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Sciences économiques

Composition du jury :

Gaelle Le Fol
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Abstract

This thesis proposes three original contributions, in the form of autonomous papers,

to the literature on transaction costs, price formation process, and crowding. The first

chapter of the thesis extensively studies the profitability of one of the most implemented

strategies in the asset management industry nowadays, namely the factors, sometimes also

referred to by Asset Pricing Anomalies or Smart Beta. These strategies are expected to

generate above average risk-premia but also involve more portfolio rebalancing, which

can generate significant transaction costs. We assess to what extent market frictions con-

stitute a limit to arbitrage for these strategies, and what would be their break-even capac-

ities given the trading behavior of institutional investors. The second chapter highlights

the important role of institutional investors’ synchronous trading in forecasting transac-

tion costs. However, the congestion of institutional trades is not measurable before the

start of the trading session and can only be known ex-post. We provide a methodology

to estimate transaction costs in a crowded environment, using a Bayesian network that

captures the dependencies of the imbalance of investor order flows and investors’ histor-

ical trading decisions, to better predict orders transaction cost. Finally, the third chapter

models the response of market-makers to the overall liquidity supply and demand in dif-

ferent regimes of uncertainty. We then challenge the model implications during the highly

uncertain period of the COVID-19 outbreak.
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Résumé

Cette thèse propose trois contributions originales, sous la forme de trois articles au-

tonomes, à la littérature sur les coûts de transaction, le processus de formation des prix

et l’encombrement des marchés. Le premier chapitre de la thèse étudie de manière ap-

profondie la rentabilité de l’une des stratégies les plus implémentées aujourd’hui dans

le secteur de la gestion d’actifs, à savoir les facteurs, aussi nommés parfois Smart Beta.

Ces stratégies sont réputées de générer une prime de risque supérieure à la moyenne,

mais elles impliquent également un rebalancement dynamique des titres en portefeuille

en fonction de leurs caractéristiques, ce qui amène à des frais de transactions impor-

tants. Nous évaluons dans quelle mesure les frictions du marché constituent une lim-

ite à l’arbitrage pour ces stratégies, et quelles seraient leurs capacités d’investissement

maximales compte tenu des habitudes de négociation des investisseurs institutionnels. Le

deuxième chapitre souligne le rôle important de l’encombrement des ordres implémentées

par les investisseurs institutionnels dans la prévision des coûts de transaction. Cependant,

l’encombrement n’est pas mesurable avant le début de la séance de négociation et ne peut

être connus que ex-post. Nous proposons une méthodologie pour estimer les coûts de

transaction dans un environnement encombré, en utilisant un réseau bayésien qui saisit les

dépendances du déséquilibre des flux des ordres des investisseurs présents sur le marché

et le comportement de négociation habituel des investisseurs, afin de mieux prédire le

coût de transaction des ordres. Finalement, le troisième chapitre modélise la réponse des

teneurs de marché à l’offre et à la demande globale de liquidité sous différents régimes

d’incertitude. Nous testons ensuite les implications du modèle pendant la période de

l’épidémie de COVID-19 réputé très incertaine.
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General introduction

Motivation

Transaction costs are a major preoccupation of the asset management industry. Be-

cause like any other cost they erode funds’ performance, reduce their attractiveness, and

decrease the asset manager’s revenue. Inversely, the judicious management of the costs

supported by the fund creates more opportunities to improve investment returns and to

collect more inflows. But unlike any other costs, the transaction costs depend on the

fund’s characteristics and investment style. Joenväärä et al., 2014 show how the rebal-

ancing frequency and fund size impact the performance persistence of hedge fund portfo-

lios through transaction costs. For example, choosing to over-weight small-capitalization

firms in an equity portfolio may result in improving the portfolio gross return but it also

increases the cost of implementing the strategy. Similarly, increasing the portfolio rebal-

ancing frequency may improve the market timing and increase on-paper performance, but

the resulting profit could be offset by the subsequent higher turnover. Therefore, transac-

tion costs are important drivers of investment decisions and should be considered during

the process of investment. Otherwise, a strategy that may seem profitable at first glance

and able to generate a significant risk premium may no longer be profitable after account-

ing for transaction costs.

Two main reasons have made the question of transaction cost fairly important during

the last decade. The first reason is regulatory. Regulatory bodies all over the world have

introduced a series of new measures to improve the execution quality and to increase the

transparency of the brokerage industry. On one hand, they prohibited broker-dealers from
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General introduction

selling offers that bundle research and execution services, to avoid what the US refers

to as “soft dollars”. On the other hand, they obliged broker-dealers to produce detailed

and standardized transaction costs reports to prove they have taken all the necessary steps

to obtain the best possible execution cost for their clients. The second reason is related

to the rapid transformation of the asset management industry. The assets managed by

the industry worldwide has grown fairly rapidly in dollar value, with AUM (Asset un-

der Management) increasing threefold since the beginning of the 21st century, going from

37.3 trillion U.S. dollars in 2004 to reach 111.2 trillion U.S. dollars in 2020 (PWC, 2020).

Besides, the industry has concentrated around a few large players managing a substantial

amount of AUM. The world’s top 10 largest asset managers account for more than 30%

of the global AuM (Haldane et al., 2014), and this trend is bound to continue in the near

future as the biggest firms have also the biggest share in new inflows. In 2018, the top

ten US players captured 81% of net mutual fund inflows (Joe Carrubba, 2019). There-

fore the size of the orders submitted by institutional investors is getting larger and larger.

Thirdly, the move into passive and tracking strategies has increased the potential for in-

vestor herding and correlated market movements (Bolognesi and Andrea Zuccheri, 2008).

Furthermore, passive investment has seen the emergence of new systematic strategies that

departs from the traditional free-float market cap weighting scheme, such as Smart Beta,

and Factor-based investing, which raised more questions about their implementability and

maximum capacity.

The transaction cost of large orders is dominated by the market impact1, estimating

the transaction cost involves estimating the most probable price path during the execution.

Therefore, the transaction costs depend on several parameters other than order character-

istics (order side and size) and asset liquidity (bid-ask spread and volatility). It depends

for instance, on the execution aggressivity, duration, and trade scheduling (Almgren and

Chriss, 2001), on market conditions, on the fluctuations of the aggregate supply and de-

mand (Cardaliaguet and Lehalle, 2018), on the information content of the trade (Gross-

man and Stiglitz, 1980), and on the anticipation of market players to this information.

Hasbrouck, 1988 argues that the impact of trades depends on their predictability, e.g. the

1The market impact is the price movement due to the execution of the order
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General introduction

highly predictable trades have little impact. Kyle, 1985 argues that trades convey a sig-

nal about private information, and market-makers set their price according to their risk

aversion to adverse selection.

Transaction costs are the bridge between the asset-pricing literature, which is in-

terested in the efficient price set by risk-return considerations, and the literature on the

microstructure of financial markets, which is interested in price changes at the level of

order-book events. In this thesis, we present theoretical, methodological, and empiri-

cal contributions to two aspects of this literature. In the first chapter, we analyze the

profitability of the asset pricing anomalies, also known as factor-based investment, after

accounting for transaction costs. In the second chapter, we investigate the impact of insti-

tutional investors’ synchronous trading on transaction costs and provide a methodology to

estimate transaction costs in a crowded environment. Finally, we model the market-maker

response function in different market conditions with different uncertainty regimes.

Chapter I: Stock Market Liquidity and Trading Costs of Asset Pricing

Anomalies

Following the first empirical tests of Capital Asset Pricing Model (CAPM), high-

lighting the existence and the statistical significance of the market beta in explaining

the cross-section of asset price returns, hundreds of academic papers and practitioner

researches attempted to identify other risk factors underlying the equity market, starting

with the pioneering work of Fama and French, 1993 size and value and Carhart, 1997

momentum factors. Today, we count more than 300 factors (Harvey et al., 2016) the lit-

erature refers to them as ”Asset Pricing Anomalies”. This remarkable development of

the literature has led to the emergence of factor investing as a new investment paradigm

(Brière, Szafarz, et al., 2016) extensively used in all lines of the industry (for example

by sovereign wealth fund Goetzmann et al., 2014, or by pension funds and mutual funds

Broeders and Jansen, 2019). However, factor-based portfolios depart from the traditional

market-cap weighted scheme and involve high turnover which generates significant trans-

action costs. Their attractiveness may thus strongly depend on the trading costs associated
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with the factor’s replication.

In this chapter, we try to answer the following questions. How large are asset pric-

ing anomalies’ trading costs? Do they remain profitable after accounting for transaction

costs? and What is the maximum capacity of these strategies? A few recent papers pro-

pose to estimate the trading costs of the asset pricing anomalies, with different results

depending on the market impact model and database considered. We can distinguish

between three main approaches. First, papers measuring the transaction cost using prox-

ies of the bid-ask spreads derived from End-Of-Day prices (Hasbrouck, 2009, Corwin

and Schultz, 2012, Abdi and Ranaldo, 2017 or Dayri and Rosenbaum, 2015). For in-

stance, Novy-Marx and Velikov, 2015 and Chen and Velikov, 2018 compute the trading

costs of a large panel of anomalies using the average of the 4 above mentioned end-of-

day estimators of the bid-ask spread. They find that the implementation of size, value,

and momentum would generate respectively 48bps, 60bps, and 780bps annual transaction

costs. They conclude then that the trading cost dramatically reduces market anomalies

profitability and only cost mitigation strategies allow to generate positive net returns. Pa-

pers based on end-of-day data have the advantage of not being restricted in terms of the

portfolio universe and back-testing period, allowing to study the robustness of the risk

premia after transaction costs in different market conditions (Recession vs Growth) and

over different geographical zones. However, they can only provide proxies of the effective

quoted bid-ask spread and do not account for the additional market impact cost incurred

by trading large orders. The second category of contributions estimates transaction costs

on tick-by-tick databases. For instance, Korajczyk and Sadka, 2004 apply various price

impact models (Glosten and Harris, 1988, Breen et al., 2002) to TAQ data, to measure

the trading capacity of Jegadeesh and Titman, 1993 momentum strategies, and find that

momentum could only be profitable for relatively small investors holding less than 2 bil-

lion US-dollars. These papers have the advantage of deriving the cost from effectively

traded orders in the intraday session. However, the estimates provide the cost of a ran-

domly selected trade in the market, including informed trades, retail initiated trades, and

aggressive liquidity demanders trades. Thus, these estimates do not account for the trad-

ing specificities of asset-managers executing algorithms splitting the trades all along the
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execution window. Finally, the third category of papers proposes to estimate the cost

effectively paid by institutional investors in implementing factor-based strategies based

on an asset manager executions database. For example, Frazzini et al., 2012 uses AQR

Capital Management’s proprietary execution database and finds a lower transaction cost

for the momentum anomaly of 354bps, enabling it to withstand market frictions. They

claim that institutional investors pay lower fees in practice than what is documented in

the literature. However, it is debatable to what extent the results of a particular fund could

be generalizable to the rest of the industry and are not biased by fund-specific attributes

such as size or sophistication of execution.

Our approach consists of using a database composed of large institutional investors’

executions in the US, including pension funds, mutual funds, and asset managers trades,

named ANcerno. This database represents 10% of institutional trades and roughly 8%

of market traded volume (Puckett and Yan, 2011). Our contribution is twofold. First,

we measure the average cost paid by institutional investors for implementing the asset

pricing anomalies based on the average ticket size submitted by ANcerno’s clients. We

then search in the Ancerno database for meta-orders similar to those simulated by the

strategies paper portfolios (same day, same stock, and same direction) and we assume the

cost will also be similar. We show that the average investor pays an annual transaction

cost of 16bps for size, 23bps for value, 31bps for investment and profitability, and 222bps

for momentum. These estimates give the order of magnitude of the asset pricing anoma-

lies implementation cost but do not take into account the additional cost that could be

induced by trading large amounts. Consequently, the second method aims to estimate the

transaction costs for portfolios of different sizes. We consider the square root market im-

pact model to account for the order size effect and measure the capacity of each strategy,

i.e. the maximum portfolio size that can be reached before the transaction cost cancels

the expected profit. The break-even capacities in terms of fund size are $ 184 billion

for size, $ 38 billion for value, $ 17 billion for profitability, $ 14 billion for investment,

and $ 410 million for momentum. We find that the asset pricing anomalies implementa-

tion costs are 60 % cheaper than what is estimated in the literature, based on transaction

cost proxies such as bid-ask spread or order book models which by construction does not
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replicate the trading behavior of institutional investors. We find that institutional investors

pay on average a bit less than half a spread. Therefore, the full bid-ask spread tradition-

ally considered as the lower bound cost is rather a conservative measure. We conclude

that once the ”Market impact” is accounted for, transaction costs significantly reduce the

profitability of large portfolio anomalies. However, these anomalies remain profitable for

medium-sized portfolios.

Chapter II: Modeling Transaction Costs in a Crowded Environement

Traditional models in the transaction cost literature have mainly focused on the order

size effect and the characteristics of the security traded such as the bid-ask spread, price

return volatility, and average trading volume (Almgren et al., 2005, Bacry et al., 2015).

Similarly, the subsequent answers formulated for the optimal liquidation strategies have

for a long time considered the impact of the trader’s order only, taking the case of one asset

manager executing a large number of shares, aware that his trading pressure detrimentally

moves his own price (see Almgren and Chriss, 2001 mean-variance framework, or Gueant

and Lehalle, 2015 liquidity-driven optimal control). It is until recently that the literature

considered the effect of the crowd as a significant factor in explaining the magnitude of

the transaction costs. Bucci et al., 2020 argues that price impact is a function of the aggre-

gate net volume generated by all market participants. Therefore, shared indiscriminately

between all traders, whatever the size of their order. A small-sized order will cost nearly

as much as a large order if executed in the same direction during the same time frame.

Capponi and Cont, 2019 argues that transaction costs depend not only on one’s order by

also on the behavior of the rest of the market participants. They compared the effect of

the order size and the order flow imbalance and concluded that investors should focus on

modeling the aggregate dynamics of market pressure during the execution period, rather

than focusing on optimizing market impact at a trade-by-trade level. To this increased

awareness of the simultaneous trading effect, optimal execution strategies also took that

effect into consideration. Cardaliaguet and Lehalle, 2018 formulated a Mean Field Game

optimal liquidation strategy where the trader execute strategically while dealing with price
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changes generated by other similar market participants.

However, in practice, the crowding cannot be observed by market participants in

real-time. Brokers and market-makers can have a broad view of the imbalance of their

clients’ flows before the trading session starts, and the asset management dealing desk

can only observe their own trading instructions. In this chapter, we propose to shed light

on the following questions: What is the impact of institutional investors’ synchronous

trading on transaction costs? How does it compare to the order size effect? How could

we model and estimate transaction costs in a crowded environment using partially ob-

servable variables?

To answer these questions, we quantify the level of Crowding in the market using the

imbalance of large investors meta-orders (Capponi and Cont, 2019). This variable trans-

lates as a pressure on the market that either adds an additional cost when the sign of the

asset manager’s order feeds the market pressure or reduces the cost when the manager’s

order relief the pressure by providing liquidity to the market. Since the order flow im-

balance is not observable (a latent variable), we propose a transaction costs model based

on Bayesian networks. This type of model, called graphical models, has interesting fea-

tures that make them suitable for this analysis. They can give, by probabilistic inference,

an estimate of their latent variables once all the other variables are observed, and in an

iterative approach improve the estimate as soon as new information is revealed. Besides,

unlike many other Machine Learning models, Bayesian networks are not black boxes:

one can explicitly model the probabilistic dependencies between variables while taking

into account the specificities of each of them by incorporating prior information in the

model. In practice, the model can be taught on a database provided ex-post by brokers or

stock market exchanges, that allow measuring the level of crowding of market participants

(the imbalance) and then implement a learning transfer by using a database in which the

imbalance can not be observed.

We find that institutional investors’ daily order flow imbalance is a good predictor

of transaction costs, and we confirm Capponi and Cont, 2019 findings that the dominant

variable for implementation shortfall forecast is indeed the order flow imbalance and not

the order size. Interestingly, because investors’ trading tends to be crowded, the fund
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manager, knowing his average correlation with the aggregate flow, can use his own meta-

order to infer the order flow imbalance of the market, and then use it to improve his

forecast of the transaction costs. We find that this estimation is more accurate when the

size of the meta-order is large. Besides, we disclose evidence that a sell order is more

informative on imbalance distribution than a buy order, probably because a crowded sell-

ing context is more informative about specific market conditions than a crowded buying

context. Moreover, the accuracy of transaction costs and market impact estimates are

generally relatively low (Bacry et al., 2015). Practitioners have long suspected that the

difficulty of estimating orders transaction costs is due to the variance of price innovations

that is hardly predictable. Our bayesian forecasting framework confirms this is true. The

Bayesian network explicitly models the dependencies between the variance of the resid-

uals and the rest of the network nodes. We find that the dominant variable in modeling

the heteroscedastic noise of transaction cost is, indeed, the price volatility. This allows an

investor to assess how confident he could be on each prediction given his meta-order and

stock characteristics.

Chapter III: Liquidity Provision and Market-Making in different Regimes

of Uncertainty

After studying, in the first chapter, the cost of implementing the asset pricing anoma-

lies, strategies rumored to be crowded, and modeling, in the second chapter, the transac-

tion costs in a crowded trading environment, we study, in the third chapter, the market-

makers’ behavior in response to the crowd. One of the pioneering models explaining the

complex interaction between market agents is the Kyle, 1985 model. This model pro-

vides an explanation of the behavior of market participants in a game-theoretic approach,

making the link between the informational content of prices, the liquidity characteristics

of the asset, and the value of private information that some traders may hold. The model

assumes the existence of three types of traders: an informed trader, also referred to as

an insider, holds private information on the realization of the future payoff of the asset,

random or noise traders, buying and selling securities for various reasons (hedging risk,
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liquidity constraints, ....), and risk-neutral competitive market makers. In this set-up, the

market maker defines the price optimally after observing the overall liquidity demand

requested by all traders, informed or not. In contrast, the informed trader trades the max-

imal possible quantity at an advantageous price, without alerting the market maker risk

aversion. His strategy consists then in hiding his volume in the flow generated by noise

traders.

A few recent academic articles have documented a change in market makers trading

behavior during periods of uncertainty. For example, Megarbane et al., 2017 analyzed

the 2015 European Central Bank announcement of a new monetary policy and the 2016

Brexit vote on financial markets and reported a change in HFT trading behavior during

these two events. The authors also point out that HFTs are the main market makers on

the limit order book, contributing more than 80% of market depth under normal market

conditions. However, during these two events, HFTs significantly reduced their liquidity

provision, which was taken over by the rest of the market participants. The same behavior

was documented by Kirilenko et al., 2017 on the Flash Crash event of May 6, 2010,

on the E-mini S&P 500 index futures market. These empirical findings are supported

by theoretical literature explaining market makers’ quotes by the degree of information

asymmetry in the market. Atiase and Bamber, 1994, Bamber et al., 1997, and Tung,

2000 show that bid-ask spreads are increasing with the level of information asymmetry.

When important financial results are published or macroeconomic events occur, bid-ask

spreads get larger because market-makers’ risk aversion to adversarial selection increases

significantly during these periods.

In this chapter, we explore whether market-makers react solely to market flows, or

take into account exogenous information in their pricing rule. To do so, we propose an

extension to the Kyle, 1985 model with two distinct regimes of uncertainty in the mar-

ket: A low uncertainty regime, where no major announcements are made neither on the

economy nor on the firm’s idiosyncratic variables, where the market-maker have no rea-

son to fear abnormal informative prices and a regime of high uncertainty that could be

triggered by micro- and macro-events2. Our model assume that the variance of the risky

2the results are easily generalizable to a model with more than two levels of uncertainty (for example,
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asset is time-dependent and a function of the uncertainty regime. The informed trader

observes the realization of the risky asset and chooses his traded amount accordingly to

maximize his profit, while the market-maker holds an estimate of the level of uncertainty

in the market and sets his price accordingly and in reaction to market flows. All the re-

maining assumptions are kept identical to Kyle’s original model. In this configuration,

the market maker is better informed, but he remains in a situation of asymmetric infor-

mation because he only knows the variance and not the value of the risky asset and may

be mistaken about the level of uncertainty. However, this level of information is optimal

from an information cost perspective. If the informed trader needs to acquire complete

information on the risky asset in order to define her optimal traded amount, the market

maker needs only a binary signal to choose whether or not to provide liquidity. During

periods of high uncertainty, he could increase the risk premium for liquidity provision and

quote more aggressive during low regimes of uncertainty.

We provide empirical validation of the model based on the period marked by the

Covid-19 health crisis. Baker et al., 2020 argue that no other infectious disease, includ-

ing the Spanish flu, has ever impacted the stock market as powerfully as the COVID-19

pandemic. As it could be seen in the unprecedented high levels of the VIX index, markets

have been taken by surprise and were unable to anticipate a shock of this nature. The crisis

provides, therefore, a unique opportunity to test theories about the price formation pro-

cess and the behavior of market participants during different regimes of uncertainty. We

test the model on the 40 stocks composing the CAC40 index using Euronext tick-by-tick

database from January 1st to April 1st, 2020. We propose a methodology to empirically

estimate Kyle’s lambda on central limit order books. It consists of deriving the price set

by market makers from their activity in the order book. Namely, insertions, and can-

cellations of volume in the best bid and best ask limits. Then, estimating the elasticity

of this price to the overall market liquidity demand as specified by Kyle’s model. We

then distinguish the impact of the uncertainty due to the emergence of the pandemic on

market-makers pricing rule. We note that market-makers quotes are indeed a function

low, medium and high) or a model that stipulate a different price reaction for different sources of uncertainty
(micro vs macro events)
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of the net volume signed by liquidity consumers’ orders. The results are significant at

1% and robust to all controls on firms’ characteristics and day fixed effects. We find that

the elasticity of market-makers’ prices to market liquidity demand have increased during

the Covid-19 highly uncertain period by 39bps for every 1% increase in net traded vol-

ume, suggesting that market-makers indeed take into account the exogenous information

in their pricing rule. Finally, we note the rest of market participants increase their share

in liquidity provision during periods of high uncertainty. Nevertheless, only the liquid-

ity demand addressed by market makers has a notable effect on the daily price return.

Consequently, price reaction to flows is a characteristic to market-participants with an

intermediary role.
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Joenväärä, J., Kosowski, R., & Tolonen, P. (2014). The effect of investment constraints on

hedge fund investor returns.

Kirilenko, A., Kyle, A. S., Samadi, M., & Tuzun, T. (2017). The flash crash: High-

frequency trading in an electronic market. The Journal of Finance, 72(3), 967–

998.

Korajczyk, R. A., & Sadka, R. (2004). Are momentum profits robust to trading costs? The

Journal of Finance, 59(3), 1039–1082.

Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: Journal of

the Econometric Society, 1315–1335.

Megarbane, N., Saliba, P., Lehalle, C.-A., & Rosenbaum, M. (2017). The behavior of

high-frequency traders under different market stress scenarios. Market Microstruc-

ture and Liquidity, 3(03n04), 1850005.

Novy-Marx, R., & Velikov, M. (2015). A taxonomy of anomalies and their trading costs.

The Review of Financial Studies, 29(1), 104–147.

Puckett, A., & Yan, X. (2011). The interim trading skills of institutional investors. The

Journal of Finance, 66(2), 601–633.

35

https://www.bcg.com/publications/2019/asset-managers-winner-takes-all
https://www.bcg.com/publications/2019/asset-managers-winner-takes-all


General introduction

PWC. (2020). Asset & wealth management revolution: Embracing exponential change.

https:/ /www.pwc.com/gx/en/asset- management/asset- management- insights/

assets/awm-revolution-full-report-final.pdf

Tung, S. (2000). The effect of information asymmetry on bid-ask spreads around earnings

announcements by nasdaq firms. Review of Pacific Basin Financial Markets and

Policies, 3(03), 331–346.

36

https://www.pwc.com/gx/en/asset-management/asset-management-insights/assets/awm-revolution-full-report-final.pdf
https://www.pwc.com/gx/en/asset-management/asset-management-insights/assets/awm-revolution-full-report-final.pdf


Introduction Générale

Motivation

L’optimisation des coûts de transaction représente depuis longtemps un centre d’intérêt

majeur dans le secteur de la gestion d’actifs, vu qu’ils détériorent la performance des

fonds, réduisent leur attractivité et diminuent les revenus du gestionnaire d’actifs. À la

différence des autres types de coûts, les coûts de transaction sont partiellement définis

par la stratégie d’investissement. Par exemple, le choix de sur-pondérer les entreprises

à petite capitalisation dans un portefeuille d’actions permet potentiellement de générer

un rendement excédentaire brut, le surcroı̂t de rentabilité peut, quant à lui, être com-

pensé par le coût de mise en œuvre de la stratégie. De même, choisir d’augmenter la

fréquence de révision de la composition du portefeuille, doit en théorie optimiser le mo-

ment de l’investissement et donc la rentabilité du portefeuille. Cependant, l’accumulation

des coûts de transaction à chaque révision peut rendre la stratégie peu attrayante. Par

conséquent, le coût d’implémentation est un facteur important dans la décision d’investissement

et doit être pris en compte, au même degré que le risque et le rendement au cours du pro-

cessus d’investissement. Sinon, une stratégie qui peut sembler au premier abord rentable

peut être perdante après avoir comptabilisé les coûts de transaction.

Deux raisons principales ont placé la question des coûts de transaction au centre

des débats sur la gestion des actifs au cours de la dernière décennie: La première rai-

son est d’ordre réglementaire. Les régulateurs des marchés financiers ont introduit une

série de réformes visant à rendre le service de courtage plus transparent et améliorer la

qualité d’exécution. D’une part, suite à MIFID II, il est interdit aux courtiers de ven-
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dre des offres qui proposent à la fois des services d’exécution et offrants la recherche

dans le même produit commercial. Ceci permet d’éviter ce que les Américains ap-

pellent ”soft dollars”. D’autre part, ils ont rendu indispensable la publication de rap-

ports détaillés et standardisés sur les coûts de transaction et le prix obtenu après chaque

exécution afin de prouver que le courtier a pris toutes les mesures nécessaires pour obtenir

le meilleur coût d’exécution possible pour son client. Ceci a soulevé la question de

ce qui constitue une bonne exécution. La deuxième raison est liée à la transformation

rapide du secteur de la gestion d’actifs. D’une part le montant des fonds gérés par

l’industrie n’a cessé d’augmenter d’une année à l’autre avec une vitesse phénoménale.

Les actifs sous gestion (AuM: Assets under Management) ont triplé depuis le début

du 21eme siècle, passant de 37,3 milliards de dollars US en 2004 à 111,2 milliards de

dollars US en 2020 (PWC, 2020). D’autre part, les actifs sous gestion se sont con-

centrés chez un nombre infime de grands investisseurs institutionnels gérant une part

importante des actifs mondiaux : D’après Haldane et al., 2014, les dix plus grands in-

vestisseurs institutionnels gèrent plus de 30% des actifs mondiaux. Cette tendance serait

amenée à se poursuivre dans les prochaines années, car les plus grands gestionnaires sont

également ceux qui reçoivent la plus grande part des nouveaux flux. En 2018, les dix

premiers acteurs américains dans l’industrie ont gagné 81% des flux positifs des fonds

communs de placement (Joe Carrubba, 2019). Finalement, l’investissement passif a accru

le risque d’encombrement des investisseurs sur des stratégies similaires et par conséquent

a augmenté le risque systémique de corrélation des mouvements du marché (Bolognesi

and Andrea Zuccheri, 2008). En outre, l’investissement passif a vu l’émergence de

nouvelles stratégies systématiques qui s’écartent de la pondération traditionnelle basée

sur la capitalisation boursière, telles que les Smart Beta, l’investissement factoriel, ou

l’investissement prenant compte des critères environnementaux, sociétaux ou de gouver-

nance ESG. Ce qui a soulevé davantage de questions sur le coût d’implémentation de ces

stratégies et de leurs capacités maximales.

Étant donné que le coût d’impact du marché3, domine le coût de transaction des

ordres à volume important, l’estimation des coûts d’exécution implique d’habitude la

3L’impact du marché est le mouvement de prix dû à l’exécution de l’ordre
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prédiction de la trajectoire de prix la plus probable. Mise à part les caractéristiques

de l’ordre 4 et la liquidité de l’actif5, les coûts de transaction dépendent également de

plusieurs paramètres comme :

• L’agressivité, la durée et la planification de l’exécution dans le temps (Almgren and

Chriss, 2001)

• Des fluctuations entre l’offre et la demande globale et des conditions du marché

(Cardaliaguet and Lehalle, 2018)

• Du contenu informatif de la transaction et de l’anticipation des teneurs du marché

à cette information (Grossman and Stiglitz, 1980).

Hasbrouck, 1988 affirme que l’impact de transaction dépend de sa prédictibilité,

c’est-à-dire les transactions hautement prévisibles ont peu d’impact. Kyle, 1985 mets en

relief le fait que les transactions transmettent un signal sur l’information privée détenu

par les traders informés, et que les teneurs de marché par rapport à leur aversion au risque

de sélection adverse définissent un prix en anticipation à cette information

Les coûts de transaction constituent le pont entre la littérature sur l’évaluation des ac-

tifs et la littérature sur la microstructure des marchés financiers. La première s’intéresse

à l’efficience du prix par rapport à des considérations rendement-risque. Quant à la

deuxième, elle s’intéresse aux variations de prix au niveau du carnet d’ordres. Dans cette

thèse, nous présentons des contributions théoriques, méthodologiques et empiriques aux

deux aspects de cette littérature. Dans le premier chapitre, nous analysons la rentabilité

nette, après coûts de transaction, des stratégies à vocation de tirer profit des anomalies du

marché, connues sous le nom d’investissement factoriel. Dans le deuxième chapitre, nous

étudions l’impact du trading synchrone des investisseurs institutionnels sur les coûts de

transaction. Une méthodologie est ensuite fournie dans le but d’estimer ces coûts dans un

environnement encombré. Enfin, nous modélisons la fonction de réponse des teneurs de

marché dans différentes conditions de marché avec différents régimes d’incertitude.

4Par exemple la taille de l’ordre et son signe : achat/vente
5La liquidité peut être mesuré par plusieurs indicateurs comme la volatilité, l’écart entre prix d’achat et

prix de vente...
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Chapter I: Liquidité des marchés boursiers et coûts de transaction des

anomalies de prix des actifs

Les premiers tests empiriques du modèle d’évaluation des actifs financiers (CAPM)

ont permis de mettre en évidence le bêta du marché comme facteur explicatif des rende-

ments des prix des actifs. Suite à ces tests, plusieurs recherches ont été menées dans

le but d’identifier d’autres facteurs de risque sous-jacents au marché des actions, en

commençant par les travaux pionniers de Fama et French sur les facteurs de taille, de

valeur et de tendance “Momentum” (Fama and French, 1993 Carhart, 1997). Nous comp-

tons, aujourd’hui, plus de 300 facteurs (Harvey et al., 2016) que la littérature identifie

comme anomalies des actifs ”Asset Pricing Anomalies”. Ce développement remarquable

de la littérature a conduit à l’émergence de l’investissement factoriel comme nouveau

paradigme d’investissement (Brière, Szafarz, et al., 2016), largement répandu dans le

secteur de la gestion d’actifs (fonds souverains Goetzmann et al., 2014, fonds de pension

Broeders and Jansen, 2019, fonds communs de placement et fonds spéculatifs). Toute-

fois, l’investissement factoriel s’écarte du schéma de pondération traditionnel par rapport

la capitalisation boursière. Il implique donc un taux de rotation de portefeuille élevé, et

des coûts de transaction importants. L’attrait de ces stratégies d’investissement peut donc

dépendre fortement des coûts de transaction associés à la réplication du facteur.

Dans ce chapitre, nous essayons de répondre aux questions suivantes: Quelle est

l’importance des coûts de transaction des stratégies basées sur les facteurs d’investissement?

Ces stratégies demeurent-elles rentables après prise en compte des coûts de transaction?

Quelle est la capacité maximale de ces stratégies?

De récentes recherches proposent d’estimer les coûts de transaction des stratégies

d’investissement factoriel. Toutefois, les résultats divergent selon le modèle d’impact sur

le prix considéré et/ou la base de données utilisée. On peut distinguer entre trois approches

principales :

• L’approximation des écarts entre les cours d’achat et de vente “Bid-Ask spread”

dérivés des prix journaliers d’ouverture, de fermeture, le plus élevé et le plus bas

(Hasbrouck, 2009, Corwin and Schultz, 2012, Abdi and Ranaldo, 2017 Dayri and

40



Introduction Générale

Rosenbaum, 2015). Par exemple, Novy-Marx and Velikov, 2015 et Chen and Ve-

likov, 2018 calculent les coûts de transaction d’un large panel d’anomalies en util-

isant l’estimation du Bid-Ask spread par l’échantillonneur de Gibbs du modèle de

Roll modifié. Ils concluent que le coût de transaction réduit considérablement

la rentabilité des anomalies du marché. Seules les méthodes d’atténuation des

coûts permettent aux stratégies d’investissement de générer un rendement net posi-

tif. L’avantage de cette approche est qu’elle peut être appliqué à tous les univers

d’investissement sur toutes les périodes de test de la significativité du rendement.

Cela permet d’étudier la robustesse des primes de risque après coûts de transaction

dans différentes conditions de marché (récession vs croissance) et sur différentes

zones géographiques. Toutefois, elle ne peut fournir que des approximations de

l’écart effectif entre les cours d’achat et de vente, et ne tient donc pas compte du

coût d’impact sur le prix qu’entraı̂ne l’exécution d’ordres à volume importants.

• L’estimation du coût de transaction des anomalies de prix des actifs sur les bases

de données “tick-by-tick”. Par exemple, Korajczyk and Sadka, 2004 mesure la

capacité d’investissement des stratégies “Momentum” à travers différents modèles

d’impact sur les prix, sur la base de données TAQ (Glosten and Harris, 1988, Breen

et al., 2002, Jegadeesh and Titman, 1993). Il conclue que le “Momentum” ne pour-

rait être rentable que pour un montant d’investissement relativement bas à moins de

2 milliards de dollars US. Cette approche a l’avantage de fournir le coût des ordres

effectivement payé en séance de négociation. Toutefois, les estimations fournissent

le coût d’une transaction choisie au hasard sur le marché, y compris les transac-

tions initiées par les particuliers et les transactions agressives des demandeurs de

liquidité. Ainsi, elles ne tiennent pas compte des spécificités de négociation des

gestionnaires d’actifs qui exécutent avec des algorithmes répartissant les transac-

tions tout au long de la fenêtre d’exécution.

• Finalement, l’estimation des coûts de transactions à partir d’une base de données

d’exécution d’un gestionnaire d’actifs implémentant les stratégies factorielles. Par

exemple, Frazzini et al., 2012 utilise la base de données d’exécution propriétaire
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d’AQR Capital Management et trouve un coût de transaction nettement plus faible

pour l’anomalie Momentum, lui permettant de résister aux frictions du marché. Il

affirme que les investisseurs institutionnels paient en pratique des frais d’exécution

moins élevés que ce qui est documenté dans la littérature. Toutefois, on peut se

demander dans quelle mesure les résultats d’un fonds particulier pourraient être

généralisables au reste du secteur et ne sont pas biaisés par des attributs spécifiques

au fonds tels que la taille ou la sophistication de l’exécution.

Notre approche consiste à utiliser une base de données composée des exécutions des

grands investisseurs institutionnels aux États-Unis, contenant les transactions des fonds

de pension, des fonds communs de placement et des gestionnaires d’actifs, appelée AN-

cerno. Cette base de données représente 10 % du volume traité par les institutionnelles

et environ 8 % du volume négocié sur le marché américain (Puckett and Yan, 2011).

Nous proposons de répondre à cette question en deux temps. D’abord, en mesurant le

coût de transaction moyen payé par les investisseurs institutionnels pour implémenter ces

stratégies sur la base de la taille moyenne des ordres traités par les clients d’ANcerno.

Nous recherchons ensuite dans cette base de données des méta-ordres similaires aux re-

balancements des portefeuilles stratégiques (même jour, même titre, et même direction)

et nous supposons que le coût sera également le même. Cette estimation donne l’ordre de

grandeur du coût d’implémentation des facteurs. Par contre, elle ne prend pas en compte

le coût d’impact sur le prix qui pourrait être induit par la négociation de montants im-

portants. Par conséquent, la deuxième méthode vise à estimer les coûts de transaction

pour des portefeuilles de tailles différentes. Nous utilisons le modèle à racine carrée de

l’impact sur le prix pour tenir compte de l’effet de la taille des ordres et nous mesurons la

capacité de chaque stratégie ; c’est-à-dire la taille maximale du portefeuille qui peut être

atteinte avant que le coût de transaction n’annule le bénéfice attendu. Nous constatons que

les coûts de mise en œuvre des stratégies factorielles sont 60 % moins élevés que ce qui

est estimé dans la littérature, que ça soit par les méthodes basées sur l’approximation du

bid-ask spread ou sur les modèles de carnet d’ordres. Car elles ne tiennent pas compte des

caractéristiques d’exécution des investisseurs institutionnels. Nous constatons, par exem-
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ple, que les investisseurs institutionnels paient en moyenne un peu moins de la moitié d’un

bid-ask spread. Ce qui fait que le bid-ask spread considéré traditionnellement comme le

coût de transaction minimal, est en fait une mesure plutôt prudente. Nous concluons

qu’une fois l’impact sur le prix est pris en compte, les coûts de transaction réduisent con-

sidérablement la rentabilité des stratégies factorielles étudiées. Toutefois, ces stratégies

restent rentables pour les portefeuilles de taille moyenne.

Chapter II: Modélisation des coûts de transaction dans un environ-

nement encombré

Les premiers modèles estimant les coûts de transaction se sont concentrés principale-

ment sur l’effet de la taille de l’ordre traité et les caractéristiques du titre négocié, telles

que l’écart entre les cours d’achat et de vente, la volatilité et le volume moyen des trans-

actions (Almgren et al., 2005, Bacry et al., 2015). De même, les réponses formulées au

problème d’exécution optimale ont longtemps considéré l’impact de l’ordre du négociant

uniquement. Par exemple, le modèle moyenne-variance de Almgren and Chriss, 2001, ou

le modèle en contrôle optimal sur la liquidité Gueant and Lehalle, 2015, prenant le cas

d’un gestionnaire d’actifs exécutant un grand nombre d’actions et conscient que la pres-

sion qu’il exerce sur le marché, fait évoluer son propre prix à son désavantage. Ce n’est

que récemment que la littérature s’est intéressé à l’impact de la négociation des autres

participants au marché “La foule” sur les coûts de transaction. Bucci et al., 2020 mets en

évidence que l’impact sur les prix est une fonction du volume net global généré par tous

les acteurs du marché à un instant donné et qu’il est partagé entre tous les négociateurs.

En effet, un ordre de petite taille coûtera presque autant qu’un ordre de grande taille si les

deux ordres sont exécutés au même moment, dans la même direction. Capponi and Cont,

2019 quant à eux affirment que les coûts de transaction ne dépendent pas uniquement des

caractéristiques de l’ordre, mais également du comportement des autres participants au

marché. Ils ont comparé l’effet de la taille des ordres et le déséquilibre des flux d’ordres

des investisseurs institutionnels sur l’estimation des couts de transaction, et ont conclu

que les investisseurs devraient se concentrer sur la modélisation de la pression du marché
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pendant la période d’exécution, plutôt que de se concentrer sur l’optimisation de l’impact

de chaque transaction. À cette prise de conscience de l’effet de l’exécution simultanée,

les solutions d’exécution optimales ont également tenu compte de cet effet. Cardaliaguet

and Lehalle, 2018 ont formulé une stratégie de liquidation optimale Mean Field Game où

le négociateur exécute stratégiquement son ordre tout en tenant compte des changements

de prix dû au trading des autres participants.

En pratique, les participants au marché ne peuvent pas observer le comportement

de la foule en temps réel. Les courtiers et les teneurs de marché peuvent avoir une

vue d’ensemble du déséquilibre des flux de leurs clients avant le début de la séance de

négociation, et la salle des marchés de gestionnaires d’actifs ne peut observer que leurs

propres instructions. Dans ce chapitre, nous proposons d’éclairer les questions suivantes

: Quel est l’impact de la négociation synchrone des investisseurs institutionnels sur les

coûts de transaction ? Comment se compare-t-elle à l’effet de la taille des ordres ? Et

Comment pourrions-nous modéliser et estimer les coûts de transaction dans un environ-

nement encombré en utilisant des variables partiellement observables ?

Pour répondre à ces questions, nous quantifions le niveau de l’encombrement “crowd-

ing” sur le marché en utilisant le déséquilibre des méta-ordres des grands investisseurs,

appelé dans Capponi and Cont, 2019 ”Order Flow Imbalance”. Cette variable se traduit

par une pression sur le marché qui soit ajoute un coût supplémentaire lorsque l’ordre du

gestionnaire alimente la pression du marché, soit réduit le coût lorsque l’ordre fournis

la liquidité au marché. Comme le déséquilibre du flux des ordres n’est pas observable

(une variable latente dans le jargon bayésien), nous proposons un modèle de coûts de

transaction basé sur les réseaux bayésiens. Ce type de modèle, appelé modèle graphique,

présente des caractéristiques intéressantes et adapté à cette problématique. Ils permet-

tent, par inférence probabiliste, d’estimer les variables latentes en fonction des variables

observables, et par une approche itérative, améliorer la prédiction chaque fois que des

nouvelles informations sont révélées. En outre, contrairement à de nombreux modèles

d’apprentissage automatique, les réseaux bayésiens ne sont pas des boı̂tes noires : On

peut modéliser explicitement les dépendances probabilistes entre les variables tout en

tenant compte des spécificités de chacune d’entre elles et en incorporant des informa-
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tions préalables dans le modèle. En pratique, le modèle peut être appris sur une base de

données permettant de mesurer le niveau d’encombrement des participants au marché (le

déséquilibre des meta-ordres). Ce type de base de donnée est fournie désormais par les

courtiers ou les bourses après la séance de trading. Ensuite, transférer l’apprentissage à

une base de données qui ne contient pas l’information sur le déséquilibre des flux Nous

constatons que le déséquilibre des flux des investisseurs institutionnels est un bon indi-

cateur des coûts de transaction. Nous confirmons donc les conclusions de Capponi and

Cont, 2019 selon lesquelles la variable dominante dans la prédiction du cout d’exécution

est le déséquilibre du flux d’ordres du marché et non la taille de l’ordre. Il est intéressant

de noter que, comme les investisseurs institutionnels ont tendance à implémenter des

stratégies similaires, le gestionnaire de fonds, connaissant sa corrélation moyenne avec

le flux global, peut utiliser son propre méta-ordre pour déduire une première estimation

du déséquilibre du flux des ordres dans le marché. Ensuite utiliser cette prédiction a pri-

ori pour mieux prévoir le coût de son ordre. Nous trouvons que l’estimation du cout

d’exécution de l’ordre est d’autant plus précise que la taille de l’ordre est importante. En

outre, un ordre de vente est plus informatif sur la distribution du déséquilibre des flux

du marché qu’un ordre d’achat. Ceci est expliqué par le fait qu’une pression vendeuse

élevée correspond souvent à un contexte de crise dans le marché qui s’applique à tous les

participants au marché. Alors qu’un flux acheteur est moins parlant sur les conditions du

marché.

Finalement, les praticiens ont longtemps soupçonné que la difficulté d’estimer les

coûts de transaction émane de la variance des innovations de prix qui est difficilement

prévisible. Grâce à la structure de notre réseau bayésien, nous arrivons à modéliser

explicitement les dépendances entre la variance des résidus et le reste des variables.

Nous démontrons qu’effectivement la variable dominante dans la modélisation du bruit

hétéroscédastique du coût de transaction est la volatilité des prix. Cela permet à un in-

vestisseur d’évaluer le degré de confiance qu’il pourrait avoir dans chaque estimation

compte tenu de son méta-ordre et des caractéristiques du titre traité.
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Chapitre III : Règle de tarification des teneurs de marché dans différents

régimes d’incertitude

Après avoir étudié, dans le premier chapitre, les coûts de transaction de quelques

stratégies tendancielles, à savoir les stratégies factorielles, et puis avoir modélisé dans le

deuxième chapitre, les coûts de transaction dans un environnement de négociation en-

combré, nous étudions, dans le troisième chapitre, sur le comportement des teneurs de

marché face à la pression de marché généré par tous les négociateurs “la foule”. L’un

des modèles pionniers expliquant l’interaction complexe entre les agents du marché est le

modèle de Kyle, 1985. Ce modèle fournit une explication du comportement des agents du

marché avec une approche de théorie des jeux, en faisant le rapport entre le contenu infor-

mationnel des prix, les caractéristiques de liquidité de l’actif et la valeur de l’informations

privées que peut détenir un trader initié. Le modèle se base sur trois types d’agents : un

agent informé, également appelé agent initié car il détient une information privée sur la

valeur future de l’actif, des agents aléatoires, négociant des titres pour diverses raisons

(couverture de risque, contraintes de liquidité . . . .), et des teneurs de marché compétitifs

et risque neutres. Le teneur de marché fixe le prix de manière optimale après avoir ob-

servé la demande globale de liquidité soumise par tous les types de négociateurs, informés

ou pas. En contrepartie, le trader informé maximise son profit en négociant la quantité

maximale possible à un prix avantageux, sans alerter le teneur du marché. Sa stratégie

consiste alors de cacher son volume dans le flux généré par les transactions des traders

aléatoires.

Quelques articles universitaires récents ont documenté un changement dans le com-

portement des teneurs de marché lors de périodes d’incertitude. Par exemple, Megarbane

et al., 2017 a analysé l’impact de l’annonce de la Banque centrale européenne de 2015

sur l’adoption d’une nouvelle politique monétaire et l’annonce du résultat du Brexit en

2016 sur le mouvement des prix sur les marchés financiers. Ils ont signalé un change-

ment dans le comportement de négociation des HFT pendant ces deux événements. Les

auteurs soulignent également que les HFT sont les principaux teneurs de marché sur le

carnet d’ordres à cours limite, contribuant à plus de 80 % de la profondeur du carnet dans
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les conditions normales de négociation. Cependant, au cours de ces deux événements, les

HFT ont réduit largement leur apport de liquidité, et le reste des participants au marché

ont pris le relais. Le même comportement a été documenté par Kirilenko et al., 2017

lors de l’événement Flash Crash du 6 mai 2010 sur le marché à terme de l’indice E-mini

S&P 500. Ces recherches empiriques sur le changement de comportement des teneurs

de marché pendant les périodes de crises, de publication de résultats ou de hautes in-

certitudes de manière générale, sont épaulées par une littérature théorique expliquant le

comportement des teneurs de marché par le degré d’asymétrie d’information. Atiase and

Bamber, 1994, Bamber et al., 1997, et Tung, 2000 montrent que les écarts entre les cours

d’achat et de vente “bid-ask spread” sont une fonction croissante du niveau d’asymétrie

d’information et s’élargissent lors de la publication de résultats financiers important ou

lors de l’annonce de nouvelle mesures macroéconomique, car l’aversion au risque de

sélection adverse des teneurs de marché est élevé pendant ces périodes.

Dans ce chapitre, nous examinons si les teneurs de marché réagissent uniquement

aux flux du marché ou s’ils tiennent également compte des informations exogènes dans

leur règle de tarification. Pour ce faire, nous proposons une extension du modèle Kyle,

1985 avec deux régimes distincts d’incertitude sur le marché : Un régime de faible in-

certitude, où aucune annonce majeure n’est faite ni sur l’économie ni sur les variables

idiosyncrasiques de l’entreprise, où le teneur de marché n’a aucune raison de craindre

un niveau de prix informatifs anormal, et un régime de forte incertitude qui pourrait être

déclenché par des événements de type micro ou macro 6. Notre modèle suppose que la

variance de l’actif risqué dépend du temps et est fonction du régime d’incertitude. Le

trader informé observe la réalisation de l’actif risqué et choisit son montant négocié en

conséquence pour maximiser son profit, tandis que le teneur de marché détient une esti-

mation du niveau d’incertitude du marché et fixe son prix en conséquence et en réaction

aux flux du marché. Toutes les autres hypothèses sont maintenues identiques au modèle

original de Kyle. Dans cette configuration, le teneur de marché est mieux informé, mais

il reste dans une situation d’asymétrie d’information car il ne connaı̂t que la variance et

6Les résultats sont facilement généralisables à un modèle comportant plus de deux niveaux d’incertitude
(par exemple, faible, moyen et élevé) ou à un modèle qui stipule une réaction différente des teneurs du
marché selon la source d’incertitude (événement micro- ou macro)
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non la valeur de l’actif risqué et peut se tromper sur le niveau d’incertitude. Cependant,

ce niveau d’information peut être optimal du point de vue du coût de l’information. Si

le négociant avisé doit acquérir l’information complète sur l’actif risqué afin de définir

le montant optimal à négocier, le teneur de marché n’a besoin que d’un signal binaire

pour choisir de fournir ou non la liquidité. En période de forte incertitude, il pourrait aug-

menter la prime de risque pour la fourniture de liquidité et coter de manière plus agressive

en période de faible incertitude.

Nous complétons ensuite la modélisation par une validation empirique sur la période

marqué par la crise sanitaire Covid-19. Baker et al., 2020 dénonce qu’aucune autre

épidémie de maladie infectieuse, y compris la grippe espagnole, n’a eu un impact aussi

fort sur le marché boursier que la pandémie COVID-19. Toutes les mesures habituelle-

ment utilisées pour quantifier l’incertitude comme l’indice VIX sont montées en flèche.

La crise nous offre alors une occasion unique pour tester les théories sur le processus de

formation des prix et le comportement des participants au marché pendant les régimes

d’incertitudes. Nous testons le modèle sur les 40 valeurs composant l’indice du marché

Français CAC40 en utilisant la base de données tick-by-tick d’Euronext du 1er janvier au

1er avril 2020. Nous proposons une méthodologie pour estimer empiriquement le lambda

de Kyle sur les données du carnet d’ordres central à cours limité. Elle consiste à dériver

le prix fixé par les teneurs de marché à partir de leur activité dans le carnet d’ordres,

les insertions et les annulations de volume dans les meilleures limites d’offre et de de-

mande, et à estimer ensuite l’élasticité de ce prix à la demande de liquidité globale du

marché telle que spécifiée par le modèle de Kyle. Nous distinguons par la suite l’impact

de l’incertitude dû à l’apparition de la pandémie sur les cotations des teneurs de marché.

Nous constatons que les cotations de ces derniers sont en effet fonction du volume net

signé par l’ordre des consommateurs de liquidité. Les résultats sont significatifs à 1% et

robustes aux contrôles sur les caractéristiques des entreprises et les effets fixes du jour.

Nous prouvons qu’une augmentation de 1 % du volume net par rapport au volume négocié

entraı̂ne un déplacement des prix des teneurs de marché de 14,45 points de base avant la

crise sanitaire. Cette réaction des teneurs de marché a été augmentée de 38,86 points de

base pendant le régime de forte incertitude Covid pour atteindre 53,31 points de base.
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Finalement, nous constatons qu’en période de forte incertitude, les autres participants du

marché participent davantage au rôle d’apport de liquidités. Nous estimons l’impact de

la liquidité sur le rendement quotidien des prix en distinguons entre la liquidité fournie

par les teneurs de marché et celle fournie par les autres agents qui peuvent la fournir

pour diverses raisons, sans que ça ne constitue leur activité principale. Nous trouvons

que seule la demande de liquidité adressée par les teneurs de marché a un effet notable

sur le rendement quotidien des prix. Par conséquent, la réaction des prix aux flux est une

caractéristique des participants au marché ayant un rôle d’intermédiation.
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Abstract

Using a large database of the US institutional investors’ trades, this paper sheds new

light on the question of anomalies-based portfolio transaction costs. We find that the

real costs paid by large investors to implement the well-identified Fama-French anoma-

lies (size, value, investment, and profitability) and Carhart momentum are significantly

lower than documented in the previous studies. We show that the average investor pays

an annual transaction cost of 16bps for size, 23bps for value, 31bps for investment and

profitability, and 222bps for momentum. The five strategies generate statistically sig-

nificant net returns after accounting for transaction costs of respectively 4.29%, 1.98%,

4.45%, 2.69%, and 2.86%. When the market impact is taken into account, transaction

costs reduce substantially the profitability of the well-known anomalies for large portfo-

lios, however, these anomalies remain profitable for average size portfolios. The break-

even capacities in terms of fund size are $ 184 billion for size, $ 38 billion for value, $ 17

billion for profitability, $ 14 billion for investment, and $ 410 million for momentum.

Keywords: Trading Costs, Market Impact, Liquidity, Anomalies-based Investments.

1.1 Introduction

Fama and French, 1993 Size and Value, Carhart, 1997 Momentum and Fama and

French, 2015 Investment and Profitability factors (also known as “asset pricing anoma-

lies”) are widely recognized as a source of rewarded risk. Nowadays, they are extensively

used by investors to build new portfolios that aim to over-perform traditional market cap-

weighted portfolios. Broeders and Jansen, 2019 show that pension funds manage factor

exposures strategically on their equity portfolios. However, the success of anomalies-

driven investments raises important questions regarding the liquidity and scalability of

such strategies. Because they involve high turnover and potentially generate significant

transaction costs, their attractiveness for portfolio construction may strongly depend on

portfolio size and market impact. In this paper, we estimate the cost of trading the well-
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identified anomalies based on execution data of institutional investors. Using ANcerno

database, composed of large investors’ trades including pension funds, mutual funds, and

asset managers, we find that the average investor from ANcerno pays an annual transac-

tion cost of 16bps for size, 23bps for value, 31bps for both investment and profitability

anomalies and 222bps for momentum. This is the cost of implementing the strategies for

an average ticket size submitted by ANcerno institutional clients and corresponds to a to-

tal portfolio size of approximately $ 1 million. This average estimation does not account

for the potential additional cost induced by the market impact of large portfolios’ holders.

Therefore, we explore how robust these asset pricing anomalies are to market impact by

estimating the dependence of trading costs to the size of the trades following Kyle and

Obizhaeva, 2018 framework. We derive the break-even capacity for each strategy, i.e.,

the maximum attainable fund size before price impact eliminates profits. We estimate $

184 billion for size, $ 38 billion for value, $ 17 billion for profitability, $ 14 billion for

investment, and $ 410 million for momentum, the most frequently rebalanced strategy.

Several authors studied the limits to arbitrage of asset pricing anomalies. For in-

stance, Novy-Marx and Velikov, 2015 estimate trading costs of a large panel of anomalies

including Fama-French size and value and Carhart momentum. They find that the imple-

mentation of size, value, and momentum would generate respectively 48bps, 60bps, and

780bps annual transaction costs. These costs dramatically reduce market anomalies prof-

itability. However, their trading cost measure, based on Hasbrouck, 2009 Gibbs sampler

estimation of the effective spread, is a proxy of the bid-ask spread derived from end-of-

day data and can be quite different from real transaction costs incurred during the intraday

session. In Chen and Velikov, 2018, the authors use tick-by-tick databases such as NYSE

Trades and Quotes (TAQ) to study the post-publication trading costs of 120 stock market

anomalies. They compute the average of 4 end-of-day estimates of the bid-ask spread

and find an average cost per anomaly of 100bps, corresponding to an average negative net

return of -3bps. According to this study, only cost mitigation strategies are able to gen-

erate positive net returns. Their estimation of intraday trading costs is however limited

to fixed cost and does not account for market impact. Korajczyk and Sadka, 2004 apply

various price impact models (Glosten and Harris, 1988, Breen et al., 2002) to TAQ data,
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to measure market impact of Jegadeesh and Titman, 1993 momentum strategies. They

conclude that the abnormal returns (Fama French 3-factor alpha) are reduced respectively

by 204bps and 192bps for the 11/1/31 and 5/1/6 momentum strategies. Momentum could

only be profitable for relatively small investors holding less than $2 billion of AUM.

Similarly, Lesmond et al., 2004 investigate the profitability of relative strength portfolios,

including Jegadeesh and Titman, 1993 6/1/6 momentum. They confront the strategies to a

battery of trading cost estimates such as quoted and effective spreads and find that stocks

that generate the largest momentum returns are precisely the ones with the highest transac-

tion costs. Depending on the trading cost measure, the net alpha of the strategy is reduced

by 544bps to 937bps. Using a dynamic trading model a la Garleanu and Pedersen (2013),

Bonelli et al., 2019 develop a closed formula to estimate the capacity of a trading strategy

with respect to its gross performance, the liquidity of the underlying securities, and the

dynamics of the signal on which the strategy is based, that they apply to four well-known

anomalies including value, momentum, and operating profitability. They find that even if

the value signal is slow, the strategy has limited capacity, non-existent in the recent period

between 2002-2017 because the pure Sharpe ratio is low. Momentum has a low capacity

as well, between $64 and 73 million, because of the quick mean-reverting signal. While

operating profitability has a large capacity of $43 billion for large-caps and $14 billion

for mid-caps because the pure Sharpe ratio is high and the signal is slow. Contrary to the

previous studies, Frazzini et al., 2012 base their estimation on the proprietary database of

AQR Capital Management’s executions and find a lower transaction cost for the momen-

tum anomaly of 354bps. They argue that TAQ database estimates are higher than what

institutional investors pay in practice, for two main reasons. On one hand, the models

employed are too conservative. On the other hand, TAQ database approximates the aver-

age trade, including informed traders, retail traders, liquidity demanders, and those facing

high price impact costs. Patton and Weller, 2019 rely on US-based mutual funds returns

to estimate anomalies implementation costs. Using Fama and MacBeth, 1973 framework

they assess the gap in factor-mimicking portfolio performance for each particular factor

1Jegadeesh and Titman, 1993 define momentum strategy using three parameters J/S/K, where J is the
length of the period over which past returns are calculated in months, K is the holding period in months,
and S is the waiting period. ”The skip” is also in months
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and find that the difference in compensation per unit of market exposure between paper

portfolios returns and mutual funds returns are respectively -0.97%, 2.09%, and 5.04%

per year for size, value and momentum anomalies. Patton and Weller, 2019 analysis dif-

fers from ours in a sense they are interested in estimating the cost of all potential sources

of limits to arbitrage, including regulatory constraints, investabilty and borrowing costs,

while our analysis assesses the transaction cost when the trades are possible. However,

while their approach gives average estimates of implementation costs, it does not account

for market impact related to fund size. Therefore, Patton and Weller, 2019 result should

be seen as a lower bound cost of anomalies implementation cost.

Our results on ANcerno database of executions by institutional investors generalizes

Frazzini et al., 2012 findings. We compute portfolios’ trading costs in two ways. The first

method is a non-parametric approach. It consists of averaging, for a given stock and re-

balancing day, the costs of ANcerno reported tickets executed during the same day, in the

same direction that the simulated portfolio for each anomaly, regardless of the size of the

tickets. This method accounts for the precise transaction costs borne on the rebalancing

days of the strategy. The second method focuses specifically on capturing the transaction

costs dependence on the volume treated due to market impact. Following Kyle’s theoret-

ical model, a series of empirical studies demonstrated the concave relation between the

implementation shortfall and the order size (Torre and Ferrari, 1999, Moro et al., 2009,

Gomes and Waelbroeck, 2015, Bacry et al., 2015, Briere et al., 2019). We estimate a sim-

ilar model on ANcerno tickets using as explanatory variables the ratio of the ticket size

with respect to an average daily turnover, bid-ask spread, and the price returns volatility.

Our estimations are lower than those documented from daily or intraday data for two main

reasons. First, trade level databases usually referenced in the literature, such as TAQ, do

not link single market trades to their originating parent orders. The resulting price devia-

tion is shared by all investors participating in the same trading session and are not linked

to the investor originating the trade. Therefore, these databases are more suited to study

the price formation process resulting from investors’ orders, than to estimate the trading

costs paid by a single investor. Second, when we inflict to the strategy the cost of the

spread plus the margin, we indirectly assume that large investors do not mitigate trans-
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action costs and send only aggressive market orders that consume liquidity. Yet, large

investors split their orders over several hours, or even days, depending on the size of the

orders and the relevance of the trading signal. They can alternate between limit orders,

executed only at the limit price or better, and market orders, which demand immediate ex-

ecution at the best available price. These market practices can save institutional investors

a significant amount of transaction costs.

The paper is organized as follows. In the first section, we describe the databases

we use for our study. In the second section, we define the trading cost measure, explain

the parametric and non-parametric estimation methods, and compare the results. Finally,

we discuss the profitability of five of the most recognized anomalies, Fama-French size,

value, investment, and profitability anomalies, and Carhart momentum after accounting

for transaction costs. We also assess the break-even capacity of each strategy.

1.2 Data

We obtain institutional trading data for the period from January 1st 1999 to June

30th 2015 from ANcerno Ltd. ANcerno, formerly Abel Noser Corporation is one of the

leading consulting companies in providing Transaction Cost Analysis (TCA) in the US.

It provides equity trading costs analysis for more than 500 global institutional investors,

including pension funds, insurance companies, and asset managers. This database was

largely used by academics to investigate institutional investors market practices (see for

example Anand et al., 2011, Puckett and Yan, 2011 and Eisele et al., 2019). ANcerno

clients contribute to the database by sending batches of their equity trades in order to

monitor their execution quality. Therefore, costs estimated on ANcerno are representa-

tive of what institutional investors effectively pay for their executions. Previous research

confirmed that ANcerno database is free from any survivorship or backfill bias (see Puck-

ett and Yan, 2011), constitute approximately 8% of the total CRSP daily dollar volume

(Anand et al., 2013), and 10% of total institutional activity (Puckett and Yan, 2011).

For each execution, ANcerno reports information on the CUSIP and ticker of the

stock, the execution time at minute precision, the execution date, execution price, side

60



Trading Costs of Asset Pricing Anomalies

(i.e., buy or sell), number of shares traded, commissions paid, whether the trade is part

of a larger order, and a number of trade-level benchmarks to evaluate the quality of the

execution. For a limited period of time (until 2011), ANcerno database contained client

identifiers allowing to link parent orders to institutions executing them. An institution

could be either a large mutual fund, a group of funds, or a single fund subscribing to Abel

Noser’s analytical service. Each institution could have one or several accounts. Table 1.1

provides descriptive statistics of ANcerno trades. In our sample, we successfully track

the activity of 1078 institutions with 149 thousand accounts, responsible for 51.3 trillion

dollars of transactions, and using the service of 1488 different brokerage firms. Compared

to the market volume reported in CRSP, ANcerno accounts for an average of 5.44% over

the whole period. However, this proportion varies in time. We observe an increase from

2.28% in 1999 to 8.28% at the end of 2004, then a steady drop from 2005 to 2011, then a

revamp of volume after 2011. The sharp decrease in ANcerno volume as a percentage of

CRSP after 2005 may be the direct result of the US market fragmentation happening after

Reg NMS 2 regulation, while the high percentage volume after 2011 could be explained

by the increase of passive investing. On the contrary, the traded dollar volume varies

between $2060 and $4506 billion without any visible monotonicity. Part of the volume

reported in ANcerno is executed outside the traditional market venues, thus is not reported

in CRSP. The traded amount reported in ANcerno is over a trillion dollars every year and

is, therefore, large enough to be relevant.

2Reg NMS (Regulation National Market System) is a financial regulation in the US that came into force
in 2005 to modernize and strengthen the National Market System for equity securities. One of its major
rules concerns market fragmentation.
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Table 1.1. Descriptive Statistics of ANcerno Institutional Execution Database

The table gives descriptive statistics on ANcerno trading data for each year of our
sample period (From January 1999 until June 2015). The number of institutions refers to
the number of unique clientcodes. The number of Funds, Managers or Accounts is the
number of unique clientmgrcodes. The number of brokers corresponds to the number of
unique broker identifiers from BrokerXref file where the couple clientcode-clientbkrcode
is present in ANcerno. The amount traded in $ is the sum of the dollar volume executed
by ANcerno institutions in the sample. The amount traded in % of market volume is the
ratio of ANcenro reported volumes w.r.t CRSP daily turnover

# Institu-
tions

# Funds,
Managers

or
Accounts

# Brokers # Stocks Amount
traded ($
billions)

Amount
traded (%
of market
volume)

Full Sample 1078 148621 1488 10044 51310 5.44
1999 381 6153 657 6291 2060 2.28
2000 374 6390 669 6239 3181 2.46
2001 401 13654 716 5396 3026 3.37
2002 428 16847 765 4935 3096 5.00
2003 405 26861 751 4930 2667 6.03
2004 408 23112 716 4126 4122 8.28
2005 379 18928 761 4912 3930 6.17
2006 403 22081 753 4773 4232 5.98
2007 381 28999 738 4941 4506 5.35
2008 338 26600 701 4507 4187 3.95
2009 303 41848 650 4207 2875 3.70
2010 258 43227 632 3951 2508 3.69
2011 - - 675 3884 1828 5.96
2012 - - 723 3715 2596 8.30
2013 - - 647 3755 2714 9.39
2014 - - 531 3809 2742 7.12
June 2015 - - 392 2753 1033 3.64
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ANcerno has the advantage of not being restricted to a single trading venue. It covers

the three main US historical venues that compose CRSP and Compustat universe, namely,

New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and NASDAQ.

Table 1.2 Panel A shows the percentage coverage in terms of number of stocks and market

capitalization. By construction, ANcerno is composed of only investible assets as all re-

ported stocks were physically held by US institutional funds. Henceforth, it is slightly bi-

ased towards large-capitalization stocks. ANcerno encompasses 92% of NYSE stocks, but

slightly more than one-third of AMEX companies. Yet, this difference in coverage should

not bias the estimation of the studied asset pricing anomalies implementation cost, as 98%

of CRSP overall market capitalization is present in ANcerno and Fama-French method-

ology is based on market-cap-weighted portfolios. ANcerno comprises a fair amount of

small companies as well. In Panel B of Table 1.2, half of the companies are smaller than

$ 226 million worth. While the average firm size is $ 2.4 billion, ANcerno also covers a

broad range of value and momentum stocks, as shown by the spectrum of book-to-equity

ratios and preceding 12 months returns covered.
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Table 1.2. Characteristics of ANcerno Traded Stocks

Institutional trading data are obtained form ANcerno Ltd on the period ranging from
January 1st , 1999 to June 30th, 2011. The left part of panel A gives the ratio of common
stocks (those with a sharecode of 10 or 11) present in ANcerno relative to CRSP
database. The right part of panel A displays the ratio on market-capitalization coverage.
It is computed as the sum of market capitalization of stocks present in ANcerno divided
by CRSP universe total market capitalization. Panel B reports descriptive statistics for
stocks traded by ANcerno institutions. We obtain price data (prices, traded volume,
outstanding shares) from CRSP database, Book-to-Market from Compustat. GK
volatility is the Garman Klass (1980) estimation of the volatility. Turnover is the average
percentage of outstanding shares traded on a single day

Panel A: ANcerno Coverage
% Number of Stock % Market Capitalization

ALL NYSE AMX NASDAQ ALL NYSE AMX NASDAQ

Full Sample 0.72 0.92 0.36 0.66 0.98 0.99 0.73 0.96
1999 0.63 0.92 0.35 0.55 0.99 0.99 0.83 0.97
2000 0.67 0.92 0.32 0.62 0.99 0.99 0.83 0.99
2001 0.66 0.93 0.28 0.61 0.99 0.99 0.85 0.98
2002 0.71 0.94 0.33 0.66 0.99 0.99 0.88 0.98
2003 0.77 0.96 0.40 0.73 0.99 1.00 0.88 0.98
2004 0.84 0.97 0.52 0.83 0.99 1.00 0.90 0.98
2005 0.84 0.98 0.51 0.83 0.99 1.00 0.86 0.98
2006 0.85 0.98 0.52 0.84 0.99 1.00 0.81 0.98
2007 0.86 0.98 0.56 0.85 0.99 1.00 0.81 0.98
2008 0.83 0.98 0.43 0.82 0.99 1.00 0.73 0.98
2009 0.83 0.97 0.43 0.80 0.99 1.00 0.68 0.98
2010 0.83 0.97 0.48 0.79 0.99 1.00 0.84 0.98
2011 0.83 0.97 0.50 0.79 0.99 1.00 0.87 0.98
2012 0.43 0.75 0.02 0.29 0.96 0.98 0.21 0.91
2013 0.44 0.74 0.03 0.30 0.94 0.97 0.31 0.89
2014 0.43 0.69 0.03 0.30 0.92 0.95 0.34 0.85
June 2015 0.37 0.59 0.02 0.27 0.86 0.89 0.33 0.80

Panel B: Stock Characteristics
mean 25% 50% 75%

Market Capitalization ($ 100 billion) 24.0 0.57 2.26 9.33
Average Traded Volume ($ million) 23.7 0.16 1.08 7.72
Book-to-Market Ratio 1.05 0.32 0.57 0.93
Lagged 12-month Return (%) 0.16 -0.36 -0.04 0.42
Turnover (%) 1.25 0.21 0.48 1.03
GK Volatility (%) 29.4 13.0 21.8 37.4
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ANcerno database has several advantages over any other trades-level database such

as TAQ or TRTH (Thomson Reuters Tick History), which are both abundantly refer-

enced in the academic literature (see, for example, Glosten and Harris (1988), Hasbrouck

(1991)). First, ANcerno mainly reports the activity of institutional investors, which are

the most likely to implement anomalies-based portfolios, which is the focus of this paper.

Second, ANcerno is not restricted to a single stock exchange. In the US, it covers all

trading venues present in CRSP. Third, ANcerno links child tickets to their corresponding

parent tickets, whether the execution was split into several days or executed in one swoop.

While other transaction databases tend to list the entire amount of their orders placed in

the market or effectively matched, without putting any link between related trades. This

may result in false estimations of portfolios trading costs, polluted by short term op-

portunistic investors and high-frequency traders (Frazzini et al., 2018). Finally, ANcerno

provides more information on the fixed costs born by institutional investors such as broker

commissions and trading fees. Table 1.3 gives an overview of ANcerno tickets’ charac-

teristics. By a parent-ticket, we mean a buy or sell order sent by an individual fund or

manager on a single stock, whether the trading firm chose to split the order across brokers

or days. ANcerno provides an identifier per parent ticket, with the corresponding intended

volume and execution period, which allow us to track the related child tickets. We observe

that both, market conditions and institutional investors’ trading behavior changed through

time. We note that the number of parent-tickets has increased significantly during the

studied period, starting from $1.92 million in 1999 to attain $11.66 million in 2008. In-

versely, the average parent-ticket size and average participation rate have both constantly

been dropping during the period. From $ 1.12 million to $ 0.39 million average size, and

from 6.42 % to 0.58% participation rate. The execution period has also shrunk from al-

most 3 days on average to about half 1.5 days at the end of the studied period. It suggests

that institutional investors changed their trading scheme from sending relatively few very

large orders (i.e., parent-tickets) to their preferred brokers, each of which should be split

into several days by the broker, to more controlled algorithms, where the asset manager

takes care of the daily execution scheduling, sends relatively smaller orders and asks the

broker to implement them in one or two days maximum. Note that this smooth change
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in market practices happened at the same time as the increase in automated trading, the

decrease of over the counter trades, and the multiplication of the trading venues resulting

from post-RegNMS market fragmentation (Laruelle and Lehalle, 2018). Large investors

adjusted their trading behavior as a response. Commissions and fixed fees increased from

11.52bps in 1999 to 18.85bps in 2003, then dropped quickly afterward to reach 3.69bps

in 2015.

Table 1.3. ANcerno Tickets Characteristics

Institutional trading data are obtained form ANcerno Ltd on the period ranging from
January 1st , 1999 to June 30th, 2015. Parent Ticket is an order sent by an institutional
investor. It could be split into multiple child tickets. Participation rate is the size of the
parent ticket compared to the 12 months average daily volume. Duration is the execution
period calculated in days. Commissions are computed as the ratio of Commissions per
share divided by the open price of the day the ticket is issued.

# Parent
Tickets (
million)

Av Parent
Ticket size
($ million)

% of
buy

#
Child
Tick-

ets

Particip.
rate
(%)

Dura-
tion

(days)

Commiss-
ions
(bps)

Full Sample 6.99 0.62 50.81 2.80 2.27 1.73 9.27
1999 1.92 1.12 53.73 2.66 6.42 2.85 11.52
2000 3.02 1.09 54.64 2.54 4.43 2.24 12.47
2001 3.71 0.87 55.83 2.45 3.89 2.03 14.62
2002 4.30 0.80 54.87 2.66 3.82 2.15 18.85
2003 4.99 0.62 53.62 2.90 3.53 1.96 17.08
2004 6.18 0.92 52.86 3.25 3.38 1.96 13.00
2005 6.73 0.80 51.35 3.26 2.74 1.79 9.99
2006 9.47 0.56 49.75 3.66 1.74 1.56 9.73
2007 10.23 0.55 49.81 4.13 1.48 1.50 7.07
2008 11.66 0.48 48.94 2.71 0.90 1.40 8.60
2009 10.31 0.39 47.64 2.29 0.94 1.47 8.05
2010 10.62 0.37 47.22 2.11 0.84 1.35 4.04
2011 8.20 0.24 48.09 2.25 0.42 1.22 2.89
2012 10.93 0.26 47.82 2.40 0.44 1.26 3.13
2013 7.69 0.37 48.79 2.66 0.65 1.38 3.62
2014 5.93 0.49 48.02 2.93 0.73 1.54 3.69
June 2015 2.82 0.39 49.50 3.59 0.58 1.56 3.69
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1.3 Methodology:

To estimate anomalies portfolios trading costs, we calculate the cost of rebalancing

each stock belonging to the underlying anomaly portfolio and sum them up with their

respective weights. The trading cost of each stock is measured as the sum of the imple-

mentation shortfall and fixed costs, including commissions, taxes, and fees.

1.3.1 Implementation Shortfall

Implementation shortfall, as defined in Perold (1988), measures the difference be-

tween a theoretical or benchmark price (in our case, the closing price at the time the

strategy’s desired holdings are generated, i.e., prior day) and an actual traded price, in

percent of the benchmark price. Implementation shortfall measures the total amount of

slippage a strategy might experience from its theoretical returns. In essence, our cost esti-

mates measure how much of the theoretical returns to a strategy can actually be achieved

in practice.

For a parent-ticket m of size Qk(m) and side sk(m) (= 1 for buy tickets and -1 for

sell tickets) executed at date d with Ntrades child tickets, the implementation shortfall is

calculated as follows:

ISk(m,d) =
sk(m)

Pre f
k (d)

(
Ntrades

∑
i=1

vk,m(i)
Qk(m)

×Pk(i)−Pre f
k (d)

)
(1.1)

where Qk(m) = ∑
Ntrades
i=1 vk,m(i), vk,m(i) is the volume of each child ticket i related to

the parent-ticket m and Pre f
k is the closing price of stock k at the review date d−1 of the

back-tested strategy. All Pk(i) are happening after the open of day d.

Table 1.4 shows the distribution of ANcerno parent tickets implementation short-

fall. Interestingly, we find that the implementation shortfall can be negative. The market

movements could be either favorable or detrimental to the trade. In fact, during bullish

periods, buy tickets are more expensive than sell tickets and vice-versa. For instance, in

2009, when the market daily average return was 22.79bps, the average implementation

shortfall of buy order was 31.41bps, almost twice the bid-ask spread (16.37bps), whereas
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sell tickets benefited from this buying pressure with a low 5.84bps average cost. Sim-

ilarly, in 2008 during the Subprime crisis, sell tickets had an excessive implementation

shortfall of 50.72bps. Buy tickets, on the contrary, experienced a price improvement, i.e.,

negative implementation shortfall, of -16.95bps, the moment the bid-ask spread amounted

for 17.27bps. The direction of the ticket compared to the direction of market movements

(indicating potential market pressure) is thus an important factor in transaction costs anal-

ysis. In addition, Table 1.4 also highlights the dependence of transaction costs to firm

size. As expected, large companies are cheaper to trade than smaller ones (8.69bps against

14.35bps). Transaction costs are increasing with the stocks’ bid-ask spread and volatility.

In 1999, when the bid-ask spreads were the highest on our sample (52.62bps), implemen-

tation shortfall was also the highest (42.03bps). Inversely in 2007, the bid-ask spread and

implementation shortfall were at their lowest levels (9.19bps and 3.34bps respectively).

More volatile periods are also associated with larger bid-ask spreads and higher imple-

mentation shortfall. During the above average volatility periods, market-makers aware of

adverse selection, revise their limits farther from the mid-price (Sandaas, 2001).
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Table 1.4. ANcerno Parent Tickets Average Implementation Shortfall

Institutional trading data are obtained form ANcerno Ltd on the period ranging from
January 1st , 1999 to June 30th, 2015. Our sample include only common stocks (those
with a share code of 10 or 11 in CRSP). The split by trading venue is based on CRSP.
The split between large and small caps is based on the NYSE median capitalization in
December of each year. Buy (respectively Sell) correspond to the average
implementation shortfall for buy (respectively sell) tickets. RM is the average daily return
of the equally weighted basket composed of CRSP stocks. σGK is the average Garman
Klass Volatility of CRSP stocks computed over 1 year rolling window. Spread is the
monthly average quoted Bid-Ask spread relative to the mid price obtained from TRTH
trade database

25%
(bps)

50%
(bps)

Mean
(bps)

75%
(bps)

Buy
(bps)

Sell
(bps)

RM

(bps)
Spread
(bps)

σGK

(%)

Full Sample -103.8 7.31 15.05 127.78 9.86 20.74 5.13 17.58 22.78
Large Cap -64.25 4.21 8.69 79.67 8.54 8.98 7.72 14.35 9.69
Small Cap -92.60 8.32 14.35 117.81 13.08 15.83 3.79 21.33 19.63

NYSE -64.69 3.32 6.96 77.42 6.30 7.72 4.53 14.96 10.49
AMEX -118.3 7.11 11.38 136.37 1.45 20.41 5.33 27.18 18.41

NASDAQ -77.22 8.55 16.19 105.35 16.56 15.93 6.16 17.73 13.54
1999 -126.2 18.60 43.81 184.33 48.29 38.56 12.57 52.62 26.16
2000 -183.9 15.36 32.48 232.42 22.01 45.01 -3.95 51.73 33.06
2001 -148.2 15.38 25.32 191.28 8.25 46.67 12.17 33.03 32.42
2002 -138.2 11.32 23.36 173.83 -15.0 69.70 -3.93 25.30 26.11
2003 -92.29 11.41 20.00 125.51 30.71 7.52 23.76 15.62 23.74
2004 -79.01 7.21 11.23 100.64 12.42 9.88 8.46 11.66 17.08
2005 -72.67 6.49 8.66 91.10 9.98 7.23 2.01 10.73 15.51
2006 -76.93 4.60 6.30 91.18 7.29 5.22 6.56 9.49 15.67
2007 -88.32 3.23 3.34 98.88 1.74 5.07 -2.27 9.19 16.12
2008 -161.7 5.86 16.23 182.76 -17.0 50.72 -21.0 17.27 25.45
2009 -134.4 8.67 18.88 162.38 31.41 5.84 22.79 16.37 36.70
2010 -90.16 6.67 10.98 110.98 18.99 3.22 11.10 10.52 21.84
2011 -99.19 6.50 12.28 120.03 5.84 18.94 -3.02 10.90 18.03
2012 -69.74 0.00 1.53 72.71 4.27 -1.21 8.54 17.91 9.35
2013 -51.66 4.47 7.39 64.97 9.49 5.28 15.92 13.04 7.40
2014 -59.32 2.23 3.84 66.47 0.52 7.15 2.82 12.53 7.60

June 2015 -59.71 0.00 0.75 61.16 1.41 0.09 -1.30 12.46 7.35
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1.3.2 Portfolio implementation cost

We propose two ways to assess the trading cost of anomalies portfolios. The first

approach (non-parametric estimation) consists of averaging, for each stock rebalanced on

a given day, the transaction costs of all trades for that stock happening that day in the same

direction in the ANcerno database. The second approach estimates a model capturing the

dependency of trading costs with respect to the traded volume, and applies the estimation

results to the backtested anomalies (parametric estimation).

Non Parametric Estimation

Fama-French and Carhart Momentum anomalies are based on the largest possible

universe of all stocks listed in the 3 major US trading venues (NYSE, AMEX, and NAS-

DAQ). The paper strategies do not take into account any trading or liquidity constraints.

Our non-parametric approach implies restricting the universe to stocks traded by insti-

tutional investors and present in ANcerno database. Table 1.5 Panel A shows ANcerno

average coverage of the Fama-French six sub-portfolios composing the size, value, in-

vestment, and profitability anomalies, while panel B gives the coverage of the four sub-

portfolios composing Carhart momentum anomaly (see details about the sub-portfolios

construction in Appendix B) over the back-tested period. Large capitalization stocks are

only marginally impacted by the universe restriction. More than 97% of the stocks (98%

of the total market capitalization) in the original Fama-French and Carhart portfolios are

traded in ANcerno database. The universe restriction impacts more heavily the small-cap

portfolios. For example, only 37.9% of the stocks traded in the Fama-French Small-High

sub-portfolio are traded in ANcerno and 40.9% for the Small-Down sub-portfolio.

When the new composition of the anomalies portfolio becomes effective after the

close of day d − 1, we extract the weight of each stock k that needs to be rebalanced

δwk(d) . We consider all ANcerno tickets submitted in day d, on stock k, executed

in the direction sk(m) as the rebalancing trade (sk(m) = sign(δwk(d)) and average the

cost of ANcerno tickets that meet these criteria to obtain an estimation of trading cost

ξ̂k(d) for each stock k (equation 2.2). Finally, we compute portfolio trading cost as the
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Table 1.5. ANcerno % Coverage of Anomalies Sub-Portfolios

Institutional trading data are obtained form ANcerno Ltd on the period ranging from
January 1st , 1999 to June 30th, 2015. Prices data are obtained from CRSP database while
fundamental data are derived from Compustat. We implement the size, value, profitabilty
and investemnt anomalies based on Fama-French 6 sub-portfolios methodology
(described in the Appendix B) and momentum anomaly following Carhart. The table
below shows the percentage number of stocks in each sub-portfolio present in ANcerno
and how much it represent in terms of market value.
Panel A: Fama-French Anomalies
Sub-portfolios Big

High
Big
Low

Big
Medium

Small
High

Small
Low

Small
Medium

Average

Size, Value
Number Stocks (%) 97.7 98.4 97.6 37.9 57.3 54.0 73.82
Market Cap (%) 98.88 99.76 98.95 75.45 82.77 80.23 89.3

Investment
Number Stocks (%) 96.5 99.1 97.5 40.0 56.8 56.2 74.3
Market Cap (%) 99.5 99.1 98.8 77.3 81.9 79.9 89.4

Profitability
Number Stocks (%) 98.2 98.8 98.0 45.3 51.5 55.9 74.6
Market Cap (%) 99.1 99.3 97.9 80.6 82.5 77.2 89.4

Panel B: Carhart Momentum Anomaly
Sub-portfolios Big Down Big Up Small

Down
Small Up Average

Number Stocks (%) 97.5 97.7 40.9 51.1 71.80
Market Cap (%) 99.12 99.26 76.25 78.96 88.4

weighted sum of its Nsec components’ trading costs multiplied by the size of the portfolio,

AUM(d−1), at the review date.

ξ̂k(d) =
1

∑m IδWk(d)sk(m)>0
∑
m
IδWk(d)sk(m)>0 (ISk(m,d)+ f ixedcostk(m,d)) (1.2)

Prt f Cost (d) = AUM(d)×
Nsec

∑
k=1
|δWk(d)|×ξ̂k(d) (1.3)

where δWk(d) is the delta weight of stock k at the review date d−1. sk(m) is the side

of ticket m on stock k. ISk(m,d) and f ixedcostk(m,d) are respectively the implementation

shortfall and the fixed cost of ticket m on stock k. AUM(d−1) is the portfolio size at the
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end of day d−1. Nsec is the number of stocks in the portfolio.

Parametric Estimation

One of the drawbacks of the non-parametric estimation is that it only considers stocks

that are traded in ANcerno database. Also, this estimation of average transaction costs

based on all trades executed in the database does not account for the well-known depen-

dence of the trading costs on the size of the trades. Bacry et al., 2015 model, also used by

Frazzini et al., 2018, postulates a squared root relationship between the implementation

shortfall and the size of the trade, measured as the fraction of daily volume traded in a

stock (see equation 2.3 below).

ISk(m,d) = α×ψk(d)+β ×σ
GK
k (d)×

√
Qk(m)

ADVk(d)
+ εk(m,d) (1.4)

where ISk(m,d) is the implementation shortfall of ticket m submitted on stock k at day d.

ψk(d) is the quoted intraday bid-ask spread of stock k averaged on the month, Qk(m) is

the ticket size, ADVk(d) is the daily traded volume averaged on a 12 months rolling win-

dow, and Qk(m)
ADVk(d)

is the participation rate, σGK
k (d) is the Garman Klass intraday volatility

of stock k estimated on a 12 month rolling window, α, β are model’s parameters and

εk(m,d) is the error.

To calibrate the model, we consider all tickets reported in ANcerno database in the

12 months preceding the review date d−1 of participation rate Qk(m)
ADVk(d)

higher or equal to

0.01%. We find that below that threshold, the ticket size has a limited effect on trading

cost because of intraday volatility noise. We then form 1000 bins based on the tickets’

participation rate and estimate the model on the average implementation shortfall of each

bin. The left side of Table 1.6 describes the result of the calibration made at end of each

month (152 regressions). We note that the average coefficient of the bid-ask spread is 0.4.

When the market impact generated by the ticket is small (Qk(m) close to 0), arbitrageurs

on average do not pay the full bid-ask spread but only 40% of it. Therefore, for ANcerno

institutional investors, the bid-ask spread is a conservative estimation of trading costs.

The right side of table 1.6 shows the result of 10 thousand bootstraps. In each iteration,
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we withdraw randomly 1/12 of our ANcerno sample, constitute the bins and estimate

the model. The bootstrap average coefficients 5% confidence interval confirm the rolling

window approach. We use the model parameters 5% confidence interval to compute the

portfolios’ trading costs confidence interval.

Table 1.6. Model calibration on ANcerno tickets

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1st , 1999 to June 30th, 2015. Quoted intraday bid-ask spreads are obtained from
TRTH database averaged over the month. σGK

k and ADV are respectively the Garman
Klass volatility and the average trading volume computed from CRSP database over a 12
months rolling window. The coefficients of the rolling regressions are estimated at the
end of each month on 1000 bins based on tickets participation rate Qk

ADVk
where only

tickets submitted by institutional investors on the latest 12 months are considered. The
bootstrap draws randomly 1/12 of the database tickets. 10 000 regressions are estimated
on the 1000 corresponding bins

1Y Rolling Window 104 Bootstrap
ψk

σGK
k

√
Qk

ADVk

ψk

σGK
k

√
Qk

ADVk

Av coef 0.40 0.77 0.42 0.75
2.5% quantile 0.35 0.68 0.37 0.70
97.5% quantile 0.45 0.76 0.46 0.79
std err 0.02 0.001 0.02 0.001
tstat 17.68 37.34 20.11 39.67
P > |t| 0.01 0.00 0.00 0.00
Average R2

ad j 0.88 0.91
Nbr of regressions 152 10000
Nbr of observations per regression 1000 1000

In the parametric estimation, we consider the full universe of all CRSP stocks. The

estimated model parameters α̂ and β̂ are used to estimate stocks trading costs as shown in

equation 2.4. The intraday bid-ask spreads are retrieved from TRTH when available. For

missing data, usually small capitalization, we use Abdi and Ranaldo, 2017 CRSP daily

spread estimates. It consists of averaging the spread of the daily last available bid and last

available ask over the month. For fixed costs, we take the average of commissions and
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taxes per ticket computed on the month preceding the review date.

ξ̂k(d) = α̂×ψk(d)+ β̂ ×σ
GK
k (d)×

√
Qk(d)

ADVk(d)
+

1
N

N

∑
k,m

f ixedcostk(m,d) (1.5)

Where Qk(d) is the size of the rebalancing trade. It derives explicitly from the size

the portfolio AUM(d-1) such as Qk(d) =
AUM(d−1)×δWk(d)

Pclose
k (d−1)

. Finally, we sum stock trading

cost ξ̂k(d) at portfolio level as in equation 1.3).

In Figure 2.2, we regroup ANcerno tickets in 1000 bins based on participation rate
Q

ADV and plot the average implementation shortfall of the tickets in each of the buck-

ets (blue dots) and the non-parametric estimation (black dot). ANcerno tickets show a

concave relation between implementation shortfall and ticket size relative to daily traded

volume. We observe a sharp increase in the costs from -4bps to 20bps when ticket size

increases from 0.01% to 2% of the ADV. The slope decays afterward. For instance, a

ticket with a 40% participation rate has an 80bps trading cost. The parametric estimation

captures well the dependence to volume and confirms the relevance of the square root de-

pendence of trading costs to traded volume. The non-parametric estimate does not capture

volume dependence but represents the average cost paid by institutional investors.

1.4 Results

1.4.1 Non parametric estimation

In this section, we discuss the profitability of Fama-French anomalies size, value,

profitability, and investment and Carhart momentum anomaly from the perspective of the

average trading costs experienced by ANcerno institutional investors. For each anomaly,

we compare (1) the gross performance of the anomaly, when constructed on CRSP uni-

verse of all US-listed stocks following Fama-French methodology, (2) the gross perfor-

mance after restricting to ANcerno universe of stocks traded by institutional investors, and

(3) the net performance after accounting for transaction costs. Table 1.7 reports the result
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Fig. 1.1. Parametric vs Non-Parametric Estimation of Implementation Shortfall

This figure plots the average implementation shortfall for ANcerno tickets. We sort all
trades into 1000 bins based on their participation rate Q

ADV . The blue dots represent the
average implementation shortfall of each of the bins. The green line is the corresponding
predictive value following equation 2.3 averaged by a bin. Finally, the black marker
indicates the average tickets participation rate and the average non-parametric estimation

of the backtest starting on the 30th of June 1999 and ending the 30th of June 2015. Hou,

Xue, and Zhang (2017) report a significant reduction of most anomalies returns’ when

restricting the exposure to small and micro-capitalization stocks. Similarly, we find that

the performance of size and value anomalies is reduced substantially by the restriction of

the investment universe to ANcerno traded stocks, which are not well covered by AN-

cerno database (from 4.84% to 4.46% for size and from 2.94% to 2.22% for value). For

instance, the long leg of size anomaly composed solely of small companies loses 0.42%

in performance while the short leg gains 0.05%. For the same reason, both the long and

short legs of the value anomaly, which both contain small-capitalization stocks, experi-

enced a substantial loss in performance (0.55% and 0.16% respectively). The momentum

and investment anomalies are robust to the universe change (experience a small decay of

0.05%) while the profitability anomaly is impacted positively (4.20% on CRSP vs 4.77%

on ANcerno). Israel and Moskowitz (2013) document a similar pattern for momentum,
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showing that it is equally strong among large and small capitalizations, while value is

stronger among small caps.

Transaction costs significantly reduce the performance of the anomalies. Fama-

French anomalies, rebalanced only once per year, have a low turnover and moderate

trading costs, 16bps for size, 23bps for value, and 31bps for investment and profitability.

Momentum strategy is much more costly to implement. It is rebalanced at the end of each

month (60% monthly turnover) and has an average trading cost of 222bps. Trading costs

account for 1/3 of the strategy’s gross performance. Note however that our estimates are

around 0.4 times (two times and a half lower than) Novy-Marx and Velikov, 2015 transac-

tion costs estimates based on daily effective bid-ask spreads ( 48, 60, and 780bps for size,

value, and momentum respectively). This 0.4 is also the bid-ask spread coefficient of the

parametric model after calibration. Therefore investors pay around 40% of the bid-ask

spread to trade small portfolios, and the full bid-ask spread is rather a conservative mea-

sure of trading costs. Moreover, Chen and Velikov, 2018 argue that measures based on

end-of-day data tend to over-estimate trading costs. Our estimates are more in line with

those of Frazzini et al., 2012 for the momentum anomaly 351bps.
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Table 1.7. Non-parametric estimation results

The back history is run from 30th June 1999 to 30th June 2015. Ann Gross return is the
strategy annualized average gross return in %. Volatility is the annualized monthly

standard deviation in %. Ann Net return is the annualized average return after trading
costs are deduced. Ann turnover is the annual turnover computed as in Appendix B.2.

Ann
Gross

Returns
(%)

Volatility
(%)

Ann Net
Returns

(%)

Ann
Turnover

Trading
Costs
(bps)

Panel A: Size Anomaly (SMB)
CRSP Univ Portfolio 4.84 12.41 - 0.45 -
CRSP Univ Long Leg 11.99 20.61 - 0.25 -
CRSP Univ Short Leg -7.16 15.41 - 0.20 -
Ancerno Univ Portfolio 4.46 11.11 4.29 0.54 15.69
Ancerno Univ Long Leg 11.57 20.35 11.42 0.35 13.65
Ancerno Univ Short Leg -7.11 15.37 -7.13 0.19 2.04

Panel B: Value Anomaly (HML)
CRSP Univ Portfolio 2.94 12.05 - 0.76 -
CRSP Univ Long Leg 10.60 18.35 - 0.44 -
CRSP Univ Short Leg -7.67 18.93 - 0.32 -
Ancerno Univ Portfolio 2.22 12.16 1.98 0.76 22.50
Ancerno Univ Long Leg 10.05 18.84 10.02 0.44 2.56
Ancerno Univ Short Leg -7.83 18.36 -8.03 0.32 19.95

Panel D: Profitability Anomaly (RMW)
CRSP Univ Portfolio 4.20 10.80 - 0.71 -
CRSP Univ Long Leg 9.80 15.47 - 0.31 -
CRSP Univ Short Leg -5.60 21.82 - 0.40 -
Ancerno Univ Portfolio 4.77 10.38 4.45 0.76 30.61
Ancerno Univ Long Leg 10.57 15.40 10.42 0.33 13.90
Ancerno Univ Short Leg -5.80 21.66 -5.96 0.42 16.71

Panel E: Investment Anomaly (CMA)
CRSP Univ Portfolio 3.08 6.35 - 1.25 -
CRSP Univ Long Leg 9.96 17.77 - 0.68 -
CRSP Univ Short Leg -6.89 18.69 - 0.57 -
Ancerno Univ Portfolio 3.02 7.00 2.69 1.19 31.39
Ancerno Univ Long Leg 10.47 17.61 10.34 0.64 12.44
Ancerno Univ Short Leg -7.46 18.63 -7.65 0.55 18.95

Panel C: Momentum Anomaly (UMD)
CRSP Univ Portfolio 5.15 18.22 - 7.32 -
CRSP Univ Long Leg 11.71 18.46 - 3.28 -
CRSP Univ Short Leg -6.56 24.52 - 4.04 -
Ancerno Univ Portfolio 5.09 18.52 2.86 8.34 222.49
Ancerno Univ Long Leg 11.71 18.65 10.78 3.84 93.30
Ancerno Univ Short Leg -6.62 24.81 -9.91 4.50 129.19
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1.4.2 Parametric estimation

The parametric method estimates the trading costs of all US-listed stocks, accounting

for the dependence of trading costs on the volume traded. We back-test the anomalies on

the wide universe of all CRSP stocks over the same sample period than the non-parametric

estimation. Table 1.8, reports anomalies net performance for various levels of portfolio

size: $ 1 million, $ 100 million, and $ 1 billion of AUM. For comparison, BlackRock US

Basic Value Fund, one of the biggest, has a total AUM of $ 647 million. The table also

reports the 5% confidence interval of portfolio trading costs derived from the 2.5% and

97.5% quantiles of model parameters bootstrapped distribution presented in Table 1.6.

We note that the $ 1 million portfolios generate small-sized rebalancing orders that barely

meets the threshold of 0.005% participation rate. Hence the orders have limited market

impact. The trading costs estimates are of the same magnitude as the non-parametric es-

timations: 19bps for size, 31bps for value, 43bps for profitability, 44bps for investment,

and 253bps for momentum anomaly. The net returns remain significant (4.46% for size,

2.11% for value, 4.24% for profitability, 3.78% for investment and 2.46% for momen-

tum). The mid-sized portfolios of $ 100 million generate rebalancing orders of the size of

1% to 2% of daily turnover. The trading costs reduce the performance of the anomalies

(by 30, 54, 77, 81, and 417 bps respectively) but the net returns still remain attractive for

the Fama-French anomalies (4.35%, 1.88%, 3.89%, and 3.40% respectively). For large

portfolios of $ 1 billion, transaction costs are twice as big (56, 108, 156, 167, and 741 bps

respectively) and thus significantly reduce the net returns of the anomalies. While size

remains largely profitable over the sample period (4.09% net return), value, profitability,

and investment are more heavily impacted (1.33%, 3.10%, 2.55% net return), and mo-

mentum loses all appeal (net return are significantly negative [-2.35%, -1.69%]) as the

trading costs exceed the gross return of 5.15%.
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Table 1.8. Parametric estimation results

The back history is run from 30th June 1999 to 30th June 2015. Ann. Net return is the
annualized average return after trading costs are deduced. Volatility is the annualized
monthly standard deviation (in %). Annual turnover is computed as in Appendix B.2. Av
Participation Rate is the average ticket size w.r.t daily turnover rebalanced by the
anomalies. The intervals between brackets correspond to the 5% confidence interval
derived from the 2.5% and 97.5% quantiles of bootstrapped model parameters

AUM
Ann. Net Return

(%)
Volatility

(%)
Trading Costs

(bps)
Turnover
(Monthly)

Av Particip
Rate (%)

Panel A: Size Anomaly (SMB)

$1 million
4.46

12.32
19.17

0.04 0.00
[4.45 4.48] [17.86 20.48]

$100 million
4.35

12.32
30.11

0.04 0.47
[4.33 4.37] [28.14 32.07]

$1 billion
4.09

12.32
56.04

0.04 4.57
[4.06 4.13] [52.53 59.54]

Panel B: Value Anomaly (HML)

$1 million
2.11

11.61
30.84

0.06 0.01
[2.09 2.14] [28.71 32.98]

$100 million
1.88

11.61
54.22

0.06 1.28
[1.85 1.91] [50.75 57.68

$1 billion
1.33

11.61
108.77

0.06 12.21
[1.27 1.40] [102.27 115.24]

Panel D: Profitability Anomaly (RMW)

$1 million
4.24

11.21
42.56

0.06 0.02
[4.21 4.27] [39.77 45.3]

$100 million
3.89

11.21
77.05

0.06 1.82
[3.85 3.94] [72.35 81.74]

$1 billion
3.10

11.21
156.44

0.06 17.00
[3.01 3.19] [147.54 165.31]

Panel E: Investment Anomaly (CMA)

$1 million
3.78

7.54
43.76

0.10 0.02
[3.75 3.80] [40.88 46.63]

$100 million
3.40

7.54
81.07

0.10 1.97
[3.35 3.45] [76.11 86.02]

$1 billion
2.55

7.54
166.64

0.10 18.31
[2.45 2.64] [157.12 176.12]

Panel C: Momentum Anomaly (UMD)

$1 million
2.46

18.20
253.45

0.610 0.01
[2.30 2.62] [236.95 269.93]

$100 million
0.93

18.19
417.43

0.610 0.49
[0.70 1.16] [393.59 441.11]

$1 billion
-2.03

18.17
741.13

0.610 3.61
[-2.35 -1.69] [705.26 776.40]
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1.4.3 Break-even capacity

In this section, we study how robust the asset pricing anomalies are to market impact

by assessing the break-even capacity of each strategy. Figure 2.3 document the break-

even capacities of each strategy on the period ranging from the 30th June 1999 to the 30th

June 2015. The continuous lines plot anomalies trading costs with respect to portfolio

size, while dashed lines express anomalies returns. The intersection between dashed and

continuous lines points to the break-even capacity of each anomaly, which is the maximal

fund size attainable before price impacts eliminate profits. We find that size is the most

capacitive, with $ 184 billion break-even capacity corresponding to 4.84% average cost.

Followed by value with $ 38 billion capacity and 2.94% trading costs, then investment

and profitability with respectively $14 and $17 billion. Finally, the momentum is the

most challenged by trading cost $ 410 million and 5.15% costs. The limited capacity is

partially due to the bad performance of the momentum strategy during our sample period,

as it suffered from the 2001 Internet burst and 2007 financial crisis drawdown.

Fig. 1.2. Break even capacity

The left-hand figure plots the trading costs of the low turnover anomalies with respect to
portfolio size in $ billion. The green line for size and the blue lines for value). The
right-hand figure shows the result for the monthly rebalanced momentum anomaly. The
Dashed lines represent the annualized average return of the anomalies on their respective
back-testing period
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1.5 Conclusion

Using a broad database of investors’ trades, accounting for 10% of institutional in-

vestors activity and 8% of total market volume in the US stock market, we estimate the

cost of trading of five of the most recognized anomalies in the literature: Size, Value,

Investment, Profitability, and Momentum. We find that the average cost paid by investors

to trade small orders represent less than 40% of the effective quoted bid-ask spread. This

means that institutional investors are able to mitigate their transaction costs in an efficient

way. Quoted bid-ask spreads, used in previous studies as a proxy for transaction costs es-

timates (Novy-Marx and Velikov, 2015, Chen and Velikov, 2018) are rather a conservative

measure of trading costs as it assumes that all institutional orders are liquidity consum-

ing. For average-sized portfolios (approximately $ 1 million), corresponding to average

volumes traded in ANcerno database, we find low trading costs for Fama-French (16bps

for size, 23bps for value, and 31bps for investment and profitability), because of their low

annual turnover. Momentum is more heavily impacted by trading costs (222bps, one-third

of the gross returns). Our estimates for the momentum anomaly trading costs are more

in line with Frazzini et al., 2012 estimates. After accounting for market impact, estimat-

ing the dependence of trading costs to the traded volume using the square root model, we

compare the trading costs at three different levels of portfolio size and seek the break-even

capacity of each strategy. We conclude that the momentum anomaly is the most expensive

to trade. It is monthly rebalanced and involves a high turnover (around 60%). It reaches

its capacity at $410 million. The Fama-French are rebalanced once per year and thus, are

more robust to trading costs. Size has an estimated capacity of $ 184 billion, while the

estimated capacity of value, investment, and profitability are respectively $38, $14, and

$17 billion. The trading costs estimated on ANcerno database present the great advantage

that they are representative of what institutional investors effectively pay to execute their

orders. However, the exact cost of implementing the long-short Fama-French portfolios

should take into account in addition the costs of short-selling (stocks borrowing costs, and

leverage funding costs). Thus, the estimates should be considered as an upper bound on

the capacity of these strategies, an extension that we leave for future work.
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Appendices

1.A Data preparation

This section of the appendix provides a detailed description of databases content,

and how we link them together to get the final data source. The main ANcerno dataset is

a sample of institutional transaction-level data directly submitted by ANcerno’s clients.

The data are submitted in batches that include all trades executed by a client during the

interval of time covered by the batch. The exact length covered by each batch, however, is

not predefined and can range from a few trading days to several months of trades. A large

variety of clients rely on ANcerno’s monitoring services. The dataset includes transac-

tions reported by several of the main mutual fund families domiciled in the United States,

a small number of hedge funds, several pension plan sponsors, and a multitude of asset

managers. A client from ANcerno’s perspective is any entity that submits trades, which

generally consists of an individual mutual fund, a group of funds, or a fund manager.

ANcerno assigns unique codes to the clients (variable clientcode) and the corresponding

institution as reported by the client (variable clientmgrcode). However, the exact identity

of the client is always anonymized.

For a limited period of time, ANcerno also provided a file (“MasterManagerXref”)

including the list of the overarching institutions to which the individual clients were af-

filiated (i.e., the fund families in the case of mutual funds). This additional file includes

the name of the institution (variable manager ), e.g., PIMCO, and a number identifying

the institution (variable managercode), e.g., 10. We match this file to another file (“Man-

agerXref”) (that includes both the numbers identifying the institutions (variable manager-

code) and the client codes (variable clientcode). In this way, we are able to match the

main institution name with the original ANcerno trade data via client codes (as the vari-

ables clientcode and clientmgrcode are included both in the “ManagerXref” file and in the

main ANcerno file)—see Figure1.3. Similarly, we link broker identifiers to trades using

a fourth file obtained by ANcerno, which is called “BrokerXref’. All this information is

necessary to better define a ticket and thus related trades, whether the originating house

85



Trading Costs of Asset Pricing Anomalies

chose to split their trading on time or across different brokers. The main variables that we

use from the ANcerno database are reported in Table 1.9.

As far as stock market data are concerned, we use CRSP daily and monthly stock files

provided by WRDS (Wharton Research Data Services), from which we retrieve stock

prices (open high low close), daily traded volume, outstanding shares, exchange code,

and share code. Stocks balance sheets and fundamental information are obtained from

Compustat Annual fundamental files, also provided by WRDS. We first match these two

databases using CRSP-COMPUSTAT historical link table that maps Compustat GVKEY

stock identifier to CRSP (PERMNO, PERMCO) couple, then we use the resulting table

to cross with ANcerno main dataset using the CUSIP. Finally, we check that ANcerno

reported prices fall within the range of CRSP daily low-high prices. We drop the few

tickets that do not fulfill this condition.

1.B Fama-French Portfolio Construction

We reproduce portfolio construction described in Fama and French, 2015 paper and

Ken French’s webpage.

Size, Value: The Fama/French Size and Value anomalies are constructed using the

6 value-weighted portfolios formed on size and book-to-market. The portfolios, which

are formed at the end of each June, are the intersection of 2 portfolios formed on size

with respect to NYSE median market equity (Small vs Big) and 3 portfolios formed with

respect to the 30% and 40% NYSE quantiles of book to market BE/ME (Value, Neutral

and Growth).

(1.6)
SMB =

1
2
(Small Value + Small Neutral + Small Growth)

− 1
2
(Big Value + Big Neutral + Big Growth)

HML =
1
2
(Small Value+Big Value)− 1

2
(Small Growth+Big Growth) (1.7)
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Fig. 1.3. Merging referential, market data, fundamental data and trade level data
together

Final Database:

Main ANcerno trade5s database:
clientcode (ANcerno’s unique client identi-
fier)
clientmgrcode (reported by the client)
clientbkrcode (reported by the client)

ManagerXref file:
clientcode
clientmgrcode
managercode
asset manager name as
reported by the client

MasterManagerXref file:
managercode (unique asset
manager identifier by AN-
cerno)
manager (unique asset man-
ager name)

BrokerXref file:
clientcode
clientbkrcode
broker (unique broker
identifier in ANcerno)
brokername

CRSP Daily Stock Files:
PERMNO, PERMCO:
stock identifiers
shrcd: Share code
exchcd: Exchange code
(o, h, l,c) prc, vol, shrout:
Price,
Traded Volume, Outstanding
Shares

Compustat Fundamentals
Annual Files:
GVKEY: stock identifiers
Book Equity: computed from
pstkl, txditc, pstkrv, seq, pstk

CRSP Compustat
Merged Table:

on clientcode &
clientmgrcode

on clientcode &
clientbkrcode

on managercode
on CCM Link
Tables

CUSIP
CUSIP

Investment: The Fama/French investment anomaly is constructed using the 6 value-

weighted portfolios formed on size and investment. The portfolios, which are formed at

the end of each June, are the intersection of 2 portfolios formed on size with respect to

NYSE median market equity (Small vs Big) and 3 portfolios formed with respect to the
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Table 1.9. ANcerno Variables

The table describes the main ANcerno variables used to compute the results of this paper
Variables Source File Description

Client/ Family/ Broker identification Variables
clientcode Main dataset unique client identifier by ANcerno

clientmgrcode Main dataset trading investment manager code as reported by the
client

clientbkrcode Main dataset code of the broker executing the trade as reported by
the client

managercode ManagerXref unique trading investment manager code attributed
by ANcerno

manager
Master

ManagerXref
unique investment manager name by ANcerno

broker BrokerXref unique numeric broker identifier by ANcerno
Order identification Variables

cusip Main dataset stock cusip
stockey Main dataset ANcerno stock identifier

onumber Main dataset Ticket indentifier for a single stock, side and date
lognumber Main dataset ANcerno identifier for data source

odtOrderDate Main dataset Date where the broker receives the ticket
odtLastDate Main dataset Last date allowed to liquidate the order

ov Main dataset Ticket size
Side Main dataset buy or sell (1 = Buy; -1 = Sell)

Trade identification Variables
tradedate Main dataset date of the trade

xdtX Main dataset Execution time
Price Main dataset price per share

Volume Main dataset number of traded shares
Commission

USD
Main dataset per trade commission in USD

30% and 40% NYSE quantiles of investemnt Inv (Conservative, Neutral and Aggressive).

(1.8)
CMA =

1
2
(Small Conservative + Big Conservative)

− 1
2
(Small Aggressive + Big Aggressive)

Profitability: The Fama/French profitability anomaly is constructed using the 6

value-weighted portfolios formed on size and operating profitability. The portfolios,

which are formed at the end of each June, are the intersection of 2 portfolios formed on

size with respect to NYSE median market equity (Small vs Big) and 3 portfolios formed
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with respect to the 30% and 40% NYSE quantiles of operating profitability OP (Robust,

Neutral and Weak).

RMW =
1
2
(Small Robust +Big Robust)− 1

2
(Small Weak+Big Weak) (1.9)

Momentum: Fama-French implementation of momentum anomaly is based on the

6 value-weighted portfolios formed on size and prior (t-2-¿t-13) returns. The portfolios,

which are formed monthly, are the intersections of 2 portfolios formed on size (Small

vs Big with respect to NYSE median market equity) and 3 portfolios formed on prior

(t-2-¿t-13) returns (High, Neutral, Low compared to NYSE stocks quantiles).

Mom =
1
2
(Small High+Big High)− 1

2
(Small Low+Big Low) (1.10)

1.C Definitions / Equations

1.C.1 Portfolio’s turnover

Portfolio turnover at the review date t is computed as follows :

Turnovert =
Nsec

∑
s=1

∣∣∣∣∣AUMt ws
t −AUMt−1 ws

t−1(1+ sign(ws
t−1) rs

t−1,t)

AUMt

∣∣∣∣∣ (1.11)

AUMt = AUMt−1

Nsec

∑
s=1

ws
t−1(1+ sign(ws

t−1) rs
t−1,t) (1.12)

Turnovert =
Nsec

∑
i=1

∣∣∣∣∣ws
t −

ws
t−1(1+ sign(ws

t−1) rs
t−1,t)

∑
N
s=1 ws

t−1(1+ sign(ws
t−1) rs

t−1,t)

∣∣∣∣∣ (1.13)

Where AUMt and AUMt−1 are the portfolio size respectively at review date t and t− 1.

Nsec is the number of securities composing the portfolio. ws
t is the weight of the stock s

after the review date t. rs
t−1,t is the return of stock s on the period between review date
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t−1 and t.

1.C.2 Garman Klass Volatility definition

Garman-Klass estimate of the volatility uses the open, high, low and close prices of

the day. This estimate is robust and very close in practice to more sophisticated ones. The

formula is given by:

σ
GK
k (d) =

√√√√ 1
N

N

∑
t=1

1
2

log

(
Hk

d−t

Lk
d−t

)2

− (2log(2)−1) log

(
Ck

d−t

Ok
d−t

)2

(1.14)

where the indexation k refers to the stock. d to the calculation day. N is the length of the

rolling window in day. In our case 252 trading days. Ok
t , Hk

t , Lk
t , Ck

t are respectively the

open, high, low, close prices of stock k at day t.
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Chapter 2

Modelling Transaction Costs when

Trades May Be Crowded:

A Bayesian Network Using Partially

Observable Orders Imbalance

About this chapter

The article present in this chapter has been published in the following book Machine

Learning for Asset Management: New Developments and Financial Applications. The

authors would like to thank the participants of the following conferences for their con-

structive comments and remarks: 2nd QFFE International Conference (Marseille, 2018),

the 13th Financial Risks International Forum (Paris, 2020), International Conference on

Fintech & Financial Data Science (University College Dublin UCD, Ireland, 2019) and

the Fixed Income leaders Summit 2020
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Abstract

Using a large database of US institutional investors’ trades in the equity market,

this paper explores the effect of simultaneous executions on trading costs. We design a

Bayesian network modelling the inter-dependencies between investors’ transaction costs,

stock characteristics (bid-ask spread, turnover, and volatility), meta-order attributes (side

and size of the trade), and market pressure during execution, measured by the net order

flow imbalance of investors meta-orders. Unlike standard machine learning algorithms,

Bayesian networks are able to account for explicit inter-dependencies between variables.

They also prove to be robust to missing values, as they are able to restore their most

probable value given the state of the world. Order flow imbalance being only partially

observable (on a subset of trades or with a delay), we show how to design a Bayesian

network to infer its distribution and how to use this information to estimate transaction

costs. Our model provides better predictions than standard (OLS) models. The forecasting

error is smaller and decreases with the investors’ order size, as large orders are more

informative on the aggregate order flow imbalance (R2 increases out-of-sample from -

0.17% to 2.39% for the smallest to the largest decile of order size). Finally, we show

that the accuracy of transaction costs forecasts depends heavily on stock volatility, with a

coefficient of 0.78.

Keywords: Trading Costs, Liquidity, Crowding, Bayesian Networks.

2.1 Introduction

Transaction costs became of primary importance after the financial crisis. On the

one hand, investment banks turned to more standardized products, switching from a high

margin, inventory driven business to a low margin, flow business, where transactions costs

have to be minimized. On the other hand, the asset management industry concentrated

(Haldane et al., 2014). A common practice has been to organize the execution of large

orders around one well-structured dealing desk. In 2007, the first Markets in Financial
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Instruments European directive (MiFID) introduced the concept of “best execution” as a

new requirement for market participants. The European best practices, including among

others execution reviews, transaction costs analysis, and adequate split of large orders,

have spread overseas in this globalized industry.

In this paper we use a unique dataset of institutional investors trades: the ANcerno

database, containing a large sample of asset managers meta-orders on the US markets

(Angel et al., 2015, Pagano, 2008, Briere et al., 2019). While most other databases con-

tain the meta-orders of only one asset manager, ANcerno records roughly 10% of total

institutional investors activity and 8% of total daily traded volume. Because of this speci-

ficity, it is possible to estimate the “imbalance of meta-orders”, i.e. the aggregated net

order flow traded by investors, each day on each stock. This variable plays a role of pri-

mary importance in the transaction costs (Capponi and Cont, 2019, Bucci et al., 2018).

Transaction costs tend to be large when you trade in the same direction as your peers,

while you can even have a price improvement (i.e. obtain an average price that is lower

than your decision price) if you are almost alone in front of the majority of agents trading

that day. Stated differently, you pay to consume liquidity when you are part of the crowd,

executing in the same direction as the market, and you are rewarded to provide liquidity

to the crowd when you are executing in the opposite direction of the market.

The specificity of this “imbalance” variable is that it cannot be observed by mar-

ket participants in real-time. Brokers and market makers can have a broad view of the

imbalance of their clients’ flows and can provide this information to the rest of market

participants with a delay, while asset management dealing desks do only observe their

own instructions. Therefore, the imbalance is a “latent variable” in the sense of Bayesian

modelling. It is linked to some observable explanatory variables and it conditions the

transaction costs at the same time. For instance: conditionally to the fact that the investor

trades a buy meta-order (rather than a sell one), the imbalance is more likely to be large

and positive. This dependence can be inferred using the Bayes’ rule.

In this paper, we show how to use a specific model belonging to the large toolbox

provided by machine learning: the Bayesian network, adapted to this kind of conditioning,

to predict transaction costs, taking into account market information and trade characteris-
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tics. This class of models has been created in the golden age of machine learning (Jordan,

1998); it is also known as graphical models and has been recently used to model analysts

predictions (Bew et al., 2018). Such models have two very interesting characteristics.

First, they are able to handle missing data. Second, they can infer the distribution of la-

tent variables given the knowledge of other ones. In our case, a model fitted on ANcerno

data can be used to forecast transaction costs when the imbalance is no longer observable.

In practice, our model could be fitted on data provided ex-post by brokers1. Afterwards,

given other explanatory variables and the observed transaction costs, a Bayesian network

can infer the expected distribution of the imbalance on a given day. This is a natural

feature of the Bayes’ rule: once the joint distribution of a set of variables is known, it is

possible to obtain the expected value of any subset of other variables given the observa-

tions.

The goal of this paper is to show how Bayesian networks can be used to model the

relationship between transaction costs and stock characteristics (bid-ask spread, average

turnover, and volatility), meta-order attributes (side and size of the trade), and market

pressure (net order flow imbalance). This last variable will be considered as latent because

it is only partially observable by investors (typically with a delay, or in real-time but only

on the investors’ own trades). In practice, a possible way to implement our approach

would probably be to implement a learning transfer: first, learn the graphical model on

ANcerno or a similar database provided by brokers, then switch to a database in which

the imbalance can not be observed.

We find that institutional investors’ daily order flow imbalance is a good predictor

of transaction costs. Interestingly, because investors’ trading tends to be crowded in one

direction, and given the fund manager’s knowledge of its own meta-order, he can infer

the aggregate order flow of the market that day, to better forecast his trading costs. Stated

differently, a fund manager could update his beliefs on order flow imbalance distribution

of the day, after observing his own trading decision (side and size of his order). We find

that his estimation is more accurate when his executed meta-order is large. Besides, we

1Brokers, exchanges, and custodians are selling the delayed information on the flows they saw the pre-
vious day or week. This Bayesian modelling approach is perfectly suited to this kind of partial information.
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disclose evidence that a sell order is more informative on imbalance distribution than a

buy order, probably because a crowded selling context is more informative about specific

market conditions than a crowded buying context. We note that when an asset manager

decides to sell a stock with a high participation rate, he could expect a ”rushing towards

the exit door” behaviour from his peers and assign a high probability for strong negative

imbalance. Our finding confirms that the dominating variable for implementation shortfall

forecast is indeed the order flow imbalance and not the order size. Moreover, the accu-

racy of transaction costs and market impact estimates are generally very low (Bacry et al.,

2015). Practitioners have long suspected that the difficulty of estimating orders transac-

tion costs is due to the variance of price innovations that is hardly predictable. Thanks

to our Bayesian framework, we prove that this is true. The Bayesian network explicitly

models the dependencies between the variance of the residuals and the rest of the network

nodes. We find that the dominant variable is, indeed, the price volatility with coefficient

0.78, while other nodes’ contribution to the variance is insignificant. This allows an in-

vestor to assess how confident he could be on each prediction given his meta-order and

stock characteristics. Finally, we show that using partially observable order imbalance

has value. The Bayesian network provides a better prediction of transaction costs after

capturing the conditional dependencies between the nodes and the order flow imbalance

than when this information is not used at all (R2 increase out-of-sample from 0.38% to

0.50%). Besides, the estimates get more accurate when the order size is large (R2 is 2.39%

for the tenth decile of order size compared to -0.17% for the first decile). These results

can explain the recent concentration of institutional investors executions on a few dealing

desks. By executing the orders of a large and representative set of institutional investors,

these dealing desks would have a better grasp of the aggregate order flow imbalance of

the day. This information of paramount importance could then be either used for predict-

ing the transaction cost more accurately or to design a better-optimized execution scheme

taking the aggregated market pressure into account.

The structure of this paper is as follows: Section 2 reviews the existing literature on

transaction costs modelling and Bayesian networks. Section 3 presents the data. Section 4

provides empirical evidence of the influence of investors’ trade size and order imbalance
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on transaction costs. Section 5 describes the Bayesian network method and its application

to transaction costs modelling. Section 6 concludes.

2.2 Related literature

This paper takes place at the crossing of two fields: the transaction costs and market

impact literature on the one hand, and Bayesian modelling on the other hand.

Transaction costs and market impact. Market impact attracted the attention of aca-

demics following two papers: economists have been initiated to this crucial concept

by Kyle’s theoretical paper (1985), while researchers in quantitative finance have been

largely influenced by Almgren and Chriss, 2001 empirical results. Kyle, 1985 has shown

how a market maker should strategically ask informed traders (i.e. asset managers) for a

cost to compensate for the difficulty to assess the adverse selection she is exposed to in a

noisy environment. This is typically what we observe empirically. Asset managers have

to pay for liquidity demand while they can be rewarded for liquidity provision. Other

market participants react to the aggregate offer or demand. This aggregate is exactly

what we define as the imbalance of meta-orders for a given day. Kyle’s essential result

is that given a linear market-maker pricing rule and within a Gaussian framework, the

transaction costs paid by the aggregation of investors are linear in the size of the aggre-

gated meta-order. Kyle’s lambda, measuring the sensitivity of price impact with respect

to volume flow, is a traditional measure of liquidity. This theoretical framework has been

sophisticated recently, extending Kyle’s game theoretical framework to continuous time,

non-Gaussian behaviors, and allowing risk aversion in market makers’ strategy (Cetin and

Rogers, 2007). It is now understood that the informed trader’s optimal strategy is to try to

hide its meta-order in the noise, while the market maker has to slowly digest orders flow

to try to extract the information it contains and ask for the corresponding price. How-

ever, the resulting market impact is not necessarily linear. Empirical studies that followed

showed that in practice market impact is more square root than linear in the size of the

order (Collins and Fabozzi, 1991, Bouchard et al., 2011 or Robert et al., 2012).
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Almgren and Chriss, 2001 seminal paper showed how to split an order optimally

to minimize execution cost, making the assumption of concave transient market impact.

Bouchard et al., 2011 derived an optimal control scheme to mitigate this cost for large

meta-orders. This literature is of primary importance since it answers the regulatory re-

quirements around “proof of best execution” and provides a baseline framework to asset

managers and investment banks to improve their best practices and metrics for execution.

With the popularity of factor investing, the specific question of the implementation costs

of investment strategies following an index or a systematic active strategy has been raised

by regulators and market participants. Frazzini et al., 2012, Novy-Marx and Velikov,

2015, or Briere et al., 2019 are attempting to answer the question of the potential max-

imum capacity of a trading strategy, by modelling transaction costs for large order sizes

and estimating the break-even capacity of factor-driven investment strategies.

Bayesian networks. Machine learning is an extension of statistical learning, born with

the seminal paper of Vapnik and Chervonenkis, 1971. Following the universal approxima-

tion theorem for non-linear Perceptrons (a specific class of neural networks) with at least

one hidden layer (Hornik et al., 1989), statisticians and mathematicians started investi-

gating approximation schemes based on the minimization of a possibly non-convex loss

function, generally using stochastic gradient descent (Amari, 1993) to reach the global

minimum while having good chances to escape from the local minima. Successes in

Bayesian statistics focused on coupling a prior and a posterior distribution via the con-

cept of the conjugate (Vila et al., 2000), opened the door to a mix of neural networks and

Bayesian statistics, based on maximum likelihood estimations. Bayesian networks were

born (see the seminal paper by Pearl, 1986). Bayesian networks are convenient tools for

modelling large multivariate probability models and for making inferences. A Bayesian

network combines observable explanatory variables with hidden latent variables in an

intuitive, graphical representation.

In terms of applications, Bayesian networks have first been used for medical diag-

nosis, since they have been perceived as a natural extension of expert systems. Expert

systems emerged with the first wave of artificial intelligence tools: Deterministic decision
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Fig. 2.1. A simple graphical model for trading costs modelling

bid-
ask
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tility

trading
costs

trees. Adding some probabilistic properties to these trees and reshaping them into graphs

is another way to see the emergence of Bayesian networks. These models have also been

used with success in troubleshooting of computed components, from printers (Skaanning

et al., 2000) to computer networks (Lauritzen, 2003). They played an important role in

the automation of problem-solving for computers related questions. Recently, they have

been applied in finance. Bew et al., 2018 use Bayesian networks to combine analysts’

recommendations to improve asset management decisions.

These models can very naturally capture the joint distribution of different variables,

specified via a graphical model where nodes represent variables and arrows model the

probabilistic dependencies. The very simple example of Figure 2.1 specifies that the stock

bid-ask spread and its volatility both influence trading costs, while at the same time, the

stock volatility has an influence on the bid-ask spread (Laruelle and Lehalle, 2018). The

translation in a probabilistic language of this graph is the following. The trading costs

TC, follows a law L which parameters ΘTC are functions of the bid-ask spread ψ and of

the volatility σ : TC ∼L (ΘTC(ψ,σ)). The parameters of the law of the bid-ask spread

are seen as a random variable, itself a function of the volatility: ψ ∼L (Θψ(σ)).

More details on the mechanisms of Bayesian networks are given in Section 5. At this

stage, it is enough to say that latent variables can be added to the graph. An intermedi-

ate variable that is not always observable, but acting as a probabilistic intermediary (i.e.

a conditioning variable) between observed variables, is enough to structure a Bayesian

model. In the simple example of Figure 2.1, we can observe or not the bid-ask spread.

When it is not observed, the Bayesian network will use its law L (Θψ(σ)) to infer its
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most probable value, conditionally to the observed volatility. To do that, the model uses

Bayes’ conditional probability chain rule. In our analysis, we always observe the bid-ask

spread, but the net order flow imbalance of institutional investors’ meta-orders is usually

not known. This paper proposes a Bayesian network to model and forecast transaction

costs with a graphical model where the imbalance of institutional meta-orders is a latent

variable.

To sum up, our paper makes use of Bayesian networks to model the expected trans-

action costs of institutional investors as a function of the characteristics of the meta-

order (essentially its size and direction), the market environment (stock volatility, bid-ask

spread, and order flow imbalance). We contribute to the current literature on trading costs

estimation by proposing a methodology to account for latent variables, in our case, order

flow imbalance. This variable can only be partially observed with a delay or on a subset

of all trades, but it is essential to structure the model. Our model has numerous poten-

tial applications and could be used to forecast trading costs, estimate the capacity of a

strategy, or decide on the optimal trading execution.

2.3 ANcerno database

We obtain institutional trading data for the period from January 1st 2010 to Septem-

ber 30th 2011 from ANcerno Ltd. ANcerno, formerly Abel Noser Corporation is one

of the leading consulting companies in providing Transaction Cost Analysis (TCA) in

the US. It provides equity trading costs analysis for more than 500 global institutional in-

vestors, including pension funds, insurance companies, and asset managers. This database

was largely used by academics to investigate institutional investors trading behaviour (see

for example Anand et al., 2011, Puckett and Yan, 2011 and Eisele et al., 2017). ANcerno

clients send their equity trades in order to monitor their execution quality. ANcerno sys-

tematically reports all equity trades it receives. Therefore, costs estimated on ANcerno

are representative of what is effectively paid by institutional investors. Besides, previ-

ous researches have shown that ANcerno is free from any survivorship or backfill bias

(see Puckett and Yan, 2011), constitute approximately 8% of the total CRSP daily dollar
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volume ( Anand et al., 2013), and 10% of total institutional activity (Puckett and Yan,

2011).

Hence, in our study, we use trade-level data from ANcerno on the historical compo-

sition of S&P 500 index. For each execution, ANcerno reports information on the CUSIP

and ticker of the stock, the execution time at minute precision, the execution date, execu-

tion price, side (i.e., buy or sell), number of shares traded, commissions paid, whether the

trade is part of a larger order, and several trade-level benchmarks to evaluate the quality

of the execution. In our sample, we have execution data of 285 institutions (i.e., AN-

cerno clients). They could be either an individual mutual fund, a group of funds, or a

fund manager subscribing to Abel Noser’s analytical service. Each institution has one or

several accounts. In our sample, we successfully track the activity of almost 44 thousand

accounts, responsible for 3.9 trillion dollars of transactions, and using the service of 680

different brokerage firms. Compared to the market volume reported in CRSP, ANcerno

accounts for an average of 4.5% over the whole period. The traded amount reported in

ANcerno is over a trillion dollars every year and is, therefore, large enough to be relevant.

We complement ANcerno database with daily bid-ask spread obtained from Reuters Tick

History (RTH).

Consistent with machine learning best practices, we split our sample into a training

set accounting for 70% of the meta-orders and a testing set accounting for the remaining

30%. The training-set is chosen randomly from meta-orders in our sample such as the

number of buy orders and sell orders are equal. This procedure is very important for

our study in order to estimate a non-biased net order flow imbalance. In the case of

an unbalanced number of buy and sell orders in the training-set, the prior distribution

of order flow imbalance will be artificially skewed toward positive values if the number

of buy orders is higher or toward negative values otherwise. The training set is used to

compute the results of sections 4 and 5, while the testing set is used for the out-of-sample

predictions in section 6.
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2.4 Transaction cost modelling

We measure trading costs with the traditional measure of implementation shortfall

(Perold, 1988). This is the difference between a theoretical or benchmark price and the

actual traded price effectively paid for the execution, in percent of the benchmark price.

In our study, we define the reference price as the last visible price before the start of

the execution (arrival price). The implementation shortfall measures the total amount of

slippage a strategy might experience from its theoretical returns. In essence, our cost

estimate measures how much of the theoretical returns of a strategy can be achieved in

practice.

For a parent-ticket m of size Qk(m) split into Ntrades child tickets 2 of size vk,m(i)

executed at date d in the direction sk(m), the implementation shortfall is calculated as

follows:

ISk(m,d) =
sk(m)

Pk(0)

(
Ntrades

∑
i=1

vk,m(i)
Qk(m)

×Pk(i)−Pref
k

)
(2.1)

where Pref
k = Pk(0) is the reference price (in our case, the arrival price as provided by

ANcerno). In this section, we investigate the effect of order size and order flow imbalance

on the implementation shortfall of investors transactions.

2.4.1 Order size

Kyle, 1985 introduced the concept that trades by a market participant may have an

impact on the market price. Market impact is a direct consequence of the order size

effect. A large meta-order may move the price in an unfavourable direction for the trader,

resulting in a higher implementation shortfall. The execution cost is then increasing with

order size. A series of empirical studies followed Kyle’s theoretical work to confirm

the existence of order size effect (Torre and Ferrari, 1999, Moro et al., 2009, Gomes

and Waelbroeck, 2015, Bacry et al., 2015, Briere et al., 2019). To illustrate this effect,

we regroup ANcerno tickets in 100 bins based on participation rate Q/ADV and plot in

Figure 2.2 the average implementation shortfall scaled by the price volatility of the tickets
2Orders in ANcerno (parent tickets) are split within the execution period into smaller orders (child

tickets). For each child ticket, ANcerno reports the executed volume, the price and time of execution.
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in each bin. The scaling with stock’s price volatility makes estimates of implementation

shortfall comparable through time and across the universe of stocks. Otherwise, we can

not compute the average on each bin as the effect of the participation rate is not the same

for large bid-ask spread stocks as those with small bid-ask spreads. ANcerno tickets

show a concave relation between the implementation shortfall and order size relative to

daily traded volume. We observe a sharp increase in the costs from 0 to 0.2 points of

price volatility when order size increases from 0.01% to 2% of the average daily volume.

The slope decays afterward. For instance, a ticket with 14% participation rate, costs on

average 0.4 points of volatility. A power-law function captures well the dependence of

orders trading costs to order size.

Fig. 2.2. Order size effect on trading costs

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011. We split our sample into 100 bins based on
meta-order participation rate Qk(m)/ADVk(d) and plots the average implementation
shortfall scaled by stock’s volatility ISk/σk for each bin (blue dots)

2.4.2 Order flow imbalance

While most trading cost models emphasize on the historical dependence of market

impact on stock liquidity and order size, It is only recently that order flow imbalance
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has been recognized as a significant factor in explaining the magnitude of orders transac-

tion costs. Using ANcerno database, Capponi and Cont, 2019, compared the explanatory

power of order size to the effect of a proxy of market pressure ”Order Flow Imbalance”

on transaction costs and came to the conclusion that investors should focus on modelling

the aggregate dynamics of market pressure during execution period, rather than focus-

ing on optimizing market impact at a trade-by-trade level. Moreover, market pressure is

contributed by all market participants at the trading session. But the traders who are re-

sponsible for executing institutional investors’ orders contribute the most to this pressure

and should be specifically taken into account in price movement forecast and transaction

costs modelling. These market participants have the same profile as the informed/insider

trader introduced by Kyle in 1985. By the end of the trading session, the private infor-

mation, that was once detained by the insider, spread to the market and get incorporated

into the price level. Bucci et al., 2018 argue that price market impact is a function of the

aggregate net volume, that for shared indiscriminately between all market participants.

Consequently, a small-sized order would cost nearly the same implementation shortfall as

a much larger order if executed in the same direction during the same time frame.

We introduce the Net Order Flow Imbalance, to investigate the impact of institutional

investors synchronous trading on the implementation shortfall. For a meta-order m exe-

cuted at date d, the net investors order flow imbalance is defined as the ratio of net volume

executed by the other investors at day d over their total traded volume:

Imbk(m,d) =
∑m′ 6=m Qk(m′,d).sk(m′,d)

∑m′ 6=m Qk(m′,d)
(2.2)

Where k designs the stock, sk(m′,d) is the side of the meta-order m′ (i.e. 1 for buy

orders and -1 for sell orders) and Qk(m′,d) its size.

Figure 2.3 illustrates the dependence of the implementation shortfall to institutional

investors trading imbalance. First, we note that the relationship is linear. The stronger

the absolute imbalance, the higher the absolute value of price deviation during the ex-

ecution. But depending on whether the trade is in the same direction as the net order

flow imbalance, thus contributes to the existing market pressure, or on the opposite side,
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Fig. 2.3. Net order flow imbalance effect on trading costs

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011. We split our sample into 100 bins based on net
order flow imbalance multiplied by the side of the trade and plots the average
implementation shortfall scaled by stock’s volatility ISk/σk for each bin (blue dots)

and provides liquidity to the market, one could expect either to pay a significant trading

cost up to 0.4 points of price volatility when investors are trading synchronously toward

the same directions (Imbk(m,d) = 1) or benefit from a price improvement of 0.3 points

of volatility when the trader is almost alone in front of his competitors’ aggregate flow

(Imbk(m,d) =−1). Also worth noting that the implementation shortfall at zero imbalance

is slightly positive. At neutral market pressure, the investors pay a positive transaction cost

depending on stock traded and meta-order size.

2.4.3 Joint effect of order size and order flow imbalance

The results in subsection 2.4.1 and 2.4.2 show that the implementation shortfall

depends on both the size of the executed order and market pressure during the execu-

tion period. Market pressure being approximated by investors net order flow imbalance.

To disentangle the two effects, we split our sample on 3 distinct buckets with respect

to meta-order signed imbalance (sk(m) · Imbk(m,d)) 30% and 70% quantiles. Within

each bucket, we sort meta-orders into 100 bins based on meta-order participation rate
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Fig. 2.4. Joint effect of order size and net order flow imbalance on trading costs

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011. First, We split our sample on 3 buckets w.r.t
meta-order signed imbalance (sk(m) · Imbk(m,d)) 30% and 70% quantiles. We sort
meta-orders within each bucket into 100 bins based on meta-order participation rate
(Qk(m)/ADVk(d)) and plots the average implementation shortfall scaled by stock’s
volatility ISk/σk for each of the bins.

(Qk(m)/ADVk(d)) and compute the average implementation shortfall scaled by stock’s

volatility for each of the bins. Figure 2.4 plots the result, where the blue, line shows or-

der size effect for meta-orders executed against high market pressure (signed imbalance

is lower than the 30% quantile). The orange line illustrates the effect for meta-orders

executed under standard market pressure (signed imbalance between the 30% and 70%

quantiles). Whereas the green line shows the result for orders executed in the same di-

rection as the market (signed imbalance larger than the 70% quantile). We observe the

impact of meta-order size is persistent in the 3 buckets and the power-law remains valid

even after conditioning on net order flow imbalance. The linear effect of the signed im-

balance is visible in the difference of transaction cost level between the 3 buckets. This

proves that these two explanatory factors do not cancel one another. We also note that

most meta-orders executed against investors’ net order flow benefit from a price improve-

ment between the moment the execution starts and the moment it ends. During strongly
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unbalanced markets, the provider of liquidity is rewarded with a better execution price.

However, for larger meta-orders (Qk(m)/ADVk(d) = 23%) the market impact of the trade

prevail and the trader pays on average a positive transaction cost. The opposite is also

true, when traders seek liquidity in the same direction as the remainder of institutional

investors, the trading cost gets more expensive than usual.

To further explore the joint effect of order size and net order flow imbalance on the

implementation shortfall, we run the following step-wise multivariate regression. First,

we perform the regression of order implementation shortfall on stock bid-ask spread and

the square root of the order participation rate scale by stock volatility as described in

equation (2.3). Then, a regression of the implementation shortfall on the bid-ask spread

and the signed imbalance, also scaled by stock volatility (equation 2.4). Finally, we gather

the 3 factors on the same regression as in equation (2.5).

ISk(m,d) = α ψk(d)+β σ
GK
k (d)

√
Qk(m)

ADVk(d)
+ εk(m,d) (2.3)

ISk(m,d) = α ψk(d)+ γ σ
GK
k (d) sk(m) Imbk(m,d)+ εk(m,d) (2.4)

ISk(m,d) = α ψk(d)+β σ
GK
k (d)

√
Qk(m)

ADVk(d)
+ γ σ

GK
k (d) sk(m) Imbk(m,d)+ εk(m,d)

(2.5)

where ISk(m,d) is the implementation shortfall of meta-order m submitted on stock k at

day d. ψk(d) is the quoted intraday bid-ask spread of stock k averaged on the month.

σGK
k (d) is the Garman and Klass, 1980 intraday volatility of stock k estimated on a 12

month rolling window. Qk(m) and sk(m) are respectively size and side (Buy/Sell) of the

order. ADVk(d) is the daily traded volume averaged on a 12 months rolling window,

and Qk(m)/ADVk(d) is the participation rate. Imbk(m,d) is the net investors order flow

imbalance estimate for order m at day d. Finally, α , β and γ are model parameters and

εk(m,d) is the respective error term.
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Table 2.1. Transaction cost model

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011 on the S&P 500 historical components. ψk(d) is
the quoted intraday bid-ask spread of stock k averaged on the month, obtained from RTH
database. σGK

k (d) and ADVk(d) are respectively the Garman Klass intraday volatility
and the average daily volume of stock k estimated on a 12 month rolling window. Qk(m)
and sk(m) are respectively size and side (Buy/Sell) of the order. Imbk(m,d) is the net
order flow imbalance for order m at day d.

Model Dependent variable: ISk(m,d)

ψk(d) 0.399*** 0.708*** 0.180***
(0.032) ( 0.028) (0.032)

σGK
k (d)

√
Qk(m)/ADVk(d) 0.951*** 0.712***

(0.021) (0.021)
σGK

k (d) sk(m) Imbk(m,d) 0.234*** 0.224***
(0.002) (0.002)

Observations 7421548 7421548 7421548
R2 0.005 0.016 0.017
Adjusted R2 0.005 0.016 0.017
Residual Std. Error 0.017 0.017 0.017
F Statistic 1892.157 5993.682 4391.073
AIC -3964520 -3972637 -3973801

Note: *p < 0.1; **p < 0.05; ***p < 0.01

The results of these three regressions are presented in Table 2.1. In the first regres-

sion the coefficient of bid-ask spread and order size term
(

σGK
k (d)

√
Qk(m)/ADVk(d)

)
are respectively 0.4 and 0.95, both statistically significant at the 1% level. Consistently

with Briere et al., 2019, we find that for small orders, institutional investors pay only 0.4

times the bid-ask spread. In the second regression, we replace the order size term with the

market pressure term. We notice that the coefficient of the bid-ask spread increases (from

0.4 to 0.7) and its confidence interval becomes tighter (lower standard deviation 0.028 vs

0.032). The determination coefficient for the second regression is also much higher (1.6%

vs 0.5%). Finally, when we put all explanatory variables together, we find that the coeffi-

cient of the order imbalance does not change (0.22-0.23) while both order size term and

bid-ask spread have much lower parameters (0.18 for the bid-ask spread and 0.71 for the
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order size term) compared to the first two models. Besides, the determination coefficient

of the second and third regressions are comparable. The net order flow imbalance seems

to be a much better predictor of expected implementation shortfall than the size of the

order. Although, all coefficients are statistically significant at the 1% level.

2.5 Bayesian network modelling with net order flow im-

balance as latent variable

Institutional investors’ net order flow imbalance is a key factor in the estimation of

meta-orders transaction costs. However, this variable is only observable with a delay,

for example through brokers or custodians’ reports, or on a subset of trades only (the in-

vestor’s own trades). Thus, it can not be used for production purposes. To remedy this

issue, we propose a Bayesian network to incorporate all information we could get before

the execution of the meta-order, and update our beliefs on the probabilistic distribution of

the latent variable. We then use the most probable value of the net order flow imbalance

to estimate the meta-order transaction cost. One of the interesting features of Bayesian

networks is that they can be explored in both directions, thanks to the Bayes’ rule. There-

fore, we can give an estimate of the latent variables, by probabilistic inference, before and

after the variable of interest is observed. In the context of this study, this means that:

• given the characteristics of the meta-order (side and size of the trade) and stock

attributes (bid-ask spread, average daily traded volume and price volatility), we can

compute a first estimate of the imbalance and forecast the transaction costs that

should be paid by the investor.

• Once we get the effectively paid trading cost, we can recover a more accurate es-

timate of the distribution of investors’ net order flow of the day, and for example,

incorporate it in the estimation of order flow imbalance of the following day.
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2.5.1 Bayesian inference

The main difference between the frequentist approach and the Bayesian approach is

that in the latter, the parameters of the models are no longer unknown constants that need

to be estimated, but random variables which parameters have to be estimated. The statis-

tician has the possibility to incorporate his prior belief on the probabilistic distribution

of the variable and update his belief step by step as soon as new data becomes available.

From one step to the other: the former ”posterior distribution” is used as a prior for the

next step estimate.

For instance, if y stands for the unknown random variable, x for the observed data,

and P(y) for the prior. The posterior distribution P(y|x) is obtained as the multiplication

of the prior P(y) with the likelihood P(x|y) of observing the data, scaled by P(x). The

definition of conditional probabilities applied on this procedure reads:

P(y|x) = P(y)P(x|y)
P(x)

∝ P(y)P(x|y). (2.6)

Figure 2.5 shows how to estimate the coefficients of the Bayesian linear regression

specified in equation (2.5). First, we start by incorporating our prior beliefs, if any, on the

distribution of the parameters θ = (α,β ,γ)T . Without any belief, a good choice is to take

a non-informative prior like the normal distribution N(0,1). The best initialization for

priors is hence a law close to the empirical repartition function of the considered variable.

The variable of interest ISk(m,d) follows a normal distribution centered at the estimated

value ŷ = Xθ and has variance σ2
err of the error term εk(m,d). σ2

err requires a non negative

prior distribution, such as the positive part of a Gaussian (i.e. HalfNormal) or the positive

part of a Cauchy (i.e. HalfCauchy). The Bayesian setup gives a direct interpretation

of the results: The mean of the posterior distribution is the most probable value of the

parameters θ , and the 5% confidence interval is limited by the 2.5% and 97.5% quantiles

of the posterior distribution.

MCMC (Markov Chain Monte Carlo, see Hastings, 1970 for one of the first ref-

erences) methods offers an easy way to sample from the posterior, especially when the

posterior does not obey a well-known expression or when we know the expression has
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Fig. 2.5. Bayesian inference of a linear regression

Blue rectangle represent observed variables. Circles are the parameters that need to be
calibrated. Each have a prior distributions detailed in white rectangle.
Xθ = α ψk(d)+β σGK

k (d)
√

Qk(m)/ADVk(d)+ γ σGK
k (d) · sk(m) · Imbk(m,d)

σGK
k (d)×√

Qk(m)
ADVk(d)

ψk(d)
σGK

k (d)×
sk(m)×

Imbk(m,d)

ISk(m,d)

α β γ σerr

Prior:
N(0,1)

Prior:
Hal f N(1)

Prior:
N(Xθ ,σerr)

a multiplicative term. It is very convenient for the Bayesian approach, where the pos-

terior distribution is proportional to the multiplication of the prior and the likelihood.

MCMC algorithms make computations tractable for parametric models. The intuition be-

hind MCMC is to define a Markov Chain (x0,x1, . . .) on the support of x, such that when

the size n of this chain goes to infinity, the new drawn point xn is distributed accordingly

to the law Px. The most famous algorithm to generate Markov Chains having this very

nice property is the Hasting-Metropolis one, explained in Appendix F, that we use in this

study, and the Gibbs sampler3. The marginal distribution of regression coefficients of the

calibrated model is shown in the right panel of Table 2.2, while the result of the OLS

regression is in the left panel. As expected from Bayesian models when the sample size

is large, we end up with the same results. Beside, when the priors are Gaussian, the max-

imum a posteriori of the parameters is equivalent to a ridge estimate with a quadratic reg-

ularization
(
Eθ |X ,Y [θ ] = argmaxθ P(θ |X ,Y ) = argminθ ||Y −Xθ ||2+σ2

err||θ ||2
)
. This

formula, similar to the one of Ridge regression (see Hoerl and Kennard, 1970), makes

3We use the PyMC3 python package implementation of Hasting-Metropolis algorithm described in Sal-
vatier, Fonnesbeck, et al., 2016 with a large number of iterations Niter = 10000
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the Bayesian regression more robust to outliers than OLS. It is the case for example for

the order size term σGK
k (d)

√
Qk(m)/ADVk(d) distribution, which explain the minor dif-

ference in coefficient estimate (0.71 vs 0.69). Nevertheless both the OLS and Bayesian

regressions give the same economic and statistical conclusions despite having different

statistical assumptions.

Table 2.2. OLS regression vs Bayesian regression

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011 on the S&P 500 historical components. ψk(d) is
the quoted intraday bid-ask spread of stock k averaged on the month, obtained from RTH
database. σGK

k (d) and ADVk(d) are respectively the Garman Klass intraday volatility
and the average daily volume of stock k estimated on a 12 month rolling window. Qk(m)
and sk(m) are respectively size and side (Buy/Sell) of the order. Imbk(m,d) is the net
order flow imbalance for order m at day d.

OLS Regression Bayesian Regression
coef std

err
Q

2.5%
Q

97.5%
coef std

err
Q

2.5%
Q

97.5%

ψk(d) 0.18 0.03 0.12 0.24 0.18 0.03 0.12 0.24
σGK

k (d)
√

Qk(m)
ADVk(d)

0.71 0.02 0.67 0.75 0.69 0.02 0.65 0.73
σGK

k (d)sk(m)Imbk(m,d) 0.22 0.00 0.22 0.23 0.22 0.00 0.22 0.23
RMSE (%) 1.66 1.66

R2 (%) 1.77 1.77

2.5.2 Bayesian network modelling

Most of the OLS assumptions are violated. As shown in Appendix E, the marginal

distribution of trading costs has a peaky shape, with fat tails (excess-kurtosis of 23.46).

The assumption of homoscedasticity is also violated. The variance of the error term is

hardly constant across orders. Forecasting errors are smaller for small orders (imple-

mented in a few minutes) compared to large ones (split over days) that got exposed for a

longer period to market volatility. Finally, it is difficult to assume that the observations

are independent of one on-other. Meta-orders on the same stock, whatever the execution

day, share some common variance related to the stock characteristics. Similarly, orders

executed at the same trading session on different stocks face the same market conditions,
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and thus cannot be considered independent of one another.

In addition, Bayesian Networks have the advantage of not relying on Normal error

distributions (Zuo and Kita, 2012), as do most other machine learning algorithms. Fur-

thermore, Bayesian networks have the advantage of giving a human-readable description

of dependencies between considered variables, whereas other more complex models, such

as Neural Networks, suffer from being considered as ”black box” models.

The structure of our Bayesian network

Our goal is to estimate the Implementation Shortfall of an order. We would like the

Bayesian network takes into account:

• Attributes of the traded stock, such as average bid-ask spread, price volatility and

average turnover;

• Characteristics of the meta-order, mainly order size and side of the trade (Buy/

Sell);

• And the level of crowding during the execution: the net order flow of large institu-

tional firms.

Figure 2.6 shows the Bayesian network we engineered. We distinguish 3 key depen-

dencies. First, the bid-ask spread depends on the level of stock volatility. Second, the

marginal probability distribution of order flow imbalance is a function of the meta-order

size and side. Finally, the implementation shortfall is a function of all network nodes. In

the following section, we detail the nature of these dependencies and we set the priors for

each group of variable separately.

Bid-ask spread dependencies

The relation between stock volatility and the bid-ask spread is well documented.

Theoretically, it is justified by Wyart et al., 2008 that, deriving the P&L of traders submit-

ting market orders and those submitting limit orders, an equilibrium price is only achiev-

able if the bid-ask spread is proportional to price volatility (i.e. ψk(d) ∝ σ
GK
k (d)). In the
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Fig. 2.6. Bayesian network for transaction costs modelling

σGK
k (d)ψk(d)

Qk(m)
ADVk(d)

sk(m)

αImb βImb

Imbk(m,d)

bµ

ISk(m,d)

same fashion, Dayri and Rosenbaum, 2015 study the optimal tick size, and find that the

bid-ask spread that the market would prefer to pay if not constraint by the tick size veri-

fies ψk(d)
2 ∝

σGK
k (d)√

M
. The rational is that market makers, setting the best limits of the order

book, accept to provide tight bid-ask spreads not only when the volatility (i.e. the risk

of a given inventory level) is low, but also when they have more opportunities within the

day to unwind their position. The relation between the bid-ask spread and the volatility is

confirmed empirically on our data, as illustrated in Figure 2.11 of Appendix B.

Consistent with the literature of stochastic models for volatility, we set the prior of

stocks volatility to a log normal distribution σGK
k (d)) ∼ LogNormal. Consequently, the

bid-ask spread should follow a log normal distribution too, and the conditional probability

of bid-ask spread given price volatility is detailed in equation (3.8), where cψσ ,ρψσ ,σψ,σ

are model parameters.

ψk(d)|σGK
k (d)∼ LogNormal

(
cψσ +ρ

ψσ log(σGK
k (d)), σψ,σ

)
(2.7)
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Table 2.3. Bayesian inference: Bid-Ask spread, volatility dependencies

The table summaries the posterior distribution of model parameters described in
equation (2.7). E[X ], std(X), Q2.5% and Q97.5% are respectively the mean, the standard
deviation, the 2.5% and 97.5% quantile of parameters posterior distribution. The results
are obtained from Hasting-Metropolis sampler with Niter = 10000 iterations (PyMC3
implementation). The institutional investors trading data are obtained from ANcerno Ltd
on the period ranging from January 1st , 2010 to September 30th, 2011.

E[X ] Std[X] Q2.5% Q97.5%

cψ,σ -4.137 0.006 -4.150 -4.126
ρψ,σ 0.777 0.001 0.775 0.780
σψ,σ 0.402 0.000 0.401 0.402

Net order flow imbalance dependencies

In this section, we quantify the dependence of net order flow imbalance on the re-

maining variables in the network. Figure 2.7 shows the marginal distribution of the im-

balance depending on the sided of the meta-order. The U-shape of the plot confirms that

institutional investors have indeed correlated executions, and tend to execute the same

stocks in the same directions during the same periods, which intensifies the pressure on

price movements. This correlation in trade execution can be explained by various factors.

Asset managers compete for the same base of customers and can implement similar strate-

gies (Greenwood and Thesmar, 2011, Koch et al., 2016). Thus, they face similar inflows

and outflows, depending on liquidity needs and investment opportunities. Moreover, the

asset management industry is subject to a series of regulatory constraints that can push

funds to buy or sell simultaneously the same kind of assets. We note also, that the U-shape

is decomposed in two skewed distributions depending on the side of the meta-order. So,

given the side of the meta-order of an institutional investor, the remainder of large arbi-

trageurs executions constitute either a positively (for sell) or negatively (for buy) skewed

imbalance distribution. Besides, conditional on the level of a meta-order participation

rate, Figure 2.8 shows that the intensity of absolute net order flow imbalance of investors

meta-orders gets stronger, a confirmation of institutional investors crowding.
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Fig. 2.7. Net order flow imbalance distribution given meta-order side

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011. Given a meta-order m submitted by an
institutional investor, the figure plots the distribution of the net order flow imbalance
generated by the remainder of investors as defined in equation (2.2) given the side sk(m)

Fig. 2.8. Net order flow imbalance as a function of participation rate

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011. We sort meta-orders into 100 bins based on
meta-order participation rate (Qk(m)/ADVk(d)) and plots the average absolute net order
flow imbalance for each of the bins
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The Side takes two values Buy and Sell. It is modelled with a Bernoulli distribution

sk(m) ∼ Bernoulli(pside) of parameter pside =
1
2 . The data shows that a Beta function is

a good approximation of the U-shape for variables defined between [0,1]. After applying

the linear transformation x→ x+1
2 , Beta(α , β ) is a plausible distribution of the transformed

net order flow imbalance. Moreover, the beta distribution have the particularity to produce

different shapes depending on the parameters α and β . It produces a symmetric U-shape

when α = β and (α − 1)(α − 2) > 0, a positive skew when α < β and a negative skew

when α > β .

The probability density function of the transformed order flow imbalance PDFBeta is

given by:

PDFBeta(α,β ) =
xα−1(1− x)β−1

B(α,β )
where B(α,β ) =

Γ(α)Γ(β )

Γ(α +β )
(2.8)

P
(

Imbk(m,d)
∣∣∣sk(m),

Qk(m)

ADVk(d)

)
= B(αImb,βImb) (2.9)

The dependence on the order side and the order participation rate should be taken

into account at the level of the parameters of the Beta function (α , β ).

αImb = cα +ρ
α
s · sk(m)+ρ

α
p · sk(m) · Qk(m)

ADVk(d)
(2.10)

βImb = cβ +ρ
β
s · sk(m)+ρ

β
p · sk(m) · Qk(m)

ADVk(d)
(2.11)

The result of the Bayesian inference of the imbalance dependencies is summarized

in Table 2.4. When sk(m) = 0 and Qk(m)/ADVk(d) = 0, the posterior distribution of net

order flow imbalance is given by B(0.67,0.68) which produces a U-shape. This means

that when the asset manager has no signal or information on price movement, he can only

assume the synchronization of institutional activity. Thus, the symmetric distribution with

higher probability at the extreme values of the imbalance. But once he detains a signal,

since the process leading to generate this signal is independent of the execution process,
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he can use his own meta-order as an observation to update his belief on the distribution of

the expected market pressure. Note also that ρ
β
s and ρ

β
p are very low compared to ρα

s and

ρα
p . This is not an issue, because what determines the strength of the skew for the Beta

function is the difference (β −α) (see Appendix C for Beta function properties).

Table 2.4. Bayesian inference: Net order flow imbalance dependencies

The table summaries the posterior distribution of model parameters described in
equations (2.10) and (2.11). E[X ], std(X), Q2.5% and Q97.5% are respectively the mean,
the standard deviation, the 2.5% and 97.5% quantile of parameters posterior distribution.
The results are obtained from Hasting-Metropolis sampler with Niter = 10000 iterations
(PyMC3 implementation). The institutional investors trading data are obtained from
ANcerno Ltd on the period ranging from January 1st , 2010 to September 30th, 2011.

E[X ] Std[X] Q2.5% Q97.5%

cα 0.666 0.001 0.664 0.667
ρα

s 0.101 0.001 0.099 0.102
ρα

p 0.884 0.021 0.846 0.928
cβ 0.675 0.001 0.673 0.677
ρ

β
s 0.000 0.000 4.2e-08 0.000

ρ
β
p 0.001 0.001 1.4e-07 0.003

To better interpret the results of the table, we plot the posterior distribution of the

net order flow imbalance, given two levels of participation rate (0.1% and 30%) for buy

and sell trades. As expected, we observe that the side of the trade skews the distribu-

tion positively for a buy order and negatively for a sell order. The information of the

meta-order participation rate intensifies the skew and increases the probability of having

a full synchronization of investors executions |Imb|= 1. However, the shape of the dis-

tribution is not symmetrical between buy orders and sell orders. The skew of imbalance

distribution is much stronger for sell orders. This means that when an investor is selling

massively with large Q
ADV , he could expect a high selling pressure from the market due

to investors synchronous inflows and outflow. Because institutional investors are natu-

ral buyers, implementing more long-only strategies than short selling ones, a high selling

pressure corresponds to a ”Rushing toward the exit door” situation. While on the opposite

scenario, a buying order with a high participation rate although informative on the market

does not give as much evidence on market participants’ behaviour.
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Fig. 2.9. Inferred net order flow imbalance given the side and the size of the meta-
order

The figure shows the posterior distribution of net order flow imbalance given the
meta-order characteristics. On the left panel we plots the distribution for buy orders with
two levels of participation rate, blue line corresponds to small orders
Qk(m)/ADVk(d) = 0.1% and orange line for large orders Qk(m)/ADVk(d) = 30%. The
right panel shows the result for sell orders with the same levels of participation rate

Implementation shortfall dependencies

Similarly, we model the implementation shortfall as a function of all the other nodes

of the network. the data shows the historical distribution of implementation shortfall

displays fat tails with pronounced non-Gaussian peaky shape. Thus, a double exponential

(Laplace) probability density is a good prior of IS distribution. The probability density

function (PDF) of Laplace is given by:

ISk(m,d) ∼ Laplace(µ,b), PDFLaplace(x,µ,b) =
1

2b
exp
(
−|x−µ|

b

)
(2.12)

The location parameter µ is given by equation (2.13). As in the linear regression, we

condition the magnitude of transaction cost to the stock bid-ask spread, the participation

rate scaled by the volatility and investors order flow imbalance signed by meta-order side

and scaled by stock volatility. Nevertheless, we don’t assume the square root function for
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meta-order size but a power law highlighted by the exponent γ that we estimate.

(2.13)µ = a0 + aψψk(d) + a
σ , Q

ADV
exp
{

log(σGK
k (d)) + γ log

(
Qk(m)

ADVk(d)

)}
+ as,Imb σ

GK
k (d) sk(m) Imbk(m,d)

Estimation accuracy is function of market condition, speed and duration of the execu-

tion algorithm, the aggressiveness in seeking liquidity. This heteroscedasticity of the im-

plementation shortfall is taken into account by making the standard deviation of Laplace

distribution b depend on stock attributes (spread and volatility), meta-order characteristic

(participation rate) and market condition (absolute imbalance) as follows:

(2.14)

bln = log(b)

= b0 + bψ log(ψk(d)) + bσ log(σGK
k (d)) + b Q

ADV
log
(

Qk(m)

ADVk(d)

)
+ bImb log(|Imbk(m,d)|)

Table 2.5. Bayesian inference: Implementation shortfall dependencies

The table summaries the posterior distribution of model parameters described in
equations (2.13) and (2.14). E[X ], std(X), Q2.5% and Q97.5% are respectively the mean,
the standard deviation, the 2.5% and 97.5% quantile of parameters posterior
distribution.The results are obtained from Hasting-Metropolis sampler with
Niter = 10000 iterations (PyMC3 implementation). The institutional investors trading
data are obtained from ANcerno Ltd on the period ranging from January 1st , 2010 to
September 30th, 2011.

E[X ] Std[X] Q2.5% Q97.5%

a0 0.00 0.00 -0.00 0.00
aψ -0.60 0.37 -1.36 0.12
a

σ , Q
ADV

0.67 0.24 0.26 1.15
γ 0.41 0.11 0.20 0.62
aS,Imb 0.20 0.02 0.17 0.24
b0 0.06 0.17 -0.27 0.40
bψ 0.09 0.03 0.05 0.14
bσ 0.78 0.03 0.71 0.85
b Q

ADV
0.05 0.01 0.04 0.06

bImb 0.01 0.01 -0.01 0.03

Table 2.5 summarizes the first two moments and the 2.5% and 97.5% quantiles of the

posterior distribution of the parameters. First, we note that the exponent of the order size
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term is a bit lower than the square root γ̂ = 0.41, consistent with the previous finding of

Bacry et al., 2015 that used a proprietary database of a broker execution in Europe. The

literature usually document a power law with exponent between 0.4 and 0.5 (Gomes and

Waelbroeck, 2015 and Briere et al., 2019). The parameters relative to the location term

are consistent with the ones estimated with OLS regression. As expected, the intercept

parameter is null, the coefficient of the order size and order flow imbalance terms are

similar to those estimated by the OLS regression. Only the coefficient of bid-ask spread

differs significantly. The parameters of the scale of Laplace distribution are small except

the stock volatility coefficient. It proves that the main contributor to the heteroscedasticity

is not the order size but stock volatility, consistent with the findings of Capponi and Cont,

2019 suggesting that conditionally to the level of stock volatility and execution duration,

the order size have a small impact on transaction costs.

2.5.3 Forecasting implementation shortfall

We gather the different blocks of variable dependencies to constitute the Bayesian

network of Figure 2.6. The parameters (µ,b,αimb,βimb) are estimated via Bayesian in-

ference using Hasting-Metropolis algorithm. Once the network is calibrated on 70% of

the meta-orders, we use it to infer the latent variable of net order flow imbalance given

meta-order and stock characteristics and estimate orders implementation shortfall both

in-sample (on the training set) and out-of-sample (on the testing set, the remaining 30%

of the meta-orders not yet seen by the algorithm). Table 2.6 displays the results for both

the linear regression and the Bayesian network predictions in- and out-of-sample. For

the linear regression, we compare a model without order flow imbalance (equation (2.3),

column 1) and one with order flow imbalance (equation (2.5), column 2). In this last

model, the realized imbalance is fully observed in real-time, which is never achievable in

practice but can serve as a benchmark case. We then show the results of three Bayesian

networks: The first network (column 3) has never seen the information of the imbalance

neither during the training phase nor the prediction phase. In that sense, it is comparable

to the first linear regression (OLS when the imbalance is not available) in the first column
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of Table 2.6. The second network (column 4) was trained with the information of order

flow imbalance. Once this information is captured by the conditional probabilities of net-

work edges, the network is exploited without the use of the imbalance. In this regard,

order flow imbalance is partially observed. The last network (column 5) has full informa-

tion on the imbalance, both at the training and testing phases, and is similar to the second

OLS regression displayed in column 2. Adding information on imbalance improves the

forecasting accuracy, both for the OLS regression and the Bayesian network. In-sample,

it increases the R2 from 0.52% to 1.77% for the two models, and reduces the forecasting

error (RMSE from 1.67% to 1.66% and MAPE from 98.74% to 98.48%). For the same

set of information (imbalance observable or not), the Bayesian network has the same

accuracy as the OLS on the training set. However, the absolute average error is much

smaller for the Bayesian network (-0.43 bps vs -0.86 when the imbalance is available,

-1.41 bps vs -1.43 bps when it is not). In-sample, and when all explanatory variables are

observable, the Bayesian network has only a limited advantage over simple linear regres-

sions in terms of prediction accuracy. Out-of-sample, when the imbalance is not available

(Panel B, columns 1 and 4), the Bayesian network is also similar to the linear regression

(lower average error = 0.08 bps vs 0.16 bps, but similar RMSE= 1.39 % and R2 =0.38%,

and slightly higher MAPE= 99.3% vs 99.0%. But when imbalance is available (Panel B,

columns 2 and 5), the Bayesian network has higher forecasting accuracy than the linear

regression on all criteria (R2= 1.20% vs 1.10%, average error= -0.43 bps vs -1.08 bps,

RMSE= 1.388 % vs 1.389%, and MAPE= 99.41 % vs 99.57%).

The Bayesian Network is particularly valuable when a subset of variables are only

partially observable. In this case, the network captures the conditional dependencies be-

tween the nodes and fills the missing information with the most probable values of the

latent variables. In our case, the realized imbalance is not used for the prediction, but the

Bayesian network is trained on imbalance to infer its distribution given meta-orders char-

acteristics. This gives a better forecast for the realized transaction cost, both in-sample

and out-of-sample (for example higher R2 =0.56% vs 0.52% in-sample, 0.50% vs 0.38%

out-of-sample) than OLS or Bayesian networks that could not rely on this information.

Table 2.7 provides similar results to those in Table 2.6, but for ten deciles of orders
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Table 2.6. Performance of the Bayesian network compared to the standard OLS
regression

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011. In-sample predictions are computed on 70% of
the data such us the number of buy orders is equal to the number of sell orders. The
remaining 30% serves for the out-of-sample prediction. RMSE and MAPE are
respectively the Root Mean Squared Error and the Mean Absolute Percentage Error of
the estimates
Imbalance OLS Regression Bayesian Network
Available No Yes No Partial Yes

Panel A: In-sample Estimation
E[IS] (bps) 9.020 9.020 9.020 9.020 9.020
E[ÎS] (bps) 7.590 8.161 7.606 8.617 8.588
E[ÎS− IS] (bps) -1.430 -0.859 -1.414 -0.403 -0.431
RMSE (%) 1.669 1.659 1.669 1.669 1.659
MAPE (%) 98.743 98.476 98.739 98.686 98.476
R2 (%) 0.517 1.773 0.517 0.558 1.771
Panel B: Out-of-sample Estimation
E[IS] (bps) 6.394 6.394 6.394 6.394 6.394
E[ÎS] (bps) 6.557 5.317 6.482 8.030 5.960
E[ÎS− IS] (bps) 0.163 -1.076 0.088 1.637 -0.434
RMSE (%) 1.394 1.389 1.394 1.393 1.388
MAPE (%) 99.022 99.570 99.301 99.340 99.410
R2 (%) 0.377 1.104 0.378 0.502 1.204

size, and for Bayesian networks using partial or full information on the imbalance. We

split the training and testing sets into 10 bins with respect to the training set order size.

The first bin contains small orders, lower than 0.01% of daily volume, while the last one

contains very large orders, higher than 4.34% of daily volume. We assess the accuracy

of the Bayesian network within the three configurations of information availability (order

flow imbalance fully, partially or not available). Consistent with intuition, we find that

the inferred order flow imbalance distribution is more accurate when the investor holds a

larger order. The posterior distribution of order flow imbalance given a small order is a

symmetric U-shape function (Figure 2.9). At best it is slightly skewed, either positively or

negatively, depending on the direction of the order. Thus, the larger the investors’ trade,

the more informative it is on the estimation of order flow imbalance, and as a consequence,

the more accurate is the forecast of resulting implementation shortfall. We observe that
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the R2 increases steadily, whatever the configuration of information availability (partial or

full), in-sample and out-of-sample, starting at the seventh bin. For example, the in-sample

estimation of transaction costs when the imbalance is partially available goes from an R2

of 0.18% for the seventh decile to 2.13% for the tenth decile, while smaller deciles of

order size have relatively small R2 (from -0.03% to 0.09% for the first 4 bins). Actually,

for small order sizes, the market impact is very limited and disappears in market noise.

Even if the Bayesian network is trained using the information on order flow imbalance,

it has no advantage when the investor uses its trades attributes, if he trades only small

order sizes. Said differently, it is hard to make good prior predictions of the order flow

and thus the transaction cost when executing small orders. But we see how information

on the investors’ own orders becomes more informative on the aggregate net order flow

as the investors’ own order size gets larger. This is in line with the recent concentration

of institutional investors executions on few dealing desks. Because the large dealing desk

has a more accurate picture of investors’ order flow imbalance of the day, it can assess

the expected transaction cost more accurately and potentially design a better optimized

executing scheme using this information. Note also that the RMSE does not drop, because

higher-order size bins have few orders with large implementation shortfall that increases

the average transaction cost for the bin. This is visible in the difference between the mean

and the median realized trading cost (30.64 bps vs 24.79 bps in-sample for the tenth bin

and 1.89 bps vs 1.67 bps for the first bin). The MAPE on the other hand, not suffering

from this bias, gets smaller as the order size increase.

2.5.4 Inference of investors order flow imbalance given post-trade

cost and market conditions

Investors’ net order imbalance is a latent variable, thus not observable by the asset

manager before executing his trade. His best prediction of market pressure is the inferred

imbalance, after observing his own trading decision. However, his decision although usu-

ally in line with investors’ trading because of the crowd effect, can depart from what is

actually traded by his peers. One of the interests of our Bayesian network model is that
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Table 2.7. Performance of the Bayesian network given order size

Institutional trading data are obtained from ANcerno Ltd on the period ranging from
January 1, 2010 to September 30, 2011. In sample predictions are computed on 70% of
the data such us the number of buy orders is equal to the number of sell orders. The
remaining 30% serves for the out-of sample prediction. The sample are split in 10 bins
w.r.t training set orders size. Q50 is the 50% quantile of implementation shortfall
realized distribution. RMSE and MAPE are respectively the Root Mean Squared Error
and the Mean Absolute Percentage Error of the estimates
Bins 1 2 3 4 5 6 7 8 9 10
E[ Q

ADV ] (%) 0.01 0.02 0.03 0.04 0.06 0.09 0.15 0.28 0.64 4.34
Panel A: In-sample Bayesian Estimation

Effective Trading Costs
E[IS] (bps) 1.89 2.87 2.61 4.85 6.88 7.82 7.01 9.25 16.50 30.64
Q50 (bps) 1.67 2.67 2.34 2.89 5.09 6.11 5.99 8.06 11.54 24.79

Imbalance Partially Available
E[ÎS] (bps) 4.26 4.52 4.82 5.25 5.78 6.51 7.58 9.32 12.59 25.62
RMSE (%) 1.41 1.44 1.51 1.52 1.56 1.61 1.68 1.74 1.92 2.17
MAPE (%) 100.19 99.78 100.11 99.69 98.92 98.59 98.46 97.86 96.91 93.60
R2 (%) -

0.03
0.04 -

0.00
0.09 0.17 0.24 0.18 0.27 0.77 2.13

Imbalance Available
E[ÎS] (bps) 3.72 4.09 4.36 4.86 5.54 6.36 7.63 9.54 13.07 26.80
RMSE (%) 1.39 1.43 1.50 1.51 1.55 1.60 1.67 1.73 1.90 2.17
MAPE (%) 98.76 98.72 98.76 99.02 98.66 98.70 98.59 98.54 98.06 96.89
R2 (%) 1.50 1.69 1.43 1.37 1.55 1.35 1.33 1.35 2.09 2.89
Panel B: Out-of-sample Bayesian Estimation

Effective Trading Costs
E[IS] (bps) -

1.44
-

0.14
0.75 2.70 3.80 4.83 8.09 8.81 12.71 28.09

Q50 (bps) 0.00 0.00 0.00 1.65 1.28 3.62 5.49 6.73 8.01 19.09
Imbalance Partially Available

E[ÎS] (bps) 4.53 4.77 5.05 5.39 5.87 6.50 7.46 8.98 11.85 22.73
RMSE (%) 1.22 1.24 1.27 1.37 1.32 1.35 1.40 1.45 1.61 1.71
MAPE (%) 101.28 101.25 101.23 100.99 101.33 98.96 98.23 97.59 97.22 93.65
R2 (%) -

0.17
-

0.09
-

0.05
0.06 0.13 0.17 0.39 0.41 0.72 2.39

Imbalance Available
E[ÎS] (bps) 2.19 2.28 2.69 2.98 3.67 4.33 5.57 6.97 9.91 22.13
RMSE (%) 1.21 1.23 1.26 1.36 1.32 1.35 1.39 1.45 1.60 1.72
MAPE (%) 99.47 99.69 99.51 99.78 99.73 99.37 99.62 99.38 99.23 97.95
R2 (%) 1.18 1.25 1.15 0.85 0.92 1.18 0.81 0.96 1.34 2.08
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Fig. 2.10. Bayesian Inference of Net Order Flow Imbalance

The figure plots in two panels the posterior distribution of net order flow imbalance
given two example of market conditions and order characteristics. Each time, the blue
curve plots the inferred distribution when only meta-orders attributes are considered and
the orange line is the updated distribution once the resulting transaction cost is observed.

it can be used to recover the aggregate order flow imbalance prevailing during the in-

vestor’s order execution, knowing his transaction costs. After receiving his Transaction

Cost Analysis report, the investor could update his belief on investors imbalance during

his execution using the calibrated Bayesian Network. We explore two cases as an ex-

ample. First case: the investor sells a stock sk(m)= -1; with a small participation rate

Qk(m)/ADVk(d) = 0.01%. His order is not very informative on market pressure since

his trade is small, so his best estimate using the Bayesian network is a U-shape slightly

skewed towards negative values of mean -0.10 (blue distribution of the left panel of Fig-

ure 2.10). Unexpectedly the resulting trading cost is huge ISk(m,d) = 3.02% because

the imbalance is very large and negative Imbk(m,d)= -0.94. The investor could update

his belief on the true distribution prevailing during his execution. The posterior distri-

bution after incorporating the realized trading cost gives a higher probability to values

at -1 (Orange line of the left panel). The average posterior imbalance distribution is -

0.17 (Table 2.8). Second case: the investor takes the decision to sell massively a stock,

Qk(m)/ADVk(d) = 31.8%. This is usually happening during market panic where other

investors sell massively as well. Therefore, his prior distribution is highly skewed to the

left (E[Imb] = −0.40, blue distribution of the right panel, Figure 2.10). While the in-
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vestor expects a high transaction cost, he got lucky to be against the aggregate order flow

(Imbk(m,d)= 0.94) and benefited from a price improvement of 2.6%. The posterior im-

balance distribution after incorporating this information is displayed on the right panel of

Figure 2.10 (orange line) with a 0.05 average.

Table 2.8. Bayesian inference of net order flow imbalance

The table summaries the first 2 moment and the 2.5% and 97.5% quantiles of net order
flow imbalance inferred distribution for two scenarios before and after order
implementation shortfall become available

E[ ˆImb] Std[ ˆImb] Q2.5% Q97.5%

Inferred Imbalance: Example 1
Before exec -0.097 0.333 -1.0 0.953
After exec -0.175 0.381 -1.0 0.999

Inferred Imbalance: Example 2
Before exec -0.400 0.328 -1.0 0.909
After exec 0.050 0.386 -1.0 1.000

2.6 Conclusion

In this paper, we use a Bayesian network to model transaction costs on US equity

markets using ANcerno data, a large database of asset managers’ instructions. Our main

motivation is to make use of a variable of paramount importance for transaction costs, the

Net Order Flow Imbalance. This variable is not observed by all market participants. Bro-

kers and market makers have access to the imbalance of their clients’ flows while dealing

desks of asset managers do only observe their own instructions. Nevertheless, brokers,

custodians, and even exchanges started recently reselling aggregate information on their

clients’ flows with a delay. Bayesian networks open new perspectives to model transac-

tion costs using latent variables, i.e. variables that are not always known when the model

has to be used but can be partially observed during the learning process. They enable to

design a model linking observed and latent variables, based on conditional probabilities.

The partially observable data can then be used to train the model.

Bayesian networks are able to estimate not only expected values but the whole prob-

ability distribution of a given variable. They are thus able to estimate the variance of the
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residuals of their estimation. Because of the heteroskedasticity of the error term, mar-

ket impact models and transaction costs estimates have traditionally a very small R2. A

common belief among practitioners is that the effect of small mechanical price pressure is

disappearing in the ”market noise” (i.e. innovation on prices). We confirm this intuition in

our model, by allowing the accuracy of trading costs forecasts to depend on market con-

ditions and the investors’ order characteristics. We find that the main variable explaining

the variance of the residuals is the stock volatility, with a coefficient of 0.78.

Last but not least, we show several advantages of Bayesian networks for transaction

costs forecasting. First, even when the latent variables (in our case, the imbalance of

institutional orders at the start of the day) cannot be observed, the estimation relies on

its pre-captured relationships with other observable variables (like the size and side of

the investor’s order to be executed). This allows the model to provide a better prediction

than standard (for example OLS) models. Second, we show that the estimates get more

accurate with the size of the meta-order the investor has to execute, because the larger the

meta-order, the better the estimation of the order flow imbalance. This gives an informa-

tional advantage for large dealing desks in charge of executing the orders of numerous or

large investors as they have a better picture of the aggregate imbalance. This finding is

consistent with the current evolution of market practice. Small asset managers increas-

ingly use the services of large dealing desks to benefit from this information, leading to

the recent concentration of institutional investors’ orders on a few dealing desks. Finally,

these models can use Bayesian inference to deduce the expected distribution of the latent

variable. We show how it is feasible to ask the Bayesian network the expected distribu-

tion of large orders of other investors, either at the start or at the end of the day, once the

resulting trading costs are observed.

Bayesian networks are very promising models to account for partial information.

They could prove particularly valuable for “alternative datasets”, like airlines activity,

web traffic, or financial flows, that often provide very detailed information on a small

subset of transactions. They are difficult to use in standard models, that do not accept

missing values. Bayesian networks structurally model the relationship between missing

and known variables. They could naturally fill this gap.
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Appendices

2.A Garman Klass volatility definition

Garman-Klass estimate of the volatility uses the open, high, low and close prices of

the day. This estimate is robust and very close in practice to more sophisticated ones. The

formula is given by:

σ
GK
k (d) =

√√√√ 1
N

N

∑
t=1

1
2

log

(
Hk

d−t

Lk
d−t

)2

− (2log(2)−1) log

(
Ck

d−t

Ok
d−t

)2

(2.15)

where the indexation k refers to the stock. d to the calculation day. N is the length of the

rolling window in day. In our case 252 trading days. Ok
t , Hk

t , Lk
t , Ck

t are respectively the

open, high, low, close prices of stock k at day t

2.B Bid-Ask spread and volatility distribution dependen-

cies

Fig. 2.11. Bid-Ask spread and volatility distribution dependencies

The left panel of figure 2.11 shows the scatter plot of the log bid-ask spread and

log volatility of S&P 500 components of 2010 and 2011. It proves that the variables are
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related. The right panel displays the centered distributions
(
X−X

)
of the log bid-ask

spread and the log volatility.

2.C Beta distribution properties

The probability density function of the Beta distribution PDFBeta is given by:

∀x ∈ [0,1] PDFBeta(α,β ,x) =
xα−1(1− x)β−1

B(α,β )
where B(α,β ) =

Γ(α)Γ(β )

Γ(α +β )
(2.16)

The first 3 moments of the distribution are as following:

E[X ] = α

α+β
Var[X ] = αβ

(α+β )2(α+β+1) Skew[X ] =
2(β−α)

√
α+β+1

(α+β+2)
√

αβ

Note that the skew of the distribution is proportional to (β −α). So when α <<

β the probability density function is significantly skewed toward values at 0 and in the

opposite case α << β the probability density function is skewed toward values at 1. The

particular case where α = β the distribution is symmetric around the mean E[X ] = 1
2 .

(PDFBeta(α,β , 1
2 + x) = PDFBeta(α,β , 1

2 − x)) and the skew is null. if in addition the

condition (α − 1)(α − 2) > 0 is fulfilled the distribution has a U-shape. Otherwise the

Beta distribution produces a concave function.

2.D Net order flow imbalance properties

Net order flow imbalance has a strong predictive power of daily returns. The cross

sectional average correlation for S&P 500 index components on our period of study is sig-

nificantly positive up to 10.72% (Figure 2.12). Furthermore, investors trading imbalance

prevail through time. Table 2.9 shows that the daily imbalance auto-correlation decays

slowly from 12.03% for the first lag to 7.44% after 5 days. Since order flow imbalance is

only available with a delay, the long memory of the imbalance is appreciated.
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Fig. 2.12. Net order flow imbalance, daily returns correlation

Table 2.9. Net Order Flow Imbalance auto-correlation

Imbt−1 Imbt−2 Imbt−3 Imbt−4 Imbt−5

Imbt 12.03 9.11 8.37 7.69 7.44

2.E Implementation shortfall distribution

The implementation shortfall estimated on ANcerno meta-orders on S&P 500 com-

ponents of 2010 and 2011, displays a non-normal distribution centered at 0, with standard

deviation equal to 0.64, a positive skew of 0.34, and highly significant excess kurtosis of

23.46. These moments are more comparable to a double exponential distribution.

2.F Hasting-Metropolis algorithm

Hasting-Metropolisis one of pioneer Markov Chain Monte Carlo algorithm devel-

oped in early 90s to sample from an unknown distribution. Given a function f propor-

tional to the desired probability distribution P(x) (a.k.a the target distribution) and a pro-

posal distribution q() = q(.|x) easy to simulate, the algorithm construct a series of variable

(x1,x2, ...,xn) such as given xn

1. Generate yn ∼ q(y|xn),
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Fig. 2.13. Implementation shortfall marginal distribution

2. Generate u ∼ U [0,1] a uniform distribution

3. Compute the acceptance rate α = min
{

f (yn)q(xn|yn)
f (xn)q(yn|xn)

,1
}

4. Accept the new candidate yn with probability α if u≤ α Otherwise reject.

Xn =

yn, if u≤ α

xn, otherwise
(2.17)

135



Transaction Costs Modelling

136



Chapter 3

Liquidity Provision and

Market-Making in Different

Uncertainty Regimes: Evidence from

the Covid-19 Market Crash
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I want to thank Euronext Paris Analytics team for their help and support to under-

stand and query the order-book database efficiently. A special thank you to Gaelle Le Fol,

Robert Kosowski, and Frederic Abergel for the fruitful discussion during the Pre-Defense

that helped to improve the content of this chapter
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Abstract

Kyle, 1985 builds a pioneering and influential model, in which an insider observing

private information submits an optimal order given the market-maker’s pricing rule, which

is assumed a linear function of the aggregated order flow. We propose an extension to

Kyle’s model where different types of uncertainty regimes exist and where the market

maker estimates market uncertainty and uses it to set her price. The model implies that

the elasticity of prices to liquidity demand will increase in high uncertainty regimes. We

test the outcome of the model empirically by studying the price formation process during

the COVID-19 pandemic crash. A period of agitation with important announcements

having a major impact on financial markets, such as the state lockdown and the Fed’s

fiscal response. We find that indeed the elasticity of prices to liquidity demand during the

COVID-19 period increased threefold

3.1 Introduction

The micro-structure of financial markets has increasingly attracted the attention of

academics, regulators, and market participants as it allows speculators to design efficient

trading algorithms, market-makers to manage their inventory risk, asset-managers to re-

duce their transaction costs, and regulators to design efficient policies to improve stocks’

liquidity and prices informativeness. However, modeling order-book dynamics and the

price formation process is not straightforward. In theory, prices are formed in the markets

in real-time, as traders confront their views about the asset’s future value. Traders are

assumed to acquire pieces of information that they believe could influence the asset price

and trade upon it. In the trading process, prices are formed as market participants update

their beliefs and adjust their orders when interacting with other traders. Koijen et al., 2020

show that different investors, with different investment horizons and mandates, allow to

incorporate different firms characteristics into prices. Kyle, 1985 is one of the reference

models in this field, close to a game-theoretic approach, where an informed trader ob-
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serves the fundamental value of a risky asset and chooses her traded amount strategically

in order to maximize her profit, and a market-maker sets the clearing price by inferring

the value of the asset from the noisy aggregated volume submitted by all traders, informed

and uninformed indiscriminately. This model, although simple, highlights the complex

interactions between liquidity providers and liquidity consumers and the resulting price

formation process.

A few academic papers showed evidence that besides the reaction to market flows,

market-makers also react to exogenous information, and change their trading behavior

whenever new information is disclosed. For instance, Megarbane et al., 2017 analyzed

the impact of the 2015 European Central Bank announcements on monetary policy and

the 2016 Brexit vote on financial markets and reported a regime change of HFTs trading

during those two events. The authors emphasize that HFTs are the main market-makers on

the limit order book contributing to more than 80% of market depth in normal market con-

ditions. However, during these two events, HFTs reduced their role of liquidity provision,

which was taken over by the rest of the market participants. The same behavior was docu-

mented by Tung, 2000 on the impact of earning announcement on financial markets. The

author argues that what makes the bid-ask spreads widen during earning announcements is

the level of information asymmetry between informed traders and market-makers. Lyle et

al., 2019 study price reaction to earnings announcement when the information is disclosed

during the trading session or just before the market opens compared to an announcement

after the close of the previous day. They find a significantly lower price reaction in the

post-closing announcement because it gives market participants sufficient time to digest

the newly disclosed information and confront their views about the firm’s value at the

opening auction of the next day.

In this paper, we explore whether market-makers react solely to market flows, or

also take into account exogenous information in their trading scheme. To do so, we pro-

pose a theoretical extension to Kyle, 1985 model with two trading regimes. A regime

of high uncertainty, where market-makers are exposed to high information asymmetry

and characterized by a high variance of expected informed prices, and a regime of low

uncertainty, with probably lower information asymmetry between market-makers and in-
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formed traders. Our model assumes that the variability of the risky asset value changes

with the regime of uncertainty, that the informed trader observes the realization of the

fundamental value of the risky asset and chooses her traded amount strategically to max-

imize her informational rent, and that the market-maker reacts to the noisy market flow

according to his estimate of the prevailing regime of uncertainty. This allows us to model

the market-maker’s excess price reaction to exogenous information arrival which is not

explained by market flows. This setup is optimal from an information cost perspective. As

Grossman and Stiglitz, 1980 stated, the decision of acquiring information is theoretically

motivated by the cost-benefit trade-off. The informed trader needs to acquire complete in-

formation to submit the optimal volume that will maximize her expected profit. Based on

the partial information related to the level of uncertainty in the market, the market-maker

could decide whether or not to provide liquidity. He then increases the cost for liquidity

provision during periods of high uncertainty and quotes more aggressively during stable

periods where trades contain less to no information. All the remaining assumptions are

kept identical as the Kyle, 1985 model.

There have been other attempts to extend Kyle, 1985 strategic trading model. Holden

and Subrahmanyam, 1992 considers the competition among multiple insiders each en-

dowed with perfect private information. Foster and Viswanathan, 1996 study the com-

petition with heterogeneous private signals. S. Huddart et al., 2001 examines the case

where an insider must announce her trading volume after the submission while S. J. Hud-

dart et al., 2004 study the case with pre-announcement of insider trade. More recently,

Caldentey and Stacchetti, 2010 study the extended Kyle model with insider observing a

signal that tracts the evolution of the asset’s fundamental value and with a random public

announcement time revealing the current value of the asset. A common feature of these

different models is that they all focus on the informed trader behavior and assume the

same pricing rule for the market-maker. On the contrary, we postulate that market makers

change their pricing rule based on their estimate of the level of uncertainty in the market.

Hence, our extension of the Kyle model by considering a different trading behavior for

market-makers might have potential applications on various models based on Kyle, 1985

framework.
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In the empirical part of this paper, we test model implication on the 40 stocks com-

posing the CAC40 index in the first quarter of 2020 using the Euronext tick-by-tick

database. This period was marked by the Covid-19 market crash. Baker et al., 2020

argues that no previous infectious disease outbreak, including the Spanish Flu, has ever

impacted the stock market prices as powerfully as the COVID-19 pandemic. As it could

be seen in the unprecedented high levels of the VIX index, markets have been taken by

surprise and were unable to anticipate a shock of this nature. The crisis thus provides a

unique opportunity to test theories on the price formation process and the trading behavior

of market participants. We propose a methodology to estimate empirically Kyle’s lambda

on central limit order book data and apply it to our universe of securities. It consists of

deriving the price set by market-markers from their activity in the order-book, insertion,

and cancellation of volume in the best bid and best ask limits and estimate the elastic-

ity of market-makers quotes to the aggregate liquidity demand of the market as specified

by Kyle model with a linear form1. We then study the incorporation of the information

of the health crisis exogenous shock on market-makers pricing rule. We find that in-

deed market-makers’ quotations are well explained by the signed liquidity demand in the

market. The results are significant to 1% or more and robust to all controls on firm charac-

teristics and day fixed effects. The elasticity of market-makers’ prices to market liquidity

demand increased by 39bps in the high uncertainty context of the health crisis, suggest-

ing that market makers take into account the exogenous information in their pricing rule.

Moreover, during periods of stress, natural risk holder increase their trading activity and

contribute more to the amount of liquidity provision. Nevertheless, their liquidity provi-

sion has no explanatory power of daily cross-sectional price returns. We conclude that the

price response to liquidity demand is a characteristic of market-participants insuring the

intermediation role in the market, as claimed by Kyle, 1985.

The rest of the paper is organized as follows: Section 2 explains the model, its as-

1Although, empirical evidence suggests a square root model, with marginal price impact diminishing as
the number of shares traded increases (Briere et al., 2019, Almgren et al., 2005, ...), we keep a linear function
as in Kyle, 1985, Back and Baruch, 2007 and Chordia and Subrahmanyam, 2004 because it results from the
assumption of exponential utility, risk neutrality of traders’ preferences and Gaussian payoff. Models with
non-linear market impact are usually analytically intractable and suited for high volume orders, while we
are interested in modeling market-makers response to the volume at the micro-structure level.
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sumptions, and implications. In section 3 we present Euronext order-book data and give

some descriptive statistics on market conditions and market agent’s trading behavior dur-

ing the COVID-19 pandemic crash. In Section 4, we propose an empirical estimation of

Kyle’s lambda using order-book data and study market-makers pricing rule during two

regimes of uncertainty. Finally, Section 5 explains the implications on asset pricing at the

daily level.

3.2 Model and assumptions

In this section, we present the model assumptions and implications. Similarly to

Kyle, 1985, we assume the existence of a risky asset with an uncertain liquidation value

θ . We introduce a variable ξ ∼ Bernoulli(Pξ ) that indicates the type of the regime of

uncertainty of day t. ξ = 1d∈RI1 equals 1 when the regime of uncertainty high RI1, 0 oth-

erwise, and we assume θ to be normally distributed with a mean θ ∗ and a time dependent

standard deviation σθ (t) θ ∼ N(θ ∗,σθ (t)) that depends on the regime of uncertainty of

the day t. Formally,

σθ (t) = σθ ,0 +(σθ ,1−σθ ,0)ξ where σθ ,0 < σθ ,1 (3.1)

The variability of the asset liquidation value is higher during uncertain or highly in-

formative periods (regime RI1). We assume the presence of three types of market players:

an informed trader, a noise trader, and a market-maker

• Informed trader: a trader who can access alternative sources of data and assess the

efficient price faster than other market participants, creating an asymmetric infor-

mation situation in the market. We can think of as sophisticated financial institu-

tions that analyze different data sources, like text data, customer transactions, and

satellite images to extract valuable information on the efficient price. Therefore, we

assume in the model, the informed trader knows the realization of the asset value θ

in the future and sets the size of her trade strategically to maximize her profit. The

informed trader buys, (or sells ) until her expected profit from holding (liquidating)
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another share is exactly offset by the price impact of her trade. The informed trader

solves the following optimization problem.

argmaxQ E[Q(θ −PM)|θ ] (3.2)

• Noise trader: also referred to as a liquidity trader. A set of traders who submits

orders to the market in a zero-intelligence fashion either while seeking liquidity or

for hedging purposes or simply their signals are inaccurate and cancel out. Noise

traders’ total demand u is endogenously-generated, normally distributed with mean

0 and a standard deviation σu
2. u ∼ N(0,σu).

• Market-Maker: provides liquidity to market participants. We assume the market-

maker holds partial information ξ M about the type of regime of the day t. ξ M is

a Bernoulli variable, such that P[ξ M = 0|ξ = 0] = 1 and P[ξ M = 1|ξ = 1] = Pξ M .

Meaning that, when there is no uncertainty about the level of the stock market, and

there is no macro-economic news or firm’s related publication, ξ = 0, the market-

maker considers the day belonging to a standard informational regime, ξ M = 0.

However, whenever there is information or uncertainty about the firm’s funda-

mentals ξ = 1, the market maker identifies this information only with probability

Pξ M and mistake a day with high uncertainty for a standard day with probability

(1−Pξ M). The market-maker sets the clearing price upon observing the aggregate

order flow w = Q+u and estimating the information regime to be as close as pos-

sible to the expected value of the asset.

PM = E[θ |Q+u,ξ M] (3.3)

Consistent with Kyle, 1985, we define the Bayesian Nash Equilibrium of this econ-

omy as on one side, the informed trader’s strategy maximizing her expected profit, given

the market-maker’s pricing rule and signal and on the other side, the market-maker setting
2It is straight forward to relax this assumption by considering a time-dependent standard deviation of

noise traders aggregate demand varying with the type of informational regime. The derivation of the results
is straight forward
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the price to be equal to the expected value of the asset given aggregated order flow. This

is quite a game-theoretic concept as the market-maker does not maximize an objective

function but rather sets the price to be equal to the expected value of the payoff.

We assume the market-maker holds a linear pricing rule, with λK the elasticity of the

price to the aggregate demand, also known as Kyle’s lambda.

PM = P̃+λK(Qθ +u) (3.4)

The unique equilibrium in linear strategies of this economy is characterized by the

informed traders demand strategy Qθ

Qθ =
θ −θ ∗

2λK
(3.5)

and the market-maker’s pricing rule:

 P̃ = θ ∗

λK = cov(θ ,Q+u|ξ M)
Var(Q+u)|ξ M =

√
Var[θ |ξ M ]

2σu

(3.6)

where,

Var[θ |ξ M = 1] = σ
2
θ ,1

Var[θ |ξ M = 0] =
(1−Pξ )

(1−Pξ M) ·Pξ +(1−Pξ )
σ

2
θ ,0 +

(1−Pξ M) ·Pξ

(1−Pξ M) ·Pξ +(1−Pξ )
σ

2
θ ,1

We have the following result proved in Appendix B.

Meaning that the market-maker’s reaction to the aggregate flow depends on her es-

timation of the regime of uncertainty ξ M and the variance of noise traders’ aggregate

volume. Market-makers’ pricing rule (equation 3.4) could be rewritten:

PM = θ
∗+

√
Var[θ |ξ M = 0]

4σu2 (Qθ +u)1ξ M=0 +
σθ ,1

2σu
(Qθ +u)1ξ M=1 (3.7)
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Using the Byes rule, we can easily prove that whenever the market-maker estimates

that the day belongs to a regime of high uncertainty d ∈ RI1, it is actually the case —

P[ξ = 1|ξ M = 1] = 1. This is because the market-maker will not change her trading

behavior unless there is a good reason to. For instance an external shock on the economy

or scheduled news. In such cases, the market-maker adjusts her pricing rule, by asking for

the highest risk premium, λK =
σθ ,1
2σu

to compensate for the risk on price uncertainty. How-

ever, when the market-maker does not have any reason to consider a day t as belonging

to a regime of high uncertainty, ξ M = 0, and knowing she misses pieces of information

about the firm’s fundamental value, she sets the price taking into account the probability

she might be mistaking the level of uncertainty regime (P[ξ = 1|ξ M = 0]). Therefore the

Var[θ |ξ M = 0] is a probability-weighted average of σθ ,0 and σθ ,1. As a result, a market

maker who estimates properly the type of regime detains a high probability of Pξ M ≈ 1

and thus reacts the least to the aggregate flow. limP
ξ M 7→1 λK =

σθ ,0
2σu

. In a competitive

market-making environment, this will make a significant difference during the standard

market conditions, because the market-maker with the highest Pξ M asks for the lowest

risk premium λk for liquidity provision and wins more trades. This is because she is bet-

ter informed and less exposed to the risk of adverse selection. On the other side of the

equation, we note that the traded amount chosen strategically by the informed trader is

inversely proportional to the market-maker’s risk aversion λK , as specified by Kyle, 1985

model. Thus during major macro-economic events, stress periods, or recently disclosed

information about the company, the informed trader would expect the market-maker to

incorporate this information in his quoted prices and thus reduces the size of her trade

proportionally. In a word, the more information moves prices (i.e. large σθ ,1) the higher

the price impact and the more non-informative flow, the more difficult for the market-

maker to identify information, hence the less he moves the price. Although this model is

not an accurate description of how real-world traders interact with market makers, how-

ever, it is a simple way of capturing key facts: informed traders trade more aggressively

when their information is private and surrounded with noise trading and trade more cau-

tiously when the information is leaked to the market and market-makers are vigilant to

trading signal in the market.
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3.3 Data

The following analysis is based on Euronext tick-by-tick data of the CAC40 Index

components from January the 1st 2020 to April the 1st 2020. Euronext Paris is the main

trading venue of the studied securities. According to the CBOE website tracking the mar-

ket share of European equities trading venues, Euronext accounts for 72.68% of the traded

amounts of Paris listed companies in March 2020, followed by CBOE Europe 16.37%,

then Aquis 4.98%. Turquoise and Equiduct come at 4th and 5th position with respectively

3.7% and 1.91% market share. This makes Euronext order book the place where the offer

meets the demand and where the prices are primarily formed. The database we use tracks

the entire history of the orders, from their initial submission to full execution including or-

der submissions, partial fills, potential modifications, and cancellations. We use Euronext

order-book data to study market conditions during the COVID-19 market crash and test

empirically model implications. Table3.1 gives summary statistics of market variables:

price returns of CAC40 index components, daily traded volume, the 5min Garman-Klass

volatility3, and the time-weighted average bid-ask spread in basis points, during the first

quarter of 2020, and Figure 3.1 shows their evolution in view of the three days with major

events during this period of market turmoil. February 24: the first trading day after the

lockdown, in Lombardy, Northern Italy, not far from the country’s main economic center

of Milan. March 11th the day the President of the United States announced a travel ban

on EU countries. It is also the day the World Health Organisation (WHO) declared the

Coronavirus a pandemic case. Finally, the 18th of March 2020, when the Federal Reserve

began making purchases under the Commercial Paper Funding Facility to alleviate the

strain in short-term credit markets. It is also the date President Trump signed the second

Coronavirus Emergency Aid Package (CEAP) (the Families First Corona Response Act).

First, we note that the Italy lockdown decision marked the beginning of the market crash.

This can be clearly seen in the drop in securities prices, the sudden rise in traded volume,

and the jump in the intraday volatility. Market sanity gradually deteriorated as the virus

spread, however the recognition of the virus as a pandemic case by WHO accelerated

3Garman Klass volatility at 5min scale uses the open high low close prices of every 5min bin of the
continuous session to estimate the intraday volatility. The calculation is detailed in the appendix
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the trend. Intraday volatility exploded to reach 100% on average between the 11th and the

18th of March and above 140% for some securities. Regarding the bid-ask spread, market-

makers succeeded to keep their quotations tight in the period between Italy lockdown and

the pandemic declaration by the WHO, even if the market was already abnormally volatile

reaching 60% volatility, but it soon increased significantly from 3bps on average before

the crisis to 15bps, and this is for the 40 most liquid companies in the French market. Mid

and small-capitalization experienced even more severe liquidity shock. Finally, the Fed’s

announcement was the first stabilizing factor of the financial markets. Volatility like the

bid-ask spread starts converging back to their pre-crisis average and prices reverted back

progressively. Note also that the price drop during the first phase of the pandemic was

much severe during the continuous session compared to the uncrossing phase, Panel(a).

This price movement is particularly interesting in the scope of this analysis as it is formed

by the interaction between market participants including market-makers and the various

potential informed trader, unlike the overnight jump resulting from an equilibrium price

established at the open auction. In the rest of the paper, we identify the COVID-19 pan-

demic shock as the period after Italy’s lockdown until the end of our sample. The same pe-

riod has been considered in papers studying the COVID-19 market crash, such as Ramelli

and Wagner, 2020, and Albuquerque et al., 2020.

Table 3.1. Summary statistics on Market conditions

This table reports the summary statistics (number of observations, mean, standard
deviation [SD], and 25th, 50th [median], and 75th percentiles) of market variables
describing trading conditions on the CAC 40 Index components, from 1st January to 1st

of April 2020. The intraday price change (in log %), the overnight price jumps (in log
%), the daily price return (in log %), the traded volume (in millions of Euros), the
average 5min Garman-Klass volatility (in %), and the average bid-ask spread (in bps).

Mean SD 25% Median 75% Obs.

Intrday log return (%) -0.48 3.04 -1.46 -0.22 0.74 2600
Overnight log return (%) -0.18 2.61 -0.80 0.03 0.69 2600
Daily log return (%) -0.66 4.17 -1.75 -0.21 0.92 2600
Daily traded volume (MEur) 128.16 115.83 52.36 92.16 156.69 2600
Garman Klass 5min volatility (%) 35.13 31.45 12.58 19.74 50.03 2600
Bid-Ask spread (bps) 5.27 3.98 3.10 3.90 5.26 2600
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Fig. 3.1. French stock market reaction to COVID-19 Pandemic

This figure plots the average intraday price movement (in log %), the average overnight
price jumps (in log %), the sum of traded volume in (billions of Euros), the average 5min
Garman-Klass volatility (in %), and the average bid-ask spread (in bps) of CAC 40 Index
components from 1st January to 1st April 2020. The red, black and green dotted line
represent respectively the 24th February, the 11th March, and the 18th March.The shaded
area around the mean is the 5% confidence interval in all panels.

(a) Intraday vs Overnight Cumulative Returns (%) (b) Sum of Daily Traded Volume (Be)

(c) Garman Klass 5min volatility (d) Average Bid-Ask Spread (bps)

Euronext tick-by-tick database indicates the type of order’s origin in a specific field

called account type. It is a flag retrieved from the order message that indicates the nature

of the flow. The main account type categories on Euronext central limit order book are

the Client, the House, the Liquidity Provider “LP”, and the Retail Member Organization

“RMO”4. When the order is flagged “Client”, it means that the member is providing ex-

4The order could also be flagged “RLP” —Retail Liquidity Providers. It is a type of order dedicated to
retail investors only, where liquidity providers could offer price improvements compared to the central limit
order book, in a commercial package called “best of the book”. RLP members are not allowed to interact
with trading members other than retail. Therefore, we exclude their flow in this analysis

148



Liquidity Provision in different Uncertainty Regimes

ecution service for a third party institutional investor ( asset managers, hedge funds, pen-

sion funds, etc.). This category is in contrast with the “House” account type indicating

that the member is bearing the risk of trading for her own account. Typically, arbitragers

and proprietary trading desks of banks submit ”House” flagged orders. The third major

account type is “LP” for Liquidity Provision. For the CAC 40 Index components, only

members registered in the market-making program on blue-chip securities, called Supple-

mental Liquidity Provider (SLP), could submit such orders. These members have to meet

market-making requirements, including order book presence time and competitive quotes

at the bid and ask sides on a regular basis. Finally, the RMO account type corresponds

to brokers submitting orders on behalf of their retail clients. Note that the same trading

member could submit all kinds of orders if it is involved in different activities (i.e Bro-

kerage, Arbitrage, Market-Making...). Orders related to each activity will be channeled

to the exchange with the corresponding account type flag to distinguish between the dif-

ferent flows. Hence, this categorization allows us to uncover the role of different trading

schemes in the market even if they are implemented by the same entity.

In order to evaluate the trading behavior of the different categories of market players,

we study the evolution of account-types traded volume in percentage daily turnover, and

account-types contribution to market overall liquidity provision. We define the following

metrics:

• Share in amount traded: is the amount of volume traded by members of the ac-

count type as a percentage of daily traded volume

MSA(s, t) =
QA(s, t)

∑A QA(s, t)

Where QA(s, t) is the amount traded by members of account type A on the stock s

at day t

• Share in liquidity provision: is the percentage amount of daily traded volume

where members of the account type were providing liquidity to other market par-

ticipants.
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MSLPA(s, t) =
QPa

A (s, t)

∑A QPa
A (s, t)

where QPa
A (s, t) is the amount traded passively by members of category A during

day t on the stock s. A passive order is an order that adds liquidity to the order-

book by entering bids and offers, which are not immediately executed but will be

consumed later by other traders’ market orders.

Table 3.2 reports the account-types trading activity on CAC40 index constituents dur-

ing the first quarter of 2020. We see that the LP category is by far the most active in terms

of traded volume. It accounts on average for 48.88% of daily traded volume, the Client

and the House flows come second with comparable traded volume market share respec-

tively 24.37% and 24.08% while the RMO flow comes at the last position with a 2.67%

average percentage of the trading volume. This distribution of traded volume market share

illustrates well the role of intermediation played by the LP category between Client and

House flows. Glosten and Milgrom, 1985 claim that mature markets should see market-

makers participate in a significant proportion of transactions in electronic order books,

converging asymptotically to half of the daily traded amount because they take part in

every transaction where the natural buyers and sellers do not perfectly meet in the market

at the same time with the same desired quantity and opposite sides. Therefore, market-

makers wait for the buyers after providing liquidity to the sellers and vice-versa. In terms

of liquidity provision measured by the percentage amount of passive trades contributed

by each account type, the LP category comes first representing 41.20% of passive traded

volume in the market. The Client flow composed of institutional investors executions has

the second-highest share of liquidity provision after market-makers with 31.44% of over-

all market liquidity provision. Since the introduction of the concept of “best execution”

by the first Markets in Financial Instruments European directive (MiFID I), brokers are

required to prove through transaction costs analysis reports that order execution price is

comparable to the market VWAP (Volume Weighted Price). Thus, the broker’s execution

algorithms, nowadays, are very liquidity seeking. The proprietary flow “House” has the

lowest liquidity provision share among the three most active categories 25.34%. Finally,
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we note that retail investors contribute to 2.02% of market liquidity provision5

Table 3.2. Summary statistics on Account type trading

This table describes account types trading activity for CAC 40 Index components trading
activity, from 1st January to 1st of April 2020. Share in amount traded is the percentage
amount of volume traded by the category. Share in liquidity provision is the percentage
amount of volume traded passively by members of the account type over the daily traded
volume.

Mean SD 25% Median 75% Obs.

Panel A: Share in amount traded

All Sample

Client 24.37 5.81 20.31 23.97 27.93 2600
House 24.08 4.79 20.64 23.75 27.08 2600

LP 48.88 7.23 43.59 49.00 53.88 2600
RMO 2.67 2.86 1.04 1.78 3.02 2600

Without
COVID-19 effect

Client 24.05 5.59 20.02 23.57 27.70 1440
House 25.23 4.76 21.86 25.09 28.25 1440

LP 48.52 6.42 43.61 48.58 53.04 1440
RMO 2.20 2.12 0.99 1.60 2.54 1440

With COVID-19
effect

Client 24.77 6.05 20.61 24.52 28.38 1160
House 22.65 4.44 19.58 22.38 25.43 1160

LP 49.33 8.10 43.43 49.61 54.84 1160
RMO 3.25 3.49 1.12 2.05 3.79 1160

Panel B: Share in liquidity provision

All Sample

Client 31.44 9.70 24.34 30.58 37.40 2600
House 25.34 6.44 20.77 24.78 29.21 2600

LP 41.20 11.36 32.95 41.52 49.71 2600
RMO 2.02 2.87 0.52 1.08 2.17 2600

Without
COVID-19
Effect

Client 29.36 8.72 23.00 28.12 34.59 1440
House 25.47 6.29 21.10 25.10 29.25 1440

LP 43.49 10.01 35.81 43.80 51.02 1440
RMO 1.68 2.42 0.47 0.98 1.71 1440

With COVID-19
effec

Client 34.03 10.22 26.94 33.55 40.47 1160
House 25.16 6.62 20.32 24.38 29.15 1160

LP 38.35 12.26 29.75 37.79 47.05 1160
RMO 2.46 3.30 0.62 1.24 2.71 1160

5Retail investors profit from the ”best of the book” offer, where dedicated market-maker offer them
better prices than those available in the lit central limit order book.
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Table 3.2 makes also the parallel between the trading behavior of the account types in

terms of share in traded amount and share in market liquidity provision before the Coro-

navirus pandemic outbreak and the period of agitation after the Italy lockdown. First, we

point out that the Client category increased their contribution to market liquidity provision

during the market crash going from 29.36 % before the crash to 34.03% after. This while

keeping a stable percentage daily volume in a period where the number of transactions

increased threefold. Some institutional investors, having a longer-term investment hori-

zon, have seen the market drop a good entry point. In a selling market pressure, they were

able to execute their buying position mostly with limit orders. We also observe a similar

behavior from retail investors, increasing their percentage traded volume from 2.2% to

3.25% and their share in liquidity provision from 1.68% to 2.46%. The AMF report on

retail behavior in the COVID-19 confirms this substantial activity of retail clients. Bonnet,

2020 highlight that some retail investors had already been active in the months preceding

the Covid-19 crisis and 150,000 new investors bought SBF 120 shares for the first time

since at least January 2018. On the contrary, we note a slight decrease in the proprietary

flow percentage of trading volume from 25.23% to 22.65% trading activity with relatively

the same contribution to market liquidity provision and a decrease in market-makers share

of liquidity provision from 43.49% to 38.35%. Market-markers prices are composed of at

least three components. The order processing cost. It represents a fee charged by market

makers for standing ready to match buy and sell orders (Tinic, 1972). This component

includes compensation for the market makers to insure their work of intermediation, this

component remains identical in the two periods. The inventory holding cost, modeled in

Stoll, 1978 and Ho and Stoll, 1981. It compensates dealers for holding less than fully

diversified portfolios. During periods of agitation, the risk associated with price changes

between the moment market-makers provide liquidity and the moment they liquidate their

inventory is higher. Finally, the adverse selection component (Copeland and Galai, 1983

and Glosten and Milgrom, 1985) represent the risk premium that market-makers charge

to accept dealing with traders who may have superior information. Krinsky and Lee,

1996 find that the adverse selection costs component is the most prominent before and

following public announcements and increase significantly due to increased information

152



Liquidity Provision in different Uncertainty Regimes

asymmetry. The market-maker is the market agent who takes into account all these cost

components in setting his price. Which explains the decrease in liquidity provision.

3.4 Kyle model estimation

In this section, we estimate empirically the pricing rule of market-makers as a func-

tion of the liquidity demand. However, contrary to the Kyle, 1985 model setup, where the

market-maker sets the clearing price of the market after all traders have submitted their

desired quantity and side, in electronic order-book the trading is continuous and market-

makers do not have the advantage of playing last. Instead, they submit limit orders to

position themselves optimally in the bid and ask queues in a way to maximize their profit

while keeping their inventory as balanced as possible. For this reason, we define a price

contributed by market-makers that takes into account their activity in the order book. Sev-

eral paper have studied the market-making optimal pricing strategy in a limit order-book,

such as Abergel et al., 2020, Avellaneda and Stoikov, 2008, Guéant et al., 2013, and

Lehalle and Mounjid, 2017. All these models agree that the distribution of orders arrival

in the order-book is a function of the bid-ask imbalance. For example, if the volume at

the ask limit is notably higher than the volume at the bid limit (Qa(t)�Qb(t)), then there

are higher chances that the next transaction will occur at the best bid price and not at the

best ask price. Degryse et al., 2005 shows that aggressive orders take place when order

depth in the opposing side is relatively low, because either the next seller would choose

to submit a market order instead of adding herself to an already filled queue or one of

the traders already placed in the ask queue would decide to cancel her order to cross the

bid-ask spread if she deems the opportunity cost exceeds the transaction cost. Inversely,

the next buyer would have less incentive to pay the bid-ask spread in this configuration.

Therefore, market-makers provide liquidity in line with their estimation of the most prob-

able future price, skewing their quotes if needed to reduce the amount of future liquidity

provision in the side where they have already accumulated inventory, or submitting mar-

ket orders if the inventory risk is unbearable. We consider the instantaneous expected

price (i.e. the most probable next traded price conditionally to the state of the order book
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—E[P(t)]), and derive the market-maker’s contributed price as the expected price change

due to market-makers activity in the bid and ask best limits. Harris, 2013 refers to this

price as “the true value of the asset” and explains why, theoretically, it corresponds to the

instantaneous equilibrium price in a linear utility framework for supply and demand. (see

Appendix B for the details). Stoikov, 2018 refers to this metric as “the micro-price” and

shows empirically its predictive power to the short-term price movement.

Formally, if Qb(t) and Qa(t) are respectively the bid and ask volumes available at

the first limits at time t, and Pb(t) and Pa(t) are their corresponding prices. Then, the

micro-price is defined as:

E[P(t)] =
Qb(t) Pa(t)+Qa(t) Pb(t)

Qb(t)+Qa(t)

Financial markets today allow market participants to submit a variety of orders (Mod-

ify, Iceberg, Market-to-Limit, etc), but all these orders could be decomposed into 3 ele-

mentary orders: Fill or Market order, Insert order, and Cancel order 6. These three orders

allow traders to manifest their impatience for liquidity. As stated in Foucault et al., 2005,

when a trader submits a Market/Fill order, she chooses to pay the cost of immediacy (the

bid-ask spread) to get executed. However, when a trader chooses to insert an order, she

accepts to delay her execution by waiting for the next trader to cross the bid-ask spread

and consume the liquidity she posted. Finally, the trader could cancel an already inserted

order hoping to get a better price in the future. For example, if the price has high chances

to drop (the imbalance is highly negative), the buyer waiting at the best bid limit has high

chances to be executed, but she may choose to wait longer, by canceling her order and

insert it farther in the order-book at a better price. From the market-makers’ perspective,

they insert orders to provide liquidity to the rest of the market and cancel them to with-

draw liquidity when they sense a higher risk of adverse selection, or their estimation of the

fair price has moved, or they can no longer bear the risk of the accumulated inventory. As

6For example, a Modify order is a Cancel order followed by an Insert of a new order at a different price.
An Iceberg is an Insert order triggered by a transaction that consumes all the volume in the best limit. A
Market-to-limit order is a Market/Fill order with a size capped at the volume available in the opposing best
limit, followed by an Insert order with the remaining volume, if any, at the price of the consumed limit
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a consequence, we compute the contribution of market-makers to the price as the sum of

the micro-price movements resulting from market-makers actions that change the quanti-

ties available at the best bid and best ask limits. If τMM
0 , ...,τMM

k , ...τMM
N are the stopping

times of such events in the order-book during the time frame [d +(t−1)r, d + tr] (the tth

period of time of length r of the trading day d, r = 5min in our case), then the expected

price change due to market makers’ activity during this time frame is given by

∆PMM(s,d,k) =
N

∑
t=1

E[P(τMM
t )]−E[P(τMM

t−1 )]

Note that the state of the order book could change between two consecutive stopping

times τMM
t−1 and τMM

t
−, if other market participants contribute to the order-book depth,

insert or cancel orders or when liquidity consumers take part or all of the volume available

in the best limits. These other actions taken by the rest of the market participants are one

of the reasons why a market-maker may choose to adjust his quotation, to either place

himself in a better position to maximize his chances to be the one to provide liquidity

to the next trader or inversely to lessen this probability by canceling his well-positioned

orders.

The liquidity demand (Q+u in the model) within the time frame [d+(k−1)r, d+kr]

is measured by the net traded volume executed by all market participants and signed by

the sign of the liquidity consumer order (+ for buy and - for sell). To ensure compara-

bility between stocks with different liquidity characteristics in our sample and take into

account the U shape of the volume curve during the day (Laruelle and Lehalle, 2018), we

rebase this measure by dividing the net volume by traded volume during the considered

time frame. This adjustment is fairly common in empirical estimations in market micro-

structure literature (see Capponi and Cont, 2019, Said et al., 2017 or Laruelle and Lehalle,

2018)

LD(s,d,k) =
QBuy(s,d,k)−QSell(s,d,k)

Q(s,d,k)

where QBuy(s,d,k) and QSell(s,d,k) are the traded amounts respectively initiated by the

buyers and the sellers on stock s during the time frame [d+(k−1)r, d+kr], and Q(s,d,k)=
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QBuy(s,d,k)+QSell(s,d,k) is the traded volume during the same period. As we are in-

terested in the stationary behavior of market-participants in the statistical validation, we

consider a linear model with a single representative period, where the price movement

contributed by market-makers orders reacts to the aggregate liquidity demand of all mar-

ket participants. Although empirical evidence suggests a square root model with marginal

price impact diminishing with the number of shares traded (Briere et al., 2019, Almgren

et al., 2005, ...), the concave market impact function is only suited for large sized orders.

On the contrary, orders studied at the micro-structure level are smaller and are executed

immediately. Thus, their market impact is linearly subject to the limit order book depth.

(3.8)∆PMM(s,d,k) = α + λ LD(s,d,k) + βs Firm Controlss + βd Day FEd + ε(s,d,k)

We use this specification to quantify the average market-makers’ price reactions to

the liquidity demand in the first quarter of 2020. We identify market-makers orders as the

ones submitted by members of the “LP” account type insuring the market-making rule in

the Euronext regulated market. The unit of observation (s,d,k) refers respectively to the

stock, the trading day, and the 5min time period. We check the robustness of the result

by controlling for several firm characteristics. Namely, the size of the firm calculated

as the log free-float market capitalization of the firm on the 31st of December 2019, the

annualized volatility of daily logarithmic returns of stocks prices in 2019, the average

bid-ask spread in 2019, and the financial leverage in 2019 calculated as the ratio of the

book value of debt over book assets. Then, we estimate market-makers’ pricing rule in

response to the uncertainty regime as defined in equation3.4. We distinguish the elasticity

of market-makers micro-price movement to the net volume in a regime of low uncertainty

(ξ M = 0) taken as the period before Italy lockdown, and the elasticity of their prices when

they are aware of the exogenous shock of Covid-19 (ξ M = 1). We run the following

cross-sectional regression:

(3.9)∆PMM(s,d,k) = α 1d∈COVID-19 + λ1 LD(s,d,k) + λ2 LD(s,d,k) 1d∈COVID-19
+ βs Firm Controlss + βd Day FEd + ε(s,d,k)

Table 3.3 presents the results of the two regressions. In the first four columns, we

give the result of the market-makers’ contribution to the micro-price movement as a func-
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Table 3.3. Cross-sectional regression of market-makers contribution to the micro-
price on the aggregate liquidity demand

∆PMM(s,d,k) is the log market-makers contribution to the micro-price, presented in
basis points. LD(s,d,k) is the net liquidity demand of stock s during the tth 5min bin of
day d (in %). 1d∈COVID-19 is a dummy variable that equals 1 during the period after the
Italy lockdown in February 24. Historical spread and historical volatility are the average
bid-ask spread and the average daily price return volatility calculated over 2019. Market
capitalization is the log free float market capitalization at the 31st of December 2019.
The financial leverage is the book value of debt over book assets in 2019. The numbers
in parentheses are t-statistics. *p≤ .1; **p≤.05; ***p≤.01.

Dependent Without Covid effect With Covid effect
variables ∆PMM(s,d,k) ∆PMM(s,d,k)

LD(s,d,k)
26.23*** 26.37*** 26.45*** 14.45*** 14.55*** 14.65***
(78.56) (78.84) (78.98) (36.32) (36.56) (36.77)

LD(s,d,k) 38.86*** 39.15*** 39.15***
1d∈COVID-19 (53.78) (54.04) (53.99)

1d∈COVID-19
0.32

(1.45)

Leverage
-0.1*** -0.1***
(-2.9) (-3.9)

B-A spread
-0.5*** -0.6***
(-2.9) (-3.5)

Volatility
-0.03* -0.05***
(-1.7) (-2.6)

Market Cap (ln)
1.18*** 1.14***
(3.29) (3.18)

Firm FE No No Yes No No Yes
Day FE No Yes Yes No Yes Yes

R2 (%) 2.29 2.67 2.74 3.35 3.73 3.80

tion of the aggregate liquidity demand of the market during the full period (equation 3.8).

In the first column, we use the liquidity demand as the only independent variable to ex-

plain the price movement. In the second column, we add firm control variables. In the

third column, we add day fixed effects to make sure the results are not driven by mar-

ket conditions of some specific days where an exogenous shock happened, and in the
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fourth column, we control for both day and firm fixed effects. Standard errors are robust

to heteroscedasticity. The effect of the net volume on market-makers contribution to the

micro-price movement is positive and significant at the 1% level or better, and stable after

controlling for all variables. The magnitude of the coefficient estimate suggests that every

1% increase in the polarized net liquidity demand results in a change of market-makers

quotation that drives the micro-price by 14.45 basis points, on average in the direction of

market pressure. The economic magnitude of this coefficient encompasses the response

of market-makers quotations both before and after the pandemic outbreak. After distin-

guishing between the period of low uncertainty and high uncertainty (Columns from 5 to

8 presenting the results of equation 3.9), we find that market-makers reaction to liquidity

demand is 4 times larger after the COVID-19 exogenous shock. Immediately after the

lockdown in Italy, every 1% increase in liquidity demand, resulted in an increase of 39bps

of market-makers contributed micro-price in the direction of market pressure. This differ-

ence in quotation adjustment to market pressure illustrates well how market-makers are

risk-averse during periods of high uncertainty. Finally, firms with high liquidity attributes

(low bid-ask spread, low volatility, and high market capitalization) and firms with less

financial leverage have larger price adjustment from market-makers. Since the offer and

demand of liquid shares are usually balanced outside any context, a large net flow in ab-

solute value is more informative for more liquid assets resulting in larger price adjustment

from market-makers.

3.5 Implications on the Price Formation Process

One consequence of information exogenous shocks triggered by public announce-

ments or information disclosure is the increased natural risk holders trading activity who

either need to trade immediately to manage their risk or see in the event a good opportunity

to position themselves in the market and bet on the informational rent of announcement.

However, this liquidity flow is different from the liquidity provided by market-makers.

On one hand, the designated intermediaries ensuring the market-making rule in the mar-

ket are bound by the inventory risk and the adverse selection risk. Hence, as specified by
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Kyle, 1985, they must set the price as close as possible to the assets’ true value by infer-

ring this information from the noisy aggregated volume. On the other hand, the rest of

market-participants may provide liquidity in different circumstances. For instance, while

implementing their trading strategies or managing their risk constraints. Therefore, we

expect that their trading scheme is not liquidity-driven and their prices move less in re-

action to market flows. In this section, we study the joint effect of the liquidity provided

by market-makers and by non-market-makers on the daily price returns, in view of the

COVID-19 exogenous shock.

Similarly to the previous section, we define the daily liquidity demand LD(s,d) as

the ratio of the net traded volume signed by the liquidity consumer order side and the

continuous traded session volume. This definition is equivalent to the volume-weighted

average of the 5min liquidity demand considered above and correct for the U shape of the

daily traded volume curve.

LD(s,d) =
N

∑
k

Q(s,d,k)
Q(s,d)

LD(s,d,k)

=
QBuy(s,d)−QSell(s,d)

Q(s,d)
(3.10)

where QBuy(s,d) and QSell(s,d) are the traded volume initiated respectively by the

buyers and the sellers. We distinguish between the traded volume provided by market-

makers, (QBuy,MM(s,d), QSell,MM(s,d)) defined as the volume initiated by buyers and

seller in the market and where the counterparty was a member of the LP category, and

the volume provided by non-market makers (QBuy,O(s,d) and QSell,O(s,d)). The liquidity

demand answered by each category of market player, market-makers and non-market-

makers follows naturally as the ratio of the amount of flow imbalance reduced by each

category and the traded volume

• The daily liquidity demand addressed to market-makers

LDMM(s,d) =
QBuy,MM(s,d)−QSell,MM(s,d)

Q(s,d)
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• the daily liquidity demand addressed the non market-makers

LDO(s,d) =
QBuy,O(s,d)−QSell,O(s,d)

Q(s,d)

We run the cross-sectional regressions of stocks’ intraday price returns ∆P(s,d) on

market liquidity demand LD(s,d), and one the liquidity demand addressed by the two

categories of market-participants LDMM(s,d) and LDO(s,d) to study their relative effect

of daily price return. Then, we isolate the crisis effect on price elasticity to volume, by

making all variables of interest interact with the Covid-19 dummy.

 ∆P(s,d) = α +λ LD(s,d)+βs Firm Controlss + ε(s,d)

∆P(s,d) = α +λMM LDMM(s,d)+λO LD(s,d,O)+βs Firm Controlss + ε(s,d)
(3.11)

Table 3.4 shows the result of the different specifications of intraday price returns re-

gression on the liquidity demand. In the first column, we regress the intraday price move-

ment on the aggregate liquidity demand in the market submitted to all market participants.

Not surprisingly, the daily price movement is increasing with the liquidity demand, as it

represents the signed market pressure. More buyers than sellers during a trading session

increases the price and vice-versa. However, we find that the daily price elasticity to the

signed volume has increased substantially during the period of the health crisis outbreak,

going from 1.61 before Italy’s lockdown to 3.03 after (column 3). The second and the

fourth columns, compare the effect of the liquidity demand addressed by market-makers

and by non-market-makers on the daily price movement. This shows the marginal con-

tribution of each type of liquidity provision in the price formation process. We find that

when market-makers reduce market liquidity demand by 1% they move daily prices by

7.28 %, while other market participants move the daily price by 2.79 % only to reduce

market flow imbalance by the same amount. This difference in price elasticity to volume

is even larger during the period of high uncertainty, where the liquidity demand addressed

to market-makers has the most impact on daily price movement 11.96 % vs 2.13 % for

non-market-makers liquidity. This increase in the price reaction to liquidity demand cor-
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responds to an increase in the risk premium that market-makers ask to provide liquidity in

an uncertain environment with several unknowns. The result shows that market makers’

reaction to flows follows Kyle’s model far more than other participants, even when the

latter partly provide liquidity

Table 3.4. Cross-sectional regression of intraday price changes on the daily liquidity
demand

This table reports the results of the cross-sectional regressions of the price intraday
change (in ln) on the liquidity demand LD(s,d), the liquidity demand addressed to the
designated market-maker LDMM(s,d) and the liquidity demand addressed to other
trading members LDO(s,d), on CAC 40 Index constituents, from January 1st to April 1st

2020. The numbers in parentheses are t-statistics. *p≤ .1; **p≤.05; ***p≤.01.
Dependent variables Without COVID-19 effect With COVID-19 effect
∆P(s,d) (1) (2) (3) (4)

LD(s,d)
3.38*** 1.61*
(4.78) (1.78)

LD(s,d) ·1d∈COVID-19
3.03**
(2.17)

LDMM(s,d)
7.28*** 3.12
(4.02) (1.44)

LDMM(s,d) ·1d∈COVID-19
11.96***

(3.15)

LDO(s,d)
2.79*** 1.34
(3.73) (1.38)

LDO(s,d) ·1d∈COVID-19
2.13

(1.45)

1d∈COVID-19
-1.08*** -1.1***
(-9.06) (-9.27)

Leverage -0.03*** -0.03*** -0.03*** -0.03***
(-3.06) (-3.0) (-3.0) (-2.95)

Bid-Ask spread 0.05 0.05 -0.08 -0.07
(0.52) (0.5) (-1.19) (-1.14)

Market Cap (ln) 0.56*** 0.54*** 0.48** 0.47**
(2.87) (2.77) (2.57) (2.5)

R2 (%) 1.88 2.09 7.59 8.07
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3.6 Conclusion

The COVID-19 pandemic and the subsequent lockdown brought about an exogenous

and unparalleled shock on the stock market. The crisis thus provides a unique opportunity

to test theories on the price formation process and the change in the trading behavior of

market participants. In this paper, we highlight the role of exogenous information on

market-makers’ pricing rules. We propose an extension to Kyle, 1985 model where the

market-maker estimate the level of market uncertainty and incorporate it into his pricing

rule. The model implies that the market-maker will react differently to market flows

in different market regimes. Thus, the elasticity of prices to liquidity demand will be

higher during a crisis and high uncertain regimes. When the market-maker holds no

information that would allow him to assume high uncertainty, he defines the price relative

to the probability of mistaking the nature of the day’s pattern. This assumption is more

in line with the empirical observations of market-makers changing their trading behavior

during periods of information disclosure. We test model implication empirically on the

Coronavirus outbreak in the first quarter of 2020. The magnitude of the market reaction to

the pandemic was commensurate to the severity of the economic shock, but also to the fact

that market participants have been taken by surprise and were unable to anticipate a shock

of this nature. We propose an empirical estimation of Kyle’s lambda which exploits the

richness of the order book to derive market-markers prices from their activity in the best

bid and ask limits. We find that indeed market-makers’ quotations are well explained by

the signed liquidity demand in the market as specified by the Kyle model. The results are

robust to all controls and significant at 1% or better. Besides, the exogenous information

of the Covid-19 pandemic has been incorporated in market-makers pricing rule. We note

a lower price resistance to liquidity demand from market-makers post-Covid of 39bps

compared to the more stable period before Italy’s lockdown. Moreover, during periods

of high uncertainty, the rest of the market-participants increase their trading activity and

share in liquidity provision. Nevertheless, we show that when other market-participants

provide liquidity, their prices take into account the polarization of the flows to a certain

extent but have no significant effect on daily price returns. Thus, price reaction to flows
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is a market-maker characteristic, as specified by Kyle’s model.
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Appendices

3.A Model Proof

The informed trader maximizes her expected profit argmaxQ E[Q(θ −PM|θ ]. To

solve the model, first, we plug the functional form of the market maker’s pricing rule into

the informed trader’s optimization problem:

∂E[Q(θ −PM)|θ ]
∂Q

= 0⇒ E[θ − P̃−λKu|θ ,ξ M]−2λKQ = 0

⇒ Qθ =
θ − P̃
2λK

(3.12)

The market maker sets the price equal to his conditional expectation of the asset’s

value given the aggregate demand and his signal. Thus, the market-maker have to choose

(P̃,λK) so that

PM = E[θ |Q+u,ξ M] = P̃+λK(Qθ +u)

E[PM] = E[E[θ |Q+u,SM]] = θ ∗

E[PM] = 1
2 P̃+ 1

2θ ∗

 ⇒ P̃ = θ
∗ and Qθ =

(θ −θ ∗)

2λK
(3.13)

The equilibrium coefficient λK is the regression coefficient with the following func-
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tional form:

λK = cov(θ ,Q+u|ξ M)
Var[Q+u|ξ M ]

Var[Q+u|ξ M] =Var[θ−θ∗
2λK

+u|ξ M]

= 1
4λ 2

K
Var[θ |ξ M]+σ2

u

cov(θ ,Q+u|ξ M) = E[(θ −θ∗)(Q+u)|ξ M]

= E[ (θ−θ∗)2

2λK
+u(θ −θ∗)|ξ M]

= 1
2λK

Var[θ |ξ M]



⇒ λK =

√
Var[θ |ξ M]

2 σu

(3.14)

The variance of the asset liquidation value depends on the informational regime.

Therefore, the expected variance of θ given the market-maker estimation of the informa-

tional regime is given by:

Var[θ |ξ M] = σ
2
θ ,0 +(σ2

θ ,1−σ
2
θ ,0) E[ξ |ξ M] (3.15)

Since ξ is a Bernoulli variable, E[ξ |ξ M] ∈ [0,1]. Therefore, the expected variance of the

asset liquidation value given the market-maker estimation of the regime of information is

within [σθ ,0,σθ ,1]

If the market-maker identifies a day as belonging to a highly informative regime

RI1, then using the Bayes rule we prove that it is actually the case ξ = 1. Therefore the
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elasticity of market-maker’s prices to the liquidity demand is maximal and equals to σθ ,1
2 σu

.

E[ξ |ξ M = 1] = 1 ·P[ξ = 1|ξ M = 1]

= P[ξ M = 1|ξ = 1]
P[ξ = 1]

P[ξ M = 1]

=
Pξ M ·Pξ

P[ξ M = 1]

P[ξ M = 1] = P[ξ M = 1|ξ = 1]P[ξ = 1]+P[ξ M = 1|ξ = 0]P[ξ = 0]

= P[ξ M = 1|ξ = 1]P[ξ = 1]

= Pξ M ·Pξ

⇒ E[ξ |ξ M = 1] = 1 and Var[θ |ξ M = 1] = σ
2
θ ,1

⇒ λK =
σθ ,1

2 σu

E[ξ |ξ M = 0] = 1 ·P[ξ = 1|ξ M = 0]

= P[ξ M = 0|ξ = 1]
P[ξ = 1]

P[ξ M = 0]

=
(1−Pξ M) ·Pξ

P[ξ M = 0]

P[ξ M = 0] = P[ξ M = 0|ξ = 1]P[ξ = 1]+P[ξ M = 0|ξ = 0]P[ξ = 0]

= (1−Pξ M) ·Pξ +(1−Pξ )

⇒ E[ξ |ξ M = 0] =
(1−Pξ M) ·Pξ

(1−Pξ M) ·Pξ +(1−Pξ )
< 1

⇒ Var[θ |ξ M = 0] =
(1−Pξ )

(1−Pξ M) ·Pξ +(1−Pξ )
σ

2
θ ,0 +

(1−Pξ M) ·Pξ

(1−Pξ M) ·Pξ +(1−Pξ )
σ

2
θ ,1

If the market-maker does not recognize any shock or information that could influence
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the variability of the asset value, ξ M = 0, then the market-makers sets a price while taking

into account the probability of a wrongly estimated regime. The variance of θ given ξ M

is then a probability-weighted average of σθ ,0 and σθ ,1 depending on the average number

of occurrences of the informative days Pξ and the accuracy of his estimate Pξ M .

3.B Micro price

Harris, 2013 details the theoretical framework in which the defined micro-price is

indeed the expected price, resulting from the maximization of the linear demand utility

function. If we assume that

• Demand and supply schedules are linear in the difference between potential trade

prices and the unobserved true value

• The absolute values of the slopes of these schedules are equal

• Supply and demand are both equal to zero when the price is equal to the unobserved

true value

then we can estimate the unobserved true value from the quoted prices and sizes by simply

expressing the slopes of both schedules as a function of the market quote and the true

value, V
Qa(t)

Pa(t)−V
=

Qb(t)
V −Pb(t)

The resulting estimate is the size-weighted average of the bid and ask prices where

the bid is weighted by the ask size and the ask is weighted by the bid size:

V̂ =
Qb(t) Pa(t)+Qa(t) Pb(t)

Qb(t)+Qa(t)

The linear supply and demand schedules that motivate the derivation of this estimate are

easily derived from the maximization of an exponential utility function, which generally

can serve as a local approximation to any utility function.
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3.C Liquidity metrics

3.C.1 Volatility:

We measure the daily price volatility of a stock returns using the Garman and Klass,

1980 fromula applied to 5min intervals and averaged on the day. Garman-Klass estimate

of the volatility uses the open, high, low and close prices of the time window. This

estimate is robust to micro-structure noise and very close in practice to more sophisticated

ones. It allow us to study the timely shocks of volatility within a day without considering

a rolling window that could smooth and delay the shock. The formula is given by:

σ
GK
k (d) =

√√√√ 1
Nd

Nd

∑
t=1

1
2

log

(
Hd,k

t

Ld,k
t

)2

− (2log(2)−1) log

(
Cd,k

t

Od,k
t

)2

(3.16)

where the indexation k refers to the stock. d to the calculation day. Nd to the number of 5

min intervals in the continuous trading session of day d. It equals to 102 for days where

the open is not delayed. Od,k
t , Hd,k

t , Ld,k
t , Cd,k

t are respectively the open, high, low, close

prices of the tth 5min interval at day d of stock k

3.C.2 Bid-Ask spread:

We take the volume weighted average of the bid-ask spread just before each trans-

action weighted by the volume of the trade. if ζk,d is the set of stopping times where

transactions occur, so the equation

Ψ
k
τ =

1
Vk,d

∑
τ∈ζk,d

Vτ ·Ψk
τ ∀τ ∈ ζk,d Ψ

k
τ =

Askk
τ−−Bidk

τ−
1
2

(
Askk

τ−+Bidk
τ−
) (3.17)

Where Vk,dis the continuous trading phase volume. Bidk
τ− and Askk

τ− are respectively the

bid and ask price just before the transaction at τ . This measure could be interpreted as the

transaction cost of the first e and give insight on the cost of liquidity during maket stress.
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The chapters of this thesis provide original contributions to various aspect of the

literature on the stock market liquidity. It aims to better understand market frictions,

particularly the ones supported by institutional investors, the price formation process,

and the behavior of market participants. Although, we’ve studied the research questions

extensively from different angles, we also thought of possible extension, enhancement,

generalizations or further analysis that could complement our work.

In the first chapter, we estimate the profitability of one of the most implemented

strategies nowadays in the asset management industry, namely factors or asset pricing

anomalies. These strategies are expected to generate above average risk-premia but also

involve more rebalancing and generate higher transaction costs compared to the traditional

buy and hold market cap based strategies. Using ANcerno database containing the execu-

tion of a representative sample of institutional investors in the US, we aim to estimate the

costs effectively paid by asset managers to replicate these strategies. However, we note

nowadays that funds provide fine-tuned portfolios with particular risk-return profiles ex-

posed to several factors simultaneously (Broeders and Jansen (2019)). Thus, estimating

the implementation cost of the factors separately, would make less sense. Therefore, a

possible extension of this paper is to estimate the cost of one unit of risk exposure to each

factor. To do so, we propose to cross-reference mutual funds executions in ANcerno with

a database containing funds holdings, in order to identify their transactions. Compute the

funds’ exposure to each risk factors, then with a second stage regression, estimate the cost

of executing one unit of risk exposure for each factor.

In the second chapter, We provide a methodology to estimate transaction costs in a
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crowded environment. Since investors’ synchronous trading is difficult to measure before

the start of the trading session. We train a Bayesian network to capture the dependencies

between the market order flow imbalance and investors’ historical trading decisions and

use it to better predict orders’ transaction cost. This modeling has demonstrated its value

by recovering the missing value of order flow imbalance and enhancing the accuracy

of the estimates. However, the same model could be improved further by adding more

layers to the network. One of the intuitive generalizations of the model is to incorporate

a temporal aspect. In this paper, observations are assumed independent and identically

distributed. We can make the model dynamic by adding layers to the network to account

for previous values of order flow imbalance in the estimation of the daily imbalance and

consequently the implementation shortfall. This should improve the estimates because

the order flow imbalance is positively auto-correlated.

Finally, in the third chapter, we model market-participants interaction in different

regimes of uncertainty. We extend the Kyle model set-up by assuming that the variability

of the risky asset is time dependent and changes with the level of uncertainty. As a result,

the market-makers response to the aggregate liquidity demand is also function of the

regime of uncertainty. The model provided in this paper, takes the simple case of 2 levels

of uncertainty: low or standard where no major event that could impact financial market

occurred and a high uncertain regime. However, market uncertainty can rise for micro-

and macro-economic reasons. Macro-uncertainty, impacts the level of systematic risk in

the market. It could be triggered for instance, by the adoption of new monetary or fiscal

policies, the publication of government statistics, an exogenous shocks on the economy

such as natural disasters or health crises, that leads to increased macro-volatility. Micro-

events on the other hand, leads to changes in firms’ idiosyncratic variables. It results from

periodic financial reporting, earnings calls announcements, analyst forecasts, or news on

the future prospects and latest achievements of the company. The model presented in

this chapter can be easily generalized to a model with two price reactions depending

on the type of uncertainty (micro or macro). In the empirical part of this paper, It will be

interesting to compare market-maker’s response to the Covid-19 outbreak, to firm specific

events for example earning calls.
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MOTS CLÉS

Coûts de Transaction, Impact sur le marché, Processus de Formation des Prix, Investissement Factoriel

RÉSUMÉ

Cette thèse propose trois contributions originales, sous la forme d’articles autonomes, à la littérature sur les coûts de

transaction, le processus de formation des prix et l’encombrement. Le premier chapitre de la thèse étudie de manière

approfondie la rentabilité de l’une des stratégies les plus mises en œuvre aujourd’hui dans le secteur de la gestion

d’actifs, à savoir les facteurs nommés ou les anomalies de prix des actifs. Ces stratégies sont censées générer une

prime de risque supérieure à la moyenne, mais elles impliquent également davantage de transactions. Nous évaluons

dans quelle mesure les frictions du marché constituent une limite à l’arbitrage pour ces stratégies, et quelles seraient leurs

capacités à atteindre le seuil de rentabilité compte tenu des habitudes de négociation des investisseurs institutionnels.

Le deuxième chapitre souligne le rôle important de la négociation synchrone des investisseurs institutionnels dans la

prévision des coûts de transaction des ordres. Cependant, cette variable est difficile à connaı̂tre avant le début de la

séance de négociation. Nous proposons une méthodologie pour estimer les coûts de transaction dans un environnement

encombré, en utilisant un réseau bayésien qui saisit les dépendances du déséquilibre du flux d’ordres sur le marché et

des décisions de négociation historiques des investisseurs, afin de mieux prédire le coût de transaction des ordres. Enfin,

le troisième chapitre modélise la réponse des teneurs de marché à l’offre et à la demande globale de liquidité du marché

dans différents régimes d’incertitude. Nous remettons ensuite en question les implications du modèle pendant la période

très incertaine de l’épidémie de COVID-19.

ABSTRACT

This paper-based thesis is composed of three autonomous chapters and contributes to the trading costs and price forma-

tion process literature. The first chapter of the thesis extensively studies the profitability of one of the most implemented

strategies nowadays in the asset management industry, named factors or asset pricing anomalies. These strategies are

expected to generate above average risk-premia but also involve more trading. We assess to what extent market friction

constitutes a limit to arbitrage for these strategies, and what would be their break-even capacities taking the institutional

investors’ trading patterns. The second chapter highlights the important role of institutional investors’ synchronous trading

in predicting order transaction costs. However, this variable is difficult to know before the start of the trading session. We

provide a methodology to estimate transaction costs in a crowded environment, using a Bayesian network that captures

the dependencies of the market order flow imbalance and investors’ historical trading decisions, to better predict order

transaction cost. Finally, the third chapter models market-makers’ response to the aggregate liquidity supply and demand

of the market in different regimes of uncertainty. We then challenge the model implications during the highly uncertain

period of the COVID-19 outbreak.

KEYWORDS

Trading Costs, Market Impact, Prica Fromation Process, Asset Pricing Anomalies, Factor-based Investments
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