
T
H
E
S
E
D
E
D
O
C
T
O
R
A
T

N
N
T
:
2
0
2
1
U
P
A
S
G
1
1
2

Software Security: Combining Fuzzing
and Symbolic Methods for Vulnerability

Detection
Fuzzing et méthodes symboliques pour la détection de

vulnérabilités à large échelle

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de l’Information et de
la Communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique et sciences du numérique

Référent : Faculté des Sciences d’Orsay

Thèse préparée dans les unités de recherche Laboratoire Méthodes
Formelles (Université Paris-Saclay, CNRS, ENS Paris-Saclay) et Institut List

(Université Paris-Saclay, CEA), sous la direction de Sylvain CONCHON,
professeur des universités, et le co-encadrement de Sébastien BARDIN,

chercheur.

Thèse soutenue à Paris-Saclay, le 15 décembre 2021, par

Yaëlle VINÇONT

Composition du jury
Mihaela SIGHIREANU Présidente
Professeure des Universités, Ecole Normale
Supérieure Paris-Saclay
Jean-Yves MARION Rapporteur & Examinateur
Professeur des Universités, Ecole Nationale
Supérieure des Mines de Nancy
Michail PAPADAKIS Rapporteur & Examinateur
Maître de Conférences, HDR, Université du Lux-
embourg
Emmanuelle ENCRENAZ Examinatrice
Maîtresse de Conférences, Sorbonne Université
Sylvain CONCHON Directeur de thèse
Professeur des Universités, Université Paris-
Saclay

2

Remerciements institutionnels

Cette thèse n’aurait pu se dérouler sans le soutien matériel de deux acteurs.

Je tiens donc à remercier le Commissariat à l’Énergie Atomique et aux Én-

ergies Alternatives (CEA) pour avoir financé les trois premières années de ma

thèse, et en particulier l’Institut List pour m’avoir accueillie dans ses locaux du-

rant cette période.

Je remercie également le LaboratoireMéthodes Formelles (LMF) de l’Université

Paris-Saclay pour le financement de ma prolongation en quatrième année, et

son accueil.

3

4

Remerciements
As tradition dictates, I shall start this work (and finish writing it) by thanking all

who helped me throughout the process. This first part is in English, but the

more personal acknowledgements below will be in French.

First, Iwant to thank Jean-Yves Marion and Michail Papadakis for agreeing to

review my manuscript. Thank you for your feedback and questions.

Thanks also toMihaela Sighireanu for presidingmy defense, and Emmanuelle

Encrenaz for being part of the jury. I enjoyed presenting my work to you, as well

as the discussions that happened during the question session.

I would like to thank Sylvain Conchon, my academic supervisor. Thank you

for accepting to join the adventure midway, and welcoming into your team dur-

ing those last few months. I enjoyed our scientific discussions, and your advice.

Finally, I want to thank Sébastien Bardin for being my co-supervisor during

those four years. Thanks for offering me this opportunity, and everything you

did along the way. I learned a lot under your guidance, both scientifically and

academically.

Je passe maintenant de la langue de Shakespeare à celle de Molière pour

remercier celleux qui m’ont entourée pendant ces quatre ans.

On dit qu’il faut un village pour élever un enfant, je pense qu’il en est de

même pour une thèse... De fait, le meilleur moyen de n’oublier personne est de

ne nommer personne, mais je suis certaine que vous vous reconnaîtrez.

Merci aux équipes qui m’ont accueillie. Équipes au pluriel, car j’ai eu la

chance de commencer ma thèse au LSL (CEA) et de la finir au LMF (Université

Paris-Saclay). Merci pour votre accueil, pour les discussions scientifiques et les

pauses café.

Merci aux doctorant·e·s qui ont partagé ces quatre années avec moi. De ces
années, il me restera toujours les bons moments (les sorties, la Savoie, les post-

its...), mais aussi notre entraide dans les moins bons. Mention toute particulière

pour mes co-bureaux, officiels et officieux!

Merci à mes ami·e·s. Celleux rencontré·e·s au lycée, sur les bancs de la fac,
autour d’un jeu de cartes. Les collègues que je voyais tous les jours, les colocs

(presque) tous les soirs, et les “pocket friends”, toujours joignables grâce à Inter-

net. Merci pour ces soirées, ces week-ends, ces discussions, qui m’ont permis

de me changer les idées et de survivre à la pression de la thèse.

Merci, pour finir, à ma famille, à deux et quatre pattes. Merci de m’avoir

supportée (... et soutenue) pendant ces quatre années. Sans forcément com-

prendre ce que je faisais, vous avez été une oreille attentive, une source de

réconfort mais aussi de motivation. Je n’y serais pas arrivée sans vous.

5

Résumé
Alors que les programmes informatiques se répandent, le risque de bugs aug-

mente. Dans cette thèse, nous voulons trouver d’éventuels bugs dans des pro-

grammes finis et publics.

Pour cela, nous utilisons la génération automatique de tests. Complémen-

tant les tests écrits à la main, les générateurs de tests fabriquent automatique-

ment une série de tests, avec pour but de maximiser la couverture de code et

de minimiser l’effort humain. Actuellement, les techniques de génération de

test les plus répandues dans l’académique et dans l’industrie sont basées sur

l’exécution symbolique ou le fuzzing.

- L’exécution symbolique vise à explorer complètement les chemins d’exécution.

Pour cela, chaque chemin est exécuté sur une entrée symbolique, et une con-

trainte est inférée sur cette entrée. Quand l’analyse atteint la fin d’un chemin,

cette contrainte est un prédicat de chemin, et l’exécution concrète du programme

sur n’importe laquelle de ses solutions suivra le chemin voulu. De telles entrées

concrètes sont générées avec un solveur de contraintes, et forment la série de

tests. Cependant, il n’est pas toujours possible d’explorer tous les chemins en

un temps raisonnable, et il est souvent nécessaire de borner l’exploration.

- Le fuzzing vise à exécuter le programme sur de nombreuses entrées, en

espérant explorer tous les chemins possibles. Il dépend donc d’une génération

d’entrées rapide et facile. Tandis que les fuzzers de base fonctionnent en boîte

noire et génèrent des entrées aléatoires indépendamment du programme, les

fuzzers en boîte grise utilisent une analyse pour obtenir des informations à

propos du programme. Ces informations sont alors utilisées pour améliorer

la génération d’entrées. Cependant, malgré ces améliorations, les fuzzers ont

toujours de la difficulté à trouver la solution de conditions qui ont une faible

probabilité d’être vraies.

Ainsi, l’exécution symbolique et le fuzzing exhibent des forces et des faib-

lesses complémentaires, nous poussant à les combiner.

Pendant cette thèse, nous avons développé une technique de génération

de test automatisée, qui combine la puissance de raisonnement de l’exécution

symbolique pour s’attaquer au code complexe, et le faible coût du fuzzing pour

générer des entrées efficacement.

La solution que nous proposons combine deux nouvelles idées: l’Exécution

Symbolique Légère (ESL) et le Fuzzing Contraint. L’Exécution Symbolique Légère

est une variante de l’exécution symbolique où l’analyse s’arrête sur une condi-

tion d’un chemin, plutôt qu’à la fin, et le langage de contraintes ciblé est réduit à

un fragment facilement énumérable de l’habituel. Par conséquent, dériver des

prédicats de chemin (corrects) dans ce langage est plus compliqué, mais il est

6

facile d’énumérer des entrées exerçant un chemin, sans utiliser de solveur de

contraintes. Deuxièmement, le Fuzzer Contraint manipule une entrée et une

contrainte facilement énumérable, et génère de nouvelles entrées qui satisfont

la contrainte et suivent donc le chemin, jusqu’à la condition ciblée. En général,

l’ESL guidera l’exploration au-delà des conditions difficiles et vers les parties in-

téressantes du code, tandis que le fuzzer contraint créera efficacement des en-

trées, y compris des solutions aux contraintes. Cela nous permet d’explorer le

programme sans systématiquement faire appel à l’analyse symbolique, et sup-

prime la dépendance à un solveur pour créer des entrées satisfaisant les con-

traintes.

Nous avons combiné ces deux technologies au sein de l’outil CONFUZZ, qui

est intégré à la plateforme d’analyse de code binaire BINSEC. L’exécution sym-

bolique légère a été créée pendant cette thèse, en OCaml, et réutilise seulement

certains greffons de BINSEC pour obtenir et représenter la trace à analyser. Le

fuzzeur contraint a été créé en modifiant AFL, qui représente l’état de l’art du

fuzzing en boîte grise, écrit en C.

Nous avons ensuite évalué les performances de CONFUZZ sur LAVA-M, un

banc de test standard du fuzzing. Il est composé d’applications de la librairie

binutils, dans lesquels des vulnérabilités ont été injectées automatiquement.

Nous comparons le nombre de vulnérabilités détectées par CONFUZZ à celles dé-

tectées par AFL et Klee, respectivement l’état de l’art du fuzzing et de l’exécution

symbolique, ainsi que QSYM, un outil combinant fuzzing et exécution symbol-

ique.

Les résultats montrent que CONFUZZ est plus efficace que du fuzzing ou de

l’exécution symbolique traditionnels, même quand on additionne les vulnéra-

bilités trouvées par les deux techniques. Quant à QSYM, CONFUZZ montre de

meilleurs résultats dans deux des trois tests, des résultats très encourageants.

Dans la suite de ce travail, nous voudrions continuer à améliorer la précision

des contraintes calculées par l’exécution symbolique légère (tout en conservant

la condition d’énumération facile). Une autre piste qu’il pourrait être intéressant

d’explorer est de combiner CONFUZZ à de l’exécution symbolique classique, pour

gérer les cas où notre analyse ne suffit pas à créer une contrainte permettant

de passer une condition difficile.

7

Abstract
As computer programs spread, the risk of bugs increases. In this thesis, we want

to find possible bugs in finished and released programs.

We do this through automatic test generation, a major topic in software en-

gineering and security. A complement to hand-crafted tests, test generators

automatically build test suites, aiming to maximize program coverage and min-

imize human effort. Currently, most test generation techniques and tools stud-

ied by researchers and applied in industry rely on some form of either symbolic

execution or fuzzing.

- Symbolic execution aim to exhaustively explore the possible execution paths.

It achieves this by executing each path on a symbolic input, and inferring a con-

straint on said input. When the analysis reaches the end of a path, this con-

straint is a path predicate, and a concrete execution of the program on any of

its solution will follow the intended path. Such test cases are generated using

an off-the-shelf solver, and form the test suite. However, it is not always pos-

sible to explore all paths in reasonable time, and we often have to bound the

exploration.

- Fuzzing aims to run the program on many test cases, in order to hopefully

trigger all possible paths. As such, it relies on quick and easy test case genera-

tion. While the most basic fuzzers function in a blackbox manner and generate

random test cases independently from the program, greybox fuzzers also rely

on an analysis to gain some information about the program. This information

is then used to make the test case generation more efficient. However, despite

this improvement, fuzzers still struggle with finding the solution to conditions

that have a low probability of being true, such as password checks.

Hence, symbolic execution and fuzzing exhibit rather complementary strengths

and weaknesses, calling for a proper integration between the two techniques.

During this thesis, we developed an automated test generation technique,

combining the reasoning power of symbolic execution to tackle complex code

with the light cost of greybox fuzzing to generate test cases efficiently.

The solution we propose combines two novel ideas: Lightweight Symbolic

Execution (LSE) and Constrained Fuzzing. Lightweight Symbolic Execution is a

variant of symbolic execution where the analysis targets a condition on a path,

rather than a full path, and the target constraint language is restricted to an

easily-enumerable fragment of the usual one. As a consequence, deriving (cor-

rect) path predicates in this language is more complicated but test cases fol-

lowing a given path are then easy to enumerate, without using any off-the-shelf

constraint solver. Second, a Constrained Fuzzer operates over a test case and

an easily-enumerable constraint in order to quickly generate test cases which

8

follow the intended path, up to the targeted condition. Overall, LSE will lead the

exploration past difficult conditions and towards interesting parts of the code,

while the constrained fuzzer will efficiently create test cases, including solutions

to the constraints. This allows us to explore the program without systematically

relying on symbolic analysis, and removes the need for an SMT solver to create

test cases satisfying the constraints.

We evaluated the performances of the resulting tool, called ConFuzz, on a

standard fuzzing benchmark, and found that we improved upon the perfor-

mance of standard fuzzing and symbolic execution.

9

Contents
1 Introduction 15
1.1 Context . 15

1.2 Problem, goal, challenges . 18

1.3 Our Approach . 19

1.4 Contributions and outline . 20

2 Background 23
2.1 Overview of Program Analysis . 24

2.1.1 What Do We Analyze? . 24

2.1.2 How Do We Analyze? . 25

2.1.3 Why Do We Analyze? . 25

2.2 Symbolic Execution . 27

2.2.1 Dynamic Symbolic Execution 29

2.2.2 KLEE, State of the Art of Symbolic Execution 30

2.2.3 Difficulties . 30

2.3 Fuzzing . 32

2.3.1 AFL, State of The Art Greybox Fuzzing 33

2.4 Binary Analysis . 34

2.4.1 Context . 34

2.4.2 Challenges . 36

3 Motivating Example 39
3.1 Code . 39

3.2 Using State-of-the-Art Tools . 41

3.2.1 Fuzzing with AFL . 41

3.2.2 Symbolic Execution with KLEE 42

3.3 Our approach . 42

3.4 Results . 43

11

4 Lightweight Symbolic Execution 45
4.1 Overview . 46

4.2 Defining the Constraint Language 48

4.2.1 Consequences of the approximation 54

4.3 The Trace . 54

4.3.1 Language . 54

4.3.2 Specifics . 56

4.4 Inferring Constraints . 57

4.4.1 Orchestration . 58

4.4.2 Equality Analysis . 59

4.4.3 Value Analysis . 62

4.4.4 Dependency Analysis . 68

4.4.5 Example . 74

4.4.6 Properties . 75

4.5 Implementation . 77

4.5.1 Memory Representation . 78

4.5.2 Caching information . 79

4.6 Discussion . 79

4.6.1 LSE usage . 79

4.6.2 Constraint Language . 80

4.6.3 Limitations and perspectives 80

4.7 Related Work . 81

4.8 Conclusion . 82

5 Combination of LSE and Constrained Fuzzing 85
5.1 Overview . 86

5.2 How To Create Solutions . 86

5.2.1 AFL . 87

5.2.2 ConFuzz . 87

5.2.3 Implementation . 91

5.3 The Trace . 91

5.3.1 Retrieving the Trace . 91

5.3.2 Transforming the trace . 92

5.3.3 Implementation . 92

5.4 Communicating the Predicates . 93

5.4.1 Predicate format . 93

5.4.2 Reception of predicates . 94

5.5 Experimental Evaluation . 94

5.5.1 Experimental Setup . 94

5.5.2 ConFuzz, SE, Greybox Fuzzing 95

5.6 Discussion . 96

12

5.6.1 Trace Length . 96

5.6.2 Communication . 96

5.6.3 Constrained Fuzzing . 97

5.7 Related Work . 97

5.8 Conclusion . 99

6 Conclusion and Perspectives 101
6.1 Conclusion . 101

6.2 Perspectives . 102

A Mutations List 105
B Communication format 107

13

Chapter 1
Introduction
Contents

1.1 Context . 15
1.2 Problem, goal, challenges . 18
1.3 Our Approach . 19
1.4 Contributions and outline . 20

Context
Anywhere there are programs, there is a risk of bugs. And the more programs

we run, on computers but also phones, fridges, planes, etc, the more impor-

tant it is to find and fix said bugs. Especially since the consequences range from

inconvenient – e.g crashing the program – to devastating – e.g leaking private in-

formation, a reality that is reflected vocabulary-wise by the distinction between

bugs and vulnerabilities.

Bugs and Vulnerabilities Bugs are defined as any event where the program

does not behave theway it is supposed to. They can havemany different causes,

but they are usually accidentally introduced by the developers. For example, see

the program in Figure 1.1: it first creates a table and initialize its content, then

it goes through the table and print the data for each cell. There is a mistake

though, as the second loop accesses tab[5], which is not actually part of the
table.

This is an undefined behavior in C, meaning the compiler can do anything.

On my computer, compiled with gcc and -O0 optimization, it just prints the un-
initialized content of the memory at this address: 32764. It could have also

15

#include <stdio.h>

int main (int argc, void* argv[]) {
int tab[5];
int cnt;

for (cnt = 0; cnt < 5; cnt++)
tab[cnt] = cnt+1;

for (cnt = 0; cnt <= 5; cnt++)
printf("%i-", tab[cnt]);

}

Figure 1.1: Example of out-of-bounds array access

crashed the program with a “Segmentation Fault” error message, if we were

accessing memory we do not have the rights to. Alternatively, if this code was

running on a server, and a malicious client sent a request for a number of bytes

greater than the ones they had initialized, it could leak private information.

This is basically what happened with Heartbleed [60], a bug that was un-

knowingly introduced in 2012 in theOpenSSL program, and disclosed and patched

in 2014. In short, the client would send a word and its length to the server, and

the server would store the word in memory then send back the length of the

word from said memory. However, the server never checked that the length

was actually that of the word. As such, it was possible to request 500 bytes

when having sent 4, and to get back the word, and the next 496 bytes from the

server’s memory. This was notably used to steal Social Insurance Numbers in

Canada.

When a bug can be actively exploited by an attacker to change the behavior

of the program, or retrieve information, we call it a vulnerability.

As for crashes, they are merely a possible symptom of a bug. For example,

with the out-of-bounds example above, if the code had crashed, that would have

alerted us to the presence of a bug.

Proving vs Testing It is possible to prove that a program behaves as it is sup-

posed to, and hence does not contain bugs [18]. This requires for the develop-

ers to first define a specification: “what the program is supposed to do”, then

verify certain properties wrt the specification and the code. For example, in

Software Model Checking [17, 53], one would define a model of the program’s

16

behavior, then analyze said model to ensure some properties are satisfied, such

as mutual exclusion - two threads of execution cannot simultaneously access a

critical section. It is also possible to achieve such proofs on the final code. For

example, Frama-C [42, 3] has a WP [12] plugin, which will prove that any execu-

tion of the code will satisfy a user-defined contract, using weakest-precondition

calculus [25].

As efficient as those techniques are, they are expensive. They require the

developers to be familiar with both the technique and the program, in order to

design an accurate specification and then prove that the program is correct wrt

the specification, which also takes time.

Alternatively, it is possible to test the program [1]. When testing, the program

will be run on a set of test cases, called a test suite, and the results of the exe-

cution will be analyzed. Again, there are different ways to test a program. Unit

tests will check whether a particular fragment of the code behaves as expected,

by running it on a given set of inputs, and comparing the results to the expected

ones. For more global tests, system testing will check whether a complete sys-

tem satisfies its specification.

In this thesis, we are working with automated testing. We want to automatically

generate a test suite, with the goal being not to compare the behavior to a speci-

fication, but rather to detect any crashes, thus bugs. To achieve this, we need the

test suite to cover as many of the program’s execution paths as possible. Nowadays,

this is usually done using one of two techniques: symbolic execution [41, 11, 36] or

fuzzing [52, 49].

Symbolic Execution and Fuzzing Symbolic Execution (SE) [41, 11, 36] aims to

explore a program by analyzing every execution path, and crafting a test case

for each one. It is the combination of two components:

• the symbolic execution engine will analyze the paths, following one of sev-
eral strategies (Depth-First Search, Breadth-First Search, random, etc). For

each path, it will infer a path predicate by semantically analyzing the in-

structions in the path. A path predicate is a constraint on the input such

that any test case satisfying the predicate will follow the path.

• the SMT solver [44] will take a path predicate and create a solution, if one
exists.

Symbolic execution can be used to create an extensive test suite by crafting

a test case for each path, at the cost of analyzing every path and solving the

resulting path predicate.

Fuzzing [52, 49], on the other hand, aims to run the program on many test

cases, in order to hopefully trigger all possible paths. As such, it relies on

17

quick and easy generation of test cases. The most basic fuzzers, referred to as

blackbox fuzzers, simply generate random test cases, without having any knowl-

edge about the Program Under Test (PUT). As it became clear that this was not

enough to fully test programs, for example ones that expect a specific input

format, smarter fuzzers were designed. Called greybox fuzzers, they often add

an analysis in order to get some information about the PUT, without slowing

down the process. For example, AFL [69] is able to detect whether a new test

case reached an unexplored part of the program. Such test cases are deemed

interesting, and used as the basis to create future ones.

Problem, goal, challenges
By analyzing complete paths, however long they are, symbolic execution is able

to explore arbitrarily deep parts of the program. On the other hand, in order

to fully explore the program, it will have to systematically analyze each path.

And the bigger the program is, the more paths it has: this is a phenomenon

called path explosion. As a result, symbolic execution does not scale well on large

programs. It is also dependent on SMT solving ability to solve the constraints. To

avoid these pitfalls, users might have to bound the symbolic execution, limiting

the number of paths explored, or drop difficult constraints.

When it comes to fuzzing, its cheap efficient generation of test cases is also

its weakness. In particular, test cases are generated without the fuzzer taking

into consideration the semantics of the program. Consequently, the fuzzer’s

efficiency does not depend on the program’s size or complexity. But this also

leaves the fuzzer blind to potentially interesting information about the inter-

nals of the PUT. For example, if the program contained a condition such as

buf[0] == 0xdeadbeef, the test generation engine would just create test cases
until it randomly set buf[0] to 0xdeadbeef, something highly unlikely.
The weaknesses and strengths of fuzzing and symbolic execution appear to

be rather complementary: we would want a tool able to pass hard conditions

while quickly explorating easier paths.

Our objective is precisely to develop an automated test generation technique,

combining the reasoning power of symbolic execution with the light cost of greybox

fuzzing.

More precisely, we want to build an efficient approach, both able to reason

about complex code and to generate test cases quickly. This approach would

combine symbolic reasoning with a fuzzer, and we identify five challenges. The

symbolic reasoning would need to be (1) cheap – no SMT solver, (2) targeted

18

to interesting paths, (3) correct, while the fuzzer would need to be (4) efficient.

Finally, we want both techniques to be deeply integrated with one another (5).

Several recent works [59, 68, 39, 14, 15] follow roughly the same goal, but

none of them satisfy all the objectives listed above. Many of these approaches [59,

68] combine an off-the-shelf fuzzer together with an off-the-shelf symbolic ex-

ecutor, i.e. they do not integrate the two techniques at the conceptual level. In

addition, the analyses performed by many of these tools [39, 14, 15], as well as

their properties, are often loosely defined, leading sometimes to public criticism

about their actual soundness
1
. In this work, we aim at introducing a correct test

case generation technique, which genuinely integrates the concepts from sym-

bolic execution with those of fuzzing.

Our Approach
The solution we propose to this problem combines two novel ideas: Lightweight

Symbolic Execution and Constrained Fuzzing.

• Lightweight Symbolic Execution (LSE) is a symbolic analysis. Similarly to sym-
bolic execution, it will analyze a trace and return a path predicate. How-

ever the path predicates are different, because they are expressed using

a fragment of symbolic execution’s usual target language. By thus restrict-

ing the complexity of the solution space, the path predicates generated

by LSE are easily-enumerable. While this makes the inference of the con-

straints more complicated, it means enumerating solutions can be done

without resorting to an SMT solver;

• We combine this analysis to a Constrained Fuzzer. While for symbolic ex-
ecution an SMT solver would create a test case targeting a full path, our

constrained fuzzer will create multiple test cases targeting a branch in the

path. This allows us to first guide the fuzzing past any difficult condition,

and then cheaply explore multiple paths starting at this condition. We also

use fuzzing’s feedback to guide the LSE towards interesting paths, rather

than having to analyze every path.

Overall, LSE’s reasoning power will lead the exploration past specific condi-

tions and towards interesting parts of the code, while the constrained fuzzer will

efficiently create test cases, including solutions to the constraints. This allows

us to explore the program without systematically relying on symbolic analysis,

and removes the need for an SMT solver to create test cases satisfying the con-

straints.

1https://andreas-zeller.blogspot.com/2019/10/when-results-are-all-that-matters-case.html

19

https://andreas-zeller.blogspot.com/2019/10/when-results-are-all-that-matters-case.html

Contributions and outline
Contributions As a summary, our contribution is three-fold:

• We propose Lightweight Symbolic Execution (Chapter 4), a novel variant of
symbolic execution. Using abstractions, it creates path predicates that are

easily-enumerable (Section 4.2). To achieve this, it sacrifices completeness

in exchange for fast enumeration of solutions, removing the need for an

SMT solver. We also describe how we correctly infer such constraints (Sec-

tion 4.4), as well as how to enumerate solutions (Section 4.2). We imple-

mented this method as part of the BINSEC tool [26, 24];

• We present Constrained Fuzzing (Chapter 5), a modification of Greybox
Fuzzing tailored for combinationwith lightweight symbolic execution, which

creates solutions to easily-enumerable path predicates (Section 5.2). Both

tools communicate through traces (Section 5.3) – to guide the LSE’s anal-

ysis – and easily-enumerable path predicates (Section 5.4)– to guide the

fuzzing’s test generation. We modified AFL [69] and combined it to BINSEC

in order to create CONFUZZ;

• We evaluated the resulting tool on the LAVA-M [28] benchmark (Section 5.5),
a set of binaries extracted from GNU Coreutils in which vulnerabilities

were artificially injected. We compare ourselves to the state of the art in

terms of fuzzing and symbolic execution, as well as some tools that com-

bine both, with regard to coverage and bug finding abilities.

Outline The rest of this document is organized as follows:

Chapter 2 introduces program analysis, and how it can be used to automati-
cally generate test suites

Chapter 3 presents as a motivating example a sample program which causes
path explosion in symbolic execution and contains conditions fuzzing strug-

gles solving

Chapter 4 describes Lightweight Symbolic Execution, and defines the underly-
ing principle of easily-enumerable path predicates. It also shows how we

infer such constraints from a given trace

Chapter 5 describes Constrained Fuzzing, and how it is combinedwith Lightweight
Symbolic Execution to generate solutions to easily-enumerable path pred-

icates, as well as guide the symbolic analysis

20

Chapter 6 presents our experimental evaluation on a standard fuzzing bench-
mark, comparing our tool to the state of the art

21

Chapter 2
Background
Contents

2.1 Overview of Program Analysis 24
2.1.1 What Do We Analyze? . 24

2.1.2 How Do We Analyze? . 25

2.1.3 Why Do We Analyze? . 25

2.2 Symbolic Execution . 27
2.2.1 Dynamic Symbolic Execution 29

2.2.2 KLEE, State of the Art of Symbolic Execution 30

2.2.3 Difficulties . 30

2.3 Fuzzing . 32
2.3.1 AFL, State of The Art Greybox Fuzzing 33

2.4 Binary Analysis . 34
2.4.1 Context . 34

2.4.2 Challenges . 36

In this chapter we introduce several concepts that are used in this thesis.

We first present an overview of program analysis, what it can achieve and

some of the techniques used to analyze programs (Section 2.1), in particular

automated test generation. We then introduce two of such techniques which

are key to this work: symbolic execution (Section 2.2) and fuzzing (Section 2.3).

Finally, we discuss the challenges of binary code analysis (Section 2.4).

23

Overview of Program Analysis
While traditional programs could take a number, or a file, as input, program

analyzers reason about other programs.

Programs have always contained bugs, but as computer programs became

widespread, techniques were designed to either find said bugs, or avoid them

altogether. We call such techniques program analysis: instead of taking a num-

ber or file as input, they analyze other programs. Formal Methods [18] in par-

ticular were developed in the 70s. By using mathematics to reason about pro-

grams, they aim to prove properties such as the absence of runtime errors.

Furthermore, program analysis can also be used to optimize a program during

compilation.

In this section, we will present different reasons and ways to analyze a pro-

gram.

What Do We Analyze?
When someone says “analyze a program”, the word program can have different

meanings. In particular, different representations of a program can exist, and

each can be analyzed. The following are some of the options.

Model Before writing a single line of code, it is possible to define a formal spec-
ification of a program. This can be used as a basis to build a model rep-

resenting the program, which can then be analyzed [17, 53] or used to

generate tests [22, 47]. Whether the conclusions of this analysis still apply

to the finished program depends on how accurate the model was, and if

any changes were made while writing the code;

Source Code Once the development of a program has started, source code is
produced. It is possible to directly analyze this source code, and draw

conclusions on the expected program’s behavior. However, said behavior

may change depending on the compiler [2]. For example C code might

contain Undefined Behaviors – pieces of code which were not defined in

the C standard – for which there are no compiling rules;

Binary Code A finished program has to be compiled in order to be run on a
computer. The result is an executable file, made of 0s and 1s. This can

be analyzed by specialized analyzers, capable of disassembling the binary

code into a manageable intermediary representation. Disassembling is

not a trivial step, and it is nearly impossible to retrieve every possible piece

of information – for example types – from the source code [51, 57, 45].

24

How Do We Analyze?
We can differentiate between two types of analyses: static [29] and dynamic [38].

Static analyses reason on the program’s code, or model, without executing it. On

the other hand, dynamic analyses rely on running the program on test cases,

and reason on the resulting execution traces. For example, when looking at the

program in Figure 1.1, we could consider the input as an abstract undetermined

value, and try to look at all the possible paths, forking the analysis when there

are conditions. We could also execute it with multiple concrete inputs, leaving

the analyzer with a single possible path for each run. This removes any fork-

ing problems, since the result of a condition is always known. It also allows

the analysis to access the concrete value of some operations, such as external

library calls.

Why Do We Analyze?
Analyzers can serve multiple purposes, among which are proving properties

about the program, or testing it.

Proving means proving properties about the program. Possible properties

can be mutual exclusion, or the absence of run-time errors. It requires first to

formally define the program’s specification – what it is meant to do. Different

techniques offer different results, such as:

Model Checking [53, 17] is a technique that can be used as early as the design
phase, before the program is implemented. The specification is directly

used to model the expected program’s behavior, which is then analyzed

to verify properties. For example, it is possible to model a distributed sys-

tem, with different components that interact together, and formally verify

that two components cannot simultaneously access a critical section of

memory, aka mutual exclusion;

Weakest Precondition Calculus [25] is a technique used for example by the C
analysis framework Frama-C [3, 12]. It works by defining a pre-condition

and a post-condition for each part of the code, and it will verify that given

the pre-condition, the post-condition is valid wrt the targeted code. For

example, we could add conditions to the example from Figure 1.1, verify-

ing that we never access memory out of the bounds of the table. In this

case, the verification fails for the second loop, since it does go beyond the

end of the table. This would have alerted us to the presence of a bug in

the program.

25

Abstract Interpretation [20] is a technique used with various goals, such as
checking the absence of run-time errors [21]. The key idea is to repre-

sent memory states in an abstract way, which we can reason about using

specific operations that allow us to propagate said representation. This

information can then be used to infer information about the program, de-

pending on the goal of the analysis. For example, we can abstract mem-

ory states as intervals of values, an abstraction which is updated when

instructions modify the value of the memory state. In this case, if you di-

vide by x, and abstract interpretation determined that x ∈ [4; 10], you are
certain that there will not be a division by zero. Since abstract interpreta-

tion reasons about an over-approximation of the memory states’ values,

any property that is true for the program is true for its abstraction, though

there might be false positives: properties that are true for the abstraction

and not the program.

No matter the technique used, proving properties on a program requires

having people familiar with both the program and the intended proof technique.

This means either out-sourcing to specialist consultants, hiring someone that

already has this knowledge, or training developers so they can take on both

roles. In any case, it is expensive for whoever is developing the program, but it

offers formal guarantees about the behavior of the program.

Testing [1] does not offer such formal guarantees. The main idea of testing

is to run the program on test cases, and compare the outcome to what was

expected, be it “the program does not crash” or “when given said input, the

program returns said result”. There are various ways to test a program:

Unit Testing is when someone, possibly the developer, creates a set of tests
for small parts of the programs. This is used to check whether individual

functions return the expected result. For example, if we had a function

that returns the Fibonacci value for a number, we might want to test that

it returns an error when called with a negative number, 0 for 0, 1 for 1, 1

for 2, and maybe one or two higher numbers. Since test cases are hand-

crafted and associated with the expected results, this is done by a person,

which will usually check corner cases and a few regular cases.

Automated Testing [49, 36, 11] aims to check whether there are any inputs
which trigger a crash. To achieve this, the program will be analyzed by a

tool, which will automatically generate a test suite. Usually the goal will

be to maximize the coverage attained by the test suite, in order to make

the exploration as exhaustive as possible. While it is impossible to create

26

a tool that will always achieve full coverage for any program – mostly be-

cause it is sometimes impossible to achieve full coverage, for example if

the program contains infinite loops – it takes the pressure off of the devel-

opers. Instead of having someone hand crafting a test suite, they will just

have to run the chosen generation technique on the program, and then

run the program on the resulting test suite. As such, while automated

testing does not guarantee that the program does not contain bugs, it is

still efficient at finding bugs, while remaining cheap. This makes it a good

way to supplement other testing techniques, when one does not want to

use formal proof.

In both cases, the end goal of the analyses varies whether we are considering

the safety or the security of the program. Safety answers the question “does

the program work as it should?” while security answers the question “could an

attacker take advantage of the program?”. For example, if the program crashes,

safety is not satisfied: the program is not supposed to do that. The crash could

be harmless, or it could be abused by a malicious user, as in Figure 1.1. Only

in the second case is it considered a breach of security. Nevertheless, finding

safety faults is a good way to check for openings that attackers could exploit,

and is thus a step to ensure security.

ConFuzz In our case, we analyze binary code, which has been instrumented

at compile-time, allowing us to work independently from the source code. Our

goal is to automatically test the program in order to find bugs, and we achieve

this by combining fuzzing – in order to generate test cases – and dynamic sym-

bolic execution – in order to explore new parts of the code. Furthermore, as

we search for crashing test cases, we concern ourselves with the safety of the

program, letting further analyses determine whether the bugmight be a vulner-

ability.

Symbolic Execution
Symbolic Execution (SE) [41, 11, 9, 58] acts similarly to an interpreter, in that

it will go over each instruction of the program and apply its semantics on the

given input. The difference is that, where an interpreter would consider con-

crete values as input, symbolic execution will consider symbolic values. Along

the execution, the SE engine will maintain two pieces of information about the

state of the program: a symbolic state Σ – a map binding variables to their sym-

bolic value – and a path predicate ϕ – a predicate over the symbolic variables,

describing the condition for a test case to reach the current instruction. When

27

an input is provided by the user, the engine represents the data with a symbolic

variable, meaning “this could be anything”. On branching instructions, since

there is no unique possibility, symbolic execution forks in order to explore all

possible paths. It chooses which branch to explore first depending on a user-

defined strategy (Depth-First Search, random, etc.)

When the analysis reaches the end of a path, the resulting path predicate

is a constraint over the input. If we were to run the program on any solution

of the predicate, the concrete execution would follow all the branching choices

made by the symbolic analysis. Such a solution will usually be generated by

sending the predicate to an off-the-shelf solver. If the constraint has a solution,

the solver will return a test case which covers the path. If there is no solution, it

means that the path is unfeasible.

The execution tree on the right of Figure 2.1 shows the symbolic state and

path predicate for each of the (numbered) instructions in a sample program.

In this tree, x0 is the symbol corresponding to the user input returned by the
read_int function, and forking happens due to the condition if (x >=5).

[0]
int x := read_int(); [1]if (x ≤ 5) then [2]
x := 5; [3]else [5]
x := 4*x; [6]
x := 2*x; [4], [7]

Algorithm

([], >), [0]

([x→ x0], >), [1]

([x→ x0], x0 ≤ 5), [2]

([x→ 5], x0 ≤ 5), [3]

([x→ 10], x0 ≤ 5), [4]

([x→ x0], x0 > 5), [5]

([x→ 4x0], x0 > 5), [6]

([x→ 8x0], x0 > 5), [7]

Symbolic Execution Tree

{x0 7→ 4}, {x0 7→ 10}

Possible inputs returned by a constraint solver

Figure 2.1: Symbolic execution of a sample program

Formalization Given a program under test P over a set of input variables X ,
a seed t is a valuation of every variable in X . The execution of P over t, noted
P (t), follows a path σ , {l0, ..., ln} where the different li are instructions of P .

Definition 2.2.1 (Perfect Path Predicate). A predicate ϕσ overX is a perfect path
28

predicate for path σ if, for any seed t, we have:

t |= ϕσ ⇔ P (t) follows σ

It is not always possible to compute perfect path predicates. A path predi-

cate is correct if all the predicate solutions are seeds that do cover the intended

path (left-to-right implication, under-approximation), and complete if any seed

covering the path is a solution (right-to-left implication, over-approximation).

Figure 2.2 shows an example of this. Let us imagine ϕ1 is a perfect path

predicate for the target path. Then ϕ2 is correct, but not complete: any solution

of ϕ2 is a solution of ϕ1, but for example {x 7→ 9} is not included. By over-
constraining the solution space, we lose possible solutions. On the other hand,

ϕ3 is complete but not correct: any solution of ϕ1 is a solution of ϕ3, but {x 7→
6} is a solution of ϕ3 that is incorrect for ϕ1. There are solutions of the path

predicate that do not actually follow the path.

ϕ1 = 2 ≤ x < 5 ∨ 8 < x ≤ 10
ϕ2 = 2 ≤ x < 5
ϕ3 = 2 ≤ x ≤ 10

0

2 5 8 10

Figure 2.2: Example of correct and complete path predicates

Dynamic Symbolic Execution
If Symbolic Execution is unable to add a condition to the path predicate, the

symbolic engine will have to drop the current path. This can happen for several

reasons, such as the condition relying on code that is not accessible – e.g. a call

to an external library – or the condition being too complicated for the solver –

e.g. Mixed Boolean Arithmetic. Such interruptions of the analysis will prevent it

from reaching full coverage, as it cannot explore every path of the program.

In order to prevent this, several techniques propose to mix symbolic and

concrete executions. Such tools are referred to as “Dynamic Symbolic Execu-

tion” [11].

Execution-Generated Testing [9, 8] When executing the program, the engine

will differentiate between expressions that have a purely concrete value, and

symbolic expressions. As such, operations that only operate on concrete val-

ues will be dynamically evaluated, as they are in the original program. If there

29

is at least one symbolic operand, the operation will be evaluated symbolically,

in the same way as Static Symbolic Execution. This means that calls to exter-

nal libraries, when their arguments are concrete, are directly executed rather

than considered symbolic. Similarly, if conditions, however complicated, are

concrete, the outcome is computed without calling the SMT solver. This helps

decrease the number of times symbolic execution will have to abandon a path

because it cannot reason about it, without completely solving the problem.

Concolic Testing [58, 35] Instead of reasoning on the whole program, Concolic

Testing reasons on a single execution path at a time. By running the program

with concrete input, it gets the trace – the list of executed instructions. The

analyzer will then follow the path, keeping the symbolic state of the variables

as well as their concrete state. The concrete state can then be used as needed,

for example for library functions results. In order to explore more paths, every

time the analysis encounters a condition with an unexplored branch, it will try

negating it and adding it to the path predicate in order to create a test case

that takes this new branch. For example with the program in Figure 2.1, it could

start with {x 7→ 0}, which will take the x0 ≤ 5 branch. It will then add the

negation, x0 > 5, to the (empty) path predicate, and solve it to create {x 7→ 6}
and explore the second branch. As there are no more unexplored branches, the

engine would conclude the analysis to be complete, and stop there. It solves

the problem of unavailable code and complicated conditions by directly giving

them their concrete value in the current execution, at the cost of restraining

those expressions to a single value.

KLEE, State of the Art of Symbolic Execution
KLEE [8] is the state of the art of symbolic execution. Its goal is to assist in test-

ing a program by automatically generating test cases that reach high-coverage.

They compared themselves to the line coverage achieved by the developer’s

hand-written tests, and found that their tests were more efficient, thus proving

the efficiency of automatic test generation. They achieve this by leveraging sym-

bolic execution andmaking it more robust and scalable, using constraint solving

optimization and search heuristics.

Difficulties
Path Explosion As mentioned in the introduction, path explosion happens

when the number of paths in a program grows to the point that it is impossible

to explore every path in a reasonable time. To prevent the analysis from running

forever, users will usually bound the symbolic execution, be it by giving it a time

30

budget, a limited number of paths to explore, a maximum depth to explore, etc.

As a result, the engine will not be able to explore everything, and should explore

the most relevant paths first. This can be done by using heuristics to prioritize

certain paths [7] usually based on criteria such as the instruction and branch

coverage. It is also possible to use program analysis to soundly decrease the

complexity, for example by merging paths that have the same outcome [43], or

pruning redundant paths [6, 50].

Constraint Solving Symbolic Execution heavily relies on SMT solvers. Satisfi-

ability Modulo Theory is the problem of whether a formula in first-order logic

admits a solution. SMT solvers were built to answer this question, by combining

SAT and other theories. In our case they are used to solved path predicates, but

they can also be used in WP calculus [12, 31], in model-checking [19], etc. How-

ever SMT solvers are not perfect and there are constraints they cannot solve.

The goal with Symbolic Execution is to prevent this from happening, as much as

possible. As such, the analysis will often try to simplify the constraint solving.

Two such optimization are:

irrelevant constraint elimination aims to simplify the constraint by removing
terms that do not influence the result. For example, when encountering a

new condition, SE will check if either of the path is feasible by adding the

condition and its negation – separately – to the current path predicate. At

this point, any constraints already part of the predicate that are indepen-

dent from the new condition will not influence the result, and can thus be

safely removed in order to make the resolution easier.

incremental solving aims to reuse past information as much as possible. This
is useful because usually many paths share similar constraints. In the case

of KLEE, this is done by keeping a map between each previously solved

constraint and a single solution, if there is one. This solution can be used

not only when re-analyzing the same constraint, but also a subset or a

superset. If we are trying to solve a subset, then the original solution is

still a solution, while when trying to solve a superset, we can quickly check

whether the solution is still valid for the new constraint.

Memory Models [40, 30] One of the key component of symbolic execution

is its memory model. A memory model is the way the developers of the ex-

ecution engine have decided to represent the memory and the data from the

program. It is used to translate program instructions into symbolic constraints,

and as such heavily influences the coverage the program can attain, as well as

its scalability. A trade-off needs to be made between the analysis’ efficiency

31

and precision. For example, in a program, integers would usually be fixed-width

integers. While it is possible to represent them using mathematical integers,

which would make the analysis easier, this hides some corner cases, such as

arithmetic overflow. A symbolic analysis that uses this representation will not

be able to explore paths made possible by an arithmetic overflow, and might

not find some bugs. As a result, it is advised to tune the memory model to the

program to be analyzed, which again requires to have someone familiar with

both the PUT and the analysis.

Concretization [35, 23, 34] While the concretization techniques used in Dy-

namic Symbolic Execution help mitigate some of the issues Static Symbolic Ex-

ecution faces, they do so by sacrificing the completeness of the path predicate.

Indeed, by restraining a function output to its result in a concrete execution, we

transform a possibly complex function into a blackbox with only a single output.

As a result, we might make impossible paths that were possible in the original

program, and which we could have explored with Static Symbolic Execution.

Fuzzing
Fuzzing [52, 49] is a simple yet very effective automated testing technique. Its

goal is to explore the program’s execution paths by running it on many test

cases.

Information About Program As usual when it comes to testing, we differ-

entiate between blackbox, whitebox and greybox analyses. Blackbox means

the analysis has no knowledge about the PUT except for the execution results,

whitebox means it has full access to the code, and greybox is anything in be-

tween. When it comes to fuzzing, blackbox fuzzers [65, 64, 66] are the first and

most basic of fuzzers: they simply generate random test cases and run the pro-

gram, observing the outcome to determine whether it crashed. They are fast,

but blind. In contrast, whitebox fuzzers [36] mainly employ heavy-weight pro-

gram analysis like symbolic execution to explore all the feasible paths of a pro-

gram. Greybox fuzzing [69] lies in-between: it uses only light-weight program

analysis or feedback information to guide the search.

Test Case Generation Another key to fuzzing is “how are the test cases gen-

erated?”. We need the test generation to be efficient, but ideally we would want

the test cases to follow the PUT’s expected format, so as to explore past the

program’s initial format checks. Most fuzzers, at least those that do not just

generate random test cases, apply one of two techniques:

32

Grammar-based fuzzers [64, 66] will initially receive a grammar or inputmodel
that precisely describes the expected format. This ensure that any test

case will be valid, and is especially useful when fuzzing precise programs,

such as an interpreter [62]. To get the proper grammar for each fuzzing

target, it is however necessary to analyze it, prior to fuzzing. And while

there are some techniques aiming to automatize this with machine learn-

ing [37], it remains time-consuming.

Mutation-based fuzzers create new test cases by mutating existing ones. The
idea is that if you have a valid test case and do not modify it too much,

the result will probably be valid as well. Ideally, such fuzzers would initially

be given seed test cases that are valid, as a basis to mutation. However it

has been proven that some fuzzers are able to create a valid test case from

scratch, and thenmutate it to explore the code further. While it is efficient,

as proven by AFL, we would expect similar test cases to explore the same

part of the code, making exhaustive exploration more complicated.

Goal Finally, fuzzers act differently depending on their goal. Again, we con-
sider two types of fuzzers: directed and coverage-based. Directed fuzzers [4, 13]

target a specific pattern, or part of the code, or type of bug. As such, they spe-

cialize in their target, and do not consider anything else. While these fuzzers

are very efficient when one has a specific purpose in mind, such as checking

patches [67] or looking for Use-After-Free bugs [54], they are not suited for gen-

eral bug-finding. On the other hand, coverage-based fuzzers aim to maximize the

code coverage achieved by the test suite. To achieve this, they might focus the

exploration on paths that lead to new parts of the code, or deeper ones. This

makes them the go-to fuzzers when doing automated testing.

AFL, State of The Art Greybox Fuzzing
In this section, we will present AFL [69], a fuzzing tool developed by Michal Za-

lewski. Its trophy case [63], as well as the number of tools [46, 59, 55, 48, 33]

based on it, including this one, clearly place it at the top of the state of the art

of greybox fuzzers.

AFL is a coverage-based mutational greybox fuzzer. In particular, it uses cov-

erage information to guide its test case generation. As illustrated in Figure 2.3,

AFL keeps a test case queue which initially contains the seed test cases. It then

creates new test cases, as follows:

• one test case will be selected, then mutated, in order to create a new test
case ;

33

• the PUT, instrumented either at compile-time or on-the-fly, is executed on
the test case, and the output is observed to determine whether the test

case triggers a crash ;

• through the instrumentation, AFL retrieves the branch coverage of the new
test case, and compares it to the branches covered so far to determine if

the new test case is interesting – understand, leads to a new part of the

code. If it does, it is added to the queue ;

• a new test case is selected, until the user terminates AFL.

Greybox Fuzzing

mutation
instrumented

PUT

source file

F

X

×

analysis

input

selection
queue

seed test cases

feedback

inputs

coverage

increased

Figure 2.3: Representation of a coverage-based greybox fuzzer. F: instrumen-
tation

Difficulties of fuzzing We can distinguish two kinds of difficulties encoun-

tered by fuzzers:

Complex structures The randomness behind fuzzing means that it has a low
probability of finding a solution to hard code such as magic byte compar-

isons or parsing, which usually depend on the input.

Code coverage In direct relation to the previous problem, fuzzing sometimes

explores only the surface of the program and cannot explore deep paths

in the PUT.

Binary Analysis
Context
For a program to be understood by a computer, it must first be compiled into

a specific file format. In most cases, this is binary code: a series of 0 and 1s,

that the processor can interpret. As a human, we can use a disassembler to

translate those bits into assembly code, a very basic language that is a direct

representation of the machine’s operations.

34

In the same way that there are different programming languages (C, OCaml,

Python, Java, etc.), there are different binary file formats, each with its own as-

sembly language. This does not depend on the program or the developer, but

on the platform the program is run on. For example, Intel uses x84 (resp x64)

for its 32 (resp 64) bits processors.

Figure 2.4 shows an example on an extract of Figure 1.1. The C code was

compiled into x86 binary code using gcc -m32, then disassembled using objdump -d.
We added comments to the disassembled code to show how it translates back

into pseudo C code. We notice that the code has been broken up into sim-

pler operations, and in particular the loop is executed through jumps. The cmp

operation will compute 4 - cnt then update flags in memories depending on
whether the result was zero, or if there was a carry, or an overflow, etc. The

next instructions, jle will jump depending on the content of the flag, here if
4 <= cnt.

for (cnt = 0; cnt < 5; cnt++)
tab[cnt] = cnt+1;

C code Binary code

c7 45 dc 00 00 00 00 movl $0x0,-0x24(%ebp) cnt = 0
eb 11 jmp 80484a9 <condition> goto condition

loop:
8b 45 dc mov -0x24(%ebp),%eax eax = cnt
8d 50 01 lea 0x1(%eax),%edx edx = eax + 1 //cnt + 1
8b 45 dc mov -0x24(%ebp),%eax eax = cnt
89 54 85 e0 mov %edx,-0x20(%ebp,%eax,4) tab[cnt] = edx //cnt + 1
83 45 dc 01 addl $0x1,-0x24(%ebp) cnt = cnt + 1

condition:
83 7d dc 04 cmpl $0x4,-0x24(%ebp) cmp 4 cnt
7e e9 jle 8048498 <loop> if (4 <= cnt) goto loop

Disassembled code – using objdump – and comments

Figure 2.4: Example of compiled / disassembled code

When analyzing a finished program, there are two options. It is possible to

analyze the source code of the program, as Frama-C does with C code, or the

binary code. Binary analyzers are often a combination of disassemblers and

analyses. The disassembler will translate a program from a given format into an

intermediary representation, and then analyses will be applied to it, depending

on the goal.

There are mainly two reasons to analyze a binary rather than the source

code:

• the person analyzing the program does not need access to the source

code. This comes into play when analyzing programs whose source code

35

is not available, be it confidential software, off-the-shelf components, mal-

ware, etc.

• the analyzed code is what gets actually executed. For example, when C
programs contain Undefined Behaviors, these might get compiled differ-

ently depending on the compiler and its optimization level. In the case

of the program in Figure 1.1, we get 1-2-3-4-5-32764 on the lowest opti-
mization, but higher ones set the out of bounds access to 0. If instead of

printing, we were dividing by tab[cnt], this would result in a crash.

Challenges
As other research works have explored before, correctly disassembling and an-

alyzing binary code is not a trivial task [57, 51].

Disassembly The first challenge when analyzing binary code is to correctly

interpret the sequence of 0 and 1s. This requires starting at the correct entry-

point, then correctly matching bytes sequences to an operation, depending on

the file format. There are several ways to achieve this:

linear disassembly disassembles every byte in the program, one set at a time,
in the order they are written in

recursive disassembly follows along the execution paths, mainly by resolving
jump targets, and disassembles the executed code – with the caveat of

dynamic jumps that cannot be resolved

While recursive disassembly might seemmore accurate, it depends on whether

it is possible to solve jump targets. On the other hand, programs are usually

made in a way that makes linear disassembly easy, for example by aligning in-

structions.

Loss of information Compared to source code, assembly code is much sim-

pler. This is because the compiler does not deal with conditions, or long opera-

tions, or types. In particular, data is merely a set of bytes, stored in registers of

fixed size, and conditions become a conditional jump depending on the flags.

For example, in Figure 2.4 we see that the loop is translated by a test on 4 and
cnt, followed by a conditional jump out of the loop. More often than not, the
only information the analyzer has access to is the one present in the binary

code. This obviously makes the analysis more complicated: the signedness is

essential when trying to interpret the values, while the size indicates which part

of the data is actually relevant, as opposed to filler bits. The analyze needs to

36

deduce this type information from the operations used [45], something that is

not always possible. And while higher-level conditions can be recovered [27], it

does require additional work.

37

Chapter 3
Motivating Example
Contents

3.1 Code . 39
3.2 Using State-of-the-Art Tools 41

3.2.1 Fuzzing with AFL . 41

3.2.2 Symbolic Execution with KLEE 42

3.3 Our approach . 42
3.4 Results . 43

In this chapter we present the difficulties of fuzzing and symbolic execution

on a small example, as well as CONFUZZ’s solution.

First we introduce the code of our example, which contains both a loop –

thus a high number of possible paths – and nested conditions – thus hard-to-

solve constraints (Section 3.1). Then we explain how AFL [69] and KLEE [8] react

to both parts of the code (Section 3.2), before explaining our own approach

(Section 3.3). Finally, we show the results of all three tools, with varying number

of loop iterations and nested conditions (Section 3.4).

Code
We illustrate the difficulties of symbolic execution (resp. fuzzing) by looking at

the performance of KLEE [8] (resp. AFL [69]) on the sample program from Fig-

ure 3.1.

This program contains a loop – with 0, 10 or 20 iterations – and nested con-

ditions – with 0, 3 or 5 conditions.

39

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define BUF_LENGTH 64

int main(int argc, char** argv) {

char buf[BUF_LENGTH];
int x, y;

int res = read(0, buf, BUF_LENGTH);

if (res < BUF_LENGTH) {
printf("entry too small\n");
return 0;

}

/* Loop */
int cpt;
for (cpt = 16; cpt < 36; cpt++) {

if (buf[cpt] == cpt % 20)
y += 1;

}
printf("%i\n", y);

/* Nested conditions */
if (buf[0] == ’a’)

if (buf[4] == ’F’)
if (buf[7] == ’6’)

if (buf[12] == ’g’)
if (buf[15] == ’L’)

x = 1;
else

x = 2;
else

x = 3;
else

x = 4;
else

x = 5;
else

x = 6;
printf("%i\n", x);

return 0;
}

Figure 3.1: Sample program

40

Using State-of-the-Art Tools
Fuzzing with AFL
In order to fully explore the program, we need to generate test cases for both

key parts: the loop, and the nested conditions. In this section, we explain how

fuzzing deals with both type of difficulties, and especially how conditions pose

an obstacle.

Loop AFL does not have any knowledge about the Control Flow Graph (CFG)

of the PUT. This means that when it comes to path exploration, fuzzing does not

target paths, but merely relies on the coverage information to identify interest-

ing test cases. Namely, it does not try to explore every paths of the loop, but

simply generates test cases that happen to satisfy the conditions of the loop.

In this case, since the conditions are not nested, they can be satisfied in-

dependently from each other. The probability of finding the solution for each

one is 2−8, something that has a low impact on AFL’s performance. In practice,
we observe that there are some variations depending on the number of itera-

tions, but they are insignificant compared to the variations depending on the

number of conditions. Most likely than not, those only happen because AFL is

non-deterministic, so the output varies for each run.

Nested conditions For nested conditions, AFL needs to create a test case that

satisfies all of the conditions. Let us imagine we start our fuzzer with an initial

test case t0 made of 0s, and ignore the loop. AFL might do the following:

1. mutate the initial test case until it creates t1 , "a0...". Since it is interest-
ing, add it to the queue.

2. alternatively mutate t0 and t1 until it creates t2 , "a000F0...". Since mu-
tations are blind to what makes a test case interesting, it might mutate

the first byte of t1, and create multiple test cases that now break the first
condition.

3. keep mutating t0, t1 and t2 until it creates t3 , "a000F0060..."

4. and so on until it creates a test case for each condition

If we did not have coverage information, we would not be able to identify in-

teresting test cases, and would have to create the final test case by directly mu-

tating t0. Nonetheless, AFL still struggles finding the solutions to the conditions.
We observe that AFL takes longer to explore every paths when the number of

nested conditions increase.

41

Symbolic Execution with KLEE
Fuzzing struggles with finding solutions to conditions, even more so if the con-

ditions are nested. On the other hand, KLEE tries to generate a test case for

every path. In particular, here, the most iterations the loop has, the longer KLEE

spends trying to explore everything.

Loop When it comes to the loop, KLEE actively tries to explore every possible

paths. As such, it will try to find a path where the condition is verified only for

0, one where it is verified for 0 and 1, 0 and 2, 0, 1 and 2, etc. This leads to

what we call path explosion: the number of paths considered by KLEE grows

exponentially. Given the time taken by KLEE to create the path predicate then

solve it using an SMT solver, this path explosion has direct consequences on

KLEE’s performance, as we can observe when modifying the number of loop

iterations.

Nested conditions Nested conditions pose no problem to KLEE. The symbolic

execution will create 6 path predicates, one for each path, and they will instantly

be solved by the SMT solver. In practice, we observe that the performance does

not depend much on the number of nested conditions, though we do observe

a significant difference when a high number of conditions is combined to a high

number of loop iterations. This is because adding conditions add paths for each

of the possible path through the loop.

Our approach
Using a combination of Lightweight Symbolic Execution and Constrained Fuzzing

allows us to solve both these issues.

Since we rely on the Constrained Fuzzer to create solutions and guide the

symbolic execution, we deal with the loop in a way similar to AFL. Rather than

aiming to explore every path, we rely on the coverage information to guide us

towards the interesting paths. This allows us to quickly explore the loop, no

matter the number of iterations.

As for the nested conditions, the Lightweight Symbolic Execution will cre-

ate easily-enumerable path predicates for each path. This will both lead the

Constrained Fuzzer past those difficult conditions, and guide further fuzzing

towards this new part of the code. Indeed, instead of blindly mutating t1 ,
"a0...", it will create solutions to the predicate ϕ̃1 , t[0] = ’a’ on t1, hence
always satisfying the first condition.

42

In practice, CONFUZZ is only mildly affected by the number of iterations or

conditions. As a result, it outperforms AFL every time, has similar results to

KLEE for 10 iterations, and is 150 times better when there are 20 iterations.

Results
We present in this section the results from running AFL, KLEE and CONFUZZ on

themotivating example. To illustrate each tool’s strength and weakness, we vary

the number of iterations (0, 10 or 20) and nested conditions (0, 3 or 5). This gives

us 9 different results for each tool.

Furthermore, to account for the non-determinism of the tools – mostly AFL

and ConFuzz, we run each tool 10 times, with a long enough timeout to ex-

plore everything. The average results for each configuration are presented in

tables 3.1 to 3.3. For each configuration, we used bold for the best result, and

used italics when two tools perform similarly.

Firstly, we notice that when there is only one condition to solve, no matter

the number of iterations, CONFUZZ outperforms both state-of-the-art tools. This

is due to the fast test case generation, which allows us to quickly explore the

loop. Indeed, even though we notice a slight increase in time when the number

of iterations grow, it is nothing near KLEE’s increase – from 0.805 for 10 iterations

to 78.27 for 20 iterations.

When there are 3 or 5 conditions, KLEE outperforms CONFUZZ when there

are no loop iterations. This makes sense, since solving conditions is what KLEE

was made for. However, when the number of loop iteration increases, CONFUZZ

catches up to KLEE – similar results for 10 iterations – and becomes 150 times

better when there are 20 iterations.

As for AFL, its results vary greatly to its non determinism, but it always takes

more time than CONFUZZ to explore everything. We can however notice that on

20 loop iterations, AFL outperforms KLEE, showing how much KLEE is slowed

down by the additional execution paths.

43

Table 3.1: AFL results

0 iterations 10 iterations 20 iterations

1 condition 8.337 2.878 3.261

3 conditions 36.18 15.20 25.08

5 conditions 45.05 57.375 66.88

Table 3.2: KLEE results

0 iterations 10 iterations 20 iterations

1 condition 0.695 0.805 78.27

3 conditions 0.334 1.154 148.7

5 conditions 0.573 2.385 305.9

Table 3.3: CONFUZZ results

0 iterations 10 iterations 20 iterations

1 condition 0.017 0.184 0.451
3 conditions 0.968 1.197 1.000
5 conditions 1.927 2.142 2.152

44

Chapter 4
Lightweight Symbolic Execution
Contents

4.1 Overview . 46
4.2 Defining the Constraint Language 48

4.2.1 Consequences of the approximation 54

4.3 The Trace . 54
4.3.1 Language . 54

4.3.2 Specifics . 56

4.4 Inferring Constraints . 57
4.4.1 Orchestration . 58

4.4.2 Equality Analysis . 59

4.4.3 Value Analysis . 62

4.4.4 Dependency Analysis . 68

4.4.5 Example . 74

4.4.6 Properties . 75

4.5 Implementation . 77
4.5.1 Memory Representation 78

4.5.2 Caching information . 79

4.6 Discussion . 79
4.6.1 LSE usage . 79

4.6.2 Constraint Language . 80

4.6.3 Limitations and perspectives 80

4.7 Related Work . 81
45

4.8 Conclusion . 82
In this chapter we present Lightweight Symbolic Execution, a new version

of Dynamic Symbolic Execution. Instead of generating perfect path predicates,

Lightweight Symbolic Execution creates approximated path predicates. Under-

approximations, to be exact, which we call Easily-Enumerable Path Predicates.

We define them as easier to solve, and enumerate solutions for, something we

achieve by restraining the expressivity of the constraints. As a result, the path

predicates generated by Lightweight Symbolic Execution are correct – any so-

lution of the path predicate is a valid test case for the targeted path – but not

complete – not all valid test cases are solutions.

In Section 4.2, we formally define Easily-Enumerable Path Predicates, and

introduce the constraint language we use in this thesis, which we prove to be

easily-enumerable. We then describe the representation of the execution traces

we use (Section 4.3), before presenting the algorithms we use to infer such path

predicates on such traces (Section 4.4). Finally, we give some implementation

details relevant to our analyses (Section 4.5), before discussing limitations and

perspectives (Section 4.6) and related symbolic execution tools (Section 4.7).

Overview
As its name indicates, Lightweight Symbolic Execution (LSE) is a variant of Symbolic

Execution (SE). Symbolic Execution analyzes a path, be it statically or dynami-

cally, until it reaches its end, then returns a predicate for the path – a constraint

on the input variables so that any test case satisfying it will follow the same path.

In the case of LSE, we return Easily-Enumerable Path Predicates. Expressed with

a subset of formulas, they are an approximation of SE’s perfect path predicate.

Here, we chose to use under-approximations, so that the path predicate is cor-

rect: any solution will follow the trace but not all test cases that follow the trace

satisfy the constraint.

We show an example in Figure 4.1 with the program, an execution trace,

and both the perfect path predicate and the easily-enumerable one. To make

reading easier, we consider that user-defined variables are simply declared in

the trace, without concerning ourselves with their exact representation for now.

This results in the trace’s first instruction: declare x, y, z, t , v. In terms of the

predicates, they differ because we cannot express difference between variables

in our constraint language. Instead, we set the input variables t and v to their
concrete value in the execution. As a result, wewill always reach past assert (c != v),
but we will not explore paths with different values for t and v. In exchange, we
are able to enumerate solutions using a simple algorithmdescribed in enumTests,

46

rather than using an SMT solver.

program P

1 read(0, x); read(0, y);
2 read(0, z); read(0, t);
3 read(0, v);
4 a = x + 3;
5 if (a <= 4) {
6 b = y;
7 c = t;
8 }
9 else {

10 b = 2;
11 }
12 if (b == z) {
13 b = 4;
14 }
15 else if (c == v) {
16 b = 3;
17 if (t > 10 && v <= 45) {
18 c = 10;
19 }
20 }

trace

t = { x : 0 ; y : 4 ; z : 5 ;
t : 15 ; v : 15 }

declare x , y , z , t , v ;define a = bvadd x 3;assert (bvsle a 4) ;define b = y ;define c = t ;assert (bvd i f f b z) ;assert (bveq c v) ;define b = 3;assert (bvsgt t 10) ;assert (bvsle v 45) ;define c = 10;
(σ)

path predicate

x ≤ 1
∧ y 6= z
∧ t = v
∧ t > 10
∧ v ≤ 45

(ϕ)

EE path predicate

x ≤ 1
∧ y = 4
∧ z = 5
∧ t = v
∧ t > 10
∧ v ≤ 45

(ϕ̃)

Figure 4.1: Fast-enumerable path predicate

Inverting Mode and Targeting Mode Another difference is that instead of

targeting a full path, we target a condition in the path. This allows us to lead

the fuzzing past conditions, and then explore below it. To achieve this, we pro-

pose two modes for the LSE: targeting and inverting mode, as presented in Sec-

tion 4.1.

In targeting mode, we consider a branch that has just been discovered by an

interesting test case – the first transition of yet unexplored code. Our goal is

to understand why this test case reached it, to ensure further mutations will

continue reaching the new part of the code. We do this by computing the path

predicate up to and including the new branch, which we call ϕ̃t(c) – with c the
satisfied condition of the branch. We then enumerate solutions, all of which will

reach the transition, and explore below. For example, let us consider that the

test case t in Figure 4.1 is interesting because it does not satisfy b = z. This is
illustrated in Figure 4.2a. By sending the path and the interesting transition to

the LSE, we would get the path predicate ϕ̃t(b 6= z) , x ≤ 4 ∧ y = 4 ∧ z = 5
which targets the new branch b 6= z. The constrained fuzzer then enumerate
solutions, thus exploring anything below that branch.

In inverting mode, the goal is to explore a new part of the code by purpose-

fully taking a yet unexplored branch. This is done by negating a condition and

adding it to the path predicate, similarly to Concolic Testing [35]. For example,

47

for the first one, we would try to negate c = v to invert the condition’s output.
However, the negated condition is c 6= v, which we cannot express in EECL. And
since the new condition is a negation of the one in the trace, the current test

case is not a solution. As such, we drop this condition. On the other hand, the

next condition is t > 10. We can negate it, which gives us t ≤ 10. By adding it to
the path predicate which leads to the condition, we get

ϕ̃i(t > 10) , x ≤ 4 ∧ y = 4 ∧ z = 5 ∧ t = v ∧ t ≤ 10. By negating the last con-
dition on the path, we try creating a path predicate leading to its other branch.

The constrained fuzzer then creates a single solution, if one exists, crafting an

interesting test case that now explores a new part of the code.

Vocabulary In this section, we differentiate between conditions, constraints

and path predicates. Conditions are the boolean expressions from the asser-

tions in the trace. There are no guarantees that they are easily-enumerable.

Constraints are the easily-enumerable translation of a single condition. Path

predicates – in our case, approximated path predicates – are the conjunction

of constraints corresponding to the conditions from the targeted trace. This is

what is sent to the constrained fuzzer to be solved.

Defining the Constraint Language
One of the key components of Lightweight Symbolic Execution is its Easily-Enumerable

Path Predicates. In this section, we will define the idea of easy-enumerability,

and introduce our constraint language.

Easy-enumerability is defined by the complexity of creating atmost n different
solutions for a given formula.

Definition 4.2.1 (Easily-enumerable). A constraint language CL is easily-enumerable
if for any formula ϕ̃ ∈ CL over a set of input variables X , the complexity of enumer-
ating n solutions (if any) is bounded by O(n× |X|).

The key to having an easily-enumerable constraint language is to restrain its

expressivity, in order for the formulas to be easy to solve – thus enumerate – “by

design”. We propose to do this using the constraint language in Definition 4.2.2.

Definition 4.2.2 (Easily-Enumerable Constraint Language (EECL)). Over a set of
input variables X , EECL is the language of formulas ϕ̃ defined by:

ϕ̃ ,
∧
i

xi ∈ Ii ∧
∧
i,j

xi = xj

where xi, xj ∈ X and Ii is an integer interval.

48

[1], [2], [3], [4]

[5]: a ≤ 4?

[10]

...

[6], [7]

[12]: b = z?

[13] [15]: c = v?

[16]

[17]: y > 10?

[17]: z ≤ 45

[18]

LSE

target

constrained

fuzzer

CONFUZZ

interesting

transition

b 6= z

ϕ̃t(b 6= z)

t0, . . . , t106
` ϕ̃t(b 6= z)

CONFUZZ - targeting mode

[1], [2], [3], [4]

[5]: a ≤ 4?

[10]

...

[6], [7]

[12]: b = z?

[13] [15]: c = v?

[16]

[17]: y > 10?

[17]: z ≤ 45

[18]

LSE

invert

constrained

fuzzer

CONFUZZ

interesting

transition

next conditions

c = v
y > 10
z ≤ 45

ϕ̃i(c = v)
ϕ̃i(y > 10)
ϕ̃i(z ≤ 45)

t0 ` ϕ̃i(c = v) t1 ` ϕ̃i(y > 10) t2 ` ϕ̃i(z ≤ 45)

CONFUZZ - inverting mode

Figure 4.2: Explanation of ConFuzz’s two modes

49

We also define a normalized version of EECL, NEECL (Definition 4.2.3), which

we use to prove the easy-enumerability. Those constraint languages are equiv-

alent, as stated in Theorem 4.2.1.

Definition 4.2.3 (Normalized EECL (NEECL)). Over a set of input variables X ,
NEECL is the language of formulas ϕ̃• defined by:

ϕ̃• ,
∧
l∈L

l ∈ Il ∧
∧

x∈X\L

x = lx

where Il is an integer interval, L ⊆ X is a subset of the original variables called

leaders and lx ∈ L.

Theorem 4.2.1. Any formula ϕ̃ ∈ EECL can be normalized into an equivalent for-
mula ϕ̃• in NEECL.

Proof. A predicate expressed in EECL contains two types of constraints: vari-

ables in an integer interval, and variables equal to variables. Since equality is re-

flexive (x = x), symmetric (x = y ⇔ y = x) and transitive (x = y∧y = z ⇒ x = z),
it is an equivalence relation. As a result, sets of variables that are equal form

equivalence classes, for each of which we can define a leader l. Translating a
formula from EECL to NEECL is a matter of identifying the equivalence classes,

adding equality constraints between each member of a class and its leader and

merging the constraints on the members to create a single constraint on the

leader.

The normalize algorithm describes a way to achieve this, using Union-Find to

gather the equivalence classes. Since no information is lost, the solution space

of both formulas is the same: ϕ̃• = normalize(ϕ̃) and ϕ̃ are equivalent. Further-
more, since the normalization is only done once, it does not define whether the

formula is easily-enumerable.

We can now prove that formulas expressed using NEECL, and thus EECL, are

easily-enumerable.

Theorem 4.2.2. NEECL is easily-enumerable.
Proof. To prove easy-enumerability, we will first describe an algorithm enumer-

ating solutions, then discuss its complexity. The principle of the algorithm is to

set leaders of the class to a value in their interval constraint, one value at a time.

Every time we set a leader, we also set the members of the class. Once we have

tried every value of a leader, we unset it then backtrack to the last modified

variable, until we find a variable with untried values.

50

Function normalize(ϕ̃, X) pre-processes the formula ϕ̃
Input: a formula ϕ̃ and the set of input variables XOutput: ϕ̃• a normalized version of the formula ϕ̃ – or UNSAT

1 UF← create(card(X));
// Identifying equivalence classes

2 foreach c ∈ ϕ̃ do
3 if c , x = y then union(UF, x, y);

// Equality constraints
4 ϕ̃•eq ← >;
5 L← ∅; // the list of class leaders
6 foreach x ∈ X do
7 l← find(UF, x);
8 if x 6= l then ϕ̃•eq ← ϕ̃•eq ∧ (x = l);

9 else L← append(L, l);

// Interval constraints
10 ϕ̃•c ← >;
11 values← ∅; // constraint computed on a leader
12 foreach c ∈ ϕ̃ do
13 if c , x ∈ I then
14 l← find(UF, x);
15 J ← values[l];

// merging interval on x and interval on leader
16 if I ∩ J 6= ∅ then values[l]← I ∩ J ;
17 else return UNSAT ;
18 foreach l ∈ L do
19 ϕ̃•c ← ϕ̃•c ∧ l ∈ values[l];
20 return ϕ̃•eq∧ ϕ̃•c

51

To run enumTests, we first breakdown the normalized constraint into a list

of the free variables, a list of the leaders, a map associating each leader with

its constraint and a map associating each leader to its class members. We use

two FILO structures to manage SET and UNSET leaders. The setClass function

sets a leader and all member of the associated equivalence class to a value,

while the initVars function goes through the UNSET queue and sets every leader,

along with its class, to its smallest possible value. Finally, we set unconstrained

variables to a random value with setFreeVars. In practice, enumTests will set

every leader to its initial value, then increment the last set variable until it has

tried all possible values. If this happens, the algorithm unsets it, backtracking

until it finds a variable with possible values. The algorithm stops once the values

for all leaders have been enumerated, or n tests have been generated.
Complexity-wise, the worst case scenario would be if the algorithm had to

backtrack to the top and set every value, every time. Since there are at most |X|
variables in the formula, the cost of creating each solution would be bounded

by O(|X|), and the cost of creating n different solutions is bounded by O(n ×
|X|). Thus, even in the worst case scenario, formulas expressed with NEECL are
easily-enumerable.

Procedure setClass(l, c, v) set a leader l and its class c to a value vData: t the test case we are creatingInput: l a leader, c its class, v the new value
1 t[l]← v;
2 foreach x ∈ c do
3 t[x]← v;

Procedure initVars(s, u, cs, cl) sets any unset variable to its lowest value
Input: Set the leaders that are set, Unset the leaders that are unset, cstr

mapping leaders to their constraint, class mapping leaders to their

class

1 while Unset 6= ∅ do
2 l← pop(Unset);
3 setClass(l, class[l], cstr[l].lo);
4 Set← push(Set, l);

Corollary 4.2.1. EECL is easily-enumerable.
52

Procedure setFreeVars(f) sets the free variables to a random valueInput: f the list of free variables
1 foreach x ∈ f do
2 t[x]← rand();

Procedure enumTests(f , L, cstr, class, n) enumerates test cases and runs
the program on them

Data: t the test caseInput: L the leaders, cstr mapping leaders to their constraint, class
mapping leaders to their class, f the list of free variable, n the
maximal number of solutions to enumerates

// Initialisation
1 i← 0;
2 Set← ∅;
3 Unset← L;
4 initVars(Set, Unset, cstr, class);
5 setFreeVars(f);
6 runTarget(t);
// Enumerating values

7 while Set 6= ∅ and i < n do
8 l← pop(Set);
9 if t[l] < cstr[l].hi then

// we have not tested all values of l
10 setClass(l, class[l], t[l] + 1);
11 initVars(Set, Unset, cstr, class);
12 Set← push(Set, l);
13 setFreeVars(f);
14 runTarget(t);
15 else
16 Unset← push(Unset, l);

17 i← i+ 1;

53

Consequences of the approximation
As briefly illustrated in Figure 4.1, by using EECL, we limit the expressivity of

the formulas: some conditions cannot be expressed in EECL. We can do one of

two things with such conditions: either drop them, or replace them by a con-

straint expressed in EECL for which the original condition is true. The first one

would over-approximate the predicate, as it would allow solutions that do not

satisfy the condition. As we want correct path predicates, rather than complete,

we chose the second option. By over-constraining the condition, we lose pos-

sible solutions but only keep valid ones. For example in the example above, by

replacing t 6= v with t = 4 ∧ v = 5, we lose {t 7→ 2; v 7→ 3} but solutions will
always satisfy all conditions on the path.

The Trace
As Lightweight Symbolic Execution is dynamic, it reasons on an execution trace,

obtained by running the Program Under Test on a concrete test case.

Language
The trace we analyze is represented using one of BINSEC’s internal languages,

called Formula, whose grammar is given in Figures 4.3 to 4.6. It is a simplified

version of SMT-LIB, which allows us to use some simplifications [30] from BINSEC

on the trace.

A formula is a sequence of entries, which can declare a variable, define a vari-

able as a term, or assert that a condition is true. Terms represent expressions,

and can be either a boolean, a bitvector, or an array. Arrays are immutable,

which means that every time an array is modified, a new one is created – and

usually assigned to a new array variable. In our case, arrays are only used to

represent the memory. We distinguish between two arrays: __memory, which

represents the program’s memory, and __mem_ext, which represents user input.

Indeed, unlike the previous examples where we considered input variables, in

practice we consider that the input is a table of bytes, accessed by the program

through functions such as read.
This language is enough to represent a trace, as we do not need jumps: loops

are unrolled, and conditional jumps are replaced by assertions on the condition.

For example, if we had if (a <= 4), and we know the condition was satisfied
for the current test case, we would replace it by assert (a <= 4) in the trace, as
shown in Figure 4.1.

54

<trace> → <entry> | <entry> <trace>
<entry> → declare <decl>;

| define <def>;
| assert (<bl_term>);

<decl> → <bv_var> | <ax_var>
<def> → <bl_var> = <bl_term>

| <bv_var> = <bv_term>
| <ax_var> = <ax_term>

Figure 4.3: Trace grammar - instructions

<ax_term> → <ax_var>

| store <int> <ax_term> <bv_term> <bv_term>
Figure 4.4: Trace grammar - array terms

<bv_term> → <bv_cst>

| <bv_var>

| <bv_unop> <bv_term>

| <bv_bnop> <bv_term> <bv_term>

| if <bl_term> then <bv_term> else <bv_term>
| select <int> <ax_term> <bv_term>

<bv_unop> → bvnot | bvneg
| repeat <int>
| zero_extend <int> | sign_extend <int>
| rotate_left <int> | rotate_right <int>
| extract {<int>; <int>}

<bv_bnop> → bvconcat
| bvand | bvnand | bvor | bvnor | bvxor | bvxnor
| bvcmp
| bvadd | bvsub | bvmul | bvdiv | bvrem
| bvshl | bvashr | bvlshr

Figure 4.5: Trace grammar - bitvector terms

55

<bl_term> → true | false
| <bl_var>

| <bl_unop> <bl_term>

| <bl_bnop> <bl_term> <bl_term>

| <bl_cmp> <bl_term> <bl_term>

| <bv_cmp> <bv_term> <bv_term>

| <ax_cmp> <ax_term> <ax_term>

<bl_unop> → blnot
<bl_bnop> → imply | bland | blor | blxor
<bl_cmp> → bleq | bldiff
<bv_cmp> → bveq | bvdiff

| bvult | bvule | bvugt | bvuge
| bvslt | bvsle | bvsgt | bvsge

<ax_cmp> → axeq | axdiff
Figure 4.6: Trace grammar - boolean terms

Specifics
In order to represent the code, we first introduce the idea of undetermined

variables. Those are variables that are declared but not defined, and thus do

not have a concrete value.

We mostly introduce them when defining stubs. Stubs are used to approx-

imate functions whose code is not available, such as external library calls. We

distinguish three kinds of stubs:

user input stub Any function used to get an input from the user needs to be
very precisely stubbed, since this information is critical in order to infer

constraints on said input. For example, for read(fd, buf, count) (Fig-
ure 4.7), assuming we know the number of bytes read – info retrieved at

runtime, we use it to translate the read into a select from external mem-

ory, whose result is stored in the program’s memory at the address indi-

cated by the buf parameter.

concrete stub In order to optimize the trace, we replace some external library

calls by their concrete value. Namely, we do so for allocation functions,

which return a memory address. This does not influence the result of the

program, but allows to use Read-over-Write simplifications on the trace.

default stub For other functions, for which we do not need a precise stub, we
simply consider their return value (eax) to be undetermined. This allows

56

/ / de s t i na t i on bu f f e r from read c a l l i s on the s tackdefine buf_0 = se lec t <word_size> __mem_ext_0 (bvadd esp_0 8) ;

/ / we keep a cursor to the ye t unread memorydefine tmp_0 = se lec t <read_size> __mem_ext_0 <read_cursor> ;define __memory_1 = store <read_size> __memory_0 buf_0 tmp_0 ;define eax_1 = <read_size> ;
Figure 4.7: Stub for read

us not to lose precision, since we do not constrain them to a single value,

and allows us to correctly analyze them – we do not know what they do.

On the other hand, this means we ignore any side-effects the functions

might have.

Inferring Constraints
The constraint language previously described is the output of our Lightweight

Symbolic Execution. Said analysis creates two types of path predicates, as men-

tioned in Section 4.1:

• ϕ̃t(c) is a path predicate which targets the condition c, meaning we want
every condition along the trace to maintain its outcome ;

• ϕ̃i(c) is a path predicate which negates c, meaning we want to target the
previous condition, and then add the easily-enumerable constraint asso-

ciated with ¬c.

Given JcKEECL the constraint inferred for the condition c, we can formally define
both (Definition 4.4.1).

Definition 4.4.1.
ϕ̃t(cn) ,

∧n
l=0JclKEECL

ϕ̃i(cn) , ϕ̃t(cn−1) ∧ J¬cnKEECL

The difficulty in inferring an EECL path predicate is computing the individual

JcKEECL constraint for each condition. We do so with different analyses, which
are dynamic and backward. This means they are based on a concrete execution

trace, and start at the condition, going backward on relevant instructions.

Assumptions and notations We use two ways to describe the algorithms: in-

ference rules and pseudo-OCaml, and will use examples to illustrate how the

algorithms work. Following those two representations, the elements of the

57

trace are represented either directly as they are in the grammar – <bv_expr> =bv

<bv_expr> – or as an algebraic typewhich follows the grammar – BvCmp(BvEqual,

BvExpr e1, BvExpr e2).
During the analyses, we consider that a first pass over the trace gave us two

different structures:

• a map vardef of type bv_var 7→ bv_term, so that vardef [x] = e iff define x = e
is in the trace ;

• a mapmemdef of type (int, ax_var, bv_term) 7→ bv_term, so that
memdef [size, mk, idx] = elt iff the last modification of the memory at idx
was definem_(l+1) = store (size , m_l, idx, elt), with l < k.

Finally, for any given condition cond, we want to compute the corresponding
constraint in EECL, if it exists. We write this as cond ; c, where c = JcondKEECL.
In particular, e ∈ Ja; bK ; c means that the condition e ∈ Ja; bK is resolved by
the constraint c, expressed in EECL. For example, in Section 4.1, we mentioned
ϕ̃t(b 6= z), which we compute as described in Figure 4.8.

ϕ̃t(b 6= z) , Ja ≤ 4KEECL ∧ Jb 6= zKEECL
Ja ≤ 4KEECL = x ∈ Jmin; 1K
Jb 6= zKEECL = y ∈ J4; 4K ∧ z ∈ J5; 5K

Result: ϕ̃t(b 6= z) , x ∈ Jmin; 1K ∧ y ∈ J4; 4K ∧ z ∈ J5; 5K

Figure 4.8: Computing ϕ̃t(b 6= z)

If we cannot compute a constraint, we return>, which represents the empty
constraint.

Orchestration
In order to compute the constraints we use one of three analyses:

• the equality analysis (Section 4.4.2) analyzes (bveq <bv_term> <bv_term>)
conditions, and determines if they are of the formmem_ext[i..j] = mem_ext[k..l]
;

• the value analysis (Section 4.4.3) analyzes (<bv_cmp> <bv_term> <bv_cst>)
conditions (except for difference comparisons), and determines if they are

of the formmem_ext[i..j] ∈ I ;

58

• the dependency analysis (Section 4.4.4) analyzes any type of conditions, to
determine which, if any, bytes of the input the condition depends on.

The analyzeCond function determines if we can use equality or value anal-

ysis, depending on the condition. This is done with a pattern-matching on the

condition, which is a <bl_term>. If it is not either of the two patterns, or if the

analyses are not conclusive, we run the dependency analysis. We also use the

auxiliary function negateCond, which modified the operators of a negated con-

dition – for example make ¬(a = b) into a 6= b.

Equality Analysis
If the condition cond is of the form bveq <bv_term> <bv_term> – assuming that
neither expression is a constant –wewill do an alias analysis, backtracking along

the expression definitions, as described in the functions alias and analyzeEqual-

ity. If both terms end up being selections frommem_ext, we have the constraint
in EECL:mem_ext[i, n] = mem_ext[j, n] –meaning the n bytes starting from i are
equal to the n bytes starting from j. To be noted, equal expressions are expected

to be of the same size, hence the identical n value. Otherwise, we conclude that
the condition cannot be expressed with an equality constraint.

59

Function analyzeCond(cond, invMode) determines which analysis to run
on cond, depending on whether it was negated

Input: cond, a boolean term from the trace ; invMode, a boolean
indicating whether we negated the conditionOutput: cstr, an EECL constraint, possibly empty

1 switch cond do
2 case BlTrue or BlFalse do
3 return >;
4 case BlVar(v) do
5 return analyzeCond(vardef [v], invMode);

6 case BlUnop(BlNot, cond′) do
7 invCond← negateCond(cond’);
8 return analyzeCond(invCond, invMode);

9 case BlBnop(BlAnd, cond1, cond2) do
10 cstr1 ←analyzeCond(cond1, invMode);
11 cstr2 ←analyzeCond(cond2, invMode);
12 return cstr1 ∧ cstr2;
13 case BvCmp(op, bv, BvCst(c)) do
14 if op is BvDiff then
15 return analyzeDependencies(cond, invMode);
16 else
17 cstr ← analyzeValues(op, bv, c);
18 if cstr = > then
19 return analyzeDependencies(cond, invMode);
20 else
21 return cstr;
22 case BvCmp(_, BvCst(_), _) do

// we negate the condition to exchange the variable and
the constant

23 return analyzeCond(negateCond(cond), invMode);

24 case BvCmp(BvEqual, bv1, bv2) do
25 cstr ← analyzeEquality(bv1, bv2);
26 if cstr = > then
27 return analyzeDependencies(cond, invMode);
28 else
29 return cstr;
30 otherwise do
31 return analyzeDependencies(cond, invMode);

60

Function alias(bv) determines whether the term bv is from the input

Input: bv, the term we want to analyzeOutput: Some(idx, n), where idx is the index of the input selection and n
its size, or None

1 switch bv do
2 case BvVar(v) do
3 if v ∈ vardef then
4 return alias(vardef [v]);

5 else
6 return None
7 case Select(n,mem, idx) do
8 ifmem ismem_ext then
9 return Some(idx, n);
10 else
11 return alias(memdef [n,mem, idx])

12 otherwise do
13 return None

Function analyzeEquality(bv1, bv2) applies equality analysis to bv1 = bv2Input: bv1 and bv2, two terms which are constrained to be equalOutput: cstr, an EECL constraint, possibly empty
1 alias1, alias2 ← alias(bv1), alias(bv2);
2 switch alias1, alias2 do
3 case Some(i, n), Some(j, m) do
4 assert(n = m);
5 return (i, n) = (j, n);

6 otherwise do return > ;

61

Value Analysis
When the condition is of the form <bv_cmp> <bv_term> <bv_cst>, there is a chance

it might correspond to an interval constraint for bits from the input. To analyze

such a condition, we first translate it into a constraint of the form e ∈ Ja; bK as
described in analyzeValues.

Since we work with bitvector terms their size and sign give us a general in-

terval constraint: [−2ˆ31; 2ˆ31− 1] if it is signed, [0; 2ˆ32− 1] if it is unsigned. In
the case of analyzeValues, we get the size of the term using an auxiliary sizeof
function, and we deduce the sign from the comparison operator used. We then

restrict this interval based on the condition.

Once we have an interval constraint, the function values backtracks on the

term by following the rules described in Figures 4.9 to 4.12, modifying the inter-

val as we go.

In our analysis, we do not consider arithmetic overflows. Technically, if we

have x+3 ∈ Jmin; 4K then x ∈ Jmin; 1K∪Jmax−2;maxK, because (max−2)+3 =
min. However, since we cannot express unions of intervals, we restrain the
constraint to Jmin; 1K.

62

Function analyzeValues(op, bv, cst) applies value analysis to the condition
bv op cstInput: op the operator, bv the bitvector term and cst the constant for the

conditionOutput: cstr, an EECL constraint, possibly empty
1 size← sizeof(bv);
2 switch op do
3 case BvEqual do
4 return values(bv ∈ Jcst; cstK)

5 case BvSle do
6 return values(bv ∈ JsignedMin(size); cstK)

7 case BvSlt do
8 return values(bv ∈ JsignedMin(size); cst− 1K)

9 case BvSge do
10 return values(bv ∈ Jcst; signedMax(size)K)

11 case BvSgt do
12 return values(bv ∈ Jcst+ 1; signedMax(size)K)

13 case BvUle do
14 return values(bv ∈ J0; cstK)

15 case BvUlt do
16 return values(bv ∈ J0; cst− 1K)

17 case BvUge do
18 return values(bv ∈ Jcst; unsignedMax(size)K)

19 case BvUgt do
20 return values(bv ∈ Jcst+ 1; unsignedMax(size)K)

21 otherwise do return > ;

63

Initial rules (Figure 4.9) If the condition is on a constant, there is no constraint:

with 42 ∈ J40; 50K, no user input is involved. Similarly, if the condition is on a
nondet variable, we cannot infer any constraint on the user input.

On the other hand, if the condition is on a select from mem_ext, we have
found a constraint on user input, which directly translates into an EECL con-

straint. To identify the constrained bytes, we need the concrete value of the

<bv_term> that indicates the index. We do so using an evaluation function which

we will describe in Section 4.4.4, and which we represent with ⇓ . Since the size
is already an integer, we do not need to evaluate it. However, we want to ensure

that we will always access the same bytes of the input. To do so, we infer the

constraint for bvidx to be equal to its evaluated value vidx, and add this to the
resulting constraint.

Finally, if the condition is on a variable (one that is not nondet), we simply

backtrack on the variable’s definition, which is stored in vardef And if we find a
selection from the program’s memory, we get the element using memdef , while

also computing the condition for the index to be equal to its current value.

cst ∈ Ja; bK ; >
CONSTANT

x /∈ vardef
x ∈ Ja; bK ; >

NONDET

bvidx ⇓ vidx cidx = analyzeCond(bveq bvidx vidx)

select n __mem_ext bvidx ∈ Ja; bK ; cidx ∧ (vidx, n) ∈ Ja; bK
INPUT

vardef [x] = bv bv ∈ Ja; bK ; c

x ∈ Ja; bK ; c
VAR

bvidx ⇓ vidx memdef [axmem, vidx, n] = bvelt bvelt ∈ Ja; bK ; celt

select n axmem bvidx ∈ Ja; bK ; analyzeCond(bveq bvidx vidx) ∧ celt
SELECT

Figure 4.9: Value analysis - Initial rules

Simple rules (Figure 4.10) With some operations, it is possible to straightfor-

wardly propagate the operation to the interval. For example, mathematics tell

us that a < −e < b is equivalent to −b < e < −a. As such, we can backtrack on
−e ∈ Ja; bK by inferring the constraint for e ∈ J−b;−aK. Another example is that
if we have e+cst ∈ Ja; bKwith cst a constant, then we can infer the constraint for
e ∈ Ja − cst; b − cstK. And if we are not adding a constant, we return the empty
constraint.

64

bv ∈ J−b;−aK ; c

bvneg bv ∈ Ja; bK ; c
NEG

bv ∈ Ja− cst; b− cstK ; c

bvadd bv cst ∈ Ja; bK ; c
ADD CST bvadd bv1 bv2 ∈ Ja; bK ; >

ADD DEF

bv ∈ Ja+ cst; b+ cstK ; c

bvsub bv cst ∈ Ja; bK ; c
SUB CST 1

bv ∈ Jcst− b; cst− aK ; c

bvsub cst bv ∈ Ja; bK ; c
SUB CST 2

bv1 − bv2 ∈ Ja; bK ; c
SUB DEF

Figure 4.10: Value analysis - Simple rules

Equality rules (Figure 4.11) Some of the rules can only be applied when the

term is constrained to a single value, meaning we are analyzing an equality.

For example, if !a = 4, we know that a = !4. On the other hand, we cannot
infer anything from !a < 4, as the boolean not operation is not symmetric wrt
inequations, and will then return the empty constraint.

bv ∈ J!a; !aK ; c

bvnot bv ∈ Ja; aK ; c
NOT EQ bvnot bv ∈ Ja; bK ; >

NOT DEF

bv ∈ Ja⊕ cst; a⊕ cstK ; c

bvxor bv cst ∈ Ja; aK ; c
XOR EQ bvxor bv1 bv2 ∈ Ja; bK ; >

XOR DEF

Figure 4.11: Value analysis - Equality rules

Complex rules (Figure 4.12) In order to analyze more complex operations, we

introduce the idea of “constrained bits”: e{lo;hi} ∈ Ja; bK means only the bits
from lo to hi of e are constrained to Ja; bK. If no bits are indicated, it means the
whole expression is constrained. We use this for the following rules:

extension a constraint on an extended term can only be propagated to the
term if the constraint does not concern the extension. For example, if

(sign_extend 8 bv){0; 15} ∈ Ja; bK, where bv is of size 24, then we can back-
track to bv{0; 15} ∈ Ja; bK. Otherwise, we will consider we cannot conclude
and return the empty constraint.

extraction we can propagate a constraint on an extraction to the original term
by offsetting the constrained bits. For example, if (extract {8; 23} bv){0; 7} ∈

65

Ja; bK, the first 8 bits of the extraction are bits 8 to 15 of e: we backtrack on
bv{8; 15} ∈ Ja; bK.

concatenation there are three cases when constraining the result of a con-
catenation:

• if the constraint applies only to one of the terms, we propagate the
constraint on this term. (bvconcat bvh bvl){8; 15} ∈ Ja; bK, when
sizeof(bvl) = 8, means bvh{0; 7} ∈ Ja; bK ;

• if the constraint is an equality, we can just split it: (bvconcat bvl bvh =
a⇔ bvl = lo(a) ∧ bvh = hi(a), where lo(a) is the lower part of a, from
0 to sizeof(bvl)− 1, and hi(a) is the rest ;

• by default, we return an empty constraint.

comparison bvcmp is an operation which compares two bitvectors and re-
turns the constant 1 if they are equal. As such, if the result of the com-
parison is constrained to 1, we need the compared bitvectors to be equal.

This gives us a new condition, on which we call analyzeCond. On the other

hand, if the result is equal to zero, we ignore the condition since it would

be a difference.

if then else if we are constraining the result of an “if then else” term, we can
use the information from the constraint to determine whether the condi-

tion is verified. For example, if we have (if cond then 4 else 42) ∈ J0; 5K,
then we know cond was verified, and can start a new analysis on cond.
Thus, by evaluating the concrete values of both branches results, we can

sometimes infer information about the condition, and analyze it. If not,

we just return the empty constraint.

Default rules There are operations for which it is never possible to update the

interval and backtrack, for example bvnand. For those operations, who do not
have a formally defined inference rules, we just return the empty constraint.

66

hi < size(bv) bv{lo;hi} ∈ Ja; bK ; c

(zero_extend n bv){lo;hi} ∈ Ja; bK ; c
ZEXT

(zero_extend n bv) ∈ Ja; bK ; >
ZEXT DEF

hi < size(bv) bv{lo;hi} ∈ Ja; bK ; c

(sign_extend n bv){lo;hi} ∈ Ja; bK ; c
SEXT

(sign_extend n bv) ∈ Ja; bK ; >
SEXT DEF

bv{lo+ l;hi+ l} ∈ Ja; bK ; c

(extract {l;h} bv){lo;hi} ∈ Ja; bK ; c
EXTRACT

hi < sizeof(bvl) bvl{lo;hi} ∈ Ja; bK ; c

(bvconcat bvl bvh){lo;hi} ∈ Ja; bK ; c
CONCAT LOW

lo ≥ sizeof(bvl) bvh{lo− sizeof(bvl);hi− sizeof(bvl)} ∈ Ja; bK ; c

(bvconcat bvl bvh){lo;hi} ∈ Ja; bK ; c
CONCAT HIGH

bvl ∈ Jlo(a); lo(a)K ; c bvh ∈ Jhi(a); hi(a)K ; d

(bvconcat bvl bvh) ∈ Ja; aK ; c ∧ d
CONCAT EQ

lo < size(bvl) < hi

(bvconcat bvl bvh){lo;hi} ∈ Ja; bK ; >
CONCAT DEF

c = analyzeCond(bveq bv1 bv2)
(bvcmp bv1 bv2) ∈ J1; 1K ; c

CMP EQ ONE
(bvcmp bv1 bv2) ∈ Ja; bK ; >

CMP DEF

bvt ⇓ vt bve ⇓ ve vt ∈ Ja; bK ∧ ve /∈ Ja; bK c = analyzeCond(blc)

(if blc then bvt else bve) ∈ Ja; bK ; c
ITE THEN

bvt ⇓ vt bve ⇓ ve vt /∈ Ja; bK ∧ ve ∈ Ja; bK c = analyzeCond(blnot blc)
(if blc then bvt else bve) ∈ Ja; bK ; c

ITE ELSE

(if blc then bvt else bve) ∈ Ja; bK ; >
ITE DEF

Figure 4.12: Value analysis - Complex rules

67

Dependency Analysis
When it is impossible to compute a constraint directly from the condition, we fall

back on a dependency analysis. This only applies in targeting mode, as we are

trying to recreate the trace we had when executing the PUT on the interesting

test case, which we call ti. By analyzing the input dependencies of the condition,
we can identify which n input bytes, starting at idx, it depends on. And since we
always have a valuation of the variable for which the condition is satisfied – that

of ti, we only need to add a constraint
∧n
k=idx k ∈ Jti[k]; ti[k]K. This does not work

when negating a condition, as we then do not have any valuation for which the

condition is satisfied. As a result, the function is called with the condition and a

boolean indicating whether it was negated, and returns> if the boolean is true.

When analyzing the trace, we consider two types of dependency informa-

tion:

• byte-level dependencies, which we represent with an array of sets, give
the dependencies for each byte of the term ;

• term-level dependencies, which we represent with a set, give the overall
dependencies of the term.

In this analysis, we compute both dependencies and values, as we need the

latter to compute dependencies in some cases. This is also the function used to

compute index values during value analysis. Values are either a constant or a

symbolic variable associated to an offset. This allows us to deduce information

even when we do not have the concrete value, for example resolving a select

and a store with the same symbolic index. The operations on values are as

follows:

• if all operands are constants, apply the operation ;

• if the operation is either sym + cst, sym - cst or cst + sym, update the offset
of the symbolic variable accordingly ;

• otherwise create a new symbolic variable.

To compute the dependencies, we define a merge function which takes the
dependencies of two terms and:

• if both are byte-level, merges the dependencies for each byte ;

• if one is byte-level and the other is term-level, and the dependencies of
the second ones to each byte of the first one ;

68

• if both are term-level, compute the union.

Meanwhile, the squash function will compute the union of all dependencies it
was given, on a term-level. Examples for both are shown in Figure 4.13.

merge [{0}{}{1}] [{3}{2}{}] = [{0; 3}{2}{1}]
merge [{0}{}{1}] {2; 3} = [{0; 2; 3}{2; 3}{1; 2; 3}]

merge {0; 1} {2; 3} = {0; 1; 2; 3}

squash [{0}{}{1}] = {0; 1}
squash [{0}{}{1}] {2; 3} = {0; 1; 2; 3}

Figure 4.13: Merge and squash examples

Initial rules (Figure 4.14) Constants and nondet variables do not depend on

the input: we just create an empty byte-level dependency, of the size of the

term. On the other hand, when the term is a selection frommem_ext, it directly
depends on the user input, as well as the selected index: we compute the index’s

dependencies, initialize the element’s dependencies to the selected bytes, and

merge the two. As for variables and selects from memory, as for the previous

analyses we look up the element in the definition table.

Byte-level operations (Figure 4.15) preserve byte-level dependencies. In some

cases, we just merge the dependencies of the two bitvector terms involved in

the operation. For example, with bit-wise binary operations, the kth byte of the
result directly depends on the kth byte of each operand: we just merge the de-
pendencies. This also applies to boolean operators, which take two single-byte

terms and also return a single byte.

bv1 ⇓ [{0}{1}] & bv2 ⇓ [{4}{5}]⇒ bvand bv1 bv2 ⇓ [{0; 4}{1; 5}]

Some unary operations preserve the byte-level aspect of the dependencies, but

modify them. For example, if there is an extraction, we only keep the bytes from

the term which were extracted.

bv ⇓ [{0}{1}]⇒ bvextract {8; 15} bv ⇓ [{1}]

For those operations, if the dependency is term-level instead, we just keep the

dependency as is. Finally, if we are concatenating two terms, there are 3 cases:

69

• if the dependencies of both terms are byte-level, we just concatenate them:

bvl ⇓ [{0}{1}] & bvh ⇓ [{4}{5}]⇒ bvconcat bvl bh ⇓ [{0}{1}{4}{5}]

• if one is term-level, we translate it into byte-level by duplicating the de-
pendency, which by definition applies to all bytes, then concatenate the

dependencies:

bvl ⇓ {0; 1} & bvh ⇓ [{4}{5}]⇒ bvconcat bvl bh ⇓ [{0; 1}{0; 1}{4}{5}]

• if both are term-level, we translate them into byte-level and concatenate:

bvl ⇓ {0; 1} & bvh ⇓ {4; 5} ⇒ bvconcat bvl bh ⇓ [{0; 1}{0; 1}{4; 5}{4; 5}]

Other operations (Figure 4.16) For operations that do not preserve byte-level

dependencies, the analysis just squashes the dependencies of all operands, so

as to get the overall dependency of the result. For example, if we are adding

two terms, the possibility of carry means any byte can depend on other bytes: it

is simpler to consider that all of the result inherits the operands’ dependency.

bv1 ⇓ [{0}{1}] & bv2 ⇓ {4; 5} ⇒ bvadd bv1 bv2 ⇓ {0; 1; 4; 5}

For if then else operations, we might be able to use the values of the terms to

refine the analysis:

• if we have if blc then bvt else bve, and we can evaluate blc to the concrete
value of 1 (resp 0), we know the result of the operation is bvt (resp bve),
and we analyze it. We also squash the result with the dependencies of the

boolean term, since it is determinant.

• otherwise, we do not know which term is the result: we squash the depen-
dencies of all three terms, and return a new symbolic variable, nondet, as

the value.

70

cst ⇓ [{}︸︷︷︸
size of cst times

], cst
CST

v /∈ vardef
v ⇓ [{}︸︷︷︸

size of v times

], v + 0
NONDET

true ⇓ [{}], 1
TRUE false ⇓ [{}], 0

FALSE

bvidx ⇓ didx, vidx d = merge (squash didx) [{vidx} . . . {vidx + n− 1}]
select n __mem_ext bvidx ⇓ d, input[vidx . . . (vidx + n− 1)]

INPUT

vardef [x] = bv bv ⇓ d, v
x ⇓ d, v

VAR

bvidx ⇓ didx, vidx mem[axmem, vidx, n] = bvelt bvelt ⇓ delt, velt
select n axmem bvidx ⇓ merge (squash didx) delt, velt

SELECT

Figure 4.14: Initial dependencies

71

bl ⇓ d, v
blnot bl ⇓ d, !v BLNOT

bv ⇓ d, v
bvnot bv ⇓ d, !v BVNOT

bl1 ⇓ d1, v1 bl2 ⇓ d2, v2
(�bl ∈ bleq | bldiff) bl1 bl2 ⇓ merge d1 d2, v1 � v2

BLCMP

bl1 ⇓ d1, v1 bl2 ⇓ d2, v2
(�bl ∈ imply | bland | blor | blxor) bl1 bl2 ⇓ merge d1 d2, v1 � v2

BLBNOP

bv1 ⇓ d1, v1 bv2 ⇓ d2, v2
(�bv ∈ bvand | bvnand | bvor | bvnor | bvxor | bvxnor) bv1 bv2 ⇓ merge d1 d2, v1 � v2

BVBNOP BITWISE

bv ⇓ [{d0} . . . {dk}], v

extract {lo; hi} bv ⇓ [{d
lo
8 } . . . {d

hi
8 }], extract {lo;hi} v

EXTRACT

bv ⇓ [{d0} . . . {dk}], v
repeat n bv ⇓ [{d0} . . . {dk}︸ ︷︷ ︸

n
8
times

], repeat n v
REPEAT

bv ⇓ [{d0} . . . {dk}], v
zero_extend n bv ⇓ [{d0} . . . {dk} {}︸︷︷︸

n
8
times

], zero_extend n v
ZEXT

bv ⇓ [{d0} . . . {dk}], v
sign_extend n bv ⇓ [{d0} . . . {dk} {dk}︸︷︷︸

n times

], sign_extend n v
SEXT

bv ⇓ {. . . }, v
(�bv ∈ extract | repeat | zero_extend | sign_extend) k bv ⇓ {. . . }, � k v

DEFAULT BVUNOP

bvl ⇓ [{d0l } . . . {dkl }], vl bvh ⇓ [{d0h} . . . {d
j
h}], vhbvconcat bvl bvh ⇓ [{d0l } . . . {dkl }{d0h} . . . {d

j
h}], concat vl vh

CONCAT BYTE AND BYTE

bvl ⇓ {d0l , . . . , dkl }, vl bvh ⇓ [{d0h} . . . {d
j
h}], vhbvconcat bvl bvh ⇓ [{d0l , . . . , dkl }︸ ︷︷ ︸

size of bvl times

{d0h} . . . {d
j
h}], concat vl vh

CONCAT BYTE AND TERM

bvl ⇓ {d0l . . . dkl }, vl bvl ⇓ {d0h . . . d
j
h}, vhbvconcat bvl bvh ⇓ [{d0l . . . dkl }︸ ︷︷ ︸

size of bvl times

{d0h . . . d
j
h}︸ ︷︷ ︸

size of bvh times

], concat vl vh
CONCAT TERM AND TERM

Figure 4.15: Dependencies of byte-level preserving operations
72

bv ⇓ d, v
bvneg bv ⇓ squash d,−v

BVNEG

bv ⇓ d, v
(�bv ∈ rotate_left | rotate_right) n bv ⇓ squash d, � n v

ROTATE

bv1 ⇓ d1, v1 bv2 ⇓ d2, v2
bvcmp bv1 bv2 ⇓ squash d1 d2, bvcmp v1 v2

BVBNOP1

bv1 ⇓ d1, v1 bv2 ⇓ d2, v2
(�bv ∈ bvadd | bvsub | bvmul | bvdiv | bvrem) bv1 bv2 ⇓ squash d1 d2, v1 � v2

BVBNOP2

bv1 ⇓ d1, v1 bv2 ⇓ d2, v2
(�bv ∈ bvshl | bvashr | bvlshr) bv1 bv2 ⇓ squash d1 d2, v1 � v2

BVBNOP3

bv1 ⇓ d1, v1 bv2 ⇓ d2, v2
(�bv ∈ <bv_cmp>) bv1 bv2 ⇓ squash d1 d2, v1 � v2

BVCMP

blc ⇓ dc, 1 bvt ⇓ dt, vt
if blc then bvt else bve ⇓ squash dc dt, vt

BVITE THEN

blc ⇓ dc, 0 bve ⇓ de, ve
if blc then bvt else bve ⇓ squash dc de, ve

BVITE ELSE

blc ⇓ dc, _ bvt ⇓ dt, _ bve ⇓ de, _
if blc then bvt else bve ⇓ squash dc dt de, nondet+ 0

BVITE DEFAULT

Figure 4.16: Dependencies of non byte-level preserving operations

73

Example
We illustrate the different analyses with the example from Figure 4.1. Figure 4.17

shows its actual trace, expressed with the formula language.

1 declare __memory_0 ;
2 declare __mem_ext ;
3 / / some setup which we removed from the t race fo r r e a d i b i l i t y

4 define __memory_8 = store 4 __memory_7 (bvsub __esp_8 0x4) 0x4 ; / / s i z e o f (i n t) −> s tack
5 define __esp_9 = bvsub __esp_8 0x4 ;
6 / / &x −> s tack
7 define __memory_9 = store 4 __memory_8 (bvsub __esp_9 0x4) (bvsub __ebp_1 0x3c) ;
8 define __esp_10 = bvsub __esp_9 0x4 ;
9 define __memory_10 = store 4 __memory_9 (bvsub __esp_10 0x4) 0x0 ; / / 0 −> s tack
10 define __esp_11 = bvsub __esp_10 0x4 ;
11 define __esp_12 = bvsub __esp_11 0x4 ;
12 / / c a l l read , s to re r e t address

13 define __memory_11 = store 4 __memory_10 __esp12 0x8048830 ;
14 / / read stub

15 define __buf_0 = se lec t 4 __memory_11 (bvadd __esp12 0x8) ;
16 define __tmp_0 = se lec t 4 __mem_ext 0 ;
17 define __memory_12 = store 4 __memory_11 __buf_0 __tmp_0 ;
18 define __eax_0 = 0x4 ;
19 define __esp_23 = (bvadd __esp_22 0x4) ;
20 / / end stub

21 define __esp_24 = (bvadd __esp_23 0x10) ;
22 / / same th ing with buf = −0x38 (ebp) fo r y , −0x34 for z , −0x30 for t and −0x2c fo r z
23 define __eax_1 = bvadd (se lec t 4 __memory_32 (bvsub __ebp_1 0x3c)) 0x3 ; / / a = x + 3

24 assert (bvsle __eax_1 0x4) ; / / a s se r t (a <= 4)

25 / / b = y

26 define __eax_2 = se lec t 4 __memory_32 (bvsub __ebp 0x38) ;
27 define __memory_33 = store 4 __memory_32 (bvsub __ebp_1 0x28) __eax_2 ;
28 / / c = t

29 define __eax_3 = se lec t 4 __memory_33 (bvsub __ebp 0x30) ;
30 define __memory_34 = store 4 __memory_33 (bvsub __ebp_1 0x24) __eax_3 ;
31 / / a s se r t (b != z)

32 assert (bvd i f f
33 (se lec t 4 __memory_34 (bvsub __ebp_1 0x28))

34 (se lec t 4 __memory_34 (bvsub __ebp_1 0x34))) ;

35 / / a s se r t (c = v)

36 assert (bveq
37 (se lec t 4 __memory_34 (bvsub __ebp_1 0x24))

38 (se lec t 4 __memory_34 (bvsub __ebp_1 0x2c))) ;

39 define __memory_35 = store 4 __memory_34 (bvsub __ebp_1 0x28) , 0x3 ; / / b = 3
40 assert (bvsgt (se lec t 4 __memory_35 (bvsub __ebp_1 0x30)) 0xa) ; / / a s se r t (t > 10)
41 assert (bvsle (se lec t 4 __memory_35 (bvsub __ebp_1 0x2c)) 0x2d) ; / / a s se r t (v <= 45)

42 define __memory_36 = store 4 __memory_35 (bvsub __ebp_1 0x24) 0xa ; / / c = 10

Figure 4.17: Full trace from Figure 4.1

Let us start with the first condition: assert (bvsle __eax_1 0x4). Since the con-
dition is BvCmp (BvSle, bv, BvCst(4)), analyzeCond calls analyzeValues(BvSle, bv,
4). The algorithm will apply inference rules to __eax_1 ∈ Jmin; 4K, where min =
−231

. Following the reasoning from Figure 4.18, we conclude that the value of

the first four bytes of the input is constrained by Jmin; 1K.

74

eax1 ∈ Jmin; 4K
⇔ bvadd (select 4 memory32 (bvsub ebp1 0x3c)) 3 ∈ Jmin; 4K VAR on eax1, l. 21

⇔ select 4 memory32 (bvsub ebp1 0x3c) ∈ Jmin; 1K ADD CST

⇔ tmp0 ∈ Jmin; 1K
SELECT, stored l. 18 (buf0 = ebp1 − 0x3c), and no condition for index

⇔ select 4 mem_ext 0 ∈ Jmin; 1K VAR

⇔ (0, 4) ∈ Jmin; 1K
INPUT, and no condition for index

Result: mem_ext[0..3] ∈ Jmin; 1K

Figure 4.18: Value analysis on eax_1 ∈ Jmin; 4K

The next condition is assert (bvdiff , select (...), select (...)) , which corresponds
to b 6= z. Since it is an inequality, analyzeCond calls the dependency analysis.
By following the reasoning from Figure 4.19, we conclude that the condition

depends on bytes 4 to 7 and 8 to 11.

The following condition is assert (bveq, select (...), select (...)) , aka c = vWe can-
not negate it because c 6= v cannot be expressed with EECL, unless we already
have a solution. If we were targeting it, on the other hand, we would use the

equality analysis: analyzeEquality(Select(...), Select(...)). Following the reasoning

from Figure 4.20, we would conclude that the bytes 12 to 15 are equal to the

bytes 16 to 19.

Properties
Theorem 4.4.1 (Correctness). Path predicates expressed in EECL by using the anal-
yses described previously are correct-enough.

Proof. For each condition cond:

• When possible, we create the constraint using the equality or value anal-
yses, which compute JcondKEECL without losing any information. Since it
is a direct translation, it is inherently correct: if the input variables satisfy

the constraint, they will automatically satisfy the condition.

• When this is not possible, we either abandon the condition, ensuring we
do not create an incorrect predicate, or we fall back on the dependency

analysis. When relying on the dependency analysis, we constrain the input

variable to its valuation in our current seed, which we know satisfies the

condition.

75

(4
)
V
A
R
v
a
r
d
ef [tm

p
1]

=

C
S
T
0x4
⇓

[{}{}{}{}],4
merge

{}
[{

4}{5}{6}{7}
]

=
[{4}{5}{6}{7}]

in
p
u
t[4]

=
y

=
4

select
4
m
em
_ex

t
4
⇓

[{
4}{5}{6}{7}],4

IN
P
U
T

tm
p
1
⇓

[{4}{5}{6}{7}],4

(3
)
V
A
R
v
a
r
d
ef [ea

x
2]

=

B
V
B
N
O
P

...

bvsub
ebp

1
0x38

⇓
{}
,n
d
0 −

56
m
em

d
ef [m

em
3
2 ,n

d
0 −

56,4]
=

...

tm
p
1
⇓

[{4}{5}{6}{7}],4
(4
)
V
A
R

select
4
m
em

3
2 (bvsub

ebp
1
0x38)

⇓
[{

4}{5}{6}{
7}
],4

S
E
L
E
C
T

ea
x
2
⇓

[{4}{5}{6}{7}],4

(2
)
B
V
S
U
B

N
O
N
D
E
T

ebp
1
/∈
v
a
r
d
ef

ebp
1
⇓

[{}{}{}{}
],n

d
0

+
0

0x28
⇓

[{}{}{}{}],40
C
S
T

bvsub
ebp

1
0x28

⇓
{}
,n
d
0 −

40

(1
)
S
E
L
E
C
T

(2
)
B
V
S
U
B

...

bvsub
ebp

1
0x28

⇓
{}
,n
d
0 −

40
m
em

d
ef [m

em
3
4 ,n

d
0 −

40,4]
=

...

ea
x
2
⇓

[{4}{5}{6}{7}],4
(3
)
V
A
R

sel1
⇓

[{4}{5}{6}{7}],4

B
V
C
M
P

(1
)
S
E
L
E
C
T

...

sel1
⇓

[{
4}{5}{6}{

7}
],4

sel2
⇓

[{8}{9}{
10}{11}],5

S
E
L
E
C
T

bvdiff(select
4
m
em

3
4 (bvsub

ebp
1
0x28))

︸
︷︷

︸
sel1

(select
4
m
em

3
4 (bvsub

ebp
1
0x34)

︸
︷︷

︸
sel2

)
⇓
{
4;5;6;7;8;9;10;11}

,0

R
e
s
u
lt:
d
e
p
e
n
d
s
o
n
b
y
te
s
4
to
1
1
,m

em
_ex

t[4..7]
=

4
∧
m
em
_ex

t[8..11]
=

5
.

F
ig
u
r
e
4
.1
9
:
D
e
p
e
n
d
e
n
c
y
a
n
a
ly
s
is
o
nselect

6=select

76

select 4 memory34 (bvsub ebp1 0x24) = select 4 memory34 (bvsub ebp1 0x2c)
alias(select 4 memory34 (bvsub ebp1 0x24))

= alias(memdef [4,memory34, ebp1 − 36]) select

= alias(eax3) stored line 28

= alias(select 4 memory33 (bvsub ebp1 0x30)) defined line 27

= alias(tmp3) stored on 4th read

= alias(select 4 mem_ext 12) defined on 4th read

= Some(12, 4) user input

alias(select 4 memory34 (bvsub ebp1 0x2c))
= alias(tmp4) defined on 5th read

= alias(select 4 mem_ext 16) defined on 5th read

= Some(16, 4) user input

Result: mem_ext[12..15] = mem_ext[16..19]

Figure 4.20: Equality analysis on select = select

This ensures that any solution to JcondKEECL will satisfy cond. We create the path
predicate by doing the conjunction of the correct constraints obtained with ei-

ther of the analyses. As this only reduces the search space of the constraint, we

will not lose any information. The only information we lose are difference con-

straints, which removes only one point from the solution space. The resulting

path predicate will be correct.

Implementation
In this section we will first discuss what we implemented as part of the BINSEC

tool, before presenting two implementation details specific to the LSE, which

allows us to keep the constraint inference as efficient as possible.

Difference with Theory Even if we defined and formalized 3 different analy-

ses, in practice we only implemented two: considering the added engineering

effort required, the equality analysis remains theoretical for now. But we do be-

lieve that adding it would improve LSE even further, and consider it one of the

priorities of future work.

77

Memory Representation
Thememory in the trace is a table, and eachmodification creates a new version.

As such, we can represent thememory as the ordered list of modifications. Find-

ing the element at an index is then a matter of following the list from the last

modification to the first, stopping once we find when the value at the index was

set.

declare mem0;define mem1 = store 1 mem0 0 1;define mem2 = store 1 mem1 1 42;define mem3 = store 1 mem2 10 30;define mem4 = store 1 mem3 1 10;
Sample trace

modifs

0

0← 1

1

1← 42

2

10← 30

3

1← 10

4

List representation

0 {1 7→ 1}
1 {2 7→ 42; 4→ 10}
10 {3 7→ 30}
Map representation

Figure 4.21: Example of memory representations

We illustrate the possible memory representations using the code from Fig-

ure 4.21a. Figure 4.21b shows the list representationwe are currently discussing.

Let us imagine we are looking for the element stored at the index 10, inmem4 –

aka select 1 mem4 10. Given the list modifs, we would start at modifs[4], which
is the last modification for this memory state. Going through the list backward,

we would stop at modifs[3], when 30 was stored at the index 10.
The drawback of this technique is that it requires systematically backtracking

on the list of store instructions anytime we encounter a select, which happens

often – think of push and pop instructions. To simplify the analysis, we decided

to add a pre-processing step in order to build a more straightforward represen-

tation of the memory. In this representation, instead of associating the modifi-

cations to the memory state number, we sort them by the access index first. In

practice, we compute the value (be it symbolic or concrete) of each index, and

build a hashtable associating each index to a map, which itself associates the

memory states to the element stored. In the case of the example, this gives us

the representation from Figure 4.21c. To resolve select 1 mem4 10, we now get
the modifications at index 10 (after evaluating the bvterm, which is a constant

here): {3 7→ 30}. This technique is inherently more efficient than the first one,
as we only look through modifications to the interesting index, rather than all of

them.

78

Table 4.1: Example of split term in memory

4 {i 7→ eax{0..7}}
5 {i 7→ eax{8..15}}
6 {i 7→ eax{16..23}}
7 {i 7→ eax{24..31}}

NB: in order to simplify the lookup into the map, we split multi-bytes selects

and stores. As such, store 4 memi eax will be added to the map as described in
table 4.1. And when doing select 4 mem 4 we will just individually lookup bytes
4 to 7 from memory, and concatenate them.

Caching information
When applying the dependency analysis, we can reuse dependency and value

information. We do this by creating a cache where we store variables’ depen-

dencies and values once we have computed then once. When analyzing a vari-

able, we will first check whether it is in the cache, and only backtrack if it is not.

This allows us to never backtrack more than once on each variable, thus mak-

ing the complexity of the dependency linear wrt the size of the trace. However,

this does not apply to the value analysis since the analysis depends on the con-

straint. In fact, eax ∈ J4; 4K and eax ∈ J5; 15K would not have the same result,
so we cannot reuse the dependency for the first one in order to compute the

second one.

Discussion
LSE usage
The constraints generated by LSE can be used in different ways:

on their own by using an enumeration algorithm, as described in enumTests,
LSE is stand-alone. We use inverting mode to explore new paths, when

possible, then target each new path, enumerating solutions to explore it.

However enumeration, while exhaustive, is not necessarily the most effi-

cient way to explore a program’s space.

combined to fuzzing this is the technique we implemented in our tool CON-
FUZZ, described in Chapter 5. When targeting a constraint (hence a new

path), instead of enumerating solutions, we use a constrained fuzzer: a

modified greybox fuzzer which only generates test cases that satisfy a

79

given constraint. This allows us to reuse fuzzing’s efficient test generation

techniques, while constraining them to a specific part of the program.

Constraint Language
In theory, our constraint language deals with two types of constraints: equality

and integer interval. This lets us keep the resolution simple, but here we will

discuss possible extensions.

• x 6= c: to add difference between the input and an integer, we would need
to consider sets of intervals: x 6= 4would translate to x ∈ {Jmin; 3K; J5;maxK}.
The constraint language would then be

∧
i xi ∈ Îi ∧

∧
i,j xi = xk where

Îi = {I0i , . . . , Ini } is a set of disjoint intervals, with its normalized version
being

∧
l∈L l ∈ Îl ∧

∧
x∈X\L x = lx. This is still fast-enumerable: when

enumerating solutions, instead of simply incrementing the input until it

reaches the greater bound of the interval, we would go through the list of

possible values. However, normalizing the formula would be more com-

plicated. In particular, when merging the constraints from equal variables,

we would need to go through each variable’s set of interval constraints

to compute the intersection. Given the fact that difference conditions only

remove one element from the solution space, we have decided not to treat

them, and to skip them instead.

• x 6= y: could be added to the constraint language, and for it to still be
easily-enumerable. This is due to the fact that we set leaders one at a

time: once x has been set to v, the constraint becomes y 6= v, where v is
a constant. We then only need to remove v from the possible values of y,
until we next backtrack to x.

Limitations and perspectives
Our technique is limited by the concretization we use when unable to create a

more accurate EECL constraint. In this case, we look up which input the con-

dition depends on, and constrain those to their current value which we know

satisfy the condition – at least for targeted constraints. While this technique

ensures that the constraint will be "correct-enough" (correct except for differ-

ence constraints), it also drastically reduces the solution space for said variables.

However, we argue that since this is only our fallback, we still explore more than

standard concrete symbolic execution would. Furthermore, since we continue

targeting previous conditions, we will end up trying different values for the con-

strained input, and hopefully explore more paths which satisfy this condition.

80

In the future, a natural extension would be to add equality between variables.

This would require implementing the equality analysis using the same kind of

pattern matching as the other analyses. We might then want to look further

into augmenting the constraint language’s expressivity. We could for example

think of adding more complex relations between parts of the input. To do this

we would need to first formally define a new constraint language, prove it is

correct by modifying the enumeration algorithm, then decide how to infer the

new types of constraints.

Related Work
Symbolic Execution depends on two steps: creating the path predicate, and solv-

ing it to generate a solution. As such, variants of symbolic execution usually aim

to increase efficiency in one of those two key areas.

Constraint Solving Among improvements to constraint solving, we can quote

constraint elimination [58] – removing either irrelevant sub-constraints when

adding the latest one, or duplicates – and incremental solving [58, 8] – storing

in a cache the result of path requests, so as to reuse them when possible. How-

ever, those techniques are not relevant to Lightweight Symbolic Execution: as

we create easily-enumerable constraints by design, we do not require an addi-

tional simplification step.

Path Predicates can bemade simpler either by under-approximating or over-

approximating them, using abstraction or concretization techniques [23].

Over-approximating happens when the path predicate is under-constrained.

This results in a complete but not correct predicate: it accepts solutions that do

not follow the path. EXE [10] uses such a technique, but only as a temporary

way to simplify the constraint. When trying to solve a constraint with memory

access, which are hard to solve because they involve array theory, it first re-

moves all array access from the constraint. This creates an over-approximation,

which is then sent to the regular solver. If the answer is UNSAT, it means that

the original constraint cannot be satisfied either. Otherwise, the solution given

by the solver might not be satisfy the original constraint. EXE then adds back the

array access to the constraint, one-by-one, until it gets an UNSAT result or an an-

swer for the original constraint. As such, while it does use over-approximation,

it is only used to weed out unsatisfiable constraints early on, and in the end any

solution is computed using the precise path predicate. When it comes to over-

approximations, we can also mention Pangolin [39]. Pangolin combines a sym-

bolic analysis with fuzzing, but works on abstractions of the path predicates, for

81

which solutions are created using an out-of-the-box sampling technique. This

abstraction is an over-approximation of the path predicate, as they prioritize

having all test cases that follow the path be a solution to the path predicate,

whereas CONFUZZ ensures that only test cases that follow the path are solutions

to the path predicate. This is one of the key – and novel – elements of CON-

FUZZ, because it means we can efficiently drive the fuzzing past hard-to-solve

conditions, where Pangolin would keep on creating unsatisfactory test cases.

Under-approximations is introduced by concretization, when inputs of the

program are set to a single concrete value, rather than kept symbolic. This is a

technique specific to Concolic Testing, where the program is executed on a test

case as well as symbolically. DART [35] is one of the first tools to have thus used

dynamic analysis on a concrete test case to help symbolic execution. It builds

test cases incrementally, starting with a random concrete input. The program is

then executed both concretely and symbolically on the test case, meaning that

DART follows the path of the concrete execution, but collects information about

the symbolic variables and expressions at each instruction. Each time it encoun-

ters a condition in the path, it checks in a cache whether the branch correspond-

ing to the negation of the condition was explored, and if not it tries creating a

test case that does. Furthermore, whenever DART finds itself unable to rea-

son about the symbolic expressions, be it because library code is unavailable or

the solver cannot solve the constraint, it replaces the expression by its concrete

value. CUTE [58] took this idea one step further, introducing a logical input map

to represent inputs more precisely. This allows the analysis to more effectively

track symbolic input, including pointer values. As a result, their method can be

used on a wider range of programs, by solving constraints that are unfeasible

for DART. While CONFUZZ also sets the input to a concrete value when unable

to reason more precisely about the condition, this is only done when targeting

an interesting transition, allowing us to create multiple test cases which follow

this transition. As for library calls, they are stubbed in order to avoid resort-

ing to concretization, except for special cases where it does not matter, such as

memory allocations.

Conclusion
In this section, we presented Lightweight Symbolic Execution. An alternative to

Concrete Symbolic Execution, it analyzes execution traces of the PUT, comput-

ing easily-enumerable path predicates. Those path predicates lead to specific

conditions on the path, either targeting new, interesting branches, or negat-

ing conditions to try reaching brand new parts of the code. Easily-enumerable

constraints are a concept we define: the complexity of enumerating solutions is

82

linear wrt the size of the input. In practice, we use a specific constraint language,

which we prove to be easy-enumerable, as well as explaining how we infer con-

straints from the trace’s conditions. Finally, we discussed the limitations and

perspectives of our technique, before comparing it to other symbolic execution

techniques.

83

Chapter 5
ConFuzz, Combining LightweightSymbolic Execution withConstrained Fuzzing
Contents

5.1 Overview . 86
5.2 How To Create Solutions . 86

5.2.1 AFL . 87

5.2.2 ConFuzz . 87

5.2.3 Implementation . 91

5.3 The Trace . 91
5.3.1 Retrieving the Trace . 91

5.3.2 Transforming the trace 92

5.3.3 Implementation . 92

5.4 Communicating the Predicates 93
5.4.1 Predicate format . 93

5.4.2 Reception of predicates 94

5.5 Experimental Evaluation . 94
5.5.1 Experimental Setup . 94

5.5.2 ConFuzz, SE, Greybox Fuzzing 95

5.6 Discussion . 96
5.6.1 Trace Length . 96

5.6.2 Communication . 96

85

5.6.3 Constrained Fuzzing . 97

5.7 Related Work . 97
5.8 Conclusion . 99

In this chapter, we describe how we combined Lightweight Symbolic Execu-

tion (LSE) with a tailor-made Constrained Fuzzer, a modification of the AFL grey-

box fuzzer which creates test cases according to a given predicate. We first

present how both tools work together (Section 5.1). We then describe the con-

strained fuzzer itself (Section 5.2) as well as the key components of the com-

bination: how the information about the trace (Section 5.3) and the predicates

is exchanged (Section 5.4). Finally, we present our experimental evaluation on

a standard benchmark from the literature (Section 5.5). In each section, we

will give details about the implementation, and we will discuss limitations (Sec-

tion 5.6) and related work (Section 5.7) at the end.

Overview
Lightweight Symbolic Execution, as described in Chapter 4, takes an execution

trace of the Program Under Test (PUT), as well as a target branch, and returns

a predicate that targets the branch, as well as possibly several predicates which

invert the following branching conditions.

On the other side, our constrained fuzzer receives predicates, creates test

cases which satisfy the constraints from the predicates, runs the program on

those and determines whether a new branch was taken. If so, the trace and the

branch are sent to the LSE. Otherwise, it keeps going until it creates a test case

that does, or we stop it.

This communication loop is described in Figure 5.1. In practice, the com-

munication is asynchronous, as both techniques run in parallel. The fuzzing, in

particular, runs continuously. Similarly to AFL, the fuzzer keeps a database of

interesting test cases. Target predicates are added to the relevant test case in

the database, while inversion predicates are immediately solved. On the other

hand, the LSE is in sleepmode until it receives a trace, which is then immediately

analyzed. Both types of information are stored until the receiver is available, en-

suring we never lose messages.

How To Create Solutions
Here we first give insight into how AFL creates new test cases, before explaining

how we modified it to create constrained test cases.

86

constrained

fuzzing

instrumented

binary

t

enumerating solutions

symbolic

inference

translation and

optimization

σ̄

inferring predicates

new

ϕ

σ

no

yes
σ, gNotations:

t: test case
σ: trace
g: new transition
σ̄: transformed
trace

ϕ: path predicate

Figure 5.1: Overview of CONFUZZ

AFL
In order to create a new test case, AFL picks one from its database, and mutates

it. The selection is based on different information about the test cases, such as

whether they were found recently, or if they already led to the discovery of new

code. If it is the first time this test case is being fuzzed, AFL first goes through

the deterministic phase. During this phase it systematically goes through every

byte of the test case and applies the mutations, one at a time. AFL then goes

into havoc mode. This is described in algorithm 1.

The mutation engine mutates a random number of bytes, choosing a ran-

dom mutation for each offset (the list is in appendix A). The PUT is then ran on

the test case created by the multiple mutations, to check whether it reaches a

new part of the code. If not, the mutation engine will reset the test case, before

mutating it again. This loop also happens a random number of times, before

the engine switches to the next test case.

ConFuzz
Targeting mode When we have a target predicate, we want to create multiple

test cases which satisfy it. To do this, we leverage AFL’s fuzzing mutation engine.

We keep the test case selection mechanism, since we also prioritize coverage,

and only modified the deterministic phase to skip over offsets with dependency

constraints. Our goal is for test cases generated by the havoc phase to satisfy

the constraints. We achieve this by modifying the havoc algorithm as described

in Algorithm 2.

We consider three types of constraints, all of which correspond to x ∈ Ja; bK
from Definition 4.2.2:

dependency constraint when the constraint comes fromdependency, it means
87

Algorithm 1: AFL - havoc stage
Data: buffer in_buf of len len containing the original test case

1 memcpy(in_buf, out_buf, len);
2 stage_max← f(perf_score, ..);
3 if stage_max < HAVOC_MIN then stage_max← HAVOC_MIN;
4 temp_len← len;
5 for stage_cur = 0 to stage_max− 1 do
6 use_stacking ← rand(2, 4, 8, 16, 32, 64, 128);
7 for i = 0 to use_stacking − 1 do
8 pos_modif ← choose_havoc_pos(temp_len);

// applies a random mutation to pos_modif, cf algo 4,
appendix A

// stop there if we found an interesting entry
9 if common_fuzz_stuff(out_buf, ...) then goto abandon_entry;

// restore out_buf
10 if temp_len < len then out_buf← realloc(out_buf, len);
11 temp_len← len;
12 memcpy(out_buf, in_buf, len);

we are constraining the input to its current value. To satisfy these con-

straints, we only need to not modify those offsets. This is done line 8,

where we simply skip dependency constrained offsets when choosing which

offset to mutate, using the function from Figure 5.2.

equality constraint when mutating an offset to which an equality constraint
applies, we set the offset to the constrained value and keep going (lines

9-11). We do this because there is no use trying to mutate it, when there

is a single valid value.

interval constraint we let AFL mutate the offset as usual, so as to use the
smart mutations. Then, as seen on lines 12-14, we check the value at the

offset after the mutation, and if the result is now outside of the interval,

we bring it back by setting it to a random value of the interval.

Inverting mode In this case, the seed does not satisfy the path predicate,

since we are trying to reach a new part of the code by taking a new transition.

Our goal is to create a single seed that does, and run the program on it to check

if it leads to a new part of the program. We create said seed by mutating the

interesting seed t0, taking advantage of the fact that it reached the condition,

88

Algorithm 2: ConFuzz - creating multiple solutions to target predicate
Data: buffer in_buf of len len containing the original test case, dep_cstr

the set of dependency constraints, val_cstr the set of value

constraints

1 memcpy(in_buf, out_buf, len);
2 stage_max← f(perf_score, ..);
3 if stage_max < HAVOC_MIN then stage_max← HAVOC_MIN;
4 temp_len← len;
5 for stage_cur = 0 to stage_max− 1 do
6 use_stacking ← rand(2, 4, 8, 16, 32, 64, 128);
7 for i = 0 to use_stacking − 1 do
8 pos_modif ← choose_havoc_pos(temp_len, dep_cstr);
9 if val_cstr[pos_modif] exists and is Jv; vK then

// we have an equality constraint
10 out_buf(pos_modif)← v;
11 continue;

// applies a random mutation to pos_modif, cf algo 4,
appendix A

12 if val_cstr[pos_modif] = val_cstr exists then
13 if out_buf[pos_modif] /∈ val_cstr then
14 out_buf[pos_modif]← rand(val_cstr);

// stop there if we found an interesting entry
15 if common_fuzz_stuff(out_buf, ...) then goto abandon_entry;

// restore out_buf
16 if temp_len < len then out_buf← realloc(out_buf, len);
17 temp_len← len;
18 memcpy(out_buf, in_buf, len);

89

static u32 choose_havoc_pos(u32 limit, u8 target) {

u32 nb_dep = queue_cur->nb_dep;
u32* dep_cstrs = queue_cur->dep_cstrs;

// if no dependencies, nothing to do
if (nb_dep == 0) return UR(limit);

// count the number of forbidden values < limit
u32 n = 0;
while (n < nb_dep && dep_cstrs[n] < limit) n ++;

// if no possible value, stop
if (n >= limit) return -1;

// get random value, < nb of values to choose from
u32 u = UR(limit-n);

// increment u for each forbidden dependency smaller than it
u32 res = u;
u32 ind = 0;
while (ind < n && dep_cstrs[ind] <= res) {

res++;
ind++;

}

return res;
}

Figure 5.2: Code for choose_havoc_pos

90

even if it did not satisfy it. We then modify the constrained offsets to values

inside the intervals. This process is described by algorithm 3.

Algorithm 3: ConFuzz - solving inversion predicate
Data: buffer in_buf of len len containing the original test case, val_cstr the

set of value constraints

1 out_buf← in_buf;
2 foreach (pos, inter) ∈ val_cstr do out_buf[pos]← mid(inter);
3 common_fuzz_stuff(out_buf, ...);

Implementation
We directly modify AFL’s code, which is written in C and originally 7.5kloc, highly

optimized and barely commented. This requires to first reverse-engineer the

algorithm used by AFL, by looking at the code, before modifying it where appro-

priate. This lead to adding around 4kloc.

The Trace
There are two steps to retrieving the trace: first we need to get the trace at

runtime, then we need to pre-process the trace to translate it into the formula

language from REF.

Retrieving the Trace
AFL considers the code to be divided into basic blocks: sequences of code which

do not contain branches, except for entry and exit. In this configuration, we can

represent the trace as a list of transitions between basic blocks. This is enough

to precisely describe the execution path, since we know exactly which parts of

the code were taken. AFL retrieves this information by instrumenting the PUT at

compile-time. The instrumentation adds trampolines at each jump and possible

jump target location. Those delimit basic block, and at each trampoline, the

transition is logged into shared memory. Once the execution is finished, the

shared memory contains the list of transitions that were taken. The fuzzing

engine can then access this information, and uses it to determine whether any

new transition was taken. However, we cannot directly use this information,

because the transition from block A to block B is logged as a hash: id(A− >
B) = (id(B) >> 1) xor id(A), while we need to know exactly which basic blocks
were taken.

91

Instead, we extended the sharedmemory, so as to store our own list of basic

blocks ids next to AFL’s trace. We also added new trampolines to the instrumen-

tation, for example at calls to read to retrieve the size of the read, or at calls

to allocation functions to get the address of the allocated memory. Once the

execution has ended, we let AFL determine whether the test case is interesting.

If yes, we get the hash of the transition from AFL’s analysis, and the trace from

the shared memory, and send them both to the LSE.

Transforming the trace
In order to analyze the trace as described in REF, we must create it from the list

of basic block ids. The first step, done once, when starting CONFUZZ – rather

than for each trace – is to disassemble the PUT’s binary file. We do this using

BINSEC’s disassembly, which gives us a DBA [26] representation of all of the file’s

code. At this point, we still need to determine what the basic blocks are, to

match them to the list. We do this using labels added by the instrumentation

along with the trampolines, which delimit each basic block and gives us the id.

This information is preserved by the compilation, and allows us to divide the

DBA code into the original basic blocks. Once we have the id to DBA code se-

quence association table, building the DBA trace is a matter of matching basic

blocks’ ids to the corresponding DBA code block. We simply do this by going

through the list of ids. At this point, we also go through the code of each basic

block, in order to clean them up. For example, we use the next block’s id to

determine the result of conditional jumps, in order to replace them with asser-

tions. We also identify calls to external functions – calls to functions whose code

we do not have, and determine which type of stub to use.

This gives us the trace as a list of DBA instructions, and we also use the

blocks ids to identify the interesting branch. We then call a translation function,

which goes through the list of DBA instructions and builds the equivalent trace

in the formula language described in Section 4.4. We then call the optimization

functions added to Binsec by Farinier [30], which highly simplify the formula.

At this point, we have a trace which we can analyze, and we also know which

assertion corresponds to the result of the target branch. We communicate

those to the LSE, along with the concrete values from the execution, as shown

in Figure B.1.

Implementation
We modified AFL’s instrumentation functions in order to add our own informa-

tion. We did this by slightly modifying the assembly code added to the compiled

92

file by afl-gcc, in order to call our own functions, which we wrote in C and link to

the file at compile-time.

The transformation functions, on the other hand, are part of the Binsec

framework. We re-use Binsec’s disassembly, as well as the syntax definition

for DBA and formula, and formula’s optimization function. However, the trans-

formation functions themselves were written from scratch in OCaml – 1kloc.

Finally, two options affect the trace:

entry point defines where the trace starts. By default, this is the start of the
main function, but wemight want to change it to bypass initialization func-

tions.

shadowed blocks let us indicate parts of the code which will not appear in the
trace. Those obviously depend on the code, but this allows us to ignore

irrelevant parts of the code.

Both those options allow us to leave sections of the code out, to keep the

trace’s size’s small.

In particular, blocks that are shadowed are ignored when building the trace

at runtime. This is done by communicating the list of shadowed regions – de-

fined by the id of the first and last block – to the code added by the instrumen-

tation through a dedicated shared memory. Said code will then keep track of

whether it is in a shadowed regions, using a stack to deal with nested regions.

It is essential to ignore those blocks as early as during runtime, because the

amount of space in which we store the trace is limited, and we want to avoid

losing the last basic blocks.

Communicating the Predicates
Predicate format
As a reminder, in practice the constraint language is made of value constraints

and dependency constraints, which make up either target predicates or inver-

sion predicates. Both types of predicates are represented the same way and

differ by a boolean, as shown in Figure B.2.

Dependency constraints are represented as a list of offsets that should not

be modified. Value constraints are represented by a record, defining both the

interval of constrained offsets, and the interval of values they are constrained

to.

We communicate this information to the constrained fuzzer, along with the

file name and the inversion boolean. As you can notice in Figure B.2, we differ-

93

entiate here between signed constraints and unsigned constraints, as the inte-

gers defining the value interval will be interpreted differently by the constrained

fuzzer.

Reception of predicates
The fuzzer runs continuously, but same as AFL, it functions through an infinite

loop of fuzzing cycles, during which a test case is fuzzed as described in algo-

rithm 1. At the start of each cycle, our constrained fuzzer checks if the buffer

contains predicates, and if so treats them immediately. The constrained fuzzer’s

behavior differs depending on the type of predicate it receives:

target predicates are added to the database. We do not necessarily want to
solve them immediately – though we do immediately run a single fuzzing

campaign – but rather we want to have access to the information when-

ever we fuzz the test case in the future.

inversion predicates are solved immediately, as we only need a single solu-
tion. We just want to see if the solution does take a new branch, which

we let AFL determine. If it does, the solution test case is considered to be

interesting, and treated as such.

Experimental Evaluation
Goals of the evaluation We investigate the following Research Questions.

RQ1 How does CONFUZZ compare against standard fuzzing and symbolic exe-
cution tools on a standard benchmark?

RQ2 how does CONFUZZ compare to existing tools that mix symbolic execution
with fuzzing, on a standard benchmark?

Experimental Setup
We ran CONFUZZ against the version of AFL [69] it was built on, as well as the

state of the art in terms of fuzzing and symbolic execution – AFL++ [32] and

KLEE [8] – over the standard fuzzing benchmark LAVA-M [28]. We also consider

QSYM [68], which combines fuzzing and symbolic execution, as well as a com-

bination of AFL++ and KLEE’s results in order to approximate the results of a

black-box combination of both tools (in the vein of Driller [59], not available on

x86). Note that Pangolin [39] is not available.

94

LAVA-M is a set of four real-world programs, extracted from the GNU Core-

utils, in which a number of faults (bugs) were automatically injected. It is com-

monly used for evaluating and comparing fuzzers. Due to an implementation

problem in CONFUZZ – namely we do not have a stub for who’s particular read

function – we consider only 3 programs out of 4. The main metric for com-

parison is the number of detected faults. For each tool and each program, we

ran the seed generation process five times with a one hour time limit. Having

several runs allows us to mitigate the effects of randomness. We report the av-

erage, minimal and maximal values, as well as the standard deviation and the

Vargha-Delaney statistic (Â12) [61]. This last metric has been used in several re-

cent fuzzing papers [4, 13, 54], and measures the probability for a technique 1

(here, CONFUZZ) to yield better result than a technique 2 (here, the other tools).

Results are depicted in table 5.1.

ConFuzz, SE, Greybox Fuzzing
Table 5.1 shows the results for CONFUZZ and the tools we compare ourselves to.

Table 5.1: Vulnerabilities detected in programs from LAVA-M (TO=1h, 5 runs)

injected faults AFL AFL++ KLEE A/K∗ QSYM CONFUZZ

base64 - 3kloc 44

Avg 0 0.2 10.0 10.2 47.8 38.8Min 0 0 8 8 47 38Max 0 1 11 12 48 39Dev (σ) 0 0.4 1.3 1.5 0.4 0.4

Â12 1.0 1.0 1.0 1.0 0.0 -

md5sum - 3kloc 57

Avg 0 0 0 0 0 9Min 0 0 0 0 0 7Max 0 0 0 0 0 11Dev (σ) 0 0 0 0 0 1.7

Â12 1.0 1.0 1.0 1.0 1.0 -

uniq - 3kloc 28

Avg 0 0.4 5 5.4 17.4 26.9Min 0 0 5 5 12 15Max 0 1 5 6 25 29Dev (σ) 0 0.5 0 0.5 4.5 3.6

Â12 1.0 1.0 1.0 1.0 0.94 -

∗
: A/K denotes the combination of AFL++ and KLEE

RQ1: vulnerability detection Compared to standard fuzzing and symbolic

execution, CONFUZZ offers a clear improvement. Most notably, the fuzzers are

barely able to find crashes, AFL++ finding at most one, due to the complexity of

the bug conditions in LAVA-M. KLEE struggles as well, and finds less than a third

of the vulnerabilities CONFUZZ does.

95

RQ2: Comparison with other mixed tools While the number of vulnera-

bilities found when combining the results of AFL++ and KLEE is higher than

that found by each technique on its own, it stays much lower than CONFUZZ.

This confirms that combining out-of-the-box fuzzers and symbolic executors, as

Driller [59] does, does not yield enough improvement. QSYM has better results,

as it outperforms CONFUZZ with probability 1 on base64. Still, on md5sum it

does not find any bugs and while its results on uniq are above average, CON-

FUZZ clearly outperforms it. Interestingly, in one run CONFUZZ finds 29 bugs,

which is one more than expected by the LAVA-M developers.

Discussion
Our implementation choices introduce several technical difficulties, which for

the most part we only lacked time to solve. We present them in this section, as

well as other improvements we thought of for the fuzzing part of CONFUZZ.

Trace Length
Given the fact that we need to go through the trace several times, both to trans-

form it and to analyze it, we need to keep it from being too long. In particular,

one of the examples gave us at first a trace of millions of block ids, which ended

up too long to work with.

One way we work around this limitation is by limiting the size of the trace.

First off, we cut the end of the trace: past the interesting transition, we only

keep a certain as many blocks as branches we want to invert, since we know the

last blocks are not relevant to the analysis. We also ignore the code executed

before hitting the entry point, which we can define to be the start of any basic

block. Finally, if we notice that a given block is repeated a lot – for example in a

loop – and we determine that it does not have any side-effects, we can shadow

it, and it will be skipped by the id to DBA function.

The optimization functions also help a lot with this issue, since they simplify

the trace. They mostly do so by removing unused instructions (such as setting

flags that are not used), propagating constants to simplify operations, and us-

ing read-over-write optimization on the memory to resolve select operations,

wherever possible.

Communication
The current version of CONFUZZ communicates via files: we use the fact that

AFL has an out directory, and add two sub-directories, one each for traces and

96

predicates. When either of the tools has something to send to the other one,

it creates a file, in which it writes the information – in binary format, to save

space. Those sub-directories work as the buffer space for our asynchronous

communication: the files are stored there until the tool reads them, at which

point they are moved to another sub-directory so as to not be read twice. We

could however improve this by using a shared memory instead of files: this

would spare us the cost of writing and reading files. We could for example

use circular buffers: two pointers would indicate the beginning and end of the

information (which could be several traces or predicates). We would read from

the first one and write to the last one, looping back to the beginning to reuse

the space if it is available. When the buffer is full, we would just allocate a new,

bigger one.

Constrained Fuzzing
We currently use constraints solely to create solutions. However, we could also

use this information to guide the solution creation.

When an offset is constrained to an interval of value, we might want to try all

of the values, for example during the deterministic phase. If we had x ∈ J0; 5K
because there is a switch on x, wewould immediately try all possibilities, without

waiting for fuzzing to do so. Furthermore, in a bug-funding objective rather

than coverage-guided, we might want to add a mutation which sets the offset

to either of the bounds of the interval, or maybemin− 1 ormax+ 1, in order to
test what happens there.

More generally, we could use the information that offsets are constrained as

an indication that they are relevant to the path and thus should be fuzzed more.

In practice, for target predicates, we would modify choose_havoc_pos so as to
target the offsets with value constraints (since dependency constraints are not

to be modified). As for inversion predicates, we could imagine falling back on

the dependency analysis when we do not have a value constraint. Those offsets

should be the primary targets of fuzzing, since we know they need to change

to satisfy the inverted condition, even if we do not know how. So we could try

creating a solution by setting the offsets with constrained values then running

the havoc phase of fuzzing on the dependency constrained offsets, before dis-

carding the predicate if the campaign does not succeed.

Related Work
Ever since fuzzing was invented, and even more since it was popularized by

AFL [69], a multitude of tools have proposed techniques to improve it. We can

97

differentiate those based on whether they improve fuzzing as is, at most com-

bining it with a static analysis, or combine fuzzing with symbolic execution, or

modified and augmented fuzzing’s expressivity using dynamic analysis.

Improved fuzzing Several researchworks have improved internal components

of Greybox-Fuzzing. AFLFast [5] favors test cases covering rarely taken paths of

the PUT, then introduces a power schedule to determine the time required to

fuzz selected test cases. FairFuzz [46] introduces a mutation masking technique

and changes test case selection strategy to increase code coverage. CollAFL [33]

modifies the hash algorithm used to determine coverage, in order to get more

precise information and increase the accuracy of the coverage. Steelix [48] uses

static analysis and a modified instrumentation to find magic bytes and mu-

tate test cases according to comparisons present in the program. Even though

those techniques show encouraging results, they do not offer formal guaran-

tees about the analyses used.

Hybrid Fuzzing Since the seminal work on Driller, many attempts have been

directed toward combining fuzzing and symbolic execution. Yet, they perform

mostly a shallow combination, with out-of-the-box tools, rather than a deep in-

tegration as we have explored.

Driller [59] alternates between both techniques, calling SE when fuzzing is

“stuck” to help find seeds satisfying new conditions. Contrarily to our approach,

they use a symbolic engine out-of-the-box, and only communicate by exchang-

ing seeds. As a result, they lose the information gained from the path predicate,

unlike CONFUZZ who communicates approximated path predicates.

QSYM [68] runs a symbolic engine parallel to two instances of AFL. Its goal

is to optimize the combination by relying on fuzzing to optimize the symbolic

execution. In particular, the SE used by QSYM resorts to optimistic solving, i.e.

it only keeps the last condition of the trace, arguing that the fuzzer will discard

seeds that do not satisfy the rest of the path predicate. As a result, they sacrifice

correctness, which we argue is important, especially when trying to guide the

fuzzer towards a newly explored part of the code.

PANGOLIN [39] relies on QSYM to retrieve path predicates, builds a polyhe-

dral abstraction of the predicate and then leverages an out-of-the-box sampling

technique to generate seeds satisfying the approximated constraints. The main

difference with our approach is that PANGOLIN aims at over-approximating path

predicate computation, where our approach aims at under-approximations, in

order to drive fuzzing towards hard-to-reach parts of the program. Actually,

over-approximations has been well studied for a long time in software analysis,

while designing under-approximations suitable to symbolic exploration and fast

98

solution enumeration is novel to this work.

Augmented Fuzzing Other techniques try to help fuzzing solve specific condi-

tions without relying on symbolic execution, but without any formal guarantee.

VUzzer [56] employs dynamic taint analysis (DTA) to extract control and data

flow features from the PUT in order to guide the input generation. Angora [14]

aims to satisfy a condition on a path by first identifying relevant input bytes

through taint tracking, then finding a solution through gradient descent with

the targeted condition as sole objective. Matryoshka [15] takes this one step

further, using dependency flow analysis to identify all relevant conditions lead-

ing to the target condition, and taint analysis to identify the bytes that flow into

the condition. Finally, Eclipser [16] relies on dynamic analysis to infer possible

path predicate abstractions and then try to solve them through ad hoc patterns.

Conclusion
In this section, we explained how we combined the Lightweight Symbolic Exe-

cution to constrained fuzzing to create CONFUZZ. Constrained fuzzing is a novel

way to consider fuzzing, where instead of solely prioritizing coverage, the muta-

tion engine fuzzes solutions to a predicate. This allows us to apply the efficiency

of fuzzing to constraint solving, replacing the SMT solver from traditional Sym-

bolic Execution.

We described how the final tool functions, and in particular how the con-

strained fuzzing and the predicate inference communicate. We also showed

some of the engineering effort that went into creating CONFUZZ, a tool which

combines 4kloc of C and 6kloc of OCaml code.

We then gave an overview of the state of the art of fuzzing techniques, and

how our tool compares to some of these tools. We also discussed the limitations

of our technique, as well as many perspectives for future work.

99

Chapter 6
Conclusion and Perspectives
Conclusion
The work of this thesis focuses on automatically testing programs. The goal is to

efficiently find crashes, thus bugs, by creating test suites that cover as many of

the program’s paths as possible. We propose to combine two of the more pop-

ular techniques, fuzzing and symbolic execution, by modifying both to deeply

integrate them with each other. To achieve this, we create Lightweight Symbolic

Execution and Constrained Fuzzing, our two main contributions.

• Lightweight Symbolic Execution is a novel approach to Symbolic Execu-
tion. Relying on an easily-enumerable constraint language, we produce

approximate path predicates, which lead to a specific branch in the ex-

ecution trace. While those predicates are not as precise as regular path

predicates, we ensure that they are always correct-enough. In exchange

for the loss of precision, we get predicates that we can solve, and even

enumerate solutions for, with a linear backtrack algorithm, instead of an

SMT solver. Here we consider two types of predicates: target predicates

lead to an existing branch from the trace, which was deemed interesting,

while inversion predicates lead to a branch was not taken by the current

execution, by negating a condition in the trace.

• Constrained Fuzzing is a new type of fuzzing. While fuzzing usually cre-
ates random test cases, with the goal of maximizing coverage, constrained

fuzzing creates solutions to constraints. By combining it with LSE, we use

fuzzing to create multiple solutions to target predicates, so as to efficiently

explore the new parts of the code the branch leads to. We also reuse the

fuzzer’s logging mechanism to retrieve the trace at runtime, in order to

guide the Lightweight Symbolic Execution.

101

The resulting tool, CONFUZZ, is able to explore new parts of the code by using

LSE on negated conditions. This lets us craft a test case that now satisfies this

condition. Furthermore, we can target branches that lead to a new part of the

code. By using fuzzing to create multiple solutions that satisfy the target pred-

icate, we efficiently explore the code below the target branch. We proved this

in practice by evaluating CONFUZZ on a standard fuzzing benchmark. We found

it out-performed state of the art fuzzing and symbolic execution, and was also

slightly better than one of the most popular combination of the two techniques.

Perspectives
To conclude, we propose three possible ways to continue the work presented in

this thesis.

Constraint Language Extensions For now, our Constraint Language is lim-

ited to constraints of the form x = y and x ∈ Ja; bK, as discussed in Section 4.6.
We believe it is possible to increase the language’s expressivity, while keeping it

easily-enumerable. Here we will present two possible extensions:

sets of intervals this would allow us to represent difference constraints –mak-
ing the LSE fully correct – as well as arithmetic overflows, or conditions

such as bvmod x 4 = 0. In this situation, c ; x ∈ {Ja; bK ; Jc; dK} means
that for the condition c to be true, x needs to be either in Ja; bK or in Jc; dK.
We could create those constraints similarly to equality analysis, or when

doing a value analysis and encountering an operation that would split the

values. As long as we do not have equality constraints, the main differ-

ence would be when fuzzing solutions, after the offset was modified in

havoc phase. To check whether the input still satisfies the constraint, we

would need to go through all intervals in the sets. As for equality con-

straints, they would require us to go through both sets of intervals when

merging constraints from class leader and class members. That would not

affect the easy-enumerability however, since normalization only happens

once.

relations between variables let us imagine we have x = y+ z as a constraint.
We would infer it by analyzing a condition’s pattern, same as equality anal-

ysis. The idea for fuzzing is that anytime we update one of the variables

from the relation, we update another one as well – ordered by offset index,

for example. So, if we had {x 7→ 6; y 7→ 4; z 7→ 2}, and mutation set z to 5,
we would update x to 9. This would require some work to check whether

102

the language still is easy-enumerable, but it would be an interesting idea

to pursue.

Exploiting the constraints As mentioned in Section 5.6, we could use the

information from the constraints for more than constraint solving. We could

use interval constraints as an indication of interesting values, and actively aim

to enumerate values if the interval is small, or at least set it to the bounds.

Furthermore, we could introduce the concept of relevant variables: variables

that are more interesting to mutate, because they have an impact on the path.

For example, when targeting a branch, we could theorize that since constrained

offsets were involved in previous conditions, there are more interesting to mu-

tate than random offsets. This can be taken one step further for negated con-

ditions. For now, we dismiss any condition for which we cannot get a value

constraint. We could instead use the dependency analysis to identify which off-

sets are relevant to the condition. We would then mutate those to try creating a

solution to the condition, even if we do not have a constraint on how we should

mutate them.

Exploring synergy with full Symbolic Execution When conditions are too

complicated for LSE, we cannot express them and have to resort to dependency

analysis. However, this does not ensure that we will create a solution, when in

invert mode. To do this, we could call regular symbolic execution. We would call

Dynamic Symbolic Execution on the trace we struggle with, so as to get a perfect

path predicate for the inverted branch. An SMT-solver would then be able to

craft a solution, since we cannot use fuzzing to solve complex predicates. Said

solution should reach a new part of the code, and can then be added to the

fuzzer’s database as a an interesting test case. In practice, this would require us

to pick a DSE tool and an SMT solver. Furthermore, we would have to assess the

cost of calling an SMT solver, compared to the gain. However, as this would only

apply to a few conditions, rather than every path, we hope it might efficiently

complete CONFUZZ’s technique.

103

Appendix A
Mutations List
In its mutation phase, AFL applies one of several mutations. Algorithm 4 and Fig-

ure A.1 describe the mutations, as well as how one is chosen at random during

havoc phase.

Algorithm 4: AFL’s mutations
Result: applies a random mutation to pos_modif

1 switch UR(15 + ((extras_cnt + a_extras_cnt) ? 2 : 0)) do
// when relevant, endianness is random

2 case 0 do // flip a bit;
3 case 1 do // set byte to interesting value;
4 case 2 do // set word to interesting value;
5 case 3 do // set dword to interesting value;

// when adding or subbing, cst is in [1..35]
6 case 4 do // randomly sub from byte;
7 case 5 do // randomly add to byte;
8 case 6 do // randomly sub from word;
9 case 7 do // randomly add to word;
10 case 8 do // randomly sub from dword;
11 case 9 do // randomly add to dword;
12 case 10 do // set to a random value;
13 case 11..12 do // delete bytes, len = choose_block_len ;
14 case 13 do // clone bytes (75%) or insert block;
15 case 14 do // overwrite bytes with random hunk (75%) or fixed

bytes;
16 case 15 do // overwrite bytes with an extra;
17 case 16 do // insert an extra;

105

#define INTERESTING_8 \
-128, /* Overflow signed 8-bit when decremented */ \
-1, /* */ \
0, /* */ \
1, /* */ \
16, /* One-off with common buffer size */ \
32, /* One-off with common buffer size */ \
64, /* One-off with common buffer size */ \
100, /* One-off with common buffer size */ \
127 /* Overflow signed 8-bit when incremented */

#define INTERESTING_16 \
-32768, /* Overflow signed 16-bit when decremented */ \
-129, /* Overflow signed 8-bit */ \
128, /* Overflow signed 8-bit */ \
255, /* Overflow unsig 8-bit when incremented */ \
256, /* Overflow unsig 8-bit */ \
512, /* One-off with common buffer size */ \
1000, /* One-off with common buffer size */ \
1024, /* One-off with common buffer size */ \
4096, /* One-off with common buffer size */ \
32767 /* Overflow signed 16-bit when incremented */

#define INTERESTING_32 \
-2147483648LL, /* Overflow signed 32-bit when decremented */ \
-100663046, /* Large negative number (endian-agnostic) */ \
-32769, /* Overflow signed 16-bit */ \
32768, /* Overflow signed 16-bit */ \
65535, /* Overflow unsig 16-bit when incremented */ \
65536, /* Overflow unsig 16 bit */ \
100663045, /* Large positive number (endian-agnostic) */ \
2147483647 /* Overflow signed 32-bit when incremented */

static s8 interesting_8[] = { INTERESTING_8 };
static s16 interesting_16[] = { INTERESTING_8, INTERESTING_16 };
static s32 interesting_32[] = { INTERESTING_8, INTERESTING_16, INTERESTING_32 };

Figure A.1: Interesting values

106

Appendix B
Communication format
In this section, we present the formats used by LSE and the constrained fuzzer

to communicate.

type afl_trace =
{ file_id : string ;

is_seed : bool ;
new_trans_id : int ;
esp_val : int ;
ebp_val : int ;
ids_trace : int array ;
read_sizes : int array ;
alloc_addr : int array ;

}

Figure B.1: Trace format

107

type val_cstr =
{ lo_offs : int ;

hi_offs : int ;
lo_val : int ;
hi_val : int ;

}

type cstr =
{ file_name : string ;

from_inv : bool ;
dep_cstrs : int list ;
uvalues : val_cstr list ;
svalues : val_cstr list ;

}

Figure B.2: Constraints format

108

Bibliography
[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge

University Press, USA, 1 edition, 2008.

[2] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not

what you execute. ACM Trans. Program. Lang. Syst., 32(6), August 2010.

[3] Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent

Kirchner, Nikolai Kosmatov, André Maroneze, Valentin Perrelle, Virgile Pre-

vosto, Julien Signoles, and Nicky Williams. The dogged pursuit of bug-

free c programs: The frama-c software analysis platform. Commun. ACM,

64(8):56–68, July 2021.

[4] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roy-

choudhury. Directed greybox fuzzing. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’17, page

2329–2344, New York, NY, USA, 2017. Association for Computing Machin-

ery.

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-

based greybox fuzzing as markov chain. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pages 1032–

1043. ACM, 2016.

[6] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. Rwset: Attacking

path explosion in constraint-based test generation. In C. R. Ramakrishnan

and Jakob Rehof, editors, Tools and Algorithms for the Construction and Anal-

ysis of Systems, pages 351–366, Berlin, Heidelberg, 2008. Springer Berlin

Heidelberg.

[7] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test gen-

eration. In 23rd IEEE/ACM International Conference on Automated Software

Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy, pages 443–446.

IEEE Computer Society, 2008.

109

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted

and automatic generation of high-coverage tests for complex systems pro-

grams. In OSDI, volume 8, pages 209–224, 2008.

[9] Cristian Cadar and Dawson Engler. Execution generated test cases: How to

make systems code crash itself. In Patrice Godefroid, editor,Model Checking

Software, pages 2–23, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-

son R. Engler. EXE: automatically generating inputs of death. In Ari Juels,

Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, Proceed-

ings of the 13th ACM Conference on Computer and Communications Security,

CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006, pages 322–

335. ACM, 2006.

[11] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:

three decades later. Communications of the ACM, 56(2):82–90, 2013.

[12] Nuno Carvalho, Cristiano Sousa, Jorge Pinto, and Aaron Tomb. Formal ver-

ification of klibc with the wp frama-c plug-in. In NASA Formal Methods, vol-

ume 8430, pages 343–358, 04 2014.

[13] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng

Wu, and Yang Liu. Hawkeye: Towards a desired directed grey-box fuzzer.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS ’18, page 2095–2108, New York, NY, USA, 2018.

Association for Computing Machinery.

[14] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search.

In 2018 IEEE Symposium on Security and Privacy (SP), pages 711–725. IEEE,

2018.

[15] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: fuzzing deeply

nested branches. In Proceedings of the 2019 ACM SIGSAC Conference on Com-

puter and Communications Security, pages 499–513, 2019.

[16] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. Grey-box

concolic testing on binary code. In Proceedings of the International Confer-

ence on Software Engineering, pages 736–747, 2019.

[17] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-

nization skeletons using branching time temporal logic. In Dexter Kozen,

editor, Logics of Programs, pages 52–71, Berlin, Heidelberg, 1982. Springer

Berlin Heidelberg.

110

[18] EdmundM. Clarke and JeannetteM.Wing. Formalmethods: State of the art

and future directions. ACM Comput. Surv., 28(4):626–643, December 1996.

[19] Sylvain Conchon, Amit Goel, Sava Krstić, Alain Mebsout, and Fatiha Zaïdi.

Cubicle: A parallel smt-based model checker for parameterized systems.

In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification,

pages 718–724, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[20] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In RobertM. Graham, Michael A. Harrison, and Ravi Sethi, editors,

Conference Record of the Fourth ACM Symposium on Principles of Program-

ming Languages, Los Angeles, California, USA, January 1977, pages 238–252.

ACM, 1977.

[21] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine

Miné, David Monniaux, and Xavier Rival. The astreé analyzer. In Shmuel

Sagiv, editor, Programming Languages and Systems, 14th European Sympo-

sium on Programming,ESOP 2005, Held as Part of the Joint European Confer-

ences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8,

2005, Proceedings, volume 3444 of Lecture Notes in Computer Science, pages

21–30. Springer, 2005.

[22] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, and

B.M. Horowitz. Model-based testing in practice. In Proceedings of the 1999

International Conference on Software Engineering (IEEE Cat. No.99CB37002),

pages 285–294, 1999.

[23] Robin David, Sébastien Bardin, Josselin Feist, Laurent Mounier, Marie-

Laure Potet, Thanh Dinh Ta, and Jean-Yves Marion. Specification of con-

cretization and symbolization policies in symbolic execution. In Andreas

Zeller and Abhik Roychoudhury, editors, Proceedings of the 25th Interna-

tional Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,

Germany, July 18-20, 2016, pages 36–46. ACM, 2016.

[24] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin

Feist, Marie-Laure Potet, and Jean-Yves Marion. BINSEC/SE: A dynamic

symbolic execution toolkit for binary-level analysis. In IEEE 23rd Interna-

tional Conference on Software Analysis, Evolution, and Reengineering, SANER

2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1, pages 653–656.

IEEE Computer Society, 2016.

111

[25] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal

derivation of programs. Commun. ACM, 18(8):453–457, August 1975.

[26] Adel Djoudi and Sébastien Bardin. Binsec: Binary code analysis with low-

level regions. In Christel Baier and Cesare Tinelli, editors, Tools and Algo-

rithms for the Construction and Analysis of Systems, pages 212–217, Berlin,

Heidelberg, 2015. Springer Berlin Heidelberg.

[27] Adel Djoudi, Sébastien Bardin, and Éric Goubault. Recovering high-level

conditions from binary programs. In John S. Fitzgerald, Constance L. Heit-

meyer, Stefania Gnesi, and Anna Philippou, editors, FM 2016: Formal Meth-

ods - 21st International Symposium, Limassol, Cyprus, November 9-11, 2016,

Proceedings, volume 9995 of Lecture Notes in Computer Science, pages 235–

253, 2016.

[28] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ul-

rich, and R. Whelan. Lava: Large-scale automated vulnerability addition. In

2016 IEEE Symposium on Security and Privacy (SP), pages 110–121, May 2016.

[29] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of au-

tomated techniques for formal software verification. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 27(7):1165–1178,

2008.

[30] Benjamin Farinier, Robin David, Sébastien Bardin, and Matthieu Lemerre.

Arrays made simpler: An efficient, scalable and thorough preprocessing.

In Gilles Barthe, Geoff Sutcliffe, and Margus Veanes, editors, LPAR-22. 22nd

International Conference on Logic for Programming, Artificial Intelligence and

Reasoning, volume 57 of EPiC Series in Computing, pages 363–380. Easy-

Chair, 2018.

[31] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs

meet provers. In Matthias Felleisen and Philippa Gardner, editors, Pro-

gramming Languages and Systems, pages 125–128, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[32] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. Afl++:

Combining incremental steps of fuzzing research. In 14th {USENIX} Work-
shop on Offensive Technologies ({WOOT} 20), 2020.

[33] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei,

and Zuoning Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium

on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,

California, USA, pages 679–696, 2018.

112

[34] Patrice Godefroid. Higher-order test generation. In Proceedings of the 32nd

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’11, page 258–269, New York, NY, USA, 2011. Association for

Computing Machinery.

[35] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed auto-

mated random testing. In Vivek Sarkar and Mary W. Hall, editors, PLDI,

pages 213–223, 2005.

[36] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. SAGE: whitebox

fuzzing for security testing. Commun. ACM, 55(3):40–44, 2012.

[37] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Ma-

chine learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM In-

ternational Conference on Automated Software Engineering, ASE 2017, page

50–59. IEEE Press, 2017.

[38] Anjana Gosain and Ganga Sharma. A survey of dynamic program analysis

techniques and tools. In Suresh Chandra Satapathy, Bhabendra Narayan

Biswal, Siba K. Udgata, and J.K. Mandal, editors, Proceedings of the 3rd In-

ternational Conference on Frontiers of Intelligent Computing: Theory and Ap-

plications (FICTA) 2014, pages 113–122, Cham, 2015. Springer International

Publishing.

[39] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang. Pangolin: Incremental hybrid

fuzzing with polyhedral path abstraction. In 2020 IEEE Symposium on Secu-

rity and Privacy (SP), pages 1613–1627, Los Alamitos, CA, USA, may 2020.

IEEE Computer Society.

[40] Timotej Kapus and Cristian Cadar. A segmented memory model for sym-

bolic execution. In Proceedings of the 2019 27th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations

of Software Engineering, ESEC/FSE 2019, page 774–784, New York, NY, USA,

2019. Association for Computing Machinery.

[41] James C King. Symbolic execution and program testing. Communications of

the ACM, 19(7):385–394, 1976.

[42] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and

Boris Yakobowski. Frama-c: A software analysis perspective. Formal Aspects

Comput., 27(3):573–609, 2015.

[43] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.

Efficient state merging in symbolic execution. In Proceedings of the 33rd

113

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’12, page 193–204, New York, NY, USA, 2012. Association for

Computing Machinery.

[44] Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise

program verification using SMT solvers. In George C. Necula and Philip

Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2008, San Francisco, California,

USA, January 7-12, 2008, pages 171–182. ACM, 2008.

[45] JongHyup Lee, Thanassis Avgerinos, and David Brumley. TIE: principled

reverse engineering of types in binary programs. In Proceedings of the Net-

work and Distributed System Security Symposium, NDSS 2011, San Diego, Cali-

fornia, USA, 6th February - 9th February 2011. The Internet Society, 2011.

[46] Caroline Lemieux and Koushik Sen. Fairfuzz: a targeted mutation strat-

egy for increasing greybox fuzz testing coverage. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, ASE

2018, Montpellier, France, September 3-7, 2018, pages 475–485, 2018.

[47] Wenbin Li, Franck Le Gall, and Naum Spaseski. A survey on model-based

testing tools for test case generation. In Vladimir Itsykson, Andre Scedrov,

and Victor Zakharov, editors, Tools and Methods of Program Analysis, pages

77–89, Cham, 2018. Springer International Publishing.

[48] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang

Liu, and Alwen Tiu. Steelix: program-state based binary fuzzing. In Proceed-

ings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages 627–637,

2017.

[49] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil

Cha, Manuel Egele, Edward J Schwartz, and Maverick Woo. The art, sci-

ence, and engineering of fuzzing: A survey. IEEE Transactions on Software

Engineering, 2019.

[50] J.P. Marques Silva and K.A. Sakallah. Dynamic search-space pruning tech-

niques in path sensitization. In 31st Design Automation Conference, pages

705–711, 1994.

[51] Xiaozhu Meng and Barton P. Miller. Binary code is not easy. In Proceedings

of the 25th International Symposium on Software Testing and Analysis, ISSTA

2016, page 24–35, New York, NY, USA, 2016. Association for Computing

Machinery.

114

[52] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the

reliability of UNIX utilities. Commun. ACM, 33(12):32–44, 1990.

[53] Markus Müller-Olm, David A. Schmidt, and Bernhard Steffen. Model-

checking: A tutorial introduction. In Agostino Cortesi and Gilberto Filé,

editors, Static Analysis, 6th International Symposium, SAS ’99, Venice, Italy,

September 22-24, 1999, Proceedings, volume 1694 of Lecture Notes in Com-

puter Science, pages 330–354. Springer, 1999.

[54] Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz,

and Matthieu Lemerre. Binary-level directed fuzzing for use-after-free vul-

nerabilities. In 23rd International Symposium on Research in Attacks, Intru-

sions and Defenses (RAID 2020), pages 47–62, San Sebastian, October 2020.

USENIX Association.

[55] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by pro-

gram transformation. In 2018 IEEE Symposium on Security and Privacy (SP),

pages 697–710. IEEE, 2018.

[56] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In 24th

Annual Network and Distributed System Security Symposium, NDSS 2017, San

Diego, California, USA, February 26 - March 1, 2017, 2017.

[57] Thomas W. Reps, Junghee Lim, Aditya V. Thakur, Gogul Balakrishnan, and

Akash Lal. There’s plenty of room at the bottom: Analyzing and verifying

machine code. In Tayssir Touili, Byron Cook, and Paul B. Jackson, editors,

Computer Aided Verification, 22nd International Conference, CAV 2010, Edin-

burgh, UK, July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes in

Computer Science, pages 41–56. Springer, 2010.

[58] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing

engine for c. SIGSOFT Softw. Eng. Notes, 30(5):263–272, September 2005.

[59] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu

Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Krügel, and Gio-

vanni Vigna. Driller: Augmenting fuzzing through selective symbolic execu-

tion. In NDSS, 2016.

[60] Synopsis. Heartbleed’s website. http://heartbleed.com/.

[61] András Vargha and Harold D. Delaney. A critique and improvement of the

cl common language effect size statistics of mcgraw and wong. Journal of

Educational and Behavioral Statistics, 25(2):101–132, 2000.

115

http://heartbleed.com/

[62] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. Ifuzzer:

An evolutionary interpreter fuzzer using genetic programming. In Ioannis

Askoxylakis, Sotiris Ioannidis, Sokratis Katsikas, and Catherine Meadows,

editors, Computer Security – ESORICS 2016, pages 581–601, Cham, 2016.

Springer International Publishing.

[63] Website. Afl vulnerability trophy case. http://lcamtuf.coredump.cx/afl/
#bugs, 2019.

[64] Website. Peach. https://www.peach.tech/, 2019.

[65] Website. radamsa: a general-purpose fuzzer. https://github.com/aoh/
radamsa, 2019.

[66] Website. Spike. http://www.immunitysec.com/, 2019.

[67] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian,

and Bin Liang. Semfuzz: Semantics-based automatic generation of proof-

of-concept exploits. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’17, page 2139–2154, New York,

NY, USA, 2017. Association for Computing Machinery.

[68] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. QSYM :

A practical concolic execution engine tailored for hybrid fuzzing. In 27th

USENIX Security Symposium (USENIX Security 18), pages 745–761, Baltimore,

MD, August 2018. USENIX Association.

[69] Michal Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/,
2021.

http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs
https://www.peach.tech/
https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
http://www.immunitysec.com/
http://lcamtuf.coredump.cx/afl/

Titre: Fuzzing et méthodes symboliques pour la détection de vulnérabilités à large échelle
Mots clés: sécurité, méthodes symboliques, fuzzing, vulnérabilités

Résumé: Alors que les programmes informatiques
se répandent, le risque de bugs augmente. Dans
cette thèse, nous voulons trouver d’éventuels bugs
dans des programmes finis et publics.

Pour cela, nous utilisons la génération automa-
tique de tests. Complémentant les tests écrits à
la main, les générateurs de tests fabriquent au-
tomatiquement une série de tests, avec pour but
de maximiser la couverture de code et de min-
imiser l’effort humain. Actuellement, les tech-
niques de génération de test les plus répandues
dans l’académique et dans l’industrie sont basées
sur l’exécution symbolique ou le fuzzing.

- L’exécution symbolique vise à explorer com-
plètement les chemins d’exécution. Pour cela,
chaque chemin est exécuté sur une entrée symbol-
ique, et une contrainte est inférée sur cette entrée.
Quand l’analyse atteint la fin d’un chemin, cette
contrainte est un prédicat de chemin, et l’exécution
concrète du programme sur n’importe laquelle de
ses solutions suivra le chemin voulu. De telles en-
trées concrètes sont générées avec un solveur de
contraintes, et forment la série de tests. Cepen-
dant, il n’est pas toujours possible d’explorer tous
les chemins en un temps raisonnable, et il est sou-
vent nécessaire de borner l’exploration.

- Le fuzzing vise à exécuter le programme
sur de nombreuses entrées, en espérant explorer
tous les chemins possibles. Il dépend donc d’une
génération d’entrées rapide et facile. Tandis que
les fuzzers de base fonctionnent en boîte noire et
génèrent des entrées aléatoires indépendamment
du programme, les fuzzers en boîte grise utilisent
une analyse pour obtenir des informations à pro-
pos du programme. Ces informations sont alors
utilisées pour améliorer la génération d’entrées.
Cependant, malgré ces améliorations, les fuzzers
ont toujours de la difficulté à trouver la solution
de conditions qui ont une faible probabilité d’être
vraies.

Ainsi, l’exécution symbolique et le fuzzing ex-
hibent des forces et des faiblesses complémen-
taires, nous poussant à les combiner.

Pendant cette thèse, nous avons développé
une technique de génération de test automatisée,
qui combine la puissance de raisonnement de
l’exécution symbolique pour s’attaquer au code
complexe, et le faible coût du fuzzing pour générer
des entrées efficacement.

La solution que nous proposons combine deux
nouvelles idées: l’Exécution Symbolique Légère
(ESL) et le Fuzzing Contraint. L’Exécution Sym-
bolique Légère est une variante de l’exécution sym-
bolique où l’analyse s’arrête sur une condition
d’un chemin, plutôt qu’à la fin, et le langage de
contraintes ciblé est réduit à un fragment facile-
ment énumérable de l’habituel. Par conséquent,
dériver des prédicats de chemin (corrects) dans
ce langage est plus compliqué, mais il est facile
d’énumérer des entrées exerçant un chemin, sans
utiliser de solveur de contraintes. Deuxièmement,
le Fuzzer Contraint manipule une entrée et une
contrainte facilement énumérable, et génère de
nouvelles entrées qui satisfont la contrainte et suiv-
ent donc le chemin, jusqu’à la condition ciblée.
En général, l’ESL guidera l’exploration au-delà des
conditions difficiles et vers les parties intéressantes
du code, tandis que le fuzzer contraint créera ef-
ficacement des entrées, y compris des solutions
aux contraintes. Cela nous permet d’explorer le
programme sans systématiquement faire appel à
l’analyse symbolique, et supprime la dépendance à
un solveur pour créer des entrées satisfaisant les
contraintes.

Nous avons évalué les performances de l’outil
utilisant ces techniques, appelé ConFuzz, sur un
banc de tests standard du fuzzing. La conclu-
sion de cette expérimentation est que ConFuzz a
de meilleurs performances que l’état de l’art du
fuzzing et de l’exécution symbolique.

117

Title: Software security: combining fuzzing and symbolic methods for vulnerability detection
Keywords: symbolic methods, fuzzing, security, vulnerabilities

Abstract: As computer programs spread, the risk
of bugs increases. In this thesis, we want to find
possible bugs in finished and released programs.

We do this through automatic test generation,
a major topic in software engineering and security.
A complement to hand-crafted tests, test genera-
tors automatically build test suites, aiming to max-
imize program coverage and minimize human ef-
fort. Currently, most test generation techniques
and tools studied by researchers and applied in in-
dustry rely on some form of either symbolic execu-
tion or fuzzing.

- Symbolic execution aim to exhaustively ex-
plore the possible execution paths. It achieves this
by executing each path on a symbolic input, and
inferring a constraint on said input. When the
analysis reaches the end of a path, this constraint
is a path predicate, and a concrete execution of
the program on any of its solution will follow the
intended path. Such test cases are generated us-
ing an off-the-shelf solver, and form the test suite.
However, it is not always possible to explore all
paths in reasonable time, and we often have to
bound the exploration.

- Fuzzing aims to run the program on many
test cases, in order to hopefully trigger all possi-
ble paths. As such, it relies on quick and easy
test case generation. While the most basic fuzzers
function in a blackbox manner and generate ran-
dom test cases independently from the program,
greybox fuzzers also rely on an analysis to gain
some information about the program. This infor-
mation is then used to make the test case gen-
eration more efficient. However, despite this im-
provement, fuzzers still struggle with finding the
solution to conditions that have a low probability
of being true, such as password checks.

Hence, symbolic execution and fuzzing exhibit

rather complementary strengths and weaknesses,
calling for a proper integration between the two
techniques.

During this thesis, we developed an automated
test generation technique, combining the reason-
ing power of symbolic execution to tackle complex
code with the light cost of greybox fuzzing to gen-
erate test cases efficiently.

The solution we propose combines two novel
ideas: Lightweight Symbolic Execution (LSE) and
Constrained Fuzzing. Lightweight Symbolic Ex-
ecution is a variant of symbolic execution where
the analysis targets a condition on a path, rather
than a full path, and the target constraint lan-
guage is restricted to an easily-enumerable frag-
ment of the usual one. As a consequence, deriving
(correct) path predicates in this language is more
complicated but test cases following a given path
are then easy to enumerate, without using any off-
the-shelf constraint solver. Second, a Constrained
Fuzzer operates over a test case and an easily-
enumerable constraint in order to quickly generate
test cases which follow the intended path, up to
the targeted condition. Overall, LSE will lead the
exploration past difficult conditions and towards in-
teresting parts of the code, while the constrained
fuzzer will efficiently create test cases, including
solutions to the constraints. This allows us to ex-
plore the program without systematically relying
on symbolic analysis, and removes the need for an
SMT solver to create test cases satisfying the con-
straints.

We evaluated the performances of the result-
ing tool, called ConFuzz, on a standard fuzzing
benchmark, and found that we improved upon the
performance of standard fuzzing and symbolic ex-
ecution.

118

	Introduction
	Context
	Problem, goal, challenges
	Our Approach
	Contributions and outline

	Background
	Overview of Program Analysis
	What Do We Analyze?
	How Do We Analyze?
	Why Do We Analyze?

	Symbolic Execution
	Dynamic Symbolic Execution
	KLEE, State of the Art of Symbolic Execution
	Difficulties

	Fuzzing
	AFL, State of The Art Greybox Fuzzing

	Binary Analysis
	Context
	Challenges

	Motivating Example
	Code
	Using State-of-the-Art Tools
	Fuzzing with AFL
	Symbolic Execution with KLEE

	Our approach
	Results

	Lightweight Symbolic Execution
	Overview
	Defining the Constraint Language
	Consequences of the approximation

	The Trace
	Language
	Specifics

	Inferring Constraints
	Orchestration
	Equality Analysis
	Value Analysis
	Dependency Analysis
	Example
	Properties

	Implementation
	Memory Representation
	Caching information

	Discussion
	LSE usage
	Constraint Language
	Limitations and perspectives

	Related Work
	Conclusion

	Combination of LSE and Constrained Fuzzing
	Overview
	How To Create Solutions
	AFL
	ConFuzz
	Implementation

	The Trace
	Retrieving the Trace
	Transforming the trace
	Implementation

	Communicating the Predicates
	Predicate format
	Reception of predicates

	Experimental Evaluation
	Experimental Setup
	ConFuzz, SE, Greybox Fuzzing

	Discussion
	Trace Length
	Communication
	Constrained Fuzzing

	Related Work
	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives

	Mutations List
	Communication format

