k′m+1-gon, for some k (k′ is entirely
determined by k). This arc is of type 1.

� Or, the arc is homotopic to the boundary path, and cuts the �gure into a
km-gon with both central polygons inside of it and a k′m+2-gon (where
k′ is still entirely determined by k). This arc is of type 2.

2. If Pi = Pj, then an admissible arc is a path ending in Pi, and the other end
of the path is tangent to one of the thick vertices placed around R and S.
There are two more admissible arcs starting and ending at i, going around
one of the inner polygons: the left loop and the right loop. They look the
same on the picture, but they are labeled di�erently, we will see later why.

3. Any arc being tangent to two disks, one arising from R, and one from S is
admissible.

Remark 1.1.3. We will often write i for Pi.

De�nition 1.1.4. We denote by Bij the boundary path from i to j going clockwise
around the boundary (where Bii denotes the trivial path at i). We call a "t-angle",
a �gure delimited by arcs and/or Bij for some distinct i and j and/or sides of the
inner polygons R and S, where the total number of sides and arcs is t.

Note that we only consider unoriented arcs, the order of i and j does not
matter. For convenience, we will nevertheless use the terminology "from i to j".

Notation 1.1.5. We call a Dehn twist around R the action of rotating R. It
means that if we consider an arc α hung to R, applying a Dehn twist of R makes
α roll around R only.
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De�nition 1.1.6. An m-diagonal is an equivalence class of admissible arcs where
the di�erent classes are:

1. If i 6= j, type 1: If the arc cuts the �gure into a km+ 1-gon and a k′m+ 1-
gon, then a class up to homotopy of m-diagonals of type 1 is built for each
value of k.

2. If i 6= j, type 2: If the arc cuts the �gure into a km-gon with both central
polygons inside of it and a k′m + 2-gon, then a class up to homotopy of
m-diagonals of type 2 is built for each value of k.

3. If i = j: a class contains all the images of Dehn twists of admissible arcs
tangent to the left of a thick vertex of R plus the left loop described in the
remark below. The other classes are given by all the images of Dehn twists
of admissible arcs tangent to the right of a thick vertex. Similar classes are
built in the same way for S.

4. Any admissible arc up to homotopy linking both central polygons form a class
of m-diagonal.

Remark 1.1.7. Let i be a vertex of P , and α be an arc tangent to the left of
a thick vertex of R. Then the loop belonging to the class of α is the arc up to
homotopy going around R without crossing α (and not homotopic to the boundary
path). The same description can be done for right-tangency and S.

Note that there is only one loop for each class containing a tangent m-diagonal.

Remark 1.1.8. If i = j, then, there exists an in�nity of classes of arcs tangents
to the left or R. Indeed, the m-diagonals can roll around R and S, and this leads
to two di�erent classes of arcs. See �gure 1.2 for an illustration.

= 6= =

Figure 1.2 � Both �gures on the left represent the same m-diagonal, which is
di�erent from the m-diagonal on both �gures on the right.

In �gure 1.4, we can see an example of two arcs corresponding to the same
m-diagonal, where we have applied a Dehn twist to one of the polygons.

De�nition 1.1.9. 1. � If two arcs are not tangent to the same inner poly-
gon, they are said to be noncrossing if their class under homotopy con-
tains representatives which do not cross.
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Figure 1.3 � Some examples of arcs in the hexagon. For example, if m 6= 1, the
second arc is not admissible because it cuts the polygon into a 3-gon and a 5-gon.

Figure 1.4 � These two arcs represent the same m-diagonal.

� If they both are tangent to the same inner polygon:

� If they have the same tangency (left for example), they are said to be
noncrossing if their class under homotopy contain representatives
which do not cross.

� If not, replace one of them by a loop, and they are said to be non-
crossing if their class under homotopy contain representatives which
do not cross.

� Two m-diagonals linking both inner polygons are said to be noncrossing
if their classes under homotopy contain representatives which do not
cross.

2. An (m + 2)-angulation is a set of noncrossing m-diagonals, such that there
exists representative admissible arcs which cut the �gure into (m+2)-angles.
Such a choice of representatives is called a good set of representatives.

See �gure 1.5 for examples of an (m+ 2)-angulation.

De�nition 1.1.10. For any m and n ≥ 4, we de�ne the initial (m+2)-angulation
in the following way: From the vertex 1 of P , we draw:

1. An arc tangent to the right of the disk composing a thick vertex Ri of R.
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Figure 1.5 � On the left, a collection of arcs that is not a good set of representatives
since it does not cut the �gure into (m + 2)-angles. An example of a good set of
representatives is shown on the right.

2. A left loop around R.

3. An arc tangent to the right of the disk composing a thick vertex Si of S.

4. A left loop around S.

5. The remaining arcs of the initial (m+ 2)-angulations are all of type 1. The
�rst is from 1 to m + 1, the second from 1 to 2m + 1... and the last from 1
to (n− 3)m+ 1.

There is an exception if n = 4. Then P has 2m sides, and there is only one arc of
type 1, which links vertex 1 to vertex m. The arcs hung to R are de�ned similarly,
and the arcs hung to S start at m (and not 1 as previously). See �gure 1.6 for the
example of m = 3.

Figure 1.6 � Exception of 1.1.10: the initial 4-angulation of Q for n = 4 and m = 3

It is obvious that the arcs of the previous de�nition form a good set of repre-
sentatives for the initial (m+2)-angulation. See �gure 1.7 for an example of initial
4-angulation.

Note that we do not have to label the loops, since their labels are automatically
deduced from the other arc ending in the corresponding inner polygon.
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Figure 1.7 � The initial 4-angulation for m = 2 and n = 7.

Lemma 1.1.11. Let ∆ be an (m+2)-angulation. Let {α1, · · · , αn} and {β1, · · · , βn}
be two good sets of representatives for ∆. Then there exists θ = (θR, θS) a Dehn
twist on R and S such that, after exchanging some choices of left or right loops if
necessary, for all i, θ(βi) = αi up to homotopy.

Proof. We may assume that all the loops which appear in the good sets of repre-
sentatives are left loops. We are only interested in the arcs attached to R. The
case is similar for S.

Let αi be an arc an end point of which is a thick vertex of R. Let θi be a
Dehn twist such that θi(βi) = αi. Let αj be the neighbor of αi according to R.
Let θj such that θj(βj) = αj. Then the number of sides of R between αi and αj is
the same as the number of sides between βi and βj. Indeed, the sets {α1, · · · , αn}
and {β1, · · · , βn} are (m + 2)-angulations, and the other end point of αi and βi
(respectively αj and βj) is a vertex ai of P (respectively aj). Then to respect the
notion of (m+2)-angles in an (m+2)-angulation, it means that if k is the number
of edges of R between αi and αj, k is also the number of edges of R between βi
and βj. Then θi = θj.

We can reproduce this process until we have treated all the arcs ending on
R.

We now introduce the twist which will be used in order to de�ne the �ip of an
(m+ 2)-angulation at some m-diagonal.

De�nition 1.1.12. Let ∆ be an (m + 2)-angulation. Let α be an m-diagonal of
∆, linking the vertices a and b. If, in ∆, there are two m-diagonals which are left
and right tangent to the same inner polygon, replace one of them by a loop. When
α is tangent to an inner polygon (say R) and there are only two arcs tangent to
R, always replace α by a loop. If α is tangent to R and the other arc is a loop,
then replace this loop by the corresponding arc tangent to R, and α by a loop. The
twist of α in ∆ is de�ned as follows:



1.1. How to associate a colored quiver with an (m+ 2)-angulation 57

Pick any good set of representatives for ∆ containing α. Let αa (respectively
αb) be the side of the (m + 2)-angle ending at a (respectively at b) consecutive to
α. Then the twist of α, namely κ∆(α) is the path αaααb. See �gure 1.8 for an
illustration of the twist.

Remark 1.1.13. If necessary, we can always choose a set of representative where α
is a loop. Indeed, if α is not a loop (hung to vertex i of P , left tangent for instance),
the chosen good set of representatives for the (m + 2)-angulation contains an arc
which is tangent to R to the right, and has a common endpoint with α (called i).
Exchange α for the left loop.

After applying the loop, note that the set of representatives is still a good one.

Lemma 1.1.14. The new equivalence class obtained by twisting the m-diagonal
does not depend on the choice of the set of good representatives to which α belongs.

Remark 1.1.15. Here, as in lemma 1.1.11, we note that we choose a set of good
representatives in which the arc corresponding to the m-diagonal α is a loop. As
explained in remark 1.1.13, this is always possible when necessary.

Proof. Let {α1, · · · , αn} and {β1, · · · , βn} be two good sets of representatives for
∆. There exists θ such that for all i, θ(βi) = αi, and θ commutes with the twist
κ∆.

a

b

α

κα

Figure 1.8 � De�nition of a twist

In fact, applying the twist to α consists in "slipping" α clockwise. The previous
lemma says that "slipping along" a side of R does not depend on the choice of a
class under Dehn twist.

De�nition 1.1.16. Consider ∆ an (m+2)-angulation. Choose a good set {γ1, · · · , γn}
of representatives for ∆. Let α be an arc in it. From remark 1.1.13, we may as-
sume that α is not a loop. The �ip of the (m + 2)-angulation at α is de�ned by
µα∆ = ∆ \ {α} ∪ {α∗} where α∗ is given by κ∆(α), the twist of α.
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Remark 1.1.17. Here again, the �ip does not depends on the choice of the set of
good representatives before �ipping.

Remark 1.1.18. If we want to �ip an m-diagonal α which is tangent to the left to
one side of R (when at the same time there is an m-diagonal tangent to the right
on the same thick vertices as α), then we have to choose the left loop, in order to
make sure we have chosen the good representative. The issue is the same for any
arcs tangent to the right.

Figure 1.9 � The arc tangent to the left and the loop belong to the same class of
m-diagonals. The �gure on the right is a 5-angle (going twice through the same
arc).

Remark 1.1.19. 1. Note that the twist has an inverse, which consists in mov-
ing the arc counterclockwise. Then the �ip is also invertible.

2. We note that the twist is not the same as the Dehn twist.

3. A �ip does not change the number of m-diagonals in the (m+ 2)-angulation.

→

Figure 1.10 � First example of a �ip

The twist is de�ned on the m-diagonals, which is a class of equivalence under
Dehn twist, and the �ip is de�ned on an (m+ 2)-angulation, which is a set of m-
diagonal. Nonetheless, we will sometimes apply them on arcs, implicitly assuming
that we have chosen a good set of representatives.
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→

Figure 1.11 � Another example of a �ip

→

Figure 1.12 � Example of a �ip with a loop

Lemma 1.1.20. Any two (m+ 2)-angulations are related by a sequence of �ips.

Proof. We show that any (m + 2)-angulation can be obtained from the initial
(m+ 2)-angulation by applying a sequence of �ips.

We know that there are at least �ve m-diagonals (as n ≥ 4). If needed, we �ip
the (m+ 2)-angulation at some m-diagonals ending at R, in order to reduce to the
case where only two arcs are attached to Ri, a thick vertex of R. We do the same
for S. We �x a set of good representatives of the (m+ 2)-angulation.

Indeed, there cannot be less than two arcs ending at R, and if there are more
than two, then at most two end at the same disk Ri, and others end at Rj where
j 6= i. It su�ces to �ip several times the arcs which do not end at Ri in a way
that they link two di�erent thick vertices of P . Then we are reduced to the case of
�gure 1.13 (which is not completed by the other arcs of the (m+ 2)-angulation).

Then, we notice that this �gure is similar to the An case. The An case has
been treated by Baur and Marsh in [BM08]. From here, the remaining (m + 2)-
angulation is related by a sequence of �ip to any (m+ 2)-angulation, including the
initial (m+ 2)-angulation.

Corollary 1.1.21. With this lemma and the fact that the �ip does not change the
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Figure 1.13 �

number of m-diagonals in an (m + 2)-angulation, we notice that all the (m + 2)-
angulations contain exactly n+ 1 m-diagonals.

The following lemma comes from a result of Freedman, Hass, and Scott in
[FHS82] on general geodesics, which allows us to consider that the m-diagonals do
not cross each other.

Lemma 1.1.22. If ∆ = {γ1, · · · , γn} is an (m + 2)-angulation, then there exist
{α1, · · · , αn} representatives of {γ1, · · · , γn}, such that for any i and any j 6= i,
αi and αj do not cross.

Proof. We know from [FHS82] that under homotopy, there exist {α1, · · · , αn}
representatives which do not cross. It remains the case where some m-diagonals
are hung to R or S, which can be treated in the same way. Now we treat the
case where there exist γi from a vertex of P to a thick vertex of R, and γj a loop
around R. If an arc crosses γi, then it obviously crosses γj. Else, if it crosses the
loop γj, it cannot be hung to a thick vertex of R, because that would not cut into
(m+ 2)-angles. So it crosses also γi, and this shows the lemma.

Remark 1.1.23. We can also apply the "�ip" on a maximal set ∆̃ of non-crossing
m-diagonals. Indeed, the previous lemma allows us to pick representatives which
are pairwise noncrossing. For α an m-diagonal, we can set κ∆̃(α) in exactly the
same way as in (m+ 2)-angulations.

Before starting our next result on (m+ 2)-angulations, we recall that a t-angle
is a �gure with t sides, made of:

� Sides of P

� Sides of R or S

� m-diagonals.

Proposition 1.1.24. The de�nition of an (m+ 2)-angulation is equivalent to the
following one: an (m+2)-angulation is a maximal set of noncrossing m-diagonals.
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Proof. On the one hand, a maximal set of noncrossing m-diagonals cuts the poly-
gon into (m + 2)-angles. Indeed, let us �x ∆ a maximal set of noncrossing m-
diagonals.

� If ∆ contains two loops. Then, these two loops cut the �gure into a (n −
2)m + 2-gon (where +2 stands for the loops which become a new side of
P ) without punctures. This reduces to case An−2 (since the polygon in the
description of Baur and Marsh in [BM08] in type Ap contains pm+ 2 sides).
As the set is maximal, it cuts the �gure into (m+ 2)-angles.

� If ∆ only contains one loop (at S, for instance). Then, this m-diagonal cuts
the polygon into a new �gure with one inner polygon (which behaves like a
puncture) and (n− 2)m+ 1 sides. This reduces to case Dn−1. As the set is
maximal, there exist two arcs i and j from two vertices of P to R. If they
hang the same vertex, then replace one by a loop and this is the previous
point. If not, we can apply the twist to one of them (for instance i) several
times. Any times we apply the twist, it is impossible for i to hang both
ends of it to vertices of P . Indeed, this contradicts the maximality of the
m-diagonals (and the de�nition of m-diagonals). But one end of i �nishes to
"slip along" j. The only way is to become a loop. This leads us to the �rst
case.

� If ∆ has no loops, we use the same argument as the previous case to create
loops.

� If ∆ contains an arc i from R to S, the maximality of ∆ implies that there
exist one arc from a vertex of P to R and one arc from P to S (indeed, if this
was not the case, we have only m-diagonals linking di�erent vertices of P ,
plus an arc from R to S. We then can add an m-diagonal from a vertex of P
to R, which does not cross th others and is admissible, and this contradicts
the maximality). Then, we apply the twist to i as many times as necessary
to hang one of its ends to the polygon P . Then, we come to the previous
case.

Note that two arcs linking R to S are not compatible (as in [FST08], for the
case where m = 1).

This �nally shows that ∆ cuts the �gure into (m+ 2)-angles.
On the other hand, let ∆ be a set of noncrossing m-diagonals, cutting the

picture into (m + 2)-angles. We �rst note that the m-diagonals do not cross.
In addition, the set is maximal. Indeed, if it was not the case: Let us add a
noncrossing arc α in an (m+ 2)-gon, then it cannot be an m-diagonal:

If m = 1, then we cannot cut any triangle without being homotopic to one of
the edges. Else, the only way to cut an (m+ 2)-angle by forming a (km+ 1)-gon
is to form a triangle. This is impossible given the de�nition of an m-diagonal.
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Remark 1.1.25. We notice that the number of (m+2)-angles in the �gure is �xed
whatever the (m + 2)-angulation, because of the previous proposition and the fact
that the �ip does not change the number of (m+ 2)-angles.

Lemma 1.1.26. Any set of noncrossing m-diagonals, can be completed to an
(m+ 2)-angulation.

Proof. Suppose Λ = {α1, · · · , αk} is a set of noncrossing m-diagonals. If the set is
maximal, then it is already an (m + 2)-angulation. Else, we can add an new m-
diagonal αk+1. We repeat the operation with Λ∪ {αk+1} until the set is maximal.
The process ends since P has a �nite number of sides, and once we have cut into
(m+ 2)-angles, we cannot go further.

With these de�nitions on the polygon, we are now able to associate a quiver
with an (m + 2)-angulation. We will see that the �ip of an (m + 2)-angulation is
compatible with quiver mutation at the same vertex.

1.1.2 Colored quivers and (m+ 2)-angulations

First, we indicate how to associate a quiver with an (m + 2)-angulation and
then we will see how to draw a colored quiver from an (m+ 2)-angulation.

De�nition 1.1.27. Let ∆ be an (m + 2)-angulation (where we have chosen good
representatives, without any loops). We de�ne the quiver Q∆ associated with ∆ in
the following way:

1. The vertices of Q∆ are in bijective correspondence with the m-diagonals of
∆.

2. Between two vertices i and j (corresponding to two m-diagonals in ∆), we
draw an arrow from i to j when both diagonals share an oriented angle. We
require j to be consecutive to i clockwise.

If i and j are hung to the same disk of an internal polygon, the arrows incident to
i are found by forgetting j, and the arrows incident to j are found by forgetting i.

Remark 1.1.28. From there, we call m-diagonals and vertices by the same name.
It should be clear from the context whether we talk about polygons or quivers.

This implies that Q∆ from lemma 1.1.11 is well-de�ned, because it is indepen-
dent from the choice of a system of representatives. Indeed, the Dehn twist does
not a�ect the order of the m-diagonals, and this matter to �nd the arrows of the
quiver. More precisely, if we apply θR and θS two Dehn twists to the polygons
R and S, let us recall i′ and j′ the images if i and j by θS ◦ θR. The end of i′

(respectively j′) hung to P si the same as the one of i (respectively j). Then the
order is the same, and there is an arrow if ′i is consecutive to j′ (which is the same
as i being consecutive to j).
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For example in case m = 1, if we take the following triangulation ∆ (�gure
1.14):

7

6

4

3

2

5

Figure 1.14 � A triangulation ∆

Now, following the rule, we associate the following quiver Q∆ with this trian-
gulation:

3 6

2

^^

��

1oo //5

@@

��
4 7

Let us now mutate this quiver at vertex 2. We obtain this new quiver Q′:

3

��

6

2 //1 //

gg

ww

5

@@

��
4

@@

7

We remark that if we �ip the previous triangulation at the m-diagonal 2, we
obtain the new triangulation ∆′ of �gure 1.15.

It is noticeable that the quiver Q′∆ arising from the new triangulation corre-
sponds to the mutation at 2 of the quiver Q∆. This is a result showed by Fomin,
Shapiro and Thurston for m = 1.

Proposition 1.1.29 ([FST08], proposition 4.8). Let ∆ be any triangulation. Let
Q∆ be the quiver associated with ∆ as before. If ∆i is the new triangulation �ipped
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7

6

4

3

5

2

Figure 1.15 � The triangulation associated with ∆′

at i from ∆, then the quiver Q∆i
associated with ∆i corresponds to the mutation

at vertex i of Q∆.

We will later exhibit a proof for the case of colored quivers of mutation-type
D̃. We now describe how to associate a colored quiver with an (m+2)-angulation.

Lemma 1.1.30. If m = 1, then the m-diagonals of P are in bijection with the
tagged arcs of Fomin, Schapiro and Thurston in [FST08] for the twice punctured
(n− 2)m-gon and the obvious bijection respects the noncrossing conditions.

Proof. It su�ces to read the article of [FST08] to see that the arcs are in bijection.
Arcs hung to a thick vertex of R (or S) correspond to arcs linking a puncture in
the realization of [FST08]. In our point of view, there are two types of arcs, one
left tangent, and one right tangent. In Fomin Schapiro and Thurston case, there
are plain, or notched arcs, so two types of arcs again.

De�nition 1.1.31. Let ∆ be an (m+ 2)-angulation. We de�ne the colored quiver
Q∆ associated with ∆ in the following way:

1. The vertices of Q∆ are in bijection with the m-diagonals of ∆.

2. If i and j form two sides of the same polygon, then we draw an arrow from
i to j. The color of the corresponding arrow is the number of edges between
both m-diagonals, counted clockwise from i.

Remark 1.1.32. We note that if we only draw the arrows of color 0, then we �nd
the classical quiver associated with the (m+ 2)-angulation as in de�nition 1.1.27.

Proposition 1.1.33. There is an equivalent de�nition: the vertices are similarly
de�ned, and for i and j two vertices, and c an integer,

q
(c)
ij =

{
1 if κc∆(i) and j share an oriented angle
0 otherwise.
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Proof. We only have to show that the arrows are the same. If i and j form two
sides of the polygon, with a color c, it means that if we apply the twist to i, then
there will be c− 1 edges between κ∆(i) and j. Then if we apply the twist c times,
there will be no edge between κc∆(i) and j, and they will share an oriented angle.

On the other hand, if κc∆(i) and j share an oriented angle, it su�ces to apply
the inverse of the twist c times to make sure that i and j form two sides of a
polygon, and that there are c edges between i and j.

Theorem 1.1.34. Let ∆ be any (m+ 2)-angulation. Let Q∆ be the colored quiver
associated with the (m + 2)-angulation ∆. If ∆k is the new (m + 2)-angulation
�ipped at k from ∆, then the colored quiver Q∆k

associated with ∆k is the mutation
at vertex k of the colored quiver Q∆ (see �gures 1.16 and 1.17 for an illustration).

1

4
5

2 3

�ip at 3−−−−→

1

4
5

2

3

4
(3)

��

2

(3)��
1

(0)

^^ (0)
@@

(0)

��(0)��5

(3)
@@

3
(3)

^^

mutation at 3−−−−−−−→ 4
(3)

��

2

(3)��
1

(0)

^^ (0)
@@

(1)

��(0)��5

(3)
@@

3
(2)

^^

Figure 1.16 � Quiver mutation is compatible with the �ip of an (m+2)-angulation,
for m = 3. Note that before �ipping the arc 3, we have to choose a good set of
representatives. Nonetheless, in order to keep a clear �gure, we have not replaced
the arcs 8 and 5 by loops.

1

6

2

3

7 48 5

�ip at 3−−−−→

1

6

2

8
5

3

7 4
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7
(2)

��

4

(0)��6
(0)

^^

(0)��

(2) //
1

(0)
oo

(2) //
2

(0)
oo

(2) //
3

(0)
oo

(2)
@@

(2)

��
8

(2)
@@

5
(0)

^^

mutation at 3−−−−−−−→ 7
(2)

��

4

(1)��

(0)

ww

6
(0)

^^

(0)��

(2) //
1

(0)
oo

(2) //
2

(0)
oo

(0) //
(2)

77

(2)

''

3
(2)
oo

@@

(1)

��
8

(2)
@@

5

^^

(0)

gg

Figure 1.17 � Quiver mutation is compatible with the �ip of an (m+2)-angulation,
for m = 2. In order to keep a clear �gure, we have not replaced the arcs 8 and 5
by loops.

Lemma 1.1.35. The quiver ful�lls the conditions asked for colored quivers in
section ??. In particular it is symmetric.

Proof of the lemma. By de�nition, the quiver contains no loops (i.e. no arrows
from i to i).

If there is an arrow from i to j of color c, it means that i and j share two sides
of an (m+ 2)-angle. If we count from i to j, there are c edges between them. But
if we count from j to i, as we deal with (m+ 2)-angles, it means that from j to i
there are m− c edges. So there is an arrow from j to i of color m− c. Then the
symmetry is respected.

In addition, for condition 2, we divide the proof into three cases.

First case: m = 1. If we have i
(1) // j and i

(0) // j (note that c can be either
1 or 0). It su�ces to draw a triangle to ensure this situation is impossible.

Second case: m > 2. If we have i
(c) // j and i

(c′) // j , it means that i and j
share two (m+ 2)-gons, one with c edges between i and j, and the other one with
c′ edges. So we are in the type of situation of �gure 1.18).

Let us denote by P1 (respectively P2) the number of vertices delimited from i
to j (respectively from j to i). Let Ti (respectively Ui) be the vertices along the
dotted edges cutting on the side of P1 (respectively P2) the �gure into two parts,
one of type A and one of type D. On the �gure, we can visualize Ti in red and
Ui in blue. Let R1 and R2 (respectively S1 and S2) be the number of vertices as
shown in �gure 1.18 in R (respectively in S).

Then, by making a computation on the total number of vertices, we are led to
a contradiction.

Indeed, we have the following equations:
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P1

P2

R1
S1

R2 S2

Ti

Ui

i

j

Figure 1.18 � Pathological case



∑
Ti +R1 + S1 = m− 1∑
Ui +R2 + S2 = m− 1

R1 +R2 = m− 1
S1 + S2 = m− 1∑
Ti +

∑
Ui = n− 2

P1 + P2 = (n− 2)m

(1.1)

Then we have that∑
Ti +R1 + S1 +

∑
Ui +R2 + S2 = 2(m− 1).

So ∑
Ti +

∑
Ui = 0

This leads to
∑
Ti =

∑
Ui = 0 and this is impossible.

Third case: m = 2. We are going to number the di�erent possible sub-cases.

First sub-case: if we have i
(0) // j and i

(1) // j it means that i and j belong
to a triangle, which is impossible since m = 2.

Second sub-case: if we have i
(0) // j and i

(2) // j , it means that we have

i
(0) // j and j

(0) // i which is also impossible.
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Third sub-case: if we have i
(1) // j and i

(2) // j , this reduces to the �rst

case, since we have j
(1) // i and j

(0) // i .
We thus have shown that there is no way to have two arrows from i to j of

di�erent colors This show the lemma.

Proof of the theorem. Let ∆ be an (m + 2)-angulation, let Q∆ be the associated
colored quiver, and let k be a vertex of Q.

We want to show that Qµk(∆) = µk(Q∆). Let us call by T the new (m + 2)-
angulation obtained from ∆ by �ipping the arc k. There is an evident bijection
between the vertices of Q∆ and QT . Let i and j be two vertices of Qµk(∆) (and of
µk(Q∆)).

Let q̃
(c)
ij (respectively q

(c)
ij ) be the number of arrows of color c from i to j in

Qµk(∆) (respectively µk(Q∆)). Let us show that q̃
(c)
ij = q

(c)
ij .

First case: If k = i, then q
(c)
ij = q

(c−1)
ij and κcT (i) = κc+1

∆ (i). Consequently

q̃
(c)
ij = q

(c−1)
ij .

Second case: If k = j, then q
(c)
ij = q

(c+1)
ij and κcT (i) = κc−1

∆ (i). Consequently

q̃
(c)
ij = q

(c+1)
ij .

Third case: If, in Q∆, we have i
(c) //k

(0) //j and i and j are not two sides of

the same (m+ 2)-angle. Then q
(c)
ij = q

(c)
ij + 1. We notice that we cannot have two

arrows from k to j of color 0. We are in a situation of the following type:

i

a

k j

Let then a be the common vertex of k and j. Let b be the other vertex of j
(where a or b can be central polygons). Then κ∆(k) and j have b as a common
vertex. As, in ∆, κc∆(i) and k have one common vertex a, then κcT (i) and j have

one common vertex. As a consequence, q̃
(c)
ij = q

(c)
ij + 1. There is no loss because

there are not any arrows from i to j of color di�erent from c. We note that there
can be two arrows of di�erent color appearing from j to k, but as this is forbidden,
we remove them. This case is symmetric to the case where i and k share a common
vertex.

To be clear, we draw an example at the remark just below the proof.
Fourth case: If we are in a situation of the following type:

i k

a
j
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It means that we have a quiver:

i
(c) //

(c+1) ��

k

(0)��
j

Then q
(c)
ij = q

(c)
ij − 1 = 0, because the arrows get erased. Moreover, under the

notations of the third case, κ∆(k) and j have b as a common vertex, and i and j

do not share a common polygon anymore. Then q̃
(c)
ij = 0.

Remark 1.1.36. Let us draw an example in �gure 1.19.

i

k

j

→

i

k

j

Figure 1.19 � The mutation at k in the third case

We have i
(0) //k

(0) //j . When we mutate k, we obtain the right �gure. The
quiver becomes

i
(0) //

(1) ��

j

(0)
��
k

(where we do not note the inverse arrow for sake of clearance).
Now let us mutate at vertex i. The �gure becomes:

i
k

j
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If we mutate the colored quivers, since two arrows of di�erent color have been
built from j to k (one of color (0) and one of color (1)), they get erased and the
quiver becomes j → i → k of color (0). This exactly corresponds to the quiver of
the �gure.

1.2 Construction of the category of m-diagonals

We are now able to construct a new category, C, equivalent to a subcategory
of the higher cluster category of tyê D̃ by using the m-diagonals. We remark that
the indecomposables of C correspond to the rigid indecomposables of the higher
cluster category.

Before starting with the construction of the category we de�ne what will be
the generators the morphisms of C: the elementary moves.

1.2.1 Elementary moves

Elementary moves are applications that send an m-diagonal to another one.
They should not be confused with �ips.

Let Q be a quiver of type D̃n. We want the elementary moves to correspond
to the arrows in the Auslander-Reiten quiver of CmQ .

Figure 1.20 � An example of an m-diagonal of type 1.

We now de�ne the length of an m-diagonal of type 1.

De�nition 1.2.1. Let a < b be two integers between 1 and (n− 2)m. The length
of the boundary path from a to b, denoted by l(a, b) is the number of edges between
a and b counted clockwise.

De�nition 1.2.2. Let P be the polygon considered in section 1.1. Let us number
the vertices of P clockwise. Let α be an m-diagonal from i to j. The translation
τα of α is de�ned as follows:

1. If i 6= j and α is of type 1, then τα is the unique new arc obtained by
composing α with the boundary paths Bi i+m and Bj j+m, linking i + m and
j +m, and of the same type.
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2. If i 6= j and α is homotopic to a boundary path, then τα is the unique new
arc obtained by by composing α with the boundary paths Bi i+m and Bj j+m,
linking i+m and j +m, and of the same type.

3. If i = j, then τα is the new arc tangent to the same vertex of the inner
polygon, ending at i+m. If m is odd, then change the side of the tangency.

4. If α links both inner polygons, from Rk to Sk′ for instance, the new arc τα
links Rk−m and Sk′+m modulo m− 1. The side of the tangency changes only
if m is odd.

For the last point, the new arc is uniquely de�ned, because it does not depends
on the eventual Dehn twist of R or S, but only of the relative position before
applying τ .

Remark 1.2.3. Applying τ several times to an arc of type 1 makes the arc "roll
around" both central polygons.

Here in �gure 1.22 we can see an example of a translation:

→ =

Figure 1.21 � The translation of the arc on the left picture becomes the arc on the
middle picture, which is the same as the arc on the right picture.

→

Figure 1.22 � An example of a translation
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We now de�ne elementary moves, which will correspond to arrows in the
Auslander-Reiten quiver of Cm

D̃n
as shown in �gure 1.23.

Let us recall that the Auslander-Reiten quiver Γ of Cm
D̃n

is de�ned as follows:

1. The vertices of Γ are the isomorphy classes of indecomposable objects in Cm
D̃n
.

2. Between two representants X and Y , the arrows X → Y are in bijective
correspondence with the vectors of a basis of Irr(X, Y ), the irreducible mor-
phisms from X to Y .

De�nition 1.2.4. Let α and β be two m-diagonals. There is an elementary move
from α to β when:

1. α and β are of type 1, share a vertex a, and if l(b, c) = m (where α ends at
b and β ends at c).

2. α is of type 1 and β links a vertex of P to a thick vertex of R (or equivalently
S), α and β share a vertex a, and β is consecutive to α clockwise.

3. β is of type 1 and α links a vertex of P to a thick vertex of R (or equivalently
S), β and α share a vertex a, and β is consecutive to α clockwise.

4. α and β are homotopic to boundary paths, share a vertex a, and if l(b, c) = m
(where α ends at b and β ends at c).

5. α and β are from a unique thick vertex of R (respectively S) to a thick vertex
of S (respectively R) and β is consecutive to α clockwise.

Remark 1.2.5. The cases 2 and 3 are included in case 1 by using the loops.

Here is the tabular of elementary moves in the three �rst cases for a polygon
with (n− 2)m sides (where e-m stands for "elementary move" and the m-diagonal
α is black whereas β is red). For sake of clarity, we have not drawn the disks on
each thick vertex of the central polygons. The dotted lines hide m edges.

The remaining cases in the de�nition will be treated in section 4.

type 1 type 2

type 1

type 2 no e-m
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in the m-cluster category

1.2.2 The category of m-diagonals

In this section, we will make use of the elementary moves de�ned above in
order to generate the morphism of a category of m-diagonals. Let us just give a
lemma before starting.

Lemma 1.2.6. If α and β are two m-diagonals, then there exists an elementary
move f : α→ β if and only if there exists one f : τβ → α.

Proof. There are several cases to examine. We can always reduce to the case where
α or β are not loops. Note that if α is a transjective arc, there exists an elementary
move from α to β if and only if β is also a transjective arc.

1. Let us �rst study the case of transjective arcs.

(a) If β is of type di�erent from 1.

Then let a be its only vertex. To be compatible with the de�nition of
an elementary move, it is necessary for α to be of type 1. Let b be the
other vertex of α (the �rst one being a, since both arcs have to share
an oriented angle).

By de�nition, l(a, b) = m. If a′ is the end point of the m-diagonal τβ,
then l(a′, a) = m. So a′ = b and τβ and α share an oriented angle.
Thus there exists f : τβ → α

(b) If β is of type 1. There are two sub-cases:

i. If α is of type di�erent from 1.

Let a and b be the vertices of β, where a is also the one of α.

Then l(a, b) = m. So, if c and d are the vertices of τβ then d = a
(and l(c, d) = m). Thus there exists f : τβ → α.

ii. If α is of type 1.

Let a and b be the vertices of β and a and c the ones of α. We have
l(c, b) = m.

So, if d and e are the vertices of τβ, we have e = c and l(d, a) = m.
Thus there exists f : τβ → α.

2. Now, if α and β are not in the transjective part of the Auslander-Reiten
quiver of Q.

(a) If α is homotopic to the boundary path. Then β must be also homotopic
to the boundary path. Let a and b be the vertices of β, where a is also
the one of α. Then, l(c, b) = m. So, if d and e are the vertices of τβ
then d = c (and l(a, e) = m). Thus there exists f : τβ → α.



74 Chapter 1. A geometric realization of the m-cluster categories of type D̃n

(b) If α is from a thick vertex of R to a thick vertex of S, then β is of the
same type. Let a and b be the vertices of β, where a is also the one of
α. Then, l(c, b) = m. So, if d and e are the vertices of τβ then d = c
(and l(a, e) = m). Thus there exists f : τβ → α

The converse is similar.

Remark 1.2.7. This lemma seems natural since applying τ−1 corresponds to apply
an elementary move to each end of the arc.

De�nition 1.2.8. The quiver Q̃ is de�ned as follows:

1. The vertices are the m-diagonals.

2. There is an arrow between two m-diagonals α and β when there is an ele-
mentary move from α to β.

The category C is de�ned to be the additive mesh category of Q̃.

It means that the category C is the additive Krull-Schmidt category where:

1. The indecomposable objects of C are the m-diagonals of de�nition 2.1.21. So
the objects of C are the �nite direct sums of m-diagonals.

2. The set of morphisms between two indecomposable objects X and Y is given
by the k-vector space generated by the paths from X to Y in Q̃ by the
subvector-space generated (elements in the ideal generated by) mesh rela-
tions.

3. The composition is induced by the concatenation of paths in Q̃.

Mesh relations: By the previous lemma, we know that if we have f : β → α, then
we also have f : τα→ β. Then the mesh relations are the relations:

Rα =
∑

β,f :β→α

ff.

We will see that C is equivalent to a sub-category of the higher cluster category
C(m)

D̃n
.

Proposition 1.2.9. The quiver (Q̃, τ) is a stable translation quiver.

Proof. Let x be a vertex in Q̃. Given a vertex y, we have to show that if there
is an arrow from y to x, then there is an arrow from τx to y. This is exactly the
lemma 1.2.6.

In addition, no vertex is projective, and as τ is de�ned on all vertices, so is
τm.

Figure 1.23 illustrates a small part of the Auslander-Reiten quiver of C(m)
Q .
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Remark 1.2.10. We can �nd on a slice of the Auslander-Reiten quiver of CmQ
the following initial (m + 2)-angulation. In fact, each arc of the initial (m + 2)-
angulation corresponds to the image in the m-cluster category of a preprojective
indecomposable representation.

Remark 1.2.11. We note that, on the previous pictures, we have only drawn the
�rst preprojective component of the Auslander-Reiten quiver of Q, but there are m
copies of it, where we can �nd the m-diagonals shifted 1, · · · ,m− 1 times. Indeed,
between the tubes, there are m copies of the preinjective and preprojective compo-
nents. On �gure 1.24 we can see how the preprojective, regular and preinjective
components of a Auslander-Reiten quiver of type D̃n are set.

preprojective regular preinj preproj (2) regular (2)

Figure 1.24 �

1.2.3 Mesh relations

Is is possible to make use of the m-diagonals so as to easily picture mesh
relations. There are several types of mesh relations that can thus be described:
mesh relations containing two or three monomials in the transjective component
and mesh relations in the three tubes of rank greater than one.

The �rst type of relation is the one of the following:

��

@@



1.2. Construction of the category of m-diagonals 77

It is easy to see that the end points of both arcs of type di�erent from 1
correspond to the end points of the arc of type 1 linked with the other arcs, and
this is a general case.

The second one is of this shape:

��

@@

��

@@

As in the �rst mesh relation, we can see that the end points coincide.
The third one is of this shape:

��

��

??

// //
??

The pictures on the end points on the left and the right are m-diagonals α
and the end points of β = τα are always of length m. The upper two pictures
in the middle column (or the lower two if we are situated at the bottom of the
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Auslander-Reiten quiver) on the �gures 1.23 and 1.29 are arcs tangent to one side
of a central polygon, and the other end point is at the vertex shared by both α
and β (as they are of length m and β = τα, they share one vertex). Finally the
lowest (or uppermost) picture is an m-diagonal of type 1, of length 2m, where the
vertices are the ones of α and β which are not shared by each other. The bases of
the tube will be described in the next section.

1.2.4 Equivalence of categories

In this section, assuming that Q is still a quiver of type D̃n, we build an additive
functor F from the category C to the m-cluster category.

De�nition 1.2.12. Let P be the polygon considered in section 1.1. Let us number
the vertices of P clockwise. Let α be an m-diagonal from i to j. The shift α[1] of
α is de�ned as follows:

1. If i 6= j and α is of type 1, then α[1] is the unique new arc obtained by
composing α with the boundary paths Bi i+1 and Bj j+1, linking i + 1 and
j + 1, and of the same type.

2. If i 6= j and α is homotopic to a boundary path, then α[1] is the unique new
arc obtained by by composing α with the boundary paths Bi i+1 and Bj j+1,
linking i+ 1 and j + 1, and of the same type.

3. If i = j, then α[1] is the new arc tangent to the same vertex of the inner
polygon, ending at i+ 1. If m is odd, then change the side of the tangency.

4. If α links both inner polygons, from Rk to Sk′ for instance, the new arc α[1]
links Rk−1 and Sk′+1. The side of the tangency changes only if m is odd.

De�nition 1.2.13. If d is an integer in {1, · · · ,m}, then we de�ne Sd as the
connected component in the quiver of de�nition 1.2.8 containing the d-th shift of
the initial (m + 2)-angulation, the �rst component being the one corresponding to
the initial (m + 2)-angulation, and the following one corresponding to the initial
(m+ 2)-angulation where [1], [2], · · · has been applied.

Let Sd be the component in the Auslander-Reiten quiver of C(m)

D̃n
, containing

objects of type τ sP [d] where P is a projective indecomposable object and s is an
integer.

Theorem 1.2.14. Let d ∈ {1, · · · ,m}. Then we have an isomorphism between
both components:

Sd ' Sd
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Proof. For n ≥ 6, we �x an orientation for our quivers. The orientation we choose
is the one of the quiver corresponding to the initial m-angulation:

7

��

4

6 //1 //2 //3

@@

��
8

@@

5

Let ∆0
1 be the initial (m + 2)-angulation in the �rst copy of the quiver Q̃. It

corresponds to the m-cluster-tilting object T =
⊕

Pi at the initial slice of the
Auslander-Reiten quiver of Q. With the m-diagonal αi (at vertex i), we associate
the projective module Pi = F (αi). Then we associate with the elementary moves of
m-diagonals, the irreducible morphisms in the cluster category. Indeed, according
to the tabular of section 1.2.1, there is an elementary move from α to β when both
share an oriented angle. As it has been told in de�nition 1.1.27, in the quiver it
means that there is an arrow from α to β. So there is an irreducible morphism
from F (α) to F (β).

Now that we have treated the case of the initial slice in the �rst copy, still
calling αi the m-diagonal at vertex i in this slice, we note that every m-diagonal
in the component Sd in the quiver Q̃ is of the form τ tαi[d], for some t ∈ Z and
i ∈ {1, · · · , n+ 1}. So it is natural to de�ne

F (τ tαi[d]) = τ t(Pi[d])∀t.

Therefore, there is a bijection between the arcs of S1 and the indecomposables
of the transjective components in the Auslander-Reiten quiver of C(m)

D̃n
containing

the image of the indecomposable projective objects.
Indeed, there are two things to show: First, for any arc α, there is a unique way

to write it τ tαi[d]. If we had τ tαi[d] = τ sαj[d] in a component d, then τ tαi = τ sαj,
so i = j because of the type of the diagonal (if it is tangent one or another side of
the central polygon, or if it is of type 1, with length l, etc...), and if t 6= s it would
mean that there is the same m-diagonal at two di�erent vertices in the quiver Q̃,
which is impossible. Second, if X is an indecomposable in the d-th component
of Q̃, it can be written τ tPi[d], and this has a unique antecedent by F , which is
τ tαi[d].

As a matter of conclusion, F is bijective on the objects. Let us show that
it is also a bijection on the elementary moves. Suppose that f : α → β is an
elementary move. Then there exist s ∈ N, i ∈ {1, · · · , n + 1}, d ∈ {1, · · · ,m}
such that τ sα = αi[d] and τ sβ = β∗[d] (i.e α = τ−sαi[d] and β = τ−sβ∗[d],
where β∗ = αj when there is an elementary move αi → αj or β

∗ = τ−1αj where
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there is an elementary move αj → αi. In the �rst case, there is an irreducible
morphism from Pi to Pj thus from F (αi) to F (β∗) and from F (α) = τ−sF (αi)[d]
to F (β) = τ−sF (β∗)[d]. In the second case, there is an irreducible morphism from
Pj to Pi thus from Pi to τ

−1Pj and from F (τ sα) = F (αi[d])→ F (βi[d]) = F (τ sβ),
thus an arrow F (α)→ F (β).

This proves the statement.

1.3 The case of regular modules

Now that we have seen an equivalence for the transjective components, we are
interested in the case of tubes, and their correspondences in terms of arcs. When
we introduced the di�erent types of admissible m-diagonals, we voluntarily forgot
some other types of diagonals. These remaining diagonals have the particularity
of being cyclic. Indeed, if we apply τ several times to them, they come to their
�rst position at a rank r. This cannot be the case of the types of m-diagonals
de�ned in 2.1.21 (because they wrap around the central polygons).

In �gure 1.25, we can see the other types of diagonals. Note that we only have
drawn the �rst ones, but there are also their successive images under τ (of which
there are a �nite number because they are cyclic).

Figure 1.25 � The three di�erent types of arcs in the tube, dt1, d
t
2 and d

t
3 for m = 2

and n = 7

These diagonals have to �gure in the Auslander-Reiten quiver of Q, and it
appears that we can see them in the tubes (it means in the regular part of the
quiver).

In case D̃n, as we can see in the course of Crawley-Boevey [CB], there are three
types of tubes, two of period 2, and one of period n− 2.

As we deal with the higher cluster categories, we have to notice, that we have
m copies of each tube, it means we have 3m tubes. The �rst tube contains the
�rst picture of �gure 1.25 and all its images under τ . There are m copies of this
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tube, which correspond to the successive shifts of the arcs. This is the same proces
for the second and third tube.

...

· · ·

##

· · ·

##
dt2

>>

objects identi�ed

BBτ−1dt2

;;

τ−2dt2\\

It is known in [CB] that in a tube of size r, only the �rst r − 1 layers contain
rigid objects. Graphically this corresponds to noncrossing arcs. It means that
in Q̃, for the example of the only tube of size n − 2, the (n − 1) lowest lines are
made of noncrossing arcs. Then the arc crosses itself, and this does not correspond
anymore to an m-rigid object in the higher cluster category, and this is the same
for the shifted arcs in the successive copies of this �rst tube. Then with an arc
situated on the r− 1 �rst lines of the tube, we associate the m-rigid object which
actually takes place in the Auslander-Reiten quiver of C(m)

D̃n
.

In order to make sure that an arc corresponds to a unique m-rigid object in
the tube, we have to choose a convention. Let ∆ be the initial (m+ 2)-angulation.
Let β be the red m-diagonal in �gure 1.26. Then the vertex of Q associated with
β is n− 1 from the isomorphism of theorem 1.2.14. Let α = µ∆(β). We only need
to associate an m-rigid object in order to �nd all the objects of the tube of size
n− 2. We choose to associate with α the simple object τ−1Sn−1 at vertex n− 1.

To be precise, we set at the base of the �rst tube of size n−2 the �ip of the arc
corresponding to the preprojective at the �rst slice of the Auslander-Reiten quiver.
This arc is thus associated with the simple regular module which corresponds to
the mutation of the preprojective. This means that we have mutated the object
Pn−1 in the (m + 2)-angulation containing the arcs corresponding to the sum of
the indecomposable projective objects.

For the tubes of size 2, we set the only arcs linking both central polygons
without self-crossing (see �gure 1.25).

In this way we have a 1−1-correspondence between the arcs linking two di�erent
vertices which are homotopic to the border and the objects of the tube of size n−2
in the Aulslander-Reiten quiver of C(m)

Q .
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1

6

2

3

7 48 5

�ip at 3−−−−→

1

6

2

8
5

3

7 4

Figure 1.26 � We �ip β in order to de�ne α in the base of the �rst tube

1.4 About non-self-crossing arcs and m-rigid ob-

jects

We know by theorem 1.2.14 that an arc in the geometric realization can be
interpreted as an object in the m-cluster-category. We use the following notation:
if α is an arc in the category C let Xα be the object associated in the m-cluster
category.

Lemma 1.4.1. The application

{m-diagonals} → {m-rigid indecomposable objects}
α 7→ Xα

up to isomorphism, is bijective.

Proof. With each arc α which does not cross itself we associate by theorem 1.2.14
an m-rigid object Xα. Then ∀i ∈ {1, · · · ,m} Exti(Xα, Xα) = 0.

Indeed, �rst, if α belongs to the preprojective part of the Auslander-Reiten
quiver, it belongs in particular to a slice of it which forms a quiver of type D̃n.
If we add all the arcs forming this quiver, we obtain an (m + 2)-angulation. In
the Auslander-Reiten quiver of CmQ , by theorem 1.2.14, this slice corresponds to an
m-cluster-tilting object, made of the sum of all m-rigid objects at the vertices of
the slice. Then, with α is associated an m-rigid object Xα, and as α is in this part
of the Auslander-Reiten quiver of Q, it does not cross itself.

Second, if α belongs to a tube, then if it does not cross itself, it is at the base of
it, and by the previous section, this corresponds to an m-rigid object (because in
the case of a tube of size r, Xα is situated at one of the r−1 �rst lines). Conversely,
if Xα is m-rigid, then it is at the base (in the �rst r− 1 lines) of the tube of size r,
it means that it corresponds to an arc of the �rst lines, which does not cross itself.

We have thus shown that α is an arc which does not cross itself if and only if
∀i ∈ {1, · · · ,m},Exti(Xα, Xα) = 0.
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Then, there is a one-to-one bijection between arcs without any self-crossing
and m-rigid objects.

Remark 1.4.2. We can extend this bijection to the arcs in the tubes including
arcs with an auto-intersection. This can be easily visualized in �gure 1.32.

Remark 1.4.3. In a paper which is being drawn up, we show that there is a
bijection between (m+ 2)-angulations and m-cluster-tilting objects.

1.5 An example

Let us resume this paper with a complete study of an Euclidean quiver of type
D̃n, and its m-cluster category, taking n = 7 and m = 2. So we study the following
category

C2
D̃7

= Db(KD̃7)/τ−1[2],

where D̃7 is the following quiver:

7

��

4

6 //1 //2 //3

@@

��
8

@@

5

1.5.1 Quadrangulations of the decagon and colored quiver

The geometric realization shown in �gure 1.27 for this quiver is a decagon with
two squares inside of it.

Figure 1.27 � The decagon with two monogons
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We are now drawing eight 2-diagonals in order to cut the decagon in quadran-
gles. This is in �gure 1.28 the initial (m+ 2)-angulation from which we will build
later the translation quiver isomorphic to a sub-quiver of the Auslander-Reiten
quiver of C(m)

D̃7
.

1

6

2

3

7 48 5

Figure 1.28 � The initial quadrangulation for n = 7 and m = 2

If we follow the rules of de�nition 1.1.27, we associate with this quadrangulation
the quiver at the beginning of this section.

Moreover, if we associate the colored quiver with this quadrangulation accord-
ing to de�nition 2.1.9, we obtain this one.

7
(2)

��

4

(0)��6
(0)

^^

(0)��

(2) //
1

(0)
oo

(2) //
2

(0)
oo

(2) //
3

(0)
oo

(2)
@@

(2)

��
8

(2)
@@

5
(0)

^^

Now we know that mutating a colored quiver corresponds to �ipping an arc
in an (m + 2)-angulation, we can �ip in any way the quadrangulation, draw the
corresponding colored quiver, and note that the colored quivers are related by
mutation at the corresponding vertex.

1.5.2 2-diagonals and preprojective component of the Auslander-

Reiten quiver

From the initial quadrangulation, we extract the arcs and put them in the �rst
component of the Auslander-Reiten quiver of D̃7.

As the preprojective component of the Auslander-Reiten quiver is of the fol-
lowing form (where we have associated the vertices with the types of the arcs we
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@@

//
@@

@@

//

@@

@@

are working with), we just have to apply τ and the shift functor to the arcs to be
able to complete the preprojective component and obtain the result in �gure 1.29.
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d7

$$

τ−1d7

$$

τ−2d7

d6

$$

::

// d8
// τ−1d6

$$

::

// τ−1d8
// τ−2d6

::

// τ−2d8

d1

$$

::

τ−1d1

$$

::

τ−2d1

::

d2

$$

::
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$$
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::
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<<

""
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::
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::

// τ−3d4

d5

??

τ−1d5

::

τ−2d5

::
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Note that there are two copies of this component, and the other one is about
the same but all the arcs have been shifted once clockwise.

As the preprojective component is in�nite, we can along it, watch the arcs wrap
around the squares.

1.5.3 2-diagonals in the tubes of the Auslander-Reiten quiver
of D̃7

Concerning the regular modules, there are three types of tubes: The �rst type,
containing m tubes of size 5 and the two other types of tubes (each one containing
m copies of it) of size 2. The one of size 5 corresponds to the following cyclic arc
(in �gure 1.30) and its images under the shift.

Figure 1.30 � Arc of order 5

Indeed, if we apply τ �ve times, the arc returns to the origin, so it is cyclic
of order 5. The two remaining arcs corresponding to the tubes of order 2 are the
ones of �gure 1.31, plus their successive images under the shift.

Figure 1.31 � Arcs of order 2

Here we draw the tube of size 2 corresponding to the �rst picture of �gure 1.31.
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...

· · ·

  

· · ·

  

>>

objects identi�ed

>>

>>

aa

Note that in this tube, only the �rst line corresponds to rigid objects. The
upper arcs cross themselves and thus no not correspond to rigid objects anymore.

The following picture gives the tube of size 5, with the corresponding arcs. We
can notice that in the �rst four ranks, the arcs do not cross since they match to a
rigid object, and this is not the case anymore from rank 5. In order to have clear
pictures, we have replaced the monogon inside of P with a simple disk.
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Chapter 2
A bijection between m-cluster-tilting

objects and (m + 2)-angulations in
m-cluster categories

2.1 Geometric realizations

2.1.1 Case A

[BM08]
In this section, we recall the geometric realization of the m-cluster category of

a quiver of type An, for an integer n, after Baur and Marsh [BM08].
Let Q be a quiver of type An, with n vertices, and let CmQ be the m-cluster

category associated with Q. Let P be a polygon with nm + 2 sides, numbered
clockwise.

De�nition 2.1.1. An m-diagonal α from the vertex i to j 6= i in P is a diagonal
of P linking i and j such that α cuts the �gure into two polygons, one with km+ 2
sides, for some k ∈ N and one with lm+ 2 sides, for some l ∈ N.

In �gure 2.1 we draw an example of an m-diagonal.

De�nition 2.1.2. An (m + 2)-angulation of P is a maximal set of noncrossing
m-diagonals.

Remark 2.1.3. We note that this de�nition is equivalent to the following one : an
(m+ 2)-angulation is a set of m-diagonals cutting the polygon into (m+ 2)-angles.

We can introduce the initial (m+ 2)-angulation, that we will use later. All its
m-diagonals have one end at the same vertex 1 (see �gure 2.3).

91
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Figure 2.1 � The �rst is a 2-diagonal, the second is not

Figure 2.2 � This is an example of a 4-angulation

Figure 2.3 � The initial (m + 2)-angulation, for n = 5 and m = 2. The vertices
can be numbered from 1 to 12.

We can de�ne the twist and the �ip of an (m + 2)-angulation, as Buan and
Thomas did in [BT09].

De�nition 2.1.4. Let ∆ be an (m+ 2)-angulation. Let α be an m-diagonal of ∆,
linking the vertices a and b. The twist of α in ∆ is de�ned as follows:

Let (a′, a) (respectively (b, b′)) be the side of the (m + 2)-angle ending at a
(respectively at b′) consecutive to a clockwise (respectively preceding b). Then the
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twist of α, namely κ∆(α) is the m-diagonal (a′, b′).

De�nition 2.1.5. Consider ∆ an (m+ 2)-angulation. Let α be an arc in ∆. The
�ip of the (m + 2)-angulation at α is de�ned by µα∆ = ∆ \ {α} ∪ {α∗} where α∗
is given by κ∆(α), the twist of α.

Remark 2.1.6. 1. Note that the twist has an inverse, which consists in moving
the arc counterclockwise. Then the �ip is also invertible.

2. A �ip does not change the number of m-diagonals in the (m+ 2)-angulation.

In �gure 2.4, we can see an example of a �ip.

→

Figure 2.4 � Example of a �ip

Lemma 2.1.7. Any two (m+ 2)-angulations are related by a sequence of �ips.

Proof. Let ∆ be an (m + 2)-angulation. We show that we can reach the initial
(m+ 2)-angulation by applying a sequence of �ips.

If one of the arc has one end at vertex 1, then is su�ces to �ip several times the
neighbour arc in order to hang one end of it to vertex 1. We repeat the operation
until all arcs are hung to vertex 1. This leads exactly to the initial (m + 2)-
angulation. If no arc has one end hung to vertex 1, then consider the (m+ 2)-gon
containing the vertex 1. Flip one arc of this polygon as many times as necessary
in order to hang it at vertex 1.

Corollary 2.1.8. [Tza06] With this lemma and the fact that the �ip does not
change the number of m-diagonals in an (m+ 2)-angulation, we notice that all the
(m+ 2)-angulations contain exactly n m-diagonals.

Note that if Λ is a set of noncrossing m-diagonals, it can be completed in order
to form an (m+ 2)-angulation.

We now associate a colored quiver with an (m+ 2)-angulation.

De�nition 2.1.9. Let ∆ be an (m + 2)-angulation. We de�ne the colored quiver
Q∆ associated with ∆ in the following way:
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1. The vertices of Q∆ are in bijection with the m-diagonals of ∆.

2. If i and j form two sides of some (m+ 2)-gon in ∆, then we draw an arrow
from i to j and an arrow from j to i. The color of the corresponding arrow
is the number of edges between both m-diagonals, counted clockwise from i
(respectively from j).

Proposition 2.1.10. There is an equivalent de�nition: the vertices are similarly
de�ned, and for i and j two vertices, and c an integer,

q
(c)
ij =

{
1 if κc∆(i) and j share a counterclockwise oriented angle
0 otherwise.

Proof. We only have to show that the arrows are the same. If i and j form two
sides of the polygon, with a color c, it means that if we apply the twist to i, then
there will be c− 1 edges between κ∆(i) and j. Then if we apply the twist c times,
there will be no edge between κc∆(i) and j, and they will share an oriented angle.

On the other hand, if κc∆(i) and j share an oriented angle, it su�ces to apply
the inverse of the twist c times to make sure that i and j form two sides of a
polygon, and that there are c edges between i and j. This only works if c ≤ m. If
c > m, then apply this method to the other end of i.

Lemma 2.1.11. The quiver ful�ls the conditions asked for colored quivers in the
article of Buan and Thomas [BT09]. In particular it is symmetric.

Proof. By de�nition, the quiver contains no loops (it means, no arrows from i to
i).

The condition of monochromaticity is respected since two arcs can only share
one polygon.

If there is an arrow from i to j of color c, it means that i and j share two
sides of a triangle. If we count from i to j, there are c edges between them. But
if we count from j to i, as we deal with (m+ 2)-angles, it means that from j to i
there are m− c edges. So there is an arrow from j to i of color m− c. Then the
symmetry is respected.

We remark that we have the compatibility between the mutation of a colored
quiver in the sense of Buan and Thomas, and the �ip of an (m+ 2)-angulation.

Theorem 2.1.12 (Buan-Thomas, [BT09]). Let ∆ be any (m+ 2)-angulation. Let
Q∆ be the colored quiver associated with the (m + 2)-angulation ∆. If ∆k is the
new (m+2)-angulation �ipped at k from ∆, then the colored quiver Q∆k

associated
with ∆k is the mutation at vertex k of the colored quiver Q∆.

Proof. This is immediate given the previous proposition.
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Baur and Marsh in [BM08, Theorem 5.6] have shown that a category geomet-
rically built from these m-diagonals is equivalent to the m-cluster category. In the
next section, we will go further and show that cutting along an arc corresponds to
the Iyama-Yoshino reduction, as Marsh and Palu showed it for the general case of
Riemann surfaces for m = 1.

We also have the following theorem:

Theorem 2.1.13 ([BM08], Proposition 5.4). There is an explicit bijection between
the m-diagonals without any self-crossing and the m-rigid objects of the m-cluster
category.

This bijection is found in the following way: Buan and Marsh build a quiver
from m-diagonals, which is aimed to be isomorphic to the Auslander-Reiten quiver
of Q.

Remark 2.1.14. We notice that if we only draw the arrows of color 0, then we
�nd the Gabriel quiver of the endomorphism algebra of the m-cluster-tilting object
associated with the (m+ 2)-angulation.

2.1.2 Case D

[BM07]
In this case, treated by Baur and Marsh in [BM07], we use a slightly di�erent

geometric realization, in order to simplify the notion of �ip of an (m+2)-angulation.
Baur and Marsh use a polygon with nm −m + 1 sides with a punction inside of
it. We replace the puntion by an (m − 1)-gon with, on each vertex of it, a disc.
The realization is the same as the one of D̃ (see [JM]), but with only one polygon
inside ot it. The arcs are de�ned in the same way, and this respects the article of
Baur and Marsh, since we have an evident bijection between the arcs of Baur and
Marsh, and the ones we de�ned as in case D̃ in [JM].

We also have the following theorem:

Theorem 2.1.15 ([BM07], Theorem 3.6). There is an explicit bijection between
the m-diagonals without any self-crossing and the m-rigid objects of the m-cluster
category.

Here again, Buan and Marsh build a quiver from m-diagonals, which is aimed
to be isomorphic to the Auslander-Reiten quiver of Q.

2.1.3 Case Ã

[Tor12b] The geometric description of case Ã has been completely treated by
Torkildsen in [Tor12b]. We recal part of his description.
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Let m be an integer. Let Q be a quiver of type Ãn, with p arrows going one
direction, and q arrows going the other. Let P be a regular mp-gon, with a regular
mq-gon inside of it. In the following, we give the example with p = 4 and q = 3,
for m = 2. We number the vertices of the outer polygon O1, · · · , Omp−1 and the
vertices of the inner polygon I1, · · · , Imq−1.

There are three types of m-diagonals:

� A path from a vertex of the outer polygon to a vertex of the inner polygon

� A path from Oi to Oi+km+2, where i + km + 2 ≥ 1, is counted modulo
pm + 1 and i ∈ {1, · · · , pm + 1} homotopic to the boundary path of the
outer polygon.

� A path from Ii to Ii+m−1 for some i and some k ≥ 3 homotopic to the
boundary path of the inner polygon.

Figure 2.5 � Examples of m-diagonals

De�nition 2.1.16. We call "(m + 2)-angulation" a set of p + q noncrossing m-
diagonals cutting the �gure into (m+ 2)-angles.

With an (m + 2)-angulation, we can associate a colored quiver de�ned in this
way:

De�nition 2.1.17. Let ∆ be an (m+ 2)-angulation. Let Q∆ be the quiver de�ned
as follows:

� The vertices are the m-diagonals

� There is an arrow from i to j if i and j bound a common (m+ 2)-angle.

� The color of the arrow is the number of edges between i and j counted from
i counterclockwise.

Then, Torkildsen in [Tor12b] de�ned the mutation of an (m+ 2)-angulation:



2.1. Geometric realizations 97

De�nition 2.1.18. Let ∆ be an (m + 2)-angulation. Let α be an m-diagonal of
∆. Then, remove α. There exist m+1 m-diagonals which can complete the almost
(m+ 2)-angulation. Let α′ be the neighbor of α clockwise.

The mutation of ∆ at α is de�ned to be the (m+ 2)-angulation ∆ \ {α} ∪ {α′}

Theorem 2.1.19. [Tor12b, Proposition 5.1] Let ∆ be any (m+2)-angulation. Let
Q∆ be the colored quiver associated with the (m + 2)-angulation ∆. If ∆k is the
new (m+2)-angulation �ipped at k from ∆, then the colored quiver Q∆k

associated
with ∆k is the mutation at vertex k of the colored quiver Q∆.

In the following article, Torkildsen builds an equivalence of categories and shows
the following result:

Theorem 2.1.20 ([Tor12b], Theorem 7.3). There is an explicit bijection between
the m-diagonals (called "diagonals" in his article) without any self-crossing and
the m-rigid indecomposable objects of the m-cluster category.

2.1.4 Case D̃

This case has been treated in [JM]. We give some quick explanations here:
Let P be an (n− 2)m-gon with two central (m− 1)-gons R and S inside of it

(cf �gure 2.6). We replace each vertex of R and S by a disk, which we henceforth
call a thick vertex. If m = 1, then we consider an (n−2)-gon with two disks inside
of it.

Figure 2.6 � The (n− 2)m-gon with two digons. Here m = 3 and n = 4.

We consider the arcs up to rotation of one of the central polygons. It means
that, once the arc is set, we can rotate the central polygons, this does not change
the nature of the arc. See �gure 2.7 for an example:

De�nition 2.1.21. An m-diagonal is an equivalence class of admissible arcs where
the di�erent classes are:
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Figure 2.7 � These two arcs make part of the same class of m-diagonals.

1. If i 6= j: the homotopy classes of arcs crossing the space between both central
polygons and cutting the �gure into a km + 1-gon and a k′m + 1-gon, for
some k and k′. In this case, it is said that the class is of type 1.

2. If i 6= j: the homotopy classes of arcs cutting the �gure into a km-gon with
both central polygons inside of it and a k′m+ 2-gon.

3. If i = j: all the admissible arcs tangent to the left of the disks of the inner
polygon R, plus the left loop, form a �rst class. The second class is given by
all the arcs tangent to the right of the disks, plus the right loop. There are
two more classes built in the same way for S. For more details, see [JM].

4. Any admissible arc linking both central polygons form a class of m-diagonal.
To be clear, if α is an arc whose �rst end is tangent to a side of R, and
second end is tangent to a side of S, then it is an m-diagonal.

De�nition 2.1.22. An (m + 2)-angulation is a set of noncrossing m-diagonals
cutting P into (m+ 2)-angles.

Figure 2.8 � A 4-angulation for m = 2 and n = 7.

In a similar way to that of Torkildsen, we de�ne the �ip of an (m+2)-angulation,
and build a colored quiver associated with an (m + 2)-angulation. We show the
following result:
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Theorem 2.1.23. Let ∆ be any (m+ 2)-angulation. Let Q∆ be the colored quiver
associated with the (m + 2)-angulation ∆. If ∆k is the new (m + 2)-angulation
�ipped at k from ∆, then the colored quiver Q∆k

associated with ∆k is the mutation
at vertex k of the colored quiver Q∆.

Then we show that there are some common points between the higher cluster
category and a geometrically built category. More precisely, we build a category
from these m-diagonals which is equivalent to a subcategory of the higher cluster
category. We explicit all m-diagonals in the Auslander-Reiten quiver of CmQ , where
Q is a quiver of type D̃n.

We also show the following theorem:

Theorem 2.1.24 ([JM]). There is an explicit bijection between the m-diagonals
without any self-crossing and the m-rigid indecomposable objects of the m-cluster
category.

From now and all throughout the paper, we �x such a bijection.

2.2 Noncrossing arcs and extensions

In this section, we are going to show in types A, D, Ã and D̃ the following
theorem :

Theorem 2.2.1. Let α and β be two arcs in the polygon P . Let Xα and Xβ be
the associated m-rigid objects. If ∀i ∈ {1, · · · ,m},ExtiC(Xα, Xβ) = 0, then α and
β do not cross each other.

Remark 2.2.2. The result in cases A and D has already been shown by Thomas
in [Tho07] and by Baur and Marsh in [BM08] for case A and [BM07] for case D.

We nontheless include a proof as it illustrates the method that will be applied
in types Ã and D̃.

Our strategy to prove this consists in showing that cutting along an arc corre-
sponds to applying the Iyama-Yoshino reduction. But �rst, let us show a useful
lemma:

Lemma 2.2.3. Let C be a Hom-�nite triangulated category with a Serre functor.
Let X ∈ C an m-rigid object. Let Y be an object of C which belongs to X⊥.
Suppose that C(Y,X) = 0 and for all i ∈ {1, · · · , k}, where k ≤ m, we have
Ext−iC (Y,X) = 0, then

∀i ∈ {1, · · · , k}Y 〈−i〉 ' Y [−i]
where 〈1〉 denotes the shift in C and in the Iyama-Yoshino reduction X⊥/(X).
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Proof. We show by induction on i that Y 〈−i〉 = Y [−i], where [1] denotes the shift
in C and 〈1〉 is the shift in the Iyama-Yoshino reduction. It is de�ned on objects
as follows: Let

T
(c)
k

f
(c)
k // B

(c)
k

g
(c+1)
k // T

(c+1)
k

h
(c+1)
k // T

(c)
k [1]

be the exchange triangles as seen in the preliminaries. If we use the notations of
the theorem, we have that Y = T

(c)
k . Then Y 〈1〉 is in fact the object T

(c+1)
k in the

exchange triangle.

First, Y 〈−1〉 ' Y [−1]. Indeed, C(X, Y ) = 0. Let us take an addX-approximation
of Y . Then we have the following triangle:

Y [−1] //Y 〈−1〉 //0 0 //Y .

As the right morphism is zero, we have that Y 〈−1〉 ' Y [−1].

Suppose Y 〈−i+ 1〉 ' Y [−i+ 1]. Then

C(X, Y 〈−i+ 1〉) = C(X, Y [−i+ 1]) = 0

Let us once again take an addX-approximation of Y 〈−i+ 1〉. Then we have

Y [−i] //Y 〈−i〉 //0 //Y [−i+ 1] .

Then Y 〈−i〉 ' Y [−i]

2.2.1 Cases A and D

We start by a useful lemma.

De�nition 2.2.4. We call an m-diagonal α an m-ear, when α divides P into an
m+2-gon and an (n−1)m+2-gon for the A case (respectively (n−1)m−m+1-gon
containing the interior polygon for case D).

Let Q be the quiver 1→ 2→ · · · → n or

n− 1

1 // 2 // · · · // n− 2

::

%%
n

.
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Lemma 2.2.5. Let C be the m-cluster category of type An (respectively Dn). Let
α be an m-ear. Let Xα be the m-rigid object associated with α. Let U = {Y ∈
C, ExtiC(Xα, Y ) = 0}. Let C ′ be the Iyama-Yoshino reduction of C: C ′ = U/(Xα).
Then, we have an equivalence of categories :

C ′ ' CmQ/α

where Q/α is the quiver obtained from Q by removing α and all incident arrows.

Proof. This lemma is a consequence of theorem 3.3.8 of Keller and Reiten.
Let us �nd an m-cluster-tilting object T in C ′ satisfying the assumptions of

theorem 3.3.8, such that End(T ) ' KAn−1 (respectively End(T ) ' KDn−1). We
recall that we choose the clockwise convention, it means that we draw the arrows
of the quiver of an (m + 2)-angulation clockwise. Moreover, we name by 1, the
vertex of P which corresponds to the common vertex of the arcs of the �rst slice
of the Auslander-Reiten quiver of Q (this ensures that 1 is a source in Q).

We know from the bijection between m-rigid objects and m-diagonals that the
m-ear α corresponds to a translation of the �rst projective module P1 up to some
shift [j], for some j ≤ m. We may thus assume that Xα = P1. Let T be the sum
of all i in Q0 for i 6= 1, viewed both as an object in CmQ and of C ′. We have that
EndC′(T ) ' KAn−1. Indeed, �rst, we have that Endmod(T ) = KAn−1 (respectively
KDn−1) because Xα = P1 and 1 is a source in Q. Then we show that this remains
the same in the higher cluster category by drawing the Auslander-Reiten quiver
of Q. Applying the Iyama-Yoshino reduction does not change anything since no
morphism is incident to α. Moreover, from Keller and Reiten in [KR08, Section
4], we have that ∀i ∈ {1, · · · ,m} Ext−iC (T, T ) = 0. From lemma 2.2.3 and the fact
that 1 is a source in Q, we then have ∀i ∈ {1, · · · ,m} Ext−iC′ (T, T ) = 0 Then we
have shown the lemma.

Before showing the next lemma, we are going to explicit the bijection

{β does not cross α↔ {β ∈ S/α}

in cases A and D. For case A (respectively for case D), if β is an arc which does
not cross α, then we can "cut along α" in order to have two new �gures of type A
(respectively one of type D and one of type A) and one of these contains the same
arc as β, which we still call as β.

Lemma 2.2.6. Let P be an nm+2-gon (respectively an mn−m+1-gon) associated
with a quiver Q of type An (respectively Dn). Let α be an m-ear from i to j.
Then cutting along α corresponds to applying the Iyama-Yoshino reduction of CmAn
(respectively CmDn) applied on Xα. More precisely, let C be the m-cluster category
associated with a quiver of type An (respectively Dn), and let C ′ = U/Xα, where
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Xα is the m-rigid object associated with α, and U = {Y,ExtlC(
⊕

Xα, Y ) = 0 ∀l ∈
{1, · · · ,m}}. Let Q/α be the quiver Q where the vertex corresponding to α and all
the incident arrows have been removed. The previous lemma tells us that we have
the following result:

C ′ ' CmQ/α.

Moreover, the following diagram is commutative.

{β does not cross α, β 6= α} //
OO

��

{X ∈ U ;X � Xα}/ 'OO

��
{β ∈ S/α} // {X ∈ C ′}/ '

where the second is given by the Iyama-Yoshino reduction. The horizontal arrows
are maps sending β to Xβ. The symbol S/α means the surface obtained from S by
cutting along α. Up to homeomorphism, this does not depends on the choice of a
representative of α.

Proof. It su�ces to show that the arcs that cross α exactly correspond to the
m-rigid which do not lie in U . Let us then take an m-diagonal β which cuts α (see
�gure 2.9). Let Xβ be the associated m-rigid object. Let us show that there exists
k ∈ {1, · · · ,m} such that ExtkC(Xα, Xβ) 6= 0.

α

β

Figure 2.9 � Example of an m-ear in case A

Indeed, as there are only m−1 vertices between α and the border, we can shift
β k < m times in order to have α and β sharing an end point. Let us show that
there is a morphism from Xα and Xβ[k].

If we take β, an arc which does not cross α. As there is a bijection between the
Auslander-Reiten quiver of Q and the translation quiver built in [BM08] for case
A and [BM07] for case D, the arc β corresponds to a unique object Xβ situated
on the Auslander-Reiten quiver of Q. Cutting the Auslander-Reiten quiver �rst,
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or the translation quiver built by Baur and Marsh �rst (and then associating Xβ

with β on the new cut quiver) is the same. Thus, the diagram is commutative.

Remark 2.2.7. We need to note that the cases are symmetric. Indeed, to shift β
k times in order to �nd a morphism from α to β[k] is the same as to shift α k
times, which gives a morphism from β[k − (m+ 1)] to α. Thanks to the (m+ 1)-
Calabi-Yau property, we know that C(β[k− (m+ 1)], α) ' D(α, β[k]). This means
no matter which vertex we shift.

1. In case A: we assume that α is the arc from 1 to m + 2 with no loss of
generality.

In the Auslander-Reiten quiver of C, them-rigidXα is situated at the bottom
as we can see in the next picture where we identify an arc with the associated
object in the higher cluster category. We give the name of the arcs by D1j,
where the arcs links 1 to j. Moreover, we draw the Hom-hammock in red.

''
''

D1 5m+2

((
((

''

77

D1 4m+2

66

((

Dm+1 5m+2

((

66

((

66

· · ·

''

77

D1 3m+2

77

''

Dm+1 4m+2

66

((

D2m+1 5m+2

((

66

· · ·

D1 2m+2

77

''

Dm+1 3m+2

66

((

D2m+1 4m+2

66

((

D3m+1 4m+2

((

66

Xα = D1 m+2

77

Dm+1 2m+2

77

D2m+1 3m+2

66

D3m+1 4m+2

66

D4m+1 5m+2

If we draw the corresponding arcs on the Auslander-Reiten quiver, we realize
that the ones on the slice arising from Xα (on the �gure, P2, P3, P4, P5) have
an end point equal to 1. We note moreover that those are all arcs having 1
as an end. Then β[k] belongs to one of them.

It is also known that these modules exactly correspond to the ones which
have a nonzero morphism from Xα. Then ExtkC(Xα, Xβ) 6= 0.

2. In case D:

In the Auslander-Reiten quiver of C, them-rigidXα is situated at the bottom
as we can see in the next picture. We name the diagonals by Dij in the same
way as in An case. Both particular diagonals are called Bl

1 or B
r
1. We draw

the �gure for the case i = 1 for the sake of simplicity.
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''
''

Bl
1

''

Br
3

&&//

&&

88

// // D1 4m+2

77

''

// Br
1

// Dm+1 1

((

77

// Bl
3

//

&&

99
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· · ·

''

77
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77

''

Dm+1 4m+2

66

((

D2m+1 1

''

77

· · ·

D1 2m+2

77

''

Dm+1 3m+2

66
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D2m+1 4m+2

66

((

D3m+1 1

&&

88

Xα = D1 m+2

77

Dm+1 2m+2

77

D2m+1 3m+2

66

D3m+1 4m+2

77

D4m+1 1

The Hom-hammock starting at Xα contains precisely those Xγ's for which γ
contains vertex 1. Then β[k] belongs to one of them.

It is also known that these modules exactly correspond to the ones which
have a nonzero morphism from Xα. Then ExtkC(Xα, Xβ) 6= 0.

We have shown that cutting along an arc corresponds to the Iyama Yoshino
reduction. Let us now prove theorem 2.2.1.

Proof of theorem 2.2.1. Let us suppose that α and β cross each other. If α is an
m-ear, then the result is already shown.

Else, if we can shift β k < m times so that they have one common end point,
we prove in a similar way to that of previously, that β[k] is situated on the Hom-
hammock of α, and then there is a nonzero extension from Xα to Xβ. If we
cannot shift β k < m times as needed, it means that we can draw an m-ear γ,
which does not cross α neither β, and from the previous theorem, we cut along it.
By induction, there is some k ∈ {1, · · · ,m} such that ExtkC′(Xα, Xβ) 6= 0. From
Iyama-Yoshino, we have that C(X, Y [i]) and C ′(X, Y 〈i〉) are isomorphic and this
�nishes the proof of the theorem.

2.2.2 Case Ã

In this subsection, we will use the same sketch of proof. Let us now de�ne the
notion of an m-ear:

De�nition 2.2.8. Let α be an m-diagonal. Then α is an m-ear if it lies in the
outer or inner polygon, and links a vertex i to i+m+ 1, and is homotopic to the
boundary path (see �gure 2.10 for an example of m-ear).
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α

Figure 2.10 � Example of an m-ear in case Ã

Lemma 2.2.9. Let C be the m-cluster category of type Ãn. Let α be an m-diagonal
which is either an m-ear or in the transjective component of the Auslander-Reiten
quiver of Ãn. Let Xα be them-rigid associated with α. Let U = {Y ∈ C, ExtiC(Xα, Y ) =
0}. Let C ′ be the Iyama-Yoshino reduction of C: C ′ = U/(Xα). Then, we have an
equivalence of categories :

C ′ ' CmQ/α

where Q/α is the quiver obtained from Q by removing α and all incident arrows.

Remark 2.2.10. We can show exactly the same results if α links two sides of the
internal polygon, and is homotopic the the boundary of it.

Proof. There are two di�erent cases.

First, if α is an m-ear:

Let us begin by illustrating this fact with the Gabriel quivers. The mutation
at vertex 1 leads to the following quiver:

1

��

3 //oo 5

��
0

77

��

7

2 //4 //6

@@

Using the Iyama-Yoshino reduction at vertex 1 corresponds to forgetting this
vertex and all incident arrows. By doing this, we are ensured to be reduced to a
quiver of type Ãn−1:
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3 //5

��
0

77

��

7

2 //4 //6

@@

Here again, we use the theorem of Keller and Reiten in [KR08], as in type A and
D. We have to �nd an m-cluster-tilting object T such that EndC′(T ) ' KÃn−1,
and ∀i ∈ {1, · · · ,m}Ext−iC′ (T, T ) = 0.

Let T = ⊕Pi. We know from Torkildsen (see �gure 8 in [Tor12b]), that T
corresponds summand by summand, to the (m + 2)-angulation made of all m-
diagonals linking the external polygon to the internal one (see �gure 2.11)

Figure 2.11 � The "initial" (m+2)-angulation of type Ã, for m = 4, p = 12, q = 6.

Let T ′ be the mutation of T at P1 the �rst preprojective module. Then T ′ =
⊕i 6=1Pi ⊕X is also an m-cluster-tilting object. Let us show that τX corresponds
to the simple module at the base of the �rst tube (see �gure 2.12 to visualize the
mutation in terms of arcs). However, we do not know yet that the mutation of
m-cluster tilting objects corresponds to the �ip of (m+ 2)-angulations.

−→

Figure 2.12 � Geometric visualization of T ′
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We have to show that τX = Sk, the simple module in k, which is situated at
the bottom of the tube of size n− 2.

Let us �nd C(X[−1], T ). For all i 6= k, C(X[−1], Pi) ' C(X,Pi[1]) = 0 since T ′

is an m-cluster-tilting object.
Now we focus on C(X[−1], Pk). We have that C(X[−1], Pk) ' C(X,Pk[1]) ' K

from Iyama and Yoshino in [IY08].
From the (m+ 1)-Calabi-Yau property, we have

C(X[−1], T ) ' C(X,T [1]) ' DC(T, τX)

Then τX ' Sk and X = Xα corresponds to the red arc, named α.
Moreover, from the paper of Baur and Torkildsen, we can easily visualize the

morphisms in the module category of type Ã.
We have EndC′(T

′) ' KÃn−1. Indeed, in the module category, Endmod(T ′) '
KÃn−1, because, the objects of T

′ (apart from Xα) are on the projective slice of
the Auslander-Reiten quiver of Q. Thus there is no relation. If any morphism

f : T ′ → T ′ factorizes through Pk, then f = uv where T ′
u // Pk

v // T ′ and
this is impossible given that there is no morphism from a regular module to a
preprojective one.

Now we show this for the higher cluster category. We have the following de-
composition of morphisms (G is the functor τ−1[m]):

C(M,N) '
⊕
i∈Z

Db(GiM,N).

If m = 1, the result is already known, because if X is a preprojective object
and Y a regular one, then ExtC(X, Y ) = 0.

If not, we use the decomposition just above. For i ≥ 1, we have that

Db(τ−1[m]T, T ) = DDb(T, T [m+ 1])

thanks to the duality. From the book [ASS06], the algebra of a quiver of type Ã is
hereditary and then the extension Ext2

Db(T, T ) = 0. Then, for i ≥ 1, all the terms
of the sum are zero. Then

EndC(T
′) ' EndDb(T

′).

Applying the Iyama-Yoshino reduction does not change anything since in the
higher cluster category, there is no morphism incident to α.

It �nally remains to prove that Ext−iC′ (T
′, T ′) = 0 for all i ∈ {1,m− 1}.

Let us �rst show that Ext−iC (T ′, T ′) = 0, using the shift in C. Then we will use
lemma 2.2.3 in order to conclude.



108Chapter 2. Bijection between m-cluster-tilting objects and (m+2)-angulations

We claim that C(T ′, T ′[−i]) = 0. Indeed, from Keller and Reiten in [KR08],
we know that C(⊕j 6=kPj, T ′[−i]) = 0. Moreover, as Xα and Xα[−i] are not in the
same tube, then C(Xα, Xα[−i]) = 0 in the module category (which from Wraalsen
[Wr �a09] or Zhou-Zhu [ZZ09], immediately translates to the higher cluster cate-
gory). In addition, there cannot be any morphism from a tubular component
to a preprojective one. Then C(Xα[−i], Pj) = 0 in the module category (which
from Wraalsen [Wr �a09] or Zhou-Zhu [ZZ09], immediately translates to the higher
cluster category). It remains to show that C(Pj, Xα[−i]) = 0 for any j 6= k and
i ∈ {1, · · · ,m− 1}. By de�nition of the mutation, we have the exchange triangle

Pk[−i] //U [−i], U ∈ add⊕l 6=k Pl //Xα[−i] //Pk[−i+ 1]

Pj

∃ g
ii

f

OO
0

88 .

For i 6= 1, there is no morphism from Pj to Pk[−i+ 1].
Then, there exists g : Pj → U [−i]. As U is only composed with projectives

which are not Pk, this shows that g = 0. Then f = 0.
For i = 1, the composition Pj → Xα[−1] → Pk is zero because there is no

morphism from tubular objects to preprojective objects. Then there exists g such
as previously, but the composition with U [−i] → Xα[−i] is zero for the same
reason. Then f = 0.

This shows that Ext−iC (T ′, T ′) = 0.
From lemma 2.2.3, we have that T ′l < −i >' T ′l [−i]. Finally,

Ext−iC′ (T
′, T ′) = 0.

We now have gathered all the information in order to apply the theorem of
Keller and Reiten, and we have that

C ′ ' CmQ/α.

Else, if α corresponds to a transjective module, we proceed in the same way,
we have that Ext−iC (T ′, T ′) = 0 from Keller and Reiten [KR08, Lemma 4.1], and
we can apply Keller-Reiten theorem. In details, let T be the m-cluster-tilting
object corresponding to a slice of the Auslander-Reiten quiver of Q (see the article
of Baur and Torkildsen [BT15] for details). Then as there is an isomorphism
between the Auslander-Reiten quiver of Q (except the homogeneous tubes) and
the translation quiver Γ built by Baur and Torkildsen in [BT15, Proposition 3.7],
the morphisms in the module category from T to T (where T is a slice of the
Auslander-Reiten quiver) correspond to a quiver of type An−1. Then we have
Endmod(T ) ' KAn−1.
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Lemma 2.2.11. Let α be an m-ear. Then cutting along α corresponds to applying
the Iyama-Yoshino reduction. More precisely, the application which, with an in-
decomposable rigid object of the higher cluster category, associates an m-diagonal,
induces a map

{rigid indecomposable modules of U} → {m-diagonals which do not cross α}.

Remark 2.2.12. We need to note that the cases are symmetric. Indeed, to shift β
k times in order to �nd a morphism from α to β[k] is the same as to shift α k times,
which gives a morphism from α to β[m+ 1− k] thanks to the (m+ 1)-Calabi-Yau
property. This means, we do not care about which vertex we shift.

Proof. Here, as in cases A and D, it su�ces to show that, if β is an m-diagonal
crossing α, then we can �nd a morphism fromXα toXβ[k], for some k ∈ {1, · · · ,m}.

By the geometric realization of Torkildsen in [Tor12b], the m-diagonal α is
situated at the bottom of the �rst tube. As β crosses α, we can shift it k < m
times so that one end point of β is in common with one of α. There are two cases:

First case: β corresponds to an m-rigid in a tube. Then, by the proof of
Proposition 7.2 in [Tor12b], there exists a nonzero morphism from Xα to Xβ[k]
(see �gure 13 of the article for a clear picture of this map).

Second case: β corresponds to a preinjective arc. Then, by the paragraph 4.1 of
the article written by Baur and Torkildsen [BT15], as α and β[k] share an oriented
angle, there is a so-called "long move", hence a nonzero morphism in the module
category from Xα to Xβ[k].

In any case, we have found a nonzero morphism in the higher cluster category
from Xα to Xβ[k]. Then the arcs which cross α exactly correspond to the rigid
which do not lie in U . Then the Iyama-Yoshino reduction corresponds to cutting
along an arc.

We are now able to prove theorem 2.2.1:

Proof of theorem 2.2.1. If α and β are two crossing m-diagonals in the geometric
realization of a quiver of type Ã (an external polygon P with p sides together with
an internal polygon R with q sides). There are two cases:

1. First case: The m-diagonal α links two vertices of P , and is homotopic to
the boundary path (or in the same way, α lies in the inner polygon). If α is
an m-ear, then the result is shown. Else:

- If it is impossible to draw an m-ear between both end points of α without
crossing β, then it means that α is an m-ear, and the result is shown. It
su�ces to count the vertices to make sure of it: if α is not an m-ear, it cuts
the polygon into a u-gon, with u ≥ 2m+ 2. Then, at one side of β, there is
at least m+ 1 free vertices, where we can draw an m-ear.
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- Else we can draw an m-ear γ between an end point of α and an end point
of β, then it su�ces to cut along γ and repeat the operation as many times
as necessary, in order to reduce to the previous case.

See �gure 2.13 for an illustration.

α

β

γ

Figure 2.13 � Illustration of the �rst case for p = 12, q = 6 and m = 2

2. Second case: The m-diagonal α is a transjective arc (corresponding to the
transjective part of the Auslander-Reiten quiver of Cm

Ãn
).

(a) If β is homotopic to the boundary path of one of the polygons (let us say
for instance that β is homotopic to the boundary path of the external
polygon). Then, we use the same type of argument.

- If we cannot draw an m-ear lying inside the end points of β which
does not cross α, then it su�ces to shift β k < m times in order to
hang one end point of β to one end point of α. This corresponds to a
long move, then to a morphism in the module category in the sense of
Baur and Torkildsen in [BT15].

- Else, we cut along this m-ear, and repeat the operation as many times
as necessary to reduce to the �rst case.

(b) If β is a transjective arc.

- If we can shift β k < m times in order to hang one end point of β to
one end point of α, then both arcs α and β[k] belong to the same slice
in the Auslander-Reiten quiver of Q. We can show that there exists a
morphism in the module category from Xα to Xβ[k] with the article of
Baur and Torkildsen [BT15, Paragraphs 3.3 and 3.4].

- Else, there exists an m-ear γ which does not cross α nor β. It su�ces
to cut along γ and repeat as many times as necessary in order to reduce
to the previous case.
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2.2.3 Case D̃

De�nition 2.2.13. Let P be a polygon with (n− 2)m sides with two m− 1-gons
inside of it, associated with a quiver of type D̃n. Then, an m-ear is an m-diagonal
linking a vertex i to the vertex i+m+ 1 homotopic to the boundary of P .

Lemma 2.2.14. Let P be a polygon with (n− 2)m sides associated with a quiver
Q of type D̃n and let α be an m-ear. Then the Iyama-Yoshino reduction of Cm

D̃n
applied on Xα corresponds to cutting along α. More precisely, let C be the m-
cluster category associated with a quiver of type D̃n, and let C ′ = U/Xα, where
Xα is the m-rigid object associated with α, and U = {Y,ExtlC(

⊕
Xα, Y ) = 0 ∀l ∈

{1, · · · ,m}}. Let Q/α be the quiver Q where the vertex corresponding to α and all
the incident arrows have been removed. Then we have the following result:

C ′ ' CmQ/α.

Let us begin by illustrating this fact with the Gabriel quivers. The mutation
at vertex k leads to the following quiver:

1

��

n− 1

||
3 //· · · //k − 1

66

))

k

2

@@

n

bb

Using the Iyama-Yoshino reduction at vertex k corresponds to forget this vertex
and all incident arrows. By doing this, we are ensured to be reduced to a quiver
of type D̃n−1:

1

��

n− 1

3 // · · · //k − 1

66

((2

@@

n

Proof. Here again, we use theorem 3.3.8 of Keller and Reiten.
We are going to use this theorem, by building a new m-cluster-tilting object

respecting the hypotheses.
Let T =

⊕
Pi be the sum of all projective modules. We know that T is

an m-cluster-tilting object. This object is naturally associated with the initial
(m+ 2)-angulation.
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Let Pk be the following projective module:

K

  

0

K // · · · //K //K

??

��
K

>>

0

From Iyama and Yoshino in [IY08], we have an exchange triangle:

Pk → Y → X → Pk[1] (2.1)

where Y ∈ add
⊕

j 6=k Pj.
We mutate the object T as Wraalsen and Zhou, Zhu in [Wr �a09] and [ZZ09] at

Pk in order to study the new m-cluster-tilting object

T ′ =
⊕
j 6=k

Pj ⊕X.

Let us �rst show that X corresponds to the arc α, which is the arc obtained by
�ipping the arc of type 1 corresponding to the vertex k of the Auslander-Reiten
quiver (see �gure 2.14).

1

6

2

3

7 48 5

�ip at k=3−−−−−−→

1

6

2

8
5

3

7 4

Figure 2.14 � We �ip the arc corresponding to Pk. The new arc is called by α.

We have to show that τX = Sk, the simple module in k, which is situated at
the bottom of the tube of size n− 2 as we set in the previous section.

Let us �nd C(X[−1], T ). For all i 6= k, C(X[−1], Pi) ' C(X,Pi[1]) = 0 since T ′

is an m-cluster-tilting object.
Now we focus on C(X[−1], Pk). Wa have that C(X[−1], Pk) ' C(X,Pk[1]) ' K

from Iyama and Yoshino in [IY08].
From the (m+ 1)-Calabi-Yau property, we have

C(X[−1], T ) ' C(X,T [1]) ' DC(T, τX)
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Then τX ' Sk and X = Xα corresponds to the arc α.

It now remains to check the hypotheses of Keller-Reiten's theorem. First, C ′ is a
Hom-�nite algebraic (m+ 1)-Calabi-Yau category. The object T ′ is our candidate.
It is still an m-cluster-tilting object. First of all, from [KR08, Lemma 4.1], the
morphisms C(Pj, Pl[−i]) are zero for any j and l. Moreover, as X and X[−i] are
not in the sale tube, we have C(X,X[−i]) = 0. In addition, C(X[−i], Pj) = 0
as there is no morphism from a regular object to a preprojective object. It now
remains to show that C(Pj, X[−i]) = 0 for any j 6= k and any i ∈ {1, · · · ,m}. We
then have the following diagram:

Pk[−i] //U [−i], U ∈ add⊕l 6=k Pl //Xα[−i] //Pk[−i+ 1]

Pj

∃ g
ii

f

OO
0

88 .

and we conclude in the same way as in type Ã.

If i = 0, we remark that there can be no relations or factorizations in the
slice taken, which means , we have that C(T, T ) ' KD̃n−1 (see illustration at the
beginning of the proof), and this permits to apply Keller-Reiten's Theorem and
�nishes the proof.

Lemma 2.2.15. Let α be an m-ear. Then cutting along α corresponds to applying
the Iyama-Yoshino reduction at Xα. More precisely, the application which, with
an indecomposable rigid object of the higher cluster category, associates an m-
diagonal, induces a map

{m-diagonals which do not cross α} → {rigid indecomposable modules of U}.

Proof. Here again, it su�ces to show that, if β is an arc cutting α, then there
exists some k ∈ {1, · · · ,m} such that ExtkC(Xα, Xβ) 6= 0.

Let β be an arc crossing α. Then we can shift β k < m times in order for both
of them to share a common ending vertex a.

If β[k] is in a tube of size n−2, then it is situated in the same tube as α, higher
than it. Then there exists a morphism from Xα to Xβ[k].

Else, β[k] is situated in the preinjective part of the Auslander-Reiten quiver.
Whatever the type of β, is it in a slice of the preinjective part. Then it su�ces to
show that there is a morphism from Xα to the head of this slice, it means in our
orientation, to A1 in the following quiver.
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A8

A6

>>

// A7

Xβ[k]

<<

A4

<<

A1

>>

//

  

A2

A3

We note that β[k − 1] is exactly the arc corresponding to τ−1Pl for an l ∈
{1, · · · , n+ 1}. We can prove the existence of a morphism in the module category
from the simple regular Xα to τ−1Pl for any l.

To draw an example, in case n = 7, let us give the dimension vectors of τ−1Pl,
for each l: They are

1

��

0

��
2 1oo 1oo

1

@@

1

^^

; 1

��

1

��
2 1oo 1oo

1

@@

0

^^

; 1

��

1

��
3 2oo 2oo

1

@@

1

^^

; 1

��

0

��
2 1oo 1oo

1

@@

0

^^

; 1

��

0

��
2 1oo 0oo

1

@@

0

^^

; 1

��

0

��
1 1oo 0oo

0

@@

0

^^

; 0

��

0

��
1 1oo 0oo .

1

@@

0

^^

In any case there is a morphism from the simple

0

��

0

��
1 0oo 0oo

0

@@

0

^^

to any of the τ−1Pl. We can have a deeper analyse in the article of Dlab and
Ringel in [DR74].

We now generalize this result to all arcs excepted the one in the tubes of size
2.

Lemma 2.2.16. Let P be a polygon with (n− 2)m sides associated with a quiver
Q of type D̃n and let α be an arc which corresponds to a regular module in a
tube of size n − 2. Then α cuts the �gure into a polygon T on the one hand and
another �gure of type D̃′n for some n′ < n on the other hand. Let α1, · · · , αk be
arcs lying in T , such that, if we cut along αi, then αi+1 becomes an m-ear. Then
the successive Iyama-Yoshino reduction of Cm

D̃n
applied on the Xαi corresponds to

cutting successively along the αi. More precisely, let C be the m-cluster category
associated with a quiver of type D̃n, and let C ′ = U/

⊕
Xαi, where Xαi is the m-

rigid object associated with αi, and U = {Y,ExtlC(
⊕

Xαi , Y ) = 0 ∀l ∈ {1, · · · ,m}}.
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Let Q/α1, · · · , αn be the quiver Q where the vertex corresponding to α1, · · · , αn and
all the incident arrows have been removed. Then we have the following result:

C ′ ' CmQ/α1,··· ,αn .

Proof. We have that α is an arc linking two di�erent vertices i and j and α is
homotopic to the boundary path.

If α is an m-ear, this is exactly the previous lemma. Else, it means that
j > i+m+ 1. Then there exists an m-ear from i to i+m+ 1 which does not cut
α. We use Iyama-Yoshino reduction in order to cut along this m-ear. We do this
operation again as many times as necessary, to reduce n until α becomes an m-ear.
We are ensured that the process stops since α cuts the polygon into a km-gon with
both m− 1 gons inside of it on the �rst side, and into a km+ 2-gon of type A on
the other side. This shows the result if α is in a tube of size n− 2.

Lemma 2.2.17. Let P be a polygon with (n− 2)m sides associated with a quiver
Q of type D̃n and let α be an arc which is associated to an m-rigid object lying
in the transjective component of the Auslander-Reiten quiver of CmQ . Then the
Iyama-Yoshino reduction of Cm

D̃n
applied on Xα corresponds to cutting along α.

More precisely, let C be the m-cluster category associated with a quiver of type
D̃n, and let C ′ = U/Xα, where Xα is the m-rigid object associated with α, and
U = {Y,ExtlC(

⊕
Xα, Y ) = 0 ∀l ∈ {1, · · · ,m}}. Let Q/α be the quiver Q where the

vertex corresponding to α and all the incident arrows have been removed. Then we
have the following result:

C ′ ' CmQ/α.

Moreover, the following diagram is commutative.

{β does not cross α, β 6= α} //
OO

��

{X ∈ U ;X � Xα}/ 'OO

��
{β ∈ S/α} // {X ∈ C ′}/ '

where the �rst vertical bijection is given in the way of Marsh and Palu in [MP14],
and the second is given by the Iyama-Yoshino reduction. The horizontal arrows
are maps sending β to Xβ.

Proof. We have that α is an arc situated in the preprojective (or preinjective) part
of the Auslander-Reiten quiver of Q.

Then, we complete α into an (m + 2)-angulation ⊕αi composed by the slice
containing α in the Auslander-Reiten quiver of Q. Then all the arcs are preprojec-
tive (or preinjective), and we can use the theorem of Keller and Reiten in [KR08,
Theorem 4.2]. Indeed, let T = ⊕Xαi , where Xαi corresponds to the arcs αi. We
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know that T is an m-cluster-tilting object (because, by applying τ several times if
necessary, we go back to the �rst slice, which contains the projective modules, and
is actually an m-cluster-tilting object). Moreover, Ext−iC′ (T

′, T ′) = 0. Moreover,
we can check that EndC′(T

′) = KQT ′ as in the previous lemma. Then we can
apply the theorem of Keller and Reiten, and this shows the result.

Moreover, the diagram is commutative since the application β → Xβ is the
same, no matter if we consider the surface S or the surface cut S/α (this applica-
tions does not depends on the type of the surface). Then the upper arrow is the
same as the lower arrow.

We now state a technical lemma which helps us to �nd morphisms between
two m-rigid objects.

Lemma 2.2.18. Let α and β be two m-diagonals. Suppose that there exists an
(m+ 2)-angulation ∆ which contains α and not β such that µα(∆) contains β (it
means that there exists ∆ such that β = κi∆(α), for an i ∈ {1, · · · ,m− 1}). Then
ExtiC(Xα, Xβ) 6= 0 where Xα (respectively Xβ) is the m-rigid object associated with
α (respectively β) thanks to the bijection between m-rigid objects and m-diagonals.

Proof. We number the arcs in ∆ and consider that α corresponds to k. We use
Calabi-Yau reduction in order to prove the statement. Let us introduce C ′ =
U/
⊕

j 6=kXj, where

U = {Y,ExtlC(⊕Xj, Y ) = 0 ∀l ∈ {1, · · · ,m}}.

By Iyama and Yoshino in [IY08], we know that C ′ is triangulated and (m+ 1)-
Calabi-Yau. If X → Y → Z → X[1] is a triangle in C, where X → Y is a ⊕Xj-left
approximation, then Z is isomorphic to the shift of X in C ′.

From the previous lemma, we know that the Iyama-Yoshino reduction corre-
sponds to cutting along an arc. We can suppose that ∆ does not contain any arc
lying in a tube of size 2. In this way we have cut along all the arcs of the (m+ 2)-
angulation excepted α. Then, as β is the i-th twist of α, it becomes the i-th shift
in the reduced category. From Iyama and Yoshino in [IY08], Xβ = Σi

C′Xα. Then
ExtiC′(Xα, Xβ) ' ExtiC(Xα, Xβ) 6= 0 (the �rst equivalence is due to the fact that
1 ≤ i ≤ m).

Before showing the main lemma of this section, we show that we can reduce to
the case D̃4. The following lemma show that we can reduce to cases where n ≤ 6,
and the next remark treats cases n = 5 and n = 6.

Lemma 2.2.19. Suppose that n > 6. Let α and β be two crossing arcs in the
(n− 2)m-gon realizing D̃n. Then there exists at least (n− 4) m-ears which do not
cut α neither β.
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Proof. The case where α and β are of type one is the most di�cult. The arcs cut
the polygon P into 4 parts. If we cannot draw an m-ear between one of the parts,
it means that the number of vertices strictly contained in a part is at most m− 1
in each part. Then the total number of vertices is at most 4(m − 1) + 4. Then
(n− 2)m ≤ 4m this means n ≤ 6.

Remark 2.2.20. If n = 5 or n = 6, then the only case where we cannot reduce
to D̃4 is when α and β are of type 1. But at this moment there exists k < m such
that α = β[k], then there exists a nonzero extension between α and β.

Lemma 2.2.21. Let α and β be two arcs in an (m + 2)-angulation ∆. Let Xα

and Xβ be their associated m-rigid object. If ∀i ∈ {1, · · · ,m},ExtiC(Xα, Xβ) = 0,
then α and β do not cross.

Proof. We recall that we are in the case where n = 4, it means that we study a 2m-
gon We show that if α crosses β, then ExtiC(Xα, Xβ) 6= 0, for some i ∈ {1, · · · , n}.

Suppose that α and β cross. Then both arcs can be of di�erent type. Let us
sum up all the cases to treat in the following tabular:

α, β

m m m m

m

Case 1 Case 2 Case 3 Case 4
m

Case 2 Case 5 Case 6 Case 7
m

Case 3 Case 6 Case 8 Impossible
m

Case 4 Case 7 Impossible Case 9
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As we have seen previously, we only have to show the result for D̃4. Then P
has 2m vertices.

Remark 2.2.22. We need to note that the cases are symmetric. Indeed, to shift β
k times in order to �nd a morphism from α to β[k] is the same as to shift α k times,
which gives a morphism from α to β[m+ 1− k] thanks to the (m+ 1)-Calabi-Yau
property.

First, we have to notice that cases 4,7,9 are already treated from lemmas 2.2.15
and 2.2.16.

Case 1: α and β are of type 1 (cf �gure 2.15).

Figure 2.15 � First case, α and β are of type 1

Let i and j be the closest vertices of the 2m-gon, where i is an end of α and j
is an end of β.

We have either j ≤ i+m+1 or i ≤ j+m+1, then β can be shifted k < m times
in order to hang to one end point of α. Then α and β[k] share an oriented angle.
As they are of type 1, and share an oriented angle, they are on the same slice of the
Auslander-Reiten quiver. Then, this is a nonzero composition of arrows. In this
way, we have found a nonzero morphism from Σkα to β. Then ExtkC(Xα, Xβ) 6= 0.

Case 2: α is of type 1 and β is of other type (cf �gure 2.16).

Figure 2.16 � Case where α and β are not of the same type

This case is similar to that of the �rst one. It su�ces to shift α k < m times
in order to hang both arcs to the same vertex. Consequently, they do not cross a
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mesh in the Auslander-Reiten quiver. Then, there is a Hom-hammock from one
to another. Then there is a nonzero extension from α to β.

m

β

α

Figure 2.17 � The arrows are elementary move. The nonzero extension corresponds
to the composition of the arrows

Case 3: We are in the situation of �gure 2.18

m

Figure 2.18 � Case where α is of type 1
and β is in the tube

m

Figure 2.19 �

In this case, it is more di�cult to see morphisms in the Auslander-Reiten quiver
of Q because one arc is in the transjective component and the other is in a tube.
Nonetheless, if we can �nd an (m + 2)-angulation where β is the i-th twist of
α, then from lemma 2.2.18, there is an extension which is nonzero. We have to
complete α to an (m+ 2)-angulation containing this arc (see �gure 2.19):

As β is the i-twist of α, then there exists i ∈ {1, · · · ,m} such that

ExtiC(Xα, Xβ) 6= 0.

The case where α is in the tube and β is of type 1 is similar.

Case 5: If both α and β are of other type (cf �gure 2.20).
We can move β k < m times in order to hang its end to α. Then the compo-

sition of elementary moves in �gure 2.21 is not zero since it follows a slice of the
Auslander-Reiten quiver (so do not cross a mesh).

Then there is a nonzero extension between α and β.
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Figure 2.20 � Case where both α and β are of other type

m

Figure 2.21 �

m

Figure 2.22 � Case where α is of other
type and β is in a tube of size 2

m

Figure 2.23 �

Case 6: If we are in the situation of �gure 2.22:

The same arguments as in case 3 lead to �nd an (m+ 2)-angulation containing
these arcs in �gure 2.23.

Here again, there exists a nonzero extension between Xα and Xβ. The inverse
case is similar.

Case 8: If we are in a tube of size 2 (cf �gure 2.24)

If they cross each other, it means that they are in the same tube. Then one is
situated higher than the other and there exists a Hom-hammock between them.
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Figure 2.24 � Case of a tube of size 2, for example for m = 3

In any case, we have shown that if α crosses β, then there exists k such that
ExtkC(Xα, Xβ) 6= 0.

2.3 Compatibility �ip/bijection betweenm-cluster-

tilting objects and (m + 2)-angulations

With theorem 2.2.1, we are able to de�ne an (m + 2)-angulation from an m-
cluster-tilting object.

De�nition 2.3.1. Let T = ⊕Ti be an m-cluster-tilting object, and Ti its m-rigid
components. With each Ti we associate αi the corresponding m-diagonal. We
know that the αi do not cross each other from the previous section. Then the
set {αi, i ∈ {1, · · · ,m}} form a maximal set of noncrossing m-diagonals, then an
(m+ 2)-angulation, called ∆T , the (m+ 2)-angulation associated with T .

We �rst show the theorem of compatibility between the �ip of an (m + 2)-
angulation, and the mutation of an m-cluster-tilting object.

Theorem 2.3.2. Let ∆ be an (m+ 2)-angulation. Let X be its associated object.
Let µi be the �ip at the arc αi in ∆ as well as the mutation of the m-cluster-tilting
object X at summand i. Then we have:

µi(∆) = ∆µi(X)

Proof. The �ip at vertex αi a�ects only αi itself. In the same way, the mutation
of X a�ects only the i-th component of the m-cluster-tilting object.

By Buan and Thomas in [BT09], we know that there is a triangle Xi → B
(0)
i →

X
(1)
i →, where Xi is the m-rigid object corresponding to αi and B

(0)
i ∈ addT . The

aim is to show that X
(1)
i ' Xĩ, where Xĩ is the m-rigid corresponding to the arc

α̃i which is the twist of αi.
Let X = X/Xi be the almost m-cluster-tilting object. Then from Wraalsen

([Wr �a09]) and Zhou, Zhu ([ZZ09]), X has m + 1 complements. Let ∆ be the
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"almost" (m+ 2)-angulation, containing all arcs of ∆ except αi. Then by 1.4.1, ∆
corresponds to X.

Let
U = {Y ∈ CmQ ,∀k ∈ {1, · · · ,m},ExtkC(X,Y ) = 0}.

Then by lemma 2.2.21, an object in U corresponds to an arc which does not
cross ∆, it means that there are m + 1 possibilities of remaining arcs in order to
have an (m+2)-angulation. In a way similar to that of Marsh and Palu in [MP14],
studying C ′ = U/X corresponds to cut along the arcs of ∆

Then by Keller, and Iyama and Yoshino in [Kel05] and [IY08], C ′ is a triangu-
lated, hom-�nite, algebraic and (m + 1)-Calabi-Yau category. Moreover, each
arc which does not cross ∆ is an m-cluster-tilting object in C ′. In addition,
ExtkC(αi, αi) = Ext−kC (αi, αi) = 0 for all k ∈ {1, · · · ,m} since αi does not cross
itself. The algebra End(αi) = K is hereditary since it is of global dimension 0.
Then, by [KR08], theorem 4.2, we have an equivalence

C ′ ' CmA1
.

Therefore we have a distinguished triangle

αi → Ei → ΣC′αi → Σαi,

where Ei is the set of arcs which follow αi in the sense of its quiver and where
ΣC′αi is the shift in the category CmA1

, which means the shift in the remaining
(2m + 2)-gon. Then it follows that ΣC′αi = α̃i. Then we have two distinguished
triangles:

Xi
//

∼

��

B
(0)
i

//

∼

��

X
(1)
i

// ΣXi

∼

��
αi // Ei // α̃i // Σαi

By TR3, the third axiom of triangulated categories, we have a morphism
X

(1)
i → α̃i

Xi
//

∼

��

B
(0)
i

//

∼

��

X
(1)
i

//

��

ΣXi

∼

��
αi // Ei // α̃i // Σαi

By the �ve lemma applied to triangulated categories, we have an isomorphism

Xi
//

∼

��

B
(0)
i

//

∼

��

X
(1)
i

//

∼

��

ΣXi

∼

��
αi // Ei // α̃i // Σαi
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Then we have shown that
X

(1)
i ' Xĩ.

Lemma 2.3.3. Let α and β be any m-diagonals in the the category C. Then

∀i ∈ {1, · · · ,m},ExtiC(Xα, Xβ) = 0⇔ α and β do not cross.

Proof. Associating an (m + 2)-angulation with an m-cluster-tilting object in the
natural way above is the same thing as associating an (m+ 2)-angulation with an
m-cluster-tilting object in the following way:

Take X an m-cluster-tilting object. From Buan and Thomas in [BT09, Propo-
sition 7.1], we can introduce f as a sequence of �ip necessary to bring X to the
sum of the projective modules

⊕
Pi. We associate with

⊕
Pi the initial (m+ 2)-

angulation, and �ip back to ∆X via the inverse sequence of �ips.
From theorem 2.3.2, these two ways of de�ning an (m+ 2)-angulation from an

m-cluster-tilting object are the same. Then we can show the result:
If α and β do not cross each other, we can complete them into an (m + 2)-

angulation ∆. We associate with ∆ an m-cluster-tilting object by applying �ips
on ∆ as told at the beginning of this proof, and this shows that the associated
object is m-cluster-tilting. Then ∀i ∈ {1, · · · ,m},ExtiC(Xα, Xβ) = 0.

Finally, we show the bijection between (m+2)-angulations andm-cluster-tilting
objects.

Theorem 2.3.4. The natural application from (m+ 2)-angulations to m-cluster-
tilting objects induces a bijection between these two notions.

Proof. By lemma 2.3.3, with an (m + 2)-angulation, we associate a unique m-
cluster-tilting object. Therefore the application is well-de�ned. Let us call by Φ
this function.

First, Φ is injective since, if we take X an m-cluster-tilting object, we can
associate a unique (m + 2)-angulation. Indeed, X =

⊕
Xi, where the Xi are m-

rigid. With each summand Xi, we associate the corresponding arc αi. By theorem
2.2.1, as the Xi are m-rigid, we know that the αi do not cross, and they are n+ 1,
so they form a maximal set of noncrossing arcs, thus an (m+ 2)-angulation. It is
uniquely de�ned. So Φ is injective.

Finally, we show that Φ is surjective. If X is an m-cluster-tilting object, then it
exists f , a sequence of �ips, such that f(X) =

⊕
Pi. Moreover,

⊕
Pi = Φ(∆init),

then f(X) = Φ(∆init). Let g be the inverse sequence of �ips of f . Then, X =
g(Φ(∆init)) and by theorem 2.3.2,

X = Φ(g(∆init)).
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This �nishes to show the bijection between m-cluster-tilting objects and (m+ 2)-
angulations.

We can summarize all the important properties between m-cluster-tilting ob-
jects, colored quivers, and (m+ 2)-angulations in the following diagram:

(m+ 2)-angulation ∆

Theorem
2.3.2

((xx
Colored quiver Q∆

Th
eo
rem

2.1
.12

Theorem 3.4.5
m-cluster-tilting object X∆

hh

oo

We now �nish this section with a direct consequence of this diagram.

Theorem 2.3.5. Let ∆ be an (m+2)-angulation. Let Q∆ be the associated colored
quiver. Let X∆ be the m-cluster-tilting object associated with ∆, and let QX∆

be
the quiver associated with X∆ in the sense of Buan and Thomas in [BT09]. Then

Q∆ = QX∆

Note here that theorem 2.1.12 is a direct consequence of theorems 2.3.2 and
3.4.5.
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Chapter 1
The case of exact categories

1.1 Study of the properties of prM
We show some preliminary lemmas which will be used in section 1.5 in order

to associate a pre�bration structure with a given rigid subcategory.
We note that Lemma 1.1, which is an analogue of lemma 3.3 shown by Buan

and Marsh in [BM13] for exact categories, might be of independent interest.
Let E be a weakly idempotent complete exact category with enough injective

and projective objects. Assume that M ⊆ E is a rigid, contravariantly �nite
subcategory of E containing all the injective objects, and stable under taking
direct sums and summands. Let

prM = {X ∈ E ,∃M1,M0 ∈M, 0→M1 →M0 → X → 0}

and

fM = {X ∈ E ,∃M ∈M, I ∈ Inj, 0→M → I → X → 0}.

Let
G : E → ModM

X 7→ E(−, X)/M

which induces the following equivalence of categories

prM/fM' mod M.

For more details, see the article of Demonet and Liu, [DL13].
In the following lemma, we prove that if M is contravariantly �nite, then so is

prM, provided thatM also contains all projective objects.
This lemma tells us that we can replace each object by a co�brant replacement.

127
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Lemma 1.1.1. Assume that the rigid subcategory M, contains all injectives and
all projectives. Then, for any X in E, there exist A in prM and a right prM
approximation A→ X.

Proof. Let X ∈ E . Let M0 → X be anM-approximation of X. Since E is weakly
idempotent complete, with enough projectives andM contains the projective ob-
jects, the morphism M0 → X is a de�ation. Let

0→ K0 →M0 → X → 0

be the associated short exact sequence. Similarly, let

0→ K1 →M1 → K0 → 0

be a short exact sequence coming from anM-approximation of K0. Then we have
the following diagram:

0

��
K1

β
��

M1

α

��

M1

��
0 // K0

b //

��

M0
a // X // 0

0

We have a ◦ b ◦ α = 0. Let A be the push-out of the square:

M1
bα //

��

M0

r

�� a

��

IM1
//

0

//

A
∃ϕ

  
X

Then there exists a morphism ϕ : A → X such that ϕ ◦ r = a and the other
triangle commutes.

We have A ∈ prM. Indeed, we have the following short exact sequence:

0→M1 → IM1 ⊕M0 → A→ 0.
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Moreover, A→ X is an approximation. Indeed, let i : B → X be a morphism,
with B ∈ prM. Let us show that there exists B → A which makes the triangle
commute.

Let
0→M ′

1 →M ′
0 → B → 0

be a short exact sequence with M0,M1 ∈M. We have the following diagram:

M ′
1

��}}

∃δ

tt
M1

ιM1

��

abα

((

M-app // K0

b
��

M ′
0

M-app

��j}}

∃ε

tt
IM1

//

�� 0
((

A
l

  

M0
oo

a

��

Bhh

i}}
fM1 X

As a is anM-approximation, then there exists a morphism j : M ′
0 →M0 which

makes the lower-right square commute. Then, there exists a morphism M ′
1 → K0

which makes it a morphism of short exact sequences.
As M1 → K0 is an M-approximation, then there exists δ : M ′

1 → M1 which
makes the upper triangle commute. Since IM1 is injective and M ′

1 → M ′
0 is an

in�ation, there exists a morphism ε : M ′
0 → IM1 which leads to a morphism of

short exact sequences.
All the conditions are required to build a morphism k : B → A such that

l ◦ k = i+ 0 since IM1 → A→ X = 0. Then we have shown the result.

1.2 Weak equivalences and �brations

De�nition 1.2.1. We recall that G is the functor

G : E → ModM
X 7→ E(−, X)|M

We call by W, the weak equivalences, the class of morphisms f for which Gf is an
isomorphism.

De�nition 1.2.2. Let f : X → Y and g : A→ B be two morphisms. We say that
f�g when, for any commutative square

A //

��

X

��
B //

>>

Y
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there exists a morphism B → X such that both triangles commute. For a class of
morphisms A, we call by

A� = {g, ∀f ∈ A, f�g} and �A = {f, ∀g ∈ A, f�g}.

Let
J = {f : 0→ fM,M ∈M}.

The morphisms of J� are called �brations and compose the class F ib.
The next lemma shows that the prM-approximation constructed in lemma

1.1.1 is actually a weak equivalence. This permits to take co�brant replacements
as we will see later.

Lemma 1.2.3. Let h : A → X be the prM-approximation constructed in lemma
1.1.1. Then h ∈ J� ∩W.

Proof. We �rst show that h ∈ J�. Let fM → X be a morphism. Since fM ∈
prM, and A → X is a prM-approximation, there automatically exists a lift as
wanted.

Next, we have to show that the morphism E(−, A)|M → E(−, X)|M is an
isomorphism. It is surjective, since if we take M → X a morphism, since M ∈
prM, there exists a lift as we have seen in order to show that h is a �bration.

Then, if a : M → A is a morphism such that h ◦ a = 0 (we will see later the
case where this morphism factorizes through an injective module). Using the same

notations as in lemma 1.1.1, as M is rigid, there exists

(
b1

b2

)
: M → I1 ⊕M0 such

that
π ◦ b1 + r ◦ b2 = a

where π : I1 → A. As α : M1 → K0 is an M-approximation, there exists
c : M →M1 such that b ◦ α ◦ c = b2. Then we have

a = π ◦ b1 + r ◦ b2

so
a = π ◦ b1 + r ◦ b ◦ α ◦ c.

By the pushout of lemma 1.1.1, r ◦ b ◦ α = π ◦ ι1 where ι1 : M1 → I1. Then

a = π ◦ b1 + π ◦ ι1 ◦ c.

This shows that a factorizes through an injective module.
Finally, if we suppose that h ◦ a factorizes through an injective J , for example

h ◦ a = µ ◦ ν, as J ∈ prM, there exists ã such that h ◦ ã = µ. We then proceed as
above with the morphism a− ã ◦ ν. This �nishes to show the result.
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We recall that trivial �brations are those morphisms that are both �brations
and weak equivalences.

Lemma 1.2.4. Let f : X → Y be a trivial �bration. If α is a morphism from an
element M ofM to Y , then there exists β : M → X such that f ◦ β = α.

Proof. As f is a weak equivalence, there exists β̃ : M → X, ιM : M → IM and
γ : IM → Y such that α + γ ◦ ιM = f ◦ β̃. As f ∈ J� and IM ∈ fM, there exists
δ : IM → X such that f ◦ δ = γ. Then we have

α = f ◦ (β̃ − δ ◦ ιM).

Lemma 1.2.5. Let f : X → Y be a trivial �bration. Then it is automatically a
de�ation.

Proof. Let PY be a projective cover of Y . As PY ∈M, and f is a trivial �bration,
from the previous lemma, there exists a lift from PY → X. From Bühler in [Büh10,
Proposition 7.6, (ii)], as PY → Y is a de�ation, then f is a de�ation.

1.3 Factorization

Let us now show a characterization of the morphisms of �(J�).

Lemma 1.3.1. Suppose that fM → Y is a right fM-approximation. A mor-
phism f : X → Y is in �(J�) if and only if it is a retract of the canonical injection
X → X ⊕ fM .

Proof. Let f : X → Y ∈� (J�). Let α : fM → Y be a fM-approximation of Y .
Then, we have the following commutative square:

X
(1
0)
//

f
��

X ⊕ fM
(f α)
��

Y

s
::

Y

The morphism (f α) ∈ J�. Indeed, if fM ′ → Y is a morphism, as α is a fM-
approximation, there exist a lift as wanted (which is zero on X). As f ∈� (J�),
there exist s : Y → X ⊕ fM which makes both triangles commute. Then, f is a
retract of the canonical injection X → X ⊕ fM .

Conversely, it is well-known that the lifting property � is stable under retract.
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Lemma 1.3.2. Under the assumption that there exist some fM-approximations,
any morphism can be factorized through a morphism in �(J�) followed by a mor-
phism in J�.

Proof. Let f : X → Y be a morphism. It factorizes through X → X ⊕ fM → Y

by

(
1
0

)
and

(
f α

)
, where α is a fM-approximation (this morphism is a retract

of itself). The �rst morphism is in �(J�). As
(
f α

)
is a fM-approximation, it

satis�es the lifting property of J�. Then
(
f α

)
∈ J�.

1.4 Co�brant objects and homotopy

1.4.1 Co�brant objects

Co�brant objects are objects which have a lift along trivial �brations.
In this subsection, we characterize �brant and co�brant objects.

Lemma 1.4.1. Any object is �brant.

Proof. For any X ∈ E , the map X → 0 is a �bration.

Lemma 1.4.2. Suppose that the subcategory M contains the projective objects.
Let C ∈ E. Then C is co�brant if and only if C ∈ prM.

Proof. Let C ∈ prM. We introduce 0 //M1
h′ //M0

h // C // 0 . Let f :
X → Y be a trivial �bration and b : C → Y . As f ∈ W , Gf is an isomorphism,
and there exists from lemma 1.2.4 a morphism a : M0 → X such that

f ◦ a = b ◦ h.

Since M contains all the projective objects, the lemma 1.2.5 shows that f is a
de�ation. Let k : K → X be the kernel of f . We then have a morphism of short
exact sequences:

M1
c //

h′

��

K

k
��

M0

h
��

a // X

f
��

C
b
// Y

As k ∈ M⊥
, there exists I an injective object, α : M1 → I and β : I → X such

that
k ◦ c = β ◦ α.
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As h′ is an in�ation, there exists β′ : M0 → I such that

β′ ◦ h′ = α.

M1
c //

h′

��

α
  

K

k

��

I

β ��
M0

h

��

a // X

f

��
C

γ

==

b
// Y

So,
h′ ◦ a = β ◦ β′ ◦ h′

and there exists γ : C → X such that

γ ◦ h = β ◦ β′ + a.

Then,
f ◦ γ ◦ h = f ◦ a+ f ◦ β ◦ β′

and
(f ◦ γ − b) ◦ h = f ◦ β ◦ β′.

Then, in modM, we have the good lifting. By Demonet and Liu in [DL13], we
have that

modM' prM/fM.

As C ∈ prM, there exists M ∈ M such that the morphism b factorizes through
fM , let us say

fM
ε

""
C

b
//

δ

==

Y

such that ε◦ δ = b. As f ∈ J�, there exists ι : fM → X such that f ◦ ι = ε. Then
ι ◦ δ : C → X is the good candidate to lift b, it means that

f ◦ ι ◦ δ = ε ◦ δ = b.
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On the other hand, let X be a co�brant object. We can say that the prM-
approximation is a trivial �bration from lemma 1.2.3, then a retraction, and X is
a direct summand of A.

Let

0→ Y →M0 → X → 0

be anM-approximation of X. We have the following diagram:

1.4.2 Homotopy

We de�ne here cylinder objects and left homotopies.

De�nition 1.4.3. Let X ∈ E. A cylinder object for X is a factorization of the
morphism ∇ : X ⊕X → X (which is the identity on each copy of X) through X ′,
where X ′ → X is a weak equivalence.

Let f, g : X → Y be two morphisms. A left homotopy from f to g is a morphism
h : X ′ → Y , where X ′ is a cylinder object for X, such that h ◦ (∇1 ∇2) = (f g)
where (∇1 ∇2) is the morphism X ⊕X → X ′ in the factorization of ∇.

Dually, we can de�ne path objects and right homotopies.

De�nition 1.4.4. Let Y ∈ E. A path object for Y is a factorization of the mor-
phism ∆ : Y → Y ⊕Y (which is the identity on each copy of Y ) through Y ′, where
Y → Y ′ is a weak equivalence.

Let f, g : X → Y be two morphisms. A right homotopy from f to g is a

morphism k : X → Y ′, where Y ′ is a path object for Y , such that

(
∆1

∆2

)
◦k =

(
f
g

)
where

(
∆1

∆2

)
is the morphism Y ′ → Y in the factorization of ∆.

Lemma 1.4.5. For two morphisms f and g from an object X to Y ,f and g are

homotopic if and only if f − g factorizes throughM⊥
.

Proof. We begin by noting this fact: in the next diagram, a factorization of ∆ is

a path object if and only if it is isomorphic to Y
(1

0)// Y ⊕ V
(1 1
c d) // Y ⊕ Y for a

V ∈M⊥
.

Indeed, let Y
r // Y ′ // Y ⊕ Y be a factorization of ∆. As r is a section,

it is isomorphic to some Y → Y ⊕ V . Then r ∈ W if and only if V ∈M⊥
.



1.4. Co�brant objects and homotopy 135

Now, let us suppose that f − g factorizes in the following way:

X
f−g //

α
  

Y

A

β

OO .

The object Y ⊕ A is a path object. Then we have

X
(g α) //

(f g) ((

Y ⊕ A = Y ′

(1 1
β 0)

��

Y
(1 0)oo

∆vv
Y ⊕ Y

and the morphism

(
1 1
β 0

)
gives a homotopy between f and g. Moreover, s◦a = Id,

thus s ' Y ⊕ A→ Y and s ∈ W , so A ∈M⊥
. Then f is homotopic to g.

Conversely, if f is homotopic to g, then there exists k : X → Y ′ such that(
∆1

∆2

)
◦ k =

(
g

)
. Then, f − g = (∆1 −∆2) ◦ k. As Y ′ = Y ⊕ A, and A ∈ M⊥

,

this �nishes to show the result.

Remark 1.4.6. The notions of left and right homotopy are the same for the co�-
brant objects.

The following lemma is a corollary of the theorem of Demonet and Liu in
[DL13]. However, we give a direct proof here.

Lemma 1.4.7. With the above notations, we have

prM∩M⊥ ' fM.

Proof. The indirect inclusion is obvious sinceM is rigid. Now, letX ∈ prM∩M⊥
.

As X ∈ prM, we have a short exact sequence

0→M1 →M0 → X → 0,

with M1,M0 ∈M. We have the following diagram:

M1
//M0

c //

α

��

X

k
��

M1
// I

ψ
��

h
//

β
;;

fM1

ξ
��

fM0

ϕ

;;

fM0
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In order to show that X ∈ fM, we will show that the short exact sequence

0→ X → fM1 → fM0 → 0

splits. As X ∈ M⊥
, the morphism c : M0 → X factorizes through I. We call

by α : M0 → I and β : I → X such that β ◦ α = c. Let k : X → fM1 and
h : I → fM1. Then,

k ◦ β ◦ α = k ◦ c = h ◦ α.
Then, h − k ◦ β factorizes through fM0. Let us call ϕ : fM0 → fM1 and
ψ : I → fM0. Then, we have

h = k ◦ β + ϕ ◦ ψ.

Let ξ : fM1 → fM0 in the short exact sequence (see diagram for sake of clearance).
Then we have

ξ ◦ ϕ ◦ ψ = ξ ◦ (h− k ◦ β) = ξ ◦ h− ξ ◦ k ◦ β = ψ − 0.

As ψ is a de�ation, we can conclude that ξ ◦ϕ = 1. Then, there is a section to the
short exact sequence and X ∈ fM (which is stable under direct summands since
M is stable under direct summands.

1.5 Pre�bration structures from rigid subcategories

In this section, we show that an exact category E is nearly equipped with a
structure of pre�bration category in the sense of Anderson-Brown-Cisinski (for
more details, see the book of Radulescu-Banu, [RB06]).

We recall that
G : E → ModM

X 7→ E(−, X)|M
induces the following equivalence of categories from Demonet and Liu in [DL13]

prM/fM' mod M.

Theorem 1.5.1. Let E be a weakly idempotent complete exact category with enough
injective objects. Assume thatM⊆ E is a rigid, contravariantly �nite subcategory
of E containing all the injective objects, and stable under taking direct sums and
summands. Suppose moreover that fM is contravariantly �nite. Let

J = {f : 0→ fM,M ∈M}

and J� be the class of �brations. Let W be the class of morphisms whose image
under functor G are isomorphisms.
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Then E is almost equipped with a structure of pre�bration category, it means
that there exist two spaces of morphisms, W, the weak equivalences, and F ib the
�brations, such that:

(i) The spaceW is stable under retracts and satis�es the two out of three axiom.

(ii) The space F ib is stable under composition, and all the isomorphisms are
�brations.

(iii) Pullbacks exist along �brations, and the pull-back of a �bration is a �bration.

Moreover, if 0 // A
i // B

p // Y // 0 is a short exact sequence, if Gi
is a monomorphism and f : X → Y is a trivial �bration (f ∈ F ib ∩ W),
then h de�ned by the following pull-back is a trivial �bration.

E

h
��

a // X

f
��

A
i
// B p

// Y

(iv) There exist path objects such that for any object X, the diagonal map X →
X ⊕ X can be factorized through X ′, where the �rst morphism is a weak
equivalence.

(v) For any object B, the morphism 0→ B is a �bration.

Let us �rst show the following lemma:

Lemma 1.5.2. Let
E

h
��

a // X

f
��

A
i
// B p

// Y

where (i, p) is a short exact sequence, Gi monomorphism and f ∈ J� ∩W. Then
h ∈ J� ∩W.

Proof. First, we have, without using the fact that Gi is a monomorphism, that
h ∈ J�. Indeed, let

E

h
��

a // X

f
��

B p
// Y

be a commutative square, with f ∈ J�. Let us show that h ∈ J�. Let M ∈ M
and b : fM → B. As f ∈ J�, there exists α : fM → X such that f ◦ α = p ◦ b.
We use the pullback property to claim that there exists ϕ : fM → E such that
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h ◦ϕ = b. Then h ∈ J�. Second, let us show that Gh is a monomorphism. As h is
a de�ation (since it belongs to J�, and from lemma 1.2.5), the morphisms f and
h have the same kernel. Then we have the following diagram:

K

��

K

��
A

k // E

h
��

a // X

f
��

A
i
// B p

// Y

We have a short exact sequence 0→ A→ E → X → 0. Let us show that Gh
is a monomorphism. Let β : D → GE such that Gh ◦ β = 0. We show that β = 0.
We have

Gp ◦Gh ◦ β = 0.

Then
G(p ◦ h) ◦ β = 0

and
G(f ◦ a) ◦ β = 0.

Thus, we have
Gf ◦Ga ◦ β = 0.

As Gf is a monomorphism since f ∈ W , we have

Ga ◦ β = 0.

The fact that G is left exact shows that there exists c : D → GA such that

β = Gk ◦ c. (1.1)

Moreover, by hypothesis
Gi ◦ c = Gh ◦ β = 0.

As Gi is a monomorphism, c = 0 and from 1.1 we have β = 0. This shows that
Gh is a monomorphism.

Now we show that Gh is an epimorphism. Let b : M → B be a morphism,
where M ∈ M. Then we have p ◦ b : M → Y . From lemma 1.2.4, there exists
α : M → X such that

f ◦ α = p ◦ h.

Then, from the pullback property, there exists ϕ : M → E such that h◦ϕ = b and
this shows that Gh is an epimorphism.
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Proof of the theorem. Some of the properties are trivial because of the results on
Frobenius categories which did not use the Frobenius condition.

(i) Let f be a retract of w ∈ W . Let us show that Gf is an isomorphism. We
have:

A
i
//

f
��

Id

''
X r

//

w
��

A

f
��

B
j //

Id

77Y s // B

As Gf is a retract of an isomorphism, it is itself en isomorphism. Indeed,

GA //

Gf
��

Id
))

GX
β
//

Gw
��

GA

Gf
��

GB
γ //

Id

55GY //

Gw−1

OO

GB

The morphism β ◦Gw−1 ◦ γ is an inverse of Gf .

Then Gf is an isomorphism.

Now let us show that W has the 2-out-of-3 property.

� If f, g ∈ W . Then G(f ◦ g) = G(f) ◦G(g), and we have that f ◦ g ∈ W .

� If f, f ◦ g ∈ W . Then (G(f ◦ g))−1 ◦ G(f ◦ g) = Id. So (G(f ◦ g))−1 ◦
G(f) ◦G(g) = Id. Let G(g)−1 be the morphism (G(f ◦ g))−1 ◦G(f). It
is a left inverse. Let us show that it is also a right inverse:

G(f ◦ g) ◦ (G(f ◦ g))−1 = Id. Then G(f) ◦G(g) ◦ (G(f ◦ g))−1 = Id, and
G(g) ◦ (G(f ◦ g))−1 ◦G(f) = Id and it is indeed a right inverse.

� If g, f ◦ g ∈ W . Then we use the same hint to show that Gf is an
isomorphism.

(ii) This result is easy, because �brations are de�ned by a lifting property.

(iii) Fibrations are de�ations (this is because E is weakly idempotent complete,
see lemma 1.2.5), then pullbacks exist along �brations. The rest of the item
is the previous lemma.

(iv) We have the factorization from lemma 1.3.2. It means that any morphism
can be factorised through a morphism of �(J�) followed by a morphism of
J�. Indeed, it only uses the fact that there exist some fM-approximations,
which we suppose in the hypotheses of this theorem. Then for any X, the
diagonal X → X ⊕X can be factorised X → X ′ → X ⊕X, where the �rst
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morphism is a weak equivalence (we have seen that the morphisms of �(J�)
are weak equivalences from lemma 1.3.1).

(v) By de�nition of J , any object is �brant, then 0 → B is a �bration for any
object B of E .

1.6 Theorem of Quillen

We recall that the objects of prM are exactly the same as co�brant objects
(de�ned here by satisfying the lifting property along trivial �brations).

Now, we show that the theorem of Quillen is satis�ed. We note that we still
have the same notion of homotopy.

Theorem 1.6.1. Let E be a weakly idempotent complete exact category with enough
injective objects. Assume thatM⊆ E is a rigid, contravariantly �nite subcategory
of E containing all the injective objects, and stable under taking direct sums and
summands. Suppose moreover that fM is contravariantly �nite. Let

prM = {X ∈ E ,∃M1,M0 ∈M, 0→M1 →M0 → X → 0}

and
fM = {X ∈ E ,∃M ∈M, I ∈ Inj, 0→M → I → X → 0}.

Let Ho E be the localization of E at the class W of weak equivalences. Let
mod M be the category of �nitely presentedM modules. There is an equivalence
of categories

Ho E ' mod M.

Remark 1.6.2. In order to prove this theorem, we need the following lemmas.
The proof of these is well-known, but we give here some details in order to show
that the restriction of (iii) in theorem does not a�ect the results. Then, some parts
of the proofs simplify due to the particular shape of the relation of homotopy.

Lemma 1.6.3. Let A,B,X be three co�brant objects. Let F be the functor de�ned
by

F : A 7→ E(A,X)/ ∼
on objects, and, if f : A→ B,

Ff : E(B,X)/ ∼7→ E(A,X)/ ∼ .

Suppose moreover that f is a weak equivalence. Then F induces an isomorphism

Ff : E(B,X)/ ∼7→ E(A,X)/ ∼
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where ∼ is the right homotopy relation (which is also left taken into account the
de�nition of the homotopy).

Proof. This functor is well-de�ned because the relation ∼ behaves well with the
right composition. Let now f : A→ B. We factor f through a morphism g : A→
C ∈� (J�) followed by a morphism p : C → B ∈ J�. As g ∈ W and f ∈ W , then
by the two out of three property, p is also a weak equivalence. In addition, B is
co�brant, then there exists w : B → C such that p ◦ w = 1.

Then, we have

1 = F (1) = F (p ◦ w) = F (p) ◦ F (w).

Then F (p) ∈ W . This shows by the two out of three property, that F (f) ∈ W ,
and Ff is surjective.

Let us now show that it is injective. If α : B → X is such that Fα = 0, then
α ◦ f ∼ 0. As A is co�brant, we have α ◦ f ∈ (fM) (from the equivalence of
Demonet and Liu in [DL13]). This shows that G(α ◦ f) = 0 sinceM is rigid. But
f ∈ W , then Gf is an isomorphism, then Gα = 0. As B is co�brant, α ∈ (fM).
Then α ∼ 0. Then Ff is injective and this shows the lemma.

Now we can show the following result:

Lemma 1.6.4. If A and B are two co�brant objects, then

Ho E(A,B) = E(A,B)/ ∼ .

Proof. Let A and B be two co�brant objects.

Step 1: We show that, f : A → B is a weak equivalence if and only if it is a
homotopy equivalence.

Suppose f is a weak equivalence. We use the previous lemma with X = A.
From the surjectivity of Ff , there exists g : B → A such that g ◦ f ∼ 1. Then,
f ◦ g ◦ f ∼ f . Now we apply the result to X = B and have that

Ff(f ◦ g) = Ff(1).

However, Ff is injective, then f ◦ g ∼ 1 and f is a homotopy equivalence.
Suppose now that f is a homotopy equivalence. Let f ′ be a homotopy inverse

for f . We have f ◦f ′ ∼ 1 and f ′◦f ∼ 1. Then f ◦f ′−1 ∈ fM and f ′◦f−1 ∈ fM.
Then G(f ◦ f ′) = 1 and G(f ′ ◦ f) = 1. Then Gf is an isomorphism and f ∈ W .

This shows that f = g in HoE(A,B) if and only if f ∼ g.

Step 2: We now show the surjectivity of E(A,B) → Ho(A,B). We are going
to use the book of Radulescu (see [RB06, Theorem 6.4.2]). Let us check the
hypothesis with the pair of categories (E/{f,Gf = 0},W), where W is the image
of W in the quotient of E by {f,Gf = 0}.
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� The two out of three property is automatically checked.

� If we have a pair of morphisms

A′

a
��

B p
// A

such that a ∈ W , then there exists B′, h : B′ → B and k : B′ → A′ such
that the following square commutes:

B′ k //

h
��

A′

a
��

B p
// A

Indeed, we introduce the factorization of A′ → A by b ∈� (J�) followed by
c ∈ J�. As a, b ∈ W , we also have c ∈ W . Then c is a trivial �bration. Let
B′ be a prM-approximation of B. We lift the morphism p◦h to c, let us say(
h1

h2

)
: B′ → A′ ⊕fM (which is the shape of the factor in the factorization

we have). Then h1 is a lift from B′ to A′. We can check that the square
commutes and h ∈ W .

� Suppose that we have

A
f //

g
// B

t // B′

with t ∈ W and t ◦ f = t ◦ g. Then Gf = Gg, so, if t′ : A′ → A ∈ W , we

have G(f ◦ t′) = G(g ◦ t′), then f ◦ t′ − g ◦ t′ ∈ M⊥
. Then f ◦ t′ = g ◦ t′ in

E/{f,Gf = 0}.

We can now apply the theorem of Radulescu 6.4.2 and any morphism in Ho(E(A,B))
can be written as f ◦s−1 with s ∈ W . As A and B are co�brant, we factor through
A′ → A in this way:

A′

f

��

s

��

��
A′ ⊕ fM

α∈J�
zz $$

A a
// B

As s ∈ W , then α ∈ J� ∩W . Then we can lift A′ ⊕ fM to B by (f 0).
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From the theorem of Radulescu, if α ∈ Ho(A,B), then there exists s ∈ W and
f ∈ E(A,B) such that

α = f ◦ s−1.

Then α = a (since a ◦ s = f).
Then we have shown the surjectivity and then the lemma.

Proof of the theorem of Quillen. First of all, the functor is well-de�ned, since

0→ fM ∈ W

for any M ∈M (because Ext1(−,M)|M = 0 implies E(−,fM)|M = 0).
Then, the functor is essentially surjective, since there exist some prM-approximations,

which are weak equivalences.
Next, from lemma 1.6.4, we have that f = g in HoE(A,B) if and only if f ∼ g

which immediately shows that the functor is faithful.
Finally, the functor is full, from the surjectivity of lemma 1.6.4.
The theorem of Demonet and Liu in [DL13] �nishes to show the result.
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Chapter 2
The particular case of Frobenius

categories

We recall the notations:
Let E be a Frobenius category. LetM be a full rigid subcategory which contains

the injective objects. Let

prM = {X ∈ E ,∃M1,M0 ∈M, 0→M1 →M0 → X → 0}

and
fM = {X ∈ E ,∃M ∈M, I ∈ Inj, 0→M → I → X → 0}.

Let
G : E → ModM

X 7→ E(−, X)/M
which induces the following equivalence of categories

prM/fM' mod M.

For more details, see the article of Demonet and Liu, [DL13].
Let M is a subcategory of E which is contravariantly �nite. As the injective

objects are also projective, note thatM contains the projective objects.

2.1 A deeper study of prM
We have this �rst lemma:

Lemma 2.1.1. Let X ∈ E. If there is an M-approximation of ΩX, then there
exists a fM-approximation of X. In particular, if M is contravariantly �nite,
then so is fM.

145
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Proof. Let a : M → ΩX be anM-approximation of ΩX. We can introduce Y as
the push-out of the pair of morphisms:

M

ιM
��

a // ΩX

c
��

IM b
// Y

in particular
c ◦ a = b ◦ ιM . (2.1)

Let
0 // ΩX

ιX // PX
πX // X // 0

be a short exact sequence expressing the fact that ΩX is a sizygy of X. We then
have the following diagram:

M

ιM

��

a // ΩX

c

��

ΩX

ιX

��

IM b
//

πM

��

Y

e

��

α

""
PX

πX

��

fM fM
β

##
X

Note that we have
e ◦ b = πM . (2.2)

As ιX ◦a factorizes through the module IM , there exists α : Y → PX such that

ιX = α ◦ c and α ◦ b = d. (2.3)

Then there exists β, which makes a morphism of short exact sequences:

πX ◦ α = β ◦ e (2.4)

Then we have a short exact sequence

0→ Y → PX ⊕ fM → X → 0.
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We now show that (πX β) is a fM-approximation (we note that, E being Frobe-
nius, fM contains the projective modules).

Let γ : fN → X be a morphism. As IN is also projective, there exists
δ : IN → PX such that

πX ◦ δ = γ ◦ πN (2.5)

M

ιM

��

a // ΩX

c

��

ΩX

ιX

��

Nεoo

ιN

��

IM b
//

πM

��

Y

e

��

α

""
PX

πX

��

IN
δoo

πN

��

fM fM
β

##
X fNγ
oo

We complete into a morphism of short exact sequences by ε, it means that

ιX ◦ ε = δ ◦ ιN . (2.6)

As a : M → ΩX is anM-approximation, there exists ζ : N →M such that

a ◦ ζ = ε. (2.7)

As IM is injective, and ιN is an in�ation, there exists η : IN → IM such that

η ◦ ιN = ιM ◦ ζ. (2.8)

Then there exists θ : fN → fM which makes a morphism of short exact se-
quences:

θ ◦ πN = πM ◦ η. (2.9)

Then we have:
δ ◦ ιN = ιX ◦ ε by 2.6

= ιX ◦ a ◦ ζ by 2.7

= α ◦ c ◦ a ◦ ζ by 2.3

= α ◦ b ◦ ιM ◦ ζ by 2.1

= α ◦ b ◦ η ◦ ιN by 2.8.

(2.10)
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Then, the morphism α ◦ b ◦ η − δ factorizes through πN .
Thus, there exists κ : fN → PX such that

κ ◦ πN = δ − α ◦ b ◦ η. (2.11)

Let us �nally show that the morphism

(
κ
θ

)
satis�es (πX β)

(
κ
θ

)
= γ.

As πN is a de�ation, is su�ces to show that

πX ◦ κ ◦ πN + β ◦ θ ◦ πN = γ ◦ πN .

We have:

πX ◦ κ ◦ πN + β ◦ θ ◦ πN = πX(δ − α ◦ b ◦ η) + β ◦ θ ◦ πN by 2.11

= πX(δ − α ◦ b ◦ η) + β ◦ πM ◦ η by 2.9

= γ ◦ πN − πX ◦ α ◦ b ◦ η + β ◦ πM ◦ η by 2.5

= γ ◦ πN − β ◦ e ◦ b ◦ η + β ◦ πM ◦ η by 2.4

= γ ◦ πN − β ◦ πM ◦ η + β ◦ πM ◦ η by 2.2

= γ ◦ πN .

(2.12)

De�nition 2.1.2. We call by copr fM the class of objects X ∈ E such that there
exist M,M ′ ∈M such that 0→ X → fM → fM ′ → 0 is a short exact sequence.

copr fM = {X ∈ E , 0→ X → fM → fM ′ → 0}.

Lemma 2.1.3. We have the following equality:

copr fM = prM.

Proof. Let C ∈ copr fM. Let us show that we then have a short exact sequence
0→M1 →M ′ → C → 0. We have the diagram:

M1
// ΩfM0

//

��

C

��
M1

// I //

��

fM1

��
fM0 fM0

We have ΩfM 'M ′. Indeed, we have a two-ways short exact sequence

M //

��

I //

��

fM

ΩfM

OO

// P

OO

// fM
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Then ΩfM ' M ⊕ I ∈ M. The other inclusion is proved in part 1, lemma
1.4.7.

Lemma 2.1.4. The class fM is rigid.

Proof. Let M,M ′ ∈ M. We show that a morphism f : fM → f2M ′ is zero. Let
us introduce the following diagram:

M
h //

ιM
��

fM ′

ιfM′

��
IM

g //

πM
��

α

::

IfM ′

πfM′
��

fM
f
//

β

;;

f2M ′

As IM is a lso projective and πfM ′ is a de�ation, there exists g which makes the
lower square commute. Then, there exists h such that the upper square commutes.
Now, h factorizes through an injective module since M is rigid. Let us say that
there exists α : IM → fM ′ such that α◦ιM = h. Then, there exists β : fM → IfM ′
such that

g = ιfM ′ ◦ α + β ◦ πM .

Then,

f ◦ πM = πfM ′ ◦ g = πfM ′ ◦ (ιfM ′ ◦ α + β ◦ πM) = πfM ′ ◦ β ◦ πM

As πM is a de�ation, this shows that f = πfM ′ ◦ β and thus factorizes through an
injective. Then fM is rigid.

Lemma 2.1.5. Let A,C be objects of E. Let M ∈ M. Suppose that we have a
short exact sequence

0→ A→ C → fM → 0.

Then C ∈ prM if and only if A ∈ prM.

Proof. First, suppose that A ∈ prM. Then, we have the following diagram:

A //

��

fM1
//

��

fM0

C //

��

E //

��

fM0

fM2 fM2
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Where E is the pullback of the morphisms A→ fM1 and A→ C. Then there is
a section to the short exact sequence

0→ fM1 → E → fM2 → 0,

and E ' fM1 ⊕ fM2 ' fM . Then we have a short exact sequence 0 → C →
fM → fM0 → 0. Then the previous lemma concludes this implication.

Conversely, if C ∈ prM. Then, by the previous lemma, C ∈ coprfM, so there
exists a short exact sequence

0→ C → fM0 → fM1 → 0.

Let us take the push-out:

A // C //

��

fM

��
A // fM0 //

��

E

��
fM1 fM1

As fM is rigid from the previous lemma, then E ∈ fM. Then, A ∈ coprfM
then A ∈ prM.

Remark 2.1.6. We have the dual lemma: If there is a short exact sequence 0→
M → C → A→ 0, then A ∈ prM if and only if C ∈ prM.

2.2 Weak equivalences

We start with a de�nition.

De�nition 2.2.1. Let A be a subcategory of E. Let g : Y → Z be a morphism.

We say that g ∈ A⊥ if, for any morphism b : fA→ Y , with A ∈ A, the morphism
g ◦ b factorizes through an injective module.

Remark 2.2.2. We note that A⊥ is not an ideal.

This lemma characterizes weak equivalences.
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Lemma 2.2.3. Let X, Y ∈ E. Let f : X → Y . Then Gf is an isomorphism if
and only if, for

X
f //

ιX
��

Y

g

��
IX

u //

πX
��

Z

��
fX fX

we have IX ⊕ Y
(u g) // Z ∈M⊥

and, for

X
f // Y

Z //

g̃

OO

PY

OO

fY

OO

fY

OO

we have Z // X ⊕ PY ∈M
⊥
.

Proof. If Gf is an isomorphism. Let

X
f //

ιX
��

Y

g

��
IX

u //

πX
��

Z

��
fX fX

be the diagram which induces the short exact sequence

0 // X // IX ⊕ Y
(u g) // Z // 0 .

Let us show that (u g) ∈ M⊥
. Since u : IX → Z, with IX injective we already

have that E(M, u) = 0. Let

E(M, g) : E(M, Y ) → E(M, Z)
h : M ∈M→ Y 7→ g ◦ h .
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As Gf is an isomorphism, there exists h′ ∈ E(M, X) such that f ◦ h′ = h.
Then

h′ → f ◦ h′ = h→ g ◦ f ◦ h′ = g ◦ h = 0,

and E(M, g) = 0.
In the same way, let

X
f // Y

Z //

OO

PY

OO

fY

OO

fY

OO

,

be the diagram which induces the short exact sequence

0 // Z // X ⊕ PY // Y // 0 .

Let us show that

(
g̃
ũ

)
∈M. We already have that E(M, ũ) = 0. Let

E(M, g̃) : E(M, Z) → E(M, X)
h : M ∈M→ Z 7→ g̃ ◦ h .

The map g̃ ◦ h is sent on 0 by Gf . As Gf is an isomorphism, we have that
g̃ ◦ h = 0.

Conversely, let us suppose that

IX ⊕ Y
(ũ g̃) // Z ∈M⊥

and

Z // X ⊕ PY ∈M
⊥
.

Let us introduce the short exact sequences

0 // X // IX ⊕ Y
(ũ g̃) // Z // 0 (2.13)

and
0 // Z // X ⊕ PY // Y // 0 (2.14)

We take the image of equation 2.13 by the functor G = E(A,−) for an A ∈M.
As G is left exact, we have the following long exact sequence:

0→ E(A,X)→ E(A, Y ⊕ IA)→ E(A,Z)→ Ext1(A,X)→ · · ·
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If we factorize through the injective modules, then we get:

· · · → Ext
−1

(A,Z)→ E(A,X)→ E(A, Y )→ E(A,Z)→ Ext
1
(A,X)→ · · ·

where Ext corresponds to the extension morphisms in the category E . More-

over, we have E(A, g) = 0 because A ∈ M and g ∈ M⊥
. Then Gf is an epimor-

phism.
Now let us apply the functorG to equation 2.14 and factorize through projective

modules. We then have:

· · · → Ext−1(A, Y )→ E(A,Z)→ E(A,X)→ E(A, Y )→ Ext1(A,Z)→ · · ·

We have E(A, g̃) = 0 because A ∈ M and g̃ ∈ M⊥
= M⊥. Then Gf is a

monomorphism, thus an isomorphism.

2.3 Fibrations and co�brations

Let us recall the notations:
Let W be the class of morphisms f such that Gf is an isomorphism. Such

morphisms are called weak equivalences. Let

J = {f : 0→ fM,M ∈M}

and

I = {f : M0 → X ⊕ I0, X ∈ prM}∪ {0→M,M ∈M}

where 0 → M1 → M0 → X → 0 is a short exact sequence and I0 appears in the
short exact sequence 0→M0 → I0 → fM0.

The morphisms of J� are called �brations and compose the class F ib. The
following lemma characterizes �brations. We recall that g ∈ fM if, for any
morphism b : fM → Y , with M ∈ M, the morphism g ◦ b factorizes through an
injective module.

De�nition 2.3.1. For a morphism f : X → Y , we call a cone of f , any morphism
g, obtained from a push-out of an in�ation X → I for some injective I along f .
Then, we notice that g is unique up to isomorphism.

Lemma 2.3.2. Suppose that E is a weakly idempotent complete category (see the
article of Bühler, [Büh10]). Then f is a �bration if and only if f is a de�ation,
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and g ∈ fM⊥
, where g is a cone of f , de�ned by

X
f //

ιX
��

Y

g

��
IX

u //

πM
��

Z

��
fX fX

.

Proof. Let f : X → Y be a de�ation. Let g be a cone of f . Suppose that

g ∈ fM⊥
. Let us show that f ∈ J�. Let b : fM → Y , where fM ∈ fM. As

(g u) ∈ fM⊥
, then the morphism (g u)◦

(
b
0

)
factorizes through an injective. We

have (
g u

)(b− α1 ◦ ι
0− α2 ◦ ι

)
= 0.

We have the following diagram:

X

(fιX )
��

fM

β

66

(b0) //

ι
!!

Y ⊕ IX

(g u)

��

I

γ

DD

(α1
α2)

;;

ϕ
##
Z

Then, there exists β : fM → X such that(
b− α1 ◦ ι
α2 ◦ ι

)
= β ◦

(
f
ιX

)
.

As I is also projective since E is a Frobenius category, and f is a de�ation,
there exists α̃1 : I → X such that

α1 = f ◦ α̃1.

Then, we have

f ◦ (β − α̃1 ◦ ι) = b

and this shows the �rst implication.
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On the other hand, let g be a cone of f . If f ∈ J� : X → Y , then it
is a de�ation. Indeed, let πY : PY → Y be a projective pre-cover of Y (we
can equivalently introduce a fM-approximation of Y ). There exists a morphism
ϕ : PY → X which make the diagram commutative. As f ◦ ϕ = πY is a de�ation
and E is a weakly idempotent complete category, from the article of Bühler, [Büh10,

Theorem 7.6], then f is also a de�ation. Let us now show that g ∈ fM⊥
. Let

h : B → Y , where B ∈ fM. We have to show that g ◦ h = 0. As f ∈ J�, there
exists ϕ : B → X such that f ◦ ϕ = h. Then g ◦ h = g ◦ f ◦ ϕ. As we know g ◦ f
factorize through an injective, and so g ◦ h. Then g ∈ fM⊥

.

2.4 Factorizations

In addition to the �rst factorization, we also have a second factorization:

Lemma 2.4.1. Any morphism f : X → Y , where X ∈ prM can be factorized
through a morphism in �(I�) followed by a morphism in I�.

Proof. Let us show that any morphism f : X → Y , where X ∈ prM can be
factorized through a morphism in �(I�) followed by a morphism in I�.

We are going to use item (iv) in the next theorem (whose proof does not need
this lemma) We have made a proof of point (iv) lower for sake of clarity (in order
to have a one-piece-proof for the main theorem).

Let f : X → Y be a morphism, such that X ∈ prM. Let

0→M1 →M0 → X → 0

be a short exact sequence, and let c : M0 → X. From lemma 1.1.1, there exist
a : A → Y a prM-approximation, with A ∈ prM. Let ε : X → fM1 be the
induced morphism in the short exact sequence

0→M0 → X ⊕ IM0 → fM1 → 0.

As A → Y is a prM-approximation, and X ∈ prM, there exists r : X → A such
that

f = a ◦ r.

We are going to show that

X
f //

(rε) $$

Y

A⊕ fM1

(a 0)

::
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is the good factorization.
It is immediate that (a 0) is a trivial �bration. So it is an element of I�. Let

us show that

(
r
ε

)
∈� (I�). We introduce the following commutative square:

X
α //

(rε)
��

U

h
��

A⊕ fM1
(β1 β2)

// V

with h ∈ I�.
The object A⊕fM1 is in prM, then from lemma 1.4.2, part 1, it is co�brant.

Then, there exists a morphism (ϕ1 ϕ2) : A⊕ fM1 → U such that

h ◦ ϕ1 = β1 and h ◦ ϕ2 = β2. (2.15)

Unfortunately, this morphism is not the good candidate, because it does not
make the upper triangle commute. We have to modify it.

As h ∈ J� ∩ W , then it is a de�ation, we introduce its kernel u : K → X.
There exists γ : X → K such that

α = u ◦ γ + ϕ1 ◦ r + ϕ2 ◦ ε. (2.16)

Moreover, we know that u ∈M⊥
. So the morphism u ◦ γ ◦ c factorizes through an

injective module, let us say IM1 . Then we have the following diagram:

M0
c //

��

X

ε

�� u◦γ

��

IM1
//

//

fM1

∃a2

""
C

From the push-out property, there exists a morphism a2 : fM1 → C such that

u ◦ γ = a2 ◦ ε. (2.17)

Then, from equations 2.16 and 2.17, we have (ϕ1 ϕ1 + a2) ◦
(
r
ε

)
= α.

Unfortunately again, this morphism is not the good candidate. Now, the upper
triangle commutes, but we have lost the commutativity of the lower one. We have
to modify it one last time.
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Moreover, the morphism

(
r
ε

)
is an in�ation. We can introduce its cokernel C.

Let (c1 c2) : A⊕ fM1 → C. We have

h ◦ (ϕ1 ϕ2 + a2) ◦
(
r
ε

)
= h ◦ α = (β1 β2) ◦

(
r
ε

)
.

Then the morphism (ϕ1 ϕ2 + a2) − (β1 β2) factorizes through the cokernel C of(
r
ε

)
. Then there exists b : C → V such that

(β1 β2) = h ◦ (ϕ1 ϕ2 + a2)− b ◦ (c1 c2). (2.18)

Moreover, C ∈ prM from lemma 2.1.5. Then it is co�brant, as h ∈ J� ∩W , there
exists d : C → U such that

h ◦ d = b. (2.19)

We now have enough information in order to choose the good candidate for the
morphism A⊕ fM1 → U which makes both triangles commute. It is:

(ϕ1 − d ◦ c1 ϕ2 + a2 − d ◦ c2).

Indeed, for the upper triangle:

(ϕ1 − d ◦ c1 ϕ2 + a2 − d ◦ c2) ◦
(
r
ε

)
= ϕ1 ◦ r − d ◦ c1 ◦ r + ϕ2 ◦ ε+ a2 ◦ ε− d ◦ c2 ◦ ε

= α− u ◦ γ − ϕ2 ◦ ε− d ◦ c1 ◦ r + ϕ2 ◦ ε+ a2 ◦ ε− d ◦ c2 ◦ ε from 2.16

= α− a2 ◦ ε− d ◦ c1 ◦ r + a2 ◦ ε− d ◦ c2 ◦ ε from 2.17

= α− d ◦ (c1 c2) ◦
(
r
ε

)
= α.

(2.20)
The upper triangle commutes.

Now let us show the commutativity of the lower triangle:

h ◦ (ϕ1 − d ◦ c1 ϕ2 + a2 − d ◦ c2) = (h ◦ ϕ1 − h ◦ d ◦ c1 h ◦ ϕ2 + h ◦ a2 − h ◦ d ◦ c2)

= (h ◦ ϕ1 − b ◦ c1 h ◦ ϕ2 + h ◦ a2 − b ◦ c2) from 2.19

= (h ◦ ϕ1 + β1 − h ◦ ϕ1 β2 + b ◦ c2 − c ◦ c2) from 2.18

= (β1 β2)
(2.21)

Then, the lower triangle commutes, so

(
r
ε

)
∈� (I�), and we have the factorization

when the domain of the morphism is co�brant.



158 Chapter 2. The particular case of Frobenius categories

2.5 The almost model structure on Frobenius cat-

egories

We are going to show the following theorem:

Theorem 2.5.1. Let E be a weakly idempotent complete Frobenius category. As-
sume thatM⊆ E is a rigid, contravariantly �nite subcategory of E containing all
the injective objects, and stable under taking direct sums and summands.

Let
J = {f : 0→ fM,M ∈M}

and
I = {f : M0 → X ⊕ I0, X ∈ prM}∪ {0→M,M ∈M}.

Let G be the functor

G : E → ModM
X 7→ E(−, X)/M

Let
W = {f,Gf is an isomorphism}.

Let J� be the class of �brations. The co�brations are given by the left-lifting
property from trivial �brations. Then, (Fib, Cof,W) nearly form a model structure
for the category E. Indeed, the second factorization is found only when the domain
is co�brant.

Proof. We show the conditions required in order to apply theorem ?? of Hovey in
[Hov99, Theorem 2.1.19].

(i) W is stable under retracts.

Let f be a retract of w ∈ W . Let us show that Gf is an isomorphism. We
have:

A
i
//

f
��

Id

''
X r

//

w
��

A

f
��

B
j //

Id

77Y s // B

As Gf is a retract of an isomorphism, it is itself en isomorphism. Indeed,

GA //

Gf
��

Id
))

GX
β
//

Gw
��

GA

Gf
��

GB
γ //

Id

55GY //

Gw−1

OO

GB
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The morphism β ◦Gw−1 ◦ γ is an inverse of Gf .

Then Gf is an isomorphism.

(ii) "2 out of 3" property.

� If f, g ∈ W . Then G(f ◦ g) = G(f) ◦G(g), and we have that f ◦ g ∈ W .

� If f, f ◦ g ∈ W . Then (G(f ◦ g))−1 ◦ G(f ◦ g) = Id. So (G(f ◦ g))−1 ◦
G(f) ◦G(g) = Id. Let G(g)−1 be the morphism (G(f ◦ g))−1 ◦G(f). It
is a left inverse. Let us show that it is also a right inverse:

G(f ◦ g) ◦ (G(f ◦ g))−1 = Id. Then G(f) ◦G(g) ◦ (G(f ◦ g))−1 = Id, and
G(g) ◦ (G(f ◦ g))−1 ◦G(f) = Id and it is indeed a right inverse.

� If g, f ◦ g ∈ W . Then we use the same hint to show that Gf is an
isomorphism.

(iii) �(J�) ⊆ W ∩ �(I�).

As J ⊆ I, we automatically have that �(J�) ⊆ �(I�). From lemma 1.3.1 it
is immediate that any morphism of �(J�) is a weak equivalence.

(iv) I� = J� ∩W .

First, let us show that J� ∩ W ⊆ I�. Let f ∈ J� ∩ W . We introduce the
following commutative square:

M0
a //

(hι0)
��

X

f
��

A⊕ I0
(b1 b2)

// Y

Then we have
b1 ◦ h+ b2 ◦ ι0 = f ◦ a. (2.22)

As f is a de�ation, there exists K such that 0 → K → X → Y → 0 is a
short exact sequence. If we consider the diagram:

K

��

K

��
K ⊕ I0

//

��

X

��
I0

// Y

as f is a de�ation, the morphism K ⊕ I0 → I0 is a de�ation. They moreover
have the same kernel (as K⊕ I0 is a pullback), thus the short exact sequence

0→ K ⊕ I0 → K ⊕ I0 → Y → 0
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exists. As

(
h
ι0

)
∈ I, then there exist M1,M0 ∈M such that

0→M1 →M0 → A→ 0

is a short exact sequence. We build the following morphism of short exact
sequences:

0

��

0

��
M1

k
��

(cµ) // K ⊕ I0

(g̃ α
0 1 )
��

M0

h
��

(aι0)
// X ⊕ I0

(f −b2)
��

A

��

b1 // Y

��
0 0

From equation 2.22, we have that

b1 ◦ h = (f − b2) ◦
(
a
ι0

)
.

Then, there exists

(
c
µ

)
such that

(
a ◦ k
ι0 ◦ k

)
=

(
g̃ ◦ c+ α ◦ µ

mu

)
.

As g̃ ∈ M⊥, the morphism M1 → K → X factorizes through an injective.
We can suppose without loss of generality, that it factorizes through I0. Then
we have:

M1

k

��

(cµ) //

αA

  

K ⊕ I0

(g̃ α
0 1 )

��

I0 (
β1
β2

)
##

M0

(aι0)
// X ⊕ I0

with (
β1

β2

)
◦ αA =

(
a ◦ k
ι0 ◦ k

)
.



2.5. The almost model structure on Frobenius categories 161

As I0 is injective, and k is an in�ation, we can lift αA to ι0 : M0 → I0 such
that ι0 ◦ k = αA. Then,

M0

h

��

(aι0)
//

ι0

  

X ⊕ I0

(f −b2)

��

I0

(
β1
β2

)
;;

A
b1 // Y

.

Then, there exists

(
α1

α2

)
: A→ X ⊕ I0 such that

(
a
ι0

)
=

(
β1

β2

)
◦ ι0 +

(
α1

α2

)
◦ h. (2.23)

Then, we have a morphism A ⊕ I0 → X which makes the upper triangle
commute:

M0
a //

(hι0)
��

X

f
��

A⊕ I0
(b1 b2)

//

(α1 β1)
;;

Y

.

We have

(α1 β1) ◦
(
h
ι0

)
= α1 ◦ h+ β1 ◦ ι0 = a

from equation 2.23.

The morphism M0 → A⊕ I0 is an in�ation. Let us introduce its cokernel C.
Then we have the push-out:

M0
h //

��

A

γ1

�� f◦α1−b1

��

I0 γ2

//

f◦β1−b2 //

C
∃ψ

��
Y

Then there exists a unique ψ : C → Y such that:

ψ ◦ γ2 = f ◦ β1 − b2 (2.24)
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and

ψ ◦ γ1 = f ◦ α1 − b1 (2.25)

The push-out C is exactly the cokernel of the morphism M1 → M0 → I0.
Then C ' fM1. As f ∈ J�, if we still denote by ψ the morphism from
fM1 to Y , then there exists ζ : fM1 → X such that f ◦ ζ = ψ. Then the
equations 2.24 and 2.25 give respectively

f ◦ ζ ◦ γ1 = f ◦ α1 − b1

so

f ◦ (α1 − ζ ◦ γ1) = b1

and

f ◦ ζ ◦ γ2 = f ◦ β1 − b2

then

f ◦ (β1 − ζ ◦ γ2) = b2

and, the morphism

(α1 − ζ ◦ γ1 β1 − ζ ◦ γ2) : A⊕ I0 → X

make both triangles commute.

Now, let us show the inverse inclusion. We have immediately I� ⊆ J� since
J ⊆ I. Let f ∈ I�. Let us show that, following the natural notations,

g ∈ M⊥
and g̃ ∈ M⊥

. First, let b : M → Y be a morphism, with M ∈ M.
As f ∈ I�, there exists ϕ : M → X such that f ◦ ϕ = b then g ◦ b =
g ◦ f ◦ϕ and this morphism factorizes through an injective. This shows that

g ∈ M⊥
. Second, Let K be the kernel of f . Let b : M → K. Let N

be an M-approximation of X. We denote it by a : N → X. As a is an
M-approximation, there exists h : M → N such that g̃ ◦ b = a ◦ h. Let ιM :

M → IM be the canonical injection. As

(
h
ιM

)
is an in�ation, we introduce

C its cokernel. Let (k u) : N ⊕ IM → C. If we put (a 0) : N ⊕ IM → X,
then there exists r : C → Y such that there is a morphism of short exact
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sequences:
0

��

0

��
M

(hιM )
��

b // K

g̃
��

N ⊕ IM
(k u)

��

(a 0) // X

f
��

C

��

r // Y

��
0 0

We are going to build an element of I from N ⊕ IM → C. We add J the
injective envelope of N ⊕ IM (J = IM ⊕ IN). Then the morphism(

k u
ι1 ι2

)
: N ⊕ IM → C ⊕ J

is in I. Then the following square is commutative

N ⊕ IM //

��

X

��
C ⊕ J // Y

and as f ∈ I�, there exist (ϕ1 ϕ2) : C ⊕ J → X such that f ◦ ϕ1 = r and
f ◦ ϕ2 = 0 and

(ϕ1 ◦ k + ϕ2 ◦ ι1 ϕ1 ◦ u+ ϕ2 ◦ ι2) = (a 0).

Then we have

g̃ ◦ b = a ◦ h

= (a 0) ◦
(
h
ιM

)
= (ϕ1 ϕ2) ◦

(
k u
ι1 ι2

)
◦
(
h_ιM

)
=
(
ϕ1 ◦ k + ϕ2 ◦ ι1 ϕ1 ◦ u+ ϕ2 ◦ ι2

)
◦
(
h
ιM

)
= (ϕ1 ϕ2) ◦

(
0

ι1 ◦ h+ ι2 ◦ ιM .

)
(2.26)
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This shows that g̃ ◦ b factorizes through an injective, thus g̃ ∈M⊥
.

Then we have shown that I� = J� ∩W .

(v) The �rst required factorization is exactly corollary 1.3.2, part 1.

(vi) The second required factorization is exactly lemma 2.4.1.

As a consequence, we have directly the theorem of Quillen for Frobenius cate-
gories.

Theorem 2.5.2. Let Ho E be the localization of the quasi-isomorphisms of E at
the class W. Let mod M be the class of M-modules. There is an equivalence of
categories

Ho E ' mod M.
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[Tor12b] Hermund André Torkildsen. A geometric realization of the m-cluster
category of type Ã, 2012.
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Dans cette thèse, nous traitons le cas D̃n en profondeur et démontrons quelques
résultats additionnels aux travaux de Baur, Marsh et Torkildsen sur les réalisations
géométriques des catégories amassées supérieures. Pour le cas D̃n, on trouve la
�gure qui correspond à l'étude, on démontre la compatibilité entre le �ip d'une (m+
2)-angulation, et la mutation de carquois coloré. On trouve une bijection entre les
objetsm-rigides et chaque arc dit admissible, puis entre les objets amas-basculants
et les (m+2)-angulations au théorème. De plus, on démontre la compatibilité entre
la réduction d'Iyama-Yoshino, et le fait de couper le long d'un arc, qu'on dé�nira
formellement.

Nous démontrons ensuite qu'une catégorie exacte est une catégorie de pré�-
bration au sens de Anderson-Brown-Cisinski, qui véri�e le théorème de Quillen, et
une catégorie de Frobenius est munie d'une structure de modèle, compatible avec
le passage à la catégorie stable, qui est triangulée.

We show that a subcategory of the m-cluster category of type D̃n is isomorphic
to a category consisting of arcs in an (n− 2)m-gon with two central (m− 1)-gons
inside of it. We show that the mutation of colored quivers and m-cluster-tilting
objects is compatible with the �ip of an (m+ 2)-angulation.

In this thesis, we study the geometric realizations of m-cluster categories of
Dynkin types A, D, Ã and D̃. We show, in those four cases, that there is a bijection
between (m+2)-angulations and isoclasses of basicm-cluster tilting objects. Under
these bijections, �ips of (m+ 2)-angulations correspond to mutations of m-cluster
tilting objects. Our strategy consists in showing that certain Iyama-Yoshino re-
ductions of the m-cluster categories under consideration can be described in terms
of cutting along an arc the corresponding geometric realizations. This allows to
infer results from small cases to the general ones.

Let E be a weakly idempotent complete exact category with enough injective
and projective objects. Assume that M ⊆ E is a rigid, contravariantly �nite
subcategory of E containing all the injective and projective objects, and stable
under taking direct sums and summands. In this paper, E is equipped with the
structure of a pre�bration category with co�brant replacements. As a corollary, we
show, using the results of Demonet and Liu in [DL13], that the category of �nite
presentation modules on the costable categoryM is a localization of E . We also
deduce that E → modM admits a calculus of fractions up to homotopy. These
two corollaries are analogues for exact categories of results of Buan and Marsh in
[BM13], [BM12] (see also [Bel13]) that hold for triangulated categories.

If E is a Frobenius exact category, we enhance its structure of pre�bration
category to the structure of a model category (see the article of Palu in [?] for the
case of triangulated categories). This last result applies in particular when E is any
of the Hom-�nite Frobenius categories appearing in relation to cluster algebras.
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