
HAL Id: tel-03650792
https://theses.hal.science/tel-03650792

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to Solving Three-Dimensional Packing
Problems
Labib Yousef

To cite this version:
Labib Yousef. Contribution to Solving Three-Dimensional Packing Problems. Other [cs.OH]. Univer-
sité de Picardie Jules Verne, 2017. English. �NNT : 2017AMIE0020�. �tel-03650792�

https://theses.hal.science/tel-03650792
https://hal.archives-ouvertes.fr


                                                                                       

Thèse de Doctorat 

Mention : Informatique  
Spécialité : Recherche Opérationnelle et Optimisation  

présentée à l'Ecole Doctorale en Sciences Technologie et Santé (ED 585)

de l’Université de Picardie Jules Verne 

présentée par 

Labib YOUSEF 

pour obtenir le grade de Docteur de l’Université de Picardie Jules Verne 

Contribution à la résolution des problèmes de placement en

trois dimensions  

Soutenue le  29-06-2017, après avis des rapporteurs, devant le jury d’examen : 

Mme Laetitia Jourdan       Professeur, Université de Lille           (Rapporteur)

M. Imed Kacem              Professeur, Université de Lorraine            (Rapporteur)

Mme Myriam Sahnoun        Maître de conférences, Université de Lorraine                         (Examinateur)

M. Said Hanafi                     Professeur, Université de Valenciennes                                      (Examinateur)

M.Vassilis Zissimopoulos  Professeur, Université Nationale et Kapodistrian d’Athènes  (Examinateur)

M. Mhand Hifi                Professeur, Université  de Picardie Jules Verne      (Directeur)

                                                                                                                      



ii



REMERCIEMENTS

Tout d’abord, je voudrais exprimer ma plus profonde gratitude à mon directeur de thèse, Pro-
fesseur Mhand Hifi, sans lui ce travail n’aurait pas été possible. Je suis très reconnaissant envers
lui de m’avoir guidé tout au long de la préparation de cette étude. Son suivi, son soutien régulier
et ses idées inépuisables ont été extrêmement utiles dans mes recherches.

Je remercie profondément les Professeurs Imed Kacem 1 et Laetitia Jourdan 2 d’avoir accepté
de rapporter mes travaux de recherche et l’intérêt qu’ils ont porté à mon travail. Je voudrais
également remercier les Professeurs Vassilis Zissimopoulos 3, Said Hanafi 4 et Mme Myriam Sah-
noun 5 d’avoir accepté de participer à mon jury de la thèse.

Je suis heureux d’avoir passé mes études de doctorat au laboratoire EPROAD. Je tiens à
remercier tous les membres de ce laboratoire avec qui j’ai partagé beaucoup de discussions et de
beaux moments.

Je voudrais aussi remercier l’Université de Damas par le Ministère de l’Enseignement Supérieur
de la Syrie qui ont financé ces années de thèse de doctorat. Grâce à ce financement, j’ai pu ac-
complit mes travaux de recherche de bonnes conditions. Encore une fois merci.

Une gratitude et un amour particuliers vont à ma famille pour leur soutien infaillible. Je
remercie mes parents pour leur amour permanent. Je remercie ma fille, Julia, pour son doux
sourire. Enfin, je veux exprimer mon amour le plus profond et les remerciements à ma femme,
Taghred, pour son soutien et de m’avoir supporté sur toute la durée de cette thèse.

1Professeur à l’Université de Lorraine
2Professeur à l’Université de Lille
3Professeur à l’Université nationale et Kapodistrienne d’Athènes
4Professeur à l’Université de Valenciennes
5Maître de Conférences à l’Université de Lorraine

iii



iv



Résumé

Titre : Contribution à la résolution des problèmes de placement en trois di-
mensions.

Les problèmes de découpe/placement interviennent dans de nombreux domaines in-
dustriels tels que le transport, la logistique et la production. Ils apparaissent soit en tant
que problème principal, soit en tant que sous-problèmes de problèmes plus complexes.

Ce travail s’intéresse à la résolution approchée (heuristique et métaheuristique) de
nombreuses variantes du problème de découpe/placement (Cutting & Packing, notée
C&P). Le problème de placement de sphères dans un container parallélépipède ouvert
représente la première variante du problème traitée dans cette thèse. Le placement de
sphères dans un container parallélépipède fermé est la deuxième variante du problème
traitée. Finalement, le placement de spheres dans un container sphérique, qui repreésente
la troisième variante abordé dans cette thèse.

Pour ces variantes, nous proposons quatre méthodes de résolution. La première méth-
ode s’appuie sur une recherche dichotomique et une recherche arborescente par faisceaux.
Le but est de minimiser la longueur du container ouvert tout en plaçant l’ensemble des
sphères disponibles.

La deuxième méthode peut être vue comme une amélioration de la première méthode
pour résoudre la même variante du problème de placement. Elle s’appuie sur la recherche
par faisceaux combinée à la recherche dichotomique et une nouvelle estimation de la
borne inférieure pour ce problème. En effet, la notion d’estimation a été introduite afin
d’explorer efficacement des espaces de recherche dans lesquelles la qualité des solutions
est à privilégier.

La troisième méthode s’appuie sur la recherche à voisinage large combinée à une méth-
ode d’optimisation continue. Le but, étant de maximiser la densité du placement dans
un container fermé. Cette approche démarre d’une configuration quelconque et converge
vers une solution réalisable en s’appuyant sur une recherche par voisinage large pour la
diversification et en appliquant une méthode d’optimisation continue.

Finalement, nous proposons une méthode d’optimisation par essaims particulaires
combinée avec une procédure d’optimisation continue pour résoudre le problème de place-
ment de sphères identiques dans un container sphérique fermé ou un container de forme
parallélépipède ouvert. La procédure d’optimisation continue est utilisée pour réparer les
solutions non réalisables produites lors de la résolution.

Mots clés: dichotomie; essaims particulaires; (méta)heuristiques; optimisation; voisi-
nages.
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Abstract

Title: Contribution to Solving Three-Dimensional Packing Problems

Cutting and Packing (C&P) problems are encountered in numerous industrial do-
mains such as transportation, logistics, reliability, and production. They appear either as
standalone problems or as subproblems of more complex problems.

The goal of the thesis is to investigate the use of heuristics and meta-heuristics for
solving variants of cutting and packing problems. Packing spheres into an open container
represents the first variant of the problem. Packing spheres into a closed container is the
second variant. Finally, packing spheres into a spherical container is the third variant
studied in the thesis.

These variants are solved by using four solution methods. The first approach is based
upon a dichotomous search and a truncated tree search (beam search). The goal is to
determine the minimum length of the open container that contains all spheres without
overlapping between all items.

The second approach can be viewed as a modified version of the first one, for solving
the same variant of the problem, where a tree search (beam search) combined with the
dichotomous search and the estimate of the lower bound is proposed. Herein, the lower
bound is used in order to guide the search process more efficiently where primarily the
quality of the solutions is preferred.

The third method is based upon the large neighborhood search combined with a con-
tinuous optimization algorithm for solving the problem of packing spheres into a close
container. Starting from any configuration, the goal of the continuous optimization is to
converge to a feasible solution whereas the large neighborhood search offers a diversifica-
tion of the search space to enable convergence toward the solutions of best qualities.

Finally, the particle swarm optimization combined with a continuous optimization
algorithm is proposed to tackling the (identical) sphere packing problem into different
containers.

Keywords: dichotomous; heuristics; neighbors; optimization; particle swarm.
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Introduction génerale

Les problèmes de découpe et de placement (Cutting & Packing: C&P) se présentent
traditionnellement lorsqu’on cherche à extraire, découper ou placer, un ensemble prédéfini
d’éléments à partir de grands objets tout en respectant une ou plusieurs contraintes. Les
contraintes peuvent être liées aux chevauchements, à l’équilibre, au type de découpe, à la
capacité ou au temps. L’optimisation concerne une fonction objectif qui peut dépendre
des containers et des éléments sélectionnés à découper ou placer. Parfois l’objectif peut
être mupltiple, par exemple, l’optimisation du placement, l’optimisation du profit associé
à un placement, l’optimisation selon des critères, etc. Une contrainte de placement peut
également dépendre de la position des éléments à placer dans un ou plusieurs containers.

Ces problèmes se retouvent dans de nombreux domaines industriels tels que le trans-
port, la logistique et la production. Chacun de ces problèmes peut apparaitre soit en
tant que problème principal, soit en tant que sous-problème d’un autre problème plus
complexe à résoudre. En raison de l’importance des champs d’applications, ces problèmes
se déclinent sous forme de variantes, par exemple:

• Placement ou découpe d’objets (circulaires, sphériques, rectangulaires, parallélépipèdes)
dans un seul (plusieurs) container(s) fermé(s).

• Placement ou découpe d’objets (circulaires, sphériques, rectangulaires, parallélépipèdes)
dans un seul (plusieurs) container(s) ouvert(s).

• Placement ou découpe d’objets irréguliers dans un (plusieurs) container(s).

• Placement d’objets spécifiques avec des contraintes spécifiques: arrangement d’objets
sur des surfaces spécifiques en respectants des distances, des contraintes disjonctives,
...

Malgré l’avance technologique et scientifique, la résolution des problèmes de type C&P
reste difficile. Des techniques de résolution basées sur des approches "efficaces" sont sou-
vent proposées. Dans cette thèse, nous nous intéressons à la résolution des problèmes
de placement de sphères par application de méthodes approchées (heuristiques et méta-
heuristiques). Un domaine d’application pratique est ciblé ici, en particulier, la problé-
matique générale du placement de sphères dans un container ouvert, un container fermé
et un container sphérique. Un tel problème se rencontre dans :

1. L’étude des structures de divers systèmes physiques, comme les milieux granulaires,
les liquides, les cellules vivantes et les milieux aléatoires en chimie et en physique
(cf. Torquato [71]) ;

1
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2. Les applications médicales que l’on rencontre dans la modélisation de la problé-
matique liée au traitement du cancer par radiochirurgie (cf. Wang [73], Sutou et
al.[69]).

3. Le domaine de la communication et du stockage numérique (cf. Conway et el. [17],
Claudio et al. [13]).

Nous nous sommes interessés dans cette thèse à la résolution heuristique et métaheuris-
tique du problème de placement de sphères. Cette thèse est organisée en trois parties.

Dans une première partie, nous présenterons un cadre général de la problématique
traitée. Nous présenterons le problème de placement de sphères qui fait partie des prob-
lèmes d’optimisation combinatoire/continue les plus connus de la littérature. En effet,
cette problématique fait partie à la fois des problèmes d’optimisation combinatoire et des
problèmes d’optimisation continue, car la structure d’une solution réalisable est de nature
discrète alors que les positions des éléments sphériques à placer sont de nature continue.

Nous donnerons également une classification des problèmes de découpe/placement très
utilisée dans la littérature et la position de notre problème dans cette classification. Par
la suite, nous ferons un zoom sur les différentes variantes du problème de placement
de sphères, à savoir, le placement de sphères dans un container ouvert, le placement
de sphères dans un container fermé et enfin, le placement de sphères dans un container
sphérique.

Nous présenterons, par la suite, quelques méthodes de résolution existantes que nous
avons étudiées au cours de cette thèse. Nous terminerons ce chapitre par une conclusion
qui résume le contenu du chapitre et explique la démarche suivie dans la suite de la thèse.

La deuxième partie contient nos contributions. Elle est divisée en quatre chapitres.
Dans le premier chapitre, une méthode de recherche arborescente est proposée afin de
résoudre le problème de placement dans un container ouvert. Le but est de minimiser la
longueur de ce dernier tout en plaçant l’ensemble des sphères disponibles. La méthode
s’appuie principalement sur la recherche arborescente dans laquel trois phases complé-
mentaires sont combinées : (i) une phase de sélection selon un critère de choix local qui
détermine une série de sous-espace, (ii) une recherche par faisceaux, qui explore quelques
chemins prometteurs en visant à trouver les meilleurs chemins et (iii) une recherche di-
chotomique qui diversifie l’espace de recherche.

Dans le deuxième chapitre, une nouvelle version de la méthode proposée dans le précé-
dent chapitre. Le but de cette méthode est d’améliorer la qualité des solutions tout en
limitant le temps de calcul, qui parfois peut devenir exorbitant pour ce type de problème.
En effet, la méthoe proposée s’appuie sur la recherche arborescente par faisceaux com-
binée à la recherche dichotomique et l’estimation d’une nouvelle borne inférieure. Ici, la
notion d’estimation a été introduite afin d’explorer efficacement des espaces de recherche
dans lesquelles la qualité des solutions est à privilégier.

Dans le troisième chapitre, une nouvelle méthode hybride combinant une recherche
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à voisinage large et méthode d’optimisation continue est proposée. En partant d’une
configuration quelconque, la méthode d’optimisation a pour but de converger vers une
solution réalisable. La méthode à voisinage large propose, quant à elle, une diversification
de l’espace de recherche afin de permettre une convergence vers des solutions de meilleures
qualités. Notons aussi que cette méthode utilise une prodédure de type glouton auparavant
proposée dans les premiers chapitres permettant la construction d’une solution de départ
de qualité plus ou moins de qualité.

Enfin, l’optimisation par essaims particulaires combinée avec une procédure
d’optimisation continue est proposée pour résoudre le problème du placement de sphères
identique dans un container sphérique ouvert. La procédure d’optimisation continue est
utilisée pour réparer l’inadmissibilité des solutions.

Dans la troisième partie, nous présenterons les perspectives et les directions de nos
travaux futurs.
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Chapter 1

Introduction aux problèmes de
placement

Contents
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Dans ce chapitre, nous présenterons un cadre général de la problématique traitée. Il
s’agit du problème de placement de sphères, qui fait partie des problèmes d’optimisation
combinatoire. Ces problèmes peuvent être aussi traités par des modèles non-linéaires
à variables continues. Cette problématique appartient en effet à la fois aux problèmes
d’optimisation combinatoire et aux problèmes d’optimisation continue puisque la structure
d’une solution réalisable (admissible) est de nature discrète alors que les positions des
objets à placer dans un (ou plusieurs) container(s) sont de nature continue.

Nous donnerons également une des classifications utilisée dans la littérature pour des
problèmes dits de découpe et placement et, le positionnement des problématiques que nous
avons traitées dans nos études. Par la suite, nous détaillerons les différentes variantes du
problème de placement de sphères et leurs domaines d’application, c’est-à -dire le place-
ment de sphères dans un container ouvert (Three-Dimensional Sphere Packing Problem :
noté 3D − SPP ), le placement de sphères dans un container fermé (Three-Dimensional
Knapsack Problem : noté 3D−KP ) et, enfin, le placement de sphères dans un container
sphérique (Three-Dimensional Packing Spheres into a Sphere: noté 3D − PSS).
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1.1 Problème d’optimisation

Un problème d’optimisation peut être défini comme la recherche d’une valeur minimale
ou maximale d’un objectif (fonction mathématique) donné(e) en respectant un certain
nombre de contraintes également formulées sous forme mathématique (cf., Collette et
Siarry [16]). Dans le cas d’un problème de minimisation, la formulation mathématique
peut être représentée comme suit :

min f(−→x )∀−→x ∈ S (1.1)
g(−→x ) ≤ 0 (1.2)
h(−→x ) = 0 (1.3)

En d’autres termes, le problème d’optimisation consiste à trouver la meilleure solution
−→x ∗ parmi l’ensemble des solutions possibles (et existantes) dans l’espace de recherche, tout
en respectant l’ensemble des contraintes du problème. Mathématiquement, une solution
−→x = {x1,x2, .̇.,xn} est un vecteur contenant n variables de décision (avec n > 0). Si
ces variables sont des nombres réels, le problème d’optimisation est dit continu −→x ∈ Rn

et S ⊆ Rn. Cependant, si les variables sont discrètes, le problème d’optimisation est dit
discret (ou parfois combinatoire) −→x ∈ Zn et S ⊆ Zn.

Résoudre un problème d’optimisation revient à trouver une solution réalisable (qui
respecte l’ensemble des contraintes). Selon l’espace de recherche ou la partie de l’espace
de recherche qu’on souhaite examiner, nous distinguons deux solutions réalisables : (i) le
minimum / maximum local et, (ii) le minimum / maximum global.

Definition 1. Une solution −→x ∗ ∈ S est considérée comme un minimum / maximum
global de la fonction f s’il n’existe pas dans l’espace de recherche S une autre solution
de meilleure valeur (évaluation ou qualité), c’est-à -dire :

∀−→x ∈ S =

{
f(−→x ∗) < f(−→x ) cas d’une minimisation
f(−→x ∗) > f(−→x ) cas d’une maximisation

Definition 2. Une solution −→x ∗ est considérée comme un minimum / maximum local de
la fonction f s’il n’existe pas dans ses voisinages V (−→x ∗) une autre solution de meilleure
valeur (évaluation ou qualité), c’est-à -dire :

∀−→x ∈ V (−→x ∗),−→x 6= −→x ∗
{
f(−→x ∗) ≤ f(−→x ) cas d’une minimisation
f(−→x ∗) ≥ f(−→x ) cas d’une maximisation

La figure 1.1 illustre un minimum (maximum) global et un autre minimum (maximum)
local pour un problème d’optimisation avec un objectif.
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Figure 1.1: Les différents minima

1.2 Les problèmes de découpe / placement

Les problèmes de découpe et de placement (Cutting & Packing : noté C&P) se présentent
traditionnellement lorsqu’on cherche à extraire (découper) ou à placer (positionner) un
ensemble prédéfini d’objets à partir de (dans de) grands objets tout en respectant une
ou plusieurs contraintes spécifiques (par exemple, la contrainte liée au chevauchement
entre les objets, la découpe de type guillotine, l’équilibrage lié aux positionnements des
objets, la capacité des objets, la contrainte liée au temps, etc.) et en optimisant une
certaine fonction objectif qui peut dépendre des containers et des objets sélectionnés ou
positionnés dans le ou les containers (cf., Dyckhoff et al. [26, 21], Wäscher et al. [74]).

Ces problèmes font partie des problèmes d’optimisation combinatoire les plus con-
nus dans la littérature. Ils ont fait l’objet de nombreuses études scientifiques avec un
nombre de publications croissant depuis de nombreuses années et ils possèdent de nom-
breuses applications pratiques importantes en industrie (découpe de matières premières),
logistique de transport (cargaison, véhicules, camions, palettes, etc.), stockage (problème
d’allocation de mémoire), finance (gestion de portefeuille).

Face à l’importance de ces problématiques et au nombre important de sous probléma-
tiques liées à la découpe et le placement, Wäscher et al. [74] ont proposé une typologie
sur les problèmes de la famille C&P en tenant compte des cinq critères les plus répondus :

1. La dimension du problème : il s’agit des dimensions des objets (items) dans un
problème traité.

2. L’objectif : lorsque l’ensemble des containers disponibles ne suffit pas à contenir
tous les objets, alors on s’intéresse à maximiser le placement d’un ensemble d’objets
dans un ensemble de containers disponibles. Dans le cas contraire, l’objectif revient
à minimiser le nombre de containers à utiliser (dans le cas d’un seul container, il
revient à minimiser la dimension du container qui peut varier).

3. Les objets à placer : la forme, la taille et la distribution des objets à placer. Trois cas
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peuvent être distingués : (a) tous les objets ont la même taille, (b) on ne considère
qu’un petit nombre de classes d’objets de tailles différentes et, (c) le nombre d’objets
est très important et ils n’ont pas la même taille.

4. Les containers à utiliser : la nature, la taille et le nombre de containers à utiliser.
Deux cas peuvent être distingués : (a) un seul container est disponible et ses dimen-
sions peuvent être fixes ou variables et, (b) plusieurs containers de dimensions fixes
de même taille ou de tailles différentes.

5. La forme des objets : les objets peuvent être représentés par des cercles, des rectan-
gles, des cylindres, des sphères, des cubes, etc. De même, le type des objets à placer
(ou à découper) est du même type que les containers.

Finalement, Wäscher et al. [74] ont proposé six classes de problèmes de la famille C&P.
Elles sont catégorisées selon les critères 2 et 3 précédemment décrits (cf, Figure 1.2) :

découpe et déplacement
C&P

Problèmes de maximisation

Placement
d’items

identiques

Placement
d’items

homogènes

Problème
de

Knapsack

Problèmes de minimisation

Problème de
dimension
ouverte

Problème
de cutting

stock

Problème
de bin-
packing

Figure 1.2: Principales classes de problèmes de la famille C&P

Dans cette thèse, nous nous intéressons aux deux classes suivantes :

- Classe des problèmes avec une dimension du container ouverte (Open Dimension
Problem : ODP) : on dispose d’un seul container ouvert ou d’un container sphérique
fictif (à déterminer), alors que les objets à placer sont sphériques, où chaque objet
est caractérisé par son rayon (ces objets peuvent être identiques ou non-identiques).

- Classe des problèmes de type sac à dos (Single Knapsack Problem : SKP) : le
container (qui peut être sphérique) est fermé (de dimensions fixes) et les objets à
placer sont sphériques non-identiques.
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1.3 Le problème de placement de sphères

1.3.1 Des applications

Les problèmes de placement de sphères sont connus depuis 1610, lorsque la question la
plus célèbre en mathématiques a été posée (cf., Conway et al. [17]) :

"Quelle est la densité maximale d’un empilement compact de sphères identiques dans l’espace ?"

En 1611, Kepler [17], astronome et mathématicien Allemand, émit la conjoncture (sans
preuve) que la densité maximale était d’environ

π

3
√

2
' 74.048%. Cette densité est at-

teinte pour un placement cubique à faces centrées. Cette situation se retrouve par exemple
sur les étals de magasins de fruits et de légumes, comme l’illustre la Figure 1.3.

(a) (b)

Figure 1.3: Structure du placement correspondant à la conjecture de Kepler

Le problème de "Kissing Number", qui consiste à déterminer le plus grand nombre de
sphères identiques pouvant être rangées autour d’une sphère du même type, était un sujet
de désaccord entre Newton (physicien, philosophe, astronome et mathématicien Anglais)
et Gregory (mathématicien et astronome) en 1690. Newton pensait qu’on ne pouvait
ranger que 12 sphères autour d’une sphère de même rayon, tandis que Gregory disait
qu’on pouvait en mettre 13 (cf., Conway et al. [17], Kucherenko et al. [47], Zong [79]). En
1956, Leech [49] prouva que ce nombre était de 12. Hilbert (un mathématicien Allemand)
inclut en 1900 (cf. Lagarias [48]) la conjoncture de Kepler dans sa célèbre liste des 23
grands problèmes non résolus en mathématique (cf., Derbyshire [20]). En 1998, Hales
proposa une preuve de la conjoncture de Kepler à l’aide de calculs informatiques. Sa
démonstration comprenait 300 pages de texte et 40 000 lignes de code (programme). En
2014, la conjoncture de Kepler fut officiellement démontrée.

En pratique, les applications de placement de sphères sont très nombreuses, par exemple:
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En médecine : dans le domaine du traitement des cancers, le gamma knife (cf., Fig-
ure 1.4(a)) est l’une des techniques de radio-chirurgie les plus efficaces. Il s’agit d’envoyer
des doses plus élevées de rayonnement (connus sous le nom de “Shots") sur la région can-
céreuse (cf., Figure 1.4(b)) afin de provoquer des réactions permettant des évolutions vers
la guérison du patient.

(a) Gamma knife (b) Traitement des cancers par
Gamma knife

(c) Modélisation des shots et la ré-
gion cancéreuse

Figure 1.4: Illustrations du traitement par Gamma knife

Un traitement optimal par le Gamma knife doit vérifier les critères suivants (cf.,
Wang [73], Sutou et al. [69], Li et al. [50]) :

1. Le rayonnement ne doit pas dépasser les bords de la région ciblée afin de ne pas
endommager les cellules saines.

2. Les chevauchements entre les rayonnements sont interdits afin d’éviter un surdosage.

3. Le meilleur traitement est celui qui génère le plus de densité et qui évite un sous-
dosage ou une distribution non uniforme.

Du point de vue de la modélisation (cf., Figure 1.4(c)), les rayonnements peuvent être
considérés comme des sphères, identiques ou non-identiques, et la région cancéreuse peut
être représentée par une forme géométrique, régulière ou irrégulière.

En parallèle, Sutou et al. [69] et Li et al. [50], ont proposé le placement de sphères non-
identiques dans un polytope pour modéliser le traitement précédemment décrit tandis que
Wang [73] a proposé le placement de sphères non-identiques dans une région irrégulière.

Science des matériaux et biologie : le placement de sphères a été utilisé comme
modèle pour représenter les milieux granulaires et la structure des lipides, des protéines
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et des matériaux vitreux afin d’étudier quelques propriétés concernant la conductivité
thermique, la conductivité électrique, les mouvements de fluides, la distribution des con-
traintes et d’autres propriétés mécaniques des granulaires, des cellules vivantes, etc. (cf.,
Williams et al. [75], Larrard et al. [18], Cheng et al. [12]). Dans cette partie, nous présen-
tons le modèle de placement de sphères proposé par Nguyen et al. [59, 60] pour étudier
le problème de transfert thermique dans les milieux granulaires.

(a) Milieu granulaire (b) Transferts thermiques par
conduction entre les particules

(c) Transferts thermiques
fluide-particules

Figure 1.5: Transferts thermiques en milieux granulaires

En effet, les milieux granulaires, comme le montre la Figure 1.5(a), sont généralement
des milieux poreux diphasiques (ils contiennent des particules et des pores). Les par-
ticules (ou grains) sont modélisées sous forme de sphères identiques (ou non-identiques)
stockées dans une matrice (un container). Les espaces vides autour des particules sont
considérés comme des pores, comme le montre la Figure 1.5(b). L’augmentation de la
conductivité thermique est due à une réduction des dimensions des pores ainsi qu’à une
augmentation de l’espace entre les particules. Par ailleurs, Nguyen et al. [61] ont utilisé
cette modélisation pour étudier la dissipation de l’énergie par frottement sur l’interface
d’un système de freinage qui joue un rôle important dans la sécurité du transport auto-
mobile ou ferroviaire. Le modèle proposé est constitué de deux couches solides et d’une
couche intermédiaire granulaire. Cette dernière a été modélisée comme un placement de
sphères (ou cercles) dans un container, comme l’illustre la Figure 1.5(c).

En écologie : la modélisation de la structure complexe des forêts tropicales est l’un
des grands défis. Une des questions dignes d’intérêt est la distribution des différentes
tailles d’arbres, ce qui est particulièrement important pour estimer la biomasse. Taubert
et al. [70] ont proposé un modèle reposant sur le placement de sphères pour étudier et
présenter la structure des forêts tropicales (cf., Figure 1.6).

Communication et stockage numérique : la téléphonie, les réseaux informatiques,
la correction d’erreurs de translation et de stockage des données, sont considérés comme
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Figure 1.6: Modélisation de la structure complexe des forêts tropicales

des problèmes de placement de sphères sans chevauchement où l’on cherche à maximiser
la densité dans une dimension donnée, comme l’expliquent Conway et al. [17] et Claudio
et al. [13]. Il est à noter que d’autres applications sont présentées par Hifi et al. [31], où
un ensemble de problématiques ont été abordées, modélisées et résolues par applications
de diverses méthodes.

1.3.2 Quelques problèmes de placement de sphères

Dans cette thèse, nous nous intéressons à la résolution de trois variantes du problème de
placement de sphères : le placement dans (i) un container ouvert, (ii) un container fermé
et (iii) un container sphérique.

1.3.2.1 Le problème de placement dans un container ouvert

Une instance du problème de placement dans un container ouvert est représentée par un
ensemble N de n objets (sphères), où chacun des objets est caractérisé par son rayon ri
(identique/non-identique) et un container ouvert, noté B de dimensions (H,W,∞), dont
H est sa largeur, W sa profondeur et L=∞ sa longueur variable (cf., Figure 1.7). Le but
du problème est de placer sans chevauchement tous les objets (sphères) dans le container
de sorte à minimiser la longueur du container L.

Trouver une solution réalisable pour ce problème consiste donc à trouver les valeurs du
couple (X,L), où X = {xi, yi, zi, ...,xn, yn, zn} est un vecteur représentant les positions
des n sphères placées dans le container B de longueur L (la Figure 1.8(a) illustre une
solution réalisable associée à une instance du problème).

Dans ce qui suit, ce problème sera noté 3D−SPP (Three-Dimensional Strip Packing
Problem) en suivant la même représentation de Kubach et al. [45, 46]). Le problème
3D−SPP peut être représenté par le modèle ci-dessous décrit (en supposant que l’origine
se situe au point (0, 0, 0)) :
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min L (1.4)
δ(Si,Sj) ≥ (rSi + rSj) ∀(i, j) ∈ N2, i < j (1.5)

xSi ≤ L− rSi ∀i ∈ N (1.6)
ySi ≤ H − rSi ∀i ∈ N (1.7)
zSi ≤ W − rSi ∀i ∈ N (1.8)

xSi ≥ rSi ∀i ∈ N (1.9)
ySi ≥ rSi ∀i ∈ N (1.10)
zSi ≥ rSi ∀i ∈ N (1.11)

L ≤ L ≤ L (1.12)

La contrainte 1.5 vérifie si deux sphères différentes Si et Sj ne se chevauchent pas. La
mesure δ(Si,Sj) représente la distance Euclidienne entre deux sphères.

δ(Si,Sj) =
√

(xSi − xSj)2 + (ySi − ySj)2 + (zSi − zSj)2 (1.13)

1

2

3

4 5

6
N

(a) Sphères de rayons non identiques

1

2

3

4 5

6
N

(b) Sphères de rayons identiques

x

y

z

(0.0.0)
W

H

L

(c) Un container ouvert noté B

Figure 1.7: Une instance de 3D − SPP

Les contraintes de 1.6 à 1.11 assurent que les sphères ne débordent pas du container.
La représentation (xSi , ySi , zSi) représente la position de la sphère i dans le container B
de longueur L. Quant à la contrainte 1.12, elle représente un encadrement de l’optimum
par une borne inférieure et une autre borne supérieure. Une borne inférieure L peut être
fournie de façon triviale, par exemple en posant:
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L =
4× π

∑N
i=1 r

3

3×W ×H
.

Par ailleurs, la borne supérieure L peut prendre au départ soit une valeur triviale comme
L = 2× L, soit être calculée par un algorithme rapide de type glouton.

(a) Sphères de rayon ri = 1 dans
un container ouvert

(b) Sphères de rayons différents
dans un container ouvert

Figure 1.8: Structures des solutions réalisables (de placement) dans un container ouvert B

Particularités du problème 3D − SPP

À partir de la formulation du problème 3D − SPP , nous distinguons les point suivants:

• Le nombre total de variables dans une instance de ce problème est de l’ordre de
3n+ 1.

• La plupart des contraintes sont non linéaires (quadratiques); nous avons donc n ×
(n−1

2
) contraintes de ce type. Nous avons aussi 6×n contraintes linéaires. Le nombre

total de contraintes est de l’ordre de 6n+ (N × (n−1
2

)).

• La fonction objectif 1.4, qui représente la longueur minimum du container à déter-
miner, est linéaire. La variable L apparait uniquement dans la contrainte 1.6. Sup-
posons que nous ayons une solution du problème 3D − SPP , où toutes les sphères
disponibles soient positionnées sans chevauchement dans le container B. Alors la
variable L se calcule comme suit :

L = max{xi + ri} ∀i ∈ N (1.14)

• La fonction de pénalité, qui mesure la réalisabilité d’une solution donnée (X,L), se
calcule à partir des quantités / valeurs de chevauchement entre les sphères ou entre
les sphères et les dimensions (fixes) du container.
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Le chevauchement entre deux sphères se calcule comme suit :

Oi,j = max{0, rSi + rSj −
√

(xSi − xSj)2 + (ySi − ySj)2 + (zSi − zSj)2}. (1.15)

Par ailleurs, les chevauchements entre une sphère i et le container B sur les trois
axes se calculent comme suit :

Oi,X = max{0, rSi + |xSi | − 0.5L} ∀i ∈ N (1.16)
Oi,Y = max{0, rSi + |ySi | − 0.5H} ∀i ∈ N (1.17)
Oi,Z = max{0, rSi + |ySi | − 0.5W} ∀i ∈ N (1.18)

Enfin, la fonction de pénalité E(X,L) se calcule en ajoutant les valeurs caractérisées
par tous les chevauchements:

E(X,L) =
N−1∑
i=1

N∑
j=i+1

O2
i,j +

N∑
i=1

(Oi,x +Oi,y +Oi,z) (1.19)

Une solution (X,L) est considérée comme solution réalisable si et seulement si
E(X,L) = 0.

(0.0.0)

x

y

z

(a) Un container sphérique S

1

2

3

4 5

6
N

(b) Un ensemble de sphères de rayons
identiques

Figure 1.9: Une instance du problème 3D − PSS

1.3.2.2 Le problème de placement dans un container sphérique

Une instance du problème de placement dans un container sphérique est représentée par
un ensemble N de n objets (sphères), où chacun des objets est caractérisé par son rayon
(r = 1), et un container sphérique de rayon illimité (R =∞) (cf., Figure 1.9). Le but du
problème est de placer, sans chevauchement, tous les objets (sphéres) disponibles dans le
container de sorte à minimiser le rayon R du container sphérique.
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Ce problème, que l’on note 3D−PSS (Three-Dimensional Packing Smallest Sphere),
a été étudié dans M’Hallah et al. [54]). La figure 1.10 illustre une solution réalisable du
problème 3D − PSS.

Figure 1.10: Structure d’une solution admissible de placement dans un container sphérique

D’une façon formelle, le problème 3D − PSS peut être représenté comme suit (cf.,
M’Hallah et al. [54]) :

min R (1.20)
δ(Si,Sj) ≥ 2 ∀(i, j) ∈ N2, i < j (1.21)

δ(Si,S) ≤ R− 1 ∀i ∈ N (1.22)

La contrainte 1.21 vérifie si deux sphères ne se chevauchent pas; dans ce cas, la distance
Euclidienne δ(Si,Sj) entre les centres de deux sphères doit être supérieure à la somme
de leurs rayons. Quant à la contrainte 1.22, elle assure que la sphère i est entièrement
placée à l’intérieur du container sphérique (dit aussi la sphère fictive), où δ(Si,S) représente
la distance Euclidienne entre le centre de l’objet (sphère) i et le centre du container
sphérique. Nous distinguons les deux cas suivants :

(i) L’origine se situe au milieu de la grande sphère R. Alors,

δ(Si,S) =
√
x2
Si

+ y2
Si

+ z2
Si

(1.23)

(ii) L’origine ne se situe pas au milieu de la grande sphère R. Alors :

δ(Si,S) =
√

(xSi − xS)2 + (ySi − yS)2 + (zSi − zS)2 (1.24)

Particularités du problème 3D − PSS

• Le nombre total de variables dans une instance de ce problème est de l’ordre de
3n+ 1.
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• La plupart des contraintes sont non linéaires (quadratiques) ; nous avons donc n +
n× (n−1

2
) contraintes de ce type.

• La fonction objectif 1.20 représente le rayon de la grande sphère (container sphérique)
à optimiser (que nous cherchons à minimiser). Nous constatons que ce rayon n’apparait
que dans la contrainte 1.22. Maintenant, supposons que nous ayons une solu-
tion (X,R) de 3D-PSS, où toutes les sphères disponibles soient positionnées sans
chevauchement dans la grande sphère S. Alors le rayon R se calcule comme suit :

R = max{
√
x2
si

+ y2
si

+ z2
si

+ 1} ∀i ∈ N (1.25)

• La fonction de pénalité E(X,R), pour une solution (X,R) donnée, se calcule à partir
des chevauchements comme suit :

– le chevauchement entre deux sphères se calcule comme suit :

Oi,j = max{0, 2−
√

(xSi − xSj)2 + (ySi − ySj)2 + (zSi − zSj)2} (1.26)

– le chevauchement entre une sphère et la grande sphère se calcule comme suit :

Oi,S = max{0,R−
√
x2
Si

+ y2
Si

+ z2
Si

+ 1}. (1.27)

– La fonction de pénalité E(X,R) se calcule finalement comme suit :

E(X,R) =
N∑
i=1

N∑
j=0

O2
i,j (1.28)

Notons qu’une solution (X,R) est dite réalisable si et seulement si E(X,R) = 0.

1.3.2.3 Le problème de placement dans un container fermé

Une instance de placement dans un container fermé est représentée par un ensemble N
de n objets (sphères), où chacune des sphères est caractérisée par son rayon ri, et un
container fermé (noté P ) représenté par ses dimensions (L,W ,H). Souvent, le container
P n’est pas assez grand pour accueillir toutes les sphères de N . L’objectif est donc de
maximiser la densité (notée Dmax) en plaçant sans chevauchement un sous-ensemble N
de N . À noter que si N = N , alors nous avons une solution optimale pour cette instance
du problème.

Notons aussi que, dans une version plus générale, chacune des sphères peut être
représentée par un poids (ou un score / profit). Le but, dans ce cas, est alors de max-
imiser le poids des sphères à placer. Une solution réalisable du problème est illustrée par
la Figure 1.11.



18 Chapter 1. Introduction aux problèmes de placement

Figure 1.11: Une solutions réalisable contenant un nombre de sphéres non-identiques dans un
container fermé

Ce problème peut être considéré comme une variante du problème du sac à dos (noté
3D−KP : Three-Dimensional Knapsack Problem), comme il a été étudié dans Kubach et
al. [45, 46]. Il peut aussi se modéliser sous la forme suivante (le modèle ci-dessous considère
que le repère se situe au point (Bas, Derrière, Gauche) de coordonnées (0, 0, 0)) :

max α
∑
i∈N

r3
i ξi (1.29)

s.t. ξiri ≤ xi ≤ ξi(L− ri), i ∈ N (1.30)
ξiri ≤ yi ≤ ξi(H − ri), i ∈ N (1.31)
ξiri ≤ zi ≤ ξi(W − ri), i ∈ N (1.32)

ξiξj(ri + rj) ≤
√

(xi − xj) + (yi − yj) + (zi − zj), (i, j) ∈ N2, i < j (1.33)

ξi ∈ {0, 1}, i ∈ N (1.34)
α = (4π)/(3LHW ) (1.35)

Particularités du problème 3D −KP

En suivant le même raisonnement utilisé dans les sections précédentes (pour les deux
autres variantes du problème), nous pouvons analyser la complexité spacial du modèle
donné.

• Le nombre total de variables dans une instance donnée du problème 3D −KP est
de 3n+ 1. La plupart des contraintes sont non linéaires (quadratiques) ; nous avons
n× (n−1

2
) contraintes non linéaires. Nous avons aussi 6× n contraintes linéaires. Le

nombre total de contraintes est de l’ordre de 6n+ (N × (n−1
2

)).

• Chaque contrainte est liée à une variable de décision ξi telle que :
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ξi =

{
1 la sphère i est placée dans le container P
0 sinon

• La fonction objectif ( 1.29 ) représente la densité D d’une solution réalisable. Cette
dernière se définit comme la proportion du volume de P occupée par les sphères à
l’intérieur où

α = (4π)/(3LHW ) (1.36)

• La fonction de pénalité E(X,P ) et les chevauchements se calculent comme dans le
cas du placement dans une bande (équations de 1.15 à 1.19).

Remarques

• Les différentes variantes du problème de placement de shpères sont NP-difficiles et le
nombre de minima locaux est largement supérieur à N ! (cf., Stoyan et al. [67], Kubach
et al. [46]). Il n’existe donc pas à ce jour d’algorithme qui puisse résoudre à l’optimum
ce problème en un temps polynomial. Bien évidement, notre but n’est pas de s’étaler sur
l’étude de la complexité algorithmique pour ces problèmes, puisque nous nous intéressons
principalement à la résolution heuristique par des méthodes expérimentales.

• La classification de cette problématique "combinatoire ou continue" est floue (cf., Hifi
et al. [31]). En effet, elle appartient à la fois aux problèmes d’optimisation combinatoire
et aux problèmes d’optimisation continue, car la structure d’une solution réalisable est de
nature discrète, alors que les positions des objets sphériques à placer dans un container
sont de nature continue.

Dans ce cas, des méthodes peuvent être appliquées en ne gardant que l’aspect com-
binatoire même si le positionnement des objets reste continue. Dans d’autres cas, des
méthodes d’optimisation en continue sont appliquées et l’aspect combinatoire peut être
négligé puisque, par exemple, des méthodes de descentes s’intéressent principalement à
l’aspect continue des variables (cf. Hifi et al. [31]).

1.4 Conclusion

Dans ce chapitre, nous avons décrit le cadre général de la problématique traitée dans cette
thèse. Nous avons donné une classification utilisée dans la littérature sur les problèmes de
découpe et placement et, la position dans cette classification des variantes étudiées dans
cette thèse. Nous avons également présenté différentes variantes du problème de placement
de sphères ainsi que certains domaines d’application, en l’occurrence le placement de
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sphères dans un container ouvert, dans un container fermé et, enfin, dans un container
sphérique.

L’étude bibliographique que nous avons menée en début de thèse nous a permis dans
un premier temps d’apprécier la diversité des variantes des problèmes de découpe et
de placement et, en particulier, le problème de placement de sphères. D’autre part,
cette étude bibliographique nous a également permis d’étudier et de proposer plusieurs
approches de résolution.
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In this chapter, we will present a general framework of the sphere packing problem,
which belongs to combinatorial optimization problems. These problems can also be mod-
eled as continuous non-linear problems. Indeed, they are at the same time combinatorial
optimization problems as well as continuous optimization problems, since the structure
of a feasible (admissible) solution is discrete whereas the positions of the objects to be
placed in one (or several) container(s) are continuous.

We will also give one of the most utilized classifications of the literature for problems
called cutting/packing problems and the position of our problem in this classification.
Then, we will specify the different variants of the sphere packing problem and their
application fields, especially the three variants studied in this thesis: sphere packing
in an open container (Three-Dimensional Sphere Packing Problem, 3D − SPP ), sphere
packing into a closed container (Three-Dimensional Knapsack Problem, 3D −KP ) and,
finally, sphere packing into a spherical container (Three-Dimensional Packing Spheres into
a Sphere, 3D − PSS).

21
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2.1 Optimization problem

An optimization problem can be defined as the search of a minimal or maximal value of a
given objective (mathematical function) while following a certain number of constraints
(cf. Collette and Siarry [16]). In the case of a minimization problem, the mathematical
formulation can be represented as follows:

min f(−→x )∀−→x ∈ S (2.1)
g(−→x ) ≤ 0 (2.2)
h(−→x ) = 0 (2.3)

In other terms, the optimization problem consists in finding the best solution −→x ∗
among the set of all possible solutions in the search space while respecting the problem’s
constraints. Mathematically, a solution −→x = {x1,x2, .̇.,xn} is a vector which contains
n decision variables (with n > 0). If these variables are real numbers, the optimization
problem is said to be continuous −→x ∈ Rn and S ⊆ Rn. However, if the variables are
discrete, the optimization problem is said to be discrete (or sometimes combinatorial)
−→x ∈ Zn and S ⊆ Zn.

Solving an optimization problem is equivalent to finding a feasible solution (which
respects all the constraints). According to the search space or the part of the search space
that we wish to explore, we distinguish two feasible solutions: (i) the local minimum/
maximum and (ii) the global minimum/maximum.

Figure 2.1: The different mimima

Definition 3. A solution −→x ∗ ∈ S is considered a global minimum / maximum of function
f if there is no better solution in the search space S, that is:

∀−→x ∈ S =

{
f(−→x ∗) < f(−→x ) minimization case
f(−→x ∗) > f(−→x ) maximization case
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Definition 4. A solution −→x ∗ is considered as a local minimum / maximum of function f
if there is no other better solution in its neighbourhoods V (−→x ∗), that is:

∀−→x ∈ V (−→x ∗),−→x 6= −→x ∗
{
f(−→x ∗) ≤ f(−→x ) in the case of a minimization
f(−→x ∗) ≥ f(−→x ) in the case of a maximization

Figure 2.1 illustrates a global minimum (maximum) and another local minimum (max-
imum) for an optimization problem.

2.2 Cutting and packing problems

Cutting and packing problems (C&P) occur traditionally when we try to extract (cut) or
to place (position) a predefined set of objects from (into) largest objects while respecting
one or more specific constraints (for example overlapping objects, guillotine type of cut-
ting, balancing the positioning of objects, etc.) and while optimizing a certain objective
function that may depend on the containers and on the selected objects placed in the
container(s) (cf. Dyckhoff et al. [26, 21], Wäscher et al. [74]).

These problems are among the best known combinatorial optimization problems. They
have led to many scientific studies in the literature with a raising number of publications
for many years and have many important practical applications in the industrial field
(cutting of raw materials), transportation logistics (load, vehicles, trucks, pallets, etc.),
storage (memory allocation problems), finance (portfolio management).

Given the importance of these problems and the high number of sub-problems related
to cutting and packing, Wäscher et al. [74] have proposed a typology of the problems of
the C&P family that takes into account the five most common problems:

1. The problem dimension: dimensions of the objects in a problem.

2. The objective: when all the available containers are not enough to contain all the ob-
jects, then we try to maximize the packing of objects in a set of available containers.
Otherwise, the objective is to minimize the number of containers to be used (in the
case of a single container, it consists in minimizing the dimension of the container,
that can vary).

3. The objects to place: the shape, size and distribution of the objects. Three cases
can be considered: (a) all the objects have the same size, (b) we only consider a
small number of object classes of different sizes and, (c) the number of objects is
very high and they do not have the same size.

4. The containers to be used: the nature, size and number of containers. Two cases
can be examined: (a) a single container is available and its dimensions can be pre-
determined or vary and (b) several containers of fixed dimensions of identical sizes
or different sizes.
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5. The shape of the objects (items): they can be represented as circles, rectangles,
cylinders, spheres, cubes, etc. Similarly, the type of the objects to pack (or cut) has
the same type as the containers.

Finally, Wäscher et al. [74] have proposed six classes of problems of the C&P family,
which are categorized according to criteria 2 and 3 previously described (cf. figure 2.2):

cutting and packing
C&P

Maximization problems

Packing
of identical

items

Packing
of ho-

mogenous
items

Knapsack
problem

Minimization problems

Problem with
open

dimension

Problem
of cutting
stock

Bin-packing
Problem

Figure 2.2: Main classes of C&P problems

In our study, we will consider the two following classes:

- Open Dimension Problems (ODP): we only use one open container or a fictional
spherical container (to be determined) while the objects (items) are spherical and
each of them is characterized by its radius (they can be identical or not).

- Single Knapsack Problem (SKP): the container (which can be spherical) is closed
(of fixed dimensions) and the objects (items) are non-identical spheres.

2.3 Sphere packing problem

2.3.1 Some applications

Sphere packing problems have been known since 1610, when the best known mathematical
question was written (cf. Conway et al. [17]):

"What is the maximal density of a compact stack of identical spheres?"

In 1611, Kepler [17], a German astronomer and mathematician, formulated (without
proving it) the conjecture that the maximal density was about

π

3
√

2
' 74.048%. This

density is reached for a cubic packing with centered faces. This situation can be found,
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(a) (b)

Figure 2.3: Structure of the packing for Kepler’s conjecture

for example, in fruit and vegetable stores, as illustrated by figure 2.3.

The problem of the "Kissing Number", which consists in determining the highest pos-
sible number of identical spheres, that can be placed around a sphere of the same type,
was a dispute topic between Newton (a British physicist, philosopher, astronomer and
mathematician) and Gregory (mathematician and astronomer) in 1690. Newton thought
that only 12 spheres could be placed around a sphere of the same size, while Gregory
stated that it was 13 (cf. Conway et al. [17], Kucherenko et al. [47], Zong [79]). In
1956, Leech [49] proved that the number was 12. Hilbert (a German mathematician)
included in 1900 (cf. Lagarias [48]) Kepler’s conjecture in his well-known list of the 23
big unsolved mathematical problems (cf. Derbyshire [20]). In 1998, Hales wrote a proof
of Kepler’s conjecture with the help of computer calculations. His proof was made of a
300-pages text and 40 000 lines of code. In 2014, Kepler’s conjecture was officially proved.

Practically, the applications of sphere packing are very numerous, for example:

In medicine: in the cancer treatment field, the gamma-knife (cf. figure 2.4(a)) is one
of the most efficient radio-surgery techniques. The goal is to submit the cancerous region
to higher doses shots (cf. figure 2.4(b)) so as to provoke reactions that can lead to the
patient’s recovery.

An optimal treatment by Gamma knife must verify the following criteria: (cf. Wang [73],
Sutou et al. [69], Li et al. [50]):

1. The shot must not go beyond the bounderies of the region in order to avoid damaging
healthy cells.

2. Overlapping between the shots are forbidden in order to avoid overdosing.

3. The best treatment is the treatment that generates the most density and avoids
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(a) Gamma knife (b) Treatment of cancers by
Gamma knife

(c) Modeling of the shots and of the
cancerous region

Figure 2.4: Illustrations of Gamma knife treatment

overdosing or a non-uniform distribution.

On a modeling point of view (cf. figure 2.4(c)), the shots can be considered as spheres,
identical or not, and the cancerous region as a geometric shape, regular or irregular.

In parallel, Sutou et al. [69] and Li et al. [50], proposed the packing of non-identical
spheres in a polytope to modelize the previously described treatment while Wang [73]
proposed the packing of non-identical spheres in an irregular region.

Material science and biology: sphere packing has been utilised as a model to represent
granular environments and the structure of lipids, proteins and vitreous materials in
order to study a few properties about thermic conductivity, electrical conductivity, fluid
movements, constraints distribution and other mechanical properties of granulars, living
cells, etc. (cf. Williams et al. [75], Larrard et al. [18], Cheng et al. [12]).

In this part, we will present the sphere packing model created by Nguyen et al. [59, 60]
in order to study the thermic conductivity in granular environments.

As shown by figure 2.5(a), granular environments are indeed generally porous and
diphasic (they contain particles and pores). The particles (or grains) are modeled in the
form of identical or non-identical spheres stored in a matrix (a container). The empty
spaces around the particles are considered as pores, as shown by figure 2.5(b). The
increase of thermic conductivity is due to a reduction of the pores’ dimensions and to an
increase of the space between particles.

Furthermore, Nguyen et al. [61] used this modeling to study the energy dissipation by
friction on the interface of a braking system, which plays an important role in car and
train transportation security. Their model is made of two solid layers and an intermediate



2.3. Sphere packing problem 27

(a) Granular environment (b) Thermic transfers by con-
duction between particles

(c) Fluid-particles thermic
transfers

Figure 2.5: Thermic transfer in granular environments

granular layer. The latter has been modeled as sphere (or circle) packing in a container,
as illustrated by figure 2.5(c).

In ecology: the modeling of the complex structure of tropical rainforests is one of the
greatest challenges. One of the noteworthy questions is the distribution of different tree
sizes, which is particularly important to estimate the biomass. Taubert et al. [70] have
developed a model based on sphere packing to study and present the structure of tropical
forests as illustrated by figure 2.6.

Figure 2.6: Modeling of the complex structure of tropical forests

Communication and digital storing Telephone, computer networks, translation error
correction and storing error correction are considered as sphere packing problems with-
out overlapping where we are seeking to maximize the density in a given dimension, as
explained by Conway et al. [17] and Claudio et al. [13].

It should be noted that other applications are presented by Hifi et al. [31], where a set
of problems have been handled, modeled and solved by applying various methods.
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2.3.2 Some sphere packing problems

In this thesis, we are interested in solving three variants of the sphere packing problem:
(i) in an open container, (ii) a closed container and (iii) a spherical container.

2.3.2.1 Packing problem in an open container

An instance of a packing problem in an open container is represented by a set N of
n objects (spheres), where each object is characterized by its radius ri (identical/non-
identical) and an open container, denoted by B of dimensions (H,W,∞), where H is
the width, W the depth and L= ∞ its varying length(cf. figure 2.7). The goal of the
problem is to pack without overlapping all the objects (spheres) into the container so as
to minimize the length L of the container.

Finding a feasible solution for this problem equals therefore to determining the values
of the couple (X,L), where X = {xi, yi, zi, ...,xn, yn, zn} is a vector representing the
positions of the n spheres placed in the container B of length L (figure 2.8(a) illustrates
a feasible solution associated with an instance of the problem).

From now on, that problem will be denoted by 3D − SPP (Three-Dimensional Strip
Packing Problem) by following the same representation as Kubach et al. [45, 46]).

1

2

3

4 5

6
N

(a) Spheres of non-identical radius

1

2

3

4 5

6
N

(b) Spheres of identical radius

x

y

z

(0.0.0)
W

H

L

(c) An open container B

Figure 2.7: An instance of 3D − SPP

The problem 3D − SPP can be represented as the model described below (assuming
that the origin is situated at point (0, 0, 0)):
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(a) Spheres of radius ri = 1 in an
open container

(b) Spheres of different radius in an
open container

Figure 2.8: Structures of feasible (packing) solutions in an open container B

min L (2.4)
δ(Si,Sj) ≥ (rSi + rSj) ∀(i, j) ∈ N2, i < j (2.5)

xSi ≤ L− rSi ∀i ∈ N (2.6)
ySi ≤ H − rSi ∀i ∈ N (2.7)
zSi ≤ W − rSi ∀i ∈ N (2.8)

xSi ≥ rSi ∀i ∈ N (2.9)
ySi ≥ rSi ∀i ∈ N (2.10)
zSi ≥ rSi ∀i ∈ N (2.11)

L ≤ L ≤ L (2.12)

Constraints 2.5 make sure that two different spheres Si and Sj do not overlap. Measure
δ(Si,Sj) represents the Euclidean distance between two spheres.

δ(Si,Sj) =
√

(xSi − xSj)2 + (ySi − ySj)2 + (zSi − zSj)2 (2.13)

Constraints from 2.6 to 2.11 ensure that the spheres do not go beyond the container.
(xSi , ySi , zSi) represents the position of the sphere i in the container B of length L. As
for constraint 2.12, it represents the limitation of the optimum by a lower and an upper
bounds. A lower bound L can be provided in a trivial way, for example by stating:

L =
4× π

∑N
i=1 r

3

3×W ×H
.

Moreover, the upper bound L can initially either take a trivial value, such as L = 2×L,
or be computed by a quick greedy algorithm.
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Specificities of the 3D − SPP problem

Starting from the formulation of the 3D − SPP problem, we note the following points:

• The total number of variables in an instance of this problem is approximately 3n+1.

• Most constraints are non-linear (quadratic); we have n × (n−1
2

) constraints of that
type type. We also have 6×n linear constraints. The total number of constraints is
approximately 6n+ (N × (n−1

2
)).

• The objective function ( 2.4 ), which represents the minimum length of the container
to be determined, is linear. Variable L only appears in constraint ( 2.6 ). Let’s
suppose that we have a solution to the problem 3D − SPP , where all the available
spheres are positioned without overlaps in the container B. Then, variable L can be
calculated as follows:

L = max{xi + ri} ∀i ∈ N (2.14)

• The penalty function, which measures the feasibility of a given solution (X,L),
can be calculated from the quantities of overlapping values between two spheres or
between spheres and the (fixed) dimensions of the container.

The overlap between two spheres can be calculated as follows:

Oi,j = max{0, rSi + rSj −
√

(xSi − xSj)2 + (ySi − ySj)2 + (zSi − zSj)2}. (2.15)

On the other hand, the overlaps between a sphere i and the container B on the three
axes can be calculated by:

Oi,X = max{0, rSi + |xSi | − 0.5L} ∀i ∈ N (2.16)
Oi,Y = max{0, rSi + |ySi | − 0.5H} ∀i ∈ N (2.17)
Oi,Z = max{0, rSi + |ySi | − 0.5W} ∀i ∈ N (2.18)

Finally, the penalty function E(X,L) is calculated by adding the characteristic val-
ues of all overlaps, as follows:

E(X,L) =
N−1∑
i=1

N∑
j=i+1

O2
i,j +

N∑
i=1

(Oi,x +Oi,y +Oi,z) (2.19)

A solution (X,L) is considered as a feasible solution if and only if E(X,L) = 0.
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2.3.2.2 Sphere packing problem: using a spherical open container

An instance of the packing problem in a spherical container is represented by a set N of n
objects (spheres), where each object is characterized by its radius (r = 1), and a spherical
container of unlimited radius (R = ∞) (cf. figure 2.9). The goal of the problem is to
place without overlaps all the (spherical) objects in the container so that the radius R of
the container is minimized.

This problem, denoted by 3D − PSS (Three-Dimensional Packing Smallest Sphere)
has been studied by M’Hallah et al. [54]). Figure 2.10 illustrates a feasible solution of
problem 3D − PSS.

(0.0.0)

x

y

z

(a) A spherical container S

1

2

3

4 5

6
N

(b) A set of spheres of identical radius

Figure 2.9: An instance of 3D − PSS problem

Figure 2.10: Structures of an admissible solution for the placement in a sphere

Formally, the 3D − PSS problem can be represented as follows (cf. M’Hallah et
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al. [54]) :

min R (2.20)
δ(Si,Sj) ≥ 2 ∀(i, j) ∈ N2, i < j (2.21)

δ(Si,S) ≤ R− 1 ∀i ∈ N (2.22)

Constraints 2.21 check that two spheres do not overlap; in this case, the Euclidean
distance δ(Si,Sj) between the centres of two spheres must be higher than the sum of their
radius. As for constraint 2.22, it ensures that sphere i is entirely contained inside the
spherical container (also called the fictional sphere), where δ(Si,S) represents the Euclidean
distance between the centre of the object (sphere) i and the centre of the spherical con-
tainer. We will distinguish the two following cases:

(i) The origin is situated in the middle of the spherical container R. Then:

δ(Si,S) =
√
x2
Si

+ y2
Si

+ z2
Si

(2.23)

(ii) The origin is not situated in the middle of the spherical container R. Then:

δ(Si,S) =
√

(xSi − xS)2 + (ySi − yS)2 + (zSi − zS)2 (2.24)

Specificities of 3D − PSS problem

• The total number of variables in an instance of this problem is approximately 3n+1.

• Most constraints are non-linear (quadratic); we have n + n × (n−1
2

) constraints of
this type.

• The objective function 2.20 represents the radius of the spherical container S to be
optimized (that we are trying to minimize). We find that this radius only appears in
constraint 2.22. Now, let us assume that we have a solution (X,R) of 3D-PSS, where
all available spheres are positioned without overlapping in S. Then, the radius R is
calculated as follows:

R = max{
√
x2
si

+ y2
si

+ z2
si

+ 1} ∀i ∈ N (2.25)

• The penalty function E(X,R) for a given solution (X,R) can be calculated from
the overlaps as followed:

– the overlap between two spheres is:

Oi,j = max{0, 2−
√

(xSi − xSj)2 + (ySi − ySj)2 + (zSi − zSj)2} (2.26)
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– the overlap between a sphere and the spherical container is:

Oi,S = max{0,R−
√
x2
Si

+ y2
Si

+ z2
Si

+ 1} (2.27)

– The penalty function E(X,R) is finally:

E(X,R) =
N∑
i=1

N∑
j=0

O2
i,j (2.28)

Note that a solution (X,R) is said to be feasible if and only if E(X,R) = 0.

2.3.2.3 Sphere packing problem: using a closed container

A packing instance in a closed container is represented by a set N of n objects (spheres),
where each sphere is characterized by its radius ri, and a closed container P represented
by its dimensions (L,W ,H). Often, the container P is not big enough to contain all the
N available spheres. Hence, the aim is to maximize the density Dmax by placing without
overlaps a subset N of N . Note that if N = N , then we have an optimal solution for the
instance.

Also note that, in a more general version, each of the spheres can be represented by a
weight (or a score /profit). The goal, in this case, is to maximize the weight of the spheres
that we want to pack. A feasible solution to the problem is represented by figure ??.

This problem can be considered as a variant of the Three-Dimensional Knapsack Prob-
lem (3D −KP ) as it has been studied in Kubach et al. [45, 46]. It can also be modeled
as shown below (the model below considers that the reference is situated at the point
(Bottom, Behind, Left) of coordinates (0, 0, 0)):

max α
∑
i∈N

r3
i ξi (2.29)

s.t. ξiri ≤ xi ≤ ξi(L− ri), i ∈ N (2.30)
ξiri ≤ yi ≤ ξi(H − ri), i ∈ N (2.31)
ξiri ≤ zi ≤ ξi(W − ri), i ∈ N (2.32)

ξiξj(ri + rj) ≤
√

(xi − xj) + (yi − yj) + (zi − zj), (i, j) ∈ N2, i < j (2.33)

ξi ∈ {0, 1}, i ∈ N (2.34)
(2.35)

where α = (4π)/(3LHW ).
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Figure 2.11: Structures of feasible solutions-Closed Container

Specificities of 3D-KP

Using the same method as in the previous sections (for the other two variants of the
problem), we can analyse the spatial complexity of the given model.

• The total number of variables in a given instance of the 3D−KP problem is 3n+1.
Most constraints are non-linear (quadratic); we have n×(n−1

2
) non-linear constraints.

We also have 6 × n linear constraints. The total number of constraints is approxi-
mately 6n+ (N × (n−1

2
)).

• Each constraint is associated with a decision variable ξi such that:

ξi =

{
1 sphere i is placed in the container P
0 otherwise

• The objective function ( 2.29 ) represents the density D of a feasible solution. The
latter is defined as the proportion of the volume of P occupied by the spheres inside
where

α = (4π)/(3LHW ) (2.36)

• The penalty function E(X,P ) and the overlaps are calculated as in the case of the
packing in a strip (equations of 2.15 to 2.19).

Remarks

• The variants of the sphere packing problem are NP-hard and the number of local
minima is far superior to N ! (cf. Stoyan et al. [67], Kubach et al. [46]). Therefore,
there is no algorithm that can solve the problem optimally within a polynomial time.
Of course, our goal is not to study thoroughly the algorithmic complexity of these
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problems since we are mainly interested with heuristics based upon experimental
methods.

• The classification of this "combinatorial or continuous" problem is fuzzy (cf. Hifi et
al. [31]). Indeed, it belongs to both combinatorial optimization problems and con-
tinuous optimization problems, because the structure of a feasible solution is of a
discrete nature while the positions of the spherical objects to be placed in a container
are of continuous nature.

In that case, methods can be applied by keeping only the combinatorial aspect even
if the positioning of the objects remains continuous. In other cases, continuous
optimization methods are applied and the combinatorial aspect can be neglected
since, for example, descent methods primarily focus on the continuous aspect of
variables (cf. Hifi et al. [31]).

2.4 Conclusion

In this chapter, we described the general frame of the problems handled in this manuscript.
We described a classification used in the literature for cutting and packing problems and,
the position of the variants studied in this work. We also discussed different variants of the
sphere packing problem and their applications, e.g., sphere packing in an open container,
in a closed container and in a spherical container.
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Solution methods for packing problems
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This chapter presents some of the well-known solution methods developed for solving
some sphere/circle packing problems. Because the sphere/circle packing problem belongs
to the NP-hard class, the approaches used for tackling such problems in the literature are
often based on experimental methods (specific heuristics and meta-heuristics), methods
using simulations and hybrid methods. Herein, we first describe other variants of the
packing problem. Second and last, we try to describe some proposed approaches available
in the literature that are used for approximately solving several variants of the packing
problem.

37
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3.1 Introduction

Since the sphere/circle packing problem belongs to the NP-hard class, no algorithm can
solve it optimally in a polynomial time. Consequently, approaches used in the literature
are often based on experimental methods. These methods include specific heuristics,
meta-heuristics, methods using simulation and hybrid methods. Hifi and M’Hallah [31]
proposed an interesting review on two- and three-dimensional circular/spherical packing
problems, where Euclidean distance is used.

Before describing some well-known methods used for solving the sphere packing and
its related problems, we first propose complementary problems which are encountered in
several real-world applications and recently tackled in the literature. These problems may
be viewed as variants of the sphere packing described in section 3.2: packing spheres into
a cuboid, into a cube, into a cylinder, into a pyramid, and into a regular tetrahedron (cf.
Hifi et al. [31], Birgin and Sobral [8]).

Variant Model Nb variables Nb constraints
Cuboid minL.W .H 3N + 3 6n+ (N × (n−1

2
))

S.t. ri ≤ xi ≤ L− ri, ∀i ∈ N
ri ≤ yi ≤ H − ri, ∀i ∈ N
ri ≤ zi ≤W − ri,∀i ∈ N

δ(i,j) ≥ (ri + rj)

Cube minW 3n+ 1 6n+ (N × (n−1
2

))

S.t. ri ≤ xi ≤W − ri,∀i ∈ N
ri ≤ yi ≤W − ri, ∀i ∈ N
ri ≤ zi ≤W − ri,∀i ∈ N

δ(i,j) ≥ (ri + rj)

Cylinder minR2H 3n+ 2 3n+ 2 + (N × (n−1
2

))

S.t. x2i + y2i ≤ (R− ri)2, ∀i ∈ N
R ≥ rmax ≡ max {ri} , ∀i ∈ N
ri ≤ zi ≤ H − ri,∀i ∈ N

δ(i,j) ≥ (ri + rj)

Pyramid minL 3n+ 1 5n+ 1 + (N × (n−1
2

))

S.t. 2xi +
√

2zi ≤ L−
√

6ri, ∀i ∈ N
−2xi +

√
2zi ≤ L−

√
6ri, ∀i ∈ N

2yi +
√

2zi ≤ L−
√

6ri, ∀i ∈ N
−2yi +

√
2zi ≤ L−

√
6ri, ∀i ∈ N

zi ≥ 0, ∀i ∈ N
δ(i,j) ≥ (ri + rj)

Tetrahedron minL 3n+ 1 4n+ 1 + (N × (n−1
2

))

S.t. 2
√

2xi − 2
√

6yi + 2zi ≤
√

6L− 6ri,∀i ∈ N
2
√

2xi + 2
√

6yi + 2zi ≤
√

6L− 6ri, ∀i ∈ N
−2
√

2xi + zi + ri ≤ 0, ∀i ∈ N
zi ≥ 0, ∀i ∈ N
δ(i,j) ≥ (ri + rj)

Table 3.1: Illustration of the formal models when varying the container.
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3.2 Complementary packing problems

In this section, we present other variants of the sphere packing family. Depending on the
container used to pack a set of available (identical or non-identical) spheres/items, we can
distinguish the problems related to packing spheres/items into a specified container, such
as a cuboid, a cube, a cylinder, a pyramid, and a tetrahedron.

Table 3.1 illustrates the problems characterized by Birgin and Sobral [8], where each
version of the problem is represented by its model. Column 1 refers to the version of the
problem, column 2 reports the formal description of that problem, and columns 3 and 4
tally some specificities related to the number of variables and constraints associated with
the instance of the problem.

(a) Feasible packing
into a cuboid

(b) Feasible packing
into a cube

(c) Feasible packing
into a cylinder

(d) Feasible packing
into a pyramid

(e) Feasible packing
into a tetrahedron

Figure 3.1: Sphere packing into different shapes

From table 3.1, one can observe that:

1 - δ(i,j) =
√

(xSi − xSj)2 + (ySi − ySj)2 + (zSi − zSj)2 represents the Euclidean distance
between two spheres. It is a non-linear (quadratic) constraint and there are n×(n−1

2
)

constraints of that type.

2 - The other (linear) constraints ensure that the spheres do not go beyond the container;
(xi, yi, zi) represents the position of the sphere i in the container.

3 - The objective function of each model is to minimize the dimension of the container.
Note that all of these variants belong to the class of "open dimension problems".
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4 - The cartesian system is considered for each of these models.

5 - Figure 3.1 (extracted from Birgin and Sobral [8] and available on the following web-
site:
https://www.ime.usp.br/∼egbirgin/packing)) illustrates the feasible solutions for the con-
sidered variants.

Because the sphere packing problem is simply an extended version of the circle packing
problem, each of these models (cf. table 3.1) can be reformulated when using a polar
coordinate system and (or) a mixed polar/cartesian system (for more details, the reader
can be referred to Mladenović et al. [57], Lopez [52], and Hifi et al. [31].

3.3 Some solution methods

The sphere/circle packing problem belongs to the NP-hard combinatorial optimization
problems, for which most approaches are based on approximate methods (heuristics,
meta-heuristics, simulation-based methods and hybrid methods). Generally, approximate
methods are an alternative to exact methods for tackling complex optimization problems
where large-scale or complex instances are considered. The goal of such methods is to
achieve solutions with good quality (not necessarily optimal) within a reasonable time.
As underlined above, they become interesting, especially for solving large-scale instances,
whenever the runtime may grow with the size of the instance or according to its complex-
ity.

We note that the effectiveness of these type of methods may be analyzed depending
on both its achieved solution’s quality and its runtime, which may be compared to the
best solutions available in the literature when using an equivalent runtime limit.

3.3.1 Heuristics

The advantage of a heuristic is related to its simplicity to construct a series of solutions
within a reasonable (small) runtime. Constructive heuristics are often used in the litera-
ture in order to find moderate solutions within small average runtime. Indeed, George et
al. [23] have developed several rules to create constructive heuristics allowing to measure
at the end the quality of the achieved solutions. Among these rules, we can find the sorting
strategy that orders all items in decreasing order of their radii; its goal is to favor items
with the largest radius, while the others (with the smallest radii) are used for filling the
unused spaces. Such a constructive heuristic consists in filling a container by positioning
items step by step until no item, from the remaining items to be packed, can be added to
the current solution. Generally, the item to be positioned into the container is given by a
function, like a local choice criterion. Then, the best item realizing the favored position
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is packed into the container. Such a process tries to provide a partial solution that is
iteratively completed by packing an item belonging to the non-packed items.

Of course, several criteria related to a local choice have been suggested in the literature.
Indeed, most of these criteria are mainly based upon searching the position realizing the
minimum local distance position between some items and the container (as described
in chapter 4, section 4.2.2). For the sphere/circle packing problem, two constructive
heuristics can be distinguished: (i) constructive greedy procedures and (ii) constructive
procedures using a look-ahead (beam search).

3.3.1.1 Constructive greedy procedures

The Constructive Greedy Procedure (noted CGP) starts by positioning the first item
into the container, while the n− 1 remaining items are successively positioned according
to a local choice criterion. In the case of different eligible positions (positions realizing
the same distance), then the chosen item to pack is either (i) the first item realizing the
smallest index related to its order or (ii) the item realizing the smallest distance from the
edge the container. In what follows, the framework of the basic greedy procedure used
for building a starting feasible solution is described.

1. Let Ii = {i} be the set of items of N already packed in the current container. Set
Ii = {1, ..,n}\{Ii} as the set of items of N which are not yet packed in the container
and let PIi be the set of eligible positions of the i-th item.

2. Update PIi with the eligible positions of each j ∈ Ii.

3. Repeat

(a) Let pi+1
k be the best position of the next item to pack according to the local

choice criterion.

(b) Position the (i + 1)th item into the position pi+1
k and move the packed item to

Ii.

(c) Update the set of eligible positions PIi .
Until PIi = ∅

4. Exit with a feasible solution and the subset Ii ⊆ N containing the packed items.

Huang et al. [39] have developed two greedy constructive heuristics (noted B1.0 and
B1.5) for packing non-identical circles into a rectangular container. These heuristics use a
local choice criterion called Maximum Hole Degree (noted MHD) which allows to evaluate
the best position of an item by evaluating the unused area when positioned at the corner
of the corner position of the container. The heuristic B1.0 has been used in order to
build a feasible solution by iteratively positioning the circles into the container while the
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heuristic B1.5 improves the solutions by using a look-a-head strategy; that is used for
searching a series of feasible solutions following a series of paths, where the selected item
to pack is that realizing the best solution over all developed paths.

Kubach et al. [46] used an adaptation of B1.0 and B1.5 for solving the sphere packing
problem and by considering both versions of the problem: open and closed container.
Because of the huge number of eligible positions of each candidate item to pack, parallel
versions of Kubach et al.’s [46] algorithms have been proposed (cf. Kubach et al. [45]).

Akeb ([3, 2]) proposed a simple adaptation of the look-a-head search (Huang et al. [39])
with the MHD for tackling the non-identical sphere packing problem.

Hifi et al. [27] proposed two heuristics for the non-identical circle cutting problem in a
rectangular container. The first heuristic is a greedy one that uses the adapted best local
position which tries to reach a better set of eligible positions. Such a criterion can be
viewed as a variant of the bottom-left strategy since it chooses the left-most and highest
position to next item to pack. The second heuristic combines the genetic algorithm with
a constructive procedure: the genetic algorithm is used to create a series of new order of
items to pack, whereas the constructive procedure was used to reach a feasible solution
for the problem. Both procedures were iterated until providing a satisfactory solution for
the problem.

3.3.1.2 Constructive procedure using a look-ahead (beam search)

The Beam Search (noted BS) has been first proposed by Ow and Morton [62] for tackling
the scheduling problem and it has since been successfully applied to many other combina-
torial optimization problems (Akeb and Hifi [4, 6, 5, 7]). Such an approach can be viewed
as a truncated tree search procedure where the objective is to avoid an exhaustive search
by performing a partial enumeration of the solution space.

At each level of the developed tree, only a subset of nodes (called the set of elite nodes)
are selected for further branching, while the other nodes are discarded; no backtracking is
performed. For each level, the cardinality of the elite nodes to be investigated is set to ω,
which is called the beam width. Generally, these selected ω nodes represent those having
a high potential to lead the best solutions for the treated problem. Furthermore, each
node is assessed via an evaluation function whose role is to provide a promising separation
mechanism of the nodes of each level of the developed tree.

Algorithm 1 describes the main steps of the standard beam search which is character-
ized by a beam width ω used for filtering the set of offspring nodes Bω. A node corresponds
to a partial feasible solution and the set B of current nodes is initialized to the root node
B0, whereas Bω, containing the offspring nodes, is initialized to the empty set. Each node
of B generates a set of offspring nodes, and moves them to Bω. If a node η of Bω is a
leaf (i.e. no further branching is possible out of η), then its objective function value zη
is computed and compared to z?. If zη > z?, then the incumbent solution is set to the



3.3. Some solution methods 43

Algorithm 1 Beam Search
1. Initialization step

(a) Let ω be the beam width.
(b) Set B = {B0} and Bω = ∅, where B is the set of nodes to be investigated, and Bω the set of nodes

branched out of the nodes in B.
(c) If an initial feasible solution is available, set z? to its objective function value; otherwise, set z? = +∞

(minimization problem).

2. Iterative step
Repeat

(a) Choose a node η ∈ B; branch out η; remove η from B and insert the created nodes into Bω.
(b) If a node η of Bω is a leaf, then

i. compute its objective function value zη;
ii. if zη > z?, update z? and the incumbent solution;
iii. remove η from Bω.

(c) Assess the potential of each node of Bω using an evaluation function.
(d) Rank the nodes of Bω in a decreasing order of their values.
(e) Insert the min{ω, |Bω|} best nodes (called elite nodes) of Bω into B; and set Bω = ∅.

Until B = ∅.

leaf node; z? is then updated: z? = zη; and η is removed from Bω. All nodes belonging
to Bω are assessed using an evaluation function, and then ranked in decreasing order of
their values. The first ω nodes of Bω are then considered as the elite nodes which are
appended to the set B, whereas the remaining nodes of Bω are discarded and Bω is reset
to the empty set. This process is iterated until no further branching is possible, i.e. until
B = ∅.

3.3.2 Meta-heuristics

Meta-heuristics are mainly designed for approximately solving a wide range of hard (com-
binatorial) optimization problems (cf. Boussaïdare et al. [11]). A metaheuristic can be
viewed as a generic (general) algorithm which can be adapted to different optimization
problems. Its main feature is to achieve a balance between intensification and diversi-
fication strategies to converge toward satisfactory solutions. Diversification consists in
generating diverse solutions to explore in the search space, while intensification focuses
on a series of local regions where good solutions have been located.

There are several meta-heuristics whose differences are generally related to the repre-
sentation of an instance of the problem to solve, the repartition of the starting solutions
(in the population), the path to reach new solutions, how the solutions replace the old
ones, the stopping criteria, etc.

Some of these meta-heuristics may have some common characteristics (cf. Boussaï-
dare et al. [11], Blum et al. [10],Blum et al. [9]), like:
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• Nature-inspired (physics, biology or sociology).

• Stochastic approaches (involving random variables).

• No use of the gradient or Hessian matrix of the objective function.

• Parameters setting to fit to the problem at hand.

According to the latest survey proposed by Boussaïdare et al. [11], the meta-heuristics
may be classified into two distinct categories:

1. Trajectory methods which start with a single initial solution and move away from
it.

2. Population-based meta-heuristics which manipulate a population of solutions at each
iteration.

In the following, we describe some of the meta-heuristics used to solve the circle/sphere
packing problem.

3.3.2.1 Trajectory methods

These approaches are also called single-solution based approach (cf. Boussaïdare et
al. [11]). They start with a single initial solution and move away from it. Among the solu-
tion approaches belonging to this category, we can find the simulated annealing method,
the tabu search, the variable neighborhood search, the iterated local search, etc.

A- Simulated annealing:

Simulated annealing (noted SA) models the physical process of heating a material and
then slowly lowering the temperature until it achieves a solid state of minimal energy E.
This process has been introduced as a resolution technique of combinatorial optimization
problems by Kirkpatrick et al. [44]. The main steps of such technique are described in
algorithm 2.
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Algorithm 2 Simulated annealing (SA)
1: Initialization step
2: Current (initial) solution S
3: Initialize the temperature T
4: Iterative step
5: while

(
Stopping criterion is not satisfied

)
do

6: repeat
7: Randomly select S′ ∈ N(s)
8: if f(s′) ≤ f(s) then
9: S ← S′

10: else if f(s′) > f(s) then

11: S ← S′ with probability P = e
(
−f(s′)− f(s)

T
)

12: end if
13: until Thermodynamic equilibrium of the system is reached
14: Decrease T
15: end while
16: Return the best solution found

First, SA starts with an initial solution S, and a controllable parameter T (tempera-
ture). Then, at each iteration of SA, several transformations are applied to the current
solution S in order to generate a neighbor solution S ′ ∈ N(s) (line 7). Consequently, the
new generated solution S ′ is accepted to replace the current one S according to its objec-

tive function ( line 6) or according to the acceptance probability P = e
(
−f(s′)− f(s)

T
)

(line 10). Finally, the temperature T is decreased (line 14) until a thermodynamic equilib-
rium of the system is reached. Note that, the acceptance probability P allows to explore
a greater part of the search space and to avoid to getting trapped too quickly in a local
optimum.

Zhang et al. [77] have combined simulated annealing with Tabu Search (noted TS)
to pack non-identical circles (resp. identical) in a circular container. SA was introduced
to escape from local optima with probability mechanism. TS was mainly used for pre-
venting cycling and enhancing diversification. The initial solution S has been (generally)
randomly generated. The neighborhoods were made by selecting a circle with the greatest
deformation and randomly move it inside the container, then a continuous local optimiza-
tion was used to improve the quality of the new generated solutions S ′ ∈ N(s).

Hifi et al. [35] have presented a SA to solve the (non)identical circles cutting problem on
a rectangular strip. The approach is based upon an energy function that, when it becomes
minimum, provides solutions in which a set of items concentrated at the bottom-left corner
of the original strip. The neighborhoods are generated by moving circles (horizontally,
vertically and diagonally) and by exchanging some circles.
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B- Tabu Search − TS

TS is based on the idea ’learn from the past’ by using of mechanisms inspired by the
human memory (history of the search). The method was presented firstly by Glover
and Laguna [24]. The main idea is to move from a solution S toward another neighbor
solution S ′ where the return to already explored solutions is forbidden for a certain number
of iterations by keeping them into a temporary list (called tabu list).

Algorithm 3 Tabu search
Input Current (initial) solution S

Output Best solution encountered so far.

1: Initialization step
2: Tabulist← φ
3: Iterative step
4: while

(
Stopping criterion is not satisfied

)
do

5: select best S′ ∈ N(s)
6: if f(s′) ≤ f(s) then
7: S ← S′

8: Update Tabulist
9: end if
10: end while
11: Return the best solution found

Algorithm 3 describes the main steps of the standard tabu search. At each iteration of
the algorithm, the best neighbor solution S ′ ∈ N(s) (line 5) is selected as a new solution
and kept in a tabu list for a certain number of iterations (line 8). The list can be viewed as
short-term memory that records information on recently visited solutions. The structure
of this list is considered as a critical point. For example,

• The length of the tabu list controls the memory of the search process. If this length is
low, the search will concentrate on small areas of the search space (intensification),
a high length forces the search process to explore larger regions (diversification)
whereas a dynamic variation of the length may lead to a more robust tabu search
algorithm which balances between the exploration and exploitation mechanisms.

• On the other hand, the use of this list can prevent attractive moves. Therefore, the
aspiration criteria must be used as an improvement strategy, where a move which
leads to a better solution does not have any reason to be prohibited.

For the circle/sphere packing problem, Fu et al. [22] have proposed an iterated tabu
search approach (ITS) to solve the circle packing problem in a strip. ITS starts from
a randomly generated solution and attempts to gain improvements by a tabu search
procedure. During the search, if the obtained solution is not feasible, a perturbation
operator is subsequently employed to reconstruct the incumbent solution. The authors
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have used several perturbation strategies: (i) dividing the circles into two subgroups ( big
circles and small circles) and exchanging the positions of two circles belonging to the same
group. (ii) Dropping the current solution by removing the small circles out the container
and reinserts them randomly. Therefore, a tabu list is introduced to forbid the previously
swapped circles to be re-swapped within a certain number of iterations. The tabu list was
presented by an integer array TabuTenure[N] (N is the number of available circles ) which
records the tabu tenures of all the circles. At each iteration of the TS procedure, if the
best neighboring solution corresponds to swapping circles i and j, then the tabu tenures
of both circles was updated respectively as follows:

TabuTenure[i] = CurIterNum+ T + rand(0,
N

8
) (3.1)

TabuTenure[j] = CurIterNum+ T + rand(0,
N

8
) (3.2)

Where T is a constant which is experimentally fixed to the value 2. An aspiration
criterion is further employed to override the forbidden rule: if a swapping leads to a
solution better than (with lower penalty function) the best solution found so far; the
generated neighboring solution will be admitted as a candidate solution, no matter the
swapped circles are tabu or not. Finally, a limited-memory LBFGS algorithm was used
as a continuous local optimization to build a feasible solution.

Zeng et al. [78] have proposed a hybrid approach between iterative tabu search and
variable neighborhood descent for packing unequal circles into a circular container. The
proposed tabu search only uses the swap operator for generating a neighborhood. The
tabu tenures of both swapped circles i and j was updated respectively as follows:

TabuTenure[i] =
N

5
+ rand(0, 10) (3.3)

TabuTenure[j] =
N

5
+ rand(0, 10) (3.4)

The limited-memory LBFGS algorithm is also used to re-built a feasible solution.

C- Variable neighborhood search − VNS

Variable neighborhood search (noted VNS) is a meta-heuristic or a framework for building
heuristics. It has been proposed by Hansen and Mladenovic ([56], [?]), whose main idea
relies on a systematic change of the neighborhood structure for a given solution. This
idea is inspired fro the three following observations: (i) a local minimum relatively to
one neighborhood structure is not necessarily so for another neighborhood, (ii) a global
minimum is a local minimum relatively to all possible neighborhood structures and (iii)
a local minima to one or several neighborhoods are relatively close to each other.
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Algorithm 4 Variable neighbourhood search VNS
1: Initialization step
2: Select a set of neighborhood structures Nk, k = 1, 2, ...kmax
3: An initial solution S
4: Iterative step
5: while

(
Stopping criterion is not satisfied

)
do

6: k=1
7: while

(
k < kmax

)
do

8: shaking step: select randomly S′ in the nth neighborhood of S
9: local search step: come up with S′′

10: if S′′ better than S then
11: S′′ ← S′

12: k=1
13: else
14: k=k+1
15: end if
16: end while
17: end while
18: Return the best solution found

Algorithm 4 describes the main steps of the standard VNS. At the initialization step,
an initial solution S is generated and a set Nk, k = 1, 2, ...kmax of neighborhood structures
is defined. The main loop of VNS ( line 5) controls the search time of VNS algorithm.
The second loop (line 7) controls the set of neighborhood structures used (k = 1...kmax).
Then, three iteratively steps are used: shaking step (line 8), local search step (line 9) and
move step (line 10). In the shaking step, a solution S ′ is randomly selected in the nth

neighborhood of the current solution S. Then S ′ is considered as an input solution for
local search step. At the end of the local search, a new solution S ′′ is generated. If S ′′

is better than S, then S ′′ replaces S and the loop starts again with first neighborhood
structures (k = 1). Otherwise, the algorithm moves to the next neighborhood structure
k + 1.

M’Hallah et al. [54, 55] have proposed VNS to solve the identical sphere into a smallest
sphere and cube. In these works, the initial solutions are: (i) feasible solutions (generated
constructively or randomly) and (ii) non-feasible solutions (generated randomly). The
set of neighborhood structures was defined by changing the position of one sphere (or K
spheres) closest to the center of the container. A Non-Linear Programming with Non-
Monotone and Distributed Line Search (NLPQLP) solver was used as a local search to
find a local optimum S ′′ (recent surveys of VNS and its variants is available in Hansen
and Mladenovic [?] Mladenovic et al. [?]).

D- Iterated local search − ILS

Iterated local search (noted ILS) is based on two principal mechanisms: (i) a perturbation
procedure which modifies the current solution to get a new one not too different from the
initial solution, and (ii) a local search which improves the perturbed solution until reaching
a local optimum.
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Algorithm 5 Iterated local search (ILS)
1: Initialization step
2: An initial solution S
3: Apply local search starting from S to come up with S′

4: repeat
5: Perturb S′ to get S′′

6: Apply a local search starting from S′′ to come up with S∗

7: if the acceptance criterion is satisfied then
8: S′ ← S∗

9: end if
10: until stopping criterion is not satisfied
11: Return the best solution found

The main steps of the standard iterated local search are displayed in algorithm 5. It
starts with an initial feasible or non-feasible solution S ( line 2). First, the local search
is called to get a local optimum S ′ ( line 3). Then, at each iteration of the ILS, a new
perturbed solution S ′′ is generated ( line 5) and it is improved by calling the local search
( line 6). Finally, the new solution produced by local search S∗ is replaced with S ′ if it is
better ( line 8).

Huang et al. [40] proposed ITS for packing unequal circles into a circular container by
using Critical Element Guided Perturbation (noted CEGP) strategy to jump out the local
minima. CEGP is based on moving a circle, having more quantity of overlap, from its
position to another position and using limited-memory based method (as a local search
procedure) to get a local optimum.

Other algorithms belonging to trajectory methods family, such as the guided local
search, the greedy randomized adaptive search procedure, are explained in detail in latest
survey on optimization meta-heuristics proposed by Boussaïdare et al. [11].

3.3.2.2 Population-based approaches

Population-based approaches are divided into two categories depending on their nature-
inspired (biology or sociology):

• Evolutionary Computation (EC), where the population of individuals is modified
through crossover and mutation operators. Among the algorithms in this category,
we can cite: Genetic algorithms, evolution strategy, evolutionary programming, co-
evolutionary algorithms, differential evolution, scatter search, path relinking, etc.

• Swarm Intelligence (noted SI) which is based on the following observation: local
interactions between individuals often lead to the emergence of global and self-
organized behavior. This observation has been lead to produce computational in-
telligence by exploiting simple analogs of social interaction. Among the algorithms
belong to this category, we can cite: particle swarm optimization, ant colony opti-
mization, bacterial foraging optimization, bee colony optimization, artificial immune
systems, etc.
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Among those used in circle/sphere packing, there are genetic algorithm which belong
to the first category, and particle swarm optimization, which belong to the second one.
Consequently, in the following, we will show only these algorithms, the other algorithms
are explained in detail in the latest survey on optimization meta-heuristics proposed by
Boussaïdare et al. [11].

A- Genetic algorithms

Genetic algorithms (noted GA) is the most well-known and mostly used evolutionary
computation family EC. It is a stochastic method, based on the Darwin theory of evo-
lution, which at each generation (iteration), it selects parents and uses them to produce
the children (by using a crossover and a mutation operators) for the next generation.

Algorithm 6 Standard Genetic Algorithm (GA)
1: Initialization step
2: Initialial population with random solutions (chromosomes)
3: Evaluate each chromosome
4: repeat
5: Select parents
6: Crossover pairs of parents
7: mutate offspring
8: Evaluate new individuals
9: Select individuals for the next generation
10: until Stopping criterion is not satisfied

The main steps of the standard GA are given in Algorithm 6. The algorithm starts with
a population of individuals (chromosomes) which is randomly generated (line 2). Then,
the fitness of each chromosome is evaluated to see how good it is at solving the problem
at hand (line 3). Then, The transition from a generation to another one is achieved by
repeatedly applying these three operators (lines from 5 to 9): select parents, crossover
pairs of parents, mutate offspring. Finally, the algorithm terminates when a stopping
criterion (a maximum number of generations has been produced, or a satisfactory fitness
level has been reached) is satisfied.

Hifi et al. [29] have used this method for cutting (non)identical circle from a fixed-
dimension rectangle. The initial population contains solutions represented by possible
positions for circles. Part of the solution has been obtained according to the criterion
of the best local position of the circle to be cut, and the remaining solutions have been
generated randomly. Selection, crossover and mutation procedures have been used.

B- Particle swarm optimization

Particle swarm optimization (noted PSO) is a meta-heuristic based on a population (cf.
Kennedy et al. [42]). It can efficiently explore several spaces of candidate solutions during
the search process. Like other meta-heuristics, PSO does not guarantee the optimality
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of the solutions achieved, but it generally ensures an experimental convergence toward
high-quality solutions. Also note that the method is interesting due to its simplicity and
the number of parameters that are used in contrast to other evolutionary methods.

Each particle in PSO characterizes a solution of the given problem. It is represented
by its current position ~X on the search space, its best-visited position ~Pbest during the
search and its velocity ~v. Furthermore, each particle shares information with the other
particles of the population (swarm) and updates its current positions by using a simple
formula that acts on the velocity; it is defined as follows:

−→vi t = ω ×−→vi t−1 + c1 × υ ×
[−→
P best −−→xi t−1

]
+ c2 × ν ×

[−→
G best −−→xi t−1

]
(3.5)

and

−→xi t = −→xi t−1 +−→vi t, (3.6)

where Eq. (3.5) acts on the velocity and Eq. (3.6) acts on the particle’s positions.
One can observe that Eq. ((3.5)) is composed of three parts:

(i) ω×−→vi t−1: it represents the i-th particle’s velocity at iteration (t−1), where ω denotes
the inertia weight (introduced by Shi et al. [64]). Such a weight tries to control the
magnitude of the "old velocity" and usually takes its values in the interval [0.4, 0.9].

(ii)
[−→
P best −−→xi t−1

]
: it represents a natural tendency of a particle to return to its best

position, namely pBest.

(iii)
[−→
G best −−→xi t−1

]
: it represents the tendency of a particle to follow the best position,

namely
−→
G best, reached by any member belonging to its neighborhood.

The parameters, c1 and c2, represent the cognitive and social factors, respectively,
where c1 + c2 ≤ 4, whereas both υ and ν are randomly generated in the interval [0, 1];
these values are used to determine the degree of influence of

−→
P best and

−→
G best, respectively.

The main steps of the standard PSO are given in Algorithm 7. It starts with a
population of size K. The initialization step (line 2) searches for the position ~X i of each
particle i which are randomly generated or by using a simple heuristic and ~P i

best of each
particle i is setting equal to the value of the current position ~X i and the velocity vector
is setting equal to zero. The best position ~Gi

best is setting equal to the best solution
of the starting population (line 4). Therefore, the fitness of each particle is evaluated,
where the best fitness reached is stored in

−→
P best (line 7). Furthere, both velocity and

position of each particle i are updated (lines 15,16). The algorithm exits with the best
position visited which is considered as the best solution to the problem. Figure (3.2)
illustrates the behavior of the PSO algorithm where the Particles do not stop searching
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Algorithm 7 − A standard version of PSO algorithm
Input. A population of size K and the different parameters used.

Output. A best particle
−→
G best.

1: Initialization step.
2: Generate the position ~Xi of each particle.
3: Set ~P ibest = ~Xi and let ~V i be the velocity vector.
4: Choose the best ~P ibest as

−→
G best

5: Iterative step
6: while

(
the runtime limit is not performed

)
do

7: for (each particle i ∈ K) do
8: Compute its fitness function F ~Xi
9: if (F ~Xi < F~P i

best
) then

10: ~P ibest = ~Xi

11: end if
12: end for
13: Choose the particle realizing the best value F~P i

best
as
−→
G best

14: for (each particle i ∈ K) do
15: Compute the particle’s velocity according to Eq. (3.5)
16: Update the particle’s position according to Eq. (3.6)
17: end for
18: end while
19: Return the best solution achieving the best global solution value

−→
G best.

until ~X i = ~P i
best =

−→
G best and their velocity becomes zero. This condition is necessary for

the convergence to an equilibrium point.

In the global version of PSO, the neighborhood consists of the whole population (fully
connected PSO ( cf. figure 3.3)) and

−→
G best represents the best particle. Note that, the

disadvantage of this version occurs in the case when it leads the swarm to be trapped
in a local minimum, because the whole swarm takes its social knowledge from a unique
source represented by

−→
G k
best. To avoid this problem, a version of PSO has been proposed

in the literature (under the name of "local version
−→
L best") in which each particle receives

information from a subset of k neighbors instead of the whole population (cf. Kennedy et
al. [43, 41], Suganthan [68]).

Figure ( 3.3) represents several neighborhood structures proposed in the literature.
Among these structures, we can mention (i) Ring structure: each particle is bound to two
neighbors, one on each side, (ii) Von Neumann structure: each particle has four neighbors
and (iii) Random structure: each particle has k randomly chosen neighbors.
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(a) First iteration of PSO (b) After k iterations of PSO

(c) After n iterations of PSO

Figure 3.2: Behaviour of the PSO algorithm

Figure 3.3: Graphical representation of the neighbourhood structure

3.3.3 Methods based on simulation

In the literature, some researchers have proposed approaches which simulate certain phys-
ical phenomena for solving circle/sphere packing problems. For example, a simulation of
elastic discs has been proposed by Wang et al. [72], a Billiards Simulation has been used
by Graham et al. [25] and Lubachevsky and Graham [53].



54 Chapter 3. Solution methods for packing problems

Billiard Simulation is a stochastic method that simulates the idealized movement of
billiard balls inside a domain. This method has been used only to solve the identical circles
packing problem in a circular container and in a square, whereas elastic discs simulation
is more efficient; it is used for solving identical/non identical circle /sphere packing in
different containers.

In what follows, we will give more detail on the elastic discs simulation since we have
used it as a sub-procedure in some of the approaches that we have developed.

Elastic discs simulation

This method has been proposed by Wang et al. [72] (named "Quasi-Physical" procedure,
denoted by QPP) in order to solve the circle / sphere packing problem into a circular
/ spherical container of fixed dimensions. The main principle of such a method can be
summarized as follows:

The container is considered as a “fixed elastic container" and all the spheres as “smooth
elastic solids" which are forced to fit inside the container. According to the elasticity
mechanism, there exist some conjugated extrusion elastic force whenever some spheres
are deformed by other ones or by the container. In this case, a series of complicated
distortions would occur due to these elastic forces. During the search process, the potential
energy function (the overlapping gap either between the deformed spheres or that realized
between spheres and the container) will be reduced to zero. Reducing such deformations
to zero induces the converge of the procedure to a local optimum.

In order to present the potential energy function, the amount of overlapping depths
between two smooth elastic spheres and between a smooth elastic sphere and the container
must be calculated as its represented in Table 3.2.

overlapping depth Between Open container Spherical Container
sphere and container δi,x = max

{
0, ri + |xi| − 1

2L
}

δ0,i = max {0, ∆(i, 0) + ri −R}
δi,y = max

{
0, ri + |yi| − 1

2H
}

δi,z = max
{

0, ri + |zi| − 1
2W
}

sphere and sphere δi,j = max {0, ri + rj −∆(i, j)} δi,j = max {0, ri + rj −∆(i, j)}

Table 3.2: Overlapping depths for both problems: between the positioned spheres and between
spheres and the container

In table 3.2, ∆(i, j) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, i, j ∈ N , i 6= j and ∆(i, 0) =√
x2
i + y2

i + z2
i , i ∈ N are the euclidean distance between the center of two spheres and

between the ith sphere and the container.
According to both terms of overlapping calculated in table 3.2, the elastic force acting

on the ith sphere and the potential energy function of both problems (spherical/open
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container) are calculated in Table 3.3:

Open container Spherical Container

Elastic force acting on the ith sphere Ui =
∑N

j 6=i δ
2
ij + (δxi0 + δyi0 + δzi0) Ui =

∑N
j=0 δ

2
ij

The potential energy function E(
−→
X ) =

∑N
i=1 Ui E(

−→
X ) =

∑N
i=i Ui

Table 3.3: Extrusion elastic potential force acting on the ith sphere and potential energy functions

According to the functions presented in table 3.3, one can observe what follows:

1. First, the elastic force proportional to the overlapping depth between any two spheres
i and j. When i and j are identical spheres, they bounce away each other and move
a same distance under the elastic force. For two elastic spheres in different sizes,
the deformation of the larger one is generally less than that of the smaller one when
they overlap each other and the elastic potential force Ui can be used to measure
the degree of pain of the ith (Wang et al. [72]).

2. Second, a solution is considered as a feasible one if and only if E(
−→
X ) = 0.

Figure 3.4(a) illustrates an non-feasible solution (configuration) for packing into (i) a
spherical container and (ii) an open container. A solution (configuration) is represented
by a vector

−→
X = (xi, yi, zi, ...,xn, yn, zn) which contains the coordinates of the n packed

spheres.

(a) Overlapping in the case of pack-
ing in a spherical container

(b) Overlapping in the case of pack-
ing in an open container

Figure 3.4: Physical movement according to elastic forces
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As shown in figure 3.4(a), the sphere i overlaps both the container and the sphere j.
By the action of the elastic forces, the sphere j will move alone the direction of from i to
j. The magnitude of the movement depends on the overlapping depth δij. If the sphere
i keeps action-less, then sphere j moves its depth δij until it does not overlapped with
sphere i. if sphere j keeps action-less, then the container makes sphere imove δi0 along the
direction of from i to the center of the container (indexed 0) and sphere j makes sphere i
move its depth δij along the direction of from j to i. If the overlapping depth is considered
as a vector, then the magnitude of the movement is the sum of all its overlapping depth
vectors and the direction is the direction of the vector sum of all elastic forces acted on a
given sphere.

The magnitude of the movement can be calculated by the projection of all overlapping
depth vectors in axes x, y and z as follows:

Projection in Moving distance Moving distance
produced by the sphere j produced by the container

Axis X dxj =
xi−xj

∆ij
δij dxi = −xi

∆i0
δi0

Axis Y dyj =
yi−yj
∆ij

δij dyi = −yi
∆i0

δi0

Axis Z dzj =
zi−zj
∆ij

δij dzi = −zi
∆i0

Table 3.4: Calculate the moving distance by the projection overlapping depth on axes x, y and z

Therefore, the new position of sphere i (xi, yi, zi) is calculated according to the equation
(3.7).

xi = xi + dxi + dxj , yi = yi + dyi + dyj , zi = zi + dzi + dzj (3.7)
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Algorithm 8 Quasi-physical QPP

Input A non-feasible solution ~X = (x1, y1, z1,x2, y2, z2...xn, yn, zn), ε1, ε2,ε3, h = 1.

Output A feasible solution or a trapped local minimum.

1: Initialization step
2: Calculate E(

−→
X ) by using the equations presented in tables (3.2 and 3.3)

3: if E(
−→
X ) < ε1 then

4: this solution is feasible, return ~X
5: end if
6: Iterative step
7: while

(
E(
−→
X ) > ε1 et h > ε2

)
do

8: ~X1 = ~X
9: for each sphere in ~X1 do
10: Calculate the elastic force by using equations presented in tables (3.2 and 3.3)
11: Move it into a next postion by using equation 3.7 with step size h
12: end for
13: Calculate E(

−→
X1) by using the equations presented in tables (3.2 and 3.3)

14: if E(
−→
X1) < E(

−→
X ) then

15: E(
−→
X ) = E(

−→
X1), ~X = ~X1

16: end if
17: otherwise: decrease the step size h = ε3 ∗ h
18: end otherwise
19: end while
20: Return feasible solution ~X = (x1, y1, z1,x2, y2, z2...xn, yn, zn) or a trapped local minimum

Algorithm 8 describes the main steps of Quasi-Physical (noted QPP). It receives as an
input a configuration (

~X = (x1, y1, z1,x2, y2, z2...xn, yn, zn)). The four parameters ε1, ε2, ε3 and
h have the following roles: ε1 is the accuracy of the computation which we are willing
to accept the configuration as a feasible solution of the packing problem. ε2 is the value
(h) with which the algorithm stops in case it does not find a feasible solution. ε2 is a
multiplication factor used to decrease the step size h. h has the initial value 1.

During the initialization step (line 2), if there is no overlap, the algorithm returns a
feasible solution. Otherwise, the iteration step starts at line 7. Two loops are performed
alternately: the "while" loop controls the stopping criterion of the algorithm, and the "for"
loop computes the overlapping quantity and measures the elastic forces by specifying
the magnitude of the movement of each sphere and its direction. At line (11), a new
configuration is produced. If it is better than the previous one, it replaces it (line 15).
Otherwise, h is decreased by multiplication by ε3 (line 17). Finally, QPP algorithm stops
as soon as it has found a feasible solution or if h becomes inferior to ε2. In the latter case,
the algorithm is trapped in a local optimum. Figure (3.5) illustrates the behavior of QPP
algorithm (8).
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(a) Non-feasible solution (b) Repaired solution (c) Non-feasible solution

(d) Repaired solution (e) Non-feasible solution (f) Repaired solution

Figure 3.5: Behavior of QPP algorithm

3.4 Conclusion

In this chapter, we have presented other variants belonging to the sphere packing family,
such as packing spheres into a cuboid, a cube, a cylinder, a pyramid, a regular tetrahe-
dron. We have also presented some of the well-known solution methods developed for
solving some sphere/circle packing problems. Those problems belong to the NP-hard
class, where no algorithm can solve them optimally in a polynomial time. Consequently,
the approaches available in the literature (specific heuristics and meta-heuristics, methods
by experimental simulation), used for tackling such problems, have been presented in this
chapter.
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In this chapter, the three-dimensional sphere packing problem is solved by using a
dichotomous search-based heuristic. We recall that an instance of the problem is defined
by a set N of n unequal spheres and an open container of fixed width and height and,
unlimited length. Each sphere is characterized by its radius and the aim of the problem
is to optimize the length of the open container containing all spheres without overlap-
ping. The proposed method is based upon beam search, in which three complementary
phases are combined: (i) a greedy selection phase which determines a series of eligible
search subspace, (ii) a truncated tree search, using a width-beam search, that explores
some promising paths, and (iii) a dichotomous search that diversifies the search. The
performance of the proposed method is evaluated on benchmark instances taken from
the literature where its obtained results are compared to those reached by some recent
methods of the literature.
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4.1 Introduction

Cutting and Packing problems (CP) is a family of natural combinatorial optimization
problems, admitted in numerous real-world applications from industrial engineering, lo-
gistics, manufacturing, production process, automated planning, etc. One of the more
recent paper addressing an optimization with a packing problem is due to Sutou and
Dai [69], where the unequal sphere problem has been used for tackling an application of
the automated radiosurgical treatment planning. Wang [73] has also considered sphere
packing problems as an optimization tool for the radiosurgical treatment planning. Other
problems of the CP family have been described and redefined in Wascher et al. [74] where
an instance of these problems can be defined by a set of predetermined items to be packed
in one or many larger containers (objects) so as to minimize the unused area / space or
in some cases to maximize a utility function. Furthermore, the items are bounded by
their dimensions (rectangular, circular, or irregular) and the objects can be bounded
(rectangular, circular, . . .) or unbounded (strips / parallelepipeds, . . .).

This chapter deals with the problem of packing spheres (called items) in a container
(parallelepiped or object) with unlimited length. The problem is known as the Three-
Dimensional Sphere Packing Problem (3DSPP). An instance of 3DSPP is defined by a
set N of n unequal items and an object P of fixed width W and height H and, unlimited
length (for the rest of the paper, the length representing the variation of P ’s length is
denoted L). Moreover, each item i ∈ N = {1, . . . ,n} is characterized by its radius ri.
The goal of the problem is to optimize the length L of the object P such that all items
of N are packed (positioned) in the target object, without overlapping.

The 3DSPP may be formulated as follows:

min L (4.1)
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≥ (ri + rj)

2 ∀(i, j) ∈ N2, i < j (4.2)
ri ≤ xi ≤ L− ri ∀i ∈ N (4.3)
ri ≤ yi ≤ H − ri ∀i ∈ N (4.4)
ri ≤ zi ≤ W − ri ∀i ∈ N (4.5)

L ≤ L ≤ L (4.6)

where the objective function (4.1) minimizes the length of the object P containing all the
items of N , Equation (4.2) ensures the non-overlap constraint of any pair of distinct items
(i, j) of N ; that is, the distance between the centers of both items which must be greater
than or equal to the sum of their radii and, Equations (4.3)-(4.5) ensure that all items of
N belong to the target object P of dimensions (L,W ,H). Note that since the aim of the
problem is to find the smallest length of the object containing all items of N , then it is
easy to start any method trying to solve the above problem by a trivial value representing
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the sum of the spheres’ area affected to L (Equation (4.6)) and a quick (feasible) solution
value with a greedy algorithm affected to L.

In this chapter, we propose a three phase solution procedure that combines the width-
beam search and a greedy selection procedure for approximately solving the 3DSPP. The
last two phases are embedded in a dichotomous procedure that is used for searching the
best length L? for the object. Note that the proposed algorithm can be viewed as an
adaptation of the method proposed in Hifi et al. [32] for solving the two-staged two-
dimensional cutting problem and later in Akeb and Hifi [4] for solving another variant of
CP family. The novelty in this approach is based upon (i) a new representation used for
defining a restricted space search; that is, a structured set based on target eligible positions
which serves to limit the search process without degrading the quality of solutions and
(ii) a nice dichotomous search that tries to avoid premature convergence toward local
stagnant solutions whenever the width-beam search is applied.

The rest of the chapter is organized as follows. The problem representation is discussed
in Section 4.2.1. Section 4.2.2 exposes the principle of the greedy selection phase which
serves to determine a subset of eligible positions employed for packing the predefined
items in the target object. Section 4.2.3 presents a truncated tree-search using a width
beam search phase that serves to explore some promising paths. Section 4.2.4 exposes
the dichotomous search where the first two phases are embedded in an interval search in
order to diversify the search process. Section 4.3 proposes an experimental part in which
the performance of the proposed algorithm is given: its provided results are compared to
those reached by some best algorithms of the literature. Finally, Section 4.4 concludes by
summarizing the contribution of this paper.

4.2 Tackling 3DSPP with a dichotomous search

Herein, the problem representation and strategies used by the proposed algorithm are
discussed. First, section 4.2.1 describes how an item can be represented in a space and
which eligible positions may be chosen for assigning items of N to the target object P .
Second, section 4.2.2 describes the principle of the simple constructive procedure which
tries to guaranty a feasible packing of all items of N for the 3DSPP according to the
set of eligible positions. Such a simple constructive procedure is based on the minimum
distance between items and the edges of the objet P that serves to create a set of eligible
positions for the current item to pack. Third and last, section 4.2.3 discusses the principle
of the proposed algorithm and its main steps.

4.2.1 Representation of 3DSPP

In this section, we present the principle of the local strategy used for filtering the huge
number of possible positions when an item will be assigned to the object P . The local
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strategy is based on the simple Greedy Principle (called GP) where the minimum distance
position is favored for packing a predefined item. GP is then used as an evaluation operator
for finding a subset of eligible positions of the next item to pack. Furthermore, the GP
can also be used either as a complete solution procedure that provides a final feasible
solution for the 3DSPP or as a greedy strategy in order to complete a partial solution.

Figure 4.1: Illustration of the mechanism used for computing eligible positions.

For the rest of the paper, the following notations are introduced:

• The bottom-left-depth corner of P is positioned at (0, 0, 0) and P is characterized by
a set formed with six labels (namely faces): F = {left, top, right, bottom, depth, front}.
Then, P is represented in the Euclidian space, as illustrated in Figure 4.1.

• The center of the i-th item belonging to N is positioned at (xi, yi, zi).

• The distance, namely δi,j, between two different items i and j belonging to N is
computed as follows:

δi,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 − (ri + rj), ∀(i, j) ∈ N2 (4.7)

Observe that positioning any item i of N into P induces to define a distance between
an item belonging to N and faces of F. Indeed, for instance, assigning an item i ∈ N to
an eligible position of P while respecting the non-overlap of the left-face of P requires
to satisfy the following distance: δi,left = xi − ri. For all faces of P , Table 4.1 reports
the distance to be satisfied whenever a preselected item i of N is assigned to an eligible
position of P .
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Table 4.1: The distance between an item i and a face f
f δi,f | i ∈ N , f ∈ F
left xi − ri
bottom yi − ri
depth zi − ri
right L− xi − ri
top H − yi − ri
front W − zi − ri

4.2.2 Defining eligible positions

It is well-known that tailored heuristics are mainly based on the strategies which are able
to guide well the search process. These strategies may be use some selection criteria in
order to provide either partial or final solutions for the problem to solve. Herein, we
consider a simple greedy principle (GP) which is based on searching the position realizing
the minimum distance position (MLDP) between items and feces. In fact, GP is used as
a selection criterium for defining a set of eligible positions to assign to the predefined item
i (not already positioned) among all eligible positions representing the set PIi .

In what follows, we assume that the (center of the) first item i = 1 of N is positioned
at the position (r1, r1, r1) and ∀i ∈ N , i ≥ 2, the following notations are considered:

• Ii denotes the set of items of N already positioned in the current object P .

• Ii contains the items of N which are not yet assigned to P .

• PIi denotes the set of distinct eligible positions for the next item i to pack given the
set of packed items Ii.

• An eligible position pi+1 ∈ PIi (for the item i) is determined by using three elements
e1, e2 and e3 where an element is either an item ofN already positioned (representing
the set Ii) or one of the six faces belonging to F.

• Tpi+1
represents the set composed of the three elements e1, e2 and e3.

Figure 4.1 illustrates the mechanism used by the GP strategy on a small example.
We assume that the first four items are already positioned in the object P ; then, there
are three eligible positions that emerge for the next item 5 to pack. Following the above
notations, I4 = {1, 2, 3, 4} and PI4 = {pj5, j = 1, . . . , 3}. First, the position p1

5 touches
both items 1 and 3 and, the “bottom" face of P . Second, the position p2

5 is obtained by
using the item 2 and both faces “left" and “bottom" of P . Third and last, the position
p3

5 is computed by using the item 1 and both faces “left" and “depth" of P . Finally, it
follows that Tp15 = {1, 2, bottom}, Tp2

5
= {2, left, bottom} and Tp35 = {1, left, depth}.
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We can observe that the item 4 is positioned around the three items 1, 2 and 3 that
means T4 = {1, 2, 3}. For the next item 5 to pack, its coordinates are computed by using
both items 1 and 3 and one of the faces (the “bottom" in this case) of P that gives
T5 = {1, 3, bottom}. We recall that the objective of the problem is to minimize the length
of the target object P . It means that the right face of P can be omitted and only the five
faces can be considered when optimizing the length of the target P . Hence, all eligible
positions may be obtained by using the fifth faces, the positioned items and the current
item to pack.

Moreover, GP works as follows: the value corresponding to the (i+1)-th item to pack,
when positioned at the eligible position pki+1 ∈ PIi , is computed as follows:

∆(pki+1) = min
j ∈ Ii ∪ F′ \ T

pk
i+1

δ(i+1,j) (4.8)

where F′ = F \ {right}.
Finally, when GP is used, then it starts by positioning the first item i = 1 at the

bottom-left-depth position, i.e., at the position (r1, r1, r1), while the remaining n−1 items
are successively positioned according to the minimum distance rule (cf., Equation (4.8)).
As illustrated in Figure 4.1, the item 5 will be placed at position p1

5 because its corre-
sponding distance realizes the minimum value (of course, this choice may also be modified
along the execution of the algorithm).

Note that one can use GP as a greedy procedure for searching a feasible solution
for the 3DSPP. Indeed, by setting the starting length of the target object P to ∞ (i.e.,
LP = ∞) and by applying successively GP on the rest of the non packed items, GP
terminates by building a feasible solution with length LU . The provided length LU can
also be considered as an upper bound for starting the proposed algorithm.

4.2.3 A width-beam search heuristic for the 3DSPP

In this section, we first describe the principle of the standard beam search (Section 4.2.3.1).
Second and last, we show how beam search can be adapted for solving the 3DSPP (Sec-
tion 4.2.3.2), especially when using a width-beam almost of the standard beam.

4.2.3.1 A standard beam search

Beam Search (BS) has been first proposed by Ow and Morton [62] for tackling the schedul-
ing problem and it has since been successfully applied to many other combinatorial op-
timization problems (some adaptations can be found in Della Croce et al. [19], Hifi et
al. [30, 32, 34] and, Yavuza [76]). Such an approach can be viewed as a truncated tree
search procedure where its objective is to avoid exhaustive search by performing a partial
enumeration of the solution space.
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At each level of the developed tree, only a subset of nodes (called the set of elite nodes) are
selected for further branching and the other nodes are discarded, where no backtracking is
performed. For each level, the cardinality of the elite nodes to be investigated is fixed to
ω that is called the beam width. Generally, these selected ω nodes represent those having
a high potential to lead the best solutions for the treated problem. Furthermore, each
node is assessed via an evaluation function whose role is to provide a promising separation
mechanism of the nodes of each level of the developed tree.

Algorithm 9 . A standard beam search.
1. Initialization Step.

(a) Let ω be the beam width.
(b) Set B = {B0} and Bω = ∅, where B is the set of nodes to be investigated, and Bω the set of nodes

branched out of the nodes in B.
(c) If an initial feasible solution is available, set z? to its objective function value; otherwise, set z? = +∞

(minimization problem)

2. Iterative Step.
Repeat

(a) Choose a node η ∈ B; branch out η; remove η from B and insert the created nodes into Bω.
(b) If a node η of Bω is a leaf, then

i. compute its objective function value zη;
ii. if zη > z?, update z? and the incumbent solution;
iii. remove η from Bω.

(c) Assess the potential of each node of Bω using an evaluation function.
(d) Rank the nodes of Bω in a decreasing order of their values.
(e) Insert the min{ω, |Bω|} best nodes (called elite nodes) of Bω into B; and set Bω = ∅.

Until B = ∅.

Algorithm 9 describes the main steps of the standard beam search which is character-
ized by a beam width ω used for filtering the set of offspring nodes Bω. A node corresponds
to a partial feasible solution and the set B of current nodes is initialized to the root node
B0 whereas Bω containing the offspring nodes is initialized to the empty set. Each node
of B generates a set of offspring nodes, and moves them to Bω. If a node η of Bω is a
leaf (i.e, no further branching is possible out of η), then its objective function value zη
is computed and compared to z?. If zη > z?, then the incumbent solution is set to the
leaf node; z? is then updated: z? = zη; and η is removed from Bω. All nodes belonging
to Bω are assessed using an evaluation function, and then ranked in decreasing order of
their values. The first ω nodes of Bω are then considered as the elite nodes which are
appended to the set B, whereas the remaining nodes of Bω are discarded and Bω is reset
to the empty set. This process is iterated until no further branching is possible, i.e., until
B = ∅.
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4.2.3.2 Adaptation of the beam-search for the 3DSPP

Applying BS to 3DSPP requires defining the nodes of the tree and the branching mecha-
nism out of the nodes of B. Herein, a node ηi is represented by the pair of subsets:

1. The first subset Ii containing all items assigned to the target object P and,

2. The complementary subset I i containing the unassigned items.

The first subset represents a partial solution realized when assigning all the items to
the object P and the second subset serves to provide a complementary solution. Such a
complementary solution is computed by applying the MLDP used as greedy procedure
(as discussed in Section 4.2.2).

Moreover, branching out of a node ηi is equivalent to create at most |PIi | branches
emanating out of the current node (related to the eligible positions as described in Sec-
tion 4.2.2). Each resulting node corresponds to packing the subset of items Ii and assigning
to the current item i a favorite eligible position. Moreover, each of these created nodes
will be represented by a pair of two complementary subsets of items of N .

As mentioned above, because of the huge number of feasible positions that a prede-
fined item may generate, we preferred the use of the width-beam search almost of the
standard beam search. Indeed, as we shall see in Section 4.2.4, the proposed algorithm
uses a dichotomous search according to a series of values assigned to ω (the beam width).
Therefore, in order to try the exploration of a maximum number of promising paths,
the beam search applies the width-search where all nodes belonging to the same level
are simultaneously evaluated following an estimator operator and only the best ones are
selected for the rest of the search.

The aforementioned process is described by Algorithm 10. The adapted algorithm
works according to a given node, namely η`, taken at the level ` of the developed tree.
Thereafter, the initialization step (Lines 1 to 3) is applied for starting the set B contain-
ing the best provided nodes regarding the starting node η` and, the initialization of the
variable feasible to false. This variable controls the (un)feasibility of the series of the
solutions builded. The main loop (lines 7) starts by choosing the best eligible positions
for each node belonging to B. These positions are computed by using GP’s selection (cf.,
Section 4.2.2). Second, all created nodes are stored in a provisional set Bω where the
potential of each of these nodes are evaluated according to the final solution provided
by iteratively applying GP as a heuristic (cf. as discussed in the last paragraph of Sec-
tion 4.2.2). Thereafter, for each final solution (either feasible or unfeasible for the target
object P), the potential of a node η ∈ Bω is represented by the density of the positioned
items in P . Whenever one of these constructed solutions provides a feasible solution (line
10), i.e., all items are positioned in the target object P , then the algorithm stops with
a feasible solution (i.e., setting the variable feasible to true). Otherwise, the set B of
the best nodes is updated (line 11) by the ω nodes which realizing the highest densities
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and the current level of the developed tree is incremented. Finally, the process is iterated
until either B is reduced to an empty set or when the fixed runtime limit is performed.

4.2.4 Using a dichotomous search

The proposed algorithm applies a series of BS for a predefined interval search. First, the
interval search starts by [L,L], where L denotes a lower bound for the 3DSPP and L its
upper bound (in the case of a feasible solution exists, its objective value is assigned to L).
Second, for each fixed interval, BS tries to construct the best feasible solution by packing
all the items into the current target object; that is, (L?,W ,H), where L? ∈ [L,L].

The main steps of the dichotomous search are summarized in Algorithm 11. First,
its starts by defining the initial interval [L,L] where the upper bound L is obtained by
applying GP as a heuristic on the open object, i.e., (∞,W ,H). The main loop repeat
(cf., lines 7 - 12) of the dichotomous procedure serves to explore a series of neighborhoods
depending on the values of ω. At line 8, a new target upper bound is computed, namely
L? = (L + L)/2. Line 9 generates the initial node positioned at the bottom-left-depth
corner (in the position (r1, r1, r1)) and creates its corresponding sets Ii, I i and P 1

I (as
discussed in Section 4.2.2). At line 10, BS is called with the target value of the object
(L?,W ,H) and the created sets reached at the next step. Line 11 serves to update the
interval search where its upper bound is updated whenever a feasible solution is obtained,
the lower bound is updated otherwise. Thereafter, the process is iterated till the gap
between both lower and upper bounds becomes closest to a certain tolerance, namely α.

Algorithm 10 . Adaptation of the Beam Search for the 3DSPP: BS

Input. A node η`.

Output. feasible // setting equal to true whenever a feasible packing is reached, false otherwise

1: Initialization Step.
2: Let ω be a predefined beam width.
3: Set B = {η`}, where η` denotes the input node associated to the `-th level.
4: Set the variable feasible to false /* no feasible solution at hand */
5: Iterative Step.
6: while

(
(B 6= ∅) and (the runtime limit is not performed)

)
do

7: Branch from the current level ` by selecting the ω eligible positions for each node η`i ∈ B;

8: Insert all obtained nodes into Bω;
9: Evaluate the potential of each node belonging to Bω using GP for completing the path.

10: If a feasible solution is given by GP, then set feasible to true and exit;
11: Replace B by the best ω nodes of Bω realizing highest densities and, increment the level

`.
12: end while
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Algorithm 11 . A Dichotomous Search Based Heuristic: DSBH

Input. An instance of 3DSPP.

Output. An object P of dimensions (Lbest,W ,H) and the coordinates of all items of N .

1: Initialization step
2: Call an iterative GP on the open strip (∞,W ,H) and let L be the starting length reached.
3: Set L← 4π

3×W×H
∑

i∈N (r3
i ) and L? = L.

4: Set ω to a predefined minimum value.
5: Iterative step
6: while

(
the runtime limit is not performed

)
do

7: repeat
8: L? = (L+ L)/2

9: Generate the starting node η1 with its three sets Ii, Ii and P 1
I .

10: Set feasible ←− BS(η1), where BS is called with (L?,W ,H)

11: If
(
feasible=true

)
then set L = L?; L = L? otherwise

12: until (L− L ≥ α)

13: Set L← 4π
3×W×H

∑
i∈N (r3

i ) and increment ω.
14: end while

Finally, the aforementioned process is iterated a certain number of times following the
values of ω (line 13) and according to the runtime limit fixed.

4.3 Computational results

In this section we investigate the effectiveness of the width beam search-based heuristic
(DSBH) on two sets of benchmark instances: Set1 and Set2.

The first set “Set1" contains six instances (SYS1,...,SYS6) extracted from Stoyan et
al. [67], where the number of the predefined items varies from 25 to 60. These instances
have been already tested using Stoyan et al.’s [67], Birgin and Sobral’s [8] and Kubach et
al.’s [46] approaches.

The second set “Set2" contains six instances (KBTG1, KBTG2, KBTG3, KBTG7,
KBTG8, and KBTG9) taken from Kubach et al. [46]. For each instance, both dimensions
W and H of the object are fixed to 10 whereas the number of the predefined items is fixed
to 30 (resp. 50) for the first (resp. last) three instances. Moreover, these six instances
have been already tested in Kubach et al. [46] where they represent the six instances with
unequal spheres.

The rest of the experimental part is organized as follows. First, the behavior of the
proposed algorithm DSBH is evaluated on the first set of instances Set1 (Section 4.3.1).
The results reached by DSBH are thereafter compared to those reached by four heuris-
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tics: Stoyan et al.’s [67] method-based heuristic (noted SYS), Birgin and Sobral’s [8]
method-based heuristic and both sequential and parallel heuristics proposed by Kubach et
al.’s [45, 46] (noted KBTGs and KBTGp respectively). Second, for the instances of Set2
(Section 4.3.2), the results provided by DSBH are compared to those reached by Kubach et
al. [46]. Note also that the proposed algorithm was coded in C++ and tested on an Intel
Core 2 Duo (2.53 Ghz and with 4 Gb of RAM) and the runtime limit was fixed to one
hour.

Figure 4.2: Illustration of DSBH’s behavior on SYS5 instance: (a) variation of solution’s quality
and (b) the best solution’s structure reached by DSBH.

4.3.1 Performance of DSBH vs three heuristics: Set1

Generally, when using approximate algorithms to solve optimization problems, it is well-
known that different parameter settings for the approach lead to results of variable quality.
As discussed in Section 4.2.4, DSBH uses two parameters: the beam width ω and the
maximum runtime limit to fix. Our computational study was conducted by varying ω
in the discrete interval {5, 6, 7, . . .} and the maximum runtime limit was fixed to 3600
seconds (which can be considered as a standard runtime limit considered by algorithms
of the literature). Of course, the upper value of ω depends on the limited runtime and
the size of the instance. In order to show the effect of these parameters, we discuss the
quality of the solutions obtained by DSBH when the beam width ω increases.

First, we do it on an instance extracted from Stoyan et al. [67] by varying the value
of ω from 1 (the minimum value assigned to ω in Algorithm 11) to the upper value
(incrementing ω with one unit) till attaining the fixed runtime limit. Figure 4.2.(a) shows
the behavior of DSBH when varying the beam width ω for the instance SYS5. From the
curve labeled Sol., one can observe that the value of the length L? of the target object P
oscillates but globally its average solution value decreases and converges toward one of the
best solutions (generation of a series of local optima). This is the reason why we proposed
to reiterate the GP rule in order to get the final solution realizing the best local optimum.
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On the other hand, according to the second curve labeled Best, one can observe that the
behavior of DSBH provides a series of decreased solution values; in this case, only the best
solution was retained for the whole values of ω. For SYS5, the best local optimum reached
by DSBH realizes the value closest to 10.94 and its solution configuration is illustrated by
Figure 4.2.(b). In fact, the provided solution is equal to 10.9359 (as shown later in the
second part of the experimental part) and it dominates both values 11.2170 and 10.9359
reached by the sequential KBTG algorithm (Kubach et al. [46]) and its parallel version
(Kubach et al. [45]) representing the best solution values of the literature. Note that
ω = 12 seems to give the best solution value that balances between the quality of the
solution and the fixed runtime since for higher values of ω the solution remains unchanged.

Second, for the instances of Set1, Table 4.2 compares the results of DSBH to those
reached by four algorithms: SYS (Stoyan et al. [67]), BSA (Birgin and Sobral [8]), KBTGs

(Kubach et al. [46]) and its parallel version noted KBTGs (proposed in Kubach et al. [45]),
where the known solutions of the literature are taken from Kubach et al. [45, 46].

Kubach et al.’s [45, 46] heuristics
#Inst. SYS BSA KBTGs KBTGp DSBH

Label n H W L?SYS L?BSA L?KBTGs L?KBTGs L?KBTGp L? L? ω∗

SYS1 25 5.5 6.9 9.912 9.7942 9.5397 9.2874 9.2656 9.2635 9.2431� 23
SYS2 35 6.5 7.9 9.623 - 9?2608 9.1280 8.9301 9.1585 8.9164 � 21
SYS3 40 5.5 6.9 9.473 9.3090 91794 8.9850 8.7178 8.9085 8.7055� 24
SYS4 45 8.5 9.9 11.086 11.0962 10.9991 10.8760 10.4042 10.7224 10.2357� 23
SYS5 50 8.5 9.9 11.646 11.6211 11.4877 11.3494 10.9865 11.1772 10.9359� 29
SYS6 60 8.5 9.9 12.842 12.7215 12.7110 12.3745 11.8399 12.4149 11.8178 � 28
Average

Table 4.2: Performance of BSBH versus the four heuristics of the literature on instances of Set1.
The symbole “ − ” (resp. “ � ”) means that the value for this instance is not available (resp.
corresponds to the best solution).

Columns from 1 to 4 show the instance label, problem size n and both height H and
width W of P . Column 5 displays the solution value L?SYS reached by STS whereas
column 6 displays BSA’s solution values (noted L?BSA). Columns 7 and 8 report the best
solutions (noted L?KBTG) provided by KBTG algorithm for both fixed runtimes: 300 and
3600 seconds. Column 8 shows the best solutions reached by the parallel KBTG version
(noted L?KBTGp

) without fixing the runtime limit. Columns 9 and 10 display the solution
(noted L?) realized by the proposed algorithm DSBH for both fixed runtimes (300 and
3600 seconds, respectively). Finally, column 11 reports the best value of ω for which its
best solution for the second runtime limit is performed.

All results of Table 4.2 are summarized in Table 4.3, where it tallies the percentage
improvement (when it happens) yielded by DSBH when compared to the results reached
by the four considered algorithms. Table 4.3 is composed of two parts: the first part
contains the informations about the instance and the second part shows the percentage
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#Inst. DSBH vs all heuristics (% Improvement)
Label n H W %SYS %BSA %KBTGs %KBTGp

SYS1 25 5.5 6.9 7.24 5.96 0.48 0.24
SYS2 35 6.5 7.9 7.92 - 2.37 0.15
SYS3 40 5.5 6.9 8.82 6.93 3.21 0.14
SYS4 45 8.5 9.9 8.31 8.41 6.26 1.65
SYS5 50 8.5 9.9 6.49 6.27 3.78 0.46
SYS6 60 8.5 9.9 8.67 7.65 4.71 0.19
Average 7.91 7.04 3.47 0.47

Table 4.3: Percentage improvements between all tested heuristics: BSBH, SYS, BSA and both
KBTGs and KBTGp on instances of Set1.

improvement realized by DSBH over the four heuristics tested (noted %SYS, %BSA,
%KBTGs and %KBTGp according to the heuristics SYS, BSA, KBTGs and KBTGp,
respectively) especially for the second runtime limit for DSBH.
The analysis of the results of both Tables 4.2 and 4.3 follows:

1. First, DSBH outperforms the three algorithms SYS, BSA and KBTGs whenever the
runtime limit was fixed to 300 seconds. Indeed, it is able to reach the best solution
for all instances of Set1.

2. Second, DSBH outperforms SYS, BSA and both KBTGs and KBTGp algorithms
since for the instances of Set1 it is able to provide better results.

3. Third, when comparing DSBH’s results to SYS’s ones, one can observe that the
percentage of the improvement varies from 6.49% (instance SYS5) to 8.82% (in-
stance SYS3). This percentage improvement remains interesting when comparing
DSBH’s results to those reached by BSA: in this case, such improvement varies be-
tween 5.96% (instance SYS1) and 7.65% (instance SYS6). Moreover, it stills positive
when comparing DSBH’s results to those provided by KBTG algorithm. Indeed, the
improvement varies from 0.48% (instance SYS1) to 6.26% (SYS4).

4. Fourth and last, DSBH’s results remain better than those reached by the parallel
algorithm KBTGp (we recall that the parallel algorithm ran without runtime limit).
Indeed, all the solution values for the instances of Set1 are improved. In this case, the
percentage of improvement varies from 0.14% (instance SYS3) to 1.65% (instance
SYS4), which remains very interesting for a sequential algorithm.

Figure 4.3 shows the behavior of DSBH on the instances of Set1 where each curve
represents the variation of the improvements realized according to the algorithm SYS,
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Figure 4.3: Variation of the percentage improvement realized by DSBH when compared to the
results of the four algorithms (SYS, BSA and both KBTGs and KBTGp) on the instances of
Set1.

BSA and both KBTGs and KBTGp, respectively. Figure 4.4.(a) illustrates GP’s con-
figuration (when applied as a heuristic for providing a starting solution for DSBG) and
Figure 4.4.(b) displays DSBH’s configuration. From the starting configuration (cf., Fig-
ure 4.4.(a)), one ca observe the failure of GP when used as a heuristic: in this case, all
items are concentrated on the bottom-left-depth position and all positions located along
the length of P to the top are omitted. However, the configuration performed by DSBH
shows the correction made when GP’s process is repeated.

Figure 4.4: Illustration of DSBH’s behavior on SYS1 instance (Set1: (a) the starting solution
with a length equal to 11.5051 and (b) the best solution’s structure and its length (9.2431)
reached by DSBH.

4.3.2 Performance of DSBH versus KBTG heuristic: Set2

This section compares the results reached by DSBH to those reached by KBTGs (note
that, for this type of instances, KBTGs realizes the best solution values of the literature).
This comparison is performed on the instances of the second group Set2 extracted from
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Kubach et al. [46]. For this type of instances, instead of determining the minimum length
L? of the target container P , Kubach et al. [46] computed the density of all packed items
in the final object P . Therefore, in addition to the density, the best length L? of the final
object P corresponding to that density is reported in the same table.

#Inst. Dichotomous Search-Based Heuristic
Label n H W d?KBTGs L? d? ω∗ %KBTGs
KBTG1 30 10 10 54.096 10.9031 56.0092� 18 3.42
KBTG2 30 10 10 30.071� 1.9900 30.071� 23 0.00
KBTG3 30 10 10 51.387 18.2415 53.6243� 21 4.17
KBTG7 50 10 10 55.372 13.0997 57.5662 � 17 3.81
KBTG8 50 10 10 45.060 2.5825 47.004� 15 4.14
KBTG9 50 10 10 52.732 27.8033 55.3203� 13 4.68
Average 48.120 49.932 3.63

Table 4.4: Performance of BSBH versus KBTGs on instances of Set2.

The results realized by the two tested methods (DSBH and KBTGs, respectively) are
reported in Table 4.4. Columns 1 to 4 display all the characteristics related to the instance.
Column 5 reports the solution value (expressed in term of density) realized by KBTGs’s
algorithm (extracted from Kubach et al. [45, 46]). The next three columns report the best
length L? reached by DSBH, its corresponding density and the best value of ω for which
the best solution is reached. Finally, the last column displays the percentage improvement
realized by DSBH according to the solution values reached by KBTGs. The analysis of
the results of Table 4.4 follows.

1. DSBH remains competitive since it improves most solutions reached by KBTGs.
Indeed, it is able to improve five out of six best solutions while it matches the other
solution (instance KBTG2) when compared to the results reached by KBTGs.

2. For the improved solutions, DSBH realizes an improvement varying from 3.42%
(instance KBTG9) to 4.68% (instance KBTG8). Globally, the average improvement
over all instances is equal to 3.63%.

3. In term of density, DSBH realizes a density of 49.932% which is much better than
those realized by KBTGs (48.120%), as illustrated in Figure 4.5.

Finally, Figure 4.6.(a) illustrates the starting solution reached by iterating GP till
packing all the items whereas Figure 4.6.(b) shows the final solution when DSBH is ap-
plied. We can observe that the starting configuration leaves also an important unoccupied
area along the length of the object P to the depth. However, the configuration leads a
better packing when GP rule is repeated on different eligible positions of the search space.
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Figure 4.5: Variation of the percentage of the density realized by both DSBH and KBTGs on
the instances of Set2.

Figure 4.6: Illustration of DSBH’s behavior on KBTG7 instance (Set2): (a) the starting solution
with a length equal to 15.3817 and (b) the best solution’s structure and its length (13.0997)
reached by DSBH.

4.4 Conclusion

In this paper the three-dimensional sphere packing problem is solved by using a dichoto-
mous search-based heuristic. The proposed method is based upon three complementary
phases: (i) a greedy selection phase which tries to select many eligible positions to itera-
tively packing all predefined items into the target object, (ii) a width beam search phase
that serves to explore some promising paths, and (iii) a dichotomous search that serves
to diversify the search space. The first two phases iterated until reaching the final objet;
that is, the container with the smallest length containing all the items. The performance
of the proposed method is evaluated on benchmark instances of the literature where the
provided results are compared to those reached by some recent methods of the literature.
The proposed method remains competitive and succeeded in yielding new solutions on
many instances.
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In this chapter, the three-dimensional sphere packing problem is tackled by using a
global dichotomous search-based heuristic. An instance of the problem is characterized
by a set N of n spheres and an open container with unlimited length. The goal of the
problem is to determine the minimum length of the container that contains all spheres
without overlapping. We propose to optimize the length of the large container by applying
a truncated tree-search that combines a hill-climbing strategy, a hybrid operator that
combines both priority and total-cost operators and, a dichotomous interval search in
order to diversify the search space. Further, in order to enhance the quality of solutions
of internal nodes, a local dichotomous search is applied almost of using a descent method.
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5.1 Introduction

Herein, we study the problem of packing spheres (namely items) in a container (namely
parallelepiped) with unlimited length. The problem is known as the Three-Dimensional
Sphere Packing Problem (3DSPP), where an instance of the problem is defined by a set
N of n unequal items (each item i ∈ N = {1, . . . ,n} is represented by its radius ri) and
a container P of fixed width W and height H and, unlimited length (for the rest of the
paper, the length representing the variation of the length of P is denoted by L). The goal
of 3DSPP is to minimize the length L of the container P such that all items of N are
positioned in the current container, without overlapping. Formally, 3DSPP can be stated
as follows:

Minimize L (5.1)√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≥ (ri + rj), ∀(i, j) ∈ N2, i < j (5.2)

ri ≤ xi ≤ L− ri, ∀i ∈ N (5.3)
ri ≤ yi ≤ H − ri,∀i ∈ N (5.4)
ri ≤ zi ≤ W − ri,∀i ∈ N (5.5)

L ≤ L ≤ L (5.6)
(xi, yi, zi) ∈ R3

+, ∀i ∈ N . (5.7)

where (xi, yi, zi), i ∈ N , denote the coordinates of the center of sphere i, and√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 is the Euclidean distance separating the centers of

spheres i and j, 1 ≤ i ≤ j ≤ n, i 6= j. This model has a linear objective function (Equa-
tion (5.1)) but quadratic (Equation (5.2)) and linear (Equations from (5.3) to (5.6))
constraints. Indeed, Equation (5.2) ensures the non-overlap constraint of any pair of dis-
tinct items (i, j) of N ×N and Equations (5.3) to (5.5) ensure that all items of N belong
to the current container P of dimensions (L,W ,H). Finally, Equations (5.7) ensure that
all items are placed in the container P .

We propose a global dichotomous search-based heuristic for the three-dimensional
sphere packing problem. Such an approach mimics the branch-and-bound procedure (cf.,
Moslehi et al. [58], Solimanpur et al. [65] and Ait Zai et al. [1] for more recent works
addressing sequential and parallel tree-search techniques for solving different variants of
optimization problems), where from a selected node, all branches are created following a
hybrid operator that combines both priority and total-cost operators. The hybrid operator
can be viewed as a two-stage procedure: (i) the first stage applies a greedy solution
procedure for obtaining a probable feasible solution (according to the subset of items
already packed) whereas although it is necessary to be accurate to provide each node a
closest value to its objective function, (ii) the second stage proposes to simulate a lower
bound for the rest of non packed items. Finally, almost of bounding the search (of the
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smallest length of the final contained container P) with a global interval, we propose to
introduce a local dichotomous search which can be applied directly to each eligible internal
node. In this case, using such a procedure may serve to achieve a series of lengths (local
minima), thereby to converge quickly to the best global optimum.

In fact, the proposed method is based on combining three main features:

(i) Creating a partial solution: a subset of paths can be reached by applying a quick basic
greedy constructive procedure. Indeed, each path represents a subset of items al-
ready positioned into the current container. The extremity of each path corresponds
to an eligible internal node of the created tree. In this case, the current subset of
retained nodes are selected by applying a hill-climbing strategy that is based upon
a hybrid evaluation operator.

(ii) Using a local dichotomous procedure: for each created path, a complementary so-
lution can be obtained by applying an extended version of a quick basic greedy
procedure. Indeed, in order to accelerate the convergence of the method, we propose
to bound the search process with an interval search [L,L], where L denotes the best
upper bound (feasible solution) reached up to now and L a lower bound that can be
estimated for the rest of the subproblem (representing the items not yet packed).

(iii) Applying an iterative search: restarting the search implies the generation of a new
starting node and so, a diversification strategy is applied in order to explore different
search spaces.

The remainder of the chapter is organized as follows. Section 5.2.1 discusses the
problem representation and Section 5.2.2 shows how to compute the subset of eligible
positions when a selected item is chosen. Section 5.2.3 exposes a process that is based upon
a tree search combined with both hill-climbing and dichotomous search strategies. Given a
current container, the tree search is employed for generating eligible nodes to develop, the
hill-climbing mimics the global search where all eligible positions are evaluated following
an evaluation operator and, the dichotomous search is applied to each retained node.
Such a combination is iterated until obtaining the best length associated to the final
container. Such a process is embedded into a global dichotomous search for diversifying
the solutions. Section 5.3 evaluates the performance of the proposed algorithm where
its obtained results are compared to those reached by recent algorithms available in the
literature. Finally, Section 5.4 concludes by summarizing the contribution of the paper
and proposes some eventual perspectives.

5.2 A global dichotomous search-based heuristic for 3DSPP

This section starts by exposing the problem representation (Section 5.2.1). The branches,
characterizing a series of nodes of the developed tree, are generated following a basic
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procedure as described in Section 5.2.2. Finally, Section 5.2.3 exposes the principle of
the proposed algorithm and its main steps. Note that in order to make the paper self-
contained, we repeat some parts already discussed in Hifi and Yousef [37, 38, 36].

5.2.1 Representation of an instance of 3DSPP

Generating eligible nodes for the developed tree needs the representation of the objet and
each item. The following representation is used:

• Assume that the bottom-left-depth corner of the current container P is positioned at
(0, 0, 0), where P is represented by a set of faces, namely F = {left, top, right, bottom, depth, front}.
Then, P is represented in the Euclidian space, as illustrated in Figure 5.1.

• Each item i ∈ N is centered at the position (xi, yi, zi).

• A pair (i, j) of N are represented by their distance δi,j:

δi,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 − (ri + rj), ∀(i, j) ∈ N2, (5.8)

where both i and j can be positioned when δi,j ≥ 0.

Table 5.1: The distance between both item i and a face f
f δi,f | i ∈ N , f ∈ F
left xi − ri
bottom yi − ri
depth zi − ri
right L− xi − ri
top H − yi − ri
front W − zi − ri

Furthermore, positioning i ∈ N into the current container P needs to define a distance
between i and the faces of F. Indeed, for all faces of P , Table 5.1 shows each corresponding
distance to be satisfied if i ∈ is assigned to an eligible position of P .

5.2.2 (Sub)paths: partial and complete solutions

Generating eligible paths, corresponding to the final nodes of the developed tree, is equiv-
alent to generate a subset of positions in the current container P . It can be done by ap-
plying the so-called Basic Greedy Procedure (namely BGP) (cf. Hifi and Yousef [38, 36]).
Indeed, BGP tries to find the minimum distance between already packed items and the
current selected item to pack in P . However, in order to curtail the cardinality of the set
of positions, only a subset of eligible positions are considered (according to the positions
defined in Table 5.1)
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We recall that all generated positions are used for creating eligible branches (sub-
paths) according to a selected node. BGP is then used as an operator for evaluating the
potential of a node (position) to investigate. Therefore, BGP is used either for providing
a complete feasible solution or for estimating the gap between the node’s upper bound
and the best length reached up to now.

5.2.2.1 BGP and eligible positions

Let i ∈ N be the current item to be packed into P and PIi be the subset of its eligible
positions. The first item of N is packed at the position (r1, r1, r1) and for i ∈ N , i ≥ 2,
the following notations are considered:

• Ii: the set of items of N already packed in the current container P .

• Ii: the set of items of N which are not yet packed in the current container P .

• PIi : the set of distinct eligible positions for the next item i to pack given the set of
packed items Ii.

It follows that an eligible position pi+1 ∈ PIi (for the item i) is determined according to
three elements, namely e1, e2 and e3. Of course, an element is either an item of N already
positioned (representing Ii) or one of the six faces belonging to F. Finally, assume that
Tpi+1

denotes the set of nodes according to e1, e2 and e3. A step of BGP, for i ≥ 2, i ∈ N ,
proceeds as follows: the distance ∆(pki+1) characterizing the (i+ 1)-th item to pack, when
positioned at the eligible position pki+1 ∈ PIi , realizes what follows:

∆(pki+1) = min
j ∈ Ii ∪ F \ T

pk
i+1

δ(i+1,j). (5.9)

Hence, BGP starts by positioning the first item i = 1 at the bottom-left-depth position,
i.e., at the position (r1, r1, r1), while the remaining n−1 items are successively positioned
according to ∆(.) (cf., Equation (5.9)). Note that if different eligible positions have the
same distance, then one can choose either (i) the first item according to the order initially
fixed or (ii) the item that realizes the smallest distance to the left side of P .

Finally, one can use BGP as a greedy procedure for searching a feasible solution to
3DSPP. Indeed, it can be realized by setting the starting length of the target container P
to∞ (i.e., LP =∞) and by applying successively BGP (by excluding the “right" face from
F) on the rest of the non packed items (BGP stops with a feasible solution with length
LU). The provided length LU can also be considered as an upper bound for starting the
proposed algorithm.
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Figure 5.1: Illustration of the current container P and the mechanism used for generating eligible
positions (nodes).

Example

Assume that the first item is already positioned in the container P at position (r1, r1, r1).
Figure 5.1 shows six eligible positions that emerge for the next item 2 to pack. By using
the representation discussed in Section 5.2.1, I1 = {1} and PI2 = {pj2, j = 1, . . . , 6}:

• First, the position p1
2 touches the item 1 and both faces “depth" and “bottom" of P .

• Second, the position p2
2 is obtained by using the item 1 and both faces “left" and

“bottom" of P .

• Third, the position p3
2 is computed by using the item 1 and both faces “left" and

“depth" of P .

• Fourth and last, all other positions p4
2, p5

2 and p6
2touch three faces of P .

It follows that Tp12 = {1, depth, bottom}, Tp2
2

= {1, left, bottom}, Tp32 = {1, left, depth},
Tp42 = {top, left, depth}, Tp52 = {top, left, front} and Tp62 = {bottom, left, front}.

Finally, as illustrated in Figure 5.1, the item 1 can be packed at one of the six positions
pj2, j = 1, . . . , 6, and if the smallest distance to the left side of P is favored, then five
positions remains favorable.

5.2.2.2 Enhancing BGP

Now suppose that instead of packing the n items in (L,W ,H), we propose to perform the
search on a series of containers of dimensions (Lk,W ,H), with L ≤ Lk ≤ L. In this case,
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one can use a starting interval [L,L], where L denotes a lower bound for the 3DSPP and
L its upper bound and so, for each target container (Lk,W ,H), BGP attempts to pack
all the n items into (Lk,W ,H), where L ≤ Lk ≤ L. As a result, a series of containers
Pk, k = 1, 2, . . . are explored using a binary search.

Algorithm 12 . Enhancing BGP (EBGP)
Input. A node η and the best length L?.

Output. A length L? and the coordinates of all items of N .

1: Initialization step
2: Set L← 4π

3×W×H
∑
i∈N (r3i ) and L = L?.

3: Iterative step
4: repeat
5: L′ = (L+ L)/2

6: Set feasible = BGP(η)
7: if feasible then
8: set L = L′, L? = min

{
L?,L′

}
; L = L′ otherwise

9: end if
10: until (L− L ≥ ε) or

(
the runtime limit is performed

)
Algorithm 12 describes the framework of the extended version of the basic greedy

procedure.

5.2.3 Using a tree search

Generally, solving a combinatorial optimization problem with a tree search requires (i) to
define the nodes with their characteristics and, (ii) to establish the branching mechanism
out of the nodes which induces the successors.

5.2.3.1 Positions and eligible nodes

The valid nodes represent a subset of eligible positions of the tree search. Each selected
node ηi to develop is characterized by a pair of subsets:

• Ii : the first subset that contains all items assigned to the current container P .

• I i: the complementary subset that includes the unassigned items.

A partial solution depends on the positioned nodes of Ii whereas a complementary solution
can be reached according to all non-positioned nodes belong to I i.

5.2.3.2 Branching

Branching out of a selected node ηi is equivalent to create at most |PIi | branches. Each
induced node is related to positioning all items of Ii and assigning a new position for the
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current item i. Moreover, the assessment of the potential of each valid node is considered
as a critical step for enumerative methods. The potential of each node may be evaluated
by its lower and upper bounds. For the 3DSPP, on the one hand, an upper bound can
be computed by using either a greedy procedure or a more sophisticate heuristic. On the
other hand, a lower bound can be computed by using a simple and quick approximate
solution value. Of course an approximate value may be used because it is not easy to
provide each node ηi a potential value that is close to the objective function value of any
leaf node emerging from ηi. So, the evaluation operators are introduced for estimating
the assessment of the potential of each node.

Generally two operators may be distinguished when an enumerative method is applied:

• A priority operator: it can be viewed as a local operator that uses a greedy heuristic
to build a complete solution.

• A total-cost operator: it can be viewed as a global operator that is able to estimate
the potential of the current node η by estimating the objective value of a complete
solution.

Algorithm 13 . A standard Tree Search-Based Algorithm (TSBA)
Input. An instance of a minimization problem.
Output. An optimal solution η∗ with objective value z∗.

1: Initialization Step.
2: Set Open = {η0}, where Open is the set of nodes to be investigated and η0 is the root node.
3: If an initial feasible solution η? is available, set z? to its objective function value; otherwise, set z? = +∞.
4: Iterative Step.
5: while (Open 6= ∅) do
6: Choose a node η ∈ Open; branch out η; remove η from Open and insert the created nodes into

Bη.
7: if (a node γ of Bη is a leaf) then
8: compute its objective function value zγ ;
9: if zγ < z? then
10: update z? and the incumbent solution η?;
11: end if
12: remove γ from Bη.
13: end if
14: Assess the potential of each node of Bγ using an evaluation operator.
15: Insert all nodes of Bγ into Open.
16: end while

The main steps of the standard tree search, for a minimization problem, may be
described by the steps of Algorithm 13. Each node η is characterized by a partial (feasible)
solution and a set Open of current nodes that is initialized at the root node, namely η0.
Each η ∈ Open creates a set of offspring nodes, and stores them into a temporary list
Bη. In the case where the node γ of Bη is a leaf, then its objective function value zγ is
computed and compared to z?; that is, the best objective value obtained up to now. If zγ
is less than z?, then the incumbent solution is replaced by the leaf node and z? is updated
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as follows: z? = zγ. In this case, γ is removed from Bγ. Finally, all nodes belonging to the
set Bη are moved to Open for further branchings. This process is iterated until Open = ∅;
in this case, no further branching is possible and so, the algorithm stops.

5.2.4 Using TSBA for solving 3DSPP

Algorithm 14 . Global Search-Based Heuristic for 3DSPP (GSBH)
Input. A starting length L?.

Output. An improved length L? and the coordinates of all packed items of N .

1: Initialization Step.
2: Let ω and ε be two predefined values.
3: Set Open = B0, where B0 denotes the starting eligible nodes according to the first packed item i = 1.

4: Set the variable feasible to false /* no feasible solution at hand */
5: Iterative Step.
6: while

(
(Open 6= ∅) and (the runtime limit is not performed)

)
do

7: Choose η from Open;
8: Let Bη = {γ1, . . . , γ|PIη |} be the successors of η.
9: Evaluate the potential of each node γ belonging to Bη by computing g(γ) and h′(γ).
10: For each γ ∈ Bη apply EBGP(γ,L?) and update L? if necessary with the incumbent

solution (in this case, set feasible to true).
11: Filter Bη by keeping the ω best nodes realizing the smallest values of L?/

(
g(γ)+h′(γ)

)
.

12: Transfer all the nodes of Bη to Open and reduce Bη to empty.
13: end while

5.2.4.1 A global truncated tree-search-based heuristic

Algorithm 14 describes an adaptation of the truncated tree-search-based heuristic (called
beam search in Hifi and Saadi [34] and Yavuza [76]). We recall that a node corresponds to
a partial solution and the set Open of current nodes contains initially the starting nodes
of the root node B0 whereas Bω containing the offspring nodes is initialized to the empty
set.

On the one hand, a selected node η taken from Open (step 7), whose evaluation is
zη, creates a subset of nodes Bη = {γ1, . . . , γ|PIη |}, where each resulting node is evaluated
according to its global-cost operator; that is,

zη = g(η) + h(η).

On the other hand, because |PIη | may be large, then only a subset of nodes is chosen for
further branching. Indeed (lines 8-12), if a node γ of Bη packs at most n− 1 items, then
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it remains in Bη whenever z′(γ) < z?, where

z′(γ) = g(η) + h′(η) (5.10)

with h′(η) = (1 + ε)h(η) and ε is considered as a small predefined value that is used for
making a correction on the complementary lower bound h(η).

Figure 5.2: Selecting favorable nodes and fathoming unsearched ones.

Whenever Equation (5.10) is not satisfied, then γ is removed from Bη. Further, since
we try to intensify the search that permits to improve the quality of the solution, we apply
EBGP on all retuned nodes (line 10). Then, L? is updated whenever EBGP realizes a
better length; in this case, its corresponding incumbent solution is also updated. The
rest of the nodes belonging to Bη (line 11) are reordered in nondecreasing order of their
estimated lower bounds z′(γ) and only the best ω nodes are selected and transferred
to Open for further branchings. This process is iterated until no further branching is
possible, i.e., until Open = ∅, or when the fixed runtime limit is performed.

Note also that, at lines 10 and 11, if a node γ of Bη is a leaf (i.e, no further branching
is possible out of γ), then its objective function value zγ is computed and compared to
the best solution value z? obtained up to now. If zγ < z?, then the incumbent solution is
set to a leaf node; z? is then updated: z? = zγ; and γ is removed from Bη.

Figure 5.2 illustrates a developed tree provided after a certain number of branchings.
First, the root node contains the list previously denoted B0, where a node η is selected
for further branchings. Second, only ω nodes were selected (cf., Figure 5.2) and the other
nodes are discarded. Third and last, at an internal level of the tree, one can observe that
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the search process may select a node following either the best-first search or depth-first
search strategies. The first selected node which smallest lower bound is selected whenever
the best-first search strategy is considered whereas the node which placed more items
(and realizing the smallest partial solution value) is selected otherwise.

5.2.4.2 Bounding the search process

It was already mentioned in Section 5.2.4 (see Step 10 of Algorithm 14) that GSBH uses
diversification search in order to improve the quality of solutions reached. Herein, the
principle of such a procedure is explained.

Let (L,W ,H) be the current container P and η be the node chosen for branching.
The length L denotes the best length reached by DSBH at a certain time. Now suppose
that instead of packing the n items in (L,W ,H), we propose to perform the search on
a series of containers of dimensions (Lk,W ,H), with L ≤ Lk ≤ L. In this case, one can
use a starting interval [L,L], where L denotes a lower bound for the 3DSPP and L its
upper bound and so, for each target container (Lk,W ,H), BGP attempts to pack all the
n items into (Lk,W ,H), where L ≤ Lk ≤ L.

Algorithm 15 summarizes the principle of such a process which can be viewed as a
diversification procedure. Indeed, it begins (line 2) by defining the starting interval [L,L],
where L is setting equal to the best length L? reached so far. The internal loop (lines
5-11) tries to pack all items in the target container by using EBGP. If a feasible solution
is obtained, then the incumbent solution is stored with its best length (L? = L), where
a new reduced interval is considered. The process is iterated until the gap between both
lower and upper bounds (of the current interval) becomes closest to a certain tolerance,
namely α (that is fixed to 0.1 in our experimental study). Finally, the aforementioned
process can also be stopped when the fixed runtime limit is exceeded.

5.3 Computational results

The performance of the proposed method (noted GDSBH) was evaluated on three sets
of instances (Set1, Set2 and Set3) available in the literature. The first set Set1 has been
used as benchmarks in Stoyan et al. [67], Birgin and Sobral [8] and Kubach et al. [46]. It
contains six instances (noted from SYS1 to SYS6) taken from Stoyan et al. [67], where the
number of items varies from 25 to 60. The second set Set2 has been used as benchmarks in
Kubach et al. [46], where they represent instances containing unequal spheres. It contains
six instances (noted KBTG1, KBTG2, KBTG3, KBTG7, KBTG8, and KBTG9) which
are taken from Kubach et al. [46]. For each instance, the dimensions W and H of the
container are fixed to 10 and the number of items is setting equal to 30 (resp. 50) for the
first (resp. last) three instances. Finally, the last set Set3 contains 22 large-scale instances
that are obtained by combining the six standard instances of Stoyan et al. [67]. All tested
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Algorithm 15 . Global Dichotomous Search-Based Heuristic (GDSBH)
Input. A starting length L?.

Output. The best length L? and the coordinates of all items of N .
/* with a new length L? and the coordinates of all items of N when feasible = true */

1: Initialization step
2: Set L← 4π

3×W×H
∑
i∈N (r3i ) and L = L?.

3: Iterative step
4: while

(
the runtime limit is not performed

)
do

5: repeat
6: L′ = (L+ L)/2

7: Set feasible = GSBH(η, L?)
8: if feasible then
9: set L = L′, L? = L′ and return L?; L = L′ otherwise
10: end if
11: until (L− L ≥ α)

12: end while

algorithms were coded in C++ and tested on an Intel Core 2 Duo (2.53 Ghz and with 4
Gb of RAM) and, the runtime limit was fixed to one hour (or two hours when large-scale
instances are tested).

The rest of this part is organized as follows. First, GDSBH’s behavior is evaluated on
Set1 (Section 5.3.3). GDSBHs’ results are thereafter compared to those reached by the
best five heuristics available in the literature: Stoyan et al.’s [67] heuristic (noted SYS),
Birgin and Sobral’s [8] algorithm (noted BSA), both sequential and parallel heuristics
proposed by Kubach et al. [45, 46] (noted KBTGs and KBTGp respectively) and Hifi and
Yousef’s [37, 36, 38] algorithm (noted HY) that uses both standard width-beam search
and its improved version. Second, for the instances of Set2 (Section 5.3.4), the results
provided by GDSBH are compared to those reached by Kubach et al. [46] and Hifi and
Yousef [37, 36, 38]. Third and last, the instances of Set3 are tested by comparing the
results reached by both HY (Hifi and Yousef [38]) and the proposed GDSBH.

5.3.1 Behavior of GDSBH versus HY on SYS5

In order to show the effect of the dichotomous search, used as an intensification strategy,
we discuss the quality of the solutions obtained by both BGP and EBGP; its extended
version. We do it on the instance SYS5 considered by Stoyan et al. [67]. On the one
hand, Figure 5.3.(a) shows the solution’s structure reached by CGP whose value is equal
to 12.7396 for the instance SYS5. On the other hand, one can observe that (see Fig-
ure 5.3.(b)) the value of the length obtained by EBGP (LEBGP = 11.2671) is better than
that realized by BGP.
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Figure 5.3: Behavior of BGP with the dichotomous search on the instance SYS5: (a) the
starting solution (with LBGP = 12.7396) reached by BGP and (b) the solution’s structure (with
LEBGP = 11.2671) reached by the extended version of BGP (EBGP).

Hence, according to both solutions, one can expect the good behavior of the proposed
method which applies EBGP as an intensification strategy instead as a simple descent
method.

5.3.2 Parameter settings

In the preliminary results, three parameters should be taken into account by GDSBH (cf.,
Algorithm 14): the value associated to ε, the size of the global list Open that maintains
the diversity and the best solutions of the problem and, the maximum runtime fixed to
one hour (which can be considered as a standard runtime limit considered by algorithms
of the literature). Of course, we recall that GDSBH stops before matching the fixed run-
time limit of one hour

Variation of the parameter ε
Size 0.10 0.15 0.20 0.25 0.30 Av. Min Av. Max
1000 9.9886 9.9178 9.8514 9.8985 9.9168 9.8514 9.9886
2000 9.9319 9.9055 9.8357 9.8550 9.9012 9.8357 9.9319
3000 9.9607 9.9316 9.8493 9.9569 9.9727 9.8493 9.9727

Table 5.2: GDSBHs average solution values on instances of Set1.
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Table 5.2 shows the average values corresponding to all solutions obtained by GDSBH
over instances of Set1 by fixing the same average runtime (3600 seconds, on average). The
first column reports the variation of the size of the global list Open (noted ρ = |Open|)
that varies in the discrete interval {1000; 2000; 3000}. Columns from 2 to 6 show the
average results when varying ε in the interval {10%; 15%; 20%; 25%; 30%} and the last two
columns give both smallest and greatest average values over all treated instances with the
same values for ε.

From Table 5.2, one can observe that, for the same runtime limit, globally the aver-
age quality of the solutions obtained is better when fixing (ρ, ε) to (2000, 20%) (the cell
corresponding to line 2 and column 4 of Table 5.2). Indeed, on the one hand, the average
of solutions decreases until the value of 20% for ε. In this case, one can remark that
the quality of the solutions is always realized for this value, i.e., ε = 20%. On the other
hand, increasing the value of the parameter ρ induces the degradation of the quality of
the solutions (the same phenomenon is observed whenever ρ is fixed to the smallest value
1000). Then, for the rest of the experimental part, we used the couple (ρ, ε) = (2000, 20%)
which provides the best average solution values for the first set of instances.

5.3.3 Behavior of GDSBH versus available heuristics on Set1

In this part, the behavior of GDSBH is evaluated on instances of Set1. Table 5.3 shows the
results obtained by all tested heuristics: GDSBH, SYS (Stoyan et al. [67]), BSA (Birgin
and Sobral [8]), KBTGs (Kubach et al. [46]), its parallel version KBTGp (proposed in
Kubach et al. [45]) and HY denoting the three versions of the width-beam search proposed
in (Hifi and Yousef [37, 36, 38]).

#Inst. SYS BSA KBTGs KBTGp HY GDSBH
Label n H W L?SYS L?BSA L?KBTGs L?KBTGp L?HY L?

SYS1 25 5.5 6.9 9.912 9.7942 9.2874 9.2656 9.1796 9.1158�

SYS2 35 6.5 7.9 9.623 - 9.1280 8.9301 8.8922 8.7893�

SYS3 40 5.5 6.9 9.473 9.3090 8.9850 8.7178 8.6702 8.5875�

SYS4 45 8.5 9.9 11.086 11.0962 10.8760 10.4042 10.2012 10.0947�

SYS5 50 8.5 9.9 11.646 11.6211 11.3494 10.9865 10.8954 10.7091�

SYS6 60 8.5 9.9 12.842 12.7215 12.3745 11.8399 11.7943 11.7176�

Average 10.7637 10.9084 10.3334 10.0240 9.9388 9.8357

Table 5.3: Behavior of GDSBH on instances of Set1. The symbole “− ” (resp. “ � ”) means that
the value is not available (resp. corresponds to the best solution realized by the corresponding
algorithm) for the corresponding instance.

Columns from 1 to 4 of Table 5.3 show the instance’s information (the instance label,
its size n and its corresponding height H and width W ). Column 5 shows the length
L?SYS obtained by SYS. Column 6 reports BSAs’ lengths (L?BSA) whereas column 7 (resp.
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column 8) displays the length L?KBTG (resp. L?KBTGp
) realized by the sequential (resp.

parallel) algorithm KBTG (In this case, as indicated by the authors, no-limit has been
fixed for the parallel version of the algorithm (see Kubach et al. [45]). Column 9 shows the
best HY’s objective value (among the three values extracted from Hifi and Yousef [38]).
Finally, column 10 displays the length L? obtained by GDSBH.

The percentage improvement, when it happens, yielded by GDSBH according to the
results reported in Table 5.3, are summarized in Table 5.4. The last table is composed
of two parts: the first part report the instance’s information and the second one displays
the percentage improvement realized by GDSBH over the other algorithms (noted %SYS,
%BSA, %KBTGs, %KBTGp and %HY , respectively). We recall that these reported val-
ues are associated to the runtime limit fixed to one hour.

#Inst. GDSBH vs all methods (% Improvement)
Label n H W %SYS %BSA %KBTGs %KBTGp %HY
SYS1 25 5.5 6.9 8.73 7.44 1.88 1.64 0.70
SYS2 35 6.5 7.9 9.49 - 3.85 1.60 1.17
SYS3 40 5.5 6.9 10.31 8.40 4.63 1.52 0.96
SYS4 45 8.5 9.9 9.82 9.92 7.74 3.07 1.06
SYS5 50 8.5 9.9 8.75 8.52 5.98 2,.59 1.74
SYS6 60 8.5 9.9 9.60 8.57 5.61 1.04 0.65
Average 9.44 10.91 5.06 1.91 1.05

Table 5.4: Percentage improvements realized by GDSBH over all other methods on instances of
the first set Set1.

From both Tables 5.3 and 5.4, we can remark what follows:

1. First, GDSBH outperforms all tested algorithms (i.e., SYS, BSA, both KBTGs and
KBTGp, and the three versions of HY) since for the instances of Set1 it is able to
provide new lower bounds.

2. Second, when comparing GDSBH’s results to those reached by SYS, its percent-
age improvement varies from 8.73% (instance SYS1) to 10.31% (instance SYS3).
Globally, the average percentage of improvement on the instances of Set1 is close to
10%.

3. Third, the percentage improvement becomes slightly more interesting when compar-
ing DSBH’s results to those realized by BSA. Indeed, in this case, DSBH’s percentage
improvement varies between 7.44% (instance SYS1) and 9.92% (instance SYS4). Its
average percentage improvement is now close to 11%
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4. Fourth, The percentage improvement remains positive when comparing GDSBH’s
results to those provided by both sequential and parallel versions of KBTG algo-
rithm. Indeed, one the one hand, the variation of the percentage improvement of
the sequential version of the algorithm remains between 1.88% (instance SYS1) and
7.74% (SYS4). On the other hand, KBTG’s parallel version remains less efficient
than GDSBH because its global average improvement remains close to 2%.

5. Fifth and last, DSBH’s results remain better than those reached by the three ver-
sions of the width-beam search HY, since its average percentage improvement re-
mains close to 1%. In this case, the percentage of improvement varies from 0.65%
(instance SYS6) to 1.74% (instance SYS5), which remains very interesting for a
sequential algorithm using a global strategy combined with both hill-climbing and
internal dichotomous search.

Figure 5.4: Variation of the percentage improvement realized by GDSBH on the instances of
the first set Set1.

First, Figure 5.4 shows the behavior of GDSBH on the five instances of Set1: each
group represents the variation of the improvements when compared to the results reached
by SYS, BSA, KBTGs, KBTGp and the best results obtained by the three versions of HY,
respectively. Second and last, Figure 5.5 shows (on the left hand) GDSBH’s best solution
reached by GDSBH for the instance SYS6 whereas the right hand of Figure 5.5 reports
the best structure realized by GDSBH for the instance SYS5.
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Figure 5.5: Illustration of GDSBH’s behavior on SYS6 (on the left hand) realizing the small-
est percentage improvement of 0.65%, and on SYS5 (on the right hand) realizing the greatest
percentage improvement of 1.74%).

5.3.4 Performance of GDSBH versus KBTG and HY heuristics (Set2)

This section compares the results obtained by GDSBH to those realized by both KBTGs

and HY on instances of Set2 extracted from Kubach et al. [45] (since they are the existing
algorithms that have tested instances of Set2). For this type of instances, instead of deter-
mining the minimum length L? of the final container P , Kubach et al. [45] published the
density of all packed items in the final container. In our case, we also report the lengths
(namely L?) realized by all tested algorithms that correspond to each density.

#Inst. KBTG HY GDSBH
Label n H W d?KBTGs L?HY d?GDSBH L?GDSBH %KBTG %HY
KBTG1 30 10 10 54.096 10.8076 61.0676 10.7251 11.4162 0.77
KBTG2 30 10 10 30.071 1.99 30.071 1.99 0.0000 0.00
KBTG3 30 10 10 51.387 18.1936 54.3437 18.1093 5.4407 0.47
KBTG7 50 10 10 55.372 12.9653 62.8374 12,9013 11.8805 0.50
KBTG8 50 10 10 45.060 2.5820 60.6938 2.5452 25.7585 1.45
KBTG9 50 10 10 52.732 27.7152 56.9661 27.7152 7.4327 0.00
Average 48.1197 12.3756 54.3299 12.3310 11.4307 0.53

Table 5.5: Performance of GDSBH versus both KBTGs and HY on instances of Set2
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All results obtained by the three methods (GDSBH, KBTGs and HY, respectively)
are reported in Table 5.5. Columns from 1 to 4 show the characteristics of each in-
stance. Column 5 reports the best density realized by KBTGs’s algorithm (taken from
Kubach et al. [45],kubach2011). Columns 6 displays the best final length d?HY reached
by the three versions of HY. Column 7 and 8 reports GDSBH’s final density d?GDSBH
and its corresponding length L?GDSBH , respectively. Finally, column 9 (resp. 10) displays
the percentage improvement realized by GDSBH when compared to KBTGp (resp. HY).
From Table 5.5, we observe what follows:

1. GDSBH is able to improve most solutions obtained by the sequential version of
KBTG. Indeed, on the one hand, it provides five better solutions and it matches the
optimal solution corresponding to the instance KBTG2. On the other hand, when
the improvement happens, GDSBH realizes an average improvement varying from
5.44% (instance KBTG3) to 25.76% (instance KBTG8). Globally, GDSBH realizes
an average percentage improvement of 11.43%.

2. GDSBH has a better behavior when comparing its obtained results to those reached
by the three versions of HY algorithm. Indeed, one the one hand, GDSBH confirms
its superiority with the parameters (ρ, ε) = (2000, 20%) by improving all the in-
stances (except for the instance KBTG2 which has been solved by all algorithms to
optimality). On the other hand, the improvement gap varies from 0.47% (KBTG3)
to 1.45% (KBTG8). In this case, it realizes an average percentage gap of 0.53%,
which remains interesting for such a problematic.

5.3.5 Performance of GDSBH on large-scale instances (Set3)

In this section, we evaluate the behavior of the proposed GDSBH on the third set (noted
Set3) containing 22 large-scale instances (taken from Hifi and Yousef [38]). Note also that
since no codes are available for SYS, KBTGs and KBTGp, we then compared GDSBHs’
solutions to the best solutions reached by the three versions of HY. Because the 22 in-
stances represents large-scale ones, then two runtime limits have been considered in Hifi
and Yousef [38]: the first runtime limit t1 was fixed to one hour (as used in Sections 5.3.3
and 5.3.4) and the second runtime was doubled, i.e., t2 was fixed to two hours. Herein,
we use the same runtimes for comparing the results realized by both methods.

These results are reported in Table 5.6. The first column shows the instance label. The
three next columns display, for the first runtime t1, HYs’ solutions, GDSBHs’ solutions
and the percentage improvement realized by GDSBH versus HY. Finally, for the second
runtime limit t2, the last three columns reports HYs’ solutions, those realized by GDSBH
and the percentage improvement realized by GDSBH versus HY.
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With the runtime limit t1 With the runtime limit t2
#Inst. L?HY L?GDSBH %Imp. L?HY L?GDSBH %Imp.
SYS.1.3.a 18.0193 17.6541 2.0686 17.6599 17.4765 1.0494
SYS.1.3.b 17.9288 17.8331 0.5366 17.8404 17.8001 0.2264
SYS.1.4.a 34.0449 33.7071 1.0022 33.7266 33.6954 0.0926
SYS.1.4.b 14.5082 14.4541 0.3743 14.2626 14.2002 0.4394
SYS.1.5.a 34.8934 34.8762 0.0493 34.9285 34.8543 0.2129
SYS.1.5.b 15.0323 14.7818 1.6947 14.7812 14.6732 0.7360
SYS.1.6.a 37.7972 37.3114 1.3020 37.3751 37.0124 0.9799
SYS.1.6.b 16.2319 15.9001 2.0868 15.9117 15.7224 1.2040
SYS.2.3.a 15.4148 15.0821 2.2059 15.0985 15.0004 0.6540
SYS.2.3.b 21.2641 21.1228 0.6689 21.1228 21.0011 0.5795
SYS.2.4.a 26.6540 26.4165 0.8991 26.4935 26.3354 0.6003
SYS.2.4.b 15.9796 15.8345 0.9164 15.6993 15.5344 1.0615
SYS.2.5.a 27.5623 27.0778 1.7893 27.0718 27.0002 0.2652
SYS.2.5.b 16.2175 16.1536 0.3956 16.1536 16.1501 0.0217
SYS.2.6.a 29.3127 29.2441 0.2346 29.2633 29.0733 0.6535
SYS.2.6.b 17.4633 17.4224 0.2348 17.1971 17.0225 1.0257
SYS.3.4.a 32.6665 32.5005 0.5108 32.5294 32.1244 1.2607
SYS.3.4.b 14.2483 14.0865 1.1486 14.0963 14.0004 0.6850
SYS.3.5.a 33.9108 33.4542 1.3649 33.7144 33.2046 1.5353
SYS.3.5.b 14.7881 14.2232 3.9717 14.5575 14.2034 2.4931
SYS.3.6.a 36.7125 36.2041 1.4043 36.3645 36.1015 0.7285
SYS.3.6.b 15.8566 15.6591 1.2612 15.6466 15.4358 1.3659
Average 23.0231 22.7727 1.1873 22.7952 22.6192 0.8123

Table 5.6: Performance of GDSBH versus HY on the 22 large-scale instances of Set3

From Table 5.6, one can observe what follows:

1. GDSBH realizes better average values. Indeed, for the first runtime limit t1, fixed to
3600 seconds, it realizes an average value of 22.77 which improves the best average
solution values (23.02).

2. Increasing the runtime limit (using t2 = 7200 seconds) for both algorithms (HY and
GDSBH), GDSBH realizes 22 new solutions. In this case, the average improvement
is more interesting since it becomes equal to 22.62 (instead of the value of 22.80
matched by HY) that represents a percentage of improvement close to 1%.
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5.4 Conclusion

In this paper, we investigate the use of the global dichotomous search-based heuristic
for approximately solving the three-dimensional sphere packing problem The proposed
method is based on the three features: (i) creating a subset of paths by applying an
extended greedy procedure, (ii) using a local operator in order to estimate lower bounds
associated to internal nodes and (iii) applying an iterative search for diversifying the
search process. The performance of the proposed algorithm was evaluated on benchmark
instances taken from the literature and the results reached by the method were compared
to those reached by recent methods available in the literature. The proposed method
succeeded to all methods in yielding new solutions for most of instances.

In the experimental part, in has been noticed that the diversification strategy helped to
improve the quality of the solutions obtained by the method. This phenomenon happened
especially when the runtime limit has been increased. We believe that a parallel version
of the method could be useful for reducing the runtime and increasing the quality of
solutions. A parallel cooperative approach seems a good choice, where each processor
is assigned a predefined order of items and all processors simultaneously synchronize the
solutions reached up to now. In the near future, we will focus to realize such an approach.
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In this chapter, we study the three-dimensional sphere packing problem which consists
in finding the greatest density of a (sub)set of predefined spheres (objects) into a cube
(parallelepiped or closed container). Such a problem is tackled by applying a cooperative
method that combines three main features: (i) a best-local position procedure stage, (ii)
an intensification stage and (iii) a diversification stage. The first stage ensures a starting
feasible solution using a basic greedy local strategy. The second stage tries to solve a series
of decision problems in order to place a subset of complementary spheres. The third stage
forces the current solution to remove some packed items and then replaced them with
other promising spheres. The performance of the proposed method is evaluated on a set
of benchmark instances taken from the literature. The results realized by the proposed
method are compared to those reached by recent published methods.
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6.1 Introduction

Herein, we study a variant of the packing problem which consist in finding the greatest
density of any packing of objects into a region of predetermined shape. An instance
of the problem is characterized by a cube C (closed container / parallelepiped) of fixed
dimensions L×H ×W and a set N of n spheres (objects) of radii ri, i ∈ N . The goal of
the problem is to find the greatest density (occupied volume) of the container C with the
available spheres of N . A feasible packing is a configuration of packed spheres without
overlapping between spheres and between spheres and the cube.

By using a simple adaptation of the model described in George et al. [23] (cf. Hifi and
M’Hallah [30]), the problem can be formulated as the following non-linear mixed integer
programming:

max α
∑
i∈N

r3
i ξi (6.1)

s.t. ξiri ≤ xi ≤ ξi(L− ri), i ∈ N , (6.2)
ξiri ≤ yi ≤ ξi(H − ri), i ∈ N , (6.3)
ξiri ≤ zi ≤ ξi(W − ri), i ∈ N , (6.4)

ξiξj(ri + rj) ≤
√

(xi − xj) + (yi − yj) + (zi − zj), (i, j) ∈ N2, i < j, (6.5)

ξi ∈ {0, 1}, i ∈ N , (6.6)

where the objective function (Equation (6.1)) favors the subset of spheres maximizing
the density such that α = (4π)/(3LHW ). Equations from (6.2) to (6.4) ensure that
the corresponding sphere i is placed into the container. Equation (6.5) ensures that the
non-overlapping between each couple of spheres belonging to the container. Each binary
variable ξi, i = 1, . . . ,n, (Equation (6.6) takes the value 1 if the i-th sphere is placed in
the container; 0 otherwise. Note that , on the one hand, one can observe that the above
model has n(n − 1)/2 non-convex constraints and 6 × n linear constraints (Equations
from (6.2) to (6.4)) according to the binary variables. On the other hand, each of these
constraints is related to the binary decision variables, which makes the problem more
complex to solve.

We propose to solve the problem by using a cooperative method that combines three
main futures: (i) a best-local position procedure, (ii) an intensification strategy and (iii)
a diversification strategy. The method begins by building a starting feasible solution by
using a greedy procedure that is based on the best local position. The resulting solution
will be modified to increase the density of the container occupied by the available spheres.
At this stage, solving the current problem is equivalent to solve a decision problem, where
the used procedure is able to respond if the container is able to receive the selected
spheres without any overlap or not. Such a stage can be viewed as an intensification
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strategy, which guides the method to choose more promising solutions. On the other
hand, because the studied problem admits an important number of local optima, then
given a current feasible solution, the method tries to destroy the solution by removing
some positioned spheres from the current container and replacing them by other unpacked
ones. The current stage can be viewed as a diversification strategy that is combined with
an intensification stage which takes place again in order to improve the provided solution.

The remainder of the chapter is organized as follows. A summarized version of the
cooperative method is exposed in Section 6.2, where three stages are used. First, Sec-
tion 6.2.1 gives the basic procedure that is used for building a starting feasible solution
or a complementary solution that completes any partial solution. Second, an adaptation
of Wang et al’s approach is used as an intensification strategy for packing non-identical
spheres into a cube. In this case, new eligible positions are determined according to the
current solution, and a series of spheres are positioned at some eligible positions in order
to improve the quality of the current solution. Third and last, Section 6.2.3 provides an
overview of the cooperative algorithm. Section 6.3 evaluates the performance of the pro-
posed algorithm by comparing its obtained results to those reached by recent algorithms
available in the literature. Finally, Section 7.4 concludes the chapter.

6.2 A cooperative method

This section exposes the cooperative method for the sphere packing problem. The main
principle of the cooperative method can be summarized as follows:

(i) Starting the search process by an initial solution using a basic greedy procedure (cf.
Section 6.2.1).

(ii) Building an improved solution using a series of decision problems (cf. Section 6.2.2).

(iii) Perturbing the search process and re-constructing a new current solution using a
basic greedy procedure according to the new order (cf. Section 6.2.3).

(iv) Steps (ii)-(iii) are repeated until a satisfactory solution is reached.

In order to simulate Step (i), the cooperative method starts with a quick greedy feasible
procedure. It works by fixing, at each step, a sphere until a final feasible solution of the
problem is obtained; that is a starting solution. Improving the quality of a given solution
is often related to the search process used around that solution. We do it by applying
an adaptation of Wang et al.’s [72] approach for solving a series of decision problems.
The goal of such an adaptation is to augmente the density of the packed spheres from
an existing feasible solution. Finally, using a diversification strategy is often promising
to escape from local optima. Hence, the last strategy of the cooperative method tries to
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randomly un-assign some spheres from the current solution, and tries to complete it using
both the basic greedy procedure and the resolution of a series of decision problems.

In what follows, first, Section 6.2.1 exposes the used greedy procedure in order to
yield a feasible solution. Second, Section 6.2.2 gives the intensification stage which tries
to improve the solution yielded after each iteration. Third and last, Section 6.2.3 details
the diversification stage which tries to explore other local optima and to enhance the
solutions built.

6.2.1 Building a feasible solution

Generating a solution is equivalent to generate a subset of positions of the spheres in the
current container P . It can be done by applying the so-called Basic Greedy Procedure
(namely BGP) (cf. Hifi and Yousef [36, 37]) that is based on positioning a series of spheres
step by step following the best local position of all candidate spheres. Such a procedure
can also be used for building either a partial solution or a complementary one.

Let suppose that all spheres are reorganized in decreasing order of their radii. Assume
that the bottom-left-depth corner of P is positioned at (0, 0, 0), where P is represented
by a set of faces F = {left, top, right, bottom, depth, front}. Then, P is represented in the
Euclidian space, such that:

• Each sphere i ∈ N is centered at the position (xi, yi, zi).

• A pair (i, j) of N are represented by their distance δi,j:

δi,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 − (ri + rj), ∀(i, j) ∈ N2, (6.7)

where both i and j can be positioned when δi,j ≥ 0 and constraints from (6.2) to (6.4)
are satisfied.

Herein, a partial solution is equivalent to a subset of positions in the current con-
tainer P . Let i ∈ N be the current sphere to be packed into P and PIi be the subset of
its eligible positions. The first sphere of N is packed at the position (r1, r1, r1) and for
i ∈ N , i ≥ 2, the following notations are considered:

• Ii: the set of spheres of N already packed in the current container P .

• Ii: the set of spheres of N which are not yet packed in the current container P .

• PIi : the set of distinct eligible positions for the next sphere i to pack given the set
of packed spheres Ii.

It follows that an eligible position pi+1 ∈ PIi (for the sphere i) is that touching three
different elements e1, e2 and e3. An element is either a sphere of N already positioned
(representing Ii) or one of the six faces belonging to F. So, assume that Tpi+1

denotes the
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set of these positions according to e1, e2 and e3. Then, a step of BGP, for i ≥ 2, i ∈ N ,
proceeds as follows: the distance ∆(pki+1) characterizing the (i + 1)-th sphere to pack,
when positioned at the eligible position pki+1 ∈ PIi , realizes what follows:

∆(pki+1) = min
j ∈ Ii ∪ F \ T

pk
i+1

δ(i+1,j). (6.8)

Hence, BGP starts by positioning the first sphere i = 1 at the bottom-left-depth
position, i.e., at the position (r1, r1, r1), while the remaining n−1 spheres are successively
positioned according to ∆(.) (cf., Equation (6.8)). Note that if different eligible positions
have the same distance, then one can choose either (i) the first sphere according to the
order initially fixed or (ii) the sphere that realizes the smallest distance to the left side
of P . In what follows, the framework of the the basic greedy procedure, used for reaching
a starting feasible solution, is described.

1. Let Ii = {i}, Ii = {1, ..,n} \ {Ii} and PIi be the set of eligible positions of the i-th
sphere.

2. Update PIi with the eligible positions of each j ∈ Ii.

3. Repeat

(a) Let pi+1
k be the best position for the next sphere according to Equation (6.8).

(b) Position the (i+ 1)th sphere into pi+1
k and move the packed sphere to Ii.

(c) Update the set of eligible positions PIi .
Until PIi = ∅

4. Exit with a feasible solution of density D and the subset Ii ⊆ N containing the
packed spheres.

BGP can be viewed as a greedy procedure that tries to pack all spheres into the
container P . Whenever all the spheres are placed successfully, then an optimal solution
is reached for the problem. Otherwise, a subset of spheres is placed with a density of D.
Indeed, according to the instances of the literature, when can observe that in some cases
the instances used may be very easy to solve instead of other ones for which computing
good approximations remain very difficult.

Indeed, in order to show the hardness of some used instances and how BGP can fill
the container, two instances taken from the literature (KBG2 with 30 spheres to pack
and SYS1KP with 25 spheres to pack) are considered for illustrating the phenomenon.
Figure 6.1 illustrates KBG2’s solution provided by BGP whereas Figure 6.2 shows that of
SYS1KP. As one can see, the greedy procedure is able to pack all spheres (cf. Figure 6.1)
realizing a density of 30.0709% (that is an optimal solution) whereas it packs 12 spheres
over 25 for the second instance (cf. Figure 6.2) by realizing a density of 48.4266% (that
is an approximate solution).
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Figure 6.1: Illustration of BGP’s solu-
tion for the instance KBG2 containing 30
spheres (the density of the provided solu-
tion is equal to 30.0709%).

Figure 6.2: Illustration of BGP’s solu-
tion for the instance SYS1KP containing 25
spheres (the final solution realizes a density
of 48.4266%).

6.2.2 Improving the quality of solutions

Solving a combinatorial problem often involves methods based upon enumerative searches.
For the studied problem, a series of subset of spheres may provide several feasible con-
figurations with the same density. In some cases, the same (sub)set of spheres may also
realizes the same density whereas the positions of the spheres on the container P are
definitely different. These solutions may correspond to local optima where most of the
algorithms used stop with such kind of solutions.

In order to escape from these solutions, Wang et al. [72] proposed a quasi-physical
quasi-human algorithm, which simulates the physical model for tackling the circular pack-
ing (packing a set of circles into a containing circle of minimum radius). The approach is
composed of two stages. The first stage applies the quasi-physical approach that solves a
decision problem which checks if a feasible packing of the available circles in the containing
circle is possible. The quasi-human approach is then employed to make jumps in order to
get out of local minima. Because the used process is often trapped in the infeasible local
optima, circles are allowed to locate new positions according to the packed circles. The
second stage recalls the first stage after reducing the radius of the containing circle. Such
process is iterated till obtaining the final containing circle of minimum radius.

Herein, we use an adaptation of Wang et al’s approach as a part of the cooperative
method for packing non-identical spheres into a cube. In our study, the proposed adap-
tation can be viewed as two-step procedure:

(i) searching for new eligible positions according to the current solution, and
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(ii) trying to add a series of spheres to some eligible positions by solving a series of
decision problems.

Let S be the current solution (not necessary the starting solution reached by BGP).
Suppose that N1 ⊆ N be the subset of spheres positioned into the container P and
N2 = N \ N1 be the remaining non-packed spheres. Then, the following description ex-
plains the two-steps procedure used for determining a better feasible solution when it
exists.

A. The first step.
From the current solution, containing the set N1 of positioned spheres, one can de-

termine a set of eligibles positions for the non-packed spheres. It can be obtained by
applying the strategy used by the basic procedure: to determine some positions inside
the container, where for a candidate sphere i, its eligible position pi+1 is that touching
three elements e1, e2 and e3. Each element is either a sphere of N already positioned
(representing the set Ii) or one of the six faces belonging to the set F. We then apply the
following steps in order to compute the current eligible positions for all remaining spheres:

1. Let rmax (resp. rmin) be the greatest (resp. smallest) radius among the unpacked
spheres.

2. Let rf be the radius of the “fictive sphere", which is initialized to rmax and Lp = ∅
be the set of preselected positions.

3. While
(
rf > rmin

)
do

(a) Compute all eligible positions according to the “fictive sphere";

(b) Update Lp and reduce the radius of the current “fictive sphere".

B. The second step.
Determining an improved solution (with better density) is equivalent to solve a decision

problem. Indeed, given a subset N1 of spheres of radius ri, i ∈ N , and a container of
dimensions (L,W ,H), is it possible to pack all the spheres inside the cube or not. Such
a problem, noted DPN1 , can be formulated as follows:

min

|N1|∑
i=1

|N1|∑
j=i+1

O2
i,j +

|N1|∑
i=1

(Oi,x +Oi,y +Oi,z)

s.c. Oi,j = max
{

0, ri + rj −
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
}

, i 6= j, i, j ∈ N2
1

Oi,x = max {0, ri + |xi| − 0.5L} , i ∈ N1

Oi,y = max {0, ri + |yi| − 0.5H} , i ∈ N1

Oi,z = max {0, ri + |zi| − 0.5W} , i ∈ N1.



102 Chapter 6. A cooperative method for the sphere packing problem

The problem DPN1 is a continuous local optimization, which admits a local optimum
whenever its objective function is equal to zero. It means that all spheres of N1 can be
packed into the container. Otherwise, the procedure fails to provide a feasible solution
for the current subset of spheres N1.

Algorithm 16 describes the main steps of the Insertion Procedure (noted IP) which
is applied for yielding an extended (better) feasible solution for the problem. It can be
viewed as a stepwise insertion procedure where, at each step of the procedure, the insertion
respects the feasibility of the provided solution; that is equivalent to solve the decision
problem DPN1 (described above).

Algorithm 16 . Insertion Procedure (IP)
Input. A starting feasible solution S with a subset N1 (resp. N2) of packed (resp. non-packed) spheres.
Output. An (improved) solution S? and (updated) subsets N1 (resp. N2) of packed (resp. non-packed) spheres.

1: Set N2 = N2 and i be the first item of N2 (according to the current order).
2: while (N2 6= ∅) do
3: Set O = N1 ∪ {i} and solve the decision problem DPO.
4: if (all spheres of O are packed) then
5: Let S′ be the new solution.
6: update S? with S′ (of density D?).
7: Set N1 = O.
8: end if
9: Set N2 = N2 \ {i}.
10: end while
11: Exit with the best solution S? and the updated subsets N1 and N2 = N \N1.

We recall that IP applies a sequentially insertion according to the available spheres (be-
longing to the subset N2), one by one, into the existing solution. The main loop (Lines
from 2 to 10) stops when all the spheres have been examined. Line 3 serves to solve
a decision problem DPO (by applying Wang et al.’s procedure), where a new subset of
spheres is considered (that is composed of the subset N1 augmented with a new sphere
belonging to the complementary subset N2 − initialized to N2 for giving a chance to each
sphere initially belonging to N2). Lines 6 and 7 check the feasibility of the new solution
and update that solution with the new positioned spheres in the case where the decision
problem DPO is true. Line 9 decreases the size of the set of un-packed spheres. Such a
process is repeated till examining all spheres initially unpacked. Finally, the procedure
exits (line 11) with the best solution S? (with density D?) and both updated subsets of
packed and unpacked spheres.

In order to illustrate IP’s mechanism, Figures 6.3 and 6.4 display two solutions. The
first solution (cf. Figure 6.3) is constructed by using the greedy procedure BGP and the
second one (cf. Figure 6.4) is obtained after running IP. One can observe that despite the
good result that can reach BGP, the used process improves the quality of the solution.
Indeed, the density of the new solution reached by IP becomes equal to 51.0489% instead
of 48.4266%.
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Figure 6.3: BGP’s solution for the instance
SYS1KP with a density equals to 48.4266%,
representing 12 positioned spheres.

Figure 6.4: Illustration of the solution pro-
vided by the second step of insertion pro-
cedure: the density of the solution is aug-
mented to 51.0489%,representing 14 posi-
tioned spheres.

6.2.3 Using a diversification strategy

IP tries to find a series of feasible solutions of the problem, which are often considered as
local optima. The objective of the building procedure is to provide a series of neighbor-
hoods, issuing from the solution at hand, which might contain better solutions. Despite
some improvements that can be realized, and because of the number of achievable solu-
tions with the same objective value, it is interesting to see how diversifying the search
process through other solutions.

Herein, we propose a diversification strategy that consists of removing a subset of
spheres from the current solution (i.e. a feasible solution of the problem). The removing
strategy diversifies the search process by degrading the quality of the solution at hand with
the aim of avoiding stagnating in a local optimum. Then, a partial solution is obtained
and it is completed by applying the basic procedure BGP as a tool for refining the quality
of the current partial solution, according to the new order associated to the remaining
spheres. Such a strategy has been already used with success for solving variants of the
knapsack type problems (cf., Hifi [28] and, Hifi and Michrafy [33]).

The main principle of the diversification procedure is described in Algorithm 17. It
starts (Line 2) by dropping the quality of the current solution: destroying the current
solution (noted S∗), where α% of spheres belonging to S∗ are randomly removed. Then,
a new order is reconsidered (Line 3) by positioning α% of spheres after the first unpacked
sphere; that is the first sphere not positioned in the current solution according to the cur-
rent order. A new (feasible) partial solution Sp is reached (Line 4) which is completed by
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Algorithm 17 . Drop and Rebuild Procedure (DRP)

Input. S, a feasible solution with its subset N1 (resp. N2) of packed (resp. non-packed) spheres.

Output. S′, an (improved) solution and its (updated) subsets N1 (resp. N2) of packed (resp. non-
packed) spheres.

1: Set S? ←− S;
2: Apply a random destroying strategy (remove α% of packed spheres) from the solution S?.
3: Place the α% of spheres after the first unpacked sphere.
4: Let Sp be the new provided partial solution.
5: Complete Sp by using BGP and let S′ be the new solution reached.
6: Return the solution S′ (with density D′) and the updated both subsets N1 and N2 = N \N1.

applying the basic procedure BGP (cf. Section 6.2.1). Because a new order is considered,
then the procedure tries to build (Line 5) a new feasible solution, noted S ′. Finally, the
procedure returns the resulting solution S ′ and its updating subsets N1 and N2.

Note that, the strategy used for forwarding the removed spheres may be considered as
a flexible diversification. It tries to give a chance to the first un-positioned sphere since
it was not previously inserted. Another strategy may be considered by transferring all
removed spheres after the unpacked spheres. In this case, such a strategy can be seen as
an aggressive diversification which would completely change the search space. Limited
computational results showed that the strategy currently used (the first one) was able to
produce solutions with good quality within lesser runtime.

Figure 6.5: Using the first stage of the di-
versification strategy: the dropping stage
(the solution realizes a density equals to
45.021%, where 30% of packed spheres were
removed from the current solution).

Figure 6.6: Using the second stage of
the diversification strategy: the rebuild-
ing stage (a solution realizing a density of
49.3742%).
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Figures 6.5 and 6.6 illustrate (i) the partial solution realized when the dropping stage
(removing 30% of spheres from the packed ones) is applied, and (ii) the final solution
obtained when the rebuilding stage is applied. As shown from Figure 6.5, the first so-
lution degrades the quality of the solution as expected whereas the second solution (cf.
Figure 6.6) seems as a modified solution. If such a solution is compared to that builded
by BGP (cf. Figure 6.3), one can observe that both solutions differ.

6.2.4 An overview of the cooperative method

Algorithm 18 summarizes the main steps of the proposed Cooperative Method (noted
CM). The input of CM is an instance of the packing problem composed of a set N
of n spheres that would be positioned into a cube of dimensions (L,W ,H). It starts
(Line 1) by ordering the spheres of the set N in decreasing order of their radii. At line 2,
the first initial feasible solution S ′ is reached by applying the basic procedure BGP (cf.
Section 6.2.1). Lines from 4 to 15 represent the main loop of CM, which is composed of
both intensification and diversification stages.

The intensification stage (Lines from 5 to 8) applies IP procedure in order to solve a
series of decision problems. We recall that the decision problem amounts to find the best
density of spheres regarding the (current) specific order of the spheres. Whenever the
new solution achieves a better density so far, then the best solution S? is updated with
its subsets N1 (the packed spheres) and N2 (the remaining spheres).

The diversification stage (Lines from 10 to 14) applies DRP procedure which combines
the destroying operator and the rebuilding strategy. Indeed, the first step removes α% of
packed spheres from the current solution S ′ and the second one rebuilds a new diversified
solution; that is a solution completing the partial solution obtained after destroying the
current solution. The complete solution is obtained by using the basic procedure BGP.

In the case where the solution is improved (Lines from 12 to 14), i.e., reaching a
higher density, the best solution S? is replaced by Snew with its two subsets. Because the
method alternates between these two stages, in this case the diversified solutions undergo
the improvement stage (applying IP procedure), i.e., solving a series of decision problems
to attempt improving the quality of the solutions. Finally, both stages are repeated until
a satisfactory solution is obtained or after a maximum number of iterations (or fixed
runtime) is performed.

In order to show how CM works, Figure 6.7 illustrates (from the left-hand to the
right-hand) (i) the solution realized when the rebuilding stage is applied, (ii) the fictive
positions associated to the remaining (non-positioned) spheres and, (iii) the final solution
obtained when the insertion procedure IP is applied. As shown from Figure 6.7, the
density of the new solution becomes equal to 52.1885%.
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Algorithm 18 : A Cooperative Method for the sphere packing problem
Input: An instance of packing problem.
Output: S?, the best solution of the problem.

1: Consider that all spheres of N are ordered in decreasing order of their radii.
2: Let S′ be a starting solution realized by the procedure BGP (cf. Section ??).
3: Affect S′ to S? // the best solution found so far.

4: while (the stopping criteria is not performed) do
5: Apply IP to S′ and let Snew be the new reached solution. // Improvement

stage
6: if (DSnew > DS?) then
7: Affect Snew to S? and update both subsets N1 and N2 (according

to Snew).
8: end if

9: Affect Snew to S′.
10: Apply DRP to S′ (cf. Section 6.2.2). // Diversification stage
11: Let Snew be a new solution reached.
12: if (DSnew > DS?) then
13: Affect Snew to S? and update both subsets N1 and N2 (according

to S′).
14: end if
15: end while
16: return S?.

Figure 6.7: Illustration of CMs’ iterations on SYS1KP instance: (i) the rebuilding’s solution
(on the left-hand), (ii) the eligible positions generated according to the unpacked spheres (on
the middle) and (iii) the final solution achieved when applying the insertion procedure (on the
right-hand).
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6.3 Computational results

The purpose of this section is two-fold: (i) to show how to determine a good trade-off
between the quality of the obtained solutions when varying the destroying parameter
and (ii) to evaluate the effectiveness of the proposed Cooperative Method (CM) when its
achieved results are compared to the best results available in the literature. This part was
conducted on two sets of instances: the first set (noted Set1) contains twelve instances
divided into two subsets, where each of them is composed of six instances. The first subset
(noted Set1a) contains instances taken from Akeb [2], where the number of spheres to pack
varies from 25 to 60 (noted from SYS1KP to SYS6KP). The second subset (noted Set1b)
contains instances (noted KBG1, KBG2, KBG3,KBG7, KBG8 and KBG9) taken from
Kubach et al. [46], where the number of spheres varies from 30 to 50. These instances
proposed and used by Kubach et al. [46] and they were used as benchmarks in Akeb [2]
for testing his proposed approach. The second set of instances (Noted Set2) is composed
of 96 instances extracted from Kubach et al. [45]. In this case, Set2 wa also divided into
four subsets (noted set2a, set2b, set2c and set2d) following the number of spheres to pack
which varies in the discrete interval {20, 30, 40, 50}.

Note also that because the size of instances differs for both sets, i.e., Set1 and Set2, we
then fixed the runtime limit, considered as the stopping criterion of the method, to 3600
seconds for instances of Set1 and 7200 seconds for the instances of Set2 (which represent
more hardness instances). Finally, the proposed method was coded in C++ and tested
on a Pentium 2.4 Mhz (with 2 Gb of RAM) and the other tested methods were also ran
on equivalent computers.

6.3.1 Effect of the parameter α

It is well-known that different parameter settings for any method lead to results of variable
quality. In the preliminary results, two parameters should be taken into account by CM
(cf., Algorithm 18): the value associated to α and the maximum runtime fixed (which
can be considered as a standard runtime limit considered by algorithms of the literature).
In the preliminary results, we evaluated the effect of the parameter α, especially for
determining the right value. Herein, CM was run on instances of Set1a by varying the
value of α in the discrete intervalle {10, 20, 30, 40, 50, 60}, where for each tested instance,
ten trials were considered.

Over the ten trials, Table 6.1 exposes for each tested instance the minimum (Min), the
average (Mean) and the maximum (Max) density (noted D) reached by CM regarding
the value associated to α. It also shows the number of spheres packed (noted #d) by CM
(minium, average and maximum values, respectively). From Table 6.1, one can observe
that CM is able to provide better average solution values for α = 30. We believe that the
phenomenon is due to the greedy procedure that uses an intuitive packing which, in some
cases, it induces solutions with lesser densities. Indeed, both smallest and greatest values
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α = 10 α = 20
Min Mean Max Min Mean Max

Inst. DCM #d DCM #d DCM #d DCM #d DCM #d DCM #d
SYS1 52.623 15 53.2558 16.5 53.901 17 52.761 17 53.4298 17.1 53.901 17
SYS2 53.622 25 55.2099 24.7 56.026 26 54.353 24 55.7760 24.8 56.322 24
SYS3 53.511 24 55.1969 25.7 56.252 25 55.113 27 56.1647 26.2 56.449 27
SYS4 52.678 27 53.2778 28.5 53.631 31 53.471 31 53.5515 29.5 53.611 29
SYS5 53.314 29 54.1031 29.4 54.852 30 54.664 29 55.5279 32 56.808 33
SYS6 55.183 35 56.2595 36.2 56.906 35 56.196 37 57.0971 37 57.964 38

G-Av. 53.489 25.83 54.551 26.83 55.261 27.33 54.426 27.50 55.258 27.77 55.843 28.00

α = 30 α = 40
Min Mean Max Min Mean Max

Inst. DCM #d DCM #d DCM #d DCM #d DCM #d DCM #d
SYS1 52.547 17 53.5928 17.2 54.229 18 53.008 17 53.5395 17 53.653 17
SYS2 54.172 24 55.8714 24.3 56.396 25 54.099 21 55.7458 24.5 56.301 25
SYS3 55.265 27 56.0701 26.8 57.191 26 54.308 23 55.8985 25.7 56.871 26
SYS4 54.538 30 54.7868 30.3 55.734 31 53.035 30 54.2323 30.1 55.856 31
SYS5 54.322 33 56.1864 33.3 57.307 34 55.081 34 56.0719 33 57.012 34
SYS6 56.963 36 57.7119 36.4 58.205 35 55.573 35 57.3126 36.8 58.131 38

G-Av. 54.635 27.83 55.703 28.05 56.510 28.17 54.184 26.67 55.467 27.85 56.304 28.50

α = 50 α = 60
Min Mean Max Min Mean Max

Inst. DCM #d DCM #d DCM #d DCM #d DCM #d DCM #d
SYS1 50.476 15 51.7235 15.2 52.665 16 50.031 14 50.8633 14.4 51.932 14
SYS2 52.345 21 53.8049 22.5 54.508 25 52.557 22 53.7337 22.8 54.316 22
SYS3 54.025 24 54.5342 24.3 55.368 27 53.143 23 54.1650 24 55.074 24
SYS4 52.294 27 53.1705 28.8 54.445 31 52.222 27 52.7863 26.8 53.448 30
SYS5 53.069 28 54.0218 29.8 55.711 32 53.437 29 54.0989 29.8 55.601 32
SYS6 54.945 35 56.122 35.5 57.839 36 53.858 34 55.5016 34.9 56.249 36

G-Av. 52.859 25.00 53.896 26.02 55.089 27.83 52.541 24.83 53.525 25.45 54.437 26.33

Table 6.1: Behavior of the cooperative method (CM) when varying the parameter α

of α may provide a premature convergence of the method and so, the insertion procedure
may have a smallest chance to improve the quality of the solution at hand. Finally, the
moderate value of α seems more interesting when combining both the greedy strategy and
the insertion one. Hence, α with the value 30 will be adopted for the rest of the paper.

6.3.2 Behavior of CM on instances of Set1

CM is first tested on the set Set1 containing 12 instances. It contains six instances (noted
Set1a) taken from [2], where the number of spheres to pack varies from 25 to 60 (these
instances are noted from SYS1KP to SYS6KP). The second part (noted Set1b) contains
six instances extracted from Kubach et al. [46], where the number of spheres varies from
30 to 50 (these instances are noted from KBG1 to KBG9 and used as benchmarks in
Akeb [2]).

6.3.2.1 Behavior of CM on instances of Set1a

Table 6.2 compares the performance of CM to that of TSLA (proposed in Akeb [2]).
Columns from 1 to 5 indicate the instance label and its related information. Column 6
(resp. column 7) shows DTSLA (resp. #dTSLA), the density (resp. number) obtained
(resp. packed) by TSLA whereas columns from 8 to 11 show the same results achieved
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Cooperative Method
TSLA Mean Max %Improvement

Inst. n H W L DTSLA #dTSLA DCM #dCM DCM #dCM Mean Max
SYS1KP 25 6.9 5.5 5 53.008 15 53.593 17.2 54.229 18 1.091 2.252
SYS2KP 35 7.9 6.5 5 55.358 25 55.871 24.3 56.396 25 0.919 1.841
SYS3KP 40 6.9 5.5 5 55.086 23 56.070 26.8 57.191 26 1.755 3.681
SYS4KP 45 9.9 8.5 5 54.048 29 54.787 30.3 55.734 31 1.349 3.025
SYS5KP 50 9.9 8.5 5 55.757 32 56.186 33.3 57.307 34 0.764 2.705
SYS6KP 60 9.9 8.5 5 56.960 36 57.712 36.4 58.205 35 1.303 2.139
G-Av. 55.036 26.667 55.703 28.050 56.510 28.167 1.197 2.607

Table 6.2: Performance of CM versus TSLA on instances of Set1a. The symbol “?" means
that method achieve a better bound, the value in “italic" means that method improves the best
solutions of the literature and the value in the “boldface" denotes a new (average) bound.

by CM, i.e., DCM and #dCM , respectively. Finally, column 12 (resp. column 13) tallies
the maximum (resp. average) percentage improvement (when it happens) yielded by CM
when compared its results to those reached by TSLA (the percentage improvement is
computed as follows: DCM−DTSLA

DCM
× 100).

The analysis of Table 6.2 shows what follows:

• CM outperforms TSLA whenever the runtime limit was fixed to 3600 seconds. In-
deed, it is able to improve all the bounds for all instances of Set1a.

• When comparing the maximum global average density (cf. the global average value
noted G-Av., column 10), one can observe that CM realizes a value of 56.510% which
dominates that achieved by TSLA (55.036%). On can also observe that packing
more spheres into the container does not automatically lead to a better solution.
Indeed, such a phenomenon can be observed on the the instance SYS6KP, where
TSLA packed 36 spheres for realizing a density of 56.960% whereas CM positioned
35 spheres for giving a density of 58.205%.

• When comparing the average values achieved by CM (55.703%), one can also ob-
serve that CM’s G-Av. (column 8) remains superior than that realized by TSLA
(55.036%). As discussed above, for the same instance SYS6KP, CM’s average den-
sity (57.712%, column 8) remains significantly greater than that of TSLA (56.960%,
column 6) and it is able to pack 36.4 spheres, on average.

• Furthermore, as shown from column 13, the maximum percentage improvement
(Max) is very impressive for such a problem, since it varies from 1.841% (instance
SYS2KP) to 3.681% (instance SYS3KP). Note also that even if one consider the
average values related to the ten trials (cf., column 12, Mean), we can see the
superiority of CM since it is able to realize an average percentage of improvement
varying from 0.764 (instance SYS5KP) to 1.755 (instance SYS3KP) with a global
average value equals to 1.197.
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(a) SYS4KP (b) SYS5KP (c) SYS6KP

Figure 6.8: Illustration of the solutions’ structures of three instances (SYS4KP on the left-hand,
SYS5KP on the middle and SYS6KP on the right-hand) of the set Set1a.

Finally, Figure 6.8 illustrates three final configurations related to the instances SYS4KP
(on the left-hand of the figure), SYS5KP (on the middle of the figure) and SYS6KP (on the
right-hand of the figure). These structures represent new solutions, whereDCM(SYS4KP) =
55.856%, DCM(SYS5KP) = 57.307% and DCM(SYS6KP) = 58.205%.

6.3.2.2 Behavior of CM on instances of Set1b

Herein, the performance of CM is evaluated on instances of the second part of Set1
(noted Set1b) that contains 6 instances (taken from Kubach et al. [46]). Its performance
is compared to those realized by the three heuristics: (i) sequential version of B1.16
heuristic with the parameter τ = 0.8 (cf. Kubach et al. [46]), (ii) sequential version of
B1.16 heuristic with the parameter τ = 1.0 (cf. Kubach et al. [46]) and, (iii) TSLA (cf.
Akeb [2]). We also evaluated the ratios between CM and the three considered heuristics,
i.e., both sequential versions of B1.16 and TSLA, respectively.

CM
B1.16 TSLA Mean Max

Inst. n L H W Dv1 Dv2 DTSLA #dTSLA DCM #dCM DCM #dCM
KBG1 30 11.103 10 10 53.657 55.001 55.001 30 54.663 29.6 55.001 30
KBG2 30 1.99 10 10 30.071 30.071 30.071 30 30.071 30 30.071 30
KBG3 30 17.785 10 10 52.154 52.375 52.625 28 52.220 27.5 53.507 29
KBG7 50 13.71 10 10 55 55 55 50 55 50 55 50
KBG8 50 2.207 10 10 46.406 46.517 46.342 41 46.184 35.8 47.416 41
KBG9 50 27.965 10 10 52.54 53.173 53.662 48 52.968 46.5 53.662 48
G-Av. 48.305 48.690 48.784 37.83 48.518 36.57 49.110 38

Table 6.3: Performance of CM versus two versions of B1.16 (with τ = 0.8 and τ = 1.0) and
TSLA on instances of Set1b

First, Table 6.3 shows the results achieved by both versions of B1.16, TSLA and those
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reached by the proposed CM. Columns from 1 to 5 show the instance’s information. The
results of both versions of B1.16 are displayed in column 6 for the first version (noted Dv1)
and in column 7 for the second version (noted Dv2), respectively. Column 8 tallies those
achieved by TSLA (represented by the density DTSLA) and column 9 shows the number of
spheres packed by the same heuristic (noted #dTSLA). Finally, columns 10 and 11 (resp.
columns 12 and 13) display the average densities (resp. the average number of packed
spheres) achieved by CM for the ten trials.

Second and last, in order to show the behavior of CM versus both versions of B1.16
and TSLA, we also evaluated the percentage ratios between CM and B1.16 and, CM
and TSLA; both ratios represent DCM−B1.16

DCM
× 100 and DCM−DTSLA

DCM
× 100, respectively.

Table 6.4 reports the percentage ratios relating the quality of the solutions achieved by
CM (column 1 for CM versus the first version of B1.16, column 2 for CM versus the second
version of B1.16 and, column 3 for CM versus TSLA).
The analysis of the results of both Tables 6.3 and 6.4 follows:

• First, CM outperforms the sequential B1.16 heuristic (with τ = 0.8). Indeed, CM
realizes a percentage average value of 49.110% (column 12 and the last line of the
table noted G-Av.) compared to the average value of 48.3047% (column 12 and
the last line of the table noted G-Av.) realized by the sequential heuristic B1.16.
Indeed, CM dominates B1.16 heuristic (with τ = 0.8) in four cases and matches
the solutions for the rest of the instances. In this case, the percentage improvement
(%Imp.) varies from 2.091% (KPG9) to 2.529% (KPG3) and both CM and B1.16
match the optimal densities for two instances (KBG2 and KBG7).

CM versus B1.16 (τ = 0.8) CM versus B1.16 (τ = 1.0) CM versus TSLA
Inst. Mean Max Mean Max Mean Max
KBG1 1.841 2.444 -0.618 0.000 -0.618 0.000
KBG2 0.000 0.000 0.000 0.000 0.000 0.000
KBG3 0.126 2.529 -0.297 2.116 -0.776 1.648
KBG7 0.000 0.000 0.000 0.000 0.000 0.000
KBG8 -0.482 2.130 -0.722 1.896 -0.343 2.265
KBG9 0.808 2.091 -0.387 0.911 -1.311 0.000
G-Av. 0.382 1.532 -0.338 0.821 -0.508 0.652

Table 6.4: Behavior of the three compared methods on instances of Set1.b

• Second, CM has a better behavior that the second version of B1.16 (with τ=1).
Indeed, it improves three solutions (instances) among the sixth ones, where CM’s
percentage improvement varies from 0.9113% (instance KP9) to 2.11561% (instance
KPG3). Moreover, both CM and B1.16 match the optimal densities for the rest of
instances, i.e., KBG1, KBG2 and KBG7.

• Third, CM performs better than TSLA for the instances of Set1b. Indeed, CM
provides a better result for two instances (KPG3 and KBG8) and it matches the



112 Chapter 6. A cooperative method for the sphere packing problem

rest of the bounds achieved by TSLA. By excluding the solutions matched by CM,
the percentage improvement varies from 1.64838% (KPG3) and 2.265% (KPG8).

• Furthermore, over the six instances, CM is able to reach two new solutions when
compared to the best published bounds and matches the rest of the solutions (4).

Cooperative Method’s cpu
Inst. min mean max
KBG1 50.67 589.505 54.42
KBG2 0 0 0
KBG3 3.87 522.252 1934.46
KBG7 0 0 0
KBG8 57.01 1322.926 113.75
KBG9 128.34 2176.186 3476.85
G-Av. 39.98 685.14 929.91

Table 6.5: Variation of CM’s runtime on instances of Set1b

Moreover, as we have already mentioned that the runtime limit was fixed to one
hour for all compared methods. For instances of Set1b, we also saved the best (average)
runtime for which CM provides the best (average) bound, as shown in Table 6.5. Indeed,
over the ten trials, and by excluding both KBG2 and KBG7 (for which the optimality
is proven), one can observe that the minimum and maximum global average runtimes
(last line, column 2 and column 4, respectively) is equal to 39.98 seconds and 929.91
seconds, respectively. Finally, the global average runtime over the ten trials is equal to
685.14 seconds, which is much less important than the one-hour considered as one of the
stopping criteria.

We also provide the structure related to two instances of Set1b as illustrated in Fig-
ure 6.9 (KBG3 and KBG8 from the left-hand to the right-hand), where CM is able to
improve their bounds (we recall that for the rest of instances, all methods are able to
provide the optimal solutions, where all spheres are packed). These structures represent
new solutions, where DCM(KBG3) = 53.507% and DCM(KBG8) = 47.416%.

6.3.3 Behavior of CM on instances of Set2

In order to study the behavior of the proposed method on more hardness instances,
we evaluated its performance on a set (noted Set2) containing 96 instances taken from
Kubach et al. [45]. We then compared its obtained results to those reached by Kubach et
al.’s parallel heuristic (noted B1.16).

Set2 is divided into four subsets following the number of spheres to pack: Set2a, Set2b,
Set2c and Set2d, where each subset contains 24 instances with 20, 30, 40 and 50 spheres
to pack, respectively. Set2a includes the instances noted from KP1 to KP24, Set2b is
represented by the instances noted from KP74 to KP96, Set2c includes the instances
noted from KP145 to KP240 and, Set2d contains the rest of the instances noted from
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(a) KBG3 (b) KBG8

Figure 6.9: Illustration of the solutions’ structures of two instances ((a) KBG3 and (b) KBG8)
belonging to Set1b.

KP217 to KP240, respectively. Moreover, Kubach et al.’s [45] parallel heuristic has been
run without runtime limit whereas CM’s runtime limit was fixed to 7200 seconds, where
the last bounds achieved by CM was considered as the final solution value (density) for the
method. Because Kubach et al.’s [45] parallel heuristic uses a parameter τ , which serves
to reduce the number of positions to attempt, we then considered both versions: the first
one runs with the parameter τ = 0.8 and the second one that considers all positions, i.e.,
with the parameter τ = 1.0.

Parallel B1.16 (τ = 0.8)
Subset Df tf tsucc Dtot ttot nbopt
Set2a 46.368 16 4 41.798 13 7
Set2b 49.224 550 0.01 46.519 458 4
Set2c 50.553 9438 0.01 49.439 8259 3
Set2d 51.042 8273 759 51.020 7647 2
G-Av. 49.29675 4569.25 190.755 47.194 4094.25 4

Parallel B1.16 (τ = 1.0)
Subset Df tf tsucc Dtot ttot nbopt
Set2a 49.517 2208 6 44.067 1566 7
Set2b 50.901 53301 10646 48.941 35528 10
Set2c 51.148 469900 12978 51.565 222400 13
Set2d 51.605 405077 1250 52.950 203163 12
G-Av. 50.79275 232621.5 6220 49.381 115664.25 10.5

Table 6.6 shows the results realized by both versions of B1.16 (displayed in the first
two-blocks of the table) and those obtained by the proposed cooperative method CM (the
third block of the table). First, for all blocks, column 1 displays the data labels of the four
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Maximum and average results on ten trials: Cooperative Method
Df tf tsucc | Dtot ttot nbopt

Subset Mean Max Mean Max Mean Max Mean Max Mean Max
Set2a 48.111 49.632 250.75 638.30 15.86 48.09 42.949 44.111 182.24 466.15 7
Set2b 49.485 50.922 1330.86 3062.74 274.27 595.23 47.917 48.954 890.61 2034.61 10
Set2c 49.762 51.234 1838.34 2542.66 398.34 767.27 50.853 51.604 1058.34 1580.99 13
Set2d 46.117 51.615 3603.63 5176.80 159.14 197.46 48.021 52.955 1881.39 2687.13 12
G-Av. 48.369 50.851 1755.89 2855.12 211.91 402.01 47.435 49.406 1003.15 1692.22 10.50

Table 6.6: Behavior of both versions of B1.16 and CM on the instances of Set2.

subsets of Set2. Second, Df denotes the average density of each subset of Set2 (Set2a,
. . ., Set2d) whenever the method is not able to pack all spheres and tf is the average
final runtime that needs the method to achieve the final solutions (Df ). Third, tsucc is
the average final runtime that needs each method to pack all spheres (with success), Dtot

(resp. ttot) represents the average density (resp. its corresponding average runtime) for all
instances of each subset. Finally, nbopt is the number of instances solved to optimality by
the corresponding method. In addition, because CM considers ten trials, we then display
(in the third block) the average (noted Mean) and the maximum (noted Max) values of
Df , tf , tsucc, Dtot, ttot and nbopt, respectively.

Cooperative Method
Set2a (n = 20) Average Max
Inst L H W D #d ts D #d ts
KP1 10 30.345 5 46.4265 15.6 64.89 47.670 17 33.53
KP2 10 20.23 7.5 46.967 17 107.50 47.687 17 387.70
KP3 10 15.172 10 50.4692 18 940.59 51.509 18 1269.20
KP4 10 10.416 5 44.1237 15.9 202.81 47.336 17 185.78
KP5 10 6.944 7.5 45.4693 15.7 76.74 49.249 18 184.18
KP6 10 5.208 10 45.5844 16.4 282.51 47.382 17 588.84
KP7 10 13.146 5 46.1502 16.6 341.61 47.597 17 623.24
KP8 10 8.764 7.5 49.6914 17.5 188.56 51.630 19 829.53
KP9 10 6.573 10 50.438 18 449.03 51.175 18 902.98
KP10 10 7.171 5 48.4374 18.2 115.91 50.179 19 131.60
KP11 10 4.781 7.5 47.1886 17.6 105.62 48.384 18 345.56
KP12 10 3.586 10 47.4227 16.9 209.15 48.684 17 611.21
KP13? 10 1.97 5 43.8306 18.6 110.88 45.860 20 336.49
KP14? 10 1.97 7.5 30.573 20 0.00 30.573 20 0.00
KP15? 10 1.97 10 22.93 20 0.00 22.930 20 0.00
KP16 10 11.916 5 48.4367 17.9 70.94 49.260 18 37.87
KP17 10 7.944 7.5 52.4241 18.5 218.69 53.994 19 1187.47
KP18 10 5.958 10 48.7011 18.8 126.03 49.916 19 209.76
KP19 10 5.136 5 51.8485 18.6 635.36 53.089 19 3251.79
KP20 10 3.424 7.5 48.1165 17.7 126.75 49.011 18 70.80
KP21? 10 3.29 10 42.934 20 0.10 42.934 20 0.10
KP22? 10 1.956 5 33.511 20 0.01 33.511 20 0.01
KP23? 10 1.956 7.5 22.34 20 0.02 22.340 20 0.02
KP24? 10 1.956 10 16.755 20 0.03 16.755 20 0.03
G-Av. 42.9487 18.06 182.24 44.1106 18.54 466.15

Table 6.7: Average and best densities (with their runtimes) reached by CM over the ten trials
for the instances of Set2a

From Table 6.6, we can remark what follows.
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• CM outperforms both parallel versions of B1.16. Indeed, CM’s global average density
is equal to 49.406% whereas the first (resp. second) version of the parallel B1.16 is
equal to 47.194% (resp. 49.381%).

• CM has a better behavior when comparing its obtained results to those reached by
the first version of parallel B1.16. Indeed, the percentage gap improvement of CM
(CM−B1.16)×100 (between both average densities) varies from 0.5% (instances of
Set2d) to 4.4% (instances of Set2a). The percentage related to filling spheres into
the container increases according to the number of spheres to pack, even if the gap
related to the improvement doesn’t have the same behavior (for example, see the
average densities for the instances of Set2b and Set2c).

• CM’s results remain better than those reached by the second version of parallel
B1.16. Indeed, its gap remains positive, where its average density varies from
41.798% to 51.02% whereas CM’s average density increases for realizing the value of
44.111% to 52.955%, respectively.

• Even if the average runtime of the first version of B1.16 remains interesting (4094.25
seconds), that of CM is very impressive (1884.61 seconds). Indeed, both average
runtimes show that CM is 2.17 times faster than the first parall version of B1.16.

• As pointed above, the second parallel version of B1.16 has a great chance to find
solutions with hight quality, because all eligible positions of each candidate sphere
to pack are considered. Despite its unlimited runtime, CM is able to achieve the
same number of optimal solutions (at the same time it improves the global average
density of the instances of Set2, as discussed above). In fact, CM’s average runtime
is now 61.37 times faster than that used by the second parallel version of B1.16 for
achieving the average densities exposed in the second block of the table (even if the
processors used by each method are slightly different).

Second and last, Tables from 6.7 to 6.10 report the average results realized by CM for
the four subsets of instances (Set2a, Set2b, Set2c and Set2d, respectively) over the ten
trials. Column 1 (of each table) displays the label of the instance and reports its data
information in the three next columns. Column 5 (resp. column 6) reports CM’s average
density (resp. average runtime) for the ten trials whereas column 7 (resp. column 8)
shows the best density (resp. runtime) achieved (resp. needed) by CM over the ten trials.

From Tables 6.7 to Table 6.10, one can observe that CM confirms its superiority by
achieving several optimal solutions (as shown in column 10 of Table 6.6: an average of
10.5 optimal solutions realized by CM, for which all spheres were packed) almost of the
four ones realized by the first parallel version of B1.16 (cf. Tables from 6.7 to 6.10, all
instances marked with symbol “?"). On the other hand, even CM has a better behavior
than that the second parallel version of B1.16, it realizes tha same number of optimal
solutions (marked with the symbol “?").
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Cooperative Method
Set2b (n = 30) Average Max
Inst L H W D #d ts D #d ts
KP73 10 35.57 5 47.3891 24.3 387.82 48.112 26 605.28
KP74 10 23.714 7.5 50.9428 26.7 652.83 51.957 28 250.51
KP75 10 17.785 10 52.595 27.9 1954.72 53.476 28 4413.77
KP76 10 14.506 5 47.0779 24.4 1858.68 48.948 28 5421.99
KP77 10 9.671 7.5 50.0356 25.9 682.22 52.037 26 1818.54
KP78 10 7.253 10 49.1036 25.9 1003.15 51.693 28 2026.08
KP79 10 25.011 5 48.23256 27.1 1664.00 49.58 28 3470.98
KP80? 10 16.674 7.5 52.922 29 1596.04 55.001 30 3902.78
KP81 10 12.506 10 52.94614 35.3 3461.10 54.0093 29 7110.85
KP82 10 9.167 5 53.042 28.8 898.44 53.69 29 344.71
KP83? 10 6.111 7.5 53.651 28.6 306.21 55.001 30 902.78
KP84 10 4.583 10 49.3988 27.3 1381.51 52.928 28 5398.43
KP85 10 2.176 5 43.6295 21.3 698.28 44.267 23 1023.87
KP86? 10 1.99 7.5 40.094 30 0.00 40.094 30 0.00
KP87? 10 1.99 10 30.071 30 1.49 30.071 30 1.49
KP88 10 22.206 5 48.3313 26.6 1758.30 49.608 28 4950.59
KP89? 10 14.804 7.5 54.6358 29.7 43.38 55.001 30 50.38
KP90? 10 11.103 10 55.001 30 17.70 55.001 30 17.70
KP91? 10 9.019 5 54.0305 29.3 363.60 54.997 30 662.84
KP92? 10 6.012 7.5 55.003 30 414.00 55.003 30 414.00
KP93 10 4.509 10 50.9798 27.9 1582.21 52.981 29 5154.99
KP94 10 1.926 5 49.0881 25.4 648.73 49.624 27 887.83
KP95? 10 1.926 7.5 35.322 30 0.00 35.322 30 0.00
KP96? 10 1.926 10 26.492 30 0.32 26.492 30 0.32
Av. 47.9173 27.98 890.61 48.9539 28.54 2034.61

Table 6.8: Average and best densities (with their runtimes) reached by CM over the ten trials
for the instances of Set2b
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Cooperative Method
Set2c (n = 40) Average Max
Inst L H W D #d ts D #d ts
KP145 10 44.958 5 47.2917 31.3 1346.11 47.974 32 2692.12
KP146 10 29.972 7.5 52.7601 34.1 3121.53 53.496 37 4213.43
KP147 10 22.479 10 53.821 35.5 2379.24 54.439 39 3397.87
KP148 10 20.267 5 45.3572 29.8 1490.51 46.597 39 3397.87
KP149 10 13.511 7.5 51.2145 35.9 1389.44 53.989 37 1664.17
KP150 10 10.134 10 50.6889 32.1 1418.10 53.805 37 422.23
KP151 10 27.612 5 49.2829 35.7 2666.36 49.874 36 3697.03
KP152? 10 18.408 7.5 54.999 40 0.10 54.999 40 0.10
KP153? 10 13.806 10 54.999 40 19.12 54.999 40 19.12
KP154? 10 12.816 5 53.9366 37.3 2038.65 55.001 40 5415.09
KP155? 10 8.544 7.5 55.001 40 13.80 55.001 40 13.80
KP156? 10 6.408 10 55.001 40 84.28 55.001 40 84.28
KP157 10 3.316 5 52.05369 35.9 1487.85 53.7899 38 1264.11
KP158? 10 2.211 7.5 45.5288 29.7 1092.41 46.752 31 1087.51
KP159? 10 1.968 10 46.333 40 280.84 46.333 40 280.84
KP160? 10 25.748 5 50.6741 36.5 1834.21 53.001 38 1549.36
KP161? 10 17.165 7.5 54.831 39.7 928.99 55.00 40 1140.20
KP162? 10 12.874 10 54.999 40 29.74 54.999 40 29.74
KP163? 10 9.655 5 54.998 40 9.16 54.998 40 9.16
KP164? 10 6.436 7.5 55.004 40 23.01 55.004 40 23.01
KP165? 10 4.827 10 54.3789 39.6 1750.22 55.00 40 2958.68
KP166 10 2.433 5 48.7117 35 1996.03 49.854 37 4583.57
KP167? 10 1.986 7.5 44.914 40 0.00 44.914 40 0.00
KP168? 10 1.986 10 33.686 40 0.55 33.686 40 0.55
Av. 50.8527 37.00 1058.34 51.6044 38.38 1580.99

Table 6.9: Average and best densities (with their runtimes) reached by CM over the ten trials
for the instances of Set2c
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Cooperative Method
Set2d (n = 50) Average Max
Inst L H W D #d ts D #d ts
KP217 10 55.93 5 47.3276 40.7 3004.12 47.887 41 3260.51
KP218 10 37.287 7.5 52.6881 48.3 3932.58 53.252 48 5432.78
KP219 10 27.965 10 53.5656 48.8 4770.90 54.358 49 6589.09
KP220 10 23.291 5 47.9998 43.9 3586.39 48.993 45 6973.36
KP221 10 15.527 7.5 52.6161 47.6 5024.99 53.223 48 6303.38
KP222 10 11.645 10 52.2282 46.9 4387.99 52.705 48 6997.95
KP223 10 34.766 5 50.2251 46.6 3200.08 51.668 47 2754.82
KP224? 10 23.177 7.5 55.001 50 0.00 55.001 50 0.00
KP225? 10 17.383 10 55 50 27.78 55.000 50 27.78
KP226? 10 15.043 5 55.002 50 46.05 55.002 50 46.05
KP227? 10 10.029 7.5 55 50 42.02 55.000 50 42.02
KP228? 10 7.522 10 54.722 49.6 555.16 54.998 50 660.27
KP229 10 4.414 5 53.6287 48.7 3168.16 54.417 49 4899.55
KP230 10 2.943 7.5 51.1253 47 3249.02 51.866 48 7126.74
KP231 10 2.207 10 47.1602 41.2 2126.06 47.38 42 1851.69
KP232 10 27.42 5 51.9017 48.1 2229.54 52.5 49 3404.48
KP233? 10 18.28 7.5 55 50 0.00 55.000 50 0.00
KP234? 10 13.71 10 55 50 0.00 55.000 50 0.00
KP235? 10 11.337 5 55.001 50 63.41 55.001 50 63.41
KP236? 10 7.558 7.5 55.001 50 0.00 55.001 50 0.00
KP237? 10 5.669 10 54.996 50 12.20 54.996 50 12.20
KP238? 10 3.334 5 54.7558 49.5 1163.09 55.004 50 1517.80
KP239 10 2.223 7.5 49.7962 45.6 4563.74 51.131 47 6527.19
KP240? 10 1.97 10 46.544 50 0.00 46.544 50 0.00
Av% 52.5536 48.02 1881.39 52.9553 48.38 2687.13

Table 6.10: Average and best densities (with their runtimes) reached by CM over the ten trials
for the instances of Set2d
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6.4 Conclusion

In this chapter the three-dimensional sphere packing problem is solved by using a coop-
erative method that combines three main features: a best-local position procedure, an
intensification stage and a diversification stage. The first procedure ensures a starting
feasible solution using a basic greedy local strategy. The second stage tries to solve a
series of decision problems in order to pack a subset of complementary spheres. The third
stage forces the current solution to remove some packed items and then replaced them
with other promising spheres. The performance of the proposed method is evaluated on
benchmark instances taken from the literature where the achieved results are compared
to those reached by some recent methods of the literature. The proposed method remains
competitive and succeeded in yielding new solutions for many instances.
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In this chapter, we propose to solve packing identical spheres with a particle swarm
optimization-based algorithm. Given a set of identical spheres and a container (open or
spherical), the aim of the problem is to find a smallest container that contains all spheres
without overlapping between spheres and between spheres and the container. The particle
swarm optimization cooperates with an efficient continuous local optimization that serves
either to repair the non-feasibility of solutions or improve their quality. The performance
of the proposed algorithm is evaluated on a set of standard benchmark instances and its
obtained results are compared to those achieved by the more recent published methods
available in the literature. Encouraging results have been obtained.
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7.1 Introduction

This chapter deals with solving the Identical Sphere Packing (noted ISP) problem into
two types of containers: the Open container (noted O-ISP) with unlimited length and the
Spherical container (noted S-ISP) with unlimited radius. An instance of both problems
is characterized by a set N of n identical spheres, where each sphere i ∈ N = {1, . . . ,n}
is represented by its radius ri = 1 and the container is either P with fixed width W
and height H but unlimited length L = ∞ or S of unlimited radius R0 = ∞. For both
versions of the problem, the goal is to minimize the length L (if the container P is open)
or the radius R0 (if the container S is spherical) such that all items of N are positioned
in P or R0, without overlapping between spheres and between spheres and the container.

Both version O-ISP and S-ISP can be encountered in several real-life applications,
like automated radio-surgical treatment planning where the problem is used as a tool
for solving the radio surgical treatment planning (cf. Sutou and Dai [69]) and, materials
science where a random sphere packing problem is used as model for studying the dynamic
behavior of granular material systems (cf. Li and Ji [51]).

On the one hand, O-ISP can be formulated as follows:

Minimize L (7.1)
d(i, j) ≥ (ri + rj), ∀(i, j) ∈ N2, i < j (7.2)
ri ≤ xi ≤ L− ri,∀i ∈ N (7.3)
ri ≤ yi ≤ H − ri,∀i ∈ N (7.4)
ri ≤ zi ≤ W − ri,∀i ∈ N (7.5)

where d(i, j) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, i ∈ N , j ∈ J , i 6= j. Eq. (7.1)
represents the objective function that minimizes the length L of the target container P .
Eq. (7.2) represents the quadratic constraints that ensure the non overlapping between
any pair of distinct spheres. Eqs. from 7.3 to 7.4 denotes the linear constraints that
represent the sphere’s feasibility when positioned into the container P of length L.

On the other hand, the problem S-ISP can be stated as follows:

Minimize R0 (7.6)
d(i, j) ≥ (ri + rj), ∀(i, j) ∈ N2, i < j (7.7)
d(0, i) ≤ (R0 − ri),∀i ∈ N (7.8)

where d(i, j) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, i ∈ N , j ∈ J , i 6= j and d(i, 0) =√
x2
i + y2

i + z2
i , i ∈ N . Eq. (7.6) is the objective function that minimizes the radius R0

of the target container S. Eq. (7.7) represent the quadratic constraints that ensure the
non-overlapping between any pair of distinct spheres and Eq. (7.8) denote the quadratic
constraints representing the sphere’s feasibility when positioned into the container of
radius R0.
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For both O-ISP and S-ISP, a packing can be represented by a vector

−→
X = (F ,xi, yi, zi, ...,xn, yn, zn),

where F , F = L or R0, denotes the length or radius of the target container P or S and
(xi, yi, zi, ...,xn, yn, zn) is the coordinates of positions of the n packed spheres.

In order to measure the (non)feasibility of a given packing
−→
X , the amount of overlap-

ping is measured following quantities represented in Table 7.1.

Between O-ISP S-ISP
sphere and container Oi,x = max

{
0, ri + |xi| − 1

2L
}

O0,i = max {0, d(i, 0) + ri −R}
Oi,y = max

{
0, ri + |yi| − 1

2H
}

Oi,z = max
{

0, ri + |zi| − 1
2W
}

sphere and sphere Oi,j = max {0, ri + rj − d(i, j)} Oi,j = max {0, ri + rj − d(i, j)}

Table 7.1: Function’s overlapping for both problems: between the positioned spheres and between
spheres and the container

Hence, according to both termes of overlapping, following the couple of spheres or a
sphere with the container, the first overlap E(

−→
X ) associated to the first version of the

problem O-ISP is given as follows:

E(
−→
X ) =

N−1∑
i=1

N∑
j=i+1

O2
i,j +

N∑
i=1

(Oi,x +Oi,y +Oi,z)

and that associated to the second problem S-ISP is given as follows:

E(
−→
X ) =

N−1∑
i=0

N∑
j=i+1

O2
i,j.

The remainder of the chapter is organized as follows. Section 7.2 describes the basic
steps of the particle swarm optimization and its adaptation for solving both versions of
the packing problem. Section 7.2.2 discusses the main principle of the proposed method
and the cooperation used for either repairing non-feasibility of the solutions or the im-
provement of the quality of the solutions at hand. Section 7.3 evaluates the performance
of the proposed method on benchmark instances, where its achieved results are compared
to those reached by recent algorithms available in the literature. Finally, Section 7.4
concludes by summarizing the contribution of the paper.
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7.2 A particle swarm optimization-based algorithm for the iden-
tical sphere packing

7.2.1 Particle swarm optimization-based algorithm

PSO is a meta-heuristic that is based on a population (cf. Kennedy et al. [42]), where it
can efficiently explore several spaces of candidate solutions during the search process. Like
other meta-heuristics, PSO does not guarantee the optimality of the solutions achieved,
but it generally ensures an experimental convergence to solutions of hight-quality. Note
also that the method is also interesting regarding its simplicity and the number of param-
eters that are used in contrast to other evolutionary methods.

Each particle in PSO characterizes a solution of the given problem, where each of
them is represented by a vector ~X of positions on the space. The best solution visited
is represented by the best position (noted pBest) with its velocity ~v. Furthermore, each
particle shares informations with other particles of the population (swarm) and updates
its actual positions by using a simple formula which acts on the velocity; that is defined
as follows:

vti = ω × vt−1
i + c1 × υ ×

[
pBest − xt−1

i

]
+ c2 × ν ×

[
gBest − xt−1

i

]
(7.9)

and

xti = xt−1
i + vti , (7.10)

where Eq. (7.9) acts on the velocity and Eq. (7.10) acts on the particle’s positions.
One can observe that Eq. ((7.9)) is composed of three parts:

(i) ω×vt−1
i : it represents the i-th particle’s velocity at iteration (t−1), where ω denotes

the inertia weight (introduced by Shi et al. [64]). Such a weight tries to control the
magnitude of the "old velocity" and usually takes its values in the interval [0.4, 0.9].

(ii)
[
pBest − xt−1

i

]
: it represents a natural tendency of a particle to return to its best

position, namely pBest.

(iii)
[
gBest − xt−1

i

]
: it represents the tendency of a particle to follow the best position,

namely gBest, reached by any member belonging to its neighborhood.

In the global version of PSO, the neighborhood consists of the whole population and
gBest represents the best position. In contrast, if the neighborhood is a subset of a popu-
lation, then the best position is called “local best" position (noted lBest − cf. Parsopoulos
et al. [63]). Finally, the other parameters, i.e., c1 and c2, represent the cognitive and social
factors, respectively, where c1 + c2 ≤ 4, whereas both υ and ν are randomly generated in
the interval [0, 1]; these values are used to determine the degree of influence of pBest and
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gBest, respectivelty. Of course, pBest and gBest associated to each particle are evaluated
according to the objective function.

A new version of PSO, called COnstriction Coefficient PSO (noted COPSO), has been
proposed by Clerc [14] and Clerc and Kennedy [15], where the goal of such a version is
to ensure both convergence and stability of PSO. In this case, the velocity is updated by
using a different way:

vti = K ×
(
vt−1
i + c1 × υ ×

[
pBest− xt−1

i

]
+ c2 × ν ×

[
gBest− xt−1

i

])
(7.11)

and

xti = xt−1
i + vti , (7.12)

where K denotes the restriction factor which is defined according to c1 and c2:

K =
2

|2− ϕ−
√
ϕ2 − 4× ϕ|

(7.13)

such that ϕ = c1 + c2 (of Eq. (7.11) for evaluating xti of Eq. (7.12)) and ϕ > 4 (of
Eq. (7.13)). Experimentally, ϕ is generally setting equal to the value 4.1, where c1 = c2 =
2.05 and K = 0.729 (as confirmed in our experimental part for the both versions of the
sphere packing problem).

Because COPSO has a better performance than that of PSO, we then considered an
adaptation of COPSO for solving both Open ISP (noted O-ISP) and Spherical ISP (noted
S-ISP).

The main steps of the standard COPSO are given in Algorithm 19. It starts with
a population of size K. The initialization step (line 2) searches for the position ~X i of
each particle i which are randomly generated or by using a simple heuristic. The best
position with value pBest is setting equal to the best solution of the starting population
(line 3) and piBest of each particle i is setting equal to the value of the current position ~X i

and the velocity vector is setting equal to zero. Therefore, the fitness of each particle is
evaluated, where the best fitness reached is stored in gBest (lines from 4 to 12). Furthere,
both velocity and position of each particle i are updated according to equations (7.11)
and (7.12) above (lines 14 and 15). At the end of the algorithm, it exits with best position
visited that is considered as the best solution of the problem.

7.2.2 PSO and the sphere packing problem

The three-dimensional identical sphere packing problem is scientifically challenging, be-
cause it can be modeled as a nonlinear programming where both continuous positions of
the spheres and combinatorial optimization aspect of these positions can be integrated to
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Algorithm 19 − A standard version of the algorithm
Input. A population of size K and the different parameters used.

Output. A best particle of value gBest.

1: Initialization Step.
2: Generate the position ~Xi of each particle.
3: Set piBest = ~Xi and let ~V i be the velocity vector.
4: Iterative step
5: while

(
the runtime limit is not performed

)
do

6: for (each particle i ∈ K) do
7: Compute its fitness function F ~Xi
8: if (F ~Xi < F~p i

Best
) then

9: pBest = ~Xi

10: end if
11: end for
12: Choose the particle realizing the best value F~p i

Best
as gBest

13: for (each particle i ∈ K) do
14: Compute the particle’s velocity according to Eq. (7.11)
15: Update the particle’s position according to Eq. (7.12)
16: end for
17: end while
18: Return the best solution achieving the best global solution value gBest.

its resolution. In this case, several local optimum, with the same value but with different
configurations, can be obtained which makes the problem more complex to solve.

Because the problem contains a set of diversified solutions, we then propose to approxi-
mately solve it by using a three-steps-based heuristic. The proposed method is based upon
COPSO using the following stages:

(i) Creating a starting population of feasible configurations: it can be obtained by adapt-
ing the truncated tree search procedure proposed by Hifi and Yousef ([38, 36]). In-
deed, one can use the quick version of such a method in order to reach the starting
population containing K feasible particles. Each particle is represented by a vector
~X (as described above).

(ii) Applying PSO for solving the sphere packing problem.

(iii) At each iteration of PSO, a continuous local optimization is used for either repairing
or improving the (quality of the) solutions.

In what follows, we first describe the procedure of generation the population of par-
ticles. Second, we present the continuous local optimization role. Third and last, the
proposed particle swarm optimization-based algorithm is presented.
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7.2.3 Generating the population of particles with a greedy procedure

The proposed method uses a population of K particles. Herein, a quick version of Hifi and
Yousef’s [38] algorithm is applied in order to generate the starting diversified population.
The algorithm is considered as a truncated tree search, where at each level of the developed
tree, only a subset of elite nodes are selected for further branching and the other ones are
discarded, where no backtracking is performed. Moreover, the cardinality of the selected
elite nodes is fixed to ω, where ω is a small nonnegative integer defined experimentally.
We then adapt a quick version of the method, where a random position among all eligible
positions is selected for positioning the current sphere into the container. Of course, such
a process can be viewed as a Greedy Procedure (noted GP), which tries to generate quick
random paths of the developed tree; that are a set of feasible solutions for the problem.

(a) O-ISP’s initial node (b) S-ISP’s initial node

Figure 7.1: Illustration of the first positioned item into the container.

A path, representing a feasible solution for either O-ISP or S-ISP, can be generated
by iteratively positioning the items of N , one by one, at the (random) selected positions
inside the container. At each step of the procedure, let consider the following notations:

• Ii: the set of items of N already packed in the current container P (or S).

• Ii: the set of items of N which are not yet packed in the current container P (or S).

• PIi : the set of distinct eligible positions for the next item i to pack given the set of
packed items Ii.

A position pi+1 ∈ PIi (for the i-th item) is determined according to three elements,
namely e1, e2 and e3. In this case, an element is either an item of N already positioned
(representing Ii) or, either one of the six faces of the open container P or the inner-side
of the spherical container S. By using the aforementioned representation, Figure 7.1
illustrates the starting node of each path, where the first item (sphere) is positioned
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at (ri, ri, ri) for O-ISP and the first three items of S-ISP are successively positioned at
(0, 0, 0), (2, 0, 0) and (1,

√
3, 0), respectively.

Hence, (i) Ii = {1} for O-ISP and Ii = {1, 2, 3} for S-ISP, (ii) Ii = {2, ...N − 1} for
O-ISP and Ii = {4, ...N − 3} for O-ISP and, (iii) PIi = {p1, p2, p3, . . .} is the set of eligible
positions for the next branching.

We recall that a population-based method is generally used for its diversifying aspect
on the solutions, where each solution is built with different characteristics. For the pro-
posed PSO, on the one hand, the above procedure is called K times for generating all
initial particles of the population. On the other hand, the parameter ω was fixed to K in
order to try a better diversification of particles.

7.2.4 A continuous local optimization

The proposed algorithm uses a special continuous local optimization which has been
already proposed by Wang et al. [72] (called "Quasi-Physical" Procedure, noted QPP).
The main principle of such a method can be summarized as follows (as illustrated in
Figure 7.2): (i) generating a (un)feasible solution and (ii) repairing the current solution
in order to making it feasible.

(a) Non-feasible packing (b) A repaired solution (c) Non-feasible packing (d) A repaired solution

Figure 7.2: Illustration of QPP’s mechanism for both versions of the problem

In QPP, the container is considered as a “fixed elastic container" and all the spheres
as “smooth elastic solids" which are forced to be included into the container. According
to the elasticity mechanism, there exist some conjugated extrusion elastic force whenever
some spheres are deformed by other ones or by the container. In this case, a series of
complicated distorsions would occur due to these elastic forces. During the search process,
the overlapping gap (either between the deformed spheres or that realized between spheres
and the container) will be reduced to zero. Reducing such deformations to zero induces
the converge of the procedure to a local optimum (for more details, the reader can refer
to Wang et al. [?]).
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7.2.5 An overview of the proposed algorithm for the packing problem

The main steps of the proposed method is detailed in Algorithm 20. First, it starts by
initializing a starting feasible position for each particle; that is obtained by applying the
truncated tree search procedure proposed in Hifi and Yousef ([38, 36]). Each of these
positions is represented by a vector

~Xi

k
= (F k

i ,xk1, yk1 , zk1 ,xk2, yk2 , zk2 ...xkn, ykn, zkn)

and an initial velocity vector vki randomly generated in the interval (−1, 1).
Second, the best position of each particle is setting equal to the staring one (i.e.,

pBest = ~Xi). Further, the fitness function f( ~Xi

t
) associated to each particle i is setting

equal either to L (for the first version of the problem) or R0 (for the second one); that
represents the minimum length of the target container P or the minimum radius of the
target container S, respectively.

Algorithm 20 . PSO-Based Algorithm (PSO-BA) for the sphere packing problem
Input. A population of size K.

Output. A best particle realizing the value gBest.

1: Initialization Step
2: Call the truncated tree search procedure and assign the resulting solution as its initial solution.
3: Set pBest = ~Xi and its velocity to vti .
4: Iterative step
5: while

(
the runtime limit is not performed

)
do

6: for each particle do
7: Compute the fitness function f

(
~Xi
t
)
.

8: if
(
f
(
~Xi
t)
< f

(
~pBest

t)) then

9: ~pBest = ~Xi
t

10: end if
11: end for
12: Let gBest be the best particles’ fitness (realizing the maximum value of f(~p t

Best))
13: for each particle do
14: Compute vki according to Equation (7.11)
15: Update ~Xi

t
according to Equation (7.12)

16: Compute the particle’s penalty according to Equation (7.1)
17: if

(
E( ~Xi

k
) > ε

)
then

18: Apply the continuous local optimization (cf. Section 7.2.4)
19: end if
20: end for
21: end while
22: return gBest
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PSO-BA is an iterative procedure composed of three loops. The outer loop tries to
control the stopping criteria (represented by a standard runtime limit used when sphere
packing problems are solved) whereas the two internal loops undertake the search. The
first inner loop (lines from 6 to 11) evaluates the position of each particle and its best
position visited. At the end of the aforementioned loop, a best position visited by all
particles is stored; that is considered as the global best position (noted gBest). The
second internal loop (from 13 to 20) starts by updating both velocity and position of each
particle. During the search process, if a particle is positioned out of the feasible region,
the continuous local optimization (described in Section 7.2.4) is called in order either to
repair or to improve the solution at hand. Finally, the algorithm stops either when the
runtime limit is performed or the velocity of each particle is close to zero.

To illustrate how PSO-BA proceeds, we consider two instances extracted from the
literature. The first one is extracted from Stoyan et al.’s [66] (noted instance SYS1 in
the experimental part, Section 7.3), this instance contains 10 identical spheres and it
represents the packing problem into an open container (O-ISP). Whereas, the second
one is extracted from M’Hallah et al. [55](noted instance 15 in the experimental part),
this instance contains 15 identical spheres and it represents the packing problem into a
spherical container. Note, it is to be emphasized that the example was only designed to
illustrate how the algorithm performs through the iterations considered.

(a) Iteration 1. (b) R0 = 6.19806363587873. (c) Iteration 1. (d) L = 3.8995109762.

Figure 7.3: Illustration of the starting solution achieved by GP: (i) on M’Hallah et al.’s instance
containing 15 spheres for (a) and (b) and, (ii) on the instance SYS1 (figures (c) and (d)) with
10 spheres to pack.

First, the starting solutions that serve to initialize the population (its size is discussed
in the experimental part, Section 7.3) are reached by applying the greedy procedure GP.
In fact, GP is used as a random procedure for which each favorable position related to the
current sphere to pack is randomly chosen among all eligible positions of that sphere. For
M’Hallah et al.’s instance (resp. SYS1), the upper bound achieved at this stage is equal
to R0 = 6.19806363587873 (resp. L = 3.8995109762) as shown in Figure 7.3(a) which
represents the initial population with its best partile structure in Figure 7.3(b) (resp. in
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Figure 7.3(c) with its best particle structure in Figure 7.3(d)). These bounds are obtained
at step 1 of PSO-BA.

(a) Iteration 500. (b) R0 = 3.1790353894595. (c) Iteration 500. (d) L = 3.4878305719.

Figure 7.4: Illustration of the intermediate PSO-BA’s solutions: (i) its upper bound on M’Hallah
et al.et al.’s instance containing 15 spheres (figures (a) and (b) and, (ii) its upper bound on Stoyan
et al.’s instance (for figures (c) and (d).

Indeed, after 500 iterations, PSO-BA improves the first bound thereby giving the value
R0 = 3.1790353894595 (cf. Figures 7.4(a) with its configuration in Figure 7.4(b)) and
L = 3.4878305719 (cf. Figures 7.4(c) with its configuration in Figure 7.4(d)), respectively.

(a) Iteration 1000. (b) R0 = 3.14164270926649. (c) Iteration 1000. (d) L = 3.4765334775.

Figure 7.5: Convergence of PSO-BA and illustration of the improved upper bounds of both
M’Hallah et al./Stoyan et al.’s instances containing 15 and 10 spheres, respectively.

Third, the additional rules are of interest whenever PSO is coupled with a contin-
uous optimization procedure. Indeed, after 1000 iterations, one can observe that the
upper bound decreases until reaching R0 = 3.14164270926649 and L = 3.4765334775,
respectively. The aforementioned upper bounds confirme that PSO combined with the
continuous optimization is capable of finding good configurations when coupled with the
random greedy procedure GP; it gives a set of diversified solutions for the method.
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(a) Iteration 1550. (b) Final solution with R0 =

3.14164270926649.
(c) Iteration 2100. (d) Final solution with L =

3.4718865883.

Figure 7.6: Convergence of PSO-BA and illustration of the improved upper bounds of both
M’Hallah et al./Stoyan et al.’s instances containing 15 and 10 spheres, respectively.

Fourth, as the number of iterations increases, one can observe that PSO-BA’s upper
bounds decrease. Indeed, PSO-BA continues the search process by intensifying the re-
search around the last solution and acting on repairing a series of obtained configurations
until achieving the final solution (after 1550 iterations for the first problem and 2100
iterations for the second problem, respectively) with the bound R0 = 3.14164262494856
(resp. L = 3.471885145); that are new upper bounds: (i) for M’Hallah et al.’s instance
(Note that, for this instance, the best upper bound available in the literature, taken from
M’Hallah et al. [55], is equal to 3.14164262494867) and (ii) for the instance SYS1 (the
best upper bound available in the literature is extracted from Stoyan et al.’s [66] that is
equal to L = 3.4722).

7.3 Computational results

This section evaluates the behavior of the proposed Particle Swarm Optimization-Based
Algorithm (PSO-BA) on benchmark instances of the literature. For both versions of the
problem, its achieved results are also compared to those reached by the best methods
available in the literature. The proposed algorithm was coded in C++ and tested on an
Intel Core 2 Duo (2.53 Ghz and with 4 Gb of RAM) and the runtime limit was fixed
to two hour (that is considered as the standard runtime limit for solving such problems
although most of the methods generally use a more larger limit).

7.3.1 The first version of the problem: O-ISP

For O-ISP, there exists two sets of instances (noted Set1 and Set2). The first set “Set1"
contains seven instances (SYS1,. . .,SYS7) which are extracted from Stoyan et al. [66],
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where the number of the spheres to pack varies from 10 to 150. The second set “Set2"
contains thirty-eight instances taken from Birgin and Sobral [8]. For each instance, both
dimensions W and H of the container are fixed to 9.5 whereas the number of the spheres
to pack varies from 23 to 100.

Inst. n H W

SYS1 10 5.9 5.1
SYS5 50 7.9 6.1
SYS7 150 9.9 7.1

Table 7.2: Characteristics of tested instances

7.3.1.1 Parametre settings

Since PSO-BA is a stochastic algorithm that uses a population of solutions, then each run
can provide a different result. We then considered ten trials (runs) for each considered
instance for both sets. On the other hand, before several tunings, we selected in what
follows the values that lead better results with stability of the solutions, i.e., c1 = c2 = 2.05
(which are also used as the standard tunings on the standard version of the algorithm []).

In order to determine the population size K, PSO-BA was called with a population
with different sizes, whereK varies in the discrete intervalle {10; 20; 30; 40; 50; , 60; 70; 80}.
Such a variation has been used for three special and standard instances of Stoyan et
al. [66]: SYS1, SYS5 and SYS7 that represent small, medium and large-sized instances,
respectively. As mentioned above, the runtime limit was fixed to 7200 seconds, which is
generally considered as the standard runtime for such family of problems. Table 7.2 shows
the characteristics of these instances whereas the best results obtained over the ten trials
are reported in Table 7.3.

Inst 10 20 30 40
SYS1 3.5843552091 7.91515249 3.5674589738 3.5193542966
SYS5 8.6472459566 17.05213879 8.4604271787 8.362553048
SYS7 18.7628563652 11.44328249 16.6463912873 16.3971607426
Av 10.3314858436 12.1368579219 9.5580924799 9.4263560291
Inst 50 60 70 80
SYS1 3.4957892205 3.4805536456 3.4929224131 3.5095576343
SYS5 8.3366675383 8.3225393312 8.3283763787 8.4557590839
SYS7 16.4062977259 16.4179103644 16.4153490011 16.5092205817
Av 9.4129181616 9.4070011137 9.412215931 9.4915124333

Table 7.3: Behavior of PSO-BA when varying the size K of the population for the O-ISP

By analyzing the results of Table 7.3, one can observe that the best average results
are realized globally for K = 60, which realizes an average bound of 9.4070011137. Two
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other values of K are able to provide average values close to that achieved by the case
previously mentioned, i.e., K = 60. Indeed, for K = 50 and K = 70, PSO-BA achieves
an average bound of 9.4129181616 and 9.412215931, respectively. Because the accuracy
of 10−9 is more relevant for these instances, for the rest of the experimental part, c1 and
c2 are fixed to 2.05, the size K of the population is fixed to 60 and the runtime limit is
fixed to 7200 second.

7.3.1.2 Behavior of PSO-BA on the first set of instances (Set1)

Herein, the behavior of PSO-BA is analyzed on the first set of instances Set1 and its
performance is compared to that of Stoyan et al.’s [66] method (noted SYS). Both SYS
and PSO-BA methods run with the same accuracy value for ε; that is setting equal to
10−9.

All results realized by both methods PSO-BA and SYS are reported in Table 7.4.
Columns from 1 to 4 show each instance information, column 5 displays SYS’s length
(noted L SYS) (taken from Stoyan et al. [66]) whereas column 6 shows the runtime needed
by the algorithm. Column 7 tallies the supper bound LPSO−BA achieved by PSO-BA
whereas column 8 displays the runtime needed for reaching the aforementioned bound.
Finally, columns 9 reports the percentage improvement (when it happens) yielded by
PSO-BA when compared to the results reached by SYS (in this case, the percentage
improvement is computed as follows: %Imp = 100× LSYS−LAPSO

LSYS
).

SYS PSO-BA
Inst n H W LSTS tSTS LPSO-BA tPSO-BA %Imp
SYS1 10 5.9 5.1 3.4722 8280 3.471885145 7112.60 0.00907
SYS2 20 7.9 6.1 3.5738 53550 3.459830895 6897.11 3.18902
SYS3 30 7.9 6.1 5.2251 3996 5.098522569 6976.23 2.42249
SYS4 40 7.9 6.1 6.7819 12564 6.714685502 6105.43 0.99109
SYS5 50 7.9 6.1 8.2759 26640 8.255066275 2912.89 0.25174
SYS6 100 9.9 7.1 11.0545 55044 11.032687899 6648.41 0.19731
SYS7 150 9.9 7.1 16.2638 105732 16.200758713 6865.31 0.38762
Av 7.8067 37972.29 7.747633857 6216.85 1.06405

Table 7.4: Performance of PSO-BA versus SYS on instances of Set1

The analysis of the results of Table 7.4 follows:

1. First, PSO-BA outperforms SYS since it is able to improve all the solutions reached
by SYS. Indeed, on the one hand, PSO-BA’s global average bound is equal to
7.7476338568 whereas SYS’s average bound is equal to 7.806742. On the other hand,
SYS needs 37972.28 seconds for achieving these bounds whereas PO-BA needs only
an average value of 6216.85 seconds.

2. Second and last, when comparing PSO-BA’s results to SYS’s ones, one can observe
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that the percentage of the improvement varies from 0.0090678734% (instance SYS1)
to 3.1890174211% (instance SYS2). Globally, for the instances of Set1, the average
percentage improvement is equal to 1.06405%.

We have already mentioned that ten trials of PSO-BA are considered for each instance
of the set Set1. Table 7.5 reports the worst, best and average upper bounds achieved by
PSO-BA for these ten trials and their corresponding runtimes (fixed to a maximum value
of two hours).

Particle Swarm Optimization-Based Algorithm
Inst. Min t Mean t Max t

SYS1 3.471885145 7112.6 3.4805536456 3481.255 3.497834490 6395.63
SYS2 3.459830895 6897.11 3.5991936486 3617.482 3.807519076 874.57
SYS3 5.098522569 6976.23 5.2085338345 14680.006 5.344001557 2657.33
SYS4 6.714685502 6105.43 6.8432566543 4009.441 7.009642444 5137.61
SYS5 8.255066275 2912.89 8.3225393312 4866.997 8.536821504 5339.05
SYS6 11.032687899 6648.41 11.1138866023 4989.638 11.282461177 5513.64
SYS7 16.200758713 6865.31 16.4179103644 4839.634 16.662159977 2887.29
Av 7.74763385682 6216.85 7.85512486870 5783.49 8.02006288911 4115.02

Table 7.5: Behavior of PSO-BA on the ten trials for the first set of instances: Set1

7.3.1.3 Behavior of PSO-BA on instances of Set2

In this section, PSO-BA’s behavior is analyzed on the second set of instances Set2. Its
obtained results are also compared to those published by Birgin and Sobral [8] (also
available on https://www.ime.usp.br/∼egbirgin/packing/packing).

The results realized by both methods PSO-BA and BS are shown in Table 7.6. Columns
from 1 to 4 report each instance information, column 5 shows Birgin and Sobral’s upper
bound (noted LBS, where its was taken from Birgin and Sobral’s [8]) whereas column 6
displays the runtime needed by that algorithm for realizing the length. Finally, column 7
shows the upper bound LPSO-BA achieved by PSO-BA whereas column 8 displays the
runtime needed by that algorithm for reaching the given bound.

Note also that, on the one hand, Birgin and Sobral’s (noted BS) performs with ε fixed
to 10−4 whereas PSO-BA is applied with a more accuracy value that has been fixed to
10−9. It means that PSO-BA uses a better accuracy and the overlapping is reduced to
very tight values when compared to that realized with ε = 10−4; hence, the resolution
of the problem with a higher (smallest) value for ε becomes more time consuming (as
observed for PSO-BA). On the other hand, the majority of the configurations published
by Birgin and Sobral are wrong for the accuracy ε = 10−9; in this case, the goal of the
following experimental part (on Set2) in given in order to show how PSO-BA is able to
provide 50% of new bounds for the instances of Set2 even the precision ε is more tight.
From Table 7.6, one can observe what follows:
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Inst. n H W LBS tBS LPSO-BA tPASO-BA %Imp
Inst_23 23 9.5 9.5 2.51595165 189.50 2.5216323421 7121.41 -0.22579
Inst_24 24 9.5 9.5 2.62319770 4408.99 2.6236233008 5221.52 -0.01622
Inst_25 25 9.5 9.5 2.69564484 0.90 2.6959603865 6705.21 -0.01171
Inst_26 26 9.5 9.5 2.96170666 297.13 2.9630848823 4958.75 -0.04653
Inst_27 27 9.5 9.5 3.06844011 191.42 3.0712826787 5171.13 -0.09264
Inst_28 28 9.5 9.5 3.11962555 2711.62 3.1356918085 5233.56 -0.51501
Inst_29 29 9.5 9.5 3.19136325 1407.72 3.1842350645 7087.69 0.22336
Inst_30 30 9.5 9.5 3.20868939 101.87 3.2088350642 6998.76 -0.00454
Inst_31 31 9.5 9.5 3.28596422 319.28 3.2856970017 6046.68 0.00813
Inst_32 32 9.5 9.5 3.30869493 5308.01 3.3081236222 1644.42 0.01727
Inst_33 33 9.5 9.5 3.31783818 333.14 3.3161653650 2435.56 0.05042
Inst_34 34 9.5 9.5 3.320476891 2877.74 3.3182590212 1952.50 0.06679
Inst_35 35 9.5 9.5 3.322499194 189.94 3.3217987089 7133.50 0.02108
Inst_36 36 9.5 9.5 3.322770105 155.49 3.3228712900 37762.00 -0.00305
Inst_37 37 9.5 9.5 3.503079169 2410.46 3.4958062319 6882.81 0.20762
Inst_38 38 9.5 9.5 3.547458805 2032.84 3.5462125173 7197.73 0.03513
Inst_39 39 9.5 9.5 3.603308794 3819.94 3.5895673155 7034.14 0.38136
Inst_40 40 9.5 9.5 3.642753852 3179.57 3.5955038566 5026.46 1.29710
Inst_41 41 9.5 9.5 3.722102153 1029.65 3.7161287915 3270.89 0.16048
Inst_42 42 9.5 9.5 3.853666642 582.70 3.8376097707 4667.00 0.41666
Inst_43 43 9.5 9.5 3.924985274 1520.75 3.9248156942 4416.17 0.00432
Inst_44 44 9.5 9.5 3.986787068 748.94 3.9886070286 6434.89 -0.04565
Inst_45 45 9.5 9.5 4.130763956 746.93 4.1306583614 5320.36 0.00256
Inst_46 46 9.5 9.5 4.265016322 4779.91 4.2665891003 6151.17 -0.03688
Inst_47 47 9.5 9.5 4.391983174 74.73 4.3943264586 6614.22 -0.05335
Inst_48 48 9.5 9.5 4.470228233 675.51 4.4905968587 7157.12 -0.45565
Inst_49 49 9.5 9.5 4.547960695 4383.69 4.5860314095 5439.59 -0.83709
Inst_50 50 9.5 9.5 4.636149740 363.37 4.6172534818 6180.00 0.40759
Inst_55 55 9.5 9.5 4.841544131 12954.13 4.8105482954 6779.32 0.64021
Inst_60 60 9.5 9.5 5.311832058 1099.51 5.1910141534 7038.33 2.27451
Inst_65 65 9.5 9.5 5.727987481 324.60 5.7606785423 6026.08 -0.57073
Inst_70 70 9.5 9.5 5.968047356 93.59 5.9686269702 5398.85 -0.00971
Inst_75 75 9.5 9.5 6.403245161 859.05 6.3890257069 6944.62 0.22207
Inst_80 80 9.5 9.5 6.961754027 8689.86 6.8890036929 2822.65 1.04500
Inst_85 85 9.5 9.5 7.290805951 11636.12 7.3997364732 7061.91 -1.49408
Inst_90 90 9.5 9.5 7.468834922 1039.84 7.7968387460 6261.01 -4.39163
Inst_95 95 9.5 9.5 7.999432983 1301.22 7.9902058321 6849.88 0.11535
Inst_100 100 9.5 9.5 8.504432593 3346.60 8.5998068889 6805.00 -1.12147
Av.% 4.3675532426 2268.06 4.3750645451 6559.29 -0.06144

Table 7.6: Behavior of PSO-BA versus BS on instances of Set2

1. First, PSO-BA is able to achieve 50% of instances of Set2 (as represented in the
bold, the last column). These bounds are provided with a more tight accuracy, i.e.
10−9 almost of 10−4.

2. Second, among the rest of the unmatched bounds, the values obtained by PSO-BA
remain very close to that obtained by BS, although most of the solutions remain in
feasible for ε = 10−9.

3. Third and last, when comparing PSO-BA’s average runtime to that BS, one can
observe that BS is three times faster that PSO-BA. Of course, it can be explained
by the fact that the accuracy used by PSO-BA is more tight and interesting and
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Particle Swarm Optimization-Based Algorithm: PSO-BA
Inst. Min t Mean t Max t

Inst_23 2.5216323421 7121.41 2.5368880003 5355.428 2.5639770917 3723.66
Inst_24 2.6236233008 5221.52 2.6398844469 4553.006 2.6537342444 1095.88
Inst_25 2.6959603865 6705.21 2.7222414461 11428.754 2.7839797358 3234.53
Inst_26 2.9630848823 4958.75 2.9837655111 6319.012 3.0043271543 6456.09
Inst_27 3.0712826787 5171.13 3.0831767745 6142.517 3.0956795182 6953.37
Inst_28 3.1356918085 5233.56 3.1439374706 6952.967 3.1580436895 6723.78
Inst_29 3.1842350645 7087.69 3.1934692645 6697.26 3.2216232288 7061.74
Inst_30 3.2088350642 6998.76 3.2495510792 5454.3321 3.2817067329 7127.8
Inst_31 3.2856970017 6046.68 3.307203712 11182.261 3.363613535 7168.8
Inst_32 3.3081236222 1644.42 3.313378479 10133.048 3.3182645399 6137.63
Inst_33 3.3161653650 2435.56 3.3184625005 6264.42 3.3217032273 7150.68
Inst_34 3.3182590212 1952.50 3.3215400041 6272.345 3.3228756642 6820.92
Inst_35 3.3217987089 7133.50 3.3332331142 5893.023 3.4327970651 5630.98
Inst_36 3.3228712900 37762.00 3.3230344505 13783.321 3.3243915348 5644.7
Inst_37 3.4958062319 6882.81 3.5400127576 6046.534 3.6017111723 6710.91
Inst_38 3.5462125173 7197.73 3.5820165362 6168 3.6052739647 5275.36
Inst_39 3.5895673155 7034.14 3.5909626905 5806.733 3.5928850143 3322.78
Inst_40 3.5955038566 5026.46 3.6452285223 5491.837 3.7237035617 6494.14
Inst_41 3.7161287915 3270.89 3.7564769655 6001.118 3.8519263896 5554.35
Inst_42 3.8376097707 4667.00 3.8693661043 5618.583 3.9152955172 5759.36
Inst_43 3.9248156942 4416.17 3.9749799671 5831.878 3.9991143903 6918.36
Inst_44 3.9886070286 6434.89 4.0131704006 5841.446 4.1180969516 5163.55
Inst_45 4.1306583614 5320.36 4.1782064696 6212.231 4.2849995189 6981.31
Inst_46 4.2665891003 6151.17 4.3283727022 6354.53 4.3678508588 5574.48
Inst_47 4.3943264586 6614.22 4.4623625614 7419.6 4.5701405201 6877.02
Inst_48 4.4905968587 7157.12 4.5198937529 6278.572 4.5836754426 7054.4
Inst_49 4.5860314095 5439.59 4.619693128 6349.459 4.6626860167 6588.9
Inst_50 4.6172534818 6180.00 4.6418639585 5967.763 4.7277904183 6156.11
Inst_55 4.8105482954 6779.32 4.8299036624 6628.282 4.9867852143 7027.38
Inst_60 5.1910141534 7038.33 5.2512984254 6242.131 5.3828178819 4925.11
Inst_65 5.7606785423 6026.08 5.8385142213 6039.088 5.9474071446 4466.7
Inst_70 5.9686269702 5398.85 6.2450611819 5699.728 6.3680375088 5593.33
Inst_75 6.3890257069 6944.62 6.4973116491 6486.021 6.7400939195 5247.02
Inst_80 6.8890036929 2822.65 7.009029313 5279.314 7.0937291177 6550.42
Inst_85 7.3997364732 7061.91 7.4607755765 12175.776 7.5652610868 6820.82
Inst_90 7.7968387460 6261.01 7.9602731992 5712.088 8.0304486591 5617.68
Inst_95 7.9902058321 6849.88 8.2192708311 6202.911 8.4228278286 5611.02
Inst_100 8.5998068889 6805.00 8.6793850257 5453.895 8.8052406554 4787.86

Av % 4.3750645451 6559.29 4.4258735752 6782.61 4.4945925188 5842.34

Table 7.7: Variation of the quality of the bounds achieved by PSO-BA (with their runtimes) for
the ten trials on instances of Set2.

therefore, inducing a less convergence of the algorithm.

Because PSO-BA considered ten trials for each instance of Set2, Table 7.5 reports the
worst, best and average upper bounds achieved by PSO-BA for these ten trials and their
corresponding runtimes (fixed to a maximum value of two hours).
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7.3.2 The second version of the problem: S-ISP container case

In this section, the performance of PSO-BA is evaluated on a set containing 48 instances
extracted from M’Hallah et al. [55], where the number of spheres to pack varies from 3
to 50.

The rest of this part is composed of two sections. The first section discusses the pa-
rameter settings used by PSO-BA. Second and last, a comparative study is made between
the results achieved by PSO-BA and those realized by M’Hallah et al.’s method (noted
VNS).

Parametre settings

As for the first version of the problem (i.e., O-SIP, Section 7.3.1), PSO-BA uses some
random strategies for building the starting population and its updating. For each run,
several solutions can be provided and so, ten trials are also considered for the O-SIP. We
recall that PSO-BA involves several parameters, like c1, c2 and the size K of the popula-
tion. Several adjustments have been considered for both c1 and c2. Limited computational
results showed that c1 = c2 = 2.05 remains also the best tuning for the instances tested;
it confirms the standard values used in the literature for such version of PSO.

With the aforementioned values, PSO-BA is called with a population with different
sizes, where K varies in the discrete intervalle {10; 20; 30; 40; 50; , 60; 70; 80}. Such a vari-
ation has been used for three instances tested in M’Hallah et al. [55], where the number
of spheres varies from 3 (small-sized instance) to 50 (large-sized instance). For each run,
the runtime limit was fixed to 7200 seconds.

Variation of the size K of the population
#Inst. 10 20 30 40

3 2.15506490414077 2.15476096191240 2.15470186648428 2.15470054745249
20 3.74561767422006 3.47491673177999 3.47393601111318 3.47482020706182
50 4.62028414558653 4.56457920927597 4.55705507103570 4.55179457307563

%Average 3.50698890798245 3.39808563432279 3.39523098287772 3.39377177586331

Variation of the size K of the population
#Inst. 50 60 70 80

3 2.15470054655810 2.15470053988408 2.15470053839904 2.15470053839954
20 3.47380714430956 3.47441185776681 3.47362514648301 3.47388369912280
50 4.56043890704175 4.55966448114631 4.56595495016317 4.56534705871463

%Average 3.39631553263647 3.39625895959906 3.39809354501507 3.39797709874566

Table 7.8: Behavior of PSO-BA when varying the size K of the population

For these instances, Table 7.8 shows the average results (bounds) achieved by PSO-BA
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over the ten trials (column 1 reports the instance information where the value corresponds
to the instance containing 3, 20 and 50 spheres to pack and, the other columns display
the bounds realized by PSO-BA fo each value associated to the size of the population).
By analyzing the results of Table 7.8, one can observe that the best average results are
realized globally for K = 40. Hence, for the rest of the experimental part, c1 and c2 are
fixed to 2.05 (other values of c1 and c2 provided almost the same bounds), the size K of
the population is fixed to 40 and the runtime limit is fixed to 7200 second.

All results achieved by both VNS and PSO-BA are reported in Table 7.9. Column 1
shows the number of spheres representing each instance, column 2 displays VNS’s sphere
(noted SVNS) (taken from M’Hallah et al. [55]), column 3 tallies the upper bound SPSO−BA
achieved by PSO-BA whereas column 4 reports the percentage improvement %Imp (when
it happens) yielded by PSO-BA when compared to the results reached by VNS (%Imp =
100× SVNS−SPSO-BA

SVNS
).

The analysis of the results of Table 7.9 follows:

1. First, on the one hand, PSO-BA is able to improve 15 new upper bounds out of 48.
In this case, it realizes a percentage of 31.25% of new bounds for all tested instances.
On the other hand, it matches 19 instances out of 48, which represents a percentage
of 39.58% of the instances tested. However, it fails to match the rest of the instances
(representing 14 instances out of 48), PSO-BA’s bounds remain very close to that
of VNS.

2. Second, when comparing PSO-BA’s results to VNS’s ones, one can observe that the
percentage of the improvement (among the improved bounds) varies from 5.0182081E-
14 (instance containing 13 spheres) to 7.0168322E-03 (instance containing 43 spheres).
It means that the performance of PSO-BA doesn’t depend on the instance size, but
rather it has a good behavior on any type of instances.

3. Third and last, PSO-BA outperforms VNS since it is able to achieve a better global
average bound; that is equal to 3.62719494740341 while VNS achieves only a global
average bound of 4.55221146893267. Such an average value realizes an average
percentage improvement of 3.63744096493292, as declared in the last column an
line of Table 7.9.

We have already mentioned that ten trials of PSO-BA are considered for each instance
of 48 instances tested in this part. Table 7.10 reports the worst, average and best upper
bounds achieved by PSO-BA and their corresponding runtimes (fixed to a maximum value
of two hours).
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Inst VNS PSO-BA gap
3 2.15470053824456 2.15470053837925 -1.3469004E-10
4 2.22474487138667 2.22474487139159 -4.9200644E-12
5 2.41421356236813 2.41421356237309 -4.9600324E-12
6 2.41421356236983 2.41421356237309 -3.2600589E-12
7 2.59125387233696 2.59125387233612 8.4021679E-13
8 2.64532877601513 2.64532877601607 -9.4013686E-13
9 2.73205080756539 2.73205080756522 1.6964208E-13
10 2.83246456105391 2.83246456105391 0.0000000E+00
11 2.90211303259014 2.90211303259014 0.0000000E+00
12 2.90211303258981 2.90211303258981 0.0000000E+00
13 3.00000000000000 3.00000000000000 0.0000000E+00
14 3.09114544488862 3.09114544488857 5.0182081E-14
15 3.14164262494867 3.14164262494856 1.1013412E-13
16 3.21568303201004 3.21568303201004 0.0000000E+00
17 3.27124551170111 3.27124551170111 0.0000000E+00
18 3.31898878173418 3.31898878173418 0.0000000E+00
19 3.38601597327490 3.38601597327490 0.0000000E+00
20 3.47353896224525 3.47353896224525 0.0000000E+00
21 3.48635141041092 3.48635141041092 0.0000000E+00
22 3.57983319115373 3.57983319115373 0.0000000E+00
23 3.62751643653543 3.62751643653542 0.0000000E+00
24 3.68539493545674 3.68539493545579 9.5035091E-13
25 3.68742674748920 3.68742674748920 0.0000000E+00
26 3.74740577652751 3.74740577652751 0.0000000E+00
27 3.81341595688139 3.81341595688139 0.0000000E+00
28 3.84164027814771 3.84164027814771 0.0000000E+00
29 3.87708910315835 3.87708910315565 2.7000624E-12
30 3.91649166155428 3.91649168869767 -2.7143390E-08
31 3.95075448490565 3.95075448492430 -1.8650415E-11
32 3.98744038931492 3.98744038931492 0.0000000E+00
33 4.01990091595853 4.01990092544962 -9.4910897E-09
34 4.04771997123059 4.04771997123695 -6.3602457E-12
35 4.08440574075338 4.08440776576801 -2.0250146E-06
36 4.11298932968653 4.11298932968421 2.3199220E-12
37 4.15478125199121 4.15480304173093 -2.1789740E-05
38 4.15766926004822 4.15767242127718 -3.1612290E-06
39 4.22394975626618 4.22394975626377 2.4096281E-12
40 4.25533295365295 4.25533314299430 -1.8934135E-07
41 4.25533295365297 4.25533295365297 0.0000000E+00
42 4.25533295365297 4.25533295365297 0.0000000E+00
43 4.36004332088190 4.35302648869109 7.0168322E-03
44 4.38283083788345 4.38284540902735 -1.4571144E-05
45 4.41007453378598 4.40700316053521 3.0713733E-03
46 4.44190731948126 4.44178542926357 1.2189022E-04
47 4.47455137992898 4.47446547698958 8.5902939E-05
48 4.49712009262402 4.49632831111380 7.9178151E-04
49 4.52594554850145 4.51928918657509 6.6563619E-03
50 4.55221146893267 4.55095440529171 1.2570636E-03

%Av. 3.62758993557859 3.62719494740341 3.94988175E-04

Table 7.9: Behavior of PSO-BA versus VNS
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Inst. Min Ts Mean Ts Max Ts
3 2.15470053837925 343.4 2.15470054745249 696.18 2.15470058855811 759.41
4 2.22474487139159 93.12 2.22474487139159 148.41 2.22474487139159 200.09
5 2.41421356237309 473.91 2.41421356237313 689.92 2.41421356237328 638.23
6 2.41421356237309 66.88 2.41421356237309 84.38 2.41421356237309 100.77
7 2.59125387233612 827.55 2.59125387234287 872.48 2.59125387236960 917.7
8 2.64532877601607 310.62 2.64532877601610 390.74 2.64532877601627 489.64
9 2.73205080756522 206.78 2.73205080757861 400.98 2.73205080760768 482.46
10 2.83246456105391 1290.2 2.83246456105394 1,528.77 2.83246456105402 1220.28
11 2.90211303259014 153.82 2.90211303259042 182.37 2.90211303259129 208.09
12 2.90211303258981 1179.29 2.93147989119104 1,562.56 3.00000744211427 589.34
13 3.00000000000000 488.9 3.00000000000000 1,892.93 3.00000000000000 3592.2
14 3.09114544488857 458.23 3.09114544488868 619.36 3.09114544488887 689.32
15 3.14164262494856 6282.91 3.14164262494862 654.29 3.14164262494873 688.91
16 3.21568303201004 1124.03 3.21575622434419 3,803.29 3.21601470312793 4195.9
17 3.27124551170111 92.19 3.27124551170111 98.42 3.27124551170111 115.44
18 3.31898878173418 707.66 3.31898878173422 1,280.04 3.31898878173439 804.43
19 3.38601597327490 6738.12 3.38601613073694 6,843.07 3.38601739312740 6967.01
20 3.47353896224525 7000.69 3.47482020706182 7,136.55 3.48635141041092 7081.45
21 3.48635141041092 2732.54 3.48635141041092 14,531.87 3.48635141041092 6428.52
22 3.57983319115373 2500.96 3.57985115336840 5,448.22 3.57993688485445 6331.79
23 3.62751643653542 5236.08 3.62844254665527 4,802.72 3.63640188028221 5502.21
24 3.68539493545579 6538.98 3.68615979183021 5,955.63 3.69110138973029 7012.51
25 3.68742674748920 2661.64 3.68742674748920 4,725.19 3.68742674748920 7192.52
26 3.74740577652751 1805.77 3.74740793153699 5,401.95 3.74742732662231 5749.9
27 3.81341595688139 4003.44 3.81544731674577 6,093.95 3.81999410151570 7108.87
28 3.84164027814771 6877.24 3.84272704790780 6,901.47 3.84558183473812 7116.96
29 3.87708910315565 6802.59 3.87730118326704 6,935.02 3.87846957514673 7049.88
30 3.91649168869767 6661.05 3.91829081798393 6,880.67 3.93405466697792 7049.88
31 3.95075448492430 6794.01 3.95086041113647 6,175.04 3.95134072468805 5992.75
32 3.98744038931492 6783.05 3.98851394803272 7,004.96 3.99817438478019 7168.49
33 4.01990092544962 6897.21 4.02005383864234 6,671.97 4.02140153547888 6942.3
34 4.04771997123695 5846.87 4.04927576754548 6,305.91 4.05745310904699 5933.43
35 4.08440776576801 6852.7 4.08545923767508 6,928.40 4.09439687162367 7019.74
36 4.11298932968421 5000.74 4.12848947081492 6,403.72 4.22502558279313 6607.45
37 4.15480304173093 7045.52 4.15645995438667 6,629.09 4.15910845682143 5171.55
38 4.15767242127718 6661.83 4.15782908980364 6,610.93 4.15846947834974 6349.76
39 4.22394975626377 6833.07 4.22710896351551 5,967.81 4.23683285110548 5556.08
40 4.25533314299430 6588.66 4.25685927331679 6,555.34 4.26319122701637 6712.78
41 4.25533295365297 7198.97 4.28448631182666 6,475.96 4.29781749796656 6826.14
42 4.25533295365297 5984.61 4.28935477133131 6,521.89 4.30814247814195 6119.67
43 4.35302648869109 5153.7 4.35769097669484 6,213.76 4.36339912798064 5096.6
44 4.38284540902735 6339.39 4.38458145671599 6,097.95 4.38844088733059 5499.41
45 4.40700316053521 6762.92 4.41186736346516 6,834.68 4.42495522072477 7185.73
46 4.44178542926357 6146.29 4.44491292847574 6,601.75 4.45470625669417 6453.07
47 4.47446547698958 5523.97 4.47692358432714 6,441.80 4.48121969144357 5589.82
48 4.49632831111380 5194.01 4.49757252031241 6,031.53 4.50295464097537 6805.06
49 4.51928918657509 7102.21 4.52176959805031 6,593.10 4.52713584368006 6089.51
50 4.55095440529171 6346.64 4.55179457307563 6,602.43 4.55375768598201 6977.97

Av.% 3.62719494740341 4,181.56 3.63028017491915 4,713.11 3.63744096493292

Table 7.10: Solutions’ quality (with their runtimes) achieved by PSO-BA for the ten trials

7.4 Conclusion

In this chapter, the three-dimensional identical sphere packing problem is solved by using
a particle swarm optimization-based algorithm. The proposed method is based upon a
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greedy truncated tree search procedure which served to generate a starting population.
At each step of the algorithm, the unfeasible solutions are repaired when its associated
particle is positioned out of the feasible region. In this case, a continuous local optimiza-
tion is applied. The proposed method is also based upon the version of particle swarm
that is able to ensure its convergence to a final feasible solution. The behavior of the
proposed method was evaluated on a set of benchmark instances available in the litera-
ture, where its obtained results were compared to those reached by two recent methods
available in the literature. As reported in the experimental part, the proposed method
remains competitive by providing new bounds.



Chapter 8

Conclusions and perspetives

8.1 Conclusion

Cutting and Packing (C&P) problems are encountered in numerous industrial domains
such as transportation, logistics, reliability, and production. They appear either as stan-
dalone problems or as subproblems of more complex combinatorial and continuous mathe-
matical programming models. Because of their wide range of applicability, these problems
have known a large number of variations such as: (C&P) circles / rectangles into a single
open / close container, (C&P) circles / rectangles into multiple containers, (C&P) irreg-
ular shapes into (multiple) container(s), (C&P) into single and multiple containers with
specific technological constraints, (C&P) with disjunctive constraints, single and multiple
objective (C&P), integer, linear, non-linear, deterministic and stochastic, etc. Despite
the technological and knowledge advance, solving (C&P) problems remains a challenging
problem. “Efficient” approaches-based resolution techniques have been and are being pro-
posed for the different variants of this problem.

Our contributions are divided into four chapters.
The first contribution was described in chapter 4, where the three-dimensional sphere

packing problem is solved by using a dichotomous search-based heuristic. The proposed
method is based upon three complementary phases: (i) a greedy selection phase which
tries to select many eligible positions to iteratively packing all predefined items into the
target object, (ii) a width beam search phase that serves to explore some promising
paths, and (iii) a dichotomous search that serves to diversify the search space. The first
two phases iterated until reaching the final objet; that is, the container with the smallest
length containing all the items. The performance of the proposed method is evaluated
on benchmark instances of the literature where the provided results are compared to
those reached by some recent methods of the literature. The proposed method remains
competitive and succeeded in yielding new solutions on many instances.

Chapter 5 contains the second contribution: we investigated the use of the global di-
chotomous search-based heuristic for approximately solving the three-dimensional sphere
packing problem The proposed method is based on the three features: (i) creating a
subset of paths by applying an extended greedy procedure, (ii) using a local operator in
order to estimate lower bounds associated to internal nodes and (iii) applying an iterative
search for diversifying the search process. The performance of the proposed algorithm
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was evaluated on benchmark instances taken from the literature and the results reached
by the method were compared to those reached by recent methods available in the litera-
ture. The proposed method succeeded to all methods in yielding new solutions for most
of instances.

In chapter 6, the third contribution is presented, where the three-dimensional sphere
packing is tackled. The problem consists in finding the greatest density of a (sub)set
of predefined spheres (objects) into a cube (parallelepiped). We solved it by applying a
cooperative method that combines three main features: (i) a best-local position procedure
stage, (ii) an intensification stage and (iii) a diversification stage. The first stage ensures
a starting feasible solution using a basic greedy local strategy. The second stage tries to
solve a series of decision problems in order to place a subset of complementary spheres.
The third stage forces the current solution to remove some packed items and then replaced
them with other promising spheres. The performance of the proposed method is evaluated
on benchmark instances taken from the literature where the achieved results are compared
to those reached by some recent methods of the literature. The proposed method remains
competitive and succeeded in yielding new solutions for many instances.

The last contribution of the thesis, on the three-dimensional identical sphere pack-
ing problem, is described in chapter 7. We solved such a problem by using a particle
swarm optimization-based algorithm, which is based upon a greedy truncated tree search
procedure that serves to generate a starting population. At each step of the algorithm,
the unfeasible solutions are repaired when its associated particle is positioned out of the
feasible region. In this case, a continuous local optimization was applied. The proposed
method is also based upon the version of particle swarm that is able to ensure its conver-
gence to a final feasible solution. The behavior of the proposed method was evaluated on
a set of benchmark instances available in the literature, where its obtained results have
been compared to those reached by two best methods of the literature. As reported in the
experimental study, the proposed method remains competitive by providing new bounds.

8.2 Perspectives

The work presented in this thesis could be adapted for tackling variants of packing prob-
lems. Indeed, several of the proposed methods can be adapted for solving the following
problems:

• the two-dimensional circular and rectangular packing problems, where the container
may be a rectangle or a strip,

• the irregular packing problem into a container,

• both two and three dimensional packing problems with multiple containers and,
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• the capacitated vehicle routing problem with two and three dimensional loading
constraints.

According to the average running time needed by almost of the used methods, we
believe that parallel versions of these methods can be envisaged. Indeed, we believe that
type of methods could be useful for reducing the runtime and increasing the quality of
the solutions. In fact, a parallel cooperative particle swarm optimization seems a good
choice, where each processor may be assigned to a predefined swarm and all processors
simultaneously synchronize the solutions reached up to now.
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