
HAL Id: tel-03651493
https://theses.hal.science/tel-03651493v1

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised anomaly detection : methods and
applications
Andrian Putina

To cite this version:
Andrian Putina. Unsupervised anomaly detection : methods and applications. Machine Learning
[cs.LG]. Institut Polytechnique de Paris, 2022. English. �NNT : 2022IPPAT012�. �tel-03651493�

https://theses.hal.science/tel-03651493v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

T0
12

Unsupervised Anomaly Detection

Methods and Applications

Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n�626 l’Institut Polytechnique de Paris (EDIPP)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Paris, le 18-02-2022, par

ANDRIAN PUTINA

Composition du Jury :

Fabrice Rossi

Professor, Université Paris-Dauphine Président

Leman Akoglu

Professor, Carnegie Mellon University Rapporteur

Raja Chiky

Research Director, Institut supérieur d’électronique de Paris Rapporteur

João Gama

Professor, University of Porto Examinateur

Rita P. Ribeiro

Professor, University of Porto Examinateur

Mauro Sozio

Professor, Télécom Paris Directeur de thèse

Dario Rossi

Chief Expert, Huawei Co-directeur de thèse

a Flavia, a mamma, a Enrico, grazie ai quali sono la persona che sono

Acknowledgements

First of all I would like to show my gratitude to my advisors, Mauro Sozio and Dario Rossi. Their

knowledge and expertise have allowed me to develop not only this thesis and my technical and

research skills but also to become a better human being. Their support has pushed me to do

my best, to always raise the bar a bit higher. I still remember with great pleasure, during the

development of my master degree, Dario telling me ”Che faccio lascio?” when I was proposing

him my first research solution. I still remember Mauro asking me to dig deeper and understand

better methods and results while assuring me of a better future post covid. I still remember the

many team buildings that helped me meet new friends and colleagues, generating great union

and collaboration in the team.

I would like to thank the members of my dissertation committee for their time, detailed review

and suggestions. Their contribution helped further improving this manuscript.

I wish to thank my colleagues and friends from the office and the people for the long journey

we have shared together during all these years. 23 Avenue d’Italie, Paris, France will remain for-

ever in my memories, Lincs offices made me understand what collaboration, support and second

family means. I love you all Lincs people. You kept me sane over the years and offered endless

support and encouragement. I loved having breakfast and lunch with you. Thank you Leonardo,

Andrea and Jon for sharing with me great experiences, travels around the globe and your previ-

ous experiences. Thank you Camila, Stefan, Stefano and Anna for making the last few months

extremely fun. Our debates, over a cup of coffee, are the best. A big thank you also goes to the

my friends in Turin, they are always there to make me laugh.

i

I want to thank Télécom Paris, Cisco and Huawei for giving me access to their respective net-

works, resources and grants. I met great people in all these places.

I want to express my most sincere gratitude to my family, for being always there, for having

supported my studies and for their constant presence and thoughtfulness.

Finally, I am deeply thankful to Flavia, the one and only lighthouse in the dark during these

years. All this would not have been possible without her help, patience and support. Without her,

I would not be in this stage now. I am really not able to put in words how grateful I am. Thanks.

ii

Contents

1 Introduction 15

1.1 Motivation and Applications . 15

1.2 Objectives . 16

1.3 Thesis Outline . 17

1.4 Publications . 18

2 Background 19

2.1 Machine Learning and Anomaly Detection . 19

2.2 Types of anomalies . 22

2.3 Performance Evaluation . 24

2.4 Machine Learning Anomaly Detection Strategies 25

2.5 Batch vs Stream Mode . 27

2.6 Batch Methods . 30

2.7 Time series streams . 36

2.8 Conclusion . 40

3 Random Histogram Forest for Unsupervised Outlier Detection 41

3.1 Introduction . 41

3.2 Related Work . 43

3.3 Random Histogram Forest (RHF) . 44

3.4 Experimental Evaluation . 47

3.4.1 Settings. 47

3.4.2 Comparison . 51

3.4.3 Robustness to noise . 54

3.4.4 Robustness to the choice of hyperparameters 55

1

3.4.5 HyperParameters Tuning . 56

3.5 Conclusions . 60

4 Online Anomaly Detection Leveraging Stream-Based Clustering and Real-Time Teleme-

try 61

4.1 Introduction . 61

4.2 Related Work . 63

4.2.1 Outlier detection in computer networks . 63

4.2.2 Overview of clustering algorithms . 66

4.3 Testbed and Datasets . 68

4.3.1 Testbed . 68

4.3.2 Data collection . 69

4.3.3 Telemetry features . 71

4.3.4 Dataset at a glance . 71

4.4 Methodology . 73

4.4.1 From clustering to anomaly detection . 74

4.4.2 Hyperparameter selection (DBScan, LOF, wDBScan, ExactSTORM, COD

and RRCF) . 76

4.4.3 Hyperparameter selection (ODS) . 79

4.5 Performance evaluation . 84

4.5.1 Model evolution over time . 84

4.5.2 Detection Performance . 85

4.5.3 Computational Complexity . 87

4.6 Discussion . 91

4.7 Conclusion . 92

4.7.1 Available features . 92

4.7.2 Selected features . 93

5 AutoAD 94

5.1 Introduction . 94

5.2 Related Work . 97

5.2.1 Supervised Automated Machine Learning 97

5.2.2 Unsupervised Automated Machine Learning 98

2

5.3 The Proposed autoAD Framework . 99

5.3.1 Application of Anomaly Detection . 100

5.3.2 Anomalies Removal . 101

5.3.3 Algorithm Weighting . 103

5.3.4 Final Anomaly Scores . 104

5.4 Experimental Evaluation . 104

5.4.1 Datasets . 104

5.4.2 Methods and Hyperparameters . 105

5.4.3 Results . 106

5.5 Concluding Remarks and Future Directions . 111

6 Conclusion 113

6.1 Summary of Contributions . 114

3

List of Figures

2.1 Differences between Supervised, Semi-Supervised and Unsupervised Anomaly

Detection techniques. Image Source: [62] . 20

2.2 Two-dimension toy Dataset representing a Global Point Anomaly (e.g. O1), a Local

Point Anomaly (e.g. O2) and a Group Anomaly (e.g. cluster Co composed by O3,

O4 and O5). 21

2.3 Example of a Contextual Anomaly. The plot shows the monthly temperature over a

few years timespan. When the contextual information is used (e.g. seasonality) as

data source, a low temperature might be normal during the winter (at time t1), but

the same value during summer (at time t2) would be an anomaly. Image source: [34] 23

2.4 Example of a Receiver Operating Characteristic (ROC) curve (a) and Average Pre-

cision (AP) curve (b). Image Source: [21] . 25

2.5 Summary of Anomaly Detection Algorithms. Related work is grouped in two branches

depending on the underlying algorithmic family: batch vs stream. Batch algorithms

are further classified in Proximity vs Probabilistic vs Ensemble methods. Stream

methods are differentiated into univariate vs multivariate methods. 29

3.1 Example of 3 different Random Splits in 4 bins ⌘. One can observe that some areas

(e.g. A) have noticeable higher mass than others (e.g. B) 44

3.2 Probability Density Function of 4 features depicting both normal and anomalous

class extracted from datasets Annthyroid and Mulcross respectively. It is easily

observable that features with heavier tails (depicted by arrows) and consequently

higher kurtosis score (e.g. X1-top and X2/X3-bottom) are more likely to contain

separable anomalous points than remaining ones (e.g. X0/X4-top and X0/X1-

bottom in which anomalies are clearly not separable). 48

4

3.3 Boxplot representing aggregated results from Tab. 5.3. Results are sorted accord-

ing to the median value in decreasing order complemented with a bootstrapped

0.95 confidence interval. In both public and private datasets RHFK achieves the

highest q25, mean, median and q75 values. 51

3.4 Robustness to noisy dimensions: an increasing number of gaussian dimensions

are added to three datasets musk (top), smtp all (middle) and http logged (bottom).

Steady results are produced by RHF and XSTREAM while ISO’s perfomance is

higly impacted . 54

3.5 Average Precision for different number of anomalies in dataset http logged. As

http logged contains 97% duplicated anomalous points we gradually remove them.

The figure contrasts different Isolation Forest’s sampling size 2 [128, 4096] against

RHF ’s max height h 2 [4, 5]. The plot illustrates that iForest ’s performance is sensi-

ble to the hyper-parameter when varying the number of anomalous points in the

dataset. 55

3.6 HyperParameters tuning: Average Precision score over all the datasets for increas-

ing maximum tree height h. The figure illustrates scores obtained using both Kur-

tosis Split and Random Split criterion. 56

3.7 HyperParameters tuning: Average Precision score for increasing number of trees

t on http logged (left), shuttle (middle) and breastcancer (right) datasets. We ob-

serve that performances converge already for small number of trees. 59

3.8 Scalability analysis: Empirical Running time complexity analysis for increasing in-

creasing n, d, t and h while keeping fixed the remaining hyperparameters. The

plots show that execution time linearly increases with increasing input sizes (n and

d) as well as for incresing height h and ensemble size t. 59

4.1 Testbed replicating a traditional clos topology of a CSP datacenter 69

4.2 Dataset at a glance: Top plots depict example of the Multivariate Time Series as

heatmaps for leaf1 and spine1 on E5 (plots on the left) and E10 (plots on the right).

Bottom plot reports temporal evolution for sample features and annotated ground

truth for node spine1 on E5: control-plane paths-count (top), vs data-plane bytes-

sent on interface HundredGig0/0/0/0 (bottom). 72

5

4.3 Hyperparameter selection: F0.5 heatmap for DBScan (top left), LOF (top right),

wDBScan (middle left), ExactSTORM (middle right), COD (bottom left) and RRCF

(bottom right). Detailed hyperparameters in Tab. 4.3. Selected hyperparameters at

the intersection of the dashed lines. 78

4.4 ODS Hyperparameter selection: Impact of kr for dynamic radius threshold in (4.6) 80

4.5 ODS Hyperparameter selection: F0.5 score for increasing fading factor � and po-

tential factor � applied on E2 and E3 . 81

4.6 wDBScan (left) vs ODS (right) model evolution over time. The top two rows dis-

criminate normal vs anomalous clusters: the top row reports the number of normal

vs anomalous clusters returned by the models, the second row reports the cluster

ID to which each samples is merged to. The third and fourth rows show the radius

and the weight evolution of each normal cluster respectively, while the two bottom

ones depict the evolution of the first and second components extracted from the

center of the clusters. 82

4.7 Algorithms Performance Comparison: Precision, Recall and F0.5 score. Figure and

table report the average performance on the testing (full opacity, foreground bars)

vs tuning (light opacity, background bars) dataset. The top-3 among the stream

algorithm are explicitly annotated. 83

4.8 Algorithms Performance Comparison: Accuracy, Markedness and Informedness.

Figure and table reports the average performance on the testing (full opacity, fore-

ground bars) vs tuning (light opacity, background bars) dataset. The top-3 among

the stream algorithm are explicitly annotated. 88

4.9 Algorithm complexity: total execution time in seconds (top) and execution time per

instance (bottom) for DBScan, LOF, wDBScan, ExactSTORM, COD, RRCF and

ODS as a function of the dataset size. DBScan measurements are not complete

as it runs out of memory for values greater than those shown in the plot. 89

4.10 Execution time per Instance (x-axis) vs Detection performance F0.5score (y-axis).

The plot is annotated with semi-planes to better highlight the desirable corners of

the design space: ODS sits at an interesting operational point for being signifi-

cantly faster than all the algorithms tested and second only to RRCF in terms of

information retrieval metrics (F0.5 in this plot). 90

6

5.1 Overview of the autoAD framework. Given the input dataset and the set of al-

gorithms with their corresponding predefined search space, we apply separately

each method, as the combination (Ai,P
j
i). Once we finish processing each of the

method, we rank the output anomaly scores (as shown in the first green column

cells) in order to remove (rm) the top-N anomalous instances. We therefore eval-

uate (eval) the performance of each method using a quality measure, �, on the

remaining normal instances. We assign to each method a weight proportional to its

performance. Hence, the final anomaly scores are computed based on the initial

scores and the weight assigned to each method. 100

5.2 Anomalies Removal example applied on two different methods M1 and M2. The

two methods produce different anomaly scores and ranks as illustrated by the color

of each instance (darker colors indicate higher anomaly scores). By removing, for

example, N = 4 most anomalous instances and applying a quality metric on the

remaining instances M1 proves to be better than M2. 103

5.3 Average precision score for an increasing number of removals r on three different

datasets, (a) mnist, (b) mulcross, and (c) kdd99 datasets, respectively. 108

5.4 Average precision scores with a different number of methods. 108

5.5 Correlation between the variance-quality measure � with (a) kdd99, (c) mulcross,

and the average precision score with (b) kdd99, (d) mulcross of each method. The

methods are presented in a decreasing order according to �. 110

5.6 Running time. (a) the autoAD running time together with the running time of each

method (bar plot). (b) the running time with different number of removals r. 111

7

List of Tables

2.1 Main difference between batch vs stream algorithms 28

3.1 AP scores of all approaches on all our datasets. The results are sorted in decreas-

ing order of ISO scores. In the case of probabilistic approaches, each value is an

average over 30 runs which is complemented with a 0.95 confidence interval. The

best results for each dataset are represented in bold while the best between ISO

and RHF is represented in gray bold. 53

3.2 Running times of the RHFK algorithm for increasing number of instances n, num-

ber of dimension d, max tree height h 2 [3, 5, 7] and number of trees t 2 [30, 60, 90].

The table contains also the running time of ISO (= 256) and XSTREAM (param-

eters). The boxplots under the table illustrate the running times for increasing tree

height h (left), number of trees t (middle) and the overall comparison of ISO, RHFK

and XSTREAM running times when the default parameters are used (right). 58

4.1 Algorithms compared in this work . 68

4.2 Experimental datasets available at [6] . 69

4.3 Hyperparameters: Number and range of combinations tested for each method and

final selection . 76

4.4 Detection peformance: in-depth RRCF vs ODS comparison 87

4.5 Available telemetry features . 93

5.1 Overview of the datasets. For each dataset, we have the number of instances n,

number of dimensions d, and number of anomalies (in %). 105

8

5.2 The overall median gain of autoAD using the three different quality measures with

respect to SelectV, the second best performing method. The Win/Loss rate indi-

cates the number of datasets in which autoAD is statistically better/worse. The Med

Gain/Loss indicates the median AP gain in the winning/worsening datasets. 106

5.3 Average precision scores of all approaches on all the datasets. autoAD-SSE and

autoAD-VAR represent the autoAD algorithm using the two different quality mea-

sures. Naive is the ensemble composed by all 20 methods equally weighted. Bold

values are the best between autoAD-VAR and Naive, the second best strategy . . . 107

9

Introduction en français

Motivation et applications

L’objectif principal de cette thèse est d’extraire des modèles de données et des anomalies dans un

large éventail d’applications du monde réel en utilisant des algorithmes et des méthodes évolutifs.

Les anomalies peuvent s’avérer vitales dans de nombreux scénarios tels que les réseaux infor-

matiques, les fraudes et les soins de santé. Par exemple, la détection d’anomalies dans les

réseaux informatiques et les transactions par carte de crédit est essentielle pour des raisons de

sécurité, tandis qu’elle pourrait s’avérer indispensable pour détecter les défauts des moteurs ou

les masses cancéreuses dans les images. Par conséquent, ces problèmes du monde réel ont

suscité un nombre croissant de questions de recherche.

Une anomalie (également connue sous le nom de outlier) est une instance qui s’écarte con-

sidérablement du reste des données [66] et étant défini par Hawkins [72] comme “une observation

qui s’écarte tellement d’autres observations que l’on peut soupçonner qu’elle a été générée par

un mécanisme différent..’

La détection d’anomalies (également connue sous le nom de détection de valeurs aberrantes

ou de nouveautés) est donc le domaine de l’apprentissage automatique et de l’exploration de

données dont l’objectif est d’identifier les instances dont les caractéristiques semblent être in-

compatibles avec le reste de l’ensemble de données. Dans de nombreuses applications, il est

très important de distinguer correctement l’ensemble des points de données anormaux (outliers)

de l’ensemble des points de données normaux (inliers). Une première application est le nettoyage

des données, c’est-à-dire l’identification des mesures bruyantes et fallacieuses dans un ensemble

de données avant l’application ultérieure d’algorithmes d’apprentissage. [56, 151].

10

Cependant, avec la croissance explosive du volume de données pouvant être collectées à

partir de diverses sources, par exemple les transactions par carte, les connexions Internet, les

mesures de température, etc., l’utilisation de la détection d’anomalies devient une tâche au-

tonome cruciale pour la surveillance continue des systèmes. Dans ce contexte, la détection

d’anomalies peut être utilisée pour détecter les attaques d’intrusion en cours [160], réseau de

capteurs défectueux [122] ou des masses cancéreuses [120].

Cette quantité croissante d’applications et de modèles de données génère une demande

pour des solutions de plus en plus sophistiquées capables d’être performantes dans de nom-

breux scénarios et applications. Par conséquent, cette thèse se concentre sur plusieurs défis

qui émergent dans la tâche de détection d’anomalies, en proposant des algorithmes innovants

capables d’être performants dans différentes exigences et applications.

Objectifs

Cette thèse vise à proposer des méthodes pratiques pour la détection d’anomalies dans trois

domaines différents. Plus précisément, nous proposons :

• une nouvelle batch méthode de détection d’anomalies non supervisée qui améliore les per-

formances des algorithmes non supervisés existants. L’algorithme s’attaque à trois défis

principaux dans la détection d’anomalies : le problème de la dimensionnalité dans les

grands ensembles de données qui a un impact important sur la précision de la plupart des

algorithmes, le problème de la sélection des hyperparamètres dans différents ensembles

de données et enfin les problèmes d’évolutivité dans les grands ensembles de données.

• un nouveau moteur de détection d’anomalies de séries temporelles basé sur le regroupe-

ment incrémentiel qui s’attaque aux problèmes d’évolutivité dans les environnements de

surveillance dans lesquels de nouvelles instances sont disponibles en mode continu.

• une méthode de détection automatisée des anomalies qui s’attaque au problème de la

sélection des hyperparamètres des algorithmes sur différents ensembles de données. Elle

11

utilise des algorithmes existants de détection d’anomalies comme blocs de construction et

leur attribue des poids proportionnels à la preuve qu’ils sont des modèles performants dans

la tâche de détection.

Plan de la thèse

Suivant les objectifs de la thèse, nous organisons la thèse en quatre parties principales. A partir

du chapitre 2 nous discuterons des travaux connexes et de l’état de l’art des algorithmes de

détection des anomalies en tenant compte des modèles batch et de time-series. Dans la dernière

partie du chapitre, nous fournissons une explication détaillée de tous les algorithmes utilisés dans

les chapitres suivants. Les contributions aux modèles batch sont présentées au chapitre 3 tandis

que ceux liés aux modèles de time-series sont présents dans le chapitre 4. La contribution à la

détection automatisée des anomalies est décrite au chapitre 5. Enfin le chapitre 6 conclut cette

thèse en résumant les contributions et en présentant quelques idées pour les travaux futurs.

• Chapter 2 présente une revue des stratégies et techniques de détection des anomalies.

Nous considérons et expliquons en détail, pour les familles batch et time-series, les algo-

rithmes bien connus et ceux qui se sont avérés être les plus performants dans les études

et comparaisons précédentes. Cette revue permet de construire une base solide pour les

algorithmes utilisés dans les chapitres suivants par rapport aux méthodes proposées dans

cette thèse.

• Chapter 3 propose une approche basée sur les arbres pour la détection non supervisée des

anomalies, appelée Random Histogram Forest (RHF). L’algorithme résout le problème de la

dimensionnalité en utilisant le quatrième moment central (alias kurtosis) dans la construc-

tion du modèle, tout en présentant un temps d’exécution linéaire. Les résultats démontrent

que la méthode améliore la précision globale de la détection des anomalies tout en étant

robuste à la sélection des hyperparamètres.

• Chapter 4 présente un moteur de détection d’anomalies de time-series, appelé ODS, qui

s’appuie sur DenStream, une technique de regroupement non supervisé, et l’applique aux

mesures collectées à partir d’équipements de réseau réels étudiant ainsi une application

monitoring. Notre campagne expérimentale compare plusieurs algorithmes du point de vue

de la précision et de l’évolutivité : les résultats montrent que ODS (i) obtient des résultats

12

de détection comparables aux méthodes de pointe et (ii) est nettement plus rapide que les

autres approches, notamment plus de deux ordres de grandeur plus rapide que les modèles

d’ensemble.

• Chapter 5 présente un moteur de détection automatique d’anomalies qui allège l’effort hu-

main nécessaire pour traiter plusieurs algorithmes et hyperparamètres. En exploitant un

pool de différents algorithmes de détection d’anomalies, notre méthode pondère automa-

tiquement chacun d’entre eux avant d’agréger les résultats. L’évaluation expérimentale mon-

tre que notre méthode surpasse les méthodes automatisées non supervisées existantes

basées sur des mesures de corrélation.

• Chapter 6 conclut cette thèse en résumant les contributions et présente quelques idées

pour les travaux futurs.

Publications

Le contenu de cette thèse a été partiellement publié dans des conférences et revues interna-

tionales. Dans ce qui suit, nous présentons la liste des articles publiés ou en cours de révision

• Andrian Putina, Mauro Sozio, Dario Rossi, José M Navarro, ”Random Histogram Forest for

Unsupervised Anomaly Detection”. 2020 IEEE International Conference on Data Mining

(ICDM).

• Andrian Putina, Dario Rossi, ”Online Anomaly Detection Leveraging Stream-Based Cluster-

ing and Real-Time Telemetry”. IEEE Transactions on Network and Service Management.

• Andrian Putina, Dario Rossi, Albert Bifet, Steven Barth, Drew Pletcher, Cristina Precup,

Patrice Nivaggioli, ”Telemetry-based stream-learning of BGP anomalies”. Proceedings of

the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication

Networks.

• Andrian Putina, Steven Barth, Albert Bifet, Drew Pletcher, Cristina Precup, Patrice Nivaggi-

oli, Dario Rossi, ”Unsupervised real-time detection of BGP anomalies leveraging high-rate

and fine-grained telemetry data”. IEEE INFOCOM 2018-IEEE Conference on Computer

Communications Workshops.

13

• Maroua Bahri, Flavia Salutari, Andrian Putina, Mauro Sozio, ”AutoML: state of the art with a

focus on anomaly detection, challenges, and research directions”. International Journal of

Data Science and Analytics

• (Under Review) Andrian Putina, Mauro Sozio, Dario Rossi, José M Navarro, ”Random His-

togram Forest for Unsupervised Anomaly Detection: An Extensive Experimental Evalua-

tion”.

• (Under Review) Putina,A.,Salutari,F.,Bahri,M.Sozio,M.,“AutoAD: an Automated Framework

for Unsupervised Anomaly Detection”

14

Chapter 1

Introduction

1.1 Motivation and Applications

The main goal of this thesis is mining data patterns and anomalies in a wide range of real-world

applications using scalable algorithms and methods. Anomalies could prove to be vital in many

scenarios as computer networks, frauds and healthcare. For example, anomaly detection in com-

puter networks and credit card transactions is critical for security reasons while it could prove to

be indispensable in detecting faults in engines or cancerous masses in images. As a result, these

real-world problems have posed an increasing amount of research questions.

An anomaly (also known as outlier) is an instance that significantly deviates from the rest of

the input data [66] and being defined by Hawkins [72] as “an observation, which deviates so much

from other observations as to arouse suspicions that it was generated by a different mechanism.’

Anomaly detection (also known as outlier or novelty detection) is thus the machine learning

and data mining field with the purpose of identifying those instances whose features appear to

be inconsistent with the remainder of the dataset. In many applications, correctly distinguishing

the set of anomalous data points (outliers) from the set of normal ones (inliers) proves to be very

important. A first application is data cleaning, i.e., identifying noisy and fallacious measurement

in a dataset before further applying learning algorithms [56, 151].

15

However, with the explosive growth of data volume collectable from various sources, e.g.,

card transactions, internet connections, temperature measurements, etc. the use of anomaly

detection becomes a crucial stand-alone task for continuous monitoring of the systems. In this

context, anomaly detection can be used to detect ongoing intrusion attacks [160], faulty sensor

networks [122] or cancerous masses [120].

This increasing amount of applications and data patterns generates a demand for more and

more sophisticated solutions capable to perform well in many scenarios and applications. There-

fore, this thesis focuses on several challenges that emerge in the anomaly detection task offering

innovative algorithms able to perform well under different requirements and applications.

1.2 Objectives

This thesis aims at proposing practical methods for anomaly detection in three different areas.

More specifically we propose:

• a novel batch unsupervised anomaly detection method which enhances the performance of

existing unsupervised algorithms. The algorithm tackles three main challenges in anomaly

detection: the curse of dimensionality problem in large datasets which heavily impacts

the accuracy of most of the algorithm, the hyperparameter selection problem in different

datasets and finally the scalability issues on large datasets.

• a novel time-series anomaly detection engine based on incremental clustering which tackles

the scalability issues in monitoring environments in which new instances are available in a

stream mode.

• an Automated Anomaly Detection method tackling the problem of hyperparameter selection

of algorithms on different datasets. It uses existing batch anomaly detection algorithms as

building blocks and assigns them weights proportional to the evidence of being properly

performing models in the detection task.

16

1.3 Thesis Outline

Following the thesis objectives, we organize the thesis into four main parts. Starting from Chap-

ter 2 we will discuss related work and state-of-art anomaly detection algorithms considering both

batch and time-series models. In the last part of the chapter we provide a detailed explanation

of all the algorithms used in the following chapters. The contributions to the batch models follow

in Chapter 3 while those related to the time-series models are present in Chapter 4. The Auto-

mated Anomaly Detection contribution is described in Chapter 5. Finally Chapter 6 concludes this

dissertation by summarizing the contributions and presenting some ideas for future work.

• Chapter 2 presents a review of anomaly detection strategies and techniques. We consider

and explain in detail, for both batch and time-series families, the well known algorithms and

those which proved to be the best performing ones in previous studies and comparisons.

This review builds a solid background of the algorithms used in the following chapters when

compared to the methods proposed in this thesis.

• Chapter 3 proposes a batch tree-based approach for unsupervised anomaly detection,

called Random Histogram Forest (RHF). The algorithm solves the curse of dimensional-

ity problem using the fourth central moment (aka kurtosis) in the model construction while

boasting linear running time. The experiment results demonstrate that the method enhances

the overall accuracy of batch anomaly detection while being robust to hyperparameter se-

lection.

• Chapter 4 introduces a time-series anomaly detection engine, called ODS, that leverages

DenStream, an unsupervised clustering technique, and apply it to measurements collected

from real network equipment studying so a monitoring application. Our experimental cam-

paign compares several algorithms under both accuracy and scalability viewpoints: results

testify that ODS (i) achieves detection results on par with state-of-art methods and (ii) is

significantly faster than other approaches, notably over two orders of magnitude faster than

ensemble models.

• Chapter 5 presents an Automated Anomaly Detection engine which alleviates the human

effort required when dealing with several algorithms and hyperparameters. By leverag-

ing a pool of different anomaly detection algorithms, our method automatically weights

each of them before aggregating the results. The experimental evaluation shows that our

17

method outperforms existing unsupervised automated methods based on correlation mea-

surements.

• Chapter 6 concludes this dissertation by summarizing the contributions and presents some

ideas for the future work.

1.4 Publications

The content of this dissertation has been partially published in international conferences and

journals. In the following we report the list of papers published or under review:

• Andrian Putina, Mauro Sozio, Dario Rossi, José M Navarro, ”Random Histogram Forest for

Unsupervised Anomaly Detection”. 2020 IEEE International Conference on Data Mining

(ICDM).

• Andrian Putina, Dario Rossi, ”Online Anomaly Detection Leveraging Stream-Based Cluster-

ing and Real-Time Telemetry”. IEEE Transactions on Network and Service Management.

• Andrian Putina, Dario Rossi, Albert Bifet, Steven Barth, Drew Pletcher, Cristina Precup,

Patrice Nivaggioli, ”Telemetry-based stream-learning of BGP anomalies”. Proceedings of

the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication

Networks.

• Andrian Putina, Steven Barth, Albert Bifet, Drew Pletcher, Cristina Precup, Patrice Nivaggi-

oli, Dario Rossi, ”Unsupervised real-time detection of BGP anomalies leveraging high-rate

and fine-grained telemetry data”. IEEE INFOCOM 2018-IEEE Conference on Computer

Communications Workshops.

• Maroua Bahri, Flavia Salutari, Andrian Putina, Mauro Sozio, ”AutoML: state of the art with a

focus on anomaly detection, challenges, and research directions”. International Journal of

Data Science and Analytics

• (Under Review) Andrian Putina, Mauro Sozio, Dario Rossi, José M Navarro, ”Random His-

togram Forest for Unsupervised Anomaly Detection: An Extensive Experimental Evalua-

tion”.

• (Under Review) Putina,A.,Salutari,F.,Bahri,M.Sozio,M.,“AutoAD: an Automated Framework

for Unsupervised Anomaly Detection”

18

Chapter 2

Background

In this chapter, a comprehensive and detailed review of existing machine learning anomaly de-

tection strategies and methods is provided. We first formally describe the concept of anomaly

detection and novelty detection. We further discuss a general taxonomy for the task of anomaly

detection introducing the three types of anomalies, the three big families of algorithms, the eval-

uation metrics, research problems and challenges. We then describe different anomaly detection

strategies (Section 2.4) and discuss the main difference between batch and stream algorithms

afterwards (Section 2.5). Well known batch algorithms and those which proved to be the best

performing ones in previous studies are described in Section 2.6 while stream algorithms are

illustrated in Section 2.7. All such methods are used in the evaluation phase of the following

chapters against our proposed methods.

2.1 Machine Learning and Anomaly Detection

Anomaly Detection consist of a wide range of techniques and methods concerning the identifica-

tion of abnormality in the data. It can be performed relying on expert knowledge in which specific

application experts recognize anomalous patterns or through the usage of Statistics and Machine

Learning.

Arthur Samuel first popularized the concept of Machine Learning [129] defining it as: the field

of Artificial Intelligence and Computer Science that gives the computer the ability to learn without

being explicitly programmed. In this scenario, given a general dataset X = {x1, x2, ..., xn} with

19

Figure 2.1: Differences between Supervised, Semi-Supervised and Unsupervised Anomaly De-
tection techniques. Image Source: [62]

xi 2 Rd, i 2 {1, 2, ..., n} where n denotes the number of instances, d the number of dimensions

in the dataset and a label space Y = {y1, y2, ..., yn} representing the output variable, a model

optimizes a function h such that h(xi) ! yi. Such models fall under the category of supervised

models. Based on the absence, full or partial, of the target variable Y models can be further split

into unsupervised and semi-supervised ones (illustrated in Fig. 2.1). The former are not provided

with labels so algorithms have to devise and discover data patterns on their own. The latter are

provided with only a small fraction of labeled data, often belonging to only one class, forcing the

model to build a decision boundary around the provided class.

Anomaly Detection, known also as outlier, novelty and noise detection, is thus the task of

pinpointing, through the usage of models, instances whose characteristics significantly deviate

from the knowledge learned. However, while anomaly detection is usually interchanged with

outlier and novelty detection these two can be better defined as:

20

)HDWXUH�;

)
H
D
WX
UH
�<

2�

2�

2�

2�

2�

&R

&�

&�

&�

Figure 2.2: Two-dimension toy Dataset representing a Global Point Anomaly (e.g. O1), a Local
Point Anomaly (e.g. O2) and a Group Anomaly (e.g. cluster Co composed by O3, O4 and O5).

Outlier Detection is the task of identification of an instance x 2 X which significantly devi-

ates from the remainder of the input instances X. In such a scenario the model has access

to the full dataset X which is populated by both normal and anomalous instances. The

models can thus fit and estimate regions and boundaries between the two classes.

Novelty Detection is the task of identification of a novel instance x 2 X 0 according to the

observations in X where X 0 is the set of new observations. In such a scenario the model

has access only to the initial set of instances X, not polluted by outliers, and has to detect

new patterns in X 0. Such models can be further trained or updated when new instances are

available and fall under the category of Incremental or Stream models.

While outlier detection highlights anomalous instances in a dataset X, novelty detection first

fits a dataset with no outliers and successively examines new instances X 0 for anomalies. There-

fore the two share the common objective and principles of abnormal data identification but, based

on requirements such as memory usage and data availability, they are used in different applica-

tions and scenarios.

21

2.2 Types of anomalies

It is possible to group anomalies in: Point Anomalies, Group Anomalies and Contextual Anoma-

lies. Based on their characteristics, anomalies are harder or easier to detect. Consider Fig. 2.2

depicting a hypothetical two-dimension dataset populated by 5 anomalies. O1 is the easiest in-

stance to detect as it is ”far” from any clusters in the data. O1 is thus a point anomaly but so it

is O2. The difference between the two is that while O1 is globally anomalous with respect to all

the other instances in the dataset, O2 is harder to detect as it is anomalous only with respect to

instances in the cluster C1. O1 is a global point anomaly while O2 is a local point anomaly. An

even more difficult task for anomaly detection algorithms is the detection of the anomalous cluster

Co composed by O3, O4 and O5. The anomalous cluster indeed contains only a small fraction of

the overall data. It is thus very challenging to define an universal measurement to detect global,

local and group anomalies.

Consider now Fig. 2.3. t2 is a typical contextual anomaly which are commonly found in time-

series. The plot shows the monthly temperature over a few years timespan. When the contextual

information is used (e.g. seasonality) as data source, a low temperature might be normal dur-

ing the winter (at time t1), but the same value during summer (at time t2) would be an anomaly.

Formally:

22

Figure 2.3: Example of a Contextual Anomaly. The plot shows the monthly temperature over a
few years timespan. When the contextual information is used (e.g. seasonality) as data source, a
low temperature might be normal during the winter (at time t1), but the same value during summer
(at time t2) would be an anomaly. Image source: [34]

• Global Point Anomalies: Is an instance x that deviates significantly from all the remaining

instances X. For example, O1 in Fig. 2.2 is far from all the remaining instances.

• Local Point Anomalies: Is an instance x that deviates significantly only with respect to a

subset of instances Cx ⇢ X. For example, O2 in Fig. 2.2 is far only from C1.

• Group Anomalies: Is a set of instances Xo ⇢ X that do not follow regular patterns observed

by other set of instances in Xn ⇢ X. For example, C4 in Fig. 2.2 is composed by only 3

instances while other clusters contain at least 8 instances.

• Contextual Anomalies: Is an instance x that deviates significantly from all the remaining

instances X according to a certain context. For example, t2 in Fig. 2.3 is similar to t1 from

an absolute value point of view but it is anomalous when the context (seasonality/month) is

considered.

23

2.3 Performance Evaluation

The evaluation of anomaly detection algorithms is performed taking into account their outputs and

comparing them against known ground truth, known also as labels. For each instance x 2 X,

the models output an anomaly score which can be ranked from the most anomalous to the most

normal one. By setting an outlierness threshold each instance is finally classified as normal or

anomalous. Typical metrics used in machine learning are True Positive Rate (TPR), False Positive

Rate (FPR), Precision, Recall and F1 defined as:

TPR = Recall =
tp

tp+ fn
(2.1)

FPR =
fp

fp+ tn
(2.2)

Precision =
tp

tp+ fp
(2.3)

F1 = 2 ⇥
Precision ⇤ Recall

Precision+Recall
(2.4)

where tp, tn, fp and fn represent respectively true positive, true negative, false positive and

false negative.

By considering all possible thresholds (from smallest to largest anomaly score) it is possible to

compute, for each of them, a tuple FPR and TPR. Such tuples generate the Receiver Operating

Characteristic (ROC) curve: an overall measure which trades-off FPR (x axis) vs TPR (y axis).

The perfect classifier reaches an optimal ROC score of 1.

Similarly, the Precision-Recall curve, known also as Average Precision (AP), is generated us-

ing the same principles of the ROC one with the difference that it trades-off Recall (x axis) vs

Precision (y axis). An example of both ROC and AP curves are present in Fig. 2.4.

We observe that the Receiver Operating Characteristic (ROC) is often employed to evaluate

anomaly detection methods [62]- [92]. However, it has been shown in [39] that when the classes

are not balanced (e.g. anomaly detection task) the AP curves better reflect the efficacy of an

24

Figure 2.4: Example of a Receiver Operating Characteristic (ROC) curve (a) and Average Preci-
sion (AP) curve (b). Image Source: [21]

algorithm. [39] shows moreover that a curve dominates in ROC if and only if it dominates in AP

space. We evaluate thus the performance of the algorithms by measuring the Average Precision

(AP) of the Precision-Recall Area Under the Curve [159] (without interpolation):

AP :=

X

n

(Rn � Rn�1)Pn (2.5)

where Pn =
tp

tp+fp and Rn =
tp

tp+fn are the Precision and Recall at the nth threshold.

2.4 Machine Learning Anomaly Detection Strategies

Machine Learning Anomaly Detection techniques can be categorized [34] into three big families

according to the input type: supervised anomaly detection, unsupervised anomaly detection and

semi-supervised anomaly detection (see. Fig.2.1).

In the case of supervised models, the task of anomaly detection is reduced to a binary classi-

fication in which normal and anomalous instances are considered instances of two classes {0,1}.

When treating imbalanced datasets, especially true in the case of anomaly detection, it is usually

recommended to use re-sampling methods (down/up-sampling) as supervised methods under

perform when a class is under-sampled or not well represented [14]. Such models are trained

on a training dataset and tested on unseen data. Usually supervised methods provide the best

25

detection rates as they have access to the labels in the training phase. However, they are rarely

usable in many different applications due to the lack of labels. Moreover, labeling is very expen-

sive as it requires a huge amount of human effort to annotate instances.

Among the supervised approaches we mention Random Forests [91], One Class Support Vec-

tor Machines [125] and, with recent advent of Neural Networks [40], Autoencoders [158] (based

on reconstruction) and Generative Adversarial Networks [63]. More details about Neural Networks

used for Anomaly Detection can be found in [111, 37] while more supervised techniques can be

found in the following related surveys [79, 34, 16, 17, 14].

Although supervised methods provide the best detection rates, two main challenges arise

when using such models in anomaly detection. The first one is linked to the rare nature of anoma-

lies and consequently to the class imbalance problem. Such problem is addressed in many ma-

chine learning studies [80, 82, 35]. Secondly, obtaining accurate and a representative set of labels

is not only challenging but would require also a large human effort to generate and maintain them.

This problem is addressed using re-sampling methods [14] or by injecting artificial anomalies into

normal datasets [142, 137]. Supervised anomaly detection is thus similar to building normal pre-

dictive/classification models hence we will not address this category anymore.

Semi-Supervised models are fit only on one class and are known also as one-class classifi-

cation (OCC) models. Such algorithms build decision boundaries only around the provided class

(usually normal data) and classify instances as either belonging or not belonging inside the deci-

sion boundary. They are used when anomalies are very difficult to capture. For example in the

space craft [57], a single anomalous instance would require an accident. However, such algo-

rithms poorly perform [141] for many reasons. Not only some of the features might be irrelevant

but it is difficult to understand how tight the boundary should be set especially when the training

set is contaminated by anomalous instances. Moreover inappropriate training set not covering the

full boundaries of normal behavior originates poorly performing models generating lots of false

positives.

Unsupervised models do not use a priori knowledge of data. In other words, no label is

provided to the algorithm. They are based on the assumption that normal instances are more

26

frequent than anomalies. Typically they group objects together (e.g. clustering) based on similar-

ity functions such as distance-based measurements between instances in the dataset. However

performances are often linked to the choice of the input hyperparameters which cannot be known

in advance. Detection is achieved identifying first shared patterns among data and pinpointing

instances which deviate from them. As a result, unsupervised anomaly detection has received

increasing attention in recent years (e.g. Isolation Forest [92], PIDForest [64], XSTREAM [97],

OCSVM [131], LOF [27]).

Due to the limitations of supervised and semi-supervised methods described in the previous

paragraphs we will focus in the following chapters mainly on unsupervised methods. More details

about the strategies not considered in this thesis (e.g. supervised, semi-supervised, etc) can

be found in the following books [15, 100] while general anomaly detection challenges and future

directions are present in [17, 79, 34, 16, 14].

2.5 Batch vs Stream Mode

Based on the data type, memory usage and requirements, algorithms can be further categorized

into batch and stream mode models.

Batch algorithms, usually, process a set of instances X in batches and simultaneously. They

require to load all the data in memory and through the usage of predefined metrics pinpoint

anomalous instances. Batch mode is thus used on a fixed dataset whose data size is known,

finite and all the instances fit in memory. Several batch algorithms require to process data in mul-

tiple passes and update so inner model variables as distances, clusters centroids, radius etc. By

definition, data collection introduces latencies between the arrival time and the processing time.

Stream algorithms, instead, are required to process a continuous stream of data immediately

as it is produced. They usually analyze newly available instances as soon as they are generated,

before discarding them. If such data processing is fast enough (e.g. sub-seconds) it is perceived

as real-time processing. Stream algorithms thus process instances in only one or a few passes.

Such methods are thus used on possibly infinite continuous streams whose size and distribution

are unknown. The main differences between batch and stream algorithms are summarized in

27

Batch Processing Stream Processing

Instances collected over a period of time Instances streamed continuously
Instances processed all at once Instances processed piece-by-piece
Data size is known and finite Data size is unknown and possibly infinite
Multiple passes on the data Single pass on the data
No real-time analytics results required Real-time analytics results required

Table 2.1: Main difference between batch vs stream algorithms

Table 2.1.

Due to the nature of the data (known and finite size), batch algorithms are mostly used in the

outlier detection task. In such scenario indeed, data is collected over a period of time and it is not

required to generate real-time results. Several algorithms (e.g. DBScan described in Section 2.6)

perform multiple passes on the data updating its model inner variables such as number of clus-

ters, centers, radiuses etc.

Stream algorithms, instead, are required to process a continuous stream of instances imme-

diately as it is produced and no a priori assumption can be done on the data whose size could

be infinite. In such a scenario instances cannot be stored and have to be discarded after the

processing phase forcing the algorithms to perform a single pass on all the instances. Such algo-

rithms are suited for novelty detection.

Data streams, as previously defined, do not assume any correlation between subsequent in-

stances. In such scenario all instances are independent and do not depend on previous instances.

An example of such streams is the fraud detection in which transactions of different clients are

independent. When in the stream the order and the arrival time are relevant, i.e. new instances

depend on previous instances, we deal with timeseries. In such scenario the time is an important

feature of the data and several algorithms extract data patterns from the past to predict future

events. Typical applications of time series analysis are forecasting applications in demand of

electricity, price stocks etc. To summarize, a time series is a sequence of instances composed

by successive measurements made over a time interval which present time correlation while a

data stream is more generally a sequence of instances in which there is not data ordering or

time-dependency between streaming instances.

28

8QVXSHUYLVHG��
$QRPDO\�'HWHFWLRQ

7LPH�6HULHV�6WUHDPV�

%DWFK

3UR[LPLW\�
1HDUHVW�1HLJKERU

3UREDELOLVWLF�/LQHDU

(QVHPEOH�,VRODWLRQ

8QLYDULDWH

0XOWLYDULDWH

.11��.WK11��/2)

33&$��2&690�
+%26

,VRODWLRQ�)RUHVW
3,'�)RUHVW��[6WUHDP

$5��0$�
$5,0$

([DFW67250�
&2'��55&)

Figure 2.5: Summary of Anomaly Detection Algorithms. Related work is grouped in two branches
depending on the underlying algorithmic family: batch vs stream. Batch algorithms are further
classified in Proximity vs Probabilistic vs Ensemble methods. Stream methods are differentiated
into univariate vs multivariate methods.

In the literature, the term streaming is often used to address time series and authors do not

always agree on the definitions. For example, authors in [97] define a stream as a sequence of

instances in which there is not data ordering or time-dependency between streaming instances

while authors in [67] use the same terminology (i.e. streams) referring to time series. While many

streaming algorithms (e.g. LODA [114], xStream [97], Rs-Hash [130]) can be applied also on

time series sequences, we will discuss and analyse in the following chapters algorithms designed

to detect anomalies in time series or which were used in the literature to perform such task. In

Chapter 4 we will compare such algorithms in a monitoring application in which data is produced

in form of time series.

Fig. 2.5 illustrates a summary of both batch and time series methods and further classifies

them in subcategories. More details about such models are provided in Section 2.6 and Sec-

tion 2.7

29

2.6 Batch Methods

Several batch unsupervised anomaly detection algorithms have been developed in recent years.

We can classify the related work as follows:

• (i) Proximity/Nearest-Neighbor based methods (e.g. K-NN, Kth-NN, Local Outlier Factor);

• (ii) Probabilistic/Linear based methods (e.g. PPCA, HBOS, OCSVM, etc.);

• (iii) Ensemble/Isolation based methods (e.g. Isolation Forest, PIDForest, XSTREAM).

Proximity/Nearest-Neighbor based methods compute the neighborhood of all the instances

x 2 X and uses the distances of each instance x to describe abnormality. Such methods as-

sume that normal instances are close to remaining instances while anomalies are far away from

the neighbors. All the methods use a distance measurement to detect close and far instances.

Several distance measurements have been proposed during the years [43] such as the Maha-

lanobis distance [96] and the well known and most used Euclidean distance:

DEuclidean =

vuut
dX

i

||ui � vi||2 (2.6)

where u and v are two d-dimensional instances in X.

Anomalies can be detected using distance measurements by either i) employing the distance

itself as anomaly scores or ii) using distances to group close instances into clusters and point out

afterwards instances not belonging to none of the clusters. A detailed survey comprising distance

based method is present in [34].

K-NN [20]: computes the distances for each instance x 2 X to the k-nearest-neighbors and

assign them the mean distance to its k nearest neighbors where k is an integer number. The

running complexity of this method is O
�
n2
�

while the number of input hyperparameters is one:

k. Setting the input hyperparameter k is not always easy as it depends on the application and

domain knowledge is required; this is especially true when duplicates are present in the dataset.

Kth-NN [124]: computes the distances for each instance x 2 X to the k-nearest-neighbors

and assign the distance to its kth nearest neighbors where k is an integer number. The running

30

complexity of this method is O
�
n2
�

while the number of input hyperparameters is one: k. As in

the previous case, the input hyperparameter depends most of the times on the application and

domain knowledge is required.

DBScan [52]: is a data clustering algorithm proposed by Ester et al. [52]. It is a density-based

clustering algorithm: it computes the distances between the samples and clusters altogether the

points which are neighbors (i.e. whose distance is less than ✏). By computing the ✏ neighborhood

of each point, it is able to discover clusters of arbitrary shape. The points falling in low-density

regions (whose nearest neighbors are far) are labeled as noise. In particular, the algorithm defines

the local point density p by two hyperparameters: ✏ and MinPts. The first one is the radius and

defines the neighborhood of a point p. The neighborhood is thus the group of all the points within

the radius ✏ from the point p:

N✏(p) = {q 2 D|dist(p, q) ✏} (2.7)

MinPts instead defines the minimum number of samples in a given neighborhood. Combining

✏ and MinPts, the density of an object p is high when in the N✏(p) there are MinPts or more

and low otherwise. Points with high density are called core points while low density points in

the neighborhood of a core point are called border points. Finally low density points are outliers.

The clusters are obtained grouping together density-reachable points where a point p is directly

density-reachable from a point q if p 2 N✏(q) and |N✏(q)| > MinPts. The outliers are the points

not belonging to any cluster Ci.

The running complexity of the algorithm is O
�
n2
�

[68] reducible, only when n >> d and

d < 3 using efficient indexing data structures (i.e. R⇤-tree), to O (n log (n)) [52] on average. For

d > 3 [58] shows it is possible to improve the expected running time to O

⇣
n2� 2

|d/2|+1+�
⌘

where

� > 0 can be an arbitrarily small constant. The input hyperparameters of the algorithms are ✏ and

MinPts. Both the hyperparameters are strongly dependent on the application and input dataset

as shown also in our experiments in Chapter 4

Local Outlier Factor (LOF) [28]: is a data clustering algorithm proposed by Breunig et al. [28]

to detect anomalous data point by measuring local densities. The algorithm computes the local

density of a point as the distance of the k-th nearest neighbor. It is possible in this way to identify

regions of similar densities and the points with low density are considered outliers.

31

In particular LOF computes, for each sample, the euclidean k-distance dk to its k-th nearest

neighbor. Distances are then used to compute the reachability distance of two points p and q as

the maximum of their real distance and the k-th distance of the second point.

reachDistk(p, q) = max(k � dist(q), dist(p, q)) (2.8)

and the local reachability distance of an point p as the average reachability distance of p from its

neighbors:

lrdk(q) = 1/
"P

q2NK (p) reachDistk(p, q)

|Nk(p)|

#
(2.9)

In the end, the local outlier factor of an object is the average local reachability distance of the

neighbors divided by the object’s own local reachability density, i.e.:

LOFk(p) =

P
q2Nk(p)

lrd(q)
lrd(p)

|Nk(p)|
(2.10)

Objects with similar density will have a LOF value close to 1, higher density objects (normal) will

have LOF lower than 1 while a LOF value higher than 1 will mean an object which has a lower

density than the neighbors and thus an outlier. The decision function can be properly tuned by

observing the scores of the top-most abnormal samples (contamination) in the dataset. LOF hy-

perparameters are n neighbors and contamination and its running complexity is O (n log (n)) [28].

As for the all distance based methods the input hyperparameters are again dependent on the

application and dataset as shown also in our experiments in Chapter 4

Probabilistic based methods estimate the parameters ✓ of the dataset X and assigns to each

instance x 2 X an anomaly score equal to the likelihood P (X | ✓). Such models assume that

instances are generated by the same stochastic source. After the fitting phase, anomalies are as-

signed low probability of being generated while high probabilities of being generated are assigned

to normal instances.

Histogram-based Outlier Score (HBOS) [61]: generates a histogram for each feature as-

suming they are independent. Similar to the Naive Bayes approach in which all the independent

feature probabilities are multiplied, HBOS outputs an anomaly score given by the multiplication of

the inverse height of the bins of all the features. The only input hyperparameters is the number

32

of bins k which might be difficult to select depending on the data distribution. For such reason,

authors propose two variants of the algorithm: the first one uses a fixed bin width whose running

complexity is O (n) and a second version in which dynamic bin width is used whose running com-

plexity is O (n log (n))

Probabilistic Principal Component Analysis (PPCA) [144]: estimates the principal compo-

nents of the data and projects the d-dimensional dataset to a q-dimensional one estimating the

latent variables by iteratively maximizing the likelihood function of the transformation

t = Wx+ µ+ ✏ (2.11)

where t is the d-dimensional dataset, x is the q-dimensional transformation, W the d ⇥ q matrix

which relates the two sets of variables, µ permits the model to have non-zero mean while ✏ is the

error. The input hyperparameter of the algorithm is the number of components n components,

estimated using Minka’s MLE previously described while the running complexity is O
�
nd2
�

One-Class SVM [131]: determines a separating hyperplane in a higher dimensional space by

maximizing the distance from the hyperplane to the origin. The model is fit with training instances

which contain only normal instances and not contaminated by outliers. Moreover, OCSVM sup-

ports also the ⌫ which was introduced to control the effect of outliers in the fitting phase. The

hyperparameter indeed acts as a trade-off between maximizing the distance of the hyper-plane

from the origin and the number of data points that are allowed to cross the hyper-plane. Such

method can be used also for the novelty detection task as, once trained, can easily estimate

anomaly scores for new instances. The running complexity of the algorithm is O
�
n3
�

while its

input hyperparameter ⌫ depends on the anomalies fraction in the dataset.

Ensemble/Isolation based methods isolate anomalies instead of profiling normal instances by

recursively splitting the data through a random tree and generating so isolation forests. Unlike

proximity-based methods, such methods does not rely on distance but they fragment the data

space to identify instances laying far from other data points.

33

Isolation Forest [92]: builds a forest of randomly generated trees on a sub-sample of in-

stances. To be more specific, it randomly selects a feature of the sub-sample and randomly

selects a value for the feature to form a node of a binary tree called iTree determining a left child

and right child. The splitting is repeated iteratively until it is not possible to split the data anymore

(e.g. only one instances in the leaf). For each instance in the dataset x 2 X the termination node

is computed and assigned the anomaly score equal to average path from the root nodes to the

termination nodes in all the trees. The authors show empirically that shorter path lengths are rep-

resentative of anomalies as they are more easily to isolate with respect to normal data. The input

hyperparameters of the algorithm are the number of instances and the ensemble size t. While it

is common to set t = 100 in ensemble models, we show in Chapter 3 that can strongly depend

on the number of anomalous instances in the dataset. The running complexity of the algorithm is

in the worst case O
�
t 2
�

for the building phase and O (nt) for the evaluation phase.

PID Forest [64]: builds a collection of decision trees that partition space into subcubes. In-

stead of using binary trees, PIDForest allows a finer partition splitting the data in k different regions

at each level of the tree with the goal of having a large variance in the sparsity of the subcubes.

The sparsity of a subcube C with respect to a dataset T is p(C, T) = vol(C)
C\T . Ultimately, the leaves

with large p values will point to regions with anomalies. Similarly to Isolation Forest, each tree is

built using a random sample P ✓ T of m points. Each node v in the tree corresponds to a sub-

cube C(v) and a set of points P (v) = C(v)\P . For the root, C(v) = [0, 1]d and P (v) = P . In each

internal node a coordinate j 2 [d] partitions the data Ij into k intervals. The number of partitions

k is a hyperparameter of the algorithm. The partitions stop when the tree reaches the maximum

depth or when P (v) 1. The key aspect of the algorithm is the choice of j which partitions the

data in some sparse and dense regions. The problem of finding the partition along a coordinate j

that maximizes the variance in the sparsity is reduced to the problem of finding a k-histogram for a

discrete function f : [n]) R, which minimizes the squared l2 error. Finally, each tree maps each

instance into a leaf node v and assigns a PIDScore(v). The 75% percentile score is the output

score. The input hyperparameters of the algorithm are the number of regions k, the ensemble

size t, max height h and the number of samples used . While authors show performances to be

steady for k > 3, and h the algorithm uses sub-sampling techniques () which results to depend

on the number of anomalous instances in the dataset similarly to Isolation Forest.

34

XSTREAM [97]: xStream is an ensemble of Half-Space Chains that approximates density

efficiently. Each chain approximates the density of a point by counting its nearby neighbors at

multiple scales. The algorithm first applies a subspace-selection and dimensionality reduction

via sparse random projections and subsequently builds and ensemble of Half-Space Chains to

estimate density at multiple scale. In the random projection phase the algorithm selects a set

of Gaussian random vectors {r1, ..., rk} and projects each instance x 2 Rd to a low-dimensional

embedding y 2 RK as y = (xT r1, ..., xT rk), where K is the number of random projections. The

low-dimensional embedding preserves the pairwise distance between instances. Instead of a

full set of Gaussian random vectors the authors propose to use sparse vectors where only 1/3

of the vector components are non-zero. Under this scheme, each projection ignores a 2/3 frac-

tion of the feature space, essentially selecting a subspace, while maintaining the pairwise dis-

tances. The algorithm then estimates the density in the projected K-dimensional space denoted

as P = {1, ...,K}. Each chain, of depth D randomly selects a split dimension p 2 P at each level

l = 1, ..., D and recursively splits the space along the dimension into discrete bins. If a feature is

selected again at a subsequent level, it is discretized with a halved bin width, enabling density ap-

proximation at multiple scales. Finally, the multi-scale outlier score of an instance y from a chain

is the minimum extrapolated bin-count across all levels, corresponding to the lowest density this

instance has among all the considered granularities. The overall anomaly score is the average

across all chains. The input hyperparameters of the algorithm are projection size k, the depth of

the chains d and the number of chains t generating so the following complexity O (ntkd). While

it is common to set t = 100 in ensemble models, authors show performances to be steady for a

wide range of hyperparameters k and d. We confirm such results in our comparison in Chapter 3.

35

2.7 Time series streams

For what concerns anomaly detection in time series, it is possible to classify the algorithms in two

big families:

• Univariate methods: approaches that analyse univariate time series (e.g. AR, MA, ARIMA,

etc.)

• Multivariate methods: approaches that model multivariate time series (e.g. ExactSTORM,

COD, RRCF, etc.)

Univariate algorithms are predictive models which extract patterns in a given time series with

the final goal of predicting subsequent values. Several methods have been proposed ranging

from traditional methods as Auto-regressive models (AR) [29], Moving Average model (MA) [51],

ARIMA [25], Seasonal ARIMA [78] and Exponential Smoothing (ES) algorithm [60] to more recent

strategies as LSTM Neural Network [134]. Such models are often simple to fit and use in real time

applications. However, they are designed for univariate time series so they are not applicable in

multivariate time series predictions, which limits their applications. This is especially true in moni-

toring applications where the number of sensors and measurements is very large.

Multivariate algorithms, instead of analyzing each time series at a time, extract patterns from the

multivariate dataset in a manner similar to the one observed in batch algorithms. Such models

define a decision function and assign an anomaly score to each processed instance. A first family

of algorithms are state transition models (e.g. Markov Models [154] or Hidden Markov Model [90])

in which timeseries are assumed to maintain a steady state pattern which can be modeled as a

state. However, the utilization of such methods can be cumbersome because states are often

unknown in advance and usually the systems may dynamically change over time.

A second class of multivariate algorithms are evolving prediction models which can be used

to update the models as new data arrives in order to better capture the trends in the data. For

example, [152] presents a predictive model which incrementally learns the probabilistic mixture

model of the data, using a decay factor to account for drifts. The anomaly score of each instance

is the probabilistic fit value to the learned model. More predictive techniques can be found in the

following related surveys [69, 86].

36

The bulk of the multivariate unsupervised anomaly detection algorithms for data streams is

composed by the category of the distance based methods applied on sliding windows. Such

methods assume that only recent data is relevant for the detection, as a result when the sliding

window moves, old objects expire and new objects are added to the window. The algorithms usu-

ally define outliers all the instances in the window having less that k neighbors within a distance

R. The most popular algorithms are:

ExactSTORM is an online anomaly detection method proposed by Angiulli et al. [19]. The method

uses a sliding window model and stores the data instances in nodes of a suitable data structure

called Indexed Stream Buffer (ISB). Each node contains the data instance p, its arrival time p.t,

the number of succeeding neighbors p.count after and the list, of size at most k, of the preceding

neighbors p.nn before. The ISB data structure supports the range query search, that given an ob-

ject p and a real number R > 0, returns the objects in the ISB whose distance to p is not greater

than R.

For each incoming instance p, a range query is performed in ISB which returns the list of its

preceding neighbors Q. For each q 2 Q, the number of succeeding neighbors q.count after is

increased by 1. Finally, p is inserted into the ISB while the expiring instance o is removed from

the data structure.

All the operations previously described are performed by the so called Stream Manager which

updates the ISB for each incoming instance. It is subsequently up to the Query Manager to scan

the ISB searching for outliers.

For each instance p in the ISB, the Query Manager discriminates between inliers and outliers

by considering the sum of the succeeding neighbors p.count after with the size of the preceding

neighbors list p.nn before. If the sum is lower than k, then p is an outlier and inlier otherwise.

37

Continuous Outlier Detection (COD) is an online anomaly detection method proposed by Kon-

taki et al. [84]. Similar to [19], the method uses a sliding window model and stores the instances

in a data structure that supports range queries efficiently (e.g. M-Tree). The authors observe that

(i) a departing instance can transform inliers into outliers, (ii) an incoming instance can transform

outliers into inliers and (iii) not all the instances are affected by the expiring ones. Since only the

neighbors of the expiring instances have to be updated, COD uses a priority queue (Fibonacci

queue) to schedule processing of affected instances.

The method stores for each instance of the stream p, its arrival time p.time, its expiration time

p.exp, the list of its preceding neighbors p.P and the number of the succeeding neighbors p.n+.

When a new instance p is available, the algorithm sets the expiration time to w samples from

the current time. It subsequently performs a query which returns the list of objects (p.P) lying

at distance at most R from p. Comparing the total number of neighbors against the threshold k,

the algorithm discriminates inliers from outliers. If p is an outlier it is added to the outlier list; it

is added to the inlier list and to the priority queue otherwise. The key in the priority queue is set

according to the minimum expiration time of all its preceding neighbors p.P. For each instance

q 2 p.P , the number of succeeding neighbors q.n+ is incremented by 1. When the total number

of neighbors exceeds k, q is promoted to the inliers list and added to the priority queue. The key

in the priority queue follows the minimum neighbors expiration time previously described.

When an instance o expires, it is removed from the range query data structure and from the

preceding neighbors lists. To do so, the priority queue is polled until all the elements set to be

checked in the current time are extracted. Each extracted element q is either added to the outlier

list if its total number of neighbors falls below k, or its key is updated and q is reinserted into the

queue otherwise.

Finally, ensemble methods constitute the last group of multivariate algorithms for anomaly de-

tection in data streams. The algorithms (RRCF [67], LODA [114], xStream [97]) typically use

sliding window models and are composed by a set of weak learners. Each learner partitions,

updates, and maintains the data using random trees data structures. On one hand ensemble

algorithms are the best performing algorithms in terms of accuracy. On the other hand, they are

38

slower than remaining algorithms as they have to update and maintain t different learners.

Robust Random Cut Forest (RRCF) is an streaming anomaly detection method proposed by

Guha et al. [67]. It is an ensemble algorithm composed by t different models which maintains w

instances (tree size) in binary trees. Each instance p 2 w is isolated in a leaf of the tree while

internal nodes act as splitting nodes. Each internal node, in addition to splitting criterion (attribute

and value) maintains also the dimensions bounding box (support) of all the instances in the sub-

tree.

Given a set of instances S and a tree T(S), when a new instance p is available, the algorithm

tries to insert it from the root. It first sums together the supports of all the dimensions contained

in the bounding box and extracts a random number r 2 [0,
P

i(x
h
i � xl

i)] which determines the

attribute and the splitting value. If the split separates the instance p from the remaining tree, the

algorithm generates a new splitting node with a branch containing p and another one containing

the previous tree T(S). If the split does not isolate p, then p follows the path of the existing tree

and the procedure is repeated on each sub-tree until the instance is isolated. All the bounding

boxes on the path of p are updated.

When an instance o departs, the algorithm removes its parent and replaces it with the sibling.

All the bounding boxes starting from o upwards are updated. Notice that all the operations previ-

ously described (insertion, deletion, bounding box updating process, etc.) are repeated for each

of the t trees in the ensemble.

The insertion and removal of each instance in the tree leads to a modification of the tree

structures. The variation in tree complexity is used to determine the anomaly score. Given a set

of points Z, a point p and a tree T , the depth of p is f(p, Z, T). Assigning to each left branch of

the tree the bit 0 and the right branches the bit 1, the model complexity |M(T)| =
P

p2Z f(p, Z, T)

is the number of bits required to write down the description of all points p in the tree. The bit-

displacement of an instance x is:

Disp(x, Z) =

X

T,p2Z�x

Pr[T] (f(p, Z, T) � f(p, Z � x, T 0
)) (2.12)

the increase in the model complexity of all other points, i.e., for a set Z, to capture the externality

39

introduced by x, where T 0
= T (Z � x). To avoid outlier masking (phenomenon in which dense

outliers mask each other) instead of removing just x, they propose to remove a set C with x 2 C

and obtain so the Collusive Displacement CoDisp(x, Z, S)

E
S✓Z,T

2

4 max
x2C✓S

1

|C|

X

p2S�C

(f(p, S, T) � f(p, S � C, T 00
))

3

5 (2.13)

Anomalies correspond to large CoDisp values: similarly to LOF, we properly tune the decision

function by observing the scores of the top-most abnormal samples (contamination) in the dataset.

2.8 Conclusion

In this chapter, we presented a detailed taxonomy and an overview of the techniques used in

unsupervised anomaly detection. We distinguish between batch and time series stream algo-

rithms. The former process the data, usually collected over a period of time, at once and output

the anomaly scores at the end. The latter have to process each instance as soon as streamed

and output its anomaly score shortly after. From the next chapter we present i) a novel batch algo-

rithm, ii) a time series stream clustering engine based on DenStream and finally iii) an automated

algorithm for anomaly detection using batch algorithms.

40

Chapter 3

Random Histogram Forest for

Unsupervised Outlier Detection

In this chapter we describe the proposed batch unsupervised algorithm called Random Histogram

Forest (RHF). We first introduce the main ideas in Section 3.1 while analyze the most recent

comparative studies of unsupervised algorithms in Section 3.2. We then describe in details the

algorithms in Section 3.3 and perform several experimental evaluations in Section 3.4. Finally, a

summary of our finding and remarks are given in Section 3.5.

3.1 Introduction

We present Random Histogram Forest (RHF) [118] an effective tree-based approach for unsu-

pervised anomaly detection. In our approach, for every node in the tree, the splitting feature is

chosen with a probability proportional to its fourth central moment (aka kurtosis). This allows to

focus on the most informative features, while being resilient to the presence of “noisy” features.

RHF, then, computes a score for every point, measuring its likelihood of being an anomaly, with

larger anomaly scores being assigned to points lying in less populated leaves. More precisely,

such a score is defined as the Shannon’s information content [132, 104] of the leaf containing

the corresponding point. Moreover, RHF leverages the predictive power of multiple independent

trees (aka a forest) for identifying anomalies even more effectively. Some of these ideas have

been successfully employed in the most successful algorithms for unsupervised anomaly detec-

tion (e.g. Random Forest [91], Isolation Forest [92], XSTREAM [97], Rs-Hash [130]), as well as

41

in a wide range of machine learning tasks.

Previous studies [44, 50] show that one of the most effective algorithms for unsupervised

anomaly detection is Isolation Forest (iForest), as partially confirmed also by our experimental

evaluation. However, our experiments show XSTREAM to be a more robust choice when applied

to unseen data. In our work, we present Random Histogram Forest (RHF) [118] an effective

approach for unsupervised anomaly detection. Similarly to iForest, our approach is probabilistic

while relying on an “ensemble” of “weak” building blocks (trees) for effectively identifying anoma-

lies. This has been proved to be effective for a wide range of tasks (e.g. Random Forest [91],

Isolation Forest [92], XSTREAM [97]).

Our approach builds a random forest based on all input instances, whereas iForest builds

a random forest based solely on some random samples of the data. The latter strategy has

the drawback that some anomalies might be neglected entirely in the construction of the forest

(particularly noticeable in large datasets containing only a few anomalies), thereby impairing the

capability of the algorithm of finding those anomalies. Nevertheless, our algorithm boasts linear

running time in the size of the input. Another key idea of our algorithm is to employ the fourth cen-

tral moment (aka kurtosis), so as to guide the search for anomalous instances in the dimensions

that are most likely to contain them. Notice that authors in iForest, also suggest to use kurtosis as

an attribute selector in case of high dimensional data. Authors suggest to rank each attribute and

select them according to their rankings. However, such selection phase implies adding to the al-

gorithm another hyperparameter (number of top attributes to select) which might be difficult to set.

Moreover, selecting only attributes with hight kurtosis scores might neglect anomalies separable

only in low kurtosis features. We propose an attribute selector without adding hyperparameters.

Furthermore, our approach enables the selection of low kurtosis features at higher depths of the

trees. Finally, our algorithm computes a score for every instance, measuring the likelihood of such

an instance of being an anomaly. Such a score is defined as the Shannon’s information content

[132, 104] of the leaf containing the corresponding instance.

We conduct an extensive experimental evaluation on 38 publicly available datasets including

all benchmarks for anomaly detection and 64 private datasets from Huawei [106], as well as the

most successful algorithms for unsupervised anomaly detection, to the best of our knowledge.

We evaluate all the approaches in terms of average precision (AP), that is, the area under the

precision-recall curve. We observe that as suggested in [39], ROC might not reflect the real

performances of the algorithm, in that, anomalies typically represent a small fraction of the input

42

data.

Our experimental evaluation shows that RHF outperforms all other approaches in terms of

AP. Moreover, it shows that our algorithm delivers consistently good results over a wide range of

hyper-parameter values, which allows for an effective hyper-parameter tuning. Another appealing

feature of our algorithm is that it boasts linear running time, which makes it an effective tool for

processing large amounts of data. Finally, our experimental evaluation shows that both RHF and

XSTREAM are more effective and robust to noise than iForest.

The rest of the chapter is organized as follows. We start by providing an overview of the state-

of-the-art anomaly detection algorithms in Section 3.2, while we introduce Random Histogram

Forest in Section 3.3. We then describe our experimental evaluation and results in Section 3.4.

Finally, we discuss and summarize our main findings in section 3.5.

3.2 Related Work

Among the most recent comparative studies of unsupervised techniques, [62] compares most

of the existing proximity-based methods on 10 different datasets and conclude that it is of great

importance the initial assumption whether the anomalies in the datasets are global or local: they

recommend to use a global anomaly detection methods if there is no further knowledge about

the nature of anomalies in the dataset to be analyzed. [44] compares 14 methods belonging to

all the groups previously described on 15 different datasets (12 publicly available and 3 private

ones). However, their study assesses if the models are able to generalize to future points, so

they perform a Monte Carlo cross validation of 5 iterations, using 80% of the data for the training

phase and 20% for the prediction which indicates a semi-supervised setup to our understanding.

While [62] study does not include the latest methods presented (e.g. Isolation Forest, thought to

be the state-of-art), [44] describes the models generalization capacity using labels that most of

the time are not available. We compare the methods which have proven to be the best in previous

studies [44, 62] using default or reasonable hyperparameters and use labels only to assess their

performance in a completely unsupervised environment.

Based on the most recent comparison studies [62, 44, 50], the algorithms previously described

have proven to be among the best in regards anomaly detection. In general both [44] and [50]

suggest iForest to be, on average, the best one closely followed [44] by PPCA and OCSVM.

43

3.3 Random Histogram Forest (RHF)

RHF is a tree ensemble model apt at randomly partitioning the input data, so as to highlight

anomalies. We illustrate our main intuition in Figure 3.1, where red points represent anomalies

and the remaining points are depicted in green. In such a figure, we randomly partition the input

points by means of several lines drawn uniformly at random. The same process is iterated three

times. Observe that input points that end up in a relatively large group are less likely to be

anomalies. By iterating such a process multiple times, we can obtain for each point a score

measuring how likely such a point is an anomaly.

)HDWXUH�;

)H
DW
XU
H�
<

$
%

)HDWXUH�;

)H
DW
XU
H�
<

$

%

)HDWXUH�;

)H
DW
XU
H�
<

$

%

Figure 3.1: Example of 3 different Random Splits in 4 bins ⌘. One can observe that some areas
(e.g. A) have noticeable higher mass than others (e.g. B)

In real-world applications, it is often the case that a relatively large dimensions are non-

informative when looking for anomalies. Splitting the dataset along non-informative or “noisy”

dimensions might result in poor results and it should be avoided. To this end, we select the

splitting feature according to their kurtosis value, which given a random variable X is defined as

follows:

K[X] = E

"✓
X � µ

�

◆4
#
=

E
h
(X � µ)4

i

E
h
(X � µ)2

i2 =
µ4

�4
, (3.1)

where µ4 is the fourth central moment and � the standard deviation. The kurtosis of input data

X denotes the standardized data raised to the fourth power, while it can be seen as a measure of

the tailedness of X . As a result, points within the region of the peak have negligible contribution to

the kurtosis score, while points outside the region of the peak (e.g. outliers) contribute the most.

In [103], Moors defined it as a measure of dispersion, while he concluded that high values of K

are due to either i) occasional values far from the mean in a distribution whose probability mass is

concentrated around the mean or ii) probability mass concentrated in the tails of the distribution.

44

The kurtosis score measures the heaviness of the tails and it is therefore an indicator of the pres-

ence of outliers in the tail. Consider, for example, Fig. 3.2 representing 4 features extracted from

datasets Annthyroid (top) and Mulcross (bottom) depicting both normal and anomalous probabil-

ity density functions. One can observe that features with heavier tails and consequently higher

kurtosis score (e.g. X1-top and X2/X3-bottom) are more likely to contain anomalous points than

the remaining ones (e.g. X0/X4-top and X0/X1-bottom).

Roughly speaking, when selecting the splitting feature, our algorithm will compute the kurtosis

score for each feature and then sample one feature with probability proportional to log(+ 1).

The logarithm allows us to focus on the order of magnitude of the kurtosis score, while preventing

our approach from being sensitive to small values on such score. The additional term of 1 in the

logarithm ensures that a feature is selected with zero probability, when the corresponding kurtosis

is zero (i.e. the feature is constant). In what follows, we provide a more formal description of our

algorithm.

Preliminaries. We are given input data X 2 Rn⇥d, where n, d denote the number of points and

features (aka attributes), respectively. We denote with Xi· the ith row of X, corresponding to an

input point, while we denote with X·j the j column of X, corresponding to feature fj . We use xi

as a shorthand for Xi·. Given S ✓ [n], we denote with XS· the submatrix of X containing for every

i 2 S the ith row of X, while we denote with XS,j the jth column of XS·. RHF builds a forest

containing several (connected) binary trees, i.e. each node in a tree has either two children or

no children (in the latter case it is called a leaf). Each leaf v in a tree is associated with a set

Sv ✓ [n], specifying the set of points associated to v. Every other node v in a tree, is associated

with a tuple (Sv, fv,�v, lv, rv), where Sv ✓ [n] is the set of points associated to v, fv is the splitting

feature for v, �v is its splitting value, while lv, rv denote its left and right child nodes, respectively.

For every node v in a tree we have the following invariants: 1) every point xi, i 2 Sv, satisfies

either the constraint Xij < �v (if v is a left child) or Xij � �v (if v is a right child), where fv = fj ;

2) Sv = Slv [Srv ; 3) Slv \Srv = ;. For every tree T and every point i, RHF computes a score wT
i ,

while the overall score wi for point i is obtained by computing the average score over all trees.

Observe, that the number of leaves in a tree is at most 2h, where h is its height.

45

Tree construction. RHF builds each tree in the following way. It first creates a root node v, which

is set to be the current node with Sv := [n]. Then, it selects one feature fj with probability

log (K(XSv,j) + 1)
Pd

j=1 log (K(XSv,j)) + 1)

. (3.2)

After that, it selects a splitting value �, which is taken uniformly at random from the interval

(min(XSv,j),max(XSv,j)). Then, two child nodes of the current node are created: one left node

associated with all points in Sr satisfying fj < � and another node with the remaining points. This

is executed recursively on the left and right node until one of the following conditions is met:

i the maximum height h is attained;

ii the kurtosis of every feature in the current set of points is zero.

When the construction of a tree is built, every node with no children is labeled as a leaf. The

pseudocode of the algorithm to construct a tree is provided in Algorithm 1, which is initially called

with RHF (X, [n], r, 1, h) with r being the root node.

Anomaly scores. Given a tree T , we compute the anomaly score for every point xi as follows.

Let ` be a leaf in T . For every leaf `, for every point i 2 S` define:

wT
i := log

✓
1

|S`|

◆

to be the anomaly score of point xi w.r.t. tree T . wT
i can be seen as the Information Content

(also called Shannon’s information [133]) of xi in T . The information content measures the level of

“surprise” of an event, with rare events being more surprising than relatively common events. As

a result, the smaller the cardinality of S` the more likely xi is considered to be an outlier. We adopt

the convention that �log(0) = +1. The overall anomaly score wi of xi is obtained by computing

the average anomaly scores over all trees in RHF i.e. wi =
1
t

P
T wT

i .

Implementation Details. In order to sample a feature according to Equation 3.2 we proceed as

follows. We first compute the sum of all kurtosis scores:

 =

dX

j=1

log (K(XSv,j) + 1)

46

we then sample uniformly at random a value r from [0,]. Finally, we compute:

j = argmin

j|

jX

l=1

log (K(XSv,j) + 1) > r

!
.

Scalability Analysis. Overall the running complexity of our approach is O(ntdh), where h de-

notes the maximum height (input hyper-parameter), t denotes the number of trees (input hyper-

parameter), n the number of points while d denotes the number of dimensions. The space com-

plexity of the algorithm is instead O(nd) which is linear in the input data size. Notice that there is

not the need to keep in memory all the trees. It is sufficient to split all the data according to a tree,

collect the scores from the leafs, and discard it before generating another tree.

Algorithm 1: RHF(X,S, v, `, h)
Input: dataset X, S ✓ [n], set of nodes V , node height `, max height h
Output: a binary tree T with root v

1: Sv := S
2: if ` � h or K(XS,j) == 0 8j 2 [1, d] then
3: label v as a leaf with Sv := S
4: else
5: sample one feature fj with probability log(K(XS,j)+1)Pd

j=1 log(K(XS,j))+1)

6: select a split value � uniformly at random from (min(XS,j),max(XS,j))

7: fv := fj , �v := �
8: create new nodes l, r
9: lv := l, rv := r

10: Sl := {i 2 S : Xij < �}

11: Sr := S \ Sl

12: RHF(X,Sl, l, `+ 1, h)
13: RHF(X,Sr, r, `+ 1, h)
14: end if

3.4 Experimental Evaluation

3.4.1 Settings.

Libraries: Our experimental evaluation is conducted on a Linux Fedora 31 server equipped with

Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz - 32 CPUs and 48 GB RAM. Our code is written in

Python 3/Cython [145, 23] while it uses NumPy == 1.17.4 [109] and Pandas == 0.25.3 [99] for

data preprocessing. The implementations of the algorithms described in Section 3.2 belong to

either PyOD == 0.7.9 [156] (HBOS, PPCA, K-NN, OCSVM) or Scikit � learn == 0.23.1 [113]

47

Figure 3.2: Probability Density Function of 4 features depicting both normal and anomalous class
extracted from datasets Annthyroid and Mulcross respectively. It is easily observable that features
with heavier tails (depicted by arrows) and consequently higher kurtosis score (e.g. X1-top and
X2/X3-bottom) are more likely to contain separable anomalous points than remaining ones (e.g.
X0/X4-top and X0/X1-bottom in which anomalies are clearly not separable).

48

(iForest and LOF) packages. We use moreover the python code released by the authors for PID

[12] and the c++ one for XSTREAM [13]. Our RHF ’s Python 3 (Cython) implementation is avail-

able at [116].

HyperParameters: For each approach considered in our experimental evaluation, we set its

hyperparameters while following the directions of the corresponding authors. In particular, we run

HBOS selecting the input hyper-parameter number of bins using the rule of thumb K =
p
n as

suggested by the authors. Similarly, we set n components = mle and svd solver = full which

finds the best number of PPCA’s components. We run the proximity based methods K-NN and

LOF using K=50 neighbors. As already successfully done in [44], we use OCSVM ’s default hyper-

parameters kernel=rbf, degree=3 with regularization hyper-parameter ⌫ = 0.5. All the ensemble

methods (ISO, PID, XSTREAM, RHF) use an equal number of models t = 100. Moreover we

use the recommended sample size = 256 and hlim = log() for ISO, the default sample size

 = 100, max degree k = 3 and max depth h = 10 for PID and the recommended number of pro-

jections dimensions k = 100 and depth l = 15 for XSTREAM. Finally RHF uses max height h = 5

corresponding to at most 32 leafs/bins.

Metrics: We evaluate the performance of the algorithms by their Average Precision (AP), that

is, the area under the curve of the precision-recall curve [159] (without interpolation):

AP :=

X

n

(Rn � Rn�1)Pn

where Pn =
tp

tp+fp and Rn =
tp

tp+fn are the Precision and Recall at the nth threshold, respec-

tively. We observe that the Receiver Operating Characteristic (ROC) is often employed to evaluate

anomaly detection methods [62] -[92]. However, it has been shown in [39] that when the classes

are not balanced (which is typical of an anomaly detection task) the AP curves better reflect the

efficacy of an algorithm. [39] shows moreover that a curve dominates in ROC if and only if it dom-

inates in AP space.

Datasets: We put a major effort in providing an extensive experimental evaluation. In partic-

ular, we include all datasets that have been considered in the literature for anomaly detection, to

the best of our knowledge. This is crucial to ensure a fair comparison, in that, the overall results

might change dramatically depending on the selection of the datasets, as pointed out in [50]. We

49

use 38 publicly available benchmark datasets ranging from 240 to 623091 points and from 3 to

274 dimensions. Each of them is available either at the UCI [47] or at the ODDS [126] reposito-

ries. We furthermore consider the recently released WikiQOE [128] dataset, which consists of a

Wikipedia large measurements campaign of WebQOE metrics.

The KDD’99 Cup dataset is one of the most widely used benchmark for anomaly detection.

The dataset contains information about network connections as exchanged bytes (“source bytes”,

“destination bytes”, etc.) and service type (“http”, “smtp”, “ftp”, etc.). It consists of 4,898,431

points and 41 attributes. Similarly to the filtering technique used by [153] [62] we extract 5 subsets

according to the values of the service attribute (http, smtp, ftp, finger and other). Out of the 41

available attributes, we select, as already done in [153] only 3 of them namely “duration”, “source

bytes”, and “destination bytes” as they are thought to be the most relevant ones [153]. We obtain

in this way the datasets we call kdd http (623091 points), kdd smtp (95554 points), kdd ftp (5214

points), kdd finger (1033 points) and kdd other (12844 points). While [62] filtered the dataset

according to the service attribute only, [153] filters them also by the positive logged in attribute as

they are successful attacks. We also consider this additional filter by further reducing the kdd http

dataset into the http logged (567498 points) one by excluding the negative values of logged in

attribute.

In order to determine to which extent the presence of duplicates might affect the overall results,

we consider also a smaller version in which duplicates have been filtered out: we will refer to them

as kdd http distinct, kdd smtp distinct and kdd ftp distinct. We include in our comparison also the

full version kdd http29 and kdd smtp29 in which all the 29 continuous attributes are used. The

same 29 features are used also by [62] in which the authors use only the relevant anomalies (by

limiting the number of duplicated ones) and present a new dataset (composed by 620098 points

0.17% anomalous points). We will refer to it as kdd99G by author’s name.

Additionally, we consider a set of 64 private datasets (collected and stored at Huawei) pre-

sented in this comparison [106]. They are collected over a lifespan of 125 days from real routers

and labeled by network experts. Each dataset is collected locally from real routers of a different In-

ternet Service Provider so datasets are completely independent. Overall datasets are composed

by 211 up to 11700 points out of which 4.4% are anomalous and from 6 up to 1650 dimensions.

50

Figure 3.3: Boxplot representing aggregated results from Tab. 5.3. Results are sorted according
to the median value in decreasing order complemented with a bootstrapped 0.95 confidence in-
terval. In both public and private datasets RHFK achieves the highest q25, mean, median and
q75 values.

3.4.2 Comparison

We evaluate all the algorithms discussed in Section 3.2, which have proven to be most effective

according to previous experimental evaluations [62], [44], [50]. We also consider two variants of

RHF : one variant where Kurtosis Split is used (RHFK), and one where random splits are used

(RHFR).

Table 5.3 reports a full comparison of all approaches and datasets considered in our paper.

The last four rows in the table are the mean and median computed on public vs all (public and

private) datasets complemented with 0.95 boostrapped conficende intervals. Text in bold rep-

resents the best method for each dataset. The best method is awarded using the two sample

Kolmogorov-Smirnov test (↵ = 0.05) [136] under the null hypothesis that the two distributions are

identical while the Welch’s two-tailed t-test [149] is used to test if they have the same mean. Two

or more algorithms are declared the best performing ones, when the two tests cannot reject the

null hypothesis.

Our results on the public datasets (AP - best on #number of datasets) confirm the results

provided in [44]. In particular, ISO (0.462 ± 0.097 - #7) and PPCA (0.459 ± 0.010 - #5) are indeed

effective algorithms for anomaly detection. To the latter we add also XSTREAM (0.462 ± 0.091

#6) and both RHFK (0.496 ± 0.097 - #6) and RHFR (0.479 ± 0.096) which outperform the other

51

approaches.

Figure 3.3 shows by means of boxplots a summary of the overall results on all the datasets in

both public and private scenarios. The boxplots are complemented with a 0.95 median confidence

level estimated through bootstrapping. The methods are sorted according to the median value in

decreasing order. Our method RHFK presents in both the scenarios the best q25, mean, median

and q75 values proving to be consistently better than remaining methods.

The largest discrepancies between the aforementioned algorithms have to be found in some

specific datasets. This is the case of the kdd distinct dataset composed by 220027 points and only

75 anomalies in which ISO produces the baseline result (0.02) while PPCA (0.637), XSTREAM

(0.669) and RHFK (0.757) produce a much higher AP. Unsatisfactory results on the same dataset

are produced also by PID which builds the trees, as ISO, on sampled data. We observe that

algorithms which build their model on a relatively small sample of the dataset might deliver poor

results, in that, they might miss important information required to retrieve the anomalies. Similarly,

in http29 the ISO approach is again the worst performing one (0.532) with respect to PPCA

(0.758), XSTREAM (0.933) and RHFK (0.709), which are methods that use all points in the

dataset to generate their models.

Other discrepancies have to be found in datasets such as musk, thyroid or kdd other in which

XSTREAM produces slightly worse results (0.651, 0.192 and 0.099) with respect to the other

methods (e.g. RHFK produces respectively 0.996, 0.516 and 0.543). Similarly, PPCA’s AP on

the smtp29 (0.774 vs RHF’s 0.95), penglobal (0.301 vs RHF’s 0.561) and thyroid (0.362 vs 0.516)

show this method to be a poor choice on some datasets.

Considering instead all the available datasets results change significantly. While RHFK (0.513±

0.080 - #26) remains the best method followed by XSTREAM (0.462 ± 0.080 - #17) and PPCA

(0.454±0.080 - #16), ISO (0.333±0.100 - #16) appears to be less reliable on such datasets. Further

studies (see. Section 3.4.3-3.4.4) show that ISO’s performance deteriorates when the datasets

contain irrelevant features. Moreover it is unclear how to properly select its hyper-parameter as

small perturbations of the dataset are sufficient to change significantly the output.

As also stated in [50], we observe that many approaches achieve similar performances in

most of the datasets, with the most prominent differences being found in a few of them. Overall,

RHFK , ISO and XSTREAM are the algorithms that better perform in our benchmark datasets. A

better overall picture of the three algorithms can be derived from our further studies in which the

methods undergo robustness to noisy dimensions and hyperparameters tests.

52

n d anomalous LOF KNN PID HBOS OCSVM PPCA XSTREAM ISO RHFK RHFR- duplicates
musk 3062 166 3.2% - 0.0% 0.164±0.0 0.592±0.0 0.999±0.001 0.999±0.0 1.0±0.0 1.0±0.0 0.382±0.036 0.994±0.003 0.996±0.003 0.988±0.006

smtp29 96554 29 1.2% - 2.1% 0.014±0.0 0.106±0.0 0.899±0.041 0.985±0.0 0.399±0.0 0.774±0.0 0.917±0.008 0.988±0.001 0.95±0.008 0.968±0.003
shuttle 49097 9 7.2% - 0.0% 0.122±0.0 0.191±0.0 0.737±0.021 0.948±0.0 0.907±0.0 0.915±0.0 0.888±0.008 0.974±0.003 0.932±0.003 0.948±0.002

breastcancer 683 9 35.0% - 1.3% 0.316±0.0 0.944±0.0 0.931±0.003 0.916±0.0 0.918±0.0 0.958±0.0 0.941±0.002 0.967±0.002 0.965±0.002 0.978±0.002
http logged 567498 3 0.4% - 96.7% 0.037±0.0 0.009±0.0 0.454±0.08 0.318±0.0 0.492±0.0 0.769±0.0 0.965±0.001 0.924±0.028 0.965±0.002 0.976±0.002
satimages 5803 36 1.2% - 2.8% 0.021±0.0 0.623±0.0 0.75±0.054 0.755±0.0 0.965±0.0 0.872±0.0 0.9±0.01 0.923±0.004 0.927±0.004 0.914±0.007

ionosphere 351 33 35.9% - 0.8% 0.859±0.0 0.879±0.0 0.741±0.007 0.279±0.0 0.839±0.0 0.747±0.0 0.801±0.003 0.809±0.002 0.811±0.003 0.793±0.004
magicgamma 19020 10 35.2% - 1.7% 0.565±0.0 0.729±0.0 0.645±0.004 0.631±0.0 0.626±0.0 0.586±0.0 0.65±0.004 0.641±0.004 0.625±0.006 0.622±0.004

satellite 5100 36 1.5% - 0.0% 0.359±0.0 0.629±0.0 0.63±0.011 0.542±0.0 0.622±0.0 0.583±0.0 0.623±0.003 0.64±0.006 0.647±0.007 0.637±0.007
penglobal 809 16 11.1% - 0.0% 0.598±0.0 0.873±0.0 0.418±0.016 0.237±0.0 0.569±0.0 0.301±0.0 0.621±0.01 0.61±0.011 0.561±0.013 0.562±0.013

wbc 378 30 5.6% - 4.8% 0.591±0.0 0.557±0.0 0.661±0.014 0.69±0.0 0.529±0.0 0.556±0.0 0.516±0.007 0.596±0.009 0.555±0.012 0.599±0.012
cardio 1831 21 9.6% - 0.6% 0.193±0.0 0.392±0.0 0.444±0.018 0.416±0.0 0.533±0.0 0.612±0.0 0.531±0.008 0.563±0.013 0.581±0.013 0.567±0.014
http29 623091 29 0.6% - 31.3% 0.013±0.0 0.108±0.0 0.572±0.029 0.522±0.0 0.499±0.0 0.758±0.0 0.933±0.006 0.532±0.01 0.709±0.047 0.514±0.016
kdd99 620098 29 0.2% - 1.3% 0.004±0.0 0.196±0.0 0.526±0.018 0.529±0.0 0.325±0.0 0.683±0.0 0.886±0.005 0.531±0.003 0.771±0.028 0.583±0.019

mulcross 262144 4 10.0% - 0.0% 0.17±0.0 0.052±0.0 0.14±0.004 0.064±0.0 0.643±0.0 0.979±0.0 0.548±0.012 0.529±0.026 0.748±0.014 0.734±0.019
thyroid 3772 6 2.5% - 0.0% 0.186±0.0 0.379±0.0 0.281±0.019 0.776±0.0 0.318±0.0 0.362±0.0 0.192±0.008 0.521±0.025 0.516±0.015 0.357±0.019

kdd other 12844 3 3.7% - 0.0% 0.069±0.0 0.089±0.0 0.029±0.001 0.09±0.0 0.092±0.0 0.052±0.0 0.099±0.003 0.509±0.008 0.543±0.026 0.453±0.021
pima 768 8 34.9% - 0.0% 0.451±0.0 0.523±0.0 0.483±0.003 0.531±0.0 0.464±0.0 0.454±0.0 0.492±0.003 0.506±0.004 0.49±0.004 0.496±0.004

kdd http 623091 3 0.6% - 98.1% 0.026±0.0 0.01±0.0 0.223±0.05 0.227±0.0 0.369±0.0 0.55±0.0 0.549±0.004 0.504±0.025 0.548±0.004 0.56±0.003
spambase 4601 57 39.4% - 7.4% 0.323±0.0 0.415±0.0 0.488±0.009 0.549±0.0 0.399±0.0 0.404±0.0 0.445±0.007 0.482±0.009 0.413±0.009 0.417±0.012
arrhytmia 452 274 14.6% - 0.0% 0.368±0.0 0.392±0.0 0.461±0.009 0.438±0.0 0.391±0.0 0.395±0.0 0.435±0.004 0.467±0.008 0.429±0.011 0.454±0.009

abalone 1920 7 1.5% - 0.0% 0.416±0.0 0.289±0.0 0.13±0.01 0.215±0.0 0.308±0.0 0.298±0.0 0.2±0.008 0.463±0.029 0.369±0.014 0.362±0.016
kdd ftp 5214 3 26.7% - 79.8% 0.295±0.0 0.259±0.0 0.439±0.036 0.392±0.0 0.596±0.0 0.846±0.0 0.429±0.018 0.423±0.007 0.452±0.015 0.403±0.002

kdd ftp distinct 2876 3 9.8% - 0.0% 0.136±0.0 0.27±0.0 0.251±0.012 0.306±0.0 0.19±0.0 0.259±0.0 0.318±0.01 0.389±0.006 0.408±0.013 0.354±0.008
annthyroid 7200 6 7.4% - 0.0% 0.185±0.0 0.226±0.0 0.271±0.008 0.558±0.0 0.186±0.0 0.19±0.0 0.15±0.004 0.313±0.009 0.313±0.012 0.223±0.008

mnist 7603 100 9.2% - 0.0% 0.326±0.0 0.409±0.0 0.135±0.014 0.079±0.0 0.386±0.0 0.383±0.0 0.339±0.009 0.27±0.012 0.346±0.017 0.303±0.018
kdd smtp 96554 3 1.2% - 97.9% 0.028±0.0 0.015±0.0 0.107±0.008 0.287±0.0 0.323±0.0 0.353±0.0 0.273±0.068 0.247±0.005 0.275±0.007 0.288±0.005

kdd finger 1033 3 2.4% - 0.0% 0.558±0.0 0.345±0.0 0.091±0.006 0.303±0.0 0.299±0.0 0.191±0.0 0.35±0.016 0.238±0.009 0.265±0.008 0.367±0.011
yeast 1191 8 4.6% - 0.0% 0.263±0.0 0.249±0.0 0.125±0.008 0.125±0.0 0.202±0.0 0.241±0.0 0.216±0.005 0.217±0.006 0.232±0.008 0.226±0.008

mammography 11183 6 2.3% - 2.3% 0.13±0.0 0.176±0.0 0.248±0.023 0.086±0.0 0.183±0.0 0.205±0.0 0.231±0.005 0.215±0.013 0.158±0.007 0.164±0.009
wikiqoe 55932 17 8.0% - 0.0% 0.093±0.0 0.134±0.0 0.163±0.001 0.117±0.0 0.122±0.0 0.12±0.0 0.085±0.003 0.168±0.0 0.119±0.004 0.124±0.005
vowels 1456 12 3.4% - 8.0% 0.403±0.0 0.493±0.0 0.141±0.012 0.118±0.0 0.195±0.0 0.068±0.0 0.143±0.006 0.141±0.014 0.12±0.012 0.136±0.014

vertebral 240 6 12.5% - 0.0% 0.09±0.0 0.089±0.0 0.084±0.0 0.084±0.0 0.103±0.0 0.104±0.0 0.095±0.001 0.095±0.001 0.096±0.001 0.093±0.002
cover 286048 10 1.0% - 0.0% 0.017±0.0 0.043±0.0 0.047±0.006 0.027±0.0 0.096±0.0 0.078±0.0 0.062±0.006 0.052±0.007 0.08±0.015 0.083±0.009

kdd smtp distinct 71257 3 0.0% - 0.0% 0.181±0.0 0.178±0.0 0.03±0.005 0.162±0.0 0.058±0.0 0.085±0.0 0.087±0.009 0.049±0.003 0.072±0.001 0.072±0.001
wine 4898 11 0.5% - 0.0% 0.083±0.0 0.081±0.0 0.043±0.009 0.033±0.0 0.065±0.0 0.062±0.0 0.186±0.004 0.045±0.004 0.066±0.002 0.079±0.005
aloi 50000 27 3.0% - 0.0% 0.079±0.0 0.051±0.0 0.032±0.0 0.027±0.0 0.04±0.0 0.037±0.0 0.055±0.001 0.033±0.0 0.036±0.0 0.04±0.001

kdd http distinct 222027 3 0.0% - 0.0% 0.033±0.0 0.456±0.0 0.096±0.051 0.125±0.0 0.373±0.0 0.637±0.0 0.669±0.003 0.02±0.002 0.757±0.011 0.793±0.007

mean@public // // // 0.231 0.328 0.367 0.381 0.411 0.46 0.453 0.463 0.496 0.48
// // // (0.168;0.3) (0.249;0.411) (0.278;0.458) (0.288;0.477) (0.328;0.497) (0.367;0.556) (0.364;0.548) (0.371;0.557) (0.403;0.591) (0.386;0.574)

median@public // // // 0.176 0.264 0.276 0.304 0.379 0.399 0.432 0.493 0.503 0.454
// // // (0.093;0.306) (0.178;0.401) (0.141;0.472) (0.189;0.522) (0.303;0.496) (0.279;0.598) (0.273;0.548) (0.291;0.532) (0.358;0.598) (0.356;0.575)

mean@all // // // 0.346 0.435 0.360 0.425 0.417 0.498 0.479 0.405 0.524 0.495
// // // (0.289;0.404) (0.377;0.495) (0.299;0.425) (0.361;0.490) (0.368;0.468) (0.438;0.559) (0.422;0.537) (0.343;0.468) (0.464;0.585) (0.434;0.558)

median@all // // // 0.262 0.392 0.260 0.391 0.386 0.454 0.474 0.333 0.513 0.456
// // // (0.185;0.326) (0.286;0.469) (0.162;0.398) (0.296;0.446) (0.297;0.464) (0.362;0.583) (0.357;0.532) (0.246;0.463) (0.413;0.585) (0.354;0.556)

Table 3.1: AP scores of all approaches on all our datasets. The results are sorted in decreasing
order of ISO scores. In the case of probabilistic approaches, each value is an average over 30
runs which is complemented with a 0.95 confidence interval. The best results for each dataset are
represented in bold while the best between ISO and RHF is represented in gray bold.

53

Figure 3.4: Robustness to noisy dimensions: an increasing number of gaussian dimensions are
added to three datasets musk (top), smtp all (middle) and http logged (bottom). Steady results
are produced by RHF and XSTREAM while ISO’s perfomance is higly impacted

3.4.3 Robustness to noise

We investigate how the presence of noise in the datasets affect the effectiveness of the differ-

ent algorithms. Our experimental evaluation shows large performance discrepancies between

RHFK , XSTREAM and ISO in most of our private high dimensional datasets. In particular, while

RHFK and XSTREAM are resilient to the presence of noisy features, a prevalence of those

features might significantly compromise the results of ISO. To illustrate this, we artificially intro-

duce noisy features, following a Gaussian distribution, to three datasets: (http logged, musk and

smtp29). Such features are clearly non-informative when looking for anomalies in the datasets,

while ideally they should not disturb too much an anomaly detection algorithm.

Fig. 3.4 shows the results for the three algorithms on musk (top), smtp all (middle) and

http logged (bottom) datasets. The plot shows that the presence of noisy features has a negative

impact on the ISO performance, with a larger number of those features significantly affecting its

effectiveness. In particular, for the http logged dataset, ISO’s AP score decreases from AP=0.98

to AP=0.60 after adding one single noisy feature.

On the other hand, RHF and XSTREAM deliver consistently relative good results. This is

54

Figure 3.5: Average Precision for different number of anomalies in dataset http logged. As
http logged contains 97% duplicated anomalous points we gradually remove them. The figure
contrasts different Isolation Forest’s sampling size 2 [128, 4096] against RHF ’s max height
h 2 [4, 5]. The plot illustrates that iForest ’s performance is sensible to the hyper-parameter
when varying the number of anomalous points in the dataset.

perhaps not surprising, given that RHF chooses features with a probability proportional to their

Kurtosis scores, as opposed to ISO where a uniform probability distribution guides its random

choices. XSTREAM, which is based on random projections, appears to be resilient to noisy

features, as well.

3.4.4 Robustness to the choice of hyperparameters

We further investigate the impact of the input hyperparameters on the overall results. We proceed

in two main directions: i) we decrease artificially the number of anomalies in the input data;

ii) we test several input hyperparameters for the three algorithms: RHFK ’s h 2 [3, 5, 7], ISO’s

 2 [256, 2048, 4096] and XSTREAM ’s l 2 [5, 15, 20].

Figure 3.5 shows the AP of the methods on the http logged dataset, as a function of the num-

ber of anomalies in the input dataset. Each value is the average over 30 runs being complemented

with its corresponding confidence interval. The number of normal points is kept constant (we use

all the 565287 points present in the original dataset) while the number of anomalies is reduced

from 2211 (100% - left side of the plot representing the original dataset) to 100 (0.05%).

55

Figure 3.6: HyperParameters tuning: Average Precision score over all the datasets for increasing
maximum tree height h. The figure illustrates scores obtained using both Kurtosis Split and Ran-
dom Split criterion.

Results show again two distinct patterns for RHF and XSTREAM with respect to ISO. While

the first two boast a slight performance decrease over the decreasing number of anomalies in the

dataset (for all their hyperparameters), ISO’s default hyper-parameter show a faster deterioration,

as it becomes increasingly more likely those anomalies to be missed in the sample. To tackle

such an issue, one could try to increase the hyper-parameter. This would result in a better AP

score with = 2048 and = 4096, when the number of anomalies is smaller than 50% (right side

of the plot). However, using a higher value turns out to be counterproductive when the number

of anomalous points is larger (left side of the plot, e.g. AP⇡ 0.7 on the original dataset - 100% of

the anomalies - for both = 2048/4096). As a result, it is unclear how to determine an optimal

value for such a hyper-parameter.

Overall, our studies show RHFK and XSTREAM to be two effective algorithms for the anomaly

detection task as they achieve, on average, high AP scores on both public and private datasets.

Both of them cope well with noisy features, while deliver consistently good results under a wide

range of values for their hyperparameters.

3.4.5 HyperParameters Tuning

RHF uses two input hyperparameters: the max height h which determines the ⌘ number of leafs

and the number of trees t. As in most of the ensemble methods, we use t = 100 trees while

empirically study the behavior of h. Our method is somehow linked to histograms, as we split the

data into ⌘ leaves. Therefore, we employ the widely used rules of thumb in determining the number

of leaves (i.e. bins in histograms). In particular Sturge’s [138] rule of thumb k = d1 + log2ne

56

suggests that the number of bins should increase logarithmically in the number of points. We

study RHF ’s performance for increasing h 2 [1, 8] which defines ⌘ 2 [2, 256] comparing the results

obtained using both Random Split and Kurtosis Split. The results depicted in Fig. 3.6 show

two takeaways: i) RHF ’s performance smoothly vary over h and ii) on average, Kurtosis Split

consistently outperforms the Random Split.

Regarding the maximum height h hyper-parameter, we observe from Fig. 3.6 that: i) the AP

benefits from increasing h, however, ii) the AP reaches its maximum value already when h = 4; iii)

the number of leaves ⌘ = 16/32 defined by h=4/5 is consistent with Sturge’s rule of thumb which

would recommend to use K = 14 bins for smaller datasets (e.g. 5000 points) while K = 21 for

bigger ones (e.g. 620000 points). We set and recommend thus h = 5, as it produces results not

distinguishable from h = 4 and should handle properly also larger datasets.

Fig. 3.7 shows the performance of the algorithms when increasing the number of trees t in

the forest. As expected, the results show relatively high variance for smaller values of t while they

stabilize when t > 50. We suggest t = 100 as commonly used in ensemble models.

We finally measure the empirically the running complexity of RHFK for increasing n, d, t and

h. Table 3.2 shows such times for all the datasets in our comparison and for increasing values

of h 2 [3, 5, 7] (using t = 100) and t 2 [30, 60, 90] (using h = 5). The table contains moreover

the running times of ISO (= 256) and XSTREAM (K = 100, C = 100, l = 15). To compare

the running of different methods please refer to column h = 5 in which RHFK uses its default

hyperparameters (h = 5 and t = 100).

The table, ordered by n, shows that indeed RHFK running times linearly increase in n, d, h,

t. Overall the running times exhibit two takeaways: i) robustness to noisy features comes at a

cost. Both RHFK and XSTREAM are slower than ISO when the number of dimensions is high;

ii) RHFK is not only always faster than XSTREAM but it can outperform it by up to 50 times in

some datasets, while being 14 times faster on average.

Furthermore, we show in Fig 3.8 the running times for increasing n, d, t and h while keeping

fixed the remaining hyperparameters. The plots show that execution time linearly increases with

increasing input sizes (n and d) as well as for incresing height h and ensemble size t.

57

n d h=3 h=5 h=7 t=30 t=60 t=90 ISO XSTREAM
vertebral 240 6 0.009±0.001 0.012±0.0 0.018±0.001 0.004±0.001 0.008±0.001 0.012±0.001 0.22±0.018 0.493±0.038
ionosphere 351 33 0.04±0.003 0.064±0.007 0.096±0.008 0.018±0.002 0.04±0.004 0.05±0.005 0.239±0.023 1.011±0.059
wbc 378 30 0.039±0.004 0.066±0.005 0.097±0.007 0.02±0.002 0.043±0.002 0.05±0.005 0.256±0.012 1.211±0.095
arrhytmia 452 274 0.374±0.053 0.717±0.126 1.045±0.178 0.227±0.018 0.444±0.071 0.686±0.094 0.378±0.012 2.231±0.205
breastcancer 683 9 0.026±0.001 0.043±0.003 0.061±0.003 0.012±0.001 0.024±0.002 0.034±0.003 0.198±0.021 1.906±0.212
pima 768 8 0.027±0.002 0.045±0.002 0.063±0.001 0.013±0.001 0.027±0.001 0.033±0.003 0.225±0.021 1.906±0.218
penglobal 809 16 0.045±0.004 0.073±0.006 0.116±0.006 0.02±0.002 0.045±0.004 0.063±0.007 0.273±0.013 2.362±0.15
kdd finger 1033 3 0.017±0.0 0.027±0.001 0.037±0.001 0.007±0.001 0.012±0.001 0.023±0.002 0.244±0.018 1.506±0.168
yeast 1191 8 0.041±0.002 0.06±0.005 0.093±0.002 0.017±0.002 0.032±0.003 0.06±0.003 0.272±0.021 2.491±0.177
vowels 1456 12 0.06±0.005 0.116±0.005 0.166±0.004 0.032±0.002 0.054±0.006 0.082±0.009 0.271±0.022 3.579±0.168
cardio 1831 21 0.145±0.007 0.239±0.011 0.338±0.018 0.061±0.006 0.137±0.011 0.19±0.018 0.202±0.009 4.465±0.242
abalone 1920 7 0.06±0.001 0.099±0.002 0.13±0.006 0.028±0.0 0.047±0.004 0.06±0.006 0.215±0.021 3.672±0.237
kdd ftp distinct 2876 3 0.033±0.004 0.071±0.002 0.093±0.006 0.015±0.002 0.036±0.004 0.065±0.002 0.384±0.017 3.421±0.143
musk 3062 166 4.001±0.462 11.602±1.49 15.392±2.209 1.857±0.281 5.436±1.029 9.287±1.015 1.233±0.25 14.817±0.467
thyroid 3772 6 0.09±0.008 0.135±0.01 0.197±0.015 0.047±0.003 0.085±0.007 0.125±0.013 0.355±0.028 6.914±0.272
spambase 4601 57 1.574±0.246 3.389±0.593 4.56±0.823 0.758±0.108 2.507±0.462 4.282±0.926 0.945±0.106 7.281±0.39
wine 4898 11 0.201±0.015 0.314±0.024 0.369±0.036 0.081±0.009 0.184±0.016 0.297±0.021 0.535±0.027 9.264±0.469
satellite 5100 36 0.756±0.091 1.411±0.165 2.155±0.344 0.348±0.045 0.903±0.091 1.003±0.177 0.795±0.071 12.233±0.502
kdd ftp 5214 3 0.068±0.007 0.134±0.001 0.143±0.014 0.028±0.003 0.077±0.001 0.098±0.01 0.363±0.041 6.268±0.262
satimages 5803 36 0.793±0.105 1.392±0.267 2.921±0.346 0.443±0.052 0.66±0.116 1.152±0.18 0.776±0.094 14.189±0.64
annthyroid 7200 6 0.169±0.018 0.248±0.022 0.422±0.009 0.073±0.007 0.17±0.012 0.213±0.024 0.611±0.058 13.063±0.494
mnist 7603 100 7.1±0.919 13.525±1.798 22.096±3.271 3.238±0.556 8.389±1.692 13.482±2.167 2.35±0.43 35.233±1.352
mammography 11183 6 0.207±0.024 0.426±0.034 0.624±0.051 0.128±0.01 0.233±0.022 0.391±0.032 0.68±0.053 17.445±0.656
kdd other 12844 3 0.177±0.014 0.302±0.011 0.323±0.034 0.092±0.001 0.157±0.014 0.204±0.022 0.705±0.05 15.697±0.626
magicgamma 19020 10 0.56±0.047 1.274±0.136 2.175±0.08 0.306±0.033 0.723±0.072 1.103±0.111 1.817±0.248 39.245±1.638
shuttle 49097 9 2.784±0.388 4.008±0.675 5.497±0.935 1.013±0.156 2.271±0.28 2.431±0.283 4.413±0.624 67.466±2.044
aloi 50000 27 48.809±7.767 43.89±12.505 68.517±13.232 22.279±2.152 34.525±6.833 37.907±9.08 4.357±0.743 93.076±3.446
wikiqoe 55932 17 29.765±3.779 43.361±6.654 43.489±8.843 14.206±1.894 24.894±4.598 26.367±6.483 5.767±1.002 72.863±2.668
kdd smtp distinct 71257 3 1.216±0.052 1.422±0.169 1.849±0.234 0.525±0.047 0.883±0.097 1.014±0.055 4.314±0.667 79.992±2.782
smtp29 96554 29 81.095±13.567 94.375±19.87 91.099±27.896 41.095±6.895 51.058±14.207 60.92±15.263 8.863±1.453 143.405±6.839
kdd smtp 96554 3 1.379±0.186 2.011±0.34 3.033±0.345 0.531±0.055 1.2±0.133 1.755±0.2 4.132±0.336 110.532±4.152
kdd http distinct 222027 3 4.221±0.512 8.013±0.608 10.36±0.532 2.056±0.213 4.18±0.21 5.967±0.765 7.497±0.615 247.883±9.316
mulcross 262144 4 8.926±1.451 23.597±1.986 31.115±5.396 6.792±1.137 12.806±2.431 16.836±1.147 10.139±1.343 453.331±29.574
cover 286048 10 44.564±4.098 61.941±7.911 75.937±10.824 23.85±2.916 34.951±5.235 42.301±6.137 15.503±2.411 450.391±20.046
http logged 567498 3 11.912±1.116 19.775±2.023 23.971±2.144 7.188±0.646 14.114±0.978 16.97±1.816 20.262±3.364 606.666±12.539
kdd99 620098 29 269.341±45.138 379.767±58.012 515.339±65.546 133.328±24.344 208.811±23.779 318.45±41.242 37.559±5.411 777.502±15.695
http29 623091 29 224.884±39.142 419.309±47.147 501.436±63.773 117.957±23.109 207.724±23.533 289.49±29.192 33.5±1.987 778.882±12.502
kdd http 623091 3 14.377±1.219 20.666±1.056 26.081±2.952 5.684±0.763 12.174±0.944 16.217±1.374 21.686±2.608 642.201±9.454

Table 3.2: Running times of the RHFK algorithm for increasing number of instances n, number of
dimension d, max tree height h 2 [3, 5, 7] and number of trees t 2 [30, 60, 90]. The table contains
also the running time of ISO (= 256) and XSTREAM (parameters). The boxplots under the
table illustrate the running times for increasing tree height h (left), number of trees t (middle) and
the overall comparison of ISO, RHFK and XSTREAM running times when the default parameters
are used (right).

58

Figure 3.7: HyperParameters tuning: Average Precision score for increasing number of trees t
on http logged (left), shuttle (middle) and breastcancer (right) datasets. We observe that perfor-
mances converge already for small number of trees.

Figure 3.8: Scalability analysis: Empirical Running time complexity analysis for increasing in-
creasing n, d, t and h while keeping fixed the remaining hyperparameters. The plots show that
execution time linearly increases with increasing input sizes (n and d) as well as for incresing
height h and ensemble size t.

59

3.5 Conclusions

We present a novel anomaly detection method called Random Histogram Forest (RHF), which

builds a random forest while using the Kurtosis score as splitting criterion. The anomaly score of

each instance is computed as the information content of the leaf it belongs to. We provide an ex-

tensive experimental evaluation on 38 public datasets, including all datasets used as benchmarks

for anomaly detection, to the best of our knowledge and 64 private ones. Our experimental eval-

uation shows that our approach outperforms the other approaches in terms of average precision,

while being simple and intuitive. Moreover the performance of our algorithm are consistently good

over a wide range of values for their hyperparameters, while it requires only two hyperparame-

ters. Finally, our proposed Kurtosis Split shows to be effective in high dimensional datasets while

maintaning linear running time in the size of the input dataset.

60

Chapter 4

Online Anomaly Detection

Leveraging Stream-Based

Clustering and Real-Time Telemetry

In this chapter we describe the proposed stream unsupervised algorithm called ODS that lever-

ages DenStream, an unsupervised clustering technique, and apply it to measurements collected

from real network equipment studying so a monitoring application. We first introduce the new

challenges in the monitoring application in Section 4.1 and analyze existing monitoring methods

in Section 4.2. We then describe the algorithm in Section 4.2.2 before explaining in details the

experiments done and how data was captured in Section 4.3. The evaluations are done in Sec-

tion 4.5. Finally, a summary of our finding and remarks are given in Section 4.7.

4.1 Introduction

Recent technology evolution allows network equipment to continuously stream a wealth of “teleme-

try” information, which pertains to multiple protocols and layers of the stack, at a very fine spatial-

grain and high-frequency. This deluge of telemetry data clearly offers new opportunities for net-

work control and troubleshooting, but also poses a serious challenge for what concerns its real-

time processing. We tackle this challenge by applying streaming machine-learning techniques

to the continuous flow of control and data-plane telemetry data, with the purpose of real-time

61

detection of anomalies. In particular, we implement an anomaly detection engine that leverages

DenStream, an unsupervised clustering technique, and apply it to features collected from a large-

scale testbed comprising tens of routers traversed up to 3 Terabit/s worth of real application traffic.

We contrast DenStream with batch algorithms such as DBScan and Local Outlier Factor (LOF), as

well as stream algorithms such as the windowed version of DBScan, ExactSTORM, Continuous

Outlier Detection (COD) and Robust Random Cut Forest (RRCF). Our experimental campaign

compares these seven algorithms under both accuracy and computational complexity viewpoints:

results testify that DenStream (i) achieves detection results on par with RRCF, the best performing

algorithm and (ii) is significantly faster than other approaches, notably over two orders of magni-

tude faster than RRCF. In spirit with the recent trend toward reproducibility of results, we make

our code available as open source to the scientific community.

Nowadays network Operations and Management (OAM) increasingly relies on the ability to

stream and process, in near real-time, useful “features” from network equipment. An integral part

of the OAM task is, e.g., to ascertain whether the operational conditions are normal or anomalous

and intervene, when needed, by quickly repairing eventual problems.

Simple Network Management Protocol (SNMP) has long been the de facto standard to gather

fairly coarse information from the network management, control and data planes. Consequently,

SNMP has been used for anomaly detection for long time [143]. In the SNMP paradigm, the

server initiates the data collection from hundreds of devices, with a pull-based approach, at tra-

ditionally low frequency (i.e., in the order of minutes). More recently, Model-driven telemetry

(MDT) [150, 9, 8, 10] has emerged as an interesting alternative to SNMP: instead of having to

periodically poll at a low rate (as in SNMP), under MDT subscribers receive continuous stream

of operating state information in a standard structured format. In addition to supporting periodic

export, MDT further enables to trigger data publication when specific conditions are met.

Rather typically, a common workflow to several vendors (such as Cisco [9], Arista [8] and

Huawei [10]) is to express features via Yet Another Next Gen (YANG) [24, 5] data models, encoded

with the Google Protocol Buffer (GPB) format, that are then transmitted via the Google Remote

Procedure Call (GRPC) protocol. While the use of standard formats and protocol for their export

is very desirable, and while the abundance of information is desirable for fine-grained monitoring,

62

it becomes necessary to also process MDT data as it is streamed – a challenging task at the

heart of our work. First and foremost, under MDT the data must be processed in real-time, which

puts a practical cap on the algorithmic complexity. Second, as the data is streamed continuously,

no assumption on data distributions or length can be made a priori. Third, data cannot be stored

and algorithms have to perform a single pass on it, which significantly limits the algorithmic design

space.

4.2 Related Work

This section overviews related work focused on outlier and novelty detection in computer net-

works. In particular, Sec. 4.2.1 presents a taxonomy of the relevant work from the network do-

main viewpoint, whereas Sec. 4.2.2 introduces background material concerning the unsupervised

clustering techniques that are relevant for our work.

4.2.1 Outlier detection in computer networks

As already discussed in detail in Section 1, Hawkins [71], defines an outlier as “an observation,

which deviates so much from other observations as to arouse suspicions that it was generated by

a different mechanism.” Generally, anomalies are categorized as point, contextual or group out-

liers: Global Point outlier is an object that significantly deviates from all the objects in the dataset;

Contextual outlier is an object that significantly deviates from the objects in a context (eg. period

in a timeseries); Group outlier is a subset of objects that significantly deviates from the entire

dataset (i.e., set of instances that do not follow regular patterns in the dataset). The events we

consider in this work (see Sec. 4.3) belong to the point and group outlier groups.

In several domains (fraud/intrusion detection, public health etc.) it is assumed that the number

of anomalous objects is (much) smaller than the normal objects. For this reason, several methods

generate a normal (baseline) model of the system and label anomalous all the objects that are

significantly different. These methods fall into three main groups, namely (i) statistical, (ii) super-

vised and (iii) unsupervised learning.

(i) Statistical methods use probabilistic models to detect changes in the data. Principal Com-

ponent Analysis (PCA) is used in [87] to detect anomalous traffic volume in backbone networks

63

by reducing the n-space of variables into a k-subspace corresponding to the normal behavior and

a m-subspace corresponding to anomalies and noise. The subspace method is used in [74] to

detect BGP anomalies, extracting the amount of update messages from raw BGP updates every

10 minutes and processing the data in batches of 200 samples. Similarly, [42] and [59] extract

features from raw BGP updates (BGP volume, Autonomous System (AS)-Path, etc.) every 5 min-

utes and perform anomaly detection using the Generalized Likelihood Ratio Test (GLRT) and the

t-test respectively. Finally [155] contrasts the covariance matrix of n objects against a normal pre-

computed covariance matrix to detect flooding attacks in the KDD’99 [4] dataset while [135], using

the same dataset, proposes a Principal Component Classifier (PCC) yielding an anomaly score

for both major and minor subspace components. These methods are interesting but inherently

obscure for the human operator that needs to interpret the results, as the semantic of the original

feature domain is lost due to the projection transformation – a significant matter of concern that

render the techniques less appealing for practical purposes [1, 107].

(ii) Supervised methods learn both normal and anomalous behaviors from labeled data and

then classify each new object normal or anomalous depending on which class fits to. Due to the

lack of data, most of the methods use KDD’99 and NSL-KDD [140] datasets or have to manually

label private datasets. Among the most used algorithms there are Decision Trees (C4.5) [121],

Support Vector Machines (SVM) [38] and Artificial Neural Networks (ANN) [147]. Authors of [148]

obtains a 2⇥ SVM training time reduction using the NSL-KDD dataset augmented and trans-

formed by the logarithm marginal density transformation while [115] and [139] use the KDD’99

dataset to evaluate their ANN models which reduce false positive rate and minimize overall com-

putational overhead respectively. Regarding BGP events, [89] trains and tests a decision tree

(C4.5) using features extracted every minute from RouteViews and RIPE NCC archive during

known misconfiguration events, Slammer worms and electricity blackouts. The same source,

sampled every 30 seconds, is used by [41] which compares different algorithms as decision trees,

Naive Bayes and SVM. They process the data using a sliding window of 10 samples, correspond-

ing to 5 minutes, which slides of two minutes every time. Their system raise an alarm if at least

60% of the samples in the window are labeled anomalous allowing them to detect events as early

as four minutes. The importance of BGP features is studied in [18] applying both Fisher [36] and

mRMR [70] feature selection techniques, which concludes that 65% of the selected features are

volume-based (i.e. BGP announcements, IGP packets, EGP packets etc.) and that these are

64

more relevant and perform better than AS-path features. Supervised approaches are however

of little portability across datasets, where features and labels differ, and the applicability of such

models is therefore limited to the very specific use-case under study.

(iii) Unsupervised methods could prove particularly useful to detect outliers as they are able to

find unknown patterns without using labeled data: outliers are identified as items different from

the previously found patterns. Best known approaches [123, 88, 105, 98, 33, 102, 46, 101, 117]

uses distance (or density) to group together similar objects and label anomalous those far from

the neighbors, and can be further categorized into batch vs stream methods. Batch algorithms

(such as K-Means [95], DBScan [52], Local Outlier Factor (LOF) [28]), require the access to the

entire dataset at once (to compute centroids-objects distances or pairwise distances) and itera-

tively converge to a final solution. Stream algorithms (such as iGDCA [108] and DenStream [32])

are instead designed to build, maintain and update models incrementally at each new sample.

The above classes of work are closer to ours and deserve a deeper look.

Batch unsupervised methods are used in [123, 105, 88, 98, 33] for outlier detection. For

instance, [123] applies k-NN, a distance-based method to detect anomalies in wireless sensor

networks, whereas [105] uses K-Means to detect anomalous flows (i.e. counters of bytes, pack-

ets etc.). Several algorithms (i.e. unsupervised SVM, LOF, k-NN) are instead compared on the

DARPA dataset in [88], asserting that the best performing one is LOF – which we thus include

in the comparison. Density-based sub-space clustering methods are used in [98], combining ev-

idence accumulation to identify anomalies. To reduce the high computational complexity of such

batch methods, [33] utilizes a discrete time-sliding window to extract and aggregate different flow-

resolution levels, in time slots of fixed length �T – a reasonable compromise approach that we

also consider in this work.

Stream unsupervised algorithms have been used more rarely for network anomaly detec-

tion [46, 102, 101, 117]. Authors in [46] employ a discrete time-sliding window and an incremental

grid clustering algorithm to detect anomaly traffic in the core network of a Spanish Internet Ser-

vice Provider (ISP). Closer to our work are [102, 101] that employ DenStream at the application

and network layers respectively. In particular, [102] use DenStream to successfully detect Twit-

ter spam using a (tiny) dataset containing approximately 3000 normal and 200 manually labeled

65

spam entries. Authors in [101] cluster normal vs anomalous packets in the DARPA dataset operat-

ing in the data plane, and directly leverage packet payload, using the numerical value of each byte

HTTP payloads as input features. As such, both domains of application in [102, 101] are rather

far from the control-plane telemetry use-case of this paper, and neither [102] nor [101] carry on a

systematic evaluation of multiple algorithms as we do in this work.

Additionally, from a practical viewpoint [101] requires continuous hyperparameter tuning and

furthermore assuming prior knowledge of the percentage of anomalous packets – and cannot thus

be readily deployed. In contrast, we make no assumption on the data and further propose princi-

pled and automated tuning methodology – that are robust to environmental condition changes.

4.2.2 Overview of clustering algorithms

We now provide background information on the clustering algorithms that we will be using as

building blocks for our system in this paper. A summary of the algorithms compared in this work,

is present in Table 4.1, along with their main hyperparameters. All the algorithms used in this

work are explained in detail in Chapter 2. In particular DBScan and LOF batch algorithms are

described in Section 2.6 while ExactSTORM, COD and RRCF stream algorithms in Section 2.7.

We point out that the ultimate goals of some of these algorithms is to perform clustering: so while

this section briefly covers each algorithm, we defer to Sec. 5.3 a more formal description of our

methodology to leverage clustering output for anomaly detection purposes. We introduce now

wDBScan, a windowed version of DBScan previously used by [33] and the DenStream algorithm

which is the building block of our anomaly detection engine.

wDBScan is the windowed version of DBScan. Similar to [33], the algorithm is applied to a batch

of samples of length w at a time. When a new sample is available, the window advances by one

step, removing the oldest sample and adding the newest one. Thus, in addition to DBScan’s ✏

and MinPts, it adds the window size w hyperparameter. The complexity of this approach then

becomes O (w n log (w)).

DenStream is a clustering algorithm proposed by Cao et al. [32]. It is an algorithm designed for

data streams, which extends the density-based strategy introduced in DBScan making it viable

for stream model construction. First of all, the algorithm uses a damped window model to weight

66

the samples: older ones become less important than newer ones via a fading function

f(t) = 2
��t,� > 0 (4.1)

where � is the aging hyperparameter. The main idea of the algorithm is the introduction of the

so called micro-clusters (mc), i.e., group of close points pi1 , ..., pin with creation time stamps

Ti1 , ..., Tin . A mc is defined as a (w, c, r) where w is the weight, c is the center and r is the radius

of the mc. The weight w is given by the number of elements in the mc weighed by their generation

time Tij with respect to the current time t:

w =

nX

j

f(t � Tij) (4.2)

Similarly,

c =
1

w

nX

j

f(t � Tij)pij (4.3)

r =
1

w

nX

j

f(t � Tij)dist(c, pij) (4.4)

where dist(c, pij) is the euclidean distance between point pij and the center c. By breaking

clusters into mcs, DenStream allows to dynamically construct clusters of arbitrary shapes. The mc

weight w plays a key role in the model construction, as it discriminates between outlier (w < �µ)

vs core (w > �µ) micro-clusters (where � and µ are free hyperparameters).

When a new sample is available, DenStream (i) merges it to the nearest core mc provided that

the radius of the merged cluster does not exceed a given threshold ✏; otherwise, DenStream (ii)

attempts to merge the point to the closest outlier mc, and (iii) a new outlier mc is finally created

by the point if the merge fails.

Not only mcs are easy to maintain incrementally at each new data point, but notice that model

construction is a continuous process in DenStream: an outlier mc can indeed become a core mc

when its weight increases as new points are added to it. Similarly a core mc becomes an outlier

mc (and ultimately vanishes) if no new data points are added for long periods. The authors show

that the minimal time span for a core mc fading into an outlier one is Tp =
1
� log(

�µ
�µ�1) therefore

it is natural to check them every Tp time periods. Two offline phases can be found in DenStream:

Initialization and Generating Final Clusters. The authors propose indeed to obtain the initial mc

as the output of DBScan applied to the first InitN points, called buffer, and then maintain them

67

Table 4.1: Algorithms compared in this work

Algorithm Type HyperParameters

DBScan Batch ✏, MinPTS
LOF Batch n neighbors, contamination

wDBScan Windowed ✏, MinPTS, w
ExactSTORM Stream R, K, w

COD Stream R, K, w
RRCF Stream t, w, contamination

DenStream Stream ✏, �, �, µ

incrementally. Similarly, they propose to obtain the final clusters, when requested, applying again

DBScan to the set of core mcs considering them as a virtual point located at the center of the mc.

4.3 Testbed and Datasets

We study and compare the proposed method using publicly available datasets [6], we have gath-

ered and released previously in [117]. The datasets have been collected in a state of the art

testbed, comprising tens of real routers, running real protocols and traversed by Tbps traffic

(Sec.4.3.1). The testbed is used in several experiments where anomalous events are injected

in randomly chosen nodes in a controlled fashion (Sec.4.3.2). In turn, these controlled anoma-

lies affect the stream of telemetry features (Sec.4.3.3), as we illustrate for the sake of clarity

(Sec.4.3.4).

4.3.1 Testbed

The dataset is extracted from a testbed replicating a traditional clos topology of a CSP datacenter

shown in Fig.4.1. For redundancy, each leaf is connected to each spine via 4⇥100Gbps fiber

links, so that the nodes have 25 interfaces on average. On the operational level, the datacenter is

designed with BGP as the only routing protocol, following guidelines in [110].

Though the testbed does not involve real users, it does use real equipment, protocols and

applications typical of production networks. We thus disregard experiments collected under no

traffic load (mostly useful for testing) and limitedly consider those where real application mixtures

68

Table 4.2: Experimental datasets available at [6]

Experiment Traffic No. Duration Used forID Load Anomalies

2 1 Tbps 11 1 h Tuning parameters (Sec. 4.4)
3 1 Tbps 8 0.55 h Tuning parameters (Sec. 4.4)
5 1 Tbps 12 2 h Test parameters (Sec. 4.5)
9 2.9 Tbps 5 0.75 h Test parameteres (Sec. 4.5)
10 2 Tbps 5 0.55 h Test parameters (Sec. 4.5)

63,1(��
63,1(��
63,1(��
63,1(��

/($)��/($)��/($)��/($)�� /($)��/($)��/($)��/($)��

1&6����

'5��

1����

1&6����

'5��
1&6����

'5��

1���� 1���� 1���� 1����1���� 1����

UVZ$� %HOO�&$ UVZ$� UVZ$�
1����
UVZ%� UVZ$� UVZ$�

������;����*�(&03�OLQNV
���¬�¬;����*�(&03�OLQNV
���¬�¬;���*�(&03�OLQNV

Figure 4.1: Testbed replicating a traditional clos topology of a CSP datacenter

are generated from servers in the racks connected to the ToR switches (the Nexus 2/3/5000 and

9000 series) to generate up to 3 Tbps of aggregated traffic (a mixture of TCP, AMR-WP VoIP and

G.711a calls, Skype-1050P, Blue Ray and 4K YouTube streaming).

4.3.2 Data collection

Multiple experiments, listed in Table 4.2, with different characteristics and scenarios are per-

formed. While minute-level telemetry collection is generally practice in the industry, the dataset

we use in this work has been gathered with the fastest sampling period supported by the products,

namely of �T=5 seconds. Every �T , each of the N nodes stream a snapshot of its F features

to the collector: each experiment is a point X 2 RNSF where N is the number of nodes, S is

the number of collected samples during that experiment and F the number of features. All the

available features are described by YANG models [11] and then extracted, decoded and stored by

Pipeline [7] as compressed CSV files. The repository [6] contains experiments undergoing differ-

69

ent traffic load (from 0 to 3 Tbps), different number of anomalies injected (from 0 to few 10s) and

different anomalies types, such as BGP port flapping (Link Failure - Point anomalies), BGP leaks

and BGP clears (Direct Unintended BGP Anomalies - Collective Anomalies). An interesting point

is how to ensure that the synthetic anomaly injection process yields to outliers that retain simi-

larities with anomalies found in the real-world. While a systematic quantitative evaluation of the

anomaly injection process is outside the scope of this paper, it is possible to provide preliminary

qualitative insights on this point. Notice that these synthetically injected anomalies represent the

type of BGP anomalies that are typically found in real-data [65]; additionally, such anomalies are

injected by actioning on the protocol (e.g., automatically activating/deactivating links for flapping,

purposely misconfiguring tables for leaks, and resetting tables for clears) as it would happen in

case of real connectivity problem (flapping) or “fat finger” (leaks, clears), so to trigger real pro-

tocol reaction. As such, while the temporal patterns of the anomalies are likely unrealistic (i.e.,

since they are periodical and more frequent that what it can be expected) by separating anomalies

by a long enough time, we can ensure anomalies are roughly independent, and as such should

independently trigger alarms. Overall, the synthetic injection process is expected to provide a

sufficiently realistic benchmark.

The working condition of the system is classified in two categories, i.e., normal vs anoma-

lous. The system works by default in normal mode, and each experiment starts with a normal

period (lasting at least 40 samples), after which controlled anomalous events are injected at ran-

domized node locations. Depending on the dataset, the anomalies are injected by spacing them

by 300 seconds or more and all of them are tracked in a ground truth database available in the

same repository. The groundtruth file includes the root node in which the event is injected, the

timestamp and the type. We point out that we do not leverage ground truth information to build

our data-driven models (i.e., as one would to in case of supervised classification), but rather use

ground truth only to assess the performance of the unsupervised methods.

Whereas the start time of the anomalous event is known, the event duration is not determin-

istic: the event injection triggers the BGP update process, after which BGP converges to a new

stable state. We discuss with product line experts to set an expected event duration: based on ex-

pert knowledge related to both protocol dynamics (i.e., the convergence process of BGP), as well

as business objectives (i.e., the ability to gather actionable alarms on a timescale interpretable by

70

humans), network experts consider an event ended 3 minutes after its injection time.

Clearly, as any threshold that can be set arbitrarily, its tuning may impact algorithmic per-

formance evaluation: for instance, setting a very short event duration (sub-minute) would raise

several events that would be wrongly counted as “false alarms” (since BGP did not converge yet

in practice); conversely, setting a too long duration (e.g., larger than the interval between two con-

secutive injections) could lead to superposed event. Based on properties of the injection process,

and on our preliminary observations of the timeseries, we concur with experts that 3 minutes is

an advisable event duration for this datasets also from the viewpoint of machine learning experts.

4.3.3 Telemetry features

The streamed KPI (aka features in machine learning terms) available in the testbed are a subset of

the YANG [5] state of the devices, exported by GRPC to an inbound collector. In a nutshell, YANG

models define a hierarchy (i.e., tree) of data that can be used for configuration, state sharing and

notifications; in the model, each node has a name, and either a value or a set of child nodes. At the

same time, it is worth stressing that the YANG hierarchy of devices in the testbed comprises over

378,000 lines, describing a hierarchy of over 45,000 features, with nearly 5,000 types pertaining

to the BGP protocol alone. From a machine learning viewpoint, it would be counter-productive,

due to the curse of dimensionality, to apply any clustering algorithm to such a highly dimensional

data. Additionally, from a network-expert viewpoint, collecting and exporting features consumes

CPU and bandwidth resources: as such, it is impossible to collect, for all nodes and interfaces,

the totality of the supported features – which rules out the possibility to conduct classic “feature

selection” algorithms. Product line experts configured the testbed to collect the most relevant

control and data plane KPIs according to their domain knowledge, and we therefore take the

resulting set of features (reported in Appendix A for completeness) as a given. However, it is

well known that not all features are equally important in machine learning terms: by discarding

constant or categorical features from the full set of available features, we finally extract a subset

of 82 non-trivial features (reported in Appendix B for completeness).

4.3.4 Dataset at a glance

For the sake of clarity, we illustrate samples of the dataset in Fig. 4.2, to exemplify the types of

KPI signals and anomalies present in the dataset from spatial and temporal angles.

71

Figure 4.2: Dataset at a glance: Top plots depict example of the Multivariate Time Series as
heatmaps for leaf1 and spine1 on E5 (plots on the left) and E10 (plots on the right). Bottom
plot reports temporal evolution for sample features and annotated ground truth for node spine1
on E5: control-plane paths-count (top), vs data-plane bytes-sent on interface HundredGig0/0/0/0
(bottom).

72

Spatio-temporal view

We start from a heatmap representation of the multivariate data collection in the top of Fig. 4.2: x-

axis represent the time, y-axis represents different features whose values are encoded as colors.

To portray two different datasets and nodes, we select leaf1 and spine1 extracted from experi-

ments E5 and E10. It is easy to observe that in E5, all the 12 BGP clear events have a noticeable

impact on spine1 features, and to a smaller extent, on leaf1. While it is visually possible to distin-

guish the first four events in spine1, the same does not hold for leaf1: this happens since these

events are injected in nodes that are directly connected with spine1 but are at 2 hops away from

leaf1. Thus, leaf1 features are most noticeably affected when an event is injected in a topologically

nearby node. Heatmaps on the right show that the events injected in E10 have even a less no-

ticeable impact: link failures indeed impact only one (out of four) direct links between two nodes,

and consequently only some of the features related to that particular link are affected, which can

be hard to detect.

Temporal view

Events are more easily noticeable by considering a temporal view, on the bottom part of Fig. 4.2,

that shows an example of CP (paths-counts) and DP (bytes-sent) features for spine1 in E5. The

ground truth is represented with a vertical red line representing the anomaly injection time and a

shaded window for the anomaly duration, and we depict only 3 out of the 12 injected events for

the sake of readability. From these few examples, it can be expected that accurately detecting all

events, from all nodes, can be a quite challenging due to the nature of the events, that can yield

to weak signals for some nodes and anomaly type.

4.4 Methodology

Traditional clustering-based approaches, e.g. DBScan are mainly designed to produce clusters

rather than detecting outliers or other types of anomalies, which is our ultimate goal. As such, in

this section we first specify how we move from clustering to outlier detection Sec. 4.4.1. We next

illustrate in Sec. 4.4-B/C the careful hyperparameter selection procedure we followed to ensure

fair performance comparison in Sec. 4.5.

73

4.4.1 From clustering to anomaly detection

All the considered methods succeed in making a distinction between normal samples (belonging

to a cluster) and outliers/noise. We further use these peculiarities to trigger anomaly detection for

each algorithm. In particular, a sample is considered anomalous

(i) by DBScan, if it cannot be merged to any cluster;

(ii) by wDBScan, if by adding it to the time-sliding window, it cannot be clustered together with

the previous samples;

(iii) by LOF, ExactSTORM, COD and RRCF, if it is assigned an anomalous label

(iv) by DenStream, if it is successfully merged to an outlier-mc, or a new outlier-mc needs to be

created for that sample.

Note that the exact composition and size of clusters is affected by the algorithms hyper-

paramers: e.g., the minimum size of a cluster is either explicitly (e.g., as for DBScan via MinPTS,

cfr. Sec.4.4.2) or implicitly specified (e.g., as for ODS, cfr. Sec.4.4.3)

For the sake of illustration, we report the pseudo-code (merging, promotion and pruning

phases) of the DenStream algorithm, together with the proposed changes for label assignment

in ODS (emphasised and between [square brackets]) in Algorithm. 2. In particular, we propose

two major changes with respect to the original version of DenStream to be found in the initializa-

tion phase and in the offline clustering part. While, in the initialization phase (line 1), the original

version of DenStream uses DBScan to obtain the micro-clusters and then start maintaining them

incrementally, we cluster together the first S samples of the stream assuming they are event free

and not contaminated by anomalies. By doing so, we obtain a cluster of normal samples (nor-

mal working condition of the system). We remove, similarly, the offline part of DenStream (line

31) in which DBScan is applied to cluster together micro-clusters. Our goal is to find out if the

samples, as soon as they are available, are normal or anomalous; we need so to know only if the

samples can be merged to existing normal-mc or not. Instead, we do not need to group together

different micro-clusters, which may represent different normal states, to obtain a macro cluster of

normality. Other changes pertain to automated tuning, which we detail in Sec. 4.4.3.

74

Algorithm 2: DenStream [and ODS]

1: Initialization with DBScan [skipped in ODS]

2: while ns (new sample) do
3: find closest core mc and try to merge ns
4: if rc < ✏ [< r̄ + kr�r] then
5: merge ns to core mc
6: [return label normal, rc]
7: else
8: find closest outlier mc and try to merge ns;
9: if ro < ✏ [r̄ + kr�r] then

10: merge ns to outlier mc
11: if outlier mc weigth > �µ [< �/(1 � 2

��
)] then

12: promote outlier mc to core mc
13: end if
14: else
15: generate new outlier mc by ns
16: end if
17: [return label anomalous, rc]
18: end if
19: apply fading function 2

��·t to all mcs
20: if t mod Tp == 0 then
21: for each core mc do
22: if wp < �µ [< �/(1 � 2

��
)] then

23: remove core mc
24: end if
25: end for
26: for each outlier mc do
27: if wo < �µ [< �/(1 � 2

��
)] then

28: remove outlier mc
29: end if
30: end for
31: end if
32: DBScan on core mcs [skipped in ODS]

33: end while

75

Table 4.3: Hyperparameters: Number and range of combinations tested for each method and final
selection

Method Hyperparameter [Range]@step Selected
(num. combinations) Name Value

DBScan ✏ [1, 20],@1 6

(500) MinPts [2, 50],@2 18

LOF n neighbors [1, 50],@1 24

(1960) contamination [0.001, 0.2],@0.005 0.065
wDBScan ✏ [1, 20],@1 9

(8000) MinPts [2, 50],@2 3

w [20, 100],@5 80

ExactSTORM R [1, 20],@1 10

(3040) w [10, 100],@5 95

K [2, 10],@1 2

COD R [1, 20],@1 12.5
(3040) w [10, 100],@5 50

K [2, 10],@1 5

RRCF t - 100

(800) w [5, 100,@5 95

contamination [0.001, 0.2],@0.005 0.03
ODS ✏ dynamic r̄ ± kr�r, kr = 3

(135) � [0.01, 0.45],@0.03 0.125
� [0.1, 1],@0.1 0.4

4.4.2 Hyperparameter selection (DBScan, LOF, wDBScan, ExactSTORM,

COD and RRCF)

For all the methods, we first perform a hyperparameter selection phase, to select hyperparam-

eters yielding to good performance as measured by classic metrics from information retrieval

(i.e., precision, recall and F� scores). Given that anomalies are rare, we use the F� = (1 +

�2
)

precision·recall
�2·precision+recall , setting � = 0.5 to account for imbalance by non-linearly interpolating pre-

cision and recall. In particular, we use E2 and E3 from Tab. 4.2 for hyperparameter selection.

Generalization capabilities of the tuned algorithms will be tested on entirely different datasets in

Sec. 4.5. The full set of hyperparameters explored, along the total number of combination tested

per protocol, and the resulting selection is summarized in Tab. 4.3.

We use classic grid optimization, i.e., an exhaustive search, to find the hyperparameters that

reach the best performance. We do not perform however a blindly search, as it is of fundamental

importance the research of the hyperparameters in the correct intervals and magnitudes, therefore

we follow the best practices suggested by the authors in the determination of grid boundaries.

76

Grid boundaries

For DBScan ✏ and MinPTS hyperparameters, we perform a grid search varying ✏ 2 [1, 20] with a

unit step and minPTS 2 [2, 50] with step equal to 2, for a total of 500 different hyperparameters

combination.

wDBscan follows the same principles for what concerns ✏ 2 [1, 20] and minPTS 2 [2, 50]. The

window size w is searched in w 2 [20, 100] in steps of 5 units, which is equivalent to time windows

ranging from 1 minute to 8 minutes (in line with BGP time spans), obtaining so a total of 8000

different hyperparameters tested for each node.

The number of neighbors used by LOF is searched in n neighbors 2 [1, 50] with unit step,

while we explore contamination 2 [0.001, 0.2] with a step equal to 0.005, obtaining a total of 1960

combinations.

For what concerns ExactSTORM and COD, we perform the grid search varying R 2 [1, 20]

and k 2 [2, 10] with a unit step while w 2 [10, 100] in steps of 5 units obtaining so a total of 3040

hyperparameters tested for each node.

The number of trees used by RRCF is set to t = 100 as it is commonly used in ensemble

models. We explore the tree size w 2 [5, 100] in steps of 5 units while exploring contamination 2

[0.001, 0.2] with a step equal to 0.005, obtaining a total of 800 combinations.

Grid search results

Fig. 4.3 shows a heatmap of the F0.5 score for DBScan (top left plot), LOF (top right plot), wDB-

Scan (middle left plot), ExactSTORM (middle right plot), COD (bottom left plot) and RRCF (bot-

tom right plot). Clearly, hyperparameter selection is to select the point (or points in a region) that

maximizes the F0.5 score. For each algorithm, we represent the hyperparameter space of two

hyperparameters as a heatmap, to convey an idea of the algorithm stability to (even slight) hyper-

parameter changes (in the region). We highlight the final hyperparameters choice directly in each

plot, i.e., at intersection of the dashed lines.

We observe that DBScan performs the best for 3 < ✏ < 8 and 10 < MinPTS < 30. We select

77

Figure 4.3: Hyperparameter selection: F0.5 heatmap for DBScan (top left), LOF (top right), wDB-
Scan (middle left), ExactSTORM (middle right), COD (bottom left) and RRCF (bottom right). De-
tailed hyperparameters in Tab. 4.3. Selected hyperparameters at the intersection of the dashed
lines.

✏ = 6 and MinPTS = 18. We also notice that F0.5 changes quickly in ✏, and is slowly varying in

MinPTS.

From the top right plot, we observe that the region for which LOF produces the best results

78

are 0.06 < contamination < 0.07 while 20 < n neighbors < 30. We select contamination = 0.065

and n neighbors = 24 which is close to the default parameter (n neighbors = 20).

Heatmaps in middle plots clearly show that the window size need to be w > 70 for both wDB-

Scan and ExactSTORM. In the wDBScan case though, we remark that the use of a smaller time-

horizon affects the (MinPTS, ✏) heatmap so that the best selection appears to fall for MinPTS <

6 (much smaller that in the DBScan case) and ✏ ⇡ 9 (slightly larger than for DBScan). We select

✏ = 9, w = 80 and MinPTS = 3. We select R = 10, w = 95 and k = 2 for ExactSTORM.

Finally bottom plots show that R = 12.5, w = 50 and k = 5 are the best hyperparameters for

COD while tree size w = 95 and contamination = 0.03 are the best ones for RRCF.

4.4.3 Hyperparameter selection (ODS)

We point out that, as reported in Tab. 4.3, the total number of hyperparameter explored is smaller

(135) than in the other cases: this should provide not only a fair, but an expected conserva-

tive performance assessment of ODS performance. At the same time, since DenStream is less

well known and ODS build on it, we present a more comprehensive explanation of its hyper-

parametrization. Particularly, we use ingenuity to:

(i) simplify hyperparameter selection by lumping factors whenever possible (as for µ+), as well

as

(ii) proposing dynamic parameterless settings based on statistical properties (for ✏) and

(iii) resorting to grid search for the remaining ones (�,�).

Maximum weight µ+

The weight parameter µ is used jointly with the potential factor � to decide when a given outlier

mc becomes a new core mc (particularly, when w > µ�). Given the exponential fading function

f(t) = 2
��t, and considering a fixed-rate sampling as in our case, the maximum weight a micro-

cluster can reach is µ+
=
P

j f(j) =
1

1�2�� (since |f(t)| < 1 for � > 0) which solely depends on �.

By setting µ = µ+ we therefore reduce the parameter cardinality, obtaining the new minimal time

span for a normal cluster fading into an outlier one Tp = d
1
� log2(

1
�)e, obtained by the equation

79

Figure 4.4: ODS Hyperparameter selection: Impact of kr for dynamic radius threshold in (4.6)

2
��Tpµ+

= µ+� and the rule for outlier micro-cluster mc promotion becomes:

w > �/(1 � 2
��

) (4.5)

Radius threshold ✏

The radius threshold is the most important parameter of the algorithm as it delimits the anomalous

threshold. On the one hand, one may suggest a fixed selection of the parameter, that is to com-

pute it as the radius of the cluster obtained merging together the data of an experiment in which

no anomalies are injected (i.e. E0 and E1 - baselines). This is the approach we originally followed

in [117]. At the same time, we argue that a fixed selection of the parameter introduces porta-

bility issues: as it is necessary to generate baselines for each possible combination of topology,

traffic loads and BGP policies, this making the choice fragile and impractical. On the other hand,

one could advocate for a dynamic selection of the parameter, that is automatically computed as

the radius of the cluster obtained merging together the first S samples at the beginning of the

model construction and keep updating the threshold as new samples are available. We follow this

second path and dynamically set the radius threshold as:

✏(k) = r̄ ± kr�r (4.6)

where r̄ is the incremental estimation of the radius mean while �r is the incremental estima-

tion [112] of the radius standard deviation, and kr an arbitrary parameter that allows to control

(more precisely, upper bound) the false alarm rate.

80

Figure 4.5: ODS Hyperparameter selection: F0.5 score for increasing fading factor � and potential
factor � applied on E2 and E3

We observe from (4.3) and (4.4) that the radius has a gamma type distribution (as it is the

square root of sums of positives values). Without further assumptions on the radius distribution,

we use Chebyshev’s inequality:

Pr (|X � µ| � k�)
1

k2
, where k > 0 (4.7)

which states that for a random variable with finite expected value µ and variance �2, it is possible

to compute a lower bound of the probability that values lie inside the interval (µ� k�, µ+ k�). For

example, for k = 3, the interval contains at least 88.89% of the population, upper bounding false

alarm rate to at most 11%. We should stress that the bound is however not tight: to confirm this,

we report in Fig. 4.4, the false positive rate (along with precision, recall, and F0.5) as a function of

kr, which is extremely low already for kr > 2. To conservatively evaluate ODS, in the following we

set kr = 3.

Fading � and Potential � factors

Both � and � have a physical interpretation and play a key role in the model construction. � is

a time-related parameter that tunes the timescales at which old samples should be considered

as totally independent from the current system state. Once � is fixed, the potential factor � has

a geometric interpretation, as it determines the minimum number of samples needed for outlier

mc promotion to core mc. We point out that a domain expert could be tempted to select � and �

according to physical properties of the network, whereas a machine learning expert would select

� and � as a result of data analysis and a grid search procedure. We adopt both viewpoints in

what follows.

81

Figure 4.6: wDBScan (left) vs ODS (right) model evolution over time. The top two rows discrim-
inate normal vs anomalous clusters: the top row reports the number of normal vs anomalous
clusters returned by the models, the second row reports the cluster ID to which each samples is
merged to. The third and fourth rows show the radius and the weight evolution of each normal
cluster respectively, while the two bottom ones depict the evolution of the first and second com-
ponents extracted from the center of the clusters.

For instance, a network domain expert could decide to require that an outlier mc should have at

least 3 samples before becoming a normal mc and set � according to the expected convergence

time of the BGP protocol. For example, choosing � such that a sample’s contribution decays 99%

after 5 minutes means 2
��·60

= 10
�2 or � ⇡ 0.111 while the promotion threshold, requiring at

least 3 samples, is � · µ+
=
P3�1

i=0 2
��i

⇡ 2.78.

We perform a grid search to question these choices, reporting in Fig. 4.5 the F0.5 score for

varying � 2 [0.01, 0.45] and � 2 [0, 1]. Several important takeaways can be gathered from the

figure. First, the performance metrics are smoothly varying over � and � with a fairly large region

(best F0.5 score obtained for � 2 [0.10, 0.16] and � 2 [0.2, 0.5] approximately).

Second, performances degrades for both increasing � and �. A too high decay factor � leads

to giving too much importance to the most recent samples while a too high �, instead, translates

in a too high weight threshold. We select � = 0.125 and � = 0.4. Notice that with � = 0.125,

µ+
⇡ 12 and for 0.2 < � < 0.5 the weight promotion threshold ranges from 2.4 < � · µ+ < 6 which

translates in clusters whose weight is composed by at least 3 to 8 samples and which are in line

82

-
Dataset Algorithm Precision Recall F0.5score

Mean
Tuning
(E2/3)

DBScan 0.99±0.02 0.88±0.05 0.96±0.02
LOF 0.99±0.02 0.89±0.05 0.96±0.02
wDBScan 1.00±0.00 1st 0.70±0.07 3rd 0.91±0.03 2nd
ExactSTORM 1.00±0.00 1st 0.70±0.07 0.91±0.02 2nd
COD 0.90±0.06 0.72±0.07 2nd 0.85±0.06
RRCF 0.96±0.05 0.84±0.06 1st 0.93±0.04 1st
ODS 1.00±0.00 1st 0.64±0.08 0.88±0.04

Mean
Test
(E5/9/10)

DBScan 0.91±0.06 0.59±0.08 0.79±0.06
LOF 0.71±0.10 0.78±0.08 0.70±0.09
wDBScan 1.00±0.00 1st 0.35±0.07 0.71±0.08
ExactSTORM 1.00±0.00 1st 0.38±0.08 3rd 0.72±0.05 3rd
COD 0.73±0.09 0.36±0.07 0.58±0.08
RRCF 0.88±0.06 0.76±0.08 1st 0.83±0.06 1st
ODS 0.96±0.03 3rd 0.54±0.08 2nd 0.79±0.05 2nd

Figure 4.7: Algorithms Performance Comparison: Precision, Recall and F0.5 score. Figure and
table report the average performance on the testing (full opacity, foreground bars) vs tuning (light
opacity, background bars) dataset. The top-3 among the stream algorithm are explicitly annotated.

with the expert domain choices. These findings confirm that indeed the hyperparameters of the

algorithm respect their physical interpretation and can be set accordingly.

A last remark is worth making: while we have seen that performance smoothly varies on �

and �, we point out that their selection is still primarily correlated with the telemetry sampling

rate: as such, for very different sampling timescales (eg. subsecond or minutes), a new sensitivity

analysis is recommended.

83

4.5 Performance evaluation

We now carefully compare the methods, using the hyperparameters selected in the tuning phase

on datasets (E2, E3), on previously unseen datasets (E5, E9, E10). We start by illustrating one

example of execution of the system in Sec. 4.5.1. We systematically compare performance of

the algorithms in terms of several information retrieval metrics in Sec. 4.5.2. We finally contrast

algorithms in terms of complexity and execution times in Sec. 4.5.3.

4.5.1 Model evolution over time

To better illustrate intrinsic differences of stream-learning vs batch algorithms, we portray the evo-

lution of two sample models. In particular, we select ODS and the windowed version of DBScan

(wDBScan) and depict their anomaly detection processes with the help of Fig. 4.6, using the initial

portion of dataset E5 as an example. In particular, we ought to recall that whereas in the ODS

case a single model evolve over time, in wDBScan each of the different windows yield to a dif-

ferent model. In other words, in ODS model evolution over time is smooth by design, whereas

in wDBScan the similarity between outputs of models that are run on consecutive input windows,

merely stem from similarity in the input data, as the time component is not otherwise explicitly

exploited. In spite of the above difference, it is possible to resort to consistent visualization of the

main inner state of these algorithms, such as the number of normal vs outlier clusters, their radius

size and center position, etc. that are reported in Fig. 4.6.

In wDBScan, each time the algorithm is run, a unique increasing ID is assigned to each cluster,

starting every time from 0: each sample is assigned the ID of the cluster it is merged to, and the

value -1 is reserved for outlier clusters. In ODS, a unique increasing ID is assigned to each newly

generated normal-mc, and a separate ID space is similarly used to track outlier-mc clusters. Each

sample is then assigned the ID of the cluster it is merged to, and differently from wDBScan, ID is

not reset across runs.

Plots in the top row of Fig. 4.6 depict the time evolution of the number of normal vs outlier

clusters present in the window (wDBScan) or of the number of normal-mc vs outlier-mc (ODS).

We observe that, after the initialization phase, both the models are composed by a single normal-

cluster and no outlier ones. It is easy to observe that, in correspondence to the anomaly injection

84

periods, the number of outlier clusters increase as expected.

The second plots row represents the ID of the clusters the samples are merged to. We observe

that in both the models most of the samples are assigned a normal ID (generating a horizontal

line). When an event is injected, algorithms flag samples as anomalous (red dots). In the case of

ODS, outlier clusters may get promoted into normal clusters (which is visible, e.g., toward the end

of the first event), whereas the old clusters are pruned over time due to the fading function.

The third and fourth rows illustrate the radius and the weight of the normal clusters respec-

tively. One can easily observe from these plots the main differences in the model evolution of the

two methods. On the one hand, after the injection of the first event, wDBScan generates a small

cluster composed of 5 samples but, as soon as BGP convergence is achieved, returns merging

new samples to the original cluster. The newly generated cluster, together with the anomalous

samples, continue to be part of the model, even if not used for any purpose: i.e. no new sam-

ples are merged to the generated cluster as evidenced by the label ID (2nd plot), by the constant

radius (3rd) and weight (4th) and also from the constant center (5th and 6th), which holds until

they are excluded from the window. On the other hand, ODS removes old clusters (see the steady

decrease of the weight of the cluster before pruning) and updates new ones (see the fast increase

of the weight of the cluster after promotion) much more promptly than wDBScan.

The fifth and sixth rows show the first and second center components respectively, extracted

through simple Principal Component Analysis (PCA) whose eigenvalues represents approximately

94% (wDBScan) and 77% (ODS) of the center. The two methods clearly behave differently: while

ODS generates a new normal cluster (notice the pruning/promotion in the fourth row) in the region

of the new working condition, wDBScan slowly drifts towards the latter. This effect depends on

the hyperparameters ✏ and w whose modification would however lead to a decrease in wDBScan

performance (recall Fig. 4.3).

4.5.2 Detection Performance

For validation, we rely on a set (E5, E9, E10) of experiments that are independent from those

used for tuning (E2, E3), and are additionally well suited to stress test generalization capabilities

of the studied methods. In particular, E5 is very similar to the tuning ones both in terms of traffic

85

load (1 Tbps) as well as anomalies (BGP leaks) so it allows one to test the performances of the

models in scenarios similar to those of the tuning phase. E5 thus constitutes a good stress test of

the generalization capabilities of the selected hyperparameter.

E9 and E10 instead undergo different traffic loads (2.9 Tbps and 2 Tbps respectively) as well

as different injected anomalies (Port Flaps caused by interface shutdown from terminal and link

failures caused by fiber pull respectively). The latter ones allows thus one to test the performance

of the models in scenarios very different from those used in the tuning phase. Additionally, while

the events injected in E5 are severe ones and affect the operational status of an entire node (i.e.

the node losses all the BGP tables and is no longer able to forward data on all the interfaces)

and all the direct neighbors, the events in E9 and E10 affect a single interface which results in the

loss of only one out of the four links between two nodes. We expect a mitigation of the effects

produced in the network by the anomalies injected in E9 and E10 and for this reason we expect

not all the nodes to detect the events. E9 and E10 constitutes a good stress test of generalization

capabilities of the algorithm.

We compare algorithmic performance using several information retrieval metrics, notably Pre-

cision, Recall and F0.5score in Fig. 4.7 and Accuracy, Markedness and Informedness in Fig. 4.8.

We report the mean and confidence interval of each metric for the 7 algorithms tested, explicitly

contrasting tuning (light opacity, background bars) and testing datasest (full opacity foreground

bars). The information is additionally tabulated in detail in the figure, and an explicit annotation of

the algorithm rank (limited to stream algorithms) for each metrics is additionally reported to ease

interpretation of the results.

From a high-level viewpoint, considering the testing datasets we observe that RRCF stand out

as being ranked 1st on four metrics (Recall, F0.5, Accuracy and Informedness) – which makes it a

very good choice. ODS instead stand out as the only algorithm being systematically ranked 2nd

or 3rd on all 6 metrics – which makes it a robust choice.

In more details, we observe that the hyperparameters selected in the tuning phase yield to

reasonably good performance in the test datasets as well, albeit performance diminish for all

methods. This behavior is expected, as we know already E9 and E10 contain anomalies which

86

Table 4.4: Detection peformance: in-depth RRCF vs ODS comparison
Metric ODS RRCF
Precision@3 0.899±0.063 0.898±0.021
Precision@5 0.776±0.088 0.786±0.024
Area Under the Curve (AUC) 0.967±0.016 0.989± 0.002
Average Precision (AP) 0.785±0.075 0.850± 0.017

are less disruptive and concern a single link, and are thus more difficult to detect. Discrepancy

between tuning and testing phase is particularly visible considering the mean F0.5 score over all

datasets, where the degradation appears more severe for DBScan, wDBScan, LOF, ExactSTORM

and COD. Investigating further, we find that DBScan and LOF performance degradation is due to

low portability of parameter configuration as a function of the traffic load, which in turn has an

impact on the distance between the samples. wDBScan, ExactSTORM and COD precision is

consistent with that of the tuning phase, however, as a downside of the tradeoff, they achieve

0.35, 0.38 and 0.36 recall respectively.

In summary, RRCF and ODS appears to be a first and second choice respectively as for detec-

tion performance are concerned. Additionally, RRCF and ODS both appear to limit discrepancy

with respect to the tuning phase, hinting to the fact that their hyperparameters hardly fall into

overfitting. Interestingly, RRCF and ODS stand at opposite sides in the recall (RRCF is top-1) vs

precision tradeoff (RRCF is not even in the top-3), which makes both of them interesting options.

For instance, in the case of ODS, precision could be traded for recall decreasing kr, however this

would increase the number of false alarms, which is not desirable in operational settings in our

opinion, as otherwise alerts are unreliable and would thus simply be ignored. To further appre-

ciate the differences between RRCF and ODS, we additionally contrast further metrics such as

Precision@K, area under the received operating characteristics curve (AUC) and average preci-

sion (AP) in Tab.4.4. From the comparison it emerges clearly that RRCF and ODS are practically

indistinguishable for (at least) the top-5 events in each datasets, as shown by the Precision@3

and Precision@5 metrics, with RRCF exhibiting a better average precision over the whole set of

anomalies.

4.5.3 Computational Complexity

With respect to SNMP polling in periods of 5 minutes, the 5 second sampling rate in the dataset

considered in this work constitutes a 60⇥ increase in the data velocity. In case future technolog-

87

-
Dataset Algorithm Accuracy Markedness Informedness

Mean
Tuning
(E2/3)

DBScan 0.996±0.002 0.981±0.021 0.883±0.049
LOF 0.996±0.002 0.985±0.017 0.891±0.047
wDBScan 0.990±0.003 2nd 0.990±0.003 1st 0.696±0.069 3rd
ExactSTORM 0.990±0.003 0.990±0.003 3rd 0.704±0.068
COD 0.988±0.003 3rd 0.892±0.064 0.712±0.065 2nd
RRCF 0.993±0.003 1st 0.954±0.046 0.835±0.059 1st
ODS 0.988±0.003 3rd 0.987±0.003 2nd 0.635±0.081

Mean
Test
(E5/9/10)

DBScan 0.986±0.003 0.901±0.059 0.590±0.082
LOF 0.979±0.007 0.703±0.105 0.762±0.079
wDBScan 0.982±0.004 0.983±0.003 2nd 0.351±0.070
ExactSTORM 0.983±0.004 3rd 0.984±0.003 1st 0.381±0.078 3rd
COD 0.978±0.004 0.718±0.083 0.356±0.074
RRCF 0.988±0.004 1st 0.871±0.065 0.756±0.079 1st
ODS 0.986±0.003 2nd 0.944±0.031 3rd 0.541±0.078 2nd

Figure 4.8: Algorithms Performance Comparison: Accuracy, Markedness and Informedness. Fig-
ure and table reports the average performance on the testing (full opacity, foreground bars) vs
tuning (light opacity, background bars) dataset. The top-3 among the stream algorithm are explic-
itly annotated.

ical releases will reduce the sampling period further (to subsecond timescales), a major limiting

factor will be then represented by the processing capabilities of the device and collectors. Under

this angle, it is clear that computational complexity is of uttermost importance from a deployment

perspective.

Yet, most of the well known methods used today in the literature are in large part unsuitable

to process data fast enough both because they are computationally complex and have heavy

resources requirements. In this section we experimentally measure the time complexity of stream

vs batch algorithms. We replicate E5 100⇥ times, obtaining a stream composed by approximately

150K samples: by varying the length of the stream, we study the execution time trend of each

88

Figure 4.9: Algorithm complexity: total execution time in seconds (top) and execution time per
instance (bottom) for DBScan, LOF, wDBScan, ExactSTORM, COD, RRCF and ODS as a function
of the dataset size. DBScan measurements are not complete as it runs out of memory for values
greater than those shown in the plot.

method.

All the experiments are run on a server equipped with Linux Debian 10, Intel Xeon E5-1620

with 3.60GHz CPUs and 32GB RAM. The scripts, available at [2, 3], use Python 3.8.3 [145],

numpy 1.19.1 [109], pandas 1.05 [99] and scikit-learn 0.23.1 [53]. We use moreover RRCF’s

python implementation 0.4.3 present at [22].

Fig. 4.9 reports as a function of the stream length, the total execution time (top) and the av-

erage processing time of a single instance (bottom). ODS is the fastest one due to its linear

complexity followed by ExactSTORM, COD, wDBScan, LOF and DBScan. DBScan is the one

demanding most resources and reaches the memory limit for streams longer than 60K samples.

The bottom plot shows the processing time per instance. While DBScan and LOF show in-

creasing processing time per instance per increasing stream size, stream algorithms process

the data in fixed amount of time per instance. Even by restricting our attention to stream algo-

rithms only, ODS stands out as being significantly faster than the others, followed by ExactSTORM

89

Figure 4.10: Execution time per Instance (x-axis) vs Detection performance F0.5score (y-axis).
The plot is annotated with semi-planes to better highlight the desirable corners of the design
space: ODS sits at an interesting operational point for being significantly faster than all the algo-
rithms tested and second only to RRCF in terms of information retrieval metrics (F0.5 in this plot).

(2⇥slower), COD (10⇥), wDBScan (13⇥) and RRCF (550⇥). By comparing the processing time

and the sampling rate it is possible to establish an upper bound of the maximum sampling rate.

Observing that the elapsed time per-sample is roughly 0.20 ms, our released ODS Python im-

plementation is able to process approximately 5000 samples per second. Conversely, RRCF

execution time requires about 100ms per sample, which caps its processing rate to at most 10

samples per second.

We summarize the complexity vs detection performance tradeoff in Fig.4.10 as a scatter plot

of the execution time (in second, on the x-axis) vs the F0.5 score performance (y-axis). Note

that we use xyerrorbars, but the execution times confidence interval is very tight, and thus not

visible due to the logarithmic x-axis scale. The plot is annotated with semi-planes (split so to

halve the x-axis and y-axis ranges), to better highlight the desirable corners of the design space:

top-left corner indicates algorithms that are both fast and good (green shading), whereas top-right

corner indicates good but slow algorithms (yellow shading), bottom-left indicates fast but poorly

performing algorithms (yellow shading) and finally bottom right indicates slot execution and poor

performance (red shading). The picture clearly show that ODS sits at an interesting operational

point for being significantly faster than all algorithms tested, and second (but nevertheless very

close to) only to RRCF in terms of information retrieval metrics (as per Tab.4.4).

90

4.6 Discussion

We have contrasted a number of clustering methods for anomaly detection in networks. Whereas

results testify stream-based approaches to be of interest, we aim at discussing here limitations

and caveats to avoid pitfalls in their deployment.

Contextual anomalies. First, DenStream and consequently ODS are based on euclidean dis-

tances. We expect ODS to work on anomalies constituted by points far in the space, from the

normal clusters and under no circumstances we do expect it to be able to detect contextual

anomalies (e.g., such as absence of a periodic peak in a periodic signal). This suggests that tech-

niques such as those studied here, should be complemented by others shall contextual anomalies

be relevant in the deployment scenario.

Curse of dimensionality. The algorithm presented is of course not immune to the curse of

dimensionality. This is likely to happen in practice whenever one would attempt to build a single

model, aggregating several nodes and features per node. At the same time, model execution is

extremely lightweight, which would allow to run multiple models in parallel, either at node-level

(reducing communication complexity, but possibly missing events not detectable from internal

measurements) or at feature-subset level (which would require some amount of communication

between nodes, but possibly exploiting correlation among features at neighboring nodes).

Hyperparameters tuning. We have observed that hyperparameter tuning can lead to overfit,

making deployment of unsupervised techniques difficult in practice, especially for methods whose

hyperparameters are closely related to the dataset (e.g. contamination in LOF or ✏ neighborhood

in DBScan).

Instead, even though DenStream (and thus ODS) relies on four hyperparameters, we have

seen that it is possible to reduce their number by lumping some (e.g. by setting µ = µ+) and by

dynamically setting others (e..g, so that the radius threshold ✏ = r̄ + kr�r contains the bulk of the

radius distribution).

At the same time, the fading factor � (reduces gradually the importance of the samples) and the

potential factor � (delimits the size of a normal cluster) must be selected with care. In particular,

they are indeed bounded by w > �/(1 � 2
��

) and therefore must be set taking into account their

relationship and physical interpretation. For example, once � is set, choosing a too high � could

91

lead to the degenerate case in which the weight threshold is too high, and the model fails to build

and maintain normal-mcs.

Autonomicity level ODS is not intended to completely replace a human network operator, but on

the contrary it is a tool designed to facilitate his job. For instance, while ODS can update the model

over time, it has to be initialized by a conscious operator, providing anomalous-free samples at at

bootstrap. In turn, while ODS operates in the unmodified feature domain, there is a further need

of explainable attention focus mechanisms [1] to let the human operator focus on the important

features that triggered an event detection, an aspect orthogonal to our work.

4.7 Conclusion

The recent emergence of model-driven telemetry opens new challenges for anomaly detection,

and particularly makes the use of stream-based unsupervised machine learning tools very ap-

pealing. In this paper we develop, implement and open-source the ODS anomaly detection

engine, based on the online clustering algorithm DenStream. We thoroughly analyze ODS on

datasets gathered on BGP-only datacenter network loaded with up to 3 Tbps aggregated traffic,

and extensively compare it with a set of batch (DBScan, LOF), windowed (wDBScan) and stream

techniques (ExactSTORM, COD and RRCF).

Our results show that despite ODS is apparently plagued with several hyperparameters in-

herited from DenStream, their selection is quite straightforward, and performance are robust to

inner hyperparameter selection. Additionally, ODS is significantly faster than any of the tested

algorithms, and second only to RRCF (yet very close to it) in terms of detection performance.

Overall, the above results suggest ODS as a particularly lightweight and suitable algorithm for

stream-mode real-time network anomaly detection.

4.7.1 Available features

The available features are uniquely identified via their full YANG name, which in turn derives

from the concatenation of an an EncodingPath with a Leaf among the available ones for that

path (Leafset). Tab. 4.5 reports the full list of features used, that can be ascribed to either Data

Plane (DP), for EncodingPaths matching infra-statsd-oper and fib-common-oper categories,

92

Table 4.5: Available telemetry features
(CP) EncodingPath =
Cisco-IOS-XR-ip-rib-ipv4-oper:rib/vrfs/vrf/afs/af/safs/saf/ip-rib-route-table-names/ ip-rib-route-table-name/protocol/bgp/as/information

Leafset = {
active-routes-count

backup-routes-count

deleted-routes-count

paths-count

protocol-route-memory

routes-counts

}

(CP) EncodingPath =
Cisco-IOS-XR-ipv4-bgp-oper:bgp/instances/instance /instance-active/default-vrf/ process-info

Leafset = {
global established-neighbors-count-total

global neighbors-count-total

global nexthop-count

global restart-count

performance-statistics global configuration-items-processed

performance-statistics global ipv4rib-server is-rib-connection-up

performance-statistics global ipv4rib-server rib-connection-up-count

performance-statistics vrf inbound-update- messages

vrf neighbors-count

vrf network-count

vrf path-count

vrf update-messages-received

}

(DP) EncodingPath =
Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/ generic-counters

Leafset = {
bytes-received

bytes-sent

}

or Control Plane (CP), for EncodingPaths matching the ip-rib-ipv4-oper and ipv4-bgp-oper

categories. Extracting the full list of features per each interface and node yield about 750 data-

plane and 25 control-plane features overall per dataset.

4.7.2 Selected features

The full set of available features contains (i) redundant and totally correlated features (e.g. free-

memory and occupied-memory), as well as (ii) categorical features design (e.g. af-name, as

etc.) or (iii) features that are constant in our experiments (e.g., output-queue-drops). Out of the

available features, we thus discard duplicated, categorical or constant features. Based on this pro-

cess, we ultimately retain 64 DP and 18 CP features, for a total of 82 features. Notably DP features

relate to the generic counters (i.e., whose EncodingPath match interface/generic-counters),

whereas CP features relate to bgp/as/information and vrf/process-info EncodingPaths, which

have proven useful for BGP anomaly detection in previous studies [18].

93

Chapter 5

AutoAD

In this chapter we describe autoAD an automated unsupervised Anomaly Detection framework

which selects for a given unlabeled dataset the best performing model, as well as its optimal

configuration for its hyperparameters. We analyze the most recent studies of automated anomaly

detection in Section 5.2 and introduce the proposed strategy in Section 5.3. The evaluations are

done in Section 5.4 while a summary of our finding and remarks are given in Section 5.5.

5.1 Introduction

Over the last decade, we witnessed the proliferation of several machine learning algorithms ca-

pable of solving different tasks for the most diverse applications. Often, for an algorithm to be

effective, significant human effort is required, in particular for hyperparameter tuning and data

cleaning. Recently, there have been increasing efforts in alleviating such a burden, with the goal

of making machine learning algorithms easier to use for researchers with varying levels of ex-

pertise. Nevertheless, the question of whether an efficient and a fully generalizable automated

Machine Learning (autoML) framework is possible remains unanswered. We present autoAD, an

autoML framework for unsupervised anomaly detection. By leveraging a pool of different anomaly

detection algorithms (called ensemble), each one coming with its own hyperparameter search

space, our framework automatically selects the best performing approach, while determining an

optimal configuration for its hyperparameters on a given dataset. Our extensive experimental

evaluation, conducted on a rich collection of datasets, shows the substantial gains that can be

achieved with autoAD compared to existing autoML methods such as SelectV, BoostSelect and

94

the Naive method.

Often, to unravel the full potential of machine learning, some human expertise and domain

knowledge are required in order to select the most effective algorithm, to tune its hyperparame-

ters, as well as to perform data cleaning (feature selection, dimensionality reduction, etc.). This

is often a tedious and non-trivial task for researchers with all levels of expertise. To alleviate such

a burden for researchers, several techniques have been proposed under the automated Machine

Learning (autoML) research direction [26, 77]. One of the goals of autoML is to select the most

effective model and its best configuration for its hyperparameters, on given a dataset.

Currently, most efforts in autoML are devoted to supervised machine learning, with very few

studies dealing with unsupervised tasks. Recently, [127] proposed a method called Vertical Se-

lection (SelectV) that exploits correlation analysis among scores from different methods to select

the best algorithms. SelectV first unifies the scores of all the considered methods into a unique

target vector (treated as pseudo ground-truth). Subsequently it builds a new ensemble contain-

ing the methods that better correlate to target. [31] extends the correlation analysis introduced

by SelectV using a boosting strategy and present BoostSelect. Their idea is to perform boosting

(change weights into the correlation analysis) upon the inclusion of a new member into the en-

semble. BoostSelect tries to reduce the importance of those instances (outliers) that have already

been identified by any ensemble member to promote diversity among chosen methods.

Such methods however are limited by their initialization: the unification of the scores into a tar-

get vector. Consider, for example, an ensemble composed mostly by poorly performing models

with only a few well performing ones. In such a scenario the target is composed largely by poorly

performing methods. As a result, the well performing algorithms weakly correlate to the target

and might be discarded into the correlation analysis. As a consequence we observe that, in this

scenario, the Naive ensemble (all methods are equally weighted) outperforms both SelectV and

BoostSelect. Moreover, as stated by the authors, BoostSelect performance strongly depends on

the choice of the input hyperparameters on some datasets.

To tackle the aforementioned limitations, we propose autoAD, an automated unsupervised

Anomaly Detection framework which selects for a given unlabeled dataset the best performing

95

model, as well as its optimal configuration for its hyperparameters. Instead of using correlation

techniques, we analyze the output of each method individually searching for evidence of proper

outlier detection. In this direction we focus on the most anomalous instances and test if the

dataset is easier to compress by removing them. Motivated by the established supervised au-

toML frameworks, e.g., , Auto-WEKA [85] and Auto-Sklearn [55], the proposed autoAD framework

involves different outlier detection algorithms and a definition of their corresponding hyperparam-

eter search spaces. Given an input dataset, autoAD applies the algorithms with their different

hyperparameter configurations in parallel, afterwards it evaluates the performance using the un-

supervised evaluation strategy mentioned before.

The main contributions of this chapter are summarized as follows:

• We develop autoAD, a framework for automated unsupervised anomaly detection, which, to

the best of our knowledge, represents the first autoML approach for unsupervised anomaly

detection which does not use correlation analysis.

• We propose an unsupervised metric strategy that permits the evaluation of anomaly detec-

tors in a fully unsupervised way by removing outliers and using statistical measures, such

as variance, on the remaining normal instances.

• We conduct an extensive experimental evaluation on a diverse set of datasets which shows

that autoAD achieves significantly better performances than other proposed methods.

• To foster reproducibility, the code and datasets employed in our work are available at http:

//bit.ly/3mdT6qu.

The reminder of this work is organized as follows. In Section 5.2, we detail related work.

Section 5.3 presents the description of our proposed framework and the employed methodology

for unsupervised anomaly detection evaluation. In Section 5.4, we show the experimental results

and discussions. We finally end this chapter by drawing conclusions and future directions in

Section 5.5.

96

http://bit.ly/3mdT6qu
http://bit.ly/3mdT6qu

5.2 Related Work

The performance of a given machine learning method depends on the quality of the algorithm as

well as its hyperparameterization, a task which is sometimes difficult to fix to the optimal values.

AutoML [26, 77] is a new topic that supports researchers and practitioners with the tedious work

of manually designing machine learning pipelines, which include performing algorithm selection

and tuning hyperparameters. AutoML can be also viewed as the process that makes machine

learning easier by avoiding manual hyperparameters tuning for both machine learning experts

and non-experts.

5.2.1 Supervised Automated Machine Learning

This very hot topic has attracted several researchers during the recent years due to the im-

portance of its application. In fact, the basic autoML algorithms have been initially proposed

for the supervised learning and are discussed in recent surveys on autoML and its open chal-

lenges [48, 54, 73]. Examples of well-known autoML approaches are (i) irace [94] that uses an

iterated racing procedure where the worst configurations are replaced by new ones for each it-

eration (race); (ii) SMAC [76] that performs a Bayesian optimization in conjunction with a simple

racing mechanism on the instances to efficiently decide which of two configurations performs bet-

ter; and (iii) ParamILS [75] which is based on an iterated local search that starts by evaluating the

default and some other configurations on a subset of instances, then the best configuration will

be maintained and tested on a different subset of data.

Throughout the last five years, multiple tools and systems have been developed which serve

autoML [73, 81, 83]. For instance, Auto-Sklearn1 [55] and Auto-WEKA
2 [85] which are two auto-

mated systems that have been implemented on top of the well-known machine learning softwares

scikit-learn and WEKA, respectively. These tools and techniques exclusively deal with super-

vised methods where ground truth labels are used during the model selection and the hyperpa-

rameters tuning processes.

1
https://www.automl.org/automl/auto-sklearn/

2
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

97

https://www.automl.org/automl/auto-sklearn/
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

5.2.2 Unsupervised Automated Machine Learning

For what concerns unsupervised methods for automated anomaly detection we observe two dif-

ferent branches in tackling such problem. On one hand previous works have investigated the use

of meta-learning [146, 30, 157] techniques. Such methods, start by extracting meta-data from the

datasets and then, given a test dataset, search for the most similar dataset and its corresponding

best performing algorithm. Meta-learners thus require a collection of historical anomaly detection

datasets and historical performances of the models on such datasets to map models with meta-

data.

On the other hand, completely unsupervised strategies for anomaly detection do not require

any training phases or labels. Both the strategies have pros and cons: on one hand meta-learners

are extremely fast as they require an offline tuning phase which is not critical and an online predic-

tion phase in which meta-data is extracted from the test dataset. However, such methods might

suffer when used on test datasets with relatively low similarities with respect to training datasets.

Moreover, collecting new datasets and labels could result to be expensive in terms of human

effort. On the other hand, completely unsupervised methods are very slow compared to meta-

learners. They require indeed to run all the algorithms on the test dataset, process outputs and

aggregate results. However, being completely unsupervised they do not require prior training and

could perform well also on unseen datasets. In this study we consider only completely unsuper-

vised models leaving unsupervised vs meta-learning comparison for future work.

Among the completely unsupervised strategies for automated selection of methods and hy-

perparameters we cite SelectV and BoostSelect. They are both based on correlation analysis of

the output scores.

Vertical Selection (SelectV) [127]: Selects the ensemble components through correlation analy-

sis among the score lists from different methods. Given a set of anomaly score lists S, SelectV

first averages the probability scores across lists to construct a target vector, known as pseudo

ground-truth. Subsequently, it initializes a new ensemble E with the list l 2 S that has the highest

weighted Pearson correlation to target. In computing the correlation, the weights used for the list

elements are equal to 1
r , where r is the rank of an element in target when sorted in descending

order, i.e., the more anomalous elements receive higher weight. Next, SelectV sorts the remain-

98

ing lists S \ l in descending order by their correlation to the current “prediction” of the ensemble,

which is defined as the average probability of lists in the ensemble E. The method tests whether

adding the top list to the ensemble would increase the correlation of the prediction to target. If

the correlation improves by this addition, the ensemble is updated and the remaining lists are

reordered by their correlation to the updated prediction. As such, a list gets either included or

discarded at each iteration until all lists are processed.

BoostSelect [31]: Similarly to SelectV, it constructs a target vector by combining the scores of

all available components in the ensemble. From this target vector, the algorithm preliminarily

assumes the top bn · tc objects (ranked by their combined score) to be outliers, where n is the

dataset size and 0 < t ⌧ 1 is a hyperparameter capturing the expected percentage of outliers in

the dataset (i.e., there are K = bn · tc outliers assumed to be present). The target vector thus

becomes a binary vector, listing 1 for outliers and 0 for a inlier and serves as pseudo ground truth

for the boosting approach. BoostSelect sets then the weights for Pearson correlation to 1
2K for

outliers and 1
2(n�K) for inliers. Such values are only the initial weights as they will be updated by

the boosting procedure. The potential ensemble members are sorted according to their weighted

Pearson correlation to the target vector. The candidate that is most similar to the target vector

is chosen as the first ensemble member. Remaining potential ensemble members are iteratively

resorted in ascending order according to their similarity to the current prediction of the ensemble.

Potential members are included if their inclusion would increase the similarity of the ensemble

prediction to the target vector, otherwise they are discarded. After the insertion of a potential

member into the ensemble the boosting procedure is performed. This phase reduces the weights

by the input hyperparameter 0 < d < 1 (drop rate) of outliers that have already been identified by

any ensemble member.

5.3 The Proposed autoAD Framework

In this section, we present an automated unsupervised anomaly detection framework that aims to

find the best performing algorithms for a given unlabeled dataset by weighing them using quality

metrics measurements.

99

Method
Algorithm
Parameter

...

Dataset

Method
Algorithm
Parameter

Method
Algorithm
Parameter

Anomaly ranks

...

Anomaly ranks

Anomaly ranks

rm top-
eval

...

rm top-
eval

rm top-
eval

Anomaly
scores

Figure 5.1: Overview of the autoAD framework. Given the input dataset and the set of algorithms
with their corresponding predefined search space, we apply separately each method, as the com-
bination (Ai,P

j
i). Once we finish processing each of the method, we rank the output anomaly

scores (as shown in the first green column cells) in order to remove (rm) the top-N anomalous
instances. We therefore evaluate (eval) the performance of each method using a quality mea-
sure, �, on the remaining normal instances. We assign to each method a weight proportional to
its performance. Hence, the final anomaly scores are computed based on the initial scores and
the weight assigned to each method.

An effective automated framework for unsupervised anomaly detection should be composed of

a set of different unsupervised detectors with distinct configurations. The proposed autoAD frame-

work consists in four key steps: (i) application of the anomaly detection algorithms where each

one outputs the anomaly scores of instances given a dataset; (ii) removing the top N anoma-

lous instances, i.e., instances with the highest anomaly scores; (iii) assigning a weight to each

algorithm using a given evaluation metric; and (iv) obtaining the final anomaly scores for each

instance. An overview of autoAD is given in Fig. 5.1.

5.3.1 Application of Anomaly Detection

Each outlier detection method in our automated framework is composed of the algorithm and its

hyperparameter configuration. Let (A,P) be the method M that uses algorithm A with hyperpa-

rameters P. We define M the set of methods which is composed of k = |M| combinations of each

algorithm tuned with each of its corresponding hyperparameter as follows:

M = M1,M2, · · · ,Mk = (A1,P
1
1), (A1,P

2
1), ..., (An,P

m
n) 8Ai 2 A,Pj

i 2 P,

where A is a set of anomaly detection algorithms and P is a set of predefined hyperparameters

100

for the algorithms. Each algorithm Ai is used with a different hyperparameter configuration j in

our framework.

Given an input unlabeled dataset, each method in the set M, (Ai,P
j
i), is simultaneously used

to build a model and accordingly compute the output anomaly score of each instance.

In the following steps, we gradually present our key strategy in evaluating unsupervised detec-

tors in a fully unsupervised way that mostly corresponds to performance in terms of AUC/AP crite-

ria (see empirical studies in Section 5.4). In this framework, we used several algorithms discussed

in Section 2.6 such as Random Histogram Forest (RHF) [119], Isolation Forest (ISO) [93], Proba-

bilistic Principal Component Analysis (PPCA) [144], Histogram-based Outlier Score (HBOS) [61],

K-NN [20] and Local Outlier Factor (LOF) [28] obtaining so A = {RHF, ISO, PPCA,HBOS,K �

NN}. More algorithms can be easily added with their hyperparameters’ space to our autoAD

framework.

5.3.2 Anomalies Removal

Anomaly algorithms assign a score to each instance in a given dataset that can be used to rank

instances depending on their level of outlierness, i.e., the anomalies are ranked before the non-

anomalous instances (the most anomalous instance has the biggest score and is ranked first).

Algorithm 3 presents the pseudocode of how we remove anomalies. In fact, the score result

obtained from each method in autoAD will be ranked from the highest to the smallest one (line

1, Algorithm 3). In this work, we propose a quality measure that does not require data with

Algorithm 3: AnomaliesRemoval(X, msi, R)
Input: X : dataset ; msi: anomaly scores of method i; R: list of N -top ranked instances

to remove drawn from U(0, 10%)

Output: Quality measure �i
1: Ranks = SortRank(msi)// Sorted instances according to their anomaly scores in

descending order

2: �i = 0

3: for all N 2 R do
4: Xfiltered = filter(X \Ranks[1:N]) // Remove top N most anomalous instances from X
5: �i += QualityMeasure(Xfiltered) // Compute the quality measure on the filtered

dataset and aggregate over R
6: end for
7: return �i

known labels. This evaluation strategy starts by removing the top N anomalous instances and

101

evaluates the remaining “normal” instances using a quality metric. Some questions naturally

arise: How many instances of the top ranked ones are actually anomalies? and how can we fix

N? This can be tricky as it involves a hyperparameter that controls the number of anomalies. In

the unsupervised context, we assume that the right percentage of anomalies in a given dataset is

unknown. An envisaged solution to answer these questions consists in picking a random value

N = U(0, 10%),

and removing the N top ranked instances, where N is between [0, 10%].

To avoid picking an unreasonable value, this process is repeated r = 100 times (line 3, Algo-

rithm 3), i.e., we do 100 runs and randomly select N for each time. In the end, we average the

results of the different runs to appropriately capture the anomalies.

Once we remove the N -top ranked anomalies (line 4, Algorithm 3), we separately compute the

performance of all the methods (line 5, Algorithm 3) using a quality measure �, such as variance

or Error Sum of Squares (SSE), on the remaining – supposed to be – normal non-anomalous

instances, as depicted in Fig. 5.2. The final value of �, for each method in our autoAD, is used to

normalize the instances’ score obtained in Section 5.3.1.

Quality metrics. Several quality metrics can be defined and used in the autoAD framework.

As there are many types of anomalies (e.g., global, local or contextual), it is possible to design

quality metrics whose goal is to target a particular kind of anomalies. In this work we focus mainly

on global anomalies that usually lie in the tails of the data distribution. Starting from these charac-

teristics, we define two quality measures that serve the automated method to understand which

method better compresses the data after removing the N -top ranked instances.

SSE : The simplest measurement one can compute on the – supposed to be – normal instances

is the SSE. The method whose SSE measurement is the smallest have to be considered the best

as it better compresses the data after removing the anomalous instances. By computing such a

measure, we assume that normal instances are drawn from a unique cluster (not always true).

Moreover, SSE can be weak when dealing with high dimensional datasets.

102

XX

X

XX

X
X

X

M1 M2

�M1
> �M2

N = U(0, 10%) = 4

Figure 5.2: Anomalies Removal example applied on two different methods M1 and M2. The two
methods produce different anomaly scores and ranks as illustrated by the color of each instance
(darker colors indicate higher anomaly scores). By removing, for example, N = 4 most anomalous
instances and applying a quality metric on the remaining instances M1 proves to be better than
M2.

VAR: The variance is one of the most used dispersion metrics. Unlike the previous measure, the

variance is dimension-wise and can be obtained by computing it on each dimension and aggre-

gating the scores. Similarly to the previous case, the method whose aggregated variance is the

smallest, after removing the N -top ranked anomalies, has to be considered the best method.

5.3.3 Algorithm Weighting

Each method in M produces its own measure � obtaining so

� = {�1, �2, �3, ... �k}.

The best method in the set is the one obtaining the best quality measure (e.g., the method

whose variance is the smallest after removing the N -top ranked instances) while the worst one is

the one obtaining the worst quality measure.

A weight proportional to the measure �i is assigned to each method Mi by normalizing

(min/max) the set of measures �.

103

W = MinMaxScaler(�) = {w1, w2 w3 ... wk}.

The best quality measure (e.g., the minimum variance) originates the best weight wi = 1, the

worst one wi = 0 while the remaining ones wi 2 [0, 1].

5.3.4 Final Anomaly Scores

The final anomaly scores take into account the initial anomaly scores of each method in M and

the weights assigned by the quality measure in the previous step. As the output anomaly scores

of each algorithm can be homogeneous and represented in very different ranges we scale all of

them between 0 and 1. Subsequently, the anomaly scores of each method undergo the weighing

process in which the weights produced in the quality measure phase are used. The final anomaly

score is obtained aggregating the results over all the methods.

S =

|M|X

i=1

msiwi,

where msi corresponds to the initial anomaly score of method i while wi corresponds to its

weight.

5.4 Experimental Evaluation

We conduct an extensive experimental evaluation to assess the effectiveness of our approach.

All algorithms developed in our work are publicly available, so as to foster reproducibility 3. We

implemented our algorithms in Python 3.8.

5.4.1 Datasets

We consider a diverse set of datasets coming from different data sources, with different size and

anomaly ratio. Most of them have been widely used as benchmarks when evaluating anomaly

detection algorithms. In particular, we consider 16 datasets that are publicly available at the

UCI [47] or ODDS [126] repositories. The size of our datasets range from 351 to 623091 instances

(n), while the number of dimensions vary from 3 to 274 (d). The anomaly ratio is between 0.03% up

to 35.9%. Similarly to [119], we use well-known datasets such as ionosphere, arrhytmia, satellite,
3The source code and datasets employed in our analysis can be found at http://bit.ly/3mdT6qu.

104

http://bit.ly/3mdT6qu

dataset n d anomalies(%) dataset n d anomalies(%)

ionosphere 351 33 126 (35.9%) shuttle 49097 9 3511 (7.15%)
wbc 378 30 21 (5.56%) smtp29 96554 29 1183 (1.23%)
arrhytmia 452 274 66 (14.6%) http distinct 222027 3 75 (0.03%)
cardio 1831 21 176 (9.61%) mulcross 262144 4 26214 (10.0%)
musk 3062 166 97 (3.17%) cover 286048 10 2747 (0.96%)
satellite 5100 36 75 (1.47%) http logged 567498 3 2211 (0.39%)
satimages 5803 36 71 (1.22%) kdd99 620098 29 1052 (0.17%)
mnist 7603 100 700 (9.21%) http29 623091 29 4045 (0.65%)

Table 5.1: Overview of the datasets. For each dataset, we have the number of instances n,
number of dimensions d, and number of anomalies (in %).

mnist, shuttle, mulcross and some extracted from the KDD99 dataset. Table 5.1 presents a brief

summary of the datasets used.

5.4.2 Methods and Hyperparameters

In our approach autoAD, we use RHF, ISO, PPCA, HBOS, LOF and K-NN algorithms as the main

anomaly detection engines. As RHF and ISO have consistently proven to be one of the most

effective algorithms for unsupervised anomaly detection [119, 45, 49] we consider 8 different val-

ues for their main hyperparameter, namely, sampling size for ISO and maximum height h for

RHF. In both cases, we employ the same number of trees t = 100. Based on hyperparameters

range, authors’ insights and considerations done in the original paper of the two algorithms, we

select h 2 [1, 8] for RHF and 2 [32, 64, 128, ..., 4096] for ISO. For what concerns the remaining

algorithms we use K =
p
n as suggested by the authors as input hyperparameter for HBOS while

using K = 50 neighbors for proximity based methods K-NN and LOF. We consider thus an initial

ensemble of 20 different methods which are selected from all the three classes of algorithms:

Proximity, Probabilistic and Ensemble/Isolation based.

We compare autoAD against the Naive ensemble (in which all methods are weighted equally)

and also against the two previously described methods SelectV and BoostSelect. The latter uses

the hyperparameters suggested by authors which are drop rate d = 0.75 and threshold t = 5%.

105

Method Median Gain
{RHF + ISO}dft

Win Rate Med Gain Loss Rate Med Loss

autoAD-SSE +18% 43.75% +27.87% 37.5% -1.6%
autoAD-VAR +23% 31.25% +35.92% 31.25% -1%

Table 5.2: The overall median gain of autoAD using the three different quality measures with
respect to SelectV, the second best performing method. The Win/Loss rate indicates the number
of datasets in which autoAD is statistically better/worse. The Med Gain/Loss indicates the median
AP gain in the winning/worsening datasets.

5.4.3 Results

All the findings in this section are reported as a result of 30 independent runs for each of the con-

sidered strategies: Naive, SelectV, BoostSelect and the AnomaliesRemoval function discussed

and presented in Algorithm 3.

We first show in Table 5.2 a summary of the results achieved by autoAD using the two quality

metrics SSE and VAR versus Naive, the second best performing method. Table 5.3 reports sub-

sequently a full comparison of all approaches and datasets considered indicating the mean AP

score complemented with a 0.95 confidence interval. The best method is awarded using the two

sample Kolmogorov-Smirnov test (↵ = 0.05) [136] under the null hypothesis that the two distribu-

tions are identical while the Welch’s two-tailed t-test [149] is used to test if they have the same

mean.

From Table 5.2 we observe that both SSE and VAR quality measures produce a median gain

of 18% (SSE) and 23% in terms of AP with respect to Naive, the second best strategy. Consid-

ering, on one hand, the datasets in which the proposed method is better than the Naive one, we

observe a median AP gain of at least 28% (SSE) up to 36% (VAR). On the other hand, when the

latter performs better that autoAD the median AP loss is limited to less than 2%.

Such gains and losses have to be found in Table 5.3 which reports the results for each dataset

and strategy. For example, in the kdd99 dataset, Naive, BoostSelect and SelectV strategies reach

a very close AP score of 0.594 ± 0.005, 0.559 ± 0.011 and 0.606 ± 0.005 respectively while both

autoAD-SSE and autoAD-VAR improve the scores to 0.756 ± 0.011 and 0.808 ± 0.009 respectively.

Similar results can be observed in the mulcross dataset in which the first three strategies obtain

106

autoAD-SSE autoAD-VAR Naive SelectV BoostSelect

ionosphere 0.808 ± 0.001 0.809 ± 0.001 0.801 ± 0.001 0.803 ± 0.002 0.789 ± 0.005

wbc 0.583 ± 0.004 0.585 ± 0.005 0.595 ± 0.004 0.593 ± 0.004 0.571 ± 0.01

arrhytmia 0.461 ± 0.003 0.456 ± 0.003 0.454 ± 0.003 0.455 ± 0.003 0.454 ± 0.005

cardio 0.582 ± 0.004 0.578 ± 0.004 0.574 ± 0.004 0.576 ± 0.005 0.56 ± 0.007

musk 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.999 ± 0.001

satellite 0.648 ± 0.002 0.647 ± 0.002 0.663 ± 0.002 0.656 ± 0.003 0.676 ± 0.003

satimages 0.925 ± 0.001 0.926 ± 0.001 0.936 ± 0.001 0.935 ± 0.002 0.902 ± 0.019

mnist 0.326 ± 0.004 0.326 ± 0.004 0.324 ± 0.004 0.338 ± 0.008 0.336 ± 0.007

shuttle 0.954 ± 0.001 0.952 ± 0.001 0.966 ± 0.0 0.951 ± 0.005 0.97 ± 0.002

smtp29 0.973 ± 0.001 0.972 ± 0.001 0.982 ± 0.0 0.971 ± 0.004 0.977 ± 0.003

http distinct 0.585 ± 0.008 0.641 ± 0.009 0.649 ± 0.01 0.626 ± 0.029 0.015 ± 0.002

mulcross 0.813 ± 0.007 0.819 ± 0.006 0.635 ± 0.007 0.637 ± 0.013 0.712 ± 0.019

cover 0.057 ± 0.001 0.057 ± 0.001 0.054 ± 0.001 0.068 ± 0.003 0.053 ± 0.002

http logged 0.961 ± 0.001 0.964 ± 0.001 0.962 ± 0.001 0.954 ± 0.008 0.798 ± 0.062

kdd99 0.756 ± 0.011 0.808 ± 0.009 0.594 ± 0.005 0.601 ± 0.02 0.559 ± 0.011

http29 0.764 ± 0.01 0.77 ± 0.015 0.591 ± 0.006 0.617 ± 0.033 0.518 ± 0.011

average 0.699 0.706 0.673 0.673 0.618
median 0.760 0.788 0.641 0.631 0.623

Table 5.3: Average precision scores of all approaches on all the datasets. autoAD-SSE and
autoAD-VAR represent the autoAD algorithm using the two different quality measures. Naive is
the ensemble composed by all 20 methods equally weighted. Bold values are the best between
autoAD-VAR and Naive, the second best strategy

107

Figure 5.3: Average precision score for an increasing number of removals r on three different
datasets, (a) mnist, (b) mulcross, and (c) kdd99 datasets, respectively.

Figure 5.4: Average precision scores with a different number of methods.

once more similar AP scores of 0.635 ± 0.007, 0.712 ± 0.019 and 0.612 ± 0.007 respectively while

the proposed methods raise them to 0.813 ± 0.007 and 0.819 ± 0.006 respectively.

On the contrary, when autoAD-SSE and autoAD-VAR perform worse than the competitors the

losses are very limited. For instance, the Naive method is the best performing method on the

smtp29 dataset (0.982± 0.001) while autoAD-SSE (0.973± 0.001) and autoAD-VAR (0.972± 0.001)

are only 1% worse. Similarly, losses are contained on satellite (2%), satimages (1%), shuttle

(1.2%) and wbc (1%).

We observe that overall the Naive method is on par (or slightly better) with performances

generated by SelectV and BoostSelect. This is an expected behaviour as these two strategies

108

generate an initial target vector aggregating the results of all the methods considered. As a conse-

quence, the correlation analysis selects methods that are average-performing ones. Our strategy

instead independently weights each method (based on evidence of dispersion) and results are

not influenced by other methods in the initial ensemble.

To understand such improvement, we study the impact of our main hyperparameters, the num-

ber of removals r and the number of methods k, on the precision performance. Fig. 5.3 shows

how the AP score fluctuates when changing r on three datasets. We notice that when r increases

(where we remove the instances with the highest anomaly scores), the AP score increases ac-

cordingly. That is an expected behavior similar to ensemble-based methods where several weak

learners are more accurate than a single one. We set r = 100 as it is commonly used in ensemble

models.

In Fig. 5.4, we present the autoAD results in terms of precision while increasing the number

of methods used in our framework. We remark that the overall precision tends to be as good as

the best method in the ensemble even when only few methods are used. For instance, autoAD

performs as good as ISO@2564 (best method) when the first four methods are used. By further

growing the number of methods, the space of choices broadens and the model starts showing

results better than any single method.

Quality measures. The overall unsupervised quality metric � plays a key role in the weighting

phase. A good correlation between the latter and the average precision is therefore desirable for

the autoAD to produce satisfying results.

We report in Fig. 5.5 two examples on kdd99 and mulcross datasets showing the assigned

weight w, the AP score for each method used and its quality measure �. The methods are or-

dered according to the quality measure in decreasing order. Taking a deeper look at Fig. 5.5 (a)

and (b) with the kdd99 dataset, one can notice that the worst performing method, i.e., ISO@32

with an AP=0.17, is also the one that produces the worst result in terms of the quality measure �,

where the weight w = 0. By looking at the quality measure plot from left to right, we observe that

decreasing values (and thus higher weight w) correlate with increasing AP scores. Similar result
4Algorithm@parameter. Example: ISO@256 is the iForest algorithm with = 256.

109

Figure 5.5: Correlation between the variance-quality measure � with (a) kdd99, (c) mulcross,
and the average precision score with (b) kdd99, (d) mulcross of each method. The methods are
presented in a decreasing order according to �.

is obtained with the mulcross dataset represented in Fig. 5.5 (c) and (d), as well as with most of

the datasets. Similarly, in this case larger weights are assigned to methods having high AP scores.

Interestingly, we remark a contradictory pattern when comparing the weights assigned to each

method. For example, with the kdd99 dataset, we obtain better precision when we increase the

sampling hyperparameter . The worst result is thus achieved by ISO@32 while ISO@4096

gives the best performance. Opposite results were obtained with the mulcross dataset, where

ISO@4096 is the worst and ISO@32 is one of the best performing methods.

Scalability Analysis. The running time complexity of autoAD depends on the number of input

methods k = |M| and the number of removals r drawn at random from U(0, 10%).

In Fig. 5.6 we report the running time behavior when we change these two hyperparameters.

Fig. 5.6 (a) depicts the running time consumed by autoAD and each method in the framework.

We can see that the overall running time of autoAD increases linearly with time performance of

110

Figure 5.6: Running time. (a) the autoAD running time together with the running time of each
method (bar plot). (b) the running time with different number of removals r.

each method in the ensemble. On the other hand, Fig. 5.6 (b) shows that when we increase the

number of removals r, the execution time of autoAD linearly increases accordingly.

Overall, the autoAD framework shows a high correlation between the obtained AP scores and

the two quality measures. The results obtained using different unsupervised quality metrics show

that it is sufficient to focus on the top most anomalous scores of each method to study its reliability

and effectiveness. Such strategy does not aggregate anomaly scores from different sources into

a unique target vector as SelectV or BoostSelect but threat them independently.

5.5 Concluding Remarks and Future Directions

In this chapter, we presented autoAD, the first, to the best of our knowledge, autoML framework

for unsupervised anomaly detection based on anomalies removal which produces simple and in-

tuitive quality measures for each method. Experiments conducted on a various set of datasets

show substantial gains in terms of average precision score, while showing linear running time in

the number of methods and input data size. We release our Python3 parallel implementation,

which runs all different methods in parallel, thereby achieving some significant speedup.

111

Several improvements can be addressed in the future. The framework previously presented

indeed has a hyperparameter itself, that is the upper bound U(0, 10%) when selecting the top

instances to remove. Such hyperparameter is selected according to the common definition of

anomaly detection datasets in which it is assumed anomalies to be rare (e.g. 5/10% of the

dataset). The selected value however shows to be effective also when there are very low per-

centages of true anomalies in the input datasets. The datasets in Table 5.1 are composed largely

by small fractions of outliers, e.g. kdd99 contains only 0.17% anomalies while the performance

of our proposed method is AP=0.80 compared to SelectV AP=0.60, the second best performing

method. Similarly, http29 contains only 0.65% anomalies while the performances of our method is

AP=0.77 compared to AP=0.61 of the second best performing method. Besides, more sophisti-

cated unsupervised metrics can be explored and further studies on the weighting process can be

performed. The framework indeed is an ensemble model in which all the algorithms are weighted

accordingly; one could instead further study the performance of the framework using only the first

best performing method. Notice however that in such scenario, the execution time would not be

reduced since all the algorithms require to be run. Under these circumstances the framework

remains to be compared to meta-learners which select an algorithm and perform a single run

resulting to be faster. Nevertheless, such comparison has to guarantee fairness. It would be un-

fair to compare the methods on datasets used already in the tuning phase of the meta-learners.

Furthermore, fairness has to be guaranteed also in what concerns the pool of algorithms and

configurations used.

112

Chapter 6

Conclusion

Anomaly Detection has become an increasingly important task in Machine Learning. It focuses

on identifying faults and detecting malicious activities in diverse application domains, ranging from

data security and fraud detection to healthcare. In the last years a great effort has been made

in developing novel anomaly detection methods and algorithms whose objective vary on require-

ments of different applications. For example, algorithms can be designed to target different types

of anomalies (e.g. local vs global anomalies) or to process new instances as soon as possible in

monitoring applications.

We examined, in this thesis, several key aspects of anomaly detection. We presented a novel

batch algorithm for outlier detection as well as a time series stream algorithm for novelty detection

particularly useful in computer networks monitoring applications. Finally, we investigated auto-

mated algorithms presenting a novel strategy based on independent tests instead of correlation

analysis.

This concluding chapter summarizes the contributions of this thesis.

113

6.1 Summary of Contributions

After the discussion and clarification of anomaly detection, taxonomy of the anomaly types, strate-

gies and algorithm classes given in the first two chapters of this thesis, we first presented in Chap-

ter 3 Random Histogram Forest (RHF), an unsupervised batch algorithm for outlier detection. RHF

is an ensemble model which builds a random forest while using the Kurtosis score as splitting cri-

terion. The anomaly score of each instance is computed as the information content of the leaf it

belongs to. We provide an extensive experimental evaluation on 38 public datasets and 64 private

ones. Our experimental evaluation shows that our approach outperforms the other approaches

in terms of average precision, while being simple and intuitive. Moreover the performance of our

algorithm are consistently good over a wide range of values for their hyperparameters, while it

requires only two hyperparameters. Finally, our proposed Kurtosis Split shows to be effective in

high dimensional datasets while maintaining linear running time in the size of the input dataset.

In Chapter 4 we proposed ODS, a time series unsupervised engine that leverages DenStream,

an online clustering method. We apply it to measurements collected from real network equipment,

gathered on BGP-only datacenter network loaded with up to 3 Tbps aggregated traffic, and ex-

tensively compare it with a set of stream techniques such as ExactSTORM, COD and RRCF. Our

results show that despite ODS is apparently plagued with several hyperparameters inherited from

DenStream, their selection is quite straightforward, and performance are robust to inner hyper-

parameter selection. Additionally, ODS is significantly faster than any of the tested algorithms,

and second only to RRCF (yet very close to it) in terms of detection performance. Overall, the

above results suggest ODS as a particularly lightweight and suitable algorithm for stream-mode

real-time network anomaly detection in monitoring applications.

Finally, in Chapter 5, we presented autoAD, the first, to the best of our knowledge, autoML

framework for unsupervised anomaly detection based on anomalies removal which produces sim-

ple and intuitive quality measures for each method. Experiments conducted on a various set of

datasets show substantial gains in terms of average precision score, while showing linear running

time in the number of methods and input data size. autoAD shows significant gains when com-

pared with existing automated strategies as Naive, SelectV or BoostSelect which are based con

correlation analysis.

114

Bibliography

[1] https://cloud.google.com/explainable-ai.

[2] https://github.com/anrputina/ods-anomalydetection.

[3] https://github.com/anrputina/ODS-2020.

[4] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 1999.

[5] The yang 1.1 data modeling language. RFC 7950 , Aug. 2016.

[6] 2018. URL https://github.com/cisco-ie/telemetry.

[7] 2018. URL https://blogs.cisco.com/sp/introducing-pipeline-a-model\

-driven-telemetry-collection-service.

[8] https://www.arista.com/en/solutions/telemetry-analytics, 2018.

[9] https://www.cisco.com/c/en/us/solutions/service-provider/

cloud-scale-networking-solutions/model-driven-telemetry.html, 2018.

[10] http://support.huawei.com/enterprise/en/doc/EDOC1000173015?section=j006,

2018.

[11] https://github.com/YangModels/yang, 2018.

[12] 2021. URL https://github.com/vatsalsharan/pidforest.

[13] 2021. URL https://cmuxstream.github.io/.

[14] C. C. Aggarwal. Data Classification: Algorithms and Applications. Chapman & Hall/CRC,

1st edition, 2014. ISBN 1466586745.

[15] C. C. Aggarwal. Outlier Analysis. Springer Publishing Company, Incorporated, 2nd edition,

2016. ISBN 3319475770.

115

https://cloud.google.com/explainable-ai
https://github.com/anrputina/ods-anomalydetection
https://github.com/anrputina/ODS-2020
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/cisco-ie/telemetry
https://www.arista.com/en/solutions/telemetry-analytics
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html
http://support.huawei.com/enterprise/en/doc/%20EDOC1000173015?section=j006
https://github.com/YangModels/yang
https://github.com/vatsalsharan/pidforest
https://cmuxstream.github.io/

[16] S. Agrawal and J. Agrawal. Survey on anomaly detection using data mining techniques.

Procedia Computer Science, 60:708–713, 2015. ISSN 1877-0509. doi: https://doi.org/10.

1016/j.procs.2015.08.220. URL https://www.sciencedirect.com/science/article/pii/

S1877050915023479. Knowledge-Based and Intelligent Information and Engineering Sys-

tems 19th Annual Conference, KES-2015, Singapore, September 2015 Proceedings.

[17] L. Akoglu. Anomaly mining - past, present and future. In Z.-H. Zhou, editor, Proceedings of

the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4932–

4936. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi:

10.24963/ijcai.2021/697. URL https://doi.org/10.24963/ijcai.2021/697. Early Career.

[18] N. M. Al-Rousan and L. Trajković. Machine learning models for classification of BGP anoma-

lies. In IEEE HPRS, June 2012. doi: 10.1109/HPSR.2012.6260835.

[19] F. Angiulli and F. Fassetti. Detecting distance-based outliers in streams of data. In ACM

CIKM, pages 811–820, 2007. doi: 10.1145/1321440.1321552.

[20] F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional spaces. In Principles of

Data Mining and Knowledge Discovery, 2002.

[21] D. Bajusz, A. Rácz, and K. Héberger. Comparison of data fusion methods as con-

sensus scores for ensemble docking. Molecules, 24:2690, 07 2019. doi: 10.3390/

molecules24152690.

[22] M. Bartos, A. Mullapudi, and S. Troutman. RRCF: Implementation of the Robust Random

Cut Forest algorithm for anomaly detection on streams. The Journal of Open Source Soft-

ware, 4(35), 2019.

[23] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython: The

best of both worlds. Computing in Science & Engineering, 13(2):31–39, 2011.

[24] M. Bjorklund. YANG - A data modeling language for NETCONF. RFC 6020, Oct. 2010.

[25] G. E. P. Box and D. A. Pierce. Distribution of residual autocorrelations in autoregressive-

integrated moving average time series models. Journal of the American Statistical Associ-

ation, 65(332):1509–1526, 1970. doi: 10.1080/01621459.1970.10481180.

116

https://www.sciencedirect.com/science/article/pii/S1877050915023479
https://www.sciencedirect.com/science/article/pii/S1877050915023479
https://doi.org/10.24963/ijcai.2021/697

[26] P. B. Brazdil, C. Soares, and J. P. da Costa. Ranking learning algorithms: Using ibl and

meta-learning on accuracy and time results. Machine Learning, 50(3):251–277, 2003. ISSN

1573-0565.

[27] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-based local

outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’00. doi: 10.1145/342009.335388.

[28] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-based local

outliers. SIGMOD Rec., 29(2), May 2000. ISSN 0163-5808. doi: 10.1145/335191.335388.

[29] J. P. Burg. A new analysis technique for time series data. NATO Advanced Study Institute

on Signal Processing, 1968., 1968.

[30] E. Burnaev, P. Erofeev, and D. Smolyakov. Model selection for anomaly detection. In ICMV,

2015.

[31] G. O. Campos, A. Zimek, and W. Meira. An unsupervised boosting strategy for outlier

detection ensembles. In D. Phung, V. S. Tseng, G. I. Webb, B. Ho, M. Ganji, and L. Rashidi,

editors, Advances in Knowledge Discovery and Data Mining, pages 564–576, Cham, 2018.

Springer International Publishing. ISBN 978-3-319-93034-3.

[32] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving data

stream with noise. In SIAM Conference on Data Mining, 2006.

[33] P. Casas Hernandez, J. Mazel, and P. Owezarski. Unsupervised Network Intruison Detec-

tion Systems: Detecting the Unknown without Knowledge. Computer Communications, 35

(7):772–783, 2012.

[34] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Comput.

Surv., 41(3):15, 2009.

[35] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: Special issue on learning from im-

balanced data sets. SIGKDD Explor. Newsl., 6(1):1–6, June 2004. ISSN 1931-0145. doi:

10.1145/1007730.1007733. URL https://doi.org/10.1145/1007730.1007733.

[36] Y.-W. Chen and C.-J. Lin. Combining SVMs with Various Feature Selection Strategies,

pages 315–324. Springer Berlin Heidelberg, 2006.

117

https://doi.org/10.1145/1007730.1007733

[37] Z. Chen, Z. Peng, X. Zou, and H. Sun. Deep learning based anomaly detection for muti-

dimensional time series: A survey. In W. Lu, Y. Zhang, W. Wen, H. Yan, and C. Li, editors,

Cyber Security, pages 71–92, Singapore, 2022. Springer Singapore. ISBN 978-981-16-

9229-1.

[38] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, Sep

1995. ISSN 1573-0565. doi: 10.1007/BF00994018.

[39] J. Davis and M. Goadrich. The relationship between precision-recall and roc curves. In

Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, 2006.

doi: 10.1145/1143844.1143874.

[40] C. De Stefano, C. Sansone, and M. Vento. To reject or not to reject: that is the question-an

answer in case of neural classifiers. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 30(1):84–94, 2000. doi: 10.1109/5326.827457.

[41] I. O. de Urbina Cazenave, E. Köşlük, and M. C. Ganiz. An anomaly detection framework for

BGP. In International Symposium on Innovations in Intelligent Systems and Applications,

June 2011. doi: 10.1109/INISTA.2011.5946083.

[42] S. Deshpande, M. Thottan, T. K. Ho, and B. Sikdar. An online mechanism for bgp instability

detection and analysis. IEEE Transactions on Computers, 58(11):1470–1484, Nov 2009.

doi: 10.1109/TC.2009.91.

[43] M. M. Deza and E. Deza. Encyclopedia of Distances, pages 1–583. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00234-2. doi: 10.1007/978-3-642-00234-2

1. URL https://doi.org/10.1007/978-3-642-00234-2_1.

[44] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui. A comparative evaluation of

outlier detection algorithms: Experiments and analyses. Pattern Recognition, 74:406 –

421, 2018. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2017.09.037.

[45] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui. A comparative evaluation of

outlier detection algorithms: Experiments and analyses. Pattern Recognition, 74:406–421,

2018.

[46] J. Dromard, G. Roudière, and P. Owezarski. Online and scalable unsupervised network

anomaly detection method. IEEE Transactions on Network and Service Management, 14

(1):34–47, 2017. ISSN 1932-4537. doi: 10.1109/TNSM.2016.2627340.

118

https://doi.org/10.1007/978-3-642-00234-2_1

[47] D. Dua and C. Graff. UCI machine learning repository, 2017.

[48] R. Elshawi, M. Maher, and S. Sakr. Automated machine learning: State-of-the-art and open

challenges. 2019.

[49] A. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong. A meta-analysis of the anomaly

detection problem. arXiv preprint arXiv:1503.01158, 2015.

[50] A. Emmott, S. Das, et al. A meta-analysis of the anomaly detection problem. arXiv: Artificial

Intelligence, 2015.

[51] W. Enders. Applied econometric time series. Technometrics, 46:264 – 264, 1994.

[52] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters a density-based algorithm for discovering clusters in large spatial databases with

noise. In AAAI KDD, 1996.

[53] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

[54] M. Feurer and F. Hutter. Hyperparameter optimization. In Automated Machine Learning,

pages 3–33. 2019.

[55] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter. Auto-

sklearn: efficient and robust automated machine learning. In Automated Machine Learning,

pages 113–134. 2019.

[56] B. Frenay and M. Verleysen. Classification in the presence of label noise: A survey. IEEE

Transactions on Neural Networks and Learning Systems, 25(5):845–869, 2014. doi: 10.

1109/TNNLS.2013.2292894.

[57] R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft anomaly detection problem

using kernel feature space. In Proceedings of the Eleventh ACM SIGKDD International

Conference on Knowledge Discovery in Data Mining, KDD ’05, page 401–410, New York,

NY, USA, 2005. Association for Computing Machinery. ISBN 159593135X. doi: 10.1145/

1081870.1081917. URL https://doi.org/10.1145/1081870.1081917.

[58] J. Gan and Y. Tao. Dbscan revisited: Mis-claim, un-fixability, and approximation. Proceed-

ings of the 2015 ACM SIGMOD International Conference on Management of Data, 2015.

119

https://doi.org/10.1145/1081870.1081917

[59] M. C. Ganiz, S. Kanitkar, M. C. Chuah, and W. M. Pottenger. Detection of interdomain

routing anomalies based on higher-order path analysis. In ICDM, 2006. doi: 10.1109/

ICDM.2006.52.

[60] E. S. Gardner. Exponential smoothing: The state of the art—part ii. International Jour-

nal of Forecasting, 22(4):637–666, 2006. ISSN 0169-2070. doi: https://doi.org/10.1016/

j.ijforecast.2006.03.005. URL https://www.sciencedirect.com/science/article/pii/

S0169207006000392.

[61] M. Goldstein and A. Dengel. Histogram-based outlier score (hbos): A fast unsupervised

anomaly detection algorithm. 2012.

[62] M. Goldstein and S. Uchida. A comparative evaluation of unsupervised anomaly detection

algorithms for multivariate data. PLOS ONE, 2016.

[63] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing

Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.

cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[64] P. Gopalan, V. Sharan, and U. Wieder. Pidforest: Anomaly detection via partial iden-

tification. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alch’e-Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-

ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

eb6dc8aba23375061b6f07b137617096-Paper.pdf.

[65] T. Green, A. Lambert, C. Pelsser, and D. Rossi. Leveraging Inter-domain Stability for BGP

Dynamics Analysis. In International Conference on Passive and Active Network Measure-

ment (PAM), 2018.

[66] F. E. Grubbs. Procedures for detecting outlying observations in samples. Technometrics,

11(1):1–21, 1969. doi: 10.1080/00401706.1969.10490657. URL https://www.tandfonline.

com/doi/abs/10.1080/00401706.1969.10490657.

[67] S. Guha, N. Mishra, G. Roy, and O. Schrijvers. Robust random cut forest based anomaly

detection on streams. In ICML, page 2712–2721, 2016.

120

https://www.sciencedirect.com/science/article/pii/S0169207006000392
https://www.sciencedirect.com/science/article/pii/S0169207006000392
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/eb6dc8aba23375061b6f07b137617096-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/eb6dc8aba23375061b6f07b137617096-Paper.pdf
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657

[68] A. Gunawan. A faster algorithm for dbscan. In Master’s thesis, Technische University

Eindhoven, March 2013.

[69] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier detection for temporal data: A

survey. IEEE Transactions on Knowledge and Data Engineering, 26(9):2250–2267, Sept

2014. ISSN 1041-4347.

[70] Hanchuan Peng, Fuhui Long, and C. Ding. Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27(8):1226–1238, Aug 2005. doi: 10.1109/

TPAMI.2005.159.

[71] D. Hawkins. Identification of Outliers. Chapman and Hall, 1980.

[72] D. Hawkins. Identification of Outliers. Chapman and Hall, 1980.

[73] X. He, K. Zhao, and X. Chu. Automl: A survey of the state-of-the-art. Knowledge-Based

Systems, 2021.

[74] Y. Huang, N. Feamster, A. Lakhina, and J. J. Xu. Diagnosing network disruptions with

network-wide analysis. SIGMETRICS Perform. Eval. Rev., 35(1):61–72, June 2007. ISSN

0163-5999. doi: 10.1145/1269899.1254890.

[75] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an automatic algorithm

configuration framework. JAIR, 2009.

[76] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for gen-

eral algorithm configuration. In LION, 2011.

[77] F. Hutter, L. Kotthoff, and J. Vanschoren. Automated machine learning. Springer, 2019.

[78] R. Hyndman and G. Athanasopoulos. Forecasting: principles and practice, 3rd edition,

OTexts. 2021.

[79] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth. Performance anomaly detection

and bottleneck identification. ACM Comput. Surv., 48(1), July 2015. ISSN 0360-0300. doi:

10.1145/2791120. URL https://doi.org/10.1145/2791120.

[80] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent

Data Analysis, pages 429–449, 2002.

121

https://doi.org/10.1145/2791120

[81] H. Jin, Q. Song, and X. Hu. Auto-keras: An efficient neural architecture search system. In

ACM SIGKDD, 2019.

[82] M. V. Joshi, R. C. Agarwal, and V. Kumar. Mining needle in a haystack: Classifying rare

classes via two-phase rule induction. SIGMOD Rec., 30(2):91–102, May 2001. ISSN 0163-

5808. doi: 10.1145/376284.375673. URL https://doi.org/10.1145/376284.375673.

[83] B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: automatic hyperparameter con-

figuration for scikit-learn. In ICML workshop on AutoML, 2014.

[84] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and Y. Manolopoulos. Con-

tinuous monitoring of distance-based outliers over data streams. In IEEE ICDE, pages

135–146, 2011.

[85] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-weka 2.0: Auto-

matic model selection and hyperparameter optimization in weka. JMLR, 2017.

[86] K.-H. Lai, D. Zha, J. Xu, and Y. Zhao. Revisiting time series outlier detection: Definitions

and benchmarks. 2021.

[87] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. SIGCOMM

Comput. Commun. Rev., 34, Aug. 2004. ISSN 0146-4833. doi: 10.1145/1030194.1015492.

[88] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and J. Srivastava. A comparative study of

anomaly detection schemes in network intrusion detection. In SIAM International Confer-

ence on Data Mining, volume 3, 05 2003. doi: 10.1137/1.9781611972733.3.

[89] J. Li, D. Dou, Z. Wu, S. Kim, and V. Agarwal. An internet routing forensics framework for

discovering rules of abnormal BGP events. ACM SIGCOMM Computer Communication

Review, 35:55–66, 10 2005. doi: 10.1145/1096536.1096542.

[90] J. Li, W. Pedrycz, and I. Jamal. Multivariate time series anomaly detection: A framework

of hidden markov models. Applied Soft Computing, 60:229–240, 2017. ISSN 1568-4946.

doi: https://doi.org/10.1016/j.asoc.2017.06.035. URL https://www.sciencedirect.com/

science/article/pii/S1568494617303782.

[91] A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22,

2002.

122

https://doi.org/10.1145/376284.375673
https://www.sciencedirect.com/science/article/pii/S1568494617303782
https://www.sciencedirect.com/science/article/pii/S1568494617303782

[92] F. T. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In 2008 Eighth IEEE International

Conference on Data Mining, pages 413–422, 2008.

[93] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In 2008 eighth ieee international

conference on data mining, pages 413–422. IEEE, 2008.

[94] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle. The irace

package: Iterated racing for automatic algorithm configuration. Operations Research Per-

spectives, 2016.

[95] J. MacQueen. Some methods for classification and analysis of multivariate observations.

University of California Press, 1967.

[96] P. C. Mahalanobis. On the generalized distance in statistics. Proceedings of the National

Institute of Sciences (Calcutta), 2:49–55, 1936.

[97] E. Manzoor, H. Lamba, and L. Akoglu. Xstream: Outlier detection in feature-evolving data

streams. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’18, page 1963–1972, New York, NY, USA, 2018. Associ-

ation for Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3220107. URL

https://doi.org/10.1145/3219819.3220107.

[98] J. Mazel, P. Casas, R. Fontugne, K. Fukuda, and P. Owezarski. Hunting attacks in the

dark: clustering and correlation analysis for unsupervised anomaly detection. International

Journal of Network Management, 25(5):283–305. doi: 10.1002/nem.1903.

[99] W. McKinney et al. Data structures for statistical computing in python. In 9th Python in

Science Conference, volume 445, pages 51–56, 2010.

[100] K. G. Mehrotra, C. K. Mohan, and H. Huang. Anomaly Detection Principles and Algorithms.

Springer Publishing Company, Incorporated, 1st edition, 2017. ISBN 3319675249.

[101] Z. Miller, W. Deitrick, and W. Hu. Anomalous network packet detection using data stream

mining. J. Information Security, 2(4), 2011.

[102] Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H. Wang. Twitter spammer detection

using data stream clustering. Information Sciences, 260:64 – 73, 2014. ISSN 0020-0255.

[103] J. J. A. Moors. The meaning of kurtosis: Darlington reexamined. The American Statistician,

40(4):283–284, 1986. doi: 10.1080/00031305.1986.10475415.

123

https://doi.org/10.1145/3219819.3220107

[104] T. Myron. Thermostatics and thermodynamics : an introduction to energy, information and

states of matter, with engineering applications / by Myron Tribus. University series in basic

engineering. D. Van Nostrand, Princeton [etc, cop. 1961.

[105] G. Münz, S. Li, and G. Carle. Traffic anomaly detection using kmeans clustering. In In

GI/ITG Workshop MMBnet, 2007.

[106] J. M. Navarro and D. Rossi. Hurra! human readable router anomaly detection. In 2020 32nd

International Teletraffic Congress (ITC 32), pages 19–28, 2020. doi: 10.1109/ITC3249928.

2020.00011.

[107] J. M. Navarro and D. Rossi. Hurra: Human-readable router anomaly detection. In Interna-

tional Teletraffic Congress (ITC32), 2020.

[108] C. Ning, C. An, and L.-X. Zhou. An incremental grid density-based clustering algorithm.

1313:1–7, 01 2002.

[109] T. E. Oliphant. A guide to NumPy. Trelgol Publishing USA, 2006.

[110] P. Lapukhov, A. Premji, J. Mitchell. Use of BGP for Routing in Large-Scale Data Centers.

In RFC7938, Aug. 2016.

[111] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel. Deep learning for anomaly detection: A

review. ACM Comput. Surv., 54(2), mar 2021. ISSN 0360-0300. doi: 10.1145/3439950.

URL https://doi.org/10.1145/3439950.

[112] P. Pébay, T. B. Terriberry, H. Kolla, and J. Bennett. Numerically stable, scalable formulas for

parallel and online computation of higher-order multivariate central moments with arbitrary

weights. Computational Statistics, 31(4):1305–1325, Dec 2016. ISSN 1613-9658. doi:

10.1007/s00180-015-0637-z.

[113] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, et al. Scikit-learn: Machine learning in

python. Journal of machine learning research.

[114] T. Pevný. Loda: Lightweight on-line detector of anomalies. Machine Learning, 102, 07

2015. doi: 10.1007/s10994-015-5521-0.

[115] G. Poojitha, K. N. Kumar, and P. J. Reddy. Intrusion detection using artificial neural network.

In IEEE Conference on Computing, Communication and Networking Technologies, July

2010. doi: 10.1109/ICCCNT.2010.5592568.

124

https://doi.org/10.1145/3439950

[116] A. Putina, 2021. URL https://github.com/anrputina/rhf.

[117] A. Putina, D. Rossi, A. Bifet, S. Barth, D. Pletcher, C. Precup, and P. Nivaggioli. Telemetry-

based stream-learning of bgp anomalies. In ACM SIGCOMM, Big-DAMA workshop, 2018.

[118] A. Putina, M. Sozio, D. Rossi, and J. M. Navarro. Random histogram forest for unsupervised

anomaly detection. In 2020 IEEE International Conference on Data Mining (ICDM), pages

1226–1231, 2020. doi: 10.1109/ICDM50108.2020.00154.

[119] A. Putina, M. Sozio, D. Rossi, and J. M. Navarro. Random histogram forest for unsupervised

anomaly detection. In International Conference on Data Mining (ICDM), pages 1226–1231.

IEEE, 2020.

[120] G. Quellec, M. Lamard, M. Cozic, G. Coatrieux, and G. Cazuguel. Multiple-instance learning

for anomaly detection in digital mammography. IEEE Transactions on Medical Imaging, 35

(7):1604–1614, 2016. doi: 10.1109/TMI.2016.2521442.

[121] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[122] S. Rajasegarar, C. Leckie, and M. Palaniswami. Anomaly detection in wireless sensor

networks. IEEE Wireless Communications, 15(4):34–40, 2008. doi: 10.1109/MWC.2008.

4599219.

[123] S. Rajasegarar, C. Leckie, and M. Palaniswami. Hyperspherical cluster based distributed

anomaly detection in wireless sensor networks. Journal of Parallel and Distributed Com-

puting, 74(1), 2014. ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2013.09.005.

[124] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large

data sets. SIGMOD Rec., 2000. ISSN 0163-5808. doi: 10.1145/335191.335437.

[125] G. Ratsch, S. Mika, B. Scholkopf, and K.-R. Muller. Constructing boosting algorithms from

svms: an application to one-class classification. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(9):1184–1199, 2002. doi: 10.1109/TPAMI.2002.1033211.

[126] S. Rayana. ODDS library [http://odds.cs.stonybrook.edu], 2016.

[127] S. Rayana and L. Akoglu. Less is more: Building selective anomaly ensembles, 2015.

[128] F. Salutari, D. Da Hora, G. Dubuc, and D. Rossi. Analyzing wikipedia users’ perceived

quality of experience: A large-scale study. IEEE Transactions on Network and Service

Management, 2020.

125

https://github.com/anrputina/rhf

[129] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal

of Research and Development, 44(1.2):206–226, 2000. doi: 10.1147/rd.441.0206.

[130] S. Sathe and C. C. Aggarwal. Subspace outlier detection in linear time with randomized

hashing. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 459–

468, 2016. doi: 10.1109/ICDM.2016.0057.

[131] B. Schölkopf, R. Williamson, et al. Support vector method for novelty detection. In Pro-

ceedings of the 12th International Conference on Neural Information Processing Systems,

NIPS’99, 1999.

[132] C. E. Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[133] C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–

423, 1948.

[134] D. T. Shipmon, J. M. Gurevitch, P. M. Piselli, and S. T. Edwards. Time series anomaly

detection; detection of anomalous drops with limited features and sparse examples in noisy

highly periodic data, 2017.

[135] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang. A novel anomaly detection

scheme based on principal component classifier. In IEEE Foundations and New Directions

of Data Mining, 2003.

[136] N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals

of Mathematical Statistics, 19(2):279 – 281, 1948. doi: 10.1214/aoms/1177730256. URL

https://doi.org/10.1214/aoms/1177730256.

[137] I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection. Jour-

nal of Machine Learning Research, 6(8):211–232, 2005. URL http://jmlr.org/papers/

v6/steinwart05a.html.

[138] H. A. Sturges. The choice of a class interval. Journal of the American Statistical Association,

21(153):65–66, 1926. doi: 10.1080/01621459.1926.10502161.

[139] B. Subba, S. Biswas, and S. Karmakar. A neural network based system for intrusion de-

tection and attack classification. In 22nd National Conference on Communication (NCC),

pages 1–6, March 2016. doi: 10.1109/NCC.2016.7561088.

126

https://doi.org/10.1214/aoms/1177730256
http://jmlr.org/papers/v6/steinwart05a.html
http://jmlr.org/papers/v6/steinwart05a.html

[140] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the kdd cup 99

data set. In IEEE CISDA, CISDA’09, pages 53–58. IEEE Press, 2009. ISBN 978-1-4244-

3763-4.

[141] D. Tax. One-class classification; concept-learning in the absence of counter-examples. 01

2001.

[142] J. P. Theiler and D. M. Cai. Resampling approach for anomaly detection in multispectral

images. In S. S. Shen and P. E. Lewis, editors, Algorithms and Technologies for Multispec-

tral, Hyperspectral, and Ultraspectral Imagery IX, volume 5093 of Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, pages 230–240, Sept. 2003. doi:

10.1117/12.487069.

[143] M. Thottan and C. Ji. Anomaly detection in ip networks. IEEE Transactions on signal

processing, 51(8):2191–2204, 2003.

[144] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the

Royal Statistical Society, 1999.

[145] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,

CA, 2009. ISBN 1441412697.

[146] J. Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

[147] H. Wang and B. Raj. On the origin of deep learning, 2017.

[148] H. Wang, J. Gu, and S. Wang. An effective intrusion detection framework based on svm

with feature augmentation. Knowledge-Based Systems, 09 2017. doi: 10.1016/j.knosys.

2017.09.014.

[149] B. L. WELCH. THE GENERALIZATION OF ‘STUDENT’S’ PROBLEM WHEN SEVERAL

DIFFERENT POPULATION VARLANCES ARE INVOLVED. Biometrika, 34(1-2):28–35, 01

1947. ISSN 0006-3444. doi: 10.1093/biomet/34.1-2.28. URL https://doi.org/10.1093/

biomet/34.1-2.28.

[150] Q. Wu, J. Strassner, A. Farrel, and L. Zhang. Network telemetry and big data analysis. IETF

draft-wu-t2trg-network-telemetry-00, Mar 2016.

127

https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28

[151] H. Xiong, G. Pandey, M. Steinbach, and V. Kumar. Enhancing data analysis with noise

removal. IEEE Transactions on Knowledge and Data Engineering, 18(3):304–319, 2006.

doi: 10.1109/TKDE.2006.46.

[152] K. Yamanishi and J.-i. Takeuchi. A unifying framework for detecting outliers and change

points from non-stationary time series data. In Proceedings of the Eighth ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, KDD ’02, page 676–681,

New York, NY, USA, 2002. Association for Computing Machinery. ISBN 158113567X. doi:

10.1145/775047.775148. URL https://doi.org/10.1145/775047.775148.

[153] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. On-line unsupervised outlier detec-

tion using finite mixtures with discounting learning algorithms. In Proceedings of the Sixth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000.

ISBN 1581132336. doi: 10.1145/347090.347160.

[154] N. Ye. A markov chain model of temporal behavior for anomaly detection. 07 2000.

[155] D. S. Yeung, S. Jin, and X. Wang. Covariance-matrix modeling and detecting various flood-

ing attacks. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and

Humans, 37(2), 2007. ISSN 1083-4427. doi: 10.1109/TSMCA.2006.889480.

[156] Y. Zhao, Z. Nasrullah, and Z. Li. Pyod: A python toolbox for scalable outlier detection.

Journal of Machine Learning Research, 2019.

[157] Y. Zhao, R. A. Rossi, and L. Akoglu. Automating outlier detection via meta-learning. arXiv

preprint arXiv:2009.10606, 2020.

[158] C. Zhou and R. C. Paffenroth. Anomaly detection with robust deep autoencoders. In Pro-

ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’17. ISBN 9781450348874. doi: 10.1145/3097983.3098052.

[159] M. Zhu. Recall, precision and average precision. Department of Statistics and Actuarial

Science, 2, 2004.

[160] R. Zuech, T. Khoshgoftaar, and R. Wald. Intrusion detection and big heterogeneous data:

a survey. Journal of Big Data, 2:1–41, 2015.

128

https://doi.org/10.1145/775047.775148

Titre : Détection non supervisée d’anomalies : méthodes et applications

Mots clés : non supervisé, détection d’anomalies, apprentissage automatisé

Résumé : Une anomalie (également connue sous
le nom de outlier) est une instance qui s’écarte de
manière significative du reste des données et est
définie par Hawkins comme “une observation, qui
s’écarte tellement des autres observations qu’elle
éveille les soupçons qu’il a été généré par un
mécanisme différent.’
La détection d’anomalies (également connue sous
le nom de détection de valeurs aberrantes ou de
nouveauté) est donc le domaine de l’apprentissage
automatique et de l’exploration de données dans le
but d’identifier les instances dont les caractéristiques
semblent être incohérentes avec le reste de l’en-
semble de données. Dans de nombreuses applica-
tions, distinguer correctement l’ensemble des points
de données anormaux (outliers) de l’ensemble des
points normaux (inliers) s’avère très important. Une
première application est le nettoyage des données,
c’est-à-dire l’identification des mesures bruyantes et
fallacieuses dans un ensemble de données avant
d’appliquer davantage les algorithmes d’apprentis-
sage.
Cependant, avec la croissance explosive du vo-

lume de données pouvant être collectées à partir
de diverses sources, par exemple les transactions
par carte, les connexions Internet, les mesures de
température, etc., l’utilisation de la détection d’anoma-
lies devient une tâche autonome cruciale pour la sur-
veillance continue des systèmes. Dans ce contexte, la
détection d’anomalies peut être utilisée pour détecter
des attaques d’intrusion en cours, des réseaux de
capteurs défaillants ou des masses cancéreuses.
La thèse propose d’abord une approche basée sur
un collection d’arbres pour la détection non super-
visée d’anomalies, appelée Random Histogram Fo-
rest (RHF). L’algorithme résout le problème de la di-
mensionnalité en utilisant le quatrième moment cen-
tral (alias kurtosis) dans la construction du modèle en
bénéficiant d’un temps d’exécution linéaire. Un mo-
teur de détection d’anomalies basé sur le stream, ap-
pelé ODS, qui exploite DenStream, une technique
de clustering non supervisée est présenté par la
suite et enfin un moteur de détection automatisée
d’anomalies qui allège l’effort humain requis lorsqu’il
s’agit de plusieurs algorithmes et hyper-paramètres
est présenté en dernier contribution.

Title : Unsupervised Anomaly Detection: Methods and applications

Keywords : unsupervised learning, anomaly detection, automated learning

Abstract : An anomaly (also known as outlier) is an
instance that significantly deviates from the rest of the
input data and being defined by Hawkins as “an ob-
servation, which deviates so much from other obser-
vations as to arouse suspicions that it was generated
by a different mechanism.’
Anomaly detection (also known as outlier or novelty
detection) is thus the machine learning and data mi-
ning field with the purpose of identifying those ins-
tances whose features appear to be inconsistent with
the remainder of the dataset. In many applications,
correctly distinguishing the set of anomalous data
points (outliers) from the set of normal ones (inliers)
proves to be very important. A first application is data
cleaning, i.e., identifying noisy and fallacious measu-
rement in a dataset before further applying learning
algorithms.
However, with the explosive growth of data volume
collectable from various sources, e.g., card transac-

tions, internet connections, temperature measure-
ments, etc. the use of anomaly detection becomes a
crucial stand-alone task for continuous monitoring of
the systems. In this context, anomaly detection can be
used to detect ongoing intrusion attacks, faulty sensor
networks or cancerous masses.
The thesis proposes first a batch tree-based approach
for unsupervised anomaly detection, called Random
Histogram Forest (RHF). The algorithm solves the
curse of dimensionality problem using the fourth cen-
tral moment (aka kurtosis) in the model construction
while boasting linear running time. A stream based
anomaly detection engine, called ODS, that leverages
DenStream, an unsupervised clustering technique is
presented subsequently and finally Automated Ano-
maly Detection engine which alleviates the human ef-
fort required when dealing with several algorithm and
hyper-parameters is presented as last contribution.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Motivation and Applications
	Objectives
	Thesis Outline
	Publications

	Background
	Machine Learning and Anomaly Detection
	Types of anomalies
	Performance Evaluation
	Machine Learning Anomaly Detection Strategies
	Batch vs Stream Mode
	Batch Methods
	Time series streams
	Conclusion

	Random Histogram Forest for Unsupervised Outlier Detection
	Introduction
	Related Work
	Random Histogram Forest (RHF)
	Experimental Evaluation
	Settings.
	Comparison
	Robustness to noise
	Robustness to the choice of hyperparameters
	HyperParameters Tuning

	Conclusions

	Online Anomaly Detection Leveraging Stream-Based Clustering and Real-Time Telemetry
	Introduction
	Related Work
	Outlier detection in computer networks
	Overview of clustering algorithms

	Testbed and Datasets
	Testbed
	Data collection
	Telemetry features
	Dataset at a glance

	Methodology
	From clustering to anomaly detection
	Hyperparameter selection (DBScan, LOF, wDBScan, ExactSTORM, COD and RRCF)
	Hyperparameter selection (ODS)

	Performance evaluation
	Model evolution over time
	Detection Performance
	Computational Complexity

	Discussion
	Conclusion
	Available features
	Selected features

	AutoAD
	Introduction
	Related Work
	Supervised Automated Machine Learning
	Unsupervised Automated Machine Learning

	The Proposed autoAD Framework
	Application of Anomaly Detection
	Anomalies Removal
	Algorithm Weighting
	Final Anomaly Scores

	Experimental Evaluation
	Datasets
	Methods and Hyperparameters
	Results

	Concluding Remarks and Future Directions

	Conclusion
	Summary of Contributions

