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Abstract :

Ultracold atoms in optical tweezer arrays have emerged as one of the most versatile platforms

for quantum many-body physics, quantum simulation and quantum computation. In this thesis,

I  report a way to achieve fully occupied tweezer arrays to sizes well beyond 200 sites  by

exploiting elastic collisions as compared to light-assisted inelastic collisions and along the way

greatly advance the feasibility of quantum simulations based on trapped atomic ensembles with

programmable geometries. We demonstrate, for the first time, fully filled versatile arrays of

atomic ensembles > 400 tweezers prepared using a digital micromirror device,  where each

tweezer contains ~ 60 atoms in a microscopic volume, high atom number and remarkably low

atom  number  fluctuations.  As  a  necessary  pre-requisite  to  performing  the  coherent

manipulation of the Rydberg excitation of these atomic ensembles, I present experiments on

narrow linewidth two-photon Rydberg excitation of these large arrays of atomic ensembles. I

also discuss an analysis of the effects causing spectral broadening. This work paves the way

towards detailed analysis of many-body effects in a structured Rydberg gas-an important step

towards building a quantum simulator based on trapped atomic ensembles in optical tweezer

arrays. This opens up applications ranging from quantum simulation of exotic quantum spin

models,  quantum  dynamics  including  transport  and  many-body  localization  and  quantum

cellular automata with programmable spatial configurations and versatile Rydberg mediated

interactions.
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Résumé :

Des atomes froids dans des réseaux de pinces optiques sont apparus comme l'un des plates-formes
les  plus  polyvalent es  pour  la  physique  quantique  à  N-corps,  la  simulation  et  l'informatique
quantiques. Dans cette thèse, je rapporte un moyen de réaliser des réseaux de pièges optiques
occupés uniformément, de tailles bien supérieures à ~200 sites, en utilisant des collisions élastiques
par  opposition  aux  collisions  inélastiques  assistées  par  la  lumière  et  je  fais  progresser
considérablement  la  faisabilité  des  qubits  basés  sur  des  ensembles  atomiques  piégés.   Nous
démontrons,  pour  la  première  fois,  des  réseaux  polyvalents  entièrement  remplis  d'ensembles
atomiques de plus de 400 pièges optiques préparés à l'aide d'une matrice de micro-miroirs, où piège
microscopiques contient ~60 atomes, un nombre d'atomes élevé et des fluctuations étonnamment
faibles du nombre d'atomes. En utilisant des atomes de Rydberg en forte interaction, j'étudie la
dynamique d'excitation de Rydberg et les interactions à longue distance dans les grands réseaux
d'ensembles atomiques. Cela ouvre la voie à la réalisation de simulateurs quantiques basés sur des
ensembles atomiques.

Mot-clés :  atomes-froids,  Rydberg,   la  physique  quantique  à  N-corps,   simulateurs  quantiques,
ensembles atomiques,  pinces optiques
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Résumé en Français

Richard Feynman a fait cette remarque célèbre en 1980 : ”La nature n’est pas

classique, bon sang , et si vous voulez faire une simulation de la nature, vous

feriez mieux de la faire avec la mécanique quantique et c’est un merveilleux

problème, car il ne semble pas si facile”. Peu de temps après, il est devenu

possible de concevoir des systèmes quantiques en laboratoire qui permettent

de saisir la caractéristique essentielle du véritable corps complexe multiple

des systèmes quantiques espérant observer et étudier de nouvelles propriétés

émergentes dans des conditions expérimentales contrôlables. C’est un défi

parce que le comportement collectif émergeant du système ne découle pas

nécessairement des caractéristiques sous-jacentes de ses éléments constitutifs.

Par exemple, pourquoi la dynamique quantique collective et les nouveaux

phénomènes tels que la superfluidité [1–3] et la supraconductivité [4–7], se

produisent dans certains matériaux à des températures assez basses est encore

un défi majeur à expliquer de manière satisfaisante ?

Une étude approfondie des origines de ces effets aiderait à concevoir de nou-

veaux matériaux présentant les propriétés souhaitées et éventuellement de

nouveaux effets physiques. Mais les méthodes conventionnelles de construc-

tion, les modèles théoriques permettant d’étudier cette physique pertinente

sont limités en raison de l’échelle de la complexité avec le nombre croissant de

particules et leurs degrés de liberté. Pour surmonter ce problème, des efforts

considérables ont été déployés vers l’approche de la simulation quantique [8, 9].

L’objectif des simulations quantiques consiste à imiter le plus fidèlement possi-

ble l’Hamiltonien d’un système cible. Cela souligne la nécessité de développer

des systèmes quantiques contrôlables/programmables systèmes. Cela permet

d’étudier et de mesurer les paramètres du système dans un environnement

plus contrôlé dans un laboratoire [10].

L’approche de la simulation quantique est appelée à devenir un outil indispens-

able pour acquérir de nouvelles connaissances dans le large spectre des études

compliquées, des problèmes réels de nombreux corps dans divers domaines,

en intégrant des condensés la physique de la matière, la chimie, la physique

nucléaire et des hautes énergies, la physique atomique, la chimie quantique et la

cosmologie, etc. [10]. Au cours des dernières décennies, de nombreux systèmes
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ont été étudiés, allant des ions [11] aux photons [12], en passant par les atomes

ultrafroids de réseaux optiques [13], les circuits supraconducteurs [14] et les

réseaux de Rydberg [15].

Cette thèse porte sur les atomes ultrafroids piégés, car il est prouvé qu’ils

constituent un stade idéal pour la simulation quantique [16] avec le haut

degré de contrôle sur ces systèmes et une grande variété de physique qui

est explorée, par exemple l’unité Gaz Fermi dans le croisement BCS-BEC [17–

21], systèmes Bose-Hubbard [22–24], Transition BKT [25–27] et gaz Tonks-

Girardeau [28, 29].

Grands réseaux d’atomes ultrafroids

Avec les techniques de refroidissement et de piégeage par laser [30], un grand

niveau de contrôle a été réalisé sur les propriétés de l’état de base des atomes

ultrafroids englobant le mouvement des atomes, la géométrie spatiale flex-

ible, l’isolation de l’environnement, le temps de cohérence long et les pro-

priétés d’interaction [31]. Le site le confinement spatial d’atomes de géométries

différentes en 1D, 2D et 3D a été atteint avec certains degrés de désordre en

utilisant des réseaux optiques [13] et pincettes [32–34]. Les atomes neutres

des réseaux de pincettes optiques en particulier ont émergé comme l’une des

plateformes les plus polyvalentes pour la physique quantique à plusieurs corps,

la simulation et l’informatique quantiques [32, 35–43]. Les raisons principales

sont la plus grande extensibilité, le long temps de cohérence, l’adressabilité

d’un seul site et des interactions contrôlables en utilisant des états de Rydberg

très excités [44–50].

Quelques exemples d’atomes neutres piégés optiquement dans des réseaux

de pincettes programmables sont présentés dans la figure 0.1 extraite de [15].

À ce jour, d’importants efforts expérimentaux ont été consacrés à la création

de réseaux atomiques entièrement occupés avec 1 atome dans chaque pincette

en exploitant les collisions inélastiques assistées par la lumière [53–55] et le

réaménagement pour remplir les sites vides [32, 33, 38, 52, 56, 57]. Jusqu’à

présent, cependant, les tailles de réseaux réalisables sont limitées à ∼ 200 [58]

sites entièrement occupés (y compris pour les systèmes 2D et 3D), en partie

en raison des besoins élevés en énergie par pince le piège et la complexité

croissante associés au processus de réarrangement pour les grands tableaux [33,
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Fig. 0.1: Exemples d’atomes neutres piégés optiquement dans des réseaux
de pincettes programmables (reproduit à partir de [15]). (a) Im-
ages de fluorescence de réseaux unidimensionnels chargés de façon
déterministe contenant plus de 50 atomes dans des géométries
périodiques, dimérisées et en grappes. Reproduit de [32]. (b) Im-
age de fluorescence d’un réseau carré bidimensionnel chargé de façon
déterministe, comportant 111 atomes. Reproduit de [33]. (c) Image
d’absorption d’un réseau triangulaire d’ensembles atomiques micro-
scopiques contenant plus de 400 sites. Reproduit de [51]. (d) Image de
fluorescence d’un réseau bicouche chargé de façon déterministe de 72
sites. Reproduit de [52].

x



52, 57]. Au cours de cette thèse, une réalisation majeure a été une autre

approche pour surmonter ce défi de l’extensibilité en démontrant la préparation

de grands ensembles de centaines de pincettes optiques à remplissage uniforme

avec un grand nombre d’occupations en une seule étape (par rapport à un seul

atome) et faire progresser considérablement la faisabilité des qubits basés sur

des ensembles atomiques [51].

Les atomes de Rydberg pour la simulation quantique

L’interaction dominante régissant la dynamique induite par les électrons dans

les matériaux réels sont des interactions de type Coulomb qui s’étendent sur

de grandes distances [59]. Par conséquent, il est évident que la simulation

quantique doit imiter une telle distance des interactions aussi proches que

possible des matériaux naturels réels. Il y a eu des efforts de certaines plate-

formes atomiques et moléculaires pour la simulation des interactions telles

que les espèces atomiques magnétiques, à savoir l’Erbium, le Chromium et le

Dysprosium [60–62] qui présentent des interactions dipôle-dipôle magnétiques.

Une autre plateforme utilise des molécules polaires à l’état de traces qui inter-

agissent par la dynamique dipolaire déphasante collective [63–67].

Mais l’excitation des atomes de Rydberg Ultrafroids présente des avantages

(par rapport à ces autres particules qui interagissent à longue distance) qui sont

des interactions adaptables en termes de force et de signe, ainsi que la mise

en pause complète du système d’excitation, ce qui le rend plus flexible que

d’autres approches. Les atomes de Rydberg démontrent de fortes interactions

Van der Waals qui perpétuent bien au-delà des distances interatomes typiques

Cela donne lieu à d’intéressants phénomènes collectifs tels que le blocus de

Rydberg [68–71]. Dans le blocus, les interactions suppriment les excitations,

permettant au maximum une seule excitation dans un rayon de blocage partagé

collectivement par tous les atomes dans le volume sur le blocus [72]. Ceci a

été utilisé dans l’information quantique pour réaliser des états enchevêtrés

adressables [68, 69, 73–75], pour générer de nouvelles phases de la matière [76–

83] et pour simuler les effets magnétiques [84–87]. En combinant des atomes

de Rydberg [49, 69, 88–93], ces systèmes atomiques piégés ont été récemment

utilisées pour démontrer une dynamique quantique cohérente allant jusqu’à

51 qubits [94] et des états enchevêtrés jusqu’à 20 qubits dans une chaı̂ne

unidimensionnelle (1D) [95].
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Aperçu de la thèse
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Fig. 0.2: Schéma de l’installation de notre laboratoire à Strasbourg utilisée pour
produire et charger les réseaux de pincettes en projetant la lumière
d’un dispositif numérique à micromiroirs directement sur les atomes
confinés dans un piège à réservoir optique (reproduite de [51]).

Dans cette thèse, je me concentre sur une mise à niveau substantielle de notre

système atomique ultrafroid actuel, plate-forme expérimentale impliquant la

génération de grands réseaux d’ensembles atomiques piégés (voir la figure 0.2

reproduite de [51])]).

Notre approche consiste à préparer des réseaux polyvalents d’ensembles atom-

iques en les transférant d’un piège optique à dipôle en forme de crêpe à un

réseau de pinces optiques créée par projection directe de motifs lumineux

produits par un dispositif numérique à micro-miroirs [51]). La taille de chaque

ensemble est inférieure à celle du Rayon du blocus de Rydberg, de sorte que

chacun peut transporter soit 0 ou 1 excitations (collectives) qui peuvent alors

fortement interagir avec les ensembles voisins. Cela en fait une plateforme

prometteuse pour réaliser l’expérience des super-atomes de Rydberg exprimant

une haute fidélité d’excitation Rydberg unique par micropiège. Dans un pre-

mier temps, il fournit une stratégie pour réaliser potentiellement des milliers

de qubits atomiques pour l’application de la simulation quantique. Je présente

ensuite le schéma d’excitation Rydberg à deux photons et le système Rydberg
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que nous utilisons pour l’excitation Rydberg de ces atomes des ensembles.

Je discute des résultats des expériences sur la largeur de ligne étroite Rydberg

l’excitation de l’ensemble des ensembles atomiques et décrire la compréhension

des mécanismes d’élargissement tels que l’élargissement Doppler, l’élargissement

de la puissance et l’inhomogénéité du faisceau laser d’excitation qui pourrait

éventuellement élargir la largeur spectrale de la transition de Rydberg. Plus

tard, comme perspective, je discute de certaines applications potentielles de

l’utilisation de la plateforme Rydberg présentées dans cette thèse qui sont (1) la

simulation quantique de type Förster transport d’excitation (entre les sites de

pinces bloqués du Ryberg), (2) une expérience réalisation mentale d’automates

cellulaires quantiques (QCA) [96], (3) Démonstration de la dynamique de facili-

tation dans l’ensemble des pièges à pince pour étudier les effets de troubles

comme récemment étudiés expérimentalement dans notre groupe dans un

milieu atomique ultrafroid [97].

La structure de cette thèse est la suivante :

le chapitre 1 donne une introduction à la plate-forme de grands réseaux

d’atomes ultrafroids et un aperçu des récentes études de systèmes à plusieurs

corps utilisant des atomes de Rydberg ultrafroids.

Le Chapitre 2 développe une partie du cadre théorique des pièges à dipôle

optique, à savoir nécessaire à la construction de grands réseaux de pièges à

pince et aussi comprennent les propriétés importantes des atomes de Rydberg

nécessaires pour comprendre les effets de l’interaction Rydberg-Rydberg entre

les pièges à pince.

Le Chapitre 3 concerne la caractérisation de l’intégration du micro-miroir

numérique (DMD) dans notre appareil atomique ultra froid existant de 39

K pour générer des centaines de pinces optiques piègeant les potentiels et

présentant les géométries exotiques de pièges à pincettes.

Le chapitre 4 décrit une étape expérimentale de la réalisation de grands

réseaux d’ensembles atomiques avec plus de 400 sites et décrit également

la caractérisation de cette approche. Veuillez vous référer à la figure 0.3.

Le chapitre 5 décrit les résultats récents de l’excitation Rydberg à deux photons
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Fig. 0.3: Réalisation de grands réseaux de pincettes avec un grand nom-
bre d’occupation dans chaque pincette. (a) Image expérimentale
d’absorption d’un réseau triangulaire de 400 sites, où chaque point
correspond à un ensemble microscopique d’atomes ≈ 30 ultracold 39K.
L’espacement entre les treillis est de 4 µm et la taille apparente de
chaque point est de 0.75 µm (rayon de 1.5 µm), principalement limité
par le flou du recul pendant l’imagerie. (b) Structure annulaire à 40
sites (c) Réseau quasi-cristallin de Penrose à 226 sites. Pour améliorer
le rapport signal/bruit, chaque image est une moyenne de 20 images
d’absorption (d) réseau alvéolaire de 196 sites (voir figure 4.3 a pour
une image typique en une seule prise).
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de ces ensembles atomiques présentant le spectre d’excitation Rydberg à largeur

de raie étroite et présente une analyse des mécanismes qui peuvent contribuer

à l’élargissement de la largeur spectrale.

Enfin, le chapitre 6 présente les remarques finales résumant la thèse et présente

une perspective d’utilisation de cette plateforme polyvalente de grands réseaux

de Rydberg atomique pour étudier la dynamique quantique à plusieurs corps

dans les domaines quantiques et classiques pour concevoir des états quantiques

fortement enchevêtrés et pour parvenir à une approche du traitement et de

l’informatique quantique de l’information quantique.

Améliorations possibles du dispositif expérimental
actuel

Afin d’obtenir une excitation Rydberg de faible largeur, les améliorations telles

que l’utilisation d’un faisceau d’excitation à sommet plat avec une intensité

uniforme dans sa section transversale pourraient être utiles pour obtenir un

couplage Rabi uniforme subi par les atomes dans la section transversale du

faisceau. En outre, la température des ensembles atomiques devrait être réduite

à ∼ 2 µk pour obtenir une largeur de raie limitée par Doppler de ∼ 80 kHz qui

est approximativement égale à la largeur de raie du laser d’excitation.

Les prochaines étapes de l’expérience seront probablement une étude expérimen-

tale plus systématique des divers effets de décohérence résumés dans le

tableau 5.1 pour observer les oscillations de Rabi entre l’état fondamental

et l’état de Rydberg en utilisant le schéma d’excitation à deux photons (fig-

ure 5.2) en s’asseyant à l’un des pics de résonance indiqués dans le spectre de

la figure 5.6. La réalisation globale permettrait d’explorer expérimentalement

la dynamique quantique cohérente dans ce dispositif pour l’excitation Rydberg

à la fois résonnante et hors résonnance.Il serait utile d’étudier le bruit de phase

du laser, car cela pourrait également contribuer à la décohérence de notre

système.

Il y a eu de nombreuses idées pour lesquelles un tel système de réseaux de

pièges à pinces pourrait être utilisé, comme les capteurs atomiques, les inter-

actions lumière-matière, les bits quantiques, la matière quantique habillée de

Rydberg - tous avec des géométries atomiques programmables [15]. J’aborderai
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dans le dernier chapitre trois applications plus spécifiques que nous avons

développées à Strasbourg.

Conclusion

Dans les remarques finales de cette thèse, je souligne la démonstration réussie

d’une plate-forme de grands réseaux de centaines d’ensembles atomiques

microscopiques piégé dans des pièges à pince optique où chaque pince a

environ remplissage uniforme, faible étendue spatiale et faibles fluctuations du

nombre d’atomes ber entre les réalisations. Avec cette approche, il est possible

de passer à l’échelle des centaines, voire des milliers de pinces comme le grand

volume du réservoir permet de remplir simultanément plusieurs pinces en

parallèle sans la nécessité de disposer de lasers supplémentaires et de protocoles

de réarrangement complexes pour remplir les sites vides. Les ensembles

atomiques offrent également un couplage Rabi amélioré et une la robustesse

contre la perte de particules, puisque la perte d’une ou plusieurs particules de

chaque micropiège n’entraı̂ne pas de défauts qui seraient autrement difficiles à

réparer.

Comme condition préalable nécessaire pour atteindre l’objectif de la manipu-

lation cohérente des excitations de Rydberg parmi ces ensembles atomiques,

ont également présenté les expériences concernant le Rydberg à largeur de

bande étroite l’excitation de ces réseaux d’ensembles atomiques microscopiques.

J’attends avec impatience de voir comment ces contributions contribuent à faire

progresser le domaine, notamment en ce qui concerne ouvrir de nouvelles voies

de recherche qui pourraient éventuellement inclure : l’étude des le couplage

lumière-matière dans des ensembles atomiques en interaction, ou pour mieux

construire qubits qui exploitent ces effets collectifs, simulation de modèles

de spin quantique et des systèmes complexes à désordre programmable, en

explorant le rôle des quantique cohérence des tumeurs dans la dynamique

quantique moléculaire grâce à la simulation quantique, et l’exploitation de la

dynamique quantique pour l’ingénierie d’états quantiques intéressants pour la

métrologie et l’informatique avec des configurations spatiales programmables

et des interactions polyvalentes sous la médiation de Rydberg.
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Chapter 1

Introduction

Richard Feynman famously remarked in 1980, “Nature isn’t classical, dammit,

and if you want to make a simulation of nature, you’d better make it quantum

mechanical, and by golly it’s a wonderful problem, because it doesn’t look

so easy”. Not long after it became possible to design quantum systems in

the laboratory that capture the key feature of the real complex many-body

quantum systems hoping to observe and to study new emergent properties

under controllable experimental conditions. This is challenging because the

collective emergent behaviour of the system does not necessarily follow from

the underlying characteristics of its building blocks. For example, why a

collective quantum dynamics and new phenomena such as superfluidity [1–3]

and superconductivity [4–7] occur in some materials at quite low temperatures

is still a major challenge to explain satisfactorily. A thorough study of origins of

such effects would help to engineer new materials with desired properties and

possibly new physical effects. But the conventional methods of constructing

theoretical models to study such relevant physics are limited due to exponential

scaling of the complexity with the increasing number of particles and their

degrees of freedom. To overcome this issue, there have been substantial efforts

towards the approach of quantum simulation [8, 9]. The goal of quantum

simulation is to mimic the Hamiltonian of a target system as closely as possible.

This highlights on the need to develop controllable/programmable quantum

systems. This allows to study and measure the system parameters in more

controlled environment in a laboratory [10].

The approach of quantum simulation is set to become an indispensible tool
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for gaining new insights in the broad spectrum of studying complicated,

real-world many-body problems from various fields incorporating condensed

matter physics, chemistry, nuclear and high-energy physics, atomic physics,

quantum chemistry and cosmology, etc. [10]. In past decades, many systems

have been studied ranging from ions [11], photons [12], ultracold atoms in

optical lattices [13], superconducting circuits [14] and Rydberg arrays [15]. This

thesis focuses on trapped ultracold atoms as they are proven to be an ideal stage

for quantum simulation [16] with the high degree of control over these atomic

systems and great variety of physics that is being explored, e.g. the unitary

Fermi gas in the BCS-BEC crossover [17–21], Bose-Hubbard systems [22–24],

BKT transition [25–27] and Tonks-Girardeau gases [28, 29].

1.1 Large arrays of ultracold atoms

With the successful techniques of laser cooling and trapping [30], a great level

of control has been realised over ground state properties of ultracold atoms

encompassing the motion of atoms, flexible spatial geometry, isolation from

the environment, long coherence time and interaction properties [31]. The

spatial confinement of atoms with different geometries in 1D, 2D and 3D have

been achieved with certain degrees of disorder using optical lattices [13] and

tweezers [32–34]. Neutral atoms in optical tweezer arrays in particular have

emerged as one of the most versatile platforms for quantum many-body physics,

quantum simulation and quantum computation [32, 35–43]. This is largely

because of the higher scalability, long coherence time, single site addressability

and controllable interactions using highly excited Rydberg states [44–50]. Some

examples of optically trapped neutral atoms in programmable tweezer arrays

are shown in figure 1.1 reproduced from [15]. To date, substantial experimental

efforts have been devoted to create fully occupied atomic arrays with '1

atom in each tweezer by exploiting light-assisted inelastic collisions [53–55]

and rearrangement to fill empty sites [32, 33, 38, 52, 56, 57]. So far however,

achievable array sizes are limited to ∼ 200 [58] fully occupied sites (including

for 2D and 3D systems), in part due to high power requirements per tweezer

trap and increasing complexity associated with the rearrangement process

for larger arrays [33, 52, 57]. During this thesis, a major achievement was an

alternative approach to overcome this scalability challenge by demonstrating

the preparation of large and uniformly filled arrays of hundreds of tweezers

2



Fig. 1.1: Examples of optically trapped neutral atoms in programmable
tweezer arrays (reproduced from [15]). (a) Fluorescence images of
deterministically loaded one dimensional arrays containing more than
50 atoms in periodic, dimerized and cluster geometries. Reproduced
from [32]. (b) Fluorescence image of a deterministically loaded two-
dimensional square lattice with 111 atoms. Reproduced from [33].
(c) Absorption image of a triangular lattice of microscopic atomic en-
sembles containing more than 400 sites. Reproduced from [51]. (d)
Fluorescence image of a deterministically loaded bilayer lattice of 72
sites. Reproduced from [52].

with large occupation number in a single step (as compared to a single atom)

and along the way greatly advance the feasibility of qubits based on trapped

atomic ensembles [51].

1.2 Ultracold Rydberg atoms for quantum

simulation

The dominant interaction governing the dynamics mediated via electrons in

real materials is Coulomb type interaction that ranges over large distances [59].

Hence, it is an obvious desire for quantum simulation to mimic such long range

interactions as closely as possible to real natural materials. There have been ef-

forts towards certain atomic and molecular platforms for simulating long-range

interactions such as magnetic atomic species namely Erbium, Chromium and

Dysprosium [60–62] which exhibit magnetic dipole-dipole interactions. An-

other platform is utilising ground state polar molecules which interact through

collective dephasing dipolar dynamics [63–67]. But highly excited ultracold Ry-

dberg atoms have advantages (over these other long-range interacting particles)
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which are tunability of interactions in terms of its strength and sign and to be

able to switch it completely off, making it more flexible than other approaches.

Rydberg atoms demonstrate strong Van der Waals interactions that perpetu-

ate well beyond typical inter-atomic distances. This gives rise to interesting

collective phenomenon such as Rydberg blockade [68–71]. In the blockade

effect, the interactions suppress the excitations, allowing at most one single

excitation within a blockade radius which is collectively shared by all the atoms

in the blockade volume [72]. This has been utilised in quantum information

to realize addressable entangled states [68, 69, 73–75], to generate new phases

of matter [76–83] and to simulate magnetic effects [84–87]. Combining high

fidelity Rydberg blockade gates [49, 69, 88–93], these trapped atomic systems

have been recently used to demonstrate coherent quantum dynamics of up to

51 qubits [94] and entangled states of up to 20 qubits in one dimensional chain

(1D) [95].

1.3 Thesis overview

Absorption

light (767 nm)

reservoir

(pancake trap)

objective

(NA 0.6)

dichroic

mirror

CCD

DMD

light pattern

(780 nm)

Tweezer

array

x

y
z

Fig. 1.2: Schematic of the setup from our lab in Strasbourg used to produce and
load the tweezer arrays by projecting light from a digital micromirror
device directly onto the atoms confined in an optical reservoir trap.

In this thesis, I focus on a substantial upgrade to our existing ultracold atomic

experimental platform involving the generation of large arrays of optically

trapped atomic ensembles (see figure 1.2 reproduced from [51]). Our novel
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approach involves the preparation of versatile arrays of atomic ensembles by

transferring them from a pancake shaped optical dipole trap to an array of

optical tweezers created by direct projection of light patterns produced via a

digital micromirror device [51]. The size of each ensemble is smaller than the

Rydberg blockade radius, such that each one can carry either 0 or 1 (collective)

excitations which can then strongly interact with the neighbouring ensembles.

This makes it a promising platform to perform Rydberg superatom experiment

expressing high single Rydberg excitation fidelity per microtrap. For the first

time, it provides a strategy for potentially realizing thousands of atomic qubits

for quantum simulation application.

I then present the two-photon Rydberg excitation scheme and the Rydberg

detection assembly that we use for the Rydberg excitation of these atomic

ensembles. I discuss the results of the experiments on the narrow linewidth Ry-

dberg excitation of the array of atomic ensembles and describe the preliminary

understanding of the broadening mechanisms such as Doppler broadening,

power broadening and inhomogeneity of the excitation laser beam that could

possibly broaden the spectral width of the Rydberg transition. Later as an out-

look I discuss some potential applications of using the Rydberg array platform

presented in this thesis which are (1) Quantum simulation of the Förster type

excitation transport (between the Ryberg blockaded tweezer sites), (2) an experi-

mental realisation of quantum cellular automata (QCA) [96], (3) Demonstration

of facilitation dynamics across the array of tweezer traps to investigate effects

of disorder as recently studied experimentally in our group in a non-structured

ultracold atomic medium [97].

The structure of this thesis is as follows: Chapter 1 gives an introduction

to the platform of large arrays of ultracold atoms and a survey of recent

studies of many-body systems using ultracold Rydberg atoms. Chapter 2

develops some of the theoretical framework of optical dipole traps that is

necessary towards the construction of large arrays of tweezer traps and also

include the important properties of Rydberg atoms necessary to understand

the Rydberg-Rydberg interaction effects between the tweezer traps. Chapter

3 concerns the characterisation of the integration of the digital micromirror

device (DMD) into our existing ultracold atomic apparatus of 39K to generate

hundreds of optical tweezer trap potentials and presents the exotic geometries

of tweezers traps. Chapter 4 describes an experimental milestone of achieving
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large arrays of atomic ensembles with more than 400 sites and also describes

the characterisation of this approach. Chapter 5 describes the recent results of

the two-photon Rydberg excitation of these atomic ensembles presenting the

narrow linewidth Rydberg excitation spectrum and presents an analysis of the

mechanisms that can contribute to the broadening of the spectral width. Finally,

chapter 6 presents the concluding remarks summarising the thesis and presents

an outlook of utilising this versatile platform of large arrays of Rydberg atomic

ensembles to study many-body quantum dynamics in quantum and classical

regimes, to engineer highly entangled quantum states and towards a scalable

approach to quantum information processing and computing.
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Chapter 2

Principles of optical dipole trapping

and Rydberg atoms

Techniques for the trapping of neutral particles have successfully served as the

experimental key to great scientific advances in the field of ultracold atomic

quantum matter [18, 98–100]. The ultralow-energy regime got experimen-

tally accessible due to the dramatic developments in the area of laser cooling

and trapping [101–103]. In case of neutral atoms, it has begun to be exper-

imentally routine to generate atomic ensembles in the temperature range of

micro-kelvin, and many experiments are being performed using laser-cooled

atomic gases [18, 98–100]. Traps for neutral atoms can be broadly categorized in

three classes such as radiation-pressure traps eg. magneto-optical trap (MOT)

[104], magnetic traps [105] and optical dipole traps [106].

In the first half of this chapter, I focus on the principles of optical dipole

traps [107] which depends on the electric dipole interaction with far-detuned

light. Typical range of trap depths are of one milli-kelvin. The off-resonant

excitation rate can be kept extremely low to avoid the limitations by the

light-induced mechanisms that are present in radiation-pressure traps. With

appropriate conditions, the trapping mechanism does not depend on a partic-

ular electronic ground state. Thus the dynamics of internal ground-state can

be fully exploited in the experiments. Moreover, many different geometries

of traps can be realized, e.g., multi-well or highly anisotropic potentials. The

spatial confinement of atoms with different geometries in 1D, 2D and 3D have

been achieved with certain degrees of disorder using optical dipole traps eg.
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lattices [13] and tweezers [34]. In our experiments, the atoms are confined

within tweezer traps separated by several micrometers as shown in figure 2.1.

To introduce long-range interactions that extend over micrometers of distances,

we make use of particles with highly excited electronic states which are known

as “Rydberg atoms”. In the second half of this chapter, the theoretical frame-

work is developed within the realm of Rydberg physics consisting of the

relevant characteristics of single Rydberg atoms including their exaggerated

properties. This part then includes the interaction of Rydberg atoms with

external laser fields with the description of a two-photon excitation scheme.

Later I discuss the Rydberg-Rydberg interactions that give rise to blockade

effects leading to single Rydberg excitation in an ensemble of atoms, and also

facilitation (anti-blockade) effects where Rydberg atoms separated by a certain

distance can undergo pair-excitation in off-resonant conditions.

2.1 Optical dipole potential

The theoretical framework throughout this section is developed based on

the [107]. In this section I introduce the basic principles of atom-traps created

using optical dipole potentials that arise from the interaction of atoms with

with far-detuned light [107]. In this case, the optical excitation rate is very low

and thus the radiation force occurs due to photon scattering is negligible than

the dipole force. The optical dipole force occurs from the dispersive interaction

of the induced atomic dipole moment arose due to the intensity gradient of the

light field [108]. The minima of the conservative force that is derived from a

potential can be used to trap atoms. The performance of the optical dipole trap

is limited by the absorptive part that is presented in the dipole interaction of

atoms with far-detuned light fields that leads to the photon scattering of the

trap light. In the following section, I consider the atom as a simple oscillator in

the presence of a classical radiation field and derive the basic equations for the

dipole potential and the scattering rate.

2.1.1 Interaction of an induced dipole with a driving field

In the presence of laser field E, an atom gets induced dipole moment d that

oscillates at the driving frequency ω. The electric field E has the form E(r, t) =

êẼ(r) exp(−iωt) + c.c. and d(r, t) = êd̃(r) exp(−iωt) + c.c. where ê is the unit
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Fig. 2.1: Schematic representation of the array of optical dipole traps of
atomic ensembles. In our experiments, the ensemble of atoms are
confined within tweezer traps which are focused beams of Gaussian
laser-light tuned far below atomic resonance separated by several
micro-meters. Each blue dot in the array (left) represents an ensem-
ble of ∼40 atoms trapped in a focused laser beam. The separation
between the adjacent blue dots is ∼4 µm. On the right (zoomed-in),
the illustration of ensembles of atoms trapped in focused laser beams
has been shown.

polarization vector, the dipole moment amplitude d̃ is related to the amplitude

of the field Ẽ as

d̃ = βẼ. (2.1)

where β is the complex polarizability which is dependent upon the driving

frequency ω. The interaction potential due to the induced dipole moment d in

the presence of the driving field E is given by

U = −1
2
〈dE〉 = − 1

2ε0c
Re(β)I(r). (2.2)

where the angular brackets are used to indicate the time average over the fast

oscillating terms, the intensity of the field is I = 2ε0c|Ẽ|2. Thus the potential

energy of the atom in the presence of the external electric field is proportional to

the intensity I(r) and it is also proportional to the real part of the polarizability,

that denotes the in-phase component of the oscillation of the dipole which is

responsible for the dispersive nature of the interaction. The dipole force occurs

from the gradient of the interaction potential

F(r) = −∇U(r) = − 1
2ε0c

Re(β)∇I(r). (2.3)
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Hence it is a conservative force, which is proportional to the gradient of the

intensity of the driving field.

The absorbed power by the oscillator from the driving field can be expressed

as,

P = 〈ḋE〉 = 2ωIm(d̃Ẽ) =
ω

ε0c
Im(β)I(r). (2.4)

where ḋ represents a time-derivative of an induced dipole moment. The

absorption coming from the imaginary part of the polarizability indicates the

out-of-phase component of the oscillation of the dipole. Assuming the light

as a stream of photons h̄ω, the absorption can be expressed as scattering of

photons in alternate cycles of absorption and spontaneous emission processes.

The scattering rate is

Γsc(r) =
P

h̄ω
=

1
h̄ε0c

Im(β)I(r). (2.5)

Here the two main quantities for dipole traps, the interaction potential and the

scattered radiation power are expressed, in terms of the the polarizability β(ω)

and the position- dependent intensity I(r) of the field. These expressions can

be valid for any polarizable neutral particle that can be reduced to a two-level

system in an oscillating electric field.

2.1.2 Polarizability of atoms

To determine the polarizability β, let us first consider the Lorentz’s model of a

classical oscillator for the atom. In this picture, an electron with mass me and

elementary charge e is bound elastically to the core with an eigen-frequency

ω0 of the oscillation related to the frequency of the optical transition. By

integrating the equation of motion ẍ + Γω ẋ + ω2
0x = −eE(t)/me for the driven

oscillation of the electron where β = ex
E(t) , we obtain,

β =
e2

me

1
ω2

0 −ω2 − iωΓω
. (2.6)

Here the classical damping rate because of the radiative energy loss is

Γω =
e2ω2

6πε0mec3 . (2.7)
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By substituting e2/me = 6πε0c3Γω/ω2 and including the on-resonant damping

rate Γ ≡ Γω0 = (ω0/ω)2Γω the polarizability is obtained as,

β = 6πε0c3 Γ/ω2
0

ω2
0 −ω2 − i(ω3/ω2

0)Γ
. (2.8)

For high intensities (or too close to resonance) of the driving field, the excited

state gets highly populated and the above result can no longer be valid. In

our experiments of optical dipole trapping, we are mainly interested in the

far detuned conditions associated with low saturation resulting in low rates of

scattering (Γsc << Γ). Thus we can safely use the above expression.

2.1.3 Scattering rate and dipole trap potential

Using the expression for the polarizability of the atomic oscillator given by

equation 2.8, we derive following expressions for the dipole potential and the

scattering rate in the case of large detunings and low saturation:

U(r) = −3πc2

2ω3
0

(
Γ

ω0 −ω
+

Γ
ω0 + ω

)
I(r). (2.9)

Γsc(r) =
3πc2

2h̄ω3
0

(
ω

ω0

)3( Γ
ω0 −ω

+
Γ

ω0 + ω

)2

I(r). (2.10)

In many cases, the laser frequency is tuned close to the resonance at ω0 so that

the detuning ∆ ≡ ω − ω0 satisfies |∆| << ω0. Here, following the rotating-

wave approximation, the counter-rotating term (ω + ω0) can be neglected and

thus ω/ω0 ≈ 1. Therefore the general expressions for the scattering rate and

the dipole potential get simplified to

U(r) =
3πc2

2ω3
0

Γ
∆

I(r). (2.11)

This shows that atoms are attracted towards the maximum intensity of the

dipole trap laser when ∆ < 0 leading to negative U. For ∆ > 0, U is positive

leading to repulsive interaction where atoms get trapped in minimum intensity

region of the trapping laser.

Γsc(r) =
3πc2

2h̄ω3
0

(
Γ
∆

)2

I(r). (2.12)
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In the scenario of far-detuned laser fields, the physics of dipole trapping can be

understood based on these two equations. Thereby giving us a simple relation

between the dipole potential and the scattering rate,

h̄Γsc =
Γ
∆

U(r). (2.13)

The relation between the dispersive and absorptive response of the dipole

oscillator leads to the result above. Therefore, the combination of different laser

traps lead to the manipulation of potential landscapes. In our case, to create

an optical dipole trap, we use a red-detuned ∆ < 0 laser. The scattering rate is

proportional to I/∆2 and the dipole potential is proportional to I/∆. Hence,

high intensities and large detunings are usually involved in the generation of

the optical dipole traps in order to have a low rate of scattering for a desired

depth of the potential.

In our experiment, we use these principles of dipole trapping to create a

pancake-shaped optical dipole trap. Later we re-shape the pancake-trap into

exotic geometries of large arrays of microscopic optical dipole potentials which

are focused Gaussian laser beams tuned far below the atomic resonance fre-

quency. This represents the simplest way to create a dipole trap providing

three-dimensional confinement (tweezer) shown in figure 2.1 to trap atomic

ensembles by exploiting elastic collisions. The specific details of the generation

of these arrays of tweezer traps are given in Chapter 3.

Now we need to address the important requirement of introducing long-range

interactions between these micro-traps that are separated by several microme-

ters to produce a platform that can simulate real-life dynamics mediated via

interactions such as Coulomb type. For this, we make use of Rydberg atoms

and I discuss the important principles of Rydberg atoms and their interaction

effects in the following sections.

2.2 Rydberg atoms: giants of the atomic world

This section summarizes some of the key concepts about Rydberg atoms. It is

based on previous theses of the group [110, 111] with emphasis on the concepts

used in particular for Ch 5.
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Fig. 2.2: Visualisation of giant size of Rydberg atom and interaction strength
between two Rydberg atoms compared to the ground state atoms
and the ions. (a) Rydberg atoms are atoms with their valence electron
is excited to higher principal quantum number. They posses enor-
mous dipole moment which results in the giant atomic size of n =
69 compared to the ground state atoms by 3 orders of magnitude.
(b) (reproduced from [109]) This plot shows the interaction strength
versus the distance between the two ground state atoms compared
to the excited atoms to the 100s states and the ions. The interaction
between two Rydberg atoms is ≈ 12 orders of magnitude larger than
between the ground state atoms.
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Rydberg atoms are atoms with the valence electron in a high principal quantum

number n [72] as illustrated in figure 2.2a. This valence electron has the

binding energy En = − Ry

n∗2 analogous to the hydrogen atom where n∗ is the

effective principal quantum number which includes the quantum defect due

to the non-Hydrogenic core [72]. Here Ry is the Rydberg constant which is

equal to Z2e4me
16π2ε0h̄2 . Rydberg atoms possess exaggerated properties that scale

with the principal quantum number n. The relevant properties of Rydberg

atoms with the corresponding scaling are given in [72]. Their dipole moment

scales as n2 resulting in the giant size of the Rydberg atom i.e. ∼ 3 orders of

magnitude larger for n = 69 compared to the ground state atoms as visualised

in the figure 2.2a. Correspondingly Rydberg atoms also posses large electric

transition dipole moments that mediate Rydberg-Rydberg interactions. This

can be either of the Van der Waals form (∝ 1
R6 ) or dipole-dipole interactions

(∝ 1
R3 ) which are strong long range interactions compared to the ground state

atoms as shown in figure 2.2b (reproduced from [109]). The details of the origin

of these interactions are discussed in [72]. The radiative lifetime of Rydberg

atoms scales as n3 [72] resulting in a higher lifetime of the atoms in the excited

state compared to that of the ground state atoms.

2.2.1 Two-photon Rydberg excitation

Most commonly atoms can be excited to Rydberg state via a single-photon

excitation or a two photon excitation scheme. In this thesis, our experiments

primarily involve two-photon Rydberg excitation as represented in the figure 2.3.

Here in the two-photon excitation scheme, the ground state is coupled to an

intermediate via a laser field with Rabi coupling Ω1 (shown in red arrow in

the figure 2.3) and from intermediate state to the Rydberg state by a laser field

with Rabi coupling Ω2 (shown in blue arrow in the figure 2.3). The ∆1 and ∆2

are the detunings of the laser fields with respect to the intermediate state and

the Rydberg state respectively. Hence the two-photon detuning is equal to ∆1 +

∆2. The ∆1 is kept relatively large to avoid loss of atoms from the spontaneous

decay from the first excitation step. For a single atom, the dynamics of this

three level system can be obtained from the master equation ˙̂ρ = − i
h̄
[
Ĥ, ρ̂

]
,

where ρ̂ is the density operator [112] in which the diagonal terms describe the

population of the basis states and the off-diagonal terms are the coherences

between the states. For further development of the theoretical framework of

three-level system described in this section, I follow the approach from [113].
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Fig. 2.3: Representation of the two photon excitation scheme Two-photon
Rydberg excitation through an intermediate state (|e〉) in a three-level
system. A laser field with Rabi coupling Ω1 (shown in red arrow)
drives the transition from ground state to the intermediate state and
another laser field with Rabi coupling Ω2 (shown in blue arrow) drives
the transition from the intermediate state to the Rydberg state |r〉 in
the three level system. The ∆1 and ∆2 are the detunings of the laser
fields with respect to the intermediate state and the Rydberg state
respectively. Hence the two-photon detuning is equal to ∆1 + ∆2.

To include the dissipation caused by spontaneous decay and the dephasing due

to the laser noise, we use a quantum master equation in Lindblad form [114]

that represents the time evolution for the three level atomic system as,

˙̂ρ = − i
h̄
[
Ĥ, ρ̂

]
+ L[ρ̂], (2.14)

where L[ρ̂] the Lindblad superoperator [115] that is used to model the decoher-

ence due to spontaneous decay and the dephasing processes.

L[ρ̂] = ∑
i
L(ρ̂, σi) + Ld(ρ̂). (2.15)

where L(ρ̂, σi) = ∑i σiρ̂σ†
i − (σ†

i σiρ̂ + ρ̂σ†
i σi)/2 is the Lindblad superopera-

tor [115] that describes the spontaneous decay for the transitions coupled by

the jump operators σi, σ†
i and Ld is the matrix that describes the dephasing in

the three level system due to the linewidths of the coupling laser fields. The
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Hamiltonian for the three-level system can be expressed as,

Ĥ = (h̄/2)


0 Ω1 0

Ω1 −2∆1 Ω2

0 Ω2 −2(∆1 + ∆2)

 (2.16)

which consists of the Rabi couplings Ω1 and Ω2 between the ground state |g〉
and the excited state |e〉 and the excited state |e〉 with the Rydberg state |r〉
respectively. The ∆1 and ∆2, are the detunings for each laser field as represented

in figure 2.3. The spontaneous decay rate Γ1 from state |e〉 to state |g〉 and

the rate Γ2 from state |r〉 to state |e〉 can be included using the operators

σ1 =
√

Γ1 |g〉 〈e| and σ2 =
√

Γ2 |e〉 〈r|. The Lindbladian superoperator that

describes the spontaneous decay of the three level system can be expressed

as,

L(ρ̂, σ) =


Γ1ρ̂ee −1

2 Γ1ρ̂ge −1
2 Γ2ρ̂gr

−1
2 Γ1ρ̂eg −Γ1ρ̂ee + Γ2ρ̂rr −1

2(Γ1 + Γ2)ρ̂er

−1
2 Γ2ρ̂rg −1

2(Γ1 + Γ2)ρ̂re −Γ2ρ̂rr

 (2.17)

where the ρ̂ij is the ij element of the density matrix ρ̂.

The dephasing matrix can be expressed as,

Ld(ρ̂) =


0 −γ1ρ̂ge −(γ1 + γ2)ρ̂gr

−γ1ρ̂eg 0 −γ2ρ̂er

−(γ1 + γ2)ρ̂rg −γ2ρ̂re 0

 (2.18)

where γ1 and γ2 are linewidths of the coupling laser fields for lower excitation

and upper excitation respectively.

Using equation 2.17 and equation 2.18 and substituting them into equation 2.14,
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we obtain the optical Bloch equations as,

˙̂ρgg = Γ1ρ̂ee +
i
2
(Ω1ρ̂ge −Ω∗1 ρ̂eg).

˙̂ρee = −Γ1ρ̂ee + Γ2ρ̂rr −
i
2
(Ω1ρ̂ge −Ω∗1 ρ̂eg) +

i
2
(Ω2ρ̂er −Ω∗2 ρ̂re).

˙̂ρrr = −Γ2ρ̂rr −
i
2
(Ω2ρ̂er −Ω∗2 ρ̂re).

˙̂ρge = −(i∆1 +
Γ1

2
+ γ1)ρ̂ge −

iΩ∗1
2

(ρ̂ee − ρ̂gg) +
iΩ2

2
ρ̂gr.

˙̂ρer = −(i∆2 +
Γ1 + Γ2

2
+ γ2)ρ̂er −

iΩ∗2
2

(ρ̂rr − ρ̂ee)−
iΩ1

2
ρ̂gr.

˙̂ρgr = −(i(∆1 + ∆2) +
Γ2

2
+ γ1 + γ2)ρ̂gr +

iΩ∗2
2

ρ̂ge −
iΩ∗1

2
ρ̂er.

(2.19)

Exemplary simulations of these three-level optical Bloch equations are shown

in figure 2.4. Population dynamics of ground state ρgg shown in red, of

intermediate state ρee shown in green and of Rydberg state ρrr shown in blue.

The detuning of the lower transition is ∆1 = -300 MHz and the detuning of the

upper transition is ∆2 = 300 MHz. At such a high detuning, the three level

system effectively behaves as a two level system where population oscillates

between ground state and the Rydberg state while hardly populating the

intermediate state. The Rabi frequencies Ω1 = 2π × 13 MHz and Ω2 =

2π× 30 MHz are chosen based on the experimental estimates used in chapter 5.

The spontaneous decay rate from the intermediate state is 2π × 6 MHz which

is for the D2 transition of potassium-39 and the Rydberg state decay rate is

taken as ∼ 10 kHz. The dephasing rates γ1 = 20 kHz and γ2 = 60 kHz are

based on estimates of the laser linewidths. All these parameters are similar to

our actual experimental parameters. The condition of two-photon resonance

is met as ∆1 + ∆2 = 0. As we observe in the figure that the Rabi oscillations

decay at ≈ 25 µs. The effective Rabi coupling of this three level system Ω1Ω2
2∆

is ≈ 2π × 0.63 MHz. Experimental studies of Rydberg excitation including a

search for these Rabi oscillations in microscopic atomic ensembles is presented

in chapter 5.

2.2.2 Rydberg blockade and anti-blockade

Based on pure two-level system, figure 2.5 shows a pair-state basis of two

interacting atoms where the interaction strength scales with respect to the

distance (R) between the atoms as ∝ 1/R6 which is the typical interactions

observed in our experiment as Van der Waals interaction. As a convenient
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Fig. 2.4: Simulation of three level optical Bloch equations describing the
time-evolution of the atomic system Population dynamics of ground
state ρgg shown in red, of intermediate state ρee shown in green and
of Rydberg state ρrr shown in blue. The intermediate state detuning
∆1 = -300 MHz and the detuning with respect to the Rydberg state
∆2 = 300 MHz. At such a high detuning, the three level system effec-
tively behaves as a two level system where population oscillates in
between ground state and the Rydberg state without populating the
intermediate state. Here Ω1 = 2π × 13 MHz and Ω2 = 2π × 30 MHz.
The spontaneous decay rate from the intermediate state is equal to
2π × 6 MHz which is equal to that of the D2 transition of potassium-
39 and that of the Rydberg state is ∼ 10 kHz. The laser linewidths
γ1 = 20 kHz and γ2 = 60 kHz. All these parameters are similar to
our actual experimental parameters. The condition of two-photon
resonance is met as ∆1 + ∆2 = 0. As we observe in the figure that the
Rabi oscillations decay at ≈ 15 µs. The effective Rabi coupling of this
three level system Ω1Ω2

2∆ is ≈ 2π × 0.63 MHz.
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Fig. 2.5: Illustration of Rydberg blockade and anti-blockade effects. When
the laser field is resonant with the Rydberg state (blue), an another
Rydberg excitation is suppressed within the distance of the blockade
radius RB. The grey region represents the blockade area. At off-
resonant laser frequency with respect to the Ryderg transition, an
another Rydberg excitation can happen at a certain distance when the
detuning is matched with energy shift of the Rydberg state.

basis, we use {|gg〉 , |gr〉 , |rg〉 , |rr〉} where the laser field couples the |gg〉 ↔
|gr〉+ |rg〉 and |rr〉 ↔ |gr〉+ |rg〉 transitions.

As visualized in the figure 2.5, when a laser field resonant with the |g〉 ↔
|r〉 transition can excite a first atom (to the |gr〉+ |rg〉 pair state). However

the strong Rydberg-Rydberg interactions shift the |rr〉 state out of resonance,

suppressing the excitation of both atoms within a certain distance which is

known as blockade radius RB [68–71]. The grey region represents the blockade

area. The blockade radius RB can be estimated according to the linewidth (∆ν)

of the excitation laser,

h̄∆ν =
C6

R6
B
⇒ RB =

(
C6

h̄∆ν

)1/6

(2.20)

where C6 is the interaction coefficient [72]. At off-resonant laser frequency

with respect to the Rydberg transition |rr〉, an another Rydberg excitation can

happen at a certain distance when the detuning is matched with the energy

shift of the Rydberg state as shown in the figure 2.5. This is known as anti-

blockade effect or facilitation effect [74, 116]. This effect is being investigated

in a non-structured atomic medium in our group [97] (see figure 6.1 in chapter

6).
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For N atoms within the blockade volume (typically the case in our experiment

with the tweezer trap of atomic ensembles being located within the blockade

radius), the excitation is shared among all the atoms in the blockade region

and system undergoes a collective Rydberg excitation that can be expressed as
1√
N ∑N

j=1
∣∣ggg..rj..g

〉
. The collective Rabi coupling is then equal to

√
NΩ that

indicates the many-body character of the system. For more details of collective

excitation within a microscopic atomic ensemble, see section 4.3 in chapter 4.

2.3 Summary

In the first half of this chapter, I have described the basic principles of optical

dipole traps that are based on the electric dipole interaction of atoms with

far-detuned light. I have considered the atom as a simple oscillator to derive the

main equations for optical dipole interactions that include the dipole potential

and the scattering rate. Based on these principles, we have built a platform

of large arrays of tweezer traps where the ensembles of atoms are confined

within the tweezer traps separated by several micro-meters. In the second half

of this chapter, I describe the basic concepts of Rydberg atoms that help us

introduce the long-range interactions between the tweezer traps that extend

over the distance of several micro-meters. In the next chapter we will use these

concepts to understand the preparation of large arrays of optical dipole traps

created using digital micromirror device (DMD).
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Chapter 3

Experimental setup for producing

large arrays of tweezer traps

This chapter starts with a brief overview of our existing cold-atomic apparatus

with the main components such as the vacuum system, atomic source of

potassium-39 and the laser cooling and trapping referring to the PhD theses of

my colleagues Dr. Stephan Helmrich [110] and Dr. Alda Arias [111] and master

thesis [117] for some of the more technical details. I then focus on the successful

integration of the digital micromirror device (DMD) to our existing cold-atomic

apparatus which is used to create Rydberg ensembles with a particular focus

on the realisation of structured optical fields using DMD. I introduce the DMD

technology and the important characteristics of the large arrays of microtraps

created using the DMD in terms of the three-dimensional shape of each tweezer

trap (compared to the Rydberg blockade radius), trap depth, trap frequency

and the scattering rate. The objectives that we address through the realisation

of the tweezer platform include having the trap waist of the tweezer of ≈ 1

µm, trap depth of ≈ 1 mK, trap frequency of ≈ 100 kHz, fast switching rate,

low noise over the trap potential to avoid atom heating and decoherence. The

result is a versatile and controllable experimental platform to study quantum

many body physics, to perform experiments related to quantum simulation

and quantum computation.
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3.1 Requirements for ultracold atomic experiments

For studying quantum dynamics in an atomic system, it is required to maintain

coherence conditions by having a control over the atomic motion and advanced

techniques, to manipulate, excite and to read-out the state of the particles.

Following are four main criteria of an ultracold-atomic platform:

• Well isolated atomic system from the environment.

• Control over internal electronic states of atoms and their external degrees

of freedom such as kinetic energy.

• Precise spatially resolved detection of atoms along with the discrimination

between their different internal states.

• For making effective use of Rydberg interactions, the laser for Rydberg

excitation should be powerful (∼ 500 mW), tunable and with narrow

linewidth (< ∼ 60 kHz).

These criteria are the key elements required for using ultracold, neutral atoms

as a platform for quantum technology. Our focus in this direction is to use

multi-site geometries created by arrays of optical tweezers to trap ensembles

of ultra-cold atoms. This is largely because of the easy scalability of the

tweezer traps, long coherence time, single site addressability and controllable

interactions using highly excited Rydberg states. These requirements are

potentially met by setups which are based on programmable optical elements

such as spatial light modulators (SLMs) [37], microlens array [35], accousto-

optic deflectors (AOD) [55] and digital micromirror device (DMD) [118] for

trapping, guiding, and manipulating neutral atoms. In our experimental set-up,

we make use of DMD to generate large arrays of microtraps.

3.2 The ultracold atomic apparatus

This section gives an overview of our existing cold-atomic apparatus. The

experiments in this thesis start with an ultracold atomic sample of potassium

atoms trapped in a pancake shaped optical dipole trap. The typical temperature

achieved is ≈ 20µK, with peak densities of ≈ 2× 1010cm−3. This section is an

introduction of the experimental platform and the presentation of the cooling

and trapping techniques.
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3.2.1 The vacuum system

To satisfy the requirement of good isolation from the environment, a vacuum

chamber1 has been used. This leads to the ultra high vacuum with quite low

pressures of ∼ 10−10 mbar to reduce collisions between the trapped atoms and

the background particles. Otherwise these collisions cause losses that could

dominate over the actual system dynamics. Two vacuum pumps are necessary

 Ion pump
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Fig. 3.1: Overview of the experimental apparatus. (Image reproduced
from [111]) The main parts in the experimental setup are represented
in here. The potassium dispenser-atom source (left) is placed inside a
glass cell, and the surrounded optics constitute the 2D MOT (see zoom
in) that creates a stream of atoms cold in the transversal directions
that gets pushed towards the main chamber (center in the figure). The
atoms go through a differential tube into the main chamber where they
get further cooled and trapped. Inside the chamber a high resolution
imaging lens, an MCP Rydberg ion detector and a radio-frequency
antenna are placed for manipulation and state control. To maintain the
high vacuum in the chamber, we have the ion pump and the sublima-
tion pump on the right to the main vacuum chamber. Image adapted
from [111]

(see figure 3.1) to achieve and maintain the low pressure inside the vacuum

1Kimball Physics. 8 Multi-Cf Spherical Square MCF800-SphSq-G2E4C4A16.
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chamber. The first one is a 125 l/s ion pump2 that ionizes the gas inside

the chamber and using a high electrical potential, it attracts the ions towards

the pump. The second is a titanium-sublimation pump3 which sublimates a

titanium filament using high current. The titanium gets attached to the inner

surface of the walls of the chamber and because of its high reactivity, any

particle touching the wall reacts with the titanium forming a solid component

reducing the pressure inside the chamber.

The combination of the vacuum system made of non-magnetic stainless steel

with viewports enables optical access for the different laser beams for cooling,

trapping and Rydberg excitation. There are ten main viewports to the vacuum

chamber that are located in the horizontal plane and the vertical axis. They are

made of fused silica, vacuum sealed and anti-reflection coated based on the

laser wavelength and the power that enter the chamber. These viewports allow

sufficient optical access with high flexibility in the number of beams and their

wavelength involved.

Three more elements have been included inside the vacuum chamber (see

zoom in, figure 3.1). The first one is an aspheric lens4 designed for high optical

resolution imaging with a focal length of 32 mm, numerical aperture of 0.62

and a coating 5 to prevent charge accumulation on the surface of the lens

which could interfere with any measurement due to the high sensitivity of

the Rydberg atoms to electric fields (see chapter 2). The second one is a radio

frequency antenna, which is mde of a coil wrapped around the lens holder of

an aspheric lens situated inside the vacuum chamber as mentioned earlier. The

third element is a detector for Rydberg atoms which is called as a micro-channel

plate (MCP) which consists of a structure of split rings of electrodes which are

used to compensate stray electric fields, to generate homogeneous electric field

and the create high ionising electric fields for ionisation of the Rydberg atoms

and to accelerate those ions towards the detector. Moreover two deflection

rings are used to control the trajectory of the ions travelling towards the MCP.

A combination of all these components allows a better control of the atoms as

further explained in detail in the following sections.

2Agilent technologies. VacIon Plus 150 Ion Pump StarCell
3Agilent technologies. TSP Cartridge Filament Source
4Asphericon A45-32 HPX
5ITO (Indium tin oxide) coating
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3.2.2 Laser cooling and trapping of 39K

A necessary criteria for our ultracold atom platform is the control over the

thermal motion and spatial confinement of atoms. In our group, we work with

potassium due to its stable bosonic and fermionic isotopes, i.e. 39K (bosonic),
40K (fermionic) and 41K (bosonic). This is important provided that the quantum

dynamics is governed either by fermionic or bosonic statistics [119]. Along with

Rydberg excitations, a competition between certain ground-state statistics and

the long range interactions can give rise to new phases of quantum matter [76–

79].

Energy level scheme of 39K

Throughout this thesis, only 39K has been used. Figure 3.2 shows energy level

scheme for the valence shell electron of 39K, including the ground state (4S1/2)

and the first two excited states (4P1/2 and 4P3/2). The transition between the

ground state 4S1/2 and the first excited state 4P1/2 is called the D1 transition

and the transition between the ground state 4S1/2 and the second excited state

4P3/2 is called the D2 transition. To address the D1 and D2 transitions, we have

two different diode lasers.

Laser system for cooling and trapping

We utilise the D1 and D2 transitions (see figure 3.2) for the preliminary stages

of cooling and trapping. To address these transitions, two diode lasers6

at the respective wavelengths (767 nm and 770 nm) are used. For locking

the laser to the |4s1/2, F = 2〉 → |4p3/2, F′ = 3〉 (D2) and from crossover be-

tween the |4s1/2, F = 2〉 and |4s1/2, F = 1〉 → |4p1/2, F′ = 3〉 (D1) transition of
39K [122], we obtain an error signal using modulation transfer spectroscopy

(MTS) [123, 124]. The laser light is coupled to a fiber and then enters into

the first amplification stage based on a home built tapered amplifier [125].

The amplification of only one of the wavelengths is allowed at a time via an

acuosto-optical modulator. As a result, the home-built amplifier get seeded

with only one of the wavelengths at a time. This amplifies the seed light

from 10 mW to 500 mW.This amplified light is the redistributed into three

further amplification stages viz. 3D cooler, 2D cooler and another branch for

repumping. (see figure 3.3). As shown in the figure, each light beam passes

6Toptica. Tunable diode laser, DL pro
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Fig. 3.2: Level scheme of potassium 39 and laser beam frequencies for the
MOT and for the gray molasses. (Image reproduced from [111])
Two main transitions D1 and D2 transitions in 39K respectively:
|4S1/2〉 → |4P1/2〉 and |4S1/2〉 → |4P3/2〉 are represented with their
corresponding hyperfine splitting. The blue arrows depict the cool-
ing and repumping beam for the D1 transition while the red arrows
represent the cooling and repumping beam frequencies for the D2
transition. The green arrows show the two frequencies (for the D1 and
D2) that are used for locking the two lasers to the spectroscopy signal.
Figure adapted from [120, 121]
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through an acousto-optical modulator (AOM) which is aligned in a double

pass configuration to shift the frequency of light to address the corresponding

transitions (see schematic in figure 3.3). The ratio of the powers of cooler

and repumper laser light is optimised using waveplates and beam splitters as

described in [126]. The resultant light is then coupled to fibers that are aligned

along the three axes of the vacuum chamber to cool and trap as explained in the

following sections. The current setup is flexible for changing the frequencies

by re-adjusting the diffraction order of some of the AOMs that are aligned in

double pass configuration as described in [126].

3D MOT

2D MOT

2D MOT

3D MOT

Abs. Img.

Pusher

D2 laser

D1 laser

seed
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AOM

DP
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SP AOM
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MTS

MTS

AOM

D1 laser

spectr.

D2 laser

spectr.

D1/D2 switching

stage

3D Cooler branch

2D Cooler

branch

Repumper branch

AOM

DP

Fig. 3.3: A compact and versatile laser system for cooling and trapping. A
schematic of the beam distribution of the laser system and the power
amplification with all the necessary components such as tapered am-
plifiers, diode lasers and accousto-optical modulators for cooling and
trapping in magneto optical trap (MOT). Image adapted from [121].

Atomic source

The potassium atomic source is a dispenser 7 fixed in a glass cell (shown in

figure 3.1). It is heated by a DC current of ≈ 2 A, increasing the vapor pressure

of atomic potassium inside the glass cell from the dispenser. Cooling of these

atoms within the glass cell has been done using a two-dimensional magneto

optical trap (2D MOT) and then pushed into the vacuum chamber to be trapped

in a 3D MOT.

7Alvatec AS-3-K-100-F
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Magneto-Optical Trap

Mechanism of the magneto optical trap (MOT) [127] utilises the velocity de-

pendent absorption of photons by atoms. The spontaneous emission of these

photons in turn reduces the kinetic energy of atoms. A combination of a

magnetic field gradient with red-detuned circularly polarised light is used to

confine the atoms spatially. The atoms that try to move out of the trap, the

magnetic field gradient creates a Zeeman shift in the atomic states making

them undergo a cooling transition on resonance which creates a scattering

force that pushes the atoms towards the center of the MOT where the magnetic

field value is zero. For this process, two different transitions are used: one

is called as repumper i. e. |4S1/2, F = 1〉 → |4P3/2, F = 2〉 and the other is

cooler i. e. |4S1/2, F = 2〉 → |4P3/2, F = 3〉 (see figure 3.2). This is to prevent

the accumulation of atoms in one of the hyperfine ground states.

As mentioned in the previous section, the 2D-MOT consists of a glass cell

where atoms are cooled down in transverse direction by four laser beams in

each direction i.e. eight retro-reflected beams [128]. These relatively cool atoms

are then directed into the 3D-MOT. To push the atoms towards the center of the

vacuum chamber an additional beam resonant with cooling transition has been

used which is called the pusher in figure 3.1. Later in the vacuum chamber,

the atoms are exposed to six counter-propagating beams (that are obtained

from the combination of both the repumper and cooler light using a homebuilt

structure [126]). Additionally, a magnetic quadrupole fields, generated by a

pair of coils in an anti-helmholtz configuration, is used to control the spatial

confinement of the atoms. The temperature of atomic cloud at this stage is

reduced to a few mk. A large spatial overlap between the MOT and the dipole

trap is necessary to enhance the atom loading into the dipole trap. But the

MOT is a few mm in size to enable fast, efficient loading from the 2D MOT.

Unfortunately the optical dipole trap only has a size of hundreds of µm which

makes the spatial overlap, and therefore transfer between the 3D MOT and

the dipole trap very poor. Hence, an intermediate step has been added to

reduce the MOT size by reducing the spatial distribution of atoms inside the

MOT for their efficient loading into the dipole trap. This is done by ramping

up the gradient of magnetic field making the spatial confinement of atoms

inside the MOT tighter. Concurrently, the detunings of the cooler beam and

the repumper beam have been adapted in order to compensate the additional
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splitting of energy levels due to the increased magnetic field. This step is called

the compressed MOT. Due to the finite trap depth of the dipole trap ≈ 50 µk,

atoms coming from the compressed MOT need to be at lower temperatures in

order to not leave the dipole trap. Therefore, we have introduced an additional

cooling technique called the gray molasses in order to further cool the atoms

which is described in section below.

Gray molasses

In this technique [129], the transitions are driven from ground states to excited

states using blue detuned laser light where one of the ground states is dark

meaning it gets decoupled from the light. For this, the total angular momentum

of the two coupled hyperfine states should be such that F ≤ F′, where ′ denotes

the excited state. The light field which addresses the transition between these

hyperfine states should be circularly polarised and counter-propagating in

order to have the bright states experiencing an oscillatory potential [130]. When

an atom moves through this oscillatory potential, it increases the probability

of being excited by climbing up the potential hill and losing its kinetic energy.

Later, it decays either to the dark state or to one of the bright states to undergo

the same cycle. This technique is also called the Sisyphus cooling [130]. Instead

of getting accumulated in the dark state, the atoms can return to the oscillating

potentials of bright states via motional coupling. A detailed development of

this technique for 39K is given in [131, 132]. The D1 transition has been used

due to larger hyperfine splitting as compared to the D2 to be able to finely

resolve the addressed states (see figure 3.2). The corresponding blue-detuned

repumper and cooler transitions that have been involved to drive each of the

hyperfine ground states are:
∣∣F = 1, m f

〉
→
∣∣F′ = 2, m f

〉
(repumper light) and∣∣F = 2, m f

〉
→
∣∣F′ = 2, m f

〉
(cooler light), where: F ≤ F′. With this process, we

are able to further cool down the MOT atomic cloud to tens of µK. This allows

us to maximise the loading of atoms into the dipole trap.

3.2.3 Optical dipole trap

As the trapping potential is directly proportional to the the laser intensity and

inversely proportional to the laser detuning [107], it is necessary to compensate

a large detuning (to reduce off-resonant scattering) with a high intensity laser.

More details on this technique of optical dipole trap are given in chapter
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Fig. 3.4: Absorption image of 39K in a pancake-shaped optical dipole trap:
Atoms are loaded into the pancake-shaped optical dipole trap from
the compressed MOT during the cooling stage through gray molasses.
(a) High-resolution absorption image of the atom cloud trapped in
the pancake shaped optical dipole trap trap. The image is taken from
the top along the z axis. (b) Side absorption image of the atom cloud
trapped in the pancake shaped optical dipole trap at the end of a time
of flight. The image is taken along the y axis.

2. In our experiments we use a Mephisto MOPA laser, that includes four

amplification stages, having an Nd:YAG crystal that works as a resonator with

the end faces as mirrors and a stable low-power single-frequency laser diode.

The maximum output power is ≈ 55 W and a wavelength of 1064 nm. We

derive a part of the light from this 1064 nm laser system to produce a pancake

shaped optical dipole trap to confine the atoms in the vertical direction in the

focal plane. The optical setup of this pancake trap includes two cylindrical

lenses to stretch the beam in z and x respectively and the two spherical lenses

to collimate and focus this beam on to the atoms in the vacuum chamber. The

Gaussian widths extracted of the atomic cloud from this pancake trap are σx =

29 µm and σy = 75 µm (details in [133, 134]). In this trap we perform the main

experiments presented in the framework of this thesis. Figure 3.4 shows an

absorption image of the atoms trapped in the optical dipole trap. To load the

atoms into this trap, we use the gray molasses cooling technique to cool and

load the atoms simultaneously. For the optimized atom loading, the detunings

of cooler as well as repumper beams are scanned and we measure the optical

density of the atomic cloud after the expansion for atomic cloud with trap-off

for few ms. Detailed characterization of the gray molasses in our system is

described in the master thesis [133, 134]. The final outcome is an atomic cloud

with ∼ 105 atoms, where atomic density is ≈ 2 × 105 cm−3 and at typical

temperatures of ≈ 20 µK.
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3.3 Digital micromirror Device

From this section onwards, I discuss in detail the integration of the DMD into

our existing cold-atomic apparatus.

Interface board

Array of micro-mirrors

Mirror board

Fig. 3.5: Schematic of DMD Digital micromirror device where all of the 1024
× 768 mirrors are situated on a rectangular mirror board of about 1.5
cm2 along with the zoomed-in part of the mirror array showing their
tilt of ±12◦ across the diagonal axis of the micromirror referring to the
ON/OFF state of the device (Image adapted from [135, 136])

3.3.1 Why we use a DMD ?

Basically, both SLMs and DMDs can create arbitrary traps and suitable for our

application. However, DMD does not have any flickering problem which is

helpful to avoid any noise on the created traps. DMD is free from phase errors

per pixel and cross-talking between pixels. A DMD is static [136], once we set

binary pattern it’s fixed and we know exactly what pattern it is. Second, a

DMD can switch at high rate, switching rate: DMD ≈ 20kHz [136].

The advantage of an SLM is the power efficiency if both an SLM and a DMD

are used in Fourier frame. In such configuration, power efficiency of DMD

is only a few percent. But that of an SLM can be > 90%. That’s why in

our setup we planned to put DMD in image plane. This configuration has

larger power efficiency (it depends on illumination ratio) and straightforward

implementation. The imaged pattern is exactly printed on DMD. Of course we

have to pay the price of no phase control and of no correction for aberration.

The tweezer platform that we have realized using DMD addresses following

advantages:
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• High scalability: > 450 microtrap sites

• Flexible control over spatial trap geometry in 2D

• Arbitrary tweezer trap separation as opposed to optical lattices which

require interference effects

• Confinement of each trap within a Rydberg blockade radius.

In the previous chapter (section 2.1), I have described the mechanism to create a

pancake-shaped optical dipole trap by exploiting the electric dipole interaction

with far-detuned light. As DMD plays a crucial role in creating various exotic

geometries of microtrap arrays, it is important to understand the functionality

of DMD.

3.3.2 Working principles of DMD

As described in detail in [136], the DMD8 consists of an array of about a million

individual micromirrors shown in figure 3.5. The area of each micromirror

is about 12.6 × 12.6 µm2. Each micromirror is mounted on a yoke which is

connected to a torsion hinge, see figure 3.5. DMD micromirrors have two

tilt states i.e. the tilt of ±12◦ across the diagonal axis of the micromirror as

shown in figure 3.5. These two angles indicate an ON and OFF configuration.

Therefore the DMD is a binary device. The micromirrors reflect laser light

in either of the two certain beam paths depending on the angle in which the

mirrors are tilted. The position of the mirror is set through the two electrodes

which are located under a diagonal of the micromirror. A dual CMOS memory

is situated under each micromirror that complementorily defines the states

of the two electrodes. As the memory gets loaded in the form of the state

bits, one of the 2 electrodes gets assigned with bit 1 and another one with bit

0. Each micromirror and each yoke share a common potential that keeps the

mirrors in its final position with the help of the electrodes, see [136, 137] for

more technical details.

Once a mirror is set into its position, it will stay there until a new position is

set. Depending on the model of the device, the maximum rate of switching for

the micromirrors ranges from about 4 kHz to 32 kHz (in our case, it is ≈ 23

8Vialux V-7001 (micromirror array: 1024 × 768, micromirror pitch: 13.68 µm, Active mirror-
array area: 14 × 10.5 mm2, Damage threshold: 25 W/cm2, Fill factor: 92 %)
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kHz [135]). Depending on the model of the device, the maximum switching

rate for the micromirrors ranges from 4 kHz to 32 kHz. The rectangular mirror

board on which all the micromirros are placed has an area of ≈ 1.5 cm² that

is termed as the ”active area”. To establish a communication between the

mirror board and a computer, an another board called the ”interface board”

is necessary. It consists of the required firmware and hardware with field

programmable gate array (FPGA) that controls the behaviour of the entire

device [136]. As the computer uploades pictures to DMD, it is this FPGA

that receives them and translates the pictures into the required states of the

micromirrors to set the micromirrors according to the generated states [136].

Generally, the interface board allows to save the pictures directly on the board

itself using an on-board random access memory (RAM) [136]. This is necessary

if the pictures are required to be displayed with a frame rate larger than allowed

by the connection between the interface board and the computer [136].

Additionally an interface program comes with the interface board. This pro-

gram allows a simple communication of the interface board with the computer

through a USB connection. Using appropriate functions on the computer, the

uploading of the pictures, their storage and the display of the sequence can

be easily done [136]. While installing the DMD, one has to take care that

each micromirror tilts around it’s diagonal axis when switched ON as shown

in figure 3.6. The incident laser light gets reflected out of the plane that is

horizontal to the optical table around a rotational axis that is at an angle of

45◦ from the vertical. Hence, the DMD should be titlted by 45◦ such that

the rotational axis of the micromirrors gets aligned in the vertical direction.

This makes the micromirror to be flipped along the vertical rotational axis

to keep the reflcted beam in the same horizontal plane as that of the optical

table. Hence, we mount DMD in 45◦ plane in order to keep the principal beam

parallel to the plane of our optical table. As the DMD chip is composed of

many tiny mirrors that are placed adjacent to each other, the entire mirror

area behaves as a two-dimensional blazed grating [136] as shown in figure 3.6.

This makes the DMD to diffract an incident laser light into several diffraction

orders [136] as shown in figure 3.6. We block the other orders so they don’t

affect the experiment. We can find out the main order of diffraction ’m’ that

carries large amount of intensity for the provided geometry of blaze grating
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Fig. 3.6: DMD as a blazed grating The DMD mirrors constitute a blazed grat-
ing [136, 137]. Hence, an incident beam gets diffracted in different
orders. Depending on the mirror spacing d, the mirror tilt angle and
the wavelength of the laser light, a main order carries most of the
reflected intensity and the other orders carry less. These mirrors tilt
about its diagonal axis. The DMD should be mounted at 45◦ to keep
the reflected laser beams in the same horizontal plane as that of the
optical table.

under the blazing condition [136, 138],

2d(sin θB) = mλ. (3.1)

where d is the spacing between the mirrors, λ is the wavelength of the laser

and θB is the angle of tilt of the mirrors. only this main order m is used, to

perform spatial light modulation. For a given m, we can follow the grating

equation from [136, 138],

d(sin θin + sin θout) = mλ. (3.2)

This relates the angle of the incident laser light θin in with the angle of the

diffracted lightθout for the given m. Imposing the condition that the main

diffracted order travels perpendicular to the area of the mirror. Hence, keeping

θout = 0◦, we calculate the necessary θin in at which we make the beam incident

on the DMD. The integration of DMD in the main experimental setup as a

crucial component of our high resolution imaging system that focuses the DMD

pattern on to the atomic plane has been discussed in the next section.
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3.4 Integration of DMD in the high resolution

imaging system

3.4.1 Imaging configurations of DMD

Fig. 3.7: Imaging configurations of DMD (a) Fourier plane of the DMD: The
beam diffracted from the DMD is focussed in the Fourier plane of the
lens shown. (b) Lens 1 focuses the incoming beam into a Fourier plane
as above and then the lens 2 does the inverse-Fourier transformation
of this beam to image the plane of the DMD pixels onto the plane of
the image, where ultracold atoms are placed in the experiment [136].

There are mainly two configurations for integrating DMD in the high resolution

imaging setup. One is the Fourier configuration as shown in figure 3.7. In this

configuration, the light refracted from the DMD surface is Fourier transformed

to the focal plane through a lens. The connection between the diffracted

beam at the DMD mirror plane and the Fourier plane is given by the Fourier

transformation, which is defined by a single lens.

The second configuration is to put DMD plane onto the so-called imaging

plane. By this way, a direct mapping of the DMD plane onto the imaging plane

is possible through a high-numerical objective lens as shown in figure 3.7. One

advantage for imaging platform configuration is that if the effective pixel size

of the DMD is much lower than the optical resolution, then the trap intensity

can be adjusted accordingly. Another advantage is that it is possible to create

infinitely sharp potentials i.e. box potential [136, 137]. Therefore, in our case,

we chose the imaging plane configuration.
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3.4.2 Estimating the resolution of the imaging system

Our main experimental set-up consists of a high-resolution imaging system

as shown in figure 3.8. It is composed of DMD + two lenses of focal length

100 mm each forming a telescope with magnification = 1, an aspheric lens

(also termed as “vacuum lens” in the figure 3.1) located inside the vacuum

chamber with numerical aperture (NA) equal to 0.6 and focal length of 32

mm in combination with another lens of 1500 mm focal length (placed on a

translation stage) to create an effective magnification of ≈ 53. This means the

DMD pattern will be de-magnified by roughly 53 times to project on to the

atomic cloud trapped in optical dipole trap. The effective DMD pixel size on

the atom plane is 13.12/53 = 245 nm where 13.12 µm is a size of the DMD

micromirror8, and is obtained by multiplying DMD micromirror pitch8 which

is 13.68 µm with the fill factor of the DMD8 which is 0.92. The resolution of

this imaging system is set by the aspheric lens situated in the vacuum chamber

(see figure 3.8) and can be estimated by the Rayleigh criteria as follows:

Resolution =
0.61λ

(NA)
. (3.3)

Here λ = 780 nm, therefore the resolution is 0.79 µm. Due to this setup we

cannot resolve a difference below 16 pixels of DMD in a square geometry, and

thus this is the minimum we use. This implies that an area of 16 pixels of DMD

is focused down to 0.79 µm2 onto the atomic plane. An absorption shadow

of the atoms from the tweezer traps is imaged onto a charge-coupled-device

camera9 using the same optics as used for the DMD light patterns. A dichroic

mirror10 is placed in front of the camera to differentiate between the 780 nm

trap light and the 767 nm absorption imaging light.

The 780 nm laser system

As shown in figure 3.8, the light used to create the microtraps is obtained from

the ECDL laser11 at 780 nm with the output power of 50 mW. The power of

the laser output is magnified to 2 W using a tapered amplifier12. The output

light from the tapered amplifier is then fibre-coupled to make it incident on to

the DMD plane. The output power of the light from the fibre is 300 mW. In

9Andor iXon Ultra 897 UCS-EXF
10Edmund optics: FILTER 769NM X 41NM BP 93T 25.0D
11Toptica DL pro
12Eagleyard: ETP-TPA-0780-03000-4006-CMT0
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principle, the wavelength should be far-detuned from the resonant wavelength

of the D2 atomic transition, for 39K is 767 nm. However, we are limited by

the coating of the aspheric lens. An AOM13 is used for fast switching of this

trap-light.

Image characterisation set-up

This is a test-setup (shown in figure 3.8) to characterise the tweezer trap patterns

produced using DMD. Using a flip mirror after the lens of focal length 1500

mm, the trap beam of 780 nm is re-directed to an another aspheric lens (focal

length of 32 mm) to de-magnify the DMD pattern by 53 times the original size.

The resulting image is then observed on a beam profiler15 using a microscope

objective14.

3.4.3 The pattern creator for DMD

To create the patterns to feed into the DMD, I have designed a Python based

user interface to which we call “pattern generator”. This interface includes a

two dimensional array of zeros of the dimension 1024 × 768 that is the same

as that of the array of the micromirrors of the DMD. Then this interface takes

in an input of the number of pixels and the coordinates of the pixels inside a

cluster of the DMD pixels which we want to switch ON onto the DMD plane.

For different lattice geometries, the interface generates the coordinates of the

lattice sites by itself by following the given lattice vectors for the given lattice

periods, lattice dimensions and the number of pixels at each lattice sites. The

interface then replaces the zeros from the two-dimensional array by ones at

the given coordinates. This final two-dimensional array is then converted into

a portable network graphics (.png) format where the black part of the image

represents zeros of the array i.e. OFF - state of the DMD pixels and white color

represents ones of the array i.e. the ON - state of the DMD pixels from which

the light gets diffracted creating the desired pattern. These generated patterns

are then fed to the DMD. Some examples of the created patterns are visualized

in figure 3.9.

13AOMO 3110-120 Gooch and Housego
14Objective LD A-Plan 40x/0,55 Ph2 M27.
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Fig. 3.8: Experimental setup showing the integration of DMD in the high
resolution imaging system: The experimental setup shown above
includes the imaging system for creating tweezer arrays consisting
of Image transfer optics: DMD + two lenses of focal length 100 mm
each forming a telescope with magnification = 1 then a lens with focal
length of 1500 mm (situated on a translation stage) + an aspheric
lens of focal length 32 mm inside the vacuum chamber (as shown in
Science chamber) has an effective magnification of ≈ 53. Hence, at
the focus of this high resolution imaging system is a DMD pattern that
is de-magnified by 53 times to project on to the atomic cloud trapped
in optical dipole trap. An absorption shadow of the atoms from the
tweezer traps is imaged onto a charge-coupled-device camera9 using
the same optics as for the DMD light patterns. The 780 nm laser
system: The light used to create the microtraps is obtained from the
ECDL laser at 780 nm and the power of the laser output is magnified
to ≈ 2 W using a tapered amplifier12. An AOM is used for fast
switching of this trap-light. Image characterisation: This is a test-
setup to characterise the tweezer trap patterns produced using DMD.
Using a flip mirror after the lens of focal length 1500 mm, the trap
beam of 780 nm is re-directed to an another aspheric lens (focal length
of 32 mm) to de-magnify the DMD patterns by 53 times. The resulting
image is then observed on the beam profiler15 using a microscope
objective14.
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(a) (b) (c)

Fig. 3.9: Patterns of the format portable network graphics (.png) generated
by a Python based user interface to feed to the DMD (a) Triangular
lattice of dimension 20 ×20. (b) 226 site Penrose quasicrystal lattice.
(c) 40 site ring structure. For all the three patterns, the pixels at each
site follows an inverted Gaussian profile with Amin = 22, 25, 30 as
described in the subsection 3.4.5.

3.4.4 Characterisation of an individual intensity pattern

created by DMD

To observe the variation of Gaussian width of the intensity profiles generated

by DMD, we vary the number of pixels in the microtrap. We start with the

DMD cluster of 10 pixels. This means, we project a pattern of cluster size 10

pixels created using DMD on to the beam profiler15. We do the same process

as above for different cluster sizes starting from 20 pixels to 100 pixels. We

fit the resulting profiles with a Gaussian distribution and extract the width.

Figure 3.10c displays a plot of the fitted Gaussian widths for different pixel

cluster sizes. From this we can see that the smallest size of the cloud that we

could achieve ≈ 0.8 µm and that is ≈ 16 pixels in the DMD plane as illustrated

in figure 3.10. This data imply that using more pixels will give us more power

at the edge of the Gaussian distribution but will degrade the resolution.

3.4.5 DMD pattern adaptation

The resolution of the imaging system puts a limit on the minimum number

of pixels of DMD below which we cannot differentiate and that limit is 16

pixels. This provides us 16 adjustable intensity levels below resolution limit.

Given that the effective pixel size of the DMD is much smaller than the optical

resolution of the imaging system (see subsection 3.4.2), it allows us to generate

uniformity in the trap-depths across large arrays of microtraps. This is done

15LBP2-HR-VIS2: array 1928*1448, pixel size 3.69 µm, sensor size 7.1*5.3 mm, resolution 37 µm
∼ 10 pixels
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Fig. 3.10: Point spread function and intensity profile width of the DMD clus-
ters with different pixels (a) The point spread function of the single
pixel on DMD showing the optical resolution of ≈ 0.8 µm. (b) A
Gaussian fit to the crossection of the point spread function. (c) Gaus-
sian width of the intensity profiles created using the DMD by varying
the number of pixels in the DMD cluster

Fig. 3.11: DMD pattern adaptation. To maintain the uniformity in the trap
depths of microtraps, we compensate for the Gaussian intensity
profile of the microtrap laser. In the DMD plane, the number of
pixels are adjusted in each DMD cluster Am based on its distance(rm)
from the cluster at the center of the illumination Amin following
the inverted Gaussian dependence Am = Amin exp

(
gr2

m
)
. The figure

depicts a square microtrap array of 5 × 5 with Amin = 20 pixels and
Am = 60 pixels with period = 4 µm. The parameter ’g’ is manually
adapted in the experiment to get equal optical depth.
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(a) (b) 6 µm

Fig. 3.12: Intensity profiles with and without Gaussian compensation. (a) An
intensity profile observed on a beam profiler 15 created by DMD
without using any Gaussian compensation i.e. parameter ’g’ = 0.
This image shows a 20 × 20 square lattice with lattice period of
5 µm. (b) An intensity profile of 22 × 22 square lattice created by
DMD using the Gaussian compensation with Amin = 20 pixels and
the parameter ’g’ = 1.2 and the lattice period of 3 µm.

by compensating the Gaussian intensity distribution of the microtrap light.

To do this, we adjust the number of pixels in each DMD cluster based on its

distance from the center of the illumination following an inverted Gaussian

dependence Am = Amin exp
(

gr2
m
)

as shown in figure 3.11. Some examples

of the intensity profiles with and without using Gaussian compensation are

shown in figure 3.12. The effects of this pattern adaptation on the uniformity

of the trap depths are discussed in terms of the uniformity in loading of atoms

across the large array of the tweezer traps in chapter 4 in section 4.2.

Intensity pattern gallery

When we feed an image file (.png) to DMD using the user interface (see

subsection 3.4.3), the corresponding intensity patterns get generated by DMD

after the light diffracts from the DMD surface. We observe this pattern using the

beam profiler15. Some examples of the intensity patterns which are generated

by DMD are shown in figure 3.13. The test-setup (shown in figure 3.8 in the

box “image characterisation”) has been used to observe these intensity patterns.

3.5 Estimation of microtrap parameters

Here we estimate the trap depth, the trap frequency and the scattering rate of

the potassium-39 atoms in their ground state 4S1/2 as a function of the trap

laser wavelength for different trap laser powers and waists to determine what
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Fig. 3.13: Intensity patterns produced by DMD. From left to right: Triangular
lattice (5 × 5), square lattice (6 × 6), the structure of light harvesting
complex, Hexagonal lattice (6 × 6).

laser wavelengths and corresponding powers we need for microtraps. We want

to maximize the trap frequency as it provides the better confinement of the

atoms within the trap [107] and we want to lower the scattering rate for longer

lifetime of atoms in the trap [107] (see figure 4.4d from chapter 4 for the lifetime

measurements of the atoms in the microtrap). I assume a Gaussian intensity

profile of the trap laser with the radial waist ω and power P.

In principle, as the scattering rate (Rscat) scales as Rscat = Γ/(h̄∆)×trap-depth [107],

it is beneficial to increase the detuning of the trapping laser from the 4S1/2 → 4P3/2

transition of wavelength 767 nm and compensate the reduced trap depth by

increasing the power of the trapping laser. However, we are limited by the

aspheric objective lens on how much we can detune from 767 nm without

losing too much optical resolution where the limit for the aspheric lens is set at

780 nm above which the resolution is degraded [139]. The estimation is plotted
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Fig. 3.14: Estimation of microtrap parameters. We make the choice of trap-
wavelength of 780 nm to generate microtraps. From figure (a), we
can see that the trap depth at 780 nm is ≈ 1 mK and trap-frequency
of around 100 kHz, (figure (b)) which belongs to the beam waist in
between 1-2 µm as the optical resolution is ≈ 1 µm (see figure 3.10)
and power of around 1-2 mW as power efficiency of DMD is only
a few percent of the incident power of the laser light [135] but a
relatively higher photon scattering rate (figure (c)).
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in figure 3.14. According to these plots, we choose 780 nm light to create

microtrap. Because 780 nm is closer to the D2 resonance, so we get stronger

atom-light interaction. Then for same amount of power we get deeper trap (to

trap more atoms). The trap depth at 780 nm is ≈ 1 mK and trap-frequency

of around 100 kHz which belongs to the beam waist in between 1-2 µm as

the optical resolution is ≈ 1 µm (see figure 3.10) and power of around 1-2

mW as the power efficiency of DMD is only a few percent of the incident

power of the laser light [135], but a relatively larger photon scattering rate (see

figure 3.14c).

3.6 Summary

Following a brief overview of the vacuum apparatus, laser cooling and trapping

techniques, I have described the integration of the DMD in the high resolution

imaging system emphasizing three aspects: overview of the basic DMD tech-

nology, optical setup, and generation and characterisation of useful trapping

configurations With the DMD technology, we are able to create hundreds of

programmable arrays of optical tweezer traps. The resolution that we achieve

is ≈ 1 µm that corresponds to approximately 4 pixels on the DMD plane. To

maintain the uniformity of trap depths across the large arrays of microtraps,

DMD patterns are adapted following an inverted Gaussian expression to com-

pensate the Gaussian profile of the DMD illumination beam. The estimated

trap depth is ≈ 1 mK, trap frequency is ≈ 100 kHz.

With this technology for creating large arrays of microscopic tweezer traps, the

next chapter gives the full description of our novel approach of loading of the

atoms into the microtraps created by the DMD by exploiting elastic collisions

and the step-by-step characterisation of the loading process.
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Chapter 4

Characterisation of hundreds of

microscopic atomic ensembles

The work presented and reproduced in this chapter has been published in the

following article:

Preparation of hundreds of microscopic atomic ensembles in optical tweezer

arrays

Y. Wang, S. Shevate, T. M. Wintermantel, M. Morgado, G. Lochead and S.

Whitlock

npj Quantum inf 6, 54 (2020).

In this chapter, I describe a novel approach to prepare large and uniformly

filled arrays of hundreds of tweezers with large occupation numbers in a single

step. This is based on the technology described in chapter 3, which enabled the

realisation of large and almost uniformly filled array exemplified by the 400 site

triangular array shown in figure. 4.1a, as well as more exotic geometries such as

connected rings (figure. 4.1b) and quasi-ordered geometries (figure. 4.1c). These

examples were chosen since they exhibit structures on different length scales

making them difficult to produce using other methods such as use of optical

lattices [140]. Our approach exploits elastic collisions transferring ultracold

atoms from a quasi-2D optical reservoir trap into an array of optical tweezers

produced by a digital micro-mirror device (DMD)To realize large arrays, it

was necessary to optimize the loading process and the homogeneity across

the lattice by adapting the DMD light patterns to control the trap depth of

each tweezer. A key finding is that each atomic ensemble is localized well
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within the typical Rydberg blockade volume ∼ 1 µm3 and the typical inter-trap

separations of several micrometers are compatible with Rydberg-blockade gates.

Each atomic ensemble has a controllable occupation from 20 to 200 atoms and

the fluctuations of the number of atoms in each tweezer is comparable to or

below the shot-noise limit for uncorrelated atoms. This makes the system well

suited for quantum simulation of quantum spin models [46, 47, 141–147] and

dynamics [148–155] in novel geometries, as well as for realizing quantum regis-

ters with collectively enhanced atom-light interactions for quantum information

processing [44, 143, 156–159].
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Fig. 4.1: Realization of large tweezer arrays with large occupation number in
each tweezer. (a) Experimental absorption image of 400 site triangular
lattice, where each spot corresponds to a microscopic ensemble of
≈ 30 ultracold 39K atoms. The lattice spacing is 4 µm and the apparent
size of each spot is ∼ 0.75 µm (e−1/2 radius), mostly limited by recoil
blurring during imaging. (b) 40 site ring structure (c) 226 site Penrose
quasicrystal lattice. To improve the signal-to-noise ratio each image is
an average of 20 absorption images (d) 196 site honeycomb lattice (see
figure 4.3a for a typical single shot image).

4.1 Optimization of atom loading in tweezer traps

The experimental cycle starts with a three-dimensional magneto-optical trap

(MOT) loaded from a beam of 39K atoms produced by a two-dimensional

MOT. This is overlapped with a far off-resonant pancake-shaped reservoir trap

created by a 1064 nm single mode laser with a power of 16 W tightly focused

by a cylindrical lens. The beam waists are ωz = 7.6 µm, ωx = 540 µm and

46



ωy = 190 µm and the estimated trap depth is 330 µK. To maximize the number

of atoms in the reservoir we apply an 8 ms gray-molasses cooling stage on the

D1 transition [131], yielding 3.3× 105 atoms in the |4s1/2, F = 1〉 state at an

initial temperature of 45 µK.

Next we transfer the atoms to the tweezers from the reservoir trap. To generate

the tweezers we illuminate a DMD with a collimated 780 nm Gaussian light

beam with a 4.3 mm waist and a peak intensity of 1.44 W/cm2. We directly

image the DMD plane onto the atoms with a calibrated demagnification factor

of 53, using a 4f optical setup involving a 1500 mm focal length lens and a 32 mm

focal length lens. The latter is a molded aspheric lens with a numerical aperture

of 0.6, located inside the vacuum chamber. With this setup, each (13 µm)2 pixel

of the DMD corresponds to (245 nm)2 in the atom plane. The details of the

involved experimental set-up to realise the large arrays of tweezer traps can be

found in chapter 3 (figure 3.8) (similar optical setup to Refs. [118, 160]).

The DMD can be programmed with arbitrary binary patterns to control the

illumination in the atom plane. To generate the tweezer arrays shown in

figure 4.1a-c we create different patterns of spots where each spot is formed

by a small disk-shaped cluster of typically A = 20− 100 pixels. To detect the

atoms we use the saturated absorption imaging technique [161, 162]. The probe

laser is resonant to the 4s1/2 → 4p3/2 transition of 39K at 767 nm and with an

intensity of I ≈ 2.1Ieff
sat. The atoms are exposed for 10 µs and the absorption

shadow is imaged onto a charge-coupled-device camera1 using the same optics

as for the DMD light patterns (figure 3.8). The fact that we are able to read

out the atomic distribution in 10µs is an important advantage over the single

atom tweezer experiments. The resulting optical depth of an image is well

described by a sum of two-dimensional Gaussian distributions. The optical

depth is defined as OD = ln(
I f
Ii
) where Ii is the initial intensity of the probe

laser without the presence of the atoms and I f is the final intensity of the probe

laser in the presence of the atoms.

4.1.1 Estimation of atom number per tweezer

To determine the number of atoms, we fit the two-dimensional Gaussian

distribution function as shown here to each of the tweezer sites visible from

1Andor iXon Ultra 897, active pixels: 512 x 512, pixel size: 16 x 16 µm2, frame rate: 56 fps
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Fig. 4.2: Estimation of number of atoms in each tweezer. (a)Experimental
absorption image of a 400 site square lattice, where each spot corre-
sponds to a microscopic ensemble of ≈ 30 ultracold 39K atoms. The
lattice spacing is 3.5 µm and the apparent size of each spot is ∼ 1 µm
(e−1/2 radius) (b) Zoom-in of the marked spot. (c) Vertical-crossection
of the marked spot with the fit of 2d Gaussian function. (d) Horizontal-
crossection of the marked spot with the fit of 2d Gaussian function. By
finding the fit results of σx, σy , we obtain the width of atomic cloud in
x and y direction and the fit results of the amplitude of this function
conveys the optical depth (OD) of the cloud. With these parameters,
the number of atoms in each atomic cloud per tweezer are estimated
(equation 4.5).
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the absorption image (shown in figure 4.2).

f (x, y) = A exp

(
− (x− x0)

2

2σ2
x
− (y− y0)

2

2σ2
y

)
(4.1)

Here x0 and y0 represent the position of a tweezer. The fit results of this function

to each site gives us the best fit values of x0 and y0 that represent the position

of each tweezer in the image plane. By obtaining result of the best fit value of

the width of the Gaussian (σx and σy), the width of the atomic cloud within

each tweezer is estimated as, (σx)cloud = Px
M ×fit(σx) and (σy)cloud =

Py
M ×fit(σy)

where Px = 16µm and Py = 16µm are the size of pixel of charge-coupled device

camera1 that we use to image the absorption shadow of atoms (absorption

imaging). M = 53 is a magnification factor of our optical system as mentioned

in Chapter 3. The optical depth (OD(x, y)) is estimated from the best fit of the

amplitude (A) of the 2d Gaussian function (equation 4.1). We can understand

the calculation of the number of atoms within each tweezer by following the

approach from [161] by considering the Beer’s law in the presence of saturation

effect and for a resonant incident light as,

dI
dz

= −n(x, y, z) σ(I) I (4.2)

where σ(I) = σabs
α

1
1+I/Ie f f

sat
is the effective absorption cross section including

saturation correction α. n(x, y, z) is the spatial atomic density of the cloud.

Rearranging equation 4.2 and integrating it to both sides as,

−
∫ dI

I
=
∫

σ(I) n dz (4.3)

where OD = −
∫ dI

I which is then equal to σ(I)n(x, y) as obtained from the

above integration. Integrating OD over x and y gives us the total number of

atoms N as, ∫ ∫
OD dx dy
σ(I)

=
∫ ∫

n(x, y) dx dy = N (4.4)

Number of atoms(N) =
2π (σx)cloud (σy)cloud OD

σabs
α(1 + I/Ie f f

sat ) (4.5)

where α(1+ I/Ie f f
sat ) is a correction factor and it turns out to be 1 for our imaging

system. The factor for saturation correction α accounts for corrections due to

certain conditions during imaging [161] and that α = 1.38 for our experimental

conditions. The σabs is an absorption cross section on resonance which is
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expressed as

σabs =
h̄ωLΓK

2Isat
(4.6)

where ωL is an angular frequency of the laser that addresses D2 transition of
39K. Isat is a saturation intensity of D2 transition of 39K which is 17.5 W/m2.

ΓK is a natural linewidth of D2 transition of 39K which is equal to 2π × 6 MHz.

Substituting ωL = 2πc
λK

and Isat =
πhcΓK

3λK
into equation 4.6, we obtain σabs =

3λ2
K

2π

with λK being the wavelength resonant with the D2 transition of 39K which is

767 nm and c is the speed of light in vacuum.

4.1.2 Single shot detection sensitivity
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Fig. 4.3: Estimation of single shot detection sensitivity (a) Experimental ab-
sorption image of a 100 site square lattice, where each spot corresponds
to a microscopic ensemble of ≈ 40 ultracold 39K atoms. The lattice
spacing is ∼ 4 µm and the apparent size of each spot is ∼ 0.74 µm
(e−1/2 radius). Regions 1, 2, 3 and 4 are the background regions of
interest to estimate the single shot detection sensitivity of 3.9 atoms as
explained in section 4.1.2. (b) Histogram of estimated atom number
distribution in the image region. (c) Histogram of estimated atom
number distribution in the background regions 1, 2, 3, 4 where the
variance is 3.91 atoms.

Single shot detection sensitivity has been inferred by analysing the background

region of the images. We choose background regions 1, 2, 3 and 4 for analysis

as shown in figure 4.3. Referring to figure 4.3 of 100 site square lattice of mi-

croscopic atomic cloud, we fit 2d Gaussian distribution function (equation 4.1)

to each spot to estimate the atom number, width of the atomic cloud at each

tweezer site and position of each tweezer in the image plane as explained in
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subsection 4.1.1. We repeat the fits with fixed widths and centroid positions,

but shifted by the system size to a background region of the cloud (see fig-

ure 4.3). The resulting fit amplitudes give an estimate of the fitting errors

induced by background imaging noise. Thus we obtain 100 values of single

shot noise corresponding 100 tweezer sites per background region. We repeat

this analysis for 20 absorption images. Therefore, in the end we average over

8000 values of single shot noise estimation. By calculating the standard error

over these realisations, we obtain the uncertainty in the averaged value of the

single shot detection sensitivity which is inferred as 3.9 atoms. It means that

we can measure the atom number with an uncertainty of ±3.9 atoms.

4.1.3 Analysis of atom loading into a single tweezer trap

It was found that optimal loading of the tweezers is achieved by evaporatively

cooling the atoms in the reservoir trap while superimposing the DMD light

pattern (figure 4.4a). At the end of the evaporation ramp the reservoir trap can

be switched off leaving the atoms confined by the tweezers alone. The overall

cycle time including MOT loading, evaporative cooling, transfer to the tweezers

and imaging is < 4 s. Figures 4.4b,c show the characterization of the loading

process for a single tweezer with A = 100 pixels, corresponding to an optical

power of 90 µW.

There is little difference if the tweezer is switched on suddenly or ramped

slowly, however we found it is beneficial to turn on the tweezers at least 200 ms

before the end of the evaporation ramp (as shown for a single tweezer in

figure 4.4b), indicating a significant enhancement of the loading through elastic

collisions with the reservoir atoms [163]. During the evaporative ramp-down

of reservoir trap depth (figure 4.4a), the particles with average higher energy

get selectively removed from the trap and subsequent thermalization of the

remaining particles happens through elastic collisions. As our reservoir trap

(pancake-shaped dipole trap) has been prepared using far-off resonant laser

light, inelastic processes such as light-assisted inelastic collisions are greatly

suppressed which minimizes loss and heating of atoms. Figure 4.4c shows that

the mean occupation number N̄ = 〈N〉i (with i denoting different experimental

realizations) strongly depends on the final temperature of the reservoir, with

the maximal N̄ = 120(5) found for Tres ≈ 2 µK. The temperature of the atoms

after loading measured using the time-of-flight method for a single tweezer
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Fig. 4.4: Characterization of the loading process and lifetime of atoms in a
single tweezer. (a) Sketch of the experimental sequence used to load
the tweezers. (b) Mean occupation number in a single tweezer as
a function of the overlap time τ between the end of the reservoir
evaporation ramp and turning on the tweezer. For τ ≈ 200 ms the
occupation number reaches its maximum value of N̄ = 120. (c) Mean
occupation and two-dimensional density of atoms in the reservoir as
a function of the reservoir temperature after evaporation. Optimal
loading is achieved for a final reservoir temperature of 2 µK, which
is a compromise between temperature and the remaining density of
atoms in the reservoir. (d) Measurement of the lifetime of atoms held
in the tweezer. The solid line is a fit to a model accounting for one-
and three-body loss processes, while the dashed line is an exponential
fit assuming one-body loss only. In (b), (c) and (d) the error bars depict
the standard deviation over three experimental repetitions.
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is 17(1) µK. Figure 4.4d shows the lifetime of the atoms in the tweezer. An

exponential fit describing pure one-body decay (dashed curve) is clearly ruled

out by the data while a model which includes both three-body and one-body

decay [164] provides an excellent fit (solid curve). The expression of the model

is as follows:

η =
exp(−k1t)√

1 + (k3/k1)[1− exp(−2k1t)]
(4.7)

where k3 is a three-body loss rate and k1 is one-body loss rate. From this

model we extract both the three-body and one-body decay constants k−1
3 =

110 ms, k−1
1 = 3100 ms, which are both orders of magnitude longer than typical

timescales in Rydberg atom experiments.

4.2 Uniform loading across the tweezer array
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Fig. 4.5: Scaling up to hundreds of tweezers. The square data points show
the array-averaged mean occupation number for square arrays with a
period of 3.5 µm and different numbers of sites ranging from M = 2× 2
to M = 22× 22. Over this range the array averaged occupation number
〈N̄〉m ≈ 40 is mostly homogeneous and insensitive to the number of
tweezers. The shaded region represents the uniformity of each array,
computed as the standard deviation of the mean occupation number.
The insets show exemplary absorption images for 4 different sized
arrays, each averaged over 20 experimental repetitions.

We now show that it is straightforward to scale up to a large number of sites

while maintaining a uniformly high occupation of each tweezer. For arrays

with more than approximately M = (10× 10) sites we found it is beneficial to

adapt the DMD pattern to compensate the Gaussian illumination profile. We

adapt the number of pixels in each cluster according to its distance from the
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center of the illumination region following an inverted Gaussian dependence

as discussed in chapter 3 in subsection 3.4.5,

Am = Amin exp
(

gr2
m

)
(4.8)

where m indexes a tweezer at position rm in the DMD plane. The parame-

ters Amin = 20 pixels and g = 2.3× 10−5 were manually adapted to obtain

approximately equal optical depths for each tweezer, where Amin = 20 corre-

sponds to an optical power per tweezer of 18 µW. The maximum array size of

M = (22× 22) was fixed such that max(Am) = 66 pixels, due to larger spots

increasing the apparent size of the atomic ensembles near the edge of the array.

With an appropriate choice of parameters, the resulting approximately uniform

trap depths across the array of tweezers can be expressed as the convolution of

equation 4.8 and the Gaussian intensity distribution of the beam of the light

that illuminates the DMD. Once the optimal compensation profile is found, it

can be applied to different geometries without further adjustment.

Figure 4.5 shows the array averaged mean occupation number 〈N̄〉m for square

arrays with different numbers of sites. The solid orange symbols show the

occupation number averaged over the entire lattice and over 20 experimental

repetitions. The experiments show that 〈N̄〉m ' 40 is approximately constant

for tweezer arrays with different numbers of sites 4 ≤ M ≤ 484. As an example,

for M = 400 the standard deviation calculated from the average of 20 images

is 0.17〈N̄〉m, compared to 0.55〈N̄〉m without any compensation as shown in

Fig. 4.6. The uniformity could be further improved by adapting Am for each

tweezer individually, but it is already better than the expected intrinsic shot-to-

shot fluctuations of the atom number in each site due to atom shot-noise for

N̄ > 36. The apparent size of each atomic ensemble, found by analyzing the

averaged absorption images, ranges from 0.64 µm near the center of the field

to 0.93 µm at the edges (e−1/2 radii of each absorption spot), limited by recoil

blurring, the finite resolution of the imaging system including off axis blurring

and the finite size of each DMD spot. By projecting the DMD light pattern

onto a camera in an equivalent test setup we independently determine the

beam waist of each tweezer to be 0.9 µm. Assuming each tweezer is described

by a Gaussian beamlet and approximating the atomic cloud by a thermal

gas with a temperature ∼ V0/5 (with trap depth V0), we infer a cloud size

of σr,z = {0.2, 1.0} µm. This is reasonably close to an independent estimate
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Fig. 4.6: Comparison of uniformity in atom loading into the array of tweez-
ers produced using the DMD patterns with and without Gaussian
gradient modification (a) and (b) are histograms of atom number ex-
tracted from the experimental absorption image shown in (c) and (d)
respectively. (c) Experimental absorption image of a 400 site square lat-
tice (averaged over 20 repetitions) produced using gradient (Gaussian)
modified DMD pattern (see equation 4.8), where each spot corresponds
to a microscopic ensemble of ≈ 30 ultracold 39K atoms. The lattice
spacing is 3 µm and the apparent size of each spot is ∼ 0.9 µm (e−1/2

radius). (d) Experimental absorption image of a 400 site square lat-
tice (averaged over 20 repetitions) produced without any gradient
modification applied to DMD patterns. The lattice spacing is 4 µm
The standard deviation calculated from the average of 20 images is
0.17〈N̄〉m as shown in (a), compared to 0.55〈N̄〉m without any gra-
dient modification as shown in (b). Hence, gradient modification of
the DMD patterns increses the uniformity of atom loading into the
tweezers by ≈ 3 times.
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3
√

σ2
r σz ≈ 0.6 µm based on the experimentally measured three-body loss rate

and a theoretical calculation of the zero field three-body loss coefficient for
39K [165].

To understand this in more details, the theoretical calculation is given as follows.

The three body decay rate can be described as

1
N

dN
dt

= −k3〈n2〉 (4.9)

where K3 is the constant of the three body recombination rate for a thermal gas

(6 times higher than that for a Bose-Einstein condensate due to Bose statistics).

〈n2〉 is the mean squared density of the atom cloud, 〈n2〉 =
∫

n(r)2n(r)d3r

and N is the total number of atoms in the atomic cloud. The density of the

Boltzmann distributed atomic cloud can be written as,

n(r) =

√
2N exp

(
−r2

2σ2
r

)
4π

3
2 σ3

r

(4.10)

where σr is an atomic cloud width, r is a radial distance from the center of

the atomic cloud and N is the total number of atoms in the atomic cloud. The

mean squared density is then obtained by integrating equation 4.10 as,

n2 =
∫ ∞

0
4πr2n2nd3r =

√
3N3

72π3σ6
r

(4.11)

Taking N = 200 atoms in a single tweezer trap and substituting equation 4.11

into equation 4.10 and using experimentally measured three-body loss rate

which is 110ms as shown in figure 4.4d and using a calculated k3 = 9.2×
10−29for 39K [165], we obtain geometric mean width of the atomic cloud as

σr ≈ 0.63µm. This is close to 3
√

σ2
r σz = 0.44 extracted from experimental

absorption images.

4.3 Towards single Rydberg excitation within a

microscopic atomic ensemble

The small spatial extent of each ensemble is encouraging for experiments

which aim to prepare a single Rydberg excitation at each site (as illustrated

in figure 4.7), as it is significantly smaller than the nearest neighbour distance
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and the typical Rydberg blockade radius of Rbl ∼ 3− 6 µm (depending on

principal quantum number). Approximating the density distribution as quasi-

one-dimensional since σz = 1 � σr = 0.2, we can estimate the fraction of

blockaded atoms. Assuming a 2d Boltzmann density distribution function for

Fig. 4.7: Small spatial extent of microtraps The figure shows an array of 4
tweezer traps indicating the small spatial extent of tweezer trap of 1 µm
in weak axis (z-axis) and 0.2 µm in tight axis. This small spatial extent
of micro-trap lies well within the Rydberg blockade radius if the
principle quantum number (n) = 40-60. The fraction of blockaded
atoms are shown as N fbl and the fraction of unblockaded atoms are
N(1− fbl) (equation 4.15).

the weak axis (z-axis),

nz = n0 exp
(
− z2

2σ2
z

)
(4.12)

where n0 is the peak atomic density. To obtain total atom number in tweezer

trap, the integration can be carried out over nz.

∫ ∞

−∞
nzdz =

√
2
√

πn0σz (4.13)

The total number of atoms in the blockade region is given by

∫ Rbl

−Rbl

nzdz =
√

2
√

πn0σzerf(Rbl/2σz) (4.14)

where Rbl is the radius of Rydberg blockade. Therefore the fraction of blockaded

atoms is

fbl =

∫ Rbl
−Rbl

nzdz∫ ∞
−∞ nzdz

= erf(Rbl/2σz) (4.15)

where erf(x) is the Gauss-error function. For Rbl/σz ≥ 3, fbl ≥ 0.97 which

suggests that the blockade condition within a single tweezer should be well

satisfied. To serve as effective two-level systems (comprised of the collective

ground state and the state with a single Rydberg excitation shared amongst all

57



atoms in the ensemble), it is additionally important that the fluctuations of the

atom number from shot-to-shot are relatively small otherwise the
√

N collective

coupling [157, 166, 167] will reduce the single atom excitation fidelity. Previous

theoretical estimates have assumed Poisson distributed atom shot noise [143],

which we generalize to the case of a stretched Poissonian distribution and

imperfect blockade. However we neglect other possible imperfections such

as spectral broadening due to laser linewidth or interactions between ground

state and Rydberg atoms [143].

4.3.1 Infidelity of single Rydberg excitation within a single

tweezer

To quantify how the fluctuations of the atom number in each microtrap in-

fluences the fidelity for preparing single Rydberg excitations, we follow the

approach presented in [164]. We define a stretched Poisson distribution for

atom number fluctuations as,

Pn =
(αN̄)nα

(nα)!
exp−αN̄ (4.16)

where α is a strectching factor. The mean of this stretched Poisson distribution

is N̄ and variance is N̄
α . We assume that within the blockade volume, the

probability to excite a single atom undergoes collective Rabi oscillations

pi = 1− cos2(
√

NiΩt/2) (4.17)

where Ω is the single atom Rabi frequency [143]. In contrast the non-blockaded

fraction of atoms 1− fbl undergoes Rabi oscillations at the frequency Ω. This

can be obtained by solving optical Bloch equations for n-two level systems

coupled by laser field of Rabi coupling Ω.

By expanding for n− N̄ around the time for a collective π pulse: t = π/(
√

N̄Ω),

we obtain

pi = 1− π2(n− N̄)2

16N̄2 (4.18)

We can now define the average excitation probability as a weighted average
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over a stretched Poisson statistical distribution for atom number fluctuations.

〈pi〉 =
∞

∑
n

piPn(α, N̄) = 1− π2

16αN̄
(4.19)

This can be understood as the fidelity for creating a single excitation when the

number of atoms fluctuates with the mean of α and the variance N̄/α. The

fidelity approaches 1 when the N̄ is large, or the variance is small (α → ∞).

Now we can define the infidelity as

ε = 1− 〈pi〉 (4.20)

For Fano factor [164], F = α−1 = var(n)
N̄ , the infidelity for producing exactly one

excitation (ε) will have an expression as,

ε ≈ π2

4
F

4N̄
+ (1− fbl) ≈

π2

16
var(n)

N̄2 + (1− fbl) (4.21)

For fbl → 1, the infidelity is proportional to the relative variance var(N)/N̄2.

4.3.2 Estimation of effects of fluctuations in atom number

over the infidelity of single Rydberg excitation

To estimate the relative variance of the atom number fluctuations we prepare

tweezer arrays with different numbers of sites and trap depths, correspond-

ing to mean occupation numbers from N̄ = 20 to N̄ = 200. For each set of

experimental conditions we take 20 absorption images from which we compute

the mean occupation and the variance of the atom number in each tweezer.

Fig. 4.8 shows the relative variance var(N)/N̄2 calculated for 75880 tweezer

realizations. We see that for smaller atom numbers the relative variance is con-

sistent with the expected Poissonian atom shot noise for independent particles

(var(N) = N̄, shown by the solid black line), while for N̄ & 50 the fluctua-

tions are sub-Poissonian, reaching the lower limit expected for three-body loss

(var(N) = 0.6N̄, shown by the the dashed black line is a prediction assum-

ing sub-Poissonian atom number fluctuations var(N)/N̄2 = 0.6/N̄) [164]. For

N̄ > 40 the expected infidelity due to atom number fluctuations would be below

0.03, showing that this system should be compatible with high fidelity prepara-

tion of individual Rydberg excitations and quantum logic gates, and could still

be further improved using adiabatic or composite pulse techniques [156].
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Fig. 4.8: Relative variance of the atom number in each tweezer var(N)/N̄2 as
a function of the mean occupation number N̄. The blue points show
the relative variance computed from 20 repetitions of the experiment
and for different mean occupation numbers. The black symbols show
the same data after binning, where the bin widths are indicated by
the horizonal red bars. The vertical error-bars show the standard
error computed over the values inside each bin multiplied by a scaling
factor of 10 for better visibility. The solid black line is a prediction
assuming Poissonian atom number fluctuations var(N)/N̄2 = 1/N̄
and the dashed black line is a prediction assuming sub-Poissonian
atom number fluctuations var(N)/N̄2 = 0.6/N̄.

4.4 Summary

To summarize, this work demonstrates an approach for realizing hundreds of

ultracold atomic ensembles in programmable two-dimensional arrays, where

each tweezer has approximately uniform filling, small spatial extent and small

fluctuations of the atom number from realization to realization. Compared to

a stochastic loading of the tweezers via light assisted collisions from a MOT

this has several advantages. First, it is possible to achieve very high occupation

numbers N � 1 with relatively low power requirements per tweezer, since

the temperature of the initial reservoir trap can be lower than the typical

temperatures in a MOT and elastic, rather than inelastic, collisions lead to

a high filling probability. This is beneficial for scaling up to hundreds or

even thousands of tweezers as the large volume of the reservoir trap makes it

possible to simultaneously fill many tweezers in parallel without the need for

additional lasers and complex rearrangement protocols to fill empty sites.
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Additionally, atomic ensembles present the possibility to evaporatively cool

the atoms in each tweezer to reach high phase space densities or as a more

controlled starting point for (quasi) deterministic single atom preparation

schemes using controlled inelastic collisions [54, 57] or the Rydberg blockade

effect [143, 168, 169]. The observation that the number of atoms inside each

tweezer exhibits fluctuations below the Poissonian atom shot noise limit is

especially promising for quantum information processing based on small

Rydberg blockaded atomic ensembles benefiting from fast collectively enhanced

light-matter couplings [44, 143, 158, 159, 168].
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Chapter 5

Rydberg excitation of microscopic

atomic ensembles

With the successful demonstration of large arrays of microscopic atomic ensem-

bles prepared using digital micro-mirror device (as described in chapter 4), it

is necessary to achieve the narrow-linewidth two-photon Rydberg excitation of

these microscopic atomic ensembles. This is a required pre-requisite to achieve

the aim to perform the coherent manipulation of Rydberg excitations among

these atomic ensembles. For this purpose, chapter 5 focuses on the two-photon

excitation of the Rydberg state 69S1/2 of 39K from the arrays of microscopic

atomic ensembles.

This chapter starts with an introduction of the two-photon energy level scheme

for Rydberg excitation shown in figure 5.2. In the same section, I present

the excitation laser set-up to address the two-photon transition described

in figure 5.1 along with the detection scheme of Rydberg atoms via electric

field ionization. In section 5.2, I present the experimental sequence for the

spectroscopic measurements of the Rydberg excitation in the pancake-shaped

optical dipole trap and subsequently I introduce the excitation-sequence in

the array of microscopic atomic ensembles. In the same section, I present the

spectral linewidth 1.39 MHz ± 0.08 MHz of the two-photon Rydberg excitation

from the pancake-shaped optical dipole trap and 1.47 MHz ± 0.14 MHz from

the array of microscopic atomic ensembles along with an investigation of the

broadening mechanisms such as Doppler broadening, power broadening and

inhomogeneity in the excitation laser that could possibly affect the spectral
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line-width. In the same section, I present the recent results of the experiments

of the geometry variation of these arrays of microscopic atomic ensembles on

the Rydberg excitation spectrum in terms of the broadening of the spectral

linewidth.

5.1 Two-photon excitation scheme

Figure 5.1 represents a schematic of the excitation laser-setup around the science

chamber to address the two-photon excitation scheme as shown in figure 5.2 to

perform Rydberg excitation experiment. It also consists of the detection scheme

to detect the Rydberg atoms via electric field ionisation method.

upper eld plates

lower eld 

plates

de ection rings

micro-channel plates (MCP)

n trajectories

tweezer array

1
0
µ
m

767 nm 

X

Z

Y

Fig. 5.1: Excitation laser setup to create Rydberg atoms: Schematic of counter-
propagating two-photon excitation laser beams 767 nm (red arrow) +
457 nm (blue arrow) around the vacuum chamber to create Rydberg
excitation in the microscopic atomic ensembles that are trapped within
the large arrays of tweezer traps at the center of the vacuum chamber.
The Rydberg detector assembly is composed of two sets of four electric
field plates each, placed above and below the atomic cloud, that
compensate the stray electric fields during Rydberg excitation and
perform the ionization of the Rydberg states by the application of large
voltages. The ions travel towards a micro-channel plate (MCP) detector
by following the corresponding fields produced by the deflection rings
(the trajectory of ions is shown using the green arrow). Figure modified
from [134].
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The 767 nm laser system

As explained in details in [117], the light used for the lower transition of the

Rydberg excitation 4S1/2 F = 1 to 4P3/2 is obtained from a diode laser1 that

gives a maximum power output of ≈ 80 mW at a wavelength of 767 nm. A

small part of the laser beam is derived using a beam sampler and is used for

laser locking. A major part of the beam is used for cooling, trapping, imaging

and excitation as described in chapter 3. After the diode laser, some light has

been picked up and coupled into a fibre which then guides it to the experiment.

The power output after the fiber is up to ≈ 0.3 mW at a beam waist of ∼ 900

µm which counter-propagates to the blue light as shown in figure 5.1. The

beam then passes through an AOM, to have a fast switch, because the response

of a mechanical shutter is not fast enough for precisely triggering the Rydberg

excitation [170].

The 457 nm laser system

As explained in detail in [117], the light at 457 nm (blue light) to couple the

atomic state 4P3/2 to the Rydberg state 69S1/2 is obtained by frequency doubling

of the light at 913 nm obtained from a combined diode laser tapered amplifier

system2 , having a maximum power output of ≈ 1.7 W. The fundamental

light at 913 nm is frequency doubled using second harmonic generation (SHG)

through a non-linear crystal in a frequency-doubling unit3. The blue beam

obtained from the SHG at 457 nm is then guided to the vacuum chamber via

several mirrors and then focused down to ∼ 30 µm onto the atoms with the

power of ≈ 400 mW. A shutter is placed to switch the 457 nm light off within

500 µs. An AOM would be useful for faster switching times < 100 ns but it

is also associated with a power loss due to its finite diffraction efficiency. The

laser is situated next to the SHG and the laser beam is guided into the SHG

with two folding mirrors.

Frequency stabilisation using reference cavity

For frequency stabilization, 767 nm and 913 nm lasers are locked to a stable

reference cavity4 through Pound-Drever-Hall stabilization scheme [171]. Fiber-

1Toptica DL pro
2Toptica TA pro
3Toptica SHG pro
4Stable Laser Systems ATF 6010-4
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coupled electro-optical modulators (EOM)5 have been used to generate the

PDH modulation at 20 MHz. The EOMs generate sidebands of up to 600 MHz

for blue excitation laser, to perform the spectroscopy of the Rydberg states. The

reference cavity consists of two mirrors, which are separated by 100 mm of

distance. They are stabilized passively by an ultra-low expansion (ULE) glass-

spacer. The mirrors posses a special coating such that the transmission through

them is low for the desired frequencies to stabilize to narrow linewidths. The

resonator is placed inside an evacuated enclosing made of aluminium with

temperature stabilization to decouple from the environment. More details on

the ULE are given in [172]. The obtained linewidth of 767 nm is ≈ 20 kHz

and the linewidth of 913 nm light is ≈ 30 kHz after frequency stabilisation

with ULE cavity. For more detailed working of frequency stabilisation of 913

nm light using ULE cavity, please refer to the master’s thesis of my colleague

Henrik Hirzler [117].

5.2 Rydberg ion detection scheme

As explained in detail in [134], the detection scheme via electric field ionisa-

tion provides a direct access to the number of Rydberg atoms. The approach

described here is based on electric field ionization with successive detection

of the generated ions [173]. In another approach, the Rydberg atoms are

pumped down to the ground state and detected using the fluorescence mea-

surement [174].

Rydberg detector set-up

In reference to [134], figure 5.1 represents a schematic of our home-built

Rydberg ion detection setup [175]. Because of the high sensitivity of Rydberg

atoms to external electric fields, the setup consists of eight electrodes shown

in figure 5.1 located around the atomic cloud to compensate stray electric

fields. For cancellation of horizontal x-y components, the upper and lower four

electrodes are interconnected to two pairs each, so that they are rotated by 90o

around z, and apply a cancellation voltage6 to each of the two pairs. All four

upper and lower electrodes are treated effectively as a pair of two opposing

electrodes for compensation along the vertical axis. For more details on electric

5Qubig Q1603-UHD/1 (767 nm) and Jenoptik PM905 (913 nm)
6Omega OM-USB-3103, 8-channel, 16-bit analog voltage, output range ±10 V
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Fig. 5.2: Level schematic for two-photon Rydberg excitation: (Image repro-
duced from [117]) Level schematic for two-photon Rydberg excitation
in a weak magnetic field. Atoms are prepared in the F = 1, mF =
0,± 1 ground states and are then excited to the Rydberg state 69S1/2 ,
mj = ± 0.5 via a two-photon transition, that is far detuned from the
intermediate state by ≈ 300 MHz. A linear Zeeman shift is induced
for the m f and the mj levels by a weak magnetic field, resulting in six
transitions.
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field nulling, please refer [117].

Electric field ionisation

Referring to [134], the compensation electrodes are rapidly switched to high

voltages (up to ± 2.5 kV) with the help of fast switches7 for electric field

ionisation. The ions are then directed towards the micro-channel plate detector

(MCP)8, as visualised by the green flight trajectory in figure 5.1 following the

applied voltage to one of the two deflection rings. After the Rydberg excitation

pulse (as shown in the figure 5.3), the electric field plates are switched from

the values of small compensation voltages to the values of large voltages for

ionization and then also turn on the deflection voltage of one of the deflection

rings. At the end of a time of flight of the ions of 3 µs , the generated ions hit

the MCP creating voltage spikes, that get recorded on a fast oscilloscope9. This

allows to extract the instantaneous number of Rydberg excitation at the end of

the excitation pulse. We extract the time traces of ion events on the MCP from

the fast oscilloscope. These traces are integrated over the mean arrival time

of the ions. This integrated ion signal of MCP is related to the corresponding

number of Rydberg excitations in the atomic cloud through a calibration factor.

This calibration factor is determined by calculating the atom number from the

corresponding absorption images by considering that once an atom is excited

to the Rydberg state 69S1/2, it decays with the radiative lifetime of ∼ 190 µs out

of trap i.e. all excitations are lost from the atom cloud. This implies that the

loss in atom number from the traps is directly proportional to the cumulative

ion signal of MCP via this calibration factor.

5.3 Rydberg excitation spectroscopy of 69S1/2 state

in 39K

We have performed two-photon spectroscopy of the Rydberg state 69S1/2 from

microscopic atomic ensembles trapped in large arrays of tweezer traps as

well as of the atoms from pancake shaped optical dipole trap to compare the

linewidth between both. Following section describes the experimental sequence

of the two photon spectroscopy of the atoms from pancake trap and reports on

7Behlke HV switches
8Hamamatsu F1551-21S
9TeledyneLeCroy WaveRunner 8254M-MS with up to 4 GHz bandwidth and 40 GS/s sampling

rate
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the achievement of the narrow spectral linewidth.

5.3.1 Rydberg excitation from pancake-shaped optical dipole

trap

Fig. 5.3: Sequence of spectroscopic measurements from atoms trapped in-
side pancake-shaped optical dipole trap: The atoms are cooled down
using evaporative cooling of the dipole trap. In these experiments,
we use the 767 nm light plus the blue light to perform the Rydberg
excitation. The excitation pulse length is 100 µs. The pancake trap
stays on during the excitation to trap the atoms. The final Rydberg
atom number is detected via electric field ionisation. The sequence is
repeated for different detunings δ of the blue light around the Rydberg
transition 69S1/2. This approach is similar to the one in [117].

In figure 5.3, the experimental sequence for taking a Rydberg excitation spec-

trum is shown. The approach followed here is similar to that given in [117].

We start in the pancake-shaped optical dipole trap with ∼ 105 atoms. To begin

with, the power of the pancake trap is set to ∼ 2.7 W. Then the power of the

pancake-shaped dipole trap is slowly ramped down during the evaporative

cooling. Viewing simplistically, the high energy atoms escape the trap potential

which is lowered and the rest of the atoms get rethermalized to a lower temper-

ature. This step is continuously repeated for a ramp cycle time of 1s. This stage

of cooling is necessary to decrease the Doppler broadening. In the next step of

Rydberg excitation, the atomic cloud is exposed to the two excitation beams

(red + blue) for 100 µs. The red excitation beam is far-detuned corresponding to

the intermediate state 4P3/2. The blue beam is near-resonant corresponding to

the Rydberg state 69S1/2 having a small detuning of δ. The pancake trap stays

on during the excitation time. Additionally a weak magnetic field is applied to

observe the Zeeman splitting of the energy states as shown in figure 5.2. The

details of step by step preparation of Zeeman sub-levels is described in [117].

An atom loss ocuurs due to Rydberg excitations decreasing the optical density

inside the pancake trap. The sequence is repeated for different detunings of
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blue light δ for the spectroscopic measurements.
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Fig. 5.4: Spectroscopic measurements of Rydberg excitation from atoms con-
fined in pancake trap: (a) Two-photon Rydberg excitation spectrum
of atoms from pancake trap obtained by scanning the detuning (x-
axis) of the blue light (457 nm) across the Rydberg state 69S1/2. The
spectrum contains six peaks that represent the Zeeman splitting of the
corresponding energy transition of 4S1/2 to 69S1/2 via the intermediate
state 4P3/2 as described in figure 5.2. (b) The zoom-in of the last peak
from the spectrum to determine the spectral width of the transition.
A full width half maximum (FWHM) of the Gaussian fit to this peak
estimates the spectral width of the corresponding transition which
is 1.39 MHz ± 0.08 MHz. These measurements are averaged over 5
repetitions and the error bars represent the standard error of the mean.

Figure 5.4 (a) describes the Rydberg excitation spectrum obtained from the

atoms from pancake trap by scanning the detuning (x-axis) of the blue light

(457 nm) across the Rydberg state 69S1/2. The spectrum contains six peaks
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that represent the Zeeman splitting of the corresponding energy transition of

4S1/2 F = 1 to 69S1/2 via the intermediate state 4P3/2 as visualised in figure 5.2.

The spectral resonances are distinguished into two sets with each containing

three resonances. The set with the resonances with larger positive detuning

are identified as the transitions to mj = +1/2 of the Rydberg state 69S1/2 as it

is shifted to the higher energies than the Rydberg state with mj = -1/2. The

ground state m f = +1 is energetically shifted down. Hence, the transition from

the ground states m f = +1, m f = 0, m f = -1 to a desired mj of the Rydberg state

are identified from left to right in the spectrum. As shown in figure 5.4 (b), a

full width half maximum (FWHM) of the Gaussian fit to one of the 6 peaks of

the spectrum estimates the spectral width of the corresponding transition 1.39

MHz ± 0.08 MHz. The preliminary qualitative understanding of the factors

that could possibly affect the linewidth of the spectrum is discussed in section

5.2.3.

5.3.2 Rydberg excitation from array of microscopic atomic

ensembles

0.1s

Fig. 5.5: Sequence of spectroscopic measurements from atoms trapped
within the array of tweezer traps: The pancake trap power is ramped
down during the atom-loading from pancake trap to the array of
tweezer traps. The pancake trap is switched off for 100 ms before
the Rydberg excitation pulse to avoid any excitation signal coming
from background atoms from pancake trap. The tweezer trap stays on
during Rydberg excitation pulse. We use the 767 nm light in addition
with the blue light (457 nm) for Rydberg excitation. The excitation
pulse length is 100 µs. The final Rydberg atom number is detected
via electric field ionisation. The sequence is repeated for different
detunings δ of the blue light from the Rydberg transition 69S1/2.

Figure 5.5 visualizes the experimental sequence for taking a Rydberg excitation

spectrum from tweezer traps. To efficiently load the atoms from pancake trap

into the tweezer traps, the pancake trap power is ramped down in the sequence
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of evaporative cooling. This stage allows to re-thermalize the atoms within the

tweezer traps at colder temperatures of 17 µk by exploiting elastic collisions.

The detailed atom-loading process into the array of micro-traps is described

in chapter 4. The pancake trap is switched off for 100 ms before the Rydberg

excitation pulse to avoid any excitation signal coming from background atoms

from pancake trap. The tweezer trap stays on during Rydberg excitation pulse

for better confinement of the atoms. For the next step of Rydberg excitation,

the array of tweezer traps are exposed to the two excitation beams (red+blue)

for 100 µs. The red excitation beam is far-detuned corresponding to the

intermediate state 4P3/2. The blue beam is near-resonant corresponding to the

Rydberg state 69S1/2 with a small detuning of δ. Additionally, a weak magnetic

field is applied to observe the Zeeman splitting of the energy states as shown

in figure 5.2. The sequence is repeated for different detunings δ of blue light

for a single spectroscopic measurement.

Figure 5.6 (a) describes the Rydberg excitation spectrum obtained from the

array of tweezer traps by scanning the detuning (x-axis) of the blue light (457

nm) across the Rydberg state 69S1/2. As described in the previous section,

the spectrum contains six peaks that represent the Zeeman splitting of the

corresponding energy transition of 4S1/2 F = 1 to 69S1/2 via the intermediate

state 4P3/2 as visualised in figure 5.2. As shown in figure 5.6 (b), a full

width half maximum (FWHM) of the Gaussian fit to one of the 6 peaks of the

spectrum estimates the spectral width of the corresponding transition which

is 1.47 MHz ± 0.14 MHz. The spectral width of the Rydberg excitation of

the atoms from tweezer traps is found to be comparable to that from pancake

trapped atoms from figure 5.4. A discussion based on a qualitative preliminary

understanding of the factors that could possibly contribute to such effects is

presented in the next section.

5.4 Estimation of the factors responsible for the

spectral broadening

Doppler broadening

In the rest frame of the moving atoms, the laser appears to have a slightly

modified frequency. When averaging over the velocity distribution of atoms,
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Fig. 5.6: Spectroscopic measurements of Rydberg excitation from atoms con-
fined in tweezer traps: (a) Two-photon Rydberg excitation spectrum of
atoms from array of tweezer traps obtained by scanning the detuning
(x-axis) of the blue light (457 nm) across the Rydberg state 69S1/2. The
spectrum contains six peaks that represent the Zeeman splitting of the
corresponding energy transition of 4S1/2 to 69S1/2 via the intermedi-
ate state 4P3/2 as described in figure 5.2. (b) The zoom-in of one of
the peaks from the spectrum to determine the spectral width of the
transition. A full width half maximum (FWHM) of the Gaussian fit to
this peak estimates the spectral width of the corresponding transition
which is 1.47 MHz ± 0.14 MHz. These measurements are averaged
over 5 repetitions and the error bars represent the standard error of
the mean.
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we obtain the temperature dependence of the spectral broadening which can

be expressed as [117]:

δω

2π
=
√

8kBTln2/m
√

λ−2
1 + λ−2

2 + 2(λ1λ2)−1 cos θ (5.1)

where T is the temperature of atoms, kB is the Boltzmann’s constant, δω is

the spectral width, m = 39u for 39K with λ1 = 767 nm and λ2 = 457 nm for

different beam alignments θ. The θ = π for counter-propagating alignment

of excitation beams. The typical temperature of atoms in the tweezer traps is

17 µk and the expected spectral broadening at this temperature turns out to

be 122 kHz following the scaling with T1/2 (equation 5.1). Hence, to achieve

the narrower spectral width of ∼ 80 kHz which is approximately equal to the

excitation laser’s (457 nm + 767 nm) linewidth, the temperature of atoms in the

tweezer trap needs to be reduced to ∼ 2 µk.

Power broadening

The effective two-photon power broadening dΓ can be expressed as [176],

dΓ = Γ

√
1 + 2

Ω2
e f f

Γ2 (5.2)

where Γ is a natural linewidth of Rydberg state which in our case is≈ 10 kHz [177].

The Ωe f f is an effective two photon Rabi coupling and is ≈ 2π× 0.63 MHz and

can be calculated as ΩrΩb
2∆ [117] where Ωb is the Rabi coupling of blue beam

i.e. ≈ 2π× 30 MHz and Ωr is the Rabi coupling of red beam i.e. ≈ 2π× 13 MHz.

The ∆ is the detuning of the excitation beams with the intermediate state (see

figure 5.2 and it is 300 MHz. With these parameters, an estimated spectral

broadening of two-photon Rydberg excitation is < 1 MHz.

Inhomogeneity in the intensity of the Rydberg excitation lasers

Assuming the Gaussian distribution of the intensity of the blue beam, I simulate

a three-level system based on a simple single atom picture. This simulation con-

sists of three level system (figure 5.2) optical Bloch equations (OBEs) obtained

from master equation for density matrix ρ that includes Lindblad operator (as

given in the chapter 2 section 2.2.1). This operator includes terms correspond-

ing to the spontaneous decay of the intermediate state with rate Γe that is set

at 2π × 6 MHz and to the dephasing of the Rydberg state with the rate γdeph
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that is set at 60 kHz which is the linewidth of the blue laser. I also include

the γdeph for the red laser which is set at 20kHz which is the laser linewidth

and the spontaneous decay of the Rydberg state with rate Γr that is set at

2π × 10 kHz. The population in the Rydberg state is represented by ρrr and I

calculate the steady state solution of these OBEs by varying the ∆b for different

values of Ωb keeping Ωr at 25 MHz similar to what we have in the experiment.

Figure 5.7 represents the excited state population calculated using the quantum
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ΔblueΔ(MHz)

0.0

0.1
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0.3
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ρ r
r

Ωb:30MHz
Ωb:24MHz
Ωb:20MHz
Ωb:14MHz
Ωb:10MHz
Ωb:3MHz
averaged

Fig. 5.7: Simulation of three-level Optical Bloch Equations for different Rabi
frequencies of the upper transition: This figure represents the excited
state population calculated using the quantum master equation from
chapter 2 section 2.2.1 at steady state. Using the detuning of the lower
transition (-300 MHz), two-photon resonance is achieved for an upper
state detuning δ = 300 MHz. The different curves correspond to the
different Rabi frequencies for the upper transition (Ωb), from 30 MHz
to 3 MHz. The position of the peak shifts due to the AC stark shift of
the upper transition Ω2

b/2∆ [107]. Each spectral line has a width of
≈ 2 MHz. The little bump on the right is an artifact of the numerical
calculation.

master equation from chapter 2 section 2.2.1 at steady state. Using the detuning

of the lower transition (-300 MHz), two-photon resonance is achieved for an

upper detuning δ = 300 MHz. The different curves correspond to different

Rabi frequencies for the upper transition (Ωb, from 30 MHz to 3 MHz). The

position of the peak shifts due to the AC stark shift of the upper transition

Ω2
b/2∆ [107]. Each spectral line has a width of ≈ 2 MHz. The little bump on

the right is an artifact of the numerical calculation. Now, if we use a Gaussian
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laser beam, then one can crudely average over all of these lines which would

give a linewidth ≈ 2 MHz as shown in the figure 5.7 by the black dashed line

(depending on the peak value of Ωb). Hence probably we could also be limited

by the inhomogeneous intensity in the excitation laser (457 nm) in achieving

the spectral width narrower than 1.47 MHz.

Effects of power broadening can also be seen from figure 5.7. We observe that

the width of each spectrum in that figure is increasing from left to right with

the increase in the Rabi coupling Ωb. This is due to the increase in the intensity

of the coupling light (457 nm) as Rabi coupling is directly proportional to

the intensity of the light [176]. Hence, we could also possibly be limited by

the power broadening effects of the coupling laser (457 nm) that couples the

intermediate state with the Rydberg state.

Assuming ∆� Ω, the AC-stark shift can be expressed as [107],

∆E =
Ω2

2∆
(5.3)

Here, ∆ is 300 MHz as mentioned in the previous subsection. The spectral

broadening due to AC-stark shift caused by the red beam is estimated as

≈ 280 kHz using Ωr = 2π × 13 MHz and by the blue beam is estimated as

< 1.5 MHz using Ωb = 2π × 30 MHz.

5.4.1 Broadening due to the Rydberg interactions between the

tweezer traps

The effects of modification of geometry are also observed on the spectral-width

of the two-photon Rydberg excitation as shown in figure 5.8. Figure 5.8a and

figure 5.8c represent the lattices with periods 3.5 µm and 5.5 µm respectively.

Plots in the figure 5.8b and figure 5.8d represent the spectroscopic measure-

ments of two photon Rydberg excitation of atoms in the tweezer arrays. The

spectrum in figure 5.8d clearly shows the six peaks that represent the Zeeman

splitting of the corresponding energy transition of 4S1/2 to 69S1/2 via the in-

termediate state 4P3/2 as described in figure 5.2. But spectrum in figure 5.8b

shows that the 6 peaks are merged together making the spectrum broader

when the lattice period is reduced to 3.5 µm when the atomic ensembles start

overlapping with each other. Plots in figure 5.8e shows the variation in the
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Fig. 5.8: Effects of variation of lattice period on spectral width. (a) and (d)
are experimental absorption images of 100 site square lattice (averaged
over 10 repetitions) produced using a DMD pattern. Here each spot
corresponds to a microscopic ensemble of ≈ 30 ultracold 39K atoms.
The lattice spacing is 3.5 µm in (a) and 5.5 µm in (c) and the apparent
size of each spot is ≈ 1.5 µm and ≈ 1 µm respectively. Plots (b) and
(d) show the two-photon Rydberg excitation spectra of atoms in the
array of tweezer traps from (a) and (d) respectively. These spectra are
obtained by scanning the detuning (x-axis) of the blue light (457 nm)
across the Rydberg state 69S1/2. The spectrum in (d) clearly shows
the six peaks that represent the Zeeman splitting of the corresponding
energy transition of 4S1/2 to 69S1/2 via the intermediate state 4P3/2 as
described in figure 5.2. But spectrum in (b) shows that the 6 peaks
are merged together making the spectrum broader. A variation in full
width half maximum (FWHM) of the Gaussian fit to these peaks for
different lattice period is shown in (e) and we see that the spectral
width of ≈ 3.92 MHz for spectrum in (b) and ≈ 1.74 MHz for the
spectrum in (d). It exhibits a clear spectral broadening due to decrease
in lattice period. These measurements are averaged over 5 repetitions
and the error bars represent the standard error over these experimental
repetitions.
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full width half maximum (FWHM) of the Gaussian fit to the spectra as the

period of the array of tweezer traps vary. We see that the spectral width of the

spectrum in figure 5.8b is ≈ 3.92 MHz and for spectrum in figure 5.8d is ≈ 1.74

MHz. This exhibits a clear spectral broadening due to decrease in lattice period.

This could possibly indicate the presence of an interaction between the atomic

ensembles and is comparable to the Van der Waals interaction strength (see

chapter 2 section 2.2.2) of ≈ 4 MHz between the next to next nearest atomic

ensembles separated by 7 µm shown in figure 5.8a. Due to the large blockadeof

≈ 10 µm as calculated in [134] for principle quantum number 69, we do not

see any effects of nearest neighbour interaction as the 2 adjacent neighbours

could be in the same blockade.

We have also observed that the density of atoms in the tweezer traps increase

as the lattice period reduces as shown in the figure 5.9a. This also results

in the increase in the spectral width of the two-photon Rydberg excitation

spectra as shown in the figure 5.9b where the full width half maximum of

the Gaussian fit to each of the spectra is observed to be increasing with the

increase in the atomic density in the tweezer traps. This could also possibly

contribute to the spectral broadening observed in the figure 5.8b. This could

possibly be due to an increase in the Rydberg-Rydberg interaction for small

lattice separations [178, 179].

5.5 Summary

To summarise, this chapter focuses on achieving narrow-linewidth two-photon

Rydberg excitation spectrum of the microscopic atomic ensembles of 39K

trapped in large arrays of optical tweezer traps. We identify and discuss

qualitatively (section 5.3) the possible mechanisms that could broaden and

limit the spectral width of the transition such as Doppler broadening, power

broadening, dephasing introduced by laser linewidth, inhomegeneity in the

intensity of the excitation laser due to its Gaussian profile and an indication of

interaction effects between the atomic ensembles from the tweezer traps via the

measurements spectral broadening due to the geometry variation (figure 5.8)

as summarised in the table 5.1.The improvements such as the use of a flat-top

excitation beam with uniform intensity at its cross section could be useful in

achieving uniform Rabi coupling experienced by the atoms within the cross

section of the beam. Furthermore, the temperature of atomic ensembles should
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Fig. 5.9: Density effects on spectral broadening. (a) The atomic density in the
tweezer traps increase with decrease in the lattice period where the
adjacent atomic clouds start overlapping with each other. The error
bars are the standard errors calculated by taking the average of atomic
densities for an array of 100 site square tweezer traps as shown in
the figure 5.8. (b) A full width half maximum is caulculated from the
Gaussian fit to the spectra of the tweezer traps of period 3.5 µm by
varying atomic densities as shown in (a). We can clearly observe the
increase in the spectral broadening due to increase in atomic density
as the lattice period reduces.

be reduced to 2 µk to achieve linewidth of ∼ 80 kHz that is approximately

equal to the excitation laser linewidth to avoid thermal effects. To generalise,

Mechanism Estimate

Doppler broadening 122 kHz

Power broadening < 1 MHz

Linewidth of the excitation laser 80 kHz
Inhomogeneous intensity of the
Rydberg excitation lasers

≈ 2 MHz

Tab. 5.1: Summarising the spectral broadening mechanisms This table shows
an estimation of various mechanisms responsible for the spectral
broadening of the two-photon Rydberg excitation of atomic ensembles
from tweezer trap.

an experiment involving two-photon excitation of large tweezer traps of micro-

scopic atomic ensembles, it is beneficial to expose atoms with homogeneous

intensity of the two-photon excitation lasers, the beam alignment of the two

excitation beams should be counter-propagating to avoid Doppler broadening

and laser linewidth should be in the range of few tens of kHz, to achieve

narrow linewidth of the transition.
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Chapter 6

Conclusion and outlook

6.1 Summary:

Ultracold atoms confined in micro-trap arrays is a highly versatile platform for

quantum many-body physics, quantum simulation and quantum computation

because of the easy scalability, long coherence time, single site addressability

and controllable interactions, e.g. using Rydberg states [32, 35–38]. With this

motivation, during the course of this thesis, we have built an upgrade to

our experimental setup based on ultracold potassium-39 atoms to generate

the large arrays of microscopic atomic ensembles using digital micro-mirror

device (DMD) (chapter 3). The integration of DMD in high resolution imaging

system that is incorporated in our ultra-cold atomic experimental platform is

presented along with the brief overview of the vacuum apparatus, laser cooling

and trapping techniques. With the DMD technology, we are able to create

hundreds of programmable arrays of optical tweezer traps. The resolution

that we achieve is ∼ 1 µm that corresponds to approximately 4 pixels on the

DMD chip. To maintain the uniformity of trap depths across the large arrays

of micro-traps, DMD patterns are adapted following an invertible Gaussian

expression to compensate the Gaussian profile of the micro-trap beam. The

estimated trap depth is ≈ 1 mK, trap frequency is ≈100 kHz.

Using this upgraded experimental setup, we have successfully demonstrated

the experimental platform with more than 400 microscopic atomic ensembles

trapped within optical tweezer arrays (chapter 4). We have presented an ap-

proach for realizing hundreds of ultracold atomic ensembles in programmable
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two-dimensional arrays, where each tweezer has approximately uniform filling,

small spatial extent and small fluctuations of the atom number from realiza-

tion to realization. Compared to stochastic loading of the tweezers via light

assisted collisions from a MOT this has several advantages. First, it is possible

to achieve very high occupation numbers N � 1 with relatively low power

requirements per tweezer, since the temperature of the initial reservoir trap

can be lower than the typical temperatures in a MOT and elastic, rather than

inelastic, collisions lead to a high filling probability. This is beneficial for

scaling up to hundreds or even thousands of tweezers as the large volume of

the reservoir trap makes it possible to simultaneously fill many tweezers in

parallel without the need for additional lasers and complex rearrangement

protocols to fill empty sites. The observation that the number of atoms inside

each tweezer exhibits fluctuations below the Poissonian atom shot noise limit

is especially promising for quantum information processing based on small

Rydberg blockaded atomic ensembles benefiting from fast collectively enhanced

light-matter couplings [44, 143, 158, 159, 168].

As the understanding of optical dipole trapping is essential for these experi-

ments, chapter 2 describes the basic principles of optical dipole traps that are

based on the electric dipole interaction with far-detuned light by considering

the atom as a simple oscillator to derive the main equations for optical dipole

interactions that include the dipole potential and the scattering rate. Later the

second half of chapter 2 also describes the basic concepts of Rydberg atoms

that help us introduce the long-range interactions among the tweezer traps that

extend over the distance of several micro-meters.

We have also performed Rydberg excitation of these large arrays of atomic

ensembles with the spectral width of 1.47 MHz ± 0.14 MHz (chapter 5). We

focus on achieving narrow-linewidth two-photon Rydberg excitation spectrum

of the microscopic atomic ensembles of 39K trapped in large arrays of optical

tweezer traps. We identify and discuss qualitatively (section 5.3) the possible

mechanisms that could broaden and limit the spectral width of the transition

such as Doppler broadening, power broadening, dephasing introduced by laser

linewidth, inhomegeneity in the intensity of the excitation laser due to its

Gaussian profile and an indication of interaction effects between the atomic

ensembles from the tweezer traps via the measurements of geometry variation

(figure 5.8). Here we are still yet to understand which mechanism could be the
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dominating factor contributing to the spectral broadening.

6.2 Outlook:

6.2.1 Possible improvements in the current experimental

set-up

In order to achieve narrow-linewidth Rydberg excitation, the improvements

such as the use of a flat-top excitation beam with uniform intensity at its cross

section could be useful to provide uniform Rabi coupling experienced by the

atoms within the cross section of the beam. Furthermore, the temperature

of atomic ensembles should be reduced to ∼ 2 µk to achieve Doppler lim-

ited linewidth of ∼ 80 kHz that is approximately equal to the excitation laser

linewidth. The next steps in the experiment will likely be a more systematic

experimental study of the various decoherence effects summarized in table 5.1

to observe Rabi oscillations between the ground state and the Rydberg state us-

ing two-photon excitation scheme (figure 5.2) by sitting at one of the resonance

peaks shown in the spectrum in figure 5.6. The overall achievement would

make it possible to experimentally explore coherent quantum dynamics in this

set-up for both resonant and off-resonant Rydberg excitation.

There have been many ideas for which such a system of tweezer trap arrays

could be used such as atomic sensors, light-matter interactions, quantum bits,

Rydberg dressed quantum matter - all with programmable atomic geome-

tries [15]. I will discuss three more specific applications that we have been

developing in Strasbourg in the following paragraphs.

6.2.2 Complex system dynamics by Rydberg facilitation:

Spatial structuring of atoms via the large arrays of optical tweezer traps opens

variety of new interesting research directions, such as to study the effect of

different spatial atomic distributions on the complex many-body dynamics.

In reference to [134], the effect of atomic motion on disorder and reloading

could become obvious when we compare a continuous trap, in which the atoms

move freely throughout the volume of the trap, with a spatially structured

cloud that is quasi-continuous corresponding to the condition of facilitation
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but constrains the motion of atoms to smaller volumes of traps [134]. Similarly,

the facilitation shell could be experimentally mapped out by tuning the period

of the lattice. It could be possible to explore the effects of disorder in the

facilitation dynamics in a controlled manner using the irregular structures

corresponding to the facilitation shell [134]. We have begun to study some

these effects in a non-structured ultracold atomic medium [97] as illustrated in

the figure 6.1 reproduced from [97].
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Fig. 6.1: Physical system for studying epidemic growth and dynamics on
complex networks: (Image reproduced from [97]) (A) Experiments
are performed on a two-dimensional continuous non-structured gas of
potassium-39 atoms driven by an off-resonant laser field. The gas is
initially prepared with a small number of seed excitations (blue disks)
which then evolves according to the microscopic processes depicted
in B, giving rise to growing excitation clusters that spread throughout
the system. After different exposure times t, the Rydberg atoms are
field ionized and detected on a microchannel plate detector (MCP),
where the incident ions create voltage spikes (blue trace). (B) Each
atom can be treated as a two-level system with a ground state |gi〉
(gray disks) and excited Rydberg state |ri〉 (larger blue disks). Excited
atoms can decay with rate Γ or facilitate additional excitations with
rate κ at a characteristic distance Rfac analogous to the transmission
of an infection. (C) The dynamics of this system can be described by
a susceptible-infected-susceptible (SIS) model on an emergent hetero-
geneous network. Each node represents a discrete cell of the coarse
grained system, which can be infected (with excitation, blue) or sus-
ceptible (without excitation, white). The infection probability of each
node is weighted by the number of atoms in that cell that can undergo
facilitated excitation (disconnected nodes corresponding to vacant cells
are depicted with dashed lines). (D) Exemplary data and numerical
simulations (solid line) showing three different stages of dynamics:
rapid growth, saturation, and eventual relaxation (data not shown).
Error bars represent the standard error of the mean over typically 16
experiment repetitions.

84



6.2.3 Quantum simulation of energy transport

With the successful development of the platform that led us to achieve control

over tailored geometries of microscopic atomic ensembles using large arrays

of optical tweezer traps separated by several micrometers, we propose an ap-

proach (see figure 6.2) that could be implemented in prospective experiments

that involve exciting Rydberg atoms in these tailored geometries capable of

simulating energy transport with almost full control over the relevant disorder

and coherence properties. The transport of charge, energy and information is

fundamental to the behavior of electronic materials, complex molecules and

information networks. Yet, it is still largely unknown which underlying proper-

ties of the system lead to the most efficient or robust transport, especially in the

presence of quantum effects. Ultracold atoms excited to Rydberg states provide

a unique approach to study fundamental energy transport processes via dipole

interactions in a fully controllable environment [180]. While studies of transport

Fig. 6.2: Schematic representation of energy transport via Rydberg excitation
hopping: (a) Molecular structure of the LH2 complex showing the
ring-like arrangement of chromophores (hopping sites). (b) Proposed
set-up of tweezer traps to simulate energy transport with controllable
geometry (c) Experimental absorption image of a 40 site ring lattice
structure, where each dark spot corresponds to a microscopic ensemble
of ≈ 30 ultracold 39K atoms. The lattice spacing is 4 µm and the
apparent size of each spot is ∼ 0.75 µm (e−1/2 radius), mostly limited
by recoil blurring during imaging (reproduced from [51]).

in solids and molecules have been limited to naturally occurring interactions

and disorder, Rydberg atoms experience giant electric dipole interactions which

extend over much larger length and time scales than in ordinary materials. This

provides the opportunity to achieve full control over the spatial and temporal

configuration of hopping sites to realize physically relevant types of correlated

disorder. The central questions that could be addressed are: 1) how do exci-

tations migrate through quantum many-body system possessing non-trivial
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correlations? 2) can spatially and temporally correlated noise enhance the

robustness and efficiency of energy transport in synthetic quantum systems?

The answers to these questions could help to find the ingredients which lead to

efficient and robust energy transport as is relevant for the operation of natural

and synthetic light harvesting materials. This requires a development of spatial

detection scheme of the Rydberg excitations across the array of tweezer traps,

similar to the high-resolution imaging setup for the atoms in the ground state.

This can be done through down pumping followed by detection of ground

state atoms or through the schemes of spatial detection of ions [45].

6.2.4 Experimental realisation of quantum cellular automata

(QCA):

Another application would be towards studying controlled quantum dynamics.

In the course of this thesis, I contributed to a theoretical proposal for quantum

cellular automata (QCA) [96]. A theoretical proposal for the use of this platform

of array of large tweezer traps of atomic ensembles involves the paradigm of

quantum cellular automata (QCA). In case of classical cellular automata, we

consider array of cells. In our case, it’s a two-level system. And the evolution

of each cell only depends on its neighborhood. For example, the elementary

rule 150, the cell will remain the same, if the two neighbors have the same

state. Otherwise, the cell will flip. At the counterpart, there lies the quantum

cellular automata where the classical cell will be replaced by a qubit. The state

of evolution, determined by quantum master equation, depends on including

the decay process.The advantage lies in a global manipulation. So no local

qubit control needed. It is an inherently parallelized operation. The key idea

to implement the QCA with Rydberg array is to use multi-frequency Rydberg

excitation and depumping. For simplicity, we consider one dimensional chain

of tweezer, in this case. See figure 6.3 (image reproduced from [96]). V is the

nearest neighbor Rydberg-Rydberg interaction. And there are two coupling

fields, which consist of this frequency component, which couples transition

from grand state |g〉 to Rydberg state |r〉 and also from |r〉 to an intermediate

state |e〉 . If the interaction V is dominant compared to the Γ and also the

coupling strength φ and θ, then this three-level system can be reduced to

effective two-level system. We did a numerical study of a nine-site system

based on different QCA rules (details in [96]).
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Fig. 6.3: Physical platform for quantum cellular automata based on arrays
of Rydberg atoms: (Image reproduced from [96]) (a) Proposed setup
showing a 1D array of atoms held in optical microtraps with period
a and nearest-neighbor Rydberg-Rydberg interaction strength V. (b)
Each atom can be described as a three-state system: |gi〉 (open symbols)
|ri〉 (solid symbols) and an additional short lived state |ei〉 . The |gi〉 to
|ri〉 and |ri〉 to |ei〉 transitions on site j are coupled by multifrequency
fields with detunings kV and coupling strengths θk

j and φk
j respectively.

This system can be reduced to an effective two-state system with
programmable K-body interactions (shown on the right for K = 3)
where the couplings θk

j and φ̃k
j realize unitary (reversible) and non-

unitary (dissipative) conditional interactions dependent on the number
of excited neighbors k.
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Referring to [134], for the application of quantum cellular automata, it is still

an uanswered question if Rydberg blockaded ensembles in the superatom

scenario or single atom trapped per tweezer would be beneficial because both

come with challenges and advantages. The atomic ensembles permit the easier

filling of the array avoiding defects such as emprty traps and under blockade

picture, results in the
√

N enhancement of the collective Rabi coupling [71],

here N is the total atom number in the blockade [134]. Other Rydberg ef-

fects that could occur in the dense tweezer trap, such as trilobite molecules,

fluctuations in the atom number between traps might cause problems [134].

Some technical improvements are still necessary in the case of unitary filling

of the tweezer traps even though tweezers of single-atom offer established

techniques of preparation and Rydberg excitation [134, 181]. The coherent

manipulation of the atoms in the array of optical tweezer traps using Rydberg

states along with the multifrequency Rydberg excitation scheme is necessary

for quantum cellular automata (QCA). It is aimed to incorporate the setup of

multiple radio frequencies for addressing the different states in the Rydberg

level manifold [134].

In the final remarks of this thesis, I emphasize the successful demonstration

of a platform of large arrays of hundreds of microscopic atomic ensembles

trapped within optical tweezer traps where each tweezer has approximately

uniform filling, small spatial extent and small fluctuations of the atom num-

ber between realizations. With this approach, it is possible for scaling up to

hundreds or even thousands of tweezers as the large volume of the reservoir

trap makes it possible to simultaneously fill many tweezers in parallel without

the need for additional lasers and complex rearrangement protocols to fill

empty sites. Atomic ensembles also offer enhanced Rabi coupling and greater

robustness against particle loss, since the loss of one or several particles from

each microtrap does not result in defects that would otherwise be difficult

to repair. As a necessary pre-requisite towards the goal of performing the

coherent manipulation of Rydberg excitations among these atomic ensembles, I

have also presented the experiments concerning the narrow-linewidth Rydberg

excitation of these arrays of microscopic atomic ensembles. I look forward

to seeing how these contributions help advance the field, especially towards

opening new research directions that could possibly include: study of collective

light-matter coupling in interacting atomic ensembles, or for building better

qubits that exploit these collective effects, simulation of quantum spin models
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and complex systems with programmable disorder, exploring the role of quan-

tum coherence in molecular quantum dynamics through quantum simulation,

and harnessing quantum dynamics for engineering interesting quantum states

for metrology and computing with programmable spatial configurations and

versatile Rydberg mediated interactions.
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[24] M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger, Fermionic atoms

in a three dimensional optical lattice: Observing fermi surfaces, dynamics,

and interactions, Phys. Rev. Lett. 94, 080403 (2005).
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action in Rydberg Dressed Atoms, Phys. Rev. Lett. 105 ((2010)).

[80] C. Gaul, et al., Resonant Rydberg-dressing of alkaline-earth atoms via

electromagnetically induced transparency, arXiv:1511.06424 ((2015)).

[81] Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, G. W. Biedermann, En-

tangling atomic spins with a Rydberg-dressed spin-flip blockade, Nature

Phys. 12, 71 ((2015)).

[82] J. Zeiher, et al., Many-body interferometry of a Rydberg-dressed spin

lattice, Nature Phys. 12, 1095 ((2016)).
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simulation of energy transport with embedded Rydberg aggregates, Phys.

Rev. Lett. 114, 123005 (2015).
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Sayali SHEVATE
Preparation and Rydberg excitation of

large arrays of microscopic
atomicensembles 

Résumé

Insérer votre résumé en français suivi des mots-clés

Des atomes froids dans des réseaux de pinces optiques sont apparus comme l'un des
plates-formesles plus polyvalent es pour la physique quantique à N-corps, la simulation
et l'informatiquequantiques.  Dans cette thèse, je rapporte un moyen de réaliser des
réseaux de pièges optiquesoccupés uniformément, de tailles bien supérieures à ~200
sites,  en  utilisant  des  collisions  élastiquespar  opposition  aux  collisions  inélastiques
assistées par la lumière et je fais progresserconsidérablement la faisabilité des qubits
basés sur des ensembles atomiques piégés. Nousdémontrons, pour la première fois, des
réseaux polyvalents entièrement remplis d'ensemblesatomiques de plus de 400 pièges
optiques  préparés  à  l'aide  d'une  matrice  de  micro-miroirs,  où  piègemicroscopiques
contient  ~60  atomes,  un  nombre  d'atomes  élevé  et  des  fluctuations
étonnammentfaibles du nombre d'atomes. En utilisant des atomes de Rydberg en forte
interaction, j'étudie ladynamique d'excitation de Rydberg et les interactions à longue
distance  dans  les  grands  réseauxd'ensembles  atomiques.  Cela  ouvre  la  voie  à  la
réalisation de simulateurs quantiques basés sur desensembles atomiques.

Mot-clés :  atomes-froids,  Rydberg,  la  physique  quantique  à  N-corps,  simulateurs
quantiques,ensembles atomiques, pinces optiques

Résumé en anglais

Insérer votre résumé en anglais suivi des mots-clés

Ultracold atoms in optical tweezer arrays have emerged as one of the most versatile
platformsfor  quantum  many-body  physics,  quantum  simulation  and  quantum
computation. In this thesis,I report a way to achieve fully occupied tweezer arrays to
sizes  well  beyond  200  sites  byexploiting elastic  collisions  as  compared  to  light-
assisted  inelastic  collisions  and  along  the  waygreatly  advance  the  feasibility  of
quantum  simulations  based  on  trapped  atomic  ensembles  withprogrammable
geometries. We demonstrate, for the first time, fully filled versatile arrays ofatomic
ensembles  >  400  tweezers  prepared  using  a  digital  micromirror  device,  where
eachtweezer contains ~ 60 atoms in a microscopic volume, high atom number and
remarkably lowatom number fluctuations. As a necessary pre-requisite to performing
the coherentmanipulation of the Rydberg excitation of these atomic ensembles, I
present  experiments  onnarrow  linewidth  two-photon  Rydberg  excitation  of  these
large arrays of atomic ensembles. Ialso discuss an analysis of the effects causing
spectral  broadening.  This work paves the waytowards detailed analysis  of  many-
body  effects  in  a  structured  Rydberg  gas-an  important  steptowards  building  a
quantum simulator based on trapped atomic ensembles in optical  tweezerarrays.
This  opens  up  applications  ranging  from quantum simulation  of  exotic  quantum
spinmodels, quantum dynamics including transport and many-body localization and
quantumcellular automata with programmable spatial configurations and versatile
Rydberg mediated interactions. Keywords : Ultracold atoms, Rydberg, Tweezer trap.
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