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Introduction en franc ¸ais

Motivation et applications

L'objectif principal de cette th èse est d'extraire des mod èles de donn ées et des anomalies dans un large éventail d'applications du monde r éel en utilisant des algorithmes et des m éthodes évolutifs. Les anomalies peuvent s'av érer vitales dans de nombreux sc énarios tels que les r éseaux informatiques, les fraudes et les soins de sant é. Par exemple, la d étection d'anomalies dans les r éseaux informatiques et les transactions par carte de cr édit est essentielle pour des raisons de s écurit é, tandis qu'elle pourrait s'av érer indispensable pour d étecter les d éfauts des moteurs ou les masses canc éreuses dans les images. Par cons équent, ces probl èmes du monde r éel ont suscit é un nombre croissant de questions de recherche.

Une anomalie ( également connue sous le nom de outlier ) est une instance qui s' écarte consid érablement du reste des donn ées [START_REF] Grubbs | Procedures for detecting outlying observations in samples[END_REF] et étant d éfini par Hawkins [START_REF] Hawkins | Identification of Outliers[END_REF] comme "une observation qui s' écarte tellement d'autres observations que l'on peut soupc ¸onner qu'elle a ét é gén ér ée par un m écanisme diff érent..' La d étection d'anomalies ( également connue sous le nom de d étection de valeurs aberrantes ou de nouveaut és) est donc le domaine de l'apprentissage automatique et de l'exploration de donn ées dont l'objectif est d'identifier les instances dont les caract éristiques semblent être incompatibles avec le reste de l'ensemble de donn ées. Dans de nombreuses applications, il est tr ès important de distinguer correctement l'ensemble des points de donn ées anormaux (outliers) de l'ensemble des points de donn ées normaux (inliers). Une premi ère application est le nettoyage des donn ées, c'est-à-dire l'identification des mesures bruyantes et fallacieuses dans un ensemble de donn ées avant l'application ult érieure d'algorithmes d'apprentissage. [START_REF] Frenay | Classification in the presence of label noise: A survey[END_REF][START_REF] Xiong | Enhancing data analysis with noise removal[END_REF].

Cependant, avec la croissance explosive du volume de donn ées pouvant être collect ées à partir de diverses sources, par exemple les transactions par carte, les connexions Internet, les mesures de temp érature, etc., l'utilisation de la d étection d'anomalies devient une t âche autonome cruciale pour la surveillance continue des syst èmes. Dans ce contexte, la d étection d'anomalies peut être utilis ée pour d étecter les attaques d'intrusion en cours [START_REF] Zuech | Intrusion detection and big heterogeneous data: a survey[END_REF], r éseau de capteurs d éfectueux [START_REF] Rajasegarar | Anomaly detection in wireless sensor networks[END_REF] ou des masses canc éreuses [START_REF] Quellec | Multiple-instance learning for anomaly detection in digital mammography[END_REF].

Cette quantit é croissante d'applications et de mod èles de donn ées g én ère une demande pour des solutions de plus en plus sophistiqu ées capables d' être performantes dans de nombreux sc énarios et applications. Par cons équent, cette th èse se concentre sur plusieurs d éfis qui émergent dans la t âche de d étection d'anomalies, en proposant des algorithmes innovants capables d' être performants dans diff érentes exigences et applications.

Objectifs

Cette th èse vise à proposer des m éthodes pratiques pour la d étection d'anomalies dans trois domaines diff érents. Plus pr écis ément, nous proposons :

• une nouvelle batch m éthode de d étection d'anomalies non supervis ée qui am éliore les performances des algorithmes non supervis és existants. L'algorithme s'attaque à trois d éfis principaux dans la d étection d'anomalies : le probl ème de la dimensionnalit é dans les grands ensembles de donn ées qui a un impact important sur la pr écision de la plupart des algorithmes, le probl ème de la s élection des hyperparam ètres dans diff érents ensembles de donn ées et enfin les probl èmes d' évolutivit é dans les grands ensembles de donn ées.

• un nouveau moteur de d étection d'anomalies de s éries temporelles bas é sur le regroupement incr émentiel qui s'attaque aux probl èmes d' évolutivit é dans les environnements de surveillance dans lesquels de nouvelles instances sont disponibles en mode continu.

• une m éthode de d étection automatis ée des anomalies qui s'attaque au probl ème de la s élection des hyperparam ètres des algorithmes sur diff érents ensembles de donn ées. Elle utilise des algorithmes existants de d étection d'anomalies comme blocs de construction et leur attribue des poids proportionnels à la preuve qu'ils sont des mod èles performants dans la t âche de d étection.

Plan de la th èse

Suivant les objectifs de la th èse, nous organisons la th èse en quatre parties principales. A partir du chapitre 2 nous discuterons des travaux connexes et de l' état de l'art des algorithmes de 

Motivation and Applications

The main goal of this thesis is mining data patterns and anomalies in a wide range of real-world applications using scalable algorithms and methods. Anomalies could prove to be vital in many scenarios as computer networks, frauds and healthcare. For example, anomaly detection in computer networks and credit card transactions is critical for security reasons while it could prove to be indispensable in detecting faults in engines or cancerous masses in images. As a result, these real-world problems have posed an increasing amount of research questions.

An anomaly (also known as outlier ) is an instance that significantly deviates from the rest of the input data [START_REF] Grubbs | Procedures for detecting outlying observations in samples[END_REF] and being defined by Hawkins [START_REF] Hawkins | Identification of Outliers[END_REF] as "an observation, which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism.'

Anomaly detection (also known as outlier or novelty detection) is thus the machine learning and data mining field with the purpose of identifying those instances whose features appear to be inconsistent with the remainder of the dataset. In many applications, correctly distinguishing the set of anomalous data points (outliers) from the set of normal ones (inliers) proves to be very important. A first application is data cleaning, i.e., identifying noisy and fallacious measurement in a dataset before further applying learning algorithms [START_REF] Frenay | Classification in the presence of label noise: A survey[END_REF][START_REF] Xiong | Enhancing data analysis with noise removal[END_REF].

However, with the explosive growth of data volume collectable from various sources, e.g., card transactions, internet connections, temperature measurements, etc. the use of anomaly detection becomes a crucial stand-alone task for continuous monitoring of the systems. In this context, anomaly detection can be used to detect ongoing intrusion attacks [START_REF] Zuech | Intrusion detection and big heterogeneous data: a survey[END_REF], faulty sensor networks [START_REF] Rajasegarar | Anomaly detection in wireless sensor networks[END_REF] or cancerous masses [START_REF] Quellec | Multiple-instance learning for anomaly detection in digital mammography[END_REF].

This increasing amount of applications and data patterns generates a demand for more and more sophisticated solutions capable to perform well in many scenarios and applications. Therefore, this thesis focuses on several challenges that emerge in the anomaly detection task offering innovative algorithms able to perform well under different requirements and applications.

Objectives

This thesis aims at proposing practical methods for anomaly detection in three different areas.

More specifically we propose:

• a novel batch unsupervised anomaly detection method which enhances the performance of existing unsupervised algorithms. The algorithm tackles three main challenges in anomaly detection: the curse of dimensionality problem in large datasets which heavily impacts the accuracy of most of the algorithm, the hyperparameter selection problem in different datasets and finally the scalability issues on large datasets.

• a novel time-series anomaly detection engine based on incremental clustering which tackles the scalability issues in monitoring environments in which new instances are available in a stream mode.

• an Automated Anomaly Detection method tackling the problem of hyperparameter selection of algorithms on different datasets. It uses existing batch anomaly detection algorithms as building blocks and assigns them weights proportional to the evidence of being properly performing models in the detection task.

Thesis Outline

Following the thesis objectives, we organize the thesis into four main parts. Starting from Chapter 2 we will discuss related work and state-of-art anomaly detection algorithms considering both batch and time-series models. In the last part of the chapter we provide a detailed explanation of all the algorithms used in the following chapters. The contributions to the batch models follow in Chapter 3 while those related to the time-series models are present in Chapter 4. The Automated Anomaly Detection contribution is described in Chapter 5. Finally Chapter 6 concludes this dissertation by summarizing the contributions and presenting some ideas for future work.

• Chapter 2 presents a review of anomaly detection strategies and techniques. We consider and explain in detail, for both batch and time-series families, the well known algorithms and those which proved to be the best performing ones in previous studies and comparisons. This review builds a solid background of the algorithms used in the following chapters when compared to the methods proposed in this thesis.

• Chapter 3 proposes a batch tree-based approach for unsupervised anomaly detection, called Random Histogram Forest (RHF). The algorithm solves the curse of dimensionality problem using the fourth central moment (aka kurtosis) in the model construction while boasting linear running time. The experiment results demonstrate that the method enhances the overall accuracy of batch anomaly detection while being robust to hyperparameter selection.

• Chapter 4 introduces a time-series anomaly detection engine, called ODS, that leverages DenStream, an unsupervised clustering technique, and apply it to measurements collected from real network equipment studying so a monitoring application. Our experimental campaign compares several algorithms under both accuracy and scalability viewpoints: results testify that ODS (i) achieves detection results on par with state-of-art methods and (ii) is significantly faster than other approaches, notably over two orders of magnitude faster than ensemble models.

• Chapter 5 presents an Automated Anomaly Detection engine which alleviates the human effort required when dealing with several algorithms and hyperparameters. By leveraging a pool of different anomaly detection algorithms, our method automatically weights each of them before aggregating the results. The experimental evaluation shows that our method outperforms existing unsupervised automated methods based on correlation measurements.

• Chapter 6 concludes this dissertation by summarizing the contributions and presents some ideas for the future work.

Publications

The content of this dissertation has been partially published in international conferences and journals. In the following we report the list of papers published or under review: 

•

Background

In this chapter, a comprehensive and detailed review of existing machine learning anomaly detection strategies and methods is provided. We first formally describe the concept of anomaly detection and novelty detection. We further discuss a general taxonomy for the task of anomaly detection introducing the three types of anomalies, the three big families of algorithms, the evaluation metrics, research problems and challenges. We then describe different anomaly detection strategies (Section 2.4) and discuss the main difference between batch and stream algorithms afterwards (Section 2.5). Well known batch algorithms and those which proved to be the best performing ones in previous studies are described in Section 2.6 while stream algorithms are illustrated in Section 2.7. All such methods are used in the evaluation phase of the following chapters against our proposed methods.

Machine Learning and Anomaly Detection

Anomaly Detection consist of a wide range of techniques and methods concerning the identification of abnormality in the data. It can be performed relying on expert knowledge in which specific application experts recognize anomalous patterns or through the usage of Statistics and Machine Learning.

Arthur Samuel first popularized the concept of Machine Learning [START_REF] Samuel | Some studies in machine learning using the game of checkers[END_REF] defining it as: the field of Artificial Intelligence and Computer Science that gives the computer the ability to learn without being explicitly programmed. In this scenario, given a general dataset X = {x 1 , x 2 , ..., x n } with Figure 2.1: Differences between Supervised, Semi-Supervised and Unsupervised Anomaly Detection techniques. Image Source: [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF] x i 2 R d , i 2 {1, 2, ..., n} where n denotes the number of instances, d the number of dimensions in the dataset and a label space Y = {y 1 , y 2 , ..., y n } representing the output variable, a model optimizes a function h such that h(x i ) ! y i . Such models fall under the category of supervised models. Based on the absence, full or partial, of the target variable Y models can be further split into unsupervised and semi-supervised ones (illustrated in Fig. 2.1). The former are not provided with labels so algorithms have to devise and discover data patterns on their own. The latter are provided with only a small fraction of labeled data, often belonging to only one class, forcing the model to build a decision boundary around the provided class.

Anomaly Detection, known also as outlier, novelty and noise detection, is thus the task of pinpointing, through the usage of models, instances whose characteristics significantly deviate from the knowledge learned. However, while anomaly detection is usually interchanged with outlier and novelty detection these two can be better defined as: Outlier Detection is the task of identification of an instance x 2 X which significantly deviates from the remainder of the input instances X. In such a scenario the model has access to the full dataset X which is populated by both normal and anomalous instances. The models can thus fit and estimate regions and boundaries between the two classes.

Novelty Detection is the task of identification of a novel instance x 2 X 0 according to the observations in X where X 0 is the set of new observations. In such a scenario the model has access only to the initial set of instances X, not polluted by outliers, and has to detect new patterns in X 0 . Such models can be further trained or updated when new instances are available and fall under the category of Incremental or Stream models.

While outlier detection highlights anomalous instances in a dataset X, novelty detection first fits a dataset with no outliers and successively examines new instances X 0 for anomalies. Therefore the two share the common objective and principles of abnormal data identification but, based on requirements such as memory usage and data availability, they are used in different applications and scenarios.

Types of anomalies

It is possible to group anomalies in: Point Anomalies, Group Anomalies and Contextual Anomalies. Based on their characteristics, anomalies are harder or easier to detect. Consider Fig. 2.2 depicting a hypothetical two-dimension dataset populated by 5 anomalies. O 1 is the easiest instance to detect as it is "far" from any clusters in the data. O 1 is thus a point anomaly but so it is O 2 . The difference between the two is that while O 1 is globally anomalous with respect to all the other instances in the dataset, O 2 is harder to detect as it is anomalous only with respect to The plot shows the monthly temperature over a few years timespan. When the contextual information is used (e.g. seasonality) as data source, a low temperature might be normal during the winter (at time t1), but the same value during summer (at time t2) would be an anomaly. Image source: [START_REF] Chandola | Anomaly detection: A survey[END_REF] • Global Point Anomalies: Is an instance x that deviates significantly from all the remaining instances X. For example, O 1 in Fig. 2.2 is far from all the remaining instances.

• Local Point Anomalies: Is an instance x that deviates significantly only with respect to a subset of instances C x ⇢ X. For example, O 2 in Fig. 2.2 is far only from C 1 .

• Group Anomalies: Is a set of instances X o ⇢ X that do not follow regular patterns observed by other set of instances in X n ⇢ X. For example, C 4 in Fig. 2.2 is composed by only 3 instances while other clusters contain at least 8 instances.

• Contextual Anomalies: Is an instance x that deviates significantly from all the remaining instances X according to a certain context. For example, t 2 in Fig. 2.3 is similar to t 1 from an absolute value point of view but it is anomalous when the context (seasonality/month) is considered.

Performance Evaluation

The evaluation of anomaly detection algorithms is performed taking into account their outputs and comparing them against known ground truth, known also as labels. For each instance x 2 X, the models output an anomaly score which can be ranked from the most anomalous to the most normal one. By setting an outlierness threshold each instance is finally classified as normal or anomalous. Typical metrics used in machine learning are True Positive Rate (TPR), False Positive Rate (FPR), Precision, Recall and F 1 defined as:

T P R = Recall = tp tp + fn
(2.1)

F P R = fp fp + tn (2.2) P recision = tp tp + fp (2.3) F 1 = 2 ⇥ P recision ⇤ Recall P recision + Recall (2.4)
where tp, tn, fp and fn represent respectively true positive, true negative, false positive and false negative.

By considering all possible thresholds (from smallest to largest anomaly score) it is possible to compute, for each of them, a tuple FPR and TPR. Such tuples generate the Receiver Operating Characteristic (ROC) curve: an overall measure which trades-off FPR (x axis) vs TPR (y axis).

The perfect classifier reaches an optimal ROC score of 1.

Similarly, the Precision-Recall curve, known also as Average Precision (AP), is generated using the same principles of the ROC one with the difference that it trades-off Recall (x axis) vs Precision (y axis). An example of both ROC and AP curves are present in Fig. 2.4.

We observe that the Receiver Operating Characteristic (ROC) is often employed to evaluate anomaly detection methods [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF]- [START_REF] Liu | Isolation forest[END_REF]. However, it has been shown in [START_REF] Davis | The relationship between precision-recall and roc curves[END_REF] that when the classes are not balanced (e.g. anomaly detection task) the AP curves better reflect the efficacy of an algorithm. [START_REF] Davis | The relationship between precision-recall and roc curves[END_REF] shows moreover that a curve dominates in ROC if and only if it dominates in AP space. We evaluate thus the performance of the algorithms by measuring the Average Precision (AP) of the Precision-Recall Area Under the Curve [START_REF] Zhu | Recall, precision and average precision[END_REF] (without interpolation):

AP := X n (R n R n 1 ) P n (2.5) 
where P n = tp tp+fp and R n = tp tp+fn are the Precision and Recall at the n th threshold.

Machine Learning Anomaly Detection Strategies

Machine Learning Anomaly Detection techniques can be categorized [START_REF] Chandola | Anomaly detection: A survey[END_REF] into three big families according to the input type: supervised anomaly detection, unsupervised anomaly detection and semi-supervised anomaly detection (see. Fig. 2.1).

In the case of supervised models, the task of anomaly detection is reduced to a binary classification in which normal and anomalous instances are considered instances of two classes {0,1}.

When treating imbalanced datasets, especially true in the case of anomaly detection, it is usually recommended to use re-sampling methods (down/up-sampling) as supervised methods under perform when a class is under-sampled or not well represented [START_REF] Aggarwal | Data Classification: Algorithms and Applications[END_REF]. Such models are trained on a training dataset and tested on unseen data. Usually supervised methods provide the best detection rates as they have access to the labels in the training phase. However, they are rarely usable in many different applications due to the lack of labels. Moreover, labeling is very expensive as it requires a huge amount of human effort to annotate instances.

Among the supervised approaches we mention Random Forests [START_REF] Liaw | Classification and regression by randomforest[END_REF], One Class Support Vector Machines [START_REF] Ratsch | Constructing boosting algorithms from svms: an application to one-class classification[END_REF] and, with recent advent of Neural Networks [START_REF] Stefano | To reject or not to reject: that is the question-an answer in case of neural classifiers[END_REF], Autoencoders [START_REF] Zhou | Anomaly detection with robust deep autoencoders[END_REF] (based on reconstruction) and Generative Adversarial Networks [START_REF] Goodfellow | Generative adversarial nets[END_REF]. More details about Neural Networks used for Anomaly Detection can be found in [START_REF] Pang | Deep learning for anomaly detection: A review[END_REF][START_REF] Chen | Deep learning based anomaly detection for mutidimensional time series: A survey[END_REF] while more supervised techniques can be found in the following related surveys [START_REF] Ibidunmoye | Performance anomaly detection and bottleneck identification[END_REF][START_REF] Chandola | Anomaly detection: A survey[END_REF][START_REF] Agrawal | Survey on anomaly detection using data mining techniques[END_REF][START_REF] Akoglu | Anomaly mining -past, present and future[END_REF][START_REF] Aggarwal | Data Classification: Algorithms and Applications[END_REF].

Although supervised methods provide the best detection rates, two main challenges arise when using such models in anomaly detection. The first one is linked to the rare nature of anomalies and consequently to the class imbalance problem. Such problem is addressed in many machine learning studies [START_REF] Japkowicz | The class imbalance problem: A systematic study[END_REF][START_REF] Joshi | Mining needle in a haystack: Classifying rare classes via two-phase rule induction[END_REF][START_REF] Chawla | Editorial: Special issue on learning from imbalanced data sets[END_REF]. Secondly, obtaining accurate and a representative set of labels is not only challenging but would require also a large human effort to generate and maintain them.

This problem is addressed using re-sampling methods [START_REF] Aggarwal | Data Classification: Algorithms and Applications[END_REF] or by injecting artificial anomalies into normal datasets [START_REF] Theiler | Resampling approach for anomaly detection in multispectral images[END_REF][START_REF] Steinwart | A classification framework for anomaly detection[END_REF]. Supervised anomaly detection is thus similar to building normal predictive/classification models hence we will not address this category anymore.

Semi-Supervised models are fit only on one class and are known also as one-class classification (OCC) models. Such algorithms build decision boundaries only around the provided class (usually normal data) and classify instances as either belonging or not belonging inside the decision boundary. They are used when anomalies are very difficult to capture. For example in the space craft [START_REF] Fujimaki | An approach to spacecraft anomaly detection problem using kernel feature space[END_REF], a single anomalous instance would require an accident. However, such algorithms poorly perform [START_REF] Tax | One-class classification; concept-learning in the absence of counter-examples[END_REF] OCSVM [START_REF] Sch Ölkopf | Support vector method for novelty detection[END_REF], LOF [START_REF] Breunig | Lof: Identifying density-based local outliers[END_REF]).

Due to the limitations of supervised and semi-supervised methods described in the previous paragraphs we will focus in the following chapters mainly on unsupervised methods. More details about the strategies not considered in this thesis (e.g. supervised, semi-supervised, etc) can be found in the following books [START_REF] Aggarwal | Outlier Analysis[END_REF][START_REF] Mehrotra | Anomaly Detection Principles and Algorithms[END_REF] while general anomaly detection challenges and future directions are present in [START_REF] Akoglu | Anomaly mining -past, present and future[END_REF][START_REF] Ibidunmoye | Performance anomaly detection and bottleneck identification[END_REF][START_REF] Chandola | Anomaly detection: A survey[END_REF][START_REF] Agrawal | Survey on anomaly detection using data mining techniques[END_REF][START_REF] Aggarwal | Data Classification: Algorithms and Applications[END_REF].

Batch vs Stream Mode

Based on the data type, memory usage and requirements, algorithms can be further categorized into batch and stream mode models.

Batch algorithms, usually, process a set of instances X in batches and simultaneously. They require to load all the data in memory and through the usage of predefined metrics pinpoint anomalous instances. Batch mode is thus used on a fixed dataset whose data size is known, finite and all the instances fit in memory. Several batch algorithms require to process data in multiple passes and update so inner model variables as distances, clusters centroids, radius etc. By definition, data collection introduces latencies between the arrival time and the processing time. Stream algorithms, instead, are required to process a continuous stream of instances immediately as it is produced and no a priori assumption can be done on the data whose size could be infinite. In such a scenario instances cannot be stored and have to be discarded after the processing phase forcing the algorithms to perform a single pass on all the instances. Such algorithms are suited for novelty detection.

Data streams, as previously defined, do not assume any correlation between subsequent instances. In such scenario all instances are independent and do not depend on previous instances.

An example of such streams is the fraud detection in which transactions of different clients are independent. When in the stream the order and the arrival time are relevant, i.e. new instances depend on previous instances, we deal with timeseries. In such scenario the time is an important feature of the data and several algorithms extract data patterns from the past to predict future events. Typical applications of time series analysis are forecasting applications in demand of electricity, price stocks etc. To summarize, a time series is a sequence of instances composed by successive measurements made over a time interval which present time correlation while a data stream is more generally a sequence of instances in which there is not data ordering or time-dependency between streaming instances. In the literature, the term streaming is often used to address time series and authors do not always agree on the definitions. For example, authors in [START_REF] Manzoor | Xstream: Outlier detection in feature-evolving data streams[END_REF] define a stream as a sequence of instances in which there is not data ordering or time-dependency between streaming instances while authors in [START_REF] Guha | Robust random cut forest based anomaly detection on streams[END_REF] use the same terminology (i.e. streams) referring to time series. While many streaming algorithms (e.g. LODA [START_REF] Pevný | Lightweight on-line detector of anomalies[END_REF], xStream [START_REF] Manzoor | Xstream: Outlier detection in feature-evolving data streams[END_REF], Rs-Hash [START_REF] Sathe | Subspace outlier detection in linear time with randomized hashing[END_REF]) can be applied also on time series sequences, we will discuss and analyse in the following chapters algorithms designed to detect anomalies in time series or which were used in the literature to perform such task. In Chapter 4 we will compare such algorithms in a monitoring application in which data is produced in form of time series. 

Batch Methods

Several batch unsupervised anomaly detection algorithms have been developed in recent years.

We can classify the related work as follows:

• (i) Proximity/Nearest-Neighbor based methods (e.g. K-NN, K th -NN, Local Outlier Factor );

• (ii) Probabilistic/Linear based methods (e.g. PPCA, HBOS, OCSVM, etc.);

• (iii) Ensemble/Isolation based methods (e.g. Isolation Forest, PIDForest, XSTREAM).

Proximity/Nearest-Neighbor based methods compute the neighborhood of all the instances

x 2 X and uses the distances of each instance x to describe abnormality. Such methods assume that normal instances are close to remaining instances while anomalies are far away from the neighbors. All the methods use a distance measurement to detect close and far instances.

Several distance measurements have been proposed during the years [START_REF] Deza | Encyclopedia of Distances[END_REF] such as the Mahalanobis distance [START_REF] Mahalanobis | On the generalized distance in statistics[END_REF] and the well known and most used Euclidean distance:

D Euclidean = v u u t d X i ||u i v i || 2 (2.6)
where u and v are two d-dimensional instances in X.

Anomalies can be detected using distance measurements by either i) employing the distance itself as anomaly scores or ii) using distances to group close instances into clusters and point out afterwards instances not belonging to none of the clusters. A detailed survey comprising distance based method is present in [START_REF] Chandola | Anomaly detection: A survey[END_REF].

K-NN [20]

: computes the distances for each instance x 2 X to the k-nearest-neighbors and assign them the mean distance to its k nearest neighbors where k is an integer number. The running complexity of this method is O n 2 while the number of input hyperparameters is one:

k. Setting the input hyperparameter k is not always easy as it depends on the application and domain knowledge is required; this is especially true when duplicates are present in the dataset. Local Outlier Factor (LOF) [START_REF] Breunig | Lof: Identifying density-based local outliers[END_REF]: is a data clustering algorithm proposed by Breunig et al. [START_REF] Breunig | Lof: Identifying density-based local outliers[END_REF] to detect anomalous data point by measuring local densities. The algorithm computes the local density of a point as the distance of the k-th nearest neighbor. It is possible in this way to identify regions of similar densities and the points with low density are considered outliers.

Kth-NN

In particular LOF computes, for each sample, the euclidean k-distance d k to its k-th nearest neighbor. Distances are then used to compute the reachability distance of two points p and q as the maximum of their real distance and the k-th distance of the second point.

reachDist k (p, q) = max(k dist(q), dist(p, q)) (2.8)
and the local reachability distance of an point p as the average reachability distance of p from its neighbors:

lrd k (q) = 1 / " P q2N K (p) reachDist k (p, q) |N k (p)| # (2.9)
In the end, the local outlier factor of an object is the average local reachability distance of the neighbors divided by the object's own local reachability density, i.e.:

LOF k (p) = P q2N k (p) lrd(q) lrd(p) |N k (p)| (2.10)
Objects with similar density will have a LOF value close to 1, higher density objects (normal) will have LOF lower than 1 while a LOF value higher than 1 will mean an object which has a lower density than the neighbors and thus an outlier. The decision function can be properly tuned by observing the scores of the top-most abnormal samples (contamination) in the dataset. LOF hyperparameters are n neighbors and contamination and its running complexity is O (n log (n)) [START_REF] Breunig | Lof: Identifying density-based local outliers[END_REF].

As for the all distance based methods the input hyperparameters are again dependent on the application and dataset as shown also in our experiments in Chapter 4

Probabilistic based methods estimate the parameters ✓ of the dataset X and assigns to each instance x 2 X an anomaly score equal to the likelihood P (X | ✓). Such models assume that instances are generated by the same stochastic source. After the fitting phase, anomalies are assigned low probability of being generated while high probabilities of being generated are assigned to normal instances.

Histogram-based Outlier Score (HBOS) [START_REF] Goldstein | Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm[END_REF]: generates a histogram for each feature assuming they are independent. Similar to the Naive Bayes approach in which all the independent feature probabilities are multiplied, HBOS outputs an anomaly score given by the multiplication of the inverse height of the bins of all the features. The only input hyperparameters is the number of bins k which might be difficult to select depending on the data distribution. For such reason, authors propose two variants of the algorithm: the first one uses a fixed bin width whose running complexity is O (n) and a second version in which dynamic bin width is used whose running com-

plexity is O (n log (n))
Probabilistic Principal Component Analysis (PPCA) [START_REF] Tipping | Probabilistic principal component analysis[END_REF]: estimates the principal components of the data and projects the d-dimensional dataset to a q-dimensional one estimating the latent variables by iteratively maximizing the likelihood function of the transformation

t = W x + µ + ✏ (2.11)
where t is the d-dimensional dataset, x is the q-dimensional transformation, W the d ⇥ q matrix which relates the two sets of variables, µ permits the model to have non-zero mean while ✏ is the error. The input hyperparameter of the algorithm is the number of components n components, estimated using Minka's MLE previously described while the running complexity is O nd 2

One-Class SVM [START_REF] Sch Ölkopf | Support vector method for novelty detection[END_REF]: determines a separating hyperplane in a higher dimensional space by maximizing the distance from the hyperplane to the origin. The model is fit with training instances which contain only normal instances and not contaminated by outliers. Moreover, OCSVM supports also the ⌫ which was introduced to control the effect of outliers in the fitting phase. The hyperparameter indeed acts as a trade-off between maximizing the distance of the hyper-plane from the origin and the number of data points that are allowed to cross the hyper-plane. Such method can be used also for the novelty detection task as, once trained, can easily estimate anomaly scores for new instances. The running complexity of the algorithm is O n 3 while its input hyperparameter ⌫ depends on the anomalies fraction in the dataset.

Ensemble/Isolation based methods isolate anomalies instead of profiling normal instances by recursively splitting the data through a random tree and generating so isolation forests. Unlike proximity-based methods, such methods does not rely on distance but they fragment the data space to identify instances laying far from other data points.

Isolation Forest [START_REF] Liu | Isolation forest[END_REF]: builds a forest of randomly generated trees on a sub-sample of instances. To be more specific, it randomly selects a feature of the sub-sample and randomly selects a value for the feature to form a node of a binary tree called iTree determining a left child and right child. The splitting is repeated iteratively until it is not possible to split the data anymore (e.g. only one instances in the leaf). For each instance in the dataset x 2 X the termination node is computed and assigned the anomaly score equal to average path from the root nodes to the termination nodes in all the trees. The authors show empirically that shorter path lengths are representative of anomalies as they are more easily to isolate with respect to normal data. The input hyperparameters of the algorithm are the number of instances and the ensemble size t. While it is common to set t = 100 in ensemble models, we show in Chapter 3 that can strongly depend on the number of anomalous instances in the dataset. The running complexity of the algorithm is in the worst case O t 2 for the building phase and O (nt ) for the evaluation phase.

PID Forest [START_REF] Gopalan | Pidforest: Anomaly detection via partial identification[END_REF]: builds a collection of decision trees that partition space into subcubes. Instead of using binary trees, PIDForest allows a finer partition splitting the data in k different regions at each level of the tree with the goal of having a large variance in the sparsity of the subcubes.

The sparsity of a subcube C with respect to a dataset T is p(C, T ) = vol(C) C\T . Ultimately, the leaves with large p values will point to regions with anomalies. Similarly to Isolation Forest, each tree is built using a random sample P ✓ T of m points. Each node v in the tree corresponds to a subcube C(v) and a set of points P (v) = C(v) \ P . For the root, C(v) = [0, 1]d and P (v) = P . In each internal node a coordinate j 2 [d] partitions the data I j into k intervals. The number of partitions k is a hyperparameter of the algorithm. The partitions stop when the tree reaches the maximum depth or when P (v)  1. The key aspect of the algorithm is the choice of j which partitions the data in some sparse and dense regions. The problem of finding the partition along a coordinate j that maximizes the variance in the sparsity is reduced to the problem of finding a k-histogram for a discrete function f : [n] ) R, which minimizes the squared l2 error. Finally, each tree maps each instance into a leaf node v and assigns a PIDScore(v). The 75% percentile score is the output score. The input hyperparameters of the algorithm are the number of regions k, the ensemble size t, max height h and the number of samples used . While authors show performances to be steady for k > 3, and h the algorithm uses sub-sampling techniques ( ) which results to depend on the number of anomalous instances in the dataset similarly to Isolation Forest.

XSTREAM [97]:

xStream is an ensemble of Half-Space Chains that approximates density efficiently. Each chain approximates the density of a point by counting its nearby neighbors at multiple scales. The algorithm first applies a subspace-selection and dimensionality reduction via sparse random projections and subsequently builds and ensemble of Half-Space Chains to estimate density at multiple scale. In the random projection phase the algorithm selects a set of Gaussian random vectors {r 1 , ..., r k } and projects each instance x 2 R d to a low-dimensional embedding y 2 R K as y = (x T r 1 , ..., x T r k ), where K is the number of random projections. The low-dimensional embedding preserves the pairwise distance between instances. Instead of a full set of Gaussian random vectors the authors propose to use sparse vectors where only 1/3 of the vector components are non-zero. Under this scheme, each projection ignores a 2/3 fraction of the feature space, essentially selecting a subspace, while maintaining the pairwise distances. The algorithm then estimates the density in the projected K-dimensional space denoted as P = {1, ..., K}. Each chain, of depth D randomly selects a split dimension p 2 P at each level l = 1, ..., D and recursively splits the space along the dimension into discrete bins. If a feature is selected again at a subsequent level, it is discretized with a halved bin width, enabling density approximation at multiple scales. Finally, the multi-scale outlier score of an instance y from a chain is the minimum extrapolated bin-count across all levels, corresponding to the lowest density this instance has among all the considered granularities. The overall anomaly score is the average across all chains. The input hyperparameters of the algorithm are projection size k, the depth of the chains d and the number of chains t generating so the following complexity O (ntkd). While it is common to set t = 100 in ensemble models, authors show performances to be steady for a wide range of hyperparameters k and d. We confirm such results in our comparison in Chapter 3.

Time series streams

For what concerns anomaly detection in time series, it is possible to classify the algorithms in two big families:

• Univariate methods: approaches that analyse univariate time series (e.g. AR, MA, ARIMA, etc.)

• Multivariate methods: approaches that model multivariate time series (e.g. ExactSTORM, COD, RRCF, etc.) Univariate algorithms are predictive models which extract patterns in a given time series with the final goal of predicting subsequent values. Several methods have been proposed ranging from traditional methods as Auto-regressive models (AR) [START_REF] Burg | A new analysis technique for time series data[END_REF], Moving Average model (MA) [START_REF] Enders | Applied econometric time series[END_REF],

ARIMA [START_REF] Box | Distribution of residual autocorrelations in autoregressiveintegrated moving average time series models[END_REF], Seasonal ARIMA [START_REF] Hyndman | Forecasting: principles and practice[END_REF] and Exponential Smoothing (ES) algorithm [START_REF] Gardner | Exponential smoothing: The state of the art-part ii[END_REF] to more recent strategies as LSTM Neural Network [START_REF] Shipmon | Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data[END_REF]. Such models are often simple to fit and use in real time applications. However, they are designed for univariate time series so they are not applicable in multivariate time series predictions, which limits their applications. This is especially true in monitoring applications where the number of sensors and measurements is very large.

Multivariate algorithms, instead of analyzing each time series at a time, extract patterns from the multivariate dataset in a manner similar to the one observed in batch algorithms. Such models define a decision function and assign an anomaly score to each processed instance. A first family of algorithms are state transition models (e.g. Markov Models [START_REF] Ye | A markov chain model of temporal behavior for anomaly detection[END_REF] or Hidden Markov Model [START_REF] Li | Multivariate time series anomaly detection: A framework of hidden markov models[END_REF]) in which timeseries are assumed to maintain a steady state pattern which can be modeled as a state. However, the utilization of such methods can be cumbersome because states are often unknown in advance and usually the systems may dynamically change over time.

A second class of multivariate algorithms are evolving prediction models which can be used to update the models as new data arrives in order to better capture the trends in the data. For example, [START_REF] Yamanishi | A unifying framework for detecting outliers and change points from non-stationary time series data[END_REF] presents a predictive model which incrementally learns the probabilistic mixture model of the data, using a decay factor to account for drifts. The anomaly score of each instance is the probabilistic fit value to the learned model. More predictive techniques can be found in the following related surveys [START_REF] Gupta | Outlier detection for temporal data: A survey[END_REF][START_REF] Lai | Revisiting time series outlier detection: Definitions and benchmarks[END_REF].

The bulk of the multivariate unsupervised anomaly detection algorithms for data streams is composed by the category of the distance based methods applied on sliding windows. Such methods assume that only recent data is relevant for the detection, as a result when the sliding window moves, old objects expire and new objects are added to the window. The algorithms usually define outliers all the instances in the window having less that k neighbors within a distance R. The most popular algorithms are:

ExactSTORM is an online anomaly detection method proposed by Angiulli et al. [START_REF] Angiulli | Detecting distance-based outliers in streams of data[END_REF]. The method uses a sliding window model and stores the data instances in nodes of a suitable data structure called Indexed Stream Buffer (ISB). Each node contains the data instance p, its arrival time p.t, the number of succeeding neighbors p.count after and the list, of size at most k, of the preceding neighbors p.nn before. The ISB data structure supports the range query search, that given an object p and a real number R > 0, returns the objects in the ISB whose distance to p is not greater than R.

For each incoming instance p, a range query is performed in ISB which returns the list of its preceding neighbors Q. For each q 2 Q, the number of succeeding neighbors q.count after is increased by 1. Finally, p is inserted into the ISB while the expiring instance o is removed from the data structure.

All the operations previously described are performed by the so called Stream Manager which updates the ISB for each incoming instance. It is subsequently up to the Query Manager to scan the ISB searching for outliers.

For each instance p in the ISB, the Query Manager discriminates between inliers and outliers by considering the sum of the succeeding neighbors p.count after with the size of the preceding neighbors list p.nn before. If the sum is lower than k, then p is an outlier and inlier otherwise.

Continuous Outlier Detection (COD) is an online anomaly detection method proposed by Kontaki et al. [START_REF] Kontaki | Continuous monitoring of distance-based outliers over data streams[END_REF]. Similar to [START_REF] Angiulli | Detecting distance-based outliers in streams of data[END_REF], the method uses a sliding window model and stores the instances in a data structure that supports range queries efficiently (e.g. M-Tree). The authors observe that (i) a departing instance can transform inliers into outliers, (ii) an incoming instance can transform outliers into inliers and (iii) not all the instances are affected by the expiring ones. Since only the neighbors of the expiring instances have to be updated, COD uses a priority queue (Fibonacci queue) to schedule processing of affected instances.

The method stores for each instance of the stream p, its arrival time p.time, its expiration time p.exp, the list of its preceding neighbors p.P and the number of the succeeding neighbors p.n + .

When a new instance p is available, the algorithm sets the expiration time to w samples from the current time. It subsequently performs a query which returns the list of objects (p.P) lying at distance at most R from p. Comparing the total number of neighbors against the threshold k, the algorithm discriminates inliers from outliers. If p is an outlier it is added to the outlier list; it is added to the inlier list and to the priority queue otherwise. The key in the priority queue is set according to the minimum expiration time of all its preceding neighbors p.P. For each instance q 2 p.P , the number of succeeding neighbors q.n + is incremented by 1. When the total number of neighbors exceeds k, q is promoted to the inliers list and added to the priority queue. The key in the priority queue follows the minimum neighbors expiration time previously described.

When an instance o expires, it is removed from the range query data structure and from the preceding neighbors lists. To do so, the priority queue is polled until all the elements set to be checked in the current time are extracted. Each extracted element q is either added to the outlier list if its total number of neighbors falls below k, or its key is updated and q is reinserted into the queue otherwise.

Finally, ensemble methods constitute the last group of multivariate algorithms for anomaly detection in data streams. The algorithms (RRCF [START_REF] Guha | Robust random cut forest based anomaly detection on streams[END_REF], LODA [START_REF] Pevný | Lightweight on-line detector of anomalies[END_REF], xStream [START_REF] Manzoor | Xstream: Outlier detection in feature-evolving data streams[END_REF]) typically use sliding window models and are composed by a set of weak learners. Each learner partitions, updates, and maintains the data using random trees data structures. On one hand ensemble algorithms are the best performing algorithms in terms of accuracy. On the other hand, they are slower than remaining algorithms as they have to update and maintain t different learners.

Robust Random Cut Forest (RRCF) is an streaming anomaly detection method proposed by Guha et al. [START_REF] Guha | Robust random cut forest based anomaly detection on streams[END_REF]. It is an ensemble algorithm composed by t different models which maintains w instances (tree size) in binary trees. Each instance p 2 w is isolated in a leaf of the tree while internal nodes act as splitting nodes. Each internal node, in addition to splitting criterion (attribute and value) maintains also the dimensions bounding box (support) of all the instances in the subtree.

Given a set of instances S and a tree T(S), when a new instance p is available, the algorithm tries to insert it from the root. It first sums together the supports of all the dimensions contained in the bounding box and extracts a random number r 2 [0,

P i (x h i x l i )
] which determines the attribute and the splitting value. If the split separates the instance p from the remaining tree, the algorithm generates a new splitting node with a branch containing p and another one containing the previous tree T(S). If the split does not isolate p, then p follows the path of the existing tree and the procedure is repeated on each sub-tree until the instance is isolated. All the bounding boxes on the path of p are updated.

When an instance o departs, the algorithm removes its parent and replaces it with the sibling.

All the bounding boxes starting from o upwards are updated. Notice that all the operations previously described (insertion, deletion, bounding box updating process, etc.) are repeated for each of the t trees in the ensemble.

The insertion and removal of each instance in the tree leads to a modification of the tree structures. The variation in tree complexity is used to determine the anomaly score. Given a set of points Z, a point p and a tree T , the depth of p is f (p, Z, T ). Assigning to each left branch of the tree the bit 0 and the right branches the bit 1, the model complexity |M (T )| = P p2Z f (p, Z, T ) is the number of bits required to write down the description of all points p in the tree. The bitdisplacement of an instance x is:

Disp(x, Z) = X T,p2Z x P r[T ] (f (p, Z, T ) f (p, Z x, T 0 )) (2.12)
the increase in the model complexity of all other points, i.e., for a set Z, to capture the externality introduced by x, where T 0 = T (Z x). To avoid outlier masking (phenomenon in which dense outliers mask each other) instead of removing just x, they propose to remove a set C with x 2 C and obtain so the Collusive Displacement CoDisp(x, Z, S)

E S✓Z,T 2 4 max x2C✓S 1 |C| X p2S C (f (p, S, T ) f (p, S C, T 00 )) 3 5 (2.13)
Anomalies correspond to large CoDisp values: similarly to LOF, we properly tune the decision function by observing the scores of the top-most abnormal samples (contamination) in the dataset.

Conclusion

In this chapter, we presented a detailed taxonomy and an overview of the techniques used in unsupervised anomaly detection. We distinguish between batch and time series stream algorithms. The former process the data, usually collected over a period of time, at once and output the anomaly scores at the end. The latter have to process each instance as soon as streamed and output its anomaly score shortly after. From the next chapter we present i) a novel batch algorithm, ii) a time series stream clustering engine based on DenStream and finally iii) an automated algorithm for anomaly detection using batch algorithms.

in a wide range of machine learning tasks.

Previous studies [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF][START_REF] Emmott | A meta-analysis of the anomaly detection problem[END_REF] show that one of the most effective algorithms for unsupervised anomaly detection is Isolation Forest (iForest), as partially confirmed also by our experimental evaluation. However, our experiments show XSTREAM to be a more robust choice when applied to unseen data. In our work, we present Random Histogram Forest (RHF) [START_REF] Putina | Random histogram forest for unsupervised anomaly detection[END_REF] an effective approach for unsupervised anomaly detection. Similarly to iForest, our approach is probabilistic while relying on an "ensemble" of "weak" building blocks (trees) for effectively identifying anomalies. This has been proved to be effective for a wide range of tasks (e.g. Random Forest [START_REF] Liaw | Classification and regression by randomforest[END_REF],

Isolation Forest [START_REF] Liu | Isolation forest[END_REF], XSTREAM [START_REF] Manzoor | Xstream: Outlier detection in feature-evolving data streams[END_REF]).

Our approach builds a random forest based on all input instances, whereas iForest builds a random forest based solely on some random samples of the data. The latter strategy has the drawback that some anomalies might be neglected entirely in the construction of the forest (particularly noticeable in large datasets containing only a few anomalies), thereby impairing the capability of the algorithm of finding those anomalies. Nevertheless, our algorithm boasts linear running time in the size of the input. Another key idea of our algorithm is to employ the fourth central moment (aka kurtosis), so as to guide the search for anomalous instances in the dimensions that are most likely to contain them. Notice that authors in iForest, also suggest to use kurtosis as an attribute selector in case of high dimensional data. Authors suggest to rank each attribute and select them according to their rankings. However, such selection phase implies adding to the algorithm another hyperparameter (number of top attributes to select) which might be difficult to set.

Moreover, selecting only attributes with hight kurtosis scores might neglect anomalies separable only in low kurtosis features. We propose an attribute selector without adding hyperparameters.

Furthermore, our approach enables the selection of low kurtosis features at higher depths of the trees. Finally, our algorithm computes a score for every instance, measuring the likelihood of such an instance of being an anomaly. Such a score is defined as the Shannon's information content [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Myron | Thermostatics and thermodynamics : an introduction to energy, information and states of matter, with engineering applications / by Myron Tribus[END_REF] of the leaf containing the corresponding instance.

We conduct an extensive experimental evaluation on 38 publicly available datasets including all benchmarks for anomaly detection and 64 private datasets from Huawei [START_REF] Navarro | Hurra! human readable router anomaly detection[END_REF], as well as the most successful algorithms for unsupervised anomaly detection, to the best of our knowledge.

We evaluate all the approaches in terms of average precision (AP), that is, the area under the precision-recall curve. We observe that as suggested in [START_REF] Davis | The relationship between precision-recall and roc curves[END_REF], ROC might not reflect the real performances of the algorithm, in that, anomalies typically represent a small fraction of the input data.

Our experimental evaluation shows that RHF outperforms all other approaches in terms of AP. Moreover, it shows that our algorithm delivers consistently good results over a wide range of hyper-parameter values, which allows for an effective hyper-parameter tuning. Another appealing feature of our algorithm is that it boasts linear running time, which makes it an effective tool for processing large amounts of data. Finally, our experimental evaluation shows that both RHF and XSTREAM are more effective and robust to noise than iForest.

The rest of the chapter is organized as follows. We start by providing an overview of the stateof-the-art anomaly detection algorithms in Section 3.2, while we introduce Random Histogram Forest in Section 3.3. We then describe our experimental evaluation and results in Section 3.4.

Finally, we discuss and summarize our main findings in section 3.5.

Related Work

Among the most recent comparative studies of unsupervised techniques, [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF] compares most of the existing proximity-based methods on 10 different datasets and conclude that it is of great importance the initial assumption whether the anomalies in the datasets are global or local: they recommend to use a global anomaly detection methods if there is no further knowledge about the nature of anomalies in the dataset to be analyzed. [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF] compares 14 methods belonging to all the groups previously described on 15 different datasets (12 publicly available and 3 private ones). However, their study assesses if the models are able to generalize to future points, so they perform a Monte Carlo cross validation of 5 iterations, using 80% of the data for the training phase and 20% for the prediction which indicates a semi-supervised setup to our understanding.

While [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF] study does not include the latest methods presented (e.g. Isolation Forest, thought to be the state-of-art), [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF] describes the models generalization capacity using labels that most of the time are not available. We compare the methods which have proven to be the best in previous studies [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF][START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF] using default or reasonable hyperparameters and use labels only to assess their performance in a completely unsupervised environment.

Based on the most recent comparison studies [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF][START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF][START_REF] Emmott | A meta-analysis of the anomaly detection problem[END_REF], the algorithms previously described have proven to be among the best in regards anomaly detection. In general both [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF] and [START_REF] Emmott | A meta-analysis of the anomaly detection problem[END_REF] suggest iForest to be, on average, the best one closely followed [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF] by PPCA and OCSVM.

Random Histogram Forest (RHF)

RHF is a tree ensemble model apt at randomly partitioning the input data, so as to highlight anomalies. We illustrate our main intuition in Figure 3.1, where red points represent anomalies and the remaining points are depicted in green. In such a figure, we randomly partition the input points by means of several lines drawn uniformly at random. The same process is iterated three times. Observe that input points that end up in a relatively large group are less likely to be anomalies. By iterating such a process multiple times, we can obtain for each point a score measuring how likely such a point is an anomaly.

Figure 3.1: Example of 3 different Random Splits in 4 bins ⌘. One can observe that some areas (e.g. A) have noticeable higher mass than others (e.g. B)

In real-world applications, it is often the case that a relatively large dimensions are noninformative when looking for anomalies. Splitting the dataset along non-informative or "noisy" dimensions might result in poor results and it should be avoided. To this end, we select the splitting feature according to their kurtosis value, which given a random variable X is defined as follows:

K[X ] = E " ✓ X µ ◆ 4 # = E h (X µ) 4 i E h (X µ) 2 i 2 = µ 4 4 , (3.1)
where µ 4 is the fourth central moment and the standard deviation. The kurtosis of input data X denotes the standardized data raised to the fourth power, while it can be seen as a measure of the tailedness of X . As a result, points within the region of the peak have negligible contribution to the kurtosis score, while points outside the region of the peak (e.g. outliers) contribute the most.

In [START_REF] Moors | The meaning of kurtosis: Darlington reexamined[END_REF], Moors defined it as a measure of dispersion, while he concluded that high values of K are due to either i) occasional values far from the mean in a distribution whose probability mass is concentrated around the mean or ii) probability mass concentrated in the tails of the distribution.

The kurtosis score measures the heaviness of the tails and it is therefore an indicator of the presence of outliers in the tail. Consider, for example, Fig. 3.2 representing 4 features extracted from datasets Annthyroid (top) and Mulcross (bottom) depicting both normal and anomalous probability density functions. One can observe that features with heavier tails and consequently higher kurtosis score (e.g. X 1 -top and X 2 /X 3 -bottom) are more likely to contain anomalous points than the remaining ones (e.g. X 0 /X 4 -top and X 0 /X 1 -bottom).

Roughly speaking, when selecting the splitting feature, our algorithm will compute the kurtosis score  for each feature and then sample one feature with probability proportional to log( + 1).

The logarithm allows us to focus on the order of magnitude of the kurtosis score, while preventing our approach from being sensitive to small values on such score. The additional term of 1 in the logarithm ensures that a feature is selected with zero probability, when the corresponding kurtosis is zero (i.e. the feature is constant). In what follows, we provide a more formal description of our algorithm.

Preliminaries. We are given input data X 2 R n⇥d , where n, d denote the number of points and features (aka attributes), respectively. We denote with X i• the ith row of X, corresponding to an input point, while we denote with X •j the j column of X, corresponding to feature f j . We use x i as a shorthand for X i• . Given S ✓ [n], we denote with X S• the submatrix of X containing for every i 2 S the ith row of X, while we denote with X S,j the jth column of X S• . RHF builds a forest containing several (connected) binary trees, i.e. each node in a tree has either two children or no children ( in the latter case it is called a leaf ). Each leaf v in a tree is associated with a set

S v ✓ [n],
specifying the set of points associated to v. Every other node v in a tree, is associated

with a tuple (S v , f v , v , l v , r v ), where S v ✓ [n]
is the set of points associated to v, f v is the splitting feature for v, v is its splitting value, while l v , r v denote its left and right child nodes, respectively.

For every node v in a tree we have the following invariants: 1) every point

x i , i 2 S v , satisfies either the constraint X ij < v (if v is a left child) or X ij v (if v is a right child), where f v = f j ; 2) S v = S lv [ S rv ; 3) S lv \ S rv = ;
. For every tree T and every point i, RHF computes a score w T i , while the overall score w i for point i is obtained by computing the average score over all trees.

Observe, that the number of leaves in a tree is at most 2 h , where h is its height.

Tree construction. RHF builds each tree in the following way. It first creates a root node v, which is set to be the current node with S v := [n]. Then, it selects one feature f j with probability log (K(X Sv,j ) + 1) P d j=1 log (K(X Sv,j )) + 1)

. (3.2)
After that, it selects a splitting value , which is taken uniformly at random from the interval (min(X Sv,j ), max(X Sv,j )). Then, two child nodes of the current node are created: one left node associated with all points in S r satisfying f j < and another node with the remaining points. This is executed recursively on the left and right node until one of the following conditions is met:

i the maximum height h is attained;
ii the kurtosis of every feature in the current set of points is zero.

When the construction of a tree is built, every node with no children is labeled as a leaf. The pseudocode of the algorithm to construct a tree is provided in Algorithm 1, which is initially called with RHF (X, [n], r, 1, h) with r being the root node.

Anomaly scores. Given a tree T , we compute the anomaly score for every point x i as follows.

Let `be a leaf in T . For every leaf `, for every point i 2 S `define:

w T i := log ✓ 1 |S `| ◆
to be the anomaly score of point x i w.r.t. tree T . w T i can be seen as the Information Content (also called Shannon's information [START_REF] Shannon | A mathematical theory of communication[END_REF]) of x i in T . The information content measures the level of "surprise" of an event, with rare events being more surprising than relatively common events. As a result, the smaller the cardinality of S `the more likely x i is considered to be an outlier. We adopt the convention that log(0) = +1. The overall anomaly score w i of x i is obtained by computing the average anomaly scores over all trees in RHF i.e.

w i = 1 t P T w T i .
Implementation Details. In order to sample a feature according to Equation 3.2 we proceed as follows. We first compute the sum of all kurtosis scores:

 = d X j=1 log (K(X Sv,j ) + 1)
we then sample uniformly at random a value r from [0, ]. Finally, we compute:

j = arg min j| j X l=1 log (K(X Sv,j ) + 1) > r ! .
Scalability Analysis. Overall the running complexity of our approach is O(ntdh), where h denotes the maximum height (input hyper-parameter), t denotes the number of trees (input hyperparameter), n the number of points while d denotes the number of dimensions. The space complexity of the algorithm is instead O(nd) which is linear in the input data size. Notice that there is not the need to keep in memory all the trees. It is sufficient to split all the data according to a tree, collect the scores from the leafs, and discard it before generating another tree.

Algorithm 1: RHF(X, S, v, `, h) sample one feature f j with probability log(K(X S,j )+1)

Input: dataset X, S ✓ [n], set of nodes V , node height `, max height h Output: a binary tree T with root v 1: S v := S 2: if ` h or K(X S,j ) == 0 8j 2 [1, d]
P d j=1 log(K(X S,j ))+1) 6:
select a split value uniformly at random from (min(X S,j ), max(X S,j ))

7:

f v := f j , v := 8:
create new nodes l, r 9:

l v := l, r v := r 10:

S l := {i 2 S : X ij < } 11: S r := S \ S l 12:
RHF(X, S l , l, `+ 1, h)

13:

RHF(X, S r , r, `+ 1, h) 14: end if

Experimental Evaluation

Settings.

Libraries: Our experimental evaluation is conducted on a Linux Fedora 31 server equipped with Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz -32 CPUs and 48 GB RAM. Our code is written in Python 3/Cython [START_REF] Van Rossum | Python 3 Reference Manual[END_REF][START_REF] Behnel | Cython: The best of both worlds[END_REF] while it uses N umP y == 1.17.4 [START_REF] Oliphant | A guide to NumPy[END_REF] and P andas == 0.25.3 [START_REF] Mckinney | Data structures for statistical computing in python[END_REF] for data preprocessing. The implementations of the algorithms described in Section 3.2 belong to either P yOD == 0.7.9 [START_REF] Zhao | Pyod: A python toolbox for scalable outlier detection[END_REF] (HBOS, PPCA, K-NN, OCSVM) or Scikit learn == 0.23.1 [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] Figure 3.2: Probability Density Function of 4 features depicting both normal and anomalous class extracted from datasets Annthyroid and Mulcross respectively. It is easily observable that features with heavier tails (depicted by arrows) and consequently higher kurtosis score (e.g. X 1 -top and X 2 /X 3 -bottom) are more likely to contain separable anomalous points than remaining ones (e.g. X 0 /X 4 -top and X 0 /X 1 -bottom in which anomalies are clearly not separable).

(iForest and LOF) packages. We use moreover the python code released by the authors for PID

[12] and the c++ one for XSTREAM [13]. Our RHF 's Python 3 (Cython) implementation is available at [START_REF] Putina | [END_REF].

HyperParameters: For each approach considered in our experimental evaluation, we set its hyperparameters while following the directions of the corresponding authors. In particular, we run HBOS selecting the input hyper-parameter number of bins using the rule of thumb K = 

Metrics:

We evaluate the performance of the algorithms by their Average Precision (AP), that is, the area under the curve of the precision-recall curve [START_REF] Zhu | Recall, precision and average precision[END_REF] (without interpolation):

AP := X n (R n R n 1 ) P n
where P n = tp tp+fp and R n = tp tp+fn are the Precision and Recall at the n th threshold, respectively. We observe that the Receiver Operating Characteristic (ROC) is often employed to evaluate anomaly detection methods [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF] - [START_REF] Liu | Isolation forest[END_REF]. However, it has been shown in [START_REF] Davis | The relationship between precision-recall and roc curves[END_REF] that when the classes are not balanced (which is typical of an anomaly detection task) the AP curves better reflect the efficacy of an algorithm. [START_REF] Davis | The relationship between precision-recall and roc curves[END_REF] shows moreover that a curve dominates in ROC if and only if it dominates in AP space.

Datasets:

We put a major effort in providing an extensive experimental evaluation. In particular, we include all datasets that have been considered in the literature for anomaly detection, to the best of our knowledge. This is crucial to ensure a fair comparison, in that, the overall results might change dramatically depending on the selection of the datasets, as pointed out in [START_REF] Emmott | A meta-analysis of the anomaly detection problem[END_REF]. We use 38 publicly available benchmark datasets ranging from 240 to 623091 points and from 3 to 274 dimensions. Each of them is available either at the UCI [START_REF] Dua | UCI machine learning repository[END_REF] or at the ODDS [START_REF] Rayana | ODDS library[END_REF] repositories. We furthermore consider the recently released WikiQOE [START_REF] Salutari | Analyzing wikipedia users' perceived quality of experience: A large-scale study[END_REF] dataset, which consists of a Wikipedia large measurements campaign of WebQOE metrics.

The KDD'99 Cup dataset is one of the most widely used benchmark for anomaly detection.

The dataset contains information about network connections as exchanged bytes ("source bytes", "destination bytes", etc.) and service type ("http", "smtp", "ftp", etc.). It consists of 4,898,431 points and 41 attributes. Similarly to the filtering technique used by [START_REF] Yamanishi | On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms[END_REF] [62] we extract 5 subsets according to the values of the service attribute (http, smtp, ftp, finger and other ). Out of the 41 available attributes, we select, as already done in [START_REF] Yamanishi | On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms[END_REF] only 3 of them namely "duration", "source bytes", and "destination bytes" as they are thought to be the most relevant ones [START_REF] Yamanishi | On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms[END_REF]. We obtain in this way the datasets we call kdd http (623091 points), kdd smtp (95554 points), kdd ftp (5214 points), kdd finger (1033 points) and kdd other (12844 points). While [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF] filtered the dataset according to the service attribute only, [START_REF] Yamanishi | On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms[END_REF] filters them also by the positive logged in attribute as they are successful attacks. We also consider this additional filter by further reducing the kdd http dataset into the http logged (567498 points) one by excluding the negative values of logged in attribute.

In order to determine to which extent the presence of duplicates might affect the overall results, we consider also a smaller version in which duplicates have been filtered out: we will refer to them as kdd http distinct, kdd smtp distinct and kdd ftp distinct. We include in our comparison also the full version kdd http29 and kdd smtp29 in which all the 29 continuous attributes are used. The same 29 features are used also by [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF] in which the authors use only the relevant anomalies (by limiting the number of duplicated ones) and present a new dataset (composed by 620098 points 0.17% anomalous points). We will refer to it as kdd99G by author's name.

Additionally, we consider a set of 64 private datasets (collected and stored at Huawei) presented in this comparison [START_REF] Navarro | Hurra! human readable router anomaly detection[END_REF]. They are collected over a lifespan of 125 days from real routers and labeled by network experts. Each dataset is collected locally from real routers of a different Internet Service Provider so datasets are completely independent. Overall datasets are composed by 211 up to 11700 points out of which 4.4% are anomalous and from 6 up to 1650 dimensions. 

Comparison

We evaluate all the algorithms discussed in Section 3.2, which have proven to be most effective according to previous experimental evaluations [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF], [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF], [START_REF] Emmott | A meta-analysis of the anomaly detection problem[END_REF]. We also consider two variants of RHF : one variant where Kurtosis Split is used (RHF K ), and one where random splits are used (RHF R ).

Table 5.3 reports a full comparison of all approaches and datasets considered in our paper.

The last four rows in the table are the mean and median computed on public vs all (public and private) datasets complemented with 0.95 boostrapped conficende intervals. Text in bold represents the best method for each dataset. The best method is awarded using the two sample Kolmogorov-Smirnov test (↵ = 0.05) [START_REF] Smirnov | Table for Estimating the Goodness of Fit of Empirical Distributions[END_REF] under the null hypothesis that the two distributions are identical while the Welch's two-tailed t-test [START_REF] Welch | THE GENERALIZATION OF 'STUDENT'S' PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED[END_REF] is used to test if they have the same mean. Two or more algorithms are declared the best performing ones, when the two tests cannot reject the null hypothesis.

Our results on the public datasets (AP -best on #number of datasets) confirm the results provided in [START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF]. In particular, ISO (0.462 ± 0.097 -#7) and PPCA (0.459 ± 0.010 -#5) are indeed effective algorithms for anomaly detection. To the latter we add also XSTREAM (0.462 ± 0.091 #6) and both RHF K (0.496 ± 0.097 -#6) and RHF R (0.479 ± 0.096) which outperform the other approaches.

Figure 3.3 shows by means of boxplots a summary of the overall results on all the datasets in both public and private scenarios. The boxplots are complemented with a 0.95 median confidence level estimated through bootstrapping. The methods are sorted according to the median value in decreasing order. Our method RHF K presents in both the scenarios the best q25, mean, median and q75 values proving to be consistently better than remaining methods.

The largest discrepancies between the aforementioned algorithms have to be found in some specific datasets. This is the case of the kdd distinct dataset composed by 220027 points and only 75 anomalies in which ISO produces the baseline result (0.02) while PPCA (0.637), XSTREAM (0.669) and RHF K (0.757) produce a much higher AP. Unsatisfactory results on the same dataset are produced also by PID which builds the trees, as ISO, on sampled data. We observe that algorithms which build their model on a relatively small sample of the dataset might deliver poor results, in that, they might miss important information required to retrieve the anomalies. Similarly, in http29 the ISO approach is again the worst performing one (0.532) with respect to PPCA (0.758), XSTREAM (0.933) and RHF K (0.709), which are methods that use all points in the dataset to generate their models.

Other discrepancies have to be found in datasets such as musk, thyroid or kdd other in which XSTREAM produces slightly worse results (0.651, 0.192 and 0.099) with respect to the other methods (e.g. RHF K produces respectively 0.996, 0.516 and 0.543). Similarly, PPCA's AP on the smtp29 (0.774 vs RHF's 0.95), penglobal (0.301 vs RHF's 0.561) and thyroid (0.362 vs 0.516) show this method to be a poor choice on some datasets.

Considering instead all the available datasets results change significantly. While RHF K (0.513± 0.080 -#26) remains the best method followed by XSTREAM (0.462 ± 0.080 -#17) and PPCA (0.454±0.080 -#16), ISO (0.333±0.100 -#16) appears to be less reliable on such datasets. Further studies (see. Section 3.4.3-3.4.4) show that ISO's performance deteriorates when the datasets contain irrelevant features. Moreover it is unclear how to properly select its hyper-parameter as small perturbations of the dataset are sufficient to change significantly the output.

As also stated in [START_REF] Emmott | A meta-analysis of the anomaly detection problem[END_REF], we observe that many approaches achieve similar performances in most of the datasets, with the most prominent differences being found in a few of them. Overall, RHF K , ISO and XSTREAM are the algorithms that better perform in our benchmark datasets. A better overall picture of the three algorithms can be derived from our further studies in which the methods undergo robustness to noisy dimensions and hyperparameters tests. 

Robustness to noise

We investigate how the presence of noise in the datasets affect the effectiveness of the different algorithms. Our experimental evaluation shows large performance discrepancies between RHF K , XSTREAM and ISO in most of our private high dimensional datasets. In particular, while RHF K and XSTREAM are resilient to the presence of noisy features, a prevalence of those features might significantly compromise the results of ISO. To illustrate this, we artificially introduce noisy features, following a Gaussian distribution, to three datasets: (http logged, musk and smtp29). Such features are clearly non-informative when looking for anomalies in the datasets, while ideally they should not disturb too much an anomaly detection algorithm. On the other hand, RHF and XSTREAM deliver consistently relative good results. This is perhaps not surprising, given that RHF chooses features with a probability proportional to their Kurtosis scores, as opposed to ISO where a uniform probability distribution guides its random choices. XSTREAM, which is based on random projections, appears to be resilient to noisy features, as well.

Robustness to the choice of hyperparameters

We further investigate the impact of the input hyperparameters on the overall results. We proceed in two main directions: i) we decrease artificially the number of anomalies in the input data; Results show again two distinct patterns for RHF and XSTREAM with respect to ISO. While the first two boast a slight performance decrease over the decreasing number of anomalies in the dataset (for all their hyperparameters), ISO's default hyper-parameter show a faster deterioration, as it becomes increasingly more likely those anomalies to be missed in the sample. To tackle such an issue, one could try to increase the hyper-parameter. This would result in a better AP score with = 2048 and = 4096, when the number of anomalies is smaller than 50% (right side of the plot). However, using a higher value turns out to be counterproductive when the number of anomalous points is larger (left side of the plot, e.g. AP⇡ 0.7 on the original dataset -100% of the anomalies -for both = 2048/4096). As a result, it is unclear how to determine an optimal value for such a hyper-parameter.

Overall, our studies show RHF K and XSTREAM to be two effective algorithms for the anomaly detection task as they achieve, on average, high AP scores on both public and private datasets.

Both of them cope well with noisy features, while deliver consistently good results under a wide range of values for their hyperparameters.

HyperParameters Tuning

RHF uses two input hyperparameters: the max height h which determines the ⌘ number of leafs and the number of trees t. As in most of the ensemble methods, we use t = 100 trees while empirically study the behavior of h. Our method is somehow linked to histograms, as we split the data into ⌘ leaves. Therefore, we employ the widely used rules of thumb in determining the number of leaves (i.e. bins in histograms). In particular Sturge's [START_REF] Sturges | The choice of a class interval[END_REF] rule of thumb k = d1 + log 2 ne suggests that the number of bins should increase logarithmically in the number of points. We study RHF 's performance for increasing h 2 [1, 8] which defines ⌘ 2 [2, 256] comparing the results obtained using both Random Split and Kurtosis Split. The results depicted in Fig. 3.6 show two takeaways: i) RHF 's performance smoothly vary over h and ii) on average, Kurtosis Split consistently outperforms the Random Split.

Regarding the maximum height h hyper-parameter, we observe from Fig. 3.6 that: i) the AP benefits from increasing h, however, ii) the AP reaches its maximum value already when h = 4; iii) the number of leaves ⌘ = 16/32 defined by h=4/5 is consistent with Sturge's rule of thumb which would recommend to use K = 14 bins for smaller datasets (e.g. 5000 points) while K = 21 for bigger ones (e.g. 620000 points). We set and recommend thus h = 5, as it produces results not distinguishable from h = 4 and should handle properly also larger datasets. Fig. 3.7 shows the performance of the algorithms when increasing the number of trees t in the forest. As expected, the results show relatively high variance for smaller values of t while they stabilize when t > 50. We suggest t = 100 as commonly used in ensemble models.

We finally measure the empirically the running complexity of RHF K for increasing n, d, t and h. Table 3.2 shows such times for all the datasets in our comparison and for increasing values of h 2 [3, 5, 7] (using t = 100) and t 2 [30, 60, 90] (using h = 5). The table contains moreover the running times of ISO ( = 256) and XSTREAM (K = 100, C = 100, l = 15). To compare the running of different methods please refer to column h = 5 in which RHF K uses its default hyperparameters (h = 5 and t = 100).

The table, ordered by n, shows that indeed RHF K running times linearly increase in n, d, h, t. Overall the running times exhibit two takeaways: i) robustness to noisy features comes at a cost. Both RHF K and XSTREAM are slower than ISO when the number of dimensions is high; ii) RHF K is not only always faster than XSTREAM but it can outperform it by up to 50 times in some datasets, while being 14 times faster on average. 

Conclusions

We present a novel anomaly detection method called Random Histogram Forest (RHF), which builds a random forest while using the Kurtosis score as splitting criterion. The anomaly score of each instance is computed as the information content of the leaf it belongs to. We provide an extensive experimental evaluation on 38 public datasets, including all datasets used as benchmarks for anomaly detection, to the best of our knowledge and 64 private ones. Our experimental evaluation shows that our approach outperforms the other approaches in terms of average precision, while being simple and intuitive. Moreover the performance of our algorithm are consistently good over a wide range of values for their hyperparameters, while it requires only two hyperparameters. Finally, our proposed Kurtosis Split shows to be effective in high dimensional datasets while maintaning linear running time in the size of the input dataset.

Chapter 4

Online Anomaly Detection

Leveraging Stream-Based

Clustering and Real-Time Telemetry

In this chapter we describe the proposed stream unsupervised algorithm called ODS that leverages DenStream, an unsupervised clustering technique, and apply it to measurements collected from real network equipment studying so a monitoring application. We first introduce the new challenges in the monitoring application in Section 4.1 and analyze existing monitoring methods in Section 4.2. We then describe the algorithm in Section 4.2.2 before explaining in details the experiments done and how data was captured in Section 4.3. The evaluations are done in Section 4.5. Finally, a summary of our finding and remarks are given in Section 4.7.

Introduction

Recent technology evolution allows network equipment to continuously stream a wealth of "telemetry" information, which pertains to multiple protocols and layers of the stack, at a very fine spatialgrain and high-frequency. This deluge of telemetry data clearly offers new opportunities for network control and troubleshooting, but also poses a serious challenge for what concerns its realtime processing. We tackle this challenge by applying streaming machine-learning techniques to the continuous flow of control and data-plane telemetry data, with the purpose of real-time detection of anomalies. In particular, we implement an anomaly detection engine that leverages DenStream, an unsupervised clustering technique, and apply it to features collected from a largescale testbed comprising tens of routers traversed up to 3 Terabit/s worth of real application traffic.

We contrast DenStream with batch algorithms such as DBScan and Local Outlier Factor (LOF), as well as stream algorithms such as the windowed version of DBScan, ExactSTORM, Continuous

Outlier Detection (COD) and Robust Random Cut Forest (RRCF). Our experimental campaign compares these seven algorithms under both accuracy and computational complexity viewpoints: results testify that DenStream (i) achieves detection results on par with RRCF, the best performing algorithm and (ii) is significantly faster than other approaches, notably over two orders of magnitude faster than RRCF. In spirit with the recent trend toward reproducibility of results, we make our code available as open source to the scientific community.

Nowadays network Operations and Management (OAM) increasingly relies on the ability to stream and process, in near real-time, useful "features" from network equipment. An integral part of the OAM task is, e.g., to ascertain whether the operational conditions are normal or anomalous and intervene, when needed, by quickly repairing eventual problems.

Simple Network Management Protocol (SNMP) has long been the de facto standard to gather fairly coarse information from the network management, control and data planes. Consequently, SNMP has been used for anomaly detection for long time [START_REF] Thottan | Anomaly detection in ip networks[END_REF]. In the SNMP paradigm, the server initiates the data collection from hundreds of devices, with a pull-based approach, at traditionally low frequency (i.e., in the order of minutes). More recently, Model-driven telemetry (MDT) [START_REF] Wu | Network telemetry and big data analysis[END_REF]9,8, 10] has emerged as an interesting alternative to SNMP: instead of having to periodically poll at a low rate (as in SNMP), under MDT subscribers receive continuous stream of operating state information in a standard structured format. In addition to supporting periodic export, MDT further enables to trigger data publication when specific conditions are met.

Rather typically, a common workflow to several vendors (such as Cisco [9], Arista [8] and Huawei [10]) is to express features via Yet Another Next Gen (YANG) [START_REF] Bjorklund | YANG -A data modeling language for NETCONF[END_REF][START_REF]The yang 1.1 data modeling language[END_REF] data models, encoded with the Google Protocol Buffer (GPB) format, that are then transmitted via the Google Remote Procedure Call (GRPC) protocol. While the use of standard formats and protocol for their export is very desirable, and while the abundance of information is desirable for fine-grained monitoring, it becomes necessary to also process MDT data as it is streamed -a challenging task at the heart of our work. First and foremost, under MDT the data must be processed in real-time, which puts a practical cap on the algorithmic complexity. Second, as the data is streamed continuously,

no assumption on data distributions or length can be made a priori. Third, data cannot be stored and algorithms have to perform a single pass on it, which significantly limits the algorithmic design space.

Related Work

This section overviews related work focused on outlier and novelty detection in computer networks. In particular, Sec. 4.2.1 presents a taxonomy of the relevant work from the network domain viewpoint, whereas Sec. 4.2.2 introduces background material concerning the unsupervised clustering techniques that are relevant for our work.

Outlier detection in computer networks

As already discussed in detail in Section 1, Hawkins [START_REF] Hawkins | Identification of Outliers[END_REF], defines an outlier as "an observation, which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism." Generally, anomalies are categorized as point, contextual or group outliers: Global Point outlier is an object that significantly deviates from all the objects in the dataset;

Contextual outlier is an object that significantly deviates from the objects in a context (eg. period in a timeseries); Group outlier is a subset of objects that significantly deviates from the entire dataset (i.e., set of instances that do not follow regular patterns in the dataset). The events we consider in this work (see Sec. 4.3) belong to the point and group outlier groups.

In several domains (fraud/intrusion detection, public health etc.) it is assumed that the number of anomalous objects is (much) smaller than the normal objects. For this reason, several methods generate a normal (baseline) model of the system and label anomalous all the objects that are significantly different. These methods fall into three main groups, namely (i) statistical, (ii) supervised and (iii) unsupervised learning.

(i) Statistical methods use probabilistic models to detect changes in the data. Principal Component Analysis (PCA) is used in [START_REF] Lakhina | Diagnosing network-wide traffic anomalies[END_REF] to detect anomalous traffic volume in backbone networks by reducing the n-space of variables into a k-subspace corresponding to the normal behavior and a m-subspace corresponding to anomalies and noise. The subspace method is used in [START_REF] Huang | Diagnosing network disruptions with network-wide analysis[END_REF] to detect BGP anomalies, extracting the amount of update messages from raw BGP updates every 10 minutes and processing the data in batches of 200 samples. Similarly, [START_REF] Deshpande | An online mechanism for bgp instability detection and analysis[END_REF] and [START_REF] Ganiz | Detection of interdomain routing anomalies based on higher-order path analysis[END_REF] extract features from raw BGP updates (BGP volume, Autonomous System (AS)-Path, etc.) every 5 minutes and perform anomaly detection using the Generalized Likelihood Ratio Test (GLRT) and the t-test respectively. Finally [START_REF] Yeung | Covariance-matrix modeling and detecting various flooding attacks[END_REF] contrasts the covariance matrix of n objects against a normal precomputed covariance matrix to detect flooding attacks in the KDD' 99 [4] dataset while [START_REF] Shyu | A novel anomaly detection scheme based on principal component classifier[END_REF], using the same dataset, proposes a Principal Component Classifier (PCC) yielding an anomaly score for both major and minor subspace components. These methods are interesting but inherently obscure for the human operator that needs to interpret the results, as the semantic of the original feature domain is lost due to the projection transformation -a significant matter of concern that render the techniques less appealing for practical purposes [1,[START_REF] Navarro | Hurra: Human-readable router anomaly detection[END_REF].

(ii) Supervised methods learn both normal and anomalous behaviors from labeled data and then classify each new object normal or anomalous depending on which class fits to. Due to the lack of data, most of the methods use KDD'99 and NSL-KDD [START_REF] Tavallaee | A detailed analysis of the kdd cup 99 data set[END_REF] datasets or have to manually label private datasets. Among the most used algorithms there are Decision Trees (C4.5) [START_REF] Quinlan | C4.5: Programs for Machine Learning[END_REF],

Support Vector Machines (SVM) [START_REF] Cortes | Support-vector networks[END_REF] and Artificial Neural Networks (ANN) [START_REF] Wang | On the origin of deep learning[END_REF]. Authors of [START_REF] Wang | An effective intrusion detection framework based on svm with feature augmentation[END_REF] obtains a 2⇥ SVM training time reduction using the NSL-KDD dataset augmented and transformed by the logarithm marginal density transformation while [START_REF] Poojitha | Intrusion detection using artificial neural network[END_REF] and [START_REF] Subba | A neural network based system for intrusion detection and attack classification[END_REF] use the KDD'99 dataset to evaluate their ANN models which reduce false positive rate and minimize overall computational overhead respectively. Regarding BGP events, [START_REF] Li | An internet routing forensics framework for discovering rules of abnormal BGP events[END_REF] trains and tests a decision tree (C4.5) using features extracted every minute from RouteViews and RIPE NCC archive during known misconfiguration events, Slammer worms and electricity blackouts. The same source, sampled every 30 seconds, is used by [START_REF] De Urbina Cazenave | An anomaly detection framework for BGP[END_REF] which compares different algorithms as decision trees, Naive Bayes and SVM. They process the data using a sliding window of 10 samples, corresponding to 5 minutes, which slides of two minutes every time. Their system raise an alarm if at least 60% of the samples in the window are labeled anomalous allowing them to detect events as early as four minutes. The importance of BGP features is studied in [START_REF] Al-Rousan | Machine learning models for classification of BGP anomalies[END_REF] applying both Fisher [START_REF] Chen | Combining SVMs with Various Feature Selection Strategies[END_REF] and mRMR [START_REF] Peng | Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[END_REF] feature selection techniques, which concludes that 65% of the selected features are volume-based (i.e. BGP announcements, IGP packets, EGP packets etc.) and that these are more relevant and perform better than AS-path features. Supervised approaches are however of little portability across datasets, where features and labels differ, and the applicability of such models is therefore limited to the very specific use-case under study.

(iii) Unsupervised methods could prove particularly useful to detect outliers as they are able to find unknown patterns without using labeled data: outliers are identified as items different from the previously found patterns. Best known approaches [START_REF] Rajasegarar | Hyperspherical cluster based distributed anomaly detection in wireless sensor networks[END_REF][START_REF] Lazarevic | A comparative study of anomaly detection schemes in network intrusion detection[END_REF][START_REF] Li | Traffic anomaly detection using kmeans clustering[END_REF][START_REF] Mazel | Hunting attacks in the dark: clustering and correlation analysis for unsupervised anomaly detection[END_REF][START_REF] Hernandez | Unsupervised Network Intruison Detection Systems: Detecting the Unknown without Knowledge[END_REF][START_REF] Miller | Twitter spammer detection using data stream clustering[END_REF][START_REF] Dromard | Online and scalable unsupervised network anomaly detection method[END_REF][START_REF] Miller | Anomalous network packet detection using data stream mining[END_REF][START_REF] Putina | Telemetrybased stream-learning of bgp anomalies[END_REF] uses distance (or density) to group together similar objects and label anomalous those far from the neighbors, and can be further categorized into batch vs stream methods. Batch algorithms (such as K-Means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], DBScan [START_REF] Ester | A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], Local Outlier Factor (LOF) [START_REF] Breunig | Lof: Identifying density-based local outliers[END_REF]), require the access to the entire dataset at once (to compute centroids-objects distances or pairwise distances) and iteratively converge to a final solution. Stream algorithms (such as iGDCA [START_REF] Ning | An incremental grid density-based clustering algorithm[END_REF] and DenStream [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF]) are instead designed to build, maintain and update models incrementally at each new sample.

The above classes of work are closer to ours and deserve a deeper look.

Batch unsupervised methods are used in [START_REF] Rajasegarar | Hyperspherical cluster based distributed anomaly detection in wireless sensor networks[END_REF][START_REF] Li | Traffic anomaly detection using kmeans clustering[END_REF][START_REF] Lazarevic | A comparative study of anomaly detection schemes in network intrusion detection[END_REF][START_REF] Mazel | Hunting attacks in the dark: clustering and correlation analysis for unsupervised anomaly detection[END_REF][START_REF] Hernandez | Unsupervised Network Intruison Detection Systems: Detecting the Unknown without Knowledge[END_REF] for outlier detection. For instance, [START_REF] Rajasegarar | Hyperspherical cluster based distributed anomaly detection in wireless sensor networks[END_REF] applies k-NN, a distance-based method to detect anomalies in wireless sensor networks, whereas [START_REF] Li | Traffic anomaly detection using kmeans clustering[END_REF] uses K-Means to detect anomalous flows (i.e. counters of bytes, packets etc.). Several algorithms (i.e. unsupervised SVM, LOF, k-NN) are instead compared on the DARPA dataset in [START_REF] Lazarevic | A comparative study of anomaly detection schemes in network intrusion detection[END_REF], asserting that the best performing one is LOF -which we thus include in the comparison. Density-based sub-space clustering methods are used in [START_REF] Mazel | Hunting attacks in the dark: clustering and correlation analysis for unsupervised anomaly detection[END_REF], combining evidence accumulation to identify anomalies. To reduce the high computational complexity of such batch methods, [START_REF] Hernandez | Unsupervised Network Intruison Detection Systems: Detecting the Unknown without Knowledge[END_REF] utilizes a discrete time-sliding window to extract and aggregate different flowresolution levels, in time slots of fixed length T -a reasonable compromise approach that we also consider in this work.

Stream unsupervised algorithms have been used more rarely for network anomaly detection [START_REF] Dromard | Online and scalable unsupervised network anomaly detection method[END_REF][START_REF] Miller | Twitter spammer detection using data stream clustering[END_REF][START_REF] Miller | Anomalous network packet detection using data stream mining[END_REF][START_REF] Putina | Telemetrybased stream-learning of bgp anomalies[END_REF]. Authors in [START_REF] Dromard | Online and scalable unsupervised network anomaly detection method[END_REF] employ a discrete time-sliding window and an incremental grid clustering algorithm to detect anomaly traffic in the core network of a Spanish Internet Service Provider (ISP). Closer to our work are [START_REF] Miller | Twitter spammer detection using data stream clustering[END_REF][START_REF] Miller | Anomalous network packet detection using data stream mining[END_REF] that employ DenStream at the application and network layers respectively. In particular, [START_REF] Miller | Twitter spammer detection using data stream clustering[END_REF] use DenStream to successfully detect Twitter spam using a (tiny) dataset containing approximately 3000 normal and 200 manually labeled spam entries. Authors in [START_REF] Miller | Anomalous network packet detection using data stream mining[END_REF] cluster normal vs anomalous packets in the DARPA dataset operating in the data plane, and directly leverage packet payload, using the numerical value of each byte HTTP payloads as input features. As such, both domains of application in [START_REF] Miller | Twitter spammer detection using data stream clustering[END_REF][START_REF] Miller | Anomalous network packet detection using data stream mining[END_REF] are rather far from the control-plane telemetry use-case of this paper, and neither [START_REF] Miller | Twitter spammer detection using data stream clustering[END_REF] nor [START_REF] Miller | Anomalous network packet detection using data stream mining[END_REF] carry on a systematic evaluation of multiple algorithms as we do in this work.

Additionally, from a practical viewpoint [START_REF] Miller | Anomalous network packet detection using data stream mining[END_REF] requires continuous hyperparameter tuning and furthermore assuming prior knowledge of the percentage of anomalous packets -and cannot thus be readily deployed. In contrast, we make no assumption on the data and further propose principled and automated tuning methodology -that are robust to environmental condition changes.

Overview of clustering algorithms

We now provide background information on the clustering algorithms that we will be using as building blocks for our system in this paper. A summary of the algorithms compared in this work, is present in Table 4.1, along with their main hyperparameters. All the algorithms used in this work are explained in detail in Chapter 2. In particular DBScan and LOF batch algorithms are described in Section 2.6 while ExactSTORM, COD and RRCF stream algorithms in Section 2.7.

We point out that the ultimate goals of some of these algorithms is to perform clustering: so while this section briefly covers each algorithm, we defer to Sec. 5.3 a more formal description of our methodology to leverage clustering output for anomaly detection purposes. We introduce now wDBScan, a windowed version of DBScan previously used by [START_REF] Hernandez | Unsupervised Network Intruison Detection Systems: Detecting the Unknown without Knowledge[END_REF] and the DenStream algorithm which is the building block of our anomaly detection engine.

wDBScan is the windowed version of DBScan. Similar to [START_REF] Hernandez | Unsupervised Network Intruison Detection Systems: Detecting the Unknown without Knowledge[END_REF], the algorithm is applied to a batch of samples of length w at a time. When a new sample is available, the window advances by one step, removing the oldest sample and adding the newest one. Thus, in addition to DBScan's ✏

and MinP ts, it adds the window size w hyperparameter. The complexity of this approach then becomes O (w n log (w)).

DenStream is a clustering algorithm proposed by Cao et al. [START_REF] Cao | Density-based clustering over an evolving data stream with noise[END_REF]. It is an algorithm designed for data streams, which extends the density-based strategy introduced in DBScan making it viable for stream model construction. First of all, the algorithm uses a damped window model to weight the samples: older ones become less important than newer ones via a fading function

f (t) = 2 t , > 0 (4.1)
where is the aging hyperparameter. The main idea of the algorithm is the introduction of the so called micro-clusters (mc), i.e., group of close points p i1 , ..., p in with creation time stamps T i1 , ..., T in . A mc is defined as a (w, c, r) where w is the weight, c is the center and r is the radius of the mc. The weight w is given by the number of elements in the mc weighed by their generation time T ij with respect to the current time t: When a new sample is available, DenStream (i) merges it to the nearest core mc provided that the radius of the merged cluster does not exceed a given threshold ✏; otherwise, DenStream (ii) attempts to merge the point to the closest outlier mc, and (iii) a new outlier mc is finally created by the point if the merge fails.

w = n X j f (t T ij ) (4.2) Similarly, c = 1 w n X j f (t T ij )p ij (4.3) r = 1 w n X j f (t T ij )dist(c, p ij ) (4.
Not only mcs are easy to maintain incrementally at each new data point, but notice that model construction is a continuous process in DenStream: an outlier mc can indeed become a core mc when its weight increases as new points are added to it. Similarly a core mc becomes an outlier mc (and ultimately vanishes) if no new data points are added for long periods. The authors show that the minimal time span for a core mc fading into an outlier one is T p = 1 log( µ µ 1 ) therefore it is natural to check them every Tp time periods. Two offline phases can be found in DenStream:

Initialization and Generating Final Clusters. The authors propose indeed to obtain the initial mc as the output of DBScan applied to the first InitN points, called buffer, and then maintain them 

Testbed and Datasets

We study and compare the proposed method using publicly available datasets [6], we have gathered and released previously in [START_REF] Putina | Telemetrybased stream-learning of bgp anomalies[END_REF]. The datasets have been collected in a state of the art testbed, comprising tens of real routers, running real protocols and traversed by Tbps traffic (Sec.4.3.1). The testbed is used in several experiments where anomalous events are injected in randomly chosen nodes in a controlled fashion (Sec.4.3.2). In turn, these controlled anomalies affect the stream of telemetry features (Sec.4.3.3), as we illustrate for the sake of clarity (Sec.4.3.4).

Testbed

The dataset is extracted from a testbed replicating a traditional clos topology of a CSP datacenter shown in Fig. 4.1. For redundancy, each leaf is connected to each spine via 4⇥100Gbps fiber links, so that the nodes have 25 interfaces on average. On the operational level, the datacenter is designed with BGP as the only routing protocol, following guidelines in [START_REF] Lapukhov | Use of BGP for Routing in Large-Scale Data Centers[END_REF].

Though the testbed does not involve real users, it does use real equipment, protocols and applications typical of production networks. We thus disregard experiments collected under no traffic load (mostly useful for testing) and limitedly consider those where real application mixtures 

Data collection

Multiple experiments, listed in ). An interesting point is how to ensure that the synthetic anomaly injection process yields to outliers that retain similarities with anomalies found in the real-world. While a systematic quantitative evaluation of the anomaly injection process is outside the scope of this paper, it is possible to provide preliminary qualitative insights on this point. Notice that these synthetically injected anomalies represent the type of BGP anomalies that are typically found in real-data [START_REF] Green | Leveraging Inter-domain Stability for BGP Dynamics Analysis[END_REF]; additionally, such anomalies are injected by actioning on the protocol (e.g., automatically activating/deactivating links for flapping, purposely misconfiguring tables for leaks, and resetting tables for clears) as it would happen in case of real connectivity problem (flapping) or "fat finger" (leaks, clears), so to trigger real protocol reaction. As such, while the temporal patterns of the anomalies are likely unrealistic (i.e., since they are periodical and more frequent that what it can be expected) by separating anomalies by a long enough time, we can ensure anomalies are roughly independent, and as such should independently trigger alarms. Overall, the synthetic injection process is expected to provide a sufficiently realistic benchmark.

The working condition of the system is classified in two categories, i.e., normal vs anomalous. The system works by default in normal mode, and each experiment starts with a normal period (lasting at least 40 samples), after which controlled anomalous events are injected at randomized node locations. Depending on the dataset, the anomalies are injected by spacing them by 300 seconds or more and all of them are tracked in a ground truth database available in the same repository. The groundtruth file includes the root node in which the event is injected, the timestamp and the type. We point out that we do not leverage ground truth information to build our data-driven models (i.e., as one would to in case of supervised classification), but rather use ground truth only to assess the performance of the unsupervised methods.

Whereas the start time of the anomalous event is known, the event duration is not deterministic: the event injection triggers the BGP update process, after which BGP converges to a new stable state. We discuss with product line experts to set an expected event duration: based on expert knowledge related to both protocol dynamics (i.e., the convergence process of BGP), as well as business objectives (i.e., the ability to gather actionable alarms on a timescale interpretable by humans), network experts consider an event ended 3 minutes after its injection time.

Clearly, as any threshold that can be set arbitrarily, its tuning may impact algorithmic performance evaluation: for instance, setting a very short event duration (sub-minute) would raise several events that would be wrongly counted as "false alarms" (since BGP did not converge yet in practice); conversely, setting a too long duration (e.g., larger than the interval between two consecutive injections) could lead to superposed event. Based on properties of the injection process, and on our preliminary observations of the timeseries, we concur with experts that 3 minutes is an advisable event duration for this datasets also from the viewpoint of machine learning experts.

Telemetry features

The streamed KPI (aka features in machine learning terms) available in the testbed are a subset of the YANG [START_REF]The yang 1.1 data modeling language[END_REF] state of the devices, exported by GRPC to an inbound collector. In a nutshell, YANG models define a hierarchy (i.e., tree) of data that can be used for configuration, state sharing and notifications; in the model, each node has a name, and either a value or a set of child nodes. At the same time, it is worth stressing that the YANG hierarchy of devices in the testbed comprises over 378,000 lines, describing a hierarchy of over 45,000 features, with nearly 5,000 types pertaining to the BGP protocol alone. From a machine learning viewpoint, it would be counter-productive, due to the curse of dimensionality, to apply any clustering algorithm to such a highly dimensional data. Additionally, from a network-expert viewpoint, collecting and exporting features consumes CPU and bandwidth resources: as such, it is impossible to collect, for all nodes and interfaces, the totality of the supported features -which rules out the possibility to conduct classic "feature selection" algorithms. Product line experts configured the testbed to collect the most relevant control and data plane KPIs according to their domain knowledge, and we therefore take the resulting set of features (reported in Appendix A for completeness) as a given. However, it is well known that not all features are equally important in machine learning terms: by discarding constant or categorical features from the full set of available features, we finally extract a subset of 82 non-trivial features (reported in Appendix B for completeness).

Dataset at a glance

For the sake of clarity, we illustrate samples of the dataset in Fig. 4.2, to exemplify the types of KPI signals and anomalies present in the dataset from spatial and temporal angles. 

Spatio-temporal view

We start from a heatmap representation of the multivariate data collection in the top of Fig. 4.2: xaxis represent the time, y-axis represents different features whose values are encoded as colors.

To portray two different datasets and nodes, we select leaf1 and spine1 extracted from experiments E5 and E10. It is easy to observe that in E5, all the 12 BGP clear events have a noticeable impact on spine1 features, and to a smaller extent, on leaf1. While it is visually possible to distinguish the first four events in spine1, the same does not hold for leaf1: this happens since these events are injected in nodes that are directly connected with spine1 but are at 2 hops away from leaf1. Thus, leaf1 features are most noticeably affected when an event is injected in a topologically nearby node. Heatmaps on the right show that the events injected in E10 have even a less noticeable impact: link failures indeed impact only one (out of four) direct links between two nodes, and consequently only some of the features related to that particular link are affected, which can be hard to detect.

Temporal view

Events are more easily noticeable by considering a temporal view, on the bottom part of Fig. 4.2, that shows an example of CP (paths-counts) and DP (bytes-sent) features for spine1 in E5. The ground truth is represented with a vertical red line representing the anomaly injection time and a shaded window for the anomaly duration, and we depict only 3 out of the 12 injected events for the sake of readability. From these few examples, it can be expected that accurately detecting all events, from all nodes, can be a quite challenging due to the nature of the events, that can yield to weak signals for some nodes and anomaly type.

Methodology

Traditional clustering-based approaches, e.g. DBScan are mainly designed to produce clusters rather than detecting outliers or other types of anomalies, which is our ultimate goal. As such, in this section we first specify how we move from clustering to outlier detection Sec. 4.4.1. We next illustrate in Sec. 4.4-B/C the careful hyperparameter selection procedure we followed to ensure fair performance comparison in Sec. 4.5.

From clustering to anomaly detection

All the considered methods succeed in making a distinction between normal samples (belonging to a cluster) and outliers/noise. We further use these peculiarities to trigger anomaly detection for each algorithm. In particular, a sample is considered anomalous (i) by DBScan, if it cannot be merged to any cluster;

(ii) by wDBScan, if by adding it to the time-sliding window, it cannot be clustered together with the previous samples;

(iii) by LOF, ExactSTORM, COD and RRCF, if it is assigned an anomalous label (iv) by DenStream, if it is successfully merged to an outlier-mc, or a new outlier-mc needs to be created for that sample.

Note that the exact composition and size of clusters is affected by the algorithms hyperparamers: e.g., the minimum size of a cluster is either explicitly (e.g., as for DBScan via MinP T S, cfr. Sec.4.4.2) or implicitly specified (e.g., as for ODS, cfr. Sec.4.4.3)

For the sake of illustration, we report the pseudo-code (merging, promotion and pruning phases) of the DenStream algorithm, together with the proposed changes for label assignment in ODS (emphasised and between [square brackets]) in Algorithm. 2. In particular, we propose two major changes with respect to the original version of DenStream to be found in the initialization phase and in the offline clustering part. While, in the initialization phase (line 1), the original version of DenStream uses DBScan to obtain the micro-clusters and then start maintaining them incrementally, we cluster together the first S samples of the stream assuming they are event free

and not contaminated by anomalies. By doing so, we obtain a cluster of normal samples (normal working condition of the system). We remove, similarly, the offline part of DenStream (line 31) in which DBScan is applied to cluster together micro-clusters. Our goal is to find out if the samples, as soon as they are available, are normal or anomalous; we need so to know only if the samples can be merged to existing normal-mc or not. Instead, we do not need to group together different micro-clusters, which may represent different normal states, to obtain a macro cluster of normality. Other changes pertain to automated tuning, which we detail in Sec. 4.4.3. ✏ = 6 and MinP T S = 18. We also notice that F 0.5 changes quickly in ✏, and is slowly varying in MinP T S.

From the top right plot, we observe that the region for which LOF produces the best results are 0.06 < contamination < 0.07 while 20 < n neighbors < 30. We select contamination = 0.065 and n neighbors = 24 which is close to the default parameter (n neighbors = 20).

Heatmaps in middle plots clearly show that the window size need to be w > 70 for both wDB-Scan and ExactSTORM. In the wDBScan case though, we remark that the use of a smaller timehorizon affects the (MinP T S, ✏) heatmap so that the best selection appears to fall for MinP T S < 6 (much smaller that in the DBScan case) and ✏ ⇡ 9 (slightly larger than for DBScan). We select ✏ = 9, w = 80 and MinP T S = 3. We select R = 10, w = 95 and k = 2 for ExactSTORM.

Finally bottom plots show that R = 12.5, w = 50 and k = 5 are the best hyperparameters for COD while tree size w = 95 and contamination = 0.03 are the best ones for RRCF.

Hyperparameter selection (ODS)

We point out that, as reported in Tab. 4.3, the total number of hyperparameter explored is smaller [START_REF] Shyu | A novel anomaly detection scheme based on principal component classifier[END_REF] than in the other cases: this should provide not only a fair, but an expected conservative performance assessment of ODS performance. At the same time, since DenStream is less well known and ODS build on it, we present a more comprehensive explanation of its hyperparametrization. Particularly, we use ingenuity to:

(i) simplify hyperparameter selection by lumping factors whenever possible (as for µ + ), as well as (ii) proposing dynamic parameterless settings based on statistical properties (for ✏) and

(iii) resorting to grid search for the remaining ones ( , ).

Maximum weight µ +

The weight parameter µ is used jointly with the potential factor to decide when a given outlier mc becomes a new core mc (particularly, when w > µ ). Given the exponential fading function f (t) = 2 t , and considering a fixed-rate sampling as in our case, the maximum weight a micro-

cluster can reach is µ + = P j f (j) = 1 1 2
(since |f (t)| < 1 for > 0) which solely depends on .

By setting µ = µ + we therefore reduce the parameter cardinality, obtaining the new minimal time span for a normal cluster fading into an outlier one T p = d 1 log 2 ( 1 )e, obtained by the equation 2 T p µ + = µ + and the rule for outlier micro-cluster mc promotion becomes:

w > /(1 2 ) (4.5)

Radius threshold ✏

The radius threshold is the most important parameter of the algorithm as it delimits the anomalous threshold. On the one hand, one may suggest a fixed selection of the parameter, that is to compute it as the radius of the cluster obtained merging together the data of an experiment in which no anomalies are injected (i.e. E0 and E1 -baselines). This is the approach we originally followed in [START_REF] Putina | Telemetrybased stream-learning of bgp anomalies[END_REF]. At the same time, we argue that a fixed selection of the parameter introduces portability issues: as it is necessary to generate baselines for each possible combination of topology, traffic loads and BGP policies, this making the choice fragile and impractical. On the other hand, one could advocate for a dynamic selection of the parameter, that is automatically computed as the radius of the cluster obtained merging together the first S samples at the beginning of the model construction and keep updating the threshold as new samples are available. We follow this second path and dynamically set the radius threshold as:

✏(k) = r ± k r r (4.6)
where r is the incremental estimation of the radius mean while r is the incremental estimation [START_REF] Terriberry | Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights[END_REF] of the radius standard deviation, and k r an arbitrary parameter that allows to control (more precisely, upper bound) the false alarm rate. We observe from (4.3) and (4.4) that the radius has a gamma type distribution (as it is the square root of sums of positives values). Without further assumptions on the radius distribution, we use Chebyshev's inequality:

P r (|X µ| k )  1 k 2 , where k > 0 (4.7) 
which states that for a random variable with finite expected value µ and variance 2 , it is possible to compute a lower bound of the probability that values lie inside the interval (µ k , µ + k ). For example, for k = 3, the interval contains at least 88.89% of the population, upper bounding false alarm rate to at most 11%. We should stress that the bound is however not tight: to confirm this, we report in Fig. 4.4, the false positive rate (along with precision, recall, and F 0.5 ) as a function of k r , which is extremely low already for k r > 2. To conservatively evaluate ODS, in the following we set k r = 3.

Fading and Potential factors

Both and have a physical interpretation and play a key role in the model construction. is a time-related parameter that tunes the timescales at which old samples should be considered as totally independent from the current system state. Once is fixed, the potential factor has a geometric interpretation, as it determines the minimum number of samples needed for outlier mc promotion to core mc. We point out that a domain expert could be tempted to select and according to physical properties of the network, whereas a machine learning expert would select and as a result of data analysis and a grid search procedure. We adopt both viewpoints in what follows. For instance, a network domain expert could decide to require that an outlier mc should have at least 3 samples before becoming a normal mc and set according to the expected convergence time of the BGP protocol. For example, choosing such that a sample's contribution decays 99% after 5 minutes means 2 •60 = 10 2 or ⇡ 0.111 while the promotion threshold, requiring at least 3 samples, is

• µ + = P 3 1 i=0 2 i ⇡ 2.78.
We perform a grid search to question these choices, reporting in Fig. Second, performances degrades for both increasing and . A too high decay factor leads to giving too much importance to the most recent samples while a too high , instead, translates in a too high weight threshold. We select = 0.125 and = 0.4. Notice that with = 0.125, µ + ⇡ 12 and for 0.2 < < 0.5 the weight promotion threshold ranges from 2.4 < • µ + < 6 which translates in clusters whose weight is composed by at least 3 to 8 samples and which are in line with the expert domain choices. These findings confirm that indeed the hyperparameters of the algorithm respect their physical interpretation and can be set accordingly.

A last remark is worth making: while we have seen that performance smoothly varies on and , we point out that their selection is still primarily correlated with the telemetry sampling rate: as such, for very different sampling timescales (eg. subsecond or minutes), a new sensitivity analysis is recommended.

Performance evaluation

We now carefully compare the methods, using the hyperparameters selected in the tuning phase on datasets (E2, E3), on previously unseen datasets (E5, E9, E10). We start by illustrating one example of execution of the system in Sec. 4.5.1. We systematically compare performance of the algorithms in terms of several information retrieval metrics in Sec. 4.5.2. We finally contrast algorithms in terms of complexity and execution times in Sec. 4.5.3.

Model evolution over time

To better illustrate intrinsic differences of stream-learning vs batch algorithms, we portray the evolution of two sample models. In particular, we select ODS and the windowed version of DBScan (wDBScan) and depict their anomaly detection processes with the help of Fig. 4.6, using the initial portion of dataset E5 as an example. In particular, we ought to recall that whereas in the ODS case a single model evolve over time, in wDBScan each of the different windows yield to a different model. In other words, in ODS model evolution over time is smooth by design, whereas in wDBScan the similarity between outputs of models that are run on consecutive input windows, merely stem from similarity in the input data, as the time component is not otherwise explicitly exploited. In spite of the above difference, it is possible to resort to consistent visualization of the main inner state of these algorithms, such as the number of normal vs outlier clusters, their radius size and center position, etc. that are reported in Fig. 4.6.

In wDBScan, each time the algorithm is run, a unique increasing ID is assigned to each cluster, starting every time from 0: each sample is assigned the ID of the cluster it is merged to, and the value -1 is reserved for outlier clusters. In ODS, a unique increasing ID is assigned to each newly generated normal-mc, and a separate ID space is similarly used to track outlier-mc clusters. Each sample is then assigned the ID of the cluster it is merged to, and differently from wDBScan, ID is not reset across runs.

Plots in the top row of Fig. 4.6 depict the time evolution of the number of normal vs outlier clusters present in the window (wDBScan) or of the number of normal-mc vs outlier-mc (ODS).

We observe that, after the initialization phase, both the models are composed by a single normalcluster and no outlier ones. It is easy to observe that, in correspondence to the anomaly injection periods, the number of outlier clusters increase as expected.

The second plots row represents the ID of the clusters the samples are merged to. We observe that in both the models most of the samples are assigned a normal ID (generating a horizontal line). When an event is injected, algorithms flag samples as anomalous (red dots). In the case of ODS, outlier clusters may get promoted into normal clusters (which is visible, e.g., toward the end of the first event), whereas the old clusters are pruned over time due to the fading function.

The third and fourth rows illustrate the radius and the weight of the normal clusters respectively. One can easily observe from these plots the main differences in the model evolution of the two methods. On the one hand, after the injection of the first event, wDBScan generates a small cluster composed of 5 samples but, as soon as BGP convergence is achieved, returns merging new samples to the original cluster. The newly generated cluster, together with the anomalous samples, continue to be part of the model, even if not used for any purpose: i.e. no new samples are merged to the generated cluster as evidenced by the label ID (2nd plot), by the constant radius (3rd) and weight (4th) and also from the constant center (5th and 6th), which holds until they are excluded from the window. On the other hand, ODS removes old clusters (see the steady decrease of the weight of the cluster before pruning) and updates new ones (see the fast increase of the weight of the cluster after promotion) much more promptly than wDBScan.

The fifth and sixth rows show the first and second center components respectively, extracted through simple Principal Component Analysis (PCA) whose eigenvalues represents approximately 94% (wDBScan) and 77% (ODS) of the center. The two methods clearly behave differently: while ODS generates a new normal cluster (notice the pruning/promotion in the fourth row) in the region of the new working condition, wDBScan slowly drifts towards the latter. This effect depends on the hyperparameters ✏ and w whose modification would however lead to a decrease in wDBScan performance (recall Fig. 4.3).

Detection Performance

For validation, we rely on a set (E5, E9, E10) of experiments that are independent from those used for tuning (E2, E3), and are additionally well suited to stress test generalization capabilities of the studied methods. In particular, E5 is very similar to the tuning ones both in terms of traffic load (1 Tbps) as well as anomalies (BGP leaks) so it allows one to test the performances of the models in scenarios similar to those of the tuning phase. E5 thus constitutes a good stress test of the generalization capabilities of the selected hyperparameter.

E9 and E10 instead undergo different traffic loads (2.9 Tbps and 2 Tbps respectively) as well as different injected anomalies (Port Flaps caused by interface shutdown from terminal and link failures caused by fiber pull respectively). The latter ones allows thus one to test the performance of the models in scenarios very different from those used in the tuning phase. Additionally, while the events injected in E5 are severe ones and affect the operational status of an entire node (i.e.

the node losses all the BGP tables and is no longer able to forward data on all the interfaces) and all the direct neighbors, the events in E9 and E10 affect a single interface which results in the loss of only one out of the four links between two nodes. We expect a mitigation of the effects produced in the network by the anomalies injected in E9 and E10 and for this reason we expect not all the nodes to detect the events. E9 and E10 constitutes a good stress test of generalization capabilities of the algorithm.

We compare algorithmic performance using several information retrieval metrics, notably Precision, Recall and F 0.5 score in Fig. 4.7 and Accuracy, Markedness and Informedness in Fig. 4.8.

We report the mean and confidence interval of each metric for the 7 algorithms tested, explicitly contrasting tuning (light opacity, background bars) and testing datasest (full opacity foreground bars). The information is additionally tabulated in detail in the figure, and an explicit annotation of the algorithm rank (limited to stream algorithms) for each metrics is additionally reported to ease interpretation of the results.

From a high-level viewpoint, considering the testing datasets we observe that RRCF stand out as being ranked 1st on four metrics (Recall, F 0.5 , Accuracy and Informedness) -which makes it a very good choice. ODS instead stand out as the only algorithm being systematically ranked 2nd or 3rd on all 6 metrics -which makes it a robust choice.

In more details, we observe that the hyperparameters selected in the tuning phase yield to reasonably good performance in the test datasets as well, albeit performance diminish for all methods. This behavior is expected, as we know already E9 and E10 contain anomalies which In summary, RRCF and ODS appears to be a first and second choice respectively as for detection performance are concerned. Additionally, RRCF and ODS both appear to limit discrepancy with respect to the tuning phase, hinting to the fact that their hyperparameters hardly fall into overfitting. Interestingly, RRCF and ODS stand at opposite sides in the recall (RRCF is top-1) vs precision tradeoff (RRCF is not even in the top-3), which makes both of them interesting options.

For instance, in the case of ODS, precision could be traded for recall decreasing k r , however this would increase the number of false alarms, which is not desirable in operational settings in our opinion, as otherwise alerts are unreliable and would thus simply be ignored. To further appreciate the differences between RRCF and ODS, we additionally contrast further metrics such as Precision@K, area under the received operating characteristics curve (AUC) and average precision (AP) in Tab.4.4. From the comparison it emerges clearly that RRCF and ODS are practically indistinguishable for (at least) the top-5 events in each datasets, as shown by the Precision@3 and Precision@5 metrics, with RRCF exhibiting a better average precision over the whole set of anomalies.

Computational Complexity

With respect to SNMP polling in periods of 5 minutes, the 5 second sampling rate in the dataset considered in this work constitutes a 60⇥ increase in the data velocity. ical releases will reduce the sampling period further (to subsecond timescales), a major limiting factor will be then represented by the processing capabilities of the device and collectors. Under this angle, it is clear that computational complexity is of uttermost importance from a deployment perspective.

Yet, most of the well known methods used today in the literature are in large part unsuitable to process data fast enough both because they are computationally complex and have heavy resources requirements. In this section we experimentally measure the time complexity of stream vs batch algorithms. We replicate E5 100⇥ times, obtaining a stream composed by approximately 150K samples: by varying the length of the stream, we study the execution time trend of each numpy 1.19.1 [START_REF] Oliphant | A guide to NumPy[END_REF], pandas 1.05 [START_REF] Mckinney | Data structures for statistical computing in python[END_REF] and scikit-learn 0.23.1 [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. We use moreover RRCF's python implementation 0.4.3 present at [START_REF] Bartos | RRCF: Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams[END_REF].

Fig. 4.9 reports as a function of the stream length, the total execution time (top) and the average processing time of a single instance (bottom). ODS is the fastest one due to its linear complexity followed by ExactSTORM, COD, wDBScan, LOF and DBScan. DBScan is the one demanding most resources and reaches the memory limit for streams longer than 60K samples.

The bottom plot shows the processing time per instance. While DBScan and LOF show increasing processing time per instance per increasing stream size, stream algorithms process the data in fixed amount of time per instance. Even by restricting our attention to stream algorithms only, ODS stands out as being significantly faster than the others, followed by ExactSTORM The plot is annotated with semi-planes to better highlight the desirable corners of the design space: ODS sits at an interesting operational point for being significantly faster than all the algorithms tested and second only to RRCF in terms of information retrieval metrics (F 0.5 in this plot).

(2⇥slower), COD (10⇥), wDBScan (13⇥) and RRCF (550⇥). By comparing the processing time and the sampling rate it is possible to establish an upper bound of the maximum sampling rate.

Observing that the elapsed time per-sample is roughly 0.20 ms, our released ODS Python implementation is able to process approximately 5000 samples per second. Conversely, RRCF execution time requires about 100ms per sample, which caps its processing rate to at most 10 samples per second.

We summarize the complexity vs detection performance tradeoff in Fig. 4.10 as a scatter plot of the execution time (in second, on the x-axis) vs the F 0.5 score performance (y-axis). Note that we use xyerrorbars, but the execution times confidence interval is very tight, and thus not visible due to the logarithmic x-axis scale. The plot is annotated with semi-planes (split so to halve the x-axis and y-axis ranges), to better highlight the desirable corners of the design space:

top-left corner indicates algorithms that are both fast and good (green shading), whereas top-right corner indicates good but slow algorithms (yellow shading), bottom-left indicates fast but poorly performing algorithms (yellow shading) and finally bottom right indicates slot execution and poor performance (red shading). The picture clearly show that ODS sits at an interesting operational point for being significantly faster than all algorithms tested, and second (but nevertheless very close to) only to RRCF in terms of information retrieval metrics (as per Tab.4.4).

Discussion

We have contrasted a number of clustering methods for anomaly detection in networks. Whereas results testify stream-based approaches to be of interest, we aim at discussing here limitations and caveats to avoid pitfalls in their deployment.

Contextual anomalies. First, DenStream and consequently ODS are based on euclidean distances. We expect ODS to work on anomalies constituted by points far in the space, from the normal clusters and under no circumstances we do expect it to be able to detect contextual anomalies (e.g., such as absence of a periodic peak in a periodic signal). This suggests that techniques such as those studied here, should be complemented by others shall contextual anomalies be relevant in the deployment scenario.

Curse of dimensionality.

The algorithm presented is of course not immune to the curse of dimensionality. This is likely to happen in practice whenever one would attempt to build a single model, aggregating several nodes and features per node. At the same time, model execution is extremely lightweight, which would allow to run multiple models in parallel, either at node-level (reducing communication complexity, but possibly missing events not detectable from internal measurements) or at feature-subset level (which would require some amount of communication between nodes, but possibly exploiting correlation among features at neighboring nodes).

Hyperparameters tuning. We have observed that hyperparameter tuning can lead to overfit, making deployment of unsupervised techniques difficult in practice, especially for methods whose hyperparameters are closely related to the dataset (e.g. contamination in LOF or ✏ neighborhood in DBScan).

Instead, even though DenStream (and thus ODS) relies on four hyperparameters, we have seen that it is possible to reduce their number by lumping some (e.g. by setting µ = µ + ) and by dynamically setting others (e..g, so that the radius threshold ✏ = r + k r r contains the bulk of the radius distribution).

At the same time, the fading factor (reduces gradually the importance of the samples) and the potential factor (delimits the size of a normal cluster) must be selected with care. In particular, they are indeed bounded by w > /(1 2 ) and therefore must be set taking into account their relationship and physical interpretation. For example, once is set, choosing a too high could lead to the degenerate case in which the weight threshold is too high, and the model fails to build and maintain normal-mcs.

Autonomicity level ODS is not intended to completely replace a human network operator, but on the contrary it is a tool designed to facilitate his job. For instance, while ODS can update the model over time, it has to be initialized by a conscious operator, providing anomalous-free samples at at bootstrap. In turn, while ODS operates in the unmodified feature domain, there is a further need of explainable attention focus mechanisms [1] to let the human operator focus on the important features that triggered an event detection, an aspect orthogonal to our work.

Conclusion

The Our results show that despite ODS is apparently plagued with several hyperparameters inherited from DenStream, their selection is quite straightforward, and performance are robust to inner hyperparameter selection. Additionally, ODS is significantly faster than any of the tested algorithms, and second only to RRCF (yet very close to it) in terms of detection performance.

Overall, the above results suggest ODS as a particularly lightweight and suitable algorithm for stream-mode real-time network anomaly detection.

Available features

The available features are uniquely identified via their full YANG name, which in turn derives from the concatenation of an an EncodingPath with a Leaf among the available ones for that path (Leafset). Tab. 4.5 reports the full list of features used, that can be ascribed to either Data Plane (DP), for EncodingPaths matching infra-statsd-oper and fib-common-oper categories, Chapter 5

AutoAD

In this chapter we describe autoAD an automated unsupervised Anomaly Detection framework which selects for a given unlabeled dataset the best performing model, as well as its optimal configuration for its hyperparameters. We analyze the most recent studies of automated anomaly detection in Section 5.2 and introduce the proposed strategy in Section 5.3. The evaluations are done in Section 5.4 while a summary of our finding and remarks are given in Section 5.5.

Introduction

Over the last decade, we witnessed the proliferation of several machine learning algorithms capable of solving different tasks for the most diverse applications. Often, for an algorithm to be effective, significant human effort is required, in particular for hyperparameter tuning and data cleaning. Recently, there have been increasing efforts in alleviating such a burden, with the goal of making machine learning algorithms easier to use for researchers with varying levels of expertise. Nevertheless, the question of whether an efficient and a fully generalizable automated Machine Learning (autoML) framework is possible remains unanswered. We present autoAD, an autoML framework for unsupervised anomaly detection. By leveraging a pool of different anomaly detection algorithms (called ensemble), each one coming with its own hyperparameter search space, our framework automatically selects the best performing approach, while determining an optimal configuration for its hyperparameters on a given dataset. Our extensive experimental evaluation, conducted on a rich collection of datasets, shows the substantial gains that can be achieved with autoAD compared to existing autoML methods such as SelectV, BoostSelect and the Naive method.

Often, to unravel the full potential of machine learning, some human expertise and domain knowledge are required in order to select the most effective algorithm, to tune its hyperparameters, as well as to perform data cleaning (feature selection, dimensionality reduction, etc.). This is often a tedious and non-trivial task for researchers with all levels of expertise. To alleviate such a burden for researchers, several techniques have been proposed under the automated Machine Learning (autoML) research direction [START_REF] Brazdil | Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results[END_REF][START_REF] Hutter | Automated machine learning[END_REF]. One of the goals of autoML is to select the most effective model and its best configuration for its hyperparameters, on given a dataset.

Currently, most efforts in autoML are devoted to supervised machine learning, with very few studies dealing with unsupervised tasks. Recently, [START_REF] Rayana | Less is more: Building selective anomaly ensembles[END_REF] proposed a method called Vertical Selection (SelectV) that exploits correlation analysis among scores from different methods to select the best algorithms. SelectV first unifies the scores of all the considered methods into a unique target vector (treated as pseudo ground-truth). Subsequently it builds a new ensemble containing the methods that better correlate to target. [START_REF] Campos | An unsupervised boosting strategy for outlier detection ensembles[END_REF] extends the correlation analysis introduced by SelectV using a boosting strategy and present BoostSelect. Their idea is to perform boosting (change weights into the correlation analysis) upon the inclusion of a new member into the ensemble. BoostSelect tries to reduce the importance of those instances (outliers) that have already been identified by any ensemble member to promote diversity among chosen methods.

Such methods however are limited by their initialization: the unification of the scores into a target vector. Consider, for example, an ensemble composed mostly by poorly performing models with only a few well performing ones. In such a scenario the target is composed largely by poorly performing methods. As a result, the well performing algorithms weakly correlate to the target and might be discarded into the correlation analysis. As a consequence we observe that, in this scenario, the Naive ensemble (all methods are equally weighted) outperforms both SelectV and BoostSelect. Moreover, as stated by the authors, BoostSelect performance strongly depends on the choice of the input hyperparameters on some datasets.

To tackle the aforementioned limitations, we propose autoAD, an automated unsupervised Anomaly Detection framework which selects for a given unlabeled dataset the best performing

Related Work

The performance of a given machine learning method depends on the quality of the algorithm as well as its hyperparameterization, a task which is sometimes difficult to fix to the optimal values.

AutoML [START_REF] Brazdil | Ranking learning algorithms: Using ibl and meta-learning on accuracy and time results[END_REF][START_REF] Hutter | Automated machine learning[END_REF] is a new topic that supports researchers and practitioners with the tedious work of manually designing machine learning pipelines, which include performing algorithm selection and tuning hyperparameters. AutoML can be also viewed as the process that makes machine learning easier by avoiding manual hyperparameters tuning for both machine learning experts and non-experts.

Supervised Automated Machine Learning

This very hot topic has attracted several researchers during the recent years due to the importance of its application. In fact, the basic autoML algorithms have been initially proposed for the supervised learning and are discussed in recent surveys on autoML and its open challenges [START_REF] Elshawi | Automated machine learning: State-of-the-art and open challenges[END_REF][START_REF] Feurer | Hyperparameter optimization[END_REF][START_REF] He | Automl: A survey of the state-of-the-art[END_REF]. Examples of well-known autoML approaches are (i) irace [START_REF] Ópez-Ib Á Ñez | The irace package: Iterated racing for automatic algorithm configuration[END_REF] that uses an iterated racing procedure where the worst configurations are replaced by new ones for each iteration (race); (ii) SMAC [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF] that performs a Bayesian optimization in conjunction with a simple racing mechanism on the instances to efficiently decide which of two configurations performs better; and (iii) ParamILS [START_REF] Hutter | Paramils: an automatic algorithm configuration framework[END_REF] which is based on an iterated local search that starts by evaluating the default and some other configurations on a subset of instances, then the best configuration will be maintained and tested on a different subset of data.

Throughout the last five years, multiple tools and systems have been developed which serve autoML [START_REF] He | Automl: A survey of the state-of-the-art[END_REF][START_REF] Jin | Auto-keras: An efficient neural architecture search system[END_REF][START_REF] Komer | Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn[END_REF]. For instance, Auto-Sklearn1 [START_REF] Feurer | Autosklearn: efficient and robust automated machine learning[END_REF] and Auto-WEKA2 [START_REF] Kotthoff | Auto-weka 2.0: Automatic model selection and hyperparameter optimization in weka[END_REF] which are two automated systems that have been implemented on top of the well-known machine learning softwares scikit-learn and WEKA, respectively. These tools and techniques exclusively deal with supervised methods where ground truth labels are used during the model selection and the hyperparameters tuning processes.

Unsupervised Automated Machine Learning

For what concerns unsupervised methods for automated anomaly detection we observe two different branches in tackling such problem. On one hand previous works have investigated the use of meta-learning [START_REF] Vanschoren | Meta-learning: A survey[END_REF][START_REF] Burnaev | Model selection for anomaly detection[END_REF][START_REF] Zhao | Automating outlier detection via meta-learning[END_REF] techniques. Such methods, start by extracting meta-data from the datasets and then, given a test dataset, search for the most similar dataset and its corresponding best performing algorithm. Meta-learners thus require a collection of historical anomaly detection datasets and historical performances of the models on such datasets to map models with metadata.

On the other hand, completely unsupervised strategies for anomaly detection do not require any training phases or labels. Both the strategies have pros and cons: on one hand meta-learners are extremely fast as they require an offline tuning phase which is not critical and an online prediction phase in which meta-data is extracted from the test dataset. However, such methods might suffer when used on test datasets with relatively low similarities with respect to training datasets.

Moreover, collecting new datasets and labels could result to be expensive in terms of human effort. On the other hand, completely unsupervised methods are very slow compared to metalearners. They require indeed to run all the algorithms on the test dataset, process outputs and aggregate results. However, being completely unsupervised they do not require prior training and could perform well also on unseen datasets. In this study we consider only completely unsupervised models leaving unsupervised vs meta-learning comparison for future work.

Among the completely unsupervised strategies for automated selection of methods and hyperparameters we cite SelectV and BoostSelect. They are both based on correlation analysis of the output scores.

Vertical Selection (SelectV) [START_REF] Rayana | Less is more: Building selective anomaly ensembles[END_REF]: Selects the ensemble components through correlation analysis among the score lists from different methods. Given a set of anomaly score lists S, SelectV first averages the probability scores across lists to construct a target vector, known as pseudo ground-truth. Subsequently, it initializes a new ensemble E with the list l 2 S that has the highest weighted Pearson correlation to target. In computing the correlation, the weights used for the list elements are equal to 1 r , where r is the rank of an element in target when sorted in descending order, i.e., the more anomalous elements receive higher weight. Next, SelectV sorts the remain- Given the input dataset and the set of algorithms with their corresponding predefined search space, we apply separately each method, as the combination (A i , P j i ). Once we finish processing each of the method, we rank the output anomaly scores (as shown in the first green column cells) in order to remove (rm) the top-N anomalous instances. We therefore evaluate (eval) the performance of each method using a quality measure, , on the remaining normal instances. We assign to each method a weight proportional to its performance. Hence, the final anomaly scores are computed based on the initial scores and the weight assigned to each method.

An effective automated framework for unsupervised anomaly detection should be composed of a set of different unsupervised detectors with distinct configurations. The proposed autoAD framework consists in four key steps: (i) application of the anomaly detection algorithms where each one outputs the anomaly scores of instances given a dataset; (ii) removing the top N anomalous instances, i.e., instances with the highest anomaly scores; (iii) assigning a weight to each algorithm using a given evaluation metric; and (iv) obtaining the final anomaly scores for each instance. An overview of autoAD is given in Fig. 5.1.

Application of Anomaly Detection

Each outlier detection method in our automated framework is composed of the algorithm and its hyperparameter configuration. Let (A, P) be the method M that uses algorithm A with hyperparameters P. We define M the set of methods which is composed of k = |M| combinations of each algorithm tuned with each of its corresponding hyperparameter as follows:

M = M 1 , M 2 , • • • , M k = (A 1 , P 1 1 ), (A 1 , P 2 1 ), ..., (A n , P m n ) 8A i 2 A, P j i 2 P,
where A is a set of anomaly detection algorithms and P is a set of predefined hyperparameters 100 for the algorithms. Each algorithm A i is used with a different hyperparameter configuration j in our framework.

Given an input unlabeled dataset, each method in the set M, (A i , P j i ), is simultaneously used to build a model and accordingly compute the output anomaly score of each instance.

In the following steps, we gradually present our key strategy in evaluating unsupervised detectors in a fully unsupervised way that mostly corresponds to performance in terms of AUC/AP criteria (see empirical studies in Section 5.4). In this framework, we used several algorithms discussed in Section 2.6 such as Random Histogram Forest (RHF) [START_REF] Putina | Random histogram forest for unsupervised anomaly detection[END_REF], Isolation Forest (ISO) [START_REF] Liu | Isolation forest[END_REF], Probabilistic Principal Component Analysis (PPCA) [START_REF] Tipping | Probabilistic principal component analysis[END_REF], Histogram-based Outlier Score (HBOS) [START_REF] Goldstein | Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm[END_REF], K-NN [START_REF] Angiulli | Fast outlier detection in high dimensional spaces[END_REF] and Local Outlier Factor (LOF) [START_REF] Breunig | Lof: Identifying density-based local outliers[END_REF] obtaining so A = {RHF, ISO, P P CA, HBOS, K NN}. More algorithms can be easily added with their hyperparameters' space to our autoAD framework.

Anomalies Removal

Anomaly algorithms assign a score to each instance in a given dataset that can be used to rank instances depending on their level of outlierness, i.e., the anomalies are ranked before the nonanomalous instances (the most anomalous instance has the biggest score and is ranked first).

Algorithm 3 presents the pseudocode of how we remove anomalies. In fact, the score result obtained from each method in autoAD will be ranked from the highest to the smallest one (line 1, Algorithm 3). In this work, we propose a quality measure that does not require data with Algorithm 3: AnomaliesRemoval(X, ms i , R) Input: X : dataset ; ms i : anomaly scores of method i; R: list of N -top ranked instances to remove drawn from U (0, 10%)

Output: Quality measure i 1: Ranks = SortRank(ms i )// Sorted instances according to their anomaly scores in descending order 2: i = 0 3: for all N 2 R do 4:

X f iltered = filter(X \Ranks[1:N ]) // Remove top N most anomalous instances from X

5:

i += QualityMeasure(X f iltered ) // Compute the quality measure on the filtered dataset and aggregate over R 6: end for 7: return i known labels. This evaluation strategy starts by removing the top N anomalous instances and evaluates the remaining "normal" instances using a quality metric. Some questions naturally arise: How many instances of the top ranked ones are actually anomalies? and how can we fix N ? This can be tricky as it involves a hyperparameter that controls the number of anomalies. In the unsupervised context, we assume that the right percentage of anomalies in a given dataset is unknown. An envisaged solution to answer these questions consists in picking a random value N = U (0, 10%), and removing the N top ranked instances, where N is between [0, 10%].

To avoid picking an unreasonable value, this process is repeated r = 100 times (line 3, Algorithm 3), i.e., we do 100 runs and randomly select N for each time. In the end, we average the results of the different runs to appropriately capture the anomalies.

Once we remove the N -top ranked anomalies (line 4, Algorithm 3), we separately compute the performance of all the methods (line 5, Algorithm 3) using a quality measure , such as variance or Error Sum of Squares (SSE), on the remaining -supposed to be -normal non-anomalous instances, as depicted in Fig. 5.2. The final value of , for each method in our autoAD, is used to normalize the instances' score obtained in Section 5.3.1.

Quality metrics.

Several quality metrics can be defined and used in the autoAD framework.

As there are many types of anomalies (e.g., global, local or contextual), it is possible to design quality metrics whose goal is to target a particular kind of anomalies. In this work we focus mainly on global anomalies that usually lie in the tails of the data distribution. Starting from these characteristics, we define two quality measures that serve the automated method to understand which method better compresses the data after removing the N -top ranked instances.

SSE:

The simplest measurement one can compute on the -supposed to be -normal instances is the SSE. The method whose SSE measurement is the smallest have to be considered the best as it better compresses the data after removing the anomalous instances. By computing such a measure, we assume that normal instances are drawn from a unique cluster (not always true).

Moreover, SSE can be weak when dealing with high dimensional datasets. mnist, shuttle, mulcross and some extracted from the KDD99 dataset. Table 5.1 presents a brief summary of the datasets used.

Methods and Hyperparameters

In our approach autoAD, we use RHF, ISO, PPCA, HBOS, LOF and K-NN algorithms as the main anomaly detection engines. As RHF and ISO have consistently proven to be one of the most effective algorithms for unsupervised anomaly detection [START_REF] Putina | Random histogram forest for unsupervised anomaly detection[END_REF][START_REF] Domingues | A comparative evaluation of outlier detection algorithms: Experiments and analyses[END_REF][START_REF] Emmott | A meta-analysis of the anomaly detection problem[END_REF] 

Results

All the findings in this section are reported as a result of 30 independent runs for each of the considered strategies: Naive, SelectV, BoostSelect and the AnomaliesRemoval function discussed and presented in Algorithm 3.

We first show in Table 5.2 a summary of the results achieved by autoAD using the two quality metrics SSE and VAR versus Naive, the second best performing method. Table 5.3 reports subsequently a full comparison of all approaches and datasets considered indicating the mean AP score complemented with a 0.95 confidence interval. The best method is awarded using the two sample Kolmogorov-Smirnov test (↵ = 0.05) [START_REF] Smirnov | Table for Estimating the Goodness of Fit of Empirical Distributions[END_REF] under the null hypothesis that the two distributions are identical while the Welch's two-tailed t-test [START_REF] Welch | THE GENERALIZATION OF 'STUDENT'S' PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED[END_REF] is used to test if they have the same mean.

From Table 5.2 we observe that both SSE and VAR quality measures produce a median gain of 18% (SSE) and 23% in terms of AP with respect to Naive, the second best strategy. Considering, on one hand, the datasets in which the proposed method is better than the Naive one, we observe a median AP gain of at least 28% (SSE) up to 36% (VAR). On the other hand, when the latter performs better that autoAD the median AP loss is limited to less than 2%.

Such gains and losses have to be found in Table 5.3 which reports the results for each dataset and strategy. For example, in the kdd99 dataset, Naive, BoostSelect and SelectV strategies reach a very close AP score of 0.594 ± 0.005, 0.559 ± 0.011 and 0.606 ± 0.005 respectively while both autoAD-SSE and autoAD-VAR improve the scores to 0.756 ± 0.011 and 0.808 ± 0.009 respectively.

Similar results can be observed in the mulcross dataset in which the first three strategies obtain autoAD-SSE autoAD-VAR

Naive

SelectV BoostSelect ionosphere 0.808 ± 0.001 0.809 ± 0.001 0.801 ± 0.001 0.803 ± 0.002 0.789 ± 0.005 wbc 0.583 ± 0.004 0.585 ± 0.005 0.595 ± 0.004 0.593 ± 0.004 0.571 ± 0.01 arrhytmia 0.461 ± 0.003 0.456 ± 0.003 0.454 ± 0.003 0.455 ± 0.003 0.454 ± 0.005 cardio 0.582 ± 0.004 0.578 ± 0.004 0.574 ± 0.004 0.576 ± 0.005 0.56 ± 0.007 musk 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.999 ± 0.001 satellite 0.648 ± 0.002 0.647 ± 0.002 0.663 ± 0.002 0.656 ± 0.003 0.676 ± 0.003 satimages 0.925 ± 0.001 0.926 ± 0.001 0.936 ± 0.001 0.935 ± 0.002 0.902 ± 0.019 mnist 0.326 ± 0.004 0.326 ± 0.004 0.324 ± 0.004 0.338 ± 0.008 0.336 ± 0.007 shuttle 0.954 ± 0.001 0.952 ± 0.001 0.966 ± 0.0 0.951 ± 0.005 0.97 ± 0.002 smtp29 0.973 ± 0.001 0.972 ± 0.001 0.982 ± 0.0 0.971 ± 0.004 0.977 ± 0.003 http distinct 0.585 ± 0.008 0.641 ± 0.009 0.649 ± 0.01 0.626 ± 0.029 0.015 ± 0.002 mulcross 0.813 ± 0.007 0.819 ± 0.006 0.635 ± 0.007 0.637 ± 0.013 0.712 ± 0.019 cover 0.057 ± 0.001 0.057 ± 0.001 0.054 ± 0.001 0.068 ± 0.003 0.053 ± 0.002 http logged 0.961 ± 0.001 0.964 ± 0.001 0.962 ± 0.001 0.954 ± 0.008 0.798 ± 0.062 once more similar AP scores of 0.635 ± 0.007, 0.712 ± 0.019 and 0.612 ± 0.007 respectively while the proposed methods raise them to 0.813 ± 0.007 and 0.819 ± 0.006 respectively.

kdd99
On the contrary, when autoAD-SSE and autoAD-VAR perform worse than the competitors the losses are very limited. For instance, the Naive method is the best performing method on the smtp29 dataset (0.982 ± 0.001) while autoAD-SSE (0.973 ± 0.001) and autoAD-VAR (0.972 ± 0.001) are only 1% worse. Similarly, losses are contained on satellite (2%), satimages (1%), shuttle

(1.2%) and wbc (1%).

We observe that overall the Naive method is on par (or slightly better) with performances generated by SelectV and BoostSelect. This is an expected behaviour as these two strategies generate an initial target vector aggregating the results of all the methods considered. As a consequence, the correlation analysis selects methods that are average-performing ones. Our strategy instead independently weights each method (based on evidence of dispersion) and results are not influenced by other methods in the initial ensemble.

To understand such improvement, we study the impact of our main hyperparameters, the number of removals r and the number of methods k, on the precision performance. Fig. 5.3 shows how the AP score fluctuates when changing r on three datasets. We notice that when r increases (where we remove the instances with the highest anomaly scores), the AP score increases accordingly. That is an expected behavior similar to ensemble-based methods where several weak learners are more accurate than a single one. We set r = 100 as it is commonly used in ensemble models.

In Fig. 5.4, we present the autoAD results in terms of precision while increasing the number of methods used in our framework. We remark that the overall precision tends to be as good as the best method in the ensemble even when only few methods are used. For instance, autoAD performs as good as ISO@2564 (best method) when the first four methods are used. By further growing the number of methods, the space of choices broadens and the model starts showing results better than any single method.

Quality measures. The overall unsupervised quality metric plays a key role in the weighting phase. A good correlation between the latter and the average precision is therefore desirable for the autoAD to produce satisfying results.

We report in Fig. 5.5 two examples on kdd99 and mulcross datasets showing the assigned weight w, the AP score for each method used and its quality measure . The methods are ordered according to the quality measure in decreasing order. Taking a deeper look at Fig. 5.5 (a)

and (b) with the kdd99 dataset, one can notice that the worst performing method, i.e., ISO@32 with an AP=0.17, is also the one that produces the worst result in terms of the quality measure , where the weight w = 0. By looking at the quality measure plot from left to right, we observe that decreasing values (and thus higher weight w) correlate with increasing AP scores. Similar result Interestingly, we remark a contradictory pattern when comparing the weights assigned to each method. For example, with the kdd99 dataset, we obtain better precision when we increase the sampling hyperparameter . The worst result is thus achieved by ISO@32 while ISO@4096 gives the best performance. Opposite results were obtained with the mulcross dataset, where ISO@4096 is the worst and ISO@32 is one of the best performing methods.

Scalability Analysis.

The running time complexity of autoAD depends on the number of input methods k = |M| and the number of removals r drawn at random from U (0, 10%).

In Fig. 5.6 we report the running time behavior when we change these two hyperparameters. We can see that the overall running time of autoAD increases linearly with time performance of each method in the ensemble. On the other hand, Fig. 5.6 (b) shows that when we increase the number of removals r, the execution time of autoAD linearly increases accordingly.

Overall, the autoAD framework shows a high correlation between the obtained AP scores and the two quality measures. The results obtained using different unsupervised quality metrics show that it is sufficient to focus on the top most anomalous scores of each method to study its reliability and effectiveness. Such strategy does not aggregate anomaly scores from different sources into a unique target vector as SelectV or BoostSelect but threat them independently.

Concluding Remarks and Future Directions

In this chapter, we presented autoAD, the first, to the best of our knowledge, autoML framework for unsupervised anomaly detection based on anomalies removal which produces simple and intuitive quality measures for each method. Experiments conducted on a various set of datasets show substantial gains in terms of average precision score, while showing linear running time in the number of methods and input data size. We release our Python3 parallel implementation, which runs all different methods in parallel, thereby achieving some significant speedup.

Several improvements can be addressed in the future. The framework previously presented indeed has a hyperparameter itself, that is the upper bound U (0, 10%) when selecting the top instances to remove. Such hyperparameter is selected according to the common definition of anomaly detection datasets in which it is assumed anomalies to be rare (e.g. 5/10% of the dataset). The selected value however shows to be effective also when there are very low percentages of true anomalies in the input datasets. The datasets in Table 5.1 are composed largely by small fractions of outliers, e.g. kdd99 contains only 0.17% anomalies while the performance of our proposed method is AP=0.80 compared to SelectV AP=0.60, the second best performing method. Similarly, http29 contains only 0.65% anomalies while the performances of our method is AP=0.77 compared to AP=0.61 of the second best performing method. Besides, more sophisticated unsupervised metrics can be explored and further studies on the weighting process can be performed. The framework indeed is an ensemble model in which all the algorithms are weighted accordingly; one could instead further study the performance of the framework using only the first best performing method. Notice however that in such scenario, the execution time would not be reduced since all the algorithms require to be run. Under these circumstances the framework remains to be compared to meta-learners which select an algorithm and perform a single run resulting to be faster. Nevertheless, such comparison has to guarantee fairness. It would be unfair to compare the methods on datasets used already in the tuning phase of the meta-learners.

Furthermore, fairness has to be guaranteed also in what concerns the pool of algorithms and configurations used.

Chapter 6

Conclusion

Anomaly Detection has become an increasingly important task in Machine Learning. It focuses on identifying faults and detecting malicious activities in diverse application domains, ranging from data security and fraud detection to healthcare. In the last years a great effort has been made in developing novel anomaly detection methods and algorithms whose objective vary on requirements of different applications. For example, algorithms can be designed to target different types of anomalies (e.g. local vs global anomalies) or to process new instances as soon as possible in monitoring applications.

We examined, in this thesis, several key aspects of anomaly detection. We presented a novel batch algorithm for outlier detection as well as a time series stream algorithm for novelty detection particularly useful in computer networks monitoring applications. Finally, we investigated automated algorithms presenting a novel strategy based on independent tests instead of correlation analysis.

This concluding chapter summarizes the contributions of this thesis.

Summary of Contributions

After the discussion and clarification of anomaly detection, taxonomy of the anomaly types, strategies and algorithm classes given in the first two chapters of this thesis, we first presented in Chapter 3 Random Histogram Forest (RHF), an unsupervised batch algorithm for outlier detection. RHF is an ensemble model which builds a random forest while using the Kurtosis score as splitting criterion. The anomaly score of each instance is computed as the information content of the leaf it belongs to. We provide an extensive experimental evaluation on 38 public datasets and 64 private ones. Our experimental evaluation shows that our approach outperforms the other approaches in terms of average precision, while being simple and intuitive. Moreover the performance of our algorithm are consistently good over a wide range of values for their hyperparameters, while it requires only two hyperparameters. Finally, our proposed Kurtosis Split shows to be effective in high dimensional datasets while maintaining linear running time in the size of the input dataset.

In Chapter 4 we proposed ODS, a time series unsupervised engine that leverages DenStream, an online clustering method. We apply it to measurements collected from real network equipment, gathered on BGP-only datacenter network loaded with up to 3 Tbps aggregated traffic, and extensively compare it with a set of stream techniques such as ExactSTORM, COD and RRCF. Our results show that despite ODS is apparently plagued with several hyperparameters inherited from DenStream, their selection is quite straightforward, and performance are robust to inner hyperparameter selection. Additionally, ODS is significantly faster than any of the tested algorithms, and second only to RRCF (yet very close to it) in terms of detection performance. Overall, the above results suggest ODS as a particularly lightweight and suitable algorithm for stream-mode real-time network anomaly detection in monitoring applications. Abstract : An anomaly (also known as outlier ) is an instance that significantly deviates from the rest of the input data and being defined by Hawkins as "an observation, which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism.' Anomaly detection (also known as outlier or novelty detection) is thus the machine learning and data mining field with the purpose of identifying those instances whose features appear to be inconsistent with the remainder of the dataset. In many applications, correctly distinguishing the set of anomalous data points (outliers) from the set of normal ones (inliers) proves to be very important. A first application is data cleaning, i.e., identifying noisy and fallacious measurement in a dataset before further applying learning algorithms. However, with the explosive growth of data volume collectable from various sources, e. 
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 2 Figure 2.2: Two-dimension toy Dataset representing a Global Point Anomaly (e.g. O 1 ), a Local Point Anomaly (e.g. O 2 ) and a Group Anomaly (e.g. cluster Co composed by O 3 , O 4 and O 5 ).

  Figure 2.3: Example of a Contextual Anomaly.The plot shows the monthly temperature over a few years timespan. When the contextual information is used (e.g. seasonality) as data source, a low temperature might be normal during the winter (at time t1), but the same value during summer (at time t2) would be an anomaly. Image source:[START_REF] Chandola | Anomaly detection: A survey[END_REF] 
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 24 Figure 2.4: Example of a Receiver Operating Characteristic (ROC) curve (a) and Average Precision (AP) curve (b). Image Source: [21]
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 25 Figure 2.5: Summary of Anomaly Detection Algorithms. Related work is grouped in two branches depending on the underlying algorithmic family: batch vs stream. Batch algorithms are further classified in Proximity vs Probabilistic vs Ensemble methods. Stream methods are differentiated into univariate vs multivariate methods.
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 2 Fig. 2.5 illustrates a summary of both batch and time series methods and further classifies them in subcategories. More details about such models are provided in Section 2.6 and Section 2.7
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  p n as suggested by the authors. Similarly, we set n components = mle and svd solver = full which finds the best number of PPCA's components. We run the proximity based methods K-NN and LOF using K=50 neighbors. As already successfully done in [44], we use OCSVM's default hyperparameters kernel=rbf, degree=3 with regularization hyper-parameter ⌫ = 0.5. All the ensemble methods (ISO, PID, XSTREAM, RHF) use an equal number of models t = 100. Moreover we use the recommended sample size = 256 and hlim = log( ) for ISO, the default sample size = 100, max degree k = 3 and max depth h = 10 for PID and the recommended number of projections dimensions k = 100 and depth l = 15 for XSTREAM. Finally RHF uses max height h = 5 corresponding to at most 32 leafs/bins.

Figure 3

 3 Figure 3.3: Boxplot representing aggregated results from Tab. 5.3. Results are sorted according to the median value in decreasing order complemented with a bootstrapped 0.95 confidence interval. In both public and private datasets RHF K achieves the highest q25, mean, median and q75 values.
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 3 Fig.3.4 shows the results for the three algorithms on musk (top), smtp all (middle) and http logged (bottom) datasets. The plot shows that the presence of noisy features has a negative impact on the ISO performance, with a larger number of those features significantly affecting its effectiveness. In particular, for the http logged dataset, ISO's AP score decreases from AP=0.98 to AP=0.60 after adding one single noisy feature.
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 35 Figure 3.5: Average Precision for different number of anomalies in dataset http logged. As http logged contains 97% duplicated anomalous points we gradually remove them. The figure contrasts different Isolation Forest's sampling size 2 [128, 4096] against RHF 's max height h 2 [4, 5]. The plot illustrates that iForest's performance is sensible to the hyper-parameter when varying the number of anomalous points in the dataset.

  ii) we test several input hyperparameters for the three algorithms: RHF K 's h 2 [3, 5, 7], ISO's 2 [256, 2048, 4096] and XST REAM 's l 2[START_REF]The yang 1.1 data modeling language[END_REF][START_REF] Aggarwal | Outlier Analysis[END_REF][START_REF] Angiulli | Fast outlier detection in high dimensional spaces[END_REF].
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 35 Figure 3.5 shows the AP of the methods on the http logged dataset, as a function of the number of anomalies in the input dataset. Each value is the average over 30 runs being complemented with its corresponding confidence interval. The number of normal points is kept constant (we use all the 565287 points present in the original dataset) while the number of anomalies is reduced from 2211 (100% -left side of the plot representing the original dataset) to 100 (0.05%).
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 36 Figure 3.6: HyperParameters tuning: Average Precision score over all the datasets for increasing maximum tree height h. The figure illustrates scores obtained using both Kurtosis Split and Random Split criterion.

Furthermore, we show

  in Fig 3.8 the running times for increasing n, d, t and h while keeping fixed the remaining hyperparameters. The plots show that execution time linearly increases with increasing input sizes (n and d) as well as for incresing height h and ensemble size t.

  n

  4)where dist(c, p ij ) is the euclidean distance between point p ij and the center c. By breaking clusters into mcs, DenStream allows to dynamically construct clusters of arbitrary shapes. The mc weight w plays a key role in the model construction, as it discriminates between outlier (w < µ) vs core (w > µ) micro-clusters (where and µ are free hyperparameters).
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 41 Figure 4.1: Testbed replicating a traditional clos topology of a CSP datacenter
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 42 Figure 4.2: Dataset at a glance: Top plots depict example of the Multivariate Time Series as heatmaps for leaf1 and spine1 on E5 (plots on the left) and E10 (plots on the right). Bottom plot reports temporal evolution for sample features and annotated ground truth for node spine1 on E5: control-plane paths-count (top), vs data-plane bytes-sent on interface HundredGig0/0/0/0 (bottom).
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 43 Figure 4.3: Hyperparameter selection: F 0.5 heatmap for DBScan (top left), LOF (top right), wDB-Scan (middle left), ExactSTORM (middle right), COD (bottom left) and RRCF (bottom right). Detailed hyperparameters in Tab. 4.3. Selected hyperparameters at the intersection of the dashed lines.
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 44 Figure 4.4: ODS Hyperparameter selection: Impact of k r for dynamic radius threshold in (4.6)
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 45 Figure 4.5: ODS Hyperparameter selection: F 0.5 score for increasing fading factor and potential factor applied on E2 and E3
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 4 Figure 4.6: wDBScan (left) vs ODS (right) model evolution over time.The top two rows discriminate normal vs anomalous clusters: the top row reports the number of normal vs anomalous clusters returned by the models, the second row reports the cluster ID to which each samples is merged to. The third and fourth rows show the radius and the weight evolution of each normal cluster respectively, while the two bottom ones depict the evolution of the first and second components extracted from the center of the clusters.

  figure. First, the performance metrics are smoothly varying over and with a fairly large region (best F 0.5 score obtained for 2 [0.10, 0.16] and 2 [0.2, 0.5] approximately).
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 47 Figure 4.7: Algorithms Performance Comparison: Precision, Recall and F 0.5 score. Figure and table report the average performance on the testing (full opacity, foreground bars) vs tuning (light opacity, background bars) dataset. The top-3 among the stream algorithm are explicitly annotated.

Figure 4 . 8 :

 48 Figure 4.8: Algorithms Performance Comparison: Accuracy, Markedness and Informedness. Figure and table reports the average performance on the testing (full opacity, foreground bars) vs tuning (light opacity, background bars) dataset. The top-3 among the stream algorithm are explicitly annotated.
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 49 Figure 4.9: Algorithm complexity: total execution time in seconds (top) and execution time per instance (bottom) for DBScan, LOF, wDBScan, ExactSTORM, COD, RRCF and ODS as a function of the dataset size. DBScan measurements are not complete as it runs out of memory for values greater than those shown in the plot.
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 4 Figure 4.10: Execution time per Instance (x-axis) vs Detection performance F 0.5 score (y-axis).The plot is annotated with semi-planes to better highlight the desirable corners of the design space: ODS sits at an interesting operational point for being significantly faster than all the algorithms tested and second only to RRCF in terms of information retrieval metrics (F 0.5 in this plot).

  recent emergence of model-driven telemetry opens new challenges for anomaly detection, and particularly makes the use of stream-based unsupervised machine learning tools very appealing. In this paper we develop, implement and open-source the ODS anomaly detection engine, based on the online clustering algorithm DenStream. We thoroughly analyze ODS on datasets gathered on BGP-only datacenter network loaded with up to 3 Tbps aggregated traffic, and extensively compare it with a set of batch (DBScan, LOF), windowed (wDBScan) and stream techniques (ExactSTORM, COD and RRCF).
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 51 Figure 5.1: Overview of the autoAD framework. Given the input dataset and the set of algorithms with their corresponding predefined search space, we apply separately each method, as the combination (A i , P j i ). Once we finish processing each of the method, we rank the output anomaly scores (as shown in the first green column cells) in order to remove (rm) the top-N anomalous instances. We therefore evaluate (eval) the performance of each method using a quality measure, , on the remaining normal instances. We assign to each method a weight proportional to its performance. Hence, the final anomaly scores are computed based on the initial scores and the weight assigned to each method.
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 53 Figure 5.3: Average precision score for an increasing number of removals r on three different datasets, (a) mnist, (b) mulcross, and (c) kdd99 datasets, respectively.
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 54 Figure 5.4: Average precision scores with a different number of methods.
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 55 Figure 5.5: Correlation between the variance-quality measure with (a) kdd99, (c) mulcross, and the average precision score with (b) kdd99, (d) mulcross of each method. The methods are presented in a decreasing order according to .
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 5 Fig. 5.6 (a) depicts the running time consumed by autoAD and each method in the framework.
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 56 Figure 5.6: Running time. (a) the autoAD running time together with the running time of each method (bar plot). (b) the running time with different number of removals r.

Finally, in Chapter 5 ,

 5 we presented autoAD, the first, to the best of our knowledge, autoML framework for unsupervised anomaly detection based on anomalies removal which produces simple and intuitive quality measures for each method. Experiments conducted on a various set of datasets show substantial gains in terms of average precision score, while showing linear running time in the number of methods and input data size. autoAD shows significant gains when compared with existing automated strategies as Naive, SelectV or BoostSelect which are based con correlation analysis. Titre : D étection non supervis ée d'anomalies : m éthodes et applications Mots cl és : non supervis é, d étection d'anomalies, apprentissage automatis é R ésum é : Une anomalie ( également connue sous le nom de outlier ) est une instance qui s' écarte de mani ère significative du reste des donn ées et est d éfinie par Hawkins comme "une observation, qui s' écarte tellement des autres observations qu'elle éveille les soupc ¸ons qu'il a ét é g én ér é par un m écanisme diff érent.' La d étection d'anomalies ( également connue sous le nom de d étection de valeurs aberrantes ou de nouveaut é) est donc le domaine de l'apprentissage automatique et de l'exploration de donn ées dans le but d'identifier les instances dont les caract éristiques semblent être incoh érentes avec le reste de l'ensemble de donn ées. Dans de nombreuses applications, distinguer correctement l'ensemble des points de donn ées anormaux (outliers) de l'ensemble des points normaux (inliers) s'av ère tr ès important. Une premi ère application est le nettoyage des donn ées, c'est-à-dire l'identification des mesures bruyantes et fallacieuses dans un ensemble de donn ées avant d'appliquer davantage les algorithmes d'apprentissage. Cependant, avec la croissance explosive du vo-lume de donn ées pouvant être collect ées à partir de diverses sources, par exemple les transactions par carte, les connexions Internet, les mesures de temp érature, etc., l'utilisation de la d étection d'anomalies devient une t âche autonome cruciale pour la surveillance continue des syst èmes. Dans ce contexte, la d étection d'anomalies peut être utilis ée pour d étecter des attaques d'intrusion en cours, des r éseaux de capteurs d éfaillants ou des masses canc éreuses. La th èse propose d'abord une approche bas ée sur un collection d'arbres pour la d étection non supervis ée d'anomalies, appel ée Random Histogram Forest (RHF). L'algorithme r ésout le probl ème de la dimensionnalit é en utilisant le quatri ème moment central (alias kurtosis) dans la construction du mod èle en b én éficiant d'un temps d'ex écution lin éaire. Un moteur de d étection d'anomalies bas é sur le stream, appel é ODS, qui exploite DenStream, une technique de clustering non supervis ée est pr ésent é par la suite et enfin un moteur de d étection automatis ée d'anomalies qui all ège l'effort humain requis lorsqu'il s'agit de plusieurs algorithmes et hyper-param ètres est pr ésent é en dernier contribution. Title : Unsupervised Anomaly Detection: Methods and applications Keywords : unsupervised learning, anomaly detection, automated learning

  g., card transac-tions, internet connections, temperature measurements, etc. the use of anomaly detection becomes a crucial stand-alone task for continuous monitoring of the systems. In this context, anomaly detection can be used to detect ongoing intrusion attacks, faulty sensor networks or cancerous masses. The thesis proposes first a batch tree-based approach for unsupervised anomaly detection, called Random Histogram Forest (RHF). The algorithm solves the curse of dimensionality problem using the fourth central moment (aka kurtosis) in the model construction while boasting linear running time. A stream based anomaly detection engine, called ODS, that leverages DenStream, an unsupervised clustering technique is presented subsequently and finally Automated Anomaly Detection engine which alleviates the human effort required when dealing with several algorithm and hyper-parameters is presented as last contribution. Institut Polytechnique de Paris 91120 Palaiseau, France

  

  

[124]: computes

  the distances for each instance x 2 X to the k-nearest-neighbors and assign the distance to its kth nearest neighbors where k is an integer number. The running complexity of this method is O n 2 while the number of input hyperparameters is one: k. As in the previous case, the input hyperparameter depends most of the times on the application and domain knowledge is required.MinP ts instead defines the minimum number of samples in a given neighborhood. Combining ✏ and MinP ts, the density of an object p is high when in the N ✏ (p) there are MinP ts or more and low otherwise. Points with high density are called core points while low density points in the neighborhood of a core point are called border points. Finally low density points are outliers.

	DBScan [52]: is a data clustering algorithm proposed by Ester et al. [52]. It is a density-based
	clustering algorithm: it computes the distances between the samples and clusters altogether the
	points which are neighbors (i.e. whose distance is less than ✏). By computing the ✏ neighborhood
	of each point, it is able to discover clusters of arbitrary shape. The points falling in low-density
	regions (whose nearest neighbors are far) are labeled as noise. In particular, the algorithm defines
	the local point density p by two hyperparameters: ✏ and MinP ts. The first one is the radius and
	defines the neighborhood of a point p. The neighborhood is thus the group of all the points within
	the radius ✏ from the point p:	
	N ✏ (p) = {q 2 D|dist(p, q)  ✏}	(2.7)
	The clusters are obtained grouping together density-reachable points where a point p is directly
	density-reachable from a point q if p 2 N ✏ (q) and |N ✏ (q)| > MinP ts. The outliers are the points
	not belonging to any cluster C i .	
	The running complexity of the algorithm is O n 2 [68] reducible, only when n >> d and
	d < 3 using efficient indexing data structures (i.e. R ⇤ -tree), to O (n log (n)) [52] on average. For d > 3 [58] shows it is possible to improve the expected running time to O ⇣ n 2 2 ⌘ |d/2|+1 + where
	> 0 can be an arbitrarily small constant. The input hyperparameters of the algorithms are ✏ and
	MinP ts. Both the hyperparameters are strongly dependent on the application and input dataset
	as shown also in our experiments in Chapter 4	

Table 3 .

 3 1: AP scores of all approaches on all our datasets. The results are sorted in decreasing order of ISO scores. In the case of probabilistic approaches, each value is an average over 30 runs which is complemented with a 0.95 confidence interval. The best results for each dataset are represented in bold while the best between ISO and RHF is represented in gray bold.

Figure 3.4: Robustness to noisy dimensions: an increasing number of gaussian dimensions are added to three datasets musk (top), smtp all (middle) and http logged (bottom). Steady results are produced by RHF and XSTREAM while ISO's perfomance is higly impacted

Table 3 .

 3 2: Running times of the RHF K algorithm for increasing number of instances n, number of dimension d, max tree height h 2 [3, 5, 7] and number of trees t 2[START_REF] Burnaev | Model selection for anomaly detection[END_REF][START_REF] Gardner | Exponential smoothing: The state of the art-part ii[END_REF][START_REF] Li | Multivariate time series anomaly detection: A framework of hidden markov models[END_REF]. The table contains also the running time of ISO ( = 256) and XSTREAM (parameters). The boxplots under the table illustrate the running times for increasing tree height h (left), number of trees t (middle) and the overall comparison of ISO, RHF K and XSTREAM running times when the default parameters are used (right).

		d	h=3	h=5	h=7	t=30	t=60	t=90	ISO	XSTREAM
	vertebral	240	0.009±0.001	0.012±0.0	0.018±0.001	0.004±0.001	0.008±0.001	0.012±0.001	0.22±0.018	0.493±0.038
	ionosphere	351	0.04±0.003	0.064±0.007	0.096±0.008	0.018±0.002	0.04±0.004	0.05±0.005	0.239±0.023	1.011±0.059
	wbc	378 0.039±0.004	0.066±0.005	0.097±0.007	0.02±0.002	0.043±0.002	0.05±0.005	0.256±0.012	1.211±0.095
	arrhytmia	452 0.374±0.053	0.717±0.126	1.045±0.178	0.227±0.018	0.444±0.071	0.686±0.094 0.378±0.012	2.231±0.205
	breastcancer	683	0.026±0.001	0.043±0.003	0.061±0.003	0.012±0.001	0.024±0.002	0.034±0.003 0.198±0.021	1.906±0.212
	pima	768	0.027±0.002	0.045±0.002	0.063±0.001	0.013±0.001	0.027±0.001	0.033±0.003 0.225±0.021	1.906±0.218
	penglobal	809 0.045±0.004	0.073±0.006	0.116±0.006	0.02±0.002	0.045±0.004	0.063±0.007 0.273±0.013	2.362±0.15
	kdd finger	1033	0.017±0.0	0.027±0.001	0.037±0.001	0.007±0.001	0.012±0.001	0.023±0.002 0.244±0.018	1.506±0.168
	yeast	1191	0.041±0.002	0.06±0.005	0.093±0.002	0.017±0.002	0.032±0.003	0.06±0.003	0.272±0.021	2.491±0.177
	vowels	1456	0.06±0.005	0.116±0.005	0.166±0.004	0.032±0.002	0.054±0.006	0.082±0.009 0.271±0.022	3.579±0.168
	cardio	1831 0.145±0.007	0.239±0.011	0.338±0.018	0.061±0.006	0.137±0.011	0.19±0.018	0.202±0.009	4.465±0.242
	abalone	1920	0.06±0.001	0.099±0.002	0.13±0.006	0.028±0.0	0.047±0.004	0.06±0.006	0.215±0.021	3.672±0.237
	kdd ftp distinct	2876	0.033±0.004	0.071±0.002	0.093±0.006	0.015±0.002	0.036±0.004	0.065±0.002 0.384±0.017	3.421±0.143
	musk	3062 4.001±0.462	11.602±1.49	15.392±2.209	1.857±0.281	5.436±1.029	9.287±1.015	1.233±0.25	14.817±0.467
	thyroid	3772	0.09±0.008	0.135±0.01	0.197±0.015	0.047±0.003	0.085±0.007	0.125±0.013 0.355±0.028	6.914±0.272
	spambase	4601 1.574±0.246	3.389±0.593	4.56±0.823	0.758±0.108	2.507±0.462	4.282±0.926 0.945±0.106	7.281±0.39
	wine	4898 0.201±0.015	0.314±0.024	0.369±0.036	0.081±0.009	0.184±0.016	0.297±0.021 0.535±0.027	9.264±0.469
	satellite	5100 0.756±0.091	1.411±0.165	2.155±0.344	0.348±0.045	0.903±0.091	1.003±0.177 0.795±0.071 12.233±0.502
	kdd ftp	5214	0.068±0.007	0.134±0.001	0.143±0.014	0.028±0.003	0.077±0.001	0.098±0.01	0.363±0.041	6.268±0.262
	satimages	5803 0.793±0.105	1.392±0.267	2.921±0.346	0.443±0.052	0.66±0.116	1.152±0.18	0.776±0.094	14.189±0.64
	annthyroid	7200	0.169±0.018	0.248±0.022	0.422±0.009	0.073±0.007	0.17±0.012	0.213±0.024 0.611±0.058 13.063±0.494
	mnist	7603	7.1±0.919	13.525±1.798	22.096±3.271	3.238±0.556	8.389±1.692	13.482±2.167	2.35±0.43	35.233±1.352
	mammography	11183	0.207±0.024	0.426±0.034	0.624±0.051	0.128±0.01	0.233±0.022	0.391±0.032	0.68±0.053	17.445±0.656
	kdd other	12844	0.177±0.014	0.302±0.011	0.323±0.034	0.092±0.001	0.157±0.014	0.204±0.022	0.705±0.05	15.697±0.626
	magicgamma	19020	0.56±0.047	1.274±0.136	2.175±0.08	0.306±0.033	0.723±0.072	1.103±0.111 1.817±0.248 39.245±1.638
	shuttle	49097	2.784±0.388	4.008±0.675	5.497±0.935	1.013±0.156	2.271±0.28	2.431±0.283 4.413±0.624 67.466±2.044
	aloi	50000 48.809±7.767	43.89±12.505 68.517±13.232 22.279±2.152	34.525±6.833	37.907±9.08 4.357±0.743 93.076±3.446
	wikiqoe	55932 29.765±3.779	43.361±6.654	43.489±8.843	14.206±1.894	24.894±4.598 26.367±6.483 5.767±1.002 72.863±2.668
	kdd smtp distinct 71257	1.216±0.052	1.422±0.169	1.849±0.234	0.525±0.047	0.883±0.097	1.014±0.055 4.314±0.667 79.992±2.782
	smtp29	96554 81.095±13.567 94.375±19.87 91.099±27.896 41.095±6.895 51.058±14.207 60.92±15.263 8.863±1.453 143.405±6.839
	kdd smtp	96554	1.379±0.186	2.011±0.34	3.033±0.345	0.531±0.055	1.2±0.133	1.755±0.2	4.132±0.336 110.532±4.152
	kdd http distinct 222027	4.221±0.512	8.013±0.608	10.36±0.532	2.056±0.213	4.18±0.21	5.967±0.765 7.497±0.615 247.883±9.316
	mulcross	262144	8.926±1.451	23.597±1.986	31.115±5.396	6.792±1.137	12.806±2.431 16.836±1.147 10.139±1.343 453.331±29.574
	cover	286048 44.564±4.098	61.941±7.911 75.937±10.824	23.85±2.916	34.951±5.235 42.301±6.137 15.503±2.411 450.391±20.046
	http logged	567498	11.912±1.116	19.775±2.023	23.971±2.144	7.188±0.646	14.114±0.978	16.97±1.816 20.262±3.364 606.666±12.539
	kdd99	620098 269.341±45.138 379.767±58.012 515.339±65.546 133.328±24.344 208.811±23.779 318.45±41.242 37.559±5.411 777.502±15.695
	http29	623091 224.884±39.142 419.309±47.147 501.436±63.773 117.957±23.109 207.724±23.533 289.49±29.192 33.5±1.987 778.882±12.502
	kdd http	623091	14.377±1.219	20.666±1.056	26.081±2.952	5.684±0.763	12.174±0.944 16.217±1.374 21.686±2.608 642.201±9.454

Figure

3

.7: HyperParameters tuning: Average Precision score for increasing number of trees t on http logged (left), shuttle (middle) and breastcancer (right) datasets. We observe that performances converge already for small number of trees.

Table 4 .

 4 1: Algorithms compared in this work

	Algorithm	Type	HyperParameters
	DBScan	Batch	✏, MinPTS
	LOF	Batch	n neighbors, contamination
	wDBScan	Windowed	✏, MinPTS, w
	ExactSTORM	Stream	R, K, w
	COD	Stream	R, K, w
	RRCF	Stream	t, w, contamination
	DenStream	Stream	✏, , , µ

incrementally. Similarly, they propose to obtain the final clusters, when requested, applying again DBScan to the set of core mcs considering them as a virtual point located at the center of the mc.

Table 4

 4 

			.2: Experimental datasets available at [6]
	Experiment Traffic ID Load	No. Anomalies	Duration Used for
	2	1 Tbps	11	1 h	Tuning parameters (Sec. 4.4)
	3	1 Tbps	8	0.55 h	Tuning parameters (Sec. 4.4)
	5	1 Tbps	12	2 h	Test parameters (Sec. 4.5)
	9	2.9 Tbps 5	0.75 h	Test parameteres (Sec. 4.5)
	10	2 Tbps	5	0.55 h	Test parameters (Sec. 4.5)

  Table4.2, with different characteristics and scenarios are performed. While minute-level telemetry collection is generally practice in the industry, the dataset we use in this work has been gathered with the fastest sampling period supported by the products, namely of T =5 seconds. Every T , each of the N nodes stream a snapshot of its F features to the collector: each experiment is a point X 2 R NSF where N is the number of nodes, S is the number of collected samples during that experiment and F the number of features. All the Tbps), different number of anomalies injected (from 0 to few 10s) and different anomalies types, such as BGP port flapping (Link Failure -Point anomalies), BGP leaks and BGP clears (Direct Unintended BGP Anomalies -Collective Anomalies

available features are described by YANG models [11] and then extracted, decoded and stored by Pipeline [7] as compressed CSV files. The repository [6] contains experiments undergoing differ-ent traffic load (from 0 to 3

Table 4

 4 and concern a single link, and are thus more difficult to detect. Discrepancy between tuning and testing phase is particularly visible considering the mean F 0.5 score over all datasets, where the degradation appears more severe for DBScan, wDBScan, LOF, ExactSTORM and COD. Investigating further, we find that DBScan and LOF performance degradation is due to low portability of parameter configuration as a function of the traffic load, which in turn has an impact on the distance between the samples. wDBScan, ExactSTORM and COD precision is consistent with that of the tuning phase, however, as a downside of the tradeoff, they achieve 0.35, 0.38 and 0.36 recall respectively.

	.4: Detection peformance: in-depth RRCF vs ODS comparison
	Metric	ODS	RRCF
	Precision@3	0.899±0.063 0.898±0.021
	Precision@5	0.776±0.088 0.786±0.024
	Area Under the Curve (AUC) 0.967±0.016 0.989± 0.002
	Average Precision (AP)	0.785±0.075 0.850± 0.017
	are less disruptive		

Table 5 .

 5 1: Overview of the datasets. For each dataset, we have the number of instances n, number of dimensions d, and number of anomalies (in %).

	dataset	n	d	anomalies(%) dataset	n	d	anomalies(%)
	ionosphere 351	33	126 (35.9%)	shuttle	49097	9	3511 (7.15%)
	wbc	378	30	21 (5.56%)	smtp29	96554	29 1183 (1.23%)
	arrhytmia	452	274 66 (14.6%)	http distinct 222027 3	75 (0.03%)
	cardio	1831 21	176 (9.61%)	mulcross	262144 4	26214 (10.0%)
	musk	3062 166 97 (3.17%)	cover	286048 10 2747 (0.96%)
	satellite	5100 36	75 (1.47%)	http logged 567498 3	2211 (0.39%)
	satimages 5803 36	71 (1.22%)	kdd99	620098 29 1052 (0.17%)
	mnist	7603 100 700 (9.21%)	http29	623091 29 4045 (0.65%)

Table 5 .

 5 We compare autoAD against the Naive ensemble (in which all methods are weighted equally) and also against the two previously described methods SelectV and BoostSelect. The latter uses the hyperparameters suggested by authors which are drop rate d = 0.75 and threshold t = 5%. 2: The overall median gain of autoAD using the three different quality measures with respect to SelectV, the second best performing method. The Win/Loss rate indicates the number of datasets in which autoAD is statistically better/worse. The Med Gain/Loss indicates the median AP gain in the winning/worsening datasets.

	Method	Median Gain	{RHF + ISO} df t Win Rate Med Gain Loss Rate Med Loss
	autoAD-SSE +18%	43.75%	+27.87%	37.5%	-1.6%
	autoAD-VAR +23%	31.25%	+35.92%	31.25%	-1%

we consider 8 different values for their main hyperparameter, namely, sampling size for ISO and maximum height h for RHF. In both cases, we employ the same number of trees t = 100. Based on hyperparameters range, authors' insights and considerations done in the original paper of the two algorithms, we select h 2 [1, 8] for RHF and 2 [32, 64, 128, ..., 4096] for ISO. For what concerns the remaining algorithms we use K = p n as suggested by the authors as input hyperparameter for HBOS while using K = 50 neighbors for proximity based methods K-NN and LOF. We consider thus an initial ensemble of 20 different methods which are selected from all the three classes of algorithms: Proximity, Probabilistic and Ensemble/Isolation based.

Table 5 .

 5 0.756 ± 0.011 0.808 ± 0.009 0.594 ± 0.005 0.601 ± 0.02 0.559 ± 0.011 http29 0.764 ± 0.01 0.77 ± 0.015 0.591 ± 0.006 0.617 ± 0.033 0.518 ± 0.011 3: Average precision scores of all approaches on all the datasets. autoAD-SSE and autoAD-VAR represent the autoAD algorithm using the two different quality measures. Naive is the ensemble composed by all 20 methods equally weighted. Bold values are the best between autoAD-VAR and Naive, the second best strategy

	average	0.699	0.706	0.673	0.673	0.618
	median	0.760	0.788	0.641	0.631	0.623

https://www.automl.org/automl/auto-sklearn/

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

The source code and datasets employed in our analysis can be found at http://bit.ly/3mdT6qu.

Algorithm@parameter. Example: ISO@256 is the iForest algorithm with = 256.

Acknowledgements

Chapter 3

Random Histogram Forest for

Unsupervised Outlier Detection

In this chapter we describe the proposed batch unsupervised algorithm called Random Histogram Forest (RHF). We first introduce the main ideas in Section 3.1 while analyze the most recent comparative studies of unsupervised algorithms in Section 3.2. We then describe in details the algorithms in Section 3.3 and perform several experimental evaluations in Section 3.4. Finally, a summary of our finding and remarks are given in Section 3.5.

Introduction

We present Random Histogram Forest (RHF) [START_REF] Putina | Random histogram forest for unsupervised anomaly detection[END_REF] an effective tree-based approach for unsupervised anomaly detection. In our approach, for every node in the tree, the splitting feature is chosen with a probability proportional to its fourth central moment (aka kurtosis). This allows to focus on the most informative features, while being resilient to the presence of "noisy" features. RHF, then, computes a score for every point, measuring its likelihood of being an anomaly, with larger anomaly scores being assigned to points lying in less populated leaves. More precisely, such a score is defined as the Shannon's information content [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Myron | Thermostatics and thermodynamics : an introduction to energy, information and states of matter, with engineering applications / by Myron Tribus[END_REF] of the leaf containing the corresponding point. Moreover, RHF leverages the predictive power of multiple independent trees (aka a forest) for identifying anomalies even more effectively. Some of these ideas have been successfully employed in the most successful algorithms for unsupervised anomaly detection (e.g. Random Forest [START_REF] Liaw | Classification and regression by randomforest[END_REF], Isolation Forest [START_REF] Liu | Isolation forest[END_REF], XSTREAM [START_REF] Manzoor | Xstream: Outlier detection in feature-evolving data streams[END_REF], Rs-Hash [START_REF] Sathe | Subspace outlier detection in linear time with randomized hashing[END_REF]), as well as 

COD and RRCF)

For all the methods, we first perform a hyperparameter selection phase, to select hyperparameters yielding to good performance as measured by classic metrics from information retrieval (i.e., precision, recall and F scores). Given that anomalies are rare, we use the F = (1 + 2 ) precision•recall 2 •precision+recall , setting = 0.5 to account for imbalance by non-linearly interpolating precision and recall. In particular, we use E2 and E3 from Tab. 4.2 for hyperparameter selection.

Generalization capabilities of the tuned algorithms will be tested on entirely different datasets in Sec. 4.5. The full set of hyperparameters explored, along the total number of combination tested per protocol, and the resulting selection is summarized in Tab. 4.3.

We use classic grid optimization, i.e., an exhaustive search, to find the hyperparameters that reach the best performance. We do not perform however a blindly search, as it is of fundamental importance the research of the hyperparameters in the correct intervals and magnitudes, therefore we follow the best practices suggested by the authors in the determination of grid boundaries.

Grid boundaries

For DBScan ✏ and MinPTS hyperparameters, we perform a grid search varying ✏ 2 [1, 20] with a unit step and minP T S 2 [2, 50] with step equal to 2, for a total of 500 different hyperparameters For what concerns ExactSTORM and COD, we perform the grid search varying R 2 [1, 20] and k 2 [2, 10] with a unit step while w 2 [10, 100] in steps of 5 units obtaining so a total of 3040 hyperparameters tested for each node.

The number of trees used by RRCF is set to t = 100 as it is commonly used in ensemble models. We explore the tree size w 2 [START_REF]The yang 1.1 data modeling language[END_REF][START_REF] Mehrotra | Anomaly Detection Principles and Algorithms[END_REF] in steps of 5 units while exploring contamination 2 [0.001, 0.2] with a step equal to 0.005, obtaining a total of 800 combinations.

Grid search results

Fig. 4.3 shows a heatmap of the F 0.5 score for DBScan (top left plot), LOF (top right plot), wDB-Scan (middle left plot), ExactSTORM (middle right plot), COD (bottom left plot) and RRCF (bottom right plot). Clearly, hyperparameter selection is to select the point (or points in a region) that maximizes the F 0.5 score. For each algorithm, we represent the hyperparameter space of two hyperparameters as a heatmap, to convey an idea of the algorithm stability to (even slight) hyperparameter changes (in the region). We highlight the final hyperparameters choice directly in each plot, i.e., at intersection of the dashed lines.

We observe that DBScan performs the best for 3 < ✏ < 8 and 10 < MinP T S < 30. We select 

Selected features

The full set of available features contains (i) redundant and totally correlated features (e.g. freememory and occupied-memory ), as well as (ii) categorical features design (e.g. af-name, as etc.) or (iii) features that are constant in our experiments (e.g., output-queue-drops). Out of the available features, we thus discard duplicated, categorical or constant features. Based on this process, we ultimately retain 64 DP and 18 CP features, for a total of 82 features. Notably DP features relate to the generic counters (i.e., whose EncodingPath match interface/generic-counters), whereas CP features relate to bgp/as/information and vrf/process-info EncodingPaths, which have proven useful for BGP anomaly detection in previous studies [START_REF] Al-Rousan | Machine learning models for classification of BGP anomalies[END_REF]. model, as well as its optimal configuration for its hyperparameters. Instead of using correlation techniques, we analyze the output of each method individually searching for evidence of proper outlier detection. In this direction we focus on the most anomalous instances and test if the dataset is easier to compress by removing them. Motivated by the established supervised au-toML frameworks, e.g., , Auto-WEKA [START_REF] Kotthoff | Auto-weka 2.0: Automatic model selection and hyperparameter optimization in weka[END_REF] and Auto-Sklearn [START_REF] Feurer | Autosklearn: efficient and robust automated machine learning[END_REF], the proposed autoAD framework involves different outlier detection algorithms and a definition of their corresponding hyperparameter search spaces. Given an input dataset, autoAD applies the algorithms with their different hyperparameter configurations in parallel, afterwards it evaluates the performance using the unsupervised evaluation strategy mentioned before.

The main contributions of this chapter are summarized as follows:

• We develop autoAD, a framework for automated unsupervised anomaly detection, which, to the best of our knowledge, represents the first autoML approach for unsupervised anomaly detection which does not use correlation analysis.

• We propose an unsupervised metric strategy that permits the evaluation of anomaly detectors in a fully unsupervised way by removing outliers and using statistical measures, such as variance, on the remaining normal instances.

• We conduct an extensive experimental evaluation on a diverse set of datasets which shows that autoAD achieves significantly better performances than other proposed methods.

• To foster reproducibility, the code and datasets employed in our work are available at http: //bit.ly/3mdT6qu. The reminder of this work is organized as follows. In Section 5.2, we detail related work. Section 5.3 presents the description of our proposed framework and the employed methodology for unsupervised anomaly detection evaluation. In Section 5.4, we show the experimental results and discussions. We finally end this chapter by drawing conclusions and future directions in Section 5.5.

ing lists S \ l in descending order by their correlation to the current "prediction" of the ensemble, which is defined as the average probability of lists in the ensemble E. The method tests whether adding the top list to the ensemble would increase the correlation of the prediction to target. If the correlation improves by this addition, the ensemble is updated and the remaining lists are reordered by their correlation to the updated prediction. As such, a list gets either included or discarded at each iteration until all lists are processed.

BoostSelect [START_REF] Campos | An unsupervised boosting strategy for outlier detection ensembles[END_REF]: Similarly to SelectV, it constructs a target vector by combining the scores of all available components in the ensemble. From this target vector, the algorithm preliminarily assumes the top bn • tc objects (ranked by their combined score) to be outliers, where n is the dataset size and 0 < t ⌧ 1 is a hyperparameter capturing the expected percentage of outliers in the dataset (i.e., there are K = bn • tc outliers assumed to be present). The target vector thus becomes a binary vector, listing 1 for outliers and 0 for a inlier and serves as pseudo ground truth for the boosting approach. BoostSelect sets then the weights for Pearson correlation to 1 2K for outliers and 1 2(n K) for inliers. Such values are only the initial weights as they will be updated by the boosting procedure. The potential ensemble members are sorted according to their weighted Pearson correlation to the target vector. The candidate that is most similar to the target vector is chosen as the first ensemble member. Remaining potential ensemble members are iteratively resorted in ascending order according to their similarity to the current prediction of the ensemble.

Potential members are included if their inclusion would increase the similarity of the ensemble prediction to the target vector, otherwise they are discarded. After the insertion of a potential member into the ensemble the boosting procedure is performed. This phase reduces the weights by the input hyperparameter 0 < d < 1 (drop rate) of outliers that have already been identified by any ensemble member.

The Proposed autoAD Framework

In this section, we present an automated unsupervised anomaly detection framework that aims to find the best performing algorithms for a given unlabeled dataset by weighing them using quality metrics measurements. VAR: The variance is one of the most used dispersion metrics. Unlike the previous measure, the variance is dimension-wise and can be obtained by computing it on each dimension and aggregating the scores. Similarly to the previous case, the method whose aggregated variance is the smallest, after removing the N -top ranked anomalies, has to be considered the best method.

X

Algorithm Weighting

Each method in M produces its own measure obtaining so

The best method in the set is the one obtaining the best quality measure (e.g., the method whose variance is the smallest after removing the N -top ranked instances) while the worst one is the one obtaining the worst quality measure.

A weight proportional to the measure i is assigned to each method M i by normalizing (min/max) the set of measures .

The best quality measure (e.g., the minimum variance) originates the best weight w i = 1, the worst one w i = 0 while the remaining ones w i 2 [0, 1].

Final Anomaly Scores

The final anomaly scores take into account the initial anomaly scores of each method in M and the weights assigned by the quality measure in the previous step. As the output anomaly scores of each algorithm can be homogeneous and represented in very different ranges we scale all of them between 0 and 1. Subsequently, the anomaly scores of each method undergo the weighing process in which the weights produced in the quality measure phase are used. The final anomaly score is obtained aggregating the results over all the methods.

where ms i corresponds to the initial anomaly score of method i while w i corresponds to its weight.

Experimental Evaluation

We conduct an extensive experimental evaluation to assess the effectiveness of our approach.

All algorithms developed in our work are publicly available, so as to foster reproducibility 3 . We implemented our algorithms in Python 3.8.

Datasets

We consider a diverse set of datasets coming from different data sources, with different size and anomaly ratio. Most of them have been widely used as benchmarks when evaluating anomaly detection algorithms. In particular, we consider 16 datasets that are publicly available at the UCI [START_REF] Dua | UCI machine learning repository[END_REF] or ODDS [START_REF] Rayana | ODDS library[END_REF] repositories. The size of our datasets range from 351 to 623091 instances (n), while the number of dimensions vary from 3 to 274 (d). The anomaly ratio is between 0.03% up to 35.9%. Similarly to [START_REF] Putina | Random histogram forest for unsupervised anomaly detection[END_REF], we use well-known datasets such as ionosphere, arrhytmia, satellite,