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2 List of abbreviations and acronyms 

ACI Apparent clumping index 
ANN Artificial neural networks 
APAR Absorbed PAR by green vegetation 
BRDF Bidirectional Reflectance Distribution Function 
BRF Bi-Directional Reflectance 
CEOS Committee on Earth Observing Satellite 
CI Clumping index 
CNES French Agency Centre National d’Etudes Spatiales 
DBF Deciduous broadleaf forests 
DHF Decametric Hectometric Fusion 
DHP Digital Hemispheric Photography 
DNF Deciduous needleleaf forests 
DOY Day of year 
EBF Evergreen broadleaf forests 
ECV Essential Climate Variables 
EMP Empirical 
ENF Evergreen needleleaf forests 
ETM+ Enhanced Thematic Mapper Plus 
fAPAR Fraction of PAR absorbed by the green leaves 
fCover fraction of the green vegetation in the nadir direction 
fIPAR Fraction of PAR intercepted by the green leaves 
GAI Green area index 
GCOS Global Climate Observing System 
GfAPAR Green fAPAR 
GfIPAR Green fIPAR 
GPR Gaussian process regression 
IGBP International Geosphere Biosphere Program 
IoT Internet of things 
LAI Leaf area index 
LPV Land Product Validation 
LUT Look-up table 
MAEs Mean absolute errors 
MODIS Moderate Resolution Imaging Spectroradiometer 
MSI Multi Spectral Instrument 
NDVI Normalized difference vegetation index 
NIR Near infrared  
OLI Operational Land Imager 
PAI plant area indices 
PAIeff the effective plant area indices 
PAR Photosynthetically Active Radiation 
RGB Red, green and blue 
RMSE Root-mean-square deviation 
RO Reproductive organs 
RRMSE Relative RMSE 
SIM Simulation 
skyl Fraction of diffuse PAR in total PAR 
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SLC A coupled soil-leaf-canopy radiative transfer model 
STARFM Spatial and temporal adaptive reflectance fusion model 
SVM Support vector machine 
TM Thematic Mapper 
UAV Unmanned aerial vehicle 

UGV Unmanned Ground Vehicles 
WGCV Working Group Cal/Val 
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3 Professional career summary  
I received my bachelor’s degree in the major of Cartography and Geographic Information system in 2008 
from Department of Cartography and Geographic Information System, Northeast Normal University, 
China.  

I obtained the master’s degree in major “Rangeland remote sensing” under supervision of Prof. 
Quangong Chen in 2011 from Lanzhou University, China. The title of my master thesis was “The research 
on Chinese ecotone between agriculture and animal husbandry and population distribution”. During the 
period of master, I worked as research assistant to: 

- develop a new method to estimate livestock capacity for local farmers through satellite data and 
ground measurements. 

- conduct data analysis between the population distribution and the ecotone capacity on Chinese 
Ecotone between agriculture and animal husbandry. 

In the second year of my master, I won an opportunity to be exchanged in Chinese Academy of Sciences. 
From August 2010 to March 2011, I studied in the Institute of Geographic Sciences and Natural 
Resources Research (IGSNRR), Chinese Academy of Sciences, under the supervision of Prof. Jiulin Sun. 
My role was to develop a web interface for displaying natural resources and human related data of 
North-East Asia region. During this year, I read many scientific papers and realized simple vegetation 
indices had limitations on the applications. The book “quantitative remote sensing of land surfaces” by 
Prof. Shunlin Liang gave me insights. Inspired by this, I planned to conduct a doctoral degree in this 
institute on the subject of quantitative remote sensing. 

Since September 2011, I was enrolled as a Ph.D candidate in the University of Chinese Academy of 
Science, China. I worked in the domain of vegetation quantitative remote sensing under the supervision 
by Prof. Hongliang Fang in the State Key Laboratory of Resources and Environmental Information System 
(LREIS) based in IGSNRR, Chinese Academy of Science. During the Ph.D period, I was the member of four 
projects of Prof. Hongliang Fang. Within these projects,  

- I conducted the ground measurements of leaf area index (LAI), clumping index and fAPAR in 
Honghe Farm over rice crops, northeast China during the whole growing season of 2012 and 
2013. The performances of different instruments and variable definitions were compared and 
analyzed. 

- I developed an algorithm to estimate total, direct and diffuse fAPAR from remote sensing data. 
- I validated the satellite-derived fAPAR products using ground measurements. 
- I studied long term MODIS land cover and LAI data to analyze the impact of land cover 

misclassification on MODIS LAI products. 

These studies finally resulted into several scientific paper, published in peer reviewed journals. Based on 
the ground measurements and algorithms, my thesis titled as “Estimation of direct and diffuse FAPAR 
from satellite data and field measurements” was finished and I successfully defended it on May 2015.  

In the last year of my Ph.D, I wanted to go abroad to see how other teams work. Fortunately, I was 
hosted in Dr. Frédéric Baret’s lab, who is the one of most famous vegetation remote sensing experts in 
the world. My professional journey in France started in 2014. I worked as a development engineer from 
May 2014 to February 2015 and post-doc from March 2015 to August 2017 in UMT CAPTE unit of INRAE, 
under the supervision of Dr. Frédéric Baret. During this period, I mainly participated to two projects: 
IMAGINES (European Community FP7) and PRECIDRONE (National French FUI).  
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- In the European project ‘IMAGINES’, I developed with Dr. Marie Weiss and colleagues from 
INRAE an algorithm for fusing satellite data PROBA-V and LANDSAT-8 to generate decametric 
products every 10 days to realize the crop monitoring at the field level with a 30 m resolution,. I 
also tested the feasibility of neural network inversion algorithms on multiple decametric 
resolution satellite datasets (e.g., LANDSAT-8 and SPOT-4). The generated biophysical products 
were finally used as inputs to improve the crop classification accuracy using satellite data.  

- I participated to the ‘PRECIDRONE’ project during 2016 and 2017 and developed algorithms to 
estimate crop key biophysical variables using drone observations. This contributed to the crop 
monitoring at higher resolution (~1m) and at the microplot level. The code has been provided to 
the private company “Delair-Tech” for production purposes under the agreement of the project. 

Since September 2017, I have been working as an R&D Scientist on a permanent contract (CDI in France) 
in the HIPHEN private company. I am in charge of developing innovative algorithms to monitor crop 
growth status at different scales using data from satellite, drone and field IOT (Internet of things). More 
specifically, I worked on several aspects with my HIPHEN and INRAE colleagues: 

- I developed the processing pipeline of satellite data, from downloading to generation of 
biophysical products. This pipeline can be applied on satellite sensors including Sentinel-2, 
Landsat-8, Planet Scope and Planet Skysat. I also developed an algorithm to describe the 
heterogeneity of a field using the satellite images. This algorithm has been successfully applied 
on onions, maize and wheat fields for a better sampling strategy. 

- I participated in the biophysical variable estimation from ground-based FieldSensor system fixed 
in the field. I was in charge of developing a pipeline to process data from micro spectrometer 
installed on the FieldSensor. The pipeline could generate daily continuous biophysical variables 
with the consideration of information from multiple sun and viewing angles. Then, I have 
developed an algorithm to fuse the daily data from FieldSensor with discrete satellite images 
over the field, to characterize the intra variability of fields in near real time. Both algorithms 
have been successfully applied by several clients and projects. 

- I was also involved in the development of UAV data processing pipeline applied on multiple RGB 
and multispectral cameras. The pipeline includes alignments of all images in Agisoft Photoscan 
software, extraction of each microplot, selection of one best image for each microplot and 
retrieval of various traits from the RGB images using deep learning methods and radiative 
transfer model inversion from multispectral images. 

- During this period, I participated several projects, such as PHENOME, P2S2 and IOTA. Some of 
the studies led to publications in peer reviewed papers. 

Although my experience was resulting from several opportunities that were offered to me, they were 
very rich and gradually contributed to enrich my knowledge from the use of simple remote sensing 
indices to the estimation of biophysical variables based on radiative transfer model and crop traits from 
machine learning. Several vegetation types were investigated, from grassland, paddy rice, wheat, maize, 
sunflower, and many others. These studies were conducted at a wide range of scales from regional scale, 
global and regional to field and microplot levels. One of the main aspects of my work is the synergy 
across scales that I exploited to combine the high level of accuracy derived from observations at high 
spatial resolution with the high coverage achieved with larger spatial resolution observations. This was 
done either for calibrating and/or validating algorithms at a given spatial resolution using higher spatial 
resolution observations, or by fusing observations from low and high spatial resolution data to improve 
the temporal resolution. 
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4 Major achievements 

4.1 Challenges in the agricultural context at different scales  
Global agricultural production has tripled during the 1960 to 2015 period, thanks to the green revolution 
technologies, a large expansion of irrigation and fertilizers, of mechanization, increase exploitation of 
land and natural resources, and the industrialization and globalization of agriculture process (FAO, 2017). 
This increased agricultural production capacity followed the growth of world population during the same 
period, from 3 billion in 1960 to around 7 billion in 2015 (FAO, 2017). The global population continues to 
grow although at a slower pace. As estimates by Food and Agriculture Organization of the United 
Nations (FAO), the global population would grow up to 9.7 billion (32% increase) by 2050 and 11.2 
billion (53% increase) by 2100, as compared to the 2015 population (FAO, 2018). This will require a huge 
boost of agricultural production to satisfy the population needs. 
 
Although agricultural production and food security improved in recent years, hunger and malnutrition 
still exist and show a trend of expansion in the world.  Between 720 and 811 million people in the world 
were undernourished in 2020, around 118 million more people were facing hunger in 2020 compared to 
2019 (FAO, 2021a). More people might face hunger in 2021 under the shadow of the COVID-19 
pandemic.  
 
There are several factors that challenge agriculture in the coming years. 

- Increases in the number and complexity of conflicts in the globe is the major threat to food 
security and nutrition. This also increases the risks of other factors, such as economic 
slowdowns and downturns (FAO, 2021b). 

- To feed the growing population, sufficient food and other agricultural products should be 
provided. For example, to meet the demand of global population by 2050, 50% - 70% increase 
on food production must be achieved (Kamilaris et al., 2017; Muller et al., 2017).  

- Global agricultural land area decreases in the world. In 2018, the global agricultural land area 
was 4.8 billion hectares (ha). It corresponds to a decrease of 2% or 0.08 billion ha as compared 
to 2000 (FAO, 2020). Cropland area per capita also decreased in all regions between 2000 and 
2018, with the world average decline by 15% (0.21 ha per capita) in 2018 (FAO, 2020). 
Meanwhile, the decreasing storage of water and increasing competition for natural resources 
add uncertainties to the agricultural production. 

- Although global economy grows, the share of agriculture in total production declines at various 
speed, which poses challenges across regions. Besides, the income growth in low- and middle-
income countries would hasten a dietary transition towards higher consumption of meat, fruits 
and vegetables, relative to cereals (FAO, 2017). 

- Recent research shows that the climate change impacts crop yields. The impacts of global 
climate changes on yields vary with crops, ranging from -13.4% (oil palm) to -3.5% (soybean), 
and vary between continents: mostly negative in Europe, Southern Africa and Australia but 
generally positive in Latin America (Ray et al., 2019). The global wheat production is supposed to 
fall by 6% for each increase of 1.0 °C (Asseng et al., 2015). Concurrently, the increased demand 
on agriculture is likely to increase the competition for natural resources and with negative 
impact on the greenhouse gas balance (FAO, 2017; Searchinger et al., 2019). 

- Dietary patterns have been changed over recent decades. Obesity among adults of 18 years and 
above increased rapidly in every region of the world between 2000 and 2016 (FAO, 2020). This 
calls for healthy diets, which is not unaffordable in many regions of the world due to driving 
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factors in food production, food supply chains, food environment, consumer demand and the 
economy of food (FAO, 2021a). 

 
All above challenges for food security or agricultural systems show the importance of reaching 
sustainable development, to meet rising human needs while contributing to resilience and sustainability 
of the Earth system (Rockström et al., 2017). To tackle the increasing challenges of agricultural 
production, the complex agricultural ecosystems need to be better understood. The emerging digital 
technologies allowing to monitor continuously the crop and its environment could be used to inform 
farmers for decision making in the management practices with the objective to optimize the use of 
natural resources (Basso and Antle, 2020; Kamilaris et al., 2017).  

4.2 How remote/proxy sensing can bring some answers to these 

challenges and what are the associated issues 

4.2.1 Why remote sensing data is useful? 
To satisfy the increasing demand on agriculture production under the challenging context mentioned 
above, several studies and initiatives have been launched since several decades. The first question 
raised for a sustainable development of agriculture is to know evaluate crop state and coverage at 
different scales, e.g., global, regional, fields, microplots or even single plants. This will allow to organize 
the market of agricultural products at the larger scales, to provide information to the farmers for 
optimal field management, and to phenotype crops to develop innovative cultural practices and 
improved cultivars. 
 
Conventional field survey is usually time-consuming and costly because agricultural activities are carried 
out over large regions (Chen et al., 2008). Moreover, crops growth follows strong seasonal patterns and 
is greatly dependent on human activities or climate conditions. This requires timely monitoring of crops 
to make efficient actions for higher production (Atzberger, 2013). Remote sensing appears as an 
efficient tool because the signal reflected by the crop canopy carries key information about crop state 
(structure, biochemistry). The signal captured by sensors on remote sensing platforms is transformed 
into pertinent information using advanced signal or image processing methods.  
 

4.2.2 Source of remote sensing platforms 
Since the early 1960s, remote sensing technologies have been widely used in agriculture. Currently, 
several operational remote sensing platforms have been launched and used for crop monitoring. 
According to the spatial and temporal resolutions of the data recoded, these platforms can be 
categorized into three categories: satellite, UAV and ground system (Fig. 1). 
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Fig. 1. Categories of remote sensing platforms based on spatial resolution and revisit frequency. The 
figure was generated by Prof. Fred Baret within the UMT CAPTE unit. 
 

• Satellite 
Over the past two decades, several optical satellite sensors at the kilometric resolution have been 
launched, such as NOAA/ AVHRR, MODIS, SEAWIFS, VEGETATION, MERIS, POLDER and MISR. They 
provide global daily reflectance observation thanks to their large swath. They contributed greatly to the 
studies at global to regional scales. However, the mixed nature of kilometric pixels raises both a scaling 
issue and difficulties when the cropland size is significantly smaller than the pixel size (Baret et al., 2013; 
Shabanov et al., 2003). Recent developments on sensor technologies improved the resolution into few 
hundred meters, such as MERIS (300 m), PROBA-V (300 m), SNPP-VIIRS (370 m) and Sentinel-3 (300 m).  
Biophysical products generated by these hectometric sensors are expected to get closer to the spatial 
resolution required for several applications at the regional scale (Baret et al., 2016; Croft et al., 2020; De 
Grave et al., 2020; Tum et al., 2016; Yan et al., 2018). However, they are still far from the requirements 
of decametric or metric resolutions at field scales. 
 
Over the long term, Landsat is one of most successful satellite series that provides global monitoring at 
decametric resolution since the first launch in 1972 (Williams et al., 2006). The sensors that were 
onboard early Landsat missions are Multispectral Scanner (MSS), and later upgraded to Thematic 
Mapper (TM) on Landsat‐4 and Landsat‐5, and thenEnhanced Thematic Mapper Plus (ETM+) on 
Landsat‐7. Launched in 2013, Landsat‐8 is the most recent Landsat satellite with Operational Land 
Imager (OLI) sensor (Irons et al., 2012). The 30 m spatial resolution of Landsat-4, Landsat-5, Landsat-7 
and Landsat-8 is ideal for detecting large fields which are few pixels size (Wulder et al., 2019). Although 
the 30 m resolution of Landsat series has been greatly improved compared to hectometric or kilometric 
resolutions, the low revisit frequency of Landsat observations (every 16 days) is not enough for crop 
growth monitoring. Under continuous cloudy days periods, the key growing stages might be missed 
without any data.  
 
The Sentinel-2 mission launched in 2016 allows fulfilling both the spatial and temporal requirements for 
crop growth monitoring at the farm level (Drusch et al., 2012). It was designed to make a global 
coverage of the Earth's land surface every 10 days with one satellite and 5 days revisit with two satellites. 
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The Multi Spectral Instrument (MSI) onboard Sentinel‐2 provides high‐quality multispectral images with 
spatial resolutions ranging from 10 to 60 m. Several crop classifications, crop status monitoring and yield 
estimation studies have been conducted based on Sentinel-2 dataset (Amin et al., 2021; Hunt et al., 
2019; Immitzer et al., 2016). 
 
In the last decade, significant advances have been made to increase the spatial resolution of sensors 
down to meter or even submeter level, while still keeping close to daily revisit. This is mainly achieved 
through microsatellite, such as PlanetScope, VENUS, RapidEye, Worldview, Pleiades and Skysat. At this 
level of resolutions, crops status at field level can be monitored successfully (Cheng et al., 2020; Kross et 
al., 2015). But these sensors have several limitations (Dash and Ogutu, 2016; Houborg and McCabe, 
2016). For example, they have few spectral bands (usually, only red, green, blue and NIR), leading to 
uncertainties in the crop status estimation. Another limitation is that almost all sensors are commercial, 
making images costly as compared to the free public datasets. The third one is the limited accuracy of 
cloud detection, atmospheric correction and georeferencing, generating some uncertainties in the 
interpretation of these data. In addition, the small scene coverage of these sensors, making them more 
difficult for global products generations.  
 

• UAV 
Low-altitude remote sensing system by UAV provides a practical complement to satellite platforms. 
These UAVs are always lightweight with a reasonable cost per flight. Equipped with new developed 
small RGB, multispectral or hyperspectral imaging sensors, the UAV systems can monitor the crop 
condition with a high spatial resolution (centimeter) and are more flexible in terms of revisit frequency 
(Salamí et al., 2014). 
 
Among the imaging sensors, RGB camera with red, green and blue wavelengths can achieve very high 
spatial resolution (less than 1 cm) to satisfy many applications in precision agriculture, such as crop 
height estimation (Bendig et al., 2014; Holman et al., 2016; Madec et al., 2017), plant counting at 
emergence (Jin et al., 2017; Valente et al., 2020) and head counting during senescence stages (Velumani 
et al., 2020). Despite the high spatial resolution, the RGB sensors have obvious limitations on the 
spectral wavelengths, which are critical to compute several vegetation indices and estimate some 
biophysical variables. 
 
Multispectral or hyperspectral cameras onboard UAV can solve this issue. Multispectral cameras 
incorporate bands in the visible (400 - 700 nm) and near infrared spectral ranges (700 - 1000 nm), and 
are well suited for vegetation monitoring (Baret and Guyot, 1991; Tucker, 1979). Hyperspectral cameras, 
on the other side, have a higher spectral resolution, with continuous or discrete spectral bands in the 
visible and infrared spectral regions. These hyperspectral bands are more sensitive to small changes in 
leaf pigments, such as carotenoids, chlorophyll a and b, and xanthophylls as well as leaf and canopy 
structure (Aasen et al., 2018). Compared with the RGB cameras, multispectral and hyperspectral camera 
have lower spatial resolutions.  
 
Although the UAV platforms can be utilized under clear or cloudy conditions, it is also highly constrained 
by the meteorological conditions (e.g., low wind speed and lack of precipitation), by flight regulations of 
each region and by the spatial coverage that can be reduced by autonomy or the battery of sensors or 
drone (Weiss et al., 2020). Further, challenging radiometric calibration must be carried out on each band 
for the multispectral and hyperspectral cameras. The changing illumination conditions during the flight 
add uncertainties in the sensor calibration (Aasen and Bolten, 2018; Adão et al., 2017; Wang et al., 2019).  
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• Ground system 
At the ground level, measurements can be taken using several hand-held instruments. However, they 
are generally labor-intensive and not applicable for continuous applications. With the development of 
automated systems and autonomous controls, Unmanned Ground Vehicles (UGV) have specific 
advantages on the monitoring. They can carry active sensors to take measurements fully independent 
from the illumination conditions and can provide submillimeter resolution measurements of the targets 
(Jay et al., 2020). Several UGV have been developed in the past few years (De Solan et al., 2015; 
Grimstad and From, 2017; Mueller-Sim et al., 2017). However, it is sensitive to soil conditions and 
microplots need to be well designed for the UGV system. The high price of several systems also limits its 
application widely. 
 
Recent development of Internet of Things (IoT) has emerged as a new era of applications to monitor 
automatically crops in near-real time (Peng and Pal, 2020). In parallel, the advances on affordable micro-
camera and micro-spectrometer provides opportunities to take very close-range photos of crops and 
measure the radiation reflected by the crop canopy in multiple spectral bands. A few automatic 
monitoring systems with RGB cameras or multispectral sensors have been produced to provide near-
real-time crop monitoring (Baret et al., 2010; Bauer et al., 2016; Kim et al., 2019; Qu et al., 2014; 
Sakamoto et al., 2012; Velumani et al., 2020).  
 
These ground IoT systems are well suited to provide continuous measurements under all meteorological 
conditions and has obvious advantages on very high spatial resolutions. The drawback of these systems 
is their limited sampling footprint and radiometric calibrations. The locations of the system need to be 
well designed so that they can represent the whole field. Multiple systems might be necessary for field 
presenting high spatial heterogeneity. 
 

4.2.3 Interpretation of remote sensing data to traits 
Using the above-mentioned platforms, a huge amount of data with different spatial and temporal 
resolution, as well as spectral properties are collected. The big remote sensing data is generally complex 
due to the diversity and high dimensionality characteristics (Chi et al., 2016; Ma et al., 2015). They 
cannot be used directly by the decision makers, especially those who are not in the domain of remote 
sensing and not familiar with data preprocessing. Interpretation of the raw remote sensing data into 
valuable agricultural traits or variables is therefore important and necessary to decision makers (e.g., 
farmers, companies) to improve the field management and productivity (Kamilaris et al., 2017). 
 
As defined by Nock et al. (2016) and Madec (2020), traits are morphological, biochemical, physiological, 
structural, phenological or behavioral characteristics that influence organism performance or fitness, 
which are intrinsic characteristic of the organ, plant or canopy (e.g., height, length, surface, intercepted 
radiation,. etc). A variable is the estimate of a trait based on a dedicated method and quantified with a 
given unit. Raw remote sensing data cannot be interpreted into variables directly. Based on various 
models and empirical or mechanistic approaches, raw remote sensing measurements can be converted 
into agronomic variables (Weiss et al., 2020).  
 
All my work was focusing on the estimation of traits from remote sensing data at different spatial scales, 
such as ground-based system, UAV and satellite. My main contributions on the development of 
algorithms to estimate traits is presented in the next section, with emphasis on the combination of 
observations at several scales and on the temporal dimension. 
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4.3 Major contributions  

4.3.1 Traits 
A number of traits have been proposed and estimated for application in precision agriculture and 
phenotyping. They might be broadly grouped into two categories: traits that characterize the canopy 
structure and traits associated to individual plant/organ. A full table about accessible traits by remote 
sensing technologies can be refer to (Velumani, 2021) and (Madec, 2020). This work is focus on a 
selection of these traits. 
 
In the context of precision agriculture, leaf area index (LAI), the fraction of photosynthetically absorbed 
radiation (fAPAR) and fCOVER are among the most important biophysical traits that drive the radiative 
transfer within the canopy. Leaf area index (LAI) is defined as half the total developed area of green 
elements per unit horizontal ground area (Chen and Black, 1992). Recently, green area index (GAI) which 
corresponds to only green part of canopy is used as it is a more pertinent variable to describe the 
radiation transfer in the canopy (Baret et al., 2010; Duveiller et al., 2011). fAPAR is defined as the 
fraction of the photosynthetically active radiation (PAR) absorbed by the green leaves. It is a weighted 
sum of the direct fAPAR (black-sky fAPAR if only direct illumination conditions) and diffuse fAPAR (white-
sky fAPAR if totally diffuse illumination conditions), depending on the source of the incoming radiation 
(M Weiss and Baret, 2010). fAPAR is often approximated by the fraction of intercepted PAR (fIPAR) 
because the vegetation present a strong absorption in this spectral domain and the reflectivities from 
background are usually small for well-developed canopies (Gower et al., 1999). Both LAI and fAPAR have 
been recognized as Essential Climate Variables (ECV) by Global Climate Observing System (GCOS) (GCOS, 
2016), for their key roles in energy, mass and momentum exchanges between the land surface and the 
atmosphere. fCOVER, the fraction of the green vegetation in the nadir direction, is another important 
traits that is used to separate vegetation and soil in energy balance processes, including temperature 
and evapotranspiration (Gutman and Ignatov, 1998; Xiao et al., 2016).  
 
Canopy clumping index (CI) that describes the spatial distribution of leaves in a canopy is another critical 
traits in determining the canopy radiation transfer, photosynthesis and hydrological processes (Chen et 
al., 2016; Fang, 2021; Nouvellon, 2000; Wei and Fang, 2016). It is defined as a ratio of the effective LAI 
to the true LAI (Nilson, 1971), i.e., value of 1 represents leaves that are randomly distributed and less 
than 1.0 means leaves are that aggregated. Effective LAI is thus equal to the LAI value assuming a 
random foliage distribution (Chen et al., 2005). 
 
All these traits can be estimated from measurements using instruments at different platforms, such as 
ground system, UAV and satellites. Each platform provides observations under a specific directional 
configuration, resulting in directional effects characterized by the Bidirectional Reflectance Distribution 
Function (BRDF)(Nicodemus et al., 1977; Schaepman-Strub et al., 2006). Accounting explicitly for these 
effects in the retrieval algorithms is important.  
 
As discussed in section 2.2, each platform has its advantages and disadvantages in the estimation of 
above-mentioned traits. In the context of crop monitoring for precision agriculture and field 
phenotyping applications, continuous and accurate estimations of these traits are required (Comar et al., 
2012; McBRATNEY et al., 2005; Weiss et al., 2020). My work focuses on the development and evaluation 
of methods to retrieve traits from close-range and satellite observations. The work is composed of 
several studies that can be conveniently grouped per scale. We will start by the higher spatial resolution 
observations that can then be exploited in combination with the lower spatial resolution observations: 

- Ground, which provides valuable calibration and validation datasets 
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- UAV, close-range phenotyping 
- Satellite 

o Decametric satellite 
o Hectometric satellite 
o Fusion of decametric and hectometric satellites  

 

4.3.2 Ground: instruments and methods to estimate LAI and FAPAR  
Continuous and accurate ground measurements of LAI and fAPAR (or fIPAR) is important to monitor 
canopy functioning and validate remote sensing estimates called “products”. Several methods and 
optical instruments to be used in the fields have been developed, such as AccuPAR (Decagon Devices, 
2010), LAI-2200  and Digital Hemispheric Photography (DHP). Understanding the consistency and 
differences of these methods or instruments is important to applications in the field.  
 
This section focuses on the estimation of LAI, fAPAR and CI from ground measurements over paddy rice 
fields. One study has been conducted for each variable: 

• Intercomparison of several instruments to measure LAI over paddy rice fields (Fang et al., 2014). 

• Analysis of methods to estimate fAPAR and fIPAR from ground measurements (Li et al., 2021a). 

• Estimation of directional and whole apparent CI from indirect optical measurements (Fang et al., 
2018). 

4.3.2.1 The instruments and methods 

• AccuPAR 

Decagon’s AccuPAR model LP-80 PAR/LAI ceptometer measures PAR using 80 individual sensors (field of 

view: 180◦) on its probe. The downward (𝐼𝑡↓) and reflected (𝐼𝑡↑) PAR at the top of canopy were measured 
by placing the probe approximately 1.5 m above the canopy, facing upward and downward, respectively. 

The canopy transmitted PAR (𝐼𝑏↓) was measured by placing the probe below the canopy looking upward. 

The soil reflected PAR (𝐼𝑏↑) was measured twice in two different rows by placing the probe approximately 
5 cm above the ground looking downward. From the measurements, effective plant area index (PAIeff) 
that represents the area from all components of canopy (green, senescent leaves, stems and seeds) is 
calculated as (Eq. 1)(Norman and Welles, 1983): 𝑃𝐴𝐼𝑒𝑓𝑓 = [(1− 12𝑘)𝑓𝑏−1]𝑙𝑛𝑇𝐴(1−0.47𝑓𝑏)                                                                                               (1) 

where T is the transmission coefficient obtained through the ratio of the below canopy and the above 
canopy PARs, fb is the fraction of incident beam PAR, and A is a function of the leaf absorptivity in the 
PAR band. The parameter k is the extinction coefficient for the canopy and is a function of the solar 
zenith angle (SZA) and leaf angular distribution (LAD) of the inclinations. 

True LAI can be derived from measured PAIeff and the clumping index (CI). 

                                                                                          (2) 

where CI is calculated as the ratio of PAIeff and destructive PAI, α is the stem-to-total plant area ratio, 
and γ is the yellow to total leaf area ratio. Both α and γ are calculated based on destructive 
measurements. 
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fAPAR and fIPAR are calculated from all PAR measurements (Eqs. 2 & 3), 

fAPAR = 1 − 𝑅𝑐 −  𝑇(1 − 𝑅𝑠)                                                                              (3) 

fAPART = 1 − 𝑇                                                                                                                    (4) 

where 𝑅𝑐 = 𝐼𝑡↑𝐼𝑡↓ is the canopy reflectance,  𝑇 = 𝐼𝑏↓𝐼𝑡↓ is the canopy transmittance, and 𝑅𝑠 = 𝐼𝑏↑𝐼𝑏↓  is the soil 

background reflectance in the PAR spectral domain. 

• LAI-2200 

LAI-2200 measures the blue radiation in 5 concentric rings centered at 7°, 23°, 38°, 53° and 68°. LAI-2200 
measurements were conducted always under diffuse conditions. Each measurement was repeated twice, 
with one above and four below canopy readings along diagonal transects between the rows. For the 
below canopy readings, the instrument was held about 5 cm above the background. Throughout the 
season, a 270° view cap was used to shield the operator. 

The incident light recorded by the five rings is used to calculate gap fraction P(𝜃). PAIeff is calculated as 𝑃𝐴𝐼𝑒𝑓𝑓 = 2 ∫ −𝑙𝑛𝑃(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝜋20 = 2 ∑ 𝐾�̅�5𝑖=1 𝑊𝑖                                         (5) 

Where Ki and Wi are the contact number and the weighting factor, respectively (refer to manual of LAI-
2200). 

LAI of LAI-2200 also can be calculated from Eq. (2). 

If leaves are considered opaque, fIPAR can be calculated from P. P is closely approximated by canopy 
transmittance (𝜏) and fIPAR ≈ fAPAR𝜏. 𝑓𝐼𝑃𝐴𝑅 =  1 − 𝑃                                                                                                   (6) 

• DHP 

The DHP images were taken using a Nikon D5100 camera equipped with a 4.5 mm F2.8 EX DC fisheye 
convertor. The DHP camera was calibrated before measurements following the CAN-EYE manual (Weiss 
and Baret, 2010) to obtain the optical center and the projection function of the camera and fish-eye 
system. Images were taken at both downward and upward directions. All DHP images were processed 
using the CAN-EYE version 6.3.3 software (https://www6.paca.inrae.fr/can-eye). Green pixels were 
manually separated from senescent and background pixels for the downward images during the 
classification step. PAIeff is retrieved in CAN EYE using lookup-table techniques and assuming an 
ellipsoidal distribution of the leaf inclination (Weiss and Baret, 2010), 𝑃𝐴𝐼𝑒𝑓𝑓 = 2 ∫ −𝑙𝑛𝑃(𝜃)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝜋/20                                                            (7) 

fIPAR from DHP is also calculated from Eq. (6). 

 

4.3.2.2 Intercomparison of several instruments to measure LAI over paddy rice fields (Fang et al., 

2014) 

LAI measurement has become increasingly important for the validation of remote sensing LAI products. 
A seasonal field campaign was carried out to take continuous LAI measurements over paddy rice fields in 
NE China in 2012. Three indirect optical methods, LAI-2200, DHP, and AccuPAR, were compared with a 



16 
 

destructive sampling method conducted concurrently. Corrections for the clumping effect were applied 
to the PAIeff estimated from the indirect optical measurements. Compared to PAIeff which includes all 
components in the canopy, LAI in this paper represents contributions only from green and senescent 
leaves. 
 
Seasonal dynamics of PAIeff of rice obtained by the three optical instruments are shown in Fig. 2. PAIeff 
increases with crop development up to a maximum in late July and then decreases slightly by less than 
1.0 until the end of the season. The largest discrepancies (up to 2.7) between the optical instruments 
are noticed in late July (Day of year, DOY 210), whereas small deviations (∼0.82) appear in mid-August.  

 
Fig. 2. Seasonal variation of the effective PAI (PAIeff) estimated from LAI-2200, DHP, and AccuPAR for 
five plots of paddy rice fields. Both upward and downward DHP measurements are shown. Destructive 
PAI is shown as light gray as a reference. The x-axis represents Day of year (DOY) in 2012. (Fig. 3 in Fang 
et al. (2014)) 
 
Both LAI-2200 and DHP produce consistent PAIeff estimates over the season (R2 = 0.76, RMSE = 0.97, Fig. 
3). Good correspondence can also be observed between the upward DHP and LAI-2200 (R2 = 0.50, RMSE 
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= 0.56). The downward DHP estimates show a positive bias (0.58, 14.5%) over the upward estimates. 
The best relationship is found between LAI-2200 and AccuPAR (R2 = 0.80, RMSE = 0.95). However, 
AccuPAR is systematically lower than the LAI-2200 and DHP values (Bias>0.70, or 16%), especially for 
PAIeff > 1.0. 

 
Fig. 3. Comparison of the effective PAIs (PAIeff) estimated from the LAI-2200, DHP, and AccuPAR 
methods. (Fig. 4 in (Fang et al., 2014)) 
 
Fig. 4 compares the PAI and LAI values derived from optical methods against the destructive 
measurements. For DHP, the PAIs were derived by dividing the PAIeff by the corresponding CIs. The PAI 
values for the LAI-2200 and AccuPAR were derived by dividing PAIeff by the average CI of both DHP views. 
When the upward DHP CI was not available, the downward DHP CI was used. The destructive, LAI-2200, 
and DHP PAIs are consistent for most of the season, except after DOY 231 (August 18). During the peak 
season from DOY 201 to 230, the mean PAI values obtained from LAI-2200 and DHP are nearly identical 
to the average destructive PAI (Table 1). After the peak season, when the leaves become rolled, the 
deviations between direct and indirect methods become progressively larger. After DOY 231, the 
destructive PAI decreases by about 1.80 (−28.6%). However, this amplitude of decrease is not observed 
by the optical methods. The average LAI-2200 and DHP PAIs decrease by only 0.37 (−5.9%). In general, 
before DOY 230 (August 17), LAI-2200 provides a very good estimates of destructive PAI (relative errors 
< 10%), especially when ring 5 is discarded (Table 1). DHP gives even more accurate PAI estimates, with 
relative errors less than 5%. AccuPAR exhibits the highest underestimation of the destructive PAI by up 
to 30%. Like PAI, the LAI-2200 and DHP LAI values agree very well with the destructive values before 
DOY 230, with relative differences less than 10% (Fig. 4b and Table 1). After DOY 231, the relative 
differences are more than 20%. Comparisons between AccuPAR and the destructive LAIs show more 
than 30% underestimation before DOY 230 and a very good correspondence after DOY 231 (Table 5). 
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However, the good agreement after DOY 231 may need further verification to ascertain whether it 
occurs through correct derivation or by artifact. 
 

 
Fig. 4. Seasonal variation of PAI (a) and LAI (b) obtained from optical and destructive methods. PAI is 
calculated from PAIeff divided by the average CI from the downward and upward DHPs. Optical LAI is 
estimated from Eq. (10) in Fang et al. (2014). (Fig. 11 in Fang et al. (2014)) 
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Table 1. Comparison of the optical PAIs and LAIs over different periods of the season. The values in the 
brackets show the relative differences comparing to the destructive PAI and LAI. (Table 7 in Fang et al. 
(2014)) 
 

 
 
In general, rice PAI could be accurately estimated with LAI-2200 and DHP before senescence if the 
clumping effect could be properly taken into account. The seasonal continuous LAI measurements 
obtained from this study are valuable for the validation of remote sensing LAI products. 
 

4.3.2.3 Analysis of methods to estimate fAPAR and fIPAR from ground measurements (Li et al., 

2021a) 

fAPAR and fIPAR respectively correspond to fraction of PAR absorbed or intercepted by the green 
canopy components. Both are sensitive to illumination conditions and non-green components during 
the senescence stage. While several methods have been developed to estimate fAPAR or fIPAR in the 
field from different methods including AccuPAR, LAI-2200 and DHP, the differences among these 
methods still need more investigations. 

Two field campaigns were conducted in 2012 and 2013 in northeastern China over paddy rice fields.  
fAPAR and fIPAR measured using AccuPAR, DHP and LAI-2200 were compared. GAI and LAI measured 
simultaneously were used to calculate green fAPAR (GfAPAR) and green fIPAR (GfIPAR) in the 
senescence stage. Two methods have been proposed to calculate GfAPAR and GfIPAR from upward-
looking systems (AccuPAR, LAI-2200 and upward-looking DHP). Assuming green leaves are located at the 
top of the canopy above the senescent elements, GfAPARtop is calculated (Chen, 1996); while assuming 
all green and senescent leaves are mixed in the canopy, GfAPARmix is calculated (Viña and Gitelson, 
2005). 
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Table 2. Quantities estimated from AccuPAR, DHP, and LAI-2200. Rc, Rs, Rsen and T represent the canopy 
reflectance, the background soil and senescent layer reflectance, and the canopy transmittance, 
respectively. P is the canopy gap fraction and GF is the green fraction. 

Instruments Notation Equation 

AccuPAR 

𝑓𝐴𝑃𝐴𝑅(𝐴𝑐𝑐𝑢𝑃𝐴𝑅) 1 − 𝑅𝑐 − 𝑇(1 − 𝑅𝑠)  𝑓𝐴𝑃𝐴𝑅𝑇(𝐴𝑐𝑐𝑢𝑃𝐴𝑅) 1 − 𝑇  𝐺𝑓𝐴𝑃𝐴𝑅𝑡𝑜𝑝(𝐴𝑐𝑐𝑢𝑃𝐴𝑅) 1 − 𝑅𝑐 − (1 − 𝑅𝑠𝑒𝑛)𝑒𝐺𝐴𝐼𝑃𝐴𝐼⋅𝑙𝑛(1−𝑅𝑐−𝑓𝐴𝑃𝐴𝑅1−𝑅𝑠 )
  𝐺𝑓𝐴𝑃𝐴𝑅𝑚𝑖𝑥(𝐴𝑐𝑐𝑢𝑃𝐴𝑅) 𝑓𝐴𝑃𝐴𝑅 ⋅ 𝐺𝐴𝐼/𝑃𝐴𝐼  

Downward DHP 𝐺𝑓𝐼𝑃𝐴𝑅(𝐷𝐻𝑃𝑑𝑜𝑤𝑛) 𝐺𝐹 

  
Upward DHP 

𝑓𝐼𝑃𝐴𝑅(𝐷𝐻𝑃𝑢𝑝) 1 − 𝑃  𝐺𝑓𝐼𝑃𝐴𝑅𝑡𝑜𝑝(𝐷𝐻𝑃𝑢𝑝) 1 − 𝑒𝐺𝐴𝐼𝑃𝐴𝐼⋅𝑙𝑛(1−𝑓𝐼𝑃𝐴𝑅)   𝐺𝑓𝐼𝑃𝐴𝑅𝑚𝑖𝑥(𝐷𝐻𝑃𝑢𝑝) 𝑓𝐼𝑃𝐴𝑅 ⋅ 𝐺𝐴𝐼/𝑃𝐴𝐼  

  
LAI-2200 

𝑓𝐼𝑃𝐴𝑅(𝐿𝐴𝐼 − 2200) 1 − 𝑃  𝐺𝑓𝐼𝑃𝐴𝑅𝑡𝑜𝑝(𝐿𝐴𝐼 − 2200) 1 − 𝑒𝐺𝐴𝐼𝑃𝐴𝐼⋅𝑙𝑛(1−𝑓𝐼𝑃𝐴𝑅)   𝐺𝑓𝐼𝑃𝐴𝑅𝑚𝑖𝑥(𝐿𝐴𝐼 − 2200) 𝑓𝐼𝑃𝐴𝑅 ⋅ 𝐺𝐴𝐼/𝑃𝐴𝐼  

 

Results show that considering only canopy light transmittance (fAPART) measured with AccuPAR is a 
good proxy of fAPAR which is computed from AccuPAR under both black-sky and white-sky conditions 
(Fig. 5, R2 = 0.94~1, RMSE = 0.03~0.08). 

 

Fig. 5. Comparison of four-stream fAPAR(AccuPAR) (Eq. (3)) and the two-stream fAPART (AccuPAR)(Eq. 
(4)) values derived from AccuPAR measurements in 2012 and 2013 under both black (magenta) and 
white-sky (blue) conditions. (Fig. 4. in Li et al. (2021)) 
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When the canopy is senescent, downward looking DHP method is recommended as a reference since it 
is the only method that directly measure the light intercepted by green elements. Methods based on 
upward looking (DHP upward, AccuPAR and LAI-2200) cannot distinguish between the green and 
senescent vegetation elements because the signal comes from the entire canopy with limited capacity 
to distinguish green and senescent vegetation. A correction based on ratio of GAI to the PAI needs to be 
used for these upward looking measurements, while assuming that green and senescent elements are 
well mixed in the canopy volume (Fig. 6 and 7). 

 

Fig. 6. Seasonal variation of fAPAR and fIPAR quantities considered in Table 1 during the senescent stage 
(after DOY 210). GAI/PAI is the ratio of GAI to PAI (right y-axis). All measurements were performed 
under white-sky illuminations in 2012. (Fig. 7 in Li et al. (2021)) 

 

Fig. 7. After DOY 210 (senescence), from left to right: comparison of GfAPAR derived from AccuPAR, 
GfIPAR by upward DHP and LAI-2200 with the GfIPAR from downward DHP used as a reference. “top” 
and “mix” refers to the assumptions used to derive the green fAPAR, e.g. the senescence is occurring 
from the top of the canopy (Chen, 1996) or is randomly distributed within the canopy (Viña and Gitelson, 
2005). (Fig. 8 in Li et al. (2021)) 
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Downward looking DHP appears to be the preferred method for relatively short and dense canopies 

such as rice since it does not disturb the canopy, it is sensitive to the green elements only and allows to 

simulate fIPAR for any illumination conditions. 

4.3.2.4 Estimation of directional and whole apparent CI from indirect optical measurements 

(Fang et al., 2018) 

As shown above, several commercial optical instruments, e.g., DHP and LAI-2200 have been used to take 
indirect CI estimates when making field LAI measurements (Chen and Cihlar, 1995; Fang et al., 2014; 
Leblanc et al., 2005; Ryu et al., 2012). These methods vary for different field conditions and vegetation 
types.  

Ryu et al. (2010) proposed an apparent clumping index (ACI) from LAI-2200 gap fraction measurements 
of rings, in order to compensate for the clumping factor inherent in LAI-2200 rings and to properly 
calculate true LAI. However, the ACI reported in LAI-2200 has rarely been investigated. Beside LAI-2200, 
other instruments also provide gap fraction measurements in cells or rings, such as DHP and AccuPAR. 
The objective of this study is to expand the ACI concept to other geometric units and instruments. The 
angular distribution of ACI with zenith and azimuth angles, and characteristics of ACI from different 
instruments were compared. Ground data obtained from seasonal continuous measurements over 
paddy rice fields in 2012 were used for the ACI calculation and analysis (Fang et al., 2014). Several ACI 
have been proposed for cell, directional and whole canopy levels (Table 3). 

Table 3. List of directional ACI and ACI of whole canopy.   

Category Definition Equation Description Instruments 

Directional 
ACI (Ω𝐴) 

Ω𝐴(𝜃, 𝜙) Ω𝐴(𝜃, 𝜙) = 𝑙𝑛𝑃(𝜃, 𝜙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑙𝑛𝑃(𝜃, 𝜙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
It describes the non-
random distribution 
of foliage at a 
particular angular 
location (θ, ϕ) and 
size (Δθ, Δϕ). 

DHP 
 

Ω𝐴(𝜃) Ω𝐴(𝜃) = 𝑙𝑛𝑃(𝜃)̅̅ ̅̅ ̅̅𝑙𝑛𝑃(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅ 
It describes the foliage 
clumping at a 
particular zenith ring. 

DHP 
LAI-2200 Ω𝐴(𝜙) Ω𝐴(𝜙) = 𝑙𝑛𝑃(𝜙)̅̅ ̅̅ ̅̅ ̅𝑙𝑛𝑃(𝜙)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

It describes the foliage 
clumping at a 
particular azimuth 
sector. 

DHP 
 

Ω𝐴(𝑣) Ω𝐴(𝑣) = 𝑙𝑛𝑃(𝑣)̅̅ ̅̅ ̅̅𝑙𝑛𝑃(𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅ 
It quantifies the 
canopy non-
randomness in the 
horizontal direction. 
P(v) is computed as 
the canopy openness 
over all azimuth 
angles from a 
specified zenith angle 
(ν) to nadir. 

DHP 
LAI-2200 
AccuPAR 
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Whole ACI 
(Ω) 

Ω𝐼𝑁𝑇 Ω𝐼𝑁𝑇 = 2 ∫ Ω(𝜃)𝐺(𝜃)𝑠𝑖𝑛𝜃𝑑𝜃𝜋/2
0  

Angular integration 
method. 𝐺(𝜃)  is the 
foliage projection 
function 

DHP 
LAI-2200 
AccuPAR Ω𝐴𝑉𝐺  Ω𝐴𝑉𝐺 = 1𝑁 ∑ Ω(𝜃𝑖)𝑁

𝑖=1  
Simple angular 
averaging method. N 
is the number of 
angular sectors.  

DHP 
LAI-2200 
AccuPAR Ω𝑁𝐿𝐶 Ω𝑁𝐿𝐶≈ 1− 0.5 ∫ S(P(𝜃))/P(𝜃)̅̅ ̅̅ ̅̅ 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝜋/20 ∫ −𝑙𝑛P(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃𝜋/20  

Non-linear correction 
method. S represents 
variance. 

DHP 
LAI-2200 
AccuPAR 

Ω𝑉𝑀𝑅 Ω𝑉𝑀𝑅= 2 ∫ (1 − 𝑆(𝑙𝑛𝑃(𝜃))−𝑙𝑛𝑃(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅ )𝐺(𝜃)𝑠𝑖𝑛𝜃𝑑𝜃𝜋20  

Simple variance to 
mean ratio of the 𝑙𝑛𝑃(𝜃) 

DHP 
LAI-2200 
AccuPAR 

 

Results show that all ACI (directional ACI with zenith and azimuth angle Ω𝐴(𝜃, 𝜙), ACI over a concentric 
ring Ω𝐴(𝜃), and an azimuth section Ω𝐴(𝜙), whole ACI over a landscape Ω𝐴(𝜐)) can be derived from DHP 
at different angular resolution, whereas both Ω𝐴(𝜃) and Ω𝐴(𝜐) can be estimated from LAI-2200, and Ω𝐴(𝜐) from AccuPAR. For paddy rice fields, directional ACI values generally increase with the increasing 
segment size, in the order of Ω𝐴(𝜃, 𝜙) < Ω𝐴(𝜃) < Ω𝐴(𝜙) < Ω𝐴(𝜐) , displaying an increase of foliage 
randomness with the segment size (Fig. 8). 
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Fig. 8. A sample downward DHP image (a) and the gap fraction (b) over plot C on July 12, 2012 (DOY 194). 
Panels (c), (d), and (e) represent the Ω𝐴(𝜃, 𝜙) values for each 10°×10° cell, Ω𝐴(𝜃) for different rings, and Ω𝐴(𝜙) for different azimuth sectors, respectively. Panel (f) indicates the Ω𝐴(𝜐) values calculated over 
different solid angles (𝜐 = 10–60°, respectively). Panels (c)−(f) are calculated over an ESU of 20 images. 
(Fig. 3 in Fang et al. (2018)). 

The whole ACI can be calculated from the directional ACIs and the directional gap fractions (Section 2.3). 
Among the four methods to calculate the whole ACI, the INT and AVG methods agree very well and are 
robust over the season (Fig. 9). The NLC method can approximate the INT and AVG methods very well, 
but is easily affected by outlying gap fraction values. The VMR method is indicative of the seasonal ACI 
variation but gives systematically lower values. The whole ACIs calculated from LAI-2200 are on par with 
the values reported in LAI-2200 (Fig. 9). 
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Fig. 9. Seasonal variation of the whole ACIs calculated from the directional Ω𝐴(𝜃) for downward (a), 
upward DHPs (b) and LAI-2200 (c), respectively. Ω𝐼𝑁𝑇, Ω𝐴𝑉𝐺 , Ω𝑁𝐿𝐶, and Ω𝑉𝑅𝑀 are from the integration, 
averaging, non-linear correction, and the variance-to-mean ratio methods. The Ω𝑉𝑅𝑀 lines have been 
offset up by 0.2 (a) and 1.0 (b), respectively. The gray line in (c) shows the whole ACI reported in the LAI-
2200 data file. (Fig. 9 in Fang et al. (2018)) 

          The ACI metrics expand the current CI metrics and can be obtained with different optical 
instruments. The expanded metrics can be applied in the canopy radiative transfer modeling and in the 
estimation of canopy biophysical parameters for other vegetation ecosystems.  

From the three above studies, we have thoroughly investigated uncertainties related to ground 
measurements of LAI, fAPAR and CI. The most appropriate measurement instruments and strategies 
were also proposed and evaluated. These datasets can enlarge the ground database over paddy rice and 
are valuable to validate satellite products. 
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4.3.3 UAV: BRDF description and influence of reproductive organs 
Compared to the labor extensive ground measurements, UAV offers the advantage to avoid disturbing 
the crop and to sample the field or microplots exhaustively. The interpretation of data measured by UAV 
multispectral camera in terms of biophysical variables is generally based on assumptions on canopy 
structure. Knowledge on canopy structure and associated optical properties of canopy might 
significantly improve the estimates. Several crops bear reproductive organs (RO) at the top of the 
canopy after the flowering stage, such as ears for wheat, tassels for maize, and heads for sunflowers. RO 
present specific architecture and optical properties as compared to leaves and stems, which may impact 
canopy reflectance. However, only a few studies document the impact of RO on canopy reflectance. 
Cossani and Reynolds (2012) reported that wheat ears intercept up to 40% of the incident radiation 
around the flowering stage. Li et al. (2015) show that removing the ear layer at the flowering stage 
reduces normalized difference vegetation index (NDVI) values by up to 7% in relative values. This 
explains why Weiss et al. (2001) included explicitly an ear layer to describe the wheat canopy structure 
and simulate crop reflectance along the growth cycle. Gitelson (2003) and Viña et al. (2004) showed that 
the presence of the tassels at the top of maize canopies induced a significant decrease of the VARI index. 
Wanjura and Hatfield (1988) investigated variations in canopy reflectance of sorghum, cotton, and 
sunflower crops during the growth cycle using the scattering and absorption coefficients. However, they 
were not able to draw clear conclusions on the impact of sorghum panicles and sunflower heads on 
canopy reflectance for the Landsat TM bands. More detailed investigations are thus required to better 
quantify the role of RO on canopy reflectance. Besides, the impact of RO on canopy reflectance should 
be investigated for the possible view and illumination directions under which crops are usually observed 
from various remote sensing platforms. Few studies report detailed measurements of the BRDF for 
crops under field conditions. This paper aims to understand and quantify the influence of RO on the bi-
directional variation of canopy reflectance and NDVI. 
 
Multispectral camera observations from a UAV were completed over wheat, maize, and sunflower just 
after flowering when the RO are fully developed, and the leaf layer is with only marginal senescence. 
The flights were designed to sample the BRDF with view zenith angles spanning from nadir to 60° and 
many compass directions. Three flights corresponding to three sun positions were completed under 
clear sky conditions. The camera was always pointing to two adjacent plots of few tenths of square 
meters: the RO were manually removed on one plot, while the other plot was kept undisturbed. 
 
The reflectance of three crops in two bands (red and NIR) present similar directional patterns across the 
three sun positions, e.g., the measurements for 𝜃𝑠 = 45°. And they show a general symmetry of both 
sides of the principal plane, i.e. the plane containing the sun direction (Fig. 10). 
 
Regarding to NDVI, which is frequently used to quantify vegetation amount, the addition of ears in 
wheat canopies increases the NDVI value (Fig. 11). For maize crops, the highly scattering tassels in the 
red and NIR decrease the NDVI values by -0.03. For the sunflower, the impact is slightly negative (− 0.02) 
for 𝜃𝑠 = 30°, but positive (0.01) for 𝜃𝑠 = 60° and intermediate (0) for 𝜃𝑠 = 45°. Our experimental 
results also show that the NDVI changes induced by the RO layer can be translated into a change in GAI 
estimates that can reach up to 25% (Table 4). It can be either positive as in the case of wheat crops and 
for the sunflower for the smaller solar zenith angle, or negative as in the case of the maize crop. 
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Fig. 10. Polar representation of the measured BRF distribution of the three experiments without the RO 
(RO-) for 675 nm and 850 nm bands. The sun is displayed as a black cross marker and was at 𝜃𝑠 = 45°. 
The row orientation (east-west) is represented by the dashed black line. Values represent interpolations 
from raw measured BRF. (Fig. 5 in Li et al. (2021b)) 
 

 
Fig. 11. Variation of NDVI values as observed near nadir (average of BRF for − 10 ◦ < θv < 10◦) for maize, 
sunflower, and wheat with θs = [30◦,45◦,60◦]. The canopy NDVI values measured with (RO+) and without 
(RO-) RO are displayed. (Fig. 11 in Li et al. (2021b)) 
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Table 4. Impact of the RO on GAI estimates. The measured NDVI values for the canopy with (RO+) and 
without (RO-) RO are displayed along with the corresponding GAI. All GAI values are derived from NDVI 
using the empirical relationship proposed by Verger et al. (2011). The difference is then computed in 
absolute (ΔGAI) or relative value (ΔGAI %). (Table 4 in Li et al. (2021b)) 
 

 
 
This study proposed a method to sample the BRDF from UAV multi-angular measurements. It offers the 
advantage to avoid disturbing the crop surface while using a single footprint where the multiangular 
observations are concentrated. The processing pipeline has been applied in many other research studies 
or industrial applications conducted in HIPHEN. This study finally demonstrated that the RO layer 
impacts the estimates of canopy traits such as GAI as derived from the multispectral observations. 
 

4.3.4 Satellite interpretation methods exploit ground measurements to calibrate 

and validate the estimates of biophysical products 
 

Over the last decade, several global LAI, fAPAR and fCOVER products have been generated from sensors 
at a spatial resolution close to 1 km and a temporal sampling of 8 to 16 days (Baret et al., 2013, 2007; 
Knyazikhin et al., 1998; Liang et al., 2013; Yan et al., 2018). However, this kilometric resolution is 
generally much larger than the typical length scales of most landscapes, limiting therefore the 
applications to the regional and local scales (Garrigues et al., 2008a). The development of GAI, fAPAR 
and fCOVER biophysical products from decametric spatial resolution sensors will be better suited for 
addressing these applications closely related to agriculture. 
 

4.3.4.1 Decametric satellite: estimation of GAI, fAPAR and fCover 

This section focuses on the estimation of GAI, fAPAR and fCOVER from satellite sensors at 10 m to 30 m 
spatial resolution. I mainly addressed three problems: 

• Estimating fAPAR from direct, diffuse and total sunlight separately and analyzing the differences 
between fAPAR definitions and influences on APAR (Li and Fang, 2015). 

• Evaluating the performance of a generic inversion algorithm to derive variables using simulated 
calibration databases without any knowledge of the landcover (Li et al., 2015). 

• Evaluating the performance of GAI and fAPAR estimation either using empirical or simulated 
calibration databases and generic or crop-type specific algorithms (Camacho et al., 2021). 
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4.3.4.1.1 Estimation of direct, diffuse and total fAPAR (Li and Fang, 2015) 

 
fAPAR represents the summed canopy absorption efficiency for both direct and diffuse PAR. Current 
satellite fAPAR products typically correspond to black-sky fAPAR under direct illumination only, thus 
ignoring the diffuse component of fAPAR. The only direct illumination assumption might lead to 
uncertainties on APAR and yield estimation because the proportion of diffuse PAR over the surface 
cannot be ignored, even under clear-sky conditions (Gu et al., 2002). 

In Li and Fang, 2015, we developed an approach to estimate direct, diffuse and total fAPAR from 
Landsat-5 Thematic Mapper (TM) satellite measurements at 30 m spatial resolution. fAPAR was 
retrieved by comparing Landsat surface reflectance and simulated surface reflectance from a coupled 
soil-leaf-canopy radiative transfer model (SLC) (Verhoef and Bach, 2007) using a lookup table algorithm. 
Besides, field measured direct, diffuse and total fAPAR were derived from crops, deciduous broadleaf 
forests and evergreen needleleaf forests at six FLUXNET sites ((http://public.ornl.gov/FLUXNET/)). These 
ground data were used to validate satellite retrieved fAPAR. Landsat-estimated direct, diffuse and total 
APAR were finally calculated by multiplying Landsat fAPAR with corresponding ground measured direct, 
diffuse or total PAR at the satellite pass time. 

 

Fig. 12. Validation of Landsat-5 estimated fAPARs with field measured values. All field measurements are 
instantaneous values at 10:00 A.M. (Figure 9 from Li and Fang (2015)) 
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In general, all Landsat-estimated fAPARs correspond well with the field measurements (Figure 12). The 
Landsat-estimated direct fAPAR is slightly higher than the field measurements by 1.17%, whereas the 
Landsat diffuse fAPAR is lower than the field measurements by -6.77%. Compared with the field-
measured total fAPAR, the Landsat total fAPAR is larger by 1.64%, whereas the Landsat direct fAPAR is 
slightly lower by 0.2%. (Fig. 12). 

The differences between fAPARs will influence the estimation of APARs. The direct and diffuse APARs 
were calculated using the field-measured direct and diffuse PAR, multiplied by the corresponding 
Landsat-estimated direct and diffuse fAPARs (Figure 13a). Generally, the relative difference between the 
direct and diffuse APAR decreases with increasing diffuse ratio (R2 = 0.76), and the diffuse APAR tends to 
be lower than the direct APAR when diffuse ratio smaller than 50%. Conversely, the diffuse APAR is 
higher than the direct APAR when the diffuse ratio is larger than 50%. On average, the diffuse APAR is 
lower than the direct APAR by -421.36 μmol s-1 m-2 (-37.03%). The Landsat-estimated direct and total 
APARs were also calculated by multiplying the corresponding Landsat direct and total fAPARs, 
respectively, by the field-measured downwelling PAR. In general, the total APAR is higher than the direct 
APAR (277.72 μmol s-1 m-2, 62.97%), and the difference increases with the diffuse ratio (R2 = 0.76) (Figure 
13b).  

 

Fig. 13. (a) The relative differences between diffuse APAR (APARdif) and direct APAR (APARdir) as a 
function of diffuse ratio. (b) The relative differences between total APAR (APARtol) and direct APAR 
(APARdir) as a function of diffuse ratio. (Figure 10 from Li and Fang (2015)) 

The differences between the direct and diffuse fAPARs are mainly related to canopy structure and the 
solar zenith angle. The total fAPAR should be generated from current satellite sensors, and the 
differences in fAPAR definitions should be considered in the estimation of APAR in vegetation models. 
More frequent field measurements are necessary to improve the accuracy of ground fAPAR 
measurements and to validate satellite products. The present approach can be extended to estimate 
regional and global direct and diffuse fAPAR products utilizing existing and future satellite data. 
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4.3.4.1.2 A generic algorithm to retrieve GAI, fAPAR and fCOVER from Landsat-8 and SPOT4 time series 

(Li et al., 2015)  

 

Due to the impact of clouds or the design of sensors, the monitoring capacity and actual use of 
decametric sensors is always limited by the revisit frequency or the cost of images. The launch of 
Sentinel-2 in 2015 provided data at decametric resolution with a high revisit frequency to allow 
quantifying the canopy functioning at the local to regional scales. Before launching Sentinel-2, a SPOT4 
(Take5) experiment was started in 2013 by the French Agency Centre National d’Etudes Spatiales (CNES), 
aiming at providing time series of images with similar revisit frequency and resolution as Sentinel-2 data 
(http://www.cesbio.ups-tlse.fr/multitemp/) to prepare for the use of Sentinel-2. Since the SPOT4 (Take5) 
only lasted few months which was not enough to cover a full vegetation cycle, Landsat-8 images at 30m 
spatial resolution were used to complete the measurements. The objective of this study was to evaluate 
the performance of a generic algorithm to generate consistent time series of LAI, fAPAR and fCOVER 
products from the combination of SPOT4_HRVIR and Landsat-8 surface reflectance data acquired during 
a growth season, without any prior knowledge of the landcover. 
 
A time series of high spatial resolution SPOT4_HRVIR (16 scenes, 20m spatial resolution) and Landsat 8 
(18 scenes, 30m spatial resolution) images acquired in 2013 over the France southwestern site were 
used to generate the LAI, fAPAR and fCOVER products. The SPOT4_HRVIR data was resampled to 30m to 
be consistent with the Landsat-8 data. For each sensor and each biophysical variable, a neural network 
was first trained over PROSPECT+SAIL radiative transfer model (Jacquemoud et al., 2009) simulations of 
top of canopy reflectance data for green, red, near-infrared and short wave infrared bands (Fig. 14).  
 

 
Fig. 14. The outline of the algorithm. (Figure 3 in Li et al. (2015)) 
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Results show that variable retrieved from both sensors have a good spatial and temporal consistency, 
e.g., LAI in Fig. 15. For very close acquisition dates, SPOT4_HRVIR and Landsat 8 products are very similar 
and most of the differences are within a limited range. The results demonstrate the robustness of the 
proposed algorithm and its suitability to be applied to several satellites. The temporal profiles show that 
two sensors complement themselves to describe the seasonal variation of vegetation: the combination 
of sensors may overcome the typical low revisit frequency of decametric sensors, allowing to build 
virtual constellations. 
 

 
Fig. 15. Seasonal variation of LAI products estimated from SPOT4_HRVIR (Take5) and Landsat-8 sensors. 
(Figure 8 in Li et al. (2015)) 

Compared with ground measurements taken over wheat, maize and sunflower using digital 
hemispherical photographs, the satellite estimates were strongly correlated with the field 
measurements (R2 > 0.79), corresponding to a RMSE = 0.49 for LAI, RMSE = 0.10 (RMSE = 0.12) for black-
sky (white sky) fAPAR and RMSE = 0.15 for FCOVER (Fig. 16). It is concluded that the proposed generic 
algorithm provides a good basis to monitor the seasonal variation of the vegetation biophysical variables 
for important crops at decametric resolution. 
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Fig. 16. Direct validation of (a) LAI, (b) black-sky FAPAR, (c) white-sky FAPAR and (d) FCOVER products 
derived from the SPOT4_HRVIR (Take5) and Landsat 8 sensors with the ground measurements. (Figure 
11 in Li et al. (2015)) 
 
This study showed the interest of this generic algorithm to derive LAI, fAPAR and fCOVER 

consistent products from SPOT4_HRVIR and Landsat 8 over the study area. These principles were 
originally from the pipeline designed for Sentinel-2 and now have been applied to Sentinel-2 with a high 
revisit frequency and a decametric spatial resolution. This study was based on a generic algorithm that 
applied potentially to all landcover types. Major improvements were expected from the development of 
more specific algorithms, i.e., when the training is achieved over a limited set of cases defined for each 
landcover type. This ‘specific algorithm’ was studied in the next paper. 
 

4.3.4.1.3 Performance of GAI and fAPAR estimation using empirical or simulated calibration databases 

and generic or crop-type specific algorithms (Camacho et al., 2021)   

 
Several methodologies have been developed to estimate GAI and fAPAR from satellite data at 
decametric resolution (Amin et al., 2021; Delloye et al., 2018; Drusch et al., 2012; Ganguly et al., 2012; 
W. Li et al., 2015). According to the source of training datasets, e.g., ground measurements and model 
simulations, the retrieval algorithms can be categorized into empirical and physical approaches. 
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Empirical approaches rely on the ground measurements for calibration, and they were typically limited 
by the availability of ground dataset, representativeness of environmental and illumination conditions. 
Conversely, methods based on radiative transfer model simulations for calibration are generalizable but 
limited by the model assumptions and parameters setting of priors. Besides, depending on whether the 
approaches can be applied to all the crop types or only to a specific crop type, the retrieval approach 
also can be categorized as “generic” or “specific”, respectively. Although the generic method has been 
demonstrated to provide good estimation of GAI and fAPAR (W. Li et al., 2015), crops have particular 
structural and optical properties features may require ‘specific’ algorithms when considering contrasted 
crop types.  
 
The objective of this study is to compare different retrieval approaches for GAI and fAPAR over crops 
using a comprehensive dataset covering worldwide sites and dates along the growing season. A unique 
ground database including 873 GAI and 730 fAPAR data points over 25 different crop types for a wide 
range of conditions and growth stages was used this study. They can match Landsat-8 observations 
because the ground measurements were taken when the satellite was working. Several machine 
learning techniques were investigated to retrieve GAI and fAPAR from the Landsat-8 top of canopy 
reflectance values, either using empirical (EMP) or simulated calibration (SIM) databases and generic or 
crop-type specific algorithms. 
 
For the generic approach, results show that GAI and fAPAR estimation performances based on dataset 
simulated with the PROSAIL model were significantly degraded as compared to the machine learning 
techniques trained over the experiment datasets (Fig. 17). This is mainly because the PROSAIL model is a 
1-D radiative transfer model that does not account for the 3-D architecture of crops. This emphasizes 
the importance of the prior-knowledge on the crop type and growth stages to estimate the biophysical 
variable. The results also demonstrate that gaussian process regression method provides best 
performance for GAI estimation trained either on simulation data or empirical datasets. 
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Fig. 17. Performances of NDVI, ANN, GPR and SVM machine learning techniques for GAI (a) and fAPAR (b) 
using generic SIM (orange) and EMP (blue) approaches. The blue bar shows the generic EMP midpoint 
between the best-case and worst-case performances. Generic SIM and EMP mean performances are 
shown in the table. (Fig. 3 in Camacho et al. (2021)) 
 
Compared with estimates from the generic approach, the specific approach provides generally better 
results when the training dataset on a specific crop is applied to the same crop as demonstrated by the 
lowest RMSE values observed on the diagonal of Table 5 for each variable (RMSE from 0.45 – 1.19 for 
GAI and 0.07 – 0.15 for fAPAR). However, the performance degraded significantly when the training on a 
specific crop is applied to other crops (Table 5, RMSE from 1.5 to 1.9 for GAI and 0.16 – 0.29 for fAPAR). 
 



36 
 

 
Table 5. Estimation performances expressed in RMSE of GAI (top) and fAPAR (bottom) when trained on a 
crop type and validated over all the other crop types. The GPR technique applied to the EMP training is 
used here. The diagonal of the matrix for each variable (cells with thick border line) corresponds to the 
validation on the same crop type as that used for the training. The generic approach for best-case and 
worst-case training is also displayed for comparison. Validation on ‘All’ crop type corresponds to the 
performances computed over all the crop types. Numbers in bold correspond to the smallest value for 
the validation on a given variable and crop type. Colors are scaled according to the RMSE value. (Table 5 
from Camacho et al. (2021)) 
 
This study investigated several ways to estimate GAI and fAPAR variables from Landsat-8 satellite data. A 
large database over 25 different crops types for a wide range of conditions and growth stages was used 
in this study. Several retrieval processes were investigated, including band selection of Landsat-8, 
machine learning techniques (ANN, GPR, SVM) versus simple NDVI approach, training (EMP, SIM) and 
approach (generic, specific) for both GAI and fAPAR variables. Among the machine learning techniques 
considered, GPR appears to be the one performing the best over most cases investigated mainly for 
fAPAR. However, GPR is more computer demanding as compared to the other machine learning 
techniques. Compared to generic methods, crop-specific approach performed slightly better, indicating 
the knowledge of crop type is an important information when interpreting the satellite signal.  
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4.3.4.2 Validation of hectometric and kilometric satellite products   

Currently, a number of kilometric and hectometric resolution LAI products have become available, e.g., 
MODIS (Knyazikhin et al., 1998), CYCLOPES (Baret et al., 2007), JRC-TIP (Pinty et al., 2011), GEOV1 and 
GEOV2 (Baret et al., 2013), EPS (García-Haro et al., 2018), GLASS (Xiao et al., 2015, 2014), GLOBMAP (Liu 
et al., 2012), PROBA-V (Baret et al., 2016) and VIIRS (Yan et al., 2018). A high quality of remote sensing 
biophysical products is mandatory for using them in models and applications (Morisette et al., 2006). 
 
To properly understand and quantify the uncertainties associated with these products, a number of 
validation studies have been performed at the global or regional scale for a variety of land cover types 
(Camacho et al., 2013; Garrigues et al., 2008b; Weiss et al., 2007). Most of these validation studies have 
been conducted under the framework of the Land Product Validation sub-group (LPV) of the Working 
Group Cal/Val (WGCV) of the Committee on Earth Observing Satellite (CEOS) (http://lpvs.gsfc.nasa.gov/). 
These validation studies can be categorized in two types:  

(1) evaluation of the spatial and temporal consistency of these products by intercomparison with 
reference products without ground measurements.  

(2) direct comparison with ground measurements processed according to CEOS/WGCV LPV 
recommendations (Morisette et al., 2006);  

 
In the past few years, I have participated in the validation of various LAI satellite products and made 
contributions in three aspects: 

• The analysis of the impacts of vegetation mixture and misclassification on MODIS LAI products 
(Fang et al., 2013b). 

• The study of spatial and temporal consistency of five major global LAI products and their 
associated uncertainties through intercomparison (Fang et al., 2013a). 

• The evaluation of the quality of several global LAI moderate resolution products over croplands 
through direct comparisons with ground LAI measurements (Fang et al., 2019).  

 

4.3.4.2.1 Impacts of vegetation mixture and misclassification on MODIS LAI products (Fang et al., 2013b) 

 
The MODIS LAI product (MCD15 C5) is one of the most popular products in the community. 
Understanding its uncertainties is critical to assimilate LAI into the ecosystem and land surface models 
(GCOS, 2016; Morisette et al., 2006). The algorithm of MODIS LAI products uses land cover types as prior 
information to constrain the vegetation structural and optical parameters in the canopy radiative 
transfer models (Knyazikhin et al., 1998). Thus, the errors in classifying land cover type may propagate 
into LAI uncertainties during the retrieval process. The objective of this study is to investigate the effect 
of biome misclassification on MODIS LAI estimation using a statistical approach. 
 
The 8-day synergistic LAI products at 1km spatial resolution (MCD15 C5) and land cover products at 
500m resolution (MCD12Q1 C5) during 2003 – 2009 were used in this study. The secondary land cover 
types retrieved in the International Geosphere Biosphere Program (IGBP) classification scheme (Friedl et 
al., 2002) was converted to the MODIS LAI/FAPAR biome types in the analysis. The paired primary and 
secondary land cover types provide possibilities to study potential LAI uncertainty caused by biome 
misclassification due to subpixel mixture and biome misclassification.   
 
Pixels with high confidence in the primary land cover type and of identical primary and secondary type 
were regarded as representing ‘pure’ biome types with minimal biome mixing or misclassification. 
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Otherwise, the pixels were regarded as ‘mixed’ or ‘misclassified’. A confusion matrix was constructed to 
explore the LAI discrepancies induced by potential subpixel mixture and biome misclassification. 
 
Results show that 28.74% of MODIS LAI products are over pure pixels and the other 71.26% are 
retrieved as mixed biome types. When misclassification between distinct biome types occurs, it does not 
generally translate into strong disagreement in LAI retrievals. Misclassification between herbaceous 
types has minimal impact on LAI retrievals (<0.37 or 27.0%), partly due to their relatively lower LAI 
values (Table 6). 
 
Table 6. (a) Confusion matrix for LAI mean values for pure (bold) and mixed pixels and (b) the relative LAI 
errors induced by biome misclassification. Statistics based on data from 2003−2009. EBF, DBF, ENF and 
DNF represent evergreen broadleaf forests, deciduous broadleaf forests, evergreen needleleaf forests 
and deciduous needleleaf forests, respectively. (Table 2 in Fang et al. (2013b) 

 
 
Analysis in LAI climatologies show that biome misclassification generally leads to an LAI overestimation 
for savanna, but an underestimation for forests. The largest errors caused by misclassification are found 
for savanna (0.51), followed by evergreen needleleaf forests (0.44) and broadleaf forests (~0.31) (Table 
7). 
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Table 7. Monthly average of the misclassification induced LAI errors for the eight primary biome types 
(2003−2009). The mean absolute errors (MAEs) are calculated from the average of the absolute monthly 
errors. (Table 3 in Fang et al. (2013b)) 
 
Biome misclassification is a major factor contributing to LAI uncertainties for savanna, while for forests, 
the main source of uncertainties may be due to algorithm deficits, especially in summer. To reduce the 
LAI uncertainties, further efforts should therefore be focused on improving the biome classification for 
the structurally complex savanna systems and refinement of the retrieval algorithms for forest biomes. 
 

4.3.4.2.2 Intercomparison of five major global LAI products and their associated uncertainties (Fang et 

al., 2013a) 

 
To better assess the quality of global LAI products, five major LAI products (MODIS, GEOV1, GLASS, 
GLOBMAP and JRC-TIP) were compared between 2003 and 2010 at a 0.01° spatial resolution and with a 
monthly time step. The daily Land-SAF product was used as a regional reference to evaluate the 
performance of other global products in Africa. Special attention has been paid to the product quality 
indicators to investigate the uncertainties of the products. Cross-sensor LAI conversion equations were 
derived for different biome types defined by the MODIS landcover products. 
 
Results show that MODIS, GEOV1, GLASS, and GLOBMAP are generally consistent in spatial patterns and 
magnitudes (Fig. 18). All the products show a smooth seasonal evolution and agree very well for 
grasses/cereal crops and shrubs, although differences are observed on forests and savanna. In particular, 
JRC-TIP LAI, which is defined as effective LAI, is continuously lower than the other true LAI products over 
broadleaf and needleleaf forests.  The underestimation is more pronounced during the maturity stage, 
reaching nearly 4 for evergreen broadleaf forest (EBF). 
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Fig. 18. Climatologies of global monthly MODIS, GEOV1, GLASS, GLOBMAP, and JRC-TIP LAI products for 
different biome types from 2003 to 2010 (0.05°). (Figure 2 in Fang et al. (2013a)) 
 
Regarding to pixel-level magnitude, MODIS, GEOV1, GLASS and GLOBMAP LAI products have strong 
linear correlations with each other, with R2 ranging between 0.743 and 0.896 (Fig. 19). This indicates the 
products can be replaced if one is missing on some dates or regions. The results further demonstrate the 
underestimation of JRC-TIP LAI products, that JRC-TIP values are about one third of the other LAI values 
and have a low correspondence with these products (R2≤0.66).   
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Fig. 19. Density scatter plots between MODIS, GEOV1, GLASS, GLOBMAP, and JRC-TIP global LAI 
products from 2003 to 2010 (0.05°). 
 
The overall uncertainties and relative uncertainties are in the following order: MODIS (0.17, 11.5%) < 
GEOV1 (0.24, 26.6%) < Land-SAF (0.36, 37.8%) < JRC-TIP (0.43, 114.3%) (Table 8). The highest relative 
uncertainties usually appear in ecological transition zones (Fig. 20). More than 75% of MODIS, GEOV1, 
JRC-TIP, and Land-SAF pixels are within the absolute uncertainty requirements (±0.5) set by (GCOS, 
2011), whereas more than 78.5% of MODIS and 44.6% of GEOV1 pixels are within the threshold for 
relative uncertainty (20%) (Fig. 20 and Table 8). 
 

 
Fig. 20. LAI uncertainty maps for MODIS, GEOV1, and JRC-TIP from 2003 to 2010 (0.05) in January (left 
panels) and July (right panels), respectively. (Figure 4 in Fang et al. (2013a)) 
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Table 8. Yearly Mean LAI, Uncertainties, and Relative Uncertainties for Different Biome Types, 2003–
2010a (Table 3 in Fang et al. (2013a)) 

 
 
This study reveals the discrepancies mainly due to differences between definitions of LAI (true versus 
effective), retrieval algorithms, and input data. Future product development and validation studies 
should focus on areas (e.g., sparsely vegetated and savanna areas) and periods (e.g., winter time) with 
higher uncertainties. 
 

4.3.4.2.3 Evaluation of global moderate resolution LAI products over croplands through direct 

comparisons with ground measurements and decametric satellite observations (Fang et al., 

2019) 

 
Besides the previous global studies, there is also a need to conduct validation studies for specific 
ecosystems at a regional scale. However, the lack of continuous accurate ground measurements has 
hampered the effective validation of existing LAI products over agricultural fields. This study conducted 
rigorous validation of seven global LAI products (EPS, GEOV2, GLASS, GLOBMAP, MODIS, PROBA-V and 
VIIRS) over typical agricultural croplands in northeastern China. Seasonal continuous LAI measurements 
were obtained from field campaigns in paddy rice fields of Honghe in 2012 and 2013, and in maize, 
soybean, and sorghum fields in Hailun in 2016. High resolution reference LAI maps were first derived 
from HJ-1, Landsat 7, and Sentinel-2A images with the look-up table (LUT) inversion method from 
PROSAIL radiative transfer model and were evaluated with the field measured LAI (R2 = 0.85 and RMSE = 
0.66, Fig. 21).  
 
Subsequently, the moderate resolution LAI products were validated with the upscaled high resolution 
reference LAI. Results show that there are huge variations among the different products when 
compared with upscaled reference LAI maps, with RMSE varying between 0.8 and 2.0, and the RRMSE 
between 25 and 60% (Fig. 22). The performance of the LAI products varies at different phenological 
stages: the global LAI tends to overestimate the high-resolution reference LAI during the green-up stage, 
largely fluctuates during the maturity stage, and underestimates during the senescence stage. The weak 
performance is mainly attributed to the lack of regional tuning of the global LAI algorithms over 
agricultural areas. 
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Fig. 21. Comparison of the high resolution reference LAI (3 × 3 pixels) with the field measured data for 
paddy rice in Honghe (a), maize, soybean, and sorghum in Hailun (b), and all crops (c). The colors 
represent different the day of year. (Fig. 5 in Fang et al. (2019)) 
 

 
Fig. 22. Comparison of the moderate resolution LAI products with the upscaled reference LAI (3 × 3 
pixels) at the Honghe (first row), Hailun (middle), and both sites (bottom). The right most column 
compares for EPS and PROBA-V over Hailun. The color bar indicates different observation dates. (Fig. 11 
in Fang et al.(2019)) 
 
Further efforts are necessary to improve the LAI product quality in local and regional scales, especially 
for the water-logged paddy rice fields. This study highlights the importance of crop-specific and 
temporal validation at a regional scale. More validation studies are needed in other parts of the world 
with sufficient field LAI measurements. The uncertainty information exposed in this study is beneficiary 
for product improvement and the application community. 
 

  



44 
 

4.3.4.3 Fusion of decametric and hectometric satellite data  

 
In the context of sustainable agriculture, reliable crop monitoring has become more and more important 
for agricultural practices. A good crop growth monitoring from remote sensing relies on two important 
points: dense time series and optimal spatial resolution (Azzari et al., 2017; Gao et al., 2017; Lobell et al., 
2015; Yang et al., 2020; Zhu et al., 2018). However, due to the tradeoff between scanning swath and 
pixel size and the impacts of environmental factors (e.g., cloud), it is difficult to obtain measurements 
with both high temporal resolution and optimal spatial resolution from a single platform (Gao et al., 
2006; Ghamisi et al., 2019). Spatio-temporal fusion of measurements acquired from various platforms is 
therefore a relevant solution to this problem.  
 
Spatio-temporal fusion algorithms can be categorized in two classes: spatial unmixing-based fusion 
(Zhukov et al., 1999; Zurita-Milla et al., 2008) and image pair-based fusion, such as the widely used 
algorithm STARFM (spatial and temporal adaptive reflectance fusion model)(Gao et al., 2006) and its 
extensions (Ghamisi et al., 2019; Hilker et al., 2009; Wang et al., 2014, 2017; Weng et al., 2014; Wu et al., 
2017; Zhu et al., 2010). Although these methods have been widely developed and used in different 
applications, there are still several issues that need to be solved. First, most algorithms were developed 
based on reflectance data from different sensors. The differences on spectral bands might lead to 
uncertainties to the fused products. Data fusion methods were proposed for some variables including 
land surface temperature (Weng et al., 2014) and evapotranspiration (Anderson et al., 2011; Semmens 
et al., 2016). However, only little attention was paid to biophysical variables such as FAPAR or LAI. 
Second, the fusion error from cross-scale spatial mismatch which is caused by geo-registration errors 
and point spread function calibration errors were not considered in these methods (Jiang et al., 2020; 
Zhu et al., 2018). 
 
In this study (Li et al., 2017), an algorithm, named DHF (for Decametric Hectometric Fusion) was 
developed to provide near real time estimates of fAPAR at a decametric resolution and dekadal time 
step (Fig. 23). fAPAR was selected because of its important role in canopy models and small dependency 
to scaling issues. The algorithm assumes that the fAPAR time course is described by a second-degree 
polynomial function over a limited 60-days temporal window for each decametric pixel. To reduce the 
dimensionality of the problem, landcover classes are considered instead of each individual pixel. For 
each class, the coefficients of the polynomial function are adjusted using the temporal course of the 
available decametric fAPAR products, under the constraint of providing a good match with the time 
course of the hectometric dekadal fAPAR products. The point spread function associated to the 
hectometric fAPAR products and the possible biases between the decametric and hectometric fAPAR 
products are explicitly accounted for. 
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Fig. 23. Flowchart of the four steps of fusion main algorithm. (Fig. 4 in Li et al. (2017)) 
 
The algorithm was evaluated over a time series of decametric Landsat-8 fAPAR images (30 m) and 
hectometric (330 m) dekadal GEOV3 fAPAR derived from PROBA-V images acquired in 2014 over a site in 
the SouthWest of France. Results show that the DHF values are in very good agreement with the 
Landsat-8 fAPAR (RMSE = 0.05–0.14) that were not used when computing the DHF, using a leave-one-
out method (Table 9). 
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Table 9. RMSE, R2 and Bias between DHF products and the original (‘Original’) or corrected (‘Corrected’) 
Landsat-8 products on each Landsat-8 measurement date. The DHF FAPAR products were generated 
using either all the Landsat-8 images available (‘Used’) or when the Landsat-8 image used for 
performance evaluation was removed (‘Remove’) from the time series for DHF computation using the 
leave-one-out method. (Table 2 in Li et al. (2017)) 
 

 
 
Comparison with ground measurements collected over 14 sunflower fields along the growth season 
confirms the good performances of the DHF fAPAR products (RMSE = 0.11, Fig. 24). 

 
Fig. 24. Comparison of the ground FAPAR measurements with (a) the original Landsat-8 FAPAR, (b) the 
corrected Landsat-8 FAPAR and (c) the DHF FAPAR products. Results observed on 29 data points over 
the 14 sunflower fields. Each field corresponds to a particular color. (Fig. 11 in Li et al. (2017)) 
 
This study proposed an interesting algorithm to fuse the decametric and hectometric fAPAR products. It 
had the potential to be applied on Sentinel-2 and Sentinel-3 satellite datasets. However, more crops and 
growth stages should be considered in the validation of fused products. 

4.4 Conclusion and perspectives 
 
This thesis was structured around the estimation of crop key traits (LAI, fAPAR, fCOVER and CI) from 
non-contact and high-throughput technologies at a range of spatial scales. Accurate ground 
measurements are important to understand the principles used to retrieve information from the 
different instruments. It allows to optimize and calibrate the methods for while offering valuable 
datasets to validate them. We compared several optical instruments to obtain continuous 
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measurements of LAI, fAPAR and CI from ground measurements. LAI-2200 and DHP provided accurate 
LAI or GAI measurements when the senescence fraction is small. Conversely, when significant senescent 
fraction is present, downward-looking DHP was optimal to provide GAI and green fAPAR. Investigations 
of apparent clumping index computed from raw measurements of LAI-2200, AccuPAR and DHP 
expanded the understanding of current CI metrics.  
 
Thanks to the previous ground measurements techniques, we calibrated and validated algorithms used 
to estimate GAI, fIPAR and fCOVER from decametric satellites. We demonstrated that specific algorithms 
were generally more accurate as compared to generic ones. Further, we also demonstrated that, even 
for the generic algorithms, empirical methods based on training machine learning techniques such as 
GPR were outperforming approaches based on radiative transfer model inversion. However, generic 
algorithms present the advantage of providing still reasonable estimates of these GAI, fIPAR and fCOVER 
variables without having to identify the landcover type. For precision agriculture, satellite data with 
spatial resolution within few meters will be very useful. More focuses will be put on newly launched 
satellites, such as PlanetScope, Skysat and GaoFen series. When estimating canopy structure variables 
from the spectral variation of the reflectance measured, we demonstrated the importance to account 
for the BRDF effects. Further, the reproductive organs impact significantly canopy BRDF with 
consequences when estimating GAI from multispectral observations. Further work should be dedicated 
to better quantify this effect with the development of methods that will explicitly account for the 
reproductive organs.  
 
At coarser resolution satellite observations, the algorithms are generally based on radiative transfer 
model inversion since noy enough representative datasets are available to train empirical ones. We 
demonstrated for the MODIS algorithm, that only small differences in performances were separating 
generic and specific algorithms. The availability of decametric estimates of GAI, fIPAR and fCover were 
used to validate the coarser resolution satellite products. Further work should be needed to extend 
these activities to the calibration of empirical algorithms to retrieve these variables from hectometric 
and kilometric resolution sensors. However, because of the availability of frequent and extensive global 
coverage of the globe with metric to decametric observations, it would be more efficient to degrade the 
resolution of these higher spatial resolution data to get equivalent coarser resolution products 
dedicated to global applications. 
 
All these studies were dedicated at solving scientific questions and lead to scientific research 
publications. I also conducted several application-oriented projects according to the knowledge 
obtained from these scientific works. In the context of sustainable agriculture, both the accuracy and 
throughput of traits estimation are important. 

- At the ground level, measurements with IoT will become more and more popular. Algorithms to 
estimate traits from the sensors (RGB camera, multispectral camera or spectrometer) installed 
on IoT systems will need more investigations (Muangprathub et al., 2019; Velumani et al., 2020). 
Several key questions should be answered, such as the impact of illumination conditions during 
a the day and among different days, the representativeness of one-dimension radiative transfer 
model for crops measured in very close range, and time series filtering. However, the IoT system 
has obvious drawbacks due to its small footprint, which limits its application over 
heterogeneous fields due to soil background or with various genotype microplots. How many 
IoT systems should be installed and how to install them in an efficient and economical way pose 
a challenge to the real applications.  As compared with IoT, UGV has obvious advantages on its 
coverage of whole fields and user-defined multiple instruments embedded on it. But the high 
cost might restrict its applications. 
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- UAV systems has been widely used for both scientific research and industrial applications due to 
its low price (compared to UGV and hand-held instruments), suitability over larger fields and 
ease of use. For multispectral cameras installed on UAV, the future interests will be 
improvements of radiative calibration under arbitrary illumination conditions, more deep 
investigations on the impact of canopy structural and optical properties on measurements, and 
the improvements of traits estimation accuracy using 3D radiative transfer models. 

- The analysis of the consistency of trait estimates from different platforms should be carefully 
evaluated, especially at the field and microplot scales. Data fusion techniques should be more 
fully explored to take advantages of several platforms and monitor crops at the optimal spatial 
and temporal scales.  
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A B S T R A C T   

Continuous and accurate ground measurements of the fraction of absorbed (fAPAR) or intercepted (fIPAR) 
photosynthetically active radiation by green canopy components is important to monitor canopy functioning. 
fAPAR and fIPAR are sensitive to illumination conditions and non-green components during the senescence 
stage. While several methods have been developed to estimate fAPAR or fIPAR in the field from different 
methods including AccuPAR, LAI-2200 and Digital Hemispheric Photograph Photography (DHP), the differences 
among these methods still need more investigations. The principles on which they are based are first reviewed 
with due attention to the assumptions used and approximations made. Two field campaigns conducted in 2012 
and 2013 in northeastern China over paddy rice fields were then used to compare fAPAR and fIPAR measured 
using AccuPAR, DHP and LAI-2200. Results demonstrated that considering only canopy light transmittance 
(fIPAR), measured with AccuPAR, DHP or LAI-2200, is a good proxy of fAPAR which is computed from AccuPAR 
measurements of the four fluxes of the radiation balance. However, when canopy is senescing, downward looking 
DHP method is recommended since it is the only method that directly measures the light intercepted by green 
elements. Methods based on upward looking (DHP upward, AccuPAR, LAI-2200) cannot distinguish between the 
green and senescent vegetation elements. Corrections based on independent measurements of the ratio of the 
green area index (GAI) to the plant area index (PAI) (GAI/PAI) need to be used in this case, while assuming that 
green and senescent elements are well mixed in the canopy volume. Downward looking DHP appears to be the 
preferred method for relatively short and dense canopies such as rice since it does not disturb the canopy, it is 
sensitive to the green elements only and allows to simulate fIPAR for any illumination conditions.   

1. Introduction 

The fraction of photosynthetically active radiation (PAR, 400- 
700nm) absorbed by green vegetation elements (fAPAR) is closely 
linked to canopy functioning processes such as photosynthesis and 
transpiration. It also quantifies the incoming radiation available at the 
soil level that is mandatory for modeling soil temperature and evapo-
ration. It is thus a key variable required in many ecosystems and crop 
functioning models to simulate photosynthesis and primary production 
(Goward and Huemmrich, 1992; McCallum et al., 2010; Monteith, 
2015). fAPAR is listed as an essential climate variable (ECV) by the 
Global Climate Observing System (GCOS, 2016). It is often approxi-
mated by the fraction of intercepted PAR (fIPAR) because the vegetation 

pigments present a strong absorption in this spectral domain and the 
reflectivities from background are usually small for well-developed 
canopies (Gower et al., 1999). 

Several methods have been developed to estimate fAPAR and fIPAR 
from ground measurements. Handheld optical devices, such as AccuPAR 
(Meter Group, Inc., USA), provide an efficient way to measure fAPAR 
under different illumination conditions (Steinberg et al., 2006). Accu-
PAR measures the downward and upward PAR fluxes at the top and 
bottom of the canopy by placing the probes above and below the canopy. 
Other methods such as Digital Hemispherical Photography (DHP) 
measure the gap fraction (upward looking) or green fraction (downward 
looking) to derive fIPAR in all directions. Pixel classification of the RGB 
images is mainly based on color contrast between leaves and the sky for 
the upward looking DHP to get the gap, and between green leaves and 
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non-green elements including the background to get the green pixels for 
the downward looking DHP (Baret et al., 1993; Demarez et al., 2008; 
Leblanc et al., 2005). However, image segmentation may be affected by 
the illumination conditions, especially when shadows or specular 
reflection are observed (Fang et al., 2014a, 2018; Ye et al., 2015). 
LAI-2200 (LI-COR Inc., Lincoln, Nebraska, USA) measures the trans-
mittance in the blue wavelength domain in five zenithal directions from 
which fIPAR can be estimated. However LAI-2200 measurements are 
also sensitive to the illumination conditions (Asner et al., 1998; 
Kobayashi et al., 2013; Leblanc and Chen, 2001). A thorough inter-
comparison of these instruments is still lacking. fAPAR depends on solar 
zenith angle and illumination conditions, e.g., overcast or clear sky 
condition. The instantaneous fAPAR is highly sensitive to variations of 
the solar zenith angle and presents diurnal variations under clear sky 
conditions (Fensholt et al., 2004; Rahman et al., 2015; Zhao et al., 
2018), while it shows a much smaller diurnal variations under cloudy 
conditions (Nouvellon, 2000; Thomas et al., 2006). The daily integrated 
fAPAR, which is a variable used by many canopy functioning models, 
has been demonstrated to be smaller under clear sky as compared to 
overcast conditions (Gower et al., 1999; Thomas et al., 2006). Therefore, 
it is required to compare the fAPAR quantities measured by different 
instruments under a range of illumination conditions and solar zenith 
angles. However, direct comparison between instruments is not always 
feasible due to the intrinsic properties of each device. As an example, the 
fAPAR measured by AccuPAR accounts for the diffuse fraction, while 
devices based on gap fraction measurements (DHP) may account both 
for the direct sunlight and the diffuse illumination. To facilitate the 
comparison between those different instruments, we used the decom-
position proposed by Martonchik et al. (2000): fAPAR is considered as 
the sum of a black-sky and a white-sky components, weighted by the 
PAR diffuse fraction. The black-sky fAPAR, fAPARbs, corresponds to the 
direct component (collimated beam irradiance in the sun direction only) 

while the white-sky fAPAR, fAPARws, corresponds to diffuse illumina-
tion conditions generally assumed perfectly isotropic (GCOS, 2016). 
Although the impact of diffuse fraction on fAPAR has been investigated 
(Gu et al., 2002; Jongschaap et al., 2006; Lizaso et al., 2005), few studies 
focused on the estimation of the black-sky and white-sky components of 
fAPAR or fIPAR in crops (Cohen et al., 1997; Hanan and Bégué, 1995) 
and none of them have intercompared the ability of the current in-
struments to well measure these quantities. 

Since only the green photosynthetically active elements contribute 
directly to key processes such as photosynthesis and transpiration, green 
vegetation elements should be isolated to estimate fAPAR (Huemmrich 
et al., 2005; Pinter, 1993; Weiss et al., 2007; Xiao, 2004; Zhang et al., 
2005). The presence of senescent leaves during late crop growth stages 
have a significant impact on fAPAR, and the relationship between fAPAR 
and vegetation indices (Di Bella et al., 2004; Rahman et al., 2019; Viña 
and Gitelson, 2005). The ground measured canopy fAPAR can be par-
titioned into fAPAR of green components and non-green components. 
Among optical instruments listed above, only downward looking DHPs 
allow to separate the green from the non-green elements to estimate the 
corresponded fraction of intercepted light. Upward looking DHPs should 
not be used for such a purpose since senescence often starts from the 
bottom layer of the crop, while the light penetrates from the top of the 
canopy (Baret et al., 2010). The other upward looking techniques, such 
as AccuPAR and LAI-2200, do not allow distinguishing between green 
and non-green elements. Some corrections have been proposed to 
consider only the green elements depending on the canopy type, either 
assuming that the green elements are located at the top of the canopy 
(Chen, 1996), or assuming that green and non-green elements are well 
mixed in the canopy volume (Viña and Gitelson, 2005). 

The objective of this study is to compare the several methods pro-
posed and evaluate the impact of the presence of non-green vegetation 
elements during the senescence phase, under different illumination 

Nomenclature 

I↓
t Incoming downward flux measured at the top of the 

canopy 
I↑
t Upward flux reflected by the canopy 

I↓

b Downward fluxes measured at the bottom of the canopy 
I↑
b Upward fluxes measured at the bottom of the canopy 

Rc Canopy reflectance 
Rbsc Black-sky canopy reflectance under direct illumination 

conditions 
Rwsc White-sky canopy reflectance under diffuse illumination 

conditions 
T Canopy transmittance 
Tbs Black-sky transmittance under direct illumination 

conditions 
Tws White-sky transmittance under diffuse illumination 

conditions 
Rs Soil background reflectance 
Rbss Black-sky soil reflectance under direct illumination 

conditions 
Rwss White-sky soil reflectance under diffuse illumination 

conditions 
R∞ Canopy reflectance for very dense foliage 
Rsen Reflectance of senescent layer 
P Canopy gap fraction 
θ Zenith angle 
G(θ) Leaf projection function 
Ω(θ) Canopy clumping index 
DOY Day of Year 

ESU Elementary Sampling Units 
DHP Digital Hemispherical Photography 
PAR Photosynthetically Active Radiation 
f Fraction of diffuse PAR in total PAR 
fAPAR Fraction of Absorbed PAR 
fAPART fAPAR measured from the two-stream method using 

transmittance only 
fAPARbs Black-sky fAPAR under direct illumination conditions 
fAPARws White-sky fAPAR under diffuse illumination conditions 
fAPARbs

T Black-sky fAPAR measured from the two-stream method 
fAPARws

T White-sky fAPAR measured from the two-stream method 
fIPAR Fraction of Intercepted PAR 
fIPAR(LAI-2200) fIPAR measured from LAI-2200 
fIPARws(LAI-2200) White-sky fIPAR measured from LAI-2200 
fIPAR(DHPup) fIPAR measured from the upward DHP 
fIPARbs(DHPup) Black-sky fIPAR from the upward DHP 
fIPARws(DHPup) White-sky fIPAR from the upward DHP 
GfIPAR(DHPdown) fIPAR of green canopy components measured 

from the downward DHP 
GfIPARbs Black-sky GfIPAR measured from the downward DHP 
GfIPARws White-sky GfIPAR measured from the downward DHP 
GfAPAR fAPAR of canopy green components 
GfAPARtop GfAPAR corrected from canopy fAPAR using Eq. (14) 
GfAPARmix GfAPAR corrected from canopy fAPAR using Eq. (15) 
GF Green Fraction 
GAI Green Area Index 
GLAI Green Leaf Area Index 
PAI Plant Area Index  
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conditions. For this purpose, a dedicated experiment was conducted in 
2012 and 2013 where AccuPAR, DHP and LAI-2200 devices were 
concurrently used over paddy rice fields in northeastern China. 

2. Methods 

2.1. Theoretical background 

2.1.1. Derivation of canopy fAPAR and fIPAR 
fAPAR is calculated from the radiation balance in the PAR domain: 

fAPAR =
I↓

t − I↑
t −

(

I↓
b − I↑

b

)

I
↓
t

(1)  

where I↓
t and I↑

t are the downward and upward fluxes measured at the 
top of the canopy. (I↓

b −I↑
b) is the radiation absorbed by the soil back-

ground calculated as the difference between the downward (I↓

b) and 
upward (I↑

b) fluxes measured at the bottom of the canopy. Note that the 
net horizontal PAR fluxes are considered negligible as we focus on rice 
crops which are short canopies that do not present major heterogeneity 
at the scale investigated corresponding to few square meters located in 
an homogeneous field (Widlowski, 2010). Eq. (1) can be expressed more 
simply as: 
fAPAR = 1 − Rc − T(1−Rs) (2)  

where Rc =
I↑
t

I↓
t 

is the canopy reflectance, T =
I↓

b
I↓
t 

is the canopy trans-
mittance, and Rs =

I↑

b
I↓

b 
is the soil background reflectance in the PAR 

spectral domain. For short canopies such as paddy rice, it is usually 
difficult to measure the upward flux at the bottom of the canopy because 
of the short distance between the sensors and the soil surface and the 
large spatial heterogeneity of this flux. However, the soil background 
reflectance can be estimated from other independent measurements in 
the laboratory or over bare soils at nearby locations. 

In the PAR domain, the canopy reflectance can be approximated as a 
linear decomposition of soil and foliage reflectance: 
Rc ≈ TRs + (1−T)R∞ (3)  

where R∞ is the reflectance for very dense foliage. Combining Eqs. (2) 
and (3), fAPAR can be approximated using two terms: 
fAPAR ≈ (1− T)(1−R∞) (4) 

For dense vegetation, R∞ is very small (R∞≈0.04) because of the 
strong absorption by chlorophyll pigments in the PAR domain (Weiss 
et al., 2018). Therefore, Eq. (4) can be further simplified as: 
fAPAR ≈ fAPART = 1 − T (5) 

The accuracy of this simplification depends on the fluxes reflected by 
the canopy and the soil background, which vary with canopy structure, 
illumination conditions, and background properties (Widlowski, 2010). 
If leaves are considered opaque, the fraction of intercepted PAR (fIPAR) 
can be calculated from the gap fraction P (Eq. (6)). In these conditions, P 
is closely approximated by canopy transmittance (T) and 
fIPAR ≈ fAPART. 
fIPAR = 1 − P ≈ 1 − T ≈ fAPART (6)  

2.1.2. Estimation of the canopy fAPAR and fIPAR under different 
illumination conditions 

At a given time of the day, the total canopy fAPAR is the sum of the 
black-sky and white-sky fAPAR, weighted by the fraction of the 
incoming diffuse PAR radiation (f): 
fAPAR = (1− f )⋅fAPARbs + f ⋅fAPARws (7) 

The same black-sky and white-sky components are also defined for 
the fIPAR quantities. During a day, if clear-sky fAPAR(θ) and white-sky 
observations, fAPARws, are measured, instantaneous black-sky fAPAR 
(fAPARbs) can be estimated based on Eq. (8): 

fAPARbs(θ) =
fAPAR(θ) − f (θ)⋅fAPARws

1 − f (θ)
(8) 

Similarly, transmittance measured in the five directions by the LAI- 
2200 allows to compute the black-sky fIPAR, fIPARbs(θ) for θ <68◦ by 
linear interpolation between the five crowns. 

The fraction of intercepted black-sky PAR (fIPARbs(θ)) was calcu-
lated from the green fraction (GF) for downward looking DHP or gap 
fraction (P) for upward looking DHP after classifying the green (down-
ward) or sky (upward) pixels: 
{

fIPARbs(θ) = GF(θ) for downward DHP

fIPARbs(θ) = 1 − P(θ) for upward DHP
(9) 

For each zenith direction, θ, with θ < 60◦, the green or gap fraction is 
averaged across all azimuthal directions from all images in an ESU to 
compute GF(θ) or P(θ) (Weiss and Baret, 2010). Data for θ > 60◦ were 
not considered because of the large uncertainties in the green fraction 
estimation due to the degraded resolution for these directions. 

White-sky fIPAR (fIPARws) for LAI-2200 and DHP devices can be 
derived by integrating fIPARbs over the hemisphere (Weiss and Baret, 
2010): 

fIPARws = 2

∫

π/2

0

(

fIPARbs(θ)
)

cosθsinθdθ (10) 

For θ > 60◦ (DHP) or θ > 68◦ (LAI-2200), the term (fIPARbs(θ))
cosθsinθ was approximated by linear interpolation between θ = 60∘ or 
θ = 68∘ and θ = 90∘ with (fIPARbs(90∘))cos90∘sin90∘ = 0. 

2.1.3. Derivation of the green fAPAR and fIPAR (GfAPAR and GfIPAR) 
Assuming that all canopy elements are randomly distributed in the 

canopy volume, the canopy transmittance can be derived using the 
Poisson model (Nilson, 1971): 
T = e−G(θ)⋅PAI⋅Ω(θ)/cosθ (11)  

where G(θ) is the projection function that depends on the leaf inclination 
distribution and direction (θ), and Ω(θ) is the canopy clumping index. It 
is here assumed that G(θ) and Ω (θ) values are the same for the green and 
non-green elements. The four-stream fAPAR (Eq. (2)) can then be 
approximated as: 
fAPAR = 1 − Rc − (1−Rs)⋅e

−G(θ)⋅PAI⋅Ω(θ)/cosθ (12) 
When there are no senescent elements, GfAPAR=fAPAR. Conversely, 

for canopies having senescent elements, GfAPAR can be estimated from 
fAPAR measurements using an independent estimate of GAI/PAI and 
assumptions about the distribution of the senescent elements in the 
canopy. When the green leaves are located at the top of the canopy 
above the senescent elements, Chen (1996) proposed to estimate GfA-
PAR using the following formulation: 
GfAPARtop = 1 − Rc − (1−Rsen)⋅e

−G(θ)⋅GAI⋅Ω(θ)/cosθ (13)  

where Rsen is the reflectance of the senescent layer above the soil 
background. It plays the same role as Rs in Eq. (12) when there is no 
senescent element. Finally, GAI in Eq. (13) can be replaced by PAI in Eq. 
(12) using the GAI/PAI ratio: 

GfAPARtop = 1 − Rc − (1−Rsen)⋅e

GAI
PAI

⋅ln

(

1−Rc−fAPAR

1−Rs

)

(14) 
Conversely, Viña and Gitelson (2005) assumed that the green and 

non-green elements are well mixed within the canopy volume, proposed 
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the following formulation of the green fAPAR as a function of the total 
canopy fAPAR and the GAI/PAI ratio: 
GfAPARmix = fAPAR⋅GAI

/

PAI (15) 
Based on the same considerations, Eqs. (14) and (15) can be applied 

to fIPAR values derived from upward DHP and LAI-2200 devices to get 

the corresponding green fIPAR, GfIPAR: 
GfIPARtop = 1 − e

GAI
PAI

⋅ln(1−fIPAR) (16)  

GfIPARmix = fIPAR⋅GAI
/

PAI (17) 
Table 1 lists the fAPAR and fIPAR quantities derived from the several 

instruments and the associated notations and equations used. All these 
quantities can be computed for both black-sky and white-sky conditions. 

2.2. Study area 

The study area is located at the Honghe Farm (47.65◦ N, 133.52◦ E) 
in the Heilongjiang Province, China. The area is subjected to a humid 
continental monsoon climate with long and cold winter and warm, 
short, and humid summer. The water and soil are frozen from late 
October to April and thaw in late April. A single rice cultivar (Longjing 
29) is grown in flat fields sharing the same soil properties and where the 
same cropping practices are applied. Rice crops are grown once a year 
from May to September (Fig. A1). The fields are flooded during most of 
the growing season. 

A total of 55 Elementary Sampling Units (ESUs) of about 20 × 20 m2 

each were selected in five fields closely located and chosen to be ho-
mogeneous and similar in terms of soils and management practices. This 
allows to consider each ESU as representative of all the other ESUs. All 
ESUs were located at least at 1.5 m from the field border to limit po-
tential edge effects. More details about the site and sampling strategy 
can be found in Fang et al. (2014a, 2014b). 

2.3. Ground measurements 

Ground measurements were carried out frequently from June 11 to 
September 17 in 2012, and from June 22 to August 29 in 2013 (Fig. 1). 

Table 1 
Quantities estimated from AccuPAR, DHP, and LAI-2200. Rc, Rs, Rsen and T 
represent the canopy reflectance, the background soil and senescent layer 
reflectance, and the canopy transmittance, respectively. P is the canopy gap 
fraction and GF is the green fraction.  

Instruments Notation Equation Eq. 
# 

AccuPAR fAPAR(AccuPAR) 1− Rc − T(1 − Rs) (2) 
fAPART(AccuPAR) 1− T  (5) 
GfAPARtop(AccuPAR)

1− Rc − (1 − Rsen)

e
GAI
PAI⋅ln

(1 − Rc − fAPAR
1 − Rs

)

(14) 

GfAPARmix(AccuPAR) fAPAR⋅ GAI/PAI  (15) 
Downward 

DHP 
GfIPAR(DHPdown) GF  (9) 

Upward 
DHP 

fIPAR(DHPup) 1− P  (9) 
GfIPARtop(DHPup)

1− e
GAI
PAI⋅ln(1 − fIPAR) (16) 

GfIPARmix(DHPup) fIPAR⋅GAI/PAI  (17) 
LAI-2200 fIPAR(LAI − 2200) 1− P  (9) 

GfIPARtop(LAI −
2200) 1− e

GAI
PAI⋅ln(1 − fIPAR) (16) 

GfIPARmix(LAI −
2200)

fIPAR⋅GAI/PAI  (17)  

Fig. 1. Measurement dates for AccuPAR (blue diamond), DHPdown (green square), DHPup (pink asterisk) and LAI-2200 (cyan triangle) in (a) 2012 and (b) 2013 under 
cloudy (filled marker) and clear (open marker, 2013) conditions. Black filled and open downward-pointing triangles represent solar zenith angles for cloudy and clear 
conditions (first right y-axis). Gray dashed line with open circles in (b) indicate the diffuse fraction measured for clear sky conditions in 2013 (second right y-axis). 
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We used the “moving ESU strategy” as described by Fang et al. (2014a), 
considering that the measurements achieved in one ESU at a given date 
are representative of all the other ESUs. This allows to prevent distur-
bances caused by the handheld measurements along the growing season 
and makes destructive measurements possible. In 2012, all the mea-
surements were taken close to sunset or under overcast conditions to 
estimate the white-sky fAPAR. In 2013, white-sky fAPAR was also 
measured near sunset or under overcast conditions and completed the 
same day by black-sky fAPAR measurements when the sky was clear in 
the morning (9:30 to 10:30 am). The field measurement dates and the 
corresponding solar zenith angles and diffuse fraction are shown in 
Fig. 1 for the several instruments considered in this study. 

Decagon’s AccuPAR LP-80 PAR/LAI Ceptometer measures PAR using 
80 individual sensors with a 180◦ field of view on a 1-m probe 
(Huemmrich et al., 2005; Senna, 2005; Steinberg et al., 2006; Thomas 
et al., 2006). The downward and reflected PAR fluxes at the top of 
canopy were measured by placing the probe approximately 1.5 m above 
the canopy, facing upward and downward, respectively. The canopy 
transmitted PAR was measured by placing the probe below the canopy 
looking upward. The below-canopy measurements were repeated four 
times in different directions to account for the row effect (Campos et al., 
2017; Timlin et al., 2014; Zhong et al., 2015). The soil reflected PAR was 
measured twice in two different rows by placing the probe approxi-
mately 5 cm above the ground looking downward. Prior to each mea-
surement, the AccuPAR was calibrated when the above canopy PAR was 
> 600 µmol/m2s as recommended in the user manual (Decagon Devices, 
2010). Under clear skies in 2013, the diffuse PAR was measured by 
blocking the direct solar illumination with a black board placed 0.5 m 
from the sensor. The diffuse fraction was then computed as the ratio of 
the diffuse to the total downward PAR. The measurement was repeated 
three times within one minute before, during, and after fAPAR mea-
surements. Because the three replicates were generally consistent, their 
average value was considered as the diffuse fraction at the time of the 
fAPAR measurements. 

The DHP images were taken using a Nikon D5100 camera equipped 
with a 4.5 mm F2.8 EX DC fisheye convertor. The DHP camera was 
calibrated before measurements following the CAN-EYE manual (Weiss 
and Baret, 2010) to obtain the optical center and the projection function 
of the camera and fish-eye system. The total height of the camera, 
including the lens, was about 16.5 cm. Two bubble levels were attached 
to the camera to keep it horizontal for both downward and upward 
measurements. In each ESU, 15 to 20 DHPs were acquired for both 
downward and upward directions (Fang et al., 2014a). The downward 
images were taken by holding the camera 0.8−1.5 m above the canopy. 
When the rice was higher than 70 cm, upward images were taken by 
placing the camera right above the background soil or water in the row. 
All DHP images were processed using the CAN-EYE version 6.3.3 soft-
ware (https://www6.paca.inrae.fr/can-eye). Green pixels were manu-
ally separated from senescent and background pixels for the downward 
images during the classification step. This step was performed by the 
same operator throughout the season. 

LAI-2200 measures the blue radiation in 5 concentric rings centered 
at 7◦, 23◦, 38◦, 53◦ and 68◦. LAI-2200 measurements were conducted 
always under diffuse conditions. Each measurement was repeated twice, 
with one above and four below canopy readings along diagonal transects 
between the rows. For the below canopy readings, the instrument was 
held about 5 cm above the background. Throughout the season, a 270◦

view cap was used to shield the operator. The four measurements over 
an ESU were averaged to obtain the mean transmittance (Fang et al., 
2014a, 2014b). All AccuPAR, DHP, and LAI-2200 measurements were 
made within a maximum time difference of 10 minutes. 

In addition to the optical measurements, canopy green area index 
(GAI) and plant area index (PAI) were measured in 2012 using a 
destructive method (Fang et al., 2014a, 2014b). Five plants were 
randomly harvested in the ESU and the area of green and non-green 
leaves, stems and ears were measured using a LI-3100C Area Meter 

(LI-COR, Lincoln, NE, USA). Leaf, stem, and ear area are the sum of the 
corresponding green and non-green measured areas. The corresponding 
area indices were then computed using the plant density to get the area 
of elements per unit ground area. GLAI corresponds to the green leaves 
only, while LAI includes green and non-green parts. GAI corresponds to 
the area of all green elements, while PAI includes the senescent parts as 
well. 

3. Results 

3.1. Dynamics of LAI, GLAI, GAI and PAI 

During the rice green-up stage from sowing to the end of July (Day of 
year (DOY) 210), no senescence is observed: GAI and PAI are equal 
(Fig. 2). When the senescence starts to progress, some leaves disappear, 
and both PAI and GAI decrease gradually after DOY 210. Once the stems 
and ears are fully developed around DOY 220, their total area keep 
about constant. However, senescence is also progressing gradually up to 
almost full senescence at maturity, i.e. DOY 265 (Fig. 2). Conversely, 
senescence of leaves stops on DOY 240: LAI and GLAI and PAI keep 
about constant up to maturity, while GAI still decreases because of the 
senescing stems and ears. The high consistency observed between 
measurements across time demonstrates that the spatial variability 
among the several ESUs sampled was very small. 

3.2. fAPAR from AccuPAR 

Results show that for both 2012 and 2013, canopy reflectance (Rc) is 
slightly higher in the beginning when the soil background is not fully 
covered by the vegetation, and at the end of season after the ears and 
senescent components began to appear. When the canopy is fully 
covering the soil, Rc keeps about to a low and stable value with Rc ≈ 0.04 
(Fig. 3). Soil background reflectance (Rs) shows little variation during 
the growing season and is low because the soil was always wet or 
covered by water. Canopy transmittance (T) decreases continuously 
from the beginning of the season until DOY 210 and then increases 
slightly during the senescent stage (Fig. 3) since part of the leaves are 
dead while another part of them show a decrease in chlorophyll, leading 
to an increase in leaf reflectance and transmittance in the PAR domain. 
Accordingly, canopy fAPAR increases from the beginning of the season 
up to DOY 210 and decreases during the senescent stage (Fig. 3a). The 
influence of the illumination conditions on the different components can 
be analyzed in 2013 (Fig. 3b). Canopy and soil reflectance are little 
impacted and remain stable. Conversely, the canopy transmittance de-
pends on the illumination conditions mostly before DOY 210 when the 
canopy is not fully covering the soil. The black-sky transmittance is 

Fig. 2. Seasonal variation of plant, leaf, stem and ear area index measured by 
destructive method in 2012. The corresponding area of the green parts are 
indicated by the dashed lines. The black circles represent the actual measure-
ments days. 
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higher than its white-sky counterpart, and consequently the black-sky 
fAPAR is smaller than the white-sky fAPAR. After DOY 210, the differ-
ence between black-sky and white-sky values for both transmittance and 
fAPAR becomes very small due to the saturation of the canopy 
transmittance. 

Our experimental results (Fig. 4) show that fAPART(AccuPAR) esti-
mated from the two-stream assumption (Eq. (5)) agrees very well with 
the reference four-stream fAPAR, fAPAR(AccuPAR) (Eq. (2)) under both 
black-sky and white-sky conditions (R2 = 0.94~1, RMSE = 0.03~0.08). 
These two fAPAR quantities differ from less than 0.03 (4%) under black- 
sky conditions, the differences being larger when fAPAR(AccuPAR) is 
higher than 0.7 and under white-sky conditions. 

3.3. fAPAR and fIPAR of different instruments 

White-sky fAPAR and fIPAR values rapidly increase until DOY 210 in 
2012 and 2013 (Fig. 5). As expected, fAPART(AccuPAR), fIPAR(DHPup) 
and fIPAR(LAI-2200) and fAPAR (AccuPAR) are very close together 
during the entire season. Conversely, GfIPAR(DHPdown) is slightly 
higher than fAPAR(AccuPAR) during the early development stages and 
is much lower than the other quantities during the later stages: White- 
sky GfIPAR(DHPdown) decreases sharply after DOY 210. In contrast, 
the other quantities remain stable from DOY 210 to DOY 250 and 
slightly decrease after DOY 250. In 2013 where both black-sky and 

white-sky values were measured (Fig. 5b), the black-sky values are 
substantially smaller than the white-sky counterparts. However black- 
sky GfIPAR(DHPdown) is higher than the white-sky values at the end of 
the season (Fig. 5b). 

We will focus here on the first growth period (before DOY 210) 
where senescence is marginal (Fig. 2) and GAI=PAI. As a consequence, 
GfAPAR=fAPAR and GfIPAR=fIPAR. We will therefore use here only the 
terms fAPAR and fIPAR except for GfIPAR(DHPdown) for which only the 
green elements are accessible (Table 1). The comparison between fAPAR 
and fIPAR will be made using fAPART(AccuPAR) as a reference since we 
demonstrated previously that fAPAR(AccuPAR)≈0.96 × fAPART(Accu-
PAR) (Fig. 4). 

GfIPAR(DHPdown) shows a high agreement with fAPART(AccuPAR) 
under white-sky conditions (Fig. 6a) (R2 = 0.82) with almost no bias. A 
strong correlation is also observed under black-sky conditions (Fig. 6a) 
with however a systematic overestimation (Bias=0.13). The correlation 
between fAPART(AccuPAR) and the fIPAR(DHPup) is weak both for the 
white-sky and black-sky values (Fig. 6b). fIPAR(LAI-2200) shows a high 
agreement with fAPART(AccuPAR) (Fig. 6c), particularly under white- 
sky conditions. 

3.4. GfAPAR and GfIPAR during the senescence stage 

We focus on the period starting after DOY 210 when senescence 

Fig. 3. Seasonal variation of canopy reflectance (Rc), soil reflectance (Rs), canopy transmittance (T), and fAPAR measured in 2012 (a) and 2013 (b) with AccuPAR. 
The solid and dashed lines represent the black-sky (with superscript ‘bs’) and white-sky (with superscript ‘ws’) conditions. The filled circles on lines represent the actual 
measurement days. 
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increases up to the maturity stage (Fig. 2). As a consequence, the GAI/ 
PAI ratio decreases regularly with time (Fig. 7). The canopy fAPAR 
measured by AccuPAR shows small variations due to saturation when 
PAI is generally higher than 4.0. Conversely, the green fIPAR derived 
from downward looking DHP, which can be taken as the best proxy of 
GfIPAR, decreases swiftly from 0.9 to 0.3 (Fig. 7). Assuming that green 
and non-green elements are mixed within the canopy (Viña and Gitel-
son, 2005), GfAPAR measured by AccuPAR (Eq. (15)) and GfIPAR 
measured by LAI-2200 (Eq. (17)) show a temporal profile close to the 
reference GfIPAR from downward looking DHP. Conversely, all green 
quantities derived with Chen (1996), (Eq. (14)) (e.g. assuming that the 
green elements are distributed at the top of canopy) are systematically 
higher than the reference GfIPAR from downward looking DHP. GfI-
PARmix estimated from LAI-2200 and upward looking DHP are similar 
and higher than GfAPARmix derived from AccuPAR. 

Fig. 8 shows that GfAPAR(AccuPAR), GfIPAR(DHPup) and GfIPAR 
(LAI-2200) are well correlated with GfIPAR(DHPdown) considered as 
the reference. However, significant biases are observed. Under the 
assumption that the green and non-green elements are mixed in the 
canopy (Viña and Gitelson, 2005, Eq. (15)), GfAPARmix(AccuPAR) is 
closer to the reference GfIPAR(DHPdown) (Bias = 0.02, Fig. 8a), while the 
GfIPARmix(DHPup) and GfIPARmix(LAI-2200) are larger by around 0.1 
(Fig. 8b and 8c). Conversely, assuming that the green elements are 
distributed at the top of canopy as proposed by Chen (1996), GfA-
PARtop(AccuPAR), GfIPARtop(DHPup) and GfIPARtop(LAI-2200) are sys-
tematically higher by 0.13 ~ 0.25 than reference GfIPAR(DHPdown). 

4. Discussion 

4.1. Four-stream fAPAR versus two-stream fAPART estimation from 
AccuPAR 

AccuPAR is appropriate to measure the fAPAR based on the four- 
stream approach (Eq. (2)). However, application of the four-stream 
assumption to compute fAPAR requires measuring simultaneously can-
opy reflectance and transmittance, together with the background 
reflectance. Measurement of the background reflectance is difficult since 

it requires setting the sensors close to the background which may disturb 
the canopy and influence the measurement. Furthermore, the spatial 
representativeness may also be an issue considering the high local 
spatial variability of the radiation field at the bottom of the canopy, due 
to the row spacing and canopy cover (Timlin et al., 2014). Conversely, 
the two-stream assumption (Eq. (5)) based on the sole measurement of 
canopy transmittance is appealing to estimate fAPAR. 

The high consistency between fAPAR(AccuPAR) and fAPART(Accu-
PAR) (Fig. 4) is mainly due to the small values of canopy and soil 
reflectance (Fig. 3). Furthermore, both terms are partly counter-
balancing each other: in Eq. (2), canopy reflectance (Rc) varies between 
Rs for PAI=0 to R∞ for very large PAI values. Conversely, the term TRs 
varies between Rs for PAI=0 to 0 for large PAI values. These experi-
mental results are consistent with that of other studies (Gallo and 
Daughtry, 1986; Gobron et al., 2006; Gower et al., 1999; Kukal and 
Irmak, 2020). However, as shown by Eq. (4), the measured trans-
mittance includes the contribution from multiple scattering between the 
bottom of the canopy and the ground, leading to an overestimation of 
the actual transmittance and thus on fAPART (Eklundh et al., 2011). 
Closer inspection of the values shows that fAPART(AccuPAR) is sys-
tematically higher than fAPAR(AccuPAR), particularly for the 
well-developed canopies fAPART(AccuPAR)≈1 when fAPAR 
(AccuPAR)≈1-R∞≈0.96 as expected from Eq. (4) since R∞≈0.04 
(Fig. 3). We also computed the actual transmittance which is smaller 
than the measured one by -0.78% to -0.14% under cloudy conditions 
and -0.41% to -0.01% under clear sky conditions. Similarly, fAPART 
computed when considering multiple scattering is slightly larger than 
the fAPART we estimated by 0.22% to 3.3% under cloudy conditions and 
0.2% to 3.09% under clear conditions. This small uncertainty is mainly 
due to low background reflectance of paddy rice. Nevertheless, higher 
uncertainties may occur for canopies with brighter backgrounds (Asner 
et al., 1998; Gower et al., 1999; Widlowski, 2010). 

4.2. Comparison of fAPAR and fIPAR measured from different 
instruments during the green-up stage 

The overestimations observed between GfIPARbs(DHPdown) and 
fAPARbs(AccuPAR) under black-sky conditions are mostly due to the 
limited spatial sampling when considering only the sun direction. In case 
of the black-sky conditions, AccuPAR measurements provide a better 
spatial sampling with the 80 sensors set along the 1 m long device. 
Conversely, for white-sky conditions, GfIPARws(DHPdown) results from 
the integration of the black-sky values over all the directions (Eq. (10)) 
which provides to a much larger area sampled. fIPAR(DHPup) has a weak 
correlation with fAPART(AccuPAR). This is mostly explained by the 
limited range of variation of fAPART points available. DHP measure-
ments looking upward requires to set the camera at the bottom of the 
canopy. When the back of the camera is laying on the ground, the focal 
point of the lens is at about 16.5 cm above the ground. It is therefore not 
possible to use this technique for the early growth stages when the 
canopy is too short. This explains why no points are available for the low 
values of fAPAR or fIPAR (Fig. 6b). Further, only part of the vegetation 
elements are seen by the camera looking upward, resulting in possible 
underestimation of fIPAR(DHPup). In addition, setting the camera on the 
ground disturbs canopy architecture and may also bias the spatial 
sampling since it is not possible to set the camera at the position of the 
row. Finally, the area sampled by the camera looking upward from the 
bottom of the canopy is lower than in the case of fIPAR(DHPdown): the 
distance between the camera and the top of the canopy (upward looking 
DHP) is shorter than the distance from the camera to the ground 
(downward looking DHP). This explains why significant scattering of 
data is observed between fIPAR(DHPup) and fAPART(AccuPAR). It is 
therefore recommended to use a very small camera and to improve the 
spatial sampling by taking more images. Nevertheless, fIPAR(DHPup) 
should be used mostly for relatively high and sparse canopies such as 
maize crops to limit both the disturbances when taking the pictures and 

Fig. 4. Comparison of four-stream fAPAR(AccuPAR) (Eq. (2)) and the two- 
stream fAPART (AccuPAR)(Eq. (5)) values derived from AccuPAR measure-
ments in 2012 and 2013 under both black (magenta) and white-sky 
(blue) conditions. 
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Fig. 5. Seasonal variation of fAPAR and fIPAR in 2012 (a) and 2013 (b). The solid and dashed lines represent the black-sky (with superscript ‘bs’) and white-sky (with 
superscript ‘ws’) conditions, respectively. In 2012, only white-sky conditions are presented. 

Fig. 6. Comparison between fAPART(AccuPAR) used as a reference and GfIPAR(DHPdown), fIPAR(DHPup) and fIPAR(LAI-2200). Data from the first period (before 
DOY 210) when no senescent elements are present. Black-sky (pink circles) and white-sky illumination conditions (blue crosses) are presented. 
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the parts not sampled at the bottom of the canopy because of the height 
of the lens above the ground. 

The small discrepancies observed between both quantities demon-
strate that the spatial sampling was sufficient for LAI-2200 (8 points per 
ESU), although more limited than that of the AccuPAR (4 readings of the 
80 PAR sensors set along the 1m probe). Under black-sky conditions, 
only three matching pairs were available because the LAI-2200 was only 
performed under cloudy conditions and the large sun zenith angles 
prevent the black-sky fIPARbs(LAI-2200) calculations. 

Among the three methods investigated (DHPdown, DHPup and 
LAI2200), DHPdown shows obvious advantages: it provides a good 
agreement with fAPART, while not disturbing canopy architecture since 
the camera is placed above the canopy. However, in the case of deriving 
black-sky fIPAR values, more samples should be taken to compensate the 
small footprint of the camera in the sun direction. Further, great care 
should be taken when segmenting the image which is more difficult and 
uncertain for dense canopies and sunny illumination conditions 

(Garrigues et al., 2008). Indeed, more advanced classification method is 
necessary to improve the DHP data processing (Duveiller and Defourny, 
2010; Jonckheere et al., 2017). 

4.3. Impacts of illumination conditions on fAPAR and fIPAR estimations 

fAPAR and fIPAR present diurnal variations due to variations of the 
solar zenith angle and the proportion of diffuse PAR in the total down-
welling radiation. These variations have a significant impact on the 
photosynthetic efficiency and on the canopy light regime (Aikman, 
1989; Grant, 1999; Wang et al., 2006). We therefore compared the 
ability of instruments to retrieve the black-sky and white-sky fAPAR 
components. Our results show that instantaneous fAPAR and fIPAR 
under white-sky conditions are slightly higher than under black-sky 
conditions, which is consistent with previous results based on both 
model simulation and ground measurements (Li and Fang, 2015; Nou-
vellon, 2000; Thomas et al., 2006). The resulting daily integrated fAPAR 

Fig. 7. Seasonal variation of fAPAR and fIPAR quantities considered in Table 1 during the senescent stage (after DOY 210). GAI/PAI is the ratio of GAI to PAI (right 
y-axis). All measurements were performed under white-sky illuminations in 2012. 

Fig. 8. After DOY 210 (senescence), from left to right: comparison of GfAPAR derived from AccuPAR, GfIPAR by upward DHP and LAI-2200 with the GfIPAR from 
downward DHP used as a reference. “top” and “mix” refers to the assumptions used to derive the green fAPAR, e.g. the senescence is occurring from the top of the 
canopy (Chen, 1996) or is randomly distributed within the canopy (Viña and Gitelson, 2005). 
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can be more or less affected depending on the variation of the diffuse 
PAR fraction throughout the day. Therefore, except for AccuPAR, ac-
curate daily fAPAR estimation requires auxiliary measurements of the 
PAR diffuse fraction or specific development such as proposed by Hanan 
and Bégué (1995) for LAI-2200. 

4.4. Estimations of green fAPAR and fIPAR during the senescence period 

During the senescence period, both green and senescent elements 
contribute to fAPAR at the canopy level (Asner et al., 1998; Di Bella 
et al., 2004; Huemmrich et al., 2005; Rahman et al., 2019). Since only 
the green components are used for photosynthesis and transpiration, the 
green fAPAR should be the quantity to be considered. Downward DHP is 
the only method that provides a direct estimate of green fIPAR because it 
minimizes problems due to senescent elements generally located at the 
bottom of the canopy (Baret et al., 2010). Green fIPAR from downward 
DHP is therefore used as the reference method. Conversely, the green 
fAPAR cannot be directly measured by the other methods since the in-
struments are looking from the bottom of the canopy and green and 
non-green components cannot be easily distinguished. We evaluated 
two methods to derive green fAPAR or green fIPAR from canopy fAPAR 
and fIPAR measured quantities using the GAI/PAI ratio, based on 
different assumptions on the spatial distribution of green and non-green 
elements. In paddy rice crops, the senescence happens right after the ear 
appearance, and is observed at leaf tips and at the bottom of the canopy. 
The ears, distributed mainly at the top layer and mixed with green 
leaves, become yellow and brown, and the senescent leaves at the bot-
tom layer grow upward and mix with other green stems and leaves. This 
behavior is thus closer to the random mixing hypothesis of Viña and 
Gitelson (2005) than to the Chen (1996) assumption that green elements 
are concentrated in the top layer. However, these two correction 
methods developed to get the green fAPAR or fIPAR from the canopy 
fAPAR or fIPAR requires the measurement of the GAI/PAI ratio during 
the senescence period. 

5. Conclusion 

The main objective of this study was to compare several methods and 
instruments for fAPAR or fIPAR estimates over paddy rice and investi-
gate the impact of canopy senescence under different illumination 
conditions. Results showed that using only canopy transmittance 
(fAPART(AccuPAR)) measured by AccuPAR provides a good proxy of the 
four-stream reference fAPAR(AccuPAR). This allows to simplify the 
AccuPAR measurements over paddy rice fields while keeping a high 
degree of accuracy. 

Canopy transmittance can also be measured using DHP looking up-
ward or downward and LAI-2200, resulting respectively into fIPAR 
(DHPup), GfIPAR(DHPdown) and fIPAR(LAI2200). Our results demon-
strated that fIPAR(DHPup) was leading to uncertainties mostly because 
of the dimensions of the camera used, disturbing canopy architecture 
when placed at the bottom of the crop and missing also a significant 
fraction of the vegetation elements located below the lens of the camera. 
For these reasons, downward looking DHP (GfIPAR(DHPdown)), Accu-
PAR (fAPART(AccuPAR)) and LAI-2200 (fIPAR(LAI-2200)) are better 
suited for rice crops that are dense and relatively short. However, the 
spatial sampling should be adapted to the actual footprint of each in-
strument. Three AccuPAR, four LAI-2200 or 15 to 20 DHPs seems suf-
ficient to get precise estimates of white-sky fAPAR or fIPAR over an area 
of ≈100m2 of homogeneous rice crops. This minimum sampling appears 
also sufficient under black-sky conditions, except for DHPs for which the 
footprint is very small in the sun direction. To avoid taking more images 
in order to improve the area sampled, it is advised to integrate canopy 
transmittance over all the compass directions as done for LAI-2200. 
Nevertheless, the daily integrated green fAPAR and fIPAR are required 
in many vegetation functional models (Baret and Guyot, 1991; Gower 
et al., 1999; Weiss et al., 2007). The daily integrated fAPAR and fIPAR 

values can be derived from the DHP images, which will also result in a 
much larger area sampled. Note that DHPs appear the best suited 
method to estimate daily variation and daily integrated values of fIPAR 
since a single image taken during the day allows to derive canopy 
transmittance for all possible incoming light directions, assuming that 
canopy architecture keeps stable during the day. This assumption seems 
reasonable for rice crops, but not realistic for heliotropic species and 
species presenting leaf rolling reaction to water stresses (Baret et al., 
2018). 

Downward looking DHPs is the only method that measures directly 
GfIPAR, the fraction of incoming light intercepted by the green photo-
synthetically active parts of the vegetation. This offers a great advantage 
over the other instruments when a significant part of the organs are 
senescing as observed over rice crops after flowering. AccuPAR and LAI- 
2200 are measuring canopy transmittance from the bottom of the can-
opy and are not able to distinguish between the green and non-green 
parts. Corrections are proposed for these instruments, based on inde-
pendent measurement of the GAI/PAI ratio. Measuring the GAI/PAI 
ratio is generally done by destructive methods, which is laborious, time 
consuming, and not well suited for crop monitoring. Further, the cor-
rections need assumptions on the vertical distribution of the senescing 
parts. For rice crops, we demonstrated that the method proposed by 
Viña and Gitelson (2005), assuming that green and non-green elements 
are well mixed, provides the best agreement with GfIPAR(DHPdown) 
considered as the reference method. 

Downward looking DHPs appears thus to be the best method to es-
timate GfIPAR under relatively short canopies. It is currently used 
intensively over a number of crops (Camacho et al., 2013; Li et al., 2015; 
Weiss et al., 2007). For taller canopies that prevents easy characteriza-
tion from the top, fAPART(AccuPAR), fIPAR(DHPup) and fIPAR 
(LAI-2200) should be preferred. Exploitation of DHPs requires images 
with good resolution and acquired under favorable illumination condi-
tions. As a matter of facts, sunny conditions are not ideal since the 
distinction between green and non-green parts (background and senes-
cent elements) is difficult in the shadows because of the small dynamics 
of the pixel values as well as in the specularly reflected areas where 
colors are lost. Using HDR (High Dynamic Range) features and applying 
a gamma factor should partly solve the problem. Nevertheless, image 
segmentation to identify the green pixels is still not fully automatic 
which is the main limitation of the DHP downward looking method as 
compared to AccuPAR and LAI-2200. Additional work is therefore 
required to develop algorithms capable of identifying automatically the 
green pixels in the images with a high degree of accuracy. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This study was supported by the National Natural Science Founda-
tion of China (41171333, H.F.). We would like to thank the local farmers 
for allowing us to take experiment on their fields and the students who 
helped in the field campaigns in 2012 and 2013. We also would like to 
thank Dr. Chongya Jiang and Dr. Tao Sun in the preparation of field 
measurements. Anonymous reviewers are thanked for valuable 
comments. 

Appendix A. Rice field pictures during growing season 

Fig. A1 

W. Li et al.                                                                                                                                                                                                                                       



Agricultural and Forest Meteorology 297 (2021) 108273

11

References 
Aikman, D.P., 1989. Potential Increase in Photosynthetic Efficiency from the 

Redistribution of Solar Radiation in a Crop. J Exp Bot 40, 855–864. https://doi.org/ 
10.1093/jxb/40.8.855. 

Asner, G.P., Wessman, C.A., Archer, S., 1998. Scale Dependence of Absorption of 
Photosynthetically Active Radiation in Terrestrial Ecosystems. Ecological 
Applications 8, 1003–1021. 

Baret, F., Andrieu, B., Steven, M., 1993. Gap frequency and canopy architecture of sugar 
beet and wheat crops. Agricultural and Forest Meteorology 65, 261–279. https://doi. 
org/10.1016/0168-1923(93)90008-6. 

Baret, F., de Solan, B., Lopez-Lozano, R., Ma, K., Weiss, M., 2010. GAI estimates of row 
crops from downward looking digital photos taken perpendicular to rows at 57.5◦

zenith angle: Theoretical considerations based on 3D architecture models and 
application to wheat crops. Agricultural and Forest Meteorology 150, 1393–1401. 
https://doi.org/10.1016/j.agrformet.2010.04.011. 

Baret, F., Guyot, G., 1991. Potentials and limits of vegetation indices for LAI and APAR 
assessment. Remote Sensing of Environment 35, 161–173. https://doi.org/10.1016/ 
0034-4257(91)90009-U. 

Baret, F., Madec, S., Irfan, K., Lopez, J., Comar, A., Hemmerlé, M., Dutartre, D., Praud, S., 
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A B S T R A C T   

Several crops bear reproductive organs (RO) at the top of the canopy after the flowering stage, such as ears for 
wheat, tassels for maize, and heads for sunflowers. RO present specific architecture and optical properties as 
compared to leaves and stems, which may impact canopy reflectance. This study aims to understand and quantify 
the influence of RO on the bi-directional variation of canopy reflectance and NDVI. 

Multispectral camera observations from a UAV were completed over wheat, maize, and sunflower just after 
flowering when the RO are fully developed and the leaf layer with only marginal senescence. The flights were 
designed to sample the BRDF with view zenith angles spanning from nadir to 60◦and many compass directions. 
Three flights corresponding to three sun positions were completed under clear sly conditions. The camera was 
always pointing to two adjacent plots of few tenths of square meters: the RO were manually removed on one plot, 
while the other plot was kept undisturbed. 

Results showed that the three visible bands (450 nm, 570 nm, 675 nm), and in a lesser way the red edge band 
(730 nm) were strongly correlated. We, therefore, focused on the 675 nm and 850 nm bands. The Bi-Directional 
Reflectance (BRF) of the canopy without RO shows that the BRF values were almost symmetrical across the 
principal plane, even for maize and sunflower canopies with a strong row structure. Examination of the BRF 
difference between the canopy with and without RO indicate that the RO impact canopy BRDF for the three 
crops. The magnitude of the impacts depends on crop, wavelength and observational geometry. These obser-
vations are generally consistent with realistic 3D reflectance simulations. However, some discrepancies were 
noticed, mainly explained by the small magnitude of the RO effect on canopy BRF, and the approximations made 
when simulating the RO layer and its coupling with the bottom canopy layer. We finally demonstrated that the 
RO layer impact the estimates of canopy traits such as GAI as derived from the multispectral observations.   

1. Introduction 

Continuous monitoring of crop growth is required for many appli-
cations including the evaluation of available resources, precision agri-
culture (McBRATNEY et al., 2005), and plant phenotyping (Comar et al., 
2012). Remote sensing from satellites, planes, or UAVs (Unmanned 
Aerial Vehicles) are well-suited to describe the crop dynamics from 
reflectance acquired in several spectral bands. The interpretation of the 
data in terms of structural and biochemical properties is usually ach-
ieved using two main approaches: (1) an empirical approach, based on a 
set of experiments where both reflectance and canopy characteristics are 

concurrently measured; (2) a physically based approach using radiative 
transfer model simulations. For both approaches, assumptions on can-
opy structure are required to improve the accuracy of canopy charac-
teristics estimates. In the case of the empirical approach, knowledge of 
the species observed and on the developmental stage may improve the 
retrieval performances. Similarly, in the case of the physically-based 
approach, knowledge on the expected range of canopy structure and 
associated optical properties of the elements may significantly improve 
the estimates. 

Apart from the canopy structure differences between species, major 
differences are experienced along the growth cycle because of the 
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appearance of the reproductive organs (RO). RO have structural and 
optical properties very different from those of the leaves: they are 
generally thicker than leaves with lower contents in chlorophyll and 
sometimes elements with specific colors such as petals. These differences 
are expected to impact the radiative transfer in the canopy significantly 
since the RO are often located at the top of the canopy to ease pollen and 
seed dissemination either by the insects, birds, or by the wind. However, 
only a few studies document the impact of RO on canopy reflectance. 
Cossani and Reynolds (2012) reported that wheat ears intercept up to 
40% of the incident radiation around the flowering stage. Li et al. (2015) 
show that removing the ear layer at the flowering stage reduces 
normalized difference vegetation index (NDVI) values by up to 7% in 
relative values. This explains why Weiss et al. (2001) included explicitly 
an ear layer to describe the wheat canopy structure and simulate crop 
reflectance along the growth cycle. Gitelson (2003) and Viña et al. 
(2004) showed that the presence of the tassels at the top of maize can-
opies induced a significant decrease of the VARI index. Wanjura and 
Hatfield (1988) investigated variations in canopy reflectance of sor-
ghum, cotton, and sunflower crops during the growth cycle using the 
scattering and absorption coefficients. However, they were not able to 
draw clear conclusions on the impact of sorghum panicles and sunflower 
heads on canopy reflectance for the Landsat TM bands. More detailed 
investigations are thus required to better quantify the role of RO on 
canopy reflectance. 

Canopy reflectance depends on the observational configuration. 
Therefore, the impact of RO on canopy reflectance should be investi-
gated for the possible view and illumination directions under which 
crops are usually observed from various remote sensing platforms. Few 
studies report detailed measurements of the Bidirectional Reflectance 
Distribution Function (BRDF) (Nicodemus et al., 1977; Schaepman- 
Strub et al., 2006) for crops under field conditions. Goniometers have 
been used in the lab and in the field to characterize the BRDF (Sandmeier 
and Itten, 1999). However, their use is tedious and time-consuming, 
while generally corresponding to a very small footprint, questioning 
its suitability for characterizing the BRDF of tall crops such as maize and 
sunflower. Alternative airborne instruments such as the Parabola 
(Deering and Leone, 1986) and Airborne POLDER (Jacob et al., 2002) 
have been used to measure the BRDF of a range of canopies. They 
require specific flight design to sample the BRDF over a given target. The 
recent development of UAVs allows now to easily document the surface 
BRDF. Different sampling schemes have been used depending on the 
camera field of view. For a camera equipped with a wide field of view, 
the UAV is either moving along different tracks to sample the same 
target from several positions and directions (Hakala et al., 2013) or 
tilting the camera from about half the total field of view and keeping the 
UAV at about the same position while rotating in the compass direction 
(Roosjen et al., 2016). This later technique assumes that the surface is 
sufficiently homogenous to build the BRDF from points located at 
different places in the scene. For the small field of view cameras, the 
UAV is moving around the target while the orientation in view zenith 
and azimuth is changed continuously to keep the camera pointing to-
wards the target (Burkart et al., 2015; Burkart et al., 2014; Grenzdörffer 
and Niemeyer, 2012). UAVs appear thus very convenient to document 
the surface BRDF. 

Crop 3D modeling offers an efficient way to generate realistic can-
opies and simulate the associated reflectance for a range of source and 
view directions (España et al., 1999). Several open-source 3D ray tracing 
render engines were developed concurrently for computer graphics 
applications, such as LuxCoreRender (LuxCoreRender, 2018), MITSUBA 
(Jacob, 2014), and Pov-ray (POV-team, 2013). They have been suc-
cessfully used by the remote sensing community to simulate canopy 
reflectance for a range of vegetation types (Casa and Jones, 2005; Disney 
et al., 2006; Duthoit et al., 2008; España et al., 1999; Génard et al., 2000; 
Jiang et al., 2020; Lopez-Lozano et al., 2009). However, most studies 
focus on crops before the reproductive stage: very few authors have 
included RO in their simulations due to the complexity of their 

morphology, topology, and optical properties. 
The objective of this study is to quantify the influence of the RO on 

canopy BRDF in the visible and near-infrared (NIR) spectral domains. 
We present a new experimental design to measure canopy BRDF using a 
multispectral camera onboard an UAV. This allowed evaluating the in-
fluence of reproductive organs on the spectral and directional behavior 
of canopy reflectance. Three main crops are studied, with very different 
RO at the top of the canopy layer: wheat, maize, and sunflower. Field 
experiments were conducted for the three species during the reproduc-
tive stage to compare the BRDF measured from a UAV between the 
canopy with and without the RO. These measurements are com-
plemented by reflectance simulations over 3D virtual scenes to better 
understand and quantify the impact of RO. 

2. Materials and methods 

2.1. Experimental sites and crops sampled 

The wheat, maize, and sunflower experiments were located in 
Avignon, France (43.9◦N, 4.9◦E). The study focused on fully developed 
crops soon after the flowering stage, when the final height was reached 
and all leaves were fully developed with only a little senescence 
appearing at the bottom of the canopy. The wheat (ISILDUR) ears were 
mostly green and bearing awns, the tassels of maize (Zea mays) were 
light yellow. The heads of the sunflower (MAS 88 OL) were bearing 
yellow petals, the flower heads mostly facing the soil. Its back was green, 
and well seen from the top of the canopy. Note that the rows were ori-
ented East-West for the three experiments (Table 1). 

The sites were selected in a 20 × 20 m homogeneous area of the field. 
Two micro plots of at least 5 × 5 m2 area were considered, one with the 
RO manually removed (RO-), the other (RO+) being undisturbed 
(Fig. 1). A 0.6 × 0.6 m2 reference panel was placed horizontally slightly 
higher than the surrounding canopy to avoid possible interactions with 
the crops and between the two micro plots (Fig. 1). Four circular gray 
panels of 60 cm diameter were additionally placed on the four corners of 
the 20 × 20 m2 site (Fig. 1) to be used as ground control points (GCP) for 
accurate projection of the images taken from the UAV. The coordinates 
of the center of the two reference panels and the four GCPs were 
measured with an RTK GPS (Trimble Geo 7 ×, 2 cm precision). 

2.2. UAV experiment for BRDF characterization 

A hexacopter UAV designed by Atechsys (http://atechsys.fr/) was 
carrying the AIRPHEN multispectral camera (https://www.hiphen-pla 
nt.com/our-solutions/airphen/). The camera had 6 spectral bands 
with 10 nm full width at half maximum. Five bands were equipped with 
an 8 mm focal length (450 nm, 530 nm, 675 nm, 730 nm, and 850 nm), 
which provided a field of view (FOV) of 33◦ × 25◦. The sixth band (570 
nm) was equipped with a 4.2 mm focal length providing a 60◦ × 46◦

Table 1 
Summary of the flights over wheat, maize, and sunflower experiments. The row 
azimuth, measurement date, take-off time, average sun zenith (θs) and azimuth 
(φs) and illumination conditions during the flight are indicated. The azimuth 
angles are calculated regarding the North.  

Species Date Row azimuth (◦) Time θs (◦) φs (◦) 
(GMT + 1) 

Wheat 23/05/2017 90.1 15:09 30 226 
16:12 40 246 
09:00 61 91 

Maize 08/08/2016 89.2 14:17 29 221 
16:26 44 244 
18:00 61 264 

Sunflower 28/07/2017 90.5 12:20 30 137 
10:40 45 108 
09:20 60 89  
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FOV. The 4.2 mm lens benefits from a higher overlap (80%) at the 
expense of a lower spatial resolution (4.06 cm at nadir). It was thus only 
used to improve the image alignment while the 8 mm lenses for the five 
other bands were used in the following of the study for their highest 
spatial resolution (2.11 cm at nadir). Besides the lower spatial resolu-
tion, the 4.2 mm lens at 570 nm would not add much spectral infor-
mation as it is strongly correlated with the 8 mm lens at 530 nm. The 
camera was triggered every second, the integration time is automatically 
adjusted using a global shutter. The images were saved into a 12 bit TIFF 
format with metadata information including time of the acquisition, 
integration time, and GPS coordinates. 

Over each site, the UAV flew three times during the day corre-
sponding approximately to 30◦, 45◦, and 60◦ nominal sun zenith angles 
(θs) (Table 1). For each θs, the UAV sampled five view zenith angles (θv =
[0◦, 15◦, 30◦, 45◦, 60◦) for all view azimuth angles (φv) by flying along 
with five concentric circles, each one being at a specific altitude (Fig. 2). 
Two additional view zenith angles, θv = θs+5◦ and θv = θs-5◦ were 
complementing the five nominal θv angles to better sample directions 
close to the hotspot. The flight path was designed before the experiment 
and included an automatic adjustment of the compass orientation of the 
camera on the gimbal so that it was always pointing the reference gray 
panels, the view zenith angle being adjusted for each of the seven circles 
(Fig. 2). The distance to the ground along the view direction was around 
45 m at maximum when cameras were close to the nadir direction 
(Fig. 2). This provided a ground spatial resolution of about 2.11 cm and 
4.06 cm respectively for the 8 mm and 4.2 mm focal length. The UAV 
was flying at about 1 m/s speed and it took 7 to 10 min to sample all the 

view directions considered. During the UAV flights, the sky was clear 
without clouds (Table 1). The wind was gentle for maize and sunflower 
while significant for wheat with consequences on the faithful realization 
of the flight plan, with however no severe degradation of the sampling 
scheme. 

2.3. Image extraction 

The raw single frames taken concurrently by the six cameras were 
firstly co-registered to the reference image at 530 nm using the code 
developed by Rabatel and Labbé (2015). Vignetting effects were then 
corrected following the procedure proposed by Verger et al. (2014). 
Agisoft Photoscan software (Version 1.2.4.2399, Agisoft LLC., Russia) 
was then run using as input the images taken with the 530 nm and 570 
nm cameras equipped respectively with 8 mm and 4.2 mm focal lengths. 
Agisoft Photoscan computed the corresponding position and orientation 
of the camera for each image. The GCPs were manually identified on the 
images and used to improve the georeferencing accuracy. The band at 
570 nm was not used afterward because of the degraded resolution 
provided by the 4.2 mm focal length. Furthermore, it was mostly 
redundant with that at 530 nm with a higher spatial resolution. The 
pixels corresponding respectively to the two micro plots and the radio-
metric reference panel were then extracted for the five bands corre-
sponding to the 8 mm focal lengths. The average digital number (DN) 
value was finally computed and associated with the corresponding 
integration time (t) and the view direction (θv, φv). None of the images 
used were showing saturated pixels. 

Fig. 1. The three experiments showing the RO+ (with RO, orange rectangle) and RO- (without RO, yellow rectangle) micro plots, the ground control points (GCPs), 
and the reference panel in the middle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. (a) The flight plan for θs = 30◦; (b) the actual flight path over the maize experiment at 14:17 local time on 08/08/2016. RO+ and RO- represent micro plots 
with and without RO, respectively. The background image was from Google Earth™. 
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2.4. Radiometric calibration 

The radiometric reference panel used in the field was made of a gray 
carpet that was previously characterized in the lab using a goniometer 
and a white spectralon as primary reflectance reference (Labsphere, Inc., 
North Sutton, NH, USA). Reflectance measurements were made with a 
spectral evolution SM-3500 spectrometer (www.spectralevolution. 
com). The Roujean BRDF model (Roujean et al., 1992) was then 
adjusted over the goniometer measurements. It was used to simulate the 
bi-directional reflectance (BRF) of the reference panel for any direction 
Ω. The ‘gray’ nature of the panel with all the bands having the same BRF 
value was well verified (Fig. 3). While the panel was relatively Lam-
bertian for near nadir illumination, significant anisotropy is observed for 
θs > 30◦. For this reason, we preferred using only the nadir viewing 
observations for the radiometric calibration of the camera, assuming 
that the incoming radiation was stable during the flight. 

The BRF(Ω,λ) of the canopy was computed from the DN values 
extracted from the images using the known BRF value of the reference 
panel (BRFref) and the DN values of the reference panel DNref(Ω,λ) 
extracted on the same image (Smith and Milton, 1999): 

BRF(Ω, λ) =
DN(Ω, λ)/t(Ω, λ)

DNref (Ωo, λ)
/

tref (Ωo, λ)
BRFref (Ωo, λ) (1)  

where λ is the wavelength, Ω corresponds to the observation configu-
ration with Ω = [θv,φv,θs,φs] where θ and φ represent respectively the 
zenith and azimuth angles, and subscripts v and s correspond respec-
tively to the view and sun directions. t is the integration time. The 
measurements of the reference panel used for the calibration correspond 
to viewing geometry close to the nadir direction noted here Ωo. 

The radiance from the reference panel measured in the field includes 
a contribution of the direct sunlight as well as a diffuse component 
coming from the light scattered by the sky. The bi-directional reflectance 
measured in the lab was therefore converted into a blue-sky reflectance 
factor to account for the diffuse component. The hemispherical- 
directional reflectance factor was computed based on Roujean’s model 
with the coefficients previously adjusted. The diffuse fraction was finally 
used to compute the corresponding blue-sky BRF (Schaepman-Strub 
et al., 2006). The diffuse fraction was derived from the 6S model sim-
ulations (Vermote et al., 1997) using the atmospheric characteristics 
measured from the local AERONET sun photometer as inputs (Holben 
et al., 1998). 

Once the BRF at each measurement angle Ω was calculated, they 
were linearly interpolated from 0◦ to 60◦ zenith angles and from 0◦ to 
360◦ azimuth angles with a 1◦ step for polar representation. Results are 
shown in the following analysis for the perpendicular and principal 
planes. 

2.5. Reproductive organs characterization 

For each crop, a sample of a representative RO was collected in the 

field. A set of photos were then taken with a SONY alpha 6000 RGB 
camera from multiple views: the organ was put vertically over a 
manually rotating plate in front of a uniform blue background. About 40 
to 120 photos were taken by rotating the plate. These multi-view RGB 
photos were aligned using Agisoft Photoscan software (Version 
1.2.4.2399, Agisoft LLC., Russia) to build a dense 3D point cloud used 
later to model the organ morphology. The lengths of wheat ears and 
maize tassels and the diameter of sunflower heads were also measured 
(Table 2). The optical properties in five bands were measured using the 
AIRPHEN camera: organs were placed horizontally over a black back-
ground and viewed from nadir under clear sky field conditions, the sun 
being at around 45◦ zenith angle. Organ surface reflectance was then 
computed using a reference panel placed horizontally in the camera field 
of view. Average values of sunlit wheat ears, maize tassels, and sun-
flower petals and front-side and back-side of the heads were then 
computed (Table 2, Table B1). 

2.6. Reflectance simulations 

The canopy was considered as composed of two layers, the top one 
corresponding to the RO. The bottom layer corresponds to the canopy 
without the RO. It was characterized by the measured BRF(Ω, λ) value 
over the RO- modality, with BRF value equal to that measured in the 
considered view-illumination geometry. The reproductive organ layer 

Fig. 3. BRF of the reference panel measured in the lab in the principal plane for four sun zenith angles as a function of the view zenith angle. Positive view zenith 
angles correspond to the backward direction, while negative values correspond to forward direction. 

Table 2 
Fields and RO characteristics used for the 3D scene generation. The reflectance 
of sunflower frontside flower and backside flower does not include yellow petals.  

Characteristics Unit Wheat Maize Sunflower 
RO- layer height (m) m 0.8 1.6 1.03 
RO- Green Area Index GAIa 

– 2.7 4.9 0.40 
Row spacing (m) m 0.155 0.77 0.63 
Density of RO (nb/m2) nb/ 

m2 
450 8 4 

Length of RO (m) m 0.11 0.25  
Diameter of RO (m)b m 0.015 0.005 0.25 
RO area index (m2/m2)c 

– 1.23 0.16 0.20 
Reflectance of RO @675 

nm 
– 0.1 0.25 Flower front-side: 

0.122 
Flower back-side: 0.25 
Flower yellow petal: 
0.34 

Reflectance of RO @850 
nm 

– 0.45 0.7 Flower front-side: 
0.219 
Flower back-side: 0.5 
Flower yellow petal: 
0.36  

a GAI was estimated using a simple empirical model described in Verger et al. 
(2011) and based on the measured NDVI. 

b Diameter of maize tassel corresponds to the mean value of all branches. 
c RO area of wheat head is calculated as half the developed area of a cylinder. 

For maize, tassels were considered as made of five cylindric branches. The area 
of sunflower head was calculated as a disc. 
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was built by replicating the typical reproductive organ (Table 2). For 
wheat, the ears were vertical and placed regularly according to the plant 
density For maize, the panicles were randomly oriented and placed ac-
cording to the row spacing and plant density. For sunflowers, all the 
flowers were oriented towards the east and placed according to the row 
spacing and plant density. For the three crops, a small random shift of 
the nominal position was added to mimic the actual localization of the 
RO (Fig. 4). Scenes of 2.0 × 2.8 m2 were built and replicated 179 times 
around the center one to avoid border effects. The reflectance of the RO 
material was assumed Lambertian and characterized by the corre-
sponding measured reflectance (Table 2) with transmittance equal to 
zero. 

Canopy reflectance with RO was simulated using the LuxCoreRender 
3D render engine (LuxCoreRender, 2018). LuxCoreRender is open- 
source software (LuxCoreRender, 2018), which was validated with a 
set of state-of-the-art models by Jiang et al. (2020) using the RAMI 
Online Model Checker (ROMC) (Widlowski et al., 2008). We used the 
LuxCoreRender ray-tracing integrator with 128 rays per camera pixel to 
guarantee the accuracy of the simulated reflectance. A perspective 
camera was selected to simulate the AIRPHEN camera with a 33◦ x 
25◦field-of-view. For each θs = [30◦, 45◦, 60◦], the observation config-
uration including [θv,φv] and the height of the camera was kept the same 
as in the field experiments. Since the three experiments were conducted 
under clear sky conditions, no diffuse sky light was considered in our 
simulations. 

3. Results 

3.1. Selecting a subset of bands for further analysis 

The correlations between the red band (675 nm) and the other four 
bands were first analyzed to select a subset of bands that will be later 
investigated for the sake of clarity. Results (Table 3) show that the 450 
nm and 530 nm bands were very strongly correlated to the 675 nm band 
for all sun zenith angles and the three experiments (r2 > 0.8). This is 
explained by the marginal contribution of multiple scattering and the 
soil background as well as the fact that most of the elements have similar 
optical properties in the visible domain. Conversely, bands at 730 nm 
and mainly that at 850 nm show degraded correlations with the visible 
bands due mostly to the importance of the multiple scattering in the NIR 
domain. Therefore, we selected the 675 nm and 850 nm bands as a 
representative subset to illustrate in the following sections the impact of 
the RO on the directional reflectance. 

3.2. Directional effects over the canopy without the reproductive organs 
(RO-) 

Before quantifying the impact of the reproductive organs on canopy 
reflectance, the directional properties of the canopies without the RO 

(RO-) corresponding only to the leaf and stem layer over the soil back-
ground were first investigated. They will be used later to compute 
canopy BRDF using the simulated layer of RO. 

3.2.1. Main directional features 
The directional features for the three crops and two bands show 

similar patterns across the three sun positions. We, therefore, illustrate it 
using only the measurements for θs = 45◦ (Fig. 5). Measurements for the 
other two sun directions are presented in Fig. A1 and Fig. A2. The polar 
plots were obtained by linear interpolation of the raw measured BRF in 
both zenith and azimuth directions with a 1◦ angular resolution. A peak 
corresponding to the sun direction is observed in the hotspot, i.e. when 
the shadows cast by the leaves or soil roughness are not seen (Qin and 
Goel, 1995). The hotspot is relatively narrow for the maize and sun-
flower crops both in the red and NIR bands, while it appears broader for 
te wheat in these two bands. Note that the hotspot is located in the 
South-Eastern compass directions for the sunflower experiments since 
measurements were completed in the morning (Table 1). Conversely, 
the hotspot is in the South-Western compass direction for maize and 
wheat, corresponding to afternoon flights. For directions opposite to the 
hotspot corresponding to the forward scattering, the reflectance is 
generally lower. 

For the visible and NIR bands, the three crops show a general sym-
metry on both sides of the principal plane, i.e. the plane containing the 
sun direction (Fig. 5). To better evaluate the symmetry across the 
principal plane, for each 5◦ zenith by 5◦ azimuth cells, the BRF differ-
ence, δBRF(Ω,λ), with the average of the two symmetrical directions 
across the principal plane was computed: a perfectly symmetric BRDF 
with regards to the principal plane should verify δBRF(Ω,λ) = 0. Results 
(Fig. 6) confirm that a general symmetry exists across the principal plane 
since the BRF differences of symmetrical directions are generally within 
−0.01 < δBRF(Ω,λ) < 0.01. This is well verified for dense canopies such 
as maize for both bands (Fig. 6). This is also the case for wheat that 
presents little row structure at the flowering stage. Nevertheless, in the 
NIR, a slight dissymmetry is observed for the three sun directions, with 
slightly higher reflectance in the directions north to the principal plane 
(Fig. 6). The sunflower shows very similar patterns in both bands 
(Fig. 6). A persistent dissymmetry is observed for the three sun positions, 
with slightly higher reflectance in the directions south to the principal 
plane. Since the rows were oriented East-West, this can be easily 
explained for θs = 30◦ and θs = 45◦: the illuminated plants and soil in the 
row are preferentially seen from the southern directions as compared to 
the northern ones. This agrees very well with the results from (Ranson 
et al., 1985) as well as reflectance simulations of row canopies (Goel and 
Grier, 1987; Suits, 1983; Zhao et al., 2010). However, when the sun is 
almost parallel to the row direction as observed for θs = 60◦, the 
southern side appears more reflective than the northern one. This was 
not expected and is more difficult to explain unless invoking some non- 
isotropic distribution of leaf azimuthal directions, or some uncorrected 

Fig. 4. Nadir view of the 3D scenes (2.0 × 2.8 m2) for wheat, maize, and sunflower as rendered with Luxrender. The sun position is in the east at 45◦ zenith angle. 
The reproductive layer was put here on a brown background for better visualization. A side view of the typical reproductive organ replicated in the scene is also 
displayed for each crop. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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biases in the measurements. However, the magnitude of the difference is 
generally lower than 0.01 which is probably close to the measurement 
uncertainties. 

Because of the general symmetry across the principal plane, we will 
focus in the following on the average BRF between the two symmetrical 
directions across the principal plane. This will offer the advantage to 

Table 3 
Correlation coefficients (r2) between canopy reflectance @675 nm and the four other bands for wheat, maize, and sunflower experiments over all images. It includes 
RO- and RO+ observations for the three sun zenith angles (θs).  

Fig. 5. Polar representation of the measured BRF distribution of the three experiments without the RO (RO-) for 675 nm and 850 nm bands. The sun is displayed as a 
black cross marker and was at θs=45◦. The row orientation (east-west) is represented by the dashed black line. Values represent interpolations from raw 
measured BRF. 
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smooth out possible local uncertainties. 

3.2.2. Directional effects in the principal plane 
The BRF in the principal plane was approximated as the BRF 

measured values within ±5◦ azimuth difference with that of the sun 
direction. All the crops, bands, and directions show similar patterns 
(Fig. 7) with however large differences in magnitude. The maximum 

BRF is observed always close to the hotspot direction as expected. The 
minimum BRF values are observed close to the nadir for the NIR band, 
and in the forward scattering directions for the visible bands. The dif-
ference between red and NIR bands depends on the species as a function 
of the green area index values: the wheat has the largest GAI and the 
largest difference between red and NIR. Conversely, sunflower has the 
lowest GAI and the lowest difference between the BRF in both domains. 

Fig. 6. Polar plot of δBRF(Ω,λ) for wheat, maize, and sunflower without RO @675 nm and 850 nm, and the three sun positions considered. δBRF(Ω,λ) represents for 
each view direction the BRF differences with the average BRF values of the two symmetrical directions across the principal plane: when δBRF(Ω,λ) = 0, the BRF of 
both symmetrical directions across the principal planes are the same. The black cross marker represents the sun position during the flight. The black dashed line is the 
row direction. 

Fig. 7. BRF values in the red (675 nm) and NIR (850 nm) in the principal plane as a function of the view zenith angles. Observations over canopies without the RO 
for θs=[30◦, 45◦, 60◦]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Outside the hotspot directions, small differences of BRFs are observed 
between the three sun directions with however slightly higher values for 
θs= 60◦ for the more oblique view directions in the NIR, while the 
contrary is observed in the visible domain (Fig. 7). 

3.3. Effects of reproductive organs on canopy reflectance 

3.3.1. Main directional features 
We focused first on ∆BRF(Ω,λ), i.e. the canopy BRF difference be-

tween canopy with organs (RO+) and without organs (RO-). This was 
computed based on the average BRF between the two symmetrical di-
rections across the principal plane as explained earlier. Results show 

that the impact of RO on canopy BRF is relatively small in absolute 
value, with −0.02 < ∆BRF(Ω,λ) < 0.02 in the red, and −0.04 < ∆BRF 
(Ω,λ) < 0.04 in the NIR (Fig. 8). However, when computed in relative 
values, ∆BRF(Ω,λ) can reach substantial levels up to 85% in the red 
because of the small BRF(Ω,λ) observed (Fig. 5) and up to 34% in the 
NIR. The impact of RO depends mainly on the crop, on the spectral 
domain as well as on the directions considered. 

For wheat, the ears generally decrease canopy reflectance both in the 
red and NIR bands (Fig. 8). This is consistent with studies by Li et al. 
(2015). Little directional effects due to the sun and view directions are 
observed, with however larger impacts close to the hotspot. We observe 
some higher differences (in absolute value) for θv > 55◦, which may 

Fig. 8. Directional distribution of ∆BRF(Ω,λ), the canopy BRF difference with (RO+) and without (RO-) the RO. Wheat (left), maize (middle), and sunflower (right) 
are displayed for θs = [30◦,45◦,60◦]. Each half polar plot represents the average BRF values between the two symmetrical directions across the principal plane. The 
top hemisphere represents the red band and the bottom one the NIR band. The principal plane is in the 90◦ - 270◦ azimuthal direction, with the hotspot located on the 
right side (90◦ azimuth). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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correspond to artifacts in the measurements. Similar artifacts are also 
noticed for maize and sunflower. 

The tassels of maize generally increase canopy BRF for all sun and 
view directions both in the red and NIR domains. The impact increases 
substantially with the solar zenith angle, while the effect of view di-
rection is marginal (Fig. 8). 

For sunflower, the influence of heads is contrasted between the red 
and NIR domains: in the red, the impact is small with ∆BRF(Ω,λ) ≈ 0 for 
the three sun directions; conversely, in the NIR, the heads increase 
canopy reflectance, particularly for the larger sun zenith angles (Fig. 8). 

3.3.2. Consistency between observations and simulations 
Since the experimental evidence of the impact of RO on canopy 

reflectance appears difficult due to the small differences observed and 
possible confounding measurement uncertainties, we wanted to 
consolidate the findings based on radiative transfer simulations. We 
concentrated on the principal plane where most directional features are 
expected and computed ∆BRF(Ω,λ). 

In the red domain (Fig. 9), simulations confirm that the impact of RO 
is small. It is slightly negative for wheat, slightly positive for maize, and 
neglectable for sunflower. For wheat, the addition of the ear layer rep-
resenting an area index around 1.2 (Table 2) decreases canopy BRF since 
ears are green with low reflectance (Table 2) without transmitting light, 
i.e. a very absorbing layer. Furthermore, their vertical position acts as a 
light trap, increasing light absorption by the lower layers of the canopy. 
For maize, the tassels act as a scattering layer since they reflect more 
light than the lower layer of green vegetation due to their higher 
reflectance (Table 2). When the sun zenith increases, ∆BRF(Ω,λ) 

increases because of the longer path length in the tassel layer. The same 
is also observed for more inclined views, particularly in the backward 
scattering direction. The small impact of sunflower heads on canopy 
reflectance can be explained by their small contribution in terms of area 
index (Table 2), on top of the green layer of leaves. The more subtle 
differences observed as a function of the observational geometry are 
difficult to explain. 

In the NIR domain (Fig. 10), the small impact of the ears on ∆BRF 
(Ω,λ) is explained by the light trap feature as described previously and 
the small scattering properties of the ears that do not transmit light. For 
maize, the discrepancies between measurements and simulations may 
be partly explained by the fact that the strong row structure of the 
vegetation layer was not accounted for in our simulations. Measure-
ments show a positive impact of the tassels for θs = 60◦ and oblique 
viewing. For the sunflower, the heads induce a slight increase of canopy 
reflectance, probably due to the high values of the reflectance of the 
back-side of heads (Table 2) that are pointing upward. 

Furthermore, the discrepancies found between observed and simu-
lated ∆BRF(Ω,λ) values may be explained by the possible measurement 
uncertainties as well as the assumptions made for the canopy reflectance 
simulations regarding the spatial homogeneity (i.e. no row structure) of 
the bottom vegetation layer that is coupled with the RO layer. 

3.4. Impact on NDVI values and GAI estimation 

Previous results demonstrated that the effect of RO on canopy 
reflectance was variable in the visible and NIR bands. We thus investi-
gated how NDVI (Rouse Jr. et al., 1973), a vegetation index widely used 

Fig. 9. Measured BRF differences between canopy with (RO+) and without (RO-) RO as a function of the view zenith angle in the principal plane at 675 nm from 
measurements (top) and 3D simulation (bottom). The back-scattering direction corresponds to positive view zenith angles. Crops are shown from left to right: wheat, 
maize, and sunflower. Several solar zenith angles are considered: θs = 30◦ (red), θs = 45◦ (green), and θs = 60◦ (blue). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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to quantify vegetation amount and combining the red and NIR bands, 
was impacted by the RO. We focused here on near nadir observations 
(−10 ◦ < θv < 10 ◦), which is the typical geometry used to observe crops 
from high-spatial resolution satellites. 

NDVI indicates the amount of green vegetation that can be also 
quantified by the green area index (GAI): a gradient is observed between 
wheat, maize, and sunflower as a function of the GAI value (Table 2), 
with maize having the larger GAI, and sunflower the lower one (Fig. 11). 
The addition of ears in wheat canopies increases the NDVI value. This is 
consistent with the results from Li et al. (2015) and is mainly explained 
by the green nature of the ears at the flowering stage that absorb 
strongly in the red and scatter light in the NIR. Note that the area index 
of the ear layer is close to 1.2 over a GAI of the wheat crop at the 
flowering stage around 2.7 (Table 2). The variation in NDVI due to the 
ear layer is around ∆NDVI ≈ 0.04. 

For maize crops, the highly scattering tassels in the red and NIR 
decrease the NDVI values by ∆NDVI ≈ − 0.03. These results are 
consistent with those reported by Gitelson (2003). 

For the sunflower, the impact is slightly negative (∆NDVI ≈ − 0.02) 
for θs = 30◦ which is explained mainly by the higher scattering prop-
erties of the sunflower heads (Table 2). Conversely, the impact is posi-
tive (∆NDVI ≈ 0.01) for θs = 60◦: under this geometry where the sun is 
parallel to the rows, the heads cast shadows on the row, inducing a 
larger decrease of the BRF in the red while NIR BRF remains about the 
same because of the multiple scattering in the canopy. As expected, for 
medium solar zenith angles (θs = 45◦) the impact of the heads is inter-
mediate between the two previous situations with ∆NDVI ≈ 0. 

Our experimental results also show that the NDVI changes induced 
by the RO layer can be translated into a change in GAI estimates that can 
reach up to 25% (Table 4). It can be either positive as in the case of 
wheat crops and for the sunflower for the smaller solar zenith angle, or 
negative as in the case of the maize crop. 

4. Discussion and conclusions 

4.1. BRF measured by UAVs 

We proposed a method to sample the BRDF from UAV multi-angular 
measurements that appears very efficient as compared to the use of 
goniometers in the field (Sandmeier and Itten, 1999): it offers the 
advantage to avoid disturbing the crop surface while using a single 
footprint where the multiangular observations are concentrated (Roos-
jen et al., 2016). 

Although UAV provides a very promising way to sample the canopy 
reflectance as demonstrated in this study, uncertainties could be raised 
in several aspects. We designed carefully the flight plan by taking into 
account the micro plot size, camera FOV, variation of viewing angles 
and flight duration. We thus achieved a very good directional sampling 
of each micro plot. However, around the hotspot direction where very 
strong variation of canopy reflectance is expected, the sampling density 
was probably too loose to get a very accurate description of this BRDF 
feature. Further, the necessary spatial averaging over the microplot in-
duces also a degradation of the directional resolution of the measure-
ments which was around 7◦. 

Fig. 10. Measured BRF differences between canopy with and without RO as a function of the view zenith angle in the principle plane at 850 nm from measurements 
(top) and 3D simulation (bottom). The back-scattering direction corresponds to positive view zenith angles. Crops are shown from left to right: wheat, maize, and 
sunflower (right) and different solar zenith angles are considered: θs of 30◦ (red), 45◦ (green) and 60◦ (blue). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Our radiometric calibration based on nadir measurements of the 
reference panel assumes that the irradiance did not change during the 
flight. This was preferred as compared to using more frequent obser-
vations of the panel under the several view directions sampled un order 
to reduce the uncertainties attached to the BRDF characterization of the 
panel as well as the illumination geometry. However, the clear sky 
conditions and the small time interval necessary to complete the flight 
(7–10 min) ensured that the illumination conditions were about con-
stant during image acquisition. The method also assumes that the 
camera responds linearly with the radiance and that the black current is 
neglectable (Smith and Milton, 1999; Wang and Myint, 2015). Although 
this was verified for few AIRPHEN cameras, using multiple calibration 
panels in the field as proposed by Pozo et al. (2014) and Smith and 
Milton (1999) could allow to confirm this important assumption. 

4.2. Impact of RO on canopy reflectance and NDVI 

UAV measurements and 3D model simulations show that the RO 

have a small effect on the absolute reflectance values, with magnitudes 
of ±0.02 in the red and ± 0.04 in the NIR band (Fig. 8 and Fig. 9). 
However, expressed in relative values the differences can reach up to 
85% in the red and 34% in the NIR. The impact of RO on canopy 
reflectance vary with crop, spectral bands and show directional effects. 
This may translate into substantial changes in vegetation index values: 
for view directions close to nadir, the wheat ears layer increases the 
NDVI by up to 0.06 (8.57%), while the maize tassels decrease canopy 
NDVI by up to 0.04 (4.60%) (Table 4). The sunflower heads impact 
differently NDVI depending on sun position due to the complex structure 
and optical properties of the heads, including difference between the 
two sides and the presence of yellow petals. 

These results were derived from measurements acquired at a single 
date during the crop reproductive stage. However, the impact of RO on 
reflectance may vary greatly depending on the reproductive stages. For 
instance, the wheat senescence occurs from the bottom to the top of the 
canopy and the timing of the disappearance of the chlorophyll pigments 
in ears will affect the spectral response of the crops (Weiss et al., 2001). 
Furthermore, the presence of awns, the ear shape or its inclination also 
vary substantially with the genotype and time, with impact on the 
spectral and directional behavior on the canopy (Gutierrez et al., 2015). 
Conversely, for maize, the structure of the tassels is supposed to vary in a 
lesser extent as compared to wheat, while the yellowing will still have an 
impact on the spectral variation of the reflectance (Martin et al., 2007). 
The effect of RO on sunflower reflectance should also be variable 
depending on the phenological stage as they have the biggest repro-
ductive organs, with contrasted reflectance between each side of the 
head associated to a complex behavior regarding their orientation due to 
the heliotropism. Therefore, this study represents a first step to highlight 
the influence of RO on canopy reflectance but more investigations are 
required, especially regarding the temporal variations of the spectral 
properties, the orientation of the organs, genotypic variations and 
changes in the crop environmental conditions. 

4.3. Consequences on GAI estimates and applications 

The presence of the RO may also impact estimates of GAI. In this 
study, we used NDVI as a proxy of GAI. Two cases can be considered: (1) 
if the organs are green and photosynthetically active as in the case of the 
wheat ears or the sunflower heads, they should be included in the GAI 
computation since they will contribute to light interception and photo-
synthesis. However, because the architecture of the reproductive layer 
at the top of the canopy is different from that of the bottom layer, ar-
tifacts may be introduced in the retrieval of GAI if the same architecture 
is assumed for the two layers. This explains why Weiss et al. (2001) 
introduced explicitly an ear layer in their dynamic model of wheat 
canopy architecture. (2) if the RO are not green as for the maize tassels, 
they will partly absorb and scatter the incoming light without contrib-
uting to the GAI. This explains the experimental results from Gitelson 
et al. (2014) over maize crops who showed that the relationship between 
the fraction of intercepted radiation and NDVI during the vegetative 
stage was different from that during the reproductive stage. In both 
cases, the dynamics of canopy refelectance and NDVI will be altered 
when the RO are appearing during the flowering stage, leading to 
possible artifacts on GAI estimation. These artifacts introduced by the 
presence of the RO layer will depend on the specific structural and op-
tical properties features of each genotype. The perturbations in the dy-
namics due to the apparition of the RO layer offers the potentials to be 
exploited to date this important growth stage. 
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Fig. 11. Variation of NDVI values as observed near nadir (average of BRF for 
−10 ◦ < θv < 10◦) for maize, sunflower, and wheat with θs = [30◦,45◦,60◦]. 
The canopy NDVI values measured with (RO+) and without (RO-) RO 
are displayed. 

Table 4 
Impact of the RO on GAI estimates. The measured NDVI values for the canopy 
with (RO+) and without (RO-) RO are displayed along with the corresponding 
GAI. The difference is then computed in absolute (ΔGAI) or relative value (ΔGAI 
%). All GAI values are derived from NDVI using the empirical relationship 
proposed by Verger et al. (2011).  

Species θs RO- RO+ ΔGAI ΔGAI % 
NDVI GAI NDVI GAI 

Maize 30◦ 0.86 4.6 0.83 3.9 −0.7 −15 
45◦ 0.86 4.6 0.83 3.9 −0.7 −15 
60◦ 0.87 4.8 0.83 3.9 −1.0 −19 

Wheat 30◦ 0.70 2.2 0.76 2.7 0.5 23 
45◦ 0.71 2.3 0.74 2.6 0.3 13 
60◦ 0.76 2.7 0.78 3.1 0.3 15 

Sunflower 30◦ 0.28 0.4 0.26 0.3 −0.1 −25 
45◦ 0.32 0.5 0.32 0.5 0.0 0 
60◦ 0.36 0.6 0.37 0.6 0.0 0  
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Appendix A

Fig. A1. Polar representation of the measured BRF distribution of the three experiments without the RO (RO-) for 675 nm and 850 nm bands. The sun is displayed as 
a black cross marker and was at θs= 30◦. The row orientation (east-west) is represented by the dashed black line. Values represent interpolations from raw 
measured BRF.  
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Fig. A2. Polar representation of the measured BRF distribution of the three experiments without the RO (RO-) for 675 nm and 850 nm bands. The sun is displayed as 
a black cross marker and was at θs= 60◦. The row orientation (east-west) is represented by the dashed black line. Values represent interpolations from raw 
measured BRF. 

Appendix B  
Table B1 
Measured reflectance of wheat ears, maize tassels, and sunflower petals, front-side and back-side 
from AIRPHEN camera on 450 nm, 530 nm, and 730 nm. The reflectance of sunflower frontside 
flower and backside flower does not include yellow petals.   

450 nm 530 nm 730 nm 
Wheat 0.04 0.25 0.35 
Maize 0.13 0.2 0.45 
Sunflower front-side 0.021 0.10 0.21 
Sunflower back-side 0.06 0.17 0.38 
Sunflower yellow pedal 0.024 0.27 0.35  
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Hakala, T., Honkavaara, E., Saari, H., Mäkynen, J., Kaivosoja, J., Pesonen, L., Pölönen, I., 
2013. Spectral imaging from UAVS under varying illumination conditions. Int. Arch. 
Photogramm. Remote. Sens. Spat. Inf. Sci. XL-1/W2, 189–194. https://doi.org/ 
10.5194/isprsarchives-XL-1-W2-189-2013. 

Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., 
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A B S T R A C T

A wide range of ecological, agricultural, hydrological and meteorological applications at local to regional scales

requires decametric biophysical data. However, before the launch of SENTINEL-2A, only few decametric pro-

ducts are produced and most of them remain limited by the small number of available observations, mostly due

to a moderate revisit frequency combined with cloud occurrence. Conversely, kilometric and hectometric bio-

physical products are now widely available with almost complete and continuous coverage, but the associated

spatial resolution limits the application over heterogeneous landscapes. The objective of this study is to combine

unfrequent decametric spatial resolution products with frequent hectometric spatial resolution products to

improve the temporal frequency and completeness of decametric observations. The study focuses on the fraction

of photosynthetically active radiation absorbed by the green vegetation (FAPAR) because of its important role in

canopy models and small dependency to scaling issues.

An algorithm is developed to provide near real time estimates of FAPAR called DHF (for Decametric

Hectometric Fusion) at a decametric resolution and dekadal time step. It is assumed that the FAPAR time course

is described by a second-degree polynomial function over a limited 60-days temporal window for each deca-

metric pixel. To reduce the dimensionality of the problem, landcover classes are considered instead of each

individual pixel. For each class, the coefficients of the polynomial function are adjusted using the temporal

course of the available decametric FAPAR products, under the constraint of providing a good match with the

time course of the hectometric dekadal FAPAR products. The point spread function associated to the hectometric

FAPAR products and the possible biases between the decametric and hectometric FAPAR products are explicitly

accounted for.

The algorithm was evaluated over a time series of decametric Landsat-8 FAPAR images (30 m) and hecto-

metric (330 m) dekadal GEOV3 FAPAR derived from PROBA-V images acquired in 2014 over a site in the South-

West of France.

Results show that the estimated DHF FAPAR products capture well the expected seasonal variation and spatial

distribution while improving the temporal frequency and spatial and temporal completeness of the original

Landsat-8 products. A leave one out exercise shows that the DHF values are in very good agreement with the

Landsat-8 FAPAR (RMSE = 0.05–0.14) that were not used when computing the DHF. This demonstrates the

robustness of the algorithm and interest under cloudy regions. Additional comparison with ground measure-

ments collected over 14 sunflower fields along the growth season confirms the good performances of the DHF

FAPAR products (RMSE = 0.11).

1. Introduction

A wide range of environmental and agricultural applications at local

to regional scales requires accurate and frequent estimation of

biophysical vegetation characteristics at the decametric spatial resolu-

tion. Satellite sensors such as Landsat-5 (30 m), Landsat-7 (30 m),

Landsat-8 (30 m), SPOT4 (20 m), SPOT5 (20 m), FORMOSAT (8 m) and

Sentinel-2A (10 m) provide observations at decametric resolutions.
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Several algorithms have already been proposed to generate biophysical

products from these sensors, including Jiang et al. (2016), Li and Fang

(2015), Li et al. (2015), Verger et al. (2011a), Verger et al. (2011c) and

Ganguly et al. (2012). However, the use of these products is always

limited by the reduced revisit frequency even degraded by cloud oc-

currence. Conversely, due to their large swath, kilometric resolution

sensors such as VEGETATION, PROBA-V or MODIS provide daily ob-

servation of the globe. Few kilometric biophysical products have been

generated operationally from these sensors at four to ten days interval,

including MODIS (Knyazikhin et al., 1998), CYCLOPES (Baret et al.,

2007), GEOV1 (Baret et al., 2013a), GEOV2 and GLASS (Liang et al.,

2013; Xiao et al., 2015). They have been extensively validated and

applied in several studies (Camacho et al., 2013; Garrigues et al., 2008;

Weiss et al., 2007). However, the generally mixed nature of kilometric

pixels raises both a scaling issue and difficulties when the landscape

object of interest is significantly smaller than the pixel size (Baret et al.,

2013a; Shabanov et al., 2003). Recent improvement of the spatial re-

solution down to hectometers such as PROBA-V (daily 330 m), Sentinel-

3 (every 2 days, 300 m), and VIIRS (daily 370 m) is expected to get

closer to the spatial resolution required for several applications. How-

ever, this is still far from the expected decametric resolution, more

suited to the typical length scale of most landscapes (Garrigues et al.,

2008).

The current technological constraints of sensors having only a lim-

ited number of pixels prevent from getting at the same time a large

swath enabling frequent global coverage and keeping a sufficiently high

spatial resolution. Constellation of high spatial resolution satellites may

solve the question at the expense of an increased cost. Alternatively, the

combination of decametric satellite observations with frequent hecto-

metric or kilometric observations is a promising way to increase the

temporal frequency of decametric products. Previous studies have de-

monstrated the ability of fusing observations at different spatial re-

solutions (Cardot et al., 2008; Faivre and Fischer, 1997; Gao et al.,

2006; Hilker et al., 2009; Jiang et al., 2016; Zhu et al., 2015). These

methods can be divided into several groups depending on (1) if the land

cover map is used; (2) if time series information is used; and (3) if

biophysical variables are estimated.

Faivre and Fischer (1997) used a linear unbiased prediction method

to estimate reflectance at 20 m spatial resolution from an image with

resolution of 400 m by assuming that the reflectance of a mixed pixel is

a linear combination of several high resolution pure pixels. This method

was later extended to LAI estimation (Faivre and Delecolle, 1997).

Under the same assumption, Cardot et al. (2008) proposed a non-

parametric statistical model to derive high spatial resolution reflectance

or vegetation index from the temporal trajectory of frequent low spatial

resolution data. This method was applied by Guyon et al. (2011) to

monitor the phenology specific to the deciduous forest from kilometric

satellite data. Both methods assume the a priori knowledge of the land

cover at the decametric resolution. This constitutes a strong limitation

of these methods, particularly over agricultural landscapes where the

land cover may change significantly within a single year.

Gao et al. (2006), Hilker et al. (2009) and Zhu et al. (2010) pro-

posed a method to fill gaps in Landsat surface reflectance images using

MODIS data over a limited spatial window centered on the missing

Landsat pixels. These algorithms do not require ancillary land cover

map. However, they need a MODIS image close to the prediction time

and are highly dependent on the number of input images (Gevaert and

García-Haro, 2015). These requirements may limit the application of

these methods in cloudy regions. Alternative methods performing only

over multi-year time series of Landsat surface reflectance images have

contributed to improve the spatial and temporal completeness of data

(Zhu et al., 2015). However, the high dependency of these methods to

the availability of Landsat clear images may be limiting in regions with

high cloud occurence.

Data fusion methods were proposed for some variables including

land surface temperature (Weng et al., 2014) and evapotanspiration

(Anderson et al., 2011; Semmens et al., 2016). However, only little

attention was paid to biophysical variables such as FAPAR or LAI (Jiang

et al., 2016). The fusion of individual biophysical products derived from

several sensors accounts implicitly for the differences between their

observational characteristics since they are already explicitly used

when computing the individual biophysical products. Current kilo/

hectometric biophysical products show a good continuity and com-

pleteness in both the spatial and the temporal domains. The quasi de-

kadal temporal sampling also satisfies the requirements of several ap-

plications. Jiang et al. (2016) generated spatial consistent and complete

Landsat LAI products by fusing Landsat and MODIS reflectance ob-

servation using an ensemble of multiscale filter and canopy radiative

transfer model inversion. However, this study receives only limited

validation and has not been applied for multi-date estimations.

The objective of this study is to develop an algorithm generating

near real time decametric FAPAR products at a dekadal time step called

DHF (Decametric-Hectometric Fused) from the combination of avail-

able decametric and kilometric FAPAR products. The algorithm is ap-

plied to Landsat-8 FAPAR products (Baret et al., 2016) and GEOV-3

FAPAR products (Baret et al., 2013b) biophysical products to generate

the dekadal 30 m FAPAR time series of DHF products. The study area,

satellite data and ground measurements used for the validation are first

presented. Then the principles of the algorithm are described. Finally,

the performances of the algorithm and corresponding products are

evaluated and the limits discussed.

2. Materials

2.1. Study area and ground measurements

The 30 km × 30 km study area is located in the Southwest of France

(Fig. 1) (43.52° N, 1.18° E). Several crops including wheat, sunflower,

barley, rapeseed and maize are covering most of the area. The site is

conveniently located where two Landsat-8 neighboring tracks overlap,

offering potentially one image every 7 to 9 days at minimum.

FAPAR was measured six times in the sunflower fields of this region

from June 12, 2014 to August 27, 2014, almost every 15 days, by using

digital hemispherical photographs (DHP). In each field, a 20 m × 20 m

Elementary sampling unit (ESU) was selected for the measurements

(Fig. 1). Each ESU was sampled with 12–20 DHPs according to the

VALERI spatial sampling protocol (http://w3.avignon.inra.fr/valeri).

The DHPs were taken using a Nikon CoolPix 8400 camera equipped

with a FC-E8 fisheye lens. The downward-looking camera was fixed at

the top of a pole. The height of the pole keeps a constant distance

(~1.2 m) between the lens and the top of the canopy (Demarez et al.,

2008). All photos within an ESU were processed simultaneously using

the CAN-EYE software (http://www4.paca.inra.fr/can-eye) to extract

the FAPAR variable. The black-sky FAPAR (GCOS, 2011) observed at

10:00 solar time was used for the ground validation in this study was

calculated from CAN-EYE.

2.2. LANDSAT-8 30 m FAPAR product

The derivation of FAPAR products from the Landsat-8 individual

images at 30 m spatial resolution is achieved according to the algorithm

described in Li et al. (2015). The Landsat-8 30 m FAPAR top of the

atmosphere (TOA) reflectance images are first transformed into top of

canopy (TOC) reflectance using the algorithm developed by Hagolle

et al. (2008) and Hagolle et al. (2010). TOC reflectance in the green,

red, near infrared and the two short wave infrared bands are then

transformed into FAPAR values using a neural network, based on the

BV-NNET (Biophysical Variables Neural Network) tool developed by

Baret et al., 2007. FAPAR corresponds here to the black-sky value at

10:00 local solar time which provides a close approximation of the daily

integrated black-sky value (Baret et al., 2007). The neural network was

trained over a synthetic database made of PROSAIL radiative transfer
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model simulations of TOC reflectance data (Jacquemoud et al., 2009).

The distribution and co-distribution laws of the input variables of ca-

nopy structure, leaf and soil properties are designed to represent the

expected actual distribution and co-distribution over the land surface.

In addition to the FAPAR value, a quality flag is associated to each pixel

to indicate the cloud contamination or cloud shadow, water or possible

failure in the algorithm. The FAPAR 30 m product is provided in its

original UTM projection on the WGS-84 datum and was validated over

the same site of interest (R2 = 0.86, RMSE = 0.1) (Li et al., 2015). The

nominal Landsat revisit time is 16 days. However, the actual temporal

sampling frequency of the FAPAR product derived from LANDSAT-8

varies from 7 to 16 days over the study area where 2 consecutive tracks

overlap (Fig. S1).

2.3. GEOV3 FAPAR 330 m product

The FAPAR values at 330 m resolution are derived from the PROBA-

V reflectance measurements according to the GEOV3 algorithm devel-

oped by Baret et al. (2013b). GEOV3 FAPAR is defined the same way as

for Landsat-8. It is generated in near real time every ten days in two

consecutive steps. In the first step, the daily FAPAR values are com-

puted for each available PROBA-V observation using a neural network

approach. The Neural network is trained over a specific data set

corresponding to a weighted average of MODIS Collection5 and CY-

CLOPES V3.1 FAPAR products similarly to what was proposed by Baret

et al. (2013a) for the GEOV1 products. The second step consists in

compositing the daily FAPAR products to get the near real time final

product at a dekadal time step by smoothing the temporal profile,

filling possible gaps and making a short-term projection. Quality flags

and quantitative uncertainties are also computed. The performances of

GEOV3 products have been evaluated (R2 = 0.84, RMSE = 0.1)

(Camacho et al., 2016). GEOV3 products are provided in a plate carrée

projection at 0.0089° spatial resolution (330 m at the equator) on WGS-

84 datum. More details on the algorithm can be found in Baret et al.

(2013b). The original GEOV3 products were projected in the UTM

projection consistently with the Landsat-8 derived FAPAR products.

3. Methods

The general principles are first described with reference to deca-

metric and hectometric FAPAR products. The implementation is then

presented with application to LANDSAT-8 30 m and GEOV3/PROBA-V

FAPAR products.

Fig. 1. (a) Landsat-8 FAPAR product and (b) PROBA-V FAPAR derived over the study area for June 20th 2014. Green stars represent the positions of ground measurements over sunflower

fields in 2014. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The three available sources of FAPAR values used to

compute the DHF FAPAR near real time estimates for the last

dekad of the temporal window. td is the measurement date of

Landsat-8, T is the last day of the temporal window and D is the

length of temporal window expressed in dekads (here D = 6

dekads).
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3.1. General principles

3.1.1. The fusion algorithm

The proposed algorithm is based on the combination of three FAPAR

products (Fig. 2): (1) the hectometric GEOV3 FAPAR products available

at the dekadal time step and derived from PROBA-V, FAPARh (h stands

for hectometric); (2) the decametric FAPAR products derived from

Landsat-8, FAPARd (d stands for decametric), available at a frequency

ranging between 7 and 16 days with significant missing values due

mainly to cloud occurrence; Fig. S1 in the supplementary information

section describes the actual Landsat-8 available images and the corre-

sponding percentage of valid pixels; (3) the previous DHF FAPAR

products, FAPARf (f stands for fusion), available at the decametric re-

solution and at the dekadal time step.

The computation of the DHF product for date T corresponding to the

last day of the temporal window, composed of D dekads, rely on the

previous time series of DHF products updated with the last hectometric

product at time T (GEOV3/PROBA-V) and the possible decametric

(Landsat-8) image available during the last dekad [T−10,T]. The

other hectometric and possible decametric products existing within

[T−10D,T−10] temporal window are not explicitly taken into ac-

count in the algorithm since they have already been used to estimate

the previous DHF products at T-10.

The algorithm assumes that the dynamics of FAPAR of a given

decametric pixel is described by a second degree polynomial in a re-

stricted temporal window [T−10D,T] where D is the length of the

temporal window expressed in dekads:

= + +FAPAR t a tb t c( ) .i
d

i i i
2 (1)

where FAPARi
d(t) is the FAPAR value at the decametric resolution d for

pixel i and for time t and [ai,bi,ci] are the corresponding polynomial

coefficients. This assumption is justified by the expected smooth tem-

poral variation of FAPAR. Indeed, FAPAR is mainly driven by the green

area index and therefore results from incremental processes of growth

and senescence. Once the coefficients [ai,bi,ci] are estimated, the DHF

value for time t = T is computed. This corresponds to a short-term

projection of the polynomials since the last date with a decametric in-

formation is generally observed for t < T (see Fig. 2). When the re-

sulting DHF product value at time T is out of the expected physical

range for the vegetation canopies (0≤FAPAR≤0.94) including a small

tolerance (± 0.05), it is considered as a missing value. When the

FAPAR value is in the tolerance domain (−0.05≤FAPAR≤0.00 -

or 0.94≤FAPAR≤0.99) the DHF value is set to the closest bound of

the physical range (0.00 or 0.94).

The coefficients [ai,bi,ci] are estimated by fitting Eq. (1) to the

previous DHF products and the possible decametric Landsat-8 image

available during the last dekad. In addition, the constraints imposed by

the hectometric observations are exploited: the FAPAR value of a pixel I

at the hectometric resolution and time t, FAPARI
h(t), is the weighted

average of decametric resolution pixels FAPARd(t) values because of the

scaling properties of FAPAR (Weiss and Baret, 2010):

∑=
=

∙FAPAR t PSF FAPAR t( ) ( )I
h

i

k

i i
d

1 (2)

The weights are described by the point spread function (PSFi) con-

sidering that a limited number (k) of decametric resolution pixels

contribute significantly to each hectometric pixel. The PSF of the

PROBA-V hectometric FAPAR products must therefore be known. It is

computed using quasi-simultaneous Landsat-8 and PROBA-V FAPAR

products as shown later. Then, a correction is applied to avoid possible

bias between hectometric and decametric products that are derived

from the different sensors and algorithms.

A cost function J that uses three sources of information is minimized

to estimate the 3 polynomial coefficients over each decametric pixel.

The cost function J is the weighted sum of the corresponding three

components.

= + +J J J Jf d h (3)

where Jf, Jd and Jh are the components of the cost function associated

respectively to the fusion (DHF), decametric (Landsat-8) and hecto-

metric (GEOV3/PROBA-V) FAPAR data. The first component of the cost

functions (Jf in Eq. (3)) measures the discrepancy between the fusion

products estimated previously, FAPARi
f(t), and the new estimated

value, FAPAR t( )i
f

computed with Eq. (1) for all the kN decametric

pixels in the spatial window and all the first D−1 dekads of the tem-

poral window:

∑∑= −
= =

J
kND

FAPAR t FAPAR t
1

( ( ) ( ))2f

i

kN

t

D

i
f

i
f

1 1


(4)

The second component (Jd in Eq. (3)) measures the discrepancy

between the decametric FAPAR product derived from a possible ob-

servation at date td during the last dekad, FAPARi
d(td), and the esti-

mated DHF product for the same date, FAPAR t( )i
f

d


. It is computed over

all the α2N decametric pixels of the spatial window considered, where α

is the resolution ratio, i.e. the hectometric spatial resolution divided by

the decametric spatial resolution. In our case, the resolution ratio is

close to 11.

∑= −
=

J
α N

FAPAR t FAPAR t
1

2
( ( ) ( ))2d

i

α N

i
d

d i
f

d

1

2


(5)

The third component of the cost function (Jh in Eq. (3)) measures

the discrepancy between the hectometric products and the FAPAR va-

lues computed using the estimated decametric fusion products

FAPAR T( )I
f

. This is evaluated over all the N hectometric pixels of the

spatial window for the last date T of the temporal window. PSFi cor-

responds to the PSF value for each pixel i that is computed in an in-

dependent step. This third component introduces constraints between

the individual decametric pixels. Further, because of the PSF, Jh in-

troduces also explicit dependency between neighboring hectometric

pixels since common decametric pixels are shared by adjacent hecto-

metric pixels.

∑ ∑= −
=

=
J

N
FAPAR T PSF FAPAR T

1
( ( ) ( ) )2h

I

N

I
h

i

k
i i

f

1
1


(6)

Note that the three terms of the cost function are normalized by the

number of times the individual contributions are summed up, i.e. [ ,
kND

1

, ]
α N N

1

2

1
respectively for [Jf,Jd,Jh]. If there is no decametric Landsat-8

images available for some temporal windows, Jd is set to zero.

Moreover, Jh is set to zero when the hectometric pixel is invalid.

Similarly, when the algorithm is initialized, no DHF products are

available and Jf is set to zero.

3.1.2. Spatial and temporal operating windows

The spatial and temporal windows used in the algorithm must be

specified. The temporal window should be long enough to provide

sufficient DHF, decametric and hectometric data, while being short

enough to describe the temporal profile faithfully by a second-degree

polynomial function. Previous studies (Verger et al., 2011b) showed

that a second degree polynomial describes accurately the temporal

profile over a 60-days period in most of the cases. A 60-days temporal

window provides 7 dekadal DHF values among which the last one is to

be estimated, 0 to 5 potential decametric images in the case of the

Landsat-8 sensor, and 7 dekadal hectometric FAPAR products (GEOV3/

PROBA-V). A 60-days temporal operating window (D=6) is therefore

selected. The temporal window is moved towards the future with a

dekadal time step. When initializing the algorithm, the temporal

window may also be moved towards the past. In this case, the first DHF

value among the 7 available one in the 60-days period will be estimated

similarly as we will see later.
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The size of the spatial operating window should allow accounting

for the overlap of the PSF between hectometric pixels while being small

enough to ease the computation. A 3 × 3 hectometric pixels window

that corresponds to a square kilometer was selected. However, because

the extent of the PSF is generally larger than the ground sampling

distance (the length of a side of a pixel), a border with decametric pixels

will also need to be accounted for. The center of the spatial moving

window is moved sequentially over the center over all hectometric

pixels in the image. Therefore, except for the borders, the coefficients of

all the decametric pixels in Eq. (1) belonging strictly (PSF not ac-

counted for) to a hectometric pixel is estimated 9 times. A weighted

average of the 9 DHF FAPAR estimates is computed to provide a unique

value:

∑=
=

FAPAR T ω r FAPAR T( ) ( ) ( )i
f

r

i r
f

1

9

,


(7)

where FAPAR T( )i r
f
,


is the DHF estimates for pixel i at date T coming

from one of the 9 spatial windows r and ω(r) is the associated weight.

The weight, ω(r=1), of the window centered on the considered hec-

tometric pixel is assigned to be equal to that of the other 8 surrounding

pixels ω(r > 1). Weights are thus computed as:

= = > =ω r ω r( 1) 0.5; ( 1) 0.0625 (8)

This averaging process stabilizes the solution and prevents from

discontinuities between spatial windows.

3.1.3. Initialization of the algorithm

The algorithm requires 6 existing DHF dekadal values at each de-

kadal time step when running forward in near real time. When the al-

gorithm is applied over the first temporal window of the time series, no

DHF decametric products is available yet. An initialization process

should therefore be developed to get a first estimate of the DHF. This is

completed in two steps: (1) find along the available time series a tem-

poral window that contains enough Landsat decametric images to

provide a good estimate of the DHF products; (2) then run backward the

algorithm from this initialization window to generate the DHF values

down to the start of the first temporal window of the time series

(Fig. 3). The algorithm is run in the forward regular mode as described

in Fig. 2 to increase the time series by including the most recent dekads.

The initialization step should start by identifying the temporal op-

erating window in the time series that provides the maximum number

of Landsat-8 images with a maximum of valid pixels. The inputs of the

processing for this first window include all the 7 dekadal hectometric

FAPAR images and all the available decametric images. Outputs are the

DHF products for the 7 dekadal dates. At least three Landsat-8 deca-

metric images should be used. When it is not possible to find three

Landsat-8 decametric images within a 60-day temporal window, the

time period should be extended to include three decametric images. If

the decametric images have invalid pixels, it is not possible to fill them

with the DHF estimates since they do not exist yet. In this case, small

clusters of invalid pixels are filled with the neighboring values. If larger

clusters of invalid pixels are observed, specific actions are undertaken

that will not be detailed here for the sake of brevity. The reader can find

the full description in the product ATBD (Baret et al., 2016).

If the initialization temporal window does not correspond to the

first temporal window of the time series, the backward mode is trig-

gered. It runs similarly to what is described for the regular forward near

real time mode, except that the DHF of the first dekad of the temporal

window is estimated instead of the last one (compare Fig. 2 with Fig. 3).

This process is repeated down to the start of the temporal series.

3.2. Calibrating the point-spread-function of hectometric FAPAR products

The weights,PSFi, of the point spread function (Eq. (2)) describing

the aggregation process of decametric images to obtain the equivalent

hectometric values need thus to be estimated. They account for several

factors (Weiss et al., 2007) including the PSF of the instrument for each

band, the geolocation uncertainty, the effect of the reprojection (from

raw images to plate-carrée then to UMT), the atmospheric scattering,

the viewing geometry and the temporal compositing of the daily hec-

tometric images to produce the dekadal FAPAR values (Baret et al.,

2013b). The PSF is described by truncated Gaussian functions using the

Full Width at Half Maximum independently for the longitudinal

(FWHMx) and the latitudinal (FWHMy) directions (Mira et al., 2015).

The PSF is truncated when> 95% of the contribution to the signal is

reached. The total extent of the PSF defined by (Xmax ,Ymax) thus

depends on the FWHM. Because of possible geolocation differences

between the hectometric and decametric images, a shift in East-West

(∆x) and North-South (∆y) directions is also considered. The four un-

knowns [FWHMx,FWHMy,∆x,∆y] are retrieved by maximizing the

correlation coefficient between the aggregated decametric (Landsat-8)

FAPAR images and the hectometric (GEOV3) FAPAR products ac-

cording to the scheme shown by Mira et al. (2015). For each image pair

of decametric and hectometric images with about the same date, the

[FWHMx,FWHMy] are allowed to vary from 120 m to 960 m by 30 m

steps in both directions, while the Landsat-8 shifts, [∆x,∆y] varied from

−330 m to 330 m by 15 m steps. In total, 379,456 combinations of PSF

values in x and y directions are generated and the one providing the

highest correlation between the actual GEOV3 FAPAR and the ag-

gregated Landsat-8 FAPAR is selected. The aggregated pixels that in-

clude invalid Landsat-8 pixels are discarded from the computation.

Fig. 3. Scheme showing the initialization and backward

modes. The same conventions as used in Fig. 2 to describe

the forward mode are used here.
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3.3. Implementation

The algorithm includes four steps: (1) preparation of the decametric

images to fill possible invalid pixels and make the FAPAR values con-

sistent with the hectometric products; (2) classification of the pixels to

reduce the dimensionality of the problem; (3) adjusting the polynomial

coefficients; (4) and production of the DHF FAPAR value and iterate on

the next local spatial window. These four steps are sketched in Fig. 4

and detailed in the following.

3.3.1. Preparation of the decametric Landsat-8 FAPAR images (step1)

The algorithm combines hectometric resolution data (GEOV3/

PROBA-V) with decametric resolution data (Landsat-8) when available.

The aggregation process described by Eq. (2) requires completeness of

the Landsat-8 image. When a Landsat-8 pixel is flagged as invalid, cloud

or cloud shadow, it is filled using an estimation derived from a second

degree polynomial fit over the 6 corresponding DHF values in the

considered temporal window. When the estimated value is outside the

[0, 0.94] domain of validity for FAPAR, it is set to the closest bound.

This filling process is thus fully consistent with the way DHF products

are generated.

The combination of Landsat-8 and GEOV3/PROBA-V resolution

FAPAR data requires a high degree of consistency between both pro-

ducts. However, some biases may be observed due to differences be-

tween sensor characteristics, atmospheric correction or retrieval algo-

rithms. A correction is therefore necessary to remove these differences

to keep high degree of consistency between the two products. This

correction is applied to the Landsat-8 images that may show less tem-

poral consistency as compared to the GEOV3 FAPAR products that al-

ready results from a temporal compositing. It is calibrated on each

individual Landsat-8 image by comparing the aggregated Landsat-8

FAPAR values using Eq. (2), with the GEOV3 FAPAR value estimated at

the same date. For this purpose, a second-degree polynomial inter-

polation is applied using the 7 dekadal GEOV3 products available over

the temporal operating window. Finally, a linear fit between the ag-

gregated Landsat-8 FAPAR values and the corresponding interpolated

GEOV3 FAPAR values is computed. The corresponding slope and in-

tercept are used to correct the Landsat-8 FAPAR values.

3.3.2. Considering classes rather than pixels and classification (step2)

Running the algorithm over all individual decametric pixels is

computationally very demanding. It was therefore preferred running it

at the class level considering that a limited number of classes may re-

present the dynamics of each Landsat-8 pixel with a good accuracy in a

restricted spatial and temporal window. A classification of each pixel is

made using the FAPAR temporal profiles described by the 6 first DHF

products and the possible Landsat-8 images available. The classification

is applied over the whole image rather than over the local operating

spatial windows to prevent from possible discontinuities between op-

erating spatial windows. The ‘Kmeans’ automatic classification algo-

rithm is used because of its performances and computational efficiency

(Hartigan and Wong, 1979). The algorithm requires the number of

classes to be specified. It should compromise between a large number

required to accurately describe the heterogeneity of the study area and

a limited number of classes to ease the computation. In our case, after

trial and error tests (results not presented for the sake of brevity) 25

classes were selected as optimal. The reduction of the problem size is

thus drastic: 25 sets of coefficients to be estimated in a 3 × 3 hecto-

metric window as compared to> 900 sets of coefficients when con-

sidering the pixels separately.

Fig. 4. Flowchart of the four steps of fusion main algorithm.
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3.3.3. Estimating [ak, bk, ck] coefficients for each class (step3)

The 3 coefficients of the second degree polynomials are estimated

for each individual operating spatial and temporal window according to

the general principles presented earlier. The fitting of the three coeffi-

cients for the 25 classes is completed by minimizing the cost function

[3] under the constraints that the estimated FAPAR values keep within

the physical bounds of FAPAR. The interior-point algorithm (Byrd et al.,

2000; Byrd et al., 1999) is used to estimate coefficients [ak,bk,ck] si-

multaneously for the 25 classes. This algorithm is selected due to its

ability to handle large and sparse optimization problems. The values

from the previous dekad of the same temporal window are used as the

initial guess for the three coefficients of each class. Finally, the FAPAR

value for the last dekad (respectively every dekads for the initialization,

and first dekad for the backward mode) of the temporal window is

computed for each class and then distributed on the spatial operating

window according to the classification map of the corresponding cur-

rent temporal window.

3.3.4. Project DHF products and iterate on the next local spatial window

(step4)

Once the polynomial coefficients of a spatial window are estimated,

the DHF products corresponding to the decametric FAPAR values of the

last day of the considered temporal window is computed. The algorithm

then moves to the next local spatial window in an iterative way, until

DHF FAPAR in all spatial windows are calculated. The new generated

DHF FAPAR data will later participate to the computation of DHF for

the next temporal window.

A quality flag associated to each dekad and pixel of the DHF product

provides information on the number of valid Landsat-8 images avail-

able in the temporal window and the nature of the Landsat-8 pixel (out

of range, cloud, water or snow). Further, two additional quantitative

quality indicators document the difference (1) between the DHF pro-

duct and the possible (corrected) Landsat-8 FAPAR value at the date of

this Landsat-8 image, and (2) between the aggregated DHF value and

the corresponding GEOV3 FAPAR product. Finally, when the estimated

FAPAR value is out of range (including the tolerance margins), a spe-

cific flag is raised.

4. Results

The calibration of the GEOV3 PSF is first presented. Then, the

spatial and temporal consistency of the DHF products is discussed at the

decametric and then at the hectometric resolutions. Finally, the DHF

products are compared with available ground measurements for accu-

racy assessment.

4.1. PSF of the GEOV3 products

We selected six pairs of GEOV3 and Landsat-8 FAPAR images having

less than two days difference on which we adjusted the

[FWHMx,FWHMy,∆x,∆y] parameters (Table 1). Results show that the

correlation between the aggregated Landsat-8 values and the GEOV3

products is always very high (Table 1), providing confidence in the

parameter adjustment. Further, a single prominent maximum of the

correlation coefficient was observed for all the dates when the PSF was

evaluated, confirming the uniqueness of the solution. The optimal

FWHM varies from 270 m to 360 m in the East-West direction, and from

330 m to 360 m in the North-South direction. This led to a PSF full

extent of 810 m≤Xmax≤870 m and 690 m≤Ymax≤870 m, i.e. be-

tween two to three times the GEOV3 ground sampling distance (330 m).

The shift between Landsat-8 and GEOV3 is around 100 m and is rela-

tively constant with time. It is close to 0.3 PROBA-V pixels that corre-

spond to the expected geolocation uncertainty.

Because of the good consistency in the PSF and shift values obtained

across several pairs of Landsat-8 and GEOV3 images, it was proposed to

calibrate the PSF only once over a set of pairs of Landsat-8 and GEOV3

images before triggering the fusion algorithm. The median value of the

PSF and shift observed over the 6 pairs of images (Table 1) were used in

this study for all the Landsat-8 and GEOV3 images over the South-West

site in 2014: [FWHMx,FWHMy,∆x,∆y]=[330,360,105,75]. However,

the PSF probably needs to be recalibrated from site to site, particularly

when the latitude changes because of the impact of the re-projection of

the GEOV3 images into the Landsat-8 grid system.

Finally, the linear relationship between the aggregated Landsat-8

and GEOV3 FAPAR products provides a correction for the Landsat-8

FAPAR (FAPARLandsat_8
original), to get values (FAPARLandsat_8

corrected) that

are more consistent with the GEOV3 FAPAR. Results over the six pairs

of images show that the correction equation appears relatively stable

for the study area (Table 1):

= +FAPAR FAPAR0.84 0.11Landsat
corrected

Landsat
original

8 8 (9)

4.2. Consistency between DHF and Landsat-8 FAPAR products

4.2.1. Temporal consistency

A sample of four pixels located on the edge and center of the image

is used to illustrate the temporal consistency of the products. The ori-

ginal Landsat-8 FAPAR shows artifacts and gaps over the whole year

(Fig. 5), confirming the observations by Li et al. (2015). This may be

due to residual effects of the atmospheric correction and possible di-

rectional effects that are poorly accounted for. The correction of

Landsat-8 FAPAR values achieved using the GEOV3 FAPAR as a re-

ference (see §3.3.1) improves the smoothness. However, some fluc-

tuations are still observed probably because the correction is computed

over all the GEOV3 pixels, averaging possible particularities on some

decametric pixels.

The DHF temporal profile is much smoother than that of the cor-

rected Landsat-8 (Fig. 5). This comes mainly from the polynomials fit-

ting and partly from a possible class averaging effect as well as

smoothness induced by the GEOV3 constraint. However, the general

agreement between DHF and Landsat-8 corrected FAPAR temporal

Table 1

The optimal PSF and shift observed over the 6 pairs of Landsat-8 and GEOV3 FAPAR products. FWHMx (respectively FWHMy) represents the Full Width at Half Maximum in the East-west

(respectively North-south) directions. Xmax (respectively Ymax) represents the full width of the PSF in the East-west (respectively North-south directions).∆x (respectively ∆y) represents

the Landsat-8 image shift in East-west (respectively North-south) directions with the starting reference on the top-left corner of GEOV3 pixel.

Date FWHM (m) Full width (m) Shift (m) R2 Correction

GEOV3 Landsat-8 FWHMx FWHMy Xmax Ymax ∆x ∆y Slope Offset RMSE

10/02/2014 12/02/2014 330 360 870 810 105 75 0.83 0.84 0.07 0.07

10/03/2014 09/03/2014 360 360 870 870 105 105 0.87 0.92 0.08 0.08

10/04/2014 10/04/2014 330 360 870 810 105 75 0.88 0.84 0.07 0.07

20/05/2014 19/05/2014 270 330 810 690 75 15 0.85 0.79 0.08 0.08

20/06/2014 20/06/2014 330 360 870 810 105 75 0.87 0.80 0.05 0.05

31/08/2014 01/09/2014 330 360 870 810 105 75 0.92 0.94 0.07 0.07

Median 330 360 870 810 105 75 0.87 0.84 0.11 0.07
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profiles indicates that very little information was lost when operating

the algorithm at the class level rather than at the pixel level. The pre-

dicting capacity of the algorithm is demonstrated at the beginning of

the year when no Landsat-8 images are available: in this case, DHF

provides reasonable estimates of FAPAR using the information coming

from the GEOV3 FAPAR.

4.2.2. Spatial consistency

The spatial distribution of DHF FAPAR products is evaluated by

mapping the difference with the original Landsat-8 FAPAR and cor-

rected Landsat-8 FAPAR over two particular dates.

On March the 16th corresponding to the first temporal window

(DOY 41–DOY 100), the original Landsat-8 FAPAR is almost complete

(no clouds), although it shows several small gaps due to the input re-

flectance or output FAPAR out of the expected range as well as gaps on

the border of the image (Fig. 6a). The corrected Landsat-8 FAPAR

shows the same gaps as in the original Landsat-8 FAPAR image because

no temporal interpolation is performed in the first temporal window.

The estimated DHF image (Fig. 6c) presents a spatial distribution very

close to the corrected Landsat-8 images (Fig. 6b) with a RMSE value of

0.04 (Fig. 6d). The larger differences between DHF and original

Landsat-8 FAPAR are mainly due to the inherent bias between Landsat-

8 and GEOV3 FAPAR. Note that the DHF image (Fig. 6c) presents a

border of 330 m width with missing values due to the PSF effect of

GEOV3 products.

On the 31st of July, the algorithm is run in the forward mode (DOY

161–DOY 222). The Landsat-8 original image shows a significant frac-

tion of pixels contaminated by clouds (Fig. 7a). Cloudy pixels are filled

with the values computed from the polynomial fit of the existing DHF

values. The correction factor to get Landsat-8 FAPAR values consistent

with those of GEOV3 may therefore be slightly biased. Indeed, the

cloudy pixels are filled with DHF products generated from already

corrected FAPAR values. The bias should therefore be maximum when

clouds represent 50% cover fraction. However, the gap filling is man-

datory since the computation of the correction requires aggregating the

Landsat-8 pixels to be compared with those of GEOV3. But the pro-

jection corresponding to the application of the polynomial function on

dates out of the period where it was adjusted can lead to values out of

the expected range. These pixels will be flagged as invalid and will not

be used (Fig. 7b). The DHF derived FAPAR (Fig. 7c) shows a complete

spatial coverage and agrees well with the corrected Landsat-8 FAPAR

(Fig. 7d), with however degraded performances (RMSE = 0.08) due to

the presence of clouds and the associated loss of information. Never-

theless, the spatial patterns appear quite well preserved, even at the

location of the clouds on the Landsat-8 image.

4.2.3. Validation of DHF using the leave-one-out method

The performances of the DHF products are evaluated by comparison

with each individual Landsat-8 derived FAPAR values. However, to

better evaluate the accuracy of the DHF products without comparing

Fig. 5. Temporal distribution of DHF FAPAR, corrected Landsat-8 FAPAR and original Landsat-8 FAPAR over the four sample pixels in 2014. Row and Col correspond to the position of

the decametric pixel in the whole 30 km× 30 km study area (Fig. 1).

Fig. 6. Spatial distribution observed over Southwest site on 16 March 2014 of (a) the original Landsat-8 FAPAR; (b) the corrected Landsat-8 FAPAR; (c) the DHF FAPAR; (d) the

relationship between the corrected Landsat-8 and the DHF FAPAR values. Black pixels represent invalid pixels due to clouds, cloud shadow, water, snow or image borders.
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with the Landsat-8 images that were used in the algorithm, a leave-one-

out method was introduced: a Landsat-8 image will not be used in the

algorithm and the resulting DHF product will be compared to this

Landsat-8 image derived FAPAR values. This process is repeated on

each Landsat-8 image of the time series. The initial temporal window is

not used in the leave-one-out test, therefore the first Landsat-8 mea-

surement date starts from DOY107 of 2014. This analysis is performed

on a sub region of 5 km × 5 km area for computation efficiency. The

DHF products are interpolated at the date of the Landsat-8 image. The

comparison is achieved both with the original Landsat-8 derived FAPAR

values as well as with the corrected Landsat-8 FAPAR values ensuring

better consistency with the GEOV3 FAPAR products.

As expected, results show that the correction of the Landsat-8 de-

rived FAPAR products improves significantly the agreement with the

DHF products (Table 2). The correction improves the RMSE by 0.05, R2

by 0.04 and the bias is reduced by 0.01 both for the leave-one-out DHF

version (remove) and the DHF computed using all the Landsat-8 images

(used) (Table 2).

The DHF computed with all the Landsat-8 images available used

(used in Table 2) agrees well with the Landsat-8 corrected FAPAR va-

lues with 0.05 < RMSE < 0.12, 0.66 < R2 < 0.97 and

−003 < bias < 0.03 (Table 2). When comparing with the corrected

Landsat-8 FAPAR image not used to compute the DHF product (remove

in Table 2), the RMSE and R2 degrades only slightly. This demonstrates

the robustness of the proposed algorithm for estimating DHF FAPAR

values on most situations. However, the algorithm partly fails on

DOY171 (RMSE = 0.12 and R2 = 0.47 in Table 2), when no Landsat-8

FAPAR is used to document the high rate of change of FAPAR profile as

observed here during the senescence period of winter crops.

4.3. Consistency between aggregated DHF FAPAR and original GEOV3

FAPAR products

Four GEOV3 pixels located on the edge and center of the GEOV3

image are selected for visual inspection of the temporal consistency

between the DHF FAPAR aggregated at GEOV3 FAPAR spatial resolu-

tion using the PSF (Eq. (2)) and the original GEOV3 FAPAR. Results

(Fig. 8) confirm the expected very good agreement between the dy-

namics of both FAPAR values. However, some small differences are

observed due to remaining discrepancies between the Landsat-8 FAPAR

corrected values and the GEOV3 products.

The consistency between both products is further analyzed by

comparing their spatial distribution for three specific dates: doy 10 in

the backward mode, doy 100 in the first initial temporal window and

doy 283 in the forward mode. Results (Fig. 9) show a very good

agreement (R2 = 0.81–0.9, RMSE = 0.03–0.06) between the ag-

gregated DHF FAPAR images and GEOV3 FAPAR for these three dates.

However, some missing values are observed on the aggregated DHF

image. This can be due to FAPAR values estimated out of the physical

range, which prevents from applying the aggregation process. These

situations mostly correspond to low values of FAPAR and when a lim-

ited constraint by the Landsat-8 information is imposed because of large

cloud contamination of the Landsat-8 images.

A systematic evaluation of the RMSE values computed over each

Fig. 7. Spatial distribution observed over Southwest site on 31 July 2014 of (a) the original Landsat-8 FAPAR; (b) the corrected Landsat-8 FAPAR; (c) the DHF FAPAR; (d) the relationship

between the corrected Landsat-8 and the DHF FAPAR values. Black pixels represent invalid pixels due to clouds, cloud shadow, water, snow or image borders.

Table 2

RMSE, R2 and Bias between DHF products and the original (‘Original’) or corrected (‘Corrected’) Landsat-8 products on each Landsat-8 measurement date. The DHF FAPAR products were

generated using either all the Landsat-8 images available (‘Used’) or when the Landsat-8 image used for performance evaluation was removed (‘Remove’) from the time series for DHF

computation using the leave-one-out method.

Day of year

107 132 139 164 171 180 196 203 212 228 244 260 276

RMSE

Remove/Original 0.115 0.095 0.138 0.100 0.133 0.156 0.171 0.139 0.135 0.159 0.161 0.175 0.164

Remove/Corrected 0.078 0.053 0.113 0.088 0.120 0.099 0.140 0.072 0.101 0.090 0.126 0.125 0.119

Used/Original 0.090 0.090 0.090 0.080 0.080 0.100 0.120 0.140 0.110 0.130 0.160 0.130 0.160

Used/Corrected 0.050 0.050 0.070 0.070 0.070 0.060 0.090 0.070 0.070 0.060 0.120 0.090 0.100

R2

Remove/Original 0.915 0.894 0.810 0.717 0.473 0.555 0.656 0.825 0.826 0.657 0.577 0.590 0.641

Remove/Corrected 0.915 0.957 0.810 0.727 0.471 0.705 0.684 0.909 0.828 0.853 0.578 0.590 0.641

Used/Original 0.960 0.918 0.933 0.818 0.800 0.826 0.878 0.815 0.907 0.815 0.660 0.759 0.748

Used/Corrected 0.960 0.965 0.933 0.824 0.799 0.884 0.884 0.909 0.908 0.905 0.661 0.759 0.748

Bias

Remove/Original 0.058 −0.019 0.054 −0.020 0.008 −0.013 0.004 −0.022 0.053 −0.065 0.054 0.095 0.079

Remove/Corrected 0.034 −0.012 0.039 −0.038 −0.025 −0.004 −0.031 −0.039 0.012 −0.046 −0.001 0.032 0.012

Used/Original 0.043 −0.014 0.038 −0.012 0.017 −0.006 0.013 −0.011 0.043 −0.054 0.074 0.056 0.093

Used/Corrected 0.019 −0.010 0.023 −0.031 −0.015 −0.016 −0.021 −0.031 0.004 −0.034 0.019 −0.007 0.026
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dekad of the time series confirms the very good agreement between the

aggregated DHF FAPAR products and the GEOV3 FAPAR values

(Fig. 10). The RMSE ranges from 0.03 (DOY 31) to 0.08 (DOY 253).

4.4. Validation with ground measurements

The FAPAR values measured with DHP over the 14 sunflower ESUs

available along the growing season are compared with the DHF and

original or corrected Landsat-8 FAPAR values. To minimize the effect of

the delay between the date of the ground measurements and that of the

Landsat-8 FAPAR products, the ground FAPAR measurements are lin-

early interpolated at the Landsat-8 image acquisition dates if there

is< 5 days difference. This resulted in 29 data points. Conversely, for

comparing the DHF products with the ground measurements, the DHF

products are interpolated at the ground measurements dates since DHF

products are dekadal smooth products. Results focusing on the 29 data

points used for comparison with the original or corrected Landsat-8

data show that the original Landsat-8 FAPAR correlates well with the

ground measurements (Fig. 11a). The performances are only slightly

improved after the correction using GEOV3 FAPAR (Fig. 11b). Both

Landsat-8 FAPAR estimates have 75% of the points within the Global

climate observing system (GCOS) requirements (dotted lines in Fig. 11)

(max 10% accuracy, GCOS, 2011). Over the same 29 points, the per-

formance of DHF FAPAR is very close to the original and the corrected

Landsat-8 FAPAR data (Table 3). Finally, the DHF FAPAR products

were compared with 36 additional available ground measurements over

the sunflower fields. They correspond to ground data collected outside

the± 5 days period around the Landsat-8 image dates. Results over the

total 65 point data available show a slight degradation of the perfor-

mances (Fig. 11c, Table 3) with some underestimation for the medium

to large FAPAR values. Nevertheless, still 75% of the points are lying

within the GCOS requirements for FAPAR products.

Fig. 8. Temporal distribution of estimated GEOV3 from aggregation of DHF FAPAR and original GEOV3 FAPAR profiles. Four sample pixels are selected on the center or edge of GEOV3

images.

Fig. 9. Spatial distribution of (a, d, g) original GEOV3 FAPAR, (b, e, h) aggregated DHF FAPAR at GEOV3 spatial resolution and (c, f, i) frequency of their differences; (a, b, c) correspond

to DOY 10, (d, e, f) to DOY 100 and (g, h, i) to DOY 283.
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5. Discussion

The proposed DHF algorithm uses a biophysical product, FAPAR,

which is assumed to present a smooth dynamics as outlined earlier. An

alternative method was proposed by Lewis et al. (2012) using re-

flectance as inputs and outputs of an assimilation scheme. It preserves

the spectral consistency thanks to a radiative transfer model. Such ap-

proaches are thus very appealing as already outlined by Geiger et al.

(2004). The spectral consistency between the decametric and hecto-

metric data is also well preserved in the DHF algorithm since the fusion

between the two resolution data is achieved at the biophysical FAPAR

product level.

The proposed DHF algorithm is based on a physically sound ap-

proach that bears on two main assumptions: (1) the smoothness of the

FAPAR temporal course over a restricted temporal window (60 days in

this case) and (2) the scaling independency of FAPAR. The first as-

sumption is mostly verified over the study site considered here.

However, it may be violated particularly in case of harvest occurring

during the vegetation growth cycle such as for cultivated grasslands,

silage maize, forest clear cut or when hazards are suddenly changing

the surface characteristics such as fire or flood events. The second as-

sumption on the scaling properties appears to be largely verified ac-

cording to the good agreement observed between the decametric DHF

or Landsat-8 aggregated FAPAR products and the GEOV3 hectometric

products. The algorithm provides smooth and consistent FAPAR esti-

mates at the decametric resolution, with an accuracy close to

RMSE ≈ 0.1 while 75% of the values are within the GCOS require-

ments. The good performances of the algorithm are also coming from

the fact that the hectometric constraint is relatively strong since only a

limited number of classes of land cover are contained in a hectometric

pixel as compared to what is contained in a kilometric pixel for which

the constraint would be much weaker. Although the ground validation

exercise was restricted to sunflower crops, the good agreement between

the original Landsat-8 and the DHF values observed with the leave-one-

out method indicates the potentials of the proposed method.

The performances of the DHF algorithm were evaluated using

GEOV3/PROBA-V dekadal FAPAR products and Landsat-8 images over

a place where the Landsat sensor swaths are overlapping between two

consecutive tracks, dividing by about two the 16 days nominal Landsat-

8 revisit period. Over the considered time series and site, the actual

average delay between two consecutive clear pixels was around 20 days

due to cloud coverage if the whole year is considered. It is reduced to

around 12 days during the growing season because only few images are

taken at the beginning or the end of year. The results of the leave-one-

out validation test demonstrated that the performances are only little

dependent on the presence of the last Landsat-8 image before the

Fig. 10. The seasonal variation of RMSE between aggregated

DHF FAPAR at GEOV3 spatial resolution and original GEOV3

FAPAR in 2014 over Southwest site.

Fig. 11. Comparison of the ground FAPAR measurements with (a) the original Landsat-8 FAPAR, (b) the corrected Landsat-8 FAPAR and (c) the DHF FAPAR products. Results observed

on 29 data points over the 14 sunflower fields. Each field corresponds to a particular color. The black solid line is the 1:1 line. Dotted lines represent the GCOS (2011) requirements

boundaries.

Table 3

Comparison between the ground FAPAR measurements and the original Landsat-8

FAPAR, the corrected Landsat-8 FAPAR and the DHF FAPAR products. N represents the

number of ground data used in the validation.

N R2 Bias RMSE Linear regression

Original Landsat-8 29 0.76 −0.04 0.104 y = 0.94x + 0.01

Corrected Landsat-8 29 0.78 −0.05 0.102 y = 0.82x + 0.08

DHF FAPAR 29 0.75 −0.09 0.12 y = 0.84x + 0.02

DHF FAPAR 65 0.66 −0.07 0.11 y = 0.87x + 0.04
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considered dekadal date when the DHF product is computed. However,

further investigation should evaluate the actual impact of the number of

clear decametric observations on the product performances.

The recent availability of the Sentinel-2 (Drusch et al., 2012) and

Sentinel-3 (Donlon et al., 2012) images will probably reinforce the in-

terest of this type of algorithm, particularly in places with frequent

cloud occurrence. The PSF of the FAPAR products derived at the hec-

tometric resolution with Sentinel-3 should be properly calibrated. Al-

though the PSF appeared to be relatively stable over time on the studied

site, this should be further verified in more diversified situations, par-

ticularly regarding the expected effect of the latitude of the site.

6. Conclusion

This study presented an algorithm to generate a dekadal FAPAR

product at decametric resolution from the combination of existing

decametric (Landsat-8) and hectometric (GEOV3) FAPAR products. It

applies to any vegetation type without prior knowledge on the land

cover. The method can be run in near real time mode. The proposed

method assumes that FAPAR time course can be described by a second-

polynomial function during a 60-days temporal window for each

decametric pixel. The coefficients of the polynomial function are opti-

mized using temporal courses of the available Landsat-8 FAPAR and

GEOV3 FAPAR. The generated DHF FAPAR captures faithfully the

temporal and spatial distribution of Landsat-8 FAPAR, and improves the

temporal resolution and smoothness of Landsat-8 FAPAR. Using the

leave-one-out method, the DHF FAPAR products correspond well with

the Landsat-8 FAPAR (RMSE = 0.05–0.14) that are not used in the DHF

algorithm. The DHF FAPAR products show also good agreement with

ground measurements over 14 sunflower fields (RMSE = 0.11,

R2 = 0.66). Further developments of the algorithm would include its

application to the actual Sentinel-2 and Sentinel-3 datasets, as well as

its adaptation to other biophysical variables such as LAI.

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.rse.2017.08.018.
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Abstract: The leaf area index (LAI) and the fraction of photosynthetically active radiation 

absorbed by green vegetation (FAPAR) are essential climatic variables in surface process 

models. FCOVER is also important to separate vegetation and soil for energy balance 

processes. Currently, several LAI, FAPAR and FCOVER satellite products are derived 

moderate to coarse spatial resolution. The launch of Sentinel-2 in 2015 will provide data at 

decametric resolution with a high revisit frequency to allow quantifying the canopy 

functioning at the local to regional scales. The aim of this study is thus to evaluate the 

performances of a neural network based algorithm to derive LAI, FAPAR and FCOVER 

products at decametric spatial resolution and high temporal sampling. The algorithm is 

generic, i.e., it is applied without any knowledge of the landcover. A time series of high 

spatial resolution SPOT4_HRVIR (16 scenes) and Landsat 8 (18 scenes) images acquired 

in 2013 over the France southwestern site were used to generate the LAI, FAPAR and 

FCOVER products. For each sensor and each biophysical variable, a neural network was 

first trained over PROSPECT+SAIL radiative transfer model simulations of top of canopy 
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reflectance data for green, red, near-infra red and short wave infra-red bands. Our results 

show a good spatial and temporal consistency between the variables derived from both 

sensors: almost half the pixels show an absolute difference between SPOT and LANDSAT 

estimates of lower that 0.5 unit for LAI, and 0.05 unit for FAPAR and FCOVER. Finally, 

downward-looking digital hemispherical cameras were completed over the main land cover 

types to validate the accuracy of the products. Results show that the derived products are 

strongly correlated with the field measurements (R2 > 0.79), corresponding to a  

RMSE = 0.49 for LAI, RMSE = 0.10 (RMSE = 0.12) for black-sky (white sky) FAPAR 

and RMSE = 0.15 for FCOVER. It is concluded that the proposed generic algorithm 

provides a good basis to monitor the seasonal variation of the vegetation biophysical 

variables for important crops at decametric resolution. 

Keywords: LAI; FAPAR; FCOVER; Landsat 8; SPOT4_HRVIR; time series  

 

1. Introduction 

Leaf area index (LAI) is defined as half the total developed area of green elements per unit 

horizontal ground area [1]. The fraction of photosynthetically absorbed radiation (FAPAR) is defined 

as the faction of the photosynthetically radiation (PAR) absorbed by the green leaves. It is a weighted 

sum of the direct FAPAR and diffuse FAPAR, depending on the source of the incoming radiation [2]. 

LAI and FAPAR have been recognized as Essential Climate Variables (ECV) by GCOS [3],  

for their key roles in energy, mass and momentum exchanges between the land surface and the 

atmosphere. FAPAR is also used as one of the main inputs in light use efficiency models [4]. Besides 

LAI and FAPAR variables, FCOVER, the fraction of the green vegetation in the nadir direction, is 

used to separate vegetation and soil in energy balance processes, including temperature and 

evapotranspiration. Over the last decade, several global LAI, FAPAR and FCOVER products have 

been generated from SPOT-VGT, SEAWIFS, MERIS, MODIS and AVHRR sensors at a spatial 

resolution close to 1km and a temporal sampling of 8 to 16 days [5–10]. However, this kilometric 

resolution is generally much larger than the typical length scales of most landscapes, limiting therefore 

the applications to the regional and local scales [11]. The development of LAI, FAPAR and FCOVER 

biophysical products from decametric spatial resolution sensors will be better suited for addressing 

these applications closely related to agriculture, ecosystem and environmental management. However, 

the monitoring capacity and actual use of such sensors is still limited by the revisit frequency or the 

cost of the images. The European Sentinel-2 Mission [12] (https://earth.esa.int/web/guest/missions/esa-

future-missions/sentinel-2) will fulfill most of the requirements by providing global images with 

decametric resolution (10–20 m) every five days with two satellites, under constant viewing angles at 

each location.  

A SPOT4 (Take5) experiment was started in 2013 by the French Agency Centre National d’Etudes 
Spatiales (CNES), aiming at providing time series of images with similar revisit frequency and 

resolution as Sentinel-2 data (http://www.cesbio.ups-tlse.fr/multitemp/) to prepare for the use of the 

data of this satellite that has just been launched in June 2015. However, the experiment lasted only few 
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months, which is not enough to cover a full vegetation cycle. The series was therefore completed with 

Landsat 8 images at a 30m spatial resolution and 16 days revisit period, taking advantage of the 

overlap between satellite tracks allowing to double the revisit frequency. 

Several studies demonstrated the capacity to derive biophysical products with a reasonable accuracy 

from decametric surface reflectance data. Among several authors, Ganguly et al. [13] generated 30-m 

LAI from LANDSAT-5 surface reflectance data based on the canopy spectral invariants theory and  

look-up table method. Panferov [14] generated LAI from LANDSAT ETM+ data over forests and 

Verger et al. [15,16] estimated FAPAR, FCOVER and LAI over crops using LANDSAT-5 data. Li 

and Fang [17] generated the FAPAR data over six FLUXNET sites from the lookup table method 

using the LANDSAT-5 images. However, these studies focus on single sensors, limiting the length and 

continuity of the time series that could be derived. 

The objective of this study is to evaluate the performances of a generic algorithm to generate 

consistent time series of LAI, FAPAR and FCOVER products from the combination of SPOT4_HRVIR 

and Landsat 8 surface reflectance data acquired during a growth season, without any prior knowledge of 

the landcover. The study area and data sets will first be presented. Then, the algorithm developed to 

derive the products will be described. Finally, the performances of the products will be analyzed, with 

emphasis on the spatial and temporal consistency between products and the comparison with field 

measurements. 

2. Study Area and Data Description 

2.1. The Experimental Site: Southwest France 

The site is a 13.2 × 14.4 km2 area located near Toulouse, southwest France (43.54°N, 1.13°E, Figure 1). 

The region experiences a typical temperate continental climate with hot and dry summer and cold and 

humid winter [18]. More than 65% of the study area is covered by crops, including barley, rapeseed, 

wheat, maize and sunflower. Barley, rapeseed and wheat are winter crops sown from October to 

November and harvested in the beginning of July. Corn and sunflower are summer crops sown from 

mid-April to beginning of June and harvested until September to October. Most fields were located on 

flat soil with relatively uniform soil properties and cultural practices and are therefore relatively 

homogeneous. Grassland is distributed in the center and south west of the region, while broadleaf and 

needleleaf forests are mainly observed in the northwestern parts (Figure 1).  

2.2. SPOT4_HRVIR and Landsat 8 Data 

The SPOT4_HRVIR satellite was launched in March, 1998. In 2013, CNES lowered the altitude of 

SPOT4 by 2 km to increase the repeat cycle. On its nominal orbit, SPOT4 did 14.17 orbits per day, but 

reducing the altitude by two kilometers enabled it to reach 14.2 orbits per day, which results in exactly 71 

orbits every five days. Therefore, on this sun-synchronous orbit inclined at 96.7°, it provided 

observations every five days over 45 sites distributed on the globe with an equatorial crossing time of 

10:30. The images are acquired with varying viewing angles at a spatial resolution of 20m. Four spectral 

bands are available, including green, red, near-infra red (NIR) and short wave infra-red (SWIR,  

Figure 2). The raw images were firstly ortho-rectified based on the SIGMA tool developed by  
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CNES [19,20]. Then the ortho-rectified top of atmosphere reflectance data were processed by the  

Multi-Sensor Atmospheric Correction Software (MACCS) [21,22] to generate top of canopy reflectance 

data, along with a cloud/cloud shadows/water/snow masks. The method uses multi-temporal criteria to 

build various masks and to quantify the aerosol optical thickness [23]. Sixteen SPOT4_HRVIR scenes 

were used in this study. 

 

Figure 1. The location and land cover types of the study area (Landsat 8, 17 April 2013). 

The location of the ground measurements correspond to the red circles. 

Landsat 8 launched on 11 February 2013, is the latest in a series of Landsat spacecrafts going back 

40 years. Landsat 8 observes the world at a 705 km altitude orbit, with an inclination angle of 98.2°, a 

revisit frequency of 16 days and an equatorial crossing time of 10:00. The OLI sensor aboard Landsat 

8 includes nine spectral bands with a spatial resolution of 30m for Bands 1 to 7 and 9 while band 8 has 

15m spatial resolution. Only four bands (green (Band 3), red (band 4), NIR (Band 5) and SWIR-1  

(Band 6)) will be used in this study (Figure 2) to keep the band setting consistent with that of 

SPOT4_HRVIR. The Level 1T Landsat 8 data were first ortho-rectified by USGS, using a global data 

base of ground control points. Radiometric calibration was performed using the coefficients provided 



Remote Sens. 2015, 7 15498 

 

 

with the Level 1T products. The data were further processed using the same MACCS algorithm as that 

used for SPOT4_HRVIR [21,22]. Note that because of the overlap between 2 Landsat 8 tracks over the 

site considered, the revisit frequency was doubled. 18 Landsat 8 scenes were used in this study. 

 

Figure 2. The relative spectral responses of SPOT4_HRVIR (solid lines) and Landsat 8 

(dashed lines) bands used in this study. 

A total of 16 SPOT4_HRVIR and 18 Landsat 8 top of canopy reflectance images, combined with a 

cloud/cloud shadow mask were downloaded through the THEIA land data center website 

(http://spirit.cnes.fr/take5/). The pixels contaminated by the clouds/cloud shadow or flagged as snow 

were not used in this study. The SPOT4_HRVIR data was resampled to 30m to be consistent with the 

Landsat 8 data.  

2.3. Landcover Data 

Although the proposed generic algorithm should apply to any landcover, its performances will be 

analyzed for the main landcover classes observed over the study site. The land cover types were 

produced based on the random forest classification method [24]. The random forest was trained using 

all the spectral information of 34 SPOT4_HRVIR Take 5 images and Landsat 8 images acquired from 

February 2013 to December 2013 [25]. Based on the knowledge of land cover and crop type 

distribution in the study area, 5 crop types (barley, wheat, rapeseed, sunflower and corn), needleleaf 

and broadleaf forests, grassland, urban areas and water bodies were identified as the final classes. The 

resulting map yielded an overall accuracy of 87% (Figure 1). Winter crops (Wheat, barley, rapeseed) 

are dominant (39.8%) followed (25.7%) by summer crops (Maize, sunflower) (Table 1). Forests and 

water bodies are marginally represented. 

Table 1. The proportion of the each land cover type in the study area. 

Type  Barley Rapeseed Wheat Maize Sunflower Grassland 
Broadleaf 

Forests 

Needleleaf 

Forests 
Urban Water 

Proportion (%) 1.7 5.86 32.26 11.29 14.41 13.84 6.65 1.19 12.28 0.52 
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2.4. Ground Data  

Ground measurements data over wheat, maize, and sunflower were collected from 17 April to 23 

October 2013 using digital hemispherical photographs (DHPs). For each landcover class, the 

measurements were conducted within a 20 × 20 m2 Elementary sampling unit (ESU) around every  

10 days. The location of each ESU was recorded by a GPS instrument within an accuracy of few 

meters (Figure 1). Each ESU was sampled with 12–20 DHPs according to the VALERI spatial 

sampling protocol (http://w3.avignon.inra.fr/valeri). The DHPs were taken using a Nikon CoolPix 

8400 camera equipped with a FC-E8 fisheye lens. The downward-looking camera was fixed at the top 

of a pole. The height of the pole changes throughout the measurements to keep a constant distance 

(~1.5 m) between the lens and top of the canopy [26]. All valid photos within an ESU were processed 

simultaneously using the CAN-EYE software (http://www4.paca.inra.fr/can-eye) to extract the LAI, 

FAPAR and FCOVER variables [27]. Effective LAI was derived by inverting the turbid medium 

transmittance model [28,29]. 

For green canopy, FAPAR is approximated as the fraction of intercepted PAR (FIPAR) calculated 

from the gap fraction [27]. This assumption is valid in the growing season due to the strong absorption 

capacity of the photosynthetic pigments [30] and the fact that the green leaves are mainly located at the 

top of the canopy. In this study, FIPAR is used for the validation since all field data were collected 

during the growing season. Both instantaneous black-sky (FIPARb) at 10:00 local solar time and  

white-sky FIPAR (FIPARw) were computed as follows: 

)( 00:10GFFIPARb   (1) 


2/

0

sincos))((2



 dGFFIPARw  (2) 

where GF is the measured green fraction on each viewing zenith angle   and 00:10 is the sun zenith 

angle at 10:00 local solar time. Note that the instantaneous black sky FIPAR at 10:00 local solar time 

is a close approximation of the daily integrated black sky FIPAR [5]. 

As it is impossible to get a green fraction in the exact nadir direction from the hemispherical photos, 

FCOVER in CAN-EYE is approximated from the green fraction ranging from nadir direction to ±10°. 

)( 100 GFFCOVER  (3) 

where )( 100GF  represents the integrated green fraction from nadir to ±10°.  

3. Methods 

The principle of this generic algorithm is to derive LAI, FAPAR and FCOVER using a neural 

network trained over a database generated by a radiative transfer model simulation. Many inversion 

algorithms have been proposed to estimate LAI, FAPAR and FCOVER. Among the several possible 

retrieval methods available [31], we selected a machine learning approach based on neural network 

technique because (i) they can describe any linear and nonlinear relationship between input and output 

variables if enough neurons and layers are used [32]; (ii) they are computationally efficient after the 

training process; (iii) they are able to provide good estimation results as the optimization operates 
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directly over the target variables and they have efficient interpolation capacity [31]. Such machine 

learning inversion algorithm has been applied with success in many studies [5,16,33–35]. The outline 

of the algorithm is summarized in Figure 3. A training data set is first populated by simulating top of 

canopy reflectance corresponding to a large number of possible cases using a radiative transfer model. 

This training data set will be also used to build the definition domain, i.e., the convex hull of input 

reflectances in the space of the 4 bands used. Then, the architecture and the coefficients of the neurons 

are adjusted to provide the best match between the variables in the training database and those 

estimated by the neural network. More details are given in the following. 

 

Figure 3. The outline of the algorithm. Vin represents the input variables for the radiative 

transfer model (RTM). Re and Rm represent the estimated and measured top of canopy 

reflectance, respectively. NN is the neural network. Vout donates the output variables and 

Uout is the output uncertainties. 

3.1. Reflectance Models 

The widely used PROSAIL radiative transfer model [36] was selected in this study. The model 

couples the SAIL canopy reflectance model [37] and the PROSPECT leaf optical model [38]. The 

SAIL model assumes the canopy as a turbid medium within which the leaves are randomly located. 

This model has been already used with success in a number of studies to estimate the considered 

biophysical variables. Canopy structure is characterized by LAI, the average leaf angle (ALA) 

assuming an ellipsoidal distribution [39], and a hot spot parameter (HOT) [40]. The PROSPECT 

model is widely used to simulate leaf optical properties through several structural and chemistry 
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characteristics. In this study, the PROSPECT model with the updated absorption coefficients proposed 

by [41] was used. The soil reflectance data was simulated using five typical soil reflectance spectra 

multiplied by a brightness coefficient allowing to accurately represent a large soil dataset where soil 

types, roughness, moisture and observational geometry vary [42]. 

3.2. Generate the Learning Database 

To generate a learning database that could best represent the possible types and states of actual 

canopies, the distribution law of the variable should be well considered [5]. Table 2 lists the range and 

distribution law for all variables of PROSAIL model. Some constraints on the co-distributions between 

variables were also introduced to restrict the space of canopy realization while keeping high degree of 

realism. More detailed justifications of the range and distribution of values used to build the training 

database can be found in the Sentinel-2 algorithm report [43]. The variables distribution laws in this 

study are very similar as the ones used to generate the Sentinel-2 algorithm prototype, except for ALA 

and N with narrower distribution for this study due to the limited number of land cover types. Because 

of the generic nature of the proposed algorithm, the same training dataset, therefore the same neural 

network, will be applied to all land cover types. 

Table 2. List of variables required to run PROSAIL model. The distribution law was 

described by using mode and standard deviation. Nb_Class represents the number of 

classes for each variable. 

 Variable Minimum Maximum Mode Std Nb_Class Law 

Canopy 

LAI 0.0 15.0 2.0 2.0 6 Gauss 

ALA (°) 15 80 40 20 4 Gauss 

HOT 0.1 0.5 0.2 0.5 1 Gauss 

Leaf 

N 1.20 1.80 1.50 0.30 3 Gauss 

Cab (µg.m−2) 20 90 45 30 4 Gauss 

Cdm (g.m−2) 0.003 0.011 0.005 0.005 4 Gauss 

Cw_Rel 0.60 0.85 0.75 0.08 4 Uniform 

Cbp 0.00 2.00 0.00 0.30 3 Gauss 

Soil Bs 0.50 3.50 1.20 2.00 4 Gauss 

A full orthogonal experimental plan was adopted to randomly sample the variables according to the 

number of classes, variation range and distribution law defined above [44]. This sampling scheme could 

account for all the interactions between variables and generate a learning data base evenly but quasi-

randomly populated. For each combination of variables in the learning data base, the top of canopy 

reflectance on each wavelength was simulated by running the PROSAIL model in a forward mode. Then 

the reflectance was spectrally integrated to represent actual SPOT4_HRVIR and Landsat 8 bands according 

to the spectral response function of the sensor (Figure 2). Instantaneous black-sky FAPAR, at the satellite 

pass-by time (10:00 am for Landsat 8, 10:30 am for SPOT4_HRVIR), white-sky FAPAR and FCOVER 

were simulated by running the PROSAIL model in the forward mode using the same input variables.  

The radiative transfer model introduces uncertainties associated with the simulated reflectance due to 

its adequacy to represent the actual canopy architecture. This mainly results in structured errors. The 
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accuracy of actual measured top of canopy reflectance is also influenced by several possible factors, 

including the instrumental noise, radiometric calibration, atmospheric correction and cloud or cloud 

shadow contamination. These factors will lead to multiplicative or additive uncertainties to the measured 

reflectance [16]. To get a more realistic canopy reflectance simulated value, an uncertainty model was 

used to describe the additive and multiplicative uncertainties based on a white Gaussian noise: 

R*(λ) = R(λ) (1+(MD(λ)+MI)/100)+AD(λ)+AI (4) 

where R(λ) is the raw simulated reflectance, R*(λ) is the reflectance contaminated with noise, MD is 
the multiplicative wavelength dependent noise, MI is the multiplicative wavelength independent noise, 

AD is the additive wavelength independent noise, and AI is the additive wavelength independent 

noise. In this study, the MD, MI, AD and AI were fixed to 0.02, 0.02, 0.01, and 0.01 for all bands of 

each sensor. 

A total of 55,296 cases were simulated for each sensor with input canopy variables and output 

reflectance, FAPAR and FCOVER.  

A definition domain was generated by the co-distribution of the simulated reflectance on each band. 

Figure 4 shows the definition domain for the four Landsat 8 bands used in this study (a similar 

definition domain was generated for SPOT4_HRVIR bands but was not shown for the sake of brevity). 

Pixels with reflectance values outside of the definition domain will be reported as “input out of range”. 

The solar zenith angle for each image was also calculated. Only the images with solar zenith angle 

smaller than 65° will be used in further analysis: atmospheric and directional effects are considered as 

too important for zenith angles larger than 65°.  

 

Figure 4. The definition domain (colorful region) of the simulated TOC reflectance on 

four Landsat 8 bands (3, 4, 5, 6). (a) Band 4  and Band 3; (b) Band 5 and Band 3; (c) Band 

6 and Band 3; (d) Band 5 and Band 4 (e) Band 6 and Band 4; (f) Band 6 and Band 5. 
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3.3. Train the Neural Network  

Two distinct databases were generated for LANDSAT8 and for SPOT4_HRVIR. Each database was 

divided into two parts: two thirds of the simulations were randomly selected to train the neural network, 

and the remaining simulations were used for the hyper-specialization control and the evaluation of the 

theoretical performances. For both sensors, a back-propagation artificial neural network [45] made of one 

input layer composed of the normalized input data, one hidden layer composed of 5 neurons with tangent 

sigmoid transfer functions and one output layer with a linear transfer function was selected. The input 

layer of the network corresponds to the surface reflectance for each band and the geometrical 

configurations: the cosine of the view zenith angle, the cosine of the sun zenith angle and the cosine of 

the relative azimuth angle between sun and view directions; the outputs are LAI, instantaneous black-sky 

FAPAR, white-sky FAPAR and FCOVER. The normalization applied to the input and output variables is 

expected to increase the performances of the Levenberg-Marquardt minimization algorithm [46] used in 

the training process. For each output variable and each sensor, five networks were trained with different 

initial solutions. The best one is then selected based on the smallest RMSE between the outputs 

(estimated variable) and the corresponding “reference” biophysical variables in the test data set. Results 

show that the theoretical performances of the 5 neural networks were very close. The best neural network 

achieved very good theoretical performances as observed in Figure 5 for Landsat 8. Table 3 shows that 

the theoretical performances are very close for SPOT4_HRVIR and Landsat 8. 

 

Figure 5. The theoretical performances of the neural network for (a) LAI, (b) black-sky 

FAPAR, (c) white-sky FAPAR, and (d) FCOVER. This neural network was trained for 

Landsat 8. 
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Table 3. Comparison of the theoretical performances (R2 and RMSE in bracket) between 

SPOT4_HRVIR and Landsat 8. 

 LAI Black-Sky FAPAR White-Sky FAPAR FCOVER 

SPOT4_HRVIR 0.77 (0.84) 0.94 (0.06) 0.88 (0.08) 0.96 (0.05) 

Landsat 8 0.8 (0.71) 0.94 (0.06) 0.9 (0.07) 0.96 (0.05) 

Finally, the uncertainty of each variable is estimated. Based on the training dataset and validation 

dataset, the theoretical performances of algorithm can be calculated from the RMSE between the 

estimated and validation biophysical values (Figure 5 and Table 3). A specific neural network was then 

trained for each product to relate the theoretical performances of the neural network to the input 

reflectance and observation geometry values. More details can be found in [43]. 

3.4. Inversion  

Once trained, the neural network can be applied over each pixel for a given sensor. However, the 

input reflectance in the four bands is first checked to verify if it belongs to the definition domain to 

ensure consistency with the training database. If the observation is outside the definition domain, a flag 

“inputs out of range” is raised. In addition, the output estimated variables should be also within a 

predefined range determined by the training dataset and extended by a small tolerance interval (Table 

4, Equations (5) and (6)). Otherwise, an “output out of range” flag will be raised for the pixel. Only the 

data without the input or output “out of range” flag were used in the following analysis  

if Xmin − Tol ≤ X ≤ Xmin, then X = Xmin  (5) 

if Xmax ≤ X ≤ Xmax + Tol, then X = Xmax  (6) 

where X is the output variable value, Xmin, Xmax and Tol are the minimum, maximum and tolerance 

values of the variable, respectively. 

For each pixel, variable and the considered sensor, the corresponding uncertainties were finally computed. 

Table 4. The minimum, maximum range and tolerance for each output product. 

 Minimum Maximum Tolerance 

LAI 0 7 0.2 

Black-sky FAPAR 0 0.94 0.05 

White-sky FAPAR 0 0.94 0.05 

FCOVER 0 1 0.05 

4. Results 

4.1. Spatial Consistency 

The spatial consistency of the satellite products was assessed over cloud-free images acquired 

within few days for SPOT4_HRVIR (17 April 2013) and Landsat 8 (14 April 2013). Results show that 

for LAI products, 62.8% of the total pixels are within the absolute difference 0.5 unit, and less than 

2.5% of the pixels showing differences larger than 2 (Table 5). For the black-sky FAPAR products, 

42.8% of the total pixels have an absolute difference lower than 0.05 units (Figure 6) while results 
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degrade slightly for white sky FAPAR and FCOVER with respectively 32.5% and 28.5% pixels with 

absolute difference lower than 0.05 (Table 5). 

The statistical relationship between the products derived from the two sensors shows that 

SPOT4_HRVIR and Landsat 8 LAI products are very consistent with, however, systematically higher 

values for SPOT4_HRVIR (Figure 7a) in agreement with the previous observations (Figure 6). The 

SPOT4_HRVIR black-sky FAPAR is very consistent with the Landsat 8 (Figure 7b). The white-sky 

FAPAR and FCOVER products are also very consistent with however a small bias of 0.07 (Figure 7c,d). 

The higher values of the SPOT4_HRVIR products may be partly resulted from the rapid development 

of the vegetation in April (Figure 7e). For all land cover types, similar consistency trends can be 

observed between SPOT4_HRVIR and Landsat 8 products (Table 6). 

Table 5. The percentage of pixels from the difference map of the SPOT4_HRVIR (17 

April 2013) and Landsat 8 (14 April 2013) estimated products. The difference units for 

LAI are ±0.5, ±1 and ±2. Values in the bracket represent the difference units for black-sky 

FAPAR, white-sky FAPAR and FCOVER products. 

 ±0.5 (±0.05) ±1 (±0.1) ±2 (±0.2) 

LAI 62.8% 86.2% 97.5% 

Black-sky FAPAR 42.8% 68.5% 89.7% 

White-sky FAPAR 32.5% 61.0% 88.6% 

FCOVER 28.5% 53.0% 82.2% 

 

Figure 6. Spatial distribution of the differences between SPOT4_HRVIR (17 April 2013) and 

Landsat 8 (14 April 2013) estimated products, (a) LAI, (b) black-sky FAPAR, (c) white-sky 

FAPAR and (d) FCOVER. The black areas denote pixels where differences are not evaluated 

due to cloud or cloud shadow contamination, input or output out of range from both sensors.  
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Figure 7. Regression between SPOT4_HRVIR (17 April 2013) and Landsat 8 (14 April 2013) 

estimated products, (a) LAI, (b) black-sky FAPAR, (c) white-sky FAPAR and (d) FCOVER. 

Subplot (e) shows the regression between the NDVI values of two images as reference. 

Table 6. R square and bias (in bracket) values between SPOT4_HRVIR (Take5) (17 April 

2013) and Landsat 8 (14 April 2013) estimated products over each land cover type. 

 Barley Rapeseed Wheat Corn Sunflower Grassland Broadleaf Needleleaf 

LAI 
0.763 

(0.270) 

0.770 

(0.312) 

0.772 

(0.325) 

0.773 

(0.325) 

0.765 

(0.321) 

0.762 

(0.327) 

0.776 

(0.326) 

0.769 

(0.318) 

Black-sky FAPAR 
0.783 

(0.050) 

0.798 

(0.060) 

0.799 

(0.060) 

0.798 

(0.060) 

0.791 

(0.060) 

0.787 

(0.060) 

0.804 

(0.060) 

0.798 

(0.060) 

White-sky FAPAR 
0.782 

(0.047) 

0.799 

(0.059) 

0.799 

(0.059) 

0.798 

(0.059) 

0.791 

(0.059) 

0.786 

(0.060) 

0.805 

(0.060) 

0.799 

(0.057) 

FCOVER 
0.773 

(0.057) 

0.788 

(0.067) 

0.790 

(0.069) 

0.790 

(0.069) 

0.782 

(0.068) 

0.778 

(0.069) 

0.795 

(0.069) 

0.785 

(0.066) 

4.2. Temporal Consistency 

The temporal consistency of SPOT4_HRVIR and Landsat 8 products was evaluated by averaging 

the products for each landcover class for each date of image acquisition. The fraction of valid pixels on 

each image was calculated for each landcover class. Dates with the fractions smaller than 50% of valid 

pixels were not considered for a given landcover class. 

Results show that the profile captures well the expected seasonal variation of each landcover class 

(Figure 8). The barley LAI increases around the beginning of March, reaches a maximum in April and 

May, and then decreases around the end of May (Figure 8a). The next growth cycle starts around 

September with the early sowing. For the other two winter crops that are rapeseed and wheat  

(Figure 8b,c), similar seasonal variation of the LAI can be observed. For the summer crops (Figure 8d), 

the LAI of corn increases from the beginning of June to a peak value of 2.5 in July, and then decreases 

slowly in September. The sunflower LAI shows a slight seasonal variation throughout the year  

(Figure 8e), ranging around 1. For the grassland (Figure 8f), the seasonal profile starts in the beginning 

of March, reaches the highest value of nearly 3 in May, and then decreases from June to remain nearly 
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constant from August to the end of the year because of the lack of available water. The broadleaf and 

needleleaf forests follow a similar seasonal profile, although the needleleaf LAI is slightly higher than 

the broadleaf LAI in the beginning of the season as expected (Figure 8g,h). LAI values higher than 3 

can be obtained for both forests in July.  

 

Figure 8. Seasonal variation of LAI products estimated from SPOT4_HRVIR (Take5) and 

Landsat 8 sensors for eight biomes ((a) Barley, (b) Rapeseed, (c) Wheat, (d) Corn, (e) 

Sunflower, (f) Grassland, (g) Broadleaf and (h) Needleleaf) over the study area. Vertical bars 

represent the standard deviation of values from all pixels belonging to same landcover type. 

Black-sky FAPAR and white-sky FAPAR (Figure 9) follow seasonal profiles similar to those of 

LAI. The white-sky FAPAR is higher than the black-sky FAPAR in the growing season. However, it is 

close or even lower than the black-sky FAPAR in the beginning and the end of growing season: when 

the sun zenith angle increases, the direct illumination has long penetration path in the canopy, leading 

to a higher absorption than that of the diffuse illumination. This has been demonstrated in the model 

simulation from Li and Fang [17]. The seasonal profiles for FCOVER are also similar to those of LAI 

and black-sky FAPAR (Figure 10). 
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Figure 9. Seasonal variation of black-sky FAPAR (black symbols) and white-sky FAPAR 

(gray symbols) products estimated from SPOT4_HRVIR (Take5) and Landsat 8 sensors 

for eight biomes ((a) Barley, (b) Rapeseed, (c) Wheat, (d) Corn, (e) Sunflower, (f) Grassland, 

(g) Broadleaf and (h) Needleleaf) over the study area. Vertical bars represent the standard 

deviation of values from all pixels belonging to same landcover type. 

The average profiles per landcover class shows a smooth behavior, demonstrating that high 

temporal consistency of the algorithm. Further, only marginal differences could be observed between 

SPOT4_HRVIR and Landsat 8 profiles, proving that a single algorithm adapted to two different 

sensors provides consistent estimates, confirming the previous observations on the spatial consistency. 

However, the averaging process per landcover class masks possible variability within a class due to 

environmental or cultural practices differences. Nevertheless, inspection of profiles of individual fields 

(data not shown for the sake of brevity) confirms the high temporal consistency (temporal smoothness) 

as well as the good match between SPOT4_HRVIR and Landsat 8 derived products.  
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Figure 10. Seasonal variation of FCOVER products estimated from SPOT4_HRVIR 

(Take5) and Landsat 8 sensors for eight biomes ((a) Barley, (b) Rapeseed, (c) Wheat,  

(d) Corn, (e) Sunflower, (f) Grassland, (g) Broadleef and (h) Needleleaf) over the study area. 

Vertical bars represent the standard deviation of values from all pixels belonging to same 

landcover type.  

4.3. Direct Validation 

The retrieved biophysical products were compared to the corresponding field measurements over 

three landcover classes. Single date field measurements were linearly interpolated to match the date of 

the satellite observation on the same location. The satellite estimated LAI corresponds well to the field 

measurements over all landcover classes (R2 = 0.83, bias = 0.07) (Figure 11a). However, the satellite 

estimated LAI slightly overestimates the field LAI over the wheat and sunflower, while a small 

negative bias is observed for maize (Bias = −0.09) (Table 7). The underestimations over maize is 

mainly observed for the larger LAI values (LAI > 2.5). The satellite black-sky FAPAR estimates are 

strongly related to the field measured values, although showing a positive offset corresponding to an 

overestimation of the satellite black-sky and white sky FAPAR mainly for the lowest FAPAR values. 
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(Figure 11b,c). The best relationship and lowest bias were observed on maize (R2 = 0.91, bias = 0.01), 

while the largest bias of 0.11 was found on wheat. The FCOVER product is closely related to the field 

measured data, however some overestimations are observed over all the crops (0.05–0.13) (Figure 11d, 

Table 7). Table 8 shows the proportion of validation pixels that could meet the GCOS requirements for 

LAI, FAPAR and FCOVER products. LAI products have the best performance, with 77% of validation 

pixels within the GCOS boundaries (max(0.5, 20%)). However, more sunflower and maize validation 

pixels meet the GCOS requirement as compared to wheat. For FAPAR, 50% of the black-sky FAPAR 

and 52% of white-sky FAPAR meet the GCOS requirements (max(0.05, 10%)). For FCOVER, using 

the same requirements as for FAPAR, only 32% of validation pixels are within the GCOS range. Note 

that these percentage values are only calculated from the validation pixels, not the whole image. 

 

Figure 11. Direct validation of (a) LAI, (b) black-sky FAPAR, (c) white-sky FAPAR and 

(d) FCOVER products derived from the SPOT4_HRVIR (Take5) and Landsat 8 sensors 

with the ground measurements over three biomes. The dark line is the 1:1 line. Dashed 

lines represent the GCOS (2011) requirements boundaries.  
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Table 7. Statistics of the direct validation results for satellite derived LAI, black-sky 

FAPAR, white-sky FAPAR and FCOVER with the ground measurements over wheat, 

maize and sunflowers. 

 Wheat Maize Sunflower 

 R2 Bias  RMSE R2 Bias RMSE R2 Bias RMSE 

LAI 0.76 0.4 0.74 0.82 −0.09 0.5 0.65 0.16 0.36 

Black-sky FAPAR 0.81 0.04 0.1 0.91 0.01 0.08 0.65 0.02 0.12 

White-sky FAPAR 0.76 0.11  0.17 0.91 0.03  0.08 0.67 0.06  0.14 

FCOVER 0.56 0.13  0.19 0.83 0.11  0.15 0.69 0.05 0.12 

Table 8. Percentage of the validation pixels that meet the GCOS requirements. 

 Wheat (%) Maize (%) Sunflower (%) All (%) 

LAI 64.29 72.88 85.11 76.67 

Black-sky FAPAR 57.14 55.93 40.43 50 

White-sky FAPAR 38.46 67.24 36.17 51.69 

FCOVER 21.43 33.90 31.95 31.67 

5. Discussions  

A neural network based algorithm was developed in this study to retrieve LAI, FAPAR and 

FCOVER products from either SPOT4_HRVIR or Landsat 8 surface reflectance data. The neural 

networks were trained over a simulated learning data base by taking into account the distribution and 

co-distribution laws of the input variables. As the algorithm is not land cover dependent, we used a 

truncated Gaussian distribution law to be most representative of a wide range of landcover types and 

thus, mimic the actual distribution of the radiative transfer model input variables [16]. Furthermore, by 

considering the co-distribution law of variables with LAI, the realism of the learning data base is 

expected to be improved. However, the information related to the distribution and co-distribution laws 

of variables is actually limited. More studies should be conducted on this topic to improve the learning 

database generation. 

The products derived from SPOT4_HRVIR and Landsat 8 data show very good spatial and 

temporal consistency (Figures 6–10). For very close acquisition dates, SPOT4_HRVIR and Landsat 8 

products are very similar and most of the differences are within a limited range. The results 

demonstrate the robustness of the proposed algorithm and its suitability to be applied to several 

satellites. The temporal profiles show that two sensors complement themselves to describe the seasonal 

variation of vegetation: the combination of sensors may overcome the typical low revisit frequency of 

decametric sensors, allowing to build virtual constellations.  

The comparisons with the field measurements demonstrate the good quality of the derived products 

(Figure 11, Tables 7 and 8). Seventy-seven percent of the satellite LAI meets the GCOS requirement 

although it shows a slight underestimation over the maize crops when LAI is larger than 2. The 

assumptions made on canopy structure in the SAIL model may partly explain these artifacts. Further, 

the satellite derived LAI product corresponds to the green LAI, while the field measured LAI from the 

upward looking DHPs includes all components of the canopy (green and non-green elements). Both 

black-sky and white-sky FAPAR products show good relationships with the field measurements. More 
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than half of FAPAR validation pixels meet the GCOS requirements. The RMSE value for FAPAR is in 

the same range as those reported by several studies [16,47,48]. For FCOVER, only 32% of FCOVER 

validation pixels are within the max (0.05, 10%) accuracy range, showing a small overestimation 

compared with the ground FCOVER value. The overestimation may result from the higher sensitivity 

of FCOVER to the contribution of soil reflectance, the clumping effect which is maximum in the 

vertical direction, as well as uncertainties related to the field measurements of FCOVER. Nevertheless, 

the RMSE value for FCOVER (RMSE = 0.15) is close to the values reported in other studies [16,49] . 

6. Conclusions 

This study shows the interest of this generic algorithm to derive LAI, FAPAR and FCOVER 

consistent products from SPOT4_HRVIR and Landsat 8 over the study area. These principles will be 

applied to the recently launched Sentinel-2 mission with a high revisit frequency and a decametric 

spatial resolution that will contribute to a large range of applications. To further improve the accuracy 

of the algorithm to apply for Sentinel-2, efforts should devoted towards three complementary 

directions: (i) first, more sites with field measurements need to be considered to better describe the 

limits of the algorithm; (ii) second, this algorithm is by construction “generic”: it applies potentially to 

all landcover types. Major improvements are expected from the development of more specific 

algorithms, i.e., when the training is achieved over a limited set of cases defined for each landcover 

type. This will imply that one could achieve a near real time estimation of the landcover class 

associated to each pixel. The temporal profiles generated from the output of the generic algorithm 

would help identifying the landcover class associated to each pixel. Then the “specific” biophysical 

algorithm will be run to fine tune the solution by exploiting the knowledge of the landcover class. (iii) 

Finally, the expected smoothness of the temporal profiles of these biophysical variables and their 

typical shape for each landcover type should be exploited to smooth out possible residual artifacts and 

help filling gaps due to cloud or snow cover. 
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Abstract The fraction of photosynthetically active radiation (PAR) absorbed by green elements (FPAR) is

an essential climate variable in quantifying canopy absorbed PAR (APAR) and gross and net primary

production. Current satellite FPAR products typically correspond to black-sky FPAR under direct illumination

only, but the radiation transfer and vegetation absorption processes differ for direct and diffuse PARs. To

address this, the present study developed a new approach to estimate direct, diffuse, and total FPARs,

separately, from Landsat surface reflectance data. Field-measured direct and diffuse FPARs were first derived

for crops, deciduous broadleaf forests, and evergreen needleleaf forests at six FLUXNET sites. Then, a coupled

soil-leaf-canopy radiative transfer model (SLC) was used to simulate surface reflectance under direct and

diffuse illumination conditions. Direct, diffuse, and total FPARs were estimated by comparing Landsat-5

Thematic Mapper (TM) data and simulated surface reflectances using a lookup table approach. The

differences between the Landsat-estimated and the field-measured FPARs are less than 0.05 (10%). The

diffuse FPAR is higher than the direct FPAR by up to 19.38%, whereas the total FPAR is larger than the direct

FPAR by up to 16.07%. The direct APAR is higher than the diffuse APAR under clear-sky conditions, but

underestimates the total APAR by �277.72μmol s�1m�2 on average. The approach described here can be

extended to estimate direct, diffuse, and total FPARs from other satellite data and the obtained FPAR variables

could be helpful to improve modeling of vegetation processes.

1. Introduction

The fraction of photosynthetically active radiation (PAR) absorbed by green elements (FPAR) can be defined

as the ratio of total absorbed PAR (APAR) to incoming PAR at the top of the canopy and represents the energy

absorption efficiency of the canopy for downwelling PAR. Specified as an essential climate variable by the

Global Climate Observing System [Global Climate Observing System, 2011], FPAR is a critical parameter in

characterizing energy, mass, and momentum exchanges between the canopy and the atmosphere and is

required for photosynthesis and primary production simulations [Gobron and Verstraete, 2009].

FPAR represents the summed canopy absorption efficiency for both direct and diffuse PAR. It has been

demonstrated that FPAR is larger under totally diffuse than clear-sky conditions because all canopy parts can

absorb lights effectively under diffuse conditions, whereas some portions of the canopy will be shaded

under direct light conditions [Goward and Huemmrich, 1992; Nouvellon et al., 2000; Thomas et al., 2006].

Therefore, the direct and diffuse FPARs are commonly defined, separately, as the FPAR values obtained under

clear (most sunny) and overcast (most cloudy) conditions, respectively [Thomas et al., 2006].

In the field, direct and diffuse FPARs can be calculated from the transmitted and reflected PARs measured

separately under direct and diffuse illumination conditions [Gobron et al., 2006]. However, field measurements

are usually difficult to obtain under variable sky conditions [Gu et al., 2002]. Direct and diffuse FPARs have

also been estimated as a function of leaf area index (LAI), leaf transmission, or scattering coefficients in land

surface models, such as the Common Land Model [Dai et al., 2003], Basin Irrigation System [Foley et al., 1996],

and Simple Biosphere 2 [Sellers, 1985]. However, several studies have reported that both direct and diffuse

FPARs are underestimated in current land surface models because of the simplification of radiative transfer

processes [Senna et al., 2005; Tian et al., 2004].
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Satellite FPAR products have been generated at different temporal and spatial resolutions, such as

Moderate Resolution Imaging Spectroradiometer (MODIS) [Knyazikhin et al., 1998], VGT bioGEOphysical

product Version 1(GEOV1) [Baret et al., 2013], Medium-Resolution Imaging Spectrometer (MERIS) [Gobron

et al., 1999], and Joint Research Centre Two-stream Inversion Procedure (JRC-TIP) [Pinty et al., 2011]. MODIS

FPAR product is derived from the inversion of biome-based 3-D radiative transfer model using the lookup

table approach. The GEOV1 product is generated from neural networks trained by using the “best estimates”

of FPAR obtained by fusion of MODIS and CYCLOPES FPAR products. The MERIS FPAR product is computed as

a function of rectified red and near-infrared (NIR) bands reflectance and several polynomial coefficients

which are optimized using a training dataset generated from a 1-D semidiscrete land-surface-atmosphere

coupled RT model. The JRC-TIP FPAR product is derived based on MODIS broadband visible and NIR albedo

(black-sky and white-sky) products from combined Terra-Aqua data sets. The MODIS, GEOV1, andMERIS FPAR

products are retrieved as the instantaneous black-sky FPAR under direct illumination, without considering the

relative proportion of diffuse radiation in the total radiation. However, even under fully clear-sky conditions,

the proportion of diffuse PAR over the surface cannot be ignored [Gu et al., 2002]. Otherwise, FPAR will be

underestimated, especially for small leaf area index (LAI) region [Goward and Huemmrich, 1992; Tian et al.,

2004]. The JRC-TIP algorithm generates direct FPAR and diffuse FPARs, separately, but the product has not

been fully validated due to the lack of companion field measurements.

The present study aims to estimate direct, diffuse, and total FPARs from Landsat reflectance data. The

advantages of the high-resolution (30m) Landsat data make them appealing for local photosynthesis and

primary production studies and for the validation of current moderate-resolution FPAR products. In this

study, a coupled soil-leaf-canopy (SLC) radiative transfer model [Verhoef and Bach, 2007] was used to estimate

direct and diffuse FPARs from 30 m Landsat surface reflectance data. Six FLUXNET sites including crops,

deciduous broadleaf forests, and evergreen needleleaf forests were selected to derive field direct and diffuse

FPARs and to validate the Landsat estimates. Here the total and direct FPARs are compared and the influences

of different FPAR components on APAR estimation are explored. The results of this study will be invaluable

for the generation of FPAR products and future studies utilizing regional and global direct, diffuse, and

total FPAR products.

2. Methods and Measurements

2.1. Theory

The instantaneous total APAR at the top of the canopy (TOC) is a sum of the direct and diffuse APARs.

APARt θsð Þ ¼ APARdir θsð Þ þ APARdif θsð Þ (1)

where APARt, APARdir, and APARdif represent total APAR, direct APAR, and diffuse APAR at solar zenith angle θs,

respectively.

APARdir θsð Þ ¼ PARdir θsð Þ�FPARdir θsð Þ (2)

APARdif θsð Þ ¼ PARdif θsð Þ�FPARdif (3)

where PARdir, FPARdir, PARdif, and FPARdif represent instantaneous direct PAR, direct FPAR, diffuse PAR, and

diffuse FPAR, respectively. Direct and diffuse FPAR corresponds to the canopy absorption capacity for direct

and diffuse incoming PAR, respectively. Note that diffuse FPAR is invariant with the solar zenith angle (SZA)

(section 3.1).

By substituting equations (2) and (3) into equation (1), and dividing by total PAR on both sides, the total FPAR

at the top of the canopy (TOC) can be expressed as a weighted sum of direct and diffuse FPARs, as follows:

FPARtol θsð Þ ¼ 1� skyl θsð Þð Þ�FPARdir θsð Þ þ skyl�FPARdif (4)

where FPARtol and skyl represent total FPAR and the instantaneous proportion of diffuse PAR in the total

incoming PAR, respectively.

According to equation (4), the instantaneous direct FPAR can be calculated if the total FPAR, diffuse ratio and

diffuse FPAR are known

FPARdir θsð Þ ¼ FPARtol θsð Þ � skyl �FPARdifð Þ= 1� skyl θsð Þð Þ (5)
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Table 1. Six FLUXNET Sites and the Available Landsat Scenes
a

Station Name Country Location Surface Type Canopy Height Sensors Height Period

Landsat

Path/Row Scene Time References

Mead Irrigated

(Mead NE1)

USA 41.17° N,

96.48° W

Continuous

maize

3.5m TOC: 5.5m (↓),

5.5 m (↑)

2003.1 28/31 May–

September

Verma et al. [2005]

BOC: ground (↓↑) to 2010.10

Mead Irrigated

Rotation

(Mead NE2)

USA 41.17° N,

96.47° W

Maize-soybean 3.4m

(maize)

TOC: 5.5m (↓),

5.5 m (↑)

2003.1 28/31 May–

September

Verma et al. [2005]

1m

(soybean)

BOC: ground (↓↑) to 2010.10

Mead Rainfed

(Mead NE3)

USA 41.18° N,

96.44° W

Maize-soybean 2.7m

(maize)

TOC: 5.5m (↓),

5.5 m (↑)

2003.1 28/31 May–

September

Verma et al. [2005]

0.8m

(soybean)

BOC: ground (↓↑) to 2010.12

Bartlett

Experimental

Forest (Bartlett)

USA 44.07° N,

71.29° W

Deciduous

broadleaf

forest

19m TOC: 25m (↓),

23.8m (↑),

2004.7 13/29 April–

September

Jenkins et al. [2007]

Ollinger and Smith [2005]

BOC: 1m (↓) to 2007.9

Soroe Denmark 55.49° N,

11.65° E

Deciduous

broadleaf

forest

30m TOC: 57m (↓),

53.5m (↑),

2006.9 195/21 April–

September

Pilegaard et al. [2001]

BOC:* to 2010.10

Tharandt Germany 50.96° N, 13.57° E Evergreen

needleleaf

forest

30m TOC: 37m (↓), 37 m (↑), 2004.8 192/25 January–

December

Grumwald and Bernhofer [2007]

BOC: 17m (↓) to 2010.10

a
Canopy height represents the height at peak stage, and sensor height is the distance between sensor and ground. Downward (↓) and upward (↑) arrows indicate downwelling radiation and

upwelling radiation measurements. TOC: the top of canopy; BOC: bottom of canopy. The information about the below-canopy PAR sensors used to measure the soil reflected PAR is from per-
sonal contact with the PI. The time of Landsat scenes was determined from the field measurements.

Jo
u
rn
a
l
o
f
G
e
o
p
h
y
sica

l
R
e
se
a
rch

:
B
io
g
e
o
scie

n
ce
s

1
0
.1
0
0
2
/2
0
1
4
JG

0
0
2
7
5
4

LI
A
N
D
FA

N
G

©
2
0
1
4
.
A
m
e
rica

n
G
e
o
p
h
ysica

l
U
n
io
n
.
A
ll
R
ig
h
ts
R
e
se
rv
e
d
.

9
8



2.2. Estimation of FPARs From Field Measurements

2.2.1. Site Descriptions

Six sites from the FLUXNET project (http://public.ornl.gov/FLUXNET/), covering crops, deciduous broadleaf

forests (DBF), and evergreen needleleaf forests (ENF) were assembled for this study (Table 1). The

selection of sites was based on spatial homogeneity, the representativeness of each vegetation type, and

the available PAR measurements (total downwelling PAR, diffuse PAR, above-canopy reflected PAR,

below-canopy transmitted PAR, and the soil reflected PAR). Since the field measurements were to be

compared with the satellite-derived variables, each site had to be spatially homogeneous around the tower.

Figure 1 shows the area and dominant vegetation type for a 90m×90m area (3 by 3 Landsat pixels)

centered on each tower.

All selected sites are equipped with two PAR sensors above the canopy, with one pointing toward the sky to

measure the incoming total PAR, and the other facing downward to measure the surface reflected PAR. At

each site, a sunshine sensor is mounted above the canopy to measure the total downwelling and diffuse

component of the downwelling PAR. Direct PAR can be calculated from the differences between total and

diffuse PAR. Three crop sites, Mead NE1, NE2, and NE3, are equipped with downward looking PAR sensors

below the canopy to measure the reflected background PAR. For forest sites, the background albedo was

ignored because most of the Landsat scenes were acquired during the growing season when the background

albedo was negligibly small [D’Odorico et al., 2014; Jenkins et al., 2007; Nouvellon et al., 2000]. Five upward

looking PAR sensors at the three Mead sites and six at the Bartlett site [Jenkins et al., 2007] are installed below

the canopy to measure the transmitted PAR. At the other sites, one upward PAR sensor is used to measure the

transmitted PAR.

As FPAR varies with the solar zenith angle, the instantaneous FPAR close to the satellite overpass time

(10:00 A.M. for Landsat thematic mapper (TM) was extracted. At the Mead sites, field FPAR measurements are

obtained every hour. For the present study, the instantaneous FPAR value was calculated by averaging

FPAR from 9:30 A.M. to 10:30 A.M. At all forest sites, field measurements are typically made every half hour;

here, the FPAR data at 10:00 am were selected for comparison with Landsat estimates. The instantaneous

diffuse ratio was calculated as the ratio of the diffuse PAR to the total PAR.

Figure 1. High-resolution images of six flux sites acquired from map.bing.com/maps in spatial scale of 1:1500. White

squares represent the 3 × 3 Landsat pixels (90 × 90m), with central pixel covering each tower (red rectangles). DBF:

deciduous broadleaf forest; ENF: evergreen needleleaf forest.
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2.2.2. Estimation of Field FPARs

The instantaneous total FPAR can be estimated from the PAR measurements described above, as follows

[Goward and Huemmrich, 1992]:

FPARtol ¼
PARi � PARr � PARt � PARsð Þ

PARi
(6)

where PARi is the total incoming PAR at TOC, PARr is the canopy reflected PAR, PARt is the canopy transmitted

PAR, and PARs is the PAR reflected from the soil surface. The term in parenthesis represent the PAR absorbed

by the soil. At the three forest sites, PARs is ignored.

When the canopy remains stable (no sudden changes), the diffuse FPAR can be considered as an intrinsic

attribute of the canopy and is independent of atmospheric conditions and solar zenith angles. In this case,

Figure 2. Seasonal variation of daily maximum diffuse ratio from field measurements at six sites, (a) Mead NE1, (b) Mead

NE2, (c) Mead NE3, (d) Bartlett, (e) Soroe, and (f ) Tharandt. The mean maximum diffuse ratio (and the standard deviation)

is also shown in the lower left corner.
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the total FPAR measured with the largest diffuse ratio (close to 1.0) can be approximated as the diffuse FPAR.

Based on the instantaneous diffuse ratio at 10:00 A.M., the sky conditions are divided into clear (diffuse

ratio< 0.2), partly clear (diffuse ratio 0.2 ~ 0.8), and overcast (diffuse ratio> 0.8) conditions. The overcast sky

was excluded from the direct FPAR calculation. For clear and partly clear-sky conditions, the instantaneous

diffuse ratio during a day was calculated and the diffuse FPAR was determined based on three criteria: (1) the

instantaneous diffuse ratio was the largest; (2) the next diffuse ratio measurement should also be large in

case of sudden clouds; (3) the incoming PAR measurement is larger than 10.0μmol s�1m�2 and the

calculated total FPAR is within 0 to 1.0. The daily maximum diffuse ratio satisfying these criteria along the year

was shown in Figure 2. The instantaneous total FPARmeasured with themaximum diffuse ratio was treated as

a proxy of the diffuse FPAR, and the direct FPAR in the morning was estimated from the diffuse FPAR, the total

FPAR, and diffuse ratio at the same time (equation (5)). Besides, the daily instantaneous direct and diffuse

APARs at 10:00 A.M. were also calculated from the corresponding PAR and FPAR (equations (2) and (3)). Note

that the FPARs measured in these sites include the contributions from all components of the canopy

(green leaves, yellow leaves, branches, trunks, and seeds). The rainy days (precipitation> 0) were excluded

from the analysis because of the large deviations in the field measurements.

2.3. Estimation of FPARs From Landsat

2.3.1. SLC Model and Simulation

A hybrid soil-leaf-canopy (SLC) model [Verhoef and Bach, 2007] was used in this study. The model couples the

4SAIL2 canopy reflectance model, the PROSPECT leaf optical model [Jacquemoud and Baret, 1990] and 4SOIL

soil reflectance model. 4SAIL2 model is a revised version of the SAIL model [Verhoef, 1984]. It separates the

canopy into green and brown components by using the fraction brown elements (fb) and the dissociation

factor (D), which determines the distribution of the two layers. If the brown leaves are homogeneously

distributed, theD value equals to 0; and if all the brown elements are at the bottom of the canopy, the D value

equals to 1.0 [Laurent et al., 2011a]. The 4SAIL2 model also includes the crown clumping effect through

the crown cover (Cv) and the shape factor (zeta), calculated as the ratio of the crown diameter to the height of

Table 2. List of Variables Required to Run SLC Model and Their Ranges

Variables Description Unit Ranges or Values

Geometric configuration θv View zenith angle ° 0

θs Solar zenith angle ° 0 5 10 15 20 25 30 35

45 50 55 60

θz Relative azimuth angle ° 90

Canopy structure LAI Leaf area index 0–15.0

LIDFa LIDF parameter a, controls

the average leaf slope

�0.35

LIDFb LIDF parameter b, controls the

distribution’s bimodality

�0.15

Sl Hot spot parameter 0.1–0.5

fb Fraction of brown

components

0 (crops)0–0.5 (forests)

D Layer dissociation factor 0–0.5

Cv Crown cover 0.6–1.0

zeta Crown diameter/crown

height

0.5–1.0

Leaf optical properties of

green layer

Cab Leaf chlorophyll

a + b content

μg cm
�2

20–90

Cw Relative water 0.6–0.85

Cdm Leaf dry matter content g cm
�2

0.003–0.01

Cs Leaf brown pigment 0

N Leaf mesophyll structure 1.2–2.2

Leaf optical properties of brown layer Cab Leaf chlorophyll a + b

content

μg cm
�2

0

Cw Relative water 0.6–0.85

Cdm Leaf dry matter content g cm
�2

0.003–0.01

Cs Leaf brown pigment 0.1–3.5

N Leaf mesophyll structure 1.2–2.2

Soil soil_b Soil brightness 0.5–1.0
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the crown center above ground. To simulate the optical properties of green and brown elements, the

PROPECT model [Jacquemoud and Baret, 1990] includes the concentration in brownmaterial (Cs) [Verhoef and

Bach, 2003] was used. The leaf optical model was run twice for the green layer and brown layer separately

if the fb value is larger than 0. The soil bidirectional reflectance distribution function (BRDF) model 4SOIL was

used in SLC, which is an extended version of the Hapke model [Laurent et al., 2011a] that includes hotspot

and soil moisture effect.

Table 2 lists the input SLC parameters and their values. The view zenith angle was set as nadir due to the small

BRDF effect within a single Landsat scene [Meroni et al., 2013]. To avoid too wide input parameters, the

spherical leaf inclination distribution function (LIDFa=�0.35, LIDFb=�0.15) was considered. The fraction

brown component (fb) was fixed to 0 for crops, as only the greenup to senescence stages maturation stages

were simulated. The fb varies between 0 and 0.5 for forests to take into account the impact of nongreen

vegetation (barks, tree trunk, etc.) [Laurent et al., 2011b]. The D value was varying from 0 to 0.5 to simulate the

distribution of green and brown elements in a canopy. The values of other input parameters were selected in

agreement with the literatures [Baret et al., 2007; Laurent et al., 2011b; Laurent et al., 2013; Verhoef and Bach,

2007; Zhang et al., 2005].

2.3.2. Landsat Surface Reflectance Data

The Landsat-5 TM surface reflectance products are available through the U.S. Geological Survey Landsat

Surface Reflectance Climate Data Record web portal (http://landsat.usgs.gov/CDR_LSR.php). The reflectance

product is derived from standard L1t files using the Landsat Ecosystem Disturbance Adaptive Processing

System at the NASA Goddard Space Flight Center [Masek et al., 2006]. This product has been validated over

several sites and proven to perform successfully over vegetated areas with no adjacent water [Maiersperger

et al., 2013]. The reflectance product has been used as an input for deriving global LAI [Ganguly et al., 2012],

albedo [Shuai et al., 2011], and crop gross primary production [Gitelson et al., 2012].

A total of 119 Landsat TM scenes without visual cloud and cloud shadow contamination over the study

area were selected to derive direct, diffuse, and total FPARs (Table 1). For the crop and DBF sites, images

from greenup to senescence stages were used, while all yearlong images were used for the ENF site.

For each scene, a 3 × 3 grid area (90 × 90m) centered on the pixel covering the observation tower was

extracted to represent the average status of each site. The green, red, and NIR bands were used because

they are highly responsive to leaf pigment content, canopy architecture, and leaf structure [Houborg

et al., 2009].

2.3.3. The Lookup Table Approach

A widely used lookup table (LUT) approach was selected to invert direct and diffuse FPARs as it could find the

global minimum of the cost function. The LUT was generated by running the SLC model in the forward mode

with the input variables listed in Table 2. Two separate LUT databases were generated for forests and

non-forests sites with different brown pigment fraction values (Table 2). For each SZA, 500,000 randomly

Figure 3. Characteristics of diffuse and direct FPARs under different SAZ and LAI values simulated with SLC model.

(a) Diffuse (FPARdif ) (gray dashed line) and direct FPAR (FPARdir) (black solid line) variations and (b) the difference between

diffuse and direct FPAR, as a function of solar zenith angle and LAI. SLC model parameters: θv = 0°, θz = 90°, LIDFa =�0.35,

LIDFb=�0.15, Sl= 0.05, fb= 0, D= 0, Cv= 1, zeta= 0.2, Cab= 60, Cw= 0.005, Cdm= 0.002, Cs= 0.03, N= 2, and soil_b = 0.5.
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distributed cases were simulated for different variable combinations. The top of canopy reflectance was

simulated for each wavelength, and then integrated into the Landsat 5 bands. The final LUT databases used

for inversion contain SZA, LAI, the simulated direct and diffuse FPARs, and the simulated surface reflectance

in the nadir direction on each Landsat 5 band.

In the actual inversion, the measured Landsat surface reflectance on green, red, and NIR bands, and geometric

configuration of each observation (SZA) are required. The nearest simulated geometric configuration was first

determined by comparing the simulated and real SZAvalues. Under this geometric condition, a cost functionwas

established to minimize the differences between simulated and measured surface reflectance for all bands by

calculating the relative root-mean-square error (RRMSE) [Weiss et al., 2000]:

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
X

N

i¼1

ρmea
i

� ρsim
i

ρmea
i

� �2

v

u

u

t (7)

where N is the total number of bands used in the inversion, and ρmea
i

and ρsim
i

are the simulated and satellite-

estimated surface reflectances, respectively, for band i.

The RRMSE values were sorted, the first 100 records with the smallest RRMSE were selected and averaged for

each pixel [Darvishzadeh et al., 2008]. Site level results were calculated by averaging all pixels within the site.

The FPARtol value was calculated from equation (4), using the field-measured diffuse ratio.

3. Results

3.1. The Simulated Direct and Diffuse FPARs

Figure 3 illustrates the relationship between the simulated direct and diffuse FPARs and SZA and LAI. At a

given solar zenith angle, both direct and diffuse FPARs increase with LAI. When the solar zenith angle is zero,

the direct and diffuse FPARs increase from 0.04 to 0.84 when LAI is less than 2.0. Moreover, these FPARs are

nearly saturated (>0.9) and increase slightly (�0.01) when LAI is larger than 4.0.

The relationship between direct FPAR and SZA is influenced by the LAI value (Figure 3a). At low and

intermediate LAIs (LAI< 4), the direct FPAR increases substantially with SZA. And the change rate of direct

FPAR with SZA increases with LAI. This can be explained by the longer path of direct radiation penetrating the

canopy at higher SZA. When LAI is greater than 4.0, the change rate of direct FPAR with SZA remains invariant

for SZA from 0° to 70° and decreases slightly (�0.04) for large SZA near the horizon, which can be attributed

to FPAR saturation at large LAI. In contrast, for a given LAI, the diffuse FPAR remains invariant for varying

SZA values.

The differences between the direct and diffuse FPARs also vary with SZA and LAI (Figure 3b). For canopies

with small and intermediate LAIs (LAI< 4), the diffuse FPAR is systematically larger than the direct FPAR

(0.02–0.3) when the SZA is smaller than 60°. In contrast, for larger SZA (SZA> 60°), the direct FPAR increases

greatly, and the diffuse FPAR is smaller than the direct FPAR (�0.8 ~�0.15). The long penetrating path

resulting from large SZA increases the efficiency of a small canopy in absorbing direct PAR. But for canopy

with LAI greater than 4, the diffuse FPAR is slightly larger than the direct FPAR for all solar zenith angles.

3.2. The Field FPARs

3.2.1. Seasonal Variation of Field-Measured FPARs

The field FPARs from three crop sites and two DBF sites exhibit a clear seasonal variation (Figure 4). The crop

FPAR values increase around the end of May or early June, reach maximum in August and September, and

begin to decrease around October. The small phonological variation (e.g., Figure 4c) in different years is

mainly due to the plant rotation between maize and soybean [Verma et al., 2005]. At the Bartlett site, the

FPARs start to increase in April, reach the peak during June to September, and begin to decrease in early

October. The lowest total FPAR of nearly 0.3 can be obtained in the winter season. The FPARs in the Soroe site

follow a similar seasonal cycle, with the highest total FPAR (0.98) in July to September and the lowest value

(around 0.4) in winter season. The FPARs at the ENF site show little variation throughout the year.

At all sites, the diffuse FPAR is consistently higher than the direct FPAR by 0.02–0.06 (2.53–8.56%) before the

senescent (Figure 4 and Table 3), indicating that the green canopy generally absorbs the diffuse PAR more
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efficiently than the direct PAR. Moreover, the field measured total FPAR is systematically higher than the

direct FPAR (1.38–3.14%). In contrast, the total FPAR is slightly lower than the diffuse FPAR (�4.99 to�1.13%).

The field-measured direct FPAR corresponds well to the total FPAR over crops and DBF sites (R2>=0.85). It

should be noted that the FPARs at the crop and DBF sites include contributions from all parts of the canopy

(green leaves, yellow leaves, stems, branches, and seeds), whereas the ENF FPARs correspond only to the top

canopy layer (green leaves and branches) as the PAR sensor is 17m above the ground (Table 1).

The relative differences between field-measured diffuse and direct FPARs vary across the season (Figure 5).

For the crops sites, the diffuse FPAR is larger than the direct FPAR during the beginning and ending of the

season, and reach a minimum in summer (Figure 5a). The average differences for crop sites before and after

the senescence are 9.95% and �3.45%, respectively (Table 4a). For the Bartlett and Soroe sites, the diffuse

FPAR is larger than the direct FPAR by 19.38% and 2.68%, respectively, from April to September, but smaller

than the latter by �7.56% and �14.74%, respectively, in winter (Figure 5b and Table 4a). Conversely, for the

Figure 4. Seasonal variation of field-measured direct FPAR, diffuse FPAR, and total FPAR at six sites, (a) Mead NE1, (b) Mead

NE2, (c) Mead NE3, (d) Bartlett, (e) Soroe, and (f ) Tharandt.
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ENF site, the seasonality of the differences between direct and diffuse FPARs is less clear than those of the

crop and DBF sites (Figure 5c). The diffuse FPAR is slightly lower than the direct FPAR by�1.51% in winter, but

higher in other months (2.27%).

The relative differences between field-measured total and direct FPARs also vary across the season (Figure 6).

For the crops sites, the relative differences are larger during the early growing season but are close to zero in

the peak growing season. The total FPAR is higher than the direct FPAR by 8.0% –14.39% before senescence,

but slightly lower than the latter by around 1% after senescent stage. On the DBF sites, the relative

differences are generally within ±10%, although there is some scatters in the data points (particularly in

winter). The average difference is 4.65% from April to September, and �6.20% during the other months

(Table 4b). For the ENF site, the relative differences between the total FPAR and direct FPARs remain

constantly small (<1.0%) throughout the year (Table 4b).

Table 3. The Linear Regression Relationship Between Field Measured FPAR Components
a

Crops DBF ENF

N R
2

RMSE Bias (Relative) N R
2

RMSE Bias (Relative) N R
2

RMSE Bias (Relative)

FPARdif versus FPARdir 2169 0.82 0.14 0.06 (8.56%) 935 0.45 0.17 0.04 (5.75%) 1673 0.18 0.07 0.02 (2.53%)

FPARtol versus FPARdir 2169 0.96 0.06 0.02 (3.14%) 935 0.85 0.08 0.01 (1.81%) 1673 0.67 0.04 0.01 (1.38%)

FPARtol versus FPARdif 2169 0.91 0.09 �0.04 (�4.99%) 935 0.75 0.11 �0.03 (�3.73%) 1673 0.4 0.04 �0.01 (�1.13%)

a
FPARdir, FPARdif, and FPARtol correspond to direct FPAR, diffuse FPAR, and total FPAR, respectively. DBF and ENF represent deciduous broadleaf forest and

evergreen needleleaf forest, respectively. N represents the number of data points.

Figure 5. Seasonal variation of the relative difference between diffuse FPAR (FPARdif ) and direct FPAR (FPARdir) from field

measurements over (a) three crops sites including Mead NE1, NE2, and NE3 sites, (b) two DBF sites including Bartlett and

Soroe sites, and (c) Tharandt site. DBF and ENF correspond to deciduous broadleaf forest and evergreen needleleaf forest,

respectively. The dashed lines represent the ±10% relative differences.
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3.3. The Landsat-Estimated FPARs

Figure 7 shows examples of direct, diffuse, and total FPARs estimated from Landsat during the summer

season over three sites. On crops and DBF sites, the diffuse FPAR exhibits higher values and smaller spatial

variation compared to the total FPAR (0.51–3.83%), whereas the direct FPAR is lower than the diffuse FPAR

and total FPAR but exhibits a greater spatial variation (0.71–5.65%). On the Tharandt site, direct FPAR show

slightly higher FPAR value than the diffuse and total FPAR, but with a smaller spatial variation (2.9%).

The Landsat-estimated diffuse FPAR corresponds very well to the direct FPAR over all sites (R2> 0.98)

(Figure 8a). The diffuse FPAR is higher than the direct FPAR over the crops and DBFs sites by 0.87–2.95%, but

slightly lower over the ENF site (�6.8%) (Table 5). The total FPAR has a very good relationship with the direct

and diffuse FPAR (R2> 0.99). On crops and DBF sites, the total FPAR is slightly larger than the direct FPAR

by 0.52–0.78%, but lower than the diffuse FPAR by �2.24–0.34%. Conversely, the total FPAR is smaller than

the direct FPAR (�3.23%), whereas larger than the diffuse FPAR on the ENF site (3.84%).

Table 4a. FPARdif� FPARdir
a

Mead NE1 Mead NE2 Mead NE3 Bartlett Soroe Tharandt

Greenup to senescence 5.53% 11.14% 13.17% 19.38% 2.68% 2.27%

Other months �4.87% �5.05% 0.42% �7.56% �14.74% �1.51%

a
The relative difference between field measured diffuse FPAR (FPARdif ) and direct FPAR (FPARdir) on five sites during

the greenup to senescent stage and the other months. The greenup to senescent stages for crops and DBFs are May to
September and April to September, respectively. For ENF site, only the nonwinter and winter (November to February)
stages are separated.

Figure 6. Seasonal variation of the relative difference between total FPAR (FPARtol) and direct FPAR (FPARdir) from field

measurements over (a) three crops sites including Mead NE1, NE2, and NE3 sites, (b) two DBF sites including Bartlett

and Soroe sites, and (c) Tharandt site. DBF and ENF correspond to deciduous broadleaf forest and evergreen needleleaf

forest, respectively. The dashed lines represent the ±10% relative differences.
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Figure 9 compares the Landsat-estimated FPAR with corresponding field measurements. In general, all

Landsat-estimated FPARs correspond well with the field measurements. The Landsat-estimated direct FPAR is

slightly higher than the field measurements by 1.17%, whereas the Landsat diffuse FPAR is lower than the

field measurements by �6.77%. Compared with the field-measured total FPAR, the Landsat total FPAR is

larger by 1.64%, whereas the Landsat direct FPAR is slightly lower by 0.2%.

3.4. The Landsat-Estimated APARs

The differences between FPARs will influence the estimation of APARs. The direct and diffuse APARs were

calculated using the field-measured direct and diffuse PAR, multiplied by the corresponding Landsat-estimated

direct and diffuse FPARs (equations (2) and (3)) (Figure 10a). Generally, the relative difference between the direct

and diffuse APAR decreases with increasing diffuse ratio (R2=0.76), and the diffuse APAR tends to be lower

than the direct APARwhen diffuse ratio smaller than 50%. Conversely, the diffuse APAR is higher than the direct

APAR when the diffuse ratio is larger than 50%. On average, the diffuse APAR is lower than the direct APAR

by �421.36μmol s�1m�2 (�37.03%). The Landsat-estimated direct and total APARs were also calculated by

multiplying the corresponding Landsat direct and total FPARs, respectively, by the field-measured downwelling

Table 4b. FPARtol� FPARdir
a

Mead NE1 Mead NE2 Mead NE3 Bartlett Soroe Tharandt

Greenup to senescence 14.39% 16.07% 8.00% 7.87% 1.42% 0.64%

Other months �1.37% �1.55% 0.79% �3.43% �8.96% �0.58%

a
The relative difference between field measured total FPAR (FPARtol) and direct FPAR (FPARdir) on five sites from

greenup to senescence and the other months. The greenup to senescent stages for crops and DBFs are May to
September and April to September, respectively. For ENF site, only the nonwinter and winter (November to February)
stages are separated.

Figure 7. Landsat-estimated direct, diffuse, and total FPAR over three sites, (a) Mead NE1, (b) Bartlett, and (c) Tharandt. skyl

represents the diffuse ratio measured in the field. DBF and ENF represent the deciduous broadleaf forest and the evergreen

needleleaf forest, respectively. CV represents the coefficient of variation, which is calculated as the ratio of the standard

deviation to the mean values. The white square represents the 3 × 3 pixel boarder.
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PAR. In general, the total APAR is higher than the direct APAR (277.72μmol s�1m�2, 62.97%), and the difference

increases with the diffuse ratio (R2=0.76) (Figure 10b).

4. Discussion

4.1. Comparison of Direct and Diffuse FPARs

Both field and Landsat-estimated direct and diffuse FPARs demonstrate that green canopies have stronger

absorption efficiency for diffuse PAR compared to direct PAR for crops, DBFs, and ENF. Our results are similar

to those of other studies [Nouvellon et al., 2000; Thomas et al., 2006]. The separated direct and diffuse FPAR

information is required in the gross primary production (GPP) calculation in a two-leaf light use efficiency

model [He et al., 2013]. Previous studies have also suggested that regional and global primary production

models should consider the partition of direct and diffuse PAR [Gu et al., 2002]. The direct and diffuse FPAR

estimated in this study would help simulate canopy APAR, photosynthesis, and primary production for direct

and diffuse PAR separately.

The relative difference between the direct and diffuse FPAR is mainly related to the canopy structure and the

solar zenith angle. When LAI and solar zenith angle are small for crops and DBFs in the spring (Figures 3, 4a,

and 4b), the diffuse FPAR is considerably higher than the direct FPAR (5.53–19.38%) because the evenly

distributed diffuse radiation can be efficiently absorbed without obvious blocking from the upper layer.

When LAI reaches the maximum, the diffuse FPAR is slightly smaller than or equal to the direct FPAR because

the top green layer of the canopy absorb most of the direct and diffuse radiation and block the lower parts

from the radiation FPAR. During the senescent stage, the decreasing LAI and increasing solar zenith angle

lead to a stronger canopy absorption capacity for direct PAR. For the evergreen forests, the canopy structure

remains stable during the whole year. The slight seasonal variation of the difference on the ENF site is mainly

due to the changes of solar zenith angle. The large solar zenith angle in the winter (>70°) may have

diminished the difference of canopy absorption for diffuse and direct FPARs. The nongreen elements of crops

and DBFs in senescent stage and of ENF may also influence canopy absorption efficiency for direct and

diffuse PARs.

Table 5. The Linear Regression Relationship Between Landsat-Estimated FPAR Components
a

Crops DBF ENF

N R
2

RMSE Bias (Relative) N R
2

RMSE Bias (Relative) N R
2

RMSE Bias (Relative)

FPARdif versus FPARdir 82 0.988 0.04 0.01 (0.87%) 22 0.99 0.04 0.02 (2.95%) 15 0.17 0.07 �0.06 (�6.80%)

FPARtol versus FPARdir 82 0.999 0.02 0.004 (0.52%) 22 0.99 0.01 0.01 (0.78%) 15 0.27 0.04 �0.03 (�3.23%)

FPARtol versus FPARdif 82 0.994 0.03 �0.002 (�0.34%) 22 0.99 0.03 �0.02 (�2.24%) 15 0.75 0.04 0.03 (3.84%)

a
FPARdir, FPARdif, and FPARtol correspond to direct FPAR, diffuse FPAR, and total FPAR, respectively. DBF and ENF represent deciduous broadleaf forest and

evergreen needleleaf forest, respectively. N represents the number of data points.

Figure 8. Comparison between Landsat-estimated FPAR components on six FLUXNET sites.
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The difference between the direct and diffuse APARs is closely related to the diffuse ratio (Figure 10a). This

difference is also affected by the amount of the direct and diffuse PARs. In the present study, field-measured

direct and diffuse PARs were used in the calculation of APAR. However, extension of the method to a

large scale will be limited by the number of sites equipped with diffuse sensors. To date, several remote

sensing PARs products have been generated [Liang et al., 2013, 2006; Zheng et al., 2008], but few of them

provide direct and diffuse PARs separately. To better estimate canopy photosynthesis and primary

production for direct and diffuse PAR separately, both PAR and FPAR may need to be partitioned.

Figure 10. (a) The relative differences between diffuse APAR (APARdif ) and direct APAR (APARdir) as a function of diffuse

ratio. (b) The relative differences between total APAR (APARtol) and direct APAR (APARdir) as a function of diffuse ratio.

Figure 9. Validation of Landsat-5 estimated FPARs with field measured values. All field measurements are instantaneous

values at 10:00 A.M.

Journal of Geophysical Research: Biogeosciences 10.1002/2014JG002754

LI AND FANG ©2014. American Geophysical Union. All Rights Reserved. 109



4.2. Comparison of Direct and Total FPARs

The direct FPAR is a function of canopy structure and Sun position but is not impacted by atmospheric

conditions. Conversely, the diffuse FPAR is only influenced by the canopy structure. As the weighted sum of

direct and diffuse FPAR, the total FPAR is influenced by the canopy structure, solar zenith angle, and the diffuse

ratio. Our results fromboth satellite and field estimates indicate that the direct FPAR is lower than the total FPAR,

especially for small LAI (Figure 5 and Table 4b). Goward and Huemmrich [1992] have demonstrated that the

direct FPAR could underestimate the total FPAR by 10% for LAI< 2. Similar underestimation of the direct FPAR

has also been reported by Tian et al. [2004]. Our results also show that the differences between direct and total

FPARs are very small during the LAI peak stage (Figure 6 and Table 5), indicating that the direct FPAR may be

used as a proxy of the total FPAR during this stage.

The direct usage of direct FPARs estimated by satellite in biogeochemical models may underestimate light

absorption, gross primary production, and net primary production, especially for canopies with small LAI. The

results show that the APAR calculated from direct FPAR is systematically smaller than that calculated from the

total FPAR (on average 277.72μmol s�1m�2). Even under the clear-sky conditions (skyl< 20%), the direct

APAR can underestimate the total APAR by up to 20.51% (Figure 10b). It has been reported that the standard

MODIS GPP products, estimated from the MODIS black-sky FPAR, underestimate the ground values in tropical

forests [Propastin et al., 2012]. The MODIS GPP algorithm may also underestimate the field measurements

under cloudy conditions because of the usage of the lower black-sky FPAR caused by the higher diffuse ratio

[Running and Zhao, 2011]. However, this underestimation can be rectified by using the field-measured total

FPAR [He et al., 2010] or satellite-based total FPAR.

Many previous studies have validated the black-sky FPAR products using the field-measured total FPAR

[D’Odorico et al., 2014; Fensholt et al., 2004; Huemmrich et al., 2005; Olofsson and Eklundh, 2007], and

underestimation of the black-sky FPARs has been reported for MODIS [D’Odorico et al., 2014; Olofsson and

Eklundh, 2007; Senna et al., 2005], Spinning Enhanced Visible and Infrared Imager [Martínez et al., 2013], and

MERIS Global Vegetation Index [D’Odorico et al., 2014; Martínez et al., 2013]. These underestimations may be

explained, to some degree, by the differences between the black-sky and total FPARs. To meet the

requirements of the vegetationmodeling community, the total FPAR can be generated in future from satellite

data and validated with the corresponding field values.

4.3. Uncertainties and Prospects

The nongreen parts of the canopy will inevitably influence the comparison between field measurements and

Landsat estimations. The field-measured FPAR through above and below-canopy PAR sensors includes

contributions from the whole canopy, whereas the Landsat estimation only corresponds to the green FPAR.

One green layer canopy was simulated and green FPARs were generated for crops. For forests, the brown

bark influences the absorption throughout the year. A two-layer canopy consisting of one green and one

brown layer was thus simulated using the SLC model. The generated FPARs are not strictly green FPAR but

close to the field measurements in definition. Moreover, only images from greenup to senescent stages were

selected. The good correspondence between the Landsat-estimated and field-measured FPAR values has

shown the feasibility of our method. Indeed, more robust validation of the Landsat FPAR would require the

separation of green parts from nongreen parts in field measurements.

The present study provides a means of estimating the direct and diffuse FPARs from the field measurements,

by taking the total FPAR obtained with the largest diffuse ratio during a day as an approximation of the

diffuse FPAR. The uncertainty of this approximation depends on the diffuse ratio error (compared with

1.0) and the difference between the direct and diffuse FPAR. In this study, the average maximum diffuse

fractions (and the standard deviation) during the study period are 0.92 (0.12), 0.87 (0.08), 0.90 (0.1),

0.94 (0.05), 0.99 (0.02), and 0.84 (0.11) on the six sites, respectively (Figure 2). The errors for the diffuse

ratio in the ENF site could be up to 16%. The uncertainties of estimated diffuse and direct FPARs could

range from 0 (LAI> 3) to 15% (LAI<= 3). For other sites, the errors for the diffuse ratio are less than 10%,

indicating the uncertainties in the estimated direct and diffuse FPARs may have an inherent error smaller

than 10%. The estimated direct and diffuse FPARs can certainly be improved using a diffuse ratio of

close to 1.0 when more frequent field PAR measurements (e.g., every minute) are available instead of the

30 min data used.
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The Landsat-estimated direct and diffuse FPAR data set in this study can be used to validate the moderate-

resolution FPAR products (e.g., black-sky FPAR from MODIS, GEOV1, and JRC-TIP; white-sky FPAR from JRC-TIP).

The field-measured diffuse ratio, obtained concurrently with the satellite overpass, is crucial in estimating the

total FPARs from the satellite. However, field data are usually limited by the sparse number of observations and

clouds. For regional and global FPAR estimation, the diffuse ratio data may be obtained through satellite

observations. The digital hemispheric photography provides a promising way tomeasure the direct and diffuse

FPAR in the field [Weiss and Baret, 2010a, 2010b]. Separated estimations of PAR and FPAR for direct and

diffuse components provide an opportunity to improve the estimation of canopy photosynthesis and primary

production.

5. Conclusions

This paper developed a method to estimate the direct, diffuse, and total FPARs from Landsat 30m surface

reflectance data by using a canopy radiative transfer model and a lookup table inversion algorithm.

Instantaneous direct and diffuse FPARs were estimated from field-measured FPAR over crops, deciduous

broadleaf forests, and evergreen needleleaf forests. The differences between the direct and diffuse FPARs are

mainly related to canopy structure and the solar zenith angle. The direct FPAR is generally lower than the total

FPAR, and this difference increases for canopies with small LAI. The total FPAR should be generated from

current satellite sensors, and the differences in FPAR definitions should be considered in the estimation of

APAR in vegetation models. More frequent field measurements are necessary to improve the accuracy of

ground FPAR measurements and to validate instantaneous satellite products. The present approach can be

extended to estimate regional and global direct and diffuse FPAR products utilizing existing and future

satellite data.
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