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PREFACE

This work is an approach to the asymptotic analysis of classical fields in General

Relativity, a field of research at the intersection between a large variety of 1 mathematics.

The main problem under study can be stated vaguely as follows: given an equation on a

Lorentzian manifold, what can be said « at large times » of the behaviour of a solution,

supposing some initial data?

Over the years, the theory has developed from the relentless study of a handful of

examples and has lead to a number of techniques to formulate mathematically and address

the general problem. One can perhaps quote four predominant domains, the spectral

analysis of self-adjoint operators on Hilbert spaces and extensions thereof, microlocal

analysis, vector field methods and geometric compactifications.

It is of course no surprise that the actual geometry and equation under consideration

condition largely to what extent certains ideas can be applied, and no one formalism, as

of yet, provides any systematic treatment of the general problem. The study of specific

examples is therefore an important part of research in the field. Black-hole geometries

are of particular interest, not only for their physical significance, but also because they

have features that illustrate concrete obstructions to the applications of some of these

techniques. A classical example of this is the phenomenon of super-radiance which prevents

the classical energy functional of a Klein-Gordon field from being positive-definite, thus

complicating the setup for an analytical scattering problem.

The first major project of this thesis was to study the example of Dirac fields on an

extremal black-hole background; the equation under study is the Dirac equation. The

precise black-hole model is that of extreme Kerr-de Sitter, which is a rotating black-

hole in a universe with positive cosmological constant. This model is studied in detail in

Chapter 2. Besides the rotation, the particularity of the extreme model is the coincidence

of two of the so-called horizons. This causes technical di�culties for a scattering theory

due to the appearance of long-range potentials. It is shown in this thesis that one can

formulate the problem as a Schrödinger type equation on a Hilbert space for which one

can identify the asymptotic dynamics and construct an analytical scattering theory; this

1. beautiful and fascinating
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is the object of Chapter 3.
The second major project, discussed in Chapter 4, will take the reader into the realm 

of geometric compactifications. I n  t h is a p proach, t h e i d ea i s  t o  e x plicitly c o nstruct and 
append, to the bulk manifold, a geometric boundary that is identified w i th «  infinity ». 
Of course, this has to be done in such a way that there is enough compatibility with 
the geometric structure of the original manifold so that it is possible to extend objects 
defined o n  t h e b u lk t o  t h e b o undary. T h e h o pe t h en i s  t h at t h ese e x tensions c a n be 
used to infer information about their asymptotic behaviour. In this work, the emphasis 
will be on projective compactifications. W e w i ll c onstruct p r ojectively i nvariant versions 
of the Klein-Gordon and Proca equations on so-called projective tractor bundles and 
establish results that are parallel to those available for conformally compact manifolds. In 
particular, we will show in both cases that there is a natural boundary calculus that leads 
to a formal solution operator which produces correctly the dominant asymptotic profiles 
on asymptotically de-Sitter manifolds as shown by microlocal techniques.

In the course of this thesis, the author has been introduced to an entirely di�erent 
way of thinking about di�erential g eometry t han w hat i s  t aught i n  m o st undergraduate 
courses. However, the material may not be particularly well known to everyone in the 
field. Consequently, the reader will find introductions in Chapters 1 and 4.
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Chapter 1

INTRODUCTION

Although this work is mainly about linear partial di�erential equations that arise in

physics and their solutions, I have as often as possible endeavoured to see things through

the eyes of a geometer, rather than those of an analyst. In this first chapter, the reader will

find a short introduction to the geometric langage used throughout this text and that may

be unfamiliar to those having dabbled less in geometry. In particular, we discuss the basic

theory of Principal Fibre Bundles and connections. It should be noted that Chapter 3 is

relatively independent from this section, save the short preamble on spinors, as unfortu-

nately the techniques used there have eluded as of yet any geometric understanding on

my part. The present section is nevertheless a pre-requisite for Chapter 4.

Throughout this section, we will work in the category of smooth (CŒ) manifolds. In

this context, all maps will be assumed smooth and the terms « smooth » and « di�eren-

tiable » may be used interchangeably. Unless stated otherwise, until the end of this section,

M will be a smooth manifold of dimension n œ N
ú. Last of all, the identity element of a

generic group G will be written e.

1.1 Vocabulary and notation

1.1.1 The abstract index notation

For most of the tensor calculus in this text we will make use of Penrose’s abstract index

notation. Here we give a short overview and refer the reader to [PR84] for a thorough

account. The main idea is to keep track of the nature of a tensor by appending indices to

the label that represent its arguments 1. These indices should be understood as distinct

from coordinate indices used in physics literature. More precisely, let E be a vector bundle

over M and Γ(E) the CŒ(M)-module of smooth sections of E. We consider isomorphic

copies of the module Γ(E), that we denote by Ea, Eb, . . . . In this way to each X œ Γ(E)

1. In finite dimensions, we can think of a tensor as a multilinear form

13
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there are corresponding elements Xa œ Ea, Xb œ Eb, . . . The dual modules will be written

Ea, Eb, . . . and a general tensor product Ea1 ¢ · · · ¢ Eap ¢ Eb1 ¢ · · · ¢ Ebq
: E

a1,...,ap

b1,...,bq
.

Let us now describe how this is used to write out the usual elementary operations of

tensor calculus. As a first example, the tensor product X ¢ Y of two vector fields will be

written XaY b. We can see now why it was necessary to introduce an infinite number of

modules, one can write: X ¢ X unambiguously XaXb.

Contraction will be indicated by the use of repeated indices as in the following exam-

ples:

- YaXa is the scalar function Y (X),

- if T is a simple tensor:

T = X1 ¢ · · · ¢ Xj ¢ · · · ¢ Xp ¢ Y 1 ¢ · · · ¢ Y i · · · ¢ Y q œ Γ(E)¢p ¢ Γ(Eú)¢q,

then the contraction:

Ci
jT = Y i(Xj)X1 ¢ · · ·¢Xj≠1 ¢Xj+1 ¢ · · ·¢Xp ¢Y 1 ¢ · · ·¢Y i≠1 ¢Y i+1 ¢ · · ·¢Y q,

will be written:

T
a1...ai≠1cai+1...an

b1...bj≠1cbj+1...bn
= Xa1

1 · · · X
aj≠1

j≠1 Xc
j X

aj+1

j+1 · · · Xap

p Y 1
b1

· · · Y i≠1
bi≠1

Y i
c Y i+1

bi+1
· · · Y q

bq
.

”a
b will denote the identity map, i.e. ”a

c Xc = Xa, ”c
aYc = Ya, and, last of all, symetrisa-

tion/antisymetrisation will be written as follows:

T(a1,...,an) =
1

n!

ÿ

‡œSn

Taσ(1),...aσ(n)
,

T[a1,...,an] =
1

n!

ÿ

‡œSn

Á(‡)Taσ(1),...aσ(n)
.

e

1.1.2 Concrete indices

Since abstract indices are not relative to any local frame 1
a, . . . , ea

n of the vector bundle, 
we will need another notation for the components in such a frame. The solution we will 
adopt is to use either bold characters, the latin letters i, j, k or Greek letters. Unlike ab-

stract indices, concrete indices do have integer values, hence, using Einstein’s summation

14
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convention:

Xa = Xaea
a =

nÿ

i=1

X iea
i .

In the above Xa (or X i) are scalar functions. Finally, if ea
a is the dual local frame, then:

ea
aXa = Xa,

ea
aea

b = ea
a”a

b eb
b = ”a

b ,

where ”a
b is, consequently, the identity matrix.

Remark 1.1.1. Despite the resemblance with the summation convention, there is no im-

plicit sum in the notation: XaYa for contraction with abstract indices, nevertheless:

XaYa = Xaea
aeb

aYb = Xa”a
b Yb = XaYa,

and in the last equality there is implicit summation over the index a.

1.1.3 The vocabulary of Lorentzian geometry

A real vector space V is said to be « Lorentzian » if it is equipped with a symmetric

bilinear form g of signature (n, 1), also written, (≠, +, . . . , +) 2. Due to its significance in

physics, a specific language has developed for Lorentzian signature bilinear forms. Vectors

are classifed according to the sign of g(x, x), x œ V :

1. x ”= 0 is causal if g(x, x) Æ 0,

2. x is time-like if g(x, x) < 0,

3. x ”= 0 is isotropic, null or light-like, if g(x, x) = 0,

4. x space-like si g(x, x) > 0.

Similarly, subspaces of V are classified according to the signature of the induced bilinear

form. In particular, if F is a vector subspace of V , F is said to be:

1. time-like if g|F is Lorentzian,

2. isotropic, null or light-like if g|F is degenerate,

3. spacelike if g|F is positive definite.

2. In Chapter 3, however we will adopt the opposite signature convention (1, n).
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The lightcone is the hypersurface C defined by the equation g(x, x) = 0. A time-orientation

of V is a choice between one of the two connected components of C \{0}: all of the non-zero

causal vectors inside the chosen component will be said future-oriented; correspondingly,

those in the other component will be said past-oriented. A time-like vector x œ V and a

causal vector y œ V have same time-orientation i.e. are inside the same component of the

punctured lightcone, if and only if g(x, y) < 0. Note also that two linearly independent

causal vectors cannot be orthogonal. Incidently a time-orientation can be thought of as

choice of non-zero causal vector.

A Lorentzian manifold is a pseudo-Riemannian manifold (M, g) such that the metric

tensor g has Lorentzian signature. A time-orientation for M is a choice of a continuous non-

vanishing causal vector field. Finally a spacetime is a time-oriented Lorentzian manifold.

1.2 Principal fibre bundles

1.2.1 Definition

Principal fibre bundles o�er a unified perspective of many of the geometric concepts

that we will encounter. Spinors, tractors, densities and even usual tensors can all be

described in a particularly e�cient manner in terms of a fibre bundle. They can also be

used to give a more general definition of the notion of connection. Without further a-due,

here is the definition.

Definition 1.2.1. Let G be a Lie group and M a smooth manifold. A G-principal fibre

bundle with base M , written (P, fi, M) or (P, G, fi, M), is a smooth manifold P equipped

with a smooth surjective map fi : P æ M and a smooth right-action of G on P that

satisfies:

— For any x œ M , there is an open neighbourhood U of x and a di�eomorphism

„ : fi≠1(U) æ U ◊ G such that:

„(p · g) = „(p) · g,

where, on the right-hand side, „(p) · g is the canonical right action of G on U ◊ G.

Such an open neighbourhood U will be called a « trivialising neighbourhood » and

the couple („, U) « bundle chart ».
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— If fiU : U ◊ G æ U denotes the canonical projection, then:

fiU(„(p)) = fi(p).

When the base manifold is clear from the context, we will simply write (P, fi) or (P, G, fi).

Finally, when x œ M , the set fi≠1({x}) is called the « fibre above x ».

Before discussing a fundamental and illuminating example, let us first quote the fol-

lowing properties:

Proposition 1.2.1. In the notation of the definition:

1. The right-action of G on P preserves the fibres in the sense that for any p œ P, g œ G,

we have: fi(pg) = fi(p).

2. G acts freely on P .

3. fi≠1({fi(p)}) is the orbit of p under the action of G.

Proof. 1. Let p œ P , and choose a bundle chart („, U) near fi(p), then:

„(p)g = „(pg),

so pg œ fi≠1(U). Moreover:

fiU(„(p)g) = fiU(„(p)) = fi(p),

fiU(„(p)g) = fiU(„(pg)) = fi(pg),

which proves the first point.

2. Let p œ P , g œ G that stabilises p and („, U) a bundle chart. By assumption, pg = p

so „(pg) = „(p), hence: „(pg) = „(p)g = „(p) and g fixes „(p) in U ◊ G. Since the

canonical right-action of G on U ◊ G is free, it follows that g = e.

3. Fix p œ P , since fi(pg) = fi(p), {pg, g œ G} µ fi≠1({fi(p)}). For the other inclusion,

choose r œ fi≠1({fi(p)}) and („, U) a bundle chart near fi(p) = fi(r) = x. Write,

„(r) = (x, gÕ) and „(p) = (x, g), g, gÕ œ G, then: „(r) = „(p)g≠1gÕ = „(pg≠1gÕ).

Thus, since „ is injective, r = pg≠1gÕ.

The final p o int o f  t h e p r eceding P r oposition i m plies t h at e a ch o f  t h e fi br es of  P is  dif-

feomorphic (as a manifold), in a non-canonical way, to the group G. Just like in a�ne 
space there is no privileged choice of identity and the fibres do not have a  canonical group 
structure. To clarify further this structure, we shall now introduce a model example.

17



Introduction

1.2.2 The frame bundle of a vector bundle

In this section we will discuss how to naturally associate with any vector bundle

(E, fiE, V ) with base M and m-dimensional fibre V , a GL(V )-principal fibre bundle L(E)

over M , called the « frame bundle » of E. A generic fibre L(E)x over a point x œ M will

intuitively be the set of all linear frames of the fibre Ex = fi≠1
E ({x}). Formally, we set:

L(E) = {(x, ux), x œ M, ux œ GL(V, Ex)} . (1.1)

The projection map for the principal bundle, fi, is defined by fi(x, ux) = x and we shall

make GL(V ) act from the right on L(E) according to the equation:

(x, ux)g = (x, ux ¶ g), g œ GL(V ).

In order to make L(E) into a smooth fibre bundle, we need to ascribe it a topology and

di�erential structure. To this end, consider a bundle atlas A of E, i.e. a family of (vector)

bundle charts (Â, U) where Â : fi≠1
E (U) æ U ◊ V is a di�eomorphism such that for each

x œ U the restriction of „ to the fibre Ex above x induces a vector-space isomorphism

between Ex et V , and, where U runs over an open cover of the base M . For each chart

(Â, U), define a family of isomorphisms –x œ GL(V, Ex), x œ U by v ‘æ „≠1(x, v) and set:

Ẫ :
fi≠1(U) ≠æ U ◊ GL(V )

(x, ux) ‘≠æ (x, –≠1
x ¶ ux)

. (1.2)

Ẫ is easily seen to be bijective, and:

B =
Ó

Ẫ≠1(O), (Â, U) œ A , O µ U ◊ GL(V ) open
Ô

,

is a basis for a topology on L(E) which promotes each Ẫ to a homeomorphism. About

each point p œ L(E) one can shrink U so that is the domain of some coordinate chart

(„, U) on M and construct a local chart Â̄ : Â≠1(U) æ „(U) ◊ GL(V ) by composing Ẫ

with:
„ ◊ IdGL(V ) : U ◊ G ≠æ „(U) ◊ G,

(x, g) ‘≠æ („(x), g).

This specifies a di�erential atlas that makes the Ẫ di�eomorphisms.

It follows from our discussion that on each smooth n-dimensional manifold M , one can
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construct a GLn(R)-principal fibre bundle: the linear frame bundle of its tangent bundle

TM . In the sequel, we will see how one can describe the usual tensor bundles over TM

using GLn(R) and how to construct new vector bundles.

1.3 Principal connections

We come now to the important topic of connections on a principal fibre bundle. In

theoretical physics, fibre bundles are used to write down gauge theories, and the notion

of connection we now seek to define enables the definition of a covariant derivative for

particle fields. In geometry, connections (on the frame bundle) are used to define geodesics

and curvature. There are at least three equivalent definitions of a connection, each with

its own conceptual or computational advantages. In order to introduce the first definition,

we shall first translate into the language of fibre bundles the more familiar notion of a�ne

connection that is used in classical texts on Di�erential Geometry. We recall first, for

instance from [Car92], the following definition:

Definition 1.3.1. An a�ne connection on the tangent bundle is a map: Ò : Γ(TM) ◊
Γ(TM) æ Γ(TM) such that:

1. For any Y œ Γ(TM), X ‘æ ÒXY is a linear endomorphism of the CŒ(M)-module

Γ(TM) of vector fields over M ,

2. For each X, Y œ Γ(TM) and f œ CŒ(M), ÒX(fY ) = X(f)Y + fÒXY .

Using Penrose’s abstract index notation [PR84], a connection is therefore an operator Òa 

that, for any vector field X b  a nd s mooth f unction f ,  satisfies:

Òa(fXb) = (Òaf)Xb + fÒaXb,

where Òaf is simply the di�erential o f f .

1.3.1 A�ne co nn ection an d lo ca l mo ving frames

Consider now an open set U µ M and (e1, . . . , en) an n-tuple of smooth vector fields 
defined o n  U  s uch t hat f or e ach x  œ  U ,  (e1(x), . . . , e n (x)) i s  a  b asis o f  t he t angent space 
TxM . We will now switch to the notation described in 1.1.1. Each vector field Xa on U
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can be written Xa = Xaea
a, where the Xa are smooth functions on U . Let us calculate

ÒbX
a:

ÒbX
a = Òb(X

aea
a) = (ÒbX

a)ea
a + XaÒbe

a
a,

= (ÒbX
a)ea

a + ea
c Òbe

c
dXdea

a.
(1.3)

It transpires from the final equation that the local action of the a�ne connection can be

described in terms of the matrix of di�erential forms Êa
db = ea

c Òbe
c
d. This can equivalently

be seen as a di�erential form with values in Mn(R) 3 that we will call a: « local connection

form ».

To picture this, one can imagine the data contained in the vector fields (ea
a) as attaching

a local frame of the tangent space to each point x œ U that « moves » smoothly as x varies.

The « infinitesimal » change in the frame as it moves from x to a point x + ”x, to first

order in ”x, is described by an element of Mn(R) = gln(R), the Lie algebra of GLn(R),

which corresponds to: (Êa
d).

A natural question arising now is: given two non-disjoint open sets U and V and two

moving frames (ei) and (ẽi) on U and V respectively, what relation exists between the

two corresponding local connection forms Ê = (Êi
j) and Ễ = (Ễi

j) on U fl V ? To answer

this, let us define for each x œ U fl V , P (x) = (P i
j (x)) the change of basis matrix from

(ei(x)) to (ẽi(x)), and denote by Qi
j(x) its inverse. Let X be a fixed vector field defined

on U fl V , one has:

Ễi
j(X) = ẽi(ÒX ẽj) = Qi

memÒX(P k
j ek),

= Qi
mX(P k

j ) em(ek)
¸ ˚˙ ˝

”m
k

+Qi
mÊm

k(X)P k
j ,

= Qi
mX(P m

j ) + Qi
mÊm

k(X)P k
j .

(1.4)

Denoting by dP (x) the matrix whose coe�cients are the di�erentials of those of P (x) we

can rewrite (1.4):

Ễ(X) = P ≠1dP (X) + P ≠1Ê(X)P. (1.5)

This short analysis shows that an a�ne connection in the sense of Definition 1.3.1 can be

encoded in a family of matrix valued forms, satisfying the compatibility condition (1.5),

defined on a bundle atlas of M . It is easily seen that if (ei) is a coordinate basis ˆ
ˆxi

associated to some local chart, then (Êi
j) encodes the familiar Christo�el symbols.

Furthermore, the two terms on the right-hand side of (1.5) have a natural interpreta-

3. i.e. a section of the vector bundle Λ
1(T úU) ¢ (M ◊ Mn(R)), see also Appendix C.
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tion in terms of the multiplication in the Lie group GLn(R). If g œ GLn(R) then define

the maps:

— Lg : A œ GLn(R) ‘æ gA

— Adg: A ‘æ gAg≠1,

— adg œ L(gl(R)) the di�erential at Id of Adg.

The map Lg gives rise to a canonical gln(R)-valued di�erential form 4 on GLn(R) defined

by:

◊(X)(g) = dLg≠1
g
(Xg),

for any vector field X œ Γ(TGLn(R)). This form is known as the « Maurer-Cartan form ».

We note at this point that none of these objects are specific to GLn(R) and can be defined

mutatis mutandis on any Lie group G. Nevertheless, for matrix Lie groups, for which the

tangent spaces can be identified with vector subspaces of Mn(R), these maps are easily

determined. In particular, (1.5) can in fact be written for any x œ U fl V :

Ễx = (P ú◊)x + adP ≠1(x)(Êx). (1.6)

In the above formula, P ú is the pullback of the Maurer-Cartan form ◊ by the map x ‘æ
P (x), i.e. (P ú◊)x(Xx) = ◊P (x)(dPx · Xx), for each x œ U fl V, Xx œ TxM . We justify the

first term: let Xx œ TxM and “ be a smooth curve such that “(0) = x, “̇(0) = Xx then:

dPx(Xx) =
d
dt

P (“(t))

-
-
-
-
-
t=0

.

Furthermore: t ‘æ P (“(t)) is a curve “̃ in GLn(R) that satisfies “̃(0) = P (x) and ˙̃“(0) =
d
dt

P (“(t))
-
-
-
t=0

, therefore:

(P ú◊)x(Xx) = dLP (x)≠1
P (x)

(dPx(Xx)) =
d
dt

1

P (x)≠1P (“(t))
2

= P (x)≠1dPx(Xx).

Up to now, we have yet to discuss what any of this has to do with L(TM). We first need

to introduce a little extra material.

4. which also gives a global trivialisation of the tangent bundle of GLn(R)
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1.3.2 Local sections of a principal fibre bundle, transition func-

tions

Definition 1.3.2. Let (P, G, fi, M) be a principal fibre bundle, and U an open subset of

M . A local section of P on U is a smooth map ‡U : U æ P such that for each x œ U ,

fi(‡U(x)) = x.

Proposition 1.3.1. Retaining the notation introduced in the previous definition, any lo-

cal section on U determines a local bundle chart (Â, U) and, conversely, every local bundle

chart (Â, U) determines a local section.

Proof. If ‡U is a local section, define Â : fi≠1(U) æ U ◊ G by:

„(‡U(x) · g) = (x, g).

In the above equation, ‡U(fi(p)) is used to identify the fibre above fi(p) = x to G by

mapping ‡U(fi(p)) to e. Conversely, if (Â, U) is a local bundle chart, then ‡U(x) = Â≠1(x, e)

is a local section.

Local sections of L(TM) are closely related to the intuitive notion of moving frames used

earlier. To see this, suppose that ‡U is such a local section of L(TM). By definition of

L(TM), this is equivalent to a family (ux)xœU of linear maps ux œ GL(Rn, TxM). Such a

family determines a basis of each TxM : the image of the canonical basis of Rn. It is clear

that a moving frame is equivalent to such a family and therefore to a local section.

Now, if („, U) and (Â, V ) are two local bundle charts with U fl V ”= ÿ and we write

„(p) = (fi(p), sU(p)) and Â(p) = (fi(p), sV (p)), then for each x œ U fl V , the element

sV (p)(sU(p))≠1 œ G is in fact independent of the choice of p in the fibre above x, fi≠1({x}).

Indeed, if r = pg is another element in the fibre then:

sV (r)sU(r)≠1 = sV (pg)sU(pg)≠1 = sV (p)g(sU(p)g)≠1 = sV (p)sU(p)≠1.

This leads to the following definition:

Definition 1.3.3. Using the same notation as above, the smooth map defined for each

x œ U fl V by:

gV U(x) = sV (p)(sU(p))≠1,

where p œ fi≠1({x}) is arbitrary, is called a transition function.
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The transition function describes how to change the local bundle chart. This can be seen

through inspection of the map Â ¶ „≠1 on (U fl V ) ◊ G given by:

Â ¶ „≠1(x, g) = (x, gV U(x)g).

Indeed, for p = „≠1(x, e), gV U(x) = sV („≠1(x, e)) and:

Â ¶ „≠1(x, g) = (x, sV („≠1(x, g))) = (x, sV („≠1(x, e)g)) = (x, sV („≠1(x, e))g).

The transition functions satisfy the following properties:

Proposition 1.3.2.

gUU = e, gUV = g≠1
V U , gUV gV W gW U = e. (1.7)

It is in fact the case that the transition functions contain all of the information of

the fibre bundle; the above properties guarantee that local bundle charts can be glued

together appropriately. They are easily interpreted in terms of the local sections ‡U and

‡V determined by („, U) and (Â, V ): on U flV , ‡UgUV = ‡V . On L(TM), thinking of local

sections as moving frames, gUV is just the change of basis matrix from ‡U(x) to ‡V (x). We

can now reformulate our previous conclusions as follows: an a�ne connection on L(TM)

is equivalent to the data consisting of a matrix-valued di�erential form ÊU on each local

bundle chart („, U) of L(TM). On the intersection of any two local bundle charts U et

V , the forms ÊU and ÊV must satisfy:

ÊV = (gú
UV ◊) + adg≠1

UV
(ÊU). (1.8)

This leads to the first definition of a connection on a principal fibre bundle:

Definition 1.3.4. Let (P, fi, M) be a G-principal fibre bundle over M , a connection on

P is the data consisting of a di�erential form ÊU with values in the Lie algebra g of G

for each local section ‡U of P , such that if two local sections are related by ‡V = ‡UgUV

then:

ÊV = (gú
UV ◊G) + adg≠1

UV
(ÊU), (1.9)

where ◊G is the Maurer-Cartan form of G.
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1.3.3 Vertical vectors

The above definition is very useful for local computations on manifolds, and is used

extensively in the Physics literature. However, from a conceptual perspective it is inter-

esting to point out that these local connection forms actually stem from a global object

defined on P . To see this we first need to study the projection map fi of a G-principal

fibre bundle (P, fi, M) in more detail.

According to Definition 1.2.1, fi : P æ M is a smooth surjection. In fact, fi is a

submersion since, if p œ P , one can always find a local section ‡U (cf. Proposition 1.3.1),

that satisfies ‡U(fi(p)) = p. Such a section is a di�erentiable right inverse of fi and the

tangent map d‡U x is a right inverse of dfi‡U (x) = dfip. Consequently, (Vp)pœP , where Vp =

ker dfip is a smooth distribution of TP .

Elements of Vp, p œ P will be referred to as vertical vectors. Intuitively, they are the

vectors in TpP that have no component in the direction of the basis. In other words, they

are the tangent vectors to curves entirely contained in one of the fibres of P .

Definition 1.3.5. Denote the Lie algebra of G by g and let A œ g. A gives rise to a

vector field, called the fundamental field, Aú, according to the formula:

Aú
p =

d
dt

(p exp(At))

-
-
-
-
-
t=0

. (1.10)

For fixed p, Aú
p is nothing more than the image of A under the tangent map at e of the

map Lp : G æ P , given by Lp(g) = pg. Hence, for fixed p, A ‘æ Aú
p is linear, and we

claim that it is injective: suppose that Aú
p = 0 for some A œ g, and let s œ R, then:

0 =
d
dt

(p exp(tA) exp(sA))

-
-
-
-
-
t=0

=
d
dt

(p exp((t + s)A))

-
-
-
-
-
t=0

=
d
dt

(p exp(tA))

-
-
-
-
-
t=s

It follows that s ‘æ p exp(sA) is the constant map s ‘æ p. Since the group G acts freely

on P necessarily exp(sA) = e for every s œ R. However, exp : g æ G is a local

di�eomorphism near 0, so A = 0. Last of all, Aú
p œ Vp for each p, since:

dfip(Aú
p) =

d
dt

(fi(p exp(At)))

-
-
-
-
-
t=0

=
d
dt

fi(p)

-
-
-
-
-
t=0

= 0.

Consequently, this induces a vector space isomorphism Vp ≥= g, and at each p œ P we have 
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the following short exact sequence:

0 æ g æ TpP æ Tfi(p)M æ 0.

A local section ‡U right splits the sequence:

0 æ g æ T‡U (x)P æ TxM æ 0,

so that we have the isomorphism: T‡U (x)P ≥= g ü TxM.

1.3.4 Connection as a g-valued di�erential form on P

We can now introduce the second definition of a connection that we alluded to at the

beginning of the preceding paragraph. To illustrate the construction, we return to the

example of an a�ne connection; our arguments are, however, completely independent of

this choice and can be applied to any connection as defined by Definition 1.3.4.

Suppose that we have a local connection form ÊU on each local bundle chart („, U)

of L(TM) and that they are compatible in the sense of (1.8) on the intersection of any

two charts. For any given chart („, U), let ‡U denote the section of L(TM) given by

‡U(x) = „≠1(x, e). In light of the concluding remarks of the previous paragraph, for each

x œ U we define a linear map: Ê‡U (x) : T‡U (x)L(M) æ Mn(R) by:

Ê‡U (x)(d‡U x(Y ) + Aú
‡U (x)) = ÊU x(Y ) + A, Y œ TxM. (1.11)

We then extend the definition to other points in the fiber above x by imposing the equiv-

ariance:

Rú
gÊ = adg≠1Ê, (1.12)

where Rg is the smooth map p ‘æ pg. This means that for any p œ fi≠1({x}), g œ GLn(R):

Êpg(dRg(X)) = adg≠1Êp(X), X œ TpP. (1.13)

In this way we get a smooth matrix valued di�erential form on the bundle fi ≠1(U), that, 
additionally, satisfies:

Ê(Aú) = A. (1.14)

This can be seen in the following manner. Let p œ fi≠1(U) and set x = fi(p). One can find
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g œ GLn(R) such that p = ‡U(x)g, hence:

Êp(Aú
p) = adg≠1Ê‡U (x)(dRg≠1

p
(Aú

p)).

Moreover, for any A œ g:

dRg≠1
p
(Aúp) =

d
dt

1

p exp(At)g≠1
2

-
-
-
-
-
t=0

=
d
dt

1

pg≠1g exp(At)g≠1
2

-
-
-
-
-
t=0

,

=
d
dt

1

pg≠1 exp(adgAt)
2

-
-
-
-
-
t=0

,

= (adgA)ú
‡U (x).

Consequently: Êp(Aú
p) = adg≠1adgA = A.

In order to complete the construction of a di�erential form on L(TM), it remains to

show that the definition is consistent on the intersection of any two bundle charts U, V .

Let („, U) and (Â, V ) be two local bundle charts and denote by ‡U , ‡V the associated

local sections. Finally, we call ÊU and ÊV the forms on fi≠1(U) and fi≠1(V ) respectively,

constructed as described above from local connection forms ÊU and ÊV on U and V

respectively.

The invariance (1.12) implies that it is su�cient to check that for x œ U fl V : ÊV
‡V (x) =

ÊU
‡V (x). Additionally, (1.14) implies that we only need to show that for any vector field

Y œ TxM :

ÊV
‡V (x)(d‡V x(Y )) = ÊU

‡V (x)(d‡V x(Y )).

Let us evaluate the right-hand side:

ÊU
‡V (x)(d‡V x(Y )) = ÊU

‡U (x)gUV (x)(d(‡UgUV )x(Y )),

= ÊU
‡U (x)gUV (x)

3

dL‡U (x)gUV (x)
(dgUV x(Y )) + dRgUV (x)x

(d‡U x(Y ))
4

,

= adgUV (x)≠1ÊU
‡U (x)(d‡U x(Y )) + ÊU

‡U (x)gUV (x)

3

dL‡U (x)gUV (x)
(dgUV x(Y ))

4

.

In the last two lines we recall that Lp, p œ L(TM) is defined by: g  ‘æ p g. L et u s focus 
our attention on the second term of the final equation. Choose a curve “ on M such that
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“(0) = x and “̇(0) = Y , and note that:

dL‡U (x)gUV (x)
(dgUV x(Y )) =

d
dt

(‡U(x)gUV (“(t)))

-
-
-
-
-
t=0

,

=
d
dt

1

‡V (x)gUV (x)≠1gUV (“(t))
2

-
-
-
-
-
t=0

.

(1.15)

From the final equation we see the left-hand side is actually a tangent vector to a curve

in the fibre of L(M) containing ‡V (x); in other words it is a vertical vector field. To

determine to which element A œ gln(R) it corresponds, we only need to calculate the

derivative at 0 of the curve in GLn(R) given by t ‘æ gUV (x)≠1gUV (“(t)). The result is:

dLgUV (x)≠1
gUV (x)

(dgUV x(Y )) = (gú
UV ◊)x(Y ). Therefore, using (1.8):

ÊU
‡V (x)(d‡V x(Y )) = adgUV (x)≠1ÊU x(Y ) + (gú

UV ◊)x(Y ),

= ÊV x(Y ).
(1.16)

Since ÊU et ÊV coincide on their common domain of definition, we have thus shown that

they can be glued together to yield a matrix valued di�erential form on L(TM). This

leads to the following definition:

Definition 1.3.6. Let (P, G, fi, M) be a smooth principal fibre bundle. A connection on

P is a smooth g-valued di�erential form Ê that satisfies:

1. Ê(Aú) = A,

2. Rú
gÊ = adg≠1Ê.

As remarked above, our previous computations generalise without essential modification

to the case of an arbitrary Lie group G with Lie algebra g. Furthermore, they are the

hard part of the proof that Definition 1.3.6 is equivalent to Definition 1.3.4. To obtain ÊU

from Ê, it su�ces to pullback along the local section ‡U
5: ÊU = ‡ú

UÊ.

1.3.5 Principal connection as a G-equivariant horizontal distri-

bution

To close this discussion on principal connections, we would like to mention that there

is a third equivalent definition, which is conceptually useful:

5. This is quite natural given the short exact sequences at the end our discussion on vertical vectors.
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Definition 1.3.7. A principal connection on principal fibre bundle (P, G, fi, M) is a

smooth G-equivariant distribution complementary to the vertical vector distribution i.e.

a family of vector subspaces (Hp)pœP , Hp µ TpP such that for any p œ P, g œ G.

1. TpP = Hp ü Vp,

2. (dRg)(Hp) = Hpg. (equivariance)

3. The association p ‘æ Hp is smooth in the sense that on a neighbourhood of any

point p œ P one can find n vector fields that generate Hq at each point q in the

neighbourhood.

For a proof of the equivalence with our previous definitions, we refer the reader to [Nab10;

Ble05].
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1.4 Associated bundles

Throughout this work we will tend to think of principal bundles as a general frame 
bundle. The following construction further justifies this point of view and is probably one 
of the most important applications of principal fibre bundles used in this thesis.

To introduce our point of view, let us borrow, as we often do, a situation from Physics. 
Imagine that we would like to describe the movement of a particle in Newton’s absolute 
space. To do this, we set up a frame of reference and a system of cartesian coordinates 
(x, y, z). With respect to this frame of reference, we measure a certain number of physical 
quantities, of di�erent nature such as the position, velocity or angular momentum, associ-

ated with the movement of the particule. These quantities can each be represented as one 
or a collection of real numbers. It is natural to ask, how can we compare our measurements 
with those carried out in another frame of reference ? Do these numbers change, and if 
so, how ? To simplify things a little, assume that the reference frames are anchored in 
the same point so that the transformation group is simply the familiar group of rotations 
SO(3). In this situation, we will find that i f we rotate our f rame using A  œ  S O(3), then 
the 3 real numbers that describe the velocity (vi)iœ{1,2,3} change according to the following 
rule: ṽi = (A≠1)i

j v
j . In view of this, we will say that the velocity is a « vector » quantity; 

similarly, the mass, which will not change, will be said to be a « scalar » quantity. In 
other words, we classify quantities according to the representation of the rotation group 
to which they correspond.

In General Relativity, tensor quantities of this type are still used to describe systems, 
the di�erence being that the transformation group applies to local frames. The machinery 
that we are now going to describe, enables us to construct a vector bundle over a manifold 
M , given any G-principal fibre b undle o ver M  -  w hich c ontains t he i nformation about 
local frames - and a linear representation (V, fl) of the group G. We will denote this 
vector bundle by P ◊G V , the fiber a bove a ny p oint o f t his b undle i s a  vector s pace of 
quantities with the transformation rule prescribed by the representation. More generally, 
an adaptation of our discussion enables the definition o f associated bundles P  ◊ G X  for 
a number of di�erentiable actions of the group G  on a  manifold X.

1.4.1 Constructing an associated vector bundle

Let (P, G, fi, M) be a G-principal bundle over M and (V, fl) a smooth finite dimensional 
linear representation (to simplify: V ¥ Kn, K = R, C ) of G. The construction of P ◊G V
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is largely inspired by our usual experience of tensor fields. Consider the product manifold

P ◊ V and the smooth left action of G on P ◊ V given by:

G ◊ (P ◊ V ) ≠æ P ◊ V

(g, (r, v)) ‘≠æ (rg, fl(g)≠1v).
(1.17)

P ◊G V is simply defined as the quotient space (P ◊ V )/G.

To motivate this choice, it is illuminating to think of a pair (r, v) as the data consisting

of a local frame r and the coordinates of a vector v in that frame. Multiplying from the

right a frame by an element g œ G corresponds to changing frame (g is the change of basis

matrix) and, accordingly, the components of the vector v should change according to the

usual change of basis rule in linear algebra.

The proof of the fact that P ◊G V is a vector bundle over M with fibre V is often

left as an exercise in the literature. For the benefit of impatient readers, we sketch the

proof below. To simplify notations a little we introduce the notation E = P ◊G V . Let

p : P ◊ V ≠æ P ◊G V be the canonical projection. Let („, U) be a local bundle chart and

suppose that p œ U, „(p) = (fi(p), su(p)). Shrinking, if necessary, U we can assume that it

is the defining domain of a local chart (x, U) on M . Set now:

x : fi≠1(U) ◊ V ≠æ x(U) ◊ V

(r, v) ‘≠æ (x(fi(r)), fl(su(r))v).

Observe that it factors to a map: ˜̄x : p(fi≠1(U)◊V ) ≠æ x(U)◊V . Indeed, if (r, v) ≥ (rÕ, vÕ)

then one can find g œ G such that rÕ = rg and vÕ = fl(g)≠1v. Hence:

Y

]

[

x(fi(rÕ)) = x(fi(rg)) = x(fi(r)),

fl(su(rÕ))vÕ = fl(su(rg))fl(g≠1)v = fl(su(r)g)fl(g)≠1v = fl(su(r))fl(g)fl(g)≠1v = fl(su(r))v.

We will now show that the maps x̄̃ are a bundle atlas for E. This relies on two lemmata:

Lemma 1.4.1. Let G be a topological group and (X, T ) a topological space on which G 
acts continuously from the left, i.e. the map (g, x) ‘æ g · x is continuous for the product 
topology. In this case, if O is an open set in X and A µ G, then the set A · O = 
{a · x, a œ A, x œ O} is open.

Proof. For any fixed g  œ G, the map x ‘æ g·x is a homeomorphism with inverse x ‘æ g≠1·x; 
in particular it is an open map. Hence, g · O is open. The result follows for an arbitrary
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subset A µ G by an arbitrary union of open sets.

Lemma 1.4.2. The canonical projection map p is open.

Proof. Let O be an open subset of P ◊ V . By definition of the quotient topology the set

p(O) is open if and only if p
≠1(p(O)) is open, but:

p
≠1(p(O)) = {(r, v) œ P ◊ V, p(r, v) œ p(O) } ,

= {(r, v) œ P ◊ V, ÷(rÕ, vÕ) œ O, p(r, v) = p(rÕ, vÕ)} ,

=
Ó

(r, v) œ P ◊ V, ÷(rÕ, vÕ) œ O, ÷g œ G, (r, g) = (rÕg, fl(g)≠1v)
Ô

,

= g · O.

Since the action defined by (1.17) is continuous, we conclude by the previous Lemma.

It follows that the defining domain of ˜̄x, p(fi≠1(U) ◊ V ), is an open subset of E. Define

now the surjective map:
fī : P ◊ V ≠æ M

(p, v) ‘≠æ fi(p),

which factors, like x̄, to a surjective map: ˜̄fi : E ≠æ M . Moreover:

fī≠1(U) = p
≠1(˜̄fi≠1(U)).

Therefore, since p is surjective, one has:

p(fī≠1(U)) = ˜̄fi≠1(U),

furthermore, fī≠1(U) = fi≠1(U) ◊ V , thus:

˜̄fi≠1(U) = p(fi≠1(U) ◊ V ). 6

Overall: ˜̄x : ˜̄fi≠1(U) ≠æ x(U) ◊ V µ R
n ◊ V . To show that ˜̄x is itself a homeomorphism,

we describe explicitly its inverse. Choose an arbitrary element g œ G and set:

„ :
x(U) ◊ V ≠æ ˜̄fi≠1(U) = p(fi≠1(U) ◊ V )

(a, b) ‘≠æ p(„≠1(x≠1(a), g), fl(g)≠1 · b)).
(1.18)

6. This is actually sufficient to prove that it is open.
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As a composition of continuous functions, „ is continuous and is actually independent of

the choice of g 7. Moreover:

„(˜̄x(p(r, v))) = „((x(fi(r)), fl(su(r))v)) = p(„≠1(fi(r), g), fl(g)≠1fl(su(r))v)).

Define rÕ = „≠1(fi(r), g), clearly: rÕ œ fi≠1(fi(r)) so rÕ and r are in the same orbit, hence

we can find gÕ œ G satisfying rÕ = rgÕ i.e. r = rÕgÕ≠1. By consequence:

p(„≠1(fi(r), g), fl(g)≠1fl(su(r))v)) = p(rÕ, fl(g)≠1fl(su(rÕgÕ≠1)v)

= p(rgÕ, fl(g)≠1fl(su(rÕ)
¸ ˚˙ ˝

g

)fl(gÕ≠1)v),

= p(rgÕ, fl(gÕ)≠1v).

Hence:

„(˜̄x(p(r, v))) = p(rgÕ, fl(gÕ)≠1v) = p(r, v),

and „ is a right inverse of ˜̄x. Let us compute now ˜̄x(„(a, b)):

˜̄x(„(a, b)) = ˜̄x(p(„≠1(x≠1(a), g), fl(g)≠1b)),

= x̄(„≠1(x≠1(a), g), fl(g)≠1b),

= (a, fl(g)fl(g)≠1b) = (a, b).

Consequently, „ is the inverse map to ˜̄x, which is a homeomorphism. If we consider the

maximal atlas containing all charts constructed in this manner, it is not di�cult to see

that this is a smooth structure for E which is hence a smooth manifold of dimension

dim M + dim V . Furthermore, studying the form of these charts, one can see that E

is a vector bundle over M with model fibre V . For instance, a fibre Vq = ˜̄fi≠1({x}) =

p(fī≠1({q})) = p(fi≠1({q})◊V ), q œ M is naturally equipped with a vector space structure

induced by that of {r}◊V for each r œ fi≠1({x}). Indeed, if v1 = p(r, v) and v2 = p(rÕ, vÕ)

are two elements of Vq, then, since rÕ œ fi≠1({fi(r)} = {q}), one can find g œ G such that

r = rÕg. In particular: v2 = (r, fl(g)≠1vÕ). Consequently we set:

v1 + v2 = p((r, v) + (r, fl(g)≠1vÕ)) = p(r, v + fl(g)≠1vÕ),

7. It would have been simpler to take directly g = e.
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this is independent of the choice of representative and so we have a well-defined addition

+. Analogously, if ⁄ œ K, we set:

⁄ · v1 = p(⁄ · (r, v)) = p((r, ⁄v)).

Once more, linearity of the representation can be used to show that this definition is

independent of the choice of (r, v) in the class p(r, v):

p((r, ⁄v)) = p(rg, fl(g)≠1(⁄v)) = p(rg, ⁄fl(g)≠1v).

This linear structure is chosen so that „̃q = ˜̄x|˜̄fi≠1({q}) : Vq ≠æ {x(q)} ◊ V becomes a

vector space isomorphism:

„̃q(⁄v1 + µv2) = ˜̄x(p(r, ⁄v1 + µv2)) = (x(q), fl(su(r))(⁄v1 + µv2)),

= (x(q), ⁄fl(su(r)).v1 + µfl(su(r))v2)),

= ⁄(x(q), fl(su(r)).v1) + µ(x(q), fl(su(r))v2),

= ⁄„̃q(v1) + µ„̃q(v2); ⁄, µ œ K, vi œ Vq.

We omit the proof that the action is proper which implies that P ◊GV is indeed Hausdor�.

1.4.2 Examples of associated bundles

We will now give some examples of associated bundles, the first of which are the usual

tangent and cotangent bundles TM et T úM :

1. TM is the associated bundle to L(TM) corresponding to the fundamental repre-

sentation of GLn(R),

2. T úM is the associated bundle L(TM) corresponding to the dual or contragredient

representation: P ‘æ tP ≠1,

3. more generally, the bundle of tensors of type (p, q) is the associated bundle to L(TM)

corresponding to the representation (fl, ¢p+q
R

n), defined by:

fl(P )v1 ¢ · · · ¢ vp ¢ l1 ¢ · · · ¢ lq = (Pv1) ¢ · · · ¢ (Pvp) ¢ (tP ≠1l1) ¢ · · · ¢ (tP ≠1lq).

The following example is important for Chapter 4, so we present it as a definition:
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Definition 1.4.1. Let Ê œ C, a projective density of weight Ê 8 is a smooth section of

the bundle E(Ê) associated to L(TM) with the representation of GLn(R) on R given by:

GLn(R) ◊ R ≠æ R

(A, v) ‘≠æ | det A|
ω

n+1 v.

If B is any fibre bundle on M , we will write B(Ê) for B ¢ E(Ê).

Note that E(Ê) is a trivial line bundle; one can construct a non-zero global section using

a partition of unity.

1.4.3 Covariant derivative on an associated vector bundle

A principal connection Ê on a principal fibre bundle (P, G, fi, M) induces an a�ne

connection in the sense of Definition 1.3.1 on any associated vector bundle. In Physics

literature this is often referred to as a covariant derivative. The following definition will

help us simplify the construction:

Definition 1.4.2. Let (P, G, fi) and (P Õ, GÕ, fiÕ) be two fibre bundles over M and „ : P æ
P Õ be a smooth map. „ is a principal bundle morphism if:

1. there is a group homomorphism Ï : G æ GÕ such that for any p œ P, g œ G:

„(pg) = „(p)Ï(g),

2. the following diagram is commutative:

P P Õ

M

fi

„

fiÕ
.

Presently, an interesting example is given by the following lemma:

Lemma 1.4.3. Let (P, G, fi, M) be a principal fibre bundle and P ◊G V an associated

vector bundle corresponding to a representation (V, fl) of G. In this case, there is a princi-

pal bundle morphism P ≠æ L(P ◊G V ) where L(P ◊G V ) is the frame bundle of P ◊G V

8. We may also speak of densities of projective weight ω
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(cf. Paragraph 1.2.2) given by:

Φ : P ≠æ L(P ◊G V )

r ‘≠æ (fi(r), ur).
(1.19)

In the above, ur œ GL(V, (P ◊G V )fi(r)) is defined by v ‘æ p(r, v) and p is the canonical

projection from P ◊ V onto P ◊G V.

Proof. We simply check that: Φ(rg) = Φ(r)fl(g); for which it is su�cient to show that

urg = ur ¶ fl(g). For each r œ P, g œ G: urg(v) = p(rg, v) = p(r, fl(g)v) = ur(fl(g)(v)).

It follows that a local section ‡U of P , gives rise to a local section of L(P ◊G V ) according

to the formula ‡̃U = Φ¶‡U . Furthermore, the tangent map to the representation morphism

fl at the identity of G induces a Lie algebra representation of g that we will call flú. The

local connection form ÊU = ‡ú
UÊ induces a local connection form on L(P ◊G V ) according

to: ỄU = flúÊU .

To convince ourselves that this is indeed a connection, let us verify that (1.8) holds

for Ễ. Let ‡V be another local section such that U fl V ”= ÿ. Since Φ is a principal fibre

bundle morphism, ‡̃V = Φ(‡UgUV ) = Φ(‡U)fl(gUV ) and:

ỄV = flúÊV = flú(g
ú
UV ◊) + flúadg≠1

UV
(ÊU).

The result follows from:

flúadg≠1
UV

(ÊU) = dfle ¶ d(Adg≠1
UV

)e(ÊU),

= d(fl ¶ Adg≠1
UV

)e(ÊU),

= d(Adfl(gUV )≠1 ¶ fl)e(ÊU) = adfl(gUV )≠1(ỄU),

and:
flúg

ú
UV ◊ = dfle ¶ dLg≠1

UV gUV

(dgUV ),

= d(fl ¶ Lg≠1
UV

)gUV
(dgUV ),

= dLfl(gUV )≠1
fl(gUV )

(dflgUV
¶ dgUV ),

= dLfl(gUV )≠1
fl(gUV )

(dfl(gUV )).
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1.4.4 Fibre bundle reductions and geometric properties

The final t opic t hat we w ish t o t ouch u pon b riefly in  th is wa lkthrough on  Principal 
fibre bundles is that of fibre bundle reductions. Our interest in  this is  mainly conceptual: 
orientation or metric tensors can be reinterpreted as reductions of L(M) to an H-principal 
fibre bundle where H  µ GLn(R) i s a  closed subgroup.

Definition 1 .4.3. Let H  be a  closed subgroup of a  Lie group G, (P, fi, M ) a  G-principal 
fibre bundle and ÿ : H  æ G the canonical injection. A reduction of P  is a H -principal fibre 
bundle (P Õ, fiÕ, M) and a principal bundle morphism „ such that: „(qh) = „(q)ÿ(h), q œ 
P Õ, h œ H. In this case: „ is an immersion and we have the isomorphism P Õ ◊H G ≥= P 
where H acts on G by left multiplication.

The existence of a reduction is generally subject to topological constraints. (reference?) 
For instance, if G = GLn(R), H = {Id} and P = L(TM) then there is a reduction P Õ

if and only if M is parallelisable. In a similar fashion, if H = GLn(R)+, the subgroup 
of matrices with positive determinant, then the existence of a reduction is equivalent to 
orientability. This is more easily seen when thinking in terms of an orientation atlas: one 
can construct the bundle P Õ by imitating the method described in Paragraph 1.2.2 but 
restricting to positively oriented frames: the orientation atlas is exactly what is needed to 
guarantee that this is possible. In terms of transition functions, a reduction translates to 
the possibility to restrict their values to a subgroup. Finally, a choice of metric is equally 
equivalent to a reduction of the frame bundle which restricts to orthonormal frames: one 
can choose a covering such that the transition functions take their values in O(p, q). If 
furthermore M is orientable, one can work with positively oriented orthonormal frames.
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Chapter 2

KERR-DE SITTER SPACETIMES

2.1 Preamble

The original aim of this part of my work was to give a classification of the di�erent types

of geometries within the Kerr-de Sitter family in order to formulate a precise definition

of the so-called « extreme » case. This was in preparation for the scattering theory to be

constructed in Chapter 3 and to the author’s knowledge the result given here was absent

from the literature.

As with all such classifications for analytical black-holes it is based on the study of

the roots of a polynomial depending on the physical parameters of the family. In the case

of Kerr-de Sitter spacetimes, excluding the scalar-flat case, the polynomial is of degree

4. The black-hole is called « extreme » when one of the roots is of multiplicity greater

than one; we determine here the conditions on the parameters for this to occur. This is

achieved solely through algebraic methods.

The significance of these roots is that they correspond to poles in the coe�cients of

the black-hole metric. However, these poles are not true physical singularities since it

is possible to analytically extend the manifold through them, obtaining hypersurfaces

referred to as « horizons ». The author’s interest in understanding precisely what this

means caused the work to grow into a larger article that addressed the extension problem

that we describe below. Although its solution is considered known by the community, no

mathematical account existed in the literature and this work fills that hole.

Often, a black-hole geometry arises as a solution to Einstein’s field equations with

apparent singularities in the metric. For instance, the Schwarzschild blackhole (with mass

m) is M = Rt◊]0, +Œ[r◊S2, equipped with the metric g:

g =
3

1 ≠ 2m

r

4

dt2 ≠
3

1 ≠ 2m

r

4≠1

dr2 ≠ r2d‡2 (2.1)

where d‡2 is the usual round metric on S2.
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The expression of g is clearly problematic at points p œ M such that r(p) = 0 or

r(p) = 2m. So at this stage, it is only really sensible to consider it separately on the

open subsets U1 = R◊]0, 2m[◊S2 and U2 = R◊ ]2m, +Œ[◊S2 of R ◊ R
ú
+ ◊ S2. We

therefore have two Lorentzian manfiolds (U1, g1 = g|U1) and (U2, g2 = g|U2) which, to begin

with, are unrelated. It is nevertheless natural to wonder if it is possible to find another

Lorentzian manifold (N, g̃), in which we can isometrically embed each of the manifolds

(Ui, gi), i œ {1, 2} and such that the metric g̃ extends g to one or several points where

it is not defined. Ideally, we would also like the values of g̃ to be completely determined

by those of g near these points. We will study this extension problem in the category

of analytical 1 Lorentzian manfiolds. Consequently, if there is a solution, it is unique by

analytical continuation.

In the case of Schwarzschild’s metric (2.1), the extension problem posed above has

a solution for points where r = 2m. It can be constructed by performing the following

change of coordinates :

R◊]2m, +Œ[◊S2 ≠æ R◊]2m, +Œ[◊S2

(t, r, Ë) ‘≠æ (t ≠ F (r), r, Ë)
, (2.2)

where F (r) = r + 2m ln(|r ≠ 2m|). In these new coordinates (tÕ, rÕ, ËÕ) - known as the

outgoing Eddington-Finkelstein chart - the metric g has the form :

3

1 ≠ 2m

rÕ

4

dtÕ2 + 2drÕdtÕ ≠ rÕ2d‡2, (2.3)

which is regular at all points {rÕ = 2m}. One can then define t he L orentzian manifold
N = R◊R

ú
+ ◊S2, with metric given by (2.3) and it is easily seen that (U1, gi) and (U2, gi) 

can be isometrically embedded into N . The function rÕ analytically extends r, and, in N ,

{rÕ = 2m} is an isotropic hypersurface, which is referred to as an « event horizon ». The 
situation is not as favourable at r = 0 : inspecting geodesics, one can show that there is 
no analytic solution to the extension problem there and in this sense it is a true geometric 
singularity.

Besides the apparent singularities in the metric, the Schwarzschild blackhole as defined 
above has another drawback : a number of its geodesics are incomplete, i.e. there are 
maximal solutions to the geodesic equation that are not defined over all of R. Given their 
classical physical interpretation, it seems natural to attempt to extend again the manifold

1. We restrict to analytical transition maps, and assume that the metric components are analytical
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to remedy this, at least for geodesics that do not run into the singularity. If one can find an

extension that satisfies this additional condition, it will be said to be a maximal extension.

Our extension N above, is not maximal in this sense, but there are global coordinates that

do lead to a maximal extension. They are known as the Kruskal-Szekeres coordinates, the

interested reader can find the details of this in [Wal84].

This work lead to a publication [Bor18] in Classical and Quantum Gravity available

at : https://iopscience.iop.org/article/10.1088/1361-6382/aae3dc.
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Partie , Chapter 2 – Kerr-de Sitter spacetimes

Maximal Kerr-de Sitter spacetimes
The following is the author’s final preprint of the eponymous article [Bor18] published in

Vol. 35 No. 21 of Classical and Quantum Gravity.

2.2 Introduction

Over the past decade or so, there has been increasing interest in asymptotically de

Sitter spacetimes, as opposed to the better-studied asymptotically flat spacetimes, notably

due to the experimental evidence that our universe is actually in expansion, and that this

expansion is accelerating. De Sitter spacetime, named after the Dutch mathematician and

astronomer Willem de Sitter, is one of the simpler models of such a universe. It can be

seen as the submanifold of equation ≠x2
0 +

n+1ÿ

i

x2
i = –2, – œ R in (n + 2)-dimensional

Minkowski space and is a maximally symmetric vacuum solution to Einstein’s equation

with positive cosmological constant Λ = 3
–2 ; the parameter – is also related to the Ricci

scalar by R = n(n≠1)
–2 . In this paper, we are interested in 4-dimensional Kerr-de Sitter

spacetimes describing a rotating black hole on a de-Sitter background. These solutions 
where first d iscussed b y B randon C arter [ Car09], b ut m ore t horough s tudies o f them, 
and in particular of the structure of the roots of the polynomial ∆r according to the 
values of the parameters a, l and M , have been delayed, until recently, due to its supposed 
more geometrical than physical significance. In recent articles, several authors have shown 
interest in Kerr-de Sitter spacetimes, and a numerical study is proposed in [AM11].

In this work we give complete and relatively simple characterisations of the Kerr-

de Sitter analogs of “fast”, “extreme” and “slow” Kerr spacetime and describe in detail 
the construction of a maximal analytical extension of the Kerr-de Sitter solution in each 
case. The text is organised as follows: in Section 2.3 we give a succinct description of 
the geometric properties of the Kerr-de Sitter metric in Carter’s Boyer-Lindquist like 
coordinates; the principal result of interest is the computation of the curvature forms 
Ωi

j . Following [GH77; AM11], the sign convention for Λ is opposite to that in Carter’s 
original work. In Section 2.4, we discuss the root structure of the family of polynomials ∆r 

according to the values of the parameters (a, l, M). After writing this article, we discovered 
that a similar study had already been lead in [LZ15]; our results confirm a nd complete 
theirs. In Section 2.5, we describe the construction of maximal Kerr-de Sitter spacetimes, 
the criterion for maximality being the completeness of all principal null geodesics that
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2.3. The Kerr-de Sitter metric

do not run into a curvature singularity. The results of Section 2.3 confirm the fact that

only minor adaptations of the methods used in [ONe14] are required, however, some of the

proofs are repeated and complements are provided in appendices so that the text is as self-

contained as possible. We decided not to discuss more general geodesics than the principal

nulls used in the construction of maximal extensions, but found that recent articles had

ventured into this terrain: a classification of null geodesics is proposed in [CS17] and a

discussion on all causal geodesics is given in [ZS17].

The signature convention used in this work is (≠, +, +, +) and, when units are relevant,

formulae are written in geometric units where G = 1 and c = 1.

2.3 The Kerr-de Sitter metric

In this section we will define the Kerr-de Sitter (KdS) metric g and calculate the

curvature forms Ωi
j on each of the so-called “Boyer-Lindquist blocks” in an appropriate

frame. The algebraic structure of the curvature tensor encoded in these forms will show

that, like that of the Kerr metric, the Weyl tensor of the Kerr-de Sitter metric is of Petrov

type D at each point of these blocks.

The components gij of the Kerr-de Sitter metric on the connected components of the

manifold (Rt ◊ Rr) ◊ S2 \ Σ fi H, H = {∆r = 0}, Σ = {fl2 = 0}, referred to as the

Boyer-Lindquist (BL) blocks, are given in table 2.1; some useful alternative expressions

are also given in appendix A.4. When l = 0, these expressions reduce to those of the

usual Kerr metric. The coordinates (t, r, ◊, „) will be referred to as Boyer-Lindquist(-like)

coordinates. The parameters a, M and Λ have their usual physical interpretation: M is the

Kerr metric Kerr-de Sitter Metric
gtt ≠1 + 2rM

fl2
∆θa2 sin2 ◊≠∆r

fl2Ξ2

grr
fl2

∆

fl2

∆r

g◊◊ fl2 fl2

∆θ

g„„

Ë

r2 + a2 + 2rMa2 sin2 ◊
fl2

È

sin2 ◊ [∆◊(r
2 + a2)2 ≠ ∆ra

2 sin2 ◊ ] sin2 ◊
fl2Ξ2

g„t ≠2rMa sin2 ◊
fl2

a sin2 ◊
Ξ2fl2 (∆r ≠ ∆◊(r

2 + a2))

Other All zero All zero
l2 = Λ

3
Ξ = 1 + l2a2 ∆◊ = 1 + l2a2 cos2 ◊

∆r = ∆ ≠ l2r2(r2 + a2) fl2 = r2 + a2 cos2 ◊ ∆ = r2 ≠ 2Mr + a2

Table 2.1 – Metric tensor elements in Boyer-Lindquist like coordinates 
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Partie , Chapter 2 – Kerr-de Sitter spacetimes

mass of the black hole, a its angular momentum per unit mass and Λ is the cosmological

constant.

As in the case of the Kerr metric, the Kerr-de Sitter metric line element can be divided

into two parts that clearly have an unique analytic extension to all of (Rt◊Rr)◊S2\ΣfiH

(whereas the expressions in table 2.1 are a priori only valid at points where sin ◊ ”= 0).

More precisely we have ds2 = grrdr2 + Q + QÕ where Q and QÕ are the two quadratic

forms given by:

Q = gttdt2 + 2g„t d„dt, (2.4)

= ≠∆◊

Ξ2
dt2 +

1

Ξ2

A

l2(r2 + a2) +
2Mr

fl2

B 3Ë

dt ≠ a sin2 ◊d„
È2 ≠ a2 sin4 ◊d„2

4

,

QÕ = g◊◊d◊2 + g„„d„2 =
fl2

∆◊

d‡2 +

A

Ξ

∆◊

1

1 ≠ l2r2
2

+
2Mr

fl2

B

a2 sin4 ◊

Ξ2
d„2. (2.5)

In the last expression d‡2 = d◊2 + sin2 ◊d„2 is the usual line element of the sphere, which

is naturally extendable to the poles. Moreover, the form a sin2 ◊d„ is well defined 2 on all

of S2. Hence, the above expressions have unique analytic extensions to the points of the

“axis” A = R
2 ◊ {p±} where p± are the poles of the sphere.

The set Σ is the ring singularity of the Kerr-de Sitter spacetime and the zeros of ∆r will

give us the number of Boyer-Lindquist blocks as well as the position of the horizons when

we construct a maximal analytical extension of the Boyer-Lindquist blocks in section 2.5.

Its sign will also be of importance since, as seen from the expression in table 2.1, it

determines the nature 3 of the coordinate vector fields ˆt, ˆr, ˆ„. The properties of ∆r will

be studied in section 2.4. For now, we write Á = sgn(∆r) and define an orthonormal frame

(Ei)iœ {0,...,3} on each Boyer-Lindquist block as follows:

E0 =
V Ξ

fl
Ô

Á∆r

, E1 =

Ô
Á∆r

fl
ˆr,

E2 =

Ô
∆◊

fl
ˆ◊, E3 =

ΞW

sin ◊
Ô

∆◊fl
.

(2.6)

The choice of vector fields V = (r2 + a2)ˆt + aˆ„ and W = ˆ„ + a sin2 ◊ˆt to replace ˆt

and ˆ„ reduces the indeterminacy of the nature of the vectors to the sign of ∆r which

2. In cartesian coordinates it is a(xdy ≠ ydx)
3. space-like g(v, v) > 0, time-like g(v, v) < 0, light-like or isotropic g(v, v) = 0
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2.3. The Kerr-de Sitter metric

will be constant on each Boyer-Lindquist block. It is identical to that in [ONe14] for the

Kerr metric, where they play an important role; this will also be the case for the Kerr-de

Sitter metric. The dual frame is readily determined from (2.6):

Ê0 =

Ô
Á∆r

Ξfl
dt ≠ a sin2 ◊

Ô
Á∆r

flΞ
d„, Ê1 =

flÔ
Á∆r

dr, Ê2 =
flÔ
∆◊

d◊,

Ê3 =
(r2 + a2)

Ô
∆◊ sin ◊

flΞ
d„ ≠ a

Ô
∆◊ sin ◊

fl Ξ
dt.

(2.7)

This furnishes a more compact expression of the line element:

ds2 = ≠Á(Ê0)2 + Á(Ê1)2 + (Ê2)2 + (Ê3)2,

= ≠ ∆r

Ξ2fl2

Ë

dt ≠ a sin2 ◊d„
È2

+
fl2

∆r

dr2 +
fl2

∆◊

d◊2 +
∆◊ sin2 ◊

fl2Ξ2

Ë

(r2 + a2)d„ ≠ adt
È2

.
(2.8)

From these expressions one can determine the connexion forms 4 v ‘æ Êi
j(v) = Êi(ÒvEj),

characterised uniquely by the first structural equation dÊi = ≠ q

m Êi
m · Êm, and the

curvature forms Ωi
j = dÊi

j +
q

m Êi
m · Êm

j . The curvature forms are:

Ω
0
1 = Á(2I + l2)Ê0 · Ê1 + 2ÁJÊ3 · Ê2,

Ω
0
2 = ≠ÁJÊ1 · Ê3 + (I ≠ l2)Ê2 · Ê0,

Ω
0
3 = ÁJÊ1 · Ê2 ≠ (I ≠ l2)Ê0 · Ê3,

Ω
1
2 = ≠(I ≠ l2)Ê1 · Ê2 ≠ ÁJÊ0 · Ê3,

Ω
1
3 = ≠(I ≠ l2)Ê1 · Ê3 + ÁJÊ0 · Ê2,

Ω
2
3 = 2JÊ0 · Ê1 + (2I + l2)Ê2 · Ê3.

(2.9)

where: I = Mr
fl6 (r2 ≠3a2 cos2 ◊) and J = Ma cos ◊

fl6 (3r2 ≠a2 cos2 ◊). When l = 0 these formulae

coincide with those in [ONe14] 5. It is surprising to find that the additional contribution

due to the presence of a positive cosmological constant Λ is completely separate from that

of the curvature due to the black hole.

The curvature forms are related to the Riemann curvature tensor by:

Êa(R(Ec, Ed)Eb) = Ra
bcd = Ω

a
b(Ec, Ed). (2.10)

4. given in appendix A.1
5. It should be noted that there is a small error in the expression of Ω

0

3
given on page 98 of [ONe14],

it should read: Ω
0

3
= ≠Iω0 · ω3 + εJω1 · ω2
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Partie , Chapter 2 – Kerr-de Sitter spacetimes

As in the case of Kerr metric, the presence of the factor fl≠6 in these formulae indicates

that the loci of fl2 = 0 is a real curvature singularity and that there is no sensible extension

of the Boyer-Lindquist block containing Σ to include these points. Using (2.9) we find that

the Ricci tensor is given by:

Rab = 3l2gab = Λgab, (2.11)

and so the Kerr-de Sitter metric is indeed a vacuum solution to Einstein’s field equations

with cosmological constant:

Rab ≠ 1

2
Rgab + Λgab = 0. (2.12)

The relative simplicity of (2.9) is reflected in the algebraic decomposition of the Riemann

curvature tensor. In particular, we find that the conformal Weyl tensor 6 is given by:

Cabcd = Rabcd ≠ l2(gacgbd ≠ gadgbc). (2.13)

We can deduce from this that the conformal properties of the KdS-Boyer-Lindquist blocks

are exactly those of the Kerr Boyer-Lindquist blocks (l = 0). In particular:

Proposition 2.3.1.

1. At each point of the Boyer-Lindquist blocks the Weyl tensor has Petrov type D.

2. The principal null directions are determined by the rays of E0 ± E1 or equivalently,

±ˆr + Ξ

∆r
V .

Remark 2.3.1. The normalisation chosen here is di�erent from that in [AM11], our choice

is justified by the following lemma.

Proposition 2.3.1 is a statement about the algebraic structure of the Weyl tensor. On

a four dimensional Lorentzian manifold (M, g), Hodge duality can be used to define a

complex structure on the Λ2(TxM) at each point x œ M. Exploiting its symmetries and

trace free property, the Weyl tensor at a given point can be interpreted as a symmetric

linear map Cx on Λ2(TxM) (with respect to gx), that is C-linear with respect to this struc-

ture. The Petrov classification is based on a discussion on the eigenvalues of Cx; Petrov

type D is the case in which Cx is diagonalisable and has exactly two distinct eigenvalues.

In this case, the Principal Null Directions are determined by specific eigenvectors. We

6. Cabcd = Rabcd ≠ 1

2
(gacRbd ≠ gadRbc + Racgbd ≠ Radgbc) + R

6
(gacgbd ≠ gadgbc).
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2.3. The Kerr-de Sitter metric

refer to [ONe14, Chapter 5] for more details. We note also that there is a shorter root to

defining the Principal Null Directions provided by Penrose’s spinor formalism, we refer to

either [Wal84, Chapter 13] or [PR88, Chapter 8].

Lemma 2.3.1. On each Boyer-Lindquist block the integral curves of ±ˆr + Ξ

∆r
V are

geodesics.

Proof. This is actually a consequence of the Petrov type of the Weyl tensor C 7, but since

we have at our disposition all of the connection forms, we can also verify it directly. The

geodesic equations are given in appendix A.2. Consider an integral curve “ : I ‘æ KdS of

ˆr + Ξ

∆r
V . It satisfies for t œ I:

“̇(t) =
flÔ
Á∆r

|“(t)E1(t) +
ÁflÔ
Á∆r

|“(t)E0(t). (2.14)

Setting Γ3 = Γ2 = 0 in the left-hand side of the equations in the appendix, shows that

the last one is trivial and the remaining three reduce to:

Γ̇0(t) = ≠ ˆ

ˆr

AÔ
Á∆r

fl

B-
-
-
-
-
“(t)

Γ
0(t)Γ1(t), (2.15)

Γ̇1(t) = ≠ ˆ

ˆr

AÔ
Á∆r

fl

B-
-
-
-
-
“(t)

1

Γ
0(t)

22
, (2.16)

(Γ0(t))2 = (Γ1(t))2. (2.17)

Equation (2.17) is clearly satisfied and, substituting the expressions of Γ0 and Γ1 into the

right-hand side of (2.15) equation, we find:

≠ ˆ

ˆr

AÔ
Á∆r

fl

B-
-
-
-
-
“(t)

Γ
0(t)Γ1(t) = ≠Á

ˆ

ˆr

AÔ
Á∆r

fl

B

fl2

Á∆r

-
-
-
-
-
“(t)

= Á
ˆ

ˆr

A

flÔ
Á∆r

B-
-
-
-
-
“(t)

,

= dr“(t)(“̇(t)) Á
ˆ

ˆr

A

flÔ
Á∆r

B-
-
-
-
-
“(t)

,

= Γ̇0(t).

7. cf. Goldberg-Sachs theorem [GS09].
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Similarly, for the right-hand side of (2.16):

≠ ˆ

ˆr

AÔ
Á∆r

fl

B-
-
-
-
-
“(t)

1

Γ
0(t)

22
= ≠ ˆ

ˆr

AÔ
Á∆r

fl

B

fl2

Á∆r

-
-
-
-
-
“(t)

= dr“(t)(“̇(t))
ˆ

ˆr

A

flÔ
Á∆r

B-
-
-
-
-
“(t)

,

= Γ̇1(t).

The remaining case is similar.

2.4 Fast, Extreme and Slow Kerr-de Sitter

In this section we study the structure of the roots of the family of polynomials:

∆r(a, l, M) = r2 ≠ 2Mr + a2 ≠ l2r2(r2 + a2). (2.18)

Throughout the following discussion we will assume that all of the parameters are non-

zero, this guarantees that we are really on a de Sitter background and excludes Schwarzchild-

de Sitter which is studied in [AM11]. Moreover, we assume a > 0, l > 0. There is no loss

of generality in assuming a > 0 as all of the results of this section remain valid under

the substitution a ¡ |a|, alternatively, we can always reverse the orientation of the axis

of rotation. The restriction l ”= 0 also guarantees that deg ∆r = 4. In the analytical

extensions constructed in section 2.5, each root of ∆r will give rise to a totally geodesic

null hypersurface, that we will refer to as a horizon. Under the hypothesis that l ”= 0, it

is clear that :

∆r = r2 ≠ 2Mr + a2 ≠ l2r2(r2 + a2) = 0 … r4 ≠ 1 ≠ l2a2

l2
r2 + 2

M

l2
r ≠ a2

l2
= 0. (2.19)

To simplify notations we introduce A = a
l

and m2 = M
l2

, and will therefore study the

structure of the roots of the degree 4 polynomial with real coe�cients:

P = X4 ≠ 1 ≠ l4A2

l2
X2 + 2m2X ≠ A2. (2.20)

Let us call (x1, x2, x3, x4) the (not necessarily distinct) complex roots of P . Writing out 
the Vieta formulae for this polynomial we know that the roots of P must satisfy the
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following system:

Y

______]

______[

x1 + x2 + x3 + x4 = 0, (i)

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = A2l4≠1
l2

, (ii)

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = ≠2m2, (iii)

x1x2x3x4 = ≠A2, (iv)

(2.21)

We can deduce immediately from equation (iv) that for all positive real values of the

parameters A, m2, l the polynomial P will always have at least two distinct real roots

with opposite sign; these are the cosmological horizons. In particular, there is always a

horizon “inside” the singularity (r < 0). Moreover, the multiplicity of any root is at most

3 and there is at most one root with multiplicity > 1.

2.4.1 Extreme Kerr-de Sitter

For the usual Kerr metric, extreme Kerr corresponds to the case where the polynomial

∆r has a double root, i.e. the two black hole horizons coincide. A necessary and su�cient

condition for this is that M2 = a2. In this section we characterise the analogous case for

the KdS metric. In fact, we find that there are three cases where horizons coincide:

1. Three horizons situated in the region r > 0 coincide.

2. The two black hole horizons coincide.

3. The outer black hole horizon coincides with the outer cosmological horizon.

We begin by proving the following proposition:

Proposition 2.4.1. Let a, M, l œ R
ú
+ and P be defined by (2.20). P has a root with

multiplicity exactly 2 if and only if the parameters satisfy both of the following conditions:

(i) al < 2 ≠
Ô

3,

(ii) M2 =
(1 ≠ a2l2)(a4l4 + 34a2l2 + 1) ±

Ô
”

54l2
.

” = (al ≠ (2 ≠
Ô

3))3(al + 2 +
Ô

3)3(al + 2 ≠
Ô

3)3(al ≠ (2 +
Ô

3))3.

Furthermore: [P has a root with multiplicity 3] …
Y

]

[

al = 2 ≠
Ô

3,

M2 = 16
9

Ô
3a3l.
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Proof. Firstly, a necessary and su�cient condition for the polynomial P to have a root

with multiplicity > 1 is that its discriminant, ∆(P ), should vanish. We recall that the

discriminant is related to the resultant 8 R(P, P Õ) of P and its formal derivative P Õ by:

∆(P ) =
(≠1)

n(n≠1)
2

an

R(P, P Õ). (2.22)

In the above formula, n is the degree of the polynomial, and an is the coe�cient of the

leading term. Here:

∆(P ) = ≠ 16

l10

1

a10l8 + 4 a8l6 + 6 a6l4 + 27 M4l2 + 4 a4l2

+
1

a6l6 + 33 a4l4 ≠ 33 a2l2 ≠ 1
2

M2 + a2
2

,

= ≠ 16

l10

1

27M4l2 + (a2l2 ≠ 1)(a4l4 + 34a2l2 + 1)M2 + a2(a2l2 + 1)4
2

.

Thus:

∆(P ) = 0 … 27M4l2 + (a2l2 ≠ 1)(a4l4 + 34a2l2 + 1)M2 + a2(a2l2 + 1)4 = 0. (2.23)

This is a second order polynomial equation in M2. We require that the roots be real and at

least one of the roots be positive. However, as a2(a2l2 +1)4 > 0 if one root is positive both

of them are. Moreover, since the sum of the roots is given by ≠(a2l2 ≠1)(a4l4 +34a2l2 +1)

when the roots exist and are real, they are both positive if and only if al < 1.

The solutions are real if and only if the discriminant ” of the order two polynomial

Q = 27X2l2 + (a2l2 ≠ 1)(a4l4 + 34a2l2 + 1)X + a2(a2l2 + 1)4,

is positive. We find that:

” =
Ë

(1 ≠ a2l2)(a4l4 + 34a2l2 + 1) ≠ 6
Ô

3al(a2l2 + 1)2
È

◊
Ë

(1 ≠ a2l2)(a4l4 + 34a2l2 + 1) + 6
Ô

3al(a2l2 + 1)2
È

.

Assuming as necessary al < 1 we see that ” has the same sign as:

„(al) = (1 ≠ a2l2)(a4l4 + 34a2l2 + 1) ≠ 6
Ô

3al(a2l2 + 1)2.

8. The definition of the resultant is recalled in appendix A.3
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Defining y = al, we are therefore interested in the sign of „(y) for y œ]0, 1[. One can

check 9 that 2 ≠
Ô

3 and 2 +
Ô

3 are a roots of „ and that

„(y) = ≠(y ≠ (2 ≠
Ô

3))3(y + 2 +
Ô

3)3.

For y Ø 0, we find that „(y) has opposite sign to y ≠ (2 ≠
Ô

3) and so is positive if and

only if y Æ (2 ≠
Ô

3) < 1.

Therefore, we have shown that P has a root with multiplicity > 1 if and only if :

al Æ (2 ≠
Ô

3) and M2 =
(1 ≠ a2l2)(a4l4 + 34a2l2 + 1) ±

Ô
”

54l2
.

We will now show that when P has a root with multiplicity > 1 it is of multiplicity 3

if and only if al = (2 ≠
Ô

3).

Suppose now that P has a root x with multiplicity > 1. In particular the above

conditions are satisfied. x is of multiplicity at least two, and so, we can assume x3 = x4 = x.

Vieta’s formulae (2.21) then reduce to:

Y

______]

______[

x1 + x2 = ≠2x, (iÕ)

x1x2 ≠ 3x2 = A2l4≠1
l2

, (iiÕ)

x1x2x ≠ x3 = ≠m2, (iiiÕ)

x1x2x
2 = ≠A2. (ivÕ)

(2.24)

Equation (ivÕ) show that as A > 0 no root is zero so the system (2.24) is equivalent to:

Y

______]

______[

x1 + x2 = ≠2x, (iÕ)

3x4 + A2l4≠1
l2

x2 + A2 = 0, (iiÕÕ)

x4 ≠ m2x + A2 = 0, (iiiÕÕ)

x1x2x
2 = ≠A2. (ivÕ)

(2.25)

Finally combining (iiÕÕ) and (iiiÕÕ) we see that (2.25) is equivalent to:

Y

______]

______[

x1 + x2 = ≠2x (iÕ)
A2l4≠1

l2
x2 + 3m2x ≠ 2A2 = 0 (iiÕÕÕ)

x4 ≠ m2x + A2 = 0 (iiiÕÕ)

x1x2x
2 = ≠A2 (ivÕ)

(2.26)

9. either by direct calculation or assuming simply a2l2 + 2
Ô

3al ≠ 1 = 0
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We assume now that al = 2 ≠
Ô

3. It follows that ” = 0, furthermore, noting that

a2l2 + 2
Ô

3al ≠ 1 = 0, it is straightforward to verify that:

a4l4 + 34a2l2 + 1 = 48a2l2, (2.27)

and therefore:

M2 =
16

9
a3l

Ô
3. (2.28)

Consider now (iiÕÕÕ), which, written in terms of a is:

a2l2 ≠ 1

l2
x2 + 3m2x ≠ 2

a2

l2
= 0. (2.29)

We find that the equation has one double root given by:

x =
m2l

Ô
3

4a
. (2.30)

Now, the other two roots x1, x2, are the roots of the polynomial

R = X2 ≠ (x1 + x2)X + x1x2.

By (2.26) one has:

R = X2 + 2xX ≠ a2

l2x2
, (2.31)

the reduced discriminant ”Õ of R is given by:

”Õ = x2 +
a2

l2x2
.

Since:

x2 =
3

16
m4 l2

a2
=

Ô
3

3

a3

l3

l2

a2
=

Ô
3

3

a

l
,

it follows that:
1

x2

a2

l2
=

Ô
3

l

a

a2

l2
=

Ô
3

a

l
= 3x2.

Hence: ”Õ = 4x2 and the roots of R are x and ≠3x. The roots of P and their multiplicities 
are then (x, 3), (≠3x, 1). Conversely, assume that P has a root of multiplicity 3, say, 
without loss of generality: x1 = x and x2 = x3 = x4 = y, Vieta’s formulae (2.21) reduce
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this time to: Y

______]

______[

x = ≠3y, (a)
A2l4≠1

l2
= 3xy + 3y2, (b)

3xy2 + y3 = ≠2m2, (c)

xy3 = ≠A2. (d)

(2.32)

As before, equation (d) forbids that one of the roots be zero so (2.32) is equivalent to:

Y

______]

______[

x = ≠3y, (aÕ)

6y2 = 1≠A2l4

l2
, (bÕ)

4y3 = m2, (cÕ)

3y4 = A2. (dÕ)

(2.33)

Equation (cÕ) shows that y3 > 0 and so y > 0 too, hence equation (bÕ) gives:

y =

Ô
1 ≠ A2l4

Ô
6l

.

Equations (cÕ) and (dÕ) are compatibility equations, using the expression for y we find

that:

A2 =
1

12l4
(1 ≠ A2l4)2, (2.34)

m2 =
2

3

(1 ≠ A2l4)Ô
6l3

Ô
1 ≠ A2l4. (2.35)

As m2 > 0 there is no loss of information in squaring (2.35) to find that:

m4 =
2

27

(1 ≠ A2l4)3

l2
,

or, in terms of M and a:

M2 =
2

27

(1 ≠ A2l4)3

l2
. (2.36)

Expanding (2.34) yields a second order equation for A2:

12A2l4 = (1 ≠ A2l4)2 … (A2l4 + 2
Ô

3Al2 ≠ 1)(A2l4 ≠ 2
Ô

3Al2 ≠ 1) = 0. (2.37) 

The equation 0 = A2l4 ≠ 2
Ô

3Al2 ≠ 1 = a2l2 ≠ 2
Ô

3al ≠ 1 cannot give any solutions
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compatible with the condition al Æ 2 ≠
Ô

3 < 1 as in this case

a2l2 = 2
Ô

3al + 1 Ø 1

Consequently, we consider only the solutions of A2l4 + 2
Ô

3Al2 ≠ 1 = 0. They are:

A œ {
2 ≠

Ô
3

l2
, ≠2 +

Ô
3

l2
}.

As we assume A > 0 the second solution is excluded so A must equal 2≠
Ô

3
l2

which gives:

al = 2 ≠
Ô

3. (2.38)

Using the equation a2l2 + 2
Ô

3al ≠ 1 = 0 we see that (2.36) becomes:

M2 =
2

27

(1 ≠ A2l4)3

l2
=

2

27

(1 ≠ a2l2)3

l2
=

2

27

(2
Ô

3al)3

l2
=

16

9
a3l

Ô
3. (2.39)

Comparing (2.39) and (2.28) we see that the condition ∆(P ) = 0 is satisfied, which

concludes the proof.

We have now characterised all the cases where P has a root with multiplicity > 1, in

the case of the double root we can also show:

Proposition 2.4.2. If P has a root x with multiplicity exactly 2 and

M2 =
(1 ≠ a2l2)(a4l4 + 34a2l2 + 1) + Á

Ô
”

54l2
, Á œ {≠1, 1}, (2.40)

then:

x =
12a2l2 + (1 ≠ a2l2)(1 ≠ a2l2 + Á

Ô
“)

18m2l4
=

12a2l2 + (1 ≠ a2l2)(1 ≠ a2l2 + Á
Ô

“)

18Ml2
, (2.41)

where:

“ = (a2l2 ≠ 1)2 ≠ 12a2l2 = (a2l2 ≠ 2
Ô

3al ≠ 1)(a2l2 + 2
Ô

3al ≠ 1).

Proof. To find t he e xpression o f x , s olve e quation ( iiÕÕ) o f ( 2.25) f or x 2, a nd t hen use 
equation (iiÕÕÕ) of (2.26) to find x . To d ecide w hich r oot t o t ake f or x 2, i ntroduce Á Õ œ 
{≠1, 1} in front of the radical in the expression for x2 and then square the expression 
obtained for x. Injecting into this new expression those of M2 and x2, it is straightforward
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to obtain an expression for Á
Ô

”. After simplification we find that Á
Ô

” = ÁÕ“
Ô

“. Hence,

using the lemma below: ÁÕ = Á.

Lemma 2.4.1. ” = “3

Using this result, we can study the relative position of the double root x with respect to

the other two roots; the above expression (2.41) shows immediately that x > 0. As before,

the other roots are those of the polynomial:

X2 + 2xX ≠ a2

l2x2
.

As expected one of the roots (x≠) will be negative and the other positive, the positive

root is given by:

x+ = ≠x +

Û

x2 +
a2

l2x2
. (2.42)

We see that x+ > x if and only if
Ò

x2 + a2

l2x2 > 2x > 0. This holds if and only if:

a2

l2x2
> 3x2,

Or, equivalently:

x4 <
1

3

a2

l2

As x4 = m2x ≠ a2

l2
, we deduce that:

x+ > x … x <
4

3

a2

M
(2.43)

Note that x = 4
3

a2

M
corresponds to the case where there is a triple root. Rewriting (2.41)

we have:

x =
4

3

a2

M
+

“ + (1 ≠ a2l2)Á
Ô

“

18Ml2
, (2.44)

So if Á = 1 then “+(1≠a2l2)Á
Ô

“

18Ml2
> 0 and so x+ < x. In this case the outer black hole horizon

coincides with the cosmological horizon.

If Á = ≠1 we show that “≠(1≠a2l2)
Ô

“

18Ml2
< 0 and so x+ > x; the two black hole horizons

coincide. This is the closest Kerr-de Sitter analog of extreme Kerr.

In order to show that: “≠(1≠a2l2)
Ô

“

18Ml2
Æ 0 we only need to study the sign of

Ô
“≠(1≠a2l2).
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i.e. the sign of:

f(y) =
Ò

(1 ≠ y2)2 ≠ 12y2 ≠ (1 ≠ y2),

when 0 Æ y Æ 2 ≠
Ô

3. However, f(y) has same sign as :

f(y)(
Ò

(1 ≠ y2)2 ≠ 12y2 + (1 ≠ y2)) = (1 ≠ y2)2 ≠ 12y2 ≠ (1 ≠ y2)2,

= ≠12y2 < 0.

To summarise, we have found three cases where horizons coincide:

Proposition 2.4.3. Let (a, l, M) œ R
ú
+, then 2 horizons coincide if and only if the both

of the following conditions are satisfied:

(i) al < 2 ≠
Ô

3,

(ii) M2 =
(1 ≠ a2l2)(a4l4 + 34a2l2 + 1) ±

Ô
”

54l2
= m2

±.

More precisely:

— If M2 = m2
+ then the outer black hole horizon coincides with the the other cosmo-

logical horizon.

— If M2 = m2
≠ then the two black hole horizons coincide.

Finally, if al = 2 ≠
Ô

3 and M2 satisfies (ii) then all three horizons situated in the region

r > 0 coincide.

2.4.2 Fast and slow Kerr-de Sitter

We will now move on to study the Kerr-de Sitter equivalents to the usual so-called

“fast” and “slow” Kerr black holes. Fast Kerr usually correspond to the case where there

are no horizons. It owes its name to the fact that when l = 0, it is completely characterised

by the condition a2 > M2. “Slow” Kerr, on the other hand, is characterised when l = 0

by the condition a2 < M2. In terms of the roots of the polynomial these cases correspond

respectively, when l = 0, to ∆r having no roots, or ∆r having two distinct real roots. As

we have already noted, there are always two distinct roots with opposite sign in the case

l > 0 of Kerr-de-Sitter which correspond to the cosmological horizons inside and outside

the singularity. Hence, in terms of roots the natural analogs for the Kerr-de Sitter metric

are:

— P has 4 distinct real roots (“Slow” Kerr-de Sitter),
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— P has a complex root (“Fast” Kerr-de Sitter).

A further accommodating consequence of the necessary existence of two distinct real

roots is that we can distinguish between the above cases using the sign of ∆(P ). Indeed,

let us denote the roots of P by x1, x2, x3, x4 and assume, without loss of generality, that

x1 and x2 are both real and distinct.

From Proposition A.3.3 of appendix A.3 we can write (in C):

∆(P ) = (x1 ≠ x2)
2(x1 ≠ x3)

2(x1 ≠ x4)
2(x2 ≠ x3)

2(x2 ≠ x4)
2(x3 ≠ x4)

2.

From this expression we see that if x3 œ R, ∆(P ) Ø 0 10. If, however, x3 = z œ C \R then

x4 = z̄, hence:

∆(P ) = (x1 ≠ x2)
2(x1 ≠ z)2(x1 ≠ z̄)2(x2 ≠ z)2(x2 ≠ z̄)2(2i⁄(z))2,

= ≠4⁄(z)2(x1 ≠ x2)
2|x1 ≠ z|2|x2 ≠ z|2 < 0.

Therefore, P has two conjugate complex roots if and only if ∆(P ) < 0. We recall the

expression of ∆(P ) of the previous section:

∆(P ) = ≠ 16

l10

1

27M4l2 + (a2l2 ≠ 1)(a4l4 + 34a2l2 + 1)M2 + a2(a2l2 + 1)4
2

. (2.45)

The expression 27M4l2 + (a2l2 ≠ 1)(a4l4 + 34a2l2 + 1)M2 + a2(a2l2 + 1)4 is a second order

polynomial in M2 whose discriminant is given by:

” = “3 = (y ≠ (2 ≠
Ô

3))3(y + 2 +
Ô

3)3(y + 2 ≠
Ô

3)3(y ≠ (2 +
Ô

3))3,

where y = al. From this factorisation we deduce the sign of ” given in table 2.2, and the

following cases:

(i) 0 Æ al Æ 2 ≠
Ô

3:

In this case ∆(P ) = ≠432
l8

(M2 ≠ m2
≠)(M2 ≠ m2

+) where 0 Æ m2
≠ Æ m2

+. It follows

that if M2 œ [m2
≠, m2

+] then ∆(P ) Ø 0 otherwise, ∆(P ) < 0.

(ii) 2 ≠
Ô

3 < al < 2 +
Ô

3:

Here ∆(P ) never vanishes for any value of M2. Since for M2 = 0, ∆(P ) < 0 and

∆(P ) is a continuous function of M2, ∆(P ) < 0 for all values of M2.

10. The discussion in the previous section shows that necessarily x4 œ R too.
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(iii) al Ø 2 +
Ô

3:

∆(P ) = ≠432
l8

(M2 + m2
≠)(M2 + m2

+) where 0 Æ m2
+ Æ m2

≠ Therefore, for all values

of M Ø 0, ∆(P ) < 0.

Table 2.2 – Sign of ”

y = al

Sign of ”

0 2 ≠
Ô

3 2 +
Ô

3 +Œ

+ 0 ≠ 0 +

Combined with the results of the previous section and preserving the terminology

introduced at the beginning of this section, we have thus shown:

Proposition 2.4.4.

— “Slow” Kerr de Sitter is characterised by the following conditions on the parameters

(a, l, M) œ R
ú
+ :

(i) al < 2 ≠
Ô

3,

(ii) M2 œ]m2
≠, m2

+[ where m2
± = (1≠a2l2)(a4l4+34a2l2+1)±

Ô
”

54l2
.

— “Fast” Kerr-de Sitter corresponds to the cases:

Û 0 Æ al Æ 2 ≠
Ô

3 and M2 ”œ [m2
≠, m2

+] where m2
± = (1≠a2l2)(a4l4+34a2l2+1)±

Ô
”

54l2
.

This is the case that most ressembles the usual fast Kerr spacetime.

Û al > 2 ≠
Ô

3.

In the above proposition we see the black hole horizons exist on a de Sitter background

only under relatively strict conditions on the parameters, we have notably, for a given

value of Λ, upper and lower bounds on the mass, as well as a restriction on the rotation

parameter a of the black hole. Let us concentrate for a moment on the upper bound for

the mass for a given values of a, l, al < 2 ≠
Ô

3 of a slow KdS spacetime. According to

condition (ii), we must have:

M2 Æ (1 ≠ a2l2)(a4l4 + 34a2l2 + 1) +
Ô

”

54l2
. (2.46)

Despite our assumption that a > 0, setting a = 0 and taking the square root furnishes a

well known result in Schwarzschild-de Sitter spacetime [SH99]:

M <
1

3
Ô

Λ
. (2.47)

56



2.4. Fast, Extreme and Slow Kerr-de Sitter

More generally, the map y ‘æ (1≠y2)(y4+34y2+1)+
Ò

”(y), is well defined and continuous

for y œ [0, 2 ≠
Ô

3] and attains a maximum at y = 2 ≠
Ô

3. This yields a global bound

on the mass: M < CÔ
Λ

where C = 4Ô
3

Ò

26
Ô

3 ≠ 45 ¥ 0.4215. Studying how the expression

of the upper bound depends on a, it can be shown that in fact the minimum value is

attained for a = 0: rotating black holes can be slightly more massive than non-rotating

black holes and still maintain their horizon structure.

We conclude this section by addressing one last question regarding slow Kerr-de Sitter

black hole: can there be more than one horizon inside the singularity, i.e. in the region

r < 0? The answer is negative, as shown in the following lemma.

Lemma 2.4.2. We suppose a ”= 0. In slow Kerr-de Sitter only one horizon lies in the

region r < 0.

Proof. It has already been noted that there must always be at least one negative root;

an even number of both positive and negative roots is excluded again by equation (iv) in

(2.21). The statement of the lemma is therefore equivalent to the fact that there cannot

be 3 negative roots. As usual, denote by x1, x2, x3, x4 the 4 roots of ∆r. By hypothesis,

they are all real. Suppose, without loss of generality, x1x2 < 0. It follows that x3x4 > 0

from equation (iv) of (2.21). Call P = x3x4 and S = x3 + x4. Equation (i) of (2.21) gives:

S = ≠(x1 + x2). Equation (ii) of (2.21) yields:

≠A2

P
≠ S2 + P = ≠1 ≠ a2l2

l2
,

which is equivalent to:

PS2 ≠
A

1 ≠ a2l2

l2
+ P

B

S +
A2

P
= 0.

The sum of the roots of this polynomial is given by 1≠a2l2+P l2

P l2
and the product by A2

P 2 . As

P
A2

2 > 0 both roots have same sign, furthermore, as al < 2 ≠
Ô

3 < 1, their sum is positive,so they are both positive. Therefore S = x3 + x4 is always positive and thus x3 and x4 

are both positive.

2.4.3 Boyer-Lindquist blocks

We are now in a position to give a more precise description of the Boyer-Lindquist 
blocks. We will do this first in the slow case, where there are four distinct roots, say,
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r≠≠, r≠, r+, r++ ordered as:

r≠≠ < 0 < r≠ Æ r+ Æ r++.

In table 2.3 we give the sign of ∆r as r varies and the chosen numbering for the Boyer-

Lindquist blocks. We also give the sign of the diagonal metric tensor elements gii. The

“•” means that the sign changes within the block. That g„„ > 0 for r > 0 is not clear

from the initial expression of g„„ given in table 2.1, however one can write:

g„„ =

A

(r2 + a2) +
2Mra2 sin2 ◊

fl2Ξ

B

sin2 ◊

Ξ
. (2.48)

r

∆r

Boyer
Lindquist

blocks

gtt

grr

g◊◊

g„„

g(V ,V )

g(W ,W )

≠Œ r≠≠ 0 r≠ r+ r++ +Œ

≠ 0 + 0 ≠ 0 + 0 ≠

V IV III II I

+ • + • +

≠ + ≠ + ≠

+ + + + +

≠ • + + + +

+ ≠ + ≠ +

+ + + + +

Table 2.3 – Sign of ∆r and Boyer-Lindquist blocks

Up to now, we have not addressed the question of the time-orientation 11 of the man-

ifolds under consideration. The time-orientability of each Boyer-Lindquist block is clear

11. A time orientation of a Lorentzian manifold is a choice of a globally defined n owhere vanishing 
non-spacelike continuous vector field. A  v ector fi eld is  sa id to  be  ti me-orientable if  su ch a ve ctor field 
exists
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from table 2.3, so each Boyer-Lindquist block can separately become a spacetime. For

the usual Kerr metric and the Schwarzchild metric, the time parameter t coincides with

the proper time of a distant stationary observer in the limit r æ Œ. In this case, time-

orientation of the Boyer-Lindquist block that lies beyond all black hole horizons can be

chosen naturally under the prescription that ˆt is future-pointing when non-space-like.

This interpretation of t fails for the Kerr-de Sitter metric, but we still have a number

of partial results. First, under the assumption that our visible universe is not beyond a

cosmological horizon and not between two black hole horizons, block II (cf table 2.3) is

identified as the most physically relevant block. On this block t is still a “time function”

in the following sense:

Lemma 2.4.3. On block II, the hypersurfaces “t = t0” are spacelike.

Proof. At each point p of such a surface the tangent space is given by the kernel of

dtp, or, equivalently (Òt(p))‹. But, Òt is timelike on block II ( minus axes ) since 12

g(Òt, Òt) = gtt = ≠ gφφΞ4

sin2 ◊∆θ∆r
. This also holds for points on the axes, as this expression

extends continuously to such points.

Corollary 2.4.1. Along any non-spacelike C1 curve – in block II, t ¶ – is strictly mono-

tonic.

The region in the Kerr-Boyer-Lindquist blocks where gtt > 0 is known as the “ergosphere”.

It has interesting physical properties explored in [ONe14] in the Kerr case, the most

notable of which being the possibility to extract energy from a Kerr black hole. In the

case of the Kerr-de Sitter metric it is no longer guaranteed that the ergosphere does not

cover all of block II, unless we impose further conditions:

Proposition 2.4.5. Suppose a2l2 < 1, then a sufficient condition for there to be an

interval I µ R
ú
+ such that gtt Æ 0 when r œ I is that:

27M2l2 Æ (1 ≠ a2l2)3. (2.49)

Proof. Rewrite gtt as:

gtt =
1

fl2Ξ2

Q

c
aa2 cos2 ◊(l2a2 sin2 ◊ ≠ 1)

¸ ˚˙ ˝

Æ0

+l2r

A

r3 + r
(a2l2 ≠ 1)

l2
+

2M

l2

B
R

d
b ,

12. Refer to lemma A.4.2,A.4.3 in appendix A.4
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a2l2 < 1, hence l2a2 sin2 ◊ Æ 1, so the first term is always non-positive. The sign of the

second term is determined by that of the polynomial:

P = X3 + X
a2l2 ≠ 1

l2
+

2M

l2
,

P can become negative on R
ú
+ if and only if there is a positive real root, hence its discrim-

inant must be positive. This is because if there is only one real root, it must be negative

as 2M
l2

> 0. The discriminant of P is given by:

∆(P ) = (1 ≠ a2l2)3 ≠ 27M2l2,

it is positive if and only if 27M2l2 Æ (1 ≠ a2l2)3 and in this case all roots are real, but

they cannot all be negative since their sum must vanish.

t is nevertheless a “function of time” and, even though there are cases where ˆt is

always space-like, its gradient always furnishes on block II a time-like vector field that

can be used to time-orient it. By analogy with the Kerr case, we choose to time-orient

block II by specifying that ≠Òt is future-pointing.

2.5 Maximal Kerr-de Sitter spacetimes

In this section we will cease to consider the Boyer-Lindquist blocks as separate space-

times and construct analytical manifolds containing isometric copies of these blocks, of

which the union is dense, and to which the Kerr-de Sitter metric extends analytically.

In order for these manifolds to be spacetimes they will be constructed in such a way to

ensure that they are time-orientable. The methods used here are adapted from [ONe14]

and are still applicable due to the remarkable algebraic decomposition of the Riemann

curvature tensor described in section 2.3.

2.5.1 KdSú et úKdS spacetimes

The first two analytical manifolds will be constructed by choosing coordinates for the

Boyer-Lindquist blocks in which one of the two null geodesic congruences generated by

the vector fields

N± = ±ˆr +
Ξ

∆r

V, (2.50)
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are coordinate-lines. Recall from proposition 2.3.1 that at each point p œ B of any Boyer-

Lindquist block B the rays generated by the vectors N±(p) define the principal null di-

rections. The geometric significance of these directions justifies using them to construct

an analytical extension.

Definition 2.5.1. We define KdSú coordinates by:

Y

______]

______[

tú = t + T (r),

rú = r,

◊ú = ◊,

„ú = „ + A(r),

(2.51)

similarly, úKdS coordinates are defined by:

Y

______]

______[

út = t ≠ T (r),
úr = r,
ú◊ = ◊,
ú„ = „ ≠ A(r),

(2.52)

where T (r) =
⁄ (r2 + a2)Ξ

∆r

dr and A(r) =
⁄ a Ξ

∆r

dr.

2.5.2 KdSú

Proposition 2.5.1. Let B be a Boyer-Lindquist block and A = Rt ◊Rr ◊{p±}; p± denote

the poles of the S2. Define: Φú : B \ A ≠æ Rtú ◊ Rrú ◊ S2 by:

Φ
ú(t, r, ◊, „) = (t + T (r), r, ◊, „ + A(r)),

then Φú is an analytic diffeomorphism of B \ A onto an open subset of Rtú ◊ Rrú ◊ S2.

Proof. That Φú is analytic is clear; fix (t, r, ◊, „) œ B \ A, then the Jacobian matrix is

given by:

J(„)(t, r, ◊, „) =

Q

c
c
c
c
c
c
a

1 r2+a2

∆r
Ξ 0 0

0 1 0 0

0 0 1 0

0 aΞ

∆r
0 1

R

d
d
d
d
d
d
b

.
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Thus, det J(„)(t, r, ◊, „) = 1. It follows that Φú is a local analytic di�eomorphism at each

point of B \ A. It su�ces to show that Φú is injective to conclude that it is a global

di�eomorphism. Injectivity is clear however, as, according to Definition 2.5.1:

Φ
ú(r, t, ◊, „) = Φ

ú(rÕ, tÕ, ◊Õ, „Õ) …

Y

______]

______[

t + T (r) = tÕ + T (rÕ),

r = rÕ,

◊ = ◊Õ,

„ + A(r), = „Õ + A(rÕ),

…

Y

______]

______[

t = tÕ,

r = rÕ,

◊ = ◊Õ,

„ = „Õ.

(tú, r, ◊, „ú) are therefore coordinates functions on B \ A

Lemma 2.5.1. The coordinate vector fields ˆtú , ˆrú , ˆ◊ú , ˆ„ú are given on each Boyer-

Lindquist block by:

ˆtú = ˆt, ˆrú = ˆr ≠ Ξ

∆r

V, = ≠N≠ ˆ◊ú = ˆ◊ ˆ„ú = ˆ„. (2.53)

Furthermore, in KdSú coordinates the line element can be written:

ds2 = gttdtú2 + g◊◊d◊ú2 + g„„d„ú2 +
2

Ξ
dtúdrú ≠ 2a sin2 ◊

Ξ
drúd„ú + 2g„tdtúd„ú. (2.54)

Corollary 2.5.1. On each Boyer-Lindquist block B the integral curves of N≠ are the

coordinate lines rú = r0.

Inspecting the form of (2.54) and comparing with the discussion at the beginning of

section 2.3 we deduce:

Corollary 2.5.2. By analogy with the notations used in section 2.3, let:

Σ
ú = {(tú, rú, ◊ú, „ú) œ Rtú ◊ Rrú ◊ S2, rú2 + a2 cos2 ◊ú = 0},

then the line element (2.54) extends analytically to all of Rtú ◊ Rrú ◊ S2 \ Σú as a non-

degenerate metric tensor.

This last result leads us to define:

Definition 2 .5.2. We call K dSú the analytical manifold Rtú ◊Rrú ◊S2 \ Σú equipped with 
metric tensor gú defined by (2.54) and time-oriented such that ≠ˆrú is future-pointing.
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Remark 2.5.1. — Time-orientation is chosen here so that the integral curves (and co-

ordinate lines) of N≠ are future-oriented.

— It is consistent with the choice that ≠Òt is future-pointing on block II, since, using

(2.54) and Lemma A.4.3 in appendix A.4, it is easily seen that gú(≠ˆrú , ≠Òt) =

gú(ˆrú , Òt) = ≠ Ξ

∆r
(r2 + a2) < 0.

Define now the subsets Bú of KdSú by the same inequalities as the corresponding

Boyer-Lindquist blocks B, then:

Lemma 2.5.2. Φú has an analytic extension to a diffeomorphism of B onto Bú.

Proof. For – œ R, let R– : S2 ≠æ S2 be the restriction of the rotation of angle – about

the z-axis in R
3 to S2. The map Â : Rr ◊ S2 ≠æ S2 defined by Â(r, q) = RA(r)(q) is

analytic everywhere except at values of r where ∆r = 0. Then:

Φ̃
ú :

B ≠æ Bú

(t, r, q œ S2) ‘≠æ (t + T (r), r, Â(r, q))
.

is the desired extension.

Corollary 2.5.3. Each Boyer-Lindquist block B can be identified isometrically with an

open subset of KdSú.

The vector fields ˆt, ˆ◊, ˆ„ are, a priori, only well defined on each Bú, but, in view of

equation (2.53), ˆtú , ˆ◊ú , ˆ„ú are analytic extensions of these fields to all of KdSú. Hence,

we define ˆt, ˆ◊ and ˆ„ by equation (2.53) on all of KdSú.

The hypersurfaces H ú
i defined by the equations r = rú = ri (i œ {≠≠, ≠, +, ++}) are

now well-defined submanifolds of KdSú, it is easy to show that, as is custom with black

hole horizons:

Proposition 2.5.2. Each H ú
i is a totally geodesic null hypersurface of KdSú. In partic-

ular, for p œ H ú
i :

TpH
ú

i = V ‹
p = span ((ˆt)p, (ˆ◊)p, (ˆ„)p)) = span (Vp, (ˆ◊)p, (ˆ„)p)

We shall now address the question of the integral curves of N+ in KdSú, the situation

is not symmetrical with that of N≠, as, in terms of the KdSú coordinate fields:

N+ = ˆrú +
2Ξ

∆r

V.
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Thus, N+ is still undefined on the horizons Hi, moreover, N+ is not always future-pointing

since:

gú(N+, ≠ˆrú) = ≠2fl2

∆r

.

This can be remedied by considering reparametrisations of the integral curves of N+ that

are integral curves of n+ = ∆r

2Ξ
N+. The integral curves of n+ are all future-oriented since

gú(n+, ≠ˆrú) = ≠fl2

Ξ2 < 0.

Definition 2.5.3. On KdSú we will call:

1. “Ingoing principal null geodesics” the integral curves of the vector field N≠ extended

to all of KdSú by (2.53).

2. “Outgoing principal null geodesics” geodesic reparametrisations of the integral curves

of n+. These curves coincide on Bú with the images of the principal null geodesics

of the Boyer-Lindquist blocks by Φ̃ú © iú.

In figure 2.1, we give a schematic representation of KdSú spacetime that will be useful

in the following. The principal null geodesics are represented by oriented line segments;

horizontally, the “ingoing” principal null geodesics run from r = +Œ to r = ≠Œ - we

will say that they are “complete” -, vertically, the “outgoing” principal null geodesics are

confined within a given Boyer-Lindquist block. We have not represented the principal null

geodesics that are confined within the horizons.

Figure 2.1 – Schematic representation of KdSú spacetime: horizontally, the ingoing prin-
cipal null geodesics run unimpeded from r = +Œ to r = ≠Œ, vertically, the outgoing
principal null geodesics are confined within a given Boyer-Lindquist block and on the
horizons.

2.5.3 úKdS

Repeating the above arguments, using instead úKdS coordinates, yields the following 
results:
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Lemma 2.5.3.

1. On each Boyer-Lindquist block (út, úr, ú◊, ú„) are well defined coordinate functions.

2. In these coordinates the line element can be written:

ds2 = gttdút2 + g◊◊dú◊2 + g„„dú„2 ≠ 2

Ξ
dútdúr +

2a sin2 ◊

Ξ
dúrdú„ + 2g„tdútdú„. (2.55)

This expression has an unique analytic extension to all points of Rút ◊Rúr ◊S2 \úΣ.

3. The coordinate vector fields are:

ˆúr = ˆr +
Ξ

∆r

V = N+, ˆút = ˆt, ˆú◊ = ˆ◊, ˆú„ = ˆ„. (2.56)

Proposition 2.5.3. Define the Lorentizan manifold úKdS to be the analytic manifold

Rút ◊ Rúr ◊ S2 \ úΣ equipped with the metric úg defined by equation (2.55) and time-

oriented such that the globally defined vector field ˆúr is future-pointing then:

1. The submanifolds úHi of equations r = ri, i œ {≠≠, ≠, +, ++} are totally geodesic

null hypersurfaces.

2. Defining úB by the same inequalities as the Boyer-Lindquist block B, then úB and B

are isometric, i.e. úKdS contains isometric copies of each Boyer-Lindquist block.

Definition 2.5.4. On úKdS we will call:

1. “Outgoing principal null geodesics” the integral curves of the vector field N+ ex-

tended to all of úKdS by (2.56).

2. “Ingoing principal null geodesics” geodesic reparametrisations of the integral curves

of the everywhere future-pointing vector field n≠ = ∆r

2Ξ
N≠.

Figure 2.2 – Schematic representation of úKdS spacetime 
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In figure 2.2, we give the corresponding schematic representation of úKdS. Again, the

principal null geodesics are represented by oriented line segments. Here though, horizon-

tally, are the outgoing principal null geodesics running from r = ≠Œ to r = +Œ and

vertically, the ingoing principal null geodesics confined within a single Boyer-Lindquist

block úB. Again, we have omitted the ingoing principal null geodesics trapped in the

horizon.

The asymmetric treatment of the outgoing and ingoing principal null geodesics shows

that úKdS and úKdS are certainly not the same spacetime. Nevertheless, there is a natural

isometry µ between úB and Bú for each Boyer-Lindquist block B, in coordinates it can be

written:

µ(út, úr, ú◊, ú„) = (út + 2T (r), úr, ú◊, ú„ + 2A(r)), (2.57)

from which we deduce that:

dµ(ˆúr) = ˆú
r +

2Ξ

∆r

V.

Hence:

gú(≠ˆrú , dµ(ˆúr )) = ≠2fl2

∆r

.

Therefore, µ preserves time-orientation on blocks II and IV (see table 2.3) but reverses it 
on blocks I, III and V.

We conclude this section defining two more spacetimes:

Definition 2 .5.5. We define Kd SúÕ and úK dS Õ to be the spacetimes obtained from KdSú 

and úKdS respectively by reversing time orientation.

Lemma 2.5.4. For each Boyer-Lindquist block B, the isometries úB ≠æ BúÕ and úBÕ ≠æ 
Bú defined i n coordinates b y ( 2.57) p reserve t ime-orientation o n b locks I , I II a nd V , but 
reverse it on blocks II and IV.

After reversing time-orientation, the principal null geodesics are now past-oriented. 
Their orientation should be reversed so that they are future-oriented, but because this 
changes the sign in front of ˆr in the original expression, we also adapt terminology: an 
orientation reversed integral curve of ˆrú (resp. ˆúr) will become an outgoing principal null 
geodesics in KdSúÕ (resp. úKdS Õ) and similarly for the integral curves of n±. The reason 
for this is purely semantic, in the next section we will seek to extend the incomplete 
outgoing principal null geodesics by gluing together along the Boyer-Lindquist blocks 
combinations of the four manifolds of this section, the change of vocabulary ensures that 
we always extend outgoing principal null geodesics using outgoing principal null geodesics.
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¯

¯

2.5.4 Maximal slow Kerr-de Sitter spacetime

In the previous section we constructed four isometric - but not identical - analytic 
extensions of the KdS-Boyer-Lindquist blocks. In one case, ingoing principal null geodesics 
are complete, and in the other outgoing principal null geodesics are complete. In this 
section, we seek an analytical extension of these spacetimes such that all principal null 
geodesics, save those that run into the singularity, are complete, i.e. a maximal extension 
of these curves is defined o n a ll o f R . A s f or K err s pacetime i n [ ONe14], t he maximal 
extensions by “gluing” together the aforementioned manifolds in an elaborate fashion.

By “gluing” two semi-Riemannian manifolds X and Y , we mean that we construct 
a new manifold Q containing isometric copies of X and Y and equipped with a metric 
extending that of both X and Y . A natural way of doing this is to specify two open 
sets U µ X and V µ Y that are identified by an i sometry „  :  U  ≠æ V ,  i n this case we 
denote the new manifold by X ‡„ Y . It comes with two “canonical” embeddings i : X ≠æ 

Q, j̄  : Y ≠æ Q and ī(X) fl j̄(Y ) = ī(U) = j̄(V ). A brief outline of the construction is 
given in appendix A.5, however we note here that whilst most topological properties of 
the new space Q follow directly from those of X and Y , separation is not guaranteed. 
Nevertheless, we have a technical criterion- proved in appendix A.5 - that will su�ce for 
all cases encountered in the sequel:

Lemma 2.5.5. If X and Y are two manifolds and there is no sequence (xn)nœN of points 
in U converging to a point in U \ U and such that „(xn)nœN converges to a point in V̄ \ V , 
then Q is Hausdorff.

Throughout this section, we assume that the conditions of slow KdS as described in 
section 2.4 are satisfied. In particular, we assume that ∆ r has four distinct roots. Whilst 
some of the more technical results in this section are independent of this hypothesis, the 
gluing pattern is dependent of this choice.

Kruskal domains

Rather than directly gluing the manifolds KdSú, úKdS and their orientation reversed 
counterparts, the pattern is more conveniently described by first c onstructing smaller 
manifolds, called “Kruskal domains”, from selected open sets of these manifolds. Four 
such domains are required, one per horizon; they are illustrated in figure 2 .3 a nd are 
destined to be assembled by gluing along Boyer-Lindquist blocks sharing identical labels.
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Unprimed labels indicate that the blocks are time-oriented according to KdSú, primed

labels are worn by blocks with the opposite time-orientation.

I' II'

III

(a) D(r++)

III II

III'II'

(b) D(r+)

III' IV'

IIIIV

(c) D(r≠)

V IV

V'IV'

(d) D(r≠≠)

Figure 2.3 – Kruskal domains, the black square is the crossing-sphere (see section 2.5.4)

The Kruskal domains are also built in two stages. First, chosen open sets - that contain

selected Boyer-Lindquist blocks - are glued together using the isometries discussed at the

end of section 2.5.3; the result of this will be a manifold D0(ri). However, closer analysis

of the principal null geodesics contained within the horizons of KdSú and úKdS will show

that D0(ri) does not complete all principal null geodesics as required and will also need

to be extended.

Let us consider, as an example, D0(r++); the other domains can be constructed simi-

larly. D0(r++) is built according to figure 2.4. The details are as follows:

1. Begin with the manifold K1 consisting of the open set containing blocks Iú and IIú

in KdSú. The “outgoing” principal null geodesics of block Iú are future-incomplete.

In order to extend them, glue the open set of úKdS Õ containing blocks úII and úI

onto K1 using the time-orientation preserving isometry of section 2.5.3 to identify

the blocks Iú and úI. It is necessary to use úKdS Õ as opposed to úKdS to ensure that

the isometry preserves time-orientation. It may surprise the reader that, according

to our terminology, we are extending an outgoing principal null geodesic using an
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I' II'

III

I'

II

II I

I' II'

II'

I

Figure 2.4 – Building D0(r++)

ingoing principal null geodesic. This is not really the case, as inspection of figure 2.1

reveals that the “outgoing” principle null geodesic of block I, is actually a badly

named “ingoing” principle null geodesic, since drú(n+) Æ 0 on block I.

We verify briefly on this example that the condition of Lemma 2.5.5 is satisfied.

Here the coordinate expression of „ : Iú ≠æ úI is

„(tú, rú, ◊ú, „ú) = (tú ≠ 2T (rú), rú, ◊ú; „ú ≠ 2A(rú)).

Suppose that (xn)nœN = (tú
n, rú

n, ◊ú
n, „ú

n) is a sequence of points in U = Iú converging

to a point on the horizon rú = r++, in particular the sequence (tú
n)nœN has a finite

limit, but |T (r)| ≠æ
rær++

Œ so („(xn))nœN cannot converge.

2. Call K2 the manifold obtained after step 1. We extend the outgoing principal null

geodesics of block II in the same way, except that we use úKdS, since on block II
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time-orientation is preserved by the isometry of section 2.5.3.

3. Complete the manifold K3 resulting from steps 1 and 2 by gluing the open set of

KdSúÕ containing blocks I’ and II’ onto K3 identifying, using the isometries of 2.5.3,

I’ and II’ with those contained in K3.

Crossing spheres

Our ambition is to construct a spacetime in which all principal null geodesics are

complete (except those that run into the singularity). Until now, we have payed very little

attention to those which are trapped in the horizons. To fix notations, consider KdSú, but

this discussion also holds with very minor modifications in úKdS. Recall from section 2.5.2

that outgoing principal null geodesics are defined as geodesic reparametrisations of the

integral curves of n+ = ∆r

2Ξ
ˆrú +V . For any point p on a horizon H , n+(p) = V (p) œ TpH .

Lemma 2.5.6. Let i œ {≠≠, ≠, +, ++}, then for any p œ Hi:

(ÒV V )|p =
1

Ξ

1

ri ≠ M ≠ l2ri(2r2
i + a2)

2

V.

Lemma 2.5.7. Call ki =
ri≠M≠l2ri(2r2

i +a2)

Ξ
, i œ {≠≠, ≠, +, ++} then:

k++ = ≠ l2

2Ξ
(r++ ≠ r≠≠)(r++ ≠ r+)(r++ ≠ r≠) < 0, (2.58)

k+ =
l2

2Ξ
(r+ ≠ r≠≠)(r++ ≠ r+)(r+ ≠ r≠) > 0, (2.59)

k≠ = ≠ l2

2Ξ
(r≠ ≠ r≠≠)(r++ ≠ r≠)(r+ ≠ r≠) < 0, (2.60)

k≠≠ =
l2

2Ξ
(r++ ≠ r≠≠)(r+ ≠ r≠≠)(r≠ ≠ r≠≠) > 0. (2.61)

Proof. Follows immediately from the relation: ri ≠ M ≠ l2ri(2r2
i + a2) = 1

2
ˆ
ˆr

∆r

-
-
-
r=ri

after

factorisation of ∆r: ∆r = ≠l2
Ÿ

i

(r ≠ ri).

Corollary 2.5.4. Let i œ {≠≠, ≠, +, ++}, then, if ri is a root with multiplicity > 1 of

∆r, then for any p œ Hi:

(ÒV V )|p = 0.

Proposition 2.5.4.
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1. On horizons arising from a root of multiplicity > 1 of ∆r, the integral curves of V

are complete.

2. On the other horizons the integral curves of V are not complete.

Proof. For the first point, according to Corollary 2.5.4 the integral curves of n+ are already

geodesically parametrised. Furthermore, since V is a constant linear combination of the

coordinate fields ˆtú , ˆ„ú , its integral curves are complete (i.e. they can be extended so

that the interval of definition is R).

Assume now that ri is a simple root of ∆r, then according to the above: ki ”= 0, and

the integral curves of n+ are not geodesically parametrised. A generic integral curve of

n+ on Hi is given in KdSú coordinates by:

“(s) = ((r2
i + a2)s + tú

0, ri, ◊0, as + „ú
0), s œ R.

Since ˆ„ú and ˆtú are global Killing fields on KdSú, it su�ces to consider the case where

tú
0 = „ú

0 = 0. When geodesically parametrised and the a�ne parameter chosen so that

“̃ = “ ¶ s(⁄) is future-oriented, we have:

“̃(⁄) =
1

(r2
i + a2)k≠1

i ln(ki⁄), ri, ◊0, ak≠1
i ln(ki⁄)

2

, ki⁄ > 0, (2.62)

which cannot be extended though ⁄ æ 0.

Remark 2.5.2. — On KdSúÕ where orientation is reversed, the future-oriented geodesic

parametrisation of the integral curves is:

“̃(⁄) =
1

(r2
i + a2)k≠1

i ln(≠ki⁄), ri, ◊0, ak≠1
i ln(≠ki⁄)

2

, ki⁄ < 0. (2.63)

— The formulae for úKdS et úKdS Õ are obtained by the substitution:

tú æ út, „ú æ ú„.

Sending ⁄ æ 0 in formulae (2.62),(2.63), it would seem that “̃(⁄) approaches a point 
that would be located at the center of each of the diagrams of figure 2.3. We now seek to 
construct an analytic extension D(ri) of each D0(ri) that contains such a limit point, this 
will be achieved by building a new system of coordinates.

71



Partie , Chapter 2 – Kerr-de Sitter spacetimes

Definition 2.5.6.

A(r) =
a

2Ÿ≠≠
ln |r ≠ r≠≠| ≠ a

2Ÿ≠
ln |r ≠ r≠| +

a

2Ÿ+

ln |r ≠ r+| ≠ a

2Ÿ++

ln |r ≠ r++|,

T (r) =
r2

≠≠ + a2

2Ÿ≠≠
ln |r ≠ r≠≠| ≠ r2

≠ + a2

2Ÿ≠
ln |r ≠ r≠| +

r2
+ + a2

2Ÿ+

ln |r ≠ r+|

≠ r2
++ + a2

2Ÿ++

ln |r ≠ r++|,

Ÿi = sgn(ki)ki, i œ {≠≠, ≠, +, ++}.

The proofs of the following technical lemmata are left to the reader:

Lemma 2.5.8. For each i œ {≠≠, ≠, +, ++}, A(r) ≠ a

r2
i + a2

T (r) is analytic at ri.

Lemma 2.5.9. Let i œ {≠≠, ≠, +, ++}: On any Boyer-Lindquist block (minus points on

the axis A), the functions (út, tú, ◊, „i), where „i =
1

2

A

ú„ + „ú ≠ a

r2
i + a2

(út + tú)

B

form

a coordinate chart.

We specialise now to D(r++):

Definition 2.5.7. Define maps U++, V ++ on D(r++) by:

On I’ :

Y

__]

__[

U++ = ≠ exp
3

Ÿ++
út

r2
+++a2

4

,

V ++ = exp
3

≠ Ÿ++tú

r2
+++a2

4

,
On II :

Y

__]

__[

U++ = ≠ exp
3

Ÿ++
út

r2
+++a2

4

,

V ++ = ≠ exp
3

≠ Ÿ++tú

r2
+++a2

4

,

On II’ :

Y

__]

__[

U++ = exp
3

Ÿ++
út

r2
+++a2

4

,

V ++ = exp
3

≠ Ÿ++tú

r2
+++a2

4

,
On I :

Y

__]

__[

U++ = exp
3

Ÿ++
út

r2
+++a2

4

,

V ++ = ≠ exp
3

≠ Ÿ++tú

r2
+++a2

4

.

Recall that on I,I’ r > r++ and on II,II’ r+ < r < r++.

Lemma 2.5.10.

— U++, V ++, ◊ and „++ have analytic extensions to all of D0(r++) \ {axis points}

(that we will denote by the same symbols). Furthermore ÷++ = (U++, V ++, ◊, „++)

is a coordinate system on D0(r++) \ {axis points}.

— ÷++ has an analytic extension to a diffeomorphism of D0(r++) onto R
2\{(0, 0)}◊S2.

— r has an analytic extension to all of RU++ ◊ RV ++ ◊ S2.
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— r ‘æ G++(r) = r≠r++

U++V++
is an analytic function of r ”œ {r≠, r+, r≠≠} that never

vanishes.

Proposition 2.5.5. In the coordinates ÷++ of D0(r++) \ {axis points}, the line element

can be expressed as:

ds2 =
∆r(r

2
++ + a2)G++2

(r)a2 sin2 ◊

4Ÿ2
++(r ≠ r++)(r2 + a2)Ξ2fl2

(r + r++)

A

fl2

r2 + a2
+

fl2
++

r2
++ + a2

B

(2.64)

◊
1

V ++2dU++2
+ U++2dV ++2

2

+ g◊◊d◊2 + g2
„„d„2

+
∆r(r

2
++ + a2)2G++2

(r)

2Ÿ2
++(r ≠ r++)fl2Ξ2

A

fl4

(r2 + a2)2
+

fl4
++

(r2
++ + a2)2

B

dU++ dV ++

+
a sin2 ◊G++(r)

fl2Ξ2Ÿ++

A

∆◊(r + r++)(r2 + a2)

≠ ∆rfl
2
++

r ≠ r++

B

d„++
1

V ++dU++ ≠ U++dV ++
2

+
∆◊a

2 sin2 ◊(r + r++)2

4Ÿ2
++fl2Ξ2

1

V ++dU++ ≠ U++dV ++
22

,

where fl2
++ = r2

++ + a2 cos2 ◊.

The above expression extends analytically to all of (RU++ ◊RV ++) ◊ S2 and it is straight-

forward to verify that it is non-degenerate at points of {(0, 0)} ◊ S2. This concludes

the construction of D(r++) which is defined a s ( RU++ ◊ RV ++) ◊ S 2 e quipped w ith the 
metric (2.64). Similar expressions for the metric can be obtained on the other Kruskal 
domains. We can now check that these extra points really do enable the extension of in-

complete principal null geodesics contained in the horizons by welding together those from 
the di�erent Boyer-Lindquist blocks. Recall from equation (2.63) the geodesic parametri-

sation of a generic integral curve, expressed in KdSú coordinates, contained in the horizon 
Hi and coming from KdSúÕ (see figure 2.4):

“̃(⁄) = 
1

(r2
++ + a2)k≠

++
1 ln(≠k++⁄), ri, ◊0, ak≠

++
1 ln(≠k++⁄)

2 
, ⁄ > 0,
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this curve is past-incomplete and its expression in Kruskal coordinates is:

Y

_______]

_______[

U++ = 0,

V ++ = ≠k++⁄,

◊ = ◊0,

„++ = ≠ lim
rær++

A(r) ≠ a

r2
++ + a2

T (r),

⁄ œ R
ú
+, (2.65)

from these expressions we see that when ⁄ æ 0, “ approaches a point on the crossing-

sphere (U++ = V ++ = 0).

If we consider now a similar curve in the horizon coming from KdSú, then its geodesic

parametrisation in KdSú coordinates is, from (2.62):

“̃(⁄) =
1

(r2
++ + a2)k≠1

++ ln(k++⁄), r++, ◊0, ak≠1
++ ln(k++⁄)

2

, ⁄ < 0.

This curve is future incomplete; converting to Kruskal coordinates:

Y

_______]

_______[

U++ = 0,

V ++ = ≠k++⁄,

◊ = ◊0,

„++ = ≠ lim
rær++

A(r) ≠ a

r2
++ + a2

T (r),

⁄ œ R
ú
≠. (2.66)

The curves clearly analytically extend one another to form a complete geodesic. Through

this example, we see that the role of the crossing-sphere (U++ = V ++ = 0) really is to

join together the two “vertical” horizons in figure 2.4 to form a single null hypersurface of

equation U++ = 0. The results are similar when considering the principal null geodesics

in the “horizontal” horizons of figure 2.4.

Building maximal slow Kerr-de Sitter KdSs

We will now describe how to combine the Kruskal domains of section 2.5.4 to build the

maximal slow Kerr-de Sitter spacetime KdSs; the gluing pattern is illustrated in figure 2.5.

To realise the gluing, begin with the two manifolds K1, K2 defined by:

— K1 is the manifold obtained by considering two sequences (D+
i )iœZ, (D≠

j )jœZ of iso-

metric copies of D(r+) and D(r≠) respectively. Define: X =
·

i

D+
i , Y =

·

j

D≠
j . We
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II

II'

Figure 2.5 – Gluing pattern to construct KdSs; the roman numeral labels indicate which
Boyer-Lindquist block is used for the gluing

introduce some notations useful in the sequel:

— For each k œ Z denote by ik
+ : D+

k ƒ D(r+) æ X and ik
≠ : D≠

k ƒ D(r≠) æ Y

the canonical injections.

— For any Boyer-Lindquist block B µ D(r±), B±
i will denote the image of that

block by the isometry D(r±) ƒ D±
i .

— B
±
i = ii

±(B±
i ).

Define now 13: K1 = X
‡

„ Y where „ :
‡

i IIIi fi III Õ
i æ Y is constructed using the

universal property of coproducts from the maps:

„i : IIIi fi III Õ
i µ D+

i ≠æ IIIi fi III Õ

i≠1 µ Y,

which, when restricted to IIIi (resp. III Õ
i) and expressed in Boyer-Lindquist coor-

dinates, is simply the identity map.

— K2 = (
·

i

D++
i )

·

(
·

j

D≠≠
j ) is the disjoint union of the sequences (D++

i )iœZ, (D≠≠
j )jœZ

of isometric copies of D++
i ƒ D(r++) and D≠≠

j ƒ D(r≠≠).

As illustrated in section 2.5, KdSs can be built from K1 and K2 by gluing infinitely

13. see appendix A.5
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many copies of these manifolds along blocks with the same label. More precisely, consider

two sequences (Mi)iœZ and (Nj)jœZ of manifolds. This time, for each i œ Z, Mi (resp.

Ni) is an isometric copy of K1 (resp. K2). Define X̃ =
‡

i Mi, Ỹ =
‡

j Mj and denote by

Ii : Mi æ X̃ and Ji : Ni :æ Ỹ the canonical injections. KdSs will then be X̃
‡

Â Ỹ for a

well chosen isometry Â.

Â can be specified in several stages from maps (Â± i
k )(i,k)œZ2 :

Â+ i
k : IIk fi II Õ

k µ D+
k ≠æ II++

(i,k) fi II Õ++
(i≠1,k) µ Ỹ ,

Â≠, i
k : IV Õ

k fi IV Õ
k µ D≠

k ≠æ IV Õ++
(i,k) fi IV ≠≠

(i≠1,k) µ Ỹ ,

where, II++
(i,k) = Ji ¶ i++

(i,k)(II) and i++
(i,k) is the canonical injection of D++

k into Ni; the

other sets are defined similarly. Again, when restricted to a given Boyer-Lindquist block

and expressed in Boyer-Lindquist coordinates, these are just the identity maps. Using a

natural generalisation of point 3 of proposition A.5.1 in appendix A.5, for every i œ N

this specifies a map:

Âi :
€

k œZ

ī
(i,k)
+ (IIk fi II Õ

k) fi ī
(i,k)
≠ (IVk fi IV Õ

k) µ Mi æ Ỹ .

These maps, using the universal property of coproducts, define together an isometry:

Â :
·

iœZ

€

k œZ

ī
(i,k)
+ (IIk fi II Õ

k) fi ī
(i,k)
≠ (IVk fi IV Õ

k) µ Mi æ Ỹ .

2.5.5 Maximal extreme and fast KdS spacetimes

Straightforward adaptations of the techniques of the previous section enable us to 
construct the maximal extreme and fast KdS spacetimes. For the extreme spacetimes, as 
discussed in Section 2.4, there are three cases: r+ = r≠, r++ = r+ or r++ = r+ = r≠.

KdSe
1 : r+ = r≠

We begin with the case where the two black hole horizons coincide and in which 
the Boyer-Lindquist block III disappears. The Kruskal domains D(r≠≠) and D(r++) are 
unchanged, but the domains D(r+) and D(r≠) are to be replaced by the domains I1 and 
I2 given in figure 2 .6. T he f orm o f t hese d omains c an b e u nderstood f rom t he f act that 
the horizon H+ now arises from a double root and the principal null geodesics trapped in 
it are complete; in particular there are no crossing spheres on the double horizons. The
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II' IV'

II' IV'

(a) I1

IV II

IV II

(b) I2

Figure 2.6 – Kruskal domains

slightly simpler gluing pattern is illustrated in figure 2.7. As before, the roman numeral

labels indicate the blocks that are identified.

Figure 2.7 – Gluing pattern for KdSe

r+ = r≠

KdSe
2 : r+ = r++

The second case is when the cosmological horizon r++ coincides with the outer black 
hole horizon r+. Here the Kruskal domains D(r≠≠) and D(r≠) are unchanged and the 
remaining blocks are replaced by the domains illustrated in figure 2.8. The stranger gluing 
pattern is illustrated in figure 2.9.

KdSe
3 : r++ = r+ = r≠ = x

When ∆r has a triple root x, we saw previously that all the horizons in the region 
r > 0 coincide; Boyer-Lindquist blocks II and III consequently vanish. Contrary to the
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I

III

IIII

(a) I1

I' III'

I'

III'

(b) I2

Figure 2.8 – Kruskal domains

Figure 2.9 – Gluing pattern for KdSe
2

r++ = r+

other cases, only two Kruskal domains are required to construct a maximal extension: 
the domain D(r≠≠), as illustrated in 2.3, and the domain D0(x) © D(r++) illustrated in 
figure 2.10.

Diagram 2.10 has a striking ressemblance to that of D(r++) in figure 2 .3, b ut is 
profoundly di�erent d ue t o t he a bsence o f t he c rossing s phere. H ence, w hilst correctly 
depicting the assembly process leading to D0(x), it is misleading for the interpretation of 
the geometry. In particular, like for the double horizons, Kruskal coordinates do not have 
analytic extensions to the whole domain.

As expected, the gluing pattern for KdSe
3, illustrated in figure 2 .11, i s much simpler 

than in the other cases due to the fewer number of horizons and Boyer-Lindquist blocks.
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I' IV'

IIV

Figure 2.10 – D0(x) © D(r++)

IV

IV'

Figure 2.11 – Gluing pattern for KdSe
3

r++ = r+ = r≠ = x r≠≠ = 3x

Maximal Fast KdS spacetimes

This final case, where ∆ r has only two s imple real roots r ≠≠ and r++, i s in all points 
analogous to slow Kerr-spacetime as presented in [ONe14]; the main qualitative di�erence 
is that time orientation is reversed. There are only two Kruskal domains, D(r++) and 
D(r≠≠) as illustrated in figure 2.3, with the exception that, due to the absence of blocks 
II and III , labels II and II Õ in figure 2.3 should be replaced by I V and IV Õ  respectively. 
The gluing pattern is identical to that in figure 2.11.

2.6 Conclusion

The aim of this rather technical note was to give a detailed mathematical discussion 
regarding the construction of maximal analytical extensions to the Kerr-de Sitter solution 
to Einstein’s equation with cosmological constant, as well as a review of the basic geomet-
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ric properties of these spacetimes. The latter discussion can be found in Section 2.3. To

the best of the author’s knowledge, in existing literature, the construction is only briefly

commented upon and is not carried out explicitly as in Section 2.5.

Section 2.4 is devoted to the study of the roots of the polynomial ∆r in terms of

the parameters (a, l, M), and hence, the horizon structure of the blackhole. The referees

brought to the attention of the author that similar discussions, although less mathemat-

ical, are present in earlier publications, namely [SS04] for Kerr-de Sitter and [SH00] for

the more general situation of Kerr-Newmann black holes on a background with non-zero

cosmological constant.
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Chapter 3

AN ANALYTICAL SCATTERING THEORY

FOR MASSIVE DIRAC FIELDS IN EXTREME

KERR-DE SITTER SPACETIME

3.1 Preamble

In this chapter, we will study the Dirac equation near an extreme Kerr-de Sitter 
blackhole. More specifically, we a re i nterested i n t he c ase w here t he two b lackhole hori-

zons coincide (see [Bor18, Proposition 4]) to form what we will call a double horizon. In 
physics, the Dirac equation describes free spin-1/2 particles, like the electron. Although 
physicists are more interested in the second quantised version, we study here the classical 
equation. We also consider the equation on a fixed g eometric b ackground, t herefore ig-

noring the retroaction of the particle on the gravitational field; this is known as the linear 
approximation. Our fields will evolve in a  region B  s ituated b etween the double horizon 
and the cosmological horizon. Both will be treated as asymptotic regions: no boundary 
conditions will be set there. The choice of this particular region B is motivated by a 
number of interesting properties that lead us to suspect that it was possible to adapt and 
generalise the methods in [NH04; Dau10] in order to construct a scattering theory. On 
one hand, there is a global Killing field ˆ  on B  associated with a  function t  whose level

ˆt

hypersurfaces are spacelike and isometric. This means that we can assimilate B to the

direct product R ◊ Σ where Σ is a fixed R iemannian 3 -fold, a nd r eformulate t he Dirac 
equation as an evolution problem on Σ. An advantage of Dirac fields, as opposed to Klein-

Gordon fields, is that despite superradiance due to the rotation, there is still a  conserved 
current leading to a natural norm (and inner product) on space-like slices and giving the 
necessary framework for spectral methods.

The setting is hence as follows: we have a Hilbert space H and a self-adjoint operator 
H on H with dense domain D(H). Near the horizons, H intuitively approaches a simpler
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operator H0; our aim is to understand to what extent this comparison is meaningful. More

precisely, we seek to show the existence of strong limits of the following type:

s ≠ lim
tæ+Œ

eiH0te≠iHt © Ω+. (3.1)

Ω+ is known as a wave operator; when it exists, it satisfies for any „0 œ H :

.

.

.e≠iH0t
Ω+„0 ≠ e≠iHt„0

.

.

. ≠æ
tæ+Œ

0.

Therefore, as long as we replace the initial data „0 by Ω+„0, we can use H0 to describe the

solution in the limit t æ +Œ. In general, Ω+ will not be defined on all of H . At best, it will

be defined on the subspace Hac composed of all vectors x œ H whose spectral measure

µx(S) = (E(S)x, x) is absolutely continuous with respect to the Lebesgue measure. In our

particular case, the Dirac equation is fully separable and the existence of the cosmological

horizon excludes the possibility for any discrete spectrum [BC09; BC10]. Moreover, via

Mourre theory [Mou81] 1, we will show that there is no singular continuous spectrum.

These facts imply that: H = Hac.

Nonetheless, we will not be able to prove the existence of (3.1) directly, and will

need to adjust the definition of Ω+ to take into account some long-range e�ects. This

is because the usual elementary methods to prove the existence of the wave operators

rely on the assumption that H ≠ H0 is short-range in a neighbourhood of the asymptotic

regions, which is not satisfied near the double horizon. Furthermore, the rotation of the

blackhole adds a certain amount of anisotropy to the picture. We will show that all of

these di�culties can be overcome through several intermediate comparisons and an ad

hoc decomposition of the Hilbert space, which, surprisingly, enables us to reduce our

problem to a spherically symmetric one. Mourre theory will play an important role in

this part of the proof, since it will enable us to establish so-called « asymptotic velocity

estimates » [SS88; GF98] which are essential in the proof of the existence of some of our

intermediate wave operators. Last of all, at the double horizon, we will need to slightly

modify H0 to compensate for the fact that H ≠H0 is long range there. To this end, we will

perform a Dollard type modification [DV66] which consists in incorporating to eitH0 the

time evolution of the Coulomb potential terms that obstruct the existence of the classical

wave operators.

An important prerequisite underlying the techniques used in this part of the work

1. see also Section 3.5

82



3.2. A short note on spinors and spin structures

is the ability to construct a good functional calculus. Formulae like that of Hel�er-

Sjöstrand [HS87] are key, for instance, in showing that some of the operators we study

are compact. This perspective was particularly elucidating whilst studying [AMG96]; a

key reference for the techniques in the main text.

The following text is in a large part taken from a prepublication [Bor20] submitted

for publication in the Annales de l’Institut Fourier. I have additionally included in the

preamble a short discussion on the geometry of Dirac fields.

3.2 A short note on spinors and spin structures

The Dirac equation, in itself, is a fascinating mathematical object. Before our pre-

sentation of the analytical scattering theory in extreme Kerr-de Sitter spacetime, it is

worth inspecting some of the geometry behind it. The first feature we should point at

is the nature of the unknown. The Dirac field, or spinor, is di�erent in nature from the

tensor fields that appear in most equations in Physics, indeed, they do not correspond

to a representation of the proper Lorentz group SO+(1, 3), but rather of a particular 2

leaf covering 2, Sp(1, 3), which, due to an accidental isomorphism in dimension 4 can be

identified with SL(2,C).

The exceptional isomorphism can be described as follows: first we identify R
4 with the

vector space of 2 ◊ 2 Hermitian matrices via:

Q

c
c
c
c
c
c
a

x0

x1

x2

x3

R

d
d
d
d
d
d
b

‘æ
Q

a
x0 + x3 x1 ≠ ix2

x1 + ix2 x0 ≠ x3

R

b = x,

The relation:

Λ(A)x = AxAú, A œ SL(2,C), Aú = tĀ, (3.2)

then defines a representation of SL(2,C). One can show that Λ maps SL(2,C) onto

SO+(1, 3) and that its kernel is {≠1, 1}.

The group Sp(1, 3) is defined as a subgroup of the group of invertible elements of the

Cli�ord algebra Cl1,3(R). In brief, Cl1,3(R) is the « most general » real algebra with unit

2. which is simply connected so it is in fact the universal covering
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containing R
4 such that for any v œ V ,

v2 = ÷(v, v) · 1, ÷(v, v) = ≠v2
0 +

3ÿ

i=1

v2
i .

Sp(1, 3) is the identity component of the group generated by the set:

{v1 . . . v2p, p œ N, vi œ R
4, ÷(vi) = ±1}.

The geometric explanation to this definition is that if v œ R
4 with ÷(v, v) = ±1, then v is

invertible in the algebra and the inverse is given by v≠1 = v
÷(v,v)

. Consequently the map

x œ R
4 ‘æ ≠vxv≠1 is an endomorphism of R4 and:

≠vxv≠1 = ≠vx
v

÷(v, v)
= x ≠ 2

÷(v, x)

÷(v, v)
v.

Hence, x ‘æ ≠vxv≠1 is the reflection about the plane orthogonal to v. Since such reflec-

tions generate O(1, 3), after correctly generalising x ‘æ ≠vxv≠1 to more general elements

of Cl1,3(R)◊, we have a way of reproducing O(1, 3). Restricting to an even number of

factors, we get SO(1, 3). The important point is that the algebra multiplication has a

strict relationship with the metric ÷.

A spinor representation is a complex representation of Sp(1, 3) induced by a repre-

sentation of the Cli�ord algebra, Cl1,3(R). The isomorphism SL(2,C) ≥= Sp(1, 3), means

that 3 it is not necessary for us to delve deeper into this side of things, and we can just

think of spinors as corresponding to complex representations of SL(2,C). The link between

SL(2,C) and SO+(1, 3) is what justifies the point of view that these spinor representa-

tions are in some sense representations of SO+(1, 3). For our needs, the most important

representations are:

- 2-spinors : the fundamental representation flf de SL(2,C),

- pointed 2-spinors : the representation flfc : A ‘æ A,

- Dirac spinors : the direct sum of the dual representation to flf and flfc,

- complexified vectors : the product representation flf ¢ flfc.

In order to speak of spinor fields on an oriented Lorentzian manifold (M, g), we need to

construct vector bundles corresponding to these spinor representations. This should be

3. much to my dismay
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done in such a way that the Cli�ord algebra behind the spin representation, corresponds

to the fibrewise metric of each tangent space. The solution involves a « reduction » 4 of the

positive orthonormal frame bundle F0(M) that lifts in each fibre SO+(1, 3) to SL(2,C).

The precise definition, in 4 dimensions, is as follows:

Definition 3.2.1. Let M be a smooth manifold of dimension 4, a spin structure is

an SL(2,C)-principal fibre bundle (S(M), fis) over M and a fibre bundle morphism

⁄ : S(M) ≠æ F0(M) into a reduction of L(TM) to a SO+(1, 3)-principal fibre bun-

dle over M , (F0(M), fi), such that for any s œ S(M), and g œ SL(2,C):

fi(⁄(s)) = fiS(s), (3.3)

⁄(sg) = ⁄(s)Λ(g), (3.4)

where the morphism Λ : SL(2,C) ≠æ SO+(1, 3) is defined by Equation (3.2).

The definition can be generalised to arbitrary dimension and signature (p, q) but this

requires a little more theory than we can a�ord to explore here. We refer the interested

reader to [Fri00; LM89]. We have also chosen to present the metric structure (hidden in

the bundle F0(M)) as derived from the spin structure. In practice, however, the metric

structure, and by extension, the bundle F0(M), is already given in advance and we seek a

spin structure compatible with it. This problem can always be solved locally, for instance,

in a local bundle chart of the bundle F0(M), however, there may be an obstruction to

a global solution [Ger68; Ger70]. For our needs, the following result of Geroch [Ger68;

Ger70] will be su�cient:

Theorem 3.2.1. An orientable and globally hyperbolic 4-dimensional spacetime has a

spin structure.

Unfortunately, a spin structure is generally not unique, see for example the n-spheres [Tra93].

The importance of this choice is however a global question and will not concern us.

We should mention some consequences of Definition 3.2.1. First of all, the Lie group

homomorphism Λ induces a Lie algebra isomorphism between sl2(C) and so1,3(R), hence,

a connection on either one of the bundles S(M) or F0(M) automatically determines one

on the other: S(M) will be systematically assumed to be equipped with the connection

induced by the Levi-Civita connection on F0(M).

4. The terminology in English is unfortunate, the French word « élargissement », describes better the
situation we consider here...
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If a 4-dimensional Lorentzian manifold M has a spin-structure, « spinor » bundles are

defined as associated vector bundles to (S(M), ⁄). We will write S and S
Õ for the bundles

corresponding respectively to the 2-spinor and pointed 2-spinor representations. The fibre

bundle morphism ⁄ guarantees the compatibility of S(M) with the Lorentzian structure

of the base M by inducing a vector bundle isomorphism:

S ¢ S
Õ ≥= C ¢ TM.

When using the abstract index notation (cf. Paragraph 1.1.1), sections k and ‰ of S

and S
Õ respectively will be written kA, and ‰AÕ

. There is also an anti-linear isomorphism

between S and S
Õ, obtained by factorising complex conjugation. We will write:

kA = k
AÕ

.

Somewhat abusively, the inverse map will be written in the same way: ‰AÕ = ‰A.

Last of all, there is a canonical linear map:

Á : Γ(S) · Γ(S) æ CŒ(M),

written ÁAB and satisfying gab = ÁABÁAÕBÕ , where g is the metric tensor on M . In each

of the fibres of S it restricts to a symplectic form. Just like a metric, ÁAB can be used to

identify S to its dual:

kA ‘æ kAÁAB © kB.

Due to the fact that it is anti-symmetric, we need to be a little more careful when raising

and lowering indices, for example:

kA = ÁABkB = ≠kBÁBA,

kB = kAÁAB = ≠ÁBAkA,

”B
C = Á B

C = ÁACÁAB = ≠ÁACÁBA = ≠ÁB
C .

The above properties of spin structures, as well as the close relationship with the bundle 
F0(M) encourage us to think of S(M) as analogous to a « square root » of F0(M). In 
fact, in [PR84], Penrose argues that the spin structure is in some sense more fundamental 
than F0(M). Elementary particles like electrons or quarks seem to be spinorial, so, if 
General Relativity has any part to play in a quantum theory of gravity, a spin structure
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is a pre-requisite. Spin structures are also topologically more restrictive than metrics,

although Geroch’s result points out that the restriction is transparent for many physically

reasonable metrics. Nevertheless, we could imagine starting out with SL(2,C) ≥= Sp(1, 3)

principal fibre bundle S(M) over a manifold M and seeking fibre bundle morphisms ⁄

from S(M) to the frame bundle L(TM) over the base. If we find such a ⁄, we can then

identify the image as a positive orthonormal frame bundle F0(M), then deduce the metric

and orientation from it; which indicates that all the essential information of the spacetime

is encoded in the spin structure.
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Scattering theory for Dirac fields near
an Extreme Kerr-de Sitter black hole

The following is a modified version of the author’s final preprint of the eponymous

article submitted to Annales de l’Institut Fourier in May 2020

3.3 Introduction

Over the past two decades or so there has been quite a bit of mathematical interest

in scattering theories for particles in black-hole type geometries. This is useful for the

understanding of these geometries and the detection of black holes but also in the study

of Quantum Field Theory on curved spacetimes, see for example [DMP11; GHW20].

For rotating black holes, due to super-radiance, it is well known that the usual energy

functional of integer spin particle fields, described for instance by the wave or Klein-

Gordon equation, is no longer positive-definite, this leads to obvious technical di�culties

that have nevertheless been overcome in a handful of situations, such as the Klein-Gordon

equation on (De Sitter) Kerr spacetimes [GGH17; Häf03], the wave equation on Kerr

spacetime [DRS14] or the Maxwell equation on the Reissner-Nordström de-Sitter space-

time [Mok16].

On the other hand, for Dirac fields, there is still a conserved current which leads

to a natural Hilbert space framework adapted to a spectral theory approach. Scattering

theories for massive or massless Dirac fields have been constructed in this manner in the

exterior region of Reissner-Nordström, slow Kerr and Kerr-Newman black holes [Dau04;

NH04]. More recently, there has been interest in non-asymptotically flat backgrounds

such as Schwarzschild-de Sitter [Ide16], slow Kerr Newman-de Sitter [DN16] and slow

Kerr-Newman-AdS [BC10] black holes.

In this paper we study the case of an extreme Kerr-de Sitter black hole in a region

situated between what we will refer to as a “double” horizon and a usual “simple” one

(the cosmological horizon). The “double” horizon is the hypersurface resulting from the

coincidence of the two inner black hole horizons 5, and di�ers quite significantly from

the exterior horizon of, for instance, Kerr spacetime. The extreme case is of particular

interest for the understanding of mechanisms behind stability/instability of black hole

5. which occurs for special choices of the parameters of the family
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type spacetimes as it presents features of both types. This is analysed thoroughly in the

case of an Extreme Reissner-Nordström black hole in [Are11a; Are11b], and complemented

by the remarks in [BS07] on the asymptotic behavior to the wave equation. Regarding the

Dirac equation, an integral representation of the Dirac progagator in the extreme Kerr

metric is derived in [BF13]. Our main theorem, Theorem 3.7.1, formulated in Section ??,

is the asymptotic completeness of the Dirac operator in an extreme Kerr-de Sitter black

hole, which can perhaps be interpreted in this context as a stability feature of these

spacetimes.

Our global strategy follows closely that of [Dau04; Dau10; NH04]: we will adopt the

point of view of a class of observers for which the two horizons are asymptotic and will

show in Section 3.5 that a conjugate operator in the sense of Mourre theory [AMG96;

Mou81] can be constructed in an analogous fashion to that in the exterior of a Kerr

black hole as in [Dau04; NH04]. Furthermore, it has already been noted, for example

in [BC10], that the presence of the simple horizon is enough to ensure that the usual

proof of the absence of eigenvalues – via a Grönwall inequality exploiting the separability

of the Dirac equation – follows through without modification. However, our results do

not follow directly from these works due to long-range potentials at the extreme horizon

and a significantly perturbed angular operator. In particular, the decomposition of the

Hilbert space into spin harmonics, essential to the reduction to the spherically symmetric

case treated in [Dau10] is no longer stable. A key ingredient to our analysis, carried out

in Section 3.6.4 is constructing operators at both asymptotic ends with similar adapted

decompositions and of which the full Dirac operator is a short-range perturbation. Fur-

thermore, it is worth noting that since the mass terms do not survive at either of the

horizons, despite constituting a long-range potential near the double one, some of the

arguments in [Dau10] can be simplified.

3.3.1 The Kerr-de Sitter metric

Throughout this text, we will mainly use the usual Boyer-Lindquist like coordinates

(t, r, ◊, Ï) in which the Kerr-de Sitter metric is known to be (signature (+, ≠, ≠, ≠)):

g =
∆r

Ξ2fl2
[dt ≠ a sin2 ◊dÏ]2 ≠ fl2

∆r

dr2 ≠ fl2

∆◊

d◊2 ≠ ∆◊ sin2 ◊

fl2Ξ2
[(r2 + a2)dÏ ≠ adt]2, (3.5)
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where:

l2 =
Λ

3
, ∆r = r2 ≠ 2Mr + a2 ≠ l2r2(r2 + a2),

Ξ = 1 + a2l2, ∆◊ = 1 + a2l2 cos2 ◊, fl2 = r2 + a2 cos2 ◊.
(3.6)

It depends on three parameters a, M, Λ, the angular momentum per unit mass of the

black hole, the mass of the black hole and the cosmological constant, respectively. We will

always assume l > 0.

The above expression is singular when ∆r = 0 or fl = 0, however, the manifold can be

analytically extended across the singularities {∆r = 0}. In such an extension, the roots of

∆r give rise to null hypersurfaces that we will refer to as horizons. They will be labelled

by the root ri to which they correspond as so: Hri
. If ri is a double (resp. simple) root of

∆r, Hri
will be said to be a “double" (resp. “simple”) horizon. In, for instance, [Bor18],

it is shown that the roots of ∆r can be labelled such that either:

1. r≠≠ < 0 < r≠ < r+ < r++

2. r≠≠ < 0 < r≠ = r+ < r++

3. r≠≠ < 0 < r≠ < r+ = r++

4. r≠≠ < 0 < r≠ = r+ ≠ r++

5. r≠≠ < r++, r≠, r+ œ C \ R.

We will refer to case (2) as extreme Kerr-de Sitter; a necessary and su�cient condition

for this is:
|a|l < 2 ≠

Ô
3,

M2 =
(1 ≠ a2l2)(a4l4 + 34a2l2 + 1) ≠ “

3
2

54l2
,

(3.7)

where “ = (1 ≠ a2l2)2 ≠ 12a2l2. In this situation the double root is given by:

re
6 =

12a2l2 + (1 ≠ a2l2)(1 ≠ a2l2 ≠ Ô
“)

18Ml2
. (3.8)

For future reference, we quote the following useful properties of re :

Y

]

[

0 Æ re < 4
3

a2

M
,

l2r4
e + a2 = Mre.

(3.9)

Finally, we note that the other two roots r++ and r≠≠ are equally those of the polynomial:

6. In [Bor18] it was denoted by x
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X2 + 2reX ≠ a2

l2r2
e

. (3.10)

To avoid unnecessarily complicated subscripts, we will now rename the roots of ∆r as

follows:

r≠ < 0 < re < r+.

The region, B, in which we will study the scattering of Dirac fields is defined in the

coordinates (t, r, ◊, Ï) by re < r < r+. In essence, B = R◊]re, r+[◊S2, with the metric

given by (3.5), that extends analytically to the poles. It is between two horizons, one

double, one simple and it is the e�ect of the double horizon that we wish to understand.

The scattering problem will be considered from the point of view of a stationary

observer with world-line:

r = r0, ◊ = ◊0, Ï = Êt + „0, Ê œ R, r0 œ]re, r+[, ◊0 œ]0, fi[, „0 œ]0, 2fi[.

Proper time for such an observer di�ers from the coordinate function t only by a mul-

tiplicative constant depending on the parameters of the trajectory. For this family of

observers photons travelling, say, along a principal null geodesic, which are in some sense

the most direct trajectories for light to travel towards one of the horizons, will not reach

it in finite time. For instance, the coordinate time t necessary for a photon, emitted from

r = r0 at t = t0, to reach H+ travelling along such a curve is:

t ≠ t0 =
⁄ r+

r0

Ξ(r2 + a2)

∆r

dr = +Œ. (3.11)

In fact, for our purposes, it will be appropriate to replace the coordinate r, by the Regge-

Wheeler type coordinate rú =
⁄

Ξ(r2 + a2)

∆r

dr appearing in this computation. By defini-

tion:

drú =
Ξ(r2 + a2)

∆r

dr. (3.12)

It will be useful to calculate an explicit expression for rú by a partial fraction decompo-

sition of the integrand:

r2 + a2

(r ≠ r≠)(r ≠ re)2(r ≠ r+)
=

–

r ≠ r≠
+

—

r ≠ r+

+
“

r ≠ re

+
”

(r ≠ re)2
. (3.13)
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The coe�cients –, —, “, ” are given by:

– = ≠ l

2

Ú
re

M

r2
≠ + a2

(re ≠ r≠)2
< 0, — =

l

2

Ú
re

M

r2
+ + a2

(r+ ≠ re)2
> 0,

” =
l2r2

e(r2
e + a2)

3Mre ≠ 4a2
< 0, “ = ≠2l2r3

e(2r2
e ≠ 7Mre + 6a2)

(3Mre ≠ 4a2)2
< 0.

The sign of “ follows from the following relations:

Y

]

[

r2
e l2(r2

e + a2) = r2
e + a2 ≠ 2Mre,

0 < 3Mre ≠ 4a2 ≠ 2r2
e l2(r2

e + a2) = 7Mre ≠ 6a2 ≠ 2r2
e .

The expression of rú is therefore:

rú =
Ξ

2l

Ú
re

M
ln

A

|r ≠ r≠|÷≠

|r ≠ r+|÷+

B

+
r2

e(r2
e + a2)

3Mre ≠ 4a2

Ξ

r ≠ re

+
2r3

e(2r2
e ≠ 7Mre + 6a2)

(3Mre ≠ 4a2)2
Ξ ln |r ≠ re| + R0.

(3.14)

Above, R0 is an arbitrary real constant and ÷± =
r2

±+a2

(re≠r±)2 .

From (3.14), one can deduce the following asymptotic equivalences:

Lemma 3.3.1.

r+ ≠ r ≥
rúæ+Œ

e
≠ 2l

Ξη+

Ò
M
re

rú

, (3.15)

r ≠ re ≥
rúæ≠Œ

r2
e(r2

e + a2)Ξ

3Mre ≠ 4a2

1

rú . (3.16)

(3.15) is true for a suitable choice of R0: it is the usual behaviour that we have come to 
expect at a simple black hole horizon. The decay near the double horizon, however, is a 
lot slower and will be the source of technical di�culties wh en co nstructing a scattering 
theory.

3.3.2 The Dirac equation

Notations

On B, ∆r > 0 and the coordinate t is a “time function”, providing a foliation (Σt)tœR 

of B into spacelike Cauchy hypersurfaces. B is therefore an orientable globally hyperbolic
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4-manifold and as such, by a result due to R. Geroch [Ger68; Ger70], possesses a global

spin structure.

The Dirac equation is most conveniently expressed with Penrose’s abstract index no-

tation 7 denoting by S
A the module of sections of the two-spinor bundle S and, SAÕ

, that

of the pointed two spinor bundle S
Õ; lowered indices are used for sections of the dual

bundles. We recall that S
A is identified with S

AÕ
via complex conjugation and to SA via

the canonical symplectic form ÁAB according to:

Y

]

[

ŸB = ŸAÁAB = ≠ÁBAŸA,

ŸAÕ
= ŸA,

ŸA œ S
A.

The bundle S ¢ S
Õ can be identified with the complexified tangent bundle C ¢ TB and

finally:

ÁABÁAÕBÕ = gab.

Following [Nic02], we will refer to elements of SA üS
AÕ

as Dirac spinors, the massive Dirac

equation for a spin-1
2

Dirac spinor („A, ‰AÕ
) is then:

Y

]

[

ÒAAÕ
„A = µ‰AÕ

,

ÒAAÕ‰AÕ
= ≠µ„A,

µ =
mÔ

2
. (3.17)

As mentioned in the introduction, it is well known that the equation has a conserved

current, namely:

jAAÕ = „A„̄AÕ + ‰AÕ‰̄A.

Thus the total charge:

Q =
⁄

Σt

T ajaÊg,Σt
, (3.18)

is conserved. Êg,Σt
=

Ò
∆r

∆θ

fl‡
(r2+a2)Ξ2 drú · (sin ◊d◊ · dÏ) is the induced volume form on Σt

8

and T a is colinear to Òat and normalised, for convenience, such that T aTa = 2.

Q defines an inner product on spinors defined on any slice 9, Σt, t œ R, and gives rise

to a Hilbert space Ht. Solving the Dirac equation can be thought of as finding a family

7. See again [PR84].
8. Oriented by ≠Òt.
9. These can be thought of as either sections of the pullback bundle of S via the canonical injection,

or, sections of the spinor bundle on Σs; there is an identification between them since dim B = 4.

93



Partie , Chapter 3 – An analytical scattering theory for massive Dirac fields in extreme Kerr-de

Sitter spacetime

of isometries U(u, s) : Hs ‘æ Hu such that for any u, s, w œ R :

U(s, s) = Id, U(u, s)U(s, w) = U(u, w).

The framework sketched here can nevertheless be significantly simplified since ˆt is a

global Killing field on B. All slices Σt are thus isometric, in particular, B is isometric to

R ◊ Σ for some fixed Σ. Furthermore, the Ht can all be identified and so one can view

the problem as an evolution problem on a fixed Hilbert space H . For these reasons, we

will seek expressly to write the Dirac equation as a Schrödinger type equation. Moreover,

we will work directly with spinor densities 10 on Σ, i.e. the section of (S ü S
Õ) ¢ E(≠n+1

2
)

given by:

(„A, ‰AÕ

)|Êg,Σ|
1
2 . (3.19)

After a choice of spin-frame, this means that our Hilbert space H can be assimilated

with L2(Σ) ¢ C
4 = L2(Rrú ◊ S2) ¢ C

4 equipped with its natural inner product :

(„, Â) =
⁄

È„, ÂÍC4drúdΩ, dΩ = sin ◊d◊dÏ.

We refer to [Nic02] for a more detailed discussion on the framework outlined above.

To convert Equation (3.17) this into a system of four scalar equations we will use the

local spin-connection forms –A
Ba of a local normalised spin frame (ÁA

A)Aœ{0,1} defined by:

–A
Ba = ÁA

BÒaÁB
B.

Given any orthonormal frame ga
a and a normalised spin frame ÁA

A such that the vector

fields:

la = ÁA
0 ÁAÕ

0Õ ; na = ÁA
1 ÁAÕ

1Õ ; ma = ÁA
0 ÁAÕ

1Õ ;

of the Newman-Penrose tetrad (la, na, ma, m̄a) satisfy:

Y

___]

___[

la =
ga

0 +ga
1Ô

2
,

na =
ga

0 ≠ga
1Ô

2
,

ma =
ga

2 +iga
3Ô

2
,

(3.20)

10. An orientation on Σ can be seen as a bundle morphisme between ΛnT úΣ and the density bundle. 
See also Definition 1.4.1.
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then the spin connection forms are given in terms of the local connection forms Êi
j in the

basis ga
a by:

–0
0 =

Ê0
1 + iÊ2

3

2
, –1

0 =
Ê2

0 + Ê2
1

2
+ i

Ê3
0 + Ê3

1

2
, –0

1 =
Ê2

0 ≠ Ê2
1

2
≠ i

Ê3
0 ≠ Ê3

1

2
. (3.21)

A spin connection is a sl(2,C)-valued one-form, so necessarily:

–1
1 = ≠–0

0.

In terms of the covariant derivative, this is equivalent to the requirement that ÒaÁAB = 0.

The forms –AÕ

BÕ a = ÁAÕ

BÕ (ÒaÁBÕ

BÕ) satisfy:

–AÕ

BÕ a = –A
Ba (3.22)

Remark 3.3.1. It should be remarked that our conventions di�er slightly from those

in [PR84], namely, we identify R
4 to H(2,C) via the isomorphism :

Ï :

R
4 ≠æ H(2,C)

Q

c
c
c
c
c
c
a

x0

x1

x2

x3

R

d
d
d
d
d
d
b

‘≠æ
Q

a
x0 + x1 x2 ≠ ix3

x2 + ix3 x0 ≠ x1

R

b

Remark 3.3.2. Consider the Lie group morphism Λ : SL(2, C) æ SO+(1, 3) defined 
by associating to any A œ SL(2, C) the matrix Λ(A) of the linear map u defined by 
u(x) = Ï≠1(AÏ(x)Aú), x œ R4 expressed in the canonical basis of R4. Then, viewing 
ω = (Êi

j )i,jœJ0,3K and α = (–A
B)A,Bœ{0,1} as matrix valued one-forms, it follows that for

any (p, v) œ TM :

αp(v) = Λ≠1(ωp(v)),
ú

where Λú is the Lie algebra isomorphism induced by Λ.

Once a choice of spin-frame has been made, Equation (3.17) can be written as four scalar
equations in terms of the components „A, ‰AÕ of the spinor fields. For instance, the equa-

tion:

∇AA′ ϕA = ¦�ϳA′ ,
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becomes,

ÒAAÕ„A + „A–B
A CCÕÁ

C
BÁCÕ

AÕ = ≠µ‰AÕ .

For A = 0Õ, this translates to :

laÒa„0 + m̄aÒa„1 + „0
1

–0
0ala + –1

0am̄a
2

+ „1
1

–0
1ala + –1

1am̄a
2

= ≠µ‰0Õ ,

or, equivalently:

laÒa„1 ≠ m̄aÒa„0 + „1

1

–0
0ala + –1

0am̄a
2

≠ „0

1

–0
1ala + –1

1am̄a
2

= µ‰1Õ

.

Overall, we obtain the following system of equations for the components:

Y

______]

______[

laÒa‰0Õ
+ maÒa‰1Õ

+ ‰0Õ
F + ‰1Õ

G = ≠µ„0,

m̄aÒa‰0Õ
+ naÒa‰1Õ

+ ‰0Õ
G1 + ‰1Õ

F1 = ≠µ„1,

maÒa„1 ≠ naÒa„0 + „1G1 ≠ „0F1 = ≠µ‰0Õ
,

laÒa„1 ≠ m̄aÒa„0 + „1F ≠ „0G = µ‰1Õ
,

(3.23)

where we have defined:

F = –0
0ala + –1

0am̄a, G = –0
1ala + –1

1am̄a,

F1 = –0
1ama + –1

1ana, G1 = –0
0ama + –1

0ana,

and used the fact that, by Equation (3.22), for any complex vector fields ua, va:

–AÕ

BÕ aūa + –CÕ

DÕ av̄a = –A
Baua + –C

Dava .

Dirac equation in the “Boyer-Lindquist" frame

We will first use the results in [Bor18] to write the Dirac equation in the frame:

ga
0

ˆ

ˆxa
=

Ξ

fl
Ô

∆r

1

(r2 + a2)ˆt + aˆÏ

2

, ga
1

ˆ

ˆxa
=

Ô
∆r

fl
ˆr,

ga
2

ˆ

ˆxa
=

Ô
∆◊

fl
ˆ◊, ga

3

ˆ

ˆxa
=

Ξ

sin ◊
Ô

∆◊ fl

1

ˆÏ + a sin2 ◊ˆt

2

.

(3.24)
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The expressions for F, G, F1, G1 are given by:

F =
1

2
Ô

2
Ô

∆rfl3

A

∆Õ
r

2
fl2 + ∆rr̃

B

, F1 = ≠F, G1 = G,

G =
1

2
Ô

2
Ô

∆◊ sin ◊fl3

1

ia∆◊ sin2 ◊r̃ + cos ◊fl2(1 + a2l2 cos(2◊))
2

,

where ∆Õ
r = ˆ∆r

ˆr
and r̃ = (r + ia cos ◊). In matrix form, with ψ = t

1

„0, „1, ‰0Õ
, ‰1Õ

2

,

Equation (3.23) is then:

i(“µˆµ + V )ψ = mψ.

In the above:

V =
Ô

2

Q

c
c
c
c
c
c
a

0 0 iF̄ iḠ

0 0 iḠ ≠iF̄

iF iG 0 0

iG ≠iF 0 0

R

d
d
d
d
d
d
b

,

“t =
Ξ(r2 + a2)Ô

∆rfl2

Q

a
0 iI2

≠iI2 0

R

b ≠ i
a sin ◊ΞÔ

∆◊fl2

Q

a
0 ‡y

‡y 0

R

b ,

“r = i

Û

∆r

fl2

Q

a
0 ‡z

‡z 0

R

b , “◊ = i

Û

∆◊

fl2

Q

a
0 ‡x

‡x 0

R

b ,

“Ï =
aΞÔ
∆rfl2

Q

a
0 iI2

≠iI2 0

R

b ≠ i
ΞÔ

∆◊fl2 sin ◊

Q

a
0 ‡y

‡y 0

R

b .

The “µ are the so-called “gamma matrices” that satisfy the Cli�ord algebra anti-commutation

relations:

{“µ, “‹} = 2gµ‹Id4.

‡x, ‡y, ‡z are the Pauli matrices,

‡x =

Q

a
0 1

1 0

R

b , ‡y =

Q

a
0 ≠i

i 0

R

b , ‡z =

Q

a
1 0

0 ≠1

R

b = ≠i‡x‡y.
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Change of spin-frame

Whilst adapted to the study of the algebraic structure of the curvature of the Kerr-de

Sitter metric, the orthonormal frame ga
a and its associated normalised spin-frame ÁA

A
11

are not well aligned with the foliation of B with the space-like level hypersurfaces of t,

in the sense that ga
0 is not parallel to Òat. Following [Dau04; NH04], we switch to a new

frame in which the timelike vector is colinear to the future pointing vector field Òat. Since

Òat‹ = span(ˆr, ˆ◊, ˆÏ) we make the simplest choice:

gÕa
0 =

Òat
Ò

|ÒatÒat|
, gÕa

1

ˆ

ˆxa
=

1Ô≠grr

ˆr,

gÕa
2

ˆ

ˆxa
=

1Ô≠g◊◊

ˆ◊, gÕa
3

ˆ

ˆxa
=

1Ô≠gÏÏ

ˆÏ.

The matrix P of the Lorentz transformation Lb
a that sends ga

a to gÕa
a is given by:

P = MgÕa
a ,gb

b

(Id) =

Q

c
c
c
c
c
c
c
a

Ô
∆θ(r2+a2)

‡
0 0 ≠a sin ◊

Ô
∆r

‡

0 1 0 0

0 0 1 0

≠a sin ◊
Ô

∆r

‡
0 0

Ô
∆θ(r2+a2)

‡

R

d
d
d
d
d
d
d
b

, (3.25)

where we have defined:

‡2 = ∆◊(r
2 + a2)2 ≠ ∆ra

2 sin2 ◊. (3.26)

Up to sign, the spin transformation A œ SL(2;C) that corresponds to P is:

A =

Q

c
a

Ò
‡+

2‡
ia sin ◊

Ô
∆rÔ

2‡‡+

≠ ia sin ◊
Ô

∆rÔ
2‡‡+

Ò
‡+

2‡

R

d
b , (3.27)

in the above formula ‡+ = ‡ +
Ô

∆◊(r
2 + a2). It is useful to note that ‡+ satisfies:

‡2
+ ≠ a2 sin2 ◊∆r = 2‡‡+.

The appropriate change of basis matrix in SAp ü S
AÕ

p at each point p of block II is given

11. determined up to sign
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by:

P̃ =

Q

a

tA≠1 0

0 Ā

R

b =

Ú
‡+

2‡
I4 +

a sin ◊
Ô

∆rÔ
2‡‡+

Q

a
≠‡y 0

0 ‡y

R

b . (3.28)

The equation satisfied by ψÕ = P̃ ≠1 ψ is hence:

iP̃ ≠1(“µˆµ + V )P̃ψÕ = mψÕ. (3.29)

The left-hand side is:

iP̃ ≠1(“µˆµ + V )P̃ = i

A

“̃µˆµ + Ṽ + P̃ ≠1“µ ˆP̃

ˆxµ

B

,

where:

“r = “̃r, “◊ = “̃◊, Ṽ = V, “̃t =
Ξ‡Ô

∆r∆◊fl

Q

a
0 iI2

≠iI2 0

R

b ,

“̃Ï =
aΞq2fl

‡
Ô

∆r∆◊

Q

a
0 iI2

≠iI2 0

R

b ≠ i
Ξfl

‡ sin ◊

Q

a
0 ‡y

‡y 0

R

b ,

P̃ ≠1“r ˆP̃

ˆr
=

Ô
∆r

fl
fr

Q

a
0 ≠‡x

‡x 0

R

b , P̃ ≠1“◊ ˆP̃

ˆ◊
=

Ô
∆◊

fl
f◊

Q

a
0 ‡z

≠‡z 0

R

b .

(3.30)

In the above formulae, we have introduced the following notations:

q2 = (∆◊(r
2 + a2) ≠ ∆r)fl

≠2,

fr =
a sin ◊

Ô
∆◊

2‡2
Ô

∆r

A

≠∆Õ
r

2
(r2 + a2) + 2r∆r

B

, f◊ = ≠a
Ô

∆r(r
2 + a2) cos ◊Ξ

2‡2
Ô

∆◊

.

We conclude this section by writing the equation satisfied by the spinor density. In the

trivialisation of the density bundle determined by |drú · dΩ|
1
2 the density can be written:

Φ =

A

∆rfl
2‡2

∆◊(r2 + a2)2Ξ4

B 1
4

¸ ˚˙ ˝

–(r,◊)≠1

ψÕ. (3.31)
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Φ satisfies almost the same equation as ψÕ except for two additional terms:

i“1ˆr(ln –(r, ◊))Φ + i“2ˆ◊(ln –(r, ◊))Φ.

Overall the equation becomes:

i“̃0ˆtΦ + i“̃1ˆrΦ + i“̃2ˆ◊Φ + i“̃3ˆÏΦ + iV1Φ = mΦ, (3.32)

with:

V1 =

Q

c
c
c
c
c
c
a

0 0 i ¯̃F i ¯̃G

0 0 i ¯̃G ≠i ¯̃F

iF̃ iG̃ 0 0

iG̃ ≠iF̃ 0 0

R

d
d
d
d
d
d
b

, (3.33)

F̃ =
Ô

2F + i

Ô
∆◊

fl
f◊ +

Ô
∆r

fl
ˆr ln –(r, ◊),

G̃ =
Ô

2G ≠ i

Ô
∆r

fl
fr +

Ô
∆◊

fl
ˆ◊ ln –(r, ◊).

(3.34)

More explicitly:

F̃ =
i
Ô

∆ra cos ◊

2fl3
≠ ia

Ô
∆r(r

2 + a2) cos ◊Ξ

2‡2fl
+

Ô
∆ra

2 sin2 ◊

2fl‡2(r2 + a2)

A

∆Õ
r

2
(r2 + a2) ≠ 2r∆r

B

,

G̃ =
ia∆◊ sin2 ◊r + cos ◊fl2Ξ ≠ 3a2l2 sin2 ◊ cos ◊fl2

2
Ô

∆◊ sin ◊fl3
+

Ô
∆◊a

2 sin ◊ cos ◊

2fl‡2

1

(r2 + a2)Ξ ≠ 2Mr
2

≠ia sin ◊
Ô

∆◊

2‡2fl

A

2r∆r ≠ ∆Õ
r

2
(r2 + a2)

B

,

Rewriting Equation (3.32) as an evolution equation, and introducing DS2 , the Dirac op-

erator on the 2-sphere, we obtain the following form of the Dirac equation:

iˆtΦ + i
∆r

Ô
∆◊

Ξ‡
Γ

1ˆrΦ ≠
Ô

∆r∆◊

Ξ‡
DS2Φ +

iaq2fl2

‡2
ˆÏΦ +

i
Ô

∆r∆◊

‡ sin ◊

A

fl2

‡
≠

Ô
∆◊

Ξ

B

Γ
3ˆÏΦ

+
i
Ô

∆r∆◊fl

‡Ξ
Ṽ1Φ =

Ô
∆r∆◊

Ξ‡
flmΓ

0
Φ. (3.35)
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This can be written as a Schrödinger equation i
ˆΦ

ˆt
= HΦ with H given by:

H =
∆r

Ô
∆◊

Ξ‡
Γ

1Dr +

Ô
∆r∆◊

Ξ‡
DS2 +

aq2fl2

‡2
DÏ +

Ô
∆r∆◊

‡ sin ◊

A

fl2

‡
≠

Ô
∆◊

Ξ

B

Γ
3DÏ

≠ i
Ô

∆r∆◊fl

‡Ξ
Ṽ1 +

Ô
∆r∆◊

Ξ‡
flmΓ

0. (3.36)

In the above, we have adopted similar notations to [Dau04]:

DÏ = ≠iˆÏ, Dr = ≠iˆr, D◊ = ≠iˆ◊,

DS2 is the Dirac operator on the 2-sphere:

DS2 =

A

D◊ ≠ i
cotan◊

2

B

Γ
2 +

DÏ

sin ◊
Γ

3,

the matrices Γi are defined by:

Γ
0 = i

Q

a
0 I2

≠I2 0

R

b , Γ
1 = diag(≠1, 1, 1, ≠1), Γ

2 =

Q

a
≠‡x 0

0 ‡x

R

b , Γ
3 =

Q

a
‡y 0

0 ≠‡y

R

b .

Defining an operator operation c⇥M with c œ C and M =

Q

a
M1 0

0 M2

R

b a block-diagonal

matrix by:

c ⇥ M =

Q

a
cM1 0

0 c̄M2

R

b ,

the potential Ṽ1 can be written:

Ṽ1 = F̃ ⇥ Γ
1 +

A

G̃ ≠ cotan◊
Ô

∆◊

2fl

B

⇥ Γ
2.

For computational purposes it is worth noting that the operation ⇥ enjoys the following

properties:

1. ⇥ is distributive with respect to addition,

2. It is C-homogenous in M and R-homogenous in c,

3. (c ⇥ M)ú = c̄ ⇥ Mú,

4. If c œ R, c ⇥ M = cM ,
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5. If M is hermitian, (≠i(c ⇥ M))ú = ≠i(c ⇥ A) + 2iŸ(c)M .

3.4 Analytic framework

3.4.1 Symbol spaces

In what follows we will attempt to treat the operator H defined by Equation (3.36)

as a perturbation of another operator. In order to have a succinct language in which to

distinguish the asymptotic behaviour of the coe�cients of H, we introduce the following

symbol spaces:

Π =
Ó

f œ CŒ(Σ), ˆ–1
r ˆ–2

◊ ˆ–3
Ï f ¶ Â≠1 œ LŒ(]re, r+[◊S2), –i œ N

Ô

.

For (m, n) œ N
2:

Sm,n =

Y

_]

_[

f œ CŒ(Σ), ˆ–1
rú ˆ–2

◊ ˆ–3
Ï f ¶ Âú≠1 =

Y

_]

_[

O
rúæ+Œ

1

e≠mŸrú
2

O
rúæ≠Œ

1
1

rún+α1

2 –i œ N

Z

_̂

_\

.

Â and Âú denote the coordinate charts (r, ◊, Ï) and (rú, ◊, Ï) respectively and Ÿ is defined

by:

Ÿ =
l

Ξ÷+

Û

M

re

. (3.37)

By extension, if M œ CŒ(Σ) ¢ M4(C),we will also write M œ Sm,n (resp. M œ Π) if

the operator norm of the matrix M , ||M ||, is an element of Sm,n (resp. Π); this is of

course equivalent to the requirement that each of its components satisfies the appropriate

condition. Finally, we define:

SŒ,n =
‹

m

Sm,n, Sm,Œ =
‹

n

Sm,n. (3.38)

Many of the functions f at hand will be naturally expressed in the coordinate chart

Â, the following results will enable us to infer rapidly the asymptotic behaviour of the

function when expressed in the chart Âú. The only missing information is the relationship

between partial derivatives with respect to r and those with respect to rú. From (3.12),

one has:

ˆrú =
∆r

Ξ(r2 + a2)
ˆr. (3.39)
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So the question is settled by:

Lemma 3.4.1. Define the map – on Σ by its coordinate expression: – ¶ Â≠1 = ∆r

Ξ(r2+a2)
,

then – œ S2,2.

Proof. Remark first that, from equations (3.15) and (3.16), since re is a double root of

the polynomial ∆r, we have:

∆r = O
rúæ≠Œ

3
1

rú2

4

, ∆r = O
rúæ+Œ

1

e≠2Ÿrú
2

,

∆
Õ
r = O

rúæ≠Œ

3
1

rú

4

.
(3.40)

Hence:
–(rú) = O

rúæ≠Œ

3
1

rú2

4

, –(rú) = O
rúæ+Œ

1

e≠2Ÿrú
2

,

ˆr–(rú) = O
rúæ≠Œ

3
1

rú

4

, ˆr–(rú) = O
rúæ+Œ

(1).
(3.41)

For any n Ø 2, it is easy to see that ˆn
r –(rú) = O(1). Now, ˆrú–(rú) = –(rú)ˆr –(rú),

so we have the correct behaviour at infinity after the first derivative. We claim that for

n Ø 1:

ˆn
rú–(rú) =

nÿ

k=1

fk(rú)(ˆr–(rú))—k(–(rú))k, (3.42)

where –k œ N, fk œ Π and —k + 2k Ø n + 2 for each k œ J1, nK.

This is obvious for n = 1 and if such a relationship is true for some n Ø 1, after

di�erentiation one has:

ˆn+1
rú –(rú) =

nÿ

k=1

ˆrfk(rú)(ˆr–(rú))—k(–(rú))k+1+—kfk(rú)ˆ2
r –(rú)(ˆr–(rú))–k≠1(–(rú))k+1

+
nÿ

k=1

fk(rú)(ˆr–(rú))—k+1(–(rú))k.

Therefore, ˆn+1
rú –(rú) satisfies (3.42), with:

—̃n+1 = max(0, —n ≠ 1),

f̃n+1 = ˆrfn(ˆr–)—n≠—̃n+1 + —nfnˆr
2–, 

f̃1 = f1 = 1, —̃1 = —1 + 1 = n + 1.
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and for k œ J2, nK:

—̃k = min(—k + 1, max(0, —k≠1 ≠ 1)),

f̃k = ˆrfk≠1(ˆr–)—k≠1≠—̃k + —k≠1fk≠1ˆ
2
r –(ˆr–(rú))—k≠1≠1≠—̃k + fk(ˆr–)—k+1≠—̃k .

The f̃k clearly satisfy the required hypothesis; if —̃k ”= 0, then, either —̃k = —k + 1 or

—̃k = —k≠1 ≠ 1. In the first case, then:

—̃k + 2k Ø n + 4,

in the second case:

—̃k + 2k Ø n + 2 + 2 ≠ 1 = n + 3.

If —̃k = 0, then necessarily this implies —k≠1 Æ 1. By hypothesis, —k≠1 satisfies: —k≠1 +2k Ø
n + 4, so, 2k Ø n + 3, and the hypothesis is equally satisfied. Hence, the result follows

by induction. The asymptotics can now be read from (3.42), each term in the sum is

O(–) = O(e≠2Ÿrú
) at rú æ +Œ and every term in the sum is O(rú≠(n+2)) at rú æ ≠Œ.

One can now use the Faà di Bruno formula 12 to show that:

f œ Π ∆ f œ S0,0, ˆrúf œ S2,2. (3.43)

In particular, if f œ Π and f(rú) = O
rúæ≠Œ

( 1
rú ) then f œ S0,1.

3.4.2 Ï-invariance

The metric on B does not depend on the coordinate Ï; this invariance will be ex-

ploited in two ways in this paper. Firstly, diagonalising DÏ with anti-periodic boundary

conditions, any „ œ H can be represented as:

„(r, ◊, Ï) =
ÿ

pœZ+ 1
2

„p(r, ◊)eipÏ.

The subspaces of this Hilbert sum are stable under the action of H, and we could just

consider the restriction of H to any such subspace; this would enable us to treat the

terms with factor DÏ as potentials. However, some terms contain explicit coordinate

12. See, appendix B.2
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singularities. To avoid technical di�culties due to this, it is more convenient to work with

the operator Hp formally defined on H by:

Hp =
∆r

Ô
∆◊

Ξ‡
Γ

1Dr +

Ô
∆r∆◊

Ξ‡
DS2 ≠ i

Ô
∆r∆◊fl

‡Ξ
Ṽ1 +

Ô
∆r∆◊

Ξ‡
flmΓ

0 +
aq2fl2

‡2
p

+

Ô
∆r∆◊

‡ sin ◊

A

fl2

‡
≠

Ô
∆◊

Ξ

B

Γ
3p. (3.44)

The function
Ô

∆r∆θ

‡ sin ◊

3

fl2

‡
≠

Ô
∆θ

Ξ

4

is well-defined and bounded, because 13:

fl2

‡
≠

Ô
∆◊

Ξ
=

1

‡Ξ

A

Ξ2fl4 ≠ ∆◊‡
2

Ξfl2 +
Ô

∆◊‡

B

,

and:

Ξ
2fl4 ≠ ∆◊‡

2 = a2 sin2 ◊
1

∆◊∆r + 2Ξ(r2 + a2)(l2r2 ≠ 1) + a2 sin2 ◊(Ξ2 ≠ l4(r2 + a2)2)
2

.

Hp coincides with H on the subspace corresponding to the eigenvalue p œ Z+ 1
2

of DÏ

and the coordinate singularity is absorbed into DS2 which is well-defined as an operator

on the sphere.

In later analysis, it will also prove convenient to rotate the coordinate system so as

to cancel some of the e�ects of rotation at the double horizon. Setting c0 = a
r2

e+a2 , the

coordinate transformation is:

tÕ = t, rúÕ

= rú, ◊Õ = ◊, ÏÕ = Ï ≠ c0t.

Naturally, Ï and ÏÕ are circular coordinates. Due to the Ï-invariance of the metric, Hp

transforms very little under this change of coordinates, in fact, we just have to perform

the substitution:

Hp æ Hp ≠ c0p.

From now on, unless otherwise stated, we will work in the rotated coordinates. For conve-

nience however, we will continue to call Ï the new circular coordinate Ï ≠ c0t. Thanks to

the Ï-invariance of our problem this should not cause any confusion.

13. σ is defined by Equation (3.26). One has: σ2 = Ξ(r2 + a2)ρ + 2Mra2 sin2 θ Ø Ξ(r2

e + a2)r2

e
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3.4.3 A comparison operator

Almost all the operators we will study in this paper are perturbations of a single

operator H0 given by:

H0 = Γ1Drú + g(rú)D + f(rú). (3.45)

The functions g and f satisfy:

g(rú) =

Ô
∆r

Ξ(r2 + a2)
œ S1,1, f(rú) =

ap

r2 + a2
≠ ap

r2
e + a2

œ S0,1, (3.46)

whilst, the operator D is defined by:

D = ∆
1
4
◊ DS2∆

1
4
◊ . (3.47)

The structure of this comparison operator is very similar to that of those used in [NH04;

Dau04], except that, here, the angular part D is a perturbation of the Dirac operator

on the sphere DS2 , rather than DS2 itself. The spectral properties of the latter, which

are well-documented 14,were quite essential to the analysis in [NH04; Dau04], luckily, D

shares many of them.

Lemma 3.4.2. Let S be the self-adjoint extension in L2(S2) ¢ C
2 of the operator:

(D◊ ≠ i
cot ◊

2
)‡x +

DÏ

sin ◊
‡y,

defined on the subset of [CŒ(S2)]2 with anti-periodic boundary conditions in Ï. Denoting

its domain D(S), S̃ = ∆
1
4
◊ S∆

1
4
◊ is self-adjoint on D(S) and has compact resolvent.

Proof. S has a core consisting of smooth functions on which a simple calculation shows

that:

S̃ =
Ò

∆◊S ≠ i

2

a2l2 cos ◊ sin ◊Ô
∆◊

‡x.

The expression extends to all of D(S) by continuity in the graph topology. The estimates:

14. see, for example [Abr02; CH96; Tra93]
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0 Æ
Ô

∆◊ ≠ 1 Æ ∆◊ ≠ 1Ô
∆◊ + 1

Æ a2l2

2
,

.

.

.

.

.
i‡x

a2l2 cos ◊ sin ◊

2
Ô

∆◊

u

.

.

.

.

.

2

Æ a4l4

4
||u||2, u œ L2(S2,C2),

(3.48)

together imply for u œ D(S):

.

.

.

.

.
(
Ò

∆◊ ≠ 1)Su ≠ i‡x
a2l2 cos ◊ sin ◊

2
Ô

∆◊

u

.

.

.

.

.
Æ a2l2

2
(||Su|| + ||u||) . (3.49)

It is easy to see from (3.7) that a2l2

2
< 1. Thus, by the Kato-Rellich Perturbation The-

orem [Lax02; Kat80], S̃ is self-adjoint on D(S). In order to show that S̃ has compact

resolvent, it su�ces to show that there is a z œ fl(S̃) such that R(S̃, z) is compact, for, by

the resolvent identity, the property will follow for all z œ fl(S̃). In fact, in this perturbation

theory setup, it is su�cient to show that there is some z œ fl(S) such that the following

inequality holds:
a2l2

2
||R(z, S)|| +

a2l2

2
||SR(z, S)|| < 1, (3.50)

where R(z, S) denotes the resolvent of the operator S at z. Indeed, assuming (3.50), it

follows from (3.49) that for any u œ L2(S2,C2):

||(S̃ ≠ S)R(z, S)u|| Æ a2l2

2
||SR(z, S)u|| +

a2l2

2
||R(z, S)u|| < ||u||.

(S̃ ≠ S)R(z, S) is therefore a bounded linear operator and I + (S̃ ≠ S)R(z, S) is invertible

with bounded inverse. Moreover:

S̃ ≠ zI = S + S̃ ≠ S ≠ zI = (I + (S̃ ≠ S)R(z, S))(S ≠ zI).

Consequently, S̃ ≠ zI has bounded inverse given by:

R(z, S)(I + (S̃ ≠ S)R(z, S))≠1.

R(z, S) is compact because S has compact resolvent, so (S̃ ≠ zI)≠1 = R(S̃, z) is compact.

We now show there is z œ fl(S) such that (3.50) is satisfied. By self-adjointness, it

su�ces to seek z of the form z = ic. A classical resolvent estimate shows then that:

||R(z, S)|| Æ 1
|c|

so that ||R(z, S)|| is arbitrarily small for |c| large enough. Furthermore,
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for any z œ fl(S) we have ||SR(z, S)|| Æ 1, since a2l2

2
< 1

2
, (3.50) holds for any |c| > 2.

Lemma 3.4.3. Let S̃ be as in Lemma 3.4.2, the following properties hold:

— ≠‡(S̃) = ‡(S̃),

— ‡(S̃)fl] ≠ 1, 1[= ÿ.

In particular, the eigenvalues (⁄k)kœZú can be indexed by Z
ú, in such a way that ⁄≠k = ≠⁄k

for each k œ Z
ú. Furthermore, for each k œ Z

ú, there is a subset Jk µ Z + 1
2
, such that

for each n œ Jk one can find Âk,n(◊, Ï) =

Q

a
–k,n(◊)

—k,n(◊)

R

b einÏ œ L2(S2,C2), ||Âk,n|| = 1,

unique up to a complex phase, satisfying S̃Âk,n = ⁄kÂk,n. Necessarily, these form a total

orthonormal family of eigenvectors for S̃.

Proof. To prove that the spectrum of S̃ is disjoint from the open unit interval, it is

su�cient to notice that, as a quadratic form, S̃2 Ø 1. Indeed, for any u œ D(S):

(S̃u, S̃u) = (
Ò

∆◊S∆
1
4
◊ u, S∆

1
4
◊ u)) Ø ||u||2, (3.51)

because ∆◊ Ø 1. The other points will be proved in a slightly more involved case in

Section 3.6.4.

Due to the block diagonal form of D, the following is an immediate consequence of

the above:

Corollary 3.4.1. The family:

Y

]

[
Â+

k,n =

Q

a
Âk,n

0

R

b , Â≠
k,n =

Q

a
0

Âk,n

R

b , k œ Z
ú, n œ Jk

Z

^

\
,

is a total orthonormal family of eigenvectors of D.

These results are su�cient to construct a natural decomposition of H that can be used

to obtain a convenient representation of the operator H0. However, we begin by noting

that the subspaces L2(R) ¢ span{Â+
k,n, Â≠

k,n}, k œ Z
ú, n œ Jk, are not stable under the

action of Γ1. Indeed, if Â is an eigenvector with eigenvalue ⁄ of D, then, since Γ1 anti-

commutes with Γ2 and Γ3, Γ1Â is an eigenvector with eigenvalue ≠⁄. In particular, the

block diagonal form of Γ1 implies that Γ1Â±
k,n and Â±

≠k,n must be colinear (because Âk,n is

unique up to scaling). In fact, Γ1 being unitary and symmetric, one has Γ1Â±
k,n = ±Â±

≠k,n.
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The family Âk,n remains total and orthonormal if Â≠k,n is rescaled to absorb the sign, so

one can assume that: Γ1Â±
k,n = Â±

≠k,n. The subspaces:

Hk,n = L2(R) ¢ span
Ó

Â+
k,n, Â+

≠k,n, Â≠
k,n, Â≠

≠k,n

Ô

, k œ N
ú, n œ Jk,

are then naturally stable under Γ1 and therefore, under H0, and H =
‹n

k,n

Hk,n. For each

(k, n), Hk,n can be isometrically identified to [L2(R)]4 by the map:

bk,n : Hk,n ≠æ [L2(R)]4

u1Â
+
k,n + u2Â

+
≠k,n

+u3 Â≠
k,n + u4Â

≠
≠k,n

‘≠æ 1Ô
2

Q

c
c
c
c
c
c
a

u1 ≠ u2

u1 + u2

u3 + u4

u3 ≠ u4

R

d
d
d
d
d
d
b

. (3.52)

Through this identification the restriction, Hk,n
0 , of H0 to Hk,n can be written:

Hk,n
0 = Γ

1Drú ≠ ⁄k,ng(rú)Γ2 + f(rú). (3.53)

This is clearly a bounded perturbation of the self-adjoint operator Γ1Drú with domain

[H1(R)]4, hence it is self-adjoint on the same domain.

We are now ready to use the lemma below 15 to obtain a description of a domain where

the formal expression for H0 is self-adjoint.

Lemma 3.4.4. Let X be a Hilbert space and (Xn)nœN a family of subspaces of X such

that:

X =
‹n

nœN

Xn,

where the sum is topological. Let (An)nœN be a sequence of operators An on Xn, such that

for each n, An is self-adjoint on its domain D(An). Then the operator A defined by:

Ax =
ÿ

n

Anxn,

15. see [NH04, Lemma 3.5]
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if x =
q

xn, xn œ Xn for any n œ N is self-adjoint on:

D(A) =

Y

]

[
x =

ÿ

n

xn œ X,
ÿ

nœN

||Anxn||2 < Œ
Z

^

\
.

Proof. It is clear that A is densely defined. In order to show that A is closed, denote

by Pk the orthogonal projection onto Xk for each k œ N and suppose that (xm)mœN is a

sequence of points of D(A) such that xm æ x and Axm æ y in X. Then for any k œ N,

Pkxm æ Pkx and PkAxm = AkPkxm æ Pky by definition, but since Ak is closed, it

follows that Pkx œ D(Ak) and Pky = AkPkx. Thus,
q

k ||AkPkx||2 =
q

k ||Pky||2 < +Œ so

x œ D(A) and Ax = y.

To prove that A is self-adjoint we show that A + z has dense range for any z œ C \R.

Let y œ X be such that (Ax + zx, y) = 0 for any x œ D(A). In particular, for each k œ N,

and every x œ D(Ak), (Akx + zx, Pky) = 0, but then, since Ak is self-adjoint, Pky = 0 for

any k œ N, i.e. y = 0.

The natural domain for H0, which is always meaningful in the distributional sense, is

certainly {u œ H , H0u œ H }, this, in fact, coincides with the domain of the operator

given by the previous lemma:

D(H0) = {u =
ÿ

k,n

uk,n œ H ,
ÿ

k,n

||Hk,n
0 uk,n||2 < Œ}.

The proof is analogous to that of [NH04, Lemma 3.5].

Since for each k œ N
ú, n œ Jk , D

1

Hk,n
0

2

is isometric to [H1(R)4], and S (R) 16 is dense

in H1(R), we deduce immediately a core for H0, that we will simply denote by S . This

core will be convenient for many computations, in particular, it will justify the use of the

Leibniz rule when computing commutators. More precisely:

Lemma 3.4.5. S =
‹n

k,n

S (R) ¢ span
Ó

Â+
k,n, Â+

≠k,n, Â≠
k,n, Â≠

≠k,n

Ô

is a core for H0.

Proof. For any k, n, Hk,n
0 is self-adjoint on D(Hk,n

0 ) = b≠1
k,n([H1(R)]4) (bk,n is defined

by Equation (3.52)) and [S (R)]4 is dense in [H1(R)]4. Denote by Pk,n the orthogonal

projection onto Hk,n. Let u œ D(H0) and Á œ R
ú
+. For each k, n, one can find „k,n œ

16. S (R) denotes the Schwartz space of rapidly decaying functions.
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[S (R)]4 such that:

||bk,nPk,nÂ ≠ „k,n||[H1(R)]4 Æ Á
2≠ k+n+2

2

Ck

,

where Ck = ⁄k||g||Œ + ||f ||Œ + 1, it follows that:

ÿ

k,n

||Pk,nÂ ≠ b≠1
k,n(„k,n)||2 Æ Á2,

ÿ

k,n

||H0(Pk,nÂ ≠ b≠1
k,n(„k,n))||2 Æ Á2. (3.54)

Therefore,
ÿ

k,n

Pk,nÂ ≠ b≠1
k,n(„k,n) converges to some y œ D(H0). Set „ = Â ≠ y, then

||„ ≠ Â|| + ||H0(„ ≠ Â)|| Æ 2Á, and for every k, n:

Pk,n„ = Pk,nÂ ≠ Pk,ny = b≠1
k,n(„k,n),

i.e. „ œ S . Á being arbitrary this concludes the proof.

3.4.4 Short and long-range potentials

The construction of the wave operators, modified or not, will mainly be based on

Cook’s method 17 or minor variations thereof. Because of this, it will be interesting to

investigate the integrability of the matrix-valued coe�cients appearing in our di�erential

operators. Amongst those, we will call “potentials”, the parts of the order 0 component

of its symbol that vanish on the horizons. For our purposes, they will be split into merely

three groups. Namely a potential V is:

— short-range at +Œ (resp. ≠Œ) if:

sup
rúØ0,ËœS2

||ÈrúÍ–V || < + Œ (resp. sup
rúÆ0,ËœS2

||ÈrúÍ–V || < + Œ) (3.55)

for some – > 1,

— long-range otherwise,

— of Coulomb-type at +Œ (resp. ≠Œ) if V is long-range there and (3.55) holds with

– = 1.

The norm here is the operator norm on M4(C) and È.Í denotes the Japanese bracket

ÈrÍ =
Ô

r2 + 1. In relation with the symbol spaces we introduced previously, let m, n œ Z

and suppose V œ Sm,n, then:

17. See for example [Lax02, Chapter 37]
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— m Ø 1 ∆ V short-range at +Œ,

— n Ø 2 ∆ V short-range at ≠Œ,

— n = 1 ∆ V of Coulomb type at ≠Œ.

3.4.5 Self-adjointness of Hp

It is now relatively easy to prove the self-adjointness of Hp, we first introduce the

function:

h(r, ◊) = ∆
1
4
◊

Û

r2 + a2

‡
, (3.56)

it satisfies the following properties:

|h2 ≠ 1| Æ 1 ≠ a2l2 < 1, (3.57)

ˆ◊h = ∆r
(r2 + a2)a2 sin ◊ cos ◊Ξ

2h
Ô

∆◊‡3
œ S2,2. (3.58)

Proof. The first property follows from the following chain of inequalities:

0 Æ h2 ≠ 1 =
∆ra

2 sin2 ◊

‡
1

‡ +
Ô

∆◊(r2 + a2)
2

Æ ∆ra
2 sin2 ◊

‡2
Æ a2

r2
Æ a2

r2
e

=
6a2l2

1 ≠ a2l2 ≠
Ò

(1 ≠ a2l2)2 ≠ 12a2l2
Æ 1 ≠ a2l2.

By Equation (3.7), 1 ≠ a2l2 < 1, the conclusion follows.

The boundedness of ˆrúh = Ξ∆r

r2+a2 ˆrh and ˆ◊h shows that h œ B(D(H0)). Indeed,

[H0, h] is defined on D(H0) and:

[H0, h]u = ≠iΓ1ˆrúhu ≠ i

Ô
∆◊∆r

Ξ(r2 + a2)
Γ

2ˆ◊hu, u œ D(H0).

Consequently, for any u œ D(H0):

||H0hu|| Æ ||hH0u|| + ||[H0, h]u|| Æ C(||H0u|| + ||u||), (3.59)

for some constant C œ Rú
+. The following relationship between H0 and Hp is therefore 
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meaningful:

Hp = hH0h + VC + VS, (3.60)

with:

VS = ≠ap
Ô

∆◊

‡
+

a∆◊(r
2 + a2)p

‡2
≠ a

∆rp

‡2
+

ap(h2 ≠ 1)

r2
e + a2

+ i

C A

ia∆◊

Ô
∆r

2‡3Ξ

A

2r∆r ≠ ∆Õ
r

2
(r2 + a2)

BB

⇥ Γ
2

D

≠ i

CA

i∆r

Ô
∆◊a cos ◊

2fl2‡Ξ
≠ ia∆r

Ô
∆◊(r

2 + a2) cos ◊

2‡3

B

⇥ Γ
1

D

, (3.61)

VC =

Ô
∆r∆◊

‡ sin ◊

A

fl2

‡
≠

Ô
∆◊

Ξ

B

Γ
3p+

Ô
∆r∆◊

Ξ‡
flmΓ

0 ≠ i

CA

ia
Ô

∆r sin ◊r∆◊

2fl2‡Ξ

B

⇥ Γ
2

D

. (3.62)

1
2

In the above, we have sorted the terms according to their asymptotic behaviour at ≠Œ, 
since at +Œ all the potentials are short-range. More precisely, the terms in VS are short-

range at ≠Œ and those of VC are of Coulomb-type there. Equation (3.58) means that 
h[H0, h] is short-range at both infinities.

Using Equation (3.60), one shows that:

Lemma 3.4.6. Hp is self-adjoint on D(H0), for any p œ Z + .

Proof. It follows from Equation (3.60) that:

Hp = H0 + (h2 ≠ 1)H0 + h[H0, h] + VC + VS ,

since [H0, h] is bounded, Hp is H0-bounded and, using the fact that :

|h2 ≠ 1| Æ 1 ≠ a2l2 < 1,

the result follows from the Kato-Rellich Perturbation Theorem.

3.4.6 Further properties of H0

Let us pursue the study of the simplified operator H 0; we aim to describe i ts domain 
as well as to generalise a useful criterion for proving compactness of functions of H0.
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Lemma 3.4.7. As quadratic forms on S , H2
0 and Q = D2

rú + g2(rú)D2 are equivalent.

Proof. On S , the following equation makes sense:

H2
0 = D2

rú + g(rú)2D2 + f(rú)2 +
Γ1

i
gÕ(rú)D + 2g(rú)Df(rú) + {f(rú), Γ

1Drú} 18.

Furthermore, for any u œ S :

|({f(rú), Γ
1Drú}u, u)| Æ |(Γ1Drúu, f(rú)u)| + |(f(rú)u, Γ

1Drúu)|,

Æ 2||Γ1Drúu||||f(rú)u||,

Æ 2||f ||Œ||Γ1Drúu||||u||,

Æ 1

2
||Γ1Drúu||2 + 2||f ||2Œ||u||2.

(3.63)

It follows that:

1

2
D2

rú + 2||f ||2Œ Ø {f(rú), Γ
1Drú} Ø ≠1

2
D2

rú ≠ 2||f ||2Œ.

Exploiting the fact that |gÕ(rú)| Æ C|g(rú)| for some C > 0, one has:

|(
Γ1

i
gÕ(rú)Du, u)| Æ ||gÕ(rú)Du||||u||,

Æ 1

4C2
||gÕ(rú)Du||2 + C2||u||2,

Æ 1

4
||g(rú)Du||2 + C2||u||2.

(3.64)

We thus conclude that:

1

4
g2(rú)D2 + C2 Ø Γ1

i
gÕ(rú)D Ø ≠1

4
g(rú)2D2 ≠ C2.

In Equation (3.64), we have used the fact that:

gÕ2(rú)D2 Æ C2g2(rú)D2.

This follows from the functional calculus, since, if Z is an even function in the second

18. {A, B} denotes the anti-commutator AB + BA of two operators A and B, defined, i f necessary, as 
a quadratic form.
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variable:
(Z(rú,D)u, u) =

ÿ

k,n

⁄

Z(rú, ⁄k,n)||uk,n||2
C4drú,

u =
ÿ

k,n

b≠1
k,nuk,n, uk,n œ [L2(R)]4,

and so inequalities valid for Z pass to the operators, here:

Z(x, y) = gÕ(x)2y2,

which clearly satisfies: Z(x, y) Æ C2g(x)2y2. Finally:

|(2g(rú)Df(rú)u, u)| =2|(g(rú)Du, f(rú)u)|,

Æ2||f ||Œ||g(rú)Du||||u||,

Æ1

4
||g(rú)Du||2 + 4||f ||2Œ||u||2.

Thus:
1

4
g(rú)2D2 + 4||f ||2Œ Ø 2g(rú)f(rú)D Ø ≠1

4
g(rú)2D2 ≠ 4||f ||2Œ,

and therefore:

H2
0 Ø 1

2
(D2

rú + g(rú)2D2) ≠ C Õ,

where C Õ = 7||f ||2Œ + C2 > 0. Overall :

1

2
Q ≠ C Õ Æ H2

0 Æ 2Q + C Õ,

which concludes the proof.

Lemma 3.4.7 has the following important consequences:

Corollary 3.4.2. D(H0) µ H1
loc continuously and we have the following criterion for

compactness 19:

If f, ‰ œ CŒ(R) then f(rú)‰(H0) is compact.

In the above corollary, CŒ(R) is the set of continuous functions that vanish at infinity.

Corollary 3.4.3. Γ1Drú and g(rú)D are elements of B(D(H0), H ).

19. The criterion is a consequence of the Rellich-Kondrachov theorem. See for example [Eva10].
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The relationship between the operators Q and H2
0 goes even further. Using similar

arguments to those in [NH04], one can show that:

D(H2
0 ) = D(Q) (3.65)

3.5 Mourre theory

3.5.1 Brief overview

Mourre theory is a very powerful tool for constructing analytical scattering theories. 
It has been used in many di�erent s ituations i ncluding t he q uantum N -particle prob-

lem [DG97] and for scattering of classical fields –  w ith o r w ithout s pin –  i n a  r ange of 
black-hole type geometries [Häf03; Dau04; NH04]. The theory has been refined s ince E. 
Mourre’s original article [Mou81] following, in particular, the theoretical developments 
in [AMG96]. There, it is discussed that one can substitute a certain regularity condi-

tion for some of the technical conditions in Mourre’s original work. We present here a 
non-optimal “working” version of the theory. Mourre theory is a very powerful tool for 
constructing analytical scattering theories. It has been used in many di�erent situations 
including the quantum N -particle problem [DG97] and for scattering of classical fields -
with or without spin- in a range of black-hole type geometries [Häf03; Dau04; NH04]. The 
theory has been refined since E. Mourre’s original article [Mou81] following, in particular, 
the theoretical developments in [AMG96]. There, it is discussed that one can substitute 
a certain regularity condition for some of the technical conditions in Mourre’s original 
work. We present here a non-optimal “working” version of the theory.

We begin by making precise the aforementioned regularity condition :

Definition 3 .5.1. Let A, H  be two self-adjoint operators on a  Hilbert space H  .  We will 
say that H œ C1(A) if for any u œ H the map s ‘æ eisA(H ≠ z)≠1e≠isAu is of class C1 for 
a (and therefore all) z œ fl(H).

In other words, Definition 3.5.1 states that, in a  certain sense, the resolvent of H  evolves 
smoothly under the action of A 20. An interesting technical consequence of this regularity

20. This interpretation fits n icely i nto t he H eisenberg p icture, w here o perators e volve i nstead o f the 
wave function
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is that (in the form sense) the following equation makes sense on H .

[A, (H ≠ z)≠1] = (H ≠ z)≠1[H, A](H ≠ z)≠1,

we refer to [AMG96] for more details.

Definition 3.5.2. A pair (A, H) of self-adjoint operators on a Hilbert space H such

that H œ C1(A) will be said to satisfy a Mourre estimate (with compact error) on some

energy interval I µ R if there is a compact operator K and a strictly positive constant µ

such that:

1I(H)i[H, A]1I(H) Ø µ1I(H) + K.

This will be written more briefly:

1I(H)i[H, A]1I(H) &
K

µ1I(H). (3.66)

The heart of Mourre theory is contained in the following theorem; the statement here

di�ers from that in Mourre’s original article [Mou81]; here we follow [Dau10; NH04].

Theorem 3.5.1 (Mourre). Suppose that :

1. i[H, A] defined as a quadratic form on D(H) fl D(A) extends to an element of

B(D(H), H ),

2. [A, [A, H]] defined as a quadratic form on D(H)flD(A) extends to a bounded operator

from D(H) to D(H)ú.

3. (A, H) satisfy a Mourre estimate on I µ R.

Then, H has no singular continuous spectrum in I, and H has at most a finite number

of eigenvalues, counted with multiplicity, in I.

When a pair (A, H) satisfy the conditions of Theorem 3.5.1, A will be said to be a

conjugate operator for H on I.

3.5.2 Our conjugate operators

We will now proceed to describe our choice of conjugate operators for H0 and a class
of perturbations of H0 that will include Hp, p œ Z + 1

2 . Mourre theory is very flexible in 
that the notion of conjugate operator is local in energy but also, using cut-o� functions,
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in space-time; this is well-illustrated in [Dau04; NH04]. As a consequence, determining a

candidate for the conjugate operator of a given operator H can be a very creative process,

although in many examples from physics, the generator of dilatations, or minor variations

thereof, is usually a good candidate. We will see that, despite the extreme blackhole

geometry, our case is no exception. As in [Dau04], the full conjugate operator will be a

combination of two operators A+ and A≠ tailored to deal with the distinct natures of

the geometry at the two asymptotic ends. Throughout the sequel we separate the two

infinities using smooth cut-o� functions, j+, j≠, j1 satisfying:

Y

___]

___[

j≠(t) = 1 if t Æ ≠2, j≠(t) = 0 if t Ø ≠3
2
,

j+(t) = 1 if t Ø ≠1
2
, j+(t) = 0 if t Æ ≠1,

j1(t) = 1 if t Ø ≠1, j1(t) = 0 if t Æ ≠3
2
.

(3.67)

j≠ and j1 should be chosen such that their supports are disjoint.

At the simple horizon

Near Hr+ , we will follow the treatment in [Dau04] and set:

A+(S) = R+(rú,D)Γ1, (3.68)

where:

R+(rú,D) = (rú ≠ Ÿ≠1 ln |D|)j2
+

A

rú ≠ Ÿ≠1 ln |D|

S

B

. (3.69)

Since |D| Ø 1, the same arguments in the proof of [Dau04, Lemma IV.4.4] can be used to

show that:

Lemma 3.5.1. For any S Ø 1, uniformly in ⁄k, k œ N
ú:

|R+(rú, ⁄k)| Æ CÈrúÍ. (3.70)

In the above, C is a positive constant and R+(rú, ⁄k) denotes the restriction of R+(rú, D) 
to Hk,n.

Despite the strange argument in the cut-o� f unction, t his c hoice i s s urprisingly simple 
and is essentially : Γ1rú. This is motivated by the observation that, under the unitary
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transformation: U = e≠iŸ≠1 ln(|D|)Drú , the toy model on R+ ◊ S2 given by:

H/ = Γ
1Drú + e≠Ÿrú

D + c,

transforms to :

Ĥ/ = Γ
1Drú + e≠Ÿrú D

|D|
+ c.

The commutator with Γ1rú is then easily seen to be :

i[Ĥ/, Γ
1rú] = 1 + 2rúe≠Ÿrú D

|D|
Γ

1.

Restricting to a compact energy interval using ‰(H), ‰ œ CŒ
0 (R), the second term will

lead to a compact error by Corollary 3.4.2. Note that without the unitary transformation

U the commutator is :

i[H/, Γ
1rú] = 1 + 2rúe≠Ÿrú

DΓ
1.

Here the second term is problematic, as rúe≠Ÿrú
does not decay faster than e≠Ÿrú

and

hence we cannot control ||rúe≠Ÿrú
D|| with ||e≠Ÿrú

D||.

Near the double horizon

Let us start our discussion at Hre
by motivating the coordinate transformation we

performed in Section 3.4.2.

At the double horizon (rú æ ≠Œ), the function g appearing in the expression for

H0 decays as O
1

1
≠rú

2

. This is significantly slower than the exponential decay at a simple

horizon, and is similar to the behaviour at space-like infinity in an asymptotically flat

spacetime. In fact, when rú æ ≠Œ the principal symbol of H0 formally ressembles:

H̃/ = Γ
1Drú ≠ C

rúD,

which is the massless Dirac operator (for the spinor density) for the asymptotically flat

metric on R
ú
≠ ◊ S2 :

÷ = dt2 ≠ drú2 ≠
3

rú

C

42 1

∆◊

d‡2.

This suggests that we should try to treat the double horizon in a similar manner to space-
like infinity, and in particular that A = 1

2 {Drú , rú} should be a reasonable candidate for
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a conjugate operator there; indeed,

i[H̃/, A] = H̃/. (3.71)

However, had we used the original Boyer-Lindquist like coordinates (t, r, ◊, Ï), near

rú æ ≠Œ, we would have been lead to set:

H̃0 = Γ
1Drú + g(rú)D + f̃(rú),

where f̃ œ S0,0 and lim
rúæ≠Œ

f̃(rú) = c0p =
ap

r2
e + a2

. The corresponding toy model would

hence be : H̃/ + c0p. Since A commutes with constants, we need to modify it to generalise

Equation (3.71). This can be achieved simply by appending Γ1c0r
ú to A. However, in

doing so, we are immediately confronted to similar issues (that are carefully avoided by

the unitary transformation U) described above at the simple horizon. The solution relies

on the morphism properties of exp and the fact that rúek+rú
= o

rúæ≠Œ
(1). In our situation,

even if we can imagine trying to exploit the morphism properties of t ‘æ 1
t
, with a unitary

transformation such as Ũ = e≠ i
2

ln |D|{Drú ,rú}, the error may not be compact simply because

there is no decay left ! The coordinate change performed in Section 3.4.2 circumvents the

problem entirely by shifting the potential to the simple horizon, where we know how to

treat it. In the sequel we set:

A≠(S) =
1

2
{R≠(rú), Drú}, (3.72)

where,

R≠(rú) = j2
≠(

rú

S
)rú, (3.73)

{ · , · } denotes the anti-commutator and S Ø 1 is a real parameter.

The conjugate operator AI will vary depending on the energy interval I, in fact we

will show that there is SI œ [1, +Œ) such that on I either:

A+(SI) + A≠(SI) if I µ (0, +Œ),

A+(SI) ≠ A≠(SI) if I µ (≠Œ, 0),
(3.74)

is a conjugate operator on I.
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3.5.3 The technical conditions

Despite being the key assumption in Mourre theory, the estimate (3.66) alone is not

su�cient for the conclusion of Theorem 3.5.1. This section is devoted to the proof of the

following results:

Proposition 3.5.1. For any S Ø 1, A±(S) and A+(S) ± A≠(S) are essentially self-

adjoint on S .

Proposition 3.5.2. Let H be an operator on H defined by :

H = hH0h + V, (3.75)

where 21:

— V is a matrix-valued potential such that V œ S1,1

— h œ CŒ
b (Rrú◊]0, fi[) such that h > 0, |h2 ≠ 1| Æ c < 1, ˆrúh, ˆ◊h, h2 ≠ 1 œ S1,1.

Any such operator is self-adjoint on H with domain D(H0) by the Kato-Rellich theorem.

Furthermore for any A œ {A±(S), A+(S) ± A≠(S)} :

1. The quadratic forms i[H, A] and i[[H, A], A] on D(H) fl D(A) extend to elements of

B(D(H), H ),

2. H œ C2(A).

We record here the following useful properties of the operators H defined in the previous

Proposition:

Lemma 3.5.2. D(H2) = D(H2
0 ).

For a proof we refer to [NH04, Lemma 4.6].

We also note that the functions h and V = VC + VS of Hp satisfy slightly better

conditions than those above :

Lemma 3.5.3.

— The function h defined by Equation (3.56) satisfies :

h2 ≠ 1, ˆrúh, ˆ◊h œ S2,2.

21. These assumptions are not optimal
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— Let VC and VS be as in Equations (3.62) and (3.61) then :

VC œ S1,1, VS œ S1,2.

We begin our presentation of the proof by remarking that the condition H œ C1(A) is

quite di�cult to check directly, despite the following characterisation:

Theorem 3.5.2 ( [AMG96, Theorem 6.2.10] ). H œ C1(A) if and only if the follow-

ing two conditions are satisfied:

— there is c œ R+ such that for all u œ D(A) fl D(H):

|(Au, Hu) ≠ (Hu, Au)| Æ c(||Hu||2 + ||u||2), (3.76)

— for some z œ fl(H) the set:

{u œ D(A), (H ≠ z)≠1u œ D(A) and (H ≠ z̄)≠1u œ D(A)},

is a core for A.

To overcome this, there is a useful scheme, based on Nelson’s commutator theorem [RS75,

Theorems X.36, X.37], that greatly simplifies the proof that H œ C1(A) in many cases.

We first recall Nelson’s theorem:

Theorem 3.5.3 (Nelson). Let N be a self-adjoint operator with N Ø 1. Let A be a

symmetric operator with domain D that is also a core for N . Suppose that:

— For some c and all Â œ D,

||AÂ|| Æ c||NÂ||. (3.77)

— For some d and all Â œ D:

|(AÂ, NÂ) ≠ (NÂ, AÂ)| Æ d||N
1
2 Â||2. (3.78)

Then A is essentially self-adjoint on D and its closure is essentially self-adjoint on

any other core for N .

Remark 3.5.1. Note that it follows that D(N) µ D(Ā) and A is essentially self-adjoint 
on D(N).
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The scheme is to find a third operator N – that we will refer to as the comparison operator

– whose domain is a core for both H and A; which we establish using Nelson’s lemma.

We then seek to apply the following:

Theorem 3.5.4 ( [GL02, Lemma 3.2.2] ). Let (H, H0, N) be a triplet of self-adjoint

operators on H , with N Ø 1, A a symmetric operator on D(N). Assume that:

1. D(H) = D(H0) ∏ D(N),

2. D(N) is stable under the action of (H ≠ z)≠1,

3. H0 and A satisfy (3.77) and (3.78),

4. for some c > 0 and any u œ D(N), (3.76) is satisfied.

Then:

— D(N) is dense in D(A) fl D(H) with norm ||Hu|| + ||Au|| + ||u||,

— the quadratic form i[H, A] defined on D(A)flD(H) is the unique extension of i[H, A]

on D(N),

— H œ C1(A).

Our proof shall follow this outline.

3.5.4 The comparison operator N

Before identifying the comparison operator N , we begin with an important stability

lemma:

Lemma 3.5.4. For any n œ N
ú, z œ fl(H0), the domain of ÈrúÍn is stable under the

resolvent (H0 ≠ z)≠1 and ‰(H0) for any ‰ œ CŒ
0 (R). The statement remains true if H0 is

replaced with H.

The proof is identical to that of [Dau04, Proposition IV.3.2] and will not be repeated

here. This lemma is very important for scattering purposes since it is an indication of

how decay rates behave under the action of H, but it also serves to justify the use of the

following comparison operator 22:

N = D2
rú + g(rú)2D2 + ÈrúÍ2 = Q + ÈrúÍ2. (3.79)

22. That has an almost uncanny ressemblance to the harmonic oscillator...
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Decomposing H as in Section 3.4.5, Lemma 3.4.4 and equation (3.65) imply that:

D(N) = D(Q) fl D(ÈrúÍ2) = D(H2
0 ) fl D(ÈrúÍ2). (3.80)

Finally (3.80) and Lemmata 3.5.4 and 3.5.2, together lead to:

’z œ fl(H0), (H0 ≠ z)≠1D(N) µ D(N),

’z œ fl(H), (H ≠ z)≠1D(N) µ D(N).
(3.81)

Thus, the first two conditions of Theorem 3.5.4 are satisfied by the triplet (H, H0, N).

3.5.5 Nelson’s lemma

We will now check that H0 and A±(S) satisfy the hypotheses of Theorem 3.5.3. To

simplify notations, we will omit to specify the dependence on the real parameter S of the

operator A± in this paragraph, as all the results discussed here hold for any S Ø 1. As a

first step, we deduce immediately the following useful estimates from (3.79):

Lemma 3.5.5. For any u œ D(N) :

||Γ1Drúu|| Æ ||N
1
2 u||, ||g(rú)Du|| Æ ||N

1
2 u||,

||rúu|| Æ ||N
1
2 u||, ||u|| Æ ||N

1
2 u||.

(3.82)

Lemma 3.5.6. With N as comparison operator, H0 satisfies Equations (3.77) and (3.78).

Proof. Fix u œ D(N), from Lemma 3.5.5, we have:

||H0u|| Æ ||Γ1Drúu|| + ||g(rú)Du|| + ||f(rú)u||,

Æ (2 + ||f ||Œ)||N
1
2 u||,

Æ (2 + ||f ||Œ)||Nu||,

(3.83)

this proves (3.77).
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Moreover:

|([N, H0]u, u)| Æ2|(Γ1rúu, u)| + 2|(Γ1gÕ(rú)g(rú)D2u, u)|

+ 2||f Õ||Œ||Drúu||||u|| + 2||Drúu||||gÕ(rú)Du||,

Æ2
1

||rúu||||u|| + C||g(rú)Du||2

+ ||f Õ||Œ||Drúu||||u|| + C||Drúu||||g(rú)Du||
2

,

Æ2(1 + ||f Õ||Œ + 2C)||N
1
2 u||2.

(3.84)

In (3.84), we have used the fact that there is C œ R
ú
+ such that:

|gÕ(rú)| Æ C|g(rú)|,

and the functional calculus as in the proof of Lemma 3.4.7.

In order to establish analogous estimates for A≠, we will also need the following esti-

mates:

Lemma 3.5.7. For any u œ D(N),

||rú2u||2 Æ ||Nu||2 + ||u||2,

||Qu||2 Æ ||Nu||2 + ||u||2.
(3.85)

Proof. As usual, we will prove it for u œ S . One has:

||Nu||2 =(N2u, u)

=||Qu||2 + ||rú2u||2 + ||u||2 + (Qu, rú2u)

+ (rú2u, Qu) + 2(Qu, u) + 2||rúu||2.

(3.86)

Since, for any v œ D(Q), (Qv, v) = ||Γ1D2
rúv||2 + ||g(rú)Dv||2 Ø 0, it follows that:

(3.87)

Now,

(3.88)

||Nu||2 Ø ||Qu||2 + ||rú2u||2 + ||u||2 + (Qu, rú2u) + (rú2u, Qu).

(Qu, rú2u) = (rúQu, rúu) = (Qrúu, rúu) + (2iDrú u, rúu),
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and so, adding the hermitian conjugate (rú2u, Qu), one obtains:

(Qu, rú2u) + (rú2u, Qu) = 2(Qrúu, rúu) + (2irúDrúu, u) ≠ (2iDrúrúu, u)

= 2(Qrúu, rúu) ≠ 2||u||2 Ø ≠2||u||2.

Hence,

||Nu||2 Ø ||Qu||2 + ||rú2u||2 ≠ ||u||2. (3.89)

Lemma 3.5.8. There is a constant d > 0 such that for any u œ D(Q) = D(H2
0 ),

||D2
rúu||2 Æ d(||Qu||2 + ||u||2). (3.90)

Proof. As quadratic forms on S :

Q2 =D4
rú + (g2(rú)D2)2 + D2

rúg2(rú)D2 + g2(rú)D2D2
rú ,

=D4
rú + (g2(rú)D2)2 + 2Dg(rú)D2

rúg(rú)D

+ [D2
rú , g(rú)]g(rú)D2 ≠ g(rú)D2[D2

rú , g(rú)],

ØD4
rú + (g2(rú)D2)2 + [[D2

rú , g], g]D2,

=D4
rú + (g2(rú)D2)2 ≠ i[{Drú , gÕ}, g(rú)]D2,

=D4
rú + (g2(rú)D2)2 ≠ 2(gÕ(rú))2D2,

ØD4
rú + (g2(rú)D2)2 ≠ 2C2g(rú)2D2,

ØD4
rú +

1

2
(g2(rú)D2)2 ≠ 2C4,

ØD4
rú ≠ 2C4.

(3.91)

where we have used the fact that |gÕ(rú)| Æ C|g(rú)|.

Combining Lemmata 3.5.7 and 3.5.8 yields:

Corollary 3.5.1. rú2, D2
rú œ B(D(N), H ).

We are now ready to prove:

Lemma 3.5.9. A≠ satisfies (3.77) and (3.78).
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Proof. Until now we have not discussed the domain of A≠ and will simply consider it as

being defined for u œ S , which is a core for N . Then, the following estimates hold:

||A≠u||2 =(R≠(rú)Drúu, R≠(rú)Drúu) +
1

4
||RÕ

≠(rú)u||2

≠ 1

2

1

(R≠(rú)Drúu, iRÕ
≠(rú)u) + (iRÕ

≠(rú)u, R≠(rú)Drúu)
2

,

Æ(R≠(rú)Drúu, R≠(rú)Drúu) + ||RÕ
≠(rú)R≠(rú)u||||Drúu|| +

1

4
||RÕ

≠(rú)u||2.

Since RÕ
≠(rú) is a bounded operator, using Lemma 3.5.5 one can see that:

||RÕ
≠(rú)R≠(rú)u||||Drúu|| +

1

4
||RÕ

≠(rú)u||2 Æ ||RÕ
≠||Œ||N

1
2 u||2 +

1

4
||RÕ

≠||2Œ||u||2

Æ ||RÕ
≠||Œ(1 + ||RÕ

≠||Œ)||Nu||2.

Moreover, by Lemmata 3.5.7 and 3.5.8:

|(R≠(rú)Drúu, R≠(rú)Drúu)| = |(R2
≠(rú)u, D2

rúu) + 2(iRÕ
≠(rú)R≠(rú)u, Drúu)|

Æ
Ô

6d||Nu||2 + 2||RÕ
≠||Œ||Nu||2.

Combining the above gives (3.77). To prove (3.78) we start with the following estimates:

|([N, A≠]u, u)| =

-
-
-
-
-
(≠ i

2
(R

(3)
≠ (rú)u, u) ≠ i({D2

rú , RÕ
≠(rú)}u, u)

+ 2i(rú2j2
≠(

rú

S
)u, u) + (2igÕ(rú)g(rú)R≠(rú)D2u, u)

-
-
-
-
-
,

=

-
-
-
-
-
≠ i({Drú , RÕ

≠(rú)Drú}u, u) ≠ 1

2
({Drú , RÕÕ

≠(rú)}u, u)

+ 2i(rú2j2
≠(

rú

S
)u, u) + (2igÕ(rú)g(rú)R≠(rú)D2u, u)

-
-
-
-
-
,

Æ2||Drúu||
3

||RÕ||Œ||Drúu|| +
1

2
||RÕÕ||Œ||u||

4

+ 2||j≠(
rú

S
)rúu||2 + 2||g(rú)Du||||gÕ(rú)R≠(rú)Du||.

The only term that may pose problem is:

||R≠(rú)gÕ(rú)Du||. (3.92)
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However,

R≠(rú)gÕ(rú) = g(rú)j2
≠(rú)rú

Q

a

∆Õ
r

2

Ξ(r2 + a2)
≠ 2r∆r

Ξ(r2 + a2)2

R

b , (3.93)

and the term between brackets is O
rúæ≠Œ

( 1
rú ) because when rú æ ≠Œ, r approaches re, the

double root of ∆r, hence, both ∆r and ∆Õ
r are at least O

ræx
(r≠re) and r≠re = O

rúæ≠Œ
( 1

rú ) 23.

In conclusion, there is C œ R
ú, |R≠(rú)gÕ(rú)| Æ C|g(rú)| and thus, by the functional

calculus:

||R≠(rú)gÕ(rú)Du|| Æ C||g(rú)Du||. (3.94)

Overall,

|([N, A≠]u, u)| Æ
1

||RÕÕ
≠||Œ + 2

1

||RÕ
≠||Œ + C + 1

22

||N
1
2 u||2 (3.95)

According to the above result, we can conclude that A≠ is essentially self-adjoint on

D(N); the analogous result for A+ is proved in [Dau04, Lemma IV.4.5], the arguments

are identical. Theorem 3.5.3 also applies to A = A+ ± A≠. In all cases, we will consider

the operators and their domains as being defined by the conclusion of Theorem 3.5.3.

3.5.6 Proof that H0, H œ C1(A)

In order to prove that H, H0 œ C1(A), we require one more estimate that will be the

object of this section. According to Theorem 3.5.4 it is su�cient to prove that for some

c > 0 and any u œ D(N) one has the estimate:

|(Hu, A±u) ≠ (A±u, Hu)| Æ c(||Hu||2 + ||u||2). (3.96)

As before, we will focus our attention on A≠ and refer to [Dau04, Lemma IV.4.7] for A+.

In order to apply Mourre theory, we will additionally need to show that i[H, A] extends

to a bounded operator from D(H) = D(H0)
24 to H . Both of these are covered by the

following estimates, established, first, on the common core S ; we begin with H0.

23. Note that in (3.93) ∆
Õ

r = ∂∆r

∂r
24. This equality is to be understood to imply that the graph norms are equivalent.
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Let u œ S , then:

||i[H0, A≠]u|| =
.
.
.Γ

1RÕ
≠(rú)Drúu ≠ i

2
Γ

1R
ÕÕ

≠(rú)u ≠ R≠(rú)gÕ(rú)Du ≠ R≠(rú)f Õ(rú)u
.
.
.,

Æ||RÕ
≠||Œ||Drúu|| +

1

2
||RÕÕ

≠||Œ||u|| + ||R≠(rú)gÕ(rú)Du|| + ||R≠f Õ||Œ||u||.

Using (3.94) and Corollary 3.4.3, we thus conclude that for some c > 0 and any u œ S :

||i[H0, A≠]u|| Æ c(||H0u|| + ||u||). (3.97)

Hence, i[H0, A≠] extends uniquely to an element of B(D(H0), H ) and (3.96) holds. In

order to establish the analogous result for H, we write:

[H, A≠] = h[H0, A≠]h + i(hH0R≠(rú)hÕ + R≠(rú)hÕH0h) + iR≠(rú)V Õ.

Since h, RÕ
≠(rú) œ B(D(H0)), h[H0, A≠]h and RÕ

≠(rú)hÕH0h extend to elements of B(D(H0), H ).

For similar reasons to h, R≠(rú)hÕ œ B(D(H0)) also, and, using Equation (3.43), R≠(rú)V Õ œ
B(H ). It follows then that [H0, A≠] extends to a bounded operator D(H0) æ H .

Assembling all the results above, we have thus shown that H0, H œ C1(A) and that

the first two assumptions of Theorem 3.5.1 are satisfied. It remains to verify the final

assumption regarding the double commutator.

3.5.7 The double commutator assumption

Theorem 3.5.1 only requires that the double commutator extends to a bounded op-

erator from D(H) to D(H)ú, this section will be devoted to showing a slightly stronger

result:

Lemma 3.5.10. [A, [A, H0]] and [A, [A, H]] extend to elements of B(D(H), H ).

The consequence will be that H and H0 are in fact C2(A) (see [AMG96, Chapter 5]),

proving the final point of Propostion 3.5.2. Beginning with H0, it is su�cient to prove

this for the four double commutators [A±, [A±, H0]] separately; we will mainly concentrate

on A≠, but it will also be informative to consider the mixed terms [A±, [Aû, H0]].
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(a) [[H0, A≠], A≠] A short calculation shows that:

(≠i)[i[H0, A≠], A≠] =(≠i)

A

≠ 1

2
Γ

1RÕ
≠(rú)RÕÕ

≠(rú) ≠ i(RÕ
≠(rú))2

Γ
1Drú

+ iR≠(rú)RÕÕ
≠(rú)Γ1Drú ≠ i

2
Γ

1R≠(rú)RÕÕÕ(rú)

≠ iR≠(rú)
1

(R≠(rú)gÕ(rú))ÕD + (R≠(rú)f Õ(rú))Õ
2

B

.

(3.98)

Many of the terms in (3.98) extend clearly to elements of B(D(H), H ), either because

they are bounded on H or using Corollary 3.4.3. The term that merits comment is

underlined; it expands as follows:

R≠(rú)gÕÕ(rú)D + RÕ
≠(rú)gÕ(rú)D. (3.99)

We have already shown how to deal with the second term, and the first is treated very

similarly as it is easily seen that |gÕÕ(rú)| Æ C|g(rú)| for some C œ R
ú
+.

(b) [i[H0, A≠], A+] This double commutator, as a quadratic form on S , can be computed

as:

(≠i)[i[H0, A≠], A+] =(≠i)
1

[Γ1RÕ
≠(rú)Drú , A+] ≠ 2R≠(rú)gÕ(rú)R+(rú,D)Γ1D

2

.

The first term vanishes, since on S it can be evaluated as:

[Γ1RÕ
≠(rú)Drú , A+] = ≠RÕ

≠(rú)RÕ
+(rú,D),

and j+ and j≠ have disjoint support (cf. (3.67)). The second term, which, on first glance,

seems di�cult to control, will equally vanish entirely due to our choice cut-o� functions

j+, j≠, j1. To see this, recall that:

R+(rú,D) = (rú ≠ Ÿ≠1 ln |D|)j2
+

A

rú ≠ Ÿ≠1 ln |D|

S

B

.

Hence, since j1 satisfies j1(t) = 1, t Ø ≠1, then:

R+(rú,D) = j2
1(

rú

S
)R+(rú,D). (3.100)
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It follows that:

2R≠(rú)gÕ(rú)R+(rú,D)Γ1D = 2R≠(rú)j2
1(

rú

S
)gÕ(rú)R+(rú,D)Γ1D,

but, j≠ and j1 are chosen such that supp j≠ fl supp j1 = ÿ, therefore this term vanishes.

(c) [i[H0, A+], A≠] Here, we start from 25:

i[H0, A+] = RÕ
+(rú,D) + 2ig(rú)DR+(rú,D)Γ1,

this leads to:

[i[H0, A+], A≠] = R
ÕÕ

+(rú,D)R≠(rú) + 2i (g(rú)R+(rú,D))Õ R≠(rú)DΓ
1.

Since (3.100) is equally true if R+(rú,D) is replaced by its first or second derivative with

respect to rú, one can argue as before and find that this double commutator vanishes

entirely. We refer to [Dau04] for the appropriate treatment of [[H0, A+], A+].

This concludes the proof that (H0, A) satisfies the first hypotheses of Mourre theory.

To show that this is equally true of (H, A), we proceed as before using (3.60). For example:

[[H, A≠], A≠] = h[[H0, A≠], A≠]h + 2ih[H0, A≠]R≠(rú)hÕ

+ 2iR≠(rú)hÕ[H0, A≠]h ≠ 2hÕR≠(rú)H0R≠(rú)hÕ

≠ hH0R(rú)(R≠(rú)hÕ)Õ ≠ R≠(rú)(R≠(rú)hÕ)ÕH0h ≠ R≠(rú)(R≠(rú)V Õ)Õ.

This extends to an element of B(D(H), H ), thanks to the decay of hÕ, V Õ, etc. Similar 
computations show that this is equally true of the other double commutators. The reader 
may be concerned that a long-range potentiel may jeopardise our e�orts i n t he mixed 
commutators, causing unbounded terms to appear. However, this is not the case since 
either commutation with A≠ introduces the necessary decay through di�erentiation or 
terms vanish entirely due to the choice that j1 and j≠ have disjoint supports. For the first 
point, more precisely, if, for instance, f œ S (R), then :

[f(rú), A≠] = iR≠(rú)f Õ(rú).

25. In this equation RÕ(rú, D) denotes the operator obtained after differentiating with respect to rú
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In all cases encountered, f , when expressed as a function of r, has bounded derivative

and therefore, at least, [f(rú), A≠] = O( 1
rú ).

3.5.8 Mourre estimates for H0

We shall now move on to derive Mourre inequalities, naturally, we will treat Hre
and

Hr+ separately.

Near the double horizon

We begin with:

Lemma 3.5.11. Let ‰ œ CŒ
0 (R) then for any S Ø 1;

‰(H0)i[H0, A≠(S)]‰(H0) ≥
K

‰(H0)j≠(
rú

S
)H0j≠(

rú

S
)‰(H0), (3.101)

where ≥
K

is used to denote equality up to a compact error.

Proof. One has:

i[H0, A≠(S)] =Γ
1RÕ

≠(rú)Drú ≠ i

2
Γ

1R
ÕÕ

≠(rú) ≠ R≠(rú)gÕ(rú)D ≠ R≠(rú)f Õ(rú)

=j≠(
rú

S
)Γ1Drúj≠(

rú

S
) + 2rúj≠(

rú

S
)jÕ

≠(
rú

S
)Γ1Drú

≠ i

S
jÕ

≠(
rú

S
)j≠(

rú

S
) ≠ irú

S2
(jÕ

≠(
rú

S
))2

≠ irú

S2
j

ÕÕ

≠(
rú

S
)j≠(

rú

S
) ≠ R≠(rú) (gÕ(rú)D + f Õ(rú)) .

(3.102)

Note that if 0 Æ ‰ Æ 1 is a smooth function with compact support in R, since jÕ has

compact support, Corollary 3.4.2 implies that the terms underlined above will only lead

to compact terms in ‰(H0)i[H0, A≠(S)]‰(H0), consequently:

‰(H0)i[H0, A≠(S)]‰(H0) ≥
K

‰(H0)

A

j≠(
rú

S
)Γ1Drúj≠(

rú

S
) + 2rúj≠(

rú

S
)jÕ

≠(
rú

S
)Γ1Drú

≠ R≠(rú) (gÕ(rú)D + f Õ(rú))

B

‰(H0). (3.103)

Using Corollary 3.4.3, one can show that 2rúj≠( rú

)jÕ
≠( rú

S
)Γ1Drú‰(H0) is also compact.
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Indeed, let “(rú) = 2rúj≠( rú

S
)jÕ

≠( rú

S
) and note that “ œ CŒ

0 (R). For any u œ H , one has:

“(rú)Γ1Drú‰(H0)u = Γ
1Drú“(rú)‰(H0)u + iΓ1“Õ(rú)‰(H0)u. (3.104)

Corollary 3.4.3 implies that there is C1 > 0 such that for any u œ D(H0).

||Γ1Drúu|| Æ C1(||H0u|| + ||u||).

Hence:
||“(rú)Γ1Drú‰(H0)u|| Æ ||Γ1Drú“(rú)‰(H0)u|| + ||“Õ(rú)‰(H0)u||,

Æ C1||H0“(rú)‰(H0)u|| + C1||“(rú)‰(H0)u||

+ ||“Õ(rú)‰(H0)u||,

Æ C1||“(rú)H0‰(H0)u|| + C1||“(rú)‰(H0)u||

+ (1 + C1)||“
Õ(rú)‰(H0)u||.

According to Corollary 3.4.2 the operators “(rú)H0‰(H0), “(rú)‰(H0) and “Õ(rú)‰(H0) are

all compact and so it follows from a simple extraction argument that “(rú)Γ1Drú‰(H0)

must be too. Thus:

‰(H0)i[H0, A≠(S)]‰(H0) ≥
K

‰(H0)j≠(
rú

S
)Γ1Drúj≠(

rú

S
)

≠ R≠(rú) (gÕ(rú)D + f Õ(rú)) ‰(H0). (3.105)

Now, (3.105) can be rewritten:

‰(H0)i[H0, A≠(S)]‰(H0) ≥
K

‰(H0)j≠(
rú

S
)H0j≠(

rú

S
)‰(H0)

≠ ‰(H0)j
2
≠(

rú

S
) (g(rú) + rúgÕ(rú))D‰(H0)

≠ ‰(H0)j
2
≠(

rú

S
) (f(rú) + rúf Õ(rú)) ‰(H0).

Since f(rú) + rúf Õ(rú) æ 0 when rú æ ≠Œ, it follows from Corollary 3.4.2 that the

terms in the last line of the previous equation are compact. The compactness of those on

the middle line is also a consequence of Corollary 3.4.2, because near the double horizon
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rú æ ≠ Œ (r æ re) one has:

rúgÕ(rú) + g(rú) =

A

1 +
rú

Ξ(r2
e + a2)

∆Õ
r

2
+ O

3
1

rú

4B

g(rú),

and:

∆
Õ
r = 2l2(r ≠ re)(re ≠ r≠)(r+ ≠ re) + O((r ≠ re)

2),

= ≠2
(3Mre ≠ 4a2)(r ≠ re)

r2
e

+ O((r ≠ re)
2).

Using (3.16) we obtain that:

∆
Õ
r = ≠2

(r2
e + a2)Ξ

rú + o(
1

rú ).

From which it follows:

rúgÕ(rú) + g(rú) = o(g(rú)). (3.106)

Therefore, there is a continuous function Á œ CŒ(R) such that:

||j2
≠(

rú

S
)(rúgÕ(rú) + g(rú))D‰(H0)|| = ||g(rú)DÁ(rú)‰(H0)||,

Æ ||H0Á(rú)‰(H0)|| + ||Á(rú)‰(H0)||.

Compactness then follows with a similar argument as before.

We are now ready to prove:

Proposition 3.5.3. Let ‰ be of a compact support contained in (0, +Œ) and µ > 0 be

such that supp ‰ µ [µ, +Œ) then for any S Ø 1:

‰(H0)i[H0, A≠(S)]‰(H0) &
K

µ‰(H0)j
2
≠(

rú

S
)‰(H0). (3.107)

The result holds also if supp ‰ µ (≠Œ, 0), if we replace A≠(S) by ≠A≠(S).

Proof. Using Lemma 3.5.11, it is su�cient to prove that:

‰(H0)j≠(
rú

S
)H0j≠(

rú

S
)‰(H0) &

K
µ‰(H0)j

2
≠(

rú

S
)‰(H0).
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Our first step is to note that, although ‰(H0) and j≠( rú

S
) do not commute, their commu-

tator is a compact operator. This can be seen using the Hel�er-Sjöstrand formula [HS87,

Proposition 7.2] 26, for one has:

5

‰(H0), j≠(
rú

S
)
6

=
i

2fi

⁄

C

ˆz̄‰̃(z)[(H0 ≠ z)≠1, j≠(
rú

S
)]dz · dz̄,

= ≠ i

2fi

⁄

ˆz̄‰̃(z)(H0 ≠ z)≠1[H0, j≠(
rú

S
)](H0 ≠ z)≠1dz · dz̄. (3.108)

The second equation makes sense since j≠( rú

S
) is bounded and [H0, j≠( rú

S
)] extends to a

bounded operator on H . Furthermore, the integral exists in the norm topology, so the

compactness of the commutator follows from that of the integrand which, again, is a

consequence of Corollary 3.4.2 since:

[H0, j≠(
rú

S
)] = ≠ i

S
Γ

1jÕ
≠(

rú

S
).

Now ‰(H0)j≠( rú

S
)H0j≠( rú

S
)‰(H0) is equal to

j≠(
rú

S
)‰(H0)H0‰(H0)j≠(

rú

S
)

+j≠(
rú

S
)‰(H0)H0[j≠(

rú

S
), ‰(H0)] + [‰(H0), j≠(

rú

S
)]H0j≠(

rú

S
)‰(H0).

The underlined terms form a symmetric compact operator and denoting 27
E the operator-

valued spectral measure, for any u œ H :

(j≠(
rú

S
)‰(H0)H0‰(H0)j≠(

rú

S
)u, u) = (‰(H0)H0‰(H0)j≠(

rú

S
)u, j≠(

rú

S
)u),

=
⁄

t‰2(t)(E(dt)j≠(
rú

S
)u, j≠(

rú

S
)u),

Ø µ(j≠(
rú

S
)‰(H0)

2j≠(
rú

S
)u, u).

In other words:

j≠(
rú

S
)‰(H0)H0‰(H0)j≠(

rú

S
) Ø µj≠(

rú

S
)‰(H0)

2j≠(
rú

S
),

&
K

µ‰(H0)j
2
≠(

rú

S
)‰(H0),

(3.109)

26. See also Appendix B.1
27. following the notations of [Lax02].
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where we have used once more the compactness of the commutator [‰(H0), j≠( rú

S
)]. Similar

arguments prove the final point.

At the simple horizon

The decomposition of the Hilbert space constructed in Section 3.4.3 and the results

discussed there concerning the properties of the eigenvalues, mean that the proof of the

Mourre estimate at the simple horizon in [Dau04], applies to our case without any essential

modification. Hence we quote without proof:

Proposition 3.5.4 ( [Dau04, Lemma IV.4.11] ). Let ⁄0 œ R, then there are ‰ œ
CŒ

0 (R) such that ⁄0 œ supp ‰ and µ œ R
ú
+ such that:

‰(H0)i[H0, A+(S)]‰(H0) &
K

µ‰(H0)j
2
1(

rú

S
)‰(H0), (3.110)

for large enough S œ R
ú
+.

Remark 3.5.2. It is interesting to remark the di�erence in the formulation of Proposi-

tions 3.5.3 and 3.5.4. Only the latter truly restricts the size of the neighbourhood on

which we have a Mourre estimate, Proposition 3.5.3 on the other hand, simply forbids a

Mourre estimate on a neighbourhood of 0.

Combining the two previous results leads to:

Proposition 3.5.5. Let ⁄0 œ R
ú:

— If ⁄0 > 0, then one can find an interval I µ (0, +Œ) containing ⁄0 and µ > 0 such

that:

1I(H0)i[H0, A+(S) + A≠(S)]1I(H0) &
K

µ1I(H0), (3.111)

for large enough S œ R
ú
+.

— If ⁄0 < 0, then one can find an interval I µ (≠Œ, 0) containing ⁄0 and µ > 0 such

that:

1I(H0)i[H0, A+(S) ≠ A≠(S)]1I(H0) &
K

µ1I(H0), (3.112)

for large enough S œ R
ú
+.
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3.5.9 Mourre estimate for H

Now that we have at our disposition a Mourre estimate for H0, we can deduce from

it Mourre estimates for any operator H satisfying (3.75). Their spectral theory is closely

related to that of H0 as illustrated by the following lemma.

Lemma 3.5.12. For any ‰ œ CŒ
0 (R), (H0 ≠ i)≠1 ≠ (H ≠ i)≠1 and ‰(H0) ≠ ‰(H) are

compact. In particular, H0 and H have the same essential spectrum.(Weyl’s Theorem).

Proof. One has for any z œ C \ R:

(H0 ≠ z)≠1 ≠ (H ≠ z)≠1 = (H ≠ z)≠1(H ≠ H0)(H0 ≠ z)≠1,

= (H ≠ z)≠1((h2 ≠ 1)H0 + Ṽ )(H0 ≠ z)≠1,

for some matrix Ṽ whose coe�cients are in CŒ(R). Compactness of (H0 ≠ i)≠1 ≠(H ≠ i)≠1

is, once more, a consequence of Corollary 3.4.2. That of ‰(H0) ≠ ‰(H) follows from this

since the Hel�er-Sjöstrand formula 28 leads to:

‰(H) ≠ ‰(H0) =
i

2fi

⁄

ˆz̄‰̃(z)
1

(H ≠ z)≠1 ≠ (H0 ≠ z)≠1
2

dz · dz̄, (3.113)

the integral converges in norm so compactness of the integrand implies that of the integral.

An immediate consequence of Lemma 3.5.12 is that for any ‰ œ CŒ
0 (R):

‰(H)[iH, A(S)]‰(H) ≥
K

‰(H0)[iH, A(S)]‰(H0). (3.114)

Now, writing H = H0 + (h2 ≠ 1)H0 + h[H0, h] + V , let us consider:

‰(H0)[(h
2 ≠ 1)H0 + h[H0, h] + V, A±(S)]‰(H0),

we will in fact find that it is compact, so that:

‰(H)[iH, A]‰(H) ≥
K

‰(H0)[iH0, A]‰(H0). (3.115)

We recall our main tool:

Corollary 3.5.2. Corollary 3.4.2, Section 3.4.

28. see [HS87, Proposition 7.2]
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If f, ‰ œ CŒ then f(rú)‰(H0) is compact.

To simplify notations we drop the dependence on S of the operator A≠. Consider first:

[(h2 ≠ 1)H0, A±] = (h2 ≠ 1)[H0, A±] ≠ [A±, h2 ≠ 1]H0. (3.116)

(h2≠1) œ S1,1 so, by Corollary 3.4.2, (h2≠1)‰(H0) is compact. Therefore, so is: ‰(H0)(h
2≠

1) = ((h2 ≠ 1)‰(H0))
ú. Since [H0, A±] œ B(D(H0), H ), we conclude that ‰(H0)(h

2 ≠
1)[H0, A±]‰(H0) is compact. Moreover:

[A≠, h2 ≠ 1] = ≠iR≠(rú)2hhÕ œ SŒ,1,

so [A≠, h2 ≠ 1]‰(H0) is also compact.

Next we consider the term:

[A+, h2 ≠ 1] = Γ
1(R+(rú,D)(h2 ≠ 1) ≠ ((R+(rú,D)(h2 ≠ 1))ú).

Note that:
R+(rú,D)(h2 ≠ 1) = R+(rú,D)ÈrúÍ≠1ÈrúÍ(h2 ≠ 1),

= R+(rú,D)ÈrúÍ≠1j2
1(

rú

S
)ÈrúÍ(h2 ≠ 1).

The last equality is a consequence of the choice of support of j1 and j+: recall that j1(t) = 1

for t Ø ≠1 and rú Ø ≠S when j+( rú≠Ÿ≠1 ln |D|
S

) ”= 0 so j2( rú

S
) = 1 whenever the term is

non-zero. ÈrúÍj2
1( rú

S
)(h2 ≠ 1)‰(H0) is therefore compact because j2

1( rú

S
)(h2 ≠ 1) œ S1,Œ.

Additionally, Lemma 3.5.1 implies that R+(rú,D)ÈrúÍ≠1 extends to a bounded operator

on H . The compactness of ‰(H0)[(h
2 ≠ 1)H0, A±]‰(H0) follows. The term:

[V, A+] = [V R+(rú,D)Γ1 ≠ Γ
1R+(rú,D)V ],

is treated identically:

R+(rú,D)V = R+(rú,D)ÈrúÍ≠1ÈrúÍj2
1(

rú

S
)V,
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and j2
1( rú

S
)V œ S1,Œ so R+(rú,D)V ‰(H0) is compact. Lastly using:

[V, A≠] = iR≠(rú)V Õ œ SŒ,1,

h[H0, h] = ≠ih(Γ1ˆrúh +
Ò

∆◊g(rú)Γ2ˆ◊h),

[h[H0, h], A≠] =R≠(rú)
Ë

hÕ(Γ1hÕ + Γ
2
Ò

∆◊g(rú)ˆ◊h) + hΓ
1ˆ2

rúh

+ hΓ
2
Ò

∆◊g(rú)ˆrúˆ◊h + hΓ
2
Ò

∆◊g
Õ(rú)ˆ◊h

È

œ SŒ,1,

[h[H0, h], A+] = ≠iΓ1[hˆrúh, R+(rú,D)] ≠ i[h
Ò

∆◊g(rú)Γ2ˆ◊h, Γ
1R+(rú,D)].

and similar arguments as before, we conclude that the remaining terms are also compact.

Therefore, we have proved the following:

Proposition 3.5.6. Let H be an operator defined by (3.75), then the conclusion of Propo-

sition 3.5.5 is true with H in place of H0.

3.5.10 Propagation estimates and other consequences of the Mourre

estimate

On the spectrum of H0 and H

The first important consequence of the estimate above is that Theorem 3.5.1 applies to

H and H0, on any interval disjoint from {0}. Hence, H and H0 have no singular continuous

spectrum and all eigenvalues, other than possibly 0, are of finite multiplicity. In fact, H0

has no eigenvalue, as the following classical “Grönwall lemma” argument shows.

Proof that H0 has no pure point spectrum. We only need to seek eigenvalues for H0 on

each of the subspaces Hk,n, which, we recall, can be identified with [L2(R)]4. Let ⁄ œ R

and suppose that u œ [L2(R)]4 satisfies:

Hk,n
0 u =

A

⁄ +
ap

r2
+ + a2

≠ ap

r2
e + a2

B

u,

then u œ [H1(R)]4 and u vanishes at infinity. This i s a lso t rue o f the function w  :  r ú ‘æ 
e≠iΓ1⁄rú

u(rú). w additionally satisfies:

wÕ(rú) = e≠iΓ1⁄rú 
(≠iΓ1)(⁄u(rú) ≠ Γ1Drúu(rú)),

= e≠iΓ1⁄rú 
(≠iΓ1)I(rú)eiΓ1⁄rú

w(rú),
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where: I(rú) =
3

≠⁄kg(rú)Γ2 + f(rú) ≠
3

ap
r2

++a2 ≠ ap
r2

e+a2

44

. From this, we deduce:

||w(rú)|| Æ
⁄ +Œ

rú
ÎI(rú)Î ||w(rú)|| drú,

Because ||I|| is integrable near +Œ, it follows from the integral form of Grönwall’s lemma

that w = 0 and therefore u = 0.

Using the separability of the Dirac equation in Kerr-de Sitter, a modified version of this

argument shows that the full Dirac operator has no eigenvalues, we refer to [BC09]. We

summarise these conclusions in the following lemma:

Lemma 3.5.13. Let H be an operator defined by (3.75) then:

— H has no singular continuous spectrum,

— ‡ess(H) = R,

— ‡pp(H) µ {0} and if 0 is an eigenvalue then it has infinite multiplicity. 29

Strict Mourre estimates

Let H œ C1(A), (H, A) is said to satisfy a strict Mourre estimate on some interval

I µ R, if it satisfies a Mourre estimate with vanishing compact error. This slightly stricter

condition will be required shortly for the important conclusion of Theorem 3.5.5. Never-

theless, if (H, A) satisfies a Mourre estimate on some open interval I µ R, then for any

⁄ œ I that is not an eigenvalue of H, one can find a small neighbourhood J = (≠Á+⁄, ⁄≠Á)

of ⁄ œ I such that it satisfies a strict Mourre estimate on J . To see this we give a simpli-

fied version of the argument in the proof of [AMG96, Lemma 7.2.12]: let, for any n large

enough such that (≠ 1
n

+ ⁄, ⁄ + 1
n
) µ I, En = E((≠ 1

n
+ ⁄, ⁄ + 1

n
)); where E is the spectral

measure of H. Then:

s – lim
næŒ

En = E({⁄}) = 0,

as ⁄ is not an eigenvalue. It follows that for any compact operator K:

lim
næŒ

EnKEn = 0.

29. σpp(H), the pure-point spectrum, is the set of all eigenvalues of H. It is not to be confused with
the discrete spectrum, σdisc(H) = R \ σess(H), the set of all isolated eigenvalues with finite multiplicity. 
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Therefore, if Á > 0, one can find N , such that for any n Ø N :

|(EnKEn|x) Æ Á||x||2,

so that for n Ø N :

EnKEn Ø ≠Á ∆ EnKEn Ø ≠ÁEn.

Hence, if 1I(H)i[H, A]1I(H) Ø µ + K, then:

Eni[H, A]En Ø (µ ≠ Á)En.

Consequently, on small enough intervals around any non-eigenvalue, one has a strict

Mourre estimate for any ‹ œ (0, µ).

In the case of H and H0, the only possible eigenvalue is 0. All our estimates avoid this

point, therefore they can all be upgraded to strict estimates on small enough intervals

around any point of Rú.

Minimal velocity estimate

One of the most powerful consequences of the hypotheses of Mourre theory, largely

discussed and optimised in [AMG96], is that it leads to a (generalised) limiting absorption

principle. In our case, thanks to Proposition 3.5.2, H0, H œ C2(A), and we directly have

access to an abstract propagation estimate due to Sigal-So�er [SS88]:

Theorem 3.5.5. Let (H, A) be a pair of self-adjoint operators on a Hilbert space H .

Suppose that A is a conjugate operator for H on I µ R and that H œ C1+Á(A), (Á œ R
ú
+).

Let µ œ R
ú
+ be such that:

1I(H)i[H, A]1I(H) Ø µ1I(H).

Then, for any b, ‰ œ CŒ
0 (R) such that supp ‰ µ I and supp b µ (≠Œ, µ) one has:

’u œ H ,
⁄ +Œ

1

.

.

.

.b
3

A

t

4

‰(H)e≠iHtu

.

.

.

.

2 dt

t
Æ C||u||2,

s – lim
tæ+Œ

b
3

A

t

4

‰(H)e≠iHt = 0.

(3.117)

The importance of Theorem 3.5.5 is more obvious when the conjugate operator can be 
replaced by simpler operators that help to understand the propagation of fields. In [Dau10,
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Lemma IV.4.13], it is shown that in the case of the operators under consideration here,

A can be replaced with |rú|, and we obtain:

Proposition 3.5.7. Let ‰ œ CŒ
0 (R) such that supp ‰ fl {0} = ÿ, then for any H defined

by Equation (3.75), there are Á‰, C œ R
ú
+ such that for any Â œ H :

⁄ Œ

1

.

.

.

.

.
1[0,Áχ]

A

|rú|

t

B

‰(H)e≠itHÂ

.

.

.

.

.

2
dt

t
Æ C||Â||2. (3.118)

Furthermore:

s – lim
tæ+Œ

1[0,Áχ]

A

|rú|

t

B

‰(H)e≠itH = 0. (3.119)

This “minimal velocity estimate” means that, given a certain energy interval, all fields

with energy in that interval, must be outside of the “cone” {|rú| < ÁIt} at late times; it

will be crucial to the construction of the wave operators.

Maximal velocity estimate

Independently of Mourre theory, one can show that we also have a natural “maximal

velocity estimate”, that is a consequence of the geometry:

Proposition 3.5.8. Let ” œ (0, 1), b œ CŒ
0 (R) be such that supp b fl [≠1 ≠ ”, 1 + ”] = ÿ,

then there is some constant C œ R
ú such that for any u œ H :

⁄ +Œ

1

.

.

.

.b(
rú

t
)e≠itHu

.

.

.

.

2 dt

t
Æ C||u||2. (3.120)

Furthermore, for any b œ CŒ(R) such that b © 0 on [≠1 ≠ ”, 1 + ”] and b = 1 for |r| large,

then:

s – lim
tæŒ

b(
rú

t
)e≠itH = 0 (3.121)

The proof is identical to that of [Dau04, Proposition IV.4.4].

What of t æ ≠Œ?

Up to now, we have only discussed estimates in the far future, and have said nothing 
of the far past. After thorough inspection, one can convince onself that all the results 
here hold for ≠H (the conjugate operator should also be replaced by its opposite), but,
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there is a faster way to see this. The Kerr-de Sitter metric (3.5) is invariant under the

simultaneous substitutions:

t æ ≠t a æ ≠a.

This is intuitively reasonable because a time reversed black-hole will rotate in the opposite

way. Consequently, all the results in the section have suitable analogs at t æ ≠Œ.

3.6 Intermediate wave operators

3.6.1 Overall strategy

In this section our goal is to show that, despite the long-range non-spherically sym-

metric potentials at the double horizon, it is still possible to reduce the scattering problem

to a 1-dimensional one. To this end, we introduce the following operators:

H1 = H0 + h≠1VCh≠1, (3.122)

He = H0 + g(rú)Ë(◊), (3.123)

with:

Ë(◊) =
a2 sin ◊Ô

∆◊

A

l2r2
e ≠ 1

r2
e + a2

B

Γ
3p + flemΓ

0 ≠ a sin ◊re

2fl2
e

Ò

∆◊“̃, (3.124)

fle = r2
e + a2 cos2 ◊, “̃ =

Q

a
‡x 0

0 ‡x

R

b . (3.125)

Finally, VC and VS are defined by equations (3.61) and (3.62), their asymptotic behaviour

is described in Lemma 3.5.3.

Both H1 and He are of the prescribed form (3.75), hence the theory presented in

Section 3.5 applies to them. We will show that we can compare the full operator H ©
Hp = hH0h + VS + VC to simplified dynamics as so:

H ≠æ
rúæ±Œ

Y

_]

_[

H1 ≠æ
rúæ+Œ

H0

H1 ≠æ
rúæ≠Œ

He
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3.6.2 First comparison

The first step is to compare H to H1. Here, there is no distinction between the be-

haviour at the di�erent horizons because:

H ≠ H1 = (h2 ≠ 1)H0 + h[H0, h] + VS + (h2 ≠ 1)h≠2VC

© (h2 ≠ 1)
œS2,2

H1 + VS + h[H0, h],

and VS + h[H0, h] © ṼS is short-range. Proposition 3.5.7 is the key to prove:

Proposition 3.6.1. The generalised wave-operators:

Ω
1
± = s – lim

tæ±Œ
eitH1e≠itHPc(H),

Ω̃
1
± = s – lim

tæ ±Œ
eitHe≠itH1Pc(H1),

(3.126)

exist, where, for any self-adjoint operator B, Pc(B) denotes the projection onto the abso-

lutely continuous subspace of B.

Proof. We show the existence of the first limit at t æ +Œ the other cases are similar.

We begin by remarking that:

€

‰œCŒ
0 (R)

supp χfl{0}=ÿ

‰(H)H = Pc(H)H ,

so it is su�cient to prove the existence of the limit:

s – lim
tæ+Œ

eitH1‰(H)e≠itH ,

for every ‰ œ CŒ
0 (R), supp ‰ fl {0} = ÿ. Consider then such a ‰ and let Á‰ be defined

by Proposition 3.5.7. Choose j0 œ CŒ
0 (R) such that supp j0 µ (≠Á‰, Á‰) and j © 1 on a

neighbourhood of 0. Set j = 1 ≠ j0. (3.119) implies that:

s – lim
tæŒ

eitH1j0(
rú

t
)e≠itH‰(H) = 0.

It remains to prove the existence of:

s – lim
tæŒ

eitH1j(
rú

t
)‰(H)e≠itH .
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For this, we apply the methods of Cook and Kato 30, who remarked that the convergence,

for every u in a dense set of H , of the integral:

⁄ +Œ

1

d
dt

3

eitH1j(
rú

t
)‰(H)e≠itHu

4

,

was a su�cient condition for the limit to exist. To prove the convergence of the integral,

there are two model arguments that will both be illustrated on this simple example. To

begin with, let u œ D(H) = D(H1) then d
dt

1

eitH1j( rú

t
)‰(H)e≠itH

2

u equates to:

eitH1

3

iH1j(
rú

t
) ≠ rú

t2
jÕ(

rú

t
) ≠ j(

rú

t
)iH

4

‰(H)e≠itHu

= eitH1

3

ij(
rú

t
)(H1 ≠ H) +

1

t
(Γ1 ≠ rú

t
)jÕ(

rú

t
)
4

‰(H)e≠itH .

The treatment of the first term, illustrates the first type of argument. Consider first:

H1 ≠ H = (h2 ≠ 1)H1 + ṼS.

On supp j, one must have rú Ø Át for some Á œ R
ú
+, thus, 1

rú Æ 1
Át

on supp j. Consequently,

j( rú

t
)(h2 ≠ 1) = O(t≠2) and j( rú

t
)ṼS = O(t≠2). Because H1‰(H) is bounded 31, the term:

eitH1j(
rú

t
)(H1 ≠ H)‰(H)e≠itHu,

is therefore integrable.

The final term, eitH1 1
t

1

Γ1 ≠ rú

t

2

jÕ( rú

t
)‰(H)e≠itHu, that is not clearly integrable in

the sense of Lebesgue, requires a di�erent treatment, which will serve as illustration for

the second type of argument we use. Lebesgue integrability is in fact su�cient, but not

necessary; the key to Cook’s argument is simply that for any Á and any t1, t2 su�ciently

large:
.
.
.
.eit2H1j(

rú

t2

)‰(H)e≠it2H ≠ eit1H1j(
rú

t1

)‰(H)e≠it1H

.

.

.

. < Á.

30. see for example [DG97; Lax02]
31. H1 is continuous on D(H)
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Moreover, by the Hahn-Banach theorem, there is v œ H , ||v|| Æ 1 such that:

||eit2H1j(
rú

t2

)‰(H)e≠it2Hu ≠ eit1H1j(
rú

t1

)‰(H)e≠it1Hu||

= (v, eit2H1j(
rú

t2

)‰(H)e≠it2Hu ≠ eit1H1j(
rú

t1

)‰(H)e≠it1Hu),

=
⁄ t2

t1

A

v,
d
dt

3

eitH1j(
rú

t
)‰(H)e≠itHu

4B

dt.

So, one only needs to verify that for t1, t2 su�ciently large the integral:

⁄ t2

t1

A

v,
d
dt

3

eitH1j(
rú

t
)‰(H)e≠itHu

4B

dt,

can be made arbitrarily small. Choose now ‰̃ œ CŒ
0 (R) such that supp ‰̃ fl {0} = ÿ and

‰̃‰ = ‰, j̃ œ CŒ
0 (R), that vanishes on a neighbourhood of zero and satisfies j̃jÕ = jÕ.

Notice then that:

1

t
(Γ1 ≠ rú

t
)jÕ(

rú

t
)‰(H) =‰̃(H1)j̃(

rú

t
)
1

t
(Γ1 ≠ rú

t
)j̃(

rú

t
)jÕ(

rú

t
)‰(H)

+
1

t
(Γ1 ≠ rú

t
)j̃(

rú

t
)jÕ(

rú

t
)(‰̃(H) ≠ ‰̃(H1))‰(H)

+
1

t
[(Γ1 ≠ rú

t
), ‰̃(H1)]j

Õ(
rú

t
)‰(H)

+
1

t
(Γ1 ≠ rú

t
)[jÕ(

rú

t
), ‰̃(H1)]‰(H).

The last three terms are O(t≠2) so are integrable, this is not changed by multiplying to

the left with eitH1 and to the right with e≠itH . Now, for any v œ H , one certainly has:

|(v, eitH1
1

t
‰̃(H1)j̃(

rú

t
)(Γ1 ≠ rú

t
)j̃(

rú

t
)jÕ(

rú

t
)‰(H)e≠itHu)|

=

-
-
-
-
-

A

1Ô
t
j̃(

rú

t
)(Γ1 ≠ rú

t
)j̃(

rú

t
)‰̃(H1)e

≠itH1v,
1Ô
t
jÕ(

rú

t
)‰(H)e≠itHu

B-
-
-
-
-
,

Æ K

.

.

.

.

.

1Ô
t
j̃(

rú

t
)‰̃(H1)e

≠itH1v

.

.

.

.

.

.

.

.

.

.

1Ô
t
jÕ(

rú

t
)‰(H)e≠itHu

.

.

.

.

.
,

for some K œ R
ú
+. In the above we have used the fact that:

j̃(
rú

t
)(Γ1 ≠ rú

t
) œ B(H ).
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Applying the Cauchy-Schwarz inequality, we get the following estimate:

⁄ t2

t1

-
-
-
-(v, eitH1

1

t
Γ

1‰̃(H1)j̃(
rú

t
)jÕ(

rú

t
)‰(H)e≠itHu)

-
-
-
- dt

Æ K

A
⁄ t2

t1

.

.

.

.j̃(
rú

t
)‰̃(H1)e

≠itH1v

.

.

.

.

2 dt

t

B 1
2

A
⁄ t2

t1

.

.

.

.jÕ(
rú

t
)‰(H)e≠itHu

.

.

.

.

2 dt

t

B 1
2

.

However, it follows from Proposition 3.5.7 that there is some constant C œ R
ú
+ such that:

A
⁄ t2

t1

.

.

.

.j̃(
rú

t
)‰̃(H1)e

≠itH1v

.

.

.

.

2 dt

t

B 1
2

A
⁄ t2

t1

.

.

.

.jÕ(
rú

t
)‰(H)e≠itHu

.

.

.

.

2 dt

t

B 1
2

Æ C||v||

A
⁄ t2

t1

.

.

.

.jÕ(
rú

t
)‰(H)e≠itHu

.

.

.

.

2 dt

t

B 1
2

,

Æ C

A
⁄ t2

t1

.

.

.

.jÕ(
rú

t
)‰(H)e≠itHu

.

.

.

.

2 dt

t

B 1
2

.

In the last inequality we have specialised to the case where ||v|| Æ 1. This quantity can be

made arbitrarily small, for large enough t1, t2, again by Proposition 3.5.7. The existence

of the limit then follows.

3.6.3 Second comparison

Our aim now is to show that asymptotically the dynamics of H1 can again be simplified.

However, the comparisons we will make in this section depend on the asymptotic region

we consider. We will separate incoming and outgoing states using cut-o� functions, c±,

that are assumed to satisfy: c± œ CŒ(R), c± © 1 in a neighbourhood of ±Œ and that

vanish in a neighbourhood of ûŒ. We then seek to show that the following limits exist:

Ω
2
±,Hr+

= s – lim
tæ±Œ

eiH0tc+(rú)e≠iH1tPc(H1),

Ω̃
2
±,Hr+

= s – lim
tæ±Œ

eiH1tc+(rú)e≠iH0t,

Ω
2
±,Hre

= s – lim
tæ±Œ

eiHetc≠(rú)e≠iH1tPc(H1),

Ω̃
2
±,Hre

= s – lim
tæ±Œ

eiH1tc≠(rú)e≠iHetPc(He).

(3.127)

This appears to introduce a certain arbitrariness into the construction, the following 
lemma shows that this is not the case:
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Lemma 3.6.1. If the limits (3.127) exist, then they are independent of the choice of

cut-off functions c±.

Proof. The main point is that two such functions can di�er on at most a compact set,

i.e. their di�erence is an element of CŒ
0 (R). So let us prove that if c œ CŒ

0 (R), then, for

instance:

s – lim
tæ+Œ

eiH0tc(rú)e≠iH1tPc(H1) = 0,

the other cases will be similar. As before, by density, we only need to prove that:

s – lim
tæ+Œ

eiH0tc(rú)‰(H1)e
≠iH1t = 0,

for any ‰ œ CŒ
0 (R), supp ‰ fl {0} = ÿ.

Let ‰ be as so and let M œ R
ú
+ be such that supp c µ [≠M, M ]. Choose j0 œ CŒ

0 (R)

with support contained in (≠Á‰, Á‰) such that, say, j0(s) = 1 for any s œ [≠ Áχ

2
, Áχ

2
]. Then,

for any t Ø 1, j0(
rú

t
) = 1 for any |rú| Æ Áχ

2
t. Hence, for t Ø 2M

Áχ
,

c(rú) = c(rú)j0(
rú

t
), for any rú œ R.

It follows that:

s – lim
tæ+Œ

eiH0tc(rú)‰(H1)e
≠iH1t = s – lim

tæ+Œ
eiH0tc(rú)j0(

rú

t
)‰(H1)e

≠iH1t,

which vanishes by Proposition 3.5.7.

We now argue that the limits (3.127) exist, with emphasis on:

s – lim
tæ+Œ

eiHetc≠(rú)e≠iH1tPc(H1), (3.128)

the other cases being similar.

Lemma 3.6.2. H1 ≠ He is short-range near the double horizon.

Proof. Note that:

h≠2VC = g

A

Ξ

sin ◊

A

fl2

‡
≠

Ô
∆◊

Ξ

B

Γ
3p + flmΓ

0 ≠ a sin ◊r

2fl2

Ò

∆◊“̃

B

¸ ˚˙ ˝

Θ(r,◊)

, (3.129)
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and Θ(re, ◊) = Ë(◊). Thus, Θ(r, ◊) ≠ Ë(◊) = o
rære

(r ≠ re) = o
rúæ≠Œ

(rú≠1), which leads to:

h≠2VC ≠ gË(◊) = O
rúæŒ

(
1

rú2
).

Proof of the existence of (3.128). As before, we only need to prove the existence of:

s – lim
tæ+Œ

eiHetc≠(rú)‰(H1)e
≠iH1t,

for any ‰ œ CŒ
0 (R) with supp ‰ fl {0} = ÿ.

Let ‰ be as so, and j0, j be as in the proof of Proposition 3.6.1, then:

s – lim
tæ+Œ

eiHetc≠(rú)j0(
rú

t
)‰(H1)e

≠iH1t = 0,

and we must prove the existence of s – lim
tæ+Œ

eiHetc≠(rú)j(
rú

t
)‰(H1)e

≠iH1t. To simplify nota-

tions, set M(t) = eiHetc≠(rú)j( rú

t
)‰(H1)e

≠iH1t, its derivative, M Õ(t), is given by:

eiHet
3

iHec≠(rú)j(
rú

t
) ≠ rú

t2
c≠(rú)jÕ(

rú

t
) ≠ c≠(rú)j(

rú

t
)iH1

4

‰(H1)e
≠iH1t.

The term between parentheses is:

c≠(rú)j(
rú

t
)i(He ≠ H1) + Γ

1(c≠(rú)j(
rú

t
))Õ ≠ rú

t2
c≠(rú)jÕ(

rú

t
)

= c≠(rú)j(
rú

t
)i(He ≠ H1) + Γ

1(cÕ
≠(rú)j(

rú

t
)) +

1

t
c≠(rú)(Γ1 ≠ rú

t
)jÕ(

rú

t
).

The only new term compared with the proof of Proposition 3.6.1 is:

Γ
1(cÕ

≠(rú)j(
rú

t
)),

however this vanishes when t is su�ciently la rge be cause cÕ  ha s co mpact su pport an d j 
vanishes on a neighbourhood of 0. Moreover, since He ≠H1 is short-range near the double 
horizon and c≠ vanishes on a neighbourhood of +Œ, the first two t erms are O (t≠2) and 
hence integrable. The last term is treated as at the end of the proof of Proposition 3.6.1.
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3.6.4 The operator He

The expression of He suggests that we seek to understand the precise spectral theory

of the operator, defined on the sphere by:

De = D + Ë(◊). (3.130)

In particular, we would like to show that there is a Hilbert space decomposition of L2(S2)¢
C

4 which enables us to decompose the full Hilbert space H into an orthogonal sum of

stable subspaces, that can be used to study He. Since Ë(◊) is a bounded operator it is an

immediate consequence of the Kato-Rellich perturbation theorem that De has compact

resolvent. However, we require a slightly more thorough understanding of the structure

of the spectral subspaces and in particular how Γ1 acts on them.

Dimension of spectral subspaces

Decompose L2(S2) ¢ C
4 in the usual manner by diagonalising DÏ with anti-periodic

boundary conditions, and consider the restriction Dn
e of De to the subspace with eigenvalue

n œ Z+ 1
2
. In the following E⁄ will denote the spectral subspace of ⁄ œ R for this restricted

operator.

An element f in this subspace is an eigenvector with eigenvalue ⁄ œ R of Dn
e if and

only if it is a solution to the first order ordinary di�erential equation:

Ò

∆◊Γ
2D◊f ≠ i

2

A

∆Õ
◊

2
Ô

∆◊

+ cot ◊

B

Γ
2f ≠ are sin ◊

Ô
∆◊

2fl2
e

“̃f

+

AÔ
∆◊

sin ◊
n +

a2 sin ◊Ô
∆◊

l2r2
e ≠ 1

r2
e + a2

p

B

Γ
3f + flemΓ

0f ≠ ⁄f = 0. (3.131)

Note that since Γ1 anti-commutes with Γ0, Γ3, Γ2 and “̃, if f is a solution to (3.131) then

Γ1f is a solution to the analogous equation for ≠⁄, in fact, Γ1 is an isometry between E⁄

and E≠⁄. The study of (3.131) is slightly easier after the substitution z = cos ◊, after

which we obtain:

a1(z)Γ2Dz + a2(z)Γ2f + a3(z)Γ3f + a5(z)“̃f + a0(z)Γ0f ≠ ⁄f = 0, (3.132)
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where:
a0(z) = flem, a1(z) = ≠

Ò

∆◊

Ô
1 ≠ z2,

a2(z) = ≠ i

2

A

≠a2l2 z
Ô

1 ≠ z2

Ô
∆◊

+
zÔ

1 ≠ z2

B

,

a3(z) =

A Ô
∆◊Ô

1 ≠ z2
n +

a2
Ô

1 ≠ z2

Ô
∆◊

l2r2
e ≠ 1

r2
e + a2

p

B

,

a5(z) = ≠a
Ô

1 ≠ z2

Ô
∆◊

2fl2
e

.

(3.133)

Save the expressions
Ô

1 ≠ z2, 1Ô
1≠z2 , all other functions appearing in the coe�cients (3.133)

of the equation can be extended to analytic functions on a disc centered in 0 and with ra-

dius 1+Á for some Á > 0, the reason for this is that the parameters satisfy: |al| < 2≠
Ô

3 < 1

and x > |a|. This suggests that (3.132) extends naturally to a di�erential equation ex-

pressed on an open subset of the 1-dimension complex manifold S:

S = {(z, w) œ C
2, z œ B(0, 1 + Á), z2 + w2 = 1},

where z is used as local coordinate - the implicit function theorem implies that this can

be done in a neighbourhood of any point in S save (1, 0), (≠1, 0). The functions z, w are

globally defined and holomorphic on S and (3.132) can be rewritten:

≠
Ò

∆◊wΓ
2Dzf ≠ i

2

A

≠a2l2 zwÔ
∆◊

+
z

w

B

Γ
2f

+

AÔ
∆◊

w
n +

a2wÔ
∆◊

l2r2
e ≠ 1

r2
e + a2

p

B

Γ
3f ≠ aw

Ô
∆◊

2fl2
e

“̃f + flemΓ
0f ≠ ⁄f = 0. (3.134)

By the Cauchy-Lipschitz theorem the set of solutions to Equation (3.134) on S\ {(1, 0), (≠1, 0)}

is a 4-dimensional vector space. The solutions to (3.132) will be the restrictions to ]≠1, 1[,

(i.e. z œ] ≠ 1, 1[, w > 0) of those of (3.134). Amongst these, we must pick out those in

L2] ≠ 1, 1[. Since De has compact resolvent we already know that they exist only for a

countable number of values of ⁄. We will not seek the exact condition for this, but, a

simple analysis of the behaviour of the solutions near a point where w = 0 will enable us

to see that the subspace of L2] ≠ 1, 1[ solutions is at most of dimension 2. To this end, we

switch to local coordinates defined around such a point, say, (≠1, 0). In fact, again using

the Implicit Function Theorem, one can choose w as local coordinate on a neighbourhood
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of (≠1, 0), the equation then becomes:

Ò

∆◊zΓ
2Dwf ≠ i

2

A

≠a2l2 zwÔ
∆◊

+
z

w

B

Γ
2f +

AÔ
∆◊

w
n +

a2wÔ
∆◊

l2r2
e ≠ 1

r2
e + a2

p

B

Γ
3f

≠ aw

Ô
∆◊

2fl2
e

“̃f + flemΓ
0f ≠ ⁄f = 0. (3.135)

(3.135) has a singular-regular point at w = 0 32, hence, one can apply the Frobenius

method, i.e. there are solutions of the form f(w) = w– q

k akwk. Plugging this anstaz

into (3.135) we find that a0 must be in the null space of the map:

M(–) = i(– +
1

2
)Γ2 + nΓ

3. (3.136)

The kernel is non-trivial only if – satisfies:

(– ≠ n +
1

2
)2(– + n +

1

2
)2 = 0. (3.137)

For each solution to (3.137), the kernel of M(–) is of dimension 2, and so one can generate

two linearly independent solutions for each – 33. Only – = |n| ≠ 1
2

can yield square

integrable solutions to (3.132), thus it follows that:

Lemma 3.6.3. In the notations of this paragraph, if n œ Z + 1
2

and ⁄ œ ‡(Dn
e ), then

dim E⁄ Æ 2.

We now complete the proof of Lemma 3.4.3 ; the eigenequation S̃Âk,n = ⁄kÂk,n is

the special case of (3.132), where re = p = m = 0. In this case, the equation has

another symmetry that amounts to saying that Γ2 and Γ3 anti-commute with the matrix

P =

Q

a
0 I2

I2 0

R

b. Hence, P , like Γ1, is an isometry of E⁄ onto E≠⁄, however for any

u œ C
4 \ {0}, Pu and Γ1u are linearly independent, so that we must have equality in

Lemma 3.6.3. The form of the solutions follows from the block diagonal form of the

equations.

32. see [Inc56]
33. Note that, since the roots of (3.137) differ by a positive integer, the anstaz will need to be modified

to include possible logarithmic terms in the solution when α = ≠|n| ≠ 1

2
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A reduction of He

Denote now:

— ‡(De) fi {0} = (µk)kœZ, enumerated such that µ≠k = ≠µk, for each k œ Z.

— For each k œ Z, J(k) the set of integers q œ Z such that µk is an eigenvalue for

D
q+ 1

2
e ; note that also J(k) = J(≠k).

— If k œ Z, q œ J(k), Ek,q the spectral subspace of the eigenvalue µk of D
q+ 1

2
e . By

convention, if 0 ”œ ‡(De), we set J(0) = {0} and E0,0 = {0}.

— For each k œ N
ú and fixed q œ J(k), Ẽk,q = L2(R) ¢ (Ek,q

‹ü E≠k,q).

— Ẽ0,q = L2(R) ¢ E0,q, q œ J(0)

The subspaces Ẽk,q are, by construction, stable under the action of He and:

H =
n

kœN,qœJ(k)

Ẽk,q.

Now, let k œ N
ú, q œ J(k), if (ei)iœJ1,dim Ek,qK is an orthonormal basis for Ek,q, then

(Γ1ei)iœJ1,dim Ek,qK is an orthonormal basis of E≠k,q and so, since Ek,q and E≠k,q are orthog-

onal, one can concatenate these two bases to obtain an orthonormal basis Ek,q ü E≠k,q.

This enables us to identify, isometrically, Ẽk,q with [L2(R)]2 dim Ek,q via the natural isomor-

phism:

((ui)iœJ1,dim Ek,qK, (vi)iœJ1,dim Ek,qK) ‘≠æ
dim Ek,qÿ

i=1

(ui + viΓ
1)ei.

Through this isomorphism, the restriction, Hq,n
e of He to Ẽk,q corresponds to the following

operator:

ΓDú
r + µkg(rú)Γ̃ + f(rú),

where Γ =

Q

a
0 Idim Ek,q

Idim Ek,q
0

R

b , Γ̃ =

Q

a
Idim Ek,q

0

0 ≠Idim Ek,q

R

b and satisfy the impor-

tant property that {Γ, Γ̃} = 0. It is easily seen to be unitarily equivalent to:

Γ
1Dú

r ≠ µkg(rú)Γ2 + f(rú) if dim Ek,q = 2,

≠‡zDú
r + µkg(rú)‡x + f(rú) if dim Ek,q = 1.

(3.138)

If 0 œ ‡(De) then, dim E0,q œ {1, 2}, for any q œ J(0) and through the natural identi-

fication described above is of the form ΓDrú + f(rú) where Γ here is just some unitary
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matrix. This is in all points analogous to (3.53), and we will now be able to complete the

scattering theory in a unified fashion. It also follows that He has no eigenvalues by the

same Grönwall lemma argument that was used for H0 in Section 3.5.10. In short we have:

Lemma 3.6.4. ‡(He) = ‡ac(He), consequently, Pc(He) = Id.

3.6.5 The spherically symmetric operators

The final step required in order to obtain the full scattering theory is to compare

He and H0 to their natural asymptotic profiles, Γ1Drú + c± at rú æ ±Œ respectively;

c+ = ap
r2

++a2 ≠ ap
r2

e+a2 and c≠ = 0.

In the previous paragraph, we established that the Hilbert space H could be decom-

posed into an orthogonal sum of stable subspaces on which He reduces to a spherically

symmetric operator ; this was also shown to be the case of H0 in Section 3.4.3. Con-

sequently, in order to construct wave operators, we only need to work on one of these

subspaces. Additionally, the similarities between the reduced forms of He and H0 imply

that we, in fact, only need to know how to construct the wave operators for 34:

h = Γ
1Drú ≠ µg(rú)Γ2 + f(rú), (3.139)

on [L2(R)]4, and under the assumption that we have minimal/maximal velocity estimates.

This is manifestly the case for our operators because the estimates are stable under

restriction to a stable subspace.

The important point is that the operator h in (3.139) is formally similar to the restric-

tion to a spherical harmonic of the (charged) Dirac operator of the Reissner-Nordström

black hole given in [Dau10, Equation 3.6]. The extreme black hole horizon (rú æ Œ)

can be assimilated with spacelike infinity and the symbols f , g have the same asymptotic

behaviour at both infinities as the corresponding ones in [Dau10, Equation 3.6]. It follows

that we can apply the results of [Dau10] to our case. We note that, in fact, our operator is

simpler than the one studied in [Dau04; Dau10] since there are no surviving mass terms.

Precisely, using [Dau10, Propositions 5.6 and 5.7] we find that:

Proposition 3.6.2 (Microlocal velocity estimate). Let ‰ œ CŒ
0 (R) be such that supp ‰fl

{0} = ÿ and choose 0 < ◊1 < ◊2, then there is a constant C > 0 such that for any

34. We choose to discuss the case where dim Ek,q = 2, but the reasoning is independent of this choice.
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u œ [L2(R)]4:

⁄ +Œ

1

.

.

.

.

.
1[◊1,◊2](

|rú|

t
)(Γ1 ≠ rú

t
)‰(h)e≠ithu

.

.

.

.

.

2
dt

t
Æ C||u||2. (3.140)

Furthermore:

s – lim
tæ+Œ

1[◊1,◊2](
|rú|

t
)(Γ1 ≠ rú

t
)‰(h)e≠ith = 0. (3.141)

Analogous results can be established at t æ ≠Œ, but one must replace Γ1 with ≠Γ1.

For the specific treatment of our operators, due to the lack of mass terms, it is possible

to simplify the proofs in [Dau10], avoiding in particular the use of pseudo-di�erential

operators. We shall proceed to show this.

The proof of Proposition 3.6.2 will be split into two cases. First, we will restrict to the

part of the field that is escaping towards the simple horizon, this part of the proof is in

all point analogous to Daudé’s:

Proof of Proposition 3.6.2, first case . Instead of (3.140), let us seek to estimate:

⁄ +Œ

1

.

.

.

.F (
rú

t
)(Γ1 ≠ rú

t
)‰(h)e≠ithu

.

.

.

.

2 dt

t
Æ C||u||2, (3.142)

where F œ CŒ
0 (R), F © 1 on a neighbourhood of [◊1, ◊2] and ‰, ◊1, ◊2 satisfy the hypotheses

of Proposition 3.6.2; the conditions on F restrict to the region rú > 0. It is enough to

assume that [◊1, ◊2] is a neighbourhood of [Á‰, 1], for this covers the region where we lack

information. Now define for each t Ø 1:

„(t) = ‰(h)F (
rú

t
)

3

R(
rú

t
) + (Γ1 ≠ rú

t
)RÕ(

rú

t
)
4

F (
rú

t
)‰(h).

R œ CŒ
0 (R) is assumed to satisfy RÕ © 0 on a neighbourhood of 0 and R(rú) = rú2

2
on

supp F . „ is uniformly bounded in t and:

„Õ(t) = ≠ 1

t
‰(h)

rú

t
F Õ(

rú

t
)

3

R(
rú

t
) + (Γ1 ≠ rú

t
)RÕ(

rú

t
)
4

F (
rú

t
)‰(h)

≠ 1

t
‰(h)F (

rú

t
)

3

R(
rú

t
) + (Γ1 ≠ rú

t
)RÕ(

rú

t
)
4

rú

t
F Õ(

rú

t
)‰(h)

≠ 1

t
‰(h)F (

rú

t
)

3

(Γ1 ≠ rú

t
)
rú

t
RÕÕ(

rú

t
)
4

F (
rú

t
)‰(h).

(3.143)
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Moreover:

i[h, „(t)] =‰(h)
3

F (
rú

t
)(≠iµ)g(rú)[Γ2, Γ

1]RÕ(
rú

t
)F (

rú

t
)
4

‰(h)

+
1

t
‰(h)Γ1F Õ(

rú

t
)

3

R(
rú

t
) + (Γ1 ≠ rú

t
)RÕ(

rú

t
)
4

F (
rú

t
)‰(h)

+
1

t
‰(h)F (

rú

t
)

3

R(
rú

t
) + (Γ1 ≠ rú

t
)RÕ(

rú

t
)
4

Γ
1F Õ(

rú

t
)‰(h)

+
1

t
‰(h)F (

rú

t
)Γ1(Γ1 ≠ rú

t
)RÕÕ(

rú

t
)F (

rú

t
)‰(h).

(3.144)

So the Heisenberg derivative of „ is :

Dh„(t) =
1

t
‰(h)(Γ1 ≠ rú

t
)F Õ(

rú

t
)

3

R(
rú

t
) + (Γ1 ≠ rú

t
)RÕ(

rú

t
)
4

F (
rú

t
)‰(h)

+
1

t
‰(h)F (

rú

t
)

3

R(
rú

t
) + (Γ1 ≠ rú

t
)RÕ(

rú

t
)
4

F Õ(
rú

t
)(Γ1 ≠ rú

t
)‰(h)

+ ‰(h)F (
rú

t
)(≠iµg(rú))[Γ2, Γ

1]RÕ(
rú

t
)F (

rú

t
)‰(h)

+
1

t
‰(h)F (

rú

t
)(Γ1 ≠ rú

t
)RÕÕ(

rú

t
)(Γ1 ≠ rú

t
)F (

rú

t
)‰(h)

(3.145)

Consider the first term, and let F̃ œ CŒ
0 (R) be such that supp F̃ µ] ≠ Œ, ◊1[ fi [◊2, +Œ[

and F̃F Õ = F Õ on supp F Õ. It can now be written: 1
t
‰(h)F̃ ( rú

t
)B(t)F̃ ( rú

t
)‰(h), where B(t)

is uniformly bounded, so, there is a constant M > 0 such that:

1

t
‰(h)(Γ1 ≠ rú

t
)F Õ(

rú

t
)

3

R(
rú

t
) + (Γ1 ≠ rú

t
)RÕ(

rú

t
)
4

F (
rú

t
)‰(h)

Ø ≠M

t
‰(h)F̃ 2(

rú

t
)‰(h).

Moreover, according to the minimal and maximal velocity estimates, there is C > 0 such

that for any u œ [L2(R)]4:

⁄ +Œ

1

.

.

.

.F̃ (
rú

t
)‰(h)e≠ihtu

.

.

.

.

2 dt

t
Æ C||u||2.

The same reasoning applies for the second term. The third term is treated in the following

manner: g œ S1,1, which means in particular that: g(rú) = O
rúæ+Œ

(rú≠2), thus:

‰(h)F (
rú

t
)µg(rú)i[Γ1, Γ

2]RÕ(
rú

t
)F (

rú

t
)‰(h) Ø ≠M1

t2
‰(h)F (

rú

t
)2‰(h),
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for some M1 > 0, and one certainly has:

⁄ +Œ

1

.

.

.

.F (
rú

t
)‰(h)e≠ihtu

.

.

.

.

2 dt

t2
Æ C1||u||2,

for any u œ [L2(R)]4 and some constant C1 > 0. The desired estimate follows because

RÕÕ = 1 on supp F and „ is uniformly bounded, we refer to [DG97, Lemma B.4.1] for the

details.

The argument used to treat the third term in (3.145) will not go through at the double

horizon, simply because the potential g(rú)Γ2 is of Coulomb type. This was, of course,

already the case at spacelike infinity in the Reissner-Nordström case. The origin of this

troublesome term is simply the matrix-valued coe�cients of our operator and the simple

fact that [Γ1, Γ2] is non-zero. However, rather large spectral subspaces of h0 sit in one of the

spectral spaces of Γ1 and, restricted to these subspaces, the commutator is zero. This will

turn out to be su�cient to conclude, since the Coulomb decay is enough for the Hel�er-

Sjöstrand formula to enable a control of operators of the form F ( rú

t
)(‰(h0) ≠ ‰(h)). This

rough idea is made very precise thanks to the notion of locally scalar operators introduced

in [GM01]. The definition is as follows:

Definition 3.6.1. Let E be a finite-dimensional complex Hilbert space and l : R æ B(E)

a continuous function such that l(p) is symmetric for any p œ R. Define the operator

L0 = l(Dx) on L2(R) ¢ E, then, L0 is said to be scalar on an open subset I µ R if there

is a Borel function µ : R æ R such that:

L01I(L0) = µ(Dx)1I(L0). (3.146)

If ⁄ œ R, L0 is said to be scalar at ⁄, if the above holds on some open neighbourhood of

⁄. Finally, L0 is locally scalar on an open set I if and only if it is scalar at every point in

I.

The authors of [GM01] had Dirac operators in mind as the main application of their

theory and so it is no surprise that our 1-dimensional Dirac operators Γ1Drú + c± satisfy

the hypothesis of the definition. We will nevertheless work out the details and show that

they are locally scalar on R\{c±}; as it is a good illustration of the terms in the definition.

The most direct 35 way to do this is to use the Fourier transform and work with the matrix-

35. and informative
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valued multiplication operators Γ1p + c±. For each p this is a diagonal hermitian matrix

that has only two eigenvalues |p| + c± and ≠|p| + c±.

Let ⁄ œ R \ {c±} and let I µ R \ {c±} be any open interval containing ⁄, then, since

I is connected, Ifl]c±, +Œ[= ÿ or Ifl] ≠ Œ, c±[= ÿ. Suppose the latter, then 1I(Γ1p + c±)

acts on u œ L2(R) ¢ E by projecting u(p) onto the eigenspace of the eigenvalue |p| + c± of

the matrix Γ1p+c± for each p. Therefore, (Γ1p+c±)1I(Γ1p+c±) = (|p|+c±)1I(Γ1p+c±),

which, after returning to the original representation, equates to:

(Γ1Drú + c±)1I(Γ1Drú + c±) = (|Drú| + c±)1I(Γ1Drú + c±).

This does not hold on any neighbourhood of c± for there would always be two distinct

eigenvalues.

Now, let L0 be scalar on some interval I and define:

ΩI = {p œ R, ‡(l(p)) fl I ”= ÿ}, (3.147)

where, ‡(l(p)) denotes the spectrum of the operator l(p). Then, in fact, the function

µ in (3.146) can be chosen arbitrarily on R \ ΩI ; this is clear in the Fourier transform

representation: 1I(l(p)) acts on u œ L2(R) ¢ E according to:

(1I(l(p))u)(p) =
ÿ

⁄œ‡(l(p))

1I(⁄)P⁄(l(p))u(p), p œ R,

where P⁄ denotes projection onto the ⁄-eigenspace of the matrix l(p). Consequently, if

p œ R \ ΩI then (1(l(p))u)(p) = 0.

To see how to exploit this remark, let us study ΩI in the specific case of our Dirac

type operators; where we have already seen that µ(p) = |p| + c±. To determine ΩI choose

⁄ œ]c±, +Œ[ and Á > 0 such that I =]⁄ ≠ Á, ⁄ + Á[µ ]c±, +Œ[, then :

Ω(I) = {p œ R, ||p| ≠ (⁄ ≠ c±)| < Á}.

This is the union of two disjoint subsets on each side of 0, one can therefore assume that

outside of ΩI , µ(p) is extended to a function µ œ CŒ
0 (R) and in this case we will also

have:

Γ
11I(Γ1Drú + c±) = µÕ(Dx)1I(Γ1Drú + c±)

Again µÕ can be replaced with ‹(p) = p
|p|

’(p) where ’ œ CŒ(R), ’(p) = 1 outside a small
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neighbourhood of 0 and ’(p) = 0 on a neighbourhood of 0. On this subspace, the operator

is reduced to a pseudo-di�erential operator with symbol ‹(p).

We now have the tools necessary to complete the proof at the double horizon, although,

we will not need to exploit the above remark to its full extent, contrary to [Dau10], since

the mass terms do not survive at the double horizon. We therefore propose a simpler

proof, slightly di�erent in spirit, in which the aim is to pinpoint exactly at which moment

the locally scalar properties of the operator intervene.

Let ◊1, ◊2 and ‰ be as before, and, this time choose, F œ CŒ
0 (R) identically equal to 1

on [≠◊2, ≠◊1], to single out the double horizon. Without loss of generality, we can assume

that supp ‰ is a closed interval of R. Choose now, a connected open neighbourhood I of

supp ‰ disjoint from 0, and suppose, say, that I µ]0, +Œ[ (the other case is identical),

then h0 = Γ1Drú is scalar on I. Finally, let ‰̃ œ CŒ
0 (R) such that supp ‰ µ supp ‰̃ µ I

and ‰̃ = 1 on a neighbourhood of supp ‰.

Proof of Proposition 3.6.2, second case . Now, the proof begins exactly as before, but we

treat the term with g(rú) more carefully, recall its expression:

‰(h)F (
rú

t
)µg(rú)i[Γ1, Γ

2]RÕ(
rú

t
)F (

rú

t
)‰(h) = ≠2i‰(h)F (

rú

t
)µg(rú)RÕ(

rú

t
)F (

rú

t
)Γ2

Γ
1‰(h).

It is straightforward to see that:

‰(h)F (
rú

t
)µg(rú)RÕ(

rú

t
)F (

rú

t
)Γ2

Γ
1‰(h) = ‰(h)F (

rú

t
)µg(rú)RÕ(

rú

t
)F (

rú

t
)Γ2

Γ
1‰̃(h0)‰(h)

+ ‰(h)F (
rú

t
)µg(rú)RÕ(

rú

t
)F (

rú

t
)Γ2

Γ
1(‰̃(h) ≠ ‰̃(h0))‰(h).

The second term is O(t≠2) because RÕ( rú

t
) = rú

t
on supp F , rúg(rú) = O(1) and F ( rú

t
)(‰̃(h)≠

‰̃(h0)) is O(t≠1). The first term can be decomposed further as follows:

‰(h)F (
rú

t
)µg(rú)RÕ(

rú

t
)F (

rú

t
)Γ2

Γ
1‰̃(h0)‰(h) =

‰(h)[‰̃(h), F (
rú

t
)µg(rú)RÕ(

rú

t
)F (

rú

t
)]Γ2

Γ
1‰̃(h0)‰(h)

+ ‰(h)F (
rú

t
)µg(rú)RÕ(

rú

t
)F (

rú

t
)(‰̃(h) ≠ ‰̃(h0))Γ

2
Γ

1‰̃(h0)‰(h)

+ ‰(h)F (
rú

t
)µg(rú)RÕ(

rú

t
)F (

rú

t
)‰̃(h0)Γ

2
Γ

1‰̃(h0)‰(h) (3.148)

The first and second terms are O(t≠2) using the Helffer-Sjöstrand Formula, the last term, 
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on the other hand vanishes. To see this, let us study:

‰̃(h0)Γ
2
Γ

1‰̃(h0) = ‰̃(h0)1I(h0)Γ
2
Γ

11I(h0)‰̃(h0).

Via Fourier transform, 1I(h0)Γ
2Γ11I(h0) is unitarily equivalent to the matrix-valued mul-

tiplication operator: 1I(Γ1p)Γ2Γ11I(Γ1p), however, for p œ ΩI :

1I(Γ1p)Γ2 p

|p|
1I(Γ1p) = 1I(Γ1p)Γ2

Γ
11I(Γ1p),

= ≠1I(Γ1p)Γ1
Γ

21I(Γ1p) = ≠1I(Γ1p)Γ2 p

|p|
1I(Γ1p).

Hence, all terms in the above equality vanish; Proposition 3.6.2 follows.

The first consequence of (3.140) is:

Lemma 3.6.5. Let ‰ œ CŒ
0 (R), such that 0 ”œ supp ‰, and let 0 < ◊1 < ◊2, then

s – lim
tæ+Œ

1[◊1,◊2](
|rú|

t
)(Γ1 ≠ rú

t
)‰(h)e≠ith = 0. (3.149)

Proof. As before, assume that ◊1 < Á‰ et ◊2 > 1. It is a direct consequence of the

estimate (3.140) that, if the limit exist, it should be 0. Let F œ CŒ
0 (R) such that supp F µ

[≠◊2, ≠◊1] fi [◊1, ◊2], let us show that for any u œ D(h) the following limit exists:

lim
tæ+Œ

||F (
rú

t
)(Γ1 ≠ rú

t
)‰(h)e≠ithu||2.

The desired result follows immediately as this limit is necessarily 0. We only need to show

that the Cauchy criterion is satisfied by the above by studying the integral :

⁄ t2

t1

(u,
d
dt

eith‰(h)F (
rú

t
)2(Γ1 ≠ rú

t
)2‰(h)e≠ithu)dt, u œ D(h).

The derivative evaluates to:

(u, ‰(h)eith1

t
F Õ(

rú

t
)(Γ1 ≠ rú

t
)3F (

rú

t
)‰(h)e≠ithu)

+(u, ‰(h)eith1

t
F (

rú

t
)(Γ1 ≠ rú

t
)3F Õ(

rú

t
)‰(h)e≠ithu)

≠(u,
2

t
eith‰(h)F (

rú

t
)(Γ1 ≠ rú

t
)2F (

rú

t
)‰(h)e≠ithu)

+(u, 2eith‰(h)F (
rú

t
)µg(rú)

rú

t
i[Γ2, Γ

1]F (
rú

t
)e≠ithu).

(3.150)

160



3.6. Intermediate wave operators

In order to show that the integral is arbitrarily small as long as t1, t2 are large enough, the

first three terms are treated as at the end of the proof of Proposition 3.6.1, more precisely,

one exploits the di�erent velocity estimates according to the supports of F and F Õ; the

last term is dealt with as in the second part of the proof of Proposition 3.6.2, one again

uses the locally scalar properties to reveal that it is in fact O(t≠2) and hence integrable

on [1, +Œ].

Proposition 3.6.2 is known as a microlocal velocity estimate. It completes the asymp-

totic information about the operator rú

t
– which is itself to be thought of as an approximate

velocity operator – provided by minimal and maximal velocity estimates. For instance,

combining the three, we show that:

Corollary 3.6.1. For any J œ CŒ(R):

s – lim
tæ+Œ

eith(J(
rú

t
) ≠ J(Γ1))e≠ith = 0, (3.151)

Proof. First, by density, it is su�cient to consider J œ CŒ
0 (R). For such J , the Hel�er-

Sjöstrand formula can be used to show that the following holds for any j0 œ CŒ
0 (R):

(J(
rú

t
) ≠ J(Γ1))j0(

rú

t
) =

i

2fi

⁄

ˆz̄J̃(z)(Γ1 ≠ z)≠1
3

rú

t
≠ z

4≠1

(Γ1 ≠ rú

t
)j0(

rú

t
)dz · dz̄

= B(t)(Γ1 ≠ rú

t
)j0(

rú

t
).

The B(t) are uniformly bounded in t. By a further density argument we only need to

prove that for any ‰ œ CŒ
0 (R), 0 ”œ supp ‰:

s – lim
tæ+Œ

eith(J(
rú

t
) ≠ J(Γ1))‰(h)e≠ith = 0.

Fix ‰ and introduce a smooth partition of unity, j1, j2, j3 subordinate to the open cover:

U1 = {|x| < Á‰ ≠ ”

2
}, U2 = {|x| > 1 +

”

2
}, U3 = { Á‰ ≠ ” < |x| < 1 + ”},

where Á‰ is given by Proposition 3.5.7 and ” œ (0, 2Á‰). Then:

eith(J(
rú

t
) ≠ J(Γ1))‰(h)e≠ith =

ÿ

i

eithB(t)(Γ1 ≠ rú

t
)ji(

rú

t
)‰(h)e≠ith

The result now follows from the minimal, maximal and microlocal velocity estimates.
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3.6.6 Asymptotic velocity operators and wave operators for the

spherically symmetric operators

The first application of the results in the previous section is the proof of the existence

of asymptotic velocity operators; they are usually defined by:

J(P ±) = s – lim
tæ±Œ

eithJ(
rú

t
)e≠ith, J œ CŒ(R). (3.152)

Provided that these limits exist, one can show 36 that there is a unique operator, P ±,

possibly non-densely defined, satisfying the above, we write:

P ± = s – CŒ – lim
tæ±Œ

eith(
rú

t
)e≠ith.

We prove the following lemma:

Lemma 3.6.6. The following limits exist:

s – lim
tæ±Œ

eith
Γ

1e≠ith.

Proof. As usual, we will only discuss the t æ +Œ case. By density, one only needs to

prove the existence of:

s – lim
tæ±Œ

eith‰(h)Γ1‰(h)eith,

for any ‰ œ CŒ
0 (R) such that {0} ”œ supp ‰. Furthermore, as in the proof of Proposi-

tion 3.6.1, Proposition 3.5.7 implies that it is su�cient to prove the existence of:

s – lim
tæ±Œ

eith‰(h)j(
rú

t
)Γ1‰(h)eith,

where j œ CŒ(R) is a bounded function that vanishes on a neighbourhood of 0 and such

that supp jÕ µ (≠Á‰, Á‰) with Á‰ given by Proposition 3.5.7. We apply Cook’s method and

calculate the derivative on D(h), one finds:

eith‰(h)
3

1

t
Γ

1(Γ1 ≠ rú

t
)jÕ(

rú

t
) + i[Γ2, Γ

1]g(rú)j(
rú

t
)
4

‰(h)e≠ith.

The first term can be treated again as in the proof of Proposition 3.6.1, the second requires

a bit more e�ort, but the method is essentially that of Proposition 3.6.2. First, without

36. see for example the appendices in [DG97].
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loss of generality assume that supp ‰ is a closed interval contained in, say (0, +Œ), and

let ‰̃ œ CŒ
0 (R) satisfy supp ‰ µ supp ‰̃ µ (0, +Œ), ‰‰̃ = ‰. Introduce equally a partition

of unity j0, j1 such that j1(s) = 1 for s > 2 and vanishes for s < 1. Then:

i[Γ2, Γ
1]g(rú)j(

rú

t
) = i[Γ2, Γ

1]g(rú)j0(
rú

t
)j(

rú

t
) + i[Γ2, Γ

1]g(rú)j1(
rú

t
)j(

rú

t
).

g(rú)j1(
rú

t
)j( rú

t
) = O(t≠2) so the second term is integrable.

Now:

‰(h)2iΓ2
Γ

1g(rú)j0(
rú

t
)j(

rú

t
)‰(h) = ‰(h)‰̃(h0)2iΓ2

Γ
1g(rú)j0(

rú

t
)j(

rú

t
)‰(h)

+‰(h)(‰̃(h) ≠ ‰̃(h0))j0(
rú

t
)j(

rú

t
)2iΓ2

Γ
1g(rú)‰(h),

Again, the second term is O(t≠2) and the first has to be further decomposed:

‰(h)‰̃(h0)Γ
2
Γ

1g(rú)j0(
rú

t
)j(

rú

t
)‰(h) =‰(h)‰̃(h0)Γ

2
Γ

1g(rú)j0(
rú

t
)j(

rú

t
)‰̃(h)‰(h),

=‰(h)‰̃(h0)Γ
2
Γ

1[g(rú)j0(
rú

t
)j(

rú

t
), ‰̃(h)]‰(h)

+ ‰(h)‰̃(h0)Γ
2
Γ

1(‰̃(h) ≠ ‰̃(h0))g(rú)j0(
rú

t
)j(

rú

t
)‰(h)

+ ‰(h)‰̃(h0)Γ
2
Γ

1‰̃(h0)g(rú)j0(
rú

t
)j(

rú

t
)‰(h).

The last term vanishes, and one can use the Hel�er-Sjöstrand formula to show that the

others are O(t≠2).

Corollary 3.6.1 can now be used to show the existence of asymptotic velocity operators

which are defined as the limits 37:

P ± = s – CŒ – lim
tæ±Œ

eith rú

t
e≠ith.

In Lemma 3.6.6, we showed the existence of: s – lim
tæ±Œ

eith(±Γ
1)e≠ith, consequently:

P ± = s – lim
tæ±Œ

eith(±Γ
1)e≠ith,

‡(P ±) = {≠1, 1}.
(3.153)

37. See the appendices of [DG97]
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3.6.7 Modified wave operators in the spherically symmetric case

The final stage of the construction is to prove the existence of the (modified) operators

in the spherically symmetric case. Here, the operators P ± can be used to distinguish

between the incoming and outgoing states instead of cut-o� functions. The simplicity of

their spectrum means in particular that:

H = Hin ü Hout,

where: Hin = 1{≠1}(P
±), Hout = 1{1}(P

±).

At the simple horizon, the asymptotic dynamics is given by h1 = Γ1Drú+
3

a
r2

++a2 ≠ a
r2

e+a2

4

p.

The di�erence between this and the operator h is short range when rú æ +Œ. Hence,

the existence of the wave operators on Hout can be shown in exactly the same manner as

that of (3.128).

At the double horizon, it is necessary to modify slightly the comparison dynamics in

order to take into account the long range potentials, as in [Dau10], we choose to use the

Dollard [DV66] modification; in particular, the existence of the modified wave operator is

contained in the results presented in [Dau10, Sections VII.B (Theorem 7.2), VII.C].

We briefly recall the main idea of the Dollard modification. We seek to compare h =

Γ1Drú ≠ µg(rú)Γ2 + f(rú) to h0 = Γ1Drú on Hin. Several remarks are in order: both the

potentials are long-range near the double horizon and {Γ2, h0} = 0. This anti-commutation

property means that the corresponding term can be thought of as an “artifical” long-

range term; it is no obstruction to the existence of wave operators. This is perhaps best

understood by looking at h2:

h2 = D2
rú + µ2g(rú)2 + f(rú)2 + Γ1{Drú , f(rú)} ≠ 2µf(rú)g(rú)Γ2

≠ µ {Γ
1, Γ

2}
¸ ˚˙ ˝

=0

g(rú)Drú + iµgÕ(rú)Γ1
Γ

2.

We observe that there are no surviving long-range times containing g.

The main idea of the Dollard modification can be explained as follows: if the potential

f(rú) commuted with h0, one could expect on a purely formal level that:

eihte≠if(rú)te≠ih0t = ei(h0≠µg(rú)Γ2)te+if(rú)te≠if(rú)te≠ih0t

= ei(h0≠µg(rú)Γ2)te≠ih0t.
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Hence, modifying the asymptotic dynamics with eitf(rú) would enable us to construct a

wave operator. Now, of course f does not commute with h0, but, Proposition 3.6.2 and

Corollary 3.6.1 suggest that, in some sense, rú ¥ Γ1t when t æ +Œ, therefore it could

be a good idea to attempt to approximate f(rú) with f(Γ1t), which does commute with

h0! We are therefore lead to try the above reasoning with the dynamics U(t, t0) generated

by f(tΓ1). In fact, the comparison only interests us for rú < 0, so we will consider the

dynamics generated by f̃(tΓ1) = j(tΓ1)f(tΓ1) where j œ CŒ(R) is a smooth cut-o�

function satisfying j(s) = 0 if s > 1 and j(s) = 1 if s < 1
2
. Since t ‘æ f̃(tΓ1) = V (t) is

uniformly bounded in t, U(t, t0) of this time-dependent operator is given by the Dyson

series, or, time-ordered exponential:

U(t, t0) =
+Œÿ

n=0

(≠i)n

n!

⁄

[t0,t]n
T (V (t1)V (t2) . . . V (tn))dtn . . . dt1

= T exp
3

(≠i)
⁄ t

t0

V (s)ds
4

.

In the above, the operator T denotes time ordering of the operators which is defined as:

T (V (t1) . . . V (tn)) =
ÿ

‡œSn

1(t‡(1) > t‡(2) > · · · > t‡(n))V (t‡(1)) . . . V (t‡(n)).

The uniform-boundedness of the operators V (t) implies that this expansion converges in

norm. We quote its main properties, let (t, s, t0) œ R
3:

d
dt

U(t, t0) = ≠iV (t)U(t, t0), U(t, t) = Id,

d
ds

U(t, s) = iU(t, s)V (s), U(t, t0) = U(t, s)U(s, t0).

Set U(t) = U(t, 0), then according to [Dau10, Section 7.2]:

Proposition 3.6.3. The following limits exist:

s – lim
tæ±Œ

eithe≠ith11{1}(±Γ
1),

s – lim
tæ±Œ

eith1e≠ith1{1}(P
±),

s – lim
tæ±Œ

eithU(t)e≠ith01{≠1}(±Γ
1),

s – lim
tæ±Œ

eith0U(t)úeith1{≠1}(P
±).

(3.154)
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Once more, we note that the proof in [Dau10, Section 7.2] is complicated by the presence

of a mass term absent from our operators. To illustrate this we shall prove the existence

of:

s ≠ lim
tæ +Œ

eithU(t)e≠ith01{≠1}(Γ
1). (3.155)

Proof of the existence of (3.155). The asymptotic velocity operator is simply Γ1 for h0

which is the reason why we use it to split incoming and outgoing states for h0. The

first step is to replace the projection with an operator that is more convenient to work

with. First of all, for any J œ CŒ
0 (R) such that, supp J µ (≠Œ, 0) and J(≠1) = 1,

J(Γ1) = 1{≠1}(Γ
1). Furthermore for each t, one has:

eithU(t)J(
rú

t
)e≠ith0 = eithU(t)e≠ith0(eith0J(

rú

t
)e≠ith0 ≠ J(Γ1))

+ eithU(t)e≠ith0J(Γ1).
(3.156)

Now, eithU(t)e≠ith0 is uniformly bounded in t so applying 38 Corollary 3.6.1 to h0, we find

that the strong limit of the first term exists and is 0, so, using another classical density

argument we only need to prove the existence of:

s ≠ lim
tæ+Œ

eithU(t)J(
rú

t
)e≠ith0‰(h0),

for any ‰ œ CŒ
0 (R), 0 ”œ supp ‰, this in particular implies that ‰ © 0 on a neighbourhood

of 0. Once more, we use Cook’s method and to that end we calculate the derivative; one

finds:
eith

3

iJ(
rú

t
)(≠µ)g(rú)Γ2 +

1

t
J Õ(

rú

t
)(Γ1 ≠ rú

t
)
4

‰(h0)U(t)e≠ith0

+eith
3

iJ(
rú

t
)f(rú) ≠ iJ(

rú

t
)f̃(tΓ1)

4

‰(h0)U(t)e≠ith0 .

The term involving J Õ can be treated by the second method explained in the proof of

Proposition 3.6.1; we will not repeat the reasoning here.

Let us examine the first term:

T1 = eith(iJ(
rú

t
)(≠µ)g(rú)Γ2e≠ith0U(t)‰(h0),

where we have used the fact that Γ1 commutes with h0, hence U(t) commutes with

38. although it is simpler for h0
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‰(h0) and e≠ith0 . Since Γ2 anti-commutes with Γ1, Γ2U(t) = Ũ(t)Γ2, where 39 Ũ(t) =

T exp(if̃(≠Γ1t)), so one can rewrite T1 as follows:

T1 = eithiJ(
rú

t
)(≠µ)g(rú)Ũ(t)e≠ith0eith0Γ

2e≠ith0‰(h0).

Set E(t) =
s t

0 eish0Γ2e≠ish0‰(h0)ds. Γ2 anti-commutes with h0, therefore:

E(t) = Γ
2

⁄ t

0
e≠2ish0‰(h0)ds.

However, it follows from the bounded functional calculus that:

.

.

.

.

⁄ t

0
e≠2ish0‰(h0)ds

.

.

.

. = sup
⁄œR

-
-
-
-

⁄ t

0
e≠2is⁄‰(⁄)ds

-
-
-
- .

Since ‰ © 0 on a neighbourhood of 0, this is finite and bounded independently of t, so

E(t) is a uniformly bounded function of t. Now, for any t1, t2 Ø 1,

⁄ t2

t1

T1(t)dt =
5

eithiJ(
rú

t
)(≠µ)g(rú)Ũ(t)e≠ith0E(t)

6t2

t1

≠
⁄ t2

t1

ˆt

3

eith(iJ(
rú

t
)(≠µ)g(rú)Ũ(t)e≠ith0

4

E(t)dt (3.157)

Since J vanishes on a neighbourhood of 0, and E(t) is uniformly bounded, the term in

the squared brackets vanishes as t1, t2 æ +Œ:

.

.

.

.eithiJ(
rú

t
)(≠µ)g(rú)Ũ(t)e≠ith0E(t)

.

.

.

. = O
3

|g(rú)|J(
rú

t
)
4

= O
3

1

t

4

.
(3.158)

Additionally, due to the further derivative, the integrand in the second term is O(t≠2) and

hence integrable. It remains to treat the final terms:

T2 = eith
3

iJ(
rú

t
)f(rú) ≠ iJ(

rú

t
)f̃(tΓ1)

4

‰(h0)U(t)e≠ith0 .

39. The operators under consideration here are all bounded, the series defining U (t) converges in norm

and f̃  is continuous and bounded, so one only needs to check the anti-commutation property on polyno-
mials.
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Notice first that, supp J µ (0, ≠Œ), so J( rú

t
) = J( rú

t
)j(rú) and:

T2 = eithiJ(
rú

t
)

1

f̃(rú) ≠ f̃(tΓ1)
2

‰(h0)U(t)e≠ith0 .

It follows from (3.43) and the subsequent remarks that f̃ œ S1,1, and one can use the

Hel�er-Sjöstrand formula to obtain an expression for (f̃(rú)≠ f̃(tΓ1))J( rú

t
) as in the proof

of Lemma 3.6.1:

(f̃(rú) ≠ f̃(tΓ1))J(
rú

t
) = B(t)(Γ1 ≠ rú

t
)J(

rú

t
),

where B is a uniformly bounded operator in t. The desired integrability result is hence a

consequence of the microlocal velocity estimate (3.140); the existence of (3.155) follows.

3.7 The full scattering theory

In the previous two sections, the original scattering problem was progressively reduced

to a one-dimensional problem via two intermediate comparisons. We discussed the proof

of the existence of a number of strong limits that are to be identified with intermediate

waves operators. In this section, we assemble these results into the scattering theory we

set out to construct; the whole construction was broken up into three comparisons as

illustrated in Figure 3.1.

H H1

He Asymptotic profiles

H0 Asymptotic profiles

Figure 3.1 – Successive comparisons

3.7.1 Comparison I

The di�erence between H1 and H being a short-range potential at both infinities, there

was no obstruction to the existence of the classical wave operators (Proposition 3.6.1):

Ω
1
± = s – lim

tæ±Œ
eitH1e≠itHPc(H),

Ω̃
1
± = s – lim

tæ±Œ
eitHe≠itH1Pc(H1).

(3.159)
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The properties of these operators are well known 40, they satisfy:

Ω̃
1
± = Ω

1
±

ú
, Ω

1
±H = H1Ω

1
±

Intertwining relation

,

Ω
1
±

ú
Ω

1
± = Pc(H), Ω

1
±Ω

1
±

ú
= Pc(H1),

(3.160)

as such they are isometries between the absolutely continuous subspaces of H and H1;

the intertwining relation shows that H and H1 are unitarily equivalent.

3.7.2 Comparison II

The second comparison was established in Section 3.6.3 and required to distinguish

between states scattering to the double horizon Hre
and those scattering to the simple

horizon Hr+ . This distinction was accomplished using smooth cut-o� functions c±, van-

ishing on a neighbourhood of ûŒ and equal to 1 on a neighbourhood of ±Œ; we will

denote by C± the subset of smooth functions with these properties. We have shown the

existence of the limits, for c± œ C±:

Ω
2
±,Hr+

= s – lim
tæ±Œ

eiH0tc+(rú)e≠iH1tPc(H1),

Ω̃
2
±,Hr+

= s – lim
tæ±Œ

eiH1tc+(rú)e≠iH0t,

Ω
2
±,Hre

= s – lim
tæ±Œ

eiHetc≠(rú)e≠iH1tPc(H1),

Ω̃
2
±,Hre

= s – lim
tæ±Œ

eiH1tc≠(rú)e≠iHet.

(3.161)

The limits are independent of the choice of c±; recall also that both He and H0 only have

absolutely continuous spectrum. [RS79, Proposition 4] shows that the ranges of both

Ω̃2
±,Hre

and Ω̃2
±,Hr+

are subsets of the absolutely continuous subspace of H1, it follows

then that:

Ω̃
2
±,Hre

= Ω
2ú

±,Hre
, Ω̃

2
±,Hr+

= Ω
2ú

±,Hr+
. (3.162)

One also has the intertwining relations on the absolutely continuous subspace of H1:

H0Ω
2
±,Hr+

= Ω
2
±,Hr+

H1, (3.163)

HeΩ
2
±,Hre

= Ω
2
±,Hre

H1. (3.164)

40. see, for example, [Lax02, Chapter 37]
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Together, Equations (3.160), (3.163) and (3.164) give:

H0Ω
2
±,Hr+

Ω
1
± = Ω

2
±,Hr+

Ω
1
±H, HeΩ

2
±,Hre

Ω
1
± = Ω

2
±,Hre

Ω
1
±H. (3.165)

Now, since the limits are independent of the choice of c± œ C±, one can always choose c±

such that c2
+ + c2

≠ = 1, consequently:

Ω
2ú

±,Hre
Ω

2
±,Hre

+ Ω
2ú

±,Hr+
Ω

2
±,Hr+

= Pc(H1). (3.166)

One could have also chosen c± such that their supports were disjoint, therefore, we

must also have:

Ω
2
±,Hre

Ω
2ú

±,Hr+
= Ω

2
±,Hr+

Ω
2ú

±,Hre
= 0. (3.167)

In other words, relation (3.166) is an orthogonal sum decomposition of the absolutely

continuous subspace of H1 and the operators (3.161) are partial isometries. We therefore

have a decomposition of Pc(H1) into incoming and outgoing states. In what follows, to

simplify notations, we consider only the direct wave operators, analogous statements can

be formulated for the reverse ones. Define:

XH1
in = (ker Ω

2
+,Hre

)‹, XH1
out = (ker Ω

2
+,Hr+

)‹.

In virtue of Equation (3.166), these subspaces have nice characterisations, indeed: XH1
in is

exactly ker Ω2
+,Hr+

fl Pc(H1)H and „ œ ker Ω2
+,Hr+

fl Pc(H1)H , if and only if :

lim
tæ+Œ

||c+(rú)e≠itH1„|| = 0,

for any c+ œ C+. In other words, the states in XH1
in are exactly those whose energy is

concentrated on R≠ at late times. Similarly, „ œ XH1
out if and only if:

lim
tæ+Œ

||c≠(rú)e≠itH1„|| = 0,

for any c≠ œ C≠. An important point is that Ω2
+,Hre

maps XH1
in onto a similar subspace

for He (and similarly at Hr+ for H0). If Â is in the range of Ω2
+,Hre

, then there is „ œ XH1
in

such that:

lim
tæ+Œ

||e≠itHeÂ ≠ c≠(rú)e≠itH1„|| = 0,

for any c≠ œ C≠. Hence for any c+ œ C+, one can choose c≠ œ C≠ with support disjoint 
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from that of c+ so that:

0 = lim
tæ+Œ

||c+(rú)e≠itHeÂ ≠ c+(rú)c≠(rú)e≠itH1„||,

= lim
tæ+Œ

||c+(rú)e≠itHeÂÎ.

Conversely, all such states are mapped into XH1
in by Ω2ú

+,Hre
.

Incoming and outgoing subspaces for He and H0 were originally defined using the

asymptotic velocity operators constructed in Section 3.6.6. These operators were con-

structed on each of the stable subspaces of the respective orthogonal sum decompositions

associated to each of the operators, they are:

P +
e = s – lim

tæ+Œ
eitHeΓ

1e≠itHe , P +
0 = s – lim

tæ+Œ
eitH0Γ

1e≠itH0 ,

and satisfy for any J œ CŒ(R):

J(P +
e ) = s – lim

tæ+Œ
eitHeJ(

rú

t
)e≠itHe ,

J(P +
0 ) = s – lim

tæ+Œ
eitH0J(

rú

t
)e≠itH0 .

(3.168)

In terms of these operators, XHe
in = Ran1R≠(P +

e ) = Ran1{≠1}(P
+
e ). Using (3.168), one

can show that XHe
in as defined above coincides exactly with the image Ω2

+,Hre
XH1

in , for

instance, for any „ œ H ,

1{≠1}(P
+
e )„ = J(P +

e )„ = lim
tæ+Œ

eitHeJ(
rú

t
)e≠itHe„,

for any J œ CŒ
0 (R) such that supp J µ (≠Œ, 0), J(≠1) = 1. Hence, for any c+ œ C+:

lim
tæ+Œ

c+(rú)e≠itHe1{≠1}(P
+
e )„ = lim

tæ+Œ
c+(rú)J(

rú

t
)e≠itHe„ = 0.

The other inclusion is proved in a similar manner, one can show for example that:

lim
tæ+Œ

c+(rú)e≠itHe„ = 0, for any c+ œ C+ ∆ „ œ Ran1{1}(P
+
e )‹. (3.169)

Indeed, let „ satisfy the condition and let Â œ Ran1{1}(P
+
e ). A similar argument to the
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one above shows that for any c≠ œ C≠:

lim
tæ+Œ

c≠(rú)e≠itHeÂ = 0.

Choose now c+ œ C+, c≠ œ C≠ such that c+ + c≠ = 1, then for t œ R:

(„, Â) = (e≠itHe„, e≠itHeÂ),

= (c+(rú)e≠itHe„, e≠itHeÂ) + (e≠itHe„, c≠(rú)e≠itHeÂ).
(3.170)

By the Cauchy-Schwarz inequality, it follows that for any t œ R:

|(Â, „)| Æ ||Â||||c+(rú)e≠itHe„|| + ||„||||c≠(rú)e≠itHeÂ||,

The right-hand side approaches 0 as t æ +Œ so that:

|(Â, „)| = 0.

We can therefore define a global wave operator from the absolutely continuous subspace

of H1 onto the external direct sum Ran1{≠1}(P
+
e ) ü Ran1{1}(P

+
0 ).

Ω2
+ : XH1

in ü XH1
out ≠æ Ran1{≠1}(P

+
e ) ü Ran1{1}(P

+
0 )

(„1, „2) ‘≠æ (Ω2
+,Hre

„1, Ω2
+,Hr+

„2).

(3.171)

3.7.3 Comparison III

Although the results in Section 3.6.5 can be used to construct a scattering theory for

He and H0 on the whole Hilbert space, the previous discussion shows that, for our needs,

it only relevant to do this on Ran1{≠1}(P
+
e ) for He and on Ran1{1}(P

+
0 ) for H0. The

asymptotic profiles are given by:

H≠Œ = Γ
1Drú ,

H+Œ = Γ
1Drú +

A

a

r2
+ + a2

≠ a

r2
e + a2

B

p.
(3.172)
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The outgoing and incoming states are identical for both of these operators and given by:

H
+ = Ran1{1}(Γ

1), H
≠ = Ran1{≠1}(Γ

1).

Due to the stability of the subspace under Γ1, He, H±Œ, the results in Section 3.6.5 prove

that the following strong limits exist:

Ω
3
+,Hr+

= s – lim
tæ+Œ

eitH+Œe≠itH01R+(P +
0 ),

Ω
3
+,Hre

= s – lim
tæ+Œ

eitH≠Œ

3

T exp
3

≠i
⁄ t

0
f̃(Γ1s)ds

44ú
e≠itHe1R≠(P +

e ),

Ω̃
3
+,Hr+

= s – lim
tæ+Œ

eitH0e≠itH+Œ1R+(Γ1),

Ω̃
3
+,Hre

= s – lim
tæ+Œ

eitHeT exp
3

≠i
⁄ t

0
f̃(Γ1s)ds

4

e≠itH≠Œ1R≠(Γ1),

One also has: Ω̃3
+,Hr+

= Ω3ú
+,Hr+

and similarly for Hre
, this gives rise to a unitary

map:
Ω3

+ : Ran1{≠1}(P
+
e ) ü Ran1{1}(P

+
0 ) ≠æ H ≠ ü H + = H

(„1, „2) ‘≠æ (Ω3
+,Hre

„1, Ω3
+,Hr+

„2).

Finally, composition of Ω1
+, Ω2

+, Ω3
+ yields a unitary map W+ between Pc(H) = XH

in üXH
out

and H , where:

XH
in = (ker Ω

2
+,Hre

Ω
1
+)‹, XH

out = (ker Ω
2
+,Hr+

Ω
1
+)‹,

given by:

W+ : XH
in ü XH

out ≠æ H ≠ ü H + = H

„1 + „2 ‘≠æ Ω3
+,Hre

Ω2
+,Hre

Ω1
+„1 + Ω3

+,Hr+
Ω2

+,Hr+
Ω1

+„2.

Remark 3.7.1. A simple application of the above result is to define the asymptotic velocity

operator for the full dynamics. It is defined by the limits for J œ CŒ(R),

J(P +) = s – lim
tæ+Œ

eiHtJ(
rú

t
)e≠iHt = W ú

+J(Γ1)W+,

Using the results discussed in Section 3.6.6, it follows that: P + = W ú
+Γ1W+.
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3.7.4 Scattering for the Dirac operator

We now return to the notations we adopted prior to Section 3.6, where we dropped

the explicit dependence of our operator Hp for notational convenience. We recall from

Section 3.4.2 that Hp coïncides with the full Dirac operator on each of the subspaces

associated with the eigenvalue p œ Z+ 1
2

of D„. The global wave operators obtained in the

previous section, although defined on all of H , also depend on the parameter p. However

the p-eigenspace is stable so that to obtain the scattering theory for the Dirac operator

one only need to reassemble each of the harmonics. Since the Dirac operator has no pure

point spectrum 41, there is no need to project onto the absolutely continuous subspace.

Therefore, we state our final theorem:

Theorem 3.7.1. For any „ =
ÿ

pœZ+ 1
2

„p(rú, ◊)eip„ œ H set:

P
+„ =

ÿ

pœZ+ 1
2

P +
p „peip„, (3.173)

then P+ is a bounded symmetric operator with spectrum {≠1, 1}, and for any J œ CŒ(R),

J(P+) = s – lim
tæ+Œ

eiHtJ(
rú

t
)e≠iHt.

Moreover, defining:

Xin = Ran 1{≠1}(P
+), Xout = Ran 1{1}(P

+),

then, H = Xin ü Xout and the operator:

W+„ =
ÿ

pœZ+ 1
2

W p
+„peip„, (3.174)

is a unitary operator such that:

W+Xin = H≠, W+Xout = H+,

41. see again [BC09]
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and for the full Dirac operator H + i a
r2

e+a2 ˆ„, with H defined by Equation (3.36):

H≠ŒW+1{≠1}(P
+) + H+ŒW+1{1}(P

+) = W+H,

with:

H+Œ = Γ
1Drú +

A

a

r2
+ + a2

≠ a

r2
e + a2

B

D„, H≠Œ = ΓDrú

3.8 Conclusion

In this paper we have proposed an analytical construction for a scattering theory for 
particules in a region situated between a double and simple horizon of an extreme Kerr-de 
Sitter blackhole. The presence of the simple horizon alone simplified the problem consid-

erably, being an obstruction to the existence of pure-point spectrum, and the existence 
of a conjugate operator in the sense of Mourre theory ruled out the possibility for any 
singular continuous spectrum. The setting was therefore ideal for an analytic scattering 
theory.

We found that, from an analytical point of view, the double horizon region was anal-

ogous to that of spacelike infinity i n K err-Newmann s pacetime. T he t heory i s i n fact 
slightly easier because the mass terms do no persist at the horizons, meaning that things 
appear to boil down to the massless case. As in this case, the reasoning hinges on the 
ability to obtain a minimal velocity estimate.

The main di�erence a nd n ovelty i s t hat t he d ouble h orizon e xacerbates t he e�ects 
of the rotation of the black hole by complicating the structure of the angular operator; 
the mass also plays a lesser role here. However, this did not prove to be an essential 
di�culty fo r th e an alytic me thods us ed in  th is pa per, wh ich is  an other il lustration of 
their robustness.

The methods used here do however have the clear disadvantage of not being very 
geometrical. In some sense, the study of the e�ects o f t he d ouble h orizon i s r educed to 
the distinction between long and short-range potentials; it would be considerably more 
satisfying to seek a proof of the results in this paper with a clearer geometrical meaning.
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Chapter 4

PROJECTIVE DIFFERENTIAL GEOMETRY

AND ASYMPTOTIC ANALYSIS

4.1 Introduction

« What is geometry ? » : It was long thought that the geometry we learn about in our

early years at school, that is, in a naive sense, the study of figures in a plane or in 3D

space, was the only sort of geometry. By this I mean that the popular sentiment amongst

anyone interested in such questions was that the basic underlying axioms, upon which

the rest of the theory is built, are so plain and clear that it would seemingly be nonsense

to exclude any of them. Of course, there was always the famous « Parallel postulate »,

which, dealing with infinity, was arguably less obvious than the others, but there was a

strong belief that, in fact, it was not an Axiom, but a Theorem that could be proved. In

the XIXth century, it was established that the « Parallel postulate » is actually logically

independent from the other axioms, and thus flourished a whole panoply of new examples

of « geometries » in which it is false, such as projective, hyperbolic or spherical geometry.

Naturally, this lead to the question of a possible common framework in which to think

about all of these examples and it was F. Klein and his Erlangen program, that gave the

answer which pervades the modern conception of geometry.

Post-Klein, geometry is the study of a (transitive) action on a set X, by a group of

« symmetries » G. Since, for a transitive action, the set X is in one-to-one correspondence

with the quotient set G/H where H is the stabiliser of any point of X, and the action is

equivalent to the natural action of G on G/H, one can first restrict to this case. In fact,

all the « classical » geometries are covered by this :

— A�ne geometry : G = A�(n) = R
n o GLn(R), H = GLn(R),

— Euclidean geometry : G = R
n o SOn(R), H = SOn(R),
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— Projective geometry : G = GLn+1(R) and:

H =

Y

]

[

Q

a
⁄ v

0 A

R

b œ GLn+1(R), ⁄ œ R
ú, A œ GLn+1(R)

Z

^

\
,

— Lorentzian geometry, G = R
n o SO+(1, n), H = SO+(1, n).

In all the above examples, G is a Lie group and H a closed subgroup of G; therefore the

quotient space G/H has a natural manifold structure. The reader may be surprised by

the groups used in our description of projective geometry, as she probably expected to see

the usual projective group GLn+1(R)/N where N is the normal subgroup formed by the

homothetic transformations of Rn+1. There is, in fact, a di�eomorphism : GLn+1(R)/H ≥=
(GLn+1(R)/N)/(H/N); the advantage of the groups above is that they are matrix Lie

groups.

E. Cartan took Klein’s program further, by defining curved versions of Klein geome-

tries, known as Cartan geometries, of which more familiar pseudo-Riemannian geometry

is actually an example. Before exploring this direction further in paragraph 4.1.1, let us

first note that on the same manifold X, it is completely possible to consider the smooth

action of di�erent groups nested in one another. In our particular case it will be inter-

esting to consider a larger group than the initial group G. This will possibly result in

reducing the number of geometric invariants, causing a probable loss of information, but,

it is sometimes the case that the weakened structure has an extension to a larger space

containing X. It is in this spirit, that in General Relativity, we sometimes seek what is

known as geometric compactifications of a pseudo-Riemannian geometry (M, g). The most

prominent example being that of conformal compactifications. In a sense to be later made

precise, a spacetime (M, g) is a curved version of Lorentzian geometry as described above.

To construct a possible conformal compactification, we weaken the geometric structure

by allowing conformal variations of the metric g æ Ω2g. The metric g itself is therefore

no longer a geometric invariant, but its conformal class [g] is. Via this operation we have

implicitly replaced the G of Lorentzian geometry by the larger conformal group C(1, n).

A conformal compactification is possible when M can be made into the interior of a

larger manifold with boundary M = M fiˆM such that the conformal class extends to the

boundary ˆM . The boundary is then referred to as the (conformal) infinity of spacetime

and one can use M to study the asymptotic behaviour of objects living in M . The reader

will find an excellent introduction to this topic in [18].

Conformal geometry is very rich, and conformal compactifications can be useful in
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the study of the wave equation. The underlying reason for this success is, in addition to

the existence of a conformally invariant Laplace operator, that the light-cone structure

remains a geometric invariant. However, for fields with mass on asymptotically flat space-

times, it is likely that this is not the right structure, because the part of the boundary

where we would want to encode the asymptotic information is generally reduced to two

points !

As a possible remedy to this drawback, in what follows we shall consider a di�erent

type of geometric compactification, first introduced in [�G14], known as a projective

compactification. The picture is very similar to the conformal case: we want to weaken

the geometric structure of (M, g), but, instead of just the light cone, we would like the set

of all oriented unparametrised geodesics to be a geometric invariant of the new geometry.

Therefore it is the Levi-Civita connection of g, rather than g itself, that will be at the heart

of our considerations. The idea is to consider the class [Òg] of all torsion-free connections

Ò̂ on TM that have the same unparametrised geodesics as Òg. We will find that, from

the perspective of Klein/Cartan, the group R
n+1 o SO+(1, n) is enlarged to SLn+1(R).

Minkowski spacetime has a projective compactification, that we will describe in Sec-

tion 4.4, and the projective infinity has a very interesting structure: it splits up into

di�erent orbits, each of which one can identify with either timelike, spacelike and lightlike

infinity, and, what is more, time-like infinity is not just a singleton. This turns out to

be characteristic of possible projective compactifications of scalar flat pseudo-Riemannian

manifolds, cf. [FG18]. It is our hope that, thanks to this, the projective compactification

will enable us to develop analogous techniques to those of conformal geometry to massive

equations on asymptotically flat spacetimes.

Other results corroborate the hope we place in projective compactifications, and in

particular, a result due to L. Hörmander [Hör97, Theorem 7.2.7] with an implicit projec-

tive flavour. Hörmander derives an asymptotic expansion of solutions to the Klein-Gordon

equation on Minkowski space time M ≥= R
1+n in which the coe�cients are only dependent

on the projective parameter x
t
, which leads us to believe that they can be interpreted in

terms of the projective compactification. However, his proof relies on a decomposition of

the field into positive and negative frequency parts. This is achieved through the diago-

nalisation, in Fourier space, of the Klein-Gordon operator with domain L2(Rn) ◊ H1(Rn)

defined by:

KG =

Q

a
0 ∆ ≠ m2

1 0

R

b .
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This « diagonalisation » reduces the study of the equation ˆÂ
ˆt

= KGÂ to that of two uncou-

pled equations involving the pseudo-di�erential operators ±i
Ô

≠∆ + m2. The asymptotic

expansion results from a precise study of an integral formula for the solutions to these

equations. Precisely, Hörmander shows that if u œ S Õ(R1+n) is a solution of :

Y

]

[

ˆtu = i(≠∆ + 1)
1
2 u,

u(0, x) = Ï(x), Ï œ S(Rn),

then u(t, x) = U0(t, x) + U+(t, x)e
i
ρ , with U0 œ S(R1+n), fl = (t2 ≠ |x|2)≠ 1

2 , and 1:

U+(t, x) ≥ (+0 + ifl)
n
2

Œÿ

0

fljwj(t, x).

Setting x̃ = flx and writing the Fourier transform of Ï, Ï̂, we have furthermore:

w0(t, x) =

Y

]

[

(2fi)≠n/2
Ò

1 + |x̃|2Ï̂(≠x̃) if t2 > |x|2,

0 otherwise.

From this, we notice immediately that w0 is a function of x
t
; it can be shown that this

is also the case for wj, j > 0. Moreover, the functions (fl, x̃) define a coordinate system

on the interior of the future lightcone {t > |x|}. These coordinates are regular at fl = 0,

which can be identified with future timelike infinity in the projective compactification.

This gives further motivation to the conjecture that the coe�cients wj can be interpreted

geometrically in terms of the compactified space.

However, a major di�culty of projective geometry in the study of equations with

physical meaning, is that the connections in a projective class p = [Ò] are not necessarily

the Levi-Civita connection for some metric. Hence, unlike in conformal geometry, there

is no induced change on the metric when we change connection : g is fixed and may, or

may not, have an extension to the boundary. By consequence, once we have parted from

the physical Levi-Civita connection, not of all the operators we can write down will have

a clear-cut physical interpretation. For instance, even if Ò̂ is projectively equivalent to

the Levi-Civita connection of some metric g, then gabÒ̂aÒ̂b is not, a priori, the Laplace

operator for some other pseudo-Riemannian metric.

For a general projective class p, the presence of a Levi-Civita connection is governed

1. (+0 + iρ)n/2 = limεæ0+ exp( n
2

log(ε + iρ)) = ρn/2einπ/4 where log the Principal complex logarithm.
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by the so-called Metrisability equation [EM08]:

Òc‡
ab ≠ 2

n + 1
Òd‡d(a”b)

c = 0. (ME)

In the above, the unknown is ‡ab œ S2TM(≠2) 2. The Metrisability equation is projectively

invariant, i.e. if ‡ab satisfies (ME) for some connection Ò œ p then it satisfies it for any

connection Ò̂ in the class. When there is a solution the projective class is said to be

metric.

Any solution ‡ab to the Metrisability equation induces a symmetric bilinear form

g = ‡‡ab whose Levi-Civita connection is in the projective class. Here :

‡ = Á2
a1a2...anb1...bn

‡a1b1 . . . ‡anbn ,

and Á2
a1a2...anb1...bn

is the canonical 3 map ΛnTM ¢ ΛnTM æ E (2n + 2).

The precise geometry of solutions to (ME) and the relationship with projective com-

pactifications are studied in [FG18]. In our particular problem, we start with a Lorentzian

manifold (M, g), which leads to a solution of (ME). So we are mainly interested in the

consequences that this has, in particular, the fact that each solution ‡ab corresponds to

a section HAB of a certain « tractor » bundle. These bundles will be introduced in Sec-

tion 4.3 and we will discuss Equation (ME) in more detail in Section 4.5.1. For now, we

note simply that they can be defined as tensor powers of the 1-jet prolongation of E (1),

J1E (1) and its dual; this is the approach adopted in [BEG94; �GM14; �G14]. Our path

will be closer in spirit to Cartan’s work.

The fact that we work with a class of a�ne connections, rather than one in particular,

means that many of the expressions involving a covariant derivative that we write on TM

will not make sense on the projective manifold (M, p). This is because they will depend

on the connection used to write them down. It is sometimes possible to recover invariance

if we work with weighted tensors, as was the case in the Metrisability equation (ME).

Another example of this is the Projective Killing Equation :

Ò(avb) = 0, (4.1)

2. Recall that if B is a vector bundle on M , B(ω) is the tensor bundle B ¢ E (ω) where E (ω) is the
bundle of projective densities of weight ω œ R, cf. Definition 1.4.1.

3. Λ
nTM ¢ ΛnTM is canonically oriented, so this map exists even if M is not orientable, if M is 

oriented, then we can consider the « square » of a volume form.
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which is projectively invariant if vb œ Eb(2). Alternatively, a very important property of 
the tractor bundles is that a projective class p of a�ne connections on TM  determines an 
a�ne connexion on  them. This connection enables us  to  define an operator on projective 
densities and weighted tractors, known as the Thomas D-operator, DA, which satisfies 
the Leibniz rule and can be iterated. It is a major tool for producing projectively in-

variant di�erential operators. In particular, equipped with a  solution to the Metrisability 
equation, one can consider the operator HABDADB; a natural candidate for a projec-

tive Laplacian operator. Unfortunately, for scalar flat metrics, H AB is degenerate and the 
operator HABDADB, will contain no terms that we can assimilate to a mass.

The work presented in this final chapter are the first steps towards understanding how 
one apply these results to the asymptotic analysis of fields. The original ambition was to 
obtain a geometric proof, via methods of projective di�erential geometry, of Hörmander’s 
result in Minkowski spacetime. However, it turned out that Minkowski spacetime and, 
more generally, scalar flat metrics a re an exceptional case where a  part o f t he structure 
degenerates, and it is not quite clear as to how one can overcome the obstructions this 
entails. This realisation lead me to study in deeper detail the non-scalar flat case, where a 
number of results already exist in conformal geometry and to question to what extent there 
are projective analogues. The main bulk of this work is presented in Section 4.7 where a 
projective exterior tractor calculus is developed that enables us to obtain a formal solution 
operator for the Proca equation, extending to projective geometry results parallel to those 
developed in [GW14; GLW15] in Conformal geometry.

My understanding of the topic was significantly advanced during a  t rip t o Auckland 
in New Zealand financed by the University of Western Brittany, the Brittany region and 
ED MathSTIC to whom I express once more my gratitude.

4.1.1 Cartan geometries

In his article [Car23], E. Cartan gives an alternative definition o f a �ne connections 
to the one used in standard textbooks on Di�erential G eometry. T his d efinition is  also 
distinct, although closer in spirit, to the Principal Connection version we discussed in 
Section 1.3 : it is based on a aff(n)- valued di�erential form (as opposed to a  g ln valued 
one). The picture behind Cartan’s definition i s t o fi rst im agine at taching to  ea ch point 
of a manifold a copy of a�ne space. In  Cartan’s mind, the in formation then required to 
locally identify a small open subset of the manifold to an open subset of a�ne space is  a 
« rule » that describes how to merge into one the affine spaces attached to neighbouring
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points. Assume we assign to each point an a�ne frame, based at that point, of the space

attached to it in such a way that they vary smoothly. After merging the a�ne spaces

attached to two infinitely neighbouring points, then, the relationship between the two

frames is an a�ne transformation « infinitely close » to the Identity map : this can be

encoded in an element of aff(n), and, in fact, all the useful information of the « merging

rule » is contained in this form.

Cartan generalises these ideas to the projective group in [Car24] and later, to other

Klein geometries G/H. Over the space G/H there is a canonical structure that globally

encodes the information of the « infinitesimal transformations » described above: the

Maurer-Cartan form of G. Recall that it is the g-valued di�erential form defined for any

vector field X œ Γ(TG) by:

◊G(X)(g) = (dLg≠1)g(X).

With the canonical projection of G onto G/H, G can be seen as a smooth H-principal

fibre bundle over the base G/H, which we will think of as a frame bundle. With respect

to this structure, ◊G satisfies the following :

1. ’h œ H, Rú
h◊G = adh≠1◊G.

2. For any X œ h, the fundamental field 4 Xú satisfies:

◊G(Xú) = X.

3. For each p œ G, ◊Gp : TpG æ g is a vector space isomorphism.

4.

d◊G +
1

2
[◊G · ◊G] = 0. 5 (4.2)

To recover Cartan’s local gauge version, we can simply take a section G/H æ G, and use

it to pull-back ◊G over X. The section can be thought of as the smooth assignment of a

frame in the a�ne space attached to each of the points we mentioned in the introduction.

The above properties have a close ressemblance to Definition 1.3.6, but, ◊G is clearly

not a principal connection on G (seen as a H-principal bundle over G/H) since it maps

to g and not h. Furthermore, Condition 3 shows that at each point the kernel is {0} and

4. cf. Definition 1.3.5
5. If α, β are g valued 1-forms then for all vector fields X, Y , we set: [α · β](X, Y ) = [α(X), β(Y )] ≠

[α(Y ), β(X)] where [ , ] is the Lie bracket in g, see also Appendix C.
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so it does not define an interesting horizontal distribution.

Equation (4.2), in fact, characterises locally the manifold G/H; it is an integrability

condition. Due to this, the equation should not be imposed in the curved version: the

failure to respect this condition is a measure of curvature. We are therefore lead, to the

following definition (cf. [Sha97, Definition 5.3.1])

Definition 4.1.1. Let G be a Lie group, H a closed subgroup of G and g, h be their re-

spective Lie algebras. A Cartan geometry, (P, Ê) modeled on (G, H) is a smooth manifold

M and:

— a H-principal fibre bundle over M , (P, fi, M),

— a g-valued di�erential form, Ê, on P that satisfies :

1. for any h œ H, Rú
hÊ = adh≠1Ê,

2. for any X œ h, Ê(Xú) = X,

3. for each p œ P , Êp : TpP æ g is a vector space isomorphism.

Although the Cartan connection Ê is not a principal connection on P , it induces a principal

connection – on the associated fibre bundle Q = P ◊H G where H acts on G by left

multiplication. 6.

Note that Definition (4.1.1) has an equivalent version analogous to Definition 1.3.4:

Definition 4.1.2. Let G be a Lie group, H a closed subgroup and g, h their respective

Lie algebras. A Cartan connection on M is a family of g-valued di�erential forms, (ÊU),

associated with an open cover U of the manifold M , and a family of transition functions

hUV : U fl V æ H, U, V œ U such that ÊU xmod h : TxM æ g/h is a vector space

isomorphism for each x œ U and:

ÊV = hú
UV ◊H + adh≠1

UV
ÊU , (4.3)

where ◊H is the Maurer-Cartan form of H.

Remark 4.1.1. The definition given here is apparently more restrictive than the one

in [Sha97] because we require that the transition functions hUV be given in advance.

Sharpe [Sha97] shows that this is really superfluous when the largest normal subgroup of

G contained in H is simply {e}; if this condition is satisfied, the geometry is called an

e�ective Cartan geometry.

6. For instance, we can construct ω in local bundle charts of Q.
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4.2. Projective differential geometry

In conclusion to this introduction, we would like to explain the link between Cartan’s

notion of a�ne connection and the classical Definition 1.3.1. Suppose that P is a Cartan

geometry on a manifold M modeled on a�ne space. The key is to note that the so-called

adjoint representation of GLn(R) on affn(R) is reducible and has the following stable

direct sum decomposition :

affn(R) = gln(R) ü R
n. (4.4)

Consequently, the Cartan connection Ê can be split as: Ê = – + ÷. Since gln(R) is stable

under the adjoint action of GLn(R) on affn(R), – is actually a Principal Connection on

P . Similarly, studying the restriction of this action on the stable subspace R
n, we find

that ÷ is an equivariant 7 (Rú
g÷ = g≠1÷) and horizontal (if X œ ker dfip, ÷p(X) = 0) R

n-

valued one form 8 known as the solder form. The pair (–, ÷) is completely equivalent to Ê.

However, on the frame bundle L(TM) of the tangent bundle, there is a canonical choice

for ÷, specifically p = (x, ux) œ L(TM), X œ TpL(TM),

÷p(X) = u≠1
x (dfip(X)).

It follows that one only needs to specify a principal connection on L(TM) in order to

define an a�ne connection in Cartan’s sense. Note that this generalises mutatis mutandis

to the frame bundle of any vector bundle. Our usual a�ne connections on vector bundles

are therefore equivalent to Cartan a�ne connections, with the canonical choice of solder

form.

4.2 Projective di�erential geometry

4.2.1 The Model

Unlike Cartan we will not quite work with classical projective space per se. In fact our

model is an oriented version of projective geometry : SLn+1(R)/H. Here :

H =

Y

]

[

Q

a
(det(A))≠1 v

0 A

R

b œ SLn+1(R), A œ GL+
n (R), v œ M1,n(R) ≥= (Rn)ú

Z

^

\
. (4.5)

7. For the fundamental representation of GLn(R).
8. This means that it is a TM -valued one form, see Appendix C.
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Partie , Chapter 4 – Projective differential geometry and asymptotic analysis

The model is easier to imagine as the set of all oriented rays 9,P+(Rn+1), in R
n+1, or,

equivalently, the quotient space of Rn+1\{0} under the natural action of the multiplicative

group R
ú
+ on R

n+1. The reader can find a very complete introduction to the topic in [Sto87].

For our needs, a major advantage is that the action of SLn+1(R) on P+(Rn+1), defined

by the commutative diagram in Figure 4.1, is e�ective. One can also remark that the

largest normal subgroup of SLn+1(R) contained in H is {Id}, and so it is also an e�ective

Klein geometry 10.

R
n+1 \ {0} R

n+1 \ {0}

P+(Rn+1) P n
+(Rn+1).

B

fi fi

fl(B)

Figure 4.1 – Definition of the action of SLn+1(R) on P+(Rn+1), fi is, as usual, the canonical
projection. B œ SLn+1(R).

Topology-wise, P+(Rn+1) is homeomorphic to the n-sphere Sn and is a two-sheeted

covering of usual Projective space; for this reason we will also refer to P+(Rn+1) as the

« projective sphere ». The notion of homogenous coordinates naturally carries over : the

fibre of fi : Rn+1\{0} æ P+(Rn+1) above a point p, is the oriented ray R
ú
+u = {⁄u, ⁄ œ R

ú
+}

for some certain non-zero vector u. The homogenous coordinates of p are defined to be

the equivalence class of all the coordinates of non-zero vectors in the ray, with respect to

the canonical basis of Rn+1; we will simply write : [u1, . . . , un+1]. This leads to a natural

description of a di�erential atlas made up of the open sets :

U+
i0

= {p œ P+(Rn+1), ui0 > 0, u œ fi≠1({p})},

U≠
i0

= {p œ P+(Rn+1), ui0 < 0, u œ fi≠1({p})},

where the coordinate maps are defined by:

[u1, . . . , ui0 , . . . , un+1] ‘æ
A

u1

|ui0|
, . . . ,

ui0≠1

|ui0|
,
ui0+1

|ui0|
, . . . ,

un+1

|ui0|

B

œ R
n.

For later reference, we would like to point out that on, for instance, U+
n+1, there is a

9. as opposed to the set of all lines
10. cf. [Sha97, Chapter 4, §3].
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4.2. Projective differential geometry

local section SLn+1(R) æ SLn+1/H ≥= P+(Rn+1) given by:

‡U+
n+1

= [u1, . . . , un+1] ‘≠æ
Q

a
1 0

“([u1, . . . , un+1]) In

R

b ,

“([u1, . . . , un+1]) =

Q

c
c
c
a

u1

un+1

...
un

un+1

R

d
d
d
b

.

Moreover, if p = [u1, . . . , un+1] œ U+
n+1, then setting Xi(p) = ui

un
, the pull-back by ‡U+

n+1
of

the Maurer-Cartan form ÊG can be expressed as :

‡ú
U+

n+1
ÊG =

Q

c
c
c
c
c
c
a

0 0 . . . 0

dX1 0 . . . 0
...

...
. . .

...

dXn 0 . . . 0

R

d
d
d
d
d
d
b

. (4.6)

It will be useful to have this in mind when we discuss the projective compactifications of

a�ne and Minkowski space in Paragraph 4.4.

Similarly to classical projective geometry, there is also an a�ne model of oriented
projective space : consider in Rn+1 the two a�ne hyperplanes H±  = {x n+1 = ±1}. Any 
oriented ray, not lying in the hyperplane HŒ = {xn+1 = 0}, meets exactly one of H± at 
exactly one point. P+(Rn+1) \ fi(HŒ \ {0}) is hence in one-to-one correspondence with 
the union of these two planes. fi(HŒ \ {0}) plays once more the role of « hyperplane at 
infinity ». One can think o f H ± as the two f aces o f a  same sheet o f paper, the front-side 
being positively oriented and the back-side negatively so.

The primitive objects of this geometry are « oriented subspaces ». In order to preserve 
the useful notion of projective duality, if B and BÕ are two bases of the same linear 
subspace V µ Rn+1 we are lead to distinguish the image of the subspace generated by B 
from that of BÕ when the two bases have di�erent o rientation. The important p oint for 
us, specifically f or o ur l ater d escription o f t he p rojective c ompactification of  Minkowski 
spacetime, is that if we restrict to one of the faces of oriented projective space, we recover 
a model for an oriented vector space. Additionnally it is compactified b y, intuitively, 
appending two points to each line.

In what follows, we will refer to a Cartan geometry over M with model geometry 
(SLn+1(R), H) (H is defined by (4.5)) as a projective structure over M .
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Partie , Chapter 4 – Projective differential geometry and asymptotic analysis

4.2.2 Projectively equivalent a�ne connections

Given a smooth manifold M and an a�ne connection Ò on its tangent bundle, the

unparametrised geodesics of Ò give rise to a projective structure, in the sense defined

above, on M . This result was discovered independently by É. Cartan [Car24] and T.

Thomas [Tho34]. In his work, Cartan focusses on the projective connection, whereas

Thomas defines an a�ne connection in the usual sense on a new vector bundle, later

to be called the « tractor bundle » when the theory was rediscovered by T.Bailey, M.

Eastwood and A. R. Gover. In their founding article [BEG94], they translate Thomas’

work into more modern language and give an e�cient introduction to the theory.

In this section, we will adopt an intermediate perspective between that in [Car24]

and [Tho34]. Unless otherwised specified, M is a smooth orientable manifold; the ori-

entability assumption serving only as a means to simplify our discussion. We recall that

an a�ne connection is torsion-free when :

ÒXY ≠ ÒY X = [X, Y ].

In terms of the local connection form (Êi
j)1Æi,jÆn associated to an arbitrary local moving

frame (ei) of TM with dual basis (Êi) this is expressed as:

dÊi + Êi
k · Êk = 0, (First structure equation). (4.7)

Remark 4.2.1. If ÷ is the canonical solder form, then the torsion free assumption can be 
expressed as : dÒ÷ = 0, where dÒ is the exterior covariant derivative. (cf. appendix C).

Definition 4 .2.1. Let Ò, Ò̂  b e two torsion-free a�ne connections (as  defined in Defini-

tion 1.3.1) on the tangent bundle TM . We will say that Ò, Ò̂ are projectively equivalent 
if and only if they have the same unparametrised geodesics. A projective structure on 
M , written, p or [Ò], is an equivalence class of projectively equivalent torsion-free a�ne 
connections. We will refer to (M, p) as a projective manifold.

We begin our study of this structure, with a useful characterisation, due to Weyl, of 
projectively equivalent connections.

Proposition 4.2.1. Two torsion-free affine co nnections Ò et  Ò̂  ar e pr ojectively equiv-

alent if and only if one can find a form Υ œ Γ(T úM) such that for any ÷, › œ Γ(TM):
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4.2. Projective differential geometry

Ò̂›÷ = Ò›÷ + Υ(÷)› + Υ(›)÷. (4.8)

We will write:

Ò̂ = Ò + Υ. (4.9)

Remark 4.2.2. In the abstract index notation, Equation (4.8) can be written:

Ò̂a÷b = Òa÷b + Υc÷
c”b

a + Υa÷b = Òa÷b + 2Υ(a”b
c)÷

c. (4.10)

Proof. For the proof, we will continue to use Penrose’s abstract index notation, which

greatly clarifies the main arguments. First note that the map ÷b ‘æ Ò̂a÷b ≠ Òa÷b is

tensorial 11 , so, one can find Γb
ac œ Eb

ac such that for each ÷b:

Ò̂a÷b ≠ Òa÷b = Γ
b
ac÷

c.

The torsion-free assumption leads to the symmetry : Γb
ac œ Eb

(ac), i.e. Γb
ac = Γb

ca. Hence it is

su�cient to determine Γb
ac÷

a÷c for any ÷ œ Γ(TM); Γb
ac is determined by the polarisation

identity.

The value of Γb
ac÷

a÷c = Ò̂÷÷ ≠ Ò÷÷ at a given point p œ M only depends on that of

÷(p), so we can evaluate it by following a geodesic Ò that satisfies the initial conditions

“(0) = p, “̇(0) = ÷(p). By the geodesic equation, we have :

Γ
b
ac÷

a÷c = ⁄÷b,

for some scalar field ⁄. Since the left-hand side is quadratic, one can find Υa such that

⁄ = 2Υa÷a and, hence :

Γ
b
ac = 2Υ(a”b

c).

4.2.3 Thomas’ projective di�erential invariant and the projec-

tive connection associated with a projective class [Ò]

We will now choose a local section ‡U of the linear frame bundle L(TM) and denote

by (ei) the associated local frame on U . Concordantly, we write (Êi) for the dual frame.

Equation (4.10) can be re-written in terms of the respective local connection forms ÊU =

11. In this context, a CŒ(M) linear map.
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(Êi
j) and Ê̂U = (Ê̂i

j) of Ò et Ò̂ in the following way :

Ê̂i
j = Êi

j + Υ(ej)Ê
i + Υ”i

j. (4.11)

If we take the trace in this expression, then :

Ê̂k
k ≠ Êk

k = (n + 1)Υ, (4.12)

Moreover, if we reinject (4.12) into (4.11), we find that:

Ê̂i
j ≠ 1

n + 1
Ê̂k

k(ej)Ê
i ≠ 1

n + 1
Ê̂k

k”i
j = Êi

j ≠ 1

n + 1
Êk

k(ej)Ê
i ≠ 1

n + 1
Êk

k”i
j. (4.13)

Thus, the quantity:

Êi
j ≠ 1

n + 1
Êk

k(ej)Ê
i ≠ 1

n + 1
Êk

k”i
j,

is independent of the choice of connection in the class [Ò]. Let us call it : ΠU = (Πi
j).

Note that, like ÊU , ΠU satisfies Equation (4.7), i.e.

dÊi + Π
i
k · Êk = 0. (4.14)

Nonetheless, the family (ΠU) does not define an a�ne connection on L(TM), unless we

restrict to transition functions with positive unit determinant. Indeed, if ‡V = ‡Ug, g :

U fl V æ GLn(R), then on U fl V :

ΠV = g≠1dg + g≠1
ΠUg ≠ 1

n + 1
tr(g≠1dg)In ≠ 1

n + 1
g≠1Ag, (4.15)

where A is the matrix-valued di�erential form Ai
j = tr(g≠1dg(ej))Ê

i.

However, it is possible to view ΠU as a submatrix of a projective connection ËU with

values in sln+1(R). To this end, we use the orientability assumption to restrict to transition

functions g(x) œ GLn(R) with positive determinant, det(g(x)) > 0. Our question is

whether or not one can lift each g(x) to an element h(x) œ H and find sln+1(R) valued

forms, ËU , subject to the transformation rule given by Equation (4.3). Let us set :

h =

Q

a
det(g)≠ 1

n+1 “

0 det(g)≠ 1
n+1 g

R

b œ H and ËU =

Q

a
0 –U

—U ΠU

R

b œ sln+1(R),
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4.2. Projective differential geometry

where “, –U and —U are unknowns. Evaluating hú◊H = h≠1dh, one finds:

h≠1dh =

Q

a
≠ tr(g≠1dg)

n+1
det(g)

1
n+1 d“ ≠ det(g)

1
n+1 “g≠1dg + det(g)

1
n+1

tr(g≠1dg)
n+1

“

0 g≠1dg ≠ tr(g≠1dg)
n+1

I

R

b .

Additionally, adh≠1ËU = h≠1ËUh is:

Q

a
≠ det(g)

1
n+1 “g≠1—U –Ug ≠ det(g)

2
n+1 “g≠1—U“ ≠ (det(g))

1
n+1 “g≠1ΠUg

g≠1—U det(g)
1

n+1 g≠1—U“ + g≠1ΠUg.

R

b . (4.16)

Their sum must be equal to ◊V . We inspect each component separately, beginning with

ΠU . Our constraints translate to the fact that —U et “ must satisfy :

det(g)
1

n+1 g≠1—U“ + g≠1
ΠUg + g≠1dg ≠ tr(g≠1dg)

n + 1
I = ΠV ,

taking into account Equation (4.15) this reduces to:

det(g)
1

n+1 g≠1—U“ = ≠ 1

n + 1
g≠1Ag. (4.17)

According to (4.16), under change of basis —U behaves like a column vector of 1-forms, in

which each component transforms like an element of the dual basis. We therefore have a

solution if we set :

—U =

Q

c
c
c
a

Ê1

...

Ên

R

d
d
d
b

, “ = ≠ det(g)
≠1

n+1
“Õ

n + 1
g, (4.18)

where we define : “Õ =
1

tr(g≠1dg(e1)) . . . tr(g≠1dg(en))
2

. In this case we also have :

≠ det(g)
1

n+1 “g≠1—U =
tr(g≠1dg)

n + 1
;

and the condition on the first component of the matrix is immediately satisfied. It only

remains to choose –U ; a straight-forward computation shows that:

d“ = ≠tr(g≠1dg)

n + 1
“ ≠ det(g)

≠1
n+1

d“Õ

n + 1
g +

“g≠1dg

n + 1
,
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and,

“g≠1—U“ = ≠ det(g)
≠1

n+1
tr(g≠1dg)

n + 1
“.

Therefore, we must have :

–V = –Ug ≠ d“Õ

n + 1
g ≠ tr(g≠1dg)

(n + 1)2
“Õg +

“Õ

n + 1
ΠUg. (4.19)

The solution now is to use ΠU to form quantities of the right nature and study their

transformation rules. We also note that when, for any x œ U fl V , det g(x) = 1 , i.e. when

ΠU behaves like an a�ne connection, then Equation (4.19) reduces to –V = –Ug.

There is a natural quantity one can construct from ΠU , namely :

ΩU = dΠU + ΠU · ΠU ;

when ΠU behaves like a connection this is its usual curvature form. The interesting point

is that the column vector :
1

n ≠ 1
Ω

i
j(·, ei),

where Ωi
j are the components of ΩU , transforms exactly according to Equation (4.19).

The proof of this is given in Appendix D, as it gives no further insight.

Putting these steps together, we have constructed a solution to our initial problem :

◊U =

Q

a
0 1

n≠1
Ωi

j(·, ei)

Êi ΠU

R

b , (4.20)

Lifting a transition function g to h defined by:

Q

a
(det g)

≠1
n+1 ≠(det g)

≠1
n+1 tr(g≠1dg(ej))

0 (det g)
≠1

n+1 g

R

b . (4.21)

One can show that the resulting family satisfies Proposition 1.3.2 and can be used to

construct the H-principal bundle over M of Definition 4.1.1. For this, one considers the

quotient space
‡

U ◊ H/ ≥ of the coproduct
‡

U ◊ H indexed by an orientation atlas of

the base M for the equivalence relation ≥ defined on
‡

U ◊ H by :

(x, h1) œ U ◊ H ≥ (x, h2) œ V ◊ H …
Y

]

[

x œ U fl V,

h2 = hUV (x)≠1h1,
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where hUV (x) is the lift of gUV defined according to Equation (4.21).

Incidentally and contrary to the impression given by some of the apparently arbitrary

choices made in our construction, this projective connection is in fact uniquely determined

by conditions we will describe in the next section.

Remark 4.2.3. The matrix notation we used throughout this section corresponds to the

following direct sum decomposition of sln+1(R):

sln+1(R) = R
n ü gln(R) ü (Rn)ú = g≠1 ü g0 ü g1.

This is in fact a |1|-grading of the Lie algebra. Although it may seem quite inessential in

our presentation, such a |k|-grading of the Lie algebra is the theoretical origin for some of

the nicer properties of parabolic geometries. We refer the interested reader to the textbook

reference [AJ09]. It should be noted that this decomposition should be distinguished from

the one in Equation (4.4), because it is not stable under the adjoint action of H on

sln+1(R).

4.2.4 The geodesics of a projective connection

We will now describe in what sense the above projective connection induced by a class

of projectively equivalent a�ne connections is unique. Following Cartan, we will generalise

the notion of geodesics to a projective connection. An alternative description can be found

in [Sha97].

Let M be a smooth manifold with projective structure (P, Ê). Let us consider the

associated bundles :

Q = P ◊H SLn+1(R) and E = Q ◊SLn+1(R) SLn+1(R)/H.

In the second case, SLn+1(R) acts on SLn+1(R)/H in the usual way by left multiplication;

the bundle E is probably the closest thing to Cartan’s idea of gluing a copy of projective

space to each point of M . In this paragraph, we describe how to use the Cartan connection

to define a Parallel Transport operator on E. This enables us to carry points from nearby

fibres into the one above the point x0. To simplify notation, we set in this paragraph

G = SLn+1(R). The reader might note that this part of the discussion is essentially

independent of the Lie groups G and H.

Firstly, E has a canonical section, analagous to a « choice of origin » in each of its
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Partie , Chapter 4 – Projective differential geometry and asymptotic analysis

fibres. To see this, first note that E and Q are respectively quotient spaces of the manifolds

Q ◊ G/H and P ◊ G. Thus, elements of E are in fact equivalence classes {(q, gH)}, q œ
Q, g œ G such that {qgÕ, gÕ≠1gH} = {q, gH} for any gÕ œ G. Similarly, elements of Q are

equivalence classes : [p, g], p œ P, g œ G that satisfy [ph, h≠1g] = [p, g] for any h œ H.

With this notation, set for any x œ M :

s(x) = {[p, e], eH}.

In the above p an arbitrary element of the fibre over x in P . s(x) is completely independent

of the choice of p as if h œ H then:

{[ph, e], eH} = {[p, h], eH} = {[p, e] · h, eH} = {[p, e], hH} = {[p, e], eH}.

We now pause to discuss how a Cartan connection defines a parallel transport on E.

Let x0 œ M and “ a curve on M subject to the initial condition “(0) = x0. Recall that, Ê

induces a principal connection on Q which allows us to horizontally lift vector fields over

M to vector fields over Q. Therefore, for each element q in the fibre Q“(0) over “(0), we

can formulate the Cauchy problem :

Y

]

[

˙̃“(t) = Hor(“̇(t)),

“̃(0) = q.
,

where Hor( ˙“(t)) is the horizontal lift of the velocity field of “. By consequence, for su�-

ciently small values of t, one can define an invertible operator,

T “
“(0),“(t) : Q“(0) æ Q“(t).

Since a maximal solution to the Cauchy problem is unique, one has :

T “
“(0),“(t)(qg) = T “

“(0),“(t)(q)g. (4.22)

Parallel transport on E, can then be defined by :

{q, gH} ‘æ {T “
“(0),“(t)(q), gH}. 12

12. The formula can be understood as follows: the parallel transport of a point expressed as gH in the
frame q, is the point that is expressed as gH in the frame obtained by parallel transporting q along γ.
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Equation (4.22) guarantees that this is well-defined.

Using the section s for any su�ciently small values of t, one can pull s(“(t)) from the

fibre E“(t) over “(t) into the fibre above “(0), E“(0). This results in a curve “̃ in E“(0), known

as the development of “. A « geodesic » of the projective connection Ê will be defined

as a curve “ whose development is contained in a projective line. In paragraph 4.2.3, the

projective geodesics of our projective connection are the unparametrised geodesics of the

class of a�ne connections [Ò].

In his article [Car24], E. Cartan studies under what circumstances two projective con-

nections Ê and ÊÕ have the same geodesics. He shows that there is in fact a certain amount

of freedom in the projective curvature form Ω = dÊ + 1
2
[Ê · Ê]. Exploiting this freedom

to simplify the projective curvature form, Cartan then determines a unique projective

connection known as the Cartan « normal » connection.

To describe this « simplification », Cartan first notes that it is always possible to choose

a connection such that Ω is in fact h-valued. When this condition is satisfied, the section

is said to be « torsion free » 13. Equation (4.14) is the local coordinate expression of the

fact that the projective connection (4.20) is torsion-free.

Cartan then shows that one of the « traces » of Ω can be set to 0. More specifically,

if Ω̃i
j is the local form of the curvature Ω, then, for any j œ J1, nK, one can impose the

condition that:
nÿ

i=1

Ω̃
i
j(·, ei) = 0, (4.23)

without changing the projective geodesics. Here, the basis (ei) is not arbitrary (otherwise

the condition would not be invariant), it is determined by the direct sum decomposition:

sln+1(R) = R
n ü gln(R) ü (Rn)ú.

Breaking up the connection form according to this decomposition, the R
n term is a vector

of 1-forms (Êi) that constitue a local frame of T úM 14 ; the basis (ei) in the above formula

is the dual basis to (Êi). It is easy to check that our projective connection in 4.2.3 satisfies

this condition and is therefore Cartan’s normal connection. One might also remark that,

a Cartan connection satisfying the above described conditions determines an equivalence

13. Definition 5.3.1 in [Sha97]
14. Recall that the local connection forms restrict to isomorphisms TxM æ g/h.
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class of a�ne connections. Suppose the local form of U is given by :

Q

a
≠tr(Π) –j

Êi Π

R

b .

If tr(Π) ”= 0 then one can remove it by performing a local projective transformation of

the form Q

a
1 v

0 In

R

b ,

where the components of the column vector v correspond exactly to the coordinates of

tr(Π) in the basis (Êi). After this, one can use Equation (4.13) to determine an a�ne

connection Êi
j for any arbitrary choice of Υ © Êk

k .

Remark 4.2.4. Our « normalisation » condition (4.23) is a literal translation of the one

Cartan gave in [Car24]; in this form, to the author, it remains relatively inextricable.

According to [Sha97], there is nevertheless a more geometric interpretation if one studies

a little more the curvature form.

4.3 Projective tractors and their calculus

4.3.1 Definition

We finally have all the material required to introduce the tractor bundle alluded to in

the introduction. Let us define, once more, Q = P ◊H SLn+1(R), where H acts by left

multiplication.

Definition 4.3.1. The tractor bundle T is the associated vector bundle Q◊SLn+1(R)R
n+1

where SLn+1(R) acts on R
n+1 in the usual canonical way. In abstract index notation the

module of smooth sections of T will be written EA 15.

The specific form of our transition functions defined by Equation (4.21) furnishes

important information about the structure of the bundle T . Using our notation from

Paragraph 1.4.2 and Definition 1.4.1, one has :

Proposition 4.3.1. There is a short exact vector bundle sequence:

0 ≠æ E(≠1)
X≠æ T

Z≠æ TM(≠1) ≠æ 0. (4.24)

15. i.e. capital latin letters will be used to denote tractor indices.
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4.3. Projective tractors and their calculus

Furthermore, choosing a connection in the class Ò œ p, the sequence right-splits and we

have the non-canonical isomorphism:

T
Ò≥= E(≠1) ü TM(≠1).

Proof. The maps in the sequence can be read o� from Equation (4.21) and are all con-

structed in the same manner as the map giving the isomorphism, so we will only prove

this final point. Let Ò œ p and consider the following collection :

A = {(U, ‡U), U open , ‡U : U æ L(TM) is a local section}.

We assume that the open sets U cover M . Let gUV denote the transition functions and

(ÊU)i
j the local connection forms. One can think of TM(≠1) as the quotient space

Q

a
·

UœA

U ◊ R
n

R

b / ≥,

where (x, v1) œ U1 ◊ R
n and (x, v2) œ U2 ◊ R

n are equivalent if:

v2 = det(gU1U2(x))
1

n+1 gU1U2(x)≠1v1, x œ U1 fl U2.

By construction, T itself can be described as
·

UœA

U ◊R
n+1/ ≥ for the equivalence relation:

(x, V1) œ U1 ◊ R
n+1 ≥ (x, V2) œ U2 ◊ R

n+1 … V2 = hU1U2(x)≠1V1, x œ U1 fl U2,

where hU1U2 is obtained from gU1U2 using Equation (4.21). Now, the right-inverse we need

to construct can be described by first defining for each x œ U a linear map :

„U
x : R

n ≠æ R
n+1

v ‘≠æ
Q

a
((ÊU)i

i)x(v)

v

R

b .

For each U œ A we set : „U : U ◊ Rn æ U ◊ Rn+1 where „U (x, V1) = (x, „x
U V1). The 

change of chart rule for the connection forms implies that :

„x
V ((det(gUV (x)))n

1
+1 gUV (x)≠1v) = hUV (x)≠1„x

U (v),
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which is su�cient to show that („U) can be smoothly glued together and factor to a vector

bundle morphism TM(≠1) æ T .

According to this result a choice of connection Òa in the projective class, enables us

to write sections of T – tractor fields – as columns:
Q

a
‹a

fl

R

b ,

where ‹a œ Γ(TM(≠1)), fl œ Γ(E(≠1)). When we change connection according to Ò̂a =

Òa + Υa then we get a new description ,

Q

a
‹̂a

fl̂

R

b ,

related to the previous one by:

Y

]

[

‹̂a = ‹a,

fl̂ = fl ≠ Υa‹a.
(4.25)

Finally it will be convenient to identify the maps X and Z in Proposition 4.3.1 with

sections XA œ EA(1), Za
A œ Ea

A(≠1); these maps are canonical as they do not depend on

a choice of connection. The non-canonical maps that split the sequence will be identified

with sections YA œ EA(≠1) and W A
a œ EA

a (1). Note that :

XAYA = 1, Za
AW A

b = ”a
b , Za

AXA = 0, W A
a YA = 0.

In this notation, one has:
Q

a
‹a

fl

R

b = flXA + ‹aW A
a .

4.3.2 Change of connection

Although tractors have an invariant meaning, in practice, to work with them, we 
will often choose a connection and split the short exact sequence. In this context, it 
is important to relate various non-invariant quantities, such as curvature or covariant 
derivatives, between two projectively equivalent affine connections, Ò and Ò̂ . Recall that
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4.3. Projective tractors and their calculus

we write Ò̂ = Ò + Υ, Υ œ Γ(T úM), when for any vector fields ÷, ›:

Ò̂›÷ = Ò›÷ + Υ(÷)› + Υ(›)÷.

As we have previously remarked in Equation (4.11), this implies that the connection forms

are related by :

Ê̂i
j = Êi

j + Υ(ej)Ê
i + Υ”i

j. (4.11 revisited)

We can deduce from this the change in covariant derivative of any section of any as-

sociated vector bundle to the frame bundle L(TM), simply by applying the induced Lie

algebra morphism to (4.11) in order to determine the local connection forms. For instance,

projective densities of weight Ê correspond to the representation fl : A ‘æ | det A|
ω

n+1 , the

induced Lie algebra morphism is flú : M ‘æ Ê
n+1

tr(M). Hence, for any density ‡ of projec-

tive weight Ê,

Ò̂a‡ = Òa‡ +
Ê

n + 1

1

Υ(ej)Ê
j
a + nΥa)

2

‡ = Òa‡ + ÊΥa‡.

Similarly, for one forms µa, which correspond to the contragredient representation A ‘æ
tA≠1, the corresponding Lie algebra morphism is : M ‘æ ≠tM and we find that :

Ò̂bµa = Òbµa ≠ Υaµb ≠ Υbµa.

We move now to curvature. Generally, the Riemann tensor of any torsion-free a�ne

connection admits a unique decomposition as :

R c
ab d = W c

ab d + 2”c
[aPb]d + —ab”

c
d, (4.26)

where : W c
ab d is trace-free and —ab is antisymmetric. Taking traces of the above expression

—ab and Pab are easily shown to be related to the Ricci tensor Rbd = R a
ab d:

Y

]

[

(n ≠ 1)Pab = Rab + —ab,

—ab = ≠ 2
n+1

R[ab].
(4.27)

We refer to W c as the projective Weyl tensor and to Pab as the projective Schouten ten-
ab d

sor. The following lemma describes how these quantities are related between two 
torsion-

free projectively equivalent affine connection :
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Lemma 4.3.1. Let Ò̂ = Ò + Υ then :

— Ŵ c
ab d = W c

ab d ,

— P̂ab = Pab ≠ ÒaΥb + ΥaΥb,

— —̂ab = —ab + 2Ò[aΥb].

4.3.3 Special connections

In projective geometry, densities (cf. Definition 1.4.1) play an important role. As we

have previously remarked, for some equations, like the geodesic equation [GST20] or the

Killing equation (Equation (4.1)), considering weighted tensors, i.e. sections of B ¢ E(Ê)

for some tensor bundle B and some weight Ê œ R
ú, as opposed to usual tensors, can make

the equation projectively invariant. Densities also appear naturally in the splitting of the

tractor bundle in Proposition 4.3.1. We discuss here a further application : generalising

the notion of scale, naturally present in conformal geometry.

A connection Ò in a projective class p is said to be special if it preserves a nowhere

vanishing density ‡. Such a density is unique up to a constant factor and will be said to

be the scale determined by Ò. Although all connections are not special, there is always

a special connection in any projective class, as given any nowhere vanishing density ‡ œ
Γ(E(Ê)) and Ò œ p, the connection Ò̂ = Ò ≠ 1

Ê
‡≠1Òa‡ preserves ‡, i.e. Ò̂a‡ = 0.

Correspondingly, Ò̂ is said to be the scale determined by ‡.

Special connections have useful properties, particularly with regards to curvature. We

note first that the projective density bundles are flat, indeed, if Ò preserves a nowhere

vanishing density ‡ œ Γ(E(Ê)), then any other such section fl can be expressed as fl = f‡

for some smooth function f , thus :

(ÒaÒb ≠ ÒbÒa)fl = ((ÒaÒb ≠ ÒbÒa)f)‡ = 0,

since we work with torsion-free connections. This has consequences on the Riemann tensor,

as if we recall the decomposition :

R c
ab d = W c

ab d + 2”c
[aPb]d + —ab”

c
d,

then, one can show that for any Ê œ R
ú and any section fl œ Γ(E(Ê)) :

(4.28)(ÒaÒb ≠ ÒbÒa)fl = Ê—abfl. 
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We thus conclude that for special connections: —ab = ≠ 2
n+1

R[ab] = 0. This implies that the

Ricci and Schouten tensors are both symmetric, and that all the density bundles are flat.

For future reference, we summarise this in:

Lemma 4.3.2. If Ò is a special connection, then the corresponding Ricci and Schouten

tensors are symmetric and all the density bundles are flat.

4.3.4 The Tractor Connection

The local connection forms (Equation (4.20)) of the Cartan connection on P induce

a principal connection – on Q. Adapting our construction in Paragraph 1.3.4, –, in turn,

according to the procedure described in Paragraph 1.4.3, induces an a�ne connection ÒT

– the tractor connection – on the vector bundle T and, a fortiori, on its tensor algebra.

Choosing a connection in the projective class and identifying T
Ò≥= E(≠1) ü TM(≠1), the

tractor connection can be shown to act as follows :

Proposition 4.3.2. Let Ò œ p. In terms of the isomorphism T
Ò≥= E(≠1) ü TM(≠1),

the connection ÒT acts on the tractor T
Ò
=

Q

a
‹a

fl

R

b according to the equation :

ÒT
b

Q

a
‹a

fl

R

b =

Q

a
Òb‹

a + ”a
b fl

Òbfl ≠ Pba‹a

R

b . (4.29)

In the above, Pab is the projective Schouten tensor defined in Section 4.3.2. The notation:

T
Ò
=

Q

a
‹a

fl

R

b should be understood to mean that the column vector on the right-hand side

corresponds to the components of the tractor T , after splitting T with Ò.

After a choice of connection Ò œ p, one can equip any tensor bundle :

¢kT ¢l T ú ¢p TM ¢q T úM ¢ E(Ê),

with a natural connection by mixing ÒT and Ò 16, by abuse of notation, we will call this

connection Ò. Doing this enables us to summarise the action of ÒT quite succinctly in

16. we impose the Leibniz rule on simple tensors.
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terms of the splitting tractors XA, Za
A, W A

a , YA :

Y

________]

________[

ÒaYA = PabZ
b
A,

ÒaZb
A = ≠”b

aYA,

ÒaXA = W A
a ,

ÒaW A
c = ≠PacX

A.

(4.30)

Tractor curvature

It will be convenient to have at our disposal the expression of the tractor curvature

tensor Ω C
ab D in a splitting determined by a connection Ò œ p. It is a short computation

that we carry out here to illustrate working with the splitting tractors introduced in

Section 4.3.4. Let us work with a fixed connection Ò œ p, and observe that any (1, 1)-

tractor LC
D can be decomposed as :

LC
D = fXCYD + µdXCZd

D + vcW A
c YD + ⁄c

dW C
c Zd

D, (4.31)

for f œ CŒ(M), v œ Γ(T úM), µ œ Γ(TM), ⁄ œ End(TM); the components are not

weighted. In order to determine the components, we only need to calculate the action of

Ω C
ab D on an arbitrary tractor T D = flXD + ‹bW B

b . By definition :

Ω
C

ab DT D = 2Ò[aÒb]T
C ,

let us now evaluate the right-hand side, using Equation (4.30) :

ÒaÒbT
C = Òa

Q

c
c
a

ÒbflXC + fl ÒbX
C

¸ ˚˙ ˝

W C
b

+Òb‹
cW C

c + ‹c ÒbW
C
c

¸ ˚˙ ˝

≠PbcXC

R

d
d
b

,

= Òa

1

(Òbfl ≠ Pbc‹
c)XC) + (Òb‹

c + fl”c
b)W

C
c

2

,

= (ÒaÒbfl ≠ (ÒaPbc)‹
c ≠ 2P(a|c|Òb)‹

c ≠ flPab)X
C

+ (2”c
(aÒb)fl + ÒaÒb‹

c ≠ Pbd‹d”c
a)W C

c .
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Thus, using Equation (4.28) and the fact that fl has weight ≠1, we find :

2Ò[aÒb]T
C = (2Ò[aÒb]fl ≠ Yabd‹d ≠ 2flP[ab])X

C + (2Ò[aÒb]‹
c ≠ 2” c

(aPb)d‹d)W C
c ,

= ≠Yabd‹dXC + (R c
ab d‹d ≠ —ab‹

c ≠ 2” c
(aPb)d‹d)W C

c ,

= ≠Yabd‹dXC + (W c
ab d‹d)W C

c .

In the above, we have introduced the projective Cotton tensor Yabc = 2Ò[aPb]c, and, in

the second equation we have used the fact that : 2P[ab] = ≠—ab.

Applying T D to Equation (4.31), one can then identify the components of the tractor

curvature that we find to be, very simply :

Ω
C

ab D
Ò
= ≠YabdXCZd

D + W c
ab dW C

c Zd
D. (4.32)

Of course, the simplicity of the curvature tensor is a direct consequence of the choices

made in Section 4.2.4.

4.4 Projective Compactifications

We come now to the notion of projective compactifications. In Paragraph 4.2.3 we

have shown that to any pseudo-Riemannian (M, g) with Levi-Civita connection Ò, or,

more generally, any smooth manifold equipped with a torsion-free a�ne connection, one

can ascribe a Cartan projective structure whose projective geodesics are precisely the

unparametrised geodesics of Ò. The structure is unique, under the condition that we

require that the restrictions described by Paragraph 4.2.4 are satisfied.

The question underlying the ideas of projective compactification can be expressed as

follows: let M = M fi ˆM be a manifold with boundary, whose interior, M , is equipped

with a pseudo-Riemannian structure that does not extend 17 to its boundary ˆM , is it

possible that the associated projective structure extends nevertheless to ˆM and, if so,

what can be said of the geometry of ˆM? Our starting point will be the following definition

of [�GM14; �G14]:

Definition 4.4.1. Let M̄ = M fiˆM be a smooth manifold with boundary, whose interior

is M , and let Ò be an a�ne connection on M . A boundary defining function is a map fl

that satisfies :

17. For instance, because it is geodesically complete
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1. Z(fl) = {x œ M̄, fl(x) = 0} = ˆM ,

2. dfl ”= 0 on ˆM .

We will say that Ò is projectively compact of order – œ R
ú
+ if for every point x0 œ ˆM ,

one can find a neighbourhood U of x0 in M̄ and a boundary defining function fl such that

the connection 18 on U fl M :

Ò̂ = Ò +
dfl

–fl
, (4.33)

has a smooth extension to the boundary, i.e. for instance, the local connection forms of

Ò̂, defined on U fl M , in any frame (ei) on U that is smooth up to the boundary, extend

to ˆM .

The definition is independent of the choice of defining function fl, as any other defining

function on U can be written fl̃ = ekfl and in this case dfl̃ = fl̃dk + ekdfl Ã dfl on U fl ˆM .

On the other hand, the parameter –, cannot be removed. This is clearer if we introduce

the notion of boundary defining densities :

Definition 4.4.2. A boundary defining density is a global section of ‡ œ E(Ê) for a

fixed weight Ê œ R
ú
+ vanishing exactly on ˆM and such that its expression in any local

trivialisation on a neighbourhood of a boundary point x0 œ ˆM is a boundary defining

function.

The parameter Ê is fixed : suppose that ‡ œ E(Ê), ‡̂ œ E(ÊÕ) are two defining densities

such that Ê Æ ÊÕ. Let · be a density of weight Ê that is non-vanishing on a neighbourhood

U of a boundary point x0 œ ˆM , and write ‡ = fl· on M fl U , fl is therefore a boundary

defining function. Since ‡ÊÕ/Ê is also non-vanishing on M flU , it follows that ‡̂ = ef‡ÊÕ/Ê =

efflÊÕ/Ê·ÊÕ/Ê. ·ÊÕ/Ê is also non-vanishing on U , so we conclude that efflÊÕ/Ê is a boundary

defining function, therefore :

d(efflÊÕ/Ê) = efflÊÕ/Êdf + flÊÕ/Ê≠1dflef ”= 0 on ˆM,

so ÊÕ = Ê.

The following lemma relates boundary defining densities and projectively compact

connections of order –:

18. cf. Proposition 4.2.1.
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Lemma 4.4.1 ( [�G14, Proposition 2.3 (ii)] ). Let M̄ be a manifold with boundary

equipped with a projective structure [Ò] on the interior M that extends to the bound-

ary ˆM . Suppose that ‡ œ E(–) is a boundary defining density and let Ò̂ be the scale

determined by ‡ on M , then: Ò̂ is projectively compact of order –.

The cases covered the most in examples and in the literature are – œ {1, 2}, this is

because there are well understood model cases. We also quote the following completeness

result:

Proposition 4.4.1 ( [�G14, Proposition 2.4] ). Let Ò be an affine connection on M

which is projectively compact of order – Æ 2. Assume that “ is a projective geodesic that

reaches x0 œ ˆM with tangent vector transverse to ˆM . In this case, one can find an affine

parametrisation c : [0, Œ[æ M̄ (with respect to Ò) of part of “ such that c([0, Œ[) µ M

and lim
tæ+Œ

c(t) = x0.

In the next paragraph, we will study in detail the case of Minkowski spacetime, which

we will find to be projectively compact of order 1. We will also explain how its metric

structure is encoded projectively in a parallel 2-tractor and that its projective infinity

inherits a metric projective structure.

4.4.1 A�ne space

It is no surprise that the projective compactification of a�ne space An and, by exten-

sion, that of Minkowski spacetime, involves the central projection of Rn+1. We will first

look at this using the language of Paragraph 4.2.3 : identify An to R
n with its canonical

a�ne structure, let (e1, . . . , en) be the canonical basis and (Êi) = (dxi) the dual basis;

they are all parallel with respect to the canonical a�ne connection (which corresponds

exactly to the Maurer-Cartan form of the a�ne group). Thomas’ projective invariant Π

(cf. Equation (4.13)), that is globally defined, vanishes and the (local) normal Cartan

connection is nothing more than :
Q

a
0 0

Êi 0

R

b .

This is identical to the expression of the Maurer-Cartan form of the (oriented) projective 
group in an a�ne chart that we gave in Equation (4.6)! So we recover the expected result 
by reasoning locally.
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One can also interpret this globally in terms of tractors. The first point we make

towards this is that the tractor bundle T on the projective sphere is trivial. Indeed, unlike

the H-principal bundle (P = SLn+1(R), fi : SLn+1(R) æ SLn+1(R)/H), the associated

bundle Q = P ◊H SLn+1(R) has a canonical global section : pH ‘æ [p, p≠1] furnishing an

inverse to the bundle map :

P ◊H G ≠æ SLn+1(R)/H ◊ SLn+1(R)

[p, g] ‘≠æ (fi(p), pg).

In the above, we view elements of P ◊H G as equivalence classes of pairs (p, g) œ
SLn+1(R) ◊ SLn+1(R). The map is well-defined as for any h œ H:

fi(ph) = fi(p)fi(h) = fi(p) and (ph)(gh)≠1 = phh≠1g = pg.

Additionally, the Maurer-Cartan form of SLn+1(R) induces the trivial connection on

SLn+1(R)/H ◊ SLn+1(R), as can be seen by examining the local connection forms. Since

Q is the frame bundle of the tractor bundle, it follows that : T = Sn ◊ R
n+1. We can

therefore view parallel tractors on the projective sphere as constant vectors of Rn+1.

Exploiting its definition as a quotient space, other geometric quantities on the projec-

tive sphere have similar interpretations in terms of Rn+1. For instance, functions on Sn

are in one-to-one correspondence with functions on R
n+1 \ {0} that are invariant under

the natural action of Rú
+ on R

n+1, i.e. f(tx) = f(x) for all x œ R
n+1 and any t œ R

ú
+;

densities of weight Ê can be identified with Ê-homogenous functions on R
n+1 \ {0}, i.e.

f(tx) = tÊf(x), x œ R
n+1, t œ R

ú
+. This last identification follows from the fact that the

frame bundle of densities of weight 1 can be identified with R
n+1 \ {0}, for instance as

follows :

R
n+1 \ {0} ≠æ Sn ◊ R

ú
+

(x1, . . . , xn+1) ‘≠æ ([x1, . . . , xn+1], |x1| + · · · + |xn+1|).

In a similar vein, the map X in the short exact sequence (4.24) of Proposition 4.3.1, 
can be thought of as the homogenous coordinates of a point on Sn. Finally, Z can be 
identified u sing t he u sual i nterpretation o f v ector fi elds as  di �erential ope rators : i t is 
the map that restricts a di�erential o perator v  o n R n+1 \  { 0} t o t he s pace o f smooth 
R

ú
+-invariant functions. However, the result of v is not a vector field on S n. Instead, v(f) 

is a homogenous function on Rn+1 \ {0} of weight ≠1, hence we have a weighted vector
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field with weight ≠1.

Consider now the hyperplane xn+1 = ≠1 in R
n+1. In order for the canonical action of

SLn+1(R) on the projective sphere to induce, via central projection, a group action on the

plane, we must reduce the group by demanding that the co-vector I =
1

0 · · · 0 1
2

be preserved. This is tantamount to introducing a parallel co-tractor IA on the projective

sphere. The elements of the subgroup of SLn+1(R) that preserves I have the form :

Q

a
A b

0 1

R

b , A œ SLn(R), b œ R
n;

so it is easily recognised to be the a�ne group, and it acts as such on the hyperplane. The

projective compactification of a�ne space can therefore be understood to be obtained

directly from the projective sphere by choosing a parallel cotractor IA and demanding

that it be preserved by the structure. This splits the projective sphere into three orbits,

two of which can be identified with the hyperplane, (points with homogenous coordi-

nates [x1, . . . , xn, ±1]) and the third, formed by points with homogeneous coordinates

[x1, . . . , xn, 0], is what we will identify as the boundary at infinity. Note that the weight

one density, ‡ = XAIA, corresponding to the homogeneous function of weight 1 given by

the (n + 1)-th homogeneous coordinate, xn+1, is a defining density for the boundary.

4.4.2 Minkowski spacetime

To introduce additional structure on the hyperplane, for instance a pseudo-Euclidean

structure, one should reduce the projective group SLn+1(R) further by requiring that a

constant metric on (Rn+1)ú, H, be preserved. Let :

H =

Q

c
c
c
a

Ip 0 0

0 ≠Iq 0

0 0 0

R

d
d
d
b

,

and note that HABIA = 0. The subgroup that preserves H and I is given by : Rn oSO(p, q)

that we identify with the matrices :

Q

a
A b

0 1

R

b , A œ SO(p, q), b œ R
n.
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Studying the orbits of the action of this group on the projective sphere, one observes that,

there are again two orbits that can be identified with pseudo-Euclidean space, however, in

addition, the boundary at infinity - i.e. points with homogenous coordinates [x1, . . . , xn, 0]

- splits into orbits classified by the sign of H(x, x), where x is the vector in R
n+1 formed by

the homogenous coordinates. In the specific case of a Lorentzian signature (≠, +, . . . , +),

the 3-orbits can be interpreted as timelike (H(x, x) < 0), spacelike, (H(x, x) > 0) and

null infinity (H(x, x) = 0).

Once more, ‡ = IAXA is a weight one boundary defining density, therefore, (d + 1)-

dimensional Minkowski spacetime is projectively compact of order – = 1. The bilinear

form H is to be identified with a parallel 2-tractor on the projective sphere. The structure

described here is, in fact, the generic model for projectively compact metrics of order 1;

this is explained in [FG18].

Up to now, we have viewed things from the point of view of an ambient projective

sphere, producing a projective compactification of pseudo-Euclidean space by embedding

it directly into the n-sphere. Nevertheless, one can argue that it is more natural to adopt

the opposite point of view, and attempt to construct a compactification from the inside

out.

For definiteness, let us restrict now our discussion to n = d+1 dimensional Minkowski

spacetime, that is to say : Rn = R
1+d with its usual Cartesian coordinates X0, . . . , Xd and

the usual (+, ≠, . . . , ≠) Minkowski metric. Generic coordinates of points in R
n+1 = R

d+2

shall be written (x0, . . . , xd+1) and homogenous coordinates in P+(Rn+1) = P+(Rd+2),

[x0, . . . , xd+1].

Trivialising the density bundle with various densities enables us to deduce boundary

defining functions that can be used to define local coordinates charts well-adapted to the

projective compactification. For instance, consider the usual Euclidean norm || · ||2; it

defines a homogenous function of weight 1 on R
d+2, hence a projective density of weight

1 on Sd+1. As before, the boundary defining density ‡ = XAIA corresponds to the ho-

mogenous function given by the last coordinate in xd+1 in R
d+2. In the local a�ne chart

U≠
d+1

≥= R
d+1 of Sd+1 :

xd+1 = fl1|| · ||2,

with :

fl1 :
U+

d+1
≥= R

d+1 ≠æ R

(X0, . . . , Xd) ‘≠æ ≠1Ô
1+X2

0 +···+X2
d

.
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Another interesting example is the local trivialisation given by the homogenous func-

tion :

f(x0, . . . , xd+1) = ≠
Ò

|x2
0 ≠ x2

2 ≠ · · · ≠ x2
d|,

on points such that xd+1 < 0 and x2
0 ≠ x2

2 ≠ · · · ≠ x2
d ”= 0. Writing xd+1 = flf , we find:

fl(X0, . . . , Xd) =
1

Ò

|X2
0 ≠ X2

2 ≠ · · · ≠ X2
d |

. (4.34)

The function fl can be used to construct future timelike infinity directly. Indeed, the

surfaces fl = c furnish a foliation of the interior of the future light-cone S + represented

in Figure 4.2. In the coordinate chart (fl, x̃1, . . . , x̃d) on S + defined by : x̃i = flXi, which

Figure 4.2 – Foliation of the interior light-cone by hyperbolic sheets

is adapted to this foliation, the usual Minkowski metric takes the form :

g =
dfl2

fl4
≠ 1

fl2

ÿ

i,j

A

”ij ≠ x̃ix̃j

1 + |x̃|2

B

¸ ˚˙ ˝

fl2gij

dx̃idx̃j, |x̃| =
dÿ

i=1

x̃2
i . (4.35)

In fact, [�G14, Theorem 2.6] shows that projective compactness of order 1 follows directly 
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from this expression; the compactification being obtained by appending the hypersurface

{fl = 0}. In this simple case, it is nonetheless straightforward to verify this directly: the

coordinates (fl, x̃1; . . . , x̃d) identify S + with ]0, +Œ[◊R
n, that is naturally viewed as an

open-subset of [0, +Œ[◊R
n. To prove projective compactness of order 1, it is necessary to

show that the connection Ò̂ = Ò+ dfl
fl

, has a smooth extension to points where fl = 0. The

associated coordinate basis ( ˆ
ˆfl

, ( ˆ
ˆx̃i

)iœJ1,dK) on S +, has a natural extension to [0, Œ[◊R
d,

hence it is su�cient to calculate the local connection form in this local frame. First, those

of the Levi-Civita connection are :

Ê0
0 = ≠2

dfl

fl
; Êi

0 = ≠dx̃i

fl
,

Ê0
j = ≠fldx̃j +

flx̃j

1 + |x̃|2
ÿ

k

x̃kdx̃k = fl3
ÿ

k

gjkdx̃k,

Êi
j = ≠x̃idx̃j +

x̃ix̃j

1 + |x̃|2
ÿ

k

x̃kdx̃k ≠ ”ij
dfl

fl
= x̃ifl

2
ÿ

k

gjkdx̃k ≠ ”ij
dfl

fl
.

(4.36)

Those of the connection Ò̂ = Ò + dfl
fl

are obtained by applying Equation (4.11):

Ê̂0
0 = Ê̂i

0 = 0,

Ê̂0
j = Ê0

j,

Ê̂i
j = x̃ifl

2
ÿ

k

gjkdx̃k,

(4.37)

and clearly have smooth extensions to points where fl vanishes, which proves projective

compactness of order 1.

Using Equation (4.35), one easily identifies a metric on the boundary :

h = fl2

A

g ≠ dfl2

fl4

B

=
ÿ

i,j

A

”ij ≠ x̃ix̃j

1 + |x̃|2

B

dx̃idx̃j.

Although this is not obvious from the outset, one can show that Ò̂ restricted to the 
boundary is the Levi-Civita connection for h.

Minor modifications of fl  can be used to construct past-timelike infinity and spacelike 
infinity by a  similar coordinate based method. On the other hand, projective null infinity 
requires a slightly di�erent treatment. It can in fact be obtained by projectively compact-

ifying the incomplete spacelike and/or timelike projective infinity, w hich i s projectively 
compact of order 2.
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4.4.3 de-Sitter spacetime

Another interesting example is that of de-Sitter space, a Minkowski signature analogue

of the Euclidean sphere. In 4 dimensions, it is the hypersurface {÷(x, x) = k2, x œ R
5} in

R
5 equipped with the standard (≠, +, +, +, +) signature metric ÷. As with the sphere, the

parameter k œ R is a scaling of curvature and has no importance for us, we will henceforth

set k = 1. The geometry can be described as RÂ ◊ S3 with the metric :

g = ≠dÂ2 + cosh2 Âd‡3, (4.38)

where d‡3 is the usual Euclidean metric of the unit 3-sphere in R
4. A coordinate based

approach to the compactification is to consider, for instance, the scalar field fl = 1
2 cosh2 Â

.

In this case:

g = ≠dfl2

4fl2
+

1

2fl

A

≠ dfl2

1 ≠ 2fl
+ d‡3

B

.

Since h = ≠ dfl2

1≠2fl
+ d‡3 extends smoothly to s = 0, [�G14, Theorem 2.6] allows us

to conclude immediately that de-Sitter space is projectively compact of order 2. This 
fact can of course be verified d irectly u pon i nspection o f t he c onnection f orms g iven in 
Appendix F.

A more geometric view of the compactification i s t o fi rst re call th at de -Sitter space 
is the homogeneous space SO(4, 1)/SO(3, 1). Thanks to its embedding in R5, it is easily 
identified with a  subset o f the projective sphere S 4 v ia central projection. Consider now 
the projective sphere with its canonical projective structure and introduce the standard 
signature (4, 1) metric HAB on R5ú, i.e. a parallel 2-tractor on S4. Demanding that the 
structure preserve the metric results in the reduction of SL5(R) to SO(4, 1) and enables 
us to retrieve the usual geometric structure on de-Sitter space. Within the projective 
sphere, de Sitter corresponds to the set of points with homogenous coordinates X such 
that the weight 2 density ‡ = HABXAXB > 0. This density is also a natural defining 
density for the boundary and, as with Minkowski space, trivialising it with respect to other 
non-vanishing 2-densities on the projective sphere yields boundary defining functions.

The defining function used above in the coordinate based approach comes from trivi-

alising ‡ with the 2-density corresponding to the weight 2 homogenous function on R5 :
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X2
1 + · · · + X2

4 , one has :

‡ = ≠X2
0 + X2

1 + X2
3 + X2

4 =

Q

c
c
c
c
a

1 ≠ X2
0

X2
1 + X2

3 + X2
4

¸ ˚˙ ˝

function defined on the projective sphere

R

d
d
d
d
b

(X2
1 + · · · + X2

4 ).

In the curved coordinate chart (Â, Ë), Â œ R, Ë œ S3 this function is exactly 1≠tanh2 Â =
1

cosh2 Â
; had we chosen to trivialise with the 2-density || · ||22 we would have found the

boundary defining function fl̃ = 1
cosh(2Â)

.

A striking di�erence with the compactification of Minkowski spacetime is that the

action of SO(4, 1) on the projective sphere does not restrict to an action on the boundary

‡ = 0 of de-Sitter space and, consequently, we do not get a projective structure on the

boundary, instead it inherits a conformal structure.

The above examples are model cases for the local geometry of solutions to the so-called

Metrisability equation. In both cases, a symmetric bilinear form on the cotractor manifold

HAB plays an important role, and will also be an important tool in the lifting of equations

on the base to the tractor bundle. In the next section, the reader will find a brief review of

the theory of the Metrisability equation establishing the correspondence between solutions

to the Metrisability equation and symmetric bilinear forms on the cotractor bundle.
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4.5 A brief primer on the Metrisability equation

4.5.1 General theory

In [EM08], the presence of a connection within a given projective class p on a projective

manifold (M, p) was shown to be governed by the existence of solutions to the following

(overdetermined) projectively invariant equation with unknown ‡ab œ Γ(E(≠2)):

Òc‡
ab ≠ 2

n + 1
Òd‡d(a”b)

c = 0. (ME)

Equation (ME) states simply that the trace-free part of Òc‡
ab must vanish, and its

projective invariance follows directly from this observation since if Ò̂ = Ò + Υ :

Ò̂c‡
ab = Òc‡

ab + Υd‡db”a
c + Υd‡ad”b

c = Òc‡
ab + 2Υd‡d(a”b)

c
¸ ˚˙ ˝

trace term

.

Hence, the trace-free parts are identical. If ‡ab is a non-degenerate solution to this equa-

tion, then we define:

‡ = Á2
a1...anb1...bn

‡a1b1 . . . ‡anbn := det ‡ab.

Even on non-orientable manifolds M the bundle ΛnTM ¢ ΛnTM is canonically oriented

and we denote by Á2
a1...anb1...bn

the canonical section that identifies ΛnTM ¢ ΛnTM to the

density bundle E(2n + 2). In case there is an orientation, we can instead use the dual of

the volume form Êa1...an and identify the bundles using Êa1...anÊb1...bn . In any case, ‡ is a

weight two density, and, if ‡ab is non-degenerate, ‡ is nowhere vanishing so one can define

a metric, g, by: gab = ‡≠1‡ab. The scale determined by ‡, Ò‡, can then be shown to be

the Levi-Civita connection for g.

It turns out that the solutions to (ME) are in one-to-one correspondence with 2-tractors

HAB that satisfy the equation :

ÒcH
AB +

2

n
X(AW

B)
cE F HEF = 0. (ME2)

This result can be obtained by prolongation 19 of (ME), which consists, briefly, in adding

variables in order to obtain a closed system. Here, we recall the explanation given in [�GM14]

19. [Bra+06]
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using the projective tractor calculus. The first remark is that there is a canonical projec-

tively invariant operator : T úM ≠æ End(T ) that acts on 1-forms as :

ub ‘æ XAZb
Bub.

This induces an operator ˆú : ΛkT úM ¢ S2T ≠æ Λk≠1T úM ¢ S2T that acts as :

HAB
b1...bk

‘æ X(AH
B)C
cb2...bk

Zc
C .

To understand how this operators acts in the column vector notation, we note first

that after splitting the sequence (4.24) with a choice of connection Ò, an arbitrary section

of S2T can be written :

HAB = ’abW A
a W B

b + 2⁄bX(AW
B)
b + ·XAXB,

where ’ œ Γ(S2TM(≠2)), ⁄ œ Γ(TM(≠2)),· œ Γ(E(≠2)). Therefore, if we write :

HAB
b1...bk

= ’ab
b1...bk

W A
a W b

B + 2⁄b
b1...bk

X(AW
B)
b + ·b1...bk

XAXB,

it follows that:
(ˆúH)AB

b2...bk
= X(AH

B)C
cb2...bk

Zc
C

= ’cb
cb2...bk

X(AW
B)
b + ⁄c

cb2...bk
XAXB.

(4.39)

This enables us to verify that, in fact : ˆú ¶ ˆú = 0, and hence that we have a chain

complex. It turns out that in addition to this we have so-called splitting operators:

Theorem 4.5.1. Let ’ab œ Γ(S2TM(≠2)), then there is a unique section L(’) of S2T

that satisfies:

— Za
AZb

BL(’)AB = ’ab,

— ˆú(ÒT L(’)) = 0.

If Ò œ p then we have :

L(’)
Ò
= ’abW A

a W B
b ≠ 2

Òa’ab

n + 1
X(AW

B)
b +

Pab’
ab(n + 1) + ÒaÒb’

ab

n(n + 1)
XAXB. (4.40)

Furthermore :

Za
AZb

BÒcL(’)AB = Òc’
ab ≠ 2

n + 1
Òd’d(a”b)

c .
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We seek now to prove the equivalence between solutions to (ME2) and those of (ME).

This proof is already available in [�GM14], but it is an interesting exercise to carry out

these steps here as it helps to apprehend the articulations between the di�erent notions

of curvature, as well as the roles they each play in the projective structure. First let us

observe that (ME2) can in fact be rewritten:

ÒcH
AB = ≠ 2

n
ˆú(Ω

(A
ce F HB)F ).

Hence, any HAB satisfying (ME2), satisfies ˆúÒcH
AB = 0, which implies that HAB = L(’)

where ’ab = Za
AZb

BHAB. Furthermore, since it is in the image of ˆú, Za
AZb

BÒcH
AB = 0.

Therefore, any HAB that satisfies (ME2) is L(’) for a solution ’ of the metrisability

equation. The proof of the converse is more involved. Let us assume that ’ is a solution

to (ME) and denote by HAB the tractor L(’). Let Ò œ p and rewrite (4.40):

HAB Ò
=

Q

c
c
c
a

’ab

⁄b

·

R

d
d
d
b

=

Q

c
c
c
a

’ab

≠Òa’ab

n+1
Pab’ab

n
+ ÒaÒb’ab

n(n+1)

R

d
d
d
b

.

A simple calculation leads to:

ÒcH
AB Ò

=

Q

c
c
c
a

Òc’
ab + 2⁄(b”a)

c

Òc⁄
b ≠ ’abPca + ·”b

c

Òc· ≠ 2Pcb⁄
b

R

d
d
d
b

.

If ’ab is solution to the metrisability equation then the top slot cancels. Let us now

calculate ÒcÒd’ad :

ÒcÒd’ad = ÒdÒc’
ad + R a

cd f’df + R d
cd f’af ≠ 2—cd’ad,

=
2

n + 1
ÒdÒf’f(a”d)

c + R a
cd f’df ≠ (Rcf + —cf )

¸ ˚˙ ˝

(n≠1)Pcf

’af ≠ —cf’af ,

=
ÒcÒf’fa

n + 1
+

ÒdÒf’fd”a
c

n + 1
+ W a

cd f’df + 2”a
[cPd]f’df ≠ (n ≠ 1)Pcf’af ,

=
ÒcÒf’fa

n + 1
+

ÒdÒf’fd”a
c

n + 1
+ W a

cd f’df + ”a
c Pdf’df ≠ nPcf’af .
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Therefore:

n

n + 1
ÒcÒd’ad =

ÒdÒf’fd”a
c

n + 1
+ W a

cd f’df + ”a
c Pdf’df ≠ nPcf’af ,

= n(·”a
c ≠ Pcf’fa) + W a

cd f’df .

Thus, after rearrangement :

n(Òc⁄
a ≠ Pcf’fa + ·”a

c ) = ≠W a
cd f’df .

We now aim to perform a similar calculation for Òc· = Òc

1
Pab’ab

n
+ ÒaÒb’ab

n(n+1)

2

. To begin

with :

n(Òc·) = (ÒcPab)’
ab + PabÒc’

ab +
ÒcÒaÒb’

ab

n + 1
,

= (ÒcPab)’
ab ≠ 2Pab⁄

(a”b)
c +

ÒcÒaÒb’
ab

n + 1
,

= (ÒcPab)’
ab +

ÒcÒaÒb’
ab

n + 1
≠ Pac⁄

a

¸ ˚˙ ˝

Pca⁄a≠—ac⁄a

≠Pcb⁄
b,

= (ÒcPab)’
ab +

ÒcÒaÒb’
ab

n + 1
≠ 2Pcb⁄

b + —ac⁄
a.

Let us focus now on: ÒcÒaÒb’
ab:

ÒcÒaÒb’
ab = ÒaÒc Òb’

ab

¸ ˚˙ ˝

≠(n+1)⁄a

+R a
ca fÒb’

fb + R b
ca fÒb’

af ≠ R f
ca bÒf’ab ≠ 2—caÒb’

ab,

= ≠(n + 1)ÒaÒc⁄
a + (n + 1)Rcf⁄f + 2(n + 1)—ca⁄a.

Therefore:
ÒcÒaÒb’

ab

n + 1
= ≠ÒaÒc⁄

a + (n ≠ 1)Pcf⁄f + —cf⁄f .

From our previous computation :

ÒaÒc⁄
a = Òa

3

Pcf’fa ≠ ·”a
c ≠ 1

n
W a

cd f’fd
4

= ≠Òc· + (ÒaPcf )’fa ≠ (n + 1)Pcf⁄f ≠ 1

n
W a

cd fÒa’fd ≠ 1

n
ÒaW a

cd f’fd.

We appeal now to (E.1) which shows that :

ÒaW a
cd f’fd = (n ≠ 2)Ycdf’fd,

215



4.5. A brief primer on the Metrisability equation

thus :

ÒaÒc⁄
a = ≠Òc· + (ÒaPcf )’fa ≠ (n + 1)Pcf⁄f ≠ 1

n
W a

cd fÒa’fd ≠ n ≠ 2

n
Ycdf’fd,

= ≠Òc· + (ÒaPcf )’fa ≠ (n + 1)Pcf⁄f +
2

n
W a

cd f⁄(f”d)
a

¸ ˚˙ ˝

= 0 since W is tracefree

≠n ≠ 2

n
Ycdf’fd,

= ≠Òc· + (ÒaPcf )’fa ≠ (n + 1)Pcf⁄f ≠ n ≠ 2

n
Ycdf’fd.

Overall :

ÒcÒaÒb’
ab

n + 1
= Òc· ≠ (ÒaPcf )’fa + 2nPcf⁄f +

n ≠ 2

n
Ycdf’df + —cf⁄f .

Therefore:

(n ≠ 1)(Òc· ≠ 2Pcb⁄
b) = (ÒcPab)’

ab +
n ≠ 2

n
Ycdf’df ≠ (ÒaPcf )’fa,

= 2
n ≠ 1

n
Ycdf’df .

Hence:

(Òc· ≠ 2Pcb⁄
b) =

2

n
Ycdf’df .

Finally, we conclude that :

ÒcH
AB Ò

=
1

n

Q

c
c
c
a

0

≠W a
cd f’df

2Ycdf’df

R

d
d
d
b

.

Now, using Equation (4.32) we see that :

2Ω
(A

ce F HB)F = ≠2Ycef’bfX(AW
B)
b + 2W a

ce f’bfW A
a W B

b ≠ 2⁄fYcefXAXB.

Hence, according to (4.39):

ˆú(2Ω
(A

ce F HB)F ) = ≠2’efYcefXAXB + 2’efW b
ce fX(AW

B)
b

Ò
=

Q

c
c
c
a

0

’efW b
ce f

≠2Ycef’ef

R

d
d
d
b

.

Which shows that Equation (ME2) is satisfied and proves the equivalence. Due to this 
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result, we will sometimes also refer to (ME2) as the metrisability equation.

4.5.2 Normal solutions

If we inspect the hypothesis of Theorem 4.5.1, we observe that there is a special class

of solutions to the metrisability equation: those ’ such that HAB = L(’) is parallel for

the tractor connection. They will be referred to as normal solutions, and it is shown

in [�GM14] that they are intimately related to Einstein manifolds. Indeed, recall that:

HAB Ò
=

Q

c
c
c
a

’ab

⁄b

·

R

d
d
d
b

=

Q

c
c
c
a

’ab

≠Òa’ab

n+1
Pab’ab

n
+ ÒaÒb’ab

n(n+1)

R

d
d
d
b

, ÒcH
AB Ò

=

Q

c
c
c
a

Òc’
ab + 2⁄(b”a)

c

Òc⁄
b ≠ ’abPca + ·”b

c

Òc· ≠ 2Pcb⁄
b

R

d
d
d
b

.

In the scale Ò‡ determined by ‡ = det ’ab, which is the Levi-Civita connection of the

metric gab = ‡≠1’ab, away from where ‡ vanishes, ⁄b = 0 and the condition ÒcH
AB = 0

implies that :

’abPca =
Pef’ef

n
”b

c,

hence :

Pcd =
Pef’ef

n
’cd. (4.41)

Furthermore, since n· = ’abPab and Òc· = 0, it follows that ’cd is Einstein.
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4.6 Projective Laplace operator and Boundary cal-

culus

4.6.1 The Thomas D-operator

We have now laid out the basic tools that we have at our disposal on projectively

compact pseudo-Riemannian manifolds and can at last proceed to discuss how one may

seek to use these new tools in the asymptotic analysis of second order partial di�erentiation

equations from Physics. The main idea is to construct a tractor version of the usual

di�erential operators, that can be used to write down a similar equation on the tractor

bundle. Equations obtained in this way are projectively invariant by construction and one

can hope that it is possible to extract asymptotic information from the version expressed

in the scale Ò̂ that extends smoothly to the boundary. A basic tool in the construction

of these projectively invariant operators is the Thomas D-operator:

Definition 4.6.1. Let F ¶ be an arbitrary section of a weighted tractor bundle 20 of weight

Ê. In a given scale Ò, the projective Thomas D-operator is defined as :

DAF ¶ Ò
= ÊYAF ¶ + ÒaF ¶Za

A.

The definition is independent of the choice of scale since if Ò̂ = Ò + Υ then : Ò̂aF =

ÒaF + ÊΥaF and ŶA = YA ≠ ΥaZa
A, so :

ÊYAF + Za
AÒaF = ÊŶAF + (ÒaF + ÊΥaF )Za

A = ÊŶAF + Ò̂aFZa
A.

We note here that the operator XADA
21 is the weight operator ω : F (Ê) æ F (Ê)

defined on an arbitrary weighted tractor bundle F (Ê) by : F ‘æ ÊF .

The Thomas D-operator is closely analogous to a covariant derivative with tractor

indices and satisfies, in particular, the Leibniz rule:

DA(F ¶G¶) = (DAF ¶)G¶ + F ¶(DAG¶).

It is interesting to note that this was not the case for the conformal equivalent of the

Thomas D-operator. It holds here because the projective structure is, in some sense, first

20. ¶ denotes an arbitrary set of tractor indices.
21. XA is the canonical tractor.
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order whereas the conformal structure is second order : projective tractors are 1-jets and

conformal tractors, 2-jets.

4.6.2 A projective Laplace operator and its boundary calculus

First attempt

Our original interest in Laplace-type operators that can act on tractors arose from the

hope that they may provide a framework for the geometric interpretation of Hörmander’s

scattering result at timelike infinity for Klein-Gordon fields in Minkowski space-time dis-

cussed in the introduction. The Laplace operator gabÒaÒb is not, of course, projectively

invariant. However, much like in the conformal case, it can be made projectively invariant

by working with projective densities of arbitrary weight.

Consider a Lorentzian manifold (M, g) of dimension n and denote by [Ò] the projec-

tive class of its Levi-Civita connection. If ‡ œ Γ(T úM(Ê)), then observe that gabÒa‡b

transforms under a change of connection Ò̂ = Ò + Υ according to:

gabÒ̂a‡b = gabÒa‡b + ÊΥ
b‡b ≠ Υ

b‡b ≠ ‡b Υ
b

= gabÒa‡b + (Ê ≠ 2)Υb‡b.

It is therefore immediately invariant if Ê = 2, however, we can avoid fixing the weight

(that we hope to identify with a mass term) if we consider instead an operator of the

form Òa + ’a, where the form ’ depends on the connection in the class and transforms

according to:

’̂a = ’a ≠ (Ê ≠ 2)Υa.

It is possible to construct such a co-vector from any non-degenerate symmetric tensor hab,

indeed, ’a = Ê≠2
n+3

hacÒchab, is a suitable choice since:

hacÒ̂chab = hacÒchab ≠ 2hachabΥc ≠ hachacΥb ≠ Υahachcb

= hacÒchab ≠ 2Υb ≠ nΥb ≠ Υb

= hacÒchab ≠ (n + 3)Υb.

With any such choice of ’, the quantity:

gab(Ò̂ 
a + ’a)‡b, 
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is projectively invariant. Studying similarly the transformation rule for Òa· we find that

for any · œ E(Ê), ›a = hacÒchab, h œ S2(T úM), non-degenerate:

gab
3

Òa +
Ê ≠ 2

n + 3
›a

4 3

Òb +
Ê

n + 3
›b

4

·,

is also projectively invariant. The operator can be extended to weighted tractors simply

by coupling with the tractor connection.

Since we already have a metric g at our disposal, it seems natural to set h = g in the

above. The resulting operator is a candidate for a D’Alembertian type operator, however,

in the Levi-Civita scale the term ›a vanishes and does not, therefore, provide a mass

term...

Restricting the problem to Minkowski spacetime, we can try to solve the mass issue

by exploiting some of the freedom left in the construction outlined above. Let fl be the

boundary defining function defined by Equation (4.34) on the future region of the future

light cone of the origin of Minkowski spacetime. We note immediately that, with the

Levi-Civita connection:

⇤fl = ≠(n ≠ 3)fl3, ÒaflÒafl = fl4.

Set hab = f(fl)gab, so that the new ›̃a is given by:

›̃a = ›a + (f(fl))≠1f Õ(fl)Òafl.

Studying the form of Òa›̃a and ›̃a›a, it transpires that an interesting choice for f is

f(fl) = e≠ α
ρ , for some – œ C. For such a choice, expressed in the Levi-Civita scale:

›̃a = –
Òafl

fl2
, ›̃a›̃a = –2, Òa›̃a = ≠–(n ≠ 1)fl,

so that, if we write: i· = gab
3

Òa +
Ê ≠ 2

n + 3
›̃a

4 3

Òb +
Ê

n + 3
›̃b

4

· , then in the Levi-Civita

scale:

i· = gabÒaÒb· ≠ –(n ≠ 1)flÊ· +
2(Ê ≠ 1)

n + 3
gab›aÒb· +

(Ê ≠ 2)Ê–2

(n + 3)2
·.

Setting Ê = 1 rids us of the first order term and setting – = im(n + 3) we arrive, again
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in the Levi-Civita scale, at:

i· + im(n ≠ 1)fl· = (⇤ + m2)·.

This has apparently given us what we sought; but perhaps in a trivial way. Indeed, there is 
no guarantee here that i has an interesting extension to the boundary (or is defined there), 
and, our development depends in a non-trivial way on the boundary defining function, 
which is inherently dissatisfying. Finally, since · is of weight 1, and Minkowski spacetime 
is projectively compact of order 1, then · = „‡, where ‡ œ E(1) is a boundary defining 
density. Hence, if „ extends to the boundary, so does · but with vanishing boundary value. 
Working out the action of the operator on the component of · expressed in a trivialisation 
that is valid up to the boundary, we find unfortunately that our concerns are founded as it 
has smooth coe�cients that tend to 0 at the boundary and reduces there to multiplication 
by m2.

A more natural operator

On a n-dimensional projective manifold (M, p) equipped with a solution HAB = L(’) 
to the metrisability equation (ME2), D provides a natural candidate for a projectively 
invariant Laplacian operator, namely :

∆
T = HABDADB.

During my trip to Auckland University, A.R. Gover suggested to me that this operator 
would likely play a key role and may be a more successful candidate. We also note that 
it has already appeared in the literature [GS18]. Of course, the results in Section 4.5.1 
corroborate this, given the geometric significance of H AB. This is also a closer analogue to 
the operator « I ·D » in conformal tractor calculus [18, Chapter 3, §3.9] than the previous 
attempt.

The analogy with the conformal case is in fact complete in the case where HAB is 
non-degenerate. In the early stages of his on-going thesis work, Samuel Porath, a student 
of R. Gover, developed a boundary calculus in this case, that is in all points analogous to 
the results in [GW14]. In fact, the important point is that ∆T defined above is part of an 
sl2 algebra.

Proposition 4.6.1 (S. Porath). Suppose (M, g) is projectively compact of order – = 2,
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HAB non-degenerate, and let:

— x be the operator of multiplication by a boundary defining density ‡,

— y = ≠ 1
‡≠1I2 ∆T , with I2 = HABDA‡DB‡,

— h = ω + d+2
2

.

Then x, y, h form an sl2-triple i.e.

[x, y] = h, [h, x] = 2x, [h, y] = ≠2y.

It is interesting to note that Proposition 4.6.1 is not specific to normal solutions to the

Metrisability equation. The consequence of this that interests to us, is that following

the same procedure as in [GW14], S. Porath developed a Boundary Calculus from which

follows a formal solution operator that we relate to the asymptotics of solutions, we will

discuss this in Section 4.6.4.

Let us begin our discussion here by studying how ∆T acts on weighted densities. Let

f œ Γ(E(Ê)) and Ò œ p, then:

DADBf
Ò
= (Ê ≠ 1)ÊfYAYB + 2(Ê ≠ 1)ÒbfY(AZb

B) + (ÒaÒbf + ÊPabf)Za
AZb

B.

Hence, writing HAB Ò
= ’abW A

a W B
b ≠ 2Òa’ab

n+1
X(AW

B)
b +

1
Pab’ab

n
+ ÒaÒb’ab

n(n+1)

2

XAXB, we find

that:

∆
T f

Ò
= Ê(Ê ≠ 1)

A

Pab’
ab

n
+

ÒaÒb’
ab

n(n + 1)

B

f + ’ab(ÒaÒbf + ÊPabf) ≠ 2
Ê ≠ 1

n + 1
Òa’abÒbf.

In the scale Ò’ the expression reduces to :

∆
T f

Òζ
=

Ê(Ê + n ≠ 1)Pab’
ab

n
f + ’abÒaÒbf. (4.42)

This indicates that in the case where the density Pab’
ab is parallel for Ò’ , ∆T is a pro-

jectively invariant generalisation of the Klein-Gordon operator, with the proviso that the 
order-0 term be identified w ith t he m ass. U nfortunately, i n t he c ase o f s calar-flat met-

rics like Minkowski spacetime, the term vanishes altogether and we have but a projective 
wave operator. We will see that scalar-flatness is also an obstruction to our next develop-

ments, as well as Proposition 4.6.1. The above formulae generalise to the case where f is 
a weighted tractor by coupling a connection on M with the tractor connection.
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Let us now restrict to the case in which our projective manifold is the projective

compactification M̄ of a connected oriented n = (1 + d)-dimensional Lorentzian manifold

(M, g). That is to say, we assume that:

Hypothesis A.

— M̄ is a manifold with boundary ˆM such that int M̄ = M ,

— M is a connected, oriented manifold equipped with a smooth Lorentzian metric g,

— The Levi-Civita connection Òg of g does not extend smoothly to any point on the

boundary,

— The projective class [Òg] extends to the boundary.

Let Êg denote the volume density for g and set for – œ {1, 2}, ‡ = (Êg)≠ α
n+2 . Then

’ = ‡≠ 2
α g≠1 is a solution to the metrisability equation (ME) on M , and gives rise to a

tractor HAB that is a solution of Equation (ME2), equally on M . Since Equation (ME2)

can be rewritten as Ò̃cH
AB = 0 for an obvious modification Ò̃ of the tractor connection,

we can observe that our assumptions imply that Ò̃ extends smoothly to the boundary

and, consequently, HAB can be extended by parallel transport to ˆM . Projecting onto

the invariant component, Za
AZb

BHAB = ’ab, shows that ’ itself extends smoothly to the

boundary, furthermore, its extension is degenerate on ˆM since if this was not the case

Òg would extend to the boundary. According to whether HAB is non-degenerate (– = 2)

or g is Ricci-flat (– = 1) we are now in one of the situations described in [FG18, Theorems

3.6 or 3.14] and ‡ is a boundary defining density in each case.

Consider now as in Proposition 4.6.1, x, the operator acting on weighted tractors that

multiplies by ‡ and define the weight – ≠ 1 co-tractor IA = DA‡, then :

Lemma 4.6.1.

[x, ∆
T ] = ≠‡≠1I2

–
(2ω + d + –)

where: I2 = HABIAIB and ω = XADA is the weight operator.

Proof. In the scale Òg, ‡ is parallel, so it commutes with Òg. However, it does not com-

mute with the weight operator as it increases weight by –. Hence, if F is an arbitrary

tractor of weight Ê then :

[x, ∆
T ]F = (Ê(Ê + d) ≠ (Ê + –)(Ê + – + d)

Pab’
ab

d + 1
‡F.

Again, in the scale Òg, IA = –‡YA and I2 = –2‡2 Pab’ab

d+1
and the result ensues.
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If g is Ricci-flat (– = 1) then on M , Pab = 0 and I2 = 0. Furthermore, IA is parallel for

the tractor connection and extends naturally to M̄ , hence I2 also extends smoothly to 0

on M̄ . So [x, ∆T ] = 0 in this case. On the other hand, if HAB is non-degenerate on M

(– = 2), the function ‡≠1I2 is non-vanishing on M̄ and, defining y = ≠ 1
‡≠1I2 ∆T , we have

reproduced Proposition 4.6.1.

We see here directly the unfortunate consequences of Ricci-flatness, Proposition 4.6.1

cannot hold in the case – = 1 because x and ∆T commute and generate a trivial sub-Lie

algebra.

4.6.3 Asymptotics of solutions to the Klein-Gordon equation in

de-Sitter spacetime

As mentioned above, in the non-degenerate case, the sl2-triple in Proposition 4.6.1 is

the basis of a so-called Boundary Calculus. This enables us to formally generate approx-

imate solutions to yf = 0 o� the boundary. To study this, we first consider the specific

case of (1 + d)-dimensional de-Sitter spacetime and return to the notations introduced in

Section 4.4.3. Let ‡ œ E(2) be the defining density for the boundary constructed from the

volume form Êg by ‡ = |Êg|≠
2

d+2 and ’ab = ‡≠1gab. In the scale defined by ‡ :

’abPab =
1

d
’abRab = ‡≠1(d + 1)

so Equation (4.42) becomes :

∆
T f

Òζ
= ‡≠1

1

Ê(Ê + d)f + gabÒaÒbf
2

. (4.43)

This is the Klein-Gordon operator with mass defined by the relation Ê(Ê + d) = ≠m2.

Vice versa, for a given value of m there are therefore two weights on which ∆T acts exactly

as the Klein-Gordon operator with mass m :

Êm œ
;

1

2
(≠d + ›) , ›2 = d2 ≠ 4m2

<

,

generically, › is complex.
On de-Sitter spacetime, the operator y is simply y = ≠∆T , therefore the equation yf = 

0 for f œ E(Êm), in the scale determined by ‡, is the Klein-Gordon equation for a classical 
scalar field with mass m. More precisely, solutions to the Klein-Gordon equation with
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mass m on de-Sitter space are in one-to-one correspondence with densities of weight Êm

in ker y; the correspondance being accomplished naturally via the map „ ‘æ „‡
ωm

2 © f„.

The operator y = ≠1
I2 HABDADB has the advantage that it is well-defined on the boundary

and therefore, expressed in a scale that is regular at the boundary, it can be used to study

the asymptotic behaviour of solutions to the Klein-Gordon equation. Let us work this out

explicitly on our example. Introduce the coordinate functions (Â, Ë), Â œ R, Ë œ Sn and

recall that fl = 1
2 cosh2 Â

is a boundary defining function. Each local frame (Ê0, . . . , Êd) on

T úM defines a positive density of any weight Ê that we will call |Ê0 · · · · · Êd|≠
ω

d+2 . For

simplicity : let Ê1, . . . , Êd be dual to an orthonormal frame on TSd and write Ê1·· · ··Êd =

dΩd. Then |dfl · dΩd|
≠ω
d+2 is smooth up to the boundary and:

‡ = 2fl(1 ≠ 2fl)
1

d+2 |dfl · dΩ
n|

≠2
d+2 .

By construction, the connection Òs = Òg + dfl
2fl

extends to the boundary and preserves the

2-density s = 1
fl
‡; the scale s can therefore be used to study y near the boundary ‡ = 0.

Using the change of connection formulae, we find:

HAB Òs=

Q

c
c
c
a

s≠1fl≠1gab

2s≠1(1 ≠ 2fl)ˆa
fl

2s≠1

R

d
d
d
b

.

Hence, if expressed in terms of the connection Òs, for f œ E(Ê) :

yf = 2s≠1(Ê ≠ 1)Êf + 4s≠1fl(1 ≠ 2fl)(Ê ≠ 1)ˆa
flÒs

af + ’ab (Òs
aÒs

bf + ÊP s
abf) . (4.44)

Writing f = „s
ω
2 , and using the fact that Òss = 0, Lemma F.1.3, shows that:

yf = s
ω
2

≠1fl≠1⇤s„ + 4s≠1(Ê ≠ 1)(1 ≠ 2fl)ˆfl„ + 2s≠1(Ê + d ≠ 1)Ê„)

= 2s
ω
2

≠1

A

≠ 2fl(1 ≠ 2fl)ˆ2
fl„ + [2(Ê ≠ 1)(1 ≠ 2fl) + (2fl(1 ≠ d) + d)]ˆfl„

+ ∆Sd + Ê(Ê + d ≠ 1)„

B

.

(4.45)

Therefore, near the boundary, yf = 0, f = „s
ω
2 is equivalent to:

≠2fl(1 ≠ 2fl)ˆ2
fl„ + (1 + (1 ≠ 2fl)(d ≠ 3 + 2Ê))ˆfl„ + ∆Sd„ + Ê(Ê + d ≠ 1)„ = 0.
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Exploiting the spherical symmetry of the above equation by decomposing onto a spherical

harmonic ⁄ = l(l + d ≠ 1), the problem is reduced to the ODE:

≠2fl(1 ≠ 2fl)ˆ2
fl„ + (1 + (1 ≠ 2fl)(d ≠ 3 + 2Ê))ˆfl„ + (Ê(Ê + d ≠ 1) ≠ ⁄)„ = 0. (4.46)

Since all coe�cients are analytic functions of fl, it is well adapted to the Frobenius

method [Inc56] and so we seek solutions of the form :

„ = fl‹
ÿ

kØ0

–kflk.

Plugging this ansatz into Equation (4.46) yields the indicial equation :

‹(2Ê + n ≠ 2‹) = 2‹(h0 ≠ ‹ ≠ 1) = 0, (4.47)

where we have introduced h0 = hf = Ê+ d+2
2

and h is the operator defined in Lemma 4.6.1.

Hence:

‹ = 0 or ‹ = h0 ≠ 1.

For k Ø 1, the coe�cients –k satisfy the following recurrence relation :

2(‹ + k)(h0 ≠ k ≠ 1 ≠ ‹))–k = (2(‹ + k ≠ 1)(2‹ + k + 1 ≠ 2h0) + Ê(Ê + n ≠ 1) ≠ ⁄) –k≠1,

which is readily solved for any given –0 provided that for all k œ N, k ”= h0 ≠ 1 (when

‹ = 0) or k ”= ≠(h0 ≠ 1) when (‹ = h0 ≠ 1). In a generic case h0 œ C \ R, and there is

no obstruction to the existence of the series. Under the assumption that we avoid these

special cases, the Frobenius method yields two independent solutions to the equation, and

generic smooth solutions can be written :

„ = „0 + flh0≠1„1,

where „0, „1 are regular up to the boundary. Now, returning to the scale Òg,

f = „̃‡
ω
2 = „̃fl

ω
2 s

ω
2 .

Hence:

„̃ = „0fl
≠ ω

2 + flh0≠ ω
2

≠1„1 = „0fl
≠ ω

2 + fl
ω
2

+ d
2 „1. (4.48)
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Choosing Ê œ {1
2
(≠d + ›), ›2 = d2 ≠ 4m2}, Equation (4.48) describes the asymptotic be-

haviour of solutions to the Klein-Gordon equation near the projective boundary. Observe

from (4.48) that the precise choice of weight in the identification „ ‘æ „‡
ω
2 is inconsequen-

tial and switching between the two possible values at fixed mass m amounts to exchanging

„0 and „1. Overall, solutions behave asymptotically as :

„̃ = „0fl
1
4

(d≠
Ô

d2≠4m2) + „1fl
1
4

(d+
Ô

d2≠4m2).

Where
Ô

d2 ≠ 4m2 is a (perhaps complex) square root of d2 ≠ 4m2. This result should be

compared with [Vas10, Theorem 1.1].

4.6.4 Formal solution operator

As stated previously, using Proposition 4.6.1, one can formally generalise the previous

result, in the same manner as [GW14] in the conformal case, to the more general framework

of the rather general hypotheses A with the additional assumption that the solution HAB

to the Metrisability equation (ME2) is non-degenerate; recall that this implies that the

order of the compactification is 2. The idea is to look for formal operators A, generated

by x–, – œ C (x = ‡) and y, that annihilate y from the right, i.e. that satisfy yA = 0.

Inspired by the Frobenius method, one can seek solutions of the form:

A = x‹
Œÿ

k=0

–kxkyk.

Now, note the same reasoning outlined in the proof of Lemma 4.6.1, can be used to prove

that for any complex ‹ œ C,

[x‹ , y] = x‹≠1‹(h + ‹ ≠ 1). (4.49)

Hence, formally :

yA = yx‹
Œÿ

k=0

–kxkyk = x‹
Œÿ

k=1

–kyxkyk ≠ x‹≠1
Œÿ

k=0

‹(h + ‹ ≠ 1)–kxkyk,

= x‹
Œÿ

k=0

–kxkyk+1 ≠
Œÿ

k=0

xk≠1k(h + k ≠ 1)–kyk ≠ x‹≠1
Œÿ

k=0

‹(h + ‹ ≠ 1)–kxkyk
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Considering the action of A on an eigenspace of the operator h = ω + d+2
2

with a fixed

eigenvalue h0, we have :

yA = x‹
Œÿ

k=0

–kxkyk+1 ≠
Œÿ

k=0

xk≠1k(h0 ≠ k ≠ 1)–kyk ≠ x‹≠1
Œÿ

k=0

‹(h0 + ‹ ≠ 1)–kxkyk,

= x‹≠1

A Œÿ

k=1

–k≠1x
kyk ≠ (h0 ≠ 1)

Œÿ

k=0

k–kxkyk

+
Œÿ

k=0

k2–kxkyk ≠ ‹(h0 + ‹ ≠ 1)
Œÿ

k=0

–kxkyk

B

.

In order to ensure Ay = 0, we demand that the operator between brackets vanish iden-

tically. To find a solution, it is necessary to be a little more precise about how we would

like A to act. In fact, the idea would be to take some smooth data f0 on the boundary,

extend it arbitrarily to f̄0 over M and Af̄0 should satisfy yAf̄0 = 0 and x≠‹Af̄0 should

restrict to f0 on the boundary. In other words, –0 = 1. Thus, after rewriting the above

equation in terms of a formal series F (z) :=
Œÿ

k=0

–kzk œ C[[z]], where zk =: (xy)k := xkyk,

we see that necessarily:

‹(h0 + ‹ ≠ 1) = 0. (4.50)

Taking this into account, we find that the formal series F satisfies the ODE:

(zF Õ)Õ ≠ (h0 ≠ 1)F Õ + F = 0.

Equation (4.50) should be compared with the indicial equation (4.47) we obtained when

applying the Frobenius method in de-Sitter space.
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4.7 Exterior tractor calculus

In this section, we will enrich the boundary calculus in Lemma 4.6.1 for tractor forms

in order to develop similar projective methods for Proca style equations on k-forms. We

return to the general setting of a n-dimensional projective manifold (M, p). The first

stage is to understand the exterior algebra of projective co-tractor k-forms, we begin by

describing how the splitting of the exact sequence in Proposition (4.3.1) induces a splitting

of ΛkT ú:

Lemma 4.7.1. Let (M, p) be a projective manifold of dimension n, k œ J1, n + 1K and

Ò œ p then:

Λ
kT ú Ò≥= (Λk≠1T úM)(k) ü (ΛkT úM)(k).

Any section FA1...Ak
can be expressed as:

FA1...Ak
=

Q

a
µa2...ak

›a1...ak

R

b = kµa2...ak
Y[A1Za2

A2
· · · Zak

Ak] + ›a1...ak
Za1

A1
Za2

A2
· · · Zak

Ak
. (4.51)

(The second component vanishes if k = n+1). Under the change of connection Ò̂ = Ò+Υ

the components transform according to:

Y

]

[

µ̂ = µ,

›̂ = › + Υ · µ.
(4.52)

The reader will find a proof of Lemma 4.7.1 in Appendix E.2.

4.7.1 Wedge product and exterior derivative

The next stage is to describe how the usual operations of exterior calculus work with

respect to the representation in Lemma 4.7.1. The wedge product is relatively simple:

Lemma 4.7.2. Let F œ ΛkT ú, G œ ΛlT ú, and Ò œ p on a projective manifold (M, p).

Suppose that:

F
Ò
=

Q

a
µ

›

R

b , G
Ò
=

Q

a
‹

÷

R

b ,

then:

F · G
Ò
=

Q

a
µ · ÷ + (≠1)k› · ‹

› · ÷

R

b . (4.53)
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A tractor analogue of the exterior derivative is, as for the Laplacian, provided, by the

Thomas D-operator (Definition 4.6.1). The result can be stated as follows:

Proposition 4.7.1. Let DA denote the projective Thomas D-operator then one can define

a co-chain complex:

· · · ≠æ E[A1,...,Ak](Ê)
D≠æ E[A1,...,Ak+1](Ê ≠ 1)

D≠æ E[A1,...,Ak+2](Ê ≠ 2) ≠æ · · ·

The operator D is defined on a section F œ E[A1,...,Ak](Ê) by

DF = (k + 1)D[A1FA2···Ak+1].

Furthermore, in terms of Lemma 4.7.1, if F
Ò
=

Q

a
µa2···ak

›a1···ak

R

b then:

DF
Ò
=

Q

a
(Ê + k)›a2···ak+1

≠ kÒ[a2µa3···ak+1]

(k + 1)Ò[a1›a2···ak+1] + (k+1)!
(k≠1)!

P[a1a2µa3···ak+1]

R

b . (4.54)

Proof. First, we prove the expression for DF in the splitting associated with some con-

nexion Ò œ p. Let F œ ΛkT ú(Ê) be such that:

FA1A2...Ak

Ò
= kµa2...ak

Y[A1Za2
A2

. . . Zak

Ak] + ›a1...ak
Za1

A1
Za1

A2
. . . Zak

Ak
.

By definition:

DAFA1A2...Ak
= ÊFA1A2...Ak

YA + Za
AÒaFA1A2...Ak

.

Let us first concentrate on ÒaFA1A2...Ak
. Using Equation (4.30), we find that:

ÒaFA1A2...Ak
= kÒaµa2...ak

Y[A1Za2
A2

. . . Zak

Ak] + kPa[a1µa2...ak]Z
a1
A1

. . . Zak

Ak

+ Òa›a1...ak
Za1

A1
. . . Zak

Ak
≠ ›a1...ak

kÿ

i=1

Za1
A1

. . . Z
ai≠1

Ai≠1
”ai

a YAi
Z

ai+1

Ai+1
. . . Zak

Ak
,

in which the last term simplifies to:

≠k›aa2...ak
Y[A1Za2

A2
. . . Zak

Ak].
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Hence, in column vector form this can be written as:

ÒaF =

Q

a
Òaµa2...ak

≠ ›aa2...ak

Òa›a1...ak
+ kPa[a1µa2...ak]

R

b .

Since DF = (k + 1)D[AFA1A2...Ak], any terms containing two YAi
will not contribute in the

final expression, furthermore for an arbitrary (weighted) tensor Ta1...ak
:

Ta1...ak
Za1

[A1
. . . Zak

Ak] = T[a1...ak]Z
a1
A1

. . . Zak

Ak
.

Hence:

DF
Ò
=(k + 1)Ê›a1...ak

Y[AZa1
A1

. . . Zak

Ak] + k(k + 1)(Òaµa2...ak
≠ ›aa2...ak

)Y[A1Za
AZa2

A2
. . . Zak

Ak]
::::::::::::::::::::::::::::::::::::::::::::::::

1

(k + 1)Òa›a1...ak
+ k(k + 1)P[aa1µa2...ak]

2

Za
AZa1

A1
. . . Zak

Ak
.

Swapping A and A1 in the underlined term in order to respect the sign conventions laid out

implicitly in Lemma 4.7.1 we arrive at the desired result. We now proceed to calculate D2F

using 4.54. For readability, we treat each slot in the column vector notation separately.

First of all, in the top slot we have:

(Ê + k)(k + 1)Ò[a2›a3···ak+2] + (Ê + k)
(k + 1)!

(k ≠ 1)!
P[a2a3µa4...ak+2]

≠(k + 1)(Ê + k)Ò[a2›a3...ak+2] ≠ k(k + 1)Ò[a2Òa3µa4...ak+2]

= (Ê + k)
(k + 1)!

(k ≠ 1)!
P[a2a3µa4...ak+2] ≠ k(k + 1)Ò[a2Òa3µa4...ak+2].

(4.55)

As for the bottom slot, we have:

(k + 2)(k + 1)Ò[a1Òa2›a3...ak+2] +
(k + 2)!

(k ≠ 1)!
Ò[a1Pa2a3µa4···ak+2]

+
(k + 2)!

k!
(Ê + k)P[a1a2›a3···ak+2] ≠ (k + 2)!

(k ≠ 1)!
P[a1a2Òa3µa4...ak+2]

= (k + 2)(k + 1)Ò[a1Òa2›a3...ak+2] +
(k + 2)!

k!
(Ê + k)P[a1a2›a3···ak+2]

+
(k + 2)!

(k ≠ 1)!
Y[a1a2a3µa4···ak+2].

(4.56)

Where we recall that Yabc := 2Ò[aPb]c. Expressions (4.55) and (4.56) simplify enormously
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in the case that Ò is a special connection (cf. Section 4.3.3). Since there is always a special

connection in any projective class 22, there is no loss in generality if we restrict to this

case. We appeal now to Lemma 4.3.2, which states that Pab is symmetric so that:

D
2F

Ò
=

Q

a
≠d2µ

d2›

R

b . (4.57)

d denotes here the covariant exterior derivative on the weighted tensor bundles. In general,

d2 ”= 0, however, here, using again Lemma 4.3.2, the density bundles are flat so we can

conclude that:

D
2F = 0.

Remark 4.7.1. In the preceding proof, one can avoid choosing a particular scale and di-

rectly use the fact that 2P[ab] = ≠—ab to show that the final expressions in equations (4.55)

and (4.56) vanish.

4.7.2 Tractor Hodge duality derived from a solution of the metris-

ability equation

Towards our aim to formulate a tractor version of the Proca equation, we describe

here how one can use a solution to the metrisability equation to define a tractor Hodge

star operator. The setting is as follows, we suppose we have a projective manifold with

boundary (M, p), with oriented interior M and boundary ˆM , in addition to a solution

’ of the metrisability equation with degeneracy locus D(’) = ˆM and such that HAB =

L(’ab) is non-degenerate on M .

On M , ’ab is non-degenerate and defines a smooth metric on the weighted cotangent

bundle T úM(1). The orientation on M induces a natural orientation on (ΛnT úM)(n), so

it makes sense to talk of the positive volume form (induced by ’) Ê œ Γ ((ΛnT úM)(n)).

To define an orientation on the tractor bundle, we introduce: ‡ = |Ê|≠2 œ Γ(E(2)); it

is a positive defining density for the boundary. Set IA = DA‡ œ EA(1), since HAB is

non-degenerate, the smooth function ‡≠1I2 is non-vanishing on M , and so one can define

on M :

J0
B =

‡≠ 1
2

Ò

|‡≠1I2|
IB.

22. We assume that a manifold’s topology is second-countable.
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Since any positively oriented orthonormal frame (Êi
a) induces an orthonormal family of

tractors J i
B = Zb

BÊi
b, we define an orientation of the tractor bundle by declaring that

J0 · · · · · Jn is positive. Since (J0, . . . , Jn) is an orthonormal family with respect to HAB,

this procedure also yields a local expression of the positive tractor volume form in the

splitting of the Levi-Civita connexion Òg of gab = ‡’ab on M :

ΩT
Òg
=

Q

c
a

2‡
1
2Ô

|‡≠1I2|
Ê

0

R

d
b .

We can now state the following result:

Proposition 4.7.2. In the notation of the preceding paragraph, let Ò œ p and F œ ΛkT ú

be such that: FA1...Ak

Ò
= kµa2...ak

Y[A1Za2
A2

· · · Zak

Ak] + ›a1...ak
Za1

A1
· · · Zak

Ak
then on the interior

M :

ıF
Ò
=

Q

c
c
a

2‡
1
2Ô

|‡≠1I2|

1

(≠1)k ı › + Ty(ıµ)
2

‡≠ 3
2 I2

2
Ô

|‡≠1I2|
ı µ ≠ 2‡

1
2Ô

|‡≠1I2|

Ë

(≠1)kT ˜ · (ı›) + T ˜ · Ty(ıµ)
È

R

d
d
b

, (4.58)

where: T b = ≠ 1
n+1

Òa’ab, ˜ denotes the lowering of indices using ’ab and y denotes con-

traction.

Proof. Let us first verify that the formula is reasonable on M in the splitting determined

by Òg. Since T is zero in this scale, the formula reduces to:

ıF
Òg
=

Q

c
c
a

(≠1)k 2‡
1
2Ô

|‡≠1I2|
ı ›

‡≠ 3
2 I2

2
Ô

|‡≠1I2|
ı µ

R

d
d
b

.

Using Equation (4.53) let us calculate F · ıF in the scale Òg. The result is:

F · ıF =

Q

c
a

‡≠ 3
2 I2

2
Ô

|‡≠1I2|
µ · ıµ + 2‡

1
2Ô

|‡≠1I2|
› · ı›

0

R

d
b . (4.59)

Recall that the inner product h on ΛkT ú is defined by:

h(F, G) =
1

k!
HA1B1 . . . HAkBkFA1...Ak

GB1...Bk
.
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Since, in the splitting given by Òg, we have that: HAB Òg
= ’abW A

a W B
b + 1

n
’abPabX

AXB,

hence:

h(F, F ) =
1

n
’abPab’(µ, µ) + ’(›, ›),

where, Pab is the projective Schouten tensor in the scale Òg and, for any section of ‹ of

(ΛkT úM)(k + Ê), ’(‹, ‹) is shorthand for:

1

k!
’a1b1 · · · ’akbk‹a1...ak

‹b1...bk
.

In order to have a totally invariant formula, we observe that IA = DA‡
Òg
= 2‡YA, thus:

I2 =
4‡2

n
’abPab,

where Pab is calculated in the scale Òg. Hence:

’abPab

n
=

I2‡≠2

4
.

Consequently:

h(F, F ) =
I2‡≠2

4
’(µ, µ) + ’(›, ›)

Evaluating the top slot in Equation (4.59), we find:

‡≠ 3
2 I2

2
Ò

|‡≠1I2|
µ · ıµ +

2‡
1
2

Ò

|‡≠1I2|
› · ı› =

‡≠ 3
2 I2

2
Ò

|‡≠1I2|
’(µ, µ)Ê +

2‡
1
2

Ò

|‡≠1I2|
’(›, ›)Ê

= h(F, F )
2‡ 1

2
Ò

|‡≠1I2|
Ê.

Therefore:

F · ıF = h(F, F )ΩT ,

as desired. To verify that the result is correct for any connection in p, we only need

to verify that the components in Equation (4.58) transform correctly under a change of

connection Ò æ Ò + Υ = Ò̂. According to Equation (4.52), the top slot, (TS), must be

invariant. To check this, note that ›̂ = ›+Υ·µ and µ̂ = µ. Furthermore, T̂ b = ≠ 1
n+1

Ò̂a’ab

and:

Ò̂c’
ab = Òc’

ab + Υd’db”a
c + Υd’ad”b

c,
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which leads to:

Ò̂a’ab = Òa’ab + (n + 1)Υa’ab.

Therefore:

T̂ = T ≠ Υ
˘ and T̂ ˜ = T ˜ ≠ Υ. (4.60)

Since ›̂ = › + Υ · µ, Proposition E.3.1 shows that:

ı›̂ = ı› + ı(Υ · µ) = ı› + (≠1)k
Υ

˘y ı µ.

Thus, overall:

(≠1)k ı ›̂ + T̂y ı µ̂ = (≠1)k ı › + Υ
˘y ı µ ≠ Υ

˘y ı µ + Ty ı µ,

= (≠1)k ı › + Ty ı µ,

proving the projective invariance of the top slot as desired.

Referring again to Equation (4.52), we must now show that the bottom slot (BS) of

Equation (4.58) satisfies:
ˆ(BS) = (BS) + Υ · (TS).

Observe that, since, µ̂ = µ the first term in (BS) is invariant, moreover, the second term

can be written: ≠T ˜·(TS), so the desired result follows immediately from Equation (4.60).

4.7.3 Tractor co-di�erential and Hodge Laplacian

In the previous sections we have su�ciently enhanced the structure on the tractor

tensor algebra to introduce a tractor co-di�erential operator. Towards this, let s denote

the sign of the determinant of ’ab on M , and set:

Á = sgn(‡≠1I2);

observe that the sign of the determinant of HAB is then sÁ. For future convenience, we

introduce the notations:

f = ‡≠1I2, f Õ = df. (4.61)

Now:

Definition 4.7.1. By analogy with the usual exterior calculus, we define a tractor cod-
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i�erential on k-cotractors by:

D
ú = (≠1)(n+1)(k≠1)+1sÁ ı D ı .

In the scale Òg on M , for any F
Òg
=

Q

a
µ

›

R

b œ Γ[(ΛkT ú)(Ê)]:

D
úF

Òg
=

Q

a

1
2f

(f Õ)#yµ ≠ ”µ
1

2f
(f Õ)#y› + ”› ≠ (Ê+n+1≠k)‡≠1f

4
µ

R

b . (4.62)

In the above equation, we have introduced the notation (f Õ)# = ’abÒbf œ E(≠2).

Proof. We prove Equation (4.62): applying successively Equations (4.58) and (4.54) to

F
Òg
=

Q

a
µ

›

R

b œ Γ[(ΛkT ú)(Ê)], we find:

D ı F =

Q

c
c
a

(Ê+n+1≠k)‡≠ 1
2 f

2|f |
1
2

ı µ + 2(≠1)k+1d
31

‡
|f |

2 1
2 ı ›

4

d
3

‡≠ 1
2 f

2|f |
1
2

ı µ
4

R

d
d
b

,

=

Q

c
c
a

(Ê+n+1≠k)‡≠ 1
2 f

2|f |
1
2

ı µ + 2‡
1
2 (≠1)k+1

|f |
1
2

1

≠ 1
2f

f Õ · ı› + d(ı›)
2

‡≠ 1
2

4|f |
1
2
f Õ · ıµ + ‡≠ 1

2 f

2|f |
1
2

d ı µ

R

d
d
b

.

Applying once more the tractor Hodge star to this n + 1 ≠ (k ≠ 1) form of weight Ê ≠ 1,

we find:

ıD ı F =

Q

a

(≠1)n≠k

2|f |
ı (f Õ · ıµ) + (≠1)n≠kf

|f |
ı d ı µ

(Ê+n+1≠k)‡≠1f2

4|f |
ı ıµ + (≠1)k+1f

|f |

1

≠ 1
2f

ı (f Õ · ı›) + ıd ı ›
2

R

b

= (≠1)(n+1)(k+1)s

Q

a

≠1
2|f |

(f Õ)#yµ + f
|f |

”µ
(Ê+n+1≠k)‡≠1f2

4|f |
µ ≠ f

|f |

1
1

2f
(f Õ)#y› + ”›

2

R

b .

Equation (4.62) now follows from the fact that Á = sgn(‡≠1I2) = sgn(f).

The exterior di�erential c alculus w e h ave d eveloped a bove l eads u s t o d efine a new 
Laplacian operator, analogous to the Hodge or de-Rham Laplacian. In general, it is to be 
distinguished from HABDADB that we studied in Section (4.6.2). The remainder of this 
section is devoted to obtaining an expression for DúD + DDú = {D , Dú}. In order to
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simplify the computation, we will work exclusively with the Levi-Civita connection Òg of

g = ‡≠1’≠1 on M ; any identities will extend by density to M . We first remark that the

weight 2 density I2 is, in general, not parallel in the scale Òg.

Lemma 4.7.3. In an arbitrary scale Ò œ p:

ÒcI
2 =

8‡2

n
’efYcef ≠ 4‡

n
Òa‡’efW b

ce f

Proof.

ÒcI
2 = (ÒcH

AB)IAIB + 2HAB(ÒaIA)IB.

The second term is easily seen to cancel, and we evaluate the first one using Equa-

tion (ME2) and the calculations we did in Section 4.5.1. Finally, we have IA = 2‡Y A +

Òa‡Za
A, thus:

2X(AW
B)

cE F HEF IAIB = ≠8‡2’efYcef + 4‡Òa‡’efW b
ce f .

Let F denote an arbitrary section of (ΛkT ú)(Ê) given in the scale Òg by:

F
Òg
=

Q

a
µ

›

R

b .

Equation (4.54) yields directly the expression for DF , which, due to the symmetry of Pab,

simplifies to:

DF
Òg
=

Q

a
(Ê + k)› ≠ dµ

d›

R

b .

In the above expression d denotes, abusively, the covariant exterior derivative 23 on the

weighted bundles. Now:

ı DF =

Q

c
c
a

(≠1)k+1 2‡
1
2

|f |
1
2

ı d›

‡≠ 1
2

f

2|f |
1
2

((Ê + k) ı › ≠ ıdµ)

R

d
d
b

.

We apply again D , observing first that ıDF is a (n + 1 ≠ (k + 1)) = n ≠ k form of weight

23. cf. Annexe C
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Ê ≠ 1, thus:

D ı DF =

Q

c
c
a

(Ê≠1+n≠k)f

2(|f |‡)
1
2

((Ê + k) ı › ≠ ıdµ) + 2(≠1)kd
3

‡
1
2

|f |
1
2

ı d›

4

d
3

‡≠ 1
2

f

2|f |
1
2

((Ê + k) ı › ≠ ıdµ)
4

.

R

d
d
b

For readability, we will now proceed to treat the top and bottom slots separately. Let us

begin with the unevaluated di�erential in the top slot:

d

Q

a
‡

1
2

|f |
1
2

ı d›

R

b = ≠‡
1
2
f Õ · ıd›

2f |f |
1
2

+
‡

1
2

|f |
1
2

d ı d›.

Downstairs we have:

‡≠ 1
2

4|f |
1
2

f Õ · ((Ê + k) ı › ≠ ıdµ) +
‡≠ 1

2 f

2|f |
1
2

((Ê + k)d ı › ≠ d ı dµ) .

Applying again the Hodge star to this (n + 1 ≠ k)-tractor form of weight (Ê ≠ 2) leads to

a new k-tractor form of weight Ê ≠ 2 with, in the top slot:

(≠1)1+k(n≠k)s

2|f |

1

(Ê + k)(f Õ)#y› ≠ (f Õ)#ydµ
2

+
(≠1)k(n≠k)sf

|f |
((Ê + k)”› ≠ ”dµ).

As for the bottom slot, it evaluates to:

(Ê ≠ 1 + n ≠ k)f 2(≠1)k(n≠k)s

4|f |‡
((Ê + k)› ≠ dµ) +

(≠1)k(n≠k)+1s

|f |

A

(f Õ)#yd›

2
+ f”d›

B

.

Overall:

ıD ıDF =

Q

a

(≠1)1+k(n≠k)s
2|f |

1

(Ê + k)(f Õ)#y› ≠ (f Õ)#ydµ
2

+ (≠1)k(n≠k)sf
|f |

((Ê + k)”› ≠ ”dµ)
(Ê≠1+n≠k)f2(≠1)k(n≠k)s

4|f |‡
((Ê + k)› ≠ dµ) + (≠1)k(n≠k)+1s

|f |

1
(f Õ)#yd›

2
+ f”d›

2

R

b .

It remains only to correct the sign ! The result is:

D
ú
DF

Òg
=

Q

a

1
2f

1

(Ê + k)(f Õ)#y› ≠ (f Õ)#ydµ
2

≠ ((Ê + k)”› ≠ ”dµ)

≠ (Ê≠1+n≠k)f
4‡

((Ê + k)› ≠ dµ) +
1

(f Õ)#yd›

2f
+ ”d›

2

R

b .

Calculating DDú is slightly less involved as we have only to apply Equation (4.54) to
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Equation (4.62), taking care to note that DúF is a k ≠ 1 form of weight Ê ≠ 1.

DD
úF

Òg
=

Q

c
c
c
c
c
c
c
a

≠(Ê+k≠2)(Ê+n+1≠k)
‡≠1f

4
µ + (Ê+k≠2)

A

1

2f
(f Õ)#y› + ”›

B

≠d(
1

2f
(f Õ)#yµ) + d”µ

d”› + d( 1
2f

(f Õ)#y›) ≠ (Ê+n+1≠k)‡≠1

4
d(fµ)

R

d
d
d
d
d
d
d
b

.

We summarise these computations in:

Proposition 4.7.3. In the scale Òg, {Dú, D} acts on F
Òg
=

Q

a
µ

›

R

b œ Γ((Λk(T ú)(Ê)) as:

Q

c
c
c
a

{d, ”}µ ≠ 2”› + (Ê+k≠1) 1
f
Ǫ̀fyµ ≠ 1

2
Lf≠1Ǫ̀fµ ≠ (Ê+k≠2)(Ê+n+1≠k)‡≠1f

4
µ

{d, ”}›≠ f‡≠1

2
dµ≠(Ê+n+1≠k)‡≠1

4
(f Õ · µ)+ 1

2
Lf≠1Ǫ̀f›≠(Ê+k)(Ê≠1+n≠k)f‡≠1

4
›

R

d
d
d
b

.

(4.63)

In the above we have introduced the Lie derivative LX extended to weighted vector fields

X by the formula:

LX›a1...ak
= XaÒa›a1...ak

+ k(Ò[a1Xa)›|a|a2...ak].

4.7.4 Weitzenbock identity

Having already introduced the Laplacian type operator ∆T = HABDADB on generic

tractor k-coforms in Section 4.6.2, it is interesting to explore how it compares to {D , Dú}.

It turns out the relationship between them is completely analogous to that between the

Bochner Laplacian and the de-Rham Laplacian on the base manifold. As before, we per-

form all calculations in the Levi-Civita scale Òg. Recall from Equation (4.42) that then:

HABDADBF
Òg
=

(Ê + n ≠ 1)Êf‡≠1

4
F + ’abÒaÒbF,

where for a weighted k-cotractor form in an arbitrary scale Ò:

ÒaÒbF
Ò
=

Q

a
ÒaÒbµa2...ak

≠ 2Ò(a›b)a2...ak
≠ kPb[aµa2...ak]

ÒaÒb›a1...ak
+ 2kP(a|[a1Ò|b)|µa2...ak] + k(ÒaPb[a1)µa2...ak] ≠ kPa[a1›|b|a2...ak]

R

b .

To simplify computations a little, we restrict now to normal solutions of the Metris-
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ability equation (see Section 4.5.2), for which a number of terms in the above expressions,

and in particular Equation (4.63), vanish. Furthermore, in the scale Òg, Equation (4.41)

holds which, recast in terms of our current notations, becomes:

Pcd =
f‡≠1

4
’cd. ((4.41)-2)

Finally, ÒPcd and all derivatives of f vanish. Overall, performing all the preceding sim-

plifications, we have, for an arbitrary k form:

HABDADBF
Òg
=

Q

a
⇤µ + 2”› + (Ê(Ê + n ≠ 1) ≠ (n + 1 ≠ k))f‡≠1

4
µ

⇤› + f‡≠1

2
dµ + (Ê(Ê + n ≠ 1) ≠ k)f‡≠1

4
›

R

b ,

where we define: ⇤µ = ’abÒaÒbµ.

Similarly, Equation (4.63) simplifies to:

{D , Dú}F
Òg
=

Q

c
c
c
a

{d, ”}µ ≠ 2”› ≠ (Ê+k≠2)(Ê+n+1≠k)‡≠1f
4

µ

{d, ”}›≠ f‡≠1

2
dµ≠(Ê+k)(Ê≠1+n≠k)f‡≠1

4
›

R

d
d
d
b

.

From these expressions we will show:

Proposition 4.7.4. Let F œ Γ((ΛkT ú)(Ê)) and suppose that HAB is a normal solution

to the Metrisability equation, then:

({D, Dú}F )A1...Ak
= ≠(HABDADBF )A1...Ak

+ k(k + 1)HAB
Ω

C
[A|B| A1

F|C|A2...Ak].

In the above, Ω C
AB D = Ω C

ab DZa
AZa

B and Ω C
ab D is the tractor curvature tensor. (cf. Equa-

tion (4.32) and the end of Section (4.3.4)).

Proof. We first inspect the di�erence between the order zero terms in each slot of the two

tractors:

(Ê + k ≠ 2)(Ê + n + 1 ≠ k) = Ê(Ê + n ≠ 1) ≠ (n + 1 ≠ k) ≠ (k ≠ 1)(n + 1 ≠ k),

(Ê + k)(Ê + n ≠ 1 ≠ k) = Ê(Ê + n ≠ 1) ≠ k + k(n ≠ k).
(4.64)

Moreover, in index notation the usual Weitzenbock identity extended to weighted tensors 
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reads:

{d, ”}›a1...ak
+ ’abÒaÒb›a1...ak

=
kÿ

i=1

’abR c
aia b›a1...ai≠1cai+1...ak

+
kÿ

i=1

kÿ

j=1

j ”=i

’abR c
aia aj

›a1...aj≠1caj+1...ai≠1bai+1...ak
.

(4.65)

Now, appealing to Equations (4.26) and ((4.41)-2), we have:

R c
ab d = W c

ab d + (”c
a’bd ≠ ”c

b’ad)
f‡≠1

4
.

Therefore:

’abR c
aia b›a1...ai≠1cai+1...ak

= ’abW c
aia b›a1...ai≠1cai+1...ak

+
f‡≠1

4
’ab

1

”c
ai

’ab ≠ ”c
a’aib

2

¸ ˚˙ ˝

(n≠1)”c
ai

›a1...ai≠1cai+1...ak

= ’abW c
aia b›a1...ai≠1cai+1...ak

+
f‡≠1

4
(n ≠ 1)›a1...ak

,

and:

’abR c
aia aj

›a1...aj≠1caj+1...ai≠1bai+1...ak
= ’abW c

aia aj
›a1...aj≠1caj+1...ai≠1bai+1...ak

+
f‡≠1

4
’ab

1

”c
ai

’aaj
≠ ”c

a’aiaj

2

›a1...aj≠1caj+1...ai≠1bai+1...ak

¸ ˚˙ ˝

=≠›a1...ak

.

So Equation (4.65) can be written:

{d, ”}›a1...ak
+ ’abÒaÒb›a1...ak

=

S

U
Terms involving

Weyl tensor

T

V + [(n ≠ 1)k ≠ k(k ≠ 1)]
¸ ˚˙ ˝

=k(n≠k)

f‡≠1

4
›a1...ak

.

The second term in the above equation accounts exactly for the di�erences observed in
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Equation (4.64) and it follows that:

{D, Dú}F + HABDADBF
Òg
=

Q

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
a

k≠1ÿ

i=1

’abW c
aia bµa1...ai≠1cai+1...ak≠1

+
k≠1ÿ

i=1

k≠1ÿ

j=1

j ”=i

’abW c
aia aj

µa1...aj≠1caj+1...ai≠1bai+1...ak≠1
.

kÿ

i=1

’abW c
aia b›a1...ai≠1cai+1...ak

+
kÿ

i=1

kÿ

j=1

j ”=i

’abW c
aia aj

›a1...aj≠1caj+1...ai≠1bai+1...ak
.

R

d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
b

We must now attempt to identify the tractor on the right-hand side of the above equation.

We claim that it is exactly k(k + 1)HABΩ
C

[A|B| A1
F|C|A2...Ak]. Where:

Ω
C

AB D = Ω
C

ab DZa
AZb

B

Òg
= W c

ab dW C
c Za

AZb
BZd

D.

The calculation is « merely » technical and presents no conceptual subtleties, therefore we

will only carry it out here fully on the bottom component and leave the upper component

to the reader. We first write:

k(k + 1)HAB
Ω

C
[A|B| A1

F|C|A2...Ak] = HAB 1

(k ≠ 1)!

ÿ

‡œSk+1

Á(‡)Ω
C

Dσ(1)B ‡(2)FCDσ(3)...Dσ(k+1)
.

For convenience, we have introduced a new set of indices {Di} defined by:

D1 = A, Di = Ai≠1, i Ø 2.

Specialising to the Levi-Civita scale Òg, the right-hand side is:

HAB 1

(k ≠ 1)!

ÿ

‡œSk+1

Á(‡)W c
d1b d2

W C
c Zd1

Dσ(1)
Zb

BZd2
Dσ(2)

FCDσ(3)...Dσ(k+1)
.

Now: HABZb
B

Òg
= ’abW a

A so we must calculate:

T =
ÿ

‡œSk+1

Á(‡)’abW A
a W c

d1b d2
W C

c Zd1
Dσ(1)

Zd2
Dσ(2)

FCDσ(3)...Dσ(k+1)
.
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In order to isolate the bottom slot, consider FA1...Ak

Òg
= ›a1...ak

Za1
A1

. . . Zak

Ak
. In this case,

T =
ÿ

‡œSk+1

Á(‡)’abW A
a W c

d1b d2
›c̃d3...dk+1

W C
c Z c̃

C
¸ ˚˙ ˝

=”c̃
c

Zd1
Dσ(1)

Zd2
Dσ(2)

Zd3
Dσ(3)

. . . Z
dk+1

Dσ(k+1)
,

=
ÿ

‡œSk+1

Á(‡)’abW A
a W c

d1b d2
›cd3...dk+1

Zd1
Dσ(1)

Zd2
Dσ(2)

Zd3
Dσ(3)

. . . Z
dk+1

Dσ(k+1)
.

Observe now that T can be rewritten:

T =
ÿ

‡œSk+1

Á(‡)’abW A
a W

c

dσ(1)b dσ(2)
›cdσ(3)...dσ(k+1)

Zd1
D1

Zd2
D2

Zd3
D3

. . . Z
dk+1

Dk+1
,

=
ÿ

‡œSk+1

Á(‡)’abW A
a W

c

dσ(1)b dσ(2)
›cdσ(3)...dσ(k+1)

Zd1
A Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak
,

=
ÿ

‡œSk+1

Á(‡)’d1bW
c

dσ(1)b dσ(2)
›cdσ(3)...dσ(k+1)

Zd2
A1

Zd3
A2

. . . Z
dk+1

Ak
.

If ‡(1) = 1, then the summand vanishes leading to:

T =
ÿ

‡œSk+1
σ(1) ”=1

Á(‡)’d1bW
c

dσ(1)b dσ(2)
›cdσ(3)...dσ(k+1)

Zd2
A1

Zd3
A2

. . . Z
dk+1

Ak
.

We now seek to exploit the antisymmetry of ›, first we note that:

T =
k+1ÿ

i=2

ÿ

‡œSk+1
σ(1)=i

Á(‡)’d1bW c
dib dσ(2)

›cdσ(3)...dσ(k+1)
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak
.

It is interesting to split the inner sum into two further sums as follows:

ÿ

‡œSk+1
σ(1)=i

σ(2)=1

Á(‡)’d1bW c
dib d1

›cdσ(3)...dσ(k+1)
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak

¸ ˚˙ ˝

=T i
1

+
k+1ÿ

j=2
j ”=i

ÿ

‡œSk+1
σ(2)=j

σ(1)=i

Á(‡)’d1bW c
dib dj

›cdσ(3)...dσ(k+1)
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak

¸ ˚˙ ˝

=T i
2

.
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Consider now a generic term in the sum T i
1. If we define:

d̃1 = c, d̃l = d‡(l+1), 2 Æ l Æ k;

then:

›d̃1...d̃k
= Á(s)›d̃s(1)...d̃s(k)

, s œ Sk.

Considering the permutation s given by:

s(l) =

Y

_]

_[

‡≠1(l) ≠ 1 if 1 Æ l < i,

‡≠1(l + 1) ≠ 1 if i Æ l Æ k,

which satisfies s(1) = 1, and, by Appendix E.2, Á(s) = (≠1)i≠1Á(‡), then we have:

›cdσ(3)...dσ(k+1)
= ›d̃1...d̃k

= (≠1)i≠1Á(‡)›d̃s(1)...d̃s(k)
= (≠1)i≠1Á(‡)›cd2...di≠1di+1dk+1

.

Overall:

T i
1 = (k ≠ 1)!(≠1)i≠1’d1bW c

dib d1
›cd2...di≠1di+1dk+1

Zd2
A1

Zd3
A2

. . . Z
dk+1

Ak
.

Hence:

1

(k ≠ 1)!

k+1ÿ

i=2

T i
k =

k+1ÿ

i=2

(≠1)i≠1’d1bW c
dib d1

›cd2...di≠1di+1dk+1
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak
,

=
k+1ÿ

i=2

(≠1)i≠1’abW
c

di≠1b a›cd1...di≠2didk
Zd1

A1
Zd2

A2
. . . Zdk

Ak
,

=
kÿ

i=1

’abW c
dib a›d1...di≠1cdi+1dk

Zd1
A1

Zd2
A2

. . . Zdk

Ak
.

We move on now to study a generic term a(‡, i, j) in T i
2:

a(‡, i, j) = Á(‡)’d1bW c
dib dj

›cdσ(3)...dσ(k+1)
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak
,

It can be handled by the same reasoning as before, but now we should distinguish between

the cases i < j and j > i. In the first case, s(j) = 1 and:

a(‡, i, j) = (≠1)i≠1’d1bW c
dib dj

›d1...dj≠1cdj+1...di≠1di+1...dk+1
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak
,
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In the second case: s(j ≠ 1) = 1, and:

a(‡, i, j) = (≠1)i≠1’d1bW c
dib dj

›d1...di≠1di+1...dj≠1cdj+1...dk+1
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak
.

Overall:

1

(k ≠ 1)!
T i

2 =
i≠1ÿ

j=2

(≠1)i≠1’d1bW c
dib dj

›d1...dj≠1cdj+1...di≠1di+1...dk+1
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak

+
k+1ÿ

j=i+1

(≠1)i≠1’d1bW c
dib dj

›d1...di≠1di+1...dj≠1cdj+1...dk+1
Zd2

A1
Zd3

A2
. . . Z

dk+1

Ak
.

Reindex now as follows:

i≠1ÿ

j=2

(≠1)i≠1’abW c
dib dj≠1

›ad1...dj≠2cdj ...di≠2di...dk
Zd1

A1
Zd2

A2
. . . Zdk

Ak
,

=
i≠2ÿ

j=1

(≠1)i≠1’abW c
dib dj

›ad1...dj≠1cdj+1...di≠2di...dk
Zd1

A1
Zd2

A2
. . . Zdk

Ak
,

and similarly for the second sum so that:

1

(k ≠ 1)!

k+1ÿ

i=2

T i
2 =

1

(k ≠ 1)!

kÿ

i=1

T i+1
2 ,

=
kÿ

i=1

kÿ

j=1
j ”=i

’abW c
dib dj

(≠1)i›ad1...dj≠1cdj+1...di≠1di+1...dk
Zd1

A1
Zd2

A2
. . . Zdk

Ak
,

=
kÿ

i=1

kÿ

j=1
j ”=i

’abW c
dib dj

›d1...dj≠1cdj+1...di≠1adi+1...dk
Zd1

A1
Zd2

A2
. . . Zdk

Ak
.

This proves the result for the bottom slot. We briefly outline the proof for the top slot, it

is simpler to work directly with FA1...Ak
= kµa2...ak

Y[A1Za2
A2

· · · Zak

Ak],

FA1...Ak
=

1

(k ≠ 1)!

ÿ

‡œSk

Á(‡)µa2...ak
YAσ(1)

Za2
Aσ(2)

· · · Zak

Aσ(k)

=
kÿ

i=1

(≠1)i≠1µa1...ai≠1ai+1...ak
YAi

Za1
A1

· · · Z
ai≠1

Ai≠1
Z

ai+1

Ai+1
· · · Zak

Ak
.
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In this case:

T =
kÿ

i=2
σœSk+1

(≠1)i≠1Á(‡)W A
a W c

d1b d2
µcd3...didi+2...dk

Zd1
Dσ(1)

Zd2
Dσ(2)

Zd3
Dσ(3)

· · ·Zdi

Dσ(i)
YDσ(i+1)

Z
di+2

Dσ(i+2)
· · ·Z

dk+1

Dσ(k+1)
.

Note that the index i starts at 2 since the first term vanishes as YCW C
c = 0. We then

apply the same method of computation as before to transform the sum over Sk+1.

4.7.5 Operator algebra

The projectively invariant operators D , Dú and ‡ are the beginnings of an operator

algebra that we will seek to exploit to write down a tractor version of the Proca equation.

The commutators [D , ‡] and [Dú, ‡] are directly related to the weight 1 tractor: IA = DA‡,

as follows:

Lemma 4.7.4. Define the operators: I : E[A1,...Ak](Ê) æ E[A1,...,Ak+1](Ê + 1) and I ú :

E[A1,...,Ak](Ê) æ E[A1,...,Ak≠1](Ê + 1) by:

I F = I · F , where IA = DA‡,

I
ú = Ás(≠1)(k+1)(n+1)+1 ı I ı .

Then, in the scale Òg on M , for FA1...Ak

Òg
=

Q

a
µ

›

R

b œ E[A1,...,Ak](Ê);

I

Q

a
µ

›

R

b =

Q

a
2‡›

0

R

b and I
ú

Q

a
µ

›

R

b =

Q

a
0

≠f
2
µ

R

b = ≠IyF.

Furthermore:
{I , I ú} = ≠f‡,

[D , ‡] = I , [Dú, ‡] = I
ú,

I
2 = I

ú2 = 0.

(4.66)

1
f
I and 1

f
I ú play an analogous role to 1

f
D , 1

f
Dú with respect ỹ. In the case of normal

solutions to the Metrisability equation, we can push things a little further:

Lemma 4.7.5. In the case that HAB is a normal solution to the metrisability equation

then:

(4.67)
{D

ú, I } = ≠f

2 
(ω + n + 1 ≠ k), {D , I ú} = ≠f

2 
(ω + k),
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where ω and k are respectively the weight and degree operators. Furthermore:

{D
ú, I ú} + {D , I ú} = ≠fh,

with: h = ω + n+1
2

.

In particular, we have the following statement that generalises Lemma 4.6.1 to forms.

Corollary 4.7.1. Suppose that HAB is a normal solution to the metrisability equation

and set:
Y

____]

____[

x = ‡,

ỹ = 1
f

(DDú + DúD)

h = ω + n+1
2

,

then (x, ỹ, h) is an sl2-triple.

Proof. x increases weight by 2 and ỹ decreases weight by 2, hence: [h, x] = 2x and [h, ỹ] =

≠2ỹ, lastly, using the above results:

[x, ỹ] =
1

f
([‡, DD

ú] + [‡, Dú
D ]) ,

=
1

f
([‡, D ]Dú + D [‡, Dú] + [‡, Dú]D + D

ú[‡, D ]) ,

= ≠ 1

f
({I , Dú} + {D , I ú})

Y

_]

_[

= h.

Remark 4.7.2. The commutator also follows from the Weitzenbock identity in Proposi-

tion 4.7.4 and S. Porath’s sl2 in Proposition 4.6.1.

4.8 Asymptotic analysis of the Proca equation

We have now developed enough tools in order to write down a Maxwell type system 
for general k-cotractor forms.

DF = 0,

DúF = 0.

However, we have not yet reaped all the benefits of Equation (4.67), which, in fact, contains 
important information on the cohomology spaces of the co-chain complex defined by D .
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Note first that: [D , ω +k] = 0 = [I ú, ω +k]. Therefore, if Ê +k ”= 0 and F œ E[A1,...,ak](Ê)

satisfies DF = 0, then, according to Equation (4.67):

D

A

≠ 2

f(ω + k)
I

úF

B

= F.

In other words:

Proposition 4.8.1. Let Ê ”= 0, then the cohomology spaces of the following co-chain

complex are trivial:

Γ(E(Ê))
D=DA1≠æ EA1(Ê ≠ 1)

D≠æ . . .
D≠æ E[A1...An+1](Ê ≠ (n + 1)).

Proof. The case k > 0 has already been treated. The case k = 0 is easily seen as follows.

In any scale Ò in the projective class:

0 = DAf
Ò
=

Q

a
Êf

Òaf

R

b ∆ f = 0,

because Ê ”= 0.

The above Proposition simply means that as long as Ê ”= ≠k there is always a tractor

potential ! Thus, in this case, DF = 0 … F = DA and the co-tractor Maxwell system is

completely equivalent to:
Y

_]

_[

F = DA,

DúDA = 0.
(4.68)

The potential formulation has a manifest gauge symmetry and if one works in a Lorenz

type gauge: DúA = 0, the second equation becomes:

ỹA = 0.

Let us study what the equations DúDA = 0 and DúA = 0 mean for the components of

A in the Levi-Civita scale. Given our hypotheses, from Equation (4.62) we see that the

gauge condition is:

D
úA

Òg
=

Q

a
≠”µ

”› ≠ (Ê + n + 1 ≠ k)f‡≠1

4
µ

R

b = 0,
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from which we deduce that:

µ =
4‡

f(Ê + n + 1 ≠ k)
”›,

provided that Ê + n + 1 ≠ k ”= 0. Moreover, since:

D
ú
D

Q

a
µ

›

R

b
Òg
=

Q

a
”dµ ≠ (Ê + k)”›

”d› + f‡≠1

4
(Ê ≠ 1 + n ≠ k)dµ ≠ f‡≠1

4
(Ê ≠ 1 + n ≠ k)(Ê + k)›

R

b , (4.69)

we see that the component › satisfies a  P roca e quation w ith s ource w here t he m ass is 
defined by:

m2 = (Ê ≠ 1 + n ≠ k)(Ê + k).

Now, let „a1...ak be a k-form on M . We can construct a weight (Ê + k), k-form in a 
natural manner by setting:

›a1...ak = „a1...ak ‡ 
ω

2
+k 

.

› is then easily transformed into a weight Ê co-tractor k-form via the map:

›a1...ak ‘≠æ ›a1...ak
Za

A
1

1 . . . Z
a
A

k

k 
.

Setting A = ›a1...ak
Za

A
1

1 . . . Z
a
A

k

k 
we see that the equation DúDA = 0 expressed in the 

Levi-Civita scale implies the gauge condition DúA = 0 and implements on › the Proca 
equation with mass defined a bove i n t he L orenz g auge. T he t ractor f ormalism we have 
developed can therefore be used to study the asymptotics of ›, through the study of A 
and the equation ỹA = 0.

Since, according to Corollary 4.7.1, (x, ỹ, ‡) form satisfy the same formal relations as 
the triplet (x, y, ‡) we studied in Section 4.6.2. One can repeat the steps carried out in 
Paragraph 4.6.4 and produce a formal solution operator for ỹ.

4.9 Conclusion

In this chapter, we have established, on a class of projectively compact manifolds, 
results that are parallel to those available in the case of conformally compact manifolds. 
In particular, we have constructed an exterior tractor calculus on order 2 projectively 
compact manifolds. It is hoped that this will constitute a basis for a geometric approach to
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the asymptotic analysis of classical fields on such backgrounds that would be an alternative

to microlocal analysis. There are still some outstanding questions that we have not been

able to touch upon. In particular, it is not yet clear how to give a clear-cut analytical

meaning to the formal solution operators we obtain, and the question of how to treat the

asymptotically flat case, in which the structure at the basis of the formal construction

becomes trivial, remains open. This will be the object of work in the near future.
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Appendix A

APPENDIX TO Maximal Kerr-de Sitter

spacetimes

A.1 Connection forms

Ê0
1 = FÊ0 ≠ Áar

fl3

Ò

∆◊ sin ◊Ê3,

Ê0
2 = ≠

Ô
∆◊a

2 sin ◊ cos ◊

fl3
Ê0 ≠

Ô
Á∆ra cos ◊

fl3
Ê3,

Ê0
3 =

Ô
Á∆ra cos ◊

fl3
Ê2 ≠ Áar

Ô
∆◊ sin ◊

fl3
Ê1,

Ê1
2 = ≠a2 sin ◊ cos ◊

Ô
∆◊

fl3
Ê1 ≠ Ár

Ô
Á∆r

fl3
Ê2,

Ê1
3 = ≠Áar sin ◊

Ô
∆◊

fl3
Ê0 ≠ Ár

Ô
Á∆r

fl3
Ê3,

Ê2
3 = ≠a cos ◊Á

Ô
Á∆r

fl3
Ê0 ≠

A

cotan◊(r2 + a2)

Ô
∆◊

fl3
+

G

fl

B

Ê3.

(A.1)

where: F = ˆ
ˆr

1Ô
Á∆r

fl

2

and G = ˆ
ˆ◊

1Ô
∆◊

2

.

A.2 Geodesic equations “à la Cartan"

Let “ : I ≠æ KdS, be a curve on one of the Boyer-Lindquist blocks of Kerr-de

Sitter spacetime. Decomposing on the orthonormal frame one has at each point t œ I,

“̇(t) = Γi(t)Ei(“(t)) © Γi(t)Ei(t), so:

D

dt
“̇(t) = (Ò“̇ “̇)“(t) = Γ̇i(t)Ei(t) + Γ

i(t)Γj(t)(ÒEi
Ej)“(t),

= Γ̇i(t)Ei(t) + Γ
k(t)Γj(t)(Êi

j)“(t)(Ek(t))Ei(t).
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If “ is a geodesic, using (A.1) we find that the components satisfy the following system

of di�erential equations:

Γ̇0 + FΓ
0
Γ

1 ≠ 2Áar sin ◊

Ô
∆◊

fl3
Γ

1
Γ

3 ≠ a2 sin ◊ cos ◊

Ô
∆◊

fl3
Γ

0
Γ

2 = 0,

Γ̇1 + F (Γ0)2 ≠ 2Áar sin ◊

Ô
∆◊

fl3
Γ

0
Γ

3 ≠ a2 sin ◊ cos ◊

Ô
∆◊

fl3
Γ

2
Γ

1

≠Ár

Ô
Á ∆r

fl3
(Γ2)2 ≠ Ár

Ô
Á∆r

fl3
(Γ3)2 = 0,

Γ̇2 ≠ Áa2 sin ◊ cos ◊

Ô
∆◊

fl3
(Γ0)2 ≠ 2Áa cos ◊

Ô
Á ∆r

fl3
Γ

0
Γ

3 + Áa2 sin ◊ cos ◊

Ô
∆◊

fl3
(Γ1)2

+r

Ô
Á∆r

fl3
Γ

1
Γ

2 ≠
A

cotan◊(r2 + a2)

Ô
∆◊

fl3
+

G

fl

B

(Γ3)2 = 0,

Γ̇3 + r

Ô
Á∆r

fl3
Γ

1
Γ

3 +

A

cotan◊(r2 + a2)

Ô
∆◊

fl3
+

G

fl

B

Γ
2
Γ

3 = 0.

A.3 Resultant

Let k be a field, and k[X] denote the ring of polynomials with coe�cients in k. If

n œ N
ú, kn[X] will denote the subspace of k[X] of polynomials with degree at most n.

Let P, Q œ k[X], n = deg P , m = deg Q. We suppose n > 0 and m > 0 so that neither

P nor Q is zero. Consider the equation:

UP + V Q = 0, (A.2)

where U et V are two elements of k[X].

(A.2) is clearly equivalent to UP = ≠V Q. Let D denote the pgcd of P and Q then

P = DP Õ and Q = DQÕ where pgcd(P Õ, QÕ) = 1.

With these notations (A.2) is equivalent to UP Õ = ≠V QÕ, but, as pgcd(P Õ, QÕ) = 1

and k[X] is principal, then this implies that P Õ divides V . There is therefore a polynomial

C œ k[X] such that V = P ÕC, and so U = ≠QÕC. The set of solutions to (A.2) is hence:

;3

≠Q

D
C,

P

D
C

4

, C œ k[X]
<

. From this, we deduce that there is a solution (U, V ) œ km≠1[X] ◊ kn≠1[X] if and only if
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pgcd(P, Q) ”= 1. We can also express this in another way. Define a linear map „P,Q by:

„P,Q :
km≠1[X] ◊ kn≠1[X] ≠æ kn+m≠1[X]

(U, V ) ‘≠æ UP + V Q
(A.3)

According to the preceding discussion we see that, „P,Q is injective if and only if pgcd(P, Q) =

1.

The transpose of the matrix of „P,Q expressed in the bases

1

(Xm≠1, 0), . . . , (1, 0), (0, Xn≠1), . . . , (0, 1)
2

(Xm+n≠1, Xm+n≠2, . . . , X, 1)

of km[X] ◊ kn[X] and km+n≠1[X] respectively is called Sylvester’s matrix S(P, Q) and its

determinant, denoted by R(P, Q), (and thus the determinant of the endomorphism „P,Q)

is called the resultant of P and Q.

Proposition A.3.1. Let P =
nÿ

i=0

aiX
i, Q =

mÿ

j=0

bjX
j be two polynomials with coefficients

in k then the Sylvester matrix S(P, Q) is given by:

S(P, Q) =

Q

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
a

an . . . . . . . . . a0 0 . . . . . . 0

0 an . . . . . . . . . a0 0 . . . 0
...

. . . . . . . . . . . . . . .
. . . . . .

...

0 . . . . . . 0 an . . . . . . . . . a0

bm . . . . . . b0 0 . . . . . . . . . 0

0 bm . . . . . . b0 0 . . . 0
...

...
. . . . . . . . . . . .

. . . . . . . . .
...

0 . . . . . . 0 bm . . . . . . b0 0

0 . . . . . . . . . 0 bm . . . . . . b0

R

d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
b

(A.4)

From our previous discussion we have:

R(P, Q) = 0 … pgcd(P, Q) ”= 1

If we move instead to an extension L of K containing all the roots of P and Q, then this 
condition is equivalent to the fact that P and Q have a common root in L. We recall the
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following result regarding the resultant:

Proposition A.3.2. Let P, Q œ k[X], deg P = n, deg Q = m. Let L be a splitting field

of P and –1, . . . –n be the (not necessarily distinct) roots of P , then:

R(P, Q) = am
n

Ÿ

i

Q(–i).

In this formula, an is the coefficient of Xn in P .

Definition A.3.1. When deg P Õ = n≠1 (which is always the case when the characteristic

of k is 0), the discriminant of P is defined by:

∆(P ) =
(≠1)

n(n≠1)
2

an

R(P, P Õ)

From Proposition A.3.2 we deduce:

Proposition A.3.3. Let P œ k[X] and suppose that P Õ is of degree n ≠ 1 then, in a

splitting field of P :

∆(P ) = a2n≠1
n

Ÿ

i<k

(–i ≠ –k)2

Where –1, . . . , –n are the (not necessarily distinct) roots of P .

A.4 Diverse useful formulae in Boyer-Lindquist like

coordinates

Lemma A.4.1.

g„„gtt ≠ g2
„t = ≠∆r∆◊ sin2 ◊

Ξ4

Lemma A.4.2.

(gij) =

Q

c
c
c
c
c
c
a

≠ gφφΞ4

sin2 ◊∆θ∆r
0 0

Ξ4gφt

sin2 ◊∆r∆θ

0 1
grr

0 0

0 0 1
gθθ

0
Ξ4gφt

sin2 ◊∆r∆θ
0 0 ≠ gtt Ξ4

sin2 ◊∆r∆θ

R

d
d
d
d
d
d
b
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Lemma A.4.3. The metric-dual of dt is given by:

Òt =
Ξ4

sin2 ◊∆◊∆r

(≠g„„ˆt + g„tˆ„)

Lemma A.4.4. In Boyer-Lindquist-like coordinates one can write:

gtt =
1

Ξ2

A

≠1 +
2Mr

fl2
+ l2(r2 + a2 sin2 ◊)

B

g„t = ≠a sin2 ◊

Ξ2

A

l2(r2 + a2) +
2Mr

fl2

B

A.5 Gluing topological spaces

Let X and Y be two topological spaces, U and V be open subsets of X and Y respec-

tively and „ be a homeomorphism of U onto V . We outline here the construction of a new

topological space containing both X and Y and where U and V have been identified. In

a sense, we will have glued X to Y along U and V . Let X
‡

Y denote their coproduct (or

disjoint union) and i : X ≠æ X
‡

Y, j : Y :≠æ X
‡

Y the canonical injections. Define an

equivalence relation on X
‡

Y by:

p ≥ q … ([p = q] or [p = i(x), q = j(„(x)), x œ U ] or [q = i(x), p = j(„(x)), x œ U ])

(A.5)

Denote by X
‡

„ Y the quotient space of X
‡

Y by this equivalence relation and fi :

X
‡

Y ≠æ X
‡

„ Y the canonical projection. We quote without proof the following results:

Proposition A.5.1. 1. j̄ = fi ¶ j, ī = fi ¶ i are continuous injective and open maps. X

and Y can then be identified with the open subsets ī(X) and j̄(Y ) of X
‡

„ Y .

2. ī(X) fl j̄(Y ) = ī(U) = j̄(V )

3. If F is an arbitrary topological space, f : X
‡

„ Y æ F is continuous if and only if

the maps f ¶ ī et f ¶ j̄ are.

4. fi is an open map

Points 2 and 3 can be useful for constructing maps on X ‡„ Y from maps f, g defined 
on X and Y separately. In fact, it suffices that they satisfy f(x) = g(„(x)) for every
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x œ U for them to piece together to form a well-defined continuous map on X
‡

„ Y .

This is sometimes called the mapping lemma; it has natural generalisations to maps and

manifolds with more regularity. The above proposition also serves to prove the following

results:

Proposition A.5.2. 1. If X and Y are both locally Euclidean, then X
‡

„ Y is too.

2. If X and Y are both second-countable, X
‡

„ Y is too.

It is well known that separation properties of a quotient are relatively independent of the

separation properties of the original space, however since the canonical projection map is

open one has the following result:

Lemma A.5.1. X
‡

„ Y is Hausdorff if and only if R = {(p, q) œ (X
‡

Y )2, p ≥ q} is

closed in (X
‡

Y )2

With this result we can prove a technical criterion that will guarantee separation in all

cases of interest in the text:

Lemma A.5.2. Suppose that X and Y are Hausdorff and first countable then if there is

no sequence (xn)nœN of points in U converging to a point in Ū \ U and such that „(xn)nœN

converges to a point in V̄ \ V , X
‡

„ Y is Hausdorff.

Proof. By Lemma A.5.1 it su�ces to show that R = {(p, q) œ (X
‡

Y )2, p ≥ q} is closed

in (X
‡

Y )2. Furthermore, as X and Y are first countable, it su�ces to show that if two

sequences (pn)nœN and (qn)nœN of points in X
‡

Y are such that ’n œ N, pn ≥ qn and

pn ≠æ
næŒ

p, qn ≠æ
næŒ

q then p ≥ q.

Let (pn)nœN and (qn)nœN be two such sequences. We can restrict ourselves to the case

where p œ i(X) and q œ j(Y ) as p and q play symmetric roles and if p œ i(X) (resp. j(Y ))

then q œ i(X) (resp. j(Y )) then for all large enough n, pn œ i(X) and qn œ i(X), as i(X)

is open in X
‡

Y , hence:

÷N œ N, ’n Ø N, pn = qn ∆ p = q.

Assume now that p œ i(X) and q œ j(Y ), we distinguish 3 cases:

Case 1: p œ i(X) \ i(U), then there is N œ N such that ’n Ø N, pn œ i(X) \ i(U), but as

qn ≥ pn for every n œ N it follows that for all n Ø N, pn = qn so p = q. Which is

excluded as i(X) fl j(Y ) = ÿ
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Case 2: p œ i(U), then again, there is N œ N such that ’n Ø N, pn œ i(U). Since q œ j(Y )

there is also N Õ œ N such that ’n Ø N Õ, qn œ j(Y ). Moreover, as for every n œ
N, pn ≥ qn it follows from (A.5) that:

’n Ø max(N, N Õ),

Y

___]

___[

qn = j(yn), yn œ V

pn = i(xn), xn œ U

yn = „(xn)

As i and j are homeomorphisms onto their ranges, the sequences (xn) and (yn)

converge to points x œ X and y œ Y respectively. Furthermore, „ being continuous,

one must have y = „(x) so: p ≥ q.

Case 3: p œ i(U) \ i(U), if only a finite number of points of the sequence lie in i(U) then

there is a rank N above which qn = pn so q = p which is excluded as q œ j(Y ).

Thus, we can assume that one can extract a subsequence (pÏ(n))nœ N of (pn)nœN such

that for all n œ N, pÏ(n) œ i(U). Necessarily, q œ j(V ), but q ”œ j(V ) as this would

imply p œ i(U), so q œ j(V ) \ j(V ). However, as ’n œ N, qn ≥ pn there must exist

sequences (xn) and (yn) of points of X and Y respectively such that (xn) converges

to a point in Ū \ U , (yn) to a point in V̄ \ V and yn = „(xn) for su�ciently large

n, but this contradicts our hypothesis. Hence p ≥ q and R is closed.
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Appendix B

APPENDIX TO Scattering theory for Dirac

fields near an Extreme Kerr-de Sitter

black hole

B.1 The Hel�er-Sjöstrand formula

At several points in the text the Hel�er-Sjöstrand formula is used quite liberally to

establish results about commutators. In this appendix, the reader will find some more

details about this formula.

B.1.1 Almost-analytic extensions

Let f œ CŒ(R), one can extend f to C in the following manner: let n Ø 1 and

· œ CŒ(R) be a smooth cut-o� function satisfying: ·(s) = 1 for |s| < 1 and ·(s) = 0 for

|s| > 2, then we set for z œ C, z = x + iy, (x, y) œ R
2:

f̃(z) = ‡(x, y)
nÿ

r=0

f (r)(x)

r!
(iy)r,

‡(x, y) = ·

A

y

ÈxÍ

B

.

(B.1)

f̃ is R-smooth and:

ˆz̄f̃ =
1

2
{ˆxf̃ + iˆyf̃} =

1

2

ÿ

r=0

A

f (r)(x)

r!
(iy)r

B

(ˆx‡ + iˆy‡)

+
1

2
‡(x, y)

fn+1(x)

n!
(iy)n.

(B.2)
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Since (ˆx‡ + iˆy‡) ”= 0 only if ÈxÍ Æ y Æ 2ÈxÍ then if x is fixed and y æ 0, the expression

in (B.2) implies that |ˆz̄f̃(z)| Æ O(|y|n) when y æ 0; in particular, it is 0 if z œ R.

B.1.2 The formula

The Hel�er-Sjöstrand formula gives a convenient form of the functional calculus for a

class of symbols f . In [Dav95], it is used to construct the entire functional calculus, but it

was originally proved assuming the usual function calculus in [HS87]. The formula makes

sense for symbols f for which there is some — œ R+ such that, for all n œ N:

sup
xœR

|f (n)(x)ÈxÍn+—| < +Œ.

Following [Dav95], let us denote this set A , examples of elements of A are elements in

S1,1. The result can be stated as:

Theorem B.1.1. Let f œ A , then if A is a self-adjoint operator on a separable Hilbert

space H :

f(A) =
i

2fi

⁄

C

ˆz̄f̃(z)(A ≠ z)≠1dz · dz̄. (B.3)

The integral converges in the operator norm topology and is independent of the choices of

n and ‡ in the almost-analytic extension.

The integral above can be interpreted as a Bochner integral and its convergences follows

from the following estimate on C \ R of the norm of the integrand:

||ˆz̄f̃(z)(A ≠ z)≠1|| Æ c
nÿ

r=0

|f (r)(x)|ÈxÍr≠21U(x, y) + cfn+1(x)|y|n≠11V (x, y), (B.4)

for some c œ R
ú
+; U = {(x, y) œ R

2, ÈxÍ < y < 2ÈxÍ} and V = {(x, y) œ R
2, 0 < y < 2ÈxÍ}.

B.2 The Faà di Bruno formula

Let f, g œ CŒ(R), then for any n Ø 1:

(f ¶ g)(n) =
ÿ

(m1,...,mn)œIn

n!f (m1+···+mn) ¶ g

m1!1!m1m2!2!m2 . . . mn!n!mn

nŸ

j=1

1

g(j)
2mj

,

In = {(m1, . . . , mn) œ N
n,

nÿ

j=1

jmj = n}.
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Appendix C

VECTOR VALUED DIFFERENTIAL FORMS

In the literature on principal connections, we are inevitably confronted with the notion

of vector valued di�erential forms. In this appendix, for completeness, we recall some of

the definitions and vocabulary useful for the main text and that one comes across in

textbooks on the topic. We will mainly follow [Ble05], who adopts a point of view close

to that predominant in Physics literature. We will also discuss equivalent ways to think

about so-called « basic » or « tensorial » forms and forms with values in a vector bundle

V over M .

C.1 Definitions

Definition C.1.1. Let V be a fixed finite dimensional vector space and P a smooth

manifold, a V -valued di�erential form is a section of the vector bundle :

Λ
k(P, V ) = Λ

k(T úP ) ¢ (P ◊ V ).

If (P, fi, M) is a G-principal fibre bundle and (V, fl) is a representation of G we will say

that – œ Γ(Λk(P, V )) is:

— equivariant if Rú
g– = fl(g)≠1–,

— horizontal if for all vector fields on P (X1, . . . , Xk), at least one of which vertical,
then –(X1, . . . , Xk) = 0.

A form that is both horizontal and equivariant is said to be tensorial.

Proposition C.1.1. Let (P, fi, M) be a G-principal fibre b undle, a nd (V, fl ) a  fi nite di-

mensional representation of G. A tensorial V -valued differential f orm on P  i s equivalent 
to a section of the vector bundle over M :

Λ
k(T úM) ¢ (P ◊G V ).
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Proof. Let us first point out that the base of the bundle Λk(T úM)¢(P ◊G V ) is indeed M

and not P . The equivalence is quite clear in one direction, if we allow ourselves to choose

a connection on P . In this case, the projection fi of P induces a vector space isomorphism:

dfip : Hp µ TpP æ Tfi(p)M,

which enables us to horizontally lift vector fields over M to vector fields over P . If X is a

vector field over M , let us call X̃ its horizontal lift. We will also denote by p the canonical

projection mapping P ◊ V onto P ◊G V (cf. Paragraph 1.4). With these notations, if –

is a tensorial k-form over P then for any vector fields X1, . . . , Xk over M , x œ M and

p œ fi≠1({x}), the equation :

–M,x(X1, . . . , Xk) = p(–p(X̃1, . . . , X̃k)),

is independent of the choice of p and the horizontal lift and thus defines a section of

Λk(T úP ) ¢ (P ◊G V ).

The other direction is slightly more subtle. Let –M be a section of Λk(T úM)¢(P ◊GV ).

Of course, the idea is to consider the pullback of – by the projection fi, fiú–M , however,

fiú–M is a priori only a section of Λk(T úP ) ¢ fiú(P ◊G V ), where : fiú(P ◊G V ) is the

pullback bundle of P ◊G V by fi defined by :

fiú(P ◊G V ) =
Ó

(p, v), œ P ◊ (P ◊G V ), ˜̄fi(v) = fi(p)
Ô ≥=

·

pœP

Ó

(p, v), v œ (P ◊G V )fi(p)

Ô

.

In the above, we have borrowed notation from Paragraph 1.4 and have introduced the

projection P ◊G V æ M , ˜̄fi. The remainder of the proof is dedicated to showing that the

bundle fiú(P ◊G V ) is in fact trivial. Let r œ P and set :

fl̃(r) :
V ≠æ ˜̄fi≠1({fi(r)})

v ‘≠æ p((r, v)).

As for any v œ V, g œ G, p((rg, v)) = p((r, fl(g)v)), one has :

fl̃(rg) = fl̃(r)fl(g). 
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One can then define a map from fiú(P ◊G V ) into P ◊ V by :

(p, v) ‘æ (p, fl̃(p)≠1v). (C.1)

We leave the proof of the smoothness of our maps to the reader. Minus this detail, the

above shows that fiú(P ◊G V ) is actually parallelisable, because the vector bundle mor-

phism defined by (C.1) is a vector space isomorphism on each of the fibres. The explicit

form of the map shows that, after untangling the pullback bundle, fiú–M is indeed a

tensorial form on P .

C.2 A few usual operations

C.2.1 The case of a Lie algebra

Let g be a Lie algebra, with bracket [ , ]. For g valued di�erential forms, there is a

natural generalisation of the wedge product. Let – and — be respectively g valued k-form

and l-form, one defines :

[– · —](X1, . . . , Xk+l) =
1

k!l!

ÿ

‡ œSk+l

Á(‡)[–(X‡(1), . . . , X‡(k)), —(X‡(k+1), . . . , X‡(k+l))].

In the special case that g is a Lie subalgebra of the usual matrix algebra gln(R) then in

fact :

[– · —] = – · — ≠ (≠1)kl— · –,

where – · — is matrix product where component-wise multiplication is replaced by the

usual wedge product.

C.2.2 Exterior covariant derivative

Let (P, fi, M) be a G-principal bundle, V a finite d imensional v ector s pace, –  a  V -
valued k-form on P , and, (Ei) an arbitrary basis of V . Writing – = –iEi, one sets:

d– = d–iEi.

This definition i s, i n f act, i ndependent o f t he c hoice o f b asis a nd i nherits a ll t he usual 
properties of the exterior derivative on forms. When there is a connection, Ê, on P we
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can define a covariant exterior derivative that sends tensorial forms to tensorial forms.

Indeed, call the horizontal component of an arbitrary vector X, XH and set :

dÊ–(X1, . . . , Xn) = d–(XH
1 , . . . , XH

n ).

dÊ– is clearly horizontal and one can check equivariance as follows :

Rú
gd– = dRú

g– = fl(g≠1)d–.

If fl is a representation and flú is the induced Lie-algebra homomorphism g æ gl(V )

then for a V -valued tensorial k-form –, and an arbitrary g valued l-form, — one can define:

—·̇–(X1, . . . , Xk+l) =
1

k!l!

ÿ

‡œSk+l

Á(‡)flú(—(X‡(1), . . . , X‡(l))) · –(X‡(l+1), . . . , X‡(l+k)).

This leads to a useful formula for the exterior covariant derivative:

Lemma C.2.1. Let (P, fi, M) be a G-principal bundle, Ê a principal connection on P ,

V a finite dimensional vector space, fl : G æ GL(V ) a representation and – a V -valued

tensorial k-form on P , then :

dÊ– = d– + Ê·̇–. (C.2)
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Appendix D

THE TRANSFORMATION LAW FOR

(Ωi
j(·, ei))

We follow the notation introduced in paragraph 4.2.3. Recall that in the equation:

ΩU = dΠU + ΠU · ΠU ,

· is the matrix product where component-wise multiplication is replaced with the exterior

product of di�erential forms and dΠ is the matrix (dΠ)i
j = d(Πi

j). We recall also that the

transformation law for ΠU is given by (4.15) :

ΠV = g≠1dg + g≠1
ΠUg ≠ 1

n + 1
tr(g≠1dg)In ≠ 1

n + 1
g≠1Ag, (D.1)

where Ai
j = tr(g≠1dg(ej))Ê

i and the local sections are related by ‡V = ‡Ug for some

g : U fl V æ GLn(R).

To determine the transformation law for (Ωi
j(·, ei)) we first compute ΩV in several

steps. First of all, dΠV :

dΠV = ≠ g≠1dgg≠1 · dg ≠ g≠1dgg≠1 · ΠUg + g≠1dΠUg ≠ g≠1
Π · dg

+
1

n + 1
tr(g≠1dgg≠1 · dg)I +

1

n + 1
g≠1dgg≠1 · Ag ≠ 1

n + 1
g≠1dAg

+
1

n + 1
g≠1A · dg.

(D.2)
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Followed by :

ΠV · ΠV = g≠1
ΠU · ΠUg + g≠1

ΠU · dg ≠ 1

n + 1
g≠1

ΠUg · tr(g≠1dg)I
:::::::::::::::::::::::::::

≠ 1

n + 1
g≠1(ΠU · A)g + g≠1dg · g≠1

ΠUg + g≠1dg · g≠1dg

≠ 1

n + 1
g≠1dg · tr(g≠1dg)I

:::::::::::::::::::::::::

≠ 1

n + 1
g≠1dgg≠1Ag ≠ 1

n + 1
tr(g≠1dg)I · g≠1

ΠUg
:::::::::::::::::::::::::::

≠ 1

n + 1
tr(g≠1dg)I · g≠1dg

:::::::::::::::::::::::::

+
1

(n + 1)2
tr(g≠1dg) · tr(g≠1dg))
¸ ˚˙ ˝

=0

I

+
1

(n + 1)2
tr(g≠1dg)I · g≠1Ag

::::::::::::::::::::::::::::

≠ 1

n + 1
g≠1A · ΠUg ≠ 1

n + 1
g≠1A · dg

+
1

(n + 1)2
g≠1(A · A)g +

1

(n + 1)2
g≠1Ag · tr(g≠1dg)I

::::::::::::::::::::::::::::

(D.3)

When we sum together (D.2) and (D.3), the terms in (D.3) underlined by a straight line

cancel exactly those in (D.2). The terms in (D.3) underlined with a wavy line cancel

between themselves by anti-symmetry of the usual exterior product because I commutes

with any matrix. After simplification, we find that :

ΩV =g≠1
ΩUg +

1

n + 1
tr(g≠1dgg≠1 · dg)I ≠ 1

n + 1
g≠1dAg

≠ 1

n + 1
g≠1(ΠU · A)g ≠ 1

n + 1
g≠1(A · ΠU)g +

1

(n + 1)2
g≠1(A · A)g.

(D.4)

Now, denote by (ẽi) the moving frame associated with ‡V , then, for each i, ẽi = gk
i ek.

Consequently, calling the components of ΩV , Ω̃i
j :

Ω̃
i
j(·, ẽi) = gk

i Ω̃
i
j(·, ek) = (gΩV )k

j (·, ek).

Therefore, we only need to multiply (D.4) by g and evaluate the trace in the basis (ei).
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Computing each term separately :

(A · ΠU)k
j (·, ek) =

ÿ

k

ÿ

m

tr(g≠1dg(em))Êk · Π
m
j (·, ek),

=
ÿ

k

ÿ

m

tr(g≠1dg(em))
ÿ

i

Π
m
j (ei)Ê

k · Êi(·, ek),

=
ÿ

k

ÿ

m

tr(g≠1dg(em))
ÿ

i

Π
m
j (ei)(”

i
kÊk ≠ Êi)),

= ≠(n ≠ 1)
ÿ

m

Π
m
j tr(g≠1dg(em)),

= ≠(n ≠ 1)(“Õ
ΠU)j.

(D.5)

Similarly :
(ΠU · A)k

j (·, ek) = ≠tr(g≠1dg(ej))
ÿ

m

ÿ

k

Π
k
m(ek)Êm,

(A · A)k
j (·, ek) = ≠(n ≠ 1)tr(g≠1dg(ej))tr(g≠1dg),

= ≠(n ≠ 1)tr(g≠1dg)“Õ
j,

tr(g≠1dgg≠1 · dg) = 0.

(D.6)

The term dA is slightly more complicated :

(dA)i
j = d(Ai

j) = ≠ tr(g≠1dgg≠1dg(ej)) · Êi + tr(g≠1d(dg(ej))) · Êi

+ tr(g≠1dg(ej))dÊi.
(D.7)

Using the structure equation (4.14) the last term is seen to be:

tr(g≠1dg(ej))dÊi = ≠tr(g≠1dg(ej))(Π
i
k · Êk).

Since,
Π

i
k · Êk(·, ei) = Π

i
k(em)Êm · Êk(·, ei)

= Π
i
k(em)(Êm”k

i ≠ ”m
i Êk)

= ≠Π
i
k(ei)Ê

k,

(D.8)

we conclude that :

tr(g≠1dg(ej))dÊi(·, ei) = tr(g≠1dg(ej))
ÿ

m

ÿ

k

Π
k
m(ek)Êm. (D.9)
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The remaining terms evaluate to the following expressions :

tr(g≠1d(dg(ej))) · Êi(·, ei) = (n ≠ 1)tr(g≠1d(dg(ej))),

≠tr(g≠1dgg≠1dg(ej)) · Êi = ≠(n ≠ 1)tr(g≠1dgg≠1dg(ej)),

≠tr(g≠1dgg≠1dg(ej)) · Êi + tr(g≠1d(dg(ej))) · Êi(·, ei) = (n ≠ 1)d“Õ
j.

(D.10)

Putting together equations (D.5),(D.6),(D.9) and (D.10), it follows that:

Ω̃
i
j(·, ẽi) = Ω

i
k(·, ei)g

k
j ≠ n ≠ 1

n + 1
d“Õ

kgk
j +

n ≠ 1

n + 1
(“Õ

ΠU)kgk
j ≠ n ≠ 1

(n + 1)2
tr(g≠1)“Õ

kgk
j , (D.11)

which is nothing more than (n ≠ 1) times Equation (4.19).
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Appendix E

PROOFS THAT ARE NOT ESSENTIAL TO

THE MAIN TEXT

E.1 Calculating ÒaW
a

cd f

The computation is based on the second Bianchi identity :

Ò[aR
d

bc] e = 0.

In this case of interest this leads to :

0 = ÒaR a
cd f + ÒcR

a
da f + ÒdR a

ac f ,

= ÒaR a
cd f ≠ ÒcRdf + ÒdRcf ,

= ÒaW a
cd f + 2Òa”a

[cPd]f + 3Ò[c—df ] ≠ (n ≠ 1)Ycdf ,

= ÒaW a
cd f + 3Ò[c—df ] ≠ (n ≠ 2)Ycdf .

Hence :

ÒaW a
cd f = (n ≠ 2)Ycdf ≠ 3Ò[c—df ]. (E.1)

E.2 Proof of Lemma 4.7.1

Let us prove the transformation law (4.52) for the components of a k-cotractor form

when we change connection according to Ò̂ = Ò+Υ. This can be done by induction. The

case k = 1 is well known, but we prove it here for completeness. Consider:

FA
Ò
=

Q

a
‡

µa

R

b
Ò̂
=

Q

a
‡̂

µ̂a

R

b
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then for any tractor T A Ò
= flYA + ‹bW A

b
Ò̂
= fl̂YA + ‹̂bW b

A:

FAT A = fl‡ + µb‹
b = fl̂‡̂ + µ̂b‹̂

b.

Using Equation (4.25), it follows that:

fl‡ + µb‹
b = (fl ≠ Υb‹

b)‡̂ + µ̂b‹
b.

Hence:

fl(‡ ≠ ‡̂) + ‹b(µb + Υb‡̂ ≠ µ̂b) = 0,

since this holds for arbitrary fl, ‹b we conclude that:

Y

]

[

‡̂ = ‡,

µ̂b = µb + Υb‡.

Assume now that (4.52) is true for k-forms, we prove that it then holds for k + 1 forms.

Let FA1...Ak+1

Ò
= (k + 1)µa2...ak+1

Y[A1Za2
A2

· · · Z
ak+1

Ak+1] + ›a1...ak+1
Za1

A1
· · · Z

ak+1

Ak+1
. As in the case

k = 1, let T A Ò
= flXA + ‹bW A

b be an arbitrary tractor, we calculate the contraction:

FA1...Ak+1
T Ak+1 = ((≠1)kflµa1...ak

+ ›a1...akb‹
b)Za1

A1
. . . Zak

Ak

+ (k + 1)µa2...ak+1
Y[A1Za2

A2
· · · Z

ak+1

Ak+1]‹
bW

Ak+1

b .

The final term requires special attention:

(k + 1)µa2...ak+1
Y[A1Za2

A2
· · · Z

ak+1

Ak+1]‹
bW

Ak+1

b =

1

k!

ÿ

‡œSk+1

Á(‡)µa2...ak+1
YAσ(1)Z

a2
Aσ(2)

· · · Z
ak+1

Aσ(k+1)
W

Ak+1

b ‹b.

If ‡(1) = k + 1, then the summand is zero, hence:

ÿ

‡ œSk

Á(‡)µa2...ak+1
YAσ(1)

Za2
Aσ(2)

· · · Z
ak+1

Aσ(k+1)
W

Ak+1

b ‹b =

kÿ

i=1

ÿ

‡œSk+1
σ(1)=i

Á(‡)µa2...ak+1
YAi

Za2
Aσ(2)

· · · Z
ak+1

Aσ(k+1)
W

Ak+1

b ‹b.

269



Reorganising the terms in the product, we have that:

µa2...ak+1
YAi

Za2
Aσ(2)

· · · Z
ak+1

Aσ(k+1)
W

Ak+1

b ‹b =

= µa2...ak+1
YAi

Z
a

σ≠1(1)

A1
· · · Z

a
σ≠1(i≠1)

Ai≠1
Z

a
σ≠1(i+1)

Ai+1
· · · Z

a
σ≠1(k)

Ak+1
W

Ak+1

b ‹b,

= µaσ(2)...aσ(k+1)
‹ak+1YAi

Za1
A1

. . . Z
ai≠1

Ai≠1
Z

ai+1

Ai+1
. . . Zak

Ak
,

= (≠1)i≠1Á(‡)µa1a2...ai≠1ai+1...ak+1
‹ak+1YAi

Za2
A2

. . . Z
ai≠1

Ai≠1
Z

ai+1

Ai+1
. . . Zak

Ak
.

The final equation comes from the following observation. If we relabel:

µaσ(2)...aσ(k+1)
= µā1...āk

;

then for any s œ Sk,

µās(1)ās(2)...ās(k)
= µaσ(s(1)+1)...aσ(s(k)+1)

.

Since ‡({2, . . . k}) = J1, k + 1K \ {i}, we can reorder the indices such that we have

µa1...ai≠1ai+1...ak+1
if we choose s such that :

s(j) =

Y

_]

_[

‡≠1(j) ≠ 1 if 1 Æ j < i,

‡≠1(j + 1) ≠ 1 if i Æ j Æ k.

The signature of this permutation can be determined 1 to be (≠1)i≠1Á(‡). One can observe

that in the quotient group R
ú/Rú

+:

Á(s) =
Ÿ

1Æm<lÆk

s(l) ≠ s(m),

=
Ÿ

1Æm<l<i

‡≠1(l) ≠ ‡≠1(m)
Ÿ

1Æm<iÆlÆk

‡≠1(l + 1) ≠ ‡≠1(m)
Ÿ

iÆm<lÆk

‡≠1(l + 1) ≠ ‡≠1(m + 1),

=
Ÿ

1Æm<l<i

‡≠1(l) ≠ ‡≠1(m)
Ÿ

1Æm<i<lÆk+1

‡≠1(l) ≠ ‡≠1(m)
Ÿ

i+1Æm<lÆk+1

‡≠1(l) ≠ ‡≠1(m).

This di�ers from Á(‡≠1) by the sign of :

Ÿ

1Æm<i

1 ≠ ‡≠1(m) © (≠1)i≠1mod R
ú
+.

1. in a rather tedious way
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Overall, we find that :

FA1...Ak+1
T A1 = ((≠1)kflµa1...ak

+‹b›ba1...ak
)Za1

A1
. . . Zak

Ak
+kµa2a3...akak+1

‹ak+1Y[A1Za2
A2

· · · Zak

Ak].

This is a k-cotractor, therefore, according to the induction hypothesis we must have:

Y

]

[

µa2...akb‹
b = µ̂a2...akb‹̂

b,

(≠1)kfl̂µ̂a1...ak
+ ‹̂b›̂a1...akb = (≠1)kflµa1...ak

+ ›a1...akb‹
b + kΥ[a1µa2...ak]b‹

b.

Plugging the first equation into the second and using Equation (4.25), we have

›̂a1...akb‹
b = ‹b

Q

c
c
a

›a2...akb + kΥ[a1µa2...ak]b + (≠1)k
Υbµa1...ak

¸ ˚˙ ˝

kΥ[a1
µa2...akb]

R

d
d
b

.

The tractor T A being arbitrary, it follows that :

Y

]

[

µ = µ̂,

›̂ = › + Υ · µ,

and the result follows by induction.

E.3 Hodge star of wedge product

Proposition E.3.1. Let › and Υ be respectively a k-form and a 1-form on a pseudo-

Riemannian manifold (M, g), then :

ı(Υ · ›) = (≠1)k
Υ

˘y(ı›) (E.2)

Proof. The reason is essentially the fact that contraction and wedge product are adjoint

operators. Precisely, if › is k-form and – an arbitrary (k + 1)-form then:

(E.3)g(Υ · ›, –) = g(›, Υ˘y–). 
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Postponing for now the proof of (E.3), we prove Equation (E.2). For any k + 1-form –:

– · ı(Υ · ›) = g(–, Υ · ›)Êg

= g(Υ˘y–, ›)Êg

= (Υ˘y–) · ı›.

Since, Υ˘y (– · ı›)
¸ ˚˙ ˝

=0

= (Υ˘y–) · ı› ≠ (≠1)k– · (Υ˘y ı ›) it follows that for any –:

– ·
1

(≠1)k
Υ

˘y ı ›
2

= g(–, ı(Υ · ›))Êg.

This property uniquely defines the Hodge star, therefore :

ı(Υ · ›) = (≠1)k
Υ

˘y ı ›.

We prove now (E.3), for instance, using the abstract index notation:

g(Υ · ›, –) =
1

(k + 1)!
ga1b1 · · · gak+1bk+1(k + 1)Υ[a1›a2...ak+1]–b1...bk+1

,

=
1

k!(k + 1)!

ÿ

‡œSk+1

Á(‡)ga1b1 · · · gak+1bk+1Υaσ(1)
›aσ(2)...aσ(k+1)

–b1...bk+1
,

=
1

k!(k + 1)!

ÿ

‡œSk+1

Á(‡)ga1bσ(1) · · · gak+1bσ(k+1)Υa1›a2...ak+1
–b1...bk+1

,

=
1

k!(k + 1)!

ÿ

‡œSk+1

Á(‡)ga1b1 · · · gak+1bk+1Υa1›a2...ak+1
–b

σ≠1(1)...b
σ≠1(k+1)

,

=
1

k!(k + 1)!

ÿ

‡œSk+1

ga1b1 · · · gak+1bk+1Υa1›a2...ak+1
–b1...bk+1

,

=
1

k!
ga2b2 · · · gak+1bk+1›a2...ak+1

ga1b1Υa1–b1...bk+1
,

= g(›, Υ
˘y–).
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Appendix F

USEFUL FORMULAE IN DE-SITTER

SPACETIME

F.1 Connection forms

In appropriate coordinates (1+n)-dimensional de-Sitter space (dS, g) is the « warped »

direct product of the pseudo-Riemannian manifolds (RÂ, ≠dÂ2) and (Sn, d‡n), where d‡n

is the usual round metric in n dimensions. In other words, dS = R◊ Sn but the metric is

given by :

g = ≠dÂ2 + f(Â)d‡n, f(Â) = cosh2 Â.

The function f is responsible for the « warping » of the direct product. In well-chosen

local frames of dSn that are adapted to the direct sum decomposition of dS into R ◊ Sn,

it is possible to determine the local connection forms in terms of those of d‡n on Sn and

≠dÂ2 on R .

For our purposes we will work on a coordinate patch where Â can be replaced by the

boundary defining function fl = 1
2 cosh2 Â

. We recall that g is then given by :

g = ≠ dfl2

4fl2(1 ≠ 2fl)
+

1

2fl
d‡n.

Choosing a local orthonormal frame on Sn and writing ◊i
j for the local connection forms

on Sn in this basis then the matrix-valued local connection form for the Levi-Civita

connection of g is:

Lemma F.1.1.

(Êi
j)1Æi,jÆn+1 =

Q

a

1
1

1≠2fl
≠ 1

fl

2

dfl ≠(1 ≠ 2fl)Êj
◊

◊i
j ≠ dfl

2fl

R

b . (F.1)
≠ 1 2fl Ê

i
◊ �
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From this it follows that :

⇤fl = gabÒaÒbfl = 2fl(n ≠ 2 + 2fl(3 ≠ n)), (F.2)

and the local connection form matrix in the same local-frame corresponding to the con-

nection Ò̂ = Ò + dfl
2fl

is:

Lemma F.1.2.

(Ê̂i
j)1Æi,jÆn+1

Q

a

dfl
1≠2fl

≠(1 ≠ 2fl)Êj
◊

0 ◊i
j

R

b . (F.3)

Using this one can show by a direct computation that, acting on scalar fields:

Lemma F.1.3.

gabÒ̂aÒ̂b = ≠4fl2(1 ≠ 2fl)ˆ2
fl + 2fl(2fl(1 ≠ n) + n)ˆfl + 2fl∆Sn .
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