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Abstract

Enthusiasm for Machine Learning is spreading to nearly all fields such as transportation,
energy, medicine, banking or insurance as the ubiquity of sensors through IoT makes
more and more data at disposal with an ever finer granularity. The abundance of new
applications for monitoring complex infrastructures (e.g. aircrafts, energy networks)
together with the availability of massive data samples has put pressure on the scientific
community to develop new reliable Machine-Learning methods and algorithms. The
work presented in this thesis focuses around two axes: unsupervised functional anomaly
detection and robust learning, both from practical and theoretical perspectives.

The first part of this dissertation is dedicated to the development of efficient functional
anomaly detection approaches. More precisely, we introduce Functional Isolation Forest
(FIF), an algorithm based on randomly splitting the functional space in a flexible man-
ner in order to progressively isolate specific function types. Also, we propose the novel
notion of functional depth based on the area of the convex hull of sampled curves,
capturing gradual departures from centrality, even beyond the envelope of the data,
in a natural fashion. Estimation and computational issues are addressed and various
numerical experiments provide empirical evidence of the relevance of the approaches
proposed. In order to provide recommendation guidance for practitioners, the perform-
ance of recent functional anomaly detection techniques is evaluated using two real-world
data sets related to the monitoring of helicopters in flight and to the spectrometry of
construction materials.

The second part describes the design and analysis of several robust statistical approaches
relying on robust mean estimation and statistical data depth. The Wasserstein distance
is a popular metric between probability distributions based on optimal transport. Al-
though the latter has shown promising results in many Machine Learning applications,
it suffers from a high sensitivity to outliers. To that end, we investigate how to lever-
age Medians-of-Means (MoM) estimators to robustify the estimation of Wasserstein
distance with provable guarantees. Thereafter, a new statistical depth function, the
Affine-Invariant Integrated Rank-Weighted (AI-IRW) depth is introduced. Beyond the
theoretical analysis carried out, numerical results are presented, providing strong empir-
ical confirmation of the relevance of the depth function proposed. The upper-level sets
of statistical depths—the depth-trimmed regions—give rise to a definition of multivari-
ate quantiles. We propose a new discrepancy measure between probability distributions
that relies on the average of the Hausdorff distance between the depth-based quantile re-
gions w.r.t. each distribution and demonstrate that it benefits from attractive properties
of data depths such as robustness or interpretability.

All algorithms developed in this thesis are open-sourced and available online.



Résumé

L’engouement pour l’apprentissage automatique s’étend à presque tous les domaines
comme l’énergie, la médecine ou la finance. L’omniprésence des capteurs met à dis-
position de plus en plus de données avec une granularité toujours plus fine. Une
abondance de nouvelles applications telles que la surveillance d’infrastructures com-
plexes comme les avions ou les réseaux d’énergie, ainsi que la disponibilité d’échantillons
de données massives, potentiellement corrompues, ont mis la pression sur la commun-
auté scientifique pour développer de nouvelles méthodes et algorithmes d’apprentissage
automatique fiables. Le travail présenté dans cette thèse s’inscrit dans cette ligne de
recherche et se concentre autour de deux axes : la détection non-supervisée d’anomalies
fonctionnelles et l’apprentissage robuste, tant du point de vue pratique que théorique.

La première partie de cette thèse est consacrée au développement d’algorithmes efficaces
de détection d’anomalies dans le cadre fonctionnel. Plus précisément, nous introduisons
Functional Isolation Forest (FIF), un algorithme basé sur le partitionnement aléatoire
de l’espace fonctionnel de manière flexible afin d’isoler progressivement les fonctions les
unes des autres. Nous proposons également une nouvelle notion de profondeur fonc-
tionnelle basée sur l’aire de l’enveloppe convexe des courbes échantillonnées, capturant
de manière naturelle les écarts graduels de centralité. Les problèmes d’estimation et
de calcul sont abordés et diverses expériences numériques fournissent des preuves em-
piriques de la pertinence des approches proposées. Enfin, afin de fournir des recom-
mandations pratiques, la performance des récentes techniques de détection d’anomalies
fonctionnelles est évaluée sur deux ensembles de données réelles liés à la surveillance des
hélicoptères en vol et à la spectrométrie des matériaux de construction.

La deuxième partie est consacrée à la conception et à l’analyse de plusieurs approches
statistiques, potentiellement robustes, mêlant la profondeur de données et les estim-
ateurs robustes de la moyenne. La distance de Wasserstein est une métrique populaire
résultant d’un coût de transport entre deux distributions de probabilité et permettant de
mesurer la similitude de ces dernières. Bien que cette dernière ait montré des résultats
prometteurs dans de nombreuses applications d’apprentissage automatique, elle souf-
fre d’une grande sensibilité aux valeurs aberrantes. Nous étudions donc comment tirer
partie des estimateurs de la médiane des moyennes (MoM) pour renforcer l’estimation
de la distance de Wasserstein avec des garanties théoriques. Par la suite, nous in-
troduisons une nouvelle fonction de profondeur statistique dénommée Affine-Invariante
Integrated Rank-Weighted (AI-IRW). Au-delà de l’analyse théorique effectuée, des ré-
sultats numériques sont présentés, confirmant la pertinence de cette profondeur. Les
sur-ensembles de niveau des profondeurs statistiques donnent lieu à une extension pos-
sible des fonctions quantiles aux espaces multivariés. Nous proposons une nouvelle
mesure de similarité entre deux distributions de probabilité. Elle repose sur la moyenne
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de la distance de Hausdorff entre les régions quantiles, induites par les profondeur de
données, de chaque distribution. Nous montrons qu’elle hérite des propriétés intéress-
antes des profondeurs de données telles que la robustesse ou l’interprétabilité.

Tous les algorithmes développés dans cette thèse sont accessible en ligne.
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The recent technological advances in data acquisition and management through IoT and
distributed platforms offer new perspectives in many areas of human activity such as
transportation, energy, health, commerce, insurance and confront these domains with
major scientific challenges for exploiting these observations. The ever growing availabil-
ity of massive data, often collected in quasi-real time, engendered high expectations, in
particular the need of increased automation and computational efficiency, with the goal
to design more and more “intelligent” systems. Despite the ubiquity of sensors collecting
massive data which enhances inference accuracy of algorithms, it also foreshadows con-
taminated information either by flaws in measuring devices or by malicious attacks of
the system, see e.g. Shafique et al. (2020). The presence of corrupted data may jeopard-
ize the smooth operation of the system of interest leading to disastrous consequences
in sensitive applications such as autonomous driving, aviation safety management or
health monitoring systems.

Contaminated data arise in a variety of real-life processes while most of the classical
methods from Machine Learning and Statistics assume that observed data correspond
to the underlying distribution. Thus, there are possibly two ways to deal with such
situations: (i) by designing a robust procedure that will be able to retrieve information
present in uncorrupted data without being deteriorated by the corrupted ones and (ii) by
finding outliers to remove them from the data set in order to apply a Machine Learning
algorithm. In this thesis, our work revolve around two main aspects resulting from this
problematic: unsupervised anomaly detection and robust learning. We introduce many
efficient statistical procedures, both in terms of statistical accuracy and computational
time, that contribute to the aforementioned areas. With the ubiquity of sensors in
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the IoT era, statistical observations are becoming increasingly available in the form of
massive time-series or functions. The case of functional data is thus of crucial interest
in practice. Although unsupervised anomaly detection has been widely documented in
the literature for multivariate data, the case of functional data remains understudied.
Filling this gap is the angle embraced in the first part of this thesis. The second part
introduces general statistical procedures, relying on the concept of data depth and
robust mean estimation, that are able to handle corrupted data during inference.

1.1 Introduction

From a statistical perspective, the analysis of data that come out from industrial pro-
cesses raises many challenging methodological issues such as identifying corruptions and
recovering useful information from a contaminated data set. Several classical statistical
models include, generally additive, noise corruptions (see e.g. Rousseeuw and Leroy,
1987): rather than observing an element x lying in a given space, we assume that x+ ζ
is observed, where ζ is a zero mean random variable. With recent advances in data
collection, this heuristic appears limited to model real applications where the noise can
be predominant. Instead, it is often more convenient to consider that a small fraction of
the data set is thoroughly corrupted. The elements belonging to this small fraction will
thus be denominated as outliers or anomalies and correspond to elements or patterns
that deviate from the expected behavior, see e.g. Figure 1.1.

Introduced in the seminal work of Huber (1964), the Huber contamination model is
probably the most popular corruption model. Given two probability distributions PN
and PA corresponding to normal and abnormal distributions respectively, this model
supposes that the observed sample X1, . . . , Xn is independently and identically distrib-
uted (i.i.d.) from the mixture distribution P = (1 − ε)PN + εPA where ε ∈ (0, 1) is
the fraction of corruption. Following this, a robust procedure needs to be designed
to retrieve information present in uncorrupted data generated from PN without being
deteriorated by data generated from PA. In general, the design of efficient robust ap-
proaches is challenging and involves a trade-off between: (i) the statistical accuracy: the
quality of recovering information from the uncorrupted data, (ii) the robustness: the
ability to recover this information up to a certain proportion of anomalies, and (iii) the
computational efficiency. Alternatively, one can find data generated from PA in order to
remove them from the data set and then apply any Machine Learning algorithm using
data from PN . The first approach is known as robust learning whereas the second is
known as anomaly detection.

It is worth noticing that many real-world problems can be formulated as an anomaly
detection problem extending the scope of anomaly detection beyond a pre-processing
step. For example, in a manufacturing line, the main concern is to avoid, or at least
to reduce as most as possible, false negatives, i.e. releasing defective products on the
market. The aim of ML approaches is then to help engineers to automatically monitor
the production line in order to provide the following benefits: (i) to reduce the number
of products with flaws that are considered as sane when leaving the production line
and (ii) to detect as fast as possible flaws in a product to avoid useless and expensive
operations and thus increase the number of intact items produced per day1.

1The work presented in this dissertation has been funded by BPI France in the context of the PSPC
Expresso project, with the objective of developing algorithms to monitor a production line in a Valeo’s
factory.
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Figure 1.1 – Histogram of a data set with outliers.

In the following, we devote an introduction to our contributions by recalling the state-
of-the-art and challenges arising in functional anomaly detection and robust metrics.
In Section 1.2, we describe standard approaches dedicated to unsupervised anomaly
detection for multivariate data and explain challenges arising when data take the form
of functions. Focusing on discrepancy measures between multivariate probability dis-
tributions, with emphasis on the Wasserstein distance, robust variants are developed
through robust mean estimation and data depth. In Section 1.3, after briefly recalling
popular metrics between probability distributions with stress on the Wasserstein dis-
tance, we present Median-of-Means estimators and highlight our contributions. Section
1.4 presents the outline of this manuscript. Section 1.5 finally details the publications
resulting from this work.

Notations. Throughout this manuscript, we denote by (Ω,A,P) the probability space
on which all the random quantities are defined. The set Ω is associated to the σ-algebra
A of its subsets and P is a probability measure defined on the measurable space (Ω,A).
Any measurable spaceM will be considered with its collection of Borel measurable sub-
sets. Given a measurable spaceM, P(M) stands for the space of probability measures
defined onM. Let P ∈ P(M), by X ∼ P is meant a random variable X taking its val-
ues inM following the distribution P . In this dissertation, we focus on two main types
of data belonging to: (i) the finite-dimensional Euclidean spaceM = Rd, where d ∈ N∗
(Chapter 2, Chapter 4 and Part III) and (ii) real-valued functional spacesM = F(T),
where T is any compact set of R (Chapter 3 and Part II). To avoid confusions, random
variables taking values in F(T), probability measures defined on F(T) and any element
of F(T) are bolded. The space F(T) will often be referred to as F when it is not neces-
sary to specify T. The measurable spaceM will be used in this chapter when assertions
are true for any measurable spaces.

1.2 Functional Anomaly Detection

The word anomaly refers to anything that is not normal and has meaning in many
domains such as in biology, sociology or industry (e.g. predictive maintenance, cyber-
security). When some quantitative information related to a process is available, the
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objective is to leverage this knowledge to improve the underlying process. It is often
performed by a domain expert that has first to identify which part of the data is worth-
while. When dealing with massive and complex data, relying on automatic procedures
such as Machine Learning algorithms is then helpful: this is the aim of anomaly detec-
tion to identify the valuable part of the data. We refer the reader to Chandola et al.
(2009) for a large review on anomaly detection.

In real-world applications, anomalies often appear unexpectedly in a process. Labels are
therefore not induced by the process itself but rather require human resources such as
domain experts. Assigning labels is then time-consuming and sub-optimal for compan-
ies. Anomaly detection is often performed in an unsupervised manner in practice and
will be the setting used in this dissertation. Unsupervised anomaly detection corres-
ponds to the case where no a priori knowledge on the normal nor on the abnormal are
known. From this perspective, the common assumption is to consider that the normal
behavior corresponds to what is usual/similar. In contrast, anomalies are considered
rare. This implies that data have a hidden structure representing information of uncor-
rupted data while anomalies are elements that deviate from this structure. The goal
of unsupervised anomaly detection is then to learn a model characterizing the normal
behavior from data composed of normal and abnormal data. In an unsupervised setting,
we assume that the observation sample X1, . . . , Xn comes from n i.i.d. realizations of a
probability distribution P = (1−ε)PN+εPA with a small ε ∈ (0, 1) and PN , PA ∈ P(M)
having no information about PN or PA. The key question is: how to learn a function
from the data, named often decision function or prediction function, that will be able
to predict if a new observation x ∈ M has been generated from PN or PA? Precisely,
the goal is then to build a function η :M→ {+1,−1} such that given an observation
x ∈M, η(x) = 1 if x is normal and η(x) = −1 if x is abnormal.

Unsupervised anomaly detection in the multivariate setting (whenM⊂ Rd with d ≥ 1)
is well-documented in the literature and a large variety of dedicated techniques have
been proposed and investigated. The vast majority of the heuristics considered consist
in turning supervised learning methods into unsupervised approaches, where labels are
replaced by rarity, anomalies being supposed to be rare by definition (e.g. SVM be-
coming one-class SVM, classification trees becoming isolation trees). In contrast, there
has not been as much attention paid to the functional situation until now. The aim of
Section 1.2.1 is to present general techniques used to perform multivariate unsupervised
anomaly detection. In Section 1.2.2 we discuss the challenges raised by the functional
framework. Finally, contributions related to this part are gathered in Section 1.2.3.

1.2.1 Anomaly Detection for Multivariate Data

From a statistical perspective, the general problem of anomaly detection can be form-
alized as a statistical hypothesis test. Assume for this subsection that distributions
PN ∈ P(Rd) and PA ∈ P(Rd) of normal and abnormal observations are known. Given
an observation x ∈ Rd, the aim is to find if x has been generated by PN or PA leading
to the statistical hypothesis test:

{
H0 : x ∼ PN
H1 : x ∼ PA.
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The optimal way to solve this test is the approach of Neyman-Pearson (Neyman and
Pearson, 1933). For α ∈ (0, 1), it consists in finding a critical region G∗α of Rd that
maximizes the power of the test, i.e. the probability PA(G∗α), such that the type-I error
PN (G∗α) is lower than a confidence level 1 − α. More precisely, it is formalized by the
following optimization problem:

max
G

PA(G) s.t. PN (G) ≤ 1− α,

where the max is taken over all Borelian sets of Rd. Equivalently, considering comple-
ment sets, it can be formulated as:

min
S

PA(S) s.t. PN (S) ≥ α. (1.1)

Notice that the optimal region G∗α can be taken as G∗α = Rd\S∗α where S∗α is a solution
of the optimization problem (1.1). If furthermore PN is absolutely continuous w.r.t.
PA, the set S∗α can be characterized by the likelihood ratio between PN and PA: S∗α ={
x ∈ Rd : (dPN/dPA)(x) > tα

}
with some tα > 0. It turns out that anomaly detection

boils down to find upper-level sets of the underlying density of PN w.r.t. PA. This
statistical framework is meaningful in the case of supervised anomaly detection where
labels are available and is related to Neyman-Pearson classification (Cannon et al., 2002;
Scott and Nowak, 2005; Rigollet and Tong, 2011). However, as anomalies are supposed
to be rare, the structure of the probability distribution PA cannot be properly observed
in data in general even when labels are available. It turns out that the aforementioned
likelihood ratio is therefore difficult to compute in practice.

In an unsupervised setting, we no longer have access to PN nor PA but only to P =
(1−ε)PN +εPA and a different approach should be investigated. A common assumption
made by statisticians in this situation is to consider anomalies to be rare, located in the
tail of the distribution. If P has a density w.r.t. the Lebesgue measure, the problem boils
down to find high density regions corresponding to normal observations while anomalies
are located in the low density regions.

Density level sets estimation. Focusing on the finite-dimensional space Rd, a widely
used approach for unsupervised anomaly detection, assuming that anomalies are not
concentrated, consists in finding a certain density level set {x : f(x) > t} with a
threshold t > 0 close to zero (see e.g. Figure 1.2), where f is assumed to be the density
of the mixture P = (1−ε)PN+εPA w.r.t. the Lebesgue measure with P, PN , PA ∈ P(Rd)
(see e.g. Steinwart et al., 2005). Fixing the threshold t = t∗ then provides the normal
region {x : f(x) > t∗} leading to the prediction function η : Rd → {+1,−1} defined by
η(x) = 2I{f(x) > t∗} − 1.

The probability distribution P ∈ P(Rd) is unknown in practice and density level sets
have to be estimated thanks to the observations. Let X1, . . . , Xn an i.i.d. sample follow-
ing P and denote by Pn the empirical measure defined as Pn = (1/n)

∑n
i=1 δXi , where

δx means the Dirac mass at point x. There are essentially two approaches for estimating
density level sets.

• Plug-in approach. A natural idea is to resort to plug-in methods where the
density is replaced by an estimate f̂ in the level sets (Tsybakov, 1997). The density
is generally estimated using a non-parametric kernel estimator (Baillo et al., 2001;



26 CHAPTER 1. MOTIVATIONS AND CONTRIBUTIONS

Figure 1.2 – Density level set with a fixed threshold t.

Baillo, 2003; Cadre, 2006). This approach has several drawbacks. Statistical rates
are known to suffer from the curse of dimensionality and have been derived in
(Tsybakov, 1997; Rigollet and Vert, 2009; Chen et al., 2017; Qiao and Polonik,
2019) among others (see also Mason and Polonik (2009) for asymptotic normality).
In addition, this approach captures more information than needed such as local
properties of f that are unnecessary for estimating density level sets.

• Direct approach. The second approach relies on direct methods based on min-
imum volume set estimation (Einmahl and Mason, 1992; Polonik, 1997; Scott and
Nowak, 2006) or empirical excess-mass maximization (Hartigan, 1987; Polonik,
1995) that are closely related. Let α ∈ (0, 1), a minimum volume set MV ∗α is a
solution solving the constrained minimization problem:

min
S

λd(S) s.t. P (S) ≥ α,

where the minimum is taken over measurable subsets S of Rd. It can be shown that
MV ∗α is unique and there exists a unique tα such that MV ∗α = {x : f(x) > tα}
under mild assumptions on f (Einmahl and Mason, 1992; Polonik, 1995; Nunez-
Garcia et al., 2003). However, these methods suffer both from the curse of dimen-
sionaly as studied in Singh et al. (2009); Mammen and Polonik (2013) and from a
computational burden that grows exponentially with the dimension d (Scott and
Nowak, 2006).

Remark 1.1. Density level sets are optimal regions of the Neyman-Pearson test when
normal and abnormal distributions are known (supervised setting) or when the normal
distribution is known and the abnormal distribution is assumed to be uniform on a
compact set (semi-supervised setting). Nonetheless, these information are unavailable
in the unsupervised setting.

Remark 1.2 (Limitations). So far, computing density level sets of the mixture P =
(1−ε)PN +εPA to solve the unsupervised anomaly detection task supposes that abnormal
observations do not belong to a group of concentrated observations. However, it might
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fail in practice to detect clusters of anomalies and assume somehow that anomalies are
uniformly distributed. In addition, the density is a local measure assigning the score of
an element as the probability mass in an infinitesimal neighborhood that might fail to
provide meaningful information on outliers since it cannot rank properly data that are
isolated, i.e. without probability mass around them. Indeed, it will assign zero score to
every x ∈ Rd that are far from concentrated regions regardless how far it is. Thus, the
score returned by the density fails to reflect the degree of abnormality of data.

Learning a scoring function. An alternative approach to density level sets consists
in learning a scoring function that provides a score reflecting the degree of abnormality
of observations. The aim is to design a scoring function s defined as any measurable
function s : Rd −→ R+, where R+ is the set of non-negative reals, such that for any x ∈
Rd, the smaller s(x), the more abnormal is x. The function s thus provides a pre-order
in Rd w.r.t. the probability distribution P . The prediction function η : Rd → {+1,−1}
is then defined by η(x) = 2 I{s(x) > t∗} − 1, where t∗ is a fixed threshold chosen by
the statistician. The choice of t∗ is critical and must be addressed carefully. However,
there is no optimal technique to address this choice in an unsupervised setting and it is
often performed using domain expertise in applications.

Clearly, this formalism encompasses the density level sets approach and opens the way
for multiple methods. Numerous anomaly detection algorithms, that return an anom-
aly score, have been introduced the last two decades ranging from classical Machine
Learning algorithms to the most recent deep learning models. It includes among oth-
ers: the One-Class Support Vector Machine (OCSVM; Schölkopf et al., 2001), Sup-
port Vector Data Description (SVDD; Tax and Duin, 2004), One-Class Neighbor Ma-
chine (OCNM; Moguerza and Muñoz, 2006), k-NN based approaches (Zhao and Sali-
grama, 2009; Sricharan et al., 2011), Local Outlier Factor (LOF; Breunig et al., 2000),
Histogram-Based Outlier Score (HBOS; Goldstein and Dengel, 2012), Copula-Based
Outlier Detection (CBOD; Li et al., 2020), Auto-Encoder (AE) where the reconstruc-
tion score is used as anomaly score (Zhou and Paffenroth, 2017) and Variational Auto-
Encoder (VAE; An and Cho, 2015). We refer the reader to the survey of Chandola et al.
(2009) for several additional techniques.

One of the most popular techniques is the Isolation Forest (IF) algorithm (Liu et al.,
2008, 2012) (see also Hariri et al., 2019). This unsupervised algorithm can be viewed
as an Ensemble Learning method insofar as it builds a collection of binary trees and an
anomaly scoring function based on the aggregation of the latter. An isolation tree is a
binary tree, representing a nested collection of partitions of the finite dimensional feature
space, grown iteratively in a top-down fashion, where the cuts are axis perpendicular
and random (uniformly, w.r.t. the splitting direction and the splitting value both at
the same time). A tree is thus built by iterating this procedure until all training data
points are isolated (or the depth limit set by the user is attained). An isolation tree
constructed accordingly to a training subsample allows to assign to each training sample
a path length, namely the depth at which it is isolated from the others. More generally,
it can be used to define an anomaly score for any point x ∈ Rd.

Remark 1.3. In particular cases, the upper-level sets of the returned scoring function
can be seen as approximations of density levels sets such as for OCSVM (Vert and
Vert, 2006) or OCNM (Moguerza and Muñoz, 2006). Indeed, for any increasing map
g : R→ R, the collection of level sets of g◦f is identical to that of the density f . Thus, it
is sufficient to estimate any representative of the class of all increasing transformations
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of f to obtain its level sets. Density level sets can be approximated by level sets of any
scoring function that provides an ordering close to that of the density. The quality of
the approximation can be assessed by means of the Mass-Volume curve (Clémençon and
Jakubowicz, 2013; Clémençon and Thomas, 2018) or Excess-Mass curve (Goix, 2016)
criteria.

Multivariate Data depth. Widely developed in the statistical literature, multivariate
data depths aim to provide a score that reflects the centrality of any element x ∈ Rd w.r.t
a probability distribution and can therefore be included in scoring function approaches.

The natural left-to-right ordering of elements in the real line R, given by the operator
“≤”, is the cornerstone of many fundamental univariate statistics. This is the case of
quantile and distribution functions, as well as their empirical counterparts such as ranks
and signs, all strongly related to the notion of order. The problem of identifying points
that deviate from P1 ∈ P(R) is then straightforward when working in a univariate space.
Given a univariate sample X1, . . . , Xn drawing from a distribution P1 ∈ P(R), empirical
quantiles are then order statistics obtained by sorting the sample into ascending order
X(1) ≤ . . . ≤ X(n). If an element x ∈ R is smaller (or larger) than the majority of
the sample, i.e. x is close to X(1) (or to X(n)) then x can be assigned as an outlier or
a non-central point w.r.t. the distribution P1. However, there is no canonical ordering
in Rd when d ≥ 2. A key question is then: how to construct functions that provide
statistical ordering for multivariate data?

Noticing that the univariate median can be described as the element minimizing the
maximum number of data points on one of its sides (Hotelling, 1929), John Tukey
(Tukey, 1975) suggested the notion of depth within a data cloud for picturing bivariate
data. Afterwards, so as to measure the depth of an arbitrary point x ∈ Rd, Donoho
and Gasko (1992) considered hyperplanes through x and determined its depth by the
smallest portion of data that is separated by such hyperplanes. Since then, this idea
has proved to be very fruitful and has lead to a rich statistical methodology, still in pro-
gress, in particular with the design of more general nonparametric depth statistics. In
a nutshell, the depth of a data point describes its centrality, or outlyingness inversely,
relatively to the data cloud, and thus defines a pre-order on the feature space: the
smaller its depth, the likelier a point can be considered as an outlier. For a distribution
P ∈ P(Rd) with d > 1, by transporting the natural order on the real line to Rd, a
depth function D(·, P ) : Rd → R+ provides a center-outward ordering of points in the
support of P and can be straightforwardly used to extend the notions of (signed) rank
or order statistics to multivariate data, which find numerous applications in Statistics
and Machine Learning (e.g. robust inference, hypothesis testing, novelty/anomaly de-
tection), see e.g. Mosler and Mozharovskyi (2020). The earliest proposal is the halfspace
depth developed in Tukey (1975), whose popularity arises in particular from its strong
connection with the notion of distribution function in the univariate context. Indeed,
for any probability measure P1 ∈ P(R), constructed as a median-oriented distribution
function, the univariate halfspace depth is given by: ∀t ∈ R,

DH,1(t, P1) = min{F (t), 1− F (t−)},

where F is the cdf associated to P1 and F (t−) denotes the left-sided limit of F at t.

Considering a multivariate r.v. X with probability distribution P ∈ P(Rd) with d > 1,
its halfspace depth at x ∈ Rd is then defined as the infimum of the probability mass
taken over all possible closed halfspaces passing through x:
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Figure 1.3 – Halfspace upper-level set with a fixed threshold α.

DH(x, P ) = inf
u∈Sd−1

P
(
〈u,X〉 ≤ 〈u, x〉

)
,

denoting by 〈·, ·〉 and || · || the usual Euclidean inner product and norm on Rd, and
by Sd−1 = {z ∈ Rd : ||z|| = +1} the unit sphere of Rd w.r.t. the Euclidean norm.
The halfspace depth, probably because of its appealing properties (see Chapter 2), is
undeniably the most documented notion of depth function in the statistical literature.
Numerous definitions have been proposed, as alternatives to the halfspace depth: among
many others, the simplicial depth (Liu, 1990), the projection depth (Liu, 1992), the
majority depth (Liu and Singh, 1993), the Oja depth (Oja, 1983), the zonoid depth
(Koshevoy and Mosler, 1997), the spatial depth (see Chaudhuri, 1996 or Vardi and
Zhang, 2000) or the Monge-Kantorovich depth (Chernozhukov et al., 2017).

In order to compare systematically merits and drawbacks of depth proposals, Zuo and
Serfling (2000b) have devised an axiomatic nomenclature of statistical depths, listing
key properties that should be ideally satisfied by a depth function. Roughly, as depth
functions serve to define center-outward orderings, if a distribution P on Rd has a unique
center θ ∈ Rd (i.e. a symmetry center in a certain sense), the latter should be the deepest
point and the depth should decrease along any fixed ray through it. One also expects
that a depth function vanishes at infinity and does not depend on the coordinate system
chosen. This latter property is usually formulated as affine-invariance. Today, in its
variety of notions and applications, data depth constitutes a versatile methodology that
has been successfully employed in a variety of Machine Learning tasks such as regression
(Rousseeuw and Hubert, 1999a; Hallin et al., 2010), classification (Li et al., 2012; Lange
et al., 2014), anomaly detection (Serfling, 2006a; Hubert et al., 2015) and clustering
(Jörnsten, 2004). We refer the reader to Chapter 2 for a large review on multivariate
data depth.
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1.2.2 Functional Data Analysis

With the deployment of sensors monitoring their operation nearly continuously, Machine
Learning is expected to provide solutions for predictive maintenance of sophisticated
systems, such as electricity grids or aircrafts, facilitating the early detection of “weak”
signals that announce breakdowns, and serving to plan the replacement of components
before their probable failure. Beyond the control of the false alarm rate, the challenge
now essentially consists in fully exploiting the information collected, taking often the
form of measurements of a physical variable sampled at a very high frequency. In this
case, the observations cannot be treated as multivariate data and a functional approach
is required. Functional data are available in the form of functions, images and shapes
or more general objects (Wang et al., 2016), their statistical analysis, referred to as
functional data analysis (FDA in abbreviated form) has received much interest in the
last two decades, see e.g. Ramsay and Silverman (2005), Ferraty and Vieu (2006) or
Wang et al. (2016).

A functional random variable X is a random variable (r.v.) that takes its values in a
space of functions. To be more specific, let T ⊂ R be a compact interval and consider
a r.v. taking its values in the space F(T) of real valued functions x : T → R:

X : Ω −→ F(T)
ω 7−→ X(ω) = {X(ω, t), t ∈ T}.

Common choices for the space F(T) are the space of real-valued continuous functions
C(T) and the space of square integrable functions w.r.t. the Lebesgue measure denoted
by L2(T). The space T is often considered as time but curves can be parametrized
by any variable according to the applications. In practice, only a finite dimensional
marginal (X(t1), . . . ,X(tp)), t1 < . . . < tp, p ≥ 1 and (t1, . . . , tp) ∈ Tp can be observed.
However, considering (X(t1), . . . ,X(tp)) as a discretized curve rather than a simple
random vector of dimension p permits to take into account the dependence structure
between the measurements over time, especially when the time points tj are not equis-
paced. To come back to a function from discrete values, interpolation procedures or
approximation schemes based on appropriate dictionaries can be used, combined with
a preliminary smoothing step when the observations are noisy, see Ramsay and Silver-
man (2002). From a statistical perspective, the analysis is based on a functional sample
X1, . . . ,Xn composed of n ≥ 1 independent realizations of finite-dimensional marginals
of the stochastic process X, that may be very heterogeneous in the sense that these
marginals may correspond to different time points and be of different dimensionality.

In this particular context, functional anomaly detection aims at detecting the curves
that significantly differ from the others among the data set available. Given the richness
of spaces of functions, the major difficulty lies in the huge diversity in the nature of
the observed differences, which may not only depend on the locations of the curves.
Following in the footsteps of Hubert et al. (2015), one may distinguish between three
types of anomalies: shift (the observed curve has the same shape as the majority of the
sample except that it is shifted away), amplitude or shape anomalies. All these three
types of anomalies can be isolated/transient or persistent, depending on their duration
with respect to that of the observations. In many applications, anomalies can also be
an aggregation of all the aforementioned types, see e.g. Figure 1.4.
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Figure 1.4 – A functional data set with unknown anomalies.

Extending multivariate approaches to the functional case is very difficult in general.
There is no analogue of the Lebesgue measure in an infinite-dimensional Banach space.
Considering a law µ of reference (e.g. the Wiener or a Poisson measure) on the function
space F of interest, the quantity µ(F) of a measurable subset F ⊂ F can be hardly
computed in general. Thus, it is far from straightforward to extend multivariate ap-
proaches to the functional setup. Of course, anomaly detection for functional data can
be reduced to the implementation of its counterpart in the multivariate case by means
of straightforward dimensionality reduction techniques. Indeed, one may first project
the observed curves onto a subspace of finite dimension by keeping the most informative
components of a Kahrunen-Loève decomposition (i.e. those with largest empirical vari-
ance) referred to as Functional Principal Components Analysis (FPCA; see e.g. Ramsay
and Silverman, 2005) or by truncating their expansion in a Hilbertian basis of refer-
ence, using a flexible dictionary of functions (e.g. Fourier basis, wavelets). This step is
often referred to as the filtering stage. Next, any anomaly detection method designed
for multivariate observations can be used for analyzing the (parsimonious) filtered data
thus obtained.Though easy to implement, such methods have obvious drawbacks. In
FPCA, estimation of the Kahrunen-Loève basis can be very challenging and lead to
loose approximations, jeopardizing next the anomaly detection stage. The a priori rep-
resentation offered by the “atoms” of a predefined basis or frame may unsuccessfully
capture the patterns carrying the relevant information to distinguish abnormal curves
from the others. Hence, a certain finite-dimensional representation tailored to the de-
tection of a specific type of anomaly may completely fail in detecting the other types,
see e.g. Figure 1.5.

To overcome these issues, one possible approach is to rely on designing scoring functions
s : F → R+ working directly on functions. Though a very rich information can be
carried by functional data, the downsides of FDA are challenges for designing feasible
numerical procedures and for establishing a sound validity theoretical framework alike.
Although FDA has been the subject of much attention in recent years, very few generic
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Figure 1.5 – Two functional observations (black curves) from an arbitrary data set
and their reconstruction (blue curves) using 10 first principal components of FPCA: a
normal observation, well reconstructed (left) and an abnormal one, poorly reconstructed
(right).

and flexible methods tailored to functional anomaly detection are documented in the
Machine Learning literature to the best of our knowledge, except for specific types of
anomalies, see e.g. Rousseeuw and Hubert (2018b) and the references therein.

Functional Data Depth. The statistical literature on functional depths provides a
rich methodology for designing scoring functions. Depths in a functional framework
have been first considered in Fraiman and Muniz (2001), where authors proposed to
define functional depths as simple integrals over time T of a univariate depth function
D : R × P(R) → [0, 1]. Due to the averaging effect, local changes for the curve x ∈ F

only induce slight modifications of the depth value which makes anomaly detection
approaches based on such “poorly sensitive” functional depths ill-suited in general, es-
pecially for isolated anomalies. Alternatives have been introduced, among others, see
López-Pintado and Romo (2009, 2011) for depths based on the geometry of the set
of curves, Chakraborty and Chaudhuri (2014b) for a notion of depth based on the L2

distance or Dutta et al. (2011) for a functional version of the halfspace depth. Dir-
ect extension of multivariate data depth methods to the functional setting turns to be
impractical because the resulting depth functions then vanish everywhere during the
optimization, as pointed out in e.g. Kuelbs and Zinn (2015), due to the richness of the
feature space.

Let X be a functional random variable having a distribution P ∈ P(F). Formally, a
statistical functional depth is defined as follows:

FD : F × P(F) −→ [0, 1] ,
(x,P) 7−→ FD(x,P).

This statistical depth function provides an ordering in the space of curves, see e.g.
Figure 1.6. Depending on the depth functions considered, the two common choices
for F in the literature are (i) C(T), the space of continuous functions defined on T

equipped with the infinity norm ||x||∞ = sup
t∈T
|x(t)| and (ii) L2(T, λ), the space of

square integrable functions w.r.t. the Lebesgue measure λ equipped with the norm
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Figure 1.6 – Ordering returned by the functional halfspace depth. The darker the color,
the deeper it is in the data set.

||x||L2 =
√∫

T
x(t)2 λ(dt).

As discussed in Nieto-Reyes and Battey (2016) and Gijbels and Nagy (2017), the ax-
iomatic framework introduced in Zuo and Serfling (2000b) for multivariate depth is no
longer adapted to the richness of the topological structure of functional spaces. Indeed,
the vast majority of the functional depths documented in the literature do not fulfill
versions of the most natural and elementary properties required for a depth function in
a multivariate setup, cf. Gijbels and Nagy (2017). However, there is still no consensus
about the set of desirable properties that a functional depth should satisfy, beyond the
form of sensitivity mentioned above. We refer the reader to Chapter 3 for a large review
on functional data depth.

1.2.3 Contributions

In this thesis, we propose two new tools for functional anomaly detection.

We extend the popular Isolation Forest (IF) approach to anomaly detection, originally
dedicated to finite dimensional observations, to functional data. The major difficulty
lies in the wide variety of topological structures that may equip a space of functions
and the great variety of patterns that may characterize abnormal curves. We address
the issue of (randomly) splitting the functional space in a flexible manner in order to
isolate progressively any trajectory from the others, a key ingredient to the efficiency
of the algorithm. Beyond a detailed description of the proposed algorithm, named
Functional Isolation Forest (FIF), computational complexity, stability issues and
performances are investigated at length. From the scoring function measuring the degree
of abnormality of an observation provided by the proposed variant of the IF algorithm,
a multivariate functional extension is defined and discussed.
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We introduce a novel robust functional statistical depth measure dedicated to the ana-
lysis of functional data. Based on the area of the convex hull of collections of sampled
curves, it is easy to compute and to interpret both at the same time. The general idea
is to quantify the contribution of a curve x ∈ C(T), on average, to the area of the convex
hull (ACH in short) of random curves in C(T) with the same probability law. Precisely,
this function, referred to as the ACH depth throughout the manuscript, is defined by
the ratio of the ACH of the sample to that of the sample augmented by the curve x.
We prove here that it fulfills various properties desirable for functional depths. In par-
ticular, given its form, it exhibits sensitivity (i.e. the depth score of new/test curves
that are further and further away from the training set of curves decreases smoothly),
which property, quite desirable intuitively, is actually not satisfied by most statistical
(functional) depth documented in the literature. In addition, the statistical depth we
promote here is robust to outliers: adding outliers to the training set of curves has
little or no effect on the returned score and ordering on a test set. For this reason, this
functional depth is very well suited for unsupervised anomaly detection, especially to
identify isolated anomalies.

Eventually, we investigate the performance of recent techniques for functional anom-
aly detection and compare their accuracy with that of simpler approaches, based on a
preliminary dimensionality reduction, standing as natural competitors. In particular,
specific attention is paid to those that are based on functional depth statistics or that
extend multivariate methods by avoiding the filtering step. A benchmark study com-
paring the merits of the methods considered here regarding various metrics of reference
is thus presented on aeronautics data gathered by Airbus and spectrometry measure-
ments of sedimentary material collected by the Geological Survey of Austria for quality
assessment on mining sites of Austria.

1.3 Probability Metrics, Data Depth and Robustness

Comparing probability distributions has attracted a long-standing interest in Inform-
ation Theory (Kullback, 1959; Rényi, 1961; Csiszár, 1963), Probability Theory and
Statistics (Rachev, 1991; Billingsley, 1999; Müller, 1997). Given two probability distri-
butions P,Q defined on an arbitrary space, the goal is then to design metrics that are
able to assess how close P and Q are, that differ in how the comparison is addressed.
While they serve many purposes in Machine Learning (Cha and Srihari, 2002; MacKay
and Mac Kay, 2003), they are of crucial importance as loss functions in automatic
evaluation of natural language generation (see e.g. Kusner et al., 2015; Zhang et al.,
2019), especially when leveraging deep contextualized embeddings such as the popular
BERT (Devlin et al., 2019), graphical probabilistic modeling (Jordan, 1998) including
generative adversarial modeling (see e.g. Goodfellow et al., 2014) as well as variational
inference (see e.g. Blei et al., 2017). In these applications, choosing the right loss to be
minimized between the two distributions is one of the key issues of the problem as its
properties strongly influence the behavior of the associated algorithm. Thus, design-
ing a measure to compare two probability distributions is considered as a challenging
research field. This is certainly due to the inherent difficulty in capturing in a single
measure typical desired properties such as: (i) metric or pseudo-metric properties, (ii)
invariance under specific geometric transformations, (iii) efficient computation, (iv) ef-
ficient estimation from samples and (v) robustness to contamination. The latter has
received little attention in the literature.
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In Section 1.3.1, we present an overview of existing metrics between probability dis-
tributions with a focus on the Wasserstein distance. In Section 1.3.2, the problem of
robust mean estimation is described and the popular Median-of-Means estimator is in-
troduced. Eventually, contributions related to this part are presented in Sections 1.3.3
and 1.3.4.

1.3.1 Metrics between Probability Distributions

One can find in the literature a wide collection of discrepancies between probability
distributions that rely on different principles.

The ϕ-divergences introduced in Rényi (1961) and Csiszár (1963) are defined as the
weighted average by well-chosen functions ϕ of the odds ratio between the two dis-
tributions. The best known ϕ-divergence is the Kullback-Leibler divergence which is
widely used in Machine Learning applications such as in Generative Adversarial Net-
works (GAN; Goodfellow et al., 2014) or Variational Auto-Encoders (VAE; Kingma and
Welling, 2013) (see also Kingma and Welling, 2019). This family of divergences also
includes, among others, the Jensen-Shannon and alpha divergences, the total variation
and the squared Hellinger distances. However, ϕ-divergences do not metrize weak con-
vergence which is a major issue. The metrization of weak-convergence is essential, as it
ensures that the metrics remain stable under small perturbations of the support of the
measures. It is illustrated by the degeneracy to +∞ of ϕ-divergences when the supports
of both distributions do not overlap, which appears to be a crucial limitation in many
applications.

The family of Integral Probability Metric (IPM) introduced in Müller (1997) is based
on a variational definition of the metric, i.e. the maximum difference in expectation
for both distributions calculated over a class of measurable functions and give rise to
various metrics (Maximum Mean Discrepancy (MMD), Dudley’s metric, L1-Wassertein
distance) depending on the choice of this class (see e.g. Sriperumbudur et al., 2012).
First of all, they metrize the weak convergence of measures under mild assumptions on
the space of functions on which the maximum is computed. However, except in the case
of MMD which appears to enjoy a closed-form solution, the variational definition raises
issues in computation.

From the side of Optimal transport (OT) (see Villani, 2003; Peyré and Cuturi, 2019),
the Lp-Wasserstein distance leverages a ground metric to take into account the geometry
of the space on which the distributions are defined. Given two probability distributions,
the latter is defined in terms of the solution to the Monge-Kantorovich optimal mass
transportation problem. Its ability to handle non-overlapping support and to take into
account the underlying geometry of the space makes OT a powerful tool. For these
reasons, the Wasserstein distance stands out from the divergences usually exploited
in generative modeling, like the ϕ-divergences, and has been successfully exploited in
Wasserstein Generative Adversarial Networks (WGANs; Arjovsky et al., 2017; Gulrajani
et al., 2017) as well as in Wasserstein Auto-Encoders (WAE; Tolstikhin et al., 2018),
where the Wasserstein distance can advantageously replace a ϕ-divergence as the loss
function. Given p ∈ [1,∞), the Wasserstein distance of order p between P ∈ P(X ) and
Q ∈ P(Y), where X ,Y ⊂ Rd, is defined through the solution of the Monge-Kantorovitch
mass transportation problem (see e.g. Peyré and Cuturi, 2019):

Wp(P,Q) = min
π ∈ Π(P,Q)

(∫
X×Y

‖x− y‖p dπ(x× y)

)1/p

, (1.2)
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where Π(P,Q) = {π ∈ P(X × Y) :
∫
π(x, y)dy = P (x),

∫
π(x, y)dx = Q(y)} is the set

of joint probability distributions with marginals P and Q.

A nice feature of the Wasserstein distance appears when computed between univariate
distributions. Assuming P1, Q1 ∈ P(R), it holds (Rachev and Rüschendorf, 1998):

Wp(P1, Q1) =

(∫ 1

0
|F−1
P1

(t)− F−1
Q1

(t)|p dt

)1/p

, (1.3)

where F−1
P1
, F−1

Q1
are quantile functions of P1 and Q1, respectively. In the remainder of

this manuscript, when dealing with the Wasserstein distance of order 1, W1, we omit
the subscript 1 for notation simplicity. By the dual Kantorovich-Rubinstein formulation
(Kantorovich and Rubinstein, 1958), with FLip the unit ball of the Lipschitz functions
space, a useful rewriting of the 1-Wasserstein distance is:

W(P,Q) = sup
Ψ∈FLip

EP
[
Ψ(X)

]
− EQ

[
Ψ(Y )

]
,

where X and Y are random variables having distributions P and Q, respectively. In
practice, the unit ball of Lipschitz functions can be replaced with a parameterized family
of Lipschitz functions, more amenable for learning, see e.g. Wasserstein GANs (Arjovsky
et al., 2017).

Of particular interest is the problem of estimating the Wasserstein distance between
P and Q given a finite number of observations. The usual assumption is to rely
upon two samples X1, . . . , Xn and Y1, . . . , Ym, composed of i.i.d. realizations drawn
respectively from P and Q. The corresponding empirical distributions denoted by
Pn = (1/n)

∑n
i=1 δXi , and Qm = (1/m)

∑m
j=1 δYj . The natural questions are then:

how to compute the estimator W(Pn, Qm), and does it converge towards W(P,Q)?

While this problem has long been theoretically studied under the i.i.d. assumption
(Dudley, 1969; Bassetti et al., 2006; Weed and Bach, 2019), it has never been tackled
through the lens of robustness to outliers, a crucial issue in Reliable Machine Learning.
Despite its appealing properties, the Wasserstein distance suffers from sensitivity to
outliers due to the marginal constraints in (1.2). Indeed, a small outlier mass can
contribute significantly to the cost.

1.3.2 Robust Mean Estimation and the Median-of-Means Estimator

Univariate mean estimation plays a critical role in many statistical learning problems,
ranging from classification and regression to ranking or generative modeling. Although
the empirical mean appears as a natural candidate, it has been unfortunately shown to
fail under contamination model. Consider a sampleX1, . . . , Xn−1 composed of n−1 i.i.d.
realizations of the real-valued random variable X, with a “concentrated” distribution
P1 ∈ P(R) (e.g. sub-Gaussian) and an outlier x independent from X that can be
arbitrarly far from E[X]. The sample mean, given by 1

n

(∑n−1
i=1 Xi + x

)
, can be highly

deteriorated by the presence of one single element such as x.

In contrast with the sample mean, the Median-of-Means (MoM) estimator, independ-
ently introduced during the 1980s (Nemirovsky and Yudin, 1983; Jerrum et al., 1986;
Alon et al., 1999), exhibits attractive robustness properties. Let X1, . . . , Xn be a sample
of n i.i.d. realizations of the real-valued random variable X, with an arbitrary distribu-
tion P1 ∈ P(R). Let KX ∈ N∗, KX ≤ n , and BX1 , . . . ,BXKX be a partition of {1, . . . , n}
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into disjoint block of same size denoted by BX = |BXk |, 1 ≤ k ≤ KX . If n cannot be
divided by KX , some observations may be removed. The Median-of-Means estimator
is defined as:

MoMX = med

{
1

BX

∑
i∈BXk

Xi, 1 ≤ k ≤ KX

}
,

where med stands for the median operator. The MoM estimator can be seen as an
interpolation between the empirical mean and the empirical median involving the tuning
parameterKX . Thus, this estimator is not affected by contamination as long as there are
at least dKX/2e sane blocks which corresponds to having less than 1

ndKX/2e outliers.

Following the seminal deviation study by Catoni (2012), MoM has lately witnessed a
surge of interest, mainly due to its attractive sub-Gaussian behavior, under the sole
assumption that the underlying distribution has finite variance (Devroye et al., 2016).
Originally devoted to scalar random variables, MoM has notably been extended to
random vectors (Minsker, 2015; Hsu and Sabato, 2016; Lugosi and Mendelson, 2019a)
and U -statistics (Joly and Lugosi, 2016; Laforgue et al., 2019). As a natural alternative
to the empirical mean, MoM has become the cornerstone of several robust learning
procedures in heavy-tailed situations, including bandits (Bubeck et al., 2013) and MoM-
tournaments (Lugosi and Mendelson, 2019b). A more recent line of work now focuses on
MoM’s ability to deal with outliers. Aside from concentration results in a contaminated
context (Depersin and Lecué, 2019), it has yielded promising applications in robust mean
embedding (Lerasle et al., 2019), and the more general MoM-minimization framework
(Lecué et al., 2020).

1.3.3 Contributions on Probability Metrics with Robustness

We focus on the Kantorovich-Rubinstein dual formulation of the Wasserstein distance
and present three novel MoM-based estimators, leveraging in particular Medians of U-
statistics (MoU). In the realistic setting of contaminated data, we show their strong
consistency, and provide non-asymptotic bounds as well. We propose a dedicated al-
gorithm to compute these three estimators in practice. Applied on a parametric fam-
ily of Lipschitz functions, e.g. neural networks with clipped weights, it performs a
MoM/MoU gradient descent algorithm. A sensitivity analysis of the unique parameter
of these estimators is also provided through numerical experiments on toy data sets.
We robustify Wassersein GANs (w.r.t. outliers) using a MoM-based estimator as loss
function. We show the benefits of this approach through convincing numerical results
on two contaminated well known benchmarks: CIFAR10 and Fashion MNIST.

1.3.4 Contributions on Data Depth

We introduce an extension of the integrated rank-weighted statistical depth (IRW depth
in abbreviated form) originally introduced in Ramsay et al. (2019), modified in order
to satisfy the property of affine-invariance, fulfilling thus all the four key axioms listed
in the nomenclature elaborated by Zuo and Serfling (2000b). The variant we propose,
referred to as the Affine-Invariant IRW depth (AI-IRW in short), involves the precision
matrix of the (supposedly square integrable) d-dimensional random vector X under
study, in order to take into account the directions along which X is most variable to
assign a depth value to any point x ∈ Rd. The accuracy of the sampling version of the
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AI-IRW depth is investigated from a non-asymptotic perspective. Namely, a concentra-
tion result for the statistical counterpart of the AI-IRW depth is proved. Beyond the
theoretical analysis carried out, applications to anomaly detection are considered and
numerical results are displayed, providing strong empirical evidence of the relevance of
the depth function we propose here.

Further, we introduce a novel discrepancy measure between probability distributions by
leveraging the extension of univariate quantiles to multivariate spaces. This new pseudo-
metric relies on the average of the Hausdorff distance between the depth-based quantile
regions w.r.t. each distribution. Its good behavior w.r.t. major transformation groups
as well as its ability to factor out translations are depicted. Robustness, an appealing
feature of this pseudo-metric, is studied through the finite sample breakdown point.
Moreover, we propose an efficient approximation method with linear time complexity
w.r.t. the size of the data set and its dimension. The quality of this approximation as
well as the performance of the proposed approach are illustrated at length in numerical
experiments.

1.4 Outline of the Thesis

Part I provides a large review of the concept of data depth dedicated to multivariate
and functional data as well as reminders on the Wasserstein distance. We now present
the outline of this manuscript, summarized in the flowchart displayed in Figure 1.7.

Part II focuses on designing new efficient approaches to perform functional anomaly
detection.

• Chapter 5 introduces the Functional Isolation Forest (FIF) algorithm.

• Chapter 6 describes a novel robust functional statistical depth measure dedicated
to the analysis of functional data: the ACH depth.

• Chapter 7 investigates the performance of recent techniques for functional anomaly
detection and compare their accuracy.

Part III is devoted to robust alternatives to standard metrics, defined between multivari-
ate probability distribution belonging to P(Rd), through the lens of the MoM estimator
and data depths.

• Chapter 8 presents three novel MoM-based estimators, leveraging in particular
Medians of U-statistics (MoU).

• Chapter 9 introduces the Affine-Invariant Rank-Weighted depth (AI-IRW depth
in abbreviated form).

• Chapter 10 provides a pseudo-metric between probability distributions by lever-
aging the extension of univariate quantiles to multivariate spaces.

1.5 Publications

The contributions introduced in this dissertation have resulted in the following public-
ations and preprints, presented in chronological order:
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Figure 1.7 – Flowchart of this dissertation.
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Since its introduction by John Tukey in 1975 in order to extend the notion of median to
the multivariate setting, the concept of statistical depth has become increasingly popu-
lar in multivariate data analysis. A data depth function measures the centrality of any
element x ∈ Rd w.r.t. a probability distribution P ∈ P(Rd) (respectively, a data set).
It provides a center-outward ordering of points in the support of P and can be straight-
forwardly used to extend the notions of (signed) rank or order statistics to multivariate
data, which find numerous applications in statistics and machine learning beyond an-
omaly detection (e.g. robust inference, hypothesis testing, classification, clustering), see
e.g. Mosler (2013). Numerous definitions have been proposed, as alternatives to the
earliest proposal, the halfspace depth introduced in Tukey (1975). Among many others
these include: the simplicial depth (Liu, 1990), the projection depth (Liu, 1992), the
majority depth (Liu and Singh, 1993), the Oja depth (Oja, 1983), the zonoid depth
(Koshevoy and Mosler, 1997), the regression depth (Rousseeuw and Hubert, 1999a),
the location-scale depth (Mizera and Müller, 2004), the spatial depth (Chaudhuri, 1996;
Vardi and Zhang, 2000) or the Monge-Kantorovich depth (Chernozhukov et al., 2017;
Hallin et al., 2021) differing in their properties and applications. We refer the reader
to Serfling (2006a); Cascos (2010); Mosler (2013); Mosler and Mozharovskyi (2020) or
Van Bever (2013), Chapter 1 for excellent surveys on multivariate data depth.

After having precisely defined the concept and standard properties of multivariate data
depth in Section 2.1 as well as its depth-trimmed regions in Section 2.2, we exhibit
classical examples of data depth functions and highlight their particularities in Sec-
tion 2.3. Beyond the verification of standard properties, the pros and cons of any
data depth should be considered regarding statistical properties, robustness to outliers
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and the possible existence of algorithms for exact computation in the case of empirical
distributions, as discussed in Section 2.4.

2.1 Definition

Formally, a data depth function is defined as follows:

D : Rd × P(Rd) −→ [0, 1] ,
(x, P ) 7−→ D(x, P ). (2.1)

The higher D(x, P ), the deeper x is in P . The depth-induced median of P is then
defined by the set attaining supx∈Rd D(x, P ) in the case where it exists. Here and
in the rest of the manuscript, the median of a depth function will refer, somewhat
imprecisely, to the elements that reach this supremum. Since data depth naturally and
in a nonparametric way defines a pre-order on Rd w.r.t. a probability distribution, it can
be seen as a centrality-based alternative to the cumulative distribution function (cdf)
for multivariate data. Clearly, (2.1) opens the door to a variety of existing definitions.
While these differ in theoretical and practically related properties such as robustness
or computational complexity, several postulates have been developed throughout the
recent decades the “good” depth function should satisfy. Such properties have been
thoroughly investigated in Liu (1990); Zuo and Serfling (2000b) and Dyckerhoff (2004)
with slightly different sets of axioms (or postulates) to be satisfied by a depth function.
They are recalled below.

(D1) (Affine invariance) Denoting by PX the distribution of any r.v. X taking its
values in Rd, we have:

∀x ∈ Rd, D(Ax+ b, PAX+b) = D(x, PX),

for any d× d nonsingular matrix A with real entries and any vector b in Rd.

(D2) (Maximality at center) For any probability distribution P on Rd that pos-
sesses a symmetry center θ (in a sense to be specified), the depth function D(·, P )
takes its maximum value at it:

D(θ, P ) = sup
x∈Rd

D(x, P ).

(D3) (Monotonicity relative to deepest point) For any probability distribution
P on Rd with deepest point xP , the depth at any point x in Rd decreases as one
moves away from xP along any ray passing through it:

∀α ∈ [0, 1], D(xP , P ) ≥ D(xP + α(x− xP ), P ).

(D4) (Vanishing at infinity) For any probability distribution P on Rd, the depth
function D vanishes at infinity:

D(x, P )→ 0, as ||x|| → ∞.

(D5) (Upper semi-continuity) For any probability distribution P on Rd, the set{
x ∈ Rd D(x, P ) < α

}
is an open set for every α ∈ (0, 1].
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Here and throughout, we rely on the following definition of statistical data depth func-
tion.

Definition 2.1 (Zuo and Serfling, 2000b). A function D : Rd × P(Rd) −→ [0, 1] is a
statistical depth function if it satisfies (D1 −D4).

A stronger notion of (D3), that gives more information on characteristics of the under-
lying distribution such as shape or symmetry (Serfling, 2004), is defined as:

(D3′) (Quasi-concavity) For any probability distribution P on Rd, for every λ ∈ [0, 1]
and x, y ∈ Rd, D(λx+ (1− λ)y, P ) ≥ min{D(x, P ), D(y, P )}.

This property as well as the technical property (D5) lead to a variant of the aforemen-
tioned definition.

Definition 2.2 (Dyckerhoff, 2004). A function D : Rd × P(Rd) −→ [0, 1] is a convex
statistical depth function if it satisfies (D1,D3′ ,D4,D5).

It is worth mentioning that properties (D1,D3,D5) imply (D2) (Dyckerhoff, 2004).
The affine invariance property includes common transformations such as orthogonal,
translation or scaling, and is useful in applications providing independence w.r.t. meas-
urement units and coordinate system. Some depths that are based on distances such
as Euclidean or spatial depths (Serfling, 2002) are generally invariant to orthogonal
transformations and translations rather than affine transformations. Serfling (2010)
has studied a general way, named sphering or whitening, making these depths affine
invariant using a scatter matrix transform depending on the distribution. Precisely, the
random variable X is first transformed by the following map:

x 7→ S
−1/2
X (x− θX) such that SAX+b = γASXA

>

where γ > 0 is a scaling parameter, SX is a d × d scatter matrix, and θX a location
parameter of X. The aforementioned transformation leads to several choices of SX and
θX where widely used choices are the covariance matrix ΣX and the expectation E[X]
respectively.

For distributions having a uniquely defined center (e.g. symmetry center θ), data depths
should be maximized at this center, as stated by (D2). Several notions of symmetry
have been widely used for multivariate distributions. A random variable X is said to be
centrally symmetric (CS) about θ if X − θ L= θ−X. Further, X is said to be angularly
symmetric (AS) if (X − θ)/||X − θ|| is centrally symmetric around the origin (Liu,
1990). Inspired from the halfspace depth, Zuo and Serfling (1999) have defined the
halfspace symmetric (HS) notion such that P

(
X ∈ Hθ

)
≥ 1/2 for every closed halfspace

containing θ denoted by Hθ. It is easy to see that CS⇒ AS⇒ HS making the halfspace
symmetry the weaker notion, and then the most general, that D(·, P ) should satisfy.
Some classes of probability distributions also define symmetry notions by construction
such as spherical or elliptical distributions. Indeed, X is spherically symmetric (SS) if
OX

L
= X for every othogonal matrixO while a r.v. Y has an elliptical distribution (ES) if

Y
L
= a+AX, a ∈ Rd yielding SS ⇒ ES ⇒ CS. We refer the reader to Beran and Millar

(1997) and Serfling (2006b) for further details on symmetry notions for multivariate
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distributions. For example, skewness measures can be built from a depth function
D(·, ·) and the symmetry notion it satisfies providing information on the asymmetry of
the underlying probability distribution (Liu et al., 1999).

The property (D3) is a consequence of the center-outward ordering construction of
data depth. When a point x ∈ Rd moves away from the set of elements that reach
the maximum value of the depth function (potentially reduced to a single element,
e.g. for symmetric distributions defined above), D(x, P ) should decrease monotonically.
Statistical functions satisfying (D3) should tend to fail capturing and describing the
multimodal behavior of probability distributions. Unfortunately, this crucial property
limits the relevance of data depths to unimodal distributions.

Remark 2.3 (Multimodal distributions). As pointed out in Zuo and Serfling
(2000b), one has to choose between center-outward ordering and the sensitivity to mul-
timodal distributions. To design depth functions adapted to multimodal distributions,
which can be required in some applications such as anomaly detection or classification,
several data depths have been introduced. These depths, listed below, are conceptually
close to the notion of density. The likelihood depth has been investigated by Fraiman and
Meloche (1999) where the set of maximizers can be interpreted as modes of the prob-
ability distribution. Chen et al. (2009) and Hu et al. (2011) have proposed kernelized
versions of the spatial depth and Mahalanobis depth respectively. A depth function based
on quantiles of interpoint distances have also been proposed in Lok and Lee (2011) allow-
ing a multitude of maximum depth and leading to disconnected depth-trimmed regions.
Local versions of the halfspace and simplicial depths have been introduced and studied
in Agostinelli and Romanazzi (2011) providing an interpolation between (global) depths
and the density of the underlying distribution. A general notion of local depth based on
the neighborhood notion of Paindaveine and Bever (2015), potentially applicable to any
depth function, has been described in Paindaveine and bever (2013). For the purpose of
classification and to obtain depth contours close to those of the density function of P ,
the localized spatial depth have been introduced by Dutta et al. (2016).

(D4) and (D5) appear as natural properties since data depth is a (center-outward)
generalization of cdf. Limit values vanish due to median-oriented construction. (D3′)
allows to preserve the original center-outward ordering goal of data depth and induces
convexity of the upper-level sets of depth functions. The property (D3′) is not mandat-
ory but several introduced depth functions satisfy this property such as the halfspace
depth or the projection depth (see Section 2.3)

Originally motivated to extend the notion of median to multivariate space, the set
attaining supx∈Rd D(x, P ), if it exists, is considered as the median associated to the
depth function D. In order to characterize the depth induced median, Dyckerhoff (2004)
has provided conditions under which this set is non-empty.

Proposition 2.4 (Dyckerhoff, 2004, Proposition 3). If D is a convex depth function or
a depth function satisfying (D5) in the sense of Definition 2.1 and Definition 2.2, then
there exists z ∈ Rd such that:

D(z, P ) = max
x∈Rd

D(x, P )

Depending on the specific depth functions introduced, the maximum depth may be
unique (see Section 2.3 for several depth examples and their properties).
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2.2 Depth-Trimmed Regions

To describe global properties of a probability distribution such as location, dispersion
or shape, one may be interested to the upper-level sets of depth functions named depth-
trimmed regions or central regions. Precisely, for any α ∈ [0, 1], the associated α-depth
regions of a statistical depth function are defined as its upper-level sets:

Dα(P ) =
{
x ∈ Rd : D(x, P ) ≥ α

}
.

The collection (Dα(P ))α∈[0,1] reveals the geometry structure of the underlying probab-
ility distribution. It follows that these set-valued statistics are nested, i.e. Dα′(P ) ⊆
Dα(P ) for any α < α′. Depth-trimmed regions correspond to the counterpart of quantile
regions in R while their boundaries are analogous to quantiles for univariate distri-
butions. It then allows computation of L-estimators of location parameters such as
trimmed means in a multivariate space (see e.g. Serfling, 1984). Data depth properties
(D1,D3,D3′ ,D4,D5) mentioned in Section 2.1 can also be reformulated by equivalent
properties attached to these nested regions as listed below.

(R1) (Affine equivariance) Denoting by PX the distribution of any r.v. X taking
its values in Rd, we have

Dα(PAX+b) = ADα(PX) + b

for any d× d nonsingular matrix A with real entries and any vector b in Rd.

(R3) (Starshapedness) If z ∈ Rd is contained in all non-empty regions Dα(P ), then
the non-empty regions Dα(P ), α ∈ (0, 1] are starshaped w.r.t. z.

(R3′) (Convexity) Dα(P ) is convex for any α ∈ (0, 1].

(R4) (Boundedness) Dα(P ) is bounded for any α ∈ (0, 1].

(R5) (Closedness) Dα(P ) is closed for any α ∈ (0, 1].

Proposition 2.5 (Serfling and Zuo, 2000; Dyckerhoff, 2004). Let P ∈ P(Rd) and
D(·, P ) : Rd −→ [0, 1]. Then it holds: (D`)⇔ (R`) for any ` ∈ {1, 3, 3′, 4, 5}.

Let Y follow an elliptical distribution PY such that Y L
= a+AX for any A ∈ Rd×d and

a ∈ Rd where X is spherically distributed. Any depth function D(·, PY ) that satisfies
(R1) has elliptical depth regions, i.e. upper-level sets of the quadratic form with matrix
AA> (see e.g. Mosler, 2013). Furthermore, an appealing behavior of satisfying (R1)
appears when PY has a unimodal Lebesgue density fY . Indeed, it can be shown that
there exists a function h such that fY (x) : h◦D(x, PY ) for every x ∈ Rd (Liu and Singh,
1993).

Remark 2.6. Stochastic orders between random variables can be constructed from
depth-trimmed regions. Massé and Theodorescu (1994) have derived an ordering notion
between random variables based on the volume of depth regions. Let X,Y two random
variables following PX , PY ∈ P(Rd) respectively. Authors have proposed to state X ≺ Y
if
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λd(D
α(PX))− λd(Dα′(PX)) ≤ λd(Dα(PY ))− λd(Dα′(PY )),

for any α < α′. The quantities on either side of the inequality can be seen as analogous
to the interquantile ranges of a univariate distribution. In addition, Zuo and Serfling
(2000a) have proposed to define X ≺ Y if λd(Dα(PX)) ≤ λd(D

α(PY )) for every α ∈
(0, 1].

Remark 2.7. Data depths can also be defined by means of regions in Rd. Barnett
(1976) and Eddy (1982) have introduced a way to order multivariate data by peeling
convex hulls of a given set of sample points Sn = {X1, . . . , Xn} leading to the so-called
convex hull peeling depth (= onion depth) even if it does not properly define a statistical
depth function. Precisely, it consists in building a collection of subsets of Rd defined
as C` = conv(Sn ∩ int C`−1) for ` = 2, . . . with C1 = conv(Sn). The “depth” of an
element x ∈ Rd is then assigned as

∑
`≥2 I{x ∈ C`}. Further, several data depths

have been defined from a collection of subsets of Rd such as the zonoid depth (Koshevoy
and Mosler, 1997) or the weighted-mean depths (Dyckerhoff and Mosler, 2011, 2012)
following the construction:

D(x, P ) = sup {α ∈ (0, 1] : x ∈ Rα(P )},

where (Rα(P ))α∈(0,1] is a family of subsets of Rd that are affine equivariant, closed,
bounded and starshaped.

2.3 Important Notions of Depth Functions

The halfspace depth, the first and probably the most studied depth in the literature,
dates back to Tukey (1975). Many data depth functions based on various statistical
tools ranging from U-statistics to outlyingness measures have been introduced in the
continuation of the halfspace depth. In this section, we present precise definitions of
some of them and discuss about their properties. With slight modifications to the
nomenclature described in Zuo and Serfling (2000b), we group depth functions that
share similar constructs in the following subsections. Structural properties of data
depths presented in this section can be summarized in Table 2.1.

2.3.1 Depths based on Distribution Tails

Here we introduce the halfspace and the integrated rank-weighted depths.

• Halfspace depth (= location depth, = Tukey depth). Initially introduced
as a visualization tool to reveal non-expected information present in data, the
halfspace depth has become the most studied depth function in the literature
probably due to its appealing properties as well as its connections with univariate
quantiles. Indeed, when d = 1, for any t ∈ R and P1 ∈ P(R), the halfspace depth,
is defined by:

DH,1(t, P1) = min{F (t), 1− F (t−)},
where F is the cdf associated to P1 and F (t−) denotes the left-sided limit of
F at t. Therefore, this depth function, that corresponds to a center-oriented
transformation of the cdf, is maximized by the median of the distribution P1.
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Generalizing the above expression by means of linear projections leads to the
halfspace depth definition stated below. We refer the reader to Nagy et al. (2019)
for an excellent account of halfspace depth characteristics.

Definition 2.8. Let x ∈ Rd and X be a r.v. following P ∈ P(Rd). The halfspace
depth of x w.r.t. P is defined as:

DH(x, P ) = inf {P (Hx) : Hx is a closed halfspace containing x}

= inf
u∈Sd−1

P
(
〈u,X − x〉 ≤ 0

)
. (2.2)

In order to enumerate halfspace depth properties, we need two regularity con-
ditions on P . The first, trivially satisfied for absolutely continuous probability
distributions, is a smoothness condition (see e.g. Dümbgen, 1992; Rousseeuw and
Ruts, 1999) that says:

P (∂H) = 0, ∀ H closed halfspace of Rd. (2.3)

The second requires the support of P to be contiguous (see e.g. Kong and Zuo,
2010), i.e. there is no intersection of any two halfspaces with parallel boundaries
that has nonempty interior but zero probability and divides the support of P
into two parts. This condition is related to the fact that data depths are tools
dedicated to unimodal distributions.

Convex depth. Zuo and Serfling (2000b) have shown that the halfspace depth
satisfies conditions of the Definition 2.1. It also satisfies (D5) (Donoho and Gasko,
1992, Lemma 6.1) and is further continuous in its first argument if (2.3) holds
(see Mizera and Volauf, 2002, Proposition 1). Thus, combining (D5) and quasi-
concavity (see Rousseeuw and Ruts, 1999, Proposition 1), the halfspace depth
belongs to the family of convex depth functions w.r.t. the Definition 2.2. It is
worth noticing that the halfspace depth satisfies (D2) for halfspace symmetric
distributions.

Halfspace median. As the halfspace depth has the particularity to be maxim-
ized by the true median in the case of univariate data and possesses robustness
properties (Donoho and Gasko, 1992), the set of halfspace medians has been ex-
tensively studied. In general, the set of all halfspace medians of P can be shown to
be nonempty, compact and convex (Zuo and Serfling, 2000b; Dyckerhoff, 2004). If
P has contiguous support and satisfies (2.3), then by the Proposition 7 in Mizera
and Volauf (2002), the halfspace median of P is unique. After being conjectured
by Rousseeuw and Hubert (1999b), a general lower bound on the set of halfspace
medians has been provided by the Theorem 3.3 in Mizera (2002). Surprisingly,
this result dates back to Neumann (1945) for d = 2 and Grünbaum (1960) for
d ≥ 2, much before the introduction of the halfspace depth.

We summarize the aforementioned properties of the halfspace depth in the follow-
ing proposition.

Proposition 2.9. For any P ∈ P(Rd), the depth function DH(·, P ) satisfies ax-
ioms of Definition 2.1 and Definition 2.2. For any x ∈ Rd, the set sup

x∈Rd
DH(x, P )

is non-empty, compact and convex and we have:
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1

d+ 1
≤ sup

x∈Rd
DH(x, P ) ≤

(
1 + sup

x∈Rd
P ({x})

)/
2.

Furthermore, if P has contiguous support and satisfies (2.3), then the set of half-
space medians boils down to a unique element.

Bounds in Proposition 2.9 are known to be sharp (Grünbaum, 1960). It is possible
to obtain a lower bound that does not depend on the dimension if P is distributed
on a convex body or if P belongs to the family of s-concave probability distri-
butions (see Theorem 3 in Nagy et al. (2019) for further details). There exist
also bounds that depend on the sample size when P is replaced by the empirical
distribution, see Donoho and Gasko (1992) and Liu et al. (2020).

In the univariate case, we know that the halfspace depth has 0.5 as maximum
value. This property does not hold in general in multivariate spaces and authors
of Dutta et al. (2011) have investigated conditions under which the maximum of
the halfspace depth function is 0.5.

Characterization of P . In dimension one, cumulative distribution function as
well as univariate quantiles uniquely characterize the underlying probability distri-
bution. Many authors have investigated under which conditions this property may
be satisfied by the halfspace depth starting by the work of Struyf and Rousseeuw
(1999) that gives a positive answer for empirical distributions. Koshevoy (2002)
showed that if D(x, P ) = D(x,Q), ∀ x ∈ Rd, where P,Q are two atomic measures
with finite support then the measures are also identical. This assertion has been
generalized by Cuesta-Albertos and Nieto-Reyes (2008b) when P,Q are general
discrete distributions. Under some regularity conditions, the halfspace depth char-
acterizes absolutely continuous probability distributions with compact support in
Rd (Koshevoy, 2003); absolutely continuous distributions with connected supports
(Hassairi and Regaieg, 2008); and absolutely continuous distributions with smooth
depth contours including elliptical distributions (Kong and Zuo, 2010). Unfortu-
nately, characterization is not true for general probability distributions (Nagy,
2021).

Continuity of Dα(P ). We assume that the Tukey median x∗H is unique (see Pro-
position 2.9 for mild sufficient conditions guaranteeing this property) and consider
the map transporting α ∈ (0, x∗H] to the halfspace depth region Dα(P ). From the
properties (D3′ ,D4,D5) and Section 2.2, we know that Dα(P ) are convex bodies
of Rd for every α ∈ (0, x∗H]. By equipping the space of convex bodies with the
Hausdorff distance dH, the continuity of α ∈ (0, x∗H] 7→ Dα(P ) has been investig-
ated in Massé and Theodorescu (1994); Mizera and Volauf (2002) and Dyckerhoff
(2017) leading to the following proposition.

Proposition 2.10. Let P ∈ P(Rd) that has a contiguous support and satisfies
(2.3). Then α ∈ (0, x∗H] 7→ Dα(P ) is a continuous function w.r.t. the Hausdorff
distance.

This property will be crucial in order to derive statistical properties of the depth-
trimmed regions that are further detailed in Section 2.4.1.
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• Integrated rank-weighted depth. Recently, an integrated extension of the
univariate halfspace depth in the same spirit of the integral dual depth (see Sec-
tion 2.3.2) has been proposed in Ramsay et al. (2019). It consists in replacing the
infimum by an integral in the halfspace depth definition (2.2).

Definition 2.11. Let x ∈ Rd and X be a r.v. following P ∈ P(Rd). The integrated
rank-weighted depth (IRW) of x w.r.t. P is defined as:

DIRW(x, P ) =

∫
Sd−1

DH,1(〈u, x〉, Pu) ωd−1(du), (2.4)

= E
[
DH,1(〈U, x〉, PU )

]
,

where Pu is the pushforward distribution of P defined by the projection x ∈ Rd 7→
〈u, x〉, i.e. P〈u,X〉, ωd−1 is the spherical probability measure on Sd−1 and U is a
r.v. uniformly distributed on the hypersphere Sd−1.

As explained at length in Ramsay et al. (2019), the name of the data depth (2.4)
originates from the fact that it can be represented as a weighted average of a finite
set of normalized center-outward ranks. It has many advantages over the original
halfspace depth (2.2). First, by construction it is robust to noisy directions and
sensitive to new data point outside of the convex hull of the training data set
both at the same time. Moreover, concerning numerical feasibility, the computa-
tion of the IRW depth does not require to implement any manifold optimization
algorithm and can be approximately made by means of basic Monte-Carlo tech-
niques, providing in addition confidence intervals as a by-product, see Section 2.4.2
below. Its contours {DIRW(x, P ) = α}, α ∈ [0, 1], also exhibits a higher degree of
smoothness in general. The depth function (2.4) is continuous at any point x ∈ Rd
that is not an atom for P , cf. Proposition 1 in Ramsay et al. (2019), and proper-
ties (D2,D3) for halfspace symmetric distributions, and (D4) have been proved
to be satisfied by IRW, see Theorem 2 in Ramsay et al. (2019). However, IRW
fails to validate (D1). This is the aim of Chapter 9 to build an affine invariant
formulation of the IRW, satisfying the data depth definition, in order to exploit
both its ease of computation and its advantageous properties.

2.3.2 Depths based on U-Statistics

Some data depth functions are based on U-statistics (see Lee, 1990 for a review) such
as the simplicial depth and its integrated counterpart that are described below.

• Simplicial depth. The simplicial depth was first introduced and studied in Liu
(1990). As the halfspace depth, the maximum depth is attained by the median
in the univariate case. Indeed, the simplicial depth in dimension one is defined as
DS,1(t, P1) = 2F (t)(1−F (t−)) for any t ∈ R and P1 ∈ P(R) where F is the cdf of
P1. It is equivalently defined as the probability that t ∈ R belongs to the segment
between two r.v. X1, X2 ∼ P1 which is maximized by the median. The segment
can be also considered as convex hull of the set {X1, X2} leading to the following
definition in the multivariate case.
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Definition 2.12. Let x ∈ Rd and X be a r.v. following P ∈ P(Rd). The simplicial
depth of x w.r.t. P is defined as:

DS(x, P ) = P
(
x ∈ conv(X1, . . . , Xd+1)

)
,

where X1, . . . , Xd+1 are i.i.d. random variables following P .

The simplicial depth satisfies (D1) in general, satisfies (D2) for halfspace sym-
metric distributions, is continuous in x, and has a unique maximum depth for
absolutely continuous distributions only. The property (D3) holds for absolutely
continuous distributions that are angularly symmetric. See Liu (1990) for further
details about these properties.

• Integrated dual depth. It is the purpose of the integrated dual (ID) depth
(Cuevas and Fraiman, 2009) to propose an extension of the univariate formulation
of the simplicial depth to multivariate, and more general Banach spaces with
separable dual. It relies on one-dimensional linear continuous projections and is
defined as follows in the multivariate space.

Definition 2.13. Let x ∈ Rd and X be a r.v. following P ∈ P(Rd). The integrated
dual depth of x w.r.t. P is defined as:

DID(x, P ) =

∫
Sd−1

DS,1(〈u, x〉, Pu) ωd−1(du),

where Pu is the pushforward distribution of P defined by the projection x ∈ Rd 7→
〈u, x〉, i.e. P〈u,X〉, and ωd−1 is the spherical probability measure on Sd−1.

ID depth properties have been extensively studied in Cuevas and Fraiman (2009).
It is invariant to orthogonal transformations and translations but fails to be affine
invariant. It is also continuous in x ∈ Rd and vanishes at infinity. In addition, it
satisfies (D2,D3) for halfspace symmetric distributions. It is worth noting that
its maximum depth is equal to that of the IRW depth and might not be unique
(Ramsay et al., 2019).

2.3.3 Depths based on Dispersion Measures

Some data depth functions involving dispersion measures are described in this section.

• Oja depth. The Oja depth is based on average volumes of the convex hull of
the data (Zuo and Serfling, 2000b) generalizing the Oja multivariate median (Oja,
1983) into a depth function.

Definition 2.14. Let x ∈ Rd and X be a square integrable r.v. following P ∈
P(Rd). Let Σ be the covariance matrix of X. The Oja depth of x w.r.t. P is
defined as:

DOja(x, P ) =

1 +
E
[
λd(conv(x,X1, . . . , Xd))

]
√

det(Σ)


−1

where X1, . . . , Xd are i.i.d. random variables following P .
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The Oja depth satisfies properties (D1,D3′ ,D4,D5) and (D2) for centrally sym-
metric distributions, and is further continuous in x ∈ Rd (see Zuo and Serfling,
2000b). Thus, this depth belongs to the family of convex depths. However, its
maximum is not unique in general (Oja, 1983). It is worth mentioning that the
Oja depth characterizes distributions with compact supports of full dimension
(Koshevoy, 2003).

• Spatial depth. The spatial depth relies on ideas of spatial quantiles (Chaudhuri,
1996; Koltchinskii and Dudley, 1996; Koltchinskii, 1997) and has been proposed
in Vardi and Zhang (2000) (see also Serfling, 2002).

Definition 2.15. Let x ∈ Rd and X be a r.v. following P ∈ P(Rd). The spatial
depth of x w.r.t. P is defined as:

DSp(x, P ) = 1−

∣∣∣∣∣∣
∣∣∣∣∣∣E
[
x−X
||x−X||

]∣∣∣∣∣∣
∣∣∣∣∣∣ ,

where 0/0=0 by convention.

The spatial depth satisfies (D2) for angularly symmetric distributions, (D4), is
invariant regarding translation and orthogonal transformations, and is continuous
in x (Serfling, 2002). It is also known to have a unique median (Milasevic and
Ducharme, 1987). Unfortunately, the spatial depth fails to satisfy (D3) leading to
non starshaped regions (Nagy, 2017). There exists a kernelized version replacing
inner products (derived from the Euclidean norm) by kernel functions (Chen et al.,
2009).

• Lp depth. This depth function has been introduced in Zuo and Serfling (2000b)
and is based on the expected Lp norm between x ∈ Rd and the random variable
X following P ∈ P(Rd).

Definition 2.16. Let x ∈ Rd and X be a r.v. following P ∈ P(Rd). The Lp depth
of x w.r.t. P is defined as:

DLp(x, P ) =

(
1− E

[
||x−X||p

])−1

,

with 1 ≤ p <∞.

The Lp depth satisfies (D2) for centrally symmetric distributions, (D3′ ,D4,D5)
but is not affine invariant in general (Zuo and Serfling, 2000b). When p = 2, the
deepest point of the L2 depth is the spatial median that is unique (Milasevic and
Ducharme, 1987). Furthermore, due to the presence of Euclidean distance, the L2

depth is invariant to isometric transformations as the spatial depth.

2.3.4 Depths based on Outlyingness Measures

Constructed as rescaling of outlyingness measures, the Mahalanobis and the projection
depths are introduced and discussed below.
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• Mahalanobis depth. The Mahalanobis distance (Mahalanobis, 1936) is a dis-
tance between an element in Rd and a probability distribution having finite ex-
pectation and invertible covariance matrix differing from the Euclidean by taking
account of correlations. Interpreting the Mahalanobis distance as an outlyingness
measure, Liu (1992) suggested to rescale it to define a depth function as follows.

Definition 2.17. Let x ∈ Rd and X be a square integrable r.v. following P ∈
P(Rd) with invertible covariance matrix Σ. The Mahalanobis depth of x w.r.t. P
is defined as:

DM(x, P ) =
(

1 + (x− E[X])>Σ−1(x− E[X])
)−1

,

where Σ−1 is the precision matrix of the r.v. X.

This data depth satisfies (D1,D3′ ,D4,D5), (D2) for centrally symmetric distribu-
tions, and then belongs to the family of convex data depths. It also has a unique
maximum at E[X]. In practice, the Mahalanobis depth is very easy to compute
as it only requires to compute the sample mean and the sample covariance mat-
rix but lacks of robustness (to outliers) as pointed out in Liu and Singh (1993).
However, these estimators may be replaced by robust ones, such as the Median-of-
Means (see e.g. Devroye et al., 2016; Lecué and Lerasle, 2020) for the sample mean
and the Minimum Volume Ellipsoid (Rousseeuw, 1985; Van Aelst and Rousseeuw,
2009) or the Minimum Covariance Determinant (Rousseeuw, 1984; Rousseeuw and
Leroy, 1987) for the covariance matrix.

• Projection depth. The Stahel-Donoho outlyingness has been introduced inde-
pendantly in Stahel (1981) and Donoho (1982). It is based on univariate measures
of outlyingness extended to the multivariate case by means of projection pursuit
(Friedman and Tukey, 1974). This outlyingness measure is then rescaled as data
depth leading to the definition provided below (Liu, 1992).

Definition 2.18. Let x ∈ Rd and X be a r.v. following P ∈ P(Rd). The projection
depth of x w.r.t. P is defined as:

DP(x, P ) =

(
1 + sup

u∈Sd−1

|〈u, x〉 −med(〈u,X〉)|
MAD(〈u,X〉)

)−1

,

where med and MAD stand for the univariate median and median absolute devi-
ation from the median, respectively.

The depth score of x is then based on the direction u∗ ∈ Sd−1 where the inner
product 〈u∗, x〉 deviates the most from the univariate median of the projected
r.v. 〈u∗, X〉. This data depth is then robust to outliers by construction (see Sec-
tion 2.4.3 for further details). The projection depth has good properties since
it satisfies (D1,D3′ ,D4,D5) and (D2) for halfspace symmetric distributions, is
continuous in x and has a unique median (Zuo, 2003, 2013). Therefore, the pro-
jection depth belongs to the family of convex depths. It shares with the halfspace
depth the nice feature to have continuous depth-trimmed regions in α if the mild
conditions med(〈u,X〉) < ∞ and MAD(〈u,X〉) < ∞ for every u ∈ Sd−1 hold.
The projection depth is widely used in practice regarding its ordering properties,
robustness (see Section 2.4.3) and computational feasibility (see Section 2.4.2).
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2.3.5 Uncategorized Depths

Some data depths can not be integrated in the nomenclature given in Zuo and Serfling
(2000b). It is the aim of this section to present some of them based on interesting
construction.

• Zonoid depth. The zonoid depth has been introduced in Dyckerhoff et al. (1996)
(see also Koshevoy and Mosler, 1997) and has the singularity to be constructed
by means of subsets of Rd named zonoid regions. Let X be an integrable r.v.
following P ∈ P(Rd), zonoid α-trimmed regions for any α ∈ (0, 1] are defined as:

RαZ(P ) =

{
E
[
Xg(X)

]∣∣∣∣ g : Rd −→ [0, 1/α] measurable and E
[
g(X)

]
= 1

}
Definition 2.19. Let x ∈ Rd and X be an integrable r.v. following P ∈ P(Rd).
The zonoid depth of x w.r.t. P is defined as:

DZ(x, P ) = sup {α : x ∈ RαZ(P )},

with DZ(x, P ) = 0 if x /∈ RαZ for every α ∈ (0, 1].

The zonoid depth has desirable properties since it satisfies (D1,D3′ ,D4,D5) and
(D2) for centrally symmetric distributions. It also possesses the nice feature to
characterize any probability distribution with finite first moment (Mosler, 2002).
The zonoid median is unique and is equal to E[X] that makes it sensitive to out-
liers. Furthermore, as the halfspace depth, the zonoid depth vanishes beyond the
convex hull of the support of P . It also suffers from computational burden. The
aforementioned drawbacks make it unsuitable for unsupervised anomaly detection.

• Lens depth. Following the idea behind the spherical depth (Elmore et al., 2006),
the Lens depth has been introduced in Liu and Modarres (2011). It relies on the
probability that an element x ∈ Rd belongs to a random hyper-lens defined by the
intersection of two closed balls centered at two i.i.d. random variables following
P .

Definition 2.20. Let x ∈ Rd and X be a r.v. following P ∈ P(Rd). The Lens
depth of x w.r.t. P is defined as:

DLens(x, P ) = P
(
x ∈ L(X,Y )

)
,

where X and Y are i.i.d. random variables from P and L(X,Y ) is the intersection
of two closed balls of Rd with radius ||X − Y || centered at X and Y , respectively.

Properties of the Lens depth have been extensively studied in Liu and Modarres
(2011). It is invariant to orthogonal transformations, satisfies (D2) for centrally
symmetric distributions and (D4), and is continuous in x for absolutely continuous
distributions. The monotonicity property is valid only for centrally symmetric
distributions.
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• Monge-Kantorovich depth. Motivated by the desire to design a data depth
that takes account of non-convex features of the underlying distribution, authors of
Chernozhukov et al. (2017) have introduced the Monge-Kantorovich (MK) depth.
This depth is constructed on the idea of transporting depth contours of any data
depth that well-behaves on a reference distribution to a distribution P and relies
on the optimal transport theory (see e.g. Villani, 2003; Santambrogio, 2015). Let
P,Qref ∈ P(Rd) be both absolutely continuous w.r.t. the Lebesgue measure. There
exists a Qref a.s. unique ∇ψ, the gradient of a convex, lower semi-continuous
function ψ defined on a convex set C1 containing the support of Qref that map
Qref to P , i.e. ∇ψ]Qref = P (Brenier, 1991; McCann, 1995). Furthermore, there
exists a unique real function ψ∗ defined on a convex set C2 containing the support
of P such that ∇ψ∗]P = Qref .

Remark 2.21. It can be shown (see Brenier, 1991) that if P and Qref have finite
second moments, ∇ψ solves the Monge optimal transport problem:

inf
T

∫
C1

||x− T (x)||2 Qref(dx) s.t. T]Qref = P.

We are now ready to give the definition of the Monge-Kantorovich depth.

Definition 2.22. Let Qref ∈ P(Rd) be a reference probability distribution whose
support is included in the convex set C1. Let P ∈ P(Rd) and assume that both
P and Qref are absolutely continuous w.r.t. the Lebesgue measure. Let ∇ψ the
unique gradient of the convex and semi-lower continuous function ψ such that
∇ψ]Qref = P . The Monge-Kantorovich depth of x ∈ Rd w.r.t. P is defined as:

DMK(x, P ) = D(rankP (x), Qref), (2.5)

where rankP (x) ∈ argsup
y∈C1

{〈y, x〉 − ψ(y)} and D(·, ·) is any data depth function.

The Monge-Kantorovich depth is invariant to isometric transformations but fails
to be affine invariant. The function DMK(., P ), is an homeomorphism under mild
conditions on P (Figalli, 2018; Hallin et al., 2021). Its formulation is very general
and to extract depth properties is challenging.

2.4 General Properties

Data depths such as those described in Section 2.3 require the knowledge of the probab-
ility distribution P . However, we cannot access to P in practice but rather to a sample
of it. Let X1, . . . , Xn be an i.i.d. sample following the distribution P ∈ P(Rd) and de-
note by Pn = 1

n

∑n
i=1 δXi the associated empirical distribution. The natural questions

are then: Does D(x, Pn) converge towards D(x, P )? If yes, with which statistical rates?
Does it have an asymptotic Gaussian behavior? It is the aim of Section 2.4.1 to give
answers to the aforementioned questions for the statistical depth functions introduced
previously.

Recent advances in data collection allow the automatic acquisition of data, which often
leads to large and contaminated data sets. Thus, two central challenges have emerged
and can be summarized by: how to compute efficiently the estimator D(x, Pn)? and
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D1 D2 D3 D3′ D4 Continuity Unique median

Halfspace 3 3HS 3 3 3 3 3cont

IRW 7 3HS 3HS 7 3 3 7

Simplicial 3 3HS 3AS 7 3 3 3

ID 7 3HS 3HS 7 3 3 7

Oja 3 3CS 3 3 3 3 7

Spatial 7 3AS 7 7 3 3 3

Lp 7 3CS 3 3 3 3 3p=2

Mahalanobis 3 3CS 3 3 3 3 3

Projection 3 3HS 3 3 3 3 3

Zonoid 3 3CS 3 3 3 3 3

Lens 7 3CS 7 7 3 3 7

MK 7 - - 7 - 3 -

Table 2.1 – Structural properties of the presented depth functions. For the sake of clarity
and for the purpose of this manuscript, P is assumed to be absolutely continuous w.r.t.
the Lebesgue measure with finite first and second moments. We distinguish under which
notion of symmetry (defined in Section 2.1) some properties hold giving the stronger
result. By cont is meant contiguous support for the distribution P .

Which data depths are robust to contaminated data? The computational aspects of
data depths have been widely studied by the statistical community but many challenges
remain. It is the aim of Section 2.4.2 to discuss about the computational complexity of
data depths. Further, the robustness is discussed in Section 2.4.3.

2.4.1 Statistical Analysis

This section gathers statistical results of the estimator D(x, Pn) for the depth functions
introduced in Section 2.3. Consistency has been thoroughly studied for most data
depths. However, knowing the limit distribution of the depth process x 7→ D(x, Pn) −
D(x, P ) has received less attention while finite-sample rates have been derived for the
halfspace depth only.

Consistency. Statistical consistency of multivariate data depths is studied through
point-wise and uniform convergences. More precisely, in decreasing order of generality,
we give the three following definitions:

(Cpw) For any P ∈ P(Rd) and x ∈ Rd, as n→∞ we have:

|D(x, Pn)−D(x, P )| a.s.−→ 0.

(Cuc) For any P ∈ P(Rd), as n→∞ we have for any compact set C ⊂ Rd:

sup
x∈C
|D(x, Pn)−D(x, P )| a.s.−→ 0.
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(Cu) For any P ∈ P(Rd), as n→∞ we have:

sup
x∈Rd

|D(x, Pn)−D(x, P )| a.s.−→ 0.

To capture the geometrical shape of the underlying probability distribution and more
generally to understand its global features, one needs to rely on the set {D(x, P ), x ∈
Rd}. Therefore, this set needs to be well-approximated by its sample version which is
provided by (Cu). When (Cu) cannot be satisfied, two weaker convergence definitions
(Cuc) and (Cpw) may be valid. The property (Cu) is satisfied for most multivariate
data depths but rarely holds when data depths are defined on functional spaces (see
Chapter 3).

Uniform consistency (Cu) is satisfied by the halfspace depth (Donoho and Gasko, 1992),
the integrated rank-weighted depth (Ramsay et al., 2019), the simplicial depth (Arcones
and Gine, 1993; Dümbgen, 1992), the integrated dual depth (Cuevas and Fraiman,
2009), and the Lens depth (Liu and Modarres, 2011) in general. The Mahalanobis
depth satisfies (Cu) if P has invertible covariance matrix (Liu and Singh, 1993). The
projection depth also satisfies (Cu) under mild assumptions ensuring that med(〈u,X〉)
and MAD(〈u,X〉) are unique for every u ∈ Sd−1 and that their sample versions con-
verge almost surely to them uniformly in u ∈ Sd−1 (Serfling and Zuo, 2000). These
assumptions are similar to those for univariate quantiles consistency see (Serfling, 1980,
Theorem 2.3.2). The sample zonoid depth converges uniformly to its population version
under (2.3) if P has a finite first moment (Cascos and López-Díaz, 2016). The Monge-
Kantorovich depth rather satisfies probability convergence uniformly on any compact
subset included in C2, a convex set that contains the support of P (Chernozhukov et al.,
2017). The Oja depth, the spatial depth and the Lp depths trivially satisfy (Cu) thanks
to the law of large numbers and its equivalent for U-statistics.

The convergence of sample depth contours for the halfspace depth function has been
investigated, among others, in Nolan (1992); Massé and Theodorescu (1994); Ser-
fling and Zuo (2000) and Kuelbs and Zinn (2016). These results have been uni-
fied in Dyckerhoff (2017): if (2.3) holds and if P has a contiguous support then
sup
α∈L

dH(Dα(Pn), Dα(P ))
a.s.→ 0 as n goes to infinity where L is any compact interval

in (0, x∗H]. Uniform consistency of depth contours has been proved for elliptical dis-
tributions under some conditions on a general depth function (He and Wang, 1997).
The consistency of D(·, Pn) is closely related to that of its associated depth-trimmed
regions Dα(Pn), α ∈ [0, 1]. Indeed, it can be shown that the continuity of the depth-
trimmed regions map α 7→ Dα(P ) is crucial in order to link (Cpw) and (Cuc) with
their depth-trimmed regions counterparts (w.r.t. the Hausdorff distance), see Dycker-
hoff (2017), Theorems 3.2, 4.5, 4.7. We refer the reader to Dyckerhoff (2017) for further
convergence equivalence results and detailed discussions about the relation between the
convergence of data depth and its depth-trimmed regions.

Asymptotic normality. Knowing the limit distribution of an estimator, whether
Gaussian or any well-known probability distribution, is crucial in statistics in order to
provide confidence bounds or to construct hypothesis testing. Regarding data depth,
this property has been extensively investigated for the most popular depths such as
halfspace or simplicial. We start by recalling the two following definitions of Central
limit theorem (CLT) for data depths.
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(CLTpw) For any P ∈ P(Rd) and x ∈ Rd, as n→∞ we have:

√
n |D(x, Pn)−D(x, P )| L−→ N (0, σ2),

where σ2 > 0.

(CLTu) For any P ∈ P(Rd), as n→∞ we have:

sup
x∈Rd

√
n |D(x, Pn)−D(x, P )| L−→ N (0, σ2),

where σ2 > 0.

Asymptotic normality of the Tukey median process has been investigated in Bai and
He (1999) and Massé (2002). However, the limit distribution of the halfspace depth
is not necessary Gaussian but conditions under which the CLT is satisfied on a subset
of Rd can be stated (Massé, 2004). A Gaussian limit distribution (CLTu) has been
provided for the simplicial depth (Dümbgen, 1992). Both median processes of the
simplicial and the Oja depths have been derived through the study of U-processes in
Arcones et al. (1994). Point-wise CLTs have been derived for integrated version of the
halfspace/simplicial depths in Ramsay et al. (2019) and Cuevas and Fraiman (2009)
respectively and for Lens depth in Liu and Modarres (2011). Asymptotic properties
of the projection depth have been investigated at length. Zuo (2003) has derived the
existence of a limit distribution of the empirical process of the projection median.

Some limit distributions of projection depth-based procedures such as location estimat-
ors (Maronna and Yohai, 1995), weighted means (Zuo et al., 2004a), L-statistics (Massé,
2009), trimmed means (Kim, 1992) or scatter estimators (Zuo and Cui, 2005) have been
highlighted.

Finite-sample analysis. Nonasymptotic results about the accuracy of sample versions
of statistical depths, such as those stated above, are seldom in the literature. To the
best of our knowledge, rate bounds have only been derived in the halfspace depth case.
The first result, where uniform rates of the sample version are provided, uses the fact
that the set of halfspaces in Rd is of finite Vapnik-Chervonenkis dimension (see e.g.
Vapnik, 1999) and is recalled below.

Proposition 2.23 (Shorack and Wellner (1986), Chapter 26). Let P ∈ P(Rd). Let
X1, . . . , Xn a sample from P with empirical measure Pn = (1/n)

∑n
i=1 δXi . Denote by

Fu and Fu,n the cdf of Pu and Pu,n respectively. Then for any t > 0 it holds:

P

 sup
x∈Rd
u∈Sd−1

∣∣∣∣Fu,n(u>x)− Fu(u>x)

∣∣∣∣ > t

 ≤ 6(2n)d+1

(d+ 1)!
exp(−nt2/8).

Recently, this result has been refined under further assumptions (Burr and Fabrizio,
2017). An asymptotic convergence rate for the Monte-Carlo approximation of the half-
space depth, i.e. when the minimum over the unit hypersphere is approximated from
a finite number of directions, has been recently established in Nagy et al. (2020b).
Unfortunately, approximating a minimum over the unit sphere Sd−1 using a Monte-
Carlo scheme is not optimal. Indeed, when the distribution is assumed to belong to
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a bounded subset of Rd with bounded density, the authors obtain slow rates of order
O((log(nproj)/nproj)

1/(d−1)) where nproj is the number of sampled directions to approx-
imate the minimum over the hypersphere, suffering from the curse of dimensionality.
Futhermore, they show that obtaining uniform rates of the halfspace depth approx-
imation is not possible in absence of the bounded density assumption (see the second
example in Section 4.2 in Nagy et al. (2020b)). Recently, Brunel (2019) provided a finite-
sample analysis of the quantity dH(Dα(Pn), Dα(P )) and obtained parametric rates with
explicit constants completing the work of Kim (2000).

2.4.2 Computational Issues

Most of sample versions of data depths introduced in Section 2.3 can be exactly com-
puted. Some depth functions can be computed very efficiently such as the spatial and Lp
depths that have sample version calculable in O(dn) but are sensitive to outliers. The
Mahalanobis depth requires to invert the covariance matrix leading to a complexity of
O(d3n). Unfortunately, computational complexity often grows exponentially with the
dimension d for most data depths. Relying on approximations can be essential, leading
to a well-known trade off between the computational efficiency and the accuracy of the
approximation. Three computational challenges can be exhibited regarding the presen-
ted data depths. The first comes from combinatorial depths based on U-statistics such
as the Oja depth where

(
n
d+1

)
combinations are necessary to compute the sample mean.

The second relies on computing statistics that have a geometric aspect such as the com-
putation of the convex hull of sample points in the simplicial depth or its volume in the
Oja depth. These two challenges have led to complexity of order O(nd+1) and O(nd) for
the simplicial and the Oja depth respectively yielding unfeasibility for most data sets.
However, they both can be approximated by choosing a smaller of combinations instead
of
(
n
d+1

)
and

(
n
d

)
or by taking a smaller portion of data to construct simplices (see e.g.

Chapter 6 where both approximation techniques are investigated). The Lens depth,
being a U-statistics of order 2 can be computed exactly in O(n2d). The third challenge
comes from computing a minimum/maximum over the unit sphere of non-differentiable
function (indicator function) such as for the halfspace or projection depths. A general
algorithm, based on cutting a convex polytope with hyperplanes, to compute the pro-
jection depth and its contours with complexity O(nd) has been described in Liu and
Zuo (2014a). Algorithms to compute the Oja median and the spatial median can be
found in Fischer et al. (2020) and Kent et al. (2015) respectively. Computation of the
halfspace depth has received much attention and some references are given below.

Computation of halfspace depth. Starting with bivariate distributions, an al-
gorithm that computes the halfspace depth of a point x ∈ R2 in O(n log(n)) has been
proposed by Rousseeuw and Ruts (1996) and appears to be time-optimal (Langerman
and Steiger, 2003). This algorithm relies on the idea of a circular sequence (see e.g.
Edelsbrunner, 1987). A single depth-trimmed contour can be computed in O(n2 log(n))
(Ruts and Rousseeuw, 1996b,a). Focusing on a small batch of the data set as well as
a small number of depth contours to be computed, a faster algorithm, named FDC,
has been introduced in Johnson et al. (1998) to compute several depth contours at the
same time. Authors of Miller et al. (2003) provided a way to compute all depth regions
in O(n2) by means of duality and toplogical sweep of an arrangement of lines. When
d > 2, to compute the depth function of a point and depth contours are a much more
challenging task. The first introduced algorithm to compute the halfspace depth of an
element x ∈ R3 requires O(n3 log(n)) operations (Rousseeuw and Struyf, 1998). Later,
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Bremner et al. (2006) proposed a primal-dual algorithm by successively updating upper
and lower bounds of the depth in dimension d by means of reserve search technique,
futher improved by Bremner et al. (2008). A faster algorithm has been developed in Liu
and Zuo (2014b) using a breadth-first search algorithm to cover Rd and the QHULL
algorithm to define cones (see also Liu, 2017). Dyckerhoff and Mozharovskyi (2016)
proposed a whole class of algorithms allowing the computation of the exact halfspace
depth in O(nd) without requiring assumptions on the data set.

Following the discussion in Kong and Mizera (2012) about connections between half-
space trimmed regions and the intersection of directional quantile halfspaces, algorithms
to compute halfspace contours, based on the division of the unit sphere into cones, have
been investigated in Paindaveine and Šiman (2012). The idea to segment Rd into dir-
ection cones dates back to Mosler et al. (2009) for the computation of the zonoid depth
and in Hallin et al. (2010) for the halfspace depth. A faster algorithm, employing the
breadthfirst ridge-by-ridge search strategy, has been further introduced in (Liu et al.,
2019).

Approximation of halfspace depth. Data depths possessing the projection prop-
erty, such as the halfspace, projection and zonoid depths, can be approximated with a
finite number, say nproj, of sampled directions uniformly in Sd−1 leading to a computa-
tional complexity in O(nproj nd) (Dyckerhoff, 2004), see Algorithms 2.1 and 2.2 for the
halfspace and projection depths respectively. For the halfspace depth, this approxima-
tion is known as the random Tukey depth (Cuesta-Albertos and Nieto-Reyes, 2008a).
Approximating the minimum over the unit sphere by means of Monte-Carlo generates
poor statistical accuracy involving the so-called curse of the dimension (Nagy et al.,
2020b). However, this naive approximation can be improved. Indeed, Rousseeuw and
Struyf (1998) (see also Struyf and Rousseeuw, 2000) have sampled directions based on a
random combination of sample points while Chen et al. (2013) have proposed to sample
directions uniformly but after projecting data into orthogonal subspaces. Afshani and
Chan (2009) have presented an algorithm based on a randomized data structure and
halfspace range counting queries techniques. Mozharovskyi et al. (2015) have provided
an accelerated algorithm when the halfspace depth is computed on the sample itself.
Further, the projection depth has been approximated by means of the Nelder-Mead
algorithm (Dutta and Ghosh, 2012). Recently, Zuo (2019) has developped an algorithm
that avoids O(nd) polyhedral cones, using instead essentially pointwise distances of the
order of O(n2). This algorithm allows to compute the sample depth of a point that has
values p/n in O(n2(d + p + log(n))) being linear w.r.t. the dimension d. An extens-
ive study of further approximations based on zero order optimization algorithms and
dedicated to depth satisfying the projection property can be found in Dyckerhoff et al.
(2021). Namely, authors have investigated (i) random search, (ii) grid search, (iii)
refined random search, (iv) refined grid search, (v) random simplices, (vi) simulated
annealing, (vii) coordinate descent, (viii) Nelder-Mead, where (iii) and (viii) appear
to reach the best performances.

Approximation of IRW depth. The exact computation of IRW and ID depths has
not been investigated probably due to the fact that these depths can be well approx-
imated by means of Monte-Carlo techniques leading to a complexity in O(nprojnd). As
the IRW depth will be the foundation of Chapter 9, we give more details on how to
approximate IRW. Recall that a r.v. uniformly distributed on the hypersphere Sd−1

can be generated from a d-dimensional centered Gaussian random vector W with the
identity Id as covariance matrix: if W ∼ N (0, Id), then W/||W || ∼ ωd−1, see Krantz
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and Parks (2008). Hence, a basic Monte-Carlo method to approximate the IRW depth
(2.4) would consist in generating nproj ≥ 1 independent realizations W1, . . . ,Wnproj of
N (0, Id) and compute

1

nproj

nproj∑
j=1

DH,1(〈Wj/||Wj ||, x〉, PWj/||Wj ||), (2.6)

refer to e.g. Kalos and Whitlock (2008) for an account of Monte-Carlo integration meth-
ods.

Because data depth is a very popular notion in the statistical community but not well
known in machine learning, most data depth implementations can be found in R package
such as ddalpha (Pokotylo et al., 2019), fda.usc (Febrero-Bande and de la Fuente,
2012), depth (Genest et al., 2019), mrfdepth (Segaert et al., 2020), and depthproc
(Kosiorowski and Zawadzki, 2019). Python implementations of several multivariate
data depths can be found in https://github.com/GuillaumeStaermanML. We refer
the reader to Rousseeuw and Hubert (2018a) and Mosler and Mozharovskyi (2020) for
further details on data depth computation.

Algorithm 2.1 Approximation of the halfspace depth.
input: Sn,nproj.

1 Construct U ∈ Rd×nproj by sampling uniformly nproj vectors U1, . . . , Unproj in Sd−1

2 Compute M = XV, where X = [X1, . . . , Xn]> ∈ Rn×d

3 Compute the rank value σ(i, j), the rank of index i in M:,j for every i ≤ n and j ≤ nproj

4 Set D̃MC
H (Xi,Sn) = min

1≤j≤nproj

σ(i, j) for every 1 ≤ i ≤ n

5 return
{
D̃MC

H (Xi,Sn), 1 ≤ i ≤ n
}

Algorithm 2.2 Approximation of the projection depth.
input: Sn,nproj.

6 Construct U ∈ Rd×nproj by sampling uniformly nproj vectors U1, . . . , Unproj in Sd−1

7 Compute M = XV, where X = [X1, . . . , Xn]> ∈ Rn×d

8 Find Mmed,j the median value of M:,j , ∀ j ≤ nproj

9 Compute MADj = median{
∣∣∣Mi,j −Mmed,j

∣∣∣, i ≤ n} for 1 ≤ j ≤ nproj

10 Compute V s.t. Vi,j =
∣∣∣Mi,j −Mmed,j

∣∣∣/MADj

11 Set Di = min
1≤j≤nproj

1/(1 + Vi,j) for every i ≤ n

12 return
{
D̃MC

P (Xi,Sn), 1 ≤ i ≤ n
}

https://github.com/GuillaumeStaermanML
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2.4.3 Robustness

The notion of breakdown point has been first introduced in Hampel (1968) as a global
robustness measure. A simple notion of breakdown point, named finite-sample break-
down point, has been introduced in Donoho (1982) and further developped in Donoho
and Huber (1983). The finite sample breakdown point (referred to as BP in its abbre-
viated form) is a more intuitive notion and has been studied at length in the literature.
It corresponds to the smallest contamination fraction necessary to break down an es-
timator. More precisely, for any estimator T := T (Sn) the (additive) finite sample
breakdown point is defined as

BP (T,Sn) = min

 o

n+ o
: sup
S̃o

d (T (Sn ∪ S̃o), T (Sn)) = +∞

,
where d is a metric defined on the space where T takes its values and S̃o a contaminated
sample of size o. A slight modified version, replacing (instead of adding) the standard
sample by the contaminated one, named replacement breakdown point can be seen in the
literature. The asymptotic breakdown point is given by making n goes to infinity. Data
depths are usually nonnegative and bounded. Thus, the BP of data depths have been
investigated through the lens of two similar settings: (1) by fixing T (·) = logD(x, ·) and
d(·, ·) = |. − .|; (2) by means of its depth-trimmed regions at level α replacing T (·) by
Dα(·) and d(·, ·) by the Hausdorff distance. Lopuhaa and Rousseeuw (1991) have shown
that the maximum breakdown point of any affine equivariant statistical estimators is
1/2, that is attained by the median in the univariate case, while the sample mean breaks
at 1/n. It is an important property since the affine invariance property D1 makes the
depth induced median affine equivariant and then provide an upper-bound on the BP
of data depths.

The deepest point of the projection depth, relying on univariate medians of projected
distributions and being robust by construction, has a breakdown point equal to 1/2
extending the univariate median robustness. The L2 and spatial medians have both
a breakdown point equal to 1/2 (Lopuhaa and Rousseeuw, 1991). The asymptotic
breakdown point of the halfspace median has been shown to be higher than 1/(d + 1)
(Donoho and Gasko, 1992) being more robust to the simplicial median that has BP
asymptotically lower than 1/(d + 2) (Chen, 1995). It stipulates that halfspace median
remains until at least n/(d + 1) outliers are added to the data set, meaning that the
Tukey median is a robust statistics when d is not too high w.r.t. the sample size n, that
is the case for most machine learning data sets. The IRW median has BP higher than
dn/de

n+dn/de and is therefore at least as robust as the Tukey median. The lens depth has
an asymptotic breakdown point equal to (

√
2− 1)/

√
2 ≈ 0.3 that is independent of the

dimension. Several data depths have robust medians but are poorly robust in general
such as the halfspace depth, that has BP of its larger depth-trimmed regions Dα(P )

equal to dα/(1−α)ne
n+dα/(1−α)ne (see Donoho and Gasko, 1992 and Nagy and Dvořák, 2021 for

further details); and the Lp/simplicial depths that have both global BP equal to 1/n.
In contrast, some data depths should not be used when data are contaminated such as
the zonoid depth, being maximized by the expectation E[X], and the Oja depth having
both their asymptotic breakdown points equal to zero (Niinimaa et al., 1990). The
Mahalanobis breakdown point relies on the BP of the mean and covariance estimates
and suitable choices to ensure robustness can be made such as the Minimum Volume
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Ellipsoid (Lopuhaa and Rousseeuw, 1991).

The local robustness of an estimator can be explored by studying its influence function,
a robustness measure, based on the Gateaux derivative in the direction of a Dirac
distribution at a point y ∈ Rd, that has been introduced in the seminal paper Hampel
(1971). The influence functions of data depths have been investigated in Romanazzi
(2001) and Chen and Tyler (2002) for the halfspace median, in Niinimaa and Oja (1995)
for the spatial/Oja and L2 medians, in Zuo (2004) for the Lp median, and in Zuo et al.
(2004b) for the projection median.
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The idea of extending the concept of multivariate data depth to the case of functional
data first appears in Liu and Singh (1997) in order to define limiting p-values for hy-
pothesis testing on infinite-dimensional parameters. Thereafter, the first proposal in a
functional framework have been considered in Fraiman and Muniz (2001), where it is
proposed to define functional depths as simple integrals, over the parametrization of
functions (e.g. time), of a univariate depth function. Further, to contrast with integ-
rated depths, Mosler and Polyakova (2012) have introduced the class of infimal depths
replacing the integral by an infimum over its parametrization in order to identify outly-
ing functions in a small part of their domain. Recently, alternative functional depths
have been introduced, see López-Pintado and Romo (2009, 2011) for depths based on
the geometry of the set of curves, Chakraborty and Chaudhuri (2014b) for a notion of
depth based on the L2 distance, Helander et al. (2020) for a depth based on a multivari-
ate Pareto distribution, Dutta et al. (2011) and Sguera et al. (2014) for a functional
version of the Tukey depth or Nagy et al. (2017) and Harris et al. (2021) for depths
dedicated to detect outlying shapes.

In this chapter, we review the concept of data depth devoted to functional data. After
having recalled the concept and standard properties in Section 3.1, we exhibit classical
examples of functional depth and highlight their particularities in Section 3.2. Eventu-
ally, we discuss about recent developments on functional depth focusing on the shape
of functions in Section 3.3.

3.1 Definition and Properties

Before defining functional statistical depth we first introduce some notations. Denote
by F(T) a subset of the space of real-valued functions defined on a compact set T ⊂ R.
Assume that F(T) is a normed vector space with an arbitrary norm || · || with the
corresponding metric d(x,y) = ||x−y||, for x,y ∈ F(T). Throughout this dissertation,
F(T) is often denoted by F for simplicity. We consider the situation where the r.v.
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X, defined on a probability space (Ω,A,P), takes its values in the infinite dimensional
space F. By P(F) is meant the space of Borel probability measures on F. The random
variable X following P ∈ P(F) is then defined as follows:

X : (Ω,A,P) −→ F(T)
ω 7−→ X(ω) = {X(ω, t), t ∈ T}.

The two common choices for F, depending on depth functions considered, are (i) C(T),
the space of continuous functions defined on T equipped with the infinity norm ||x||∞ =
sup
t∈T
|x(t)| and (ii) L2(T, λ), the space of square integrable functions w.r.t. the Lebesgue

measure λ equipped with the norm ||x||L2 =
√∫

T
x(t)2 λ(dt).

Now, we are ready to give the general definition of functional depth. Formally, a stat-
istical functional depth is defined as follows:

FD : F × P(F) −→ [0, 1] ,
(x,P) 7−→ FD(x,P). (3.1)

Properties a notion of functional depth should satisfy have been discussed, among others,
in López-Pintado and Romo (2009); Dutta et al. (2011); Mosler and Polyakova (2012);
Chakraborty and Chaudhuri (2014a) and have recently been unified in Nieto-Reyes
and Battey (2016) and Gijbels and Nagy (2017). The axiomatic framework recalled in
Chapter 2 is no longer adapted to the richness of the topological structure of functional
spaces. Indeed, the vast majority of the functional depths documented in the literature
do not fulfill versions of the most natural and elementary properties required for a depth
function in a multivariate setup, cf. Gijbels and Nagy (2017). However, there is still no
consensus about the set of desirable properties that a functional depth should satisfy,
beyond the form of sensitivity mentioned above. Those that appear to be the most
relevant in our opinion are listed below.

(FD0) (Non-degeneracy) For all non-atomic distribution P in P(F), we have:

inf
x∈F

FD(x,P) < sup
x∈F

FD(x,P).

(FD1F) (Function-affine invariance) Let X be a r.v. following PX ∈ P(F). The
depth FD is said to be (function-) affine invariant if for any x in F and all a,b in
F, we have:

FD(x,PX) = FD(ax + b,PaX+b).

where by ax is meant the pointwise product.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(FD1S) (Scalar-affine invariance) Let X be a r.v. following PX ∈ P(F). The
depth FD is said to be (scalar-) affine invariant if for any x in F and all a, b in R,
we have:

FD(x,PX) = FD(ax + b,PaX+b).
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(FD2) (Maximality at the center) For any symmetric and non-atomic distribu-
tion P ∈ P(F) with θ ∈ F as center of symmetry, we have:

FD(θ,P) = sup
x∈F

FD(x,P).

(FD3SD) (Strictly decreasing w.r.t. the deepest point) For any P in P(F)
such that FD(z,P) = sup

x∈F
FD(x,P), FD(x,P) < FD(y,P) < FD(z,P) holds

for any x,y ∈ F such that min{d(y, z), d(y,x)} > 0 and max{d(y, z), d(y,x)} <
d(x, z).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(FD3D) (Decreasing w.r.t. the deepest point) For any P in P(F) such that
FD(z,P) = sup

x∈F
FD(x,P), we have FD(z,P) > inf

x∈F
FD(x,P) and FD(y,P) ≤

FD(z + γ(y − z),P) holds for all y ∈ F and γ ∈ [0, 1].

(FD4) (Vanishing at ∞) For any non-atomic distribution P in P(F),

FD(z,P) −→
||z||F−→∞

inf
x∈F

FD(x,P),

where || · ||F is the norm associated to F.

(FD5) (Upper semi-continuity in x) For any non-atomic distribution P ∈ P(F),
the function x 7→ FD(x,P) is upper semi-continuous w.r.t. the norm associated
to F.

(FD6) (Continuity in P) For all x in F, the mapping P ∈ P(F) 7→ FD(x,P) is
continuous w.r.t. the Lévy-Prohorov metric.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(FD6UC) (Uniform continuity in P over compact sets) For all ε > 0, there
exists δ > 0 such that for any P,Q ∈ P(F) s.t. dLP(P,Q) < δ, it holds for any
compact sets K ⊂ F, sup

x∈K
|FD(x,P) − FD(x,Q)| < ε where dLP(P,Q) is the

Lévy-Prohorov metric.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(FD6U) (Uniform continuity in P) For all ε > 0, there exists δ > 0 such that
for any P,Q ∈ P(F) s.t. dLP(P,Q) < δ, it holds sup

x∈F
|FD(x,P)− FD(x,Q)| < ε

where dLP(P,Q) is the Lévy-Prohorov metric.

The property (FD0) is specific to functional spaces as it is trivially satisfied for all
multivariate data depths. It has been discussed in Nieto-Reyes and Battey (2016) in
the case of Gaussian processes and further developed in Gijbels and Nagy (2017) to
general distributions. Though it obviously appears as mandatory to make the other
properties meaningful, non-degeneracy, is actually not fulfilled by all the functional
depths proposed, see e.g. Dutta et al. (2011) and Chakraborty and Chaudhuri (2014a).
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Known examples of depth that fail to be relevant for every P ∈ P(F) include the
band depth (López-Pintado and Romo, 2009), the halfregion depth (López-Pintado and
Romo, 2011) or the infimal depth (Mosler and Polyakova, 2012).

Nieto-Reyes and Battey (2016) have first introduced the property named distance in-
variance relying on invariance to isometric transformations, i.e. transformations f s.t.
the distance ||f(x)− f(y)|| = ||x−y||F, ∀ x,y ∈ F where || · ||F is the norm of the func-
tional space F. However, this property is too restrictive in general. Indeed, Gijbels and
Nagy (2017) have demonstrated that most of known depth functions fail to satisfy this
strong notion of invariance. Therefore, weaker properties (FD1F) and (FD1S) have
been discussed by the authors in order to develop meaningful properties for existing
functional depth notions. In contrast to multivariate data depth, it is still not clear if
a functional depth should fulfill the more general invariance properties. The property
(FD1F), which implies scalar-affine invariance that is satisfied by most of functional
depths, exhibits many transformations that completely modify the function structure.

The ‘maximality at center ’ and ‘(strictly) decreasing w.r.t. the deepest point ’ properties
permit to preserve the original center-outward ordering goal as well as the goodness of
fit for unimodal data of data depth in the functional framework. As described in the
previous chapter, there are several notions of symmetry in the multivariate space that
are not easily adaptable to functional spaces which led the authors of Nieto-Reyes and
Battey (2016) to consider symmetry around the absciss axis of zero mean Gaussian pro-
cesses. Further, Gijbels and Nagy (2017) have provided extensions of central symmetry
and halfspace symmetry to functional data based on a characterization of functional
symmetries by means of projections through continuous linear mappings ϕ : F → R
that belong to the dual space F∗. Relying on the previous work of Nagy et al. (2016b),
authors argue that any random variable X following P ∈ P(F) is symmetric around θ
if and only if for any ϕ ∈ F∗ the distribution of ϕ(X) is symmetric around ϕ(θ). Simple
examples can be considered in C(T) or L2(T) spaces. Recall that L2 is a Hilbert space
equipped with the inner product 〈x,y〉L2 =

∫
T

x(t)y(t)dt. Thus, the r.v. X following
P ∈ P(L2) is symmetric around θ if and only if (〈u1,X〉, . . . , 〈up,X〉) is symmetric
around (〈u1,θ〉, . . . , 〈up,θ〉) for all u1, . . . ,up ∈ L2 and p ∈ N∗. In particular, when
F = C, the functional symmetry implies that the distribution of finite evaluation of
random functions, i.e. (X(t1), . . . ,X(tp)) is symmetric around (θ(t1), . . . ,θ(tp)) for all
t1, . . . , tp ∈ T and p ∈ N∗. In the following, we denote by (FD2C) and (FD2H) central
and halfspace symmetry respectively. It is worth mentioning that (FD2H)⇒ (FD2C).

The property (FD3D) is the direct extension of (D3) to the functional case. It im-
poses the same behavior on the functional depth as in the multivariate case, i.e. star-
shaped and connected depth-trimmed regions. However, the alternative and stronger
property (FD3SD) relies on the topological properties of the considered metric space
(F, d). Choosing the infinity norm as metric d, (FD3SD) ensures that the functional
depth assigns lower values to elements of F that successively belong to balls centered in
z = argsup

x∈F
FD(x,P) with growing radius. It can be shown that z = argmax

x∈F
FD(x,P)

and (FD0) are consequences of satisfying (FD3SD) (Nieto-Reyes and Battey, 2016).
Imposing a decay on the depth function relying on the considered topological space re-
gardless of the probability distribution P is the main drawback of (FD3SD). As pointed
out in Gijbels and Nagy (2017), the equivalent of this property in the multivariate space
Rd is also more restrictive and stronger than (D3).
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The ‘semi-continuity in x’ and ‘decreasing w.r.t. the deepest point ’ properties extend
properties fulfilled by the cumulative distribution functions of univariate continuous
distributions in the same way as for multivariate data depth.

From a statistical perspective, the ‘continuity in P’ property is essential, insofar as P
must be replaced in practice by an estimator, built from finite-dimensional observations,
i.e. a finite number of sampled curves. As in the multivariate case, it is more convenient
to have the whole depth set {FD(x,P), x ∈ F} well approximated from an inference
angle. However, uniform continuity in P is very demanding in functional spaces. In the
multivariate case, absolutely continuity w.r.t. Lebesgue measure of distributions is often
required in order to have continuity of x ∈ Rd 7→ D(x, P ), P ∈ P(Rd) allowing the
uniformity of the consistency of the multivariate depth function. This is, of course, not
easily expandable to functional spaces. Although obtaining uniform convergence over
F is generally difficult on functional spaces, the uniformity can be limited to compact
sets of F. Indeed, local uniform continuity is satisfied by many functional depths under
continuity assumptions on the distribution (see Section 3.2).

Remark 3.1 (Partially observed functional data). Let X1, . . . ,Xn be a sample
of i.i.d. random functions from P ∈ P(F) and Pn = (1/n)

∑n
i=1 δXi its associated

empirical measure. In practice, functional data are discretely observed on a vector
(t1, . . . , tp) ∈ T for p ∈ N∗ leading to the following observation set {(X1(tj), . . . ,Xn(tj)) :
1 ≤ j ≤ p}. These observations are often referred to as time-series when the set
of parametrization T is the time. The first step in functional data analysis (see e.g.
Ferraty and Vieu (2006) and Ramsay and Silverman (2002)) is to reconstruct func-
tions from their partial observations either by interpolation of by means of projection
in smooth bases such as splines. The statistician then has access to a reconstructed
sample X̃1, . . . , X̃n rather than X1, . . . ,Xn. Given the reconstructed empirical meas-
ure P̃n = (1/n)

∑n
i=1 δX̃i

, the main challenge to be adressed is to answer the following
question: is P̃n is an accurate approximation of P? The asymptotic behavior of P̃n has
been investigated by Nagy et al. (2016a) when X̃1, . . . , X̃n are obtained through linear
interpolation. Authors have shown the convergence of P̃n to P as n and p go to infinity.
Thus, the functional depth computed in practice asymptotically recovers the true depth
function.

Remark 3.2 (Multivariate functional data). Functional data can also be found
in the form of multivariate functional data. In this case, the r.v. X is a multivariate
stochastic process such that for each t ∈ T, X(t) takes its values in Rd. Many ap-
proaches have been introduced recently to deal with multivariate functional data such
as the simplicial band depth (López-Pintado et al., 2014), the multivariate functional
halfspace depth (Claeskens et al., 2014), the multivariate functional projection depth
(Hubert et al., 2015) or the directional outlyingness (Dai and Genton, 2019b).

3.2 Existing Notions of Functional Data Depths

In contrast to multivariate data depth, there is no well-established nomenclature that
brings together functional depth approaches. In this part, we introduce a variety of
(univariate) functional depths based on differing concepts and discuss their properties.
We propose our own nomenclature which differs slightly from that of Nagy (2016),
Chapter 2. More precisely, functional depths can be categorized into four classes:
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• Integrated depths: univariate depth functions computed on one-dimensional
projections are averaged, see Section 3.2.1.

• Infimal depths: the depth is chosen as the infimum of univariate depth functions
computed on one-dimensional projections, see Section 3.2.2.

• Geometry-based depths: the graph of x is compared to a geometric shape
induced by the graph of the r.v. X, see Section 3.2.3.

• Distance-based depths: the depth of x decreases as its distance from X de-
creases w.r.t. a functional norm, see Section 3.2.4.

For the sake of completeness, structural properties of functional depths presented in
this section can be summarized in the Table 3.1 while a similar table can be found in
Gijbels and Nagy (2017). It is worth mentioning that most of the presented functional
depths in this section can be easily extended to the case of multivariate functional data.
As an example, univariate depth functions can be replaced by multivariate ones for
integrated/infimal depths (see Section 3.2.1 and Section 3.2.2). However, it is not the
purpose of this manuscript to present multivariate functional depth and we limit our
review to the univariate functional case.

3.2.1 The Family of Integrated Depth

Integrated depths are based on low-dimensional projections and is an important family
of functional depths. They are constructed as the mean of all univariate depth values
computed over one-dimensional projections. We present here the main approaches.

• Integrated depths. The class of integrated depths, based on a integral over the
space T of univariate depths of a curve observed at t ∈ T, has been first introduced
in Fraiman and Muniz (2001). This depth captures the overall nature of a function
x by its point-wise averaged behavior making it very easy to compute in practice.
The most popular depths that belong to this family are probably the functional
halfspace depth (Claeskens et al., 2014) and the functional projection depth (also
called functional Stahel-Donoho outlyingness) (Hubert et al., 2015).

Definition 3.3. Let x ∈ F and X be a r.v. following P ∈ P(F). Let D(., .) : R×
P(R)→ [0, 1] be an arbitrary univariate depth function. The integrated functional
depth of x w.r.t. P is defined as:

IFD(x,P) =

∫
T

D(x(t),Pt) µ(dt), (3.2)

where µ is an arbitrary measure on T and Pt ∈ P(R) is the marginal probability
distribution of X(t).

The most popular depths that belong to this family are probably the functional
halfspace depth IFDH (Claeskens et al., 2014) and the functional projection depth
(also called functional Stahel-Donoho outlyingness) IFDP (Hubert et al., 2015).

This approach appears as a natural extension to univariate depth into functional
data. However, the main drawback of this approach is its smoothing effect induced
by the integral that cannot detect any atypical behavior on a small portion of T
(Mosler and Polyakova, 2012).
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Properties of IFD stem from features shared by the considered univariate depth.
This family of functional depth has been extensively studied in Nagy et al. (2016b)
at the lens of measurability, structural properties and consistency when F =
C(T). Authors first investigated the measurability of IFD which requires the
measurability of the function t ∈ T 7→ D(x(t),Pt) that follows for most of classical
depth functions. However, authors shed light on a measurability issue. Indeed,
when studying the uniform convergence of the sample version of IFD, the first
step often relies on the following inequality:

sup
x∈C

∫
t∈T

∣∣∣D(x(t),Pn,t)−D(x(t),Pt)
∣∣∣dt ≤ ∫

t∈T
sup
x∈C

∣∣∣D(x(t),Pn,t)−D(x(t),Pt)
∣∣∣dt,

where Pn,t the empirical distribution of the marginal Pt. To get the measurability
of the term inside the integral on the right side of the inequality, we need a stronger
notion of measurability on D(., .) as pointed out in Nagy et al. (2016b). More
precisely, the function

D : R× P(R) −→ [0, 1] ,
(x, P1) 7−→ D(x, P1),

needs to be jointly Borel measurable and D(., P1) 6≡ 0 for all P1 ∈ P(R). This
condition is satisfied by most of univariate depth functions such as the halfspace
or simplicial depth. Structural properties of IFD relying on properties of D have
been established in Nagy et al. (2016b). IFD satisfies (FD1S) if D is invariant
to rescaling and translations; (FD2) for halfspace symmetric distributions if D
satisfies (D2,D4,D5); and (FD6U) if D satisfies uniform continuity for Pt for
almost all t ∈ T. Furthermore, (FD3D) holds if D satisfies (D3); (FD4) holds if
D satisfies (D4) and additional mild assumptions; and (FD5) holds if D satisfies
(D5).

• Functional integral dual depth. The functional integral dual depth (Cuevas
and Fraiman, 2009) can be considered as a generalization of the integrated depth.
Indeed, it is defined as the value of any univariate depth (originally defined with
the simplicial depth) integrated over all dual projections ϕ : F → R.

Definition 3.4. Let x ∈ F and X be a r.v. following P ∈ P(F). Let D(·, ·) :
R × P(R) → [0, 1] be a univariate depth function and µ be a probability measure
on F∗, the dual space of F. The functional integral dual depth of x w.r.t. P is
defined as:

FIFD(x,P) =

∫
ϕ∈F∗

D(ϕ(x),Pϕ) dµ(ϕ),

where Pϕ ∈ P(R) is the marginal probability distribution of ϕ(X).

The integrated depth function can be considered as a particular case of FIFD.
Indeed, when the measure µ is restricted to the set of Dirac measures {δt ∈ F∗, t ∈
T}, the functional integrated dual depth boils down to the depth function (3.2).
Surprisingly, theoretical properties of FIFD have not been clearly investigated
yet through the scope of functional depth axioms. However, necessary conditions
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under which continuity in x and in P hold are known from Cuevas and Fraiman
(2009). Authors also shows that FIFD vanishes at infinity. Note that this depth
is dedicated to any Banach space F making the approach valid for both C and L2.

3.2.2 The Family of Infimal Depth

Infimal depths are based on low-dimensional projections and is an important family of
functional depths. They are constructed as the infimum of all univariate depth values
computed over one-dimensional projections. We present here the main approaches.

• Random Tukey depth. Cuesta-Albertos and Nieto-Reyes (2008a) have intro-
duced the random Tukey depth in order to generalize the halfspace depth (approx-
imated with a finite number of unit sphere vectors) to Hilbert functional spaces.
Let F = L2 equipped with the inner product 〈·, ·〉L2 , the random Tukey depth
aims at computing the minimum value of the univariate halfspace depth over a
finite number of projections.

Definition 3.5. Let x ∈ L2 and X be a r.v. following P ∈ P(L2). Let U =
{U1, . . . ,Um} the set of m i.i.d. realizations drawn from a probability measure
µ ∈ P(L2). The random Tukey depth of x w.r.t. P is defined as:

FDRT(x,P) = min
u∈U

DH,1

(
〈u,x〉L2 , Pu

)
,

where the probability measure µ is taken as a non-degenerate stationary Gaussian
measure on L2 and by Pu is meant P〈u,X〉L2

.

Its properties have been studied in both Nieto-Reyes and Battey (2016) and Gij-
bels and Nagy (2017). It satisfies (FD0,FD1S,FD3D,FD5) but violates (FD2)
and (FD4). When the joint distribution (P〈u1,X〉L2

, . . . ,P〈um,X〉L2
) is absolutely

continuous w.r.t. the Lebesgue measure or for empirical measures, the random
Tukey depth is uniformly continuous in P (FD6U). We refer to Cuesta-Albertos
and Nieto-Reyes (2008a) for further discussions on FDRT including the choice of
m.

The extension of the random Tukey depth defined above, as “continuous” or “in-
finite” version of the latter replacing the minimum over a finite number of projec-
tions with an infimum over all linear projections x 7→ 〈u,x〉, has been studied in
Dutta et al. (2011); Kuelbs and Zinn (2013); Chakraborty and Chaudhuri (2014a).
However, it turns out that taking an infinite number of projections leads to a de-
generate behaviour for some commonly used probability distributions in infinite
dimensional spaces of functions (Dutta et al., 2011; Chakraborty and Chaudhuri,
2014a) and to the lack of consistency (Kuelbs and Zinn, 2013).

• Φ-depth. Sharing the idea of Cuevas and Fraiman (2009), Mosler and Polyakova
(2012) have introduced the general notion of infimal depth (=Φ-depth) replacing
the integral in (3.2) by an infimum over all linear R-valued functions ϕ general-
izing the two previously introduced functional depths. Each function ϕ : F → R
might be interpreted as a particular view of x. With the same worst case aspect
as in the multivariate halfspace depth, if there is one “direction” or rather one
“characteristic” where x is far from the center of P ∈ P(F), then x is considered
as an outlier. Precisely, this approach is defined as follows.
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Definition 3.6. Let x ∈ F and X be a r.v. following P ∈ P(F). Let D(., .) :
R×P(R)→ [0, 1] be a univariate depth function. The infimal depth of x w.r.t. P
is defined as:

IFFD(x,P) = inf
ϕ∈F∗

D(ϕ(x),Pϕ),

where F∗ is the dual space of F and Pϕ ∈ P(R) is the marginal probability distri-
bution of ϕ(X).

Properties of the infimal depth have been investigated in Mosler and Polyakova
(2012) by establishing that if D is scale/translation invariant and satisfies prop-
erties (D2,D3,D5) then IFFD satisfies (FD1S,FD3D,FD5). Furthermore, if for
any sequence (zn)n≥1 ∈ F such that ||zn|| →

n→∞
∞ there exists a sequence (ϕn)n≥1

such that ||ϕn(zn)|| →
n→∞

∞ then IFFD satisfies FD4. Note that this depth is
dedicated to any Banach space F making the approach valid for both C and L2.

Remark 3.7. Despite its appealing properties, the general form of the infimal
depth makes him hard to compute in practice. Thus, this depth is often used in
practice limiting F∗ to a particular subspace of F∗. A simple example, named
graph depth, is the projection of x to its one-dimensional marginal s.t. ϕt(x) = xt
for any t ∈ T. The graph depth is then defined as:

GFD(x,P) = inf
t∈T

D(x(t),Pt).

The infimum differentiates the graph depth from the integrated depth by its ability
to identify functions that have local deviations from the normal behavior. However,
any x ∈ F that has one of its marginal outside of the interval of data, i.e. if there
exists t ∈ T such that

x(t) /∈

[
min

1≤i≤n
Xi(t), max

1≤i≤n
Xi(t)

]

will have a depth assigned to zero. This feature makes the ordering induced by
the graph depth poor since almost all functions in F will have zero value and
considerably reduces the potential applications of this depth in practice. The graph
depth satisfies (FD1F,FD4,FD5,FD6U) but fails to valid (FD0,FD2,FD3).

3.2.3 Functional Depths based on a Geometric Approach

As geometry in function spaces is abstract, it is often more relevant to consider the
graphical representation of the curves. Let x be a function in C(T), the graph of x is
defined as:

graph(x) =
{

(t,x(t)) ∈ R2 : t ∈ T
}
.

We present here functional depths that rely on a graphical approach.
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• (Modified) band depth. López-Pintado and Romo (2009) have introduced the
band depth dedicated to functions that belong to the separable Banach space
(C(T), || · ||∞). The band depth is the first functional depth based on geometrical
notions rather than low-dimensional projections that has been introduced in the
literature. It is a very popular depth notion probably due to its simplicity and its
ease of interpretation. Given the set of n curves {x1, . . . ,xn} in C(T), the band
of this set of functions is defined as:

band(x1, . . . ,xn) =
{

(t,x(t)) ∈ R2 : t ∈ T, min
1≤i≤n

xi(t) ≤ x(t) ≤ max
1≤i≤n

xi(t)
}
.

The band depth is closely related to the notion of simplex in Rd and can be seen
as an extension of the simplicial depth to the functional case by means of the band
of a batch of functions.

Definition 3.8. Let x ∈ C and X be a r.v. following P ∈ P(C). The band depth
of x w.r.t. P is defined as:

FDB,J(x,P) =
1

J − 1

J∑
j=2

P
(

graph(x) ∈ band(X1, . . . ,Xj)
)
.

The band depth satisfies (FD1F,FD4,FD5) but violates (FD2,FD3D,FD6).
However, it tends to degenerate for many distributions (see e.g. Chakraborty and
Chaudhuri, 2014a and Gijbels and Nagy, 2017) and then fails to valid (FD0). In
order to correct the latter drawback, López-Pintado and Romo (2009) have also
introduced a modified version of the band depth measuring the expected length
of T where the graph of x belongs to the band. More precisely, it is defined as
follows.

Definition 3.9. Let x ∈ C and X be a r.v. following P ∈ P(C). The modified
band depth of x w.r.t. P is defined as:

FDMB,J(x,P) =
1

J − 1

J∑
j=2

1

λ(T)
E
[
λ({t ∈ T : graph(x) ∈ band(X1, . . . ,Xj)})

]
.

The modified band depth with J = 2 can be rewritten as the integrated depth (3.2)
associated to the simplicial depth DS. Although the modified band depth does not
vanish at infinity, it has many additional properties compared to the band depth
such as (FD0,FD1F,FD3D) and (FD6U) for distributions P such that Pt has no
atoms for each t ∈ T or for empirical measures. In addition, (FD2) is valid for both
halfspace and central symmetric distributions and is semi-continuous in X (FD5).
Further, many extensions of the (modified) band depth have been introduced
such as the corrected band depth (López-Pintado and Jornsten, 2007), the sparse
band depth (López-Pintado and Wei, 2011), the local band depth (Agostinelli and
Romanazzi, 2013). Alternatives for the case of multivariate functional data have
been introduced, among others, in Ieva and Paganoni (2013); López-Pintado et al.
(2014) and Mirzargar et al. (2014).
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• (Modified) halfregion depth. Sharing similar construction with the band
depth, the halfregion depth was later introduced by López-Pintado and Romo
(2011). As the band depth, the halfregion depth is defined for functions that
belong to C(T).

Definition 3.10. Let x ∈ C and X be a r.v. following P ∈ P(C). The halfregion
depth of x w.r.t. P is defined as:

FDHR(x,P) = min
{
P
(
x ≤ X

)
,P
(
x ≥ X

)}
,

where by x ≤ X is meant x(t) ≤ X(t), ∀ t ∈ T.

Structural properties of the halfregion depth have been investigated in the original
paper López-Pintado and Romo (2009) and more recently in Gijbels and Nagy
(2017) showing that it shares properties identical to those of the band depth.
In addition, Kuelbs and Zinn (2015) have described several examples where the
halfregion depth assigns zero to all sample functions such as Brownian motion
or symmetric stable processes. They also provide a way to smooth FDHR in
order to derive strong consistency of the halfregion process. Further extensions
such as the modified halfregion depth (López-Pintado and Romo, 2011) or a local
version of the halfregion depth (Agostinelli, 2018) have been introduced. The
modified version has been derived in the same way that the band depth taking
the expectation of the Lebesgue measure instead of the probability.

Definition 3.11. Let x ∈ C and X be a r.v. following P ∈ P(C). The modified
halfregion depth of x w.r.t. P is defined as:

FDMHR(x,P) =
1

λ(T)
min

{
E
[
λ({t ∈ T : x(t) ≤ X(t)})

]
,E
[
λ({t ∈ T : x(t) ≥ X(t)})

]}
.

As the FDMB, the modified halfregion depth does not vanish at infinity and does
not valid (FD3D) but satisfies (FD0,FD1F,FD5) and (FD6U) for distributions
P such that Pt has no atoms for each t ∈ T or for empirical measures. The slight
difference with FDMB is its lack of the ability to recover the center of symmetric
distributions (central and halfspace) when maximized. The modified halfregion
depth can be written as the minimum between two integrated depths (see e.g.
Nagy, 2016, Chapter 2.2.2) and can therefore also be considered as an integrated
depth.

3.2.4 Functional Depths based on Distances

Functional depths based on norm-induced distance can be directly derived from the
multivariate case replacing Euclidean norm by functional norms. Although satisfying
most of the functional axioms and being easy to compute, they often capture little
information about the distribution leading to a poor ordering. We briefly describe some
of them below.
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• h-depth. Let F be the vector space L2 with the norm || · ||L2 . Cuevas et al. (2007)
have introduced the h-depth that is closely related to the density in the finite-
dimensional case. The h-depth can be seen as a local measure of concentrated
curves around x by means of kernel estimation involving the L2 norm.

Definition 3.12. Let x ∈ L2 and X be a r.v. following P ∈ P(L2). The h-depth
of x w.r.t. P is defined as:

FDh(x,P) = E
[
Kh

(
||x−X||L2

)]
,

where h > 0 and Kh is a re-scaled kernel of type Kh(·) = (1/h)K(·/h) with K
being a smoothing kernel function (e.g. Gaussian kernel).

Properties of the h-depth have been extensively investigated in Nieto-Reyes and
Battey (2016) and Gijbels and Nagy (2017). It satisfies (FD0,FD4,FD5,FD6U)
but violates (FD2,FD3D). Furthermore, it is scalar translation invariant, i.e. it
satisfies (FD1S) for a = 1.

• Functional spatial and L∞ depth. Functional version of the multivariate
Spatial and Lp- depths can be staightforwardly derived. The functional spatial
depth has been introduced and studied in Chakraborty and Chaudhuri (2014b).

Definition 3.13. Let x ∈ L2 and X be a r.v. following P ∈ P(L2). The functional
spatial depth of x w.r.t. P is defined as:

FDSp(x,P) = 1−

∣∣∣∣∣∣
∣∣∣∣∣∣E
[

x−X

||x−X||L2

]∣∣∣∣∣∣
∣∣∣∣∣∣
L2

,

where 0/0=0 by convention. The expectation of the L2-valued r.v. corresponds to
Bochner integral.

The L∞ depth is defined for continuous functions that belong to C(T) (Long and
Huang, 2016).

Definition 3.14. Let x ∈ C and X be a r.v. following P ∈ P(C). The L∞ depth
of x w.r.t. P is defined as:

FD∞(x,P) =

(
1− E

[
||x−X||∞

])−1

,

where 1/∞ = 0 by convention.

Both spatial and L∞ depths share common properties such as (FD4,FD5,FD6UC).
In addition, if E||X||∞ < ∞, the L∞ depth satisfies (FD0,FD3D) and is scalar-
translation invariant but the property (FD2) does not hold. The functional spatial
depth satisfies (FD0,FD1S) and (FD2) for centrally symmetric distributions but
the property (FD3D) does not hold. More details can be found in the original
papers and in Gijbels and Nagy (2017).
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3.3 Discussion

Due to the richness of the functional spaces, capturing properties of the underlying
distribution P is a challenging task. While the previously presented depth func-
tions tend to focus on the amplitude/magnitude of the functional data, mainly by
building statistics around the location of the observations X(t), t ∈ T, several re-
cent studies deal with the shape of the curves especially with the aim of detecting
anomalies.

Beyond the incorporation of the derivatives of curves (Lange et al., 2014; Nagy
et al., 2017), many depth functions focusing on both magnitude and shape of
the underlying curves have been proposed in the literature. Especially designed
for anomaly detection, the outliergram (Arribas-Gil and Romo, 2014), based on
the modified band depth (see Definition 3.9) and the modified epigraph index
(see López-Pintado and Romo, 2011), has been designed to visualize shape and
magnitude components of functions. The notion of directional outlyingness in-
troduced independently in Dai and Genton (2019b) and Rousseeuw et al. (2018)
serves as the basis of visualization tools such as the magnitude-shape plot and the
functional outlier map, respectively. Kuhnt and Rehage (2016) have developed
the functional tangential angle (FUNTA) pseudo-depth based on local geometric
features of the curves involving the tangential angles of the intersections of the
centered data. Relying on the registration methods of Srivastava et al. (2011), Xie
et al. (2017) have shown that dealing with the amplitude and phase components
of functional data separately improves the detection of shape outliers. Further,
a particular case of the integrated depth has been introduced in Huang and Sun
(2019) to decompose the shape and the magnitude of functions. See also Nar-
isetty and Nair (2016) and Myllymäki et al. (2017) for the extreme rank length
depth; Dai et al. (2020) for a general procedure involving data transformations
that turn shape outliers into magnitude outliers; Helander et al. (2020) for the
functional Pareto depth based on a new multivariate Pareto depth applied after
mapping functions to a vector of statistics of interest; and Harris et al. (2021) for
the elastic depth that uses the elastic shape distance used in Xie et al. (2017) to
measure the centrality of functions in the amplitude and phase spaces.
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Table 3.1 – Structural properties of the presented functional depths. IFD: integrated
depth, FDRT: random Tukey depth, FDFT: functional Tukey depth, GFD: graph depth,
FDB: band depth, FDMB: modified band depth, FDHR: halfregion depth, FDMHR:
modified halfregion depth, FDh: h-depth, FDSp: functional spatial depth, FD∞: L∞
depth. For the aim of considering properties (FD6,FD6CU,FD6U) and for the sake of
clarity, we assume that the probability distribution P ∈ P(F) is such that if X ∼ P
then X(t) has no atoms for each t ∈ T. In addition, IFD and GFD are considered using
continuous (in their first argument) univariate data depths satisfying the Definition 2.1.
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Comparing probability distributions has attracted a long-standing interest in Inform-
ation Theory (Kullback, 1959; Rényi, 1961; Csiszár, 1963), Probability Theory and
Statistics (Rachev, 1991; Billingsley, 1999; Müller, 1997). Given two probability distri-
butions P,Q defined on an arbitrary space, the goal is then to design metrics that are
able to assess how close P and Q are, that differ in how the comparison is adressed.
While they serve many purposes in Machine Learning (Cha and Srihari, 2002; MacKay
and Mac Kay, 2003), they are of crucial importance as loss functions in automatic
evaluation of natural language generation (see e.g. Kusner et al. 2015; Zhang et al.
2019), especially when leveraging deep contextualized embeddings such as the popular
BERT (Devlin et al., 2019), graphical probabilistic modeling (Jordan, 1998) including
generative adversarial modeling (see e.g. Goodfellow et al. 2014) as well as variational
inference (see e.g. Blei et al. 2017). In the latter, choosing the right loss to be minimized
between the two distributions is one of the key issues of the problem as its properties
strongly influence the behavior of the associated algorithm. Thus, designing a measure
to compare two probability distributions is considered as a challenging research field.
This is certainly due to the inherent difficulty in capturing in a single measure typical
desired properties such as: (i) metric or pseudo-metric properties, (ii) invariance under
specific geometric transformations, (iii) efficient computation, (iv) efficient estimation
from samples and (v) robustness to contamination.

From the side of Optimal Transport (OT) (see Villani 2003; Peyré and Cuturi 2019), the
Lp-Wasserstein distance leverages a ground metric to take into account the geometry of
the space on which the distributions are defined. Given two probability distributions,
the latter is defined in terms of the solution to the Monge-Kantorovich optimal mass
transportation problem. Its ability to handle non-overlapping support and appealing
theoretical properties make OT a powerful tool. For these reasons, the Wasserstein
distance stands out from the divergences usually exploited in generative modeling, like
the ϕ-divergences, by its ability to take into account the underlying geometry of the
space, capturing the difference between probability distributions even when they have
non-overlapping supports. This appealing property has been successfully exploited in
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Wasserstein Generative Adversarial Networks (WGANs; Arjovsky et al., 2017; Gulrajani
et al., 2017) as well as in Wasserstein Auto-Encoders (WAE; (Tolstikhin et al., 2018)),
where the Wasserstein distance can advantageously replace a ϕ-divergence as the loss
function.

After having formally defined the Wasserstein distance and its basic properties in Section
4.1, its limitations are described in Section 4.2. In Section 4.3, we present the Sliced-
Wasserstein distance originally introduced in order to remedy the previous drawbacks.
Eventually, we briefly recall two important families of probability metrics in Section 4.4.

4.1 Definition and Properties

Originally introduced by Gaspard Monge in 1781 (Monge, 1781), Optimal Transport
(OT) aims at finding a way to move the probability mass from one measure to another
with least effort. The transportation effort of moving the probability mass of P ∈ P(X )
to Q ∈ P(Y) is highlighted by a cost function c : X ×Y → R+, where X ,Y ⊂ Rd. This
function c evaluates the distance between two elements x ∈ X and y ∈ Y. The Monge
OT problem consists in finding the measurable map T : X → Y that transports the
source distribution P ∈ P(X ) to its target Q ∈ P(Y) minimizing a total cost. Formally,
the corresponding optimization problem is defined as:

min
T

∫
X
c(x, y) dP (x) s.t. T]P = Q, (4.1)

where T] : P(X ) → P(Y) is the push-forward operator given by T]P (A) = P (T−1(A))
for any measurable set A in Y. This optimization problem is non-convex and feasible
solutions may not exist. When measures P,Q are discrete, it boils down to a combin-
atorial assignment problem (see e.g. Peyré and Cuturi, 2019, Section 2.2).

Kantorovitch (1942) introduced a relaxed version of (4.1) such that the probability
mass of any source point can be split into smaller masses which are then assigned to
different target points, whereas the Monge problem performs a one-to-one assignment.
The aim of this optimization problem consists in finding an optimal couplings, i.e. joint
probability distributions on X × Y with marginals P and Q, minimizing a total cost.
Precisely, it corresponds to:

min
π ∈ Π(P,Q)

∫
X×Y

c(x, y) dπ(x× y) ,

where Π(P,Q) = {π ∈ P(X × Y) :
∫
π(x, y) dy = P (x),

∫
π(x, y) dx = Q(y)} is the

set of joint probability distributions with marginals P and Q. There always exists a
solution to this optimization problem as long as the map c is lower semi-continuous (see
Santambrogio, 2015, Theorem 1.7). When the cost function is chosen as the Euclidean
distance, the Kantorovich formulation leads to the Lp-Wasserstein distance described in
the definition below. It defines an actual distance between probability measures which
metrizes the weak-convergence.
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Definition 4.1. Given p ∈ [1,∞), the Wasserstein distance of order p between P ∈
P(X ) and Q ∈ P(Y), where X ,Y ⊂ Rd, is defined through the resolution of the Monge-
Kantorovitch mass transportation problem:

Wp(P,Q) = min
π ∈ Π(P,Q)

(∫
X×Y

‖x− y‖p dπ(x× y)

)1/p

, (4.2)

where Π(P,Q) = {π ∈ P(X ×Y) :
∫
π(x, y) dy = P (x),

∫
π(x, y) dx = Q(y)} is the set

of joint probability distributions with marginals P and Q.

The Wasserstein distance is then a particular case of the Kantorovich’s relaxation. It
leverages the information captured by the cost function c on the geometry of the sup-
ports of P and Q in order move the probability mass from P to Q in an optimal way.
The comparison made via this discrepancy measure is then conceptually more powerful
than with traditional divergences, e.g. ϕ-divergences which perform pointwise comparis-
ons of the probability mass (see Section 4.4.1). This is a powerful tool that captures the
underlying geometry of the measures, by relying on the cost function c which encodes
somehow the geometry of the spaces X ,Y, leading to meaningful comparisons even when
the supports of the measures do not overlap (which is not the case for ϕ-divergences).
Besides, the transport plan π gives a mapping between probability distributions which
can be used in many applications such as in domain adaptation (Courty et al., 2014).
We denote by Pp(X ) the set of probability measures with finite p’th moment defined
as:

Pp(X ) =

{
P ∈ P(X ) :

∫
X
||x− x0||p dP (x), for some x0 ∈ X

}
.

Thus, assuming that X = Y, the Wasserstein distance Wp defines a metric on Pp(X )
that metrizes the weak-convergence (see Villani, 2008, Chapter 6). The Wasserstein
distance is a constrained convex minimization problem, and as such, it can naturally be
associated with a so-called dual problem, which is a constrained concave maximization
problem. For the purpose of this dissertation, we limit oursleves to the dual formulation
of the L1-Wasserstein.

Duality. When p = 1, by the dual Kantorovich-Rubinstein formulation (Kantorovich
and Rubinstein, 1958), the L1-Wasserstein distance can be reformulated as an Integral
Probability Metric (see Section 4.4.2). Denote by FLip the unit ball of the Lipschitz func-

tions space with the semi-norm ||Ψ||Lip = sup

{
|Ψ(x)−Ψ(y)|
||x− y||

: x 6= y ∈ Rd
}
, defined

for any bounded continuous function Ψ.

Definition 4.2. The dual form of the Wasserstein distance of order 1 between P ∈ P(X )
and Q ∈ P(Y), where X ,Y ⊂ Rd, is defined as:

W(P,Q) = sup
Ψ∈FLip

EP
[
Ψ(X)

]
− EQ

[
Ψ(Y )

]
,

where X and Y are random variables having distributions P and Q, respectively.

In practice, the unit ball of Lipschitz functions can be replaced with a parameterized
family of Lipschitz functions, more amenable for learning, see e.g. Wasserstein GANs
(Arjovsky et al., 2017).
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4.2 Limitations

Here, we present some limitations of the Wasserstein distance.

Curse of dimensionality. Of particular interest is the problem of estimating the
Wasserstein distance between P ∈ P(X ) and Q ∈ P(Y) given a finite number of obser-
vations. The usual assumption is to rely upon two samples X1, . . . , Xn and Y1, . . . , Ym,
composed of i.i.d. realizations drawn respectively from P and Q. The corresponding
empirical distributions denoted by Pn = (1/n)

∑n
i=1 δXi , and Qm = (1/m)

∑m
j=1 δYj .

The natural questions are then: how to compute the estimator Wp(Pn, Qm), and does
it converge towards Wp(P,Q)?

This problem has long been theoretically studied dating back to the seminal work of
Dudley (1969). Assume that P ∈ P(X ) is absolutely continuous w.r.t. the Lebesgue
measure, the following optimal rate holds: E[Wp(Pn, P )] ≈ O(n−1/d). This result has
been derived by Dudley (1969) for p = 1 for compactly supported measures and has
been extended, among others, in Bassetti et al. (2006); Boissard (2011); Dereich et al.
(2013); Boissard and Gouic (2014); Fournier and Guillin (2015); Chizat et al. (2020).
They show that in general, the convergence rate of Wp(Pn, P ) to zero (in expectation
and with high probability) decreases exponentially when the dimension grows linearly.
It is worth mentioning that when two samples are involved, the same rate holds since
|Wp(Pn, Qm)−Wp(P,Q)| ≤ Wp(Pn, P ) +Wp(Qm, Q). Thus, the sample sizes n and m
must be very large in high dimension to obtain an accurate appproximation ofWp(P,Q).
The Wasserstein distance then suffers from the curse of dimensionality. Despite of this
result, the Wasserstein distance has been succesfully applied in generative modeling
applied to images, that are high dimensional data (Arjovsky et al., 2017). However,
it is known that high dimensional data such as images often belong to a manifold of
smaller dimension. Following this, Weed and Bach (2019) have derived faster rates
when the supports of measures are inherently of lower dimension.

Computational aspects. Solving (4.2) when dealing with empirical distributions
Pn, Qm boils down to:

Wp
p (Pn, Qm) = min

M ∈ Π(Pn,Qm)

n∑
i=1

m∑
j=1

Mi,jCi,j ,

where Π(Pn, Qm) = {M ∈ Rn×m+ : M1n = 1m/m and M> = 1n/n} is the set of
admissible joint probability matrices, and C ∈ Rn×m+ storing the distances ||Xi−Yj ||p for
i ≤ n and j ≤ m. The computation of the Wasserstein distance is therefore equivalent to
solving a large-scale linear program (see Chapter 3 in Peyré and Cuturi, 2019 for further
details). The computational complexity is then super-cubic O(n3 log(n)) assuming that
n = m. It is worth mentioning that computing the cost matrix requires an additional
cost of O(n2d) often omitted in the literature. Due to its high computational cost it
has long been disregarded by applied mathematicians.

Recently, many techniques, such as low-dimensional projections (Bonneel et al., 2015;
Kolouri et al., 2019; Paty and Cuturi, 2019) or entropic regularization, have been de-
veloped to provide a computationally efficient approximation of the Wasserstein dis-
tance. Adding an entropic regularization makes the optimization problem strongly-
convex and Cuturi et al. (2013) showed that it can be efficiently solved using Sinkhorn-
Knopp matrix scaling algorithm (Sinkhorn, 1964), reducing the computational cost to
O(n2), and can be accelerated with parallelization on CPU and GPU. The entropic
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regularization makes the problem more robust to small changes in the distributions
but tends to spread mass in the optimal transportation matrix which leads to difficult
interpretation of the optimal transport problem. Many possible regularizations have
been introduced to induce sparsity of the optimal transport plan and remedy to these
problems (Schmitzer, 2016; Blondel et al., 2018).

Robustness. Despite its appealing properties, the Wasserstein distance suffers from
a high sensitivity to outliers due to the marginal constraints in (4.2). Indeed, a small
outlier mass can contribute highly to the cost. This is the aim of Chapter 8 to pro-
pose a robust estimation of the Wasserstein distance leveraging the Median-of-Means
estimator, that is the first work, together with Balaji et al. (2020), dealing with the
robustness of the Wasserstein distance. Thereafter, some works have been introduced
(Nietert et al., 2021; Mukherjee et al., 2021) in the same line of Balaji et al. (2020)
relying on slight modifications of the unbalanced optimal transport problem (Piccoli
and Rossi, 2014; Chizat et al., 2018) relaxing the marginal constraints of (4.2).

4.3 Sliced-Wasserstein distance

To address these limitations, a line of research relies on the use of low-dimensional
projections of probability distributions. Leveraging the computational benefits of the
one-dimensional formula, the Sliced-Wasserstein (SW) discrepancy measure was intro-
duced in Rabin et al. (2012) (see also Bonneel et al., 2015) and is presented in this
section.

Univariate spaces. A nice feature of the Wasserstein distance appears when com-
puted between univariate distributions. Assuming P1, Q1 ∈ P(R), it holds (Rachev and
Rüschendorf, 1998):

Wp(P1, Q1) =

(∫ 1

0
|F−1
P1

(t)− F−1
Q1

(t)|p dt

)1/p

, (4.3)

where F−1
P1
, F−1

Q1
are quantile functions of P1 and Q1 respectively.

Considering two empirical measures P1,n = (1/n)
∑n

i=1 δXi and Q1,n = (1/n)
∑n

i=1 δYi ,
X1, . . . , Xn and Y1, . . . , Yn being two samples of same size having distributions P1 and
Q1 respectively, (4.3) can be easily computed by performing a sorting of each sample
(see Figure 4.1 for an illustration):

Wp
p (P1,n, Q1,n) =

1

n

n∑
i=1

|X(i) − Y(i)|p, (4.4)

where X(1) ≥ . . . ≥ X(n) and Y(1) ≥ . . . ≥ Y(n). The computation of (4.4) requires
O(n log(n)) operations induced by the sorting of data. Based upon this nice feature,
Rabin et al. (2012) introduced a new quantity, named Sliced-Wasserstein, computing
similarity between P ∈ P(X ) and Q ∈ P(Y) relying on an average of (4.3) over their
one-dimensional projections.

Definition 4.3. Given p ∈ [1,+∞) and ωd−1 the spherical probability measure on Sd−1,
the SW distance between P ∈ P(X ) and Q ∈ P(Y), is given by:
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Figure 4.1 – Optimal transport on the real line.

SWp(P,Q) =

(∫
Sd−1

Wp
p (Pu, Qu) ωd−1(du)

)1/p

,

where Pu is the pushforward distribution of P defined by the projection x ∈ Rd 7→ 〈u, x〉.

With two samples X1, . . . , Xn and Y1, . . . , Yn having distributions P ∈ P(X ) and Q ∈
P(Y), the “projected” empirical measures are given by Pu,n = (1/n)

∑n
i=1 δ〈u,Xi〉 and

Qu,n = (1/n)
∑n

i=1 δ〈u,Yi〉. Therefore, the Sliced-Wasserstein computed between Pn =
(1/n)

∑n
i=1 δXi and Qn = (1/n)

∑n
i=1 δYi boils down to:

SWp(Pn, Qn) =

(∫
Sd−1

Wp
p (Pu,n, Qu,n) ωd−1(du)

)1/p

. (4.5)

Besides, the expectation that defines SW can easily be approximated with a stand-
ard Monte-Carlo scheme: one draws nproj ∈ N∗ samples i.i.d. from ωd−1, denoted by
{uk}

nproj

k=1 , and approximates (4.5) with

SWMC
p (Pn, Qn) =

 1

nproj

nproj∑
k=1

Wp
p (Puk,n, Quk,n)

1/p

.

This quantity then results in a computational complexity of O(nproj nd+nproj n log(n))
due to the projecting and sorting operations. Several variants of the Sliced-Wasserstein
exist such as the maximum Sliced-Wasserstein (Deshpande et al., 2019) where the integ-
ral over the unit sphere is replaced by a maximum or the generalized Sliced-Wasserstein
(Kolouri et al., 2019) where linear projections are replaced by Radon transforms.

Following the seminal paper of Bonnotte (2013) showing that SW defines a distance
on Pp(Rd) and establishing its relation with the Wasserstein (see also Bayraktar and
Guo, 2021), several recent works study statistical properties of the Sliced-Wasserstein
distance and its variants (see, among others, Deshpande et al., 2019; Manole et al.,
2019; Nadjahi et al., 2019, 2020).
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Kullback-Leibler ϕ(x) = x log(x)

Reverse Kullback-Leibler ϕ(x) = − log(x)

Jensen-Shannon ϕ(x) = x log(x)− (1 + x) log
(

(1 + x)/2
)

Squared Hellinger ϕ(x) =
(√

x− 1
)2

Table 4.1 – Examples of ϕ-divergences.

4.4 Alternative Metrics

In this section, we briefly recall two popular family of discrepancy measures: the ϕ-
divergences and the Integral Probability Metrics namely.

4.4.1 ϕ-Divergences

The ϕ-divergences introduced in Rényi (1961) and Csiszár (1963) are defined as the
weighted average by well-chosen functions ϕ of the odds ratio between the two dis-
tributions. The best known ϕ-divergence is the Kullback-Leibler divergence which is
widely used in Machine Learning applications such as in Generative Adversarial Net-
works (GAN; Goodfellow et al., 2014) or Variational Auto-Encoders (VAE; Kingma and
Welling, 2013) (see also Kingma and Welling, 2019). This family of divergences also in-
cludes, among others, the reverse Kullback-Leibler and the Jensen-Shannon divergences
as well as the squared Hellinger distance, see Table 4.1.

Definition 4.4. Let ϕ be a convex and lower semi-continuous function such that ϕ(1) =
0. Let P,Q ∈ P(X ) be two probability distributions defined on the same set X . The
ϕ-divergences, denoted by dϕ, between P and Q are defined as:

dϕ(P,Q) =

∫
X
ϕ

(
dP

dQ
(x)

)
dQ(x) + ϕ∞P

⊥(X ), (4.6)

where ϕ∞ = lim
x→+∞

ϕ(x)
x and P⊥(X ) denotes the mass of the part of P that is not

absolutely continuous w.r.t. Q in the Radon-Nikodym decomposition of P , i.e. P =
dP
dQ(x) + P⊥.

However, ϕ-divergences do not metrize weak convergence which is a major issue. The
metrization of weak-convergence is essential, as it ensures that the metrics remain stable
under small perturbations of the support of the measures. It is illustrated by the
degeneracy to +∞ of ϕ-divergences when the supports of both distributions do not
overlap, which appears to be a crucial limitation in many applications.

4.4.2 Integral Probability Metrics

Integral Probability Metrics (IPMs) were introduced by Müller (1997) as the maximum
difference in expectation for both distributions calculated over a class of measurable
functions and regroup some well known distances.

Definition 4.5. Let P ∈ P(X ) and Q ∈ P(Y) be two probability measures defined on
X ,Y ⊂ Rd. Let F be an arbitrary functional set of measurable functions Ψ : Rd → R.
Integral Probability Metrics, denoted by dF, are defined as:
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Maximum Mean Discrepancy F = {Ψ : ||Ψ||H ≤ 1}, where H is an RKHS

Total Variation F = {Ψ : ||Ψ||∞ ≤ 1}

L1-Wasserstein F = {Ψ : ||Ψ||Lip ≤ 1}

Dudley F = {Ψ : ||Ψ||Lip + ||Ψ||∞ ≤ 1}

Table 4.2 – Examples of Integral Probability Metrics.

dF(P,Q) = sup
Ψ∈F

EP
[
Ψ(X)

]
− EQ

[
Ψ(Y )

]
,

where X and Y are r.v. having distributions P and Q respectively.

IPMs offer several theoretical guarantees supporting the relevance of this approach.
First, they are pseudo-metrics (Sriperumbudur et al., 2009): they are non-negative,
symmetric, verify the triangle inequality and for any P ∈ P(Rd), dF(P, P ) = 0. Be-
sides, dF metrizes weak convergence, provided that the span of F is dense in the space
of continous and bounded functions on Rd endowed with the supremum norm (see Am-
brosio et al., 2005, Section 5.1). Moreover, any IPM admits an empirical estimate which
is consistent with explicit convergence rates (Sriperumbudur et al., 2012).

An important example of IPM which admits a consistent and statistically efficient em-
pirical estimator is the Maximum Mean Discrepancy (MMD) (Gretton et al., 2007),
see Table 4.2. Indeed, when the function space F is chosen as the unit ball of an
Reproducing Kernel Hilbert Space (RKHS) (see e.g. Aronszajn, 1950), dF boils down
to the popular MMD metric. The reproducing property of RKHS allows to derive a
much simpler expression for their associated IPMs. Let k : Rd × Rd → R be a kernel
and H its corresponding RKHS with inner product 〈., .〉H and norm ‖.‖H. Denote by
FH = {Ψ | ‖Ψ‖H ≤ 1} the unit ball of H. Assuming that sup

(x,y)∈X×Y
k(x, y) < ∞, the

Maximum Mean Discrepancy (MMD) between the two distributions P ∈ cP (X ) and
Q ∈ Q(Y) associated with the kernel k is defined as:

MMD(P,Q) = sup
Ψ∈FH

∣∣∣EP [Ψ(X)]− EQ[Ψ(Y )]
∣∣∣

= EP⊗P [k(X,X ′)] + EQ⊗Q[k(Y, Y ′)]− 2EP⊗Q[k(X,Y )].

The MMD can be estimated with a quadratic computational complexity O(n2) where
n is the sample size.
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In this chapter, we introduce a new generic algorithm, Functional Isolation Forest
(FIF) that generalizes (Extended) Isolation Forest to the infinite dimensional context.
This ensemble learning algorithm builds a collection of Functional isolation trees based
on a recursive and randomized tree-structured partitioning procedure. Avoiding dimen-
sionality reduction steps, this extension is shown to preserve the assets of the original
algorithm concerning computational cost and interpretability. Its efficiency is supported
by strong empirical evidence through a variety of numerical results.

The chapter is organized as follows. Section 5.1 recalls the principles of the Isolation
Forest algorithm for anomaly detection in the multivariate case. In Section 5.2, the
extension to the functional case is presented and its properties are discussed at length.
In Section 5.3, we study the behavior of the new algorithm and compare its performance
to alternative methods standing as natural competitors in the functional setup through
experiments. In Section 5.4, extension to multivariate functional data is considered,
as well as relation to the data depth function and an application to the supervised
classification setting. Eventually, several concluding remarks are collected in Section 5.5.
This chapter covers the contribution of:

I G. Staerman, P. Mozharovskyi, S. Clémençon, F. d’Alché-Buc. Functional Isol-
ation Forest. In Proceedings of The Eleventh Asian Conference on Machine Learn-
ing (ACML), pages 332-347, 2019.
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5.1 Isolation Forest

As a first go, we describe the Isolation Forest algorithm for anomaly detection in the
multivariate context in a formalized manner for clarity’s sake, as well as the Extended
Isolation Forest version, see Liu et al. (2008, 2012) and Hariri et al. (2019) respectively.
These two unsupervised algorithms can be viewed as ensemble learning methods insofar
as they build a collection of binary trees and an anomaly scoring function based on the
aggregation of the latter. Let Sn = {X1, . . . , Xn} be a training sample composed of n
independent realizations of a generic random variable, X, that takes its value in a finite
dimensional Euclidean space, Rd say, X = (X(1), . . . , X(d)).

An isolation tree (itree in abbreviated form) T of depth J ≥ 1 is a proper binary tree
that represents a nested sequence of partitions of the feature space Rd. The root node
corresponds to the whole space C0,0 = Rd, while any node of the tree, indexed by the
pair (j, k) where j denotes the depth of the node with 0 ≤ j < J and k, the node
index with 0 ≤ k ≤ 2j − 1, is associated to a subset Cj,k ⊂ Rd. A non terminal node
(j, k) has two children, corresponding to disjoint subsets Cj+1,2k and Cj+1,2k+1 such that
Cj,k = Cj+1,2k ∪ Cj+1,2k+1. A node (j, k) is said to be terminal if it has no children.

Each itree is obtained by recursively filtering a subsample of training data of size ns
in a top-down fashion, by means of the following procedure. The data set composed of
the training observations present at a node (j, k) is denoted by Sj,k. At iteration k+ 2j

of the itree growing stage, a direction p in {1, . . . , d}, or equivalently a split variable
X(p), is selected uniformly at random (and independently from the previous draws) as
well as a split value κ in the interval [minx∈Sj,k x

(p), maxx∈Sj,k x
(p)] corresponding to

the range of the projections of the points in Sj,k onto the p-th axis. The children subsets
are then defined by Cj+1,2k = Cj,k ∩ {x ∈ Rd : x(p) ≤ κ} and Cj+1,2k+1 = Cj,k ∩ {x ∈
Rd : x(p) > κ}, the children training data sets being defined as Sj+1,2k = Sj,k ∩ Cj+1,2k

and Sj+1,2k+1 = Sj,k ∩ Cj+1,2k+1.

An itree T is thus built by iterating this procedure until all training data points are
isolated (or the depth limit J set by the user is attained). A preliminary subsampling
stage can be performed in order to avoid swamping and masking effects, when the size
of the data set is too large. When it isolates any training data point, the itree contains
exactly ns − 1 internal nodes and ns terminal nodes. An itree constructed accordingly
to a training subsample allows to assign to each training datapoint xi a path length
hT (xi), namely the depth at which it is isolated from the others, i.e. the number of edges
xi traverses from the root node to the terminal node that contains the sole training data
xi. More generally, it can be used to define an anomaly score for any point x ∈ Rd.

Anomaly Score prediction. As the terminal nodes of the itree T form a partition
of the feature space, one may then define the piecewise constant function hτ : Rd → N
by: ∀x ∈ Rd,

hτ (x) = j if and only if x ∈ Cj,k and (j, k) is a terminal node.

This random path length is viewed as an indication for its degree of abnormality in a
natural manner: ideally, the more abnormal the point x, the higher the probability that
the quantity hτ (x) is small. Hence, the algorithm above can be repeated N ≥ 1 times
in order to produce a collection of itrees T1, . . . , TN , referred to as an i forest, that
defines the scoring function

sn(x) = 2
− 1
Nc(ns)

∑N
l=1 hτl (x)

, (5.1)
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where c(ns) is the average path length of unsuccessful searches in a binary search tree,
see Liu et al. (2008) for further details.

Extended Isolation Forest. Observing that the geometry of the abnormal regions of
the feature space is not necessarily well-described by perpendicular splits (i.e. by unions
of hypercubes of the cartesian product Rd), a more flexible variant of the procedure
recalled above has been proposed in Hariri et al. (2019), in the purpose of bias reduction.
Rather than selecting a direction in {1, . . . , d}, one may choose a direction u ∈ Sd−1,
denoting by Sd−1 the unit sphere of the euclidian space Rd. A node is then cut by
choosing randomly and uniformly a threshold value in the range of the projections onto
this direction of the training data points lying in the corresponding region.

5.2 The FIF Algorithm

We consider the problem of learning a score function s : H → R that reflects the de-
gree of anomaly of elements in an infinite dimensional space H w.r.t. P ∈ P(H). By
H, we denote a functional Hilbert space equipped with a scalar product 〈·, ·〉H such
that any x ∈ H is a real-valued function defined on [0, 1]. In this chapter, we limit
ourselves to [0, 1] but our approach remains valid for any compact set T ⊂ R. A Func-
tional Isolation Forest is a collection of Functional isolation trees (F-itrees) built from
S = {X1, . . . ,Xn}, a training sample composed of independent realizations of a func-
tional random variable, X, that takes its values in H. Given a functional observation
x, the score returned by FIF is a monotone transformation of the empirical mean of the
path lengths hTl(x) computed by the F-itrees Tl, for l = 1, . . . , N as defined in (5.1) in
the multivariate case. While the general construction principle depicted in Section 5.1
remains the same for a F-itree, dealing with functional values raises the issue of finding
an adequate feature space to represent various properties of a function. A function may
be considered as abnormal according to various criteria of location and shape, and the
features should permit to measure such properties. Therefore four ingredients have been
introduced to handle functional data in a general and flexible way: (i) a set of candidate
Split variables and (ii) a scalar product both devoted to function representation, (iii) a
probability distribution to sample from this set and select a single Split variable, (iv) a
probability distribution to select a Split value. The entire construction procedure of a
F-itree is described in Figure 5.1. An example of a F-itree is also depicted in Figure 5.2.

Function representation. To define the set of candidate Split variables, a direct ex-
tension of the original IF algorithm (Liu et al., 2008) would be to randomly draw an
argument value (e.g. time), and use functional evaluations at this point to split a node,
but this boils down to only rely on instantaneous observations of functional data to
capture anomalies, which in practice will be usually interpolated. Drawing a direction
on a unit sphere as in Hariri et al. (2019) is no longer possible due to the potentially
excessive richness of H. To circumvent these difficulties, we propose to project the
observations on elements of a dictionary D ⊂ H that is chosen to be rich enough to
explore different properties of data and well appropriate to be sampled in a represent-
ative manner. More explicitly, given a function d ∈ D, the projection of a function
x ∈ H on D, 〈x,d〉H defines a feature that partially describes x. When considering all
the functions of dictionary D, one gets a set of candidate Split variables that provides
a rich representation of function X, depending on the nature of the dictionary. Dic-
tionaries have been throughly studied in the signal processing community to achieve
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Input: A subsample {X1, . . . ,Xns}, a dictionary D ⊂ H, a probability measure ν ∈ P(D)
and a scalar product 〈·, ·〉H.

(a) Initialization: The root node indexed by (0, 0) is associated with the whole in-
put space C0,0 = H. The construction starts with the training data set S0,0 =
{X1, . . . ,Xns} composed of ns i.i.d.ṙealizations of the random variable X. Go to (b)
with (j = 0, k = 0).

(b) Stopping criterion: Test if the node (j, k) is terminal: a node (j, k) is declared as
terminal if the intersection between the current set Cj,k and the current training set
Sj,k is reduced to a single data point or to a set of predefined cardinal. If the node
is terminal, then stop the construction for this node, otherwise go to (c).

(c) Children node construction: A non-terminal node (j, k) is split in three steps as
follows:

1. Choose a Split variable d according to the probability distribution ν on D.
2. Choose randomly and uniformly a Split value κ in the interval[

min
x∈Sj,k

〈x,d〉H, max
x∈Sj,k

〈x,d〉H

]
,

3. Form the children subsets

Cj+1,2k = Cj,k ∩ {x ∈ H : 〈x,d〉H ≤ κ},
Cj+1,2k+1 = Cj,k ∩ {x ∈ H : 〈x,d〉H > κ}.

as well as the children training data sets

Sj+1,2k = Sj,k ∩ Cj+1,2k and Sj+1,2k+1 = Sj,k ∩ Cj+1,2k+1.

(d) Recursion: Apply the building procedure starting from (a) to nodes (j+ 1, 2k) and
(j + 1, 2k + 1)

Output: (C0,0,C1,1, . . .)

Figure 5.1 – Construction procedure of a F-itree.

sparse coding of signals, see e.g. Mallat and Zhang (1993). They also provide a way to
incorporate a priori information about the nature of the data, a property very useful
in an industrial context in which functional data often come from the observation of a
well known device and thus can benefit from expert knowledge.

Sampling a Split variable. Once a dictionary is chosen, a probability distribution
ν on D is defined to draw a Split variable d. Note that the choice of the sampling dis-
tribution ν gives an additional flexibility to orientate the algorithm towards the search
for specific properties of the functions.

Sampling a Split value. Given a chosen Split variable d and a current training data
set Sj,k, a Split value is uniformly drawn in the real interval defined by the smallest and
largest values of the projections on d when considering the observations present in the
node.
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x ∈ C2,1 ⇒ hT (x) = 2

C0,0

C1,0

C2,0

C3,0 C3,1

C2,1

C1,1

C2,3

C3,5 C3,6

C2,3

C3,7 C3,8

Figure 5.2 – An example of a functional isolation tree structure denoted by T . Here,
C2,1 is a cell associated with a terminal node.

5.2.1 Ability of FIF to Detect a Variety of Anomalies

As discussed in Section 1.2, most of state-of-the-art methods have a focus on a certain
type of anomalies and are unable to detect various deviations from the normal behavior.
The flexibility of the FIF algorithm allows for choosing the scope of the detection
by selecting both the scalar product and the dictionary. Nevertheless, by choosing
appropriate scalar product and dictionary, FIF is able to detect a great diversity of
deviations from normal data. It is worth noticing than any discrepancy measure between
functions may be choose instead of the scalar product. To account for both location and
shape anomalies, we suggest the following discrepancy measure based on a normalized
scalar product that provides a compromise between the both

〈f ,g〉 := α× 〈f ,g〉L2

||f || ||g||
+ (1− α)× 〈f

′,g′〉L2

||f ′|| ||g′||
, α ∈ [0, 1] ,

where f ,g are both differentiable with f ′,g′ as derivatives and f ,g, f ′,g′ belong to
L2. Thus, removing normalization terms, setting α = 1 yields the classical L2 scalar
product, α = 0 corresponds to the L2 scalar product of derivative, and α = 0.5 is the
Sobolev W1,2 scalar product. To illustrate the FIF’s ability to detect a wide variety
of anomalies at a time, we calculate the FIF anomaly scores with the Sobolev scalar
product (normalized) and the gaussian wavelets dictionary for a sample consisting of
105 curves defined as follows (inspired by (Cuevas et al., 2007), see Fig. 5.3):

• 100 curves defined by x(t) = 30(1− t)qtq with q equispaced in [1, 1.4],

• 5 abnormal curves composed by one isolated anomaly x0(t) = 30(1− t)1.2t1.2 with
a jump in t = 0.7, one magnitude anomaly x1(t) = 30(1− t)1.6t1.6 and three kind
of shape anomalies x2(t) = 30(1−t)1.2t1.2+sin(2πt), x3(t) = 30(1−t)1.2t1.2 noised
by ζ ∼ N (0, 0.32) on the interval [0.2, 0.8] and x4(t) = 30(1−t)1.2t1.2+ 1

2 sin(10πt).

One can see that the five anomalies, although very different, are all detected by FIF
with a significantly different score.
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Figure 5.3 – The simulated data set with the five introduced anomalies (left). The scored
data set (middle), the darker the color, the more the curves are considered anomalies.
The sorted anomaly score of the data set (right).

5.2.2 Dictionary

The choice of a suited dictionary plays a key role in construction of the FIF anom-
aly score. The dictionary can consist of deterministic functions, incorporate stochastic
elements, contain the observations from S, or be a mixture of several mentioned op-
tions. In Computational Harmonic Analysis, a wide variety of bases or frames, such as
wavelets, ridgelets, cosine packets, brushlets and so on, have been developed in the last
decades in order to represent efficiently/parsimoniously functions, signals or images ex-
hibiting specific form of singularities (e.g. located at isolated points, along hyperplanes)
and may provide massive dictionaries. The following ones will be used throughout
the chapter: mexican hat wavelet dictionary (MHW), Brownian motion dictionary (B),
Brownian bridge dictionary (BB), cosine dictionary (Cos), uniform indicator diction-
ary (UI), Uniform indicator derivative (UId), dyadic indicator dictionary (DI), Dyadic
indicator derivative (DId), and the self-data dictionary (Self) containing the data set
itself. Precisely, they are defined as follows:

• Mexican hat wavelet dictionary (MHW) consists of the negative second derivatives
of the normal density, shifted and scaled in a appropriate fashion:

xθ,σ(t) =
2√

3σπ1/4

1−

(
t− θ
σ

)2
 exp

(
−(t− θ)2

2σ2

)

with θ ∈ [−0.8, 0.8] and σ ∈ ([0.04, 0.2]).

• Brownian motion dictionary (B) is a combination of the space of continuous func-
tion D = C([0, 1]) and the Wiener measure γ on D.

• Brownian bridge dictionary (BB) is a combination of the space of continuous
function D = C([0, 1]) and the Brownian bridge measure G on D.

• Cosine dictionary (Cos) consists of curves with the following forms:

xa,ω(t) = a cos(2πωt)

with a ∈ [0, 1] and ω ∈ [0, 10].
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• Uniform indicator dictionary (UI) consists of indicator function on [a, b] where a
and b are choosen uniformly on [0, 1] such that a < b.

• Uniform indicator derivative (UId) consists of functions t 7→ t on [a, b] where a
and b are choosen uniformly on [0, 1] such that a < b.

• Dyadic indicator dictionary (DI) consists of a set of indicator functions on the
elements of binary partitioning, for a given J (chosen according to the granular-
ity to be captured or from the discretisation considerations) having as elements{(

xk,j

)
0≤k<2j

}
1≤j≤J

:

xk,j(t) = 1

(
t ∈

[
k

2j
,
k + 1

2j

])
.

• Dyadic indicator derivative (DId) consisting of a set of indicator functions on the
elements of binary partitioning, for a given J (chosen according to the granular-
ity to be captured or from the discretisation considerations) having as elements{(

xk,j

)
0≤k<2j

}
1≤j≤J

:

xk,j(t) = t1

(
t ∈

[
k

2j
,
k + 1

2j

])
.

• Self-data dictionary (Self) consists of the training data set itself.

To illustrate the incorporation of stochastic elements and external information, we bring
an example of the use of the Brownian motion dictionary. Let γ be the Wiener measure
defined on C([0, 1]) the space of continuous function on [0,1] and H be the L2 space.
We define by Brownian motion dictionary (B) the Split variables space induced by
ν = γ and D = C([0, 1]). Although seeming universal, this dictionary explores almost
the entire argument space equivalently, and in practice can be unable to detect isolated
anomalies. In Figure 5.4, we plot the following synthetic data set:

• 30 curves defined by x(t) = 30(1− t)qtq on t ∈ [0, 0.2] and x(t) = 30(0.8)q0.2q +
N (0, 0.32) on t ∈ [0.2, 0.7] with q equispaced in [0.5, 0.55].

• 1 abnormal curve with the same shape but that is shifted at the beginning and
whose continuation is deep in the 30 preceding curves.

One can see that the anomaly is not detected, that indicated as anomaly curve (the
one with highest anomaly score) is on the fringe of the data set though. Illustrative
incorporation of the prior knowledge, in its simplified version, can consist, e.g. in adding
to the measure γ, a Dirac of the indicator function on the interval of interest x̃(t) =
1(t ≤ 0.25) with weights: γ̃ := 0.2 γ + 0.8 δx̃; this assigns the highest anomaly score
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Figure 5.4 – Synthetic data containing an isolated anomaly and the observation having
the highest anomaly score (blue), with dictionary being pure Brownian motion (left) and
Brownian motion mixed with an indicator function in the area of interest in proportions
4 to 1 (right).

to the desired observation. In the sequel, ν follows a uniform distribution if we do not
explicitly mention its distribution.

When having not enough prior knowledge, e.g. just knowing to stick to local features
of functional data but not the precise interval, one would like to use a dictionary ex-
ploring different localities. To illustrate possible advantage of this approach, we use
Mexican hat wavelet and Dyadic indicator dictionaries on the “Chinatown” data set
(Chen et al., 2015b), which represents pedestrian count in Chinatown-Swanston St
North for 12 months during year 2017 with 14 functions (working days) representing
normal observations and taking 4 functions (weekends) as anomalies (Figure 5.5). One
observes that while the Mexican hat wavelet dictionary correctly detects part of the
anomalies, due to its smooth nature it is distracted by two normal curves with high
deviation on the second half of the domain. Having straight fronts and begin non-zero
only in a small part of the domain, the dyadic indicator dictionary detects all four
abnormal observations.
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Figure 5.5 – The “Chinatown” data set, with normal observations in red and anomalies
in blue: The data and the true anomalies (left), anomalies detected using the Mexican
hat wavelet dictionary (middle), and anomalies detected using the dyadic indicator
dictionary (right).

Before, we were considering dictionaries that are independent of data. Nevertheless one
can use observations or their certain transform as a dictionary itself: projections on
both normal and abnormal observations shall differ for normal ones and for anomalies;
this suggests the self-data dictionary (Self). This can be extended to the local self-data



5.2. THE FIF ALGORITHM 101

dictionary which consists of the product of the self-data dictionary with the uniform
indicator dictionary. As an example, we apply this to the “ECG5000” data set plotted
in Figure 5.6, where, different to the cosine dictionary, it allows to detect all abnormal
observations.
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Figure 5.6 – The “ECG5000” data set, with normal observations in red and anomalies
in blue: The data and the true anomalies (left), anomalies detected using the cosine
dictionary (middle), and anomalies detected using the self data dictionary (right).

5.2.3 Scalar Product

Besides the dictionary, the scalar product defined on H brings some additional flexibility
to measure different types of anomalies. While L2 scalar product allows for detection
of location anomalies, L2 scalar product of derivatives (or slopes) would allow to detect
anomalies regarding shape. This last type of anomalies can be challenging; e.g. Hubert
et al. (2015) mention that shape anomalies are more difficult to detect, and Mosler and
Mozharovskyi (2017) argue that one should consider both location and slope simultan-
eously for distinguishing complex curves. Beyond these two, a wide diversity of scalar
products can be used, involving a variety of L2-scalar products related to derivatives of
certain orders, like in the definition of Banach spaces such as weighted Sobolev spaces,
see Maz’ya (2011). To illustrate this, we provide an example (see Figure 5.7) where we
highlight the impact of the scalar product choice. To illustrate the score change caused
by different values of α, we calculate the FIF anomaly scores with the scalar product
introduced in Section 5.2.1 with α = 1 and α = 0 for a sample consisting of 100 curves
as follows (inspired by Cuevas et al. (2007), see Figure 5.7):

• 90 curves defined by x(t) = 30(1− t)qtq with q equispaced in [1, 1.4],

• 10 abnormal curves defined by x(t) = 30(1− t)1.2t1.2 noised by ζ ∼ N (0, 0.32) on
the interval [0.2, 0.8].

One can see that even though the 10 noisy curves are abnormal for the majority of
the data, they are considered as normal ones when only location is taken into account.
On the other hand, they are easily distinguished with the high anomaly score when
derivatives are examined.

5.2.4 Direction Importance of Finite Size Dictionaries

Although feature importance has been tackled in supervised random trees (see e.g.
Breiman, 2001 or Geurts et al., 2006), this has not been adressed in the Isolation
Forest literature (see Liu et al., 2008, Liu et al., 2012 and Hariri et al., 2019). As a
very randomized procedure, there is no incrementally way to define feature importance
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Figure 5.7 – FIF anomaly scores for a sample of 100 curves with α = 1 (left) and α = 0
(right). Anomaly score increases from purple to yellow in the left plot and decreases in
the right plot.

from the supervised setting. Nevertheless, it is a matter of interest in many anomaly
detection applications to get interpretability of models, especially when dealing with
functional data where many information are contained in curves. Thus, it is rewarding
to get an a posteriori sparse representation of the dictionary D which corresponds to
the discriminating directions that have great importance in the construction of the
model. Furthermore, it could bring some information on the distribution of normal
data by studying the dispersion of the projection coefficients on a direction d (e.g.
multi-modality). To extend this notion to the Functional Isolation Forest algorithm,
we propose two ways to evaluate the importance of the elements of D to discriminate
anomaly curves. The general idea is to give importance to elements of D which allows
to discriminate between the sample. The naive idea is to add “+1” to the elements
of D where an instance of the node sample is isolated (except for the cells with only
two instances) such that good directions are those with a high score (after the forest
construction). A clever one, more adaptive, would be to get weighted gain since curves
isolated at nodes closer to the root should be more rewarding. To do this, we choose
to give a reward depending on the size of the sample node where a curve is isolated.
Precisely, the given reward is equal to the size of the node sample divided by the (sub)-
sample used to build the tree. An example of the latter is given in Figure 5.8. The
experiment is conducted on the real-world “CinECGTorso” data set. We use FIF with
the Dyadic indicator dictionary and the L2 scalar product. As we can see, the two most
important elements of the dictionary are indicator functions which localize the peak
around t = 0.4 where anomalies are really different from the normal ones. These leads
to some interpretability from a “black-box” procedure.

5.3 Numerical Results

In this section, we provide an empirical study of the proposed algorithm. First, in
Section 5.3.1 we explore the stability and consistency of the score function w.r.t. the
probability distribution of a r.v. X and the sample size. Furthermore, we examine
the influence of proposed dictionaries on the score function and bring performance
comparisons with benchmark methods. Second, in Section 5.3.2, we benchmark the
performance of FIF on several real labeled data sets by measuring its ability to recover
an “abnormal” class on the test set. In all experiments, N the number of F-itrees is
fixed to 100 and the height limit is fixed to dlog2(ns)e.
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Figure 5.8 – “CinECGTorso” training data set (a), red curves correspond to anomalies
while blue curves to normal data. The direction importances given by the “adaptative”
way are represented by (b) and the two most important functions (from the dyadic
dictionary) used by FIF to build the model are plotted in (c).

5.3.1 Impact of the Hyperparameters on Stability

Since functional data are more complex than multivariate data, and the dictionary
constitutes an additional source of variance, the question of stability of the FIF anomaly
score estimates is of high interest. This issue is even more important because of the
absence of theoretical developments due to their challenging nature. The empirical
study is conducted on two simulated functional data sets presented in Figure 5.9: Data
set (a) is the standard Brownian motion being a classical stochastic process widely used
in the literature. Data set (b) has been used by Claeskens et al. (2014) and has smooth
paths. For each data set, we choose/add four observations for which the FIF anomaly
score is computed after training: a normal observation x0, two anomalies x1 and x2, and
a more extreme anomaly x3. We therefore expect the following ranking of the scores:
sn(x0) < sn(x1) ≤ sn(x2) < sn(x3), for both data sets.

Further, we provide an illustration of the empirical convergence of the score. All other
parameters being fixed, we increase the number of observations n when calculating the
scores of the four selected observations; the empirical median and the boxplots of the
scores computed over 100 random draws of the data set are shown in Figure 5.10. First,
one observes score convergence and variance decrease in n. Further, let us take a closer
look at the score tendencies on the example of x0 and x3. The score of x3 first increases
(for data set (a)) and slightly decreases (for data set (b)) with growing n until n reaches
ns = 64, which happens because this abnormal observation is isolated quite fast (and
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Figure 5.9 – Data sets (a) (left) and (b) (right) containing, respectively, 500 and 200
functional paths with 4 selected observations.
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Figure 5.10 – Boxplot (over 100 repetitions) of the FIF score for the observations
x0,x1,x2,x3 for different sample sizes. The orange boxplots represent the data set
(a) while the purple boxplots represent the data set (b).

thus has short path length) but the c(ns) in the denominator of the exponent of (5.1)
increases in ns. For n > 64, the score of x3 decreases in n since hi(x3) overestimates the
real path length of x3 for subsamples in which it is absent; frequency of such subsamples
grows in n and equals, e.g. 0.872 for n = 500. On the other hand, this phenomenon
allows to unmask grouped anomalies as mentioned in Liu et al. (2008). The behavior is
reciprocal for the typical observation x0. Its FIF anomaly score starts by decreasing in
n since x0 tends to belong to the deepest branches of the trees and is always selected
while b < n. For larger n, the path length of x0 is underestimated for subsamples where
it is absent when growing the tree, which explains slight increase in the score before
it stabilizes. A second experiment illustrated in Figure 5.11 is conducted to measure
the impact of various dictionaries; L2 scalar product is used. One observes that the
variance of the score seems to be mostly stable across dictionaries, for both data sets.
Thus, random dictionaries like uniform indicator (UI) or Brownian motion (B) do not
introduce additional variance into the FIF score. Since we know the expected ranking
of the scores, we can observe that FIF relying on the Self, UI, and DI dictionaries fail
to make a strong difference between x0 and x1. Since x1 differs only slightly in the
amplitude from the general pattern, these dictionaries seem insufficient to capture this
fine dissimilarity: while Self and DI dictionaries simply do not contain enough elements,
UI dictionary is too simple to capture this difference (it shares this feature with DI
dictionary). For the scalar product L2 on derivatives (see Figure A.9 in the Section A of
Appendices), distinguishing anomalies for the Brownian motion becomes difficult since
they differ mainly in location, while for a sine function the scores resemble those with
the usual L2 scalar product. Thus, even though—as seen in Section 5.2.1—capturing
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Figure 5.11 – Boxplot (over 100 repetitions) of the FIF score for the observations
x0,x1,x2,x3 for different dictionaries using the L2 scalar product. The orange box-
plots represent the data set (a) while the purple boxplots represent the data set (b).

different types of anomalies is one of the general strengths of the FIF algorithm, the
dictionary may still have an impact on detection of functional anomalies in particular
cases.

More experiments were run regarding the stability of the algorithm, but for sake of
clarity, we describe them in the Section A of Appendices.

5.3.2 Real Data Benchmarking

To explore the performance of the proposed FIF algorithm, we conduct a comparative
study using 13 classification data sets from the UCR repository (Chen et al., 2015b).
We consider the larger class as normal and some of others as anomalies (see Table 5.1
for details). When classes are balanced, i.e. for 9 data sets out of 13, we keep only part
of the anomaly class to reduce its size, always taking the same observations (at the
beginning of the table) for a fair comparison. Since the data sets are already split into
train/test sets, we use the train part (without labels) to build the FIF and compute
the score on the test set. We assess the performance of the algorithm by measuring an
Area Under the Receiver Operation Characteristic curve (AUC) on the test set. Both
train and test sets are rarely used during learning in unsupervised setting since labels
are unavailable when fitting the model. Thus, when fitting the models on unlabeled
training data, good performances on the test set show a good generalization power.

Competitors. FIF is considered with two finite size dictionaries dyadic indicator, the
self-data and the infinite size dictionary cosines (with α = 1 and α = 0); its parameters
are set N = 100, ns = min(256, n) and the height limit to = dlog2(ns)e). We contrast
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the FIF method with three most used multivariate anomaly detection techniques and
two functional depths, with default settings. The multivariate methods—isolation forest
(IF; Liu et al., 2008), local outlier factor (LOF; Breunig et al., 2000), and one-class sup-
port vector machine (OCSVM; Schölkopf et al., 2001)— are employed after dimension
reduction by Functional PCA keeping 20 principal components with largest eigenval-
ues after a preliminary step of filtering using Haar basis. The depths are the random
projection halfspace depth (fT; Cuevas et al., 2007) and the functional Stahel-Donoho
outlyingness (=functional projection depth) (fSDO; Hubert et al., 2015).

Analysis of the results. Taking into account the complexity of the functional data,
as expected there is no method performing generally best. Nevertheless, FIF performs
well in most of the cases, giving best results for 10 data sets and second best for
6 data sets. It is worth to mention that the dictionary plays an important role in
identifying anomalies, while FIF seems to be rather robust w.r.t. other parameters:
The “CinECGTorso” data set contains anomalies differing in location shift which are
captured by the cosine dictionary. Dyadic indicator dictionary allows to detect local
anomalies in “TwoLeadECG” and “Yoga” data sets. Self-data dictionary seems suited
for Data sets “SonyRobotAI2” and “StarlightCurves” whose challenge is to cope with
many different types of anomalies.

p training : na/ n testing : na/n normal classes abnormal classes

Chinatown 24 4 / 14 (29%) 95 / 345 2 1

Coffee 286 5 / 19 (26%) 6 / 19 1 0

ECGFiveDays 136 2 / 16 (12%) 53 / 481 1 2

ECG200 96 31 / 100 (31%) 36 / 100 1 -1

Handoutlines 2709 362 / 1000 (36 %) 133 / 370 1 0

SonyRobotAI1 70 6 / 20 (30 %) 343 / 601 2 1

SonyRobotAI2 65 4 / 20 (20 %) 365 / 953 2 1

StarLightCurves 1024 100 / 673 (15 %) 3482 / 8236 3 1 and 2

TwoLeadECG 82 2 / 14 (14 %) 570 / 1139 1 2

Yoga 426 10 / 173 ( 06 %) 1393 / 3000 2 1

EOGHorizontal 1250 10 / 40 (25 %) 30 / 61 5 6

CinECGTorso 1639 4 / 16 (25 %) 345 / 688 3 4

ECG5000 140 31 / 323 (10 %) 283 / 2910 1 3,4 and 5

Table 5.1 – Data sets considered in performance comparison: n is the number of in-
stances, na is the number of anomalies. p is the number of discretization points.

5.4 Extensions of FIF

In this section, we present an extension of FIF to the case of multivariate functional
data as well as highlight connections to data depth.
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Methods : DIL2 CosSob CosL2 SelfL2 IF LOF OCSVM fT fSDO

Chinatown 0.93 0.82 0.74 0.77 0.69 0.68 0.70 0.76 0.98

Coffee 0.76 0.87 0.73 0.77 0.60 0.51 0.59 0.74 0.67

ECGFiveDays 0.78 0.75 0.81 0.56 0.81 0.89 0.90 0.60 0.81

ECG200 0.86 0.88 0.88 0.87 0.80 0.80 0.79 0.85 0.86

Handoutlines 0.73 0.76 0.73 0.72 0.68 0.61 0.71 0.73 0.76

SonyRobotAI1 0.89 0.80 0.85 0.83 0.79 0.69 0.74 0.83 0.94

SonyRobotAI2 0.77 0.75 0.79 0.92 0.86 0.78 0.80 0.86 0.81

StarLightCurves 0.82 0.81 0.76 0.86 0.76 0.72 0.77 0.77 0.85

TwoLeadECG 0.71 0.61 0.61 0.56 0.71 0.63 0.71 0.65 0.69

Yoga 0.62 0.54 0.60 0.58 0.57 0.52 0.59 0.55 0.55

EOGHorizontal 0.72 0.76 0.81 0.74 0.70 0.69 0.74 0.73 0.75

CinECGTorso 0.70 0.92 0.86 0.43 0.51 0.46 0.41 0.64 0.80

ECG5000 0.93 0.98 0.98 0.95 0.96 0.93 0.95 0.91 0.93

Table 5.2 – AUC of different anomaly detection methods calculated on the test set.
Bold numbers correspond to the best result while italics to the second best.

5.4.1 Extension to Multivariate Functions

FIF can be easily extended to the multivariate functional data, i.e. when the quantity
of interest lies in Rd for each moment of time:

X : Ω −→ (H([0, 1]))⊗d

ω 7−→
(

(X(1)(ω))t∈[0,1], . . . , (X
(d)(ω))t∈[0,1]

)
For this, the coordinate-wise sum of the d corresponding scalar products is used to
project the data onto a chosen dictionary element:

〈f ,g〉H⊗d :=

d∑
i=1

〈f (i),g(i)〉H.

Further, a dictionary should be defined in (H([0, 1]))⊗d. This can be done, e.g. by
either component-wise application of one or several univariate dictionaries from Section
5.2.2, or by constructing of special d-variate ones. For illustration purposes, regard the
following example constructed based on the MNIST (Lecun et al., 1998) data set. First,
we extract the digits’ contours (skeletons) using skimage Python library (van der Walt
et al., 2014). Then each observation is transformed into a curve in (L2([0, 1])×L2([0, 1]))
(one vertical and one horizontal coordinates) using length parametrization on [0, 1]. We
construct the problem by taking 100 curves from class 7 and adding 10 observations from
class 2. We apply FIF with two-dimensional sinuscosine dictionary and the following
scalar product : 〈f ,g〉(L2)⊗d . sinuscosine is constructed as a direct extension of cosine
dictionary introduced for FIF by selecting randomly cosine or sinus function on each
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Figure 5.12 – FIF anomaly scores for a sample of 110 digits (100 seven and 10 two). Left
plot corresponds to the sorted score of these curves. Right plot represents the digits in
three dimensions, green ones correspond to normal data, anomalies score increases from
orange to dark red. Bottom plot shows the fifteen detected anomalies.

coordinates. Figure 5.12 shows anomaly detection using the visual elbow rule to define
the threshold. Among those detected, five digits are indeed 7s, but do not resemble
them and thus are identified as anomalies.

5.4.2 Connection to Data Depth

Regarding FIF score as an anomaly ranking yields a connection to the notion of the
statistical depth function, which has been successfully applied in outlier detection (see,
e.g. Hubert et al., 2015). Statistical data depth has been introduced as a measure
of centrality (or depth) of an arbitrary observation x ∈ (H([0, 1]))⊗d with respect to
the data at hand S. A data depth measure based on FIF score can be defined for
(multivariate) functional data as: FDFIF (x;S) = 1 − sn(x;S). Data depth proves to
be a useful tool for a low-dimensional data representation called depth-based map. Using
this property, Li et al. (2012) defined a DD-plot classifier which consists in applying
a multivariate classifier to the depth-based map. Low-dimensional representation is of
particular interest for functional data and a DD-plot classifier can be defined using
the FIF-based data depth. Let Strn = S1 ∪ ... ∪ Sq be a training set for supervised
classification containing q classes, each subset Sj standing for class j. The depth map
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is defined as follows:

x 7→ φ(x) =
(
FDFIF (x;S1), . . . , FDFIF (x;Sq)

)
∈ [0, 1]q .

As an illustration, we apply the depth map to 3 digits (1, 5 and 7, 100 observations
per digit for training and 100 testing) of the MNIST data set after their transform-
ation to two-variate functions using skimage Python library (see Figure 5.13). One
observes appealing geometrical interpretation (observe, e.g. the location of the abnor-
mally distant—from their corresponding classes—observations) and a clear separation
of the classes. To illustrate separability, we apply linear multiclass (one-against-all)
SVM in the depth space, which delivers the accuracy of 99% on the test data.

Dep
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Figure 5.13 – Depth space embedding of the three digits (1, 5 and 7) of the MNIST
data set.

5.5 Conclusion

The Functional Isolation Forest algorithm has been proposed, which is an extension of
Isolation Forest to functional data. The combined choice of the dictionary itself, the
probability distribution used to pick a Split variable and the scalar product used for the
projection enables FIF to exhibit a great flexibility in detecting anomalies for a variety of
tasks. FIF is extendable to multivariate functional data. When transformed in a data
depth definition, FIF can be used for supervised classification via a low-dimensional
representation—the depth space. The open-source Cython/C++ implementation of
the method, along with all reproducing scripts, can be accessed at https://github.
com/GuillaumeStaermanML/FIF.

https://github.com/GuillaumeStaermanML/FIF
https://github.com/GuillaumeStaermanML/FIF
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Supported by sound theoretical and computational developments in the recent decades,
data depth has proven to be extremely useful, in particular in functional spaces. How-
ever, most approaches documented in the literature consist in evaluating independently
the centrality of each point forming the time series and consequently exhibit a certain
insensitivity to possible shape changes. In this chapter, we propose a novel notion of
functional depth based on the area of the convex hull of sampled curves, capturing
gradual departures from centrality, even beyond the envelope of the data, in a natural
fashion. We discuss practical relevance of commonly imposed axioms on functional
depths and investigate which of them are satisfied by the notion of depth we promote
here. Estimation and computational issues are also addressed and various numerical
experiments provide empirical evidence of the relevance of the approach proposed.

The chapter is organized as follows. In Section 6.1 the functional statistical depth based
on the area of the convex hull of a batch of curves is introduced at length and its the-
oretical properties are investigated, together with computational aspects. Section 6.2
presents numerical results in order to provide strong empirical evidence of the relevance
of the novel depth function proposed, for the purpose of unsupervised functional an-
omaly detection especially. Eventually, concluding remarks are collected in Section 6.3.
Technical proofs are deferred to Section 6.4. This chapter covers the contribution of:

I G. Staerman, P. Mozharovskyi, S. Clémençon. The Area of the Convex Hull
of Sampled Curves: a Robust Functional Statistical Depth measure. In Proceed-
ings of the 23nd International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 570-579, 2020.
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6.1 The Area of the Convex Hull of (Sampled) Curves

In this section, we present the statistical depth function we propose for path-valued
random variables. As shall be seen below, its definition is based on very simple geo-
metrical ideas and various desirable properties can be easily checked from it. Statistical
and computational issues are also discussed at length. By λ2 is meant the Lebesgue
measure on the plane R2. The graph of any function x in C([0, 1]) is denoted by

graph(x) = {(t, y) : y = x(t), t ∈ [0, 1]},

while we denote by graph({x1, . . . ,xn}) the set
⋃n
i=1 graph({xi}) defined by a collection

of n ≥ 1 functions {x1, . . . ,xn} in C([0, 1]). We now give a precise definition of the
statistical depth measure we propose for random variables valued in C([0, 1]).

Definition 6.1. Let J ≥ 1 be a fixed integer. The ACH depth of degree J is the function
FDJ

ACH : C([0, 1])× P(C([0, 1])) −→ [0, 1] defined by: ∀ x ∈ C([0, 1]),

FDJ
ACH(x,P) = E

[
λ2(conv(graph({X1, . . . ,XJ})))

λ2(conv(graph({X1, . . . ,XJ} ∪ {x})))

]
,

where X1, . . . ,XJ are i.i.d.ṙ.v.ś drawn from P with the convention 0/0 = 1. Its average
version FDJ

ACH is defined by: ∀ x ∈ C([0, 1]),

FD
J
ACH(x,P) =

1

J

J∑
j=1

FDj
ACH(x,P).

The choice of J leads to various views of distribution P, the average variant permitting
to combine all of them (up to degree J). Consider an i.i.d.ṡample X1, . . . ,Xn drawn
from P in P(C([0, 1])) and Pn = (1/n)

∑n
i=1 δXi its associated empirical measure. When

n ≥ J , an unbiased statistical estimation of FDJ
ACH(x,P) can be obtained by computing

the symmetric U -statistic of degree J , see Lee (1990): ∀ x ∈ C([0, 1]),

FDJ
ACH(x,Pn) =

1(
n
J

) ∑
1≤i1<...<iJ≤n

λ2(conv(graph({Xi1 , . . . ,XiJ})))
λ2(conv(graph({Xi1 , . . . ,XiJ ,x})))

. (6.1)

Considering the empirical average version given by

∀ x ∈ C([0, 1]), FD
J
ACH(x,Pn) =

1

J

J∑
j=1

FDj
ACH(x,Pn).

brings some “stability”. However, the computational cost rapidly increasing with J ,
small values of J are preferred in practice. Moreover, as we illustrate in Section 6.2.1,
J equals to two already yields satisfactory results.

Approximation from sampled curves. In general, one does not observe the batch
of continuous curves {X1, . . . ,Xn} on the whole time interval [0, 1] but at discrete time
points only, the number p ≥ 1 of time points and the time points 0 ≤ t1 < t2 <
. . . < tp ≤ 1 themselves possibly varying depending on the curve considered. In such
a case, the estimators above are computed from continuous curves reconstructed from
the sampled curves available by means of interpolation procedures or approximation
schemes based on appropriate basis. In practice, linear interpolation is used for this
purpose with theoretical guarantees (refer to Theorem 6.4 below) facilitating signific-
antly the computation of the empirical ACH depth, see Section 6.2.4.
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6.1.1 Main Properties of the ACH Depth

Here, we study theoretical properties of the population version of the functional depths
introduced above and next establish the consistency of their statistical versions. The
following result reveals that, among the properties listed in Section 3.1, five are fulfilled
by the (average) ACH depth function.

Proposition 6.2. For all J ≥ 1, the depth function FDJ
ACH (respectively, FDJ

ACH)
fulfills the following properties: (i) ‘non-degeneracy’, (ii) ‘scalar-affine invari-
ance’, (iii) ‘vanishing at infinity’, (iv) ‘continuity in x’ and (v) ‘continuity
in P’. In addition, the following properties are not satisfied: (vi) ‘maximality at
center’ and (vii) ‘decreasing w.r.t. the deepest point’.

Technical proofs are detailed in Section 6.4.2. In a functional space, not satisfying
maximality at center is not an issue. For instance, though the constant trajectory
y(t) ≡ 0 is a center of symmetry for the Brownian motion, it is clearly not representative
of this distribution. However, the set of depth medians is not always meaningful and
may be disjoint of the convex hull of the data. For example, assuming that X is a
random variable defined by X(t) = t(1 − t)Z for a real random variable Z > 1 a.s.,
then the set of depth medians is {(x, y) ∈ R2 : 0 < x < 1 and 0 < y < x (1 − x)}. In
contrast, scalar-affine invariance is relevant, insofar as it allows z-normalization
of the functional data and continuity in P is essential to derive the consistency of
FDJ

ACH(·,Pn) (respectively, of FDJ
ACH(·,Pn)), as stated below.

Theorem 6.3. Let J ≥ 1 and X1, . . . ,Xn be n ≥ J independent copies of a generic
r.v. X with distribution P ∈ P(C([0, 1])). As n → ∞, we have, for any x ∈ C([0, 1]),
with probability one, ∣∣∣FDJ

ACH(x,Pn)− FDJ
ACH(x,P)

∣∣∣ −→ 0,

and ∣∣∣∣FDJ
ACH(x,Pn)− FDJ

ACH(x,P)

∣∣∣∣ −→ 0.

Proof. For any 1 ≤ j ≤ J , the term |FDj
ACH(x,Pn) − FDj

ACH(x,P)| goes to zero
almost-surely by U-statistics consistency (see e.g. Hoeffding, 1961). Thus,

P
(
∀ j :

∣∣∣FDj
ACH(x,Pn)− FDj

ACH(x,P)
∣∣∣ n→∞−→ 0

)
= 1,

which is equivalent to

P

 J∑
j=1

∣∣∣FDj
ACH(x,Pn)− FDj

ACH(x,P)
∣∣∣ n→∞−→ 0

 = 1.

By triangle inequality, for any x ∈ C([0, 1]),

∣∣∣ J∑
j=1

FDj
ACH(x,Pn)− FDj

ACH(x,P)
∣∣∣ ≤ J∑

j=1

∣∣∣FDj
ACH(x,Pn)− FDj

ACH(x,P)
∣∣∣
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which leads to the desired result.

Uniform consistency often relies on the equicontinuity of the set {FDJ
ACH(x,P), x ∈ F}

where F is the functional space considered, which is not satisfied here. Indeed, let J = 1,
x1 = 0, ε = 1/4 and δ > 0. Let y1 ∈ C([0, 1]) such that

y1(t) = 2δt I{[0, 0.5]}+ (2δ − δt) I{[0, 0.5]}.

It follows that ||x1 − y1||∞ = δ. Now, taking x(t) = 2δt we have Φx(x1) = 0 and
Φx(y1) = 1/2 where the function Φx is defined as:

Φx : (C([0, 1]))⊗j −→ [0, 1]

(x1, ...,xj) 7−→
λ2(conv(graph({x1, ...,xj})))
λ2(conv(graph({x1, ...,xj ,x})))

.

Then for any δ > 0 there exists a function y1 close to x such that ||Φx(x1)−Φx(y1)||∞ >
0.25. Thus, the set {Φx, x ∈ C([0, 1])} is not equicontinuous at x1.

6.1.2 On Statistical/Computational Issues

As mentioned above, only sampled curves are available in practice. Each random curve
Xi being observed at fixed time points 0 = t

(i)
1 < t

(i)
2 < . . . < t

(i)
pi = 1 (potentially

different for each Xi) with pi ≥ 1, we denote by X̃1, . . . , X̃n the continuous curves
reconstructed from the sampled curves (Xi(t

(i)
1 ), . . . ,Xi(t

(i)
pi )), 1 ≤ i ≤ n, by linear

interpolation. The measure P̃n is the empirical measure associated to the reconstructed
sample. From a practical perspective, one considers the estimator FDJ

ACH(x, P̃n) of
FDJ

ACH(x,P) given by the approximation of FDACH(x,Pn) obtained when replacing
the Xi’s by the X̃i’s in (6.1). The (computationally feasible) estimator FDJ

ACH(x, P̃n)

of FDJ
ACH(x,P) is constructed in a similar manner. The result stated below shows that

this approximation stage preserves almost-sure consistency.

Theorem 6.4. Let J ≤ n. Suppose that, as n→∞,

δ = max
1≤i≤n

max
1≤k≤pi−1

{
t
(i)
k+1 − t

(i)
k

}
→ 0.

As n→∞, we have, for any x ∈ C([0, 1]), with probability one,∣∣∣FDJ
ACH(x, P̃n)− FDJ

ACH(x,P)
∣∣∣ −→ 0

and ∣∣∣∣FDJ
ACH(x, P̃n)− FDJ

ACH(x,P)

∣∣∣∣ −→ 0.

Proof. The result follows from the continuity in P and Theorem 3 in Nagy et al.
(2016a).

Given the batch of continuous and piecewise linear curves X̃1, . . . , X̃n, although the
computation cost of the area of their convex hull is of order O(p log p) with p = maxi pi,
that of the U-statistic FDJ

ACH(x, P̃n) (and a fortiori that of FDJ
ACH(x, P̃n)) becomes
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very expensive as soon as
(
n
J

)
is large. As pointed out in López-Pintado and Romo

(2009), even if the choice J = 2 for statistics of this type, may lead to a computation-
ally tractable procedure, while offering a reasonable representation of the distribution,
varying J permits to capture much more information in general. For this reason, we
propose to compute an incomplete version of the U -statistic FDJ

ACH(x, P̃n) using a basic
Monte-Carlo approximation scheme with nrep ≥ 1 replications: rather than averaging
over all

(
n
J

)
subsets of {1, . . . , n} with cardinality J to compute FDJ

ACH(x, P̃n), one av-
erages over nrep ≥ 1 subsets drawn with replacement, forming an incomplete U -statistic,
see Enqvist (1978). The same approximation approach can be applied (in a randomized
manner) to each of the U -statistics involved in the average FDJ

ACH(x, P̃n), as described
in the Figure 6.1.

Input: the sample S̃ = {X̃1, . . . , X̃n}, the observed curve x̃, nrep, 1 ≤ J ≤ n and

the vector of weights w = (wj)1≤j≤J such that wj =

(
j
n

)∑J
m=1

(
m
n

) .
1. For k = 1, . . . , nrep do:

(i) Select l ∈ {1, . . . , J} according to w.

(ii) Select randomly and uniformly (i1, . . . , il) ∈ {1, . . . , n}.

(iii) s(x̃)← s(x̃) +
λ2(conv(graph({X̃i1

,...,X̃il
})))

λ2(conv(graph({X̃i1
,...,X̃il

,x̃})))
.

2. Return: FD
J
ACH(x̃, S̃) = s(x̃)/ nrep.

Figure 6.1 – The approximation procedure

6.2 Numerical Experiments

From a practical perspective, this section explores certain properties of the functional
depth proposed using simulated data. It also describes its performance compared with
the state-of-the-art methods on (real) benchmark data sets. As a first go, we focus on
the impact of the choice of the tuning parameter nrep, which rules the trade-off between
approximation accuracy and computational burden and parameter J . Precisely, it is
investigated through the stability of the ranking induced by the corresponding depths.
We next investigate the robustness of the ACH depth (ACHD in its abbreviated form),
together with its ability to detect abnormal observations of various types. A simulation-
based study of the variance of the ACH depth is also provided. Finally, the ACH
depth is benchmarked against alternative depths standing as natural competitors in the
functional setup using real data sets.

For the sake of simplicity, the two same simulated data sets, represented in Figure
6.2, are used throughout the section. The data set (a) corresponds to sample path
segments of the geometric Brownian motion with mean 2 and variance 0.5, a stochastic
process widely used in statistical modeling. The data set (b) consists of smooth curves
given by x(t) = u cos(2πt) + v sin(2πt), t ∈ [0, 1], where u and v are independently



116
CHAPTER 6. THE AREA OF THE CONVEX HULL OF SAMPLED

CURVES: A ROBUST FUNCTIONAL STATISTICAL DEPTH MEASURE

and uniformly distributed on [0, 0.05], as proposed by Claeskens et al. (2014). Four
curves {xi : i ∈ {0, 1, 2, 3}} have been incorporated to each data set: a deep curve and
three atypical curves (anomalies), with expected depth-induced ranking FDJ

ACH(x3) <
FDJ

ACH(x2) ≈ FDJ
ACH(x1) < FDJ

ACH(x0).
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Figure 6.2 – Data sets (a) (left) and (b) (right) containing 100 paths with four selected
observations. The colors are the same for the four selected observations of both data
sets (a) and (b).

6.2.1 Choosing Tuning Parameters nrep and J

Parameter nrep reflects the trade-off between statistical performance and computational
time. In order to investigate its impact on the stability of the method, we compute
depths of the deepest and most atypical curves (x0 and x3) for data set (b), taking
J = 2, 3, 4. Figure 6.3 presents boxplots of the approximated ACH depth (together
with the exact values of ACH depth) over 100 repetitions. Note that, as expected,
depth values grow with J . The variance of the depth decreases taking sufficiently small
values for nrep = 5n and almost disappearing for nrep ≥ 20n, while decreasing pattern
remains the same for different values of nrep. For these reasons, we keep nrep = 5n in
what follows.

The choice of J is less obvious, and clearly when describing an observation in a func-
tional space a substantial part of information is lost anyway. Nevertheless, one observes
that computational burden increases exponentially with J and thus smaller values are
preferable. Figure 6.4 shows the rank-rank plots of data sets (a) and (b) for small values
of J = 2, 3, 4 and indicates, that depth-induced ranking does not change much with J .
Thus, for saving computational time, we use value J = 2 in all subsequent experiments.

6.2.2 Asymptotic Variance of the Exact and Approximate Versions

To obtain further insights about the stability of the proposed depth notion, we explore
its asymptotic variance. For this, we compute (exact and approximate) ACH depth of
xi, i = 1, 2, 3, 4 for different sample sizes. The boxplots over 100 repeated simulation
for data sets (a) and (b) are indicated in Figure 6.5 and Figure 6.6. One observes not
only stable decrease of the variance of ACH with the sample size, but also the similarity
between exact and approximate versions, which hints on stability and precision of the
exact algorithm even when exploring a small portion of combinations (e.g. when n = 500
only 2% of all pairs are explored for nrep = 5n).
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Figure 6.3 – Boxplots of the approximations of FDJ
ACH(x0) (top) and FDJ

ACH(x3) (bot-
tom) over different size of nrep. The black crosses correspond to the exact depth measure
FDJ

ACH for each J respectively.
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Figure 6.4 – Rank-Rank plot for different values of J (2, 3 and 4). The first line
represents the rank over the data set (a) while the second line represents the data set
(b).
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Figure 6.5 – Boxplot (over 100 repetitions) of the depth score for the observations
x0,x1,x2,x3 for the two following settings on the data set (a): the green boxplots
represent the exact computation while the orange boxplots represent the approximation
both with J = 2.
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Figure 6.6 – Boxplot (over 100 repetitions) of the depth score for the observations
x0,x1,x2,x3 for the two following settings on the data set (b): the green boxplots
represent the exact computation while the orange boxplots represent the approximation
both with J = 2.
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6.2.3 Robustness

Under robustness of a statistical estimator on understands its ability not to be “dis-
turbed” by atypical observations. We explore robustness of the ACH depth in the
following simulation study: between the original data set and the same data set con-
taminated with anomalies, we measure (averaged over 10 random repetitions) Kendall’s
τ distance of two depth-induced rankings σ and σ′, respectively, of the original data:

dτ (σ, σ′) =
2

n(n− 1)

∑
i<j

I{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0} .

In their overview work, Hubert et al. (2015) introduce taxonomy for atypical obser-
vations, focusing on location, isolated, and shape anomalies. Here, we add location
anomalies to data set (a) and isolated and shape anomalies to data set (b). The ab-
normal functions are constructed as follows. Location anomalies for data set (a) are
x̆(t) = x(t)+ax(t) with a drawn uniformly on [0, 1]. Isolated anomalies for data set (b)
are constructed by adding a peak at t0 (drawn uniformly on [0, 1]) of amplitude b (drawn
uniformly on [0.03, 0.06]) such that y̆(t0) = y(t0) + b and y̆(t) = y(t) for any t 6= t0.
Shape anomalies for data set (b) are z̆(t) = z(t) + 0.01 × cos(2πtu) + 0.01 × sin(2πtu)
with u drawn uniformly from {1, 2, . . . , 10}. By varying the percentage of abnormal ob-
servations αO, we compare ACHD to several of the most known in the literature depth
approaches: the functional Stahel-Donoho outlyingness (fSDO) (= functional projection
depth) (Hubert et al., 2015) and the functional Tukey depth (fT) (= functional half-
space depth) (Claeskens et al., 2014), and also to the functional isolation forest (FIF)
algorithm (see Chapter 5) which proves satisfactory anomaly detection; see Table 6.1.
One can observe that ACH consistently preserves depth-induced ranking despite in-
serted abnormal observation, even if their fraction αO reaches 30%. fSDO behaves
competitively giving slightly better results than ACH for shape anomalies.

dτ (σ0, σαO)(×10−2)

αO 0 5 10 15 25 30

ACH
Location 0 0.6 1.3 2.2 4.3 5.2
Isolated 0 0.3 1.3 0.9 1.6 2.4
Shape 0 0.9 2 2.6 4.2 4.7

fSDO
Location 0 3.6 7.3 10 16 20
Isolated 0 0.8 3.6 3.2 7.2 9.4
Shape 0 1.6 2.9 4.2 6.6 7.4

fT
Location 0 5.1 9.5 13 20 23
Isolated 0 0.7 2.7 2.7 5.9 7.2
Shape 0 1.7 2.9 4.3 6.6 7.7

FIF
Location 0 7 8.2 7.3 7.3 8.9
Isolated 0 9.3 12 11 10 12
Shape 0 7.4 7.9 10 14 14

Table 6.1 – Kendall’s tau distances between the rank returned with normal data (σ0)
and contamined data (σαO , over different portion of contamination αO with location,
isolated and shape anomalies) for ACH and three state-of-the-art methods. Bold num-
bers indicate best stability of the rank over the contaminated data sets.
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6.2.4 Applications to Anomaly Detection
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Figure 6.7 – Number of anomalies detected over a grid of parameters for three types
of anomalies (location, isolated, and shape) for ACH and three further state-of-the-art
methods.

Further, we explore the ability of ACH depth to detect atypical observations. For this,
we conduct an experiment in settings similar to those in Section 6.2.3, while changing
degree of abnormality gradually for 15 (out of 100 curves) in data set (a). Thus,
we alter a in [0, 3] for location anomalies, b in [0, 10] for isolated anomalies, and e in
[1, 2] for shape anomalies to amplify the “spikes" of oscillations such that z̆(t) = ez(t).
Figure 6.7 illustrates number of anomalies detected by ACH, fSDO, fT, and FIF for
different parameters of abnormality. While it is difficult to find the general winner,
ACH behaves favorably in all the considered cases and clearly outperforms the two
other depths when the data is contaminated with isolated anomalies.

We conclude this section with a real-world data benchmark based on three data sets:
“Octane” (Esbensen, 2001), “Wine” (Larsen et al., 2006), and “EOG” (Chen et al.,
2015b). The “Wine” data set consists of 397 measurements of proton nuclear magnetic
resonance (NMR) spectra of 40 different wine sanamples, the “Octane” data set are
39 near infrared (NIR) spectra of gasoline samples with 226 measurements, while the
“EOG” data set represents the electrical potential between electrodes placed at points
close to the eyes with 1250 measurements. As pointed out by Hubert et al. (2015),
it is difficult to detect anomalies in the first two data sets, while they are easily seen
during the human eye inspection. For the “EOG” data set, we assign smaller of the two
classes to be abnormal. To the existing state-of-the-art methods, we add here Isolation
Forest (IF; Liu et al., 2008) and the One-Class SVM (OC; Schölkopf et al., 2001)—
multivariate methods applied after a proper dimension reduction (to the dimension 10)
using Functional Principal Component Analysis (FPCA; see Ramsay and Silverman,
2002). Portions of detected anomalies (by all the considered methods), indicated in
Table 6.2, hint on very competitive performance of ACH depth in the addressed bench-
mark.

6.3 Conclusion

In this chapter, we have introduced a novel functional depth function on the space
C([0, 1]) of real valued continuous curves on [0, 1] that presents various advantages.
Regarding interpretability first, the depth computed at a query curve x in C([0, 1]) takes
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ACH fSDO fT FIF IF OC
Octane 1 0.5 0.33 1 0.5 0.5
Wine 1 0 0 1 0 1
EOG 0.73 0.55 0.48 0.43 0.63 0.6

Table 6.2 – Portion of detected anomalies of benchmark methods for the “Octane”,
“Wine”, and “EOG” data sets.

the form of an expected ratio, quantifying the relative increase of the area of the convex
hull of i.i.d. random curves when adding x to the batch. We have shown that this depth
satisfies several desirable properties and have explained how to solve approximation
issues, concerning the sampled character of observations in practice and scalability
namely. Numerical experiments on both synthetic and real data have highlighted a
number of crucial benefits: reduced variance of its statistical versions, robustness with
respect to the choice of tuning parameters and to the presence of outliers in the training
sample, capacity of detecting (possibly slight) anomalies of various types, surpassing
competitors such as depths of integral type, for isolated anomalies in particular. The
open-source Cython/C++ implementation of the method can be accessed at https:
//github.com/GuillaumeStaermanML/ACHD.

6.4 Technical Details

6.4.1 Auxiliary Lemma

Lemma 6.5. (Continuity of the Band function) Let x1, . . . ,xj, j ∈ {1, . . . , J}
be fixed curves in C([0, 1]). The function

C([0, 1]) −→ K2

x 7→ band(x1, . . . ,xj ,x)

is continuous if K2 is equipped with the Hausdorff distance dH.

Proof. Let x0 ∈ C([0, 1]) and j be fixed in {1, . . . , J}. Let ζ > 0, and write bandx :=
band(x1, . . . ,xj ,x) and bandx0 := band(x1, . . . ,xj ,x0) for the sake of clarity. We have:

dH

(
bandx,Bandx0

)
= max

 sup
z∈bandx

d(z,bandx0), sup
z∈bandx0

d(z,bandx)


with d(·, ·) being the distance induced by ||.||∞. It is easy to see that for any z ∈ bandx,

inf
y∈bandx0

||z− y||∞ is minimized by the function:

y∗(t) = z(t) I{(z(t) ∈ bandx0)}+ max
(
x1(t), . . . ,xj(t),x(t)

)
I{(z(t) /∈ bandx0)}.

Following this, ||z− y∗||∞ is equal to the maximum between

sup
t: z(t)>bandx0

∣∣∣z(t)−max
(
x1(t), . . . ,xj(t),x(t)

) ∣∣∣,

https://github.com/GuillaumeStaermanML/ACHD
https://github.com/GuillaumeStaermanML/ACHD
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and

sup
t: z(t)<bandx0

∣∣∣z(t)−min
(
x1(t), . . . ,xj(t),x(t)

) ∣∣∣.
Furthermore, as z ∈ Bandx, it follows:

∀ t, min

(
x(t), min

i=1,...,j
xi(t)

)
≤ z(t) ≤ max

(
x(t), max

i=1,...,j
xi(t)

)
.

If z(t) > bandx0 we have max

(
max
i=1,...,j

xi(t),x0(t)

)
< z(t) ≤ x(t) and then

sup
t: z(t)>bandx0

∣∣∣∣∣z(t)−max

(
x(t), max

i=1,...,j
xi(t)

)∣∣∣∣∣ = sup
t: z(t)>bandx0

|z(t)− x(t)|.

With the same argument we have:

sup
t: z(t)<bandx0

∣∣∣∣∣z(t)−max

(
x(t), max

i=1,...,j
xi(t)

)∣∣∣∣∣ = sup
t: z(t)<bandx0

|z(t)− x(t)|.

It follows that for every z ∈ bandx , d(z, bandx0) ≤ ||x− x0||∞ ≤ ζ. We then have

sup
z∈bandx

d(z, bandx0) ≤ ζ .

We can prove that
sup

z∈bandx0

d(z,bandx) ≤ ζ

with the same argument which concludes the proof.

6.4.2 Proof of Proposition 3.2

(ii) Scalar-affine invariance. Let a, b ∈ R, it is clear that

conv(graph({aX1 + b, . . . , aXn + b})) = a× conv(graph({X1, . . . ,Xn})) + b

where a×conv(graph({X1, . . . ,Xn}))+ b = {(t, ax+ b) : (t,x) ∈ conv(graph({X1, . . . ,Xn}))}.
The result follows from properties of the Lebesgue measure. However, this property
is not satisfied when a,b ∈ C([0, 1]). Indeed, let J = 2 and X be a random variable
following a distribution P such that P(X ≡ x1) = 1

2 and P(X ≡ x2) = 1
2 with x1 ≡

1,x2 ≡ 2. Let X1,X2 two i.i.d.ṙandom variables from P and b be continuous function
t 7→ (10t − 4) I{[0.4, 0.5]} + (−10t + 6) I{[0.5, 0.6]}. Let x ≡ 0. It is easy to see that
FDJ

ACH(x|P ) = 1
8 6= FDJ

ACH(x + b|PX+b) since

FDJ
ACH(x + b, PX+b) =

1

2
×

(
1

2
× 0.5

1.5
+

1

2
× 0.5

2.5

)j=1

+
1

2
×

(
1

4
× 0.5

1.5
+

1

4
× 0.5

2.5
+

1

2
× 1.5

2.5

)j=2

=
17

60
.
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Figure 6.8 – Plots of the functions used in the case of a,b ∈ C([0, 1]). The three red
lines in ascending order are x,x1,x2. The cyan curves correspond to x1 +b and x2 +b
and the blue curve to x + b.

Even if we restrict j > 1 to avoid the fact that the convex hull of constant function
have zero Lebesgue measure, FDJ

ACH(x, P ) and FDJ
ACH(x + b, PX+b) remain different,

see Figure 6.8.

(iii) Vanishing at infinity. Let J be fixed and xn be a sequence of functions such
that ||xn||∞ tends to infinity when n grows, for every j ∈ {1, ..., J} we define :

Φxn : (C([0, 1]))⊗j −→ [0, 1]

(x1, . . . ,xj) 7−→
λ2(conv(graph({x1, . . . ,xj})))

λ2(conv(graph({x1, . . . ,xj ,xn})))
.

As a continuous function on compact set, x1, ...,xj are bounded, then Φxn −→
||xn||∞→∞

0.

The result follows from dominated convergence theorem since Φxn is bounded by 1.

(iv) Continuity in x. Let x1, ...,xj , j ∈ {1, ..., J} be fixed curves in C([0, 1]) with
at least two different curves, i.e there exists a t ∈ [0, 1] and l, k ∈ {1, . . . , j} such that
xk(t) 6= xl(t). If j = 1, x1 is assumed not to be a constant function. From Lemma 6.5,
we know that the function

g : x 7−→ band(x1, ...,xj ,x),

is continuous w.r.t. the infinity norm. Let K2 be the set of all compact sets in R2 and K2
C

the set of all convex bodies (compact, convex set with non-empty interior). We equip
both spaces with the topology induced by the Hausdorff distance. The two following
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maps:

conv :K2 −→ K2
C

K2 7−→ conv(K2),

and

vol :K2
C −→ R+

K2
C 7−→ λ2(K2

C),

are continuous with respect to the Hausdorff distance, see e.g. Theorem 12.3.5 in
Schneider and Weil (2008) for conv and Theorem 1.8.16 in Schneider (1993) for vol.
Then the function vol ◦ conv ◦ g : x 7→ λ2(conv(graph{x1, ...,xj ,x}))) is continuous.
Now, from the dominated convergence theorem it follows that:

x 7−→ E

[
λ2(conv(graph({x1, ...,xj})))
λ2(conv(graph({x1, ...,xj ,x})))

]
,

is continuous. The final result holds with the continuity of the sum of continuous
functions.

(v) Continuity in P. Since
(
C([0, 1]), ||.||∞

)
is a Polish space, the set of all prob-

ability measures defined on it equipped with the Lévy-Prohorov metric dLP is still
Polish. Denoting by L−→ the convergence in law, by the Portmanteau theorem (see
e.g. Theorem 11.3.3 in Dudley (2002)), it follows that dLP (Qn,Q)→ 0 is equivalent to
Qn

L−→ Q for Q and Qn respectively a measure and a sequence of measures on C([0, 1]).
It implies, as n goes to ∞: ∫

f dQn −→
∫

f dQ,

for any f bounded continuous real function on
(
C([0, 1]), ||.||∞

)
. Let j ∈ N∗ and define

the following function:

Φx : (C([0, 1]))⊗j −→ [0, 1]

(x1, ...,xj) 7−→
λ2(conv(graph({x1, ...,xj})))
λ2(conv(graph({x1, ...,xj ,x})))

.

If C([0, 1])⊗j is equipped with the infinity norm |||.|||∞,j defined by:

|||f |||∞,j = max(||f1||∞, . . . , ||fj ||∞),

following the same arguments from the proof of the assertion (iv), Φx is bounded and
continuous. Now, let J ≤ n be fixed and Qn be a sequence of measures on C([0, 1]) such
that dLP (Qn,Q)→ 0. we have:

lim
n→∞

J∑
j=1

FDj
ACH(x,Qn) =

J∑
j=1

lim
n→∞

∫
C([0,1])⊗j

ΦxdQ⊗jn

=

J∑
j=1

∫
C([0,1])⊗j

ΦxdQ⊗j

=
J∑
j=1

FDj
ACH(x,Q).
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Then the results holds for
∑J

j=1 FD
j
ACH (and trivially for FDJ

ACH).

(vi) Maximality at the center. We restrict ourselves for simplicity to J = 2. Let
X ∼ P be a distribution such that P(X ≡ y1) = P(X ≡ y2) = 1

2 with

y1 = (−2t+ 1) I{[0, 0.25]}+ (2t) I{[0.25, 0.5]}+ (−2t+ 2) I{[0.5, 0.75]}+ (2t− 1) I{[0.75, 1]} ,
y2 = −y1.

The distribution is clearly centrally and halfspace symmetric around θ ≡ 0 but we have

FDJ
ACH(θ,P) < FDJ

ACH(y1,P) = FDJ
ACH(y2,P) .

Since

FDJ
ACH(0,P) =

1

2
×

(
1

2
× 3

8
+

1

2
× 3

8

)j=1

+
1

2
×

(
1

2
+

1

4
× 3

8
+

1

4
× 3

8

)j=2

=
17

32
≈ 0.53

and

FDJ
ACH(y1,P) =

1

2
×

(
1

2
×+

1

2
× 3

16

)j=1

+
1

2
×

(
1

2
+

1

4
+

1

4
× 3

16

)j=2

=
70

128
≈ 0.546
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Figure 6.9 – Plot of the functions used in the counter example of the maximality at the
center property. y1 (blue curve) and y2 (cyan curve) correspond to the distribution and
θ ≡ 0 corresponds to the red curve.

(vii) Decreasing w.r.t. the deepest point. We restrict ourselves for simplicity to
J = 2. Let X be a r.v. following P such that

P(X ≡ 0) = P(X ≡ 1) = P(X ≡ −1) =
1

3
.
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It is clear from this distribution that z := 0 ∈ sup
x∈C([0,1])

FDJ
ACH(x,P) with FDJ

ACH(0,P) =

1
4 . We define y ≡ 1.5 and x(t) = 4t I{t ∈ [0, 0.5]}+ (−4t+ 4) I{t ∈ [0.5, 1]}. We have
||x− z||∞ = 2, ||x− y||∞ = 0.5 and ||y− z||∞ = 1.5. Computing the depth of x and y
we have:

FDJ
ACH(y,P) =

1

2
× 2

9
×

(
4

5
+

2

5
+

2

3

)
=

23

135

and

FDJ
ACH(x,P) =

1

2
× 2

9
×

(
4

5
+

1

2
+

8

9

)
=

197

810
.

The result follows. It is worth mentioning that the result remains true if conv is replaced
by the band function.
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Figure 6.10 – Plots of the functions used in the counter example of the decreasing prop-
erty. The three red lines come from the distribution, the thicker red curve corresponds
to the maximal depth. The cyan curve corresponds to x and the blue curve to y.
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The increasing automation in many areas of the industry expressly demands to design
efficient Machine-Learning solutions for the detection of abnormal events. With the
ubiquitous deployment of sensors monitoring nearly continuously the health of complex
infrastructures, anomaly detection can now rely on measurements sampled at a very
high frequency, providing a very rich representation of the phenomenon under surveil-
lance. In order to exploit fully the information thus collected, the observations cannot
be treated as multivariate data anymore and a functional analysis approach is required.
It is the purpose of this chapter to investigate the performance of recent techniques for
anomaly detection in the functional setup on real data sets. While taxonomies of abnor-
malities (e.g. shape, location) in the functional setting are documented in the literature,
assigning a specific type to the identified anomalies appears to be a challenging task.
Thus, strengths and weaknesses of the existing approaches are benchmarked in view
of these highlighted types in a simulation study. Anomaly detection methods are next
evaluated on two data sets, related to the monitoring of helicopters in flight and to the
spectrometry of construction materials namely. The benchmark analysis is concluded
by a recommendation guidance for practitioners.

The chapter is organized as follows. In Section 7.1, we introduce data sets and bench-
marked methods. In Section 7.2, the performance metrics used for measuring the accur-
acy of anomaly detection rules learned in an unsupervised manner on (labeled) test data
are described and the experiments on synthetic data are displayed. The experiments on
real data and the results obtained are presented at length in Section 7.3. Finally, some
concluding remarks are collected in Section 7.4. This chapter covers the contribution
of:
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a Benchmark Study. arXiv preprint arXiv:2201.05115, 2022.

7.1 Introduction

It is the goal of this chapter to investigate the performance of recent techniques for func-
tional anomaly detection and compare their accuracy with that of simpler approaches,
based on a preliminary dimensionality reduction, standing as natural competitors. In
particular, specific attention is paid to those that are based on functional depth stat-
istics or that extend multivariate methods by avoiding the filtering step. A benchmark
study comparing the merits of the methods considered here regarding various metrics
of reference is thus presented on aeronautics data gathered by Airbus and spectrometry
measurements of sedimentary material collected by the Geological Survey of Austria
for quality assessment on mining sites of Austria. Specifically, the aeronautics data set
consists of one-minute-sequences of accelerometer data measured at a 1024Hz frequency.
Airbus data set is divided into two parts: the training set composed of 1677 curves with
no available labels that may contains “abnormal” observations and the validation/test
set composed of 2511 time-series with 1794 “normal” curves. In contrast, the test data
are labeled, in order to evaluate the performance of the anomaly detection rules learned
in the training stage. These measurements were made on test helicopters at various loc-
ations, in various angles, on different flights. Data sets are displayed in Figure 7.1. The
learning framework is unsupervised: in the experiment, all accelerometer data series at
disposal for training automatically a classifier to detect abnormal changes are considered
as normal. The spectrometry of rocks data consists of one data set of 2096 curves with
600 measurements. It represents materials of two types whose labels are available, with
limestone being the desirable (normal) rock type and the intrusive (abnormal) cellu-
lar dolomite. The task is thus, given the reflectance spectrum (with noise subtracted
and normalized with respect to the reference spectrum) of multiple samples of mined
examples, separate those abnormal.

Aeronautics data Rocks data

Figure 7.1 – The aeronautics and the rock data sets.

Functional anomaly detection benchmarked methods, all along this chapter, are the
following: (i) Functional Isolation Forest (FIF; see Chapter 5), (ii) ACH depth (see
Chapter 6), (iii) functional Adjusted Outlyingness (fAO; Hubert et al., 2015), (iv)
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functional Stahel-Donoho Outlyingness (fSDO; Hubert et al., 2015, (v) functional bag-
distance (fbd; Hubert et al., 2015, (v) functional Tukey depth (fT; Claeskens et al.,
2014), (vi) Outliergram (Arribas-Gil and Romo, 2014), (vii) Magnitude-Shape (MS;
Dai and Genton, 2019a) plot combined with Isolation Forest, (viii) Functional Outlier
Map (FOM; Rousseeuw et al., 2018) combined with Isolation Forest, (ix) Isolation Forest
(IF; Liu et al., 2008) combined with Functional Principal Component Analysis (FPCA)
(see e.g. Ramsay and Silverman, 2002), (x) Local Outlier Factor (LOF; Breunig et al.,
2000) combined with FPCA, (xi) One-Class Support Vector Machine (OC; Schölkopf
et al., 2001) combined with FPCA.

7.2 A Preparatory Simulation Study

This section is devoted to empirical analysis of the performance of the functional anom-
aly detection techniques. Their accuracy is investigated from simulated data inspired
from the real data set collected by Airbus, composed of one-minute sequences of acceler-
ometer data measured on helicopters. As a first go, we recall the standard performance
metrics commonly used to quantify it.

7.2.1 Performance Metrics in Anomaly Detection

Although the learning procedure does not rely on data of the same nature, the anomaly
detection problem can be formulated in the same probabilistic framework as binary
classification, the flagship problem in statistical learning. In the standard setup, the
binary random variable Z indicates the occurrence of an anomaly: the label is positive,
i.e. Z = +1, when an anomaly occurs, and negative, i.e. Z = −1, otherwise. The
random variable X, taking its values in the feature space F, models the measurement
at disposal to predict Z. The goal pursued is to build an anomaly scoring function
s : F → R ∪ {+∞} in an unsupervised manner (without observing Z), so that, ideally,
the larger s(X), the likelier an anomaly occurs, i.e. the more probable is Z = +1. A
decision to raise an alarm can be then built by thresholding the scoring function s(x) at
a critical level, ruling the trade-off between errors of type I and type II. Equipped with
this notation, decreasing transforms of a depth function w.r.t. X’s marginal distribution
provide anomaly scoring functions in a natural fashion. Precisely, when using data
depths in the following study, the transformation 1 − FD(·, ·) is performed to rescale
them as an anomaly score.

ROC analysis. The golden standard to quantify theoretically the accuracy of an an-
omaly scoring function s is the PP-plot of the false positive rate vs the true positive
rate, namely t ∈ R 7→ (P{s(X) ≥ t | Z = −1}, P{s(X) ≥ t | Z = +1}), referred to
as the ROC curve (standing for Receiver Operator Characteristic curve), see e.g. Faw-
cett (2006). The higher the curve, the more accurate the anomaly scoring function. A
simple Neyman-Pearson argument shows that optimal scoring functions are increasing
transforms of the likelihood ratio Ψ(X) := (dF+/dF−)(X), denoting by Fσ the con-
ditional distribution of X given Z = σ1, σ ∈ {−, +}: their ROC curve dominating
everywhere the ROC curve of any other anomaly scoring function. For this reason,
this functional performance measure is generally summarized by the Area Under the
ROC curve (AUC in abbreviated form), a popular scalar criterion that can be classic-
ally interpreted as the rate of concordance of pairs: AUC(s) = P{s(X) > s(X′) | Z =
+1, Z ′ = −1} + P{s(X) = s(X′) | Z = +1, Z ′ = −1}/2, where (X′, Z ′) denotes an
independent copy of the pair (X, Z).
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PR analysis. Alternatively, one may evalute the accuracy of any score by plotting the
precision-recall (shortly PR) curve, namely t 7→ (P{s(X) ≥ t | Z = +1}, P{Z = +1 |
s(X) ≥ t}). The higher its PR curve, the more accurate an anomaly scoring function.
Of course, as may be immediately shown by means of the Bayes formula, PR and ROC
curves are in one to one correspondence, see e.g. Clémençon and Vayatis (2009). Like
the ROC curve, the PR curve may be summarized by the area under it, referred to as
the Average Precision (AP).

When labeled data are available, it is possible to compute the performance measures
recalled above, replacing the probabilities involved by their statistical counterparts, in
order to assess the accuracy of any anomaly scoring function candidate s(x). However,
in unsupervised anomaly detection, the scoring function s(x) cannot be learned using
labeled training data, in contrast to classification or bipartite ranking: only “negative”
observations, i.e. an i.i.d. sample drawn from (a possibly noisy version of) distribution
F−, are available in the training stage. Hence, the learning task cannot be achieved by
optimizing empirical versions of the aforementioned criteria, which makes it extremely
challenging.

7.2.2 Simulating Anomalies of Specific Types

Data sets containing various types of anomalies are usually more challenging to analyze.
As a first go, we start by investigating to which extent the techniques recalled above
may permit to detect simulated anomalies of well-identified types according to the usual
taxonomy, see e.g. Hubert et al. (2015). Figure 7.2 illustrates the four types of anomalies
addressed in detail in these experiments: isolated, magnitude (of two different kinds)
and shape anomalies.

To reproduce a controlled version of each type of anomalies, four data sets have been
built from a collection of 1794 “normal” functional observations from the validation
data set collected by Airbus. Each functional observation corresponds to accelerometer
data measured on helicopters at a 1024 Hz frequency over time windows of 1 minute:
the curves X = (X(t))t∈[0,1] are built by means of an affine interpolation of the 61440
sampled points. One per anomaly type, four data sets have been constructed by adding
a specific contamination to 5% of these “normal” observations, drawn uniformly at ran-
dom. Cases when 1%, 2% 3% and 4% are added in the Section B.1 of Appendices for
completeness and show similar behavior of methods than for 5%. The four contamina-
tion models defined below, are used to generate independent curves Y (independently
from the original data set) that are next added to the selected above 1794 “normal”
observations X. By U([a, b]) is meant the uniform distribution on the interval [a, b],
while δu denotes the Dirac mass at point u.

Model 1 (Isolated Anomalies)
Y(t) = γu1I{t = τ}, where u1 ∼ U([3, 4]) and γ ∼ (1/2)(δ−1 + δ1) are independent
random variables, with τ being the time at which the isolated anomaly occurs that is
chosen randomly in a uniform manner among the set of sampling points, independently
of u1 and γ.

Model 2 (Magnitude Anomalies I)

Y(t) ≡ u2, with u2 ∼ U([−12,−15]).

Model 3 (Magnitude Anomalies II)
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Y(t) = u3I(t ∈ I), where u3 ∼ U([0, 15]) and I is a subinterval of [0, 1] of length 1/10
which location is chosen uniformly at random, independently of u3.

Model 4 (Shape Anomalies)

Y(t) = sin(2πu4t), where u4 ∼ U([0.2, 2]).

Simulated anomalies, together with a small subset of “normal” data, are illustrated in
Figure 7.3.

Isolated Magnitude I

Magnitude II Shape

Figure 7.2 – Examples for each of the identified types of anomalies in the aeronautics
data set. In order from top to bottom and from left to right: each time one isolated,
magnitude, magnitude/shape and shape anomaly, with a subsample of normal data.
Grey curves are normal data while red curves are anomalies.

7.2.3 Naive Approaches - Sampled Curves Viewed as Multivariate
Data

Being the most straightforward idea, and still frequently employed in functional anomaly
detection, direct consideration of (discretized) functional data in the multivariate space
(i.e. Rp) of their measurements can be seen as a first naïve approach. It is important to
notice that the sampling design should not vary with the curve/signal and preferably
correspond to regularly spaced points in the observation domain, so that no dimensions
are disadvantaged. If not, one can resort to importance-weighting techniques though,
e.g. giving more weights to coordinates with higher marginal variance as it is suggested,
e.g. in Claeskens et al. (2014). When implementing such a naïve strategy to deal
with functional observations, specific attention must be paid to the possibly very large
dimension of the data (compared to the size of the population sample), due to the high
frequency character of the measurements, as it is the case for the aeronautics data set
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considered in this chapter where 61440 = p� n = 1677. We have applied three of the
most widely used methods for multivariate anomaly detection, namely Isolation Forest
(IF), Local Outlier Factor (LOF), and One-Class Support Vector Machine (OC) to the
four settings described in Section 7.2.2. Their True Positive Rate (TPR) and Area
Under Receiver Operating Characteristic (AUC) are reported in Table 7.1.

Anomaly type IF LOF OC

Isolated
TPR 0 0 0
AUC 0.41 0.25 0.44

Magnitude I
TPR 1 0.48 1
AUC 1 0.97 1

Magnitude II
TPR 0 0 0
AUC 0.54 0.03 0.7

Shape
TPR 0 0.48 0
AUC 0.67 0.97 0.67

Table 7.1 – Methods considered in performance comparison with the TPR and the Area
Under the Receiver Operating Characteristic (AUC) for the four simulated models.

7.2.4 Results and Discussion

We now consider the set of methods which are in the center of attention of the current
work. These treat the data directly in their original functional space, and—as we shall
see right below—prove beneficial for anomaly detection.

The performance of these unsupervised methods is evaluated on the four simulated data
sets described in Section 7.2.2 using the sensitivity (portion of correctly identified an-
omalies, TPR) and AUC as metrics. All parameters of the used algorithms are set to
their default values (as it is pre-defined in the corresponding software packages). Thus,
fSDO, fAO, fbd, FOM are available in the mrfDepth R-package (Segaert et al., 2020);
the outliergram is available in the roahd R-package (Tarabelloni et al., 2018); IF, LOF
and OC are available in sklearn python library (Pedregosa et al., 2011); Magnitude-
Shape plot (MS) is available in the scikit-fda python library1; Functional Isolation
Forest (FIF) and ACH open-source python codes are available under the following link
2; fT can be easily coded from scratch.

Results of the simulation study are displayed in Table 7.2. For completeness, the ROC
curves of the four best methods for each contamination setting are displayed in Fig-
ure 7.4. As expected, the score drastically varies across contamination models and
anomaly detection methods. Isolated anomalies (especially short ones) of the Contam-
ination Model 1 are difficult to detect with projections on most bases as well as by
integrating depths, whilst ACH is sensitive to this kind of anomalies. Magnitude (es-
pecially type I) anomalies are known to be easier to detect and a number of methods
(fAO, fbd, fSDO, fT and outliergram) perform well by managing to detect all of them.
The difficulty that differentiates Magnitude II anomalies (from those in Magnitude I) is
that the anomalies are expressed only for a subset of time points. This impedes many
methods from detecting this kind of anomalies, while ACH seems to perform best among
differing results, most probably due to slight resemblance of Magnitude II anomalies
with the isolated ones. Shape anomalies is the least identifiable type, and FIF delivers

1https://github.com/GAA-UAM/scikit-fda
2https://github.com/GuillaumeStaermanML

https://github.com/GAA-UAM/scikit-fda
https://github.com/GuillaumeStaermanML
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better performance than other methods while taking into account both location and
slope of the functional curves (due to the employed Sobolev-type scalar product).

Isolated Magnitude I

Magnitude II Shape

Figure 7.3 – Examples for each of four types of simulated anomalies. In order from top
to bottom and from left to right: each time one isolated, magnitude, magnitude/shape
and shape anomaly, with a subsample of normal curves (out of 1794). Grey curves are
normal data while red curves are simulated anomalies.

7.3 Benchmarking Methods for Functional Anomaly
Detection using Real Data

This section is devoted to the empirical analysis of the performance of the functional
anomaly detection techniques. Their accuracy, previously investigated based on artifi-
cially contaminated data, shall be now benchmarked using real labeled data sets. We
analyze the complete Airbus data set (i.e. including normal and abnormal accelerometer
data) as well as data arising from the spectrophotometry of rocks with wavelengths of
light source ranging from 382 to 930 nanometers corresponding to visible-IR spectrum.

The complete Airbus data set is split into an unlabeled training data set (1677 sampled
curves observed at 61440 equally spaced time points) used for the learning purposes and
a labeled test data set (2511 observations among which 717 are labeled as abnormal)
to evaluate performance using the metrics described in Section 7.2.1. The second data
set contains linearly interpolated spectroscopy measurements of construction materials
(mined rocks) from different locations and mining sites. Precisely, it includes 2038
limestones and 58 cell limes of 600 wavelength measures. Since the measured spectra
are very noisy, and with the task of the current work being rather comparative (than
absolute) performance of the methods, we modified the original data set by removing
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Isolated Magnitude I Magnitude II Shape

Methods TPR AUC TPR AUC TPR AUC TPR AUC

FIF 0 0.21 0.93 0.99 0 0.30 0.63 0.98

fAO 0 0.44 1 1 0 0.54 0 0.66

fbd 0 0.44 1 1 0 0.54 0 0.68

fSDO 0 0.42 1 1 0 0.43 0 0.77

fT 0 0.43 1 1 0 0.44 0 0.71

ACH 0 0.63 0.48 0.97 0.80 0.99 0 0.56

Outliergram 0 0.55 1 1 0 0.54 0 0.47

MS + IF 0 0.05 0.66 0.98 0 0.70 0.33 0.74

FOM (fSDO)
+ IF

0 0 0.85 0.99 0.64 0.99 0.06 0.80

FOM (fAO) +
IF

0 0.14 0.81 0.99 0.55 0.98 0.02 0.87

FPCA + IF 0 0.11 0 0.91 0 0.71 0.45 0.97

FPCA + LOF 0 0.5 0 0.16 0 0.38 0 0.79

FPCA + OC 0 0.04 0 0.93 0 0.77 0.3 0.96

Table 7.2 – Methods considered in performance comparison with the TPR and the Area
Under the Receiver Operating Characteristic (AUC) for the four simulated models with
5% of added anomalies.

Airbus data Rocks data
Method F1-Score AP AUC TPR F1-Score AP AUC TPR
FIF 0.81 0.88 0.76 0.52 0.974 0.992 0.772 0.10
fAO 0.78 0.77 0.63 0.45 0.989 0.991 0.833 0.58
fbd 0.78 0.77 0.63 0.45 0.977 0.988 0.751 0.19
fSDO 0.78 0.77 0.63 0.45 0.972 0.980 0.555 0
fT 0.78 0.77 0.63 0.45 0.984 0.989 0.780 0.43

ACH 0.77 0.77 0.62 0.44 0.972 0.961 0.280 0
Outliergram 0.71 0.76 0.55 0.28 0.974 0.981 0.66 0.03
MS + IF 0.80 0.76 0.64 0.51 0.972 0.981 0.601 0

FOM (fSDO) + IF 0.81 0.76 0.66 0.53 0.972 0.978 0.530 0.02
FOM (fAO) + IF 0.80 0.77 0.65 0.51 0.984 0.991 0.804 0.448

FPCA + IF 0.81 0.80 0.70 0.53 0.972 0.971 0.446 0
FPCA + LOF 0.72 0.73 0.52 0.31 0.972 0.969 0.445 0.02
FPCA + OC 0.81 0.79 0.70 0.54 0.972 0.971 0.463 0

Table 7.3 – Methods considered in performance comparison with F1-Score, Average
Precision (AP), AUC and TPR for Airbus and Rocks data. Bold numbers correspond
to the best result.

most difficult to detect anomalies in a supervised manner (which only underlines the
difficulty of the real-data anomaly detection task). More precisely, we removed 860
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Figure 7.4 – ROC curves of the four best methods for the simulation study.

normal data that have (on an average) same values as the average value of anomalies
and that can not be distinguished by any of the algorithms. Such removal shall not
prioritize any of the methods. We further perform a linear interpolation in order to
obtain data with equidistant measurement points.

7.3.1 Visualization

While a simple plot of the rocks data provides relevant information on the data shape
(see Section 7.1), the richness of the aeronautics curves makes it impossible. To get a
first insight into the structure of the aeronautics data set under study, we start with
meaningful visualization. Recently, many graphical tools have been proposed in the
literature, such as general-purpose functional highest density region plots (Hyndman
and Shang, 2010), functional boxplots (Sun and Genton, 2011) or amplitude and phase
boxplot displays (Xie et al., 2017), as well as those especially designed for anomaly
detection such as the Outliergram (Arribas-Gil and Romo, 2014), the Functional Outlier
Map (FOM; Hubert et al., 2015; Rousseeuw et al., 2018) or the Magnitude-Shape plot
(MS; Dai and Genton, 2019a). This last group, together with the generic Functional
Principal Component Analysis (FPCA) constitute our interest.
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FPCA MS-plot

FOM-fAO FOM-fSDO

Figure 7.5 – Four visualization plots from Airbus data. In order from top to bottom
and from left to right: FPCA, Magnitude-Shape plot with Integrated Tukey depth,
Functional Outlier map with fAO and Functional Outlier map with fSDO. Black points
corresponds to normal curves, red points to anomalies.

The Magnitude-Shape plot is two-dimensional outlyingness (or data depth)-based graph-
ical tool, based on the outlyingness mean and variance—over the time domain—of
the functional observation. For a sample of curves Sn = {X1, . . . ,Xn} observed on
{t1, . . . , tp}, the MS plot is then the scatter plot of the points (MOi,VOi)1≤i≤n with
the Mean Outlyingness (MO)

MOi =
1

p

p∑
j=1

O(Xi(tj) | Sn(tj)),

and the Variational Outlyingness (VO)

VOi =
1

p

p∑
j=1

(
O(X(tj) | Sn(tj))−MOi

)2
,
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where the outyingness itself is usually a monotone decreasing transform of data depth:

O(Xi(tj),Sn(tj)) =
1

D(Xi(tj) | Sn(tj))− 1
.

The Functional Outlier Map (FOM) is similar to the MS plot in the case of univari-
ate functional data, with the only difference in measuring relative instead of absolute
variability adapting thus to the actual variability of the function, see Rousseeuw et al.
(2018). It is defined as a plot of points

(
MOi,

√
VOi

1 + MOi

)
1≤i≤n

.

For explainability purposes, vizualisation tools are computed on the test set where la-
bels are available. Visualization plots, displayed in Figure 7.5, allow to identify certain
anomalies (red points correspond to labeled anomalies), while others substantially over-
lap with the normal data (black points). They reveal the difficulty of marking the
entity of abnormal observations for the auronautics data, and explain variations in the
performance of different methods used in Section 7.3.2.

7.3.2 Benchmark Study on Aeronautics and Rocks Data

In Section 7.2.2 only four types of anomalies were identified and studied in more detail,
while many others remain that are not easy to associate with any existing taxonomy,
which is often the challenge of real-world data. While many methods are designed
for aiming at certain types of anomalies, clearly no universality in detecting abnormal
observations of different types can be generally expected.

To account for multiplicity of possible goals, we use several performance metrics: F1-
Score, Average Precision (AP), AUC, and TPR; see Section 7.2.1 for more details.

Table 7.3 displays the results. Methods perform differently and there is no general
winner. First observation is the evidence of complexity of the real-world aeronautics
data set, which leads to non-perfect results across all the considered methods. This
is also due to the fact that test data contains types of anomalies not present in the
train data. Second, one should note that FIF appears to have very good performance,
being best method in this benchmark in general. Even if its AUC of 76% is not high,
it can be still seen as satisfactory provided existence of 29% of anomalies in the test
data. Third, the depth-based methods indicate very stable results (mostly relatively
satisfactory, except TPR), which comes from the fact that ordering of observations may
be very similar for univarite functional curves due to (almost) coincidence of orderings
for different univariate depths. While the rocks data set was artificially simplified, the
comparison remains similar and thus strengthens the conclusions.

Additionally, we display the ROC curves of the four best methods for both data sets (see
Figure 7.6). The true positive rate is maximized by the FIF algorithm when the false
positives are very close to zero which is crucial in many applications such as predictive
maintenance in the case of airbus. This additional analysis makes FIF preferable to
fAO in practice.
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Figure 7.6 – ROC curves of the four best methods for the aeronautics (top) and rocks
(bottom) data.

7.4 Conclusion and Perspectives

Due to its unsupervised nature, the anomaly detection problem is extremely challen-
ging. Because the learning algorithms used to build a decision rule in this context rely
on “normal” data solely, they mostly consist in identifying regions of the feature space
where normal observations are less likely to fall in and cannot be based on empirical
estimates of the performance metrics that shall be used afterwards to evaluate them
when labels become available. This is even much more challenging in the case of ob-
servations valued in a vast functional space. In absence of prior knowledge about the
types of the functional anomalies to be detected in the future, it is key to implement
very flexible algorithms, exploiting the statistical information at disposal as far as pos-
sible. In this chapter, we investigated the performance of recent anomaly detection
techniques tailored to the functional framework such as Functional Isolation Forest and
ACH depth, by means of real data sets, composed of sequences of accelerometer data
measured on helicopters and spectrometry of construction materials. As confirmed by
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additional simulation studies, the benchmark revealed a clear advantage of these tech-
niques compared to more traditional methods, relying on a preprocessing of the data
(e.g. FPCA). These very encouraging results call for further applications and extensions,
to anomaly detection based on multivariate time-series in particular, the behavior of
complex infrastructure being often continuously monitored by several sensors and not
just one.
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Originated from Optimal Transport, the Wasserstein distance has gained importance in
Machine Learning due to its appealing geometrical properties and the increasing avail-
ability of efficient approximations. It owes its recent ubiquity in generative modeling
and variational inference to its ability to cope with distributions having non overlapping
support. In this chapter, we consider the problem of estimating the Wasserstein dis-
tance between two probability distributions when observations are polluted by outliers.
To that end, we investigate how to leverage a Median of Means (MoM) approach to
provide robust estimates. Median of Means has been recognized as a versatile tool for
robust mean estimation: it substitutes the median of means computed on a partition
of the sample to the empirical mean. Exploiting the dual Kantorovitch formulation of
the Wasserstein distance, we introduce and discuss novel MoM-based robust estimators
whose consistency is studied under a data contamination model and for which conver-
gence rates are provided. In order to assess robustness, we place ourselves in the realistic
O ∪ I framework devoted to data contamination (see e.g. Huber and Ronchetti, 2009
and Lecué and Lerasle, 2020). Beyond computational issues, the choice of the partition
size, i.e. the unique parameter of theses robust estimators, is investigated in numerical
experiments. Furthermore, these MoM estimators make Wasserstein Generative Ad-
versarial Network (WGAN) robust to outliers, as witnessed by an empirical study on
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two benchmarks CIFAR10 and Fashion MNIST.

As a first go, we provide in Section 8.1 a unified and insightful study of the concentration
properties of (univariate) MoM-based estimators under a contaminated framework. In
Section 8.2 we introduce three new robust estimators of the Wasserstein distance based
on median-of-means and median-of-U -statistics and investigate their theoretical prop-
erties based upon results of Section 8.1. In Section 8.3, we propose three algorithms
in order to compute the previously introduced estimators and robustify the popular
Wasserstein GANs. Some concludings remarks are collected in Section 8.4. Eventually,
technical proofs are provided in Section 8.5. This chapter gathers contributions of:

I G. Staerman, P. Laforgue, P. Mozharovskyi, F. d’Alché-Buc. When OT meets
MoM: Robust estimation of Wasserstein distance. In Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS), pages
136-144, 2021.

I P. Laforgue,G. Staerman, S. Clémençon. Generalization Bounds in the Presence
of Outliers: a Median-of-Means Study. In Proceedings of the 38th International
Conference on Machine Learning (ICML), pages 5937-5947, 2021.

8.1 Median-of-Means

The Median-of-Means (MoM) is a robust mean estimator firstly introduced in com-
plexity theory during the 80’s (Nemirovsky and Yudin, 1983; Jerrum et al., 1986; Alon
et al., 1999). Following the seminal deviation study by Catoni (2012), MoM has lately
witnessed a surge of interest, mainly due to its attractive sub-Gaussian behavior, under
the sole assumption that the underlying distribution has finite variance (Devroye et al.,
2016). Originally devoted to scalar random variables, MoM has notably been exten-
ded to random vectors (Minsker, 2015; Hsu and Sabato, 2016; Lugosi and Mendelson,
2019a) and U -statistics (Joly and Lugosi, 2016; Laforgue et al., 2019). As a natural
alternative to the empirical mean, MoM has become the cornerstone of several robust
learning procedures in heavy-tailed situations, including bandits (Bubeck et al., 2013)
and MoM-tournaments (Lugosi and Mendelson, 2019b). A more recent line of work now
focuses on MoM’s ability to deal with outliers. Aside from concentration results in a con-
taminated context (Depersin and Lecué, 2019), it has yielded promising applications in
robust mean embedding (Lerasle et al., 2019), and the more general MoM-minimization
framework (Lecué et al., 2020).

8.1.1 Definition

Let X be a r.v. following a probability distribution P ∈ P(X ) where X ⊂ Rd. Given a
sample X1, . . . , Xn i.i.d. as X, the Median-of-Means (MoM) is an estimator of EP [X]
built as follows. First, choose KX ≤ n, and partition {1, . . . , n} into KX disjoint blocks
BX1 , . . . ,BXKX of size BX = n/KX . If n cannot be divided by KX , some observations
may be removed. Then, empirical means are computed on each of the KX blocks. The
estimator returned is finally the median of the empirical means thus computed. For a
function Ψ: X → R, the MoM estimator of EP [Ψ(X)] is then formally given by:

MoMX [Ψ] = med
1≤k≤KX

{
1

BX

∑
i∈BXk

Ψ(Xi)

}
.
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This estimator provides an attractive alternative to ΨX = (1/n)
∑n

i=1 Ψ(Xi) for robust
learning. Indeed, it has been shown to (i) exhibit a sub-Gaussian behavior under only a
finite variance assumption, making it particularly suited to heavy-tailed distributions,
and (ii) be non-sensitive to outliers (see Section 1.3.2 and references therein). When
the function Ψ is the identity function, the MoM estimator is denoted by MoMX .

MoM also nicely adapts to multisample U -statistics of arbitrary degrees (Lee, 1990).
Medians-of-U -statistics (MoU) naturally extend the MoM approach by considering the
median of U -statistics built on disjoint blocks (see Joly and Lugosi (2016) for the case of
degenerate U -statistics, or Laforgue et al. (2019) for a general study on randomized, pos-
sibly overlapping, blocks). Assume that one is interested in estimating EP⊗Q[h(X,Y )],
for some kernel h : X × Y → R and some r.v. Y drawn from Q ∈ P(Y) with Y ⊂ Rd.
Given two samplesX1, . . . , Xn and Y1, . . . , Ym i.i.d. from P and Q respectively, a natural
idea then consists in partitioning both {1, . . . , n} and {1, . . . ,m} into BX1 , . . . ,BXKX and
BY1 , . . . ,BYKY respectively, with KY ≤ m, and BY = m/KY . One may then compute U -
statistics on each pair of blocks (k, l) for k ≤ KX and l ≤ KY , and return the median of
the KX ×KY U -statistics. However, this construction introduces dependence between
the base estimators, making the theoretical study more difficult. An alternative then
consists in choosing KX = KY = K, and considering only the diagonal blocks (see
Figure 8.1c). These two estimators are referred to as (diagonal) Median-of-U -statistics
(MoU), and using BXYk,l to denote the block of tuples (Xi, Yj) such that Xi ∈ BXk and
Yj ∈ BYl , they are formally given by:

MoUXY [h] = med
1≤k≤KX
1≤l≤KY

{
1

BXBY

∑
(i,j)∈BXYk,l

h(Xi, Yj)

}
,

MoUdiag
XY [h] = med

1≤k≤K

{
1

BXBY

∑
(i,j)∈BXYk,k

h(Xi, Yj)

}
.

8.1.2 Concentration Bounds for MoM and MoU

The recent resurgence of interest for MoM in the statistical literature dates back to
the seminal deviation studies by Audibert and Catoni (2011) and Catoni (2012), that
propose to assess an estimator through its deviation probabilities, rather than by com-
puting its quadratic risk. Extensively studied since then, MoM now benefits from a
large corpus of concentration results. For instance, a proof of its behavior under finite
variance assumption can be found in Devroye et al. (2016).

Proposition 8.1. (Devroye et al., 2016) Suppose that an i.i.d. sample X1, . . . , Xn is
drawn from P ∈ P(R) having finite variance σ2. Then, for any δ ∈ [e1−n/2, 1[, choosing
KX = dlog(1/δ)e, it holds with probability at least 1− δ:

∣∣∣MoMX − EP [X]
∣∣∣ ≤ 2

√
2e σ

√
1 + log(1/δ)

n
.

These concentration results have further been extended to random vectors, through
different generalizations of the median in a multidimensional setting (Minsker, 2015;
Hsu and Sabato, 2016; Lugosi and Mendelson, 2019a), and to U -statistics (Joly and
Lugosi (2016) for the degenerate case, Laforgue et al. (2019) with randomized blocks)
among other extensions. Such interesting properties in the presence of heavy-tailed
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data has given birth to numerous applications in statistical learning. This includes an
adaptation of the Upper Confidence Bound (UCB) bandit algorithm in Bubeck et al.
(2013), of Empirical Risk Minimization (ERM) in Brownlees et al. (2015), or the more
general framework of MoM-tournaments (Lugosi and Mendelson, 2019b) and Le Cam’s
approach (Lecué and Lerasle, 2019).

A recent line of work is now trying to change perspective, abandoning the heavy-tailed
framework (i.e. finite variance assumption) to focus on MoM’s behavior within con-
tamination models. In this setting, the i.i.d. assumption is relaxed, and the following
assumption is instead adopted.

Assumption 8.2. Let X1, . . . , Xn and Y1, . . . , Ym be two samples. The first sample is
polluted with nO < n/2 (possibly adversarial) outliers. The remaining n−nO points are
informative data, or inliers, independently distributed according to P ∈ P(X ), where
X ⊂ Rd. A similar assumption is made on the second sample, which is supposed to
contain mO < m/2 arbitrary outliers, and m−mO inliers drawn from Q ∈ P(Y), where
Y ⊂ Rd. In contrast, no assumption is made on the outliers. The proportions of outliers
in both samples are denoted by τX = nO/n and τY = mO/m respectively.

Assumption 8.2 is thus addressed through the general angle of MoM-minimization in
Lecué et al. (2020), while Lerasle et al. (2019) develop an application to Maximum Mean
Discrepancy and outlier-robust mean embedding. Depersin and Lecué (2019) propose
a sub-Gaussian MoM-inspired multidimensional estimator computable in almost linear
time, and Depersin (2020) studies a multivariate estimator based on one-dimensional
projections. However, all these works rely on ad-hoc assumptions that are quite difficult
to interpret. For instance, Lecué et al. (2020) use unusual outlier-adapted Rademacher
complexities, while the choice of KX is based on unknown constants in Depersin (2020),
or defined implicitly in Lerasle et al. (2019). In Depersin and Lecué (2019), the choice
of KX incidentally reduces the analysis to the case where τX ≤ 0.33%.

In contrast, this section proposes a unified study of the concentration properties of
(univariate) MoM-based estimators under the contamination regime of Assumption 8.2.
In particular, we show that MoM is able to handle up to 50% of outliers, at the price of
a degraded constant though. Indeed, our bounds allow to encapsulate the impact of the
proportion of outliers τX into constant terms only achieved through an explicit value for
the number of blocks KX . Assuming the inliers to be sub-Gaussian, we show that MoM
becomes efficient on a wide interval, allowing next to derive bounds in expectation (we
are not aware of similar results for MoM) under the following assumption stipulating
that the number of outliers nO grows sub-linearly with n.

Roughly, we want KX > 2nO to ensure that blocks without outliers are in majority.
However, if KX is too large MoM tends to the median, which is a bad estimator of
the mean in general. To correctly calibrate KX , we propose to choose τX 7→

√
2τX

as an upper bound of τX 7→ 2τX . This way, setting KX ≈
√

2τXn > 2τXn = 2nO
satisfies the outlier constraint, while refraining from choosing too large values. It is
worth mentioning that any function % : τX 7→ %(τX) that satisfies 2τX < %(τX) < 1 can
be chosen instead of

√
2τX leading to slightly different bounds.

We now derive the concentration of MoM under the contamination regime of Assump-
tion 8.2 in the next proposition and can be found in Laforgue et al. (2021).
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Proposition 8.3. Let P ∈ P(X ) be ρ sub-Gaussian, suppose that the sample X1, . . . , Xn

satisfies Assumption 8.2, and define Γ: τ 7→
√

1 +
√

2τ/
√

1− 2τ . Thus, for all δ ∈
]0, e−4n

√
2τX ], with K = d

√
2τXne, it holds with probability at least 1− δ:∣∣∣MoMX − EP [X]

∣∣∣ ≤ 4ρ Γ(τX)

√
log(1/δ)

n
. (8.1)

The technical proof is given in Section 8.5.1. Its argument essentially consists in using
that the MoM estimator has a similar behavior to that of a majority of block means. The
condition K > 2nO is strengthened into K ≥

√
2τXn ensuring that a fraction (

√
2τX −

τX)/
√

2τX > 1/2 of “sane” blocks (i.e. including none of the nO outliers) actually
constitutes a majority of blocks. One may then focus on the sane blocks deviations
only, which is controlled by means of the concentration properties of a Binomial random
variable.

A δ-limited sub-Gaussian tail bound. We first point out that the main price to pay
for extending the sub-Gaussian tail behavior of MoM to the contaminated framework
of Assumption 8.2 is the limited range of acceptable confidence levels 1− δ. This type
of limitation is typical of MoM’s concentration results. The upper limit value comes
from the constraint 2nO < KX (or

√
2τXn ≤ KX), and is specific to the contaminated

framework. It should be noticed that this restriction vanishes (i.e. the upper limit value
is 1) when τX = 0.

About the constants. An interesting property of the bound derived in Proposition
8.3 is that it fully encapsulates the impact of the proportion of outliers τX into the
constant Γ(τX). Naturally, the latter increases with τX , and tends to infinity as τX
goes to 1/2.

Accuracy vs range of confidence levels. The choice of the mapping τX 7→
√

2τX
as upper-bound of the τX 7→ 2τX determines at the same time the range (0, e−4n

√
2τX ]

for which the equation (8.1) holds true with probability at least 1− δ, and the constant
Γ(τX). Therefore, there is a trade-off between the size of the range for the confidence
levels and the order of magnitude of the constant Γ(τX), both decreasing with τX .

Rate bound. MoM trades the ability of discarding outliers for the degradation of its
statistical guarantees to those of one single sane block, of order 1/

√
BX =

√
KX/n ≈√

nO/n, as KX is roughly of the order of nO. Hence, if nO grows linearly with n,
then BX stays bounded and guarantees do not improve with n. This also highlights
the importance of not choosing a too rough upper bound of 2nO. We finally highlight
that this rate is optimal. Indeed, our bounds are obtained after conditioning upon the
observations and, as can be seen by examining proofs, they cannot be refined, insofar
as they simply rely on exact computations of the binomial distribution.

Unknown τX . In practice, the proportion of outliers τX is generally unknown, pre-
venting from using it to calibrate KX . We emphasize that the above stated bounds
may still be used with an overestimation of τX , at the price of a deterioration of Γ(τX)
though.

Related work. Although they are quite similar in spirit, six critical points distinguish
Proposition 8.3 from Theorem 1 in Lerasle et al. (2019). (i) It is important to notice
first that Proposition 8.3 focuses on the deviations of scalar MoMs, while Theorem 1
in Lerasle et al. (2019) addresses that of particular kernel mean embeddings, defined as
MoM minimizers. (ii) This being said, our choice of KX can be computed explicitly
from the total proportion of outliers τX , and the targeted confidence δ. In contrast,
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the number of blocks in Lerasle et al. (2019) depends on the proportion of outliers
with respect to the number of blocks itself, resulting in a recursive definition, hard to
disambiguate. This inherent difficulty is typically overcome here by reparameterizing
using (

√
2τX − τX)/

√
2τX . (iii) As a consequence, our bound features the true and

fixed proportion of outliers τX within the sample, while Lerasle et al. (2019) use the
proportion w.r.t. the number of blocks, that may change with it. (iv) Additionally,
their range of admissible confidence levels 1−δ is defined implicitly, whereas we provide
an explicit interval, that depends only on τX and n. (v) Lerasle et al. (2019) require
2nO ≤ KX ≤ n/2, meaning they allow at most 25% of outliers, while we can handle up
to 50%. (vi) They only prescribe a rough estimate of KX , that might not be an integer.

The next proposition details the concentration guarantees of MoUdiag
XY [h] with a sym-

metric kernel h : X × Y → R, that corresponds to independent U -statistics, when the
samples X1, . . . , Xn and Y1, . . . , Ym are contaminated according to Assumption 8.2.

Proposition 8.4. Suppose that samples X1, . . . , Xn and Y1, . . . , Ym satisfy Assumption
8.2. Define Γ: τ 7→

√
1 +
√

2τ/
√

1− 2τ and assume that τX + τY < 1/2. In addition,
if n = m and if the essential supremum ‖h(X,Y )‖ess,∞ is finite and upper bounded by
M , then for all δ ∈]0, e−4n

√
2(τX+τY )], choosing KX = d

√
2(τX + τY ))ne, it holds with

probability at least 1− δ:

∣∣∣MoUdiag
XY [h]− E[h(X,Y )]

∣∣∣ ≤ 8M Γ(τX + τY )

√
log(1/δ)

n
.

The technical proof is detailed in 8.5.2. Notice that the constraint n = m can be relaxed,
as long as 2(nO+mO) ≤ min(n,m) still holds. However, the case n = m is the only one
documented in MoM’s literature to our knowledge (Lerasle et al., 2019), while it nicely
exhibits the critical point τX +τY = 1/2. When estimating Integral Probability Metrics
(Sriperumbudur et al., 2012), one typically relies on two-sample U -statistics, built upon
kernels of the form hΨ(X,Y ) = Ψ(X) − Ψ(Y ), for Ψ in the functional set considered.
Hence, one might use a MoM-MoM estimate, instead of a MoU or a MoUdiag estimate
(see the next section). The corresponding proportions of outliers admitted would be
τX < 1/2, and τY < 1/2, representing a less stringent constraint, as shown in Figure
8.1d. In the next section, we introduce MoM/MoU based estimators of the Wasserstein
distance described in Staerman et al. (2021a).

8.2 When Wasserstein meets MoM

In this section, we investigate how MoM/MoU estimators can be leveraged to define
and analyze new estimators of W(P,Q) that exhibit strong theoretical guarantees in
presence of outliers.

8.2.1 MoM and MoU-based Estimators

Starting from the expression of the dual of the Wasserstein distance given by:

W(P,Q) = sup
Ψ∈FLip

EP
[
Ψ(X)

]
− EQ

[
Ψ(Y )

]
,
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we observe that it can be considered with a two-fold perspective. The first one consists
in considering the Wasserstein distance as the supremum of the difference between
two expected values. The second one, obtained by linearity of the expectation, rather
regards W(P,Q) as the supremum of single expected values, but taken with respect to
the tuple (X,Y ), and associated to the kernel: hΨ : (X,Y ) 7→ Ψ(X)−Ψ(Y ).

Although quite elementary at first sight, this two-fold perspective gains complexity when
applied to the empirical distributions Pn = (1/n)

∑n
i=1 δXi and Qm = (1/m)

∑m
j=1 δYj .

Indeed, following the first perspective, the natural estimator obtained is the supremum
of the differences between two empirical averages, while the second one leads to the
supremum of 2-samples U -statistics of degrees (1, 1) and kernels hΨ. So far, both points
of view are strictly equivalent by linearity of the expectation and the empirical mean.
However, this equivalence breaks down as soon as non-linearities are introduced, through
MoM-like estimators for instance. We therefore introduce three distinct estimators of
W(P,Q), that differ upon which estimator of Section 8.1.1 is used.

Definition 8.5. We define the Median-of-Means and the Median-of-U -statistics estim-
ators of the 1-Wasserstein distance as follows:

WMoM(Pn, Qm) = sup
Ψ∈FLip

{MoMX [Ψ]−MoMY [Ψ]},

WMoU(Pn, Qm) = sup
Ψ∈FLip

{MoUXY [hΨ]},

WMoU−diag(Pn, Qm) = sup
Ψ∈FLip

{MoUdiag
XY [hΨ]}.

While WMoM relies on the difference between individual median blocks, WMoU con-
siders the median over all possible combinations of blocks between X and Y . As an
intermediate step, WMoU−diag looks after diagonal blocks only. The latter formulation
is used in Lerasle et al. (2019) to derive robust mean embedding and Maximum Mean
Discrepancy estimators. The theoretical analysis is made simpler by the independence
between the blocks, but the estimator suffers from an increased variance due to the
important loss of information, see Figure 8.1c and Joly and Lugosi (2016). It should be
noticed however that WMoU−diag enjoys a much lower computational cost in practice.

One elegant way to combine both benefits, i.e. small loss of information and low com-
putational cost, is to consider randomized blocks (Laforgue et al., 2019). Instead of
partitioning the data set, this method builds blocks by sampling them independently
through simple Sampling Without Rejection (SWoR). One consequence is the possibility
for the randomized blocks to overlap (see Figure 8.1a), making the estimator’s concen-
tration analysis more difficult. Nevertheless, guarantees similar to that of MoM have
been established (up to constants), and the extension to 2-sample U -statistics built on
randomized blocks allows for a better exploration of the grid than through MoUdiag,
see Figure 8.1e. However, despite the possibility to reach every part of the grid, the
exploration scheme illustrated in Figure 8.1e have a fixed structure (e.g. always 3 cells
per column, 4 cells per row). The totally free alternative, as depicted in Figure 8.1f,
consists in sampling directly from the pairs of observations, which generates incomplete
U -statistics. If no theoretical guarantees have been established for this extension due
to the complex replication setting between blocks, it still benefits from good empirical
results (Laforgue et al., 2019), consistent with the grid covering it allows.
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(a) 1D standard and randomized MoM
(b) MoUXY

(c) MoUdiag
XY
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τX
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1.0

τ Y

MoM:          τX < 1/2, τY < 1/2
MoU:          τX + τY − τXτY < 1/2
MoU-diag:  τX + τY < 1/2

(d) Admitted proportion of outliers

(e) MoU based on randomized blocks (f) MoU based on randomized pairs

Figure 8.1 – Sampling strategies to build MoM and MoU, as well as admitted proportion
of outliers.

Another important question to be addressed is: how to handle the non-differentiability
introduced by the median operator? Indeed, the Wasserstein distance often acts as
a loss function, e.g. in generative modeling (VAEs, GANs), and optimizing through
a MoM/MoU-based criterion then becomes crucial. One answer is to uses a MoM-
gradient descent algorithm (Lecué et al., 2020). It consists in performing a mini-batch
gradient step based on the median block. In order to avoid local minima, authors
propose to shuffle the partition at each step of the descent, leading to the minimization
of an expected MoM loss (w.r.t. the shuffling) that is more stable. Notice that this
method goes beyond random partitions, and easily adapts to the randomized extensions
discussed above.

8.2.2 Theoretical Guarantees

We now establish the statistical guarantees satisfied by the estimators introduced in
Definition 8.5 under Assumption 8.2. First notice that if PMoM

n denotes with a lan-
guage abuse the measure such that for all function Ψ: Rd → R it holds EPMoM

n

[
Ψ
]

=

MoMX [Ψ], it is direct to see that WMoM(Pn, Qm) = W(PMoM
n , QMoM

m ). Then, it holds
WMoM(Pn, Qm)−W(P,Q) ≤ W(P, PMoM

n ) +W(QMoM
m , Q), and one may only focus on
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the theoretical guarantees of the right-hand side terms. Before stating our main results,
we need additional assumptions on the feature spaces and on the numbers of outliers
nO and mO, which are assumed to grow sub-linearly with respect to n and m.

Assumption 8.6. The feature spaces X and Y of inliers defined in Assumption 8.2
both lie in a compact set Kd ⊂ Rd.

Assumption 8.7. There exist CO ≥ 1 and 0 ≤ αO < 1 such that nO ≤ C2
O nαO and

mO ≤ C2
O mαO .

We start by an asymptotic result establishing the strong consistency of estimators in
Definition 8.5. It highlights the different outlier configurations allowed through condi-
tions on the proportions of outliers τX and τY .

Proposition 8.8. Suppose that samples X1, . . . , Xn and Y1, . . . , Ym satisfy Assumptions
8.2, 8.6 and 8.7. Then, choosing KX = d

√
2τX ne, as n→∞, it holds:

W(PMoM
n , P )

a.s−→ 0.

If moreover τ̃ := τX + τY − τXτY < 1/2, then choosing KX = d
√

2τ̃ ne and KY =
d
√

2τ̃ me, as n→∞ and m→∞, it holds:∣∣∣WMoU(Pn, Qm)−W(P,Q)
∣∣∣ a.s−→ 0.

If finally τX + τY < 1/2 and n = m, then choosing KX = KY = d
√

2(τX + τY ) ne, as
n→∞, it holds: ∣∣∣WMoU−diag(Pn, Qm)−W(P,Q)

∣∣∣ a.s−→ 0.

The key argument in the proof of Proposition 8.8 consists in converting the convergence
of the different estimators into the convergences of blocks containing no outliers. The
proof is postponed in Section 8.5.3. Numbers of blocks KX and KY are chosen such
that (i) such blocks are always in majority, and (ii) their sizes n/KX and m/KY go to
infinity as n and m go to infinity. Any other choice of KX and KY that satisfies this two
conditions also ensures convergence. If the outliers proportions are unknown, building
KX and KY from upper bounds of τX and τY thus does not impact Proposition 8.8.
The conditions on KX and KY also constrain the proportions of outliers admitted, as
illustrated in Figure 8.1d. The assumption n = m for WMoU−diag is necessary to be
able to build a majority of sane blocks.

Our next proposition now investigates the nonasymptotic behavior of the proposed
estimators.

Proposition 8.9. Suppose that samples X1, . . . , Xn and Y1, . . . , Ym satisfy Assumptions
8.2 and 8.6, and define Γ: τ 7→

√
1 +
√

2τ/
√

1− 2τ . Then, for all δ ∈]0, exp(−4n
√

2τX)],
choosing KX = d

√
2τX ne, it holds with probability at least 1− δ:

W(PMoM
n , P ) ≤ C1(τX)

n1/(d+2)
+ C2(τX)

√
log(1/δ)

n
,

with C1(τ) = 2 + CLipC2(τ), C2(τ) = 4 diam(Kd) Γ(τ), and CLip a universal constant
depending only on FLip.
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If furthermore τX + τY < 1/2 and n = m, then for all δ ∈]0, exp(−4n
√

2(τX + τY ) )],
choosing KX = KY = d

√
2(τX + τY ) ne, it holds with probability at least 1− δ:∣∣∣∣WMoU−diag(Pn, Qm)−W(P,Q)

∣∣∣∣ ≤ 2C1(τX + τY )

n1/(d+2)
+ 2C2(τX + τY )

√
log(1/δ)

n
.

The proof derives from concentration results established in Proposition 8.3, combined
with a generic chaining argument. It should be noticed that constant C2(τX) explodes
as τX goes to 1/2, which is expected: the more outliers, the more difficult it is to
estimate W(P,Q). We also stress that the dependence in 1/

√
1− 2τX is better than

the 1/(1 − 2τX)3/2 term exhibited in Lerasle et al. (2019). Integrating the deviation
probabilities of Proposition 8.9 and using Assumption 8.7, we finally obtain our main
theorem, that provides a nonasymptotic control on the expected value of our estimators
deviations from W(P,Q).

Theorem 8.10. Suppose that samples X1, . . . , Xn and Y1, . . . , Ym satisfy Assumptions
8.2, 8.6 and 8.7, and recall the notation used in Proposition 8.9. Let β ∈ [0, 1], then for
all n such that n

1
d+2

+ 1−β
2 ≥ C1(τX)/(2C2(τX)(2τX)

1
4 ), it holds:

E
[
W(PMoM

n , P )
]
≤ κ1(τX)

n1/(d+2)
+

κ2(τX)

n(β−αO)/2
+
κ3(τX)

nβ/2
,

with κ1(τ) = C1(τ), κ2(τ) = 2COC2(τ)(2/τ)1/4, and κ3(τ) =
√
πC2(τ)/2.

Of course, the above bound only makes sense if β > αO. In particular, if αO ≤ d/(d+2),
setting β = 1 gives that for all n such that n

1
d+2 ≥ C1(τX)/(2C2(τX)(2τX)

1
4 ), with the

notation κ = κ1 + κ2 + κ3, it holds:

E
[
W(PMoM

n , P )
]
≤ κ(τX) n−1/(d+2).

If furthermore τX + τY < 1/2 and n = m, then for all n s.t. n
1
d+2 ≥ C1(τX +

τY )/(2C2(τX + τY )(2(τX + τY ))
1
4 ), with the notation κ′ = 2κ1 + 2

√
2κ2 + 2κ3, it holds:

E
∣∣∣WMoU−diag(Pn, Qm)−W(P,Q)

∣∣∣ ≤ κ′(τX + τY ) n−1/(d+2).

The proof relies on Proposition 8.9 and is postponed to Section 8.5.5. Theorem 8.10
highlights that the estimators proposed in Definition 8.5 remarkably resist to the pres-
ence of outliers in the training data sets. The price to pay is a slightly slower rate
of order O(n−1/(d+2)), that becomes equivalent in high dimension – the usual setting
of Optimal Transport – to the standard O(n−1/d) rate. Interestingly, the dependence
in the outliers growing rate αO is made explicit, and is in line with expectations (see
below). Unfortunately, the dependency between the blocks makes the nonasymptotic
analysis harder for WMoU and the computationally cheap randomized extensions dis-
cussed in Section 8.2.1. This theoretical challenge is left for future work. We stress
that there is no median-of-means miracle. If the number of blocks allows to cancel
the outliers impact, the statistical performance then scales with the block size, i.e. as
1/
√
BX =

√
KX/n. Since KX is roughly 2nO, this means a

√
nO/n rate. So if one

allows nO to grow proportionally to n, the bound becomes vacuous. To get guarantees
improving with n, we thus need nO to scale as nαO , for some αO < 1, and the resulting
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rate is n(1−αO)/2, as found in Theorem 8.10. We finally point out that the condition on
n ensures W(PMoM

n , P ) ≥ C1(τX)/n1/(d+2) − C2(τX)
√

log(1/δ)/nβ , as the right hand
side is negative while W(PMoM

n , P ) is positive by construction.

Remark 8.11. The unique property of the Wasserstein distance we used, compared to
other Integral Probability Metrics (IPMs; Sriperumbudur et al., 2012), is the way to
bound the entropy of the unit ball of Lipschitz functions. The present analysis can thus
be extended in a direct fashion to any other IPM that has finite entropy.

8.3 MoM-based Estimators in Practice

In this section, we first propose a novel algorithm to approximate the MoM/MoU-based
estimators using neural networks and provide an empirical study of its behaviour on
two toy data sets. Then, we show how to robustify Wasserstein-GANs and present
MoMWGAN, a MoM-based variant of GAN, which is evaluated on two well-known
image benchmarks.

8.3.1 Approximation Algorithm

As show in Section 8.2, MoM/MoU-based estimation of the Wasserstein distance offers
a robust alternative to the classical empirical estimator of W. Indeed, the empirical
estimator of W would not converge towards the target in the O ∪ I framework. The
proposed estimators are consistent and have convergence rates of order O(n−1/(d+2))
with the O ∪ I framework. These convergence rates are similar, when d is not too
small, to those of the empirical estimator of W in a non-contaminated setting. Never-
theless, the question of computing these estimators raises two major difficulties: (i) the
optimization over the unit ball of Lipschitz functions is intractable, which is a difficulty
common to the approximation of the standard Wasserstein distance, and (ii) the non-
differentiability of the median-based loss. The first issue is well known of the practioners
of the Wasserstein distance who usually prefer to rely on its primal definition with an
entropy-based regularization (Cuturi et al., 2013). However, learning algorithms devoted
to Wasserstein GANs overcome this by weight clipping (Arjovsky et al., 2017) or gradi-
ent penalization (Gulrajani et al., 2017) to impose to the GAN a Lipchitz constraint.
Similarly we propose here to limit Ψ to be a neural network with similar constraints
on weights to ensure its ϑ-Lipschitzianity. This enables to approximate the Wasserstein
distance up to a (unknown) multiplicative coefficient ϑ. To overpass (ii), one can adopt
MoM/MoU gradient descent. Exploited in the context of robust classification (Lecué
et al., 2020), using MoM/MoU gradient descent has been proved to be equivalent to
minimize the expectation over the sampling strategy of blocks of WMoM,WMoU−diag

and WMoU. Combining these techniques, we design novel algorithms to compute ap-
proximations of the proposed estimators: W̃MoM (see Algorithm 8.1), W̃MoU−diag (see
Algorithm 8.2) and W̃MoU (see Algorithm 8.3).

8.3.2 Empirical Study

We denote I2 the identity matrix of dimension 2 and v, the vector (v, v)> with v ∈ R.

Toy data sets. Two simulated data sets in 2D space with different kinds of anomalies
are used in the experiments. The random vectorsX1 andX2 are chosen to be distributed
according a mixture of a standard Gaussian distribution and an “abnormal" distribution,
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Algorithm 8.1 Approximation of WMoM(Pn, Qm).
input : ς, the learning rate. c, the clipping parameter. w0, the initial weights. KX ,KY

the number of blocks for X1, . . . , Xn and Y1, . . . , Ym.
13 for t = 0, . . . , niter do
14 Sample KX disjoint blocks BX1 , . . . ,BXKX and KY disjoint blocks BY1 , . . . ,BYKY from

a sampling scheme and find median blocks BXmed and BYmed

15 Gw ←
⌊
KX/n

⌋ ∑
i∈BXmed

∇wΨw(Xi)−
⌊
KY /m

⌋ ∑
j∈BYmed

∇wΨw(Yj))

16 w ← w + ς × RMSProp(w,Gw)
17 w ← clip(w,−c, c)
18 return w, W̃MoM, Ψw.

Algorithm 8.2 Computation of WMoU−diag(Pn, Qm).
input : ς, the learning rate. c, the clipping parameter. w0 the initial weights. KX ,KY

the number of blocks for X1, . . . , Xn and Y1, . . . , Ym.
1 for t = 0, . . . , niter do
2 SampleK = KX∧KY disjoint blocks BXY1,1 ,BXY2,2 , . . . ,BXYk,k , . . .BXYK,K from a sampling

scheme and find the median block BXYmed

3 Gw ←−
⌊
K/n

⌋ ∑
(i,j)∈BXYmed

∇w
[
Ψw(Xi)−Ψw(Yj)

]
4 w ← w + ς × RMSProp(w,Gw)
5 w ← clip(w,−c, c)
6 return w, W̃MoU−diag, Ψw.

Algorithm 8.3 Computation of WMoU(Pn, Qm).
input : ς, the learning rate. c, the clipping parameter. w0 the initial weights. KX ,KY

the number of blocks for X1, . . . , Xn and Y1, . . . , Ym.
1 for t = 0, . . . , niter do
2 Sample KX×KY disjoint blocks BXY1,1 , . . . ,BXYk,l , . . .BXYKX ,KY from a sampling scheme

and find the median block BXYmed

3 Gw ←−
⌊
KX/n

⌋
×
⌊
KY /m

⌋ ∑
(i,j)∈BXYmed

∇w
[
Ψw(Xi)−Ψw(Yj)

]
4 w ← w + ς × RMSProp(w,Gw)
5 w ← clip(w,−c, c)
6 return w, W̃MoU, Ψw.

respectively A1 and A2 defined as follows. A1 is the uniform distribution in [−50,50]
that mimics isolated outliers while A2 is the standard Cauchy distribution shifted by 25,
defined to mimic aggregated outliers (see e.g. Chandola et al., 2009). The random vector
Y is Gaussian with Y ∼ N (5, I2), Data sets D1 and D2 contain 500 independent and
identical copies of (X1, Y ), (X2, Y ) respectively, with the same proportion of outliers
τX .
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Evaluation metrics. The Lipchitz constant ϑ being unknown and highly depending
of the clipping parameter choice, it wouldn’t be appropriate to compare the true L1-
Wasserstein value, equal to

√
50, with W̃MoM, W̃MoU−diag and W̃MoU. Therefore, we

propose to compare W̃MoM, W̃MoU−diag and W̃MoU to W̃, the L1-Wasserstein distance
approximated by Algorithm 8.1, when MoM is not used, e.g. KX = KY = 1, by
measuring the absolute error between them.

Influence of KX ,KY . The numbers of blocks, KX and KY , are crucial parameters
for computation. They define the trade-off between the robustness of the estimator and
computational burden. However the theory does not give enough insights about their
value: the necessary assumption for the consistency is only that they should be greater
than 2τXn (see Section 8.2.2). An empirical study of the influence of their values on
the behavior of the approximations of WMoM,WMoU−diag and WMoU is therefore much
useful. For sake of simplicity, we set KX = KY in the subsequent experiments.

In a first experiment, we explore the ability of Algorithm 8.1, Algorithm 8.2 and Al-
gorithm 8.3 to override outliers according to the values of KX and with different rates
of outliers τX . The approximations W̃MoM,W̃MoU−diag and W̃MoU are computed using a
simple multilayer perceptron (MLP) with one hidden layer and MoM gradient descent
over several τX and KX on both data sets. The experiment is repeated 20 times with
various seeds. Mean results are displayed. Figure 8.2 represents absolute deviations
between the L1-Wasserstein distance approximated with a MLP when τX = 0 and
W̃MoU−diag with various anomalies settings and different values of KX . Shaded areas,
in Figure 8.2 represent 25%-75% quantiles over the 20 repetitions. On both data sets
and for the three estimators, we observe that the approximation algorithm succeeds to
provide an estimation of WMoU−diag, able to override outliers with different τX while
KX is high enough. From Section 8.2.2, we know that KX needs to be higher than
2τXn to have theoretical guarantees. Experiments show that in practice, this condition
is not necessary in every situations. For example, when τX = 0.1 (i.e. 50 anomalies)
in Figure 8.2 (left), only 70 blocks are needed to override outliers. The reason is that
hypothesis makes things work in the worst case, i.e. when each outlier is isolated in one
block which lead to have τXn contaminated blocks. This is rarely the case in practice,
several blocks can be contaminated by many outliers and this is why fewer blocks are
needed. Results for W̃MoU and W̃MoM are displayed in Figure 8.3 and are quite similar
due to the simplicity of the problem.
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Figure 8.2 – W̃MoU−diag over KX for different anomalies proportion τX on D1 (left) and
D2 (right).
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Figure 8.3 – W̃MoU (top) and W̃MoM (bottom) over KX for different anomalies propor-
tion τX on D1 (left) and D2 (right).

In a second experiment illustrated by Figure 8.4, we study the convergence of the
approximation algorithm with and without anomalies for different values of KX on D1.
To get a fair comparison between the different settings of algorithms, we compare the
predicted values across the “learning” epoch. Here during one epoch, the algorithm has
made a gradient pass over the whole data set, which means that one epoch corresponds
one iteration of the approximation algorithm if KX = 1 (no MoM estimation), and
to KX iterations, in the other cases. In both cases (with or without anomalies), the
higher KX is, the faster the approximation algorithm converges. Without surprise, the
MoM approach benefits from the same properties than a mini-batch approach. When
there are no anomalies, the distance values reached after convergence are close to the
“true” value (obtained with the plain estimator when KX = 1), especially when KX is
lower. This means that the MoM-based algorithm can be used routinely instead of the
plain estimator. With 5% of anomalies, one can see that distance values reached after
convergence get closer to the target as KX grows. Results for W̃MoU and W̃MoM are
displayed in Figure 8.5 and are quite similar due to the simplicity of the problem.

8.3.3 Application to Robust Wasserstein GANs

In this part, we introduce a robust modification of WGANs, named MoMWGAN, using
one of the three proposed estimators in Section 8.2.1. The behaviour of likelihood-free
generative modeling such as Generative Adversarial Networks in the presence of outliers,
i.e. with heavy-tails distributions or contaminated data, has been poorly investigated
up to very recently. At our knowledge, the unique reference is Gao et al. (2018). In
particular, Gao et al. (2018) have studied theoretically and empirically the robustness
of ϕ-GAN in the special case of mean estimation for elliptical distributions. In contrast,
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Figure 8.4 – Convergence of W̃MoU−diag without anomalies (left) and with 5% anomalies
(right) for different KX .
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Figure 8.5 – Convergence of W̃MoU (top) and W̃MoM (bottom) without anomalies (left)
and with 5% anomalies (right) for different KX .

we illustrate here the theoretical results of Section 8.2 by applying a MoM approach
to robustify WassersteinGAN and show on two real-world image benchmarks how this
new variant of GAN behaves when learned with contaminated data.

Reminder on GAN: Let us briefly recall the GAN principle. A GAN learns a function
gθ : Ξ→ X such that samples generate by gθ(ξ) ∼ Qθ, taking as input a sample ξ (from
some reference measure R, often Gaussian) in a latent space Ξ, are close to those of the
true distribution P ∈ P(X ) of data. Wasserstein GANs (Arjovsky et al., 2017; Gulrajani
et al., 2017) use the L1-Wasserstein Distance under its Kantorovich-Rubinstein dual
formula as the loss function. Instead of maximizing over the unit ball of Lipschitz
functions, one uses a parametric family of ϑ-Lipschitz functions under the form of neural
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WGAN

MoMWGAN

Figure 8.6 – Generated samples from trained WGAN and MoMWGAN on CIFAR10
and Fashion MNIST data sets.

net with clipped weights w (Arjovsky et al., 2017). Following up the theoretical analysis
of Section 8.2, we introduce a MoM-based WGAN (MoMWGAN) model, combining the
WMoM estimator studied in 8.2 and WGAN’s framework. Following the weight clipping
approach, MoMWGAN boils down to the problem:

min
θ

max
w

{
MoMX [Ψw]− 1

m

m∑
j=1

Ψw(gθ(ξj)), k ≤ KX

}
.

Note that the MoM procedure is chosen to be only applied on the observed contamin-
ated sample. It is not clear in which way the sample drawn from the currently learned
density is polluted and thus defining the number of blocks would be an issue. Optimiza-
tion in WGAN is usually performed by taking mini-batches to reduce the computational
load. In the same spirit, we apply MoM inside contaminated mini-batches as described
in Algorithm 8.4. To get the outliers-robust property observed in the numerical experi-
ments, we pay the price of finding the median block at each step by evaluating the loss
which significantly increases the computational complexity.
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Algorithm 8.4 MoMWGAN
input : ς, the learning rate. c, the clipping parameter. b, the batch size. nc, the

number of critic iterations per generator iteration, KX the number of blocks.
w0, θ0 the initial critic/generator’s parameters.

1 while θ has not converged do
2 for t = 0, . . . , nc do
3 Choose a subsample Xi1 , . . . , Xib to get Pb = (1/b)

∑
i∈{i1,...,ib} δXi and sample

ξj1 , . . . , ξjb from R to get Rb = (1/b)
∑

j∈{j1,...,jb} δξj
4 Updating w with step 2-6 of Algorithm 8.1 with Pb and Rb
5 Sample {ξj}b`=1 from R

6 gθ ← −∇θ 1
b

∑b
`=1 Ψw(gθ(ξj))

7 θ ← θ − ς × RMSProp(θ, gθ)

8 return θ, gθ.

Numerical Experiments To test the robustness of MoMWGAN we contaminated
two well-known image data sets, CIFAR10 and Fashion MNIST, with two anomalies
settings. Noise based-anomalies are added to CIFAR10, i.e. images with random in-
tensity pixels drawn from a uniform law. For Fashion MNIST, the five first classes are
considered as “informative dat” while the sixth (Sandal) contains the anomalies. In both
settings, WGAN and MoMWGAN are trained on the training samples contaminated in
a uniform fashion with a proportion of 1.5% of outliers in both data sets. Both models
use standard parameters of WGAN. KX = 4 blocks have been used by MoMWGAN in
both experiments. To assess performance of the resulting GANs, we generated 50000
generated images using each model (WGAN and MoMGAN) and measured the Fréchet
Inception Distance (FID; Heusel et al., 2017) between the generated examples in both
cases and the (real) test sample. Table 8.1 shows that MoMWGAN improves upon
WGAN in terms of outliers-robustness. Furthermore, some generated images are rep-
resented in Figure 8.6. One can see that outliers do not affect MoMWGAN generated
samples while WGAN reproduce noise on contaminated CIFAR10 data set. For Fashion
MNIST, one may see that fewer images are degraded with MoMWGAN generator.

WGAN MoMWGAN
Polluted CIFAR10 57 55.9

Polluted Fashion MNIST 13.8 13.2

Table 8.1 – FID on polluted data sets.

8.4 Conclusion and Perspectives

In this chapter, we provided a view of the robustness properties of the MoM and MoU
estimators with clear dependence on the proportion of outliers τX , τY and the number
of blocks KX ,KY . These bounds are incidentally shown to supply a sound theoretical
basis for the reliability of MoM-based learning techniques when the training data are
possibly contaminated by outliers with arbitrary distribution. Further, we have intro-
duced three robust estimators of the Wasserstein distance based on MoM methodology.
We have shown asymptotic and non-asymptotic results in the context of polluted data,
i.e. the O ∪ I framework. Surpassing computational issues, we have designed an al-
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gorithm to compute, in a efficient way, these estimators. Numerical experiments have
highlighted the behavior of these estimators over their unique tuning parameter. Fi-
nally, we proposed to robustify WGANs using one of the introduced estimators and
have shown its benefits on convincing numerical results. The open-source implement-
ation of the method can be accessed at https://github.com/GuillaumeStaermanML/
MoM-Wasserstein.

The theoretically well-founded MoM approaches to robustify the Wasserstein distance
open the door to numerous applications beyondWGAN, including variational generative
modeling. The promising MoMGAN deserves more attention and future work will
concern the analysis of the estimator it provides.

8.5 Proofs

8.5.1 Proof of Proposition 8.3

Roughly speaking, the median has the same behavior as that of a majority of observa-
tions. Similarly, the MoM has the same behavior as that of a majority of blocks. In
presence of outliers, the key point consists in focusing on sane blocks only, i.e. on blocks
that do not contain a single outlier, since no prediction can be made about blocks hit
by an outlier, in absence of any structural assumption concerning the contamination.
One simple way to ensure the sane blocks to be in (almost) majority is to consider twice
more blocks than outliers. Indeed, in the worst case scenario each outlier contaminates
one block, but the sane ones remain more numerous. Let KX denote the total number
of blocks chosen, KOX the number of blocks containing at least one outlier, and KIX the
number of sane blocks containing no outlier. The crux of our proofs then consists in
determining some γ > 1/2 (that eventually depends on τX) such that KIX ≥ γKX . As
discussed before, we thus need to consider at least twice more blocks than outliers. On
the other hand, KX is by design upper bounded by n. The global constraint can be
written:

2nO = 2τXn < KX ≤ n. (8.2)

Choosing the geometric mean
√

2τX , (8.2) is satisfied as soon as KX verifies:

√
2τXn ≤ KX ≤ n.

It directly follows that:

KIX = KX −KOX ≥ KX − nO ≥ KX − τXn ≥

(
1− τX√

2τX

)
KX =

√
2τX − τX√

2τX
KX ,

and one then may use:

γ = γ(τX) =

√
2τX − τX√

2τX
.

https://github.com/GuillaumeStaermanML/MoM-Wasserstein
https://github.com/GuillaumeStaermanML/MoM-Wasserstein
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Once γ(τX) is determined, a standard MoM deviation study can be carried out. If at
least KX/2 sane blocks have an empirical estimate that is t close to the expectation,
then so is the MoM. Reversing the implication gives:

P
{∣∣∣MoMX − E[X]

∣∣∣ > t

}
≤ P

 ∑
blocks without outlier

1

{∣∣∣MoMblock − E[X]
∣∣∣ > t

}
≥ KIX −

KX

2


≤ P

 ∑
blocks without outlier

1

{∣∣∣MoMblock − E[X]
∣∣∣ > t

}
≥ 2γ(τX)− 1

2γ(τX)
KI

 , (8.3)

with MoMblock = (1/BX)
∑

i∈blockXi the block empirical mean. Now observe that
equation (8.3) describes the deviation of a binomial random variable, with KIX trials
and parameter pt = P{|MoMblock − E[X]| > t}. It can thus be upper bounded by:

KIX∑
k=

⌈
2γ(τX )−1

2γ(τX )
KIX

⌉
(
KIX
k

)
pkt (1− pt)K

I
X−k ≤ p

2γ(τX )−1

2γ(τX )
KIX

t

KIX∑
k=1

(
KIX
k

)

≤ p
2γ(τX )−1

2γ(τX )
KIX

t 2K
I
X

≤ p
2γ(τX )−1

2
K

t 2γ(τX)KX .

Assume now that X is ρ sub-Gaussian. Chernoff’s bound gives that pt ≤ 2e−BX t
2/2ρ2 .

Plugging this bound into MoM’s deviation yields:

P
{∣∣∣MoMX − E[X]

∣∣∣ > t

}
≤ exp

2γ(τX)− 1

2
KX · log

[
2

4γ(τX )−1

2γ(τX )−1 e−BX t
2/2ρ2

]
≤ exp

(
−2γ(τX)− 1

16ρ2
nt2

)
,

for all t such that:

t2 ≥ 4ρ2

BX

4γ(τX)− 1

2γ(τX)− 1
log 2.

Reverting in δ gives that it holds with probability at least 1− δ:∣∣∣MoMX − E[X]
∣∣∣ ≤ 4ρ√

2γ(τX)− 1

√
log(1/δ)

n
,

for all δ that satisfies:

δ ≤ e−
log 2
4

(4γ(τX)−1) n
BX , and in particular δ ≤ e−4n

√
2τX . (8.4)

Indeed it holds BX = bn/KXc ≥ n/(2KX), so that n/BX ≤ 2KX = 2d
√

2τXne ≤
2(
√

2τXn + 1) ≤
√

2τXn, since 1 ≤ 2nO = 2τXn ≤
√

2τXn. When nO = τX = 0, one
may choose KX = 1, BX = n, and δ ≤ 1/e.

The final writing is obtained by setting:

Γ(τX) =
1√

2γ(τX)− 1
=

√ √
2τX√

2τX − 2τX
.
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8.5.2 Proof of Proposition 8.4

The proof can be directly adapted from that of Section 8.5.1. Assume that KX =
KY = K and that BX = BY = B. The first difference lies in the constraint K needs
to satisfy. It now writes: 2(nO +mO) = 2(τX + τY )n < K ≤ n, and the reasoning can
then be reused in totality with τX + τY instead of τX . The second difference lies in the
use of Chebyshev’s inequality instead of Chernoff’s bound. Indeed, the variance of the
U -statistics of one block (e.g. the k-th block (1/B2)

∑
(i,j)∈BXYk,k

h(Xi, Yj)), denoted by

σ2
B,B(h), is given by (see e.g. van der Vaart (2000)):

σ2
B,B(h) =

1

B2
σ2(h) +

B − 1

B2
σ2

1(h) +
B − 1

B2
σ2

2(h),

≤ σ2(h) + σ2
1(h) + σ2

2(h)

B
,

where σ2(h) = Var(h(X,Y )), σ2
1(h) = Var(h1(X)) and σ2

2(h) = Var(h2(Y )), with
h1(x) = EQ

[
h(x, Y )

]
and h2(y) = EP

[
h(X, y)

]
. Finally, when ‖h‖ess,∞ is finite, using

the notation Sn = (X1, . . . , Xn), one may bound pt as follows:

pt = P

{∣∣∣∣MoUblock[h]− E[h(X,Y )]

∣∣∣∣ > t

}
,

= P

{∣∣∣∣ 1

B2

∑
i∈BX1

∑
j∈BY1

h(Xi, Yj)− E[h(X,Y )]

∣∣∣∣ > t

}
,

≤ P

{∣∣∣∣∣ 1

B

∑
j∈BY1

( ∑
i∈BX1

h(Xi, Yj)

B
− E

[ ∑
i∈BX1

h(Xi, Yj)

B

∣∣∣∣ Sn
])∣∣∣∣∣ > t

2

∣∣∣∣ Sn
}

+ P

{∣∣∣∣ 1

B

∑
i∈BX1

EQ
[
h(Xi, Y )

]
− E[h(X,Y )]

∣∣∣∣ > t

2

}
,

≤ 2e−Bt
2/8‖h‖2ess,∞ + 2e−Bt

2/8‖h‖2ess,∞ ,

where we have used Hoeffding’s inequality twice: on the
∑

i∈BX1
h(Xi,Yj)

B for j ∈ BY1 ,

conditionally to the Xi’s, and a second time to the EY
[
h(Xi, Y )

]
for i ∈ BX1 , both

random variables being bounded by ‖h‖∞. The rest of the proof is similar to that of
Section 8.5.1.

8.5.3 Proof of Proposition 8.8

We first show the strong consistency of WMoU(Pn, Qm), that of W(PMoM
n , P ) and

WMoU−diag(Pn, Qm) being then straightforward adaptations. Assume that τ̃ = τX +
τY − τXτY < 1/2, and KX ,KY > 0 such that 2τ̃ < KXKY /(nm). The latter condition
implies that the blocks containing no outlier are in majority. Indeed, the number of
contaminated blocks is upper bounded by:

nOKY +mOKX − nOmO ≤ τ̃nm < KXKY /2.
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One may choose KX and KY the lower as possible such that the above condition is
respected. Following this, it is a natural choice to set KX = d

√
2τ̃ ne and KY =

d
√

2τ̃ me.

Let IX (respectively IY ) denote the set of indices of blocks of X1, . . . , Xn (respectively
the blocks of Y1, . . . , Ym) containing no outlier. Let Kd be a bounded subspace of Rd,
and assume that X,Y are valued in X ,Y ⊂ Kd. Finally, we denote by ΨX,k and ΨY,l

the quantities:

ΨX,k =
1

BX

∑
i∈BXk

Ψ(Xi), and ΨY,l =
1

BY

∑
j∈BYl

Ψ(Yj).

Using the shortcut notation EP
[
Ψ
]

= EX∼P
[
Ψ(X)

]
and EQ

[
Ψ
]

= EY∼Q
[
Ψ(Y )

]
, first

notice that:

WMoU(Pn, Qm) = sup
Ψ∈FLip

MoUXY [hΨ]

= sup
Ψ∈FLip

med
1≤k≤KX
1≤l≤KY

{
ΨX,k −ΨY,l

}

= sup
Ψ∈FLip

med
1≤k≤KX
1≤l≤KY

{
ΨX,k − EP [Ψ] + EP [Ψ]− EQ[Ψ] + EQ[Ψ]−ΨY,l

}

≤ sup
Ψ∈FLip

med
1≤k≤KX
1≤l≤KY

{
ΨX,k − EP [Ψ] + EQ[Ψ]−ΨY,l

}
+W(P,Q). (8.5)

Conversely, it holds:

W(P,Q) = sup
Ψ∈FLip

{
EP
[
Ψ
]
− EQ

[
Ψ
] }

≤ sup
Ψ∈FLip

{
EP [Ψ]−ΨBXmed

+ ΨBYmed
− EQ[Ψ] + ΨBXmed

−ΨBYmed

}
≤ sup

Ψ∈FLip

med
1≤k≤KX
1≤l≤KY

{
EP [Ψ]−ΨX,k + ΨZ,l − EQ[Ψ]

}
+WMoU(Pn, Qm), (8.6)

where BXmed and BYmed are the median blocks of ΨX,k − ΨY,l for 1 ≤ k ≤ KX and
1 ≤ l ≤ KY . From (8.5) and (8.6), we deduce that:

∣∣∣WMoU(Pn, Qm)−W(P,Q)
∣∣∣ ≤ sup

Ψ∈FLip

med
1≤k≤KX
1≤l≤KY

{∣∣∣ΨX,k − EP [Ψ] + EQ[Ψ]−ΨY,l

∣∣∣}
(8.7)

≤ sup
k∈IX , l∈IY

sup
Ψ∈FLip

∣∣∣ΨX,k − EP [Ψ] + EQ[Ψ]−ΨY,l

∣∣∣
≤ sup

k∈IX
sup

Ψ∈FLip

∣∣∣ΨX,k − EP [Ψ]
∣∣∣+ sup

l∈IY
sup

Ψ∈FLip

∣∣∣EQ[Ψ]−ΨY,l

∣∣∣,
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where we have used the subadditivity of the supremum and the fact that IX × IY
represents a majority of blocks. By independence between X and Y , it holds:

P

∣∣∣WMoU(Pn, Qm)−W(P,Q)
∣∣∣ −→
n→+∞
m→+∞

0


≥

∏
k∈IX

P

 sup
Ψ∈FLip

∣∣∣ΨX,k − EP [Ψ]
∣∣∣ −→
n→+∞

0

 · ∏
l∈IY

P

 sup
Ψ∈FLip

∣∣∣ΨY,l − E[Ψ]
∣∣∣ −→
m→+∞

0

 .

Now, the arguments to get the right-hand side equal to 1 are similar to those used
in Lemma 3.1 and Proposition 3.2 in Sriperumbudur et al. (2012). We expose them
explicitly for the sake of clarity.

Let N(r,FLip, L1(P )) be the covering number of FLip which is the minimal number of
L1(P) balls of radius r > 0 needed to cover FLip. Let H(r,FLip, L1(P )) be the entropy
of FLip, defined as H(r,FLip, L1(P )) = logN(r,FLip, L1(P )). Let E be the minimal
envelope function such that E(x) = supφ∈BL |φ(x)|. We need to check that

∫
EdP and∫

EdQ are finite and that (1/n)H(r,FLip, L1(Pn)) and (1/m)H(r,FLip, L1(Qm)) go to
zero when n andm go to infinity. Thus, we can apply Theorem 3.7 in van de Geer (2000)
which ensures the uniform (a.s.) convergence of empirical processes. Noticing that we
can include in the definition of FLip the property that Ψ(0) = 0 without changing the
supremum, one has:

Ψ(x) ≤ sup
x∈Kd
|Ψ(x)| ≤ sup

x,y∈Kd
|Ψ(x)−Ψ(y)| ≤ sup

x,y∈Kd
‖x− y‖ = diam(Kd) < +∞. (8.8)

Therefore E(x) is finite, and following Lemma 3.1 in Kolmogorov and Tikhomirov (1961)
we have:

H(r,FLip, ‖ · ‖∞) ≤ N(r/4,Kd, ‖ · ‖2) log

2

⌈
2diam(Kd)

r

⌉
+ 1

 .

Since H(r,FLip, L
1(Pn)) ≤ H(r,FLip, ‖ · ‖∞) and H(r,FLip, L

1(Qm)) ≤ H(r,FLip, ‖ ·‖∞)
then, as n and m go to infinity, we have:

1

n
H(r,FLip, L

1(Pn))
P−→ 0, and

1

m
H(r,FLip, L

1(Qm))
Q−→ 0,

which lead to the desired result.

Adaptation to other estimators. The above proof can be adapted in a straightfor-
ward fashion to W(PMoM

n , P ) and WMoU−diag(Pn, Qm). Indeed, it holds:

W(PMoM, P ) = sup
Ψ∈FLip

med
1≤k≤KX

∣∣∣ΨX,k − EP
[
Ψ
]∣∣∣ ,

and∣∣∣∣WMoU−diag(Pn, Qm)−W(P,Q)

∣∣∣∣ ≤ sup
Ψ∈FLip

med
1≤k≤KX
1≤l≤KY

∣∣∣ΨX,k − EP
[
Ψ
]

+ EQ
[
Ψ
]
−ΨY,k

∣∣∣ .
It is then direct to adapt the reasoning starting from (8.7).
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8.5.4 Proof of Proposition 8.9

In order to prove the Proposition 8.9, we first recall a simple lemma on the difference
between two median vectors.

Lemma 8.12. Let x and y be two vectors of Rd. Then it holds∣∣∣median(x)−median(y)
∣∣∣ ≤ ‖x− y‖∞.

Proof. It is direct to see that:

x � y � z ⇒ median(x) ≤ median(y) ≤ median(z).

Thus, for all y within the infinite ball of center x and radius r it holds:

median(x)− r = median(x− r1d) ≤ median(y) ≤ median(x+ r1d) = median(x) + r,

where 1d is a d-dimensional vector of ones.

Let Φ ∈ FLip. From (8.8), we know that −diam(Kd) ≤ Φ(X) ≤ diam(Kd), so that
Φ(X) is in particular sub-Gaussian with parameter ρ = diam(Kd). A direct application
of Proposition 8.3 then gives that for all δ ∈]0, e−4n

√
2τX ] and KX = d

√
2τXne , it holds

with probability at least 1− δ:∣∣∣∣MoMX [Φ]− EP
[
Φ
] ∣∣∣∣ ≤ 4 diam(Kd) Γ(τX)

√
log(1/δ)

n
, (8.9)

with Γ: τX 7→
√

1 +
√

2τX/
√

1− 2τX . Using Lemma 8.12, observe also that ∀(Ψ,Φ) ∈
(FLip)2, it holds:∣∣∣MoMX [Ψ]− EP

[
Ψ
] ∣∣∣ ≤ ∣∣∣MoMX [Ψ]−MoMX [Φ]

∣∣∣+
∣∣∣EP [Ψ]− EP

[
Φ
] ∣∣∣,

+
∣∣∣MoMX [Φ]− EP

[
Φ
] ∣∣∣,

≤ 2‖Ψ− Φ‖∞ +
∣∣∣MoMX [Φ]− EP

[
Φ
] ∣∣∣. (8.10)

Now, let ζ > 0, and Φ1, . . . ,ΦN(ζ,FLip,‖·‖∞) be a ζ-coverage of FLip with respect to ‖·‖∞.
We know from Sriperumbudur et al. (2012) that there exists CLip > 0 such that for all
ζ > 0, it holds:

log(N(ζ,FLip, ‖ · ‖∞)) ≤ C2
Lip(1/ζ)d. (8.11)

From now on, we use N = N(ζ,FLip, ‖ · ‖∞) for notation simplicity. Let Ψ be an
arbitrary element of FLip. By definition, there exists i ≤ N such that ‖Ψ− Φi‖∞ ≤ ζ.
Equation (8.10) then gives:∣∣∣∣MoMX [Ψ]− EP

[
Ψ
] ∣∣∣∣ ≤ 2ζ +

∣∣∣∣MoMX [Φi]− EP
[
Φi

] ∣∣∣∣. (8.12)

Applying (8.9) to every Φi, the union bound gives that with probability at least 1 − δ
it holds:

sup
i≤N

∣∣∣∣MoMX [Φi]− EP
[
Φi

] ∣∣∣∣ ≤ 4 diam(Kd) Γ(τX)

√
log(N/δ)

n
.
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Taking the supremum in both sides of (8.12), it holds with probability at least 1− δ:

sup
Ψ∈FLip

∣∣∣∣MoMX [Ψ]− EP
[
Ψ
] ∣∣∣∣ ≤ 2ζ + 4 diam(Kd) Γ(τX)

√
C2

Lipζ
−d + log(1/δ)

n
.

Choosing ζ ∼ 1/n1/(d+2) and breaking the square root finally gives with probability at
least 1− δ:

sup
Ψ∈FLip

∣∣∣∣MoMX [Ψ]− EP
[
Ψ
] ∣∣∣∣ ≤ C1(τX)

n1/(d+2)
+ C2(τX)

√
log(1/δ)

n
,

with C1(τX) = 2 + CLipC2(τX), and C2(τX) = 4 diam(Kd) Γ(τX).

Adaptation to MoU. From (8.8), we get that the kernel hΨ : (X,Y ) 7→ Ψ(X)−Ψ(Y )
has finite essential supremum ‖hΨ(X,Y )‖ess,∞ ≤ diam(Kd). Using Proposition 8.4 with
the same reasoning as above leads to the desired result, multiplying constants by a 2
factor.

8.5.5 Proof of Theorem 8.10

Since n
1
d+2

+ 1−β
2 ≥ C1(τX)/(2C2(τX)(2τX)

1
4 ), then for all δ ∈]0, e−4n

√
2τX ], it holds:

C1(τX)

n1/(d+2)
≤ C2(τX)

√
4n
√

2τX
nβ

≤ C2(τX)

√
log(1/δ)

nβ
.

One then has:

W(PMoM
n , P ) ≥ 0 ≥ C1(τX)

n1/(d+2)
− C2(τX)

√
log(1/δ)

nβ
.

Combining with the first results of Proposition 8.9, for all δ ∈]0, e−4n
√

2τX ], it holds
with probability at least 1− δ:∣∣∣∣∣W(PMoM

n , P )− C1(τX)

n1/(d+2)

∣∣∣∣∣ ≤ C2(τX)

√
log(1/δ)

nβ
.

Reverting the inequality gives that it holds:

P


∣∣∣∣∣W(PMoM

n , P )− C1(τX)

n1/(d+2)

∣∣∣∣∣ > t

 ≤ e−nβ(t/C2(τX))2 , (8.13)

for all t such that:

t ≥ (32 τX)1/4C2(τX)
√
n1−β =

(32 τX)1/4

√
τX

C2(τX)

√
n1−β nO

n
. (8.14)

One may finally use that for a nonnegative random variable it holds:
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E

∣∣∣∣∣W(PMoM
n , P )− C1(τX)

n1/(d+2)

∣∣∣∣∣ =

∫ ∞
0

P


∣∣∣∣∣W(PMoM

n , P )− C1(τX)

n1/(d+2)

∣∣∣∣∣ > t

 dt

≤
∫ (32 τX )1/4

√
τX

COC2(τX)
√
nαO−β

0
1 dt+

∫ ∞
0

e−n
β(t/C2(τX))2 dt

≤ (32 τX)1/4

√
τX

COC2(τX)

n(β−αO)/2
+

√
π C2(τX)

2 nβ/2

= 2 (2/τX)1/4 COC2(τX)

n(β−αO)/2
+

√
π C2(τX)

2 nβ/2
.

Where the second line holds thanks to Assumption 8.7.

Adaptation to MoU. The adaptation is straightforward, up to (8.14), that now writes:

t ≥ 2× (32(τX + τY ))1/4C2(τX + τY )
√
n1−β

= 2× (32(τX + τY ))1/4

√
τX + τY

C2(τX + τY )

√
n1−β

(
nO
n

+
mO
m

)
.

Using Assumption 8.7 on both samples from X and Y leads to the desired results.
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It is the main purpose of this chapter to overcome the lack of affine invariance of the
integrated rank-weighted (IRW) depth by proposing a modified version of it, named
AI-IRW. we show that the AI-IRW depth inherits all the properties and computational
advantages of the IRW depth and satisfies the affine-invariance property in addition.
Because its statistical counterpart based on a sample composed of independent copies of
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the random variable X is a complex functional of the data, involving the square root of
the empirical precision matrix, a finite-sample analysis is carried out here. Precisely, a
concentration result for the sampling version of the AI-IRW depth is established. Bey-
ond this theoretical analysis, the relevance of the AI-IRW depth notion is also supported
by experimental results, showing its advantages over the IRW depth and other depth
proposals standing as natural competitors when applied to anomaly detection.

This chapter is structured as follows. In Section 9.1, the AI-IRW depth is introduced,
its properties are studied and approximation/estimation issues are discussed at length.
The accuracy of the empirical version is investigated in Section 9.2 from a nonasymp-
totic perspective. Section 9.3 describes experimental results illustrating empirically the
advantages of the AI-IRW depth. Some concluding remarks are collected in Section 9.4.
Eventually, technical proofs are deferred to the Section 9.5. This chapter covers the
contribution of:

I G. Staerman, P. Mozharovskyi, S. Clémençon. Affine-Invariant Integrated Rank-
Weighted Depth: Definition, Properties and Finite Sample Analysis. arXiv pre-
print arXiv:2106.11068, 2021.

9.1 Affine-Invariant IRW Depth - Definition and
Properties

9.1.1 Motivations

Many data depths are constructed as an infimum over unit-sphere projections of a uni-
variate non parametric statistic such as the halfspace depth, the projection depth, or
those introduced in Zhang (2002) or Zuo (2003). From a practical perspective, comput-
ing these projection-based depths involves the use of tools such as manifold optimization
algorithms, facing various numerical difficulties as the dimension d increases, see Dyck-
erhoff et al. (2021). In addition, the halfspace depth suffers from two major problems:
(i) for each data point, taking the direction achieving the minimum to assign a score to
it possibly creates a significant sensitivity to noisy directions (ii) the null score assigned
to each new data point outside of the convex hull of the support of the distribution P
makes the score of such points indistinguishable. A remedy based on Extreme Value
Theory has been proposed in Einmahl et al. (2015), which consists in smoothing the
halfspace depth beyond the convex hull of the data. However, this variant relies on
rather rigid parametric assumptions, is only approximately affine invariant and con-
fronted with the limitation aforementioned regarding the non-smoothed part of the
data. Recently, alternative depth functions have been proposed, obtained by replacing
the infimum over all possible directions by an integral, see Cuevas and Fraiman (2009).
In Ramsay et al. (2019), a new data depth, referred to as the Integral Rank-Weighted
(IRW) depth, is defined by substituting an integral over the sphere Sd−1 for the infimum
in the halfspace depth. Here and throughout, the spherical probability measure on Sd−1

is denoted by ωd−1.

Definition 9.1 (Ramsay et al. (2019)). The Integrated Rank-Weighted (IRW) depth of
x ∈ Rd relative to a probability distribution P ∈ P(Rd) is given by:
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DIRW(x, P ) =

∫
Sd−1

DH,1(〈u, x〉, Pu) ωd−1(du) (9.1)

= E
[
DH,1(〈U, x〉, PU )

]
,

where Pu is the pushforward distribution of P defined by the projection x ∈ Rd 7→ 〈u, x〉
and U is a r.v. uniformly distributed on the hypersphere Sd−1.

As explained at length in Ramsay et al. (2019), the name of the data depth (9.1)
originates from the fact that it can be represented as a weighted average of a finite set
of normalized center-outward ranks. It has many advantages over the original halfspace
depth. First, by construction it is robust to noisy directions and sensitive to new data
point outside of the convex hull of the training data set both at the same time, fixing
then the two problems mentioned above. Moreover, concerning numerical feasibility, the
computation of the IRW depth does not require to implement any manifold optimization
algorithm and can be approximately made by means of basic Monte-Carlo techniques,
providing in addition confidence intervals as a by-product, see Remark 9.2 below. Its
contours {DIRW(x, P ) = α}, α ∈ [0, 1], also exhibits a higher degree of smoothness in
general (the depth function (9.1) is continuous at any point x ∈ Rd that is not an atom
for P , cf. Proposition 1 in Ramsay et al. (2019)) and properties (D2, D3, D4, D5) have
been proved to be satisfied by (9.1) under mild assumptions, see Theorem 2 in Ramsay
et al. (2019).

Remark 9.2. (Monte-Carlo approximation) Recall that a r.v. uniformly distrib-
uted on the hypersphere Sd−1 can be generated from a d-dimensional centered Gaussian
random vector W with the identity Id as covariance matrix: if W ∼ N (0, Id), then
W/||W || ∼ ωd−1, see Krantz and Parks (2008). Hence, a basic Monte-Carlo method
to approximate (9.1) would consist in generating nproj ≥ 1 independent realizations
W1, . . . ,Wm of N (0, Id) and compute

1

nproj

nproj∑
j=1

DH,1(〈Wj/||Wj ||, x〉, PWj/||Wj ||), (9.2)

refer to e.g. Kalos and Whitlock (2008) for an account of Monte-Carlo integration meth-
ods.

However, it does not satisfy the key property (D1) (affine-invariance) in general. The
fact that it is affected by non-uniform scaling is problematic in practice (regarding its
interpretability in particular or its use for anomaly detection tasks for instance, see
Section 9.3.4) and is the main flaw of this approach, as pointed out in Cuevas and
Fraiman (2009) and Ramsay et al. (2019). An analytical counter-example is provided
below.

Consider the discrete probability measure P assigning the weight 1/3 to the bivariate
points in S3 = {(−1, 2), (3, 3), (2, 1)} and let us compute the IRW depth of x = (0, 1) and
y = (3, 2) relative to P . It is easy to see that the mappings u ∈ S1 7→ DH,1(〈u, x〉, Pu)
and u ∈ S1 7→ DH,1(〈u, y〉, Pu) take only two values, 0 or 1/3. Identifying S1 as [0, 2π[,
the univariate halfspace depth of x relative to P is then null for any u ∈ [π/4, π/2] ∪
[5π/4, 3π/2] and equal to 1/3 if u belongs to the complementary set. In addition,
DH,1(〈u, y〉, Pu) is equal to 0 for any u ∈ [3π/4, π] ∪ [7π/4, 2π] and equal to 1/3 on
the complementary set. One may easily check that DIRW(x, P ) = DIRW(y, P ) = 0.25
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and the same rank would be then assigned to each point by the IRW depth. Now,
multiplying all ordinate values by 2, which is an affine transformation, the univariate
halfspace depth of x̃ = (0, 2) is now null for all u in [π/8, π/2] ∪ [9π/8, 3π/2] while it
remains equal to 1/3 on the complementary set of this region. The depth of x̃ is thus
lower than 0.25. On the other hand, the univariate depth of ỹ = (3, 4) is now null on
[7π/8, π] ∪ [15π/8, 2π] while it remains equal to 1/3 on the complementary set of this
interval. It follows that DIRW(x̃) = 5/24 < 0.25 < 7/24 = DIRW(ỹ).

9.1.2 The AI-IRW Depth

Here we propose to modify the depth function (9.1) in order to ensure that property
(D1) is always satisfied when the random vector X with distribution P under study is
assumed to be square integrable with positive definite covariance matrix Σ. Precisely,
rather than taking the expectation w.r.t. a random direction U uniformly distributed
on Sd−1 (i.e. integrating over all possible directions u ∈ Sd−1), one considers the random
projections defined by the eigenfunctions of the matrix Σ, i.e. the principal components
of the r.v. X. In other words, the expectation is taken w.r.t. the distribution of the
random vector V = Σ−>/2U/||Σ−>/2U || valued in Sd−1, yielding the definition below.

Definition 9.3 (Affine-invariant IRW depth). The Affine-Invariant Integrated
Rank-Weighted (AI-IRW) depth relative to a square integrable random vector X with
probability distribution P on Rd and positive definite covariance matrix Σ is given by:

∀x ∈ Rd, DAI−IRW(x, P ) = E
[
DH,1(〈V, x〉, PV )

]
, (9.3)

where V = Σ−>/2U/||Σ−>/2U || and U is uniformly distributed on the hypersphere Sd−1.

The matrix Σ−1/2 can be obtained either by singular value decomposition or by the
Cholesky decomposition and thus corresponds to a “whitening” matrix rather than the
true square root matrix. We keep this small abuse of notation for for a better under-
standing of the approach. Of course, in the case where the covariance matrix Σ of the
supposedly square integrable r.v. X is not invertible, the AI-IRW depth notion should
be applied to an orthogonal projection, after an appropriate dimensionality reduction
step. From a computational perspective, The AI-IRW depth can be approximated by
Monte-Carlo methods in the same way as (9.1), see Remark 9.2. As revealed by the
proposition stated below, the depth function (9.3) inherits all the properties of (9.1)
under similar assumptions and is remarkably invariant under any affine transformation
in addition.

Proposition 9.4. The assertions below hold true for any probability distribution P of
a square integrable r.v. X valued in Rd with positive definite covariance matrix.

(i) The AI-IRW depth satisfies the properties D1 and D4. In addition, D2 and D3

hold for halfspace symmetric distributions.

(ii) The AI-IRW depth function is continuous at each point x that is not an atom for
P .

The proof is detailed in Section 9.5.1. It is known that for elliptical distributions,
affine invariant data depth level sets are concentric ellipsoids with the same center and
orientation as the density level sets (Liu and Singh, 1993). Therefore, the ordering
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returned by affine-invariant data depths should be equal to that of the density function.
Thus, in order to highlight the discrepancy between AI-IRW and IRW w.r.t. affine-
invariance, we propose to compare the ordering returned by AI-IRW and IRW to that
of the density function on the Gaussian distribution which belongs to the family of
elliptical distributions. As illustrated by the Rank-Rank plots in Figure 9.1, the ordering
defined by the (empirical) AI-IRW depth is generally much closer to that induced by
the underlying density than the order defined by the original (IRW depth) version. See
also the Figure 9.2 that illustrates the non affine-invariance of the IRW and the affine-
invariance of the AI-IRW. Indeed, the IRW contours are spherical while the AI-IRW
contours are ellipsoidal like those of the underlying Student-10 density.
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Figure 9.1 – Rank-Rank plots comparing the ranks of 1000 points sampled from a 10-d
(anisotropic) Gaussian distribution with covariance matrix drawn at random from a
Wishart distribution (with parameters (d, Id)) induced by the depth (AI-IRW on the
left, IRW on the right) and those induced by the Gaussian density.

Figure 9.2 – The IRW depth (left) and the AI-IRW (right) depth on a Student-10
distribution. The darker the point, the lower the depth.

In practice, the distribution P is generally unknown as well as the covariance matrix Σ
and only a sample Sn = {X1, . . . , Xn} composed of n ≥ 1 independent realizations of
the distribution P is available. A statistical counterpart of the AI-IRW depth can be
obtained by replacing P with the empirical measure Pn = (1/n)

∑n
i=1 δXi and Σ−>/2

with an estimator Σ̂−>/2 based on Sn and plugging them next into formula (9.3) when
Σ̂ is invertible, yielding: ∀x ∈ Rd,

DAI−IRW(x, Pn) = E
[
DH,1(〈V̂ , x〉, P

V̂ ,n
) | Sn

]
, (9.4)
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where V̂ = Σ̂−>/2U/||Σ̂−>/2U || and U is a r.v. uniformly distributed on Sd−1 inde-
pendent from the Xi’s. The two notations DAI−IRW(x, Pn) and D̂AI−IRW(x) are used
throughout this section and have the same meaning. From a practical perspective, the
(conditional) expectation (9.4) can also be approximated by means of a basic Monte-
Carlo scheme, generating nproj ≥ 1 i.i.d. random directions U1, . . . , Unproj , copies of the
generic r.v. U and independent from the original data Sn: ∀x ∈ Rd,

D̃MC
AI−IRW(x, Pn) =

1

nproj

nproj∑
j=1

min

{
F
V̂j ,n

(
〈V̂j , x〉

)
, 1− F

V̂j ,n

(
〈V̂j , x〉

)}
, (9.5)

where, for all j ∈ {1, . . . , nproj} and t ∈ R, we set

V̂j = Σ̂−>/2Uj/||Σ̂−>/2Uj || and F
V̂j ,n

(t) =
1

n

n∑
i=1

I
{
〈V̂j , Xi〉 ≤ t

}
.

Putting aside the issue of estimating Σ−>/2 (discussed below), attention should be paid
to the fact that the approximate sample version (9.5) is very easy to compute (see the
Algorithm 9.1 where the AI-IRW approximation is computed over the whole sample)
and involves no optimization procedure, in contrast to many other notions of depth
function.

Algorithm 9.1 Approximation of the AI-IRW depth.
input: Sn,nproj.

9 Construct U ∈ Rd×nproj by sampling uniformly nproj vectors U1, . . . , Unproj in Sd−1

10 Compute Σ̂ using any estimator

11 Perform Cholesky or SVD on Σ̂ to obtain Σ̂−1/2

12 Compute V = Σ̂−1/2U/||Σ̂−1/2U||

13 Compute M = XV, where X = [X1, . . . , Xn]> ∈ Rn×d

14 Compute the rank value σ(i, j), the rank of index i in M:,j for every i ≤ n and j ≤ nproj

15 Set D̃MC
AI−IRW(Xi,Sn) = 1

nproj

∑nproj

j=1 σ(i, j) for every i ≤ n

16 return
{
D̃MC

AI−IRW(Xi,Sn), 1 ≤ i ≤ n
}

On estimating the square root of the precision matrix. Consider the d × n
matrix (X1, . . . , Xn) with the Xi’s as columns. The simplest way of building an es-
timate Σ̂−>/2 consists in computing the empirical version of the covariance matrix
Σ̂ = (1/n)

∑n
i=1XiX

>
i , which is a natural and nearly unbiased estimator, and inverting

next its square root, when the latter is positive definite (which happens with overwhelm-
ing probability). For simplicity, this is the estimation we consider in the finite-sample
study presented in the next section. However, alternative techniques can be used, yield-
ing possibly more efficient estimators under specific assumptions, in high-dimension
especially. Shrinkage procedures for covariance estimation under sparsity conditions
have been investigated in e.g. Ledoit and Wolf (2004); Chen et al. (2010) and Schäfer
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and Strimmer (2005), while a lasso method for direct estimation of the precision mat-
rix, avoiding matrix inversion, is proposed in Friedman et al. (2008). Robust covariance
estimation techniques, tailored to situations where the data are possibly contaminated
or heavy-tailed, have also been documented in the literature, see e.g. Rousseeuw (1984)
and Rousseeuw and van Driessen (1999). Classically, from a symmetric definite positive
estimator of the covariance matrix, one can easily build an estimator of the square root
of the precision matrix by inverting a triangular/diagonal matrix. Due to the presence
of Σ̂−>/2 in (9.4) (respectively, in (9.5)), it is far from straightforward to assess the ac-
curacy of the estimators of the AI-IRW depth proposed above. It is the purpose of the
next section to study the uniform deviations between (9.3) and its empirical versions
from a nonasymptotic perspective.

9.2 Finite-Sample Analysis - Concentration Bounds

We now investigate the accuracy of the statistical version, as well as that of its Monte-
Carlo approximation, of the AI-IRW depth function introduced in the previous section
in a nonasymptotic fashion. Precisely, we establish a concentration bound for the max-
imal deviations between the true and estimated AI-IRW depth functions. We assume
here that the estimator of the square root of the precision matrix is given by the inverse
of the square root of the empirical covariance, when the latter is definite positive (which
happens with overwhelming probability), and by that of any definite positive regular-
ized version (e.g. Tikhonov) of the latter otherwise. The subsequent analysis requires
additional hypotheses, listed in the next section.

9.2.1 Assumptions

The first assumption, classical when estimating the precision matrix (see e.g. Cai and
Zhou, 2013 or Fan et al., 2016), stipulates that the eigenvalues σ1, . . . , σd of the covari-
ance matrix Σ of the square integrable random vector X considered are bounded away
from zero.

Assumption 9.5. There exists ς > 0 such that: ∀k ∈ {1, . . . , d}, ς ≤ σk.

The second assumption is technical, see Davis and Kahan (1970). It stipulates that Σ’s
eigenvalues are all of multiplicity 1 and that Σ’s minimum eigengap is bounded away
from zero.

Assumption 9.6. There exists γ > 0 such that: ∀k ∈ {1, . . . , d−1}, γ ≤ σ(k)−σ(k+1),
where σ(1) > . . . > σ(d) are Σ’s eigenvalues sorted by decreasing order of magnitude.

We point out that, just like when Σ is not invertible, one can always reduce the analysis
to a situation where Assumption 9.6 is fulfilled by means of a preliminary dimensionality
reduction step. Notice incidentally that, when Σ = σ Id, with σ > 0, the AI-IRW reduces
to IRW. The other assumptions correspond to smoothness conditions of Lipschitz type
for the function φ : (u, x) ∈ Sd−1 × Rd 7→ P

{
〈u,X〉 ≤ 〈u, x〉

}
.

Assumption 9.7. (Uniform Lipschitz condition in projection) For all (x, y) ∈
Rd × Rd, there exists Lp < +∞ such that:

sup
u∈Sd−1

|φ(u, x)− φ(u, y)| ≤ Lp||x− y||.
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Assumption 9.8. (Uniform radial Lipschitz condition) For all (u, v) ∈ Sd−1×
Sd−1, there exists LR < +∞ such that:

sup
x∈Rd

|φ(u, x)− φ(v, x)| ≤ LR||u− v||.

Notice that the same assumptions are involved in the non-asymptotic rate bound ana-
lysis carried out for the halfspace depth estimator in Burr and Fabrizio (2017) and are
used to establish limit results related to its approximation in Nagy et al. (2020b). The
Lipschitz conditions are satisfied by a large class of probability distributions, for which
Lipschitz constants LR and Lp can be both explicitly derived. For instance, if the distri-
bution P of X has compact support included in the ball B(0, r) = {x ∈ Rd : ||x|| ≤ r}
(relative to the Euclidean norm || · ||) with r > 0 and is absolutely continuous w.r.t. the
Lebesgue measure with a density bounded by M > 0, the uniform Lipschitz conditions
are then fulfilled with LR = MVd,r and Lp = MVd−1,r, where Vd,r = πd/2rd/Γ(d/2 + 1)
is the volume of the ball B(0, r) and z ≥ 0 7→ Γ(z) =

∫∞
0 tz−1e−tdt means the Gamma

function, refer to Burr and Fabrizio (2017) for additional examples. In contrast, a ne-
cessary condition for Assumption 9.7 to be satisfied is the absolute continuity of the
measure P w.r.t. the Lebesgue measure, see Section 4 in Nagy et al. (2020b).

Lemma 9.9. Let r > 0 and denote by Vd,r the volume of the d-ball B(0, r). Assume
that X takes its values in B(0, r) and has an M - bounded density w.r.t. the Lebesgue
measure λd. The r.v. X is uniformly Radially Lipschitz Continuous with constant
LR = MVd,r.

Proof. Let x ∈ Rd. By ||.||g, we mean the geodesic norm on the unit sphere of Rd. It
holds:

|φ(u, x)− φ(v, x)| ≤ P
{
X ∈ B(0, r) : 〈u,X − x〉 and 〈v,X − x〉 are of opposite sign

}
≤M λd

{
z ∈ B(−x, r) : 〈u, z〉 and 〈v, z〉 are of opposite sign

}
(i)

≤ M Vd,r ×
2

π
arccos

(
〈u, v〉

)
= M Vd,r ×

2

π
||u− v||g

≤M Vd,r ||u− v||,

Where (i) arises from the fact that the volume of Eu,x,y defined as:
Eu,x,y = {z ∈ B(−x, r) : 〈u, z〉 and 〈v, z〉 are of opposite sign} is the volume of two
cones of angle ||u− v||g, as depicted in Figure 9.3.

Lemma 9.10. Let r > 0 and assume that X takes its values in B(0, r) and has M -
bounded density w.r.t. the Lebesgue measure λd. Thus X is uniformly Lipschitz con-
tinuous in projection with constant Lp = MVd−1,r.

Proof. Let u ∈ Sd−1. It holds:



9.2. FINITE-SAMPLE ANALYSIS - CONCENTRATION BOUNDS 177

Figure 9.3 – Illustration of the set Eu,x,y in R2. It corresponds to the portion of B(−x, r)
hatched in red.

|φ(u, x)− φ(u, y)| ≤ P
{
X ∈ B(0, r) : 〈u,X − x〉 and 〈u,X − y〉 are of opposite sign

}
≤M λd

{
z ∈ B(0, r) : 〈u, z − x〉 and 〈u, z − y〉 are of opposite sign

}
(i)

≤ M Vd−1,r × |〈u, x〉 − 〈u, y〉|
≤M Vd−1,r ||x− y||.

Where (i) arises from the fact that we encompass Fu,x,y by an hyper-cylinder of length
|〈u, x〉−〈u, y〉| where Fu,x,y ={z ∈ B(0, r) : 〈u, z−x〉 and 〈u, z−y〉 are of opposite sign},
as illustrated in Figure 9.4.

9.2.2 Intermediate Results

In order to prove our main results, we first recall useful results on maximum deviations
of the halfspace depth estimator as well as the sample covariance matrix in the case of
sub-Gaussian distributions.

Lemma 9.11 (Shorack andWellner (1986), Chapter 26). Let P ∈ P(Rd). Let X1, . . . , Xn

a sample from P with empirical measure Pn = (1/n)
∑n

i=1 δXi . Denote by Fu and Fu,n
the cdf of Pu and Pu,n respectively. Then, for any t > 0, it holds:

P

 sup
x∈Rd
u∈Sd−1

∣∣∣∣Fu,n(u>x)− Fu(u>x)

∣∣∣∣ > t

 ≤ 6(2n)d+1

(d+ 1)!
exp(−nt2/8).

Proof. Combining the bound in Vapnik and Chervonenkis (1974), page 215, with the
fact that the set of halfspaces of Rd is a Vapnik-Chervonenkis class (VC) with dimension
equal to d + 2 (Dudley, 1979), and applying this to the classical Vapnik-Chervonenkis
inequality (Vapnik and Chervonenkis, 1971, Theorem 3) lead to the desired result.
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Figure 9.4 – Illustration of the set Fu,x,y in R2. It corresponds to the portion of B(0, r)
hatched in red.

Lemma 9.12 (Variant of Vershynin, 2012, Proposition 2.1). Let Σ be the covari-
ance matrix of a % sub-Gaussian random variables X that takes its values in Rd. Let
X1, . . . , Xn be a sample from X and denote by Σ̂ = 1

n

∑n
i=1XiX

>
i the sample covariance

(SC) estimator of Σ. Then it holds:

P
(
||Σ̂− Σ||op > t

)
≤ 2× 9d exp

−n2 min

{
t2

(32%2)2
,

t

32%2

} .

Let σd > . . . > σ1 and σ̂d > . . . > σ1 be respectively the ordered eigeinvalues of Σ and
Σ̂. Using Weyl’s Theoreom (Weyl, 1912), it holds:

P

(
max

1≤k≤d
|σ̂k − σk| > t

)
≤ 2× 9d exp

−n2 min

{
t2

(32%2)2
,

t

32%2

} .

Proof. Let Nρ be an ρ-net of the sphere Sd−1. Applying Lemma 2.2 in Vershynin
(2012) on Σ̂− Σ, for any t, ρ > 0, we have:

P
(
||Σ̂− Σ||op > t

)
≤ P

(
1

1− 2ρ
max
v∈Nρ
|v>(Σ̂− Σ)v| > t

)
≤ |Nρ| P

(
|v>(Σ̂− Σ)v| > (1− 2ρ) t

)
,

where |Nρ| stands for the cardinal of the set Nρ. Noticing that Σ̂ = 1
n

∑n
i=1XiX

>
i is a

sum of independent matrices we have:
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v>(Σ̂− Σ)v =
1

n

n∑
i=1

Zi − EZi,

where Zi = (v>Xi)
2 for every 1 ≤ i ≤ n and Zi − EZi are i.i.d random variables that

are ((16%)2, 16%2) sub-exponential.

Choosing ρ = 1/4, noticing that N1/4 ≤ 9d and applying the sub-exponential tail bound
lead to the desired result.

9.2.3 Main Results

We are now ready to state the main theoretical contribution of this chapter. The
bounds stated in the theorem below reveal the accuracy of the statistical estimates
(9.4) and (9.5) and highlight their behavior through explicit constants depending on
the parameters of the hypotheses involved.

Theorem 9.13. Suppose that the distribution P of the r.v. X is % sub-Gaussian and
satisfies Assumptions 9.5, 9.6, 9.7 and 9.8. The following assertions hold true.

(i) For any δ ∈

(
max{Θ, 12.9d} e−

n
2

min
{
α,α2,α∆/8

}
, 1

)
, we have with probability at

least 1− δ:

sup
x∈Rd

∣∣∣∣DAI−IRW(x, Pn)−DAI−IRW(x, P )

∣∣∣∣ ≤ ∆(LR, d, γ, ς, %) max
s=1,2

(
d+ log(2/δ)

n

)1/s

+

√
8 log(Θ/δ)

n
,

where ∆ = 512LR%
2 max{1/ξ, 2

√
2d/γ} with ξ ∈ (0, ς), α(ς, %) = (ς − ξ)/(32%2)

and Θ = 12(2n)d+1/(d+ 1)!.

(ii) Let r > 0. For any δ ∈

(
max{Θ, 12.9d} e−nmin

{
α,α2,α∆/8

}
, 1

)
, we have with

probability at least 1− δ:

sup
x∈B(0,r)

∣∣∣∣D̃MC
AI−IRW(x, Pn)−DAI−IRW(x, P )

∣∣∣∣ ≤2

√√√√d log
(

3r nproj

)
+log(6/δ)

18nproj
+

4Lp
3nproj

+
8∆

3
max
s=1,2

(
d+ log(2/δ)

n

)1/s

+

√
128 log(3Θ/2δ)

9n

where the constants Θ, ∆, α and the parameter ξ ∈ (0, ς) are the same as those
involved in (i).
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The detailed proof is postponed to the Section 9.5.2. The upper confidence bound in
assertion (i) is decomposed into two terms. The first term, of order O(n−1/2), owes
its presence to the replacement of Σ−1/2 by its estimator. The second term, of order
O(
√

log(n)/n) and exhibiting a sublinear dependence in the dimension d , corresponds
to the bound that would be obtained if Σ−1/2 were known (it is then derived by means
of the arguments used to study the concentration properties of the empirical halfspace
depth, see Chapter 26 in Shorack and Wellner, 1986). The upper confidence bound in
assertion (ii) differs from that in assertion (i) in two respects. First, the additional
terms clearly show the effect of the Monte-Carlo approximation, which is negligible
when n� nproj. Second, the maximal deviation is taken over a compact subset of Rd.
Furthermore, our theoretical analysis can be easily extended to the deviations of the
sample version of IRW by simply omitting the term involving the square root of the
precision matrix corresponding to the first term of (i) and the last term of (ii) leading
to faster rates (see Corollary 9.15).

A limited confidence interval. The proof of the assertion (i) relies on controlling the
deviations between the eigenvectors (resp., the inverses of the square-root eigenvalues)
of Σ̂ and those of the true covariance matrix. The lower bound of the δ-range results
from this control and is not limiting in practice since it decreases exponentially fast
when the sample size increases.

About the constants. Both upper bounds are provided with explicit constants. The
explicit linear dependency in d is due to the operator norm that appears in the proof
when controlling the eigenvectors of Σ̂ − Σ. It implies an additional square root of d
in the constant ∆ following the classical inequality ||A||op ≤

√
d||A||1 for any matrix

A ∈ Rd×d of rank d. However, Lipschitz constants Lp and LR, that are mandatory
in order to derive bounds uniformly on Rd (or B(0, r)), appear to exhibit an implicit
dependence on the dimension d. Indeed, these constants can be derived for r.v. valued
in a compact support with bounded density exhibiting an exponential dependence on d.
Unfortunately, this concern cannot be avoided unless removing the supremum involved
in (i) and (ii). While the depth value at a single point x ∈ Rd is usually of limited
importance, it is often more relevant in practice that an ensemble of depth values, i.e.
the set {D(x, P ), x ∈ Rd}, are simultaneously well approximated by their empirical
versions for comparison purposes. This implies estimation guarantees for the ranks
induced by the depth function when computed on the whole sample X1, . . . , Xn, on
which several applications such as anomaly detection fully rely on. The eigengap γ
appears in the denominator due to the use of a variant of the Davis-Kahan theorem
(Davis and Kahan, 1970), so as to control the deviations between the eigenvectors of Σ̂
and those of Σ, and can not be avoided. Observe that both upper-bounds explode as
γ or ς vanish. These constants, related to the covariance matrix estimation, are often
small in practice (see the Appendix where they are computed on the benchmarked
datasets used in Section 9.3.4). However, they are often negligible w.r.t. the Lipschitz
constant in the numerator that is O(ed) as mentioned above and is thus not limiting.
Notice finally the presence of the free parameter ξ ∈ (0, ς) in the bound: the larger ξ,
the smaller the constant ∆ and the shorter the range of acceptable confidence levels δ.

On optimality. In absence of lower bound (and to the best of our knowledge, no such
result is documented in the statistical depth literature yet), the optimality of the bounds
above cannot be claimed of course. However, the proof partly consists in bounding
the risk of the estimator of the covariance matrix Σ and involves the estimation rates
given in Lemma 9.12, which are known to be optimal for sub-Gaussian distributions
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(Vershynin, 2012). It has been shown that faster rates for the estimation of the inverse
of the covariance matrix can be established under additional sparsity assumptions (see
e.g. Theorem 5 in Cai et al., 2010).

Choice of nproj. The difficulty of approximating an integral over Rd by means of
Monte-Carlo techniques grows with d. Our theoretical results, such as the upper bound
in (ii), shed light on the behaviour of nproj w.r.t. the dimension d. Indeed, focusing
on the term 4Lp/(3nproj), Lp can be made explicit for density bounded distributions
involving the volume of the unit sphere Sd−1 that depends exponentially on d (see the
paragraph above Theorem 9.13). Thus, nproj should be higher than O(ed) to yield a
good statistical approximation. However, in practice, since computation times depend
on nproj, a trade-off between statistical accuracy (the higher nproj, the better) and
computational burden (the higher nproj, the heavier) must be found in practice, see
Section 9.3.

Remark 9.14. (Related work) We point out that nonasymptotic results about the
accuracy of sample versions of statistical depths, such as those stated above, are seldom
in the literature. To the best of our knowledge, rate bounds have only been derived in the
halfspace depth case before. The first result (see Shorack and Wellner, 1986, Chapter
26), where uniform rates of the sample version are provided, uses the fact that the set of
halfspaces in Rd is of finite VC dimension. Recently, this result has been refined under
the Assumptions 9.7 and 9.8 in Burr and Fabrizio (2017). Asymptotic rates of conver-
gence for the Monte-Carlo approximation of the halfspace depth, i.e. when the minimum
over the unit hypersphere is approximated from a finite number of directions, have been
recently established in Nagy et al. (2020b). In contrast to the finite-sample framework,
uniform asymptotic rates have been proved in several settings. Unfortunately, approxim-
ating a minimum over the unit sphere Sd−1 using a Monte-Carlo scheme is not optimal.
Indeed when the distribution is assumed to belong to a bounded subset of Rd with bounded
density, the authors obtain slow rates of order O((log(nproj)/nproj)

1/(d−1)) suffering from
the curse of dimensionality. Futhermore, they show that obtaining uniform rates of the
halfspace depth approximation is not possible in absence of the bounded density assump-
tion (see Section 4.2 in Nagy et al., 2020b).

A finite sample analysis on the approximation of IRW can be derived from our results
on AI-IRW as it is described in the next corollary. The proof, which follows from that
of the theorem, is detailed in Section 9.5.3 for completeness.

Corollary 9.15. Suppose that the distribution P of the r.v. X satisfies Assumptions
9.7 and 9.8. Then, for any δ ∈ (0, 1), it holds:

sup
x∈B(0,r)

∣∣∣∣D̃MC
IRW(x)−DIRW(x, P )

∣∣∣∣ ≤
√

8 log(Θ/δ)

n
+ 2

√√√√d log
(

3rproj

)
+ log(6/δ)

8nproj
+

2Lp
nproj

,

where Θ = 12(2n)d+1/(d+ 1)!.

9.3 Numerical Experiments

The advantages of the novel notion of depth introduced in Section 9.1 are supported by
various experimental results in this part. First, we explore empirically the behavior of
the returned ranks as the number of sampled projections increases in order to provide
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insights on the choice of nproj in practice. Second, the robustness of the AI-IRW depth
is explored when using sample covariance (SC) and Minimum Covariance Determinant
(MCD; Rousseeuw, 1984) estimators. Further, the variance of the returned score w.r.t.
to both sample realizations and noisy projections is investigated. Eventualy, the applic-
ation of the AI-IRW depth to anomaly detection is considered, illustrating clearly the
improvement on the performance attained, compared to the IRW depth.

9.3.1 On Approximating the AI-IRW Depth

The accuracy of Monte-Carlo approximation, depending on the number nproj of ran-
dom directions uniformly sampled, is evaluated for the empirical versions of the AI-
IRW depth. A robust estimator of the AI-IRW is also introduced using the well-known
Minimum Covariance Determinant (MCD) estimator (Rousseeuw, 1984) of the sample
covariance matrix. The experiment is based on samples of size n = 1000 drawn from a
centered Gaussian distribution with covariance matrix sampled from a Wishart distribu-
tion (with parameters (d, Id)) where the dimension d varies in {2, 5, 10, 15, 20, 30, 40, 50}.
We compute D̃MC

AI-IRW on these samples by varying the number of projections nproj

between 100 and 7000. As AI-IRW does not possess any closed-form, we propose to
evaluate the quality of the returned ranks considering D̃MC

AI-IRW computed with nproj =
200000 projections as the “true” depth. The coherence between ranks is assessed using
the popular Kendall τ correlation coefficient, see Kendall (1938). This whole procedure
is repeated 10 times and the averaged results are reported in Figure 9.5. As expected,
the quality of the approximation increases with nproj and decreases with d. Interestingly,
sharp approximations are obtained with far less than O(ed) projections. Indeed, in the
worst case, i.e. when d = 50, a correlation of 0.93 is attained for AI-IRW, using both SC
and MCD (with support fraction set to (n+d+1)/2) estimators, with only 5500 directions
which is roughly 100×d while e50 ≈ 1021. In low dimension, few projections are needed
to obtain correlation higher than 0.98. In view of these results and because of the
computation time of the approximations depicted in Figure 9.6, choosing nproj = 100d
appears as a good compromise between statistical accuracy and computation time, as
done in the next experiment.
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Figure 9.5 – Kendall correlation between the approximated ranks of the IRW depth
(top), AI-IRW using SC (middle), AI-IRW using MCD (bottom) and their true ranks
depending on the number of approximating projections nproj for a Gaussian distribution.
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Figure 9.6 – Computation time of the AI-IRW depth using both SC and MCD estimators
and the IRW depth depending on the number of projections for various dimensions. AI-
IRW and IRW have the same computation time since the computation of the sample
covariance matrix is negligible w.r.t. the computation of the IRW depth.
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9.3.2 Exploring AI-IRW with the MCD Estimator

In this section, we investigate the quality of the approximation as well as the robustness
of the AI-IRW depth using both SC and MCD estimators with two experiments.

9.3.2.1 Approximation and Robustness

The first experiment is conducted as follows. The accuracy of Monte-Carlo approxima-
tion, depending on the number m of random directions uniformly sampled, is evaluated
for the empirical versions of the AI-IRW depth using SC and MCD estimators as well
as the IRW depth. The experiment is based on samples of size n = 1000 drawn from
the multivariate standard Gaussian distribution (standard, so that non affine invariant
depth are not disadvantaged) in dimension d = 5. The classical Kendall τ distance,
given by

dτ (per,per′) =
2

n(n− 1)

∑
i<j

I{(per(i)−per(j))(per′(i)−per′(j))<0},

for all permutations per and per′ of the index set {1, . . . , n}, is used to measure the
deviation between the ranks induced by the “true” depth (approximated with nproj =
200000 projections since there exists no closed-form) and those defined by the Monte-
Carlo approximation of the sampling version. The averaged Kendall τ ’s (over 10 runs),
that correspond to one minus the Kendall correlations, are displayed in Figure 9.7. One
observes that the approximate empirical AI-IRW depth is not affected by the covariance
estimation step, its behavior is similar to that of the approximate empirical IRW depth
for the Gaussian distribution when using both covariance estimators. On the other
hand, a slight advantage is awarded to MCD under the heavy-tailed Student-3 model.
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Figure 9.7 – Coherence of the returned rank measured by Kendall τ distance depending
on the number of approximating projections for Gaussian (left) and Student-3 (right)
distributions for AI-IRW (using SC and MCD estimates) and IRW.

9.3.2.2 Robustness w.r.t. Increasing Proportion of Outliers

In the second experiment, we examine the robustness of the returned ordering. It is
based on the construction of two contaminated data sets from samples of size n = 100
drawn from the multivariate standard Gaussian distribution (standard, so that non
affine invariant depths are not disadvantaged) in dimension d = 2. To build corrupted
data set, the two following contaminated models are used. The first is based on adding
“isolated outliers” where each of them is defined as (0, a) where a is sampled uniformly
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between [4, 400]. The second is based on adding “aggregated outliers” by randomly and
uniformly drawing a location a′ in [4, 400] and then drawing anomalies following the
Gaussian distribution N ((a′, a′), I2). Therefore, each data set is constructed as follows:
a proportion of outliers ε ∈ [0, 0.15] is added to the normal data, represented by the
standard Gaussian distribution, following one of the two aforementioned contamination
models and thus yields two settings. The AI-IRW depth using SC and MCD estimators
as well as the IRW depth are computed on these contaminated data sets. The Kendall
τ distance is used to measure the deviation between the “true” ranks that are computed
on samples without corruption and those computed on samples with corruption w.r.t.
a proportion of anomalies ε. The averaged Kendall τ ’s (over 100 runs) are displayed
in Figure 9.8. As expected, results show that the MCD estimator provides robustness
to the AI-IRW depth while the sample covariance estimator breaks down after only
1% of anomalies. Interestingly, the MCD estimator does not bring more robustness
than the underlying robustness of the IRW depth. It highlights somehow a “worst case”
robustness between the estimator of the covariance matrix and the underlying IRW
depth which is reached by the latter.
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Figure 9.8 – Coherence of the returned rank measured by Kendall τ depending on
outliers proportion for Student-3 (left) and Gaussian (right) distributions for AI-IRW
(using SC and MCD estimates) and IRW.

9.3.3 Variance of AI-IRW Score

9.3.3.1 Variance w.r.t. Sample Realizations

We compare the stability of the approximation estimator AI-IRW measuring its vari-
ance. For 100 points stemming from a 10-dimensional Gaussian distribution with zero
mean and covariance matrix drawn from the Wishart distribution (with parameters
(d, Id)) on the space of definite matrices, the variance of the returned score is computed
on two points, denoted by x1 and x2, drawn randomly from the 100 points previous
points. The score is computed for AI-IRW, IRW, halfspace mass (Chen et al., 2015a)
and halfspace depths each approximated using nproj = 100 directions. Figure 9.9 illus-
trates that (1) no additional variance is introduced by the affine-invariant version, (2)
closeness of the three scores (due to absence of correlation), as well as (3) their higher
concentrations compared to halfspace mass and halfspace depth.
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Figure 9.9 – Variance of the score of x1, x2 (from left to right) over 1000 repetitions for
the AI-IRW, IRW, halfspace mass (HM) and halfspace (Tukey) depths.

9.3.3.2 Variance w.r.t. Noisy Directions

The previous experiment is repeated with different level of Gaussian noise that are
added to sampled directions, i.e. U = W+εN (0,Id)

||W+εN (0,Id || . This experiment is conducted with
AI-IRW, IRW, HM and halfspace depth using nproj = 100 sampled directions. The
root mean square variance (over 100 repetitions) between the returned score and the
original score (without noise) are computed for x1, x2 (same as those in Section 9.3.3.1),
see Figure 9.10. Results show that AI-IRW (using the SC estimator) shares very few
differences with IRW while the superiority of AI-IRW (and IRW) over the existing
methods depth such as haflspace and halfspace mass is highlighted.
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Figure 9.10 – Variance of the score of x1, x2 (from left to right) over the noise level
induced in sampled directions with 1000 repetitions for the AI-IRW, IRW, Tukey depth.

9.3.4 Application to Anomaly Detection

9.3.4.1 Anomaly Detection: a Comparison on a Toy Data Set

In this part, a comparison between AI-IRW (with MCD), IRW and the halfspace depth
is provided. To conduct this experiment, we construct a toy contaminated data set
(see Figure 9.11, left) where aggregated outliers (green points) and some independent
outliers (red points) are added to 1000 points stemming from a 2-dimensional Gaussian
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distribution. The 100 lowest scores are depicted (see Figure 9.11, right) for the three
benchmarked data depths. Results show that AI-IRW is able to assign the lowest depth
to these anomalies while IRW and Tukey both fail to identify them.
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Figure 9.11 – Toy data set with outliers (left) and the AI-IRW, IRW and Tukey sorted
scores (right).

9.3.4.2 Real Data Benchmarking

To illustrate the performance improvement due to introduction of affine invariance to
the IRW, we conduct a comprehensive comparative study of anomaly detection on 10
widely used data sets in the literature 1: Mulcross, Shuttle, Thyroid, Wine, Http, Smtp,
Ecoli, Breastw, Musk and Satimage varying in size and dimension, see Table 9.1 for the
details. In this unsupervised setting (we train all methods on unlabeled data), we use
labels only to asses the performance of the methods by Area Under the Receiver Oper-
ation Characteristic curve (AUROC). We contrast the proposed approach with the non
affine-invariant version, the original halfspace depth (T), halfspace mass depth (HM;
Chen et al., 2015a), the AutoEncoder (AE; Zhou and Paffenroth, 2017) where the recon-
struction error is used as anomaly score and one of the most used multivariate anomaly
detection algorithms: Isolation Forest (IF; Liu et al., 2008). The performance of these
methods being relatively insensitive to their parameters, they are set by default. Based
on the previous experiment, AI-IRW, IRW, and halfspace depths are calibrated with
nproj = 100× d. From Table 9.1 one observes that AI-IRW uniformly (and significantly
in many cases) improves on standard IRW that is rather comparable with Isolation
Forest and the halfspace mass depth. Additional information on the data sets are given
in Table 9.2. AI-IRW, IRW, HM and Tukey are implemented from scratch in Python
using numpy python library. Isolation Forest implementation comes from scikit-learn
Python library (Pedregosa et al., 2011) while the AutoEncoder implementation comes
from pyod Python library (Zhao et al., 2019b). All the computations are done on a
computer with 3.2 GHz Intel processor with 32 GB of RAM. The computation time of
methods is given in Table 9.3.

1http://odds.cs.stonybrook.edu/

http://odds.cs.stonybrook.edu/
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AI-IRW IRW HM T IF AE
Ecoli 0.85 0.83 0.88 0.68 0.77 0.64
Shuttle 0.99 0.99 0.99 0.86 0.99 0.99
Mulcross 1 0.98 1 0.87 0.96 1
Thyroid 0.98 0.80 0.84 0.92 0.97 0.97
Wine 0.96 0.96 0.99 0.71 0.8 0.72
Http 1 0.95 0.97 0.99 1 1
Smtp 0.96 0.77 0.74 0.85 0.90 0.82

Breastw 0.97 0.97 0.99 0.84 0.99 0.91
Musk 1 0.84 0.97 0.77 1 1

Satimage 0.99 0.96 0.98 0.95 0.99 0.98

Table 9.1 – AUROCs of benchmarked anomaly detection methods.

n d % of anomaly γ̂ (×0.01) ς̂ (×0.01)

Ecoli 195 5 26 0.3 0.2
Shuttle 49097 9 7 9 5.7
Mulcross 262144 4 10 100 10-10

Thyroid 3772 6 2.5 0.01 0.1
Wine 129 13 7.7 0.9 0.9
Http 567479 3 0.4 19 2.9
Smtp 95156 3 0.03 3.9 36

Breastw 683 9 35 80 20
Musk 3062 166 3.2 9.4 6

Satimage 5803 36 1.2 283 2.6

Table 9.2 – Left: Data sets considered for the performance comparison: n is the number
of instances, d is the number of attributes, γ̂ and ς̂ are the eigengap and the smallest
eigenvalue of the SC estimator respectively.

AI-IRW IRW HM T IF AE
Ecoli 0.04 0.005 0.02 0.005 0.13 9
Shuttle 20 6.8 1.5 6.8 1.4 469
Mulcross 75 27 6.2 27 5.9 2383
Thyroid 1 0.21 0.2 0.2 0.18 42
Wine 0.05 0.01 0.06 0.008 0.12 8.1
Http 97 45 11 45 11 5197
Smtp 22 4.5 1 4.5 1.88 903

Breastw 0.46 0.04 0.06 0.04 0.14 17.2
Musk 20.5 5.23 2.5 5.2 0.43 103

Satimage 6.3 2.63 0.9 2.6 0.31 76

Table 9.3 – Computation time of benchmarked anomaly detection methods in seconds.
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9.4 Conclusion

In this chapter, we have introduced a novel notion of statistical depth (AI-IRW), modi-
fying the original Integrated Rank-Weighted (IRW) depth proposal in Ramsay et al.
(2019). The statistical depth we have introduced has been shown not only to inherit
all the compelling features of the IRW depth, its theoretical properties and its compu-
tational advantages (no optimization problem solving is required to compute it), but
also to fulfill in addition the affine invariance property, crucial regarding interpretabil-
ity/reliability issues. The natural idea at work consists in averaging univariate Tukey
halfspace depths computed from random projections of the data onto (nearly) uncor-
related lines, defined by the (empirical) covariance structure of the data, rather than
projections onto lines fully generated at random. Though the AI-IRW sample version
exhibits a complex probabilistic structure, an estimator of the precision matrix being
involved in its definition, a nonasymptotic analysis has been carried out here, revealing
its good concentration properties around the true AI-IRW depth. The merits of the AI-
IRW depth have been illustrated by encouraging numerical experiments, for anomaly
detection purpose in particular, offering the perspective of a widespread use for various
statistical learning tasks.

9.5 Proofs

9.5.1 Proof of Proposition 9.4

9.5.1.1 Affine-Invariance

Let A ∈ Rd×d be a non-singular matrix and b ∈ Rd. Let ΣX and ΣAX the covariance
matrix of X and AX respectively. Defines the Cholesky decomposition as ΣX = ΛXΛ>X
and ΣAX = AΛXΛ>XA

> = ΛAXΛ>AX . It holds:

DAI−IRW(Ax+ b, AX + b) =
1

Vd

∫
Sd−1

DH,1(〈 Λ−>AX+bu

||Λ−>AX+bu||
, Ax+ b〉, 〈 Λ−>AX+bu

||Λ−>AX+bu||
, AX + b〉) du

=
1

Vd

∫
Sd−1

DH,1(〈Λ−>AX+bu,Ax+ b〉, 〈Λ−>AX+bu,AX + b〉) du

=
1

Vd

∫
Sd−1

DH,1(〈Λ−>AXu,Ax〉, 〈Λ−>AXu,AX〉) du

=
1

Vd

∫
Sd−1

DH,1(〈u,Λ−1
X x〉, 〈u,Λ−1

X X〉) du

=
1

Vd

∫
Sd−1

DH,1(〈 Λ−>X u

||Λ−>X u||
, x〉, 〈 Λ−>X u

||Λ−>X u||
, X〉) du

= DAI−IRW(x, P ).

The same reasoning applies if the square matrix is given by the SVD decomposition.

9.5.1.2 Maximality at the center

Assume that P is halfspace symmetric about a unique β, i.e. P
(
X ∈ Hβ

)
≥ 1

2 for every
closed halfspace Hβ such that β ∈ ∂H with ∂H the boundary of H. Thus, it is easy
to see that DAI−IRW(β, P ) ≥ 1

2 . The uniqueness of β and the fact that DAI−IRW is lower
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than 1/2 for any element in Rd by definition imply that

β = argsup
x∈Rd

DAI−IRW(x, P ).

9.5.1.3 Vanishing at Infinity

The proof is a particular case of the proof of Theorem 1 in Cuevas and Fraiman (2009).
We detail it for the sake of clarity. Let U be a random variable following ωd−1, the
uniform measure on the unit sphere Sd−1. Defines V = Σ−>/2U/||Σ−>/2U || and νd−1 its
probability distribution. Let θ > 0 and x ∈ Rd, then r(θ) := νd−1{v : |〈v,x〉|||x|| ≤ θ} goes
to zero when θ → 0. For any x ∈ Rd\{0}, we have

DAI−IRW(x, P ) =

∫
Rd

min
{
Fv(v

>x), 1− Fv(v>x)
}

dνd−1(v)

≤
∫
Rd

I

{
v :
|〈v, x〉|
||x||

≤ θ

}
dνd−1(v)

+

∫
Rd
Fv(v

>x) I

{
v :
|〈v, x〉|
||x||

> θ, 〈v, x〉 ≤ 0

}
dνd−1(v)

+

∫
Rd

(1− Fv(v>x)) I

{
v :
|〈v, x〉|
||x||

> θ, 〈v, x〉 > 0

}
dνd−1(v)

≤ r(θ) +

∫
Rd
Fv(−θ||x||) I

{
v :
|〈v, x〉|
||x||

> θ, 〈v, x〉 ≤ 0

}
dνd−1(v)

+

∫
Rd

(1− Fv(θ||x||)) I

{
v :
|〈v, x〉|
||x||

> θ, 〈v, x〉 > 0

}
dνd−1(v).

Now, when ||x|| → ∞, the dominated convergence theorem ensures that

lim sup
||x||→∞

DAI−IRW(x, P ) ≤ r(θ) →
θ→0

0.

9.5.1.4 Decreasing Along Rays

The proof is a slight modification of the proof of Assertion (iii) of Theorem 2 in Ramsay
et al. (2019). Details are left to the reader.

9.5.1.5 Continuity

For any P ∈ P(Rd), the continuity of the inner product and the cdf ensure continuity
of DH(v>x, v>X) for any v ∈ Sd−1. Therefore, the continuity of x 7→ DAI−IRW(x, P )
follows from dominated convergence.

9.5.2 Proof of Theorem 9.13

9.5.2.1 Assertion (i)

Introducing terms and using triangle inequality, it holds:
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sup
x∈Rd

∣∣∣∣D̂AI-IRW(x)−DAI-IRW(x, P )

∣∣∣∣ ≤ sup
x∈Rd

∣∣∣∣FV̂ ,n(V̂ >x)− FV̂ (V̂ >x)

∣∣∣∣︸ ︷︷ ︸
(1)

+ sup
x∈Rd

∣∣∣∣FV̂ (V̂ >x)− FV (V >x)

∣∣∣∣︸ ︷︷ ︸
(2)

.

Now, the first term (1) can be controlled using the bound for the deviations of halfspace
depth deferred in Lemma 9.11. Thus, for any t > 0 it holds:

P

(
sup
x∈Rd

∣∣∣∣FV̂ ,n(V̂ >x)− FV̂ (V̂ >x)

∣∣∣∣ > t/2

)
≤ P

 sup
y∈Rd

u∈Sd−1

∣∣∣∣Fu,n(u>y)− Fu(u>y)

∣∣∣∣ > t/2


≤ 6(2n)d+1

(d+ 1)!
exp(−nt2/32). (9.6)

The second term (2) relies on the influence of the deviations of the sample covariance
matrix. First remark that:

sup
x∈Rd

∣∣∣∣FV̂ (V̂ >x)− FV (V >x)

∣∣∣∣ ≤ sup
x∈Rd
u∈Sd−1

∣∣∣∣P
〈 Σ̂−>/2u

||Σ̂−>/2u||
, X − x〉 ≤ 0

∣∣∣∣ Sn


− P

(
〈 Σ−>/2u

||Σ−>/2u||
, X − x〉 ≤ 0

)∣∣∣∣.
Now, since X is radially Lipschitz continuous, we have:∣∣∣∣∣∣P
〈 Σ̂−>/2u

||Σ̂−>/2u||
, X− x〉 ≤ 0

∣∣∣∣Sn
−P(〈 Σ−>/2u

||Σ−>/2u||
, X − x〉 ≤ 0

)∣∣∣∣∣∣≤LR
∣∣∣∣∣∣
∣∣∣∣∣∣ Σ̂−>/2u

||Σ̂−>/2u||
− Σ−>/2u

||Σ−>/2u||

∣∣∣∣∣∣
∣∣∣∣∣∣.

Introducing terms and using triangle inequality leads to:

∣∣∣∣∣∣
∣∣∣∣∣∣ Σ̂−>/2u

||Σ̂−>/2u||
− Σ−>/2u

||Σ−>/2u||

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ ||Σ̂

−1/2 − Σ−1/2||op
||Σ−1/2u||

+ ||Σ̂−1/2u||

 1

||Σ̂−1/2u||
− 1

||Σ−1/2u||


≤ 2||Σ̂−1/2 − Σ−1/2||op

||Σ−1/2u||
,

yielding

sup
x∈Rd

∣∣∣∣FV̂ (V̂ >x)− FV (V >x)

∣∣∣∣ ≤ 2LR
||Σ−1/2||op

||Σ̂−1/2 − Σ−1/2||op. (9.7)

Assume that ODO> and ÔD̂Ô> are the eigenvalues decomposition of Σ and Σ̂ in
orthonormal bases. Thus, thanks to Theorem 4.1 in Wedin (1973), we have:
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||Σ̂−1/2 − Σ−1/2||op ≤ ||D̂−1/2 −D−1/2||op + ||D−1/2||op||Ô −O||op

≤ ||Σ−1/2||op
(
||D̂1/2 −D1/2||op ||D̂−1/2||op + ||Ô −O||op

)
.

Now, since min
i≤d

√
σ̂k ≥

√
ς−max

k≤d
|
√
σ̂k−
√
σk| and max

k≤d
|
√
σ̂k−
√
σk| ≤ 1√

ς
max

1≤k≤d
|σ̂k−σk|,

using Weyl’s inequality leads to

sup
x∈Rd

∣∣∣∣FV̂ (V̂ >x)− FV (V >x)

∣∣∣∣ ≤ 2LR

 ||Σ̂− Σ||op
ς − ||Σ̂− Σ||op

+ ||Ô −O||op

 .

Let Aξ =
{
||Σ̂− Σ||op < ς − ξ

}
for any ξ ∈ [0, ς). Using union bound and combining

(9.7) with the previous equation, for any t > 0 and ξ ∈ (0, ς), it holds:

P

(
sup
x∈Rd

∣∣∣∣FV̂ (V̂ >x)− FV (V >x)

∣∣∣∣ > t/2

)
≤ P

(
2LR
ξ
||Σ̂− Σ||op > t/4

)
+ P

(
Acξ
)

+ P
(

2LR ||Ô −O||op > t/4
)
,

where Acξ stands for the complementary event of Aξ. Applying Lemma 9.12 gives:

P

(
||Σ̂− Σ||op >

ξt

8LR

)
≤ 2× 9d exp

−n2 min

{
(ξt)2

(256LR%2)2
,

ξt

256LR%2

} , (9.8)

and

P
(
Acξ
)
≤ 2× 9d exp

−n2 min


(
ς − ξ

)2
(32%2)2

,
ς − ξ
32%2


 . (9.9)

Furthermore, it is easy to see that ||Ô − O||op ≤
√
d max

k≤d
||Ôk − Ok|| where Ok is the

k-th column of the matrix O. Let γ be the minimum eigengap, following a variant of
the Davis-Kahan theorem (Davis and Kahan, 1970) (see Corollary 1 in Yu et al., 2014),
it holds:

||Ô −O||op ≤
2
√

2d||Σ̂− Σ||op
γ

.

Using Lemma 9.12 again leads to:

P

4LR
√

2d||Σ̂− Σ||op
γ

> t/4

 ≤ 2× 9d exp

−n2 min

{
(γt)2

(512LR
√

2d%2)2
,

γt

512LR
√

2d%2

} .

(9.10)
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Combining (9.8), (9.9) and (9.10), it holds:

P

(
sup
x∈Rd

∣∣∣∣FV̂ (V̂ >x)− FV (V >x)

∣∣∣∣ > t/2

)
≤ 6× 9d exp

(
−n

2
min

{(
κt
)2
, κt

})
,

for any t ≤ (ς − ξ)/(32%2κ) where κ =
1

256LR%2

(
ξ ∧ γ

2
√

2d

)
. Finally, for any t ≤

(ς − ξ)/(32%2κ) it holds:

P

(
sup
x∈Rd

∣∣∣∣D̂AI-IRW(x)−DAI-IRW(x, P )

∣∣∣∣ > t

)
≤ 6.9d exp

(
−n

2
min

{(
κt
)2
, κt

})

+
6(2n)d+1

(d+ 1)!
exp(−nt2/32). (9.11)

Bounding each term in the right side by δ/2 and reverting the equation lead to the
desired result.

9.5.2.2 Assertion (ii)

Let B(0, r) a centered ball of Rd with radius r > 0 and assume that X satisfies as-
sumption 2 for any x ∈ B(0, r). Introducing terms and using triangle inequality, it
holds:

sup
x∈B(0,r)

∣∣∣∣D̃MC
AI-IRW(x)−DAI-IRW(x, P )

∣∣∣∣ ≤ sup
x∈Rd

∣∣∣∣D̂AI-IRW(x)−DAI-IRW(x, P )

∣∣∣∣︸ ︷︷ ︸
(1)

+ sup
x∈B(0,r)

∣∣∣∣DMC
AI-IRW(x, P )−DAI-IRW(x, P )

∣∣∣∣︸ ︷︷ ︸
(2)

.

The first term (1) can be bounded using assertion (i) while controlling the approximation
term (2) relies on classical chaining arguments. As the function z 7→ min(z, 1 − z) is
1-Lipschitz for any z ∈ (0, 1) and by triangle inequality, for any y in B(0, r), we have:∣∣∣∣DMC

AI-IRW(y, P )−DAI-IRW(y, P )

∣∣∣∣ ≤ 1

nproj

nproj∑
j=1

∣∣∣∣P{〈Vj , y〉 ∣∣∣ Vj}− P
{
〈V, y〉

} ∣∣∣∣.
Since it is an average of bounded and i.i.d random variables, combining Hoeffding
inequality and union bound, for any t > 0 and any y in B(0, r), it holds:

P

(∣∣∣∣DMC
AI-IRW(y, P )−DAI-IRW(y, P )

∣∣∣∣ > t/2

)
≤ 2 exp

(
−nprojt

2/2
)
. (9.12)

As X is uniformly continuous Lipschitz in projection for any u ∈ Sd−1, observe that
∀(x, y) ∈ B(0, r)2 it holds:
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∣∣∣∣DMC
AI-IRW(x, P )−DAI-IRW(x, P )

∣∣∣∣≤ ∣∣∣∣DMC
AI-IRW(x, P )−DMC

AI-IRW(y, P )

∣∣∣∣+∣∣∣∣DMC
AI-IRW(y, P )−DAI-IRW(y, P )

∣∣∣∣
+

∣∣∣∣DAI-IRW(x, P )−DAI-IRW(y, P )

∣∣∣∣
≤ 2Lp ||x− y||+

∣∣∣∣DMC
AI-IRW(y, P )−DAI-IRW(y, P )

∣∣∣∣. (9.13)

Now let ζ > 0 and y1, . . . , yN(ζ,B(0,r),||.||2) be a ζ-coverage of B(0, r) with respect to ||.||2.
We have:

log
(
N(ζ,B(0, r), ||.||2)

)
≤ d log

(
3r/ζ

)
. (9.14)

Set N = N
(
ζ,B(0, r), ||.||2)

)
for simplicity. There exists ` ≤ N such that ||x−y`||2 ≤ ζ.

Thus, (9.13) leads to:

∣∣∣∣DMC
AI-IRW(x, P )−DAI-IRW(x, P )

∣∣∣∣ ≤ 2Lp ζ +

∣∣∣∣DMC
AI-IRW(y`, P )−DAI-IRW(y`, P )

∣∣∣∣.
Applying (9.12) to every y` and the union bound, for any t > 0, we get:

P

(
sup
`≤N

∣∣∣∣DMC
AI-IRW(y`, P )−DAI-IRW(y`, P )

∣∣∣∣ > t/2

)
≤ 2N exp

(
−nprojt

2/2
)
,

yielding

P

 sup
x∈B(0,r)

∣∣∣∣DMC
AI-IRW(x, P )−DAI-IRW(x, P )

∣∣∣∣ > t/2

≤2N exp

(
−2nproj

(
t/2− 2Lpζ

)2
)
.

Using (9.11), the union bound and (9.14), we obtain:

P

 sup
x∈B(0,r)

∣∣∣∣D̃MC
AI-IRW(x)−DAI-IRW(x, P )

∣∣∣∣ > t


≤ P

 sup
x∈B(0,r)

∣∣∣∣D̂AI-IRW(x)−DAI-IRW(x, P )

∣∣∣∣ > t/2


+ P

 sup
x∈B(0,r)

∣∣∣∣DMC
AI-IRW(x, P )−DAI-IRW(x, P )

∣∣∣∣ > t/2


≤ 6.9d exp

−n
2

min

{(
κt/2

)2
, κt/2

}+
6(2n)d+1

(d+ 1)!
exp(−nt2/128)

+ 2

(
3r

ζ

)d
exp

(
−2nproj

(
t/2− 2Lpζ

)2
)
.
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Choosing ζ ∼ n−1
proj, bounding each term on the right-hand side by δ/3 and reverting

the previous equation lead to the desired result.

9.5.3 Proof of Corollary 9.15

First notice that

sup
x∈B(0,r)

∣∣∣∣D̃MC
IRW(x, Pn)−DIRW(x, P )

∣∣∣∣≤ sup
x∈Rd

∣∣∣∣D̂IRW(x)−DIRW(x, P )

∣∣∣∣︸ ︷︷ ︸
(1)

+ sup
x∈B(0,r)

∣∣∣∣DMC
IRW(x, P )−DIRW(x, P )

∣∣∣∣︸ ︷︷ ︸
(2)

.

Now, the first term (1) can be controlled using the bound for the deviations of Halfspace
Depth described in Lemma 9.11. Thus, for any t > 0, it holds:

P

(
sup
x∈Rd

∣∣∣∣D̂IRW(x)−DIRW(x, P )

∣∣∣∣ > t/2

)
≤ 6(2n)d+1

(d+ 1)!
exp(−nt2/32). (9.15)

The second term can be bounded following the same reasoning than for the Monte-
Carlo approximated term of AI-IRW described in Section 9.5.2. Thus, with the same
notations, for any t > 0, we have

P

 sup
x∈B(0,r)

∣∣∣∣DMC
IRW(x, P )−DIRW(x, P )

∣∣∣∣ > t/2

 ≤ 2N exp

(
−2nproj

(
t/2− 2Lpζ

)2
)
.

(9.16)

Using (9.15) and (9.16), one gets:

P

 sup
x∈B(0,r)

∣∣∣∣D̃MC
IRW(x, Pn)−DIRW(x, P )

∣∣∣∣ > t


≤ P

 sup
x∈B(0,r)

∣∣∣∣D̂IRW(x)−DIRW(x, P )

∣∣∣∣ > t/2

+P

 sup
x∈B(0,r)

∣∣∣∣DMC
IRW(x, P )−DIRW(x, P )

∣∣∣∣ > t/2


≤ 6(2n)d+1

(d+ 1)!
exp(−nt2/32) + 2

(
3r

ζ

)d
exp

(
−2nproj

(
t/2− 2Lpζ

)2)
.

Choosing ζ ∼ n−1
proj, bounding each term on the right-hand side by δ/2 and reverting

the previous equation lead to the desired result.
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This chapter presents a new discrepancy measure between probability distributions,
well-defined for non-overlapping supports, that leverages the interesting features of data
depths. This measure relies on the average of the Hausdorff distance between the depth-
trimmed regions w.r.t. each distribution and defines a pseudo-metric in general. Its
good behavior w.r.t. major transformation groups as well as its ability to factor out
translations are depicted. Its robustness is investigated through the concept of finite
sample breakdown point. Moreover, we propose an efficient approximation method with
linear time complexity w.r.t. the size of the data set and its dimension. The quality of
this approximation as well as the performance of the proposed approach are illustrated
in numerical experiments.

This chapter is organized as follows. In Section 10.1, the pseudo-metric is introduced
and a theoretical analysis of its properties is investigated. In Section 10.2, an efficient
approximation of the depth-trimmed regions based pseudo-metric, relying on a nice
feature of the Hausdorff distance when computed between convex bodies, is proposed
for convex depth functions. In Section 10.3, the behavior of this algorithm w.r.t. its
parameters is studied through numerical experiments which also highlight the by-design
robustness of this pseudo-metric. In addition, an application to robust clustering of im-
ages is described. In Section 10.4, specific attention is devoted to automatic evaluation
of natural language generation (NLG) showing benefits of this approach when bench-
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marked with state-of-the-art probability metrics. Concluding remarks are collected in
Section 10.5. Eventually, a technical proof is deferred to Section 10.6. This chapter
covers the contribution of:

I G. Staerman, P. Mozharovskyi, P. Colombo, S. Clémençon, F. d’Alché-Buc. A
Pseudo-Metric between Probability Distributions based on Depth-Trimmed Re-
gions. arXiv preprint arXiv:2103.12711, 2021.

10.1 A Pseudo-Metric based on Depth-Trimmed Regions

In this section, we introduce the depth-based pseudo-metric and study its properties.
To fairly compare depth regions from different probability distributions, we consider
depth regions possessing the same mass of probability (see e.g. Paindaveine and bever,
2013). We denote by α : (β, P ) ∈ [0, 1] × P(Rd) 7−→ α(β, P ) ∈ [0, 1] the highest level
such that the probability mass of the depth-trimmed region at this level is at least β.
Precisely, for any pair (β, P ) ∈ [0, 1)× P(Rd):

α(β, P ) = sup{γ ∈ [0, 1] : P (Dγ(P )) > β}, (10.1)

where Dγ(P ) is the depth region at level γ defined as {x ∈ Rd : D(x, P ) ≥ γ} for any
data depth function D(·, ·) : Rd×P(Rd)→ [0, 1]. In the remainder of this chapter, when
the quantity α(β, P ) will be associated with depth regions of P , the second argument
of the function α(·, ·) will be omitted, for notation simplicity. It is worth mentioning
that Dα(β′)(P ) ⊆ Dα(β)(P ) for any β > β′, since β 7→ α(β, P ) is a monotone decreasing
function. Thus, Dα(β)(P ) is the smallest depth region with probability larger than or
equal to β and can be defined in an equivalent way as:

Dα(β)(P ) =
⋂

γ∈ΓP (β)

Dγ(P ),

where ΓP (β) = {ζ ∈ [0, 1] : P (Dζ(P )) > β}. The strict inequalities in (10.1) and in the
definition of ΓP (β) eliminate cases where the supremum does not exist. Indeed, when
β = 0, the depth region is then an infinitesimal set with probability strictly higher than
zero. Although the supremum exists (without necessarily being unique) such as in the
case of the halfspace depth (Rousseeuw and Ruts, 1999) and the projection depth (Zuo,
2003) under mild assumptions, no universal results have been derived for data depths.
The set {Dα(β)(P ) : β ∈ [0, 1 − ε], ε ∈ (0, 1]} where each region probability mass is
equal to β then defines quantile regions of P .

Let P,Q be two absolutely continuous probability measures (w.r.t. the Lebesgue meas-
ure) on X ,Y ⊂ Rd respectively. Denote by dH(S1, S2) the Hausdorff distance between
the sets S1 and S2. The pseudo-metric between probability distributions P and Q based
on the depth-trimmed regions is defined as follows:

Definition 10.1. Let ε ∈ (0, 1] and p ∈ (0,∞), for all pairs (P,Q) in P(X ) × P(Y),
the depth-trimmed regions (DRp,ε) discrepancy measure between P and Q is defined as:

DRpp,ε(P,Q) =

∫ 1−ε

0
dH

(
Dα(β)(P ), Dα(β)(Q)

)p
dβ. (10.2)
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Our discrepancy measure relies on the Hausdorff distance averaged over depth-trimmed
regions with the same probability mass w.r.t. each distribution. Properties (D4-D5)
of data depths ensure that for every 0 ≤ β < 1, Dα(β)(P ) is a non-empty compact
subset of Rd leading to a well-defined discrepancy measure. Observe that the para-
meter ε can be considered as a robustness tuning parameter. Indeed, choosing higher ε
amounts to ignoring the larger upper-level sets of data depth function, i.e. the tails of
the distributions.

Remark 10.2. The use of data depths together with the ε-trimming provide robust-
ness in (10.2). Several data depths exhibit attractive robustness properties. Indeed, the
asymptotic breakdown point of the halfspace and the integrated rank-weighted medians
have been shown to be higher than 1/(d + 1) while the projection median is known to
have a breakdown point equal to 1/2 (Donoho and Gasko, 1992; Ramsay et al., 2019).
See Section 2.4.3 in Chapter 2 for further details.

10.1.1 Connection with Wasserstein Distance

When d = 1, the Lp-Wasserstein distance enjoys an explicit expression involving quantile
and distribution functions. Let X ∼ P1, Y ∼ Q1 be two random variables where
P1, Q1 ∈ P(R) are univariate probability distributions. Denoting by F−1

P1
the quantile

function of X, the Lp-Wasserstein distance can be written as

Wp(P1, Q1) =

(∫ 1

0
|F−1
P1

(t)− F−1
Q1

(t)|p dt

)1/p

. (10.3)

Since data depth and its central regions are extensions of cdf and quantiles to dimension
d > 1, DRp,ε is then a possible (center-outward) generalization of an ε-trimmed version
of (10.3) to higher dimensions. When DRp,ε is associated with the halfspace depth, a
simple calculus (see below) leads to:

DRpp,ε(P1, Q1) = 2

∫ 1/2

ε/2
max

{∣∣∣F−1
P1

(t)− F−1
Q1

(t)
∣∣∣p, ∣∣∣F−1

P1
(1− t)− F−1

Q1
(1− t)

∣∣∣p} dt.

Thus, Wp
p (P1, Q1) ≤ lim

ε→0
DRpp,ε(P1, Q1) in general where the equality holds for sym-

metric distributions.

Proof. In dimension one, the halfspace depth of any x ∈ R w.r.t. P1 and Q1 boils
down to:

DH,1(x, P1) = min

{
FP1(x), 1− FP1(x)

}
, DH,1(x,Q1) = min

{
FQ1(x), 1− FQ1(x)

}
,

and for any γ ∈ [0, 1], its upper-level sets to intervals:

Dγ
H,1(P1) = [F−1

P1
(γ), F−1

P1
(1− γ)] and Dγ

H,1

(
Q1

)
= [F−1

Q1
(γ), F−1

Q1
(1− γ)]. (10.4)

Now, the quantile function α(β, .) can be explicitly derived as function of β ∈ [0, 1]:
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α(β, P1) = sup

{
γ ∈ [0, 1] : P1

(
[F−1
P1

(γ), F−1
P1

(1− γ)]

)
≥ β

}
= sup

{
γ ∈ [0, 1] : 1− 2γ ≥ β

}
=

1− β
2

.

Following the same reasoning, it holds α(β,Q1) = 1−β
2 . Further, by change of variables

∫ 1−ε

0
dH

(
D

(1−β)/2
H,1 (P1), D

(1−β)/2
H,1 (Q1)

)p
dβ = 2

∫ 1/2

ε/2
dH

(
Dt

H,1(P1), Dt
H,1(Q1)

)p
dt.

Recalling that the Hausdorff distance between two bounded subsets S1, S2 of R is defined
as:

dH(S1, S2) = max

{
sup
x∈S1

inf
y∈S2

|x− y|, sup
y∈S2

inf
x∈S1

|x− y|

}
,

it leads to the desired result.

10.1.2 Metric Properties

We now investigate to which extent the proposed discrepancy measure satisfies the
metric axioms. As a first go, we show that DRp,ε fulfills most conditions. However it
does not define a distance in general.

Proposition 10.3 (Metric properties). For any convex data depth (see Section 2.1),
DRp,ε is positive, symmetric and satisfies triangular inequality but the entailment
DRp,ε(P,Q) = 0 =⇒ P

L
= Q does not hold in general.

Proof. For any 0 ≤ β ≤ 1 − ε with ε ∈ (0, 1], and any P ∈ P(X ), Q ∈ P(Y),
Dα(β)(P ), Dα(β)(Q) are non-empty compact subsets of Rd due to the properties (D4-
D5). The Hausdorff distance dH is known to be a distance on the space of non-
empty compact sets which implies that DRp,ε satisfies positivity, symmetry and the
triangle inequality (thanks to Minkowski inequality). If P L

= Q then Dα(β)(P ) =
Dα(β)(Q), ∀ β ∈ [0, 1 − ε] which leads to DRp,ε(P,Q) = 0. The reverse is not true.
DRp,ε(P,Q) = 0 implies Dα(β)(P ) = Dα(β)(Q) ∀ β ∈ [0, 1 − ε] that not leads to
P
L
= Q. Indeed, convex depth regions do not characterize probability distributions in

general (see Nagy (2021) for the halfspace depth) that would be the first step in order
to prove the previous entailment.

Thus, DRp,ε defines a pseudo-metric rather than a distance. Being based on distance,
the proposed discrepancy measure preserves isometry invariance as stated in the follow-
ing proposition.
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Proposition 10.4 (Isometry invariance). Let A ∈ Rd×d be a non-singular matrix
and b ∈ Rd. Define the isometry mapping g : x ∈ Rd 7→ Ax+ b with AA> = Id, then it
holds:

DRp,ε(g]P, g]Q) = DRp,ε(P,Q),

where g]P is the push-forward of P by g. In particular, it ensures invariance of DRp,ε
under translations and rotations.

Proof. Let A ∈ Rd×d be a non-singular matrix and b ∈ Rd such that g : x 7→ Ax+ b.
Then, it holds:

DRpp,ε

(
g]P, g]Q

)
=

∫ 1−ε

0

[
dH

(
Dα(β)(g]P ), Dα(β)(g]Q)

)]p
dβ

(i)
=

∫ 1−ε

0

[
dH

(
ADα(β)(P ) + b, ADα(β)(Q) + b

)]p
dβ, (10.5)

where (i) holds because any data depth satisfies (D1) by definition. Furthermore,

dH

(
ADα(β)(P ) + b, ADα(β)(Q) + b

)
= max

 sup
x∈Dα(β)(P )

inf
y∈Dα(β)(Q)

||Ax−Ay||, sup
y∈Dα(β)(Q)

inf
x∈Dα(β)(P )

||Ax−Ay||


(ii)
= max

 sup
x∈Dα(β)(P )

inf
y∈Dα(β)(Q)

||x− y||, sup
y∈Dα(β)(Q)

inf
x∈Dα(β)(P )

||x− y||


= dH

(
Dα(β)(P ), Dα(β)(Q)

)
,

where (ii) holds by virtue of hypothesis AA> = Id. Replacing it in (10.5) yields the
desired results.

Although formulas (10.2) and (10.3) are based on the same spirit, there are no apparent
reasons why the proposed pseudo-metric should have the same behavior as the Wasser-
stein distance. It is the purpose of Proposition 10.5 to investigate the ability to factor
out translations, for DR2,ε associated with the halfspace depth, giving a positive answer
for the case of two Gaussian distributions with equal covariance matrices.

Proposition 10.5 (Translation characterization). Consider X,Y two random
variables following P ∈ P(X ) and Q ∈ P(Y) with expectations µ1, µ2 and variance-
covariance matrices Σ1,Σ2 respectively. Denoting by P ∗, Q∗ the centered versions of
P,Q, for any ε ∈ (0, 1], it holds:

∣∣∣∣DR2
2,ε(P,Q)−DR2

2,ε(P
∗, Q∗)− ||µ1 − µ2||2

∣∣∣∣ ≤ 2 DR1,ε(P
∗, Q∗) ||µ1 − µ2||.

Now, let P ∼ N (µ1,Σ1) and Q ∼ N (µ2,Σ2). Then it holds:
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∣∣∣∣DR1,ε(P,Q)− ||µ1 − µ2||
∣∣∣∣ ≤ Cε sup

u∈Sd−1

∣∣∣√u>Σ1u−
√
u>Σ2u

∣∣∣∣,
where Cε =

∫ 1−ε
0

∣∣∣Φ−1(1−α(β))
∣∣∣ dβ with Φ the cdf of the univariate standard Gaussian

distribution.

The proof is detailed in Section 10.6 for the clarity of the reading. Following Propos-
ition 10.5: when Σ1 = Σ2, one has DR2,ε(P,Q) = DR1,ε(P,Q) = ||µ1 − µ2|| for any
P ∼ N (µ1,Σ1) and Q ∼ N (µ2,Σ2) providing a closed-form expression in the Gaussian
case.

10.1.3 Robustness

In this part, we explore the robustness of the proposed distance, associated with the
halfspace depth, in view of the finite sample breakdown point (BP) (Donoho, 1982;
Donoho and Huber, 1983). This notion investigates the smallest contamination fraction
under which the estimation breaks down in the worst case. Considering a sample Sn =
{X1, . . . , Xn} composed of i.i.d. observations drawn from a distribution P ∈ P(X ) with
empirical measure Pn = (1/n)

∑n
i=1 δXi , the finite sample breakdown point of DRp,ε

w.r.t. Sn, denoted by BP (DRp,ε,Sn) is defined as

min

{
o

n+ o
: sup
Z1,...,Zo

DRp,ε(Pn+o, Pn) = +∞

}
,

where Pn+o = 1
n+o

(∑n
i=1 δXi +

∑o
j=1 δZj

)
is the “concatenate” empirical measure between

X1, . . . , Xn and the contamination sample Z1, . . . , Zo with o ∈ N∗. It is well known that
the extremal regions of the halfspace depth are not robust while its central regions are
rather stable under contamination (Donoho and Gasko, 1992). Fortunately, by construc-
tion, the parameter ε allows to ignore these extremal depth regions and thus to ensure
robustness of the depth-trimmed regions distance. Based on results of Donoho and
Gasko (1992) and Nagy and Dvořák (2021), the following proposition provides a lower
bound on the finite sample breakdown point of DRp,ε which highlights the robustness
of the proposed distance (as well as its dependence on ε).

Proposition 10.6 (Breakdown Point). For the halfspace depth function, for any
β ∈ [0, 1− ε] such that α(β, Pn) < αmax(Pn), it holds:

BP (DRp,ε,Sn) ≥


dnα(1−ε,Pn)/(1−α(1−ε,Pn))e

n+dnα(1−ε,Pn)/(1−α(1−ε,Pn))e if α(1− ε, Pn) ≤ αmax(Pn)
1+αmax(Pn) ,

αmax(Pn)
1+αmax(Pn) otherwise,

where αmax(Pn) = max
x∈Rd

DH(x, Pn).

Proof. For DRp,ε to break down at Sn, it needs to have at least one trimmed-region
that breaks down. Then the breakdown point of DRp,ε is higher than the minimum of
the breakdown point of each region. Indeed, we have
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BP (DRp,ε,Sn) = min

{
o

n+ o
: sup
Z1,...,Zo

DRp,ε

(
Pn+o, Pn

)
= +∞

}

≥ min
β∈[0,1−ε]

min

{
o

n+ o
: sup
Z1,...,Zo

dH

(
D
α(β,Pn+o)
H (Pn+o), D

α(β,Pn)
H (Pn)

)
= +∞

}
= min
β∈[0,1−ε]

BP (D
α(β,Pn)
H (Pn),Sn).

Now applying Lemma 3.1 in Donoho and Gasko (1992) and Theorem 4 in Nagy and
Dvořák (2021), a lower bound of the breakdown point of each halfspace region, for every
β ∈ [0, 1− ε], is given by

BP (D
α(β,Pn)
H (Pn),Sn) ≥


dnα(1−ε,Pn)/(1−α(1−ε,Pn))e

n+dnα(1−ε,Pn)/(1−α(1−ε,Pn))e if α(1− ε, Pn) ≤ αmax(Pn)
1+αmax(Pn) ,

αmax(Pn)
1+αmax(Pn) otherwise.

Thus, at least a proportion α(1− ε, Pn)
/(

1− α(1− ε, Pn)
)
of outliers must be added

to break down DRp,ε when considering larger regions, while central regions are robust
independently of ε. For two data sets,DRp,ε breaks down if depth regions for at least one
of the data sets do. The breakdown point is then the minimum between the breakdown
points of each data set. However, the breakdown point considers the worst case, i.e.
the supremum over all possible contaminations, and is often pessimistic. Indeed the
proposed pseudo-metric can handle more outliers in certain cases as experimentally
illustrated in Section 10.3.

10.2 Efficient Approximate Computation

Exact computation of DRp,ε can appear time-consuming, due to the high time complex-
ity of the algorithms that calculate depth-trimmed regions (cf. Liu and Zuo (2014a);
Liu et al. (2019) for projection and halfspace depths, respectively) rapidly growing with
dimension. However, we design a universal approximate algorithm that achieves (log-)
linear time complexity in n. Since properties (D3′ ,D4,D5) ensure that depth regions
are convex bodies in Rd, they can be characterized by their support functions defined
by hKdC (u) = sup{〈x, u〉 : x ∈ KdC} for any u ∈ Sd−1 where KdC is a convex compact of
Rd. Following Schneider (1993), for two (convex) regions Dα(β)(P ) and Dα(β)(Q), the
Hausdorff distance between them can be calculated as:

dH

(
Dα(β)(P ), Dα(β)(Q)

)
= sup

u∈Sd−1

∣∣∣hDα(β)(P )(u)− hDα(β)(Q)(u)
∣∣∣.

As we shall see in Section 10.3, mutual approximation of h
D
α(β)
·

(u) by points from the
sample and of sup by taking maximum over a finite set of directions allows for stable
estimation quality. Recently, motivated by their numerous applications, a plethora
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of algorithms have been developed for (exact and approximate) computation of data
depths; see Section 2.4.2. Depths satisfying the projection property (which also include
halfspace and projection depth, see Dyckerhoff (2004)) can be approximated by taking
minimum over univariate depths; see e.g. Rousseeuw and Struyf (1998); Chen et al.
(2013); Liu and Zuo (2014a), Nagy et al. (2020a) for theoretical guarantees, and Dyck-
erhoff et al. (2021) for an experimental validation. The case of AI-IRW is easier since
its integral can be approximated by means of Monte-Carlo approximation.

Let Sn,S ′m be two samples Sn = {X1, . . . , Xn} and S ′m = {Y1, . . . , Ym} from P and
Q respectively. When calculating approximated depth of sample points D(Sn) ,
{D(Xi, Pn)}ni=1 (respectively D(S ′m)), a matrix M ∈ Rn×nproj (respectively M ′ ∈
Rm×nproj) of projections of sample points on (a common) set of nproj ∈ N∗ direc-
tions (with its element Mi,l = 〈ul, Xi〉 for some ul ∼ U(Sd−1), where U(·) is the
uniform probability distribution) can be obtained as a side product. More precisely,
D(Sn), D(S ′m),M,M ′ are used in Algorithm 10.1, which implements the MC-approximation
of the integral in (10.2). Time complexity of Algorithm 10.1 is O

(
nproj(Ω·(n ∨m, d) ∨

nα(n∨m))
)
, where Ω·(·, ·) stands for the complete complexity of computing univariate

depths—in projections on u—for all points of the sample. As a byproduct, projections
on u can be saved to be reused after for the approximation of hDα(β)(·)(u). e.g. for

the halfspace depth Ωhsp(n, d) = O
(
n(d ∨ log n)

)
composed of projection of the data

onto u, ordering them, and passing to record the depths (see e.g. Mozharovskyi et al.
(2015)). For the projection depth, Ωprj(n, d) = O(nd), where after projecting the data
onto u, univariate median and MAD can be computed with complexity O(n) (see e.g.
Liu and Zuo (2014a)). For the AI-IRW depth, Ωaiirw(n, d) = O(d3 ∨ n(d∨ log(n)) since
it involves the computation of the square root of the precision matrix. However, O(d3)
may be improved, which depends on the algorithm employed for computing inverse of
the covariance matrix.

10.3 Numerical Experiments

In this section, we first measure the quality of the approximation introduced in Sec-
tion 10.2 and explore its dependency on the number of projections and to the nα.
Further, we present two studies on robustness of the proposed pseudo-metric DRp,ε to
outliers. On synthetic data sets, we investigate how DRp,ε behaves under the pres-
ence of outliers using two different settings. On a real image data set extracted from
Fashion-MNIST where images are seen as bags of pixels, we evaluate the robustness of
spectral clustering based on DRp,ε. Finally, we analyze the relevance of using DRp,ε as
an evaluation metric in natural language generation to compare the empirical distribu-
tions of words of a pair of texts. Where applicable, we include state-of-the-art methods
for comparison.

10.3.1 Approximation Error in Terms of the Number of Projections

Proposition 10.5 allows to derive a closed form expression for DR2,ε(P,Q) when P,Q
are Gaussian distributions with the same variance-covariance matrix. In order to invest-
igate the quality of the approximation on light-tailed and heavy-tailed distributions, we
focus on computing DRp,ε (with p = 2, ε = 0.3, nα = 20 and using the halfspace depth)
for varying number of random projections nproj between a sample of 1000 points stem-
ming from P ∼ N (0d, Id) for d = 5 and two different samples. These two samples are
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Algorithm 10.1 Approximation of DRp,ε.
input: Sn,S ′m,nα,nproj.

init : H = 0.
17 Compute D(Sn), D(S ′m),M,M ′

18 for ` = 1, . . . , nα do

19 Draw β` ∼ U([0, 1− ε])

20 Compute α`(·) := α(β`, ·)

21 Determine points inside α`(·)-regions:
ISn` = {i : DSni > α`(Sn)}; IS

′
m

` = {j : D
S′m
j > α`(S ′m)}

22 for l = 1, . . . , nproj do

23 Compute approximation of support functions:
hSnl = max MSn

(ISn` , l)
; hS

′
m
l = max M

S′m
(IS
′
m

` , l)

24 Increase cumulative Hausdorff distance: H += max
l≤nproj

|hSnl − h
S′m
l |

p

25 return D̂Rp,ε = (H/nα)1/p
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Figure 10.1 – Relative approximation error (averaged over 100 runs) of DRp,ε and the
max Sliced-Wassserstein for Gaussian (left) and Cauchy (right) sample with dimension
d = 5 for differing numbers of approximating directions.

constructed from 1000 observations stemming from Gaussian and symmetrical Cauchy
distributions all with a center equal to 7d. Comparison with the approximation of
max Sliced-Wasserstein (max-SW) (see e.g. Kolouri et al., 2019), which shares the same
closed-form as DR2,ε, is also provided. Denoting by max-ŜW the Monte-Carlo approx-
imation of the max-SW, the relative approximation errors, i.e. (D̂Rp,ε− ||7d||2)/||7d||2
and (max-ŜW− ||7d||2)/||7d||2, are computed investigating both the quality of the ap-
proximation and the robustness of these discrepancy measures. Results, that report
the averaged approximation error as well as the 25-75% empirical quantile intervals are
depicted in Figure 10.1. They show that DRp,ε possesses the same behavior as max-SW
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Figure 10.2 – Computation time (averaged over 100 runs) of DRp,ε and the max Sliced-
Wassserstein for Gaussian (left) and Cauchy (right) sample with dimension d = 5 for
differing numbers of approximating directions.

when considering Gaussians while it behaves advantageously for Cauchy distribution.
Computation times are depicted in Figure 10.2 highlighting a constant-multiple im-
provement compared to the max-SW which is already computationally fast.

10.3.2 The Choice of the Parameter nα

In order to investigate the quality of the approximation on light-tailed and heavy-tailed
distributions, we focus on computing DR2,0.1 (with nproj = 500) for varying number of
nα between a sample of 1000 points stemming from µ ∼ N (0d,Σ) for d ∈ {2, 3, 10}, Σ
drawn from the Wishart distribution (with parameters (d, Id)) on the space of definite
matrices and three different samples (which yields nine settings). These three samples
are constructed from 1000 observations stemming from elliptically symmetric Cauchy,
Student-t2 and Gaussian distributions all centered at 7d. Results, that report the
averaged approximation error as well as the 25-75% empirical quantile intervals are
depicted in Figure 10.3. They show that DRp,ε converges slowly for Cauchy with
growing nα, while it converges with small nα for Gaussian and Student-t2 distributions.
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Figure 10.3 – Relative approximation error (averaged over 100 repetitions, y-axis in
log scale) of DRp,ε for elliptically symmetric Cauchy (left), Student-t2 (middle) and
Gaussian (right) distributions for differing numbers of nα.
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10.3.3 Robustness to Outliers

We analyze the robustness ofDRp,ε by measuring its ability to overcome outliers. In this
benchmark we naturally include existing robust extensions of the Wasserstein distance:
Subspace Robust Wasserstein (SRW; Paty and Cuturi, 2019) searching for a maximal
distance on lower-dimensional subspaces, ROBOT (Mukherjee et al., 2021) and RUOT
(Balaji et al., 2020) being robust modifications of the unbalanced optimal transport
(Chizat et al., 2018). Further, for completeness, we add the standard Wasserstein
distance (W) and its approximation, the Sliced-Wasserstein (Sliced-W; Rabin et al.,
2012) distance, with the same number of projections (nproj = 1000) as DRp,ε. Since the
scales of the compared methods differ, relative error is used as a performance metric,
i.e. the ratio of the absolute difference of the computed distance with and without
anomalies divided by the latter. Two settings for a pair of distributions are addressed:
(a) Fragmented hypercube precedently studied in Paty and Cuturi (2019), where the
source distribution is uniform in the hypercube [−1, 1]2 and the target distribution
is transformed from the source via the map T : x 7→ x + 2sign(x) where sign(.) is
taken element-wisely. Outliers are drawn uniformly from [−4, 4]2. (b) Two multivariate
standard Gaussian distributions, one shifted by 102, with outliers drawn uniformly from
[−10, 20]2. Our analysis is conducted over 500 sampled points from the distributions
described above.

In order to investigate the robustness of DRp,ε, we consider the three following values
of ε: 0.1, 0.2, 0.3 computed with the projection depth. Thus, data depths are computed
on source and target distributions such that 10%, 20%, 30% of data with lower depth
values w.r.t. each distribution are not used in computation of DRp,0.1, DRp,0.2, DRp,0.3,
respectively. Figure 10.4, which plots the relative error depending on the portion of out-
liers varying up to 20%, illustrates advantageous behavior of DRp,ε (for ε = 0.1, 0.2, 0.3)
for reasonable (starting with ≈ 2.5%) contamination. It also confirms the pessimism
of the breakdown point provided in Proposition 10.6 since DRp,0.1 (represented by the
blue curve) show robustness to at least 20 % of outliers.

0.0 0.1 0.2
Outliers proportion

0.1

0.2

Re
la

tiv
e 

er
ro

r

= 0.1
= 0.2
= 0.3

ROBOT
RUOT
W
Sliced-W
SRW

0.0 0.1 0.2
Outliers proportion

0.02

0.04

Figure 10.4 – Relative error (averaged over 100 runs) of different distances for increasing
outliers proportion on fragmented hypercube (left) and Gaussian (right) data.
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10.3.4 (Robust) Clustering on Bags of Pixels

We demonstrate the relevance of the proposed pseudo-metric through an application to
(robust) clustering. To that end, we perform spectral clustering (Shi and Malik, 2000)
on two data sets derived from Fashion-MNIST (FM). Each gray scale image is seen
as a bag of pixels (Jebara, 2003), i.e. as an empirical probability distribution over a 3-
dimensional space (the two first dimensions indicate the pixel position and the third one,
its intensity). The first data set (FM) is constructed taking the 100 first images in each
class of the Fashion-MNIST data set. The second data set (Cont. FM), considered as
contaminated, is designed by introducing white patches on the left corner of 50 images
drawn uniformly in the first data set, which yields 5% of contamination. We benchmark
DRp,ε (using the projection depth) setting p = 2 and ε = 0.1 with the Wasserstein
(W), the Sliced-Wasserstein (Sliced-W) and the Maximum Mean Discrepancy (MMD;
Gretton et al., 2007) distances. DRp,ε and the Sliced-Wasserstein are approximated by
Monte-Carlo using 100 directions while the MMD distance is computed using a Gaussian
kernel with bandwidth equal to 1. As a baseline method, spectral clustering is also
applied on images considered as vectors using Euclidean distance. Standard parameters
of the scikit-learn spectral clustering implementation are employed with a number of
clusters fixed to 10. Performance of the benchmarked metrics are assessed by measuring
the normalized mutual information (NMI; Shannon, 1948) and the adjusted rank index
(ARI; Hubert and Arabie, 1985), which are standard clustering evaluation measures
when the ground truth class labels are available. Results presented in Table 10.1 show
that for both cases, i.e. with or without contamination, spectral clustering based on
DRp,ε outperforms spectral clustering based on the other metrics.

FM Cont. FM

NMI ARI NMI ARI
DRp,ε 0.58 0.43 0.55 0.42
W 0.50 0.35 0.48 0.30

Sliced-W 0.55 0.39 0.47 0.33
MMD 0.54 0.37 0.50 0.36

Euclidean 0.50 0.32 0.48 0.30

Table 10.1 – Spectral clustering performances.

10.4 Automatic Evaluation of Natural Language
Generation (NLG)

There has been a recent surge towards NLG from the NLP community (Jalalzai et al.,
2020; Colombo et al., 2019, 2021c,e). However, collecting human annotations to evalu-
ate NLG systems is both expensive and time-consuming. Thus, automatically assessing
the similarity between two texts is of high interest for the NLP community (Specia
et al., 2010). This task aims to build an evaluation metric that achieves a high cor-
relation with the score given by a human annotator. String-based metrics (i.e. that
compare the string representations of texts) such as BLEU (Papineni et al., 2002),
METEOR (MET.; (Banerjee and Lavie, 2005)), ROUGE (Lin, 2004), TER (Snover
et al., 2006), have been outperformed in many tasks by embedding-based metrics (i.e.
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that rely on continuous representations (Devlin et al., 2019)). Embedding-based met-
rics (e.g BertScore (BertS; Zhang et al., 2019), MoverScore (MoverS; Zhao et al., 2019a,
Baryscore (Colombo et al., 2021d), InfoLM (Colombo et al., 2021b)), that are now the
state-of-the-art of the domain, compare an input and a reference text both represented
as probability distributions and are both constructed in a similar way. The first step
relies on a deep contextualized encoder (BERT (Devlin et al., 2019) and its variants
Dinkar et al., 2020; Chapuis et al., 2020, 2021) that maps texts into elements of a finite
dimensional space. Precisely, each text corresponds to a collection of words, where each
word is represented by an element in Rd, where d is fixed by the encoder. The second
step involves the use of a function that measures the similarity between the embedded
texts.

For our purpose, we follow previous BERT-based metrics and evaluate performances of
DRp,ε (with p = 2, ε = 0.01 and using the AI-IRW depth) on two different NLG tasks
namely: data2text generation (using the WebNLG 2020 data set Ferreira et al., 2020)
and summarization.

10.4.1 Data2text Experiment

Task description. In WebNLG 2020, the goal is to create new efficient genera-
tion algorithms that can verbalise knowledge based fragments. These algorithms are
called Knowledge Base Verbalizers (Gardent et al., 2017) and are used during the
micro-planning phase of NLG systems (Ferreira et al., 2018). WebNLG has been
gathered to be more representative of the progress of recent NLG systems than pre-
viously existing task-oriented dialogue data sets (see e.g. SFHOTEL (Wen et al., 2015)
and BAGEL (Mairesse et al., 2010)). Data and system performances can be found
here1. The task consists in mapping Resource Description Framework (RDF) triplet
to natural language (RDF format is used for many application including FOAF2. For
WebNLG 2020, the triplets are extracted from DBpedia (Auer et al., 2007). For ex-
ample, given the following triplet (John_Blaha birthDate 1942_08_26), (John_Blaha
birthPlace San_Antonio) and (John_Blaha job Pilot) the ground-truth reference
is John Blaha, born in San Antonio on 1942-08-26, worked as a pilot.

Setting. Data have been made freely available from the authors here3. To compose
this data set, 15 systems (both symbolic and neural-based) have been used. The final
data set is composed of over 3k samples of human annotations4. We follow standard
methods to assess performance of NLG metrics (see e.g. Zhao et al., 2019a). We compute
the correlation with the following annotation scores: correctness, data coverage, and
relevance. We report in Table 10.2 correlation results on the WebNLG task using
Pearson (r), Spearman (ρ) and Kendall (τ) correlation coefficients. When performing
a fair comparison between metrics, i.e. when DRp,ε, W, Sliced-W, MMD are directly
used on the output of BERT, we observe that DRp,ε achieves the best results on all
configurations. It is worth noting that DRp,ε also compares favorably against existing
state-of-the-art NLG methods in many different scenarios and shows promising results.

Results. We gather in Table 10.2 results on the WebNLG task. To compare DRp,ε
(with ε = 0.01, nα = 5, p = 2) with the different metrics (i.e. Wasserstein, Sliced-
Wasserstein, MMD), we work on Roberta-based model from the HuggingFace hub (Wolf

1https://webnlg-challenge.loria.fr/
2http://www.foaf-project.org/
3https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0
4https://webnlg-challenge.loria.fr/files/WebNLG-2020-Presentation.pdf

https://webnlg-challenge.loria.fr/
http://www.foaf-project.org/
https://gitlab.com/shimorina/webnlg-data set/-/tree/master/release_v3.0
https://webnlg-challenge.loria.fr/files/WebNLG-2020-Presentation.pdf
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Correctness Data Coverage Relevance

r τ ρ r τ ρ r τ ρ
DRp,ε 89.4 80.0 92.6 84.2 58.3 72.3 86.2 62.7 72.9
Wasserstein 86.2 73.0 86.7 80.4 45.3 62.3 83.8 51.3 67.6
Sliced-Wasserstein 86.1 73.0 85.8 80.9 45.5 60.0 82.0 51.3 68.2
MMD 25.4 71.7 8.3 19.1 45.3 10.0 26.1 51.3 15.0
BertScore 85.5 73.3 83.4 74.7 53.3 68.2 83.3 65.0 79.4
MoverScore 84.1 73.3 84.1 78.7 53.3 66.2 82.1 65.0 77.4
BLEU 77.6 60.0 66.3 55.7 36.6 50.2 63.0 51.6 65.2
ROUGE-1 80.6 65.0 65.0 76.5 60.3 76.3 64.3 56.7 69.2
ROUGE-2 73.6 58.3 63.3 54.7 35.0 43.1 62.0 46.7 60.8
METEOR 86.5 70.0 66.3 77.3 46.6 50.2 82.1 58.6 65.2
TER 79.6 58.0 78.3 69.7 38.0 58.2 75.0 77.6 70.2

Table 10.2 – WebNLG 2020: Absolute correlation at the system level with three human
judgment criteria. Best overall results are indicated in bold, best results in their group
are underlined.

et al., 2019) and extract representation from the 11th layer. From Table 10.2, we
observe a similar behavior from BertScore and MoverScore. This similarity has been
also reported in a different setting in the previous work of Zhao et al. (2019a). Overall,
we observe that DRp,ε is always among the top scoring metrics in its group and also
achieves best overall results on several configurations. It is worth noting thatDRp,ε only
relies on information available in the candidate and the reference text where BertScore
and MoverScore use Inverse Document Frequency (IDF) information computed on every
texts of the data set.

10.4.2 Summarization Experiment

Task description. Text summarization has attracted a lot of attention in recent years
(Zhang et al., 2020). Two types of models exist: extractive and abstractive. In extract-
ive summarization, the system copies chunks of informative fragments from the input
texts, whereas in abstractive summarization the system generates novel words. In this
section, we describe our experimental setting. We present the tasks and the baseline
metrics used for automatic evaluation of summarization. For this task, we work with
the data set from Bhandari et al. (2020). This data set has been introduced to solve
several flaws (Rankel et al., 2013) present in existing summarization data sets such as
TAC (Dang and Owczarzak, 2008; McNamee and Dang, 2009). The data set has been
annotated using the pyramid score (Nenkova et al., 2007; Nenkova and Passonneau,
2004) and automatically built from the CNN/Daily News (Bhandari et al., 2020). It
gathers 11 490 summaries coming from 11 extractive systems (See et al., 2017; Chen
and Bansal, 2018; Raffel et al., 2020; Gehrmann et al., 2018; Dong et al., 2019; Liu and
Lapata, 2019; Lewis et al., 2020; Yoon et al., 2020) and 14 abstractive systems (Zhou
et al., 2018; Narayan et al., 2018; Kedzie et al., 2018; Zhong et al., 2019; Liu and Lapata,
2019; Dong et al., 2019; Wang et al., 2020; Zhong et al., 2020).
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Abstractive Extractive

r τ ρ r τ ρ
DRp,ε 72.1 72.1 70.1 91.5 91.5 69.2

Wasserstein 71.0 70.4 71.1 74.2 74.2 40.0
Sliced-Wasserstein 70.1 68.7 71.0 72.4 73.9 69.2

MMD 68.2 67.5 67.9 75.6 75.6 56.1
BertScore 71.7 71.9 72.0 70.9 72.9 73.8
MoverScore 72.4 71.9 73.0 76.1 76.1 47.4
ROUGE-1 73.5 73.0 74.4 72.2 74.0 69.1
ROUGE-2 73.0 73.5 73.0 55.1 53.2 69.1

JS-2 68.9 6.8 69.8 92.9 5.5 19.0

Table 10.3 – Summarization: absolute correlation coefficients between different metrics
on text summarization. Best overall results are indicated in bold, best results in their
group are underlined.

Example. The goal is to assign a similarity score between a reference text: “Manchester
United take on Manchester City on Sunday. Match will begin at 4 pm local time at
United’s Old Trafford home. Police have no objections to kick-off being so late in the
afternoon. Last late afternoon weekend kick-off in the Manchester derby saw 34 fans
arrested at Wembley in 2011 fa cup semi-final ” and the text generated by a NLG system:
“Manchester Derby takes place at Old Trafford on Sunday afternoon police have no
objections to the late afternoon kick-off both sides are challenging for a top-four spot in
the Premier League the man in charge of patrolling the sell-out clash has no such fears”.

Results. We gather in Table 10.3, the results on the summarization task. We use
BERT-based uncased model and rely on the representations extracted from the 9th layer
(similarly to BertScore). For this experiment the following parameters are used: ε =
0.01, nα = 5, p = 2. For this task, we are able to reproduce results from Bhandari et al.
(2020) where the different behavior regarding the extractive and the abstractive systems
is also observed. In this experiment, we observe that DRp,ε is able to achieve stronger
results than other metrics based on Wasserstein, Sliced-Wasserstein and MMD. We also
observe that DRp,ε outperforms MoverScore and BertScore on extractive systems (on r
and τ). We believe these results support our approach.

It could be relevant to extend this study to multimodal cases (Garcia et al., 2019;
Colombo et al., 2021a) and others tasks of generation such as dialog acts (Colombo
et al., 2020; Witon et al., 2018).

10.5 Concluding Remarks

Leveraging the notion of statistical data depth function, a novel pseudo-metric between
multivariate probability distributions was introduced. The developed framework exhib-
its an inherent versatility due to the existence of numerous data depths variants. The
linear approximation algorithm and the robustness property make DRp,ε a promising
tool for a large spectrum of applications beyond clustering and NLG, e.g. in generat-
ive adversarial networks (GANs) or in information retrieval. Moreover, recent works,
extending the notion of data depth to further types of data such as functional and time-
series data (Nieto-Reyes and Battey, 2016; Gijbels and Nagy, 2017), curves (or paths)



212
CHAPTER 10. A PSEUDO-METRIC BETWEEN PROBABILITY

DISTRIBUTIONS BASED ON DEPTH-TRIMMED REGIONS

data (Lafaye de Micheaux et al., 2021), directional (or spherical) data (Ley et al., 2014),
random matrices (Paindaveine and Van Bever, 2018) and random sets (Cascos et al.,
2021) shall allow for the use of the proposed pseudo-metric for a wide range of ap-
plications. Finally, it is noteworthy that approximation was performed via random
projections in the current work, while techniques similar to those by Dyckerhoff et al.
(2021) could further accelerate the computation.

10.6 Proof

10.6.1 Proof of Proposition 10.5

Let u ∈ Sd−1 and X ∼ P where P ∈ P(X ) with X ⊂ Rd. We define the (1 − β)
directional quantile of a distribution P in the direction u as:

q1−βP,u = inf

{
t ∈ R : P

(
〈u,X〉 ≤ t

)
≥ 1− β

}
(10.6)

and the upper (1− β) quantile set of P :

S1−β
P,u =

{
x ∈ Rd : 〈u, x〉 ≤ q1−βP,u , ∀ u ∈ Sd−1

}
. (10.7)

We first recall two useful results, so as to characterize the halfspace depth regions.

Lemma 10.7 (Brunel, 2019, Lemma 1). Let P ∈ P(X ), for any β ∈ (0, 1), it holds:
Dβ(P ) = S1−β

P,u .

Lemma 10.8 (Brunel, 2019, Proposition 1). Let P ∈ P(X ) with a (1− β) directional
quantile q1−βP,u . Assume that u 7→ q1−βP,u are sublinear, i.e. q1−βP,u+ζv ≤ q

1−β
P,u +ζ q1−βP,v , ∀ ζ > 0.

Then for any u ∈ Sd−1, it holds h
S1−β
P,u

(u) = q1−βP,u .

First assertion. Denote Z1, Z2 two random variables following P ∗, Q∗ respectively.
For any x ∈ Rd and β ∈ [0, 1− ε],

x ∈ Dα(β)
H (P )⇐⇒ DH(x)(P ) ≥ α(β)⇐⇒ ∀ u ∈ Sd−1, P

(
〈u,X〉 ≤ 〈u, x〉

)
≥ α(β)

⇐⇒ ∀ u ∈ Sd−1, P
(
〈u, Z1 + µ1〉 ≤ 〈u, x〉

)
≥ α(β)

⇐⇒ ∀ u ∈ Sd−1, P
(
〈u, Z1〉 ≤ 〈u, x− µ1〉

)
≥ α(β)

⇐⇒ x− µ1 ∈ Dα(β)
P ∗ ,

where Dα(β)
P ∗ means the depth region at level α(β) of the halfspace depth w.r.t. P ∗ and

will be used throughout this subsection for the sake of clarity. The same reasoning holds
for Q and Q∗. Following this, for any β ∈ [0, 1− ε] and u ∈ Sd−1, it holds:

h
D
α(β)
P

(u) = h
D
α(β)
P∗

(u)− 〈u, µ1〉 and h
D
α(β)
Q

(u) = h
D
α(β)
Q∗

(u)− 〈u, µ2〉
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Thus, it holds:

DR2
2,ε(P,Q) =

∫ 1−ε

0
sup

u∈Sd−1

∣∣∣∣hDα(β)
P∗

(u)− 〈u, µ1〉 − hDα(β)
Q∗

(u) + 〈u, µ2〉
∣∣∣∣2 dβ

≤ sup
u∈Sd−1

∣∣∣〈u, µ1 − µ2〉
∣∣∣2 +

∫ 1−ε

0
sup

u∈Sd−1

∣∣∣h
D
α(β)
P∗

(u)− h
D
α(β)
Q∗

(u)
∣∣∣2 dβ

+ 2 sup
u∈Sd−1

∣∣∣〈u, µ1 − µ2〉
∣∣∣ ∫ 1−ε

0
sup

u∈Sd−1

∣∣∣h
D
α(β)
P∗

(u)− h
D
α(β)
Q∗

(u)
∣∣∣ dβ

= ||µ1 − µ2||2 +DR2
2,ε(P

∗, Q∗) + 2||µ1 − µ2||DR1,ε(P
∗, Q∗). (10.8)

On the other side, we have:

DR2
2,ε(P,Q) ≥ sup

u∈Sd−1

∣∣∣〈u, µ1 − µ2〉
∣∣∣2 +

∫ 1−ε

0
sup

u∈Sd−1

∣∣∣h
D
α(β)
P∗

(u)− h
D
α(β)
Q∗

(u)
∣∣∣2 dβ

− 2 sup
u∈Sd−1

∣∣∣〈u, µ1 − µ2〉
∣∣∣ ∫ 1−ε

0
sup

u∈Sd−1

∣∣∣h
D
α(β)
P∗

(u)− h
D
α(β)
Q∗

(u)
∣∣∣ dβ

= ||µ1 − µ2||2 +DR2
2,ε(P

∗, Q∗)− 2||µ1 − µ2||DR1,ε(P
∗, Q∗). (10.9)

Combining (10.8) and (10.9) leads to the desired result.

Second assertion. For any u ∈ Sd−1, the (1 − α(β)) quantiles of random variables
〈u,X〉 and 〈u, Y 〉 such that 〈u,X〉 ∼ N (〈u, µ1〉, u>Σ1u) and 〈u, Y 〉 ∼ N (〈u, µ2〉, u>Σ2u)
are defined by:

q1−α(β)P,u = 〈u, µ1〉+Φ−1(1−α(β))
√
u>Σ1u q1−α(β)Q,u = 〈u, µ2〉+Φ−1(1−α(β))

√
u>Σ2u,

where Φ is the cumulative distribution function of the univariate standard Gaussian dis-
tribution. Now, to apply Lemma 10.8, it is sufficient to prove that directional quantiles
are sublinear. It holds using subadditivity of the square root function. Indeed, for any
u, v ∈ Sd−1 and ζ > 0, we have:

〈u+ ζv, µ1〉+ Φ−1(1− α(β))
√

(u+ ζv)>Σ1(u+ ζv)

= 〈u, µ1〉+ ζ〈v, µ1〉+ Φ−1(1− α(β))
√

(u+ ζv)>Σ1(u+ ζv)

≤ 〈u, µ1〉+ ζ〈v, µ1〉+ Φ−1(1− α(β))

[√
u>Σ1u+ ζ

√
v>Σ1v

]
= q1−α(β)P,u + ζ q1−α(β)P,v .

The same reasoning holds for Q. Applying Lemma 10.7 and Lemma 10.8, for any
u ∈ Sd−1, we have h

D
α(β)
P

(u) = q1−α(β)P,u and h
D
α(β)
Q

(u) = q1−α(β)Q,u . It follows:
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DR1,ε(P,Q) =

∫ 1−ε

0
dH

(
D
α(β)
P , D

α(β)
Q

)
dβ =

∫ 1−ε

0
sup

u∈Sd−1

∣∣∣h
D
α(β)
P

(u)− h
D
α(β)
Q

(u)
∣∣∣ dβ

=

∫ 1−ε

0
sup

u∈Sd−1

∣∣∣∣〈u, µ1 − µ2〉+ Φ−1(1− α(β))

[√
u>Σ1u−

√
u>Σ2u

] ∣∣∣∣ dβ

≤ ||µ1 − µ2||+
∫ 1−ε

0
sup

u∈Sd−1

∣∣∣∣Φ−1(1− α(β))

[√
u>Σ1u−

√
u>Σ2u

] ∣∣∣∣ dβ

= ||µ1 − µ2||+ Cε sup
u∈Sd−1

∣∣∣√u>Σ1u−
√
u>Σ2u

∣∣∣,
with Cε =

∫ 1−ε
0

∣∣∣Φ−1(1 − α(β))
∣∣∣ dβ. The lower bound is obtained by means the same

reasoning. Notice that:

||µ1 − µ2|| = sup
u∈Sd−1

∣∣∣〈u, µ1 − µ2〉
∣∣∣ =

∫ 1−ε

0
sup

u∈Sd−1

∣∣∣〈u, µ1 − µ2〉
∣∣∣ dβ.

Introducing h
D
α(β)
P

(u), h
D
α(β)
Q

(u) and using triangular inequality, subadditivity of the

supremum and linearity of the integral, we obtain:

||µ1 − µ2|| ≤ DR1,ε(P,Q) + Cε sup
u∈Sd−1

∣∣∣√u>Σ1u−
√
u>Σ2u

∣∣∣,
which ends the proof.



Conclusion and Perspectives

In this dissertation, the work presented is focused around two main axes: the design of
robust probability metrics and functional anomaly detection. We have introduced many
efficient statistical procedures, both in terms of statistical accuracy and computational
time, for both functional anomaly detection and robust learning.

With the ubiquity of sensors in the IoT era, statistical observations are becoming in-
creasingly available in the form of massive time-series or functions. The case of func-
tional data is thus of crucial interest in practice. Although unsupervised anomaly de-
tection has been widely documented in the literature for multivariate data, the case of
functional data remains understudied. Filling this gap is the angle embraced in the first
part of this thesis. Indeed, in Part II, we have introduced two novel and generic tech-
niques, avoiding dimensionality reduction steps, to perform (unsupervised) functional
anomaly detection.

The Functional Isolation Forest algorithm has been proposed, which is an extension of
Isolation Forest to functional data. The combined choice of the dictionary itself, the
probability distribution used to pick a Split variable and the scalar product used for the
projection enables FIF to exhibit a great flexibility in detecting anomalies for a variety
of tasks. It is worth mentioning that FIF is easily extendable to multivariate functional
data. However, no theory exists for either the multivariate or the functional version and
would deserve more attention in the future.

Further, we have introduced the ACH depth, a novel functional depth function on
the space C(T) of real valued continuous curves on T that presents various advantages.
Regarding interpretability first, the depth computed at a query curve x ∈ C(T) takes the
form of an expected ratio, quantifying the relative increase of the area of the convex hull
of i.i.d. random curves when adding x to the batch. We have shown that this depth
satisfies several desirable properties and have explained how to solve approximation
issues, concerning the sampled character of observations in practice and scalability
namely.

The performance of recent functional anomaly detection techniques, involving FIF and
ACH, is evaluated on two real-world data sets related to the monitoring of helicopters
in flight and to the spectrometry of construction materials namely, in order to provide
recommendation guidance for practitioners.

The second part of this thesis introduced general statistical procedures, relying on the
concept of data depth and robust mean estimation, that are able to handle corrupted
data during inference as highlighted by theoretical and numerical results. Indeed, in
Part III, we have contributed to bridge the gap between robustness, probability metrics
and data depths.

We have introduced three robust estimators of the Wasserstein distance based on MoM
methodology. We have shown asymptotic and nonasymptotic results in the context of
polluted data possibly designed by a malicious adversary. Sharper results may be ob-
tained regarding recent advances exhibited in Weed and Bach (2019). Surpassing com-
putational issues, we have designed an algorithm to compute, in a efficient way, these
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estimators. In addition, we proposed to robustify WGANs using one of the introduced
estimators and have shown its benefits on convincing numerical results. The theoretic-
ally well-founded MoM approaches to robustify the Wasserstein distance open the door
to numerous applications beyond WGAN, including variational generative modeling.
The promising MoMGAN deserves more attention and future work will concern the
analysis of the estimator it provides.

We have introduced a novel notion of statistical depth (AI-IRW), modifying the original
Integrated Rank-Weighted (IRW) depth proposal in Ramsay et al. (2019). The stat-
istical depth we have introduced has been shown not only to inherit all the compelling
features of the IRW depth, its theoretical properties and its computational advantages
(no optimization problem solving is required to compute it), but also to fulfill in addi-
tion the affine invariance property, crucial regarding interpretability/reliability issues.
Though the AI-IRW sample version exhibits a complex probabilistic structure, an es-
timator of the precision matrix being involved in its definition, a nonasymptotic analysis
has been carried out here, revealing its good concentration properties around the true
AI-IRW depth. The merits of the AI-IRW depth have been illustrated by encouraging
numerical experiments, for anomaly detection purpose in particular, offering the per-
spective of a widespread use for various statistical learning tasks. Although highlighted
in experiments, theoretical properties of the robustness of AI-IRW combined with MCD
remains to be investigated.

Leveraging the notion of statistical data depth function, a novel pseudo-metric between
multivariate probability distributions—that meets the aforementioned requirements—
was introduced. The developed framework exhibits an inherent versatility due to the
existence of numerous data depth variants. The linear approximation algorithm and the
robustness property make this pseudo-metric a promising tool for a large spectrum of ap-
plications beyond clustering and NLG. Moreover, recent works, extending the notion of
data depth to further types of data such as functional and time-series data (Nieto-Reyes
and Battey, 2016; Gijbels and Nagy, 2017), curves (or paths) data (Lafaye de Micheaux
et al., 2021), directional (or spherical) data (Ley et al., 2014), random matrices (Pain-
daveine and Van Bever, 2018), random sets (Cascos et al., 2021), and metric spaces (Dai
et al., 2021) shall allow for the use of the proposed pseudo-metric for a wide range of
applications. The main drawback of this approach to be widely used in Machine Learn-
ing is its non-differentiability w.r.t. to each distribution. This aspect, shared with most
of data depths, would deserve further investigations in order to use our pseudo-metric
in generative models involving neural networks. Recent developments in Dyckerhoff
et al. (2021) may be employed to obtain better accuracy of the supremum over the unit
sphere that involves in our approximation.

Safer Machine learning systems is fundamental towards a large scale adoption of AI
in real-world. Even though deep learning algorithms have achieved state-of-the-art in
several tasks, their adoption in critical system remains shy (Alves et al., 2018; Johnson,
2018). One of the reasons is that the training set does not reflect well enough the
real-life environment and the lacking trustworthiness of results when these models are
deployed (Amodei et al., 2016). The variability of such environments are prohibitively to
modelling during training time, thus an intelligent agent should be able to detect if the
data it encounters is adapted or not to what it was trained for (Sehwag et al., 2019).
Also, it has been shown that a simple change in input data adversarially introduced
by someone having full knowledge of the uncorrupted data distribution can drastically
deteriorate the performance of the most sophisticated models (Szegedy et al., 2014).
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Over time, a vast literature has been produced investigating defense methods against
adversarial examples. On the one hand, techniques to train models with improved
robustness to upcoming attacks have been proposed (Zheng et al., 2016; Madry et al.,
2018; Athalye et al., 2018). On the other hand, effective methods to detect adversarial
examples given a pre-trained model have also been studied (Meng and Chen, 2017; Lee
et al., 2018). To that end, the work of this thesis may be applied either to build defense
procedures, based on the proposed robust metrics, or to detect adversarial attacks inside
of networks through the introduced anomaly detection approaches.
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A Additional Materials for FIF

In this section, additional materials for the chapter 5 is depicted.

A.1 Additional Study of the Parameters of FIF

Here, we present results of a simulation study of the variance of the FIF algorithm. The
experiments were conducted on the data sets (a) and (b) from Section 5.3.1, for each
of the four specified observations x0, x1, x2, x3 using the following settings (except
varying parameter):

Dictionary : Gaussian wavelets (negative second derivative of the standard Gaus-
sian density) with random variance selected in an uniform way in [0.2, 1] and
a translation parameter selected randomly in [−4, 4]. We fixed the size of the
dictionary to 1000.

Scalar product : L2 dot product.

Size of the data set : n = 500.

Subsampling size: ψ = 64.

The number of trees: N = 100.

The height limit : fixed to l = dlog2(ψ)e.

The figures below indicate boxplots of the FIF anomaly score, over 100 runs. Empirical
study of the FIF anomaly score and its variance when increasing the number of F-itrees
is depicted in Figure A.5. Empirical study of the FIF anomaly score and its variance
when increasing the subsample size is depicted in Figure A.6. Empirical study of the FIF
anomaly score and its variance when increasing the height limit of the F-itree is depicted
in Figure A.7. Taking finite size versions of the infinite gaussian wavelets dictionary,
an empirical study of the FIF anomaly score and its variance when increasing the size
of the dictionary is depicted in Figure A.8. Empirical study of the FIF anomaly score
for a variety of dictionaries with the L2 scalar product of the derivatives is depicted in
Figure A.9. Empirical study of the FIF anomaly score for a variety of dictionaries with
the L2 scalar product of the derivatives is depicted in Figure A.9.

Analysis of the results. In a first experiment, we show the boxplots of the score es-
timated by FIF when increasing the number of F-itrees and observe that, as expected,
the variance diminishes when N grows (see Figure A.5). We also see in Figure A.6 that
with an increasing subsample size ψ the FIF anomaly score increases for anomalies since
these are more often present in the subsample and thus isolated faster (with shorter path
length) when calculating the score than when they were absent in the subsample; this
effect is reciprocal for normal observations. A similar behavior is observed with increas-
ing height limit l in Figure A.7. The variance of the score tends to slightly increase
with ψ and l because of more observations/branching possibilities. If the dictionary
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is sufficiently rich, its size does not influence the FIF anomaly score and its variance
stabilizes relatively fast while growing the size of the dictionary (see Figure A.8) which
encourages the use of massive (and infinite size) dictionaries.
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Figure A.5 – Boxplot (over 100 repetitions) of the FIF score for the observations
x0,x1,x2,x3 for different N . The orange boxplots represent the data set (a) while
the purple boxplots represent the data set (b).
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Figure A.6 – Boxplot (over 100 repetitions) of the FIF score for the observations
x0,x1,x2,x3 for different subsample sizes. The orange boxplots represent the data
set (a) while the purple boxplots represent the data set (b).
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Figure A.7 – Boxplot (over 100 repetitions) of the FIF score for the observations
x0,x1,x2,x3 for different height limits. The orange boxplots represent the data set
(a) while the purple boxplots represent the data set (b).
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Figure A.8 – Boxplot (over 100 repetitions) of the FIF score for the observations
x0,x1,x2,x3 for different dictionary sizes. The orange boxplots represent the data
set (a) while the purple boxplots represent the data set (b).
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Figure A.9 – Boxplot (over 100 repetitions) of the FIF score for the observations
x0,x1,x2,x3 for different dictionaries using the L2 scalar product of the derivatives.
The orange boxplots represent the data set (a) while the purple boxplots represent the
data set (b).
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Figure A.10 – Benchmark data sets in the anomaly detection experiment for Chapter
5.

A.2 Complementary Results on the Performance Comparison

Here, complementary results of the benchmark displayed in Section 5.3.2 are provided.

A.2.1 Benchmark Data Sets

In Figure A.10, we plot the thirteen benchmark train data sets used in the experiment.
Anomalies are represented by blue color while normal data are drawn in red.
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A.2.2 Functional Depth

In this part, we present further 8 functional depths which are outperformed (on an
average) by the two depth functions presented in Section 5.3.2 on the 13 real-world data
sets and we display their AUC performance. SFD corresponds to simplicial integrated
depth, HFD to Halfspace integrated depth, RP-SD to the random projection method
with simplicial depth, RP-RHD to the random projection method with random halfspace
depth, fAO to the functional adjusted outlyingness, fDO to the functional directional
outlyingness to and fbd to functional bagdistance. The reader is referred to Cuevas
et al. (2007); Fraiman and Muniz (2001); Hubert et al. (2015) for the bibliography on
employed functional data depth notions.

Data sets SFD HFD Modal RP-SD RP-RHD fAO fDO fbd

Chinatown 0.74 0.77 0.75 0.77 0.73 0.70 0.83 0.83

Coffee 0.60 0.59 0.69 0.70 0.51 0.53 0.59 0.60

ECGFiveDays 0.65 0.64 0.60 0.64 0.56 0.72 0.76 0.80

ECG200 0.82 0.82 0.84 0.85 0.74 0.78 0.82 0.82

Handoutlines 0.70 0.70 0.75 0.72 0.63 0.60 0.71 0.73

SonyRobotAI1 0.89 0.89 0.94 0.83 0.62 0.90 0.93 0.93

SonyRobotAI2 0.82 0.82 0.92 0.86 0.71 0.80 0.82 0.80

StarLightCurves 0.80 0.80 0.85 0.78 0.68 0.80 0.82 0.83

TwoLeadECG 0.68 0.67 0.68 0.66 0.60 0.67 0.69 0.69

Yoga 0.55 0.53 0.57 0.57 0.54 0.54 0.55 0.56

EOGHorizontal 0.59 0.52 0.84 0.74 0.64 0.53 0.59 0.66

CinECGTorso 0.69 0.69 0.73 0.62 0.66 0.85 0.83 0.79

ECG5000 0.90 0.90 0.92 0.92 0.84 0.87 0.92 0.92

A.2.3 Isolation Forest after Dimension Reduction by Filtering Methods
on the Benchmark Data Sets

Here, we show the results of the filtering approach using 106 bases from the PyWavelets
python library and the Fourier basis. Afterwards, we apply (multivariate) Isolation
Forest on the coefficients of the projections and display the AUC performance.

data sets Fourier bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.1 bior3.3 bior3.5 bior3.7 bior3.9 bior4.4 bior5.5 bior6.8 coif1 coif2 coif3 coif4 coif5 coif6

Chinatow 0.77 0.92 0.87 0.89 0.93 0.90 0.92 0.95 0.64 0.94 0.90 0.95 0.93 0.93 0.97 0.93 0.91 0.94 0.97 0.96 0.97 0.93
Coffee 0.49 0.56 0.67 0.67 0.60 0.56 0.69 0.60 0.51 0.53 0.65 0.53 0.47 0.47 0.62 0.65 0.51 0.76 0.50 0.71 0.54 0.69
ECGFiveDays 0.58 0.78 0.78 0.80 0.73 0.72 0.73 0.80 0.58 0.68 0.67 0.82 0.70 0.67 0.75 0.75 0.75 0.75 0.82 0.69 0.75 0.69
ECG200 0.46 0.70 0.72 0.68 0.57 0.53 0.59 0.66 0.44 0.46 0.50 0.54 0.53 0.52 0.59 0.68 0.61 0.60 0.63 0.54 0.69 0.68
Handoutlines 0.50 0.74 0.77 0.77 0.56 0.59 0.55 0.56 0.57 0.51 0.52 0.54 0.51 0.58 0.47 0.49 0.57 0.52 0.53 0.56 0.56 0.55
SonyRobotAI1 0.98 0.95 0.95 0.97 0.98 0.97 0.98 0.97 0.96 0.96 0.97 0.96 0.97 0.97 0.94 0.96 0.97 0.98 0.98 0.95 0.96 0.97
SonyRobotAI2 0.89 0.81 0.80 0.78 0.81 0.84 0.81 0.84 0.83 0.81 0.81 0.80 0.84 0.83 0.83 0.84 0.82 0.83 0.87 0.83 0.85 0.78
StarLightCurves 0.46 0.68 0.69 0.70 0.58 0.55 0.58 0.58 0.53 0.54 0.55 0.54 0.62 0.57 0.54 0.60 0.55 0.57 0.57 0.62 0.63 0.69
TwoLeadECG 0.52 0.64 0.63 0.66 0.57 0.56 0.58 0.59 0.55 0.57 0.58 0.56 0.59 0.59 0.56 0.62 0.54 0.65 0.58 0.62 0.59 0.60
Yoga 0.63 0.59 0.59 0.61 0.58 0.59 0.58 0.60 0.61 0.61 0.61 0.61 0.62 0.59 0.59 0.60 0.58 0.57 0.60 0.61 0.61 0.61
EOGHorizontal 0.44 0.61 0.60 0.56 0.61 0.59 0.60 0.61 0.62 0.63 0.63 0.62 0.60 0.66 0.63 0.64 0.63 0.64 0.62 0.62 0.63 0.63
CinECGTorso 0.28 0.25 0.24 0.20 0.17 0.16 0.15 0.17 0.15 0.17 0.16 0.15 0.14 0.14 0.15 0.14 0.14 0.16 0.17 0.16 0.15 0.15
ECG5000 0.65 0.85 0.87 0.89 0.72 0.76 0.77 0.82 0.65 0.66 0.71 0.73 0.81 0.77 0.75 0.78 0.78 0.75 0.79 0.84 0.80 0.82
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data sets coif7 coif8 coif9 coif10 coif11 coif12 coif13 coif14 coif15 coif16 coif17 db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11

Chinatow 0.95 0.95 0.94 0.93 0.93 0.95 0.98 0.95 0.90 0.93 0.91 0.94 0.90 0.92 0.97 0.89 0.92 0.94 0.95 0.97 0.94 0.95
Coffee 0.68 0.59 0.49 0.69 0.65 0.59 0.73 0.63 0.65 0.56 0.51 0.65 0.51 0.67 0.60 0.37 0.56 0.47 0.55 0.56 0.63 0.63
ECGFiveDays 0.67 0.71 0.68 0.71 0.70 0.77 0.83 0.77 0.79 0.79 0.80 0.70 0.78 0.80 0.82 0.70 0.79 0.73 0.74 0.74 0.73 0.66
ECG200 0.72 0.71 0.84 0.86 0.85 0.85 0.85 0.84 0.85 0.85 0.86 0.63 0.59 0.57 0.55 0.65 0.57 0.63 0.64 0.62 0.69 0.70
Handoutlines 0.47 0.56 0.55 0.57 0.57 0.55 0.60 0.57 0.59 0.51 0.61 0.74 0.55 0.58 0.58 0.54 0.52 0.57 0.52 0.51 0.53 0.60
SonyRobotAI1 0.92 0.94 0.96 0.91 0.91 0.92 0.90 0.93 0.89 0.94 0.90 0.97 0.98 0.98 0.97 0.98 0.96 0.97 0.97 0.95 0.96 0.97
SonyRobotAI2 0.79 0.80 0.82 0.79 0.79 0.79 0.80 0.78 0.83 0.78 0.83 0.79 0.82 0.81 0.87 0.81 0.86 0.83 0.87 0.87 0.85 0.90
StarLightCurves 0.68 0.71 0.64 0.72 0.76 0.77 0.76 0.75 0.75 0.77 0.75 0.70 0.57 0.53 0.53 0.60 0.52 0.54 0.61 0.61 0.65 0.57
TwoLeadECG 0.65 0.67 0.68 0.69 0.64 0.76 0.71 0.73 0.73 0.67 0.69 0.58 0.58 0.57 0.57 0.57 0.62 0.57 0.53 0.60 0.62 0.63
Yoga 0.62 0.59 0.59 0.59 0.62 0.62 0.61 0.61 0.61 0.60 0.59 0.58 0.57 0.58 0.58 0.60 0.60 0.60 0.59 0.60 0.61 0.61
EOGHorizontal 0.60 0.61 0.65 0.56 0.68 0.59 0.60 0.64 0.62 0.60 0.59 0.63 0.61 0.62 0.64 0.65 0.62 0.61 0.60 0.63 0.64 0.57
CinECGTorso 0.15 0.17 0.18 0.17 0.17 0.16 0.17 0.17 0.19 0.17 0.16 0.23 0.14 0.16 0.15 0.18 0.16 0.17 0.14 0.17 0.16 0.18
ECG5000 0.86 0.85 0.85 0.83 0.87 0.92 0.91 0.93 0.92 0.91 0.93 0.85 0.79 0.75 0.71 0.69 0.78 0.74 0.73 0.73 0.74 0.72

data sets db12 db13 db14 db15 db16 db17 db18 db19 db20 db21 db22 db23 db24 db25 db26 db27 db28 db29 db30 db31 db32 db33

Chinatow 0.95 0.93 0.95 0.92 0.96 0.92 0.96 0.95 0.92 0.96 0.94 0.94 0.95 0.97 0.97 0.94 0.94 0.97 0.97 0.96 0.96 0.93
Coffee 0.53 0.65 0.62 0.71 0.55 0.63 0.58 0.51 0.51 0.64 0.51 0.63 0.53 0.45 0.73 0.55 0.47 0.62 0.68 0.50 0.54 0.56
ECGFiveDays 0.69 0.65 0.66 0.70 0.70 0.68 0.73 0.68 0.64 0.67 0.62 0.66 0.68 0.70 0.72 0.68 0.66 0.67 0.66 0.64 0.67 0.65
ECG200 0.65 0.72 0.72 0.72 0.75 0.72 0.71 0.73 0.74 0.70 0.74 0.73 0.71 0.84 0.84 0.84 0.84 0.84 0.85 0.84 0.84 0.82
Handoutlines 0.55 0.55 0.52 0.53 0.55 0.57 0.55 0.54 0.56 0.50 0.61 0.57 0.55 0.51 0.53 0.62 0.51 0.54 0.51 0.55 0.58 0.56
SonyRobotAI1 0.97 0.99 0.98 0.98 0.97 0.98 0.98 0.93 0.90 0.92 0.94 0.94 0.96 0.92 0.92 0.91 0.97 0.94 0.92 0.96 0.96 0.91
SonyRobotAI2 0.94 0.90 0.88 0.90 0.89 0.76 0.86 0.80 0.79 0.82 0.78 0.80 0.79 0.81 0.80 0.75 0.78 0.77 0.80 0.82 0.83 0.80
StarLightCurves 0.54 0.66 0.67 0.66 0.67 0.68 0.66 0.69 0.68 0.67 0.70 0.70 0.65 0.68 0.69 0.64 0.66 0.68 0.70 0.72 0.68 0.76
TwoLeadECG 0.62 0.66 0.63 0.62 0.62 0.62 0.62 0.66 0.62 0.59 0.65 0.66 0.67 0.65 0.66 0.67 0.70 0.61 0.74 0.74 0.68 0.68
Yoga 0.58 0.59 0.61 0.61 0.59 0.61 0.59 0.59 0.60 0.59 0.61 0.59 0.60 0.59 0.59 0.60 0.61 0.60 0.63 0.60 0.61 0.60
EOGHorizontal 0.63 0.63 0.65 0.67 0.57 0.59 0.61 0.68 0.63 0.60 0.61 0.63 0.64 0.65 0.65 0.65 0.65 0.61 0.61 0.66 0.63 0.59
CinECGTorso 0.16 0.16 0.19 0.17 0.18 0.16 0.14 0.17 0.16 0.17 0.17 0.15 0.17 0.16 0.16 0.18 0.18 0.16 0.18 0.17 0.17 0.18
ECG5000 0.77 0.73 0.79 0.76 0.77 0.79 0.78 0.86 0.81 0.85 0.83 0.77 0.84 0.84 0.85 0.82 0.84 0.82 0.83 0.81 0.81 0.81

data sets db34 db35 db36 db37 db38 dmey haar rbio1.1 rbio1.3 rbio1.5 rbio2.2 rbio2.4 rbio2.6 rbio2.8 rbio3.1 rbio3.3 rbio3.5 rbio3.7 rbio3.9 rbio4.4 rbio5.5 rbio6.8

Chinatow 0.98 0.95 0.93 0.92 0.95 0.94 0.89 0.92 0.91 0.93 0.93 0.90 0.96 0.97 0.97 0.96 0.95 0.96 0.97 0.88 0.95 0.95
Coffee 0.55 0.62 0.55 0.62 0.51 0.55 0.56 0.74 0.64 0.47 0.64 0.56 0.56 0.50 0.72 0.59 0.60 0.53 0.67 0.41 0.55 0.60
ECGFiveDays 0.67 0.76 0.79 0.82 0.74 0.72 0.74 0.76 0.81 0.73 0.80 0.79 0.75 0.76 0.89 0.85 0.83 0.84 0.79 0.73 0.72 0.83
ECG200 0.84 0.85 0.83 0.82 0.86 0.84 0.64 0.71 0.55 0.60 0.67 0.58 0.66 0.62 0.75 0.73 0.62 0.64 0.65 0.63 0.60 0.57
Handoutlines 0.55 0.60 0.57 0.50 0.55 0.58 0.73 0.71 0.55 0.55 0.57 0.54 0.55 0.58 0.73 0.56 0.56 0.56 0.54 0.56 0.53 0.53
SonyRobotAI1 0.93 0.95 0.96 0.92 0.95 0.94 0.97 0.96 0.96 0.97 0.95 0.97 0.97 0.96 0.90 0.97 0.97 0.97 0.96 0.95 0.95 0.97
SonyRobotAI2 0.77 0.79 0.81 0.85 0.80 0.77 0.82 0.82 0.83 0.84 0.81 0.81 0.78 0.83 0.80 0.79 0.86 0.80 0.88 0.85 0.82 0.80
StarLightCurves 0.75 0.73 0.76 0.74 0.76 0.81 0.70 0.70 0.54 0.56 0.56 0.56 0.58 0.62 0.71 0.53 0.55 0.60 0.60 0.56 0.57 0.51
TwoLeadECG 0.70 0.73 0.69 0.69 0.69 0.67 0.53 0.59 0.61 0.59 0.64 0.58 0.58 0.58 0.68 0.63 0.59 0.57 0.58 0.60 0.60 0.60
Yoga 0.60 0.60 0.62 0.61 0.62 0.60 0.59 0.60 0.59 0.59 0.58 0.57 0.59 0.59 0.61 0.58 0.58 0.57 0.58 0.60 0.60 0.58
EOGHorizontal 0.63 0.62 0.59 0.64 0.62 0.67 0.60 0.55 0.63 0.58 0.59 0.64 0.64 0.63 0.63 0.64 0.56 0.63 0.64 0.57 0.61 0.59
CinECGTorso 0.19 0.17 0.18 0.16 0.19 0.18 0.25 0.23 0.16 0.18 0.15 0.16 0.15 0.15 0.28 0.14 0.16 0.17 0.19 0.15 0.15 0.17
ECG5000 0.83 0.79 0.93 0.92 0.93 0.84 0.86 0.85 0.75 0.73 0.82 0.81 0.79 0.83 0.90 0.82 0.83 0.79 0.83 0.78 0.83 0.83

data sets sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10 sym11 sym12 sym13 sym14 sym15 sym16 sym17 sym18 sym19 sym20

Chinatow 0.86 0.90 0.95 0.89 0.83 0.97 0.96 0.97 0.88 0.94 0.95 0.89 0.94 0.96 0.94 0.95 0.94 0.94 0.95
Coffee 0.50 0.55 0.46 0.63 0.51 0.46 0.59 0.54 0.59 0.41 0.50 0.46 0.58 0.51 0.62 0.64 0.56 0.46 0.47
ECGFiveDays 0.80 0.75 0.75 0.76 0.77 0.76 0.80 0.87 0.74 0.68 0.75 0.74 0.72 0.77 0.72 0.75 0.72 0.71 0.69
ECG200 0.58 0.52 0.54 0.54 0.49 0.58 0.62 0.58 0.57 0.59 0.63 0.65 0.71 0.72 0.74 0.74 0.67 0.64 0.70
Handoutlines 0.63 0.59 0.49 0.55 0.56 0.57 0.57 0.53 0.53 0.55 0.56 0.56 0.51 0.60 0.53 0.51 0.51 0.54 0.54
SonyRobotAI1 0.97 0.98 0.94 0.98 0.97 0.97 0.96 0.95 0.96 0.97 0.98 0.95 0.96 0.96 0.94 0.96 0.96 0.94 0.96
SonyRobotAI2 0.86 0.86 0.81 0.87 0.86 0.84 0.86 0.86 0.83 0.86 0.89 0.89 0.87 0.86 0.89 0.81 0.79 0.83 0.80
StarLightCurves 0.57 0.53 0.55 0.58 0.59 0.53 0.58 0.66 0.62 0.64 0.64 0.63 0.59 0.58 0.59 0.71 0.67 0.71 0.65
TwoLeadECG 0.58 0.57 0.55 0.56 0.63 0.62 0.55 0.57 0.58 0.65 0.59 0.64 0.62 0.68 0.62 0.61 0.60 0.66 0.57
Yoga 0.58 0.58 0.59 0.60 0.60 0.59 0.59 0.58 0.60 0.60 0.61 0.59 0.60 0.59 0.60 0.62 0.62 0.61 0.61
EOGHorizontal 0.60 0.66 0.62 0.55 0.61 0.63 0.63 0.61 0.61 0.65 0.67 0.68 0.58 0.67 0.64 0.67 0.71 0.64 0.60
CinECGTorso 0.16 0.16 0.15 0.15 0.17 0.15 0.16 0.16 0.17 0.15 0.17 0.16 0.16 0.15 0.16 0.15 0.17 0.17 0.17
ECG5000 0.79 0.75 0.81 0.77 0.81 0.72 0.79 0.78 0.77 0.79 0.84 0.83 0.82 0.80 0.84 0.84 0.86 0.81 0.83

A.2.4 IFFPCA with Different Filtering Preliminary Step on the
Benchmark Data Sets

Here, we show the results of the FPCA approach using the Fourier basis and 106 further
bases from the PyWavelets python library as preliminary filtering stage. Afterwards, we
apply (multivariate) Isolation Forest on the coefficients of the projections and display
the AUC performance.

data sets bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.1 bior3.3 bior3.5 bior3.7 bior3.9 bior4.4 bior5.5 bior6.8 coif1 coif2 coif3 coif4 coif5 coif6 coif7

Chinatow 0.69 0.69 0.68 0.78 0.73 0.75 0.66 0.74 0.69 0.77 0.65 0.68 0.69 0.62 0.70 0.66 0.68 0.71 0.80 0.73 0.68 0.71
Coffee 0.60 0.54 0.47 0.53 0.45 0.62 0.44 0.38 0.49 0.55 0.64 0.49 0.58 0.56 0.45 0.53 0.51 0.53 0.45 0.42 0.59 0.58
ECGFiveDays 0.81 0.79 0.83 0.89 0.85 0.87 0.90 0.85 0.82 0.88 0.89 0.86 0.85 0.83 0.87 0.91 0.88 0.83 0.80 0.80 0.84 0.79
ECG200 0.80 0.81 0.78 0.76 0.75 0.71 0.78 0.78 0.73 0.70 0.75 0.77 0.73 0.71 0.71 0.81 0.78 0.80 0.76 0.78 0.77 0.81
Handoutline 0.68 0.68 0.68 0.72 0.66 0.70 0.72 0.69 0.78 0.70 0.68 0.69 0.70 0.68 0.70 0.70 0.72 0.73 0.68 0.71 0.71 0.70
SonyRobotAI1 0.79 0.71 0.81 0.77 0.80 0.76 0.76 0.77 0.82 0.84 0.85 0.85 0.82 0.81 0.82 0.82 0.87 0.79 0.85 0.80 0.79 0.88
SonyRobotAI2 0.86 0.78 0.89 0.80 0.80 0.85 0.89 0.80 0.82 0.81 0.84 0.87 0.84 0.87 0.89 0.83 0.85 0.84 0.85 0.87 0.85 0.88
StarLightCurves 0.76 0.78 0.76 0.74 0.73 0.77 0.76 0.62 0.69 0.78 0.75 0.76 0.77 0.74 0.75 0.75 0.74 0.76 0.77 0.75 0.74 0.70
TwoLeadECG 0.71 0.62 0.69 0.65 0.60 0.72 0.68 0.62 0.61 0.71 0.66 0.78 0.65 0.66 0.66 0.72 0.65 0.72 0.61 0.55 0.67 0.73
Yoga 0.57 0.55 0.57 0.57 0.56 0.57 0.58 0.57 0.55 0.54 0.56 0.59 0.58 0.58 0.57 0.57 0.56 0.59 0.59 0.57 0.57 0.58
EOGHorizontal 0.70 0.72 0.71 0.76 0.74 0.66 0.72 0.67 0.83 0.74 0.68 0.76 0.71 0.65 0.70 0.66 0.63 0.69 0.66 0.74 0.72 0.69
CinECGTorso 0.51 0.46 0.46 0.32 0.42 0.28 0.49 0.32 0.48 0.43 0.39 0.35 0.43 0.38 0.39 0.53 0.50 0.39 0.50 0.67 0.44 0.49
ECG5000 0.96 0.94 0.94 0.94 0.95 0.95 0.94 0.93 0.95 0.95 0.93 0.94 0.94 0.95 0.95 0.94 0.95 0.96 0.95 0.95 0.95 0.95
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data sets coif8 coif9 coif10 coif11 coif12 coif13 coif14 coif15 coif16 coif17 db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 db11 db12

Chinatow 0.68 0.67 0.64 0.62 0.71 0.73 0.76 0.63 0.76 0.71 0.72 0.69 0.71 0.72 0.75 0.69 0.73 0.75 0.71 0.69 0.73 0.66
Coffee 0.74 0.58 0.46 0.46 0.54 0.49 0.38 0.41 0.44 0.53 0.54 0.44 0.58 0.47 0.41 0.56 0.51 0.58 0.53 0.55 0.49 0.44
ECGFiveDays 0.84 0.87 0.85 0.85 0.88 0.83 0.83 0.87 0.82 0.78 0.83 0.84 0.84 0.85 0.85 0.83 0.87 0.87 0.80 0.89 0.86 0.88
ECG200 0.79 0.79 0.84 0.82 0.82 0.84 0.80 0.81 0.82 0.82 0.83 0.80 0.81 0.77 0.84 0.81 0.75 0.75 0.75 0.76 0.81 0.76
Handoutlines 0.68 0.72 0.77 0.74 0.76 0.71 0.72 0.70 0.64 0.69 0.66 0.78 0.70 0.72 0.68 0.72 0.72 0.66 0.72 0.75 0.73 0.71
SonyRobotAI1 0.85 0.85 0.87 0.89 0.81 0.88 0.83 0.86 0.85 0.79 0.79 0.78 0.78 0.78 0.80 0.83 0.80 0.88 0.87 0.88 0.90 0.81
SonyRobotAI2 0.84 0.86 0.85 0.86 0.86 0.84 0.86 0.82 0.86 0.84 0.88 0.79 0.86 0.79 0.85 0.84 0.88 0.84 0.85 0.78 0.89 0.86
StarLightCurves 0.74 0.73 0.73 0.72 0.73 0.74 0.72 0.71 0.70 0.71 0.75 0.75 0.77 0.78 0.75 0.75 0.79 0.77 0.75 0.78 0.77 0.75
TwoLeadECG 0.60 0.66 0.52 0.63 0.60 0.59 0.62 0.65 0.60 0.55 0.67 0.68 0.67 0.66 0.67 0.72 0.66 0.64 0.63 0.55 0.57 0.66
Yoga 0.60 0.58 0.58 0.58 0.60 0.59 0.60 0.59 0.59 0.58 0.56 0.56 0.57 0.56 0.57 0.56 0.58 0.56 0.56 0.57 0.59 0.60
EOGHorizontal 0.71 0.68 0.70 0.70 0.70 0.68 0.66 0.69 0.67 0.68 0.69 0.78 0.72 0.71 0.69 0.72 0.67 0.72 0.72 0.75 0.75 0.70
CinECGTorso 0.52 0.55 0.46 0.34 0.54 0.45 0.55 0.46 0.48 0.46 0.47 0.43 0.50 0.62 0.39 0.49 0.44 0.40 0.46 0.40 0.46 0.39
ECG5000 0.94 0.94 0.94 0.95 0.95 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.94

data sets db13 db14 db15 db16 db17 db18 db19 db20 db21 db22 db23 db24 db25 db26 db27 db28 db29 db30 db31 db32 db33 db34

Chinatow 0.72 0.62 0.74 0.71 0.76 0.75 0.68 0.76 0.69 0.76 0.78 0.70 0.74 0.65 0.80 0.69 0.65 0.74 0.72 0.74 0.73 0.76
Coffee 0.51 0.42 0.38 0.42 0.47 0.49 0.54 0.46 0.37 0.46 0.40 0.58 0.62 0.45 0.53 0.33 0.40 0.53 0.55 0.42 0.49 0.41
ECGFiveDays 0.83 0.86 0.83 0.89 0.80 0.87 0.81 0.77 0.81 0.79 0.82 0.79 0.84 0.85 0.86 0.85 0.72 0.84 0.86 0.80 0.81 0.79
ECG200 0.81 0.75 0.80 0.79 0.76 0.80 0.81 0.83 0.86 0.81 0.78 0.78 0.82 0.77 0.81 0.81 0.82 0.77 0.83 0.80 0.81 0.78
Handoutlines 0.74 0.76 0.73 0.77 0.73 0.74 0.71 0.72 0.75 0.72 0.74 0.74 0.74 0.78 0.75 0.70 0.69 0.73 0.74 0.74 0.72 0.72
SonyRobotAI1 0.82 0.83 0.79 0.82 0.84 0.84 0.87 0.85 0.84 0.82 0.84 0.84 0.84 0.85 0.83 0.86 0.87 0.83 0.81 0.79 0.82 0.82
SonyRobotAI2 0.86 0.88 0.87 0.88 0.82 0.83 0.85 0.85 0.85 0.83 0.83 0.87 0.87 0.86 0.84 0.86 0.86 0.83 0.82 0.85 0.87 0.86
StarLightCurves 0.78 0.77 0.73 0.77 0.74 0.75 0.74 0.75 0.73 0.72 0.73 0.72 0.72 0.73 0.73 0.70 0.71 0.73 0.74 0.70 0.71 0.72
TwoLeadECG 0.71 0.63 0.70 0.72 0.62 0.58 0.65 0.70 0.48 0.64 0.73 0.62 0.71 0.64 0.61 0.57 0.63 0.62 0.65 0.64 0.62 0.58
Yoga 0.59 0.57 0.59 0.59 0.58 0.59 0.59 0.58 0.59 0.59 0.59 0.59 0.61 0.58 0.59 0.59 0.58 0.58 0.57 0.60 0.58 0.59
EOGHorizontal 0.73 0.66 0.75 0.75 0.73 0.70 0.77 0.69 0.72 0.74 0.71 0.72 0.67 0.74 0.73 0.68 0.75 0.71 0.73 0.68 0.72 0.72
CinECGTorso 0.40 0.50 0.52 0.52 0.52 0.47 0.50 0.45 0.41 0.54 0.52 0.52 0.37 0.47 0.51 0.44 0.51 0.48 0.45 0.53 0.44 0.38
ECG5000 0.95 0.95 0.95 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95

data sets db35 db36 db37 db38 dmey haar rbio1.1 rbio1.3 rbio1.5 rbio2.2 rbio2.4 rbio2.6 rbio2.8 rbio3.1 rbio3.3 rbio3.5 rbio3.7 rbio3.9 rbio4.4 rbio5.5 rbio6.8 sym2

Chinatow 0.71 0.69 0.77 0.74 0.74 0.71 0.71 0.69 0.72 0.78 0.74 0.72 0.81 0.75 0.73 0.74 0.61 0.72 0.79 0.67 0.81 0.66
Coffee 0.50 0.38 0.41 0.50 0.54 0.53 0.58 0.46 0.50 0.45 0.67 0.49 0.63 0.33 0.42 0.49 0.56 0.49 0.54 0.53 0.54 0.47
ECGFiveDays 0.84 0.85 0.83 0.84 0.82 0.88 0.86 0.88 0.81 0.85 0.65 0.90 0.82 0.92 0.82 0.79 0.87 0.84 0.88 0.77 0.78 0.81
ECG200 0.78 0.80 0.78 0.83 0.79 0.78 0.80 0.76 0.78 0.72 0.68 0.70 0.72 0.81 0.71 0.76 0.75 0.72 0.75 0.73 0.82 0.79
Handoutlines 0.72 0.72 0.70 0.74 0.75 0.70 0.65 0.70 0.71 0.75 0.69 0.71 0.73 0.74 0.71 0.73 0.73 0.67 0.72 0.70 0.68 0.75
SonyRobotAI1 0.86 0.87 0.83 0.84 0.87 0.74 0.80 0.87 0.80 0.86 0.76 0.81 0.79 0.81 0.77 0.85 0.79 0.84 0.79 0.80 0.86 0.80
SonyRobotAI2 0.82 0.85 0.86 0.81 0.84 0.88 0.86 0.86 0.85 0.83 0.85 0.86 0.85 0.81 0.88 0.92 0.87 0.88 0.83 0.85 0.81 0.86
StarLightCurves 0.75 0.70 0.73 0.73 0.73 0.77 0.76 0.79 0.77 0.77 0.75 0.74 0.78 0.72 0.76 0.73 0.74 0.75 0.77 0.76 0.73 0.74
TwoLeadECG 0.69 0.58 0.62 0.67 0.57 0.70 0.66 0.68 0.71 0.63 0.63 0.67 0.66 0.66 0.61 0.73 0.71 0.62 0.62 0.64 0.66 0.63
Yoga 0.57 0.60 0.59 0.56 0.59 0.58 0.59 0.59 0.59 0.58 0.58 0.58 0.59 0.56 0.60 0.58 0.60 0.57 0.55 0.56 0.59 0.56
EOGHorizontal 0.74 0.71 0.71 0.70 0.68 0.69 0.70 0.64 0.74 0.68 0.65 0.66 0.68 0.71 0.75 0.72 0.68 0.67 0.69 0.76 0.72 0.74
CinECGTorso 0.42 0.48 0.38 0.51 0.47 0.48 0.53 0.42 0.44 0.41 0.36 0.35 0.41 0.30 0.39 0.30 0.49 0.36 0.41 0.42 0.42 0.44
ECG5000 0.95 0.95 0.96 0.95 0.95 0.95 0.94 0.94 0.95 0.96 0.94 0.95 0.95 0.95 0.94 0.93 0.94 0.95 0.95 0.95 0.95 0.95

data sets sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10 sym11 sym12 sym13 sym14 sym15 sym16 sym17 sym18 sym19 sym20

Chinatow 0.67 0.70 0.74 0.67 0.80 0.72 0.70 0.74 0.76 0.65 0.79 0.74 0.71 0.83 0.69 0.62 0.77 0.66
Coffee 0.65 0.62 0.64 0.63 0.49 0.50 0.41 0.38 0.60 0.46 0.45 0.56 0.55 0.56 0.46 0.46 0.56 0.55
ECGFiveDays 0.90 0.81 0.81 0.81 0.90 0.89 0.81 0.75 0.78 0.79 0.80 0.88 0.83 0.82 0.81 0.83 0.78 0.85
ECG200 0.76 0.76 0.81 0.72 0.76 0.77 0.72 0.78 0.77 0.78 0.82 0.79 0.81 0.78 0.77 0.81 0.83 0.80
Handoutlines 0.75 0.73 0.70 0.74 0.71 0.74 0.69 0.71 0.73 0.72 0.73 0.70 0.69 0.74 0.72 0.75 0.72 0.72
SonyRobotAI1 0.75 0.85 0.82 0.76 0.82 0.76 0.86 0.86 0.83 0.83 0.90 0.86 0.83 0.88 0.90 0.88 0.84 0.83
SonyRobotAI2 0.87 0.86 0.84 0.85 0.86 0.86 0.84 0.85 0.81 0.87 0.87 0.91 0.88 0.85 0.85 0.87 0.85 0.87
StarLightCurves 0.76 0.77 0.77 0.76 0.76 0.75 0.77 0.76 0.77 0.76 0.75 0.74 0.70 0.74 0.76 0.73 0.78 0.71
TwoLeadECG 0.66 0.68 0.58 0.62 0.71 0.69 0.69 0.64 0.66 0.69 0.64 0.67 0.65 0.64 0.68 0.63 0.67 0.70
Yoga 0.58 0.57 0.59 0.60 0.58 0.59 0.58 0.58 0.58 0.59 0.59 0.57 0.57 0.58 0.59 0.58 0.58 0.59
EOGHorizontal 0.72 0.68 0.68 0.70 0.70 0.71 0.67 0.70 0.69 0.71 0.70 0.70 0.69 0.65 0.69 0.68 0.72 0.65
CinECGTorso 0.45 0.44 0.51 0.41 0.49 0.56 0.39 0.48 0.49 0.37 0.46 0.48 0.43 0.58 0.36 0.41 0.48 0.40
ECG5000 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.95 0.95

B Additional Materials for the Benchmark Study

B.1 Additional Experiments on Simulated Anomalies

In this part, complementary experiments to the Section 7.2 are displayed. They are
conducted with the same methodology but varying proportion of anomalies: 1% in
Table B.4, 2% in Table B.5, 3% in Table B.6 and 4% in Table B.7.
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Isolated Magnitude I Magnitude II Shape

Methods TPR AUC TPR AUC TPR AUC TPR AUC

FIF 0 0.20 1 1 0 0.32 0.06 0.98

fAO 0 0.44 1 1 0 0.54 0 0.67

fbd 0 0.44 1 1 0 0.54 0 0.68

fSDO 0 0.42 1 1 0 0.54 0 0.77

fT 0 0.43 1 1 0 0.44 0 0.72

ACH 0 0.62 1 1 1 1 0 0.61

Outliergram 0 0.55 1 1 0 0.54 0 0.51

MS + IF 0 0.05 1 1 0 0.77 0 0.77

FOM (fSDO) + IF 0 0.27 1 1 1 1 0 0.97

FOM (fAO) + IF 0 0.31 1 1 0.88 1 0 0.96

FPCA + IF 0 0.08 0 0.96 0 0.77 0 0.86

FPCA + LOF 0 0.31 0.18 0.86 0 0.42 0 0.67

FPCA + OC 0 0.03 0 0.93 0 0.78 0 0.88

Table B.4 – Methods considered in performance comparison with the TPR and the Area
Under the Receiver Operating Characteristic (AUC) for the four simulated models with
1% of added anomalies. Bold numbers correspond to the best result.

Isolated Magnitude I Magnitude II Shape

Methods TPR AUC TPR AUC TPR AUC TPR AUC

FIF 0 0.23 0.97 1 0 0.32 0.26 0.98

fAO 0 0.44 1 1 0 0.54 0 0.67

fbd 0 0.44 1 1 0 0.54 0 0.68

fSDO 0 0.42 1 1 0 0.43 0 0.77

fT 0 0.43 1 1 0 0.44 0 0.72

ACH 0 0.62 1 0.83 0.94 1 0 0.61

Outliergram 0 0.55 1 1 0 0.54 0 0.49

MS + IF 0 0.05 1 1 0 0.77 0 0.77

FOM (fSDO) + IF 0 0.22 0.94 1 0.86 1 0 0.95

FOM (fAO) + IF 0 0.26 0.89 1 0.66 0.99 0 0.95

FPCA + IF 0 0.08 0 0.92 0 0.71 0 0.90

FPCA + LOF 0 0.35 0.09 0.81 0 0.48 0.09 0.77

FPCA + OC 0 0.03 0 0.94 0 0.79 0 0.91

Table B.5 – Methods considered in performance comparison with the TPR and the Area
Under the Receiver Operating Characteristic (AUC) for the four simulated models with
2% of added anomalies. Bold numbers correspond to the best result.

C Illustration of the Work for Valeo

This section summarizes some aspects of the work done in the production line of Valeo’s
company without breaking confidentiality of data. This work has been done in the
context of the PSPC Expresso project funded by BPI France.
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Isolated Magnitude I Magnitude II Shape

Methods TPR AUC TPR AUC TPR AUC TPR AUC

FIF 0 0.21 0.98 1 0 0.33 0.49 0.98

fAO 0 0.44 1 1 0 0.54 0 0.67

fbd 0 0.44 1 1 0 0.54 0 0.68

fSDO 0 0.42 1 1 0 0.43 0 0.77

fT 0 0.43 1 1 0 0.44 0 0.72

ACH 0 0.60 1 0.85 0.88 1 0 0.60

Outliergram 0 0.55 1 1 0 0.54 0 0.49

MS + IF 0 0.05 1 1 0 0.75 0 0.77

FOM (fSDO) + IF 0 0.06 0.89 1 0.64 0.99 0 0.89

FOM (fAO) + IF 0 0.24 0.81 1 0.70 0.99 0 0.93

FPCA + IF 0 0.07 0 0.93 0 0.70 0 0.93

FPCA + LOF 0 0.39 0.16 0.87 0 0.57 0.17 0.70

FPCA + OC 0 0.04 0 0.94 0 0.78 0 0.93

Table B.6 – Methods considered in performance comparison with the TPR and the Area
Under the Receiver Operating Characteristic (AUC) for the four simulated models with
3% of added anomalies. Bold numbers correspond to the best result.

Isolated Magnitude I Magnitude II Shape

Methods TPR AUC TPR AUC TPR AUC TPR AUC

FIF 0 0.23 0.94 1 0 0.34 0.58 0.98

fAO 0 0.44 1 1 0 0.54 0 0.67

fbd 0 0.44 1 1 0 0.54 0 0.68

fSDO 0 0.42 1 1 0 0.43 0 0.77

fT 0 0.43 1 1 0 0.44 0 0.72

ACH 0 0.63 1 0.85 0.85 1 0 0.60

Outliergram 0 0.55 1 1 0 0.54 0 0.46

MS + IF 0 0.05 1 1 0 0.74 0 0.77

FOM (fSDO) + IF 0 0 0.80 1 0.65 0.99 0 0.87

FOM (fAO) + IF 0 0.10 0.89 1 0.55 0.98 0 0.87

FPCA + IF 0 0.08 0 0.92 0 0.72 0.28 0.96

FPCA + LOF 0 0.43 0.26 0.82 0 0.59 0.18 0.70

FPCA + OC 0 0.03 0 0.93 0 0.78 0.08 0.95

Table B.7 – Methods considered in performance comparison with the TPR and the Area
Under the Receiver Operating Characteristic (AUC) for the four simulated models with
4% of added anomalies. Bold numbers correspond to the best result.

C.1 Objectives and Context

The aim of the Expresso project was to provide state-of-the-art anomaly detection
algorithm for a production line in a factory of the french company Valeo, world-leading
global automotive supplier operating in 33 countries, and partnering with automakers
worldwide. In a production line from a Valeo’s factory, data are collected during the
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Figure C.11 – Illustration of a production line.

manufacturing process. Typically, a product is characterized by many quantitative
variables measured by many “tests” performed on each product during its path on the
production line, see Figure C.11 for an illustration. The amount of data from both the
number of constructed products and the number of sensors used to measure features of
products prevents a human-analysis and requires automatic Machine Learning tools to
leverage the collected information. The aim of ML approaches is to help engineers to
automatically monitor the production line in order to provide the following benefits: (i)
to reduce the number of products with flaws that are considered as sane when leaving
the production line and (ii) to detect as fast as possible flaws in a product to avoid
useless and expensive operations and thus increase the number of intact items produced
per day.

Two settings. Each test performed on the production line measures quantitative
information of manufactured products. The number of measured features oscillates
between 40 and 200 varying with the considered test. Machine Learning may help the
decision-making from two different settings allowing (i) and (ii). On the one hand,
data collected in each test can be processed separately leading to a multivariate data
set at each step. Therefore, an unsupervised anomaly detection algorithm adapted to
multivariate data can be performed at each stage of the production line. On the other
hand, important features of products are measured through all tests, information can
thus be summarized by a (possibly multivariate) time-series and a decision can be take
at the end of the line. In both cases, the decision made in the production line is done
by a pre-trained ML model due to resources constraints. ML models that have been
used in this project, whether multivariate or functional, are described in Section C.2.

Resources constraints. Computers that operate on the production line possess low
computational resources and low memory. In addition, one cannot stop the production
line in order to wait a decision whether the product is abnormal or not. Computers
have to provide a decision in less than one second. Therefore, the training of the models
cannot be done on the computers of the production line, but rather on a computer
outside of the production line with high resources, see Figure C.12 for an illustration.
Data used for the training are collected and transferred on the high resources computer
in order to build models. Roughly, information on one million of products were available
without knowing normal or abnormal ones. Once the model is trained, it is transferred to
computers that operate on the production line to test the new manufacturing products.



232 Appendices

Figure C.12 – Illustration of computational constraints.

C.2 Employed Methods

In the case of functional data, methods employed are those designed in this dissertation
and are fully described in Chapters 5 and 6 referring to Staerman et al. (2019) and
Staerman et al. (2020) (see also Staerman et al., 2022). In the following, we present
two of the used methods: One-Class SVM and Isolation Forest. The projection depth,
is fully presented in Chapter 2 and the AI-IRW depth in Staerman et al. (2021b) (see
also Staerman et al., 2021c).

One-Class SVM. The One Class Support Vector Machine (OCSVM; Schölkopf et al.,
2001) is an algorithm similar to SVM (Support Vector Machine). OCSVM separates
anomalies from the rest of the data in an unsupervised fashion. To that end, OCSVM
exploits Reproducing Kernel Hilbert Space theory to handle non-linearity (kernel trick)
and the Support Vector Machine fashion: once mapped into the feature space corres-
ponding to the kernel, the data are separated from the origin with maximum margin.
Thus, a new point x will be predicted as inlier or outlier depending on which side of
the hyperplane it falls on, in feature space. Precisely, n being the training sample size,
it solves the following optimization problem:

minimize
w,ξ,ρ

||w||22 +
1

νl

n∑
i=1

ξi − ρ

subject to 〈w, φ(xi)〉 ≤ ρ− ξi, ξi ≥ 0, i = 1, . . . , n
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ν = 0.3 ν = 0.1

Figure C.13 – OCSVM example on simulated data.

where xi are the training samples, w are the weights of our model we are looking for,
and φ corresponds to the feature map but is not computed in practice. As we can see
on figure C.13, OCSVM returns a score depending on which side of the hyperplane in
feature space a point x is and its distance to this separator hyperplane. Parameter ν is
an upper bound on the fraction of outliers and a lower bound on the fraction of Support
Vectors, so the smaller ν is, the larger the volume of high density is and the fewer points
are considered as outliers. However, this bound is not tight, i.e. if ν = 0.1, it does not
mean that 1% of data will be labeled as outliers. This ν works as a prior calibration of
OCSVM but one needs to perform a posterior calibration to obtain a more rigorously
calibrated detection.

Isolation Forest. Isolation Forest (Liu et al., 2008) is an Ensemble Learning approach
(cf. Random Forest). Indeed, the idea here is to isolate outliers by building a binary
tree recursively. At each step, a variable and a split value are drawn randomly and all
samples are sorted in the left or right leaves whether each variable is greater or smaller
than the split value. This process is repeated until all elements of the training set are
isolated. The outliers appear then near to tree’s root and the anomaly score computed
is reciprocal to separation path length.

Figure C.14 – Isolation tree example on toy data set.

An advantage of this approach is its scalability since it benefits easily from subsampling
and bootstrap aggregating: one can use many classifier trees trained on many sub-
sampling of data and variables, and compute an anomaly score based on their aggreg-
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ations. Nonetheless, this method suffers from a lack of explainability, since it relies on
randomness and aggregation. Besides, it isolates anomalies based on different features
available and so isolates them in hyper-rectangle as illustrated in figure C.14, but the
actual distribution of data generally has a more complex shape than a cube and the
discriminator factors between normal and anormal data could be combinations of avail-
able features and not the raw features. In this case, Extended Isolation Forest (Hariri
et al., 2019) may be preferred.

C.3 Some Illustrations on Simulated Data

In this section, we illustrate some of the employed methods on simulated data that are
similar to those involved in the project. First of all, we computed OCSVM, IF and the
projection depth on the data set and obtained the following score, depicted in Figure
C.15.

OCSVM (ν = 0.3) IF Projection depth

Figure C.15 – Sorted anomaly scores obtained on the data set.

The lower the score is, the more abnormal the point is. Having the score for each data,
we need to assess a threshold to label anomalies as a posterior calibration. This choice
is thus very important and should be tuned properly. Expert knowledge is primordial,
but one can also use visualisation to choose this threshold. A very first idea is to use
PCA to visualise data projected on first two components. An example with OCSVM is
given with two threshold, as displayed in Figures C.16 and C.17.

OCSVM scores PCA

Figure C.16 – Threshold equal to −0.01 leading to 292 outliers.
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OCSVM scores PCA

Figure C.17 – Threshold equal to −0.1 leading to 29 outliers.

We note that the most abnormal points in terms of OCSVM score lie outside of the
central cloud and most of the points outside of this cloud are points with low scores
(but not all of them). PCA gives us a first insight on tuning the threshold but as
said earlier, it does not allow to separate well the outliers to distribution’s center.
Thus, we implemented a relevant visualisation tool for outlier identification and analysis:
Anomaly Component Analysis.

Anomaly Component Analysis (ACA). The idea is to find 2 or 3 unit directions
defining a relevant and robust space to highlight outliers. To do so, we use the projection
depth. We recall the formula of projection depth of x w.r.t. a probability distribution
P ∈ P(Rd):

DP(x, P ) =
(

1 + max
u∈Sd−1

|x>u−med(X>u)|
MAD(X>u)

)−1
, (10)

We note f(x, u) = |xTu−med(X>u)|
MAD(X>u)

. Given a data set {x1, . . . , xn}, we choose as first
direction, the unit direction: argmax

u∈Sd−1

argmax
i∈{1,...,n}

f(xi, u). The intuition is to choose the

most abnormal point of the training set under the projection depth and pick the unit
sphere for which its projection is the most abnormal.

For the second direction, we project all data on the hyperspace of dimension d − 1
orthogonal to the first direction, we sample ndir unit directions on the unit sphere Sd−2

in Rd−1, and we repeat the exact same operation. We can do the same on the hyperspace
of dimension d− 2 orthogonal to first 2 directions for the 3rd one.

The Figure C.18 is an example of ACA on a data set, with colors corresponding to
OCSVM scores (yellow are the most abnormal points, blue the most normal).
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Figure C.18 – Anomaly Component Analysis on a data set.

We can see that this choice of space we call “anomaly space”, highlights well the abnormal
points which are outside of the main data cloud, even if here colors correspond to
OCSVM scores, so we can see a clear concordance between OCSVM and the projection
depth.

One important question is: is this visualisation robust to the choice of reference point
to choose the unit directions of the anomaly space? If we choose the 2nd or 3rd most
abnormal point in the computation of the directions, will anomaly space highlight both
outliers and central points? We show in Figure C.19 an example of 2nd or 3rd most
abnormal point, to show that they provide different anomaly spaces but still highlighting
abnormal points.

Figure C.19 – Anomaly Component Analysis on a data set with different reference point
to compute anomaly space.

Threshold fine-tuning with ACA. Thus, one can use ACA as a visulation tool to
tune threshold. An example with OCSVM is depicted in Figure C.20.
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Figure C.20 – Anomaly Component Analysis on a data set with outliers as triangles
depending different threshold choices: -0.01 (left) and -0.1 (right).

The goal is to find the optimal trade-off between targeting the most data considered as
outliers in terms of scores (OCSVM here), and not targeting data in the main center
data cloud. Here, −0.02 appears as a good choice. We can proceed similarly for the
projection depth but it is more difficult in the case of IF as illustrated in Figure C.22.

IF scores ACA

Figure C.21 – Threshold equal to −0.04 leading to 177 outliers.
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Projection depth ACA

Figure C.22 – Threshold equal to 0.025, leading to 214 outliers.

Many points detected as abnormal by IF lie in the main data cloud. Unlike OCSVM, we
do not find an important intersection between anomalies detected by IF and projection
depth, making it harder to use ACA to tune IF’s threshold.
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Titre : Détection d’anomalies fonctionnelles et estimation robuste

Mots clés : Détection d’anomalies, données fonctionnelles, profondeur de données, séries temporelles

Résumé : L’engouement pour l’apprentissage automatique
s’étend à presque tous les domaines comme l’énergie, la médecine
ou la finance. L’omniprésence des capteurs met à disposition de
plus en plus de données avec une granularité toujours plus fine.
Une abondance de nouvelles applications telles que la surveillance
d’infrastructures complexes comme les avions ou les réseaux
d’énergie, ainsi que la disponibilité d’échantillons de données mas-
sives, potentiellement corrompues, ont mis la pression sur la com-
munauté scientifique pour développer de nouvelles méthodes et al-
gorithmes d’apprentissage automatique fiables. Le travail présenté
dans cette thèse s’inscrit dans cette ligne de recherche et se
concentre autour de deux axes : la détection non-supervisée d’ano-
malies fonctionnelles et l’apprentissage robuste, tant du point de
vue pratique que théorique. La première partie de cette thèse est
consacrée au développement d’algorithmes efficaces de détection
d’anomalies dans le cadre fonctionnel. Plus précisément, nous in-
troduisons Functional Isolation Forest (FIF), un algorithme basé
sur le partitionnement aléatoire de l’espace fonctionnel de manière
flexible afin d’isoler progressivement les fonctions les unes des
autres. Nous proposons également une nouvelle notion de pro-
fondeur fonctionnelle basée sur l’aire de l’enveloppe convexe des
courbes échantillonnées, capturant de manière naturelle les écarts
graduels de centralité. Les problèmes d’estimation et de calcul
sont abordés et diverses expériences numériques fournissent des
preuves empiriques de la pertinence des approches proposées.
Enfin, afin de fournir des recommandations pratiques, la perfor-
mance des récentes techniques de détection d’anomalies fonction-
nelles est évaluée sur deux ensembles de données réelles liés à

la surveillance des hélicoptères en vol et à la spectrométrie des
matériaux de construction. La deuxième partie est consacrée à la
conception et à l’analyse de plusieurs approches statistiques, po-
tentiellement robustes, mêlant la profondeur de données et les es-
timateurs robustes de la moyenne. La distance de Wasserstein est
une métrique populaire résultant d’un coût de transport entre deux
distributions de probabilité et permettant de mesurer la similitude
de ces dernières. Bien que cette dernière ait montré des résultats
prometteurs dans de nombreuses applications d’apprentissage au-
tomatique, elle souffre d’une grande sensibilité aux valeurs aber-
rantes. Nous étudions donc comment tirer partie des estimateurs
de la médiane des moyennes (MoM) pour renforcer l’estimation
de la distance de Wasserstein avec des garanties théoriques. Par
la suite, nous introduisons une nouvelle fonction de profondeur
statistique dénommée Affine-Invariante Integrated Rank-Weighted
(AI-IRW). Au-delà de l’analyse théorique effectuée, des résultats
numériques sont présentés, confirmant la pertinence de cette pro-
fondeur. Les sur-ensembles de niveau des profondeurs statistiques
donnent lieu à une extension possible des fonctions quantiles aux
espaces multivariés. Nous proposons une nouvelle mesure de si-
milarité entre deux distributions de probabilité. Elle repose sur la
moyenne de la distance de Hausdorff entre les régions quantiles,
induites par les profondeur de données, de chaque distribution.
Nous montrons qu’elle hérite des propriétés intéressantes des pro-
fondeurs de données telles que la robustesse ou l’interprétabilité.
Tous les algorithmes développés dans cette thèse sont accessible
en ligne.

Title : Functional Anomaly Detection and Robust Estimation

Keywords : Anomaly detection, functional data, data depth, robustness

Abstract : Enthusiasm for Machine Learning is spreading to
nearly all fields such as transportation, energy, medicine, banking
or insurance as the ubiquity of sensors through IoT makes more
and more data at disposal with an ever finer granularity. The abun-
dance of new applications for monitoring complex infrastructures
(e.g. aircrafts, energy networks) together with the availability of
massive data samples has put pressure on the scientific community
to develop new reliable Machine-Learning methods and algorithms.
The work presented in this thesis focuses around two axes: un-
supervised functional anomaly detection and robust learning, both
from practical and theoretical perspectives. The first part of this dis-
sertation is dedicated to the development of efficient functional ano-
maly detection approaches. More precisely, we introduce Functio-
nal Isolation Forest (FIF), an algorithm based on randomly splitting
the functional space in a flexible manner in order to progressively
isolate specific function types. Also, we propose the novel notion of
functional depth based on the area of the convex hull of sampled
curves, capturing gradual departures from centrality, even beyond
the envelope of the data, in a natural fashion. Estimation and com-
putational issues are addressed and various numerical experiments
provide empirical evidence of the relevance of the approaches pro-
posed. In order to provide recommendation guidance for practitio-
ners, the performance of recent functional anomaly detection tech-
niques is evaluated using two real-world data sets related to the mo-

nitoring of helicopters in flight and to the spectrometry of construc-
tion materials. The second part describes the design and analy-
sis of several robust statistical approaches relying on robust mean
estimation and statistical data depth. The Wasserstein distance is
a popular metric between probability distributions based on opti-
mal transport. Although the latter has shown promising results in
many Machine Learning applications, it suffers from a high sensiti-
vity to outliers. To that end, we investigate how to leverage Medians-
of-Means (MoM) estimators to robustify the estimation of Wasser-
stein distance with provable guarantees. Thereafter, a new statis-
tical depth function, the Affine-Invariant Integrated Rank-Weighted
(AI-IRW) depth is introduced. Beyond the theoretical analysis car-
ried out, numerical results are presented, providing strong empiri-
cal confirmation of the relevance of the depth function proposed.
The upper-level sets of statistical depths—the depth-trimmed re-
gions—give rise to a definition of multivariate quantiles. We pro-
pose a new discrepancy measure between probability distributions
that relies on the average of the Hausdorff distance between the
depth-based quantile regions w.r.t. each distribution and demons-
trate that it benefits from attractive properties of data depths such
as robustness or interpretability.
All algorithms developed in this thesis are open-sourced and avai-
lable online.
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