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Abstract

Iron-based superconductors are a recent discovery in the history of supercon-

ductivity. Discovered about ten years ago, their phase doping-temperature

diagrams are close to some materials like cuprates. When cuprates show

schematically a Mott insulator phase, a pseudogap phase and a supercon-

ducting phase, iron-based superconductors mainly show three transitions: a

nematic transition, a magnetic transition and a superconducting transition.

However, the simplest of the iron-based superconductors, FeSe, does not

show a magnetic phase at ambient conditions. Its low Fermi energy sug-

gests the presence of fluctuations that might lead to the observation of the

vortex lattice melting over its entire phase diagram. This will be presented

in the first chapter of this thesis.

Specific heat was chosen as the main measurement technique of our samples.

Two set-ups were used: the Dual Slope Method and alternative Calorimetry.

The alternative calorimetry device allows access to high magnetic fields up

to 35T and thus gives the opportunity to study the complete phase diagram

of our compounds. It is also a particularly sensitive probe to phase transi-

tions, which is one of the core topics of this thesis. In the second chapter,

I will present the thermodynamic properties of interest to obtain our phase

diagram as well as the different set-ups used during our work.

The third chapter presents the measurements made during the PhD and

their analysis. A first part focuses on the pure FeSe compound. Our data

reveal an excess of specific heat before the superconducting transition at-

tributed to the presence of a transition between a solid and a vortex liq-

uid. Using a scaling approach we deduce the fictitious upper critical field

line. The temperature dependence of this field shows an important effect

of Cooper pair breaking by paramagnetic effects, mainly when the mag-

netic field is oriented along FeSe layers. The melting of the vortex lattice



also shows that beyond thermal fluctuations, possible quantum fluctuations

could be present. Finally we study the possible appearance of a Fulde-

Ferrell-Larkin-Ovchinnikov phase. The second part of this chapter focuses

on the FeSe0.88S0.12 doped compound. A comparative study of its phase di-

agram with that of FeSe is conducted, revealing a great similarity between

the two compounds. Moreover a new anomaly is detected in our specific

heat data, which is still under investigation.



Abstract

Les supraconducteurs à base de fer sont une découverte récente dans l’histoire

de la supraconductivité. Découvert il y a une dizaine d’année, leurs dia-

grammes de phase se rapprochent de certains matériaux comme les cuprates.

Quand les cuprates montrent de manière schématique une phase isolant de

Mott, une phase pseudogap et une phase supraconductrice, les supraconduc-

teurs à base de fer montrent principalement trois transitions : une transition

nématique, une transition magnétique et une transition supraconductrice.

Cependant le composé le plus simple parmi les supraconducteurs à base

de Fer, FeSe, ne montre pas de phase magnétique à conditions ambiantes.

Son énergie de Fermi faible laissent entrevoir la presence de fluctuations qui

pourrait mener à l’observation de la fusion du réseau de vortex sur la total-

ité de son diagramme de phase et d’étudier les effets qui peuvent influencer

la ligne du champ critique supérieur. Ceci sera présenté durant le premier

chapitre de cette thèse.

La chaleur spécifique a été choisi comme technique de mesure principale des

échantillons. Deux techniques ont été utilisées : la Dual Slope Method et la

calorimétrie alternative. Le dispositif de calorimétrie alternative permettant

l’accès à des champs magnétiques intenses jusqu’à 35T, il donne l’occasion

d’étudier le diagramme de phase complet de nos composés. C’est aussi une

sonde particulièrement sensible aux transitions de phase, ce qui est l’objet

de cette thèse. Dans le deuxième chapitre, j’exposerai donc les propriétés

thermodynamiques intéressantes pour obtenir notre diagramme de phase

ainsi que les différents dispositifs utilisés au cours de nos travaux.

Le troisième chapitre expose les mesures faites au cours du doctorat ainsi que

leurs analyses. Une première partie se focalise sur le composé pur FeSe. Nos

données révèlent un excès de chaleur spécifique avant la transition supracon-

ductrice attribué à la présence d’un transition entre un solide et un liquide



de vortex. A l’aide d’une approche par loi d’échelle nous déduisons la ligne

fictive du champ critique supérieur. La dépendance en température de ce

champ trahit un effet important de brisure de paires de Cooper par effets

paramagnétiques, principalement quand le champ magnétique est orienté le

long de couches de FeSe. La fusion du réseau de vortex montre aussi qu’au

delà de fluctuations thermiques, de possibles fluctuations quantiques pour-

raient être présentes. Enfin nous étudions la possible apparition d’une phase

de Fulde-Ferrell-Larkin-Ovchinnikov. La deuxième partie de ce chapitre se

concentre sur le composé dopé FeSe0.88S0.12. Une étude comparative de son

diagramme de phase avec celui de FeSe y est menée, révélant une grande

similarité entre les deux composés. De plus une nouvelle anomalie est dé-

tecté dans nos données de chaleur spécifique. Cette dernière est toujours en

cours d’investigation.



Abstract

Supraleiter auf Eisenbasis sind eine neue Entdeckung in der Geschichte

der Supraleitung. Ihre Phasendotierungs-Temperatur-Diagramme, die vor

etwa zehn Jahren entdeckt wurden, ähneln denen einiger Materialien wie

z. B. Kuprate. Während Kuprate schematisch eine Mott-Isolator-Phase,

eine Pseudogap-Phase und eine supraleitende Phase aufweisen, zeigen eisen-

basierte Supraleiter hauptsächlich drei Übergänge: einen nematischen Über-

gang, einen magnetischen Übergang und einen supraleitenden Übergang.

Der einfachste der eisenbasierten Supraleiter, FeSe, zeigt jedoch bei Umge-

bungsbedingungen keine magnetische Phase. Seine niedrige Fermi-Energie

deutet auf das Vorhandensein von Fluktuationen hin, die zur Beobach-

tung des Schmelzens des Wirbelgitters über sein gesamtes Phasendiagramm

führen könnten. Dies wird im ersten Kapitel dieser Arbeit vorgestellt.

Die spezifische Wärme wurde als Hauptmessverfahren für unsere Proben

gewählt. Es wurden zwei Versuchsaufbauten verwendet: die Dual Slope-

Methode und die alternative Kalorimetrie. Das alternative Kalorimetriegerät

ermöglicht den Zugang zu hohen Magnetfeldern bis zu 35T und bietet somit

die Möglichkeit, das vollständige Phasendiagramm unserer Verbindungen zu

untersuchen. Sie ist auch eine besonders empfindliche Sonde für Phasenübergänge,

was eines der Kernthemen dieser Arbeit ist. Im zweiten Kapitel werde ich die

thermodynamischen Eigenschaften vorstellen, die für die Erstellung unseres

Phasendiagramms von Interesse sind, sowie die verschiedenen Versuchsauf-

bauten, die während unserer Arbeit verwendet wurden.

Im dritten Kapitel werden die im Rahmen der Doktorarbeit durchgeführten

Messungen und ihre Auswertung vorgestellt. Ein erster Teil konzentriert sich

auf die reine FeSe-Verbindung. Unsere Daten zeigen einen Überschuss an

spezifischer Wärme vor dem supraleitenden Übergang, der auf das Vorhan-

densein eines Übergangs zwischen einem Festkörper und einer Wirbelflüs-



sigkeit zurückzuführen ist. Mithilfe eines Skalierungsansatzes leiten wir

die fiktive obere kritische Feldlinie ab. Die Temperaturabhängigkeit dieses

Feldes zeigt eine wichtige Auswirkung der Cooper-Paar-Auflösung durch

paramagnetische Effekte, vor allem wenn das Magnetfeld entlang der FeSe-

Schichten ausgerichtet ist. Das Schmelzen des Wirbelgitters zeigt auch,

dass neben thermischen Fluktuationen auch Quantenfluktuationen auftreten

können. Schließlich untersuchen wir das mögliche Auftreten einer Fulde-

Ferrell-Larkin-Ovchinnikov-Phase. Der zweite Teil dieses Kapitels konzen-

triert sich auf die mit FeSe0.88S0.12 dotierte Verbindung. Es wird eine ver-

gleichende Studie ihres Phasendiagramms mit dem von FeSe durchgeführt,

wobei eine große Ähnlichkeit zwischen den beiden Verbindungen festgestellt

wird. Außerdem wurde eine neue Anomalie in unseren Daten zur spezifis-

chen Wärme entdeckt, die noch untersucht wird.
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1

Introduction

1.1 A bit of History

1.2 Thermodynamics in high-temperature superconductors

Superconductivity was discovered in 1911 by Heike Kammerlingh-Onnes in Leiden.

After managing to liquefy helium, he measured the resistivity of mercury with temper-

ature and observed a sudden drop to zero at 4.2 K [(3)]. A few years later, in 1933,

Meissner and Ochsenfeld discovered the second major characteristic of superconductors:

it is a perfect diamagnetic [(4)]. Since then thousands of articles have attempted to ex-

plain what happens inside a superconductor. An important step was taken by Ginzburg

and Landau in 1950 [(5)], who explained the phenomenology of superconductors and

characterized it by three aspects : infinite conductivity, an order parameter, and perfect

diamagnetism. The next significant step occurred in 1957, when Bardeen, Cooper and

Schrieffer, described how most of the superconductors worked at the time. They ex-

plained that an energy gap opens at low temperature due to electron-phonon coupling

and giving birth to superconductivity [(6)]. Yet the rise of the so-called high temper-

ature superconductors (HTSCs), discovered by Bednorz and Müller in 1986, overrides

this theory. Nevertheless the phenomenological aspect of Ginzburg and Landau remains

applicable [(7)]. Having a basic theory that fits to them, HTSCs are perfect to study

the vortex matter which appears in type II superconductors and many studies were

conducted for example on YBCO.

1



1. INTRODUCTION

1.2.1 Ginzburg-Landau theory

While type I superconductors only exhibits two phases, a fully superconducting

sample or non superconducting sample; type II superconductors have a higher amount

of phases which will be discussed, mainly arising from a mixed state, where a sample can

be superconducting in some areas ( vortices ) and non-superconducting in others. The

phenomenology here can be explained by the Ginzburg-Landau theory which is based

on the free energy of a charged superconductors in a magnetic field. Landau started

to describe ferromagnetism and then Ginzburg extended it to superconductivity by

assuming the existence of a macroscopic wave function ψ, being also the order parameter

of superconductivity [(8)]. The free energy can therefore be written as :

fs = fn + α|ψ|2 +
1

2
β|ψ|4 (1.1)

Where fs is the free energy in the superconducting state and fn the one in the

normal state. To take into account the spatial variations of the order parameter, a

kinetic term, ~
2m |∇ψ|

2, must be added to Eq 1.1. Having added a magnetic field in

this equation, two terms appears : the contribution of the magnetic field to the energy

density, 1
2µ0

B2; and the interaction of the electrons with the field in the kinetic energy,

∇ → ∇− iq
~ A. In the end the free energy can be written as :

fs = fn + α|ψ|2 +
1

2
β|ψ|4 +

~2

2m
|
[
∇− iq

~
A

]
ψ|2 +

1

2µ0
B2 (1.2)

Close to transition temperature, Tc, α can be written as α0(T − Tc). That is one of

the hypothesis made by Ginzburg and Landau: all the coefficients can be written as

a regular function of the temperature. It is decided to take only the first order. By

integrating fs over the volume and minimizing it with respect to ψ and A, it is then

possible to get the two Ginzburg-Landau equations :

αψ + β|ψ|2ψ − ~2

2m

[
∇− iq

~
A

]2

ψ = 0 (1.3)

∇×H = −4πq

m

(
i~
2

[ψ∗∇ψ − ψ∇ψ∗]− q|ψ|2A
)

(1.4)

Solving these equations gives two characteristic lengths. Eq 1.3 gives an idea about how

the order parameter varies with the distance, and allows to give an expression to the so

2



1.2 Thermodynamics in high-temperature superconductors

Figure 1.1: Penetration and coherence length around a vortex

called coherence length, ξ.

ψ =

(
|α|
β

)1/2

tanh

(
x√
2ξ

)
(1.5)

ξ(T ) =

(
~2

2mα0Tc

)1/2(
1− T

Tc

)−1/2

(1.6)

Eq 1.4 can be solved to obtain the penetration depth, λ, which gives the typical value

of the variations of the field in the sample.

λ(T ) =

(
mβ

4πq2α0Tc

)1/2(
1− T

Tc

)−1/2

(1.7)

Fig. 1.1 shows the typical lengths around a vortex in a type II superconductor.

Let us now try to understand a bit more Eq. 1.2 and focus on the kinetic energy

term. ψ is a complex function and can therefore be written as, |ψ|eiφ. The kinetic

energy can thus be written as :

~2

2m
|
[
∇− iq

~
A

]
ψ|2 =

~2

2m

[
(∇|ψ|)2 + (∇φ− q

~
A)2|ψ|2

]
(1.8)

By identification, one can find the superfluid velocity, vs = 1
m(∇φ− q

~cA). That velocity

is useful to understand how the flux quantization works. With the second Ginzburg-

Landau equation, one knows that the supercurrent responsible for the Meissner effect,

3



1. INTRODUCTION

i.e. the diamagnetism, only flows on a small layer of the cross section of a thickness λ,

so that away from the center of a contour the current is zero and then vs = 0. It follows

∮
vs.dl =

∮
1

m
(∇φ− q

~
A) = 2πn+

q

~
Φ (1.9)

Φ =
nh

q
= nΦ0 (1.10)

Where n is an integer and Φ0 is the flux quantum responsible for the flux quantization.

Let us now look at critical fields in the superconductor and examine when does

superconductivity disappear. The overall energy of the system is conserved so that the

system’s condensation energy in zero field, fs − fn, must be equal to the one of the

magnetic energy at the critical field where the Meissner effect no longer exists.

fs − fn = −H
2
c

8π
(1.11)

Hc =

√
2πα2

0

β
(T − Tc) (1.12)

One can also try to minimize fs close to the transition. It means that |ψ|2 ≈ 0 so that

one can neglect the 4-th order term in Eq 1.2. One can also only minimize the kinetic

term in that expression because the second order term will only affect the normalization.

After writing
−→
A = Hy−→x , and considering a solution with the form ψ = η(y)e−ikxx−ikzz,

one tries to find the eigen values :

~
2m

[
(kx +

y

l2m
)2 − ∂2

∂y2
− k2

z

]
η(y) = Eη(y) (1.13)

where lm =
√

1/~qH. It recalls the expression of an harmonic oscillator and the problem

is similar to the Landau levels and one finds the eigen energy to be :

E =
qH~
2m

(1.14)

Introducing it back in Eq. 1.2

f =

(
α0(T − Tc) +

qH~
2m

)
|ψ|2 + β|ψ|4 (1.15)

4



1.2 Thermodynamics in high-temperature superconductors

A change in the sign of the quadratic coefficient gives rise to another form of the function,

which can be interpreted as a phase transition. This is the criteria for a second critical

field:

Hc2 =
2α0m

q~
(Tc − T ) (1.16)

Following this, the next question is, which one of these fields is the limiting criteria

to express when superconductivity disappears in the sample. In the first case, at Hc,

the field is completely expelled of the sample, while in the second there might be some

spatial variations of the order parameters, creating vortices in the sample at Hc2. Thus

the differentiation criteria between type I and type II superconductors, is to check which

one of these fields is more likely to appear first in the H − T phase diagram. Since the

Ginzburg-Landau formalism is only valid close to Tc, one only compares the two slopes.

dHc2

dT

∣∣∣∣
Tc

=
dHc

dT

∣∣∣∣
Tc

(1.17)

1

2
=
m2b

πq2
(1.18)

Defining the Ginzburg-Landau parameter as κ = λ/ξ, one finally get the final criteria

to differentiate between the two types of superconductors :

κ2 =
1

2
(1.19)

Therefore in a type I superconductors, κ is smaller than 1/2 and greater in a type II.

1.2.2 Superconducting fluctuations

Since superconductivity is suppressed with field and temperature, some variations of

the order parameter may exist before the superconductive transition actually happens,

which are called fluctuations, and we want to check here in what part of the H − T
phase diagram they take place.

Let us first assume the Ginzburg Landau functional without any field and try to express

the specific heat of the system.

fs = fn + α|ψ|2 +
1

2
β|ψ|4 +

~2

2m
|∇ψ|2 (1.20)

5



1. INTRODUCTION

Figure 1.2: Magnetic phase diagram for type-I and type-II superconductors. From [(9)]

As a first approximation |ψ|4 will be neglected (also called Gaussian approximation)

and the order parameter is written as a Fourier transform :

ψ(−→r ) =
1√
V

∑
k

ψke
i
−→
k −→r (1.21)

By integrating the function, F (ψ) =
∫
d3r(fs − fn), one finally obtains :

F (ψ) =
∑
k

[
α+

~2k2

2m

]
|ψk|2 (1.22)

The partition function, defined as Z =
∫
dψe

−F (ψ)
kbT , is therefore equal to :

Z =
∏
k

√
πkbT

α+ ~2k2

2m

(1.23)

Using the definition of the specific heat being C/T = ∂S/∂T , and S = −∂F/∂T =

∂kBT ln(Z)/∂T , the specific heat can finally be written as :

C =
kBV

4π2ξ3
0

[
1

3
− 5(1 + τ)

2
+

arctan (τ−1/2)

2τ1/2
(1 + τ)(5τ + 1)

]
(1.24)
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1.2 Thermodynamics in high-temperature superconductors

with τ = (T −Tc)/Tc. Only considering the most diverging term close to Tc, the specific

heat is then :

C =
kBV

8πξ3
0

(
Tc

T − Tc

)1/2

(1.25)

The former expression is entirely obtained by the Ginzburg Landau theory neglecting

the |ψ|4 term, this is called the Gaussian approximation. However this approximation

can not be applied on the entire phase diagram, as indeed fluctuations are known to

be strong close to the transition and one can not neglect the quartic term, this is the

critical region. The remaining question is: where are the limits of applicability of the

fluctuation corrections to the heat capacity obtained above ? The fluctuation corrections

must match the value of the corresponding physical values. Concerning the specific

heat it gives the Ginzburg criterion, by comparing the fluctuation corrections obtained

above and the specific heat jump obtained by mean-field theory, ∆Cmf = H2
c V/4πTc.

Comparing these equations one gets:

T − Tc
Tc

=
1

4

(
kBTc
H2
c ξ

3

)2

(1.26)

Giving a definition to the Ginzburg number, Gi.

Gi =
1

2

(
kBTc
H2
c ξ

3

)2

(1.27)

So that when T − Tc < 0.5GiTc, it is not possible to only consider Gaussian fluctua-

tions and the quartic term must be taken into account. The Ginzburg number here is

a comparison between the thermal energy due to Tc and the condensation energy. If

the superconductor is layered then the Ginzburg number is divided by ε =
√
m/M , the

square root of the ratio of the quasiparticle’s effective mass parallel to the supercon-

ducting plan and perpendicular to the superconducting plane.

In field, these fluctuations are enhanced and the field dependant Ginzburg number

Gi(H) follows that law :

Gi(H) = G
1/3
i

(
H

H ′c2Tc

)2/3

(1.28)

Let us try to have a more detailed representation of what is happening in the Gaussian

approximation and compare it in the critical region. In the Gaussian approximation,

the order parameter and its fluctuations are supposed to be weak enough so that the

7
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quadratic term in the Ginzburg Laudau functionnal is much higher than the quartic

term. However going closer to the critical region, the quartic term becomes bigger and

it is not possible to neglect it at some point. We can thus write that the crossover

happens when :

α < |ψ|2 >=
1

2
β < |ψ|4 > (1.29)

Since we are looking at the limit value where it is possible to decouple fluctuations,

let us write that they are independent (< |ψ|2 >2=< |ψ|4 >) and that will give us

the criterion for the crossover. From that it is possible to deduce a typical length

ξG = (βm2kBTc/~4)−1 which describe the scope of the interactions in the system. If

ξ(T ) < ξG then the correlated regions are smaller than the scope of the interactions

between the fluctuations and it is possible to average the fluctuations in order to neglect

the interactions. In that scenario the Gaussian approximation is valid. On the other

side, if ξ(T ) > ξG, the interactions within the fluctuations are quite high and one can

not neglect them, this is the critical regime [(10)].

1.2.3 The vortex matter

1.2.3.1 General physics of the vortex matter

As we discussed above there are several types of superconductors. Abrikosov pro-

posed in 1957 a phase diagram, based on the Ginzburg-Landau theory to have a better

idea of the vortex matter in a superconductor [(11)]. In that phase diagram (cf Fig.

1.2), for a field H < Hc1, there is a complete expulsion of the magnetic field and the

entire sample is superconducting: this is called the Meissner phase. For a higher field,

a different phase arises, the mixed state, sometimes called Shubnikov phase. Here the

magnetic field penetrates the sample in the shape of vortices. They form an Abrikosov

lattice, that is triangular (at least in the framework of that theory). When increasing

the field, more field penetrates the sample until the vortices proliferate and overlap each

others and reach a second critical field Hc2, where there is no more superconductivity.

Now applying current in the superconductor, the vortices will start to move under the

action of the Lorentz force. It might also be countered by a viscous force, which would

slow down the motion of the flux lines. However it will still produce an electrical field,

giving birth to some dissipation power, resulting in the disappearance of one of the

properties of a perfect superconductor : the resistance is no longer equal to zero.

8



1.2 Thermodynamics in high-temperature superconductors

That behaviour gives a good phenomenological result of the low temperature and con-

ventional superconductors. Nevertheless, some type II superconductors still exhibits

the zero resistance property for a field smaller than Hc2. In order to have that property,

the vortices need to stop moving. This is achieved when they are pinned. In that case,

a force Fpin is stronger than the Lorentz force and the vortices are motionless, allowing

to have the zero resistivity property. That is true as long as there is some disorder

in the system, which is luckily the case quite often. In that formalism, when putting

a current in the superconductor and reducing it, the zero resistivity point will give a

critical current, jc, at which the Lorentz force is higher than the pinning force. The

critical current is bound by a limit, j0 at which the kinetic energy of the quasiparticles

is higher than the gap value. The ratio of jc/j0 is a good measurement of the pinning

strength.

This development is only due to a mean field picture. However we saw that fluctuations

somewhat contribute to superconductivity. In the case of thermal fluctuations, the vor-

tices will move around an equilibrium position, and if the fluctuation length becomes

bigger than a certain amount of the lattice constant of the Abrikosov lattice (typically

20%), then a so-called melting transition occurs and creates a new phase, called vortex

liquid. If there is some current is the material, the vortices can now move for a current

smaller than the critical current. In fact, thermal fluctuations allow some thermally

activated jump, and so to dissipate some power. This is called the creep phenomenon.

There also might be a glassy phase. In that scenario the pinning force is very strong,

and one of the characteristics of that phase is the destruction of the Abrikosov lattice.

Moreover, if the disorder is not too strong, the elastic properties of the vortex lattice are

preserved and its destruction is quite weak. This is called a Bragg glass. The lattice is

here quasi ordered, with no dislocations and a power law decay of the crystalline order

[(12)]. On the other hand if the disorder is too strong no order can be found and the

resulting phase is the vortex glass. Fig 1.3 shows schematically how these phases appear

in the phase diagram while Fig. 1.4 shows the phase diagram deduced by Bouqet et al

for YBCO. [(13)].

The strength of the thermal fluctuations is well described by the Ginzburg number,

Gi. Going to lower temperatures, the thermal fluctuations will be very weak and one

could think that the vortex lattice properties would only be governed by the quenched

9



1. INTRODUCTION

Figure 1.3: Schematic phase diagram of the vortex matter. In a scenario with no pinning
then the Hm,dis line does not exist and Hm extends to lower temperature. From [(14)]

10



1.2 Thermodynamics in high-temperature superconductors

Figure 1.4: Phase diagram for the vortex state in YBCO. The dotted line represents the
line of first-order melting for H < 5 T. HX is the phase boundary between two observed
liquid phases. Hft represents the lattice-glass transition. CP indicates a critical point.
From [(13)]
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disorder of the system. However similar to thermal fluctuations at high temperatures,

another type of fluctuations is very strong a low temperature even if present all over the

temperature range : quantum fluctuations. They are mainly governed by the normal

state resistivity, ρn. As an analog to Gi for thermal fluctuations and jc/j0 for the

quenched disorder, we can give a dimensionless parameter that will quantify the strength

of the quantum fluctuations :

Q =
e2

~
ρn

εξ
, (1.30)

The next table presents the numerical values of these three parameters for different

superconductors.

NbTi KBaBiO YBaCuO

Tc(K) 10 30 100
Hc2(T) 10 25-30 100
Gi 10−8 10−5 - 10−4 10−3

Q 10−3 0.1 0.1
Jc/J0 0.1 10−2 - 10−1 10−3 - 10−2

Table 1.1: Comparison of the different parameters influencing the vortex lattice melting
in different superconductors

Let us now try to look at a bit more in details at the properties of the vortex matter,

focusing mainly on the vortex lattice melting which will be at the core of that thesis.

In fact when the thermal energy of the system in not negligible in comparison to the

elastic energy of the vortex lattice and the pinning energy, a mean field approach is no

longer valid and one need a deeper theory.

1.2.3.2 Elasticity of the vortex lattice

Every vortex has an energy responsible for its properties. That energy is due to

several effects : the condensation energy and the kinetic energy of the screening current

flowing around the vortex. In the end, following the Ginzburg-Landau development, it

will give a line energy :

εl =

(
φ0

2πλ

)2(
ln

(
λ

ξ

)
+ 0.497

)
(1.31)

12



1.2 Thermodynamics in high-temperature superconductors

In that sense, the magnetic field will only penetrate the sample when the line energy of

a vortex is superior to the magnetic energy φ0H/4π, providing the limit of the Meissner

state :

Hc1 =
φ0

2πλ

(
ln

(
λ

ξ

)
+ 0.497

)
(1.32)

When the vortices will start to overlap each other then the normal state is recovered.

That happens when the density is of the order of ξ−2. Each vortex having a line tension

allows some collective properties to arise. Trying to describe these properties can only

be achieved by comparing the different phenomenons happening in the vortex matter.

However usually the displacement of a vortex is so small that one can apply the linear

elastic theory to describe the vortex matter. The linear elastic force, Felas, of the lattice

is expressed most conveniently in the k-space. The displacement ui(z) = ri(z)−Ri, of

a vortex in the ideal position Ri = (Xi, Yi, z) is described by its Fourier components :

ui(z) =

∫
BZ

d3k

8π3
u(k)eikRi (1.33)

u(k) =
φ0

B

∑
i

∫ ξ

−ξ
dzui(z)e

i−kRi (1.34)

with u(k) written down as (ux;uy, 0), one finds the linear elastic force to be :

Felas =
1

2

∫
BZ

d3k

8π3
uα(k)φαβ(k)u∗β(k) (1.35)

Here (α, β) = (x, y) and φαβ(k) is called the elastic matrix. It is real, symmetric and

periodic in the k-space. That matrix is related to the different elastic modulus :c11 for

compression, c44 for tilt, and c66 for shear. One can write the element of that matrix

as :

φx,y(k) = (c11 − c66)kxky + δxy[(k
2
x + k2

y)c66 + k2
zc44 + αL(k)]. (1.36)

αL(k) is the Labusch parameter, which describes the elastic interaction of the pinning

potential of impurities with the vortex lattice. If all vortices are pinned individually

for example that parameter is k-independent. In the case of a uniform distortion, the

different elastic moduli can be expressed via the following system :

c11 − c66 = B2 ∂
2F

∂B2
(1.37)
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c44 = B
∂F

∂B
(1.38)

c66 ≈
Bφ0

16πλ2µ0

(
1− 1

2κ2

)
(1− b2)(1− 0.58b+ 0.29b2). (1.39)

Here b = B/Bc2. The last equation shows that at the limit between a type I and a

type II superconductor (i.e. when κ = 1/
√

2), the c66 modulus vanishes, and all vortex

arrangements have the same energy. It also vanishes when the vortex are overlapping

each other (i.e. λ→∞ or B → Bc2) or when the vortex lattice is melting.

Close to Tc, in the Ginzburg Landau approximation, Brandt [(15)] gives the free energy

of an arrangement of curved vortices by the expression :

F (ri(z)) =
φ2

0

8πλµ0

∑
i

∑
j

(∫
dri

∫
drj

erij/λ
′

rij
−
∫
|dri|

∫
|drj |

erij/ξ
′

rij

)
, (1.40)

with

rij = |ri − rj | (1.41)

λ′ = λ/〈|ψ|2〉1/2 ∼ λ/
√

1− b (1.42)

ξ′ = ξ/
√

2(1− b) (1.43)

The first term in Eq. 1.40 is the vortex-vortex repulsive interaction with an effective

penetration depth λ′, the second term is the attractive vortex-vortex interaction due

to the superconducting condensation energy of overlapping vortices with an effective

coherence length ξ′ and the vortex self-energy is included in the diagonal term.

The quadratic k-dependence of φαβ is only valid in a regime where k < λ, which is very

central to the Brillouin zone. In fact the matrix has to be periodic with the lattice.

λ and ξ being enhanced by the field as λ′ and ξ′, the interaction length is usually

bigger than the vortex spacing and then c11 and c44 strongly depend on the k-vector

of the disturbance. This is called the non-locality of the vortex lattice. The vortex

lattice softens strongly for short range wavelengths of compressional and tilt distortions

than it is for a uniform compression or tilt. The elastic matrix of the vortex lattice was

calculated from the Ginzburg Landau theory by solving φ(r) and B(r) up to terms linear
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1.2 Thermodynamics in high-temperature superconductors

in arbitrarily chosen displacements. Remarkably, it turns out that the correct expansion

parameter near Bc2 for periodic ui(z) is not the spatial average 〈|ψ|2〉 ∼ (1− b) but the

parameter 〈|ψ|2〉/(k2λ2). It gives then the tilt and compression moduli as :

c11(k) ≈ c44(k) =
B2/µ0

1 + k2λ2/〈|ψ|2〉
(1.44)

1.2.3.3 Vortex lattice melting

Now knowing the elastic properties of the vortex matter, it is possible to calculate

the mean square thermal displacement 〈u〉 of the vortex positions within the linear

elastic theory by ascribing a thermal energy 1/2kBT to each elastic mode of the vortex

lattice,
1

2
〈uα(k)φαβ(k)uβ(k)〉 =

kBT

2
. (1.45)

In order to get the mean square thermal displacement, one need to sum for all k over

the Brillouin zone and kz. The Brillouin zone is assimilated as a circle with a radius

kBZ = (4πB/φ0)1/2.

〈u2〉 = kBT

∫
BZ

d2k⊥
4π2

∫ +∞

−∞

dkz
2π

(φ−1
xx (k) + φ−1

yy (k)), (1.46)

〈u2〉 =
kBT

2π2

∫ kBZ

0
dk⊥k⊥

∫ +∞

0
dkz

(
1

c66k2
⊥ + c44(k)k2

z

+
1

c11(k)k2
⊥ + c44(k)k2

z

)
.

(1.47)

It might now be useful to estimate that integral in order to have an idea of the influence

of the thermal fluctuations on the vortex lattice. We will now give another form to

the k-dependent elastic moduli given by Houghton [(16)] which take into account the

different effective masses in the plan, M and along the z-axis, Mz. The elastic moduli

are expressed via a normalized wave-vector q = k/kBZ :

c44(k) =
B2

4π
m2
λ

M

Mz

(
1

q2
⊥ + (M/Mz)(q2

z +m2
λ)

+ 1

)
(1.48)

c11 =
B2

4π
m2
λ

(
q2 + (M/Mz)m

2
λ

(q2 +m2
λ)(q2

⊥ + (M/Mz)q2
z + (M/Mz)m2

λ)
− 1

q2
⊥ + (M/Mz)q2

z +m2
ξ

)
(1.49)
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with m2
λ = (1− b)/(2bκ2) and m2

ξ = (1− b)/b and c66 is still considered dispersionless.

These expressions are reduced to known expressions in the local limit but a crossover

to the non local behaviour is achieved when q2 ≥ m2
λ.

Houghton said only a numerical evaluation of Eq. 1.47 could be achieved, but consider-

ing the smallness of the parameter mλ, it is possible to neglect c11 in Eq. 1.47. Babich

[(17)] gives then the expression :

〈u2〉 = a2
0βA

√
Gi

2π

t

1− b

√
BBc2(0)

B2
c2(T )

(I1 + I2) , (1.50)

I1 =
2

A(1 +A)

(√
1 + (1 +A)2 − 1

)
, (1.51)

I2 =
2

3mξ

(
2 + 3mξ −m3

ξ + (m2
ξ −mξ − 1)

√
1 + (1 +mξ)2

)
, (1.52)

where A =
√

(1− b)/4, a0 is the spacing in between the vortices and βA is the Abrikosov

constant, equal to 1.16 in the case of a triangular lattice. One sees that the amplitude of

the thermal fluctuations is related to the Ginzburg number, which we saw, determines

the width of the fluctuation regime of a superconductor.

Following that result it is now important to find a way to know when the vortex lattice

melts by introducing the Lindemann criterion. In the Lindemann theory, similarly to

a crystal lattice, the vortex lattice is melting when the mean thermal displacement of

the vortex reaches a certain fraction of the spacing between the vortices. It means that

when 〈u2〉1/2 = cLa, where cL is the Lindemann constant of the order of 0.1− 0.3, the

lattice undergoes a melting transition. Looking at Eq. 1.50, the complete expression of

Bc2(t) over the complete H−T phase diagram is needed to have the precise dependence

of the melting line. Nonetheless let us write that close to Tc, we can write Bc2(T ) =

Bc2(0)(1 − t). Since I1 and I2 have finite values close to Tc, one finds in the end that

only considering thermal fluctuations, the melting line follows :

Bm(T ) = B0

(
1− t
t

)2

, (1.53)

and

B0 =
πεφ0

λ2(0)

(
c2
Lφ

2
0

8π2λ(0)kBTc

)2

. (1.54)
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1.2 Thermodynamics in high-temperature superconductors

Figure 1.5: Melting line for different values of cth,the thermal coefficient measuring the
strength of the thermal fluctuations part to the melting only considering thermal fluctua-
tions

B0 here only logically depends on λ(0) and not on ξ(0). On the other side, the melting

line will coincide with Bc2 at zero temperature because there are no thermal fluctuations

in that condition. Fig 1.5 clearly shows that dependence and one can also see that the

bigger Gi the farther from Hc2 the melting line is. That is because the Ginzburg number

quantifies the thermal fluctuations, and the bigger the fluctuations are the more visible

the melting will be.

For now we only took thermal fluctuations into account, which strength is partially

determined byGi. Yet earlier we also talked about quantum fluctuations, which strength

is correlated to Q. In order to take these fluctuations into account, one can start with

the same method : by calculating the mean square displacement of the vortices. We will

have a formulation with the same form as Eq. 1.47, but slightly modified by the fact

that we need to sum over the different Matsubara frequencies, ωn = 2πnkBT/~ [(18)].

The term for n = 0 is equal to the thermal fluctuations part, and the rest is what we

will call the quantum fluctuations part. This is why we can separate the mean square

displacement into two parts : one due to thermal fluctuations and the other one due to
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quantum fluctuations.

〈u2〉
a2

0

= c2
L(cthfth(t, b) + cqufqu(t, b)), (1.55)

where cth will be related to Gi and cqu to Q. Thanks to Blatter in (18) it is possible

to have an expression for the quantum part of the mean square displacement. Firstly,

he writes a fluctuation-dissipation theorem, which is equivalent to Eq. 1.47 :

〈u2〉 =
~
i

∫ +∞

−∞

dω

2π
coth

(
~ω

2kBT

)∫ kBZ

0

dk⊥
4π

∫ +∞

0

dkz
π(

1

c66k2
⊥ + c44(k)k2

z − iωη
+

1

c11(k)k2
⊥ + c44(k)k2

z − iωη

)
.

(1.56)

Here η = Bc2φ0ρn is the Bardeen-Stephen viscosity coefficient due to the motion of

vortex. Secondly, Blatter divides that integral into two parts, and explains that the

quantum part in Eq. 1.56 is equal to :

f0(α, β) =
1

2

∫ 1

0
dx

∫ 1

0
dy ln

(
1 + β2

(
(1 +

α2x

y2

)2
)
, (1.57)

where α = 2/
√
πν, β = 2/πb(1− b), and ν is a numerical constant of the order of unity

which is used to limit the divergence of the integral by only integrating over few vortex

neighbors. It is an important point to take into account since the value of cqu could

change at least of one order of magnitude depending on the value of ν. Blatter does

not give any calculated form of that integral, but only analyses the behavior in specific

regions of the phase diagram, depending on the parameters. However is it possible to

find an analytical expression for it. Looking back at Eq. 1.55 one may then define :

fqu = b3/2
fq1 + fq2 + fq3

2
, (1.58)

fq1 =
1

3α2
(2α3

√
βfq11 − fq12), (1.59)

fq11 =
2β − 3i

(β − i)3/2
tan−1

(√
β − i
α
√
β

)
+

2β + 3i

(β + i)3/2
tan−1

(√
β + i

α
√
β

)
, (1.60)

fq12 =
2α2(β2 + 3)

β2 + 1
+ (3α2 + 1) ln

(
(α2β + β)2 + 1

)
− 2, (1.61)
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fq2 =
2

3
(α
√
βfq21 + fq22), (1.62)

fq21 =
i

(β − i)3/2
tan−1

(√
β − i
α
√
β

)
− i

(β + i)3/2
tan−1

(√
β + i

α
√
β

)
, (1.63)

fq22 =
tan−1(α2β + β)

α2β
+

2

β2 + 1
, (1.64)

fq3 =
1

3α2β

(
β
(
ln(β2 + 1)− 2

)
+ 2 tan−1(β)

)
, (1.65)

Even if some complex numbers appear in the formula, the resulting function is always

real. Let us now check the asymptotic behavior. For example, β → ∞ gives the

behaviour in the two regions where b is small or close to one. In both cases fqu taking

the different terms’ limits of fqu, some of them cancel each others out and in the end it

varies like ln(β). Since close to Tc, β follows a law in Bc2(1− t)/B, we find in the end

a linear dependence of the melting line :

Bm(T ) = B1(1− t) (1.66)

It is also interesting to look at the value of the melting when T = 0. Here we can

see a specific behavior due to quantum fluctuations, which states that the melting can

happen at a field, Bm(0), different from Bc2 even at zero temperature. We find that :

Bm(0) = Hc2

(
1− 2

π
exp

(
α

(
2π

3
− α

2

))
× exp

(
−
π3c2

l

2Q

))
. (1.67)

All these features are clearly visible in Fig 1.6 which shows the linear dependence close

to Tc and the melting field different from Hc2(0) at zero temperature.

In the end, looking at the thermal fluctuations we will only use the formula given

by Sudbo which is verified close to the melting line usually, and simplified compare d

to Eq. 1.50. From now on we will define fth in Eq. 1.55 by the following (19) :

fth(t, b) =
t√

Bc2/Bc2(0)

√
b

1− b

(
4(
√

2− 1)√
1− b

+ 1

)
. (1.68)

In the same Eq. 1.55, we now have to define the thermal and quantum coefficient in

front of each function. We find that :

cth =

√
Gi

2πc2
L

, (1.69)
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Figure 1.6: Melting line for different values of cqu, the quantum coefficient measuring
the strength of the quantum fluctuations part to the melting, only considering quantum
fluctuations
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1.2 Thermodynamics in high-temperature superconductors

Figure 1.7: Melting line for the vortex lattice with quenched disorder. From [(20)]. D is
the pinning strength. The bigger D is the shorter the melting line is and it is shifting from
Tc. It should be noticed that when the pinning is strong, the melting line does not merge
with the upper critical fiel line.

cqu =

√
2Qν√
π7c2

L

. (1.70)

From this point we have an expression for the melting line, only ignoring any effect due

to disorder. Fig. 1.7 shows the effect of pinning on the phase diagram. The origin of

the pinning is assumed to be caused by point defects in this phase diagram. Basically

what we have to remember about that is that the stronger the pinning is, the more

the melting line shift from the upper critical field and from the melting line without

pinning, i.e at fixed temperature the melting field decreases with pinning. One of the

other effect is also that there is no merging between the upper critical field and the

melting.

We now have to deal with other issues: we have to know the dependence of Bc2 and

to know several constants of the material to have the exact behaviour of the melting

line. We will take a closer look to the dependence of the upper critical field in the next

section.
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1.2.4 Temperature dependence of Hc2

It that part we will try to go into more details concerning the temperature depen-

dence of the upper critical field. Several mechanisms are involved here and will be

introduced : namely orbital and Pauli pair breaking and the Fulde and Ferrell, Larkin

and Ovchinnikov (FFLO) phase.

1.2.4.1 Orbital and Pauli pair breaking

Orbital pair breaking First let us introduce the classical view of orbital pair break-

ing. In that image the quasiparticle pair breaks because of the Lorentz force. This gives

the same result for the upper critical field as we calculated before with the Ginzburg

Landau equation. By other way of explanation, if we see the pair from the point of view

of the Lorentz force, each electron will describe a circle with a Larmor radius :

rL =
mvF
eµ0H

. (1.71)

If the radius becomes larger than the coherence length, then the pair will break and

gives an orbital limiting field :

Horb
c2 (t) =

φ0

2πξ2(T )
(1.72)

ξ(T ) =
0.18~vF

kBTc
√

1− t
(1.73)

That gives a linear dependence of the orbital upper critical field close to Tc, which cor-

responds to what we used to see in the behavior of the melting in the same conditions.

Paramagnetic pair breaking There is another scenario which we did not analyze

until now. Since the Cooper pairs are made of the quasiparticles with opposite spins,

if the magnetic field is strong enough to align them in the same direction the pair will

also break. This is what we call the Pauli limit or the paramagnetic limit. Clogston

[(21)] explains the limit by comparing the difference between the Zeeman energy in the

normal and superconducting phase with the pairs’ condensation energy.

1

2
(χn − χs)H2

p (T ) =
µ0H

2
c (T )

2
, (1.74)
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(a) Orbital pair breaking (b) Paramagnetic pair breaking

Figure 1.8: Two different mechanisms responsible for the pair breaking

where, χn and χs denote respectively the paramagnetic susceptibility in the normal and

superconducting states and Hp is the Pauli limiting field, due to the Zeeman splitting.

χn = (gµb/2)2N(EF ), ( g might be different from 2) and χs = 0 because the electrons

condense into pairs with a zero spin. We also know the expression for the critical field

from the BCS theory : H2
c /2µ0 = N(EF )∆(0)2/2. N(EF ) is the density of states at

the Fermi level and ∆(0) is the gap value at zero temperature. This is only true if there

is only one gap responsible for superconductivity. It gives a value for the Pauli limiting

field at zero temperature :

Hp(0) =

√
2∆(0)

gµb
(1.75)

In order to compare paramagnetic effects with orbital effects we usually use the Maki

parameter defined as :

αM =
√

2
Horb(0)

Hp(0)
. (1.76)

Until now, we have only considered two separate cases. However it is possible

to obtain an expression considering the two mechanisms at the same time, which is

provided in the Werthamer-Helfand-Hohenberg (WHH) theory [(22)].

Most of the superconductors that we will study during the thesis are supposed to be

in the clean limit (only valid when the coherence length is much smaller compare to the

mean free path). Brison et al. [(23)] give a expression of the upper critical field of a s-

wave single band superconductor, considering orbital and Pauli pair breaking and being

in the clean limit (Eq. 1.77). That expression is only valid if the transition remains
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Figure 1.9: Upper critical field in the clean limit normalized by the purely orbital upper
critical field at zero temperature as a function of reduced temperature for different Maki
parameters, only taking orbital and paramagnetic effects into account

second order down to zero temperature, which is not true for large Maki number.
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(1.77)

In the limit where T = 0, when α → 0 we find that the upper critical field mimics the

pure orbital behavior whereas in the limit α → ∞ it behaves in the pure Pauli limit

behavior. However close to Tc, Hc2 should be governed by the orbital limit. Fig.1.9

shows the dependence of the upper critical field following Eq. 1.77 for different Maki

parameters.

Vortex lattice melting and upper critical field Adashi and Ikeda [(24)] predicted

that two different behaviors can be observed when comparing the melting line and the

upper critical field, assuming only thermal fluctuations, no vortex pinning effect and

paramagnetic depairing. The two possible phase diagram are visible in Fig. 1.10. In

this article they argued that considering thermal fluctuations no Hc2 line would be
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1.2 Thermodynamics in high-temperature superconductors

Figure 1.10: Two candidates of a schematic H − T phase diagram of a bulk type II
superconductor with paramagnetic depairing in the case of thermal fluctuations and with
no vortex pinning effect. The dotted line corresponds to the upper critical field, and the
continuous line the vortex lattice melting. In (b) the vortex lattice disappears before
T=0K. From [(24)]

observed and instead the only genuine phase transition is the melting line. They also

explained that in the case of a weak enough fluctuations, reducing upon cooling, the

melting line might meet the hypothetical upper critical field before zero temperature

and would therefore coincide over the low temperature part of the phase diagram, with

a first order transition. The resulting phase diagram is then available in Fig. 1.10.b.

It is interesting to compare the phase diagram of Adashi and Ikeda with the one

obtained by Houzet and Mineev [(25)] in the case of strong paramagnetic depairing. The

last ones argued that in the pure paramagnetic limit (αM →∞) it exists a temperature

T ∗ = 0.56Tc, where the second order transition happening at the upper critical field

transforms into a first order transition. The smaller the Maki parameter is, the smaller

T ∗ becomes. One can sump up their work by giving the comparison of two phase

diagrams, one with a small Maki parameter and another with a high one, as illustrated in

Fig. 1.11. They also considered the possible appearance of a superconducting modulated

phase, which will be introduced in the next section.

1.2.4.2 FFLO

We should now investigate a bit more the paramagnetic behavior of the quasiparti-

cles pairs just before the pair could be destroyed. Due to the Zeeman effect, each quasi-

particle sees its energy being shifted in the opposite direction of its spin by h = gµbH.

In the pure paramagnetic limit if the magnetic field is not too strong then the pair might
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(a) (b)

Figure 1.11: Schematic dependence of the upper critical field line in the clean limit
following the consideration of Houzet and Mineev for a small (a) and a high value (b) of
the Maki parameter. In the case of a small Maki parameter the transition at the upper
critical field is always second order (black line), while in the case of a high value of the
Maki parameter, the transition line becomes first order at low temperature (red line) and
the dependence calculated by Eq. 1.77 (dashed line is no longer true. Tcp marks the critical
point at which the behaviour changes.
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1.2 Thermodynamics in high-temperature superconductors

Figure 1.12: (a) Schematic illustration of Cooper pairing in the BCS state. (b) Pairing
state in the FFLO state. (c) Schematic illustration of the superconducting order parameter
∆ in real space and segmentation of the vortices by planar nodes. (d) Schematic electronic
structures of hole and electron pockets close to the FFLO state. From [(28)]

subsist. Yet in order to accomplish that, the momentum of the quasiparticles shifts pro-

portionally to the Zeeman splitting, and the pair gets a total momentum that is linear

with h, as shown in Fig. 1.12(b). That moment in the reciprocal space is equivalent to

an oscillation in the real space (see 1.12(c)), leading to a new superconducting state,

with a modulation parameter, which is now called FFLO from Fulde, Ferrell, Larkin

and Ovchinnikov who predicted that state [(26), (27)].

That state was calculated to be always favorable if the paramagnetic state is dom-

inant compared to the orbital state. However this is not always true, for example we

stated that close to Tc the orbital regime is dominant. From this point, the situation

becomes more complex. The complete interactions between the orbital effects and the

paramagnetic effects start to be more difficult to understand and it is harder to find a

proper criterion to know when a FFLO phase might appear.

Observing the FFLO state might also be a difficult task. In fact in most superconduc-
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tors, the paramagnetic effects are much smaller compared to the orbital ones. Yet some

precise cases could help to enhance that ratio in favor of the Pauli limit. For example by

having a higher effective mass, which is what happens in the heavy fermions systems, or

maybe by having 2D compounds and orienting the field within the planes would limit

the orbital effects. It was acknowledged that for a FFLO phase to appear, αM must

be superior to 1.8 [(29)] and it can only exist below a temperature T ∗ = 0.56Tc (that

temperature is a bit lower in the case of a d-wave superconductor). It should also be

noted that a very clean material is needed. In fact the impurities tend to reduce the

chances for the appearance of a FFLO phase, by breaking the modulation responsible

for that phase. If we take a closer look at the behavior of the quasiparticles in a FFLO

phase, it is even possible to have a precise condition to define what is a clean material

in the FFLO terminology. The quasiparticles have a momentum q ∼ 1/ξ0 and the

incertitude due to diffusion by the impurities is 1/l, l being the mean free path. The

creation of the Cooper pairs with a momentum makes only sense if that incertitude is

smaller compared to the momentum. It means that we have the same criterion as before

: l > ξ0. In the end, two mains features are expected to signify the appearance of the

FFLO phase: first, a reinforcement of Hc2 at low temperature, and second, a first order

transition between the FFLO phase and the normal superconducting phase.

Buzdin [(30)] gives an implicit expression taking into account the orbital effects, the

paramagnetic effects and the FFLO phase. The given formula for a Landau level m is

:

ln t

t
= Re

2π
∑
ωn>0

∫ βe−βydy(−1)mLm(2βy)√
Q̃2 + y

× tan−1

Tc
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Q̃2 + y

ωn + iµBH
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ωn

 ,
(1.78)

where Q̃ = ~vFQ
2Tc

, β = 7ζ(3)
12π2

Tc
H

(
dH
dT

)
Tc
, Lm are the Laguerre polynomials, ωn = πT (2n+

1) the Matsubara frequency and Q is the modulation vector of the FFLO phase. Since

Q changes with the field, one needs to find the maximum of the curve H(Q) at a

specific temperature to get the value of H and Q at that temperature. Fig 1.13 gives

a comparison of the upper critical field obtained while taking a FFLO phase or not for

the same Maki parameter. We see that the main effect is to enhance the line at low

temperature, where the superconducting phase appears.

In the same article it is specified that for a Maki parameter smaller than 9, only

the lowest Landau level can be taken into account, which simplifies the expression. In
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1.2 Thermodynamics in high-temperature superconductors

Figure 1.13: Schematic phase diagram considering the presence of a FFLO phase. In
a scenario with a FFLO phase, one should observe a second order transition (black line)
at high temperature before the FFLO phase appear. At low temperature, at a fixed
temperature, and increasing the field, one first crosses the virtual line of Eq. 1.77 (dashed
line) which does not exists anymore, and then a first order transition when entering the
FFLO phase (red line). Recovering the normal state at higher field, the transition line is
now second order (blue line). All these lines merge at a critical point Tcp
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Figure 1.14: Theoritical prediction of the appearance of T ∗ as a function of the initial
slope of Hc2. From [(23)].

that formalism the T ∗ temperature, at which the FFLO phase can appear, might be

shifted to a lower temperature due to the orbital effect. Since the ratio of the orbital

effect and the paramagnetic effect is given by the Maki parameter, one can plot the

dependence of T ∗ as a function of αm or equivalently as a function of the initial slope

of the upper critical field (αm = 0.27g
(
−dHc2

dT

)
Tc
). That was done by the same group

in [(23)], where they give the following figure 1.14

1.3 Iron based superconductivity

We would like to focus presently on the material that will be used in this thesis :

FeSe1−xSx. Firstly, we will start by introducing that material in a general overview

about iron-based superconductivity. We will address general features that we think

are relevant to iron-based superconductivity even if they are not observable in every

compound. Afterwards, we will discuss some special features of our compound.

1.3.1 Crystal structure

In 2008, superconductivity was first discovered in a iron-based material : LaO1−xFxFeAs

[(31)]. It was found to have a Tc of 26K and opened an entirely new field of research
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1.3 Iron based superconductivity

of superconductors, namely iron-based superconductivity. After that discovery, many

different iron-based superconductors were discovered [(32)] and we now sort them be-

tween different families depending on their stochiometry (see Fig. 1.15). However they

all share one common point: pnictogen (P,As) or chalcogen (Se,Te) mixed with iron in

planes. One distinguishes mainly 4 families.

11 The 11-type materials are for now only iron chalcogenides, since FeAs does not

crystallize into a layered structure [(33)]. On the other hand, FeSe does. The 11 ma-

terials are considered as the simplest materials in the iron-based superconductors, only

consisting of layers of iron and a chalcogen. FeSe becomes superconducting at around

9K [(34)] and the Tc can be enhanced up to 37K with pressure[(35)]. FeTe crystals are

also possible to synthesize and the combination of Se and Te gives FeSexTe1−x with a

maximum Tc at x = 0.5 of 14K [(36)]. FeSe1−xSx have also been synthesized giving

a maximum Tc of 10.5 K around x = 0.12 [(37)]. In these compound, the substitute

element takes the free positions of chalcogen atoms.

111 It is possible to intercalate atoms in between the Fe-chalcogen or Fe-pnictogen

layers. By adding 5 atoms per unit cells one gets the 111 family. The most famous

compound among these is certainly LiFeAs with a Tc of 18K [(38)]. The main problem

of most of the compounds of this family is that they are highly reactive with air and

therefore harder to study [(32)]. NaFeAs shows less reaction to the environment than

LiFeAs but air exposure strongly affects Tc which seems to be around 23K in the optimal

conditions [(39)].

122 The 122 family is widely studied in terms of holes and electron doping, form-

ing a complex phase diagram, which we will talk about later on. Ba1−xKxFe2As2 is

certainly one of the most studied compound of this family. That hole doped material

shows a maximum Tc of 38K [(40)]. On the other hand the electron doped compound

Ba(Fe1−xCox)2As2 shows a maximum Tc of 22K [(41)]. Both have the same parent

compound BaFe2As2 and its phase diagram shows similarities with a major part of the

materials of the same family. The huge variety of crystals and the good crystal quality

makes this family the favorite one to study and many articles were published to have a

better understanding of iron-based superconductivity through the 122 family [(32)].
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Figure 1.15: Crystal structures of some iron-based superconductors. From [(44)]

1111 The 1111 family was the first one to be discovered and shows the highest Tc
among Fe-based superconductors. Only one month after the discovery of LaO1−xFxFeAs,

substitution of La by some rare earth element, and among these Sm led to a Tc of 55K

[(42)]. Logically they also show huge upper critical fields, which seems to be anisotropic

in most cases. The resistive transition seems to be reminiscent of those observed in

cuprates also [(43)].

Some other iron-based superconductors also exists with a more complex stochiometry,

but we will not discuss those, since the highest amount of publications seems to focus

on these 4 families.

1.3.2 Phase diagram

For several years after the discovery of superconductors, it was admitted that super-

conductivity would only appear for a temperature close to 30K. Bernt Matthias even

gave 5 rules, called the Matthias rules, to find new superconductors in 1963 [(45)] :

-To have the highest possible symmetry in the system

-To have the highest possible density of states

-No oxygen

-No magnetism ( for example iron)

-No insulator
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1.3 Iron based superconductivity

However the discoveries of heavy fermions, cuprates and organic superconductors tend

to prove that these rules are not always true, and these families were called "exotic"

superconductors. Iron-based superconductors being part of the so-called "exotic" su-

perconductors, they share the common characteristic with cuprates or heavy fermions

systems to have a very rich phase diagram, full of different phases that tend to com-

pete or sometimes cooperate with each other. One of the main focus of the research

work on Fe-based superconductors nowadays is to characterize these phases and try to

understand how they can compete or sometimes cooperate. In the iron-based supercon-

ductors mainly three phases are observable: a magnetic phase, a nematic phase and a

superconducting phase.

Let us consider BaFe2As2 as a good representation of the phase diagram of iron-based

superconductors. At room temperature and with no pressure or doping it as a tetrag-

onal structure. Going at lower temperature it undergoes a structural transition (some-

times called nematic, we shall discuss later on) to an orthorombic symmetry and at

the same time a magnetic transition from a paramagnetic state to a antiferromagnetic

state [(46)]. When doping, the structural transition and the magnetic transition split

but remain very close. Most of the compounds are not superconducting without any

doping. Superconductivity forms into a dome at low temperature and close to the zero

temperature point of the magnetic and nematic transitions [(46)]. Therefore one of the

main questions of iron-based superconductors is the role of these transitions concerning

superconductivity with a possible quantum critical point.

1.3.2.1 Superconducting phase

The Barden Cooper Schrirffer theory, which states that superconductivity is medi-

ated by phonons, does not seem to work for Fe-based superconductors. First-principles

studies have shown that if superconductivity in these systems was mediated by phonons,

Tc should be around 1K, which seems to strongly disagree with what is observed [(48)].

Therefore two candidates are under focus in these systems to justify the creation of

Cooper pairs: spin or charge fluctuations. Electronic fluctuations tend to evolve on

a same time scale as the motion of the electrons which makes Cooper pairing hard.

However Chubukov and Hirschfeld [(49)] argued that the crucial feature that allows an

unconventional (i.e. not phonon mediated) pair state to minimize the repulsive Coulomb

interaction is the fact that its gap function changes sign. In that sense the electrons
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Figure 1.16: Typical phase diagram of iron-based superconductors in the parameter space
of temperature and doping. From [(47)]

escape the Coulomb repulsion by avoiding each other in space rather than time. That

could be the reason why most gap functions are anisotropic in momentum and often

possess gap nodes. Even if the symmetry of the order parameter is currently discussed,

in most iron-based materials it is believed that the right gap symmetry might be s+−

(see Fig 1.17). In such a state the gap in invariant under symmetry operations of the

crystal, and thus might not exhibit symmetry imposed nodes, but the gap changes sign

between the electron and holes pockets [(50)]. One can note that the s+− and s++

states are both isotropic and only differ because of a phase shift of π between the hole

and electron pockets. In the nodal s the gap vanishes at certain points on the electron

pockets. Sometimes these nodes are called accidental nodes because they are not due

to the symmetry but rather to the details of the pair interaction. The presence of nodes

usually changes the low temperature behavior of the system. d-wave pairing is also

under investigation, mainly in electron-doped systems.

In order to get s+− superconductivity one needs the repulsion to be stronger be-

tween pockets than within them. Yet, usually it not the case, and the most popular

scenario is that the strong interpocket interaction is due to spin fluctuations because

the magnetic ordering vector Q of the magnetic phase is the same as the momentum
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1.3 Iron based superconductivity

Figure 1.17: Different order parameters under discussion in iron-based superconductors
in the 1-Fe Brillouin zone. From [(50)]

connecting hole and electron pockets.

1.3.2.2 Magnetic phase

Among all families of iron-based superconductors, the 122 and the 1111 are cer-

tainly the most commonly studied materials. The parent compound usually shows an

antiferromagnetic order. It has a wave vector (π, 0) in the one Fe Brillouin Zone. It

connects electron to hole pockets, which have approximately the same size. That being

said, we have good conditions for "nesting" of the Fermi surface, typically leading to a

Spin Density Wave (SDW). The magnetic phase of iron-based superconductors is often

referred to as SDW in order to stress out that magnetism is possible through itinerant

electrons rather than through localized electron spins. This is a significant difference

with cuprates here.

The magnetic phase in most iron-based superconductors is described as a stripe order,

with spin aligning ferromagnetically in one direction and antiferromagnetically in the

other. That order breaks the spin rotational symmetry but also a two fold symmetry
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[(47)]. Since the magnetic order distinguishes two perpendicular in-plane direction, one

could logically think that the magnetic order is intimately coupled to the orthorhombic

distortion whereas the non-magnetic phase is coupled to the tetragonal structure. In

some samples like (Ba1−xKx)Fe2As2 the structural transition and magnetic transition

take place at the same time [(51)].

1.3.2.3 Nematic phase

Many measurements have found that when lowering the temperature, the magnetic

phase is often preceded by a phase with broken tetragonal symmetry but unbroken

spin rotational symmetry, this is the nematic phase [(52)]. The term nematicity comes

from the liquid crystal field. Usually at room temperature crystal liquids will have no

arrangement. However going at lower temperature they start to arrange themselves so

that they will have a preferred direction. The nematic phase manifests itself through

different experimental phenomenons :

-Structural distortion, where the lattice parameters a along the x-axis and b along the

y-axis become different [(53)].

-Charge/orbital order where the occupation nxz and nyz associated to the dxz and dyz

Fe-orbitals become also different [(54)].

-Spin order where the static spin susceptibility becomes different along the qx and qy

directions of the Brillouin zone [(55)].

Since all properties have an in-plane anisotropy in the orthorhombic phase due to sym-

metry, it is quite hard to gather more information about the origin of the nematicity

in Fe-based superconductors [(56)]. It is believed that the nematic and magnetic tran-

sition might have some coupling, since, if not together, they are very close by. It was

for example observed that magnetic fluctuations increase below the structural transi-

tion [(57)] as well as spin-spin correlation length [(58)]. It was also shown that the

structural distortion increases below the magnetic transition [(53)]. That close inter-

action between magnetism and nematicity support the idea that nematicity might be

a consequence of magnetic interaction, in the spin nematic scenario. Since stipe-like

correlations distinguish into two directions, they break tetragonal symmetry and help

the structural transition to happen.
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1.4 FeSe : a special case

1.4.1 A new phase diagram

Temperature doping phase diagram Even if it is the simplest iron-based super-

conductors, FeSe is a very special case among these, and is therefore very interesting

when looking at the different phases. It is possible to exchange selenium with sulfur in

order to get FeSe1−xSx. Sulfur being in the same column as Selenium in the periodic

table, the number of charge carrier will stay the same. However the main effect of

substituting selenium by sulfur is chemical pressure. This is because the sulfur atom is

smaller than the selenium atom. Owing to that the crystal cell is smaller, almost the

same as with hydrostatic pressure. At a temperature of 90K with no sulfur, the material

undergoes the nematic/structural transition. The first surprising feature happens here

because no magnetic order is observed when lowering the temperature, and only super-

conductivity is found at a temperature of approximately 9K [(59)]. Even when adding

some sulfur, no magnetic order seems to rise and the nematic transition decreases until

it reaches a putative quantum critical point around x ≈ 0.16 [(60)]. When the doping

is superior to 0.16 the system always stays in the tetragonal structure. Considering

the superconductivity there is also an interesting behavior. Tc is already present in the

parent compound and slowly goes a bit higher to reach a maximum close to x = 0.12

with Tc = 10.5K. When the structural transition disappears, Tc likely goes through a

step to lower temperature and stays flat around a value of 6K to finally reach 0K close

to x = 0.40 [(61)]. The FeS compound is however superconducting at 6K.

Temperature pressure phase diagram Fig. 1.19 shows the temperature-pressure

phase diagram of bulk FeSe. At ambient pressure it undergoes the nematic transition

at Ts ≈90K [(63)] but no magnetic transition. Only under the application of pressure

can the magnetic order be restored at a pressure of 1GPa [(64)] while Ts decreases

and Tc increases to a maximum of 37K at 6GPa [(65)]. This is an unusual feature for

iron-based materials [(66)]. X-ray diffraction under pressure combined with Mössbauer

spectroscopy showed that the structural and magnetic transition collapse at 1.6 GPa

[(67)] as it can be seen in Fig. 1.19. Specific heat studies also agree on that feature

[(68)]. Interestingly, the dependence of Tc is closely linked to the appearance of the other

phases. For instance, it goes through a local maximum around 1 GPa exactly where the
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Figure 1.18: Temperature-doping phase diagram of bulk FeSe. From [(62)]

magnetic order starts to rise end reaches another maximum when the magnetic order

is suppressed [(69)]. One of the main question here is about the nature of the magnetic

order: is it stripe-like as in other iron-based superconductors ? For the moment no

neutron diffraction experiments did manage to observe any magnetic signal. However

some studies revealed some common features between the 122 family, where stripe-like

order is observed and FeSe [(53),(67),(70)], suggesting that all Fe-based materials might

have the same type of magnetic order.

1.4.2 Electronic properties

Compensated semimetal behaviour FeSe is a compensated semimetal, meaning

that the electrons and holes densities are the same and are quite low compared to

that of a metal [(71)]. One of the interesting features in FeSe is the magnetoresistance

observed in the orthorhombic phase, being the signature of the large mean free path

in compensated semimetal [(72)]. At the same time spin fluctuations start to appear,

which might play a role in the modification of the electronic structure in that phase

[(73)]. The upper critical field anisotropy and its dependence in doped samples [(74)]

goes also in favor of a multiband behavior of FeSe.

Another interesting feature in FeSe is its Fermi energy. Kasahara et al. [(28)] estimate

it around 3-7 meV for the electrons and 8-10 meV for the holes. These energies are

of the same order of magnitude as the one of superconducting gap [(75)]. In such

conditions one can say that we are close to a BCS-BEC crossover (BCS for Bardeen
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Figure 1.19: Temperature-pressure phase diagram of bulk FeSe. From [(69)]

Cooper Schrieffer and BEC for Bose-Einstein Condensate), where some properties could

be at the midpoint between superconductivity and a Bose-Einstein condensate.

ARPES measurements In the nematic phase, ARPES measurements show a quasi

2D hole pocket around the Γ point. It is strongly distorted, having an elliptical shape,

compare to the one observed in the tetragonal phase. When that pocket seems to be

observable in every ARPES measurements, the precise shape of the electron pockets is

still under debate and several scenario have been proposed. Some measurements show a

bow-tie shaped electron pocket at the Mx point [(76)]. In addition other measurements

performed on twinned crystals propose petal shaped electron pockets at theMx andMy

points [(62)], when other experiments using nano-ARPES [(77)] also on twinned crystals

go in favor on a single electron pocket at the Mx point. The absence or presence of

another tiny electron pocket at the My point has also not reached consensus. Based on

these observations, Shibauchi and al. [(78)] propose 4 possible Fermi surface structure

in FeSe as illustrated in Fig. 1.21b.
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Quantum oscillations Quantum oscillations have been performed by several groups

using different techniques in order to have a better understanding of the electronic

properties of FeSe in the nematic phase [(79), (80), (2)]. The fast Fourier transform

spectra usually shows 6 peaks (see Fig. 1.20) corresponding to the frequencies observed

in the quantum oscillations signal with relatively small frequencies compare to other

Fe based superconductors(<700T). The β and δ frequencies are associated with the

extremal areas of the hole band, both having a similar effective mass of 4 me. The

γ frequency is associated with the maximum area of the outer electron pocket with

an effective mass of 7 me [(80)]. Then there are several possible explanations for the

other frequencies. One of these suggests that the minimum area of the pocket gives

the α1 frequency, suggesting only one electron pocket. α2 would be an harmonic of

α1 and ε would be an harmonic of β. That is the scenario proposed by Terashima

et al. [(80)]. On the other hand a second scenario proposed by Coldea et al. [(81)]

suggests that the minimum of the outer electron pocket is associated with ε, and that

there would be an additional small electron pockets giving birth to the α1 and α2

frequencies. Other measurements [(78)] also agree on the fact that the electron pocket

might by disconnected and separated in two, but also explained that the precise nature

of the shape of the electron pocket is very sensitive to the Fermi energy. As shown in

Fig. 1.21a, the electron pocket as a fork-tailed shape near the Fermi level and very

subtle changes, like in the number of carriers, could change the Fermi level to shift and

therefore reconnect the electron pocket.

In the end one can sum up all possible scenarii in the next figure.

Superconducting gap There is a consensus about the anisotropic nature of the

superconducting gap of FeSe. It was shown with Bogoliubov quasiparticle interference

that ∆max/∆min=15 [(83)]. In the same article Sprau et al. argued that the gap

structure of FeSe consists of one electron gap and one hole gap with comparable average

gap amplitudes, the one of the holes being of 1.5 meV and the one of the electrons being

of -1.2 meV. Specific heat data [(84)] also agree on a two band scenario with line nodes

(this feature remains controversial), being consistent with the ARPES and quantum

oscillations studies from above. In the case where an electron pocket would appear at

the Mx point, it is said that that pocket carries a very small spectral weight and a
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Figure 1.20: (a) Magnetotransport in a single crystal of Fese at 0.4K. The inset shows
the oscillatory part of the signal, reminiscent of quantum oscillations. (b) Fast Fourier
transform spectra of the same signal. From [(82)]

(a) (b)

Figure 1.21: (a) Schematic energy dispersion of the hole and electron pockets in the
nematic phase of FeSe. (b)Four possible Fermi surface structure of FeSe based on ARPES
and quantum oscillations. In all the possibilities, a hole band is found the the point.
The electron pocket around the Mx point has a bow-tie shape for (a) and (b), and another
electron pocket is present at theMy point in (a). In (c), the electron pocket is disconnected.
In (d) petal shaped pockets are found both at Mx and My. From [(78)]
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zero superconducting gap [(85)]. Both specific heat studies cited above agree on a weak

coupling scenario in the BCS framework, with a value of ∆Ce/γnTc ≈1.7.

1.4.3 FeSe in high magnetic fields

A-B phase FeSe shows some very special and sometimes controversial features in

high magnetic fields. The first one that we can find in the literature is the presence of a

high field superconducting phase, separated from the low field superconducting phase,

only visible when the magnetic field is applied parallel to the c-axis [(28)]. Surprisingly

the separation between these two phases is field independent. Thermal conductivity

shows a cusp-like feature at a field H∗ (see Fig. 1.22a). On the other hand going at

higher field, one can still see superconductivity and the irreversibility line measured

by magnetic torque. Resistivity seems to appear at a higher field also, where the irre-

versibility field Hirr (see Fig. 1.22b) and the zero resistance measured point coincides

very well. The peak measured in the torque data is related to the melting of the vortex

lattice. At the same time the resistivity shows a interesting behaviour (see Fig. 1.22c).

The magnetoresistance increases at low temperature being typical of the behaviour of

compensated semimetal but at high field in the normal phase it finally decreases after

showing a broad maximum around 15K. That decrease in the resistivity is ascribed to

strong superconducting fluctuations in the normal phase. Fig. 1.23 shows the obtained

phase diagram from these measurements.

FFLO phase Looking in the other direction (with the magnetic field along the FeSe

layers, parallel to the a or b-axis), it seems very likely that another phase appears at

high fields also. Magnetocaloric effect measurements showed an anomaly in the super-

conducting state at high fields [(86)] and a clear discontinuous downward jump was

found in thermal conductivity data at 24T [(28)] (see Fig. 1.24a). These measurements

being in the irreversible part of the phase diagram one should be careful about any ther-

modynamical measurements. Surprisingly superconductivity seems to be still present

above these features as indicated by resisitivity measurements (see Fig. 1.24b). The

resistivity shows also a surprising behaviour : the broad transition at high temperature

becomes abruptly sharp at low temperature. The new found phase is believed to be a
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1.4 FeSe : a special case

(a) (b) (c)

Figure 1.22: (a) Magnetic-field dependence of the thermal conductivity at low tempera-
tures when the field is perpendicular to the FeSe layers. At H∗, it shows a cusp-like peak,
suggestive of a nearly temperature-independent transition. (b) Field dependence of the
magnetic torque at low temperatures. Downward (upward) arrows mark the positions of
the irreversibility (peak) field. (c) Temperature dependence of the resistivity. From [(28)]

Figure 1.23: High field phase diagram of FeSe with field oriented perpendicular to the
FeSe layers. From [(28)]
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FFLO phase. The obtained phase diagram in Fig. 1.25 shows the two different super-

conducting phases, a classical BCS phase at low field and a FFLO phase at higher field.

A firm experimental proof of a FFLO state is still missing, and a great deal of studies fo-

cused on that point in different materials. Some signatures have been reported in heavy

fermions materials like CeCoIn5 [(87)] and organic superconductors like κ−(ET)2Cu(NCS)2
([(88)], [(1)]). In these materials, a phase transition seems to occur below the upper

critical field at low temperature. However due to possible vortices phase transitions or

magnetic transitions, the presence of a classic FFLO state is still very controversial.

Some other systems like CeCu2Si2 [(89)] and KFe2As2 [(90)] might also show a possi-

ble FFLO state. There are only a few candidates that might satisfy the conditions to

observe a FFLO state, however FeSe might be in the list of these candidates. First, the

calculated Maki parameter is found to be quite high [(79),(91)] which could indicates

that the orbital effects might be low compare to paramagnetic effects, and that might

favor a FFLO formation. Also high quality crystal are now available which is also a

prerequisite to get a FFLO state. Ok and al. [(86)] showed that a possible FFLO

state could be stabilized with nesting, and that nesting is possible around 24T via a

wave-vector (0, π).

1.4.4 Melting of the vortex lattice

The symmetry of the vortex lattice is shaped by the material properties. We saw

that in Abrikosov work, in a simple scenario, without any pinning and in a isotropic

superconductor, the vortex lattice is hexagonal. However, this symmetry is not the only

one that was observed and some materials seems to exhibit a squared symmetry [(93)].

It was found that in fact the hexagonal and square lattice are very close in energy with

only 2% difference [(94)]. Only a weak anisotropy can change the balance and lead to a

change in the vortex symmetry. A rhombic symmetry was also found to be able to sta-

bilize in the case of a d-wave gap with magnetic field [(95)]. Surprisingly FeSe was found

recently to exhibit such a transition [(96)]. The field at which the transition takes place

was observed by spectroscopy but also in specific heat where a kink is observed and a

change in the slope of Cp as a function of the magnetic field. Such a feature is visible in

Fig. 1.26. Such a dependence of the specific heat was also observed by Ok et al. [(86)]

and was assigned to a closing of a small superconducting gap. Interestingly, the clos-
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(a) (b)

Figure 1.24: (a) Magnetic field dependence of the thermal conductivity in FeSe when the
field is parallel to the FeSe layers at low temperature. A discontinuous downward jump at
µ0H=24 T appears inside the superconducting state as indicated by the black arrows. The
black arrows indicates the field Hp measured with resistivity (b) Magnetic field dependence
of the normalized resistivity and its derivative. The broad transition at high temperature
becomes very sharp abruptly at low temperature. From [(92)]
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Figure 1.25: High field phase diagram of FeSe with field oriented along to the FeSe
layers. Blue circles and green crosses show Hirr and Hp determined by resistivity measure-
ments. Orange and yellow circles show Hk and H∗ determined by thermal-conductivity
measurements. From [(92)]
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1.4 FeSe : a special case

Figure 1.26: Dependence of the specific heat of FeSe on the magnetic field. From [(96)].
It is argued that the feature around 1T might be related to a change in the vortex lattice
symmetry, itself related to a the closing a superconducting gap. Such a dependence is
reminiscent of data obtained by Ok et al. [(86)].

ing of a small superconducting gap could lead to a change in the lattice symmetry [(96)].

On the other hand, FeSe seems to be a perfect material in order to study the vortex

lattice melting. As we argued before, one of the key feature in order to observe the

vortex lattice melting is the Ginzburg number, Gi. The first example of first order

melting was found in cuprates (that will be discussed later in the case of specific heat,

see Fig. 2.7) which have a high Ginzburg number due to their high Tc, short coherence

length and large anisotropy (see Tab 1.2). In some good quality samples, the reversible

magnetization shows a discontinuity [(97)], and thermal expansion [(98)] and specific

heat [(99)] have a peak superimposed on a step. We now have other material that ex-

hibits vortex lattice melting such as Nb3Sn [(98)], SnMo6S8 [(100)] and some iron-based

superconductors ([(101)],[(102)]).

One of the main question about the melting is its behaviour at low temperature.

The main problem regarding that in cuprates is the high values of Hc2, that is usually

inaccessible, or if accessible the residual disorder makes it impossible to observe the

melting line.

We believe that FeSe is the perfect candidate to study in details the vortex lattice

melting. We have now good crystal quality and the upper critical field at zero tempera-
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ture is accessible in both direction in high magnetic field facilities. When looking at the

typical characteristics of it, it seems very likely that we might at least observe melting

in a part of the phase diagram (see Table. 1.2). In fact the vortex lattice melting was

observed in YBa2Cu3O7, RbEuFe4As4 and FeSe seems to have a Ginzburg number very

close to the values in these materials. It is also several orders of magnitude higher than

the one of classical materials like niobium. Therefore we think that the vortex liquid

will occupy a large enough portion of the phase diagram and will be possible to detect.

YBa2Cu3O7 Nb RbEuFe4As4 FeSe

Tc (K) 93.7 9.25 36.5 9.1
H ′c2,c (T/K) 1.8 0.044 4.2 3

Γ 7.8 1 1.7 2-4
ξab(0) (nm) 1.4 28.6 1.46 5.2
λab(0) (nm) 75 21.3 98 445

Gi 2×10−3 6.9×10−12 5.3×10−5 10−4

Table 1.2: Superconducting parameters and Ginzburg numbers of different materials. Γ is
the anisotropy of the upper critical field. ([(103)],[(104)],[(105)],[(106)],[(107)],[(99)],[(91)]

1.5 FeSe1−xSx : motivations

English version Despite being the simplest materials among iron-based supercon-

ductors, FeSe is still under a lot of investigations and far from being totally understood.

We just saw that it shows some special behavior, such as the absence of a magnetic

phase at ambient pressure and might be in a so-called BCS-BEC crossover. FeSe1−xSx,

the isovalent doped system, shows similar Tc to the parent compound and its physics

seems to be very close. The sulfur atoms are supposed to act like pressure on the system

which might help to get closer to the magnetic phase also. FeSe0.88S0.12 exhibits a value

of Tc close to the maximum of the system and should therefore be interesting to know

more about superconductivity.

FeSe1−xSx has a Tc close to 10K which makes it quite easy to access. Hc2 at zero tem-

perature is also accessible in high magnetic fields facilities such as the LNCMI Grenoble,
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having fields up to 36T. The properties of the material seems also to be perfectly ap-

propriate in order to study vortex melting over the entire H − T phase diagram and

have a better understanding of it. Looking at the value of Gi ≈ 10−4 one can hope to

observe a vortex liquid phase over a significant part of the H − T phase diagram, and

also to be able to see it in thermodynamical measurements.

When looking at Tab. 1.2, one can estimate from the values of H ′c2 and Γ that Horb,c ≈
20T and Horb,ab(0) ≈ 80T. From the same data one can also estimate that the Maki

parameters in both direction would be approximately about αM,c ≈ 1 and αM,ab ≈ 5 (cf

Sec. 1.2.4.2). This indicates that FeSe might be a candidate for strong paramagnetic

effects affecting the pair breaking and should therefore deserve some investigations to

confirm that or not.

The high field part of the phase diagram seems also to be very interesting when looking

at the literature. The presence of a Fulde, Ferrell, Larkin and Ovchinnikov phase as

been suggested by several groups and the value of αM,ab ≈ 5 goes also in favor of that.

Therefore we think that the FeSe1−xSx system deserves an in-depth analysis of its H−T
phase diagram and this is what shall be done in the following sections of this thesis.

However we shall first focus on the measurements used to obtain the phase diagrams

and this is what will be done in the next chapter.

Version française Bien qu’il soit le matériau le plus simple parmi les supraconduc-

teurs à base de fer, FeSe fait encore l’objet de nombreuses recherches et est loin d’être

totalement compris. Nous venons de voir qu’il présente un comportement particulier,

comme l’absence d’une phase magnétique à pression ambiante, et qu’il pourrait se trou-

ver dans ce que l’on appelle un BCS-BEC "crossover". FeSe1−xSx, le système dopé de

manière isovalente, présente une Tc similaire à celui du composé parent et sa physique

semble être très proche. Les atomes de soufre sont censés agir comme une pression hy-

drostatique sur le système, ce qui pourrait aider à se rapprocher de la phase magnétique

également. FeSe0,88S0,12 présente une valeur de Tc proche du maximum du système et

devrait donc être intéressant pour en savoir plus sur la supraconductivité. FeSe1−xSx
a une Tc proche de 10K ce qui le rend assez facile d’accès. Hc2 à température nulle est

également accessible dans des installations à haut champ magnétique comme le LNCMI

Grenoble, dont les champs peuvent atteindre 36T. Les propriétés du matériau semblent
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également parfaitement appropriées pour étudier la fusion des vortex sur l’ensemble du

diagramme de phase H − T et en avoir une meilleure compréhension. En regardant la

valeur de Gi ≈ 10−4 on peut espérer observer une phase liquide de vortex sur une partie

significative du diagramme de phase H − T , et aussi d’être capable de la voir dans les

mesures thermodynamiques.

En regardant le Tab. 1.2, on peut estimer à partir des valeurs de H ′c2 et Γ que Horb,c ≈
20T et Horb,ab(0) ≈ 80T. A partir des mêmes données, on peut également estimer que

les paramètres de Maki dans les deux directions seraient approximativement de αM,c ≈
1 et αM,ab ≈ 5 (cf Sec. 1.2.4.2). Cela indique que FeSe pourrait être un candidat pour

de forts effets paramagnétiques affectant la brisure de paires de Cooper et devrait donc

mériter des recherches pour le confirmer ceci ou non.

La partie à haut champ du diagramme de phase semble également être très intéressante

lorsqu’on examine l’état de l’art. La présence d’une phase de Fulde, Ferrell, Larkin et

Ovchinnikov a été suggérée par plusieurs groupes et la valeur de αM,ab ≈ 5 va également

dans ce sens.

Nous pensons donc que le système FeSe1−xSx mérite une analyse approfondie de son

diagramme de phase H − T et c’est ce qui sera fait dans les sections suivantes de cette

thèse. Cependant, nous allons d’abord nous concentrer sur les mesures utilisées pour

obtenir les diagrammes de phase et c’est ce qui sera fait dans le chapitre suivant.
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Experimental techniques

2.1 Specific heat

2.1.1 About thermodynamics

Thermodynamics deals with heat exchanges between a system, what is outside of

that system and how that system is evolving with time. It relies on two widely known

principles, helping one to understand how this evolution works through different but

narrow parameters.

One first needs to describe and determine the system and its exchanges with the out-

side. Two variables are introduced: the temperature T and entropy S. Both of them

enable defining the heat exchange during a reversible transformation: δQ = TdS. One

also usually needs to define the work exchange with the system δW . From then on, it

is possible to describe the differential form of thermodynamic functions like the inner

energy U , the enthalpy H, or the free energy F and free enthalpy G. Equilibrium is

usually found at the extremum of one of these functions. For example, at fixed pressure

and temperature, the free enthalpy is minimal at equilibrium.

Once the system is well described by these variables, one can link them to other ther-

modynamics variables like the thermal dilatation or the specific heat. This is our main

goal in the section. Every system has some specifics and we want to understand what

will contribute to the specific heat and in what manner.
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2.1.2 General definition of the specific heat

As explained above, the heat capacity is a thermodynamic variable that can be

described by other variables like the inner energy or the entropy. It connects the amount

of heat one needs to put in a system δQ to the infinitesimal rise of temperature dT . As

a consequence, from the second principle of thermodynamics, one can express the heat

capacity as a function of the entropy.

δQ = CdT = TdS, (2.1)

C = T
∂S

∂T
, (2.2)

where we considered that dS is only due to changes in the temperature and not in

the field or pressure for example. If one wants to consider that, one should write

dS = C/TdT + ∂S/∂HdH + ∂S/∂PdP + ... . To be precise, the specific heat is usu-

ally expressed at constant volume, Cv, or at constant pressure, Cp and is related to

thermodynamic variables by :

Cv = T
∂S

∂T

∣∣∣∣
v

= −T ∂2F

∂T 2

∣∣∣∣
v

=
∂U

∂T

∣∣∣∣
v

, (2.3)

Cv = T
∂S

∂T

∣∣∣∣
p

= −T ∂2G

∂T 2

∣∣∣∣
p

=
∂H

∂T

∣∣∣∣
p

. (2.4)

Looking at the definitions of Cv, one can easily see that this is a very good probe

to understand the thermodynamics of a system. It is related to the free energy and the

entropy and can therefore be sensible to phase transitions. The Mayer’s relation con-

nects both Cv and Cp with the isobaric thermal dilatation coefficient αp, the isothermal

compressibility coefficient, χT , the volume V and the temperature, T :

Cp − Cv =
α2
pV T

χT
. (2.5)

A first interesting approximation is to say that Cp = Cv, meaning that the thermal

dilatation is very low. This is true at very low temperature, well below the melting

temperature. This approximation is very useful as all the contributions to the specific

heat that we will see are at constant volume. However in our experiments only the

pressure is constant.
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Another problem in the specific heat is that we were only considering a heat input in the

system, but other variables can contribute to the variation of the system’s temperature.

Indeed for instance, a magnetic field in a magnetic material can cause a change in the

temperature, this is called the magnetocaloric effect.

At the beginning of Sec. 2.1.2, we were talking about specific heat and we suddenly

jumped to heat capacity. An alert reader may fail to understand for what reason for

this change. The heat capacity, C, in an extensive variable, measured in J.K−1, there-

fore it depends on the material but also on the number of moles in it. On the other

hand, the specific heat, c, in an intensive variable, measured in J.K−1.g−1, J.K−1.m−3

or J.K−1.mol−1 and only depends on the material.

In the kind of system that we will measure, different contributions to the specific heat

will add to each other. In a solid, the particles can be excited by the temperature and

contribute in different ways to the specific heat. We shall explore this in the following

sections.

2.1.3 Phonons

A solid is often made out of periodic arrangement of atoms. These atoms of moving

around a equilibirum positions due to the temperature. They are moving in a collective

pattern and are called phonons. The amplitude of that movement rises with temperature

and thus contributes to the specific heat.

During the XIX century, the first expression of the specific heat was given by Dulong

and Petit, noticing that many solids have the same specific heat at room temperature

:

cv = 3R = 23.93J.K−1.mol−1. (2.6)

This law is almost the same for an ideal gas. In fact, one can imagine the phonons as an

ideal gas, with 3 spatial degrees of freedom and 3 rotational degrees of freedom. Thus

the inner energy of a gas is U = 6
2NkbT and one finds again the Dulong and Petit law.

That law works very well at room temperature, although some noticeable changes can

be observed while going the lower temperature. Taking the example of diamond, the

specific heat does not match the Dulong and Petit law at ambiant temperature but going

53



2. EXPERIMENTAL TECHNIQUES

to higher temperature, one recovers it. Boltzmann soon tried to explain the behavior of

atoms in a solid by modeling it in a harmonic well formed by the interactions with other

atoms in the system and finding the same results as before. This is due to the classical

treatment of these atoms’ behavior. The problem here is that at low temperature,

phonons are considered as bosons with a quantum point of view.

At the beginning of the XXth century, Einstein had with the same idea as Boltzmann,

and said that all the atoms are in the same harmonic well with the same "Einstein’s"

frequency. The results is an exponential rise of the specific heat at low temperature,

saturating at high temperature to the Dulong and Petit law. This was a first attempt

to fit the specific heat data and it worked quite well. However it was observed that

most of the solid had a T 3 behavior at low temperature and this was not the case with

Einstein’s model.

A few years afterwards, Debye assumed that there was a dispersion relation for the

frequency of the phonons. We now know that the energy of a phonon depends on

its wave vector, and also that phonons have severals branches : acoustics and optics.

Debye only considered the acoustic phonons and described the oscillations as a wave

with a frequency ω(k) = vk, with v being the sound velocity, and for each k there are

3 oscillations mode, one for each direction of motion. In order to take into account the

saturation at high temperature, one need to fix the upper limit of the integral over the

k, until all modes are excited. The specific heat can then be written as :

cV = 3
∂

∂T

∫ ∫ kD

0
~ω(k)(nB(k) +

1

2
)k2 dk

(2π)3
dΩ (2.7)

with k3
D = V

6π2N
, N being the number of particles, and nB the occupation probability,

following the Bose-Einstein statistic [(108)]. Rearranging the different terms, one gets:

cV =
9Nkb
V

(
T

ΘD

)3 ∫ ΘD
T

0

x4exdx

(ex − 1)2
, (2.8)

with ΘD = ~vkD
kB

being the Debye temperature, where all the modes start to be excited.

When the temperature is sufficiently small compared to the Debye temperature, the

specific heat can be simplified as:

cV =
12π4

5
R

(
T

ΘD

)2

= βT 3 (2.9)
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where β is the phonon coefficient. However, when observing the phonon contribution,

one should always check the assumption of being far away from the Debye temperature

is true, otherwise the asumption of ω = vk and that ΘD/T =∞ are not true anymore.

When this is not the case some other coefficients can add themselves and one obtains:

cV = β3T
3 + β5T

5 + β7T
7 + ... (2.10)

For more details about that see Sec.2.1.7. The Debye law works very well for some

solids, however, at low temperature another term is found for metals due to electrons.

2.1.4 Electrons

For metals, the conduction electrons have to be taken into account. Given a system

of electrons, with chemical potential µ, the probability of an eigenstate with an energy

ε to be occupied is given by the Fermi statistics [(108)]:

fF (ε, µ) =
1

eβ(ε−µ) − 1
(2.11)

Most of metals can be very well described by the Fermi formalism, with a new effective

mass, m∗, describing the effect of the interaction on the electrons. Thus the energy

of an electron with a wave vector k can be written as ε(k) = ~2k2

2m∗ . Integrating the

probability of occupation over all k gives us the number of electrons of the system, and

multiplying it by the corresponding energy will give the total energy of the system.

N =

∫ ∞
0

g(ε)fF (ε, µ)dε, (2.12)

E =

∫ ∞
0

εg(ε)fF (ε, µ)dε, (2.13)

where g(ε) is the density of state at a given energy. Considering only a low temperature

regime compare to the Fermi temperature, we can assume that the Fermi distribution

is almost like a step function. If g(ε) does not fluctuate too much in a region of kbT

close to µ, one can apply the Sommerfeld development :

N =

∫ µ

0
g(ε)dε+

π2

6
(kBT )2g′(µ), (2.14)

E =

∫ µ

0
εg(ε)dε+

π2

6
(kBT )2(µg′(µ) + g(µ)). (2.15)
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It implies that the energy variation from the ground state is given by :

∆E =
π2

6
(kBT )2g(εF ). (2.16)

Therefore the specific heat is :

CV =
π2

3
k2
BTg(εF ) = γT (2.17)

with γ = π2

3 k
2
Bg(εF ) being the Sommerfeld coefficient for the specific heat. To under-

stand this result we can interpret it as this: the energy rises close to T = 0 is mainly

due to the part of electrons in a range of kBT below εF getting excited and rising in

a range of kBT above εF . The number of excited electrons per unit of volume is then

kBT multiplied by the density of states per unit of volume g(εF ). The excitation energy

being close to kBT , the thermal energy density shall be of the order of g(εF )(kBT )2. In

the case of several bands, one needs to sum up over all the effective mass of each band

to obtain the coefficient γ.

After this calculation, we now can give a model of the specific heat in metal :

Cv
T

= γ + βT 2. (2.18)

One should also notify that in the case where the Fermi energy is close to the thermal

energy, then the Sommerfeld development is not applicable and it is not possible to

define any Sommerfeld coefficient being independent of the temperature.

2.1.5 Superconductivity

We just saw that the most important part in the electron contribution to the specific

heat comes from the Fermi level and the density of states. When superconductivity

appears, electrons couple and a gap, ∆(k), opens up at the Fermi level. This gives

another contribution to the specific heat. In fact while going at lower temperature, a

jump is observed at Tc and gives a very different behavior compared to a normal metal.

By adding a sufficient magnetic field, the normal behavior is restored. In 1957, Bardeen,

Cooper and Schrieffer (BCS) managed to give a first explanation for the microscopic

behavior of electrons to explain superconductivity. In the paper [(6)], the energy of an

electron if given by:

ε(k) =

√
ε0(k)2 + |∆(k)|2, (2.19)
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where ε0 is defined as ε from the section above (without superconductivity). For the

s-wave superconductor, the isotropic case, (∆(k) = ∆), which was studied in the BCS

theory, the density of state is fully gaped within the gap with singularities at the two

energy gaps ±∆. One contribution will come from the variation of the excited states due

to the Fermi statistics and the other will come from the variation of the superconducting

gap with the temperature. In the low temperature regime, one can simplify calculation,

giving the following expression :

Cs−wave = − 2

T

∑
k

∂fF (ε, T

∂ε
)

(
ε(k)2 +

β

2

∂∆2

∂β

)
=

2kB
(kBT )3/2

g(EF )∆
5/2
0 e

− ∆0
kBT , (2.20)

with ∆0 being the gap at zero temperature. That law gives a zero contribution at

zero temperature, rising with temperature, following a thermal activation law. However

this behavior does not seem to work for every superconductors. Some of them, like

cuprates, have a quadratic dependence of the specific heat in the low temperature

regime. This is due to the gap being not isotropic, as with the cuprates for example,

where there is d-wave gap. In the case of a d-wave superconductor, there are some

nodes in the (π, π) direction, where the gap value is zero, while in the (0,±π) and

(±π, 0) directions, the gap reaches its maximum value. The gap is described by ∆(k) =

∆0 cos(2θ). It also means that all excitations are not gaped as show in Fig 2.1, and some

quasiparticules can be excited at very low temperature, leading to a different behavior

of the specific heat. For a d-wave superconductor, at low temperature we have [(109)]

:

Cd−wave = αT 2, (2.21)

where α is a constant depending on the properties of the material. It is then possible to

determine what type of superconductor we have by plotting the temperature dependence

of the specific heat.

2.1.6 The α model for superconductivity

As we have just presented, in the BCS model, the superconductor is assumed to have

only a single-band isotropic Fermi surface. It is not the case for many superconductors.

We explained the possible deviation from the BCS-model in the case of nodes in the gap,

but a lot of superconductors do not match exactly the BCS value of ∆/kBTc = 1.764.
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Figure 2.1: Density of states for two different kind of gaps. From Ref (110)

.

Owing to Padamsee, Neighbor, and Shiffman [(111)] we now have a phenomenological

model to fit some specific heat data, called the α-model. In that model the specific heat

is described as:

Cs
γnTc

=
6α3

π2t

∫ kbθD
∆0

0
f(1− f)

(
Ẽ 2 + ∆̃2

t
− 1

2

d∆̃2

dt

)
dε̃, (2.22)

Where t = T/Tc, ∆0 is the gap as zero Kelvin, ε̃ = ε/∆0, ∆̃ = ∆/∆0, Ẽ =
√
ε̃2 + ∆̃2,

f = (exp
αE
T +1)−1 is the Fermi distribution considering α, and α = ∆0/kbTc.

In the BCS case, α = 1.764 is fixed. Yet, in the present model α can vary. It still

supposes a BCS-like superconducting gap, with a phonon-electron coupling. However

the value of α gives some information about the diverse mechanisms at work in the

material. While an α value higher than the BCS one is explained by a strong phonon-

electron coupling, a lower value could mean that the gap is not isotropic in the weak

coupling limit [(112)]. In the case of multiband superconductivity, a phenomenological

model was developed to explain the specific heat behavior of MgB2 by Bouquet and

al [(113)]. It only supposes two different contributions from two different bands in the

α-model without any interband coupling in order to fit the specific heat data. Fig. 2.2

shows a figure extracted from the article of Bouquet et al. modeling the specific heat

of MgB2 considering two gaps. The existence of different superconducting gaps is also

under debate in the case of FeSe, and different models have been applied in order to fit

its specific heat [(114), (84), (115)]. Fig. 2.3 shows the different models proposed by

Muratov et al [(114)].
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Figure 2.2: BCS-normalized specific heat (thin line), experimental data (circle), and
two-gap fits (thick lines), vs. the reduced temperature of MgB2. The inset shows the two
different fitted gaps. From [(113)]
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Figure 2.3: Normalized electronic specific heat fitted for the following cases: (a) s-wave,
(b) d-wave, (c) extended s-wave, (d) two gaps with both isotropic s-wave, (e,f) two gaps with
coexisting of s-wave and extended s-wave. Insets show the deviation between experimental
data and the corresponding models. From [(114)]
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2.1.7 Effect of a magnetic field

In a type II superconductors, for a higher field value than Hc1 and smaller than Hc2,

the magnetic flux will enter the superconductor and form vortices in it. One vortex,

of a typical size of ξ2, adds a quantum of flux, Φ0, giving a total vortex density of
B
Φ0

. Since within the vortex cores there is still a finite density of states, this will add a

contribution γn to the specific heat. The density of vortices being proportional to the

magnetic field, the specific heat will follow a linear relation with the field :

C = γn
Bξ2

TΦ0
= γn

H

Hc2
T (2.23)

However the vortex cores are not the only things contributing to the specific heat. In

the case of nodal superconductors, only a small part of the density of states comes

from the localized electrons in the vortex cores. There is a supercurrent around the

vortex cores. That supercurrent leads to a shift in the energy due to its velocity, which

particularly affects the nodal region at low energy. This gives another dependence of

the specific heat with the field which was calculated by Volovik in [(116)],

C = γn

√
H

Hc2
T. (2.24)

This expression is due to some simplifications and is only valid for a regime where√
H
Hc2
� T

Tc
� 1. Thus, by looking at the field dependence of the specific heat it is

possible to see if a superconductor is nodal or not. Another useful property that can

be extracted from such a curve is the magnetic field, Hc2. This one is observed but the

specific heat saturates and then recover its normal state, which has no field dependence.

In the case of multigap superconductors the main effect one may observe in the field

dependant specific heat is a change in the slope, since when a gap closes the density

of states due to that gap will not participate in the superconducting behaviour of the

specific heat and only gives a constant part. This lead for example to multigap analysis

in FeSe in [(117)].

Recap on how to observe superconductivity Let us have now a recap on how to

observe superconductivity in a superconductor. The phonon contribution to the specific

heat is usually quite important compared to the electron contribution at Tc. The goal

here is to subtract the phonon contribution to observe only the specific heat due to the
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electrons. Here we usually have two options. Since the phonons are not influenced by

the superconductivity, one can make a fit of the Debye model above Tc to get the phonon

contribution and then subtract it from the total specific heat. As explained before, we

should always check that the assumption of being at a very small temperature compare

to the Debye temperature is true.

Let us check the example of FeSe with a Debye temperature, TD, estimated around 240K

which was inferred from our data. We shall numerically calculate the exact integral in

Eq. 2.8 and try to fit it with a different orders polynomials over the range of temperature

that is of interest (0K-20K). Fig. 2.4 shows the distance of the fit to the theoretical

curve. In Fig. 2.4a we perform a simple least squares method and we see for instance

that there are some errors for all polynomial forms at low temperature when fitting from

0K to 20K. In Fig. 2.4b the fit is now weighted where we force the have a better fit at low

temperature and it seems that the error is reduced the higher order the polynomial has.

Still we estimate the error to be of 1 ‰for a 7th order polynomial. In the case of FeSe

let us see was will induce such an error of 3 ‰which seems to be the average looking at

our calculations. We estimate C/T to be around 40 mJ.mol−1K−2 at Tc, which gives an

error of 0.12 mJ.mol−1K−2. Considering a value of γn = 6.5mJ.mol−1K−2 that induces

a error of approximately 2 %.

Another way to obtain this phonon contribution is to observe the material in the

normal state. This can be achieved by destroying superconductivity with high magnetic

field. The resulting specific heat is a linear term due to the Sommerfeld coefficient and

a T 3 term due to the phonons as well as higher orders terms. This is a way to avoid

the difficulty of high order terms. Since the superconducting gap is closed due to the

magnetic field, there are no more paired quasiparticles. To observe the superconducting

anomaly, one can therefore subtract the specific heat in the normal state at high field

from other curves where superconductivity still exists.

2.1.8 Effect of the magnetic field : Quantum Oscillations

We now have to be a bit more precise about the normal state of a superconductor.

We have just presented that when the magnetic field is higher than Hc2, the specific

heat becomes constant. This is only true when we do not take into account the Landau

Levels (LL).
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(a) Simple fit (b) Weighted fit

Figure 2.4: Normalized difference of the exact calculation of Eq. 2.8 and a fit of the order
specified in the caption (no even terms are included in the fits). We used here a Debye
temperature TD=240K, close to the one in FeSe.

In quantum physics, submitting a charged particle to a constant magnetic field will

cause the quantization of the orbit of that particle. That particle can then only occupy

specific orbits with a specific energy, E = ~ωc(n + 1
2), they are called Landau Levels.

Each levels degeneracy is proportional to the strength of the magnetic field. This results

in a saw tooth-like density of states (see Fig.2.5), due to delta functions like Landau

levels crossing the Fermi Surface. Thus all thermodynamic properties increase as step

function when a LL comes closer to the Fermi level. However, disorder and temperature

have the tendency to smear the LL and instead of a step like functions, an oscillatory

behavior emerges. For example, if the thermal energy, kbT , becomes bigger than the

spacing between levels, ~ωc, it might be hard to observe these oscillations. That is the

reason why all measurements of quantum oscillations are made at very low temperature,

close to the order of magnitude of 1K. As we said, applying a magnetic field causes the

Landau tubes to cross the Fermi surface perpendicular to the field:

AF =
2πeB

~
. (2.25)

As B changes, the thermodynamic properties will oscillate with a frequency :

∆
1

B
=

2πe

~
1

AF
. (2.26)
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Figure 2.5: Density of states in a magnetic field.

Multiples frequencies can be observed in the case of a non-trivial Fermi surface. Some

more calculations can give a more detailed theory for the oscillating part of the specific

heat. The Lifshitz-Kosevitch theory, taking into account the effect of temperature, the

scattering of the quasiparticles and the splitting due to the spin gives [(118)] :

∆C(T,H) = −AT
∞∑
p=1

RDJ0

(
4πp

tw
~ωc

)
cos

(
2πp

(
µ

~ωc
− 1

2

))
f ′′(x) (2.27)

where :

-A is a constant,

-RD = exp((−2π2pkBTD)/(~ωc)) is the Dingle term,

-TD is the Dingle temperature,

-x = −2π2pkBT/~ωc,
-f ′′(x) = x((1 + cosh2(x))/ sinh3(x)− 2 cosh(x)/ sinh2(x)),

-J0 is a Bessel function of the first kind and

-tw is the c-axis hopping term resulting in some small warping of the 2D Fermi surface.

Here we can identify an easy way to have access to the effective mass with the quantum
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Figure 2.6: Quantum oscillations in specific heat using the Lifshitz-Kosevitch formula as
a function of field and temperature. From [(118)]. The nodes in the curves allow to have
a direct access to the cyclotron mass

oscillation in the specific heat. In fact when f ′′(x) = 0, close to x = 1.6, some nodes

will be observed. This is clearly visible in Fig. 2.6 and is one of the main advantages of

the quantum oscillations’ specific heat measurement. Having the position of different

nodes for different temperature allows to have a very good estimation of the effective

mass.

2.1.9 Vortex lattice melting

The mean field theory of type II superconductors explains the formation of a vortex

lattice as a result of a continuous phase transition from the normal state at Hc2. That

was well described by Abrikosov in (11). The presence of thermal fluctuations were not

taken into account in that scenario, and they can qualitatively modify the phenomenol-

ogy of the vortex lattice formation. In such a scenario, Hc2 is not clearly defined and is

closer to a crossover between the normal state and a vortex liquid state. Going lower

in field the vortex matter undergoes the only genuine transition : the vortex lattice

melting. That first order transition corresponds to the transition between a liquid and

a solid vortex state [(119)]. Therefore a sharp peak should be observable in the specific

heat as illustrated in the case of YBCO in Fig. 2.7. Fig. 2.8 shows a peak in the

thermal expansivity data of YBCO and a jump in the magnetization data typical of a
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Figure 2.7: Specific heat data of YBCO showing a first order peak at the vortex lattice
melting transition. From [(13)]

first order melting transition.

The extent of the vortex liquid region is mostly defined by Gi and cL. The bigger

the thermal fluctuations are, the bigger Gi is and then the wider the vortex liquid

region is. In the LLL approximation (which will be introduced in the next section),

at a temperature T − Tc ≈ GiTc, the fluctuations contribution to the specific heat is

approximately equal to the specific heat jump at the superconducting transition (cf Sec.

1.2.2).

It is possible to estimate the excess specific heat due to melting. In (122), Moler et

al. explained that in a 3D vortex lattice the maximum heat capacity due to the vortex

lattice melting would be of 2kb per vortex. However this is only considering vortices

being rigid rodes. Considering flexible vortices, one may have some degrees of freedom

that would lead to an enhancement of the specific heat jump. This is for example

possible in layered superconductors where it was considered in the same article, that

the jump is multiplied here by the numbers of layers adding the same number of degrees
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(a) (b)

Figure 2.8: (a) Temperature dependence of the magnetization of YBCO in ZFC, FCC,
and FCW processes at H=30 kOe parallel to the c axis, showing a jump just before the
irreversibility line. From [(120)]. (b) Thermal expansivity of the a, b and c axes of YBCO
in H=6 T applied parallel to the c-axis, showing a peak attributed to melting. From [(121)].

of freedom to the vortices. Nevertheless, it often leads to an overestimation of the value

of the observed jump [(123)]. Such a behavior was observed for example in cuprates

where it was found that the entropy jump associated with the vortex lattice melting

was around 0.5 kB per vortex per layer [(124),(99),(13)].

2.1.10 Scaling law

It is interesting to look at the scaling behavior of thermodynamic quantities to

analyze a bit more in details the nature of the thermal fluctuations. Near the upper

critical field and within the mean field theory the superconducting order parameter is

given by the lowest-Landau level (LLL) wave function. In the next lines we will thus

be focusing on the LLL model of fluctuations. If the field is high enough, meaning

H > GiH
′
c2Tc then the fluctuating order parameter can be approximated as a linear

combination of the LLL wave functions, and the contributions of the higher levels would

be treated in the Gaussian approximation. If that condition is fulfilled the broadening

of the superconducting transition is well described by the dependant Ginzburg number
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Gi(H) = G
1/3
i

(
H

H′c2Tc

)2/3
. In that framework, , Thouless shows in (125) that there

is a universal scaling function of a single scaling parameter for the superconducting

part δCe(H,T ) of the specific heat divided by the mean-field superconducting heat

δCmf(H,T ) :

aT = rT
T − Tc(H)

(HT )2/3
, (2.28)

where the normalized parameter rT is defined by

rT =

(
2H

′2
c2Tc
Gi

)1/3

(2.29)

The parameter aT measures here the shift of the temperature with respect to the mean

field transition normalized by the fluctuation broadening. This approach using the

Ginzburg-Laundau theory is only valid close to Tc. Li and Rosenstein gave an analytical

expression in the case of the 3D scaling in [(126)] (see Eq. 119 and Eq. 127). The

expression is supposed to be valid when -25<aT<8 and includes the contribution of the

vortex lattice melting.

That scaling function is valid for temperature curves, however it is also possible to have

a similar approach for field dependent curves. In that case we have

aH = rH
H −Hc2(T )

(HT )2/3
, (2.30)

and the renormalization constant is written as

rH =

(
2Tc

GiH
′
c2

)1/3

. (2.31)

Fig 2.9 shows the dependence of the scaling function found in (126) and the scaled

data of RbEuFe4As4 showing very good agreement. The jump observed at aT = −9.5

corresponds to the melting criterion in the LLL regime. This gives a universal scaling

function for the melting that was described in (102). This equation does not use any

perturbation theory and should therefore be exact. The only part of it using perturba-

tion theory is the value of the constant aT = −9.5. This gives therefore another way

of analyzing it compare to the Lindemann criterion. Following the melting criterion of

Li and Rosenstein and the mean field dependence of the superconducting parameters,

Koshelev et al. [(102)] found that :

(1− 0.46bm)(1− bm)3/2

8
√

2bm
=

√
Git√

1− t
. (2.32)
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Figure 2.9: Scaling plot of the specific heat in the lowest-Landau-level regime for high
magnetic fields in RbEuFe4As4. The black dashed line is the theoretical curve given by Li
and Rosenstein in [(126)]. From [(102)]

However that expression is not valid at very low field, where the distance between the

vortices is comparable to the penetration length and in the region of strong fluctuations

where 1 − t < Gi. Fig 2.10 shows a plot from the same article where four different

materials are superimposed on the theoretical curve and showing good agreement with

it. However one should keep in mind that in that article only orbital pair breaking is

taken into account.

2.2 Techniques

2.2.1 Calorimetry

Now that we understand the specific heat is an interesting characteristic to study,

we have to find a way to measure it. This is what shall be discussed in this section.

Based on the heat equation, calorimetry is the measurement of temperature of a system

as it undergoes a change from a well-defined initial thermondynamical state to another

well-defined final thermodynamical state. The common way to change these states is

through a heat generation of a well-known power. However there are several ways to

do so, depending on how the sample is heated and how it is going to a final state. We

will here focus on two techniques, which have been used during that PhD : the Dual

Slope Method and AC calorimetry. Nevertheless, we will start by describing the most

basic method as a introduction to the measurement of the specific heat: the relaxation
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Figure 2.10: Universal plot for the vortex lattice melting transition. From [(102)]

method. In that method, the sample is heated with a power P . Power cutting causes

the temperature to decay back to an initial state, through a thermal leak. The complete

model can be found in Fig. 2.11. The measurement of the evolution of the temperature

with time can give the specific heat of that system. This gives us a way to design a

calorimeter. As one needs something to hold the sample, to heat it and to record the

temperature, we will use in our experiments a sample holder, an electrical heater and

a thermometer, grouped together in what we call addenda. The reason it is called as

such is because it is added to the specific heat of the sample, which is not the only

thing to absorb the heat generated. We will then measure a total specific heat, CT ,

which is the sum of the specific heat, Csample of the sample and the one of the addenda,

Caddenda. Depending on the size of the sample, Caddenda can be smaller, comparable or

even bigger than Csample. This is the reasons why we have to measure the specific heat

without the sample first. We thus can have a good idea of the real specific heat of the

sample after.

Let us supposed the easy case where we can write:

P = Aκ
∂T

∂x
+ C(T )

∂T

∂t
, (2.33)

where P is the power that we put into the sample, A is the cross sectional area of the

wires connected to the sample and the bath as a thermal leak and κ is the thermal

conductivity, giving a thermal conductance k = κA/l, with l the length of the wires. It
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Figure 2.11: Thermal model of the simple chip allowing to determine the specific heat of
a sample and the addenda. From [(109)]

gives:

C(T ) =
dT

dt

−1

(P − k∆T ), (2.34)

and ∆ = T − T0 being the rise of temperature between the initial state and the final

state. Considering that the specific heat and the thermal conductivity do not vary over

the temperature gap, one get an exponential decay law of the temperature to return to

its initial state when the power is turned off,

∆(T )(t) = (T1 − T0) exp
−tk
C . (2.35)

Following the evolution of the temperature over time allows thus to find a time constant

τ = C/k, proportional to the specific heat. However we made the assumption that C(T )

is constant over the temperature variation, this is not always true, even more in the

case of phase transition as we saw before. The phase transition will be observable but

not well characterized. One should then heat the sample only of a few percent of the

thermal bath. The problem is also that we need to acquire data point by point, which

can be quite slow. Another problem to get the specific heat of a material here is that

we need to know the thermal conductance of the wires very well, since we would only

be able to have the time constant.
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2.2.2 Dual Slope Method

The Dual slope method is an extension of the relaxation method. However it uses

not only the heating or the cooling curve of the sample but both of them. Through

the correlation of both of the curves, one of the biggest disadvantages of the relaxation

method is avoid : one does not need to know the thermal conductance of the thermal

leak. One can also measure in a continuous way over a wide range of temperature. Let

us see how it works [(127)]. First the sample is heated by application of a power Q̇h in

order to reach a temperature T1, and then the power is cut off to go back to the thermal

bath temperature, exactly like in the relaxation method. It gives two equations, one for

the heating and one for the cooling curve :

C(T )
dTh
dt

= Q̇h(T )− Q̇0(T ) + Q̇p(T ) (2.36)

C(T )
dTc
dt

= −Q̇0(T ) + Q̇p(T ), (2.37)

where h and c are for respectively heating and cooling, Q̇0(T ) is the power loss due to

the thermal leak, and Q̇p the parasitic stray heat of other forms like radiations. Let us

now assume that the parasitic stray heat and the power loss due to the thermal leak do

not vary in time over one measuring cycle, one can combine the two equations above in

order to get the specific heat of the sample:

C(T ) = Q̇h

(
dTh
dt
− dTc

dt

)−1

(2.38)

Here there will be no problem due to variations of the specific heat during the mea-

surement. One only need to take a small enough interval of temperature to get the

slopes and then the specific heat. One need to take the same interval of temperature

∆T for both the heating and cooling curve, giving to different time interval ∆t and ∆t′

as illustrated in Fig. 2.12. In the limit where the interval is small enough, one get:

dTh
dt
− dTc

dt
=

∆T

∆t

(
1 +

∆t

∆t′

)
(2.39)

The best way to be sure to observe correctly a phase transition is to adjust the rate of

change of temperature so that the sample is always at thermal equilibrium.

It should also be pointed out that we supposed here no thermal link between the sample
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Figure 2.12: Typical measurement cycle for the dual slope method. From [(127)]

itself and the thermal bath and a perfect contact between the sample and the calorime-

ter. In order to achieve that the calorimeter is suspended in vacuum via wires that are

used as the thermal leak we mentioned before.

Other problems can be encountered. One among these is a difference in temperature

between the sample and the calorimeter. It can happen when the heat flow from the

calorimeter does not only go in the sample but also in a similiar way goes to the leaks.

It happens when the sample is a poor thermal conductor. To avoid that we use the

same wires for the thermal leak and to provide electricity to the calorimeter. On the

other side when the sample is a good thermal conductor, one of the problem might be

the contact between the sample and the calorimeter. The contact might be bad if the

effective surface area is too small or if the material used to contact the sample to the

calorimeter is a bad conductor. To overcome that we use Apiezon grease, we heat it

before putting the sample on the puck to ensure a good enough effective surface area.

These effects lead to other time constant in the system and could cause some errors in

the estimation of the specific heat. This is why one should always take these effects

into account when dimensioning the calorimeter. However, all the calorimeters I used
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during that thesis where dimensioned before I used it in order to be good enough to

measure the specific heat.

2.2.3 AC Calorimetry

Ideal case In AC calorimetry the sample is not heated by a constant power but an

alternative one, P (t). In our experiments we use a resistive heater, to which we impose

an electrical current of the form I = IAC cos(ωt), that will give an alternative power.

Let us now examine first the perfect model which is also the easiest one. We will after

try to see were problems could happen and their effect.

In the ideal case, the calorimeter is only made of a thermometer, a heater and a sample

holder, at the same temperature, and the sample is perfectly coupled to the sample

holder. All of these elements are connected to a thermal bath via a wires, which only

have a thermal conductance, ke. It is exactly the same model as we used to describe

the relaxation method and dual slope method. As we said the heater is supplied by an

electrical current I = IAC cos(ωt). This will give a power:

PH(t) = RH(IAC cos(ωt))2 = PAC(1 + cos(2ωt)) (2.40)

On the other side we also need to read the temperature with the thermometer. This one

need to be also supplied by an electrical current and it does not need to be alternative.

It will give a power, PDC , to the calorimeter. So now we can write the same equation

as in the relaxation method case but in AC:

C
dT

dt
= PH(t) + PT + ke(Tb − T ). (2.41)

It is now possible to solve the equation 2.41 to get the continuous and alternative part

of the temperature.

TAC =
PAC

ke + 2iωC
(2.42)

TDC = Tb +
PAC + PDC

ke
(2.43)

Using the AC part of the temperature it is now possible to get the specific heat, even

without knowing ke. In fact the amplitude and the phase of the AC part is described

by:

|TAC | =
PAC√

k2
e + 4ω2C2

(2.44)
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Figure 2.13: Normalized amplitude and phase of the temperature oscillations as a func-
tion of the frequency. The blue curve represents the thermometer and the red one the
heater. The dots are data obtained at 2K and the lines are the fitted model we used be-
fore. This shows a good agreement with the ideal model at this temperature, where we
observe no difference in the behaviour of the thermometer and the heater. In the next
section, the question of the resolution will addressed and will give an indication about the
best frequency to use. It will be seen that the phase shall be around 45o in order to have
the best resolution, giving a frequency of the order of 10 Hz. From [(109)]

φ = − arctan
2ωC

ke
(2.45)

If we can now measure the temperature oscillations and the alternative part of the

power, it possible to get the heat capacity of the sample and the thermal conductance

of the wires at the same time.

C =
PAC
|TAC |

|sin(φ)|
2ω

(2.46)

ke =
PAC
|TAC |

cos(φ) (2.47)

The main advantage of the AC calorimetry is a much higher signal to noise ratio

compare to the other techniques. We need indeed a lock in amplifier to observe to
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variation of temperature. This one allows to reduce the noise. The AC technique is also

very good in terms of resolution, with typically in our setup a resolution of 10−4

Here unlike the case of the dual slope method, we supposed that the specific heat does

not vary when we change the temperature. To achieve that we will only use oscilla-

tions of the temperature that are of the order of few percent of the bath temperature.

However it is possible to change the temperature of the bath in order to perform a

continuous measurement over a wider range compare to the dual slope method. We

might also encounter the same problems that we talked about in the section concerning

the dual slope method. We will now investigate a bit more on that topic.

Thermal decoupling of the sample We will first consider the case where the sam-

ple, with a heat capacity CS , is not perfectly coupled to the sample holder, with a

thermal conductance ks. The sample holder with a heat capacity C0 is still connected

to the thermal bath via a thermal conductance ke as illustrated in Fig. 2.14. In order

to conserve the energy of the system one gets a system of two equations :

C0
dT0

dt
= PH(t) + PT + ke(Tb − T ) + ks(Ts − T0), (2.48)

Cs
dTs
dt

= −ks(Ts − T0). (2.49)

One can define here two time constants : τe = C/ke, C being the sum of the heat

capacity of the addenda and the sample, and τs = Cs/ks. The first time constant is

characteristic of the thermal relaxation of the entire system with the thermal bath. The

second one gives to time needed for the sample to be at the same temperature as the

platform. In the end it gives temperature oscillations on the sample holder (i.e. where

we measure the temperature) with the same form as in the case where the sample and

the platform are perfectly coupled.

|TAC,0| =
PAC√

k2
eff + 4ω2C2

eff

(2.50)

φ = − arctan
2ωCeff
keff

(2.51)
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with Ceff = C0 + (1− g)Cs and keff = ke+ gks, where g = (ωτs)2

1+(ωτs)2 . The effective heat

capacity will be only the one of the addenda at high frequency as illustrated in Fig.

2.14b. The oscillations do not have the time to go in the sample, their amplitude will

decrease sharply and it causes the resolution the be lower. However at low frequency

it is possible to measure the total heat capacity. The main think we should care about

here in the end is that ωτi < 1. On the other hand going at very low frequency will

give TAC,0 = PAC/ke and φ = − arctanωτe, which gives no information about the heat

capacity of the system. In fact, in these conditions, the sample holder will directly relax

to the thermal bath. In the end we will measure the total heat capacity such that :

C =
PAC

2ωTAC,0

τe
τe + τs

(sin(φ) + ωτs cos(φ)) (2.52)

If the conditions are considered to be good then τi can be neglect, and one finds again

the same as for the perfect case. Let us consider that simple case to learn a bit more

on the resolution of the AC calorimetry. If we consider the phase resolution to be

∆φ = ∆TAC,0/TAC,0, the specific heat resolution can be written as :

∆C

C
=

∆TAC,0
TAC,0

(
1 +

1

tan(φ)

)
(2.53)

That resolution is minimized for φ = 45◦. It means that the imaginary part and the

real part of the signal have to be equal. Experimentally we are always trying to use a

frequency to supply the heater such that the phase shift is always close to 45◦.

Thermal decoupling of the heater and thermometer It is also possible that the

thermometer and the heater might be decoupled of the calorimeter itself. In order to

illustrate that let us assume that the thermometer and the heater are connected to the

calorimeter via a thermal conductance ki as shown in Fig. 2.15a. One gets for such a

system, three equations, one for the calorimeter itself, one for the thermometer and one

for the heater :

C
dT

dt
= ke(Tb − T ) + ki(TH − T ) + ki(TT − T ), (2.54)

PH(t) = ki(TH − T ), (2.55)
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(a) (b)

Figure 2.14: (a)Thermal model with a thermal decoupling of the sample. (b) Measured
heat capacity and thermal leak as a function of the frequency when the sample is badly
coupled to the calorimeter and fitted curves using the model above. From [(109)]
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PT = ki(TT − T ). (2.56)

Solving these equations gives the temperature on the side of the thermometer :

T TAC =
PAC

ke + 2iωC
, (2.57)

T TDC = Tb +
PAC + PDC

ke
+
PDC
ki

. (2.58)

Basically what we found here is almost the same result as Eq. 2.42 and Eq. 2.43 except

that the average temperature is shifted by a term PDC/ki. That means that it is still

possible to get the right value of the heat capacity but the temperature we measure is

not the one of the sample. The more PDC is high and the less ki is small, the bigger that

error will be. And one finds the same result as in the perfect case when ki is infinite.

In order to have an idea of the value of ki, one can record the temperature on the heater

side. That gives :

THAC =
PAC

ke + 2iωC
+
PAC
ki

, (2.59)

THDC = Tb +
PAC + PDC

ke
+
PAC
ki

. (2.60)

This time, one can not determine the right value of the heat capacity from the data

recorded on the heater side. In fact the temperature oscillations have an additional

term PAC/ki which makes oscillations bigger and therefore overestimates the value of

the heat capacity. Looking at the continuous term, the temperature is also shifted by

the same term, and we have the same problem as on the thermometer side. However

taking a closer look at Eq. 2.58 and Eq. 2.60 and combining them, one can have a

better idea of the value of ki and compare it to ke in order to check if the thermalisation

is bad or good. Most of the time such a phenomenon occurs at low temperature as

illustrated in Fig. 2.15b.
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(a) (b)

Figure 2.15: (a)Thermal model with a thermal decoupling of the thermometer and the
heater. (b)Normalized amplitude and phase of the temperature oscillations as a function
of the frequency. The blue curve represents the thermometer and the red one the heater.
The dots are data obtained at 0.35K and the lines the fitted model we used before. Here
the behaviour of the thermometer and heater are very different showing clearly that they
are badly coupled. From [(109)]

2.2.4 A closer look at the experiments

We have now a better understanding of the different ways to measure heat capacity

and some troubles we could encounter, let us take a closer look at the experiments. We

will only focus on the Dual Slope Method used with the PPMS and the AC Calorimetry

set up we used in Grenoble.

2.2.4.1 AC Calorimetry

How does it look like? The central part of the calorimeter is a small resistive chip,

normally used as a thermometer, that we split into two parts, in order to have a ther-

mometer and a heater. Since the resistance varies with temperature, we can use it as a

thermometer. The chip is originally a Cernox, made of a sapphire substrate which has

a layer of zirconium oxynitride on top, which is itself covered with an insulating layer.

The resistive part is connected to gold contacts. They will be used later to connect the

chip to the rest of the system.

The total resistance of the Cernox is of approximately 500 Ω, when splitted in two, we
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Figure 2.16: Sketch of the different part of the calorimeter and their correspondence
with the different thermal models. The sample in black is mounted on the Cernox in light
gray, with some grease in blue. The thermometer in dark blue and the heater in red are
connected to the Cernox via a thermal leak ki. The chip is connected to the copper ring
through wire with a thermal leak ke. From [(109)]

usually have a resistance of approximately 230 Ω and another one of 270Ω. The later is

usually used as a thermometer so as to have a better signal to get the heat capacity. In

order to assure electrical but also thermal contact with the rest of the system, four metal

wires are connected to the chip. The other side of the wires is connected to a copper

ring in order to suspend to chip in its middle and avoid any unwanted contact, that

might lead to shortcuts or thermal leaks. From there we have a four-contact measure-

ment of the Resistance of the thermometer and the heater that will later be connected

to the electronic part of the system. The sample is then mounted on the other side of

the chip, and sticks to it thanks to a small amount of grease. Fig. 2.16 illustrate the

description we made of the calorimeter and the correspondence with the different part

of the thermal models we used before.

In order to avoid a thermal decoupling between the sample and the calorimeter, we

have to pay attention on the amount of grease we use. When there is too few or when

the contact surface between the sample, the grease and the chip is too small, one can

have some problems like we described it before in Sec. 2.2.3. In order to avoid that one

can use a heater gun to flatten to surface area of the grease and assure better contact,

and therefore have a higher value of ks. Looking at the internal thermal leak ki it is

way harder to adjust this value. It is an intrinsic property of the chip and one can only

check its value at different temperature in order to correct the shift of temperature we
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talked about in Sec. 2.2.3.

How to get the heat capacity ? Since we described the thermal models and the

calorimeter, we now have to focus on how to get the heat capacity of our samples. From

our different thermal models we know that we need to know the power input in the

system and to record the time dependence of the temperature on the thermometer side

in order to get the average temperature and the temperature oscillations. Recording

the temperature on the heater side is also a good idea, so that we can have a better idea

if we are in the case of an ideal model or not. Here we can already see a major problem,

that is really time consuming: we need to know how to relate the resistance to the tem-

perature precisely. In order to reduce the error we make on reading the temperature

we need very precise calibration, and even if we can read very precisely temperature

variation it is always hard to get the absolute temperature. Another problem on that

side is the magnetoresistance of the chip. Therefore the calibration also needs to be

done in high fields to limit the error. We will not focus on that part of the set-up here,

since most of the calibrations we used during this thesis were done before it started. If

the reader wants more information, he can refer to the thesis of Clément Girod [(109)]

and Bastien Michon [(128)].

The calibration being done, we can now focus on how to read the resistance in order to

get the information we need. When the system is heated with a power PAC , the temper-

ature will oscillate with an amplitude TAC around the average temperature TDC . If the

oscillations are small enough (of the order of few percents of the average temperature),

one can use a linear response approximation and write :

R(T ) = R(TDC) +
dR

dT

∣∣∣∣
TDC

TACe
2iωt. (2.61)

From that equation one sees that measuring the average resistance gives the average

temperature, and measuring the oscillations of the resistance gives the temperature

oscillations.

Determination of the average temperature TDC In order to get the average tem-

perature on the heater and thermometer side, we use two small amplitudes alternative

currents iT and iH with different frequencies, ωT and ωH , compare to ω (typically over

100 Hz), such that their amplitudes will be very small compare to the one of IAC and
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will not influence the diagrams (Fig. 2.13, Fig. 2.14b and Fig. 2.15b) obtained earlier.

In the end we have

IT = IDC + iT e
iωT t, (2.62)

IH = IACe
iωt + iHe

iωH t. (2.63)

One has then to measure the voltage at ωT and ωH

VωH,T = RH,T (TDCH,T )iH,T cos (iωH,T t). (2.64)

From that one can get the resistance and therefore the average temperature.

Determination of the temperature oscillations TAC Since we now have the aver-

age temperature and also the calibrations of the chip, we can get the derivative dR
dT

∣∣
TDC

on both sides of the chip and therefore, based on Eq. 2.61, also get the temperature

oscillations. The voltage VT due to IDC in the thermometer is :

VT =

[
RT (TDC) +

dRT
dT

∣∣∣∣
TDC

|TAC | cos (2ωt+ φT )

]
IDC , (2.65)

VT = RT (TDC)IDC +
dRT
dT

∣∣∣∣
TDC

|TAC | cos (2ωt+ φT )IDC , (2.66)

VT = VDC + V2ω cos (2ωt+ φT ). (2.67)

VDC is filtered and only contains information about the average temperature, but the

V2ω signal gives us information about the phase and the amplitudes of the oscillations

which is exactly what we need to determine the heat capacity of the sample.

On the heater side we have almost the same but with an alternative current:

VH =

[
RH(TDC) +

dRH
dT

∣∣∣∣
TDC

|TAC | cos (2ωt+ φH)

]
IAC cosωt, (2.68)

VH = RH(TDC)IAC cos (ωt) +
dRH
dT

∣∣∣∣
TDC

|TAC |
IAC

2
(cos (3ωt+ φH) + cos (ωt+ φH)),

(2.69)

VH = Vω cos (ωt+ φH) + V3ω cos (3ωt+ φH). (2.70)

The only important part of the voltage here is the V3ω signal which is giving the tem-

perature oscillations of the heater.
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Determination of the power PAC The power due to the resistance of the heater

with a current IAC is:

PH =

[
RH(TDC) +

dRH
dT

∣∣∣∣
TDC

|TAC | cos (2ωt+ φH)

]
(IAC cos (ωt))2. (2.71)

Ignoring the derivative therm in the resistance gives then the power :

PH =
I2
AC

2
RH(TDC)(1 + cos (2ωt)) = PAC(1 + cos (2ωt)). (2.72)

The derivative in the resistance gives another non-linear term due to the temperature

oscillations. In order to reduce this term, we need to have small oscillations compared

to the average temperature. Usually that ratio is around 5%. The worst case scenario

happens at low temperature where such a term can be about several percents of the

total power. Since we do not take this effect into account the heat capacity can be

overestimated.

We now have an idea about how to get the different parameters that will help us to

know the heat capacity. We should now check on the electronics that will measure the

temperature on the heater and thermometer side and also generate the excitation power.

Measurements protocol In the end you will find the protocol we use for our exper-

iments. The goal of the protocol is mainly to check if we have good conditions for the

measurement, i.e good thermal coupling.

1-Set up the bath temperature for the measurements and put to maximal value of iH
and iT so that they are not heating the thermometer or heater, in order to have the best

signal to noise ratio. We can also set up gains in our program so that the thermometer,

heater and main thermometer have the same temperature.

2-Set up the value of IAC and IDC so that the temperature oscillations are less then

10% of the average temperature and that the voltages of V2ω and V3ω are in between

one and ten millivolts.

3-Change the frequency of the measurements at the same temperature while checking

on the behavior of the temperature oscillations, the value of the heat capacity and the

values of ke and ki, in order to check if we can apply a simple thermal model. In such

a case, one chooses the frequency such that the phase is 45o. If C is changing while
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the frequency changes, then the sample is badly coupled to the calorimeter and one

has two solutions : either to remount the sample or to lower the frequency so that the

heat capacity remains constant. If the oscillations of the heater and the one of the

thermometer are different, it means that the thermometer and the heater are badly

coupled to the calorimeter and then one should lower IDC so that the temperature of

the thermometer reamains close to the one of the sample.

4-Check on step 3 for different temperatures over the measurements and if the parame-

ters are not good enough for all of them then program a law as a function of temperature

so that the parameters will be good for the entire run. After that one can start the

measurement.

Measurements with a rotator During this thesis, one of the main problems we

wanted to focus on is a possible FFLO phase. Since such a phase is very sensitive

to the angular position of the sample compared to the field, we decided to mount a

rotator on our measurement cane. We had several options but given our opportunities

we decided to go for an electrical rotator. Some minor modifications were made in

order the calorimeter to fit in the cane. The rotator we used as a resistive angle reader.

However, that part of the rotator broke and we decided to go for another technique

of measurement of the angle. Also, since we wanted to measure the angle between the

sample and the magnetic field such a method was not precise enough for us. Instead, we

decided to measure the angle with a Hall probe. Hall probes have different sensitivity

to the angle and the Hall voltage can be written as VHall = V0 cos θ + Voffset, where

θ is the angle between the field and the vector perpendicular to the probe. The Hall

probe was positioned in order to have to best sensitivity such that we will look at angles

close to θ = 90o. In our case we found out that we can measure an angle difference

of approximately 0.1o. However we still have a problem in our measurement. Since

the sample if fixed on the sample holder with grease (giving already difference of angle

between the sample and the sample holder) and the Hall probe is not fixed directly on

the sample holder, the angle we measure between the magnetic field and the Hall probe

is not exactly the same as the one between the magnetic field and the sample. In order

to correct that we decided to use the superconducting properties of our samples to find

out the angle difference between the Hall probe and the sample. In the following we
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give a protocol for the best alignment we can achieve with our system.

1-First apply the same protocol as in the normal case.

2-Apply a small field and set up a temperature sweep close to Tc for different angles

and measure the heat capacity of the sample.

3-Compare the superconducting anomaly of the sample for different angles. Tc should

shift with the angle and being at its maximum when the field is along the c-axis or at

its minimum when the field is along the ab-axis. 4-Note the angle measured when Tc
is at its maximum or minimum, this one is when the sample is aligned. The value we

noted is the angle difference between the sample and the Hall probe.

In our experiments, the angle between the sample and the Hall probe was typically of

the order of 1%.

2.2.4.2 PPMS

The PPMS Dual slope technique uses basically the same element for the calorimeter

as the AC technique. One can see in the following a quote from the PPMS specific heat

manual:

As with other techniques for measuring heat capacity, the Quantum Design Heat Ca-

pacity option controls the heat added to and removed from a sample while monitoring

the resulting change in temperature. During a measurement, a known amount of heat

is applied at constant power for a fixed time, and then this heating period is followed by

a cooling period of the same duration. A platform heater and platform thermometer are

attached to the bottom side of the sample platform. Small wires provide the electrical

connection to the platform heater and platform thermometer and also provide the ther-

mal connection and structural support for the platform. The sample is mounted to the

platform by using a thin layer of grease, which provides the required thermal contact to

the platform. The integrated vacuum system in the cryostat provides a sufficient vac-

uum so that the thermal conductance between the sample platform and the thermal bath

(puck) is totally dominated by the conductance of the wires. This gives a reproducible

heat link to the bath with a corresponding time constant large enough to allow both the

platform and sample to achieve sufficient thermal equilibrium during the measurement.

The description of the puck is very close to the one we use for the AC technique. The

main difference is the method used to extract the heat capacity of the sample.
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2.2.5 Comparison of PPMS and AC Calorimeter

In the end we want to give here a comparison of the two different technique we used

in this thesis. First, one should specify that the PPMS is much faster to measure a

sample. The cooling of the sample can be achieved in a time scale of an hour. When

we compare it to the cooling time of the AC calorimeter, this last one needs more

than 12 hours. The PPMS also takes less time to measure over a temperature range

in average but looses some resolution. The main advantage of the AC calorimeter lies

in its resolution and the small sample size. Also it is possible to use our system at the

LNCMI Grenoble to achieve field of 36T.

PPMS AC Calorimeter

Sample mass (mg) 1-200 0.1-1
Temperature range (K) 0.3-400 0.6-15
Magnetic field range (T) 0-14 0-36

Resolution (%) 1 0.1
Accuracy (%) 1-5 5

Table 2.1: Comparison of the PPMS and the AC Calorimeter

2.3 Specific heat : motivations

English version The heat capacity gives lots of information about the lattice, elec-

tronic and magnetic properties of a material. Since at low temperature, it is a direct

probe of energy levels, one can easily compare theories and data in order to have a bet-

ter understanding of a material. Specific heat is also very sensitive to phase transitions.

Another interesting property of the specific heat is the fact that it is a bulk probe, and

will be sensitive to everything that is happening in the material and not just to some

surface effects.

Since we want to focus on the phase diagram of FeSe, having such a probe would be

very useful, particulary looking at the phase transitions. FeSe might be the host of

some complex phenomena like a FFLO phase and different states of the vortex matter.

Specific heat is sensible to all of these phenomena. At the vortex lattice melting tran-

sition, it should be marked at least by an excess of specific heat compare to a standard

behaviour without any melting. A scaling theory was developed by Li and Rosenstein
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allowing to extract the value of Hc2(T ) directly from specific heat measurements, also

taking into account the vortex lattice melting. Since we want to focus on the properties

of the H − T phase diagram, particularly at the dependence of the upper critical field

and the melting line, specific heat turns out to be a strong asset.

Two different set-ups are already present in Grenoble and Karlsruhe in order to measure

specific heat. The PPMS in Karlsruhe uses the the Dual Slope Method and gives ac-

cess to field up to 14T. In Grenoble an alternative calorimeter was developed with high

resolution. It is also possible to use it in high magnetic field facilities and is therefore

very useful to have the full H − T phase diagram of FeSe1−xSx in both directions. A

rotator was also mounted on that set-up during my thesis which might an added value

to look for a FFLO phase. All of these reasons make us believe that specific heat is a

perfect tool to accomplish our work.

Version française La capacité thermique est une sonde très utile dans le sens où elle

peut donner beaucoup d’informations sur les propriétés électroniques et magnétiques et

celle du réseau cristallin d’un matériau. A basse température, elle est une sonde directe

des niveaux d’énergie et peut donc être facilement comparée aux théories, alors que

d’autres techniques comme la résistivité ont plus de mal à être directement liées à une

théorie. La chaleur spécifique est également très sensible aux transitions de phase. Une

autre propriété intéressante de la chaleur spécifique est le fait qu’il s’agit d’une sonde

globale, qui sera sensible à tout ce qui se passe dans le matériau et pas seulement à

certains effets de surface.

Comme nous voulons nous concentrer sur le diagramme de phase de FeSe, disposer

d’une telle sonde serait très utile, en particulier pour étudier les transitions de phase.

FeSe pourrait être l’hôte de certains phénomènes complexes comme une phase FFLO

et différents états de la matière vortex. La chaleur spécifique est sensible à tous ces

phénomènes. La transition de fusion du réseau de vortex devrait être marquée au moins

par un excès de chaleur spécifique par rapport à un comportement standard sans aucune

fusion. Une théorie de loi d’échelle a été développée par Li et Rosenstein permettant

d’extraire la valeur de Hc2(T ) directement à partir des mesures de chaleur spécifique,

en prenant également en compte la fusion du réseau de vortex. Comme nous voulons

nous concentrer sur les propriétés du diagramme de phase H − T , en particulier sur la

dépendance du champ critique supérieur et de la ligne de fusion, la chaleur spécifique

88



2.3 Specific heat : motivations

s’avère être un atout important.

Deux installations différentes sont déjà présentes à Grenoble et à Karlsruhe afin de

mesurer la chaleur spécifique. Le PPMS de Karlsruhe utilise la méthode de la double

pente et donne accès à des champs allant jusqu’à 14T. A Grenoble, un calorimètre al-

ternatif à haute résolution a été développé. Il est également possible de l’utiliser dans

des installations à haut champ magnétique et il est donc très utile pour tracer le dia-

gramme de phase H − T complet de FeSe1−xSx dans les deux directions. Un rotateur

a également été monté sur ce calorimètre pendant ma thèse, ce qui pourrait constituer

une valeur ajoutée pour la recherche d’une phase FFLO. Toutes ces raisons nous font

croire que la chaleur spécifique est une arme de choix pour accomplir notre travail.
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Vortex lattice melting and upper
critical field in FeSe1−xSx

3.1 Samples

Sample growth The samples used during this thesis were grown both at the Karl-

sruhe Institute of Technology and Néel Institut in Grenoble. I had the chance to assist

some crystal growth. The techniques used in both places are mainly the same. We will

discuss that in the following section.

FeSe consists of conducting layers of corner-sharing FeSe4 tetrahedra stacked along the

c-axis. We can distinguish two main phases of FeSe: the α-phase, which has an hexag-

onal NiAs type crystal structure; and the β-phase with a tetragonal PbO-type crystal

structure. The stoichiometric α-FeSe is non-superconducting, but a small excess of Fe

stabilizes the phase of β-Fe1+δSe(δ = 0.01− 0.03 ) which becomes superconducting. It

is possible to substitute the selenium by some tellurium or sulfur. The second option

was done in the time of the thesis. The method stays the same. It is quite hard to grow

the superconducting phase of FeSe because of the narrow range of iron content where it

can grow. Fig 3.1 shows a part of the binary phase diagram used to make the samples.

For an easier reading the complete binary phase diagram is not shown but it should

be notified that the solidus is way above the β-phase, which makes it even harder to

synthesize. Most of the time, the crystal growth from the melt results then in the

hexagonal phase. Usually some iron is added to avoid the stoichiometric phase, but it
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Figure 3.1: Binary phase diagram for Fe-Se. From (63)

usually results in platelet of hexagonal symmetry which contains the β-phase but also

a magnetic Fe7Se8 phase. A new technic was developed [(129)] were the sample results

in a vapor-grown β-phase single-crystalline. Fe and Se powders are now mixed with

a bit higher ratio of Fe (typically 1.1:1) together with a eutectic mixture of KCl and

AlCl3 (ratio 1:2) in a silica ampoule. Then that ampoule is placed in a oven and slowly

warmed up. A temperature gradient is applied on the ampoule so that samples can

directly form on the cold hand. Several temperature profile have been used, the first

one used in Karlsruhe for example in 2013 was a cold end at 240oC, while the hot end is

at 390oC. Some experiments also used a tilted oven or pellets of the mixture, positioned

in diverse places of the ampoule.

Characterization on the samples The rest of the manuscript will be separated

in two main parts, the study of pure FeSe and the study on the doped samples of

FeSe1−xSx. We want here to give some characteristics of the different samples in zero

field. In the rest of the manuscript, we will take as convention that µ0H = H and

therefore H will be measured in Teslas. The specific heat of all measured samples is

displayed in Fig. 3.2a, and the resistivity of some of them in Fig. 3.2b.

Looking at the temperature dependence of the specific heat one sees a clear discontinuity
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in all samples, which is due to the fact that the sample undergoes a superconducting

transition.Taking the value of Tc at 50% of the specific heat jump, FeSe shows clearly

a smaller Tc of 8.9K compared to the doped samples. All other samples come from the

same batch, named AAH55. This batch seems to be quite homogeneous by looking at

the superconducting transition, showing approximately the same Tc around 10.4K. The

dependence of the specific heat is also quite identical for all samples, only the AAH55m1

samples shows a strange feature of unknown origin at 7.5K which is not observable in

other samples. Since that feature was only found in that sample, we decided to focus on

other samples for the rest of the analysis. The transition is not abrupt as it should be in

a perfect scenario and shows a width of approximately 0.8K for all samples, except the

AAH55n6 sample that has a wider transition, extending over 1K. It should be notified

that the curve presented here for that sample was obtained by averaging two data sets

of two different measurements. Since the reproducibility of the measurements is not

perfect it must lead to that slightly wider transition. The width of the transition was

assigned to the presence of nematic domains within the sample [(84)]. Such a width will

lead to some uncertainties during the next analysis. Since we will for example focus on

the upper critical field, an error of ∆T/Tc ≈ 10%, will lead to an error in ∆Hc2/Hc2 of

approximately 20% at zero temperature since Hc2 varies like T 2
c .

The resistivity of AAH55n2 has been measured with a lock-in amplifier at 10 Hz and

using a current of 0.05mA. AAH55n4 has been measured with a PPMS setup with

a frequency of 6Hz and a current of 1mA. The resistivity plot (Fig. 3.2 shows two

features. First at low temperature the superconducting transition at Tc and at higher

temperature the nematic transition at Ts. Taking the zero resistivity as the criterion

for Tc, it leads to a superconducting transition at approximately 10.4K in the dopes

samples, which matches very well the temperature measured with specific heat. Ts is

taken as the intersection of the two slopes before and after the transition. It gives

for the AAH55n2 sample Ts =87K and for the AAH55n6 sample Ts =62K. Such a

difference can be well understood by looking at the phase diagram of FeSe1−xSx (see

Fig. 1.18), where a small change in the doping x can lead to a big difference in the

nematic transition temperature. If the batch is not perfectly homogeneous one can see

such a difference. One should also note that the nematic transition for the AAH55n2

sample is wider compared to the AAH55n6 sample, similar to Tc showing a width of

2K for AAH55n2 while being only of 1K for AAH55n6. This must be related to some
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disorder in the samples.

In the end we give a comparison of the characteristics of the samples with the literature

in the next table, giving similar results.

FeSe AAH55n2 AAH55n4 AAH55n6 AAH55m1 FeSeS15

Doping 0 12 12 12 12 12
Tc 8.9 10.4 10.3 10.4 10.3 10.4
Ts 90 54 - 62 - -

Tc (from (2)) 9 10 10 10 10 10
Ts (from (2)) 87 54 54 54 54 54
Tc (from (130)) 9 10 10 10 10 10
Ts (from (130)) 90 60 60 60 60 60

Table 3.1: Comparison of Tc and Tc in our samples with the literature. The width of
the transition in the specific heat is about 10% of Tc, and Tc was taken as the mid-point
of the transition height. The resistivity measurements are in a good with the specific heat
measurements with a discrepancy of the order of 0.1K, one order of magnitude smaller
than the width of the transition.

3.1.1 Quantum Oscillations

When a superconductor recovers its normal state by destroying superconductivity

with a high magnetic field, electronic orbits are quantized in a Fermi liquid metal.

It results in oscillations in 1/H visible in many quantity such as resistivity but also

specific heat. One of the problems is that most of the time, the resolution needed

to observe those oscillations in the specific heat is too high compared to the available

resolution. But we believe that AC specific heat technique, allowing us to have a very

good resolution of the order of 1 ‰, might be a solution to observe quantum oscillations

in our samples. In Sec 2.1.8 we introduced the oscillatory component of the specific

heat due to the Landau level quantization of the orbits, given by the Lifshitz-Kosevich

formula 2.27.

Fig 3.3 shows the oscillatory part of the specific heat measured at LNCMI Grenoble,

with fields up to 35T. The sample was mounted with the magnetic field parallel to the

c-axis of FeSe, and we show here only the part of the specific heat were H > Hc2(T ).

Here the data were smoothed by taking the data points plus the average and dividing it
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(a) (b)

Figure 3.2: (a) Temperature dependence of the specific heat of the different samples
measured during the thesis. AAH55 and FeSeS15 samples are doped with 12% sulfur.
Arrows show the temperature where the superconducting transition happens, at the mid-
point of the transition height. (b) Temperature dependence of the normalized resistance
(R/R(T=100K)) of the doped samples. Tc is measured as the zero resistance point, while
Ts is the intersection of two dashed slopes.
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Figure 3.3: Quantum oscillations in δCe/T as a function of the magnetic field in FeSe.
Colored line are the obtained data, while the black line is a rough fit performed down to
0.7K. The black line at 0.3K is only here to have an idea of how oscillations could look like
at that temperature, since we could not reach such a low temperature with our setup.

by a 2. We then fit our data only to the first harmonic in the Lifshitz-Kosevich formula

(p=1) and with no warping (tw=0). In fact, the noise in our data does not allow for a

very precise fit, and we prefer here to neglect any warping. We are only using one band

to fit the oscillations again due to the noise in the data.

It is interesting to notice the curve at 0.7K seems to show very reduced oscillations

and we attribute this to the fact that the function f ′′(x) (see Eq. 2.27) changes sign

for a value of x close to 1.6, showing a π-phase shift going through the value. This

is visible in Fig 3.4 where that phase shift is clearly visible for temperature between

0.5K and 1K on the available magnetic field. Those nodes in f ′′(x) are an added value

of the specific heat quantum oscillations measurements and enable to have a direct

access to the cyclotron mass. The inferred mass m∗ is of the order of 4me. We then

fit the data with that cyclotron mass and a value of the frequency of the oscillations of

F1 ≈ 200T due to published articles ([(2),[(80)]), and the fit gives a Dingle temperature

of TD ≈ 2.5K. TD quantifying the disorder in the sample and being quite low, it must

be a reason why the oscillations are here visible.

Resistivity measurements made by Waston et al. in Ref. (2) (see Fig. 3.5) shows
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Figure 3.4: Quantum oscillations in δCe/T as a function of the temperature and the
magnetic field, with an effective mass m∗ = 4me

4 different frequencies and one of them seems to match our data. They found a band

with a frequency, F2, close to 200T and an effective mass around 4me. Interestingly

that band is the one with the highest amplitude (see Fig. 3.5) and this is the only

one we observe. Another frequency of F4=660T was also found with the same effective

mass meaning that they could be related to same band. F4 being the highest measured

frequency, and ARPES measurements only seeing one hole band but possibly more

electron bands, that means that in order to preserve charge balance in the system, F4

as to be related to the hole band and therefore F2 also is. In the case of FeSe is it

possible to show that

γ =
πa2k2

BNa

6~2

∑
bands

m∗ = 0.7
∑
bands

m∗. (3.1)

From the specific heat measurement we have estimated that γ=6.5 mJ.mol−1K−2. This

shows that this band should be responsible of approximately 40% of the γ value. Wat-

son et al. found in a three band model a very high value of γ=9.4 mJ.mol−1K−2, which

would give in a two band model a value of 6.2 mJ.mol−1K−2, in a much better agreement

with our value. Interestingly Terashima et al. [(80)] found also frequencies very close

to the one observed by Watson et al. and gave a value of γ=6.2 mJ.mol−1K−2 in a two

band model. In such a scenario the hole band would be responsible of approximately
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(a) (b)

Figure 3.5: (a) Oscillatory part of the resistivity of FeSe (b) Fourier transform of the
data in (a) identifying four different frequencies, corresponding to extremal areas on the
Fermi surface. From [(2)]

50% of the γ value. All measurements are summarized in Tab. 3.2.

F Frequency (T) m∗/me Our measurements
γ (mJ.mol−1K−2)
3 bands 2 bands

Electrons
F1 110 3 × 2.1

2.8
F3 550 6 × 4.2

Holes
F2 200 4 X

2.8
F4 660 4 ×

Table 3.2: Comparison of the quantum oscillations data our data and from Ref. (2)

In the next sections we will try to investigate more in details the full H − T phase

diagram of FeSe. It is a promising candidate to study the vortex matter, since its upper

critical field seems to be attainable in both directions and its Ginzburg number should

be of the order of 10−3, indicating strong thermal fluctuations in the system. We will

also try to study the behaviour of the upper critical field using orbital and paramagnetic

models and its interplay with the melting.
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3.2 Study on pure FeSe

3.2.1 Specific heat data

Subtraction of the phonon contribution and the Sommerfeld coefficient In

order to study the superconductivity of the samples we have to focus on the electronic

specific heat. When measuring the heat capacity of a sample, all contributions are

measured. The first thing we need to do it so subtract the heat capacity of the addenda.

In order to do that, we usually measure the addenda before putting any sample on the

calorimeter. Then the sample is added and measured again. With that method we

then only need to subtract the first curve obtained to the second one to get the heat

capacity of the sample. Fig? 3.6a shows the measurements of the total specific heat and

the addenda contribution. But here we are still left with another problem, we still have

contribution to the specific heat of the phonon, or in a worst case scenario some Schotkky

anomalies could also be present. So we have to find a way to get rid of these contributions

to only be left with the electronic specific heat. We do not see in Schotkky anomalies in

our data but we still have to subtract the phonon contribution. The method employed

in Karlsruhe consists in doing a fit above Tc, where we suppose that the specific heat of

the material in the normal state take the same form as for a metal, meaning : Cn/T =

γn + βT 2. To take into account the deviations from that law at higher temperature

we can add even terms to have a better fit : Cn/T = γn + β3T
2 + β5T

4 + β7T
6 + ...

as we discussed before. The coefficients here should be independent of the applied

magnetic field, this is why we perform the fits at 0 T and the maximum available

field, where superconductivity is supposed to be almost fully suppressed. We then plot

δCe(T,H) = Cs(T,H)−Cn(T,H), where Cs is the specific heat in the superconducting

state and Cn is the one in the normal state. The fit giving Cn is always performed in a

way that the superconducting transition will be entropy conservative. It means that in

the normal state the entropy should always be the same for every field. If so, one can

fit the specific heat above the superconducting transition in order to enforce entropy

conservation with that law : Cn/T = β3(T 2 − T 2
1 /3) + β5(T 4 − T 4

1 /5) + ...+ S(T1)/T1;

where T1 is the temperature where the entropy was measured.

Another way of getting δCe is to have access to a field that is high enough so that it

will fully suppress superconductivity and then we only need to subtract the curve at the

given field to the others at lower field assuming addenda are field independent. This is

99



3. VORTEX LATTICE MELTING AND UPPER CRITICAL FIELD IN
FESE1−XSX

what we usually do in Grenoble. All of that was possible because we had access to the

LNCMI Grenoble, a high magnetic field facility. Fields up to 36T have been reached

during this thesis. Without such a facility, the phase diagrams of my thesis would not

be complete.

Fig. 3.7 displays the temperature dependence of the difference between the specific

heat of the superconducting state Cs(T,H) and the normal state Cn(T,H) for H||ab and

H⊥ab. The normal state was determined by fitting the data at 18T with H⊥ab where

we think that superconductivity was fully suppressed over the temperature range. We

still used Cn(T,H) = γnT + β3T
3 and enforced entropy conservation above Tc in order

to get the specific heat due to superconductivity. We also compared that method by

directly suppressing the total heat capacity of the sample and addenda at 18T to the

others curves and the result is the same. We find here a Sommerfeld coefficient γn =6.5

mJ mol−1 K−2 and a phonon term β3=0.4 mJ mol−1 K−4. Fig. 3.6b shows the specific

heat of the sample (where the addenda contribution was substracted) and the fitted

contribution of the Sommerfeld coefficient and the phonons. Comparing these values

with former data obtained on others samples in the Karlsruhe group [(84)], a good

agreement is obtained.

We can now compare the superconducting transition in that sample with the BCS-

theory. In the BCS formalism we recall that ∆C/γnTc=1.43. We find here that ratio

to be close to 1.4 which indicates that the mean field theory in the weak coupling limit

could apply to our sample. However, that low value could be due to the multigap nature

of FeSe or maybe also to the anisotropy of the gap as reported by Sato and al [(130)].

Fig 3.8 shows the field dependence of the specific heat of the same sample. The field

dependence of the specific heat allows to have a direct access to the effect of the field

on superconductivity. In fact, the Sommerfeld coefficient and the phonon terms being

independent of the magnetic field value they will only give a constant term in the spe-

cific heat. In order to subtract that term, one needs to have the specific heat δCe equal

to zero in the normal state. This is what is done in Fig. 3.8. Data were fitted with a

parabola at low field in order to deduce the mean field transition (dotted line). Before

the superconducting transition, an excess of specific heat is found when comparing the

data with a mean field transition (shaded area). This is typical of vortex lattice melt-

ing, since more degrees of freedom are allowed. However, it should be interesting to
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(a) (b)

Figure 3.6: Specific heat of the FeSe sample and addenda. (a) Temperature dependence
of C/T of the FeSe sample with the addenda in zero field (in gray) and only the addenda (in
red). (b) Temperature dependence of the specific heat of the FeSe sample (in gray) in zero
field and the entropy conserving fit performed corresponding to the phonon contribution
and the Sommerfeld coefficient (in red).

check the range of superconducting fluctuations in the sample before going in a deeper

analysis of the vortex melting. This is what we will do in the following.

Evidence for superconducting fluctuations Thermal fluctuations tend to broaden

the superconducting transition when applying a magnetic field. Looking at the temper-

ature dependence of the specific heat in Fig 3.7 it is clearly visible that both directions

tend to have a broader transition exceeding the intrinsic width of 1K. That broadening

seems to be visible for fields higher than 2T when the field is applied along the c-axis

and 9T for the other direction. Looking at the field dependence in Fig 3.8 that thermal

fluctuations broadening is also visible. In a scenario without any fluctuations the spe-

cific heat would follow the dotted lines dependence with an abrupt transition at Hc2,

however due to the fluctuations the transition extends over several Teslas.

Let us first take a look at the thermal fluctuations quantified by the Ginzburg number
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(a) (b)

Figure 3.7: (a) Temperature dependence of δCe/T of FeSe when H⊥ab. Arrows show
the position of critical temperature for the first three fields. Inset : Excess of specific heat
before the superconducting transition. The filled area correspond to that excess, and is
related to vortex lattice melting. (b) Same but when the field is oriented HIIab

[(131)]:

Gi =
1

2

(
kBTcΓµ0

4πH2
c (0)ξ3

⊥(0)

)2

(3.2)

where ξ⊥, Hc(0) and Γ = ξ⊥(0)/ξ||(0) are respectively the Ginzburg Landau in-plane

coherence length, thermodynamic critical field (measured in Teslas) and anisotropy. It

is possible to get some of these values from the data we already have. In fact [(132)]:

Hc(0) =
√
µ0∆CTc = 0.12T. (3.3)

We can also get ξ⊥ from the initial slope of H⊥c2:

ξ⊥(0) =

√
φ0

2πH ′c2Tc
= 3.5nm (3.4)

Such a value of ξ can be compared with the mean free path. In (85), Cercellier et al.

found the mean free path of FeSe to be around 55 µm, much larger than the coherence

length we found here. One can therefore certainly assume that we are in the clean

limit and that the broadening of the transition is due to the fluctuations, as we will

see later using the LLL scaling theory. The anisotropy can be found by looking at the
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Figure 3.8: Field dependence of δCe/T of FeSe (δCe = C(H)− C(H > Hc2)). For both
field orientations the dotted line represents an ideal single band mean field transition with
a fit performed before the melting transition. The transition is chosen to take place at 20%
of the jump height. The shaded area shows that an excess of specific heat is found before
the superconducting transition when comparing the data with a mean field transition. This
excess of specific heat is related to the vortex lattice melting.
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inset of Fig 3.9 where we found the 1T-2T curves with H⊥ab matches the 7T curve

with field parallel to the layers. The inset also shows an approximate value of Γ as a

function of temperature, where we find it to be around 4.5 for T>5. Such a value of the

anisotropy is situated in between classical superconductors such a Nb that has Γ = 1

and highly anisotropic superconductors such as YBCO with a value of 7.8 (cf Tab. 1.2).

It should also by noticed that the anisotropy decreases with decreasing temperature.

Such a behavior was also observed in multiband systems such as MgB2. Since FeSe is

also a multiband system the anisotropy decrease with temperature might be the sign

of a higher contribution of the band with lower band anisotropy at low temperature.

However one can also explain it by looking at the pair breaking effects of the system. We

will see that further in the discussion, but paramagnetic pair breaking is much stronger

compare to orbital pair breaking at low temperature when H||ab. This is not the case

when H⊥ab. This kind of a behavior, being temperature dependent, must decrease the

anisotropy at low temperature.

From now on it is possible to have as estimation of the Ginzburg number Gi. With

the different values obtained before, we infer it to be Gi=1×10−3. In most conventional

type II superconductor the Ginzburg number is much lower. For example in Niobium

Gi ≈ 7.10−12 [(103)], therefore the vortex liquid only occupies a tiny part of the phase

diagram and is much harder to detect. The high value of the Ginzburg number in FeSe

(similar to the one observed in YBCO where vortex lattice melting is observed, cf Tab.

1.2 ) gives us another proof of the possible observation of the vortex lattice melting in

our samples. In fact the liquid state will certainly occupy a large portion of the phase

diagram as indicated by Fig. 3.10. On that figure one can also see that the fraction

occupied by the liquid state in FeSe is very close to the one observed in YBa2Cu3O7

where the vortex lattice melting was clearly observed with specific heat.

Vortex lattice melting Lets us now come back on the feature we assumed to be

related to vortex melting. To have a better view of that feature, Fig 3.11a shows

∆Ce/T (T,H) = δCe(T,H)− δCe(T,H0), where H0 =0T for field smaller than 9T and

H0 =7T for higher than that. A full proof of the melting transition would be a first

order transition associated with a peak in Ce (see Fig. 2.7). However, we only observe
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Figure 3.9: Comparison of the heat capacity of FeSe for the field in both direction. Inset
: estimation of the temperature dependence of the Hc2 anisotropy. Such a dependence of
the anistropy might be inferred to the multigap nature of FeSe and to strong paramagnetic
depairing.

Figure 3.10: Dependence of the area fraction occupied by the liquid state, fliq within
the region where [0.75Tc < T < Tc, B < Bc2(T )] on the Ginzburg number. From [(102)]
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a small step-like anomaly, not a peak like in the theory. But the distinctive feature

observed is reminiscent here of what was observed for example by Roulin et al. [(133)]

in YBa2Cu306.94 as shown in Fig. 3.11. Roulin (see Fig. 3.11c) identified this feature

to be caused by vortex lattice melting by comparing it with other data from resistance,

magnetization and neutron diffraction. The fact that this transition is not first order

but most likely second order might be due to the fact that this is not a solid to liquid

transition but most certainly a glass to liquid transition as discussed in Ref. (133). The

observation of the melting transition requires high quality sample, and even though we

think that the quality of the sample is high here, a small disorder can shift a first order

transition into a second order glass transition. However, the literature shows that the

amount of defects is very small, being of one defect for 5000 Fe atoms. Watashige and

al. observe with STM that twin boundaries are created at the nematic transition, due

to the two possible orientations of the crystal structure in the nematic phase. They

also observed that vortices tend to get trapped at the twin boundaries [(134)]. This

might be the reason why we do not observe any first order transition. It should also be

remembered that the vortex lattice melting is the only true phase transition in a strong

type II superconductor with strong fluctuations.

In order to confirm that the anomaly we observe is even more similar to the one

observed by Roulin [(124)], we now want to quantify the entropy jump in order to

compare it. Comparing with the value of ∆S = 0.6kb per vortex per superconducting

layer (see Sec. 2.1.9), we find in our data a value closer to ∆C ≈ 0.1kb per vortex per

superconducting layer by integrating the excess specific heat observed in Fig. 3.11 when

H⊥ab. This shows a good agreement in between the two sets of data by being in the

same order of magnitude.

As we discussed before, the vortex melting is also visible in the H sweep measure-

ments, with an excess of specific heat just before the superconducting transition starts

to happen as observed in Fig. 3.8. Even if that excess is visible in both directions

of the field orientation, it is less pronounced when H||ab. It is here only visible in the

mid-range of the phase diagram where 7 < H|| < 21T (see Fig. 3.11b). An interesting

point to notice here is that no melting could be observed for T < 3K, where we recover

a broadened mean field transition (see Fig. 3.12). We will investigate that interesting
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(a) H⊥ab (b) H||ab

(c)

Figure 3.11: (a) Temperature dependence of ∆Ce/T of FeSe with H⊥ab. For fields
higher than 8T, the 7T curve was substracted. (b) Temperature dependence of ∆Ce/T

of FeSe with H||ab. In both directions, the criterion for melting is taken as the mid-point
of the increase of the excess of specific heat as indicated by the arrow in (a). (c) Same
in YBa2Cu306.94. From [(124)]. The two features observed in both compounds are very
similar. It was attributed to melting in YBa2Cu306.94.
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Figure 3.12: Field dependence of δCe/T of FeSe at low temperature for both field direc-
tions. Dashed lines represent our supposition for the behaviour of the mean field specific
heat Cmf . The transition takes place at δC/Cmf=0.2 . When H||ab, no melting is observ-
able and an excess of specific heat from 22T to 27T is visible at 0.7K. When H⊥ab the
curves were normalized at 18T, whereas in the other direction it was normalized at 28T.
The broadening of the transition can be understood in terms of fluctuations since the LLL
scaling applies very well to our data as we will see it in Sec. 3.2.1.1

feature a bit more in Sec 3.2.3.

It is then possible to build a H − T phase diagram where we put the melting line

observed both in field and temperature sweep, and both field orientation. Fig 3.13

shows that phase diagram, where the melting criterion was taken as the mid-point in

the increasing part of the excess of specific heat, as indicated by the arrow in Fig. 3.11a.

For H⊥ab (blue symbols) it seems like the dependence of the melting is very much linear,

on the other side when H||ab it seems like we deviate from a linear law when the field

is around 8T. That phase diagram also indicates that no melting was observable at low

temperature when H||ab.

3.2.1.1 Quantitative analysis of the field-induced transition broadening

Mean field fit We now have the phase diagram with the melting, but most of the

analysis of the vortex melting requires the temperature dependence of the upper critical
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Figure 3.13: H − T phase diagram of the melting in FeSe. Thermal expansion data are
from [(131)].

field. In Sec. 2.1.10 we introduced the LLL scaling of the specific heat that allows to

estimate Hc2(T ).

First, in order to check if such a scaling theory is applicable we have to be sure to

attempt fields higher than HLLL = GiH
′
c2Tc ≈ 10mT for H⊥ab and 60mT in the other

direction. In such a case the Cooper pairs are in their lowest Landau level, and thus

the approximation is good. Another scaling theory could also be used: the 3D XY

scaling, in the region where critical fluctuations appear. In the region of the phase

diagram where these fluctuations appear the correlation length ξXY = ξ0(1 − T/Tc)ν ,
with ν ≈ 2/3 needs to be smaller compare the magnetic scale lH =

√
φ0/πH. This

allows to find a criterion in field where the 3D XY regime breaks. It is found that for

a field H > HXY = 2Hc2(0)G2ν
i the 3D XY model can not be justified anymore. This

gives in our case less than a mT for both directions. This is why we will focus on the

LLL scaling in the following.

In order to proceed to the LLL scaling, the first thing we need to do is to have the

behaviour of δCmf . In the Ginzburg Landau theory, the jump in specific heat observed
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Figure 3.14: Example of a mean field fit used on δCe/T in order to perform a scaling
analysis. In that example the magnetic field is along the FeSe layers (H||ab). The dashed
lines correspond to the mean field fit and the shaded area to the excess of specific heat
compare to the mean field line. Inset : Difference between the data and the mean field fit.

at Tc is independent of the temperature. But looking at Fig. 3.7 we can see a strong

variation in that quantity depending on the temperature. The interesting part of the

scaling being in the region of the fluctuations, we decided to normalize our data with

δCmf being a fit of a second order polynomial for a temperature lower than the melting

and extrapolating it to higher temperature in the transition region, similar to what was

done by Koshelev et al. in RbEuFe4As4 [(102)]. Such fits are shown on Fig 3.14 where

we can see a good match between the inferred δCmf and our data. The same procedure

was used in the field sweep curves as illustrated in Fig 3.8.

Scaling analysis Now having the dependence of δCmf (T ) it is possible to try to

scale our data to the LLL scaling function calculated by Li and Rosenstein [(126)]. For

the temperature sweeps, two free fitting parameters are used for each field: rT and

Tc(H) (see Eq. 2.29). An average value of rT can be found and used after that for

each field, to have a better value of Tc(H). The same routine is used for the field
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(a) H⊥ab (b) H||ab

Figure 3.15: 3D-LLL scaling of the temperature dependent specific heat of FeSe. The
bold line represents the theoretical line by Li and Rosenstein [(126)], and the colored lines
are deduced from our data for different fields. In (a) the position of the expected specific
heat discontinuity matches very well the maximum of our experimental data.

sweep but with rH and Hc2(T ) (see Eq. 2.31). Such an analysis was also done with

RbEuFe4As4 [(102)] and was quite successful. Fig 3.15 shows our scaling analysis for

the temperature sweep curves and seems to have quite a good agreement with the

theory. It is also worth noting that the position of the expected specific heat dis-

continuity matches the experimental data very well. From the fit, it is deduced that

rT⊥ = 60K−1/3T2/3 and rT || = 160K−1/3T2/3. From that it is possible to have the

anisotropy ratio Γ = (rT ||/rT⊥)3/2 = 4.3 showing also a good agreement with the values

previously found. The predicted values of rT also matches very well the one we found

experimentally since they were supposed to be respectively of 55 and 152 using Eq.

2.29. However, it seems more difficult to fit our data for large field values ( see Fig.

3.15, the 7T curve when H⊥ab and 21T when H||ab). As shown in Eq. 2.29 the reason

is that rT is related to H ′c2, itself being independent of the temperature. This is only

true when high order gradient terms are neglected in the Ginzburg Landau equation,

which is only true at low fields.

The same scaling analysis is performed in Fig. 3.16 using the field sweep curves

in both directions. Here, in that case, when H⊥ab, again we find a good match be-

111



3. VORTEX LATTICE MELTING AND UPPER CRITICAL FIELD IN
FESE1−XSX

(a) H⊥ab (b) H||ab

Figure 3.16: 3D-LLL scaling of the H-dependent specific heat of FeSe. The bold line rep-
resents the theoretical line by Li and Rosenstein [(126)], and the colored lines are deduced
from our data for different fields. Once again the maximum of our data matches well the
discontinuity in the theoretical line when H⊥ab.

tween our scaling analysis and the theoretical curve of Li and Rosenstein [(126)] with

rH⊥=23K−1/3T2/3, when the expected value from a theoretical point a view (from Eq.

2.31) would be 18K−1/3T2/3. But in the other direction it seems to be difficult to have

a match for low temperature curves when T<6K. In the lower two third of the phase

diagram it seems like the LLL scaling analysis breaks down when H||ab. One of the

reasons is that the LLL scaling used in our analysis only accounts for orbital effects,

but when H||ab, some strong paramagnetic effects can rise and would then cause the

LLL scaling to break down.

When the scaling approach was not possible (i.e. at high fields and low temperatures)

we used a similar criterion as the one of Li and Rosenstein to extract the value ofHc2. In

their theoretical curve, Li and Rosenstein found that the temperature or field at which

the upper critical field is crossed gives a value of δC/Cmf=0.2. Therefore we used that

criterion in order to have the upper critical field dependence in our phase diagram in

the low temperature region.

Upper critical field and complete phase diagram Our scaling approach allows

to complete the phase diagram with the Hc2 line deduced from the scaling analysis.
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Experiments Theory

rT⊥ (K−1/3T2/3) 60 55
rH⊥ (K−1/3T2/3) 23 18
rT || (K−1/3T2/3) 160 152

Table 3.3: Comparison of the experimentally deduced scaling parameters rT and rH with
the theory

The LLL scaling is a powerful way to get Hc2 in the H − T phase diagram. We

report on Fig. 3.17 the melting line (filled symbols) and the upper critical field deduced

from the LLL scaling analysis (empty symbols other than hexagons). However, the

LLL scaling is also limited in some regions of it and at high fields a mean-field criterion

was used ( hexagons empty symbols). The upper critical field line was supposed to

happen at 20% of the anomaly based on the scaling analysis of Li and Rosenstein

(when T = Tc(H), δCe/Cmf = 0.2). Li and Rosenstein [(126)] explained that the LLL

scaling first only applies in region where H � Hc1. Second their model is valid when κ

is high (in our sample we find κ⊥ ≈ 100 and κ|| ≈ 400) and near Tc. Going at higher

field and lower temperature some other problems arise: only orbital effects are taken

into account, with no paramagnetic effects and the LLL scaling focuses only on thermal

fluctuations and no possible quantum fluctuations are taken into account.

In Fig. 3.17 one sees for example that we supposed a maximum upper critical field

of approximately 14T close to zero temperature when H⊥ab. In fact we started first

with measurements until 18T (see Fig.3.12) and supposed that the normal state was

recovered of such a value of field. However, we performed later measurements until 32T

and looking at Fig. 3.18 one can observe a surprising behaviour. That figure displays

the field dependence of the heat capacity of our sample at low temperature. Usually

the normal state is recovered when the heat capacity is constant. We explained that

the upper critical field is a crossover and not a phase transition. This is one of the

reason why it might be quite hard to have a precise value of Hc2(0.7K) only by looking

at the data. Looking at Fig. 3.18 the specific heat varies about approximately 6%

between the melting anomaly and the part where it gets constant. That region where

it varies is quite large, going from 14T to 20T. Taking into account a possible influence

of the noise for the variation of the signal still lives a large fluctuating part. In fact, the
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(a) H⊥ab (b) H||ab

Figure 3.17: H−T phase diagram of FeSe for the field in both directions. Open symbols
corresponds to the upper critical field and filled symbols to the melting anomaly. The
upper critical field for both directions of field in the high field region ( H>13T for H⊥ab
and H>22T for H||ab) was determined by supposing a mean field like transition (see Fig.
3.12) whereas the other data concerning the upper critical field were obtained using a
scaling analysis. Thermal expansion data are from (131).
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Figure 3.18: High field dependence of the specific heat of FeSe at low temperature. A
large region between where the specific heat is not constant is observed after the melting.

maximum noise at these fields being around 1%, the fluctuating part would reduces in

the worst case scenario to values going from 15T to 19T. In Ref. (86), the specific heat

data obtained by Ok et al. also show an increase of the specific heat after what was

designated as the upper critical field around 14T at low temperature. Their value of

the upper critical field is likely to correspond to what we think is the melting anomaly.

Interestingly Kasahara et al. noticed the presence of a possible new superconducting

high field phase in the same direction, starting around 14T until 17T (cf. Sec. 1.4.3).

It is still not clear if the variations of γ(H) are related to that phase. However we are

still left with a question : where is Hc2(0) ? We shall address the effects of different

possible values of Hc2(0) in the next sections.

3.2.2 Quantitative analysis of the phase diagram

In order to learn a bit more on the properties of FeSe it would be now interesting

to examine the behaviour of the upper critical field, but also of the melting line.In the

following, we shall do a more detailed analysis of these phenomenons. The analysis will
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be done using a one band scheme though FeSe is a two band superconductor. In fact

the average amplitude of the hole and the electron gaps are very close [(83)], which

justify the one band approximation (cf. Sec. 3.1.1). Thereafter, the pinning will also

be neglected.

3.2.2.1 Hc2 : Orbital and paramagnetic limit

H ⊥ FeSe layers We will first here take a close look at the phase diagram when

H⊥ab. In an easy scenario, which would be the first one to come to mind, the upper

critical field could be examined only in terms of orbital effects. In such a scenario the

orbital field at zero temperature, Horb(0), only depends on the initial slope of upper

critical field and Tc, following Horb(0) = −0.727H ′c2Tc in the BCS theory. The measured

initial slope (deduced from data in the linear region close to Tc, i.e T>7K) in our phase

diagram is H ′c2⊥ = −3 ± 0.25TK−1, thus giving Horb(0) =20 ± 1.5 T (dotted line in

Fig. 3.19). From the discussion above, we saw that even if Hc2(0) is quite hard to get,

its value should be in the interval of 14T to 20T at low temperature.In a scenario where

we only take orbital effects into account, we find Hc2(0) = Horb(0) =20T. That might

work looking at Fig. 3.18, where the specific heat is constant for a field superior to 20T.

The fact of having Hc2(0) different from Hm(0) is not a real problem we considering

quantum fluctuations, but we shall address that point later on in Sec. 3.2.2.3. However,

we must then address the problem in Fig. 3.19 of having data from scaling and mean-

field (empty symbols) that would not work with such a scenario (dotted line). If these

data are correct, then a way to have a better match between the theoretical curve and

our data is to think about paramagnetic effects, that have the effect to lower the upper

critical field close to zero temperature. In order to do so, we try a fit from Eq. 1.77,

where the only free parameter is the Pauli limiting field at zero temperature, Hp(0). It

leads to the dashed curve in Fig. 3.19 which agrees quite well with our data, and we

find Hp(0) = 26.5. To compare the strength of the Pauli depairing compare to orbital

effects, we calculate the Maki parameter, αM⊥ = 1.1, which shows a relevant effect of

the paramagnetic depairing. However such a scenario can not really explain why the

specific heat varies about 6% in between 14T and 20T.

H || FeSe layers We will now take a closer look on the curves in the other direction,

when H||ab. Looking at the phase diagram (see Fig. 3.20), we can already see that
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Figure 3.19: H −T phase diagram of FeSe with H⊥ab with fit of Hc2 taking into account
orbital and paramagnetic effects. Thermal expansion data are from [(131)]. Open symbols
represent the upper critical field, and filled symbols the melting line. The dotted line
represents a purely orbital model where the Maki parameter is equal to zero while for the
dashed line the Maki parameter is taken as a free parameter (cf. Eq. 1.77)
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Figure 3.20: H −T phase diagram of FeSe with H||ab with fit of Hc2 taking into account
orbital and paramagnetic effects. Thermal expansion data were measured on the same
sample in Karlsruhe in [(131)]. Open symbols represent the upper critical field, and filled
symbols the melting line. The dotted line represents a purely orbital model where the Maki
parameter is equal to zero while for the dashed line the Maki parameter is chosen using an
anisotropy of 4.5 (cf. Eq. 1.77).

the situation is not the same and that the curvatures of Hc2 seems to be already very

pronounced even at low field. The Pauli depairing thus plays a very important role all

over the phase diagram. To verify that, we can check on the Maki parameter in this

direction, which can be calculated from the anisotropy ratio and the Maki parameter in

the other direction: αM || = ΓαM⊥ ≈ 4.5. Such a value clearly indicates the predominant

role of the paramagnetic effects compared to the the orbital ones in that direction.

In Fig. 3.20 we plot Horb,||(T ) = ΓHorb,⊥(T ) (dotted curve). This shows clearly

an overestimation of the upper critical field from the data. Taking into account strong

paramagnetic effect through the inferred value of αM || = 4.5 and Horb|| = ΓHorb⊥ =

−13.8TK−1, we thus have no fitting parameter and deduce the dashed curve taking

into account paramagnetic depairing. This shows a good match with our data. In a

scenario where we would only use orbital effects, Horb(0) would be around 90T, which
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is way above what we have found. The inferred curve reproduces our data very well

but it seems that at a temperature T ∗ = 3K the fit underestimates the upper critical

field. Interestingly at the same temperature T ∗, the melting curve and the Hc2 tend to

merge. We will talk about that later on in Sec. 3.2.3

3.2.2.2 Melting : Thermal fluctuations

Now that we know the upper critical field dependence we can calculate the temper-

ature dependence of the vortex melting line. Let us start with the easiest case when the

melting line is observed over the all phase diagram, i.e for H⊥ab. First we will assume

only thermal fluctuations and try to apply a Lindemann criterion. From Eq. 1.50 and

using the value of Gi and Hc2(T ) we can plot the melting line using the Lindemann

coefficient cL. Fig. 3.21 shows the result of the calculation for cL = 0.15. That value

of the Lindemann parameter seems to agree with the empirical data that states that cL
should be in between 0.1 and 0.3. The line matches the melting line data we obtained

very well until the lowest temperature, where the melting line exhibits an upward cur-

vature. That means that the only genuine visible phase transition over the all phase

diagram is the melting line in our material when the field in oriented perpendicular to

the FeSe layer. This shows also that even by neglecting the pinning force we still have

a very good agreement in between the theory and our data.

When H is parallel to the Fes layers, the scenario seems to be more complicated.

First the melting line is no longer observed before reaching the highest critical field at

approximately T ∗ = 3K. One explanation for this could be the influence of disorder. In

(20), Mikitik and Brandt tried to quantify the influence of disorder on the H −T phase

diagram (see Fig. 1.7). It turns out that the quantity determining the strength of the

pinning compared to thermal and quantum fluctuations is D/cL with D2 ≈ jc/j0 (jc
being the zero field critical current density and j0 the depairing current density). From

[(135)] it was found that jc ≈ 3 × 104 A.cm−2, and j0 ≈ 107 A.cm−2. We thus obtain

D/cL = 0.3. Fig. 1.7 shows the influence of pinning on the melting line. Here we see

that in such a case the melting line does not go to the lowest temperature even in the

case of D/cL = 0.3. However, the melting line should lie very close to the one without

any pinning and also lower than T/Tc = 0.1 and this is not the case in our data. The

pinning certainly comes from domain walls appearing at the nematic transition since
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Figure 3.21: H − T phase diagram of FeSe with H||ab with fit of the melting line taking
only into account thermal fluctuations. Open symbols represent the upper critical field,
and filled symbols the melting line. The dotted line represents a purely orbital model
where the Maki parameter is equal to zero while for the dashed line the Maki parameter
was fitted (cf. Eq. 1.77). The continuous line is fitted using Eq. 1.50.
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the typical concentration of Fe vacancies is less than one impurity per 5000 Fe atoms

[(134)]. In such a scenario the pinning by the twin boundaries is less efficient when

H||ab. Since we managed to have a good agreement between the theory and our data

without any pinning when H⊥ab, it means that the influence of pinning in the other

direction must also be negligeable.

As we said before it is here interesting to notice that the melting line and the upper

critical field line seems to merge at a temperature T ∗ = 3K (see Fig. 3.20), which is

not related to the pinning in our data. Such a scenario was predicted theoretically by

Adashi and Ikeda, which we talked about in Sec. 1.2.4.1 (see Fig. 1.10). Below T ∗ the

vortex lattice has no chance to melt and directly undergoes a transition from a solid

state to a normal state where the Pauli effects are strong. This means that the real

phase transition is now the upper critical field, and below T ∗ that would be the vortex

lattice melting. One of the explication here might be the strong paramagnetic effects

which tend to strongly reduce Hc2(T ) and cause the melting and upper critical field to

join as argued by Adashi and Ikeda. The vortex lattice melting is still going up in the

phase diagram until it crosses the reduced upper critical field. In such a scenario it is

not possible to use our Lindemann equation which states that the melting line is always

under the upper critical field.

We can also try to fit our melting line on the universal plot from (102) (cf Eq. 2.32).

Such a plot is performed in Fig. 3.22. Here we can see that our data when H⊥ab match

quite well the universal curves. However it is not the case when H||ab, this is again

certainly due to the fact that strong paramagnetic effects are observed in that direction

which would tend to change the dependence of the Hm/Hc2(T ) ratio and that were not

taken into account on the universal curve. Consequently, the fact that the data when

H⊥ab matches quite well the universal curve, is a sign that the paramagnetic effects are

very weak in this direction. However it does not really help us to have a firm opinion

on the debate in Sec. 3.2.1.1.

3.2.2.3 Melting : Quantum fluctuations

Low field: linear or quadratic dependence of the melting A closer inspection

at Fig. 3.18 shows that the transition to the normal state extends over approximately

6T while ∆Bc2 ≈ 3T this might be understood in terms of quantum fluctuations, this
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Figure 3.22: Universal plot for the vortex lattice melting transition (following Eq. 2.32,
black line) with our data on FeSe superimposed. The y-axis is the melting field divided by
the temperature dependent upper critical field. Green data correspond to H⊥ab and red
data to H||ab. Data for H⊥ab fit quite well the theoretical line, whereas the data for H||ab
show a discrepancy, certainly due to paramagnetic pair breaking.
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Figure 3.23: Normalized melting line as a function of 1 − t on a logarithmic scale for
different quantum and thermal coefficients. cq and cth are taken from Eq. 1.70 and Eq.
1.69. The value of cth determined from the last analysis is 0.2.

is why we propose an analysis about that here. A way to check for possible quantum

fluctuations is to look at the temperature dependence of the melting line close to Tc.

We argued about the fact that quantum fluctuations have a linear dependence close to

Tc when thermal fluctuations have a quadratic temperature dependence close to Tc as

well. Looking at that region of the phase diagram might help us to look for further

information. We plot the normalized melting line on a logarithmic scale in Fig. 3.23 to

have a better look at the dependence close to Tc.

Logically it is not possible to take only quantum fluctuations into account. One

sees also that a small change in the thermal coefficient can induce a noticeable distance

from the experimental points. Thus the value of cth =
√
Gi/2πc

2
L = 0.2 found from the

previous analysis must be robust. It seems however very complicated to differentiate

between a scenario where we only have thermal fluctuations (red line) and a scenario

having thermal and quantum fluctuations (black line). Different values of the quantum

coefficients were tried and all the lines were very close to each other, indicating how

versatile can cq =
√

2ρnνe
2/ε
√
π7ξ0~ be. It should however be notified that this value

of cq seems to be of the right order of magnitude, and we will talk about that more in

details in the next section. It is quite hard to have a firm affirmation close to Tc but

123



3. VORTEX LATTICE MELTING AND UPPER CRITICAL FIELD IN
FESE1−XSX

in the next paragraph we take a closer look at the low temperature part of the phase

diagram to try to get out of that problem.

High field: Hc2(0) and Hm(0) In Sec. 3.2.2.1 we suggested to Hc2(0) might be

higher than the inferred value from the scaling analysis due to the remaining visible

fluctuating part of γ(H) in the field sweep measurements at very low temperature when

H⊥ab. However, the melting line is still below 15T at the lowest temperature available.

In Sec. 1.2.3.3 we saw that one of the influence of the quantum fluctuations is to split

the melting line from the upper critical field at zero temperature. This is why we think

that some quantum fluctuations are possibly observable in our phase diagram. In Fig

3.18 γ(H) at 0.7K varies at least until 16T. If the melting line lies around 15T at T = 0K

that would mean that quantum fluctuations are clearly visible. However, we are not

sure where is exactly Hc2(0). This is why we propose a figure (Fig. 3.24) where we plot

the thermal and quantum coefficients, cth and cq (from Sec. 1.2.3.3) as a function of

a possible Hc2(0) based on a fit of the melting line we found. It is however still tricky

to have a precise value of the thermal and quantum coefficient due to the uncertainties

of the fit : at 14.2T for example the uncertainty of cq is of 0.02, indicating that there

might be still quantum fluctuations in this region. However that uncertainty reduces

when the possible value of Hc2 get higher and is less than 5% at 15.5T.

In Fig. 3.24, we see that the thermal coefficient remains mainly the same even by

changing drastically the value of Hc2(0). On the other hand, the quantum coefficient

seems to have a wide range of variations and could even exceed the thermal coefficient

at a value of Hc2(0) = 15.5T which is clearly possible based on the field sweep measure-

ments. Considering the value of ρ0 ≈ 5µΩ.cm from Bristow et al. (136) and the values

of ξ0, ε and cL obtained before one gets that cq ≈ 0.2ν. In Sec. 1.2.3.3 we explained

that ν should be of the order of unity, which seems to work perfectly here. By doing

the same with the thermal coefficient one finds a value of Gi close to 10−3 which is in

a very good agreement with the inferred value from before.

The main point in this analysis is not to affirm that quantum fluctuations must be

present in FeSe, but from our data we can not totally rule out this type of fluctuations.
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Figure 3.24: Thermal and quantum coefficients as a function of Hc2(0). cq and cth refer
respectively to Eq. 1.70 and Eq. 1.69. Here we performed a fit of the data extracted from
melting (cf. Fig. 3.21) and the value of the upper critical field at T = 0K was used as a
variables. cth and cq were used as fitting parameters and we plot here the values of cth and
cq for extracted from fits for different values of Hc2(0).
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Figure 3.25: Temperature dependence of the specific-heat difference between the su-
perconducting and normal state of κ-(BEDT-TTF)2Cu(NCS)2 in magnetic fields applied
parallel to the superconducting layers. From (1)

3.2.3 FFLO phase

In the next section, we shall focus on the high field region of the phase diagram and

the possibility of a FFLO phase is discussed.

3.2.3.1 Absence of thermodynamic proof

In the standard case, two transitions should be observed when a FFLO phase ap-

pears. First of all, a first order transition between the BCS state and the FFLO state,

and then a second order transition between the FFLO state and the normal state. A

true thermodynamic proof of the observation of a FFLO phase would be to see such

transitions in our data. For example, Fig. 3.25 shows the work done be Lortz et al. in

[(137)], where they attribute the two different transitions in κ-(BEDT-TTF)2Cu(NCS)2
to the presence of a FFLO phase in that compound. The second order phase transition

is observed all over the temperature range, from 0K to Tc and at low temperature a

first order peak appears which is the sign of the transition between the uniform and

modulated superconducting phases.

From our data, and the available magnetic fields, it was quite hard to have a strong

evidence of a FFLO phase since no first order transition was observed. This is why

we dedice to investigate on the existence of a FFLO phase by looking at two phase

diagrams. First, a H − T phase diagram that should be marked by the appearance of

a high field phase and a deviation from the standard behaviour of Hc2. And second

an angle-field phase diagram. Since the FFLO phase is very sensitive to the sample
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orientation with field, if a FFLO phase is visible when H||ab, the anomalies due to that

phase will disappear when the sample rotates. Also it is possible that the sample was

not perfectly aligned with the field in our first experiments and that might be the reason

why we did not observe any first order transition.

3.2.3.2 H − T phase diagram

The H−T phase diagram of FeSe reveals a feature when looking at direction where

H||ab. The upper critical field, measured in Fig. 3.20, seems to show some kind of dis-

continuity at high field at a temperature T ∗, where the melting joins the upper critical

field. Below T ∗ no melting is observable and the upper critical field shows a kink at the

same temperature. This could be an indication of a FFLO phase. In fact, when fitting

the upper critical field, with the optimal Maki parameter, the WHH fitting line (see Eq.

1.77) does not coincide with our data at low temperature, below T ∗ but shows a good

agreement before that temperature (see Fig. 3.20). Brison et al. [(23)] showed that a

Maki parameter larger than 3.4 might induce a FFLO phase (see Fig. 1.14). This is the

case for our sample when H||ab and adding FFLO phase in our fitting routine might help

to get a better agreement at high fields. Based on Eq. 1.78, for a given temperature,

the curve H(Q) is calculated numerically. Among all possible values of Q, the only

one which will be realised in the system is the one found at the minimum of H(Q).

Thus, it is possible to have access to both H and Q. Using the value αM,|| = 4.5 and

H ′c2 = −13.8T.K−1 found before, we plot Fig. 3.26 with help of Eq. 1.78. This time a

very good agreement between our data and the fit over the entire phase diagram was

found. The magenta line in this figure shows a purely Pauli limited upper critical field,

and the dotted line the difference between a uniform BCS state and a modulated FFLO

state. In a 3D system with strong Pauli limitation, the FFLO phase should only occupy

a small portion of the phase diagram and this is what is found in our analysis since the

FFLO phase field range is only about 2T at zero temperature. However, it should be

notified that the incertitude on Hc2 at low temperature, based on the transition width

in zero field, is also about 2T. This makes it quite difficult to have a clear conclusion

on the existence or not of a FFLO phase.
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(a) (b)

Figure 3.26: A possible FFLO phase with H||ab. (a) is a H − T phase diagram of FeSe
for H||ab, taking into account a possible FFLO phase. Blue (red) symbols represent the
melting data (upper critical field data). The blue line is only a guide for the eyes of where
the melting line could be. The continuous red line is a fit performed using Eq. 1.78 for the
upper critical field, assuming a FFLO phase with a modulation vector Q(T ) represented
in (b). For comparison, the solid and dotted magenta line are second- and first-order
transitions calculated for the pure Pauli-limited case. The shaded area denotes the extent
of the FFLO region in the H − T plane. T ∗ is the temperature where the melting and the
upper critical field lines meet.
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Kasahara et al. [(92)] found that thermal conductivity is a very good probe to check

on the presence of a FFLO phase. A comparison of their data within our phase diagram

is given Fig. 3.27. They also measured resistivity and interestingly the progressive

disappearance of the vortex melting anomaly until T ∗ in our data is in good agreement

with the reduction of the resistive transition width in their data attributed to the

emergence of the FFLO phase. They found an anomaly close to 24T from 0K to 2K,

in thermal conductivity, which is assigned to the entrance into the FFLO phase, where

the melting transition and the upper critical field would meet in our phase diagram.

However, we do not observe any transition at such a field and our data correlates

much better with a kink-like minimum observed in the thermal conductivity, which

would correspond to our upper critical field deduced from our mean-field analysis for

H >24T. The zero resistivity point matches quite well the melting line in the low field

region. In the end, our phase diagram is found to be roughly in good agreement with

the one of Kasahara et al. A comparison is also made with data from Ok et al. [(86)]

deduced from resistivity measurements. The conclusion is the same : the points deduced

from resistivity measurements matches very well the melting until it disappears in our

phase diagram. Then it follows the dependence of the upper critical field for H >24T,

which was also assigned to the emergence of a FFLO phase by Ok et al. However as

we explained before the FFLO phase should be marked by a first order transition in

the specific heat which we do not observe here. This is why further investigations are

needed to affirm the presence of a FFLO phase.

3.2.3.3 Rotation of FeSe

In this section we will talk about a possible observation of a thermodynamic proof

of a FFLO phase in FeSe. The sample was mounted on a rotator and we applied the

protocol as described in Sec. 2.2.4.1 in order to align as much as we could the sample

with the magnetic field. The angle resolution was found to be approximately 0.05o, es-

timated from the resolution of the Hall probe mounted on the set-up. The sample was

then rotated in both directions starting from θ = 0o when the field is aligned with the

FeSe layers at a temperature of 1.85K, the maximum reachable temperature with this

setup (slightly higher than temperatures of Fig. 3.18, where the maximum temperature

was 1.2K and the sample was aligned in the field). The same dependence of the specific

heat was observed from both sides (anti clockwise and clockwise). The FFLO phase is
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Figure 3.27: Comparison of our phase diagram (in red) with data from Kasahara et
al. (in green) [(92)] and Ok et al. [(86)] (in blue). The dashed line corresponds to a
fit of the upper critical field without any FFLO phase. Kasahara et al. obtained their
data measuring the resistivity and thermal conduction and Ok et al. with resistivity. Our
data show rather a good agreement with their data at high field. At low field a small
discrepancy is observed, certainly due to the fact the our data are deduced from specific
heat measurements, while other groups measure the resistivity and therefore certainly the
melting anomaly.
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known to be very sensitive to the orientation of the sample with field. Typically for

β′′-(ET)2SF5CH2CF2SO3 it was found that the FFLO phase only appears for θ < 0.4o.

In the end the measurements revealed an intriguing feature at high fields. Close to 0o

several steps of 0.1o were made in order to look for a first order transition, but none

was found for an angle range of 0-25o The most representative data are show in Fig. 3.28.

Looking at Fig. 3.28 we observe a broad feature with a maximum at 24.7T for low

angles. The maximum of the specific heat is noted as Hmax, and the higher the angle

is, the more Hmax shifts to low fields. Three other features are observed. First, a kink

close to 24T, noted as Hkink. Second, a change in the slope of the field dependence of

the specific heat at low field, noted as Hb1 and a second one at higher field, noted as

Hb2 before the specific heat is constant. We plot a phase diagram as a function a field

and angle in Fig. 3.29 where all these features are displayed.

Ok et al. [(86)], did similar measurements of FeSe for various angles and also found

some noticeable features. They measured TDO frequencies, and torque magnetometry

and the their data is displayed also in Fig. 3.29 for comparison. They found two high

field phases at low temperatures that they believe to be related to nesting effects as

shown in Fig. 3.30 (c) and (d). The first transition H1 has been attributed to a Spin

Density Wave only stable in the superconducting phase while the second one could be a

FFLO phase. It is argued that the FFLO phase due to the intraband superconducting

coupling can be a candidate, dominantly in the α Fermi sheet, which has the largest su-

perconducting gap. Their angle dependant phase diagram shows that the FFLO phase

could appear in between 22T and 25T for angles smaller than 15o and temperatures

smaller than 2K. However, such a large range of angle where a FFLO phase is observable

is quite surprising, when looking at other materials we cited before.

Our results match on some points the article of Ok et al. as shown in Fig. 3.29. First,

Hmax matches very well the TDO data of Ok et al. Hb1, which seems to be the extension

of Hmax at higher angles, is also in quite a good agreement with the TDO data. Second,

a feature, Hkink, is observed at high fields for angles smaller than ≈ 10o in our case, but

the Korean group observed it for a wider angle range but at a smaller temperature with

torque magnetometry. They found a nesting condition at H ≈ 24T which is the same

as Hkink. However, the feature we denoted as Hb2 is also at the same field for high angle
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Figure 3.28: Normalized specific heat of FeSe as a function of the magnetic field for
various angle. θ is the angle between the FeSe layers and the magnetic field. We measured
at a temperature of 1.85K. Hmax is the maximum of the specific heat. Hkink is a small
break in the slope when the normalized specific heat is over 1. Hb1 is a change in the slope
of the dependence of the specific heat at low field and Hb2 is the field before the specific
heat is constant.
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(a) (b)

Figure 3.29: (a) Phase diagram of FeSe as a function of the magnetic field and angle
at 1.85K. All measured fields are inferred from Fig. 3.28. Measurements from Ok et al.
[(86)] are displayed for comparison. (b) Schematic interpretation of the phase diagram in
(a). The phase A as the same dependence in angle as the upper critical field, and should
therefore be related to superconductivity. The phase B is constant for every angle at 24T.
Data points correspond to the ones in (a)
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Figure 3.30: Magnetic phase diagrams of FeSe as a function of temperature (a) and
orientation (b). Magnetic field dependent Fermi vectors along two orthogonal directions of
kx (c) and ky (d) for ↑ (solid line) and ↓ (dashed line) spins in the plane of kz = 0. The good
matches between the Fermi vectors of ε ↓ and δ ↑ Fermi surfaces along the kx direction
near H1 and also between those of δ ↓ and α ↓ Fermi surfaces along ky direction near H2

are indicated by red and blue circles, respectively. The corresponding nesting conditions
between different pairs of the spin-split Fermi surfaces at H1 and H2 are schematically
shown in the insets. From (86)
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values and could be the extension of Hkink. This is our interpretation given by Fig.

3.29b. In such a scenario Hmax and Hb1 have the classical angular dependence of char-

acteristic field of anisotropic superconductors, Hc(θ) = Hc,⊥

√
(cos (θ)2 + Γ−2 sin (θ)2

and are therefore attributed to a superconducting phase, named phase A in Fig. 3.29b.

The anomaly detected by Ok et al. around 23T with torque magnetometry and magne-

tocaloric effect and attributed to the emergence of the FFLO phase seems to hold after

the destruction of phase A at high angle values in our data when looking at Hkink and

Hb2. They are both very close to 24T and could therefore be related to the appearance

of another phase, named phase B in Fig. 3.29b. Such an interpretation of our data

should therefore contradicts a scenario where a FFLO phase appears at high field since

we still observe the anomaly related to that phase in the normal state. However, it is

still ambiguous to call the magenta region of our interpretation of the phase diagram

the normal phase since the specific heat is not constant in that region as seen in Fig.

3.28. This is an intriguing feature which deserves more investigations.

3.2.4 Conclusion on the study of FeSe

We have determined the full H − T phase diagram of FeSe for both field directions.

Our specific heat data reveal the presence of a vortex lattice melting transition down

to zero temperature when H⊥ab and down to T ∗=3K when H||ab. A scaling analysis

was performed, proving the existence of Gaussian fluctuations in our system. A good

agreement between the experimental and theoretical values of rT and rH used for scaling

was obtained. That scaling analysis allows to find the temperature dependence of the

mean-field upper critical field. We then studied the effects of orbital and Pauli depairing

on that curve. Our analysis of the temperature dependence of the upper critical field

relies only on one fitting parameter, which is the Maki parameter found when H⊥ab.

All other quantities where found using our measurements. It was found that a possible

effect of the Pauli depairing was already present in that direction, whereas it is abso-

lutely impossible to neglect it when H||ab, leading to αM,|| ≈ 4.5. We argue that the

predominance of the paramagnetic effects at low temperature, causing the reduction of

the upper critical field, causes the disappearance of the vortex lattice melting below T ∗

when H||ab.
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The melting line was also analyzed using a Lindemann criterion, which leads to a Lin-

demann constant of cL = 0.15. It is however still complicated to know the real nature

of the fluctuations causing the melting. In fact at low temperature field dependence

of the specific heat shows a broad transition to the normal state that could be due to

quantum fluctuations. While the thermal coefficient, cth used to fit our data is quite

robust, it is also possible that quantum fluctuations were observed.

When the field is along the Fese planes a slight deviation from the WHH curve was

found at low temperature, right after the vortex lattice melting transition joins the up-

per critical field line. We argue that it might be related to a FFLO phase. Our H − T
phase diagram was found to be roughly in a good agreement with measurements from

Kasahara et al. and Ok et al. which assigned the upturn in the temperature dependence

of the upper critical field to the appearance of a FFLO phase. However no first order

transition was observed in our data, which would be the sign of the entrance into a

FFLO phase. Therefore a angular study was conducted. It reveals the presence of 4

anomalies visible at different angle values. We assigned these features to two different

phases : one related to superconductivity and another one at a fixed field value for

every angle, even outside the superconducting phase. If such a phase exists it would

contradicts the existence of a FFLO phase in our sample.
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3.3 Study on FeSe0.88S0.12

In Sec. 1.3.2 we introduced the phase diagram of sulfur substituted FeSe. In this

thesis we focused on other batches with 12% substitution, giving FeSe0.88S0.12 samples.

We will focus on two batches: AAH15 and AAH55, both having a concentration in sulfur

of 12%. These samples are still under the nematic dome in the substitution-temperature

phase diagram, and are also close to the maximum Tc observed in that system. In the

following sections we will introduce our resistivity and specific heat measurements in

order to look once again at the melting properties in our samples. The idea behind that

is to measure the complete H − T phase diagram and compare it with Fese but when

Ts is reduced, and with changes in the electronic structure.

3.3.1 Resistivity data

Resistivity seems to be a good probe to look at the vortex lattice melting. In fact

the resistivity of the material undergoes a regime close to Tc where it is going from

a normal behaviour to a superconducting behaviour where it reaches zero resistivity.

However the zero resistivity point is not a probe for the upper critical field line but

rather for the melting of the vortex lattice since when the flux lines can move freely

some dissipation effects will take place in the material. Kwok et al. studied for example

the melting line in YBCO with resistivity [(138)]

3.3.1.1 Raw data

We show here the temperature dependence of the normalized resistance of two repre-

sentative samples of our batches. AAH55n2 has been measured with a lock-in amplifier

at 10 Hz and using a current of 0.05mA. AAH15n4 has been measured with a PPMS

setup with a frequency of 6Hz and a current of 1mA. Both of our batches show a resid-

ual resistivity ratio, RRR = ρ(300K)/ρn(0K) of approximately 40, similar to the one

observed by Kasahara et al. in FeSe in [(28)], where we extrapolated the resistivity to

zero temperature to obtain ρn(0K).

One of the distinctive features in the system is the magnetoresistance observed in

the nematic state similar to what is observed in Fig. 3.31. Fig. 3.32 shows that the
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Figure 3.31: Temperature dependence of ρxx in magnetic fields of FeSe when H⊥ab. From
[(139)]
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superconducting transition shift with the magnetic field and also becomes broader due

to fluctuations. A surprising feature also arises with stronger magnetic field (H > 12T )

at low temperature. The resistivity is going down until a temperature of 8K and then

starts to go up and will eventually go down to become superconductive. The upturn is

associated to high magnetoresistance. The magnetoresistance being mainly influenced

by the product of the scatering time of the hole and electron bands, this is an indica-

tion of high quality crystal [(139)]. The down turn, observed also for field higher than

the upper critical field, was assigned to large superconducting fluctuations in FeSe by

Kasahara et al. in Ref. (139), which tend to reduce the resistivity. However, it seems

that contrary to FeSe no downturn is observed at very high fields. It was found by

Bristow et al. in [(136)] that such a behaviour is observed for sample for a concen-

tration higher the 10% and within the nematic phase (see Fig. 3.31 for comparison).

It is argued that since Tc and the upper critical field are comparable with FeSe, that

change in the resistivity slope must be driven by field induced effects influencing the

scattering or electronic properties. It is believed from ARPES measurement that close

to x ≈ 11%, the β hole pocket centered at the Z point crosses the Fermi level [(62)].

Interestingly in Fig. 3.33 the curve at 1K displays some quantum oscillations which

matches very well the one observed by Coldea et al. in [(82)]. In the same article, it is

explained that for a sulfur substitution of 12% the quantum oscillations are dominated

by the appearance of the inner β hole band and one of the frequency observed for that

band it close to 100T which is qualitatively what we observe. It means that the upturn

at high field and low temperature must be related to the appearance of the β hole band.

Fig. 3.33 displays the resistance dependence with field. The magnetoresistance usu-

ally follows a H2 dependence in systems with a single dominant scattering time [(136)].

This is however not the case in our data. Fig. 3.33 shows a very good agreement with

a H1.3 law at 1K, 5K and 12K. This indicates that the magnetoresistance behaviour is

not related to only one scattering time. Bristow et al. [(136)] found that outside of the

nematic phase one recover the H2 behaviour, suggesting that inside the nematic phase

the Fermi surface of FeSe1−xSx distorts anisotropically and unusual types of scattering

could appear, giving rise to diverse scattering time.
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(a) AAH55n4 (b) AAH55n2

Figure 3.32: Temperature dependence of R/R(300K) of FeSe0.88S0.12 samples with H⊥ab

Figure 3.33: Resistance of AAH15n4 as a function of H1.3
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Figure 3.34: (a)–(e) Field-dependent in-plane resistivity at different temperatures for
different compositions, inside and outside the nematic phase. (f)–(j) Resistivity against
temperature in zero field (solid line) and at fixed magnetic fields (symbols), as extracted
from the top panel for different compositions. (k)–(o) Schematic band dispersion at low
temperatures at two high symmetry points at the top of the Brillouin zone, Z and A, for
different compositions. From [(136)]. The behaviour of the 11% sample is reminiscent of
what is observed in our samples, indicating that features we observe might me related to
the emergence of the hole band.
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Figure 3.35: H − T phase diagram showing the R = 0Ω point for diverse samples of
FeSe0.88S0.12. Since the transition is very abrupt, we estimate that the incertitude for the
R = 0Ω point is smaller that the symbols width.

3.3.1.2 Phase diagram

Now that we have a better understanding of the behaviour of the resistance in our

sample we will focus on the vortex lattice melting. First, our samples show a higher

Tc (the criterion here is the zero resistance point) compare to FeSe, with Tc=10.3K for

AAH15n4 and Tc=10.4K for AAH55n2. A comparison with another sample of the same

batch (AAH55n6) gives a maximum shift in Tc of 0.1K. We can also extract the point

where R = 0Ω for different magnetic field and plot a H −T phase diagram showing the

melting line. This is what is done in Fig. 3.35. We will give a more detailed analysis of

the phase diagram when we also have the points from the specific heat data.

3.3.2 Specific heat data

Raw data Once again we measured the specific heat of our samples in order to prop-

erly identify the vortex lattice melting and try to have the dependence of the upper

critical field. For the characterization of the sample with zero field measurement we
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(a) Field perpendicular to the layers (b) Field parallel to the layers

Figure 3.36: Temperature dependence of δCe/T of the AAH55n4 sample

refer to Sec. 3.1. Fig. 3.36 shows δCe/T as a function of temperature for different

magnetic fields for the sample AAH55n4. Here a fit was performed above Tc at 0T and

14T to subtract the phonon contribution, in the same condition we used for FeSe. We

identify here β3=0.44 mJ mol−1 K−4 and γ = 7.1 mJ mol−1 K−2 giving a 10% rise in

the values compared to FeSe. These values give us a ratio ∆C/γnTc=1.3, once again

close to the one observed in FeSe which was 1.3. This value smaller than the BCS one

is ascribed either to the anisotropy of the superconducting gaps or the presence of mul-

tiple gaps. Once again our data revealed a broadening of the transition with increasing

magnetic field, which indicates that we can try once again to scale our data to the Li

and Rosenstein scaling function; that will be discussed in Sec. 3.3.3.2.

3.3.3 Analysis of the data

In the following section we will basically go through the same analysis as we did in

the case of FeSe. We will not give the same amount of details but only notify the main

steps of the analysis.
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Figure 3.37: Temperature dependence of ∆Ce/T of the AAH55n4 sample with field
perpendicular to the layers. Inset: Zoom in order to have a better view on the excess of
specific heat before the transition. The red shaded area correspond to that excess.

3.3.3.1 Melting

We find a value of the Ginzburg number Gi close to the one of FeSe, which gives

Gi =1 × 10−3, using the same reasoning as we used for FeSe in Sec. 3.2.1. Being of

the same order of magnitude it would be logical to also observe melting in the 12%

dopped samples. We displays the substraction of the 0 T curve to the in-field curves in

Fig. 3.37 for the AAH55n4 sample, where we clearly observe once again an excess in

the specific heat just before the superconducting transition starts to happen but still

no first order peak (see inset of Fig. 3.37), certainly meaning that we have once again

a solid to liquid transition. That excess of specific heat shows the same properties in

position or amount as in FeSe. From such a plot we extract the melting anomaly to put

it in the H − T phase diagram that we display later on.
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3.3.3.2 Scaling analysis

Since our scaling analysis seemed to work quite well on FeSe we decide to go for

the same analysis again in order to get the upper critical field line in the H − T phase

diagram. However, we still need to check what field is needed to reach to LLL, we

find here HLLL = GiH
′
c2Tc = 45mT for H⊥ab, and 205mT in the other direction, and

we will perform the scaling analysis only at fields higher than these values. We once

again use second order polynomial fits to obtain the dependence of δCmf . FeSe and

FeSe0.88S0.12 having similar Tc, Gi and melting line, we first tried to use the values of

rT that we found for FeSe. It turns out that the scaling works very well as it can be

seen in Fig. 3.38, where we show the scaling analysis from the temperature sweeps of

the AAH55n4 sample. When comparing this figure with the one obtained in the case

of FeSe (cf Fig. 3.15a), it is clearly visible that our data are noisier for the doped

samples. It is certainly due to two factors, first the doped samples are smaller than

the FeSe samples, and secondly the data were obtained using the Dual Slope tech-

nique for the doped samples and the AC technique for the FeSe samples. We used

here rT⊥ = 60K−1/3T2/3 and rT || = 160K−1/3T2/3, when the theoretical values where

supposed to be rT⊥ = 66K−1/3T2/3 and rT || = 184K−1/3T2/3. This still shows a good

agreement between the inferred values and the theory. Although, we still have the same

problem at high fields where it becomes harder to get a good agreement between the

theoretical curves and our data. In FeSe when H⊥ab we could only get a correct scaling

for a maximum field value of 9T. However, for FeSe0.88S0.12, due to a slightly higher

upper critical field, it seems that we can still perform a correct scaling for a field of 11T.

This is once again due to the paramagnetic effects being more important at high fields.

3.3.4 Comparison with FeSe

Now we can plot the complete H − T phase diagram of FeSe0.88S0.12. Fig. 3.39

shows the melting line extracted from temperature and field sweep measurements and

the upper critical field deduced from the scaling analysis for the AAH55 batch. We

consider now a difference in the derivative of Hc2 close to Tc. Considering an initial

slope dHc2⊥/dT = −4T K−1 and dHc2||/dT = −18.5T K−1 and a Maki parameter

αM⊥ = 1.3 and αM⊥ = 5.2 we find the black and red lines in Fig. 3.39. These values
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(a) H⊥ab (b) H||ab

Figure 3.38: 3D-LLL scaling of the temperature dependent specific heat of the AAH55n4
sample. The black curve is the theoretical scaling line following the publication of Li and
Rosenstein [(126)] while the colored curves are the one fitted from our data for each field.

show again the predominant role of paramagnetic effects in that compound in a similar

way to FeSe. Tab. 3.4 shows a comparison of the different values obtained from the

scaling analysis and the phase diagram in both compounds.

Even if we were not able to have the upper critical field dependence at low temperature

when the field is oriented along the FeSe planes it is interesting to notice that the melting

line and the upper critical field line seems to cross once again but at a temperature

T ∗ = 2.5K. Let us imagine a scenario close to the case of FeSe, where we argued that

the melting line merges with the upper critical field at T ∗ and a FFLO phase starts to

appear at the same temperature. In such a scenario, and having αM⊥ = 5.2, one can

deduce the temperature T ∗ by looking at the figure of Brison and al. [(23)] (see Fig.

1.14). It is found that for αM⊥ = 5.2, T ∗/Tc should be around 0.35. That gives in

theory a value of T ∗ of 3.5K. This time the agreement is not as good as it was before in

the case of FeSe. However, one should keep in mind that T ∗ in the framework of Brison

et al. denotes the appearance of the FFLO phase and not the temperature where the

vortex melting and the upper critical field merge.
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Figure 3.39: H−T phase diagram of the AAH55 batch for both directions of the magnetic
field with fit of Hc2 taking into account orbital and paramagnetic effects. Blue and green
symbols represent respectively the melting data when H⊥ab and H||ab. The black and red
symbols do respectively the same but for the upper critical field. Both the black and red
lines are fits performed using the Maki parameter as a free variable following Eq. 1.77.
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Gi rT rH Hp(0)(T ) Horb(0)(T ) αM

FeSe, H⊥ 1×10−3 60 23 26.5 20 1.1
FeSe, H|| 1 ×10−3 160 - 29 90 4.5

FeSe0.88S0.12, H⊥ 1.1 ×10−3 60 23 33 30 1.3
FeSe0.88S0.12, H|| 1.1 ×10−3 160 - 38 138 5.2

Table 3.4: Comparison of the superconducting parameters in FeSe and FeSe0.88S0.12.
We did not perform any analysis of the quantum fluctuations for FeSe0.88S0.12 since both
materials are very similar properties.

3.3.4.1 Phase diagram

Scaled phase diagram Since the properties of FeSe and FeSe0.88S0.12 seems to be

the same when looking at the Hc2 dependence, we tried to compare the two materials.

We believe that our materials could be in the clean limit. In such a case, the initial

slope of the upper critical field and the Maki parameter scale with Tc [(140), (141)]. The

upper critical field should therefore scales with T 2
c , whereas in the dirty limit due to the

scattering by impurities, it only scales with Tc. From Fig. 3.40 one can see that all the

melting points seem to collapse on one same line, when one scales the temperature with

Tc and the magnetic field with T 2
c . Given the Tc of each materials, and the values of the

initial slope and the deduced Maki parameter, one finds that the scaled upper critical

field of FeSe and FeSe0.88S0.12 when H||ab only differs with a maximum value of 3%,

which is within our error bars. In the other direction this values goes even lower than

1%. The difference here is mainly due to the difference in the paramagnetic effects in

both compounds. In fact, when the sample contains sulfur one observe slightly stronger

paramagnetic effects. This however correlates very well with the evolution of Tc, since

the ratio between the Maki parameter and Tc looks the same in both materials, with a

value close to 0.5.

Surprisingly Xiang et al. [(142)] noticed that the anomaly of the specific heat at

Tc in iron-based superconductors violates the BCS rules of ∆C/γTc = 1.43 and rather

follows a rule like ∆C|Tc ∝ T 3
c . This law was found to be true for lots of Fe-based

materials but it was suggested that such a scaling behaviour is rather true for one

system of superconductors, mainly the 122-family since most of the studies were made

on that family. They found for example that a FeSe0.5Te0.5 is close to the scaling law but

not exactly the same. Kogan [(143)] gives a theory to explain such a scaling behaviour,
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Figure 3.40: Scaled phase diagram of the FeSe1−xSx system. All melting data for all
samples (FeSe and FeSe0.88S0.12) are summarized here. Each color represents one sample
for both directions. The dashed grey line is the scaled upper critical field and the solid
black line the fit we performed earlier for the melting line. The higher part of the phase
diagram corresponds to the direction where H||ab while the lower part corresponds to the
direction where H⊥ab. The scaling of the magnetic field with T 2

c means that the sample
is in the clean limit. In the clean limit H ′c2 ∝ 1/(ξ20Tc) ∝ Tc whereas in the dirty limit
H ′c2 ∝ 1/(ξ0Tc) which is Tc independent.
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suggesting that one may observe it in anisotropic superconductors with strong pair

breaking (this theory is however only using one band). In our materials we found also

something close to that law, even if iron based superconductors clearly do not have

only have one Fermi sheet, but suggesting strong pair breaking. In fact, one find when

comparing our data from FeSe and from FeSe0.88S0.12 that ∆C12% = 1.75∆C0% which

would give in a scenario where ∆C|Tc ∝ T 3
c , ∆C12% = 1.55∆C0%. Such a difference

might be due to the length width of the transition that might induce a reduction of the

height of the anomaly.

Considering such a scaling behaviour of the specific heat jump at Tc and the scaling

of other superconducting constants given by Kogan, we can deduce from a theoretical

point a view that the values of the scaling parameters rT and rH , used in Sec. 3.3.3.2,

of the two compounds are related with the following equations :

∆C12% =

(
Tc12%

Tc0%

)3

∆C0% (3.5)

Hc,12% =

(
Tc12%

Tc0%

)2

Hc,0% (3.6)

ξ⊥,12% =
Tc0%

Tc12%

ξ⊥,0% (3.7)

Gi,12% = Gi,0% (3.8)

rT12%
=
Tc12%

Tc0%

rT0%
= 1.15rT0%

(3.9)

rH12%
= rH0%

(3.10)

In the end, we find that the scaling of rT and rH from a theoretical point of view

agrees quite well with the experimental value inferred from the scaling analysis (see

Tab. 3.4). rT and rH being respectively the same in both compounds then gives a

further indication of a possible scaling of the specific heat jump at Tc with T 3
c , which

would not be the case in a classic BCS scenario where the specific heat jumps at Tc scales
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with Tc. Furthermore, Kogan gives a simple universal relation between superconducting

quantities :
∆C(βT 2

c )2

µ0H ′c2
≈ 10−17Tm2, (3.11)

where β = dλ/dT 2 at low temperature. From Ref. (144) one can deduce β ≈
4.10−9m.K−2. This gives a value of ∆C(βT 2

c )2/(µ0H
′
c2,c) ≈ 10.10−17 in a relative

good agreement with the theory.

3.3.5 A new anomaly

Introduction of the new anomaly We introduced earlier another possible phase

transition visible in the specific heat in FeSe0.88S0.12. In fact, we observe a kink in the

magnetic field dependence of the specific heat, visible both in the Dual Slope technique

and in the AC technique. That anomaly (noted as the local maximum of the field

dependent specific heat) is clearly visible in all measured samples, but seems to be

however less visible in the temperature dependence of the specific heat. Fig. 3.41 and

Fig. 3.42 show the field dependence of the specific heat of one of the measured sample,

and one observes a kink before the melting transition indicated by the arrow on the

figures. It is clearly visible in a mid-range temperature and field and is clearly harder

to see at high temperature since the superconducting anomaly and the new anomaly

superimpose. For H⊥ab, the anomaly is visible from 7.1K (dark blue curve) to 4.8K

(black curve), while in the other direction it is visible from 7.15K (magenta curve) to

2.3K (black curve). At lower temperature the anomaly is still visible but the height of

the kink strongly reduces.

Phase diagram: comparison with melting Since the beginning we are interested

in the H−T phase diagram of our sample, let us try to place that anomaly in that phase

diagram with the coordinates (H∗, T ∗). Fig. 3.43 shows such a phase diagram. The

anomaly is within the superconducting phase as shown by the light blue and magenta

hexagons. As explained before, no points are plotted at high temperature since it is

quite challenging to separate the superconducting anomaly and that new transition. It

is quite intriguing to notify that the behavior of that new anomaly scales very well with

the melting anomaly. In fact, the melting line Hm(T ) and the anomaly at H∗(T ) have
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Figure 3.41: δCe/T of the AAH55n6 sample measured with AC calorimetry as a function
of the magnetic field with H||ab. A kink, indicated by the arrows (taken as the local
maximum of δCe/T ), is observable before the melting transition, that might be related
to possible vortex lattice structural transition. Inset: zoom on the high field part of the
curves.
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Figure 3.42: δCe/T of the AAH55n6 sample measured with AC calorimetry as a function
of the magnetic field with H⊥ab. Another kink, indicated by the arrows (taken as the local
maximum of δCe/T ), is observable before the melting transition, that might be related to
possible vortex lattice structural transition.
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Figure 3.43: Complete H − T phase diagram of FeSe0.88S0.12 with the new observed
anomaly. The symbols and lines are the same as in Fig. 3.39 except that the new anomaly
(indicated by arrows in Fig. 3.42 and Fig. 3.41) is represented by the light blue and
magenta hexagons.

the same ratio over the all measured phase diagram but is different for both directions.

One has Hm,ab(T )/H∗ab(T ) = 1.4 and Hm,c(T )/H∗c (T ) = 1.6.

Entropy conservation As explained before the new anomaly in the specific heat

data might be related to the vortex lattice melting. If related to superconductivity, the

specific heat data should be entropy conserving. In Fig. 3.36, the subtraction of the

phonon background was made in order to conserve entropy. However we measured the

FeSeS15 sample (still FeSe0.88S0.12) in high magnetic fields with the AC technique and

this allows to recover the normal state and subtract the phonon background without any

fit. When doing something like that, Fig. 3.44 is obtained. This figure shows an unusual

behavior. For a field H >7T and a temperature T/Tc<0.6 all curve superimpose and

have the same temperature dependence. This superposition suggests that the entropy

might not conserve for every field, which would be unexpected.

We will therefore look at the entropy of the sample measured with the AC technique.

In order to do so, the curve is integrated from 0K to Tc where it should then stay

constant. The low temperature data are not available and a linear extrapolation is
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3.3 Study on FeSe0.88S0.12

Figure 3.44: δCe/T of FeSe0.88S0.12 (FeSeS15 sample) as a function of temperature
measured with the AC technique. The curves superimpose for H > 7T and T/Tc < 0.6.
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(a) (b)

Figure 3.45: (a) Comparison of the specific heat in FeSe and FeSe0.88S0.12 as a function
of temperature. (b) Comparison of the entropy in FeSe and FeSe0.88S0.12 as a function of
temperature. In both figures H⊥ab. The dotted line (respectively the solid line) represents
the data obtained for FeSe (respectively FeSe0.88S0.12) and the black line (red and blue)
corresponds to a field value of 0T (7T and 12T).

performed in order to get an estimation of these data points (dotted line in Fig.3.45).

Fig. 3.45 shows a comparison of both the FeSe and FeSeS15 sample for the specific heat

and the entropy. It is clearly visible that while the FeSe curve in entropy conserving,

the FeSeS15 curve is not. Fig. 3.46 shows that the entropy of the FeSeS15 sample, when

H⊥ab, reaches a maximum around 7T. Such a feature is highly unusual and should be

of concern.

3.3.5.1 Possible explanations

Interestingly the position of the vortices was observed with STM by Putilov et al.

[(96)] and it has been noticed that the vortex lattice undergoes a structural transition

from an hexagonal lattice to a quasi-squared lattice. That transition is also visible with

a kink in the field dependent specific heat (see Fig. 1.26), splitting the curves into two

different linear regimes, which is typical for multigap systems. As we explained before

the FeSe1−xSx system is multigap.It was shown by Putilov et al., considering their STM

data, that in the case of FeSe, such a structural transition of the vortex lattice could
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3.3 Study on FeSe0.88S0.12

Figure 3.46: Comparison of the entropy in FeSe and FeSe0.88S0.12 as a function of the
magnetic field when H⊥ab.

be due to the multigap nature of FeSe and the weakest gap closing at low field. They

showed that the structural transition can occur at a fieldH∗ whereHc2/H
∗ = 1.4 (Hc2 is

here the upper critical field of the weakest gap). Interestingly we find the same ratio but

rather with the melting anomaly than the upper critical field. However they observed

the anomaly H∗ at very low field compared to what we found in our data. For example

the change in the slope of the field dependent specific heat was found to be around 1T

at 1.5K, when we would find something closer to approximately 10T. Therefore more

investigations are needed in order to see if these anomalies are linked or totally different.

If the new anomaly that we observed at H∗ is related to the excess of entropy we

have to rule out an interpretation in terms of superconducting mechanism and therefore

a structural vortex lattice transition. On the other hand if we think about another

transition, such as a magnetic one, we have to clarify the fact that the line due to

the new anomaly scales very well with the one of the vortex lattice melting in the

H − T phase diagram. Both the non conservation of the entropy and the position of
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the anomaly in the phase diagram are therefore challenging issues that might be related

but we do not have explanations for that yet.

3.3.6 Conclusion on the vortex lattice melting in FeSe0.88S0.12

We obtained the H − T phase diagram of the FeSe0.88S0.12 material up to 32T,

showing very close properties with FeSe. Once again specific heat data show vortex

lattice melting down to zero temperature when H⊥ab, when in the other direction it

was possible to observe melting up to 32T. The scaling analysis reveals that the upper

critical field is very likely to merge with the vortex lattice melting line at the same field

value when H||ab. Once again paramagnetic effects had to be included to describe the

dependence of the upper critical field in a better way. This time no fitting parameters

were used since we showed that the phase diagram of FeSe0.88S0.12 scales with the one

of FeSe with H/T 2
c and T/Tc, particularly at low field. Because of that the analysis of

the temperature dependence of the upper critical field relies on no fitting parameters

and we found a value of αM,|| ≈ 5.3 which matches very well our data points.

The comparison of the data of FeSe0.88S0.12 and FeSe show a good scaling of the phase

diagrams when normalizing the temperature with Tc and the upper critical field with

T 2
c . This reveals that the samples are in the clean limit. The fitting parameters of

the scaling approach of Li and Rosenstein are the same in both compounds. Such a

behaviour could be explained by a theory given by Kogan, where he explains that the

specific heat jump at Tc scales with T 3
c due to strong pair breaking. Another anomaly

was also found in the specific heat measurements. It scales very well with the vortex

melting anomaly, and other measurements in FeSe made by Putilov reveal that it might

be related to some change in the vortex lattice symmetry. However we do not have any

direct observation of such a phenomenon and the observation of a non entropy conserv-

ing superconducting anomaly tends to contradict such a scenario. This is why further

measurements are needed in order to have a better understranding of that behaviour.
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English version To conclude, we have determined the full H − T phase diagram of

FeSe and the one of FeSe0.88S0.12 until 32T for both field directions. Our specific heat

data reveal the presence of an excess of specific heat related to a vortex lattice melting

transition down to zero temperature when H⊥ab and down to T ∗ when H||ab in both

compounds. We then took a closer look at the Gaussian fluctuations in the system with

the help of a scaling analysis in order to have the temperature dependence of the upper

critical field. A good agreement between the experimental and theoretical values of the

parameters used for scaling was obtained. Only at high fields some deviations started

to appear, probably due to paramagnetic effects.

We then studied the effects of orbital and Pauli depairing on the upper critical field.

Our analysis of the temperature dependence of that field relies only on one fitting pa-

rameter, which is the Maki parameter found when H⊥ab. All other quantities where

found using our measurements. It was deduced that a possible effect of the Pauli de-

pairing was already present when H⊥ab, whereas it is absolutely impossible to neglect

it when H||ab, leading to a high value of the Maki parameter when H||ab. We argue that

the predominance of the paramagnetic effects at low temperature, causing the reduction

of the upper critical field, causes the disappearance of the vortex lattice melting below

T ∗ when H||ab.

The melting line was also analyzed using a Lindemann criterion, which leads to a

Lindemann constant in a very good agreement with empirical values. It is however still
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complicated to know the real nature of the fluctuations causing the melting. In fact,

in the FeSe compound, at low temperature, the field dependence of the specific heat

shows a broad transition to the normal state that could be due to quantum fluctuations.

This broad transition also casts doubt on the influence of paramagnetic effects on the

upper critical field when H⊥ab. While the thermal coefficient used to fit our data is

quite robust, it is also possible that quantum fluctuations play also a significant role.

In pure Fese, when the field is along the FeSe planes a slight deviation from the

standard curve of the upper critical field was found at low temperature, right after the

vortex lattice melting transition joins the upper critical field line at T ∗. I argue that

it might be related to a FFLO phase when looking at the H − T phase diagram and

comparing it with the literature. However that phase would be on a very small interval

of field in the H − T phase diagram, that does not exceed our uncertainties. Further

thermodynamical measurements are needed in order to observe a real first order tran-

sition that would tend to confirm the presence of a FFLO phase. We tried to look for

such a transition by rotating the sample in field but none was found. Nevertheless our

measurements suggest that we might observe two phases : one related to superconduc-

tivity and another one stable in field for all angles.

In FeSe0.88S0.12 another anomaly was also found that scales with the vortex melting

line in the H − T phase diagram. Looking at the literature I suppose that it might be

related to a change in the vortex lattice symmetry, similar to what is observed in FeSe.

However the entropy looks like it is not conserved, which would contradicts the previous

idea. Once again further measurements are needed here. A direct observation of the

symmetry of the vortex lattice over the complete phase diagram and measurements of

the entropy on other samples would give more informations.

Version française En conclusion, nous avons déterminé le diagramme de phaseH−T
complet de FeSe et celui de FeSe0.88S0.12 jusqu’à 32T pour les deux directions de champ.

Nos données de chaleur spécifique révèlent la présence d’un excès de chaleur spécifique

lié à une transition de fusion du réseau vortex jusqu’à une température nulle lorsque

le champ est orienté perpendiculairement aux couches de FeSe et jusqu’à T ∗ lorsque
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le champ est orienté le long des couches de FeSe dans les deux composés. Nous avons

ensuite effectué une analyse des fluctuations gaussiennes par loi d’échelle afin d’obtenir

la dépendance en température du champ critique supérieur. Un bon accord entre les

valeurs expérimentales et théoriques de paramètres utilisées pour la mise à l’échelle a

été obtenu. Ce n’est qu’à des champs élevés que certaines déviations ont commencé à

apparaître, probablement dus à des effets paramagnétiques.

Nous avons ensuite étudié les effets de brissure de paires de Copper de manière

orbital et paramagnétique sur le champ critique supérieur. Notre analyse de la dépen-

dance en température de ce champ ne repose que sur un seul paramètre d’ajustement,

qui est le paramètre de Maki trouvé lorsque le champ est orienté perpendiculairement

aux couches de FeSe. Toutes les autres quantités ont été trouvées en utilisant nos

mesures. Nous avons déduit qu’un effet possible de la brisure de paires par effets para-

magnétiques était déjà présent lorsque le champ est orienté perpendiculairement aux

couches de FeSe, alors qu’il est absolument impossible de le négliger lorsque le champ

est orienté le long des couches de FeSe, ce qui conduit à une valeur élevée du paramètre

de Maki quand le champs est parallèle aux couches de FeSe. Nous soutenons que la

prédominance des effets paramagnétiques à basse température, provoquant la réduction

du champ critique supérieur, entraîne la disparition de la fusion du réseau de vortex en

dessous de T ∗ lorsque le champ est parallèle aux couches de FeSe.

La ligne de fusion du réseau de vortex a également été analysée en utilisant un

critère de Lindemann, qui conduit à une constante de Lindemann en très bon accord

avec les valeurs empiriques. Il reste cependant compliqué de connaître la nature réelle

des fluctuations à l’origine de la fusion. En effet, dans le composé FeSe, à basse tempéra-

ture, la dépendance en champ de la chaleur spécifique montre une large transition vers

l’état normal qui pourrait être due à des fluctuations quantiques. Cette large transition

met également en doute l’influence des effets paramagnétiques sur le champ critique

supérieur lorsque le champ est perpendiculaire aux couches de FeSe. Bien que le coef-

ficient thermique utilisé pour ajuster nos données soit assez robuste, il est également

possible que les fluctuations quantiques jouent également un rôle important.
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Dans le FeSe pur, lorsque le champ est le long des plans de FeSe, une légère déviation

de la courbe standard du champ critique supérieur a été trouvée à basse température,

juste après que la transition de fusion du réseau de vortex rejoigne la ligne de champ

critique supérieure à T ∗. Nous pensons que cela pourrait être lié à une phase FFLO en

regardant le diagramme de phase H − T et en le comparant avec la littérature. Cepen-

dant, cette phase se situerait sur un très petit intervalle de champ dans le diagramme de

phase H−T , qui ne dépasse pas nos incertitudes. D’autres mesures thermodynamiques

sont nécessaires afin d’observer une réelle transition de premier ordre qui tendrait à

confirmer la présence d’une phase FFLO. Nous avons essayé de rechercher une telle

transition en faisant tourner l’échantillon en champ mais aucune n’a été trouvée. Néan-

moins, nos mesures suggèrent que nous pourrions observer deux phases : une liée à la

supraconductivité et une autre stable en champ pour tous les angles.

Dans le FeSe0.88S0.12, une autre anomalie a également été trouvée qui correspond

à la ligne de fusion des vortex dans le diagramme de phase H − T . En consultant la

littérature, nous supposons que cette anomalie pourrait être liée à un changement de la

symétrie du réseau de vortex, similaire à ce qui est observé dans le FeSe. Cependant,

l’entropie semble ne pas être conservée, ce qui contredit l’idée précédente. Une fois de

plus, des mesures supplémentaires sont nécessaires ici. Une observation directe de la

symétrie du réseau de vortex sur le diagramme de phase complet et des mesures de

l’entropie sur d’autres échantillons donneraient plus d’informations.
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