
HAL Id: tel-03651269
https://theses.hal.science/tel-03651269

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a better comprehension of deep learning for
side-channel analysis

Loïc Masure

To cite this version:
Loïc Masure. Towards a better comprehension of deep learning for side-channel analysis. Cryptogra-
phy and Security [cs.CR]. Sorbonne Université, 2020. English. �NNT : 2020SORUS443�. �tel-03651269�

https://theses.hal.science/tel-03651269
https://hal.archives-ouvertes.fr


SORBONNE UNIVERSITÉ

ÉCOLE DOCTORALE N° 130
INFORMATIQUE, TÉLÉCOMMUNICATIONS, ÉLECTRONIQUE DE PARIS

CEA GRENOBLE - LETI LABORATOIRE D’INFORMATIQUE DE PARIS 6

TOWARDS A BETTER COMPREHENSION OF DEEP LEARNING
FOR SIDE-CHANNEL ANALYSIS

par Loïc MASURE

Thèse de doctorat d’ Informatique

Dirigée par Emmanuel PROUFF et Cécile DUMAS

Présentée et soutenue publiquement le 18 décembre 2020

Devant un jury composé de:

Pr. Hichem SAHBI, CNRS / Sorbonne Université Président du jury
Pr. François-Xavier STANDAERT, Université Catholique de Louvain Rapporteur
Pr. Lilian BOSSUET, Université Jean-Monnet, Saint-Étienne Rapporteur
Dr. Vanessa VITSE, Université Grenoble Alpes Examinatrice
Dr. Annelie HEUSER, CNRS Examinatrice
Dr. Benoît GÉRARD, DGA Membre invité
Dr. Emmanuel PROUFF, ANSSI Directeur de thèse
Dr. Cécile DUMAS, CEA - LETI Encadrante, membre invitée



ii



Remerciements

Je voudrais en premier lieu remercier François-Xavier STANDAERT et Lilian BOSSUET pour
avoir accepté d’être les rapporteurs de ce manuscrit, et pour leurs retours très instructifs. Je
remercie également Vanessa VITSE et Hichem SAHBI, qui en plus d’avoir accepté de faire
partie de mon jury, ont participé à mon comité de suivi de thèse ces deux dernières an-
nées. Leurs retours en cours de route m’ont aidé dans l’orientation et la planification de
mes travaux. Je suis reconnaissant à Annelie HEUSER et Benoît GÉRARD d’avoir également
accepté de faire partie de mon jury. En outre, j’aimerais les remercier tous les deux pour leur
implication indirecte dans cette thèse : Annelie en qualité de sheperd pour le papier à CHES

2020; et Benoît pour nos échanges à la conférence C&ESAR 2018, ainsi que pour son invita-
tion au séminaire SEMSECUELEC à Rennes en Janvier 2020, du temps où les présentations
orales ne se tenaient pas encore sur Zoom.

Cette thèse n’aurait pas pu voir le jour sans Cécile DUMAS, mon encadrante. Cécile m’a
fait confiance dès le début, alors que j’étais presque profane en cryptographie. C’était un
pari risqué, mais sa bienveillance et son encadrement au quotidien m’ont très vite rassuré.
Alors pour toutes nos grandes discussions au cours de cette thèse, pour avoir moult fois
relu mes écrits, des fois jusque très tard dans la nuit (ou tôt le matin), et même le jour de
ton anniversaire; pour la transmission de tout ton savoir et ton savoir-faire, je t’adresse un
immense merci et te témoigne ma reconnaissance éternelle.

De même, cette thèse n’aurait pas eu la même envergure sans Emmanuel PROUFF, mon
directeur de thèse. Diriger une thèse à distance me semblait un grand défi a priori. Néan-
moins, ces trois années ont démontré que cet obstacle pouvait être très bien surmonté et
n’enlevait rien à la qualité de l’encadrement, notamment grâce à ta disponibilité, ta péd-
agogie, et ta vaste connaissance de la littérature scientifique dans la discipline. À cela,
j’ajouterais une immense gratitude pour la finesse de ta relecture de tous mes travaux. Tes
retours et conseils sur la rédaction/construction d’un papier m’ont donné le plaisir d’écrire
; paradoxe pour le non-littéraire que je suis.

Outre mes deux encadrants, je suis reconnaissant envers deux personnes qui m’ont
également servi de mentor au cours de cette thèse. Tout d’abord Eleonora, qui m’a prodigué
ses conseils et avis à chaque étape de la thèse au CESTI. Cette thèse étant le prolongement de
la sienne, la lecture de ses travaux et de son manuscrit ont été des références incontournables
pour moi. Ensuite, Pierre-Alain, pour nos conversations ponctuées de conseils techniques.
Tes travaux et ton expertise dans le domaine de l’apprentissage m’ont souvent apporté une
nouvelle perspective lorsque j’étais confronté à des problèmes techniques.

Pour faire une bonne thèse, un bon encadrement est une condition nécessaire, mais
pas suffisante. Il faut aussi un bon environnement de travail. C’est à mettre au crédit de
l’ensemble du CESTI, le laboratoire dans lequel j’ai passé ces trois dernières années, et en pre-
mier lieu de Anne, qui en a pris les rênes au moment-même où j’intégrais l’équipe. En bonne
cheffe d’orchestre, elle a su tout mettre en oeuvre pour s’assurer du bien-être des thésards. Je
lui suis très reconnaissant de m’avoir accordé sa confiance à en juger par les nombreuses fois
où j’ai été “désigné volontaire” pour représenter le laboratoire lors de présentations orales.

Un grand merci aux doctorants du labo, mes compagnons d’infortune qui m’ont rejoint
progressivement au fil des années, j’ai nommé Vincent (a.k.a. le crypto-trader), Gabriel
(a.k.a. la machine de Boltzmann), et plus récemment Raphaël. J’espère que vous vous remet-

iii



trez de mon déménagement, même si je ne vais qu’au bout du couloir.
Merci à Vincent, Laurent et Thomas du CCRC1, pour toutes nos sorties vélos sur les

hauteurs de Chartreuse ou à l’assaut des plus hauts cols des Alpes ; ponctuées de débats
dont le niveau n’avait souvent d’égal que le dénivelé parcouru.

Merci à Marie, ange gardien du labo, toujours présente quand on a besoin d’elle, que ce
soit pour réaligner des traces, trouver un banc de mesures disponible, ou payer sa tournée
à la Nat’. Merci à Claire et Benoît, pour les soirées arrosées dans votre repaire du Vercors, et
pour m’avoir sorti d’une bonne fringale l’été dernier : je vous dois encore quelques biscuits
. . . Merci à tous les autres membres du CESTI, actuels ou passés : Jean-Christophe, Damien,
David, Julien, Guillaume, Elisabeth, Frédéric, Antton, Olivier (×3), Philippe (×3), Roland,
Marielle, Nicolas, Véronique, Jessy, Stéphanie, Emrick, Yann, Aurélien, Charles, Dorian
(félicitations pour ton bébé). Je n’oublie pas le LSOSP (parce qu’on les aime quand-même) :
je remercie en particulier Antoine, Maxime, Valence ainsi qu’Alexis pour nos échanges sur
nos travaux respectifs. De même, j’adresse mes remerciements à Bruno CHARRAT et Assia
TRIA qui, même de loin, ont su suivre l’évolution de mes travaux avec bienveillance; aux
assistantes du DSYS, Aurélie, Majda, Sandrine et Virginie, pour leur aide et leur réactiv-
ité; au service RH du département avec Franck pour m’avoir grandement aidé à surmonter
quelques difficultés administratives lors de l’inscription en thèse, et plus récemment Sophie.

Grâce à certains cités précédemment, j’ai pu élargir mon horizon de travail au delà sim-
plement du CESTI, et je tiens à exprimer ma gratitude à ceux qui ont collaboré avec moi
sur différents projets. Tout d’abord, Damien et Nicolas, du LIALP, avec qui nous avons tra-
vaillé – et continuons – pour le projet CLAPS, qui m’a permis de rythmer mon confinement.
Ensuite, Rémi STRULLU de l’ANSSI, pour sa collaboration sur le projet ASCAD-v2, matérial-
isée par nos nombreux échanges de mails et appels téléphoniques. J’espère que cela ouvrira
de nouveaux horizons de recherche, à nous et aux autres membres de la communauté ML /
SCA.

Je tiens à remercier toutes les personnes avec qui j’ai pu échanger lors des divers sémi-
naires / conférences auxquels (du temps où c’était physiquement possible). Je pense en
particulier à Mathieu CARBONE, Élie BURZSTEIN, Rémi AUDEBERT, Yanis LINGE, Houssem
MAGHREBI, et tous les autres que j’ai rencontrés à Amsterdam, Darmstadt ou Gardanne.
Leurs retours m’ont été précieux pour orienter mes premières contributions au domaine.

Merci à ceux que j’ai côtoyés à GEM : Angèle pour m’avoir incité à donner des cours en
école de commerce, Mustapha et Barthelemy pour la confiance qu’ils m’ont accordée alors
que l’enseignement était une toute nouvelle expérience pour moi, et qu’ils m’ont renouvelée
en compagnie d’Alain plus récemment.

Viennent alors des remerciements plus personnels, mais non moins importants dans la
réalisation de cette thèse. Mes amis de prépa à Lyon, en particulier Clémentine et Aurélien
qui ont commencé leur thèse au CEA en même temps que moi. Cela m’a énormément ras-
suré de pouvoir discuter de nos tracas respectifs sur la thèse. Courage à Théo, Gabriel,
Romain, et plus récemment Bastien qui ont choisi cette voie.

Il est sans doute vexé de ne pas avoir été cité précédemment parmi, mais c’est parce qu’il
un mérite remerciement à lui tout seul pour son soutien psychologique et sa finesse qui le
caractérisent tant : j’ai nommé Michel. Mon moral ces dernières années aurait été beaucoup
plus erratique sans nos innombrables appels Skype transatlantiques. Merci à Hugo pour
nos escapades à Montréal, Grenoble, et Barcelone, qui m’ont permis de souffler un peu dans
la frénésie de la thèse. Merci à tous les autres membres de la secte: Mathilde pour m’avoir
fait visiter Darmstadt à l’occasion de COSADE, Tiphaine, Oksana et Alex, Pierre, Anthéa,
Léa. Vous avez tous, à un moment ou à un autre, contribué à mon épanouissement lors de
ces deux années à Lyon et celles qui ont suivies, et je vous en suis très reconnaissant.

Merci à mes amis Grenoblois de toujours qui ont contribué à me faire penser à autre
chose que le travail : Thibaut, Chloé, Nina, Fabien, Alexis, Hugo, Fanny, Julie, Anaïs, David,

1Club Cycliste des Retraités du CESTI.

iv



Constance, JB, Lætitia. J’espère qu’on pourra fêter ça très bientôt, comme au bon vieux
temps ! Merci à Edo et Miguel, pour les super sorties en montagne, en ski de rando ou
à VTT, et qui, malgré les multiples plans foireux dans lesquels je les ai emmenés, me sont
restés fidèles.

Enfin, je remercie l’ensemble de ma famille pour son soutien indéfectible de toujours. Ma
grand-mère, pour l’immense soutien logistique tout au long de cet été si particulier à Salon-
de-Provence lorsque j’écrivais ce manuscrit, en dépit des entraînements de la patrouille de
France, de jour comme de nuit. Merci à mes grands-parents de Sully-sur-Loire, qui m’ont
aussi hébergé plusieurs fois durant cette thèse lorsque j’étais de passage sur Paris. Je réserve
mes tout derniers remerciements – parce que ce sont les plus importants – à mes parents
Pierre & Solen pour l’immense soutien tout au long de mes études et plus particulièrement
ces derniers mois qui n’étaient pas de tout repos ; ainsi que mes trois petites soeurs, Pauline,
Claire & Anne-Lise pour toutes ces années à me supporter, surtout durant ce confinement.

À mon grand-père.

v



vi



Contents

Contents vii

1 Context, Objectives and Contributions 1
1.1 Frame of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 From the Attacks towards the Evaluation . . . . . . . . . . . . . . . . . . . . . 6
1.3 Deep Learning based Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 13
2.1 Notations and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Recalls in Probability and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Recalls in Discrete Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Recalls on AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Recalls on Vectorial Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Side-Channel Attacks 23
3.1 Definition of a Side-Channel Attack . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Assessing an Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Conditions of an Optimal Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Profiled Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Unprofiled Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Leakage Characterization and Pre-Processing . . . . . . . . . . . . . . . . . . . 37
3.7 Counter-Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Overview of the Used Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Deep Learning for Side-Channel Analysis 55
4.1 The Statistical Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 The Neural Networks Class Hypothesis . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Implementing the ERM with Neural Networks . . . . . . . . . . . . . . . . . . 66
4.4 An Overview of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Theoretical Aspects of Deep Learning Based Side-Channel Analysis 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Model Training for Leakage Assessment . . . . . . . . . . . . . . . . . . . . . . 77
5.3 NLL Minimization is PI Maximization . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Study on Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Application on Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



CONTENTS

6 DL-based SCA on Large-Scale Traces: A Case Study on a Polymorphic AES 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Gradient Visualization for General Characterization in Profiling Attack 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Study of an Optimal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Proposal for a Characterization Method . . . . . . . . . . . . . . . . . . . . . . 108
7.4 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Conclusion & Perspectives 125
8.1 Summary of the Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 New Tracks of Research in Deep Learning (DL)-based Side-Chanel Analysis

(SCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Noise Amplification of Secret-Sharing I
A.1 The Link between Noise Amplification and Convolution . . . . . . . . . . . . I
A.2 A Fixed-Point-Like Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

B List of acronyms V

C Glossary IX

D List of symbols XI

List of Figures XIII

List of Tables XV

viii



Chapter 1

Context, Objectives and Contributions

Contents
1.1 Frame of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 A World Full of Embedded Cryptography . . . . . . . . . . . . . . . 2
1.1.2 The Advanced Encryption Standard (AES) . . . . . . . . . . . . . . . 4
1.1.3 The Physical Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 The Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 From the Attacks towards the Evaluation . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Goals and Stakeholders of the Evaluation and the Certification . . . 6
1.2.2 The Need of Constant Improvement of the State of the Art . . . . . . 8

1.3 Deep Learning based Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 A Recent Emergence in Side-Channel Analysis . . . . . . . . . . . . . 9
1.3.2 The Drawbacks of Deep Learning in Side-Channel Analysis . . . . . 9

1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

1.1 Frame of the Thesis

1.1.1 A World Full of Embedded Cryptography

Research in cryptology has always benefited the competition between its two sides, namely
cryptography and cryptanalysis. Depending on the epochs, one of the two sides may have
taken the advantage on the other. Some important events in History, such as wars and
conflicts, have been indirectly impacted by this latent rivalry [Sin99]. Yet, the past forty
years have seen the emergence of a period in which cryptography has taken the advantage.
Along with other external factors, this has implied a pervasiveness of cryptography, shaping
our mordern lives. This trend may be explained by three factors that we detail hereafter:

1. The emergence of trust in cryptography.

2. The digitization of our modern world.

3. The advent of standardization in cryptographic protocols.

The Emergence of Trusted Primitives. Crypto-systems may be seen as the set of crypto-
graphic primitives which, combined to each other, provide the security functionalities re-
quired by the user, such as confidentiality, integrity, authenticity, non-repudiation. As such,
the security and reliability of the whole crypto-system is grounded on those of the primi-
tives. The quest of perfect primitives is so far a mission that motivates most of the research
work in cryptology.

Hopefully, over the last decades, the cryptology community has seen the emergence of
secure primitives, which currently allows to bring enough trust in the crypto-systems. The
notion of security of such primitives may be defined in two ways, that we recall hereafter.

• Provably secure: A primitive is said to be provably secure if and only if (i.f.f.) de-
feating this primitive is strictly equivalent to solving a known mathematical problem,
so that any attacker willing to defeat the primitive would have to solve this math-
ematical problem. If the latter is known to be intractable enough, then this brings
strong guarantees in the security of the primitive. As examples, the Diffie-Hellman
key exchange protocol relies on the discrete logarithm problem [DH76], while the Rivest-
Shamir-Adleman (RSA) protocol used in asymmetric cryptography relies either on the
factorization of large prime numbers [RSA78] or on the so-called RSA problem [BV98].
Both problems are known to be intractable on classical computers.

• Reputed secure: A primitive is said to be reputed secure i.f.f. no efficient attack has been
emphasized over a long period. Although this does not rigorously prove the security
of the primitive, the fact that many people from the research community in cryptol-
ogy have attempted to find a vulnerability without success gives strong evidences of
the soundness of the given primitive. This is particularly the case of the Advanced
Encryption Standard (AES), that we will further describe in Subsection 1.1.2: the best
known attack requires a complexity that is roughly of the same order of magnitude as
a brute-force attack enumerating the 2128 possible keys, which makes a practical attack
intractable [BKR11].

Although the security property of the mentioned primitives may vary in the next years,
in the case where new attack paths might be found,1 it is noticeable that the mentioned
primitives have earned their reputation over a quite long period of time, thereby reinforcing
trust in them.

1Actually quantum computers would be able to efficiently resolve prime factorization and discrete loga-
rithm [Sho94]. Hopefully, quantum computers are not up to date yet, which would let enough time to find
post-quantum algorithms resilient to such threat. The National Institute of Standard and Technology (NIST)
is currently running a competition to select new post-quantum designs. The interested reader may refer to
https://csrc.nist.gov/projects/post-quantum-cryptography.

2

https://csrc.nist.gov/projects/post-quantum-cryptography


CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

From (Electro)-Mechanical to Electronic Systems. Crypto-systems propose solutions to
secure communications asking some secret keys for computations on which is ground their
security. Keys are represented as long strings from an alphabet specified by the underlying
cryptographic primitives. A sound crypto-system must let the parties communicating with
each other to be able to securely store and manipulate those keys, without delivering them
in clear over insecure channels. However, from a practical perspective, using trusted cryp-
tographic primitives is not enough to spread their use: they must be efficiently usable in any
context. Thanks to the progressive replacement during the 20-th century of crypto-systems
implemented on mechanical or electro-mechanical devices, by fully electronic devices real-
izing such operations is nowadays drastically faster [Sin99].

As an example, smart cards were historically conceived as a practical solution to such
a key storage issue: they consist in small devices that a user can easily carry around with,
which not only store secret keys as long strings of bits, but also are able to internally perform
cryptographic operations, in such a way that they can be involved in secure communication
protocols, that do not require the delivering of secret keys. Smart cards are pocket-sized
plastic-made cards equipped with a secure component, which is typically an integrated cir-
cuit containing some computational units and some memories. They have been patented by
Moreno in 1974 [Mor74] – as a memory device – and Ugon in 1977 [Ugo77] – a a computing
device.

Today, about 40 years after its invention, smart cards still have a huge diffusion, both in
terms of applicative domains and in terms of quantity of copies. Indeed, they serve as credit
or ATM cards, healthy cards, ID cards, public transportation payment cards, fuel cards,
identification and access badges, authorization cards for pay television, etc. Slightly chang-
ing the card support, we find other applications of the same kind of integrated circuits, for
example the mobile phone Subscriber Identity Modules (SIMs) and the electronic passports.
In terms of quantity, a marketing research found out that in 2014, 8.8 billion smart cards
have been sold [ABI], i.e., the same order of magnitude of the global population.

In addition to smart cards, the recent growing and variation of security needs lead to the
development and specification of other kinds of secure solutions, for example the Trusted
Platform Module (TPM), which is a secure element providing cryptographic functionalities
to a motherboard, or completely different solutions based on software layers, which are
today in great expansions. An example is provided by the Trusted Execution Environment
(TEE), a software environment of the main processor of a smartphone or tablet, designed to
assure resistance to software and even hardware threats.

The Standardization of Cryptographic Primitives. The last ingredient contributing to the
spread of applications relying on cryptography is the standardization of the protocols and
the primitives. Standardization enables to make different crypto-systems compatible, so that
any couple of instances (people, device) equipped with a same cryptographic primitive can
then securely communicate, without necessarily having to first agree on a communication
protocol, since the standardized one is implicitly chosen. Standardization is usually done
by a third part, able to endorse the security of the proposed primitive after comprehensively
verifying its security. Typically, this is done by institutions or government agencies such as
the NIST. In this thesis, we will mainly focus on a standard edited by the latter institution,
called AES, presented in Subsection 1.1.2. The economic impact of the adoption of this
standard, along with the two other factors we previously described, has been evaluated
2018 to 250 billion dollars at a global scale, according to a NIST report [LFS18].

3



CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

PlaintextKey

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKeyKeySchedule

n = N?

SubBytes

ShiftRows

AddRoundKey

n ← n + 1

No

Yes

Figure 1.1: The rounds of AES.

1.1.2 The Advanced Encryption Standard (AES)

In this thesis, we will mainly focus on the AES algorithm,2 though many aspect may be gen-
eralized to other algorithms. The AES is a block cipher used for encryption or authentication
in embedded devices. Its specifications are established by the Federal Information Process-
ing Standard (FIPS) publication 197 released by the NIST in 2001 [Nat01]. It proceeds blocks
of 128 bits by running several rounds, as depicted in Figure 1.1, composed of elementary op-
erations, called AddRoundKey,SubBytes,ShiftRows,MixColumns, thanks to a secret key of
128 bits as well.3 The diffusion is ensured by the ShiftRows and the MixColumns operations,
while the confusion is ensured by the AddRoundKey and the SubBytes operations. The two
latter operations are involved in the different aspects on which this thesis is dedicated. That
is why we detail them in Section 2.4.

The AES cryptographic primitive has been carefully designed to be optimally robust
against some classes of attacks such as linear cryptanalysis and differential cryptanalysis.
Therefore, it has the advantage to be reputed practically secure against classical cryptanaly-
sis. In the latter threat model, a.k.a. black-box attack scenario, an attacker is assumed to know
the algorithm (according to the Kerckhoff’s principle) and of some inputs and/or outputs.
Starting from these data, his goal is to retrieve the secret key. In other words, no internal
variable can be observed during the execution. The best known black-box attacks on AES
assume to reduce the number of rounds or have a marginal gain compared to a brute force
enumeration of the 2128 keys, thereby leading to intractable secret key recoveries [BKR11].

Another key argument for its choice as a standard is that any elementary operation can

2 This algorithm is also known under the name of Rijndael after the name of its two creators Vincent Rijmen
and Joan Daemen.

3 There exists AES versions using keys of respectively 192 and 256 bits. In this thesis, we will mainly focus
on the 128 bit version of the algorithm, without loss of generality.

4



CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

be done at the scale of one byte, i.e., 8 bits. This is particularly true for the AddRoundKey
and the SubBytes, which are byte-wise operations. This makes it compatible with most of
software and hardware architectures, based on at least 8 bits and most of the time 32 for
Micro-Controller Unit (MCU) or 64 bits for Central Processing Unit (CPU) nowadays. This
compatibility with most of electronic device architectures is one of the cornerstone of its
success in modern crypto-systems. However, this success comes with a major drawback in
terms of security, despite its robustness against classical cryptanalysis. This drawback does
not come directly from the algorithm itself, but rather from its physical implementation, as
we will see in the next sections.

1.1.3 The Physical Attacks

The black-box threat model fits well with an adversary having access to the communication
channel between two parties. However, this scenario does not fit anymore with modern
crypto-systems embedded in electronic devices for one simple reason: the secret key is phys-
ically stored in the device, and the adversary may have a physical access to the latter one
storing the secret key. As an example, a credit card containing sensitive information useful
to proceed banking transactions may be stolen. A physical access to this device is likely to be
exploited by a malicious person to proceed fraudulent transactions. Likewise, a payment-
TV service may send a smart card every month to its customer on which is implemented a
cryptographic primitive using a key. This key generates dedicated information necessary to
decrypt a signal sent on a public channel by the service. Provided that the customer guesses
the key stored inside the smart card, he may be able to clone it and to sell those clones at
the expense of the payment-TV service. The black-box model stipulates that the customer
does not know this key. Yet, we can see here that it may have a physical access to the device
storing it, which is likely to break the black-box model assumption.

Of course, having a physical access to the device is not sufficient to have a perfect knowl-
edge of of the secret key which is stored inside. Since this is not a public information, it is
expected that the design of the implementation considers the key as a private variable, i.e., a
variable for which the access (in reading or over-writing) by an external program is denied.
This is particularly the case for smart cards, as mentioned in Subsection 1.1.1. Therefore,
the attacker must circumvent this constraint by proceeding a so-called physical attack, which
aims at exploiting the weaknesses of the implementation of a cryptographic primitive, rather
than the algorithm itself, by observing and/or interacting with its physical environment.

The word “observing” refers to passive attacks, in which the device runs as expected by
its specifications. The attacker only observes its behavior through the acquisition of physical
measurements, without provoking any alteration. On the contrary, the word “interacting”
refers to active attacks, during which a special manipulation is performed, either on the
target device or on its physical environment, in order to corrupt the expected behavior of
the device.

Physical attacks englobe a wider scope than just attempting to recover a secret key used
by a cryptographic primitive: in particular, active attacks are often dedicated to bypass some
security measures implemented in a program – not necessarily a cryptographic primitive –
embedded on the target device. To this end, an attacker may perturb the implementation
with fluctuations of its physical environment, e.g. with glitches occurred by power con-
sumption or Electro-Magnetic (EM) emanations, laser pulses on the device, or physical re-
configuration of electronic circuits thanks to a Focused Ion Beamer (F.I.B.). Active attacks
are beyond the scope of this thesis: we will only focus on passive attacks, and more pre-
cisely attacks where an adversary observes the so-called side-channels that we describe in the
following section.

5



CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

1.1.4 The Side-Channel Attacks

It turns out that depending on the nature of its implementation, a cryptographic primitive
may also spread key-dependent signals on non-purposed side channels, besides the main
communication channel on which the ciphertext message is supposed to be broadcast. Those
side channels are depicted in Figure 1.2.

Figure 1.2: The different side channels encoun-
tered by an electronic device. Courtesy of
Eleonora Cagli.

Inside the electronic device, all the data re-
lated to the cryptographic primitive – i.e.
the plaintexts, the secret key, the cipher-
texts and all the intermediate computations
– are stored in the memory, loaded through
the bus, and manipulated in the CPU regis-
ters, under the physical form of electric sig-
nals. All those elements are made of gates
whose power consumption depends on the
binary data they are supposed to store or
to drive. Therefore, depending on the
processed data, an oscilloscope can notice
slight changes in the measured power con-
sumption, so an attacker can monitor this
physical measurement to recover some in-
formation about the key, and thereby break-
ing the target device, as shown by Kocher [KJJ99]. A more detailed discussion about this
dependency is proposed in Section 3.5.

Likewise, any change of value in the data passed through a given gate would result in a
change of current in the gate, resulting in the emission of Electro-Magnetic (EM) radiations,
which can be monitored thanks to an EM probe [GMO01, QS01].

Other non-desired channels can be exploited by a malicious person: the intermediate
computations processed by the electronic device can emit specific sounds allowing to dis-
tinguish secret values [GST14]. Moreover, if until a few years ago it was thought that only
small devices, equipped with slow micro-processors and with small-sized architecture, such
as smart cards, were vulnerable to this kind of side-channel attacks, the last cited recent work
about acoustic emanations, together with other works exploiting electro-magnetic fluctua-
tions, pointed out that much faster and bigger devices, i.e. laptops and desktop computers,
are vulnerable as well [GPT15, GPPT15, GPPT16]. Finally, the runtime of the implementa-
tion of a cryptographic primitive can also carry some sensitive information – i.e. depending
on secret values, as emphasized by the seminal work of Kocher in 1996 [Koc96]. This is par-
ticularly true when the implementation of the cryptographic primitive contains branches
whose evaluation depends on sensitive values: if the different branches do not have the
same runtime, it is therefore possible to guess which branch has been selected, which in
turn provides information on the secret-related variable tested to branch. Recently, in 2018,
Kocher et al. proposed a timing attack based on modern CPU’s architectures, involving
low-level optimizations such as branch prediction and speculative execution [KHF+19]. Those
optimization tricks concern nowadays most of the CPUs such as INTEL, AMD, or ARM pro-
cessors, therefore making the vulnerability pervasive.

1.2 From the Attacks towards the Evaluation

1.2.1 Goals and Stakeholders of the Evaluation and the Certification

The emergence of side-channel attacks as pervasive and credible threats on modern crypto-
systems has contributed to the trend from the industrial and institutional stakeholders of
assessing and mitigating them, in order to still ensure the reliability on the security of such

6



CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

Conceives a 
component

Evaluates 
Security Claims 

Delivers a Security 
Certification

Commercialises the 
certified product

Developer ITSEF ANSSI Developer

Loïc

Cécile

French Certification Scheme

Emmanuel

Figure 1.3: The French certification scheme. Inspired from Cagli [Cag18].

crypto-systems. This is concretely materialized by the emergence of certification schemes.
This is a – sequence of – process(es) that aim at ensuring that the security claims of a given
Target of Evaluation (T.O.E.) are indeed verified, up to the point that a certification body can
endorse those claims by delivering a security certification. The certification scope depends
on the levels of the security, and on the scope of the T.O.E.: the latter one can either englobe
a whole product – e.g. a smart card – or only a specific part of it – e.g. its Integrated Circuit
(IC). Likewise, the certification is delivered for a given period (e.g. 3 years), during which it
can still be revised depending on the emergence of new threats compromising the security
claims.

The most famous scheme is the Common Criteria for Information Technology Security
Evaluation (CC) created in 1999, gathering several national certification bodies around the
world. The fact that those different certification bodies use the same scheme contributes to
the standardization of the certification of security assessment. Hereafter, we briefly present
the different stakeholders of a certification scheme, depicted on Figure 1.3.

• The Developers conceive the product for which they ask a security certification. Ask-
ing a security certification is not mandatory, but often represents key stakes for the
final product, e.g. commercial advantage over a similar product. In the certification
scheme, the product is referred as the T.O.E.

• The Evaluators: When the certification query is claimed by the developer, the lat-
ter one ask an evaluation laboratory to assess the security of the T.O.E. An evalua-
tion laboratory is often referred under the name of Information Technology Security
Evaluation Facility (ITSEF) – Centre d’Évaluation de la Sécurité des Technologies de
l’Information (CESTI) in French. To evaluate the security of the T.O.E. claimed by the
developers, the ITSEF verifies the expected functionalities, by inspecting not only the
specifications of the T.O.E., the T.O.E. as itself and – depending on the required level of
security – the other components of the products which interact with it. Eventually, de-
pending on the whole lifecycle of the T.O.E., some inspections on site – e.g. foundries –
may be done. If vulnerabilities are identified, the evaluator imagines threat scenarios
by building attack paths, in order to assess the required means to succeed the attack,
in terms of human, material and financial resources, or technical expertise. If need be,
the evaluator realizes himself the attack – or at least a part of it – in order to verify
the reliability of its assessment. Based on his investigations, the evaluator produces

7



CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

an Evaluation Technical Report (ETR), sent to the developers and to the certification
body.

• The Certification Body delivers the security certification, based on the ETR produced
by the ITSEF. Usually, the certification body is a governmental organization, such as
the Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI) in France
or the Bundesamt für Sicherheit in der Informationstechnik (BSI) in Germany, but it
can also be a private organization such as the Europay-Mastercard-Visa Consortium
(EMVCo). Sometimes if needed, the certification body can ask the ITSEF for further
investigation. Likewise, it can even verify that the evaluation has been correctly con-
ducted by the ITSEF, either by reproducing some parts of the evaluation on its own or
by ordering audits into the evaluation laboratory. The certificate is often made public
to ensure not only the developers but also the final users about the claimed security of
the T.O.E.4

1.2.2 The Need of Constant Improvement of the State of the Art

As a starting point of this section, it is interesting to more precisely define what the term
“security” means, and more particularly to point out the difference with the meaning of the
term “safety”, despite their closeness.

“The safety describes a machine designed to prevent inadvertent or hazardous
operation” [MW20b], i.e. “depending on the effect of unpredictable and unanalyz-
able forces in determining events” [MW20a].

In other words, this definition assumes that an undesirable event mainly involves random-
ness. Assessing the safety of a device consists in verifying that the final user, is not likely
to make – unintentionnaly – the device having a behavior not expected by its functional
specifications.

Security is defined as

“to relieve from exposure to danger : act to make safe against adverse contingen-
cies” [MW20c].

Thus, assessing the security suggests to consider an adversarial model threat: if there is a
vulnerability in the device, one must assume that such an adversary – a.k.a. the attacker –
will do all its possible to exploit it, provided it fits with the required means of this attack. On
the contrary, what is considered as a vulnerability in the T.O.E. from a security point of view
is not necessarily harmful from a safety point of view, as long as the probability to randomly
encounter this vulnerability is sufficiently low.

Since the electronic devices embedding security functionalities are usually widely spread
and are often used for critical tasks, such as telecommunications, banking transactions, etc.
it is preferrable for the developer to consider an adversarial threat model, even if it requires
to protect a device against potential attacks that are not likely to happen in real life. Hence,
one of the goals of developers and evaluators is to succeed in proving that a crypto-system
is sound against any attacker instantiating a given threat model.

At first sight, the latter task seems untractable, especially if there are infinite ways to
instantiate an attacker from a threat model: it becomes impossible to test them all. One way
to circumvent this issue is to find a way to sort the different instances of a model threat

4 In France, security certifications are available on the ANSSI’s website: https://www.ssi.
gouv.fr/entreprise/produits-certifies/. An equivalent list of certification stamped by the
BSI is available at https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/
Produktzertifizierung/ZertifizierungnachTR/ZertifizierteProdukte/zertifiz_
produkte.html?nn=6618104

8

https://www.ssi.gouv.fr/entreprise/produits-certifies/
https://www.ssi.gouv.fr/entreprise/produits-certifies/
https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/Produktzertifizierung/ZertifizierungnachTR/ZertifizierteProdukte/zertifiz_produkte.html?nn=6618104
https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/Produktzertifizierung/ZertifizierungnachTR/ZertifizierteProdukte/zertifiz_produkte.html?nn=6618104
https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/Produktzertifizierung/ZertifizierungnachTR/ZertifizierteProdukte/zertifiz_produkte.html?nn=6618104


CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

according to their efficiency,5 in the sense that any attack being successful would necessarily
imply that any more efficient attack would succeed. Therefore, if the most efficient instance
from a model threat does not succeed in breaking a target, one is guaranteed that any other
attack within this threat model would fail too.

As a consequence, it is necessary for an evaluator to always reach the optimal attack,
which consists in assessing the worst-case security, in order to provide strong guarantees
about the security of the T.O.E. This requires an ITSEF to always know the state-of-the-art
attacks, and to be willing to always investigate how to push the limits of these attacks, in
order to assess to what extent the security guarantees of a T.O.E. may decrease through
the time, as the SCA literature improves at the same time, making attacks of a given threat
model more powerful.

1.3 Deep Learning based Attacks

1.3.1 A Recent Emergence in Side-Channel Analysis

DL is a special type of Machine Learning (ML). Historically, they have been created in the
1950’s as models for simulating the behavior of simple neurons connected to each other
in a brain. A complete description of DL is proposed in Section 4.2. Deep Neural Net-
works (DNNs) have recently shown impressive performances at some image recognition
tasks known to be hard to efficiently solve until the beginning of the 2010’s. In particu-
lar, the success of the model proposed by Krizhevsky [KSH12] at the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) 2012, definitely paved the way towards spread-
ing the use of DL in many application fields. This also holds for SCA, where DL has also
started to be used since 2013, with the seminal works of Martinasek et al. [MZ13]. A few
years later, Maghrebi et al. [MPP16] have shown that DNNs were particularly efficient to
break implementations of AES protected with a Boolean secret-sharing – see Subsection 3.7.1
– whereas other types of SCA failed. Likewise, Cagli et al. [CDP17] have succeeded in
breaking some software and hardware implementations protected with de-synchronization
counter-measures. Those two milestones have convinced an important part of people inside
the SCA community that this line of work is worth being more deeply investigated, as de-
picted by Figure 1.4: the number of dedicated papers follows an increasing trend over the
past few years, according to several scientific literature databases. The CHES6 workshop,
which is the flagship conference in embedded cryptography, had only one paper dealing
with DL-based SCA in 2017, but respectively 5 and 6 papers for the 2019 and 2020 editions,
with now a dedicated session on the topic. Likewise the CARDIS conference now includes
the term “Deep Learning Analysis” in its topics of interest. Finally, this interest for DL-
based SCA has particularly been consecrated by the fact that it is now considered as part of
the state-of-the-art attacks by the Joint Interpretation Library (JIL).7

1.3.2 The Drawbacks of Deep Learning in Side-Channel Analysis

The successful breakthrough of the DL approach in many application fields gave the oppor-
tunity to their respective specialists to draw comparisons with former state-of-the-art ML
algorithms. Most of the time, the same criticism emerged from those comparisons: DL ap-
peared as alchemy. Indeed, some intriguing results emphasized that DNNs are more prone
to over-fitting, a phenomenon where the learning algorithm starts to learn by heart in order to
improve its performances, although this strategy generalizes poorly for most of the inves-
tigated learning problems. Likewise, research has shown that machine learning algorithms

5 A formal definition of the term “efficiency” will be given in Subsection 3.2.1.
6 ches.iacr.org
7 The interested reader may find useful information on the CC website: https://

commoncriteriaportal.org/.

9

ches.iacr.org
https://commoncriteriaportal.org/
https://commoncriteriaportal.org/


CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

20
12

20
14

20
16

20
18

20
20

0

20

40

Year

#
Pa

pe
rs

DBLP8

Scopus9

e-print10

Figure 1.4: Queries to scientific databases, by August 31, 2020.

could be fooled by a malicious person, thus questioning the reliability of such algorithms
in a security context. This line of works, entitled Generative Adversarial Networks (GANs)
has recently skyrocketed in the DL literature with impressive results [GPAM+14].

Those drawbacks have legitimately found some echoes in the SCA community, where
only realizing and assessing an attack is not sufficient to draw exhaustive conclusions for
a security evaluation. Therefore, one may question the interest of such an approach in a
security evaluation. In particular, the different attack methodologies proposed so far in the
literature could be easily interpretable by simple statistical tools, which is not the case of
DL-based algorithms which are often seen as black-boxes, so it is hard for the SCA practi-
tioner to interpret and to rely on such results. Moreover, the fact that DL algorithms can be
fooled does help to bring trust in a community whose work is especially grounded on trust.
It is noticeable yet that the scenarios where the DL algorithms are fooled assume that the
latter ones are the target themselves and that the malicious entity have access to some in-
puts/outputs of the algorithm. Actually, this is the convert situation of ours, in which this is
the attacker who is equipped with DL methods, and not the target. Still, this confusion may
lead the layman attacker to have misconceptions about the strengths and the weaknesses of
DL for SCA.

1.4 Contributions of this Thesis

The observations reported in Subsection 1.3.2 are specifically at the origin of this thesis,
whose common thread is to bring trust in DL algorithms by better understanding their be-
havior and their potential in an SCA context.

I, for one, truly believe that such tools, without necessarily triggering a Copernican rev-
olution of the whole field of embedded cryptography, can still represent a milestone by
drastically improving some attacks against targets whose robustness was so far taken for
granted, an to incite developers to not rely on some potential weaknesses of such attackers:
paradoxically, this might therefore improve the security of embedded electronic devices. For
these reasons, it seemed to me that it was worth further investigating this line of works. The
contributions presented in this thesis aim at grounding the use of DL in an SCA context, at
different steps of an evaluation workflow.

Theoretical Study of Deep Learning in Side-Channel Analysis. In Chapter 5, we revisit
the DL-based SCA approach under the theoretical framework of statistical learning. The

8https://dblp.uni-trier.de/search?q=side%20channel%20learning
9Query “TITLE-ABS-KEY(("learning") AND ("SCA" OR "side-channel") AND ("attacks") AND ("crypto-

graphic" OR "cryptography" OR "crypto")) ” on www.scopus.com
10Query “learning side channel” at eprint.iacr.org, excluding the Learning With Errors (LWE)-related

keywords

10

https://dblp.uni-trier.de/search?q=side%20channel%20learning
www.scopus.com
eprint.iacr.org


CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

latter framework is by the way formally presented in Chapter 4. We analyze how the goal of
the evaluator, namely finding the optimal attack in view of assessing the worst-case scenario,
is translated into a machine learning problem and to what extent the approach is sound.
This leads to confirm that the choice of the loss function has a meaning from an SCA point
of view, since the values returned by the loss function can be linked to the efficiency of an
attack. With this finding in mind, it is therefore possible to precisely assess the soundness of
a software or hardware protection brought to the target device. We have indeed verified that
DNNs could efficiently address the key recovery in presence of different counter-measures,
such as (high order) secret-sharing or hiding.

The Use of Convolutional Neural Networks in Practice. As an example, we propose in
Chapter 6 a case study of a software device protected by a code polymorphism counter-
measure, consisting in changing the machine translated from a source file programming a
cryptographic primitive. Such a protection implies technical challenges in view of the DL-
based attack, as the acquired leakage measurements are of very high – i.e. around 105 time
samples – dimensionality. The DL-based literature being mostly inspired from computer
vision, the different algorithms are not adapted anymore to those kind of data. We propose
slights modifications to the design of DNNs to circumvent this issue.

Gradient Visualization for General Characterization in Profiling Attacks. Finally, we
tackle in Chapter 7 the problem of the interpretability of DNNs to show that such algo-
rithms may not be only seen as black-box models in an SCA context. By analyzing the
specific properties of our problem, we are able to propose a simple method, so far known to
be sub-optimal in other fields such as computer vision, but efficient in SCA to emphasize the
time samples that carry the informative leakage in the measured data, the so-called Points
of Interest (P.o.Is). The advantage of this method is that its efficiency to emphasize those
points works as long as the DNNs on which it is applied is able to succeed an attack. Since
we would have emphasized in Chapter 5 that DNNs-based attacks are sound against mostly
all the protected implementations, this method could potentially be applied on any evalu-
ation of implementation. Compared to other methods, the characterization can be done on
each acquisition separately. The diagnosis that an evaluator can build based on this method
may enable to identify the vulnerabilities in the source code, in order to mitigate their effect
on potential attacks.

All together, those contributions propose some improvements of DL-based attacks at
several steps of an evaluation.

11



CHAPTER 1. CONTEXT, OBJECTIVES AND CONTRIBUTIONS

12



Chapter 2

Preliminaries

Contents
2.1 Notations and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Recalls in Probability and Statistics . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Monte-Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Recalls in Discrete Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Recalls on AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Recalls on Vectorial Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Gradient and Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 The Gradient Descent Optimization Algorithms . . . . . . . . . . . . 21

13



CHAPTER 2. PRELIMINARIES

2.1 Notations and Conventions

We use calligraphic letters as X to denote sets. If X is finite, the number of elements in X
a.k.a. its cardinality is denoted by |X |. We use bold notations x to denote vectors of elements
from a set X .

Throughout this thesis, the finite set Z = {s1, . . . , sN} will be often considered: it will
always denote the possible values for a sensitive variable Z. We will denote by s a generic
element of Z , in contexts in which specifying its index is unnecessary.

When the vectors’ orientation minds, they are understood as column vectors. The i-th
entry of a vector x is denoted by x[i], while the transposed of a vector x is denoted as xᵀ.
We will use the transposed mark to refer to row vectors xᵀ.

In this thesis, Zp denotes the set of relative integers modulo p, and R+ denotes the set of
non-negative integers.

The symbol , denotes an equality by definition. The range of integers from a to b in-
cluded is denoted by Ja, bK. If D is a logical statement, we define the characteristic function
as:

1D =
{

1 i.f.f. D is true
0 otherwise

. (2.1)

Finally, terms in blue are defined in the glossary at the end of this thesis.

2.2 Recalls in Probability and Statistics

2.2.1 Probability

We consider a probabilistic structure (Ω,A,Pr), where A denotes the σ-algebra of the set of
all possible events Ω. Formally, the probability measure Pr is a mapping A → [0, 1] such that:

1. the probability of all the possible events is 1, i.e., Pr (Ω) = 1;

2. the probability of the countable union of several mutually exclusive events (An)n∈N
equals the sum of their probabilities:

∀i, j ∈ N, if Ai ∩Aj = ∅ then Pr (Ai ∪Aj) = Pr (Ai) + Pr (Aj) . (2.2)

Random Variables. We call random variable (resp. random vector), denoted by upper-case
letters X (resp. bold letters X), any measurable map from (Ω,A) to a σ-algebra X ⊂ R
(resp. Rd, d ∈ N∗). The probability of a random variable X taking value in a subset U ⊂ X
is denoted by Pr (X ∈ U). When U is reduced to a singleton U = {x} the same probability is
denoted by Pr (X = x). If X is a finite or countable subset of R, X is called discrete and the
mapping U 7→ Pr (X ∈ U), called Probability Mass Function (p.m.f.), verifies Pr (X ∈ U) =∑
x∈U Pr (X = x). Therefore the p.m.f. can be fully defined by a |X |-dimensional vector

whose entries are non-negative reals that sum to one. The set of every p.m.f. is denoted by
P(X ). If X is not finite nor countable, X is said continuous and the mapping U 7→ Pr (X ∈ U)
is fully defined by the Probability Density Function (p.d.f.) x ∈ X 7→ fX (x) ∈ R+ that
verifies Pr (X ∈ U) =

∫
x∈U fX (x) dx [Kle13, Thm. 1.104].

Couple of Random Variables. When two variables X and Y are considered, their joint
probability is denoted by Pr (X = x,Y = y). We call marginal probability the following quan-
tity: Pr (X = x) =

∫
y∈Y Pr (X = x,Y = y) dy. The conditional probability of X assuming the

value x given an outcome y for Y is denoted by Pr (X = x | Y = y). By definition, we have
Pr
(

X , x,Y = y
)

= Pr (X = x | Y = y) Pr (Y = y). In particular, i.f.f. Pr (X = x | Y = y) =
Pr (X = x) we say that X and Y are independent and the joint probability is then the prod-
uct of the two marginal probabilities. The mapping y 7→ Pr (X = x | Y = y) is denoted by
Pr (X = x | Y).

14



CHAPTER 2. PRELIMINARIES

Moments of a Random Variable. The symbol E [φ(X)], or equivalently E
X

[φ(X)], denotes

the expected value of a function φ of the random variable X, under the distribution of X. We
recall that in the continuous case E

X
[φ(X)] ,

∫
x∈X φ(x)fX (x) dx. Likewise, symbols Var (X)

and Var
X

(X) denote the variance of X. We recall that Var (X) , E
[(

X − E [X]
)2
]
. We note

Cov (X,Y) = E
[(

X − E [X]
) (

Y − E [Y]
)]

the covariance of two random variables X, Y. It
is worth emphasizing that Var (X) = Cov (X,X). The mapping y 7→ E

X | Y=y
[X] is called

conditional expected value and is denoted by E [X | Y].
We now recall some useful probability results.

Total Probabilities. A consequence of Equation 2.2 and the definition of a conditional
probability is the total probabilities formula. Given two random variables X ∈ X , Y ∈ Y ,
and a subset U ⊂ X we have:

Pr (X ∈ U) =
∑
y∈Y

Pr (X ∈ U ,Y = y) (2.3)

=
∑
y∈Y

Pr (X ∈ U | Y = y) Pr (Y = y) . (2.4)

In case Y is a continuous random variable, the latter formula involves integrals instead of
sums.

Bayes Theorem. Since the random variables X and Y have symmetric roles in the defini-
tion of the joint probability, it is possible to easily invert the conditional probability according
to the Bayes’ theorem:

Pr (X = x | Y = y) = Pr (Y = y | X = x) Pr (X = x)
Pr (Y = y) . (2.5)

In this context, the mapping x 7→ Pr (X = x) is called the prior of X, and describes the p.m.f.
(of p.d.f. if continuous) of X without taking into account the information that observing Y
may give about X. The mapping x 7→ Pr (X = x | Y = y) is referred to as posterior proba-
bility of X, and gives the distribution of X once the outcome y of Y is taken into account.
Finally, for a fixed y ∈ Y , the mapping x 7→ Pr (Y = y | X = x) is called the likelihood of x
given the observation y. It is worth mentioning that the likelihood is not a probability distri-
bution as is, since it is not normalized. Notions of measure’s theory are needed to show that
Bayes’ theorem is valid and keeps unchanged in case of continuous random variables and in
cases in which one of the two involved variables is discrete and the other one is continuous.
The interested reader might refer to [Kle13, Sec. 8.1, 8.2].

Remarkable Probability Distributions. This thesis will manipulate several different prob-
ability distributions that we detail hereafter.

Discrete Uniform Law. We say that a random variable X follows a discrete random uni-
form law over a finite set X if for each value x ∈ X we have Pr (X = x) = 1

|X | , that is, the
probability of observing an outcome x does not depend on the value of the outcome itself.

Bernoulli Law. A discrete random variable X ∈ {0, 1} follows a Bernoulli law of pa-
rameter p, denoted by B(p), if Pr (X = 1) = p or equivalently Pr (X = 0) = 1 − p. The
expected value of a Bernoulli law is p and its variance is p(1− p).

15



CHAPTER 2. PRELIMINARIES

Binomial Law. A discrete random variable X ∈ J0, nK follows a binomial law of pa-
rameters n, p, denoted by B(n, p), if ∀k ∈ J0, nK, Pr (X = k) =

(n
k

)
pk(1− p)n−k. The expected

value of a binomial random variable is E [X] = np and its variance is Var (X) = np(1− p).

Gaussian Law. The Gaussian or normal distribution is a widely used model for the
distribution of continuous variables. We use the symbol X ∼ N

(
µ, σ2) to denote a ran-

dom variable X following a Gaussian distribution of parameters µ ∈ R and σ2 ∈ R+. For
a D-dimensional random vector X, we use the symbol X ∼ N (M,Σ) to denote a vector
that follows a multi-variate Gaussian distribution of parameters M ∈ RD and Σ ∈ RD×D,
positive-definite. The p.d.f. of a Gaussian distribution is completely determined by the
value of its two parameters. It is given by the following expressions, respectively in uni-
variate and multi-variate cases:

fX (x) ,
1√

2πσ2
exp−1

2

(
x− µ
σ

)2
, (2.6)

fX (x) ,
1√

(2π)D det Σ
exp−1

2 (x−M)ᵀ Σ−1 (x−M) . (2.7)

The expected value of a Gaussian coincides with the parameter µ for the uni-variate case
and with M for the multi-variate case. The parameter σ2 coincides with the variance of the
uni-variate distribution, while Σ coincides with the covariance matrix of the multi-variate
one, i.e. such that the coefficient Σ[i, j] is Cov (X[i],X[j]).

Chebyshev’s Inequality for Confidence Intervals. The ML literature proposes several con-
centration inequalities. They provide bounds on the probabilities followed by a random
variable, depending on some information assumed to be known about the probability dis-
tribution. Chebyshev’s inequality is one of them. Let X be a real-valued random variable,
then:

∀a > 0, Pr
(∣∣∣X − E [X]

∣∣∣) ≤ Var (X)
a2 . (2.8)

Notion of Convergence. Let (An)n be a sequence of random variables and let A be an-
other random variable. We say that An converges in probabilities towards A, denoted as
An

P−−−→
n→∞

A when the following property holds:

∀ε > 0,Pr (|An − A| ≥ ε) −→
n→∞

0. (2.9)

Like with the classical definition of convergence, we may define a notion of convergence rate
as a function m defined hereafter:

m : ]0, 1[2 −→ N
ε, δ 7−→ argmin {n ∈ N | Pr (|An − A| ≥ ε) ≤ δ} . (2.10)

The existence of such function is ensured by the convergence in probabilities, i.e. Equa-
tion 2.9.

Likewise, we say that An converges in law towards A, denoted as An
L−→

n→∞
A when for

all continuous bounded function φ of random variable we have:

E
An

[φ(An)] −→
n→∞

E [φ(A)] . (2.11)

16



CHAPTER 2. PRELIMINARIES

2.2.2 Statistics

We use the notation S = {x1, . . . , xN} to denote a dataset of N Independent and Identically
Distributed (i.i.d.) observations of a random variable X. This means that it can be seen
as one observation of the random tuple (X1, . . . ,XN ), where the Xi are i.i.d. variables of
same distribution as X. The term statistics refers to a branch of mathematics that aims to
analyze, describe or interpret observed data. Differently, the word statistic refers to any
measure obtained applying a function to some observed data S. As a consequence (and
unless considering trivial cases), a statistic which depends on random variables is itself a
random variable.

Descriptive vs. Inferential Statistics. We might distinguish two sub-branches in statis-
tics: the descriptive statistics, and the inferential statistics. In descriptive statistics, data are
described by means of more or less complex statistics (in the sense of measures) that may
capture the relevant information necessary to exhaustively describe the data. The most com-
mon of them being the empirical arithmetic mean, the empirical covariance and the empirical
variance, respectively:

X ,
1
N

N∑
i=1

Xi , (2.12)

SX,Y ,
1

N − 1

N∑
i=1

(Xi − X) · (Yi − Y) , (2.13)

S2
X , SX,X , (2.14)

where the Yi are i.i.d. It is noticeable that the statistics defined in Equation 2.12 and Equa-
tion 2.14 may be seen as polynomial of the random variables Xi denoting the observations
from a dataset. They are qualified as statistical moments of order respectively one and two,
since the degree of the underlying polynomial is respectively one and two.

In inferential statistics, data are considered as sample observations of random variables
and the data analysis aims at modeling the distribution of such variables. Dealing with ran-
dom variables, inferential statistics exploit the probability theory framework and theorems.
Statistics of data (in the sense of measures) play an important role in inferential statistics as
well, usually with two goals. The first one aims at estimating random variable parameters.
In this case, the statistics are called estimators and will be denoted by a hat: for example Ê [X]
denotes an estimator for the expected value of X. Likewise, the realization of an estimator
random variable is called estimate (or estimation). The second one aims at realizing statistical
hypothesis tests, in order to statistically validate or refute an hypothesis about the random
variable X.

The most classical and intuitive estimator for the expected value is the empirical mean
X, in the sense that the expected value of the estimator is exactly E [X] (we say that it is unbi-
ased), and its variance is shown to be minimal for a given number of observations. Therefore,
such an estimator is said to be optimal.

Maximum Likelihood. There exists a generic method to find optimal estimators, called
maximum likelihood. The idea is to consider the parameter θ of a probability law as a possible
realization of a random variable Θ which is linked to the observations X1, . . . ,XN . In this
context, the likelihood function, introduced in Bayes’ theorem (see Equation 2.5), can be refor-
mulated as θ 7→ Pr (X1 = x1, . . . ,XN = xN | Θ = θ). The maximum likelihood estimator of
θ, denoted by θ̂, is therefore obtained by maximizing the likelihood function. Informally, θ̂
is the value which must be assigned to the parameter θ in order to maximize the probability
of observing the dataset S.

17



CHAPTER 2. PRELIMINARIES

By concavity of the log function, and since the observations are assumed to be i.i.d., this
is equivalent to minimizing the so-called Negative Log Likelihood (NLL) function:

LS (θ) = −
N∑
i=1

log Pr (Xi = xi | Θ = θ) (2.15)

Therefore, θ̂ = argminθ LS (θ).1

2.2.3 Information Theory

We now define some Information Theoretic quantities. An interested reader may refer to the
book of Cover and Thomas [CT06]. Let Z ∈ Z be a discrete random variable. The entropy of
Z, denoted by H (Z), describes the uncertainty to guess the value of a realization of a discrete
random variable Z. It is formally defined by:

H (Z) , −
∑
s∈Z

Pr (Z = s) log2 Pr (Z = s) . (2.16)

The latter definition can straightforwardly extend to the entropy of conditional random vari-
ables. Let X ∈ X be a random variable and let x ∈ X , then:

H (Z | X = x) , −
∑
s∈Z

Pr (Z = s | X = x) log2 Pr (Z = s | X = x) . (2.17)

This value depends on the observation x, so we may generalize by defining the conditional
entropy of a discrete random variable Z given another random variable X. It is formally
defined as:

H (Z | X) , E
X

[H (Z | X = x)] . (2.18)

Informally, the conditional entropy quantifies the remaining uncertainty on the guess of Z
once X is known. In the latter definitions, it is worth emphasizing that the random variables
are implicitly assumed to be discrete. The extension to continuous variables would require
a thorough discussion. Nevertheless, despite some random variables observed in this thesis
are continuous, their measure remains always discrete, so such a discussion can be still
avoided here.

If P and Q are two probability distributions on Z , we define the Kullback - Leibler (KL)
divergence as:

D(P ‖ Q) ,
∑
s∈Z

P(s) log2
P(s)
Q(s) . (2.19)

This quantity is typically used to measure the difference between two discrete probability
distributions, since it is always non-negative and equals zero i.f.f. P = Q. Thanks to the
previous definitions, we can introduce the Mutual Information (MI) between two variables
Z and X as:

MI (Z; X) , H (Z)− H (Z | X) = D(Pr (X,Z) ‖ Pr (X) Pr (Z)). (2.20)

This characterizes how much information can be obtained about Z by observing X.

2.2.4 Monte-Carlo Methods

In Section 5.4, we will be interested in computing the MI between a discrete random vari-
able Z denoting a random secret byte, and a continuous random vector X, denoting the
time series of a physical measurement. In this context, we assume to know the generative

1 The maximum likelihood estimation principle will be extended in Section 4.3 and Equation 9.

18



CHAPTER 2. PRELIMINARIES

p.d.f. Pr (X | Z). According to Equation 2.20, computing the MI is equivalent to computing
H (Z) and H (Z | X). The former term is straightforward to compute, since in this thesis Z
will always be assumed to follow a uniform discrete law over 2n values, hence H (Z) = n.
However, Equation 2.18 tells us that computing the conditional entropy term H (Z | X) in-
volves a D-dimensional integral, where D is the dimensionality of the random vector X.
Therefore, it is likely to be intractable. Hopefully, the conditional entropy term may still be
efficiently estimated by the so-called Monte-Carlo stochastic method. The idea is to replace
the expected value in Equation 2.18 by an empirical mean based on the random draw of a
dataset S = {x1, . . . ,xN}:

H (Z | X) ≈ HN ,
1
N

N∑
i=1

H (Z | X = xi) . (2.21)

We have said that the empirical mean was an optimal estimator of an expected value, since
it is unbiased, and its variance is minimal among every possible estimator of the expected
value based on a dataset of N observations. But more interestingly, the Central Limit Theo-
rem [Kle13, Thm. 15.37] states that this estimation is consistent, that is, HN

L−→
N→∞

H (Z | X),

with a convergence speed of O
(

1√
N

)
. This leads to Algorithm 1, describing the way the

mutual information can be estimated.2

Algorithm 1 Conditional entropy estimation with Monte-Carlo method

Require: N ∈ N∗, $: Random Number Generator (RNG)
Ensure: HN

L−→
→∞

H (Z | X)
for i← 1 to N do

z ← $(Z)
x← $ (X | Z = z) . Draws a random observation x
for s ∈ Z do

tab_P[s]← Pr (X = x | Z = s) . Compute the likelihood given x
end for
tab_P← normDist(tab_P) . Normalizes by computing (2.5)
tab_H← computeH(tab_P) . Computes the entropy with (2.17)
HN ← RunningMean(tab_H) . Averages to estimate (2.18)

end for

2.3 Recalls in Discrete Mathematics

In this thesis, Fpq denotes the finite field of pq elements. For the representation of this field,
the specifications of the AES consider the set of polynomials with coefficients in Zp, whose
addition (denoted by ⊕) and multiplication (denoted by ×) are done modulo an irreducible
polynomial of degree q. The parameter p, necessarily prime, is called the characteristic of the
field. In this thesis, we will only be interested in the Rijndael field F28 = Z2[X]/P (X), where
P (X) = X8 +X4 +X3 +X+1, on which all the AES operations are defined. Its characteristic
being 2, it has two consequences. First, the polynomial coefficients are binary. Since any
polynomial is fully represented by its coefficients, any element in F28 can be seen as a byte
value. Second, the addition between two polynomials being nothing but the element-wise
addition of their coefficients in Z2, the field addition ⊕ coincides with the bit-wise xor
operation between two bytes, and thereby the addition coincides with the subtraction.

2 Algorithm 1 will be used in Section 5.4.

19



CHAPTER 2. PRELIMINARIES

2.4 Recalls on AES

As recalled in the introduction, the AES is a round-based block-cipher encrypting blocks of
128-bit plaintexts chunks. Such a chunk is called a state. Concretely, it is represented by
a 4 × 4 array of bytes, denoted by a. The byte lying at the i-th row, j-th column of a will
be denoted by a[i, j] for i, j ∈ {0, 1, 2, 3}. The 16 bytes of the state are indexed column-
wise. Each element a[i, j] of the state is mathematically seen as an element of the Rijndael
field F28 defined in Section 2.3. The AES-128 on which we focus through this thesis loops
over 10 similar rounds – see Figure 1.1 – during which it will progressively transform the
state from the plaintext to the ciphertext through the rounds, with the help of one subkey
for each round. The subkeys are derived from a master key according to a routine called
KeySchedule, and are also represented by a 4× 4 array of bytes, like the current state. In the
AES-128 bit version on which this thesis focuses, the KeySchedule operation is invertible.
In other words, perfectly knowing one complete subkey is equivalent to knowing the whole
master key, and in particular, the subkey derived at the first round equals the master key.
In this thesis, we will particularly focus on the first steps of the cryptographic primitive,
as it is the most prone to SCA. That is why it is not necessary to describe the KeySchedule
operation here.3

The very first step consists in the application of the AddRoundKey operation. Each byte
a[i, j] of the state is xor-ed with the corresponding byte of the round key k[i, j].

The next operation is the byte-wise application of a non-linear invertible mapping called
SubBytes devoted to introduce confusion in the state. It is composed of the following two
functions:

1. The inversion in F28 , where the null element 0 of the field is mapped to itself. An
interesting property of the fact that the group (F28\{0},×) is cyclic is that computing
s−1 for s 6= 0 is equivalent to computing s28−2 [Ter18, Lem.5.3.4]. That is why this step
is also known under the name of the power function.

2. An affine transformation.

Concretely, the SubBytes operation may be implemented thanks to a Look-Up Table (l.u.t.)
called Sbox, given in the FIPS-197 [Nat01].

Then, the ShiftRows operation is applied during which the bytes in the second, third and
fourth rows of the state are cyclically shifted of 1, 2, and 3 byte(s) respectively.

Finally, the last operation of the round is called MixColumns and is devoted to introduce
diffusion in the encryption algorithm by mixing the bytes between them. In this thesis, we
will only consider the different intermediate computations of the cryptographic primitive
occurring at the output of the AddRoundKey, the SubBytes, and the ShiftRows.

2.5 Recalls on Vectorial Calculus

2.5.1 Gradient and Jacobian Matrix

In the following, Rn denotes the n-dimensional vector space, provided with the scalar prod-
uct 〈·, ·〉. Let f : Rn → R be a function of several real-valued variables. We denote its
partial derivative with respect to the i-th entry of the input vector x by ∂

∂x[i]f . The vector

∇f (x) ,
(

∂
∂x[1]f(x), . . . , ∂

∂x[n]f(x)
)ᵀ

denotes the gradient of the function f . If there is an
ambiguity, the gradient will be denoted by ∇xf (x) to emphasize that it is computed with
respect to x only.

We recall that x is said to be a critical point of f if ∇xf (x) = 0, a local minimizer if it
minimizes f over a neighbourhood of x, and a global minimizer if it minimizes f over the

3A complete description may be found in the FIPS-197 [Nat01].

20



CHAPTER 2. PRELIMINARIES

whole domain of f . If f is defined over an open set of Rn, a (local or global) minimizer is
necessarily a critical point, but the converse is not always true. In that case, such points are
called saddle points.

If f is a function from Rn to Rm, then Jf (x) ∈ Rm,n denotes the Jacobian matrix of size
(m,n), whose rows are the transposed gradient of each elementary function x 7→ f(x)[i] ∈
R, i ∈ J1,mK.

When computing the derivatives of composed functions, it is useful to know the chaining
rule. The following lemma recalls this calculus rule.

Lemma 1 (Chaining Rule [GBC16, p. 199]). Let f : Rm → Rp be a real-valued function and
g : Rn → Rm be a vectorial-valued function. Let ϕ : x ∈ Rn 7→ f ◦ g (x) ∈ Rp. The chaining rule
states that

Jϕ (x) = Jf (g(x)) · Jg (x) . (2.22)

In particular, if p = 1, the Jacobian matrices of f and ϕ are their transposed gradients, so:

∇xϕ (x)ᵀ = ∇f (g(x))ᵀ · Jg (x) . (2.23)

As an example, if one takes g(x) = M · x where M ∈ Rm×n and f(y) = 1
2〈y,y〉, one

gets ϕ(x) = 1
2〈Mx,Mx〉 = 1

2〈x,M
ᵀMx〉 so the gradient is ∇xϕ(x) = MᵀMx. It can then be

verified that it corresponds to the product in Equation 2.22, where Jg (x) = M and∇yf(y) =
y.

2.5.2 The Gradient Descent Optimization Algorithms

We will see in Subsection 4.1.3 that machine learning (almost) always consists in solving
a functional optimization problem which can often be rephrased itself as a numerical op-
timization problem. This is why we briefly present here the optimization algorithms used
in this thesis. Numerical and functional optimization are wide topics in machine learn-
ing, hence naturally beyond the scope of this thesis. The interested reader may refer to
the books of Boyd et al. [BV14], Goodfellow et al. [GBC16, Chap. 8] or Shalev-Shwartz and
Ben-David [SSBD14, Chap. 14].

The Stochastic Gradient Descent (SGD) Algorithm. Let f : Rd → R. We are given a
random initial point x0 ∈ Rd, and a parameter η > 0 called learning rate. The SGD step
consists in updating the current point xt as follows:

xt+1 = xt − η∇xf (xt) . (2.24)

It can be shown that when f is convex and smooth (i.e., the norm of the gradient is bounded),
SGD converges towards the unique point x? minimizing f with speed O

(
1√
T

)
where T is

the number of steps [SSBD14, Thm. 14.8].4 Actually, the SGD step given in Equation 2.24 de-
notes the regular gradient descent on functions differentiable everywhere. The convergence
of the SGD can be extended without loss of generality to functions that are differentiable
almost everywhere, provided that where it is defined, the gradient has a bounded norm.
Likewise, the exact gradient of f can be replaced by an unbiased statistical estimator of
∇f (xt), without changing the convergence properties of SGD [SSBD14, Thm. 14.8]. Unfor-
tunately, SGD is not guaranteed to converge towards the minimum of f if the latter one is
not convex, which will be the case in our context as we will see in Subsection 4.3.3. More
precisely, provided that the learning rate is small enough, the SGD can still converge almost
surely towards a local minimizer [LSJR16], which means that the convergence towards a
saddle point has probability zero if the initial point x0 is randomly chosen. Nevertheless,

4We recall that unicity of a minimizer of f is ensured by convexity [BV14, Sec. 4.2.2].

21



CHAPTER 2. PRELIMINARIES

this minimizer is not necessarily the global minimizer. Even worse, the learning rate is a
sensitive parameter. If the learning rate is too high, the SGD can diverge [BV14, Sec. 9.3]. On
the opposite, if the learning rate is too low, the convergence may be prohibitively long. For
this reason, the SGD is not widely used in practice.

Instead of using the SGD as is, we will rather use a slight variant called Adaptive Mo-
ment Estimation (Adam), proposed by Kingma et al. at ICLR’15 [KB15]. It is based on adap-
tive estimates of lower-order (i.e. 1 and 2) moments of the gradients computed at each iter-
ation of the descent. Those moments are then used to slightly modify the descent direction
– originally set to −∇xf(x). It is nowadays one of the most used gradient descent based
optimization algorithms for machine learning. A complete description and study of this
algorithm is beyond the scope of this thesis. Nevertheless, the interested reader may refer
to the Deep Learning book by Goodfellow et al. for more information [GBC16, Sec. 8.5.3], or
directly to the Kingma et al.’s paper.

22



Chapter 3

Side-Channel Attacks

“ All models are wrong, but some
models are useful.”

George Box

Contents
3.1 Definition of a Side-Channel Attack . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 The Attack Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Reducing the Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Beyond our Attack Scenario. . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Assessing an Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 The Different Factors of Attack Complexity . . . . . . . . . . . . . . . 27
3.2.2 The Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Estimating the Metrics in Practice . . . . . . . . . . . . . . . . . . . . 29

3.3 Conditions of an Optimal Attack . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Profiled Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Unprofiled Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Correlation Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Leakage Characterization and Pre-Processing . . . . . . . . . . . . . . . . . 37

3.6.1 Research of Points of Interest . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Counter-Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7.1 Random Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7.2 Randomizing the Primitive Code . . . . . . . . . . . . . . . . . . . . . 43

3.8 Overview of the Used Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8.1 Chip Whisperer Dataset (CW) . . . . . . . . . . . . . . . . . . . . . . 47
3.8.2 The ASCAD Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8.3 Random Delay Dataset (AES-RD) . . . . . . . . . . . . . . . . . . . . 49
3.8.4 AES on FPGA (AES-HD) . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8.5 Polymorphism Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

23



CHAPTER 3. SIDE-CHANNEL ATTACKS

3.1 Definition of a Side-Channel Attack

3.1.1 The Attack Scenario

Let T be the instance of the target device under an attack conducted by an adversary, a.k.a.
attacker, denoted byA. We assume that T runs a cryptographic primitive E () each time that
a query, represented by a plaintext p, is sent by the attacker. The primitive being set by a
secret encryption key k?, the target returns the ciphertext corresponding to the encryption
of the sent plaintext, that is, c = E (p,k?). The goal of the attacker is then to guess the secret
key, assumed to belong to a known key space K.

In this thesis, we modelize a SCA by the following scenario, that is illustrated in Fig-
ure 3.1. First, the target randomly draws a secret key k? that is used for the encryption.
Then, A sends a given number Na of queries to the target T . Those queries are materialized
by the input plaintexts p1, . . . ,pNa . For each plaintext pi ∈ P , the target T returns the cor-
responding ciphertext ci but also a measurement xi ∈ X , a.k.a. SCA trace, corresponding
to the physical leakage occuring during the computation ci = E (pi,k?). In the remaining
of this thesis, we denote by Sa , {(x1,p1), . . . , (xNa ,pNa)} the attack set acquired by the at-
tacker A during the SCA. This attack scenario is often called a gray-box attack, in opposition
to a black-box scenario corresponding to classical cryptanalysis, where the attacker does not
have access to the SCA traces in the attack set, but rather the ciphertexts instead.

From a probabilistic point of view, p,k?,x can be respectively seen as the realizations of
the corresponding random variables P,K,X, according to the probabilistic graph presented
in Figure 3.2. More precisely, we make the assumption that X only depends on a random
variable Z resulting in an intermediate computation denoted by C () involving chunks of
P and K,1 e.g., C (P,K) = P ⊕ K. This random variable is called sensitive since it depends
on the secret key, and intermediate since it corresponds to an intermediate state between
the plaintext and the final ciphertext. In other words, some knowledge about the values
zi = C (pi,k?) , i ∈ J1, NaK of the sensitive intermediate variable, induces some knowledge
about the underlying secret key k? used for the encryption.

Moreover, we assume that the couple (P,X) is not independent from the secret key K.
Otherwise, considering the gray-box scenario has no further interest compared to the black-
box one. Finally, the random variable X is usually assumed to be drawn from a continuous
p.d.f., since it measures a physical phenomenon. However in practice, the observations of
this random variable are discretized during the acquisition phase by the oscilloscope. That
is why the leakage space is often of the type X = J0, 2ω−1KD, whereD is the dimensionality
of the observations, and where ω denotes the resolution of the oscilloscope – typically ω = 8.

In the pursuit of his ultimate goal, the attacker can process the attack set in order to

1 Subsection 3.1.2 will discuss how to reduce the problem to chunks of plaintexts and keys.

A T
p1, . . . ,pNa

c1, . . . , cNa ,x1, . . . ,xNa

DSa

g (DSa) [k?]

Figure 3.1: Black: scenario of the black-box model. Grey: additional information added in the gray-
box scenario.

24



CHAPTER 3. SIDE-CHANNEL ATTACKS

pi ← P

k? ← K

zi = C (pi,k?) xi ← X | Z = zi

Figure 3.2: Probabilistic graph denoting the links between the data.

extract information on (a chunk of) the secret key. Depending on how the attacker wants to
exploit this information, the latter one can take different forms.

• Either the attacker aims at directly recovering the secret key from Sa, without addi-
tional investigation. Then, he returns a value k̂ that he believes to correspond to the
right key k?, according to the extracted information from Sa.

• Or the attacker Amay want to combine a SCA with other attack techniques such as:

– Algebraic attacks, e.g., by using a Propositional Satisfiability Problem (SAT) solver
to find the right key among a restricted list of o key candidates k̂1, . . . , k̂o returned
after the SCA – where o � |K|. Such techniques have been initially introduced
by Renauld et al. [RS09, RSV09].2

– Brute-force attacks, e.g., by using a key enumeration algorithm [VGRS12, MOOS15,
BKM+15, Pou18] fed with the set of key hypotheses K sorted in a decreasing or-
der of preference, returned by the SCA until it reaches the right key k?.

More generally, those different approaches may be encompassed by the following one:
the SCA attacker A returns a vector assigning a score to each hypothetical value of the key.
This vector is computed thanks to a so-called distinguisher that we define hereafter.

Definition 1 (Distinguisher). Let Sa be an attack set. A distinguisher is a mapping from Sa to a
score vector in R|K|:

D : Sa 7→


...

DSa [k]
...

 . (3.1)

Remark 1. The definition of the distinguisher may be refined by constraining the scores to belong
to the interval [0, 1], 0 denoting the least confidence in the corresponding key hypothesis while 1
denoting the greatest confidence. This constraint can still be obtained by applying a normalization of
the scores.

This definition encompasses the different forms of information exploitation from the
SCA presented so far. For the first way, the attacker A takes k̂ = argmaxk∈KDSa [k]. The
attack is then said successful i.f.f. k̂ = k?. For the second way, i.e. the algebraic attack, the
attacker A returns a list of key candidates corresponding to the o first scores from DSa . The
attack is said successful i.f.f. k? ∈ {k̂1, . . . , k̂o}. Finally, for the last way, the attacker enu-
merates the key candidates by decreasing order of their scores in DSa . The rank of the right
key therefore quantifies the amount of enumeration necessary to succeed the key recovery.
In Subsection 3.2.2, we will further discuss this rank through the notion of Guessing En-
tropy (GE). Although unknown in advance by a pure attacker, this quantity is known by a
developer/evaluator in an evaluation context.

2 This approach has been rewarded at the CHES 2018 Capture the Flag (C.t.F.) [GJS19, HZF+19, GJS20].

25



CHAPTER 3. SIDE-CHANNEL ATTACKS

Remark 2 (Vertical Attacks). The SCA literature sometimes makes a discrepancy between verti-
cal attacks, namely “technique analyzing the same sample time regions of several [. . . ] traces” in
opposition to horizontal attacks that “analyze many portions of a single trace” [Cag18]. The attack
scenario presented in this thesis particularly fits the case of vertical attacks, which are typically used
against block ciphers, whereas horizontal attacks are rather used on asymmetric cryptography, e.g.
based on RSA.

3.1.2 Reducing the Problem.

At this stage of the description, it is noticeable that A has two main degrees of freedom,
namely the choice of the distinguisher and the strategy3 to choose the plaintexts (pi)i∈J1,NaK
for the queries, materialized by the p.m.f. of P that is set by the attacker. We discuss both
degrees of freedom hereafter.

For the AES, it is usual to take the input or the output of the first SubBytes operation.
Indeed, at this step of the algorithm, no diffusion operation has been applied yet in the
encryption so Z is the byte-wise output of the composition p, k 7→ Sbox[p ⊕ k]. Since the
p.m.f. of the secret key is assumed to be uniform over the AES field F28 ,4 we have that for
all value p chosen by A, the sensitive random variable Z is also uniform and independent
from P, and, likewise, X is independent from P. In other words, the attacker has no reason
to prefer the sending of a plaintext value from another. Since we assume in our scenario that
the plaintexts are all sent at the same time, this concern all the plaintexts. That is why in the
following, we will assume that the plaintexts are i.i.d. and randomly chosen according to
the uniform law.

More interestingly, this also means that all the bytes of the sensitive variable are indepen-
dent from each other, and so are the bytes of the key and those of the plaintext. Therefore
the j-th byte Z[j] of the sensitive variable only depends on the j-th byte of plaintext p[j]
and on the j-th byte of the secret key k?[j]. This allows us to recover the secret key k? as a
byte-wise manner, in a so-called divide-and-conquer strategy. The recovery of one key byte at
the time enables the attackerA to drastically reduce the key chunk search space from 2128 to
28, thereby breaking the high complexity usually required to run an attack in the black-box
threat model. The whole secret key can then be recovered by replicating the reduced at-
tack on the 16 key bytes independently. This reduction makes the SCA particularly efficient
regarding cryptanalytic attacks.

In the remaining of this thesis, unless not precised, we will only consider the recovery
of one byte of the secret key – hence implicitly assuming that it applies similarly to all key
bytes. This means that we substitute the plaintext random vector P ∈ (F28)16 by a random
variable P ∈ F28 . Likewise, we substitute the secret key K by K and the sensitive vector Z by
Z. The reader’s attention is drawn however on the fact that the leakage X is still considered
as a vector.

3.1.3 Beyond our Attack Scenario.

The gray-box scenario considered here presented the powers and degrees of freedom of
an attacker aiming at recovering the secret key. Despite being beyond the scope of this
thesis, we also provide hereafter a (non-exhaustive) list of ways to build an augmented
attack compared to what is assumed here for the attacker.

Adaptive Chosen Plaintexts. Rather than sending the Na queries to the target T and then
waiting for the acquisitions of the Na corresponding traces, a more realistic scenario would

3 The actual term used in reinforcement learning is policy [SB98].
4 Otherwise, the uncertainty on the key does not ensure anymore the security, and a simple brute-force attack

may become affordable for the attacker.

26



CHAPTER 3. SIDE-CHANNEL ATTACKS

be to send a first query p1, then to acquire the first trace x1 along with the cipher text c1
before sending the next query, and so on. In that case, the attacker may already collect
some information about the secret key after each acquisition, or equivalently before each
query. This way, he may eventually use an adaptive chosen-plaintext strategy that may help
making a discrepancy between particular key hypotheses faster, i.e. requiring less queries to
the target T . Such strategies have been investigated by Köpf et al. [KB07, KB11] and Veyrat-
Charvillon et al. [VS10], with promising results on simulations. An extension of those works
involving the reinforcement learning [SB98] framework would be a promising track in the
coming years. Yet, this remains beyond the scope of this thesis.

Key Rank Estimation. Whereas an attacker would be interested in recovering the whole
key enumeration, an evaluator would just be interested in knowing how many keys should
be enumerated according to the guessing vector in order to reach the right key, rather
than actually enumerating them. Several works propose some ranking estimation meth-
ods [VGS13, YEM14, GGP+15, MMOS16, MMO18, DW19, APSV20] allowing to save some
time compared to a naive key enumeration.

Other Ways to Partition. Finally it is worth emphasizing that although they will not be
investigated in this thesis, other divide-and-conquer strategies may be used, e.g., at a bit-
wise level. More generally speaking, the choice of such a strategy depends on the nature of
both the cryptographic primitive and the physical leakage occurred by the target. This may
typically lead to the reduction on different key chunks. As an example, the AddRoundKey
of the last round of AES can be targeted instead of the first one, with the same complexity
by just swapping the ciphertexts with the plaintexts. In this case, the recovered key bytes
form the last derived subkey from the KeySchedule operation, rather than the ones of the
master key directly. Yet, since the KeySchedule is invertible for the AES-128, this attack
path equivalently leads to the master key recovery. An example of such an attack path is
provided in Subsection 3.8.4.

3.2 Assessing an Attack

Whereas an attacker is ultimately interested in the value of the secret key embedded in the
target device, a developer or an evaluator is much more interested in the effort required
by the attacker to succeed, from which ultimately depends the security level of the target
implementation. This different perspective leads the SCA community to design and adopt
conventions on the performance metrics used for the quotation of the vulnerabilities of the
target implementation. We present in this section the different aspects to take into account
in the efficiency evaluation of an attack, before introducing the related performance metrics.

3.2.1 The Different Factors of Attack Complexity

Depending on who actually instantiates the attackA, i.e., whether this is an actual adversary
or a developer/evaluator, one will differently define the notion of complexity. We particu-
larly distinguish the effectiveness of an attack – i.e. can A succeed – from its efficiency – i.e. to
what extent can A succeed. This distinction is necessary because nowadays crypto-systems
are designed to be resilient from a potential informative leakage about some secret data, e.g.,
the key. This concretely means that those crypto-systems often refresh the secret keys used
in their communication protocols by the cryptographic primitives, after a given number of
uses for encryption and/or decryption. On the one hand, if an attack requires a number of
queries Na beyond the refreshing period of a key, then it will be harmless for the crypto-
system. On the other hand, refreshing the secret key in a communication protocol might
limit the runtime performance of the upper communication layers of the target device, and

27



CHAPTER 3. SIDE-CHANNEL ATTACKS

thereby its global performance desired by the developer. Thanks to this mechanism, the
developer can control the trade-off between performance and security, depending on the
efficiency of potential attacks. In this context, an attacker is interested in the effectiveness of
its particular attack, whereas a developer is more interested in the best efficiency of a wider
class of attacks against which he wants to protect its device.

Therefore, the notion of efficiency can be more precisely translated into the required
number Na of queries to succeed the attack A whereas the effectiveness can be defined by
the existence of such an Na ensuring the success of the attack.

3.2.2 The Performance Metrics

To assess the effectiveness and the efficiency of an attack, it has initially been suggested to
measure or estimate the minimum number of traces required to get a successful key recov-
ery [MOP07]. This can be done by computing the guessing vector g (DSa) of a score vector
DSa . The coordinates of the guessing vector are defined as follows:

g (DSa) [k] ,
∑
k′∈K

1DSa [k′]≥DSa [k] , (3.2)

where 1 is the characteristic function defined in Section 2.1. In particular, g (DSa) [k?] de-
notes the rank of the right key, which determines the success of an attack depending on the
form of the exploitation of the scores by the attacker, as discussed in Subsection 3.1.1. Al-
though unknown by a pure attacker, this quantity is known by a developer/evaluator in an
evaluation context.

Yet, many random factors may be involved during the attack: we have seen that the
traces and the plaintexts may be seen as the realizations of Na couples of i.i.d. random vari-
ables (X, P), so the attack set Sa may be seen itself as the realization of a random vector. In
other words, one cannot consistently compare two attackers A1 and A2 from one attack set,
since the comparison could lead to different conclusions on another attack set S ′a acquired
on the same target T . So any measure of success must be refined to remove any dependency
on random factors.

To circumvent this issue, the SCA community has agreed on a metric called the Success
Rate (SR) at order o:5

SR(Na,D, o) , Pr (g (DSa) [k?] ≤ o | |Sa| = Na) , (3.3)

where o is set according to the desired definitions of “success” among those proposed in
Subsection 3.1.1. The SR quantifies the probability that the attacker A succeeds in finding
the secret key stored in the target T within a given number Na of queries done during the
attack phase. If the attack is effective, the SR is expected to increase withNa and to converge
towards 1. Following the discussion in Subsection 3.2.1, the efficiency of the attack A, at
probability β, is likewise materialized by:

Na(D, o, β) , min {Na ∈ N | SR(Na,D, o) ≥ β} , (3.4)

where β ∈ [0, 1] is a threshold set by the evaluator, typically β = 90%. Figure 3.3 illustrates
the relationship between the different quantities introduced so far in this section.

One can accordingly compare two attackers A1 and A2 by comparing the efficiency of
their respective distinguishers at a given threshold and a given success order. In the remain-
ing of this thesis we will lighten the notations, by removing the reference to the success order
o when the latter one is implicitly fixed to one, and by removing the reference to β when the
latter one is implicitly fixed to 90%. Likewise, since so far an attacker is fully defined by its
distinguisher, we may equivalently substitute D with A in the notations.

5 The notion of order of the success rate shall not be confused with the notion of order of secret-sharing
defined in Subsection 3.7.1.

28



CHAPTER 3. SIDE-CHANNEL ATTACKS

0 Na(D, o, β)
0

β
1

Na (log scale)

SR
(N

a
,D
,o

)

Figure 3.3: Typical shape of a Success Rate (SR) plot, illustrating how Na(D, o, β) is defined.

Within this framework, it is then common to formulate the evaluator’s task as assessing
the worst-case scenario from the developer’s point-of-view. The pursuit of such scenario is
the cornerstone of the evaluation, as stated by the following problem.

Problem 1 (SCA Optimization). Given a target T , a threshold β ∈ [0, 1] and a success order o, find
the most efficient attacker A, i.e., the one instantiating the distinguisher D minimizing Na(D, o, β).
We denote by

N?
a (o, β) , min

D
{Na(D, o, β)} (3.5)

the efficiency of the optimal attack.

Remark 3. Rather than the success rate, one can equivalently consider the average ranking of the
correct guess, a.k.a. the Guessing Entropy (GE) [SMY09], defined as:

GE(Na,D) , E
Sa

[g (DSa) [k?] | |Sa| = Na] . (3.6)

In that case, the efficiency is defined by :

Na(D, τ) , min {Na | GE(Na,D) ≤ τ} , (3.7)

where τ ≥ 1 is a threshold set by the evaluator. An illustration of the metrics related to the GE is
proposed in Figure 3.4. The GE quantifies the average amount of enumeration which is yet to be done
after the key recovery phase if the right key is not ranked in the first place in the guessing vector.

Since an acceptable amount of enumeration for the whole key – i.e. made of the 16 bytes for AES
– is generally set to 232, it is usual to set the threshold to recover only one byte to τ = 2. This way, it
ensures the average amount of enumeration for the whole key to lie below τ16 ≤ 232. In the remaining
of this thesis, we will let the parameter τ implicitly set to 2, in order to lighten the notations.

The GE is of great interest for attack scenarios in which the attacker A is allowed to proceed a
key enumeration after the attack phase, and we will provide later in this thesis an illustration of a
GE plot in Figure 7.9. Moreover, one can draw a parallel with the eponymous notion of GE defined
by the NIST [BDP06], which “measures [. . . ] the difficulty that an attacker has to guess the average
password used in a system”. Nevertheless, we will favor the SR in this thesis.

3.2.3 Estimating the Metrics in Practice

In practice, to estimate SR(Na,D, o), sampling many attack sets may be very prohibitive in
an evaluation context, especially if we need to reproduce the estimations for many values of
Na until we find Na(D, o, β). One solution to circumvent this problem is, given a validation
set of Nv traces, to sample some attack sets by permuting the order of the traces into the
validation set (e.g. 50 times). DSa can then be computed with a cumulative sum to get
a score for each Na ∈ J1, NvK. For each value of Na, the success rate is estimated by the
occurrence frequency of the event “argmaxk∈KDSa [k] = k?”.6 While this trick gives good

6 The GE is likewise estimated by computing the average value of g (DSa ) [k?].

29



CHAPTER 3. SIDE-CHANNEL ATTACKS

0 Na(D, τ)
0

τ

1

Na (log scale)

G
E(
N
a
,D

)

Figure 3.4: Typical shape of a Guessing Entropy (GE) plot, illustrating how Na(D, τ) is defined.

estimations for Na � Nv, one has to keep in mind that the estimates become biased when
Na → Nv. Retrospectively, we must verify in each experiment that the result Na(D, o, β) is
indeed much lower than Nv.

3.3 Conditions of an Optimal Attack

When addressing Problem 1, it is relevant to first recall a key result from Heuser et al. pre-
sented at CHES’14: an analytical optimal solution to Problem 1 is given by the following
theorem.

Theorem 1 (Optimal Distinguisher [HRG14, Thm. 1]). The most efficient attacker A for the
device T is the one using the maximum likelihood – defined in Section 2.2.2 – as a distinguisher, i.e.,

DML
Sa

[k] =
Na∑
i=1

log Pr (Xi = xi | Zi = C (pi, k)) , (3.8)

i.e., Na

(
DML
Sa

)
= N?

a .

At this stage, it is relevant to comment the different elements of Equation 3.8:

• The Leakage model denotes here the p.d.f. Pr (X | Z). More generally, it is the way
to describe the physical dependency between one leakage trace X and the sensitive
target variable Z.

• The Distinguisher properly said is the way how the information extracted on each
trace through the leakage model is combined to compute the scores. Here in particular,
the distinguisher is the sum of the log probabilities of the likelihood function.

We may discuss its impact on our attack gray-box scenario. On the one hand, it implies
that the optimal attackerA is fully determined by the choice of the maximum likelihood dis-
tinguisher, thereby addressing the last remaining degree of freedom. This is useful in order
to build provably secure implementations against any type of attacker: it suffices to prove
that the given implementation is secure against an attacker using the maximum likelihood
distinguisher.

On the other hand, the major drawback of such a distinguisher is that it implicitly re-
quires the full knowledge of the leakage model. The latter one typically depends on the
target implementation T , both at software and hardware levels, as on the acquisition en-
vironment of the physical measurements. Therefore, perfectly knowing the leakage model
turns out to be practically impossible as is. In other words, the analytical solution of Prob-
lem 1 is not informative for the SCA evaluator. To circumvent this issue two approaches
have been proposed in the literature.

30



CHAPTER 3. SIDE-CHANNEL ATTACKS

The first one – historically speaking – consists in making assumptions on the leakage
model depending on the knowledge of the attacker or the evaluator on the device. These
assumptions may be strong and even non-realistic although representing reasonable ap-
proximation errors. The counter-part to this approach is that other distinguishers, possibly
less sensitive to approximation errors, may lead to more efficient attacks compared to the
maximum likelihood distinguisher. This approach, presented in Section 3.5 is nowadays
called unprofiled attacks, in opposition to the second approach, hence called profiled attacks.

The second scenario allows to still assume the attacker to have access to the exact leakage
model – or at least a good approximation of it for some metric that must be previously
defined, in order to address the worst-case scenario.

To this end, a preliminary phase of the attack requires to characterize the leakage behav-
ior of the device. This will be detailed in Section 3.4. This approach enables to reformulate
Problem 1 in a slightly modified version, namely Problem 2, that can be more practically
useful.

3.4 Profiled Attacks

Profiled attacks provide a way to help the attacker to accurately approximate the leakage
model, in order to allow the use of the maximum likelihood distinguisher – see Equation 3.8
– to be practically used in an SCA context. From an evaluator’s point of view, it is also
relevant, since it allows him to implement an attack close to the optimal one, rather than
just considering it as theoretical. This is useful when assessing the performance of a real,
possibly non perfect attacker. It relies on the existence of a clone device T ′ of the actual
target T . The clone device is assumed to behave as an open sample, i.e. it is fully controlled
by the attacker; especially the knowledge (and eventually the choice) of all the parameters
and intermediate computations processed during the execution of the primitive, including
the random values used to secure the processing – see Subsection 3.7.1.

A profiled attack, depicted in Figure 3.5, is divided into two distinct phases. The first
one, called profiling phase, as depicted on the left of Figure 3.5, exploits so-called profiling
traces. Profiling traces are acquisitions taken under known values for the sensitive variable
Z, so the attacker collects a profiling set Sp , {(x1, z1), . . . , (xNp , zNp)}, for which the correct
association trace/sensitive variable is known. The profiling phase is typically done on the
clone device T ′, assumed to have the same physical and algorithmic behavior as the target
T . Intuitively, the less similar the behavior of the clone device T ′ with respect to the target
device T , the more loss in the attack performance. That is why in practice, an evaluator
aiming at finding the worst-case scenario often considers the target device T to be the exact
clone T ′ on which he is working.7

The second phase of a profiling attack is the attack phase strictly speaking, during which
the attackerA proceeds exactly as in the gray-box scenario depicted in Figure 3.1. Therefore,
Amay take the advantage of the previous profiling phase to infer over it.

Assessing a Profiled Attack. Considering a profiled attack scenario allows an evaluator
to conduct a worst-case scenario analysis of the target security. Such a scenario typically
covers very powerful attackers, potentially without restriction in terms of financial, mate-
rial and human resources. Regarding this analysis, it is common to assume the attacker to
have an unbounded profiling power, in order to fully exploit the behavior of the open sam-
ple. This means concretely that the resources used by an attacker in a profiling scenario, in
terms of human expertise, time and technical means, are not critical here and therefore, are
considered as negligible. In particular, no bound on the number Np of acquired traces in the
profiling set Sp is assumed in this thesis, contrary to the number Na of traces in the attack

7 This assumption is discussed in Section 4.4 when we review the literature working on the portability issue.

31



CHAPTER 3. SIDE-CHANNEL ATTACKS

Clone T ′ Attacker A

Target TPr
ofi

lin
g

ph
as

e

A
ttack

phase
p1, . . . , pNp , k1, . . . , kNp

x1, . . . ,xNp

p1, . . . , pNa

c1, . . . , cNa ,x1, . . . ,xNa

DSa

g (DSa) [k?]

Figure 3.5: Profiling attack scenario: a gray-box attack scenario with a preliminary profiling phase.

set Sa that we assess during the evaluation of a target. However, from an evaluator’s point-
of-view, this assumption is questionable. If the target device is not provably secure against
profiled SCA, the security guarantees come from a practical evaluation, which cannot be
mounted with infinite resources. Hence, the worst-case scenario analysis is not always af-
fordable in a profiled attack context. That is why some works also consider the case of
restricted profiling power for the evaluator too [PHG19]. Chapters 4 and 5 will discuss the
impact of the number Np of profiling traces on the quality of the profiling phase.

Template Attacks (TA). The most known estimation method of the leakage behavior is the
use of Gaussian Templates (GTs), as initially proposed by Chari et al. at CHES’02 [CRR02].
Precising the term “Gaussian” here means that one assumes the likelihood to follow a (even-
tually multivariate) Gaussian law:

X | Z = s ∼ N (Ms,Σs) , (3.9)

whose parameters Ms,Σs (possibly) depend on the sensitive value s processed by the inter-
mediate computation Z. During the profiling phase, those parameters are estimated respec-
tively thanks to the empirical mean and the empirical covariance matrix for each cluster of
traces sharing the same value s.

The critical task here comes from the estimation of the D×(D−1)
2 different coefficients

of the covariance matrix Σs for each value s ∈ Z . Choudary et al. recall that the latter
one must be invertible – see Equation 2.7, and explain that a necessary condition is that
Np ≥ D. The latter condition is usually not sufficient because of the noise in the leakage.
Indeed, making estimations of the parameters accurate enough in order to make a strong
discrepancy between each template would require much more profiling tracesNp. Although
not critical at first sight since we do not assume any limitation on the number of profiling
traces, it may become a practical issue for the evaluator if the input dimensionality becomes
too high.

To circumvent this problem, two solutions are proposed in the literature. First, a di-
mensionality reduction pre-processing can be done on the acquired traces from the profiling
set. This solution aims at decreasing D. Some of those techniques will be discussed in Sec-
tion 3.6. Second, one may consider other assumptions on the covariance matrix, in order to
decrease the required number of data for the estimation. The literature in statistics proposes
a wide spectrum of such techniques. Yet, we mention hereafter the ones used in the specific
case of profiled SCA:

• When no additional assumption is done, one remains with all covariance matrices, one
for each cluster tagged with the sensitive value s. In that case, the covariance matrices

32



CHAPTER 3. SIDE-CHANNEL ATTACKS

are said heteroscedastic. The combination of a Gaussian template with heteroscedastic
covariance matrices and the maximum likelihood distinguisher is also known as a
Quadratic Discriminant Analysis (QDA) in the machine learning terminology [HTF09,
Chap. 4.3].

• In opposition to the heteroscedastic assumption, the covariance matrices may eventu-
ally be assumed to be all equal to each other. In that case, the covariance matrices are
said homoscedastic. This is an interesting assumption when one is guaranteed that the
discriminative information is contained in the mean vector Ms, since this enables to
estimate only one covariance matrix, which we explained to be the critical task. The
use of a Gaussian template with homoscedastic covariance matrices and the maximum
likelihood distinguisher is also known as a Linear Discriminant Analysis (LDA) in the
machine learning terminology [HTF09, Chap. 4.3]. This approach has been proposed
by Choudary et al. at CARDIS’13 [CK13] under the name of pooled template.8

• In addition to the homoscedastic assumption, the covariance matrices may even be as-
sumed to be diagonal. In other words, this means that all the samples X[t], t ∈ D
are assumed to leak independently from each other. The use of a Gaussian tem-
plate with a single diagonal covariance matrix and the maximum likelihood distin-
guisher is also known as a naive Bayes classifier in the machine learning terminol-
ogy [HTF09, Chap. 6.6.3]. The soundness of this approach has been discussed by Picek
et al. [PHG17].

It is worth emphasizing that although the SCA community almost always assumes that
the leakage X follows a multivariate Gaussian law, templates may be obviously extended
beyond this case. The interested reader may refer to the works of Heuser et al. discussing
the latter assumption at CHES’14 [HRG14].

Generative vs. Discriminative. GTs are an example of a so-called generative model. This
means that the leakage model, i.e., the likelihood function Pr (X | Z) may be used to gen-
erate synthetic traces. To this end, one may take a RNG to draw a random value z ∈ Z
according to a uniform distribution; before a vector x according to the likelihood distribu-
tion Pr (X | Z = z), estimated thanks to the profiling phase.

In other words, a generative model is able to make a discrepancy between the values s ∈
Z of the sensitive variable Z, by completely modelizing how such values would affect the
input trace X, even if some parts of the modelization do not enable to make any discrepancy
between the underlying values of the sensitive variable. This is a more general problem than
just guessing which is the most likely value of Z that is leaking from a given trace x. The
latter approach is called the discriminative model. Such models are typically estimated with
machine learning algorithms, that we will present in Chapter 4.

Intuitively, estimating a discriminative model is a simpler task than estimating a gener-
ative one, since the latter one requires to build a complete model of X, whereas the former
one only focuses on the discriminative features of X in order to guess Z. This was phrased as
follows by Vladimir Vapnik in his principle for solving problems using a restricted amount
of information:

“When solving a given problem, try to avoid a more general problem as an in-
termediate step.” [Vap00, Chap. 1.9].

However, contrary to generative models, discriminative ones are more seen as black-box,
since they do not always reveal the latent mechanism linking the variable to explain Z to the
explaining variable X.

8 In SCA, the term LDA may either refer to the pooled templates, or to a dimensionality reduction technique,
a.k.a. the Fisher’s LDA [SA08].

33



CHAPTER 3. SIDE-CHANNEL ATTACKS

Replacing a generative model by a discriminative one turns out to be possible in profiled
attacks, according to the following lemma.

Lemma 2 (Discriminative distinguisher). Suppose that the attackerA knows the posterior proba-
bility distribution Pr (Z | X) instead of the likelihood distribution Pr (X | Z). Then the maximum
likelihood distinguisher can equivalently be defined as:

DML
Sa

[k] =
Na∑
i=1

log Pr (Z = C (pi, k) | X = xi) + u , (3.10)

where u ∈ R is a constant independent of k.

Proof. According to the Bayes’ Theorem (see Equation 2.5), one have:

Pr (Z = C (pi, k) | X = xi) = Pr (X = xi | Z = C (pi, k))× Pr (Z = C (pi, k))
Pr (X = xi)

.(3.11)

Since Z is uniform, Pr (Z = C (pi, k)) does not depend on k. That is why the logarithm of the
likelihood and the posterior probability distributions are equal, up to an additive constant
(i.e., independent of k). Therefore, the distinguisher, as defined in both Equation 3.10 and
Equation 3.8, will always imply the same key hypotheses ranking.

The equivalent definitions of the maximum likelihood distinguisher enables the attacker
to choose the distribution which fits the most its constraints, and in particular, opens the
way towards the use of ML algorithms as we will see in Chapter 4.

3.5 Unprofiled Attacks

When profiled attacks are impossible – e.g. when one lacks a clone device behaving as an
open sample – the attacker is reduced to make (strong) hypotheses on the leakage model,
instead of accurately estimating it. The error induced on the guessing of the secret key may
then be more or less sensitive to those hypotheses. That is why such a weaker attacker
should also adapt its strategy in the key recovery.

Two main strategies can be used when facing a non-profiled attack context. The first one
consists in using leakage models commonly adopted in the SCA literature. The latter one
typically proposes some simple generative models although often relevant. Combined with
those simple models, another distinguisher, namely the correlation distinguisher, is widely
used. This gives an approach known under the name of Correlation Power Analysis (CPA),
which will be addressed in Subsection 3.5.1.

The second one aims at addressing the case where no sound leakage model can be as-
sumed concerning the acquired traces. In that case, the MI can be somehow used as a distin-
guisher, leading to the so-called Mutual Information Analysis (MIA). This approach being
beyond the scope of this thesis, the interested reader may refer to the study conducted by
Batina et al. [BGP+11].

3.5.1 Correlation Power Analysis

The aim of CPA is as follows. The attacker is given a uni-variate additive noise leakage model,
typically under the form

(X[t] | Z = s) ∝ ϕ(s) + B , (3.12)

where ϕ : Z → R is a deterministic function of the observation s of the sensitive target
variable Z leaking at a time coordinate t, and B is a Gaussian zero-mean random variable
independent from Z denoting the ambient noise. The attacker wants to test for which hy-
pothetical value of the secret key the acquired traces from the attack set Sa fit the most the

34



CHAPTER 3. SIDE-CHANNEL ATTACKS

assumed leakage model. Since Equation 3.12 assumes a linear relation between the random
variables (X[t] | Z) and ϕ(Z), one materializes this test by computing the correlation coef-
ficient between X[t] and ϕ (C (P, k)), for each time sample t and for each hypothetical value
k, as stated by the following definition.

Definition 2 (Correlation Distinguisher). Given an attack set Sa and a leakage model ϕ, the
Correlation Distinguisher is defined as:

DCPA
Sa

[k] , max
t∈J1,DK

|ρ (X[t], ϕ (C (P, k)))| , (3.13)

where
ρ (X,Y) , SX,Y√

S2
X · S2

Y

(3.14)

denotes the empirical – a.k.a. Pearson – correlation coefficient between X and Y.

Indeed, given a key hypothesis k, the computation of the correlation coefficient for each
time coordinate of the traces give a vector ρ of size D.9 Provided that the leakage model
is sound, when the right key k? is tested, the computed correlation coefficient is expected
to reach a significantly higher value where the leakage happens, i.e., at Points of Interest
(P.o.Is), than elsewhere in the resulting vector. Instead, when another wrong key candidate k̃
is tested, it is equivalent to test the fitness of another leakage model, namely ϕ

(
C
(

P, k̃
))

. If
this leakage model is highly non-linear with respect to the true leakage model ϕ (C (P, k?)),
then the resulting correlation coefficient computed at the same P.o.I is not expected to be
distinguishable from the non-informative time coordinates.

Since the computed correlation coefficients are empirical estimations, the more traces
in the attack set, the more likely an attacker is able to make a discrepancy between the
score of the right key hypothesis and the wrong ones. Hence the interest of the correlation
distinguisher to mount a SCA.

CPA has been first introduced, as is, by Brier et al. at CHES 2004 [BCO04].10 But Le et
al. [LCC+06] and Doget et al. [DPRS11] have shown that several attacks proposed in the
early years of SCA since the seminal work of Kocher et al. [KJJ99], may be retrospectively re-
formulated as a CPA. The only difference with the Brier et al.’s work relies on the underlying
leakage model, which will be discussed hereafter.

Heuser et al. have shown that if the true leakage model is uni-variate and is perfectly
known by the attacker, then the linear correlation distinguisher is equivalent to the maxi-
mum likelihood distinguisher regarding Problem 1 [HRG14]. However, in a non-profiled
context, one cannot guarantee that the assumed leakage model ϕ perfectly fits the true one,
and here is where the correlation distinguisher takes advantage on the maximum likelihood:
it is often less sensitive to approximation errors in the leakage model. Hence its wide use in
non-profiled attacks.

Models to Approximate the Leakage. We review hereafter the different leakage models
which can be proposed to approximate the true one. The choice depends on the knowledge
of the attacker on the software and/or hardware architecture of the target device T .

Classical leakage models come from the fact that, in Complementary Metal Oxide Semi-
conductor (CMOS) technology – which is used to realize the majority of existing integrated
circuits, peaks of power consumption are observable when the output of the gates transition
from either a ‘0’ to ‘1’ or a ‘1’ to ‘0’ logic state. At the scope of an 8, 16 or 32-bit register
storing a targeted intermediate computation Z, the leakage model can then be described by

9 D is recall to be the dimensionality of the traces, i.e., the number of time samples in them.
10 The term Correlation Electro-Magnetic Analysis (CEMA) may also be found when the traces denote acqui-

sitions from an EM probe. Yet, we will not make any discrepancy between both terms.

35



CHAPTER 3. SIDE-CHANNEL ATTACKS

the values of its bits and those of the previous intermediate computation Z′ stored in the
same register, that is:

X[t] | Z ∝ ϕ
(
Z,Z′

)
+ B , (3.15)

where ϕ is a deterministic function of two elements from Z , and B is a random variable
denoting the noise coming from the environment, i.e., the neighbor registers and the mea-
surement noise. The knowledge of Z and Z′ may be guessed from the source code or the
hardware architecture depending on the context. In that case, ϕ can even be simplified to
only depend on the target variable Z: the dependency on the previous state is implicitly
included in ϕ and in the noise term.

Since ϕ is a deterministic function of a discrete random variable taking finite values, it
may be reformulated as a polynomial of the bits of Z, denoted hereafter as Z[0], . . . ,Z[n−1],
where n is the number of bits:

ϕ (Z) =
∑

J⊂J0,n−1K

αJ
∏
j∈J

Z[j] , (3.16)

where αJ ∈ R. Doget et al. argue that for most targets T , the attacker A may assume that
the degree of ϕ, seen as a polynomial, is lower or equal to one [DPRS11]. In other words,
the bits contribute to the power consumption – or the EM emanation – independently from
each other, therefore ignoring the possible coupling effects between the logic gates storing
those bits. Thus, the leakage model may be simplified to:

ϕ (Z) =
n−1∑
i=0

αiZ[i] , (3.17)

where αi ∈ R, which has the advantage to be linear with respect to the bits of Z. At this
stage, the attacker must only guess the coefficients αi. Depending on its knowledge and
on the approximation error margin he may accept on its leakage modelization, the attacker
may choose between several assumptions suggested hereafter, although not exhaustive.

• The coefficients may be assumed to be equal to each other. This corresponds to the
so-called Hamming weights leakage model, denoted as hw(Z). This model is the one
proposed by Brier et al. for their CPA [BCO04], and is, so far, the most widely used
leakage model.

• The coefficients may otherwise be ignored – i.e. they are set to 0 – except one of them.
Such a leakage corresponds to a monobit leakage model. In particular, when the non-
null coefficient is α0 (resp. αn−1), the model is also known as a Least Significant Bit
(l.s.b.) (resp. Most Significant Bit (m.s.b.)) model. Although not realistic, this model
has the advantage to be very robust against approximation errors, since it involves few
approximation assumptions on the leakage, thereby making the bridge with legacy
Differential Power Analysis (DPA) [KJJ99].

• Eventually, the coefficients may be adjusted thanks to a linear regression with the
traces from the attack set, for each key hypothesis. This approach is known as a stochas-
tic attack or Linear Regression Analysis (l.r.a.) [SLP05].

It is also noticeable that Brier et al. suggest to choose the target sensitive variable Z as
the output of the SubBytes instead of the output of the AddRoundKey. By including the
Sbox inside ϕ, one ensures that the leakage induced by z wrong key hypothesis will be
highly non-linear with respect to the one induced by the right key hypothesis. Therefore,
this decreases the required number Na of queries to distinguish the right key k? with the
correlation distinguisher – see [MOP07, Sec. 6.3.1] for an explanation.

36



CHAPTER 3. SIDE-CHANNEL ATTACKS

3.6 Leakage Characterization and Pre-Processing

So far, we have seen that to emulate a sound attacker A in order to evaluate a target, one
must get an estimation of the conditional p.m.f. Pr (Z | X). This can be done either manu-
ally by the attacker thanks to the preliminary knowledge of the target behavior, or thanks to
measured leakages during a preliminary characterization phase. The problem of estimating
the latter conditional p.m.f. Pr (Z | X = x) based on measured data x is singular for two
reasons.

On the one hand, SCA traces depict physical quantities varying through the time. By
definition, these can be seen as continuous functions of the time, so they cannot be perfectly
measured through the acquisition. A high-sampling rate oscilloscope can nevertheless dis-
cretize this signal with high fidelity, but at the cost of high dimensionality in the traces,
ranging from several hundreds to several millions of samples, depending on the target im-
plementation. This feature yields technical challenges concerning the use of some estimation
algorithms. As an example, naively applying Gaussian Template Attacks (TA) on the raw
traces of length D would require to estimate the O(D2) coefficients of the covariance matri-
ces. Hence, such a leakage model poorly scales when increasing the dimensionality of the
traces.

On the other hand, in our cryptographic contexts, the relevant informative leakage is
empirically known to be only localized in few time samples, the so-called P.o.Is. By relevant,
we mean that those P.o.Is statistically depend – independently or jointly – on a sensitive
variable, as formally stated by the following assumption.

Assumption 1 (Sparsity). There only exists a small set of coordinates IZ , {t1, . . . , tC | C � D}
such that Pr (Z|X) = Pr (Z | X [t1] , . . . ,X [tC ]).

That is why it is worth considering methods able to target those P.o.Is. Not only, from
an attacker’s point of view, it enables to reduce the attack complexity by decreasing the
dimensionality of the input traces, while keeping enough exploitable information to enable
an attack to succeed. But also, by identifying the precise time samples where the informative
leakage occurs, it allows an evaluator or a developer to guess the origin of the vulnerability,
whether it comes from an element in a hardware circuit, or from a particular instruction in
the assembly code for software implementations. In a sense, it helps to build a full diagnosis
of the target device weaknesses.

There are two ways to proceed a dimensionality reduction. Either one may try to di-
rectly localize the P.o.Is, thanks to some tools exploiting the statistical dependencies of the
trace at the informative time samples – detailed in the next section. Or one may use stan-
dard data compression techniques, such as Principal Component Analysis (PCA) [CDP15,
SA08, EPW10, CK13, CK14], Kernel Discriminant Analysis (KDA) [CDP16], Discrete Fourier
Transform (D.F.T.) or wavelet-based signal decomposition [DDFP20]. Contrary to the former
way, the latter one does not enable to localize the P.o.Is. Hereafter, we propose an overview
of the former way, especially since it will be used as a benchmark in Subsection 7.3.3.

3.6.1 Research of Points of Interest

In this section we present some basic tools, able to emphasize P.o.Is in the traces. We recalled
in Subsection 3.5.1 that some non-profiled leakage models rely on a deterministic function
ϕ of the sensitive variable, which coincides with statistical moments of the traces on the
specific time coordinate where the leakage occurs. This is somehow a first method empha-
sizing P.o.Is. That is why assessing similarly statistical hypothesis tests on those samples can
make a discrepancy between uninformative time samples and informative ones. We detail
hereafter two ways to implement this idea.

37



CHAPTER 3. SIDE-CHANNEL ATTACKS

T-test. The T-test characterization [MOBW13] is based on the eponymous statistical test.
Its idea is to gather a profiling set into two classes: one, denoted by SA of size nA, with a
same fixed sensitive value zA, and another, denoted by SB of size nB with random sensitive
values. The T-test assesses whether the two datasets share the same expected value or not.
To this end, a T-statistic is computed according to Equation 3.18, for each time sample of the
traces:

T [t] = XA[t]− XB[t]√
S2

A[t]
nA

+ S2
B [t]
nB

, (3.18)

where XA[t] (resp. XB[t]) denotes the empirical mean and S2
A[t] (resp.S2

B[t]) denotes the em-
pirical variance of the traces from SA (resp.SB) at a given time coordinate t – see Subsec-
tion 2.2.1. Therefore, it outputs a characterization vector of the same dimensionality of that
of the input traces, namely D.

If a time coordinate t does carry informative leakage, then there is at least one value
s ∈ Z of the sensitive variable Z such that the probability distribution Pr (X[t] | Z = s)
would differ from Pr (X[t]). Therefore, it is likely that the expected values of the correspond-
ing p.d.f.s, namely E [X[t] | Z = s] and E [X[t]] are significantly different, hence a T-statistic

significantly different from 0.11 That is why such a test should reveal a vector emphasizing
P.o.Is at the time samples where some informative leakage is carried. Moreover, according
to Assumption 1, this vector should be sparse. An example of leakage characterization with
a T-test is given in Figure 3.9a.

However, depending on the true leakage model, not all values s ∈ Z may yield a sig-
nificant T-statistic. To circumvent this issue, the T-statistic may be averaged over the set Z
of all possible values that Z may take. Likewise, the p.d.f.s Pr (X[t] | Z = s) and Pr (X[t])
being different does not necessarily mean that their corresponding expected values also dif-
fer. This particularly happens when facing protected implementations, where the discrim-
inative part of the leakage occurs in higher-order statistical moments.12 To circumvent this

issue, Standaert suggested at CARDIS’18 to replace XA[t]
(

resp. XB[t]
)

with
(

XA[t]− XA[t]
)d

(
resp.

(
XB[t]− XB[t]

)d)
, for a given d > 1.

Signal-to-Noise Ratio. The Signal-to-Noise Ratio (SNR) follows roughly the same idea.
For each time sample t, the following statistic is estimated:

SNR[t] ,
Var

Z

(
E [X[t]|Z = s]

)
E
Z

[
Var (X[t]|Z = s)

] , (3.19)

where the numerator denotes the signal magnitude and the denominator denotes the noise
magnitude estimate. Like the T-test, provided that a time coordinate does carry some in-
formative leakage, the deterministic part E [X[t]|Z = s] should not be constant with s, hence
a non-zero variance, and thereby a non-zero SNR when the latter one is computed at an
informative time coordinate. It is noticeable here that the denominator does not bring more
information concerning the relevance of a time coordinate, but only scales the leakage char-
acterization vector with the noise amplitude of the traces. This is then particularly useful
when one wants to compare the relevance between several informative time coordinates.13

Nevertheless, although requiring more traces to draw significant conclusions from the SNR
than from a T-test, the former one does not depend on the choice of the the sets of traces to
statistically compare [Sta18]. The interested reader may refer to see [MOP07, Sec. 4.3.2] for
more details on its application in the SCA context.

11The T-statistic should be typically higher than 4.5.
12 This will be discussed in Section 3.7.
13 Provided that those time coordinates carry the same redundant information about the sensitive variable.

38



CHAPTER 3. SIDE-CHANNEL ATTACKS

Characterization of Multi-Variate Leakages The SNR characterization techniques we have
presented so far work in the case of uni-variate leakage, that is, when the marginal p.d.f. of
X[t], for a given time coordinate t ∈ J1, DK, depends on the sensitive variable Z. Therefore,
both characterization techniques are able to emphasize all the P.o.Is verifying the preced-
ing property. However, for some more complex leakage models, some time coordinates
may still carry some information about the sensitive variable, i.e., Pr (X[t1],X[t2] | Z = s)
is non-constant with respect to s ∈ Z ; although their respective marginal p.d.f.s, namely
Pr (X[t1] | Z = s) and Pr (X[t2] | Z = s) remain constant with respect to s. Such leakage
models are called multi-variate to emphasize the fact that several time coordinates must be
jointly considered to find a dependency with the sensitive variable Z. Those leakage models
are widely met with protected implementations – see Section 3.7.

To deal with the statistically based characterization methods, it is possible to use a pre-
processing step of the traces. It consists in building a new pre-processed trace X′, computed
thanks to a so-called re-combination function ε applied on each possible tuple of a given size
q of time coordinates from the trace, i.e.,

X′[t1, t2, . . . , tq] = ε (X[t1],X[t2], . . .X[tq]) , t1, t2, . . . , tq ∈ J1, DK . (3.20)

The hope is that, for a value of q high enough, the uni-variate statistical moments of the new
trace X′ may contain new P.o.Is which would not be constant with respect to the sensitive
variable Z. Prouff et al. have proposed sound recombination functions in the case of sec-
ond order leakage models, i.e., when q = 2 [PRB09]. The drawback of this method is that it
mechanically increases the dimensionality of the new trace X′ to Dq where D is the dimen-
sionality of the original trace X. This limitation is critical, even for small values of q, and is
especially a cornerstone of the design of counter-measures by the developers.

3.7 Counter-Measures

So far, we have seen that side-channel attacks may be easily exploitable by a potential at-
tacker, as is. The ultimate goal of the developers is then to design secure implementations of
a cryptographic primitive, while keeping the latter one running efficiently. The SCA termi-
nology often uses the term counter-measure, defined hereafter, to refer to protections brought
to an implementation.

Definition 3 (Counter-measure [MOP07, p. 167]). A counter-measure is a set of modifications
brought to an original implementation of a cryptographic primitive aiming at avoiding or at least
reducing the dependency between the leakage and the sensitive intermediate values processed by the
primitive.

Behind Definition 3, there is the idea that a developer may find a way to control the
quantity of informative leakage through its implementation, despite the fact that he may not
have the control on the behavior of some hardware leaky components of the target device
T . In that sense, this draws a link with the notion of leakage resilient cryptography [KR19].

When dealing with the implementation of counter-measures, the general idea is to in-
corporate randomness, e.g., by using values drawn from an RNG, unknown by the attacker
during the attack phase – although those random values may also leak themselves through
the acquired traces. This randomness added to the implementation will harden the key re-
covery in two ways. First, it acts as a source of entropy which is added to the p.m.f. of
the true leakage model. This higher entropy mechanically decreases the information an
attacker might optimally gather about the secret key. Second, it artificially increases the
leakage model “complexity”, which may protect against attackers with bounded power to
guess the true leakage model.

There are mainly two approaches in the SCA literature about the design of counter-
measures:

39



CHAPTER 3. SIDE-CHANNEL ATTACKS

C̃ ()p

k

z

p1
...
pd

k1, . . . , kd

z1
...
zd

Encode

Encode

Decode

(a) Random data encoding.

p

k

C ()1

C ()2

C ()3

$→ 3

c

c

c

x3

x2

x1

(b) Random primitive code.

Figure 3.6: The two families of counter-measures in SCA.

• Random data encoding, depicted in Figure 3.6a: the developer uses a source of ran-
domness to change the way any sensitive variable are encoded in the algorithm at each
new execution.

• Random primitive code, depicted in Figure 3.6b: the developer uses a source of ran-
domness – depicted as $ – to change at each execution the way the elementary op-
erations of the algorithm are processed while keeping their semantic constant. The
random behavior in the elementary operations induces many different random pat-
terns – denoted by xi in Figure 3.6b – at each new execution, even if the plaintexts and
the encryption key remain constant.

The former approach is detailed in Subsection 3.7.1, while the latter approach is detailed
in Subsection 3.7.2.

3.7.1 Random Data Encoding

Principle of Secret-Sharing. The first idea introduced so far to protect devices against SCA
was to substitute the direct use of sensitive intermediate computations with a secret-sharing
of those computations. It gathers lots of techniques, investigated under several names over
the past 20 years, such as duplication, masking, blinding14 or random encoding. We will briefly
review those techniques.

Definition 4 (Encoding). An n-encoding of a variable z representing the intermediate state of a
computation, is a tuple (z0, . . . , zn−1) of size n such that there exists a decoding function verifying:

Dec (z0, . . . , zn−1) = z. (3.21)

Definition 5 (Secret-Sharing [Bei11]). Let d ≤ n + 1. An (n, d)-secret-sharing of the random
variable Z ∈ Z is an n-encoding verifying the two following properties:

1. For any subset Id+1 = (i1, . . . , id+1) ⊂ J0, n−1K of size d+1, there exists a decoding function
verifying

DecId+1

(
Zi1 , . . . ,Zid+1

)
= Z . (3.22)

2. For any subset Id = (i1, . . . , id) ⊂ J0, n− 1K of size d, the secret variable Z and the d-tuple of
random variables Zi1 , . . . ,Zid are independent,15 that is:

Pr (Z | Zi1 , . . . ,Zid) = Pr (Z) . (3.23)
14 This term is specifically used for implementation of asymmetric cryptographic primitives.
15 This condition may be relaxed for the so-called non-perfect secret-sharing. However, this is not used in this

thesis and the interested reader may refer to the survey of Beimel [Bei11].

40



CHAPTER 3. SIDE-CHANNEL ATTACKS

Remark 4. It is straightforward to show that Equation 3.22 holding for any set of size d implies that
it also hodls for any set of size strictly greater than d + 1. Likewise, Equation 3.23 holding for any
subset of size d implies that it also holds for any subset of size strictly lower than d.

The parameter d is called the order of security induced by the secret-sharing. We call
scheme a set of design rules enabling to:

1. compute a tuple (Z0, . . . ,Zn−1) which is a (n, d)-secret-sharing of a sensitive random
variable Z,

2. propagate the encoding through the different elementary operations of a cryptographic
primitive.

The goal of a developer is to find a scheme ensuring the given security requirements while
minimizing the runtime and memory overhead due to the scheme. We will discuss these
aspects while presenting the main schemes used so far in the literature.

Group Based Encodings. At first sight, finding an encoding function may look non trivial.
Hopefully, there exists a generic way to implement secret-sharing schemes: if there is an
inner operator · : Z2 → Z such that (Z, ·) is a group, then one may consider the scheme
given in Algorithm 2.

Algorithm 2 Secret-sharing scheme based on a group operator

Require: Z ∈ Z , $: RNG
Ensure: Z0, . . . ,Zn−1 is an (n, n− 1)-secret-sharing

Z0 ← Z
for i = 1 to n− 1 do

Zi ← $
Z0 ← Z0 · Zi

end for

The first scheme introduced so far is the Boolean scheme, which has been proposed by
Goubin et al. at CHES’99 [GP99] and Chari et al. at CRYPTO’99 [CJRR99]. It considers the
addition ⊕ in F28 as a group operator, which is nothing but the bit-wise xor between two
bytes,16 hence the name “Boolean”. Other group laws have also been proposed: the arith-
metical secret-sharing considers the modular addition + over Zn, and has been introduced
by Messerges et al. [Mes00], the multiplicative secret-sharing uses the field multiplication ×
between non-null elements in F28 and has been first used by Golic et al. [GT02]. The reason
to prefer one group law from another is that depending on the cryptographic primitive, the
sharing may be more or less easy to propagate through the elementary operations. In partic-
ular, it is trivial to apply an elementary operation which is commutative with the considered
group law: it suffices to apply the operation on each share separately. As a consequence, any
cryptographic primitive made of elementary operations commuting with a group law can
be protected by a d-th order secret-sharing with a linear complexity with d. As an example
for AES, the operations AddRoundKey, ShiftRows, MixColumns commute with the group
law ⊕ of the AES field F28 but the SubBytes operation does not. Similarly, the power func-
tion in the latter operation commutes with the field multiplication × in F28 provided that
the shares are non-null. We see here that all the operations of the AES do not commute
with the same group law, which implies an important negative result: there is no trivial way
to implement a secret-sharing scheme for this cryptographic primitive – at least based on
group laws. We see hereafter how to cope with this difficulty. Since except for SubBytes,
every other elementary operation of AES commutes with the addition⊕ in F28 , the idea is to

16 See Section 2.3.

41



CHAPTER 3. SIDE-CHANNEL ATTACKS

keep a Boolean scheme anyway, to propagate the sharing through the commutative opera-
tions, and to find a way to propagate the encoding through the SubBytes operation. Several
methods have been proposed in the literature that we briefly review hereafter.

The first idea simply consists in proposing ways to switch between different schemes
during the execution of the algorithm, so that at any time during the operation, the sensitive
target variables are always shared according to a scheme commuting with the next elemen-
tary operation. This line of works has been initially considered by Genelle et al. [GPQ10], and
further improved by Bettale et al. [BCZ18]. By switching from a Boolean secret-sharing to a
multiplicative one just before the SubBytes, and switching back to Boolean secret-sharing
after the power function, we circumvent the difficulty of the encoding propagation through
the SubBytes. Unfortunately, the switching operations have a runtime complexity of O(d2),
which mitigates the advantages of having a commutative secret-sharing with the power
function.

The second idea is known as table re-computation [AG01, PR07]. It is widely used for
operations relying on l.u.ts.17 We briefly describe its principle in the case of a (2, 1)-secret-
sharing based on a generic group law ·, although it can be extended without loss of gen-
erality to higher-orders [CRZ18]. It consists in initially drawing a pair of random elements
rin, rout ∈ Z , and based on the initial l.u.t. T , a modified table T̃ is generated, such that:

T̃ [rin · Z] = rout · T [Z]. (3.24)

Later in the algorithm, when one needs to apply T to a (2, 1)-secret-sharing of a secret vari-
able Z, it suffices to apply Algorithm 3. Coron investigated the extension of this scheme to
higher-order [Cor14].

Algorithm 3 Propagation of a secret-sharing through a l.u.t.

Require: A0 = Z ·M,M ∈ Z
Ensure: A3,M is a (2, 1)-secret-sharing of T [Z], A1, A2, A3 independent from Z
A1 ← rin ·A0 ·M−1

A2 ← T̃ [A1]
A3 ← rout

−1 ·A2 ·M

The third idea is to exploit the algebraic properties of the Sbox, as proposed by Rivain
and Prouff [RP10]. They remark that the non-linear part of the Sbox – namely the raising to
the power 254 as recalled in Section 2.4 – can be decomposed into a sequence of few field
multiplications and (linear) raisings to powers of the form s2p

[Ter18, Lem. 5.3.4]. It turns
out that the latter operations also commute with the field addition in F28 . The problem can
then be reduced to finding an implementation that propagates the secret-sharing through
the remaining field multiplications – which are not of the form s2p

. This can be done by
extending to the Rijndael field F28 the so-called Ishai-Sahai-Wagner (I.S.W.) scheme [ISW03],
originally computing field multiplications over the smaller field F2 for a Boolean secret-
sharing at any order. It results in a global Boolean scheme with complexity O(d2).

Beyond Group Law Based Encodings. We have seen a generic principle allowing to de-
rive simple secret-sharing schemes based on group laws. The literature in cryptography
however proposes many more ways to change the encoding of a sensitive information in a
secured way.

Von Willich has first proposed the combined use of Boolean and multiplicative group
laws into a so-called affine scheme [vW01]. This has been further investigated by Fumaroli
et al. [FMPR10]. More precisely, the bytes of the AES state carrying the sensitive variable Z

17 In the particular case where the Sbox may be randomly set, table re-computation might be the only working
method.

42



CHAPTER 3. SIDE-CHANNEL ATTACKS

are shared into α, β, and α× Z ⊕ β, where α ∈ Z\{0}, and β ∈ Z are randomly drawn. The
interest of the scheme relies on an improved security compared to a second order Boolean
scheme at the cost of a runtime overhead close to that obtained for a first-order Boolean
scheme. However, the affine scheme has only been proposed for a specific order, contrary
to group based schemes, potentially usable for any order d.

The so-called Shamir’s secret-sharing scheme, initially introduced in 1979 [Sha79], may
also be used to share a sensitive intermediate computation. It has first been investigated
simultaneously by Prouff et al. and Goubin et al. at CHES 2011 [PR11, GM11]. The scheme
enables to generate a (d+1, d)-sharing of a sensitive intermediate variable Z for any order d.
The principle is as follows. One first defines a polynomial P of degree at most d+ 1, whose
coefficients are randomly drawn from F2n and such that the constant coefficient verifies
P (0) = Z. One then draws d+ 1 random public points αi ∈ F2n . The d+ 1 shares are finally
given by the evaluation P (αi) of the random polynomial over the public points. According
to the Lagrange interpolation, one is ensured that a necessary and sufficient condition to
recover Z is to know the whole polynomial, i.e. the d+ 1 shares (P (αi))i∈J1,d+1K.

The inner-product scheme, introduced by Dziembowski et al. [DF12, GR15], then im-
proved [BFG+17] and even generalized to code-based schemes [WMCS20, CGC+21], fol-
lows a similar idea. It consists in defining two vectors of random variables L and R, each
made of d elements from F2n , such that the inner product 〈L,R〉 ,

⊕d
i=1 L[i] × R[i] = Z,

where Z ∈ F2n is the sensitive variable to protect. The vector L, although randomly drawn,
is typically let publicly known whereas the shares from R are supposed to be secret.

Soundness of Random Data Encoding A (n, d) secret-sharing is provably secure against
any attack involving less than d shares, since according to Definition 5, no subset of less
than d shares carry information about the sensitive shared variable Z. This result implies for
example that uni-variate attacks such as CPAs cannot succeed against an implementation
protected with a d-th order scheme – for d ≥ 1 – as is, and that a pre-processing step such
as the one described in Section 3.6 is necessary. Nevertheless, this does not fit the threat
model presented in Section 3.1 where the attacker A has access to noisy observations of all
the shares, since they are supposed to leak through the acquired traces from the attack set
Sa. In other words, this does not guarantee that any attacker is prevented from succeed-
ing an SCA against the protected target. Hopefully, it has been recently shown in a series
of papers, extending the seminal work of Chari et al. [CJRR99], that secret-sharing schemes
remain theoretically sound against SCA. Informally, this means that for the cost of a polyno-
mial growth in the performance overhead, the number of queriesN?

a required for an optimal
attacker to recover the secret key would be lower bounded by O

(
σd
)

, where σ is a param-
eter denoting the level of noise present in the traces for each of the shares, e.g., the standard
deviation [PR13, DDF19, DFS19, DFS16, PGMP19]. In a nutshell, the proofs use a common
ingredient at the cornerstone of the secret-sharing soundness: the noise amplification effect.
Indeed, if a scheme relies on a group operation, then the p.m.f. of the sensitive variable,
recombined from the p.m.f. of each share separately, may be seen as a discrete convolution
operation. Intuitively, convolutions are known to smoothen any function or distribution, pro-
vided that the initial shares’ p.m.f.s are noisy enough. This smoothen effect is the source of
noise amplification.18

3.7.2 Randomizing the Primitive Code

In Subsection 3.7.1 we have presented a way to protect an implementation by randomizing
the encoding of the sensitive data processed through the execution. Though the latter ap-
proach may be theoretically sound, it is practically limited due to the performance overhead

18 The interested reader may find more thorough discussion about the noise amplification effect in Ap-
pendix A.

43



CHAPTER 3. SIDE-CHANNEL ATTACKS

incurred by the counter-measure.
An alternative approach consists in designing counter-measures especially sound against

a specific type of attacker, not necessarily optimal but most likely to happen in reality. There-
fore, the designed counter-measures, although not theoretically sound, can represent a par-
ticularly efficient alternative from a runtime and memory performance point-of-view. This
is the idea behind the development of randomizing the operations processing the interme-
diate computations.

In a nutshell, without randomized code all the traces follow the same pattern and the
sensitive intermediate computations are leaking at the same time coordinates, which makes
the use of simple statistical tools particularly relevant for an attacker. Instead, some ran-
domness in the execution of the elementary operations prevents the attacker from perfectly
knowing the expected behavior of the traces, unless adopting specific strategies to mitigate
the effects of randomness. In the following, we review how to implement randomization of
the primitive code.

The implementation of a cryptographic primitive can be described at different levels,
from the source code – if the target is a software device – to the hardware architecture. This
implies that a developer is provided with a large spectrum of scopes on which randomiza-
tion may be applied in the operations.

At the software or hardware levels, round-based cryptographic primitives – such as the
AES – may be modified in order to incorporate dummy rounds. Inside those rounds, ele-
mentary operations may be augmented themselves with dummy operations which are not
necessary to proceed the encryption/decryption. Likewise, for any function looping over
independent elementary operations, the latter ones may be executed in a random order. At
a thinner scope, the transcription of the source code into machine code may be randomized
thanks to a code polymorphism approach.

Additional scopes of randomization are available at a hardware level. The use of asyn-
chronous architecture [Ren00] makes the device prone to a jitter effect, causing misalignment
in the traces. Likewise, the use of dual-rail logic [SS06] enables the target device to smoothen
the power consumption or the EM emanations through the execution time, so that it removes
the influence of the sensitive intermediate computation.

In the remaining of this section, we further describe some of those approaches which
will be investigated in this thesis. The interested reader can also refer to Chapters 7 and 8 of
the DPA book by Mangard et al. [MOP07].

Shuffling. This approach has first been introduced by Herbst et al. [HOM06], and extended
by Rivain et al. [RPD09] and Veyrat-Charvillon et al. [VMKS12]. The idea of shuffling is to
benefit from the many elementary functions in the AES made of independent (sequences of)
operations. As an example in the AES, the AddRoundKey and SubBytes process each byte
of the state independently from each other. Likewise, the ShiftRows and the MixColumns
process respectively each row and each column independently from each other. This means
that they can be processed in an arbitrary order. Whereas a naive implementation would
process those operations in a trivial order, a protected implementation would leverage the
independence in order to process them in a random order for each execution of the shuffled
algorithm. This randomness prevents the attacker from perfectly knowing which sensitive
variable may be targeted at a given time sample of the acquired trace. Indeed, the intermedi-
ate computation effectively leaking at a given time sample depends on the shuffled indices
ordering the independent operations, that have been randomly drawn for this execution.
Those indices cannot be assumed to be known by the attacker, though they can be guessed
since the SCA traces also leak information about them. Intuitively, the more informative
leakage about those indices, the less sound the shuffling counter-measure is.

The effect of shuffling on some attackers can even be quantified. Indeed, it has been
shown that a shuffling over t different operations had the effect to divide the amplitude

44



CHAPTER 3. SIDE-CHANNEL ATTACKS

0 1000 2000 3000 4000
−0.5

0

0.5

0 1000 2000 3000 4000
−0.5

0

0.5

0 1000 2000 3000 4000
−0.5

0

0.5

Time samples

P
ow

er
 C

on
su

m
pt

io
n

Figure 3.7: An example of dummy operation (nop) randomly inserted before an informative leakage
(in red). Courtesy of Cagli et al. [CDP17].

of the peaks of SNR and CPA by a factor t [CCD00, Man04], which therefore requires t
times more traces to succeed the attack compared to the same unprotected implementation.
Moreover, Veyrat-Charvillon et al. showed an analogous effect of the shuffling on the MI
between the leakage and the target sensitive variable, when considering an attacker with
uni-variate leakage models [VMKS12].

Insertion of Dummy Operations. Although practically sound against attackers focusing
only on a few time samples of the trace, the shuffling counter-measure suffers from an in-
trinsic limitation, e.g., when applied to AES: there is not enough independent elementary
operations to shuffle to make this approach practically sound against an attacker. That is
why developers also consider adding dummy operations to the execution of the targeted
implementation, such as suggested by Coron et al. at CHES’09 [CK09]. By definition, a
dummy operation does not have any effect on the final computation, so it allows to some-
how artificially increase the number of independent operations to shuffle. More precisely,
rather than a perfect augmented shuffling, the insertion of dummy operations particularly
provokes misalignment (a.k.a. de-synchronization) which are then propagated along the re-
maining of the trace, whereas shuffling does not induce this effect. Therefore, the developer
can choose the desired effect on the statistical tools used by some potential attackers – see
Section 3.5 and Subsection 3.6.1, to guarantee a security level against them.

Nevertheless, if the dummy operations do not leak in the same way as the sensitive
operations, the former ones may be easily distinguished from the latter ones by the attacker,
and a re-alignment operation may be proceeded in order to mitigate the effect of the counter-
measure.

An example is given in Figure 3.7, depicting a trace chunk containing a leakage from
the access of a l.u.t. carrying a sensitive information, preceded by the insertion of a random
number of nop instructions. The location of the informative leakage is circled in red. Since
the access to the l.u.t. and the nop do not span the same pattern in the leakage trace, it is not
hard for the attacker to intuitively localize the informative leakage. Hence, provided that
the attacker selects the right method, the attack is not likely to be hardened by this dummy
operation insertion.

Code Polymorphism. Due to the skyrocketing production of Internet of Things (IoT), there
is a need for the automated application of protections to improve products’ resistance against
SCA while keeping the performance overhead sufficiently low. In this context, some re-
cent works proposed compiler toolchains to automatically apply counter-measures such as
bit-slice masking [BDM+20] or a software hiding counter-measure called code polymor-
phism [BCHC18]. The working principle of the latter counter-measure relies on the execu-

45



CHAPTER 3. SIDE-CHANNEL ATTACKS

tion of many variants of the machine code of the software device to protect, produced by a
runtime code generator. The successive execution of many variants aims at producing vari-
able side-channel traces in order to increase the difficulty to realize SCA. One must keep in
mind that if code polymorphism is the only counter-measure applied to the target compo-
nent, information leakage is still present in the side-channel traces. Yet, several works have
shown the ability of code polymorphism and similar software mechanisms to be effective in
practice against vertical SCA [ABP12, CBR+16], i.e., up to the point that the leakage charac-
terization techniques presented in Subsection 3.6.1, would not be able to detect information
leakage in the traces, and that a CPA would require several millions of queries whereas the
same attack on the unprotected version of the targeted implementation succeeded within a
few hundreds traces [ABPS15, BCHC18].

We briefly describe the code polymorphism counter-measure applied by the toolchain
used by Belleville et al. [BCHC18]. The compiler applies the counter-measure to selected
critical parts of an unprotected source code: it inserts, in the target program, machine code
generators, called Specialized Generators of Polymorphic Code (SGPCs), which can produce
so-called polymorphic instances, i.e., many different but functionally-equivalent implemen-
tations of the protected components. At runtime, SGPCs are regularly executed to produce
new machine code instances of the polymorphic components. Thus, the device will behave
differently after each code generation but the results of the computations are not altered.
The toolchain supports several polymorphic code transformations, which can be selected
separately in the toolchain, and most of them offer a set of configuration parameters. A
developer can then set the level and the nature of polymorphic transformations, hence the
amount of behavioral variability.

Hereafter, we detail some code transformations used in this thesis:

• Register shuffling: the index of the general purpose callee saved registers are ran-
domly permuted.

• Instruction shuffling: the independent instructions are randomly permuted.

• Semantic variants: some instructions are randomly replaced by another semantically
equivalent (sequence of) instruction(s). For example, variants of arithmetic instruc-
tions (e.g. eor, sub), remain arithmetically equivalent to the original instruction.

• Noise instructions: a random number of dummy instructions is added between the
useful instructions in order to break the alignment of the leakage in the traces. Noise
instructions are interleaved with the useful ones by the instruction shuffling transfor-
mation.

We emphasize on the fact that the sensitive variables are only manipulated by the poly-
morphic instances (i.e., the generated machine code), and not by the SGPCs themselves.
SGPCs are specialized code generators, and their only input is a source of random data (a
RNG internal to the code generation runtime) driving the code generation. Hence, SGPCs
only manipulate instruction and register encodings, and never manipulate secret data. Thus,
performing an SCA on side-channel traces of executions of SGPCs cannot reveal a secret nor
an information leakage. However, SGPCs manipulate data that are related to the contents of
the buffer instances, i.e., the structure of the generated code, the nature of the generated ma-
chine instructions (useful and noise instructions), etc. SCA performed on SGPC traces could
possibly be helpful to reveal sensitive information about the code used by the polymorphic
instances, but to the best of our knowledge, there is no such work in the literature. As such,
this research question is out of the scope of this thesis.

46



CHAPTER 3. SIDE-CHANNEL ATTACKS

3.8 Overview of the Used Datasets

We present in this section the different datasets of SCA traces which will be used for the
experimental validation of our work in this thesis. Those datasets cover a large spectrum
of use cases. Moreover, most of them are publicly available, which is of great interest for –
fair – comparison with the state of the art. Some of those datasets are used in several parts
and contributions in this thesis. That is why, for conciseness, we gather their description in
a devoted section.

3.8.1 Chip Whisperer Dataset (CW)

This dataset has been used in the work we presented at CHES 2020 [MDP19b]. Although it
does not depict the execution of a whole cryptographic primitive, it emulates the behavior
of leakages of any secret-sharing scheme that may occur during the execution of assembly
instructions in a software implementation.

The Target. The leakage traces represent the power consumption of a XMEGA128D4 chip
supported on a Chip Whisperer Lite board [OC14]. The firmware is directly written in as-
sembly code. A pseudo-code is provided in Algorithm 4. It consists in iteratively loading
a byte of a 16-byte plaintext array to a register of the MCU in order to provoke a physical
leakage, then setting the value of the byte to zero and then storing it back in Random Access
Memory (RAM). The operations are then repeated for each byte of the array.

Algorithm 4 loadData

1: LD r0, X . Loads the first byte in r0
2: CLR r0 . Clears the register
3: ST X, r0 . Stores 0 in the plaintext array
4: LD r0, X . Do it again to clear the bus
5: CLR r0
6: ST X, r0
7: LD r0, X . One more time to be sure
8: CLR r0
9: ST X+, r0

500, 000 traces of 2, 500 time samples each have been acquired, along with the corre-
sponding bytes array denoted by plain[i], i ∈ J0, 15K. The complete acquisition has been
done within 15 hours.

Quick Analysis of the Traces. Since this dataset will mainly be used to investigate DL-SCA
in presence of secret-sharing, we would like to prevent any leakage jointly involving two
bytes of the array. Figure 3.8a shows an example of one trace acquired through the platform.
The 16 patterns denoting the execution of Algorithm 4 on each byte of the array are clearly
distinguishable. We provide the corresponding SNR in Figure 3.8 (top) in different colors
for each byte. In addition, we have also computed a SNR of order 2, that is, targeting the
xor between two bytes, for any couple of bytes. The absence of peaks tends to confirm that
there is no undesirable leakage, at least involving such a xor. However, a leakage between
two bytes involving another relationship than a xor might still be informative, this does not
allow to draw a sharp conclusion. Emphasizing such a leakage would require many more
traces to reach a significant conclusion. That is why we let open this eventuality, although
we remain confident that it is not likely to happen.

47



CHAPTER 3. SIDE-CHANNEL ATTACKS

0 25 50 75 100 125 150 175 200

Time (samples)

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ow

er
co

n
su

m
p

ti
on

(a) Illustration of one trace

(b) The SNRs of order 1 and 2 (in log scale).

Figure 3.8: The CW dataset.

3.8.2 The ASCAD Dataset

The ANSSI’s SCA Databases (ASCAD) dataset has been introduced in 2018 by Benadjila et
al. [BPS+19] to provide the SCA community a benchmark to investigate and compare DL-
based attacks. In particular, the aim is to assess to what extent deep learning is relevant to
mount attacks against protected implementations.

The Target. The target is a protected software AES-128 implementation running over an
ATMEGA-8515, which has an 8-bit AVR architecture. The software aims at protecting against
first-order SCA, by using a Boolean secret-sharing scheme based on the table re-computation
method (cf Algorithm 3), although the first two bytes of the AES state are not protected, for
the sake of comparison. Typically, the targeted variable on this dataset is the third byte
of the state, at the output of the Sbox in the first round, i.e., Z = Sbox (p[3]⊕ k[3]). The
dataset provides 60, 000 traces, where Np = 50, 000 traces are used for profiling and Nv =
10, 000 for validation, i.e., for emulating attacks phases – see Subsection 3.2.3. For both
datasets, the same fixed key has been used, while the plaintexts and the shares have been

48



CHAPTER 3. SIDE-CHANNEL ATTACKS

0 100 200 300 400 500 600 700

Time (samples)

10−217

10−191

10−165

10−139

10−113

10−87

10−61

10−35

10−9

p
-v

al
u

e
T -tests

ASCAD database

rout
Z ⊕ rout

(a) T-test

0 100 200 300 400 500 600 700

Time (samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
N

R

Signal-to-Noise Ratios
ASCAD database

rout
Z ⊕ rout

(b) SNR

Figure 3.9: Leakage characterization with statistical tools over the ASCAD dataset, without artificial
shift.

randomly drawn.19 Whereas the whole traces, focused on the first AES round are made
of 100, 000 time samples, this thesis will focus on the chunk corresponding to the interval
J45, 400; 46, 100K, i.e., D = 700. This window corresponds to the joint leakage of Z ⊕ rout
and rout. Three versions of this dataset are available: the first one provides the traces as
is, whereas the second and third ones provide the same traces on which an artificial shift
of maximum amplitude of respectively 50 and 100 points has been applied. The traces are
publicly available at https://github.com/ANSSI-FR/ASCAD.

Quick Analysis of the Traces. A characterization with the statistical methods presented in
Subsection 3.6.1 is provided in Figure 3.9. Figure 3.9a depicts the characterization thanks to
a T-test, while Figure 3.9b depicts the characterization done with a SNR. On those two plots,
the green peaks emphasize the leakage of the random share rout, while the red peaks denote
the leakage of the output of the re-computed Sbox, namely Z ⊕ rout. The recombination of
the two leakages would give access to information about the sensitive variable Z, which
might be a privileged target for an attacker.

Nevertheless the latter characterization is successful because we have assumed the at-
tacker (or the evaluator) to have access to the values of the random share rout. This assump-
tion turns out to be critical, as pointed in Figure 3.10a. This figure denotes the SNR directly
computed over the sensitive variable Z, i.e., without knowledge of the random share rout.
One can see on the plot that no clear peak appears, and that the level of SNR is much lower
than in Figure 3.9b. This shows that without knowledge of the random share rout, the SNR
becomes unable to localize any P.o.I.

Likewise, the random shift artificially applied to the traces occurs a similar effect on the
SNR computation, as shown in Figure 3.10b. Here again, no clear peak is emphasized on
the plot. Hence, no P.o.I selection can be done on the traces thanks to statistical tools usually
used for characterization. A way to circumvent this difficulty will be presented in Chapter 7.

3.8.3 Random Delay Dataset (AES-RD)

The AES - Random Delay (AES-RD) dataset has been released, following the works of Coron
et al. on the insertion of random delays in the implementation of a software AES, as a way
to implement the dummy operation insertion [CK09, CK10]. In a nutshell, it consists in
drawing – thanks to the RNG – a random number of cycles during which a loop will iterate.

19 Since the first release, a new version of the traces has been published, using a random key in the profiling
traces, which are besides twice larger. This version is not investigated in this thesis.

49

https://github.com/ANSSI-FR/ASCAD


CHAPTER 3. SIDE-CHANNEL ATTACKS

0 100 200 300 400 500 600 700

Time (samples)

0.00425

0.00450

0.00475

0.00500

0.00525

0.00550

0.00575

0.00600

S
N

R

Z = Sbox[p[3]⊕ k[3]]

(a) Characterization without knowledge of the
secret shares.

0 100 200 300 400 500 600 700

Time (samples)

0.00425

0.00450

0.00475

0.00500

0.00525

0.00550

0.00575

0.00600

S
N

R

Z = Sbox[p[3]⊕ k[3]]⊕ rout

(b) Characterization on randomly shifted traces
(T = 50).

Figure 3.10: Effect of the counter-measures to the characterization on the ASCAD dataset.

0 500 1000 1500 2000 2500 3000 3500

Time (samples)

0.004

0.006

S
N

R

0 500 1000 1500 2000 2500 3000 3500

150

200

Figure 3.11: Top: An example of a trace from the AES-RD dataset. Bottom: the SNR computed over
the whole dataset.

The Target. The target smart-card is an 8-bit Atmel AVR micro-controller, protected by
a random delay counter-measure, which has an effect on the misalignment of the traces,
making some attacks such as with GTs much harder. The targeted variable is the output of
the first Sbox. The dataset is publicly available at https://github.com/ikizhvatov/
randomdelays-traces. 50, 000 traces of D = 3, 500 time samples each are provided,
denoting the power consumption of the target. These power traces have been previously
compressed by selecting 1 sample (peak) from each CPU clock cycle. At least the first (non-
dummy) AES round is covered. In this thesis, we split the dataset intoNp = 40, 000 profiling
traces and Nv = 10, 000 validation traces.

Quick Analysis of the Traces. We provide in Figure 3.11 an example of trace from the
dataset (top), along with a characterization with SNR over the whole dataset (bottom). As
expected, due to the misalignment effect of the random delay counter-measure, no peak de-
noting a leakage is emphasized. This confirms that either a pre-processing phase including
re-alignment or the use of a misalignment-resilient methods is necessary to deal with those
traces.

3.8.4 AES on FPGA (AES-HD)

The AES - Hamming Distance (AES-HD) dataset has been released by Picek et al. at CHES

2019 [PHJ+18], in order to introduce a dataset of SCA traces targeting a hardware implemen-
tation whereas the majority of the public datasets are focused on software implementations.

50

https://github.com/ikizhvatov/randomdelays-traces
https://github.com/ikizhvatov/randomdelays-traces


CHAPTER 3. SIDE-CHANNEL ATTACKS

0 200 400 600 800 1000 1200

Time (samples)

0.005

0.010

0.015

S
N

R

0 200 400 600 800 1000 1200

100

150

Figure 3.12: Top: one trace of the AES-HD dataset. Bottom: The SNR computed over the whole
dataset.

Moreover, this dataset is an example of use-case where the targeted sensitive variable comes
from the last round of the AES encryption.

The Target. We recall hereafter the description provided by Picek et al. in their paper.
This is an “unprotected implementation of AES, written in VHSIC Hardware Description
Language (VHDL) in a round based architecture taking 11 clock cycles for each encryption.
The design was implemented on a Xilinx Virtex-5 Field-Programmable Gate Array (FPGA) of
a SASEBO GII evaluation board. Side-channel traces were measured using a high sensitivity
near-field EM probe, placed over a decoupling capacitor on the power line.” The dataset is
publicly available at https://github.com/AESHD/AES_HD_Dataset.

The authors recommend to use an intermediate leakage model ϕ corresponding to the
Hamming distance between the targeted byte of the state before applying the Sbox of the
last round, and the final ciphertext byte. In the following of this thesis, we will rather target
the input of the last AddRoundKey, without considering any prior leakage model.

Quick Analysis of the Traces. Figure 3.12 provides a brief insight of the traces. One can
guess 10 similar patterns corresponding to the 10 rounds of AES. The peak of SNR appears
on the last pattern, confirming that the targeted sensitive variable is an intermediate com-
putation of the last round. Although the peak is clearly distinguishable, one may remark
that the peak is at approximately 0.15, which is lower than the preceding SNRs observed in
Figure 3.8 and Figure 3.9b. This is expected since hardware implementations are known to
usually leak less information.

3.8.5 Polymorphism Dataset

In Chapter 6, we will present the investigations conducted on the security of the code poly-
morphism counter-measure proposed by Belleville et al. [BCHC18]. To this end, we con-
ducted an acquisition campaign of SCA traces over two out of the 15 implementations used
in their benchmarks, namely the AES 8-bit and the mbedTLS that we briefly describe here-
after, along with the details of the experimental setup and a preliminary analysis.

The mbedTLS Implementation. This 32-bit implementation of AES from the ARM li-
brary [ARM19] follows the so-called T-table technique [DR02]: the 16-byte state of AES is
encoded into four uint32_t variables, each representing a column of the state. Each round
of the AES is done by applying four different constant l.u.ts stored in flash memory.

51

https://github.com/AESHD/AES_HD_Dataset


CHAPTER 3. SIDE-CHANNEL ATTACKS

The AES 8-bit Implementation. This is a simple software unprotected implementation of
AES written in C, and manipulating only variables of type uint8_t, similar to [Sma20]. The
SubBytes operation is computed byte-wise thanks to a l.u.t., stored in RAM. This reduces
information leakage on memory accesses, compared to the use of the same l.u.t. stored in
flash memory.

Target Device. We ran the different AES implementations on an STM32 NUCLEO F303
board, embedding an ARM Cortex-M4 32-bit core [STM]. This device does not provide any
hardware security mechanisms against side-channel attacks. This core originally operates
at 72 MHz, but the core frequency was reduced to 8 MHz for the purpose of side-channel
measurements. The target is similar to the one used by Belleville et al. [BCHC18], who con-
sidered a Cortex-M3 core running at 24 MHz. These two micro-controllers have an in-order
pipeline architecture, but with a different pipeline organization. Thus, we cannot expect
those two platforms to exhibit the same side-channel characteristics. However, our experi-
ence indicates that these two experimental setups would lead to similar conclusions regard-
ing the attacker models considered in our study. Similar findings on similar targets have
also been reported by Heuser et al. [HGMG20]. Therefore, we assume that the differences
of side-channel characteristics between our targets and the Belleville et al.’s ones should not
induce major differences in the results of such side-channel analysis.

Configuration of the Code Polymorphism Counter-Measure. For each evaluated imple-
mentation, the code polymorphism counter-measure is applied with a level corresponding
to the configuration “high” described by Belleville et al. [BCHC18]: all the polymorphic code
transformations are activated, the number of inserted noise instructions follows a probabil-
ity distribution based on a truncated geometric law. The dynamic noise is activated and
SGPCs produce a new polymorphic instance of the protected code for each execution (i.e.,
the regeneration period is set to 1).

Acquisition Setup. We measured SCA traces corresponding to EM emanations with an
EM probe RF-B 0.3-3 from Langer, equipped with a pre-amplifier, and a Rohde & Schwarz
RTO 2044 oscilloscope with a 4 GHz bandwidth and a vertical resolution of 8 bits. We set
the sampling rate to 200 MS/sec., with the acquisition mode “peak-detect’ which collects the
minimum and the maximum voltage values over each sampling period. We first verify that
our acquisition setup is properly set. This is done by acquiring several traces where the code
polymorphism is de-activated. Thus, we can verify that those traces are synchronized. Then,
computing the T-test (cf Subsection 3.6.1) enables to quickly20 assess whether the probe is
correctly positioned and the sampling rate is high enough. Then, after re-activating the code
polymorphism, 100, 000 profiling traces are acquired for each target implementation. Each
acquisition campaign lasts about 12 hours.

Preliminary Analysis of the Traces. We detail hereafter a preliminary analysis of the ac-
quired traces. The aim is to restrict as much as possible the target region acquired to a
window covering the entire first AES round. Therefore there would not be any loss of in-
formative leakage about the sensitive intermediate variable targeted in those experiments.
In addition to that, a uni-variate leakage assessment, by computing the SNR, is provided
hereafter in order to verify that there is no trivial leakage.

mbedTLS. We ran some preliminary acquisitions on 107 samples, in order to visualize
all the execution. We could clearly distinguish the AES execution with sparse EM peaks,

20i.e., faster than with a SNR computation.

52



CHAPTER 3. SIDE-CHANNEL ATTACKS

50
100
150

E
M

50

100

150

E
M

0 25 50 75 100 125 150 175 200

Time (µs)

0.002

0.003

S
N

R

Figure 3.13: Acquisitions on the mbedTLS implementation. Top: two traces containing the first AES
round. Bottom: SNR computed on the 100, 000 profiling traces.

from the call to the SGPC with more frequent EM peaks. This enabled to focus on the first
106 samples of the traces corresponding to the AES execution.

Actually, the traces restricted to the AES execution seem to remain globally the same
between each other, up to local elastic deformations along the time axis. This is in line with
the expected effect of code polymorphism, since it involves transformations at the machine
code level. Likewise, 10 patterns could be distinguished on each trace, which were clues to
expect that it would correspond to the 10 rounds of AES. That is how we could restrict again
our target window to the first round, up to comfortable margins because of the misalign-
ment effect of code polymorphism. This represents 80, 000 samples. An illustration of two
traces restricted to the first round is given by Figure 3.13 (top).21

The SNR denoting here the potential uni-variate leakage of the first output byte of the
SubBytes operation is computed based on the 100, 000 acquired profiling traces, and is plot-
ted in Figure 3.13 (bottom). No distinguishing peak can be observed, which confirms the
soundness of code polymorphism against attacks requiring the P.o.Is of the raw traces to be
aligned with each other, e.g., the CPA or the GT.

However, we observe in each trace approximately 16 EM peaks corresponding to the
number of memory accesses to the l.u.ts per encryption round. These memory accesses are
known to carry sensitive information. This suggests that a trace re-alignment on EM peaks
might be relevant to successfully achieve such attacks.22

AES 8-bit. We proceed in the same way for the evaluation of AES 8-bit implementation.
As with the mbedTLS traces, we could identify 10 successive patterns likely to correspond
to the 10 AES rounds. Therefore we reduce the target window at the oscilloscope to the first
AES round, which represents 160, 000-dimensional traces plotted in Figure 3.14 (top). This
growth in the size of the traces is expected, since the naive AES 8-bit implementation is not
optimized to be fast, contrary to the mbedTLS one.

Yet, here the peaks are hardly distinguishable from the level of noise. This is expected,
due to the l.u.ts being moved from the flash memory to the RAM. As a consequence, the
memory accesses are less remarkable. That is why a trace re-alignment does not seem rele-
vant here.

Finally, Figure 3.14 (bottom) shows the SNR on the raw traces, ensuring once again that
no trivial leakage can be exploited to recover the secret key.

21Here the first 20 µs of both traces correspond to a non-critical part of the implementation, probably due to
the Operating System (OS) of the chip. Hence the apparent synchronization here.

22 A re-alignment process is proposed in Section 6.2.

53



CHAPTER 3. SIDE-CHANNEL ATTACKS

−50

0

50
E

M

−50

0

50

E
M

0 50 100 150 200 250 300 350 400

Time (µs)

0.002

0.003

S
N

R

Figure 3.14: Acquisitions on the AES 8-bit implementation. Top: two traces containing the first AES
round. Bottom: SNR computed on the 100, 000 profiling traces.

3.9 Conclusion

In this chapter, we have presented the attack scenario considered in this thesis. Starting
from the so-called “gray-box” scenario (Section 3.1), the latter one may be augmented with
a preliminary profiling phase with the help of an open-sample clone device of the target.
This leads to the profiling attack scenario presented here (Figure 3.5). We have stated that
in this scenario, the attack is jointly defined by two elements: the choice of the distinguisher
(Definition 1), and the design of the leakage model. In particular, the profiling phase aims at
estimating the true leakage model as precisely as possible, in order to reach a satisfying so-
lution of the fundamental goal of the SCA evaluator, as stated by Problem 1 and Theorem 1.

From a practical perspective, the design of the leakage model often requires a prelim-
inary dimensionality reduction, e.g., with the help of a P.o.Is selection method. We have
briefly presented two statistical tools in Subsection 3.6.1 enabling such a selection, illus-
trated in the presentation of the datasets investigated through the experiments of this thesis
(Section 3.8).

Regarding the way that the vulnerabilities of a leaky device could be exploited by poten-
tial attackers, a developer is not unarmed. Hopefully, he can indeed control the quantity of
informative leakage resulting from the execution of the targeted implementation through
several means, namely the randomization of the sensitive data encoding (a.k.a. secret-
sharing, Subsection 3.7.1) or the randomization of the operations (a.k.a. hiding, Subsec-
tion 3.7.2). Provided with those counter-measures, the developer has the power to trade off
runtime and memory performance against security.

Yet, several questions remain unanswered at the end of this chapter. Indeed, although
we have presented the attack techniques against unprotected implementations, we did not
thoroughly discussed how the attacker can adapt its techniques – or even adopt new ones
– to the counter-measures presented so far. This issue will be investigated in Chapter 5,
when we will address the efficiency of neural networks as a way to modelize the posterior
conditional p.m.f. of the leakage, for a protected implementation.

Besides, we have quickly mentioned to what extent the machine learning techniques can
be integrated to the profiling attack framework presented in this chapter. In Chapter 4, we
will dive in more details about this fact, and we will see that the profiling attack framework
and the machine learning framework are somehow intertwined.

54



Chapter 4

Deep Learning for Side-Channel
Analysis

“ If someone can explain every
phenomenon, his explanations are
worthless.”

Shalev-Shwartz and
Ben-David [SSBD14]

Contents
4.1 The Statistical Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Position of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Definition of a Learning Algorithm . . . . . . . . . . . . . . . . . . . . 56
4.1.3 The Empirical Risk Minimization Paradigm . . . . . . . . . . . . . . 58

4.2 The Neural Networks Class Hypothesis . . . . . . . . . . . . . . . . . . . . 60
4.2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 The Elementary Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 The Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Implementing the ERM with Neural Networks . . . . . . . . . . . . . . . . 66
4.3.1 SCA Metrics are Hard to Optimize . . . . . . . . . . . . . . . . . . . . 66
4.3.2 The Need for a Surrogate Loss . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 The Challenge of Optimization . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4 Computing the Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.5 Some Application Programming Interfaces (APIs) . . . . . . . . . . . 70
4.3.6 On the Accuracy as a Monitoring Metric . . . . . . . . . . . . . . . . 70

4.4 An Overview of the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 Unsupervised Learning for SCA . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Exploring the DL Strategies for SCA . . . . . . . . . . . . . . . . . . . 72
4.4.3 Support for Understanding . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.4 DL-based SCA and Counter-Measures . . . . . . . . . . . . . . . . . . 73
4.4.5 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.6 Multi-Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.7 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

55



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

We have presented the SCA framework in Chapter 3, and the profiling attacks in par-
ticular. Indeed, the profiling phase in our considered attack scenario aims at leveraging the
access to the traces measured on the clone device in order to improve the modelization of the
leakage behavior of the target device. We will see in this chapter that the latter process may
be encompassed into the field of machine learning. This chapter is devoted to introduce the
necessary notions of this field to discuss the use of DL-based SCA later in this thesis.

In Section 4.1 we present the theoretical notions of ML. Then, Section 4.2 and Section 4.3
briefly recall the main principles of DL, before we propose a review of its use in SCA in
Section 4.4. This will serve as a way to legitimate the outcomes of our research through this
thesis in the next chapters.

4.1 The Statistical Learning Theory

4.1.1 Position of the Problem

We stated in Section 3.3 that from an evaluator’s point of view, it would be optimal to use
the maximum likelihood distinguisher defined by Equation 3.8. Unfortunately, it requires
to know the true conditional p.m.f. Pr (Z | X), which is unknown in practice. Instead, the
evaluator or the attacker can substitute the latter one with a model F : X → P(Z), giving
the following surrogate distinguisher:

DFSa
[k] =

Na∑
i=1

logF (xi) [C (pi, k)] , (4.1)

where Sa , {(x1, p1), . . . , (xNa , pNa)} is the attack set acquired on the actual target T – see
Subsection 3.1.1.

We consider hereafter the framework of profiled attacks presented in Section 3.4: the
attacker A has a clone device T ′ of the actual T.O.E. T , on which he acquires the profil-
ing dataset Sp , {(x1, z1), . . . , (xNp , zNp)}. The clone is behaving as an open sample, so
the values z1, . . . , zNp of the sensitive intermediate variable targeted by the attacker during
the profiling phase are known, contrary to the same values processed throughout the at-
tack phase. Based on Sp, the role of the profiling phase is, to build a sound surrogate model
F : X → P(Z). Here, “sound” refers to the efficiency of an attack defined by Equation 3.4. In
the remaining of this thesis, we will denote by Na (F, o, β) the efficiency of the attack using
the distinguisherDFSa

, following the definition given by Equation 4.1, namelyNa

(
DFSa

, o, β
)

.
Likewise, as in Subsection 3.2.2, we may omit the mention to o and β, implicitly set respec-
tively to 1 and 90 %, in order to lighten the notations.

As a consequence, we may also refine the main goal of the evaluator emulating an at-
tacker A in view of assessing the worst-case attack scenario, as stated in Problem 1:

Problem 2 (Profiled SCA Optimization). Given a profiling set Sp, find the model A(Sp) mini-
mizing the SCA efficiency metric F 7→ Na (F ), as defined in Equation 3.4.

We will see in the next section that the latter problem can be encompassed into the more
general framework of Machine Learning (ML). This point of view enables to better under-
stand how to efficiently address Problem 2. To this end, we first provide in the next section
a clear definition of the term “learning”.

4.1.2 Definition of a Learning Algorithm

The more cited definition of learning has been proposed by Mitchell in 1997 [Mit97]:

“A computer program is said to learn from experience E with respect to some
task T and performance measure P, if its performance on T, as measured by P,
improves with experience E.”

56



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

Programming a machine to achieve a task by learning is particularly useful when the given
task is too complex to be programmed by hand. We detail hereafter the different elements
of the definition of learning in our profiled SCA context.

The Task. In the context recalled in Subsection 4.1.1, the task of the attacker is to build a
mapping X → P(Z). In machine learning, it is usual to precise the hypothesis class, denoted
by H ⊂ {F : X → P(Z)}, from which the model is selected. A learning algorithm is not
only defined by the hypothesis class H from which it selects the best model – according to
the defined performance measure – but also by the method it uses to select the model – i.e.
the algorithm as itself.

The Performance Measure. Likewise, Problem 2 directly provides the relevant perfor-
mance measure in our context, namely the SCA efficiency metric F 7→ Na(F ). Contrary to
the common sense, the performance is said to improve whenever the measure performance
decreases. This convention is more generally adopted by the machine learning community,
where the performance metric is usually called the loss, in order to remove the ambiguity.
Formally speaking, a loss function is a mapping:

` : P(Z)×Z −→ R+
y, z 7−→ ` (y, z) , (4.2)

where y = F (x) would denote the output – i.e. a vector describing a p.m.f. here – of the
model F returned by the learning algorithm for an input data x, and z would denote the
value that one expects the learned model to predict given x.

The Experience. The experience describes the way data and information are accessed by
the learning algorithm during learning. Two types of experience may be distinguished,
a.k.a. active vs. passive.1 In a passive experience, the learning algorithm is given some data
collected by a third part which it has no way to interact with, i.e. the process of data col-
lection is independent from the learning algorithm. On the opposite, an active experience
allows the learning algorithm to influence the data collection process. The latter type of ex-
perience covers the reinforcement learning framework [SB98]. Although beyond the scope of
this thesis, this approach may be interesting in order to find relevant strategies2 of adaptive
chosen-plaintext attacks, as mentioned in Section 3.1. Nevertheless, the definition of our
attack scenario implies that we consider only learning algorithms with passive experience.

In the context of the profiling attack scenario described in Section 3.4, the experience is
fully defined by the profiling set Sp of size Np. That is why we can say that the experience
increases whenever Np increases. Since the profiling set Sp contains the values (zi)i of the
targeted intermediate computations corresponding to the acquired profiling traces – referred
as labels in the ML terminology, the learning is said to be supervised. In a more restricted
case, beyond the scope of this thesis, the learner is not assumed to know those labels, hence
denoted as an unsupervised learning.

Although intuitive and simple, the definition given by Mitchell is not sufficient, since the
notion of “improvement” in the definition is not precise enough. That is why, we complete
it with the definition of learnability given by Shalev-Shwartz and Ben-David hereafter.

Definition 6 (Learnability [SSBD14, Def. 3.4]). A hypothesis class H is learnable with respect
to an input data space X , an output data space Z , and a loss function `, if there exists a learning

1 This terminology must not be confounded with a similar one introduced in p. 5. In the latter one, the term
“active” is often used for a scenario of physical attacks, e.g. fault attacks, where the attacker attempts to perturb
the behavior of the target device, in opposition to passive attacks such as SCA where the attacker only observes
the target device.

2 The exact term used in reinforcement learning is policy.

57



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

algorithm3 A such that for every probability distribution over X × Z , when running the learning
algorithm on a profiling set Sp of Np = |Sp| i.i.d. samples, the algorithm returns A(Sp) ∈ H such
that:

LX,Z (A(Sp))
P−−−−−→

|Sp|→∞
min
F∈H
LX,Z (F ) , (4.3)

where LX,Z (F ) , E
x,z

[` (F (x), z)].

In other words, the definition of “learning” refers to a convergence in probabilities to the
best possible model, according to the loss function. Like every notion of convergence, one
may define a notion of speed of convergence. In machine learning, this notion is also known
under the name sample complexity, that we define hereafter.

Definition 7 (Sample Complexity [SSBD14, Sec. 3.2]). The sample complexity of a hypoth-
esis class H is the maximum convergence rate – as defined by Equation 2.10 – of the sequence
(LX,Z (A (Sp)))Np over the set of every probability distribution over X × Z .

In a nutshell, the sample complexity gives some clues about the required number of
profiling traces so that the learning algorithm A returns a model that is likely to provide a
satisfying performance for the task it is assigned.

4.1.3 The Empirical Risk Minimization Paradigm

The definition of learnability states whether it is possible or not to find a learning algorithm.
However, it does not give any clue about how to find such a learning algorithm. An intuitive
and generic approach is to rephrase the problem by finding a model which, rather than
minimizing the loss over the whole unknown joint distribution of (X,Z), would minimize
the loss ` () over the samples from the profiling set only, a.k.a. the training loss denoted by
LX,Z (). That is:

LSp (F ) , 1
|Sp|

|Sp|∑
i=1

` (F (xi), zi) . (4.4)

This principle is known under the name of Empirical Risk Minimization (ERM), and covers
many situations such as linear regression, or maximum likelihood estimation. It translates
the learning problem into a functional optimization problem – i.e. finding the model F from
Hminimizing the training loss – that the attacker may directly address.

Soundness of the Empirical Risk Minimization (ERM) Principle. The question arising
when substituting Problem 2 with ERM, is whether the latter one is actually a learning algo-
rithm, according to Definition 6. In other words, does one have the guarantee that the more
profiling traces, the higher the performance metric of the obtained solution A(Sp)? And if
so, what is the required size of the profiling set in order to get a satisfying performance,
according to Definition 7?

The Fundamental Theorem of Learning, that we present hereafter, aims at addressing
this issue. It gives a necessary and sufficient condition on the hypothesis class H, for the
ERM to be a learning algorithm. This condition relies on the so-called Vapnik-Chervonenkis
(VC)-dimension of the considered hypothesis class H, a way to characterize its size. The
formal definition of the VC-dimension is beyond the scope of this thesis, but will be briefly
discussed after we introduce the following fundamental theorem.4

3 We deliberately overlap the notationA referring to the learning algorithm with the same notation address-
ing the attacker, since they represent the same entity in a profiling SCA scenario.

4 The interested reader may refer to the book of Shalev-Shwartz and Ben-David [SSBD14] or to the book of
Vapnik [Vap95].

58



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

Theorem 2 (Foundamental Theorem of Learning [Vap99, SSBD14]). Let A be a learning al-
gorithm and let Sp be a profiling set of size |Sp|. Assume that H is a hypothesis class of finite
VC-dimension. Then:

sup
F∈H

{
LX,Z (F )− LSp (F )

} P−−−−−→
|Sp|→∞

0 (4.5)

In particular, it follows that:

LSp (A(Sp))
P−−−−−→

|Sp|→∞
min
F∈H
LX,Z (F ) , (4.6)

LX,Z (A(Sp))
P−−−−−→

|Sp|→∞
min
F∈H
LX,Z (F ) . (4.7)

This result will be of great interest in Chapter 5.
The VC-dimension implicitly impacts the sample complexity of the ERM: roughly speak-

ing, the higher the VC-dimension, the slower the convergence in Equation 4.6 and Equa-
tion 4.7 [Vap99]. Hence a set H with finite VC-dimension is necessary for the ERM to be
sound. A brief discussion about the characterization of the VC-dimension in our context
will be proposed in Subsection 4.2.3

A Utopian Approach. So far we have said that the ERM approach allows the attacker to
transform the SCA optimization problem into a fully defined functional optimization prob-
lem. However, it now remains to get an algorithm able to solve this functional optimiza-
tion problem. This is the major drawback of this approach: depending on the considered
hypothesis class H, the optimization problem yield by the ERM approach may be hard to
solve. Instead, most of the time, one uses heuristics which are not always guaranteed to re-
turn the model that the ERM algorithm would return, as we will discuss in Subsection 4.3.1
and Subsection 4.3.3. That is why one must make a discrepancy between a theoretical at-
tacker A(Sp) using the true ERM approach, and a practical attacker Ã(Sp), that would use
some heuristics.5

Decomposition of Error Terms. In view of all the elements of the ML theory introduced
so far in this chapter, it becomes of natural interest to study the final loss returned by our
learning algorithm Ã(Sp). This term can be decomposed into four parts, as follows:

LSp

(
Ã(Sp)

)
= LSp

(
Ã(Sp)

)
− LSp (A(Sp)) ≥ 0 (4.8)

+ LSp (A(Sp))−minF∈H LX,Z (F ) ≤ 0 (4.9)
+ minF∈H LX,Z (F )− LX,Z (F ?) ≥ 0 (4.10)
+ LX,Z (F ?) ≥ 0 , (4.11)

where Sp is the profiling set of traces introduced in Section 3.4, F denotes an abstract model
from the hypothesis class H considered by the attacker, and LX,Z (F ) denotes the expected
value of the loss function over the joint distribution of X,Z.

The term (4.11) denotes the so-called Bayes’ error, i.e., the minimal value of a loss achieved
by the optimal solution to Problem 2. This minimum value only depends on the nature of
the loss function and on the unknown joint distribution, but does not depend on any choice
from the learner/attacker. As the expected value of a non-negative random variable, the
Bayes’ error is itself non-negative.

The term (4.10) corresponds to the approximation error: this error is due to the choice of
a restricted hypothesis class H from which we select our model F – e.g. F ? may not belong
to the hypothesis class H considered by the attacker. Since LX,Z (F ?) is itself a minimum

5 Examples of heuristics will be given in the description of DNNs.

59



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

over a wider set of functions than H, it is always lower than minF∈H LX,Z (F ). Hence, the
approximation error is always non-negative.

The term (4.9) corresponds to the estimation error. It is the error due to the fact that we do
not maximize the expected value of the loss – as the true p.m.f. is unknown – but rather its
empirical estimation, i.e., the training loss computed over a finite set Sp of profiling traces.
This error term is always non-negative.6 Moreover, according to the property of a learning
algorithm given in Definition 6, this error term is supposed to decrease with the number
of profiling traces. On the contrary, this error term increases with the VC-dimension of the
hypothesis classH [Vap99].

The term (4.8), a.k.a. the optimization error, appears when considering an attacker Sp 7→
Ã (Sp) using a heuristic algorithm rather than the exact ERM approach. Since by definition,
the theoretical attacker A(Sp) minimizes the training loss, the optimization error is always
non-negative.

We remark that each error term refers to a restriction in the capacity of an evaluator (opti-
mal attacker, restricted attacker with finite hypothesis class, finite profiling set, heuristic for
the ERM). That is why, in order to practically assess the quality of the model returned by the
learning algorithm, it is interesting to emulate cases where such restrictions can be ignored,
so that each error term can be evaluated separately. The work presented in Chapter 5 will
be devoted to thoroughly discuss each error term.

4.2 The Neural Networks Class Hypothesis

So far we have presented the ML framework for a generic hypothesis class H. This frame-
work is of particular interest for our profiled attacks scenario, since it encompasses the ma-
jority of the attacks presented so far. As an example, we can remark that GTs may be con-
sidered as a particular hypothesis class. Indeed, it may be shown that the way the mean
vectors and the covariance matrices are estimated from the profiling set actually follows the
ERM principle [GBC16].

The main interest in formalizing profiling attacks more generally as a machine learning
problem, is that one is not necessarily restricted anymore to the limited number of leakage
models presented so far in Section 3.4. That is why the SCA community started considering
different hypothesis classes over the last few years, among the wide zoology of ML algo-
rithms, such as Support Vector Machine (SVM) [CV95] or random forest [Bre01, PSK+18].
This section – and more generally this thesis – will be exclusively devoted to the particular
hypothesis class of Deep Neural Networks (DNNs). Nevertheless, the interested reader may
refer to the comprehensive survey of Hettwer et al. about the use of every ML approach to
SCA [HGG20].

We briefly describe the DNNs in Subsection 4.2.1, and the different architectures in Sub-
section 4.2.3. We also present some of their useful properties, especially the Universal Ap-
proximation theorem, in Section 4.2.3, before detailing in Section 4.3 how to implement them
in practice. Finally, Section 4.4 is devoted to review the use of DNNs in SCA, over the recent
literature.

4.2.1 General Description

Deep Learning (DL) aims at constructing a function F : X → P(Z) that takes a datum x and
outputs a p.m.f. over a finite domain, represented as a vector y. The result can then be used
for different tasks. For example, in a classification task the goal is to predict among a given
number of mutually exclusive classes, the one which has been assigned to the input data x.

6 Unless the attacker includes some inductive bias into the ERM, e.g. with regularization techniques, if he
thinks that some solutions to the ERM would be likely to better generalize than some others. The inclusion of
dropout layers – see Subsection 4.2.2 – is an example of inductive bias.

60



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

The vector returned by the DNN may then expresses scores depicting the preference to each
class that the input data x might stand for. The final prediction is made by returning the
class for which the highest score has been assigned. The output y can also be used for soft
decision contexts, which correspond more to SCA as the DNN outputs on attack traces may
be used as scores to feed a distinguisher.

In a very general way, a DNN may be seen as a Directed Acyclic Graph (DAG) of compu-
tation, where different functions may be applied at each node. Each function may be fixed
by the operator, or may belong to a class of functions fi(·, θi), each being typically fully de-
scribed by real vectors θi, a.k.a. parameters. The shape of the DAG and the nature of the
classes of functions is called the architecture of the DNN.

4.2.2 The Elementary Layers

Most of the time and in the remaining of this thesis,7 the architecture is organized so that the
DAG is a simple chain of nodes. In other words, the model is a sequence of compositions
between several simpler functions called layers. More precisely, this sequence generally al-
ternates layers denoting linear operations with respect to each of their inputs – hence called
linear layers, and non-linear functions, often referred as activation layers. This section is de-
voted to introducing the different layers that we will use in this thesis, before presenting the
general architectures in Subsection 4.2.3.

Dense Layers λC . They consist in applying to a vectorial input x ∈ RD a matrix multipli-
cation:

λC(x) = M · x , (4.12)

where M ∈ RD×C denotes the weight matrix, andC denotes the size of the dense layer. These
weights are the trainable parameters of this layer. The term “dense” denotes the fact that
when representing separately each entry of the output as a single node in the DAG, those
nodes are all connected to all the nodes representing the entries of the input of the layer.

Convolutional Layers γW,K . A convolution layer consists in computing a series of discrete
convolutions between an input and one or several filters – a.k.a. kernels. We detail hereafter
the meaning of the layer.

Let x be a 2D-array of size (D,V ) denoting the input of a convolution layer. V denotes
the number of channels in x.8 In particular, for the first layer, x coincides with the input trace,
so V = 1. Let also w be a 3D-array of size (W,V,K) denoting the set of K convolution filters
of size W to apply to the input signal.9 The output of the convolution is a 2D-array γW,K of
size (D −W + 1,K) such that:

γW,K(x)[i, j] =
V∑
d=1

W−1∑
m=0

x[i+m, d] ·w[m, d, j] , (4.13)

for 0 ≤ i ≤ D −W, 1 ≤ j ≤ K.
The parameters which can be adjusted with an ERM are the coefficients of the K filters.

Therefore, there are W × V × K real parameters to learn, and W and K are the hyper-
parameters defining the layer. Hence, we use the notation γW,K to describe such a convolu-
tion layer.

A convolution being a linear operation, it can be rephrased as a dense layer where the
weights matrix has constraints decreasing the number of coefficients to learn compared to

7 Exceptions to this restriction are discussed in Section 4.2.3, e.g. with Resnet architectures.
8 This terminology encompasses the fact that a black-and-white picture has one channel, a stereo sound has

two channels (left and right) and a colored picture has three channels (RGB).
9 We distinguish K denoting the number of filters in a convolutional layer from K, the random discrete

variable denoting the secret key chunk to ultimately recover.

61



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

a regular dense layer [GBC16, Sec. 9.1]. One must remark that the convolution layer com-
mutes with shifts of maximum size W , which is useful when one wants to encode the pos-
sible invariants of the input trace as an inductive bias of the hypothesis class. This is partic-
ularly of great interest against misalignment-based counter-measures, as shown by Cagli et
al. [CDP17].

Management of the Side Effects. As one may remark in Equation 4.13, the output size
along the time dimension of a convolution layer decreases from D to D −W + 1. It is often
useful to maintain the time dimensionality constant through the convolution layer. To tackle
this problem, the input x may be padded by one or several ranges of zeros, around the two
edges of the input, so that the time dimensionality is artificially increased toD′ = D+W−1.
The usual convention imposes to pad the input with the same number of zeros in both sides,
which then constrains the filter size W to be odd.

Pooling Layers δp. An average pooling layer is a mapping made of two steps. First, one
applies a particular case of convolution layer, yet without any learning parameter. It consid-
ers constant filters of size p with value 1

p . In other words, this computes the average over a
pool of p entries. Second, a sub-sampling operation is applied, consisting in keeping only one
entry in each pool. The hyper-parameter p is called the pooling stride, and fully defines the
pooling layer, hence the notation δp to denote such a pooling layer. A pooling layer of stride
p has the effect of dividing the time dimensionality of the output by p. As a consequence,
it is less sensitive to shifts of maximum size p compared to the input of the pooling layer,
which is here again useful to encode inductive bias on the input traces.

It is worth emphasizing that there exist other types of pooling layers, such as the max
pooling layer, consisting in keeping the maximum value of x for each window of size p.
This makes the pooling layer not linear anymore, yet throughout this thesis, we will only
consider average pooling layers.

Batch Normalization Layers µ. This type of layer has been introduced by Ioffe et al. at
ICML 2015 [IS15], and is generally inserted after each linear layer. According to the authors,
the first intuition behind this layer is to avoid the internal covariate shift, namely “the dis-
tribution of each layer’s inputs changes during training, as the parameters of the previous
layers change. This slows down the training[. . . ]”

To circumvent this problem, they propose to insert after each linear layer the following
operation:

x′ = x−M√
Σ
· b + a , (4.14)

where x denotes the input, x′ denotes the output of same size, and M,Σ,a,b have also the
same dimensionality –

√
Σ denoting the square root applied element-wise on Σ. M and Σ

are respectively estimated according to the (element-wise) empirical mean and variance di-
rectly during the training, while a and b are learning parameters, i.e., they are both included
in the parameter vector θ to fit during the training loss minimization.

Many empirical evidences of its efficiency have been emphasized through the past few
years, hence the batch normalization layer has been successfully used in many DNN archi-
tectures. Yet, the theoretical reasons behind this efficiency are still debated, and other argu-
ments emphasize the effect of batch normalization on the training loss smoothness, rather
than the internal covariate shift [STIM18].

Dropout Layer ωq. Dropout is a layer introduced by Srivastava [SHK+14], aiming at de-
creasing the estimation error of a hypothesis class.

62



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

Given an input layer x of size m, the dropout layer samples a random vector u of same
dimensionality, each entry independently following a Bernoulli law of parameter q ∈ [0, 1].10

The dropout layer outputs the element-wise product:

ωq(x)[i] , x[i]× u[i] 1 ≤ i ≤ m . (4.15)

Therefore, q is the hyper-parameter defining the layer. Dropout is known to be a way to con-
trol the estimation error by trading-off a bit of the approximation error [GBC16, Sec. 7.12].11

Activation Layers. The role of activation layers is to insert non-linear –more precisely non-
polynomial – functions in the architecture. The underlying reason will be quickly explained
afterwards in Subsection 4.2.3 when we will introduce the universal approximation theorem.
Historically, activation layers were used to modelize the response of a neuron cell by the
stimuli of several neighbor neuron cells. Throughout this thesis, we will use two types of
activation layers.

• Rectified Linear Unit (ReLU): It consists in the element-wise application of the max
real function

σ (x) = max(0, x) . (4.16)

• Softmax: This function aims at normalizing a vector to make it fit a discrete p.m.f.

s (x) [i] , ex[i]∑
j e

x[j] . (4.17)

The composition of a linear layer and a softmax is often referred as a softmax classifier
in the ML literature [GBC16, Sec. 6.2.2.3]. Note that contrary to the ReLU, the soft-
max layer is not applied element-wise, since an output entry depends on all the input
entries.

There exist many other activation layers used so far in the DL literature, especially those
based on sigmoids – i.e. with the shape of an ‘S’, although beyond the scope of this thesis.

4.2.3 The Architectures

Once we have introduced the building blocks of the DNNs, we can now present all the
architectures used in this thesis.

Multi-Layer Perceptron. The simplest architecture, called Multi-Layer Perceptron (MLP),
consists in alternatively composing dense layers, batch norm layers, ReLUs and a final soft-
max layer, in order to output a p.m.f.:

F (x) = s ◦ λC ◦ [σ ◦ µ ◦ λC ]L ◦ µ(x) , (4.18)

where L ≥ 1 denotes the depth of the MLP.

The Universal Approximation Theorem. A remarkable result specific to MLPs, known
as the Universal Approximation Theorem, states that when considering a L2 error as a loss
function, the approximation error term (4.10) converges towards 0 when the number C of
neurons in the layers increases [Pet98]. In other words, an MLP, even with only one in-
termediate layer, can approximate a wide range of functions. The theorem only requires
the activation function of the MLP to be non-polynomial, which is the case for the ReLU.

10 See Subsection 2.2.1 for a description of the Bernoulli law.
11 A dropout layer will be used in Subsection 5.5.1.

63



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

Actually there exist many versions of the universal approximation theorem, relying on dif-
ferent notions of convergence, or on particular properties of the activation function of the
neural network. The drawback of this result is that without any additional assumption on
the function to approximate, the required number of neurons exponentially increases with
the inverse of the approximation error. Hopefully, this negative result may be mitigated by
increasing the depth of the MLP, rather than the number of neurons on each layer [Tel16].
The interested reader may refer to the survey of Pinkus [Pin99].

The VC-dimension of MLPs. As presented in Subsection 4.1.3, the VC-dimension of
an hypothesis class has an impact on the estimation error, and thereby the sample compexity.
When considering the class of MLPs, the VC-dimension can be upper-bounded by a polyno-
mial depending on the number of learning parameters, i.e., the weights [SSBD14, Sec. 20.4].
In other words, with DNNs, the more parameters to learn, the higher the estimation error.

Convolutional Neural Networks. In pattern recognition tasks involving signals such as
time series, images or videos, some elementary deformations, such as random shifts, do not
usually affect the information carried through the data. Instead of letting the ERM learn
implicitly those invariants at the cost of a higher sample complexity, they can be explicitly
encoded through the architecture. This is the main idea behind the introduction during the
1990’s of Convolutional Neural Networks (CNNs) by LeCun and Bengio [BLH93, LB94].
By remarking that some typical patterns appeared in the weights of the dense layers, they
suggested to replace those layers by convolutional and pooling layers. Indeed, thanks to the
properties of convolution and pooling layers on small shifts, stacking those layers enable
to better encode the semantic invariants of the input data, while decreasing the number of
parameters to learn – and so intuitively the sample complexity.

VGG-like Architecture. The Visual Geometry Group (VGG)-like architecture has first
been introduced by Simonyan et al. [SZ15], after winning the ILSVRC in 2014. Its architecture
is as follows:

s ◦ λ|Z| ◦ [σ ◦ λC ]n1 ◦ [δp ◦ σ ◦ µ ◦ γW,K ]n2 ◦ µ , (4.19)

where γW,K denotes a convolution layer made of K filters of size W , and δp denotes a pool-
ing layer of stride p. Furthermore, the composition [δp ◦ σ ◦ µ ◦ γW,K ] is denoted as a convo-
lutional block. Likewise, [σ ◦ λC ] denotes a dense block. We note n1 (resp. n2) the number of
dense (resp. convolutional) blocks.

Remark 5. More precisely, the VGG architecture of a convolutional block is slightly different in the
original paper: the convolution layer µ ◦ γW,K inside the convolution block is replaced by a stack
[µ ◦ γW,K ]n3 of n3 > 1 convolution layers. The authors indeed suggest a recipe, behind the success
of the VGG architecture at the ILSVRC. This recipe may be summarized as follows: stack more
convolution layers, with small filters.

The reason is that when dealing with images, to be able to capture patterns from a D×D square,
the stack of convolution layers must verify the following condition resulting from the side effects of
successive convolution layers, as explained in Subsection 4.2.2:

D = n3(W − 1) . (4.20)

When this condition holds, the number of learning parameters is n3W
2 = DW 2

W−1 ≈ DW , which may
be minimized by setting W to small values and by increasing n3 accordingly.

64



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

D
W

(a) n3 = 2,W = 3.

D = W

(b) n3 = 1,W = 5.

Figure 4.1: A 2D receptive field of size D × D, captured by two different settings. Inspired from
Dumoulin et al. [DV16].

An illustration is proposed in Figure 4.1: on Figure 4.1a two convolutional layers are applied to
a 5 × 5 patch, with filters of size 3 × 3 for each layer, hence 2 × 3 × 3 filters weights to learn. On
the contrary, as depicted in Figure 4.1b, by only using one layer, one must use 5 × 5 filters to cover
the same area. This represents 25 filter weights to learn, i.e., more than by using two stacked lay-
ers. Therefore, the convolution layers are believed to keep their capacity of expression approximately
constant by covering the same area, while decreasing the number of learning parameters and so the
sample complexity. Hence the global trend consisting in increasing more and more the depth of CNNs
in a computer vision context over the past few years.

For 1D-data, such as SCA traces, the argument discussed in Remark 5 does not hold any-
more since the required number of learning parameters becomes n3W = D W

W−1 ≈ D rather
than DW , as depicted on the two examples on Figure 4.2. In other words, no matter the
filter size chosen, the number of filter weights to learn remains globally constant, so stack-
ing more convolutional layers does not seem necessary anymore; at least not for the reason
developed in Remark 5. Benadjila et al. empirically confirmed that it was not necessary to

(a) n3 = 2,W = 3. (b) n3 = 1,W = 5.

Figure 4.2: A 1D receptive field of size D = 5, captured either by one or two convolution layers.
Inspired from Dumoulin et al. [DV16].

stack more than n3 = 1 layer inside a convolution block [BPS+19] for an SCA context. That
is why in the remaining of this thesis, we will keep the VGG architecture such as described
in Equation 4.19. However, the discussion concerning the ideal filter size remains open,
depending on the context. In particular, we will discuss this setting in Chapter 6.

Other CNN-Based Architectures. Beside the VGG architecture, the DL community has
seen the emergence of many other types of architectures, such as GoogleNet [SLJ+15], Incep-
tion [SVI+15], Resnet [HZRS16], DenseNet [HLW16], etc. The study of those architectures
are yet beyond the scope of this thesis, although some of them start to be used in DL-based
SCA [ZS19, GJS20] and some of them will be briefly discussed in Chapter 6.

65



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

x

F (x, θ)

Parameters θ

z = C (p, k?)

` (y, z)

Figure 4.3: Illustration of the workflow of the training of a DNN in a profiled SCA context.

4.3 Implementing the ERM with Neural Networks

As we have seen, the hypothesis class of DNNs is fully defined by the hyper-parameters
describing the architecture, whereas a specific instance F of neural network among H is
also defined by the vector θ of all the learning parameters. In other words, one can re-
write a model from H under the form F (·, θ). As a consequence, implementing the ERM
principle can be translated from a functional optimization perspective – i.e. finding the
model F ∈ H minimizing the training loss – into a numerical optimization problem – i.e.
finding the vector θ such that the function F (·, θ) minimizes the training loss. Since closed-
form solutions do not exist, this numerical optimization problem is usually solved thanks to
an iterative optimization algorithm such as SGD12 by iteratively updating the values of the
learning parameter θ, as illustrated in Figure 4.3.

Interestingly, the ERM principle introduced by the ML framework remains a purely the-
oretical tool in most of the applications, and particularly in deep learning. Indeed, it often
cannot be implemented in practice, for several reasons that we will describe in the following
subsections. Finally, we explain in Subsection 4.3.4 how the derivatives of the loss function,
a crucial element required by the optimization algorithm, is efficiently computed. This de-
scription will serve as a discussion in Chapter 7.

4.3.1 SCA Metrics are Hard to Optimize

So far in this chapter, we have presented the ML framework for a generic learning problem.
In particular, we have considered so far an abstract loss function ` () to minimize, whose
generic definition has been given in Equation 4.2. It is indeed tempting at first sight to use
the final performance metric as a loss function, in order to guarantee the convergence of
the trained model towards the best possible one, according to Theorem 2. Unfortunately,
one cannot optimize with respect to any loss function, regardless the underlying hypothesis
classH.

For example, in supervised classification the ultimate performance metric is the accuracy,
namely the rate of accurate predictions among the possible labels that may be recognized
by the model. For any function F : X → R|Z|, the accuracy is denoted by AccX,Z(F ) and is
defined as:

Acc
X,Z

(F ) , Pr
(

argmax
s∈Z

F (X)[s] = Z

)
= E

X,Z

[
1argmaxs∈Z F (X)[s]=Z

]
. (4.21)

That is, this metric gives the rate of right predictions, or more precisely the probability that
the highest score returned by a learning algorithm based on a single input data X corre-

12 We recall that Subsection 2.5.2 introduced the SGD algorithm.

66



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

θ

LX,Z (θ)
LSp (θ)

Figure 4.4: Toy example of a training loss made of characteristic functions with respect to a real
valued learning parameter θ. Paradoxically, although the training loss LSp

(θ) has zero derivatives
almost everywhere, the generalization loss LX,Z (θ) may have non-null derivatives.

sponds to the class Z it is assigned. Therefore, maximizing the accuracy is suitable to ad-
dress the classification task.

Unfortunately, solving the ERM for DNNs with the accuracy as a loss function turns out
to be NP-hard [SSBD14, Sec. 20.5]. In a nutshell, the reason comes from the fact that the
resulting training loss can be formulated as a sum of characteristic functions:13

Acc
Sp

(F ) , 1
|Sp|

∑
x,z∈Sp

1argmaxs∈Z F (x)[s]=z . (4.22)

Each characteristic function in Equation 4.22 has null derivatives almost everywhere, and
so has the training loss of the accuracy, as depicted in Figure 4.4 with the staged red curve
depicting the training loss, as a sum of characteristic functions. So gradient-descent-based
optimization algorithms are useless, and no other efficient alternative could circumvent this
issue.

Interestingly, this drawback also concerns the efficiency F 7→ Na(F ), defined in Subsec-
tion 3.2.2 as the minimal number of attack traces to succeed the attack beyond a probability
threshold β fixed by the evaluator, and that we chose as an ultimate performance metric
according to Problem 2. The corresponding training loss to minimize in the ERM would
depend on the guessing vector defined in Equation 3.2. But the latter quantity is a sum of
characteristic functions, hence meeting the same issues as the training loss corresponding to
accuracy. That is why the SCA metrics are hard to directly optimize.

More generally, this also holds for Random Forest and SVMs, two other learning algo-
rithms used in the SCA literature [PHJ+18]: the former one is based on heuristics working
reasonably well in practice [SSBD14, Chap. 18.2] whereas the latter one must minimize an-
other loss function called Hinge loss [SSBD14, Chap. 15.2.3].

4.3.2 The Need for a Surrogate Loss

The previous section raises the need for a suitable surrogate loss function, either found
among the usual functions considered in the DL literature, or designed specifically for
our problem. In the literature, mostly two surrogate loss functions have been used in the
SCA context: the Negative Log Likelihood (NLL) [CDP17, BPS+19, KPH+19] and the Mean
Square Error (MSE)14 [MPP16, Tim19, WMM19]. Until a few years ago, nobody particu-
larly raised the issue into the SCA community since the empirical results obtained for any
loss function on several use cases got promising results from an attacker’s point of view.

13 See Section 2.1 for a definition of a characteristic function.
14 From a purely optimization point of view, the MSE might suffer from problems [Nie18]. From a SCA

evaluation point of view, the relevance of MSE is an open question [vdVP19], beyond the scope of this thesis.

67



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

Nevertheless, from an evaluator’s point-of-view, it remains necessary to assess whether the
problem of minimizing the chosen training loss is actually equivalent to the profiled SCA
optimization problem. More precisely, whether:

1. both problems share the same analytical optimal solution F ?;

2. improving a sub-optimal solution for one problem directly leads to get an improved
sub-optimal solution for the other one.

Tackling this issue is of great interest in SCA. Indeed nowadays there might still be a gap be-
tween the recent practical successes of this class of attacks, and the theoretical soundness of
DL-based SCA: what is the sense of training a DNN by minimizing a surrogate loss function
from an SCA point of view? This issue will be at the core of Chapter 5.

4.3.3 The Challenge of Optimization

We have seen that the interest of the surrogate loss function is to be differentiable with
respect to all the learning parameters,15 in order to use a gradient based optimization al-
gorithm such as SGD. Nevertheless, in DL, this still raises an important issue, even when
using a surrogate loss. Indeed, when considering the specific hypothesis class of DNNs,
the resulting objective16 function to optimize is shown to be highly non-convex [CHM+15],
contrary to SVMs whose surrogate loss, i.e. Hinge loss, spans a convex optimization prob-
lem. Moreover, the solution to the problem is not unique: considering one DNN model
minimizing the training loss, the same model whose entries of the intermediate layers are
permuted – and so are the learning parameters accordingly – would return the same result.
Hence, the number of equivalent solutions is combinatorial with respect to the output size of
the intermediate layers of the model.

As a consequence, the usual numerical optimization algorithms are not theoretically
guaranteed to converge towards an optimal solution, which prevents the SGD algorithm
and its variants to perfectly instantiate the ERM principle. In other words, the optimization
error cannot be assumed to be negligible, as already discussed in Subsection 4.1.3. Nev-
ertheless, experience has surprisingly shown that those algorithms represent a satisfying
heuristic [LBOM12], and the recent literature started to provide theoretical insights about
this fact [DLL+19, DZPS19].

4.3.4 Computing the Gradient

So far in this section, we have explained that the ERM principle could be implemented by
addressing a non-convex numerical optimization problem. We explained in the previous
sections to what extent perfectly solving this problem is hard in practice, although sound
approximate solutions could be returned by an optimization algorithm such as the SGD.
The latter algorithm – and its variants – rely on the computation of descent directions based
on the gradient of the loss function defined in Equation 4.4 and computed with respect to
the parameter vector, namely∇θLSp (F (·, θ)). It is therefore of great interest to study to what
extent providing the gradient of the loss function to the optimization algorithm is affordable
when considering models from the hypothesis class of DNNs. This subsection is devoted to
this discussion.

Remark 6. The details provided in this subsection concern more generally any DL-based problem,
and not only SCA. Nevertheless, it will be useful for future discussions in Chapter 7.

15 We recall that the parameters describing the architecture for which the loss is not differentiable are called
hyper-parameters.

16 The term “objective” function is the terminology used by the numerical optimization research community.
It refers to the training loss function in the specific case of machine learning. In the following, we will rather use
the term “loss” to design the function to minimize.

68



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

The training loss to minimize being a sum of elementary losses over the profiling set, so
is the gradient:

∇θLSp (F (·, θ)) = 1
Np

Np∑
i=1
∇θ` (F (xi, θ), zi) . (4.23)

It turns out that an algorithm called backward propagation (a.k.a. backprop) can exactly com-
pute the gradient of ` (F (xi, θ), zi) with respect to θ for roughly the same complexity of
computing ` (F (xi, θ), zi) itself. It relies on the use of the chaining rule recalled in Lemma 1.
Indeed, due to the layer-wise nature of F (·, θ), the loss function, seen as a function of the
parameter vector θ, can also be seen as a sequence of compositions of elementary functions
whose derivatives can be computed in a closed-form solution. Therefore, by using recur-
sively the chaining rule on the given sequence of functions, one is able to exhibit an efficient
procedure to exactly compute the gradient.

It is noticeable that for a composition of n > 2 elementary functions, the chaining rule
can be recursively applied in two manners, respectively denoted as forward and reverse. We
explain hereafter the stakes behind those two automatic differentiation modes on an exam-
ple of compositions of n elementary functions (fi)1≤i≤n such that:

fi : Rmi−1 → Rmi , (4.24)

where mi ≥ 1 for 0 ≤ i ≤ n − 1, mn−1 = |Z|, and mn = 1. The resulting function to
differentiate ` : Rmn → R can then be written as:

` (θ) =
ϕn−i(Reverse)︷ ︸︸ ︷
fn ◦ . . . ◦ fi ◦ . . . ◦ f1︸ ︷︷ ︸

ψi(Forward)

(4.25)

We recall furthermore that the elementary functions (fi)1≤i≤n are assumed to be simple
enough to derive closed-form expressions of their Jacobian matrices.

In a forward mode, the chaining rule is applied from right to left17 in Equation 4.25. That
is, by considering the sequence of mappings defined by ψ0 = Id the identity mapping and
ψi+1 = fi+1 ◦ ψi, 0 ≤ i ≤ n− 1, and by applying Lemma 1, it follows that:

Jψi+1 (θ)︸ ︷︷ ︸
(mi+1,m0)

= Jfi
(ψi(θ))︸ ︷︷ ︸

(mi+1,mi)

· Jψi
(θ)︸ ︷︷ ︸

(mi,m0)

(4.26)

Since one remarks that ψn(θ) = ` (θ), it is then possible to compute its gradient by itera-
tively applying Equation 4.26. But this method requires to store the Jacobian matrices of
the mappings ψi whose sizes are respectively mi × m0, which might be prohibitive if the
intermediate outputs are of high dimensionality.

In a reverse mode, the chaining rule is applied from left to right in Equation 4.25. That is,
by considering the sequence of mappings defined by ϕ1 = fn and ϕi+1 = ϕi ◦ fn−i, 1 ≤ i ≤
n− 1, and by applying Lemma 1, it follows that for every x ∈ Rmn−i :

Jϕi+1 (x) = Jϕi (fn−i(x)) · Jfn−i
(x) (4.27)

By taking x = ψn−(i+1)(θ), it follows that:

Jϕi+1

(
ψn−(i+1)(θ)

)
︸ ︷︷ ︸

(1,mn−i)

= Jϕi (ψn−i(θ))︸ ︷︷ ︸
(1,mn−i−1)

· Jfn−i

(
ψn−(i+1)(θ)

)
︸ ︷︷ ︸

(mn−i−1,mn−i)

(4.28)

Since one remarks that ϕn = ` it is here again possible to compute its gradient by iteratively
applying Equation 4.28. Yet, compared to the forward mode, two main differences should

17 We draw the attention of the reader on the fact that when composing several functions, the notation f2 ◦ f1
must be read backward, hence “forward” means here “right-to-left”.

69



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

be noticed. First, it is necessary to store all the intermediate computations (ψi(θ))1≤i≤n when
previously computing the loss function ` (θ), whereas in a forward mode the gradient can
be directly computed without necessarily computing ` (θ). Second, rather than storing a
Jacobian matrix after each iteration, the reverse mode enables to only store a gradient of size
mn−i, which is much lighter than in the forward mode. That is why all the APIs devoted
to DNNs only use the reverse mode in their implementations, and are optimized in order
to avoid the storage of any Jacobian matrix, hence the name of “backprop” which explicitly
refers to the “reverse” mode. This point will be later discussed in Chapter 7.

The backprop algorithm has been independently discovered many times during the 70’s
and the 80’s, in particular by Hinton et al. in 1986 [RHW86b, RHW86a]. More generally, the
backprop algorithm has paved the way towards automatic differentiation which studies how
to efficiently differentiate functions numerically,18 which is often crucial in machine learning.
The interested reader may refer to the survey of Baydin et al. [BPRS17].

4.3.5 Some APIs

Training DNNs with optimization algorithms is nothing but linear algebra computations –
e.g. scalar and matrix product – in very high dimensionality, typically 105 − 106. To scale
with this range, the implementation must leverage massively parallel programming, either
in CPU clusters of on (General Purpose) Graphic Processing Units (GPUs). That is why until
few years ago, the ML practitioners used to need strong skills in a broad spectrum of pro-
gramming fields. Those skills were hard to gather into a research team, and most of the time
of researchers was devoted to implementing models which were not easily reproducible by
the scientific community.

That is why, with the emergence of deep learning in the beginning of the 2010’s, several
APIs have been released by the machine learning community. Although the very first public
library Theano [The16] is not maintained anymore by its authors, several other APIs have
been publicly developed over the last few years, such as Pytorch [PGM+19], supported by
Facebook; Tensorflow [AAB+15], supported by Google; or Keras [C+15], an extension of
Tensorflow initiated by Chollet. In particular, the source code developed for this thesis has
been written in Python with the help of the Pytorch API,19 and is run on a workstation with
a Nvidia Quadro M4000 GPU with 8 GB memory and 1664 cores, and 32 GB of RAM.

4.3.6 On the Accuracy as a Monitoring Metric

We have seen in Subsection 4.3.1 that in supervised classification, it is not possible to directly
maximize the accuracy of DNNs, since it is a NP-hard problem. Despite its impossibility
to directly minimize, most of the works considering DL-based SCA made use, explicitly
or implicitly, of the accuracy as a monitoring metric, assuming that such a performance
measure may still be informative of the quality of a trained model.

Cagli et al. [CDP17] and Picek et al. [PHJ+18] were the first to raise this issue, namely
the relevance of the accuracy, a widely used ML performance metric, in the context of SCA.
Unfortunately, we explain hereafter that it is not the case.

It turns out that the optimal model for SCA, which is F ? = Pr (Z | X), is also the optimal
classifier for the supervised classification task.20 This means that for any function F : X →
P(Z) we have:

Acc(F ) ≤ Acc(F ?) . (4.29)

In other words, both supervised classification problem and Problem 2 share the same ana-
lytical optimal solution F ?, which is the first of the two conditions stated in Subsection 4.3.2

18 i.e. in opposition to symbolic differentiation considering only algebraic formulations of a function.
19The library is available at pytorch.org.
20 The ML literature often uses the term Bayes’ classifier to denote the optimal classifier for the classification

task.

70

pytorch.org


CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

to get a loss function equivalent to our SCA efficiency metric. Thus, the accuracy might be
a good metric candidate. Yet, both problems sharing the same optimal solution F ? does
not necessarily mean that they are equivalent, since it remains to verify that improving sub-
optimal solutions for one problem should lead to improved sub-optimal solutions for the
other.

Cagli et al. recalled that the accuracy could be translated into another SCA metric, namely
the success rate when recovering the key with one trace SR(1). In a sense, Acc(F ) is the
dual metric of Na(F, 1, β): the former one fixes Na = 1 and estimates the corresponding
threshold β, whereas the latter one fixes the threshold and estimates the minimum value Na

such that SR(Na,DFSa
, 1) ≥ β – see Equation 3.3. Cagli et al. have emphasized that although

this could have a sense in some specific scenarios, e.g., when evaluating implementations of
asymmetric cryptographic primitives, this does not necessarily have a sense to evaluate the
robustness of a target against an attack involving only one trace. That is why at first sight,
accuracy does not seem appropriate in our context.

Picek et al. empirically confirmed a similar observation at CHES’19 [PHJ+18]. For sev-
eral learning algorithms, such as SVMs and Random Forests, they empirically compared the
obtained GE with the accuracy, and they found out that there is no clear link between them.
More precisely, they argue that a high accuracy – i.e., with respect to the one obtained with a
model providing completely random predictions – is a clue for effective attacks, though the
inverse does not empirically hold: a low accuracy does not necessarily imply a failed key
recovery. However, the latter case may often happen, especially with protected implementa-
tions where the noise artificially induced by the counter-measures reduces the performances
of the optimal model, and so the accuracy.

As a conclusion to the two latter sections, the accuracy is not only useless for the imple-
mentation of the ERM, as already concluded in the end of Subsection 4.3.1, but is also a poor
metric to monitor in an SCA context. Recently, new ways to monitor the quality of a DNN
have been proposed, in particular by Robissout et al. [RZC+20] and Perin et al. [PBP20].
Although this brings new insights, those monitoring metrics partially circumvent the prob-
lems raised by the accuracy, since the metrics proposed there are not optimizable. Finding a
proper loss function which is useful not only as a quantity to optimize but also as a metric
to monitor is the core problem which will be addressed in Chapter 5.

4.4 An Overview of the Literature

The past few years have seen the emergence of contributions on SCA using more and more
DL techniques. The community committed to investigate several models leading to practi-
cal attacks against several implementations. The very first works came from Martinasek et
al. [MZ13, MDM16], Gilmore et al. [GHO15], whereas other ML techniques have been inves-
tigated by Heuser et al. [HZ12] and Lerman et al. [LBM14, LBM15]. Hereafter, we focus on
the specific use of DL rather than on other ML algorithms. The reader interested in a com-
plete review of the use of every learning algorithm in SCA may refer to the comprehensive
survey of Hettwer et al. [HGG20].

The asymmetric cryptography has been by now investigated by Carbone et al. concern-
ing the RSA primitive [CCC+19], and by Weissbart et al. [WPB19] concerning elliptic curves.
In both works, results are as promising as for the symmetric context.

Auto-Encoders appeared as a valid solution to perform dimensionality reduction and
pre-processing of side-channel signals [MPP16]. The temporal aspect of side-channel traces
leads the community to explore as well some recurrent neural network structures, in par-
ticular the Long Short-Term Memory (LSTM) one [Mag19]. CNNs appeared more suitable
in presence of signal desynchronization, and thus in presence of counter-measures injecting
desynchronization in signals [CDP17, BPS+19, KPH+19].

71



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

4.4.1 Unsupervised Learning for SCA

Moreover one may remark that the great majority of works apply deep learning to perform
profiling attacks, and logically exploits for the learning algorithm a supervised experience.
A very few works proposed a non-profiling deep-learning-based attack. First, Timon pro-
posed at CHES’19 [Tim19] an extension of the l.r.a. attack [SLP05]. However, this means that
the learning algorithm still exploits a supervised experience, in which labels are assigned
according to different key hypotheses.

Second, Ramezanpour et al. [RAD20] extended the works of Timon in several ways, by
using LSTMs as an unsupervised feature extractor, and by using some analysis developed
by Wang et al. [WYS+18] as a leakage modeling method.

A full-non-supervised track, based for example onto deep clustering techniques recently
proposed in the computer vision domain, is still unexplored in the side-channel context.

4.4.2 Exploring the DL Strategies for SCA

This vast panorama of experimentally investigated tools have subsequently emphasized
the need for a deep understanding of their architectural properties. A well-established
methodology – beyond those already proposed [BPS+19, ZBHV19] – to tune the (very)
high number of hyper-parameters in these models would be very useful. Furthermore,
since in ML the learning algorithms are driven by data, the data management is a crucial
point and related issues and good practices have been investigated in this sense. Cagli et
al. [CDP17] and Kim et al. [KPH+19] proposed data augmentation techniques to control
and decrease the estimation error (4.9). But many questions about the utility and /or ne-
cessity of performing some pre-processing like dimensionality reduction [Mag19], realign-
ment [CDP17, ZS19], de-noising [WP19], under/over-sampling to deal with class imbal-
ance [PHJ+18], or the conversion of data into the frequency domain by means of Fourier or
Wavelets transforms [YLMZ18, DDFP20] have been raised.

4.4.3 Support for Understanding

Although DNNs show encouraging results in an evaluation context of SCA, following the
recent hype of deep learning in pattern recognition, many people in the community remain
skeptical and reluctant to this approach. This is mostly due to the black-box21 aspect of those
algorithms, i.e. the fact that they do not provide any insight about how the informative
leakage occurs in the SCA traces. Although not of great interest for the attackers whose
ultimate goal is only to recover the secret key, this represents a huge stake for evaluators
and developers.

To provide understanding in DL models behavior, a track of recent works – including
ours – proposed the use of some visualization techniques, with the threefold intent of char-
acterizing the sensitive leaking part of the side-channel traces, understanding the nature
of the signal information that a given neural network is able or not to exploit [MDP19a,
HGG19, Tim19, vdVPB19] and validating the hyper-parameters choices [ZBHV19]. Fur-
thermore, visualization techniques aiming at focusing on DL in order to help tuning their
hyper-parameters or understanding their prediction is a long running challenge in the visu-
alization and machine learning community [HKPC19, GTdS+18]. This issue will be the core
discussion of Chapter 7.

21 This terminology shall not be confound with the same term used for black-box attack scenarios discussed
in Chapter 3.

72



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

4.4.4 DL-based SCA and Counter-Measures

The community already wondered about the efficiency of existing side-channel counter-
measures against DL-based SCA. Many works – including ours – recently investigated the
robustness of classic counter-measures, in particular the high-order secret-sharing [MPP16,
BPS+19, KPH+19, Tim19, Mag19, MDP19b, ZS19, BS20]. The DL-based SCA showed very
fast outperforming results with respect to the previous state-of-the-art attacks. The main
advantage of DL, compared to regular SCA attacks is that DL is not technically limited by
the minimal number of points which must be jointly processed, which was originally one
of the strong practical arguments to use high-order secret-sharing, as we argued in Sub-
section 3.7.1. Nevertheless, Bronchain et al. recently emphasized a use case where auto-
mated attacks with DL did not succeed against a software target protected with affine secret-
sharing whereas classical template attacks involving a subtle dissection of the open source
code [BS20]. This lets one think that DL-based SCA could not always represent a better ap-
proach than classical Gaussian templates. We further discuss this case in the perspectives
presented in the global conclusion of this thesis.

This also raises the challenge of knowing exactly the necessary number of traces for the
training phase of a DL model – i.e. the sample complexity, and how secret-sharing could
have an impact on this constraint. Until now, only Picek et al. started tackling the ques-
tion [PHG19].

In addition, to the best of our knowledge, no sound counter-measure has been exhibited
so far in the literature to specifically counteract deep learning techniques in side-channel
analysis. Nevertheless, it seems that perturbing the inputs or adding dummy operations to
fool a network could help developers in the protection of their implementation against deep
learning attackers [BBCS20].

4.4.5 Multi-Task Learning

Some works make the hypothesis that several sensitive variables, processed in a similar way
by the device during the cryptographic algorithm execution, may be targeted while keep-
ing unchanged the neural network architecture (i.e. the hyper-parameters are tuned only
once) [GBO19]. A similar approach has been proposed by Wang et al. [WD20], who com-
bined the predictions of three different models targeting three different sensitive intermedi-
ate computations in an FPGA implementation of AES. A recent work from Maghrebi [Mag20]
leverages this finding by proposing to solve the SCA problem with a single multi-labeling
classifier. However, his solution, as is, is limited to learning only two labels at the same time.
In the general conclusion of this thesis, we will further discuss this new line of work.

The multiple classifier concept is analogously proposed in [DDFP20], where several
overlapping modelizations of a sensitive variable are independently recognized by several
classifiers whose outputs are jointly exploited in the attack phase. In addition to these multi-
ple outputs, it has been observed that training a deep neural network in a multi-task fashion
results in having the performances of each single classifier increased.

4.4.6 Multi-Sources

The multi-source idea to enrich signal databases, meaning harvesting at the same time sev-
eral side-channel signals (for example power consumption and EM irradiation captured
with multiple probes placed nearby different areas of the device) and exploiting them syn-
ergistically, has been explored by Genevey-Metat et al. at C&ESAR 2019 [GMGH19]. Fur-
thermore, learning with multiple and even heterogeneous sources remains an open topic in
the machine learning community.

73



CHAPTER 4. DEEP LEARNING FOR SIDE-CHANNEL ANALYSIS

4.4.7 Portability

As a related topic, Carbone et al. [CCC+19] and Bhasin et al. [BCH+20b] tackled the porta-
bility issue: these works aim to understand the performance effects observed on DL models
while conducting a profiling phase on a device which may not be a perfect clone of the
target, in opposition to what is assumed throughout this thesis.

4.5 Conclusion

The machine learning framework enables to extend the leakage modelization in a profil-
ing attack scenario to much more powerful hypothesis classes, which has been at the origin
of new recent milestones in SCA. Nevertheless, in view of the current state of the art, we
are today in an uncomfortable situation. Indeed, the replacement of the Profiled SCA Op-
timization Problem – i.e. Problem 2, so far tackled classical profiling attacks such as GTs,
by the Supervised Classification Problem – i.e. finding a model maximizing the accuracy
defined by Equation 4.22, thanks to DNNs, shows promising efficiency gains. Neverthe-
less, several recent papers question the theoretical soundness of the latter problem substi-
tution [CDP17, PHJ+18]. This situation prevents the SCA community to get a clear picture
of the potential impact of ML and DL, especially from the developers’ perspective. Indeed,
though an attacker only needs to know an efficient practical approach to train a DNN, a de-
veloper needs a theoretically grounded approach to be able to give the best security bounds
on the complexity of mounting a profiling attack, especially when the implementation is
protected by counter-measures.

More specifically, through the review of the deep learning approach and the literature
review, we have emphasized several caveats which should be addressed by the SCA com-
munity:

• How can one prove that the underlying optimization problem materializing the train-
ing phase is a theoretically sound approach for Problem 2, beyond the recent empirical
success? This requires to address the issue of choice of the loss function, and the study
of the optimization error yield by the SGD or its variants.

• How far can deep learning go to approximate the true leakage model, even in pres-
ence of counter-measures? Said equivalently, is there any sound DL-oriented counter-
measure which could protect the implementations of cryptographic primitives against
this threat?

• How can an evaluator get a clear understanding of what happens during the profiling
phase with DNNs, in order to draw a fair diagnosis of the device under evaluation?

Our work in the remaining of this thesis aims at grounding the use of DNNs in the SCA
context, by addressing those issues in the next three chapters.

74



Chapter 5

Theoretical Aspects of Deep Learning
Based Side-Channel Analysis

“ In Statistical Inference, nothing is
more practical than a good theory.”

Vladimir Vapnik [Vap00]

This chapter is inspired from the results published in TCHES’20 in collaboration with
Cécile Dumas and Emmanuel Prouff [MDP19b].

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Model Training for Leakage Assessment . . . . . . . . . . . . . . . . . . . . 77

5.2.1 The Link between MI and SCA Efficiency . . . . . . . . . . . . . . . . 77
5.2.2 The Link between MI and Perceived Information (PI) . . . . . . . . . 78

5.3 NLL Minimization is PI Maximization . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Recall on the Consistency of the NLL Loss with Cross Entropy . . . . 79
5.3.2 The Link between Cross Entropy and Perceived Information . . . . . 79
5.3.3 Tightness of the Obtained Bound . . . . . . . . . . . . . . . . . . . . . 82
5.3.4 Partial Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Study on Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Settings of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Analysis of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Application on Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.3 Application on Public Datasets . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

75



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

5.1 Introduction

The work presented in this chapter aims at grounding the use of DNNs in the SCA context,
especially when classical counter-measures like secret-sharing and hiding are involved. In
this chapter, we investigate to what extent the profiled SCA optimization problem – i.e.
Problem 2 – can be solved through the machine learning framework by carefully choosing
the underlying loss function. This is the main problem addressed in this chapter.

We propose a theoretical study of the Negative Log Likelihood (NLL) loss in different
steps depicted in Figure 5.1, by enlightening the fact that such a function is strongly linked
to a side-channel information theoretic quantity called PI, formally introduced by Renauld
et al. at EUROCRYPT 2011 [RSV+11], and recently studied by Bronchain et al. at CRYPTO

2019 [BHM+19]. As a direct consequence, the PI can be straightforwardly computed from
the NLL loss. More interestingly, this implies that the training phase of a deep learning
model, through the minimization of the NLL loss, is actually equivalent to giving the PI es-
timation which is the closest to the MI between the leakage and the target sensitive variable.

In parallel, we benefit from the recent works of Chésirey et al. at CHES 2019 [dCGRP19].
The latter ones provide a lower bound of the optimal efficiency metric N?

a (1, β) – defined
in Equation 3.4 – depending on the MI. By combining those two results and by translating
them into the ML terminology, we show that the SCA efficiency metric can be accurately
estimated without even mounting a key recovery, which justifies the soundness of the DL
approach when the latter one is addressed by training DNNs through the minimization of
the NLL loss.

NLL loss
Perceived

Information (PI)

N?
a (1, β)

see Equation 3.4

this chapter

Mutual Infor-
mation (MI)

[RSV+11, BHM+19]

[dCGRP19]

F ?

maximizes

definesdefines

Figure 5.1: Link between the NLL loss and the efficiency metric in SCA.

As we shall show, the latter result has several direct impacts. First, the training of DNNs
with the NLL loss can be considered as an efficient and effective estimation of the PI, and
thereby of the MI – known to be complex to accurately estimate in the context of secure
implementations [PR10, BGP+11]. Secondly, it implies that in an SCA context, choosing the
NLL loss function to drive the training is sound when it comes to address the profiled SCA
optimization problem. Thirdly, it enables to quantitatively study the impact of classical SCA
counter-measures on the efficiency of deep learning based SCA and to formally verify that
they stay sound.

Outline. The remaining of the chapter is organized as follows. Section 5.2 proposes an-
other way to tackle the evaluation by introducing the Leakage Assessment problem. Sec-
tion 5.3 states the soundness of minimizing the NLL loss since it is nothing but maxi-
mizing the PI. A discussion about the tightness of such a lower bound can be found in
Subsection 5.3.3. The second part of the chapter is dedicated to the validation of our the-
oretical results through several simulations in Section 5.4 and experiments presented in
Section 5.5, in the context of implementations secured by secret-sharing, shuffling and de-
synchronization.

76



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

5.2 Model Training for Leakage Assessment

The problem substitution that we present in this section comes as a direct consequence of a
series of works stating a close link betweenN?

a (1, β), namely the efficiency corresponding to
the optimal solution to Problem 2, and the MI between the target sensitive variable and the
leakage. We briefly recall this link hereafter in Subsection 5.2.1, before stating its interest in
our context in Subsection 5.2.2.

5.2.1 The Link between MI and SCA Efficiency

Mangard et al. [Man04, MOP07] have first stated a link between the SCA efficiency and ρ,
the correlation coefficient between the true leakage and its model, in the case of first-order
leakage. Following the notations introduced in Equation 3.12 and Equation 3.13, the authors
show that:

Na

(
DCPA
Sa

, 1, β
)

= 3 + 8
p2

1−β

log2 1−ρ
1+ρ
≈ 28
ρ2 , (5.1)

where β ∈ [0, 1] is the threshold defined in Equation 3.4, p1−β is a tabulated constant given
by a statistical test. Later, Mangard et al. have emphasized a link between the correlation
coefficient and the MI of a first-order additive Gaussian noise leakage model [MOS11]:

MI (X[t]; Z) = −1
2 log2

(
1− ρ2(X[t], ϕ(Z))

)
≈ ρ2(X[t], ϕ(Z))

2 . (5.2)

By combining Equation 5.1 and Equation 5.2, we get a first link between the MI and the CPA
efficiency:

Na

(
DCPA
Sa

, 1, β
)
∝ 1

MI (X[t]; Z) . (5.3)

Unfortunately, the link emphasized in Equation 5.3 implicitly involves the value of the SNR
of the univariate leakage, which implies that this statement does not necessarily holds for
any arbitrary leakage model. Even when considering univariate leakages, this only covers
the efficiency of a CPA, and not necessarily the optimal attack.

The later issues have drawn a great interest into the SCA community, especially in view
of the counter-measures used in SCA. Following the results of Prouff et al. [PR13] and Duc et
al. [DDF19] in proving the soundness of higher-order secret-sharing schemes against SCA,
the latter authors have extended Equation 5.3 to an optimal attacker in presence of such a
scheme [DFS19, Eq. 18].1 If MI (X; Zi) denotes the MI between a leakage X and one share
Zi of the sensitive target variable Z,2 then one can bound N?

a (1, β), namely the efficiency
corresponding to the optimal solution to Problem 2, as follows:

cst · β
MI (X; Zi)d/2 ≤ N

?
a (1, β) , (5.4)

where cst is a constant, and d is the order of the secret-sharing scheme.
The works of Chésirey et al. at CHES 2019 [dCGRP19] extend the previous results to any

arbitrary leakage model:
f(β)

MI (Z; X) ≤ N
?
a (1, β) , (5.5)

where f is a known, invertible, strictly increasing function defined in the authors’ paper.

1 The threat model of Duc et al.’s works [DFS19, DFS19] also covers attackers with adaptive message strate-
gies, which is not necessarily the case of other similar results presented in this subsection. Yet, as stated in
Subsection 3.1.3, adaptive strategies are beyond the scope of this thesis.

2 And assuming to simplify that the MIs between X and every share Zi are of the same order of magnitude.

77



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

In other words, one is ensured that no attack can succeed with a success rate higher than
β within

⌈
f(β)

MI(Z;X)

⌉
queries to the target device T . Chésirey et al. argue that the lower N?

a , the
tighter Inequality (5.5). Nevertheless, from the point of view of conservative security eval-
uations, it remains interesting to compute the value of the left-hand side in Inequality (5.5),
no matter the value of N?

a .

5.2.2 The Link between MI and PI

Unfortunately, computing the MI in the denominator also requires to perfectly know the
true p.m.f. Pr (Z | X). Like with the profiled SCA optimization problem – i.e. Problem 2
– and the supervised classification problem – i.e. maximizing the accuracy – this cannot
be assumed in practice. To circumvent this issue, we can fortunately use the notion of PI
extending the MI to accept p.m.f.s estimations [RSV+11].

Definition 8 (Perceived Information [BHM+19]). Let F : X → P(Z). The Perceived Infor-
mation between Z and X for the model F is denoted by PI (Z; X;F ) and defined as:

PI (Z; X;F ) , H (Z) +
∑
s∈Z

Pr (Z = s) E
X | Z=s

[log2 F (X)[s]] . (5.6)

Intuitively, when the p.m.f. Pr (Z | X) is perfectly learned, the PI equals the MI, other-
wise the first one is always lower than the latter one [BHM+19]. This is of great interest here
since it enables to derive an upper bound of the left-hand side in Inequality (5.5), namely

f(β)
MI (Z; X) ≤

f(β)
PI (Z; X;F ) , Ña (F, β) . (5.7)

We may shorten the previous notation to Ña (F ) when β is implicitly set to the value 90%.
Moreover, we can then compare different models in terms of their PI: the higher the PI, the
lower the distance to MI and thereby the better the approximation of f(β)

MI(Z;X) by Ña (F ). This
leads to introduce a new intermediate problem, named Leakage Assessment.

Problem 3 (Leakage Assessment). Given a profiling set Sp , {(x1, z1), . . . , (xNp , zNp)}, find the
model A (Sp) maximizing the PI over Sp, i.e. such that:

∀F ∈ H, PI (Z; X;A (Sp)) ≥ PI (Z; X;F ) . (5.8)

At this point, we have argued that addressing the Leakage Assessment Problem is sound
for the profiled SCA optimization problem – i.e. Problem 2 – in the sense that it will enable
to estimate a lower-bound of the optimal solution N?

a of the latter problem. The following
section aims at deeply studying Problem 3. We will show that training deep learning models
with the NLL loss is asymptotically equivalent to this problem which implies that conduct-
ing profiled SCA with deep learning can be argued to be relevant within this framework.

5.3 NLL Minimization is PI Maximization

This section is devoted to show that a deep learning model trained by minimizing the NLL
loss fits with Problem 3. Subsection 5.3.1 studies the link between the NLL loss and an in-
formation theoretic quantity called cross entropy, that we will define hereafter. Then, Subsec-
tion 5.3.2 will make a link between cross entropy and PI. Finally, Subsection 5.3.3 discusses
the gap between the MI and a PI estimated by training deep learning based models. Even-
tually, it will be concluded that the MI can be accurately estimated thanks to this approach.

78



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

5.3.1 Recall on the Consistency of the NLL Loss with Cross Entropy

This subsection is devoted to recall to the unfamiliar reader some of the important machine
learning notions which will be used afterwards in Subsection 5.3.2. In particular, the NLL
loss minimization is asymptotically equivalent to the minimization of the cross entropy. We
start by recalling those notions hereafter.

Definition 9 (Negative Log Likelihood). Given Sp = {(x1, z1), . . . , (xNp , zNp)}, and a model
F : X → P(Z), the Negative Log Likelihood (NLL)3 is defined as:

LSp (F ) , 1
|Sp|

∑
(x,z)∈Sp

− log2 F (x)[z] . (5.9)

Furthermore, we define the maximum likelihood estimator4 A (Sp) as the model from H that
minimizes the NLL loss computed over the profiling set Sp: A (Sp) , argminF∈H LSp (F ) .

Definition 10 (Cross Entropy). Given a joint probability distribution of a target sensitive variable
Z and its leakage X denoted as Pr (X,Z), we define the cross entropy as the expected value of each
term in Equation 5.9:

LX,Z (F ) , E
X,Z

[− log2 F (X)[Z]] . (5.10)

The cross entropy is actually nothing but the expected value of the NLL loss computed
over the profiling set of traces. Besides, according to the law of large numbers, for any fixed
F the NLL loss converges in probabilities towards the cross entropy [SSBD14]. However,
since the true joint distribution of Z and X is actually unknown, one cannot exactly compute
the cross entropy. The hope behind the NLL minimization is that for a number Np of profil-
ing traces high enough, the obtained maximum likelihood estimator A (Sp) will be a good
candidate to minimize the cross entropy.

It is not trivial though that LSp (A (Sp)) converges in probabilities towards the minimal
cross entropy, as A (Sp) is varying for each value of Np. Actually, the Cramer-Rao bound,
a well known result in Statistics [Cra99], guarantees the latter convergence, but relies on
assumptions that cannot be taken for granted, in particular the assumption that Pr (Z|X) ∈
H.

Thankfully, as a consequence of Theorem 2 introduced in Chapter 4, we are indeed en-
sured that LSp (A (Sp))

P−−−−−→
|Sp|→∞

minF∈H LX,Z (F ). Therefore when the number of profiling

traces converges towards infinity, we can substitute the analysis of the NLL loss with that of
the cross entropy. It remains now to draw the link between cross entropy and PI, in order to
address the Leakage Assessment Problem – i.e. Problem 3.

5.3.2 The Link between Cross Entropy and Perceived Information

This section aims at explaining to what extent the PI and the cross entropy introduced in the
previous section are linked. It is argued here that the PI actually equals the cross entropy up
to constant factors. Such a link and the reduction argued in Subsection 5.3.1 will allow us
to guarantee that minimizing the NLL loss is a consistent approach for solving the Leakage
Assessment Problem. It is recalled that the PI has been formally defined in Section 5.2. We
also introduce hereafter the Empirical Perceived Information, as given in [BHM+19].

3 The NLL has already been introduced in Subsection 2.2.1.
4 Minimizing the NLL loss is equivalent to maximizing the Log Likelihood.

79



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

Definition 11 (Empirical Perceived Information [BHM+19]). Let F : X → P(Z). The Empir-
ical Perceived Information, denoted as P̂ISp (Z; X;F ), is defined from a profiling set Sp as follows:

P̂ISp (Z; X;F ) , H (Z) +
∑
s∈Z

Pr (Z = s) 1
|Sp|

∑
(x,z)∈Sp
z=s

log2 F (x)[z] . (5.11)

Informally, the PI is defined the same way as the MI, but by substituting the uncertainty
of the true p.m.f., namely log2 Pr (Z | X = x), with the uncertainty of the approximating
p.m.f., namely log2 F (X). Surprisingly, this substitution is exactly what defines the cross
entropy.

Proposition 1. Let Z be a random variable with uniform distribution over Z of cardinal |Z|. Then,
the cross entropy and the NLL loss of a model F ∈ H are respectively linked to the PI and its empirical
estimation as follows:

log2 |Z| − LX,Z (F ) = PI (Z; X;F ) , (5.12)

log2 |Z| − LSp (F ) = P̂ISp (Z; X;F ) . (5.13)

Proof. The assumption about Z implies that H (Z) = log2 |Z|. Injecting the latter result into
the definition of the PI, and by using the formula of total probabilities for the expected value
we have:

PI (Z; X;F ) , H (Z) +
∑
s∈Z

Pr (Z = s) E
X|Z=s

[log2 F (X)[s]] ,

= log2 |Z|+ E
Z

[
E

X|Z
[log2 F (X)[Z]]

]
,

= log2 |Z| − E
X,Z

[− log2 F (X)[Z]] ,

= log2 |Z| − LX,Z (F ) .

The proof for the empirical PI follows exactly the same reasoning substituting expected
values with averages.5

Proposition 1, which is illustrated on Figure 5.2, tells us that the PI can be expressed as
a cross entropy, provided that the entropy of the sensitive variable Z is known. As already
pointed out in [BHM+19, Thm. 6], for all F ∈ H we have PI (Z; X;F ) ≤ MI (Z; X).6 In
other words, computing the cross entropy of any deep learning model enables to get a lower
bound of the MI. This tells nothing about the tightness of such a bound yet. Hopefully, based
on the previous results stated in this section, we now know how to tighten this inequality,
as stated by the following proposition.

Proposition 2. Let Sp be a profiling set and letA (Sp) be the maximum likelihood estimator, namely
such that A (Sp) , argminF∈H LSp (F ). Then:

1. A (Sp) maximizes the empirical PI,

2. the information perceived byA (Sp) converges in probabilities towards the maximum of PI over
H.

5Actually, Equation 5.13 only holds if Sp is balanced, i.e. if the number of traces is the same for each class in
Sp. This can be assumed without loss of generality, since Z is drawn uniformly.

6 This comes from the fact that the gap between the MI and the PI can be rephrased as a KL-divergence term,
which is always non-negative.

80



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

H (Z)

H (Z|X)

MI (Z; X) ≥ f(β)
N?

a

Chésirey et al. [dCGRP19]

PI (Z; X;F ) ≤ MI (Z; X)
Bronchain et al. [BHM+19]

LX,Z (F )

Figure 5.2: Illustration of Proposition 1.

P̂ISp (Z; X;A (Sp))
P−−−−−→

|Sp|→∞
max
F∈H

PI (Z; X;F ) ≤ MI (Z; X) (5.14)

PI (Z; X;A (Sp))
P−−−−−→

|Sp|→∞
max
F∈H

PI (Z; X;F ) ≤ MI (Z; X) (5.15)

Roughly speaking, Proposition 2 states that the NLL loss minimization is asymptotically
equivalent to the PI maximization mentioned in the Leakage Assessment Problem (i.e. Prob-
lem 3).

Proof. Starting from Equation 5.12, and applying Equation 4.6 from Theorem 2 to get

log2 |Z| − PI (Z; X;A (Sp))
(5.12)= LX,Z (A (Sp))

(4.6)
P−−−−−→

|Sp|→∞
min
F∈H
LX,Z (F )

= min
F∈H

(log2 |Z| − PI (Z; X;F ))

= log2 |Z| −max
F∈H

PI (Z; X;F )

Hence the result given in Equation 5.15. The proof for Equation 5.14 follows exactly the
same reasoning, replacing PI (Z; X;A (Sp)) by P̂ISp (Z; X;A (Sp)), and applying Equation 4.7
instead of Equation 4.6.

Therefore, on the one hand, we have a theoretically grounded method to address the
Leakage Assessment Problem (i.e. Problem 3) thanks to Proposition 2, namely by minimiz-
ing the NLL loss. On the other hand, since it has been argued in Section 5.2 that solving
the Leakage Assessment was sound in order to address the SCA Optimization Problem, it
follows from Proposition 2 the main result of this chapter, given hereafter.

Corollary 1 (Main Result). Let A (Sp) be the maximum likelihood estimator with respect to the
profiling set Sp, namely such that A (Sp) , argminF∈H LSp (F ). Then A (Sp) asymptotically
minimizes the quantity Ña (A (Sp) , β) , f(β)

PI(Z;X;F ) when the size of Sp tends towards infinity,7

which is an upper-bound of the left-hand side in Inequality (5.5).

Proof. By applying Proposition 2, we get

Ña (A (Sp) , β) P−−−−−→
|Sp|→∞

f(β)
maxF∈H PI (Z; X;A (Sp))

= min
F∈H

f(β)
PI (Z; X;F ) ≥

f(β)
MI (Z; X)

7 We recall that f is a known, invertible, strictly increasing function defined by Chésirey et al. [dCGRP19],
and β ∈ [0, 1] is the threshold defined in Equation 3.4.

81



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

In other words, Corollary 1 tells us that minimizing the NLL loss is sound for the SCA
Optimization Problem (i.e. Problem 2), in the sense that has been argued in Section 5.2,
and that the term Ña (A (Sp) , β) might be a good approximation of the lower bound of
Inequality (5.5). However, this also emphasizes that in the pursuit of estimating N?

a (1, β)
through the NLL minimization, some weaknesses must be discussed.

First, as recalled in Section 5.2, the higher N?
a (1, β), the looser Inequality (5.5). It is there-

fore of natural interest to verify to what extent the tightness of the latter inequality holds,
in view of estimating N?

a (1, β) by f(β)
MI(Z;X) . This must be at least empirically verified. Sec-

ond, the tightness of Inequality (5.15) is another possible source of imprecision when one
wants to substitute the MI with the PI. This will be discussed in the next section, and will
eventually be verified through simulations and experiments in Section 5.4 and Section 5.5.

5.3.3 Tightness of the Obtained Bound

So far we have argued that minimizing the NLL loss is a sound approach to tackle Problem 3:
it is indeed equivalent to minimizing the cross entropy – cf Equation 5.10, thereby equivalent
to maximizing the PI – cf Equation 5.6. In the particular case where the hypothesis classH is
a set of neural networks, it becomes now of natural interest to study the gap between the MI
and the NLL loss we are minimizing (or equivalently the empirical PI we are maximizing) to
assess the quality of the built solution: the tighter the gap, the more accurate our estimation
Ña (F ) of the efficiency of the optimal attackN?

a in view of assessing the worst-case scenario
from an evaluator’s point of view.

To this end, we may start from the discussion proposed in Subsection 4.1.3 about the
decomposition of the error terms, by updating them after instantiating the loss function
with the NLL:

P̂INp

(
Z; X; Ã (Sp)

)
=

(
P̂INp

(
Z; X; Ã (Sp)

)
− P̂INp (Z; X;A (Sp))

)
≤ 0 (5.16)

+
(
P̂INp (Z; X;A (Sp))− supF∈H PI (Z; X;F )

)
≥ 0 (5.17)

+ (supF∈H PI (Z; X;F )−MI (Z; X)) ≤ 0 (5.18)
+ MI (Z; X) , ≥ 0 (5.19)

where Ã (Sp) denotes the model returned by the heuristic optimization algorithm – e.g., SGD
or its variants such as Adam, see Subsection 2.5.2 – rather than the true maximum likelihood
estimator A (Sp).

The Bayes’ error term (4.11) becomes here the informational security bound on the leak-
age (5.19). The approximation error term (4.10) quantifies now the gap (5.18) to the computa-
tional bound, namely the best profiled attacker based on the given hypothesis class H. The
estimation error (4.9) is updated as (5.17), and the optimization error (4.8) is now quanti-
fied by the term (5.16). It is worth mentioning we argued that both terms (5.16) and (5.18)
are negative, as they respectively result from the opposite of the error terms (4.8) and (4.10)
discussed in Subsection 4.1.3.

Therefore, this instantiation of the error terms enables to draw an insightful parallel
between the ML metrics and the SCA ones. Eventually, the whole discussion conducted in
this section can be synthesized in Table 5.1.

82



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

Table 5.1: Machine learning metrics and their meaning in Side-Channel Analysis

ML meaning ML metric SCA metric SCA meaning

Perfect model H (Z | X) = log2 |Z| −MI (Z; X) Informational security
bound on Z | X

+ Approximation error inf
F ∈H

LX,Z (F ) ⇐⇒ sup
F ∈H

PI(X; Z;F ) Computational bound

Cross Entropy LX,Z (F ) = log2 |Z| − PI (Z; X;F ) Perceived Information
NLL loss LSp

(F ) = log2 |Z| − P̂INp
(Z; X;F ) Estimated PI

5.3.4 Partial Conclusions

The results we have stated so far are threefold.
First, it has been argued that addressing the profiled SCA optimization problem may be

done by considering the Leakage Assessment – i.e. Problem 3 – aiming at finding a model
extracting the most perceived information, rather than choosing, for example, the model
maximizing the accuracy.

Second, the loss function we are usually minimizing, namely the NLL loss can be inter-
preted as a perceived information to maximize. That is why in Section 5.4 and Section 5.5,
we will plot the PI, as computed with Equation 5.13, since it will enable to replace the accu-
racy in order to compare and evaluate the efficiency of a trained model.

Third, to discuss the tightness of Inequality (5.14), we can decompose the gap into three
terms, namely the approximation error, the estimation error and the optimization error. Each
error term refers to a restriction in the capacity of an evaluator. The experiments conducted
in Sections 5.4 and 5.5 study the practical impact of each term.

5.4 Study on Simulated Data

This section confronts the different propositions made so far with simulated experiments.
The aim of these experiments are:

• to show experimentally that the PI, as computed in Equation 5.12, is indeed a lower
bound of the MI;

• to show, in some cases where we can compute the exact MI between a sensitive target
variable and a leakage, that the latter lower bound is tight, so that the PI gives an
accurate estimation of the MI;

• to see to what extent the commonly used counter-measures adapted for SCA have a
practical impact on the training of DNNs.

To this end, we first present the settings of our simulations in Subsection 5.4.1, and we
afterwards analyze them in Subsection 5.4.2.

5.4.1 Settings of the Experiments

To verify the tightness of the bounds, we simulate simple D-dimensional leakages from an
n-bit sensitive variable Z. The traces are defined such that for every t ∈ J1, DK:

xi[t] =
{
ui + bi, if t /∈ {t1, . . . , td+1}
hw(zt,i) + bi otherwise

, (5.20)

where (ui)i, (bi)i and all (zt,i)i are i.i.d. draws from the following independent random
variables. Respectively, U ∼ B(n, 0.5), B ∼ N (0, σ2),8 where and where (z1,i, . . . , zd+1,i) is a

8 It is recalled that hw denotes the Hamming weight function, see Subsection 3.5.1.

83



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

(d + 1)-sharing of zi for the bit-wise addition law. This example corresponds to a situation
where the leakages of the shares are hidden among values having no relation with the target,
but have the same marginal p.m.f. Since the zt,i are drawn uniformly, hw(zt,i) follows a
binomial marginal p.m.f. so they are indistinguishable without prior knowledge. Hence
the choice of a binomial law for U when emulating non-informative components. In order
to have an exhaustive dataset, every possible combination of the (d + 1)-sharing has been
generated and replicated q times before adding the noise, where q is given afterwards in the
experiments. Therefore, it contains |Sp| = q × 2(d+1)n simulated traces. Once the data were
generated, we trained a DNN from the hypothesis class H of the MLPs with L = 1 hidden
layer made of C = 1, 000 neurons. The training loss is naturally the NLL loss.9 The training
lasts, after T = 200 epochs,10 by applying the SGD algorithm with a learning rate of 10−3.
The trained model is denoted Ã (Sp)

Our simulations comprise three main campaigns:

Experiment 1 (secret-sharing only): in this experiment, we set D = d+ 1 in order to avoid
to consider irrelevant input features. The simulations are done over n = 4 bits, d ∈ {0, 1, 2, 3}
and σ ∈ {0.01, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2}. We also generate enough data so that the training
set is exhaustive, i.e., the number of replicas is q = 2, 000. With such a generated dataset,
we expect to make the estimation error (4.9) negligible. The gap between the MI and the PI
should therefore only be composed of the optimization error (4.8) and the approximation
error (4.10).

Experiment 2 (secret-sharing, with uninformative components): in a second experiment,
we have D = 40, including the uninformative components. Since all components share
the same margin law, we recall that they cannot be distinguished without knowing Z. Com-
pared to Experiment 1, we might expect the optimization error to be more important because
of the potential difficulty induced by the presence of uninformative components.

Experiment 3 (shuffling, no secret-sharing): in a third experiment, we set d = 0, D ∈
{2, 4, 16}; in other words, D − 1 uninformative components are added like in Experiment 2,
but this time they are randomly shuffled with the only informative component. Note that
the shuffling is different for each simulated trace so that one cannot guess in which position
the informative leakage lies. Therefore, we expect the information perceived by the model
to be lower than without shuffling [VMKS12]. Besides, σ ∈ {0.04, 0.2, 0.4, 0.8, 1.6, 3.2} here.

PI and MI Estimation. From those experiments, the PI is estimated thanks to a hold-out
dataset of 1/5-th of the size of the training set size, i.e. those data are not used by the op-
timization algorithm. For the sake of comparison, we estimate the MI between the target
sensitive 4-bit variable and its simulated leakage model with a Monte Carlo sampling of the
leakage p.m.f. Pr (X | Z). The methodology is described in Subsection 2.2.4. The only dif-
ficulty is to efficiently compute the precise p.m.f. h : s 7→ h (s) = Pr (X = x | Z = s) given
a simulated trace x in the presence of the counter-measures, i.e. secret-sharing or shuffling.
We describe hereafter of such computations can be done.

Secret-sharing. We benefit from the technique suggested by Lomné et al. at CHES

2014 [LPR+14] that we recall hereafter. Suppose that one knows the p.m.f. of each share

9 Beware that in Pytorch and Tensorflow, the NLL loss is computed with natural logarithms, whereas here
one ought to consider the logarithm in base 2.

10 One epoch refers to the number of iterations needed to process the whole dataset through the SGD algo-
rithm.

84



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

for a given leakage trace x, denoted as hi (s) , Pr (X = x | Zi = s), applying the total
probability formula – see Subsection 2.2.1 – leads to:

h (s) =
∑
s1

· · ·
∑
sd

h0 (s⊕ s1 ⊕ · · · ⊕ sd)h1 (s1) · · ·hd (sd) . (5.21)

As described above in this section, we assume for our simulations that the leakage of each
share zt,i is following a Gaussian law N

(
hw(zt,i), σ2) so we explicitly know the functions

hi. It turns out that the right hand-side can be seen as the following convolution product
(h0 ∗h1 ∗ · · · ∗hd)(s) in the vector space Fn2 .11 Discrete convolutions in Fn2 can be efficiently
computed by using a variant of the D.F.T. called Walsh-Hadamard (WH) transform. Like
with a regular fast Fourier transform, this trick allows to compute Pr (X = x | Z) with a
runtime complexity of O (d · |Z| · log |Z|) instead of O

(
|Z|d

)
with a naive computation of

Equation 5.21.
The outcomes of those MI estimations are depicted by the orange, blue and pink lines in

Figure 5.3a and Figure 5.3b.

Shuffling. We benefit from the analysis conducted by Veyrat-Charvillon et al. at ASI-
ACRYPT 2012 [VMKS12]. The shuffling counter-measure simulated here assumes that no
leakage from the permutation indices occurs, so the conditional p.d.f. to compute can be
written as follows:

Pr (X = x | Z = s) = 1
D

D∑
j=1

Pr (X = x | Zj = s) , (5.22)

where Zj denotes the random variable modelizing all the shares zj,i for i ∈ J1, |Sp|K. Since
in all the terms of the sum in Equation 5.22 except one, X and Zj are independent, “it boils
down to consider D − 1 leakages out of the D as algorithmic noise” [VMKS12].

5.4.2 Analysis of the Results

In this section we analyze the results obtained by running Experiments 1 (Figure 5.3a), 2
(Figure 5.3b) and 3 (Figure 5.3c). On each figure, the lines correspond to the estimated MI
and the crosses correspond to the information perceived by the trained MLP, as computed
from the NLL loss with Equation 5.12. Based on these results, several observations can be
done.

First, on each result the crosses are always below the lines, which is in line with the
results given in the literature: the estimated PI is a lower bound of the MI. But more inter-
estingly, the crosses are always close to the line no matter the MI magnitude. In the case of
Experiment 1, we argued that the error was composed of the approximation and optimiza-
tion errors, so their sum is negligible. Since we recalled in Subsection 5.3.3 that those terms
are both negative, we conclude that even for a simple MLP with one layer and 1, 000 neu-
rons, both errors can be ignored. This is of particular interest concerning the approximation
error, as it always decreases with the number of layers and the number of neurons inside
each layer of the MLP. Therefore, in the case of a Hamming weight leakage model with ad-
ditive Gaussian noise, any more sophisticated MLP (i.e. with more layers or more neurons by
layer) will also have a negligible approximation error.

Secondly, the PI plotted in Figure 5.3b shows that the presence of uninformative com-
ponents in Experiment 2 does not annihilate the capacity of the MLP to optimally extract
information about the target variable, provided that these components are not shuffled with

11 We inform the unfamiliar reader that F2n denotes the finite field with 2n elements, whereas Fn
2 denotes the

same set, seen as a vector space of dimensionality n, with respect to the field F2 .

85



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

10−2 10−1 100

σ

10−5

10−3

10−1

B
it
s

MI(Z,X) 1 share

MI(Z,X) 2 shares

MI(Z,X) 3 shares

MI(Z,X) 4 shares

PI(Z,X; θSGD)

(a) Experiment 1

10−2 10−1 100

σ

10−5

10−3

10−1

B
it
s

MI(Z,X) 1 share

MI(Z,X) 2 shares

MI(Z,X) 3 shares

PI(Z,X; θSGD)

(b) Experiment 2

10−2 10−1 100

σ

10−3

10−2

10−1

100

B
it
s

No shuffle

Shuffle 2 bytes

Shuffle 4 bytes

Shuffle 16 bytes

PI(Z,X; θ)

(c) Experiment 3

Figure 5.3: Information perceived by the MLP.

informative ones. This shows that the optimization error, which was thought to be increased
compared to Experiment 1, remains stable.

Finally, the preceding observations hold regardless the considered counter-measure, namely
secret-sharing (Figure 5.3a and Figure 5.3b) or shuffling (Figure 5.3c). This can be interpreted
as the fact that the MLP trained through the NLL loss minimization is able to give a model
optimally extracting the remaining informative leakage, while being “agnostic” concerning
the presence or not of such counter-measures. Nevertheless, since both counter-measures
have been shown to decrease the MI – exponentially with the level of noise for secret-sharing
as explained in Subsection 3.7.1 or linearly for shuffling as explained in Subsection 3.7.2 –
they remain sound against Deep Learning.

At this stage, we have argued thanks to our simulations that the approximation error is
negligible, no matter the considered counter-measure, nor the architecture of a MLP, while
the optimization error is likely to remain negligible as well. Therefore, our MI estimation ob-
tained by PI maximization seems accurate. This provides an empirical validation of Propo-
sition 2. As another consequence, we are fairly confident that in the case of such simple
leakage models, which often happen on real use cases, replacing an optimal architecture
by another should not degrade too much the MI estimation.12 These observations must be
challenged by tests on experimental traces, where one cannot have an exhaustive dataset.
This will naturally lead to discussions regarding the estimation error which has not been
investigated here.

5.5 Application on Experimental Data

So far, we have seen that DNNs could reach the informational security bounds of a leakage
in simulated experiments, thereby giving useful estimations for the developer. This success

12However, one cannot get such a conclusion if one considers another leakage model.

86



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

did not rely on any prior knowledge on the leakage, but was achieved thanks to a simple
MLP with one hidden layer. To confirm these observations, we propose to complete the
investigations by considering experimental leakage traces from the Chip Whisperer dataset
presented in Subsection 3.8.1. Subsection 5.5.1 presents the methodology of our experi-
ments, and Subsection 5.5.2 discusses their results.

5.5.1 Methodology

The hypothesis classH. The hypothesis classH used for the next two experiments, namely
Experiments 4 and 5, is defined as the set of MLP with L = 1 hidden layer and C = 500 hid-
den neurons. That is,

F = s ◦ λ2 ◦ µ ◦ ωq ◦ σ ◦ λ1 ◦ µ , (5.23)

where ωq denotes a dropout layer of parameter q, compared to the architecture presented
in Subsection 4.2.3. The dropout parameter has been set to q = 0.1 i.e. each neuron of the
hidden layer is randomly set to 0 with probability q each time an output F (x) is computed
during the optimization.

Common settings. The trainings have been done with the Adam algorithm through a
number of epochs denoted by T , i.e., each trace has been processed T times by the algorithm.
Over the 500, 000 profiling traces, a portion α is used for the training, and the remaining is
used as a hold-out set for computing an unbiased estimate of the perceived information. In
other words, the profiling set is made of Np = α × 500, 000 traces while the hold-out set is
made of Nv = (1 − α) × 500, 000 traces. We fix the limit α ≤ 4/5 so that the quality of the
estimation over the hold-out set remains satisfying: the error margin will be at most 10−2

with a confidence at least 90% in the worst case, according to Chebyshev’s inequality – see
Subsection 2.2.1.

Experiment 4 on Boolean secret-sharing. When considering secret-sharing, the generated
target values are Z =

⊕
j∈J0,dK plain[j] for d ∈ {0, 1, 2}, where ⊕ denotes the xor operation

between two bytes. This way, it can simulate leakages of order d.
Provided with these target values, we selected P.o.Is based on the magnitude of the SNR:

between 4 and 6 P.o.Is are selected in decreasing order of magnitude of SNR from each of
the three first bytes of the plaintext array – see Figure 3.8. The time coordinates 13 to 16,
25 to 30 and 37 to 41 correspond respectively to the P.o.Is of the latter bytes manipulation.
This gives an input dimension of D = 15. This way, we hoped to reduce the quantity of
irrelevant components, which would have made the optimization with Adam harder, and
therefore hoped to get a good estimate corresponding the most to the approximation er-
ror (5.18). Details of the trained MLP can be found hereafter. We set T = 200 and let α vary
so that |Sp| ∈ J1, 000; 400, 000K. This way, we will be able to plot the so-called learning curve,
namely plotting the values of PI

(
Z; X; Ã (Sp)

)
and P̂I|Sp|

(
Z; X; Ã (Sp)

)
depending on |Sp|.

This is a classical representation in machine learning. On a learning curve, it is expected
that the empirical PI decreases with |Sp| while the true PI increases, and both converge to-
wards the supremum of the PI [Vap95]. This representation enables to discuss the estimation
error (5.17) according to the size of the profiling set.

Experiment 5 on shuffling. When considering shuffling, the generated target values are
Z = plain[j] where j is randomly drawn from a subset of J0, 15K of size c, c denoting the
number of shuffled bytes.

Contrary to the experiments on secret-sharing, we did not selected P.o.Is but only re-
stricted the target window to the D = 250 first time samples of the traces, which was suf-
ficient to cover the leakages of every shuffled plaintext byte (see Figure 3.8). Afterwards, a
CNN with a VGG-like architecture has been used for those trainings.

87



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

0 100000 200000 300000 400000

Profiling traces

10−3

10−2

10−1

100

B
it

s

PI(Z; X; θSGD), One share

P̂INp
(Z; X; θSGD), One share

Two shares

Three shares

(a) Learning curve of Experiment 4 on Boolean
secret-sharing.

0 20 40 60 80 100

Epoch

10−3

10−2

10−1

100

P
I(
Z

;X
;θ
S
G
D

)

c = 1

c = 2

c = 4

c = 16

(b) Results of Experiment 5 on shuffling.

Figure 5.4: Results on experimental data.

We set α = 4/5, T = 100, and c ∈ {1, 2, 4, 16}. The aim of this experiment is to empirically
verify the trend observed on the Experiment 3 (Figure 5.3c), namely a linear decrease of PI
with the number of shuffled bytes.

5.5.2 Results and Discussions

Figure 5.4a presents the learning curves of Experiment 4, when targeting respectively 1, 2
or 3 shares among the considered ones. The dotted curves are the estimated PI over the
Np = |Sp| profiling traces whereas the plain curves denote the PI estimated with the Nv

validation traces.
It may first be observed that the amount of information leaking on the sensitive un-split

variable seems to decrease at an exponential rate in the number of shares, as expected from
both theory – see Subsection 3.7.1 – and our simulations – see Section 5.4. More interestingly,
the gap between dotted curves and their corresponding plain ones exactly corresponds to
the estimation error term (5.17). It appears then that the latter one becomes negligible rel-
atively to the PI when the profiling set size exceeds respectively a few thousands when
targeting one share, or one hundred thousand when targeting two shares. When targeting
three shares, the estimation error is not completely negligible, even with 400, 000 profiling
traces. It is furthermore particularly noticeable that when profiling the three shares scheme
with less than 100, 000 traces, the learning phase completely failed since the PI was null.
This indicates that, in addition to the effect on MI predicted by theoretical works, the secret-
sharing counter-measure also has an effect on the PI through an increasing estimation error,
making the MI estimation poorer.

Figure 5.4b presents the results of Experiment 5 on shuffling. It is recalled that contrary
to Experiment 4 where P.o.Is where extracted, here 250-dimensional traces have been pro-
cessed through a DNN. The gap in Figure 5.3c between each curve remains observable on
Figure 5.4b when considering experimental traces. However, the PI obtained when the at-
tack target is shuffled among 16 random values seems decreasing starting the 20-th epoch,
while the empirical PI (in dotted curves) keeps increasing. This is a sign of over-fitting.

Indeed, if the estimation error is high, the optimization algorithm is expected to return
at each iteration a better model with respect to the training loss LSp (). Since the latter one
is different from the cross entropy LX,Z (), an improvement with respect to the training loss
may not be an improvement with respect to the cross entropy, or equivalently, with respect
to the PI. That is why there is a moment when the loss computed over the validation traces
starts increasing whereas the training loss keep decreasing. In other words, the model starts
to learn by heart to build its prediction on some uninformative features which would not
generalize well during the attack phase on unknown traces. The higher the estimation error,
the less similar the NLL loss and the cross entropy so the sooner and the more importantly

88



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

over-fitting happens. Therefore, the PI reached in the graph is not necessarily optimal: more
profiling traces might be required to decrease the estimation error and thereby mitigating
the effect of over-fitting.

Altogether, our experiments show that similarly to the approximation and optimiza-
tion errors discussed in Section 5.4, the estimation error is also negligible relatively to the
MI, when considering unprotected scenarios where the profiling set size is reasonably high
(i.e. 10, 000 traces or above). This therefore leads to a tight estimation of the MI through
the maximization of the PI (i.e. the minimization of the NLL loss). When considering pro-
tected devices, the investigated counter-measures impact the estimation error, and thereby
the tightness of the lower bound computed through PI maximization. Nevertheless this
can be controlled by increasing the size of the profiling set. More precisely, the harder the
counter-measure (i.e. the higher the sharing order, or the more shuffled bytes), the higher
the profiling set size.

Another way to decrease the estimation error would be to decrease the capacity of the
hypotheses class, i.e. its VC-dimension, by decreasing the number of layers or the number
of neurons on each layer. Since we have argued in Subsection 5.4.2 that the approximation
error was negligible even for a simple architecture, we are quite confident that this would
not strongly affect the quality of the MI estimation.

5.5.3 Application on Public Datasets

So far, we have considered our experimental investigations through the view of the Leakage
Assessment Problem (i.e. Problem 3). However, we remind that the final task an evaluator
is given to achieve is the profiled SCA optimization (i.e. Problem 2), namely to find N?

a .
It is recalled that Corollary 1 argued that by solving the Leakage Assessment Problem,

one could get an accurate estimation Ña (A (Sp)) of the quantity f(β)
MI(Z;X) , known to be a

lower-bound of the optimal solution of the profiled SCA optimization problem, namely N?
a .

One could wonder whether this inequality still holds for any model, maybe sub-optimal,
i.e. when estimating the minimal number of queries Na(F ) to the target device for such a
model with the quantity Ña (F ). A formal proof would be a promising further work, though
beyond the scope of this thesis.13 Nevertheless we propose here to empirically verify this
hypothesis by training a CNN on all the public datasets presented in Section 3.8 and by
implementing the key enumeration in order to evaluate Na(F ).14 This way, our claim can
be tested under several cases covering all the counter-measures considered in this thesis.

Settings. For each training, a VGG-like CNN architecture has been used, as presented in
Subsection 4.2.3. More specifically:

• ASCAD and AES-HD: the following parameters have been used: n1 = 2, n2 = 7, the
convolutional filters are of lengthW = 11 and the pooling stride is p = 2. K = 10 filters
are in the first layer, and they are doubled at each convolutional layer. The last pooling
layer has a stride set so that the output size along the time dimensionality is one. The
dense layers contains 1, 000 intermediate neurons. This architecture is based on our
works presented at COSADE’19 and is more thoroughly discussed in Subsection 7.5.3

• AES-RD: the same VGG-like architecture as the one presented by Kim et al. [KPH+19]
has been used. More specifically, n2 is set to 9 so that there is enough pooling layers
to get feature maps on the last convolutional layer whose width equals one. Besides,
n1 = 0, i.e. there is no intermediate dense layer, except softmax.

13 We discuss in Section 5.6 the recent improvements proposed following this work.
14 See the method described in Subsection 3.2.3 for the practical estimation of Na(F ).

89



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

0 50 100 150 200

Epoch

100

101

102

N
? a

f(β)
PI

Key recovery

(a) AES-RD dataset.

0 5 10 15 20 25 30

Epoch

102

103

N
? a

f(β)
PI

Key recovery

(b) ASCAD dataset

0 10 20 30 40 50

Epoch

102

103

N
? a

f(β)
PI

Key recovery

(c) AES-HD dataset

0 50 100 150 200

Epoch

100

101

102

N
a

f(β)
PI

Key recovery

(d) Polymorphism dataset (mbedTLS)

0 50 100 150 200

Epoch

100

101

102

N
a

f(β)
PI

Key recovery

(e) Polymorphism dataset (AES 8-bit)

Figure 5.5: Comparison between the estimation of Na(F (·, θt)) through the lower bound (orange
lines) and through a key enumeration (green lines).

• Polymorphism: the precise architecture used for the experiments is the one used in
our works presented at ESORICS’20 and a whole dedicated discussion is proposed in
Subsection 6.2.4.

The training has been run on 200 epochs on the AES-RD and the Polymorphism datasets,
50 epochs on the AES-HD dataset, and stopped after 30 epochs on the ASCAD dataset – see
an explanation in Subsection 7.5.3. After each epoch t the optimization algorithm – Adam
here – returns an update of the learning parameter vector denoted by θt. We can therefore
estimate the efficiency of the – partially optimized – model F (·, θt), i.e. Na (F (·, θt)) thanks
to a key enumeration, according to the procedure detailed in Subsection 3.2.3.

Results. The results are given in Figure 5.5. On each graph, Ña (F (·, θt)) is denoted in
green, whereas the enumeration key estimation Na(F (·, θt)) is denoted by the orange curve.
Each curve has been clipped in order to be in [0, 103], except for the AES-HD dataset where
the high threshold is 4.103 since the literature presumed a higher N?

a [KPH+19, ZBHV19].
On Figure 5.5a, we can remark that the first epochs of the profiling of the AES-RD dataset

90



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

show a chaotic behavior. This is explained by the fact that the NLL loss is initially close to
n = 8 bits, or in other words, the PI is close to zero, leading to unstable estimations of
Ña (F (·, θt)). Once the model has started extracting some information, i.e. after approxi-
mately epochs, the PI starts to be significantly higher than 0 and the unstability vanishes.
We can then observe that Ña (F (·, θt)) is always lower than the key enumeration estimation
Na(F (·, θt)) as expected, while remaining tight through the epochs: the average relative er-
ror, computed starting the t = 20-th epoch is of 16%. The final model is able to recover the
secret key in 3 traces, and has a PI of 2.95 bits/trace.15

Likewise, for the ASCAD dataset, the results are presented in Figure 5.5b. We can ob-
serve the same unstability at the beginning of the training, though the quantity Ña (F (·, θt))
remains lower than the estimation through the enumeration key afterwards, while staying
quite tight. The average relative error is also here of 16%, and the final PI is 0.065 bit/trace.

In addition, for the AES-HD, the results are presented in Figure 5.5c. Similarly to the two
preceding experiments, a tight estimation is obtained, since the relative error is 18%, while
the final PI is 0.020 bit/trace.

Finally, the outcomes on the two Polymorphism datasets are presented. Figure 5.5d
deals with the mbedTLS implementation and depicts two superposed curves, hence a tight
estimation of Na(F (·, θt)). Similarly, Figure 5.5e deals with the AES 8-bit implementation.
Although the estimation seems looser, the relative error remains of 15%.

As a consequence, all those experiments tend to confirm that the quantities Ña (F (·, θt))
and Na(F (·, θt)) are effectively related, at least for a threshold β = 90%. This is of great
interest in the evaluation of the security of a device, since this not only empirically shows
the relevance of minimizing the NLL loss, but this also provides a relevant tool to predict the
required number of queries to succeed the key recovery, or at least to give a lower-bound
to such a number, which is still useful since we look for a worst case scenario in a SCA
evaluation.

5.6 Conclusion

In this chapter, we have given some theoretical and experimental reasons why the deep
learning paradigm is suitable for evaluating implementations against SCA from a worst-
case scenario point of view, regardless the nature of the counter-measures.

Contrary to what was commonly believed until the works of Picek et al. [PHJ+18], the
supervised classification approach is not theoretically grounded generally speaking as dis-
cussed in Chapter 4. Yet, deep learning based attacks still worked. The reason is that in the
specific case where the NLL is used as a surrogate loss function, it turns out that the latter
one is actually consistent with maximizing the PI, solving the so-called Leakage Assessment
Problem. Since the latter problem was argued to be sound with the profiled SCA optimiza-
tion problem, we conclude that the choice of the NLL as a surrogate loss function is sound
from an evaluation point of view, in the sense that it enables to accurately estimate a lower
bound of the minimal number of queries required by an attacker provided with an optimal
leakage model in order to successfully recover the secret key.

Simulations and experiments verified that the PI maximization via NLL minimization
was an efficient method in order to estimate the MI in several configurations, i.e. on different
architectures and with different types of counter-measures, including higher order secret-
sharing, shuffling or de-synchronization through random delays.

This leads to the takeaway messages of this chapter: the minimization of the NLL loss
via a neural network model enables to give relevant estimations of the mutual information
between a sensitive variable and the corresponding side-channel traces, thereby quantita-
tively measuring the impact of counter-measures (and their implementations) so that an

15 Those results coincide with the ones reported by Kim et al. [KPH+19].

91



CHAPTER 5. THEORETICAL ASPECTS OF DEEP LEARNING BASED SIDE-CHANNEL
ANALYSIS

evaluator can precisely assess whether the latter one stays sound or not.
A possible track of work following the study presented in this chapter could investigate

how DL could also be used to estimate the Hypothetical Information (HI), another informa-
tion theoretic notion extending the MI and the PI. Bronchain et al. considered this metric as
well in their paper at CRYPTO’19 and showed that it is an upper-bound of the MI whereas
the PI is a lower bound. It would be interesting to know whether there is a way to minimize
the HI of an approximate leakage model, in order to get an insightful confidence interval
of the MI, along with the PI. Unfortunately, the computation of HI would rely on gener-
ative models, beyond the scope of this thesis. Yet, investigating whether there are sound
generative DL models in an SCA context could be promising.

Epilogue. Since the release of our paper at CHES 2020, two recent works have addressed
the problem of the choice of the loss function, following our line of works.

Zhang et al. have proposed a slight variant of the NLL [ZZN+20]. According to the
authors, the latter loss function would have a major drawback when dealing with datasets
for which the observed values of the sensitive variable are not uniformly distributed, e.g.,
if one targets Z′ = hw(Z) instead of Z. If the precise distribution Pr

(
Z′
)

is unknown, then
so is H

(
Z′
)
, which means that one cannot compute the PI. Nevertheless, one can still maxi-

mize it, since the unknown term does not depend on the considered model F with respect
to which the optimization is done. To circumvent this problem, the authors propose the
Cross Entropy Ratio (CER), which is the ratio between the NLL computed for the right key
hypothesis, and the average of the NLLs computed when assuming any other wrong key
hypotheses. They show that an attack is effective i.f.f. this metric is below 1. Moreover, they
claim that the lower the metric, the more efficient the attack, which is empirically verified
on several public datasets. Yet, a formal proof of this trend still remains to be established.

Zaid et al. have recently embraced another approach when tackling the issue of the
loss function, leading to proposing the so-called ranking loss [ZBD+20]. Contrary to the
NLL coming from the supervised classification task, the authors here take inspiration from
another learning task, namely learning to rank. By translating this task into the profiled SCA
optimization framework, they show the soundness of their approach to maximize the SR.

Beyond being useful for estimating the SCA efficiency metric, the computation of the
MI could be a goal as itself for the evaluator [BHM+19]. Hence, Cristiani et al. recently
extended a technique called Neural Estimation of the Mutual Information, originally introduced
by Belghazi et al. [BRB+18], in the aim to derive the best way to to estimate the MI between
SCA traces and a sensitive intermediate computation [CLM20].

92



Chapter 6

DL-based SCA on Large-Scale Traces:
A Case Study on a Polymorphic AES

This chapter is inspired from the paper published at ESORICS 2020, in collaboration with
Cécile Dumas, Laurent Maingault, Marie-Angela Cornélie and Eleonora Cagli from the
LETI - ITSEF, and Damien Couroussé and Nicolas Belleville from the LIST -
DSIN [MBC+20], and with the support of Pierre-Alain Moëllic.

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Problem Addressed in this Chapter . . . . . . . . . . . . . . . . . . . 95
6.1.2 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.1 Target Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Threat Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.3 Re-alignment on the mbedTLS Dataset . . . . . . . . . . . . . . . . . 96
6.2.4 CNN-Based Profiling Attacks . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

93



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

6.1 Introduction

In Section 3.7, when presenting the different counter-measures that a developer can use to
protect an implementation against SCA, we essentially focused on two criteria:

1. the resulting protected implementation must still remain acceptable for the final user,
in particular in terms of runtime and memory;

2. it must guarantee, formally or empirically, the security level requested by the final user
or the developer.

Finding the counter-measure meeting those two constraints, often antagonist, is somehow
the holy-grail quest of developers willing to prevent SCA on their devices.

We have seen for example that group-based secret-sharing schemes are able to meet the
second condition, to the detriment of the first one. However, we have not discussed yet
in this thesis a third condition, namely how a developer can easily turn an unprotected
code into a protected one. Indeed, although encryption standards such as AES are designed
to be easily implemented, their specifications do not take into account the development
cost of versions protected against SCA. In practice, this third constraint turned out to be
critical, because it required so far a careful hand-made protection of every possible sensitive
intermediate state of the machine running the primitive at a low level – i.e. assembly or
hardware.

Some recent works propose ways to automatize the secret-sharing of sensitive interme-
diate computations [BDM+20, BCH+20a], with the hope to decrease the developer’s hand-
made design. The interest of this approach is thereby to combine this automated generation
with a provable security assessment, made possible by the recent works of security proofs
on secret-sharing – see Subsection 3.7.1. Nevertheless, the theoretical models proposed by
the scientific community on which these tools rely do not always correspond to the physical
reality of the devices designed by the industry. As a consequence, a hand-made verifica-
tion of the automatically generated implementation might not always be excluded, thereby
mitigating the interest of automatically generating secret-sharing.

We have presented the code polymorphism counter-measure in Subsection 3.7.2, en-
abling to automatize the code randomization in a pervasive way at the scope of assembly
instructions, in order to implement leakage hiding at a low cost in development. More-
over, we have seen that hiding is a lighter counter-measure in terms of runtime and mem-
ory complexity: the performance overhead for hiding is linear with the amount of shuffled
operations or the number of dummy operations, while it is quadratic with the sharing or-
der for secret-sharing. Therefore, one may wonder whether code polymorphism could be
a good candidate as a way to meet the three constraints of a practically sound counter-
measure evocated so far. Belleville et al. brought some evidences about the security of
code polymorphism in a paper at TACO’19 [BCHC18]. The latter study follows a series
of works [ABP12, ABPS15, CBR+16] proposing a way to efficiently (in the sense of the
first constraint) implement code polymorphism. They propose a specific configuration of
code transformations for which they emphasize empirical evidences of strong security level
against the vast majority of the attacks. This particularly concerns the ones requiring the
P.o.Is of the raw traces to be aligned with each other, e.g. the CPA or the GT: the Test Vector
Leakage Assessment (TVLA) method based on T-tests (see Section 3.6) applied on several
implementations of cryptographic primitives show that their protection prevents the target
device from revealing its leakage, and a CPA mounted against a protected implementation
requires about several million traces whereas the same attack against the same unprotected
target only required a few hundred traces to recover the secret key.

94



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

6.1.1 Problem Addressed in this Chapter

Yet, although very promising, these results cannot draw an exhaustive guarantee concern-
ing the security level against SCA, since other realistic scenarios involving more elaborated
attacks have not been investigated.

Indeed, on the one hand the SCA literature proposes other ways to outperform vertical
attacks when facing hiding counter-measures. Re-synchronization techniques might annihi-
late the misalignment effect occurred by code polymorphism, since it is successfully applied
on hardware devices prone to jitter [NHI+07, vWWB11, DRS+12]. Likewise, CNNs can
circumvent some software and hardware de-synchronization counter-measures, in a sense
similar to code polymorphism [CDP17, KPH+19]. It is therefore of great interest to use
those techniques to assess the security provided by some code polymorphism configura-
tions against more elaborated attackers.

On the other hand, until now the literature has only demonstrated the relevance of
CNN attacks on restricted traces whose size did not exceed 5, 000 samples [CDP17, BPS+19,
KPH+19, Tim19, ZBHV19], which is small, e.g., regarding the size of the raw traces in the
public datasets of software AES implementations used in those papers [NSGD12, BPS+19,
CK09]. This requires to focus the trace acquisition to a tight window where the attacker is
confident that the relevant leakage occurs. Unfortunately, this is not possible in presence
of code polymorphism since it applies hiding in a systematic and pervasive way in the im-
plementation. Likewise, other dimensionality reduction techniques like dedicated variants
of PCA [SA08] might be considered prior to the use of CNNs. However, they do not theo-
retically provide any guarantee that relevant features will be extracted, especially for data
prone to misalignment. As a consequence, attacking a polymorphic implementation neces-
sarily requires to deal with large-scale traces. This generally spans serious issues in machine
learning tasks known under the name of curse of dimensionality [SSBD14]. That is why it cur-
rently remains an open question whether CNN attacks can scale on larger traces, or whether
it represents a technical issue that some configurations of code polymorphism might benefit
against these attacks. Hence, both problems, namely evaluating code polymorphism and
addressing large-scale traces SCA, are closely intertwined.

6.1.2 Outline of the Chapter

In the remaining of this chapter, we tackle the two problems presented so far by extending
the security evaluation provided by Belleville et al. [BCHC18]. The evaluation aims to assess
the security of the highest code polymorphism configuration they used, on same implemen-
tations, against stronger attackers.

Our evaluation considers a wide spectrum of threat models, ranging from automated
attacks affordable by a layman attacker, to state-of-the-art techniques. The whole evaluation
setup is detailed in Section 6.2. In particular, we propose to adapt the architectures used in
the literature of CNN attacks, in order to handle the technical challenge of large scale traces.
This is presented in Subsection 6.2.4.

Finally, the outcomes of our evaluations are presented in Section 6.3, and will serve as a
ground for discussions proposed in Section 6.4.

6.2 Evaluation Methodology

6.2.1 Target Device

The evaluation has been conducted on the polymorphism dataset presented in Subsec-
tion 3.8.5. We remarked then that the SNRs computed on both mbedTLS and AES 8-bit
implementations protected with code polymorphism did not reveal any leakage, although

95



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

a re-alignment process was suggested to annihilate the misalignment effect of the counter-
measure – see Subsection 3.8.5. In Subsection 6.2.3, we propose a way to re-align the traces
on the mbedTLS dataset.

6.2.2 Threat Models

We propose several threat models that we distinguish according to two resources the at-
tacker may access, that we precise hereafter.

First, the attacker may get or not an open sample in order to conduct a profiled attack
scenario, as considered in this thesis. We recall that this is a necessary condition in order to
evaluate the worst-case scenario from a developer’s point of view [HRG14]. Though often
seen as strong, this assumption can be considered as realistic in our context: here both the
chip and the source codes used for the evaluation are publicly available.

Second, the attacker may eventually incorporate human expertise to improve attacks
initially fully automatized. Here, this will concern either the preliminary task of trace re-
alignment (see the procedure described in Subsection 6.2.3), or the capacity to properly de-
sign a CNN architecture for the deep learning based SCA (see Subsection 6.2.4).

Hence the following attack scenarios:

• Aauto: considers a fully automatized attack (i.e. without any human expertise), with-
out access to any open sample.

• ACPA: considers an attack without access to an open sample, but with human expertise
to re-align the traces – see Subsection 6.2.3. It results in doing a CPA targeting the
output of the SubBytes operation, assuming the Hamming weight leakage model –
see Section 3.5.

• AgT: considers the same attack as ACPA, i.e. targeting re-aligned traces, with an access
to an open sample in addition. The profiling is done thanks to Gaussian Templates
(GTs) with pooled covariance matrices – see Section 3.4. No dimensionality reduction
technique is used here, beside the implicit reduction done through the re-alignment
detailed in Section 3.8.5.

• ACNN: considers an attack with access to an open sample and human expertise to build
a CNN for the profiled attack. This attack scenario is considered the most effective
against de-synchronized traces with first-order leakage [CDP17, KPH+19, BPS+19].
Therefore, we do not assume ACNN to need an access to re-aligned traces. In addition,
no preliminary dimensionality reduction is done here.

As already mentioned in this section, the SNR of the raw traces, computed on 100, 000
traces, did not emphasize any peak. Thanks to the works of Mangard et al. [Man04, MOP07]
and Oswald et al. [MOBW13] linking the efficiency of a CPA to the amplitude of SNR, we
can already draw the following conclusions: Aauto will not succeed with less than 100, 000
queries.

6.2.3 Re-alignment on the mbedTLS Dataset

To conduct ACPA and AgT, we proceeded a re-alignment on the traces from the mbedTLS
dataset that we describe hereafter. For each 80, 000-dimensional trace, the clock cycles cor-
responding to the region between two EM peaks are identified according to a thresholding
on falling edges. Since the EM peak pattern delimiting two identified clock cycles may be
spread over a different number of samples from one pattern to another, we only keep the
minimum and maximum points. Likewise, since the number of identified clock cycles can
also differ from one trace to another, the extracted samples are eventually zero-padded to
be of dimension D = 50.

96



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

0 10 20 30 40 50

Time (samples)

10−2

10−1

S
N

R
Other bytes

Byte 0

Byte 1

Figure 6.1: The 16 SNR of the acquired traces from the mbedTLS implementation, one for each tar-
geted byte, after re-aligned pattern extraction.

Based on this re-alignment, a new SNR is computed on Figure 6.1. Contrary to the SNR
computed on raw traces in Figure 3.13, some leakages are clearly distinguishable though
the amplitude of the SNR peaks vary from 5.10−2 to 5.10−1, according to the targeted byte.
Thanks to this re-alignment, and according to the previous discussion between the CPA
efficiency and the amplitude of SNR, we can already bet that ACPA, AgT and ACNN are likely
to succeed within 100, 000 queries.

Remark 7. The re-alignment technique used in this work is based on the detection of leakage instants
by thresholding. Other re-alignment techniques [NHI+07, vWWB11, DRS+12] may be used. There-
fore, the results of ACPA and AgT might be improved. However, none of the re-alignment techniques
in the literature provides strong theoretical guarantees of optimality, especially regarding the use of
code polymorphism.

6.2.4 CNN-Based Profiling Attacks

As mentioned in Subsection 6.2.2, CNN attacks may require some human expertise to prop-
erly set the model architecture. This section is devoted to describing the whole settings used
to train the CNNs used in the attack scenarioACNN, in order to tackle the challenge of large-
scale traces. We quickly review the guidelines in the SCA literature, and argue why they are
not suited to our traces. We then present the used architecture, and we detail the training
parameters.

The Literature Guidelines. Although numerous papers have proposed CNN architec-
tures [MPP16, CDP17, BPS+19], the state-of-the-art CNNs are currently given by Kim et
al. [KPH+19] and Zaid et al. [ZBHV19]. Their common point is to rely on the VGG architec-
ture given by Equation 4.19 that we recall hereafter:

F = s ◦ λ|Z| ◦ [σ ◦ λC ]n1 ◦ [δp ◦ σ ◦ µ ◦ γW,K ]n2 ◦ µ , (6.1)

where γW,K denotes a convolutional layer made of K filters of size W , µ denotes a batch-
normalization layer, σ denotes the ReLU activation function, δp denotes an average pooling
layer of size p, λ denotes a dense layer, and s denotes the softmax layer. Furthermore, the
composition [δp ◦σ ◦µ ◦γW,K ] is denoted as a convolutional block. Likewise, [σ ◦λ] denotes a
dense block. We note n1 (resp. n2) the number of dense blocks (resp. convolutional blocks).

An intuitive approach would be to directly set the parameters or our architecture to the
ones used by Kim et al. or by Zaid et al. Unfortunately, we argue in both case that such a
transposition is not possible.

97



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

Kim et al. propose particular guidelines to set the architecture [KPH+19]. They recom-
mend to fix the filter size W = 3, and p = 2, i.e., the minimal possible values, and to set
n2 so that the time dimensionality at the output of the last block is reduced to one. Since
each pooling divides the time dimensionality by p, n2 ≤ logp(D).1 Meanwhile, they dou-
ble the number of filters for each new convolutional block compared to the previous one,
without exceeding 256. Unfortunately, using these guidelines is likely to increase n2 from
10 in Kim et al.’s work to at least 17 in our context. First, as explained by He et al. [HZRS16],
stacking such a number of layers is likely to make the numerical optimization with SGD or
its variants harder. That is why an alternative architecture called Resnets has been intro-
duced [HZRS16], and starts to be used in SCA as well [ZS19, GJS20]. This possibility will be
discussed in Section 6.4. Second, due to the doubling number of filters at each new block, by
transposing the Kim et al.’s guidelines, the number of learning parameters would be around
1.86 millions for the mbedTLS dataset and around 2.06 millionsfor the AES 8-bit one. This
represents approximately 10 folds more parameters to learn than the number of traces ac-
quired in the profiling set. In such a configuration, the estimation error is likely to be high
since it – roughly – depends on the number of learning parameters – see Subsection 4.2.3.

In order to improve the Kim et al.’s architecture, Zaid et al. [ZBHV19] proposed thumb
rules to set the filter size in the convolutional and the pooling layers depending on the
maximum temporal amplitude of the de-synchronization. However, it assumes to know the
maximum amplitude of the de-synchronization, which is not possible here since it is hard
to guess how many times those transformations are applied in the polymorphic instance.

Our Architecture. The drawbacks of Kim et al.’s and Zaid et al.’s guidelines in our partic-
ular context justify why we do not directly use them. Instead, we propose to take the Kim et
al.’s architecture as a baseline, on which we modify some of the parameters as follows.

First, we set the number of filters in this first block to K0 = 10, we decrease the maximal
number of filters from 256 to Kmax = 100, and we slightly change the way the number of fil-
ters is computed in the intermediate convolutional layers, according to Table 6.1. Likewise,
we remove the dense block (i.e. n1 = 0). This limits the number of learning parameters,
which mitigates the issue of the estimation error.

Second, we increase the pooling size to p = 5. This mechanically allows to decrease the
minimal number of convolutional blocks n2 from 17 to 6 for the mbedTLS traces and to 7 for
the AES 8-bit ones. To be sure that this growth in p does not imply any loss of information
in the pooling layers, we set the filter size to W = 2p + 1 = 11. Eventually, since with such
numbers of convolutional blocks the output dimensionality is not equal to one yet, we set
the last pooling layer to be global, i.e. its stride is set so that the output dimension is collapsed
to 1, without adding any extra learning parameter [ZKL+16]. Such an architecture would
represent 177, 500 learning parameters, when targeting the mbedTLS implementation and
287, 500 for the AES 8-bit. In other words, the number of learning parameters is lowered
by one order of magnitude compared to what would have been required by the Kim et al.’s
guidelines in our context.2

First Convolutional Block. To decrease further the number of learning parameters, one
may even tweak the first convolutional block, by exploiting the properties of the input sig-
nal. Figure 6.2 sketches an EM trace chunk of about one clock cycle. We make the underly-
ing assumption that the relevant information to extract from the traces is contained in the
patterns occurring around each clock, mostly due to the change of states in the memory reg-

1 We recall thatD denotes the dimensionality of the traces, i.e. D = 80, 000 for the mbedTLS implementation
(D = 50 for the re-aligned data) and D = 160, 000 for the AES 8-bit.

2 We would like to point out that the Kim et al.’s guidelines were specifically designed to their own context.
The authors did not claim to provide general guidelines working in any situation. As such, our conclusions do
not question the relevance of Kim et al.’s results in their work at CHES 2019 [KPH+19].

98



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

isters storing the sensitive variables [MOP07].3 Moreover, no additional relevant pattern is
assumed to be contained in the trace until the next clock cycle, appearing T = 50 samples
later.4 By carefully setting W0 to the size of the EM patterns, and p0 such that W0 ≤ p0 ≤ T ,
we optimally extract the relevant information from the patterns while avoiding the entan-
glement between two of them. In our experiments, we arbitrarily set p0 = 25. This first
tweaked convolutional block has then the same receptive field than one would have with
two normal blocks of parameters (W = 11, p = 5). Therefore, we spare one block (i.e. the
last one), which decreases the number of learning parameters: our architecture now rep-
resents 84, 380 (resp. 177, 500) learning parameters for the model attacking the mbedTLS
implementation (resp. AES 8-bit). Table 6.1 provides a synthesis of the description of our
architecture, along with a comparison with the Kim et al. and Zaid et al.’s works.

Table 6.1: Our architecture and the recommendations from the literature. In the Zaid et al.’s method-
ology, T denotes the maximum assumed amount of random shift in the traces, and I denotes the
assumed number of leakage temporal points in the traces.

Kim et al. [KPH+19] Our archi. Zaid et al. [ZBHV19]

n1 1 0 2
n2 logp(D) logp(D) 3

p 2 5(p0 = 25) 2, T2 ,
D
I

W 3 11(W0 = 10) 1, T2 ,
D
I

Kn min(K0 × 2n,Kmax) 10, 20, 40, 40, 80, 100(100) K0 × 2n

K0 8 10 8, 32
Kmax 256 100 -

W0 W0

T

Figure 6.2: Two EM patterns
separated by one clock cycle.

Training Settings The source code is implemented in Python
with the same machine as presented in Section 4.3. For each
experiment, the whole dataset is split into a training and a test
subsets, containing respectively 95, 000 and 5, 000 traces. The
latter ones are used to simulate a key recovery based on the
scores attributed to each hypothetical value of the sensitive
target variable by the trained model. Moreover, the SH100 data
augmentation method is applied to the training traces, follow-
ing the description given in [CDP17]: each trace is randomly
shifted of maximum 100 points, which represents the length
of 2 clock cycles.5

The training is done by minimizing the NLL loss, with the Adam optimizer – see Sub-
section 2.5.2 – during 200 epochs6 which approximately represents a 16-hour long training
for each targeted byte. The learning rate of the optimizer is always set to 10−5.

Based on a – eventually partially – trained model, we compute the efficiency of the at-
tack, as defined by Equation 3.4.

3This assumption has somehow already been used for the pattern extraction re-alignment in Section 3.8.5.
4 We recall that despite the effect of code polymorphism, and in absence of hardware jitter, the duration of

the clock period, in terms of samples, is roughly constant.
5 This data augmentation is not applied on the attack traces.
6 One epoch corresponds to the number of steps necessary to pass the whole training data-set through the

optimization algorithm once.

99



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

100 101 102 103 104 105

Na

0.0

0.2

0.4

0.6

0.8

1.0

S
R β = 90%

(a) ACPA on mbedTLS

100 101 102 103 104 105

Na

0.0

0.2

0.4

0.6

0.8

1.0

S
R

β = 90%

(b) AgT on mbedTLS

Figure 6.3: Success Rate with respect to the number of attack traces. Attacks on mbedTLS requiring
the alignments of the P.o.Is. The different colors denote the different targeted bytes.

6.3 Results

Once the different threat models and their corresponding parameterization have been in-
troduced in Section 6.2, we can now present the results of each attack, also summarized in
Table 6.2.

As argued in Section 3.8.5, we can directly conclude from the SNRs given by Figure 3.13
(bottom) and Figure 3.14 (bottom) that the fully automatized attack Aauto cannot succeed
within the maximum amount of collected traces, i.e., Na (Aauto) > 105, for both implemen-
tations.

Figure 6.3a depicts the performances of ACPA against the mbedTLS implementation, on
each state byte at the output of the SubBytes operation. It can be seen that the the SR inter-
sects the green threshold at Na(ACPA) ≈ 103 for the byte 1, and at Na(ACPA) ∈ J104, 105K for
the other bytes.7 Those results are in line with the rule of thumb stating that the higher the
SNR on Figure 6.1, the faster the success rate convergence towards 1 on Figure 6.3a [MOP07].
Since we argued in Section 3.8.5 that the proposed re-alignment technique was not relevant
on the AES 8-bit traces, we conclude thatACPA would require more that 105 queries on those
traces.8

Figure 6.3b summarizes the outcomes of the attack AgT. One can remark that the SR
curves intersect the green threshold at Na(ACPA) ≤ 1, 000, i.e. the attack is successful for
all the target bytes within 1, 000 queries. This represents an improvement by one order of
magnitude as compared to the scenario ACPA. In other words, the access to an open sample
provides a substantial advantage toAgT compared toACPA. As for the latter one, and for the
same reasons, we conclude that the attack AgT would fail with 105 traces of the AES 8-bit
implementation.

Figure 6.4 presents the results of the CNN attack ACNN. In particular, Figure 6.4a shows
that training the CNN for 200 epochs allows to recover a secret byte in less than 20 traces
in the case of the mbedTLS implementation. Likewise, Figure 6.4b shows that a successful
attack can be done within 10 traces on the AES 8-bit implementation. Moreover, both curves
in Figure 6.4 show that the latter observations can be generalized for each byte targeted in
the attack ACNN.9 Finally, one can remark that training the CNNs during a lower number of
epochs (e.g., 100 for mbedTLS, 50 for AES 8-bit), still leads to the same order of magnitude
for N?

a .

7 Targeting the output of the AddRoundKey operation instead of the output of the SubBytes operation has
also been considered without giving better results.

8 Section 6.4 discusses the possibility of relevant re-alignment techniques for the AES 8-bit implementation.
9 Additional experiments realized on a setup close toACNN confirm that the results can be generalized to any

of the 16 state bytes.

100



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

50 100 150 200
Epochs

100

101

102

N
a
(A

C
N

N
)

Byte 0

Byte 3

Byte 7

Byte 15

(a) mbedTLS

50 100 150 200
Epochs

100

101

102

N
? a

Byte 0

Byte 3

Byte 7

Byte 15

(b) AES 8-bit

Figure 6.4: Evolution of N?
a with respect to the number of training epochs during the open sample

profiling by the CNN (attack ACNN).

Table 6.2: Minimal number N?
a of required queries to recover the target key bytes.

Scenario mbedTLS AES 8-bit

Aauto > 105 > 105

ACPA 3.103 − 105 > 105

AgT 20− 103 > 105

ACNN < 20 < 10

Based on these observations, one can make the following interpretations. First, the attack
ACNN leads to the best attack among the tested ones, by one or several orders of magnitude.
Second, such attacks are reliable, since the results do not differ from one implementation to
another, and from one targeted byte to another. Third, the training time for CNNs, currently
set to roughly 16 hours for each byte (see Subsection 6.2.4), can be halved or even quartered
without requiring too much more queries to succeed the attack. Since in this scenario the
profiling phase is here the critical (i.e. the longest) task, it might be interesting to find a
trade-off between the training time and the resultingNa(ACNN), depending on the attacker’s
abilities.

To synthesize, our results are summarized in Table 6.2. In a nutshell, they show that
attacks requiring the alignments of the P.o.Is fail due to code polymorphism, but that more
elaborated scenarios lead to successful attacks. Compared to the ones conducted by Belleville
et al. [BCHC18], and depending on the different attack powers considered so far, the num-
ber of required queries is lowered by up to several orders of magnitude. In a worst case
scenario, our trained CNNs are able to recover every secret key byte in less than 20 traces
of dimensionality 160, 000, whereas until now the literature has only demonstrated the rel-
evance of CNN attacks on restricted traces whose size did not exceed 5, 000 samples, i.e., 32
times lower.

6.4 Discussion

So far, Section 6.3 has presented and summarized the results of the attacks, depending on the
threat models defined in Subsection 6.2.2, against two implementations of a cryptographic
primitive, protected by a given configuration of code polymorphism.

This section proposes to discuss these results, the underlying assumptions behind the
attacks, and eventually their consequences.

101



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

Choice of our CNN Architecture.

The small amount of queries to succeed the attack ACNN, conducted on both implementa-
tions, shows the relevance of our choice of CNN architecture. This illustrates that an end-
to-end attack with CNNs is possible when targeting large scale traces, without necessarily
requiring very deep architectures.

We emphasize that there may be other choices of parameters for the convolutional archi-
tecture giving relevant results as well, if not better. Yet, we do not find necessary to further
investigate this way here. The obtained minimal number of queries N?

a was low enough so
that any improvement in the CNN performances is not likely to change our interpretations
of the vulnerability of the targets against ACNN.

In particular, the advantage of Resnets [HZRS16] broadly used in image recognition typ-
ically relies on the necessity to use deep convolutional architectures in this field [SZ15], as
recalled in Remark 5. By the way, promising results have been obtained over the past few
months with Resnets in SCA [ZS19, GJS20]. However, following the discussion of Figure 4.2,
we empirically verified here that we can take advantage of the distinctive features of side-
channel traces to constrain the depth of our model and avoid typical issues related to deep
architectures – i.e. vanishing gradient – that Resnets are supposed to circumvent [HZRS16].

On the Security of Code Polymorphism

Our study exhibits that the attacks Aauto and ACPA are such that respectively Na(Aauto) and
Na(ACPA) are high enough to enable a key refreshing period reasonably high, without com-
promising the confidentiality of the key. Unfortunately, this does not hold in presence of a
stronger attacker having access to an open sample, as emphasized by attacksAgT andACNN,
where a secret key can be recovered within the typical duration of a session key. This may
be critical at first sight since massive IoT applications often rely on Commercially available
Of The Shelf (COTS) devices, which implies that open samples may be easily accessible to
any adversary. Thus, this study claims that though code polymorphism is a promising tool
to increase the hardness of SCA against embedded devices, a sound polymorphic configura-
tion, eventually coupled with other counter-measures, is yet to be found, in order to protect
against state-of-the-art SCA. Nevertheless, the toolchain used by Belleville et al. [BCHC18]
allows to explore many configurations beside the one considered here, the exploration of
the securing capabilities of the toolchain is then beyond the scope of this thesis, and left as
an open question for further works.

More generally, this issue can be viewed from the perspective of the problem discussed
by Bronchain et al. about the difficulty to prevent side-channel attacks in COTS devices, even
with sophisticated counter-measures [BS20]. First, our experimental target is intrinsically
highly vulnerable to SCA. Second, the use of software implementations of cryptographic
primitives offers a large attack surface, which remains highly difficult to protect especially
with a hiding counter-measure alone. This underlines the fact that a component may need
to use hiding in combination with other counter-measures, e.g., secret-sharing, to be secured
against a strong side-channel attacker model.

6.5 Conclusion

So far, this chapter answers two questions likely to help both developers of secure imple-
mentations, and evaluators mounting CNN-based SCA.

From a developer’s point of view, this chapter has studied the effect of two implemen-
tations of a code polymorphism counter-measure against several side channel attack sce-
narios, covering a wide range of potential attackers. In a nutshell, code polymorphism as
an automated tool, is able to provide a strong protection against threat models considering
automated and layman attackers, as the evaluated implementations were secure enough

102



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

against our first attacker models. Yet, the implementations evaluated are not sound any-
more against stronger attacker models. The soundness of software hiding counter-measures,
if used alone, remains to be demonstrated against state-of-the-art attacks, for example by
using other configurations of the code polymorphism toolchain, or by proposing new code
transformations. All in all, our results underline again, if need be, the necessity to combine
the hiding and secret-sharing protection principles in a secured implementation.

From an evaluator’s point of view, this work illustrates how to leverage CNN architec-
tures to tackle the problem of large-scale side-channel traces, thereby narrowing the gap
between SCA literature and concrete evaluations of secure devices where pattern detection
and re-alignment are not always possible. The idea lies in slight adaptations of the CNN
architectures already used in SCA, eventually by exploiting the signal properties of the SCA
traces. Surprisingly, our results emphasize that, though the use of more complex CNN ar-
chitectures has been shown to be sound to succeed SCA in the literature, it might not be a
necessary condition in an SCA context.

103



CHAPTER 6. DL-BASED SCA ON LARGE-SCALE TRACES: A CASE STUDY ON A
POLYMORPHIC AES

104



Chapter 7

Gradient Visualization for General
Characterization in Profiling Attack

This chapter is inspired from the poster presented at CHES 2018 [MDP18] and the paper
published at COSADE 2019 in collaboration with Cécile Dumas and Emmanuel
Prouff [MDP19a]. This work has benefited from fruitful discussions with Élie Bursztein
and Rémi Audebert.

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Study of an Optimal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Proposal for a Characterization Method . . . . . . . . . . . . . . . . . . . . 108

7.3.1 Gradient Approximation with Neural Networks . . . . . . . . . . . . 109
7.3.2 Example on Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3.3 Comparison with SNR for Characterization . . . . . . . . . . . . . . . 110
7.3.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.1 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.2 Settings of the Experiments . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.1 Application Without Counter-measure . . . . . . . . . . . . . . . . . 114
7.5.2 Application with an Artificial De-synchronization . . . . . . . . . . . 115
7.5.3 Application with a First Order Secret-Sharing . . . . . . . . . . . . . 115
7.5.4 Comparison in the Context of Template Attacks . . . . . . . . . . . . 118
7.5.5 Gradient Visualization on the Polymorphism Dataset . . . . . . . . . 120

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

105



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

7.1 Introduction

We have emphasized in Chapter 3 that when considering a profiled attack scenario, an eval-
uator can do more than just mounting an attack: he can also build a full diagnosis thanks to
the leakage characterization techniques that we presented in Subsection 3.6.1. Those tech-
niques, such as the SNR or the T-test, have the particularity to be based on statistical tools,
and so are the GTs. In that sense, they form a sound tandem for the evaluator.

However, we explained in Section 3.7 that in presence of counter-measures such as
secret-sharing or hiding, the characterization and attack methods based on those statisti-
cal tools are no longer efficient (or at least much less). Likewise, other dimensionality re-
duction techniques like dedicated variants of PCA [CDP15, SA08, EPW10, CK13, CK14] or
KDA [CDP16] can be used, without guarantee that relevant components are extracted.

On the other hand, we have explained in Section 4.4 that ML-based attack methods
could circumvent (to a given extent) the issues induced by the most widely used counter-
measures, hence their recent hype in the SCA community over the past few years. Unfortu-
nately, the emergence of those methods came with a drawback: no auxiliary characterization
method were proposed to the evaluator. Indeed, whereas learning algorithms such as CNNs
do not require pre-processing and are at least as efficient as the other state-of-the-art profil-
ing attacks, they act as a black-box. From the evaluator’s point-of-view, this is not sufficient.
On the one hand he wants to make sure that a CNN attack succeeded for good reasons, i.e.,
that the learned model can generalize its good performance to new data. On the other hand
the evaluator may also want to help the developer to localize and understand where the
vulnerability comes from in order to remove or at least reduce it. This issue is part of a more
general problematic in Deep Learning based systems, namely their explainability and inter-
pretability. To address it, a theoretical framework has recently been proposed by Montavon
et al. [MSM18], and several methods have been tested to tackle the issue. In particular, some
computer vision research groups have considered the Sensitivity Analysis [SVZ14, SDBR15]
framework. It consists in studying how the uncertainty in the output of a mathematical
model or system (numerical or otherwise) can be apportioned to different sources of uncer-
tainty in its inputs [Wik19]. This term encompasses many methods from simple ones, such
as the computation of the derivatives if the model is differentiable or ablation/occlusion
techniques [ZF14], to the study of non-trivial variations, e.g., when building adversarial ex-
amples [SZS+14, GSS15].

In this chapter, we propose to apply a particular Sensitivity Analysis method called Gra-
dient Visualization (GV) in order to better understand how a CNN can learn to predict the
sensitive variable based on the analysis of a single trace. The main claim is that CNN based
models succeed in discriminating P.o.Is from non-informative points, and their localization
can be deduced by simply looking at the gradient of the loss function with respect to the
input traces for a trained model. We theoretically show that this method can be used to
localize P.o.Is in the case of a perfect model. The efficiency of the proposed method does
not decrease when counter-measures like secret-sharing or misalignment are applied. In
addition, the characterization can be made for each trace individually. We verified the effi-
ciency of our proposed method on simulated data and on experimental traces from both the
ASCAD database and the two Polymorphism datasets. We empirically show that Gradient
Visualization is at least as good as state-of-the-art characterization methods, in presence or
not of different counter-measures.

The chapter is organized as follows. In Section 7.2 we start by considering the optimal
model of an ideal attacker may get during profiling, and we deduce some properties of its
derivatives with respect to the input traces that can be related to the P.o.Is. In Section 7.3 we
use these properties on a model estimated with CNNs and we explain how to practically
implement the visualization method. A toy example applied on simulated data is proposed
for illustration. Sections 7.4 and 7.5 are eventually dedicated to an experimental validation
of the effectiveness of our proposal in realistic attacks scenarios.

106



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

7.2 Study of an Optimal Model

In this section, we address the evaluator’s interpretation problem in the ideal situation when
the conditional distribution F ? = Pr (Z | X) is known – i.e. when the model is perfect –
where X is the random variable denoting the observed trace and Z is the random variable
denoting the sensitive intermediate computation carrying information about the secret key.
We will show how the study of the derivatives of such a model with respect to each coordi-
nate of an input trace can highlight information about our P.o.Is. To this end, we need two
assumptions.

The first one is Assumption 1 and has already been stated in Section 3.6. Informally,
it tells that the leaking information is non-uniformly distributed over the trace, i.e., only a
few coordinates contain clues about the attacked sensitive variable. Assumption 1 has been
already made e.g. by Cagli et al. [CDP15]. Depending on the counter-measures implemented
into the attacked device, the nature of IZ may be precised. Without any counter-measure,
and supposing that the target sensitive variable only leaks once, Assumption 1 states that
IZ is only a set of contiguous and constant coordinates, regardless the input traces.

In the case where the target implementation is protected by secret-sharing, IZ will be
split into several contiguous and fixed sets whose number is equal to the number of shares
in the masking scheme (or at least equal to the number of shares if we relax the hypothesis
of one leakage per share). For example if Z1,Z2, leaking respectively at the times samples
t1 and t2, represent a 2-sharing of Z, then Z1 and X[t] with t 6= t1 are independent (resp.
Z2 and X[t] with t 6= t2 are independent). The conditional probability Pr (Z = s | X = x)
satisfies for every s2 ∈ Z :

F ?(x)[s] = Pr (Z = s | X = x) =∑
s1,s2∈Z

Dec(s1,s2)=s

Pr (Z1 = s1 | X[t1] = x[t1]) Pr (Z2 = s2 | X[t2] = x[t2]) . (7.1)

Adding de-synchronization should force IZ to be non-constant between each trace.
The second assumption is the following.

Assumption 2 (Regularity). The conditional probability distribution F ? is differentiable over X
and thereby continuous.

Likewise, Assumption 2 is realistic because it is a direct corollary of a Gaussian leak-
age assumption for the traces – see Section 3.4. It implies that x 7→ Pr (X = x | Z = s) is
differentiable and:

∇x Pr (X = x | Z = s) = Σ−1
s (x−Ms) Pr (X = x | Z = s) , (7.2)

where Ms and Σ−1
s respectively denote the mean vector and the covariance matrix of the

normal probability distribution related to the target sensitive value hypothesis s. Then, from
Bayes’ theorem – see Subsection 2.2.1, Equation 7.2 and the basic rules for derivatives com-
putation, it gives an analytic expression of∇xF

?(x), thereby proving thatF ? is differentiable
with respect to the input trace.

Once Assumptions 1 and 2 are stated, we may want to observe their impact on the prop-
erties verified by the optimal model derivatives. For such a purpose we start by considering
an example on a trace x. Figure 7.1 (left) illustrates such a trace in blue, and the green line
depicts a P.o.I, namely a peak of SNR – in other words the set of P.o.Is IZ is reduced to a
single time index. The p.m.f. returned by the optimal model F ?(x) is given at the right of
the same figure: it is here represented by the blue histogram over the 256 possible values
of a byte. We may fairly suppose that a slight variation on one coordinate not belonging
to IZ – dotted in gray in Figure 7.1 (left) – should not radically change the output of the
optimal model. The resulting p.m.f., depicted by the gray histogram on Figure 7.1 (right)

107



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

0 20 40 60 80

Time (samples)

−60

−50

−40

−30

−20

−10

0

10

20

Trace slice

Insignificant Change

Crucial Change

Base Trace

Peak of SNR

0 50 100 150 200 250

Sensitive Value

10−5

10−4

10−3

10−2

10−1

100

S
co

re

Predictions

Insignificant Change

Crucial Change

Base Scores

Figure 7.1: Illustration of the Sensitivity Analysis principle. Left: a piece of trace. t ∈ IZ is depicted
by the green line, and slight variations dotted in red and gray. Right: predictions of the optimal
model.

remains the same, as it is perfectly superposed to the blue histogram. However, applying a
slight variation on the coordinate from IZ – dotted in red in Figure 7.1 (left) – may radically
change the output distribution depicted by the red histogram in Figure 7.1 (right).

This example illustrates the more general idea that small variations applied to the trace at
a coordinate t ∈ IZ should radically change the output prediction whereas small variations
at t /∈ IZ should have no impact. As a consequence, if F ? is differentiable with respect to
the input trace (according to Assumption 2), there should exist s ∈ Z such that:

∂

∂x[t]F
?(x)[s]

{
6= 0 i.f.f. t ∈ IZ

≈ 0 i.f.f. t /∈ IZ
. (7.3)

The latter observation can be stated in terms of the Jacobian matrix of the estimator, denoted
as JF ?(x). Its coefficients should be zero almost everywhere, except in columns t ∈ IZ:

JF ?(x) =
(

0 . . . 0 Yt 0 . . . 0
)
, (7.4)

where Yt =
(

∂
∂x[t]F

?(x)[s1], ∂
∂x[t]F

?(x)[s2], . . . , ∂
∂x[t]F

?(x)
[
s|Z|

])ᵀ
and 0 denotes the zero col-

umn vector.
The properties verified by the Jacobian matrix matrix in Equation 7.4 form the corner-

stone of this chapter, as it implies that we can guess from this matrix whether a coordinate
from an input trace belongs to IZ or not, i.e., whether a coordinate has been recognized as
a P.o.I when designing the optimal model F ?. Moreover, except Assumption 1, no more
assumption on the nature of the leakage model is required.

7.3 Proposal for a Characterization Method

So far we have shown that the Jacobian matrix of an optimal model JF ? (x) may emphasize
P.o.Is. In practice however, the evaluator does not have access to the optimal model, but a
trained estimation of it, denoted by F (·, θ). Here we follow this idea in contexts where the
approximation is modeled by training DNNs. Subsection 7.3.1 explains how to compute the
gradient visualization and the Jacobian matrix based on a trained DNN. Subsection 7.3.2
illustrates our claim with a toy example. Finally, Subsection 7.3.3 is dedicated to the com-
parison of our approach with state-of-the-art methods for leakage characterization.

108



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

7.3.1 Gradient Approximation with Neural Networks

In Section 4.2.3 we recalled that the universal approximation theorem allows to accurately
approximate any function with a MLP, up to a precision depending on the number of neu-
rons in the intermediate layers. It turns out that this theorem also holds for the derivatives of
the function to approximate: the latter ones can be accurately approximated by the deriva-
tives of the approximating MLP [Hor91].1 Hence, the Jacobian matrix of a trained DNN, i.e.
JF (·,θ) (x) represents a sound surrogate to the Jacobian matrix of the optimal model F ?.

To accurately and efficiently compute the Jacobian matrix of a DNN, the backprop al-
gorithm presented in Subsection 4.3.4 can be used. Originally, it applies a reverse mode
differentiation in order to compute the gradient of the loss function with respect to the pa-
rameter vector θ. Interestingly, we explained that the backward pass of the reverse mode
actually computes the derivatives of each layer function with respect to each of its inputs,
even if the latter ones are not explicitly part of the learning parameters. This particularly
concerns the very first layer which takes as inputs not only some learning parameters but
also the input trace x. In other words, given an input trace x, its corresponding sensitive
value z, and the loss function used for the optimization ` : P(Z) × Z → R+,2 it is possible
to compute for free the gradient of ` (F (x, θ), z) with respect to the input trace x whenever
the gradient of ` (F (x, θ), z) with respect to the learning parameters θ is required. As a con-
sequence, computing such a gradient can be done with a negligible overhead during an
iteration of the SGD.

Actually, we justified when presenting the backprop algorithm in Subsection 4.3.4 that
the modern DL libraries [PGM+19, AAB+15] are optimized to directly compute the gradient
of the loss function without explicitly computing the Jacobian matrix JF (·,θ) (x). However,
our ultimate goal is still to know the Jacobian matrix of the DNN model. Hopefully, studying
either the latter one or the gradient of the loss function is fairly equivalent, as one coordinate
of the loss function gradient is a function of elements from the corresponding column in the
Jacobian matrix, according to Lemma 1:

∇x` (F (x, θ), s) = JF (·,θ) (x)ᵀ · ∇y` (F (x, θ), s) . (7.5)

That is why we propose to visualize the gradient of the loss function, computed with respect
to the input trace, to characterize P.o.Is in the context of a DNN attack, instead of the Jacobian
matrix – unless explicit mention. More precisely, we visualize the absolute value of each
coordinate of the gradient in order to get the sensitivity magnitude. In the following, such
a method is named Gradient Visualization (GV). One of the advantage of this method is
that the additional source code required to implement this method is very light, as shown
in Figure 7.2.

7.3.2 Example on Simulated Data

To illustrate and explain the relevance of the GV method, and before going on experimen-
tal data, we here propose to apply it on a toy example, aiming at simulating simple D-
dimensional leakages from an n-bit sensitive variable Z. The method follows the same pro-
cedure as already explained in Subsection 5.4.1. The traces are defined such that for every
t ∈ J1, DK:

xi[t] =
{
ui + bi, if t /∈ {t1, . . . , td+1}
hw(zt,i) + bi otherwise

, (7.6)

where (ui)i, (bi)i and all (zt,i)i are i.i.d. draws from the following independent random
variables. Respectively, U ∼ B(n, 0.5), B ∼ N (0, σ2),3 where and where (z1,i, . . . , zd+1,i) is a

1 The interested reader may refer to the survey of Pinkus [Pin99, Sec. 4].
2 See a definition in Equation 4.2.
3 It is recalled that hw denotes the Hamming weight function, see Subsection 3.5.1.

109



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

Figure 7.2: Source code to implement the GV in Pytorch.

(d + 1)-sharing of zi for the bit-wise addition law. This example corresponds to a situation
where the leakages on the shares are hidden among values that have no relation with the
target.

Every possible combination of the d-sharing has been generated and replicated 100 times
before adding the noise, in order to have an exhaustive dataset. Therefore, it contains
100 × 2dn simulated traces. We ran the experiment for n = 4 bits, d ∈ {2, 3}, D = 100,
and a varying noise σ2 ∈ [0, 1]. Once the data were generated, we trained a neural network
with one hidden layer made of D neurons. Figure 7.3 presents some examples obtained
for 1 (Figure 7.3a), 2 (Figure 7.3b) and 3 (Figure 7.3c) shares. We clearly see some peaks at
the coordinates where the meaningful information have been placed. This confirms that our
characterization method is sound when facing leakages protected by secret-sharing, no mat-
ter the order though it required 16 times more simulated data and less noised data (σ2 ≥ 0.1)
than for the same experiment against first order secret-sharing.

7.3.3 Comparison with SNR for Characterization

Now we have shown that GV is relevant for characterization on simulated data, one may
wonder to what extent this method would be useful compared to other characterization
techniques. In this section, we compare our contribution to the SNR used for P.o.Is selection,
as presented in Section 3.6.

One has to keep in mind that the SNR is a statistical tool, and produces a single charac-
terization from all the profiling traces; whereas our method gives one map for each trace,
though we might average them. This observation has two consequences. First, if an SNR
characterization is launched in presence of secret-sharing, every trace coordinate X[t] is
likely to be independent from Z, which will lead the numerator of the SNR (Equation 3.19)
to converge towards 0. Secondly, if an SNR characterization is launched in presence of de-
synchronization, then the denominator of Equation 3.19 is expected to be multiplied by the
maximum shift, as argued in Subsection 3.7.2. To sum-up, an SNR characterization cannot

110



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

0 20 40 60 80 100
Input coordinates: 100 random values, 1 informative components.

0.0001

0.0002

0.0003

0.0004

0.0005
Gr

ad
ie

nt
Sensitivity map: peaks should be at [5]

Shape: (16000, 100), =  0.1, loss = 2.47149395942688

(a) One share

0 20 40 60 80 100
Input coordinates: 100 random values, 2 informative components.

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

Gr
ad

ie
nt

Sensitivity map: peaks should be at [5, 44]
Shape: (25600, 100), =  0.4, loss = 3.9360218048095703

(b) Two shares

0 20 40 60 80 100
Input coordinates: 100 random values, 3 informative components.

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

Gr
ad

ie
nt

Sensitivity map: peaks should be at [5, 44, 80]
Shape: (409600, 100), =  0.1, loss = 3.9143667221069336

(c) Three shares

Figure 7.3: Gradient of the loss function, averaged over the validation traces.

directly highlight higher order leakages when the random material – used for secret-sharing
and/or for de-synchronization – is not assumed to be known. Some solutions to deal with
this issue have been proposed, e.g., by pre-processing the traces with some re-combination
functions – see Section 3.6 – or by applying realignment techniques [vWWB11, NHI+07,
DRS+12].

7.3.4 Related Works

The idea of using the derivatives of differentiable models to visualize information is not new.
Following the emergence of deep convolutional networks, Simonyan et al. [SVZ14] have
first proposed the idea of GV to generate a so-called Sensitivity Map for image recognition.
The approach was motivated by the fact that such a map can be computed for free thanks
to the back-propagation algorithm. A derived method, called Guided Backpropagation has
also been proposed by Springenberg et al. [SDBR15]. The latter one slightly modifies the
back-propagation rule in a ReLU layer in order to filter the contributions from the upper
layers. Actually, Montavon et al. [MSM18] state that visualizing the gradient only tracks an
explanation to the variation of a final decision – F (x, θ) in our context – and not directly the
decision itself. To circumvent this, they propose a visualization method called Layerwise
Relevance Propagation (LRP). Another method called Deconvolution has been proposed by
Zeiler et al. [ZF14] in order to give insights about the regions of an input data contributing
to the activation of a given feature in a model (either in an intermediate layer or in the
output layer). In the field of Image Recognition, these methods have been shown to be more
relevant than GV.

However, the SCA and Image Recognition fields differ. In the latter one, the decision is
highly diluted among lots of pixels, and the decision surface might be locally flat, though
we are in an area of interest. Hopefully in an SCA context, Assumption 1 states that it is rea-

111



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

sonable to consider that the information is very localized. That is why we are in a particular
case where looking at the output sensitivity may be at least or even more interesting than
other visualization methods.

In parallel to the publication of our paper at COSADE 2019, Timon has proposed at CHES

2019 the same method, under the name of sensitivity analysis [Tim19].4 Likewise, Hettwer
proposed at SAC’19 a comparison between several techniques such as the GV, the LRP, and
some occlusion techniques [HGG19]. The latter ones consist in removing some areas of an
input trace, in order to study how a trained model reacts in its predictions. A relevant area
should therefore lead to strong dissimilarities in the corresponding predictions when it is
removed. Later, Zaid et al. proposed the use of heatmaps [ZBHV19].5 It consists in computing
the average output over all filters of a given convolution layer. In particular, the heatmap
of the first layer is expected to produce a similar map as the GV. Wouters et al., in a paper
revisiting the results of Zaid et al., used a variant of the GV called Gradient× Input consisting
in multiplying the map returned by GV with the input trace itself [WAGP20]. Likewise, Van
der Valk et al. have investigated the Singular Vector Canonical Correlation Analysis provide
insights on the layers of a trained MLP [vdVPB19]. Finally, Bursztein et al. presented at
DEFCON 2020 a tool involving explainability techniques for DL similar to GV [BP20]. By
using characterization maps similar to the ones produced by the GV method, they are able to
produce a mapping with the assembly instructions yielding the informative leakage. Thanks
to a reverse-engineering tool, they are able to map the leaky assembly instructions to the
corresponding area in the code, enabling to precisely identify the vulnerability.

7.4 Experimental Verification

So far we have claimed that relevant information can be extracted from the loss gradient of
a differentiable model. Following this idea, it has been shown to be efficient to localize P.o.Is
on simulated data and we validated that this method might overcome some weaknesses
of state-of-the-art techniques. We now plan to experimentally verify these claims on three
experimental datasets.

We first conduct comprehensive experimentations on the ASCAD datasets. Before intro-
ducing the results in Section 7.5, we first describe our investigations. In Subsection 7.4.1, we
present the CNN architecture used for profiling, and Subsection 7.4.2 gives an exhaustive
description of all the considered parameters for our experiments.

Then, we also verify the soundness of the GV method over the two polymorphism
datasets. The results are reported in Subsection 7.5.5.

7.4.1 CNN Architecture

For these experiments, we consider a VGG-based architecture, that we recall hereafter:

F = s ◦ λ|Z| ◦ [σ ◦ λC ]n1 ◦ [δp ◦ σ ◦ µ ◦ γW,K ]n2 ◦ µ , (7.7)

where γW,K denotes a convolutional layer made of K filters of size W , µ denotes a batch-
normalization layer, σ denotes the ReLU activation function, δp denotes an average pooling
layer of size p, λC denotes a dense layer, and s denotes the softmax layer. Furthermore, the
composition [δp ◦σ ◦µ ◦γW,K ] is denoted as a convolutional block. Likewise, [σ ◦λ] denotes a
dense block. We note n1 (resp. n2) the number of dense blocks (resp. convolutional blocks).
The details of this architecture have been presented in Subsection 4.2.3. We chose this archi-
tecture since it is the baseline used in the works of Benadjila et al. [BPS+19] introducing the
ASCAD database on which we work – see Subsection 3.8.2.

4 We prefer using the term “gradient visualization” rather than “sensitivity analysis” which is a metonymy:
the latter one encompasses the former one, beside other techniques.

5Another technique used by the authors, called weight visualization is rather focused on the understanding of
the learned weights of the dense layers in a CNN, therefore beyond the scope of this study.

112



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

As the ultimate goal is not to get the best architecture as possible, but rather having a
simple and efficient one, a lighter baseline has been chosen compared to the original archi-
tecture proposed in the authors’ work:

• The number of filters in the first layers has been decreased, i.e., K0 = 10 instead of 64,
though it is still doubled between each block:

Ki = max(512,K0 × 2i) , (7.8)

where Kn denotes the number of filters at the i-th convolutional block for i ≤ n2 and
the filter size has been set to W = 5.

• The dense layers contain less neurons: C = 1, 000 instead of 4,096.

• The last pooling layer is global – see Subsection 6.2.4 – i.e., its pooling size equals the
width of the feature maps in the last convolutional layer, so that each feature maps are
reduced to one point. While it drastically reduces the number of neurons in the first
dense layer and thereby its number of weights to learn, the global pooling layer also
forces the convolutional filters to better localize the discriminative features [ZKL+16].

7.4.2 Settings of the Experiments

Our experiments have been done with the 50, 000 EM traces from the ASCAD database,
presented in Subsection 3.8.2. Each trace is made of 700 time samples.6 Hereafter, the three
different configurations investigated in this chapter are presented with the notations taken
from [BPS+19]. For each experiment we precise the label to be learned. This label is known
during the profiling phase but not during the attack phase:

• Experiment 1 (no counter-measure): the traces are synchronized, the label to learn is
Z = Sbox(P⊕k?)⊕ rout, where rout is a random share used to protect the leakage of the
Sbox output – see Subsection 3.8.2. In other terms, rout is assumed here to be known,
like P. The traces correspond to the dataset ASCAD.h5, and the labels are recomputed
from the metadata field of the hdf5 structure.

• Experiment 2 (artificial shift) : the labels are the same as in Exp. 1 but the traces are
artificially shifted to the left of a random number of points drawn from a uniform dis-
tribution over J0, 100K. The traces correspond to the dataset ASCAD_desync100.h5.

• Experiment 3 (synchronized traces, with secret-sharing): we target Z = Sbox(P⊕k?),
i.e., we have no knowledge anymore of the random share rout – neither during profiling
or attack phase. Concretely, the traces correspond to the dataset ASCAD.h5 and the
labels are directly imported from the field labels in the hdf5 structure.

It is noticeable that in every case, as the key is fixed, and both the plaintext and the share
rout are completely random and independent. Therefore, the labels are always balanced.

Following the results presented in Chapter 5, we use the NLL as a loss function. The
settings have been made so that any experiment is reproducible: random seeds are known,
and all the settings of the GPU are set to avoid stochastic behavior.7 For each tested neu-
ral network architecture, a 5-fold cross-validation strategy has been followed. Namely, the
ASCAD database has been split into 5 sets S1, . . . ,S5 of 10, 000 traces each, and the i-th
cross-validation, denoted by CVi, corresponds to a training dataset Sp = ∪j 6=iSj and a vali-
dation dataset Sv = Si. The given performance metrics and the visualizations are averaged
over these 5 folds. The optimization is done with the Adam algorithm – see Subsection 2.5.2.

6 It corresponds to 26 clock cycles.
7Usually, forcing the GPU to have a fully deterministic behavior implies worse runtime performance.

113



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

The learning rate is always set to 10−4. Likewise, the batch size has been fixed to 64. For
each training, we operate 100 epochs, i.e. each couple (xi, zi) is passed 100 times through an
iteration of the optimization algorithm, and we keep as the best model the one that has the
lowest GE on the validation set.8

7.5 Results

This section presents experimentations of the GV in different contexts, namely (Exp. 1) when
the implementation embeds no counter-measure, (Exp. 2) when traces are de-synchronized
and (Exp. 3) when Boolean secret-sharing is applied. The methods used to train the CNNs,
to tune their hyper-parameters and to generate the GV have been presented in Section 7.4.

7.5.1 Application Without Counter-measure

In application context (Exp. 1) – i.e. no counter-measure – several CNNs have been trained
with the architecture hyper-parameters in Equation 7.7 specified as listed in Table 7.1a. Since
the random shares are here directly targeted – i.e. the masks are supposed to be known –
without re-combination – thereby no dense layer – should be required, according to the
study of Benadjila et al. [BPS+19, Sec. 4.2.4]. The hyper-parameter n1 should therefore be
null. However, to validate this intuition we let it vary in {0, 1, 2}. The validation loss cor-
responding to these values is given in Table 7.1b, where Na(F ) denotes here the minimum
number of traces required to have a GE lower than 1. Even if this minimum is roughly the
same for the three different configurations, we selected the best one – i.e. n1 = 1 – for our
best CNN architecture. Figure 7.4a presents the corresponding GV, and Figure 7.4b depicts
the corresponding SNR. It may be observed that the peaks obtained with GV and SNR are
identical: the highest point in the SNR is the second highest point in GV, whereas the high-
est point in GV is ranked 7-th in the SNR peaks. More generally both methods target the
same clock cycle (the 19-th). These observations validate the fact that our characterization
method is relevant for an unprotected target.

In addition to the GV we also show in Figure 7.5 the Jacobian matrix of the trained
model. Around the time coordinate 500 along the x-axis, some blue areas depict a high
value in the matrix. One may remark that those blue areas particularly appear for value of
the sensitive variable – along the ordinates axis – whose Hamming weight is one. Since a
high value in the Jacobian matrix implies a high sensitivity to slight changes in the input
trace at the considered time coordinate, we may imagine that the trained CNN is able to
give a high confidence when expected to predict those values of the sensitive variable. In
other words, they are more distinguishable than the other values. Although not a formal
proof, this observation is coherent with a Hamming weight leakage model, where values
of the target variable with low – e.g. 0 or 1 – or high – e.g. 7 or 8 – Hamming weight are

8 Following the discussion in Chapter 5, the other ML metrics are ignored.

Table 7.1: Settings and results of Exp. 1

(a) Architecture hyper-parameters.

Parameter Value

n2 5
n1 {0, 1, 2}

(b) Performance metrics without counter-
measure.

n1 Loss (bit) Na(F )

0 6.40 3.25
1 6.15 3
2 6.35 3.25

114



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

0 100 200 300 400 500 600 700

Time (samples)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G
ra

d
ie

n
t

Gradient averaged on a 5-fold cross validation
No masking, no desynchronization

(a) GV for the trained model with one dense
layer, averaged over the validation traces.

0 100 200 300 400 500 600 700

Time (samples)

0.0

0.1

0.2

0.3

0.4

S
N

R

Z = Sbox[p[3]⊕ k[3]]⊕ rout

(b) The corresponding SNR.

Figure 7.4: Case where no counter-measure is considered.

more distinguishable than the others. This example hence shows how the Jacobian matrix
can bring additional insights compared to the gradient.

0 100 200 300 400 500 600 700

Time (samples)

0

50

100

150

200

250

Se
ns

iti
ve

 v
ar

ia
bl

e

Jacobian matrix - No countermeasure

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 7.5: Jacobian matrix for the best models in application context Exp. 1.

7.5.2 Application with an Artificial De-synchronization

We now add a new difficulty by considering the case of de-synchronization as described
in Subsection 7.4.2. The hyper-parameter grid is exactly the same as in Subsection 7.5.1,
and the corresponding loss is given in Table 7.2b. Faced to misalignment, the considered
architectures have still good performances, and the attacks succeeded in roughly the same
number of traces than before. Interestingly, Figure 7.6 shows that the GV succeeds in re-
covering the leakage localization while the SNR does not. Actually, the gradient averaged
over the profiling traces Figure 7.6a shows that, instead of having a small number of peaks,
a band is obtained whose width approximately equals the maximum quantity of shift ap-
plied in the traces, namely 100 points. Moreover, individual gradients in Figure 7.6b bring
a single characterization for each trace, enabling to guess approximately the shift applied to
each trace.

7.5.3 Application with a First Order Secret-Sharing

The next experiment concerns the application of GV in presence of Boolean secret-sharing,
namely the one implemented in the ASCAD dataset. Several model configurations have

115



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

Table 7.2: Settings and results of Exp. 2

(a) Architecture hyper-parameters.

Parameter Value

n2 5
n1 {0, 1, 2}

(b) Performance metrics with de-
synchronization.

n1 Loss (bit) Na(F )

0 6.64 4.0
1 6.46 3.6
2 6.90 5.4

0 100 200 300 400 500 600 700

Time (samples)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

G
ra

d
ie

n
t

Loss function gradient (average)
No masking, random shift (100)

(a) GV averaged over all the traces. (b) GV for each trace separately.

0 100 200 300 400 500 600 700

Time (samples)

0.0045

0.0050

0.0055

0.0060

0.0065

S
N

R

Z = Sbox[p[3]⊕ k[3]]⊕ rout

(c) The corresponding SNR.

Figure 7.6: Case where de-synchronization is considered.

116



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

(a) Architecture hyper-parameters – bold values
refer to the best choices.

Parameter Value

n2 {5, 6, 7, 8}
n1 {2, 3}
K0 (first layer) 10
W {3, 5, 11}

100 101 102

Number of traces

0

20

40

60

80

100

120

140

Gu
es

sin
g 

En
tro

py

Guessing Entropy on cross validated grid-search with CNN
n3 = 7, n1 = 3, kernel_size = 5
n3 = 7, n1 = 2, kernel_size = 5
n3 = 8, n1 = 2, kernel_size = 5
n3 = 7, n1 = 2, kernerl_size=11
n3 = 8, n1 = 2, kernel_size = 11
n3 = 7, n1 = 3, kernel_size = 11
n3 = 8, n1 = 3, kernel_size = 3
n3 = 5, n1 = 3, kernel_size = 11

(b) GE for the 8 best architectures.

Table 7.3: Results of Exp. 3 with Boolean secret-sharing.

0 100 200 300 400 500 600 700

Time (samples)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

G
ra

d
ie

n
t

Loss function gradient (average)
With masking, no shift

(a) GV in presence of secret-sharing (without
early-stopping).

0 20 40 60 80 100

Epoch

7.70

7.75

7.80

7.85

7.90

7.95

8.00

8.05
L

os
s

(C
ro

ss
-E

n
tr

op
y)

Loss for the best architecture (Exp.3)
Training losses in dotted lines, Validation losses in plain lines

CV 0

CV 1

CV 2

CV 3

CV 4

(b) Validation loss for each fold.

Figure 7.7: Explaining the ghost peaks.

been tested which correspond to the hyper-parameters listed in Table 7.3a. We eventually
selected the 8 models that achieved the best efficiency, i.e. the model F (·, θ) with the lowest
Na(F ) (Table 7.3b).9

For the selected architectures, our first attempt to use GV did not give full satisfaction.
As an illustration, Figure 7.7a presents it for one of the tested architectures – averaged over
the 5 folds of the cross-validation. Indeed, it looks difficult to distinguish P.o.Is, i.e. those
identified by our SNR characterization, see Figure 7.8b, from ghost peaks, i.e. peaks a priori
independent of the sensitive target. To explain this phenomenon, we decided to study the
validation loss of the trained models. Figure 7.7b presents it for one model and for each of
the 5 cross-validation folds CVi, i ∈ J0, 4K.

It may be observed in Figure 7.7b that the training and validation loss curves proceeded
a fast big decrease after an initial plateau during the first 15 epochs. After that, the valida-
tion loss starts increasing while the training loss still decreases. After roughly 50 epochs,
the validation loss goes on a regime with unstable results, but still higher than the train-
ing loss. These observations are clues of over-fitting.10 It means that the model exploits
(non-informative) leakage not localized in the P.o.Is to memorize the profiling data and to
improve the training loss. Such a strategy should not generalize well on the validation
traces. As we are looking for models that implement a strategy that are generalizable on

9 Contrary to the convention taken in Subsection 3.2.2, Na(F ) is here computed with respect to the GE, as
defined by Equation 3.7.

10 We recall the reader that an explanation of over-fitting has been given in Subsection 5.5.2.

117



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

0 100 200 300 400 500 600 700

Time (samples)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

G
ra

d
ie

n
t

Loss function gradient (average)
With masking, no shift

(a) GV.

0 100 200 300 400 500 600 700

Time (samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
N

R

Signal-to-Noise Ratios
ASCAD database

rout
Z ⊕ rout

(b) The corresponding SNR when taking rout as a
share.

0 100 200 300 400 500 600 700

Time (samples)

0.0

0.2

0.4

0.6

0.8

S
N

R

Z⊕ r[3]

r[3]

(c) The corresponding SNR when taking M[3] as
a share.

Figure 7.8: Early-stopping is applied.

unseen traces, we propose to use a regularization technique called early-stopping [GBC16]:
the training is stopped after a number of epochs called patience – in our case 10 – if no re-
markable decrease – i.e. up to a tolerance term, 0.25 bits here – is observed in the validation
loss. With this slight modification, the previous architectures are trained again from scratch,
and a better GV is produced – see Figure 7.8a. As the main peaks are separated enough, an
evaluator may conclude that they represent different leakages.

7.5.4 Comparison in the Context of Template Attacks

A careful observation of Figure 7.8 shows that the main peaks given by the GV are not ex-
actly aligned with those given by the SNR characterization – performed under the hypoth-
esis that the shares are known. For GV, the main peak appears at the points corresponding
to the 20-th clock cycle, which is one cycle after the one previously targeted by both the GV
and the SNR in the previous case where no counter-measure was considered – see Subsec-
tion 7.5.1. We validated that this phenomenon occurred for every successful visualization
produced by GV. Furthermore, concerning the peaks related to the mask leakage, the GV
only emphasizes one clock cycle (the 6-th) whereas the SNR highlights two of them: the 6-th
and the 7-th. It implies that the GV should not be taken as an exact equivalent to the SNR.

Actually, we found out a possible track of explanation to justify this slight shift by look-
ing at the pseudo-code sketching the secret-sharing scheme of the ASCAD database [BPS+19,
Alg. 1]. Indeed, the latter one emphasizes that another random variable forming a 2-sharing
of the output of Sbox, denoted as r[3], is used in the scheme to protect the sensitive com-

118



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

100 101 102 103 104

Number of traces

0

20

40

60

80

100

120

140
G

u
es

si
n

g
E

n
tr

op
y

Guessing Entropy for Template Attack
with SNR and Gradient characterization

16 PoIs

2 PoIs

32 PoIs

4 PoIs

8 PoIs

(a) . . . SNR based attacks.

100 101 102 103 104

Number of traces

0

20

40

60

80

100

120

140

G
u

es
si

n
g

E
n

tr
op

y

Guessing Entropy for Template Attack
with PCA and Gradient characterization

16 PoIs

2 PoIs

32 PoIs

4 PoIs

8 PoIs

(b) . . . PCA based attacks.

Figure 7.9: Comparison of the GE for GV based attacks in plain lines and, in dotted lines, . . .

putation before and after applying the SubBytes operation, while the share rout considered
to compute the SNR in Figures 3.9b and 7.8b is used during the SubBytes operation. By
computing the SNRs of Z ⊕ r[3] and r[3] in Figure 7.8c, we remark that the peaks of SNR fit
better with the peaks of GV previously highlighted in the discussion.

Hence a question through this observation: does it have a sense for the trained CNN
to focus more on the leakages of the couple (Z ⊕ r[3], r[3]) than on the leakages of the cou-
ple (Z ⊕ rout, rout)? To give an answer, we decided to use our characterization method as a
pre-processing for a Template Attack, and compare it to two pre-processing methods: SNR
– through P.o.Is selection – and PCA – through dimensionality reduction. The input di-
mension of the traces are reduced to 2n, n ∈ {1, 2, 3, 4, 5} points, based on the following
methods:

• SNR strategy: the 2n−1 highest P.o.Is from the SNR of rout and the 2n−1 highest P.o.Is
from the SNR of Z ⊕ rout are selected;

• PCA strategy: the 2n first components in a decreasing order of contribution are se-
lected;

• GV strategy: the 2n−1 highest P.o.Is from the GV are selected from the area around the
6-th clock cycle. Likewise, the other half comes from the peaks in the area around the
20-th clock cycle.

Remark 8. To make a fair comparison in the context of a first order secret-sharing, we assume that
we know the shares during the characterization phase for SNR, so that we can localize the corre-
sponding P.o.Is. Notice that we do not assume the mask knowledge neither during the profiling phase
nor for the other strategies. Moreover, we do not use any re-combination function as described in
Subsection 3.6.1 in none of the different strategies.

Obviously, this scenario is not realistic as if one has access to the mask during characterization,
then the latter one is very likely to be also available during the profiling phase.

Once reduced, the traces are processed with a GT, and the GE is estimated. The results
are given on Figure 7.9. The plain curves denote the GE for GV whereas the dotted curves
denote either GE obtained with SNR (left) or PCA (right).

From Figure 7.9 we can observe several things:

• Only a few P.o.Is from the GV strategy are needed to get a successful attack. The opti-
mal number of extracted P.o.Is is 4. Beyond that, the other P.o.Is bring more difficulty
in the Template Attack than they bring new information (due to the increasing dimen-
sionality).

119



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

• When the SNR strategy is applied, the optimal attack is done with 2 P.o.Is and the
more P.o.Is are used, the less efficient are the attacks. This observation confirms that
SNR selects relevant P.o.Is as expected. However, when comparing the SNR and GV
strategies with a same number of P.o.Is, the latter one appears to be always better,
except for 32 P.o.Is where both strategies seem equal.

• The PCA strategy does not work well for the two or four first extracted components.
However, when considering eight components and above, it achieves an efficiency as
good as the GV strategy, and even sometimes better.

• In any case, the Template Attacks need much more traces to get a GE converging to-
wards zero than the best CNN attack presented in Table 7.3.

Based on the presented experiments, we may draw several conclusions on the GV ef-
ficiency. First of all, it seems to be an accurate characterization method, almost always
much better than that based on an SNR. This first conclusion enables to answer the question
previously asked: the targeted P.o.Is in GV are relevant leakages and the couple of shares
(Z ⊕ r[3], r[3]) leaks more informative clues in the traces about the sensitive variable Z than
the couple of shares (Z ⊕ rout, rout). Actually, this finding is not very surprising, since it
could have been deduced from the SNRs computed by Benadjila et al. when presenting the
ASCAD database [BPS+19]. However, since the knowledge of the random shares is not re-
quired to train the CNN, the attacker does not have to previously decide which sensitive
intermediate computation is the most likely to lead to the most efficient attack.

Secondly, GV can be used as a reliable dimensionality reduction pre-processing in pres-
ence of counter-measures, even more reliable than PCA in our cases where one makes a
reduction to a very few dimensions (2 or 4). However, this conclusion has a minor interest,
as the GV seen as a pre-processing method is done post-mortem, and the training of a CNN
model did not suffer from a high dimensional input.

Last, but not least, the GV method unfortunately faces a drawback: if the trained CNN
overfits, then the GV might suffer from the presence of ghost peaks. That is why the overfit-
ting must be carefully monitored. In this sense, visualizing the gradient can hopefully help
to assess whether it is the case or not.

7.5.5 Gradient Visualization on the Polymorphism Dataset

As a final demonstration of the technique, we now apply GV on the trained CNNs from the
two attacks ACNN described in Subsection 6.2.4, in order to show how this characterization
method can provide insights about the acquired traces and the behavior of the target device.
For completeness, we additionnaly trained CNNs targeting the remaining bytes of the secret
key which have not been investigated yet for the attacksACNN in Chapter 6. The architecture
used for those additional trainings remained exactly the same, namely:

s ◦ λ|Z| ◦ [σ ◦ λC ]n1 ◦ [δp ◦ σ ◦ µ ◦ γW,K ]n2 ◦ µ , (7.9)

where γW,K denotes a convolutional layer made of K filters of size W , µ denotes a batch-
normalization layer, σ denotes the ReLU activation function, δp denotes an average pool-
ing layer of size p, λ denotes a dense layer, and s denotes the softmax layer. The hyper-
parameters are given in Table 6.1.

mbedTLS Figure 7.10 shows the gradient visualizations applied on one trace from the
mbedTLS dataset based on the corresponding trained CNN. The top plot shows a trace
whereas the bottom plots show the 16 gradients computed from this trace, targeting each
byte. Those gradients have been gathered into four pools. First, it can be remarked that con-
trary to the SNR plotted in Figure 3.13, the GV shows some peaks in the different gradients

120



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

0 10000 20000 30000 40000 50000 60000 70000 80000

0 10000 20000 30000 40000 50000 60000 70000 80000
0.000

0.001
Bytes (0, 5, 10, 15)

0 10000 20000 30000 40000 50000 60000 70000 80000
0.000

0.001
Bytes (4, 9, 14, 3)

0 10000 20000 30000 40000 50000 60000 70000 80000
0.000

0.001
Bytes (8, 13, 2, 7)

0 10000 20000 30000 40000 50000 60000 70000 80000

Time (samples)

0.000

0.001
Bytes (12, 1, 6, 11)

Figure 7.10: GV for one trace of the mbedTLS implementation.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

X0 X1 X2 X3

(a) AES state after the first AddRoundKey

0

5

10

15

4

9

14

3

8

13

2

7

12

1

6

11

X0 X1 X2 X3

(b) AES state at the end of the ShiftRows

Figure 7.11: AES states at two moments in the first round potentially leaking information about the
secret key bytes.

plotted in Figure 7.10, which shows that the GV is able to emphasize the P.o.Is despite the
application of code polymorphism on the target implementation.

More particularly, it may be seen that the peaks of gradient corresponding to the bytes
(12, 1, 6, 11) colored in green appear first, followed by those of the bytes (8, 13, 2, 7) in yellow,
then those of the bytes (4, 9, 14, 3) in orange and finally the peaks of gradient for the bytes
(0, 5, 10, 15) in red. Interestingly, this order can be read in light of the source code of the
implementation. The AES state is represented here by four uint32_t variables X0, . . . ,
X3, each one denoting one column of the state array. The repartition of the bytes into the
state is represented in Figure 7.11 at two steps of the first round which could potentially
be the leakage source. Figure 7.11a denotes the state after the first AddRoundKey while
Figure 7.11b denotes the state at the end of the ShiftRows. Since the operations are done
column-wise, the bytes belonging to the same column of the state should leak at close time
samples to each other in the trace. That being said, we easily remark that the pools of
gradient peaks described above coincide with the columns of the AES state at the end of
the ShiftRows depicted in Figure 7.11b, which corresponds to the call of the l.u.ts of the
T-table implementation, rather than the key addition.

AES 8-bit Figure 7.12 shows the gradient visualizations in the same way as for mbedTLS,
but this time, for each key byte separately. A focus on the first peak of each gradient high-
lights that they appear in increasing order of the byte index: the leakage probably comes
from a for loop iterating over each byte of the AES state. Thus, the corresponding oper-
ation might be either AddRoundKey or SubBytes. Furthermore, a close look at the second
peak of each gradient reveals that they are almost aligned, except four of them: (0, 4, 8, 12).
A quick look at the ShiftRows operation inside the source code of the AES 8-bit implementa-
tion reveals that it never manipulates the latter bytes of the state, contrary to the others. This
can also be deduced from Figure 7.11 where the only bytes not moving from Figure 7.11a to
Figure 7.11b are those same bytes. We deduce that for the bytes 0, 4, 8, 12, the CNN exploits

121



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

0 20000 40000 60000 80000 100000 120000 140000 160000

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

0.0025
0.0050

0 20000 40000 60000 80000 100000 120000 140000 160000

Time (samples)

0.0025
0.0050

Figure 7.12: GV for one trace of the AES 8-bit implementation. The top plot depicts the considered
trace, whereas the bottom plots denote the gradients for each targeted byte.

the joint leakages of the AddRoundKey and SubBytes operations, whereas for the other bytes
the CNN rather exploits the joint leakages of the AddRoundKey and ShiftRows operations.

Anyway, in every cases, two leakages are jointly exploited by the CNN in the AES 8-
bit implementation whereas only one leakage seems to be used in the mbedTLS one. This
might explain why the attack on the latter implementation is slightly worse than in the
former implementation, although the traces seemed less noisy at first sight.

Finally, the gradient visualizations showed in both Figure 7.10 and Figure 7.12 highlight
relatively sharp peaks.11 This means that the CNN model is able to precisely localize the
leakages in the traces, despite the application of code polymorphism. In other words, the
code transformations applied here did not prevent the CNN model to localize and exploit
the leakage. Instead, one would expect sound code transformations to flatten and spread
the gradient peaks along a wider zone of the trace, in order to increase uncertainty about
the leakage localization. One might imagine other code transformations which could be
plugged in the Belleville et al.’s tool in order to address this problem, although beyond the
scope of this demonstration.

7.6 Conclusion

In this chapter, we have theoretically shown that a method called Gradient Visualization
(GV) can be used to localize Points of Interest (P.o.Is). This result relies on two assumptions
considered as realistic in an SCA context.

Generally, the efficiency of the proposed method only depends on the ability of the pro-
filing model to succeed in the attack. In the case where counter-measures like secret-sharing
or misalignment are considered, CNNs are shown to still build good p.m.f. estimations,
and thereby the GV provides a good characterization tool. In addition, such a visualization
can be made for each trace individually, and the method does not require more work than

11A similar analysis can be done on other traces from the dataset.

122



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

needed to perform a profiling with CNNs leading to a successful attack. Therefore, char-
acterization can be done after the profiling phase whereas profiling attacks with Gaussian
Templates (GTs) often require to proceed a preliminary characterization phase.

We verified the efficiency of our proposed method on simulated data. It has been shown
that as long as a DNN is able to have slightly better performance than randomness, it can
localize points containing the informative leakage.

On experimental traces, we have empirically shown that GV is at least as good as the
state-of-the-art characterization methods, in different cases corresponding to the presence
or not of different counter-measures. Not only it can still localize P.o.Is in presence of de-
synchronization or secret-sharing but it has also been shown that different P.o.Is can be em-
phasized compared to the first ones highlighted by SNR. These new P.o.Is have been shown
to be at least as relevant as the ones proposed by SNR.

Altogether, the gradient visualization method we proposed here provides tools to the
evaluator in order to get a clear understanding of the leakage detected by the DNNs during
the profiling phase. We have shown how this characterization could be combined with
information on the source code on order to better identify the vulnerability in the code.
Therefore, those insights can not only help the evaluator to build its diagnosis, but also
help the developer to fix the vulnerability of implementations, no matter they are originally
protected or not.

123



CHAPTER 7. GRADIENT VISUALIZATION FOR GENERAL CHARACTERIZATION IN
PROFILING ATTACK

124



Chapter 8

Conclusion & Perspectives

It is now time to conclude this thesis whose aim was to push the limits of the understand-
ing of deep learning for side-channel analysis. Hereafter, we propose a summary of the
works and contributions proposed so far, and we recall to what extent they address the is-
sues raised at the end of Chapter 4. Then, we propose some perspectives, including the
description of some seminal works we started during this thesis.

8.1 Summary of the Contributions

After having presented the general framework of side-channel analysis in Chapter 3, we
have formalized the use of machine learning in SCA in Chapter 4. Training a model to
approximate a true p.m.f. can be seen as solving an optimization problem. More precisely,
it consists in selecting from an hypothesis class H the model F that fits the most with a
target function F ?, thanks to some pairs of inputs/outputs of the target function, acquired
during the profiling phase. Here the target function is a conditional p.m.f. used to feed a
distinguisher whose aim is to recover a chunk of secret key. Chapter 4 has reviewed the
different advantages and drawbacks of the use of ML, and more particularly the use of DL
for SCA. Those observations have lead to raise some issues, summarized at the conclusion
of Chapter 4.

The first issue concerned the meaning behind the term “the most” in the previous para-
graph. More precisely, it concerns the choice of the loss function quantifying the dissimilar-
ity between the output of a model to learn, and the outputs expected for the optimal model
F ?. In particular, what could be the meaning of this loss function, from an SCA point of
view? Those are the questions addressed by Chapter 5. We showed that one of the most
widely used loss function, namely the NLL, could be used to quantify the quality of the
trained model during the attack phase, therefore bridging the gap between the ML metrics
and the SCA ones, emphasized first by Cagli et al. [CDP17] and Picek et al. [PHJ+18]. As a
concrete application of our results, it is possible to estimate the efficiency of a key recovery
based on the values of the loss function reached at the end of the profiling phase, without
having to perform the key recovery as itself. Moreover, we showed that this approach is
sound no matter the nature of the counter-measure used to protect the target implementa-
tion. Altogether, this study has paved the way towards a better theoretical understanding
of DL for SCA.

Chapter 6 provided insights from an evaluation of a software device protected with the
code polymorphism counter-measure. From a developer’s point-of-view, it demonstrated
the necessity to adapt the configuration of the random code generators a.k.a. SGPCs in
order to improve the efficiency of the counter-measure against more sophisticated attacks,
e.g., based on deep learning. From an evaluator’s point-of-view, it emphasized the fact that
highly complex DNN architectures with many layers and numerous parameters to fit is
not always necessary in SCA, since simpler architectures such as the one suggested in this

125



CHAPTER 8. CONCLUSION & PERSPECTIVES

work remained sound against traces 32 times larger than what has been tackled so far with
deep learning. Although the works presented in Chapter 6 represent a case study rather
than a coprehensive one, we hope that it will trigger more thorough discussions about the
common belief that complex DNN architectures would be necessary to tackle a DL-based
SCA evaluation. Likewise, a natural extension of our works here woul be to investigate the
case of large-scale SCA traces on implementations not only protected by hiding, but also
protected with secret-sharing.

Finally, Chapter 7 has proposed a method called Gradient Visualization which can be
used to localize Points of Interest. This method opens the black-box of deep learning mod-
els, making their decisions more transparent in an SCA context. We have shown that this
method, requiring a negligible runtime overhead with respect to the one required during the
profiling phase, is not particularly dependent on the nature of the counter-measures used
to protect a target implementation, as long as the underlying DL model is itself robust to
the particular counter-measure. Moreover, the characterization can be done for each trace
separately, which may be of particular interest when drawing a precise diagnosis. We have
illustrated the relevance of the method on several datasets, and shown of it can be used to
identify the origin of the vulnerability in the source code. An automatization of the vulnera-
bility detection, built on a DL-based characterization method such as GV, thereby extending
the recent works of Burzstein et al., could be a promising step forward.

8.2 New Tracks of Research in DL-based SCA

We have recalled in Chapter 4 that DNNs are particularly interesting in SCA since they are
universal enough to be able to circumvent any counter-measure investigated so far. Actu-
ally, Bronchain et al. emphasized an intriguing difficulty of DL-based SCA in a paper at
CHES 2020: they show through simulated experiments that MLPs encounter difficulties to
learn a leakage spanned by an affine secret-sharing scheme, although some of the shares
are not noisy. This demonstration is a side experiment of a more general study of a new
public dataset which will be soon released by the ANSSI,1 gathering traces acquired on an
MCU protected with an affine secret-sharing scheme – see Subsection 3.7.1. Bronchain et al.
conclude their paper with this challenge to the proponents of deep learning in SCA.

Learning this field multiplication in a fully automated manner appears to be
a challenging task for existing ML / DL tools (besides being a waste since this
part of the attack is trivial to perform manually) [. . . ]. Concretely, we believe our
work at least states an interesting challenge to ML / DL research: can the ANSSI
implementation be broken [with DL] [. . . ] with similar time complexities and
profiling efforts as [their GT-based attacks]? [BS20]

We fully agree with this point of view: it seems obvious that expecting a DNN model to
learn how to recombine the informative leakages of several shares is a waste since the nature
of the scheme is often known in a profiling attack, according to the Kerckhoff’s principle.
That is why Bronchain et al. could emphasize a simple but efficient attack based on GTs,
by leveraging all the knowledge about the implementation. Nevertheless, their proposal
implicitly requires additionally to know the values of the random shares used in the secret-
sharing scheme during the profiling phase. Most of the time in practical evaluations, this
cannot always be assumed, since the developers are rarely willing to give the access to the
output of the RNG. This is somehow formalized for example by the model threat proposed
by Hoang et al. at CHES 2020 [HHO20, Sec. 4.2.1]. Thus, there is a gap between efficient
attacks in a worst-case-yet-sometimes-unrealistic scenario – mostly useful from a theoretical
point-of-view e.g. to discuss the generic soundness of a counter-measure – and automated

1 The database will be hosted on the data.gouv.fr platform.

126

data.gouv.fr


CHAPTER 8. CONCLUSION & PERSPECTIVES

attacks in a more realistic scenario, which is more relevant for practical evaluations – e.g.
useful to evaluate the robustness of a particular implementation. I, for one, think that DL
may still bring relevant contributions in the latter case, thereby bridging the gap between
both scenarios. Hereafter, we propose two main tracks of practical improvements we wish
we had time to more deeply explore through this thesis.

8.2.1 Discrete Convolution Layers

We have seen through Equation 5.21 that the conditional p.m.f. of a sensitive random vari-
able protected with a d-th order Boolean scheme could be rephrased as a discrete convolu-
tion product with respect to the additive group (F28 ,⊕):

F ?(x) = Pr (Z | X = x) : s 7→ (h0 ∗h1 ∗ · · · ∗hd)(s) , (8.1)

where the hi = Pr (Zi | X = x) are the conditional p.m.f.s of each share Zi separately.
Through this thesis, we have recalled that the profiling phase consisted in substituting the
optimal model F ? by another one F (·; θ) whose parameters θ are adjusted during the profil-
ing phase. This formulation implies that the attacker must jointly learn not only the leakage
models of each share individually but also the way those functions are then recombined to
give F ?.

Since the secret-sharing scheme can be assumed to be known by the attacker/evaluator,
our proposal would be to directly encode it in the DNN. In other words, we might substitute
the learning of F (·, θ) with the joint learning of elementary models F̃ (·, θi) : X → P(Z), such
that:

F (·; θ) = F̃ (·; θ0) ∗ F̃ (·; θ1) ∗ . . . ∗ F̃ (·; θd) , (8.2)

where θ = (θ0, θ1, . . . , θd)ᵀ. Here, each elementary model F̃ (·, θi) would approximate the
true leakage hi of each share Zi. By “joint learning”, we mean that we would still use the
values of the sensitive target variable Z as labels during for the training, whereas Bronchain
et al. trained their elementary leakage models independently from each other, i.e., by using the
values of the random shares Zi as labels, which we previously claimed to be hardly feasible
in practical evaluations.

Through this new formulation, although the leakage models of each share must still
be jointly learned by the attacker, the specific learning of the recombination of the different
shares’ leakage model could be spared. This would still be harder than independently learn-
ing the different elementary leakage models, but would represent a good balance between
the assumptions made in academic works and those made in industrial applications.

Moreover, this trick could be extended to any group-based secret-sharing scheme, so
the difficulty of learning would not depend anymore on the nature of the scheme. Hence,
the difficulty to learn the field multiplication raised by Bronchain et al. [BS20] could be cir-
cumvented, while not requiring too much unrealistic assumptions in the threat model in
practice.

8.2.2 Extending and Generalizing Multi-Task Learning

Maghrebi recently proposed the so-called multi-labeling technique – a.k.a. multi-task learn-
ing, see Subsection 4.4.5 – in order to target several intermediate sensitive computations at
once [Mag20]. However, they claim that their solution only works practically for at most
two target variables simultaneously.

During the evaluation of code polymorphism, we have also tested a multi-task learning
methodology which is not limited to such a low number of target variables. As an exam-
ple, we have been able to target the 16 output bytes of the AddRoundKey operation at once
during the evaluation of both mbedTLS and AES 8-bit implementations. Not only the archi-
tecture used is able to better leverage the computation capacities of a GPU by running more

127



CHAPTER 8. CONCLUSION & PERSPECTIVES

operations in parallel, but the similarities between the targeted leakages allows to put some
of the first layers of the 16 corresponding CNNs in common, into a so-called stem block.
The spare in the number of parameters can be seen as a way to regularize the training of DL
models, by decreasing the ratio between the number of parameters to adjust and the number
of labels to predict. The SCA framework is particularly adapted to multi-task learning, since
there are many intermediate sensitive computations, yielding similar leakage behavior, that
the attacker could target at once.

This could be particularly helpful when tackling the profiling of an implementation pro-
tected with secret-sharing. Indeed, most of these implementations may use the same ran-
dom share to protect many sensitive intermediate computations. As an example, in the
ASCAD dataset, the same random share rout is used to protect all the output bytes of the
SubBytes operation. Whereas targeting only one byte – e.g. the first one – would require a
DL model to localize two intermediate computations, i.e. both Sbox[p0 ⊕ k0] ⊕ rout and rout,
targeting at the same time the 16 output bytes would actually require to localize 17 interme-
diate operations, i.e. the Sbox[pi ⊕ ki]⊕ rout for 0 ≤ i ≤ 15 and rout. In other words, the ratio
between the number of labels carrying information to feed the training and the number of
intermediate computations to localize would increase from 1

2 to 16
17 ≈ 0.94. Intuitively, we

expect this trick to make the learning procedure more efficient.

8.2.3 Final Word

We hope that the works presented in this thesis will be of great interest for the SCA commu-
nity, in order to better understand the way how DL-aided SCA works, while bringing more
trust in this approach. The contributions presented so far intended to be not only theoretical,
but also practical, and can be easily implemented in the whole workflow of DL-based SCA
for security evaluations. Finally, we hope that the last two tracks of research, will give the
members of the SCA community some inspiration to guide their future work towards better
embracing the full potential of DL in their evaluations.

128



Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org. 70, 109

[ABI] 8.8 billion smart cards shipped in 2014 driven by growth in the banking
and sim card markets. https://www.abiresearch.com/press/88-billion-smart-
cards-shipped-in-2014-driven-by-g/. Accessed: 2020-09-11. 3

[ABP12] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. A code morphing
methodology to automate power analysis countermeasures. In Patrick Groen-
eveld, Donatella Sciuto, and Soha Hassoun, editors, The 49th Annual Design
Automation Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012,
pages 77–82. ACM, 2012. 46, 94

[ABPS15] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scan-
dale. The MEET approach: Securing cryptographic embedded software against
side channel attacks. IEEE Trans. on CAD of Integrated Circuits and Systems,
34(8):1320–1333, 2015. 46, 94

[AD86] David Aldous and Persi Diaconis. Shuffling cards and stopping times. The
American Mathematical Monthly, 93(5):333–348, 1986. III

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of DES and
aes, secure against some attacks. In Çetin Kaya Koç, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2001, Third International Workshop, Paris, France, May 14-16, 2001, Proceedings,
volume 2162 of Lecture Notes in Computer Science, pages 309–318. Springer, 2001.
42

[APSV20] Melissa Azouaoui, Romain Poussier, François-Xavier Standaert, and Vincent
Verneuil. Key enumeration from the adversarial viewpoint. In Sonia Belaïd
and Tim Güneysu, editors, Smart Card Research and Advanced Applications, pages
252–267, Cham, 2020. Springer International Publishing. 27

[ARM19] ARMmbed. 32-bit T-table implementation of AES for mbedTLS.
https://github.com/ARMmbed/mbedtls/blob/master/library/aes.c, 2019.
51

129

https://www.abiresearch.com/press/ 88-billion-smart-cards-shipped-in-2014-driven-by-g/
https://www.abiresearch.com/press/ 88-billion-smart-cards-shipped-in-2014-driven-by-g/
https:// github.com/ARMmbed/mbedtls/blob/master/library/aes.c


BIBLIOGRAPHY

[BBCS20] Charles-Henry Bertrand, Olivier Bronchain, Gaëtan Cassiers, and François-
Xavier Standaert. How to fool a black box machine learning based side-channel
security evaluation. In Yet Another Conference on CRYPTography and Embedded
Devices, YACCRYPTED 2020, May 2020. 73

[BCH+20a] Nicolas Belleville, Damien Couroussé, Karine Heydemann, Quentin Meunier,
and Inès Ben El Ouahma. Maskara: Compilation of a masking countermeasure
with optimised polynomial interpolation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2020. 94

[BCH+20b] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap,
Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind the portability: A warriors
guide through realistic profiled side-channel analysis. In 27th Annual Network
and Distributed System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society, 2020. 74

[BCHC18] Nicolas Belleville, Damien Couroussé, Karine Heydemann, and Henri-Pierre
Charles. Automated software protection for the masses against side-channel
attacks. ACM Trans. Archit. Code Optim., 15(4), November 2018. 45, 46, 51, 52,
94, 95, 101, 102

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analy-
sis with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th International
Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, volume 3156 of
Lecture Notes in Computer Science, pages 16–29. Springer, 2004. 35, 36

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from boolean to arithmetic masking. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):22–45, 2018. 42

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and
Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure
masked bitsliced implementations. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes in Computer
Science, pages 311–341. Springer, 2020. 45, 94

[BDP06] William Burr, Donna Dodson, and W. Polk. Electronic authentication guide-
line. Technical report, National Institute for Standard and Technology, 2006.
29

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee, Zhenbo
Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaop-
ing Xing, editors, Coding and Cryptology - Third International Workshop, IWCC
2011, Qingdao, China, May 30-June 3, 2011. Proceedings, volume 6639 of Lecture
Notes in Computer Science, pages 11–46. Springer, 2011. 40

[BFG+17] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga, and
François-Xavier Standaert. Consolidating inner product masking. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017
- 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I,
volume 10624 of Lecture Notes in Computer Science, pages 724–754. Springer,
2017. 43

130



BIBLIOGRAPHY

[BGP+11] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-
Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual information analysis:
a comprehensive study. J. Cryptology, 24(2):269–291, 2011. 34, 76

[BHM+19] Olivier Bronchain, Julien M. Hendrickx, Clément Massart, Alex Olshevsky, and
François-Xavier Standaert. Leakage certification revisited: Bounding model er-
rors in side-channel security evaluations. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part I, volume 11692 of Lecture Notes in Computer Science, pages
713–737. Springer, 2019. 76, 78, 79, 80, 81, 92

[BKM+15] Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and
Marc Witteman. Fast and memory-efficient key recovery in side-channel at-
tacks. In Orr Dunkelman and Liam Keliher, editors, Selected Areas in Cryptog-
raphy - SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August
12-14, 2015, Revised Selected Papers, volume 9566 of Lecture Notes in Computer
Science, pages 310–327. Springer, 2015. 25

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the
Theory and Application of Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer Sci-
ence, pages 344–371. Springer, 2011. 2, 4

[BLH93] Yoshua Bengio, Yann LeCun, and Donnie Henderson. Globally trained hand-
written word recognizer using spatial representation, convolutional neural
networks, and hidden markov models. In Jack D. Cowan, Gerald Tesauro,
and Joshua Alspector, editors, Advances in Neural Information Processing Systems
6, [7th NIPS Conference, Denver, Colorado, USA, 1993], pages 937–944. Morgan
Kaufmann, 1993. 64

[BP20] Elie Burzstein and Jean-Michel Picod. A hacker’s guide to reducing
side-channel attack surfaces using deep-learning. https://elie.net/talk/a-
hacker-guide-to-side-channel-attack-surface-reduction-using-deep-learning/,
2020. 112

[BPRS17] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.
J. Mach. Learn. Res., 18:153:1–153:43, 2017. 70

[BPS+19] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. Journal of Cryptographic Engineering, November 2019. 48, 65, 67, 71,
72, 73, 95, 96, 97, 112, 113, 114, 118, 120

[BR14] Lejla Batina and Matthew Robshaw, editors. Cryptographic Hardware and Em-
bedded Systems - CHES 2014 - 16th International Workshop, Busan, South Korea,
September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer
Science. Springer, 2014. 138, 140

[BRB+18] Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, and
Aaron C. Courville. MINE: mutual information neural estimation. CoRR,
abs/1801.04062, 2018. 92

131

https://elie.net/talk/a-hacker-guide-to-side-channel-attack-surface-reduction -using-deep-learning/
https://elie.net/talk/a-hacker-guide-to-side-channel-attack-surface-reduction -using-deep-learning/


BIBLIOGRAPHY

[Bre01] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001. 60

[BS20] Olivier Bronchain and François-Xavier Standaert. Side-channel countermea-
sures’ dissection and the limits of closed source security evaluations. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(2):1–25, Mar
2020. 73, 102, 126, 127

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equiva-
lent to factoring. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT
’98, International Conference on the Theory and Application of Cryptographic Tech-
niques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture
Notes in Computer Science, pages 59–71. Springer, 1998. 2

[BV14] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2014. 21, 22

[C+15] François Chollet et al. Keras. https://keras.io, 2015. 70

[Cag18] Eleonora Cagli. Feature Extraction for Side-Channel Attacks. (Extraction de carac-
téristiques pour les attaques par canaux auxiliaires). PhD thesis, Sorbonne Univer-
sity, France, 2018. 7, 26, XIII

[CBR+16] Damien Couroussé, Thierno Barry, Bruno Robisson, Philippe Jaillon, Olivier
Potin, and Jean-Louis Lanet. Runtime code polymorphism as a protection
against side channel attacks. In Sara Foresti and Javier López, editors, Infor-
mation Security Theory and Practice - 10th IFIP WG 11.2 International Conference,
WISTP 2016, Heraklion, Crete, Greece, September 26-27, 2016, Proceedings, volume
9895 of Lecture Notes in Computer Science, pages 136–152. Springer, 2016. 46, 94

[CCC+19] Mathieu Carbone, Vincent Conin, Marie-Angela Cornélie, François Dassance,
Guillaume Dufresne, Cécile Dumas, Emmanuel Prouff, and Alexandre Venelli.
Deep learning to evaluate secure rsa implementations. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2019(2):132–161, Feb 2019. 71, 74

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
power analysis in the presence of hardware countermeasures. In Çetin Kaya
Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2000, Second International Workshop, Worcester, MA, USA, August 17-18,
2000, Proceedings, volume 1965 of Lecture Notes in Computer Science, pages 252–
263. Springer, 2000. 45

[CDP15] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Enhancing dimension-
ality reduction methods for side-channel attacks. In Naofumi Homma and
Marcel Medwed, editors, Smart Card Research and Advanced Applications - 14th
International Conference, CARDIS 2015, Bochum, Germany, November 4-6, 2015.
Revised Selected Papers, volume 9514 of Lecture Notes in Computer Science, pages
15–33. Springer, 2015. 37, 106, 107

[CDP16] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Kernel discriminant
analysis for information extraction in the presence of masking. In Ker-
stin Lemke-Rust and Michael Tunstall, editors, Smart Card Research and Ad-
vanced Applications - 15th International Conference, CARDIS 2016, Cannes, France,
November 7-9, 2016, Revised Selected Papers, volume 10146 of Lecture Notes in
Computer Science, pages 1–22. Springer, 2016. 37, 106

132

https://keras.io


BIBLIOGRAPHY

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures -
profiling attacks without pre-processing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES 2017
- 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 45–68. Springer, 2017.
9, 45, 62, 67, 70, 71, 72, 74, 95, 96, 97, 99, 125, XIII

[CG09] Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Sci-
ence. Springer, 2009. 133, 144

[CGC+21] Wei Cheng, Sylvain Guilley, Claude Carlet, Sihem Mesnager, and Jean-Luc
Danger. Optimizing inner product masking scheme by a coding theory ap-
proach. IEEE Trans. Inf. Forensics Secur., 16:220–235, 2021. 43

[CHM+15] Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben Arous, and
Yann LeCun. The loss surfaces of multilayer networks. In Guy Lebanon and
S. V. N. Vishwanathan, editors, Proceedings of the Eighteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2015, San Diego, California,
USA, May 9-12, 2015, volume 38 of JMLR Workshop and Conference Proceedings.
JMLR.org, 2015. 68

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.
41, 43, I

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random de-
lay generation in embedded software. In Clavier and Gaj [CG09], pages 156–
170. 45, 49, 95

[CK10] Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and improvement of the
random delay countermeasure of CHES 2009. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings, volume 6225 of Lecture Notes in Computer Science, pages 95–109.
Springer, 2010. 49

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Aurélien
Francillon and Pankaj Rohatgi, editors, Smart Card Research and Advanced Appli-
cations - 12th International Conference, CARDIS 2013, Berlin, Germany, November
27-29, 2013. Revised Selected Papers, volume 8419 of Lecture Notes in Computer
Science, pages 253–270. Springer, 2013. 33, 37, 106

[CK14] Marios O. Choudary and Markus G. Kuhn. Efficient stochastic methods: Pro-
filed attacks beyond 8 bits. In Marc Joye and Amir Moradi, editors, Smart Card
Research and Advanced Applications - 13th International Conference, CARDIS 2014,
Paris, France, November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture
Notes in Computer Science, pages 85–103. Springer, 2014. 37, 106

[CLM20] Valence Cristiani, Maxime Lecomte, and Philippe Maurine. Leakage assess-
ment through neural estimation of the mutual information. In Jianying Zhou,

133



BIBLIOGRAPHY

Mauro Conti, Chuadhry Mujeeb Ahmed, Man Ho Au, Lejla Batina, Zhou Li,
Jingqiang Lin, Eleonora Losiouk, Bo Luo, Suryadipta Majumdar, Weizhi Meng,
Martín Ochoa, Stjepan Picek, Georgios Portokalidis, Cong Wang, and Kehuan
Zhang, editors, Applied Cryptography and Network Security Workshops - ACNS
2020 Satellite Workshops, AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and
SiMLA, Rome, Italy, October 19-22, 2020, Proceedings, volume 12418 of Lecture
Notes in Computer Science, pages 144–162. Springer, 2020. 92

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 441–458. Springer, 2014. 42

[Cra99] Harald Cramér. Mathematical methods of statistics. Princeton University Press,
1999. OCLC: 185436716. 79

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of Lecture
Notes in Computer Science, pages 13–28. Springer, 2002. 32

[CRZ18] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High order
masking of look-up tables with common shares. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2018(1):40–72, Feb 2018. 42

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.).
Wiley, 2006. 18

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,
20(3):273–297, 1995. 60

[dCGRP19] Eloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best
information is most successful: Mutual information and success rate in side-
channel analysis. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(2):49–79, Feb 2019. 76, 77, 81

[DDF19] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. J. Cryptology, 32(1):151–177,
2019. 43, 77, I

[DDFP20] Gabriel Destouet, Cécile Dumas, Anne Frassati, and Valérie Perrier. Wavelet
scattering transform and ensemble methods for side-channel analysis. IACR
Cryptol. ePrint Arch., 2020:310, 2020. 37, 72, 73

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without
computational assumptions. In Ronald Cramer, editor, Theory of Cryptography
- 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March
19-21, 2012. Proceedings, volume 7194 of Lecture Notes in Computer Science, pages
230–247. Springer, 2012. 43

[DFS16] Stefan Dziembowski, Sebastian Faust, and Maciej Skórski. Optimal amplifi-
cation of noisy leakages. In Eyal Kushilevitz and Tal Malkin, editors, Theory
of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, Jan-
uary 10-13, 2016, Proceedings, Part II, volume 9563 of Lecture Notes in Computer
Science, pages 291–318. Springer, 2016. 43, I

134



BIBLIOGRAPHY

[DFS19] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making mask-
ing security proofs concrete (or how to evaluate the security of any leaking
device), extended version. J. Cryptology, 32(4):1263–1297, 2019. 43, 77, I

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976. 2

[DLL+19] Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient
descent finds global minima of deep neural networks. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 1675–1685. PMLR,
2019. 68

[DPRS11] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-
daert. Univariate side channel attacks and leakage modeling. J. Cryptographic
Engineering, 1(2):123–144, 2011. 35, 36

[DR02] Joan Daemen and Vincent Rijmen. AES and the wide trail design strategy. In
Advances in Cryptology - EUROCRYPT 2002, Proceedings, pages 108–109, 2002.
51

[DRS+12] François Durvaux, Mathieu Renauld, François-Xavier Standaert, Loïc van Old-
eneel tot Oldenzeel, and Nicolas Veyrat-Charvillon. Efficient removal of ran-
dom delays from embedded software implementations using hidden markov
models. In Stefan Mangard, editor, Smart Card Research and Advanced Applica-
tions - 11th International Conference, CARDIS 2012, Graz, Austria, November 28-30,
2012, Revised Selected Papers, volume 7771 of Lecture Notes in Computer Science,
pages 123–140. Springer, 2012. 95, 97, 111

[DV16] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for
deep learning, 2016. 65, XIII

[DW19] Liron David and Avishai Wool. Fast analytical rank estimation. In Polian and
Stöttinger [PS19], pages 168–190. 27

[DZPS19] Simon S. Du, Xiyu Zhai, Barnabás Póczos, and Aarti Singh. Gradient descent
provably optimizes over-parameterized neural networks. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. 68

[EPW10] Thomas Eisenbarth, Christof Paar, and Björn Weghenkel. Building a side chan-
nel based disassembler. Trans. Comput. Sci., 10:78–99, 2010. 37, 106

[FMPR10] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
Affine masking against higher-order side channel analysis. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography -
17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13,
2010, Revised Selected Papers, volume 6544 of Lecture Notes in Computer Science,
pages 262–280. Springer, 2010. 42

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning.
Adaptive computation and machine learning. MIT Press, 2016. 21, 22, 60, 62,
63, 118

[GBO19] Joey Green, Tilo Burghardt, and Elisabeth Oswald. Not a free lunch but a cheap
lunch: Experimental results for training many neural nets. IACR Cryptology
ePrint Archive, 2019:1068, 2019. 73

135



BIBLIOGRAPHY

[GGP+15] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for side-
channel security assessment. In Gregor Leander, editor, Fast Software Encryp-
tion - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015,
Revised Selected Papers, volume 9054 of Lecture Notes in Computer Science, pages
117–129. Springer, 2015. 27

[GHO15] Richard Gilmore, Neil Hanley, and Máire O’Neill. Neural network based at-
tack on a masked implementation of AES. In IEEE International Symposium
on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5-7
May, 2015, pages 106–111. IEEE Computer Society, 2015. 71

[GJS19] Aron Gohr, Sven Jacob, and Werner Schindler. CHES 2018 side channel contest
CTF - solution of the AES challenges. IACR Cryptol. ePrint Arch., 2019:94, 2019.
25

[GJS20] Aron Gohr, Sven Jacob, and Werner Schindler. Efficient solutions of the CHES
2018 AES challenge using deep residual neural networks and knowledge dis-
tillation on adversarial examples. IACR Cryptol. ePrint Arch., 2020:165, 2020.
25, 65, 98, 102

[GM11] Louis Goubin and Ange Martinelli. Protecting AES with shamir’s secret shar-
ing scheme. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2011 - 13th International Workshop, Nara,
Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes
in Computer Science, pages 79–94. Springer, 2011. 43

[GMGH19] Christophe Genevey-Metat, Benoît Gerard, and Annelie Heuser. Combining
sources of side-channel information. In CAESAR 2019, November 2019. 73

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings, volume 2162
of Lecture Notes in Computer Science, pages 251–261. Springer, 2001. 6

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis (the
"duplication" method). In Çetin Kaya Koç and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems, First International Workshop, CHES’99,
Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of Lecture
Notes in Computer Science, pages 158–172. Springer, 1999. 41

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages
2672–2680. Curran Associates, Inc., 2014. 10

[GPPT15] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. Stealing
keys from pcs using a radio: Cheap electromagnetic attacks on windowed ex-
ponentiation. In Tim Güneysu and Helena Handschuh, editors, Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-
Malo, France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in
Computer Science, pages 207–228. Springer, 2015. 6

136



BIBLIOGRAPHY

[GPPT16] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. ECDH key-
extraction via low-bandwidth electromagnetic attacks on pcs. In Kazue Sako,
editor, Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings,
volume 9610 of Lecture Notes in Computer Science, pages 219–235. Springer, 2016.
6

[GPQ10] Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Secure multiplica-
tive masking of power functions. In Jianying Zhou and Moti Yung, editors,
Applied Cryptography and Network Security, 8th International Conference, ACNS
2010, Beijing, China, June 22-25, 2010. Proceedings, volume 6123 of Lecture Notes
in Computer Science, pages 200–217, 2010. 42

[GPT15] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my lap-
top: physical side-channel key-extraction attacks on pcs - extended version. J.
Cryptographic Engineering, 5(2):95–112, 2015. 6

[GR15] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of
leakage. SIAM J. Comput., 44(5):1480–1549, 2015. 43

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. 106

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro, edi-
tors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 444–461. Springer, 2014. 6

[GT02] Jovan Dj. Golic and Christophe Tymen. Multiplicative masking and power
analysis of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Inter-
national Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523 of Lecture Notes in Computer Science, pages 198–212. Springer, 2002.
41

[GTdS+18] Rafael Garcia, Alexandru C. Telea, Bruno Castro da Silva, Jim Tørresen, and
João Luiz Dihl Comba. A task-and-technique centered survey on visual an-
alytics for deep learning model engineering. Comput. Graph., 77:30–49, 2018.
72

[HGG19] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural network
attribution methods for leakage analysis and symmetric key recovery. In Ken-
neth G. Paterson and Douglas Stebila, editors, Selected Areas in Cryptography -
SAC 2019 - 26th International Conference, Waterloo, ON, Canada, August 12-16,
2019, Revised Selected Papers, volume 11959 of Lecture Notes in Computer Science,
pages 645–666. Springer, 2019. 72, 112

[HGG20] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Applications of ma-
chine learning techniques in side-channel attacks: a survey. J. Cryptogr. Eng.,
10(2):135–162, 2020. 60, 71

[HGMG20] Annelie Heuser, Christophe Genevey-Metat, and Benoit Gerard. Physical
side-channel analysis on stm32f{0, 1, 2, 3, 4}. https://silm.inria.fr/
silm-seminar, 2020. 52

137

https://silm.inria.fr/silm-seminar
https://silm.inria.fr/silm-seminar


BIBLIOGRAPHY

[HHO20] Anh-Tuan Hoang, Neil Hanley, and Maire O’Neill. Plaintext: A missing feature
for enhancing the power of deep learning in side-channel analysis? breaking
multiple layers of side-channel countermeasures. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020(4):49–85, Aug 2020. 126

[HKPC19] Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. Visual
analytics in deep learning: An interrogative survey for the next frontiers. IEEE
Trans. Vis. Comput. Graph., 25(8):2674–2693, 2019. 72

[HLW16] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected con-
volutional networks. CoRR, abs/1608.06993, 2016. 65

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card
implementation resistant to power analysis attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, Applied Cryptography and Network Security, 4th In-
ternational Conference, ACNS 2006, Singapore, June 6-9, 2006, Proceedings, volume
3989 of Lecture Notes in Computer Science, pages 239–252, 2006. 44

[Hor91] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251–257, 1991. 109

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough
- deriving optimal distinguishers from communication theory. In Batina and
Robshaw [BR14], pages 55–74. 30, 33, 35, 96

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer
Series in Statistics. Springer, 2009. 33

[HZ12] Annelie Heuser and Michael Zohner. Intelligent machine homicide - breaking
cryptographic devices using support vector machines. In Werner Schindler
and Sorin A. Huss, editors, Constructive Side-Channel Analysis and Secure De-
sign - Third International Workshop, COSADE 2012, Darmstadt, Germany, May
3-4, 2012. Proceedings, volume 7275 of Lecture Notes in Computer Science, pages
249–264. Springer, 2012. 71

[HZF+19] Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu, Chen Zhang, Aron Gohr,
Sven Jacob, Werner Schindler, Ileana Buhan, and Karim Tobich. Machine learn-
ing and side channel analysis in a CTF competition. IACR Cryptol. ePrint Arch.,
2019:860, 2019. 25

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–
778. IEEE Computer Society, 2016. 65, 98, 102, X

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis R. Bach and
David M. Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pages 448–456. JMLR.org, 2015. 62

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 463–481. Springer, 2003. 42

138



BIBLIOGRAPHY

[KB07] Boris Köpf and David A. Basin. An information-theoretic model for adaptive
side-channel attacks. In Peng Ning, Sabrina De Capitani di Vimercati, and
Paul F. Syverson, editors, Proceedings of the 2007 ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31,
2007, pages 286–296. ACM, 2007. 27

[KB11] Boris Köpf and David A. Basin. Automatically deriving information-theoretic
bounds for adaptive side-channel attacks. J. Comput. Secur., 19(1):1–31, 2011. 27

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015. 22

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative ex-
ecution. In 40th IEEE Symposium on Security and Privacy (S&P’19), 2019. 6

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 388–
397. Springer, 1999. 6, 35, 36

[Kle13] A. Klenke. Probability Theory: A Comprehensive Course. Universitext. Springer
London, 2013. 14, 15, 19

[Klo59] B. M. Kloss. Probability distributions on bicompact topological groups. Teor.
Veroyatnost. i Primenen., 4(3):255–290, 1959. III

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer, 1996. 6

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(3):148–179, May 2019. 67, 71, 72, 73, 89, 90, 91, 95, 96,
97, 98, 99

[KR19] Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryptog-
raphy. In Oded Goldreich, editor, Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali, pages 727–794. ACM, 2019. 39

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012. 9

[LB94] Yann LeCun and Yoshua Bengio. Word-level training of a handwritten word
recognizer based on convolutional neural networks. In 12th IAPR International
Conference on Pattern Recognition, Conference B: Patern Recognition and Neural
Networks, ICPR 1994, Jerusalem, Israel, 9-13 October, 1994, Volume 2, pages 88–
92. IEEE, 1994. 64

139



BIBLIOGRAPHY

[LBM14] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power analysis
attack: an approach based on machine learning. IJACT, 3(2):97–115, 2014. 71

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A machine learn-
ing approach against a masked AES - reaching the limit of side-channel attacks
with a learning model. J. Cryptographic Engineering, 5(2):123–139, 2015. 71

[LBOM12] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Ef-
ficient backprop. In Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert
Müller, editors, Neural Networks: Tricks of the Trade - Second Edition, volume 7700
of Lecture Notes in Computer Science, pages 9–48. Springer, 2012. 68

[LCC+06] Thanh-Ha Le, Jessy Clédière, Cécile Canovas, Bruno Robisson, Christine
Servière, and Jean-Louis Lacoume. A proposition for correlation power analy-
sis enhancement. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic
Hardware and Embedded Systems - CHES 2006, 8th International Workshop, Yoko-
hama, Japan, October 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in
Computer Science, pages 174–186. Springer, 2006. 35

[LFS18] David Leech, Stacey Ferris, and John Scott. The economic impacts of the ad-
vanced encryption standard, 1996-2017. Technical report, National Institute for
Standard and Technology, 2018. 3

[LPR+14] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and Adrian
Thillard. How to estimate the success rate of higher-order side-channel attacks.
In Batina and Robshaw [BR14], pages 35–54. 84, I

[LSJR16] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gra-
dient descent only converges to minimizers. In Vitaly Feldman, Alexander
Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learning The-
ory, volume 49 of Proceedings of Machine Learning Research, pages 1246–1257,
Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR. 21

[Mag19] Houssem Maghrebi. Deep learning based side channel attacks in practice.
IACR Cryptology ePrint Archive, 2019:578, 2019. 71, 72, 73

[Mag20] Houssem Maghrebi. Deep learning based side-channel attack: a new profiling
methodology based on multi-label classification. IACR Cryptol. ePrint Arch.,
2020:436, 2020. 73, 127

[Man04] Stefan Mangard. Hardware countermeasures against DPA ? A statistical anal-
ysis of their effectiveness. In Tatsuaki Okamoto, editor, Topics in Cryptology -
CT-RSA 2004, The Cryptographers’ Track at the RSA Conference 2004, San Fran-
cisco, CA, USA, February 23-27, 2004, Proceedings, volume 2964 of Lecture Notes
in Computer Science, pages 222–235. Springer, 2004. 45, 77, 96

[MBC+20] Loïc Masure, Nicolas Belleville, Eleonora Cagli, Marie-Angela Cornelie,
Damien Couroussé, Cécile Dumas, and Laurent Maingault. Deep learning
side-channel analysis on large-scale traces - A case study on a polymorphic
AES. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors,
Computer Security - ESORICS 2020 - 25th European Symposium on Research in
Computer Security, ESORICS 2020, Guildford, UK, September 14-18, 2020, Proceed-
ings, Part I, volume 12308 of Lecture Notes in Computer Science, pages 440–460.
Springer, 2020. 93

140



BIBLIOGRAPHY

[MDM16] Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. Profiling power analy-
sis attack based on MLP in DPA contest V4.2. In 39th International Conference on
Telecommunications and Signal Processing, TSP 2016, Vienna, Austria, June 27-29,
2016, pages 223–226. IEEE, 2016. 71

[MDP18] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Understanding a cnn at-
tack: as crucial as succeeding in it, 2018. 105

[MDP19a] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization for
general characterization in profiling attacks. In Polian and Stöttinger [PS19],
pages 145–167. 72, 105

[MDP19b] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study
of deep learning for side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(1):348–375, Nov 2019. 47, 73, 75

[Mes00] Thomas S. Messerges. Securing the AES finalists against power analysis at-
tacks. In Bruce Schneier, editor, Fast Software Encryption, 7th International Work-
shop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978
of Lecture Notes in Computer Science, pages 150–164. Springer, 2000. 41

[Mit97] Tom M. Mitchell. Machine learning, International Edition. McGraw-Hill Series in
Computer Science. McGraw-Hill, 1997. 56

[MMO18] Daniel P. Martin, Luke Mather, and Elisabeth Oswald. Two sides of the same
coin: Counting and enumerating keys post side-channel attacks revisited. In
Nigel P. Smart, editor, Topics in Cryptology - CT-RSA 2018 - The Cryptographers’
Track at the RSA Conference 2018, San Francisco, CA, USA, April 16-20, 2018,
Proceedings, volume 10808 of Lecture Notes in Computer Science, pages 394–412.
Springer, 2018. 27

[MMOS16] Daniel P. Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam. Char-
acterisation and estimation of the key rank distribution in the context of side
channel evaluations. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Ad-
vances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, De-
cember 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes in Computer
Science, pages 548–572, 2016. 27

[MOBW13] Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wójcik. Does
my device leak information? an a priori statistical power analysis of leakage
detection tests. In Advances in Cryptology - ASIACRYPT 2013 - Proceedings, Part
I, pages 486–505, 2013. 38, 96

[MOOS15] Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn Stam.
Counting keys in parallel after a side channel attack. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st Inter-
national Conference on the Theory and Application of Cryptology and Information Se-
curity, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part
II, volume 9453 of Lecture Notes in Computer Science, pages 313–337. Springer,
2015. 25

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007. 28, 36, 38, 39, 44, 77, 96, 99,
100

141



BIBLIOGRAPHY

[Mor74] Roland Moreno. Methods of data storage and data storage systems.
US3971916A, 1974. 3

[MOS11] Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for
all - all for one: unifying standard differential power analysis attacks. IET Inf.
Secur., 5(2):100–110, 2011. 77

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Privacy, and
Applied Cryptography Engineering - 6th International Conference, SPACE 2016, Hy-
derabad, India, December 14-18, 2016, Proceedings, volume 10076 of Lecture Notes
in Computer Science, pages 3–26. Springer, 2016. 9, 67, 71, 73, 97

[MSM18] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for
interpreting and understanding deep neural networks. Digital Signal Process-
ing, 73:1–15, 2018. 106, 111

[MW20a] Merriam-Webster. “hazardous”. In Merriam-Webster.com dictionary. August
2020. 8

[MW20b] Merriam-Webster. “safety”. In Merriam-Webster.com dictionary. August 2020. 8

[MW20c] Merriam-Webster. “security”. In Merriam-Webster.com dictionary. August 2020.
8

[MZ13] Zdenek Martinasek and Vaclav Zeman. Innovative method of the power anal-
ysis. Radioengineering, 22:586–594, 06 2013. 9, 71

[Nat01] National Institute of Standards and Technology. Advanced encryption stan-
dard (AES). Technical Report NIST FIPS 197, National Institute of Standards
and Technology, 2001. 4, 20

[NHI+07] Sei Nagashima, Naofumi Homma, Yuichi Imai, Takafumi Aoki, and Akashi
Satoh. DPA using phase-based waveform matching against random-delay
countermeasure. In International Symposium on Circuits and Systems (ISCAS
2007), 27-20 May 2007, New Orleans, Louisiana, USA, pages 1807–1810. IEEE,
2007. 95, 97, 111

[Nie18] Michael A. Nielsen. Neural networks and deep learning. http://
neuralnetworksanddeeplearning.com/, 2018. 67

[NSGD12] Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. RSM:
A small and fast countermeasure for AES, secure against 1st and 2nd-order
zero-offset SCAs. In DATE, 2012. 95

[OC14] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source
platform for hardware embedded security research. In Emmanuel Prouff, edi-
tor, Constructive Side-Channel Analysis and Secure Design - 5th International Work-
shop, COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Papers, vol-
ume 8622 of Lecture Notes in Computer Science, pages 243–260. Springer, 2014.
47

[PBP20] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning when to stop: a
mutual information approach to fight overfitting in profiled side-channel anal-
ysis. IACR Cryptol. ePrint Arch., 2020:58, 2020. 71

142

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/


BIBLIOGRAPHY

[Pet98] P. Petrushev. Approximation by ridge functions and neural networks. SIAM
Journal on Mathematical Analysis, 30(1):155–189, 1998. 63

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC,
Canada, pages 8024–8035, 2019. 70, 109

[PGMP19] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue. Uni-
fying leakage models on a rényi day. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part I, volume 11692 of Lecture Notes in Computer Science, pages
683–712. Springer, 2019. 43, I, III

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template attack versus
bayes classifier. J. Cryptographic Engineering, 7(4):343–351, 2017. 33

[PHG19] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Profiling side-channel
analysis in the restricted attacker framework. IACR Cryptology ePrint Archive,
2019:168, 2019. 32, 73

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2019(1):209–237, Nov 2018. 50, 67, 70, 71, 72, 74, 91,
125

[Pin99] Allan Pinkus. Approximation theory of the MLP model in neural networks.
Acta Numerica, 8:143–195, 1999. 64, 109

[Pou18] Romain Poussier. Key enumeration, rank estimation and horizontal side-channel at-
tacks. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium,
2018. 25

[PR07] Emmanuel Prouff and Matthieu Rivain. A generic method for secure sbox im-
plementation. In Sehun Kim, Moti Yung, and Hyung-Woo Lee, editors, Infor-
mation Security Applications, 8th International Workshop, WISA 2007, Jeju Island,
Korea, August 27-29, 2007, Revised Selected Papers, volume 4867 of Lecture Notes
in Computer Science, pages 227–244. Springer, 2007. 42

[PR10] Emmanuel Prouff and Matthieu Rivain. Theoretical and practical aspects of
mutual information-based side channel analysis. IJACT, 2(2):121–138, 2010. 76

[PR11] Emmanuel Prouff and Thomas Roche. Higher-order glitches free implementa-
tion of the AES using secure multi-party computation protocols. In Bart Pre-
neel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - Octo-
ber 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science, pages
63–78. Springer, 2011. 43

143



BIBLIOGRAPHY

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science,
pages 142–159. Springer, 2013. 43, 77, I

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of
second order differential power analysis. IEEE Trans. Computers, 58(6):799–811,
2009. 39

[PS19] Ilia Polian and Marc Stöttinger, editors. Constructive Side-Channel Analysis and
Secure Design - 10th International Workshop, COSADE 2019, Darmstadt, Germany,
April 3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer Science.
Springer, 2019. 135, 141

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In Anupam Chattopadhyay, Chester Rebeiro, and
Yuval Yarom, editors, Security, Privacy, and Applied Cryptography Engineering -
8th International Conference, SPACE 2018, Kanpur, India, December 15-19, 2018,
Proceedings, volume 11348 of Lecture Notes in Computer Science, pages 157–176.
Springer, 2018. 60

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In Isabelle Attali and
Thomas P. Jensen, editors, Smart Card Programming and Security, International
Conference on Research in Smart Cards, E-smart 2001, Cannes, France, September
19-21, 2001, Proceedings, volume 2140 of Lecture Notes in Computer Science, pages
200–210. Springer, 2001. 6

[RAD20] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. SCAUL: power side-
channel analysis with unsupervised learning. CoRR, abs/2001.05951, 2020. 72

[Ren00] M Renaudin. Asynchronous circuits and systems : a promising design alterna-
tive. Microelectronic Engineering, 54(1):133 – 149, 2000. 44

[RHW86a] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. In David E. Rumelhart and
James L. Mcclelland, editors, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1: Foundations, pages 318–362. MIT Press,
Cambridge, MA, 1986. 70

[RHW86b] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
Representations by Back-propagating Errors. Nature, 323(6088):533–536, 1986.
70

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-
ing of AES. In Stefan Mangard and François-Xavier Standaert, editors, Crypto-
graphic Hardware and Embedded Systems, CHES 2010, 12th International Workshop,
Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture
Notes in Computer Science, pages 413–427. Springer, 2010. 42

[RPD09] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order masking
and shuffling for software implementations of block ciphers. In Clavier and
Gaj [CG09], pages 171–188. 44

144



BIBLIOGRAPHY

[RS09] Mathieu Renauld and François-Xavier Standaert. Algebraic side-channel at-
tacks. In Feng Bao, Moti Yung, Dongdai Lin, and Jiwu Jing, editors, Infor-
mation Security and Cryptology - 5th International Conference, Inscrypt 2009, Bei-
jing, China, December 12-15, 2009. Revised Selected Papers, volume 6151 of Lecture
Notes in Computer Science, pages 393–410. Springer, 2009. 25

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key crypto-systems. Commun. ACM,
21(2):120–126, 1978. 2

[RSV09] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
Algebraic side-channel attacks on the AES: why time also matters in DPA.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Sci-
ence, pages 97–111. Springer, 2009. 25

[RSV+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Kenneth G. Paterson, editor, Advances
in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19,
2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages 109–
128. Springer, 2011. 76, 78

[RZC+20] Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet, and Amaury
Habrard. Online performance evaluation of deep learning networks for side-
channel analysis. IACR Cryptol. ePrint Arch., 2020:39, 2020. 71

[SA08] François-Xavier Standaert and Cédric Archambeau. Using subspace-based
template attacks to compare and combine power and electromagnetic informa-
tion leakages. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Workshop, Wash-
ington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes
in Computer Science, pages 411–425. Springer, 2008. 33, 37, 95, 106

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction.
Adaptive computation and machine learning. MIT Press, 1998. 26, 27, 57

[SDBR15] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. Striving for simplicity: The all convolutional net. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings,
2015. 106, 111

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech.
J., 28(4):656–715, 1949. IX, X

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. 43

[SHK+14] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014. 62

[Sho94] Peter W. Shor. Polynominal time algorithms for discrete logarithms and factor-
ing on a quantum computer. In Leonard M. Adleman and Ming-Deh A. Huang,
editors, Algorithmic Number Theory, First International Symposium, ANTS-I,

145



BIBLIOGRAPHY

Ithaca, NY, USA, May 6-9, 1994, Proceedings, volume 877 of Lecture Notes in Com-
puter Science, page 289. Springer, 1994. 2

[Sin99] Simon Singh. The Code Book: The Evolution of Secrecy from Mary, Queen of Scots,
to Quantum Cryptography. Doubleday, New York, NY, USA, 1st edition, 1999. 2,
3

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1–
9. IEEE Computer Society, 2015. 65

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES 2005, 7th Interna-
tional Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, vol-
ume 3659 of Lecture Notes in Computer Science, pages 30–46. Springer, 2005. 36,
72, VI

[Sma20] Small portable AES128 in C. https://github.com/kokke/tiny-AES-c,
2020. 52

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Antoine Joux, editor,
Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Cologne, Germany,
April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science,
pages 443–461. Springer, 2009. 29

[SS06] Daisuke Suzuki and Minoru Saeki. Security evaluation of DPA countermea-
sures using dual-rail pre-charge logic style. In Louis Goubin and Mitsuru Mat-
sui, editors, Cryptographic Hardware and Embedded Systems - CHES 2006, 8th In-
ternational Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings, volume
4249 of Lecture Notes in Computer Science, pages 255–269. Springer, 2006. 44

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014. 21, 55, 57, 58,
59, 64, 67, 79, 95

[Sta18] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel se-
curity evaluations. In Begül Bilgin and Jean-Bernard Fischer, editors, Smart
Card Research and Advanced Applications, 17th International Conference, CARDIS
2018, Montpellier, France, November 12-14, 2018, Revised Selected Papers, volume
11389 of Lecture Notes in Computer Science, pages 65–79. Springer, 2018. 38

[STIM18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How does batch normalization help optimization? In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 De-
cember 2018, Montréal, Canada, pages 2488–2498, 2018. 62

[STM] STMicroelectronics. NUCLEO-F303RE. https://www.st.
com/content/st_com/en/products/evaluation-tools/
product-evaluation-tools/mcu-mpu-eval-tools/

146

https://github.com/kokke/tiny-AES-c
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html


BIBLIOGRAPHY

stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/
nucleo-f303re.html. 52

[SVI+15] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015. 65

[SVZ14] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
In Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Work-
shop Track Proceedings, 2014. 106, 111

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. 64, 102

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. In Yoshua Bengio and Yann LeCun, editors, 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings, 2014. 106

[Tel16] Matus Telgarsky. Benefits of depth in neural networks. In Vitaly Feldman,
Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learn-
ing Theory, volume 49 of Proceedings of Machine Learning Research, pages 1517–
1539, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.
64

[Ter18] Audrey Terras. Abstract Algebra with Applications. Cambridge Mathematical
Textbooks. Cambridge University Press, 2018. 20, 42, X

[The16] Theano Development Team. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.
70

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with
sensitivity analysis. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(2):107–131, Feb 2019. 67, 72, 73, 95, 112

[Ugo77] Michel Ugon. Portable data carrier including a microprocessor. US4211919A,
1977. 3

[Vap95] V. Vapnik. The Nature of Statistical Learning Theory. Information Science and
Statistics. Springer New York, 1995. 58, 87

[Vap99] Vladimir Vapnik. An overview of statistical learning theory. IEEE Trans. Neural
Networks, 10(5):988–999, 1999. 59, 60

[Vap00] Vladimir Vapnik. The Nature of Statistical Learning Theory. Statistics for Engi-
neering and Information Science. Springer, 2000. 33, 75

[vdVP19] Daan van der Valk and Stjepan Picek. Bias-variance decomposition in machine
learning-based side-channel analysis. IACR Cryptology ePrint Archive, 2019:570,
2019. 67

147

https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-f303re.html


BIBLIOGRAPHY

[vdVPB19] Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy was here: The
first step towards explainability of neural networks in profiled side-channel
analysis. IACR Cryptol. ePrint Arch., 2019:1477, 2019. 72, 112

[VGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application
to side-channel attacks. In Lars R. Knudsen and Huapeng Wu, editors, Se-
lected Areas in Cryptography, 19th International Conference, SAC 2012, Windsor,
ON, Canada, August 15-16, 2012, Revised Selected Papers, volume 7707 of Lecture
Notes in Computer Science, pages 390–406. Springer, 2012. 25

[VGS13] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Se-
curity evaluations beyond computing power. In Thomas Johansson and
Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture
Notes in Computer Science, pages 126–141. Springer, 2013. 27

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against side-channel attacks: A compre-
hensive study with cautionary note. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China, De-
cember 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science,
pages 740–757. Springer, 2012. 44, 45, 84, 85

[VS10] Nicolas Veyrat-Charvillon and François-Xavier Standaert. Adaptive chosen-
message side-channel attacks. In Jianying Zhou and Moti Yung, editors, Ap-
plied Cryptography and Network Security, 8th International Conference, ACNS 2010,
Beijing, China, June 22-25, 2010. Proceedings, volume 6123 of Lecture Notes in
Computer Science, pages 186–199, 2010. 27

[vW01] Manfred von Willich. A technique with an information-theoretic basis for pro-
tecting secret data from differential power attacks. In Bahram Honary, editor,
Cryptography and Coding, 8th IMA International Conference, Cirencester, UK, De-
cember 17-19, 2001, Proceedings, volume 2260 of Lecture Notes in Computer Sci-
ence, pages 44–62. Springer, 2001. 42

[vWWB11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker. Improving
differential power analysis by elastic alignment. In Aggelos Kiayias, editor,
Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Con-
ference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings, volume
6558 of Lecture Notes in Computer Science, pages 104–119. Springer, 2011. 95, 97,
111

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revis-
iting a methodology for efficient cnn architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):147–168,
Jun 2020. 112

[WD20] Huanyu Wang and Elena Dubrova. Tandem deep learning side-channel attack
against FPGA implementation of AES. IACR Cryptol. ePrint Arch., 2020:373,
2020. 73

[Wik19] Wikipedia. Sensitivity analysis, 2019. 106

148



BIBLIOGRAPHY

[WMCS20] Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Standaert.
Efficient and private computations with code-based masking. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(2):128–171, Mar
2020. 43

[WMM19] Felix Wegener, Thorben Moos, and Amir Moradi. DL-LA: deep learning leak-
age assessment: A modern roadmap for SCA evaluations. IACR Cryptology
ePrint Archive, 2019:505, 2019. 67

[WP19] Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of
side-channel measurements with autoencoders. IACR Cryptol. ePrint Arch.,
2019:1474, 2019. 72

[WPB19] Leo Weissbart, Stjepan Picek, and Lejla Batina. One trace is all it takes: Ma-
chine learning-based side-channel attack on EdDSA. In Shivam Bhasin, Avi
Mendelson, and Mridul Nandi, editors, Security, Privacy, and Applied Cryptog-
raphy Engineering - 9th International Conference, SPACE 2019, Gandhinagar, India,
December 3-7, 2019, Proceedings, volume 11947 of Lecture Notes in Computer Sci-
ence, pages 86–105. Springer, 2019. 71

[WYS+18] Weijia Wang, Yu Yu, François-Xavier Standaert, Junrong Liu, Zheng Guo, and
Dawu Gu. Ridge-based DPA: improvement of differential power analysis for
nanoscale chips. IEEE Trans. Inf. Forensics Secur., 13(5):1301–1316, 2018. 72

[YEM14] Xin Ye, Thomas Eisenbarth, and William Martin. Bounded, yet sufficient? how
to determine whether limited side channel information enables key recovery.
In Marc Joye and Amir Moradi, editors, Smart Card Research and Advanced Ap-
plications - 13th International Conference, CARDIS 2014, Paris, France, November
5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in Computer Sci-
ence, pages 215–232. Springer, 2014. 27

[YLMZ18] Guang Yang, Huizhong Li, Jingdian Ming, and Yongbin Zhou. Convolutional
neural network based side-channel attacks in time-frequency representations.
In Begül Bilgin and Jean-Bernard Fischer, editors, Smart Card Research and
Advanced Applications, 17th International Conference, CARDIS 2018, Montpellier,
France, November 12-14, 2018, Revised Selected Papers, volume 11389 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2018. 72

[ZBD+20] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, and
Alexandre Venelli. Ranking loss: Maximizing the success rate in deep learn-
ing side-channel analysis. Cryptology ePrint Archive, Report 2020/872, 2020.
https://eprint.iacr.org/. 92

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(1):1–36, Nov 2019.
72, 90, 95, 97, 98, 99, 112

[ZF14] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convo-
lutional networks. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I, volume 8689 of
Lecture Notes in Computer Science, pages 818–833. Springer, 2014. 106, 111

[ZKL+16] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In 2016 IEEE

149

https://eprint.iacr.org/


BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 2921–2929. IEEE Computer Society, 2016. 98,
113

[ZS19] Yuanyuan Zhou and François-Xavier Standaert. Deep learning mitigates but
does not annihilate the need of aligned traces and a generalized ResNet model
for side-channel attacks. Journal of Cryptographic Engineering, April 2019. 65, 72,
73, 98, 102

[ZZN+20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu. A
novel evaluation metric for deep learning-based side channel analysis and its
extended application to imbalanced data. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(3):73–96, Jun 2020. 92

150



Appendix A

Noise Amplification of Secret-Sharing

A long series of papers have been published since the seminal work of Chari et al. at CRYPTO

1999 [CJRR99] to show the noise amplification effect of group-based secret-sharing. The
latter result has been extended by Prouff et al. [PR13] and Duc et al. [DDF19, DFS19, DFS16]
until the most recent works of Prest et al. at CRYPTO 2019 [PGMP19].

All these papers embrace different strategies to show the theoretical soudness of group-
based secret-sharing, but most of them rely on the so-called noise amplification effect. In
a nutshell, it states that one can produce an artificial noise in the leaky observations of a
sensitive variable Z protected with a d-th order group-based secret-sharing of amplitude
O
(
σd
)

, where σ characterizes the noise of the target device without any counter-measure.
We provide in this appendix a proof sketch of such a result.1 We first recall that the leak-

age distribution of a sensitive random variable protected with group-based secret-sharing
can be formulated as a convolution product. This observation enables to benefit from the
properties of convolutions to reach the result.

A.1 The Link between Noise Amplification and Convolution

We start by remarking that applying group-based secret-sharing can be seen as applying a
discrete convolution to the unprotected leakage model.

Proposition 3 ([LPR+14, Sec. 6]). Let Z ∈ Z be a sensitive target variable, protected by a d-th
order secret-sharing with shares Z0, . . . ,Zd ∈ Z . Let X = (X0, . . . ,Xd)ᵀ, and x = (x0, . . . , xd)ᵀ be
an observation of X. Let h : s 7→ Pr (Z = s | X = x) be the posterior p.m.f. of the sensitive target
variable, while hi : s 7→ Pr (Zi = s | Xi = xi) denotes the posterior p.m.f. associated to the share
Zi. Assume that the following claims hold:

(a) The random variables Z and (Zi)i∈J1,dK are i.i.d. uniformly from the group (Z, ·);

(b) Any Xi only depend on Zi, i.e., Xi denotes the leakage of the share Zi. In particular, any Xi is
independent of the (Xj)j 6=i.

Then, the posterior p.m.f. of Z can be formulated as a discrete convolution product:

h(s) =
∑
s1

· · ·
∑
sd

h0
(
s · (s1 · . . . · sd)−1

)
h1 (s1) . . . hd (sd) = (h0 ∗h1 ∗ . . . ∗hd)(s) . (A.1)

Proof. By applying the Bayes’ theorem we get:

h(s) = Pr (Z = s)
Pr (X = x) Pr (X = x | Z = s) (A.2)

1 We only focus here on one piece of the proof, so this appendix does not formally proves the soundness of
group-based secret-sharing. We invite the interested reader to refer to the papers cited at the beginning of this
appendix.

I



APPENDIX A. NOISE AMPLIFICATION OF SECRET-SHARING

Using the total probabilities formula d times, we expand the term Pr (X = x | Z = s) as
follows:

Pr (X = x | Z = s) =
∑
s1∈Z

. . .
∑
sd∈Z

Pr (X = x | Z = s,Z1 = s1, . . .Zd = sd) ·

d∏
i=1

Pr (Zi = si) . (A.3)

By noting s0 , s · (s1 · . . . · sd)−1, and since the mapping (s, s1, . . . sd) 7→ (s0, s1, . . . sd) is
invertible we may reformulate the conditional probability as follows:

Pr (X = x | Z = s,Z1 = s1, . . .Zd = sd) = Pr (X = x | Z0 = s0, . . .Zd = sd) .(A.4)

Moreover, according to assumption (b), we have:

Pr (X = x) =
d∏
i=0

Pr (Xi = xi) , (A.5)

Pr (X = x | Z0 = s0, . . .Zd = sd) =
d∏
i=0

Pr (Xi = xi | Zi = si) . (A.6)

Finally, we may use the assumption (a) to remark that:

Pr (Z = s) = Pr (Z0 = s0) . (A.7)

We may now combine Equations (A.2), (A.3), (A.4), (A.5), (A.6) and (A.7):

h(s) =
∑
s1∈Z

. . .
∑
sd∈Z

d∏
i=0

Pr (Xi = xi | Zi = si) Pr (Zi = si)
Pr (Xi = xi)

=
∑
s1∈Z

. . .
∑
sd∈Z

d∏
i=0

Pr (Zi = si | Xi = xi)

=
∑
s1∈Z

. . .
∑
sd∈Z

h0
(
s · (s1 · . . . · sd)−1

)
h1 (s1) · . . . · hd (sd)

In other words, h(s) = (h0 ∗h1 ∗ . . . ∗hd)(s).

Seeing the likelihood p.m.f. of the sensitive variable Z as a convolution product provides
an intuitive insight about the soundness of secret-sharing. Indeed, convolutions are well
known in signal processing to be regularizing operators, i.e., they may transform any sharp
signal as a smooth one. These properties can somehow be translated into the discrete world,
as we will see hereafter.

A.2 A Fixed-Point-Like Proof

To show the smoothing effect of discrete convolutions, we first introduce a lemma, stating
that the uniform p.m.f. is a fixed point of the convolution operator.

Lemma 3. Let h ∈ P(Z) be a p.m.f. over the set Z , and u the uniform p.m.f. over the same set.
Then

h ∗u = u. (A.8)

II



APPENDIX A. NOISE AMPLIFICATION OF SECRET-SHARING

Proof. For any s ∈ Z , we have

h ∗u(s) =
∑
s′

h
(
s · s′−1

)
u
(
s′
)

=
∑
s′

h
(
s · s′−1

) 1
|Z|

= 1
|Z|

∑
s′

h
(
s · s′−1

)
.

By definition of a p.m.f., the latter sum equals one, so h ∗u(s) does not depend on s: it is the
uniform distribution.

It is well known that sequences recursively defined by the application of an opera-
tor having a fixed point may converge to the latter one, under some conditions on the
p.m.f.s (hi)i∈J0,dK. The fact that the fixed point here is the uniform distribution illustrates
the smoothing effect. The theorem we introduce hereafter follows this intuition.

Theorem 3 (Kloss [Klo59]). Let Z be a finite group, and h0, . . . , hd be d + 1 p.m.f.s over Z .2 Let
h = h0 ∗ . . . ∗hd. If for any element s ⊂ Z we have:

hi(s) > cu(s), c > 0, i ∈ J0, dK, (A.9)

where u being the uniform distribution over Z , then

|h(s)− u(s)| ≤ |1− c|d+1 . (A.10)

In other words, h converges towards the uniform distribution when d → ∞ at an expo-
nential rate, provided that |1− c| < 1. Here, the latter quantity 1− c somehow describes the
original noise parameter σ induced by the target device on the leakages: the lower |1 − c|,
the noisier the leakages from the target device. Hence the noise amplification effect.

Proof. Let h′i = hi−u, with u being the uniform distribution. Note that h′i may take negative
values. Let us prove that h′i ∗u = u ∗h′i = 0. By using Lemma 3, we known that hi ∗u = u.
It follows that h′i ∗u = (hi − u) ∗u = hi ∗u − u = u − u = 0. Moreover, we have h0 ∗h1 =
(h′0 + u) ∗(h′1 + u) = h′0 ∗h′1 + (h′0 + h′1) ∗u+ u ∗u = h′0 ∗h′1 + u. By induction, it follows that

h = h′ + u , (A.11)

where h′ = h′0 ∗ . . . ∗h′d. Let qi , h′i + (1 − c)u = hi − cu. The main assumption of the
theorem implies that ∀s ∈ Z , qi(s) ≥ 0. By analogy with Equation A.11, we can prove
that q , q0 ∗ . . . ∗ qd = h′ + (1 − c)d+1u. A convolution of non-negative functions gives a
non-negative product, so ∀s ∈ Z, q(s) ≥ 0.

Therefore, h = u+ h′ =
[
1− (1− c)d+1

]
u+ q, i.e., ∀s ∈ Z ,

h(s) ≥
[
1− (1− c)d+1

]
u(s) . (A.12)

Besides, summing Equation A.12 for every s′ 6= s gives: 1−h(s) ≥
[
1− (1− c)d+1

]
(1− u(s)),

that is:
h(s) ≤ (1− c)d+1 +

[
1− (1− c)d+1

]
u(s) . (A.13)

By combining Equation A.12 and Equation A.13, we deduce Equation A.10.

Prest et al. proved the same result in their paper at CRYPTO 2019 [PGMP19, Lemma 6]
with slightly different arguments based on random walks. Theorem 3 is an alternative proof
only requiring standard results on probabilities. Indeed, one can then derive the so-called
relative error defined by Prest et al. from Equation A.9 on which relies their noise amplifica-
tion proof [PGMP19, Thm. 2].

Notice by the way that following a similar reasoning from Aldous and Diaconis [AD86,
Thm. 3], this result may be slightly relaxed, by only assuming that the condition stated in

2 Kloss’ theorem actually applies on any compact group, possibly uncountable.

III



APPENDIX A. NOISE AMPLIFICATION OF SECRET-SHARING

Equation A.9 holds starting from a given order 1 < d′ < d + 1. It implies that the bound in
Equation A.10 becomes (1 − c)

d+1
d′ . Hence, we get a not only sufficient, but also necessary

condition on the initial p.m.f.s (hi)i∈J0,dK to get a noise amplification, at the cost of a lower
rate of convergence towards the uniform p.m.f.

IV



Appendix B

List of acronyms

AES-HD AES - Hamming Distance. XIII, 50, 51, 89–91

AES-RD AES - Random Delay. XIII, 49, 50, 89, 90

Adam Adaptive Moment Estimation. 22, 82, 87, 90, 99, 113

AES Advanced Encryption Standard. V, XIII, XIV, 1–4, 9, 19, 20, 26, 27, 29, 41, 42, 44, 45,
48–54, 73, 89–91, 94, 95, 121

ANSSI Agence Nationale de la Sécurité des Systèmes d’Information. V, 8, 48, 126

API Application Programming Interface. 55, 70

ASCAD ANSSI’s SCA Databases. XIII, 48–50, 89–91, 106, 112, 113, 115, 118, 120, 128

BSI Bundesamt für Sicherheit in der Informationstechnik. 8

C.t.F. Capture the Flag. 25

CC Common Criteria for Information Technology Security Evaluation. 7, 9

CEMA Correlation Electro-Magnetic Analysis. 35

CER Cross Entropy Ratio. 92

CESTI Centre d’Évaluation de la Sécurité des Technologies de l’Information. 7

CMOS Complementary Metal Oxide Semiconductor. 35

CNN Neural Networks that implement discrete finite convolutions in place of linear layers.
XIV, 64, 65, 71, 87, 89, 95–97, 100–103, 106, 112, 114, 119–123, 128

COTS Commercially available Of The Shelf. 102

CPA Correlation Power Analysis. 34–36, 43, 45, 46, 53, 77, 94, 96, 97

CPU Central Processing Unit. 5, 6, 50, 70

D.F.T. Discrete Fourier Transform. 37, 85

DAG Directed Acyclic Graph. 61

DL Deep Learning. iv, 9–11, 47, 48, 55, 56, 60, 63, 65, 67, 68, 70–74, 76, 92, 109, 112, 125–128

DNN Deep Neural Network. XIII, 9, 11, 59–64, 66–68, 70–72, 74, 76, 83, 84, 86, 88, 108, 109,
123, 125–127

V



LIST OF ACRONYMS

DPA Differential Power Analysis. 36, 44

EM Electro-Magnetic. 5, 6, 35, 36, 44, 51–53, 73, 96, 113

EMVCo Europay-Mastercard-Visa Consortium. 8

ERM Empirical Risk Minimization. iii, 55, 58–61, 64, 66–68, 71

ETR Evaluation Technical Report. 8

F.I.B. Focused Ion Beamer. 5

FIPS Federal Information Processing Standard. 4, 20

FPGA Field-Programmable Gate Array. 51, 73

GAN Generative Adversarial Network. 10

GE Guessing Entropy. XIII, XIV, 25, 29, 30, 71, 114, 117, 119, 120

GPU (General Purpose) Graphic Processing Unit. 70, 113, 127

GT Gaussian Template. 32, 33, 50, 53, 60, 74, 94, 96, 106, 119, 123, 126

GV Gradient Visualization. XIV, 106, 109–112, 114–123, 126

HI Hypothetical Information. 92

i.f.f. if and only if. 2, 14, 18, 25, 92, 108

i.i.d. Independent and Identically Distributed. I, 17, 18, 26, 28, 58, 83, 109

I.S.W. Ishai-Sahai-Wagner; name of the scheme that computes a field multiplication for a
Boolean secret-sharing. 42

IC Integrated Circuit. 7

ILSVRC ImageNet Large-Scale Visual Recognition Challenge. 9, 64

IoT Internet of Things. 45, 102

ITSEF Information Technology Security Evaluation Facility. 7–9

JIL Joint Interpretation Library, the reference document describing the state of the art in
terms of physical attacks. 9

KDA Kernel Discriminant Analysis. 37, 106

KL Kullback - Leibler. 18, 80

l.r.a. Linear Regression Analysis a.k.a. stochastic attack [SLP05]. 36, 72

l.s.b. Least Significant Bit. 36

l.u.t. Look-Up Table. 20, 42, 45, 51–53, 121

LDA Linear Discriminant Analysis. 33

LRP Layerwise Relevance Propagation. 111, 112

VI



LIST OF ACRONYMS

LSTM Long Short-Term Memory. 71, 72

LWE Learning With Errors. 10

m.s.b. Most Significant Bit. 36

MCU Micro-Controller Unit. 5, 47, 126

MI Mutual Information. 18, 19, 34, 45, 75–78, 80, 82–86, 88, 89, 91, 92

MIA Mutual Information Analysis. 34

ML Machine Learning. 9, 16, 34, 56, 57, 59, 60, 63, 66, 70, 71, 74, 76, 82, 83, 106, 114, 125, 126

MLP Multi-Layer Perceptron. XIII, 63, 64, 84–87, 109, 112, 126

MSE Mean Square Error. 67

NIST National Institute of Standard and Technology. 2–4, 29

NLL Negative Log Likelihood. XIII, 18, 67, 76, 78–86, 88, 89, 91, 92, 99, 113, 125

OS Operating System. 53

p.d.f. Probability Density Function. 14–16, 19, 24, 30, 38, 39, 85

p.m.f. Probability Mass Function. I–IV, 14, 15, 26, 37, 39, 43, 54, 56, 57, 60, 63, 78, 80, 84, 107,
122, 125, 127

P.o.I Point of Interest. XIV, 11, 35, 37–39, 49, 53, 54, 87, 88, 94, 100, 101, 106–110, 112, 117,
119–123

PCA Principal Component Analysis. 37, 95, 106, 119, 120

PI Perceived Information. 75, 76, 78–89, 91, 92

QDA Quadratic Discriminant Analysis. 33

RAM Random Access Memory. 47, 52, 53, 70

ReLU Rectified Linear Unit. 63, 97, 111, 112, 120

RNG Random Number Generator. 19, 33, 39, 41, 46, 49, 126

RSA Rivest-Shamir-Adleman. 2, 26, 71

SAT Propositional Satisfiability Problem. 25

SCA Side-Chanel Analysis. iv, V, XIII, 9–11, 20, 24–28, 30–35, 37, 39, 40, 43–48, 50–52, 54–61,
65–68, 70–78, 82, 83, 89, 91, 92, 94–98, 102, 103, 106, 111, 122, 125, 126, 128

SGD Stochastic Gradient Descent. 21, 22, 66, 68, 74, 82, 84, 98, 109

SGPC Specialized Generator of Polymorphic Code. 46, 52, 53, 125

SIM Subscriber Identity Module. 3

SNR Signal-to-Noise Ratio. XIII, XIV, 38, 39, 45, 47–54, 77, 87, 95–97, 100, 106, 107, 110,
114–120, 123

VII



LIST OF ACRONYMS

SR Success Rate. XIII, 28, 29, 92, 100

SVM Support Vector Machine. 60, 67, 68, 71

T.O.E. Target of Evaluation. 7–9, 56

TA Template Attacks. 32, 37

TEE Trusted Execution Environment. 3

TPM Trusted Platform Module. 3

TVLA Test Vector Leakage Assessment. 94

VC Vapnik-Chervonenkis. 58–60, 64, 89

VGG Visual Geometry Group. 64, 65, 87, 89, 97, 112

VHDL VHSIC Hardware Description Language. 51

WH Walsh-Hadamard. 85

VIII



Appendix C

Glossary

σ-algebra A collection of subsets of a global set that is closed under complement, and is
closed under countable unions; Tribu in French. 14

gradient The vector made of every partial derivative of a function. 20

almost everywhere Which is only not true on a set of measure zero. XIII, 21, 67

asymmetric cryptography Field of cryptography where the encryption key differs from the
decryption one. 2, 26, 71

block cipher symmetric cryptography algorithm that splits a plaintexts message into blocks
of fixed size that are then encrypted and decrypted separately. 4

characteristic Least integer p such that p · 1F = 0F in a field F . 19

commutative Binary operation ? such that a ? b = b ? a. 41, 42

confusion Method making the relation between the simple statistics of ciphertexts and the
simple description of the secret key a very ocmplex and involved one [Sha49]. 4, 20

consistent Finite proxy approach (e.g. estimation, optimization) that converges to the target
result. 19

countable Which is in bijection with N. IX, 14

critical Point where the gradient is zero. 20, 21

cryptanalysis The art of guessing the plaintext message behind a ciphertext message. IX, X,
2

cryptographic primitive Algorithm that is the building block of a crypto-system, e.g. pro-
cessing encryption, decryption, or hach operations. X, 2–4

cryptography The art of designing encryption and decryption systems. IX, 2, 3, 9, 10, 39, 42

cryptology The union of cryptography and cryptanalysis. 2

cyclic Finite group such that there is one element spanning all the others, by successive
application of the inner law ·. 20

decryption Transforming back a ciphertext message into the initial plaintext message. IX

differential cryptanalysis A class of cryptanalysis based on the study of how slight vari-
ations in some input messages span variations in the cipher text, depending on the
nature of the secret key. 4

IX



GLOSSARY

diffusion Method to dissipate into long range statistics – i.e. into statistical structure in-
volving long combinations of letters in the ciphertext [Sha49]. 4, 20

encryption Transforming a plaintext message into a ciphertext meaningless for anyone whose
the message is not addressed. IX

finite Which is in bijection with J1, NK. N is called the cardinality of the set. 14

hyper-parameter A parameter which cannot be optimized using an optimization algorithm,
e.g. discrete parameters of the architecture. 61–63, 66, 68, 72, 73, 114–117

Jacobian matrix The matrix whose rows are the transposed gradient of each elementary
function x 7→ f(x)[i] ∈ R. XIV, 21, 69, 70, 108, 109, 114, 115

linear cryptanalysis A class of cryptanalysis based on linear approximations of the target
cryptographic primitive. 4

neighbourhood Set of points that are close to a point for a given norm. 20

NP-hard A problem for which there is no algorithm providing a solution in a polynomial
time. 67, 70

partial derivative derivative of a function with respect to only one variable. IX, 20

Resnet Deep Residual Neural Networks, equipped with skip connections in the architec-
ture [HZRS16]. 61, 65, 98, 102

scalar product A bilinear mapping to R+ that is symmetric and semi-positive. 20

sparse Containing lots of values (close) to zero. 38

stochastic Which involves randomness. 19

symmetric cryptography Field of cryptography where the encryption key also serves for
decryption. IX

vector space A linear algebraic structure that is stable by linear combinations where scalars
are taken from a field [Ter18, Chap. 7.1]. 20, 85

vertical Attacks involving univariate leakages. 46

X



Appendix D

List of symbols

L−→ Convergence in law. 16, 19

P Convergence in probabilities. 16, 58, 59, 79, 81

, An equality by definition. II, III, 14–20, 24, 28, 29, 31, 35, 37, 38, 43, 56, 58, 63, 66, 67, 78–81,
85

Fpq Galois Field of polynomials of degree q with coefficients in F2 . 19

· Abstract inner law for a commutative group. I–III, IX, 41, 42

L2 Quadratic error. 63

XI



LIST OF SYMBOLS

XII



List of Figures

1.1 The rounds of AES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The different side channels encountered by an electronic device. Courtesy of

Eleonora Cagli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The French certification scheme. Inspired from Cagli [Cag18]. . . . . . . . . . 7
1.4 Queries to scientific databases, by August 31, 2020. . . . . . . . . . . . . . . . . 10

3.1 Black: scenario of the black-box model. Grey: additional information added
in the gray-box scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Probabilistic graph denoting the links between the data. . . . . . . . . . . . . . 25
3.3 Typical shape of a Success Rate (SR) plot, illustrating howNa(D, o, β) is defined. 29
3.4 Typical shape of a Guessing Entropy (GE) plot, illustrating how Na(D, τ) is

defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Profiling attack scenario: a gray-box attack scenario with a preliminary pro-

filing phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 The two families of counter-measures in SCA. . . . . . . . . . . . . . . . . . . 40
3.7 An example of dummy operation (nop) randomly inserted before an informa-

tive leakage (in red). Courtesy of Cagli et al. [CDP17]. . . . . . . . . . . . . . . 45
3.8 The CW dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9 Leakage characterization with statistical tools over the ASCAD dataset, with-

out artificial shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.10 Effect of the counter-measures to the characterization on the ASCAD dataset. 50
3.11 Top: An example of a trace from the AES-RD dataset. Bottom: the SNR com-

puted over the whole dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.12 Top: one trace of the AES-HD dataset. Bottom: The SNR computed over the

whole dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.13 Acquisitions on the mbedTLS implementation. Top: two traces containing

the first AES round. Bottom: SNR computed on the 100, 000 profiling traces. . 53
3.14 Acquisitions on the AES 8-bit implementation. Top: two traces containing the

first AES round. Bottom: SNR computed on the 100, 000 profiling traces. . . . 54

4.1 A 2D receptive field of sizeD×D, captured by two different settings. Inspired
from Dumoulin et al. [DV16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 A 1D receptive field of size D = 5, captured either by one or two convolution
layers. Inspired from Dumoulin et al. [DV16]. . . . . . . . . . . . . . . . . . . . 65

4.3 Illustration of the workflow of the training of a DNN in a profiled SCA context. 66
4.4 Toy example of a training loss made of characteristic functions with respect

to a real valued learning parameter θ. Paradoxically, although the training
loss LSp (θ) has zero derivatives almost everywhere, the generalization loss
LX,Z (θ) may have non-null derivatives. . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Link between the NLL loss and the efficiency metric in SCA. . . . . . . . . . . 76
5.2 Illustration of Proposition 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Information perceived by the MLP. . . . . . . . . . . . . . . . . . . . . . . . . . 86

XIII



LIST OF FIGURES

5.4 Results on experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Comparison between the estimation of Na(F (·, θt)) through the lower bound

(orange lines) and through a key enumeration (green lines). . . . . . . . . . . 90

6.1 The 16 SNR of the acquired traces from the mbedTLS implementation, one
for each targeted byte, after re-aligned pattern extraction. . . . . . . . . . . . . 97

6.2 Two EM patterns separated by one clock cycle. . . . . . . . . . . . . . . . . . . 99
6.3 Success Rate with respect to the number of attack traces. Attacks on mbedTLS

requiring the alignments of the P.o.Is. The different colors denote the different
targeted bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Evolution of N?
a with respect to the number of training epochs during the

open sample profiling by the CNN (attack ACNN). . . . . . . . . . . . . . . . . 101

7.1 Illustration of the Sensitivity Analysis principle. Left: a piece of trace. t ∈ IZ
is depicted by the green line, and slight variations dotted in red and gray.
Right: predictions of the optimal model. . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Source code to implement the GV in Pytorch. . . . . . . . . . . . . . . . . . . . 110
7.3 Gradient of the loss function, averaged over the validation traces. . . . . . . . 111
7.4 Case where no counter-measure is considered. . . . . . . . . . . . . . . . . . . 115
7.5 Jacobian matrix for the best models in application context Exp. 1. . . . . . . . 115
7.6 Case where de-synchronization is considered. . . . . . . . . . . . . . . . . . . 116
7.7 Explaining the ghost peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.8 Early-stopping is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.9 Comparison of the GE for GV based attacks in plain lines and, in dotted lines,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.10 GV for one trace of the mbedTLS implementation. . . . . . . . . . . . . . . . . 121
7.11 AES states at two moments in the first round potentially leaking information

about the secret key bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.12 GV for one trace of the AES 8-bit implementation. The top plot depicts the

considered trace, whereas the bottom plots denote the gradients for each tar-
geted byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

XIV



List of Tables

5.1 Machine learning metrics and their meaning in Side-Channel Analysis . . . . 83

6.1 Our architecture and the recommendations from the literature. In the Zaid et
al.’s methodology, T denotes the maximum assumed amount of random shift
in the traces, and I denotes the assumed number of leakage temporal points
in the traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Minimal number N?
a of required queries to recover the target key bytes. . . . 101

7.1 Settings and results of Exp. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Settings and results of Exp. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 Results of Exp. 3 with Boolean secret-sharing. . . . . . . . . . . . . . . . . . . . 117

XV


	Contents
	Context, Objectives and Contributions
	Frame of the Thesis
	From the Attacks towards the Evaluation
	Deep Learning based Attacks
	Contributions of this Thesis

	Preliminaries
	Notations and Conventions
	Recalls in Probability and Statistics
	Recalls in Discrete Mathematics
	Recalls on AES
	Recalls on Vectorial Calculus

	Side-Channel Attacks
	Definition of a Side-Channel Attack
	Assessing an Attack
	Conditions of an Optimal Attack
	Profiled Attacks
	Unprofiled Attacks
	Leakage Characterization and Pre-Processing
	Counter-Measures
	Overview of the Used Datasets
	Conclusion

	Deep Learning for Side-Channel Analysis
	The Statistical Learning Theory
	The Neural Networks Class Hypothesis
	Implementing the ERM with Neural Networks
	An Overview of the Literature
	Conclusion

	Theoretical Aspects of Deep Learning Based Side-Channel Analysis
	Introduction
	Model Training for Leakage Assessment
	NLL Minimization is PI Maximization
	Study on Simulated Data
	Application on Experimental Data
	Conclusion

	DL-based SCA on Large-Scale Traces: A Case Study on a Polymorphic AES
	Introduction
	Evaluation Methodology
	Results
	Discussion
	Conclusion

	Gradient Visualization for General Characterization in Profiling Attack
	Introduction
	Study of an Optimal Model
	Proposal for a Characterization Method
	Experimental Verification
	Results
	Conclusion

	Conclusion & Perspectives
	Summary of the Contributions
	New Tracks of Research in DL-based SCA

	Noise Amplification of Secret-Sharing
	The Link between Noise Amplification and Convolution
	A Fixed-Point-Like Proof

	List of acronyms
	Glossary
	List of symbols
	List of Figures
	List of Tables

