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commençait à émerger ; une concentration atmosphérique de CO2 que mon espèce n’avait jamais
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encadré pendant ces trois ans et demi. J’ai eu plusieurs professeur.e.s au cours de mon existence
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Jacomine, ingénieur aux doigts de fée dont le savoir-faire et l’humeur toujours égale à elle-même
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jim, Axel, Thomas F., Alexandra S., Stephen ’Bichette Pinel’, Théophile, Léandre, Victor, Laura,
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Chapter 1

General introduction

Foams and emulsions are ubiquitous systems, present in a myriad of applications from food to
shock-resistant materials and cell culture scaffolds when the continuous phase is solidified. This
broad spectrum of experimental realisations with seemingly radically different properties actually
hides a shared common structure : the presence of two immiscible fluid phases, either both liquid for
emulsions or liquid and gaseous for foams. This immiscibility comes from the differences in polarity
between the phases, one being hydrophilic/polar, while the second one is hydrophobic/apolar. The
interfacial area between the two phases comes with an extra energy, with an associated intensive
thermodynamical quantity called the interfacial tension γ0. To ensure foam/emulsion stability,
their interfaces are covered with surfactant molecules, which have the particularity of having one
or more hydrophobic and one or more hydrophilic parts. The surfactant molecules adsorb at the
interface, effectively lowering the interfacial tension. The properties of these surfactants, their in-
teractions with the interface and with each others impact the mechanical properties of the interface,
putting foams/emulsions in the category of systems with complex interfaces [1]. Because of the
prevalence of interfacial interactions in foams/emulsions, the physics of foams and emulsions share
a lot of common properties despite the difference in the state of matter in the discrete phase. The
physical description used for foams can thus often be applied to emulsions, and vice versa.

As sketched in Fig. 1.2, the properties of foams/emulsions are the result of a complex interplay
of the different lengthscales of the system, ranging from the molecular scale for surfactants adsorbed
at the interface (around 10−10 m) up to the foam/emulsion scale (around 1 cm). The mechanical
properties of a foam can be described using macroscopic observables, such as its response to shear
and compression. However, a predictive theory cannot overlook the mechanics at the bubble/drop
scale. Other materials composed of inclusions in a continuous bulk phase are often described
by averaging the mechanical properties of the two phases as an effective medium approximation,
weighted by their relative volume fraction. However, the large fraction of the volume occupied by
the bubbles/drops makes this approach unefficient, as they are no longer isolated inclusions in a
continuous phase. Rather, they interact through interfacial contacts with their neighbours, and
these interactions in turn impact the properties at the foam/emulsion level.

This system composition is similar to that of granular materials, where individual rigid grains
interact through interfacial contacts. The nature of this interaction, such as its strength and the
presence of static friction, impacts the mechanical properties of the packings. A proper determina-
tion of the interaction law between bubbles is therefore naturally sought to understand the foam
structure in terms of bubble properties. The first bubble interaction laws proposed by Durian [2]
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considered bubbles as rigid overlapping spheres with an interaction strength proportional to the
overlapping volume. Inspired by the soft sphere approximation used to describe granular materials,
this simple interaction law gives an easy experimental access to the contact forces between deformed
bubbles, by relating the drop compression along the axis of a contact to the magnitude of the force
exerted. However, Durian’s bubble model does not enforce volume conservation, as the local com-
pression is assumed to have no impact on the rest of the bubble/drop shape. It therefore fails to
account effectively for the high deformability of the bubbles, a feature essential to understand the
transition from wet to dry foams where the fraction of volume occupied by the continuous liquid
phase φl goes down from 36 % to 0.1 %. Attempts to amend this two-body interaction aimed at
explaining the response of bubbles to isotropic compression ended up with complex power-laws [3],
with fitting parameters depending on the foam geometry. Since Morse and Witten’s seminal paper
[4], the effect of deformability on the bubble-bubble interaction is known to make it non-pairwise,
with the compression of a bubble at one point causing a dilation in the rest of the body because
of volume conservation. This dilation further exerts extra-forces on other neighbouring bubbles.
As a result, the force at one point cannot be determined without considering all the forces applied
simultaneously.

The resulting many-body interaction greatly impacts foams, whose macroscopic mechanical be-
haviour is dominated by the deformations of the bubbles/drops and the mechanical work required
to increase their interfacial area. With an increasing number of neighbours, the constrained dilation
makes bubbles stiffer, directly linking mechanics and contact topology. Additionally, the deforma-
tion of the interfaces causes variations in the surfactant concentration, modifying the interfacial
tension and provoking interfacial flows of adsorbed molecules. Similarly, changes in the interfacial
interactions change how bubbles/drops organise : static friction reduces the number of contacts at
jamming transition, while adhesion stabilises new geometries. These modified structures in turn
influence the overall mechanical response of the foam [5, 6]. Typical bubbles/drops join at vertices
with a 4-fold connectivity : this underconstrained structure deform primarily by the bending of the
Plateau borders joining these vertices, as shown in Fig. 1.1a. By opposition, vertices with a higher
than 4-fold connectivity lead to a stretch-dominated mechanical response, represented in the same
figure, with a stiffness 10 to 100 times higher than bending-dominated materials with similar ma-
terial density [7]. This high vertex connectivity is unstable for standard foams/emulsions, but can
be stabilised by polymeric skins altering the bubbles/drops interfaces, as shown in Fig. 1.1c-f. The
structures, and hence the foam/emulsion mechanics, are thus intrinsically linked to the interfacial
interactions between the bubbles/drops. Moreover, because of their millimetric scale, bubbles/drops
are insensitive to thermal fluctuations unlike colloidal dispersions. Foams/emulsions are thus good
model systems to investigate the relations between interfacial properties, foam/emulsion structure
and mechanics.

This thesis is the first contribution to the larger METAFOAM project aiming at the production
of metamaterials (i.e. materials with a negative Poisson ratio) in a bottom-up approach, using
foams/emulsions as structural scaffolds. The mechanical properties of solidified foams/emulsions
are in large part dictated by their structure and the geometrical and topological organisation of
the bubbles/drops they are made of. As their structure results from the mechanical equilibrium
of bubbles/drops interacting through interfacial contacts, we aim at the controlled modification of
this structure by the tuning of their interfacial properties, through the addition of adhesion, friction
and interfacial elasticity of controlled magnitudes. The long-term objective is the formulation of
rules relating interfacial properties, foam/emulsion structure and mechanics to provide guidelines
to the creation of foam/emulsion-based metamaterials with tailored properties.
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Figure 1.1: a)Examples of the localisation of the deformation for different types of structures. An underconstrained structure

deforms by bending. With higher connectivity, the deformation is carried by the stretching of the edges, with a stiffness 10 to

100 times higher for the same material and density. b) Example of a structure with auxetic properties. The uniaxial stretch

causes the opening of the pre-buckled shapes, giving an effective negative Poisson ratio to the material [8]. c-f) Differences in

the interfacial properties alter the organisation of the foams/emulsions, as well as the shapes of the individual bubbles/drops.

c-d) PEG drops in a silicone blend, covered with an interfacial silicone gel described in Chapter 5. The variations in thickness

and rigidity modify the interfacial properties. e) Square bubbles [5] and f) rhombic dodecahedra in hydrogel foams [6].

This thesis attempts to lay the groundwork of this project through three approaches. First, it
provides an experimental verification of the Morse-Witten interaction law [4] in the context of foams.
This description at the bubble/drop level also aims at bridging the gap between foams/emulsions
and granular materials, where the relation between inter-grain interactions and packing properties
is a long-standing topic of investigation. Second, it provides a description of the foam/emulsion
structures, using here again descriptors inspired from granular science. As the interactions are
localised in the contacts between deformed interfaces, a rigorous definition of a contact between
two bubbles/drops requires to account for this deformation. We therefore provide an algorithm of
packing segmentation and analysis from tomographic images, aimed at foams and emulsions. This
software proposes a physically relevant definition of the neighbourhood relations and the possibility
for future users to control the reconstruction process and parameters, making it a good candidate
for future foam/emulsion structure characterisation. Third we investigate the addition of interfa-
cial elasticity on a purely capillary interface through a solid polymeric skin, and its impact on its
stress-strain relation. We show that it can be characterised to good approximation as a capillary
interface with an additional elastic stress in a new experimental setup, advocating for a modified
bubble-bubble interaction in the line of Morse-Witten interaction law. We complete the theoretical
model with an experimental model system of emulsion drops with controlled interfacial elastic mod-
ulus to probe the transition from purely capillary to purely elastic interfaces in future investigations.

This thesis is structured as follows. In Chapter 2, we describe the materials and methods used
in experiments and simulations all throughout the manuscript. In Chapter 3, we propose the first
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experimental verification of the Morse-Witten interaction law, using a simple experimental setup
of surfactant-stabilised air bubbles in a capillary with a square cross-section. We also confront the
results to numerical simulations using the finite elements software Surface Evolver [9], and found
that this new force-deformation relation describes the bubble behaviour with a lot more accuracy
than previous interaction models. In Chapter 4, we propose a theoretical model to describe the
stress-strain relation of a fluid-fluid interface covered with a solid elastic skin. By simplifying the
description of the elastic stresses, we show that the elastic shear modulus can be measured using
a pendant drop geometry without resorting to complex shape-fitting procedures used beforehand.
The comparison with predictions from elastic capsule equations showed that, despite its approxi-
mations, our model is in excellent agreement with more complex models, making it more usable for
widespread experimental applications. We further use this problem to propose the first benchmark
of Surface Evolver to describe elastocapillary interfaces, paving the way for future applications in
simulations of elastocapillary foams. In Chapter 5, we propose a refinement of an experimental
system consisting previously of PEG inclusions in a commercial silicone matrix [10] to transform
it in PEG drops with an interfacial silicone gel of controlled chemical composition, thickness and
rigidity. The final experimental system behaves partially as drops/bubbles because of its capillary
interface, and partially as elastic balloons because of the interfacial elasticity. For this reason, we
refer to them as droploons when they are based on drops, and bubbloons when they are based on
bubbles. We construct a millifluidic setup for the large-scale production of emulsion drops with
a controlled skin thickness, and show its impact on the structure of the emulsions. In Chapter
6, we describe our home-made segmentation software aimed at reconstructing and characterising
foams/emulsions. We propose a physically relevant definition of neighbourhood relations between
bubbles/drops and its numerical implementation using the data obtained from the algorithm. We
further apply our algorithm to numerically generated foams of known structures to benchmark its
validity, and show the possible analysis that are not accessible with commercially available softwares
yet.
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Figure 1.2: Interactions between the different lengthscales of the foams/emulsions. In this thesis, the relations between the

different scales are investigated with adapted experimental methods, represented between the black arrows.



Introduction générale

Les mousses et les émulsions sont des systèmes omniprésents, aux applications variées une fois
que la phase continue est solidifiée : de la gastronomie aux matériaux anti-chocs en passant par
les substrats pour la culture cellulaire, ces différents usages présentent des points communs malgré
leurs propriétés radicalement différentes. Ainsi, elles sont toujours composées de deux phases fluides
immiscibles : l’une liquide et l’autre gazeuse dans le cas des mousses, et toutes deux liquides dans le
cas des émulsions. L’immiscibilité provient de la différence de polarité entre les deux phases, l’une
étant hydrophile (ou polaire) tandis que la seconde est hydrophobe (ou apolaire). Pour compenser
cette immiscibilité, la formation d’une interface entre ces deux phases nécessite une énergie dont
la quantité intensive associée est appelée la tension interfaciale γ0. La stabilité des mousses et
des émulsions est favorisée par l’ajout des molécules tensioactives, ayant la particularité d’être
composées d’une (ou plusieurs) parties hydrophobes, et une (ou plusieurs) parties hydrophiles. Ces
molécules s’adsorbent spontanément à l’interface, où elles réduisent la tension interfaciale entre les
deux phases. Les propriétés des tensioactifs, leurs interactions avec l’interface et entre eux affecte
les propriétés mécaniques de l’interface qu’ils recouvrent, classant les mousses et les émulsions dans
la catégorie des systèmes aux interfaces complexes [1]. Les interactions interfaciales conditionnent
une grande partie des propriétés des mousses et des émulsions. Grâce à ce point commun, ces
deux systèmes partagent un grand nombre de propriétés en commun, malgré la différence entre
état gazeux et état liquide. De fait, les descriptions physiques des mousses peuvent souvent être
appliquées aux émulsions, et vice versa.

Les propriétés des mousses et des émulsions résultent de leurs propriétés aux différentes échelles,
et de la façon dont ces échelles interagissent l’une sur l’autre, comme représenté Fig. 1.2. Ainsi,
une compréhension complète du système étudié nécessite de considérer l’échelle moléculaire pour
comprendre le comportement des tensioactifs à l’interface (environ 10−10 m) ainsi que l’échelle de
la mousse/émulsion dans son ensemble (environ 1 cm). Ainsi, les propriétés mécaniques peuvent
être décrites au moyen d’observables macroscopiques, telle que la description d’une déformation
de cisaillement ou de compression par un champ continu. Cependant, une description physique-
ment réaliste de ces déformations ne peut faire l’économie d’une description de la mécanique de
déformation à l’échelle de la bulle et de la goutte. Dans d’autres matériaux biphasiques, les parties
discontinues du matériau peuvent être décrites comme des inclusions dans une matrice continue, se
comportant comme un milieu effectif dont les propriétés d’ensemble sont une moyenne des propriétés
des deux phases, pondérée par la fraction volumique qu’elles occupent respectivement. Toutefois,
dans le cas des mousses et des émulsions, les bulles et les gouttes qui constituent les inclusions
occupent une fraction importante du volume du système, si bien qu’elles ne constituent plus des
inclusions isolées dans une phase continue. Au contraire, les bulles et les gouttes interagissent avec
leurs voisines au travers de leurs contacts interfaciaux. Ces interactions affectent à leur tour les
propriétés des mousses et des émulsions qu’elles constituent.

La structure des mousses et des émulsions est similaire à celle des matériaux granulaires, où
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des grains rigides interagissent par contacts interfaciaux. Dans le cas des matériaux granulaires,
les propriétés mécaniques de l’ensemble sont affectées par la nature des interactions mises en jeu,
telles que la rigidité du contact et la présence ou non de friction statique. De par cette similitude
entre mousses, émulsions et matériaux granulaires, une description des mousses et des émulsions
au niveau des interactions entre bulles et entre gouttes constitue une piste de réflexion promet-
teuse pour l’investigation des relations entre structures et propriétés. La première loi d’interaction
de bulles, proposée par Durian [2], considérait les bubbles comme des sphères rigides pouvant
s’interpénétrer, et dont la force d’interaction était proportionnelle au volume d’interpénétration
des deux sphères. Cette interpénétration tenait alors lieu de déformation. Cette loi d’interaction
est inspirée de l’approximation de sphères molles utilisée pour les matériaux granulaires : elle
confère une façon simple d’associer la compression d’une sphère dans l’axe d’application d’une
force à l’amplitude de cette force. Cependant, la compression dans le modèle de Durian n’est pas
assortie d’une contrainte sur la conservation de volume, la compression en un point de la bulle ne
provoquant pas de déformation du reste de la surface. Le modèle de Durian échoue ainsi à con-
sidérer la déformabilité des bulles, pourtant essentielle à la compréhension de la transition d’une
mousse humide à une mousse sèche, quand la fraction du volume occupée par le liquide décrôıt
de 36 % à 0.1 %. Des tentatives de raffinement de cette loi à deux corps, focalisée sur la réponse
mécanique à une compression isotrope, transforment cette loi simple en une loi de puissance à la
forme extrêmement complexe [3], reposant sur des paramètres numériques fonction de la géométrie
de la mousse. A contrario, la déformabilité est identifiée comme faisant de l’interaction bulle-bulle
une interaction à N -corps depuis l’article séminal de Morse et Witten [4] : la compression en un
point de la bulle cause sa dilatation dans le reste du corps de la bulle, du fait de la conserva-
tion du volume. Cette dilatation cause à son tour une augmentation de la force exercée par la
bulle compressée sur ses voisines. La détermination d’une force de contact exercée en un point de
la bulle ne peut donc se faire sans considérer simultanément toutes les forces appliquées à la surface.

L’interaction à N -corps qui en découle influence les mousses, dont le comportement macro-
scopique est dominé par les déformations des bulles et le travail mécanique nécessaire à l’augmentation
de leur aire interfaciale. Avec un nombre croissant de voisins, la contrainte sur la dilatation rend
les bulles plus rigides, établissant un lien direct entre la mécanique et la topologie des contacts.
De plus, la déformation des interfaces provoque des variations dans la concentration de surface
des tensioactifs, modifiant la tension interfaciale et provoquant des écoulements interfaciaux des
molécules adsorbées. De même, des changements dans ces interactions interfaciales modifient la
façon dont les bulles et gouttes s’organisent : la friction statique réduit le nombre de voisins par
bulle nécessaire pour obtenir une mousse mécaniquement stable à la transition d’encombrement,
tandis que l’adhésion entre bulles stabilise des géométries qui seraient instables pour des mousses
classiques. Ces structures modifiées vont à leur tour affecter la réponse mécanique des mousses
[5, 6]. Ainsi, des bulles et gouttes classiques se rejoignent sur des sommets à 4, formant des struc-
tures sous-contraintes dont le mode de déformation principal est la flexion des bords de Plateau
joignant ces sommets, comme représenté Fig. 1.1a. À l’inverse, des sommets joignant plus de 4
bulles se déforment principalement par étirement de Plateau (Fig. 1.1a), avec une rigidité finale
10 à 100 fois plus importante, à densité de matériau identique, que les structures se déformant
par pliage [7]. Cette haute connectivité des sommets est instable pour les mousses et émulsions
standards, mais peut être stabilisée par l’addition de peaux de polymères à l’interface des bulles et
gouttes, comme représenté Fig. 1.1. La structure, et donc les propriétés mécaniques des mousses
et des émulsions, sont donc intrinsèquement liées entre bulles et entre gouttes. De plus, les bulles
et les gouttes sont insensibles aux fluctuations thermiques du fait de leur taille millimétrique, con-
trairement aux dispersions collöıdales. Les mousses et les émulsions sont donc des systèmes modèles
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idéaux pour étudier les relations entre propriétés interfaciales, structurales et mécaniques.

Cette thèse constitue la première contribution du projet METAFOAM visant à la production
de métamatériaux auto-assemblés, en se servant des mousses et des émulsions comme échaffaudages
structuraux. Les propriétés mécaniques des mousses et émulsions solidifiées sont en grande partie
dictées par leur structure et l’organisation des bulles et des gouttes qui les composent. Ces structures
résultant de l’équilibre mécanique entre bulles et gouttes interagissant par contacts interfaciaux,
ce projet vise à la modification contrôlée de la structure par la modification de l’interface, grâce à
l’addition d’adhésion, de friction et d’élasticité interfaciale de magnitudes contrôlées. À long terme,
ce projet vise à formuler un ensemble de règles reliant les propriétés interfaciales, la structure les
propriétés mécaniques, de façon à guider la création de métamatériaux aux propriétés contrôlées,
basés sur ces mousses et émulsions.

Ce manuscrit tâche de poser les bases de ce projet par trois approches. Premièrement, par une
vérification expérimentale de la loi d’interaction de Morse et Witten [4] appliquée aux mousses.
Cette description à l’échelle de la bulle vise également au renforcement de la similitude entre
les mousses et les matériaux granulaires, de façon à tirer profit de l’expérience de la science des
matériaux granulaires dans l’établissement des relations entre interactions entre grains et pro-
priétés d’ensembles. Deuxièmement, en proposant une description quantitative des structures de
mousses et d’émulsions, en utilisant là aussi des quantités importées de la science des matériaux
granulaires. L’interaction entre particules étant localisée au niveau des contacts entre bulles et
gouttes déformées, une définition rigoureuse de ces contacts nécessite de prendre en compte cette
déformation. Nous proposons donc un algorithme de segmentation et d’analyse de mousses et
d’émulsions à base d’images tomographiques. Ce logiciel propose une définition physiquement
pertinente des relations de contact. De plus, la possibilité pour de futurs utilisateurs et futures
utilisatrices de contrôler le processus de reconstruction ainsi que ses paramètres en fait un bon candi-
dat pour des investigations futures sur les structures des mousses et des émulsions. Troisièmement,
nous étudions l’ajout d’une élasticité interfaciale sur une interface purement capillaire au travers
d’une peau solide de polymères, ainsi que sa conséquence sur sa relation stress-déformation. Nous
montrons que cette relation peut être décrite comme une interface capillaire dotée d’un stress
élastique additionnel dans une nouvelle configuration expérimentale. Cette relation simplifiée peut
ainsi être intégrée directement dans la loi d’interaction de Morse et Witten, de façon à obtenier une
loi d’interaction modifiée prenant en compte cette élasticité. Nous complétons ce modèle théorique
avec un système expérimental modèle, constituée de gouttes ayant un module d’élasticité inter-
faciale contrôlée. Ce modèle servira à l’avenir à étudier la transition d’une interface purement
capillaire à une interface purement élastique.

Ce manuscrit est structuré comme suit. Dans le Chapitre 2, nous décrivons les matériaux
et méthodes employés dans les expériences et les simulations à travers le manuscrit. Dans le
Chapitre 3, nous proposons une première vérification expérimentale de la loi d’interaction de Morse
et Witten au moyen d’un montage expérimental simple de bulles d’air stabilisées par des tensioactifs,
confinées dans un tube capillaire de section carrée. Nous confrontons ces résultats à des simulations
numériques au moyen du logiciel d’éléments finis Surface Evolver [9], et trouvons que cette nouvelle
relation force-déformation décrit le comportement des bulles avec bien davantage de précision que les
modèles d’interaction précédents. Dans le Chapitre 4, nous proposons un modèle théorique pour
décrire la relation stress-déformation d’une interface fluide-fluide couverte d’une peau élastique
solide. En simplifiant cette description des stress élastiques, nous montrons que le module de
cisaillement élastique peut être mesuré au moyen d’une expérience de goutte pendante sans recourir
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aux procédures complexes d’ajustement de forme utilisées dans la littérature. La comparaison de
ces résultats avec ceux de l’équation de forme des capsules élastiques montre que, malgré ses
approximations, notre modèle est en accord avec des modèles plus complexes, le rendant de fait
plus accessible dans une gamme plus grande de configurations expérimentales. Nous proposons
également la première utilisation de Surface Evolver pour décrire des interfaces élastocapillaires, et
montrons que ces simulations sont physiquement réalistes. Ainsi, nous ouvrons la possibilité à de
futures simulations de mousses élastocapillaires. Dans le Chapitre 5, nous proposons l’amélioration
d’un système expérimental consistant en des inclusions de PEG dans une matrice de silicone gélifié
[10], pour transformer les transformer en goutte de PEG couvertes d’un gel interfacial de silicone à la
composition chimique, rigidité et épaisseur contrôlées. Nous y détaillons un dispositif millifluidique
pour la production à grande échelle de gouttes à peau d’épaisseur contrôlée, et montrons l’impact
de ces peaux sur la structure des émulsions. Dans le Chapitre 6, nous décrivons notre programme
de segmentation développé spécifiquement pour la reconstruction et la caractérisation de mousses
et d’émulsions. Nous proposons une définition physiquement pertinente des relations de contact
entre les bulles et entre les gouttes, ainsi que son implémentation computationnellement efficient
en utilisant les données obtenues par notre algorithme de segmentation. Nous appliquons ensuite
cet algorithme à des mousses tests générées numériquement de structure connue pour vérifier la
validité des résultats obtenues, et montrons les analyses rendues possibles qui restaient jusque là
inaccessibles avec les logiciels commerciaux actuels.
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Chapter 2

Materials and Methods

2.1 Bubble train setup

2.1.1 Bubble generation

Bubbles are produced by blowing ambiant air at constant pressure (Elveflow pressure controller
PG1113, P = 11 mbar) through needles (Nordson EFD) with circular cross-sections of different
inner radii RC (RC = 150 − 330µm) into an aqueous solution containing sodium dodecyl sulfate
(SDS, Sigma Aldrich, L3771). The solutions are freshly prepared in Millipore water every two days
by stirring for 30 min. The SDS is used at a concentration of 7 g/L, corresponding to 2.9 times
the critical micellar concentration. This concentration is high enough to ensure bubble stability. It
is also low enough to neglect attractive depletion forces created between the bubbles by the SDS
micelles [11].

The interfacial tension of the solution is measured to be γ = 0.034 ± 0.001 N/m at room
temperature (20 °C) using a pendant drop device (TRACKER from TECLIS). For sufficiently

small gas flow rates, the generated bubble radius R0 is proportional to R
1
3
C , which therefore serves

to control the bubble size. The generated bubbles are trapped in glass capillaries with square cross-
section of different internal widths 0.6 mm ≤ WC ≤ 1 mm (VITROCOM), whose dimensions are
systematically verified using a Keyence numerical microscope (KEYENCE VHX5000). The bubbles
are trapped manually by holding the end of the capillary above the point of bubble generation.
Once the capillaries are filled with about 20 bubbles, they are sealed at either end using Blu-Tack
adhesive paste. Each capillary can be used for about 3 h before gas exchange between the bubbles
leads to measurable bubble-size variations.

2.1.2 Image acquisition

A sketch of the overall experimental setup is shown in Fig. 2.1. The square capillary is attached
to a metal frame which also holds the digital camera (IDS UI-3580LE and TAMRON M118FM50
camera lens). It fixes the relative positions of the camera and the capillary. The entire frame can
be rotated with respect to gravity. The capillary is imaged in front of a diffusive white screen with
homogeneous lighting. The latter is placed 40 cm behind the capillary in order to benefit from
optical effects which make the bubble boundaries appear dark black [12]. A thin wire with an
attached weight suspended in the field of view of the camera is used to detect the vertical direction
in the images. The angle β between the normal of the capillary and the direction of gravity is
then obtained from image analysis. Every time the angle is varied, we wait until there is no more
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measurable change in the bubble train between two consecutive images taken at an interval of 5
min. This equilibration takes 15-30 minutes, depending on the inclination angle β and the drainage
speed. To obtain the length LB of each bubble along the bubble train, we use the image analysis
program ImageJ to measure the profile of gray values along the centre line of the capillary. Due
to optical effects, the contact zones between neighbouring bubbles appear as three bright spots,
surrounded by dark areas. The actual border between two bubbles is the central bright spot [12].
A home-made Python algorithm detects the central spot, indicated by red crossed in Fig. 2.1c.

Figure 2.1: a) Experimental set-up used to test the Morse-Witten interaction law. Camera and capillary are held by the same

metal arm which can rotate to tilt the capillary with respect to gravity. The camera takes photographs of the capillary to

measure the deformation of the bubbles. b) Examples of photographies of bubble trains in capillaries (WC = 0.78 mm) at three

different tilting angles β. Inset : microscope image of the cross-section of the capillary. c) Illustration of image treatment used

to obtain the bubble length LB . Top: profile view of bubbles trapped in capillary. Bottom: gray value profile with detection

of bubble boundary (red cross).

The volume of the bubbles in the capillaries is determined by measuring their length LB at β = 0.
This length is then converted into the undeformed bubble radius R0 using the following equation
obtained from fitting Surface Evolver simulations and theory of isolated bubbles in capillaries [13],
as shown in Fig. 2.2 :

LB
WC
≈ −19.6

(
WC

2R0

)3

+ 60

(
WC

2R0

)2

− 62.6

(
WC

2R0

)
+ 23.2 (2.1)

where R0 is the radius of the undeformed bubble, and WC is the capillary width.

2.1.3 Force calculation

The contact force FB(n) exerted by the bubble train at the bottom of each bubble n (counted from
the bottom bubble with the first bubble being n = 1) is obtained by calculation of the buoyancy
force exerted by the n− 1 bubbles underneath as shown in Fig. 2.3, i.e.

FB(n) = sin(β)gρ(n− 1)
4

3
πR3

0, (2.2)

where g is the gravitational acceleration and ρ is the density of water. We calculate the overall
force F (n) exerted on the nth bubble as the average of the force exerted on its bottom and top
contact

F (n) =
1

2
(FB(n) + FB(n+ 1)) . (2.3)

If the hydrostatic pressure variations across one bubble are negligible, FB(n) = F (n). We
present the normalised force per bubble, given as
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Figure 2.2: Longitudinal to lateral aspect ratio for a single bubble trapped inside a square capillary. The Surface Evolver

prediciton is interpolated with an empirical polynomial fit of third order. This fit is used to deduce the undeformed radius of

the bubble from its aspect in the capillary.

Figure 2.3: Illustration of the forces exerted on bubble n+ 1 by its neighbours.
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f(n) =
F (n)

γR0
. (2.4)

In the experiments we have access only to the bubble-bubble forces, but not to the bubble-wall
forces. Nevertheless, bubble-wall forces are consistently provided through the simulations and the
modeling. They are normalised in the same manner.

2.2 Finite elements method : Surface Evolver simulations

We use the 2.70 version of Surface Evolver [9], with a PC with an Intel Xeon E-2176M CPu @ 2.70
GHz x 12 (Intel Corporation, Santa Clara, CA, USA), 32 GiB of RAM on GNU/Ubuntu 20.04.3
LTS x86-64 OS. The program is compiled from the source code provided on the Surface Evolver
website [14] following the standard makefile procedure.

2.2.1 Bubbles trapped in a capillary

In static equilibrium the interfacial energy of a bubble is minimal with respect to small variations
of its shape, for a fixed bubble volume and a given confinement by walls or neighbours. This
principle is the basis of our simulations, performed using the Surface Evolver software, where the
gas-liquid interface is represented as an assembly of finite elements whose energy is proportional to
their surface area.

As shown in Fig. 2.4a, we represent initially the bubble as a truncated octahedron. Facets
in contact with capillary walls and neighbouring bubbles are highlighted in red. The surface en-
ergy is minimised by moving the mesh vertices using a conjugate gradient algorithm respecting
volume conservation and geometrical constraints. Minimisation steps are iterated until the system
reaches a convergence threshold fixed by a convergence criterion ε set at 10−8. When the energy
difference after 100 iterations is smaller than ε, the meshing as a whole is refined by subdividing
each facet into smaller triangles. This allows a better representation of curved surfaces, leading to
a progressive decrease of the energy. This convergence procedure must be preserved from energy
pitfalls, such as facets and edges becoming exceedingly small compared to average and that may
stall the convergence procedure. To prevent this from happening, sequences of energy minimisation
steps are alternated with the removal of anomalous facets, using mesh optimisation tools provided
in the Surface Evolver software. The mesh near the bubble-bubble and bubble-wall contacts is
particularly critical. These contacts are rectangular in the initial coarse mesh and must become
approximately circular in the fully refined and converged structure. This implies stretching and
compression of the mesh near the contact line which generate the anomalous facets mentioned above.

Surface Evolver is not suited to simulate surfaces joining at null contact angle θ [15]. At θ = 0°,
the tangent to the gas-liquid interface must become parallel to the wall as the contact line is ap-
proached. The progressive separation of the two interfaces is intrinsically hard to represent with the
plane elements used by Surface Evolver, especially in the absence of a finite contact angle delimiting
clearly surfaces in contact from those not in contact. To approach the θ = 0 case, the interfacial
tension γ0 of the interfaces in contact with walls and neighbours are decreased by 10% in the first
steps of the simulation to a reduced value γ∗0 . The resulting contact angle is then non-zero, and
given by θ = arcos(γ∗0/γ0). In the last steps of the simulation, γ∗0 is increased again. The force
at zero contact angle is then extrapolated from its changes with contact angle, in the γ∗0 → γ0 limit.
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Figure 2.4: a) Simulation of a bubble trapped in the capillary with Surface Evolver. The initial shape (top) is minimised with

respect to interfacial energy, and refined by adding new vertices to the meshing of the interface. Red facets simulate the flat

interfaces in contact with the capillary walls and the neighbouring bubbles. b) Surface energy and contact forces of the bubbles

in the three steps of minimisation A, B and C. The surface energy is deduced from the total area of the facets, while the contact

force is deduced from the area of the red facets. Even at equivalent interfacial energy, the contact forces deduced from the

simulations continue to decrease through further relaxation steps.

The convergence criterion must be chosen carefully : as shown in Fig.2.4b, a quick convergence
of the interfacial energy can be reached, followed by a step of no significant decrease. In the
meantime, the contact areas continue to slowly evolve and decrease in a significant manner which
is not visible in the surface energy. This is due to the difficult convergence of the mesh along
the contact lines. An effective convergence criterion has thus to consider both energy and contact
area convergence. In our simulations, we consider that convergence is reached when the relative
energy variation |En−1−En|/En+1 and relative contact area variation |An−1−An|/An+1 over 100
minimisation steps is smaller than 10−8.

2.2.2 Simulations of elastocapillary bubbles

The neo-Hookean elasticity is implemented using the neo hookean method [16]. The reference
configuration is obtained by letting the shape relax to its configuration of minimal energy when
interfacial tension is the only energy term. The reference configuration is then defined for every
facet by giving to every vertex {s1, s2, s3}, reference coordinates attributed as a 1x3 real array.
The vectors between these reference positions are used to compute the form factors of the facets
in their reference shape, as described in Appendix 8.1. We give to every facet the following elastic
coefficients: Lamé first parameter λ = 1012, Lamé second parameter µ = 1, Poisson ratio ν = 0.5.
The deformation is then imposed by changing the volume constraint inside the drop and letting
the shape relax with iteration steps. As in Section 2.2.1, successive iteration steps are performed
until the relative energy variation |En−1 − En|/En+1 over 100 minimisation steps is smaller than
10−8. We provide the code freely accessible online for interested users1.

1https://www.rsc.org/suppdata/d1/sm/d1sm01109j/d1sm01109j1.zip
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2.3 Polyethylene glycol-in-silicone emulsion

2.3.1 Chemical composition

The silicone blend is composed of three different silicone polymers, represented in Fisher projection
in Fig. 2.5a-c :

1. Plain PDMS, where all substitutive groups are methyl groups (Bluestar Silicone FLD 47v100)

2. PDMS where 25% to 35% of the Si-CH3 groups are replaced with Si-H, also refered to in this
manuscript as MHDS (Gelest Inc. HMS-301)

3. PDMS where methyl end groups at the end of the chain are replaced with a vinyl group
(DMS-V21)

4. Polyethylene glycol (PEG-400) is bought from Sigma Aldrich (SA 8074859025), Acros Or-
ganics (10634892) and Merck (25322-68-3) which we compare using TGA characterisation in
Section 2.3.4

The platinum catalyst (represented in Fig 2.5e) is bought from Sigma-Aldrich (479527-5g) with
the catalyst molecule complexed at 0.1 M in a solution of vinyl-terminated PDMS. The dimethyl
maleate inhibitor (Fig. 2.5f) is also bought from Sigma Aldrich (238198-100G). The densitites of
the three silicone oils and PEG are measured using Metler Toledo Excellence D4 density meter,
at 20 °C and 25 °C. The values for the viscosities and molar weight are taken as described by the
providers. Their characteristics are summarised in Table 2.5. All chemicals are used as provided
without further purification.

Figure 2.5: a) Plain PDMS. b) MHDS, with n unfunctionalised monomers and m functionalised ones. c) Vinyl-terminated

PDMS. d) Polyethylene glycol. e) Platinum(0)-1,3- divinyl-1,1,3,3-tetramethyldisiloxane . f) Dimethyl maleate.
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2.3.2 Sample preparation procedure

The reactive silicone blend is prepare by mixing (1) PDMS, (2) MHDS and (3) vinyl-terminated
PDMS. The mass ratio between (2) and (3) is fixed at stoechiometric ratio of the functional groups,

with R = mvin.−term.
mMHDS

= Mwvin.−term.fMHDS

MMHDSfvin.−term.
≈ 6000·9

2000·2 ≈ 13. The mass fraction of reactive silicone φr
is defined as

φr =
mMHDS +mvin.−term.

mPDMS +mMHDS +mvin.−term.
. (2.5)

Along with R, it is used to determine the relative mass proportions of the three silicone poly-
mers. The choice of a mass ratio is dictated by the sake of simplicity in the sample preparation,
as weighing silicone oils is easier than taking precise volumes of viscous liquids with the quantities
involved. Before the production of the drops, the silicone blend is mixed with a magnetic stirrer
for at least two days to ensure a homogeneous blend of the different silicone oils.

The second phase is prepared by drying the PEG-400 at 40°C at 100 mbar for 16 h. The
determination of the optimal drying procedure is described in Sections 2.3.3 and 2.3.4. The catalyst
is then added and mixed using an ULTRA-TURRAX disperser of 15 mm diameter at 6000 rpm
for 2 minutes, before covering the solution under argon to avoid ambient water absorption. The
quantity of catalyst added to the PEG phase is fixed by the volume fraction

φp =
VPt−cat.

VPEG + VPt−cat.
, (2.6)

where the choice of volume fraction was used because of the simplicity of taking precise catalyst
volumes with micropipettes.

Similarly, the P3 phase composed of unreactive silicone and the dimethyl maleate inhibitor is
prepared with a mass fraction of inhibitor φm = minhibitor

mPDMS
= 5.5 wt.% (where the ratio between

dimethyl maleate and Karstedt’s catalyst is 6:1, as recommended in literature [17]), and mixed
with an ULTRA-TURRAX disperser of 15 mm diameter at 6000 rpm for 2 minutes shortly before
use.

2.3.3 Dry PEG preparation

The two main reactions in the PEG-silicone system come with side reactions involving water (Sec-
tion 5.2.2).

Among them, the reaction between water and hydrogens carried by the MHDS molecules pro-
duce gaseous H2 byproducts (Fig. 5.8C in Section 5.2.2), with gas bubbles appearing in the final
solution and altering the emulsion packing mechanism. PEG is hydrophilic and hygroscopic, mean-
ing that it absorbs water from the ambient atmosphere. It is therefore crucial to dry the PEG prior
to producing the drops, which we decided to do before each experiment.

Drying is achieved using the variation of PEG humidity absorption with temperature and ambi-
ent humidity [18, 19]. In order to establish the appropriate drying protocol, we compared PEG-400
dried for 16h at 40°C at 100 mbar with PEG-400 for 3h at 120°C at room pressure. At 120°C, the
water completely evaporates from the PEG, but the high temperature degrades the PEG molecules
[20, 21, 22]. The degraded solution is nonetheless a benchmark to compare the water content in
the PEG solution dried at low temperature. The two dried solutions are compared using thermo-
gravimetric analysis (TGA), which measures the fraction of mass of the solution evaporated when
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increasing the temperature step-wise. The temperature was increased between 25°C and 200°C,
with a temperature ramp of 10 °C per minute. The results of the TGA analysis on the two dried
solutions and an undried PEG solution are shown in Fig. 2.7. The mass fraction of wet PEG de-
creases with temperature, indicating the progressive evaporation of water. While the weight of the
undried PEG decreases significantly, indicating a water content of ≈ 1.5%, the dried PEG main-
tains constant weight up to 120 °C within the experimental accuracy. This indicates that the water
content is negligible. Beyond this point, the weight decreases slightly, which can be associated with
the progressive degradation of the PEG.

The difference of mass fraction between the two dried solutions is small within the experimental
accuracy (< 0.1%), suggesting that water evaporates efficiently with both drying procedures. The
PEG solutions used to produce the emulsion samples are thus dried using 40 °C for 16 h at 100
mbar.

Figure 2.7: Results of thermogravimetric analysis for undried PEG 400, PEG 400 dried at 40°C for 16h at 100 mbar and PEG

400 dried at 120°C and room pressure for 3h. A fraction of the PEG mass evaporates during the heating procedure, depending

on its purity and the presence of other chemical species (e.g. water). The overlap of the two dried PEG indicated that the slow

drying procedure (40°C, 16h, 100 mbar) evaporates water as efficiently as the fast drying procedure above water evaporation

temperature (120°C, 3h, room pressure).

2.3.4 Investigation of the role of PEG impurities

In the preliminary experiments, different PEG were tested. For some solutions, the skin formation
did not happen as expected, resulting in wrinkled drops and unstable emulsions. We therefore tested
and compared three commercially available PEG-400 solutions, to detect potential impurities and
their impact on the skin formation.

Three PEG-400 solutions from three different providers were characterised using TGA after the
drying procedure detailed in Section 2.3.3 : Sigma Aldrich (SA-8074855000), Acros Organics (A0-
10389123) and Merck (S5807285 944). The liquids were exposed to an increasing temperature, with
a temperature ramp of 10 °C per minute between room temperature and 800 °C. The evolution
of the remaining mass fraction is shown in Fig. 2.8. The fraction of mass left in the container

24



diminishes as its components evaporate. Higher mass fraction at high temperatures indicates the
presence of impurities with a higher evaporation temperature.

Figure 2.8: Thermogravimetric analysis of PEG from Acros Organics, Merck and Sigma Aldrich, for a temperature increasing

by 10°C every minute. The relative remaining mass fraction M is shown along its variation with temperature change dM/dT .

The difference in remaining mass fraction indicates the presence of impurities in the Acros Organics PEG. We thus discard the

PEG from this provider in further experiments.

The TGA results show that PEG provided by Acros Organics evaporates at higher temperature
than its counterparts provided by Merck and Sigma Aldrich. This could indicate the presence of
impurities in the product, corroborated by the changes in skin formation we observe when Acros
Organics product is used in the drops. In the remaining of our experiments, we therefore switch to
Merck and Sigma Aldrich products exclusively.

2.3.5 Dripping setup for PEG drops production

Millimetric drops are produced from a syring containing the PEG-400/catalyst mixture expelling
its content at constant flow rate driven by a syringe pump (Harvard Apparatus Standard PHD
Ultra). The PEG flow exits the tube through a needle of inner diameter d, forms a drop attached
to the needle, and then falls in the silicone solution in a container placed under the needle when
gravitational forces pulling the drop downwards become more important than the interfacial tension
forces pulling it upwards, as shown in Fig. 2.9b. The setup is represented in Fig. 2.9a. In the
quasi-static regime (that is, at low flow rates), the relation between the drop radius R and the
needle radius d is given by the Tate’s formula

R =

(
3

2f

γ

∆ρg
d

) 1
3

(2.7)

where γ is the interfacial tension between the PEG solution and the needle material, ∆ρ the density
difference between inner and outer fluids, g the gravitational acceleration, and f a geometrical
parameter of order 1 accounting for the part of the drop volume that stays on the needle when the
drop detaches [23, 24].
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Figure 2.9: Experimental setup to test the production and the stability of millimetric drops. a) Dripping setup. (A) PEG

filled syringe, pushed by a syringe pump. (B) Needle with a controled diameter allowing to tune the drop radius. (C) Sample

collector. (D) Camera. (E) Backlight with homogeneous lighting. b) Schematic of the formation of the drop at the needle. The

drop formed at the bottom of the needle detaches when it reaches a critical size, where the gravitational force overcomes the

interfacial tension force between PEG and the metal composing the needle.

2.3.6 Millifluidic drop production

PEG-in-silicone emulsions are prepared using a millifluidic setup, represented in Fig. 2.10. The
reactive silicone fraction φr typically ranges between 50 wt.% and 100 wt.%, a catalyst fraction φp
between 0.1 vol.% and 1.0 vol.%, and a maleate mass fraction φm of 5.5 wt.%. All the liquids are
prepared following the procedure described in Section 2.3.2.

The reactive silicone phase is placed in two syringes (A) (60 mL PLASTIPAK), connected to
a Y-junction with plastic tubes (TYGON E-3603) with an inner diameter of 1.59 mm. The two
syringes are put in a double syringe pump (Harvard Apparatus Standard PHD Ultra) to impose
the same flow rate on both of them. The PEG phase is put in a single syringe (B) (60 mL PLASTI-
PAK), placed in a syringe pump (Harvard Apparatus Pump 11 Elite). The two inlets are connected
to a T-junction (C) of inner diameter 1 mm with plastic tubes (TYGON E-3603) of inner diameter
1.59 mm, with the PEG phase inlet plugged on the perpendicular pipe of the T-junction. The
outlet of the junction is plugged to a plastic tube (D) (TYGON E-3603) of inner diameter 2.38
mm. This tube, where the main reaction happens, is typically 40-240 cm long. It is coiled and kept
flat using a cross-shaped tube holder with drilled grooves of size matching the tube outer diameter.
The end of the tube is connected to the parallel inlet of a second T-junction. The silicone/maleate
solution is put in a syringe (E) (60 mL PLASTIPAK) placed in a syringe pump (Harvard Apparatus
Pump 11 Elite), connected to the perpendicular inlet of the second T-junction with a plastic tube
TYGON E-3603) of inner diameter 2.38 mm. The outlet of the second T-junction is plugged to a
2.38 mm plastic tube of short length, hanging directly in the container (F) where the emulsion is
collected.

The size of the drops is controled by the flow rates of the reactive silicone phase (Q1) and the
PEG phase (Q2), while the flow rate of the silicone/maleate phase (Q3) is tuned to ensure excess in-
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Figure 2.10: 1) Diagram of the millifluidic production setup. 2) Photograph of the setup. 3) Spiral tube close-up. A : two

syringes containing the reactive silicone phase. B : Syringe filled with the PEG+catalyst phase. C : T-junction, where the

drops are formed. D : spiral tube where the skin of the drop grows while being kept in motion by the laminar flow. E : syringe

filled with PDMS and dimethyl maleate. F : sample container where the drops are collected. G : peristaltic pump removing

the excess of silicone. H : silicone waste container. 4) Flow-chart of the millifluidic drop production.

.
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hibitor to catalyst concentration ratio. Typical flow rates for stable drop sizes are Q1 = 10 mL/hr
(with the actual silicone flow rate being double because of the double syringe setup), Q2 = 1.5
mL/hr and Q3 = 5 mL/hr. Stabilisation of drop production rate usually happens around 5 to 10
min after the beginning of drop formation.

Because of the large difference of silicone/PEG flowrate, the sample is mainly composed of sili-
cone made unreactive by the addition of inhibitor. A peristaltic pump (G) (ISMATEC ISM832C),
with an inlet hanging at the top of the sample container, transfers the silicone in a waste container
(H) when its volume reaches the top of the container.

2.3.7 PDMS foam generation

For the PDMS foam generation, the reactive silicone blend was split in two parts prepared in two
different syringes : a first blend of 184 µL containing (1) plain PDMS and (2) MHDS at φr mass
ratio, and a second solution containing 2.4 mL (1) plain PDMS, (3) vinyl-terminated PDMS at
φr mass ratio and platinum catalyst, with the volume of catalyst determined as a fraction φp of
the total volume. The platinum catalyst is placed in the second part, as it is dispersed in vinyl-
terminated PDMS : adding it to the first part would thus trigger crosslinking reaction before the
foam generation. The two phases are prepared such that the intended r, φr and φp are obtained
in the final blend. A volume Vg of dry air is then added to the second syringe, depending on
the desired volume fraction. The two syringes (PLASTIPAK 30 mL) are joined with a Luer Lock
connector. The foam is produced by push-and-pull motions imposed by hand on the pistons of
the syringes. The procedure is repeated until an experimental reaction time, defined with the help
of the scaling law for gelation kinetics investigated in Section 5.2.4. At the end of this step, the
solidifying foam is pushed in one of the two syringes. The syringe is closed at the end and its piston
is pulled at 1/3 of the total blend volume to produce a gas depression and inflate the bubbles inside
the foam. The piston is maintained in place for 2 minutes until the foam is fully gelified.

2.4 Rheological characterisation

2.4.1 Bulk shear rheology

The reacting silicone mixture was prepared in two different vials : one containing plain, unreactive
PDMS and MHDS, the second one containing plain PDMS, vinyl-terminated PDMS and platinum
catalyst (see Section 2.3.1 for the description of the chemicals). The two parts were mixed using a
magnetic stirrer for two days to ensure homogeneity of the solutions. Before the experiment, each
part is put in a separate syringe (Plastipak 10 mL). The two syringes are connected by their luer
locks with a plastic connecter, as depicted in Fig. 2.11c, making sure that no air enters the system.
The two parts are then mixed by pushing back and forth on the plungers 30 times, before releasing
the mixed solution on the Peltier plate of the rheometer. The plane plate geometry is then brought
at gap distance of the Peltier plate, before launching the predefined oscillation procedure.

Shear bulk rheology measurements are performed with a TA Discovery HR-3 hybrid rheometer,
with a stainless steel, sandblasted, parallel plate geometry, shown in Fig. 2.11a-b. The gelifying
solution is poured on a Peltier plate kept at 25°C. The gap between the plate and the support is
set at 1000±1 µm. In case of shrinking/dilation of the blend during the gelation, the plates must
be moved to avoid external constraints on the gel. This option is available only for the plane plate
geometry with our experimental device, hence fixing the geometry choice. The plate-support is
thus allowed to vary during the gelation. It is determined by forcing the rheometer to impose a
compressive force on the gel, of amplitude 0.1 N. This amplitude is the smallest possible force within
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the experimental accuracy, so that the plate remains in contact with the blend while applying as
little force as possible. The device is operated using the TRIOS 5.1.1.46572 software, provided by
the rheometer manufacturer. During the experiment, the rheometer imposes an oscillating strain
at 1% of angular deformation. The oscillation is constructed using the multi-wave frequency mode,
allowing to probe the stress response at three frequencies simultaneously : a first oscillation mode at
1 Hz and 100% of the amplitude, a second oscillation mode at 2 Hz and 70% of the amplitude, and a
third oscillation mode at 4 Hz and 50% of the amplitude. The comparison of the shear modulus at
different frequencies is used to detect the gel point, as described by Winter [25]. The acquisitions
records one data point every 10 seconds, containing time, oscillation torque and displacement,
storage and loss moduli, phase angle and temperature.

Figure 2.11: a) TA Rheometer used for bulk and interfacial shear rheology experiments. b) Scheme of parallel plates in a shear

rheometer. c) Scheme of the double syringe setup used to mix the two silicone phases.

2.4.2 Interfacial shear rheology

Similarly to shear bulk rheology, shear interfacial rheology measurements [26, 27] are performed
with a TA Discovery HR-3 hybrid rheometer. We use a double-wall ring geometry (DWR), with an
inner/outer diameter of 69.0/71.0 mm, respectively, schematised in Fig. 2.12a. The bottom PEG
solution is poured in a cup with a groove of inner/outer diameter of 62.0/79.0 mm, respectively,
as shown in Fig. 2.12b. The system is kept at 25°C with the Peltier plate all throughout the
experiment. During the experiment, the rheometer imposes a 1% oscillating angular deformation
at a 1 Hz frequency.

The two phases of the system are prepared separately. Silicone phase, containing plain PDMS,
MHDS and vinyl-terminated PDMS, is prepared at the desired reactive fraction, and left mixing for
two days using a magnetic stirrer. For the PEG phase, pure PEG is dried for 10h at 40°C and 100
mbar. The platinum catalyst is then added to the PEG, and mixed using an ULTRA-TURRAX
disperser of 15 mm diameter at 6000 rpm for 2 minutes, before covering the solution under argon.
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The PEG phase is poured inside the cup up to the top of the groove. The DWR is brought
at the interface and the shear oscillation starts. The silicone phase is then poured in the cup
along its walls for a slow, homogeneous deposition at the interface, as represented in Fig.2.12.
The acquisition records one data point every 10 seconds, containing time, oscillation torque and
displacement, storage and loss moduli, phase angle and temperature. The interfacial rheology was
performed by Leandro Jacomine.

Figure 2.12: a) Double-wall ring geometry used in interfacial rheology [28]. The rotation of the ring shears the interface and

imposes the desired deformation rate and amplitude. b) Schematic of experimental configuration of the PEG/silicone interfacial

rheology [29].

2.5 Tomography

2.5.1 Image acquisition

Tomographic projections are produced using RXSolutions EasyTom setup, and reconstructed in
horizontal slices using the in-built software. The X-Ray source is a LaB6 filament in a Opentype
Microfocus X-Ray Source L10711 tube from Hamamatsu. It is calibrated using a black calibration
(no X-Ray emission) followed by a white calibration (no object between the detector and the
source). The filament is powered with a DC current (90 kV, 60 µA) and follows the automatised
warm-up procedure until it reaches a stable emission level. The filament is then set in large focal
spot mode, limiting the generator power to 90 kV. The detector is a PaxScan 2520 amorphous
silicon digital X-Ray detector from Varian, with a 1920x1536 pixels matrix, each pixel with a 127
µm width. The projections are reconstructed into vertical slices using XCAT filtered backprojection
algorithm. Images are filtered using a noice reduction Butterworth appodization filter with 75%
frequency. Borders are filtered to reduce projection overlap, using a vertical Tukey filter with 80%
of the image area left unfiltered. Ring filter is applied on every slice with a 20 voxels kernel. Beam
hardening correction is applied with parameters automatically detected by XCAT.
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Chapter 3

Investigation of bubble deformability,
and its impact on bubble-bubble
many-body interactions

3.1 Introduction

Foams are composed of discrete gas bubbles in a continuous liquid phase, their interface being
covered with surfactant molecules that lowers the interfacial tension γ0 (Fig. 3.1a-b). When the
fraction of volume occupied by gas φg exceeds a threshold called the critical jamming fraction φ∗g,
contacts appear between the bubbles as shown in Fig. 3.1 that rigidify the packing, as shown in
Fig. 3.1c. Increasing φg above this critical value further rigidifies foams, changing significantly
their viscoelastic response to external shear.

For that reason, foams have for long been considered as a good example of jammed systems
[30], a class of materials encompassing sands, powders, emulsions, particle dispersions and traffic
jam [31, 32]. In their large variety, all these systems share the common property of being composed
of discrete, unbound particles that form a rigid packing when brought in close contact with each
others. This transition in behaviour is typically reached when the volume fraction occupied by
particles reaches a critical value, hence its name of jamming transition. In this family of granular
materials, foams fall in the sub-category of athermal systems, where grain are large enough for
thermal agitation to be negligible compared to the other interactions involved.

Foams have features that distinguish them from other jammed systems. Their interstitial space
is filled with a liquid phase, obeying the laws of hydrodynamics. Their soft, deformable interfaces
are loaded with surfactants, which can flow when subjected to shear caused by the liquid phase.
Resulting changes in surface concentration translates in interfacial tension gradients, with net
restoring flows from high-concentration areas to low-concentration areas known as Marangoni flows,
a feature absent from systems with solid interfaces. Most importantly, bubbles deform easily when
subjected to compression, changing their shape to minimise their total interfacial energy. This
particularity, albeit not exclusive to foams, is identified as an important part of foam behavioural
change when increasing packing fraction. For this reason, foam behaviour is often studied separately
close to jamming transition (wet foam limit) and far away from it (dry foam limit).

Despite their particularities, part of the collective behaviour of foams can be explained following
the same approaches developed as for other jammed materials. The current jammed material point
of view on foams focuses on interactions at the droplet scale [33, 34, 35], modeled in most cases as
an elastic force represented by harmonic-like interaction of spring constant k, and a viscous force
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scaling like a power-law with velocity difference between neighbouring bubbles.

Figure 3.1: a) Bubbles are gas pockets in a liquid solution. Their surface is covered with amphiphilic molecules, called

surfactants. b) Liquid film between two gas bubbles. Surfactant molecules repell each other through electrostatic and/or steric

interactions, giving films a finite thickness. c) Liquid DBP-732 film (Gelest Inc.) hold vertically. Colors come from interferences

between the multiple reflected light rays (from [36]). d) Displacement field of simulated bubble packings close to jamming (left)

and at high density (right) [34]. Weakly compressed bubbles exhibit non-affine motions and swirling deformation patterns. e)

Compression of 2D gas bubbles. Interfaces are covered with surfactant molecules. Spherical, undeformed bubbles are brought

in contact during the jamming transition. Electrostatic repulsions between surfactant molecules ensure a finite thickness of the

liquid films between bubbles, even for very dry foams.

Foam jamming is canonically captured through what is called the ’unjamming transition’
[34][37]. In the dry limit, bubbles are tightly packed against each others. Deformation of the
foam causes a stretch of the liquid interfaces, with an increase in interfacial area and a resulting
restoring force. When the foam becomes wetter, gas bubbles get back to their spherical shapes and
are increasingly free to move around and break contact with their neighbours. Before rigidity loss
at the unjamming transition, bubbles displacements can thus deviate from affine, continuous defor-
mation field [38]. These deviations become increasingly important when approaching the critical
jamming fraction φ∗g, and effectively changes the resistance of foam systems to shear and compres-
sion. This non-affinity onset is a general mechanism for soft jammed materials, and can also be
found in non-foams systems [39, 40, 41, 42].

On the other hand, bubbles differ significantly from classical representation of grains as soft, in-
terpenetrating spheres, a canonical model of granular matter summarised in Section 3.1.1. Firstly,
their interactions are controled by the contact of their interfaces. Bulk composition of the discrete
phase can only marginally affect overall foam behaviour through interface-subphase interactions.
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Secondly, because of volume conservation, any compression by two neighbours would lead to an
expansion normal to the compression axis. This expansion would in turn exert an extra-force
to the other neighbours, making the bubble-bubble contact interaction intrinsically non-pairwise.
This simple property significantly impacts the overall behaviour of foams, with consequences that
are summarised in Section 3.1.2. Pairwise bubble-bubble interactions describe foams with good
accuracy in some limit cases. Some commonly used interactions are described in Section 3.2. In
Section 3.3, I focus on a first-principle interaction law first proposed by Morse and Witten [4],
which advantageously predicts the force-deformation relation in the small deformation limit in any
arbitrary geometry. I propose a first experimental verification of this interaction law in a simple
configuration in Section 3.4, showing excellent agreement between theoretical predictions, experi-
mental results and numerical simulations with no free fitting parameters. Finally, in Section 3.5, I
investigate the impact of the bubble-scale buoyancy force on Morse-Witten law, and show that it
can in fact be neglected for a wide range of Bond number Bo.

3.1.1 Jammed materials

Jammed materials are most often modeled as spherical particles interacting through solid contacts
at their interfaces. These contacts often involve solid friction resulting from roughness of surfaces,
making a system of individually simple particles extremely complex[31][32]. Nonetheless, much
physical insight has been gained by simplifying those interactions, before treating the particles
particularities as perturbations to an idealised system.

A commonly used model for jamming consist of soft spheres interacting through a soft-core
repulsive potential, neglecting friction and adhesion. Within this model sketched in Fig. 3.2a,
particles (denoted with indices i and j) can overlap with an extra-energy cost Vij , related to their
normalised overlap δij = 1 +

rij
Ri+Rj

, where rij is the center-to-center distance of the particles, while

Ri and Rj are their individual radii. One then commonly define the interaction potential as

Vij =

{
δαij if δij > 0

0 if δij ≤ 0
(3.1)

The exponent α depends on the strength of the interaction, and is typically of three sorts : harmonic
(α = 2), hertzian (α = 5/2) or hernian (α = 3/2). Harmonic interactions are simple spring inter-
actions, and are one intuitive way to approximate physical repulsion between two bodies. Hertzian
interaction is the standard framework for representing two rigid bodies in contact mechanics, de-
rived from the deformation of the grain around the contact. Hernian interaction, less standard than
the two others, has been found to be a good predictor of packing properties of foams and emulsions
in numerical simulations [42].

As the force f between two bubbles is just f =
dVij
dδij
∼ δα−1

ij and the interaction spring constant

k is k =
d2Vij
d2δij

∼ δα−2
ij , hertzian and hernian interactions represent springs becoming stiffer and

weaker upon compression, respectively, whilst harmonic spring stiffness remains constant. These
interaction laws advantageously simplify the complexity of contacts between two solid bodies by
representing it as an interpenetration of soft materials. Durian [2] successfully applied this approxi-
mation to bubbles in foams, showing that the mechanical and topological properties of foams could
be described as spring interactions between soft spheres.

Such a description is, of course, a crude approximation in general, as it decreases artificially the
total volume of particles when they deform against each other, without any consideration of material
compressibility. At characteristic contact forces close to jamming, most grains can be considered
as incompressible. Because of total volume conservation, a local volume reduction in some parts
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Figure 3.2: a) Spheres approaching at a distance rij smaller than the sum of their radii. The associated interaction energy is

expressed as a function of this overlap. b) Decomposition of the relative motion uij between two particles in a longitudinal

component u‖ij and a transverse component u⊥ij (figure from [37]).

of the grains should be compensated by a local volume increase of equal amount somewhere else
in that same body. Furthermore, soft-core repulsion is an idealised interaction law that does not
require any a priori knowledge about the bulk and interfacial properties of the grains. It may then
lead to erroneous conclusions about the packing properties when the actual interaction law deviates
strongly from its idealised form. To state an example, a vast amount of literature discussing the
impact of solid friction on soft-core repulsion [43] shows the importance of modifications of idealised
interactions laws with physical considerations on grains non-ideal features.

We shall nonetheless review how these simplified interaction laws can be used to predict collec-
tive properties of soft grains, before giving examples of how accounting for grain deformations in
the interaction laws modify these predictions. From now on, we will refer to grains as bubbles, as
our investigations focused on foam properties. Similarly, we will refer to the continuous phase as
liquid phase, associated to liquid fraction φl, and the discrete phase as gas phase with its associated
gas fraction φg. This notation choice should not hide the fact that any knowledge on foams can be
transferred to emulsions and vice-versa, providing the physico-chemical details allow it.

Mechanical properties of grain assemblies

At jamming fraction φ∗g, grains are in contact with each other without overlapping with their
neighbours. They are thus at zero potential energy in terms of soft-core repulsion. Any further
compression beyond the jamming point requires bubbles to be pressed against neighbours and
overlap. A simplifying and fruitful approach is the effective medium theory (EMT) that assumes
that (1) averaged and macroscopic quantities can be obtained by averaging over individual contacts
and (2) a global deformation of the packing manifests as a similar, uniform deformation at the
bubble scale, the latter hypothesis being known as the affine deformation hypothesis [44]. Under
EMT assumptions, any increase ∆φg = φg − φ∗g of gas fraction is directly proportional to total
system overlap (i.e. ∆φg ∼ δ) and its associated potential energy depending on the interaction law
choosen. In foams, the amount of mechanical work dW required to extract an infinitesimal amount
of liquid dVl is related to the osmotic pressure Π[45, 46] defined as Π = −dW

dVl
. Pressure being

related to contact force, Π is thus scaling as Π ∼ f ∼ dV
dδ ∼ δα−1 ∼ ∆φα−1

g [41] as shown in Fig.
3.3a. This consideration based on physical arguments is corroborated by numerical simulations
of 3D monodisperse and bidisperse spheres, and of 2D bidisperse discs [42]. Osmotic pressure is
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thus a first-hand example of the impact of individual interactions on collective properties of grain
assemblies.

Figure 3.3: a) Osmotic pressure Π evolution with excess packing fraction ∆φg for harmonic (α = 2) and hertzian (α = 5/2)

interactions of frictionless spheres. b) Bulk modulus K for the same interactions. Filled symboles are computed directly after

deformation. Open symbols are the same computation obtained after letting the grains relax. c) Shear modulus G in the

same conditions. Change in power-law after relaxation is linked to non-affine deformation field. Non-affinity decreases as foams

become drier. Figure adapted from [42].

Osmotic pressure is not the only mechanical property depending on gas fraction and interaction
law. In particular, the resistance of granular materials to shear and compression is often taken as a
relevant material description, as arbitrary deformation can always be decomposed in a combination
of a pure shear and a pure compression. Similarly, relative particle displacement can be decomposed
in transverse and longitudinal displacement u⊥ and u‖, respectively, represented in Fig. 3.2b.
Affine deformation hypothesis allows to express compression modulus K and shear modulus G as
proportional to interaction spring constant k, such that K ∼ G ∼ k ∼ d2V

dδ2
∼ δα−2 ∼ ∆φα−2

g [41]
(Fig. 3.3). In this predicition, however, EMT failure is two-fold.

At jamming transition, the compression modulus K jumps discontinuously from zero to a non-
zero value[41, 42] as shown in Fig. 3.3b. This discontinuity, referred to as anomalous compression
modulus in the litterature, was at one point seen as rigidity percolation as contacts appear between
particles. Further simulations by Ellenbroek et al.[47] showed that random networks of grains
connected by springs do no exhibit anomalous bulk modulus at percolation, but rather a function
decreasing smoothly with average number of springs per particle. It is now believed that the anoma-
lous bulk modulus at jamming is of geometrical origin, emerging from its peculiar organisation of
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particles.

Many simulations have shown that the shear modulus G actually scales with excess gas fraction

as G ∼ ∆φ
α−3/2
g [41, 44, 42, 39, 47]. Authors hypothetised that shear modulus anomalous scaling is

caused by the break of the affine deformation hypothesis due to the relative motion of grains. Non-
affine deformation of a bond ~rij is quantified by the displacement angle tan(αij) =

u⊥ij
u‖ij

following

the convention introduced by Ellenbroek et al., and is found to be of great importance close to
jamming [47].

Longitudinal and transverse displacement translates differently in terms of relative motion and
change in overlap, as shown in Fig. 3.2b. Their relative contribution to energy change also differs,
following the relation found in [39]

∆E =
1

2

∑
i,j

kij

(
u2
‖ij −

δij
α− 1

u2
⊥ij

)
(3.2)

Non-affine deformations are thus found to affect shear and bulk moduli. Their impact can be
evidenced by simulating jammed packings of grains subjected to an external strain [42]. In a first
step, grains are moved with respect to each other, following an affine deformation field. Elastic
moduli are then extracted from the resulting energy change. The resulting moduli are shown with
the filled symbole in Fig. 3.3b-c. In a second step, the grains are let to relax to their new equilibrium
position. The resulting moduli are shown with the open symbols in Fig. 3.3b-c. From these results,
it appears that relaxation introduces non-affinitiy in the displacement field, and effectively decreases
both bulk and shear moduli when they are computed after relaxation.

Geometrical properties of grain assemblies

Changes in the macroscopic mechanical properties of spheres assemblies interacting through short-
range potentials are intuitively expected to be tightly linked to structural changes in their local
organisation. Such structural changes are known to be the signature of phase transition in e.g.
amorphous systems and glass transition [30]. Among them, the pair correlation function g2(r) has
been studied in the jamming transition of hard frictional spheres [48], soft frictionless spheres [41]
and emulsions [49, 50]. Increasing excess packing fractions triggers structural changes in all of these
systems, whilst keeping their distinctive features depending on their physico-chemical details.
The pair-correlation function g2(r), also refered to as radial distribution function, is defined as the
probability, knowing that a position ~ri in space is occupied by a first body, that a second point ~rj
is occupied with another particle

g2(r) =
V

N2

∑
i

∑
i 6=j

δ(r − rij) (3.3)

where V is the volume considered, N the number of particles within this volume, used as normali-
sation factor, and δ is the Dirac delta function where δ(r − rij) = 1 if r = rij , and 0 otherwise.

For perfectly ordered crystalline lattices, g2(r) shows strong peaks at the position of grain’s
neighbours. The heights and positions of the peaks typically depend on the underlying crystalline
structure as shown in Fig. 3.4 for the example of a body-centered cubic lattice. For hard monodis-
perse spheres, the first shell of neighbours exist at a distance corresponding to particle diameter D.
The second peak location depends on the crystalline geometry : expressed in units of D, typical
values are

√
2D for a face-centered cubic lattice, and 2/

√
3D for a body-centered cubic lattice. For
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Figure 3.4: a) Body centered cubic lattice, with 1st neighbours at a distance D, and 2nd neighbours at 2D/
√

3. b) Face centered

cubic lattice, with 1st neighbours at a distance D, and 2nd neighbours at a distance D
√

2. Figures from [51]. c) Pair-correlation

function for jammed harmonic spheres at two different packing fractions [52].

that reason, g2(r) is often scaled with D and expressed as g2(r/D). At jamming transition, g2(r)
at fist peak r = D diverges according to the power law g2(r/D) ∼ 1√

r/D−1
.[42].

Thermal fluctuations, defects and deviations from hard-core repulsion impact grains organisa-
tion, modifying the positions and widths of the peaks. Additionally, increasing packing fraction
reduces centroid-centroid distances as particles interpenetrate. First-shell neighbours become closer
than the undeformed particle diameter D (see Fig. 3.2.a), which makes g2(r/D < 1) non-zero. The
width of the g2(r) distribution in this r/D < 1 regime is called its left-hand width wL, and increases
with excess packing fraction. As the interparticle distance distributon broadens, the height of the
g2(r) peaks decreases as well, depending also on excess packing fraction.

For soft, interpenetrating particles, radial distribution function becomes non-zero at small dis-
tances (r < D) when particles start to overlap. the progressive change of g2(r < D) with packing
fraction is intrinsically linked to interparticle interactions. Silbert et al. [52] studied the evolution of
the first peak with excess packing fraction in simulations of frictionless spheres interacting through
harmonic and hertzian potentials They showed that the peak distribution broadens as particles
are compressed, evolving from a δ function to a wider and lower distribution as spheres interpen-
etrate. The height of the first peak g2(r/D = 1) is found to scale as g2(r/D = 1) ∼ ∆φ−1

g ,
while its value in the region closer than particle diameter g2(r/D < 1) is found to scale as
g2(r/D < 1) ∼ (r/D− 1)−1/2 slightly above jamming (∆φg ∼ 10−8). This scaling law was found to
hold for hertzian and harmonic interactions, being counterintuitively independent from the inter-
aaction law. In the evolution of the first peak, the width of the distribution on the left-hand side
of the first peak (r < D) wL is expected to be directly impacted by the mechanisms at play in the
overlap. Interestingly, Silbert et al. [52] found again no difference between harmonic and hertzian
soft spheres when looking at wL, which was shown to scale as wL ∼ ∆φg in both cases.

Whether or not this scaling depends on the interaction strength is an unsettled matter. In their
own simulations, Donev et al. [53] found different scaling laws depending on the interaction. Their
method of computation voluntarily excluded freely moving particles (rattlers), and found different
scaling laws depending on interaction. On the other hand, Silbert and coworkers did not perform
such selection, arguing that rattlers cannot be neglected with respect to packing stability in shear
deformation [54]. They found no difference between hertzian and harmonic repulsion, a conclusion
that must be hold in regard of their assumptions on rattlers.
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Topological properties

In addition to their mechanical properties and their local geometrical order, foams can be charac-
terised at the bubble scale by their number of neighbours Z, also sometimes refered to as contact
number. As argued in the litterature [37], changes in mechanical properties can be explained in
terms of changes in average contact number, as individual contact forces add up : elastic moduli
can be understood as the average number of ‘springs’ per grain [2]. This contact number jumps
discontinuously from zero to a finite value called the isostatic contact number Zc at the jamming
transition, then increases as a power-law of excess packing fraction [42, 52, 38, 55]:

∆Z = Z − Zc ∼ ∆φ1/2
g (3.4)

Values of Zc differ depending on interactions. For frictionless bubbles interacting in d dimen-
sions, Zc = 2d, corresponding to the number of degrees of freedom of a single particle, considering
the rotations. For frictional particles, static friction at the interface hinders the rotations, decreas-
ing progressively the isostatic contact number Zc as Coulomb friction coefficient µ increases, down
to Zc = 2d − 2 for large friction coefficients. The exponent of the power-law also changes with
static friction, going from a square-root power law to a linear dependancy [56] as the static friction
coefficient increases.
Excess contact number ∆Z can also be derived from geometrical considerations. It can be inte-
grated from g2(r) through [41]

∆Z =

∫ 1+δ

1
g2(ξ)dξ ∼

∫ 1+δ

1
dξ

1√
ξ − 1

∼ δ1/2 (3.5)

where δ is the overlap between neighbouring bubbles, and ξ = r
D the reduced distance between

their centroids. From this definition, excess contact number ∆Z can be defined for every grain
individually. Similarly, gas fraction can be locally defined φg(r) using the Set Voronoi diagram to
segment space [57]. This tesselation is an adaptation of Voronoi diagrams to aspherical particles :
every particle is enclosed in a Voronoi cell, defined as the ensemble of points closer to the surface
of this particle than to any other particle. In the case of deformable grains, this is much more
appropriate than classical Voronoi diagram usage of centroid position : as grains do not remain
spherical under deformation, centroid-centroid distance can not predict grain contact. Numerical
tools to compute the Set Voronoi diagram of arbitrarily shaped particles are also readily available
online in open-source programs, such as Pomelo developed by Weis et al. [58, 59].

These locally defined quantities play a key role in packing mechanics close to jamming. In fact,
failures of effective medium theory are arguably due to its lack of proper consideration of contact
numbers and local liquid fraction[15, 60, 61, 38, 62, 63]. These two factors show strong fluctuations
close to the jamming point because of non-affinite displacements.

3.1.2 Effects of grain deformability on jammed material properties

The currently available physical description of the jamming properties of soft bulk grains, despite
its efficiency to explain some parts of their properties, remain fundamentally flawed by its assump-
tions when applied to foams and emulsions. For example, the absence of viscous force modelling
immediately forbids from considering dynamical aspects of foam rheology, in disregard of the rich
frequency-dependent behaviour of foams [65]. The high deformability immediately changes the
distances between neighbouring particles interfaces, which in turn affects their contact number
[15]. Overlapping volumes change the effective gas fraction significantly, a worsening issue for large
excess packing fraction [66].
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Figure 3.5: a) Voronoi diagram for circles with different radii. Space segmentation fails to consider differences in shape, and

large circles exceed the borders of their cell. b) With Set Voronoi diagram, the cell is computed using the location of the

interface. Any arbitrary shape can thus be considered. Figure from [64]. c) Ellipsoidal shapes represented inside their set

Voronoi cells. These cells (black edges) of a bubble consists of all the points closer from its surface than to the surface of any

other bubble. Figure from [59].
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Foams are a good example of systems where grain deformations play a key role in structural and
mechanical properties of the packing. Under atmospheric conditions, capillary forces are too small
to compress gases significantly. When at rest, bubbles in perfectly dry foams fill space with en-
ergy minimisation constraints [33]. In most cases, this energy is simply proportional to the surface
area, with the proportionality factor being the surface tension γ. The resulting, surface-minimising
space-tiling is a well known mathematical problem, with a few examples of solutions shown in Fig.
3.6a. In 2D, a simple solution is the honeycomb lattice, where hexagonal bubbles fill up the plane.
In 3D, the problem is more complex and has no definitive answer yet. The Kelvin cell (Fig. 3.6b)
was long believed to be the lowest energy configuration for a regular space-filling bubble [67], with
6 square faces and 8 hexagonal faces. Assisted with numerical simulations, Weaire and Phelan
recently managed to find a more energetically favorable configuration called Weaire-Phelan struc-
ture [68] (Fig. 3.6c), composed of two subcells : one with 12 pentagonal faces, and one with 12
pentagonal faces and 2 hexagonal faces. The Weaire-Phelan structure tops Kelvin cell with 0.3%
energy gain.

Figure 3.6: a) The honeycomb lattice is the optimal space tilling lattice in two dimensions. b) The Kelvin cell is the optimal

space filling known to date in 3D with a single type of cell. Figure from [69]. c) The Weaire-Phelan structure beats Kelvin cell

by 0.3% energy gain, with a subunit of two cells. Figure from [70].

These extreme cases of deformations concern foams with very low liquid fraction (φl = 1−φg <
0.1%) known as the dry limit. In real foams, the difference ∆ρ in the density of the two phases
causes naturally liquid to drain down, while capillary forces maintain some liquid in the Plateau

borders. The Princen length lc =
√

∆ρg
γ0

is the characteristic lengthscale beyond which gravity wins

over capillary forces. Foams higher than lc thus exhibit a variation of the liquid fraction. If in
contact with a liquid bath, it ranges from critical fraction φ∗l = 1 − φ∗g (also called the wet limit)
to lower values [46]. Nonetheless, bubbles deformation happens as soon as jamming transition
happens.

Mechanical properties of foams

In foams, the shapes and organisation of bubbles are driven by interfacial tension γ alone, assuming
incompressibility of the gas. It therefore simplifies the expression of a non-entropic osmotic pressure
Π : the work required to extract an infinitesimal volume of liquid dVl is proportional to the variation
of interfacial area dS [71, 45] :

−ΠdVl = γ0dS, (3.6)

40



Π(φl) = −γ0(1− φl)2 γ0

R32

d

dφl

(
S(φl)

S0

)
, (3.7)

where R32 is the Sauter mean bubble radius, S the foam surface at liquid fraction φl, and S0 the
surface of the undeformed bubbles at jamming. A more explicit expression of osmotic pressure would
require assumptions about the geometrical arrangement of bubbles. Experimental and numerical
studies [45] of different foam structures revealed that their interfacial energy density variation with
liquid fraction differs, as shown in Fig. 3.7b : face-centered cubic (fcc) organisation is energetically
more favorable than the Kelvin structure (bcc) close to jamming transition [72]. This tendency
inverts at a critical fraction (φl < 6.3%), causing an irreversible transition from fcc to Kelvin cell
geometry.

Because of this plasticity in geometry, osmotic pressure is often expressed differently in the wet
[3, 73] and in the dry [71, 74] limit, with very different assumptions : interactions in very wet foams
are often approximated as pairwise and local. On the other hand, dry foams can be treated as a
space-tiling problem with increasing amount of liquid localised in the Plateau borders – a wet foam
construction technique known as the decoration theorem [75]. Nonetheless, osmotic pressure can
be fitted with a reasonable accuracy through liquid fraction changes with the empirical formula
[71, 46]

Π = 7.3
γ0

R0

(φl − φ∗l )2

√
φl

. (3.8)

Figure 3.7: a) Change in geometrical organisation from fcc to bcc with decreasing liquid fraction. b) Excess energy per unit

area for fcc and bcc structure. φlc is the critical liquid fraction under which bcc structure is more energetically favorable

than fcc. c) Normalised osmotic pressure variation with liquid fraction for monodisperse emulsion, polydisperse emulsion and

monodisperse emulsion. Full gray line is the theoretical prediction Πγ0/R0 = 7.3
(φl−φ∗

l )
2

√
φl

, where φ∗l depends on the packing

geometry. Figure from [71].

Rheological properties of foams result from a complex interplay of the different scales involved,
from the foam scale down to the molecular structure of surfactant-loaded interfaces. They are
generally measured through shear rheology experiments [76], where the foam is subjected to an
oscillating shear strain ε and the corresponding shear stress σ is measured. In the static limit
(constant shear strain i.e. null oscillation frequency), the viscosity of the liquid phase plays no role
in the elastic response. The shear modulus G0 therefore depends only on interfacial tension γ0 and
on the Sauter mean bubble radius R32 [45, 77, 78], with results shown in Fig. 3.8c . Furthermore,
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dry foams exhibit higher rigidity, while unjamming transition (∆φl → 0) comes with total loss of
rigidity. Elastic shear modulus in the static regime can therefore be expressed as

G0 = αφl(φl − φ∗l )
γ0

R32
, (3.9)

where α is a numerical prefactor, experimentally found to be α ≈ 1.4 [79, 80]. Interestingly, this
law remains valid for polydisperse bubbles as well, as shown in Fig. 3.7c.

Figure 3.8: a) Shear rheology of a foam imposes a shear deformation at angular frequency ω. b) Scheme of a shear deformation

of a honeycomb lattice in 2D. c) Variation of static shear modulus with liquid fraction φl for polydisperse foams and emulsions.

d) Variation of elastic and loss moduli with strain amplitude. Loss modulus crossover determines the transition from solid-like

to liquid-like behaviour. Figures c and d from [65].

The linear elastic response of a foam only holds up to a critical yield strain εy. Above this
critical deformation, bubbles locally rearrange and foam flows. This process translates locally to
the deformation of bubbles following Plateau laws, shrinking Plateau borders. When their length
reaches zero, the foam is in a locally unstable configuration and neighbouring bubbles switch their
positions [68, 81]. This transformation is called a T1 transition, a 2D representation of which
can be found in Fig. 3.8b. The foam is then plastically deformed to a new rest configuration.
This reorganisation events can happen locally at the bubble scale, or occur as avalanche events,
triggering large-scale reorganisations [75].

Through local rearrangements, foams minimise their total energy under a given shear strain.
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This effectively reduces their shear modulus. For large enough strain amplitude as shown in Fig.
3.8d, rearrangements in the foam happen so frequently that the foam starts to behave like a liquid
rather than a solid, with a viscous loss modulus G” greater than its elastic storage modulus G′. A
description of these moduli is given in Chapter 5.

As foams imply liquid flows with finite viscosity, their mechanical response is always dependent
on the shear oscillation frequency ω and the ageing processes (drainage, coarsening and coalescence)
happening inside of it. A detailed explanation of their contributions to foam rheology is beyond is
the scope of this thesis. Interested readers are referred to the dedicated literature [65, 82, 83, 75].

Geometrical properties of foams

Regardkess the spatial organisation of foams, bubbles in dry foams always follow geometrical rules
known as Plateau’s laws shown in Fig. 3.9, provided they reached mechanical equilibrium and
have constant interfacial tension. These simple laws were first experimentally evidenced by Joseph
Antoine Ferdinand Plateau [84], and are the following :

1. Each liquid film has a constant mean curvature

2. Three liquid films meet in a Plateau border at angles of 120°, illustrated in Fig. 3.9b

3. Four Plateau borders meet in a vertex with tetrahedral symmetry (see Fig. 3.9c)

Figure 3.9: Two bubbles join at a film of constant curvature, shaped by the pressure difference between the bubbles. Three

films meet at a Plateau border, with 120° angles between the films. Four organise in a Plateau junction, with Plateau borders

meeting at ∼ 109.5°. Figure from [85].

These strong local geometrical constraints do not, however, determine the lattice geometry of
the underlying foam structure. As such, the Kelvin structure, the Weaire-Phelan structure and
disordered foams all obey Plateau’s laws while differing significantly from one another.

Because of bubble deformability, interfaces originally far from each other are brought into close
proximity, altering the g2(r) radial distribution function (see Section 3.1.1) found in undeformable
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granular materials. Zhang and Makse [49] simulated packings of drops interacting through an ap-
proximated interaction law valid for weakly deformed drops, where the interaction force is computed
as f ∼ AγR1R2/(R1+R2), where A is the contact area between the two drops. This interaction law
and its underlying assumptions are discussed in Section 3.2.1. With large ensembles of individual
particles, using methods from molecular dynamics simulations, they showed, as represented in Fig.
3.10a, that the first peak of g2(r) is less affected by the variation of the excess packing fraction
∆φg for deformable particles compared to soft, rigid particles (see Section 3.1.1). Moreover, the
introduction of deformability through the interaction law induces a change in the behavour of the
second peak of the pair correlation function. This second peak splits in two subpeaks close to each
others, around the distance r at which the second shell of neighbours is expected [50, 86, 49]. The
reasons for this splitting are still debated today [87], but it is now believed to emerge naturally in
liquid to glass transition with the emergence of a local order inherited from the inherent structure
of liquids [88]. In their simulations, Zhang and Makse [49] found that this splitting disappears when
particles interact through the interaction law mentioned above, with a large, very broad second
peak that is represented in Fig. 3.10a. Comparison with adhesive and elastic emulsions further
modify this second peak, shown in Fig. 3.10b, highlighting once again the importance of interfacial
interactions on foam structure.

Figure 3.10: a) Radial distribution function for soft frictional spheres and emulsions. First peak height and second peak splitting

varies with the considered interaction law. Figure from [49]. The different line colors from black to pink represent the radial

distribution functions of the same packings for increasing osmotic pressure. b) Pair correlation function comparison for hard

frictional spheres, soft, frictionless, non-adhesive drops, and emulsion drops with adhesive and elastic skin. Further modification

of the contact interaction continues to alter the pair-correlation function. Figure from [50].

Topological properties of foams

In terms of granular matter, bubbles behave as soft frictionless grains. As there is no deformation
at jamming transition, the isostatic contact number does not depend on the interaction law. Foams
therefore have an isostatic contact number Zc = 2d [89, 37] where d is the dimension of the packing.
As excess packing fraction increases, more bubbles deform and are brought in contact, increasing
the average contact number. The excess contact number ∆Z = Z −Zc has been shown to scale as
[38, 62, 90, 2]

∆Z ∼ ∆φ1/2
g (3.10)
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This scaling is believed to hold regardless of the bubble size distribution.
Recently, Winkelmann et al. [15] proposed compelling evidence that such scaling behaviour

may not hold in certain cases. Using numerical simulations with PLAT software [91, 92], they
simulated realistic 2D foams under the geometrical constraint of Plateau laws, and found a linear
scaling ∆Z ∼ ∆φg. Rather than simulating foams by focusing on bubble interfaces, PLAT works
by adjusting the positions of Plateau vertices so as to satisfy curvature at the interface between
two bubbles of different pressures and liquid film curvature at Plateau borders. PLAT can simulate
with good accuracy wet foams with zero contact angles between liquid interfaces. Surface Evolver,
on the other hand, can not simulate zero contact angles because of its finite element framework, and
requires finite contact angles, an issue with consequences that still need to be examined. Likewise,
the experimental evidence of the square-root scaling [38] is challenged by noting that gas fraction
is accessed experimentally by measuring the fraction of area occupied by gas bubbles, with all
associated projection problems, as shown in Fig. 3.12a-b. While this radical change in point of
view may have consequences in 3D foams, it is still an area to be investigated in the future. Some
authors [4, 3, 93] suggested that the observed deviation can be explained by the non-pairwise
interactions between bubbles . This is discussed in detail in Section 3.2.

3.2 Interaction at the bubble scale

3.2.1 Pairwise interactions

As shown in Section 3.1.2, physical insights from granular matter can be brought to foams by
considering the interactions at the bubble scale in the same way granular matter treats grain-scale
interactions [34, 30, 42, 37]. A decent amount of literature tries to describe bubble-scale interactions
as combinations of elastic, viscous and random external forces, with good predicting power. Among
them, let us recall Durian interaction law [2] sketched in Fig. 3.11a, in which the equation of motion
is resolved at bubble scale as

~vi =< ~vj > +
F0

b

∑
j

(
1

|~ri − ~rj |
− 1

Ri +Rj

)
(~ri − ~rj) +

~F ai
b

(3.11)

where ~vj is the average velocity of all bubbles in contact with i, F0 is set by surface tension, b the

viscous drag force, and ~F a a random external force. This law predicts accurately the scaling of

contact number ∆Z = ∆φ
1/2
g , but fails to predict correctly the scaling of the shear modulus by

giving a linear square-root scaling G ∼ ∆φ
1/2
g ∼ ∆Z.

Another interaction model proposed by Katgert et al. [34] models interdrop interactions as
pairwise forces with a combination of a spring and a dashpot (Fig. 3.11b), accounting for both
elastic and viscous contributions. Despite its pairwise aspect, this model can probe the frequency-
dependence of the elastic response to shear of foams and predicts a solid-to-liquid like transition,
an important feature of foam rheology (see Section 3.1.2).

Finally, an important interaction law first derived by Princen [94] sketched in Fig. 3.11c is
currently considered as the cornerstone interaction law in emulsion science. This interaction law
considers the case of two drops of radii R1 and R2. In the limit of small deformations (i.e. small
variation in interfacial area), the pressure inside the drop is approximated to be constant while
the applied stress translates in surface deformation only. The normal force between the drops is
then given by the product of the average pressure difference < ∆P >= P1+P2

2 and the overlap area
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between the drops A

f =< ∆P > ·A = Aγ
R1 +R2

R1R2
(3.12)

where pressure and curvature are related through Young-Laplace equation. Because of its simplicity
and its involvement of surface tension – the main driving force for shape and rheology in foams and
emulsions – this interaction is widely used to determine interparticle forces and reconstruct force
chain networks [35, 95, 96].

Figure 3.11: Illustrations of the force decomposition in different bbubble interaction models. a) Contributions to drop velocity

in the Bubble Model by Durian [2]. From left to right : average neighbour velocity, soft sphere repulsive potential damped

by viscous friction, external shear force. b) Elastic and viscous forces by Katgert [34]. From left to right : elastic soft sphere

potential, and viscous dissipation due to velocity gradients between neighbours. c) Empirical interaction force between two

droplets described by Brujic [35]. Interaction amplitude comes from an ’overlap’ parameter and the area of the flat contact

zone.

3.2.2 N-body interactions

Despite their respective success, these pairwise interactions fail to consider non-pairwise effects
coming from bubble deformations. Even for simple interactions such as connected springs [97], de-
formability renders interparticle interactions non pairwise-additive. The presence of neighbours can
hinder deformation and make the particle appear stiffer : thus, energy associated to deformation is
a function of both deformation amplitude and number of neighbours. Numerous models for particle
deformation have been proposed [98, 99, 100, 101, 102, 103, 73, 3, 4], and can be classified in two
categories : (1) modified two-body interaction laws and (2) intrinsically non-pairwise interactions.

Modified two-body interaction laws compute the force-deformation relation pairwise, using free
parameters obtained from fitting numerical simulations [73, 3]. These free parameters will depend
on coordination number Z and lattice geometry. They are generally extracted from simulations of
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isotropic compression, and will fail when looking at anisotropic compression or shear deformation
[72]. An example of such an interaction law given in [3, 73] reads as

f(δ12)

γ0R0
=

{
κ(z)α(z)

((1+δ12)−3−1)
α(z)−1

(1+δ12)4
for δ12 < 0

0 for δ12 ≥ 0.
(3.13)

where κ(Z) and α(Z) are fitting parameters depending on the coordination number Z, δ12 is

defined as the overlap parameter δ12 = |~r1−~r2|
(R1+R2) − 1 between two spherical particles of radii and

centre positions (R1, ~r1) and (R2, ~r2), respectively. This simplified interaction still considers bubbles
as soft spheres, but its modified interaction law allows for a more accurate description of foam
mechanics.

Figure 3.12: a) Soft frictionless jammed particles with overlapping areas, misrepresenting total gas fraction. b) Same jammed

particles interacting through Boromand deformable particle model [98]. c)-d) Variation of excess contact number and static

shear ratio with gas fraction. Diamonds represent deformable particles, while open triangles represent rigid particles interacting

through a soft-sphere potential. Full triangles represent the same soft particles, but where gas fraction has been corrected to

account for the overlap between the particles in a true packing fraction point of view. Figures from [66].

Intrinsically non-pairwise interaction laws, on the other hand, explicitly affect an energy term
to the deformation. The effect of deformability is accounted in the interaction itself, rather than ex-
trapolated from an approximated rigid body interaction. Deformable particle model by Boromand
et al. [98, 66] is a good illustration of the issues raised by not accounting for bubble deformability, as

47



shown in Fig. 3.12)a-b : the overlap of soft particles modify the packing fraction φg upon compres-
sion, introducing an error in its measure. Additionnaly, deformation creates new contacts between
bubbles distant from more than one diameter, a feature absent with soft particles. Similarly, with
particles overlap forbidden, contact number and shear modulus scaling with excess packing fraction
changes significantly, with different regimes depending on the excess packing fraction. As shown in
Fig. 3.12c-d, Boromand et al. [98, 66] found that a better scaling law is obtained as

∆Z ∼ AZ∆φ1/2
g +BZ∆φg (3.14)

G ∼ AG∆φ1/2
g +BG∆φg (3.15)

where AZ ,BZ ,AG and BG are fitting coefficients. This behaviour is obtained by representing bubbles
as polygonal shapes, deformability coming from the degree of freedom on the angle between two
successive edges.

The non-pairwise interaction laws presented above either rely on empirical laws with free pa-
rameters needing to be fitted with experimental results, or on ad hoc models that simplify the
deformation of the shape without any connexion to the physical properties of the bubbles. Despite
their predictive power, they must be used cautiously for they overlook physical details of bub-
bles interfaces. Among them, a first-principle interaction law proposed by Morse and Witten [4]
stands out by its complete derivation of a many-body interaction starting from the well established
Young-Laplace law with no free parameter. Having for long being overlooked for its mathematical
complexity, it recently gained attention by being applied successfully to simple geometries encoun-
tered in foams [72]. I propose here a description of this model and its assumptions, as well as the
first experimental verification of its validity for bubble-bubble interactions in a controlled geometry.

3.3 Morse-Witten interaction law

In their seminal paper of 1993, Morse and Witten [4] treated the case of emulsion drops slightly
above the jamming transition. Their deformability is the source of emulsions behaviour in the wet
limit (∆φg → 0+). Furthermore, the interactions between bubbles and drops, are driven by the
interfacial tension between their two phases. Morse and Witten’s work on drop deformation can
be readily transferred to bubbles and wet foams.

In the limit of small deformations and small pressure gradient between the top and the bottom of
the drop, the shape of drops remains spherical. The radius of the undeformed drop is R0. Moreover,
interfaces are taken to be at mechanical and thermodynamical equilibrium, where interfacial tension
γ0 is taken as constant and isotropic at every point of the interface. At equilibrium, drop shape is
dictated by the well-established Young-Laplace law, relating the two principal curvature radii R1

and R2 of the interface to the pressure jump across it (see Fig. 3.13) :

∆P = Pint − Pext = γ0

(
1

R1
+

1

R2

)
(3.16)

Eq.(3.16) gives ∆P = 2γ0R for a spherical interface R1 = R2 = R. This local equation holds at
any point of the interface, localised by a solid angle coordinate Ω. Therefore, it can account for
a local variation in pressure and radius δP (Ω) and δR(Ω), respectively. One may then write their
local expression as

R(Ω) = R0 + δR(Ω)

Pi(Ω) = Pi0 + δPi(Ω)

Pe(Ω) = Pe0 + δPe(Ω)

(3.17)
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Figure 3.13: Scheme of a bubble of inner pressure Pint immersed in a liquid of pressure Pext. In its undeformed shape, the

bubbble has a radius R0 at any point of the surface. Under deformation, this radius changes at every point of the surface :

radius at a specific point of the surface is localised by its solid angle coordinate Ω.

Inner pressure Pi is equivalent in the whole body, and is therefore uniform over the whole surface
δPi(Ω) = δPi0. The sum of local principal curvature C of the drop surface obeys the Young-Laplace
equation

γC(Ω) = Pi − Pe(Ω) (3.18)

Expanding Eq.(3.18) to first order of radius variation δR(Ω) gives the equilibrium relation

−(∇2 + 2)δR(Ω) = δPi − δPe(Ω) (3.19)

where ∇2 is te Laplacian operator on a unit sphere. Eq.(3.19) can be solved as follows : δPi,
δPe(Ω) and δR(Ω) can be expressed using spherical harmonic functions Ylm, which represent the
different modes of deformation of the interface allowed by the spherical symmetry of the drop (see
Fig. 3.14). As inner pressure is isotropic, δPi only contributes to the isotropic l = 0 channel of
deformation. Moreover, since the l = 1 channel corresponds to an unbalanced force associated to a
net translational motion, the l = 1 component of δΠe(Ω) must vanish for mechanical equilibrium
to be preserved.

The deformation of the droplet interface can be expressed through a Green function G(Ω,Ω′)
that represents the deformation at a point Ω caused by a force applied at point Ω′. This function
satisfies the equation

−(∇2 + 2)G(Ω,Ω′) =
∑
l≥2,m

Y ∗lm(Ω)Ylm(Ω′) (3.20)

where the summation is truncated to l ≥ 2 because of the isotropic inner pressure and incompress-
ibility conditions discussed above. A summation over spherical harmonic expansion gives a closed
form of G [104]

G(θ) =
−1

4π

{
1

2
+

4

3
cos θ + cos θ ln

[
sin2(θ/2)

]}
(3.21)

where θ is the angle between the point where deformation is considered and the point of force
application.

Point-like forces are not usual contact interactions between neighbouring drops. For a more
physical representation of contact zones, point-localised deformation is replaced by a flat circular
contact section of radius r with an associated force f = πr2Πi centered at point Ω. This ap-
proximation holds for small deformations and forces, assuming r � R0 and f � γ0R0. In 2D,
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Figure 3.14: Visualisation of spherical harmonics as modes of deformation of the surface of a sphere. Blue areas represent zones

of compression, while red are zones of dilation. The l = 0 channel corresponds to an isotropic dilation of the volume, forbidden

by the volume conservation hypothesis. Higher harmonics are deformation modes of spatial frequency. Figures obtained using

code found in scipython online user’s guide https://scipython.com/book/chapter-8-scipy/examples/visualizing-the-spherical-

harmonics.

approximating contact areas with flat surfaces as sketched in Fig. 3.15b overestimate the contact

surface, with a relative error that can be shown to be of order O
(

f
γ0R0

3
)

, so as to be negligible in

the small force limit [105] . With these approximations, one is finally able to express the complete
set force-deformation relations

δRi =
1

24π

[
5 + 6 ln

(
fi
8π

)]
fi −

∑
i 6=j

G (θij) fj (3.22)

where i denotes the force and deformation at the point of interest on the surface, and j lists
all the forces applied at point different from i. Eq. (3.22) decomposes the radius variation at
point i in two parts : one local contribution, coming from the force applied at point i, and a
non-local contribution coming from the forces applied at other points j of the interface and whose
deformation field propagates to i along the interface. The complete analytical derivation from
variational principles for a drop compressed between two parallel plates found equivalent results in
the small deformation limit [3].

Surface Evolver simulations in geometries with more neighbours (n ≥ 2) indicate that relative
excess energy per facet increases with the number of facets n, as shown in Fig. 3.15c. Non-pairwise
effects thus increases with contact number Z [3] : the force required to achieve the same deforma-
tion increases with the number of neighbours, because of the deformation hindering.

Despite its complex mathematical background, the application of the Morse-Witten force-
deformation relation is straightforward in any arbitrary geometry. When tested in situations with
different coordination numbers, it has been shown to predict more accurately macroscopic stress
response to shear and uniaxial strains than two-body interaction law, and without any free fitting
parameter [72]. Its predictions also agree with Surface Evolver simulations on stress prediction
and on the increasing effect of many-body interactions with increasing contact number Z [3, 72].
While its predictions have been confronted successfully to numerical simulations, the Morse-Witten
law remains yet to be tested experimentally for multi-body interactions. We propose here its first
experimental verification in a simple, controlled geometry and confront it with Surface Evolver
simulations.
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Figure 3.15: a) Scheme representation of the compressed 2D drop and the relevant quantities. The drop, of undeformed radius

R0, is compressed between two parallel plates distant from 2h. Figure adapted from [3]. b) Variation of relative excess energy

per facet ε with normalised compression x = 1− h/R0 for the compressed drop in a. c) Excess energy per facet with isotropic

compression. Energy per facet increases with the number of facets n. d) Point-like compression is approximated with a flat cap

centered at the point of force application. The volume error is of order O
(
f3
)

for 3D drops [105].

3.4 Experimental verification of Morse-Witten interaction law

Morse and Witten [4] proposed a description of the deformation of a simple drop subjected to a
point-like force, taking effectively in account the deformation of a single drop in their interaction
law. As far as we know, the validity of this interaction has been tested experimentally for single
drops [106, 107, 108], but remains to be investigated for interactions between drops. We thus
propose in this Section an experimental verification of the Morse-Witten interaction law, and delimit
its range of validity. Experimental setup, acquisition methods and assumptions are described in
Sections 3.4.1, 3.4.2 and 3.4.3, respectively. In Section 3.4.4, we describe how Morse-Witten theory
is applied to our experimental system in its particular system, and how experimental results are
compared with its predictions. In Section 2.2.1, we describe how our system is simulated in Surface
Evolver and how we ensure that numerical results converge to physically sound solutions. We finally
present our experimental, numerical and theoretical results in Section 3.4.5, and draw conclusions
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about Morse-Witten law validity and its potential applications in Section 3.4.6.

3.4.1 Experimental setup

A complete description of the experimental setup can be found in Chapter 2. We recall here briefly
its main aspects. We focus this study on a model system consisting of equal-volume bubbles or-
ganised in a capillary. We produce air bubbles in an aqueous SDS solution at 7 g/L by blowing
air at constant pressure through a needle. In the quasi-static bubbling regime, the bubble radius is
controlled by balance between interfacial tension and buoyancy, which gives a low bubble polydis-
persity. Bubbles are then trapped inside a square capillary of width WC (Fig. 3.17c) where they
form a bubble train. In this situation, each bubble is compressed in six directions, four being the
capillary walls and two the upper and lower neighbours. The interactions between two bubbles,
and between a bubble and a fully wetted wall are treated as equivalent regarding the deformation
response to an applied force.

3.4.2 Bubble size acquisition

In the first step of the experiment, the capillary is put in horizontal position so that bubbles apply
no force on their neighbours. Neglecting the impact of gravity on its position, the bubble center is
assumed to stay at the center of the capillary, so that deformation coming from wall contact is the
same in every direction. A complete determination of bubble deformation requires to determine its
length LB in the capillary direction. The length of every bubble is acquired with an optical camera,
the capillary being illuminated from the back by a white screen with homogeneous lighting. We
place the light source at a distant large enough so that bubble boundaries appear black from front.
In this configuration, bubbles appear as bright ellipses surrounded by black borders (see Fig. 3.17).
Due to optical effects, the contact zones between neighbouring bubbles appear as three bright spots,
surrounded by dark areas. The actual border between two bubbles is the central bright spot [12].

To ensure monodispersity, we need to measure the volumes of the bubbles trapped inside the
capillary. At the beginning of the experiment, we measure bubble lengths LB and deduce their
radii R0 for a fully horizontal capillary (β = 0°), using an interpolated polynomial relation obtained
from Surface Evolver simulations and Morse-Witten theory (see Eq.(3.36)) for a drop constrained
between four walls. A bubble of radius R0 trapped inside a capillary of width WC exhibits an
aspect ratio λ that can be fitted by the third order polynomial

λ =
LB
WC
≈ −19.6

(
WC

2R0

)3

+ 60

(
WC

2R0

)2

− 62.6

(
WC

2R0

)
+ 23.2 (3.23)

Eq.(3.23) is numerically inverted to yield undeformed bubble radius R0. We resume experiments

if polydispersity index PI =
(
<R2

0>
<R0>2 − 1

)1/2
< 5%.

3.4.3 Bubble-bubble deformation

We tilt incrementally the capillary, which causes the bubbles at the bottom to exert a force on their
upper neighbour because of buoyancy. Bubbles are increasingly compressed along the capillary,
because of the accumulated buoyancy force (see Fig. 3.17a). The net force along the axis of the
capillary exerted by one bubble is computed as f = ∆ρg 4π

3 R
3
0 sin(β) where β is the tilting angle
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Figure 3.16: a) Aspect ratio for a single bubble trapped inside a square capillary. The polynomial fit is used to deduce the

undeformed radius of the bubble from its aspect in the capillary. b) Side view of a single bubble trapped inside a capillary and

c) its numerical counterpart.

between the capillary and the vertical axis (Fig. 3.17a). The total force exerted on the n-th bubble
in the bubble train by all its lower neighbours is

fB(n) = (n− 1)∆ρg
4π

3
R3

0 sin(β) (3.24)

counting from the lowest bubble. We calculate the overall force f(n) exerted on the n-th bubble
as the average of the force exerted on its bottom and top contact

f(n) =
1

2
(fB(n) + fB(n+ 1)) (3.25)

If fB(n)−fB(n+1)� fB(n), Eq.(3.25) can be approximated by f(n) = fB(n). This approximation

is valid in the low Bond number limit Bo =
∆ρgR2

0
γ0

< 1, comparing the energy coming from
gravitation and interfacial tension. In this limit, the deformation of the bubble under the influence
of gravity can be neglected with comparison with interfacial tension, and the interface can be
approximated as being driven by interfacial tension only. We give a more comprehensive derivation
accounting for large Bond numbers in Section 3.5. Bubble-wall forces fw, on the other hand, are
not directly accessible.

3.4.4 Morse-Witten application to cubic geometry

In the limit of low Bond number, all bubbles and capillary walls exert equal forces FB and FC ,
respectively. For simplicity, we use normalised quantities fB = FB/γ0R0 and fC = FC/γ0R0. The
small force hypothesis made by Morse and Witten [4] and detailed in Section 3.3 then becomes
fB < 1 and fC < 1. We define the associated normalised deformations xB and xC of the bubble
its confined geometry shown in Fig. 3.17c

53



Figure 3.17: a) Square capillary filled with a train of monodisperse air bubbles. The increase of the tilting angle β progressively

increases the buoyancy force exerted on upper bubbles, causing their compression.b) Bubble boundary detection using gray

level peaks detection at the interface. c) Scheme representation of the bubble width WC and length LB , with bubble-bubble

force fB and bubble-wall force fC .
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xB =
LB
2R0

− 1 (3.26)

xC =
WC

2R0
− 1. (3.27)

Considering the geometry of the compressed bubbles (see Fig. 3.17.c), Eq. (3.22) simplifies to

xB =
1

24π

[
5 + 6 ln

(
fB
8π

)]
fB − 4G(π/2)fC −G(π)fB (3.28)

=
1

4π
ln

(
fB
8π

)
fB +

1

2π
fC (3.29)

xC =
1

24π

[
5 + 6 ln

(
fC
8π

)]
fC − 2G(π/2)fC −G(π)fC − 2G(π/2)fB (3.30)

=
1

4π
ln

(
fC
8π
e

)
fC +

1

4π
fB (3.31)

where we used the fact that Eq. (3.21) for θ = π/2 and θ = π simplifies to

G(π/2) = − 1

8π
,

G(π) =
5

24π
.

(3.32)

As the force fC exerted by capillary walls is inaccessible experimentally, it is convenient to
express it as a function of physically accessible quantities. We achieve this through the special
Lambert function W , defined as branches of the inverse relation of the function of xex, such
that Wk(xe

x) = x for any integer k. This function is available in most mathematical software.
In our implementation, W is computed using the Python library scipy.special. We restrict the
investigation to the k = −1 branch, which has the physically correct asymptotic behaviour x ∼
f ln(f) [105] for the Morse-Witten problem. We therefore obtain

fC =
4πxC − fB

W−1

(
(4πxC−fB)e

8π

) (3.33)

Inserting Eq.(3.33) in (3.29) yields an expression for xB

xB =
1

4π
ln

(
fB
8π

)
fB +

1

2π

4πxC − fB
W−1

(
(4πxc−fB)e

8π

) (3.34)

where xB is expressed as a function of the bubble-bubble interaction force and the capillary con-
finement xC is taken as a fixed parameter. We further develop Eq. (3.34) to express the length of
a bubble only compressed by the capillary as a function of capillary width WC , used to determine
R0 at zero tilting angle (see Section 3.4.2) :

LB
2R0

= 1 +
1

4π
ln

(
fB
8π

)
fB +

1

2π

4πWC
2Ro
− 4π − fB

W−1

(
e
2

(
WC
2Ro
− 1
)
− e

8πfB

) (3.35)

LB
2R0

(fb → 0) = 1 + 2

WC
2Ro
− 1

W−1

(
e
2

(
WC
2Ro
− 1
)) (3.36)
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3.4.5 Results

Figure 3.18: Experimental results, simulations and model predictions for four different confinement ratios WC/2R0. The

normalised bubble-bubble and bubble-wall contact forces are plotted versus the normalised bubble length along the capillary

axis. The experimental data are averaged of data obtained for different inclination angles of the capillary β ranging from 0° to

30° and for different Bond numbers in the range of 0.044 < Bo < 0.087. Bottom-right graph (WC/2R0 = 0.83) is the limit case

fot the small force hypothesis f < 1 to remain valid. Experimental and numerical resutls corroborate the Morse-Witten theory

in the regime where its approximations are valid, strongly differing from the two-body approximation from Lacasse et al. [3].

We first discuss the predictions of the effective two-body interaction model (Eq.(3.13)), of the
model based on Morse-Witten theory (Section 3.3) and of the Surface Evolver simulations (Section
2.2.1). We assume in each case that gravity-induced pressure gradients in the continuous phase
are negligible on the scale of a bubble (Bo → 0) - which will be shown later to be a reasonable
approximation within the range of investigated experimental parameters. Since the Surface Evolver
simulations rely on the numerical solution of the Laplace equation without additional approxima-
tions, we use them as a reference to check the analytical models.

Figure 3.18 shows how the normalised bubble-bubble (red) and bubble-wall forces (black)
F/γ0R0 depend on the normalised bubble length LB/2R0 for confinement ratios in the range
0.83 ≤ WC/2R0 ≤ 1. Morse-Witten theory is in good agreement with the Surface Evolver simula-
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tions all over the predicted range of validity (F/γ0R0 < 1). For a confinement ratio of 1, for which
the undeformed bubble fits exactly into the capillary, all contact forces go to zero when the bubbles
stop touching their neighbours at LB/2R0 = 1, as expected. As the bubble train is compressed
along the axis of the capillary, bubble-bubble forces build up and, at the same time, bubble-wall
forces appear since the bubbles expand laterally and push on the wall. This latter effect is ignored
by the two-body interaction model which also over-predicts the bubble-bubble forces. For confine-
ment ratios smaller than 1, the undeformed bubble radius R0 is too large for spherical bubbles to
fit into the capillary. They therefore exert wall forces even if the bubble-bubble deformation xB is
zero. This effect is shown clearly by the Surface Evolver simulations and predicted quantitatively
by the Morse-Witten theory - in contrast to the two-body interaction model.

For the confinement ratios 0.91 and 0.93, there is a specific value of the normalised bubble
length LB/2R0 where the bubble-bubble and the bubble-wall forces coincide. This is the only
case where the two-body interaction model provides the correct prediction. This is indeed ex-
pected, since the free parameters of the two-body model were fitted to Surface Evolver simulations
of bubbles subjected to isotropic compression [3]. For the smallest investigated confinement ra-
tio of 0.83, even the smallest bubble-wall contact forces are already close to 1. Since this is the
strongest confinement that can be handled by the Morse-Witten theory, one sees a rapid diver-
gence between simulation and theory. Smaller confinement ratios are therefore not investigated in
the following in order to focus on experiments which satisfy the approximations made in the theory.

3.4.6 Discussion and outlook

Experimental results, numerical simulations and Morse-Witten show excellent agreement for the
different confinement ratios in the limit of small force F/γ0R0 � 1, as expected by the starting
hypothesis detailed in Section 3.3. Effective two-body interaction, on the other hand, strongly
differs our experimental findings. As forces are independent in the pairwise models, compression
of the bubble along the capillary axis does not change the force exerted by the walls when only
pairwise interactions are considered. Effective two-body interaction law still predicts correctly the
deformation when FB and FC are equal : this is because the fitting parameters are extracted from
numerical simulations of bubbles isotropically compressed, hence their correct prediction.

Our experiments, analytical theory and Surface Evolver simulations therefore consistently show
that the interactions of bubbles are non-pairwise : the mechanical response of a bubble to a contact
force must be expressed as a function of the deformation at all of its other contacts, and cannot
be captured by independent forces alone. This has a direct consequence on bubble stiffness, i.e.
its resistance to an applied force, which increases with its number of contact. This is illustrated in
Fig. 3.19, which shows that the force required for an isotropic compression of a bubble increases
non-linearly with the number of contact facets n. A new contact facet makes the bubble stiffer
and more resistant to deformation, but also increases its rigidity at the other contact points. This
property, coming solely from the deformability of the bubble, has consequences that remain to be
investigated, particularly in the deeply jammed state where the average contact number increases
with excess packing fraction (see Section 3.1.2).

The simplicity of our experimental setup makes it a good candidate for testing interaction laws
in other situations, such as elastic beads or bubbles with more complex interfaces. A natural
extension of our 1D experiment would focus on quasi-2D foams constrained between two parallel
plates such as Hele-Shaw cells, provided the distance between the two plates is large enough for
the MW theory to be valid. Application of MW interaction to simulated 2D foams already allowed
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to implement realistic interparticle forces, paving the way to a physically relevant force network
reconstruction [109] and its extension to 3D foams. An experimental verification of MW validity
in 2D and 3D systems would still be required before yielding any conclusive results.

As Morse-Witten interaction is valid in the small deformation limit, it is the most accurate close
to the unjamming transition, where non-affine displacements become more important[34]. Further
analysis of non-affine displacements could yield insightful informations about shear behaviour close
to jamming, particularly shear and bulk moduli scaling [42].

Analysis could use previously existing data from experiments on weakly compressed emulsions,
and compare quantitatively discrepancies between different interactions laws. The substantial gain
of computational power required compared to classical Surface Evolver simulations would come
with the benefit of an explicit impact of non-pairwise interactions on foams jamming, flowing and
yielding. Using force network tools would also bridge the gap with more classical granular matter,
where contact and force chain networks have for long been used to predict mechanical properties of
grain packings subjected to external stresses [110, 111, 112, 113]. Furthermore, the reconstructed
force networks would have to be compared to networks reconstructed using pairwise interactions
[114, 35, 61].

Our capillary setup could be used aiming in another direction : knowing bubble volumes and
their interaction laws, a progressive tilt of the capillary allows for a measure of their interfacial
tension by comparing their deformation to the applied force, but requires sufficient foam stability.
This measuring device would be complementary to tensiometry techniques such as pendant and os-
cillating drop. Finally, simulations based on the Morse-Witten interaction model could also be used
for bubbles and drops confined in parallelepipedic geometries, a scenario relevant in microfluidic
applications.

3.5 Beyond low Bond number approximation

In Section 3.4.4, we simplified our equations using the hypothesis that pressure variation at bubble
scale would not affect significantly their shape. A direct consequence is its requirement of equal
upper and lower neighbour forces, a constraint incompatible with the incrementally increasing
buoyancy force. A more rigorous approach thus needs to consider hydrostatic pressure variation.
We now generalise our study to account for this pressure gradient, and check the conditions under
which our previous approximation remains valid.

3.5.1 Gravitational Morse-Witten equations

As shown in Fig. 3.20, in the same geometry as in Section 3.4.4, tilted by an angle β to the direction
of gravity, the bubble is compressed in six directions. As two side walls of the capillary remain
vertical all throughout the tilting, their forces are equal by symmetry. This reduces the number
of independent forces, that we groupe in bubble-bubble forces (fBb, fBt) and bubble-wall forces
(fCb, fCt, fCv), where b, t and v stand for top, bottom and vertical, respectively. The associated
deformations are written (xBb, xBt) and (xCb, xCt, xCv), respectively. In this framework, normalised
bubble length and confinement ratios are given by

LB
2R0

= 1 +
xBt + xBb

2
(3.37)

WC

2R0
= 1 + xCv = 1 +

(xCt + xCb)

2
(3.38)
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Figure 3.19: a) Force-deformation relation for different number of facets n, as predicted by Morse-Witten equation (Eq. (3.22)).

Compared to Fig. 3.15c, this prediction does not rely on the Lacasse deformation model, but on the Morse-Witten model and

its underlying assumptions. Geometries are parallel planes (n = 2), tetrahedron (n = 4), simple cubic (n = 6), body-centered

cubic (n = 8) and face-centered cubic (n = 12). b) Scheme of a drop deformation between two parallel planes (n = 2). The

normalised deformation is computed using the distance between bubble center and contact point h. Figure from [3].

Mechanical equilibrium requires these six forces to compensate the buoyancy force acting on the
bubble. The latter is due to the bubble volume V0 = 4π

3 R
3
0, and therefore reads as fbuoy = 4π

3 ∆ρgR3
0.

A normalisation by the unit interfacial force γ0R0 allows to rewrite it as fbuoy/γ0R0 =
4π∆ρgR2

0
3γ0

=

4π
3 Bo where Bo =

∆ρgR2
0

γ0
is the Bond number of the bubble, evaluating the competition between

capillary and gravitational energies. From geometrical considerations, we can relate the upper and
lower bubble-bubble and bubble-wall forces through

fCt − fCb =
4π

3
Bo cosβ (3.39)

fBt − fBb =
4π

3
Bo sinβ (3.40)

Eq. (3.22) finally relates deformations through the applied forces. Considering the geometry of
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Figure 3.20: Scheme of a bubble trapped inside a capillary, considering asymetries induced by gravity. The capillary axis is

tilted by an angle β from gravity direction ~g.

the problem, this gives rise to the following system of equations

xBt =
1

4π
ln

(
fBt
Λ

)
fBt −G(

π

2
)(2fCv + fCt + fCb)−G (π) fBb (3.41)

xBb =
1

4π
ln

(
fBb
Λ

)
fBb −G(

π

2
)(2fCv + fCt + fCb)−G (π) fBt (3.42)

xCv =
1

4π
ln

(
fCv
Λ

)
fCv −G(

π

2
)(fCt + fCb + fBt + fBb)−G(π)fCv (3.43)

xCt =
1

4π
ln

(
fCt
Λ

)
fCt −G(

π

2
)(2fCv + fBt + fBb)−G(π)fCb (3.44)

xCb =
1

4π
ln

(
fCb
Λ

)
fCb −G(

π

2
)(2fCv + fBt + fBb)−G(π)fCt (3.45)

where the constant Λ = 8πe−5/6 was introduced for the sake of readability. In this framework,the
reduced bubble length LB/2R0 can be deduced by combining Eqs.(3.37), (3.41) and (3.42).

xBt+xBb = 2

(
LB
2R0

− 1

)
=

1

4π
ln

(
fBt
Λ

)
fBt+

1

4π
ln

(
fBb
Λ

)
fBb+

1

4π
(2fCv + fCt + fCb)−

5

24π
(fBb + fBt)

(3.46)
LB
2R0

= 1 +
1

8π
ln

(
fBt
Λ

)
fBt +

1

8π
ln

(
fBb
Λ

)
fBb +

1

8π
(2fCv + fCt + fCb)−

5

48π
(fBb + fBt) (3.47)

3.5.2 Numerical resolution

The system of equations in Section 3.5.1 cannot be solved analytically. Nonetheless, we solve it
by first simplifying it, using cautious considerations. First, as fBb and fBt can be accessed exper-
imentally, we can simplify the system by defining the mean bubble-bubble force fBm = fBb+fBt

2 .
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Furthermore, realising that capillary width WC is the same in every direction, one can write
xCt + xCb = 2xCv, which yields

2xCv = xCt + xCb = fCb

(
1

4π
ln

(
fCb
Λ

)
− 5

24π

)
+
fCv + fBm

2π

+

(
fCb +

4π

3
Bo cos(β)

)(
1

4π
ln

(
fCb + 4π

3 Bo cos(β)

Λ

)
− 5

24π

) (3.48)

Combined with Eq. (3.44), one can write a new system of equations

xCv =
fCv
4π

ln

(
fCv
Λ

)
+
Bo cosβ

6
+
fCb + fBm

4π
− 5

24π
fCv (3.49)

xCt = ln

(
fCb + 4π

3 Bo cosβ

Λ

)(
Bo cosβ

3
+
fCb
4π

)
+
fCv + fBm

4π
− 5

24π
fCb (3.50)

2xCv − xCt =
fCb
4π

ln

(
fCb
Λ

)
+
fCv + fBm

4π
− 5

24π
fCb −

5

18
Bo cos(β) (3.51)

This non-linear set of equations is solved numerically, using autocoherent loop as schematised
in Fig. 3.21. At first, it is rewritten as a matrix product AF = B by splitting unknown quantities
fCv, fCb and xCt in linear and logarithmic terms, with explicit expression as


1

4π ln
(
fn−1
Cv
4

)
− 5

24π
1

4π 0

1
4π

1
4π ln

(
fn−1
Cb + 4π

3
Bo cos(β)

Λ

)
− 5

24π −1

1
4π

1
4π ln

(
fn−1
Cb
Λ

)
− 5

24π 1


fnCvfnCb
xnCt

 =


xCv − Bo cos(β)

6 − fBm
4π

−fBm
4π −

Bo cos(β)
3 ln

(
3fn−1
Cb +4πBo cos(β)

3Λ

)
2xCv + 5Bo cos(β)

18 − fBm
4π


(3.52)

Inversion of the matrix product F = A−1B yield values for the linear terms, superscripted with
the indices n contained in F. For any values different from the solution, the values computed differ
from the logarithmic terms, superscripted with the indices n − 1. The terms of the nth iteration
can then be plugged back into matrices A and B before repeating matrix inversion. Successive
results of this iterative operation should yield converging results with a decreasing relative difference
|fn − fn−1|/fn−1, provided that initial values f0 are not too distant from final results. For this
purpose, initial terms at the input are solutions of Eq. (3.34), valid of the low Bond number limit
solved in previous section. This procedure is repeated until relative variation between two iterations
becomes lower than an arbitrary threshold criterion ε. Final values are then checked by plugging
them into Morse-Witten full equations.

3.5.3 Results and discussions

Fig. 3.22 shows the variation of average bubble-bubble force fBm = (fBb + fBt)/2 with bubble de-
formation, for a fixed confinement ratio WC/2R0. The zero Bond number approximation is shown,
along with its equivalent for Bo = 0.08 (the highest Bond number encoutered in experiments Sec-
tion 3.4), Bo = 0.25 and Bo = 0.5. The three graphs represent three different tilting angles, with
β = 0 (corresponding to a fully horizontal capillary), β = π/2 (fully vertical) and β = π/4. To keep
the physical meaning of the quantities computed, we show the average bubble-bubble force fBm
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Figure 3.21: Scheme of the autocoherent algorithm used to solve Eqs.(3.51). The input values of the contact forces fB and fC

are taken as the results of the exact solution of the Morse-Witten equations in the limit of zero Bond number. The convergence

critertion ε is an arbitraty threshold, tuned according to the desired precision.
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Figure 3.22: Inter-bubble contact forces ( fBm in the equations) versus dimensionless bubble length along the axis of the tube

predicted by Morse-Witten theory. The confinement ratio WC/2R0 is 0.91. The behavior in the absence of pressure gradients,

analyzed in Section 3.4.4 is given by the black line which is identical on the three plots. The effect of a gravity induced pressure

gradient in the liquid depends on the Bond number Bo and on the inclination of the bubble train with respect to gravity β, as

indicated on the figures and discussed in Section 3.4.4.

only in the case where bottom force fBb is greater than zero. The inter-bubble force, defined here
as the average of the top and the bottom contact force, cannot be arbitrarily small for β > 0. Even
if the force at the bottom fBb = 0 because we consider the lower end of a bubble train, force at the
top contact fBt is always required to maintain static equilibrium with pressure gradient, such that
fBt = 4π

3 Bo cos(β).

As expected, for zero Bond number, the force-deformation relation is independent from the
tilting angle. In the presence of gravity (Bo 6= 0), the bubbles are squeezed all over their gas-liquid
interfaces by buoyancy forces acting in addition to the contact forces exerted by the neighbouring
bubbles. If the capillary is held horizontally (β = 0), the bubbles are squeezed against the top
capillary wall, inducing an extension on its length axis LB. Hence, bubbles with larger Bond
numbers require bigger forces for the same deformations. With increasing tilting angle, the force
magnitude shift ∆fB = 4π

3 Bo sin(β) increases and so does the difference with zero Bond number.
This is due to the increase of the local component of the deformation, as predicted by Eq. (3.22).

Finally, our calculations derived from Morse-Witten theory show that the effects of pressure
gradients do not modify the relation between inter-bubble forces and bubble length LB in the range
of Bond numbers relevant for our experiments, for all inclination angles β. We therefore conclude
that the impact of gravity on the pressure gradient can be neglected for Bond number B0 < 0.1.
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Chapter 4

Interfacial elasticity and its role in
drop deformability

Rheology of bubble interfaces manifests simultaNeously at the film, bubble and foam scale. Control
of these properties offer a promising way of producing structures with new properties by tuning
interfaces and letting drops self-assemble following their modified contact interactions [115]. Rela-
tion between individual and collective properties is far from straightforward, especially considering
the complexity of contact interactions between viscoelastic interfaces. Briding this gap requires ro-
bust characterisation techniques of elastocapillary interfaces, in a framework transferable to more
ordinary foams and emulsions. In Section 4.1, we introduce interfacial rheology and its applica-
tions to foams and emulsions. In Section 4.2, we review characterisation methods in pendant drop
experiments. In Section 4.3, we propose a constitutive law for a spherical elastocapillary interface,
giving a simplified access to area dilatational modulus. We complete it with finite element sim-
ulations, using Surface Evolver [9] software in Section 4.4. To our knowledge, it is the first time
Surface Evolver is used for elastocapillary interfaces : we confront it to theoretical predicitions of
pendant capsule elastometry, and show its reliability in the tested configurations. In Section 4.5, we
quantifiy the error introduced by our simplifying hypothesis. We propose experimental restrictions
on drop and needle sizes under which deviation from ideal case remains small within the range of
measurement errors.

4.1 Introduction

4.1.1 Complex fluid-fluid interfaces

Ordinary foams and emulsions consist of two immiscible phases, one hydrophilic and one hydropho-
bic. Interface between the two phases has an associated energy term F . At thermodynamical
equilibrium, a variation dA in interfacial area modifies the surface energy by an amount dF

dF = γdA, (4.1)

where γ is the interfacial tension, the intensive thermodynamical quantity conjugated to change
in area. γ thus has the dimension of a stress (N.m−1) or energy per area (J.m−2). Typical values
range around 1 − 100 mN.m−1. A classic example is the water-air interfacial tension γw/a = 72.8
mN.m−1 at 20°C. It varies with temperature and presence of chemicals. The interfacial tension of
gas/liquid interfaces is commonly called surface tension.
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Foams and emulsions are stabilised by adding amphiphilic molecules to one bulk phase. These
compounds are made of hydrophobic parts and hydrophilic parts. For this reason, they anchor to
the interface, where its antagonistic components float in their corresponding phases. The energy
cost of a hydrophobic/surfactant/hydrophilic interface is lower than that of a simple hydropho-
bic/hydrophilic interface. By their intercession, they effectively lower the interfacial tension be-
tween the two phases. Because of their role as surface active agents, they are often referred to as
surfactants. Chemical compounds falling in the category of surfactants range from low molecular
weight amphiphilic molecules, as shown in Fig. 4.1a, to large block-copolymers with blocks of
different hydrophobicities represented in Fig. 4.1b. The physico-chemical details of the surfactants
have a large impact on the mechanical behaviour of the interfaces, as we will explain in this chapter.

Interfacial tension γ can vary along the interface because of temperature gradient or inhomo-
geneous coverage of the interface by surfactants. Such variations can create local gradients of
interfacial tension, adding the so-called Marangoni stress to the interface [116]. This stress can
only be balanced by viscous stresses coming from the interface of two fluids in motion relatively
to each other. Applied to bubbles and foams, Marangoni flow manifests as soon as interfaces are
deformed or sheared by external flow. Historical example comes from the settling velocity of a
rising bubble, behaving like a rigid sphere instead of a fluid body obeying Navier-Stokes equations
[117]. Shear flow of the interface creates interfacial tension gradient, with surfactants accumulating
at the drop’s rear as shown in Fig. 4.4a . Resulting Marangoni stress increases bubble friction
[118], making the deformable drops (see Chapter 3) behave more akin to a rigid sphere. For foams,
deformation of thin films creates concentration gradients that are compensated by Marangoni flows,
favoring foam stability [119, 120].

When added to a bulk solution, surfactant molecules reduce its interfacial tension. An increase
in surfactant bulk concentration c results in a decrease in interfacial tension γ, until a plateau value
for γ is reached for a critical concentration c∗. At this critical micellar concentration (CMC), it
is thermodynamically more favorable for surfactant molecules to stay in bulk phase and hide their
hydrophobic components in fluid aggregates called micelles (see Fig. 4.1c). The CMC and the
plateau interfacial tension are of course dependent on the two phases and surfactant chemistry.
Coverage of the interface with surfactant molecules cannot be deduced from bulk concentration
in a straightforward manner. Surface coverage Γs describes the number of surfactant molecules
per unit area. Its invert, the area per molecule a = Γ−1

s , describes the average area occupied by
each surfactant molecule at equilibrium. It is dictated by the molecule size, but also by its in-
teractions (attractive or repulsive) between neighbouring surfactant molecules. At thermodynamic
equilibrium, the relation between surface coverage and bulk concentration is given by an adsorption
isotherm. For a species i in solution in one phase at dilute concentration ci and insoluble in the
second phase, adsorption is described by Gibbs isotherm

Γsi = − 1

RTx

dγ

dln(ci)
, (4.2)

where R is the ideal gas constant, T the temperature in Kelvin, and x a factor depending on the
type of surfactants used. A typical value for ionic surfactants (such as sodium dodecyl sulfate,
see Chapter 2) in salt solutions gives x = 2. Isotherms of course vary greatly depending on the
chemical species considered, but such considerations are outside the scope of this thesis. Interested
readers are refered to the dedicated litterature [121]

Surfactant compounds at the interface are not inert molecules stuck between two phases. They
dynamically switch between bulk phase and interface, relaxing towards equilibrium over character-
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Figure 4.1: a) Typical low molecular weight amhpiphilic molecule. Hydrophobic tail consists of carbon chains. b) Amphiphilic

polymer with alternance of hydrophilic and hydrophobic blocs. c) Variation of interfacial tension γ with concentration of

surfactant mixture (linear alkyl benzene sulfonate-sodium dodecyl sulfate-isoridecyl alcohol at 1:1:2.94 weight ratios). Ionic

concentrations affect electrostatic interactions between surfactants and the subsequent interfacial tension. Surfactants migrate

to the interface until maximal equilibrium concentration is reached at CMC. Excess surfactants molecules then form micelles

in the bulk phase and interfacial tension no longer changes. Adapted from [122].

istic time which depends on the surfactant, its concentration and the bulk phases. The constraint
of confinement to a 2D interface forces a lateral order, with interactions between molecules with
a particular forced orientation (Fig. 4.2.a). Adsorbed surfactants interact with their neighbours
through what Vermant and coworkers describe as lateral interactions [123, 28, 1, 124]. The resulting
mechanical response thus depends on the physico-chemical details of the surfactant moieties (bound
molecules through crosslinking reaction[125], rafts of connected solid particles [126, 127]). Unbound,
surfactant molecules react to dilation by balancing their surface concentration through Marangoni
flow, and adsorption/desorption mechanism, represented in Fig. 4.2b. Molecules crosslinked with
their neighbours form solid layers, deforming elastically under surface dilation, as sketched in Fig.
4.2c. The resulting deformation differs from the previous case, e.g. by its possible anisotropic shear
state after deformation.

Just as molecules in bulk phase, surfactants thus react to deformations of the interfaces they are
adsorbed to and adapt to new equilibrium conditions. Understanding stress response to deformation
requires to consider how lateral interactions are affected by deformations.

Definition of interface deformation is borrowed from solid elasticity [128], assuming continuous
variation of deformation. The position ~X of every point in the initial body configuration Ω0 is
associated to a final position ~x in the deformed configuration Ω, a transformation shown in Fig.
4.3a. A displacement vector ~u is defined for every point ~X as ~u = ~x − ~X. In the limit of small
displacements, deformation is described at first order with the infinitesimal strain tensor εij

εij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
(4.3)

used in the Shuttleworth stress-strain equation (4.4). It contains information about the deforma-
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Figure 4.2: a) Adsorbed molecules organise within the planar organisation. For interacting molecules, description of the interface

requires to account for the intermolecular interactions in this particular configuration, refered to as lateral interactions [28]. b)

At fluid-fluid interfaces, dilation of the interface reduces the surface coverage, increasing the interfacial tension. For irreversibly

adsorbed molecules, molecular rearrangements at the interface cancel gradients of surface concentrations ; hence, stresses in

fluid-fluid interfaces are always isotropic. c) Crosslinked polymers on a deformed interface stretch elastically, storing energy in

their intermolecular bonds. Irreversible bonds forbid molecular reorganisation, and anisotropic deformations impose anisotropic

stresses.

tion which is invariant to rotation and translation, neglecting nonlinear and dynamical effects [128].
Larger deformations require the formalism of gradient deformation tensor F, which we describe in
Section 4.3.

Shuttleworth [129] studied the tangential stress τij acting on an interface of interfacial energy
f subjected to a strain εij . The general stress-strain relation reads as

τij = fδij +
∂f

∂εij
⇒

isotropic
f +

∂f

∂ε
= γ. (4.4)

where the last part of Eq. (4.4) is valid for interfaces unable to sustain anisotropic stress. Examples
are restricted to pure liquids [130] with no microstructure effects (Fig. 4.2b) : in that situation,
tangential stresses are isotropic and can be expressed as a interfacial tension γ. For more complex
interfaces, scalar quantities are unable to describe tangential stresses, and tensorial description
must be used.

Arbitrary deformations are often a mix of shear and dilation. Any deformation field εij can
always be decomposed in a pure dilation with no shear 1

3εllδij and a pure shear with no dilation
εij − 1

3δijεll [128], as shown in Fig. 4.3a. Rheological characterisation is a measure of resistance
of the probed interface to both modes of deformation, with interfacial dilatational modulus K and
interfacial shear modulus G, respectively. Associated experimental methods are described in Sec-
tion 4.2.

For fluid interfaces, gradients of surface concentration are quickly equilibrated by Marangoni
flow (Fig. 4.3b) . Interfaces in their final state are thus uniformly covered, and hence cannot sustain
anisotropic stress caused by shear deformation. In that case, interfacial rheology is characterised
by Gibbs area dilatational modulus KG

KG =
dγ

dln(A)
(4.5)

The interfacial tension tension is independent of deformation amplitude, and thus has a zero KG.
Complex interfaces, however, may exhibit non-zero dilatational modulus because of bulk/interface
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Figure 4.3: a) Top : arbitrary deformation of an initial reference state Ω0 with coordinates ~X to a new state Ω with coordinates

~x. Bottom : decomposition the deformation in a pure shear (left) and a pure dilation (right). b) Anisotropic area dilation

causes surfactant transport because of gradient of interfacial tension and Marangoni flow. Interface in its final state has an

isotropic tangential stress τij similar to a interfacial tension γ. c) Dilation reduces surface coverage, compensated by adsorption

of bulk and micellar molecules.
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transport phenomena and interfacial microstructures. The first happens when surfactant molecules
adsorb/desorb from the strained interface to approach equilibrium concentration as sketched in
Fig. 4.3c, following their adsorption isotherm (Eq.(4.2)). In that case, interfacial tension follows a
relaxation process involving diffusional suface/bulk exchange and micellar breakdown [131].

Because of its intrinsic dynamic nature, the temporal evolution of KG(t) is often measured
and brings important informations about surface rheology. Adsorption/desorption being quicker
for smaller molecules, small amphiphilic molecules quickly equilibrate the interfacial concentration
when the interface is deformed. On the other hand, the adsorption timescale of block-copolymers
can be orders of magnitude larger, introducing a delay between the deformation and the inter-
face reaching equilibrium. These timescales depend also strongly on the surfactant concentration.
Transient elastic modulus KG(t) = dγ(t)

∆A/A0
is used to describe interfacial response to step strain

and oscillatory experiments (see Section 4.2.2). While it is originally used as a description of
fluid-fluid interfaces, it can also describe solid microstructured interfaces deformed isotropically
[132, 28]. Time-dependent KG(t) gives then access to frequency-dependent dilatational modulus
K∗G(ω) = K ′G(ω)+iK”

G(ω) by a standard Fourier transform, where K ′G(ω) is the dilatational storage
modulus and K”

G(ω) is the dilatational loss modulus. While the dilatational modulus is deformation
independent at small deformations, this hypothesis does not hold in general at large deformations,
where structural properties of the interface and lateral interactions between adsorbed molecules
play a role in its mechanical response [133, 28].

The rheological response of the interface is also affected by the shape of the surfactant molecules
and their local arrangement at the molecular scale. The most energetically favorable organisation
gives rise to microstructures with their own mechanical behaviour, depending on the intermolecular
interactions. A deformation of the interface stretches the molecules and adds extra-stresses to the
interface. This external perturbation can, under some conditions, trigger modifications of the
microstructure such as phase transitions [134, 24, 135], which are known to affect the rheological
properties of foams and emulsions [136]. A proper description of the interface thus requires an
appropriate constitutive model, depending on the composition of the interface. So far, this approach
has been used to describe polymer solutions, polymer melts, liquid crystalline phases, soft glasses
and gels [137, 132, 138, 139]. The contributions of phase transitions are again more present for large
polymeric surfactants, as low molecular-weight surfactants do not form complex microstructures
[26].

4.1.2 Foam and emulsions as high specific surface systems

The structure of interfaces affect how bubbles interact together and with their medium. Rigid
interfaces increase the resistance of bubbles to deformations, modifying their force-deformation
behaviour solely driven by interfacial tension we detailed in Chapter 3. Interfacial strain caused
by the flow of outer medium around the drops brings interfacial rheology into play in bubble
rising behaviour [117], as shown in Fig. 4.4a, and wet foam rheology [65, 140]. In drainage,
the flow along the interfaces generated by gravity interacts with the adsorbed molecules. The
rigidity of the interface impacts the velocity profile of the drainage flow ; rigid interfaces (i.e. large
amphiphilic molecules) impose a null interfacial velocity [141, 142], while mobile interfaces (i.e.
small amphiphilic molecules) shear under flow, resulting in gradients in interfacial tension and
Marangoni flows [143, 144, 145, 140], as represented in Fig. 4.4b. These differences in interfacial
boundary conditions modify the drainage regime at the foam scale [146].

Foams are systems with high specific surface, and high associated interfacial energy. Over
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time, this energy is dissipated through bubble coarsening and coalescence [147]. A bubble has a
higher pressure than its surrounding medium, as predicted by the Young-Laplace law ∆P = 2γ/R0.
It therefore expels gas in the outer medium. For bubbles in contact, small bubbles have higher
pressure than their larger counterparts, and end up transfering gas to their large neighbours, with
an evolution over time of the structure of the foam to large, polydisperse bubbles. A similar process
happens in emulsions, where it is called Ostwald ripening.

Halting foam coarsening is deeply looked after to favour foam stability and preservation of its
structure over long timescales [148, 149]. One particulary efficient way to stop coarsening is via the
addition of interfacial elasticity [150, 151, 152, 153, 154, 155, 156]. Following the pionneering work
of Gibbs, the impact of an interfacial elasticity on bubble coarsening is often tackled using Gibbs
elasticity, where resistance to deformation is characterised by the dilatational elastic modulus KG

(Eq.(4.5) in Section 4.1.1). Bubble shrinkage is naturally stopped when a radius reduction does
not decrease the bubble pressure (∂∆P/∂R > 0). Expressed within Gibbs elasticity, this condition
becomes

∂∆P

∂R
= 2

∂

∂R

( γ
R

)
=

2

R

∂γ

∂R
− 2γ

R2
=

2

R
(2KG − γ) > 0→ KG

γ
≥ 1

2
(4.6)

Eq. (4.6) is known as Gibbs criterion, which determines the stability of a bubble with respect to
coarsening. Irreversibly adsorbed molecules and particles have been used successfully to stabilise
foams against coarsening [157, 158, 159, 155, 160], while the change of dynamics of bubble growth
significantly alters the evolution of radius distribution at the foam scale [161]. This effect can also
be achieved by soluble surfactants, as long as surface variation changes are fast enough compared
to the adsorption/desorption dynamics described in Section 4.1.1.

4.2 Rheological characterisation of complex interfaces

The development of dedicated interfacial shear rheometres has enabled reliable measurements of the
interfacial shear modulus G [163, 164]. Interfacial rheology, like its bulk counterpart, is concerned
about the viscoelastic properties of interfaces separating bulk phases. Usually, these properties are
measured by imposing a strain on the interface and measuring how this transformation translates
in interfacial stress, although the deformation response to an imposed stress can also be used to
measure the mechanical properties of the interface. Pure fluid-fluid interfaces cannot sustain tan-
gential surface stress : the rheological response comes from the covering of the interface by surface
active species interacting with each others, and the effect of those interactions on the stress-strain
response of the interface [165]. As solid deformation, an interface’s strain can always be decomposed
as a combination of pure shear and pure dilation (Fig. 4.3a). Rheological characterisation proceeds
by applying one or the other deformation mode, and measuring viscous and elastic response. In
many techniques, both deformation modes are actually intrinsically coupled.

In this part, we present double-wall ring (DWR) rheometry (Section 4.2.1), a shear rheology
method used to characterise the polymer skin of the PEG-silicone model system described in Chap-
ter 5. We then proceed to describe pendant drop experiments in Section 4.2.2, used originally to
characterise interfacial tension at simple fluid-fluid interfaces, and present how it has been extended
to measure dilatational properties of complex interfaces.

4.2.1 Shear rheology : the double-wall ring experiment

Double-wall ring rheometer [166] consists in a fluid chamber with two levels, represented in Fig.
4.5a. At first, the heaviest fluid is put at the bottom, up to the delimitation line between the two
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Figure 4.4: a) Flow around a drop covered with surfactants shears the interface and accumulates adsorbed surfactants at the

back of the drop. Gradient of interfacial tension creates a backwards Marangoni counterflow. From Heitkam’s lecture [162] b)

Evolution of velocity profile with surface mobility. For rigid interfaces (Bq � 1), the no-slip boundary condition focuses the

flow in the middle of the Plateau border. For more mobile interfaces, the flow is close to a bulk flow. c) Experimental setup

by Salonen et al. [161] to measure the impact of interfacial elasticity on bubble coarsening. Two bubbles of different radii

are connected through a closed tube (represented in the inset). At t = 0, the valve is opened and bubbles can equilibrate in

pressure through liquid flow through their shared tube. Contrary to purely capillary interfaces, drops with interfacial elasticity

stop exchanging gases before the smaller bubble is absorbed by its larger counterpart.
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subvolumes. A probe, composed of a ring of perimeter L and area A, is put at the interface before
adding the second liquid. Application of a torque on ring axis causes a shear deformation of the
interface, in a step-by-step deformation method or with oscillating shear deformation at frequency
ω. A measure of the rotation of the axis gives access to the strain of the interface, while in-phase
and out of phase responses characterise elastic and viscous shear responses, respectively. Fourier
transform of the Fourier shear modulus G(t) gives access to the complex frequency-dependent shear
modulus G∗(ω) = G′(ω)+iG”(ω), where G′(ω) is the elastic shear modulus and G”(ω) is the viscous
shear modulus.

Experimental errors in interfacial measurements come from the coupling of interfacial flow to
flow in the bulk subphase. Experimental setup should thus ensure that bulkflow contribution is
negligible in front of interfacial flow. The competition between these two contributions is estimated
with the Boussinesq number Bq = surface drag

subphase drag = µs
µ[A/L] where µs is the interfacial shear viscosity

and µ the bulk viscosity. Ring geometry should therefore be of maximal diameter at given surface
for optimal sensitivity [166, 167]. Proper measurements can be conducted for large Boussinesq
number Bq � 1.

Figure 4.5: a) Double-wall ring geometry [166] used for shear interfacial rheology. The ring is put at the interface between the

two phases and oscillated with a pulsation ω. The formation of a gel at the interface modifies its mechanical properties. b)

In-phase deformation caused by oscillatory strain, corresponding to an elastic response. c) Out of phase deformation, associated

with a viscous response.

4.2.2 Dilatational rheology : the pendant/sessile drop experiment

The characterisation of the dilational modulus K remains challenging, due to the experimental
difficulty of applying an accurately controlled homogeneous dilation to an interface and of assessing
the accuracy of the modulus measurement if the deformation is only approximately a homogenNeous
dilation. Since the volume change of a sphere leads to a perfect dilation of its surface, measuring
the pressure-radius relation of a small, spherical elasto-capillary droplets should be the preferred
method to determine the dilational modulus. This has been implemented for capsules using osmotic
pressure variations [168] or acoustic pressure fields [169]. However, these approaches introduce
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physico-chemical or technical complexity. It is much more convenient to study the pressure/shape
relation of drops held by a needle with circular cross section (see Fig. 4.6a-b), a technique called
capillary tensiometry or pressure tensiometry when shape or pressure analysis is used, respectively.
Furthermore, fluid circulation inside suspended drops favors homogeneous concentration of surface
active species within the bulk phase and at the interface [133]. The interfaces, having uniform
properties, are more reliably characterised in that case. In the next two sections, we first summarise
experimental methods commonly used to determine interfacial tension and stresses in a pendant
drop configuration. In the third one, we present a generalisation of these techniques adapted to
elastic capsules, developed by Kierfeld and coworkers [126, 170] which serve as a benchmark to test
the accuracy of our model.

Drop shape analysis (DSA)

Drop shape analysis (DSA) - also sometimes called profile analysis tensiometry- is a long-standing
method for measuring interfacial tension [171, 172]. It is based on the fitting of the profile of
deformed drops or bubbles attached to a capillary with the numerical solution of Young-Laplace
equation in the configuration depicted in Fig. 4.6.a-b. The density difference between the two
phases produces a hydrostatic pressure gradient ∆ρgz in the vertical direction, parallel to the drop’s
symmetry axis. The pressure difference across the interface increases with height accordingly. In
this configuration, the Young-Laplace equation becomes

∆P (z) = ∆P0 + χ∆ρgz = γ(κφ + κs), (4.7)

where ∆ρ = ρin−ρout is the density difference between the two phases, g gravity acceleration, χ
a factor with χ = 1 for a pendant drop and χ = −1 for a rising bubble, and z the height along the
symmetry axis taken from the needle. κφ and κs are the circumferential and meridional curvatures.
Representation of this parametrisation is shown in Fig. 4.6c. Drop profiles are described taking
advantage of the axisymmetry of the pendant drop, using arc length from the origin s at the apex
of the drop and the parametrisation (R2 sin(ψ), z) where ψ is the angle tangent to the surface [173].
In this parametrisation, Young-Laplace equation becomes

dψ

ds
=

2

R0
− χ∆ρg

γ
z − 1

R2
. (4.8)

Eq.(4.8) is numerically integrated with a test pair of input parameters (∆P0, γ). The profile ob-
tained experimentally is then compared to numerically integrated shapes, with an error estimation
function measuring the distance between points of the experimental shape and points coming from
the pair test. This process is iterated while trying to minimise the error function, and stopped
within the desired accuracy.

Although shape analysis is a time-consuming procedure, drop profile can be recorded and treated
afterwards. Pendant drop is an appropriate setup to probe fast processes [175, 176, 177], because
the volume control device can reach oscillation frequencies down to 1 Hz. Measure of interfacial
viscoelasticity is obtained by imposing periodic surface oscillations to the bubble. Russev et al.
[171] treated the case of an interface submitted to sinusoidal area oscillations A(t) at a single
frequency ω and its interfacial tension response γ(t)

A(t) = Am(1 + αae
iωt), (4.9)

γ(t) = γm +K∗G(ω, αa)αae
iωt, (4.10)
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Figure 4.6: a) Pendant drop and b) rising bubble setup from [172]. Pressure transducer (PT) is used in capillary pressure

tensiometry (Section 4.2.2), with a pressure shift between detector and bubble interface due to gradient in hydrostatic pressure.

c) Surface parametrisation of pendant drop shape. Figure from [174]. d) Relaxation of an air-water interface in a solution of

sodium polystyrene sulfonate at 1 g/L. At initial time t = 0, the volume is increased by 10% then kept constant. Interfacial

tension decreases slowly as the NaPSS adsorbs at the interface e) Oscillating bubble for the same NaPSS setup. A sinusoidal

cycle of volume variation of 5% is imposed on the bubble while the interfacial tension is deduced. As oscillation period is

order of magnitude smaller than relaxation timescale, no relaxation happens and interface response is in-phase with volume

oscillation. Results courtesy to Stéphane Pivard.

where αa is the amplitude of surface deformation, K∗G(ω, αa) is the complex area dilatational mod-
ulus, and Am and γm are the mean area and interfacial tension, respectively. A typical volume
variation with forced oscillation is shown in Fig. 4.6e. In the limit of small amplitude strain, the
elastic modulus remains linear and depends on oscillation frequency ω only, so that K∗G can be
decomposed in a elastic part K ′G(ω) and a viscous part KG”(ω)[178], as described in Section 4.1.1.

DSA has major drawbacks. Relying on shape analysis, it is highly sensitive to image noise,
especially since it relies on the definition of a contour and (x, z) variation. The iterative integration
scheme is computationnaly costly : each test pair has to be fully integrated before being evaluated.
For this reason, analysis can often not be performed in situ, especially for large drop deformations,
but rather performed after the experiments, so that interfacial tension measurement cannot be
used to monitor drop deformations. The density difference ∆ρ is the driving factor for the drop
deformation under gravity : therefore, fluids with small density variations (e.g. emulsions) are not
suited for DSA experiments and drops should have a minimal deformation before DSA results can
be trusted [133]. More importantly, DSA assumes the isotropy of surfaces stresses, and is therefore
not appropriate for surfaces where stress isotropy is not ensured.

Capillary meniscus dynamometry (CMD)

Fluid-fluid interfaces cannot sustain anisotropic stresses : a gradient of surface coverage by surfac-
tants is balanced by Marangoni flow until the stress is uniform and isotropic again, as described
in Section 4.1.1. On the other hand, solid interfaces, e.g. polymeric skins, remain in a state of
anisotropic stresses.

For a two-dimensional layer, the tangential sress can always be decomposed in two orthogonal
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components. The surface is defined as a locus of points ~rn functions of two independent param-
eters α and β ~r = ~r(α, β). For α-lines and β-lines of the surface perpendicular to each others,
as in Fig.4.7, α and β are called the orthogonal curvilinear coordinates of the surface, with the
orthogonality relation ∂~r

∂α ·
∂~r
∂β = 0.

Figure 4.7: Surface parameterisation with cuvilinear coordinates. The point ~r of the surface Ω is a function of the curvilinear

coordinates α and β. The α-lines (α1,...,αn) and β-lines (β1,...,βn) are orthogonal at any point of the surface. Figure from

[179].

For the geometry of the pendant drops, a natural decomposition of the stress includes one com-
ponent along the profile of the drop, called the meridional direction of index s, and one component
normal to the first one, called the longitudinal direction, of index φ. This decomposition is repre-
sented in Fig. 4.6c. The pendant drop geometry naturally induces a stress anisotropy, by imposing
the longitudinal curvature κφ with the needle radius Rn = 1/κφ. On the other hand, at the apex
radius (z = zmax), the symmetry of the system imposes the isotropy of the stresses associated to
the principal directions σs = σφ. The determination of the two distinct stresses therefore requires
extra considerations on the shape equations, as does CMD.

With the rise of high-frequency and precision pressure detectors, DSA setup has been improved
by adding a pressure transducer to measure the pressure of the inner phase, as shown in Fig. 4.6a-
b. Compared to DSA, capillary meniscus dynamometry (CPMD) is well suited for systems of low
density difference and small deformations [180, 133]. The shape of the drop is recorded at any stage
of the deformation, as well as its inner pressure, as shown in Fig. 4.8a. By fitting the shape of the
drop and using the inner pressure in the stress balance equation, CMD can deduce the tangential
stresses at any point of the surface of the drop, as shown in Fig. 4.8b-c.

Using again axisymmetry of the pendant drop/rising bubble, shape is described using cylindrical
coordinates (r, φ, z) with coordinate origin at the drop apex, where z is the coordinate on the
symmetry axis, z = 0 corresponding to the apex of the drop/bubble. Profile can then parametrised
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Figure 4.8: a) Evolution of buoyant bubble profile in a 0.005 wt% HFBII hydrophobin solution. Pressure is measured through

the capillary at the bottom of the needle. [172] b) Surface meridional stress deduced from capillary meniscus dynanometry and

drop shape analysis. DSA assuming isotropic stress state, circumferential σφ is assumed to be equal to σs. [172] c) Distribution

of surface stresses along the drop profile deduced from CMD. [172]

as depicted in Fig. 4.6.c, with the arc length s such that

dr

ds
= cos(ψ)

dz

ds
= sin(ψ)

(4.11)

where ψ is the slope angle.
This new system of orthogonal coordinates (s, φ) defines the stresses in the two principal di-

rections σs and σφ, tangential to the s and φ coordinates, respectively. Force balance requires the
following equilibrium relations [181, 182, 183]

σφ =
d

dr
(σsr) (tangential), (4.12)

∆P (z) = κsσs + κφσφ (normal). (4.13)

Eq.(4.12) is the tangential stress balance in the meridional direction [133], and Eq.(4.13) is the
anisotropic generalisation of the Young-Laplace law. κs and κφ are the two principal curvatures.
They are defined as

κs =
dψ

ds

κφ =
sin(ψ)

r

(4.14)
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Eqs. (4.11), (4.13) and (4.14) are then combined to get the differential equation relating merid-
ional stress σs to pressure difference

d

dr
(σsr sin(ψ)) = ∆Pr (4.15)

Integrating this equation gives access to the meridional stress σs. Writing the pressure difference
∆P (z) = ∆P (0) + χ∆ρgz, the meridional tension reads as

σs(z) =
πr2p0 + πχg∆ρ(

∫ z
0 r

2(z̃)dz̃ − r2z)

2πr(z) sin(ψ(z))
(4.16)

where z̃ is an integration variable. The circumferential stress is then deduced by inverting the
anisotropic Young-Laplace equation (4.13)

σφ(z) =
p0 − εgz∆ρ− κs(z)σs(z)

κφ(z)
. (4.17)

Using only surface force balance equation, σs(z) and σφ(z) can be determined on the whole
interface without any assumption about the material law describing the interface. Robust deter-
mination of slope angle ψ(z), derivative in the meridional curvature expression (Eq.(4.14)) and the
integral in Eq. (4.16) form the sensitive part of the CMD technique. The shape of the pendant
drop is fitted using Chebyshev polynomials [1] whose analytical expressions are used to compute
derivatives and integrals. This numerical fitting, however, is very sensitive to noise, and yield un-
physical longitudinal stress in the regime of small deformations. Moreover, the stresses at the apex
sometimes fail to converge to isotropic values, which should be guaranteed by the symmetry of the
system. The results of CMD should thus be taken critically, as products of a complex numerical
procedure. Interested readers are refered to the dedicated litterature [172].

CMD thus works by shape integrations, allowing faster measurement of interfacial tension, and
even on the spot control during experiments. With this procedure and the additional measure of the
inner pressure, CMD can measure anisotropic surface stresses with its meridional and longitudinal
components σs and σφ, respectively. Comparison of DSA and CMD results in Fig. 4.8b highlights
the limits of isotropic hypothesis. Danov et al. [172] studied the effect of hydrophobin HFBII
coating on air bubbles at different imposed inner pressures. Stresses σs and σφ are computed at
each step with CMD equations, and compared to DSA result. DSA error increases with pressure
variation. At the apex of the bubble z = zmax however, σs = σφ for any pressure difference:
because of the symmetry of the drop, longitudinal and meridional direction are equivalent at this
point. Although subjected to the same optical errors than DSA and requiring non-trivial numerical
integration, CMD is more reliable than DSA : access to the inner pressure is thus highly appreciated,
though not being always available in experimental conditions.

Pendant capsule elastometry (PCE)

CMD measures the stresses at the interface of the drop, without any assumption about its consti-
tutive law. Detection of anisotropy can be linked to elasticity, but stress measurements are unable
to predict the shape changes of an interface under an arbitrary deformation. Any knowledge about
the interface is thus not easily transferable to other configurations. The field of elastic capsules
and microcapsules is more interested in the behaviour of solid interfaces under non-linear defor-
mations, such as large strains, buckling and fracking [184, 185, 186, 187, 188, 189, 190, 191, 183].
Most often, capsules are produced by interfacial reactions such as polymerisation or adsorption of
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surfactants [192]. The pendant drop geometry, where the shape of the interface is close to that of a
drop, and where the elastic skin is formed in the same conditions as for capsules, is thus a relevant
configuration for the characterisation of thin elastic shells. As for DSA and CMD, the interface is
deformed by inflating and deflating the drop and recording its deformed profile. This configuration
has already been applied succesfully to elastocapillary interfaces [193, 194].

Figure 4.9: a) Deflated drop on the needle. Area between the blue lines exhibit wrinkles corresponding to compressive circum-

ferential stress σphi < 0 from which bending modulus EB can be fitted. [126] b) Fit of elastic moduli using the same theoretical

(red circles) drop shape obeying Hooean elasticity (green triangles), with Gibbs elasticity KG = A dγ
dA

and area compression

modulus K2D (blue circles) from [126]. Fitted KG varies with deformation, because Gibbs elasticity is not suited for solid elastic

interfaces. Difference between simulation and fitted coefficient comes from the noise introduced on the numerically generated

contour. Because of shape-fitting sensitivity to noise, weakly deformed profiles are hard to fit and large errors on modulus fit

follow. c) Variation of fitted area compression modulus K2D with number of deformation cycles [170] and d) deformation rate

[170]. Change in fitted moduli are a sign of aging and viscoelasticity, respectively.

Another approach of pendant drop experiments aims at overcoming the limitations of CMD
: pendant capsule elastometry (PCE) [126, 170] provides a measure of the elastic coefficients of
thin elastic membranes at fluid-fluid interfaces. Usual PCE experiments are conducted as follows
: in a first step, a drop is produced at the bottom of the capillary. If surfactants are present in
the solution, they adsorb at the interface, lowering interfacial tension. The shape is driven by the
balance of interfacial tension γ0 and the gravitational force ∆ρg, as for usual DSA experiments.
In a second step, an elastic skin forms at the interface, shaped like the pendant drop. In this
configuration and before any deformation is applied, the membrane is supposed to be in its state
of zero elastic stress. An example is shown in Fig. 4.9a (left).

This is taken as reference shape of the interface, corresponding to the profile of a laplacian drop
of interfacial tension γ attached to a needle of radius Rn. Once the skin has finished to form, the
capsule is deflated by suction of the inner subphase through the needle. An example of such a
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deflated shape is shown in Fig. 4.9a (right). Comparative theoretical contours are produced with
the shape equations described in Section 4.4.2 (Eqs. (4.54-4.56)). These equations rely on the stress
balance equations, and can be implemented for any constitutive law of known stress-strain relation.
The shapes are computed with a set of input parameters (whose elements depend on the choosen
constitutive law) and compared to the contour of the pendant drop, detected with automatical
segmentation, as shown in Fig. 4.9a. The accuracy of the input parameters is then estimated with
a measure of the mean-square deviation between the theoretical and experimental contours. The
shape regression is here driven by the minimisation of this mean-square deviation.

For instance, Neo-Hooke material law is well suited to describe the mechanical response of poly-
mer melts [195, 196]. For Neo-Hookean membranes, this set of parameters consists of normalised
pressure difference ∆P̃0 = Rn∆P0

γ and normalised surface Young modulus Ỹ2D = 2K2D(1− ν2D)/γ
where K2D is the area compression modulus and ν2D is the 2D Poisson ratio.

Current implementation of the shape-analysis software takes pressure difference ∆P as an ad-
ditional fitting parameter. Optionally, an external measure of the pressure can be provided to
the linear regression software to enhance the precision of the elastic moduli estimation, such as
proposed by Hegemann et al. [170, 126] with their OpenCapsule software.1

In addition to Y2D and ν2D, deflation also allows to fit the bending modulus of the mem-
brane. Bending deformation is often overlooked in shape analysis for thin layers of elastic materials
(h0 � R0, where h0 is the undeformed skin thickness and R0 its reference shape curvature radius).
In the thin skin limit, bending moments can be neglected, and capsules are well described by elastic
membrane theory. For thicker membranes however, bending cannot be neglected anymore and a
better description is obtained with the elastic shell theory. Deflated capsules with thick membranes
wrinkle in the meridional directon when the meridional stress becomes compressive σφ < 0 [172], a
phenomenon shown in Fig. 4.9a. The wrinkled region thefore extends on all the interface where this
condition is met. Analysis of the wrinkle wavelength allows to fit the membrane bending modulus
EB, related to 3D Young’s modulus Y3D and 3D Poisson ratio by EB = Y3Dh0/1(1 − ν2

3D). For
thin layers of materials, the rheological properties are best described with interfacial moduli. As
such, the surface Young modulus is related to its 3D counterpart through Y2D = Y3Dh0 : difference
of scaling between bending modulus (EB ∝ h3

0) and surface Young modulus (Y2D ∝ h0) further
highlights the diminishing importance of bending deformation in the thin skin limit.

Although capsule elastometry assumes a perfectly elastic skin, non-elastic properties of the in-
terface (e.g. viscosity and plasticity) can alter the deformation dynamics and final state. These
effects cannot be measured quantitatively within the current capsule elastometry framework : how-
ever, some of these effects can still be detected by looking at the deviation from the perfectly elastic
response during the course of the deformation. Changes of obtained fitted values with volume vari-
ation rate as in Fig. 4.9c indicates viscous or creep effects. A rapid change in elastic response
indicates a phase change at the interface. Modification of the elastic moduli with cycle repetition
is linked to fatigue and aging effects. A proper description of these effects would then require to
consider the microstructure of the particular interface considered.

Despite its assumption of pure elasticity, capsule elastometry is a powerful analysis tool for thin
elastic interfaces. We further turn towards its framework in Section 4.3.1 to describe drops and
bubbles with elastocapillary interfaces, in the limit of small deformations. This limit corresponds
to weakly compressed foams and emulsions, a scenario of great scientific interest as we have seen

1github.com/jhegemann/opencapsule
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in Chapter 3.

4.3 Constitutive law of drops with elastocapillary interfaces

Since the recent literature has seen many debates about the physically correct description of the
deformation of complex interfaces, we consider it necessary to start here with a fairly general
introduction to clarify our point of view and the approximations we stand on before introducing
the specific concepts used later in this Chapter.

We treat here a simple model interface, as sketched in the left of Fig. 4.10. We assume it to be
composed of a liquid/liquid interface of interfacial tension γ0, on which a permanently crosslinked,
polymeric gel of thickness h0 is grown. The liquid phase containing the gel is supposed to be a good
solvent for the gel, such that the interfacial tension between the gel and the solvent is negligibly
small. We furthermore assume that this gel layer is thick enough to be considered a bulk isotropic
material with bulk shear modulus G3D and that its mechanical response can be described by a Neo-
Hookean model described in Section 4.3.2. For this purpose, we make the simplifying assumption
that the gel can be considered as incompressible, in the sense that its bulk modulus is much larger
than its shear modulus. Last but not least, we make the assumption that the gel is dilute enough
such that neither its presence nor its deformation modifies the liquid/liquid interfacial tension, thus
equal to that of a pure solvent γ0.

In this Section, we describe the mathematical framework using elasticity theory (Section 4.3.1)
and its applications to an uniform sphere, corresponding to an idealised droploon (Section 4.3.2).
In Section 4.3.3, we propose a term of geometrical correction to adapt the sphere approximation to
the case of a pendant drop. Analytical equations of pressure-deformation are proposed for Gibbs,
Hookean and Neo-Hookean elasticity.

Figure 4.10: Schematics of the deformation of drops with an elastic interface, for spherical and pendant drops. The interfacial

gel, of thickness h0, is stretched by the deformation. Its deformed thickness h can be deduced from the area dilation λA = A/A0,

assuming gel incompressibility. The deformation of the drops is modeled as the in- and deflation of spherical drops around a

reference state of radius R0. These drops are either isolated or attached to a needle with a circular cross-section of radius Rn.

4.3.1 Theoretical framework

Interfaces are characterised by the amount of interfacial free energy per surface area, that we will
denote f . If the interfacial stress is independent of area changes, the work needed to increase the
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area by dA is γdA = fdA; f and γ are in this case equivalent quantities. However, this is no longer
true if the stress and energy density are modified by interfacial area changes. This can be due to
interacting surfactant molecules in a fluid-like interface (top of Fig. 4.2), or due to a solid, elastic
(polymer) skin adsorbed to the interface (bottom of Fig. 4.2), or due to a mixture of both.

In this general case, the interfacial stress is no longer necessarily isotropic and its description
requires a second rank tensor σij , where i, j = 1, 2 specify components in a 2D cartesian coordinate
system locally tangent to the interface. Assuming that the stresses due to the liquid interfacial
tension γδij and those due to the adsorbed elastic skin τij are simply additive one may write [27]

σij = γδij + τij , (4.18)

where δij is the Kronecker symbol with δij = 1 if i = j and δij = 0 otherwise. τij may contain both
isotropic and anisotropic contributions, in contrast to γδij which is purely isotropic. The additive
decomposition in Eq. (4.18) should not be taken for granted: if surfactants are cross-linked or
co-adsorbed with a polymeric skin, the different contributions to the interfacial stress may be hard
to tell apart, not only experimentally but also conceptually. In the present paper, we will not
consider this issue further.

Any measure of interfacial strain is based on the coordinates of a given interfacial point: Xi

in the reference state and xi after the deformation (i = 1, 2, 3). From these, one may derive the
displacement field Ui(Xi) = xi−Xi, where U1 and U2 are the tangential displacements and U3 the
displacement normal to the interface. For an interface with the two principal radii of curvature
in the reference shape R01 and R02, displacements give rise to an infinitesimal strain tensor [128]
defined in Section 4.1.1

εij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

+
∂U3

∂Xi

∂U3

∂Xj

)
+ δij

U3

2

(
1

R01
+

1

R02

)
(4.19)

describing the interfacial 2D strains (i, j = 1, 2). For a spherical surface, the two principal curvature
radii are equal (R01 = R02 = R0) and 1

2( 1
R01

+ 1
R02

) = 1
R0

. It contains information about the
deformation which is invariant to rotation and translation [128]. Following Kirchhoff’s hypothesis
[179], we apply classical thin shell approximations, and neglect all strains in the plane normal to
the interface, εi3 = ε3i = 0 (i = 1, 2, 3). Both in the Surface Evolver simulations and in the shape
equation calculus we will employ alternative finite strain measures, which are introduced below.
Their relation to the infinitesimal strain tensor is provided in Appendix 8.1.

For fluid-like interfaces, stress and strain are isotropic, and in this case scalar quantities of the
stress σ and the strain ε are useful. They are defined as

σ =
1

2
(σ11 + σ22) (4.20)

ε = ε11 + ε22. (4.21)

ε is equal to the relative variation of surface area dA/A.
A rigorous description of finite strains can be derived either by considering nonlinear corrections

to the kinematics based on the infinitesimal strain tensor [128, 197] or using the displacement
gradient tensor [195, 198]

Fij =
∂xi
∂Xj

, (4.22)

and finally the left Cauchy-Green strain tensor

Bij = FikFjk, (4.23)
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or the right Cauchy-Green tensor

Cij = FkiFkj , (4.24)

which extract from Fik information about the strain which is independent of rotation and trans-
lation. Please note that in this Chapter, we consider right Cauchy Green tensors in 2 and 3
dimensions. To avoid confusions, we denote them respectively as C and C.

In this Chapter, Surface Evolver computes numerically the strain of the surface using the right
Cauchy-Green-Tensor, whose explicit expression in the finite element method is derived in the
Appendix 8.1. For theoretical expressions, however, we will use the left Cauchy-Green tensor, to
conform to the commonly used stress-strain expression derived using the Cayley-Hamilton theorem
[196]. As stressed by Beatty [195], both tensors have identical principal values (Tr(Bij)=Tr(Cij),
Tr(B2

ij)=Tr(C2
ij), det(Bij)=det(Cij)), and are hence equivalent regarding the computation of strain

energy. In Eqs. (4.22) and (4.23), we use Einstein’s summation convention: indices occurring twice
should be summed over, with i, j = 1, 2 for 2D tensors and i, j = 1, 2, 3 for 3D tensors.

In some models, the Hencky strain is found to be convenient. In the case of an extension that
transforms a length L measured in the reference state into a length L′, the infinitesimal strain
definition in this scalar case would yield (L−L′)/L while the Hencky strain is defined as ln(L′/L).
Extensions of the Hencky strain to the tensorial case have been discussed in the literature [199].

To build constitutive laws, the strain must be connected to energy density and stress. Shuttle-
worth has demonstrated the following general relation between surface stress σij and surface energy
density, assuming constant temperature [129]

σij = fδij +
∂f

∂εij
, (4.25)

where i,j=1,2. f combines potential energy contributions due to the excess energy of solvent
molecules at the interface, adsorbed molecules or elastic potential energy of the skin.

In the case of fluid interfaces without skins where the stress is isotropic, a scalar model is
sufficient. By taking half of the trace of Eq. (4.25) and using Eq.s (4.21) we obtain the average
surface stress, which is equal to the surface tension

σ(ε) = γ(ε) = f +
∂f

∂ε
. (4.26)

For the more general case, we can consider a first order expansion of σ(ε) around the reference
state yielding

σ(ε) = σ(0) +Kε, (4.27)

where we have introduced the elastic dilational modulus

K =
∂f

∂ε

∣∣∣∣
ε=0

. (4.28)

In the spirit of the Hencky strain, the following alternative definition of a dilational modulus,
commonly called ”Gibbs modulus” (Section 4.1.1), is often used [200, 201]

KG =
∂f

∂ lnA
. (4.29)

For infinitesimal strains, dlnA = dA/A = ε and both definitions (Eqs. (4.28) and 4.29) coincide
so that K = KG. For finite strains, there is a distinction between dA/A where the area A evolves
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along the deformation and dA/A0 = ε where A0 is the area in the reference state. However, since
the Gibbs modulus and the dilational modulus can vary independently as a function of strain,
there is no contradiction between the two definitions. Using the Gibbs modulus and assuming its
independence of strain amounts to choosing a particular type of constitutive law which appears to
describe well some experimental systems [161, 199].

Let us now turn to interfaces with an adsorbed solid skin. Eq. (4.18) illustrates our simple
hypothesis that the total surface stress is the sum of an interfacial tension and the elastic stress from
the skin. To model this latter contribution, we focus on the case where plastic or viscous response
is negligible so that the stress can be derived from a mechanical potential energy. Such materials
are called hyperelastic. We focus further on incompressible materials and recall that in this case,
the most general constitutive law relating the three-dimensional elastic stress to deformation can
be cast in the form [195, 198]

σ3D
ij = −pδij + β1Bij − β−1B−1

ij , (4.30)

where i,j=1,2,3 and where p is the 3D pressure. The so-called response functions β1 and β−1

depend on the properties of the material and must be expressed as functions of the invariants of
the strain tensor to ensure frame invariance. In the simplest case, they are constants leading to
what is commonly called the ”Mooney-Rivlin” model. It has proven successful in describing many
polymeric systems [196, 202]. Within this class of models, the case β−1 = 0 is of particular interest.
It leads to the so called Neo-Hookean model where β1 is equal to bulk the shear modulus G [195]
so that

σ3D
ij = −pδij +GBij . (4.31)

This Neo-Hookean model has been derived from a simplified microscopic description of polymer
dynamics using statistical mechanics [203, 202], and it successfully describes the stress response
under finite strains. Since for moderate deformations, the Neo-Hooke model remains very close
to the Mooney-Rivlin model, it is the method of choice for our simulations. In the limit of small
deformations, the Neo-Hookean model reduces to the well known Hookean model of linear elastic
response. The 3D mechanical elastic energy density of a Neo-Hookean solid can be expressed as

W =
G

2
(IB − 3), (4.32)

where IB is the first invariant of the left Cauchy Green tensor [195, 196] defined in Eq. (4.23),
defined as its trace. This will be useful for the simulations presented in Section 4.4.

4.3.2 Perfectly spherical droploons

As given in Eq. (4.18) and sketched in Figs. 4.2 and 4.10, we assume that the total interfacial
stress can be modeled as the sum of surface tension and and elastic contribution. In the case of
fluid-like interfaces, this elastic contribution is given by a Gibbs elasticity. In the case of a solid-like
interface, the extra elastic stresses arise from a Neo-Hookean skin.

If the interface is fluid, i.e. only Gibbs elasticity is present, one can integrate Eq. (4.29)
assuming a constant Gibbs dilational modulus KG. In the limit of negligible gravity (i.e. low
density mismatch between the phases or ∆ρgR2

0/γ0 � 1), the reference shape of the drop is
spherical and the principal radii of curvature can be assumed to be equal (R01 = R02 ≡ R0). This
gives for a spherical droploon of radius R

σ(A) = γ(A) = γ0 +KG ln

(
A

A0

)
= γ0 + 2KG ln

(
R

R0

)
. (4.33)
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From this, the pressure drop ∆P across the interface is obtained via the Young-Laplace law

∆P =
2γ

R
. (4.34)

In the reference state R = R0 and γ = γ0 so that ∆P0 = 2γ0/R0.
To prepare our analysis of solid-like and fluid-like contributions, we introduce the following

normalised quantities. We define an ”elastocapillary number”

α =
K2D

γ0
, (4.35)

which compares the surface dilational modulus K2D to the interfacial tension γ0 of the reference
state. K2D is either due to Gibbs elasticity (denoted KG in this case) or to a solid-like elasticity,
as given later.

For spheres, the stretch λ is given by

λ =
R

R0
. (4.36)

Moreover, we introduce the normalised interfacial stress

σ̂ =
σ

γ0
. (4.37)

In the case where only Gibbs elasticity is present, the total interfacial stress is therefore given by

σ̂ = γ̂ = 1 + 2α lnλ. (4.38)

In the small-deformation limit this reduces to

σ̂ = γ̂ = 1 + 2α(λ− 1). (4.39)

Whatever the origin of the tension and elastic response may be, the normalised pressure is obtained
using

∆P̂ =
∆P

∆P0
=
σ̂

λ
. (4.40)

Let us now consider solid-like interfaces. For the case of a spherical balloon with initial skin
thickness h0 << R0, starting from Eq. (4.30), Beatty [195] derived a pressure-deformation relation
valid for any hyperelastic material

∆P (λ) =
2σ

R
=

2h0

λR0

[
1− 1

λ6

] (
β1 − λ2β−1

)
. (4.41)

In the Neo-Hookean case this yields the following expression for the elastic stress in the skin

σBalloon = Gh0

[
1− λ−6

]
. (4.42)

In several more recent models of non-linear mechanical behavior, nonlinear variations of the
response functions with the strain invariants are considered, as reviewed in [204, 205]. However,
for the remainder of this Chapter, we restrict ourselves to the use of the Neo-Hookean model.

84



Sphere model Normalised surface stress σ̂ Critical stretch λA,c Stretch at maximum pressure λA,m

Gibbs (liquid) 1 + α lnλA exp
(
− 1
α

)
exp

(
2− 1

α

)
= e2λA,c

Neo-Hooke (solid) 1 + α
3 (1− λ−3

A )
(

α
α+3

)1/3 (
7α
α+3

) 1
3

= 7
1
3λA,c

Hooke 1 + α(λA − 1)
(
1− 1

2α

)2
(for α > 0.5) no maximum

Table 4.1: Summary of the normalised expressions for the normalised surface stress σ̂ = σ/γ0; the critical stretch λA,c at which

the pressure changes sign; and the stretch at maximum pressure λA,m for the Gibbs, Neo-Hooke and Hooke model.

We characterised the elastic skin, assumed to be isotropic and incompressible, by its 3D shear
modulus G. To link it to the 2D dilational modulus, we note that the skin is in a state of plane
stress, and that in this case

ε = ε11 + ε22 =
σ11 + σ22

2E
=

σ

h0E
(4.43)

where E is Young’s modulus. Here, the biaxial stress in the solid induced by stretching is expressed
as a skin tension divided by the skin thickness. In view of Eq. (4.27), this means that K = Eh0 in
the present case. For incompressible materials E = 3G, so that for isotropic, small deformations

K = 3Gh0. (4.44)

In the case of an elastic skin attached to an interface with tension γ0 we therefore obtain for
the elastocapillary number

α =
3Gh0

γ0
. (4.45)

The total interfacial stress of a spherical Neo-Hookean droploon is therefore given by

σ̂ = 1 +
Gh0

γ0
(1− λ−6) = 1 +

α

3
(1− λ−6). (4.46)

In the small deformation limit one obtains the prediction of the linear elastic Hooke model

σ̂ = 1 + 2α(λ− 1), (4.47)

which is identical to Eq. (4.39). This result shows that in the limit of isotropic and small deforma-
tions both Gibbs elasticity and Neo-Hookean elasticity lead to a linear elastic response captured
by Hooke’s law in two dimensions with a compression modulus KG = 3Gh0.

Eq. (4.47) shows that for α > 1/2, an extensional stretch induces a positive total surface stress,
acting as a restoring force while for α < 1/2 an extensional stretch yields a negative total stress
which favors further deformation. Analogous tendencies are predicted for compression. The con-
dition α = 1/2 has therefore received particular attention and is often called the ”Gibbs criterion”
since the physical response of a system may change fundamentally around this value (Section 4.3.2).
This is known, for example, for the case of bubble dissolution and foam coarsening [159, 161].

In the case of spheres, it is natural to express interfacial stresses and curvatures via the radial
stretch λ. However, for more general surfaces, the relationship between both depends on the
geometry of the surface. In this case it is more appropriate to express the dilational stresses via the
area stretch λA = A/A0. For spheres, the relationship between area and radial stretch is simply

λ =
R

R0
=

(
A

A0

)1/2

= λ
1/2
A . (4.48)

In Table 4.1 we summarise the interfacial stresses for the Gibbs, Neo-Hookean and Hookean model
expressed via their area stretches, together with some critical stretches which are discussed in
Section 4.5.1. In the following we will use those relations.
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4.3.3 Droploons on capillaries

Let us now consider droploons attached to capillaries with circular cross-section of radius Rn (Fig.
4.10). In this case one geometrically removes a cap of radius Rn from the droploon and fixes the
perimeter of the resulting circular hole to the end of the capillary. For fluid interfaces with Gibbs
elasticity, the interfacial stresses are isotropic and constant everywhere in the interface, even if the
droploon is inflated or deflated. Hence, the droploon shapes remain spherical sectors and, as we
show below, all pressure-deformation relations can be calculated analytically, giving useful insight
into the impact of the geometry change. In the case of interfaces with a solid skin, this is much less
straightforward. Fixing the interface points on the capillary boundary induces shear deformation
in the vicinity of the capillary upon inflation or deflation and hence deviations from the shape of
a perfect sphere. The presence of the capillary in the case of a solid-like skin therefore combines
a geometrical impact (as for the Gibbs elasticity) with one of a non-isotropic deformation. Both
contributions are coupled and their relative importance depends on the capillary number α, on the
deformation A/A0 and on the capillary-to-drop size ratio Rn/R0.
Let us assume in the following that shear stresses remain negligible and that we can estimate the
droploon shape by spherical sectors derived from perfect spheres of radius R from which a cap of
radius Rn is removed, as depicted in Fig. 4.10. The interfacial area A is then given by

A(R) = 2πR2

1∓

√
1−

(
Rn
R

)2
 , (4.49)

where the two signs correspond to droploons larger than a hemisphere (”+”) or smaller than
a hemisphere (”-”).The latter geometry introduces a major difference between drops with and
without capillaries: the radius of the drop increases upon further deflation from the hemisphere.
This changes dramatically the pressure-deformation relation, which is why we will exclude this case
in the remaining discussion.
Eq. (4.49) can be used to relate the area stretch λA and the radial stretch λ via

λ = λ
1/2
A

1 +

√
1−

(
Rn
R0

)2

√√√√2

[
1 +

√
1−

(
Rn
R0

)2
]
−
(
Rn
R0

)2
1
λA

= λ
1/2
A f

(
Rn
R0

, λA

)
.

(4.50)

i.e. when comparing with the full sphere expression of Eq. (4.36), the presence of the capillary

introduces a correction factor f
(
Rn
R0
, λA

)
to the relationship between the radial and the area stretch.

For a given area stretch λA - which is experimentally and computationally more easily accessible
than the radial stretch λ - we can then rewrite the pressure-deformation relation as

∆P̂ =
σ̂(λA)

λ
=
σ̂(λA)

λ
1/2
A

f −1 = ∆P̂Sf −1, (4.51)

where ∆P̂S is the pressure of the sphere with the same area stretch and the interfacial stress σ̂
is given in Table 4.1 for the different models. Hence, in the approximation of negligible shear
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contributions, the capillary may be considered to impose a simple geometrical correction on the
pressure-deformation relation which depends only on the capillary size Rn

R0
and the area stretch λA.

In the case of fluid-like interfaces (Gibbs elasticity), Eq. (4.51) is accurate, while in the case of
solid-like interfaces (Neo-Hooke & Hooke), this is an approximation. We shall see in Section 4.5.2
that this remains nevertheless an excellent approximation over a wide range of parameters.

Here we have chosen to express the pressure-deformation relations in terms of area stretch λA
since it simplifies comparison with simulations and experiments. One may also choose to express
them in terms of radial stretch λ. In this case it is the expression of the interfacial stress σ̂ which
needs to be modified, leading to more complex expressions. We provide these relations for the
interested reader in Appendix 8.2.

4.4 Numerical modelling

4.4.1 Surface Evolver simulations

Surface Evolver [9] is a widely used software that determines the equilibrium structure of systems
containing several fluid phases separated by interfaces. It uses the principle that in equilibrium,
the interfacial energy must be minimal under the constraints imposed by boundary conditions.
Examples of this are foams where the volume of each bubble is fixed [206, 105, 72, 13]. Surface
Evolver can also be used to model elastic membranes [16, 184].

In Surface Evolver simulations, interfaces are represented as meshes of triangular facets whose
energy is evaluated. Most previous studies on bubble or drop shapes focus on systems where this
energy is proportional to the interfacial area, the proportionality factor being the surface tension γ.
Additionally to this contribution, Surface Evolver simulations can also take into account an elastic
energy induced by the deformation of each facet, simulating an elastic skin. Several constitutive laws
are implemented in the Evolver Software and can be used: Hooke’s law describing linear elastic
response, as well as the non-linear Saint-Venant or Neo-Hooke’s law [16]. In the work reported
here, we use Neo-Hooke’s law introduced in Section 4.3.1. We implement, for the first time to
our knowledge, an interface with both surface tension and Neo-Hooke interfacial elasticity. As a
first implementation, we thoroughly compare Surface Evolver results to the numerical solution of
the shape equations (Section 4.4.2), and ensure that it provides physically sound results in the
investigated range of parameters.

In contrast to fluid interfaces where the interfacial area uniquely determines the energy, the
energy of elastic skins depends on their deformation with respect to a reference state Ω. The
reference state of an interface element is given by a shape with zero interfacial elastic stress. This
state is encoded in the reference positions of the facet vertices. The implementation of elastic stress
in the framework of the Surface Evolver requires an expression of the facet deformation energy for
arbitrary large strains, given as a function of the vertex positions. A detailed presentation of this
feature and the implementation of elastic energy in the Surface Evolver has not been published so
far to our knowledge. We therefore provide this information in the Appendix 8.1 to clarify for the
interested reader how exactly the software operates. Here we shall concentrate on a very general
description of the approach.

Our Surface Evolver calculations simulate an experiment where a bubble or drop is inflated at
the tip of a cylindrical hollow capillary inserted into a liquid, as illustrated in Fig. 4.10. In the first
step, we need to obtain a physically correct reference shape for a drop without interfacial elasticity.
For this purpose, an initially very coarse mesh is attached to a cylindrical boundary representing
the capillary. The interfacial area is then minimised for the given drop target volume assuming that
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interfacial energy is due only to a uniform and constant surface tension2. Successive refinements
and energy minimisations of the mesh are then performed to simulate the drop shape and the
pressure in the reference bubble accurately. When the relative variation of total interfacial energy
|En+1 − En|/En remains smaller than 10−8 over 100 iteration steps we consider that convergence
has been achieved.

In the second step of the simulation, an elastic skin is added to the drop surface of the obtained
reference state, so that initially there is no elastic stress. Numerically, it consists in saving the
current positions { ~Xi} of the vertices as their reference positions, and setting a non-zero elastic
modulus value for the interfacial energy computation for further minimisation iterations. How ref-
erence and current positions are used for deformation computation is detailed in Appendix 8.1.
The third step consists in inflating or deflating this droploon up to a new volume where mechan-
ical equilibrium is again established via progressive mesh relaxation. Frequent merging of facets
significantly smaller than average and refinement of facets larger than average hastens convergence
whilst avoiding to trap the system in local energy minima. These operations are all performed by
Surface Evolver in-built routines as part of a standard energy minimisation procedure. When the
mesh management and energy minimisation have converged (|En+1 −En|/En < 10−8), the elastic
stress in the skin, the pressure in the bubble and the bubble shapes are recorded.

4.4.2 Numerical integration of the shape equations

We solve for the shape and stress/strain profile of an axi-symmetric capsule by numerically inte-
grating the shape equations [170, 126]. Because we impose axial symmetry, the droploon can be
parametrised as a single arc with arc length s and arc angle Ψ as sketched in Fig. 4.6c. The
transformation from arc length parametrisation to cylindrical coordinates {r, φ, z} gives the first
two shape equations

dr

ds
= cos Ψ and

dz

ds
= sin Ψ . (4.52)

The remaining shape equations, needed to close the set of partial differential equations, take into
account the constitutive material law and reflect the force balance at every point along the arc s.
They are derived by searching for the stationary solutions of the appropriate energy functional.

In the experimentally relevant setting we control either the droploon volume or the mechanical
pressure at the capillary inlet. Thus, the appropriate energy functional is the enthalpy

H =

∫
dA0W2D +

∫
dAγ0 −

∫
dV ∆P , (4.53)

with a contribution from the elastic surface energy W2D, measured with respect to the undeformed
area A0, from the surface tension γ0 and from the volumetric work against a pressure difference
∆P . We find the stationary states of the enthalpy H of Eq. (4.53) via the first variation, δH = 0
(see [126, 170] for details), leading to the shape equations

dΨ

ds
= κs =

1

σs
(∆P − κφσφ) , (4.54)

dσs
ds

=
cos Ψ

r
(σφ − σs) , (4.55)

where (κs, κφ) and (σs, σφ) are the meridional and circumferential curvatures and surface stresses,
respectively. The curvatures are given by κφ = sin Ψ/r and κs = dΨ/ds. Note that the shape

2This could represent a physical system where the elastic skin forms progressively at an initially ”naked” interface
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Figure 4.11: Schematic of a pendant droploon parametrised in arc-length s and arc-angle Ψ. Figure adapted from [174].

equations (4.52), (4.54) and (4.55) still require a constitutive material law for closure. At this
point, no detailed knowledge about the 2D surface energy functional W2D is required, as we define

σs,φ =
1

λφ,s

(
∂W2D

∂λs,φ
+
∂(γ0λsλφ)

∂λs,φ

)
, (4.56)

where λs and λφ are the meridional and circumferential stretch ratios of the droploon. The shape
equations (4.52), (4.54) and (4.55) are written in terms of the arc length s of the deformed shape.
For the numerical solution we reparametrise in terms of the undeformed arc length coordinate s0

of the original undeformed shape by using the relation ds/ds0 = λs, which is necessary in order
to gain access to the meridional stretches λs. The circumferential stress λφ = r/r0 is given by the
ratio of undeformed and deformed radial coordinate.

The surface energy W2D accounts for the material specific model and can incorporate various
effects, such as film thinning. To express the constitutive equation in terms of our parametrisation
we write the right 2D Cauchy-Green tensor, discussed in Section 4.4 and in Appendix 8.1, as

C = diag(λ2
s, λ

2
φ) . (4.57)

For a two-dimensional Neo-Hookean elastic material the surface energy is given by Eq. (8.26) from
the Appendix 8.1.2

W2D =
Gh0

2

(
TrC + C33 +

G

Λ
C2

33

)
. (4.58)

with 3D Lamé parameters G and Λ. Here, C is the 2D Cauchy-Green tensor describing deformations
within the surface, while C33 is the component of the 3D Cauchy-Green tensor describing normal
(thickness) deformations of the elastic skin. Requiring the absence of normal stresses, C33 becomes
a function of G/Λ and detC as derived in Appendix 8.1.2.

From this surface energy, we extract the constitutive law needed to close the shape equations
using Eq. (4.56),

σs,φ = Gh0

(
λs,φ
λφ,s
− C33

λsλφ

)
+ γ0 . (4.59)
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In the following, we focus on the incompressible limit G/Λ� 1, where C33 ≈ 1/detC = 1/λ2
sλ

2
φ.

For a given undeformed shape (described by a function r0(s0)), the shape equations, along with
the constitutive equations, are numerically integrated from the apex (s = 0) to the attachment
point at the capillary (s = L) using a Runge-Kutta scheme, paired with a shooting algorithm to
satisfy the boundary conditions

r(s = 0) = z(s = 0) = Ψ(s = 0) = 0 and r(s = L) = Rn. (4.60)

In the fitting procedure, we prescribe an apex stress σs(s = 0) and iteratively search for a pressure
drop ∆P satisfying the attachment boundary condition at the capillary. Moreover, we restrict
the prescribed apex stresses to the physically relevant ones for our context giving σs(s = 0) > 0
(no compressive stresses), and do not exceed the maximal possible apex stress allowed by the
constitutive equations, σs,φ(s = 0)max = Gh0 + γ0.

4.5 Results

In Section 4.5.1 we compare the theoretical predictions of the different elastic laws in Eqs. (4.38),
(4.45) and (4.46), and the results obtained from Surface Evolver simulations. In Section 4.5.2, we
compare the numerical simulations to the analytical predictions where the needle is treated as a
geometrical perturbation truncating an isotropic droploon (Section 4.3.3). These two results are
compared to the direct numerical predictions (Section 4.4.2), which account both for the geometrical
perturbation and the anisotropy imposed by the needle. Finally, we quantify the perturbation of the
pressure induced by the needle, and show that it can be in large part explained by the geometrical
perturbation. In the last step, we use the direct numerical predictions to quantify the importance of
anisotropic stretches, and provide experimentalists with guidelines to predict the parameter ranges
over which the influence of the capillary (shape change and/or stress anisotropy) can be neglected.

4.5.1 Spherical droploons

We run Neo-Hookean Surface Evolver simulations (Section 4.4.1) for spheres with four different
elastocapillary numbers (α = 0.1, 0.5, 1, 10, as defined in Eq. (4.45)) imposing inflation and
deflation while recording the normalised pressure difference ∆P̂ . The results are shown in Fig.
4.12 as a function of area stretch λA along with the theoretical predictions for the Gibbs, Hooke
and Neo-Hooke models provided in Section 4.3.2.

The simulations show excellent agreement with the Neo-Hookean theory over the full range of
investigated deformations. As expected and discussed in Section 4.3.2, all three models coincide in
the small deformation limit λA ≈ 1. However, for deformations of a few percent, the three models
already show very pronounced differences, indicating the importance of choosing the physically
most realistic model for the interpretation of pressure-deformation relations.

For non-zero α, in the case of the Gibbs and Neo-Hookean elasticity, the initially monotonously
decreasing Young-Laplace-like behaviour is replaced by a pressure-deformation relation with a well-
pronounced pressure maximum ∆P̃ (λA,m) at a characteristic stretch λA,m. Upon deflation (λA <
1), this leads to the apparition of a critical stretch λA,c at which the pressure difference is zero, and
beyond which it becomes negative. This point corresponds to elastic instabilities of compressed
interfaces, which manifest themselves in buckling phenomena [128, 188, 207]. A proper handling of
this range requires to take into account the bending energies of the interfaces. Since this is neither
of interest here, nor implemented in our simulations, we stay away from the buckling range in our
analysis.
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Figure 4.12: Normalised pressure as a function of area stretch λA for spherical droploons whose skin elasticity is described by

Gibbs’, Neo-Hooke’s or Hooke’s law. Four characteristic elastocapillary number values (α = 0.1, 0.5,1,10) are investigated. The

data obtained by Surface Evolver simulations are obtained assuming Neo-Hookean elasticity.

The variation of λA,c, λA,m and of the pressure difference ∆P̃ at λA,m with elastocapillary
number α for the different models are shown in Fig. 4.13. The corresponding analytical expressions
are given in Table 4.1. They put in evidence clear differences between Gibbs, Hookean and Neo-
Hookean models. In comparison to Gibbs elasticity, the Neo-Hookean critical and maximal stretches
vary only mildly with α. The Surface Evolver results again agree very well with theory. The critical
stretch for Hooke’s model appears when the elastocapillary number crosses the Gibbs criterion
α = 0.5. The Gibbs critical stretch tends exponentially towards 0, as λA,c = exp(−1/α). In the
limit of large α, the critical stretches all converge towards λA,c = 1, that is, a shell so rigid that
it buckles as soon as compressed. Hooke elasticity does not predict a local pressure maximum at
any elastocapillary number. But it predicts an interesting deformation-independent pressure for
α = 0.5, i.e. at the ”Gibbs criterion”. Gibbs and Neo-Hooke, on the other hand, have a maximal
pressure stretch increasing with α. In particular, at the Gibbs criterion α = 0.5, the maximal
pressure is reached at null deformation (λ = 1). Lower elastocapillary numbers move λA,m to
the compression regime (λA,m < 1), while α > 0.5 shift λA,m to the dilation regime (λA,m > 1).
The most remarkable features of the elastocapillary transition (onset of significant critical stretch,
variation of the maximal pressure stretch) occur for elastocapillary numbers between 0.1 and 10.
For this reason, we expose in this article results for α = 0.1, 1 and 10, so as to span two decades of
elastocapillary numbers. Because of its history as the Gibbs criterion and its pivot point between
capillarity and elasticity, α = 0.5 will also be represented.
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Figure 4.13: Variation of characteristic features (critical area stretch λA,c, stretch λA,m at maximum pressure and maximum

pressure ∆P̂ (λA,m)) with the elastocapillary number α predicted for droploons with skins presenting Gibbs, Neo-Hookean and

Hookean elasticity. Surface Evolver simulations are performed for the Neo-Hooke case.

4.5.2 Droploons on capillaries

In a second step, we run Surface Evolver simulations of pendant droploons attached to a capillary
with circular cross-section of radius Rn (Fig. 4.10c-d). The droploons are inflated and deflated
while their interfacial area and inner pressure are recorded (Section 4.4.1). Three ratios between
the capillary radius Rn and the radius R0 of the droploon in the reference configuration are used:
Rn/R0 = 0.1, 0.5 and 0.9. Representative examples of obtained droploon shapes are shown in Fig.
4.14 for three characteristic area stretches (λA = 0.8, 1, 2) for the case of α = 0.5.

In Fig. 4.15 we show the obtained pressure-deformation relations for the elastocapillary numbers
α = 0.1, 0.5, 1, 10. Along with the Surface Evolver results (crosses) we plot results obtained by direct
numerical predictions (empty circles) using the Neo-Hookean shape equations for the same set of
parameters (Section 4.4.2). The excellent agreement between both for all elastocapillary numbers,
capillary radii and deformations demonstrates the reliability of Surface Evolver simulations for such
systems.

The solid lines shown in Fig. 4.15 correspond to the analytical approximation given in Eq.
(4.51) which models droplets as spherical sectors covered with a Neo-Hookean skin. The agreement
is excellent in the whole deformation range for all capillary sizes and elastocapillary numbers. This
means that in this parameter range the deviation from the predictions for spherical droploons
without any capillary (gray line in Fig. 4.15) are essentially a result of the associated change of
the geometry induced by the capillary, rather than due to the shear deformation in the vicinity of
the capillary. Deviations from the simple model set in only for large capillary sizes (Rn/R0 = 0.9)
and large elastocapillary numbers (α = 10).

To investigate why the spherical sector approximations fit the results so well, Fig. 4.16 plots
different measures of the anisotropy of the stretch distributions on the droploon surface obtained

92



Figure 4.14: Examples of Neo-Hookean droploons at different area stretches and capillary ratios Rn/R0 obtained for α = 0.5

using Surface Evolver.

from the Neo-Hookean shape equations for the same parameter ranges as in Fig. 4.15. In the case
of fully isotropic deformation, corresponding to a spherical sector shape, the deviation of the mean

stretch ratio along the contour
〈
λs
λφ

〉
−1 (Fig. 4.16a,b) and the standard deviation of the meridional

and circumferential stretches stds(λs,φ) (Fig. 4.16c,d) are both zero. Since we neglect gravitational
effects, it is clear that the unstressed shape of the capsule at λA = 1 must be a spherical sector.
The stretched shape will be anisotropically stressed, in general, because of the boundary condition
imposed by the attachment at the capillary. We can find, however, another particular stretch,
where the stressed shape is a spherical sector. This is reached at the critical stretch λA,c (see also

Section 4.5.1) at which ∆P̂ = 0. The force balance for every point on the capsule requires that
the pressure force cancels the tension force. For ∆P̂ = 0, we therefore have σs = σφ = 0 all over
the surface, i.e. the surface is stress-free everywhere at this critical stretch. Since σs = σφ = 0
implies isotropic stretching, the shape at this point is again correctly described by the spherical
sector equation (4.51). If the stretch is further decreased to λA < λA,c both σs < 0 and σφ < 0
will become compressive and buckling or wrinkling instabilities of the droploon interface will occur
[128, 126].

For stretch values other than λA = 1 or λA,c, the droploon shape is non-spherical, because of
the anisotropy (λs 6= λφ) introduced by the boundary condition at the capillary. This can clearly

be seen in Figs. 4.16a,b. For inflated shapes λA > 1, we find
〈
λs
λφ

〉
−1 > 0 indicating that stretching

is biased towards meridional deformations resulting in slightly prolate shapes, whereas for deflated
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Figure 4.15: Normalised pressure as a function of area stretch λA of Neo-Hookean droploons on capillaries for three ratios of

capillary and initial droploon radius (Rn/R0 = 0.1, 0.5, 0.9), and four characteristic elastocapillary numbers (α = 0.1, 0.5, 1, 10).

Surface Evolver simulations are compared with direct numerical predictions (Section 4.4) and with the analytical expression of

Eq. (4.46) using a simple geometrical correction to the perfect sphere theory.
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Figure 4.16: Characterization of the stretch anisotropy and the stretch inhomogeneity. (a,b) The mean ratio of meridional

and circumferential stretches
〈
λs
λφ

〉
− 1 along the contour characterizes stretch anisotropy and is shown for (a) α ≤ 0.5 and

(b) α > 0.5. The standard deviations of (c) meridional stretches λs and (d) circumferential stretches λφ along the contour

characterize the inhomogeneity of stretches. We show the critical stretches λA,c as red diamonds in (a-d).
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shapes λA < 1,
〈
λs
λφ

〉
− 1 < 0 and circumferential deformations are preferred, resulting in slightly

oblate shapes. The mean anisotropy increases upon inflation before decreasing again at much higher
stretches (see the insets in Fig. 4.16a,b for a wider deformation range), when the influence of the
capillary becomes again negligible.

Furthermore, the standard deviation of the stretches along the contour stds(λs) and stds(λφ)
shown in Figs. 4.16c,d characterizes the inhomogeneity of the stretches along a contour. A standard
deviation of stds(λs) = stds(λs) = 0 corresponds to a spherical sector. The meridional and circum-
ferential stretches of an inflated droploon are isotropic at the apex with λs(s = 0) = λφ(s = 0).
At the capillary, the attachment condition mandates λcap

φ = 1 while λcap
s increases with λA, which

introduces anisotropy and inhomogeneity into the problem with meridional stresses accumulating
at the capillary. The spherical approximation will hold well for shapes where the stretches are
approximately homogeneous over a large arc length, corresponding to a small standard deviation of

the stretches, and isotropic, corresponding to a mean stretch along the contour
〈
λs
λφ

〉
close to unity.

This is fulfilled at the two spherical configurations λA = 1 and λA,c. The spherical configuration
with λA,c appears to be highly sensitive, and small changes in λA lead to large deviations in the
anisotropy (and inhomogeneity). It is interesting to note that at small deformations around λA = 1,
the anisotropy evolution depends only on the ratio Rn/R0 and not on α.

We argue that the evolution of the anisotropy and inhomogeneity can be grasped by consider-
ing that the capillary acts similarly to a rigid inclusion in a stretched elastic membrane as both
enforce the absence of circumferential stretching (λφ = 1) at their boundary. A rigid inclusion in a
stretched elastic membrane is known to concentrate the meridional stresses creating anisotropy and
inhomogeneity, similar to the stress concentration around a crack tip. For flat membranes, a rigid
inclusion is a classic problem that was studied for Neo-Hookean membranes by Wong and Shield
[208]. For the droploon we have a curved geometry, which gives rise to an even more pronounced
increase of anisotropy around the capillary.

We see clear evidence of the increased anisotropy around the capillary in numerical solutions
to the full anisotropic shape equations from Section 4.4.2 as shown in Fig. 4.17. In Fig. 4.17a,b,c,
we show the stretch ratios λs and λφ and the redistribution of arc length along the contour of
inflated droploons. These results show the rise of meridional stretch close to the capillary. Fig.
4.17d reveals that the resulting stretch anisotropy λs/λφ − 1 is localised at the capillary and that
it decays exponentially over a characteristic arc length s∗0 away from the capillary. Here, s0 is the
arc length of the undeformed reference shape (the spherical droplet), which is related to the arc
length s of the deformed shape by the meridional stretch ratio, ds/ds0 = λs (see section 4.4.2).
We use the logarithmic derivative of λs/λφ − 1 to numerically determine the size s∗0 of the zone of
increased anisotropy around the capillary.

We propose that the relative meridional extent of the anisotropy zone along the deformed
droploon contour provides a non-dimensonal number Q, which is suitable to characterize the im-
portance of elastic anisotropy effects in the regime α > 1, where elastic energies dominate. We
thus define Q ≡ s∗/L, where s∗ is the meridional length of the anisotropy region measured in
terms of the deformed arc length, while L is the total arc length of the deformed droploon contour.
For α < 1, elastic energies are small compared to droplet surface tension such that also elastic
anisotropy becomes less important.

In order to evaluate the anisotropy parameter Q, we use the general relation ds/ds0 = λs

between deformed and undeformed arc length at the capillary and L ∼ πR0λ
1/2
A for the total arc

length L in the limit Rn � R0 to obtain

Q ≡ s∗

L
∼ s∗0λ

cap
s

L
∼ s∗0λ

cap
s

πR0
λ
−1/2
A (4.61)
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where λcap
s is the meridional stretch at the capillary. To make further progress, we derive relations

for the size s∗0 of the anisotropy zone and the stretch ratio λcap
s at the capillary from numerical

results shown in Fig. 4.18.
Because the maximal stretch anisotropy is found at the capillary and λφ = 1 at the capillary, the

meridional stretch at the capillary actually equals the maximal stretch anisotropy, max
(
λs
λφ

)
= λcap

s .

While in the case of flat membranes the maximal aniosotropy λcap
s ∝ λs(s = ∞) is proportional

to the radial stretch at infinity [208], our numerical results for curved droploons indicate that λcap
s

first increases upon inflation λA > 1 but saturates for highly inflated droploons with area stretches
λA exceeding a fairly well-defined value λ†A, as shown in Fig. 4.18c for the case of α = 10. Further
numerical analysis of the saturation value as performed in Fig. 4.18b allows us to quantify the
saturation value as

max

(
λs
λφ

)
≈ λcap

s ≡ const

(
Rn
R0

)−1/3

(4.62)

with const ≈ 1.47 in the regime α > 1. This saturation value is solely determined by the geometrical
parameter Rn/R0 of the undeformed droploon, which demonstrates that saturation is induced by

droplet curvature. We also find λ†A ∼ (λcap
s )3/2 for the area stretch, where saturation of the maximal

anisotropy sets in. The maximal anisotropy given in Eq. (4.62) diverges in the limit Rn/R0 ≈ 0,
which seems counter-intuitive at first, because the spherical approximation works best for exactly
this limit. This issue will be resolved below.

Let us quantify the size s∗0 of the anisotropy zone around the capillary. From Fig. 4.18a, we
find a conservative bound

s∗0 ≤
Rn
2
. (4.63)

This relation reveals that the size of the stretch anisotropy zone is set by the geometry parameter
Rn/R0 of the reference state rather than the elastocapillary number α.

Using Eq. eq4.63 for s∗0 and the saturation value given in Eq. (4.62) for λcap
s in (4.61), we obtain

Q =
const

2π

(
Rn
R0

)2/3 1

λ
1/2
A

(4.64)

for the anisotropy parameter Q for highly inflated droploons λA > λ†A. This parameter remains
small for Rn � R0 indicating that we can neglect anisotropy effects in this limit.

At smaller deformations 1 < λA < λ†A, where saturation of the capillary anisotropy has not yet
set in, we numerically find that the maximal stretch anisotropy scales with log(λA) (see Fig. 4.18c),
giving

Q =
Rn
R0

λcap
s − 1

3π log(λcap
s )

log(λA)

λ
1/2
A

, (4.65)

where we again use the saturation value λcap
s from Eq. (4.62).

We obtain a full contour plot of the anisotropy parameter Q in Fig. 4.18d by joining the results in
the two regimes ( λA > λ†A and λA < λ†A) with a smooth interpolating function. This plot confirms
that Q is small (Q � 1) for shapes where the spherical approximation works best. In particular,
we find that we can neglect anisotropy effects (Q � 1) in the limit Rn/R0 ≈ 0, resolving the
counter-intuitive behaviour of the maximal anisotropy. We emphasize the fact that Eq. (4.65) only
depends on Rn/R0 and λA and not on α, as long as α > 1. This indicates that stretch anisotropy is
mainly governed by geometry rather than by elastic energy contributions. As already pointed out
above, elastic contributions and, thus, also elastic anisotropy effects become increasingly irrelevant
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Figure 4.17: Stretch anisotropy of droploon shapes with α = 10 for three values of Rn/R0 for each of three area stretches

λA � λ†A, λA > λ†A, and λA < λ†A (see also Fig. 4.18 for a definition of the characteristic area stretch λ†A). (a,b) Stretch ratios

λs and λφ as a function of the undeformed arc length s0/L0 along the contour. While λφ is approaching the undeformed value

of 1 at the capillary (s0/L0 = 1), λs rises at the capillary. (c) shows that the deformed arc length s considerably deviates from

the undeformed arc length s0 along the contour. (d) The resulting stretch anisotropy λs/λφ−1 is localized at the capillary. The

size of the anisotropy zone around the capillary can be characterized by an exponential decay arc length s∗0, which is calculated

from the logarithmic derivative of λs/λφ − 1 at the capillary for the solid lines and shown as colored dots in all plots (a-d). We

also show the maximal stretch at the capillary from Eq. (4.62) as red diamonds in (a) and (d).
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Figure 4.18: Analysis of the anisotropy zone and the anisotropy parameter Q from numerical solutions of the anisotropic shape

equations. (a) The size of the anisotropy zone s∗0 is roughly constant giving rise to the bound (4.63). (b) The saturation

value is mainly determined by the parameter (Rn/R0), see Eq. (4.62). (c) As a function of the area stretch λA, the maximum

anisotropy saturates at large deformations beyond a value λ†A (results for α = 10 shown as colored diamonds). (d) Contour plot

of the non-dimensional anisotropy parameter Q according to Eq. (4.61). Stretch anisotropy effects are negligible for Q� 1.

for α < 1, where surface tension dominates and the shape resembles a spherical liquid droplet. The
regions λA > λ†A and λA < λ†A differ markedly in their functional dependence on λA. This results

in a maximum of the parameter Q for area stretches λA ∼ λ†A ∝ (Rn/R0)−1/2 at a fixed value of
Rn/R0. This, in turn, indicates that stretch anisotropy is most relevant for these intermediate area
stretches.

The possibility of approximating the droploon shape by a spherical sector over a wide range
of parameters is an important piece of information for experimentalists since it means that the
analytical expression of Eq. (4.51) can be used to quantify reliably the elastocapillary properties of
the droploon interfaces over a reasonably wide range of elastocapillary numbers. We also remind
the reader that from the expressions it is evident that within our geometrical approximations, the
critical area stretch at which the pressure changes sign is independent of the size of the capillary. The
combined numerical analysis provides another important piece of information: for reasonably small
capillary sizes (Rn/R0 < 0.5), the pressure-deformation relation is actually well described by the
simple sphere equations without capillary (Section 4.3.2), making the quantitative interpretation of
experimental data fairly straightforward. In order to quantify the deviation from the simple sphere
theory, we plot in Fig. 4.19 the heatmap of the normalised deviation of the numerically predicted
pressure ∆P̂ with capillary (using Surface Evolver) from that predicted by the sphere theory ∆P̂S
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for a given area stretch, i.e. we plot∣∣∣∣∣∆P̂S −∆P̂

∆P̂

∣∣∣∣∣ =

∣∣∣∣∣1− ∆P̂S

∆P̂

∣∣∣∣∣ . (4.66)

Making the spherical sector hypothesis of Eq. (4.51), this expression becomes simply∣∣∣∣∣1− ∆P̂S

∆P̂

∣∣∣∣∣ =
∣∣1− f

∣∣ , (4.67)

which is plotted as lines of equal relative error. These isolines are identical in all four graphs of
Fig. 4.19 since they are independent of α (see Eq.(4.50)).

Deviations of the heatmaps in Fig. 4.19 from the geometrical prediction have two origins:
imperfect relaxation in the simulations and the influence of shear contributions of the solid skin
which are neglected in the geometrical approximations. The first is at the origin of most of the
deviations for α < 10, while the latter starts to be clearly visible for α = 10. Nevertheless, this
latter difference remains small (< 0.5%), confirming again that shear contributions play a minor role
in most of the investigated parameter range in accordance with the non-dimensional Q-parameter
plotted in Fig. 4.18d. Our geometrically-corrected pressure-deformation relation of Eq. (4.51),
although not accounting for stretch anisotropy, is therefore a very good approximation for pendant
drops with Neo-Hookean elastic interfaces within the parameter range investigated here.

Let us now turn to the analysis of the heatmaps themselves. They indicate that in the small
deformation limit (λA ≈ 1), the error made in using the sphere approximation remains smaller than
1% at any radii ratio and elastocapillary number. For larger deformations in the inflation regime
(λA > 1), the approximation error is still smaller than 1% for small capillary radii (Rn/R0 < 0.2).
Similar behaviour is observed in the deflation regime. However, the prediction systematically fails
when approaching the critical stretch λA,c. This is because wrinkling instabilities in the skin may
become relevant in this regime. This phenomenon can be captured neither within the sphere
approximation, nor by our Surface Evolver simulations where the skin bending energy - crucial for
wrinkling - is not taken into account. Skin bending can be implemented in Surface Evolver, but is
beyond the scope of this paper. In the heatmaps we have therefore colored these zones in gray.

At small α and large Rn/R0 an additional zone of large approximation error (> 10%) appears
for pressures ∆P̂ ≈ 1. This deviation arises from the increasing difference between sphere and
truncated sphere geometry: As the truncated sphere shrinks, it reaches the shape of a half-sphere
of radius Rn. Any further decrease in drop volume causes an actual increase in curvature radius
which is not captured by the sphere theory, hence the failure of the analytical prediction beyond
this point in the parameters space.

Despite those considerations for large capillary radii, the heatmaps of Fig. 4.19 provide very
good news for the experimentalist aiming to quantify the elastic properties of droploon surfaces:
when working with reasonable capillary sizes (Rn/R0 < 0.5), reasonably small deformations (< 0.1)
and reasonable elastocapillary numbers (α < 10), experimental data can be confidently fitted by
the simple sphere theory (without capillary) since experimental errors are likely to outweigh the
small error introduced by the sphere assumption.
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Figure 4.19: Relative error of pressure difference between Surface Evovler and Neo-Hookean perfect sphere, at the same area

stretch λA for four elastocapillary numbers (α = 0.1,0.5,1,10). The grey boxes delimit the stretch values below critical stretch

value λA,c. Full lines are lines of equal relative error between the Neo-Hookean perfect sphere and the Neo-Hookean truncated

sphere, given by Eq. (4.67).
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4.6 Conclusion and outlook

Treating the seemingly simple problem of a drop covered by an elastic skin attached to a circular
capillary in the absence of gravity, we have been able to show that Surface Evolver simulations are
a powerful tool to study systems in which surface tension and nonlinear (Neo-Hookean) elasticity
co-exist within the same interface. We have chosen on purpose such a simple geometry, in order to
avail of independent theoretical and numerical predictions relying on cylindrical symmetry (Section
4.3.3 and Section 4.4.2) which can be compared to the Surface Evolver solutions. In all cases, they
showed excellent agreement. Surface Evolver will therefore be useful to tackle more complex geome-
tries, such as droploons on complex capillary shapes, interacting droploons or complete emulsions
composed of droploons, where theory or alternative numerical predictions requiring symmetry will
not be available. In contrast to other finite element tools, the energy minimisation approach of
Surface Evolver, widely used in the communities studying foams and emulsions, provides access to
a wide range of problems in which interfaces of complex geometry play a key role. In the Appendix
we provide a detailed description of the implementation of nonlinear elasticity in Surface Evolver
simulations to facilitate future developments, and we also provide our Surface Evolver code for
download in the supplementary materials of the associated publication [209]. Taking into account
bending stiffness in the simulations would be an interesting perspective for future work.

For simplicity, we have been talking about drops/droploons all along. However, all presented
concepts are equally valid for bubbles/bubbloons and hence for foams. Our analysis shows how
complex the interplay of capillary and elastic forces at an interface is, even for the relatively simple
geometry of an initially spherical droploon inflated on a circular capillary. Due to the intricate
coupling of changes in interfacial curvature and area, accurate theoretical models and simulations
are required to extract interfacial properties quantitatively from measured pressure-deformation
relations.

The problem of the pressure deformation of a droploon covered by an elastic skin and attached
to a capillary in the absence of gravity is a seemingly simple problem. From the point of view of
elasticity theory it is challenging, however, because the elastic skin represents a closed curved shell
and the capillary a rigid circular inclusion within this shell. Holes or rigid inclusions in elastic mem-
branes are known to produce stress anisotropies and stress concentration upon stretching. Here,
the droploon skin is stretched by inflation, contains a rigid inclusion and features the additional
complication of a background curvature because the initial relaxed shape is spherical (neglecting
gravity). We obtained theoretical predictions regarding the influence of the stress anisotropy in-
duced by the capillary onto the pressure-deformation relation from Surface Evolver simulations and
a careful numerical analysis of stresses and strains in the shape equation approach. A full analytical
solution remains an open problem for future research.

In the parameter range investigated by our simulations, we have been able to show that for
elastocapillary numbers of α < 10 the influence of the capillary on the pressure-deformation rela-
tion is essentially of geometrical nature, i.e. the capillary modifies in the first place the relation-
ship between the area stretch (related to interfacial stress) and the interface curvature. In this
case, the droploon shapes can be represented approximately by spherical sectors and the pressure-
deformation relation is given by Eq. (4.51). For interfaces with Gibbs elasticity, this expression
is exact, while for (Neo-)Hookean interfaces it remains an (excellent) approximation. Deviations
from this simple geometrical approximation are starting to be significant for the largest capillary
sizes (Rn/R0 = 0.9) and elastocapillary number (α = 10) simulated by us, suggesting that the
anisotropic contribution to the interfacial stress and deformation near the capillary is starting to
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play a role.

To show that this anisotropy is indeed strongly localised at the capillary, we calculate, as a
function of position on the interface, the deviation of the ratio of meridional and circumferential
stretches from one. This quantity decays nearly exponentially with the distance from the capillary,
over a characteristic length s∗. The extent of this anisotropically strained zone can be compared
to the total droploon size by defining the non-dimensional ratio Q = s∗/L, where L is the total arc
length of the droploon. For droploon inflation and for α > 1, we find

Q =
Rn
R0

λcap
s − 1

3π log(λcap
s )

log(λA)

λ
1/2
A

, (4.68)

with

λcap
s ≡ const

(
Rn
R0

)−1/3

, (4.69)

being the ”saturation” meridional stretch reached at the capillary for large deformations and const
= 1.47. For large deformations, we therefore obtain

Q =
const

2π

(
Rn
R0

)2/3 1

λ
1/2
A

. (4.70)

These relations and their analysis provided in Section 4.5.2 and Fig. 4.18 put in evidence that
the extent of the anisotropic zone (and hence its influence on the pressure-deformation relation), is
mainly controlled by the reference geometry of the droploon (Rn/R0) and by the stretch λA. We
therefore show for the first time that the extent of this zone is essentially governed by geometrical
features while the influence of the elastocapillary number α remains negligible. These are very
good news for experimentalists who can rely on the spherical droploon equations given in Table 4.1
combined with the geometrical correction of Eq. (4.50) to fit their data for a wide range of α as
long as Rn/R0 and λA remain reasonable. The heatmaps and relations provided in Section 4.5.2
will help to estimate the appropriate parameter ranges.

More importantly for the analysis of experimental data, we have also shown that when working
with sufficiently small capillaries (Rn/R0 < 0.5) and at small deformations (∼ 5% area), the simple
analytical pressure-deformation relations of spheres without capillaries (Table 4.1) provide excellent
approximations to the pressure-deformation relations of droploons on capillaries. The much simpler
analytical relations of Table 4.1 can therefore be used to extract quantitative interfacial properties
from fits to experimental data. Experimentalists are referred to Fig. 4.19 to estimate the error
they make using this approximation.

In Section 4.3.2 we showed that for small deformations, the Gibbs, Neo-Hookean and Hookean
models for liquid- and solid-like interfaces all predict the same kind of pressure-deformation relation.
In view of the analysis presented above, this may explain why a lot of experimental data for solid-
like interfaces seems to have been successfully fitted in the past by the Gibbs model. Indeed,
our analysis shows that at small deformations, pendant drop experiments with nearly spherical
droploons do not allow to discriminate between liquid-like and solid-like interfaces. Alternative
experiments, such as interfacial shear rheology measurements or the CMD [172] are required to
obtain this information.

We have chosen here a minimal model of a droploon interface where the elastic extra stress of
a Neo-Hookean solid material is simply added to a constant interfacial tension. Real interfaces are
not as simple [117, 192, 210, 132, 211, 28, 26, 199, 212]. Surface tension and elasticity tend to be
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coupled in a complex manner [199], and the description of the response of the elastic membrane
is likely to require taking into account an anisotropic, viscous and plastic response as well as non-
linearities which are more complex than those of the Neo-Hookean model. Nevertheless, our simple
approach already gives important insight into some fundamental properties of pressure-deformation
relations of pendant droploons.

Considering that pendant drop experiments, even in the simplest configuration without grav-
ity, overlay a geometric non-linearity with non-linearities in the material response of a solid-like
interfacial material, it remains questionable if this is the appropriate experimental choice to dis-
criminate between appropriate models to describe solid-like interfaces. Differences between models
are likely to show up only at larger deformations which makes the interpretation extremely diffi-
cult. However, due to their simplicity, pendant drop experiments remain an excellent choice for a
phenomenological characterisation of the dilational visco-elastic properties at small deformation.

Last but not least, all our investigations have been performed without gravity, while pendant
drops (and bubbles) are prone to gravity-driven deformations rendering them non-spherical. We
recall that for a nearly spherical drop the Bond number Bo = ∆ρgR2

0/γ0 indicates the ratio of
the hydrostatic pressure difference between the top and the bottom of the bubble ∆ρg2R0 and the
Laplace pressure which is due to surface tension 2γ0/R0. The impact of gravity on bubble shape is
negligible if Bo� 1. If density-matched systems cannot be used, very small bubbles may therefore
be a solution [213] to reduce the impact of gravity. This also has the advantage to increase the
interface curvature, and hence the pressure and therefore experimental sensitivity.

If gravity-driven deformation cannot be completely avoided, the following two aspects need to
be taken into account. The first influence of gravity is on the shape of the droploon in the reference
state. Gravity may create a concave neck close to the capillary, which creates additional stress
localisation. Using numerical investigations of the droplet shape bifurcation diagram (yellow line
of bifurcations in Figs. 4 and 5 of Ref. [174]), we could show in previous work that only for

Rn
R0

< 2.6Bo1.64, (4.71)

the drop remains fully convex and neck formation can be neglected.
The second aspect concerns deformation with elastic skins, where the increasing droploon size

upon inflation or the decreasing effective surface stresses upon deflation may make the system
increasingly sensitive to gravity. In this case one may want to introduce an elastic Bond number
which contains the deformation-dependent elastic contribution to the surface stress based on the
Hookean expression (4.47)

Boel =
∆ρg

γ0(1 + 2α(λ− 1))
λ2R2

0. (4.72)

For sufficiently small elastic Bond numbers, gravity can then be neglected. Since gravity can be
implemented easily in Surface Evolver, future investigations may explore the influence of gravity
more quantitatively.
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Chapter 5

Rheological properties of the
PEG-silicone gel

5.1 Introduction

In ordinary, static foams/emulsions, the interactions between bubbles/drops happen at their inter-
facial contacts. As typical bubble/drop scale is micrometric, thermal fluctuations are negligible in
their motion. The large-scale organisation of foams/emulsions is thus dictated by these interac-
tions. The relations between inter-grain interactions and collective properties of grain assemblies
is an important field of investigation in granular science, as explained in Chapter 3 [44, 37, 41, 43].
The great variety of possible interactions, with sometimes competing effects, makes granular ma-
terials very sensitive to the detail of properties of their grains. For instance, adhesion between
grains favours the contacts between the grains rather than between the grains and their medium,
triggering flocculation well below the critical packing fraction of non-adhesive grains [214, 215].
Liquid bridges between grains creates attractive capillary forces, making the whole system more
resistant to yielding [216]. Frictional surfaces, locking rotational and translational degrees of free-
dom of tangential forces below the Coulomb criterion [32], decrease the number of neighbours Zc
at the jamming transition and the packing fraction φ∗l of the jamming transition [43]. On the other
hand of the spectrum, ordinary foams and emulsions are driven only by capillary interactions,
allowing for good physical insight by resorting to simple scaling arguments [45, 78, 77] : shear
and bulk moduli in the static regime scale with excess packing fraction and interfacial tension
G0 ∼ γ0/R32 · (φl(φl − φ∗l )) [79, 80]. The osmotic pressure similarly scales the interfacial tension,
with Πl ∼ γ0/R32 ·

(
(φl − φ∗l )2/

√
φl
)

[45, 46]. As we show in Chapter 3, the deformation caused by
the contact forces is in competition with the interfacial tension of the bubble, which tends to keep
it spherical. A simple and relevant normalisation of the contact forces thus comes with the force
associated with interfacial tension γ0/R32, as shown in the equations of the shear modulus and the
osmotic pressure above.

Droploons, being grains with deformable, elastocapillary interfaces, are likely to have packing
properties differing both from emulsions and granular systems. In fact, previous work by Giustiniani
et al. [10] shows that drops with elastocapillary interfaces adopt geometrical configurations different
from purely capillary emulsions and granular systems as shown in Fig. 5.1e. This difference also
manifests at the bubble scale, with drops deforming differently than in ordinary emulsions, as
shown in Fig. 5.1f. The PEG-silicone model system studied in this chapter is based on the
PEG-in-silicone emulsion system described in [10]. It consists of PEG drops containing Karstedt’s
catalyst dispersed in vinyl-terminated PDMS, in a continuous phase of base agent Sylgard-184®,

105



Figure 5.1: properties of PEG-in-silicone emulsions for different drop sizes and interfacial elasticity/adhesion controlled by the

addition of dodecane in the silicone phase. a-c) PEG 400 in MHDS 2000-25 emulsion produced with microfluidic T-junction,

confined in a tube with diameter of 2 times (a), 3 times (b) and 4.6 times (c) the drop diameter. The increasing tube diameter

modified the structure of the emulsion, with an increasingly disordered geometry. d) PEG 400 emulsion in Sylgard-184®,

with mean drop radius of 850 µm. Authors link the more spherical shape to the presence of a gel in the continuous phase,

formed at the interface. Four samples from Giustiniani et al. [10]. e) Evolution of PEG fraction with emulsion height for the

PEG/Sylgard system [10], compared to a semi-empirical model for simple emulsions. [46, 71]. f) Distribution of the anisotropy

of the drops, measured with the ratio of maximal and minimal eigenvalues (εmax and εmin, respectively) of Minkowski’s tensor

W2,0
0 =

∫
K ~r

⊗
~rdV defined over a body K. Inset : XY slices of two extremal values of anisotropy. Figure from [217]. Authors

suggest that the addition of dodecane increases the elastic modulus of the membrane, and that the changes in liquid profile and

shape deformation is related to the change in rigidity.
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a commercially available PDMS elastomer. The commercial curing agent is replaced with the
unreactive octamethylcyclotetrasiloxane D4 to get the same physical properties of the mixture.
Dodecane is added to the silicone mixture to tune the viscous properties of the silicone phase,
which also modifies the interactions between the drops. The platinum catalyst, diffuses from the
PEG to the silicone phase. It triggers a first reaction between the C-OH groups of the PEG
molecules and the Si-OH groups of the Sylgard, forming block-copolymers PDMS-b-PEG at the
interface while releasing water. The Si-OH groups also react with each others, crosslinking the
PDMS polymers and forming a solid PDMS skin from the interface. This reaction goes on until
the whole silicone phase is crosslinked, effectively forming a gelified silicone matrix.

The volume fraction of the drops, as well as its evolution with emulsion height, depends on the
interfacial properties. The individual shapes of the droploons are also affected, with shapes found
to be more anisotropic when probed with the Minkowski’s tensor W 2,0

0 [217], as shown in Fig. 5.1f.
This tensor is defined over a body K by

W 2,0
0 =

∫
K
~r · ~rdV, (5.1)

which can be interpreted as the tensor of moments distribution. The ratio of the minimal and
maximal eigenvalues β2,0

0 = | εminεmax
| serves as a measure of the anisotropy of the drops, with 1

corresponding to perfectly spherical shapes and β2,0
0 becoming progressively smaller than 1 with

increasing anisotropy.
The description of the transition from hard grains to packings of soft grains with elastocapillary

interfaces requires a constitutive model. As we show in Chapter 3, the deformation of individual
drops/bubbles is well described using only the interfacial tension and the Young-Laplace equation.
In Chapter 4, we describe the elastic stresses as an additive term to the interfacial tension, leading
to an effective interfacial tension γ. We present a range of experimental conditions where this
approximation remains valid. This effective interfacial tension γ is a first, simple step towards the
description of elastocapillary interactions where γ can be transferred directly in the scaling laws
of foam and emulsion mechanics. In this chapter, we present our work to find and characterise an
experimental model system to study the transition from a purely capillary interface to a purely
elastic one.

The shape of droploons undergoing deformation is driven by capillary and elastic stresses, a
feature whose consequences are explored in Chapter 4. The competition between these two forces
is captured by the elastocapillary number α, which, for a liquid-liquid interface covered by a solid
neo-Hookean layer (as is the case for polymeric skins), reads as α = 3Gh0/γ0 (Eq. (4.45)), where
G is the bulk shear modulus of the solid layer, h0 its thickness in the reference configuration, and
γ0 the interfacial tension at the liquid-liquid interface.

In view of the elastocapillary number, the transition from a purely capillary interface (α → 0)
to a purely elastic one (α → +∞), for a fixed interfacial tension γ0, is controlled both by tuning
the thickness of the membrane h0 and its shear modulus G. A good experimental model system
would thus allow a good control over these two parameters independently. Moreover, a system
where the skin thickness grows continuously rather than by discrete steps, e.g. with layer-by-layer
deposition, offers more possibilities in the fine tuning of the elastocapillary number. The formation
of an interfacial gel [218, 219] satisfies these requirements, but requires a method to stop the skin
formation at will, e.g. with chemical inhibition.

Among the possible model systems satisfying these conditions, emulsions covered with skins
composed of polydimethylsiloxane (PDMS) attracted our attention. PDMS is known for its ver-
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satility, illustrated in Fig. 5.2b [220, 221, 222, 223, 224] and its interesting mechanical properties
when assembled in block copolymers, as shown in Fig. 5.2b [225, 226, 227, 228, 229, 230, 231,
232, 233, 224]. The system studied by Giustiniani in her thesis work [234] is a good illustration of
how silicone-based emulsions can be used to probe the effects of interfacial elasticity on drop-drop
interactions. The interfacial tension and rugosity of silicone drops change when PEG molecules
are grafted at the interface, thus increasing the friction [235]. Similarly, the interactions between
two drops change with the formation of the silicone skin. The PEG drops studied in Giustiniani
et al. [217] are covered with an elastic skin of silicone gel, as shown in Fig. 5.1. Authors showed
that additional forces, normal and tangential to the surface, appear as the solid skin grows, and
are related to interfacial adhesion and friction.These interactions can be probed at the drop level
using a double drop setup, where two drops are brought in contact and moved with respect to each
other. An illustration of this setup is shown in Fig. 5.3a-b : the difference between the deformed
shape of simple capillary drops (solid brown lines, obtained from Surface Evolver simulations) and
drops with a solid skin after sliding are a signature of these new interactions, although their con-
tribution to the final shape are hard to disentangle. On the emulsion level, these new interactions
also modify the geometry and structure of the packing, e.g. by causing a finite angle of repose at
the top of the emulsion, as shown in Fig. 5.3c. The angle of repose is a well-known phenomenon
in granular matter, where its apparition and its magnitude is linked to the strength of the static
friction between the grains [32, 236, 237, 238].

Figure 5.2: a) Plain, unfunctionalised PDMS. b) Modification of the mechanical properties of PDMS when assembled in block

copolymers with polyvinylpyrrolidone. The Young’s modulus of the elastomer can be decreased by increasing the weight fraction

of PDMS in the polymers. Results from [231].

The production of an emulsion to structure the two-phases system, followed by the solidification
of the continuous phase and the removal of the discrete inclusions, is a standard templating method
to produce foam-based materials [239, 240, 241]. It gives a good control of the organisation and
the structuration of the polymer blend through the size of the PEG drops [242, 243, 244]. This
production route, however, aims at producing macroporous solids with controlled structural prop-
erties, where PEG drops are inclusions in the gelified silicone matrix. For that reason, the final
structure of the emulsion does not only depend on the interactions between the drops, but also
on the packing procedure with an increasingly solid silicone phase and the viscoelastic properties
of the silicone matrix. To investigate properly the effect of interfacial interactions on the packing
properties, we therefore modified this system to satisfy the conditions mentioned at the beginning
of this chapter. We present here exactly how we improved Giustiniani’s experimental system to
produce droploons with a controlled interfacial elastocapillarity. In Section 5.2.1, we recall the ba-
sics of gel formation theory, and characterise the silicone gel kinetics and rigidity using bulk shear
rheology. In Section 5.3, we characterise the rigidity and formation kinetics of the interfacial gel
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through interfacial shear rheology, offering enough comprehension of the chemistry of the system
to target the desired thickness and rigidity of the skin through control of the reaction time and the
concentration of the reactive species. In Section 5.4, we describe how we produce droploons with
a millifluidic setup, and show examples of droploons emulsions obtained with it. We further focus
on the characterisation of the skin itself, its thickness being estimated through different indirect
methods while its shear rigidity is measured using the experimental setup presented in Chapter 4.

Figure 5.3: a) Sliding of two drops with a silicone skin. Brown contours represent the prediction for the shape of a pure capillary

interface obtained through Surface Evolver simulations. Figure from [10]. b) Drops retracted after being put in contact. The

pinch at the contact between the two drops is not possible between pure capillary interfaces, and is typical of complex interfaces.

Figure from [10]. c) Skin-covered drops form piles with an angle θ with the horizontal axis, referred to as the angle of repose.

Non-zero angles are a characteristic feature of sandpiles, with θ depending on grain shape and friction. Figure from [10]. d)

Example of an angle of repose for a pile of lead spheres, obtained by dropping the spheres from above. Figure from [238].

5.2 Silicone gel formation

5.2.1 Background : physics of gelation

Polymers put together can under certain conditions react and form bonds with their neighbours in a
process called crosslinking. Previously disconnected polymers thus end up bound within a polymeric
network, as shown in Fig. 5.4a-b. As the crosslinking reaction progresses, large branched molecules
appear in the mixture in a state called the sol. These molecules continue to grow until one is large
enough to span the whole system : this network is called the gel, and is no longer soluble in the
solvent, but can only swell in it [245]. The transition from the sol state to the gel state is also called
the gelation of the system. As our PEG/silicone system gelifies through chemical crosslinking, this
section will only talk about this particular type of bonds between the polymers. Interested readers
are referred to the dedicated literature [245].
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Figure 5.4: a) Unbound monomers in a polymer melt. b) Monomers (blue) bound by chemical crosslinking (red) form a larger

molecule progressively spanning the whole system as the gelation progresses. c) Percolation network before (p < pc) and after

(p > pc) gel point transition.

The sol-gel transition is sometimes described as a percolaton problem [196, 246, 247]. It is
best represented by a Bethe lattice, where the vertices are the molecules and the edges are the
bonds. Every vertex has a number of neighbours, corresponding to the functionality degree of the
molecules. At the beginning of the percolation, no edge connects the vertices. New edges form
as the reaction progresses. The fraction of edges formed over the total number of possible eges is
called the advancement of the reaction p. At any stage of the reaction, an arbitrary edge has the
probability p of connecting two neighbouring vertices.

Because the formation of crosslinks is a random process, the first bonds are not necessarily
connected to the same vertices. Rather, a few large subgraphs coexist, as represented in Fig.
5.4c.1. When p becomes large enough, a continuous path spanning the system from one side to
the other appears, connecting the whole system in a percolation transition represented in Fig.
5.4c.2. For a polymer with a number f of functional groups, this transition happens for the critical
advancement pc

pc =
1

1− f
, (5.2)

where the polymer melt shifts from a mixture of finite-size branched polymers (p < pc) to a
system containing at least one infinite polymer (the gel) coexisting with many finite-size polymers
(p > pc) [245]. This critical value is called the gel point, and marks the sol-gel transition. As the
solution approaches the gel point, the viscosity diverges, scaling with (pc − p) (Eq. (5.3)). When
this point is attained, the shear modulus becomes non-zero, and then scales as a power-law of excess
advancement (p− pc) Eq. (5.3)). Close to the critical advancement pc, the zero-shear viscosity η0

and the equilbrium shear modulus Ge scale as the following power-laws [246]{
η0 ∼ (pc − p)−s,
Ge ∼ (p− pc)z

, (5.3)

where s and z are critical exponents. The value of these exponents depend on the universality
class the material falls into, e.g. Flory-Stockmayer classical gel theory [248, 249] or random bond
percolation theory [250]. Readers interested by the sol-gel transition as a critical phenomenon are
referred to the dedicated literature [246].

This transition can be monitored using shear rheology, where a shear deformation is imposed
on the gel while measuring its stress response. We limit the following reminder to oscillating shear
rheology, where an oscillation shear field is imposed. Readers interested to other methods of shear
rheology are referred to the dedicated literature [251, 252, 253, 196]. In oscillation shear rheology,
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the imposed shear deformation field ε is of the form

ε(t) = ε0 sin(ωt). (5.4)

The stress response σ of the sheared material depends on its constitutive properties [245]. For a
Hookean elastic solid (left of Fig. 5.5), its response will be linear with shear and of the form

σ(t) = G · ε0 sin(ωt), (5.5)

where G is the shear modulus of the solid. For a Newtonian liquid (right of Fig. 5.5), on the other
hand, the stress response depends on the temporal variation of the shear and reads as

σ(t) = η
dε(t)

dt
. (5.6)

Figure 5.5: Theoretical stress responses to an oscillatory strain of a Hookean solid (left) and a Newtonian fluid (right). The

coefficients are set at G = η = 1
2

.

The response of a gel is neither perfectly elastic, neither perfectly viscous : it constitutes an
example of viscoelastic material, whose stress response shows both elastic and viscous components.
In the limit of small amplitude of deformation, the rheology is well described within the framework
of linear response theory. Linear response theory describes the response of a physical system to
the perturbation of a weak, varying external field [254]. The linear stress response of a viscoelastic
solid can then be considered as the sum of the viscous and elastic response, i.e.

σ(t) =Gε0 sin(ωt) + ηωε0 cos(ωt) (5.7)

=G′ε0 sin(ωt) +G′′ε0 cos(ωt) (5.8)

=σ0sin(ωt+ δ) (5.9)

where σ0 is amplitude of the external perturbation, and where

tan(δ) =
G′′

G′
, η =

G′′

ω
and G′ = G (5.10)

δ is the delay between the shear and the stress response, also called the phase angle. The phase
angle is usually frequency-dependent, and is bounded between two extremal values (0 ≤ δ ≤ π

2 ),
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with δ = 0 corresponding to a Hookean elastic solid, and δ = π
2 to a Newtonian liquid. Those

two limit cases are represented in Fig. 5.5. As a viscoelastic solid, the phase angle of a gel has an
intermediate value, going from π

2 to 0 with reaction advancement p. In Eq. (5.9), we introduced
the storage modulus

G′(ω) =
σ0

S0
cos(δ) (5.11)

and the loss modulus
G′′(ω) =

σ0

S0
sin(δ), (5.12)

which are part of the complex shear modulus G∗ = G′ + iG′′. The storage and loss moduli are
used to define a complex viscosity modulus η∗ = G∗

ω∗ [255], which we use to determine the gelation
time in Section 5.2.4. The complex viscosity is defined as

η∗ = η′ + iη′′ (5.13)

which we use in Section 5.2.4 to define the gelation time Tg, and where

η′ =
G′′

ω
dynamic viscosity,

η′′ =
G′

ω
storage viscosity.

(5.14)

As for any complex number, the modulus of the complex viscosity is defined as

|η∗(ω)| =
√

(η′)2 + (η′′)2. (5.15)

In the limit of low frequency oscillation [256], one can define the zero-shear viscosity and equi-
librium shear modulus used in Eq. (5.3) from the dynamic viscosity

η0 = lim
ω→0

G′′(ω)

ω
, (5.16)

and the equilibrium shear modulus

Ge = lim
ω→0

G′(ω), (5.17)

Regardless of the universality class of the gel, the complex modulus goes, at gel point, through
a rapid increase caused by the behaviour of the zeros-shear viscosity near η0, followed by a steady
increase as the equilibrium shear modulus Ge increases with reaction advancement p. This transitive
behaviour is represented in Fig. 5.6. In Section 5.2.4, we thus define the gelation time Tg of our
samples as the time at which the complex viscosity modulus |η∗| shows its maximal variation.

5.2.2 Chemistry of the PDMS gel formation

In this section, we present how we adapt the experimental system of Giustiniani et al. [10] to
accomodate these requirements. In particular, this section focuses on the chemistry of the silicone
gel. The reaction anchroing silicone polymers to the interface is described in Section 5.3.1.

Our experimental system consists of PEG-400 drops produced in a blend of silicone polymers.
The molecules involved are shown in Fig. 2.5. These silicones are of three types : (1) one plain,
unreactive PDMS, (2) one PDMS where some methyl Si-CH3 bonds along the backbone chains are
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Figure 5.6: Divergence of the zero-shear viscosity η0 and onset/increase of the static shear modulus Ge around the gel point

pc. The gel point corresponds to the maximal increase of complex viscosity modulus with advancement p. Figure adapted from

[256].

Figure 5.7: Advancement of the skin formation. a) Newly formed PEG drop in the silicone phase. b) Formation of MHDS-PEG

copolymers at the interface by condensation reaction shown in Fig. 5.8A. c) Diffusion of the catalyst in the silicone phase

triggers polyhydrosilylaton of vinyl-terminated PDMDS and MHDS to form the silicone skin, as shown in Fig. 5.8B.
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replaced by Si-H bonds, and (3) one vinyl-terminated PDMS, where the two Si-CH3 end groups
are replaced by a vinyl funtion Si-CH=CH2. References of the products are given in Chapter 2.

The silicone skin is formed in two steps, represented in Fig. 5.7a. The first step consists of a
condensation reaction at the interface between the -OH end groups of the PEG and the Si-H groups
of the MHDS (Fig. 5.7a.2 and Fig. 5.8A) catalysed by the platinum-catalyst (Pt-cat) This reaction
creates amphiphilic block copolymers at the PEG-PDMS interface, lowering the interfacial tension
between the two phases [10].

In a second step, the catalyst diffuses into the silicone phase creating a cross-linked silicone gel
which is formed by hydrosilylation [257, 258, 259, 17, 260]. This is a platinum-catalysed addition
reaction coupling silicone hydride groups (Si-H groups) to carbon-carbon double- or triple bonds.
Here we make use of the most eminent example of hydrosilylation chemistry, namely the reaction
between Si-H groups and Si-CH=CH2 groups for the formation of a C-C linkage between the two
differently functionalised siloxane-based oligomers and polymers [261, 262, 263, 264] represented in
Fig. 5.8B. Depending on the number of functional groups f of the two types of reacting polymer
chains, a linear copolymer (f1 = f2 = 2) or a crosslinked polymer matrix (f1 > 2 while f2 ≥ 2
or f1 ≥ 2 while f2 = 2) can be obtained through polyhydrosilylation. In our case, we have
for the vinylPDMS fvinylPDMS = 2, and for the MHDS fMHDS ≈ 9. Hence, provided that the
concentration of both reactive species is high enough, a cross-linked network is created by the
reaction.

The presence of water, however, may cause a cascade of side reactions, as the Si-H groups are
rather sensitive to water [265, 266, 267]. For instance, the Si-H group might undergo a platinum-
catalysed condensation with water, forming an Si-OH group while releasing a proton (Fig. 5.8C).
This Si-OH group, in turn, may react with Si-H bonds in a platinum catalysed condensation reaction
to form a siloxane bond (Fig. 5.8D). While silicone polymers are highly hydrophobic, the PEG is
strongly hygroscopic, creating hence secondary reactions with water in the vicinity of the interface.
To ensure reproducibility we therefore dry the PEG before use, which is detailed in Section 2.3.3.

5.2.3 Blocking the reaction : addition of a reaction inhibitor

A model system for interfacial interactions in elastocapillary drops requires to get skin of finite
controlled thickness, so that the thin skin approximation remains valid and that the droploons
remain separate objects. In Giustiniani’s system, the gelation of the silicone phase does not stop at
the interface, but extends over the whole system. The physical properties of the system relies thus
more on the bulk properties of the silicone gel rather than the interactions between the drops. To
transform this system in a droploon emulsion, we stop the hydrosillylation reaction, limiting the
silicone gel to a finite thickness h0.

In the PEG-silicone system, the skin forms through polyhydrosilylation reactions, catalysed
by the diffusing platinum-based compound. Its growth can thus be stopped by the addition of
a chemical inhibitor to the silicone phase. Following the work of Lewis et al. [17], we opt for a
dimethyl maleate inhibitor represented Fig. 5.9. Dimethyl maleate binds irreversibly to Karstedt’s
catalyst with a molar ratio 1 : 4, changing its structure and inhibiting its catalytic activity.

The efficacity of dimethyl maleate on the platinum catalyst in inhibiting the polyhydrosillylation
is tested in Section 5.2.4.

5.2.4 Bulk shear rheology

The competition between capillary and elastic forces, captured by the elastocapillary number α
introduced in Chapter 4, depends both on the rigidity and the thickness of the gel. The silicone gel
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Figure 5.8: Set of chemical reactions taking place in the sytem.

Figure 5.9: Reaction between platinum catalyst and dimethyl maleate. [17, 268]
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Figure 5.10: Example of the evolution of the visco-elastic response of a silicone gel at φr = 30 wt. % and φp=0.3 vol. % at

oscillation frequencies of 1, 2 and 4 Hz. The complex viscosity modulus is used to determine the gel time τg by taking the

time of maximal slope, for each frequency (right). The final storage modulus G′∞ is taken as the maximal value of the storage

modulus G′ over the whole experiment, for each frequency.

forms by the crosslinking of reactive silicone polymers in the continuous phase of the emulsion. Its
thickness is either limited by the total amount of reactive silicone in the system, or by the time left
for skin formation before the addition of maleate. The growth kinetics of the skin depends on the
reaction timescale and the diffusion speed of the catalyst. A controlled elastocapillary transition
requires to understand the parameters governing the rigidity and the formation kinetics of the poly-
meric skin, for separate control of the two-dimensional shear modulus G2D and the skin thickness
h0. In this section, we characterise the silicone gel using different experimental techniques. This
section focuses on the silicone gel in bulk phase making the assumption that an understanding of
the bulk behaviour can be transfered to the skin properties. We characterise both its shear modulus
G and gelation time Tg as function of the concentration of reactive polymers φr and the catalyst
concentration φp at stoechiometric ratio of the reactive silicone polymers (these quantities being
defined in Section 2.3.2).

We studied the bulk gelation of different reactive silicone formulations in absence of PEG. Here
the catalyst was directly mixed into the silicone blend just before the experiment using the blending
of two non-reactive mixtures, as described in Section 2.3.2. After rapid blending of all components,
we followed the temporal evolution of the visco-elastic properties of the forming gel using three
different frequencies simultaneously (ω = 1,2 and 4 Hz) with the multiwave oscillation method
(2.3.2). Fig. 5.10a shows the example of a typical set of curves obtained for the evolution of the
storage modulus G′, the loss modulus G′′ and the complex viscosity η∗ for one formulation (here
φr = 30 wt. % wt% and φp = 0.3 vol. %.

In these experiments, the silicone blend at the beginning of the experiment exhibits a liquid-like
response, with a loss modulus G” higher than its storage modulus G′. Over time, both increase,
with the storage modulus increasing faster than the loss modulus. Eventually, G′ becomes larger
than G” and the polymer blend becomes a gel. In the last phase of silicone crosslinking, the gelation
progresses until all available reactive sites are consumed. Storage and loss moduli then converge
towards final values G′∞ and G”∞ , respectively.

In order to determine the gelation time τg (time until the gel point is reached), the approach
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Figure 5.11: Evolution over time of the visco-elastic response of the silicone blend with a reactive mass fraction φr of (left) 30

wt. % (middle) 50 wt. % and 70 wt. %, for an oscillation frequency of 1 Hz.

of Winter is commonly used et al. [25, 247], which relies on the fact that the phase angle G′/G′′

becomes independent of frequency at the gel point. Unfortunately, in our samples, this approach
leads to very scattered results which we assign to the mechanical noise of the rheometer close to
its precision threshold. We therefore analyse instead the complex viscosity modulus η∗ defined as
η∗ = G′′/ω + iG′ω. We define the gel time τg as the time of maximal variation of η∗, i.e; when
dlog(|η ∗ |)/dt has a maximum. This point is very well defined, as shown in Fig. 5.10. In the
following we will only show the results of one frequency to simplify the graphs and the discussion.
Moreover, as shown later, the rigidity and the gel time does not vary with the oscillation frequency.

In Fig. 5.11, we show how G′ and G′′ vary for a wide range of formulations with varying couples
of φr (30, 50 and 70 wt. %) and φp (0.3, 0.1 and 0.03 vol %). Gels with the same initial reactive
fraction have close final modulus G′∞. The increase in catalyst concentration does not appear to
change the mechanical properties of the gel ; however, it increases the gelation speed, by shifting
the gelation curves to smaller times and reducing the gelation time τg.

We investigate how the gelation time τg and the final storage modulus G′∞ depend on the
formulation, i.e. on φr and φp. Fig. 5.12 sumarrises the results for a wide range of formulations.
One observes that G′∞ increases with φr, but vary only mildly with φp. On the other hand, the
gel time τg varies both with φr and φp.

To understand the shape of G′∞(φr, φp, ω) and Tg(φr, φp, ω) we perform statistical tests in two
steps : in the first step, the dependance of the tested variable y with every parameter x is tested
independently, using linear regression log(y) = β0 + β1log(x). The independance hypothesis H0 is
tested by computing its P -value. The variables rejecting successfully the null hypothesis (P < 0.05)
are then taken as variables in the second step, where we perform a non-linear regression to find
the prefactors and exponents of these variables using least-square fit regression method with the
Levenberg-Marquardt algorithm implemented in MATLAB [269].

Using this procedure, G′∞ and Tg appear as independent from the oscillation frequency (P =
0.954 and P = 0.386, respectively). G′∞ is also independent from catalyst concentration (P =
0.066), contrary to Tg (P = 3.32 ·10−14). Tg is independent of the reactive fraction φr (P = 0.554),
contrary to G′∞ (P = 2.78 · 10−27). Because the typical reaction kinetics involving catalysts often
depends simultaneously on reagent and catalyst concentration, we test their dependencies with a
cross-term φrφp, and found that gel time is indeed dependent on it (P = 1.36 · 10−19), contrary to
G′∞ (P = 0.260). Following these results, the experimental results are then fitted using non-linear
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Figure 5.12: Evolution of the final storage modulus G′∞ and the gel time τg with reactive fraction φr and catalyst fraction φp.

The results for the three frequencies are averaged, with their standard deviation shown as errorbars.
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least-square regression with the Levenberg-Marquardt algorithm, using the relations

G′∞ = A0 +A1φ
n1
r , (5.18)

Tg = B0 +B1φ
n1
p +B2φ

n2
r φ

n3
p , (5.19)

where we allow n2 and n3 to vary independently, as reagent and catalysts play different roles
in the crosslinking reaction.

The non-linear regression of G′∞ with Eq. (5.18) found large deviations in the estimation of
the constant term A0, with A0 = 147 ± 6750680. Because of its undetermined sign and the lack
of physical significance of an offset gel rigidity, we remove A0 from the next non-linear regression,
and fit G′∞ with the expression

G′∞ = A1φ
n1
r . (5.20)

The fitted coefficients are summarised in Table 5.1.

The first set of fitted parameters for Tg found a prefactor B1 = 168 ± 146 an exponent n1 =
−0.4 ± 0.9 : the large confidence interval and the indetermination of the sign of the exponent
indicate the difficulties of the convergence algorithm to find the dependancy of Tg on φp only. From
a chemical point of view, the reaction kinetics cannot depend on catalyst concentration alone, hence
these difficulties. Similarly, a constant term B0 is not physically sound, and we remove it from the
last fitting procedure. For the same reasons as for G′∞, we replace the relation of Eq.(5.19) by the
more physically sound relation

Tg = B2φ
n2
r φ

n3
p . (5.21)

The coefficients found with this method are shown in Table 5.1 along with their confidence
interval. Graphs in Fig. 5.13 show the experimental results along with the relations found with
non-linear regression.

Within our available experimental data, we therefore show that the final storage modulus of
the silicone gel depends only on the concentration of the reactive species φr when they are mixed
at stoechiometric ratio. G′∞ scales as a power-law

G′∞ ∼ φ2.78±0.01
r , (5.22)

with the exponent 2.78 being slightly below the value expected from scaling the rigidity with the
number of crosslinking points per unit volume. Reaction kinetics, on the other hand, depends on
φr and the volume fraction of catalyst φp, with a gelation time (defined as the time of maximal
variation of G”/G′) scaling as

Tg ∼ φ−0.80±0.01
r φ−1.09±0.01

p , (5.23)

on the range of tested parameters. Using these two scaling laws, one is able to tune the rigidity
of the silicone gel at constant reaction time. The scaling laws of Eqs (5.22) and (5.23) fitted from
bulk shear rheology experiments are therefore used in the following to guide the formulations the
PEG-in-silicone emulsions.

5.2.5 Conclusion

In this section, we investigated the formation of the silicone gel, placed at the interface of the PEG
drops in our PEG-silicone system. Using bulk shear rheology, we probed the dependancy of its
shear modulus G′∞ and its gelation time Tg with reactive fraction φr and catalyst fraction φp. In
particular, the scaling of G′∞ with φr gives a simple control of the rigidity of the interfacial gel. In
the next section, we turn towards the characterisation of the gel formed at the interface.
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G′∞ = A1φ
n1
r Tg = B2φ

n2
r φ

n3
p

A1 0.49± 0.06 B2 616± 13

n1 2.78± 0.01 n2 −0.80± 0.01

n3 −1.09± 0.01

Table 5.1: Coefficients of the non-linear regression on the experimental data points obtained from bulk shear rheology.

Figure 5.13: Experimental data and scaling results obtained for (a) the evolution of the final bulk shear modulus G′∞ with

reactive fraction φr and for (b) the evolution of the gel time τg with fraction of reactive silicones φr and catalyst φp.

5.3 PEG-PDMS interfaces

5.3.1 Chemistry of the interface

The first step of formation of the skin consists of a reaction at the interface between the PEG
and the MHDS (Fig. 5.7b and Fig. 5.8A). The PEG-silicone copolymer is formed by a platinum-
catalysed condensation reaction between the alcohol function of the PEG molecules and the silicone
hydride groups. The amphiphilic block copolymer formed in this first reaction adsorbs at the PEG-
PDMS interface, lowering the interfacial tension between the two phases [10]. Because of their large
polymeric weight, these molecules can give a finite elasticity, as we will show in the next section.

The efficacity of dimethyl maleate on the platinum catalyst used in the P is tested using the
dripping setup setup described in Section 2.3.5, with a weight fraction of reactive silicone species
of φr = 100 wt.%. The catalyst is dispersed in the PEG phase using a magnetic stirrer, with a
concentration of 750 µM. The inhibitor is dispersed in the PEG phase using a magnetic stirrer
as well, at concentrations of 0 µM, 750 µM and 7.5 mM, respectively. The results are shown in
Fig. 5.14. The drops dripped in silicone show a loss of stability for excess inhibitor concentration,
with coalescence of the drops at the bottom of the emulsion. This distabilisation of the drops
corresponds to the absence of elastic stabilising skin at the interface.

5.3.2 Interfacial shear rheology

The gel formed at the PEG/silicone interface is characterised with interfacial shear rheology, using a
double-wall ring experimental setup described in Section 2.4.2. In this configuration, the interfacial
gel is formed by the diffusion of the catalyst from the PEG to the reactive silicone blend. The
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Figure 5.14: PEG drops dripped in the reactive silicone blend with dispersed dimethyl maleate. The drops are contained

in centrifuge tubes, with the thin silicone films between the drops visible as dark lines. At high inhibitor concentration, the

emulsion is not indefinitely stable and starts to coalesce, like ordinary emulsions.

results for two weight fractions of reactive polymers φr = 100 wt.% and φr = 30 wt.% at constant
catalyst concentartion φp = 0.3 vol. % are shown in Fig. 5.15.

The overall evolution of the mechanical response of the skin is similar to the bulk gel described
in Section 5.2.4 : an initially liquid-like system (G′′ > G′) becomes solik-like (G′′ < G′). The evo-
lution of the shear modulus of the interfacial gel differs from its bulk counterpart by the existence
of two distinct timescales : a first, short timescale gives the interface a non-zero 2d shear storage
modulus G′2D ∼ 10−2 − 10−3. After a time of slow evolution at low values of G′2D, the storage
modulus shifts to high values of shear modulus around 101 N.m−1 in a timescale around 103 − 104

s depending on φr.
We explain the coexistence of these two timescales by the two mechanisms at play in the skin

formation. The first timescale corresponds to the formation of block-copolymers PEG-vinyl ter-
minated PDMS at the interface schematised in Fig. 5.8A, triggered by the catalyst crosslinker
diffusing to the interface. This step does not depend on the concentration of the silicone phase in
reactive polymers φr, because the interface is quickly covered with block-copolymers in formation.
Because of the importance of the catalyst diffusion kinetics towards the interface, this step is highly
sensitive to the preparation of the PEG/catalyst dispersion described in Section 2.4.2. This shear
modulus is due to the presence of the large block-copolymers adsorbed at the interface : the large
molecular weight of the amphiphilic PDMS-PEG block copolymers gives a finite Gibbs elasticity
to the interface

In a second step, the catalyst diffuses in the silicone phase and starts to crosslink the reactive
silicone polymers. The kinetics of this mechanism accelerates and the final shear modulus increase
with φr, as shown in Section 5.2.4. Hence, the growing difference between φr = 100 wt.% and 30
wt.% in this second step. at this stage, it is not possible for us to relate the skin growth parameters
quantitatively to the bulk gelation of Section 5.2.4. This requires to take into account the diffusion
kinetics of the silicone catalyst within the silicone blend.
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Figure 5.15: Evolution of the shear moduli of the interfacial gel probed by oscillating shear rheology with a 1 % angular

deformation at 1 Hz frequency, using the experimental setup described in Section 2.4.2.

For our experimentally tested set of parameters, we found that the skin growth starts between
1000 and 4000 s, corresponding to ∼15-70 min depending on the reactive fraction φr. This informa-
tion, along with other measurement methods of the time evolution of the skin thickness presented
in Section 5.4.3, is used to determine the target reaction time in the millifluidic setup described in
Section 5.4.1. In particular, at this stage, it is impossible to separate the contributions of the bulk
skin modulus G′3D and the skin thickness h0 i the overall skin response. For this reason, we explore
in the following section different methods to determine skin thickness.

5.4 Experimental model system : PEG-in-PDMS emulsions

Investigating the effect of interfacial elasticity on the emulsions requires to control the drop size.
Furthermore, the mechanism of skin formation requires to control the reaction time. The drop
production setup must allow a controlled addition of the dimethyl maleate inhibitor to the silicone
phase. Addition of inhibitor after the generation of the emulsion is therefore not enough, as diffusion
through the whole emulsion would rely on the slow flow of drainage and on diffusion through the
complex network of the continuous phase. For that reason, we switch the drop production setup
from a dripping setup to a millifluidic setup : the drop travels for a given time in the reactive silicone
phase where the skin can form at the interface, before being put in a phase containing dimethyl
maleate in excess concentration to quickly stop the skin formation. We designed a millifluidic
production setup, which has the advantage of producing drops with a controlled diameter, and
offers the possibility to introduce the inhibitor at any desired point of the setup. Our setup is
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represented in Fig. 2.10. The materials, providers and dimensions of the tubes are detailed in
Section 2.3.6.

5.4.1 Millifluidic droploon production

The silicone phase is placed in two syringes (60 mL Plastipak) referred to as (A) in Fig. 2.10,
placed on a double syringe pump, because of the large amount of silicone required to produce the
emulsion. The two syringes are connected via a Y-junction to make a single silicone phase flow.
The PEG phase is contained in a single syringe (30 mL Plastipak) on its own syringe pump (B).
The two parts are connected through a T-junction (C), where the drops are produced following the
usual microfluidic drop production mechanism [270]. Changing the two flow rates is used to tune
the drop size to the desired dimension. We found a stable drop size for a silicone flow rate of 20
mL/hr (corresponding to the two syringes pushed at 10 mL/hr) and a PEG flow rate of 3 mL/hr.
At the beginning of the dripping, the size of the drops fluctuates until the flows stabilise after 300 s.
The drops produced before the stabilisation are discarded and not collected in the sample holder,
to avoid size variations.

The next part of the setup is designed to make the skin grow in conditions where it is as uniform
as possible. The typical timescale of skin growth to reach thickness measurable with our available
tomographic setup (around 10 µm) is of the order of 10 min, as shown in Section 5.4.3. In this time
interval, the drops must be kept away from each others to avoid coalescence while the polymer skin
forms. Additionally, long contacts with the walls of the tube are forbidden to avoid adhesion, which
would lead to stretch and/or breaking of an inhomogeneous skin when collecting the drops. We
fulfill these two requirements by putting the drops in a spiral tube held by a cross-shaped support
with grooved arms to hold the tube (D). In this spiral tube, the drops flow at a speed determined
by the combined flow rates of the two phases. The total reaction time Tr is thus easily tuned by
changing the length of the spiral tube, before stopping the reaction by adding the inhibitor.

At the end of the spiral tube (E), a PDMS blend containing dispersed dimethyl maleate is
placed in a single syringe (30 mL Plastipak) and injected through a T-junction. This solution is
prepared with an inhibitor mass fraction of 5.5wt.% and a flow rate of 5 mL/hr. The exiting flow
is then directed to a sample container (F) with a last plastic tube of 5 cm length. A diffusive white
screen with homogeneous lighting is put behind the sample container. A camera takes pictures of
the emulsion while it is created, with a framerate of 1 picture every 10 minutes. An example is
shown in Fig. 5.16. This sample production recording is useful for a crude analysis of the dynamical
process of emulsion packing, such as the evolution of the angle of repose described in Section 5.1.

Finally, as the silicone flow rate is large compared to the PEG one, the excess silicone in the
emulsion needs to be removed. A peristaltic pump (G), with an inlet hanging at the top of the
sample container, transfers the silicone in a waste container (H) when its volume reaches the top
of the container.

5.4.2 Droploons emulsions

The variation of skin thickness h0 and rigidity G2D allows to probe the transition from purely cap-
illar to purely elastic interface. The production of droploons with similar elastocapillary properties
can then be used to investigate the impacts of these interfaces on the structures of the emul-
sions. Four examples of droploons emulsions are shown in Fig. 5.17, along with the experimental
parameters used for their production.

The four samples show clear differences with each others. While sample a shows an homoge-
neous emulsion structure, the droploons in sample b have more silicone between them, and yet
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Figure 5.16: PEG in silicone emulsion produced with the millifluidic setup presented in Fig. 2.10. Experimental parameters :

φr = 50wt.%, φp = 0.3vol.%, Tr = 20 min.

124



Figure 5.17: Examples of horizontal slices of droploons emulsions imaged with X-Ray tomography, obtained by varying experi-

mental parameters. a) φr = 50 wt.%, φp = 0.3 vol.%, Tr = 5 min 45 s. b) φr = 30 wt.%, φp = 0.3 vol.%, Tr = 4 min 20 s. c)

φr = 50 wt.%, φp = 0.3 vol.%, Tr = 9 min 30 s. d) φr = 100 wt.%, φp = 1.0 vol.%, Tr = 22 min.
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show some buckled interfaces which are a signature of elastic interfaces. Sample c and d have very
deformed droploons, with sample c having a very low silicone volume fraction. The interfaces of
the droploons from sample d have the most buckled interfaces, with no droploons showing round,
drop-like interfaces.

Overall, this transition from an emulsion-like structure to buckled shapes does not seem to
follow what one would predict from parameters of production of the emulsions : if interfacial shear
modulus G′2D was increasing with φr, φp and Tr, sample b would be more emulsion-like than sample
a. This discrepancy could lifted in two ways : first, by a more controlled characterisation of the
elastocapillary numbers of the samples, which could not be done because of the time limitations
of this thesis. Second, by the formulation of a predictive model describing the transition of the
structure from simple emulsions to droploons emulsions, and a quantitative description of these
structures to be compared to experimental results. A proposition of structural description is de-
tailed in the next chapter.

Overall, the PEG-in-silicone system shows a nice ability to modify its interface and affect
the subsequent emulsion structure, in spite of its complexity. In the next section, we propose
measurements of the skin thickness over time, to help designing future PEG-silicone droploons
emulsions.

5.4.3 Skin growth measurement

The interfacial shear modulus G′2D of the polymer skin is at first approximation a product of its
bulk shear modulus G′3D and its thickness h0, G′2D = G′3Dh0 (see Eq. (4.44)) if we assume that the
bulk shear modulus is constant throughout the skin. As we show in Section 5.2.4, the bulk shear
modulus depends on the weight fraction of reactive polymers φr, mixed at stoechiometric ratio. A
tunable interfacial elasticity additionally requires a control of the thickness of the skin, which grows
as the catalyst diffuses in the silicone phase and the crosslinking of the melt progresses (Section
5.2.2).

The skin consists of crosslinked silicone polymers in a solution of identical, unbound polymers.
It is hard to measure in situ with ordinary imaging methods, free and crosslinked polymers having
very similar optical properties. In this Section, we use three different experimental techniques to
obtain an indirect measure of h0. Each of these methods has its own assumptions, with its asso-
ciated error. The different methods gives a set of results that can be used to estimate the skin
thickness obtained with a given set of experimental parameters in the millifluidic drop production
setup.

Finally, this estimation is compared with the results obtained from tomographic reconstruction,
presented in Chapter 6 : the silicone layer between two PEG drops is taken to be two touching
skins, the interdrop distance being then twice the thickness h0.

The interfacial shear rheology experiments of Section 5.3.2 yield the temporal evolution of the
shear modulus G′2D of the gel formed at the PEG-silicone interface. An indirect measure of the
thickness can be obtained by inverting Eq. (4.44), giving h0 = G′2D/G

′
∞. This indirect measure-

ment, however, assumes that the structure of the interfacial gel is equivalent to that of the bulk
gel. Two physical arguments can be raised against this approach. First, the advancement of the
diffusion front of the catalyst does not presume of the advancement of the gelation p. Rather, the
advancement, and hence the bulk shear modulus G3D at one point depends on the history of cata-
lyst concentration over time. As shown in Fig. 5.11a-c, the evolution of the shear modulus between
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the gel point and the final state of the gel still spans up to 4 orders of magnitude. Second, the
interfacial gel is obtained through a hydrosilylation triggered by a diffusing catalyst, which involves
the diffusion timescales of both platinum catalyst and silicone chains with progressing reaction.
The final structure of the gel may differ from its bulk counterpart, because of the structuration of
the interfacial layers caused by the lateral interactions between the anchored surfactant molecules
[271, 28, 1, 124]. Furthermore, the formation of patterns at the interface [272] or in the bulk [273]
is also a potential source of difference between the bulk and the interfacial gel. The diffusion of
the catalyst from PEG to silicone creates gradient of concentration, hence a spatialy-dependent
reaction timescale, with subsequent diffusion of the unbound silicone chains potentially affecting
the final structure of the gel. The interfacial gel formation thus has an intrinsic spatial as much as
temporal component, from which one could expect its final properties to differ from its bulk phase.
Moreover, the diffusion of the catalyst from PEG to silicone is a sensitive part of the reaction : the
catalyst is dispersed in a solution of vinyl-terminated PDMS, which is itself dispersed in the PEG
phase using an ULTRA-TURRAX stirrer (Chapter 2). The diffusion speed of the dispersion drops
to the interface depends on their size, with a typical average speed < v >=

√
kBT/m, where m is

the mass of the drop : the kinetics of skin formation thus depends on the preparation of the different
solutions. Finally, as the skin grows, the height of the skin exceeds the height of the double-wall
ring. The results obtained beyond this point cannot be considered as reliable. Nonetheless, we use
our results from interfacial shear rheology to obtain an order of magnitude of h0, with the obtained
estimation shown as data points in Fig. 5.19.

We compare the estimation of the skin thickness with estimations obtained from other ap-
proaches. To obtain a temporal evolution of the skin with controlled experimental parameters
(φr,φp), we construct a setup represented in Fig. 5.18a. It is made of a polycarbonate plastic block
drilled with circular holes with a diameter of 5 mm. On the top of the holes, we place metallic
grids used in cryo-SEM, with square pores of 500 µm length, shown in Fig. 5.18b. The block is
then placed in a glass container, filled with the PEG-catalyst solution up to the top of the holes.
The reactive silicone mixture is then slowly poured into the container, with a height of approxi-
mately 50 mm. In this configuration, the catalyst diffuses through the grid into the upper silicone
phase, like in the double-wall ring setup. After the desired reaction time, we remove the metallic
grid from the silicone blend with the skin still attached to the grid, and left hanging so that the
uncrosslinked silicone flows down and leaves the grid. The grid with the skin are then imaged using
X-Ray tomography, with the height of the skin being taken as the height of the gel at the center of
the grid, as represented in Fig. 5.18d.

By using multiple holes and grids with the same PEG and silicone solutions, this setup allows
to capture the skin formation at different times with the same preparation procedure. Moreover,
compared to the interfacial rheology approach, the thickness is directly measured. The results are
shown by black circles in Fig. 5.19d.

The kinetics of skin growth is faster than a diffusive process (h0 ∼ t1/2) but slower than ballistic
process (h0 ∼ t), as shown in Fig. 5.19d. This highlights the difference between the skin formation
and a simple diffusion process, as explained in the beginning of this section. This faster than diffu-
sive process could be attributed either to transport phenomenon expelling catalyst faster, or to late
stiffening of the gel after the first gelation, increasing locally the bulk shear modulus G3D and hence
the overall interfacial modulus of the skin G2D. These contributions can not be differentiated with
our current experimental knowledge of the system. Despite its advantages, the configuration of this
setup does not correspond to the spherical geometry of the drop, and the impact of the grid on the
skin growth must be assumed to be negligible. We therefore further confront these experimental
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Figure 5.18: a) Scheme of the skin-on-grid setup. The metallic grid is removed after the desired reaction time and analysed

using X-Ray tomography. b) The metallic grid used to grow the skin comes from SEM consumable material. c) Image of a

silicone skin on a metallic grid, obtained with X-Ray tomography. The contrast between the silicone gel, the metallic grid and

the air allows for an easy segmentation of the image. Bright spots close to the grid correspond to adsorption artifacts when the

grid is aligned with the X-Ray beam. Experimental parameters : φr = 100 wt.%, φp = 0.3 vol.%, τr = 1000 min.

results to measurements directly done on drops obtained by adding an individual PEG+Pt-catalyst
drop into a vessel filled with the reactive mixture, and by rotating it continuously by hand to avoid
prolonged contact with the walls of the vessel. The obtained droploons are then removed from the
mixture and placed in a silicone solution filled with inhibitor to halt the skin formation. Before the
observation of the skin, the droploons are placed on a grid so that unreacted silicone flows off the
surface. This methods can only be applied on fully formed skins at the end of the skin formation.
The data extracted from these time-consuming experiments are thus less detailed than interfacial
rheology and on-grid skin growth.

The obtained droploons are then imaged using cryo-SEM (Scanning Electron Microscopy),
equipped with a freeze-drying sample preparation system that freezes the droploons with liquid
nitrogen [274]. The individual droploon is taken out of the silicone solution and frozen by dipping
it into liquid nitrogen, before being placed in a hermetic preparation stage. The frozen skin is then
broken with a thin metallic blade, before the drop is moved to the sample stage where it is imaged
with a Hitachii SU-8000 SEM at 1000 V acceleration voltage and a 9000 nA emission current.

As the unreacted silicone flows away from the drop when it is removed from the solution, the
silicone present in the sample can be taken as being part of the skin. We show the image obtained
with cryo-SEM in Fig. 5.19b (φr = 50.2 wt.%, φp = 1.0 vol.%, Tr = 20 min). The image shows
two distinct materials, with the first one forming a (broken) shell around the second. Owed to the
condition of production of the droploon, we associate the shell material to the silicone skin, and
the bulk material to the PEG. With the sliced images of the skin, we can estimate the thickness of
the shell, which we found to be 88.3 ± 5.5 µm. This value is reported in Fig. 5.19d.

Since the cryo-SEM imaging relies on the breakage of the shell of the frozen sample, this method
cannot image the full skin, but only slices of it. Moreover, the freeze-drying procedure might dam-
age the sample and induce compression/dilation, depending on the materials and the preparation.
We therefore complete these measurements with an indirect, non-destructive measurement through
X-Ray tomography on emulsions obtained with the millifluidic setup described in Section 5.4.1.
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Method φr φp Tr h0

On-grid 100 wt. % 0.3 vol. % 470 s s 51.0± 8.1µm

On-grid 100 wt. % 0.3 vol. % 1300 s 99.4± 4.7µm

On-grid 100 wt. % 0.3 vol. % 6000 s 354.4± 0.3µm

Cryo-SEM 50.2 wt. % 1.0 vol. % 22 min 88.3± 5.5µm

ANATOMIX 100 wt. % 0.3 vol. % 10 min 1 µm

Tomography 100 wt. % 1.0 vol. % 1320 s 29.3± 7.3µm

Table 5.2: Summary of the different skin measurement results described in Section 5.4.3. These results are shown in Fig. 5.19d,

along with results from interfacial shear rheology.

The drop images obtained from tomographic reconstruction are separated by a thin silicone
layer, which we assume to be their two skins in contact. An example is shown in Fig. 5.19a. Large
skins (h0 ≥ 5µm) can be imaged using the lab-owned X-Ray tomograph, described in Chapter
2. An example of results obtained with this tomograph is shown in Fig. 5.19a, with droploons
produced with the set of experimental conditions (φr = 100 wt.%, φp = 1.0 vol.%, Tr = 22 min).
The skin average skin thickness was found to be h0 = 23.3± 7.3µm.

For thinner skins (h0 < 5µm), one measurement at high resolution (300 nm) was performed at
the ANATOMIX beamline from the SOLEIL synchrotron facility by Patrick Kékicheff, for a sample
prepared with the set of experimental conditions (φr = 100 wt.%, φp = 0.3 vol.%, Tr = 10 min).
This level of resolution is obtained by switching from absorption tomography to phase-contrast
imaging. The result shown in Fig. 5.19c is thefefore not directly readable in terms of skin thick-
ness, and requires complex image analysis techniques before any conclusion can be drawn from it
[275]. The order of magnitude of the skin thickness can still be estimated by the gap of high gray
level between the two PEG drops, which we found to be h0 ∼ 1µm.

The results of the different methods are summarised in Table 5.2 and shown in Fig. 5.19d. From
the comparison of the results, we can draw the following conclusions. First, the normalisation of
the interfacial shear modulus with the bulk shear modulus yield skin thickness smaller than the
other methods by one order of magnitude. This indicates that the interfacial gel is less stiff than its
bulk counterpart. Second, the large difference between skin grown on a grid and on a drop’s surface
highlights the importance of the geometrical configuration of the system on the growth kinetics.
As shown in Fig. 5.19a, we found a range of experimental parameters where the skin was thick
enough for an easy segmentation of the drops in tomographic analysis of the emulsions. We used
those to produce the samples described in Section 5.4.2. We further investigate the evolution of the
interface in this experimental range using the capillary pressure elastometry described in Section
4.3.
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Figure 5.19: a) Slice of a PEG/silicone emulsion (φr = 100 wt.%, φp = 1.0 vol.%, Tr = 22 min) obtained by tomographic

reconstruction at a resolution of 8 µm per voxel. The red lines represent the estimated position of the drops interfaces, where

their skins touch. b) Image of a PEG drop with a gelified silicone skin obtained with cryo-SEM. Experimental parameters :

φr = 50.2 wt.%, φp = 1.0 vol.%, t = 20 min. c) Image of PEG/silicone droploons obtained from tomographic reconstruction

at ANATOMIX beamline, with a 300 nm/voxel resolution. Courtesy to Patrick Kékicheff. d) Skin growth with the different

methods described in Section 5.4.3.
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5.5 Conclusion

In this Chapter, we improved a PEG-PDMS system previously used by Giustiniani et al. [217, 234]
to study the impact of interfacial interactions on the structural properties of emulsions [10]. We
designed an experimental setup to replace the gelified silicone phase by an interfacial gel of contolled
thickness, and characterise the rigidity and formation kinetics of the silicone skin. The origine of
the later needs to be elucidated in future work. Different measurements of the skin thickness yield
different results when performed with different methods. However, these results helped to select
experimental parameters yielding skins thick enough for a simple tomographic segmentation of
touching drops. This condition makes the packing analysis with X-Ray tomography easier and
more reliable. The procedure of packing analysis will be described in Chapter 6. We also showed
that the formation of the skin at the interface greatly changes the shapes of the droploons in
emulsions. The PEG-silicone system is hence a good model system to investigate the interface-
structure relations.

Interfacial rheological characterisation is a work-intensive task. Experimental investigation on
the PEG/silicone system were therefore limited to the most simple parameter sets. The tuning
of the membrane’s properties could be more finely tuned by adding new parameters, such as the
length and functionalisation degree f of MHDS molecules, or the stoechiometric ratio between the
two reacting polymers [276]. Nonetheless, this system constitutes a promising model system for
drops with interfaces of controlled elastocapillarity.
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Chapter 6

Tomographic analysis of the structural
properties of the droploon assemblies

6.1 Introduction

Jammed systems are ubiquitous materials [30, 31, 32], ranging from sandpiles [277, 278, 279] to pow-
ders [280, 281], up to foams and emulsions [15, 38, 49, 34]. Despite their differences, these systems
share common features encouraging to capture their mechanics in an unified framework. Jammed
systems are made up of unbound, distinct particles free to move with respect to each others. When
these particles are brought into physical contact, they interact through contact forces, eventually
supplemented by attractive or repulsive long-range forces. If the number of contacts per grain Z
reaches a critical number named the isostatic contact number Zc, grains are immobilised by their
neighbours and the packing rigidifies in a jammed, static configuration [41, 37]. Furthermore, the
displacements of individual grains do not vary continuously over smooth, affine displacement fields
[44], discarding a description with an effective medium approach : local environment [43, 282, 283]
and non-affine displacement fields (especially close to jamming [284]) are decisive components of
the macroscopic behaviour of jammed materials.

The mechanical behaviour of the jammed material is then a consequence of the inter-particle
interactions [41, 42, 44] and the geometrical organisation of the packing [39, 47], as described in
Section 3.1.2. For instance, it has been shown that the shear response in numerical simulations of
harmonic discs depended on the construction algorithm used to produce the packing [288], high-
lighting the necessity of a proper understanding of the packing structure to predict its mechanical
properties. In particular, the description of the orientation and magnitude of the interparticle
forces is a good predictor of the heat transport properties [289] and the acoustic properties of the
material [110, 290, 291, 44, 292, 293]. Knowledge of the complete set of interparticle forces and
the conditions of rigidity onset are an old field of investigation in granular science. The latter was
already investigated by Maxwell [294] in the case of frictionless joints connected by rigid struts. By
constraint counting argument, Maxwell formulated a necessary (although not sufficient) criterion
for the rigidity of the structure, formulated in dimension d [295] as

b− dj + 2d ≤ 0 (6.1)

where b is the number of strut and j is the number of joints. Representation of stable and unstable
structures in the sense of Maxwell’s criterion are shown in Fig. 6.1a-b. The isostatic contact
number Zc can be deduced from a similar reasoning for granular materials : in the limit of large
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Figure 6.1: a) Three joints connected in a 3-cycle form a mechanically stable structure, with rotation and translation of the whole

system being the only degrees of freedom. b) Four joins connected in a 4-cycle can deform, e.g. when subjected to shear. c)

Interlocking of the indentations at the surface of the sphere hinder the rotation with static friction. d) Three Styrofoam spheres,

stabilised by static friction. The normal and tangential forces respect the Amontons-Coulomb criterion, stabilising a structure

that would collapse for frictionless particles. Figure from [43], inset from [32]. e) Evolution of the isostatic contact number Zc

with the static friction coefficient µ, for 2D discs. Figure adapted from [285]. f) Force chains visualised in photoelastic disks.

The thickness of the filaments of transmitted light indicate the location of the strong interparticle forces, which focus in strong

force chains aligned in the same direction. Figure from [286], inset from [287].

number of grains (j → +∞), the term 2d in Eq. (6.1) can be neglected, thus giving by inversion
b ≤ dj. Every strut is shared between two joints, and thus needs to be counted as a half strut to
avoid double counting, following the handshaking lemma of graph theory [296]. In that case, the
stability criterion of Eq. (6.1) becomes a condition for every joint and reads as

b ≤ 2dj. (6.2)

In the case of granular materials, where joints are replaced by grains and struts are replaced
by interfacial contacts between them, the condition of Eq. (6.2) corresponds to the isotatic contact
number Zc = 2d for frictionless grains (or Zc = d + 1 for frictional grains), as shown in Fig. 6.1e.
This prediction matches accurately the experimental observations for foams and emulsions, where
the bubbles and the drops are frictionless. However, solid grains are not perfectly spherical objects,
but rather have a geometrically rough surface. The interlocking of their asperities creates tangential
friction forces at their contact [297]. In a static configuration, the friction keeps the particles static
even when external forces (e.g. gravity or load stress) would cause the same packing to collapse if
friction was absent, as shown in Fig. 6.1d. The stability criterion is usually well-described by the

133



Amontons-Coulomb law relating the tangential force Ft to the normal force Fn

Ft ≤ µFn (6.3)

where µ is the static friction coefficient, and µ ≥ 0. Eq. eq6.3 gives an upper limit of the tangential
force for the packing stability as a function of the normal force. First, it constrains the rotational
degrees of freedom of every particle in the same manner that normal, frictionless contacts constrain
the translational degrees of freedom. By imposing a condition on the tangential forces, every
contact now imposes three additional constraints : in the limit of large packings, the Maxwell
rigidity criterion then becomes

b ≤ (d+ 1)j, (6.4)

which is a known result for frictional grains [37], where the isostatic number Zµc = 4 in 3D and
3 in 2D, as represented in Fig. 6.1e. The second consequence, closely linked to the first one, is
the hyperstaticity of the packing : considering a given configuration of particle positions, the set
of interparticle forces satisfying the stability of the packing is not unique [298]. Eq. (6.3) only
gives an upper limit to the tangential force. A static particle configuration can thus be sustained
by a whole range of normal and tangential forces [32]. This under-determination led some authors
to consider the forces inside a granular material as a statistical ensemble whose configuration is a
particular statistical realisation happening with a given probability [298, 299, 300, 113].

The measure of the contact forces between two grains in a packing is no simple matter : acqui-
sition of the grain position inside of a 3D packing requires advanced imaging techniques.Commonly
used techniques are confocal fuorescence microscopy for micrometric grains [114, 89, 35, 62, 301,
95, 96] or computer-assisted tomography for micro- to millimetric grains [302, 303, 304, 305, 58].
If the grains are sufficiently soft, the contact force may then be deduced from the measure of the
deformation, requiring an a priori knowledge of the constitutive law of the material [35, 302]. As
we showed in Chapter 3, this approach is fundamentally flawed by its pairwise assumptions, whilst
a proper account for non-pairwise interactions has yet to be proposed in the force determination
of 3D bubbles [109]. The undetermination of normal contact forces makes the makes the study of
their transmission through particulate materials a difficult task for standard grains. It has thus for
long been studied with photoelastic discs [287], shown in Fig. 6.1f, where the normal forces can be
deduced from their optical transmission properties. The photoelastic properties of materials arise
from the variation of the refractive index with the material stresses ; an anisotropic deformation
thus gives rise to a birefringent material, with deformation-dependent refractive indices. The evolu-
tion of light polarisation when passing through the material thus provides a measure of its internal
stress, and in particular the anisotropy of the internal stresses. By placing the photoelastic discs
in a proper experimental setup, the stress can be measured as a function of the transmitted light
intensity, with the number of interference fringes increasing with the applied stress. This simple
experimental setup allowed, in its first iteration by Dantu [286], to establish a first measurement
of the stress propagation through powdered materials , with visually striking results reproduced in
Fig. 6.1d.

The interparticle forces in granular materials show complex and surprising behaviours, which
further distinguish them from homogeneous, field-averaged approximated models. In Section 6.1.1,
we review the descriptive approaches used to characterise granular systems, based on the organi-
sation of their grains and the interaction forces between these grains. In Section 6.1.2, we present
how these contact and force networks are described using tools from network theory, which easily
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switch between lengthscales and can correlate structures at the grain scale and at the packing
scale. In Section 6.1.3, we focus on the applications of these tools to the study of foams and their
deformations.

6.1.1 Organisation and force transmission in granular materials

Jammed materials consist of large collections of interacting grains in a mechanically stable config-
uration. The typical size of these grains ranges between 1 and 1000 µm [32], where the random
motion coming from thermal agitation is negligible : grains are usually taken as a-thermal parti-
cles, and the configuration of the assemblies is modified by interparticle interactions and external
fields alone. For that reason, spontaneous rearrangements do not occur, trapping granular systems
in metastable configurations of local energy minima that may differ significantly from the global
minimum. This local entrapment can be overturned by injecting energy in the system to make it
explore its configurations, i.e. by tapping the granular materials repeatedly or by allowing fluid flow
through the packing, increasing the packing fraction in the process [306, 307, 308, 309, 310, 311],
as represented in Fig. 6.5.

This variability in the organisation at the grain level for configurations seemingly identical at
the packing level, and the large number of particles taking part in the same packing are strong
incentive to describe granular systems with the tools of statistical physics. This conceptual leap
was first pushed forward by Edwards et al. [312, 313, 117, 314], who replaced the Hamiltonian
description of the microstate by a volume function W ({ri}) of the particles. For the sake of sim-
plicity, we will describe here the Edwards statistical ensemble applied to rigid, monodisperse hard
spheres : it can be readily extended to soft spheres and grains of any arbitrary shape [315].

We consider an assembly of N monodisperse rigid spheres, with a configuration of particles
being described by the set of positions of all the centroids {~r1, ~r2, ...~rN}. A configuration is defined
as jammed if it satisfies both mechanical equilibirium (i.e. force and torque balance) and excluded
volume constraints. For monodisperse spheres of radius R, this constraint is expressed as

∀i 6= j, |~ri − ~rj | ≥ 2R, (6.5)

meaning that any two sphere centers must be at a distance at least equal to twice the radius of
the spheres. As sketched in Fig. 6.2a, noting ~dia the vector joining the particle center ~ri to the ath

contact point, and ~f ia the force exerted on particle i at this contact point, the mechanical stability
conditions read as ∑

a∈∂i

~f ia = 0, i = 1, ..., N (force balance), (6.6)

∑
a∈∂i

~d ia × ~f ia = 0, i = 1, ..., N (torque balance), (6.7)

where ∂i is the set of interfacial contacts of particle i. For frictional particles, normal f ia,n and tan-
gential f ia,t components of the contact force are related through the Amontons-Coulomb inequaltiy
(Eq. (6.3)), with the additional constraint

|~f ia,t| ≤ µf ia,n, i = 1, ..., N (static friction). (6.8)
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The contact forces are in most situations purely repulsive, and produce a counterforce of equal
magnitude and opposite direction, as implied by Newton’s third law. These two conditions are
expressed as

~d ia · ~f ia < 0, i = 1, ..., N (Repulsive forces) (6.9)

~f ia = −~f ja (Newton′s third law) (6.10)

where j is the index of the particle in contact with particle i at the contact point a. The mechanical
constraints expressed in Eqs.(6.6)-(6.10), along with the excluded volume constraint of Eq. (6.5),
are necessary and sufficient to define a jammed state. The volume of this state is related to the
configuration of its particles {~r i} by the volume function W, with

W({~r}) =
N∑
i=1

Wi(~r
i). (6.11)

The microcanonical Edwards ensemble relies on the assumptions that a system of N particles,
occupying a volume V , do so such that every configuration {~r} leading to the same volume is
equally probable. This assumption implies that macroscopic properties can be computed as ensem-
ble averages over jammed configurations of equal probabilities, with the volume of the system as
an external control parameter. This uniform probability distribution of the configurations allows
for a simple epxression of the partition function Θjam as a sum of the possible configurations under
the constraints of mechanical stability and hard-core repulsion, along with a granular entropy S(V )
and number of microstates Ω(V ). The form of the partition function is of no interest in our case :
interested readers are refered to Eq. (10) in [315].

As the system is controlled by the volume function defined in Eq. (6.11), an accurate segmenta-
tion of space is required to define a volumeWi associated to every particle i. Previous work showed
that the set Voronoi diagram was the most practical way to tesselate a 3D space unambiguously
[316, 317]. As shown in Fig. 6.2b, this method proceeds by defining, for every body of the packing,
a Voronoi cell in which every point is closer to the surface of the grain than to any other point
[58, 318, 319]. Compared to other methods, such as simple Voronoi diagrams, the set Voronoi
diagrams work directly with the surface of the grains, rather than their centroids. This feature
is particularly useful for grains that are not isotropic spheres, e.g. deformable drops and bubbles
[320, 98]. Equipped with this simple volume segmentation procedure, one can properly characterise
isostatic granular packings using Edward’s volume ensemble.

For isostatic systems, the ensemble of the contact forces can be determined from the positions
of the particles. The configurational degrees of freedom are therefore sufficient to characterise the
system, in what is called the volume ensemble [315]. On the other hand, for hyperstatic systems,
the underdetermination of the contact forces decouples the forces from the positions of the grains.
The force network comprises an ensemble of contact forces obeying the mechanical constraints
Eqs.(6.6)-(6.10), with a fixed set of grain positions {~r} [299, 300, 298, 284]. An experimental illus-
tration of the ensemble of possibilities of forces distributions in hyperstatic packings was provided
by Kollmer et al. [113] who compressed repeatedly a packings of 2D photoelastic discs, changing the
distribution of contact forces without affecting the positions of the particles, as shown in Fig. 6.3.
The spatial distribution of the contact forces, however, was found to be connected to the structural
organisation of the packing, indicating a link between mechanics and geometry. The structural
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Figure 6.2: a) Schematic representation of the contact forces applied on a particle i. The vector ~d ia joins the center of the grain

to the ath contact. Figure from [315]. b) Example of set Voronoi tessellation. Each colored particle is given a set Voronoi cell,

corresponding to all the points closer to its surface than to that of any other particle. Figure from [318].

organisations of the packing can thus be used to infer the most probable force distributions, though
finding the most accurate measure is still an unanswered question. The quantitative descriptors of
forces and contact networks are detailed in Section 6.1.2.

In the cases where the contact forces can be measured, their distribution P (f) can be com-

Figure 6.3: Same packing of photoelastic discs undergoing compression cycles. The distribution of the forces, visible as the

white light transmitted through the discs, changes between the compression cycles without the discs changing their positions.

However, this average force exerted on one disc over the ensemble of configurations is correlated to its position in the packing.

Figure from [113].

puted, which gives a comparative description of the different realisation of the force networks.
Experimental and numerical results showed that this force distribution exhibits a peak around the
average force < f >, a power law with a weak negative exponent for forces smaller than average,
and an exponential decay for forces larger than average [90, 321, 35, 322, 323] . An example of
force distribution is shown in Fig. 6.4d. The stress is not distributed homogeneously throughout
the packing : the large stresses are concentrated along the contacts between aligned grains, forming
force chains of large amplitude [324, 323, 325] correlated on length scales larger than the grain size.
The existence of directions of prefered force propagation is a phenomenon first observed by Dantu
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[286] when looking at the compression of photoelastic materials : the visualisation of the chains is
a striking illustration of the inhomogeneities in the stress propagation, shown in Fig. 6.4c.

Figure 6.4: a) Packing of photoelastic discs. The plate at the top of the packing imposes the external pressure. b) Polarised

light transmitted through the stressed discs. The intensity and number of fringes are used to deduce the contact forces [287].

c) Reconstructed force network. The thickness of the blue lines indicates the normal force amplitude. Images taken from [112].

d) Distribution of the contact forces in a silicone-in-water emulsion imaged with confocal microscopy. The amplitude of the

forces are deduced using the Princen model [94]. Figure from [35].

Although very visual, a rigorous definition of a force chain is not straightforward. Some authors
[326, 327, 328, 329, 330, 331, 332, 325] define the force chains by removing from the representation
all forces below the average force < f >. These force chains can be analysed in terms of force
probability distribution and chain length [333]. However, contact forces smaller than average also
seem to play an important role in the stabilisation of the load-bearing force chains [334] : an a
priori threshold could miss crucial information about the packing stability. For that reason, other
authors [111, 110] define a force chain as an ensemble of grains applying more forces on each other
than on other grains, based on complex network tools such as community detection [335, 336]
that do not exclude weak contact forces. The statistical tools of complex networks can be used to
quantitatively analyse these force chain networks. The different scales involved, from the grain to
the force chain to the packing, are analysed using quantitative descriptors adapted to each scale :
this description thus simultaneously encompasses microscopic, mesoscopic and macroscopic scale,
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and is a promising tool for infering the relations between grain and packing properties. A detailed
description is given in Section 6.1.2.

The structure of force chains stabilise the packing, bearing most of the load and maintaining
the configuration of the packing until it buckles. During the mechanical loading, force chains form
in the direction of major principal compressive stress [337, 338, 55, 339, 340], as shown in Fig.
6.5b : the alignement of non-sliding contacts bear most of the load, with highly anisotropic stress
and deformation of the contact geometry [334]. Other contacts, with forces smaller than average,
leave the grains free to slide with respect to each other, with an isotropic stress state making this
secondary network more akin to a fluid. Furthermore, the arrangements of weakly stressed grains
also adjust with a geometrical anisotropy of deformation orthogonal to the anisotropy of the force
chains deformation, stabilising the principal force chains against buckling [334].

Figure 6.5: a) Evolution of the packing fraction of spherical beads with tapping intensity, with the maximal force of the

tapping expressed in units of gravitational acceleration. The packing undergoes an irreversible transition from weakly packed

to densely packed organisation, and remains in this densely packed state afterwards. Figure from [310]. b) Force networks

between PDMS shells imaged with fluorescence confocal microscopy. The forces are deduced from the indentation depth. The

packing is uniaxally compressed in the direction parallel to the gravity (x-axis) at grain volume fraction of φg = 0.699 (top)

and φg = 0.908 (bottom)). Force magnitudes are represented with a color code as multiples of the average force. Figure from

[96].

The pattern of the force chains impact the sound propagation in the packing [331, 332]. However,
describing large ensembles of forces and making comparisons between different ensembles to find
common features and differences is a difficult task because of the large set of data required to
fully describe the packings, and the different length scales involved in their mechanical properties.
Compared to other large ensembles of interacting elements (e.g. gasses or ionic solutions), the
grains in granular systems only interact directly with their contact neighbours.

As we showed in Chapter 3, the interactions between bubbles/drops are intrinsically non-
pairwise. Nonetheless, they remain based on contact forces, and distant bubbles/drops do not
interact directly, keeping the number of independent contact forces relatively low. Comparatively,
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this number grows a lot faster with the number of elements in systems where elements interact
simultaneously through long-range forces. This particularity of granular materials fostered their
study in the light of network theory, which we proceed to describe in Section 6.1.2. The tools de-
veloped to characterise large, complex networks have proven fruitful to yield some insight into the
mechanics of large grain ensembles. Our understanding of foam and emulsion mechanics is likely
to be similarly enriched by such quantitative description of their interactions at the bubble/drop
scale.

6.1.2 Networks in granular science

Granular systems consist of macroscopic grains interacting through contact forces. As discussed in
Section 6.1.1, the contacts can be localised and the forces can be measured, and the granular pack-
ings can be described by the number and the geometrical organisation of the contacts, as well as the
distribution and spatial orientation of the contact forces. Since most grains are undeformable, the
interactions remain pairwise in a good approximation. As such, a description inspired from graph
theory has been successfully applied to granular systems for decades [341, 342, 343, 344, 345]. We
will describe the principal tools of graph theory applied to the description of granular systems.

A mathematical graph G is composed of a set V of vertices, connected in pairs by a set E of
edges, as represented in Fig. 6.6a. In its most simple form, the graph is undirected, meaning that
the edges have no preferential direction between the vertices they connect. In the case of weighted
graphs, every edge has a given weight wi, representing for example the strength of the bond between
the two vertices. The graph G can be quantitatively described by the organisation of the bonds
between the vertices : for example, the average number of edges < k >, the frequency of clusters
of three connected grains C or the number of l-paths connecting l particles in a closed loop can
describe a graph without assuming the nature of the interactions between its edges.

Figure 6.6: a) Example of a weighted network. Edge weights are indicated with the purple numbers along the edges. b)

Adjacency matrix and its visual representation. c) Weighted adjacency matrix and its visual representation.

Granular systems can be readily translated into graphs [346], like the one represented in Figure
6.7a. The vertices are replaced by the centers of the grains, and the edges by the contacts between
the grains. The list of the edges are summarised in the adjacency matrix Aij , as shown in Fig.
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Figure 6.7: a) Example of the translation of a granular packing into a gaph. The centroids of the particles take the place of the

vertices, the contacts become the edges, and the contact forces give the weights of the edges. The rigidity of the structure can

be estimated with the help of the edge weights and the l-cycles, with 3-cycles favoring the rigidity of the packing. Figure from

[346] b) Evolution of the number of l-cycles in 2D simulations of 2048 bidisperse harmonic discs. Only the number of 3-cycles

increases with the packing fraction beyond the jamming point, contributing to the increasing rigidity beyond jamming. Figure

adapted from [347].

Figure 6.8: a) Example of the breakage of bonds between grains in a packing of rigid spheres subjected to shear. Four grains

are touching in pairs, with the edges represented in black. During the deformation, the central edge is broken, transforming two

3-cycles in one 4-cycle. The broken edges are represented in green. The multiplication of broken edges (bottom) correspond to

the yielding of the packing. Figure adapted from [348]. b) The diminution of 3-cycles number in shear experiments correspond

to the diminution of the rigidity, with a buckling of the force chains when the number of 3-cycles is minimal. Reformation of

3-cycles correspond to the rigidification of the structure post-buckling. Figure from [330]
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6.6b, defined as

Aij =

{
1, if there is an edge between i and j

0 otherwise
. (6.12)

where i, j ∈ {1, ..., N}. The adjacency matrix thus encodes the contacts between the grains. The
force of the interactions between the grains can be encoded in the matrix by giving to each edge
a weight wi corresponding to the contact force [290, 112] : the weight matrix Wij encodes this
information as shown in Fig. 6.6c, and is written as follows

Wij =

{
wij , if there is an edge between i and j

0 otherwise.
(6.13)

Adjacency and weight matrix are invariant by permutations of rows and columns, as the in-
formation they carry is not modified by these operations. Similarly, the displacement of a vertex
does not change the properties of the network, as long as its connectiviy properties are preserved.
With that regard, a granular system is a particular case of spatially embedded networks, where the
positions of the vertices matter to understand the properties of the ensemble [349]. The formation
of contact points between the grains at jamming and during deformation depends on the proximity
of the grains.

A lot of informations about the structure of the packings can be extracted from the adjacency
matrix Aij : for instance, the contact number Z is expressed in graph theory as the coordination
valence ki of a vertex. For an unweighted graph, the degree of vertex i is expressed as

ki =

N∑
j=1

Aij . (6.14)

The average degree < k >, equivalent to the average contact number < Z >, is computed as the
mean degree of the network

< k >=
1

N

N∑
i=1

ki =
1

N

N∑
i=1

N∑
j=1

Aij . (6.15)

The degree distribution is a straightforward feature of a graph at the grain-scale. But graph the-
ory offers quantitative descriptions of the structure of a packing at a scale larger than the grain.
For instance, an l-cycle is a path of l consecutive edges, starting and finishing at the same vertex
without passing through the same vertex twice. A 7-cycle and a few 3-cycles are highlighted in
Fig. 6.7a. These structures of intermediate scale contribute to the stabilisation of force chains
during compressions [334]. In compression experiments, new contacts form with increasing excess
packing fraction ∆φg = φg − φ∗g, as explained in Section 3.1.1. The packing rigidifies with the
increase of the contact number [37], making a simple connection between grain-scale organisation
and macroscopic properties. Beyond the grain scale, the evolution of the local arrangement of the
grains is also found to be linked to the changes in rigidity of the packing. As such, the formation of
3-cycles and the apparition of small forces they bear is linked to the jamming transition, as shown
by Arevalo et al. [350]. Away from jamming, the reorganisation of the grains with excess packing
fraction is well described by counting the evolution of the number of every cycle size [347], as
shown in Fig. 6.7b. The rigidification of the packing above jamming is linked to the increase in the
number of 3-cycles, the only cycle length varying with packing fraction above jamming. Similarly,
the number of 3-cycles in a packing subjected to shear decreases when approaching the yield strain,
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before increasing again after yield [330], as represented in Fig. 6.8b. The breakage of bonds can be
used to monitor and localise yielding in the sheared packing [348]

The heterogeneities in the spatial distribution of contat forces fosters the formation of structures
of intermediate scales, also called meso-structures. In network theory, these structures are often
described in terms of community structure. Owed to the large scope of systems encompassed by
networks, a general definition of a community can be difficult to formulate. In the case of granular
systems, a community is a group of vertices strongly interconnected with each other in terms of
total edge weights, but sparsely connected with other groups [346, 335]. The whole packing can
then be separated in modules made of large-scale structures, which can in turn be subdivided into
smaller structures all the way down to the single grain. The intrication and the hierarchies of these
modules gives a comprehensive picture of the structures relevant to the properties of the packings at
all scales, without requiring a priori assumptions about the most important scales. With the tools
of community detection, the detection and characterisation of force chains can include the weak
forces without setting an arbitrary threshold, important for the stabilisation of force chains [334].
Community detection is a very active field of network theory, owed the wide variety of systems
described with networks : interested readers are refered to the dedicated literature [335]. Geomet-
rical and topological descriptors describing the force networks can be used to compare experimental
packings and realisations of the force network ensemble described in Section 6.1.1 [111].

Different descriptors focus on different scales of the systems, which in turn are better suited
to describe mechanisms happening at these scales. For instance, the mechanical response of a
granular packing to an acoustic excitation has been found to be linked to different scales of the
weighted force network [110]. The response of a packing to an external oscillating field was found
to be best described at the packing scale, while its dissipative behaviour is more linked to the local
environment of the grains. This separation of scale provides insight on how to tune one particular
mode of propagation withouth affecting the other : for instance, changing the interparticle friction,
which is directly linked to the local environement of the grains [43], and which directly affects the
topology of the contact network [327].

The different lengthscales of analysis do not require any assumptions on their relative intrica-
tions, as long as the interparticle forces can be correctly determined. Network theory is an insightful
tool to describe these different lengthscales, and how they are affected by the changes in the inter-
grain interactions. In foams and emulsions however, the deformability of the particles makes the
force determination in three dimensions a daunting, still unresolved task [109]. Nonetheless, the
unweighted contact network is correlated with the force network. As shown by Kollmer et al. [113]
for 2D photoelastic discs, the position of a particle in the contact network can help to predict the
average force exerted on it over the sets of realisations of the force network ensemble. In particular,
the betweenness centrality b, defined as

bi =
∑
j 6=k 6=i

sjk(i)

sjk
, (6.16)

was found to be a good predictor of the average pressure exerted on the particles over repeated
compression cycles. This betweenness centrality of a particle i is a measure of the number of
shortest paths in the contact network passing through i, where sjk is the ensemble of the shortest
paths between particles j and k, and sjk(i) is the number of these paths passing through i. The
length of a path is in that case a topological measure, based on the number of vertices passed
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through following the path. The correlation between betweenness centrality and average pressure
of the packings of Fig. 6.3 is shown in Fig. 6.9. Even in the absence of a proper force network, the
determination of the unweighted contact network and of the set of relevant descriptors, associated
with a quantitative measure of the deformations of the drops/bubbles, is already a first important
step towards a comprehensive description of foams and emulsions. In the next Section, we describe
how the tools of network theory are applied to foams and emulsions.

Figure 6.9: a) Average pressure exerted on the disc over compression cycles. b) Betweenness centrality of each disc, computed

from the set of contacts. c) Relation between average pressure and betweenness centrality, average over 48 and 88 compression

cycles. Although being obtained from statistical average, the average pressure and the position of the discs inside the packing

are correlated. Figures from [113].

6.1.3 Foams as stress-transmitting particulate materials

Foams, as other granular systems, are composed of individual bubbles free to move with respect to
their neighbours. Each foam state is a particular realisation of the set of accessible configurations.
Because of the large number of degrees of freedom and the lack of thermal agitation, foams are usu-
ally trapped in metastable states, described by well-established geometrical rules [75, 83, 351]. The
transition between different microstates can however be forced by imposing external shear. The
differences in energy between states explored in that way are usually small enough to be negligible
compared to the total surface energy, with a relative surface variation below < 2 % [352, 353, 354],
making foams good candidates for out-of-equilibrium model system described within a microcanon-
ical ensemble. Durand [351, 33] showed that a 2D foam could be treated as a reservoir of facets
and curvatures, and effectively described the variation in bubble shape and neighbour number as
fluctuations in the foam microstates.

Foams, as bulk materials, are composed of a continuous phase with discrete inclusions. Unlike
other materials composed of (quasi-)rigid grains, bubbles are highly deformable. An external
stress applied on a foam/emulsion hence deforms its individual constituants whilst preserving their
inner volume. In the limit of small applied stress, where bubbles deform without modifying their
respective positions [65] as represented in Fig. 6.10a, the stress-strain relation is thus a direct
consequence of their deformability and their geometrical organisation [65, 72]. The mechanical
work associated to a foam deformation is thus always expressed as a function of the increase in
interfacial area, provided that no structural rearrangements occur durring the deformation. This
is found for instance in the expression of the shear modulus G0 = α γ0

R32
φ(φl − φ∗l ) [45, 77, 78]

where R32 is the Sauter mean bubble radius R32 =< R3 > / < R2 >, and the osmotic pressure

Π = 7.3 γ0R0

(φl−φ∗l )2√
φl

[71, 46].
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Figure 6.10: a) Example of the deformation of a foam under shear, simulated by Surface Evolver. Figure from [65]. b) The shear

deformation rearranges the bubbles by switching the neighbours when a critical stress is reached. A local rearrangement locally

decreases the shear stress. Figure from [65]. c) Displacement field of a 2D packing of frictionless, harmonic discs undergoing

shear, in a dense packing (left) and slightly above (right), where the displacements are less homogeneous. Figure from [34]. d)

Decomposition of the stress transmitted between two bubbles comes from the contact interactions (top) and the viscous friction

between bubbles in relative motion (top). Figure from [34].
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The stress exerted on a bubble inside a foam has two origins, shown in Fig. 6.10d : a first,
direct contribution comes from the stress transmitted between the bubbles. The expression of this
stress depends on the interaction law considered. As we explained in Chapter 3, in foams this
interaction presents the particularity of being intrinsically non-pairwise : the deformed bubbles
exert extra stresses on their neighbours, rigidifying them with increasing number of neighbours. A
second contribution comes from the viscous friction between flowing bubbles, e.g. when the defor-
mation triggers rearrangements between layers of adjacent bubbles as shown in Fig. 6.10c. This
stress is linked to the relative velocity of bubbles in contact, and is thus dependent on the velocity
gradient between two neighbouring bubbles/drops |∆v| [355, 298]. When the displacement field is
strongly non-affine, the velocity gradient can be locally higher because of the strong interparticle
displacements, as shown in Fig. 6.10c. This combination of static and dynamic stresses gives foams
their rich rheological properties, being non-linear both with shear frequency and amplitude [65, 40].

Because of the many-body interaction, the contact forces cannot be determined by considering
only the local deformations. Instead, the deformations at the different contact points needs to be
taken into account simultaneously. Dunne et al. [109] recently showed in 2D numerical foams that
the contact forces could be infered from the bubble deformations. The application to 3D foams in
experiments is still an open task due to the lack of appropriate imaging techniques. In numerical
3D foams, some information can be extracted from the deformation of the bubbles. Because the
deformation of a bubble increases with the applied forces, a measure of the deformation can serve
as an estimator of the magnitude of the contact forces. Minkowski tensors have been shown to
describe exhaustively the deformation of bubbles [356, 357, 358, 359, 360], independently of the
reference frame. Evans et al. [361] showed in Surface Evolver simulations (Fig. 6.11a-b) that the
deformation of bubbles in a compressed foam, defined as the second invariant of their interface ten-
sor, was increasing with compression amplitude, and that the deformation of bubbles was spatially
inhomogeneous, with large chunks of bubbles exhibiting stronger than average deformations. Their
definition of the deformation closely resembles the W 0,2

1 Minkowski tensor, describing the isotropy
of the distribution of normal vectors of the interface. A similar approach has been adopted by
Giustiniani et al. [50] to characterise the deformations of drops covered with an elastocapillary
interface in a static emulsion. The ratio of extremal eigenvalues of the moment tensor W 2,0

0 was
found to discriminate efficiently between the drops shapes, drawing a relation between the physical
properties of the interfaces and the behaviour of the drops in the packing.

The lack of information on the contact forces can be overcome by a proper description of the
deformations they cause. This deformation-based approach is already successfully applied in gran-
ular systems to recover the interparticle forces, although by neglecting the impact of deformability
on the assumption of pairwise interactions [325, 324, 55, 301, 302]. Because of the large choice in
descriptors that can be used to describe deformed shapes, the identification of the most predictive
ones is still an unanswered question. An extraction of the interface of the bubbles or drops is
nonetheless a necessary step for the analysis of their shape. In this thesis, we therefore developed
a segmentation algorithm aimed at getting the location of the border voxels of drops in 3D images
of emulsions obtained by X-Ray tomography. This information is often overlooked in commercially
available softwares. In Section 6.2, we present the fundamentals of the X-Ray tomography for emul-
sions before introducing in Section 6.2.3 a more detailed description of the algorithms developed
to analyse these images. To test the algorithms, we use them first on numerical simulations of 3D
foams in Section 6.3.
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Figure 6.11: a) Stretching of a foam in a Surface Evolver simulation. Color indicates the anisotropy of the bubble, with red

and blue being low and high anisotropy, respectively. b) Visualisation of the 256 most deformed bubbles in the foam. The

highly deformated bubbles are localised in specific zones of the foam, rather than being homogeneously distributed. Figures

from [361].
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6.2 X-Ray tomography

Most available structural analysis of experimental foams is limited to 2D bubble rafts, or confined
to the first layers of 3D foams as multiple light scattering renders the imaging of the inside of the
foams by light impossible [303]. This limitation to the interfacial bubbles forbids the determination
of their bulk structure, where most material properties stem from. Furthermore, as foam properties
are intrinsically statistical because of the variations in bubbles sizes and shapes, the description
of a large number of bubbles is required to understand foam properties [354, 351, 33]. Lambert
et al. [305] proposed the first application of X-Ray tomography to the imaging of liquid foams,
which proved to be a reliable tool to describe large sets of individual bubbles in bulk foams. This
method has since been successfully reproduced, allowing notably to investigate the structure of bulk
foams different from the structure in its interfacial layers [303] and the slow structural evolution of
stabilised foams [304].

In this Section, we describe our X-Ray tomographic analysis of the droploons-composed emul-
sions described in Chapter 5. In Section 6.2.1, we explain the principle of X-Ray tomography
imaging. In Section 6.2.2, we present its application to emulsions, the particularities encountered
in these systems and how they can be taken care of experimentally. In Section 6.2.3, we respond to
the need of segmentation and characterisation programs with user-defined parameters expressed in
the literature [58, 305] by proposing a home-made segmentation algorithm, where every parameter
can be tuned according to the needs of the experimental system considered. We also propose a
physically-informed solution to the problem of neighbour definition evoked in Lambert et al. [305].
Due to time constraints, a robust description of experimental emulsions could not be provided :
rather, we present in Section 6.3 the results of our algorithm when it is applied to numerically
generated foams.

6.2.1 Principle of X-Ray tomographic imaging

X-ray tomography is an imaging technique relying on the local variation of the absorption of
X-Rays in a heterogeneous sample. X-Rays penetrate the sample, with an intensity decreasing
exponentially with the penetrated width l of the material and the particular absorption coefficient
ki of the material, following the Beer-Lambert law [362, 363]

I = I0e
−kil. (6.17)

Placing a camera with a scintillator behind the sample, as shown in Fig. 6.12a, one can collect
the transmitted X-rays to construct radiograms, where the differences in materials and absorption
coefficients ki appear as differences in transmitted X-Ray intensity. In computer-assisted tomogra-
phy (CT), the sample is rotated 360° to make radiograms at different angles, represented in Fig.
6.12a. With the help of reconstruction algorithms, the sample can be reconstructed in three dimen-
sions [364], with every cubic voxel of the reconstructed volume associated to an X-ray absorption
coefficient, and hence, material. A slice of a 3D reconstruction of one of our emulsions is shown
in Fig. 6.12b. The determination of the drop contours is performed by our home-made algorithm
developed specifically for our samples, described in Section 6.2.3. The technical details and detailed
experimental protocols used in this thesis are given in Section 2.5.

The application of X-Ray CT to granular materials, formed of two distinct materials, has proven
successful to investigate the static and dynamic properties of granular packings [58]. Because of
the low deformability of traditional granular media, the automatic segmentation is simplified by
looking at shapes close to that of the isolated grain. Commercially available softwares thus already
provide efficient algorithms to reconstruct horizontal slices from absorption radiograms, with an
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Figure 6.12: a) Principle of X-Ray tomography. The sample is rotated 360° between an X-Ray source and a detector. With

the absorptin data obtained from the different projections, a 3D image can be reconstructed b) Example of slice obtained

from X-Ray CT. c) Example of a reconstructed emulsion, obtained with the imaging methods described in Section 2.5 and the

segmentation algoritm decribed in Section 6.2.3.

example of horizontal slice shown in Fig. 6.12b. For foams and emulsions, the high deformability
of the grains and the small thickness of the films separating grains (of the order of the micron)
make the segmentation a sensitive and difficult step of the CT reconstruction. In Section 6.2.2,
we explain how X-ray CT can be applied to the study of foams and emulsions, and the specific
techniques developed in this study to obtain reliable 3D informations.

6.2.2 X-Ray tomography in the analysis of emulsions

Imaging the inside of foams and emulsions with optical techniques is a long-standing problem, due
to the multiple reflections and refractions at every interface [303]. Common imaging techniques
focus on the bubbles close the walls containing the foams, where the bubble size and liquid fraction
can be measured directly, as shown in Fig. 6.13a-b. The accessible structure of foams is therefore
limited to the first layers of its surface, with no information accessible about its bulk structure.
Recently, Meagher et al. [303] investigated the bulk structure of a foam with X-ray CT, and found
an organisation closer to a random Bernal packing, whilst its first 5 interfacial layers were following
a face-centered cubic lattice organisation. This structural change has direct consequences on the
mechanical properties of, e.g., the mechanics of the structure obtained from the solidification of
the continuous phase [12]. A good understanding of the foam structure thus requires imaging
techniques able to probe the bulk foam. This has been achieved for emulsions where fluorescent
dyes were grafted at the interface of the drops [114, 35, 322, 89, 62]. This method, however, is
highly dependent on the chemistry of the system under consideration, and may not be applicable
in every situation. X-Ray computer tomography is a more adaptable solution to the imaging of
foams and emulsions.

The multiplication of the number of angles of view makes the X-ray CT a slow image acquisition
technique, with characteristic acquisition time for a benchtop device ranging around 4h-8h for a 5
µm resolution. The evolution of the foam structure with drainage, coarsening and film rupture is
therefore susceptible to blur the radiograms and reduce the quality of the reconstruction. These
artefacts can be minimised by introducing a stabilising gas (e.g. perfluorohexane [304]) and image
the foam once the drainage is slowed down. In our PEG-in-silicone emulsions, we let the emulsions
stabilise for two days before imaging, limiting the importance of fast motions.

The deformability of the drops makes the segmentation of the grains more difficult, as their
shape cannot be fitted a priori. For too strongly compressed drops, the thickness of the thin film
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Figure 6.13: a) Example of the measure of a foam structure in a column foam setup. A foam is produced in a glass column by

blowing gas at the bottom of the column. The images are taken by a camera on the side of the column. The optical deviation

at the water/glass and air/glass interfaces can be minimised by placing a prism on the column wall. Figure from [365]. b)

Pictures obtained by the column foam setup. The position of the bubbles in the second layer is hardly distinguishable due to

the optical deformation. Image from [46].

can be below the resolution limit, and therefore indistinguishable from the drop phase. A particular
care must be addressed to segment drops that are wrongly merged because of the resolution limit,
as represented in Fig. 6.14a.

The strength of this segmentation procedure comes from its versatility and its ability to quickly
distinguish between a large drop and two small drops close to each others : with the help of the
EDM map, the peanut-shaped two drops structure is easily recognised as being composed of two
small drops. However, this segmentation procedure is blind to the shape of the interface, and can-
not determine its curvature. For that reason, one of the goal of the skin characterisation in Chapter
5 was to produce a skin thick enough for a simple segmentation of the drops, which would give
access to the curvature of the interfaces. The definition of neighbourhood in foams is long-standing
problem, appeared since the first images of foams in X-Ray tomography [305]. For (nearly) spheri-
cal particles, the shapes are usually fitted with the smallest enclosing circle (SEC) [95]. A contact
is then defined with reasonable accuracy as an overlap between two SEC. Because of the high
deformability of the bubbles, the determination of the contours can not rely on the assumption
of a spherical shape, and another definition must be found. In Section 6.2.3, we propose a new,
physically-informed way to determine the existence of contacts between bubbles, starting from the
datas extracted from tomographic reconstruction.

An efficient reconstruction of the foam provides quantitative description of its structure. Meagher
et al. [303] studied the geometrical organisation of bubbles in the bulk phase, and showed that
it was closer to a Bernal random packing than a crystaline structure. Over long timescales, the
same foam stabilised against coarsening with perfluorohexane was found to crystallise [304], with
a coexistence of face-centered cubic (FCP) and hexagonal close packing (HCP) structure despite a
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Figure 6.14: a) Example of two gas bubbles imaged with X-Ray CT. The thin liquid film is smaller than the picture resolution

(10 µm). The bubbles appear as one single continuous body. b) Computation of the euclidean distance map (EDM), where

every bubble voxel is attributed a value corresponding to its smallest distance to the outer phase. The two bubble centers

have the highest EDM value, while the bottleneck shape of their interfacial contact remains at low value. The peaks of high

EDM value are used as seeds for a watersheding segmentation, with the EDM used as contour lines for the segmentation. This

allows for an automatised segmentation of the merged bubbles. c) Example of bubbles segmented using EDM and watershed

segmentation. Figures from [305].

preference for the FCC structure because of its better mechanical stability [366]. This spontaneous
formation of a crystalline structure makes foams good candidates as model systems for the study of
3D crystalline structures, in addition to their history as model systems for 2D crystalline structures
in bubble rafts [367]. Even for unstable foams, repeated fast tomographic acquisition at regular
intervals can help to probe the bubble growth dynamics in the bulk phase [305].

The determination of the structure of a foam, i.e. its adjacency matrix Aij , requires to define
neighbourhood relations between bubbles. This relation, based on the forces exerted on each others
by the bubbles, depends on the interfacial contacts between the drops. This interface is highly
deformable, as we showed in Chapter 3 : a physically realist accounting of this deformable interface
is therefore crucial to understand correctly the neighbourhood relations between the bubbles. Most
commercially available softwares develop their own black box segmentation algorithms, based on the
most widely studied undeformable granular materials. These numerical tools are not well adapted
for deformable particles, where the distances between the centroids cannot suffice to conclude on
the presence of contacts between the bubbles. Contacts between bubbles are usually defined when
the distance between the centroids is smaller than the sum of their radii, and the interparticle force
defined as a function of this reduced intercentroid distance [114, 35, 322, 89, 368, 61]. However,
the compression of a drop in one direction leads to its expansion in the orthogonal directins,
potentially creating contact areas between bubbles further from each others than the sum of their
radii, especially for very deformed drops. For that reason, a physically relevant determination
of the neighbourhood relations must rely on the distances between the interfaces rather than the
centroids. In Section 6.2.3, we describe a home-made reconstruction algorithm developed to describe
the structures of foams and emulsions from the horizontal slices obtained from X-ray CT.

6.2.3 Development of an adapted algorithm for interface detection

Because of the deformability of the bubbles, the existence of contacts and forces between them
cannot be accurately infered from the distances between their centroids. Rather, the distance
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between two interfaces must be looked after. This requires to know the location of the voxels
delimiting every drop, an information not provided by currently commercially available softwares.
Furthermore, as explained in Section 6.1.3, the measure of drop deformation is a promising route to
understand foam mechanics when contact forces cannot be measured accurately. In this section, we
describe a home-made algorithm we developed specifically to access this interface position. Section
6.2.3 focuses on the treatment of images acquired in X-ray CT. In Section 6.2.3, we propose our
own neighbourhood definition, based on the physical details of a drop/drop contact. In Section
6.2.3, we propose quantitative descriptors that can be computed from the knowledge of the contact
relations between drops (or bubbles).

Workflow/output

With the tomographic setup and the reconstruction algorithms described in Section 2.5, the radio-
grams are reconstructed in slices in the horizontal plane, as shown in Fig. 6.12. The PEG drops
appear darker than the silicone phase, because of the lower absorption coefficient of PEG, the grey
level being inverted in the reconstruction. Before segmenting the emulsion, the slices are filtered to
enhance the contrast between the inner phase and the outer phase. Because the films separating
two drops can be very thin, the usual gaussian filter is replaced with a bilateral filter, known for
its edge-preserving properties [369, 370, 371, 58]. The kernel of the bilateral filter reads as

I(~r) =
1

W

∑
~ri ∈ Image

Gσs(~r − ~ri) ·Gσi (I0(~r)− I0(~ri)) · I0(~ri) (6.18)

where the usual Gaussian spatial kernel

Gσs(~r − ~ri) =
1

σs
√

2π
e
− |~r−~ri|

2

2σ2s

comes with a Gaussian kernel on the photometric distance (i.e. grey level difference)

Gσi (I0(~r)− I0(~ri)) =
1

σi
√

2π
e
− ||I0(~r)−I0(~ri)||

2

2σ2
i ,

with W being a normalisation coefficient W =
∑

~ri ∈ ImageGσs(~r−~ri) ·Gσi (I0(~r)− I0(~ri)). The two
standard deviations of the Gaussian filters σs and σi are two tunable, user-defined parameters that
can be modified depending on the input pictures to get the best resolution out of it. An example
of the impact of the variation of σs and σi is shown in Fig. 6.15a. The bilateral filter is applied
on every slice separately, as no standard library can perform a 3D bilateral filter in a reasonable
amount of time. To make every direction equivalent with respect to segmentation, the data block
containing the grey value of every voxel is rotated twice, as shown in Fig. 6.15b. The bilateral
filter is applied again between each rotation. The data block is then rotated back in place to its
original shape. The filtered images are saved for further analysis.

The grey values of the filtered images, shown in Fig. 6.16a, are normalised between 0 and
1. The image is then binarised, giving to every voxel a binary label of 1 if its grey level is in a
user-defined intensity range [imin, imax], and 0 otherwise, as shown in Fig. 6.16b. At this stage,
lonely voxels can be wrongly segmented in one phase or the other, resulting in holes in identified
drops or tiny spots of the silicone phase identified as PEG, as shown in Fig. 6.16b. These wrongly
labeled voxels are corrected using two morphological operations on the binarised images using the
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Figure 6.15: a) Bilateral filter applied to the same image with different filter parameters (σi, σs). The Gaussian blur filter is

shown for comparison. b) The two-dimensional bilateral filter is applied once in every direction to obtain a quasi-3D bilateral

filter.

Skimage library [372]. The erosion, performed with the morphology.erosion function removes the
outer voxels of the shapes with a binary label of 1, by attributing to every voxel the minimal label
found in its neighbourhood in a cube of 5 voxels length. The dilation on the other hand, performed
with the morphology.dilation, includes the voxels directly close to the shapes with a binary label of
1, by switching to the maximal label found the same cube. In the first step, the binarised images
undergo an erosion followed by a dilation. The tiny islands of voxels wrongly labeled as being part
of a drop disappear in the erosion, and do not grow back in the dilation phase. In the second
step, the images are transformed by a dilation followed by an erosion. This time, the small voxels
included in the drops that have been labeled as being part of the silicone phase disappear in the
first phase, and do not appear again at the end of the erosion. Wrongly labelled voxels are hence
suppressed from the final images. The shapes of the drops are however deformed by the successive
morphological operations. A careful choice in the filter parameters is up to the user, such as the
size and the shape of the filter box in the erosion and dilation operations.

After the binarisation step, the binary shapes are segmented and given a label. In our experi-
ments, the segmentation is performed following the procedure described by Lambert et al. [305],
described in detail in Section 6.2.3. The labeled picture is transformed in an euclidean distance
map (EDM), where every pixel identified as a bubble is encoded with the smallest distance sepa-
rating it from the continuous phase. For every shape identified with a label, the local maxima of
its associated EDM are identified with a minimal distance between their localisation, as shown in
Fig. 6.14b. The value of this minimal distance depends on the resolution and the grain size, and
typically lies around one drop radius. Peaks closer than this minimal distance are merged together.
At the end of this step, the shapes with more than one maximum are segmented using a watershed
segmentation algorithm [373] with the peak location as the seed (shown in red in Fig. 6.16b), and
the EDM as the basin. The shapes obtained from this segmentation step, shown in Fig. 6.14d
are taken as the final grain shapes. At this stage, every drop is labeled with an integer number.
This label can be visualised on the slices, where the grey value is 0 for the outer phase, and an
integer n > 0 for voxels that are part of a drop, as shown in Fig. 6.16c. The labeled images are
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Figure 6.16: Example of a segmentation procedure. a) Original horizontal slice. b) The same slice, binarised and with the

peaks obtained from the euclidean distance map procedure described in Section 6.2.2 inspired from Lambert et al. [305]. c)

Final segmented image obtained from the watershed flooding algorithm, using the seeds obtained from the euclidean distance

map computation.

then stored for further analysis. The voxels that form the contours of the drops are identified using
the measure.label function of the Skimage library. The extracted information is stored in three
different files in csv format : a first file containing the position of every centroid and its associated
label; a second file containing all the positions and labels of every voxel being part of a contour;
and a third file containing the number of voxels carrying the same label, which can be translated
as a list of the volumes of the drops. The workflow of the algorithm is represented in Fig. 6.17.

Surface-to-surface distance

The determination of a contact between two drops must rely on the proximity of their contours,
which can move due to the deformations, rather than on the positions of their centroids. The
surface-to-surface distance (S2S) between two drops is not uniquely defined, as a distance can be
computed between every pair of voxels belonging to different drops. For perfectly delimited spheres,
the smallest distance of all the sets of pairs would be a good definition of the S2S distance. But due
to the segmentation procedure, wrongly labelled voxels can mess up with this minimal distance.
We therefore choose a more robust approach to the S2S definition.

The potential pairs of touching drops are detected with a Delaunay triangulation of the space,
using the centroids of the drops as seeds. Every pair is further tested using the surface voxels
to compute the S2S distance. For every test pair, the voxels used to compute the pair distances
are selected as being inside a cylinder (with a radius of 40 voxels) joining the two centroids, as
represented in Fig. 6.18a. We compute all the distances between pairs of voxels from different
drops, shown in Fig. 6.18b. This part is computationaly expansive, and thus performed using a
C algorithm. All the pair distances are then stored in a file associated to the pair of drops. In
the last step, we summarise this file by associating every drops pair to the 5th centile of its pair
distance distribution represented in Fig. 6.18c, taken as the S2S distance betwen the two drops.
The final list of pairs associate every test pair with a S2S distance. A selection by the user of a
threshold distance can further discriminate between touching and non-touching drop, depending
on the physical properties of the emulsion considered.

Equipped with the computation of the S2S distance and a criterion of mechanical contact for
neighbour definition, we can thus construct the contact network of the emulsion. An example of

154



Figure 6.17: Worklfow of the segmentation/characterisation algorithm. The red boxes indicate the steps where the intermediate

data is saved saved.
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Figure 6.18: a) Schematic representation of the choice of interface voxels for the S2S distance computation. The interface voxels

are taken into account if they fit inside a cylinder joining the two centroids. They are represented by the red surface sections.

b) Illustration of the selection of the interface voxels for the S2S computation. The voxels used to compute the distances are

represented with the red points. c) The S2S method proceeds by computing all the distances between pairs of voxels belonging

to different drops in the set of pre-selected ones. d) Example of final distribution of S2S distances.
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a reconstructed emulsion, obtained from the slices of the sample shown in Fig. 5.17c, is shown in
Figs. 6.19 and 6.20 .In Section 6.2.3, we detail the quantitative descriptions used to characterise
the emulsion once the contact relations are known.

Structural description of emulsion systems

The simplest and most straightforward quantity obtained from the contact network is the coordi-
nation number Z, obtained for each particle as the number of time its label appears in the list of
pairs of drops closer than the defined distance threshold.

The location of the centroids of the drops gives more information about the geometrical or-
ganisation of the emulsion. This organisation can be measured using the bond orientational order
parameter, initially defined to discriminate between different lattices [374, 375]. Starting from a
centroid i and the vectors {~rij} joining it to the centroids of its Nb neighbours, the bond orienta-
tional parameter of order l is computed as

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2, (6.19)

where qlm(i) is the complex vector of particle i, defined as

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm (~rij) , (6.20)

with ~rij being the distance vector between drops i and j in the Euclidean space and the Ylm functions
being the spherical harmonics [376]. Different orders of l are sensitive to different symetries of the
lattices, with q6 values being higher for fcc structures [377, 378], as shown in Fig. 6.21. Bond
orientational parameters are a powerful tool to probe locally the geometrical structure. An approach
more resistant to noise can be adopted by taking the averaged form of the parameter as

q̄l(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2 (6.21)

with

q̄lm(i) =
1

Ñb(i)

Ñb(i)∑
k=0

qlm(k) (6.22)

where Ñb is the set of neighbours of the particle i, including i itself. As shown in Fig. 6.21, this
averaged form discriminates better between different lattice geometries, as the overlap between the
different lattices is less important in the averaged version of the bond orientational parameters. We
perform the computation of the bond order parameter with the PyBoo library [379]. In particular,
the parameters q4 and q6 have been shown to discriminate efficiently between standard lattices such
as body-centered cubic (BCC), face-centered cubic (FCC) and hexagonal close packing (HCP) in
granular materials, as shown in Fig. 6.21.

The knowledge of the contact network of the system also gives access to its Shannon entropy,
which Brujić et al. [89] links to the configurational entropy in the sense of the Edward ensemble
[314], as explained in Section 6.1.1. The density of state of a jammed system still being an open
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Figure 6.19: Example of the reconstruction of an emulsion, using the tomographic slices obtained from the sample from Fig.

5.17c. a) Reconstruction of the drop contours, obtained by excluding the drops close to the sample boundary. b) Reconstruction

of the contacts between the drops, obtained using the surface to surface distance method described in Section 6.2.3. The contacts

between the central drop (in green) and its neighbours are visualised by the red lines joining their centroids. c) Top view of the

upper layer of the emulsion. The contacts are represented by the red lines. Close, but not in contact surfaces are recognised

and not counted in the list of contacts.
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Figure 6.20: Visualisation of the contact network for the reconstructed emulsion showed in Fig. 6.19. a) The red lines join the

centroids of touching drops, shown in transparency. b) The same contact network, shown without the droplets. This contact

network can be analysed using the tools of network theory described in Section 6.1.2, as it is done in granular materials.
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Figure 6.21: a) Bond orientation parameter and b) averaged bond orientational parameters for particles interacting through

Lennard-Jones in molecular dynamics simulations. The four phases shown are body centered cubic (BCC), face centered cubic

(FCC), hexagonal close packing (HCP) and liquid phase (LIQ) corresponding to the random-close packing of granular materials.

Figures from [374].

question, we compute the configurational entropy following the procedure described by Brujić et
al. [89, 380]. A position is taken at random in the contact network, from which a sphere is grown
until a number n of vertices are included in it. The graph formed by the vertices is reduced to
its standard form (or ”class”), which is the same for topologically equivalent graphs. By doing
so, one can sort the graphs in classes, and count the number of graphs of each class. The class
determination is obtained by reducing it to its set of automorphisms generators Sf using Nauty
[381] as represented in Fig. 6.22a. The repetition of this operation by taking new random positions
at n constant gives a probability distribution of the graph classes and their probability of occurrence
p(Sf ). The Shannon entropy H of a cluster of size n is then defined by

H(n) = −
∑
i

p(i)ln (p(i)) , (6.23)

with i running over all the clusters of size n, assuming a Boltzmann constant kB = 1. The entropy
per bubble s is calculated as the limit

s = lim
n→∞

[H(n+ 1)−H(n)]. (6.24)

Clusters of infinite size are impossible to obtain due to the finite size of the emulsions, but a good
approximation of Eq. (6.24) can be obtained by taking the slope of H(n) when it increases linearly
with the graph size n, as shown in Fig. 6.22b.
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Figure 6.22: a) A graph transformation leaving its connectivity relations unchanged is called an automorphism. The ensemble

of automorphisms of a graph can be reduced to its set of automorphisms generators, constituting its class. Graph and set from

[381]. b) The slope of the Shannon entropy H(n) in its linear zone can be extrapolated to determine the average entropy per

grain s (expressed in units of kB). The decrease of the entropy at large graph size corresponds to size limitation effects. Figure

from [89].

6.3 Image analysis test case : numerically generated foams

Critically analysing the results obtained from the numerical procedures described in Section 6.2.3
is difficult, as it is a result of graph analysis after segmentation of deformed drops with no insight
on their impact on the packing organisation. To disentangle the different levels of complexity, we
first test our analysis tool on the packing properties of numerically generated foams (Section 6.3).
These foams avoid all segmentation issues, voxels already carrying a binary label obtained from
the foam generation simulation. The generation procedure of these numerical foams is described
in Section 6.3.1. The quantitative descriptors listed in Section 6.2.3 are shown in Section 6.3.2 for
three different foams, with structure randomisation factors of 0, 0.2 ad 0.3, respectively.

6.3.1 Generation procedure

The numerical foams are simulated using an ad hoc modeling method developed by Dabo et al.
[382], based on the physical description of the foaming process in a polymer melt with a chemical
blowing agent (CBA). In this process, a thermoplastic polymer melt is mixed with the CBA ho-
mogeneously. The melt is then heated to decompose the CBA and produce gas bubbles inside the
melt through nucleation events, which further grow through coarsening and coalescence. The foam
is then solidifed by decreasing its temperature, fixing its final morphology.

The foam formation is simulated through the growth of bubbles from nucleation sites, whose
position is determined following the procedure shown in Fig. 6.23. The sites of the FCC lattices
are displaced following an unit vector with a random orientation. The randomness of the foam
structure is tuned by multiplying the randomly oriented vector by a scalar called the randomness
parameter α. Once the bubbles are nucleated, their growth is simulated by solving the Navier-
Stokes equations for the interface position. The stress in the Navier-Stokes equations is composed
of an elastic and a viscous components, with coefficients varying with temperature. During the
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growth, bubbles exert a stress on the outer medium. When two interfaces come close to each
others, these stresses hinder further growth, keeping bubbles disjoint. The thickness of the wall
between two bubbles is hence not fixed ab initio, but rather defined by the parameters of the sim-
ulated material. In 3D, we opted for the face centered cubic (FCC) structure, more representative
of the structure of a high density foam than the BCC structure (adapted for low density foam
[85]) or the simple cubic structure [383]. All the cells are nucleated at the same time to adapt this
cell distribution algorithm in the microstructure generator. Different microstructure morphologies
can be generated by varying the spatial distribution of the cells, the process parameters and the
polymer melt characteritic properties. Variation in the spatial distribution is explored with the
parameter α, a structure randomisation factor moving all the nucleation sites by the displacement
vector αl0~Ui , where l0 is the mesh parameter of the initial regular distribution and ~Ui is a unitary
vector randomly oriented from the point i. α ranges between 0 and 0.3, α = 0 corresponding to the
regular FCC structure. Increasing α means increasing the disorder in the positions of the points,
giving more irregular structures as we show in Section 6.3.2

As shown in Fig.6.23b, at the beginning of the foam formation, each bubble nucleates with
identical radii and internal pressures. A numerical resolution of the Navier-Stokes equations allows
to simulate the bubble growth, adding the interfacial tension and the gas pressure to the stress of
the interface. These are solved using a Eulerian approach, described in [382]. A cubic grid of nodes
represents the geometrical domain on which the numerical simulation is carried out and a meshing
technique is used to describe the evolution of the gas-mixture interface. Each cell at nucleation is
represented by a polyhedron with a set of equidistant vertices. A regular mesh of these vertices
with equilateral triangular elements is adopted to form the spherical polyhedron delimiting the
contour of each cell. As cells grow, a re-meshing technique is adopted to improve the description
of interface location and keep a good accuracy in the output. An equilibrium state is assumed to
be reached once the foam porosity does not change by more than 0.01% between two time steps.

Fig. 6.23c shows examples of generated 3D microstructures by varying the α parameter only.
To run the simulation, the physico-chemical properties of the materials were the same as the one
used in Dabo et al. [382]. Each sample foam includes 1024 cells, with examples of final structures
for the three randomisation factors shown in Fig. 6.23c.

6.3.2 Results

The distances between the bubbles are determined from the slices of the foam, shown in Fig. 6.23c,
using the surface-to-surface distance as defined in Section 6.2.3. The average contact number < Z >
increases with the distance threshold d at which two bubbles are taken as neighbours, and reaches
a plateau value. The beginning of this plateau for ordered foams (α = 0+), represented with a
dotted line in Fig. 6.24a, is defined as the distance threshold for the other foams. The evolution
of < Z > with the distance threshold d is represented in Fig. 6.24 . To limit the border effects,
the average of the contact number is calculated by taking into account only the bubbles inside a
subvolume obtained by shrinking the box volume of 15% in every direction, as shown in Fig. 6.24b.
For the foam with a minimal disorder in the initial structure (α = 0+), < Z > quickly reaches a
plateau at < Z >= 13.4 ± 0.7. This value is close to the values expected for dry ordered foams
(14 for BCC, 13.5 for Weaire-Phelan) and dry disordered foams (13.7) [75]. This value is, however,
higher than expected for a FCC structure. We hence compute the average contact number for
a regular FCC lattice of perfect spheres for comparison. As shown in Fig. 6.24a, the number
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Figure 6.23: a) Initiation of the spatial distribution of cell seeds. The positions of the seeds is perturbed by a displacement in a

random direction by a distance proportional to the interseed distance l0 and the structure randomisation factor α.b) Example

of cell growth over time. The cells nucleate from initial sites and grow over iterations, following the growth algorithm described

by Dabo et al. [382]. c) Top : 3D foam-like microstructures generated with the procedure described in Section 6.3.1, using

α = 0+ (left), α = 0.2 (middle) and α = 0.3 (right). Bottom : 2D slice of a foam generated numerically following the procedure

described in Section 6.3.1. The positions of the nucleation sites were randomised with a parameter α = 0.2.163



of neighbours first increases to 4, corresponding to the neighbours distant from one basis vector,
before reaching a plateau around 12. The variations in the number of neighbours come from the
discrete representation of the interface on a square grid. Hence, the number of neighbours for the
numerically generated foams is higher than that of a FCC foam : this difference may come from
the generation procedure, and in particular the elastic and viscous stresses in the continuous phase
during the bubble growth (see Dabo et al. [382] for a detailed description of the implementation
of the foam generation).

Figure 6.24: a) Evolution of the average contact number < Z > with the threshold distance d for contact definition. d is choosen

as the position of the plateau in < Z > for the fooam with minimal disorder in initial structure (α = 0+). The result for a

regular FCC lattice of perfect spheres is shown for comparison. b) The number of contacts of a particle is taken in account in

the average only if its centroid is inside a subolume, delimited by shrinking the foam volume of 15 % in every direction. The

contacts with bubbles outisde of the subvolume are preserved and counted to obtain < Z >.

The local geometrical organisation is probed with the bond orientational parameters, described
in Section 6.2.3. The distance threshold d for neighbour determination is taken from the contact
number determination, shown in Fig. 6.24a. The (q4, q6) coordinates of every bubble is represented
in Fig. 6.25a, as well as their averaged coordinates (q4, q6) in Fig. 6.25b. The q6 parameter
decreases with the structure randomisation factor α, while the q4 increased, indicating a change in
the structural order from the initially FCC structure to a disordered state, different from the usual
lattices studied with bond orientational parameters shown in Fig. 6.21.

The large-scale structure of the foams is also investigated using the radial distribution function
g2(r) and the configurational entropy H(n). The radial distribution function is computed using
the centroid positions as interparticle distance r. The results are shown in Fig. 6.26. The most
organised foam structure shows strong peaks corresponding to a FCC structure. For an increasing
α, the peaks shorten in height and broaden in height, indicating a less localised distribution of
neighbours in the first shells. For instance, the second peak splitting disappears for α ≤ 0.2, and
the correlation disappears beyond the first peak for strongly randomised foam structure α = 0.3.
With the bond orientational parameters of Fig. 6.25, this loss of correlation indicates the vanishing
of long-range order in the foam with increasing randomness in the positions of the nucleation sites.

The configurational entropies of the three foams are computed following the procedure described
in [380]. The contacts between the bubbles used for the determination of the contact network
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Figure 6.25: Bond orientational parameters (q4, q6) and averaged bond orientational parameters (q4, q6) for the three different

foams of Fig. 6.23c. The contacts are determined using S2S distances and the plateau distance of < Z > as a threshold. The

parameters for every drop are computed using the PyBoo library [379]. Values for FCC are taken from [374].

Figure 6.26: a) Radial distribution function for the three numerical foams, computed using the positons of the centroids as

distance between bubbles. b) Configurational entropy for the three numerical foams. The slope of the linear fit between n = 2

and n = 5 gives the average entropy per bubble s, expressed in unit of the Boltzmann constant kB .
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are defined in the same manner as for the average contact number and the bond orientational
parameters. The resulting Shannon entropy H as a function of the graph size n is shown in Fig.
6.26. The average entropy density s increases with the structure randomisation factor, going from
∼ 1.2 kB for the most regular lattice (α = 0+) to ∼ 1.4 kB for the most disorganised one (α = 0.3).
The precision of the linear fit is limited by the maximal number of drops n in a graph due to
the boundary effects. More precise quantification of the impact of structure randomness on the
Shannon entropy would require larger samples. Nonetheless, the results shown in Fig. 6.26b show
an increase in the Shannon entropy H(n) at its maximal value, encouraging its usage in foam
characterisation at the packing scale.

6.3.3 Discussion

Our characterisation of the numerical foams found structural features that evolved with the degree
of randomness in the nucleation structure. The most ordered structure was found to be close to
a body-centered cubic structure, as intended. Interestingly, the average contact number < Z >
was found to be closer to the one expected for dry foams than the one for FCC structures (<
Z >= 12). This could indicate the variation of the structure with the growth of the bubbles, as
the FCC structure is present in wet foams only : ordered dry foams structure is closer to BCC
packings (< Z >= 14). Similarly, the bond orientational parameters (q4, q6) evolved with the
structure randomness, with broader distributions and values differing from the FCC results. These
observations correlate with the disparition of long-range correlation observed in the pair correlation
function g2(r). Finally, the increase of configurational entropy per grain seems to correlate with
the structure randomness, and thus looks like a good candidate to evaluate the randomness of a
bulk structure based on the physical contacts between the particles. Its implications with respect
to Edwards volume ensemble remains to be investigated.

Future extensions of this analysis would have to focus on the measure of g2(r) based on the S2S
distance rather than the centroids, which was not done in this study because of the multiplication
of long computation times involved. A description of the anisotropy of the bubbles using the
Karambola software [384] could help to correlate the variation in bubble shapes with the variation
in contact number. This part requires the triangulation of the surfaces, which can be performed
using the information obtained from image segmentation, but are outside the scope of the present
thesis. Furthermore, the deformation of the structure with compression in the case of liquid foams
could be measured with the same algorithm, with a closer look given to the emergence of meso-
and macrostructures during the compression, as described in Section 6.1.2. In particular, the
correlation between the position of a bubble in the contact network and the average force exerted
on it in compression cycles is a promising investigation approach to uncover the relations between
structure and properties [113].

6.4 Conclusion and outlooks

Granular systems constitute a-thermal, rigid systems, where the mechanical stability of the ensem-
ble is ensured by the contacts between the grains. Because the number of contacts Z per grain are
usually larger than the minimal, isostatic number Zc, the set of contact forces in a rigid packing
is not uniquely determined, and constitutes an additionnal degree of freedom of the packing for a
given grain configuration. This gives rise to a rich and complex behaviour in the distribution of
the contact forces, with aligned chains of forces larger than the grain scale bearing most of the load
during compression and smaller structures of weakly interacting grains serving as fortifications of
the force chains. The description of these complex and filamentous structures is one application
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where network theory has been proven useful, in particular because of its ability to probe simulta-
neously different length scales using different descriptors. With tomographic analysis of granular
packings, analysis of contact and force networks have been shown to be good predictors of the
static and dynamic properties of granular packings. In foams however, because of the many-body
interactions between bubbles, the force cannot be determined by standard methods. Forces could
be extracted using Morse-Witten law in 2D foams, but the extension of this method to 3D foams
is still an open question [109].

In this Chapter, we proposed a conceptual leap between the network analysis of granular ma-
terials and the analysis of foams and emulsions. This leap is achieved following two paths : first,
by implementing a home-made segmentation and reconstruction algorithm of foams based on hori-
zontal slices obtained from standard tomographic acquisition. This program offers the long sought
after possibility for future users to define their own segmentation parameters [305, 58], giving it
a great versatility in its applications, and avoiding black-box numerical procedures. Furthermore,
it allows for an extraction of the voxel positions of the interfaces, an information that is inacces-
sible with commercially available softwares at time of writing. This additional information paves
the way to our second conceptual path, defining neighbourhood relations in a physically relevant
way. Because of the deformations of bubbles, a contact between two bubbles cannot be determined
solely by the distance between their centroids anymore, but rather by the distance between their
interfaces, let it be thin liquid films for ordinary foams or thick skins when the interface is covered
by polymers. We propose a numerical procedure to determine the surface to surface (S2S) distance
between two drops, and propose an efficient implementation to speed up the computationnaly ex-
pensive procedure to reasonable timescales. In the second part of this chapter, we applied our
segmentation algorithm to numerically generated foams, which have the advantage of not being
impaired with experimental noise. Starting from horizontal slices similar to that produced by stan-
dard tomographic imaging techniques, we defined the neighbourhood relations between bubbles
formed by nucleation at sites corresponding to the particle positions in a regular FCC lattice, with
a random displacement factor slightly shifting their positions. The average contact number < Z >
obtained from our S2S method was closer to a dry foam than to a wet FCC structure. Other
quantitative descriptors further corroborate the introduction of randomness in the structure of the
foam, encouraging its widened usage in future foam characterisation.

The application of our segmentation characterisation algorithm to emulsion of droploons beyond
the simple proof of concept was halted by the limited amount of time associated to the realisation
of this thesis. As we showed in Chapter 4, the thickness of the skin in our emulsions made the
segmentation of the drops easier than in ordinary emulsions. A first and direct application would
thus be the characterisation of these emulsions with our algorithm, which is made freely available
for the interested users1. As the positions of contour voxels are determined by the algorithm, the
quantification of shape anisotropy and its distribution throughout the packing is also a promising
route for foam characterisation. Preliminary tests showed that Karambola software [384] could
already been used to get Minkowski tensors of individual drops, but with results sensitive to the
surface triangulation. A robust triangulation method still needs to be choosen for a proper shape
characterisation. Similarly, the measure of local liquid fraction φl(~r) and its correlation with other
structural properties is a promising outlook, which could easiliy be performed with Pomelo software
[318, 50].

The current limitation to the determination of the set of contact forces limit the information
that can be extracted. For purely capillary interfaces, this would require a reliable segmentation of

1https://github.com/SimianLibrarian/vritra
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drops. Drops from the PEG-PDMS emulsions are actually good candidates as a model system, in
the limit of very soft skin (e.g. reactive fraction φr < 50 wt.%) with low elastocapillary numbers,
thick enough to visually segregate droploons. Our algorithm, along with the emulsion system, could
thus help to test experimentally the validity of Morse-Witten law in 3D foams and emulsions in
the limit of low elastocapillary numbers (α� 1).

The deformation of drops is a good indicator of the applied forces. A possible investigation is
the deformation of individual drops during compression, and how the amount of this deformation
correlates with the position of the drop within the contact network. Finding the structural de-
scriptors predicting the deformation with most precision is a promising way to link structure and
properties, as was done in previous work on photoelastic discs [113].

Finally, we hope that our example of the importance of the localisation of the interface bound-
aries will foster interest in the granular community, and encourage developers of commercial tomo-
graphic suites to propose the voxel positions of the interfaces in future implementations of their
softwares.
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Chapter 7

General conclusion

As stated in the introduction, this thesis is part of the METAFOAM ERC project, aimed at the
production of foam- and emulsion-based metamaterials with mechanical and acoustic properties
akin to those of metamaterials (e.g. negative Poisson ratio). These properties arise from the struc-
ture of the metamaterials, which in the case of foams is a result of the contact interactions between
the bubbles/drops. A physically sound production route is thus the alteration of the interfaces and
the associated interactions, targeting to produce self-assembled structures of interest. We decided
to conduct this investigation following two axis. The first axis concerns the interactions between
bubbles/drops, and how they are affected by interfacial changes. The second axis focuses on the
production of a descriptive framework adapted to foam/emulsion structures.

In Chapter 3, we proposed the first experimental verification of an interaction law first pro-
posed by Morse and Witten in 1993 [4], which accounts for the deformation of bubbles/drops
when subjected to compression. Using a simple experimental setup investigating bubble trains in
capillaries and numerical simulations with the Surface Evolver software [9], we showed that the
experimental deformation of a bubble subjected to forces exerted by its neighbours corroborates
the Morse-Witten interaction law in the limit of small contact forces, hence strongly deviating from
the soft-sphere approximation previously used to describe bubble-bubble interactions. We further
confirmed experimentally that this deformability makes the bubble-bubble interaction intrinsically
many-body, with a stiffening of the bubble with increasing number of neighbours. This finding
has important consequences, as it links the mechanical response to the contact number Z and the
geometry of the foam. The extension of this experimental verification in 2D and 3D foams would
be a cornerstone in the reconstruction of force networks in foams/emulsions.

In Chapter 4, we investigate the impact of interfacial elasticity on an otherwise purely capillary
interface of a bubble/drop attached to a needle. Our approach is distinguished by its approximation
of the elastic stresses as an isotropic additive stress to the simple interfacial tension. By comparing
the predictions of our model to the state equations of a thin shell, we showed that it could be used to
characterise with reasonable accuracy the elastic shear modulus of the interface in a pendant drop
geometry. We further provide experimental parameters where our approximation remains valid, to
help future experimentalists to design and dimension their experimental setups. We finally use this
problem to propose the first usage, to our knowledge, of the Surface Evolver software to simulate
elastocapillary interfaces. The benchmarking of these results comfort the usage of Surface Evolver
for these new systems, paving the way for numerical assemblies of elastocapillary bubbles/drops,
or bubbloons/droploons.
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In Chapter 5, we designed an experimental system to investigate the effect of an increasingly
elastic interface on drops and emulsions. This system is composed of PEG drops in a silicone
phase, with the crosslinking of an interfacial silicone gel triggered by the diffusion of a catalyst
from the PEG phase into the silicone phase. We studied separately the gel, the interface and the
drops to disentangle the complex contributions at play in the droploons. The characterisation of
the silicone gel in its bulk phase gives an understanding of the parameters governing its rigidity
and formation kinetics. This characterisation was subsequently used to produce silicone foams
of controlled morphology (Appendix 8.3). We studied the PEG-silicone interface using interfacial
shear rheology, identifying the skin formation, mechanics and kinetics to guide the production of
drops with thick polymeric skins. At last, we produced emulsions of droploons using a home-made
millifluidic setups, with skins of different thicknesses and rigidities. The variations in emulsion
structures obtained with this approach is a first encouraging result on the way of understanding
the interface-structure relations. The PEG-silicone system is now sufficiently characterised to be a
model system for future investigations on this topic.

In Chapter 6, we developed a software aimed at the reconstruction and the characterisation
of 3D images of foams/emulsions based on slices obtained from tomographic reconstruction. This
software fulfills the long-sought requirements of a segmentation with all parameters controlled by
the user, and the necessity of defining a contact between bubbles/drops in a physically relevant
way. Tomographic analysis is usually focused on granular materials with rigid, undeformable grains.
Because of the deformation of bubbles/drops, the distance between two bubbles/drops cannot be
assumed from the distance between their centroids, as it is currently the case. We implement a
new definition of this distance based on the distance between the bubble/drop interfaces, and fur-
ther provide access to the positions of the voxels of the interfaces. We benchmark our software
on numerically generated foams and show that the randomness in the initial structure of nucleat-
ing sites is reflected in the final foam structure. These results strongly encourage the use of our
software in future analysis of foam/emulsion structures of various natures. We thus make it freely
available online. Furthermore, the description of the shapes of the interfaces through the positions
of their interface voxels is a new information, not provided by currently commercially available
softwares. This information could be used in future studies to access to shape descriptors, e.g.
with Minkowski’s tensors, and local liquid fraction, further refining the foam/emulsion structural
description at the bubble/drop scale.

Outlook

The broader topic of the rules underlying the packing of foams/emulsions of elastocapillary bub-
bloons/droploons is far from being exhausted with the work presented in this manuscript. We
propose three different axis where the findings of this thesis could be used to investigate this field
further, which we represent in Fig. 7.1.

First, improvements on the PEG-PDMS model system could lead to control precisely the thick-
ness and the rigidity of the silicone skin. This control could help to produce droploon emulsions
with precisely controlled elastocapillary number α. Its solid interface also makes it a sought-after
system in the field of granular science to understand the impact of grain deformability on packing
properties [95] and the impact of the transition from a soft to a hard elastic shell [385]. Further-
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more, a quantification of the frictional and viscous properties of the skin are required to understand
the interactions between these droploons.

Second, access to the forces between bubbles/drops in ordinary foams/emulsions would help to
understand their mechanical properties, similarly to the approach used in granular science. The
determination of these forces in 3D is still an unsolved problem, even though 2D systems could be
resolved experimentally [60]. In addition to this interaction when only the capillary stress is consid-
ered, the consequence of the tangential elastic stress described in Chapter 4 on the Morse-Witten
interaction law still needs to be considered. The rewriting of the classical Young-Laplace equation
with the additional elastic stress would have to be plugged into the Morse-Witten derivation based
on it. The interactions between droploons/bubbloons would have to be investigated as we did
for ordinary bubbles/drops, with the goal of deriving a ”Morse-Witten-Hooke” interaction law for
elastocapillary bubbles/drops.

Third, our analysis software is a powerful and versatile tool, applicable to any foam/emulsion
where the absorption contrast is high enough to segment the two phases. It could thus be used
to analyse bubbloons/droploons packing regardless of the physicochemical details of the interface.
Our current description could be substantiated with other useful descriptors inspired from granular
science and network theory, such as the distribution of l-cycles. Furthermore, our extraction of
the positions of interfacial voxels opens up the possibility to tessellate the foam/emulsion and give
access to the local liquid fraction φl(r) defined at the bubble/drop scale, e.g. with the Pomelo
software [318]. This fine gain analysis could be complemented by the bubble/drop deformation e.g.
using Minkowski’s tensors as computed by the Karambola software [384]. Determining the most
predictive shape descriptors would be a first step in the good direction, as different descriptors
have been used successfully in the literature but without comparing their results [217, 361]. The
tomographic imaging of foams/emulsions during deformation (e.g. shear or compression) could also
be performed with our software, hopefully indicating correlations between shape and structural
changes, combined in an exhaustive morphostructural analysis of foams/emulsions.



Figure 7.1: The mechanical properties of foams/emulsions depend on the length scales considered. These length scales interact

through mechanisms, some of which being annotated along the black arrows. A proper mechanical description thus requires

to consider the different length scales simultaneously. In this thesis, the relations between the different scales are investigated

using adapted experimental methods, represented between the black arrows.
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One-year progression plan

The work presented in this thesis gathered broadly different topics, from polymer chemistry to
tomographic reconstruction. Furthermore, it is intended to serve as future foundations for the
design of new foam-templated and emulsion-templated materials. In our current point of view, this
goal can be achieved by the improvement of the understanding and the control of the PEG-silicone
system to make it a model system for physical investigation of interfacial elasticity. We thus propose
here a one-year work plan for readers interested in the characterisation of the PEG-silicone system
in order to study the elastocapillary transition in foams and emulsions. The different steps are
summarised in Fig. 7.2.

Figure 7.2: Planning proposition for a one-year project aimed at the improvement of the PEG-silicone system towards a model

system for the physical investigation of the onset of interfacial elasticity in foams and emulsions.

This one-year plan is structured around three tasks, represented by color blocks in Fig. 7.2.
The first task is the characterisation and control of the interface of the PEG-silicone system. As
preliminary experiments on other experimental systems showed, the pressure-deformation experi-
ments presented in Chapter 4 actually showed signs of viscosity, as the pressure depended both on
the stretch ratio and on the history of the deformation, such as the deformation speed. Thanks to
the theoretical work of Kierfeld and collaborators, the interfacial viscosity can now be deduced from
this dependancy, giving more information about the physical properties of the studied interfaces
within the current experimental setup. Careful theoretical study and experimental considerations
are further required to deduce the experimental parameters best suited for a precise measurement
of elastic and viscous moduli.

After the incorporation of the interfacial viscosity, the reaction kinetics of the PEG-silicone
interface will have to be characterised using the capillary pressure elastometry described in Chapter
4. Currently, the elastocapillary number is quite high because of the decrease of interfacial tension
caused by the formation of copolymers. This could be improved by a better control of the chemistry
of the system, limiting the side reactions and the formation of these polymers. In addition, the
temporal evolution of the interfacial elasticity will be of interest to design drops with controlled
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elastocapillary number with the millifluidic device described in Chapter 5. The variation of the
kinetics with reactive fraction and catalyst fraction also have to be investigated using this setup.
Finally, a quantitative analysis of the action of the inhibitor needs to be performed, e.g. by
measuring the variation of the kinetics of skin growth caused by the addition of the inhibitor : so
far, its action was hypothesised to be instantaneous, while the kinetics of inhibitor-catalyst reaction
may impact the skin formation. Again, the capillary pressure elastometry setup is well adapted to
study the variation of the kinetics.

The second task is the characterisation of the interactions between droploons, as represented in
Fig. 7.2B. The fine grain control of the elastocapillary number gained by the study of the inhibitor
action would allow to produce multiple droploons of equivalent elastocapillary numbers, whose
interactions can be characterised using the double-bubble experiment used by Giustiniani et al.
[10]. A good understanding of the interactions between the droploons are required to understand
the mechanical properties of droploons assemblies. A particular care should be adressed to the
possible entanglement of polymers from different skins, potentially altering the interaction forces
between drops depending on the duration of their contacts.

Finally, once the fine-grain control of the elastocapillary number is achieved through these first
steps, controlled and large-scale samples of controlled elastocapillarity will be produced, allowing
to relate the structure and the morphology of the droploon emulsions to their interfacial properties
and their contact interactions. This characterisation could be performed using X-Ray tomography
and the lab-made reconstruction algorithm designed to this intent 1.

1https://github.com/SimianLibrarian/vritra
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Conclusion générale

Tel qu’annoncé dans l’introduction, cette thèse fait partie du projet ERC METAFOAM pour la
production de matériaux basés sur des mousses et des émulsions, et aux propriétés mécaniques et
accoustiques similaires à celles de métamatériaux. Ces propriétés proviennent de la structure des
métamatériaux, qui, dans le cas des mousses et des émulsions, proviennent des interactions entre les
bulles et les gouttes. L’altération des interfaces et de leurs interactions est donc une voie physique
possible pour la production de nouvelles structures. Nous avons mené ces travaux suivant deux
axes : un premier axe focalisé sur les interactions entre bulles et entre gouttes, et sur l’impact des
changements interfaciaux sur ces interactions ; et un second axe focalisé sur la production d’un
cadre descriptif adapté à la structure des mousses et des émulsions.

Dans le chapitre 3, nous avons proposé la première vérification expérimentale d’une loi d’interaction
à N -corps proposé par Morse et Witten en 1993 [4], prenant en compte la déformation des bulles et
des gouttes lorsque celles-ci sont sujettes à la compression. Au moyen d’un système expérimental
simple de trains de bulles dans des capillaires carrés et de simulations avec le logiciel Surface Evolver
[9], nous avons montré que la déformation expérimentale d’une bulle soumise à des forces exercées
par ses voisines corrobore la loi d’interaction de Morse et Witten dans la limite des faibles forces
de contact, avec une forte déviation de l’approximation des sphères molles utilisée précédemment
pour décrire ces interactions. Nous avons ainsi montré expérimentalement que la déformabilité fait
des interactions bulle-bulle une interaction à N -corps, avec une rigidification des bulles et gouttes
lorsque le nombre de voisins augmente. Ce résultat a d’importantes conséquences, reliant la réponse
mécanique au nombre de contact Z et à la géométrie de la mousse. L’extension de cette vérification
expérimentale aux mousses 2D et 3D sera à l’avenir une pierre angulaire de la reconstruction des
réseaux de forces de contact dans les mousses et les émulsions.

Dans le chapitre 4, nous étudions l’impact de l’ajout d’une élasticité interfaciale sur l’interface
capillaire d’une bulle produite à l’extrêmité d’une aiguille. Notre approche se distingue par l’approximation
des contraintes élastiques comme des contraintes isotropes s’additionnant à la tension interfaciale
d’origine. La comparaison de notre modèle avec les prédictions de l’équation d’état de la mem-
brane mince montre qu’il peut être utilisé pour mesurer le module élastique de cisaillement d’une
interface dans une configuration de goutte pendante avec une bonne précision. Nous fournissons
les paramètres expérimentaux pour lesquels notre approximation reste valide, afin d’aider de futurs
expérimentateurs et futures expérimentatrices lors de la conception et du dimensionnement de leurs
montages expérimentaux. Nous proposons enfin la première utilisation, à notre connaissance, de
Surface Evolver pour simuler des interfaces élastocapillaires. La comparaison de ces résultats à
des modèles éprouvés conforte l’utilisation de Surface Evolver pour nos systèmes et l’ouvre à la
possibilité de simulations numériques d’assemblées de droploons et de bubbloons.

Dans le chapitre 5, nous avons conçu un système expérimental permettant d’étudier l’effet
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d’une élasticité interfaciale de module croissant sur des gouttes et des émulsions. Ce système est
composé de gouttes de PEG dans une phase de silicone. Un gel de silicone réticulé est formé à
l’interface par la diffusion d’un catalyseur de la phase PEG dans la phase silicone. Nous avons
étudié séparément le gel, l’interface et les gouttes pour séparer les différentes contributions en jeu
dans les droploons. La caractérisation du gel de silicone en volume nous permet de comprendre
les paramètres contrôlant la rigidité et la cinétique de formation du gel. Cette caractérisation a
par la suite été utilisée pour produire des mousses silicone de morphologie contrôlée (Annexe B).
Nous avons étudié l’interface PEG-silicone par rhéologie interfaciale de cisaillement en identifiant la
formation de la peau, sa cinétique et sa rigidité pour guider la production de gouttes avec une peau
de polymères suffisamment épaisse pour segmenter facilement des gouttes très déformées dans une
reconstruction tomographique. Enfin, nous avons produit des émulsions de droploons au moyen
d’un montage millifluidique, avec des peaux de différentes épaisseurs et rigidités. La variation
dans la structure des émulsions obtenues avec cette approche est un premier résultat encourageant
pour la compréhension des relations interface-structure. Le système PEG-silicone est désormais
suffisament compris pour constituer un bon système modèle pour de futures investigations sur ce
sujet.

Dans le chapitre 6, nous avons développé un algorithme visant à reconstruire et caractériser
des mousses et émulsions à partir d’images obtenues par imagerie tomographique par absorption.
Cet algorithme répond également au besoin exprimé dans la littérature de donner aux utilisateurs
et utilisatrices le contrôle sur le processus de reconstruction, ainsi qu’à la nécessité de définir les
contacts entre bulles et gouttes de façon physiquement pertinente. L’analyse tomographique est
habituellement focalisée sur des matériaux granulaires dont les grains sont indéformables. À cause
de leur déformabilité, la distance entre deux gouttes ou deux bulles ne peut pas être déduite
directement de la distance entre leurs centröıdes, comme c’est le cas pour des sphères rigides. Nous
avons donc implémenté une nouvelle mesure de la distance entre deux bulles ou gouttes, basée sur
la distance entre les interfaces, et produit une description explicite de la position des voxels des
interfaces. Nous avons testé les résultats de notre logiciel sur des mousses générées numériquement
et montré que l’introduction de désordre dans la structure initiale de nucléation des bulles se reflétait
dans la structure finale de la mousse. Ces résultats encouragent l’utilisation de notre algorithme
pour de futures analyses de mousses et d’émulsions de compositions variées. Nous mettons donc ce
code en accès libre en ligne. De plus, la description de la forme des interfaces grâce à la position
des voxels qui les composent est une nouvelle information qui n’était jusque là pas fournie pas les
logiciels commericaux actuels. Cette information pourra être utilisée à l’avenir pour accéder à des
descripteurs de forme,tels que les tenseurs de Minkowski, et la fraction liquide locale, ce qui rafinera
encore la description structurelle des mousses et émulsions à l’échelle de la bulle et de la goutte.

Perspectives

La détermination de règles sous-jacentes aux ensembles de mousses et émulsions de bubbloons/droploons
est un sujet loin d’être épuisé par le travail présenté dans ce manuscrit. Nous proposons trois axes
différents se dégageant des travaux qui y sont décrits, et que nous espérons pouvoir porter la suite
des investigations, que nous schématisons dans la Fig. 7.1.

Premièrement, l’amélioration du système modèle PEG-PDMS pourra mener au contrôle précis
de l’épaisseur et de la rigidité de la peau de silicone. Ce contrôle pourra aider à la production
d’émulsions de droploons au nombre élastocapillaire α précisément ajusté. Son interface solide en
fait également un système très recherché dans le domaine des matériaux granulaires pour l’étude
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de l’impact de la déformabilité des grains sur les propriétés d’ensembles [95] ainsi que l’impact de
la transition d’une membrane molle à une membrane rigide [385].

Deuxièmement, l’accès aux forces entre bulles/gouttes dans les mousses/émulsions ordinaires
pourra aider à la compréhension des propriétés mécaniques, suivant l’approche utilisée dans les
matériaux granulaires. La détermination des forces en 3D est problème irrésolu à ce jour, bien
que des systèmes bidimensionnels aient déjà pu être analysés expérimentalement [60]. En plus de
cette interaction purement capillaire, les conséquences du stress tangentiel décrit dans le Chapitre
4 sur la loi d’interaction Morse-Witten reste à considérer. La réécriture de la relation classique de
Young-Laplace avec un stress élastique additionnel devra être introduit dans la dérivation de la loi
de Morse-Witten sur laquelle elle est basée. Les interactions entre bubbloons et droploons devront
ainsi être étudiées tel que nous l’avons fait pour des bulles purement capillaires, avec pour but de
dériver une loi d’interaction ”Morse-Witten-Hooke” pour les bulles et gouttes élastocapillaires.

Troisièmement, notre algorithme d’analyse est un outil d’analyse puissant et adaptable, ap-
plicable à tout système mousse/émulsion dont le contraste d’indice d’absorption est suffisamment
élevé pour segmenter les deux phases. Il pourra être utilisé pour analyser les ensembles de bub-
bloons/droploons indépendamment des détails physico-chimiques des interfaces. Notre niveau
actuel de description pourra être enrichi avec d’autres descripteurs inspirés des matériaux granu-
laires et de la théorie des réseaux, tel que la distribution des l-cycles. De plus, notre extraction de
la position des voxels de l’interface ouvre la possibilité de tesseller les mousses et les émulsions et
de donner accès à la fraction liquide locale φl(r) définie à l’échelle de la bulle et de la goutte, par
exemple au moyen du logicel Pomelo [318]. Cette analyse à petite échelle pourra être complétée
par celle de la déformation des bulles et des gouttes, par exemple en utilisant les tenseurs de
Minkowski calculés par le logiciel Karambola [384]. La détermination des descripteurs de forme
permettant la prédiction la plus fiable des forces exercées serait une première direction possible,
puisque différents descripteurs ont été utilisées avec succès dans la littérature mais sans comparai-
son de leurs résultats [217, 361]. L’imagerie tomographique des mousses et des émulsions pendant la
déformation (cisaillement ou compression) pourra également être réalisé grâce à notre algorithme,
indicant de potentielles corrélations entre changements de formes et changements de structures
combinés dans une analyse morphostructurelle exhaustive des mousses et des émulsions.

Plan de travail à un an

Le travail présenté dans cette thèse rassemble une variété très vaste de sujets, de la chimie des
polymères à la reconstruction tomographique de mousses et d’émulsions. De plus, il est conçu pour
servir de base de travail pour la conception de nouveaux matériaux modelés à partir de mousses et
d’émulsions. Au vu de l’état actuel des connaissances, il nous semble que ce but peut être atteint
par l’amélioration de la compréhension et du contrôle du système PEG-PDMS, dans le but d’en faire
un système modèle pour l’étude des propriétés physiques des mousses et émulsions élastocapillaires.
Nous proposons ici un plan de travail sur un an pour les lecteurs et lectrices intéressé.e.s par cette
problématique. Les différentes étapes ainsi que leurs temporalités sont résumées dans Fig. 7.2.

Ce plan de travail est structuré autour de trois tâches, représentées par les blocs colorés Fig. 7.2.
La première tâche est la caractérisation et le contrôle de l’interface du système PEG-silicone. Des
expériences préliminaires sur d’autres systèmes expérimentaux (non décrits dans ce manuscrit) ont
montré que la relation pression-déformation présentée au chapitre 4 montrait en réalité des signes
de l’impact de la viscosité, la pression dépendant à la fois du ratio de déformation et de l’historique
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de la déformation, tel que la fréquence d’oscillation du cycle de déformation. Grâce au travail
théorique de Kierfeld et ses collaborateurs, la viscosité interfaciale peut être mesurée grâce à cette
variation, donnant plus d’informations sur les propriétés physiques de l’interface tout en conservant
la même configuration expérimentale. Une étude théorique et expérimentale précautionneuse sera
nécessaire pour déduire les paramètres expérimentaux les plus à même de produire une mesure
simultanée des modules d’élasticité et de viscosité.

Après l’incorporation de la viscosité, l’interface PEG-silicone devra être caractérisée selon la
méthode de l’élastométrie par pression capillaire décrite dans le chapitre 4. L’évolution temporelle
de l’élasticité interfaciale sera d’un intérêt tout particulier pour fabriquer des gouttes de nombre
élastocapillaire contrôlé à l’aide du dispositif millifluidique décrit au chapitre 5. Les variations
de la cinétique avec la fraction réactive et la fraction de catalyseur pourra également être étudiée
grâce à ce dispositif. Finalement, une analyse quantitative de l’action de l’inhibiteur devra être
menée, par exemple en mesurant les variations de la cinétique de croissance de peau lors de l’ajout
de l’inhibiteur : jusqu’ici, l’action de l’inhibiteur était supposée immédiate. Mais la cinétique de
réaction inhibiteur-catalyseur pourrait avoir un impact sur la formation de la peau. Le montage
expérimental de la goutte pendante sera ici aussi utilisable en l’état pour mener cette étude.

La deuxième tâche de ce plan de travail est la caractérisation des interactions entre les droploons,
comme montré sur le bloc B de Fig. 7.2. Le contrôle fin du nombre élastocapillaire par l’étude de
l’action de l’inhibiteur permettra la production de plusieurs droploons de nombres élastocapillaires
similaires, dont les interactions pourront être caractérisées grâce au montage expérimental de
double bulle utilisé par Giustiniani et al. [10]. Une compréhension quantitative de ces inter-
actions sera requise pour comprendre les propriétés mécaniques d’émulsions de droploons. Une
attention particulière devra être portée à l’entremêlement possible de polymères appartenant à
des peaux différentes, provoquant une altération possible des forces d’interactions entre gouttes
dépendamment de la durée des contacts.

La dernière tâche de ce plan de travail, représentée Fig. 7.2C, consistera en la production à
grande échelle d’échantillons à nombre élastocapilaire contrôlé, permettant de relier la structure et
la morphologie des émulsions aux propriétés interfaciales des droploons et à leurs interactions de
contact. Cette caractérisation pourra être menée au moyen de tomographie à rayons X et grâce
l’algorithme de reconstruction conçu en laboratoire spécifiquement à cet effet 2.

2https://github.com/SimianLibrarian/vritra
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Chapter 8

Appendices

8.1 Numerical determination of the interfacial deformation

We use the Surface Evolver software to determine the bubble or droplet shapes for which interfacial
energy is minimal, respecting volume constraints and boundary conditions. The case where an
elastic skin is attached to the interface raises the question how local strain should be deduced from
the representation of the interface as an assembly of triangular facets. Section 8.1.1 explains how
convected coordinates are used for this. Section 8.1.2 provides details about the calculation of the
elastic energy density, based on the Neo Hooke constitutive model.

8.1.1 Strain represented using convected coordinates

The shape of the triangular facets used in the Surface Evolver as finite elements is fully defined
if two edge vectors are given. Upon deformation of the investigated bubble, the facet is generally
displaced and the edge vectors are changed, spanning a facet of modified shape. In the spirit of a
linear discretization, an affine displacement field is assumed within each facet. One could describe
the facet deformation using a coordinate system whose origin is attached to a given vertex of the
facet, and express how the Cartesian coordinates of each point on the facet evolve. Alternatively,
one may interpret the edge vectors as basis vectors which evolve upon a deformation and which
are therefore in general non orthogonal. In this latter approach, the coordinates of each point of
the interface are fixed and the deformation is represented in terms of a change of the basis vectors.
This ”convected coordinate” method goes back to pioneering work by Hencky [386]. In the Surface
Evolver this method is convenient because the relevant edge vectors can easily be derived from the
three facet vertex positions in the current configuration, denoted ~x1, ~x2, ~x3 and in the reference
configuration ~X1, ~X2, ~X3,

~S1 = ~X3 − ~X1, ~s1 = ~x3 − ~x1,

~S2 = ~X2 − ~X1, ~s2 = ~x2 − ~x1.
(8.1)

The edge vectors are represented using a cartesian orthonormal basis (~ex, ~ey) such that ~Si = Six~ex+
Siy~ey and ~si = six~ex + siy~ey.

As mentioned, convected coordinates remain constant upon a deformation; this introduces
simplicity. But this choice also introduces complexity since the expression of the scalar product
is no longer given by contraction ~a ·~b = aibi, additional terms appear since the basis vectors are
generally not orthogonal. To avoid such complexity, one represents vectors and tensors that one
wishes to associate in products using two different bases: a ”covariant” and contravariant one.
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Figure 8.1: A triangular finite element of an interface is represented in the reference configuration and in the current, deformed

configuration. The figure illustrates the notations used in the text: ~x for vectors pointing to vertices and ~s for finite element

edge vectors. Capital letters are used for the reference configuration and small letters for the current configuration. For the sake

of simplicity, only one of the three vectors pointing to vertices is shown in each configuration. The contravariant components

of both ~X and ~x are indicated on the same set of Cartesian axes.

Covariant basis vectors follow the deformation of the edge facets. They are denoted ~G1, ~G2 in the
reference state and ~g1, ~g2 in the current state. Covariant quantities are identified by lower indices,

~G1 = ~S1, ~g1 = ~s1,

~G2 = ~S2, ~g2 = ~s2.
(8.2)

Contravariant basis vectors (~G1, ~G2) or (~g1, ~g2), are identified by upper indices, and they are defined
through the following orthogonality relations:

~Gi · ~Gj = δij , ~gi ˙ ~gj = δij , (8.3)

where δij = 1 if i = j and δij = 0 otherwise. The Cartesian coordinate system is a special case
within this general framework where covariant and contravariant bases coincide. Using co- and
contravariant bases simplifies the expressions of the scalar products of vectors and tensors in the
case of non-orthogonal basis vectors.

An arbitrary vector d ~X representing a small line element on the surface reads in terms of the
covariant basis

d ~X = dΘj ~Gj . (8.4)

dΘj are the convected contravariant coordinates. We use the Einstein summation convention and
sum over repeated indices.

Descriptions of strain in large deformation continuum mechanics are commonly based on the
deformation gradient tensor F, represented by a matrix that transforms a line element d ~X in the
reference state into d~x in the current state,

d~x = Fd ~X. (8.5)

In terms of convected coordinates, F may be written

F = gj ⊗Gj . (8.6)
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The symbol ⊗ indicates an operation assembling two vectors into a tensor, called tensor product.
Indeed, in view of Eq. 8.3 we have

Fd ~X = (~gi ⊗ ~Gi) dΘiGj = dΘi~gi = d~x. (8.7)

The deformation gradient tensor contains information about rotations that is irrelevant for in-
terfacial energy. The interfacial energy in the Surface Evolver is computed using the 2D right
Cauchy-Green strain tensor C which is invariant to rotations [198], contrary to F:

C = FTF = (~Gi ⊗ ~gi)(~gj ⊗ ~Gj) = gij ~G
i ⊗ ~Gj . (8.8)

gij is the metric tensor in the current configuration, defined as follows:

gij = ~gi · ~gj . (8.9)

To determine the elastic energy of a facet in a simulation, C needs to be determined numerically.
The components of the contravariant basis vectors in the reference state Gi are deduced from the
covariant ones using the orthogonality properties (8.3):

~G1 · ~G1 = 1 = S1xS1x + S1yS1y → S1x =
1− S1yS1y

S1x

~G2 · ~G1 = 0 = S2xS1x + S2yS1y → S2x = −S2y S1y

S1x

~G2 · ~G2 = 1 = S2xS2x + S2yS2y → S2x =
1− S2yS2y

S2x

~G1 · ~G2 = 0 = S1xS2x + S1yS2y → S1x = −S1y S2y

S2x
.

(8.10)

Solving the system (8.10) yields the components of the vectors ~Gi:

~G1 = ~S1 =

(
S2y

S1xS2y − S1yS2x
,− S2x

S1xS2y − S1yS2x

)
~G2 = ~S2 =

(
− S1y

S1xS2y − S1yS2x
,

S1x

S1xS2y − S1yS2x

)
.

(8.11)

To express the Cauchy Green strain tensor directly as a function of the edge vectors, it is
convenient to introduce Gram matrices. The Gram matrix of two arbitrary vectors ~v1 and ~v2 is a
2x2 matrix whose element ij is by definition given by the scalar product ~vi ·~vj . The covariant metric
tensor defined in Eq. (8.9) is thus the Gram matrix of the edge vectors in the current configuration.
Following the notation used in the Surface Evolver manual, we will call this quantity s:

s =

(
~s1 · ~s1 ~s1 · ~s2

~s2 · ~s1 ~s2 · ~s2

)
= gij . (8.12)

The Gram matrix of the edge vectors in the reference state is denoted S:

S =

(
~S1 · ~S1

~S1 · ~S2

~S2 · ~S1
~S2 · ~S2

)
. (8.13)

We note that the denominators in Eqs. (8.11) are the determinant of S:

det S =
(
~S1 · ~S1

)
·
(
~S2 · ~S2

)
−
(
~S1 · ~S2

)2
= (S1xS2y − S1yS2x)2 . (8.14)
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Since the components of the tensor Gi ⊗Gj are the scalar products of Gi and Gj [387] we can
now write Eq. (8.8) in terms of the cartesian components of S, using Eqs. (8.11) and (8.14),

~G1 · ~G1 =
S2xS2x + S2yS2y

det(S)
=

~S2 · ~S2

det(S)

~G2 · ~G2 =
S1xS1x + S1yS1y

det(S)
=

~S1 · ~S1

det(S)

~G1 · ~G2 = −S1xS2x + S1yS2y

det(S)
= −

~S1 · ~S2

det(S)
.

(8.15)

This result shows that Gi ⊗Gj is the inverse of the Gram matrix S,

Gi ⊗Gj =
1

det|S|

(
~S2 · ~S2 −~S1 · ~S2

−~S1 · ~S2
~S1 · ~S1

)
= S−1. (8.16)

We can finally express the 2D right Cauchy-Green tensor (Eq. 8.6), needed in section 8.1.2 to
calculate the elastic energy, in terms of the Gram matrices s and S:

C = FTF = s S−1. (8.17)

We note that Eq. (8.17) can also be used to compute the Green-Lagrange strain tensor E =
FTF− I from the vertex coordinates. E converges to the infinitesimal strain tensor ε in the limit
of small deformations. Eq. (8.17) is thus the key result for evaluating strain in Surface Evolver
calculations. We note that Eq.(8.17) also gives the correct strain for displacements of vertices
normal to the surface.

8.1.2 Elastic energy

In this section we explain how the elastic contribution to the interfacial energy is determined in our
simulations. According to the compressible 3D Neo Hookean model implemented in the Surface
Evolver [16], and commonly used in the literature [388] the elastic energy per volume is

W3D =
G

2
(Tr C − 3)−G ln J +

Λ

2
(ln J)2. (8.18)

G and Λ are the Lamé parameters. J2 = det(C) is an invariant of C, a scalar quantity independent
of the reference frame. It is given by the ratio of the volumes of a material element in the current
deformed and initial states. In the limit of small deformations, the energy density Eq.8.18 reduces
as expected to the one deduced from Hooke’s law for linear elastic isotropic materials [128], using
the infinitesimal strain tensor ε defined by Eq. 4.19.

W3D =
Λ

2
Tr( ε)2 +GTr(ε2). (8.19)

The elastic skins considered in our work are so thin that their bending stiffness is negligible.
Their resistance to shear deformations where the two opposite faces are displaced relative to each
other is very strong, we neglect this mode of deformation and assume a state of plane stress,
consistently with the Kirchhoff hypotheses of thin shell theory [389]. Using Cartesian coordinates
with an x3 axis perpendicular to an element of the skin, this is expressed as C31 = C32 = C13 =
C23 = 0. In the same spirit, we consider the case where the stress normal to the skin has a negligible
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effect on its shape, so that we can assume σ33 = 0 without loss of generality. For plane stress, the
changes of volume and changes of skin thickness are directly related. To analyse this feature, we
recall a general relation between the energy density and the Cauchy stress of hyperelastic materials
[198]

JF−1σF−T = 2
∂W3D

∂C
. (8.20)

The plane stress condition can thus be expressed as

∂W3D

∂C33
= 0. (8.21)

Using Eq.(8.18) this yields.
Λ lnJ = G(1− C33). (8.22)

Physically speaking, this equation previously derived for a similar constitutive equation [390] relates
the squared ratio of the current and initial skin thicknesses given by C33 to the ratio of the current
and initial skin volumes, expressed by J . In the aim to derive a 2D energy density, we write Eq.
(8.22) as a function of the components of C, taking into account that many of them are zero in the
case of plane stress, as pointed out above:

C33(C11C22 − C2
12) = exp

[
2G

Λ
(1− C33)

]
(8.23)

To represent the skin as a 2D material whose deformation is fully specified by C11, C22 and C12, we
need to express C33 in terms of these other variables. This can be done by solving Eq. (8.23) either
numerically [390], or analytically, using Lambert’s W function [391]:

C33 =
Λ

2G
W

[
2G exp(2G/Λ)

Λdet(C)

]
=

Λ

2G
W

[
2G exp(2G/Λ)

Λ(C11 C22 − C2
12)

]
(8.24)

The latter option has been implemented by R. Bouzidi in the Surface Evolver software. Inserting
the expression of C33 in Eq. (8.22) and the resulting expression for ln J into the 3D energy density
Eq. (8.18), we obtain the following 2D energy density for a Neo-Hookean skin, where h0 is the skin
thickness in the reference state,

W2D = Gh0

(
1

2
(Tr C − 3)− G

Λ
(1− C33) +

G

2Λ
(1− C33)2

)
. (8.25)

Gh0 may be interpreted as a 2D shear modulus. Neglecting constant terms which are irrelevant for
a potential energy and expressing the result in terms of the 2D right Cauchy Green tensor using
TrC = TrC + C33, we obtain

W2D =
Gh0

2

(
TrC + C33 +

G

Λ
C2

33

)
. (8.26)

The skin materials considered in the present paper are much easier to shear than to compress
such that G� Λ. In this case, the last term in Eq. (8.26) can be neglected.

Besides the Neo-Hookean model discussed so far, the Surface Evolver software provides an
alternative energy density expression called ”linear elastic model” which yields behavior consistent
with Eq. (8.19) in the limit of small deformations. However, one should be aware that for large
deformations this numerical model based on the right Cauchy Green tensor is not consistent with
Eq. (8.19).
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8.2 Pressure-deformation relations of droploons on capillarys ex-
pressed via radial stretch

In the main body of the article we expressed all relations in terms of area stretch λA. The same
approach can be done for the radial stretch λ leading, however, to expressions which are less intuitive
and less directly accessible by experiments and simulations. For completeness, we shall provide the
resulting equations here.

We can rewrite the interfacial A for a droploon on a capillary larger than a hemisphere as

A = 2πR2

1−

√
1−

(
Rn
R

)2


= 2πR2f (Rn/R).

(8.27)

The function F (Rn/R) defined by Eq.(8.27) helps to express the result in a more concise way.
The term ln(A/A0) in the Gibbs relation (4.33) can then be rewritten using Eq. (8.27) to give

the normalised surface stress of the droploon on the capillary

σ̂ = 1 + 2α lnλ+ α ln ξ. (8.28)

The last term, depending on the geometric factor

ξ =
f (Rn/R)

f (Rn/R0)
, (8.29)

expresses the impact of a capillary on the elastic stress at the surface of a sphere, assuming a
spherical sector shape.

In the first two terms one recognises the result previously obtained for the perfect sphere (Eq.
(4.33)). One can therefore rewrite

σ̂ = σ̂sphere + α ln ξ. (8.30)

Compared to a sphere with the same radius, the presence of the capillary introduces a corrective
term in the surface stress which depends on α, R, Rn and R0.

For Neo-Hookean droploons, the droploon shapes on capillaries are no longer perfect spherical
sectors, making analytical descriptions much harder - which is why numerical simulations are
required. Nevertheless, we shall make here the seemingly crude approximation that the shapes can
be approximated as spherical sectors.

Using exactly the same approach as for the Gibbs interface but with the Neo-Hookean rela-
tion(see Table 4.1), one finds for a Neo-Hookean droploon on a capillary

σ̂ = 1 +
α

3

(
1− λ−6ξ−3

)
. (8.31)

After some algebra, this can be rewritten as the expression for the perfect sphere with a cor-
rective term taking account of the capillary

σ̂ = σ̂sphere +
α

3

(
1− ξ−3

)
λ−6. (8.32)

In the limit of small deformations, our results for both Gibbs and Neo-Hooke elastiticy yield
the same relation

σ̂ = σ̂sphere + α (ξ − 1)λ, (8.33)
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Model on capillary Normalised surface stress σ̂ Critical stretch λc

Gibbs σ̂sphere + α ln ξ
R0

(
1+
√

1−(Rn
R0

)2
)
e−

1
α√

2R2
0(1+

√
1−(Rn

R0
)2)e−

1
α−R2

n

Neo-Hooke σ̂sphere + α
3

(
1− ξ−3

)
λ−6

R0(1+
√

1−(Rn
R0

)2)(1− 1
2α)

2√
2R2

0

(
1+
√

1−(Rn
R0

)2
)
(1− 1

2α)
2−R2

n

Hooke σ̂sphere + α (ξ − 1)λ
R0(1+

√
1−(Rn

R0
)2)( α

α+3)
1
3√

2R2
0

(
1+
√

1−(Rn
R0

)2
)
( α
α+3)

1
3−R2

n

Table 8.1: Summary of the normalised expressions for the surface stress of drops on capillaries using the approximation that

the drop can be described by a spherical sector. While for Gibbs droploons these are correct, they are only approximations for

Hookean and Neo-Hookean droploons. The expressions for σ̂sphere are given in Table 4.1. The geometric factor ξ is given in

Eq. (8.29).

consistently with what one would obtain for a perfectly spherical sector droploon with Hookean
skin on a capillary. In all cases, the corrective term is zero in the reference state where R = R0.
Once the interfacial stresses are known, the pressure-deformation relation can be calculated using
the Young-Laplace law given in Eq. (4.40).

Table 8.1 summarises normalised expressions derived from this simple geometrical approxima-
tion model, together with expressions for the critical stretch.

8.3 C- PDMS foam generation

Our characterisation of the PDMS gel in Section 5.2.4 shows that the rigidity and the gelation
kinetics can be controlled separately : the final shear modulus G′∞ scales as a power-law of the
mass fraction of reactive silicone polymers φr (MHDS and vinyl-terminated PDMS, see Section
2.3.1) at stoechiometric ratio G′∞ ∼ φ2.78±0.01

r , while the gelation time Tg scales as a power-law of
φr and the volume fraction of the platinum catalyst φp, defined here as the ratio of the volume of
catalyst and the volume of the whole mixture Tg ∼ φ−0.80±0.01

r φ−1.09±0.01
p .

These scaling laws help us to prepare silicone blends with varying shear moduli G′∞ and similar
gelation time Tg. We prepare three different silicone mixtures, with φr = 100 wt. %, 81.4 wt. %
and 47.6 wt. %, with the last solution having an expected modulus 8 times smaller than the first
one. We aim at a gelation time of 40 s, and scale φp accordingly (0.335 vol. %, 0.389 vol. % and
0.57 vol. %, respectively). The foams are generated following the procedure described in Section
2.3.7. The solidified foams are then imaged using X-Ray tomography, as shown in Fig. 8.2, using
the tomographic setup described in Section 2.5. The pore sizes and the thicknesses of the struts
between the pore are measured using the Vgstudio software provided by the constructor. Their
distribution is shown in Fig. 8.3.

The average pore size decreases when the mixing time is increased. Similarly, the struts become
thinner, indicating a foam composed of a larger number of smaller bubbles. The lateral slices of
the foams shown in Fig. 8.2 also show that the smaller bubbles are less spherical, indicating a
deformation of the bubbles during the foam generation. This could be due to the deformation
of the foam after gelation, during the depression step. A more detailed description of the bubble
shape could help to describe more precisely the foam morphology. During the foam generations, we
also noticed that the foam gelation was faster when repeating the mixing procedure with the same
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Figure 8.2: Three examples of PDMS foams prepared with different experimental parameters. a) φr = 47.6 wt.%, φp =

0.57 vol.%, T = 40 s, Vdepression = 50 %. b) φr = 81.4 wt.%, φp = 0.389 vol.%, T = 43 s, Vdepression = 100 %. c) φr = 100 wt.%,

φp = 0.335 vol.%, T = 40 s, Vdepression = 25 %.

Figure 8.3: Characterisation of the foam morphology through the pore size distribution and the thickness of the struts between

the pores. Identical solutions are mixed for different times to investigate the effect of mixing time on the morphology.
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Luer lock connector. This could be due to the presence of gelified silicone enriched in catalyst in
the connector, hasting the crosslinking of the gel.

Overall, our foam generation procedure produces foams with different morphologies, which can
be controlled with the solution parameters φr and φp and the mixing time.
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et ,” 2016.

[37] M. Van Hecke, “Jamming of soft particles: Geometry, mechanics, scaling and isostaticity,”
Journal of Physics Condensed Matter, vol. 22, no. 3, 2010.

[38] G. Katgert and M. Van Hecke, “Jamming and geometry of two-dimensional foams,” EPL,
vol. 92, no. 3, 2010.

[39] W. G. Ellenbroek, E. Somfai, M. Van Hecke, and W. Van Saarloos, “Critical scaling in linear
response of frictionless granular packings near jamming,” Physical Review Letters, vol. 97,
no. 25, pp. 1–4, 2006.
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[135] C. Lautz, T. M. Fischer, M. Weygand, M. Lösche, P. B. Howes, and K. Kjaer, “Determination
of alkyl chain tilt angles in langmuir monolayers: A comparison of brewster angle autocorre-
lation spectroscopy and x-ray diffraction,” The Journal of Chemical Physics, vol. 108, no. 11,
pp. 4640–4646, 1998.

[136] N. Denkov, S. Tcholakova, and D. Cholakova, “Surface phase transitions in foams and emul-
sions,” Current Opinion in Colloid and Interface Science, vol. 44, pp. 32–47, 2019.

[137] D. Zang, D. Langevin, B. P. Binks, and B. Wei, “Shearing particle monolayers: Strain-rate
frequency superposition,” Phys. Rev. E, vol. 81, p. 011604, Jan 2010.

[138] B. Brugger, J. Vermant, and W. Richtering, “Interfacial layers of stimuli-responsive poly-(n-
isopropylacrylamide-co-methacrylicacid) (pnipam-co-maa) microgels characterized by inter-
facial rheology and compression isotherms,” Phys. Chem. Chem. Phys., vol. 12, pp. 14573–
14578, 2010.
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[360] G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, F. M. Schaller, B. Breidenbach, D. Hug,
and K. Mecke, “Minkowski tensors of anisotropic spatial structure,” New Journal of Physics,
vol. 15, p. 083028, aug 2013.
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