
HAL Id: tel-03651853
https://theses.hal.science/tel-03651853

Submitted on 26 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond virtual machine migration for resources
optimization in highly consolidated data centers

Andrea Segalini

To cite this version:
Andrea Segalini. Beyond virtual machine migration for resources optimization in highly consolidated
data centers. Optimization and Control [math.OC]. Université Côte d’Azur, 2021. English. �NNT :
2021COAZ4085�. �tel-03651853�

https://theses.hal.science/tel-03651853
https://hal.archives-ouvertes.fr

Alternatives à la migration de
machines virtuelles pour l'optimisation

des ressources dans les centres
informatiques hautement consolidés

Andrea SEGALINI
Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S)

Présentée en vue de l’obtention
du grade de docteur en INFORMATIQUE
d’Université Côte d’Azur

Dirigée par : Guillaume Urvoy-Keller
Co-encadrée par : Dino Lopez-Pacheco

Soutenue le : 29/11/2021

Devant le jury, composé de :
Anne-Cécile Orgerie, Chargée de Recherche, CNRS
Daniel Hagimont, Prof., INPT/ENSEEIHT
Dino Lopez-Pacheco, MCR, Université Côte d’Azur
Pietro Michiardi, Prof., EURECOM (Président)
Gaël Thomas, Prof., Telecom SudParis/IP Paris
Guillaume Urvoy-Keller, Prof., Université Côte d’Azur

THÈSE DE DOCTORAT

Université Côte d’Azur

DOCTORAL SCHOOL STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S

Andrea Segalini

Beyond Virtual Machine
Migration for Resources
Optimization in Highly

Consolidated Data Centers

Thesis Advisor: Guillaume Urvoy-Keller

Thesis Co-advisor: Dino Lopez-Pacheco

Prepared at Laboratoire d’Informatique, Signaux et Systèmes
de Sophia Antipolis (I3S)

Defended on 29/11/2021

Jury :

Reviewers : Daniel Hagimont Prof. at INPT/ENSEEIHT
Gaël Thomas Prof. at Telecom SudParis/IP Paris

Advisor : Guillaume Urvoy-Keller Prof. at Université Cote d’Azur
Co-advisor : Dino Lopez-Pacheco Assoc. Prof. at Université Côte d’Azur
Examiner : Anne-Cécile Orgerie Research Scientist at CNRS
President : Pietro Michiardi Prof. at EURECOM

Résumé

La virtualisation est une technologie de première importance dans les centres infor-
matiques (datacenters). Elle fournit deux mécanismes clés, les machines virtuelles
et la migration, qui permettent de maximiser l’utilisation des ressources pour ré-
duire les dépenses d’investissement. Dans cette thèse, nous avons identifié et étudié
deux contextes où la migration traditionnelle ne parvient pas à fournir les outils
optimaux pour utiliser au mieux les ressources disponibles dans un cluster : les
machines virtuelles inactives et les mises à jour à grande échelle des hyperviseurs.

Les machines virtuelles inactives verrouillent en permanence les ressources qui
leur sont attribuées uniquement dans l’attente des (rares) demandes des utilisa-
teurs. Ainsi, alors qu’elles sont la plupart du temps inactifs, elles ne peuvent pas
être arrêtées, ce qui libérerait des ressources pour des services plus demandeurs.
Pour résoudre ce problème, nous proposons SEaMLESS, une solution qui exploite
une nouvelle forme de migration de VM vers un conteneur, en transformant les ma-
chines virtuelles Linux inactives en proxys sans ressources. SEaMLESS intercepte
les nouvelles demandes des utilisateurs lorsque les machines virtuelles sont désac-
tivées, reprenant de manière transparente leur exécution dès que de nouveaux signes
d’activité sont détectés. De plus, nous proposons une technique facile à adopter pour
désactiver les machines virtuelles basée sur une mise en swap de la mémoire de la
machine virtuelle. Grâce à notre nouveau système de suspension en swap, nous
sommes en mesure de libérer la majorité de la mémoire et du processeur occupés
par les instances inactives, tout en offrant une reprise rapide du service.

Dans la deuxième partie de la thèse, nous abordons le problème des évolutions
à grande échelle des hyperviseurs. Les mises à niveau de l’hyperviseur nécessitent
souvent un redémarrage de la machine, forçant les administrateurs du centre infor-
matique à évacuer les hôtes, en déplaçant ailleurs les machines virtuelles pour pro-
téger leur exécution. Cette évacuation est coûteuse, à la fois en termes de transferts
réseau et de ressources supplémentaires nécessaires dans le centre informatiques.
Pour répondre à ce défi, nous proposons Hy-FiX et Multi-FiX, deux solutions de
mise à niveau sur place qui ne consomment pas de ressources externes à l’hôte. Les
deux solutions tirent parti d’une migration sans copie des machines virtuelles au
sein de l’hôte, préservant leur état d’exécution tout au long de la mise à niveau de
l’hyperviseur. Hy-FiX et Multi-FiX réalisent des mises à niveau évolutives, avec un
impact limité sur les instances en cours d’exécution.

Mots clés:
Virtualisation de serveurs, hyperviseurs, cloud computing, centres de don-
nées, gestion des ressources, migration de machines virtuelles, surcharge de
mémoire, machines virtuelles inactives, mises à niveau, mises à niveau du
noyau

Abstract

Server virtualization is a technology of prime importance in contemporary
data centers. Virtualization provides two key mechanims, virtual instances
and migration, that enable the maximization of the resource utilization to
decrease the capital expenses in a data center. In this thesis, we identified
and studied two contexts where traditional virtual instance migration falls
short in providing the optimal tools to utilize at best the resources available
in a cluster: idle virtual machines and large-scale hypervisor upgrades.

Idle virtual machines permanently lock the resources they are assigned only
to await incoming user requests. Indeed, while they are most of the time idle,
they cannot be shut down, which would release resources for more demanding
services. To address this issue, we propose SEaMLESS, a solution that lever-
ages a novel VM-to-container migration that transforms idle Linux virtual
machines into resource-less proxies. SEaMLESS intercepts new user requests
while virtual machines are disabled, transparently resuming their execution
upon new signs of activity. Furthermore, we propose an easy-to-adopt tech-
nique to disable virtual machines based on the traditional hypervisor memory
swapping. With our novel suspend-to-swap, we are able to release the major-
ity of the memory and CPU seized by the idle instances, yet providing a fast
resume.

In the second part of the thesis, we tackle the problem of large-scale up-
grades of the hypervisor software. Hypervisor upgrades often require a ma-
chine reboot, forcing data center administrators to evacuate the hosts, re-
locating elsewhere the virtual machines to protect their execution. As this
evacuation is costly, both in terms of network transfers and spare resources
needed in the data center, hypervisor upgrades hardly scale. We propose
Hy-FiX and Multi-FiX, two in-place upgrade that do not consume resources
external to the host. Both solutions leverage a zero-copy migration of virtual
machines within the host, preserving their execution state across the hyper-
visor upgrade. Hy-FiX and Multi-FiX achieve scalable upgrades, with only
limited impact on the running instances.

Keywords:
Server virtualization, hypervisors, virtual machine monitors, cloud comput-
ing, data centers, resource management, virtual machine migration, memory
overcommit, idle virtual machines, upgrades, kernel upgrades

Acknowledgments

I would first like to thank my supervisors, Professor Guillaume Urvoy-Keller,
and Professor Dino Lopez-Pacheco, for their expertise, patience, and moral
support, throughout all Ph.D. Thanks for pushing me beyond what I believed
I was capable of. I wish to extend my special thanks to Professor Daniel
Hagimont, and Professor Gaël Thomas, for the time dedicated to reviewing
this dissertation. I would like to acknowledge all the people on the third floor
of the I3S lab. Thanks for every bit of advice, insight, and, most of all, the
warm familiar environment you created.

Special thanks to Alessio Pagliari, a colleague, and most importantly a dear
friend, who accompanied me throughout this journey. You have been like a
brother to me. Thanks also to Adam, Antonia, Melissa, Moudy, and Sara,
you kept me afloat whenever I felt I was going down. I will never forget about
you. I would like to extend my sincere thanks to all my friend/colleagues in
Nice that have directly or indirectly. Thanks for the amazing experience.

Thanks to my family for the encouragement and, most of all, for making
me who I am today. This Ph.D. thesis is dedicated to you.

Contents

Résume i

Abstract ii

Acknowledgments v

1 Introduction 1
1.1 Context and Problem Statement 1
1.2 Contributions . 3
1.3 Publications . 6
1.4 Thesis Outline . 6

2 Background 7
2.1 Hypervisor-Based Virtualization 7

2.1.1 Type-1 and Type-2 Hypervisors 8
2.1.2 CPU Virtualization. 9
2.1.3 Memory Virtualization. 11
2.1.4 I/O Virtualization. 12

2.2 Operating-System-Level Virtualization 14
2.3 Migrations of Virtual Instances 15

2.3.1 Virtual Machine Migration 15
2.3.2 Container Migration 18

2.4 Resource Management in Data Centers 18
2.4.1 Static Consolidation 19
2.4.2 Dynamic Consolidation 19
2.4.3 Resource Over-booking 20

2.5 Maintenance in Data Centers 23
2.5.1 Software Upgrades . 24
2.5.2 Hypervisor Upgrades 24

3 VM-to-container Migration for Consolidation in Data Cen-
ters 27
3.1 Introduction . 27
3.2 Related Work . 29
3.3 Solving the Idle-VM Problem 32

3.3.1 The Gateway Process VNF 33
3.3.2 Migration Procedures 35
3.3.3 Detecting User Activity 36

3.4 Solving the Waste of Memory Problem 37

viii Contents

3.5 Evaluation . 39
3.5.1 Network Testbed . 39
3.5.2 Impact on the Quality of Experience 39
3.5.3 Impact of Suspend-to-Swap 41
3.5.4 Scalability of the sink server 42
3.5.5 Reactiveness . 42
3.5.6 Memory Savings . 43

3.6 Discussion . 44
3.7 Summary . 45

4 Across-reboot Migration for Scalable Hypervisor Upgrades 47
4.1 Introduction . 47
4.2 Related Work . 50
4.3 Hy-FiX: Architecture and Design 53

4.3.1 Fast Checkpoint/Restore 54
4.3.2 Memory Preserving Reboot 55
4.3.3 Hy-FiX Upgrade-cycle 57

4.4 Implementation . 58
4.4.1 Host OS Switch . 58
4.4.2 Fast Checkpoint/Restore 59
4.4.3 Recovering Memory Across Reboots 59
4.4.4 Lazy Host Memory Initialization 60

4.5 Evaluation . 61
4.5.1 Micro Benchmarks . 61
4.5.2 Impact on Memory Access Latency 64
4.5.3 Hy-FiX Memory Overhead 66
4.5.4 Hy-FiX Upgrade Time & Downtime Analysis 66

4.6 Discussion . 68
4.7 Summary . 70

5 Co-located Hypervisors for Efficient Live Upgrades 73
5.1 Introduction . 73
5.2 Related Work . 76

5.2.1 Nested Virtualization 76
5.2.2 Multi-kernel Operating Systems 77
5.2.3 In-place Hypervisor Upgrades and Warm Reboots . . . 78

5.3 Technical Background: Modern x86-64 Computer Platforms . 79
5.4 Multi-kernel Boot . 81

5.4.1 Partitioning of Hardware Resources 82
5.4.2 Minimal System Shutdown 84
5.4.3 Partition Aware System Initialization 85
5.4.4 Migration of Hardware Resources 86

5.5 In-place Upgrade Strategy . 87

Contents ix

5.5.1 Virtual Environment and Hardware Redundancy . . . 87
5.5.2 Migration Stage . 88
5.5.3 Hy-FiX Integration . 89

5.6 Implementation . 90
5.7 Evaluation . 93

5.7.1 Zero-copy Migration Downtime Analisys 93
5.7.2 NIC Reinitialization Time Analisys 94
5.7.3 Impact on Guest Workloads 95

5.8 Discussion . 98
5.9 Summary . 98

6 Conclusion and Future Directions 101
6.1 Conclusion . 101
6.2 Future Directions . 104

Bibliography 107

Chapter 1

Introduction

Contents
1.1 Context and Problem Statement 1

1.2 Contributions . 3

1.3 Publications . 6

1.4 Thesis Outline . 6

1.1 Context and Problem Statement

Instead of a multitude of independently managed servers, the industry opted
for the concentration of much of the IT infrastructure in a single well-managed
facility, the data center (DC). Server virtualization encapsulates heteroge-
neous computations, services, and applications, into virtual instances (VMs
or containers), consolidating in peaceful isolation much of the IT workload
on the same physical hardware. Companies of any size and kind trust the
efficacy and efficiency of server virtualization to the point of embracing the
idea of running their core-services in third-party multi-tenant data centers,
catalyzing the adoption of cloud computing.

Part of the cost saving savings associated with data centers and server vir-
tualization derives from the easier management of virtual instances, as com-
pared to physical machines, increasing the staff productivity and efficiency.
Yet another cost saving opportunity, that alone spawned entire new lines of
research, involve the concept of maximizing the resource utilization in data
centers. Under-utilized resources are symptom of an excessive and avoidable
purchase of IT equipment, also tied to the waste of the facility physical space—
racks, rooms, land—and of electricity to power and cool down unnecessary
appliances. The latter is exemplified by the energy inefficiency of commodity
x86-64 machines, the prevalent kind in today’s data centers, proportionally
consuming much more when operating at low utilization rates.

Data centers employ a sophisticated software, called resource managers,
in charge of planning the placement of VMs and containers on the physical
machines. The resource manager juggles with several objective metrics that
aim at reducing the operational cost of the data center, while satisfying the

2 Chapter 1. Introduction

user requirements. Furthermore, as data centers are dynamic, the resource
manager needs to constantly improve the placement of virtual instances to
meet the evolution of their resource utilization, and to account for events
such as the maintenance, failure, decommission of physical machines. Here is
where migration comes into play. Indeed, a key feature of server virtualiza-
tion is the capacity of migrating virtual instances from one physical machine
to another. The independence between the virtual instances and the under-
lying hardware (or the OS environment) makes it possible, in principle, to
place a VM or a container on every physical machines. Therefore, an already
executing instance can be destroyed and re-instantiated to run on another
machines. Notoriously, virtual machines are able to keep their run-time state
across the migration, resuming transparently on a different physical machine.
Sophisticated algorithms can transfer the bulk of the state data in the back-
ground, while the instances keep running, reducing the service interruption
(live migration). Migrations improve the DC resource utilization by adjusting
the placement of VMs (dynamic re-consolidation), to move instances to safety
ahead of host failures and maintenance events [84].

We identified two scenarios where the traditional migrations underlying
both dynamic re-consolidation and node evacuation (to face node mainte-
nance), are either ineffective or detrimental to both reduce the wastage of
resources and improve utilization. Such scenarios, that we explain in more
details below, are: (i) idle VMs in data centers, locking their physical mem-
ory despite their inactivity or very low activity, and (ii) large-scale hypervisor
upgrades that fail to perform rapidly and efficiently under scarcity of resources.

Idle virtual machines in data centers. Recent studies show that idle VMs
are a common problem in data centers. For instance, [65] reports that 80% of
VMs deployed within a DC are idle, showing little to no sign of user activity.
Idle instances are frequently encountered when private companies deploy their
own DNS or mail servers [102] or when VMs are used by software developers
to design and test new applications, rarely powering them off outside office
hours. Even though they are not actively used, these VMs lock the resources
they are assigned, no matter how migration consolidates them.

Data center operators are left no other choice than over-booking resources,
to further accommodate new instances. Contrary to the CPU, data center
operators avoid to aggressively over-book memory [82] as the consequences
of an out-of-memory system unpredictably affects the performance of all the
active hosted VMs (swap-in/out, thrashing). This scenario presents an inter-
esting challenge: idle VMs cannot be simply powered off as they usually host
network-based services that are essential to end-users. Furthermore, existing
solutions either rely on re-engineer the platform (e.g., adopting containers)
[104, 102], or ad-hoc application-level proxies that intercept end-user requests

1.2. Contributions 3

while the instanced are shut down [64]. Consequently, these solutions fail
to propose a generic or easily implementable methodology, leaving space for
improvements and a novel approach.

Large-scale upgrades of hypervisors. Hypervisors are crucial components
in data centers. Any flaw at the hypervisor might affect the performance, se-
curity and, availability of the virtual machines running business-critical work-
loads. Therefore, upgrades must be quickly applied over the entire host fleet.
However, complex upgrades at the kernel level inevitably require rebooting
the hypervisor, thus terminating the running VMs [61].

Live migrations is a strong technique to evacuate the hosts in need of a
reboot [84]. Virtual machines are preserved by transparently relocating their
execution to healthy hosts, incurring minimal downtime and a limited perfor-
mance degradation [44]. However, live migration is hard to scale. It consumes
data center resources, such as network bandwidth, to sustain the live trans-
fer of the VMs’ state. Furthermore, it requires enough host spare capacity
to accommodate all the displaced instances [103]. As such, scenarios exist
where live migration is undesirable, for instance, in data centers with scarce
resources, or when minimal downtime is superfluous (i.e., for fault-tolerant
instances such as batch jobs or replicated services). These factors suggest an
interesting approach: in-place upgrades. In this approach, the hypervisor is
fully upgraded without the need to migrate the virtual machines elsewhere. A
key challenge is to perform the in-place upgrades without incurring unafford-
able VM downtime, offering a valid alternative to the classical live migration
approach.

1.2 Contributions

In this thesis we propose two ad-hoc migration techniques that overcome, each,
the intrinsic limitation of traditional migrations, supplying an additional tool
to optimize and ease the management of data center resources.

VM-to-container migration for consolidation in DCs. Idle VMs lead to
a waste of resources in data centers, notably memory. Idle VMs cannot be
shut down to reclaim their memory because of the service disruption it incurs.
A key observation is that VMs contain what we define as gateway processes.
These gateway processes are a set of user-space processes awaiting for incom-
ing connections (e.g. a web server, or an SSH server) consituting the entry
point to the VM. We propose SEaMLESS, a solution that migrates the entire
set of gateway processes from an idle VM to a resource-less container that pro-
vides the service interface to the outside. Idle VMs can therefore be disabled
to release their resources. SEaMLESS implements a user-activity detection

4 Chapter 1. Introduction

mechanism that guarantees the correct and safe execution of the transplanted
gateway processes, while running in a resource-less environment that can only
sustain limited computations. Upon new activities, the VMs are resumed, and
their gateway processes migrated back at their place to transparently respond
to user requests. Furthermore, we devised a hybrid virtual machine suspen-
sion method, called suspend-to-swap, based on the traditional system swap
space. This method frees the majority of the memory allocated to and used
by a VM, yet providing a fast resume time via the lazy loading of memory
pages from the swap. SEaMLESS is designed to operate at the tenant-level.
It can increase the resource utilization without the cooperation of the data
center or cloud operator.

Across-reboot migration for large-scale hypervisor upgrades. In-place
upgrades are appealing as they do not involve resource-intensive live migra-
tions, leading to large-scale hypervisor upgrades. We propose Hy-FiX, an
in-place upgrade mechanism designed to apply minor and major upgrades,
at the kernel level, to a KVM (Kernel Virtual Machine) hypervisors (e.g.,
QEMU-KVM). Hy-FiX relies on a hybrid mechanism combining suspend-
to-disk and suspend-to-RAM to checkpoint the small-sized virtual machine
hardware state (vCPU, vNICs, etc.) leaving the bulky virtual machine RAM
resident in host memory. This technique is paired with a warm-reboot, the
software procedure to start an upgraded hypervisor without clearing the con-
tent of the host DRAM. Hy-FiX implements a zero-copy migration, relocating
the virtual machines across the reboot, and between two hypervisors without
the need to checkpoint their memory, leveraging the data already in the host
RAM. Hy-FiX trades off a higher downtime, around 10 seconds, for the high
scalability of the in-place upgrades.

Co-located hypervisors for efficient live upgrades. In-place upgrades ca-
pable of upgrading kernel-level components inevitably involve warm-rebooting
the host and restarting the hypervisor. The warm-reboot not only lasts several
seconds but also forces the upgrade procedure to sequentially execute first, the
shut-down of the old hypervisor, then, the initialization of the new hypervisor,
keeping the VMs unable to run. We propose Multi-FiX, a solution built on-
top of Hy-FiX, capable of performing the same class of hypervisor upgrades,
with VMs incurring a network downtime in the order of tens-of-milliseconds.
Multi-FiX replaces the warm-reboot technique that Hy-FiX uses with a multi-
kernel boot, where a new hypervisor fully is initialized next to the old instance
that remains able to execute VMs. Note that both co-located hypervisors run
bare-metal without leveraging any form of nested virtualization. The other
components of Hy-FiX are adapted to enable the memory sharing between the
two co-located hypervisors. As a result, VMs perform a zero-copy migration

1.2. Contributions 5

that exploits the memory sharing between the old and the new hypervisor,
incurring the same downtime as live migration.

6 Chapter 1. Introduction

1.3 Publications

International Journals.

• Segalini, A., Pacheco, D. L., Urvoy-Keller, G., Hermenier,
F., and Jacquemart, Q.
Hy-FiX: Fast In-place Upgrade of KVM Hypervisors.
IEEE Transactions on Cloud Computing (2021), Early Access

International Conferences.

• Segalini, A., Pacheco, D. Lopez, Jacquemart, Q., Rifai, M.,
Urvoy-Keller, D., and Dione, M.
Towards Massive Consolidation in Data Centers with SEaMLESS.
In Proceedings of the IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (2018), CCGRID ’18.

Posters and Abstracts.

• Segalini, A., Pacheco, D. L., Urvoy-Keller, G., Hermenier,
F., and Jacquemart, Q.,
Hy-FiX: Fast In-place Upgrade of KVM Hypervisors.
In Proceedings of the ACM Symposium on Cloud Computing (2019),
SoCC ’19.

• Pacheco, D. Lopez, Jacquemart, Q., Segalini, A., Rifai, M.,
Dione, M., and Urvoy-Keller, G.,
SEaMLESS: A SErvice Migration cLoud Architecture for Energy Saving
and Memory releaSing Capabilities.
In Proceedings of the ACM Symposium on Cloud Computing (2017),
SoCC ’17.

1.4 Thesis Outline

The thesis is organized as follows. In Chapter 2, we introduce the funda-
mental background to understand the work presented in this manuscript. In
Chapter 3, we present SEaMLESS, our solution to the problem of idle VMs
in data centers. In Chapter 4, we present our first contribution in solving the
problem of large-scale upgrades of hypervisor: Hy-FiX. In Chapter 5, we fur-
ther investigate the topic of hypervisor upgrades with the second contribution
of the subject: Multi-FiX. In Chapter 6 we summarize the contributions of
our work and discuss possible future directions related to our contributions.

Chapter 2

Background

Contents
2.1 Hypervisor-Based Virtualization 7

2.1.1 Type-1 and Type-2 Hypervisors 8
2.1.2 CPU Virtualization. 9
2.1.3 Memory Virtualization. 11
2.1.4 I/O Virtualization. 12

2.2 Operating-System-Level Virtualization 14
2.3 Migrations of Virtual Instances 15

2.3.1 Virtual Machine Migration 15
2.3.2 Container Migration . 18

2.4 Resource Management in Data Centers 18
2.4.1 Static Consolidation . 19
2.4.2 Dynamic Consolidation . 19
2.4.3 Resource Over-booking . 20

2.5 Maintenance in Data Centers 23
2.5.1 Software Upgrades . 24
2.5.2 Hypervisor Upgrades . 24

In this Chapter, we present the background for this thesis. Section 2.1
and Section 2.2 briefly introduce the concept of server virtualization, pre-
senting two of the mainstream instances: hypervisor-based virtualization
and Operating-System-level virtualization (OS-level virtualization). Sec-
tion 2.3 presents the approaches to migrate virtual instances, one of the key
benefits delivered by virtualization. Section 2.4 presents the background on
resource management in data center, while Section 2.5 introduced the ap-
proaches to maintenance in a data center, with particular focus on on the
topic of hypervisor upgrades.

2.1 Hypervisor-Based Virtualization

Server virtualization is the practice of partitioning and slicing physical ma-
chines, usually high-end—yet commodity—data center machines, into secure
and isolated enclosures that offer a familiar environment to IT personnel for

8 Chapter 2. Background

developing and deploying services. As emphasized in Chapter 1, the primary
benefit is lowering the capital and operational expenses for purchasing and
managing IT equipment, achieved via the consolidation of different IT work-
loads on the same hardware. There are two approaches to implement server
virtualization that operate at the lowest level of abstraction, thus offering the
greatest flexibility: hypervisor-based virtualization, and OS-level virtualiza-
tion. In this Section, we cover hypervisor-based virtualization, whereas, in
Section 2.2, we present the basics for OS-level virtualization.

Virtual machines are software entities that implement a virtual version of
an entire computer’s hardware, including CPUs, memory, I/O devices, and
the busses that bridge together all components. In this way, a legacy OS can
run inside a VM (called guest OS), with unmodified applications hosted on
top, offering to DevOps an environment identical to the real-life counterpart.

There are several approaches to implement virtual machines. The most
successful one, at least for data center usage, is hypervisor-based virtual-
ization. The hypervisor is the system responsible for running the virtual
machines, making sure that the software executing inside the VMs behaves
identically as if it were executing on the physical version of that same machine.
This task is performed via a level of indirection that uses real hardware to im-
plement the effects that the guest software has on the virtual hardware. Since
this incurs an execution overhead, the key task of a hypervisor is to achieve
the best efficiency. Direct execution is the technique leveraged to minimize
such an overhead, allowing software inside the VMs to execute on the real
hardware every time it is safe to do so. It follows that hypervisors usually
constrain the kind of virtual hardware supported for the VMs. For instance,
the virtual CPUs must have the same Instruction Set Architecture (ISA) of
the physical machine underlying the hypervisor.

2.1.1 Type-1 and Type-2 Hypervisors

Hypervisors are traditionally categorized in type-1 and type-2. Before defining
each category, we introduce the role of the Virtual Machine Manager (VMM).
Although VMM and hypervisor are sometimes used interchangeably, in this
thesis we refer to the VMM as the subsystem that virtualizes the CPU and
the memory of the VMs [40]. That is to say, it keeps control of the state of
the virtual CPUs and the virtual memory, updating it as the VM execution
advances. In type-1 hypervisors, the VMM runs, in a so-called bare-metal
manner, on the physical machine and directly acquires the physical resources,
CPU, memory, and I/O devices that power the virtualization. Notable exam-
ples of this category are VMware ESXi [42], Xen [21], and Microsoft Hyper-V
[22]. In type-2 hypervisors, the VMM is a client of an OS (named host OS).
The host OS runs on bare-metal, while the VMM requests the resources to run
the VMs. For instance, the VMM may be a user-space process run by the host

2.1. Hypervisor-Based Virtualization 9

Physical Hardware

VMM

VM

Guest OS

VM

Guest OS

Physical Hardware

Host OS

VM

Guest OS

VM

Guest OS

VMM

Type-1 Hypervisor Type-2 Hypervisor

Figure 2.1: Type-1 and type-2 hypervisor architectures.

OS. Such a process gets scheduled from time to time to execute the instruc-
tions of a VM on a physical CPU. The VMM may allocate memory via a mmap
system call (for example on Linux), and perform disk writes via a write sys-
tem call on a file. Notable examples of this category are VMware Workstation
[93], and the many hypervisors based on Linux and its Kernel-based Virtual
Machine (KVM) infrastructure, such as QEMU-KVM, Nutanix’s AHV [56],
and AWS Nitro [27]. Figure 2.1 depicts a possible stacking of the layers that
compose a type-1 and a type-2 hypervisor.

This categorization is important in the context of hypervisor upgrades,
a topic of interest of this dissertation. Upgrading an OS, or a hypervisor,
requires restarting the whole component, which translates to a host reboot.
Type-1 hypervisors can be completely monolithic, hence upgrades at the VMM
incur the reboot. Type-2 hypervisors, thanks to their modularity, can have
independent components such as the VMM, made replaceable without restart-
ing the whole machine. However, the host OS in type-2 hypervisors plays a
fundamental role concerning the stability and efficiency of the hypervisor,
hence, frequent upgrades at this level are expected.

2.1.2 CPU Virtualization.

There are three styles to virtualize resources such as the CPU, the memory,
and the I/O devices: full virtualization, para-virtualization, and hardware vir-
tualization.

For x86(-64), hardware virtualization was the most recently introduced.
However, since the 70s, we regard that approach as the most suitable to build
efficient, safe, and faithful hypervisors. Popek and Goldberg first laid out this
concept in a theorem. It states as follows. If the set of sensitive instructions
(with side-effects and/or dependencies to the hardware state) is a subset of the
privileged instructions (only executable in supervisor/kernel mode), then the
CPU can be virtualized via direct execution and trap-and-emulate [78]. Hence,

10 Chapter 2. Background

Applications

OS

Hypervisor

vmlaunch/
vmresume

Non-Root
Mode

Root
Mode

Ring 0
(Supervisor mode)

Ring 1

Ring 2

Ring 3
(user mode)

Ring 0

Trap
(Sensitive
Instruction)

Trap
(Priviledge

Non-sensitive
Instruction)

Figure 2.2: VT-x and AMD-V root and non-root mode with respect to legacy x86
protection rings.

the hypervisor lets executing a virtual machine directly on a physical CPU in
the least privileged mode, confident that any sensitive instruction that illegally
modifies physical machine’s hardware state will trap because not executed in
supervisor mode. The hypervisor re-gains control and emulates the effects of
the sensitive instruction on the state of the virtual CPU, deceiving the VM
that the execution took place correctly. However, x86 does not respect the
Popek and Goldberg requirements. This held until 2005/2006 when Intel and
AMD introduced their VT-x and AMD-V virtualization extensions for x86
CPUs.

Taking VT-x as a representative, two new modes of execution are added:
root mode and non-root mode. The sensitive instructions of x86 that execute in
non-root mode now cause a trap that returns the control to the hypervisor for
further emulation. A new set of instructions governs the entering in non-root
mode (vmlaunch/vmresume). Additionally, an in-memory structure, called
VMCS, stores the state dump of the CPU registers at every transition from
non-root mode, letting the VM manipulating its private CPU context. On
Linux, KVM is the component responsible for exporting the capability of
launching executions in non-root mode. Figure 2.2 depicts the interactions
between modes and the protection rings of x86.

Full virtualization and paravirtualization are prior approaches to the re-
lease of VT-x/AMD-V. Briefly, full virtualization leverages a technique called
dynamic binary translation. Blocks of instructions that the virtual machine is
about to execute are analyzed to detect x86 sensitive instructions, which are
recompiled, on the fly, with emulated harmless instructions. In paravirtualiza-
tion, instead of the on-the-fly recompilation, the guest OS code is fully patched
before being installed in a VM to replace sensitive instructions with hyper-
calls. The hypercalls are innocuous instructions that cause the VM to trap,

2.1. Hypervisor-Based Virtualization 11

handing the control to the hypervisor to perform the emulation. Dynamic
binary translation is heavy on the overheads but manages to run unmodified
guest OSes. On the other hand, paravirtualization scores best in performance
but requires patching legacy code. Both approaches still play a relevant role
in the virtualization of I/O devices.

2.1.3 Memory Virtualization.

Memory is another resource that benefits the x86 virtualization extension
provided by VT-x and AMD-V. A virtual machine has an MMU and virtual
memory via paging, exactly as real x86 machines. However, virtual machines
also have their physical memory space mapped to a virtual memory range in
the VMM’s memory. To exemplify this, let us consider the QEMU-KVM hy-
pervisor, where the VMM is a user-space process, QEMU, that leverages the
KVM APIs to control the hardware virtualization features. QEMU allocates
the memory for a VM as a contiguous array of bytes, mapped to its virtual ad-
dress space. Hence, there are two dimensions of virtual-to-physical mappings.
First, virtual addresses within the guest—Guest-Virtual Addresses (GVAs)—
are mapped to the guest-physical address space, which has a one-to-one cor-
respondence to the array of bytes allocated by the VMM. In turn, the array
of bytes in the VMM’s virtual memory—Host-Virtual Addresses (HVAs)—is
mapped to the physical memory of the real machine—Host-Physical Addresses
(HPAs).

In traditional x86, virtual memory is mapped, page-by-page, to the equiva-
lent chunks of physical memory known as frames. The structure that holds the
mapping is called page-table. The page-table is a hierarchical structure with
4 levels (in x86-64) of subordinate page-tables linked in a tree. The address
translation is transparently performed by the MMU, automatically descend-
ing the tree (page-table walk) to fetch the entry that contains the mapping.
As there are multiple virtual address spaces (i.e., every process has its own),
the selection of the page-table in charge happens via the cr3 CPU register,
loaded with the physical address of the page-table root. A caching system,
called Translation Look-aside Buffer (TLB), is set in place and managed by
MMU to avoid excessive page-table walks for recurrent virtual addresses.

The hardware virtualization shipped with VT-x and AMD-V introduces,
respectively, the Extended Page Table (EPT) and Nested Page Tables (NPT).
The MMU is virtualized inside a VM, so the guest OS can transparently man-
age its virtual-to-physical mappings via its page-tables set to a virtualized
cr3 register. The hypervisor while in root-mode also sets its own virtual-
to-physical mapping, translating the byte array that backs the VM’s mem-
ory to the HPAs. The EPT combines in hardware the two dimensions of
mapping. The GVAs are translated, via the guest page-tables, to the array
of bytes in HVAs, conclusively translated to the HPAs via the hypervisor’s

12 Chapter 2. Background

cr3
(non-root)

VM
(Non-Root

Mode)

Guest-Virtual
Address Space (GVA)

Host-Virtual
Address Space (HVA)

page-table

QEMU

Host OS
(Root mode)

Host-Physical
Address Space (HPA)

cr3
(root)

page-table

guest virtual-to-physical mapping

host virtual-to-physical mapping

Figure 2.3: Two-dimensional paging in VT-x/AMD-v w/ EPT/NPT.

page-table. Figure 2.3 depicts the relationships between the two-dimensional
address spaces in hardware virtualization.

An EPT walk incurs, in the worst case, a number of memory accesses
that is squared compared to the single dimension. The TLB assumes a more
critical role, and many are the improvements to maximize the cache hits, such
as decreasing the number of page-table entries with hugepages.

2.1.4 I/O Virtualization.

I/O in modern hypervisors still presents a great variety of approaches. We
start with full virtualization, in this context also known as I/O emulation.
In such a case, the guest OS runs the unmodified drivers for really existent
devices, although virtualized. All the interactions between the guest OS and
the I/O, namely Memory Mapped I/O (MMIO) and Port Mapped I/O (PIO),
are set to trap. The effects are emulated by the hypervisor, updating the
state of the virtual device to deceive the guest OS into thinking the inter-
action actually took place. The demanded I/O operations that the virtual
device is supposed to perform are transformed into an I/O workload, called
back-end, that the hypervisor performs on the physical machine’s hardware.
This approach is regarded as the least efficient due to the emulation of all the
hardware details of an existing device, necessary to provide the full compati-
bility with the legacy guest OS drivers. However, it is a good compromise to
virtualize low-throughput high-legacy devices such as the serial port, and the
input peripherals (e.g., keyboards, mice).

Paravirtualization has the same trade-off presented for CPU virtualization,
sacrificing compatibility for performances. A series of ad-hoc virtual devices,
called paravirtualized devices, are paired with ad-hoc drivers deployed into the

2.1. Hypervisor-Based Virtualization 13

guest OS, both designed to offer a virtual I/O that minimizes the required
emulation. The paravirtualized devices are simple, implemented as pairs of
ring buffers, hence very simple to emulate. Although faster than full virtual-
ization, the drivers for the paravirtualized devices must be ported to the guest
OS.

The approaches illustrated so far do not leverage any hardware virtualiza-
tion. In order to achieve the best performances, the guest OS in a VM would
better have the ability to interact with a real device without the hypervisor
intervention. This is called direct device assignment, or PCI passthrough, as it
is designed specifically for the class of devices that delivers the highest perfor-
mance, indeed, PCI and PCI Express (PCIe). We already introduced the list
of interactions between the software and the hardware: PIO and MMIO. PIO
utilizes dedicated x86 instructions to access the devices’ registers, whereas
MMIO maps the registers to the physical addresses so they can be read and
written via memory operations. Hence, by MMIO-mapping the registers of
a real device to the VM’s physical address space, the guest OS can interact
directly with the device. A complication arises when the guest OS configures
a real device to perform Direct Memory Access (DMA) towards the VM’s
memory. The physical addresses seen by the guest OS do not correspond
to the real psychical address seen by the devices. Intel solves this problem
within its Virtualization Technology for Directed I/O (VT-d), introducing a
component called I/O Memory Management Unit (IOMMU). Note, AMD’s
counterpart of this technology is called AMD-Vi. The IOMMU is responsi-
ble for translating the physical addresses in the DMA transactions fired by a
device. The guest-physical addresses are translated to the HPAs where the
RAM is actually mapped. The mapping is specified via page-tables, similar
to the counterpart that serves the MMU. We further present more details on
the IOMMU and its internals later in Section 5.3.

Direct device assignment grants a single virtual machine the full control of
an entire PCI/PCIe device that cannot be shared anymore with other VMs. To
increase the scalability of direct device assignment, hardware manufacturers
started embedding virtualization capabilities into their cards: Single Root
I/O Vitalization (SR-IOV). PCIe devices that are SR-IOV capable perform
the multiplexing of I/O commands from different VMs in hardware. This
feature is exposed to the hypervisor as if a single device is made up of a
multitude of independent PCIe endpoints (Virtual Functions, or VFs, in SR-
IOV terminology). Each VF can be directly assigned to a VM, and a single
SR-IOV card can support thousands of VFs.

14 Chapter 2. Background

2.2 Operating-System-Level Virtualization

Virtual machines provide strong isolation, while also offering a familiar envi-
ronment to deploy applications. The former is achieved by the legacy guest OS
inside the VMs, offering a collection of typical abstractions, such as the system
calls, the file-system, libraries, Inter-Process Communication (IPC) objects,
and so on. Nonetheless, much of the overhead that virtualization incurs is
due to executing a legacy guest OS as an underprivileged entity. Running
a great variety of OSes was never the goal of server virtualization in data
centers (few mainstream ones are easier to maintain), instead, the focus is
on isolation and a deployment-friendly environment. Thus, the virtualization
community worked towards an alternative approach: operating-system-level
virtualization.

OS-level virtualization isolates groups of processes, including the OS re-
sources they see and access, hence forming what are known as containers.
Modern OSes already provide CPU and memory isolation for processes. How-
ever, processes still share many namespaces, that is to say, they share elements
such as the process IDs (PIDs), their position in the global process tree, the
mounted file systems, the network stack (IP addresses, transport ports, rout-
ing table, etc.), IPC objects, the host name, and the system users. Isolating
the aforementioned namespaces (namespace isolation) is the feature that con-
tainer engines such as Docker and LXC leverage to create containers. Control
groups (cgroup) in Linux, or Job Objects in Windows [95], limit and account
for the usage of resources (CPU, memory, disk I/O, network, etc.) for a
group of processes, complementing the container isolation. Further security
is achieved leveraging features such as seccomp, in Linux, to filter the system
calls invoked from the container, reducing the surface for privilege escalation
attacks.

Containers are generally considered faster than virtual machines, although
the CPU and the memory performance are close to hardware-virtualization
of VMs [89]. I/O is faster in containers than VMs’ fully virtualized or par-
avirtualized I/O devices, but similar to I/O with directly assigned devices.
The memory footprint of a container is in general smaller than a VM, due
to the fully-fledged guest OS running within the former [71]. On the other
hand, sharing a single kernel does not isolate the co-located containers from
OS failures. Furthermore, the larger attack surface, in terms of the num-
ber of interfaces that enforce the isolation, makes containers less secure in
multi-tenant data centers.

2.3. Migrations of Virtual Instances 15

2.3 Migrations of Virtual Instances

Server virtualization decouples the virtual instances from the underlying
server, i.e., the hardware for virtual machines and the OS environment for
containers. Therefore, server virtualization enables the re-creation of the same
virtual instance on every other server in the data center. This principle is at
the basis of the virtual instance migration, defined as the actions to relocate
the execution of a virtual instance from one machine to another. In this Sec-
tion, we provide an overview of the migrations of virtual machines, a classical
feature of hypervisor-based virtualization. We also introduce the pioneering
approaches to container migration.

2.3.1 Virtual Machine Migration

Virtual machines run on virtual hardware. The software inside the VMs, i.e.,
guest OS and applications, only interfaces with the state of the virtual hard-
ware. Such a state is entirely represented in software within the hypervisor.
This property enables the checkpointing and migration of virtual machines.

First of all, any virtual machine can be paused, known as suspend-to-
RAM, by simply freezing the hypervisor threads that are executing the VM’s
instructions on the physical CPUs. The execution state, including the CPU
context, remains readily in the hypervisor memory. Hence, VMs can instantly
resume as soon as the threads are unfrozen.

Suspend-to-RAM is the cornerstone of another virtualization feature:
checkpointing. The hypervisor, after pausing a VM, can checkpoint all the
information that describes the VM execution state at that moment. This in-
formation includes the content of the VM’s RAM, the virtual CPU context,
the registers of the virtual devices. This technique is known as suspend-to-disk
when the destination for the checkpointed state is the storage. Note that per-
forming and reversing the suspend-to-disk (restoring) costs time, especially
checkpointing/restoring the VM’s RAM holding gigabytes of data.

VM Termination/Restart. It is seemingly far-fetched to define as migration
the simple termination/restart of a virtual machine. However, this approach
is effectively adopted in dense data centers, such as public clouds, to relocate
instances among different machines. For instance, Amazon EC2 and Google
Compute Engine (GCE) leverage this approach to preempt spot instances
upon a resource shortage or an outbid of the instance market price [2, 6].
Furthermore, Amazon EC2 adopts it to empty the physical machines in need
of maintenance (e.g., hypervisor upgrade) [1].

As the name implies, virtual machines are shut down and terminated from
running on a physical machine. Subsequently, another virtual machine is
re-created from the same template (machine type, boot image, and other

16 Chapter 2. Background

properties) and booted. This approach assumes a certain level of automation,
as the software deployed on the restarted VM shall re-initialize automatically
at boot. The execution state is, however, inevitably lost. Stateful services
may incur a long downtime, notably if the applications need to load a large
amount of data (e.g., in-memory databases [52]).

Cold Migration. Suspend-to-disk dumps the state of a virtual machine to
storage. However, if the destination of the checkpointed state is another hy-
pervisor, the virtual machine can migrate and preserve its execution state.
We refer to this technique as cold migration.

Cold migration is capable of preserving the execution state of a migrated
VM, however, the instance remain paused for a noticeable amount of time.
The virtual machine can resume only when the entirety of its state is trans-
ferred to the destination over the network. The state size of the virtual CPUs,
the virtual network cards, the virtual disk controller is only in the order of
megabytes, whereas, the content of the virtual RAM dominates with sizes
in the order of gigabytes [87]. Assuming a network bandwidth of 1, 10, or
40 Gbps, VMs equipped with at least 5 GB of RAM takes at least one second
to be transferred, and so is their downtime.

Live Migration. VMware (with vMotion), and Clarke et al., independently
pioneered the approach to live migrate VMs, that is to say, performing a
migration without incurring a noticeable downtime [44].

The design proposed, called pre-copy live migration, pushes the content
of the RAM beforehand, while the VMs keep running, drastically shorten-
ing the amount of data transferred while the VMs are paused. This strategy
is successful as, assuming the storage is accessed via Storage Area Network
(SAN) or Network Attached Storage (NAS), the state of a virtual machine is
dominated by its RAM. Pushing the memory is an iterative process that takes
place over several rounds, in what is referred to as the pre-copy stage. During
each round, the memory pages modified by the VM’s execution, known as
dirty memory, are re-sent to the destination. Only when the dirty memory
size at a given round falls below a certain threshold the pre-copy stage ends.
Subsequently, the stop-and-copy stage pauses the VM to transfer the remain-
ing of the state. Once the stop-and-copy stage completes, the VM instantly
resumes on the destination. The VM only pauses when the remaining data
can be transferred in less than the objective downtime, hence, this schema
achieves a fixed downtime, generally, in the order of tens-of-milliseconds [84].

Pre-copy presents, however, a defect. Clarke et. al define as writable
working set the set of frequently written pages that cannot be pre-copied
fast enough before the VM writes them again. The writable working set
is transferred during the stop-and-copy phase, and, for certain write-heavy

2.3. Migrations of Virtual Instances 17

workloads, this fails to meet a short downtime. The worst case is when a VM
dirties the memory at a rate higher than the network throughput that pre-
copies the memory. In such a case, the downtime incurred is the same as cold
migration [44]. An alternative approach to pre-copy live migration is post-
copy live migration [57]. This approach starts with the stop-and-copy stage
to transfer the VM’s state except for the virtual RAM, which is kept on the
source. The VM resumes immediately on the destination machine, fetching
memory on-demand over the network upon first-time access. Eventually, all
the memory is eagerly transferred and the migration completes.

Pre-copy live migration gained a lot of success. All mainstream hypervisors
support this technique, as well as some major cloud infrastructures such as
GCE [4] and Microsoft Azure [84]. On the other hand, post-copy succeeds in
live migrating write-heavy VMs with a large writable working set. However,
the first-time access to a memory page incurs high latency to remotely fetch
it, which can heavily affect the performance of the hosted applications. The
two techniques can be used together in a hybrid approach. Although they
have not disclosed their threshold, GCE switches automatically to post-copy
migration when a VMs fails to pre-copy within the target downtime [84].

Limitation of Checkpointing and Migrations. Checkpointing and migra-
tions leverage the property that the state of a virtual machine is completely
encapsulated in software. This property holds for the CPU, as its context
is exported by Intel VT-x via the VMCS structure (AMD-V is analogous). It
is in fact especially true for fully emulated or paravirtualized devices, im-
plemented by the hypervisor in software. However, this is not the case for
directly attached devices. For instance, some device registers might not be
readable, hence impossible to checkpoint [100]. Similarly, other registers can-
not be written without producing side-effects, such as triggering a network
packet transmission in a Network Interface Controller (NIC) [76]. If the inter-
nal device state cannot migrate alongside the VM, the guest driver will likely
crash due to the mismatch of states at the destination [76].

One approach is via hardware state migration, which however requires the
compliance of the device drivers, with device-specific modifications to support
it [76]. However, no mainstream hypervisor or platform supports it. Another
approach consists in migrating/checkpointing the VM without any directly as-
signed device [100, 85]. This technique leverages the hypervisor and guest OS
support for PCI hot-plugging/hot-unplugging. The directly assigned device is
removed before the migration/checkpoint, to be later re-inserted after the VM
is resumed. In the case of live migration, to maintain the network availability
during the iterative pre-copy stage, the traffic is re-routed through a paravir-
tualized NIC. The directly attached device and the paravirtualized NIC must
be enslaved into a single bonded interface, which logically aggregates multiple

18 Chapter 2. Background

network interfaces to provide transparent link-failure tolerance (active-backup
mode), and higher throughput (load-balancing) [12]. This strategy is, never-
theless, non-transparent to the guest OS. Not only the guest OS must support
PCI/PCIe hot-plugging, but the VM user must deploy an automated configu-
ration script to re-initialize the network stack once the card is re-plugged. This
approach is widely supported by mainstream OSes (Linux and Windows), and
hypervisors (QEMU-KVM, Hyper-V, VMware), and even officially adopted on
Microsoft Azure [85].

2.3.2 Container Migration

Containers are harder to migrate as compared to VMs. The state of a con-
tainer is not perfectly encapsulated as for VMs, but scattered over several OS
tables and structures, holding descriptors such as the process PIDs, opened file
descriptors, signals, etc. This makes a container hard to checkpoint/restore,
and consequently to migrate [44].

Container migration is a subclass of process migration. Process migra-
tion was a hot topic in the context of user-space level Single System Images
(SSI) [70]. Nowadays, process migration remains relevant in the context of
containers, which are, in the end, a collection of processes. CRIU (Check-
point/Restore In Userspace) is an open-source state-of-the-art solution for
process checkpoint/restore on Linux [3]. Presented in 2011, CRIU have since
been integrated, although experimentally, into mainstream container engines
such as Docker. CRIU leverages an ensemble of kernel hooks, now available
in mainline Linux, to export all the components of a the state of a process.
Similarly, CRIU leverages other Linux hooks to perform the restoration of
a process, such as writing to “/proc/sys/kernel/ns_last_pid” in order to
force the assignment of a specific PID. The restoration starts with an empty
process that morphs itself (opening files, forking children, etc.) into the check-
pointed one. When CRIU is used to checkpoint the entire process tree within
a container, the whole container is checkpointed. Container migration simply
transfers, cold or live, the checkpointed processes to another machine.

Although container migration solutions exist, no mainstream cloud plat-
form supports them, although few private cloud providers offer it in production
[19].

2.4 Resource Management in Data Centers

Data centers offer great opportunities to reduce the operating expenses of
the IT infrastructure. One example is the wide adoption of energy-efficient
hardware, such as components that support dynamic voltage and frequency
scaling, or the design of facilities that leverage renewable energy sources, such

2.4. Resource Management in Data Centers 19

as free cooling [63]. Another prominent way is pursuing the maximization of
resource utilization, such as computational, storage, and network resources.
These resources are made available by a wide range of hardware, from CPUs,
disks, and network cards, up to racks, and uninterrupted power suppliers,
just to mention a few ones. This hardware needs to be purchased, installed,
powered on, cooled, and maintained, leading to a high capital and operational
expenditure. Therefore, maximizing resource utilization reduces the cost of
a data center. Server consolidation is a fundamental technique to improve
resource utilization in data centers.

A software called resource manager computes the placement of the virtual
instances on the physical servers. One placement objective is to pack the
virtual instances on the minimum number of hosts so that more hardware can
go in power-saving mode. Concurrently, the resource manager manages the
Service Level Agreements (SLAs) negotiated with the data center users. The
resource manager has to guarantee the agreed performance, availability, and
affinity (e.g., placing service replicas on different subnets) of the instances,
suffering monetary penalties in case of non-compliance.

2.4.1 Static Consolidation

Static consolidation consists of computing the optimal placement for the vir-
tual instances and never changing it [96]. As new jobs arrive, these are placed
on suitable machines ensuring that the requested resources are available. In-
deed, static consolidation must avoid any resource contention that can degrade
the performance of the running instances.

Virtual instances are often over-provisioned concerning resource usage [37],
severely limiting the consolidation potential of a data center. This phe-
nomenon is partially due to pre-determined instance sizes, similar to what
is offered in public clouds [56], but also due to sizing resource demands to face
peak loads, which may rarely occur. Consequently, it is necessary to over-book
resources to boost the data center resource utilization.

Over-booking is the practice of considering available more virtual resources
than what is backed by physical resources [89]. The ratio between virtual
resources and physical resources is called over-booking ratio. Over-booking
can lead to a performance degradation due the contention in acquiring a busy
resource. We refer to this situation as a hotspot [56]. The virtual instance
placement shall change according to the evolution of the resource usage, hence
dynamic consolidation.

2.4.2 Dynamic Consolidation

Dynamic consolidation leverages migration (termination/restart, cold, or live)
to correct the placement of virtual instances. Periodically, the resource uti-

20 Chapter 2. Background

lization of the instances is analyzed to monitor and prevent hotspots in an
over-booked environment [56]. Dynamic consolidation can also achieve objec-
tives such as reducing the fragmentation of some resources (e.g., making big
chunks of memory available for large instance [84, 56]), and evacuating virtual
instances to perform host maintenance [62].

Workload monitoring and prediction is a topic closely related to dynamic
consolidation. Monitoring the resource usage can be used to dynamically
adjust the over-booking ratio, which normally is set static for all machines
[38]. A great deal of work focuses on predicting the resource utilization (usage
patterns, lifetime) [46]. This enables the informed co-placement of compatible
instances, although it is prone to biased predictions, especially for transient
or test workloads [38].

2.4.3 Resource Over-booking

We briefly introduced in Section 2.4.1 the concept of over-booking, also known
as over-commitment, or over-subscriptions. We now characterized how over-
booking is adopted in data centers.

All resources in a data center can be over-booked. However, most of the
literature focuses on the CPU and the memory as representative of two classes
of resources that exhibit different utilization patterns. CPU is characterized
by a bursty behavior, with a large gap between average and peak utilization
[96], offering great opportunities for over-booking. Besides, the short dura-
tion of peak loads translates to low risks of contention. Conversely, memory
is problematic. In general, the average memory usage often approaches the
peak utilization, resulting in fewer opportunities to over-book [96]. Memory is
therefore rarely over-booked, constituting the limiting factor in server consoli-
dation [82, 33, 37, 56]. However, there is a difference between the memory used
(written at least once), and the working set, namely the subset of the memory
that needs to be read and written to advance the instance execution. Note
that the concept of the WS is related, yet different, to the writable set size of
live migration introduced in Section 2.3.1. Indeed, virtual instances that are
inactive for prolonged periods, i.e., idle instances, have a small working set,
enabling over-booking opportunities. Around this observation, we developed
our project, SEaMLESS, presented in Chapter 3.

The performance penalties due to a CPU or memory hotspot highly dif-
fer. For the CPU, the hypervisor/OS multiplexes the CPU-time amongst
instances. The CPU context switch is lightweight, incurring a low overhead
to multiplex such a resource. On the other hand, both OSes and hypervisors
leverage the storage (swap space) to multiplex the RAM upon exhaustion of
the available space. Thus, the running workloads suffer from higher memory
read/write latencies, until the total loss of responsiveness (thrashing).

Over-booking for virtual machines is more complex than containers. VMs

2.4. Resource Management in Data Centers 21

are created with a finite amount of resources that cannot easily be extended
[89]. Furthermore, some valuable information (e.g., free pages) is not transpar-
ently available at the hypervisor to operate the efficient eviction/preemption
of the resources [26, 80]. We now detail the traditional over-booking mecha-
nism that hypervisors employ.

Hypervisor Swapping Swapping is a technique to multiplex the RAM upon
free memory exhaustion. Only the working set of the running applica-
tions/instances requires to be present in memory to allow the execution to
advance. if no page is available, some must be evicted to storage to reclaim
free RAM. This operation is referred to as swapping-out. Pages that are
unlikely to be accessed soon are the best candidate for eviction (e.g., approx-
imated by the Least Recently Used—LRU—pages [94]). Note, if a swap-out
page is accessed this must be first loaded into RAM. This operation is referred
to as swapping-in. The swapping-out to reclaim RAM, and the swapping-in
to restore a page in RAM, increase the access latency of a page by several
orders of magnitude. When the cumulative working set size for all the ap-
plications/instances is greater than the RAM, the workloads cannot advance
their execution due to the overhead from the continuous swapping of the
working set, potentially leading the kernel to stall. This is what we refer to
as thrashing.

In the context of hypervisor-based virtualization, two levels of swapping
occur. First, the guest OS inside a VM can enable swapping, thus evicting to
disk some of its virtual RAM. This technique is of no help for memory over-
booking. The reclaimed memory remains within the VM, hence not available
externally to other instances. The second level of swapping is performed by
the hypervisor, referred to as hypervisor swapping, capable of effectively over-
booking the memory. Hypervisor swapping bears some shortcomings. The
hypervisor, being agnostic towards which memory sits unused within a guest,
can inadvertently swap out free memory, leading to a needless and inefficient
RAM reclamation. Another similar shortcoming is double paging [26]. The
guest OS may swap out (or write to storage) pages that are already swapped
out by the hypervisor. This results in loading pages from the disk just to write
them back to the disk immediately after. These drawbacks are overcome with
the co-operation of the guest OS. Notably, ballooning enables to reclaim free
memory within the guests without the need to leverage the swap, as detailed
below.

Hot-plugging The CPUs, the memory, and some I/O device can be hot-
plugged and hot-unplugged from the virtual machines, constituting an ap-
proach to both provision and reclaim resources. Hot-plugging and un-plugging
are non-transparent techniques. The guest OS inside a VM must comply with

22 Chapter 2. Background

the plug/un-plug operation to avoid a potential system crash due to a hard-
ware component suddenly disappearing.

On the one hand, CPU hot-plugging is well supported by mainstream
hypervisors such as VMware ESX [20] and KVM [10]. On the other hand,
memory hot-unplugging potentially incurs long delays to reclaim RAM, and
it is prone to failure. The support for memory hot-unplugging is limited and
rare in production environments [26].

Ballooning As said before, the hypervisor has little knowledge of the status
of the memory inside a VM. For instance, the hypervisors use demand paging
to allocate virtual machine’s memory, that is to say, only the first-time access
to a page prompts the reservation of a physical frame to back such a memory.
If an allocated page is later freed by the guest OS, the relative frame stays
busy within the hypervisor. As briefly addressed while describing hypervisor
swapping, the lack of introspection leads to an inefficient memory reclamation,
swapping out pages that hold no meaningful content.

Ballooning is a paravirtualization technique that employs a pseudo-driver
installed inside the guest OS that forwards information on which pages are
free inside the VM. Typically, a balloon driver works by allocating the unused
memory from within the VM (inflating the balloon). The allocated memory is
kept pinned, preventing the guest OS from ever swapping it out. Ultimately,
the balloon driver communicates the set of reclaimed pages to the hypervisor,
which recycles such a memory to serve other allocations. Ballooning has
another advantage. It raises memory pressure at the guest OS, forcing the
former to release non-essential memory such as the file-system cache. The
hypervisor can return memory to the VM by deflating the balloon, that is to
say, the driver frees the memory taken so far.

Ballooning is non-transparent. The guest OS shall comply with ballooning
by installing and enabling the relative driver. As a consequence, the virtual
machine isolation weakens. In case of over-ballooning, where the hypervisor
requests an excessive memory, the guest OS may go Out-Of-Memory (OOM),
terminating core-application to relieve the pressure.

Ballooning is regarded as an opportunistic approach to reclaim memory
[31, 26]. Only free pages within the guest OS are effectively recoverable with
no negative consequence. Therefore, ballooning shall remain paired with hy-
pervisor swapping for a certain RAM reclamation in case of a hotspot.

Page Deduplication Page deduplication is another opportunistic technique
to reduce the memory consumption of the virtual machines [31]. Page dedu-
plication is based on the sharing of the memory that stores identical content,
reclaiming the redundant copies of the same pages. Although not strictly
bound to virtualization, page deduplication is prominent to boost server con-

2.5. Maintenance in Data Centers 23

solidation [33, 31]. Virtual machines, especially in cloud environments, are
often instantiated from the same templates, making them likely to store iden-
tical pages (e.g., holding the same kernel image, or the same libraries).

Page deduplication is operated by the hypervisor that periodically scans
the memory allocated for the VMs. When two or more identical pages are
found, only a single frame is kept whilst the other copies are freed. All the
virtual pages are then mapped to the same host frame and treated as Copy-On-
Write (COW). Any new write on any of those pages prompts the re-creation
of a copy.

VMware was an early adopter of page deduplication, reporting memory
savings as high as 40% across several VMs [33]. However, results in practice
differ. The adoption of Address Space Layout Randomization (ASLR) and
hugepages makes it harder to find identical pages [33]. Furthermore, the
opportunistic nature of page deduplication cannot deterministically ensure
memory reclamation [31]. Therefore, the solution is secondary to hypervisor
swapping.

2.5 Maintenance in Data Centers

Data centers undergo regular maintenance to guarantee service continuity, se-
curity, and optimal performances. Maintenance involves upgrading regularly
the power and cooling infrastructure, as well as deploying new network fabric
and physical machines, and upgrading or replacing single components within
the servers [62, 84]. Hardware maintenance always incurs heavy disruption
at the software level. Interventions at the power and cooling infrastructure
require physical machines to be powered off [91, 84]. Similarly, replacing
hardware components within a server (e.g., swapping faulty DIMM, upgrade
CPUs) often requires shutting it down first. Therefore, hardware maintenance
is usually operated on idle or empty machines. In the context of virtualization,
migration (termination/restart, cold, and live) is the preferred tool to evacu-
ate the virtual instances from the affected machines, reducing the disruption
caused by these events.

Aside from the hardware, it is of critical importance to maintain the soft-
ware up to date. The large codebase of services and systems deployed within a
data center compels frequent patching and software releases. Security proto-
cols and certifications demand that vulnerabilities are promptly fixed within
precise time boundaries (e.g., Payment Card Industry Data Security Standard
[23]). Furthermore, many services are constantly enhanced with new features
to remain competitive. Google reports that 70% of all instance migrations
within GCE are due to software upgrades, against a modest 6% due to hard-
ware maintenance events [84]. We now provide an overview of how software
upgrades are tackled in data centers.

24 Chapter 2. Background

2.5.1 Software Upgrades

Software upgrades in their general form require restarting the affected compo-
nents [85]. This operation can be highly disruptive. The software needs to shut
down, upgrade, and restart [50]. During these operations, the services provided
remain unavailable. Furthermore, data is lost after the shut-down, potentially
requiring hours for the software to reconstruct the state [52]. Rolling upgrades
is a technique to mitigate this disruption but requires the software to sup-
port replication. Restarts are performed on small groups of components at a
time while their workload is diverted to healthy replicas. Needless to say that
this solution does not apply to non-redundant software [50]. Furthermore,
completing a fleet-wide upgrade takes time as the groups restart sequentially.
[50, 52]. Consequently, a great deal of effort in the past decades was put into
developing live upgrades.

Live upgrading, also known as hot-patching, and dynamic software upgrad-
ing, is a technique to apply upgrades without the need to restart a software
component. This approach is the most challenging to generalize due to the
state transfer problem [50]. Semantic changes to existing global data struc-
tures, e.g., adding a new variable, prevents any automated live upgrading tool
from correctly transferring the state from the old software to the new one
[28]. The burden of solving such a problem is delegated to the developers,
dissuading them from adopting live upgrades. However, it exists a class of
upgrades that live upgrades are suitable for. Security patches often involve
simple modifications at the functions level, e.g., adding a check for buffer
boundaries, hence easily applicable with live upgrade tools.

Upgrades based on restarting a software component remain the most gen-
eral, although disruptive, approach. However, this classic technique can be
improved in different ways. The shut-down and restart time can be shortened,
and the data/state recovered quicker. This approach requires the software to
be equipped with a built-in mechanism of checkpointing/restoring. For in-
stance, Facebook equips their in-memory database software with a fast-start
procedure that recovers from shared memory the run-time data left by a prece-
dent version [52]. A prominent class of software in data centers that embeds A
highly effective checkpointing/restoring is the hypervisors. In the remainder
of the Section, we focus on the classic approaches to upgrade hypervisors.

2.5.2 Hypervisor Upgrades

Hypervisors are complex systems composed of several software layers. In
Section 2.1.1 we introduced the typical classification of hypervisors in type-
1 and type-2. For type-1, we assume that generic upgrades at kernel-level
or VMM-level require replacing the whole hypervisor software. Conversely,
type-2 hypervisors benefit from native modularity, with a clean separation

2.5. Maintenance in Data Centers 25

between VMM and kernel. For instance, KVM-QEMU has a well-defined
component (QEMU) that performs the device emulation, followed by a set of
kernel modules (KVM modules) that virtualize the CPU and memory, and
finally the rest of Linux that multiplexes the hardware resources [103]. This
separation can be exploited to avoid the costly reboot of the entire host OS.
Aside from the VMM, other components are fundamental to run VMs. For
instance, virtual switches (e.g., Open vSwitch [11]) implement the network
back-ends for the virtual machines. In general, restarting any software that
contributes to running the VMs may result in the temporary unavailability
(e.g., network unavailable during the virtual switch upgrade), or even the
complete loss of the VM execution state (e.g., when restarting the hypervisor).

Hypervisor Live Upgrades. Live upgrade techniques for OSes can be used
to patch the host OS in type-2 hypervisors [28, 17, 9]. These tools employ
loadable kernel modules to incorporate upgraded function-level patches into
the kernel, injecting jmp instructions to redirect the execution flow into the
new code. Despite the negligible downtime, possible upgrades are limited to
simple security patches due to the state transfer problem discussed in Sec-
tion 2.5.1.

There exists a live upgrade tool specialized in patching the VMM of KVM-
based hypervisors: Orthus [103]. This tool can replace the emulator (QEMU)
and the KVM modules while incurring a VM downtime in the order of tens
of milliseconds. Orthus re-architects the KVM modules to incorporate state-
transfer capabilities between two consecutive versions, coupled with a mech-
anism that leverages shared memory to transfer the virtual machine state
between two QEMU versions. Being incapable of targeting any complex host
OS upgrade, Orthus’s main application is patching platforms where the VMs
exclusively hold PCI passthrough devices, constraining bugs, flaws, and the
attack surface to QEMU and KVM only.

Host Evacuation. Complex upgrades for hypervisors require rebooting the
whole host, clearing its state, and resulting in the termination of all the run-
ning instances. Thanks to the hypervisor’s built-in checkpoint/restore ca-
pability, and hence the capacity of migrating virtual machines, a prominent
strategy is to relocate elsewhere the VMs. Once the instances are moved to
safety, possibly to an already upgraded hypervisor, the empty host can reboot.
We refer to this approach as host evacuation.

VM termination/restart is the basic migration approach when dealing with
replicas or batch-oriented jobs with no high-availability requirements. It fails,
however, in achieving transparency, as it does not preserve or recover the
VM’s state as before the termination. For the same reason, it potentially
incurs long downtime due to the instances restarting and warming up their

26 Chapter 2. Background

services [1]. Pre-copy live migration benefits from a negligible downtime but it
stresses the network infrastructure while transferring the RAM content of the
guests, taking minutes to complete even on fast networks [90]. Furthermore,
the downtime for large active instances is proportional to their working set
size (Section 2.3.1) leading to a noticeable downtime. With post-copy live
migration instances always experience negligible downtime, although at the
expense of a substantial run-time overhead due to the remote memory fetching.
Whatever is the migration technique, the resource availability in the data
center limits the number of hosts that can be evacuated in the same time
frame. Due to the high resource utilization sought in data centers, hosts
run close to their full capacity. Therefore, the equivalent amount of resources
available in the host (CPUs, memory, GPUs, etc.) must be reserved elsewhere
to accommodate the displaced VMs. This poor scalability limits the number
of simultaneous hosts that can undergo maintenance, and delays the adoption
of upgraded software.

Live upgrades and migrations trade off transparency, scalability, short
downtime, and upgrade duration, opening for a third way to approach hy-
pervisor upgrades. In this dissertation, we explore the possibility of restart-
based upgrades for hypervisors. Instead of leveraging migration to protect
the availability of the VMs, we optimize the restart procedure and the state
recovery, leading to transparent and lighter upgrades, suitable for large-scale
data centers.

Chapter 3

VM-to-container Migration for
Consolidation in Data Centers

Contents
3.1 Introduction . 27

3.2 Related Work . 29

3.3 Solving the Idle-VM Problem 32

3.3.1 The Gateway Process VNF 33

3.3.2 Migration Procedures . 35

3.3.3 Detecting User Activity . 36

3.4 Solving the Waste of Memory Problem 37

3.5 Evaluation . 39

3.5.1 Network Testbed . 39

3.5.2 Impact on the Quality of Experience 39

3.5.3 Impact of Suspend-to-Swap 41

3.5.4 Scalability of the sink server 42

3.5.5 Reactiveness . 42

3.5.6 Memory Savings . 43

3.6 Discussion . 44

3.7 Summary . 45

3.1 Introduction

In data centers, an abundance of virtual machines remains idle due to network
services awaiting for incoming connections, or maintaining idle applications
with a persistent network session. In public clouds, this happens when user
instantiate their DNS, mail servers, and other long-running services subject
to a low utilization rate [102]. In private data centers, VMs used by software
developers to design and test new applications exhibit frequent idle periods,
as they are rarely powered off, even outside of office hours or during holidays.
This phenomenon was confirmed in a 2017 report studying the activity levels
of the VMs deployed in around 2’000 physical machines from 11 different

28 Chapter 3. VM-to-container Migration for Consolidation in DCs

facilities [65]. The authors report that only 20% of the VMs shows signs of
CPU, network, user, and memory, for more than 5% of the entire observation
time, whereas the remainder 80% is idle. Around 30% of the VMs shows no
activity at all for over six months.

Idle VMs lead to a waste of memory which derives from the limited ef-
fectiveness of traditional memory over-booking in data centers (as discussed
in Section 2.4.3). CPU load rarely peaks, making CPU over-booking ideal to
efficiently exploit the time-slices when the resource is under-used. However,
unused memory is rare, and memory over-booking translates to the active
reclamation of used yet-idle memory (memory outside the working set of the
VMs) via techniques such as ballooning, page deduplication, and hypervisor
swapping. Ballooning and page deduplication are opportunistic techniques
that do not guarantee deterministic memory reclamation, whereas hypervisor
swapping suffers the lack of introspection to the guest OS and incurs heavy
performance degradation in case of sudden load spikes. Memory over-booking
is therefore lightly applied, making it the limiting factor in server consolidation
[82, 33, 37, 56].

These idle VMs cannot be simply powered off, as they may host essential
service remotely accessed, and new requests may arrive suddenly and unpre-
dictably. Reclaiming the amount of memory allocated to idle VMs is thus
necessary. Existing solutions either rely on ad-hoc proxy servers to replace
the shut-down VMs while idle [81, 64] or they require radical changes at the
platform or hypervisor level [102, 104, 74]. As a result, they fail to propose a
generic or easily implementable methodology.

In this Chapter we present SEaMLESS, a framework to replace idle VMs
with lightweight Virtual Network Functions (VNFs). SEaMLESS migrates to
a container the state of the gateway processes, a collection of processes that
make the virtual machine accessible from the outside (i.e., the network). The
gateway processes transplanted in the container are the entities that imple-
ment the lightweight and resource-less VNF replacing the idle VM. The VNF
acts as an application-generic proxy that provides to end-users the feeling
of availability while the VM is disabled. The VNF intercepts new end-user
requests in order to trigger the transparent restoration of the disabled VM.
Furthermore, the VNF can process trivial requests (such as keep-alive mes-
sages) that do not require resuming the VM. VMs can be disabled via an array
of existing techniques to reclaim the resources they use. Suspend-to-RAM pro-
vides a fast VM resuming but reclaims no memory, whereas suspend-to-disk
does reclaim memory but incurs in a long restoration delay. Hence, we de-
signed a novel suspension method, called suspend-to-swap, to quickly resume a
VM upon detection of user activity, while still reclaiming most of the instance
memory. SEaMLESS is designed to integrate easily in exisiting cloud plat-
forms. Suspend-to-swap leverages the legacy hypervisor swapping, whereas,

3.2. Related Work 29

the process that morphs an idle VM into the VNF only leverages user-space
tools such as Linux namespaces and Linux process migration, i.e., CRIU (pre-
sented in Section 2.3.2). Therefore, SEaMLESS can work at the tenant level,
increasing the resource utilization without the compliance of the data center
operator (although virtual machine suspension techniques must be available).

Our main contribution is the design and implementation of SEaMLESS.
SEaMLESS implements a novel procedure to transform an idle VM (running
Linux as guest OS) into a lightweight VNF. SEaMLESS relies on a novel
technique to disable VMs, called suspend-to-swap, designed for KVM-based
hypervisor which leverages Linux swapping. Moreover, SEaMLESS can be
combined with legacy techniques to disable VMs, such as suspend-to-RAM
or suspend-to-disk to reclaim the resources locked by the idle instances. We
evaluated SEaMLESS and show that:

• Upon user activity detection, the original VM environment is resumed
and the services continue their execution transparently with minimum
impact on the quality of experience (Section 3.5.2).

• We are able to replace hundreds of idle VMs by their corresponding VNFs
consolidated onto a single physical server or VM (Section 3.5.4).

• Suspend-to-swap readily resumes a suspended VM (Section 3.5.3) while
also reclaiming most of an idle VM memory footprint (Section 3.5.6).

In the next Section, we discuss the related work to SEaMLESS (Sec-
tion 3.2). We briefly discuss the proposals to tackle the problem of idle VMs
in data centers, highlighting the differences with regard to SEaMLESS.

3.2 Related Work

In the past, some propositions have been made to tackle the problem of idle
VMs in data centers. A bulk of related work on idle virtual machines focuses
on energy savings by setting physical servers to low-power modes. Although
not active, idle VMs prevent servers from entering deep sleep modes (when-
ever available) to avoid disrupting the availability of the services deployed
inside the virtual machines. Powering off unused servers and increasing server
consolidation are two faces of the same coin. Indeed, with memory being
the bottleneck to consolidation, reclaiming the memory of idle VMs would
consequently lead to energy savings. SEaMLESS can achieve both. Being a
framework to replace the execution of an idle VM with a lightweight proxy, the
VM can be disabled to reclaim their memory, or, alternatively, consolidated
to a server that enters sleep mode.

30 Chapter 3. VM-to-container Migration for Consolidation in DCs

Partial VM Migration. This family of solutions aims at reducing the en-
ergy consumption of a data center by consolidating the working set (WS) of
the idle VMs on fewer machines, putting the servers that hold the remain-
der of the memory on low-power mode. Partial VM migration runs on the
assumption that the WS of idle VMs is small and static over time. Partial
VM migration is a variant of the traditional post-copy live migration (see
Section 2.3.1) without the eager background transfer of pages. Jettison is
the first proposition leveraging such a technique [36]. Jettison consolidates
the WS of idle desktop VMs onto a single server (the consolidation server).
The physical machines with the bulk of the VMs’ memory are then put in
ACPI sleep state S3 (known as suspend-to-RAM1). These sleeping physical
machines will be resumed as soon as a memory page outside the WS of the
partially migrated VMs is accessed (generating a page-fault). The same au-
thors proposed a follow-up work, Oasis [104], a solution for idle VMs with
generic applications (Jettison only targets physical desktop machines hosting
an individual VM). Oasis avoids to wake-up the sleeping physical machines
upon the first page-fault by leveraging an ideal hardware state at the physical
server that allows to provide the faulting pages while in power-saving mode.
The authors do not describe how such a state is implemented. Nitu et al.
[74] describe a similar solution, however detailing the implementation of the
server low-power mode that can serve remote page-fault. In particular, the
authors propose a novel ACPI sleep state, called Sz, similar to S3 (PCI/PCIe
NIC powered) but with the DRAM actually readable. Nevertheless, such a
low-power state is not supported by any manufacturer.

These solutions are transparent with respect to the idle virtual machines.
Conversely, SEaMLESS leverages the co-operation of the VMs to precisely
identifying the components inside the instances that make them reachable
from the outside (i.e., the gateway processes), without requiring estimation
of the WS. Also, SEaMLESS directly interposes between a new user request
and decides the action to take with respect to the VM, such as resuming the
instance on the same server or migrating it elsewhere.

Proxy-based Solutions. In order to transparently disable an idle VM,
whether it is suspended-to-RAM, suspended-to-disk, or the whole host put to
sleep, an entity shall intercept new user requests, so the disabled VM can re-
sume and the availability of hosted services is preserved. This can be achieved
via a proxy intercepting all, or part, of the network directed to the VM. In [81]
and [29] the authors employed a sleep-proxy per subnet, to wake up a client
machine upon arrival of a network packet for the VM. The solution presented
in [81] only filters TCP packets with the SYN flag enabled (new connection)
to discard false-positive requests (such as pings) that are not a symptom of

1Note, ACPI S3 suspend-to-RAM is unrelated to virtual machine’s suspend-to-RAM.

3.2. Related Work 31

new user activity. However, it fails from being generic and ignores wake-up
calls triggered by already established, yet idle, TCP connection, or UDP-based
applications. DreamServer also leverages a proxy custom-tailored for a par-
ticular application, co-placing the proxy with a load-balance that intercepts
the requests for the disabled VM [64].

SEaMLESS is also based on a proxy, the VNF, which receives the network
traffic originally directed to the idle VM. However, SEaMLESS, relies on the
gateway process of the idle VM transplanted inside the VNF to faithfully
respond to any sort of trivial request such as keep-alive requests. SEaMLESS
monitors the interactions between the gateway process and the sink container
that encapsulates it, to detect true user activity that requires resuming the
VM. Consequently, SEaMLESS transparently supports any protocol (TCP
and UDP), and even encrypted channels, such as the one created by SSH.

Platform-based Solutions. In [102], the authors propose Picocenter to re-
claim memory from idle VMs in a data center. Instead of VMs, constituting
bulky entities that carry a high memory overhead (due to the presence of a
fully-fledged guest OS), Picocenter leverages customized containers that sup-
port the partial swap-out of the applications running inside. Picocenter uses
a modified version of CRIU, the utility to perform process migration in Linux
(introduced in Section 2.3.2), to partially migrate the working set of idle ap-
plications inside their containers onto a consolidation server (similar to partial
VM migration techniques). Then, Picocenter reclaims the remaining memory
by relocating it to the storage (e.g, Amazon S3 in AWS).

Picocenter shares many similarities with SEaMLESS. Both leverage the
application itself, kept somehow alive, to maint the network presence of the
service. Furthermore, both solutions leverage CRIU to isolate part of the
service run-time state that is accessed during the idle execution. Picocenter
maintains resident the working set of the applications, whereas SEaMLESS
maintains resident the gateway processes that constitute the entry-point to
the VM.

The fundamental difference lies in user-activity detection. As for partial
VM migration, Picocenter lazily fetches swapped out pages upon faults in the
idle application. It leverages the insights given by DNS queries to detect new
user requests (resolving the application’s hostname) to trigger the total swap-
in of the container’s memory. SEaMLESS sandboxes the execution of the idle
gateway processes, watching the interaction between the processes and the
environment to assess if new user activity requires the restoration of the VMs.

32 Chapter 3. VM-to-container Migration for Consolidation in DCs

Sink Server

Sink Container

Gateway
Process

No
external
resource

Idle VM

Gateway
Process

Disk
Devices
Libraries
...

Orchestrator

c7f2d
c428dbf
7a333bc
f685deb

Figure 3.1: Components and architecture of SEaMLESS

3.3 Solving the Idle-VM Problem

Virtual machines in data centers are accessible through several processes wait-
ing for incoming connections or requests by listening to network ports. We
refer to each of these processes as gateway processes. In this Section, we
present how SEaMLESS migrates every gateway process from a VM that has
been idle for a long enough time to a sink container, constituting the VNF
that can replace the idle instance.

In more detail, using Figure 3.1 as an illustration, a virtual machine typi-
cally hosts a large set of processes, including gateway processes. Once the VM
has been detected as idle, the SEaMLESS orchestrator—an agent responsible
for the synchronization of the migration—transfers the gateway process to
the sink container with all its states and including any open socket, effectively
turning it into a virtual network function. Typically, processes access and ref-
erence elements such as files, devices, or libraries. These external resources are
not copied to the sink container to ensure a lightweight environment. When
the VNF exhibits signs of user activity, the gateway process will be migrated
back from the sink container and restored in its original VM environment to
fulfill the user requests.

SEaMLESS is completely transparent from the end-user point of view.
Indeed, migrating back and forth the gateway processes between its VM and
the sink container is faster than migrating the entire VM, and by keeping the
gateway processes running while the VM is paused or turned off, SEaMLESS
can maintain any persistent idle connections, either at the transport or at the
application layer.

The remainder of this section is organized as follows. Section 3.3.1 focuses
on the creation and the structure of the sink container to host the gateway
process. Afterward, in Section 3.3.2, we describe the migration procedures to
transform an idle VM into a VNF, followed by the technique to detect signs

3.3. Solving the Idle-VM Problem 33

����

���������

���������
�������

�������

���������

������

�������

�����

�����

������

�����

������

�����

�������

���

�������

����

�������

���

���

�������������

������

����

Figure 3.2: A possible gateway process ecosystem and its resources

of user activity at the VNF, which prompts the reverse process to restore the
VM.

3.3.1 The Gateway Process VNF

The VNF must behave towards end-users exactly as the idle VM. Therefore,
we migrate every gateway process from its original environment, inside the
virtual machine, to the sink container. The gateway processes must run in an
environment that provides isolation while also being lightweight in terms of
memory and CPU consumption. For these reasons, we chose to implement the
sink container using Linux namespaces, the underlying technology of Linux
containers such as Docker (see Sectiont 2.2).

As illustrated in Figure 3.2, when a gateway process runs inside a VM,
it is part of a process ecosystem, that is formed, among other things, by its
process ID (PID), file-system beacons, file descriptors, libraries, etc. Our goal
in SEaMLESS is to only migrate the gateway process itself, without these
side elements. However, this ecosystem is essential for the gateway process
to continue executing faultlessly. We now provide some insights into how to
achieve this goal.

First, a process is identified by its unique PID. Its value must be preserved
to guarantee successful migrations, which we achieve by relying on both the
mount and the PID namespace in our sink container to isolate the proc and
sys filesystems. Consequently, when multiple processes from multiple VMs
are migrated to the sink server, these gateway processes can have the same
PID.

34 Chapter 3. VM-to-container Migration for Consolidation in DCs

Second, processes rely on external, dynamically linked shared libraries,
which are loaded, unloaded, and linked to a process during runtime. If these
libraries are unavailable, the program might experience a segmentation fault.
Since VMs deployed in Infrastructure as a Service (IaaS) environments are
created from a template image, SEaMLESS can use this very same image to
instantiate the sink server, namely the virtual machines hosting all the VNFs
from the same template of VM. In particular, it prevents the transfer of the
libraries between the VM and the sink server.

Third, a process opens many file descriptors to standard outputs and stan-
dard input devices (e.g. stdout, stderr and stdin), but also regular files,
directories, device files, and other file-system elements. To handle these ex-
ternal resources needed by the gateway process, we decided to point them out
to mock dummy files in the sink container, expressly created. We leverage
the mount namespace to ensure consistency between the sink container and
the file-system tree inside the original VM. Note, the gateway process is ex-
pected to access the external resources only in case of user activity (discussed
in Section 3.3.3), which triggers the migration of the gateway process back
to the original VM. Therefore, the dummy files at the sink container will not
introduce any execution error during the gateway process’s runtime.

Fourth, a process usually depends on Unix sockets or network-based sock-
ets for communications with the outside (i.e., the network) or other worker
processes. SEaMLESS must keep alive existing connections (e.g. established
SSH sessions) even after the VM is stopped. End-users must remain connected
to the gateway process after the process migration, without connection tear-
down or data losses. To achieve this, and also to avoid customized kernels with
obscure patches, we rely on CRIU (Checkpoint/Restore In Userspace) [3], a
modern actively developed software to enable the migration of user-space pro-
cesses (we already introduced CRIU in Section 2.3.2). The kernel hooks that
CRIU leverages, as of Linux version 3.3, are merged into the kernel’s mainline
[24]. CRIU can checkpoint a given process to later restore it while preserving
all sockets and pipes. SEaMLESS leverages CRIU to dump to disk the state
of the gateway processes, and later restore them from their checkpointed im-
age along with all their established network connections (e.g. keeping alive
already established SSH session), either at the sink container or the VM.

In summary, we migrate a gateway process inside a VM to a sink container.
The sink container is composed out of Linux namespaces: a PID namespace,
a mount namespace and a network namespace populated with two virtual
ethernet devices (veth), supported by default in current Linux distributions.
One veth is connected to the production LAN and must be mirror the network
configuration (routing tables, IP address) within the idle VM. The second
veth, connected to the management LAN, is used to transfer inside the sink
containers the gateway process checkpoint image.

3.3. Solving the Idle-VM Problem 35

3.3.2 Migration Procedures

In this Section, we present the orchestration of the migration of the gateway
processes between the sink container and the VM (and vice-versa). Note that
the gateway process migration is coordinated with the re-routing of network
packets to divert the traffic towards the VNF (and back towards the VM).

Migrating from the VM to the sink server When a virtual machine is
detected idle, the orchestrator triggers the creation of the VNF. The migration
of the gateway processes inside the sink container follows the steps enumerated
below.

Step #1: The orchestrator asks the working VM to dump the state of
gateway process to a file. Should any user activity be detected, the VM sends
an abort message to the orchestrator to cancel the migration, without any
message loss. Step #2: Once the checkpointing is done, the working VM
sends the state to the sink server. Step #3: The sink container restores
the gateway process. Step #4: The network infrastructure is configured to
redirect packets to the sink container. Step #5: The orchestrator proceeds
in disabling the VM (suspend-to-RAM, etc.).

Migrating from the sink server to the VM The procedure to migrate
back the gateway processes is close to the reverse of the procedure described
earlier. However, to prevent the long retransmission delay that TCP incurs
(TCP Retransmission Timeout) at subsequence attempt to retransmit, we
buffer the packets while the gateway processes migrate. The migration of the
gateway processes back to the VM follows the steps enumerated below.

Step #1: Upon detection of user activity at the VNF, the orchestrator
signal that the corresponding VM must be restored. Step #2: Using the
Netfilter Queue (NFQUEUE) available in current Linux distributions, a buffer
is deployed in the physical server hosting the VM to store packets sent to the
VM. At the same time, the network infrastructure is configured to route the
packets to the VM instead of the VNF. Step #3: The gateway process
at the in the sink container is dumped. Step #4: Once the VM resumes,
the gateway process checkpoint image is uploaded to the VM. Step #5: The
gateway processes are restored with their updated state (after detection of user
activity). Step #6: The buffered packets are released from the NFQUEUE,
the filter is destroyed, and the communication is now handled by the VM.

Addressing Routing Issues SEaMLESS relies on Software Defined Network
(SDN) to reconfigure the network infrastructure into diverting packets from
the VM to the gateway processes in the sink container. The orchestrator re-
quests the SDN controller to inject the ad-hoc rules into the SDN switches.

36 Chapter 3. VM-to-container Migration for Consolidation in DCs

The veth interface of the sink container is either configured with the same
MAC address VM’s interface or the destination MAC address of any packet
must be rewritten. If no SDN hardware is available, we assume that data
centers providing IaaS support the network operations to reroute the packet
in case of VM live migrations. SEaMLESS plugs to the same rerouting infras-
tructure that legacy live migration leverages to address the relocation of the
running instances.

3.3.3 Detecting User Activity

Once the sink container is deployed, the gateway processes inside handle any
first-time communication with the end-users. Two questions arise at this
point: (i) how to detect user activity? (ii) How to prevent the VNF from
highjacking the full communication with the end-users (which can lead to
errors), rather than resuming and handing back gateway processes the original
VM?

First, we highlight that not all incoming network packets are a prelude
to user activities, such as ICMP, ARP, or application-level keep-alive mes-
sages. Such requests must not trigger the resuming of the idle VM. Typi-
cally, messages at the transport layer or below are directly replied to by the
protocol stack available at the sink container (e.g., ICMP, ARP). However,
application-layer keep-alive messages require the execution of the gateway pro-
cesses. However, we assume such messages are simple enough not to require
the fully-fledged context in the VM to be processed. SEaMLESS implements
an accurate solution to successfully handle keep-alive applications messages
without the need for restoring the VM.

In order to understand how SEaMLESS detects non-trivial end-user activ-
ity, we need to understand the behaviors that a gateway process has upon the
reception of a request. If the gateway process leverages TCP, a user message
might request a new connexion setup with the server, verify the existence of
an application-level channel (e.g., SSH keep-alive messages) or ask for exter-
nal data (not available at the sink container). If the gateway process employs
UDP, a user message might carry a membership verification/update at the
application level or ask for external data (again, not available at the sink
container). After analyzing several gateway processes applications, we have
observed that a new TCP connection returns the accept() system call (or
other related syscalls, such as poll, epoll) invoked by the gateway process
on network socket bound to a port.

SEaMLESS creates the sink container with dummy files, as a replacement
for all the file-system entities that exist within the original virtual machine
context, but are meaningless once transplanted outside. Note, not only file-
system entities are subject to this rule. Other aspects of the user-space en-
vironment receive the same treatment: IPC objects (UNIX or network sock-

3.4. Solving the Waste of Memory Problem 37

ets), processes (spawning or sending a signal to process: fork, clone, kill),
mounted file-system (mount, umount), and so on. We whitelist a subset of these
user-space objects that carry in the sink container a semantically equivalent
state to the corresponding object in the VM. For instance, network sockets
in the sink container are restored with the same state (IP address, listening
port, established connections) as the VM. Therefore, the gateway processes
can interact with such whitelisted objects and expect to produce a semanti-
cally equivalent result as if they were executed within the VM. We assume
that any end-user request that prompts the gateway process to interact with
only whitelisted context entities is trivial and does not trigger the restoration
of the original VM. On the other hand, when a gateway process tries to ac-
cess a dummy entity that does not reflect the state of the original VM, the
execution is promptly stopped, the original VM resumed, and the computation
continues within the original environment where it can complete.

Consequently, to accurately detect end-user activity that prompts the ac-
cess to a piece of state not exported to the sink container, SEaMLESS relies on
syscalls tracking over the gateway processes inside the sink container. Syscall
tracing can be easily done in Linux using the ptrace library, the underly-
ing framework that debuggers, such as the GNU Debugger (GDB), leverage.
Technically, with the ptrace library, and for each (specified) syscall, the kernel
will trap the gateway process (via a SIGTRAP signal), and notify SEaMLESS
of the syscall. Namely, the gateway process is stopped at every trap. After
we have analyzed the recipient of the system call, we can restart the execu-
tion of the gateway process by means of the restart (SIGCONT) signal, if the
SEaMLESS heuristic decides that the sink container can process the message
by itself. Otherwise, SEaMLESS stops the gateway process execution com-
pletely (with the SIGSTOP signal) and starts the migration procedure of the
gateway process from the sink container to the VM. Hence, it is the VM and
not the sink container that will reply to the user’s request.

3.4 Solving the Waste of Memory Problem

SEaMLESS substitutes an idle VM with a lightweight resourceless sink con-
tainer, implementing a VNF that acts as the idle VM. Consequently, while
the gateway processes await incoming user requests, the idle resources owned
by the VM can be freed. Note that the idle VM eventually resumes upon new
user activity. Hence, the VM’s execution state must be preserved while the
resources acquired (CPU, memory) are reclaimed.

Most hypervisors support two modes for disabling a VM while preserv-
ing its execution state: suspend-to-RAM and suspend-to-disk. We previously
introduced such techniques in Section 2.3.1. Suspend-to-RAM freezes the
threads that carry the execution of the virtual machine’s CPU. The content of

38 Chapter 3. VM-to-container Migration for Consolidation in DCs

the virtual machine’s memory remains resident in the physical host. No mem-
ory is released, but resuming the VM only takes few milliseconds. Suspend-to-
disk checkpoints the whole state to non-volatile memory. Consequently, the
delay when restoring a VM is longer than the equivalent for suspend-to-RAM
and proportional to the size of the checkpointed VM’s memory. The resume-
delay depends on the non-volatile medium where the checkpointed state is
stored (HDD, SSD, NVMe), but also the procedure employed by the hypervi-
sor. For instance, QEMU-KVM eagerly loads the entire VM’s memory before
restarting the threads. VMware ESXi adopts a lazy-restore approach. The
threads are started with the memory not fully resident in RAM, generating
page-fault which prompt the hypervisor to load, on-demand, the missing page
[101].

Inspired by the lazy restore approach of VMware, we devised a solu-
tion, called suspend-to-swap, able to reclaim most of the memory used by
an idle VM while providing fast restoration. Suspend-to-swap is designed
for the QEMU-KVM hypervisor. Suspend-to-swap meets the objectives of
SEaMLESS: avoid any modification at the hypervisor/kernel, leveraging only
available Linux features for easy integration in existing platforms.

Our suspend-to-swap combines ballooning and hypervisor swapping, avail-
able in all mainstream hypervisor solutions. It also leverages Linux cgroups to
eagerly force the swapping out of the VM’s memory. Suspend-to-swap works
as follows. (i) To deallocate memory from an idle VM, we first inflate the
balloon inside the VM to recover the unused memory inside the guest. Note,
inflating the balloon beyond the available free memory can lead to a critical
memory pressure in the guest OS, possibly triggering out-of-memory errors.
(ii) Using cgroups in the hypervisor (QEMU-KVM), we limit the maximum
memory allowed to a VM to 10 MB. This triggers hypervisor swapping. The
hypervisor reclaims the VM memory, swapping-out the memory pages to meet
the 10 MB constraint. After this step, the memory footprint of the idle VM
is drastically reduced. (iii) We remove the cgroup memory constraint on the
VM and we perform a dummy gateway process restoration. The goal of this
dummy restore is to transparently warm (swap-in) the memory pages that
stores data needed by the gateway process during the restoration, including
some guest OS kernel memory. This step enables a faster response time after
resuming the idle VM. (iv) At the end of the previous step, a proportion of
the memory employed to execute the dummy restoration becomes free again.
Therefore, we inflate the balloon once again to fully recover it. (v) Finally,
the virtual machine is paused (suspend-to-RAM). The execution of the above
steps will provide a memory footprint of the idle VM smaller than 600 MB,
as shown in Section 3.5.6.

Note that pure eager hypervisor swapping (forced with cgroups memory
limits) is not a good option. Hypervisor swapping incurs inefficient memory

3.5. Evaluation 39

reclamation (discussed in Section 2.4.3) as free memory within an idle VM
lands to swap. Therefore, it is essential to pair hypervisor swapping with
preventive ballooning, to minimize the unsued pages that end in swap-space.
After the VM is restored, the balloon completely deflates to return the virtual
machines its nominal memory.

Our suspend-to-swap provides fast virtual machine restoration, including
the activation of the gateway process, as shown in the evaluation of our wake-
up delay in Section 3.5.

3.5 Evaluation

In this Section, we evaluate the performance of SEaMLESS with respect to
the perceived end-user Quality of Experience (QoE) and the resulting memory
savings. In Section 3.5.2 we evaluate the delay due to the main SEaMLESS
components when a gateway process migrates back from the sink container.
We assess the impact of our suspend-to-swap strategy in Section 3.5.3. The
scalability of SEaMLESS is analyzed in Section 3.5.4, its reactiveness in Sec-
tion 3.5.5, and finally, we provide insights about the amount of released mem-
ory with SEaMLESS in Section 3.5.6.

3.5.1 Network Testbed

We tested our SEaMLESS prototype on one of the clusters of Grid5000 [30], a
large-scale testbed for research experiments on distributed systems. We used
Dell PowerEdge R430 servers equipped with 2 CPU Intel Xeon E5-2620, 32
GB of memory, 2 Dell PERC H330 HDD in RAID-0, and a 10 Gbps Ethernet
NICs.

The testbed consists of three physical machines. The first hosts the orches-
trator. The second hosts the sink container. The third hosts the idle VMs.
The network infrastructure (where end-user traffic flows), leverages VxLAN
tunnels. Rerouting the packets is achieve with OpenFlow (SDN) rules in-
stalled in Open vSwitch switches deployed in each host.

3.5.2 Impact on the Quality of Experience

A full restoration process involves the execution of the following phases, each
contributing to the unavailability period of the service: (i) gateway process
state dumping and compression; (ii) image transfering; (iii) image decom-
pression and gateway process restoration; (iv) additional synchronization time
between the sink container, the orchestrator, and the VM to dump, transfer
and restore a gateway process.

To evaluate the time needed by SEaMLESS to restore a gateway process
at the VM, we carried out several tests with different gateway processes on

40 Chapter 3. VM-to-container Migration for Consolidation in DCs

Application
Main Tasks Time (s)

Total (s)
Resp. Image VNF

Dump Transfer Restore Time (s) Size (MB) Size (MB)

Dropbear 0.04 0.12 0.04 0.20 0.41 0.12 11.18
Vsftpd 0.12 0.11 0.05 0.28 0.41 0.11 7.81
OpenSSH 0.13 0.13 0.07 0.33 0.46 0.13 15.93
Lighttpd/PHP 0.16 0.29 0.16 0.61 0.71 0.29 46.43
Apache2/PHP 0.23 0.43 0.24 0.90 0.95 0.43 67.52
Tomcat 0.46 1.17 0.38 2.02 2.16 1.17 206.96

Table 3.1: Response Time of real-world gateway process applications.

their default configuration. The results are available in Table 3.1, where we re-
port the delays due to dumping-compressing, transferring, and decompressing-
restoring a gateway process. The column labeled “Total” corresponds to the
sum of all previous delays. The response time (labeled “Resp. Time”) corre-
sponds to the observed delay between the first packet sent by the client to
the VM, and the first packet sent back from the restored machine. The re-
sponse time comprises the components from the “Total” column, plus the time
overhead due to the synchronization of the various events (e.g. the signaling
of user activity from the sink container to the orchestrator). The columns
“Image Size” and “VNF size” correspond to the compressed image size of a
gateway process (in a tar.lzo file) and the size of the sink container hosting
such a gateway process respectively. Images are securely transferred with the
scp command, as it would be done in a real data center.

From our results in Table 3.1, we see that the application with the largest
image file is Tomcat (1.172 MB), followed by Apache 2 with PHP enabled
(0.428 MB). The lightest image corresponds to vsftpd (an FTP/SFTP server)
with only 0.107 MB. We would like to point out that the PHP application
used with Apache 2 does not impact the sink container size, nor the gateway
process image size. Indeed, the gateway process image only includes the main
PHP engine libraries, and not the PHP applications themselves, which are
loaded as external resources when needed.

The number of SSH worker processes for both Dropbear and OpenSSH
(and, therefore, the size of the process image) depends on the number of
established SSH sessions. In our tests, we maintained one single SSH connec-
tion, resulting to two gateway processes dumped and restored (i.e. the main
daemon process, plus the worker process).

From our tests in Table 3.1, we see that the response time of SEaMLESS
is generally smaller than 1 second (except for Tomcat). This is lower than
the response time typically expected by the end-users, as reported in [43]. We
conclude that the delay introduced by SEaMLESS has little impact on the
end-user quality of experience.

3.5. Evaluation 41

0

1

2

3

4

5

Susp.RAM

Susp.Disk

Susp.Swap

NoDum
m

yRest.

Susp.RAM

Susp.Disk

Susp.Swap

NoDum
m

yRest.

R
es

po
ns

e
 T

im
e

(s
)

GW Dump + VM resume

Transfer

GW Restore

OpenSSHApache/PHP

Figure 3.3: Response time when using different disabling techniques on a 3 GB VM.

3.5.3 Impact of Suspend-to-Swap

We discussed several VM disabling strategies in Section 3.3, namely, suspend-
to-RAM, suspend-to-disk, and our suspend-to-swap. In Figure 3.3, we quan-
tify the response time of Apache 2-PHP and the OpenSSH gateway processes,
with different VM disabling approaches.

From Figure 3.3, we observe that suspend-to-RAM has the fastest re-
sponse time (around 1 second for Apache 2-PHP and lower than 0.5 seconds
for OpenSSH). However, suspend-to-RAM is ineffective to reclaim memory.
Suspend-to-disk incurs the worst response time: the time linearly increases
with the memory size of the VM, leading to a 3-second response time for
a 3 GB instance. Our suspend-to-swap combines the best of both worlds.
We show the response time of suspend-to-swap with and without the dummy
gateway process restoration. Without the dummy restoration, the resulting
response time is around 1.5 seconds for Apache 2-PHP, and 0.9 seconds for
OpenSSH. Note, suspend-to-swap actually reclaims most of the VM’s memory
(details will be discussed in Section 3.5.6). Suspend-to-swap with the dummy
gateway process restoration) significantly improves the delay, leading to a re-
sponse time of around 1 and 0.5 seconds for Apache 2-PHP and OpenSSH
respectively.

42 Chapter 3. VM-to-container Migration for Consolidation in DCs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

0

1

2

3

M
em

o
ry

 U
se

d
(G

B
)

%
 C

P
U

Number of VNFs deployed

Memory

CPU

(a) Apache 2 w/ PHP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

M
em

o
ry

 U
se

d
(G

B
)

%
 C

P
U

Number of VNFs deployed

Memory

CPU

(b) OpenSSH w/ 1 SSH cxn.

Figure 3.4: RAM and CPU used as a function of the number of deployed VNFs.

3.5.4 Scalability of the sink server

In this Section, we focus on the scalability of the sink container in terms
of CPU and memory usage. Figures 3.4a and 3.4b illustrate the memory
and CPU consumption of the VM hosting the sink container when deploying
exclusively Apache 2-PHP VNFs or OpenSSH VNFs.

As expected, CPU and memory usage increase linearly with the number
of deployed sink container. The number of VNFs that can be instantiated is
limited by the memory: deploying more than 10 Apache 2-PHP VNFs reaches
the 1 GB limits (memory usage 100%). On the other hand, CPU utilization
remains below 1%. OpenSSH VNFs have a smaller memory footprint. We
can instantiate 43 OpenSSH VNFs before saturating the 1GB memory, while
the CPU consumption remains lower than 6%.

These results show that a data center server configured with 32GB of RAM
can host around 320 Apache 2-PHP sink containers or 1376 OpenSSH sink
containers, before experiencing memory swapping. These figures are much
higher than the number of idle VMs that could be running simultaneously on
the same server with only 32GB of RAM.

3.5.5 Reactiveness

To assess the reactiveness of SEaMLESS, we perform stress tests consisting
of the simultaneous resume of a flock of idle VMs. We deploy the VNFs on a
single VM with 5 GB of memory and 1 vCPU. The VNFs host OpenSSH and
Apache 2-PHP gateway processes. Each test case was executed 20 times.

Figure 3.5 shows the response time (not including the VM resume time),
for the simultaneous migration of an increasing number of sink containers.
We observe that a linear increase in response time. For one Apache 2-PHP

3.5. Evaluation 43

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
es

po
ns

e
 ti

m
e

(s
)

of VNF to restore

Apache

OpenSSH

Figure 3.5: Response time as a function of the number of parallel OpenSSH VNFs
with user activity.

sink container it is around 0.9 second; 8 seconds for 10 sink containers; and
13 seconds for 20 sink containers. For OpenSSH sink containers, one sink
container needs a little less than 0.5 second; around 3 seconds for 10 sink con-
tainers; and around 6 seconds for 20 sink containers. Note that the observed
response time exhibit little variation, with very narrow interquartile ranges.
The disk write/read throughput dominates the response time. The tested host
is equipped with a mechanical disk with a much-limited throughput compared
to faster SSDs. We advise the usage of SSDs or faster memory supports (e.g.,
RAM disks) to dump and restore the gateway processes.

3.5.6 Memory Savings

The main objective of SEaMLESS is to reclaim memory from idle VMs. To
determine the amount of RAM that can be freed, we need to estimate the
expected memory consumption of a memory-reduced VM and the expected
memory consumption of its respective sink container. Suspend-to-swap re-
duces the size of the memory that remains resident in the host as follows. A
1.7 GB VM is reduced to a resident footprint of 474 MB. A 34 GB VM is
reduced to about 598 MB. The sink container size depends on the gateway
processes deployed. Apache 2-PHP requires around 68 MB, whereas OpenSSH
only 16 MB. In Table 3.2, we report the reclaimed memory for typical VM
RAM sizes, according to Amazon EC2 instance types [53], assuming the VMs
allocate the entirety of their memory.

44 Chapter 3. VM-to-container Migration for Consolidation in DCs

AWS type Size (GB) Reduced Size (GB) Potential Savings (GB) Savings %

t1.micro 0.61 0.501 0.109 17.87
c1.medium 1.7 0.474 1.226 72.12
m1.small 1.7 0.474 1.226 72.12
c3.large 3.75 0.496 3.254 86.77
m1.medium 3.75 0.496 3.254 86.77
m3.medium 3.75 0.496 3.254 86.77
c1.xlarge 7 0.515 6.485 92.64
m1.large 7.5 0.511 6.989 93.19
m1.xlarge 15 0.527 14.473 96.49
m2.xlarge 17.1 0.56 16.54 96.73
m2.2xlarge 34.2 0.598 33.602 98.25

Table 3.2: Potential memory savings for common AWS instance types, assuming a
VNF size of 67 MB.

3.6 Discussion

There are scenarios in which SEaMLESS is unable to operate due to tech-
nical limitations in the underlying technologies (CRIU and ptrace). CRIU
version 3.5 does not support the reconnection of Unix stream sockets. Indeed,
checkpointing and killing a process cause the Unix stream socket peer to close
the connection. However, CRIU is constantly in development with a steady
monthly release cycle. The developer have the objective of supporting the
whole array of IPCs and other file descriptor for a complete checkpoint/restore
solution of Linux processes.

In 3.3.1 we stated that instantiating the sink server from the same template
of the idle VM avoids transferring libraries loaded by the gateway process. We
are aware that any alteration from the original template may result in failures
in the restoration. However, different versions are easy to detect, disabling
SEaMLESS in such cases.

Since SEaMLESS provides two complementary solutions—one to create
a lightweight sink container with the gateway process, and another one to
deallocate memory from idle VM—one might ask why the idle VM is not
just shrunk, but leaving the gateway process at the VM, without pausing it.
Detaching the gateway process (that must always run), from the VM (which
can be paused), brings several benefits. First, we have observed that the ba-
sic memory set of an idle VM hosting a gateway process slowly grows over
time (also observed in [104]), and could even show sudden memory increases
due to some services such as application auto-updates. SEaMLESS interposes
any new user-activity, avoiding the automatic response from the hypervisor
that may result in excessive swapping-in and swapping-out, affecting all the
workloads co-located with the resuming idle VMs. SEaMLESS can issue live
migration to alleviate potential hotspots following a burst of idle VMs resum-

3.7. Summary 45

ing simultaneously.
SEaMLESS is suitable for a selected group of workloads. Monolithic ser-

vices that leverage shared memory to dispatch the user requests within the
application are not supported. SEaMLESS must be able to isolate gateway
processes, usually lightweight, from bulky working processes that leverage
the resources of the VM (CPU and memory) to execute the request. If the
gateway processes and the working processes transparently communicate via
shared memory, such interactions cannot be sandboxed by SEaMLESS.

3.7 Summary

In this Chapter, we presented SEaMLESS, a framework to transform and sub-
stitute idle VMs to lightweight Virtual Network Functions, allowing such VMs
to be disabled in several ways. To achieve such a substitution, SEaMLESS
identifies, at the process-level, the portion of VM’s state that constitutes the
interface from the outside world to the VM: the gateway processes. By lever-
aging process migration (CRIU), coupled with process sandboxing (ptrace),
SEaMLESS enables the idle execution of the gateway processes transplanted
outside their original VM and placed in a container: the VNF. Monitoring the
system-calls through which the gateway processes interact with the enclosing
container, SEaMLESS is able to detect non-trivial end-user requests that re-
quire resuming of the original VM. Within SEaMLESS, we designed a novel
technique, called suspend-to-swap, to disable a VM and reclaim the memory
allocated, while also preserving a fast restoration time. Suspend-to-swap lever-
ages a combination of hypervisor swapping and ballooning to proactively evict
the virtual machine’s memory to storage, reclaiming the precious resource for
other usages (e.g., further consolidation).

Our experiments demonstrate that SEaMLESS impacts lightly the quality
of experience, thanks to the lazy restoration provided by the suspension-to-
swap, reclaiming at the same time most of the memory allocated by the idle
instance. Services deployed in disabled VMs via SEaMLESS show a response
time of around 1 second for Apache 2, and around 0.5 seconds for OpenSSH;
both values including the VM resuming delay and any restoring service pro-
cedure. More importantly, SEaMLESS leverages readily available features of
mainstream hypervisors and OSes (swapping, ballooning, ptrace sandboxing,
containers), requiring minimal effort to be implemented and maintained.

Chapter 4

Across-reboot Migration for
Scalable Hypervisor Upgrades

Contents
4.1 Introduction . 47

4.2 Related Work . 50

4.3 Hy-FiX: Architecture and Design 53

4.3.1 Fast Checkpoint/Restore . 54

4.3.2 Memory Preserving Reboot 55

4.3.3 Hy-FiX Upgrade-cycle . 57

4.4 Implementation . 58

4.4.1 Host OS Switch . 58

4.4.2 Fast Checkpoint/Restore . 59

4.4.3 Recovering Memory Across Reboots 59

4.4.4 Lazy Host Memory Initialization 60

4.5 Evaluation . 61

4.5.1 Micro Benchmarks . 61

4.5.2 Impact on Memory Access Latency 64

4.5.3 Hy-FiX Memory Overhead 66

4.5.4 Hy-FiX Upgrade Time & Downtime Analysis 66

4.6 Discussion . 68

4.7 Summary . 70

4.1 Introduction

Upgrading and maintaining up-to-date hypervisor software is a crucial task in
data center maintenance, fundamental to improve stability, security, and per-
formance of the virtualized environment and the hosted virtual machines. Up-
grading a given hypervisor component (e.g., host OS, VMM) leads to different
levels of disruption at the VM level. For instance, in KVM-based hypervisors
(e.g., QEMU-KVM) simple vulnerabilities can be transparently fixed with no
noticeable downtime with the many Linux live upgrading tools (e.g., Kpatch

48 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

[9]). Despite the minimal impact over VM availability, live upgrading is lim-
ited to patches that replace static code (no changes to data structures) [51],
or specific components (i.e., VMM live upgrade in Orthus [103]). Applying
complex upgrades to core kernel compartments, e.g., memory management
[77], or CPU scheduling [41], require rebooting hosts, terminating VMs, and
potentially incurring a long downtime.

The upgrade campaign, ideally, shall be scalable and transparent, to phase
out more quickly the outdated software without affecting the users and their
VMs. Considering that kernel patches are released as often as once a month
[84], and large cloud infrastructures comprise hundreds of thousands of ma-
chines [103], data center operators find themselves in the need of rebooting a
large number of hosts. Despite the scale of the infrastructure, upgrades must
complete within precise time boundaries regardless of the data center load
to comply with security certifications (e.g., credit card security [23]). Fur-
thermore, upgrading hypervisors should neither affect nor involve data center
users and their services.

Popular providers trade off scalability and transparency when delivering
hypervisor upgrades in their clouds. GCE employs systematic virtual machine
live migrations to upgrade their hypervisors [4]. Hosts are emptied before the
reboot and running VMs get relocated on pre-upgraded healthy servers. Live
migration is known to be resource-demanding. This technique consumes high
network bandwidth to sustain the live transfer of memory and requires suf-
ficient memory and CPU on spare hosts to accommodate the relocated VMs
[37]. Therefore, the number of simultaneous live migrations is limited, result-
ing in longer evacuation phases and delaying upgrade completion. To highlight
the challenge in scaling this technology, [103] reported a 15 day-long delay to
upgrade two clusters with 45.000 VMs, due to the waiting for spare capacity,
the limited bandwidth (10 Gbps), and operating only in suitable time slots
(i.e., at night). Nevertheless, this approach achieves total transparency, avoid-
ing VM termination, and incurring a downtime of only tens of milliseconds
[84].

Live migration is not the only approach for hypervisor upgrades, even on
platforms such as GCE that heavily leverage it. The cheaper preemptible
instances [6], meant to terminate in case of resource shortage, do not live mi-
grate. These less critical instances, running batch or fault-tolerant workloads,
are terminated and restarted in case of host reboot. Platforms like Amazon
EC2 prefer quick, and scalable upgrades, leveraging termination/restart in
response to host upgrades [1]. This approach is non-transparent and resets
the execution state, forcing users to set up scripts to reinitialize/recover the
affected services. Furthermore, a longer downtime is expected because virtual
machines not only have to boot, but their services need to warm up, taking
up to hours (e.g., in-memory data base servers loading data [52]).

4.1. Introduction 49

In summary, we observe that the landscape of hypervisor upgrading tech-
niques is rich and not only limited to live migration. In this Chapter, we
present Hy-FiX, an in-place upgrade mechanism designed to apply arbitrary
upgrades to the host OS and other user-space components of a KVM-based
hypervisor. Hy-FiX was originally introduced in 2019 in [88]. Hy-FiX relies on
a hybrid mechanism of virtual machine suspend-to-disk and suspend-to-RAM
to checkpoint the small-sized virtual hardware state (vCPU, vNICs, etc.),
recovering the bulky guest memory directly from the host RAM. Adopting
Hy-FiX enables data center operators to promptly issue large-scale upgrades,
requiring no external resources to be available. Besides, VMs are transpar-
ently preserved, incurring a downtime in the order of seconds, weakly affected
by the host memory usage, the number of running instances, and instance
workloads.

Our main contribution is the design and implementation of a complete so-
lution to execute quick in-place upgrades for KVM-based hypervisors. Hy-FiX
encompasses our novel memory preserving reboot, a protocol to start a new
upgraded host OS (with upgraded user-space software) while protecting the
virtual machines’ memory during the transition. Such a protocol is split be-
tween the lazy host memory initialization, and the zero-copy memory relink-
ing, two techniques to quickly start an upgraded hypervisor with the preserved
memory made available to the virtual machines. Hy-FiX also adopts a fast
checkpoint/restore that skips the checkpointing/restoring of the guest memory.
This C/R technique, paired with the memory preserving reboot, implements
the zero-copy migration that quickly transfers the virtual machines’ run-time
state across the hypervisor reboot.

We evaluated Hy-FiX by benchmarking the upgrade operation on an
enterprise-grade host, measuring the VM-level downtime, the performance
impact of the lazy memory initialization, and the memory cost to enable the
solution. Our key results are summarized below.

• The VM downtime coincides with the hypervisor upgrade time. Running
VMs are restored as soon as the new host OS boots, regardless of the
CPU/memory load. The upgrade time is weakly affected by the number
of running instances and their memory size.

• Hy-FiX lazy host memory initialization reduces the new hypervisor start
time from the initial 21.88 seconds down to 7.6 seconds, regardless of host
RAM size.

• Virtual machines’ performance following the restoration is lightly af-
fected by the lazy host memory restoration and the zero-copy memory
relinking. No difference persists in the long run.

• The memory permanently allocated by Hy-FiX to operate is 9 GB for a
1 TB host (0.88%).

50 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

The remainder of the Chapter is organized as follows: Section 4.2 presents
the related work. Section 4.3 presents the design of the solution. Section 4.4
explains the implementation details. Section 4.5 presents the evaluation re-
sults. Section 4.6 discusses limitations and further improvements, and Sec-
tion 4.7 recaps the contributions of the Chapter.

4.2 Related Work

The classical approaches to software upgrades are (i) live upgrades, and (ii)
the restarting of the component. We presented this distinction in details in
Section 2.5.1. Live upgrades are intrinsically limited by the state transfer
problem. Even ad-hoc solutions for hypervisors, i.e., Orthus, fall short at live
upgrading every hypervisor component. In the presence of complex upgrades,
especially targetting the kernel code of type-1 and type-2 hypervisors, data
center operators are left with no other choice than to restart the system. Mi-
grations are a prominent tool for both hardware and software maintenance.
Migrations empty the host before the hypervisor is restarted, sparing the
guests from terminating. However, this approach for upgrades hardly scales
in data centers. The limited availability of spare resources and the network
bandwidth to sustain the live migrations limit the number of concurrent up-
grades, extending the lifetime of outdated software [103, 85].

In-place Upgrades. Scalability is fundamental in data centers with thou-
sands of machines. We refer to in-place upgrades as the approaches that
strictly operate within the host boundaries, making it possible to upgrade
an arbitrarily large portion of the data center simultaneously. Besides live
upgrades, in-place upgrades are based on restarting the hypervisor (host re-
boot). In order to limit the disruption that the reboots incur, both indus-
try and academia have devised schemes to (i) shorten the reboot, and (ii)
quickly checkpoint/restore the run-time state of the virtual machines. The
two prominenet families of solutions are: nested-virtualization-based upgrades,
and warm-reboot-based upgrades, the latter comprising our solution Hy-FiX.

In Table 4.1 we compare the whole spectrum of hypervisor upgrades, char-
acterized from the point of view of the scalability (spare capacity, network
transfers, upgrade duration), the transparency, the completeness of the up-
grade, the run-time overhead, and the downtime incurred at the VM level. In
the remainder of the Section, we focus on the in-place upgrades, except for
live upgrades already covered in Section 2.5.2.

Nested-virtualization-based Upgrades. Solutions like [67, 48] rely on a thin
additional virtualization layer below the hypervisor to enable quick and trans-
parent in-place upgrades. The main hypervisor runs as a guest above the thin

4.2. Related Work 51

Sp
ar
e

C
ap

ac
it
y

N
et
w
or
k

T
ra
ns
fe
rs

U
pg

ra
de

D
ur
at
io
n

T
ra
ns
pa

re
nc
y

U
pg

ra
de

C
om

pl
et
en
es
s

R
un

-t
im

e
O
ve
rh
ea
d

D
ow

nt
im

e

M
ig
ra
ti
on

Termination/Restart 3* Medium = Downtime 7
Full SW + HW

7 Very high

(Stateful VM) (hours)

Cold Migration
3* High = Downtime 3

Full SW + HW
7 Very high

(10s min)

Live Migration 3* Very high Very high 3
Full SW + HW

During Very low

(pre-copy) (10s mins [90]) (long [44]) (10s ms [84])

Live Migration 3* High Very high 3
Full SW + HW

During Very low

(post-copy) (10s mins) (long [57]) (10s ms [84]))

In
-p
la
ce

Live Upgrade 7 7 = Downtime 3 KVM module,
VMM

7 Very low

[103] (10s ms)

Nested Virtualization 7 7 = Downtime 3
L1 SW**

Permanent Very low

[48] (10s ms)

Warm-Reboot 7 7 = Downtime 3
Full SW

Post Medium

[87] (short) (13 s)

* Equivalent to the current resource usage on the host to upgrade.
** L1 is the nested hypervisor.

Table 4.1: Hypervisor upgrading techniques summarized. We picture a data center
with thousands of large hosts (> 1TB), focusing on large stateful services deployed
in VMs.

virtualization layer. The hypervisor to upgrade is shut down and a new one
started. However, the two operations happen simultaneously and in parallel:
the second hypervisor boots next to the main one, completing its initialization
while the old hypervisor keeps running. This strategy erases the downtime
due to the hypervisor rebooting.

VMs migrate between the two hypervisors leveraging a zero-copy migra-
tion, also employed by ou Hy-FiX. The two co-located guest hypervisors share
the memory where the content of the virtual machines’ RAM is mapped. As
a consequence, the VMs’ volatile data is immediately available at the des-
tination without the need to copy any bit of it. The upgrade downtime is
negligible, although the double virtualization layer introduces an additional
overhead [35], which permanently impacts the VMs’ performance. We also
note that such an approach cannot upgrade the lower-layer hypervisor, which
ends up requiring a regular reboot. We cover this family of solutions in more
detail in Section 5.2.1.

Warm-reboot-based Upgrades. There are four stages involved in a tradi-
tional host reboot: (i) hardware reset, (ii) firmware (BIOS), (iii) boot-loader,
and (iv) kernel stage [49]. A traditional reboot lasts minutes (see Section 4.5.1)
and clears the hardware state of the machine, losing all the run-time state of

52 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

the system, applications, and virtual machines. Reducing the duration and
disruption that a reboot incurs is crucial to implement a satisfactory upgrade
scheme based on restarting the hypervisor.

A Warm-reboot, also known as a soft-reboot, is a technique widely avail-
able in mainstream systems (i.e., kexec in Linux [59]) that consists of using
the running OS as boot-loader to directly start a second OS purely in soft-
ware. First, the warm-reboot procedure buffers in-memory the OS image, the
ramdisk, and other data necessary to boot a new system. Then, the OS shuts
down, leaving a single active thread of execution where a jmp instruction sets
the instruction pointer to executing the new OS image. The warm-reboot
skips the first two phases of a traditional reboot (i.e. hardware reset and
firmware), and, therefore, significantly reduces the reboot duration. Further-
more, the DRAM avoids the hardware reset, enabling the fast recovery of the
execution state left by the terminated OS (i.e., the virtual machine memory
content).

Solutions like [79, 47, 66, 69, 98, 61, 106, 85] leverage a warm-reboot to
reset or replace an OS, quickly recovering the state from the residual RAM
content. Otherworld [47] is one of the first applications of a warm-reboot
to recover from a system crash. The authors propose the warm-reboot to
switch from a crashed Linux instance (kernel panic) to a fresh one previously
loaded in memory. Otherworld inspects the memory left by the crashed kernel
to recover the list and execution state of the running processes within the
previous OS. However, Otherworld does not tackle the problem of service
downtime. Indeed, the authors do not discuss the time taken to restore the
services.

RootHammer [66] extends the idea from Otherworld to refresh a running
Xen hypervisor. RootHammer demonstrates that preserving across a warm-
reboot the VMs’ memory with the virtual-to-physical mapping enables for a
quicker restoration than a typical VM suspend-to-disk. RootHammer achieves
as such by overhauling the memory boot allocator of Xen, adding a costly
procedure to individually mark as protected each page (millions of operations).
RootHammer incurs a downtime of 43 seconds on a 12 GB host, demonstrating
a poor scalability with respect to the host RAM size.

ReHype [69] derives from Otherworld and RootHammer. ReHype recovers
the VMs across a Xen failure. Consequently, ReHype focuses on the detection
and repairing of the inconsistencies that the crash incurs. The discussion
about how memory preservation is performed and the downtime the VMs
incur is missing.

KUP [61] is a solution that leverages a warm-reboot (kexec) to replace the
Linux kernel while preserving some selected processes. The state of the appli-
cations is checkpointed to non-volatile memory thanks to the tool CRIU [3]
to checkpoint/restore arbitrary Linux processes. The authors propose a re-

4.3. Hy-FiX: Architecture and Design 53

covery scheme that leverages memory preservation across the warm-reboot.
The old Linux bootmem allocator [72] is used to protect certain pages during
the early boot stages until the applications are restored. This allocator has
been dismissed from the x86 Linux code and must be carefully re-introduced
in the current kernel versions. Furthermore, the OS switch time in KUP is 25
seconds and no effective optimization is proposed, especially concerning the
growth of host RAM in newer machines.

Our proposition, Hy-FiX, is the first warm-reboot-based upgrade tool for
KVM-hypervisors [87]. As for RootHammer and KUP, Hy-FiX preserves the
virtual-to-physical mapping for the guest memory, recovering such a memory
after the reboot (zero-copy memory re-linking). During the reboot, Hy-FiX
protects the guest memory by partitioning of the host RAM in safe to use
during boot and memory ranges with data to preserve. This coarse-grain
approach, coupled with the lazy memory recovery that defers most of the
restoration work when VMs are already resumed, decouples host RAM size
from the hypervisor restart duration. Indeed, typical warm-reboots force the
VMs to be unavailable for an extended time that linearly increases with the
size of the host RAM, a problem that none of the existing solutions tackle.

The same year we presented the full details of Hy-FiX (i.e., 2021), Microsoft
published a research paper describing VM-PHU [85], a warm-reboot-based
upgrade for their hypervisor (a modified version of Hyper-V [25]). VM-PHU
is deployed in production in Microsoft Azure. As for RootHammer, KUP,
and Hy-FiX, VM-PHU leverage the warm-reboots and the preservation in
RAM of the guest memory across the reboot. Notably, VM-PHU tackles the
problem of in-flight I/O operations that slow down the fast checkpointing of
VMs. Furthermore, VM-PHU is the first warm-reboot-based upgrade solution
that supports the transparent checkpoint/restore of non-SR-IOV devices di-
rectly assigned to the VMs. Hy-FiX handles differently memory preservation.
Hy-FiX leverages a bitmap instead of the proposed sorted linked list to record
the pages to preserve. This Hy-FiX feature, combined with the lazy restora-
tion, avoids the fragmentation-related problems that affect the downtime of
the VM-PHU.

4.3 Hy-FiX: Architecture and Design

Hy-FiX reboots the host to achieve the complete upgrade of the hypervisor.
Upgrading a KVM hypervisor consists of replacing the following critical com-
ponents: (i) the host OS and the (ii) VMM (which includes the emulator, e.g.,
QEMU, and the KVM modules). Replacing a component implies restarting
it, and for the OS, this translates to a host reboot.

The reboot clears the hypervisor state, resulting in all the running in-
stances being terminated. Hy-FiX objective is to efficiently restore the hyper-

54 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

visor state once the reboot completes, bringing back all the VMs precisely as
they were before the upgrade. The hypervisor state generally comprises:

• Virtual infrastructure configuration: information on hosted VMs (sizes,
number, virtual hardware configuration), local and remote storage, and
the virtual network configuration.

• Virtual hardware state: virtual devices such as vCPUs, vNICs, virtual
disks, etc., implemented by the VMM as a collection of emulation rou-
tines and data structures that hold the context of device registers.

• Virtual machine memory: the content of each VMs’ RAM.

The virtual infrastructure configuration is provided by the data center or-
chestrator (e.g., OpenStack). It is typically uploaded to a local agent running
on the host which actuates commands on the orchestrator’s behalf. The size
in bytes of this state is negligible compared to the other parts of the hypervi-
sor state, hence we assume that the cloud orchestrator offers APIs to restore
it right after the reboot.

The virtual hardware state is more complicated. The corresponding data
depends on the version of the VMM implementing it. Hy-FiX upgrades the
VMM, so the new version may not be compatible with the state within the
old hypervisor. Typically, VMMs observe forward compatibility [15], meaning
that the checkpoint image of a virtual machine can be supplied to a later VMM
version. For Hy-FiX we assume that the VMM, in our case QEMU with KVM
[15], supports this feature.

In contrast to the virtual hardware state, the virtual machine memory
content depends on neither the VMM version, nor the host OS, and any other
piece of software in the hypervisor. The content of a VM page is the same as
the content of the host frame mapping it.

Hy-FiX implements two techniques to preserve and recover the virtual
hardware state of the VMs and their memory content. (i) Fast check-
point/restore, instructs the VMM to serialize the VM hardware state and
save it to as non-volatile support. The content of the virtual machine’s RAM
is skipped. The complementary procedure is executed after the reboot to
restore the VMs. (ii) Memory preserving reboot protects across the reboot
the content of the host frames that map the VM’s RAM. We discuss these
techniques in detail in the remainder of the Section.

4.3.1 Fast Checkpoint/Restore

The VMM must serialize into a standard format the virtual hardware state for
a running VM (e.g., QEMU format [15]) to maintain forward compatibility
with an upgraded version. Hy-FiX explicitly instructs the VMM not to dump
the VM RAM content. The data saved to non-volatile memory by the fast

4.3. Hy-FiX: Architecture and Design 55

C/R is in the order of tens of megabytes. The read/write operations lightly
impact the whole upgrade downtime. We address this aspect in more detail
in Section 4.5.1). The above technique ensures the preservation of the VM
virtual hardware state. We next present how to take care of the VM memory.

4.3.2 Memory Preserving Reboot

Host OS Switch Hy-FiX leverages warm-reboots to replace the host OS and
all the additional software running on top (i.e., the VMM comprising QEMU).
Different from traditional reboots, no hardware reset takes place. The warm-
reboot does not clear the host RAM, enabling for memory preservation across
the reboot. Hy-FiX enriches the warm-reboot protocol by forcing the new host
OS to boot within the safe memory region.

Despite the absence of a hardware reset, the integrity of virtual machine
memory is still at risk. While the new host OS is booting, it may uninten-
tionally allocate and overwrite the memory we are trying to preserve. When
Hy-FiX is first enabled, during the host commissioning, it identifies a RAM
area called safe memory region. Such an area is designated to hold the im-
age and the boot-time memory of the upgraded hypervisors started with the
warm-reboots. The frames that map the virtual machines’ pages cannot be
allocated from the safe memory region. As a consequence, a legacy host OS
can reliably boot within that area without the risk of corrupting any pre-
served memory. Hy-FiX makes sure that the warm-reboot loads and confines
the new host OS within the safe memory region, preventing the former from
accidentally accessing it.

Lazy Host Memory Initialization Hy-FiX lazy host memory initialization
speeds up the host OS boot time. During the boot, the OS spends a significant
amount of time initializing the memory. We measured the aforementioned
behavior in Linux, in Section 4.5.1. The OS registers the memory regions as
usable or protected. For each usable area, the OS executes several per-frame
operations that enable the usage of the virtual memory. Furthermore, the
OS initializes the memory manager, filling the tables and data structures that
track the system’s free memory (e.g., Linux buddy allocator free page lists).
On machines with hundreds of millions of pages, this prolongs the booting
phase proportionally to the size of the total installed memory, lasting more
than 11 seconds on our Linux machine with 768 GB of RAM. Hence, we
devised a lazy host memory initialization that:

1. Initializes first the safe memory region, which fixed-size is small (e.g.,
16 GB). Thanks to the modified warm-reboot, the new host OS stays
confined in that region.

56 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

uninitilized
RAM

safe memory
region

safe memory
region

safe memory
region

uninitilized
RAM

vm page
 0x05

ho
t-p

lu
gg

ab
le

ch
un

k

host RAM

old host kernel new host kernel

warm-reboot host lazy memory
initialization

access page 0x05

Figure 4.1: Hy-FiX memory preserving reboot.

2. Initializes as a background task the remaining of the memory outside the
safe region once the OS has fully booted (i.e., the user-space environment
is ready).

As a result, Linux full booting time is around 8 seconds (on our target 768 GB
machine), independently from the host RAM size, decreasing consequently the
VMs’ downtime.

VMs restart without the memory being fully initialized. The lazy host
memory initialization marks VM memory as non-accessible to intercept the
first-time access. The resulting page-fault is handled by initializing, on-the-
fly, the 128 MB-aligned chunk of physical memory that includes the requested
address. The memory page is mapped accessible and the read/write operation
resumes. Note that the 128 MB chunk is only initialized once at the first page-
fault involving it. Figure 4.1 illustrates the whole host OS switch, performed
with the warm-reboot and the lazy memory initialization, achieving together
the memory preserving reboot.

Recovering Memory Across Reboots The memory preserving reboot pro-
tects the memory content outside the so-called safe memory region, where the
virtual machines’ RAM is mapped. Preserving such memory is insufficient to
allow the resumed VMs to access their memory. The missing piece of informa-
tion to recover is the virtual-to-physical mapping, i.e., the page-tables’ content
that maps the physical guest addresses to the HPAs (physical addresses within
the host). The hypervisor manages the page-tables, which are kept in host

4.3. Hy-FiX: Architecture and Design 57

root level
PT

1st level
PT

1st level PT 2nd level PT

physical
memory

disk 1 2

Address of
page-table (PT) root

... page-tables

logical
page-table
memory

Figure 4.2: The virtual-to-physical mapping for the VMs’ memory is recovered
from preserved multi-level page-tables. The physical root address of a page-table
recursively reveal the location of the whole structure.

VM

VM fast
checkpoint

emulator X (qemu)

memory preserving
reboot

host kernel X (Linux)

VM fast
restore

VM

emulator X+1 (qemu)

host kernel X+1 (Linux)

cpu

nic

disk
mem

host RAM
1

2

3

4

5

disk

vm hw
state

cpu

nic

disk
mem

memory allocation
(outside safe memory region) zero-copy

re-linking

Figure 4.3: Hy-FiX hypervisor upgrade.

memory. As for the content of the virtual machines’ memory, the hardware
dictates the format of the page-tables. Since their representation is stable with
respect to the host OS, and other software layers, page-tables are a perfect
candidate to be preserved—as-is—in memory. In Hy-FiX, the page-tables are
kept outside the safe area region and preserved across the reboot.

We call this technique zero-copy re-linking. A single 64-bit integer—the
page-table root address—enables the recovery of the whole virtual-to-physical
mapping for a VM. Figure 4.2 shows the mechanism in action in a simplified
scenario, where page-tables only have two levels (note that x86-64 uses 4
levels). The physical root addresses of every page-tables that maps VM’s are
dumped to non-volatile memory. Upon restoration, the addresses are loaded
and the mapping is restored.

4.3.3 Hy-FiX Upgrade-cycle

Figure 4.3 provides an overview of the whole upgrade cycle with Hy-FiX. Upon
the creation of a VM, the memory is allocated outside the safe memory region
that the new host OS uses to boot 1 . When an upgrade is issued, the binaries
(i.e., the new OS image and the user-space binaries) are downloaded locally on

58 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

What Version # Files LoC Modified LoC New

Linux 5.2 8 297 -
Linux Modules 5.2 2 - 1431
kexec-tools 2.0 2 22 -
QEMU 2.11.0 4 48 -

Table 4.2: Hy-FiX code analysis.

the node. The new OS image is buffered in the host memory and stands ready
to be later copied by the warm-reboot procedure into the designated location
(within the safe memory region). Fast C/R is invoked to checkpoint the virtual
hardware state of every running VMs (their memory remains resident in host
RAM) 2 . Fast C/R pauses the VMs, and the unavailability starts. The warm-
reboot switches the host OS effectively booting the new hypervisor 3 . The
upgraded hypervisor fully boots and initializes the user-space with the VMM.
The VMs are restored from the checkpointed image 4 , the virtual memory
space is restored via the recovered page-tables 5 . The virtual machines are
fully restored becoming available again. The physical memory storing the
VMs’ RAM content is lazily initialized within the host OS upon the first
access.

4.4 Implementation

A proof-of-concept for Hy-FiX has been implemented for the QEMU-KVM
hypervisor on Intel x86-64. The PoC is based on QEMU version 2.11, and
Linux kernel version 5.2. We report in Table 4.2 the total modified/added code
to legacy components (Linux kernel, kexec-tools, and QEMU). The majority
of new code resides in two Linux loadable modules for a total of 1431 lines of
code (LoC). The two modules implement the lazy host memory initialization
and the zero-copy memory re-linking (Section 4.3.2). The single modification
to the Linux kernel consists of exposing the ad-hoc routines that execute the
individual steps of the Linux memory hot-plugging. We leverage such routines
to implement the lazy initialization of the memory.

4.4.1 Host OS Switch

Hy-FiX leverages kexec [59], an upstream Linux feature that implements
the warm-reboot procedure. The memory preservation technique presented
in Section 4.3.2 is implemented by customizing the physical memory layout
map (memmap), which describes to a booting Linux the physical address ranges
corresponding to the usable RAM or the reserved regions destined to other uses
(e.g., mapping hardware registers). This memmap is conventionally populated

4.4. Implementation 59

by the boot-loader and stored inside the zero page [18], the structure that
also holds the Linux boot-time parameters. Hy-FiX populates the memmap
so that the memory to protect, outside the safe region, is hidden and not
presented to the booting OS. The booting OS, not aware of such a memory,
cannot inadvertently use it. Conversely, the safe memory region will be the
only usable RAM region presented to the booting kernel.

4.4.2 Fast Checkpoint/Restore

Hy-FiX leverages the QEMU save/load functions to serialize/deserialize the
virtual hardware state of running VMs. QEMU is patched to skip the dump-
ing of the memory [68]. The patch prevents QEMU from checkpointing any
virtual machine’s memory marked as shared. However, since the release of
QEMU 4.0.0, such a feature has become upstream under the migration flag
x-ignored-shared.

In Hy-FiX, the memory recovery is performed by two kernel modules
that together implement an agent called Reboot-Persistent Memory Manager
(RPMM). The RPMM loads the page-table root addresses from the storage to
re-build the virtual address space for each virtual machine. The reconstructed
memory is exposed to the VMM (QEMU) as a set of memory-mappable (mmap)
virtual device file, one per VM. We then leverage an option of QEMU to back
the guest memory with a memory-mappable file, providing the virtual device
files exposed by the RPMM. Note, is a classic way in QEMU-KVM to provide
advance features to the guest memory. For instance, mmap-ing a virtual device
file is also used to provision hugepages, or to share the VM’s memory with
other host applications (e.g., vhost-user protocol).

The RPMM adopts the same interface via virtual device files to expose
memory allocation for new VMs. In order to create a new VM, the RPMM
is notified to create a virtual device file that QEMU mmaps to back the guest
RAM. RPMM servers the requested memory by allocating frames outside the
safe memory region. This also allows the RPMM to be in control of the
page-table that hold the virtual-to-physical mapping for the VM.

4.4.3 Recovering Memory Across Reboots

The RPMM module manages the memory that survives the warm-reboot,
providing mapping reconstruction, and the allocation of memory outside the
safe memory region. As the Linux page allocator disallows to chose the loca-
tion of the frames that serves an allocation, the RPMM iteratively requests
frames until a suitable one is found. Given the small size of the safe memory
region, only a few iterations are needed to obtain a frame outside this area.
Once a frame is allocated for a VM, the RPMM records the information in a
bitmap, the preserved memory bitmap, describing the status of all the frames

60 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

in the host (one bit per frame). After the reboot, the bitmap indicates to
Hy-FiX which frames were mapping VM’s memory within the old hypervisor.
Consequently, those frames are kept reserved and not returned to the page
allocator upon initialization of the memory. The bitmap resides inside a sin-
gle huge-page (e.g., 1 GB is enough for a 32 TB hosts), at a known physical
address.

In contrast to what we presented in Section 4.3.2, our current PoC does not
preserve the entire page-tables in host RAM. To simplify the implementation,
we partially dump to storage the second-level page-table entries (PMD in
Linux [73]). Note, we checkpoint the second-level entries outside the critical
path when VMs are still running. This barely affects the experiments. Even
for a large RAM, the memory footprint of the second-level entries is modest
(less than 1 MB for a 256 GB host). The time to load such data from disk
is negligible compared to the magnitude of the upgrade duration (tens of
milliseconds according to Figure 4.6).

4.4.4 Lazy Host Memory Initialization

Linux supports memory hot-plugging for the x86-64 architecture [86]. Hot-
plugging is based on the SPARSEMEM model [14]. SPARSEMEM logically
divides memory into chunks, called sections, of 128 MB. The Linux kernel
populates an array with struct page entries for each frame within a section.
Such a structure is called mem_map (not to be confused with the physical
memory layout memmap mentioned in Section 4.4.1). Linux implements hot-
plugging in three phases:

1. Physical memory addition. When a new DRAM module is physically
added to the motherboard, the firmware notifies the kernel to register
the physical addresses where such RAM is mapped.

2. mem_map population. For each frame within the added memory, entries
of the mem_map array are created and populated.

3. Logical memory addition. The added frames are handed to the page
allocator, hence added to the free-page lists that are later used to serve
memory allocations.

Phases (2) and (3) can take a significant amount of time on large hosts. If
executed at boot-time, the two phases are responsible for a long system start-
up time (as shown in Figure 4.7). In Hy-FiX lazy memory initialization, we
execute phases (2) and (3), on-demand, upon the first-time access to a page
within the 128 MB section. Hy-FiX defers this memory initialization cost only
when the memory is needed. We modified the Linux hot-plugging subsystem
to expose as internal kernel APIs the functions responsible for phases (2) and

4.5. Evaluation 61

CPU 2 x Intel Xeon E5-2680 (2.40GHz, 14 cores)
RAM 768 GB
Storage SSD SAS PX04SMB040
Network Intel 82599ES 10 Gbps

Table 4.3: Testbed node specifications.

(3). The RPMM module invokes these functions to lazily initialize a target
128 MB section.

4.5 Evaluation

In this Section, we present the evaluation of Hy-FiX along several dimensions.
First, we benchmark the time and scalability of the fundamental tasks that
compose an Hy-FiX upgrade: the memory preserving reboot and the fast C/R.
Second, we analyze the impact that lazy memory initialization has over the
resumed VMs. Third, we analyze the memory overhead that Hy-FiX compels.
Fourth, we analyze and discuss the end-to-end upgrade time and downtime
for different configurations of running instances. The experiments have been
conducted on Grid5000 [30], on a host whose characteristics are reported in
Table 4.3.

4.5.1 Micro Benchmarks

Fast C/R Analysis We compare the total time to checkpoint/restore a sin-
gle VM instance for Hy-FiX fast C/R and the QEMU original suspend-to-
disk. The target VM is equipped with a single vCPU, a single vNIC, a disk
controller, a CD-ROM drive, and a progressively larger RAM. Furthermore,
the VM memory is pre-filled with random data to simulate the activity of a
production workload.

Figure 4.4a reports that Fast C/R duration in Hy-FiX for a 4GB VM is
0.44 seconds, 0.2% of legacy QEMU C/R time. For a larger 256 GB VM, Fast
C/R duration is 2.51 seconds, 0.02% of QEMU C/R, and 2.07 seconds more
than Hy-FiX’s for a 4 GB VM. This result proves the effectiveness of skipping
the serializing/deserializing of the virtual machine’s RAM. Figure 4.4b shows
the size of the virtual machine checkpointed state, comprising only the virtual
hardware state for a single VM. The size averages between 1.63 MB and
3.51 MB, remaining mostly constant with respect to the guest size.

Fast C/R duration weakly increases with respect to the guest RAM size.
However, as Hy-FiX leverages QEMU legacy C/R routines, it inherits some
size-dependent tasks within. During the checkpointing, QEMU builds a
bitmap mapping all the guest pages, conveying the information of whether

62 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

4 8 16 32 64 128 256
VM Memory Size (GB)

100

101

102

103

104

Ti
m

e
(s

)

0.44

0.45

0.52

0.74
0.93

1.43
2.51

22.85

40.28
73.03

138.23
278.31

542.66
1057.76Hy-FiX C/R

QEMU C/R

(a) Checkpoint/restore time.

4 8 16 32 64 128 256
VM Memory Size (GB)

1 MB

32 MB

1 GB

32 GB

1 TB

Ch
ec

kp
oi

nt
 S

ize
 (K

B)

1.63 MB

1.26 MB

2.75 MB

2.85 MB

2.79 MB

2.90 MB

3.51 MB

3 GB

7 GB
15 GB

31 GB
63 GB

127 GB
255 GB

Hy-FiX C/R Size
QEMU C/R Size

(b) Checkpointed state size.

Figure 4.4: Comparison QEMU checkpoint/restore vs. Hy-FiX checkpoint size for
different VM sizes.

a page shall be dumped or not. We call this operation checkpoint set-up phase
as it takes place before the serialization of the VM state. Upon restoration,
a new QEMU process starts. QEMU registers the allocated virtual machine’s
memory within KVM. We call this operation restore set-up phase as it takes
place before the deserialization of the VM state. We isolated the serializa-
tion/deserialization of the checkpointed state from the set-up phases. Fig-
ure 4.5a shows that the serialization/deserialization to disk remains constant
with respect to the VM size and accounts for a total of 110 milliseconds at
worst. Fast C/R optimally scales with a multi-VM checkpoint/restore. Fig-
ure 4.5b shows 64 VMs (with 4 GB RAM each) checkpointed and restored in
0.21 seconds (for the slowest VM), a duration close to the fast C/R time of a
single 4 GB VM.

Our current proof-of-concept saves and restores from the disk the second-
level entries of the page-tables mapping VM memory (see Section 4.4.3). Fig-
ure 4.6 confirms the negligible impact that this operation has: around 15
milliseconds for a 256 GB instance.

Memory Preserving Reboot Analysis Leveraging warm-reboots saves an
important fraction of time with respect to traditional machine reboots. We
define the host OS switch time as the time between the invocation of the

4.5. Evaluation 63

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Time (s)

256
128

64
32
16

8
4

VM
 S

ize
 (G

B)

Checkpoint set-up phase
Write Disk
Restore set-up phase
Read Disk

(a) Single VM checkpoint/restore time.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Time (s)

64
32
16

8
4
2
1

of

 4
GB

 V
M

s

(b) Multi VM checkpoint/restore time.

Figure 4.5: Hy-FiX fast C/R time breakdown.

Machine Reboot (s) kexec (s)
768GB, 2xIntel E2-2680 (2.40GHz) 143.27 21.88
256GB, 2xIntel E5-2630 (2.20GHz) 99.86 15.23

Table 4.4: Machine reboot vs. kexec

reboot system call until the initialization of the user-space (when QEMU
starts). We compare the host OS switch time between a traditional machine
reboot and a warm-reboot (kexec). The test is performed on two different
host configurations: the host reported in Table 4.3 and a smaller 256 GB
dual Intel Xeon E5-2630. The results reported in Table 4.4 show that the
warm-reboot reduces the OS switch time by 6̃.5x compared to the traditional
approach.

Figure 4.7 shows the different warm-reboot duration on the same host as
in Table 4.3, with a progressively larger RAM. We conclude that memory
initialization has the largest impact on the host OS switch time. The host
configured with 768 GB of RAM takes 12 seconds more than the 64 GB
configuration, almost twice the time to reboot.

Hy-FiX lazy host memory initialization reduces the warm-reboot duration
and makes it nearly immune to the growth of host memory. Figure 4.8 depicts
the OS switch time with the lazy procedure enabled, evaluated for different

64 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

4 8 16 32 64 128 256
VM Memory Size (GB)

0

5

10

15

Ti
m

e
(m

s)

load 2nd-level PT time
2nd-level PT size

12 KB
24 KB
48 KB
96 KB
192 KB
384 KB
768 KB

Figure 4.6: Second-level page-table load time from disk.

64 128 256 512 768
Host Size (GB)

0
5

10
15
20
25

Ke
xe

c
Re

bo
ot

 T
im

e
(s

)

Figure 4.7: OS switch time w/ kexec.

host RAM sizes. The time remains constant throughout, differently from what
we measure in a traditional kexec reboot in Figure 4.7. Indeed, with lazy
memory initialization the host OS initializes only the 16 GB of safe memory
region at boot (Figure 4.8a), leaving the rest to be processed on-demand and in
the background (Figure 4.8b). The only remaining size-dependent operation
is the physical memory addition. The kernel registers the memory within
sysfs and initializes an identity mapping for the added physical range. These
operations are however lightweight (Figure 4.8a).

4.5.2 Impact on Memory Access Latency

Hy-FiX immediately resumes the VMs as soon as the host OS reboots, before
the host memory is fully initialized. The on-demand memory initialization
reduces the reboot time at the expense of a temporary increase in the av-
erage memory access latency. We analyze this overhead by measuring the
performance of the in-memory key-value store Redis [16].

Using the Yahoo Cloud System Benchmark (YCSB), [45] we issue a series
of read-requests, each asking for a random (Zipf-distributed) 2 KB record
stored within one of the 16 deployed Redis instances, hosted on as many
VMs. Each virtual machine is provisioned with 32 GB of RAM, loaded with
key-value records for an aggregated 512 GB Redis deployment. The VMs are

4.5. Evaluation 65

64 128 256 512 768
Host Memory Size (GB)

0
2
4
6
8

10
12

Ti
m

e
(s

)

64 128 256 512 768
Host Memory Size (GB)

kexec Physical Mem. Add Background Mem. Init.

(a) OS switch time. (b) Memory initialization time.

Figure 4.8: OS switch time w/ lazy host memory initialization.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (s)

100

200

300

400

500

600

La
te

nc
y

(u
s)

Avg. latency Hy-FiX (99th percentile)
Avg. latency Hy-FiX (90th percentile)
Baseline avg. latency (90th percentile)
Host memory init.

Figure 4.9: Redis average slow read-request after a Hy-FiX upgrade.

hosted on the 768 GB machine presented in Table 4.3. Halfway through the
benchmark, we issue the upgrade for the hypervisor. We record the real-time
evolution of the response latency after the VMs are resumed. To analyze the
worst case of Hy-FiX, we decided to look at the 90% or the 99% of requests
experiencing the highest response latency.

Figures 4.9 shows the results averaged over 0.5-second intervals. The sud-
den restart of the virtual machines causes a spike in the request latency which
flattens within the next 500 milliseconds. The trend steadily decreases from
being 40% higher, at 0.5-1 second, to 13% higher, at 4.5-5 seconds, eventu-
ally hitting baseline levels upon completion of the host memory initialization
(after 7.6 seconds for 512 GB). Note, the 99th percentile follows the same
trend. Another evidence that shows the performances quickly resuming after
the restoration is visible in Figure 4.10. We grouped the 90th percentile laten-
cies in 3 temporal windows. The first window within the first three seconds
shows that 1% of the requests take twice the time to complete compared to the
baseline. Starting from 4 seconds, the latency distribution is indistinguish-
able from the baseline. As more memory is lazily initialized, fewer and fewer
memory accesses trigger the on-demand initialization procedure. Hence, the

66 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

100 200 300 400
Latency (us)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

(0-3 secs)

100 200 300 400
0.00

0.25

0.50

0.75

1.00
(4-7 secs)

100 200 300 400
0.00

0.25

0.50

0.75

1.00
(8-50 secs)

Baseline Hy-FiX

Figure 4.10: Latency distribution of Redis slow read-request (90th percentile),
grouped in three intervals since the upgrade.

average access latency quickly converges to the original value.

4.5.3 Hy-FiX Memory Overhead

Hy-FiX demands memory to operate. Such additional memory is allocated
for (i) the safe memory region, and the (ii) preserved memory bitmap.

The safe memory region contains the new host OS during its booting phase.
Its recommended size mainly depends on the memory installed in the host. In
our experiments, 1 GB is the minimum size to store a Linux image, including
an additional 32 bytes for every frame installed in the system. The rationale
is to have enough space to allocate the mem_map, a large kernel structure we
introduced in Section 4.4.4 that, indeed, holds a 32-byte descriptor for every
frame. The persistent memory bitmap requires one bit to map each frame in
the host. For a 1 TB host, the bitmap size is 2 MB. Note, the bitmap can be
stored contiguously in a 2 MB huge-page.

For a 1 TB host, in total, 9 GB must be reserved for the safe memory
region and 2 MB for the bitmap. The memory overhead of Hy-FiX represents
0.88% of the total host memory.

4.5.4 Hy-FiX Upgrade Time & Downtime Analysis

We define the Hy-FiX upgrade-time as the elapsed time from the start of
the checkpointing for the first VM until the restoration of the last VM. Fig-
ure 4.11a reports an upgrade-time that ranges from 8.14 seconds to 12.34 sec-
onds, for a single 4 GB and 512 GB VM respectively. In the multi-instance
scenario (Figure 4.11b), the upgrade-time is less than 9.37 seconds for 128
VMs of 4 GB each (total of 512 GB of guest memory).

The host OS switch dominates the total upgrade-time. The host OS switch
accounts for up to 62% of the total upgrade time (with a 512 GB VM), and
95% (with 4 GB instance/s). The host OS switch time is independent of the

4.5. Evaluation 67

0 1 2 3 4 5 6 7 8 9 10 11 12
Downtime (s)

512
256
128

64
32
16

8
4

VM
 M

em
or

y
Si

ze
 (G

B)

Checkpointing phase OS switch time Restoration phase

(a) Single VM running.

0 1 2 3 4 5 6 7 8 9 10 11 12
Downtime (s)

128
64
32
16

8
4
2
1

of

 4
 G

B
VM

s

(b) Multiple 4 GB VMs running.

Figure 4.11: Hy-FiX upgrade time breakdown.

host memory usage and the number of running guests. As a consequence,
Hy-FiX is weakly affected by the host load and consolidation, in contrast to
alternative approaches that copy/transfer the memory (i.e., live migration). If
we compare Hy-FiX upgrade time to the reload time of a 120 GB in-memory
database, as reported in [52], our proposition would resume the service within
13 seconds, against the 2.5-3 hours expected for VM termination, restart, and
database re-population.

The virtual machine downtime coincides with Hy-FiX upgrade-time. We
show this by measuring the real-time throughput of two network applications,
Iperf and Redis, during an upgrade. Iperf is a tool to performs TCP bulk
transfers between a client and a server. We deploy Iperf inside a 32 GB VM
running on our 768 GB host. The setup used for Redis is the same as the one
presented in Section 4.5.2. The clients for both applications are within the
same data center on a different host. The results are shown in Figure 4.12.
The throughput for Iperf and Redis suddenly drops to zero upon checkpointing
the VMs. About 8 seconds later the VMs are restored and the throughput
suddenly ramps to pre-upgrade levels. Notice that Redis is initially affected
by the host memory initialization as discussed in Section 4.5.2.

We must mention that during the experiment of Figure 4.12, the clients
stop transmitting new requests once the blackout is detected. They restart

68 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

0 10 20 30 40 50
Time (s)

0
2G
4G
6G
8G

10G
12G

Ba
nd

wi
dt

h
(b

ps
)

Iperf Hy-Fix
Average baseline
Upgrade

(a) Iperf throughput.

0 10 20 30 40 50
Time (s)

0
20k
40k
60k
80k

100k
120k

Op
s (

pe
r s

ec
)

Redis Hy-Fix
Average baseline
Upgrade

(b) Redis throughput.

Figure 4.12: Throughput during a Hy-FiX upgrade.

only when VMs are detected available. For completeness, we also report the
experiment in which the clients keep on retransmitting during the blackout.
When the network packets of a request time out, according to TCP Retrans-
mission Timeout (RTO), the new retransmission is sent after twice the RTO
(exponential backoff). In such a specific case the perceived downtime by the
clients is around 12 seconds as shown in Figure 4.13. It is worth stressing
that the virtual machines are truly available once the upgrade completes.
However, clients may experience a different downtime based on factors such
as application-level timeouts, network protocols, and the sending time of the
request with respect to the on-going hypervisor upgrade.

4.6 Discussion

In this section, we discuss the limitations of Hy-FiX and the possible directions
that can be explored to improve the solution.

Hy-FiX enables the complete replacement of the software deployed, notably
the host OS and the VMM. However, there are requirements to comply to en-
able the preservation of the virtual machines’ state across the upgrade. (i) The
new version of the VMM must be compatible with the virtual hardware state
(forward compatibility). (ii) The representation of the VM memory must not

4.6. Discussion 69

0 10 20 30 40 50
Time (s)

0
2G
4G
6G
8G

10G
12G

Ba
nd

wi
dt

h
(b

ps
)

Iperf Hy-Fix
Average baseline
TCP RTO

(a) Iperf throughput.

0 10 20 30 40 50
Time (s)

0
20k
40k
60k
80k

100k
120k

Op
s (

pe
r s

ec
)

Redis Hy-Fix
Average baseline
TCP RTO

(b) Redis throughput.

Figure 4.13: Throughput during a Hy-FiX upgrade w/ clients retransmitting.

change. In Section 4.3, we made the assumption that the VMM always comply
with (i), as popular instances do (e.g., in QEMU-KVM). Regarding (ii), we
stated in Section 4.3 that VM memory representation is independent of the
software version. However, there are exceptions: compressed memory and en-
crypted memory (e.g., Intel Software Guard Extensions—SGX [8]). Currently,
Hy-FiX can efficiently restore the virtual machines if their memory is preserved
as-is. Supporting scenarios where the memory representation changes requires
plug-ins that convert between the formats, involving operations that may be
lightweight (e.g., setting an encryption key), or a time-consuming serializa-
tion/deserialization of the data (e.g., adopting a new compression format).

Upgrade-wise, Hy-FiX leverages warm-reboots, which skip the hardware
reset and firmware phase of the machine reboot. Therefore, maintenance tasks
that require powering off a node, e.g., replacement of a hardware component,
cannot be performed. Certain firmware upgrades are possible across warm-
reboots, most notably flashing the CPU microcode. This class of upgrades
turned out to be critical in recent years to mitigate the infamous Spectre and
Meltdown vulnerabilities. CPU microcode updates are possible at runtime
but are recommended to be applied at an early stage of the OS boot (at the
earliest time possible) to maximize coverage [7], making Hy-FiX particularly
suitable for the task.

70 Chapter 4. Across-reboot Migration for Hypervisor Upgrades

Hy-FiX leverages the emulator routines to checkpoint/restore the VMs’
hardware state (see Section 4.3.1). Therefore, Hy-FiX cannot operate on VMs
with devices unsupported by the VMM. For instance, QEMU does not sup-
port the checkpoint/restore of directly assigned devices. As discussed in Sec-
tion 2.3.1, this limitation is typically overcome by leveraging the hot-plugging
capabilities of the guest OS and QEMU. The problematic devices are removed
before the checkpoint and re-attached after the restoration [100].

Ultimately, the 7.6 seconds of Hy-FiX OS switch time dominate the down-
time, representing a good candidate for further optimization. With lazy
memory initialization, the strategy of deferring the execution of the time-
consuming memory initialization dramatically shortened the reboot. One
might wonder if other sub-tasks of the OS reboot could be treated the same
way. However, it gets clear by inspecting the boot log (e.g., dmesg in Linux)
that there are hundreds of diverse tasks that contribute evenly to the whole
reboot delay. Initialization of interrupts, buses, sensors, PCI/PCIe devices,
NICs, SCSI controller, as well as subcomponents such as the scheduler, the
file-system, the networking, etc., are simply too many to be tackled indepen-
dently. In [32], the authors devised a mechanism to boot multiple bare-metal
instances of Linux within the same host, leveraging the software partitioning
of the hardware (CPUs, memory, and devices) to create independent sub-
domains where multiple OSes can run. This proposition is the object of our
follow-up work on the same subject. In Chapter 5, we present this approach
of booting the upgraded hypervisor in parallel to the running one, leveraging
the same mechanism designed for Hy-FiX to transfer the VM state to the new
instance without incurring any OS switch time.

4.7 Summary

We presented Hy-FiX, an in-place upgrade mechanism to apply generic fixes
at the host OS and/or user-space-level of a KVM-based hypervisor such as
QEMU-KVM. Hy-FiX easily integrates within the existing KVM hypervi-
sor architecture. It requires only limited modifications to the Linux kernel
(mostly in two kernel modules) and leverages the entire checkpoint/restore
path commonly implemented by existing emulators.

The two key components of Hy-FiX, namely, the memory preserving reboot
(with the lazy memory initialization), and the fast C/R, avoid the hardware
resets typical of standard reboots, enabling the quick booting of an upgraded
host OS. VMs are promptly recovered by simply mapping their virtual RAM
to the memory content preserved across the reboot, hence avoiding costly
copies from the disk or the network. As a result, Hy-FiX upgrades a 768 GB
enterprise-class host in less than 13 seconds, no matter the workload, the
memory in use, and the total number of running instances. By working in-

4.7. Summary 71

place, Hy-FiX requires no external resource or spare capacity in the DC,
making it able to simultaneously upgrade an arbitrarily large number of hosts.

Chapter 5

Co-located Hypervisors for
Efficient Live Upgrades

Contents
5.1 Introduction . 73
5.2 Related Work . 76

5.2.1 Nested Virtualization . 76
5.2.2 Multi-kernel Operating Systems 77
5.2.3 In-place Hypervisor Upgrades and Warm Reboots 78

5.3 Technical Background: Modern x86-64 Computer Platforms 79
5.4 Multi-kernel Boot . 81

5.4.1 Partitioning of Hardware Resources 82
5.4.2 Minimal System Shutdown 84
5.4.3 Partition Aware System Initialization 85
5.4.4 Migration of Hardware Resources 86

5.5 In-place Upgrade Strategy 87
5.5.1 Virtual Environment and Hardware Redundancy 87
5.5.2 Migration Stage . 88
5.5.3 Hy-FiX Integration . 89

5.6 Implementation . 90
5.7 Evaluation . 93

5.7.1 Zero-copy Migration Downtime Analisys 93
5.7.2 NIC Reinitialization Time Analisys 94
5.7.3 Impact on Guest Workloads 95

5.8 Discussion . 98
5.9 Summary . 98

5.1 Introduction

At the core of any hypervisor there is a kernel. For type-2 hypervisors the
distinction is clear: the VMM runs as a set of services hosted on a host
OS which kernel provides the CPU scheduling, memory, I/O, and process

74 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

management (Section 2.1.1). For type-1 hypervisors the separation is blurred
as VMM services are possibly implemented as kernel routines. Regardless
of this distinction, an upgrade that involves replacing a hypervisor’s kernel
requires rebooting the physical host.

In Section 2.5.2 and Section 4.2, we presented the approaches to minimize
the disruption caused to virtual machines because of the upgrade-induced
reboot: migrations and in-place upgrades. Migrations evacuate the VMs be-
fore rebooting the host. This approach consumes the network bandwidth to
transfer the VMs’ state (especially the RAM), while also locking additional
computational resources on the destination hosts to accommodate the dis-
placed VMs. In-place upgrades operate within the host boundaries. As they
require no pre-booking of resources, in-place upgrades lead to large-scale up-
grades (e.g., fleet-wide zero-day vulnerability fixes), and, because VMs are
never relocated, no external resource is needed. However, VMs experience a
longer downtime in comparison to live migration due to the inability of the
hypervisor to keep virtual machines running whilst rebooting. State of the
art in-place upgrades for hypervisors leverage warm-reboots (i.e., kexec in
Linux [59]) to minimize the reboot/recovery time [87, 66, 85]. The advan-
tage of warm-reboots is twofold. First, the reboot duration is significantly
shorter because both the hardware reset stage and firmware execution stage
(BIOS/UEFI) are skipped [49]. Second, VMs can quickly resume within the
warm-rebooted hypervisor by recovering their bulky RAM content directly
from the host RAM.

Despite the advantages of warm-reboots, the total virtual machine down-
time is still in the order of seconds. Virtual machines get stopped before the
hypervisor begins to shut down. Several tasks are then performed to prepare
the VMs for the post-reboot recovery (e.g., partial checkpointing of VMs’
state [87]). Subsequently, the hypervisor progressively terminates all the sub-
systems (scheduling, I/O, etc.), eventually switching to executing the new
hypervisor via a jmp instruction (hence, warm-reboot). The new hypervisor
takes over and initializes all its subsystems, preparing the environment to run
virtual machines. Only at this stage the VMs can resume. This whole proce-
dure involves many tasks (depending on the hypervisor, the cloud platform,
etc.), that last an arbitrarily long time. The VMs remain unavailable for up
to 20 seconds, even on optimized production-grade solutions [85].

Keeping the old hypervisor running while a new hypervisor boots—in the
same physical host—might considerably reduce the long downtime due to the
host warm-rebooting. With such a solution, virtual machines can live migrate
from the old hypervisor to the newer one only when it is fully initialized
and ready to host them. Hence, VMs would experience the same downtime
as live migration, whilst remaining within the same host (in-place upgrade).
Furthermore, if memory is shared between the two hypervisors, the migration

5.1. Introduction 75

procedure does not need to transfer the RAM content of the guests, avoiding
the inconvenience of live memory transfers or remote memory (see pre-copy
and post-copy live migration in Section 2.3.1).

Unfortunately, two hypervisors cannot simply run side-to-side on the same
physical hosts. Only a single bare-metal system can run on a typical computer
platform (e.g., x86-64, ARM), as demonstrated by the existence of server vir-
tualization itself, which, at its core, allows multiple legacy OSes to execute on
top of a hypervisor over the same underlying hardware. Nested Virtualization
enables running two or more hypervisors within the same host, at the expense
of two major drawbacks [35]. First, VMs run by a nested hypervisor incur in
a 10%-20% decrease in the performance (higher CPU usage [48], lower I/O
throughput [5]). Second, the bare-metal hypervisor (commonly referred to as
L0) cannot be upgraded without rebooting the host.

In this Chapter, we introduce Multi-FiX, a solution to fully upgrade a hy-
pervisor, leveraging a second bare-metal hypervisor that executes next to the
primary one, on the same physical host. Multi-FiX fully boots the upgraded
hypervisor while the current one temporarily remains alive and capable of
running VMs, keeping them available. The two hypervisors share the por-
tions of the host memory where the RAM content of the guests is mapped,
enabling an efficient zero-copy migration with minimal downtime. Our main
contributions are:

• Demonstration of how, inspired by the multi-kernel OS design [34],
and the principle of partitioning the hardware resources [32], a generic
hypervisor can be modified in order to support a multi-kernel boot.
That is to say, a hypervisor becomes capable of booting and running
next to another existing hypervisor. Multi-FiX design leverages mainly
the same technologies behind Hy-FiX, our previously presented warm-
reboot-based solution, namely software-booting a new system, and hot-
plugging/hot-unplugging CPU, RAM and I/O devices. We implemented
the modifications to support a multi-kernel boot on the QEMU-KVM
hypervisor for x86-64.

• Design of an in-place upgrade schema for hypervisors to operate arbi-
trary upgrades (kernel and—optionally—VMM, if type-2 hypervisors),
taking advantage of the two bare-metal hypervisors to protect the vir-
tual machine network availability during the upgrade. We implemented
a proof-of-concept for the QEMU-KVM hypervisor for x86-64.

• Evaluation of the network downtime, and the computational perfor-
mance, of VMs during the upgrade. We show that VMs experience
minimal downtime in the order of tens-of-milliseconds.

The remainder of the chapter is structured as follows. Section 5.2 presents
the solutions that are mostly related to Multi-FiX. Section 5.3 presents the

76 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

technical background. Section 5.4 discusses the design of the multi-kernel
boot, while Section 5.5 presents the in-place upgrade schema. Section 5.6
details the implementation of Multi-FiX. Section 5.7 evaluates the solution.
Section 5.8 presents limitations, and Section 5.9 concludes the chapter.

5.2 Related Work

We refer to Section 2.5.2 and Section 4.2 for a detailed classification of the
different approaches to upgrade a hypervisor. Here we focus on the closest
solutions to Multi-FiX, namely upgrades based on nested virtualization. We
also cover the basics of multi-kernel OSes, a fundamental design for Multi-FiX.
Finally, we discuss the relationship between Multi-FiX and Hy-FiX, our in-
place upgrade solution based on warm-reboots.

5.2.1 Nested Virtualization

Nested virtualization enables two or more full-fledged hypervisors to run
within the same physical host. A single hypervisor runs on the bare-metal
(L0), with one or more hypervisors (each referred to as L1 hypervisor) hosted
inside VMs managed by L0. In turn, the L1 hypervisors run their own set
of VMs, hence the name nested virtualization. With nested virtualization,
the upgrade strategy consists of moving the VMs from an L1 hypervisor to
another newly instantiated L1 hypervisor, co-located on the same host. So-
lutions like HyperFresh [48] and VMBeam [67], leverage the aforementioned
schema to perform upgrades with minimal downtime in the order of tens of
milliseconds, no matter the RAM size and workload of the VMs. Thanks to
the L1 hypervisors sharing the same portion of physical RAM, guest memory
does not get serialized and transferred during the migration, decoupling the
instance kind (large or small size, active or idle workloads) from the down-
time. This special feature is implemented via memory page remapping, the
same technique adopted in Hy-FiX to quickly recover virtual machine mem-
ory after the warm-reboot. As the two L1 hypervisors are configured with
access to the same memory where the guest RAM is stored, it is sufficient
to share the virtual-to-physical mapping to migrate memory between the two
hypervisors. This is simply achieved by exchanging the root address of the
page-tables that describes the mappings. The two hypervisors do that via a
virtual communication channel implemented by the underlying L0 hypervisor.
We refer to this migration technique as zero-copy migration.

Nested virtualization suffers from two major shortcomings when used for
hypervisor upgrades. First, it adds further overhead in terms of higher I/O
latency and CPU utilization due to the second virtualization layer. [35] and
[48] propose several optimizations for L0 to close the performance gap between

5.2. Related Work 77

nested and non-nested virtualization. Despite the research efforts, production
nested virtualization still incurs a 10% performance penalty for CPU-bound
workloads [5]. [48] reports a 20% increase in the CPU utilization over the non-
nested baseline to achieve line rate in TCP bulk-transfers, an I/O workload
known to be lightweight in terms of cost of packet processing [83]. These
overheads permanently affect the workloads. Lastly, the complexity of all the
optimizations to reduce the overhead at L0 is non-trivial and adds up to the
hypervisor’s codebase. Hence, L0 upgrades may be unavoidable, therefore
requiring a physical host reboot.

Multi-FiX adopts the same strategy of having two co-located hypervisors,
sharing memory to perform zero-copy migrations between the two systems.
However, Multi-FiX does not leverage nested virtualization to run the multiple
bare-metal hypervisors on the same host. Hence, (i) Multi-FiX avoids the
performance degradation outside the upgrade-time; (ii) Multi-FiX upgrades
can patch every software component deployed inside the hypervisor, from
kernel to VMM; (iii) despite the mandatory kernel modifications to support
our multi-kernel boot, the rest of the upgrade technique leverages standard
VMM (e.g., QEMU) capabilities, for instance, to perform the migrations.

5.2.2 Multi-kernel Operating Systems

Multi-kernel OS is the name of an operating system architecture originally
introduced by BarrellFish OS [34]. A multi-kernel OS is formed by multiple
independent bare-metal kernels running on each CPU of a multi-core plat-
form, communicating only via a message-passing protocol. The main objective
of BarrellFish is abstracting the design of OSes from any hardware-dictated
synchronization mechanism, e.g., the cache-coherence protocol. BarrellFish
allows the transparent replacement of each kernel, without incurring any dis-
ruption at the OS, or application, level [99]. The latter is also the main
objective of Multi-FiX. However, BarrellFish is based on the overhauling of
traditional OS designs. On the other hand, Multi-FiX aims for easy integra-
tion with existing type-1/2 hypervisors.

Several independent projects have demonstrated how a monolithic ker-
nel, such as Linux, can be converted to become a multi-kernel OS, bringing
the same benefits of BarellFish onto mainstream systems [32, 60, 75]. These
projects are all based on the key technique of partitioning the hardware re-
sources. The non-shareable hardware resources are sliced into partitions, each
containing enough CPUs, memory, devices, etc., for the independent kernels
to boot and run. The objective is to avoid implementing a complex coordina-
tion mechanism among kernels. Practically, the legacy kernels are modified to
discover and initialize only the resources within their partition. The partition-
ing is purely software, each kernel instance voluntarily respects these imposed
boundaries. In Multi-FiX, we strip down the multi-kernel OS architecture

78 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

for a precise use-case: temporarily running two bare-metal hypervisors within
the same host. We provide the minimum requirements to implement, and
enforce, the partitioning of the hardware resources that enable this scenario.
In contrast with [32, 60, 75], Multi-FiX ultimately dismisses the multi-kernel
environment at the end of the upgrade. Eventually, only the upgraded hyper-
visor remains in execution with full control over the complete host hardware.

5.2.3 In-place Hypervisor Upgrades and Warm Reboots

In-place upgrade solutions for hypervisors capable of replacing arbitrary kernel
code require rebooting the host. Solutions like Hy-FiX, previously presented
in Chapter 4, leverage warm-reboots to speed up both the reboot process and
the preservation/recovery of the running VMs. In this Section, we provide
a detailed insight on warm-reboots, the key technology that powers Hy-FiX.
Furthermore, we revise the key architectural points behind Hy-FiX, as the
same mechanisms enable the efficient migration of VMs between the co-located
hypervisors of Multi-FiX.

Warm-Reboots. Assume that the binary image of a new system is con-
tiguously loaded onto a reserved memory area. As depicted in Figure 5.1,
warm-reboots comprise three stages:

(i) System shutdown. The current system is properly shut down. The first
step is to terminate all the processes and tasks. Then, drivers get invoked
to quiesce the relative devices (stopping DMA transactions, interrupts,
unregistering device). Ultimately, all the CPUs are halted, except for a
single one (i.e., CPU#0 on x86-64) where the next stages take place.

(ii) System Switch. This stage depends on whether the objective is to power
off, reboot, or warm reboot the machine. For warm-reboots, the thread
of execution on the last CPU, after properly setting the CPU registers for
the transition, performs a jmp instruction, setting the program counter
to executing at the new system’s entry point in its binary image. The old
system ceases to exist, replaced by a new one, which starts as if booted
by a traditional boot-loader.

(iii) System initialization. The booting system must acquire knowledge of the
hardware resources available and usable. The firmware and boot-loader
provide a partial description of the whole platform. This information
is either encoded in RAM/ROM stored tables (e.g., ACPI tables [39]),
or directly forwarded to the new system in accordance with a particular
boot protocol (e.g., Linux boot-time parameters [18]). Some hardware is
dynamically discovered by probing specific platform registers. It is the

5.3. Technical Background: Modern x86-64 Computer Platforms 79

CPU#0

CPU#1

CPU#2

CPU#4

System
Shutdown

Kernel
Switch

System
Initialization

(i) (ii) (iii)

Figure 5.1: Execution threads during a warm-reboot.

case, for instance, for PCIe devices. Once the hardware is discovered
and enumerated, the new system initializes it and makes use of it.

Hy-FiX. Three are the main components of Hy-FiX. The first, fast check-
point/restore (fast C/R), is responsible for preserving the execution state of
the running virtual machines across the warm reboot. The virtual hardware
state of the guests (vCPUs, vNICs, etc.) gets serialized into a stream of bytes
and dumped to non-volatile memory. As compared to the legacy virtual ma-
chines checkpoint/restore, the fast C/R is quicker because the bulky guest
virtual RAM is not dumped to storage. Instead, such RAM content remains
resident in the host memory, surviving unaltered across the warm reboot. This
is thanks to the memory preserving reboot, a protocol for memory manage-
ment agreed between the old and the new booting system to protect the host
RAM ranges where the data to preserve is located. Finally, zero-copy mem-
ory re-linking takes the raw host RAM preserved during the warm reboot and
reconnects it to the resumed virtual machines. The latter technique leverages
the recovery of the page-tables, preserved as well during the warm-reboot,
revealing all the mappings between virtual machine pages and host frames.

Multi-FiX performs the same class of upgrades as Hy-FiX (host kernel
and VMM), operating in-place within a single host. It leverages the core
tools of Hy-FiX to quickly relocate the VMs between the two hypervisors.
However, Multi-FiX achieves a downtime three orders of magnitude shorter
than Hy-FiX.

5.3 Technical Background: Modern x86-64 Computer
Platforms

The description for Multi-FiX design targets the Intel x86-64 architecture. In
this Section, we introduce the characteristics of modern hardware commonly
found in enterprise-grade data center hosts. Features of such hardware are
key for the design of Multi-FiX.

80 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

CPUs and xAPIC. Multi-core computer platforms are standard in data
center hosts. Each CPU is equipped with circuitry that allows any I/O device
to notify events via interrupt signals to any arbitrary CPU. The same circuitry
provides each CPU with a ticking timer and enables the CPUs to send Inter-
Processor Interrupts (IPIs) to other CPUs. This chip is called Local Advanced
Programmable Interrupt Controller (LAPIC). This is part of the xAPIC, the
latest architecture for programmable interrupt controllers. Aside from the
LAPICs embedded in the CPUs, a computer platform features one, or more,
IOAPIC. The IOAPIC is specialized in routing legacy interrupts to the right
destination CPU. By legacy interrupts we refer to any interrupt technology
that is not Message Signalled Interrupts (MSI), the signaling mechanism used
in PCIe. Typically, IOAPIC incurs more latency in delivering interrupts.
Hence, slower interfaces leverage it for signaling the occurrence of events.

PCI Express (PCIe). PCIe is the de-facto standard fabric to connect high-
throughput low-latency I/O devices to the CPU-memory subsystem. PCIe
devices are identified by a hierarchical ID system known as Bus-Device-
Function (BDF). PCIe devices are dynamically discovered by reading/writing
an ensemble of memory-mapped I/O registers called PCIe configuration space.
The software accesses the PCIe configuration space to probe each combination
of the BDF addresses to discover the actual presence of a peripheral behind.
PCIe devices support Direct Memory Access (DMA), enabling any device
to independently read/write from/to the RAM. Furthermore, PCIe leverages
MSI (or the more advanced MSI-X), an in-band mechanism to send interrupt
signals over PCIe messages. MSI enables each PCIe device to independently
send interrupts to the LAPIC of any CPU in the computer, bypassing the
IOAPIC. PCIe messages, whether carrying DMA operations (memory read
and writes) or an MSI message, have as a target a host physical address.
Such an address can be transparently remapped via the IOMMU.

IO Memory Management Unit (IOMMU). The I/O Memory Manage-
ment Unit is responsible for remapping the target addresses of read/write
PCIe transactions (DMA operations and MSI interrupts). As presented in
Section 2.1.4, the IOMMU is the fundamental hardware component that en-
ables a safe direct device assignment to the VMs.

Each PCIe device can have a different memory mapping. The mappings
are contained in RAM-stored page-tables, indexed by the BDF address of the
PCIe device. The software selects the mapping by writing to an IOMMU
register the pointer to the page-table root, analogous to the CR3 register for
the MMU.

5.4. Multi-kernel Boot 81

CPU#0

CPU#1

CPU#2

CPU#4

Minimal
Shutdown

Kernel
Switch PASI

H1

H1

H1

H1 H2
(i) (ii) (iii)

Figure 5.2: Execution threads during a multi-kernel boot.

5.4 Multi-kernel Boot

Warm-reboots constitute a solid ground to build our novel multi-kernel boot.
In Multi-FiX, the objective is to boot a new system (i.e., the upgraded hyper-
visor), while the current one (i.e., the outdated hypervisor) remains capable
of performing useful work (i.e., running VMs). We define this procedure as
multi-kernel boot. Warm-reboots partially offer the same service: a new sys-
tem is booted out of the currently running one. However, the old system is
also shut down during the process.

There are two challenges to tackle in order to successfully transform a
warm-reboot into a multi-kernel boot. First, the system that boots shall have
enough computational resources—CPU and memory—to execute the boot
procedure and fully initialize. Second, the two co-located systems must avoid
concurrent accesses to non-shareable hardware resources (e.g., I/O devices)
which may disrupt the execution on both systems. We achieve a multi-kernel
boot by replacing the stages (i) and (iii) of a traditional warm-reboot (as
presented in Section 5.2.3), with, respectively, a minimal system shutdown
that frees the hardware resources for the new system to execute the boot,
and a Partition Aware System Initialization (PASI) that limits the hardware
resources acquired during the system initialization. PASI is based on a pre-
determined partitioning of hardware resources to make sure that each system
knows which resource can be safely accessed after the multi-kernel boot takes
place. In addition, we introduce the technique of hardware resource migra-
tion, to gradually dismiss the old system by transferring the control of all the
hardware resources to the newly booted system.

In the remainder of the chapter, we refer to the system running before
the multi-kernel boot as H1 (as in Hypervisor#1), and the second system
booted afterwards as H2 (as in Hypervisor#2). Figure 5.2 provides a high-
level overview of the multi-kernel boot procedure from the CPU perspective.

82 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

5.4.1 Partitioning of Hardware Resources

In order to co-locate two independent bare-metal systems on the same physical
host, we slice the hardware resources into two partitions. Each system exclu-
sively accesses the resources within its partition. This design principle avoids
the implementation of complex synchronization mechanisms to multiplex the
non-shareable hardware resources among two uncooperative systems. In the
scope of Multi-FiX, this allows legacy hypervisors to be easily converted in
supporting the multi-kernel boot.

Each system is instructed on the boundaries (e.g., which CPU a system
is allowed to run on) and voluntarily respects these limitations by avoiding
the discovery and initialization of any resource outside its partition. The
partitioning schema we devised targets four categories of hardware resources:
(i) CPUs, (ii) memory, (iii) I/O devices, (iv) and the chipset. We now detail
each category in relationship with the ultimate goal of running two co-located
hypervisors.

CPU Partitioning. We partition the host CPUs assigning CPU#0 to H2
and the remaining CPUs to H1. On Intel x86-64, OSes start executing on
CPU#0, the only active CPU at boot. In a multi-kernel boot, H2 starts
via the kernel switch procedure that eventually performs the jmp instruction
into the new system. Thus, the execution continues on the same CPU where
the jump took place. In order to simplify the implementation of multi-kernel
booting to a legacy hypervisor, we perform the kernel switch on CPU#0. As
such, H2 boots on CPU#0 as during a legacy boot. A single CPU is also
enough for H2 to execute the whole boot.

Memory Partitioning. We subdivide the memory in three categories: pri-
vate RAM, shared RAM, and shared MMIO.

H1 and H2 are both assigned with non-overlapping ranges of physical mem-
ory where their RAM is mapped and sized properly to allow each system to
boot and run. We call this memory private RAM. Although RAM is a share-
able resource, un-coordinated reads/writes result in corrupted data for both
systems. Each system is assigned with a private RAM area, large enough to
accommodate the whole system binary image, and to provide enough memory
that the system can allocate for its internal usages (i.e., not to run VMs as
is shared). Note that H1 is assigned with a private RAM area. This enables
subsequent upgrades with the roles of H1 and H2 swapped.

H1 and H2 are further assigned with the same ranges of physical memory
that maps the RAM meant to be shared. We call this memory shared RAM.
In the context of hypervisor upgrades, the guest memory is shared to enable
the efficient zero-copy migrations of VMs. We identify a set of RAM ranges,
disjoint from the private RAM described before, designated for the memory

5.4. Multi-kernel Boot 83

Host Physical
Address Space

H1 Physical
Address Space

H2 Physical
Address Space

H1 Private RAM

Shared MMIO

H2 Private RAM

H2 Private RAM

H1 Private RAM

Shared MMIO

Shared RAMShared RAM

H1 Private RAM

Shared MMIO

H1 Private RAM

Shared RAM

H2 Private RAM

H2 Private RAM

Figure 5.3: Partitioning schema for the memory.

sharing between the co-located systems. Disjoining the private RAM from the
shared RAM ensures that H2 does not inadvertently corrupt the content of the
shared memory during the early stages of its initialization. This implies that
the system memory management during the boot needs no patching, provided
that the shared RAM ranges can be hidden from H2.

H1 and H2 are both assigned with every physical address range mapping
any hardware resource. We call this memory shared MMIO. The host physical
address space includes memory-mapped hardware resources such as firmware
tables (e.g., ACPI tables) and platform registers (e.g., PCIe configuration
space, IOAPIC registers, IOMMU registers). Some registers, e.g., firmware
tables, are read-only, hence easily shareable. Although both systems do have
access to these memory-mapped registers, the exclusive assignment of the
remaining hardware resources (I/O devices and chipset) guarantees that no
collision can take place.

Figure 5.3 portrays the partitioning of the memory as described above.

Partitioning of I/O Devices. Legacy devices (management low-throughput
high-latency) are assigned to H2, whereas core devices (high-throughput low-
latency) remain assigned to H1. Typically, high-throughput low-latency I/O
devices are PCIe devices leveraging DMA and MSI interrupts. Conversely,
low-throughput high-latency devices can be connected via different bus tech-
nologies to the CPU-memory subsystem, e.g., keyboard via USB. Non-PCIe
devices, and PCIe devices that use legacy interrupts, do not support the
features that allow a device to be migrated, at run-time, between the two
co-located systems. In the scope of hypervisors, we assume that all the de-
vices relevant to the I/O workload of the virtual machines (either in PCI
passthrough, or back-ends of the emulation) are exclusively PCIe devices lever-

84 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

Host Hardware

VM1 VM2 …

Hypervisor #1 (H1) Hypervisor #2 (H2)

CPU#1

CPU#2

CPU#N

PCIe NIC#1

PCIe NIC#2

PCIe GPU

CPU#0
Serial Port

USB Controller

PS2 Keyboard

IOAPIC(s)

IOMMU(s)…

Core Devices Legacy Devices Chipset

Figure 5.4: Partitioning schema for the hardware resources.

aging MSI. We call this class of I/O peripheral core devices. We also assume
that the remaining devices, non-PCIe, and PCIe with legacy interrupts, are
solely used for host management, e.g., providing access via the serial console
and the keyboard. We call this class of I/O peripheral legacy devices. When
H2 boots, H1 retains access, and control, of all the core devices, allowing VMs
to keep performing their I/O operations.

Chipset. H2 is assigned with the control and management of the IOAPIC(s)
and the IOMMU(s). IOAPIC and IOMMU are both responsible for re-routing
interrupts (legacy and MSI respectively). The IOMMU also remaps the ad-
dresses of DMA operations. Both chips are configurable via software by writ-
ing the content of the routing/remapping tables. Because of our previous
assumption, core devices only leverage MSI and do not leverage the IOAPIC
to route their signals. Hence, H2 can safely acquire full control of all the
IOAPICs in the platform. This partitioning schema adopts the unmodified
initialization of the IOAPIC as it happens during a legacy boot. On the other
hand, core devices require a functioning IOMMU to keep interacting with H1,
performing DMA operations towards H1’s buffers and notifying events via
MSI. The IOMMU mappings are preserved intact by H2 for all core devices
still in use by H1.

Figure 5.4, and Figure 5.3 recap the partitioning of CPU, memory, I/O
devices, and the chipset between H1 and H2.

5.4.2 Minimal System Shutdown

The minimal system shutdown takes place on H1 before performing the kernel
switch that sets H2 in execution. The objective of this procedure is to release
the hardware resources, currently held by H1, destined to H2. Compared to a
traditional shutdown, this minimal one avoids the termination of any running

5.4. Multi-kernel Boot 85

process or task. The resources released from H1 are CPU#0, the legacy
devices, and both IOAPCI and IOMMU. H2 private RAM is already reserved
and off-limits within H1.

Releasing CPU#0 requires offlining the CPU. This operation involves
stopping the scheduling of processes/tasks on a given CPU, followed by the
migration of all the interrupt handlers registered in that CPU in favor of other
online ones. Once CPU#0 is offlined, H2 can be started without affecting
H1, which considers such CPU as unavailable. Typically, modern OSes (e.g.,
Linux) readily provide APIs to online/offline arbitrary CPUs, used in the
context of CPU hot-plugging/hot-unplugging.

Legacy devices are released by quiescing them via their drivers’ shutdown
method, followed by the deregistration of the device, i.e., retire the APIs to
access it. The device stops any ongoing DMA operation and interrupt signal,
then, it sets the hardware registers to a device-specific configuration that
allows a new driver to re-initialize the device. This procedure is the same
that takes place during the legacy shutdown phase of a warm-reboot. Indeed,
the drivers within the newly booted system are in charge of re-initializing the
devices and make them usable.

Releasing IOAPIC and IOMMU does not require a driver shutdown to clear
their state. H2 simply performs the reset on its own. However, to prevent H1
from further altering the configuration on both chips, we declare a new sys-
tem state called multi-kernel-booted. A system in multi-kernel-booted
cannot perform the following operations: (i) re-scanning busses (e.g., PCIe
bus) or discovering new I/O devices, and (ii) re-balancing interrupts, i.e., mi-
grating interrupt handling to different CPUs. These operations all involve the
modification of the routing/remapping tables of the IOAPIC and/or IOMMU
by H2.

5.4.3 Partition Aware System Initialization

During its initialization, a legacy system performs the discovery, and initial-
ization, of all the hardware resources available in the computer platform. We
must prevent H2 from re-initializing and utilizing resources outside its des-
ignated partition. Note that a system does not initialize resources that are
not discovered. This is the principle to design the partition aware system
initialization.

On Intel x86-64, the resource discovery varies from platform to platform.
Usually, the firmware encodes a description of the available CPUs, NUMA
layout, and physical address layout, via ACPI. Aside from parsing this infor-
mation, the booting system performs some probing on its own, such as ex-
ploring the PCI bus, and other plug-and-play peripherals such as SATA/SAS
busses. In Multi-FiX, H2 acquires control of most of the hardware available
to the platform, leaving H1 with few homogeneous resources: the CPUs, H1

86 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

private RAM, the PCIe core devices. The choice of immediately granting H2
the ownership of most of the devices reduces the number of subsystems in H2
to patch to prevent the unwanted acquisition of resources.

In the case of Linux (QEMU-KVM hypervisor), the system provides a
convenient interface, namely the zero-page structure [18], that allows the boot-
loader to pass certain information to the booting system. This includes passing
the layout of the physical address space, useful to hide to H2 the presence of H1
private RAM, and, at least initially, the shared RAM regions. Furthermore,
via the command-line parameters many hardware resources can be excluded
and marked unusable. For instance, the number of CPUs to initialize can be
limited via the option “ncpus”. By leveraging the aforementioned interface,
we can influence the hardware discovery operated by H2 without the need of
patching any kernel code. However, probing PCIe devices does require a small
patch to forbid the discovery and initialization of the core devices still in use
by H1.

5.4.4 Migration of Hardware Resources

The partitioning of resources between H1 and H2 is temporary. Eventually,
H1 terminates, and all its hardware transitions to H2 that ultimately becomes
the single system running on the host. We now describe the procedures to
migrate the ownership of CPUs and PCIe core devices from one system to
the other. These are the last resources controlled by H1 after H2 boots. Note
that the private RAM is never handed over to the other system.

CPU Migration. CPU migration leverages the same CPU offlining proce-
dure used on CPU#0 during the minimal system shutdown (Section 5.4.2),
followed by the symmetrical CPU onlining operation that sets another H2 ker-
nel thread in execution on that CPU. We now describe both the procedures
on x86-64.

Offlining a CPU consists of disabling scheduling and interrupt handling
on the target CPU, eventually confining it to an infinite loop that executes
the instruction mwait (to save energy). Symmetrically, CPU onlining consists
of H1 sending a wake-up interrupt sequence (INIT-SIPI-SIPI) which frees
the offlined CPU from its sleep loop. The awakened CPU becomes fully on-
line after starting the thread of execution (that H2 specified) which sched-
ules the processes of H2. H1 and H2 synchronize during the completion of
offlining/onlining via a simple low-throughput high-latency communication
channel based on shared memory. Note, CPU onlining/offlining is readily
available on mainstream legacy OSes.

Core Device Migration. By our assumption, core devices are high-end PCIe
devices, natively supporting PCIe hot-plugging. This core device migration

5.5. In-place Upgrade Strategy 87

simply consists of hot-unplugging the device within one system and hot-
plugging it on the other. H1 and H2 synchronize via their communication
channel. However, this migration procedure takes time. The resource remains
unusable for the whole quiescing-time and re-initialization. We measured the
resulted unavailability between 1.5 seconds and 4.8 seconds for the tested NICs
(see Section 5.3). CPU migration incurs downtime as well, although lasting
only milliseconds.

5.5 In-place Upgrade Strategy

The multi-kernel boot enables to fully boot an upgraded hypervisor, referred
to as H2, running side-by-side with the old hypervisor, referred to as H1.
While H2 fully initializes, H1 keeps running the VMs with no performance
degradation except for CPU#0 that works for H2. In order to finalize the
upgrade, two tasks remain to be performed: (i) virtual machines must relo-
cate from H1 to H2, and (ii) H2 must take control over all the host hardware
resources, becoming the only bare-metal system running. However, migrating
a PCIe device makes it unavailable for several seconds, jeopardizing the execu-
tion of the VMs whose I/O workload leveraged it. We propose a coordinated
migration of VMs and hardware resources specialized for hosts with redundant
Network Interface Controllers (NICs) to preserve the virtual machine network
availability during the upgrade. We name this procedure migration stage.

We define VM network availability as the Ethernet/IP connectivity be-
tween a VM and the production network. Under the assumption that the
hypervisor leverages the network to provide the VMs’ storage (e.g., via NFS,
iSCSI, FCoE, NVMe-oF, etc.) the network availability also covers the storage
availability. In this Section, we describe the migration stage, and then host
and hypervisor configurations supported.

5.5.1 Virtual Environment and Hardware Redundancy

In Multi-FiX, the migration of a PCIe NIC between the two co-located hy-
pervisors causes the device to become unavailable. Therefore, we require the
host and the hypervisor to provide NIC failure tolerance. Multi-port NICs,
i.e., NICs with multiple individual Ethernet ports, only provide link-failure
tolerance. In order to achieve the stronger NIC-failure tolerance, the host
must feature at least two distinct PCIe NICs, both connected to the produc-
tion network. Figure 5.5a illustrates the host network configuration with two
NICs (both assumed to be single-port for simplicity). The Ethernet links of
each NIC are aggregated into forming a single logical bonded interface (e.g.,
via Linux bonding drivers). The bonded interface must be configured in load-
balancing or active-backup mode to provide the transparent failover in case of

88 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

VM1

Host

VM2

NIC#1 NIC#2

Bond interface

Virtual Switch

tap0 tap1

eth0 eth1

(a) Paravirtualized interfaces.

VM1

Host

VM2

Bond interface

Virtual Switch

tap0 tap1

eth0 eth1

NIC#1 NIC#2

SR-IOV NIC#3

Bond Bond

(b) Passthrough and paravirtualized NIC.

Figure 5.5: Network configurations supported by Multi-FiX.

NIC failure, diverting all the traffic through the healthy interface [12].
PCI Passthrough is supported via a paravirtualized NIC, as explained in

Section 2.3. The passthrough NICs are detached from the VMs during the
upgrade via hot-unplugging. The traffic is then redirected through the par-
avirtualized NIC via a bonding interface in the guest. When the upgrade is
done, the passthrough NIC is re-attached. Figure 5.5b shows a passthrough
scenario supported by Multi-FiX. Note that once passthrough NICs are de-
tached, the host network configuration is identical to the scenario presented
in Figure 5.5a.

5.5.2 Migration Stage

Assume H2 has booted via the multi-kernel boot. Figure 5.6a shows a snap-
shot of the situation at this stage. All the VMs are running on H1, and the
hypervisors respectively control their slice of hardware resources according to
the partitioning schema described in Section 5.4.1. At this point, we enter the
Migration Stage. The VMs and hardware resources are migrated in a precise
order to protect the network availability of the VMs. As PCIe NICs remain
unusable for several seconds while re-initializing, their migrations are offset
with respect to each other.

First, a single NIC migrates from H1 to H2. Virtual machines remain
reachable via the second NIC. When the relocated NIC fully initializes within
H2, a subset of VMs is immediately migrated to balance the network load
between the two hypervisors. As VMs move, a subset of the CPUs migrates
along, to power the computational needs of the displaced guests. This con-
cludes the first phase (phase 1) of the migration stage. Figure 5.6b depicts a
snapshot of the host at this point.

The second phase (phase 2) starts with the migrations of the remaining

5.5. In-place Upgrade Strategy 89

Host Hardware

H1

VM1

H2

VM2

VMN

…

CPU1

CPU2

CPUN

…

CPU0

NIC1

NIC2

vCPU

vCPU

vCPU

(a) Before phase 1.

Host Hardware

H1

VM1

H2

VMN/2

VMN

CPU1

CPUN/2+1

CPUN

CPU0

NIC2

vCPU

vCPU

vCPU

VMN/2+1 vCPU

…

…

NIC1

…

CPU2

CPUN/2+1

…

(b) After phase 1.

Host Hardware

H1 H2

CPU1

CPU0

NIC2

NIC1CPU2

…

VM1

VM2

VMN

…

vCPU

vCPU

vCPU

CPUN

CPU3

(c) After phase 2.

Figure 5.6: Snapshots of the host during the migration stage.

VMs to H1. Similar to phase 1, the remaining CPUs on H1 (except one)
migrate along with the VMs. When all the migrations are complete, the last
NIC on H1 is relocated to H2. H2 now controls all the host hardware and runs
all the VMs. Figure 5.6c shows the final snapshot at the end of phase 2. The
upgrade ends with H1 offlining its last CPU, hence terminating its execution.

The exact number of VMs and CPUs that migrate during phase 1 depends
on the resource demand of the running guests. The set of VMs and CPUs to
migrate is determined as follows:

• Assume each of the two NICs is assigned to a single hypervisor.

• The set of VMs migrated together contains guests such that the aggre-
gated bandwidth demand of all instances in the set is greater or equal to
the bandwidth offered by a single NIC.

• The set of CPUs migrated together contains a number n of CPUs such
that the aggregated CPU demand of all instances in the aformentioned
VM set is satisfied, at its best, by the computational power of n CPUs.

These rules guarantee load balancing at each phase of the migration stage, to
avoid major performance penalties during the upgrade.

5.5.3 Hy-FiX Integration

The shared memory between the two hypervisors enables an efficient live mi-
gration of virtual machines between the two co-located hypervisors. In pre-
senting Hy-FiX, we introduced two techniques to enable the fast restoration
of VMs after a hypervisor warm reboot: the fast VM checkpoint/restore and
the zero-copy memory re-linking. The VMs are stopped and checkpointed by

90 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

What Version # Files LoC Modified

Linux 5.4.91 21 844
Hy-FiX Linux Modules 5.4.91 9 1330
kexec-tools 2.0.22 7 114

Table 5.1: Multi-FiX code analysis.

serializing their virtual hardware state into a standardized representation, al-
lowing the rewriting of its format to adapt to newer hypervisor versions. The
guest’s RAM is not checkpointed. Upon restoration, VMs are linked back to
their RAM by remapping their virtual address space to the physical addresses
in the host where the RAM content is. Multi-FiX borrows the fast VM check-
point/restore and the zero-copy memory re-linking to implement the zero-copy
live migration.

Zero-copy live migration is a standard post-copy live migration modified
to avoid the transferring of the guest memory (as in Hy-FiX fast VM check-
point/restore). Because of shared memory, guests’ RAM is already available
on H2. Upon initialization, H2 loads the page-tables that describe the virtual
mapping for each VM, making the memory accessible for the future migrated
VMs. Zero-copy live migration incurs the same minimal downtime of post-
copy live migration (in the order of milliseconds), but without the overhead
to fetch the remote memory.

5.6 Implementation

We implemented a proof-of-concept of Multi-FiX for QEMU-KVM on Intel
x86-64. The hypervisor is based on Linux 5.4.91 and QEMU version 5.0.0.
Table 5.1 reports the lines of code modified in the legacy components, i.e.,
the Linux kernel, and kexec-tools, including also the added kernel mod-
ules inherited from Hy-FiX. The whole solution, including the zero-copy live
migration, works with unmodified QEMU.

Partitioning of Hardware Resources. We implemented the partitioning of
the hardware resources via a set of scripts that explores the available hardware
on the host and computes the subdivision that future multi-kernel boots will
leverage. These scripts are run on H1 before the multi-kernel boot takes place.
For core devices, the output file is a list of BDF addresses indicating which
PCIe devices stay with H1 after the multi-kernel boot. This list is passed to
H2 to serve as a blacklist of PCIe devices not to discover.

Memory partitioning takes place before any hypervisor is ever booted. The
private RAM, the shared RAM, and the shared MMIO ranges are identified.

5.6. Implementation 91

When H1 first boots, the private RAM of H2 is already reserved. The private
RAM of each hypervisor always contains 512 MB below the 4 GB mark, to
enable 32-bit devices to perform DMA operations. Additional private RAM
is provisioned according to the same rule we established for Hy-FiX and its
safe memory region (see Section 4.5.3). As a reference, for a 128 GB host, we
reserved 2 GB for each hypervisor. In addition, we reserved 64 KB to store
a bitmap that indicates which pages within the shared RAM are currently in
use. This bitmap is part of the protocol inherited from Hy-FiX to share the
memory between the two systems.

Minimal Shutdown. We implemented the minimal shutdown leverag-
ing Linux CPU hot-unplugging and PCIe hot-unplugging. Since Linux
for x86-64 version 3.8, CPU#0 can be offlined as all the other
CPUs. The hot-unplugging is performed by writing the value zero to
“/sys/devices/.../cpuX/online”. Legacy Linux takes care of the whole
offline procedure applying the steps we presented in Section 5.4.4.

Concerning devices, in our PoC we only shut down the non-core-device
PCIe devices. We perform this operations by writing a non-zero value to
“/sys/bus/pci/devices/.../BDF/remove”, where BDF is the address of the
PCIe devices to shut down.

Kernel Switch. We introduced the term “OS switch” in the context of warm-
reboots (Section 5.2.3). We rename such an operation in “kernel switch” to
emphasize the transition of a single kernel threads from executing instructions
of H1 to executing instructions of H2. The kernel switch is based on Linux
kexec and kexec-tools. In Multi-FiX we modified kexec to perform the
following: (i) load the binary images directly at the target address in H2 pri-
vate RAM, and (ii) start executing H2 without performing the legacy system
shutdown. Our patched kexec, after the loading stage, sends a non-maskable
interrupt to the offlined CPU#0, trapped in the mwait loop. The legacy
Linux offlining for CPU#0 places a specific interrupt handler to break the
mwait loop when the CPU needs to be onlined again. We modified such a
handler to execute the kexec kernel switch routine in case of a multi-kernel
boot. Similar to what we did for Hy-FiX (Section 4.4.1), we also patched
kexec-tools to customize the Linux zero-page, to pass information to the
booting system.

Partition Aware System Initialization. The only kernel subsystems we
patched to implement the partition aware system initialization are (i) PCIe
probing, and (ii) Intel IOMMU initialization.

We leverage the Linux boot-time command-line, set by kexec, to both
inform the booting system that it is starting as a special multi-kernel boot,

92 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

and to constraint its execution on CPU#0 via the option “ncpus=1”. We
leverage the zero-page to force a synthetic view of the available memory. In
particular, we achieve this by altering the E820 table, used by the boot-loader
to inform the booting kernel on the physical address space layout (e.g., ranges
mapping RAM, ranges reserved area, ranges not mapped). We mark H1
private RAM as reserved, and we omit the ranges of shared RAM, hiding and
protecting them while H2 boots.

We patched Linux probing of PCIe devices to skip the discovery and
initialization for specific BDF addresses. We simply introduced a check to
avoid probing the PCIe configuration space registers corresponding to BDF
addresses that are blacklisted.

Regarding the preservation of the IOMMU state, Linux initialization for
Intel’s IOMMUs readily provides a special initialization path for a kdump boot
(debug kernel booted via kexec upon panic [54]). This special path preserves
the current IOMMU configuration to protect the new kernel from rogue DMA
transactions fired by unaware devices trying to communicate with the crashed
kernel. In our PoC, we enabled this code path during a multi-kernel boot.

Migrations of Hardware Resources. CPU migration also leverages Linux
CPU hot-plugging. The implementation is identical to what describes
for the minimal system shutdown. The target CPU is offlined via
the interface “/sys/devices/.../cpuX/online”. Once the routine com-
pletes, we signal H2 to online the same CPU via the same interface
“/sys/devices/.../cpuX/online”.

Core device migration is also implemented leveraging Linux
PCIe hot-plugging, in the same way as described in the min-
imal shutdown to free the legacy PCIe devices. We leverage
“/sys/bus/pci/devices/.../<BDF>/remove” to logically un-plug a de-
vice. Once the routine completes, we signal H2 to complete its part of the
migration. The BDF address of the device is removed from the blacklist of
PCIe device not to discover, and then the bus is re-scanned via the API
“/sys/bus/pci/rescan”. As the un-plugged devices are re-discovered, the
drivers load and make the peripheral available.

Memory Sharing & Zero-Copy Migration. We integrated the Linux mod-
ules that manage the reboot persistent memory in Hy-FiX. Note that in
Multi-FiX we seek for a similar across-reboot persistence of the RAM, both
for protecting such memory during the booting of H2 and later for recovering
the mappings to make the memory accessible.

The module within H1 records the allocated memory pages in shared RAM,
and notes for each VM the root addresses of the page-table describing its
mapping to physical memory. The list of addresses is saved onto H2’s booting-

5.7. Evaluation 93

Server Dell PowerEdge R630
CPU 2 x Intel Xeon E5-2630 v3 (2.40GHz, 8 cores)
RAM 128 GB
NIC#1 Intel 82599ES 10Gbps (dual-port, driver: ixgbe)
NIC#2 Intel X520 10Gpbs (dual-port, driver: ixgbe)

Table 5.2: Testbed node specifications.

ramdisk. Once H2 fully initializes, a module loads the page-tables from their
root addresses and recreates the virtual address spaces for each VM. For each
recovered virtual address space, the module exposes it as a memory-mappable
(mmap) virtual device file.

We leverage an option of QEMU to back, with a file descriptor, a VM’s
memory, using the virtual device file exposed by our kernel module. The
virtual machines are re-created with full access to their memory, paused until
the rest of their state is sent via migration. The migration is a standard QEMU
live migration over TCP. In our proof-of-concept, the network traffic passes
between the NICs available to each hypervisor (at this stage the resources
are partitioned as in Figure 5.6b). QEMU live migration is invoked with the
option x-ignored-shared to avoid sending any memory marked as shared,
i.e., the entire guest RAM.

5.7 Evaluation

We evaluated the effect of a Multi-FiX upgrade over the running VMs. All
the experiments have been conducted on Grid5000 [30], over machines with
the hardware specs reported in Table 5.2. The host network is configured
as in Figure 5.5a, with paravirtualized interfaces in the guests, connected
to an Open vSwitch virtual switch, and an Open vSwitch bonding interface
configured in Source Load Balancing mode (SLB bonding), aggregating two
interfaces, one from each of the two NICs. The cluster network comprises a
single 10Gbps switch, connecting all the machines involved in the experiments
(a server machine and a client machine).

5.7.1 Zero-copy Migration Downtime Analisys

In our PoC, zero-copy migration is based on legacy QEMU live migration, with
the main difference of how guest memory is transferred. As the hypervisors
share all the guest memory, zero-copy migration does not transfer any byte
of guest memory. The zero-copy migration downtime is computed on H1 by
QEMU as the time elapsed between stopping the VM (to transfer their virtual
hardware state), and the sending of the end-of-file signaling the ending of

94 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

4 8 16 32
Guests

0

50

100

150

200

250

300

350
Ti

m
e

(m
s)

Downtime
Migration Time

(a) As function of guest number.

8 16 32 64
Guest Size (GB)

0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

Downtime
Migration Time

(b) As function of guest RAM size.

Figure 5.7: Guest downtime for zero-copy migration.

migration.
Zero-copy migration is almost immune to the increase in both the number

of guests and the RAM size of each guest. Each guest is configured with
1 vCPU, 1 GB RAM (when the value is fixed), 1 vNIC, a virtual serial port,
and a keyboard. We create a synthetic memory dirtying workload on the VMs
to prove that zero-copy migration is immune to the dirty memory rate. We
adopt Redis [16], an in-memory database server, and the Yahoo Cloud Service
Benchmark (YCSB) [45] to generate a mixed read/write requests targeting
zipfian distributed keys. Each request reads/writes an 8 KB record.

When multiple migrations take place simultaneously, the worst values are
collected as representative of the trial. Figure 5.7a shows the downtime as
function of the number of guests, and Figure 5.7b as a function of guest RAM
size. Our zero-copy migration incurs the same downtime as post-copy live
migration or pre-copy live migration when the WSS is zero (see Section 2.3.1).
Indeed, such downtime is less than 30 milliseconds, in line with the median
downtime for 1 vCPU guests reported in [4].

5.7.2 NIC Reinitialization Time Analisys

The downtime PCIe NICs incur during the device migration encompasses the
time to quiesce and re-initialize the device, plus the time to configure the OS
network stack accordingly, making the interface usable. We benchmarked the
downtime for the two NICs reported in Table 5.2, the same peripherals that
our test-node embeds.

We estimate the total time by measuring the time elapsed between the
start of the PCIe hot-unplugging to shut down the device, and the reception
of a first ping echo reply. A client constantly probes the NIC, waiting for

5.7. Evaluation 95

NIC Reinit. time (s)
Intel 82599ES (NIC#1) 3.5±0.05
Intel X520 (NIC#2) 1.79±0.05

Table 5.3: Average downtime time for PCIe NICs (Measurement tolerance 100 ms)

100 milliseconds between each ping echo request. Due to the rate at which
the probes are sent, the experiment overestimates by at most 100 milliseconds
the re-initialization time. Note that the RTT within the cluster is in the order
of tens of microseconds. The results are reported in Table 5.3. The downtime
for both NICs is in the order of seconds, with a noticeable difference between
the two cards.

5.7.3 Impact on Guest Workloads

Multi-FiX preserves the network availability of the virtual machines during
the upgrade. However, due to the relocation of the (i) NICs, (ii) CPUs, and
(iii) VMs, the performance of the guest workloads is affected. In particular,
relocating a NIC makes the device unavailable for 1.8-3.6 seconds, temporarily
reducing the total host bandwidth by the card rate. Furthermore, as CPUs in-
cur a brief downtime during their offline/online cycle, the total computational
capacity can fluctuate during the migration stage. We study two workloads, a
pure network workload—a TCP bulk transfer—and the mixed CPU-memory-
network workload of an in-memory database server.

TCP Bulk Transfer. We analyzed the impact of Multi-FiX over long-lived
TCP connections by deploying 8 VMs in a single node, each VM executing
one iperf server instance. The host total bandwidth is 20 Gbps, provided by
the two 10 Gbps NICs aggregated in a source-load-balanced bonding interface
that distributes the traffic on a per-flow basis.

Figure 5.8a shows the aggregated iperf throughput during the migration
stage of the upgrade (Section 5.5.2). The first phase of the migration stage
starts by relocating the first NIC to H2. We see at 1 a decrease of throughput
by 50% due to the single remaining 10 Gbps NIC. Around 2 seconds after,
the relocated NIC is again functional within H2, and half of the VMs join
it resuming the total 20 Gbps of aggregated throughput at 2 . Half of the
CPUs start migrating alongside the VMs and finish at 3 . We see an increase
in the CPU utilization on H1 as the CPUs are offlined to join the VMs on H2.
The second phase is symmetrical to the first one. It starts with the remaining
VMs on H1 migrating to H2 The throughput drops again by 50% due to all
the 8 VMs sharing a single 10 Gbps NIC at 4 . The remaining CPUs (except
one) also leave H1. Once the VMs are fully migrated at 5 , the NIC on H1

96 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

25 30 35 40 45 50
Time (s)

0

5G

10G

15G

20G

Th
ro

ug
hp

ut
 (b

ps
)

1 2 3 4 5 6

Aggregated Iperf
H1 CPU%
H2 CPU%

0

20

40

60

80

100

CP
U

Us
ag

e
(%

)

(a) Aggregated

25 30 35 40 45 50
Time (s)

0

2G

4G

6G

Th
ro

ug
hp

ut
 (b

ps
)

(b) Individual.

Figure 5.8: Iperf throughput during a Multi-FiX upgrade.

relocates to H2, taking around 3.5 seconds to reinitialize at 6 . Eventually,
the throughput resumes to 20 Gbps when both NICs and all VMs are on H2.
Overall, the throughput of the TCP bulk transfer is halved for a total time
of around 5 seconds, corresponding to the sum of the downtimes of each NIC.
Note that, as depicted in Figure 5.8b, no VMs remains unreachable for an
extended time higher than 100 ms.

In-memory Database. We adopt the aforementioned Redis [16] and
YCSB [45] to generate the in-memory database workload. The experiment
involves 16 VMs, each with 1 vCPU and 2 GB of RAM, hosting an inde-
pendent Redis instance loaded with 64 thousand 1 KB records. The clients
generate via YCSB mixed read/write requests targeting Zipf-distributed keys.
Note that each request is blocking.

Figure 5.9a shows Redis’s aggregated throughput during the migration
stage of the upgrade. We built the experiment to put high CPU pressure on
the host. Indeed, H1 shows an average CPU utilization above 80% before any

5.7. Evaluation 97

20 25 30 35 40 45 50 55
Time (s)

0

20k

40k

60k

80k

Th
ro

ug
hp

ut
 (O

p/
s)

1 2 3 4 5 6

Aggregated Redis
H1 CPU%
H2 CPU%

0

20

40

60

80

100

CP
U

Us
ag

e
(%

)

(a) Aggregated.

20 25 30 35 40 45 50 55
Time (s)

0

2.5k

5k

7.5k

Th
ro

ug
hp

ut
 (O

p/
s)

(b) Individual.

Figure 5.9: Redis throughput during a Multi-FiX upgrade.

migration starts. In this experiment, the network bandwidth does not consti-
tute a bottleneck for the in-memory database workload, hence the departure
of a NIC does not affect the throughput. However, there is a certain response
to the change in the number of online/offline CPUs for a hypervisor. During
the first phase of the migration stage, the relocation of the NIC at 1 does
not lead to any throughput drop. However, as half of the CPUs (CPU#2-8)
and half of the VMs migrate to H2 at 2 , we see the CPU utilization on H1
fluctuating and briefly hitting close to 100%. This noise is responsible for the
brief decrease of throughput, but stabilizes quickly after the CPUs and VMs
complete the relocation to H2. Similar behavior happens during the second
phase, a fluctuation of the CPU utilization on both H1 and H2 shows up at
4 , the moment when the remaining VMs and CPUs start migrating. Overall,
despite the high CPU requirement of the benchmark, Multi-FiX achieves a
moderate and brief degradation of an in-memory database throughput. Note
that, as depicted in Figure 5.9b, no individual workload ever reaches zero.

98 Chapter 5. Co-located Hypervisors for Efficient Live Upgrades

5.8 Discussion

In this section we discuss the limitations of Multi-FiX and the future research
directions that may overcome the major problems.

Multi-FiX currently only protects the network availability of the virtual
machines during the upgrade, provided that at least two distinct PCIe NICs
are installed and connected to the production network. This limitation stems
from the long time a device takes to relocate between the two hypervisors.
PCIe NICs take several seconds with great variability between models. The
same will occur for NVMe controllers which, according to [97], incur a 1.2 and
2.5-second downtime, depending on the card. As no I/O operation can be
performed by the device while re-initializing, the workload must be diverted
to another peripheral. For network cards, it is simple. A second PCIe NIC
stays available while the first one is re-initialized, taking over all the traffic as
if a link failure took place on the restarting card. In Multi-FiX, we exploited
this property of the NICs to preserve the guest network availability. However,
stateful devices, such as NVMe drives, do not easily support a backup spare
that can take over the workload in case of failure. RAID controllers are built as
a single PCIe device, hence, all the redundancy offered by the RAID schema
is lost when the controller is unavailable. GPUs and HBAs may suffer the
same problem.

The reason for the re-initialization of the device, in order to relocate it
between the two hypervisors, is the following: the device driver in the des-
tination system must rebuild a valid computational state compatible with the
state of the device. To work around the problem, the driver state shall be
either migrated or not reset at all. We discuss this possible future direction
in Section 6.2.

5.9 Summary

In this Chapter we presented Multi-FiX, a novel addition to the family of
in-place upgrade solutions for hypervisors. Multi-FiX leverages multi-kernel
boot, our novel software boot procedure that spawns two bare-metal un-
cooperative systems on the same physical hardware, leveraging warm-reboot
and the partitioning of the hardware to avoid concurrent accesses to non-
shareable resources. We implemented Multi-FiX for QEMU-KVM for x86-64,
running a recent Linux version which required little modifications to few key
subsystems (kexec, PCIe probing, IOMMU initialization, and CPU#0 onlin-
ing) to support the multi-kernel boots, leveraging mainly existing OS features
(warm reboots, PCI hot-plugging, CPU hot-plugging). Our PoC was tested on
a modern host, equipped with the same hardware normally found in contem-
porary production data centers. Multi-FiX delivers clear improvements over

5.9. Summary 99

Hy-FiX, applying the same class of upgrades while preserving the network
availability of the running VMs, incurring downtimes as high as 30 millisec-
onds at the costs of sacrificing half of the host network bandwidth for a short
time (8 seconds on the tested hardware).

Chapter 6

Conclusion and Future Directions

Contents
6.1 Conclusion . 101

6.2 Future Directions . 104

6.1 Conclusion

Server virtualization and consolidation are fundamental to decrease the oper-
ational costs of data centers. Migration is used to re-configure the placement
of virtual instances (dynamic re-consolidation), with the main objective of re-
grouping sparsely unused resources and eventually deploy additional instances
or power off empty physical machines. Furthermore, maintenance events lever-
age migrations to avoid the disruption incurred by turning off servers, network,
power, and cooling equipment. Migration is not, however, the panacea. For
idle virtual machines, dynamic re-consolidation, combined with traditional
over-booking mechanisms, either falls short in reclaiming enough resources
(e.g. with ballooning or page deduplication) or might lead to unpredictable
performance degradation (a known downside of the hypervisor swapping tech-
nique). For hypervisor upgrades, the benefits of limited downtime obtained
with live migration collide with the poor scalability of such a strategy, as live
migration is a resource-demanding process in terms of both network utiliza-
tion and spare resource availability. Hence, hypervisor upgrades based on live
migration potentially result in long upgrade campaigns that prolong exposure
to fatal vulnerabilities.

In this thesis, we went beyond the classical migration techniques for virtual
instances. We exploited the versatility of transplanting the execution state of
virtual instances, in particular of virtual machines. With SEaMLESS, part
of the VM’s state is isolated and extracted to deceive end-users (or moni-
toring agents) into believing the VM is still up and running, while only the
front-end part of the services is still active. The hypervisor can then reclaim
the allocated (locked) resources by disabling the idle VM. With Hy-FiX and
Multi-FiX, part of the VM’s state is checkpointed, marshalled, and fed to
an upgraded version of the hypervisor, whereas the remainder of the state,

102 Chapter 6. Conclusion and Future Directions

the bulky guest RAM, is recovered from the environment (host RAM ; with-
out any data transfer), efficiently preserving the VMs across the disruptive
hypervisor restart. As the two key challenges identified at the onset of this
thesis relate to idle virtual machines and hypervisor upgrades, that both con-
sume high amounts of resources in the data centers, we summarize below our
contributions to these two problems.

Discussion on Idle Virtual Machines in Data Centers. In this disserta-
tion, we presented SEaMLESS, a solution to boost the consolidation in data
centers populated with numerous idle virtual machines. Despite being idle,
virtual machines retain their memory. RAM thus becomes the bootleneck
when deploying more instances on a single physical machine. Simply termi-
nating idle VMs to reclaim their memory undermines the availability (and
violates, in a number of cases, SLAs) that data center operators are supposed
to guarantee. Any strategy that tackles such a problem shall deal with sudden
end-user requests that cease the idle virtual machines’ inactivity, processing
them within the shortest delay.

A variety of state-of-the-art solutions propose a mechanism to reclaim
memory from running idle VMs. Via partial VM migration, the little portion
of the idle VMs’ state that makes their on-board services available, i.e., the
working set, can be consolidated on a few physical machines, suspending the
remainder of the hosts that hold the bulk of the state. The working set esti-
mation for the idle execution, necessary to identify the portion of VM’s state
to maintain available, might however fail to account for keep-alive messages or
other trivial requests. Therefore, receiving such a class of requests can unnec-
essarily prompt the restoration of the VMs. Proxies to replace the disabled
idle VMs offer finer control over which end-user requests require resuming the
offlined instances. However, the challenge is to implement a generic proxy
that supports any network protocol (e.g., TCP, UDP, etc.), and application
that run on idle VMs (web server, SSH server, etc.). For this reason, we
proposed SEaMLESS, a framework able to migrate the gateway processes,
constituting the entry-point to the VM’s services, to a container. The gate-
way processes transplanted inside the container act as a proxy replacement
for a disabled idle VM. The container hence represents a lightweight Virtual
Network Function (VNF) that maintains the network presence of the services.
User activity is detected at the container by monitoring the interaction be-
tween the transplanted gateway processes and their container, successfully
identifying requests that require resuming the VM.

SEaMLESS enables the usage of various techniques to disable the VMs
(whose gateway processes have been migrated) and reclaim their resources,
especially the memory. Suspend-to-disk fully reclaims the entire memory but
incurs a slow VM restoration, proportional to the size of the guest RAM.

6.1. Conclusion 103

Suspended-to-RAM VMs resume instantly but no memory is returned. We
propose a combination of the best of both worlds, suspend-to-swap, that evicts
most of the VM’s to storage while restarting immediately. Suspend-to-swap
leverages the hypervisor swapping, eagerly moving VM’s memory to swap to
make room for other instances, exploiting the lazy fetching of memory pages
as they are needed.

Discussion on Hypervisor Upgrades. In this dissertation, we presented
Hy-FiX and Multi-FiX to perform scalable in-place upgrades of hypervisors.
The limited upgrade capabilities of the live upgrades and little scalability
of migrations leave space for improvements in the domain of hypervisor up-
grades. Restarting the hypervisor is the universal approach to upgrade the
entire software stack deployed in a hypervisor, from the host OS (in type-2
hypervisors) to the VMM, including any additional user-space components.
However, the disruptive hypervisor reboot makes the restarting approach a
weak upgrade technique. Suspend-to-disk can preserve the VMs’ state across
the reboot, but incur a long incurs when saving/loading the bulky RAM of
running the VMs.

The breakthrough is leveraging warm-reboots to shorten the hypervisor
reboot time and enable an ideal forward-compatible zero-copy migration of
VMs towards an upgraded hypervisor. Nevertheless, the warm-reboot time
still dominates the virtual machine downtime. Our proposition, Hy-FiX, im-
proved on state-of-the-art solutions by applying key modifications for legacy
KVM-hypervisors to drastically reduce the long memory initialization that the
host OS undergoes during the reboot. Hy-FiX’s lazy memory initialization
decouples the hypervisor restart time from the host memory size. The former
becomes almost independent from the latter, a key feature as RAM size keeps
increasing in large data center machines. Compared to live migrations, warm-
reboots still incur a noticeable downtime three orders of magnitude higher,
which led us to design Multi-FiX.

Booting a second hypervisor in the background while the primary one
keeps executing is an approach explored in nested virtualization to perform
efficient non-disruptive upgrades. However, nested virtualization penalizes the
workloads due to the higher virtualization overhead. Inspired by the classical
multi-kernel OS architecture, aiming at executing several weakly-cooperative
OSes on the same hardware, we proposed a successor to Hy-FiX: Multi-FiX.
The features of modern hardware, such as multi-core processors, xAPIC, PCIe
devices, and IOMMUs, enable an easy implementation of a multi-kernel OS
architecture for hypervisors, specialized to perform upgrades. By sharing
some portions of the physical memory, the two hypervisors can perform a
zero-copy migration of the virtual machines, handing the guest execution to
the upgraded hypervisor. Hardware resources initially split among the two

104 Chapter 6. Conclusion and Future Directions

hypervisors, migrate alongside the VMs. Eventually, the newer hypervisor re-
mains in control of the physical machines, completing the upgrade. Multi-FiX
achieves a complete in-place upgrade of a hypervisor while incurring a few tens
of millisecond-long downtime, comparable to live migration.

In the next Section, we propose some future directions for SEaMLESS,
Hy-FiX, and Multi-FiX.

6.2 Future Directions

Future Work for SEaMLESS. SEaMLESS is a refined way to over-book
the host memory. As a consequence, a promising follow-up work shall study
the integration of SEaMLESS with a platform manager like OpenStack [13].
SEaMLESS is able to promptly detect any new user-activity, hence data cen-
ter operators can take the most suitable operation to resume the VM. In the
presence of a memory hotspot, i.e., a flock of VMs resuming from idle at
the same time, a VM cannot resume on its host due to the risk of memory
contention and uncontrolled swapping. Live machine migration is helpful to
resolve crowded situations, however, the choice of which virtual machine to
migrate, and how, presents several challenges. For instance, pre-copy live mi-
gration does not immediately release the memory allocated by a VM, whereas
post-copy progressively returns memory as pages are sent to the destination.
The most appropriate choice depends on the available resources and the type
of services hosted on the involved VMs. It calls for in-depth integration of the
resource manager (Openstack or a platform-independent VM scheduler like
BtrPlace [55]).

Future Work for Multi-FiX. The major shortcoming of Hy-FiX is the slow
nature of the employed warm-reboot, which leads to downtime in the order
of seconds. To compete with the unnoticeable downtime of live upgrades and
live migrations, we focused on reducing such a delay and designed Multi-FiX.

Multi-FiX can apply complete in-placed upgrades while achieving its objec-
tive of minimizing downtime. However, Multi-FiX only protects the network
availability of virtual machines thanks to two redundant NICs and bonding
drivers within the hypervisor. This limitation derives from the long delay to
re-initialize the PCIe controllers during the device migration (Section 5.4.4).
The protection schema adopted by Multi-FiX can be generalized for stateless
devices. If two independent PCIe cards that perform the same class of I/O are
installed in the machines, and the software supports the transparent failover
on the healthy card, then the migration schema proposed in Section 5.5.2
applies to protect the I/O workload availability during the device migration.
However, stateful PCIe devices, such as disk controllers, cannot transparently
failover to a healthy device (remember that RAID controllers are a single

6.2. Future Directions 105

card with multiple disks attached). The authors in [97] devised a schema for
locally-attached redundant NVMe drivers to make them capable of surviving
the controller reset. Nevertheless, this approach cannot be generalized for
other devices (e.g., GPUs).

We emphasize that the re-initialization of the PCIe device during its migra-
tion aims at building a consistent software state at the destination hypervisor,
which will match the register context in the controller. This problem also af-
fects the migration of PCI passthrough devices (Section 2.3.1). In the context
of co-located hypervisors, this limitation can be overcome by preserving the
driver state in the destination hypervisor.

PCI passthrough is a technique that allows virtual machines to control,
directly, a PCI/PCIe device with minimal hypervisor interposition. Virtual
machines directly read/write the MMIO PCIe registers that control the hard-
ware peripheral (i.e., PCIe BARs). In this scenario, the device driver is
hosted, with all its computational state, inside the VM. We mentioned that
PCI passthrough devices are hard to checkpoint and restore. However, this
is different in the context of in-place upgrades, where the hardware devices
remain the same across the warm-reboot. Indeed, in this context, researchers
and cloud providers have implemented a generic and transparent restoration of
PCI passthrough devices [103, 85, 105, 92, 58]. Multi-FiX can be empowered
with this capability, allowing PCI passthrough devices to remain available
during all stages of the upgrade. During the VM migration, the driver state is
preserved within the guest and still matches the relative device hardware state.
This schema protects the availability of I/O workloads via PCIe passthrough
during the upgrade. A similar approach to handle PCI passthrough devices
can be applied to SR-IOV. Indeed, SR-IOV devices are programmed via their
Physical Function (PF), usually controlled by the hypervisor. Control of the
PF can be delegated to a checkpointable/restorable user-space process (e.g.
a VM) which could be migrated as well during the upgrade, or a user-space
driver that supports checkpoint/restore capabilities.

Bibliography

[1] Amazon EC2 Maintenance Help Page. https://aws.amazon.com/
maintenance-help/. (Visited on August 2021)). (Cited on pages 15,
26 and 48.)

[2] Amazon EC2, Spot Instance Inerruptions. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#
interruption-reasons. (Visited on August 2021). (Cited on page 15.)

[3] Checkpoint/Restore In Userspace. https://criu.org/Main_Page.
(Visited on August 2021). (Cited on pages 18, 34 and 52.)

[4] Google Compute Engine, Live migration. https://cloud.google.com/
compute/docs/instances/live-migration. (Visited on August 2021).
(Cited on pages 17, 48 and 94.)

[5] Google Compute Engine, Nested virtualization overview.
https://cloud.google.com/compute/docs/instances/nested-
virtualization/overview. (Visited on August 2021). (Cited on
pages 75 and 77.)

[6] Google Compute Engine, Preemptible VM Instances. https://cloud.
google.com/compute/docs/instances/preemptible. (Visited on Au-
gust 2021). (Cited on pages 15 and 48.)

[7] Intel Processor Microcode Package for Linux. https://github.com/
intel/Intel-Linux-Processor-Microcode-Data-Files. (Visited on
August 2021). (Cited on page 69.)

[8] Intel R© Software Guard Extensions (Intel R© SGX). https:
//www.intel.com/content/www/us/en/architecture-and-
technology/software-guard-extensions.html. (Visited on Au-
gust 2021). (Cited on page 69.)

[9] Kpatch: Dynamic Kernel Patching, GitHub Repository. https://
github.com/dynup/kpatch. (Visited on August 2021). (Cited on
pages 25 and 48.)

[10] KVM, CPU Hotplug. https://www.linux-kvm.org/page/
CPUHotPlug. (Visited on August 2021). (Cited on page 22.)

[11] Open vSwitch. http://openvswitch.org/. (Visited on August 2021).
(Cited on page 25.)

https://aws.amazon.com/maintenance-help/
https://aws.amazon.com/maintenance-help/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#interruption-reasons
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#interruption-reasons
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#interruption-reasons
https://criu.org/Main_Page
https://cloud.google.com/compute/docs/instances/live-migration
https://cloud.google.com/compute/docs/instances/live-migration
https://cloud.google.com/compute/docs/instances/nested-virtualization/overview
https://cloud.google.com/compute/docs/instances/nested-virtualization/overview
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://github.com/dynup/kpatch
https://github.com/dynup/kpatch
https://www.linux-kvm.org/page/CPUHotPlug
https://www.linux-kvm.org/page/CPUHotPlug
http://openvswitch.org/

108 Bibliography

[12] Open vSwitch, Bonding. https://docs.openvswitch.org/en/
latest/topics/bonding/. (Visited on August 2021). (Cited on
pages 18 and 88.)

[13] Openstack web page. https://www.openstack.org/. (Visited on Au-
gust 2021). (Cited on page 104.)

[14] Physical Memory Model. https://www.kernel.org/doc/html/
latest/vm/memory-model.html. (Visited on August 2021). (Cited on
page 60.)

[15] QEMU Migration Documentation. https://github.com/qemu/qemu/
blob/master/docs/devel/migration.rst. (Visited on August 2021).
(Cited on page 54.)

[16] Redis, Web Page. https://redis.io/. (Visited on August 2021).
(Cited on pages 64, 94 and 96.)

[17] SUSE Linux Enterprise Live Patching. https://www.suse.com/
products/live-patching/. (Visited on August 2021). (Cited on
page 25.)

[18] The Linux x86 Boot Protocol. https://www.kernel.org/doc/
Documentation/x86/boot.txt. (Visited on August 2021). (Cited on
pages 59, 78 and 86.)

[19] Virtuozzo Hybrid Server. https://www.virtuozzo.com/virtuozzo-
hybrid-server/. (Visited on August 2021). (Cited on page 18.)

[20] VMware vSphere, Enable CPU Hot Add . https://docs.vmware.com/
en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-
285BB774-CE69-4477-9011-598FEF1E9ACB.html. (Visited on August
2021). (Cited on page 22.)

[21] Xen Project Software Overview. https://wiki.xenproject.org/
wiki/Xen_Project_Software_Overview. (Visited on August 2021).
(Cited on page 8.)

[22] Hyper-V Architecture. https://docs.microsoft.com/en-
us/windows-server/administration/performance-tuning/role/
hyper-v-server/architecture, October 2018. (Visited on August
2021). (Cited on page 8.)

[23] Payment Card Industry Data Security Standard, Requirements
and Security Assessment Procedures Version 3.2.1. https://www.
pcisecuritystandards.org/, May 2018. (Visited on August 2021).
(Cited on pages 23 and 48.)

https://docs.openvswitch.org/en/latest/topics/bonding/
https://docs.openvswitch.org/en/latest/topics/bonding/
https://www.openstack.org/
https://www.kernel.org/doc/html/latest/vm/memory-model.html
https://www.kernel.org/doc/html/latest/vm/memory-model.html
https://github.com/qemu/qemu/blob/master/docs/devel/migration.rst
https://github.com/qemu/qemu/blob/master/docs/devel/migration.rst
https://redis.io/
https://www.suse.com/products/live-patching/
https://www.suse.com/products/live-patching/
https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.virtuozzo.com/virtuozzo-hybrid-server/
https://www.virtuozzo.com/virtuozzo-hybrid-server/
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-285BB774-CE69-4477-9011-598FEF1E9ACB.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-285BB774-CE69-4477-9011-598FEF1E9ACB.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-285BB774-CE69-4477-9011-598FEF1E9ACB.html
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/architecture
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/architecture
https://docs.microsoft.com/en-us/windows-server/administration/performance-tuning/role/hyper-v-server/architecture
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/

Bibliography 109

[24] CRIU, Upstream Kernel Commits. https://criu.org/Upstream_
kernel_commits, May 2019. (Visited on August 2021). (Cited on
page 34.)

[25] Microsoft Azure, Hypervisor Security on the Azure Fleet. https:
//docs.microsoft.com/en-us/azure/security/fundamentals/
hypervisor, April 2021. (Visited on August 2021). (Cited on page 53.)

[26] Amit, N., Tsafrir, D., and Schuster, A. VSwapper: A Memory
Swapper for Virtualized Environments. In Proceedings of the 19th In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (2014), ASPLOS ’14, pp. 349–366. (Cited
on pages 21 and 22.)

[27] Anthony Liguori. Powering Next-Gen EC2 Instances: Deep Dive into
the Nitro System. https://www.youtube.com/watch?v=e8DVmwj3OEs,
November 2018. (Visited on August 2021). (Cited on page 9.)

[28] Arnold, J., and Kaashoek, M. F. Ksplice: Automatic Rebootless
Kernel Updates. In Proceedings of the 4th ACM European Conference on
Computer Systems (2009), EuroSys ’09, pp. 187–198. (Cited on pages 24
and 25.)

[29] Bacou, M., Todeschi, G., Tchana, A., Hagimont, D., Lepers,
B., and Zwaenepoel, W. Drowsy-DC: Data center power manage-
ment system. In 2019 IEEE International Parallel and Distributed Pro-
cessing Symposium (2019), IPDPS, pp. 825–834. (Cited on page 30.)

[30] Balouek, D., Carpen Amarie, A., Charrier, G., Desprez,
F., Jeannot, E., Jeanvoine, E., Lèbre, A., Margery, D.,
Niclausse, N., Nussbaum, L., Richard, O., Pérez, C., Quesnel,
F., Rohr, C., and Sarzyniec, L. Adding Virtualization Capabili-
ties to the Grid’5000 Testbed. In Cloud Computing and Services Sci-
ence, vol. 367 of Communications in Computer and Information Science.
Springer International Publishing, 2013, pp. 3–20. (Cited on pages 39,
61 and 93.)

[31] Banerjee, I., Guo, F., Tati, K., and Venkatasubramanian, R.
Memory Overcommitment in the ESX Server. VMware Technical Jour-
nal 2, 1 (2013), 2–12. (Cited on pages 22 and 23.)

[32] Barbalace, A., Ravindran, B., and Katz, D. Popcorn: a
Replicated-kernel OS Based on Linux. In Proceedings of the Linux Sym-
posium 2014 (2014), OLS ’14, pp. 123–138. (Cited on pages 70, 75, 77
and 78.)

https://criu.org/Upstream_kernel_commits
https://criu.org/Upstream_kernel_commits
https://docs.microsoft.com/en-us/azure/security/fundamentals/hypervisor
https://docs.microsoft.com/en-us/azure/security/fundamentals/hypervisor
https://docs.microsoft.com/en-us/azure/security/fundamentals/hypervisor
https://www.youtube.com/watch?v=e8DVmwj3OEs

110 Bibliography

[33] Barker, S., Wood, T., Shenoy, P., and Sitaraman, R. An Em-
pirical Study of Memory Sharing in Virtual Machines. In 2012 USENIX
Annual Technical Conference (2012), ATC ’12, pp. 273–284. (Cited on
pages 20, 23 and 28.)

[34] Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs,
R., Peter, S., Roscoe, T., Schüpbach, A., and Singhania, A.
The Multikernel: A New OS Architecture for Scalable Multicore Sys-
tems. In Proceedings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles (2009), SOSP ’09, pp. 29–44. (Cited on pages 75
and 77.)

[35] Ben-Yehuda, M., Day, M. D., Dubitzky, Z., Factor, M.,
Har’El, N., Gordon, A., Liguori, A., Wasserman, O., and
Yassour, B.-A. The Turtles Project: Design and Implementation of
Nested Virtualization. In 9th USENIX Symposium on Operating Sys-
tems Design and Implementation (2010), OSDI ’10. (Cited on pages 51,
75 and 76.)

[36] Bila, N., de Lara, E., Joshi, K., Lagar-Cavilla, H. A.,
Hiltunen, M., and Satyanarayanan, M. Jettison: Efficient Idle
Desktop Consolidation with Partial VMMigration. In Proceedings of the
7th ACM European Conference on Computer Systems (2012), EuroSys
’12, pp. 211–224. (Cited on page 30.)

[37] Birke, R., Podzimek, A., Chen, L. Y., and Smirni, E. State-
of-the-Practice in Data Center Virtualization: Toward a Better Under-
standing of VM Usage. In 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (2013), DSN ’13, pp. 1–12.
(Cited on pages 19, 20, 28 and 48.)

[38] Breitgand, D., Dubitzky, Z., Epstein, A., Feder, O., Glikson,
A., Shapira, I., and Toffetti, G. An Adaptive Utilization Accel-
erator for Virtualized Environments. In IEEE International Conference
on Cloud Engineering (2014), pp. 165–174. (Cited on page 20.)

[39] Brown, L., Keshavamurthy, A., Shaohua Li, D., Moore, R.,
Pallipadi, V., and Luming, Y. ACPI in Linux. In Proceedings of the
Linux Symposium 2005 (2005), OLS ’15, pp. 51–67. (Cited on page 78.)

[40] Bugnion, E., Nieh, J., Tsafrir, D., and Martonosi, M. Hard-
ware and Software Support for Virtualization. Morgan & Claypool, 2017.
(Cited on page 8.)

[41] Bui, B., Mvondo, D., Teabe, B., Jiokeng, K., Wapet, L.,
Tchana, A., Thomas, G., Hagimont, D., Muller, G., and De-

Bibliography 111

Palma, N. When EXtended Para-Virtualization (XPV) Meets NUMA.
In Proceedings of the Fourteenth EuroSys Conference (2019), EuroSys
’19, pp. 1–15. (Cited on page 48.)

[42] Chaubal, Charu. The Architecture of VMware ESXi. VMware White
Paper (2008). (Cited on page 8.)

[43] Chen, Y., Farley, T., and Ye, N. QoS Requirements of Network
Applications on the Internet. Information Knowledge Systems Manage-
ment 4, 1 (2004), 55–76. (Cited on page 40.)

[44] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E.,
Limpach, C., Pratt, I., and Warfield, A. Live Migration of Vir-
tual Machines. In Proceedings of the 2nd Symposium on Networked Sys-
tems Design and Implementation (2005), NSDI ’05, pp. 273–286. (Cited
on pages 3, 16, 17, 18 and 51.)

[45] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. Benchmarking Cloud Serving Systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing (2010),
SoCC ’10, pp. 143–154. (Cited on pages 64, 94 and 96.)

[46] Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura,
M., and Bianchini, R. Resource Central: Understanding and Pre-
dicting Workloads for Improved Resource Management in Large Cloud
Platforms. In Proceedings of the 26th Symposium on Operating Systems
Principles (2017), SOSP ’17, pp. 153–167. (Cited on page 20.)

[47] Depoutovitch, A., and Stumm, M. Otherworld: Giving Applica-
tions a Chance to Survive OS Kernel Crashes. In Proceedings of the
5th European Conference on Computer Systems (2010), EuroSys ’10,
pp. 181–194. (Cited on page 52.)

[48] Doddamani, S., Sinha, P., Lu, H., Cheng, T.-H. K., Bagdi,
H. H., and Gopalan, K. Fast and Live Hypervisor Replacement. In
Proceedings of the 15th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments (2019), VEE ’19, pp. 45–58.
(Cited on pages 50, 51, 75, 76 and 77.)

[49] Fernando Luis Vázquez Cao. Generating a White List for Hard-
ware which Works with Kexec/Kdump. In LinuxConf Europe 2007
(2007). (Cited on pages 51 and 74.)

[50] Giuffrida, C., et al. Safe and automatic live update. VU University
Amsterdam (2014). (Cited on page 24.)

112 Bibliography

[51] Giuffrida, C., Iorgulescu, C., Kuijsten, A., and Tanenbaum,
A. S. Back to the Future: Fault-tolerant Live Update with Time-
traveling State Transfer. In Lucky LISA: Proceedings of the 27th Large
Installation System Administration Conference, LISA 2013. (Cited on
page 48.)

[52] Goel, A., Chopra, B., Gerea, C., Mátáni, D., Metzler, J.,
Ul Haq, F., and Wiener, J. Fast Database Restarts at Facebook.
In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (2014), SIGMOD ’14, pp. 541–549. (Cited on
pages 16, 24, 48 and 67.)

[53] Golden, B. Inside Amazon’s Cloud: Just How Many Cus-
tomer Projects? https://www.cio.com/article/2424378/
virtualization/inside-amazon-s-cloud--just-how-many-
customer-projects-.html, September 2009. (Visited on August
2021). (Cited on page 43.)

[54] Goyal, V., Biederman, E. W., and Nellitheertha, H. Kdump,
A Kexec-based Kernel Crash Dumping Mechanism . In Proceedings of
the Linux Symposium 2005 (2005), OLS ’05, pp. 169–180. (Cited on
page 92.)

[55] Hermenier, F., Lawall, J. L., and Muller, G. Btrplace: A
flexible consolidation manager for highly available applications. IEEE
Trans. Dependable Sec. Comput. 10, 5 (2013), 273–286. (Cited on
page 104.)

[56] Hermenier, F., Ramesh, A., Nagpal, A., Shukla, H., and Chan-
dra, R. Hotspot Mitigations for the Masses. In Proceedings of the ACM
Symposium on Cloud Computing (2019), SoCC ’19, pp. 102–113. (Cited
on pages 9, 19, 20 and 28.)

[57] Hines, M. R., Deshpande, U., and Gopalan, K. Post-Copy Live
Migration of Virtual Machines. SIGOPS Operating Systems Review 43,
3 (2009), 14–26. (Cited on pages 17 and 51.)

[58] Jason Zeng. KVM Forum, Device Keepalive State For Local
Live Migration and VMM Fast Restart. https://kvmforum2020.
sched.com/event/eE3W/device-keepalive-state-for-local-
live-migration-and-vmm-fast-restart-jason-zeng-intel, Octo-
ber 2020. (Cited on page 105.)

[59] Jonathan Corbet. Kexec. https://lwn.net/Articles/15468/.
(Visited on August 2021). (Cited on pages 52, 58 and 74.)

https://www.cio.com/article/2424378/virtualization/inside-amazon-s-cloud--just-how-many-customer-projects-.html
https://www.cio.com/article/2424378/virtualization/inside-amazon-s-cloud--just-how-many-customer-projects-.html
https://www.cio.com/article/2424378/virtualization/inside-amazon-s-cloud--just-how-many-customer-projects-.html
https://kvmforum2020.sched.com/event/eE3W/device-keepalive-state-for-local-live-migration-and-vmm-fast-restart-jason-zeng-intel
https://kvmforum2020.sched.com/event/eE3W/device-keepalive-state-for-local-live-migration-and-vmm-fast-restart-jason-zeng-intel
https://kvmforum2020.sched.com/event/eE3W/device-keepalive-state-for-local-live-migration-and-vmm-fast-restart-jason-zeng-intel
https://lwn.net/Articles/15468/

Bibliography 113

[60] Joshi, A., Pimpale, S., Naik, M., Rathi, S., and Pawar, K. Twin-
Linux: Running independent Linux Kernels simultaneously on separate
cores of a multicore system. In Proceedings of the Linux Symposium
2010 (2010), OLS ’10, pp. 101–108. (Cited on pages 77 and 78.)

[61] Kashyap, S., Min, C., Lee, B., Kim, T., and Emelyanov, P.
Instant OS Updates via Userspace Checkpoint-and-Restart. In 2016
USENIX Annual Technical Conference (2016), ATC’ 16, pp. 605–619.
(Cited on pages 3 and 52.)

[62] Kherbache, V., Madelaine, E., and Hermenier, F. Planning
Live-Migrations to Prepare Servers for Maintenance. In Euro-Par 2014:
Parallel Processing Workshops (2014), Springer, pp. 498–507. (Cited on
pages 20 and 23.)

[63] Kim, J., Ruggiero, M., and Atienza, D. Free cooling-aware dy-
namic power management for green datacenters. In 2012 International
Conference on High Performance Computing Simulation (2012), HPCS
2012, pp. 140–146. (Cited on page 19.)

[64] Knauth, T., and Fetzer, C. DreamServer: Truly On-Demand Cloud
Services. In Proceedings of International Conference on Systems and
Storage (2014), SYSTOR 2014, pp. 1–11. (Cited on pages 3, 28 and 31.)

[65] Koomey, J., and Taylor, J. Zombie/Comatose Servers Redux.
https://www.anthesisgroup.com/report-zombie-and-comatose-
servers-redux-jon-taylor-and-jonathan-koomey/, April 2017.
(Visited on August 2021). (Cited on pages 2 and 28.)

[66] Kourai, K., and Chiba, S. Fast Software Rejuvenation of Virtual
Machine Monitors. IEEE Transactions on Dependable and Secure Com-
puting 8, 6 (2011), 839–851. (Cited on pages 52 and 74.)

[67] Kourai, K., and Ooba, H. Zero-Copy Migration for Lightweight
Software Rejuvenation of Virtualized Systems. In Proceedings of the
6th Asia-Pacific Workshop on Systems (2015), APSys ’15. (Cited on
pages 50 and 76.)

[68] Lai Jiangshan. QEMU Patch, Add Capability to Bypass the Shared
Memory. https://lists.gnu.org/archive/html/qemu-devel/2018-
04/msg02250.html, April 2018. (Visited on August 2021). (Cited on
page 59.)

[69] Le, M., and Tamir, Y. ReHype: Enabling VM Survival across Hy-
pervisor Failures. In Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (2011),
VEE ’11, pp. 63–74. (Cited on page 52.)

https://www.anthesisgroup.com/report-zombie-and-comatose-servers-redux-jon-taylor-and-jonathan-koomey/
https://www.anthesisgroup.com/report-zombie-and-comatose-servers-redux-jon-taylor-and-jonathan-koomey/
https://lists.gnu.org/archive/html/qemu-devel/2018-04/msg02250.html
https://lists.gnu.org/archive/html/qemu-devel/2018-04/msg02250.html

114 Bibliography

[70] Lottiaux, R., Boissinot, B., Gallard, P., Vallée, G., and
Morin, C. OpenMosix, OpenSSI and Kerrighed: a comparative study.
In IEEE International Symposium on Cluster Computing and the Grid
(2005), CCGRID ’05, pp. 1016–1023. (Cited on page 18.)

[71] Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S.,
Sati, S., Yasukata, K., Raiciu, C., and Huici, F. My VM is
Lighter (and Safer) than Your Container. In Proceedings of the 26th
Symposium on Operating Systems Principles (2017), SOSP ’17, pp. 218–
233. (Cited on page 14.)

[72] Mike Rapoport. A Quick History of Early-Boot Memory Allocators.
https://lwn.net/Articles/761215/, July 2018. (Visited on August
2021). (Cited on page 53.)

[73] Mike Rapoport. Four-level page tables. https://lwn.net/
Articles/106177/, October 2018. (Visited on August 2021). (Cited
on page 60.)

[74] Nitu, V., Teabe, B., Tchana, A., Isci, C., and Hagimont, D.
Welcome to Zombieland: Practical and Energy-Efficient Memory Dis-
aggregation in a Datacenter. In Proceedings of the Thirteenth EuroSys
Conference (2018), EuroSys ’18, pp. 1–12. (Cited on pages 28 and 30.)

[75] Nomura, Y., Senzaki, R., Nakahara, D., Ushio, H., Kataoka,
T., and Taniguchi, H. Mint: Booting Multiple Linux Kernels on
a Multicore Processor. In 2011 International Conference on Broad-
band and Wireless Computing, Communication and Applications (2011),
pp. 555–560. (Cited on pages 77 and 78.)

[76] Pan, Z., Dong, Y., Chen, Y., Zhang, L., and Zhang, Z. CompSC:
Live Migration with Pass-through Devices. In Proceedings of the 8th
ACM SIGPLAN/SIGOPS conference on Virtual Execution Environ-
ments (2012), VEE ’12, pp. 109–120. (Cited on page 17.)

[77] Panwar, A., Prasad, A., and Gopinath, K. Making Huge Pages
Actually Useful. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (2018), ASPLOS ’18:, pp. 679–692. (Cited on page 48.)

[78] Popek, G. J., and Goldberg, R. P. Formal Requirements for Virtu-
alizable Third Generation Architectures. Communications of the ACM
17, 7 (1974), 412–421. (Cited on page 9.)

[79] Potter, S., and Nieh, J. Reducing Downtime Due to System Mainte-
nance and Upgrades. In Proceedings of the 19th Conference on Systems
Administration (2015), LISA 2005. (Cited on page 52.)

https://lwn.net/Articles/761215/
https://lwn.net/Articles/106177/
https://lwn.net/Articles/106177/

Bibliography 115

[80] Prasad, A., Gopinath, K., and McKenney, P. E. The RCU-
Reader Preemption Problem in VMs. In 2017 USENIX Annual Techni-
cal Conference (2017), ATC ’17, pp. 265–270. (Cited on page 21.)

[81] Reich, J., Goraczko, M., Kansal, A., and Padhye, J. Sleepless
in Seattle No Longer. In 2010 USENIX Annual Technical Conference
(ATC ’10, 2010). (Cited on pages 28 and 30.)

[82] Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and
Kozuch, M. A. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In Proceedings of the Third ACM Symposium
on Cloud Computing (2012), SoCC ’12. (Cited on pages 2, 20 and 28.)

[83] Rizzo, L. netmap: A Novel Framework for Fast Packet I/O. In 2012
USENIX Annual Technical Conference (2012), ATC ’12, pp. 101–112.
(Cited on page 77.)

[84] Ruprecht, A., Jones, D., Shiraev, D., Harmon, G., Spivak,
M., Krebs, M., Baker-Harvey, M., and Sanderson, T. VM Live
Migration At Scale. In Proceedings of the 14th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’18,
pp. 45–56. (Cited on pages 2, 3, 16, 17, 20, 23, 48 and 51.)

[85] Russinovich, M., Govindaraju, N., Raghuraman, M., Hepkin,
D., Schwartz, J., and Kishan, A. Virtual machine preserving host
updates for zero day patching in public cloud. In Proceedings of the
Sixteenth European Conference on Computer Systems (2021), EuroSys
’21, pp. 114–129. (Cited on pages 17, 18, 24, 50, 52, 53, 74 and 105.)

[86] Schopp, J., Hansen, D., Kravetz, M., Takahashi, H., Iwamoto,
T., Goto, Y., Kamezawa, H., Tolentino, M., and Picco, B.
Hotplug Memory Redux. In Proceedings of the Linux Symposium 2005
(2005), OLS ’05, pp. 152–174. (Cited on page 60.)

[87] Segalini, A., Lopez-Pacheco, D., Urvoy-Keller, G., Herme-
nier, F., and Jaquemart, Q. Hy-FiX: Fast In-place Upgrades of
KVM Hypervisors. IEEE Transactions on Cloud Computing (2021).
Early Access. (Cited on pages 16, 51, 53 and 74.)

[88] Segalini, A., Pacheco, D. L., Urvoy-Keller, G., Hermenier,
F., and Jacquemart, Q. Hy-fix: Fast in-place upgrade of kvm hy-
pervisors. In Proceedings of the ACM Symposium on Cloud Computing
(2019), SoCC ’19, pp. 485–485. (Cited on page 49.)

[89] Sharma, P., Chaufournier, L., Shenoy, P., and Tay, Y. Con-
tainers and Virtual Machines at Scale: A Comparative Study. In Pro-

116 Bibliography

ceedings of the 17th International Middleware Conference (2016), Mid-
dleware ’16, pp. 1–13. (Cited on pages 14, 19 and 21.)

[90] Shi, B., and Shen, H. Memory/Disk Operation Aware Lightweight
VM Live Migration Across Data-centers with Low Performance Impact.
In 2019 IEEE Conference on Computer Communications (2019), INFO-
COM 2019, pp. 334–342. (Cited on pages 26 and 51.)

[91] Soundararajan, V., and Anderson, J. M. The Impact of Man-
agement Operations on the Virtualized Datacenter. In Proceedings of
the 37th Annual International Symposium on Computer Architecture
(2010), pp. 326–337. (Cited on page 23.)

[92] Steven Sistare. KVM Forum, QEMU Live Update. https:
//kvmforum2020.sched.com/event/eE3E, October 2020. (Cited on
page 105.)

[93] Sugerman, J., Venkitachalam, G., and Lim, B.-H. Virtualizing
I/O Devices on VMware Workstation’s Hosted Virtual Machine Moni-
tor. In 2001 USENIX Annual Technical Conference (2001), ATC ’01,
pp. 1–14. (Cited on page 9.)

[94] Tanenbaum, A. S., and Bos, H. Modern Operating Systems. Pearson,
2015. (Cited on page 21.)

[95] Taylor Brown. Bringing Docker To Windows Developers with
Windows Server Containers . https://docs.microsoft.com/en-
us/archive/msdn-magazine/2017/april/containers-bringing-
docker-to-windows-developers-with-windows-server-
containers, April 2017. (Visited on August 2021). (Cited on
page 14.)

[96] Verma, A., Bagrodia, J., and Jaiswal, V. Virtual Machine Con-
solidation in the Wild. In Proceedings of the 15th International Mid-
dleware Conference (2014), Middleware ’14, pp. 313–324. (Cited on
pages 19 and 20.)

[97] Xue, S., Zhao, S., Chen, Q., Deng, G., Liu, Z., Zhang, J., Song,
Z., Ma, T., Yang, Y., Zhou, Y., et al. Spool: Reliable Virtualized
NVMe Storage Pool in Public Cloud Infrastructure. In 2020 USENIX
Annual Technical Conference (2020), ATC ’20, pp. 97–110. (Cited on
pages 98 and 105.)

[98] Yamada, H., and Kono, K. Traveling Forward in Time to Newer Op-
erating Systems Using ShadowReboot. In Proceedings of the 9th ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments (2013), VEE ’13, pp. 121–130. (Cited on page 52.)

https://kvmforum2020.sched.com/event/eE3E
https://kvmforum2020.sched.com/event/eE3E
https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/april/containers-bringing-docker-to-windows-developers-with-windows-server-containers
https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/april/containers-bringing-docker-to-windows-developers-with-windows-server-containers
https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/april/containers-bringing-docker-to-windows-developers-with-windows-server-containers
https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/april/containers-bringing-docker-to-windows-developers-with-windows-server-containers

Bibliography 117

[99] Zellweger, G., Gerber, S., Kourtis, K., and Roscoe, T. De-
coupling Cores, Kernels, and Operating Systems. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (2014), OSDI
’14, pp. 17–31. (Cited on page 77.)

[100] Zhai, E., Cummings, G. D., and Dong, Y. Live Migration with
Pass-through Device for Linux VM. In Proceedings of the Linux Sym-
posium 2005 (2005), OLS ’15, pp. 51–67. (Cited on pages 17 and 70.)

[101] Zhang, I., Denniston, T., Baskakov, Y., and Garthwaite, A.
Optimizing vm checkpointing for restore performance in vmware esxi.
(Cited on page 38.)

[102] Zhang, L., Litton, J., Cangialosi, F., Benson, T., Levin, D.,
and Mislove, A. Picocenter: Supporting Long-Lived, Mostly-Idle
Applications in Cloud Environments. In Proceedings of the Eleventh
European Conference on Computer Systems (2016), EuroSys ’16. (Cited
on pages 2, 27, 28 and 31.)

[103] Zhang, X., Zheng, X., Wang, Z., Li, Q., Fu, J., Zhang, Y.,
and Shen, Y. Fast and Scalable VMM Live Upgrade in Large Cloud
Infrastructure. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems (2019), ASPLOS ’19, pp. 93–105. (Cited on pages 3, 25,
48, 50, 51 and 105.)

[104] Zhi, J., Bila, N., and de Lara, E. Oasis: Energy Proportionality
with Hybrid Server Consolidation. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (2016), EuroSys ’16. (Cited on
pages 2, 28, 30 and 44.)

[105] Zhimin Feng. KVM Forum, KVM Live Upgrade With Properly
Handling Of Passthrough Devices. https://kvmforum2020.sched.
com/event/eE3c/kvm-live-upgrade-with-properly-handling-
of-passthrough-devices-zhimin-feng-bytedance, October 2020.
(Visited on August 2021). (Cited on page 105.)

[106] Zhou, D., and Tamir, Y. Fast Hypervisor Recovery Without Reboot.
In 2018 48th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (2018), DSN ’18, pp. 115–126. (Cited on
page 52.)

https://kvmforum2020.sched.com/event/eE3c/kvm-live-upgrade-with-properly-handling-of-passthrough-devices-zhimin-feng-bytedance
https://kvmforum2020.sched.com/event/eE3c/kvm-live-upgrade-with-properly-handling-of-passthrough-devices-zhimin-feng-bytedance
https://kvmforum2020.sched.com/event/eE3c/kvm-live-upgrade-with-properly-handling-of-passthrough-devices-zhimin-feng-bytedance

	Résume
	Abstract
	Acknowledgments
	Introduction
	Context and Problem Statement
	Contributions
	Publications
	Thesis Outline

	Background
	Hypervisor-Based Virtualization
	Type-1 and Type-2 Hypervisors
	CPU Virtualization.
	Memory Virtualization.
	I/O Virtualization.

	Operating-System-Level Virtualization
	Migrations of Virtual Instances
	Virtual Machine Migration
	Container Migration

	Resource Management in Data Centers
	Static Consolidation
	Dynamic Consolidation
	Resource Over-booking

	Maintenance in Data Centers
	Software Upgrades
	Hypervisor Upgrades

	VM-to-container Migration for Consolidation in Data Centers
	Introduction
	Related Work
	Solving the Idle-VM Problem
	The Gateway Process VNF
	Migration Procedures
	Detecting User Activity

	Solving the Waste of Memory Problem
	Evaluation
	Network Testbed
	Impact on the Quality of Experience
	Impact of Suspend-to-Swap
	Scalability of the sink server
	Reactiveness
	Memory Savings

	Discussion
	Summary

	Across-reboot Migration for Scalable Hypervisor Upgrades
	Introduction
	Related Work
	Hy-FiX: Architecture and Design
	Fast Checkpoint/Restore
	Memory Preserving Reboot
	Hy-FiX Upgrade-cycle

	Implementation
	Host OS Switch
	Fast Checkpoint/Restore
	Recovering Memory Across Reboots
	Lazy Host Memory Initialization

	Evaluation
	Micro Benchmarks
	Impact on Memory Access Latency
	Hy-FiX Memory Overhead
	Hy-FiX Upgrade Time & Downtime Analysis

	Discussion
	Summary

	Co-located Hypervisors for Efficient Live Upgrades
	Introduction
	Related Work
	Nested Virtualization
	Multi-kernel Operating Systems
	In-place Hypervisor Upgrades and Warm Reboots

	Technical Background: Modern x86-64 Computer Platforms
	Multi-kernel Boot
	Partitioning of Hardware Resources
	Minimal System Shutdown
	Partition Aware System Initialization
	Migration of Hardware Resources

	In-place Upgrade Strategy
	Virtual Environment and Hardware Redundancy
	Migration Stage
	Hy-FiX Integration

	Implementation
	Evaluation
	Zero-copy Migration Downtime Analisys
	NIC Reinitialization Time Analisys
	Impact on Guest Workloads

	Discussion
	Summary

	Conclusion and Future Directions
	Conclusion
	Future Directions

	Bibliography

