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Abstract

This thesis focuses on two studies investigating the resting-state EEG functional connectivity (i)
in patients with benign childhood epilepsy with centrotemporal spikes (BCECTS) and (ii) in
preterm and full-term neonates during quite sleep (QS) and active sleep (AS).

In the first part of the thesis, we investigated changes in brain functional connectivity in
BECTS patients compared to healthy controls in various frequency bands under the eyes-closed
resting condition. The differences in EEG functional and effective connectivity patterns between
BCECTS patients and healthy controls were studied in both the sensor and source spaces. The
graph theory metrics were also used to characterize functional segregation and integration in
BCECTS brain networks in comparison to healthy controls. The first part of the study showed that
the EEG resting state network of BCECTS patients was disrupted in the presence and absence of
interictal epileptic discharges (IEDs). Patients displayed significantly higher 6 power in the scalp
EEG across the whole brain regions and lower spectral power in the alpha band especially at the
occipital regions in the presence of IEDs. We also observed decreased source activities at the
frontal and occipital regions and bilateral increased source activities at the temporal regions in
BCECTS patients compared to controls. Our functional connectivity study showed that BCECTS
was associated with functionally altered resting state that probably arises from disrupted functional
organization of resting-state brain networks on a frequency dependent manner. Our results showed
that the BCECTS brain networks were more ordered especially in lower frequency bands in the
presence of IEDs and less ordered in the absence of IEDs in comparison to healthy controls. We
further investigated the effective connectivity in BCECTS patients to identify major drivers of the
epileptic activity. We found that the post and precentral regions with supplementary motor areas
were the major drivers in the ipsilateral hemisphere of the epileptic foci. The causal influence from
the central to ipsilateral frontal regions and contralateral hemisphere might explain cognitive
deficits in children with BCECTS.

In the second part of the thesis, we investigated EEG functional connectivity in preterm
babies using high density EEG data and graph metrics during quite sleep. Continuous evolution of
cerebral structures during early brain maturation imposes rapid spatial and temporal changes in
neonatal EEG patterns. There are different endogenous brain activities such as theta temporal
bursts which can serve as biomarkers for neurodevelopment in preterm neonates. We investigated
the impact of theta temporal activities on EEG functional connectivity patterns. For normal brain
activities with/without theta temporal burst activity, preterm babies presented higher functional
connection densities at the frontal and posterior regions compared to other regions. This finding
suggests that these regions may functionally develop earlier than other brain regions. The
comparison between normal and theta temporal activities revealed higher activity at each of the
temporal region. Theta temporal activity in the preterm increased functional connectivity restricted
to temporal regions.



In the last part of the thesis, we investigated functional connectivity during QS and AS sleep
conditions in full-term neonates. Stronger source activities were observed at the frontal region
during AS while the QS condition was characterized with increased source activities at the
temporal and posterior regions. Similarly, higher functional connection densities were found at the
frontal, temporal and posterior regions during both QS and AS. In both conditions, the clustering
coefficient at the central region was lower compared to other regions. The increased source activity
at the frontal and posterior regions might support the evidence that these regions develop earlier
than other brain regions.

Throughout this thesis, we presented clear and robust approaches for assessing brain
functional connectivity patterns in epileptic patients as well as in healthy preterm and full-term
neonates. Our findings open new avenues to better understanding complex interactions between
brain functional networks involved in epileptic activity. In neonates, our results also demonstrated
that the functional connectivity analysis can be efficiently used to study the effect of EEG
transients and sleep stages on the functional organization of the brain networks during the early
periods of neurodevelopment.



Résumeé

Cette these porte sur deux aspects de la connectivité fonctionnelle cérébrale en EEG chez 1’enfant
a I’état de repos: (i) chez les enfants présentant une Epilepsie Bénigne a Pointes Centro-
Temporales ou EPCT et (ii) chez les nouveau-nes a terme et prématuré pendant le sommeil.

Dans la premiere étude, nous avons examiné les modifications de la connectivité fonctionnelle
cérébrale liées a 1’épilepsie en comparant les résultats chez les patients EPCT par rapport aux
témoins sains. Ceci a eté réalisé dans différentes bandes de fréquences a I'état de repos, les yeux
fermés. Les différences de connectivité fonctionnelle mais aussi effective ont été étudiées dans
I’espace capteur et dans 1’espace source. La théorie des graphs a été appliquée afin de caractériser
la ségrégation et ’intégration fonctionnelle des réseaux cérébraux chez les patients EPCT et les
sujets sains.

La premiére partie de I'étude a montré que les réseaux a 1’état de repos des patients EPCT
étaient perturbés par la présence de pointes épileptiques intercritiques (11S). La puissance EEG
dans la bande 6 était significativement plus élevée sur I’ensemble du scalp lors de la présence des
pointes épileptiques alors que la puissance de la bande alpha était diminuée notamment dans les
régions occipitales. Dans 1’espace source nous avons aussi observé une diminution de 1’activité
cérébrale dans les régions frontales et occipitales et une augmentation dans les régions temporales
bilatérales chez les patients EPCT comparés aux sujets sains.

Notre étude de connectivité fonctionnelle a montré que les patients EPCT présentaient une
altération du réseau cérébral au repos qui pouvait étre mise en relation avec une perturbation des
réseaux dit de repos selon la gamme de fréquence analysée. Nos résultats ont montré que les
réseaux cérébraux chez les patients EPCT étaient plus ordonnés en particulier dans les bandes de
fréquences basses et notamment en présence des pointes épileptiques intercritiques. Nous avons
examiné la connectivité effective chez les patients EPCT afin d'identifier les principaux drivers de
l'activité épileptique. Nous avons montré que les régions les plus impliquées dans 1I’émergence des
pointes épileptiques étaient les régions précentrales dont les aires motrices supplémentaires de
I'némisphére ipslatéral au foyer épileptique. L'influence causale de la région centrale vers la région
frontale ipsilatérale et controlatérale pourrait étre impliquée dans les déficits cognitifs observés
chez I’enfant présentant une Epilepsie Bénigne a Pointes Centro-Temporales

Dans la seconde étude, nous avons étudié la connectivité fonctionnelle cérébrale chez les
nouveau- nés prématurés, dans le sommeil calme, a I'aide de I’EEG haute densité et en utilisant les
outils de la théorie des graphs. L’évolution constante des structures cérébrales au cours de la
maturation cérébrale précoce impose des changements rapides spatiaux et temporels des patterns
de I'EEG néonatal. Il existe différents types de neurobiomarqueurs développementaux endogenes
de lactivité cérébrale néonatale parmi lesquels les activités théta temporales. Nous avons étudié
I'impact des activités théta temporales sur la connectivité fonctionnelle a cette période du
développement. Avec ou sans activité théta temporale, la densité de la connectivite fonctionnelle
est plus élevée dans les régions frontales et occipitales suggérant 1’existence d’un gradient de



maturation. La présence des activités théta temporales induit une augmentation de la connectivité
fonctionnelle restreinte aux régions temporales ipsilaterales.

Chez les nouveau-nés nés a terme, nous avons étudié la connectivité fonctionnelle au cours du
sommeil calme et du sommeil agité. L’activité de source était plus importante dans les régions
frontales au cours du sommeil agité alors qu’elle était plus importante dans les régions temporales
et postérieures dans le sommeil calme. De la méme maniére la densité de connectivité
fonctionnelle est plus élevée dans les régions frontales, temporales et postérieures dans le sommeil
agité et le sommeil calme. Dans ces deux conditions, le coefficient de clustering était moins
important dans la région centrale que dans les autres régions. L'augmentation de ’activité de
source dans les régions frontales et postérieures pourrait constituer un autre argument concernant
le développement précoce de ces régions.
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"The brain is a world consisting of a number of unexplored continents
and great stretches of unknown territory"

Santiago Ramon y Cajal
Spanish neuroscientist and Nobel laureate (1906)
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Chapter 1

Introduction

1.1 Thesis Overview and Problem definitions

Worldwide, about 65 million people are affected by epilepsy, a chronic neurological disease
characterized by sudden bursts of abnormal neuronal activities in the brain, manifesting as
seizures. Significant progress has been made towards understanding basic mechanisms of epilepsy
especially in young children. There are many age-specific clinical and electroencephalographic
features of epilepsy that are not clearly understood yet. Functional connectivity analyses can
provide fundamental insights into complex interactions and functional organization of the brain
networks under normal and pathological conditions. Functional connections between brain
networks can occur between spatially close or remote areas to effectively perform information
segregation and integration. The functional connectivity analysis in patients with epilepsy helps
neurologists to better understand the pathophysiological impact of altered neurophysiology on the
brain function especially during critical periods of neurodevelopment.

In adults, the brain neural networks are connected with firmer intricate connections between
various brain regions. The infant brain, however, contains less intricate, loose networks with
relatively less functional connections between different regions. This suggests that functional brain
networks sustaining advanced behavior are immature in infants. During the maturation process, a
gradual reorganization of cortical regions between birth and adulthood occurs and large-scale
cortical networks develop from a ‘‘local and segregated’’ to a ‘‘distributed and integrated”’
organization.

In neonates, the functional organization of the brain networks is not clearly understood yet.
The functional analysis in neonates will expand our understanding of the sequential steps in the
brain maturation and may help to investigate disturbances in the maturation process of the brain in
preterm and full-term babies.

In this thesis we focus on two studies investigating the resting-state EEG functional

connectivity in children with benign childhood epilepsy with centrotemporal spikes (BCECTS)
and in preterm and full-term neonates.

1.2 Purpose of the Thesis



The main aim of this thesis is to investigate the functional plasticity in development in neonates
and the effect of pathology such as epilepsy in young children during the course of development.
Therefore, the thesis was subdivided into two parts

In the first part of the thesis, we investigated changes in brain functional connectivity patterns in
BCECTS patients compared to healthy controls in various frequency bands under the eyes-closed
resting condition. The differences in EEG functional and effective connectivity patterns between
BCECTS patients and healthy controls were studied in both the sensor and source spaces. . The
objectives of this study were:

e Toinvestigate the changes in the EEG resting-state spectral power and spatial distribution
of EEG cortical sources in different frequency bands in BCECTS patients in comparison
to healthy controls.

e To characterize the brain functional connectivity patterns in BCECTS patients with
different graph theory metrics commonly used to explore local and global topologies of
the brain networks in terms of functional integration and segregation.

e To investigate the impact of interictal epileptic discharges on the functional connectivity
patterns in BCECTS patients.

e To identify time-varying changes in functional connectivity as well as the brain regions
involved in the generation and propagation of interictal epileptic discharges.

In the second part of the thesis, we assessed functional connectivity patterns of the brain networks
in healthy preterm and full-term neonates with high density EEG data during quiet and active sleep
periods. The purposes of this study were:
e To investigate the brain functional organization in preterm and full-term neonates.
e To investigate the impact of endogenous brain activities like theta temporal activity on the
brain functional connectivity patterns in neonates.
e To characterize the functional connectivity patterns of the neonatal brain networks with
different network metrics.
e To investigate the brain functional organization in healthy full-term neonates during quiet
and active sleep periods.

1.3 Thesis Outline

Chapter 1 introduces the motivation and purposes of the thesis. The rest of the thesis is organized
as follows.

Chapter 2 provides an introduction to the brain anatomy and functional maturation during infancy
and adulthood. A short background on the generation and recording of EEG in neonates and adult
is also provided. The last part of Chapter 2 presents an overview on epileptic activity with
particular attention to the benign childhood epilepsy.

Chapter 3 reports a short review on brain connectivity analyses including structural, functional and
effective connectivity. Special attention is paid to the functional connectivity analysis and graph
theory metrics with mathematical details.



In chapter 4, we use the approach presented in Chapter 3 to investigate the differences in brain
functional connectivity patterns between BCECTS patients and healthy controls under the resting
state condition.

Chapter 5 investigates the functional connectivity patterns using the seed-based functional analysis
and explores the temporal dynamics of the brain functional connectivity during interictal epileptic
discharges in BCECTS patients.

Chapter 6 is devoted to the brain functional connectivity analysis in preterm and full-term neonates
using high density EEG. The specific features of neonatal EEG activities such as theta temporal
burst activity (TTA) and different sleep stages including quiet and active sleep are taken into
considerations.

Chapter 7 gives the concluding remarks and future research directions.



Chapter 2
EEG and Epilepsy

2.1 Introduction

The temporal dynamics of the brain is determined by successions of spatiotemporal transient
patterns of activities integrated by the brain’s anatomical structure including principally
connections with highly adaptable nature. The temporal coherence is achieved by the
synchronization of neural networks operating in harmony in distinct frequency bands. The brain
functioning can be explained at the level of the neural networks interconnected in an intricate
pattern. In this view, the brain can be regarded as an ensemble of connected dynamical systems
relating the inputs and outputs of its constituent parts. To capture the temporal evolution of brain
activities, one needs a tool to monitor it over time. This chapter describes briefly brain anatomy
and functions, EEG genesis and measurement, and basic EEG rhythms during the resting state in
adults, young children and neonates. A short overview of epilepsy including pediatric epilepsy is
also given, with particular attention to the benign childhood epilepsy.

2.2 Human brain

The brain tissue consists of billions of neurons. It is divided into gray and white matters. Grey
matter consists of cell bodies and few myelinated axons, while white matter consists of very few
cell bodies and is principally composed of long-range myelinated axon tracts (Stiles and Jernigan,
2010). The brain is protected by the skull and dura matter, arachnoid and pia matter. The space
between the pia matter and the arachnoid is filled with cerebrospinal fluid (CSF) (Figure 2.1)
(Silverthorn, 2007). The CSF protects the brain against the bone and serves as a medium for the
transportation of the brain nutrients and water to the white and gray matters. In large scale, the
brain is divided into the cerebellum at the bottom of the brain and the cerebrum at the upper part
of the brain usually referred to as the cerebral cortex. The cerebrum is divided into right and left
hemispheres including frontal, temporal, parietal and occipital lobes (Figure 2.3).
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Figure 2.1: Brain structure. Brain is protected by the skull, scalp and CSF with the pia matter and arachnoid membrane (adapted
from (Silverthorn, 2007))

Brain structural maturation

The human brain structure matures rapidly form early fetal period within which the brain has a
smooth, “lissencephalic” structure and it gradually develops the characteristic mature pattern of
gyral and sulcal folding (Figure 2.2). The formation of gyri and sulci follows an orderly sequence
as the age increases (Stiles and Jernigan, 2010). Another important characteristic feature of the
brain development is the longitudinal fissure that separates the two cerebral hemispheres. Some
part of the brain is developed at the early age such as cingulate, parietooccipital and calcarine (14-
16 weeks); central and superior temporal regions (20-24 weeks); and superior frontal, precentral,
inferior frontal and postcentral regions (25-26 weeks). Secondary sulci emerge between 30-35
weeks. The formation of tertiary sulci begins during 36 weeks and extends into the postnatal period
(Figure 2.2) (O’Leary et al., 2007; Stiles and Jernigan, 2010; Van Essen and Dierker, 2007).
Although, the development and migration of neurons are largely prenatal events, the proliferation
and migration of glial progenitors continues for an extended period after birth, and the
differentiation and maturation of these cells continue throughout the childhood period. In the
postnatal period, neurogenesis continues to only a very limited degree (O’Leary et al., 2007; Stiles
and Jernigan, 2010). However, in some brain region like hippocampus, cortex and striatum, new
neurons continue to develop where they migrate from the subgranular layer to the nearby granular
layer. These exceptional forms of neurogenesis appear to continue throughout adult life but
produce only a small percentage of the neuronal population.



Figure 2.2: Brain structural development. cortical surface in premature infants (shown at several gestational ages), full-term
infants, and adults (adapted from (Van Essen and Dierker, 2007))

Functional maturation

The neonatal brain maturation is functionally characterized by specific features which serve as
biomarkers for the functional development of the brain (André et al., 2010). Although, most of
the primary sensory systems are already functionally established at birth but the long range
functional connectivity is limited in infants under the age of 2 years old (Fransson et al., 2007;
Stiles and Jernigan, 2010). The functional brain development in neonates is concomitant with the
sequential functional maturation of different cortical regions. New cognitive functions during
infancy and childhood might be the result of emerging patterns of interactions between different
regions (Johnson, 2001). Meanwhile, the mature brain in adults is physically delineated as the
cerebral cortex. The cerebral cortex serves as a central processing center integrating sensory
information and making decisions for many types of motor output. The cerebral cortex is divided
into several brain regions. The functional regions of the cerebral cortex do not necessarily
correspond to the anatomical lobes of the brain. However, the frontal lobe (Figure 2.3) is known
for thinking, executing functions, planning and behavioral controls (Silverthorn, 2007; Stiles and
Jernigan, 2010). The motor cortex is responsible for the motor coordination and movement while
the parietal lobe is involved in the perception, sensing, and simple cognitive task. The occipital
lobe is involved in visual processing and the temporal lobe in language processing and
memoryfunctions . The functional specialization is not symmetrical across the cerebral cortex. For
instance, language and verbal skills tend to be concentrated on the left side of the brain, with spatial
skills centered on the right side (Knecht et al., 2000; Springer and Deutsch, 1998).
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Figure 2.3: The cerebral cortex is specialized into functional areas such as sensory, motor and association areas that integrate
information (adapted from (Silverthorn, 2007)).

2.3 Electroencephalography

2.3.1 Generators of EEG

EEG is the electrical activity of the brain, most specifically it is the sum of extracellular current
flows from large group of neurons (Holmes and Khazipov, 2007). EEG arises from synchronized
synaptic activity of populations of cortical neurons called pyramidal cells (Figure 2.4). The
pyramidal neurons are organized in such a way that the neighboring dendritic trees are in parallel
to each other and almost orthogonal to the cortical surface. The pyramidal neurons are believed to
be the main generator of EEG. For more information on the generation of EEG, the readers are
referred to the following reviews (Holmes and Khazipov, 2007; Jackson and Bolger, 2014; Silva,
2009). The high temporal resolution of EEG makes it an excellent tool to study the neuronal
activity of different brain regions over time.

Figure 2.4: The neural source of EEG: (a) parallel pyramidal cells with positive and negative charges at soma and apical
dendrites, respectively. A negative deflection of EEG is measured when soma is positive and vice versa. Figure (b) shows that
signals are attenuated by the scalp and skull, and the hair on the scalp surface ( this figure was modified from (Jackson and
Bolger, 2014) ).



2.3.2 EEG recordings

EEG recordings are performed by placing electrodes in predefined standard positions on the head.
An international standard EEG electrode configuration is shown in Figure 2.5. EEG can be
recorded between pairs of active electrodes (bipolar montage) or respective to passive or active
reference electrode (monopolar montage). The positions of the electrodes are based on the
anatomical landmarks such as inion and nasion. The number of electrodes and their exact positions
depend on the application. In clinical practice, usually 20 to 32 electrodes are used. For research
purposes, it is usually required to increase the spatial resolution by increasing the number of
electrodes (Lantz et al., 2003; Sohrabpour et al., 2015; Song et al., 2015).

Figure 2.5: International 10-20 Standard EEG electrode configuration, Nz and Iz refer to nasion and inion, respectively.

EEG is mostly recorded on the scalp surface with subjects relaxed or involved in the
experimental tasks. One important problem of scalp EEG is the artifact due to head movement,
eye blinking, muscle activity and electronic interferences. Due to low amplitude of EEG in the
order of 100uV, artifacts can contaminate the recordings and produce false results if not properly
minimized or rejected.

Neonatal EEG is usually recorded with 8 surface electrodes positioned according to the
international 10/20 system, which is adapted to the newborn head (Figure 2.6). Additional
electrodes are also added for monitoring electrocardiography(ECG), respiration and
electromyography (EMG). In addition, video-EEG is usually performed to record the activity and
response of neonates (Lamblin and de Villepin-Touzery, 2015; Walls-Esquivel et al., 2007). There
is growing interest to increase the number of electrodes due to the spatial specificity of the neonatal
EEG (Odabaee et al., 2013).
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Figure 2.6: Commonly used EEG channels with ECG, EMG and respiratory recording for neonates

2.4 EEG brain activity

2.4.1 Resting state EEG

Resting state is the dynamic substrate of the present momentary state of the brain, and determines
the fate of incoming information. At rest, the brain goes through all working modes such as
sensory, attention, executive, control and language. Some brain regions are activated or
deactivated at rest, usually studied with the functional magnetic resonance imaging (fMRI)
(Biswal, 2012).

Resting state EEG is used to monitor brain activity in the absence of task or brain
stimulation (Olejniczak, 2006). It can be used to identify abnormalities by comparing different
neurological disorders and event related potentials such as visual stimuli or motor responses to
resting state activity. The most common way of characterizing resting EEG is by breaking down
oscillatory patterns into different frequency bands. Power spectral analysis is the most common
method used to quantify the resting state EEG in different frequency bands. The functional
connectivity analysis can also be used to assess interaction between brain regions (Coben et al.,
2008; Murias et al., 2007; Sponheim et al., 2000).

The mature brain EEG activity is studied based on the different EEG rhythms or brain
oscillations according to the frequency contents. The EEG rhythms may be related to the normal
brain functions, functional states and pathological conditions (Basar et al., 2013; Basar and
Guntekin, 2013; Klimesch, 1999; Michel, 2009). As shown in Figure 2.7, EEG rhythms can be
classified into:



Delta rhythm (less than 4Hz): This rhythm is observed in deep sleep stages with large amplitude
and its presence in awake adult may indicate brain disorders.

Theta rhythm (4 to 8Hz): Theta rhythm plays an important role in neurodevelopment during
childhood, and found in drowsiness and some certain sleep stages. High theta activity in awake
young children and adults is related with brain disorders.

Alpha rhythm (8 to 13Hz): It appears spontaneously in relaxed and awake adult with eyes closed
and is most pronounced at the occipital regions of the brain. It also relates to cognitive process in
normal brain function.

Beta rhythm (13 to 30Hz): It is best defined at the central and frontal brain regions and related
to alertness and thinking.

Gamma rhythm (above 30 Hz): With very low amplitude it is related to higher cognitive thinking
and information processing in the brain.
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Figure 2.7: Samples of EEG rhythms in different frequency bands

2.4.2 Neonatal resting state EEG

EEG signals in newborns are very different from those in older children and adults due to the
explosive maturational changes in the neonatal brain, resulting in rapid changes from 26 40 weeks
of gestation age (WGA) (André et al., 2010). The brain changes are resulted fromthe dendritic
development, glial proliferations, synaptogenesis and myelination (Zhang et al., 2015). The
development underlying rapid sequences of EEG changes are often used to predict and determine
the healthy state of newborns. EEG has been proven to be an efficient tool for the assessment of
cerebral functions in neonates(Lamblin et al., 1999; Vecchierini et al., 2003).
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Preterm neonates born below 32 wGA are characterized by long discontinuity interrupted
by bursts of EEG activity (Figure 2.8a). The interburst interval is significantly reduced with
increasing with increasing age (Vanhatalo and Kaila, 2006; Wallois, 2010). The EEG bursts are of
high amplitude with dominant frequencies in lower frequency bands (6 and 6 bands). The
amplitude of bursts decreases with increasing age. The duration of interburst is also used to
estimate the brain maturity in neonates. In preterm neonates, the theta temporal burst (Figure
2.8b),used as biomarker for the brain maturation, appears at the temporal region. In preterm
neonates of 32 to 36 WGA thedelta brushes as another biomarker appear at the occipital and
temporal regions(André et al., 2010; Wallois, 2010). The delta brushes are characterized by low
amplitude fast activites superimposed on slow waves of high amplitude. Healthy full-term
neonates above 37 WGA are characterized with biphasic frontal sharp transients especially during
quite sleep (Torres and Anderson, 1985). See Figure 2.9 for the synopsis of maturation in
neonates(Wallois, 2010).
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Figure 2.8: EEG Sample from a 28-week Preterm baby: Long discontinuity intertwined with short burst EEG activity (a) and
theta temporal activity at both temporal regions (T3 and T4) (b).
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Figure 2.9: Synopsis of maturation of specific features in EEG of premature neonates(adapted from (Wallois, 2010))

EEG recording is rigorous in neonates and mostly recorded during the sleeping period with
less artifact. The neonates are mostly asleep during the first few weeks of life. The sleep EEG
provides a unique opportunity to observe spontaneous cortical signals and examine brain
maturation across the brain regions. The neonatal sleep architecture consists of two periods: active
and quite sleep. These periods are intermixed with transitional or intermediate sleep period. Active
sleep in neonates are traditionally associated with coalescence of rapid eye movements, increased
variability of cardiorespiratory rhythms, low muscle tone, mixed frequency of continuous EEG
signals and abundance of body movement. In turn, quite sleep is associated with the absence of
rapid eye movement, fewer body movement, higher muscle tones, decreased variability of
respiratory rates and high amplitude continuous EEG with less discontinues EEG pattern (André
et al., 2010; Mizrahi, 2004; Scher and Loparo, 2009).

2.5 Epilepsy activity in EEG

Epilepsy is a brain disorder that affects about 0.5 to 1% of the world population. It is characterized
by the recurrent, excessive and uncontrolled abnormal brain activity. Epilepsy can begin at any
age, but is more common in children compared to adults. The prevalence of epilepsy generally
depends on the gender, age and geographical population. Many factors are responsible for the
epilepsy such as genetic, low oxygen during birth, head injuries that occur during birth or from
accidents during youth or adulthood, brain tumors, infections such as meningitis or encephalitis,
damage to the brain and abnormal levels of substances (Banerjee et al., 2009; Lars Forsgren et al.,
2005; L. Forsgren et al., 2005).

Epileptic seizure is abnormal hypersynchronous neuronal activities of the brain. The
clinical manifestation of seizures has many forms depending on which brain regions are involved
in epileptic activity. Although the underlying causes of epilepsy are still unknown, certain factors
are known to provoke seizures in people with epilepsy. Missing medication doses, heavy alcohol
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use, cocaine or other drug, and lack of sleep can provoke seizures in epileptic patients (Bonney et
al., 2015; Semah et al., 1998). There are many classifications of epilepsy but depending on the
etiology of epilepsy, it can be classified to either partial or generalized epilepsies. Partial epilepsies
have focal origin which can be simple without losing consciousness and complex involving losing
consciousness. The simple partial epilepsy is characterized by focal motor movements, sensory
symptoms or autonomic symptoms (Rheims et al., 2008). This type of epilepsy can be further
classified into temporal, frontal, occipital or temporal lobe epilepsy depending on the source of
seizure. Different physical sensation and motor automatisms are associated with complex partial
epilepsy. The partial epilepsy can evolve to generalized epilepsy if not properly taking care of. The
generalized epilepsy involves the whole brain and may last longer in order of 20 seconds. Example
of generalized epilepsy is absence epilepsy that consists of sudden lapse of consciousness with the
impairment of mental functions(Scheffer and Berkovic, 1997; Singh et al., 1999).

One of the important applications of the EEG is to study epilepsy. The appearance of
higher amplitude waves during ictal period compared to interictal periods and several other
paroxysms are general landmark of epilepsy. These features help to identify, classify and localize
seizures. Epileptic components and waves vary especially in frequency range, duration and
topography (Banerjee et al., 2009). Manifestation of epileptic activity can also be obtained during
interictal epileptic discharges (IEDs), which are the spike and sharp waves, either of which can
occur with or without a subsequent slow wave. IEDs can occur separately in brief burst that look
like seizure activity. However, the introduction of video-EEG recording has been an important
milestone helping to identify specific movements and behavior of patients during seizures.

2.5.1 Benign childhood epilepsy

Benign childhood epilepsy (BCE) affects 10 to 20% of children with epilepsy (Camfield et al.,
2014; Chrysostomos P. Panayiotopoulos, 1999). Characteristically, the seizures begin between 2
and 16 years of age. Benign childhood epilepsy is considered a benign form of childhood epilepsy
that occurs in children who show normal mental development. The risk of cognitive impairment
has been shown to be higher by comparing the test performance of children with BCE with that of
the healthy age-matched children (Danielsson and Petermann, 2009; Datta et al., 2013). Unlike
adult epilepsy such as temporal lobe epilepsy, brain imaging has shown that brain structural of
BCE patients is usually normal (Fountain, 2008).

The most common BCE is benign childhood epilepsy with central temporal spikes
(BCECTYS) and often called rolandic epilepsy or Panayiotopoulos syndrome (Chrysostomos P.
Panayiotopoulos, 1999; C. P. Panayiotopoulos, 1999). The common seizure begins in sleep and is
very simple and partial. Secondary generalized type of epilepsy is not that common. The
occurrence of BCECTS involves unilateral sensory-motor symptoms, speech arrest and hyper-
salivation.

The most useful diagnostic tool for BCE is EEG. The appearance of infrequent seizures or
generalized burst in EEG with bi or triphasic spike activity in rolandic areas is highly suggestive
of benign childhood epilepsy. It can occur at either left or right hemisphere of the brain region or
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at both. With high density EEG (Figure 2.10), it is mainly localized in the high central (C3 and
C4) or low central (C5 and C6) supra-sylvian regions. Further analyses including normal
neurological examination and spike source imaging showing an anterior-posterior dipole
orientation confirm the possibility of BCECTS(Camfield and Camfield, 2002; Panayiotopoulos,
2005). However, brain imaging is not always required except in some difficult cases.
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Figure 2.10: EEG sample from a BCECTS patient: EEG spikes are shown at the C2, C4, T8, FC4, and FT8 electrodes, all at the
right hemisphere.

14



Chapter 3
Brain connectivity analysis

3.1 Introduction

The brain is a highly distributed complex system in which a very large number of processes are
simultaneously processed in parallel. The brain complexity can be defined based on its neuronal
populations, which at a macroscopic scale operate on random and regular regimes. The complex
architecture of the brain involves neuronal networks which are highly specialized in multiple
parallel operations linked together to give rise to coherent perception and action. The anatomical
and functional inter-neuronal connectivity of brain networks can occur between spatially close or
remote areas, the former having a relatively high probability of occurrence. The functional
connectivity between brain networks are organized for effective information processing including
segregation and integration. In particular, both segregation and integration of information have to
be dealt within a single architecture of brain networks. At a microscopic scale, the brain consists
of electrical circuits formed by the interconnection of billions of elementary processing units
(neurons and glia) (Bear et al., 2001).

In adults, the brain neural networks are connected with firmer intricate connections
between various brain regions. However, due to higher efficiency the connections in gray matter
are significantly reduced. The adult brains have been shown to follow a web-like mesh of many
different interconnecting links involving all the regions. In adults, there are brain regions showing
a disproportionally high degree of anatomical connectivity (so called ‘‘cortical hubs’’) to control
the flow of information (Gong et al., 2008; Hagmann et al., 2008), such as: aspects of self-
referential thinking (Gusnard et al., 2001), episodic memory retrieval(Kim et al., 2010),
prospective thought (Addis et al., 2007), decision making, and in goal-oriented attentional tasks
(Corbetta and Shulman, 2002). These adult hub-related networks largely overlap with the default
mode network and the fronto-parietal attention network (task-positive network) (Buckner et al.,
2009). Thus, the organization of adult hub-related networks sustains the complexity of the brain
functionality (Heuvel and Sporns, 2011).

The infant brain contains less intricate, loose networks with relatively less functional
connections between different regions. The functional connectivity associated with cortical hubs
in the infant brain largely overlaps with primary sensorimotor, auditory, and visual systems
(Fransson et al., 2009, 2007). The information flow through infant cortical hubs is dominated by
processes related to rather reflexive (perception-action) behavior. This suggests that functional
brain networks sustaining advanced behavior are immature in infants. During the maturation
process, a gradual reorganization of hub network connectivity between birth and adulthood occurs
and large-scale cortical networks develop from a ‘‘local and segregated’’ to a ‘‘distributed and
integrated’’ organization (Fair et al., 2009; Power et al., 2010; Supekar et al., 2009).

15



At birth, the neural networks are partially developed. In the first 6 years, the networks
expand and the brain grows rapidly to allow new skills to be learned. The development of the
immature brain is concomitant with certain morphological aspects of the developing brain and
EEG results. These aspects are closely associated with the gestational age. Disturbance in the
process of maturation for the infant babies of more than 26 weeks is likely to generate structural
modification of the brain such as atrophy, gliosis and/or cavitation. Early detection of
neurodevelopmental abnormalities would help to diagnose and treat affected babies. Full-term and
premature neonates are at high risk of brain damage and life-long cognitive disability. According
to different studies(Marlow et al., 2005; Monset-Couchard and de Bethmann, 2000), about 6.2%
of new-born infants in France are premature and from 36 to 60% of the premature infants of less
than 30 weeks have neurological dysfunctions such as motor, cognitive and sensory deficits and
learning disorders.

This chapter describes connectivity methods with particular attention to the functional and
effective connectivity measures used in this thesis. The graph theoretical measures are also
reviewed. The chapter starts with a short review on analytical signals required for the computation
of functional connectivity and EEG source imaging.

3.2 Brain connectivity

Brain networks communicate to execute a particular function or task. The intercommunication
phenomenon in the brain is termed brain connectivity. Brain connectivity reveals pathways or how
information is exchanged between the brain regions (Breakspear and Jirsa, 2007). Brain
connectivity measures are bivariate, i.e., they involve the interactions between two brain regions
or scalp electrodes.

There are three modes of brain connectivity- structural, functional and effective (Friston,
2005; Horwitz, 2003). Structural or anatomical connectivity refers to a network of structural
(synaptic) connections linking sets of neurons or neuronal elements. Functional connectivity is
fundamentally a statistical concept that estimates the temporal correlation between two signals
over time. In general, functional connectivity captures deviations from statistical independence
between distributed and often spatially remote neuronal units. Effective connectivity investigates
the directional effect of one neural element over another. The difference between the three modes
of connectivity is shown in Figure 3.1.
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Figure 3.1: Modes of brain connectivity: Structural connectivity shows the white matter connections between the gray matter
brain regions. Functional and effective connectivity show the connections between the neuronal activity of the brain regions. Unlike
functional connectivity, effective connectivity shows the directionality of the connections.

3.2.1 Structural connectivity

Structural connectivity is the anatomical connections between brain regions. This type of
connection includes fiber pathways between the brain regions which can be assessed by the
propagation of water molecules. The common imaging technique used is diffusion weighted
imaging (DWI1) which can be applied in several directions to examine the diffusion of water
molecules in the brain (Johansen-Berg and Rushworth, 2009). Diffusion tensor imaging (DTI)
(Shenton et al., 2012) is another non-invasive method for characterizing the microstructural
organization of the brain tissues in vivo. This method generates maps that visualize different
aspects of the tissue microstructure (mean diffusivity, tissue anisotropy and dominant fiber
orientation).

3.2.2 Functional connectivity

Functional connectivity is defined as statistical dependencies between brain regions (Friston,
1994). Functional connectivity in neuroimaging is always estimated from fMRI and EEG/MEG
time series. Functional connectivity is symmetric, implying that connectivity from x to y is similar
to connectivity for y to x. There are many functional connectivity measures and descriptions. In
this thesis we will focus on the power-based, phase-based and information-based functional
connectivity measures. Before quantifying the functional connectivity between measurement sites
or sources, their signals are transformed to the complex-value analytical signals. In addition, the
source analysis is required for the transformation of EEG sensors signals to source signals.

Frequency-domain signals

Frequency-domain signal is a complex-valued variable usually obtained from the fast Fourier
transform of the signal. The Fourier transform of a time-series, X, is obtained by the dot product
of the signal and sine waves of different frequencies:

Al i2rf (k-1
X =Y xe @)

k=1
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where N refers to the number of data points in vector, x, and X(f) is the complex-series signal at
frequency f. The number of unique frequencies extracted from a times-series of length N is N/2+1
based on the Nyquist theorem.

The short-time fast Fourier transform (FFT) is an extension of the Fourier transform. The
Fourier transform assumes the EEG signal to be stationary and obscures time-frequency changes
in EEG data. The short-time FFT is computed by first segmenting (with Hann or Gaussian
windows) the data to minimized edge artifacts from contaminating the time-frequency results
(Cohen, 2014). However, the disadvantage of this method is that tapering attenuates the signals.
The attenuation of signals in the short-time FFT method is corrected by an improved method,
called Multitaper method. It is designed to increase the signal to noise ratio of the signal by
applying multiple tapers with several different temporal characteristics (Bronez, 1992). The
multitaper method introduces some frequency smoothing depending on the number of tapers. This
method is beneficial when one deals with noisy or few single trial EEG signals. It is also well
suited for high frequency analysis with very good anti-frequency leakage (van Vugt et al., 2007).

Another method usually used to obtain frequency-domain signals is the wavelet analysis
like Complex Morlet Wavelet (CMW) which involves many technical details on controlling the
frequency smoothing such as number of cycles, minimum and maximum frequencies, and
frequency resolution (Tallon-Baudry et al., 1996). The wavelet methods are well suited for
localizing frequency information in time. CMW is defined as:

t2

w(t, f) = (at\/E)_% e 20t g-iznft (3.2)

where f is the center frequency and ot is the temporal standard deviation. The time-frequency
analytical signal X (t,f) of a signal x(t) is then computed by convolving x(t) and w(t,f):

Xt f)=x(@®) »w(t,f) (3.3)

The spectral bandwidth is controlled by the ratio of f to of to obtain desired frequency
ranges.

The Hilbert transform is another time-frequency decomposition method which allows
more control over frequency characteristics, a major advantage over the wavelet method (Cohen,
2014; Freeman, 2007). The signal is first band-filtered within a desire frequency range. The
Hilbert transformation is then applied to extract the frequency-domain signal X (t, f) as:

X, ) =x(t )+ ixu(t, f) (3.4)
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Where xn (t, f) is the Hilbert transform of the input signal x (t,f).

These methods are commonly used in EEG data analysis and can give similar results with
minimal differences (Akin, 2002; Le Van Quyen et al., 2001; van Vugt et al., 2007). Other time-
frequency decomposition methods are S-transform, an adaptation of short-time FFT, matching
pursuit, Hilbert-Huang, P-episode and many more.

Power spectral density
Power spectral density function (PSD) is obtained from the analytical signals:

X() * X" (f)

PSD(f) = ——

(3.5)

Where X'(f)is the complex conjugate of X(f) and N is the number of data points. The

power decreases with increasing frequency (Freeman, 2006; Kiebel et al., 2005). Power spectral
analysis is used in EEG analysis to evaluate classical EEG frequency bands relevant to
physiological rhythms.

Usually, EEG powers are normalized for statistical analysis and comparisons between
different conditions. Normalization is done with reference to a baseline or to a maximum value.
The common normalization is based on decibel conversion, percentage or unit conversion and z-
transform.

The functional connectivity in the source space requires EEG source imaging by
transforming EEG signal in the sensor space to source activities in the source space.

EEG source imaging

EEG Source Imaging (ESI) is the modeling of the electrical source distributions associated with
the brain activation from noninvasive EEG/MEG recording (He et al., 2011; Michel et al., 2004).
ESI comprises forward and inverse problems (Figure 3.2):
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Figure 3.2: EEG source Imaging: Forward and inverse problems.

Forward problem

The forward problem estimates the scalp potentials based on the head volume conductor (Hallez
et al., 2007). The accurate modeling of the head volume conductors is very important for accurate
imaging of the brain sources. The head model provides the description of the geometry and
electrical properties of each tissues type (gray, white matter, CSF, skull and scalp). Simple
spherical head model is built from the concentric spheres. The realistic head models are built from
the structural MRI and computed tomography (CT) of the brain model by the boundary element
method (BEM) (Fuchs et al., 2002), finite difference method (FDM) (Hallez et al., 2005) and finite
element method (FEM) (Wolters et al., 2002). BEM usually assumes three homogenous layers
(brain, skull and scalp) (Figure 3.2). BEM is computationally efficient unlike FEM and FDM that
divide the head into small elements for each of which the geometry and conductivity can be defined
separately. FEM and FDM allow incorporation of tissues anisotropy (Hallez, 2008; Wolters et al.,
2006) but complexity of the model construction make them computationally very expensive. The
scalp potentials, V with the current sources dipole at position r = [x y z] and dipole moment D = [
Dx Dy Dz] are related by:

V =L({r)D (3.6)

where L is the transfer or leadfield matrix that describes the relationship between dipole, D and
the scalp potentials, V. The leadfield matrix consists of head geometry and tissues conductivity.
Hallez et al. (2007) provide a detailed review on forward modeling.

Inverse problem

The inverse problem estimates the source distribution with the leadfield matrix and scalp potentials
measured with electrodes (Grech et al., 2008). The inverse problems are either based on dipoles
source model or imaging method. In dipole source modeling, the aim is to estimate one or more
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dipole sources while minimizing the relative residual energy (RRE) (Grech et al., 2008; Mosher et
al., 1999, 1992). This is done by assuming a predetermined number of dipoles as equivalent to the
generator of the EEG. The dipole locations and moments are then estimated through optimization.
Dipole source localization has been found to be useful in localizing epileptic activity with a
reasonably good source detection rate. RRE is mathematically defined as:

v 1|

RRE = 3.7
VI 3.7

Where V is scalp potentials, D is the dipole with its orientation and position and L is the leadfield
matrix.

The second technique for the inverse problem is the imaging method. Unlike the dipole
method, the imaging method is underdetermined, that is, the number of parameters to be estimated
is larger than the number of scalp potentials. Imaging methods are based on the distributed source
models with a fixed dipole position in each brain voxel. Underdetermined problems in imaging
method are solved by the regularization of the parameters. This has led to development of various
imaging methods generally based on the equation 3.8 to estimate the current density, D (Grech et
al., 2008; Michel, 2009):

D =A"T(LATILT + AB~H)"1Y (3.8)

Where L and V are the leadfield matrix and scalp potentials, respectively, A is the
regularization parameter, the choice of A and B determines the type of the method being used such
as minimum norm estimate (Gramfort et al., 2012), linear beamfomer (Drongelen et al., 1996;
Gross et al., 2001), low resolution electromagnetic tomography (LORETA) (Pascual-Marqui,
2002), and many more.

Time and frequency domain source analysis

The EEG/MEG high temporal resolution is considered as the most important advantage of this
type of imaging modality over other techniques like fMRI. In studies on event related potential
(ERP) or epilepsy EEG source analysis in the time domain is usually performed on the ‘events’
selected by searching for electrodes with potential peaks (Michel et al., 2004; Pascual-Marqui,
2002). Alternatively, source localization methods can be applied to each time point and the
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temporal dynamics can directly be studied in the source space. This is usually used for the
connectivity analysis in the source space.

The EEG high temporal resolution allows studying the behavior of sources in different
frequencies by applying frequency transformation algorithms, source localization and connectivity
in the frequency domain (Gross et al., 2001; Michel et al., 1992). This is preferable for many
researchers that are interested in connectivity analysis and localization of sources for different
frequency bands. Source analysis in the frequency domain is preceded by the analysis of analytical
signals over a certain time epoch or segment as described earlier.

3.2.2.1 Power-based functional connectivity analysis
The functional connectivity can be evaluated in the time or frequency domain using linear
dependence measures such as linear cross-correlation or coherence functions.

The Pearson correlation coefficient is a commonly used correlation method, defined as
the covariance of two signals x and y, scaled by their variances:

Yo (e — ) e — 1y)
Jz'::l(xt — )2 T e — 1y)?

r(x,y) = (3.9

where N is the number of data points, pux and py are mean values of the signals x and y,
respectively. The resulting correlation value lies between -1 and 1 with 1 implying highest positive
correlation.

The spectral coherence is similar to the correlation coefficient but in the frequency
domain. The spectral coherence incorporates power information (both amplitude and phase). It is
defined as follows:

ENGN

RGN0 (3.10)

ny (f) =

where Sy is the cross-spectral density of analytical signals X and Y, and Sxx and Syy are
the auto-spectral density of X and Y, respectively. C lies between 0 and 1 with 1 implying highest
coherence at frequency f.

The spectral coherence incorporates power information and the results are likely to be
influenced by cross-spectral of the two signals. However, it has been suggested to neglect the real

22



component of the cross-spectrum (Nolte et al., 2004) because it is highly affected by volume-
conduction artifacts in EEG.

3.2.2.2 Phase-based functional connectivity analysis

There are several phase-based functional connectivity analyses relying on the distribution of phase
differences between different electrodes. A common method to measure the strength of phase
synchronization between different brain regions is the phase locking value (PLV) defined as
(Lachaux et al., 2000):

N

Z oi(0x-0y)

t=1

1

PLVy(f) =& (311

Where ¢x and ¢y are phase angles of the signals x and y, respectively, and N is the number
of data points. The phase angles are usually obtained from the frequency-domain signals. The PLV
values also range between 0 and 1.

Another method usually used for phase synchronization analysis is the phase lag index
(PLI) (Stam et al., 2007). It was introduced to obtain reliable estimates of phase synchronization
that are invariant against the presence of common sources (volume conduction and active reference
electrodes in the case of EEG sensors). PLI is defined as:

N

%Z sgn (imag(Sxy))

t=1

PLL,(f) = (3.12)

Where imag(S) is the imaginary part of the cross-spectral density and sgn indicates sign (-
1 for negative values, +1 for positive values and 0 for zero values). PLI is less sensitive to noise
and volume conduction but is hindered by the discontinuity as small perturbations turn phase lags
into leads and vice versa. As an extension of PLI, the weighted phase lag index (wPLI) (Vinck et
al., 2011) was introduced as :

1 ) ,
N YN |imag (Sxy) |sgn(imag (Sxy) )

wPLL, (f) = (3.13)

1 .
N 2| imag(Sy)|
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3.2.2.3 Information-based functional connectivity analysis

The information-based connectivity analysis involves both linear and non-linear statistical
dependencies between two time series (Hurtado et al., 2004; Jeong et al., 2001). This technique is
based on the concept of entropy that measures the probability of variable. The Shannon entropy
(Hx) of a signal x is defined as:

HOO = = ) p)log(p(x) (3.14)

Where p(xi) is the probability that signal x has the value of x;. The probability can be
obtained from the histogram of the signal, phase angle or power and N is the number of histogram
bins. Interdependence between two signals x and y is obtained from the mutual information based
on Equation 3.14:

M, = H(X) + H(Y) — H(X,Y) (3.15)

where H (X, Y) is the joint entropy between signals x and y:

M N
H(X,Y) = —ZZp(xi.yi)IOg(p(xi.yi)) (3.16)

j=1i=1
M and N correspond to the number of bins for signals x and y, respectively.

3.2.4 Effective connectivity

The objective of effective connectivity analyses is to estimate causal dependencies between brain
regions (Friston, 1994). Unlike functional connectivity measures, effective connectivity indicates
the direction of information flow between different brain regions (Friston, 1994). The directional
interaction can be estimated by model-based techniques such as dynamic causal modelling (Friston
etal., 2003), structural equation modeling (Ullman and Bentler, 2003), or Granger causality (Hesse
et al., 2003).

The effective connectivity analysis requires autoregressive modelling and model
parameter estimation to estimate effective connections between brain regions.

Autoregressive modeling
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Autoregressive (AR) modeling attempts to estimate future values of a signal based on a weighted
sum of its past values. For a signal of length n, a multivariate autoregressive (MVAR) (Ding et al.,
2000) model is represented by:

p
X(n) = Z Am)X(n—m) + E(n) (3.17)

where E(n) is the matrix containing uncorrelated white noise at time n, p is the model order, and
A(m) is a n by n coefficient matrix for delay m.

Model selection

The most common approach for model order (p) selection involves first setting a set of model
orders and then finding one that minimizes one or more information criteria evaluated over the
model order range (Lutkepohl, 2005). Two commonly used information criteria are the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC).

The AIC and BIC for MVVAR are defined as follows:

AIC(p) = In |Z(p)| + @plﬂ (3.18)

2pK?
T

BIC(p) = In |Z(p)| + (3.19)

Where X (p) is the covariance matrix of the residuals, T is the number of data points, p is
the model number, and k is the number signals. Each of these criteria needs to be minimized to
find the optimal model order. Other criteria include the Final Prediction Error (FPE) and Hanna-
Quinn Criterion (HQC).

Effective connectivity measures
The power spectral density S of a chosen and validated model is calculated from the coefficients
and residuals of MVAR:
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S(f) =H(HH(f) (3.20)

where H(f) (= A'}(f)) is the transfer matrix of the MVAR model of dimensions K by K. Hjj
is the information flow from x; to xi at frequency f.

Common effective connectivity measures are:

Partial coherence (Brillinger, 2001)

2
SO
PCOH;; = —————— 3.21)
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Partial directed coherence (Baccala and Sameshima, 2001)
2
A
PDC;; = L)lz (3.22)
Z;‘=1|Aij(f)|
Direct transfer function (Kaminski et al., 2001)
2
H..
DTF;; [ ()] (3.23)
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3.3 Graph network analysis

3.3.1 Introduction
Graph theory is a mathematical framework developed to study physical, biological and information
systems. There are increased interests in application of graph theory to study functional and
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structural brain networks (He and Evans, 2010; Sporns, 2011), and to expand our knowledge on
the human brain diseases, ageing and higher cognitive functions (Bullmore and Bassett, 2011;
Deuker et al., 2009; Netoff et al., 2004; Stam, 2014).

All networks consist of two basic components: nodes and pairwise edges (links) between
the nodes (Bullmore and Sporns, 2009). Nodes in the brain networks are usually represented by
the brain regions or electrodes positions for scalp EEG. Nodes are sometimes determined by the
functional activity and parcellation of the surface of the cortex or the entire brain (Figure 3.3). The
parcellation is sometime done by using brain atlases constructed with the anatomical features of
the brain (Deco and Kringelbach, 2014; Stanley et al., 2013). Functional or effective coupling
between electrodes or brain regions indicate edges or links. All networks are represented by their
connectivity (adjacency) matrices. Rows and columns in these matrices denote nodes while the
entries denote edges.
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Figure 3.3 Brain Networks: Both structural and functional brain network analyses involve four steps before graph theoretical
analysis. The first step is to define the network nodes. The second step involves the estimation of time series signal of each node.
The third step is to estimate coupling between the nodes before calculating the network parameters (step 4) (adapted from Bullmore
and Sporns (2009)).

3.3.2 Graph theoretical measures

There are many network metrics (Rubinov and Sporns, 2010). Before the computation of networks
metrics, the graph is first thresholded (Figure 3.4) and converted to a binary form denoting absence
or presence of connections. The network measures can also be applied to the weighted matrices
consist of information about the connection strength (Fallani et al., 2014; Rubinov and Sporns,
2010). The threshold is required to increase the signal to noise ratio by pruning out weak and non-
significant representing spurious connections.
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There are many ways to threshold a graph. The common method is to choose a common
arbitrary value for all subjects or conditions in an experiment. Another option is to specify the
number of connections (connection density) and keep the strongest connections while setting the
rest to zero. Other thresholding methods is by generating surrogate data for the statistical
assessment of the functional measures, especially for the short signals (Drakesmith et al., 2015;
Langer et al., 2013). Sometimes, thresholds are chosen based on the distribution of the connectivity
matrices. Depending on the subject distribution, thresholds will change, this is why it is important
to take the topology of the connectivity matrix into consideration (Fallani et al., 2014).

l Threshold

RO

l Binarize
f-.
1. D<A
Figure 3.4. Construction of brain networks: Functional networks are commonly represented by their connectivity matrices,

with rows and columns representing nodes and matrix entries representing links. Networks are often reduced to a sparse binary
undirected form, through thresholding and binarization.

After thresholding, the networks are binarized by setting the suprathreshold values to 1
and the subthreshold values to 0 before the computation of the network metrics. There are many
network measures particularly for characterizing the brain functional network topology. The brain
network measures are always classified based on the neurobiological interpretations such as
network centrality, functional segregation, functional integration, small-world networks, networks
motifs and many others. In the following, we pay special attention to the network metrics used
throughout the thesis.

Network centrality

Centrality is the most important property of brain networks. It assesses the importance of
individual nodes or brain regions by measuring how often a particular node interacts with many
other nodes in the network (Figure 3.5). The most common measure of centrality is degree which
is the number of connections of a node links to the rest of the network. Degree, k of node i, is
mathematically defined as:
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N
k; = Z a; (3.24)

Jj=1

Where a is the adjacency matrix of dimensions N by N.

Another important centrality measure is the Betweenness Centrality (BC) (Freeman, 1979)
which measures the fraction of all shortest paths that pass through a given node. It also detects
important anatomical and functional connections, and is defined as:

1 Phj(i)
BC; = z (3.25)
(N=DW=2) hjh# Rl i Prj

Phj is the total number of shortest paths between h and j, and Px(i) is the number of shortest paths
that pass through node i with N total nodes.

High degree

High betweeness

Figure 3.5: Network Centrality: Higher degree at the blue node with higher number of connections and high betweenness at the
green node due to the high number of shortest paths.

Other centrality measures include closeness centrality, modularity and participation coefficient
(Rubinov and Sporns, 2010).

Functional segregation

Functional segregation of the brain networks reflects the existence of specialized brain regions as
modules organized in distinct populations (Tononi et al., 1994). Functional segregation measures
the presence of clusters or modules within the network (Figure 3.6). The common functional
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segregation measure is the clustering coefficient which measures the fraction of triangles around
individual nodes (Watts and Strogatz, 1998). It is defined mathematically as:

2t;

S M- D

(3.26)
Where where ki and t; is the degree and number of triangles around ith node, and t is defined as:

1
ti = S Xjhen QijAinGjn (3.27)

where a is adjacency matrix.

1

Figure 3.6: Functional Segregation and Integration: The measures of segregation are usually based on triangle counts (red)
while the integration is based on shortest path lengths ( ) between two nodes (for instance 1 to 2).
An alternative to the clustering coefficient is the local efficiency (LE) which quantify how

well information is exchanged between neighboring nodes (Latora and Marchiori, 2001). It is
defined mathematically as:

-1
IE - Y nen,j=i QijQin|din (N |
' ki(k; — 1)

(3.28)

Where ajjand ain is the connection status (0 or 1) between the nodes i and j, and i and h, respectively,
, and djn(N;) is the sum of shortest paths between nodes j and h that contains the neighbors of node
i.

Functional integration

Functional integration measures the ease of information transfer or communication between brain
regions (Tononi et al., 1994). The communication between brain networks is measured by the
paths connecting them (Figure 3.6). The characteristic path length (L) is the most commonly used
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measure of functional integration. L is the path between brain regions (Watts and Strogatz, 1998).
It is defined mathematically as:

N 1jei dif
_ &j=1j#i
L; = N —1 (3.29)

Where djj is the shortest absolute distance between the nodes i and j. The inverse of average
characteristic path length is known as the global efficiency (E) which is defined as:

_1 ZjeN,j:tidi_jl
N N-—-1

ieN

E (3.30)

Small-world networks

The brain is a very complex network that supports spatio-temporal information processing. A
normal brain network combines functionally segregated modules with robust functional
integrating links. This kind of network is called a small-world network (SWN) supporting optimal
functional integration and segregation (Bassett and Bullmore, 2006; Sporns and Zwi, 2004). This
network structure is highly clustered (high clustering coefficient) with shorter path length (or
higher efficiency) (Figure 3.7) between brain regions compared to ordered (high C and long L) or
random networks (low C and short L)(Watts and Strogatz, 1998).
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Figure 3.7 Small-world network: Clustering coefficient (C) and path length (L) are plotted as a function of rewiring probability
(adapted from Watts and Strogatz (1998)). A small-world network is the network with high C and short L in which nearest
neighbours are connected to each other (segregation) and there are short paths to other neighbours (integration). The probability of
rewiring indicates the increase in randomness of the network.

A formal test to investigate whether a network behaves like a small-world network is to
evaluate the ratio of the normalized clustering coefficient(C) to the characteristic path length (L):

C
(C}and)

L
(Lrand)

SWN = (3.31)

Where C and Crang are the clustering coefficients, and L and Lrang are the characteristic path
lengths of the tested network and a random network, respectively. If the SWN value is greater
than 1, the network exhibits properties similar to small-world networks. However, the SWN is
influenced by several factors such as connectivity methods, the network size (SWN increases with
increasing the number of nodes), thresholding and other parameters.

Other network categories include network motifs, network resilience and many others. The
readers are referred to these papers (Rubinov and Sporns, 2010; Sporns, 2011; Telesford et al.,
2011) for more information.
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Chapter 4

EEG resting state functional connectivity
analysis in children with benign epilepsy with
centrotemporal spikes, Part |

4.1 Introduction

The relationship between epilepsy and cognitive and neuropsychological impairments in children
has been observed for a very long time (Datta et al., 2013; Fonseca et al., 2007; Holmes and Lenck-
Santini, 2006; Jambaqué et al., 1993). Despite the large number of studies on this topic, the proper
effects of epileptic activity on the cognitive functioning and development are not yet clearly
defined. Many studies are carried out with patients with different focal sources of epilepsy, age,
frequent of seizure and epileptic syndromes. Cognitive and behavioral deficits observed in
epileptic children are sometimes regarded as the result of complex interactions between biological,
psychological and social factors (Ay et al., 2009; Shields and Snead, 2009).

Benign childhood epilepsy with centrotemporal spike (BCECTS) is one of the most
common idiopathic epilepsy with prevalence between 10 to 20% in children with epilepsy under
the age of 16 (Panayiotopoulos et al., 2008). BCECTS is characterized by seizures typically
originated in the centroptemporal region with autonomic manifestations in the face, mouth and
throat (Loiseau, 2001). The majority of seizures occur during sleep or at the sleep onset (Camfield
and Camfield, 2014; Shields and Snead, 2009). Unlike other types of epilepsy like temporal lobe
epilepsy (Taylor et al., 2015), benign childhood epilepsy is known to be unaffected by the
structural abnormality (Hughes, 2010). However, epilepsy activity can cause different
malfunctions between subcortical and cortical regions that may lead to changes in resting state
EEG activity.

In this chapter we investigate differences in resting-state brain activity between BCECTS
patients and healthy controls under the eyes-closed condition in the presence and absence of
centrotemporal spike (CTS) or interictal epileptic discharges (IEDs). For this purpose, we studied
changes in the EEG spectral power and functional connectivity in both sensor and source spaces.
Graph theory metrics were also used to characterize functional connectivity between BCECTS
brain networks in comparison to healthy controls.

4.2 EEG spectral power and source analysis
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Spectral power analysis is one of the standard methods used for the quantification of EEG. The
spectral power density (power spectrum) reflects the distribution of signal power over frequency.
Spectral power features in different frequency bands may share different physiological properties
(Basar et al., 2013; Klimesch et al., 2007).

There are several studies using spectral power and source analyses of scalp EEG in benign
childhood epilepsy (BCE) (Béla et al., 2007; Besenyei et al., 2012; Clemens, 2004; Clemens et al.,
2010; Kikumoto et al., 2006). All reported high power spectral mostly at the epileptic region. Most
of these studies were done on the diverse groups of patients with different epileptic foci and age

group.

In the first study, we recruited twenty-one patients with BCECTS with an average age of 9.84 +
1.75 years old and twelve healthy controls with the same age range for the EEG resting-state
analysis. High density EEG data were recorded under the eye closed condition lasting at least 14
minutes for each subject. A homogenous group of twelve patients was selected based on the source
location of interictal epileptic discharges (IEDs). High density EEG data were preprocessed to
remove artifacts. The artifact-free segments were then segmented into non-overlapping epochs for
each subject. Two conditions were considered for the epileptic patients, EEG segments with and
without IEDs. Absolute and relative spectral power and source activities were computed for these
conditions in five different frequency bands (5, 0, a, B1 and B2) in both sensor and source spaces.
The changes in EEG spectral power were statistically compared between patients and controls with
nonparametric statistical tests.

Our results showed that the EEG resting state networks of BCECTS patients were
functionally disrupted in the presence and absence of centrotemporal spikes. The major findings
were dysfunction at the centrotemporal region, cortical source suppression at the frontal and
occipital regions in patients. Patients were also characterized with high 6 power in scalp EEG
across the brain and lower spectral power in the a band especially at the occipital regions in the
presence of IEDs. More details can be found in the following paper?.

1 Supplementary information in Appendix
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Benign epilepsy with centrotemporal spikes (BECTS) is the most common idiopathic childhood epilepsy, which is
often associated with developmental disorders in children. In the present study, we analyzed resting state EEG spec-
tral changes in the sensor and source spaces in eight BECTS patients compared with nine age-matched controls.
Using high-resolution scalp EEG data, we assessed statistical differences in spatial distributions of EEG power spectra
and cortical sources of resting state EEG rhythms in five frequency bands: 6 (0.5-3.5 Hz), 6 (4-8 Hz), o (8.5-13 Hz),
B (13.5-20 Hz) and 3, (20.5-30 Hz) under the eyes-closed resting state condition. To further investigate the impact
of centrotemporal spikes on EEG spectra, we split the EEG data of the patient group into EEG portions with and with-
out spikes. Source localization demonstrated the homogeneity of our population of BECTS patients with a common
epileptic zone over the right centrotemporal region. Significant differences in terms of both spectral power and cor-
tical source densities were observed between controls and patients. Patients were characterized by significantly in-
creased relative power in 6, o, [3; and 3, bands in the right centrotemporal areas over the spike zone and in the right
temporo-parieto-occipital junction. Furthermore, the relative power in all bands significantly decreased in the bilat-
eral frontal and parieto-occipital areas of patients regardless of the presence or absence of spikes in EEG segments.
However, the spectral differences between patients and controls were more pronounced in the presence of spikes.
This observation emphasized the impact of benign epilepsy on cortical source power, especially in the right
centrotemporal regions. Spectral changes in bilateral frontal and parieto-occipital areas may also suggest alterations
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in the default mode network in BECTS patients.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Benign epilepsy, also known as Rolandic epilepsy, is the most com-
mon idiopathic childhood epilepsy with a prevalence of approximately
15% in children aged 1-15 years (Panayiotopoulos et al., 2008). Rolandic
epilepsy is characterized by seizures that typically originate in the
centrotemporal area with often the same sensorimotor symptoms and
autonomic manifestations in the face, mouth and throat (Loiseau,
2001; Loiseau and Beaussart, 1973). The majority of Rolandic seizures
occur during non-REM sleep, at sleep onset or rest (Camfield et al.,
2014; Panayiotopoulos et al., 2008; Shields and Snead, 2009). As the
hallmark of benign childhood epilepsy, seizures are mostly associated
with centrotemporal spikes (CTS) often followed by slow waves,
which are typically activated by drowsiness and slow (non-REM)
sleep (Blom and Brorson, 1966; Clemens and Majoros, 1987; Smith
and Kellaway, 1964). Dipole source localization in patients with BECTS
has demonstrated that CTS can be reliably modeled by single tangential
dipole sources oriented from central to frontal lobes and localized in the

* Corresponding author.
E-mail address: ardalan.aarabi@u-picardie.fr (A. Aarabi).

http://dx.doi.org/10.1016/j.nicl.2015.08.014

high and low central regions (suprasylvian) (Gregory and Wong, 1992;
Jung et al,, 2003; Legarda et al., 1994; Panayiotopoulos, 1999b; Tsai and
Hung, 1998). Despite the focality of CTS and rolandic seizures in patients
with benign epilepsy, there is growing evidence from neuroimaging
studies reporting memory, language, attention, auditory and cognitive
impairments in BECTS patients that BECTS may functionally and struc-
turally affect a larger portion of the brain at rest (Bocquillon et al.,
2009; Cataldi et al., 2013; Lopes et al., 2014; Northcott et al., 2007;
Verrotti et al,, 2014).

The present study attempted to investigate changes in the spectral
power and spatial distribution of cortical sources of eyes-closed resting
state EEG rhythms in patients with BECTS compared to healthy subjects
under two conditions, in the presence and absence of CTS.

2. Methods
2.1. Subjects
Twenty-one children (9.84 4 1.75 years) with BECTS and 12 healthy

subjects (9.27 £ 1.70 years) used as controls were preselected for rest-
ing state analysis. The study was conducted at Amiens University

2213-1582/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Characteristics of the control and patient groups.

Control group Patient group

Subject Age (years) EEG duration Patient Age (years) EEG duration Neuropsychological Description of ictal EEG Medication

(min) (min) assessment
1 6.73 16.21 1 12.63 50.84 Normal Partial seizure Sodium valproate
2 11.28 19.59 2 12.64 17.85 Normal Partial seizure Sodium valproate
3 10.48 19.75 3 9.25 44.08 Attention deficit Generalized tonic-clonic seizure Oxcarbezepine
4 10.66 17.44 4 6.03 43.52 - Brachiofacial nocturnal seizure Oxcarbezepine
5 739 13.54 5 1047 50.06 Attention deficit Partial seizure Sodium valproate
6 731 20.30 6 7.16 14.26 - Brachiofacial nocturnal seizure Sodium valproate
7 11.92 30.02 7 8.51 30.36 Attention deficit Nocturnal seizure -
8 8.44 75.00 8 13.16 20.02 Normal Generalized tonic-clonic seizure Sodium valproate
9 9.36 28.00 9 9.67 15.63 Language deficit Generalized tonic-clonic seizure Lamotrigine
10 9.48 45.09 10 7.79 23.12 Normal Generalized tonic-clonic seizure Micropakine
11 10.32 18.97 11 8.91 16.78 Normal Generalized tonic-clonic seizure Trileptal
12 7.98
Mean + SD 9.27 + 1.70 9.65 + 2.36

Hospital (France) and was approved by the hospital’s ethics committee
(CPP Nord-Ouest No: 2011-A00782-39). Written informed consent was
obtained from each subject’s caregivers. Healthy subjects had no history
of neurological disorders. Patients showed no structural brain abnor-
malities on MRIL

2.2. Data acquisition and preprocessing

An EEG lasting at least 14 min was recorded in each individual at a
sampling rate of 256 Hz with a high-resolution EEG recording system
(ANT, Netherlands) using 64 electrodes placed on the scalp according
to the international 10-10 system. Forehead ground and linked-ear ref-
erence electrodes were used for data collection. During the recordings,
the subjects were asked to rest comfortably in a supine position in a
quiet dark room and were instructed to stay fully relaxed and motion-
less. We made sure that they were fully awake during data collection.
Since the reference electrode could be contaminated by ocular artifacts,
EEG data were offline re-referenced to common average reference and
filtered between 0.5 to 30 Hz to remove possible high frequency noise.
Two experienced neurophysiologists visually inspected the EEG data
to identify centrotemporal spikes.

To define a homogeneous group of patients, we first identified the
location of interictal sources for each patient using the spatiotemporal
dipole modeling method (Advanced Source Analysis Software, Ensche-
de, The Netherlands) (Scherg and Von Cramon, 1985). To define a ho-
mogeneous sample of patients for both single subject and group
analyses, eleven of the twenty-one patients (9.65 + 2.36 years) with
right centrotemporal spikes were selected to form the epileptic group.
Table 1 lists the characteristics of patients and controls and a summary
of their EEG records. Three of the eight patients were diagnosed with at-
tention deficit hyperactivity disorder. Fig. 1 shows the EEG dipole source
localization results projected onto the MRI template and sample EEG of
one of the patients.

To identify EEG portions with ocular and movement artifacts, the
EEG recordings were first normalized by the Z-score transformation
and then processed semi-automatically using a threshold method as it
was implemented in Fieldtrip software' (Oostenveld et al., 2011). For
each channel, EEG portions that exceeded a predefined threshold
were marked and visually inspected by the experts. The threshold was
set to the mean plus one standard deviation of the z-score amplitude
distribution for each channel. The artifact-free eyes-closed portions of
the EEG recordings were then segmented into non-overlapping 2-s
epochs. In this study, all statistical comparisons were performed

! http://www.fieldtriptoolbox.org/tutorial/visual_artifact_rejection.

between controls and patients under the eyes-closed (EC) condition.
To study the effect of interictal spikes on the dynamics of EEG and cor-
tical sources during the resting state, patients were compared with con-
trols under two conditions, ECys (eyes-closed without spike) and ECys
(eyes-closed with spike). Five segments were randomly selected for
each subject and condition for further analysis. The EC\ys EEG segments
contained an average of 7 spikes as a requirement to ensure homogene-
ity across the patients.

2.3. EEG spectral analysis

The absolute power spectral density for each channel and EEG seg-
ment was computed by using the multi-taper method with Slepian se-
quences (Jarvis and Mitra, 2001; Mitra and Pesaran, 1999) with a
frequency resolution of 0.5 Hz. Multi-taper frequency method is similar
to the classical Fourier transform but it is frequency specific with very
good anti-frequency leakage properties (van Vugt et al., 2007). Power
spectral analysis was performed using the Fieldtrip toolbox (http://
www.ru.nl/donders/fieldtrip) (Oostenveld et al., 2011). To investigate
homogeneity across patients and controls, we computed individual
alpha frequency (IAF) as described by Klimesch (1999) and Klimesch
etal. (1993). IAF was calculated as the sum of the product of the spectral
power estimates and the frequency divided by the total sum of spectral
power estimates within o band. This method has shown to be more ro-
bust and adequate particularly if there are multiple peaks in the o range
(Klimesch, 1999).

For statistical analysis, the whole frequency range (0.5-30 Hz) was
reduced into five frequency bands: & (0.5-3.5 Hz), 6 (4.0-8.0 Hz), a
(8.5-13.0 Hz), B¢ (13.5-20.0 Hz) and B, (20.5-30 Hz), corresponding
to the most common frequency bands in all epileptic patients and
healthy subjects.

For each channel and each subject, the power spectrum was then av-
eraged over all five segments. The relative power spectrum was then
obtained by normalizing the power spectral density of each channel to
its total power.

To reduce the spatial dimensionality of the data, we first grouped the
63 channels into 13 brain regions as shown in Fig. 2. For each region and
frequency band, we reported absolute and relative spectral power. We
then compared regional relative spectral powers within each frequency
band between groups by computing across-subject grand average Scalp
Topographic Patterns (STPs) of relative EEG spectral power (STP, &+
standard deviation) for each frequency band and group. The statistical
analysis was performed in each region including four electrodes on av-
erage. The group comparison was performed by the standard nonpara-
metric paired two-way ANOVA with 5000 permutations and p < 0.01
(Maris and Oostenveld, 2007).
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Fig. 1. (a) Dipole locations of the averaged spikes for patients, and (b) a sample EEG recording from patient 1.

2.4. EEG source distribution analysis using eLORETA

EEG cortical source analysis was performed by the functional brain
imaging method known as eLORETA (exact Low-Resolution Electro-
magnetic Tomography), which models 3D distributions of EEG cortical
sources (Grech et al., 2008; Pascual-Marqui, 2002, 1999) in the frequen-
cy domain. This method does not require a priori knowledge of dipole
positions and has been successfully used in recent studies on resting
state EEG analysis (Babiloni et al., 2010; Li, 2010). eLORETA is a discrete,
linear, weighted minimum norm inverse solution and provides better
accurate localization of highly correlated point sources with low signal
to noise ratio data (Pascual-Marqui, 2007; Pascual-Marqui et al.,
2011). We first used eLORETA to localize interictal spike sources for
each patient to investigate the spatial extent of spike sources.

3D source localization in the frequency domain was then performed
by computing the cross-spectra of EEG segments for each subject. The
eLORETA algorithm was used to compute the current density (Intensity
of the current/area, measured in A/m?) for each voxel within different
frequency bands. The eLORETA solution space was restricted to the cor-
tical gray matter of a realistic head model (MNI152) coregistered to the
Talairach brain atlas and digitized at the Montreal Neurologic Institute
(MNI) brain imaging center (Mazziotta et al., 2001). The brain compart-
ment included 6239 voxels (5 mm spatial resolution). Before any
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Fig. 2. Thirteen brain regions defined for statistical comparisons.

statistical analysis, the eLORETA solutions were normalized for each
voxel at each frequency band as implemented in the eLORETA software
(Pascual-Marqui, 2002). The normalization was done by normalizing
the eLORETA current density at each voxel to the eLORETA current den-
sity averaged across all frequencies (0.5-30 Hz) (Babiloni et al., 2010).

2.5. Statistical analysis of the eLORETA solutions

Statistical comparisons of cortical sources between the two groups
were performed on the eLORETA current density of the voxels in all
five frequency bands using the statistical nonparametric mapping ap-
proach (SnPM) via randomizations (Nichols and Holmes, 2002). The
randomization determined the critical threshold values for the observed
t-values with correction (p < 0.05) for multiple comparisons across all
voxels and all frequency bands. A total of 5000 permutations were
used to determine the significance level for each test. The log of F-
ratios were then color-coded and projected onto the MNI152 MRI and
the cortical layer of the realistic head model. The color-coded Topo-
graphic Significance Maps (TSMs) represented statistical differences in
estimated cortical sources between the groups.

3. Results

For illustrative purposes, we only present STP (sensor space) and
TSM (source space) with statistically distinct spatial patterns. The re-
maining results can be found in Supplementary Materials. The absolute
power for all the conditions is shown in Table 2.

3.1. Scalp topographic patterns (STP)

Fig. 3 shows the STPs for controls and patients in the 6, 6 and o
bands.

Compared to controls, the patient group presented significantly
higher relative EEG power values in the 6 band (Fig. 3, left STP map)
in right centrotemporal and bilateral frontal and parieto-occipital
areas under ECys and ECys conditions. The 6 power increases in all cor-
tical regions were more pronounced when spikes were included in the
EEG segments analyzed (ECws condition). In contrast, the relative o,
31 and 3, powers tended to decrease in homologous areas especially
under the ECys condition (Figs. 3 and S1). Furthermore, relative &
power significantly decreased in right centrotemporal and bilateral
frontal areas, but only in the presence of CTS. The results obtained in
the sensor space are summarized in Table 2. Table 3 lists the mean
and standard deviation of absolute power values for each region, fre-
quency band and condition. As shown, patients displayed increased ab-
solute 6 power and decreased absolute o power at the parietal and
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Table 2
Observed patterns of changes in relative EEG spectral power in patients compared to con-
trols in the five frequency bands.

Frequency band  ECys condition
(eyes-closed without spike)

ECws condition
(eyes-closed with spike)

Brain regions exhibiting significant ~ Brain regions exhibiting
changes in scalp EEG relative power significant changes in
scalp EEG relative power

5 (0-3.5Hz) - LF, RF |
C,RC,RT|

0 (4-8Hz) C,RC,RT 1 All cortical regions 1
LP,P,RP 1

« (8.5-13Hz) PF, LF, RF | LP, P, RP, O
LT, RCt
LP,P,RP, 0|

B, (13.5-20Hz)  PF) C,RP|
CRCL
LP, P, RP, O}

{32 (205-30Hz) PF| PF, LF, F|
RC C LCY C RC|
LP,P,RP, 0| LP,P,RP, 0}

The significant increase (1) or decrease (1) in EEG relative power was identified by statis-
tical comparisons (p < 0.01) between controls and patients. See Fig. 1 for the abbreviations
used for brain regions.

occipital regions especially under the ECyys conditions in comparison to
ECcr.

The group IAF values are shown in Fig. 4. The IAF values of ECcr were
significantly higher than those found for both the epileptic conditions in
all regions excluding the right frontal region. ECys showed was lower
IAF values in comparison to ECys in almost all cortical regions.

3.1.1. Statistical comparisons of EEG cortical sources

To further investigate the impact of BECTS on the cortical sources of
resting state EEG rhythms, we computed TSMs in the five frequency
bands under the ECys and ECws conditions (Figs 5-7, S2-4). Fig. S5
shows the spatial extent of the distributed sources of interictal spikes lo-
calized using eLORETA and averaged across all patients. As shown, only
the right centro-temporal regions are highly involved in the generation
of the spikes.

Compared to controls, patients exhibited increased 6, o and (3, activ-
ity under both conditions in the right centrotemporal regions, which are
involved in the generation and propagation of the spikes. However, the
spectral power increases of cortical sources were more pronounced
in the presence of CTS, and were also observed in (3; in the right
centrotemporal region and its immediately surrounding regions.

In patients, the right temporo-parieto-occipital junction also showed
increased 6 and o activities under the ECys condition (Fig. 5). However,

the presence of CTS within EEG segments increased power in higher
frequencies (3, and ;) in the right temporo-parieto-occipital junction
(Fig. S4). Furthermore, in patients, the bilateral temporal poles
displayed increased cortical activities in all five-frequency bands
under both conditions. To a lesser degree, the left centrotemporal area
including the insula also exhibited increased power in all bands.

Compared to controls, patients were characterized by significantly
decreased power in all bands in bilateral frontal and occipital lobes, es-
pecially in the presence of CTS. Other spurious increases/decreases in
the power of various bands were also observed in deeper structures
(see supplementary figures).

4. Discussion

This study was the first attempt to investigate differences in the to-
pographic distribution of EEG relative and absolute spectral power
and EEG cortical sources between healthy control subjects and patients
with BECTS under the eyes-closed resting state condition in five fre-
quency bands. Our findings demonstrated that BECTS has a profound ef-
fect on the spectral power of resting state EEG activities and cortical
sources by activating/deactivating cortical regions.

In the sensor space, we found significant increases in relative and
absolute 6 power in all brain regions especially in the epileptogenic
zone in the right centrotemporal region in comparison to healthy con-
trols. Meanwhile, the 6 power decreased in frontal and occipital regions
in comparison to central region of epileptic patients. This observation is
consistent with results from other studies conducted on Temporal Lobe
Epileptic patients (TLE) (Quraan et al.,, 2013). Several studies (Clemens,
2004; Clemens et al., 2000; Douw et al., 2010; Schneebaum-Sender
et al, 2012) have reported enhanced 6 power in children with epilepsy
with and without medication in comparison to controls (Clemens
et al, 2010). However, it has been shown that the increased theta
power in some cerebral regions is more pronounced in epileptic pa-
tients taking anti-epileptic drugs (Béla et al., 2007; Clemens, 2008;
Clemens et al., 2006; Kikumoto et al., 2006). Nevertheless, in our
study the drug effect can be ruled out to explain the spectral differ-
ences between the ECys (eyes-closed without spike) and ECws
(eyes-closed with spike) conditions.

Significant increases in 6, i, and 3 cortical sources were observed in
the source space of the right centrotemporal area, the region of CTS gen-
eration, under the ECys condition. Centrotemporal spikes are known to
be highly reproducible sharp waves with similar morphological charac-
teristics, high amplitudes and durations of more than 70 ms corre-
sponding to frequencies above the 6 band (Panayiotopoulos, 1999a,b.
Therefore, in our analysis, the increased relative power in frequencies

Fig. 3. Average normalized spectral power maps (+standard deviation) in the sensor space under the eyes-closed condition for the control group (ECCT, left boxplots), patient group
(ECNS, no spike condition, middle boxplots) and patient group (ECWS, with spike condition, right boxplots) in &, 6 and o bands. Significant differences between ECCT and ECNS/ECWS
are shown in solid boxplots. Asterisks indicate statistically significant differences (p < 0.01) between ECNS and ECWS.
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Table 3
Absolute power (1V2/Hz) computed for each region, frequency band and all the conditions.
Region Freq. Band o €] [ By P2
meanstd meantstd meanstd meanstd meanstd
PF ECer 0.0504+0.0013 0.0076+-0.0003 0.0049+0.0008 0.0013+0.0001 0.0005+-0.0000
ECws 0.04444-0.0009 0.0135+0.0018 0.0035+0.0002 0.0001+0.0000 0.0003+0.0001
ECns 0.0604+-0.0007 0.0073 + 0.0007 0.0018+0.0025 0.0008+-0.0009 0.0004+-0.0035
L ECer 0.049540.0014 0.0072+-0.0003 0.0052:-0.0009 0.0016+-0.0001 0.0008+-0.0001
ECws 0.04010+0.005 0.0146+-0.0011 0.0040-0.0004 0.001240.0002 0.0004+-0.0003
ECns 0.05354-0.0074 0.0082+0.0068 0.0026+0.0028 0.0012+0.0009 0.0007+0.0005
F ECer 0.0465+-0.0022 0.0089+0.0006 0.0068+0.0011 0.0019+0.0002 0.0007+0.0001
ECws 0.0481+-0.0048 0.0167+0.0009 0.0056+0.0009 0.0022+-0.0002 0.0007+0.0002
ECns 0.0483+-0.0032 0.0130+0.0010 0.0049+0.003 0.0027+0.0001 0.0012+4-0.0009
RF ECcer 0.047340.0018 0.0074+-0.0004 0.00510.0008 0.0016+-0.0001 0.0007+-0.0001
ECws 0.04254-0.0041 0.0123+0.0015 0.0044+0.0004 0.0015+-0.0002 0.0006+-0.0001
ECns 0.0557+0.0021 0.0083+0.0077 0.0029+0.0034 0.0015+-0.0013 0.0007+0.0001
LC ECer 0.0390+-0.0017 0.0088+-0.0006 0.0088+-0.0007 0.0019+4-0.0002 0.0007+4-0.0001
ECws 0.0369+4-0.0051 0.0128+-0.0012 0.0044+-0.0007 0.0015+-0.0003 0.0004+-0.0001
ECns 0.04034-0.0062 0.0102+0.0006 0.0048+-0.0042 0.0015+0.0015 0.0005+-0.0002
C ECcr 0.041140.0020 0.0097+0.0004 0.0080+0.0010 0.0017+40.0002 0.0005+-0.0001
ECws 0.036740.0041 0.0157+0.0011 0.0047+0.0008 0.0012+0.0002 0.00034-0.0001
ECns 0.0382+0.0021 0.0118+0.0074 0.0039+0.0030 0.0011+0.00105 0.0003+0.0002
RC ECns 0.04224-0.0017 0.0076+-0.0004 0.0081+0.0007 0.0017+0.0002 0.0007+0.0001
ECws 0.03814:0.0046 0.0157+0.0014 0.0055+0.0011 0.001540.0002 0.0003-0.0001
ECns 0.04204:0.0037 0.0103:0.0063 0.0035+:0.0031 0.001440.0012 0.00054-0.0004
LT ECer 0.0460+0.0009 0.0094+0.0006 0.0079+0.0007 0.0018+0.0001 0.0007+0.0001
ECws 0.0405+-0.0033 0.0126+-0.0020 0.0041+0.0005 0.0016+-0.0002 0.0007+0.0001
ECns 0.0432+4-0.0052 0.0111+0.0051 0.0036+0.0037 0.0018+-0.0017 0.0009+-0.0010
RT ECer 0.0456+4-0.0016 0.0085+-0.0004 0.0063+0.0006 0.0020+-0.0002 0.0007+0.0001
ECws 0.042940.0029 0.0149+0.0014 0.0054+0.0004 0.0016+-0.0001 0.0005+-0.0001
ECns 0.0467+0.0032 0.0104+0.0082 0.0031+0.0038 0.0015+0.0011 0.0007+0.0000
P ECcr 0.0434+-0.0021 0.0101+0.0005 0.0197+0.0014 0.0023+-0.0003 0.0005+-0.0000
ECws 0.03854-0.0043 0.0155+-0.0016 0.0053+0.0010 0.0013+-0.0003 0.0003+4-0.0001
ECns 0.04224-0.0056 0.0116+-0.0087 0.0048-0.0064 0.0013+0.0013 0.00034-0.0008
P ECer 0.037040.0020 0.0079+0.0006 0.0109+0.0014 0.0016+0.0002 0.0004+-0.0001
ECws 0.0346-0.0023 0.0149+0.0023 0.0041+-0.0008 0.0011+0.0002 0.0003+-0.0000
ECns 0.0401+0.0034 0.0129+0.0093 0.0041+0.0036 0.0011+0.0012 0.0002+0.0013
RP ECer 0.0394+0.0015 0.0089+0.0004 0.00173+0.0017 0.0024+0.0017 0.0003+0.0003
ECws 0.04284-0.0051 0.0153+0.0002 0.00059+0.0008 0.0014+0.0002 0.0003+4-0.0000
ECns 0.044340.0076 0.0125+0.0028 0.0004340.0044 0.0011+0.0012 0.0003+0.0001
o ECer 0.0426+0.0018 0.0092+0.0007 0.0173+0.0004 0.0024+0.0005 0.0006+0.0000
ECws 0.0435+-0.0045 0.0136+:0.0024 0.0064+0.0008 0.0013+0.0002 0.0003+0.0000
ECns 0.0482+4-0.0056 0.0108+-0.0020 0.0051+0.0008 0.0011+-0.0002 0.0002+-0.0000

above the 6 band can be simply explained by the presence of CTS in EEG
segments.

The increase in relative power of higher frequencies especially sev-
eral hundred milliseconds around CTS (Bourel-Ponchel, 2013; Gotman
et al., 2005) resulted in a less significant increase in the power of low
frequencies (& band). Under both conditions, in most frequency bands,
similar trends of spectral changes were observed in BECTS patients,
which may reflect the modulatory effect of epileptic networks on the
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Fig. 4. Individual alpha frequency (IAF) for all the 13 regions (see Fig. 2 for abbreviations).

spectral power of cortical sources regardless of the presence of CTS in
the scalp EEG segments analyzed. These findings indicate that, even in
the absence of CTS in the scalp EEG, the activity of epileptic networks
in BECTS has a profound impact on the EEG resting activity. This finding
is consistent with those reported in other resting state studies (Ciumas
etal, 2014; Kim et al., 2014; Pardoe et al., 2013). However, the presence
of CTS clarified spectral differences between patients and controls with
a wider spatial impact within the 3; band.

1AF differences between the groups may reflect decreased cognitive
performances in patients as suggested in several studies (Angelakis
et al., 2004; Khader et al., 2010; Klimesch et al., 1993). The lower IAF
was correlated with lower power at parietal and occipital region espe-
cially under the ECys condition. This finding might explain cognitive
and attention impairment in BCECTS patients (Holmes and Lenck-
Santini, 2006; Metz-Lutz et al., 1999).

Another major finding of this study was the increased relative 6 and
a power under the ECys condition, and the increased relative o, 3; and
32 power under the ECys condition consistently in the right temporo-
parieto-occipital (TPO) junction. This finding may suggest that the epi-
leptic zone in BECTS impairs the right temporo-parieto-occipital region.
The temporo-parieto-occipital region is believed to be involved in high
level neurological functions (De Benedictis et al., 2014), especially audi-
tory, visual, somatosensory and memory processes. Impairment of the
TPO in children with epilepsy has been shown to be associated with
higher activity in this region (Barba et al., 2007; Besseling et al., 2013;
Hewett et al., 2011; Tang et al,, 2014), which is likely to have neurobio-
logical relevance determined by anatomical development and
neurocognitive factors (Jiang et al., 2015; Tang et al., 2014). The
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(a)

(b)

P<0.05 0.01
ECer > ECys
ECcr <ECys

Fig. 5. Statistical maps of differences between cortical sources computed under the eyes-closed condition for the control group (ECcr, left boxplots) and the patient group (ECys, no spike
condition, right boxplots) in 6 and o bands. The results have been projected onto the cortical layer of the realistic head model (a) and the MNI152 MRI (b). Color bars indicate significant

differences between ECcr and ECys, red (ECcr > ECys) and blue (ECcr < ECys).

disconnection or resection of TPO in children with epilepsy has been
shown to increase the likelihood of alternative epilepsy treatment
(Ansari et al., 2010; Mohamed et al.,, 2011), which may indicate the in-
volvement of the TPO region in epileptic networks.

The bilateral increases in all bands under both conditions in the
poles of the temporal lobes, known to be the regions responsible for lan-
guage and speech processing, suggest possible interhemispheric syn-
chronization in temporal regions due to CTS. Several studies (Ay et al.,
2009; Baglietto et al., 2001; Kossoff et al., 2007; Liasis et al., 2006;
Metz-Lutz et al., 1999; Northcott et al., 2007) have discussed the im-
paired visual and auditory networks and alternation of source activities
at the bilateral poles of the temporal lobes in BECTS patients.

A compelling finding of the present study was the decreased ac-
tivities of cortical sources in the frontal and occipital lobes in BECTS
patients compared to healthy subjects in all frequency bands and
conditions, notably under the ECys condition. The frontal and occip-
ital cortical depression in BECTS patients is likely to be associated
with decreased activity of the default mode network (Archer et al.,
2003; Blumenfeld et al., 2004; Fahoum et al., 2013; Gotman et al.,
2005; Ibrahim et al., 2014; Laufs et al., 2007; Ligot et al., 2014;
Yang et al., 2014). This finding is also in line with the frontal decrease
in the relative power of lower frequencies observed in the time-
frequency domain several hundred milliseconds before and after
centrotemporal spikes in BECTS patients (Bourel-Ponchel, 2013).
The reduced activity of the prefrontal and frontal lobes might also
explain some of the cognitive impairments and other brain
malfunctions related to benign epilepsy (Holmes and Lenck-
Santini, 2006; Weglage et al., 1997), as it has been shown that any

. ;

dysfunction in this region in childhood is likely to affect cognitive de-
velopment (Badre et al., 2009; Stuss and Alexander, 2000).

Certain discrepancies between the topographic distribution of scalp
EEG relative spectral power (in the sensor space) and the spatial distri-
bution of cortical sources (in the source space) in different frequency
bands were observed in this study. In our study, the increased or de-
creased cortical activities in various frequency bands estimated by
means of the eLORETA approach were not expected to exactly follow
the same spatial pattern of the spectral changes obtained using power
spectrum analysis in the sensor space. The discrepancies can be ex-
plained by methodological differences between the approaches. Our
STP maps were obtained by averaging the relative power values over
groups of electrodes in each of 13 regions, while eLORETA maps were
t-maps generated from statistical analysis of all 6234 voxels, whose
source activities were estimated using all electrodes. Frequency-
domain eLORETA generally provides better results for EEG resting analy-
sis because the estimated neuronal generator distribution, when using
this approach, does not depend on the polarity of the scalp EEG maps
(Pascual-Marqui, 2014).

A potential limitation of our study is the sample size. For the thirteen
cerebral regions, we computed the minimum sample size (Freedman
et al., 2001) with the statistical power of 80%. The average sample size
required for performing statistical comparisons between the groups
was about 7 which was less than the sample sizes (eleven patients
and twelve controls) set in our study.

Our overall findings indicate that, in addition to the dysfunction of
the right centrotemporal region, which is the epileptic focus, cortical de-
pression of frontal and occipital regions may show resting network

(b)

P<0.05 0.01
ECer>ECys
ECcr <ECws

Fig. 6. Statistical maps of differences between cortical sources computed under the eyes-closed condition for the control group (ECcr, left boxplots) and patient group (ECys, with spike
condition, right boxplots) in 6 and o bands. The results have been projected onto the cortical layer of the realistic head model (a) and the MNI152 MRI (b). Color bars indicate significant

differences between ECcr and ECyys, red (ECcr > ECws) and blue (ECcr < ECws).
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(b)

P<0.05 0.01
ECys > ECws
ECxs <ECws

Fig. 7. Statistical maps of differences between cortical sources computed under the no-spike (ECys, left boxplots) and with-spike (ECys, right boxplots) eyes-closed conditions in & and o
bands for the epileptic group. The results have been projected onto the cortical layer of the realistic head model (a) and the MNI152 MRI (b). Color bars indicate significant differences

between ECys and ECys, red (ECys > ECws) and blue (ECys > ECws).

disruption in benign childhood epilepsy with centrotemporal spikes.
These findings encourage further investigation into the impact of
BECTS on the resting state networks.

ary data

Supplementary data associated with this article can be found online
at http://dx.doi.org/10.1016/j.nicl.2015.08.014.
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One of the major problems with the EEG spectral power analysis in the sensor space was the
volume conduction effect. Also, scalp EEG reference may introduce spurious synchrony (Nunez
et al., 1997) making the sensor-space analysis and interpretation more difficult. This problem still
persists in the source space (van den Broek et al., 1998). On the other hand, spectral power analysis
in the source and sensor spaces are univariate analyses that only show changes in brain activity at
the single-channel or voxel level.

The interaction between brain regions are analyzed by bivariate and multivariate
functional connectivity analyses. Functional connectivity refers to the functional relationship
between spatially separated brain regions and has been applied to several studies including
epilepsy (Centeno and Carmichael, 2014). The characterization of the dynamics of cortical
networks in EEG and Electrocorticography (ECoG) in epileptic patients during the resting state
has demonstrated disruptions in global and regional brain networks (Douw et al., 2010a, 2010b;
Quraan et al., 2013). The functional connectivity of human brain networks is often characterized
with the graph theory (Rubinov and Sporns, 2010). A large number of graph theory metrics has
been used in epilepsy studies such as degree, or other metrics used for characterizing functional
segregation, integration and modularity of the brain networks (Fallani et al., 2014; Stam, 2014).

4.3 EEG functional connectivity and graph theory

Introduction

In the previous studies, the functional connectivity analysis was performed to explore functional
alteration of the brain networks in BCECTS patients in comparison to healthy controls. This was
done using EEG segments with/without interictal discharges in the sensor and source spaces to
investigate the impact of interictal epileptic discharges on functional interactions between brain
networks in BCECTS patients. In the first study, phase locking value (PLV) (Lachaux et al., 1999)
was applied to the scalp EEG to estimate functional connectivity. The functional connectivity in
the second study was estimated by the lagged phase synchronization (Pascual-Marqui, 2007) in
the source space with 84 brain regions defined by the Brodmann atlas (Brodmann, 1909). LPS has
been shown to be less sensitive to non-physiological signals and volume conduction artifacts
(Pascual-Marqui et al., 2011).

Both PLV and LPS measured phase synchronization by computing relative phase
difference between two electrodes or brain regions. However, PLV like spectral coherence
measure zero-lag connectivity and are developed based on scalp electrodes and therefore sensitive
to volume conduction. PLV is one of the common functional connectivity measures used
extensively for the correlation between EEG electrodes. Unlike PLV, LPS is non-zero lag
connectivity and was developed and implemented in eLORETA(Pascual-Marqui et al., 2011)
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academic software that was used for this study. LPS removes confounding effect of instantaneous
dependencies by removing zero-lag contribution due to volume conduction and low spatial
resolution which makes LPS adequate measure of electrophysiological connectivity.

The functional connectivity in both sensor and source spaces were characterized with
graph metrics. The network centrality was measured by the degree, functional segregation by
clustering coefficient and functional integration by characteristic path length or global efficiency.
The was aimed to investigate both local and global connectivity in epileptic patients in comparison
to healthy controls.

In the sensor space, patients were characterized with higher connection density at the
epileptic zone in all frequency bands. Lower connection density was also observed at the frontal
and posterior region with or without IEDs. The BCECTS brain network showed deviations from
small-word features in comparison to the healthy controls in a frequency dependent manner. The
BCECTS brain networks were more functionally ordered in the presence of IEDs compared to
healthy controls. However, in the absence of IEDs, BCECTS brain networks were less ordered
compared to the healthy controls in all frequency bands (see the following paper for more details)?.

2 Supplementary information in Appendix A
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Abstract

There is growing evidence that brain networks are altered in epileptic subjects. In this study,
we investigated the functional connectivity and brain network properties of benign childhood
epilepsy with centrotemporal spikes using graph theory. Benign childhood epilepsy with
centrotemporal spikes is the most common form of idiopathic epilepsy in young children
under the age of 16 years. High-density EEG data were recorded from patients and controls
in resting state with eyes closed. Data were preprocessed and spike and spike-free seg-
ments were selected for analysis. Phase locking value was calculated for all paired combi-
nations of channels and for five frequency bands (3, 6, a, 81 and B,). We computed the
degree and small-world parameters—clustering coefficient (C) and path length (L)—and
compared the two patient conditions to controls. A higher degree at epileptic zones during
interictal epileptic spikes (IES) was observed in all frequency bands. Both patient conditions
reduced connection at the occipital and right frontal regions close to the epileptic zone in the
a band. The “small-world” features (high C and short L) were deviated in patients compared
to controls. A changed from an ordered network in the & band to a more randomly organized
network in the a band was observed in patients compared to healthy controls. These find-
ings show that the benign epileptic brain network is disrupted not only at the epileptic zone,
but also in other brain regions especially frontal regions.

Introduction

Benign childhood epilepsy with centrotemporal spikes (BCECTS) is the most common child-
hood epilepsy syndrome, usually affecting the children under the age of 16 years [1,2]. Several
studies have demonstrated different cognitive impairments [3] including frontal dysfunction
[4] in patients with benign epilepsy with no evidence of large structural changes compared to
other forms of epilepsy [5,6]. However, all forms of epilepsy are associated with abnormal
brain activity and impaired neural processing as a result of unstable brain dynamics and

PLOS ONE | DOI:10.1371/journal.pone.0139228 October 2, 2015

1/14

45



@'PLOS ‘ ONE

Functional Dysfunction of Benign Childhood Epilepsy

Competing Interests: The authors have declared
that no competing interests exist.

networks [7]. Dynamic changes of epileptic brain networks are believed to be caused by dysre-
gulation of neurotransmitters leading to abnormal electrical activity [8].

Abnormal synchronization of neurons, probably due to changes in the spatial organization
of the neural networks, is also thought to contribute to the generation and propagation of epi-
leptic seizures [9]. Graph theory is a promising mathematical approach to study topological
characteristics of both local and long distance brain functional connectivity using fMRI, EEG
and MEG [10-12]. Graph analysis of brain connectivity has revealed reconfiguration of both
structural and functional connections between different neural networks in several brain disor-
ders [13]. Few studies have compared the resting state of healthy controls to that of epileptic
patients at network level [14]. The characterization of the dynamics of the cortical networks in
scalp EEG and electrocorticography (ECoG) in epileptic patients during the resting state has
demonstrated disruptions in global and regional brain networks [15-17].

A large number of graph metrics have been proposed, two of which, clustering coefficient
and path length [18], have been mostly used to characterize the functional connectivity of
human brain networks [13,19]. The clustering coefficient (C) is a measure of functional segre-
gation quantifying the presence of locally connected groups known as clusters or modules,
which indicate segregated neural processing [18]. Path length (L), however, measures network
integration by estimating the effective communications between different brain regions [18]. A
graph comprising numerous local and few long-distance connections (high C and short L)
most closely corresponds to the optimal network, called the ‘small-world network (SWN)’,
which is intermediate between ordered (high C and long L) and random networks (low C and
short L) [20,21]. However, various types of neurological diseases, including epilepsy, have been
reported to deviate from SWN properties [22-24].

In this study, we investigated changes in brain functional connectivity in BCECTS patients
compared to healthy controls in various frequency bands using high-density resting EEG data
under the eyes-closed condition. For this purpose, we quantified the topological properties of
the BCECTS brain networks at rest during periods with and without interictal epileptic spikes
(IES) by estimating the clustering coefficient (C) and path length (L) from the functional con-
nectivity matrices reconstructed with phase locking value (PLV). We also estimated the degree
of centrality that measures the number of connections between a particular node (a specific
brain region) to other nodes [18]. In summary, this study was designed to investigate whether
BCECTS functional brain networks in the presence or absence of interictal spikes exhibited
characteristic changes in small-world network features.

Materials and Methods
Subjects

Our study was conducted at Amiens University Hospital (Amiens, France) and approved by
the hospital’s ethics committee (CPP Nord-Ouest 2, approval No. 2011-A00782-39). Written
consent approved by the ethics committee was obtained from parents/caregivers. Eight healthy
adolescents (9 + 0.21 years old) and nine young patients (9 + 0.24 years old) with BCECTS
were included in this study. All patients presented right centrotemporal spikes (see S1 Fig) and
were free of any other neurological disorder at the time of the study.

EEG recording and preprocessing

On average, thirteen-minute high-resolution EEG data were recorded from each subject resting
comfortably in a supine position in a quiet room. EEG data were recorded with 64 channels
based on the international 10-10 system and a sampling rate of 256 Hz. An average reference
montage was used for all of the analysis. Data were filtered offline between 0.5 to 30 Hz to
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exclude high-frequency noise including muscle activities. To identify EEG portions with ocular
and movement artifacts, which were excluded from the analysis, the EEG recordings were first
normalized by the Z-score transformation and then processed semi-automatically (with visual
inspection) using a simple threshold method (threshold set to the mean of the z-score distribu-
tion for each channel) as it was implemented in Fieldtrip software (http://www.
fieldtriptoolbox.org/tutorial/visual_artifact_rejection) [25]. Two neurophysiologists visually
inspected the filtered data in order to identify spikes segment and artifacts.

Artifact-free portions of the EEG data were partitioned into two-second non-overlapping
segments. Five segments were randomly selected for each of the control subjects (CON). Two
conditions were defined for the epileptic group: 5 segments with interictal spikes (With Spike
Condition—WSC) and 5 spike-free segments (No Spike Condition—NSC), all randomly
selected. On average, the WSC EEG segments contained 7 spikes considered as a requirement
to ensure homogeneity across the patients.

Functional Connectivity

Pairwise correlations between all EEG channels were computed with the Phase Locking Value
(PLV) [26,27]. Briefly, the PLV belongs to the family of phase synchronization values that are
used to estimate functional connectivity between two signals based on their relative phase dif-
ferences. To calculate the PLV, we first filtered the data into frequency bands (8 (0.5-3.5 Hz), 6
(4-8 Hz), o (8.5-13 Hz), B, (13.5-20 Hz) and B, (20.5-30 Hz) using zero-phase forward and
reverse digital filtering. The analytical signals were obtained by Hilbert transformation of the
filtered signals. The Hilbert transformed signals consisted of the instantaneous amplitude and
phase of the signals. The phase angle (¢) was used to compute the PLV. The PLV ranged from
0 to 1, with 0 and 1 indicating no connection and maximum connection between any given
pair of signals, respectively. The end-result of computing the PLV for all paired combinations
of channels was a square matrix of size 63 (number of EEG channels), in which each entry Ny,
(= Ny,) contained the PLV for channels x and y (see Supporting information for more details).

Computation of graph theory parameters

A graph is a basic topographical representation of a network consisting of nodes or vertices (in
this case brain regions or electrodes) and edges (correlation between nodes). In this study, the
network consisted of 63 vertices (electrodes) connected by edge weights (or elements) between
all pairs of channels. The first step in applying graph theoretical analysis to functional connec-
tivity matrices consists of converting the matrix into a binary graph, in which the edges either
exist (1) or do not exist (0), i.e, with no graded values. Functional connectivity matrices were
converted to binary graphs by applying an optimal threshold, T above/below which connectiv-
ity values were set to 1/0. This operation transformed functional connectivity matrices to
binary adjacency matrices, which was then followed by computation of graph metrics.

For each subject and frequency band, we determined the optimal threshold using an itera-
tive method to make sure that the proportion and global spatial distribution of connections
between brain regions were similar across subjects. We did not, however, choose a single
threshold for all frequency bands mainly because it could lead to false positives in some fre-
quency bands resulted from highly disconnected or over-densely networks [28]. Our threshold
optimization procedure was based on the computation of the degree, which is defined for each
node as the number of links connected to the node. The degree is used to measure the impor-
tance of individual nodes (nodes with a high degree of interaction with other nodes). The opti-
mal thresholds were iteratively determined by means of the following procedure. First, for each
functional connectivity matrix, we set the threshold to one standard deviation above the
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median connectivity value. We then calculated the mean degree for the whole brain network.
The optimal threshold was determined under two conditions, (i) the mean degree must not be
less than 2In(N), and (ii) at least 95% of nodes must be connected to one or more nodes [28,29]
(see SI for more information). These conditions were then used to optimize the connection
strength, which was used to increase the signal-to-noise ratio and to reduce false-positive edges
in the graph [29].

To investigate the global topology of large-scale brain functional networks in patients and
controls, the optimal threshold for each subject and frequency band was applied to the func-
tional connectivity matrix for computation of degree of the whole brain network. We then
investigated whether the occurrence of interictal spikes could change the small-world network
features (C and L) in BCECTS brain networks. The clustering coefficient of a node is the ratio
of the number of actual edges to the total number of potential edges adjacent to the node. The
clustering coefficient was computed for all nodes and averaged (mean clustering coefficient,
C). The path length is the mean shortest path connecting any two nodes of the graph and indi-
cates how well the nodes are interconnected or integrated [18,20]. Similarly, we computed the
mean path length (L) of the whole brain network (see SI for mathematical description). C and
L were computed as a function of network density defined as the ratio of the actual number of
edges in the graph to the total number of possible edges. In order to detect significant differ-
ences in network organization between the groups and to minimize the number of false (or
noisy) edges in the networks, we only investigated strong connections by changing the network
density from 30% to 60% in steps of 5% based on previous studies [30,31].

Statistical analysis

Nonparametric permutation testing was used for all graph parameters with correction for mul-
tiple comparisons including post hoc tests with a p-value < 0.05. A total of 1,000 permutations
were used to determine the significance level for each test [32]

All computations and statistical analyses were performed in Matlab with custom scripts and
open source toolboxes: Fieldtrip (http://fieldtrip.fcdonders.nl/), EEGLAB (for 3D topological
plots, http://sccn.ucsd.edu/eeglab/), and the brain connectivity toolbox (for graph parameter
computations, https://sites.google.com/site/bctnet/).

Results
Synchronization and degree

The mean PLV was analysed under the three conditions in order to investigate differences in
synchronization between patients and controls (Fig 1). As shown, the mean PLV under the
with-spike condition exhibited significantly higher values in the 6 band compared to the other
two conditions (CON and NSC). No significant differences in synchronization were observed
between the groups in the other frequency bands.

Compared to controls, BCECTS patients were characterized by significantly lower mean
degree values in the § band (under both WSC and NSC) and in the B, band (only under NSC).

We also investigated whether our results were affected by the precise choice of the thresh-
olds. As shown in Table 1, within each group the variations in PLV and K due to changes in
the optimal thresholds were very small for each particular frequency band.

We further investigated the regional differences in the degree (K) distribution between the
groups (Fig 2). In the presence of IES (WSC vs. CON), K significantly increased in the right
centrotemporal region (IES generator region), and decreased in the occipital region in almost
all frequency bands. Right frontocentral areas exhibited lower K values in mid-range
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Fig 1. Group mean Phase Locking Value (PLV) and group mean degree (K). Error bars show standard
errors with 95% confidence intervals. CON, WSC and NSC indicate the control, with spike and no spike
conditions, respectively. Statistical significance is denoted by * (WSC vs CON) and + (NSC vs CON) with
p<0.05.

doi:10.1371/journal.pone.0139228.9001

frequencies (6 and o). On the contralateral side, however, the degree significantly increased in
the left frontal and frontotemporal regions in the 6 band.

In the absence of IES (NSC vs. CON), K increased in the left frontal region in the 6 band
and in right centrotemporal areas in high frequencies (B; and B,). In the mid- and high-range
frequencies, patients exhibited relatively lower values of degree in occipital areas.

Compared to NSC, WSC was characterized with significant increases of K in the right cen-
trotemporal regions in the 8 and o band, and in the right parietotemporal regions in the B,

Table 1. Mean and range of changes (at 95% confidence interval) of phase locking value (PLV), thresh-
old (r) and degree (K) computed for each group and frequency band.

Frequency band PLV T K

CON ) 0.51+0.02 0.59+0.01 15.12+1.40
6 0.50+0.03 0.60+0.01 11.14£1.13
a 0.53+0.03 0.63+0.02 12.04+0.86
B4 0.49+0.03 0.57+0.01 11.19+1.28
B2 0.48+0.02 0.54+0.01 10.42+1.16
wsc [ 0.52+0.03 0.63+0.02 12.45+0.80
0.55+0.03 0.64+0.01 11.96x0.79
o 0.52+0.04 0.62+0.03 12.12+0.66
B1 0.50+0.03 0.58+0.01 10.70+0.81
B2 0.48+0.03 0.55+0.00 10.04+0.59
NSC 9 0.50+0.03 0.60+0.03 11.71+0.82
] 0.50+0.04 0.60+0.02 11.47+0.50
a 0.53+0.04 0.62+0.04 11.54+1.00
B4 0.48+0.03 0.55+0.01 10.06+0.41

B> 0.47+0.03 0.53+0.01 9.83+0.79

doi:10.1371/journal.pone.0139228.t001
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Fig 2. Statistical difference (t-value) maps of degree between the control (CON) and the epileptic groups (WSC and NSC). The color bar indicates the
tvalues projected onto a standardized head shape. The significant increase (indicated by red) and decrease (indicated by blue) in degree have been

represented, respectively, by positive and negative t values resulted from statistical comparisons between (WSC and CON), (NSC and CON), and (WSC and
NSC).

doi:10.1371/journal.pone.0139228.g002

band. The degree decreased significantly in occipital areas in all frequencies except in the 6
band, in the right frontocentral region close to the spike generation zone in mid-range frequen-
cies (0 and o), and in the left posterior region in the B, band.

Clustering coefficient and path length

Fig 3 shows the mean clustering coefficient (C) and mean path length (L) computed for each
condition.

In low frequencies (8), the presence of IES (WSC) in the EEG segments significantly
increased C at low connection densities (<50%) in comparison to the other two conditions.
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Fig 3. Mean clustering coefficient (C) and mean path length (L) as a function of network density for each frequency band. The error bars represent
standard error with 95% confidence intervals. CON, WSC and NSC indicate the control, with spike and no spike conditions, respectively. Statistical
significance is denoted by * (WSC vs. CON), + (NSC vs. CON) and x (WSC vs. NSC) with p<0.05.

doi:10.1371/journal.pone.0139228.9003

Compared to CON, both epileptic conditions exhibited shorter path length at connection den-
sities up to 45%.

In the 6 band, compared to NSC, WSC and CON showed significantly higher C (for all con-
nection densities) and longer L (for connection densities less than 40%). No significant differ-
ences in clustering coefficients were observed between WSC and CON at almost all connection
densities.

In the o band, both NSC and WSC compared to CON, and WSC compared to NSC exhib-
ited significantly lower C values for almost all connection densities. Similar differences in L
were found between the groups on a less significant level. The only exception was shorter path
lengths found for WSC compared to CON and NSC at connection densities up to 45%.

In higher frequencies (B, and B,), lower C (over all connection densities) and shorter L (for
connection densities less than 45%) were found under NSC (vs. WSC and CON). In the B,
band, compared to CON, WSC was characterized by significantly lower clustering coefficients.
Table 2 roughly summarizes overall significant differences between the conditions.

Table 2. Summary of differences in mean clustering coefficient (C) and mean path length (L) between the three conditions as shown in Fig 3.

C L
5 ] a B1 B2 5 [} a B1 B2
WSC vs. NSC T ) l T ) NS 1 | T )
WSC vs. CON 1 NS ! 1 NS 1 NS 1 NS NS
NSC vs. CON NS | | 1 1 1 ! 1 ! !

1 and | indicate significant increase and decrease in C and L between conditions, respectively. NS represents non-significant differences.

doi:10.1371/journal.pone.0139228.t002
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Discussion

This study investigated differences in the brain functional connectivity between BCECTS
patients and healthy controls. Statistical dependencies between EEG time-series recorded
from different brain regions were investigated by computing functional interactions using
PLV as a measure of phase synchronization as well as graph metrics. The brain functional
connectivity of BCECTS patients was found to be disrupted in terms of synchronization and
degree of connectivity not only in the IES zone but also in frontal and temporal areas. Devia-
tions from small-world features and network parameters were also observed in various fre-
quency bands in BCECTS patients regardless of the presence or absence of spikes in EEG
segments.

Many studies have shown that neurological diseases in children [33,34] are associated with
differences in the level of synchronization compared to healthy controls. Compared to the other
frequency bands, we found higher synchronization values in the o. band in healthy subjects (Fig
1). The increased o synchronization is generally accepted to be due to the increased alpha activa-
tion under the eyes-closed resting state of the brain [35]. However, compared to controls,
BCECTS patients exhibited significantly increased 6 and decreased o synchronization under the
with-spike condition. Our observations are consistent with those reported in patients with tem-
poral lobe epilepsy [30], who presented significantly increased synchronization in the 6 band,
but non-significantly decreased synchronization in the o band. The increase of 6 synchronization
is commonly observed, not only in epilepsy [36,37] but also in other neurological diseases such
as Parkinson’s disease [38] and Alzheimer’s disease [39].

Interictal spikes disrupt the global topology of brain functional
connectivity

The disruption of brain dynamics in BCECTS patients probably results in higher levels of
synchronization in some regions of the brain (especially in the epileptogenic zone) and lower
levels of synchronization in other regions due to epileptic spikes. Although there is little evi-
dence to suggest that BCECTS is associated with structural brain abnormalities [40], we
found strong frequency-dependent changes in the degree as a measure of centrality or infor-
mation coordination implying disrupted functional connectivity in the epileptic zone in
BCECTS patients.

However, increased and decreased degrees in other regions, notably frontal and occipital,
support the idea that disruption of brain functional connectivity in BCECTS patients is
unlikely to be restricted to the epileptogenic zone. This finding may reflect the functional reor-
ganization of the BCECTS brain network topology.

Functional disruption of BCECTS frontal networks

Our results revealed functional dysfunction of frontal brain networks in the presence/absence
of interictal epileptic spikes. Compared to controls, BCECTS patients were characterized by a
reduced degree in the right frontal region in the o. band and an increased degree in the left
frontal region in the 6 band. These observations suggest functional network reorganization in
the frontal regions regardless of the presence or absence of spikes in EEG segments. This
frontal functional dysfunction may confirm the results of longitudinal MRI studies [41],
which suggested that learning and memory difficulties in BCECTS patients may be associated
with serial changes in the frontal and prefrontal lobes [42-44].

The alteration of brain functional connectivity in the absence of IES does not exclusively
affect the frontal regions; it also involves the occipital region. This spatial pattern of changes
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was also observed in the presence of IES, especially in the o band. The decreased degree in
the 0. band in the posterior region under the epileptic conditions may support the disruption
of functional brain connectivity in BCECTS patients even though the differences in global
synchronization did not reach statistical significance. Since in healthy controls the functional
connectivity has been shown to increase in frontal and posterior regions under the eyes-
closed condition in the o band [45], in BCECTS patients the reduced o degree at the occipital
region may support their poor visual spatial memory [46].

Deviation from small-world network features

There has been a growing interest in small-world analysis of brain networks in various neuro-
logical diseases [13]. The small-world network features of healthy controls have been compared
to different brain diseases, such as schizophrenia [47], depression [48], Alzheimer’s disease
[24] and various types of epilepsy [14]. Most of these neurological diseases are associated with
lower clustering coefficients and shorter path lengths compared to healthy controls.

The present study demonstrated frequency-dependent alterations of small-world features
and network parameters in BCECTS patients in the presence and in the absence of IES. In the
& band, patients under the WSC condition exhibited higher C and long L compared to controls,
implying that, at very low frequencies, BCECTS brain networks exhibit more functionally
ordered organization in the presence of IES. This observation is consistent with the findings
observed in other types of epilepsy [49]. In higher frequency bands (o and B,), patients showed
lower C values under both WSC and NSC compared to controls. The simultaneous decrease in
Cand L in the B; band may indicate loss of global processing and stronger integration between
long-distance brain regions, which can be interpreted as increased functional interaction
between long-range brain connections in BCECTS patients.

Interestingly, a switch in the brain network functional organization in the 8 and o bands
was observed when comparing WSC and NSC conditions. BCECTS patients’ brain networks
tended to change from a more randomly organized network (low C, short L) in the o band
to a functionally ordered network (high C, long L) in the 8 and B bands due to IES. The
global increase in C in the presence of IES (excluding the o band) reflects orderly connection
of IES brain networks. This finding is in agreement with studies on the other types of
epilepsies using intracranial EEG and ECoG [16,50]. Small-world networks allow more
rapid information processing and learning than either random or regular networks [51] and
the results may suggest that the cognitive impairments observed in BCECTS may be associ-
ated with rapid changes in the functional reconfiguration of BCECTS brain networks.
Although the shorter path length in higher frequency bands (in the o band for WSC and the
B band for NSC has been shown to support effective interactions between and across brain
regions [21], BCECTS brain networks may more closely resemble randomly organized
networks.

In the absence of IES, C was lower in all frequency bands and L was lower in the 6 and B
bands in BCECTS patients compared to controls, indicating that, in the absence of IES, the
BCECTS brain network is less ordered regardless of the frequency band except for the o
band. It is generally believed that random networks ensure even better synchronization than
small-world networks [52], as pathological random networks present rapid phase transition
that could lead to the onset of interictal epileptic discharges. In agreement with our observa-
tions, temporal lobe epilepsy [30] has been characterized by lower C and shorter L in the o
band compared to controls. These discrepancies between TLE and BCECTS are clinically rel-
evant and may constitute a specific biomarker of the type of epilepsy. However, to confirm
our findings, further study with a larger population of patients will be needed.
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Limitations and future directions

A potential limitation of our study is the use of scalp EEG for the functional connectivity analy-
sis. In studies on epilepsy, scalp EEG is usually used for EEG source imaging and/or functional
connectivity analysis [53], are employed for localizing the epileptogenic foci and investigating
the functional organization of the epileptic cortical networks, respectively. In our study, we
used PLV as a measure of undirected functional connectivity between electrodes to explore the
global topology and dynamics of the interactions between large-scale brain regions during the
interictal state over a range of frequencies. The functional connectivity analysis in the sensor
space might provide inaccurate information on the overall organization of the cortical region
mainly because EEG electrodes detect spatially averaged overlapping EEG signals from several
brain sources or the signal generated by a focal cerebral source can be detected by nearby elec-
trodes [54].

Our main direction of future work will be to use the EEG source space connectivity tools
such as the directed transfer function (DTF)[55] or the Phase-Slope Index (PSI) [56] for the
identification and characterization of the cortical networks involved in the interictal states.

In patients with epilepsy, the functional connectivity analysis using DTF has provided
promising results using scalp EEG [57] and ECoG [58] for exploring the directed functional
connectivity between cortical regions and the propagation of activation [58,59]. In general, the
EEG functional connectivity analysis between neighbouring voxels might lead to spurious and
over-represented results [60] because of the volume conduction effect which highly affects the
accuracy of the functional connectivity tools [61]. However, DTF has been shown to be insensi-
tive to volume conduction and less sensitive to noise [62]. We will also increase the number of
electrodes to improve the accuracy of the functional connectivity analysis in the source space
[63,64].

Conclusion

This study investigated functional alterations in small-world characteristics in patients with
benign epilepsy with centrotemporal spikes and showed that the functional organization of
BCECTS brain networks changed from an ordered structure in low frequency bands (3 and 6
bands) to a less randomly ordered network in higher frequency bands (o band).

This study provides further evidence that the BCECTS brain network is altered. The degree
spatial distribution showed that alteration of the functional connectivity in the BCECTS brain
was not limited to the epileptogenic zone, but also involved other regions, especially the frontal
and occipital regions. The decreased connection density in the occipital and right frontal
regions supports functional impairment of these regions. The BCECTS brain with IES, which
does not present the features of a small-world network, showed topological characteristics of
an ordered network in the 8 band and a less ordered network in the o band. A more randomly
organized network was also observed in the absence of IES compared to healthy controls.

Supporting Information

S1 Fig. Dipole locations of the averaged spikes for patients.
(DOCX)

S2 Fig. A sample interictal EEG recording from patient 1. The spikes have been outlined in
blue.
(DOCX)

S3 Fig. (A) Example of the functional connectivity matrix obtained for Subject 1. (B) The dis-
tribution of the PLV values of the functional connectivity matrix; the vertical line shows the
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Volume conduction artifacts may confound the results of EEG functional connectivity in sensor
space. In source space, we used the Lagged Phase Synchronization (LPS) which is generally
believed to be less sensitive to volume conduction compared to other zero-lagged functional
connectivity metric like the classical coherence and PLV. LPS was computed between 84 Region
of Interests (ROIs) defined by the Brodmann atlas as implemented in eLORETA software.
Compared to controls, patients (without IEDs) showed higher 0- o and lower B LPS. Patients also
displayed higher integration and lower segregation in the 6 and o bands compared to healthy
controls. They also exhibited higher local functional connectivity at the epileptogenic network
including motor areas, central region and temporal regions of the ipsilateral hemisphere to the
epileptic zone. The contralateral frontal region in patients was also found to exhibit lower local
connectivity. All of these findings support the evidence of alteration of resting state functional
connectivity in BCECTS patients in different frequency bands. More information can be found in
the following article.
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In this study, we investigated changes in functional connectivity (FC) of the brain networks
in patients with benign epilepsy with centrotemporal spikes (BECTS) compared to healthy
controls using high-density EEG data collected under eyes-closed resting state condition.
EEG source reconstruction was performed with exact Low Resolution Electromagnetic
Tomography (eLORETA). We investigated FC between 84 Brodmann areas using lagged
phase synchronization (LPS) in four frequency bands (8, 6, «, and g). We further computed
the network degree, clustering coefficient and efficiency. Compared to controls, patients
displayed higher 6 and o and lower g LPS values. In these frequency bands, patients
were also characterized by less well ordered brain networks exhibiting higher global
degrees and efficiencies and lower clustering coefficients. In the B band, patients
exhibited reduced functional segregation and integration due to loss of both local and
long-distance functional connections. These findings suggest that benign epileptic brain
networks might be functionally disrupted due to their altered functional organization
especially in the o and p frequency bands.

Keywords: children epilepsy, centrotemporal spikes, resting sate, functional cor ity, phase synchr

graph theory

INTRODUCTION

Benign epilepsy with centrotemporal spikes (BECTS) is the most common idiopathic epileptic
syndrome with a prevalence of 8-20% of pediatric patients with epilepsy (Holmes, 1993;
Wirrell, 1998; Panayiotopoulos, 1999). In BECTS, although interictal spikes arise primarily within
centrotemporal regions, there is growing evidence that abnormal functional networks in BECTS
patients, like other types of focal epilepsy, are not restricted to the epileptogenic region as revealed
by the functional connectivity (FC) analysis of the brain networks (Kramer and Cash, 2012;
Laufs, 2012; Adebimpe et al., 2015b). Moreover, our previous studies have shown that functional
organization of the brain networks in BECTS patients largely differs from normal brain in presence
or absence of interictal epileptic discharges (IES) (Adebimpe et al., 2015b, 2016).

Over the past decade, graph-theoretical analysis of resting state FC in EEG and MEG data have
gained attention in healthy subjects (Deco and Kringelbach, 2014), and in patients suffering from
various diseases (Prinz, 2008; Stam et al., 2009; Zhang et al., 2014). In our previous study using
graph metrics we found that the brain networks in BECTS patients show functionally disrupted
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connectivity patterns (Adebimpe et al,, 2015b). However, the
main shortcoming of that study was that the FC analysis and
graph metrics were estimated in the sensor space that might
not provide information on the overall functional organization
of the cortical regions mainly because scalp EEG electrodes
detect spatially averaged overlapping EEG signals from several
brain sources. Moreover, our previous study focused on global
clustering coefficient and path length.

In the present study, we investigated changes in brain FC
including local and regional graph metrics in BECTS patients
compared to healthy controls in various frequency bands under
the eyes-closed resting condition. Abnormal patterns of resting-
state EEG source FC in patients were determined by using lagged
phase synchronization (LPS), a non-linear connectivity measure
implemented in the eLORETA software (http://www.uzh.ch/
keyinst/eLORETA/). Graph theory was also used to characterize
FC by estimating network centrality, functional segregation
and integration. We further investigated whether functional
brain networks in BECTS patients displayed altered network
efficiency and disrupted local neural processing (segregation and
integration) in comparison to healthy controls.

MATERIALS AND METHODS

Subjects

This study was performed on 11 young patients (9.65 £ 2.36
years) with benign childhood epilepsy with right centrotemporal
spikes (see Tablel and Adebimpe et al, 2015a, for more
information). None of the patients presented any other
neurological disorders at the time of the study, which was
conducted at Amiens University Hospital (Amiens, France) and
approved by the hospital’s ethics committee (CPP Nord-Ouest
2, approval No. 2011-A00782-39). We also recruited 12 healthy
subjects in the same age range (9.27 £ 1.70 years) as controls.
Written consent approved by the ethics committee was obtained
from parents/caregivers.

EEG Recording and Pre-Processing

EEG data were recorded with a high density recording system
(ANT, Netherlands) based on the international 10-10 system
at a sampling rate of 256 Hz under the eyes-closed resting
condition. EEG data were first digitally re-referenced to an
average reference, z-scored, and band-pass filtered between 0.5
and 40 Hz to exclude high-frequency noise including muscle
activities. EEG portions with occular and movement artifacts
were identified automatically using a thresholding method
(threshold was set to the mean of the z-score distribution for each
channel) as implemented in Fieldtrip software (Oostenveld et al.,
2010; tutorial:visual_artifact_rejection — FieldTrip!) and rejected
by visual inspection. No ECG artifacts were visually observed in
any of the EEG recordings. The artifact-free portions of the EEG
data were partitioned into 2-s quasi-stationary segments required
for spectral analysis with a frequency resolution of 0.5 Hz. Five
EEG segments of 2 s were randomly selected for each patient

!tutorial:visual_artifact_rejection - FieldTrip ~Available at:  http:/www.

fieldtriptoolbox.org/tutorial/visual_artifact_rejection [Accessed May 15, 2015].

(PAT) and healthy control (CON). The EEG segments selected
for patients included no centrotemporal spikes.

EEG Source Connectivity Analysis

We first used the exact Low Resolution Electromagnetic
Tomography (eLORETA) method (Pascual-Marqui, 2007a) to
identify the average location of interictal spike sources in patients.
EEG source connectivity analysis was then performed using
eLORETA by restricting the source space within the gray matter
including 6239 voxels with a 5-mm spatial resolution. The
Montreal Neurologic Institute average MRI brain (MNI152)
(Fonov et al., 2011) with anatomical labels corresponding to
Brodmann areas was used as the realistic head model to compute
the lead field. The 84 commonly used Brodmann areas were
chosen as regions of interests (ROIs) for connectivity analysis
between the centroids of the ROIs.

To analyze the FC we computed LPS (Pascual-Marqui, 2007b)
between ROIs. This measure has been shown to be less sensitive
than other techniques to non-physiological signals including
artifacts and the volume conduction effect (Pascual-Marqui et al.,
2011). For each subject, four FC matrices were computed in four
frequency bands, 8 (0.5-3.5 Hz), 6 (4-8 Hz),  (8.5-13 Hz), and p
(14-30 Hz). For each subject and each frequency band, an average
FC matrix was obtained over the five EEG segments selected for
the subject and was used to compute graph metrics.

Graph Theoretical Analysis

From each FC matrix, we extracted three graph measures to
investigate functional integration and segregation between brain
networks in patients compared to controls (for mathematical
definitions see (Rubinov and Sporns, 2010): network degree
(K), a measure of node centrality, global efficiency (E) and
clustering coefficient (C), measures of functional integration and
segregation in large-scale brain networks, respectively.

The graph measures were calculated using the brain
connectivity toolbox (Rubinov and Sporns, 2010). To make
connectivity matrices comparable across subjects, an individual
optimal threshold was needed to convert each FC matrix to
a binary adjacency matrix. This step was necessary to ensure
that all graphs had equal connection densities within the small
world network range (Bassett et al., 2006). Moreover, the optimal
thresholds have been shown to reduce the number of false-
positive edges and minimize the noise (Drakesmith et al., 2015).
To obtain an optimal threshold for each subject and frequency
band, we first set the threshold to one standard deviation above
the median connectivity value. The threshold was iteratively
adjusted to satisfy two conditions: (i) the mean network degree
had to be less than 2log(N), where N was the total number of
nodes, and (ii) at least 95% of nodes must be connected to one
or more nodes (Bassett et al., 2006; Erdds and Rényi, 2013).
Using the optimal thresholds, the FC matrices were thresholded
and binarized to calculate the network degree (K), clustering
coefficient (C), and global efficiency (E). The global value for
each graph metric was calculated by the average over the whole
nodes for a wide range of thresholds from 0.2 to 0.7 with 0.05
increments to investigate differences between the two groups.
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TABLE 1 | Characteristics of the control and patient groups.

Control group Patient group

Subject Age EEG duration  Patient Age EEG duration  Neuropsychological Description Medication
(years) (min) (years) (min) assessment of ictal EEG

1 6.73 16 1 12.63 50 Normal Partial seizure Sodium valproate
2 11.28 19 2 12.64 17 Normal Partial seizure Sodium valproate
3 10.48 19 3 9.25 44 Attention deficit Generalized tonic-clonic seizure  Oxcarbezepine
4 10.66 17 4 6.03 43 = Brachiofacial nocturnal seizure Oxcarbezepine
5 7.39 13 5 10.47 50 Attention deficit Partial seizure Sodium valproate
6 7.31 20 6 7.16 14 - Brachiofacial nocturnal seizure Sodium valproate
7 11.92 30 7 8.51 30 Attention deficit Nocturnal seizure -
8 8.44 75 8 13.16 20 Normal Generalized tonic-clonic seizure  Sodium valproate
9 9.36 28 9 9.67 15 Language deficit Generalized tonic-clonic seizure  Lamotrigine
10 9.48 45 10 7.79 23 Normal Generalized tonic-clonic seizure  Micropakine
ahl 10.32 18 11 8.91 16 Normal Generalized tonic-clonic seizure  Trileptal
12 7.98 20 - - - -
Mean+SD 9.3 +1.7 27 £17 9.6+24 29.7 £ 14

Statistical Analysis

Group differences in FC and global network metrics were
statistically evaluated. Statistical comparisons between patients
and controls were performed using non-parametric permutation
t-tests with p < 0.05 (Bonferroni corrected for multiple
comparisons). We further used Post-hoc t-tests to explore the
directionality of effects over conditions with p < 0.05. A total of
1000 permutations were used to determine the significance level
for each test (Maris and Oostenveld, 2007). The results were then
projected onto a 3D surface using BrainNet (Xia et al., 2013).

RESULTS

EEG Source Functional Connectivity

Figure 1 shows the average localization of interictal spikes in
patients. As shown, all the patients exhibited an epileptic focus
at the right hemisphere with a spatial extent restricted to the
right central areas. Results of lagged connectivity differences
between patients and healthy controls in all frequency bands are
summarized in Figure 2. The major differences between the two
groups were observed in the o and f bands. Compared to healthy
controls, patients showed significantly increased o LPS over most
cortical regions. There was also significantly reduced o LPS in the
temporal and right centrotemporal areas. In contrast with the o
band, significantly lower LPS values were observed in the § band
in almost all brain regions of patients. In patients compared to
controls, 8 LPS values were significantly higher between the right
anterior and posterior areas along the midline and lower between
the temporal and posterocentral areas. In the 6 band, patients
displayed higher LPS values between temporal and central areas,
mostly over the left hemisphere.

Global Network Measures

Figure 3 shows the global metric values over thresholds between
0.2 and 0.7. Patients presented higher global network degree and
efficiency and lower clustering coefficients in the 6 and a bands.

L]

FIGURE 1 | Average eLORETA source localization of interictal spikes in
patients. The squared magnitude of the current density is color coded from
dark blue (zero) to dark red (one).

At higher frequencies (B), patients were characterized by lower
values for all three measures over thresholds up to 0.4. At very
low frequency (3), no significant differences were observed over
all of the threshold range between patients and healthy controls.
Table 2 presents the optimal thresholds used to compute the
global network degree (K), global clustering coefficient (C), and
global efficiency (E) for both groups.

Nodal Network Degree and Clustering

Coefficient

Figure 4 illustrates the regions presenting statistically significant
differences between patients and healthy controls for nodal
network degree (K) and clustering coefficient (C) computed
using optimal thresholds.

Network Degree (K)

In the 3 band, patients, compared to controls displayed higher
network degree values at the right somatosensory cortex, left
motor cortex and right occipital lobe and decreased K at the
right anterior frontal cortex and opercula frontal regions. In the
6 band, patients showed significantly higher K values at the right
inferior temporal and left primary auditory cortex. In the a band,
patients displayed a higher K at the right posterior cingulate
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PAT > CON

PAT < CON

FIGURE 2 | Results of the ft i | resting-state source conr ysis with the seeds located at the Brodmann area centroids. The upper and
lower rows indicate significantly higher (red lines) and lower (blue lines) connectl\/\ty values in patients (PAT) compared to controls (CON), respectively.
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FIGURE 3 | Global network degree (K), clustering coefficient (C) and efficiency (L) as a function of threshold values for each frequency band. The error
bars represent the standard error of the mean with 95% confidence intervals and * indicate significant differences between PAT and CON.

cortex, right temporal and left isthmus of the cingulate cortex. ~ gyrus, and lower C values at the left primary auditory cortex.
In both the o and B bands, patients displayed lower K values at  In the 6 band, patients displayed higher C values at the right
the left frontal cortex. In the p band, patients displayed higher K postcentral, right angular gyrus and left dorsal cingulate gyrus

values at the right superior parietal and left prefrontal cortex. and lower C in the left intermediate frontal region. In the a band,
patients displayed higher C values at the right primary motor and
Clustering Coefficient (C) right posterior cingulate cortices, and, in the p band, displayed a

In the 3 band, patients displayed higher clustering coefficient  decreased C at the right orbital frontal with higher C values in the
(C) at the right primary motor and visual cortex, right cingulate  frontal regions.

IS
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DISCUSSION

In this study, we investigated abnormal patterns of resting-
state EEG FC in BECTS patients using graph metrics in various
frequency bands. Our results suggest that the functionality of
brain networks in BECTS patients is altered, particularly in
the a and B bands. Compared to healthy subjects, BECTS
patients were characterized by widespread higher and lower
phase synchronization values in the a and p bands, respectively.

In the 6 and o bands, significantly lower global clustering
coefficient and higher network degree and efficiency were
observed in patients. In contrast, compared to controls, patients
displayed significant lower global metrics in the  band. In the
3 band, no significant differences in global graph metrics were
observed between patients and controls.

TABLE 2 | Mean values (with range at 95% confidence interval) of
threshold (T), degree (K), clustering coefficient (C), and global efficiency
(E) computed for each group and frequency band.

Frequency T K [+ E
band
Controls & 054+005 0.16+0.05 0424003 048+0.04
(CON) ¢ 0.70+£0.05 0.14+0.05 0.44+0.04 047 £0.05
o 0.714+0.05 0.15+0.05 0.45+0.03 0.46 +0.04
B 0.38+0.02 0.18+0.01 046+0.00 0.53+0.01
Patients & 054+0.02 017+0.00 043001 0.51=0.01
(PAT) 0 072+0.03 0.16+0.01 043+0.01 0.50+0.01
o 073+0.02 0.15+0.01 0.41+0.02 049 =+0.00
B 0.32+£0.03 0.17+0.00 0.42+0.02 044 =0.01

Global Functional Integration and
Segregation

The human brain is very complex, comprising inhibitory and
excitatory circuits that interact by integrating information at local
and global levels. The functional segregation and integration of
brain networks is expected to be balanced in healthy subjects.
It has been shown that the normal brain has a small world
functional topology, which can efficiently combine functionally
specialized (segregated) modules with intermodular (integrating)
links (Bassett and Bullmore, 2006). This type of organization
reflects an optimal balance between functional integration and
integration (Bassett and Bullmore, 2006; Ponten et al., 2007).

In BECTS patients, however, we found that the functional
organization of brain networks was altered in a frequency
dependent manner. Our results indicate that the interictal state in
BECTS patients is less well ordered, displaying lower segregation
(lower global clustering coefficient) and higher integration
(higher global efficiency and network degree) in the 6 and «
bands. This finding is in line with the results reported in our
previous study (Adebimpe et al., 2015b) and other related studies
(Clemens, 2004; Boor et al., 2007; Quraan et al., 2013). As a
characteristic feature of BECTS, the alteration in brain functional
organization might be explained by the abnormal significant
increase in the power of 6 oscillations (Clemens, 2004; Clemens
etal., 2010; Douw et al., 2010; Adebimpe et al., 2014, 2015a).

In the a band, the lower clustering coefficient and the higher
network degree might be due to the loss of local connectivity
between neighbor nodes in comparison to increased long
distance connections in BECTS patients, as shown in Figure 2.
The less ordered network configuration in patients with BECTS
has also been reported in previous studies on epilepsy (Ponten

*PAT > CON

respectively.
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et al,, 2007; Quraan et al., 2013; Adebimpe et al., 2015b) and
other neurological diseases (Liu et al., 2008; Stam et al., 2009;
Wang et al,, 2009; Zhang et al., 2011) compared to healthy
controls. Our findings are consistent with a recent fMRI study
(Song et al., 2015) reporting low local efficiency (an alternative
to the clustering coefficient) and high global efficiency in BECTS
patients. Our findings are also in agreement with those of Quraan
etal. (2013), who reported low C and short L (high E) in patients
with temporal lobe epilepsy (TLE) in the a band. In patients
with focal epilepsy, however, higher clustering coefficients and
longer path lengths have been reported in comparison to healthy
subjects (Bernasconi et al., 2003; van Diessen et al., 2014; Taylor
et al,, 2015). Both TLE and focal epilepsy are known to be
associated with abnormal structural brain alterations. In BECTS,
there is no evidence of alterations in the brain structure.

In the B band, we observed a significant pruning of long-
and short-distance functional connections in BECTS patients,
who exhibited reduced clustering coefficient (representing
functional segregation) and lower global efficiency and network
degree (representing functional integration) compared to healthy
controls. The frequency-dependent alterations in the brain
functional organization in BECTS patients may constitute
specific biomarkers of the benign epilepsy.

In healthy subjects, studies of large-scale brain FC have
also shown that interactions between spatially distinct brain
regions are frequency dependent. Delta, theta and alpha FC
have been shown to be related to attention, learning, memory,
and emotion processing (Knyazev, 2007; Bekkedal et al., 2011;
Calmels et al., 2012). Alpha FC is also shown to be associated
to motor performance in adults (Sauseng et al., 2005; Klimesch
et al., 2007; Palva and Palva, 2007). Based on these findings,
we postulate that in BECTS patients alterations in brain FC in
different frequency bands may cause cognitive, mental, memory
and attention impairment (Baglietto et al., 2001; Datta et al., 2013;
Kim et al., 2014; Verrotti et al., 2014).

Local Changes in Functional Connectivity

Our FC analysis at Brodmann areas revealed higher network
degree and clustering coefficient in epileptogenic areas, including
centrotemporal, premotor, and somatosensory regions in the 6
and o bands in BECTS patients. We also found higher degree
in the posterior cingulate cortex in patients in the 6 and a
bands. This finding is consistent with the results of previous
studies (Boor et al., 2007; Besseling et al., 2013; Tang et al.,
2014) indicating higher activity in the supplementary motor
region in epileptic patients. Our results also confirmed the
higher phase synchronization values in the regions with increased
local segregation neural processing (high clustering coefficient),
especially in the primary motor, postcentral and posterior
cingulate regions. Significantly, higher phase synchronization
values were also observed in the central regions, including
somatosensory cortex and motor cortex (Avanzini et al., 2012).
However, a decreased network degree was observed in the right
frontal cortex in the o and P bands, and a low clustering
coefficient was also observed in the intermediate frontal region in
the 6 band. The frontal lobe is known to play a major role in the
processing and execution of higher cognitive skills and behaviors

(Stuss, 2011) and children with benign epilepsy have been found
to present cognitive deficits and impaired mental activity (Ay
et al., 2009; Datta et al., 2013; Verrotti et al., 2014). Furthermore,
the right auditory network, including right temporal, parietal and
left auditory cortex (in 6 band), also showed altered (higher)
functional integration (network degree) in patients, which could
affect auditory processing in both hemispheres, resulting in
language processing deficits in BECTS patients (Naganuma et al.,
1994; Tomé et al., 2014; Filippini et al., 2015).

Several fMRI studies have reported impairments in different
brain networks in BECTS patients (Kim et al., 2014; Yang et al.,
2015; Xiao et al.,, 2015a,b). We also found differences in brain
functional organization between BECTS patients and healthy
controls. Although some studies reported associations between
EEG rhythms and fMRI maps but there are some inconsistencies
(Laufs et al., 2003; Mantini et al., 2007; Bridwell et al., 2013)
due to underlying differences between these modalities as EEG
measures direct neuronal activity while fMRI records indirectly
brain activity.

In our previous work (Adebimpe et al., 2015b), we compared
patients and controls using three graph metrics, degree,
clustering coefficient and path length computed using sensor-
level EEG data. In that study, we used the Phase Locking Value
(PLV) as a measure of FC between electrodes to explore the
global topology and dynamics of functional interactions between
large-scale brain regions during the resting state over a range of
frequencies. The results obtained using the sensor- and source-
level connectivity analyses were consistent. In the present study,
we also found higher clustering coefficients and shorter path
lengths in the theta and alpha bands in BECTS patients compared
to controls. However, the FC analysis in the sensor space is
more sensitive to artifacts of volume conduction especially using
zero-lag connectivity measures like PLV. Moreover, statistical
comparisons at the group level are less reliable at the sensor
space because of variability in EEG electrode positions across
subjects. Instead, FC estimated at the source level reflects actual
interactions between brain areas.

Methodological Consideration and
Limitations
In this study, we used eLORETA, an improved version of
LORETA, for source imaging. It has been reported that
this technique has no localization bias even in the presence
of structured noise (Pascual-Marqui, 2007a). However, this
technique like other EEG localization method is vulnerable
to artifacts of volume conduction, head-modeling errors and
EEG noise (Grech et al., 2008). Moreover, since the results of
LORETA are model dependent, it may not accurately represent
the neuronal origins of the brain activity (Hata et al., 2016).
Another major challenge is the choice of source FC
analysis. The majority of zero-lag connectivity measures such as
correlation, coherence, and PLV are developed based on scalp
sensors and thus sensitive to volume conduction effect (Gross
et al,, 2001). In a MEG study, Ghuman et al. (2011) have shown
that artifacts of volume conduction can result in increased false-
positive PLVs. To reduce the effect of volume conduction on
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the results of the source connectivity analysis, we used the LPS
to investigate FC in the source space (Pascual-Marqui, 2007b).
This method has been successfully used to explore EEG source
FC in epilepsy studies (Canuet et al., 2011; Vecchio et al., 2015;
Hata et al,, 2016). This connectivity measure is resistant to
artifacts of volume conduction by excluding the instantaneous
zero-lag contribution (Canuet et al., 2011; Vinck et al., 2011).
However, like phase lag index, LPS’s sensitivity to uncorrelated
perturbation, which can turn phase lags into leads, has to be
investigated especially when EEG noise is strong (Nolte et al.,
2004; Stam et al., 2007; Vinck et al., 2011).

We further used a ROI-based approach, which is a common
practice in neuroimaging studies to reduce variability in brain
size and shape between individuals which might affect estimation
of source FC (Schoffelen and Gross, 2009). This approach is based
on the BA regions cytoarchitectonically defined in the Talairach
atlas. The ROI for each of 84 BA regions was defined as a single
centroid voxel (the closest to the center of each region). The
ROI-approach is more efficient in reducing volume conduction
artifacts than the voxel-by-voxel connectivity analysis as it has
been shown that the spatial correlation between sources decays
with increasing distance between them (Mehrkanoon et al,
2014).

Our results should be interpreted with caution because of the
low sample size, limited number of EEG segments, and short EEG
data lengths. Apart from technical limitations, collecting long
EEG recordings from children under age 16 is difficult because
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All of these studies further supported the evidence that EEG resting-state functional connectivity
in BCECTS patients was altered in a frequency dependent manner. In the next chapter, we focus
on the direction of information flow between different brain regions in BCECTS patients.
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Chapter 5

EEG resting state functional connectivity
analysis in children with benign epilepsy with
centrotemporal spikes, Part |1

5.1 Introduction

In the previous chapter, we investigated frequency-dependent alterations in BCECTS functional
brain network topology in BCECTS patients. Some regions especially the epileptic zone showed
activation in the presence or absence of interictal epileptic discharges (IEDs). Despite the fact that
BCECTS is focal, we found that epileptic brain reorganized because of lower activity at other
regions especially frontal and posterior regions due to presence of IEDs at the centrotemporal
region.

The lower activity at the frontal and posterior regions can be categorized as the primary
effect of IEDs. However, in order to investigate the secondary effect of IEDs, we computed
functional connectivity from the epileptic zone and its primary effect regions (frontal and
posterior) to all other regions. This was done with the seed-based functional connectivity analysis.
The BCECTS patients with and without IEDS functional connectivity patterns were compared to
the healthy controls. The seed points were selected based on the results of our previous studies. In
the second part of this chapter, the dynamic of directed interictal connectivity associated with IEDs
was studied. This was done to investigate major drivers in BCECTS brain networks and effective
connective pattern during IEDs.

5.2 Resting-state Functional Source connectivity

Large-Scale Network Dysfunction in Benign Childhood Epilepsy: A Resting-State
Functional Source Connectivity Study

In the first part of this chapter, we investigated the impact of IEDs on the resting-state source
functional connectivity (FC) pattern in BCECTS patients in comparison to the healthy controls.
The FC in large-scale source space was computed by the Imaginary Coherence (IC) which has
been demonstrated to be insensitive to the volume conduction (Nolte et al., 2004) and reflected
true measure for studying brain connectivity in resting state EEG data. Some regions of interests
(ROIs) were selected as seed points including the epileptic zone (right central), left central,
prefrontal cortex and occipital regions. These regions were found to be activated/deactivated in
our previous studies. The FC patterns from these regions to other regions were studied under three

70



conditions (controls, with and without IEDs in patients). The functional connectivity topology was
characterized with two main graph metrics, betweenness and local efficiency. These two graph
metrics were selected in order to investigated regions that involve as a central communicator
between regions and as well as efficiency of the local between neighbor brain regions.

Through the resting-state source functional connectivity analysis, we found that the central
regions including supplementary motor areas showed activation in the presence of IEDs. Higher
FC patterns were also observed in the ipsilateral superior frontal region of the epileptic zone in
these patients (see the following study for more details).

5.2.1 Introduction

Benign childhood epilepsy with centrotemporal spikes (BCECTS) is an idiopathic epilepsy
syndrome usually affecting the young children under the age of 16 (Panayiotopoulos et al., 2008).
BCECTS is characterized by the occurrence of biphasic sharp waves discharges arising from the
precentral and postcentral gryi in the suprasylvian region with motor, sensory and autonomic
manifestations in the face, mouth and throat (Bourel-Ponchel, 2013). Though the benign epilepsy
is not associated with large structural changes(Camfield and Camfield, 2002), there are several
reports of cognitive disturbances in BCECTS (Camfield and Camfield, 2014) such as memory,
language, attention and auditory impairments in BCECTS children.

In BCECTS patients, beside microstructural changes within and around the epileptic zone
(Ciumas et al., 2014) studies using EEG (Adebimpe et al., 2015a; Yeom et al., 2014) have reported
abnormal distribution of spectral power and current source density especially within the
epileptogenic zone but also in more distant areas including the language and speech
networks(Besenyei et al., 2012). Over the past decade, the fMRI and EEG studies on the brain
resting-state functional connectivity have reported altered functional interactions between brain
networks in BCECTS and other types of epilepsy(Centeno and Carmichael, 2014; Tracy and
Doucet, 2015). In BCECTS patients the functional alterations and reorganization of the brain
networks have been observed not only in the epileptic zone but also in other distant neuronal
networks areas(Adebimpe et al., 2015b) . However, little is known about the alteration of resting
state brain networks in BCECTS.

In recent years, large scale functional connectivity analysis using high-density EEG data
have gained attention in healthy subjects (Deco and Kringelbach, 2014) and in patients suffering
from various diseases(Prinz, 2008; Stam et al., 2009; Zhang et al., 2014). In the present study, we
performed seed-based functional connectivity analysis in BCECTS patients using high-density
EEG data with or without interictal spikes in comparison to healthy controls. To assess spatial
functional network interactions in different frequency bands, we reconstructed cortical source
activities from high-density EEG recordings using a linear spatial filter(Gross et al., 2001)(Travis
et al., 2010). Functional connectivity was computed by the imaginary coherence which has been
shown to be insensitive to volume conduction artifacts(Nolte et al., 2004). We investigated voxel-
wise whole-brain functional connectivity with a priori restriction to specific regions of interests
(sROIs) based on our previous results obtained using the EEG power spectral analysis and
functional connectivity in sensor and source spaces(Adebimpe et al., 2016, 2015a, 2015b). We
also used the network metrics from the graph theory to measure the flow of information and local
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efficiency in the brain networks. Our study was designed to investigate: (i) the functional
connections from the origin of the epileptic zone to other brain regions, and (ii) the impact of
interictal discharges on the BCECTS functional connectivity topology.

5.2.2 Materials and methods

Subjects

The EEG data were collected from twelve healthy controls (9.13 £ 1.50 years) and twenty-one
children (9.73 £ 0.95 years) with BCECTS. The study was conducted in accordance with Amiens
University Hospital’s ethics committee (CPP Nord-Ouest No: 2011-A00782-39) and informed
consent was obtained from each subject’s parents. Healthy subjects had no history of neurological
disorders. All patients showed no structural brain abnormalities on MRI.

High resolution EEG recording

EEG was recorded with an EEG system (ANT, Netherlands) using 64 electrodes placed on the
scalp according to the international 10-10 systems. The EEG signals were recorded with a
sampling frequency of 1024Hz. Linked-ear reference electrodes were used for data collection. All
the subjects were fully awake with eyes closed. On average, 13 minutes of EEG were recorded
for each subject.

Patient group

To better define the homogeneity of the patients, we first identified the location of interictal sources
for each patient, using the spatiotemporal dipole modeling method (Advanced Source Analysis
Software, Enschede, The Netherlands) (Scherg and Von Cramon, 1985) and the eLORETA
(Pascual-Marqui, 2002) source localization method as implemented in the Fieldtrip (Oostenveld
etal., 2011). Eleven of the twenty-one patients (9.25 * 2.43 years) with only right centrotemporal
spikes (CTS) were included in the epileptic group. Table 5.1 lists the characteristics of patients
and controls and a summary of their EEG
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Table 5.1: Characteristics of the control and patient groups

Control Group Patient Group
Subject Age EEG Patient | Age EEG Neuropsychological | Description of ictal | Medication
(years) | duration (years) | duration | assessment EEG
(min) (min)

1 6.73 16 1 12.63 50 Normal Partial seizure Sodium valproate

2 11.28 19 2 12.64 17 Normal Partial seizure Sodium valproate

3 10.48 19 3 9.25 44 Attention deficit Generalized  tonic- | Oxcarbezepine
clonic seizure

4 10.66 17 4 6.03 43 Brachiofacial Oxcarbezepine
nocturnal seizure

5 7.39 13 5 10.47 50 Attention deficit Partial seizure Sodium valproate

6 7.31 20 6 7.16 14 - Brachiofacial Sodium valproate
nocturnal seizure

7 11.92 30 7 851 30 Attention deficit Nocturnal seizure -

8 8.44 75 8 13.16 20 Normal Generalized  tonic- | Sodium valproate
clonic seizure

9 9.36 28 9 9.67 15 Language deficit Generalized  tonic- | Lamotrigine
clonic seizure

10 9.48 45 10 7.79 23 Normal Generalized  tonic- | Micropakine
clonic seizure

11 10.32 18 11 8.91 16 Normal Generalized  tonic- | Trileptal
clonic seizure

12 7.98 20 - -

Meantsd | 9.3+1.7 | 2717 9.6+2.4 | 29.7£14

Pre-processing and artefa ct rejection

The EEG data were band-pass filtered between 0.5-40 Hz with a 4™ order Butterworth filter and
re-referenced to an average reference. The EEG recordings were then normalized by the Z-score
transformation and thresholded using a threshold set to the mean of the z-score amplitude
distribution for each channel, as implemented in Fieldtrip software® (Oostenveld et al., 2011), to
identify and reject ocular, movement and muscular artifacts.

The artifact-free EEG portions of the recordings were then segmented into 2-second non-
overlapping epochs. Five segments were randomly selected for each of the control subjects (CON).
Two conditions were defined for the epileptic group: 5 segments with interictal spikes (with spikes
condition - WSC) and 5 spike-free segments (with no spikes condition - NSC), all randomly
selected. On average, WSC segments contained 7 interictal spikes.

Forward model

We used the Montreal Neurological Institute (MNI) brain MRI template for the construction of
head model for lead field calculation using the Boundary Element Method (BEM) (Oostendorp
and van Oosterom, 1989). The MNI template was segmented by SPM8(Ashburner et al., 2012, p.
8) into scalp, skull and brain compartments with conductivity values of 0.33 S/m, 0.0041 S/m and
0.33 S/m, respectively. The lead fields were calculated using FieldTrip (Oostenveld et al., 2011)

3 http://www. fieldtriptoolbox.org/tutorial /visual_artifact_rejection
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for 2726 source locations inside the brain. The electrodes were aligned to the head geometry using
the fiducial points. The lead field, L(k), at each source location, k, was a 63 x 3 matrix, describing
the contribution of source k to the sensors in 3 directions in the Cartesian space where 63 was the
number of sensors in our study.

Source analysis

We used the beamforming method (Gross et al., 2001) to create spatial filters in order to estimate
the spectral amplitude and phase of neuronal signals at source level. The three orthogonal (one for
each direction) spatial filters, A, were computed for each source location k:

A(k,p) = [L"(k) * C(p,p)™ = LU~ = LT (k) « C(p,p) ™" .1

Where L(K) is the lead field matrix at each source location with three orthogonal dipoles
of all the sensors, C is the covariance matrix obtained from the sensor data, and p is the number of
EEG channel. T indicates matrix transpose.

The eigenvalue decomposition method (Sekihara et al., 2004) was used to determine the
dominant dipole orientation and to obtain high SNR for reconstructed source activities. This is
done by weightening the filters with the first eigenvectors v (i.e, the eigenvector with the largest
eigenvalue of the real part of the covariance matrix at source location, k):

v(k,p) = [v1,v2,v3] = svd(A(k,p) * C x A(k,p)*T) (5.2)

Where v1, v2 and v3 are spatial filters in x, y and z directions respectively. We linearly
combined the three filters to a single filter pointing in the dominant dipole orientation:

F(k! p) = [171, V2 ,173] * [Al (k, p)AZ (k' f) A3 (k, p)] (53)

Finally, the source signal was obtained by multiplying the spatial filter with the raw EEG
data in the sensors space:

Ssource(k: t) = F(k, p) * sensor(p: t) (54)
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Functional connectivity analysis

We computed the spectral estimates of source signals by using the multi-taper Fourier transform
(Mitra and Pesaran, 1999) with a frequency resolution of 0.5Hz for five frequency bands - 6 (0.5—
3.5 Hz), 6 (4-8 Hz), a (8.5-13 Hz), B1 (13.5-20 Hz) and P2 (20.5-30 Hz). The multi-taper
frequency method is similar to the classical Fourier transform but with a very good anti-frequency
leakage property (van Vugt et al., 2007).

Functional interaction between sources was quantified by the imaginary coherence (IC).

The computation of IC is straightforward and computationally inexpensive even for
analyzing large number of connections among numerous voxels. The IC is calculated as follows:

X =X, %X} (5.5)

(5.6)

IC = imag{ LX) }

VE{IX1[ZE(1X, %}

Where X is the cross-spectrum of sources X1 and Xz, and Xz is the complex conjugate of
Xo. The results were 2726 by 2726 adjacent functional connectivity matrices.

We defined three regions of interest (ROIs) based on our previous studies, the epileptic
zone (right central region area), the left frontal region and the right occipital region(Adebimpe et
al., 2015b, 2015c) . The ROIs were defined based on the automated anatomical labeling (AAL)
(Tzourio-Mazoyer et al., 2002). We computed the mean absolute IC between the sources in each
ROI and all other voxels.

Graph theoretical analysis

To further quantify basic properties of local connectivity, we computed betweenness and
efficiency(Bullmore and Sporns, 2009) for each subject and frequency band. Before computation
of these metrics, we set the threshold of functional connectivity matrix to one standard deviation
above median connectivity values to obtain networks with fully connected nodes.

The betweenness centrality measures the fraction of shortest paths in the network that pass
through a given node and is defined as:
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B, ! Z Py (D) (5.7)

(N=DN=2) hjh# ] Rl i Prj

Where Bi is the betweenness of node i, Py; is the total number of shortest paths between
h and j and Py(i) is the number of shortest paths that pass through node i.

The local efficiency of a particular node is similar to clustering coefficient that measure
functional segregation:

1
LE. = i hen,j=i Qij@in|din (V)]
' ki(k; — 1)

(5.8)

Where LE; is the local efficiency at node i, ajjand ain are the connection status ( 0 or 1)
between nodes i and j, and between i and h, respectively, and djn(N;) is the sum of shortest paths
between nodes j and h that contain the neighbors of node i.

Statistical analyses

We compared the voxel-by-voxel IC values between the three groups for all the frequency bands.
This was done by nonparametric paired t-tests with multiple comparisons (Maris and Oostenveld,
2007) by randomly permuting source locations across the subjects (1000 resamples). The
statistically significant (p<0.01) t-values were projected onto the MNI template surface with the
BrainNet Viewer (Xia et al., 2013).

5.2.3 Results

Interictal spikes induced high activity at the centrotemporal region

We assessed the whole-brain source connectivity with the seed point located at the right central
region (epileptogenic source) as shown in Figure 5.1. Both patients group showed increased
functional connectivity from the right central to the left central region especially in the 6 band.
Meanwhile, patients with spike (WSC) exhibited stronger functional connectivity at the right
central, parietal, supplementary motor area (SMA), bilateral rolandic region in the & and B bands.
Both epileptic conditions (with and without spikes) displayed significantly stronger functional
connections from right central zone to the right frontal region in the 8 band.
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Seed point _— -

WSC vs CON NSC vs CON ) WSC vs NSC

& Cea Ea

Figure 5.1: Right central seed region: Functional connection from the right central to other regions for each of the group; control
(CON), patients group with the spike segments (WSC) and non-spike segments(NSC) and, comparison between the three conditions
(WSC vs CON, NSC vs CON and WSC vs NSC).

We exploited the difference between the three groups for all the frequency bands. For each
pair of groups as shown in Figure 5.1 WSC, compared to the other two conditions, had higher IC
values at the epileptic region, right temporal, right frontal, parietal, occipital, frontal superior and
prefrontal cortex in the 6 band. In the presence of IEDs (WSC), higher IC values were observed
at the left central region in the 6 band. Meanwhile, decreased functional connectivity was observed
in the prefrontal cortex in WSC compared to CON; and in the left central and right temporal
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regions compared to NSC in the a band. In the f band, WSC showed higher IC values at the right
central, right rolandic, right temporal, and SMA regions, in comparison to the other conditions.
Compared to controls, patients under NSC showed stronger functional connections at the
supplementary motor area in the $2 band.

Decreased functional connections in patients in the left central regions

Figure 5.2 shows lower functional connectivity in patients with the seed points at the left central
regions. In all the group, there were direct functional connections between the left and right central
regions especially in the 6 and 6 bands. Higher functional connectivity in healthy controls was
found in the B1 band between the left and right central regions. Patients with IEDs exhibited higher
functional connectivity from the left central to left temporal and rolandic regions in the 6, 6, a and
B1 bands.

78



CON w

w

C NSC

289

v

=

=
iy

2E2DY
£5089
TIYY
TITY
25205

=
™~
‘d

T-

ml

WSC vs CON NSC vs CON WSC vs NSC

N

N
’
”~
-

VA

j,;
IREFEE
rﬁ?

=7

33
r(_;
@;

»
z
>

~

4
)
7

7
0

”~
-

7

=}

b= =]

o put
SN AT

\; &:

»
{4
¢

>
?

N
7

2

f
ﬁ;

4

p-value

SO'O=<|.

10°0=d
500=d
10°0=d

Figure 5.2: Left central seed region: Functional connections from the left central to other regions for each of the group; control
(CON), patients group with the spike segments (WSC) and non-spike segments(NSC) and, comparison between the three conditions
(WSC vs CON, NSC vs CON and WSC vs NSC).

Comparison between epileptic patients under WSC and controls revealed significantly stronger
functional connections at the left temporal region in the d, 6 and o bands. Also, higher functional
connectivity was observed at the frontal superior and SMA regions in WSC compared to CON in
the B2 bands. Comparison between WSC and CON showed weaker functional connectivity at the
right parietal and bilateral prefrontal cortex in the 0 band; in the left parietal region in the o band;



and in the bilateral prefrontal cortex, left temporal and left occipital regions in the f1 band. In the
absence of spike (NSC compared to CON), there was reduced functional connectivity in the left
prefrontal cortex in the 6 band; in SMA, bilateral temporal regions, bilateral central regions, the
bilateral prefrontal cortices and the right frontal superior region in the B2 bands.

Disrupted functional connectivity in patients’ frontal region

With the seed points at the left prefrontal cortex as shown in Figure 5.3, patients showed higher
FC under WSC in the o band. Higher FC at the bilateral prefrontal cortex, occipital, parietal and
frontal superior regions in 1 band was observed in CON. In the absence of IEDS in epileptic
patients, we observed higher FC from left to right prefrontal cortex in 8, and § bands.
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Figure 5.3. Left Frontal seed region: Functional connectivity from the left frontal to other region for each of the group; control
(CON), patients group with the spike segments (WSC) and non-spike segments(NSC) and, comparison between the three conditions
(WSC vs CON, NSC vs CON and WSC vs NSC).

Comparison of WSC to control shows higher FC at the left superior frontal region in 6 band;
bilateral central regions, SMA and occipital in o band but lower FC in bilateral parietal, bilateral
frontal superior, right rolandic and right temporal regions in 1 bands. Reduced FC was also
observed in patients without spike in comparison to CON at the parietal, bilateral rolandic regions,
prefrontal cortex and occipital regions in 1 band. Comparison between both epileptic conditions



shows higher FC at the parietals in o band of WSC and lower FC at the occipital region of the
WSC compared to NSC in 3 1 band.

Interictal spike reduced functional connectivity from occipital to other regions

We observed lower FC in patients with IEDS condition (WSC) compared to other groups as shown
in Figure 5.4. In healthy controls, group statistical significance showed increased FC from the
occipital to the right frontal and central regions in 6 band and B2 bands. WSC revealed high FC at
the right temporal in d band; right central and temporal regions in 0, o and 1 bands.
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Figure 5.4: Right Occipital seed region: Functional connectivity from the right occipital to other region for each of the group;
control (CON), patients group with the spike segments (WSC) and non-spike segments(NSC) and, comparison between the three
conditions (WSC vs CON, NSC vs CON and WSC vs NSC).

Comparison of WSC to CON revealed lower FC from the occipital to the left parietal regions in 6,
a and B2 band; left occipital regions in a and 1 bands. There was higher FC in the absence of
spike at the right frontal superior and rolandic regions in 6 band; right rolandic and temporal region
in o band. Meanwhile, lower FC at the parietal and occipital regions in 1 band in NSC compared
to CON was observed. Comparison between epileptic patient conditions shows lower FC in & band
at the right occipital and temporal and frontal regions in WSC and bilateral central region and left
prefrontal cortex in 0 band. In B1 band, there was lower FC at the right frontal superior region,
closer to the epileptic zone, of WSC compare to NSC.

Graph measures indicate disrupted connectivity pattern in patients

The spatial differences of betweenness and local efficiency between patients and control revealed
different patterns of connectivity as a function of frequency bands as shown in Figures 5.5 and 5.6
respectively. Betweenness shows the how the brain region functionally interacts with other by
measure the fractions of shortest paths that pass through a given brain region. Meanwhile, the local
efficiency of network or particular brain region measures how efficiently it exchanges information
between the other regions.

The higher betweenness (Figure 5.5) was observed at the right central in WSC compared to
both other conditions in 0 band, likewise at the right superior frontal of patients with spike in a
and B1 bands. However, lower betweenness was found at the left occipital junction, left frontal
region in a and B1 bands. In comparison of NSC to CON, NSC had higher betweenness at the
bilateral occipital junction, and lower at the SMA and parietal regions in 0 band. There was lower
betweenness at the left prefrontal cortex in NSC compared to controls, left occipital junction in 1
band. Comparison of both epileptic conditions showed higher betweenness at bilateral rolandic
regions in & band and right central region in 6 band in WSC. Meanwhile, in $1 band, WSC had
higher and lower betweenness at the right and left occipital regions respectively in comparison
NSC.
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Figure 5.5: Betweeness centrality: comparison between controls (CON), patients group with the spike segments (WSC) and non-
spike segments(NSC) (WSC vs CON, NSC vs CON and WSC vs NSC).

Higher local efficiency (Figure 5.6) at occipital regions of WSC compared to CON in 6
and B1 bands was observed. Also, WSC had higher local efficiency at the left temporal regions
compared to CON in 3 bands. In the absence of IEDS, there was lower local efficiency at the right
superior frontal region in 0 bands; higher local efficiency at left centrotemporal region in o and 1
bands. Comparison between epileptic conditions showed decreased local efficiency at the left
frontal and parietal in 6 bands, left central in 0 band; parietal, left and right frontal regions in a
band in WSC. In B bands, higher local efficiency at the left occipital region in WSC compared to
NSC in B 1 band and right superior frontal region in B2 band were observed.
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Figure 5.6: Local efficiency: comparison between controls (CON), patients group with the spike segments (WSC) and non-spike
segments(NSC) (WSC vs CON, NSC vs CON and WSC vs NSC).

5.2.4 Discussion

In this study we investigated functional connectivity in BCECTS patients in comparison to healthy
controls. We presented a clear and robust method for assessing significant functional connectivity
differences between patients and healthy subjects. We estimated the imaginary coherence at the
source level (Nolte et al., 2004) and we demonstrated alterations in the brain functional network
organization of patients. We found that interictal spike activity affected the functional connectivity
between the epileptic zone and the ipsilateral frontal, frontocentral, central and temporal areas and
the contralateral central, precentral and frontal areas. We also observed a significant increase in IC
values between the prefrontal cortex and the epileptic zone in the betal band. The sensorimotor
regions showed higher betweenness and lower efficiency values in patients in the theta band.
Hence, these findings imply that the brain functional networks in BCECTS patients are not only
disrupted but also reorganized depending on the frequency band.

Epileptogenic network abnormalities in BCECTS patients

The epileptogenic networks refer to the areas involved in the generation and spread of epileptic
activity. These networks may vary across different types of epilepsy. In BCECTS, it covers the
sensorimotor networks and central region. The sensorimotor components consist of precentral,
central and supplementary motor area (Rosazza and Minati, 2011). In our study, we found that
these regions were significantly activated in BCECTS patients in the presence or absence of
interictal epileptic spikes especially in the & and 0 bands. In line with previous studies, we found
that the patients’ central regions, extended to the supplementary motor area, were highly activated
(Boor et al., 2007; Tang et al., 2014). The activations of these regions were concomitant with
higher betweenness values in the 6 band and lower local efficiency values in the frontal superior,
fontal mid gyrus and supplementary motor regions. The involvement of these regions could result
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in jerking of the mouth, face and hand, kind of semiology of benign childhood epilepsy (Moeller
et al., 2013). However, the increased functional connectivity was restricted to the homolateral
hemisphere of the epileptic zone in the B band. This observation could be supported by increases
in spectral power around the epileptic zone (Adebimpe et al., 2015a; Bourel-Ponchel, 2013). Even
in the absence of interictal spikes, we found highly significant changes in IC values at the epileptic
zone extending to the frontal regions in higher frequency bands. This might suggest that the
abnormal brain function does not only occur during interictal discharges but also exists throughout
interictal periods. Meanwhile, increased local efficiency in these patients in the absence of spikes
at the left central and frontal region in the a and 1 band can be viewed as the brain functional
reorganization due to epileptic activity in the opposite region.

The frontal cortices also showed involvement in the functional reorganization of the brain
functional networks in BCECTS patients. This is supported by lower and higher local efficiency
at the frontal region in low and high frequency band, respectively. The frontal lobe is known to
play a major role in the processing and execution of higher cognitive skills and behaviors (Stuss,
2011). Children with benign epilepsy have been found to be suffering from cognitive deficit and
mental activity (Verrotti et al., 2014). One of the distinct features of the benign childhood epilepsy
is the absence of large brain structural changes. The structural changes are most common in other
types of epilepsy such as temporal lobe epilepsy (Thom, 2014). However, some studies (Kanemura
and Aihara, 2009) have reported serial changes in the frontal lobe growth in longitudinal MRI
studies and microstructural changes of white matter (S. E. Kim et al., 2014) at the epileptic zones
and also in the frontal lobe especially in the superior frontal and right inferior gyrus in BCECTS
patients. These little structural changes might be correlated with the cognitive and behavior
deficiency in BCECTS patients. Therefore, the changes in functional connectivity patterns
between the prefrontal cortex and bilateral central regions might be related to the reported serial
growth disturbance and alteration of brain tissues at the frontal region together with experience of
motor and cognitive dysfunctions in these patients.

Is DMN impaired in BCECTS patients?

In our study, we found that the pattern of significant functional connectivity did not only depend
on the frequency band but also on the seed points (ROIs). Decreased functional connectivity
between the prefrontal cortex and the parietal region in BCECTS patients especially in the betal
band might indicate impairment of the default mode network (DMN) as reported in several fMRI
studies (Ibrahim et al., 2014; Xiao et al., 2015) and EEG functional connectivity study (Canuet et
al., 2011). This claim is further supported by our results which showed decreased betweenness in
the parietal, precuneus, temporal and frontal regions in the B bands. The DMN has been associated
to various brain functional activities including cognitive processes and is solicited during attention.
The observed decreased functional connectivity and betweenness at these regions may support the
idea that epileptic activity might lead to attention and learning deficits in children with epilepsy
(E.-H. Kim et al., 2014). In addition, BCECTS children responding to antiepileptic drugs were
found to be more attentive, in correlation with the decrease in amplitude of the spike waves
(Kaufmann et al., 2009; Schneebaum-Sender et al., 2012). We also found that the presence of
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interictal spikes in EEG signals resulted in significant decreases in IC values between the
prefrontal cortex to the parietal and precuneus regions and also decreased the flow of information
between these regions. The involvement of DMN might be a core neurobiological feature in benign
epilepsy and deserves further attention.

Interictal discharges affect temporal connectivity

Interictal discharges in the right centrotemporal area influenced ipsi and contralateral functional
connectivity patterns in temporal areas. The functional connectivity analysis using the ROIs seed
points at the right central regions indicated increased functional connectivity in the right
homolateral temporal region in the delta and theta bands. The increased functional connectivity
between the epileptic zone and the ipsilateral temporal region implied that the interictal discharges
affected the temporal region. This was also evident from decreased betweenness values in
BCECTS patients (especially under WSC) in lower frequency bands. Both the central region and
superior temporal gyrus are part of auditory components (Rosazza and Minati, 2011) that are
responsible for language and speech processing. Unbalanced auditory processing in both
hemisphere could be responsible for phonological and language processing deficits in these
patients (Amaral et al., 2015). The reduced IC in the left hemisphere is also supported by several
studies (Overvliet et al., 2013) which found reduced cortical thickness predominantly in language
mediating brain regions of the left hemisphere in patients compared to controls.

Decreased occipital functional activity in BCECTS patients

With the seed point located at the occipital cortex, the functional connectivity analysis showed
significantly decreased connectivity between the occipital regions and postcentral and frontal
regions in different frequency bands especially in low frequency bands. The decreased
betweenness at the occipital region in the theta and alpha bands in BCECTS patients under WSC
and NSC suggest lower functional connectivity in this region. This finding is in agreement with
the results of our previous studies(Adebimpe et al., 2015a) which suggest that the functional
connectivity pattern in the occipital cortex in BCECTS patients was modified due to interictal
epileptic discharges. Several studies (Deltour et al., 2007; Filippini et al., 2015) reported a poor
performance in visual assessment and visual spatial coordination in BCECTS children. This is in
line with our findings that indicate lower local efficiency in the occipital cortex for these patients
in the alpha band.

This study presented a clear and robust method for assessing resting-state EEG source functional
connectivity patterns and demonstrated alterations of functional connectivity pattern in BCECTS
patients. Although our previous studies have shown the strong impact of interictal epileptic
discharges on the brain functional organization in BCECTS patients, dynamic directed interictal
connectivity techniques provide important information on the driver-response interactions
between the brain regions in BCECTS patients.
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5.3 Dynamic directed interictal connectivity

Dynamic directed interictal connectivity in benign childhood epilepsy with centrotemporal
spikes: A high density EEG study

This section investigates the dynamic directed interictal functional connectivity pattern associated
with interictal epileptic spikes. The EEG source activity was recounsstructed ad reduced to 90
ROIs. The partial directed coherence (PDC) was used to compute the effective connectivity
between brain regions. PDC has been shown to be insensitive to volume conduction artifacts. The
outflow of the connectivity matrix was then investigated to identify major drivers between the
brain regions involved in the propagation and generation of the epileptic activity. Overall, we
found that central, rolandic, supplementary motor areas and superior frontal regions of the
ipsilateral hemisphere to the epileptic zone were the major drivers among all the brain networks in
BCECTS patients.

5.3.1 Introduction

Epilepsy is a neurological disorder characterized by recurrent unprovoked abnormal neuronal
discharges. Interictal epileptic discharges (IEDs) involve complex interaction across several brain
regions. The dynamics of brain networks during IEDS is the key to understanding pathological
mechanism associated with IEDS.

Benign epilepsy with centrotemporal spikes (BCECTS) is the most common idiopathic
epileptic syndrome with a prevalence of 8-20% of epileptic children (Holmes, 1993;
Panayiotopoulos, 1999; Wirrell, 1998). In BCECTS, the interictal epileptic discharges(IEDS) arise
principally from centrotemporal regions, but the functional connectivity analysis has shown that
the brain functional networks in BCECTS patients are highly impacted by the IEDS which involve
not only the epileptogenic region but also other distant brain regions (Adebimpe et al., 2015b;
Kramer and Cash, 2012; Laufs, 2012).

In general, functional connectivity measures are used to investigate non-directional
statistical dependency between different brain regions. Effective connectivity is, however,
directed and usually used to explore the causal influence from one region to another. Concerning
epilepsy, the main question is to understand the mechanism of initiation and propagation of IEDs.
There are many measures such as Partial Directed Coherence(PDC) (Baccala and Sameshima,
2001) and Directed Transfer Function (DTF)(Kaminski et al., 2001) which have been used to study
the generation and propagation of IEDS in animal models and human subjects (Gong et al., 2014;
Jenssen et al., 2011; van Mierlo et al., 2013; Wilke et al., 2010). The time-varying pattern of the
effective connectivity associated with IEDS in scalp EEG remains a critical key to address the
initiation and propagation of IEDS in epileptic patients.

In this paper, we used PDC (Baccald and Sameshima, 2001), an effective connectivity
estimator in the frequency domain based on the multivariate autoregressive (MVAR) modeling
for investigating causal interactions between EEG source signals. We aimed to investigate the
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connectivity patterns associated with IEDs and to explore the brain regions involved in the
generation and propagation of epileptic activity. Moreover, we used PDC to investigate the major
drivers that draw the brain networks into IEDs.

5.3.2 Materials and methods

Patients

Sixteen BCECTS patients (Table 5.2) were included in this study with right (12) and left (4)
epileptic foci. The patients in each group had unilateral epileptic foci with interictal dipolar sources
located (Figure 5.7)within centrotemporal regions and oriented from anterior to posterior
(Camfield and Camfield, 2002).The study was conducted at the Amiens University Hospital, and
approved by the university hospital ethics committee with the reference number: CPP Nord-Ouest
No: 2011-A00782-39.

Figure 5.7: EEG source imaging: Average eLORETA source localization of interictal spikes for 12 and 4 BCECTS patients with
(A) right and (B) left epileptic focus, respectively

Table 5.2: Patients EEG recordings and clinical characteristics

Patient | Age Epileptic focus Neuropsychological Medication
(years) assessment

1 12.63 Right Normal Sodium valproate

2 12.64 Right Normal Sodium valproate

3 9.25 Right Attention deficit Oxcarbezepine

4 6.03 Right - Oxcarbezepine

5 10.47 Right Attention deficit Sodium valproate

6 7.16 Right - Sodium valproate

7 8.51 Right Attention deficit -

8 13.16 Right Normal Sodium valproate

9 9.67 Right Language deficit Lamotrigine

10 7.79 Right Normal Micropakine

11 8.91 Right Normal Trileptal

12 9.81 Right Normal Sodium valproate

13 8.30 Left Language disabilities Sodium valproate

14 7.52 Left Language disabilities Oxcarbamazepine

15 8.00 Left Normal -

16 7.01 Left Attentional deficit Sodium valproate

EEG data acquisition and preprocessing
EEG data were recorded from each individual using a high-density EEG recording system (ANT,
Netherlands) with a sampling rate of 256 Hz and 64 channels positioned according to the
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international 10-10 system. Forehead ground and linked-ear reference electrodes were used for
data collection. On average 14 minutes of eyes-closed resting state EEG data were recorded from
each patient. During recording, the patients were in a supine position in a quiet dark room. The
EEG data were re-referenced to a common average reference and filtered between 0.5 to 40 Hz to
remove possible high frequency noise. Two experienced neurophysiologists visually inspected the
EEG data to identify centrotemporal spikes. Twenty single spike segments were selected for each
patient for connectivity analysis. The selected EEG spikes were free from major artifacts with at
least 15 seconds intervals between segments to avoid any spike overlapping. To identify EEG
segments with ocular and movement artifacts, the EEG recordings were first normalized by the Z-
score transformation and then preprocessed semi-automatically using the thresholding method
implemented in the Fieldtrip software (Oostenveld et al., 2011; “tutorial,” n.d.). For each segment,
EEG channels that exceeded a predefined threshold were marked and visually inspected by the
experts. The threshold was set to the mean plus one standard deviation of the z-score amplitude
distribution for each channel.

EEG source imaging

We used the Montreal Neurological Institute (MNI) brain MRI template(Fonov et al., 2009) for
the construction of a head model required for leadfield calculation using the Boundary Element
Method (BEM) (Oostendorp and van Oosterom, 1989). The MNI template was segmented by
SPM8 into 3 homogeneous conductive compartments including scalp, skull and brain with
conductivity values of 0.33 S/m, 0.0041 S/m and 0.33 S/m, respectively. The lead-fields were
calculated using FieldTrip (Oostenveld et al., 2011) with a spatial resolution of 7.5 mm. In total,
4734 source locations were generated inside the brain. The electrodes were aligned to the head
geometry using the fiducial points from each subject.

The eLORETA (Pascual-Marqui, 2007) inverse solution was used to calculate three
dimensional current density distributions. The inverse solution was first applied to the average
interictal spikes of each patient to localize the spike activity. The results were grand averaged
(Figure 1) after normalization for each group (with right and left foci). For each spike segment,
the inverse solution was used to obtain the source activities which were then projected by the eigen
decomposition method (Sekihara et al., 2004). The distributed source activities were reduced to 90
regions of interest (ROIs) by using the automated anatomic labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002). The closest distributed source activity to each ROI centroid was selected as
the source activity of the ROI (Figure 5.8).
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Figure 5.8. Electrical source imaging: EEG source reconstruction using the AAL atlas for 90 regions

Dynamic partial directed coherence

We used the normalized Partial Directed Coherence (PDC) (Baccala and Sameshima, 2001) to
determine the causal inference between the multivariate autoregressive (MVAR) model (Pereda et
al., 2005) of the ROIs source activity as implemented in the SIFT toolbox (Delorme et al., 2011).
The time-varying normalized PDC estimates directed interactions from the estimated MVAR with
an appropriate model order (average of 15 was used for all the patients). This was estimated with
sliding window of 500 milliseconds in a time step of 30 millisecodns. The appropriate model order
was estimated with the Akaike information criterion (AIC) and estimation theory (Schldgl and

Supp, 2006). The estimation theory states that the ratio of IZT*Z must be of order of 10 or larger

where N is the number of data points, n is the number of data segments, C is the number of signals
(ROIs) and p is the model order. However, we ran statistical tests to check the stability and
consistency in order to validate the model. PDC was estimated in time and frequency domain but
only the 6 band was considered for analysis. Since the power in this frequency band was maximum
(Figure 5.9), therefore, the information transfer was supposed to be most relevant at the maximum
power frequency(van Mierlo et al., 2011).
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Figure 5.9: Power spectrum. Average power spectrum for patients with (A) right and (B) left epileptic foci in the 6 band
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Outflow and Laterality

We computed the outflow which is the summed connectivity strengths over outgoing edges. This
is computed by summing outflows from each ROI to all other ROIs at a given time instant. The
ROI with high summed outflow strongly drives the activity of other regions. The outflow of each
region at each time instant was statistically compared to the temporal average of the baseline before
the rise of the spike activity with a nonparametric permutation test (Kruskal-Wallis, p<0.05) and
1000 permutations.

The laterality was determined from the summed outflow across the rising phase of the spike
to represent the network involved in the generation of the spike.

The laterality index, L, was computed to assess the hemispheric or regional dominance as follows:

OR - OL
L= ) ——— 5.9
Or + 0y -9

Where Or and O, represent the summed outflow from the right and left brain region to
all other regions, respectively.

For the laterality, nonparametric tests (Kruskal-Wallis, p<0.05) with 1000 permutations
were used for statistical comparison to the baseline. All analyses were performed in Matlab and
EEGLAB toolbox(Delorme and Makeig, 2004) and statistics in the BrainNet viewer (Xia et al.,
2013) was used for 3D representation and some Figures were plotted with the modified code of
the e-connectome software (He et al., 2011).

5.3.3 Results

Electrical source activity

Figure 5.10 shows the electrical source activity reconstructed with the ROIs. In patients with right
epileptic foci, we found stronger activities at the ipsilateral hemisphere to the epileptic zone at the
right postcentral, inferior parietal and rolandic regions. This was extended to the frontal region
at the orbital frontal and superior temporal region. Similarly, in patients with left foci, ROIs with
stronger activity were localized at the left precentral and postcentral regions including rolandic
regions. Frontal regions, very close to epileptic foci also showed strong activity at the left inferior
frontal region.
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Figure 5.10: EEG source imaging: Average eLORETA source localization of interictal spikes from 12 and 4 BCECTS patients
with (A) right and (B) left epileptic foci, respectively.

Outflow density

The summed outflow (Figure 5.11) showed a dominance in the ipsilateral hemisphere to the
epileptic focus in both patient groups with right and left epileptic foci. In the patient group with
right epileptic focus, the key drivers with highest summed outflow included the right precentral
and postcentral regions which were the main spike generation zones. Other regions including the
right rolandic and supramarginal regions were also involved, although with lower summed
outflow. In the patients with right epileptic foci, the superior and mid frontal regions were also
involved and even reached their maximum summed outflow before the central regions. In these
patients, the average summed outflow during the rise of flow (surface MRI) showed the right
dominance with highest outflow at the central regions.

In the patients with left epileptic focus, just like the other group, the major key drivers
included precentral and postcentral regions. It also included the inferior frontal operculum regions.
In this group, fewer ROIs showed significant changes compared to the baseline probably due to
the low sample size.
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Figure 5.11: Outflow density. Temporal evolution of outflow density compared to the baseline. Only the ROIs in which more

than 8 out of 12 patients showed significance differences compared to the baseline were plotted for the group with right epileptic
foci (A). The 3D images inside each graph represent the outflow during the rising phase of the spike compared to the baseline.
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Network pattern and laterality index

Figure 5.12 shows the network patterns for both groups of patients. The strongest connections
were found in the ipsilateral hemisphere to the epileptic focus from pre- and post-central regions
and the supplementary area to the frontal regions. There were also functional connections with
weaker strength to distant regions in the contralateral hemisphere. In the patient group with left
epileptic focus, the major drivers were found at the left rolandic region. Few connections to the
other brain region were observed for this group.

Both the patient groups exhibited laterality toward the ipsilateral hemisphere to the
epileptic focus (R: 0.38 £ 0.09, L: -0.49+0.20). However, patients with right epileptic foci
exhibited more laterality toward the right hemisphere in comparison to the baseline (x>=5.47,
p=0.019).

Strength

Figure 5.12: Effective connectivity. The connectivity pattern for patients with (A) right and (B) left epileptic foci, respectively,
from the ROI to the whole brain region.

5.3.4 Discussion

Our results show the presence of abnormal functional network pattern occurring during the
interictal epileptic discharges (IEDs) in BCECTS patients. The causal inference between the brain
regions were identified by combining the EEG source imaging and the time-varying effective
connectivity method. Both the patient’s groups with epileptic foci at the right and left hemisphere
showed stronger directional connections to the frontal regions and weaker connectivity to the
distant regions in the contralateral hemisphere. We also demonstrated the dynamic changes in
interactions between the brain networks before, during and after IEDs. Our results are consistent
with the findings reported in our previous studies (Adebimpe et al., 2016, 2015b, 2015c) in which
we compared EEG segments with and without IEDs using the source imaging and functional
connectivity analysis. The main advantage of PDC as an effective connectivity measure over the
phase synchronization or coherence methods is that it allows detecting the direction of interaction
between brain regions. All of these analyses provide a meaningful tool to evaluate the epileptic
networks, their alteration caused by IEDs, and their possible impact on cognitive deficits reported
in the children with BCECTS (Danielsson and Petermann, 2009; Datta et al., 2013).
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The EEG source activity analysis revealed stronger activity at the central regions
including the rolandic region in the epileptic zone. It also showed that the ipsilateral temporal and
frontal regions were also involved in epileptic activity, however, with weaker strength. The
stronger activity at the central and frontal regions of the ipsilateral hemisphere to the epileptic zone
suggested a fronto-central network activation during the IEDs.

The main driver in the epileptic networks was found in the central regions (post and
precentral) including rolandic regions. However, some of other key drivers were also observed
outside the epileptic focus with weaker strength especially at the frontal regions, including parietal
and temporal regions. We also found the involvement of the frontal regions in spike activity in
both the patient groups, especially the frontal superior and mid regions (for patients with right
epileptic foci) which reached their maximum summed outflow even before the precentral and
postcentral ROIs. This finding suggests that the frontal regions are the secondary driver of the
epileptic activity. The involvement of the frontal and central or fronto-central networks in the
epileptic activity may suggest that interictal activity might impact the functionality of the attention
networks (Kaufmann et al., 2009) in BCECTS patients. The ipsilateral frontal cortex showed
increased functional connectivity driven by the right or left (pre and post, including central motor)
central gyrus, respectively. The frontal cortex has been known to be involved in monitoring,
behavioral adjustments and learning (Rushworth et al., 2007, 2011) all of which are important in
complex cognitive tasks such as language. The frontal cortex has been shown to be correlated
with the attention and cognitive deficits (Dunn, 2014; Lopes et al., 2013; Riva et al., 2007). The
functional involvement of the frontal cortex in epileptic activity may reflect the fontal region
growth disturbance (Kanemura and Aihara, 2009) caused by epileptic activity in BCECT patients.
This finding is in line with those resulting from several studies performed with fMRI and
MEG/EEG indicting the role of frontal cortex in the initiation and propagation of IEDs (Panzica
etal., 2013; Rotondi et al., 2016; Wu et al., 2015; Yang et al., 2013). The evidence of involvement
of the fronto-central regions may also be in agreement with results reported in other methods
concerning clinical diagnosis of BCECTS with the tangential dipole orienting from central to
frontal regions or vice versa (Baumgartner et al., 1996; Camfield and Camfield, 2002) and our
previous studies (Adebimpe et al., 2016, 2015b, 2015c¢) reporting high/low activity at the ipsilateral
central/frontal regions, respectively.

The existence of other drivers outside the epileptic focus especially at the
supramarginal and parietal regions as well as the causal influence from the superior motor and
post/pre central regions of the ipsilateral hemisphere to the epileptic foci to the contralateral
hemisphere and extra-temporal regions support the evidence that the impairment of BCECTS brain
networks might not be restricted to the epileptogenic focus. We also observed connections with
weaker strength from the epileptic foci to the contralateral hemisphere compared to the ipsilateral
frontal regions. This could represent the reorganization of the brain network during IEDs serving
as the compensatory mechanism (Bettus et al., 2009; Datta et al., 2013). Laterality toward the
epileptic foci also confirmed the reorganization of functional network organization due to epileptic
discharges. The laterality toward the epileptic foci might have influence on the cognitive ability,
language processing and verbal memory in BCECTS patients(Li et al., 2015; Piccirilli et al., 1988;
Sveller et al., 2006). The causal influence from the ipsilateral supplementary motor areas to the
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bilateral frontal regions indicates the involvement of motor region as well. This might explain the
high prevalence of language impairment in children with rolandic epilepsy as previously reported
(Overvliet et al., 2011; Wolff et al., 2005). Interestingly, many of the patients with BCECTS have
a language-related learning disorder and not a general learning disorder. It is also reported that
there is correlations (Besseling et al., 2013; Overvliet et al., 2011) between problems with motor
development and language impairment in children with BCECTS, probably due to the casual
influence from the motor region to other brain regions.

In this study, the PDC was only estimated in the 6 band, the frequency range with
maximum spectral power, mainly because it is generally believed that frequency with higher
spectral power has potential for driving brain networks. Higher frequencies above 80Hz regarded
as high frequencies oscillation (HFO) (Kobayashi et al., 2011) might be involved in the generation
and propagation of spike. This is subjected for future study because HFO is needed to be recorded
with higher sampling rates than the one used in the current study. Our study is limited with small
sample size especially for the patient group with left epileptic foci (4 subjects), though, the group
was almost homogenous in terms of age range and source localization of IEDs.

In conclusion, we identified the causal connectivity patterns in BCECTS patients
and the major drivers of the epileptic activity. The post and precentral regions with the
supplementary motor areas were the major drivers in the ipsilateral hemisphere to the epileptic
foci. The causal influence from the central to the ipsilateral frontal region and the contralateral
hemisphere suggest that the BCECTS brain networks are functionally altered during IEDs. This
could explain the negative impact of epileptic activity on the cognitive ability of the children with
BCECTS.
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Chapter 6
Functional Development in Neonates

6.1 Introduction

The adult brain is composed of networks with complex interactions. Several studies with the graph
theory or network science have expanded our knowledge on the brain functional connectome in
adults (Bassett and Bullmore, 2006; Bassett and Gazzaniga, 2011; Sporns et al., 2000). In turn,
little is known about the brain functional connectome in neonates. There have been predictions
that the human brain functional connectivity evolves from birth (with local connections) to
adulthood (with distributed topology) (Fair et al., 2009). Several fMRI studies in neonates have
shown the presence of cortical hubs in the posterior, frontal and sensorimotor regions (Ball et al.,
2014; Fransson et al., 2007). The early brain activity especially in preterm is quite different from
the mature brain. Neonatal brain activity is characterized with the occurrence of specific
electrophysiological features such as theta temporal bursts in preterm and frontal transients in full-
term neonates with relative period of discontinuity which serve as a biomarker for brain maturation
and development (André et al., 2010; Wallois, 2010). All these features can be observed only with
EEG in neonates. Recent studies (Gonzélez et al., 2011; Meijer et al., 2014; Omidvarnia et al.,
2014; Tokariev et al.,, 2015) with EEG in neonates have attempted to explore functional
connectivity in neonates. All of these studies were done using sparse electrodes. However,
functional studies in neonates require a high number of electrodes due to the spatial specificity of
EEG (Odabaee et al., 2013). In addition, most of the specific neonatal features including sleep
stages have not been taken into consideration in functional studies. These features might have
impact on the brain development.

In this chapter, functional brain connectivity patterns in preterm and full-term neonates
were studied using high density EEG data (64 channels). The specific features of neonates such as
the theta temporal burst activity and both quiet and active sleep stages were taken into
considerations.

6.2 EEG functional connectivity in preterm neonates

EEG functional connectivity in preterm neonates modulated by endogenous activity

6.2.1 Introduction

Early preterm birth can highly affect the brain development at later infancy. Preterm babies are at
high risk of neurodevelopmental disabilities and health impairments (Drassinower et al., 2015;
Karolis et al., 2016; Périvier et al., 2015; Rose et al., 2014) due to the immaturity of the brain
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neural networks at birth. The development of the immature brain is concomitant with rapid
alterations in functional connectivity patterns of the brain networks after birth (Grieve et al., 2008).
The appearance or disappearance of specific cerebral transient events in neonates is related to the
temporary involvement of the cerebral neural networks. There is increasing interest in
understanding the neurodevelopmental dynamic of the preterm brain networks and their functional
connectome. (Doria et al., 2010; Fransson et al., 2011, 2007; Omidvarnia et al., 2015)

The brain neuronal activities in preterm infants is strongly different from those observed
in full-term neonates, young children and adults (André et al., 2010). The preterm EEG is
characterized by its discontinuity with the occurrence of short burst of activity of high amplitude
with dominant low frequencies (André et al., 2010; Vecchierini et al., 2007). During the maturation
process, the dynamics of preterm brain networks is characterized by the occurrence of specific
features considered as biomarkers. The absence or a delay in the occurrence of these biomarkers
during the neurodevelopmental process suggests a poor functional prognosis (Vecchierini et al.,
2003; Wallois, 2010). The appearance of cortical bursts in early preterm has been found to be
correlated with the mental development (lyer et al., 2015; Vecchierini et al., 2003). Other
biomarkers include frontal sharp waves [24-28 wGA], Theta Temporal Activities in coalescence
with Slow Waves (TTA-SW) [25-30wGA], delta brushes [30-36wGA] and frontal transients [36-
42wGA] (André et al., 2010; Selton et al., 2000; Vanhatalo and Kaila, 2006; Wallois, 2010). The
inter-hemispheric synchronization also evolves in the course of neurodevelopment. The functional
interactions in premature infants follow a temporally variable complex pattern. In the very
premature babies before 32wGA, short bursts of activity are highly synchronized across
hemispheres. For a short period of time between 32 to 36wGA, the two hemispheres are out
synchronization then they become resynchronized after 36 wGA.

The TTA-SWs are one of the earliest neurodevelopmental biomarkers of the brain
maturation process in preterm babies. It has been shown that the TTA-SW is not sensory driven
and that their generators are located bilaterally along the Superior Temporal Sulci (STS) (Routier
et al., 2016). The generators of the TTA-SW are located in deeper structures at 26wWGA than at 30
WGA probably within the subplate (Routier et al., 2016). Because of the small parcellation of the
brain in preterm babies, the EEG patterns are region specific (Odabaee et al., 2013).

Few studies have been conducted to investigate functional connectivity patterns in
premature infants. A resting-state functional connectivity study with fMRI (Fransson et al., 2011;
Omidvarnia et al., 2014) has shown cortical hubs and their associated cortical networks largely
confined to primary sensory and motor brain regions in the infant brain. Due to its poor temporal
resolution, fTMRI cannot be used to investigate the dynamic of the functional connectivity in the
immature neonatal brain especially during short bursts of activities. Using low density EEG data,
Omidvarnia et al., (Omidvarnia et al., 2014) have investigated EEG functional connectivity
patterns at the frontal and posterior regions in full term neonates and during EEG bursts of activity
in preterm neonates.

In this study, we aimed to investigate the functional organization of the brain networks
and the impact of the TTA-SW on the functional connectivity organization in the very preterm
neonates during the quite sleep. To investigate the brain functional connectivity topology, we used
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graph metrics to characterized the functional connectivity using high density EEG data in this age
group. To specifically characterize the connectivity pattern of TTA-SW and its impact on overall
functional connectivity, we compared the graph metrics during bursts of activity with and without
TTA-SW.

6.2.2 Materials and Methods
Figure 6.1 shows the block diagram of the processing pipeline.

Preprocessing Computation Statistical Analysis
o
o % e -
] o 20000 000% . ] Band-pass filter Group level statistics
“0o00o00?® " ] o
? 3o cobo00®" Frequency band Synchronl.zatl'on index Comparative statistics
Phase oscillation
V0000000000 Current source x )
9202029200 g | density —
@ o Connectivity

00009000,
0 p0009%0ny @

o %00 5 Channel repair

oo 0

Analytical signals Phase Locking value

i Graph metrics
Surrogate data matrix

¥

Figure 6.1: Schematic illustration of the processing pipeline.

Subjects and EEG recordings

High density EEG (HD-EEG) data recorded from 12 healthy preterm neonates (31.26 + 0.18weeks,
Gestational age, GA) were included in this study from the clinical database of the pediatric
functional exploration of the nervous system service in Amiens University Hospital, France. The
inclusion criteria were the absence of neurological disorders and illness. The HD-EEG data were
recorded in the neonatal intensive care unit of the university hospital of Amiens, France. The data
had been recorded for clinical routine use during quite sleep (QS) using ANT's EEG acquisition
system (ANT, Netherlands) with a sampling rate of 1024Hz and a high density EEG cap
(Medelopt™, France) adapted for preterm neonates with 64 channels positioned according to the
international 10-10 standard system. EEG data of premature neonates are characterized by a
discontinuous pattern alternating with short-lasting periods of cerebral activities mostly consisting
of irregular intermingled 6-6 activities (Figure 6.2 (A)). Based on these characteristics, two
electrophysiology experts selected twelve six-second artifact free EEG segments with theta
temporal activity (TTA) followed by a slow wave (Figure 6.2 (B)) separately for each subject.
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Figure 6.2: Examples of EEG in preterm babies. (A) discontinuous EEG pattern with short burst activity, and (B) EEG signals
with TTA at the temporal channels.

Table 6.1. Overview of the characteristics of the preterm babies included in the study.

Preterm babies 12 (6F)
Gestational age at birth (weeks) 29.11 + 1.39
Gestational age at recording (weeks) 31.26 + 0.63
Weight at Birth (gram) 1145 + 297
Weight at recording (gram) 1295 + 262

EEG data preprocessing

EEG data were first band-pass filtered between 0.5 and 40 Hz to exclude very low frequency
activities as well as high frequency noise. The EEG trials were then re-referenced using a Laplacian
montage ( current source density, CSD) (Perrin et al., 1989) to effectively minimize volume
conduction effects. CSD has been shown to have optimal source separation and performance
required for functional connectivity analysis (Srinivasan et al., 2007). Considering missing or bad
channels, 59 electrodes were considered for all the neonates for further analysis.

Frequency-domain signal
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The frequency-domain signal was computed using the Morlet wavelet, which is localized in both
time and frequency and useful for processing nonstationary signals. However, Morlet wavelet, w
(t,f) is defined as:

1 _t?
w(t,f) = (o,Vm) % e 20t ei2nft (6.1)

Here, f is the center frequency and ot is the temporal standard deviation. The time-frequency
complex signal Z (t,f) of a signal z(t) was computed by convolving it with w(t,f):

Z(t, f) = z(t) »w(t, f) (6.2)

We choose the spectral bandwidth for each frequency band by controlling the center
frequency f and its ratio to the standard deviation (of). Two frequency bands 8( 1 - 4 Hz) with f=
2.5Hz and f/of =3 and 6(4.17 — 7.83 Hz) with f=6Hz and f/c+=6 were selected for connectivity
analysis.

Synchronization index

The synchronization index was used to evaluate coupling between pairs of EEG channels over
time. This was applied to 6-second EEG of 12 segments for each patient in order to investigates
the dynamic synchronization within and between temporal regions only. Synchronization index
computation is based on the statistical phase locking of the distribution of phase differences
between pairs of EEG channels based on the normalized Shannon entropy (Hurtado et al., 2004).
The phase of the signal was obtained from the complex signal as obtained from equation 6.2.
Therefore, the synchronization index, e(t) is defined as:

N
e® =~ ) p; logp, (63)

Where pj is the relative frequency of phase difference within the ith bin. e varies between 0 and
E=logN where N is the number of bins and this was obtained with sliding windows of 200
milliseconds in a step of 20 milliseconds. In this study, we used 72 bins (5° spaced). The
synchronization index was normalized at each time point:
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E—e(t)

- (6.4)

q(t) =

Functional connectivity analysis

To investigate the functional connectivity patterns for each condition, Phase Locking Value (PLV)
was computed between all pairs of EEG channels (Lachaux et al., 1999; Mormann et al., 2000).
The PLV was computed for 3-second EEG data of 12 segments for both TTA-WS segment and
normal activity (NAT). The PLV between electrodes X and Y is computed as:

N

z i(@x(O=0y(©)

t=1

PLV(ry) = 1 (65)

Where ox and @y are the instantaneous phases computed from the frequency-domain signals
of X and Y. The PLV ranged from 0 to 1, with 0 and 1 indicating no connection and maximum
connection between any given pair of signals, respectively. The end-result of computing the PLV
for all pairs of channels was a square connectivity matrix of size 59 (number of EEG channels). In
the connectivity matrices, each entry Nx,(= Nyx) contained the PLV for channels X and Y.

Single- and group-level statistical analysis

To evaluate the significance in PLV, we generated 200 time-shifted surrogate signals sharing
statistical characteristics of the original data (Theiler et al., 1992). The PLV between the first signal
and all the time-shifted versions of the second signal yielded a null distribution for statistical
testing. The significance was defined by the difference between the original and the mean of the
surrogate values of statistics, divided by the standard deviation of the surrogate values:

7 = PLV — Usurrogate

Osurro gate

(6.6)

We used a criterion of 5%, which implies that the proportion of surrogate values higher
than the original PLV (between x and y) must be less than 5% (95% significance level). This
procedure was performed for each individual connectivity matrix (Figure 1). The error rate in
multiple comparisons was also corrected by controlling the false discovery rate (Nichols, 2012) at
5% significance level for the grand averaging over individual connectivity matrices. Statistical
comparisons between the TTA and normal activity (NAT) segments were done using the pair-
wise nonparametric permutation test with correction for multiple comparisons(Maris and
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Oostenveld, 2007) with 1000 permutations and the false discovery rate controlled at 5%
significance level.

Graph theoretical measures

To compute graph metrics, the functional connectivity matrices were first thresholded and
binarized the functional connectivity matrices. The matrices were thresholded by applying false
discovery rate, g=0.01which controls the expected proportion of false positives among
suprathreshold correlations. This was done to prune out the weaker correlation between the EEG
channels.

The following graph metrics (Rubinov and Sporns, 2010) were computed after the
thresholding:

Degree: Degree is the most common measures of centrality with straight forward neurobiological
interpretation. A node with high degree implies more interaction with many nodes in the network.

Global Efficiency: Global efficiency measures the functional integration by computing the path
between two vertices as the inverse of the shortest distance between the vertices.

Clustering coefficient: Clustering coefficient computes the functional segregation by measuring
the presence of clusters or modules in functional networks.

Local Efficiency: The local efficiency of a particular node is similar to clustering coefficient. This
was added in order to estimate the efficiency of local connectivity within neighbors.

The details of the mathematical descriptions of these metrics are provided in the appendix.

The above graph metrics were selected in order to characterized the distribution of
connection density (degree) in preterm neonates, global connectivity processing (global efficiency)
and local connectivity and efficiency (clustering coefficient and local efficiency) of neighbor’s
nodes.

Nonparametric permutation testing was used for all graph metrics with correction for
multiple comparisons including post hoc tests. A total of 1,000 permutations were used to
determine the significance level for each test.

All computations and statistical analyses were performed in Matlab with custom scripts
and open source toolboxes: EEGLAB (for 3D topological plots, http://sccn.ucsd.edu/eeglab/), and
the brain connectivity toolbox (for graph parameter
computations, https://sites.google.com/site/bctnet/).

6.2.3 Results

Synchronization between channels

As shown in Figure 6.3, the synchronization results indicated that the synchronizations level
between the bilateral temporal regions (T7-T8 and P7-P8) were very weak compared to the
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synchronization within each temporal region (P8-T8 and P7-TP7). Though slightly increased due
to the occurrence of TTA, the synchronization level still remained weak between and within the
right and left temporal regions (around 2000 ms). The increase (started around 2000 ms as shown
in Figure 3B) in the synchronization index within each temporal region (P8-T8 and P7-TP7)
highlighted the impact of TTA on the synchronization level which lasted longer over the right
hemisphere (P8-T8) compared to left hemisphere (P7-TP7).

Filtered EEG signal for T7 electrode
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Figure 6.3: Synchronization index: (A) Filtered EEG segment with TTA on T7, (B), the dynamic synchronization index between
EEG channels for the delta (blue) and theta (red) frequency bands.

Topological organization of functional connectome

Figures 6.4 and 6.5 show the spatial topology of the pair-wire functional connectivity patterns for
NAT and TTA. As shown, the functional connections were only densely packed at bilateral frontal
and posterior regions. No long-distance functional connections with significant strength were
observed between the both hemispheres as well as between anterior and posterior regions in the
preterm brain networks. Regardless of the presence of TTA (TTA vs NAT) the spatial topology of
the functional connections remained densely local at the bilateral frontal and posterior regions. In
order to better investigate the impact of TTA on the brain functional organization, we compared
the spatial distribution of degree between the TTA and NTA segments. The connection density
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was higher due to the presence of TTA in the 0 band, though functional connections were restricted
to the temporal regions. In the 6 band, the occurrence of TTA spuriously lowered (p<0.01) the
functional connectivity level between the temporal and parietal regions in the left hemisphere.

Statistical comparison (p<0.01)
between TTA and NAT

TTA

Figure 6.4: Spatial topology of functional connectivity. The group average is for normal activity (NAT) and theta temporal
activity (TTA) shows the prominent functional connectivity in frontal and posterior regions and statistical difference between the
two activities reveals increased functional connectivity at each of the temporal region due to TTA in 6 band.
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Figure 6.5: Spatial topology of functional connectivity pattern. The degree for normal activity (NAT) and theta temporal
activity (TTA) indicated prominent functional connections in the frontal and posterior regions. The statistical differences between
the two activities revealed stronger functional connections at each of the temporal regions due to the occurrence of TTA.

Spatial topology and network metrics

The spatial topology of the functional connectivity pattern indicated dense functional connections
at the frontal and posterior regions. We further characterized the functional connectivity pattern to
investigation the spatial distribution of local connectivity (Figure 6.6). The clustering coefficient
(C) in o band was higher at the bilateral frontal and posterior regions but lower (mainly in 6 band)
at central region for both NAT and TTA. Compared to NAT, the presence of TTA also resulted
in increased C values over the temporal regions in 0 band, and decreased C values over the frontal
regions in 6 band. The local efficiency (LE) presented topological patterns similar to the one that
was found for the clustering coefficient with higher LE at the frontal and posterior regions and
lower LE at the central region, especially in 6 band, for both NAT and TTA.
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The global network metrics (Figure 6.7) were higher for TTA compared to NAT except
for the clustering coefficient in the 6 band where TTA was significantly lower.
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Figure 6.6: Spatial topology of the network metrics, clustering coefficient C, and local efficiency LE for TTA and NAT and
their statistical differences. The first column is the group average with the bar indicating the range on changes. The second column
shows the statistical differences between TTA and NAT with the bar indicating t-values.
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Figure 6.7: Global network metrics. Global network degree (K), clustering coefficient (C) and global efficiency (E) for both
TTA and NAT. The asterisks indicate statistical significance with p<0.05.
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Brain symmetry index

The functional brain symmetry index was computed from the relative differences in network
metrics between the right and left hemispheres in both frequency bands. We divided the brain
regions as shown in Table 6.2. The Brain Symmetry Index (BSI) was computed for the frontal
(F), temporal (T), central (C) and posterior (P) regions. The BSI was defined as:

M

BSI =ZR"_L" (6.7)
_1Ri+Li '
l=

Where R and L for the right and left hemisphere, respectively, and M indicates the number of
channels in each region. A positive value refers to the rightward asymmetry.

Table 6.1: EEG Channels in each region

Regions EEG channels

Right frontal (RF) FP2, AF4, AF8, F2, F4, F6, F8
Frontal (F)

Left frontal (LF) FP1, AF3, AF7, F1, F3, F5, F7

Right temporal (RT) FC6, C6, CP6, T8, TP8
Temporal (T)

Left temporal (LT) FC5, C5, CP5, T7, TP7

Right central (RC) FC2, FC4, C2, C4, CP2, CP4
Central (C)

Left central (LC) FC1, FC3, C1, C3, CP1, CP3

Right posterior (RP) P2, P4, P6, P8, PO4, PO8, 02
Posterior (P)

Left posterior (LP) P1, P3, P5, P7, PO3, PO7, O1

The BSI result is shown in Figure 6.8 for all the graph metrics. Generally, there was a
rightward asymmetry in the frontal region and a leftward asymmetry in the posterior region for all
the network metrics and frequency bands. In 6 band, there was a rightward asymmetry in the
temporal region under both conditions, with and without TTA. The asymmetry was more
pronounced for the TTA segments.
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Figure 6.8: Brain Symmetry Index (BSI) results for Network degree (K), Clustering coefficient (C) and Local efficiency (LE).
F, T, C, and P represent frontal, temporal, central and posterior regions, respectively, as shown in Table 6.2.

6.2.4 Discussion

In order to assess the spatial functional organization of the premature’s brain we analyzed the
synchronization and functional connectivity of the brain networks using high density EEG in
preterm neonates. The synchronization level between brain regions during TTA were assessed by
the synchronization index in two frequency bands (6 and 0). The pairwise correlation between all
the channels was also computed by the phase locking value (PLV). We further computed three
graph metrics- degree, clustering coefficient and efficiency to characterize the functional
connectivity pattern of the preterm brain networks. Our results showed that functional connectivity
in the healthy preterm infants were local with very weak direct long-range functional connections
between the hemispheres and between anterior to posterior areas. Moreover, the functional
connectivity analysis of the theta temporal activity (TTA), as a specific biomarker at this period of
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neurodevelopment, showed restricted high connectivity density within the left and right temporal
regions.

The functional connectivity analysis of resting state fMRI data has shown dense functional
connectivity patterns at the frontal and posterior regions in preterm neonates (Ball et al., 2014;
Fransson et al., 2011; Heuvel et al., 2015; Smyser et al., 2011). Using high-density EEG, we found
locally dense functional connectivity in the bilateral frontal and posterior regions with very weak
long-range functional connectivity between the hemispheres. Our findings support the hypothesis
that the frontal and the posterior regions are at least partly functionally developed before the term
birth (Pandit et al., 2014; Teffer et al., 2013). The existence of the rich-club structural connectivity
predominantly in frontal and parietal regions has been reported in preterm neonates between 30
and 40 week using the diffusion magnetic resonance imaging (Ball et al., 2014). The absence of
inter-hemispheric asynchrony of EEG burst activity has also been reported in preterms of 28- 32
WGA (Wallois, 2010). This is likely due to the immaturity of transcallosal connection at this early
stage of development (Anderson et al., 2006, 2005; Rose et al., 2014). In line with the findings
reported for fullterm neonates, we found weaker long range functional connections between
anterior and posterior cortical regions in preterm infants (Fransson et al., 2007; Kwon et al., 2014;
Smyser et al., 2011).

We also found that the increase in functional connectivity due to theta temporal activity
was restricted to the temporal regions only. The TTA is not stimulus driven and appear as local
endogenous generators most likely located in the subplate (Kostovi¢ and Judas, 2010)). They occur
from 24wGA on, before the connection of thalamic afferents with the cortical plate (28wGA). The
very dense functional connectivity pattern associated with the occurrence of TTA at the temporal
region might be related to the development of the language/communication regions (Judas et al.,
2013; Kostovi¢ and Judas, 2010). In contrast to the idea that the brain can establish long range
connectivity during brief events of endogenous network activity” (Omidvarnia et al., 2014), we
did not find strong long range connectivity between the hemispheres or between anterior and
posterior regions during TTA.

(Omidvarnia et al., 2014) have reported a random global functional network organization
in preterm neonates (Omidvarnia et al., 2014). We found the small-world properties in the preterm
brain networks with locally dense and sparse and weak long distance functional connectivity
within and between the two hemispheres. Our finding is in agreement with the results of other
studies (Heuvel et al., 2015). The small-world functional organization of the brain networks seems
to be topologically optimal for information segregation and integration in adults and neonates(Fair
et al., 2009); (Bassett and Bullmore, 2006; Ratnarajah et al., 2013). Our finding confirms the idea
that most functional networks present in neonates are subject to functional reorganization and
development (Dosenbach et al., 2010; Fair et al., 2009) from functionally local segregated network
to distributed networks.

One significant feature of the mature human brain lies in its asymmetry structurally and
functionally (Dehaene-Lambertz and Spelke, 2015). The rightward asymmetry in spectral power
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in the frontal and temporal regions has been reported in preterm neonates (Field and Diego, 2008;
Mento et al., 2010) . The rightward asymmetry suggests more activity in the right hemisphere than
the left hemisphere. We found higher values of clustering coefficient and efficiency in the right
hemisphere compared to the left side. This finding, however, suggests the information processing
is likely to be done more efficiently within the local regions of the right hemisphere. In preterm
neonates, compared to the left side, the right hemisphere has shown higher cerebral blood flow at
rest (Roche-Labarbe et al., 2012) and higher hemodynamic responses in the superior temporal
sulcus to auditory stimulation in preterm (Mahmoudzadeh et al., 2013). These findings may
confirm that the right hemisphere in the preterm brain is relatively more developed in preterm
infants (Dehaene-Lambertz and Spelke, 2015). Conversely, the leftward asymmetry in parieto-
occipital areas, with or without TTA, might be partly explained by the stronger functional
hemodynamic activity observed in the same regions during the phonemes stimulation in preterm
(Mahmoudzadeh et al., 2013).

Conclusion

The present findings provide more information on the functional organization of the brain
networks in preterm neonates. We showed that the activity of the preterm brain networks is densely
localized in bilateral frontal and posterior regions with the weaker direct long-range functional
connectivity between hemispheres and between anterior/posterior regions. Endogenous activity
such as TTA may play an important role in the neurodevelopment with dense functional
connections and high degree of clustering coefficient and local efficiency within each temporal
region. However, further studies are required to confirm the role of the TTA generators in the
maturation process of the brain in preterm neonates.

6.3 Full-term EEG functional connectivity
Functional organization of full-term neonates during natural quiet and active sleep

6.3.1 Introduction

The early infancy is a crucial period concomitant with rapid neurodevelopment in human life.
Though relatively small at birth, the brain structure develops quickly in the first few weeks after
birth. Despite the tremendous advances in neonatal healthcare, neonates are highly at high risk of
poor neurodevelopment (Back and Miller, 2014). The period between 37 and 42-week gestational
age is a critical transitional period and constitutes a break in the maturation process between utero
and ex-utero. This period is also considered as the beginning of a more linear progression of
cerebral activities with a gradual increase in the frequency of brain activities and specialization
(Wallois, 2010).

So far, there has been little attempt to investigate the functional neonatal connectome using
the functional Magnetic Resonance Imagining (fMRI) (Ball et al., 2014; Doria et al., 2010;
Fransson et al., 2009, 2007). Fransson et al. (2011 and 2007) have revealed the existence of cortical
hubs at primary sensory and motor brain regions in infant brain. In adults, the majority of cortical
hubs and hub-related networks are located in the heteromodal association cortex. These findings
provide some evidence on how brain connectivity evolves quickly from the immature neonatal
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brain to the mature brain in adults due to mainly the process of myelination and tangential
connectivity which speed up the transfer of information (Kostovi¢ and Judas, 2010; Stiles and
Jernigan, 2010). In neonates, brain electrical activity is characterized by some endogenous bursts
of activity such as the frontal transients, and period of discontinuity in quiet sleep (André et al.,
2010). Compared to fMRI, due to its high temporal resolution, EEG is well suited to investigate
the functional connectivity associated with these transient activities in full-term neonates. There
have been efforts to assess the functional connectivity of neonatal brain activity with low density
EEG (Grieve et al., 2008). To characterize the spatial specificity of the EEG data as well as the
functional connectivity patterns in neonates, the acquisition of high density EEG data is required
(Odabaee et al., 2013). Recent EEG studies (Grieve et al., 2008; Omidvarnia et al., 2015, 2014,
Tokariev et al., 2015) have shown the benefit of high-density EEG for studying the functional
neuronal activity at the early stage of neurodevelopment in preterm and full-term babies.

The neonatal sleep architecture consists of active and quite sleep with intermixed
transitional or intermediate sleep segments (André et al., 2010). The differentiation between quiet
and active periods with amplitude correlation (Tokariev et al., 2015) has revealed intra and
interhemispheric connectivity during the active sleep in higher frequencies compared to the quite
sleep. This observation suggests that functional brain networks are rapidly evolving from in-utero
to ex-utero situations.

In the present study we investigated the brain functional connectivity patterns in full term
neonates during both the quiet and active sleep stages using the spectral power and functional
connectivity analyses. We also used different graph metrics to characterize the brain functional
connectivity. We further searched for biomarkers of the brain functional maturation in neonates
by exploring their brain functional topology for short- or long-range connections during the quiet
and active sleep stages.

6.3.2 Material and methods

Subjects and EEG recordings

High Density EEG (HD-EEG) data recorded from 14 healthy full-term neonates (35.81 + 2.71
weeks, Gestational age, GA) were included in this study from the clinical database of the pediatric
functional exploration of the nervous system service in Amiens University Hospital, France. The
inclusion criteria were the absence of neurological disorders and illness. The HD-EEG data were
recorded in the neonatal intensive care unit of the university hospital of Amiens, France. The data
had been recorded for clinical routine use during both quite sleep (QS) and active sleep (AS) using
the ANT's EEG acquisition system (ANT, Netherlands) with a sampling rate of 1024Hz and a high
density EEG cap (Medelopt™, France) adapted for full term neonates with 64 channels positioned
according to the international 10-10 standard system. Two electrophysiology experts selected 3
seconds of 25 segments during the QS and AS conditions separately for each subject.

EEG data preprocessing
EEG data were first band-pass filtered between 0.5 and 40 Hz to exclude very low frequency
activities as well as high frequency noise. The EEG trials were then re-referenced using a Laplacian
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montage (current source density, CSD) (Perrin et al., 1989) to effectively minimized volume
conduction artifacts. CSD has been shown to have optimal source separation and performance
required for the connectivityanalysis (Srinivasan et al., 2007). Considering missing or bad
channels, 59 electrodes were used for all the neonates for further analysis.

Power spectral analysis and EEG source analysis

We performed the spectral power analysis in four frequency bands (8, 0, a and ) in both sensor
and source spaces. The scalp spectral power was divided into different brain regions based on their
anatomical locations as shown in Table 6.3.

Table 6.3: EEG Channels in each region. R and L denote right and left hemisphere, respectively.

Regions EEG channels

Right frontal (RF) FP2, AF4, AF8, F2, F4, F6, F8
Frontal (F)

Left frontal (LF) FP1, AF3, AF7, F1, F3, F5, F7

Right temporal (RT) FC6, C6, CP6, T8, TP8
Temporal (T)

Left temporal (LT) FCS5, C5, CP5, T7, TP7

Right central (RC) FC2, FC4, C2, C4, CP2, CP4
Central (C)

Left central (LC) FC1, FC3, C1, C3, CP1, CP3

Right posterior (RP) P2, P4, P6, P8, PO4, PO8, 02
Posterior (P)

Left posterior (LP) P1, P3, P5, P7, PO3, PO7, O1

We used the neonatal MRI template (Fonov et al., 2011) for the construction of the head
model. The template was segmented by SPM8 (Ashburner et al., 2012) into scalp, skull and brain
compartments defining 3 homogeneous conductive mediums. The lead field was calculated using
FieldTrip (Oostenveld et al., 2011) with 6 mm spatial resolution. In total, 4744 source locations
were generated inside the brain. The leadfield wa calculated using the Boundary Element Method
(BEM) (Oostendorp and van Oosterom, 1989) The eLORETA (Pascual-Marqui, 2007b) inverse
solution was used to calculate three dimensional current density distributions in the four frequency
bands. We used eigen decomposition method (Sekihara et al., 2004) to determine the dominant
dipole orientation and to obtain high SNR for reconstructed current density.

Frequency-domain signal

The frequency-domain signal was computed using the Morlet wavelet, which is localized in both
time and frequency and useful for processing nonstationary signals. However, Morlet wavelet, w
(t,f) is defined as:
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w(t,f) = (o.Vm) % e 20t ei2nft (6. 8)

Here, f is the center frequency and ot is the temporal standard deviation. The time-frequency
complex signal Z (t,f) of a signal z(t) was computed by convolving it with w(t,f):

Z(t,f) = z(t) »w(t, ) (6.9)

We choose the spectral bandwidth for each frequency band by controlling the center
frequency, f and its ratio to the standard deviation (of). The following center frequencies 2.5, 6,
10 and 15

were used for the these frequency bands &( 1 - 4 Hz), 6( 4.17 — 7.83 Hz), a( 7.5 - 12.5 Hz) and
(12 - 18 Hz).

Functional connectivity analysis

To investigate the functional connectivity patterns for each condition, Phase Locking Value (PLV)
was computed between all pairs of EEG channels ((Lachaux et al., 1999; Mormann et al., 2000).
The PLV between electrodes X and Y is computed as:

N

Z i(@x(D-py(t)

t=1

1

PLV(x,y) = 5 (6.10)

Where o¢x and @y are the instantaneous phases computed using the complex signals of X and Y.
The PLV ranged from 0 to 1, with 0 and 1 indicating no connection and maximum connection
between any given pair of signals, respectively. The end-result of computing the PLV for all pairs
of channels was a square connectivity matrix of size 59 (number of EEG channels), in which each
entry Nxy(= Nyx) contained the PLV for channels X and Y.

Single- and group-level statistical analysis

To evaluate the significance of PLV, we generated 200 time-shifted surrogate signals sharing
statistical characteristics of the original data (Theiler et al., 1992). The PLV between the first signal
and all the time-shifted versions of the second signal yielded a null distribution for statistical
testing. The significance was defined by the difference between the original and the mean of the
surrogate values of statistics, divided by the standard deviation of the surrogate values:
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(6.11)

We used a criterion of 1%, which implies that the proportion of surrogate values higher
than the original PLV (between x and y) must be less than 1% (99% significance level). This
procedure was performed for each individual connectivity matrix (Figure 6.9). The error rate in
multiple comparisons was also corrected by controlling the false discovery rate (Nichols, 2012) at
0.1% significance level for the grand average of individual connectivity matrices (Figure 6.9).

Group matrix statistical
threshold with FDR

@ controlat 0.1%

s

14% connection density
threshold based Eros-
Renyi model

Graph metrics
computation

Figure 6.9: Statistical procedures: The single-level significance was tested using distributions derived from time shifted
surrogates, while the group-level testing was done with the FDR control at 0.1% significance level. The individual significance
matrix was thresholded at 14% connection density based on the Eros-Renyi model before computing the graph metrics.

Graph theoretical measures

To compute graph metrics, the functional connectivity matrices were first thresholded and
binarized using the Erdos-Renyi model (Erdés and Rényi, 2013), in which the threshold is
determined in a way that most of the nodes remain fully connected at a connection density of
2In(N)/N, where N is the number of nodes. In our study with 59 EEG channels, the connection
density was approximately 14% using the Erdos-Renyi model. We then computed the following
graph metrics (Rubinov and Sporns, 2010):

Degree: the most common measure of centrality with a straight forward neurobiological
interpretation. A node with high degree implies more interaction with many nodes in the network.

Betweeness centrality: a very sensitive measure of centrality that measures the fraction of all
shortest paths that pass through a given node. Like the network degree, it is used to detect the
important functional connection.
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Clustering coefficient: computes the functional segregation by measuring the presence of clusters
or modules in functional networks.

Characteristics path length: estimates the potential functional integration in the network and is
computed by the average shortest path length between all pairs of the nodes in the network.

Small-worldness: a metric that measures the ability of the functional network to combine
functionally segregated modules with robust integration links. This metric is measured by
computing the ratio of the normalized clustering coefficient to the normalized path length. A
network with a small-worldness greater than 1 is said to exhibit small-world property.

The details of the mathematical descriptions of these metrics are provided in the
Appendix.

The degree measures the presence of cortical hubs and the bewteeness centrality was computed on
order to investigate the region that are involved in the transfer of information from one region to
the other. The functional segregation was estimated by clustering coefficient, and the global
connectivity processing by characteristic path length. There is general idea that neonatal brain also
estimated small-world features and this investigate by computing small-worldness which measures
the ratio of normalized clustering coefficient to characteristic path length.

All computations and statistical analyses were performed in Matlab with custom scripts
and open source toolboxes: EEGLAB (for 3D topological plots, http://sccn.ucsd.edu/eeglab/), and
the brain connectivity toolbox (for graph parameter
computations, https://sites.google.com/site/bctnet/).

6.3.3 Results

EEG power spectral and Source analysis

The results of the EEG power spectral and source analyses in all frequency bands are shown in
Figures 6.10 and 6.11, respectively. As shown in Fig. 6.10, the power spectra decreased as the
frequency increased (Figure 6.10). There was no difference between both sleep conditions in each
region and in all the frequency bands. As shown in Fig. 6.11, the QS condition, significant
increases in CSD were observed at the posterior region in the 6 and 0 bands and at the right
temporal region in the a and B bands. In the AS condition, we found increased CSD at the frontal
region in all the frequency bands. The AS condition also exhibited higher CSD at the posterior
region compared to other regions in the d and 6 bands similar to that observed in QS.
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Figure 6.10: EEG spectral power results. Average power for the four frequency bands and each region (see Table 6.3) for both
conditions (QS and AS)
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Figure 6.11. Results of the Statistical analysis of eELORETA current source density for both conditions (QS and AS) in all the
frequency bands. The color bar indicates t-values.

Whole brain connectivity

Figure 6.12 shows the average PLV matrices for both conditions and all the frequency bands. In
both conditions, functional connectivity matrices look similar in each frequency band. However,
the connectivity density (number of significance elements) increased with increasing frequency
with weaker strengths in the a and  bands. No difference was observed between the two sleep
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conditions for all the frequency bands with p<0.10. However, the mean PLV as shown in Figure
6.13 shows higher mean PLVs in the § and 0 bands than in the a and 3 bands.

Figure 7.12: Mean PLV connectivity matrices for both conditions (QS and AS) with 59 EEG channels. Each matrix is the result
of the group average with a FDR value of 0.1 for all the frequency bands. The colorbar indicates the strength of the elements in the
matrix.
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Figure 6.13: Mean PLV for both conditions (QS and AS) in all the frequency bands

Global networks properties

Figure 6.14 shows the global network properties; mean betweenness centrality, clustering
coefficient, characteristics path length and small-worldness, in both sleep conditions and all the
frequency bands. All the network metrics were calculated with a connection density of 14%
determined based on the Erdos-Renyi model (Erd6s and Rényi, 2013) to make sure all the nodes
are fully connected. There was no significant difference in all the graph metrics between both the
sleep conditions within all the frequency bands. The graph metrics for both the conditions showed
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similar values for QS and AS with a betweenness centrality around 0.015, a relatively average path
length around 2.7 and a clustering coefficient around 0.35.
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Figure 6.14:Global network metrics: Betweenness, Clustering coefficient, Characteristics Path length and Small-worldness
for both conditions and all the frequency bands. All the graph metrics were calculated from the thresholded connectivity matrix
with a connection density of 14% determined using the Erdos-Renyi model.

Local network properties
The spatial topology of the degree (K), betweenness centrality (BC), and clustering coefficient (C)
for QS and AS are shown in Figures 6.15 and 6.16, respectively.

High degree (K) were found in the frontal and the posterior regions in all the frequency bands in
both the sleep conditions. The degree was lower at the central region of the brain especially in the
B band with no statistical differences between the two sleep conditions.

The betweenness centrality (BC) was lower in lower frequency bands. It increased
significantly bilaterally in anterior temporal regions in the 0, a and § bands especially in the QS
conditions. In both conditions, bilateral frontal-temporal regions showed increased betweenness
centrality notably in the 3 band.

In both conditions, the spatial distribution of the clustering coefficient was similar in all
the frequency bands. The average clustering coefficient (C) was about 0.35 over all the brain
regions excluding the central areas
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Figure 6.15: Spatial topology of the network degree (K), betweenness (BC) and clustering coefficient (C) during QS. The colorbar
indicates the strength of the metrics from zero (blue) to highest value (red) corresponding to 0.25, 0.03 and 0.6 for K, BC and C,
respectively. All the graph metrics were calculated from the thresholded connectivity matrix with a connection density of 14%
determined using the Erdos-Renyi model.
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Figure 6.16 Spatial topology of the network degree (K), betweenness (BC) and clustering coefficient (C) during AS The colorbar
indicates the strength of the metrics from zero (blue) to highest value (red) corresponding to 0.25, 0.03 and 0.6 for K, BC and C,
respectively All the graph metrics were calculated from the thresholded connectivity matrix with a connection density of 14%
determined using the Erdos-Renyi model.

6.3.4 Discussion

The results of our functional connectivity analysis strongly suggest that the functional organization
of the brain networks in full term neonates is dominated by the short-range functional connections
at the frontal, temporal and posterior regions. In contrast to previous results (Omidvarnia et al.,
2014; Tokariev et al., 2015), our results indicate that long range functional connections in neonates
are sparse and limited during both active and quiet sleeps. This discrepancy might be related to the
higher EEG spatial resolution used in our study for functional connectivity analysis. Statistically,
we did not find any differences in functional connectivity between the quite sleep (QS) and active
sleep (AS). However, our results show some overlap with the structural and functional MRI studies
in neonates (Ball et al., 2014; Fransson et al., 2009) with the exception of lower activity at the
central regions.
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We found higher power in lower frequency bands and lower power in high frequency bands.
This can be directly deduced from the finding that EEG activity in neonate has high amplitude
and low frequency (André et al., 2010). In other word, EEG activity with higher frequency has
lower power and vice versa in the mature brain. The higher current source density at the frontal
region during active sleep is likely to be related to the occurrence of frontal transients and the slow
anterior dysrhythmia that are well characterized during AS from 37wGA (André et al., 2010).
Although, we cannot rule out with certainty the effect of rapid eye movement artifacts on the
results of the spectral analysis during AS. In both AS and QS, higher source activity were observed
at the posterior regions in lower frequency bands most likely due to the predominant slow delta
waves at the occipital region (André et al., 2010; de Weerd and van den Bossche, 2003). The
occurrence of slow delta waves at the temporal and occipital regions can be considered as one of
the biomarkers used for studying the brain maturation in full-term neonates. In the lower frequency
band, relatively higher source activity values were observed over rolandic areas in AS and to a
lesser extent in QS. This increase in source activity might be partly explained by the presence of
temporal specific activity such as theta temporal bursts which predominantly occur in the
rolandic/temporal regions during AS (André et al., 2010). During QS, we observed an increase in
high frequency source activity at the temporal lobe which is highly involved in communication,
hearing and language skills. The temporal region as well as the amygdala and the hippocampus
are highly involved in learning, memory, emotional responses, visual recognition memory and
attention (Bachevalier and Mishkin, 1994; Malkov4 et al., 1995).

In our study, the graph-based network characterization demonstrated the small-world
properties of the brain functional networks in full-term neonates, including high clustering
coefficient and high centrality and betweenness (Fransson et al., 2011). We further found nodes
with high degrees and high betweenness centrality at the frontal, temporal and posterior regions
that correspond to brain regions functionally classified as “polysensory”, or “multimodal
association areas”. These regions might be related to the parietal and prefrontal cortical regions in
which the presence of cortical hubs has been demonstrated (Ball et al., 2014; Heuvel et al., 2015).
These regions are thought to provide a foundation for coherent neuronal activation across distal
cortical regions (Judas et al., 2013; Kostovi¢ and Judas, 2010). This supports the evidence that the
frontal, and the posterior regions are functionally developing during the infancy period (Dehaene-
Lambertz and Spelke, 2015; Dubois et al., 2008; Pandit et al., 2014). These regions are established
by the third trimester (Judas et al., 2013) and have been reported to start to develop earlier than
other brain regions with early functional and structural development of neuronal networks (Stiles
and Jernigan, 2010; Teffer et al., 2013). The spatial location of these regions (frontal and parietal
regions) tend to show large overlaps with structural and functional hub regions in the adult brain
(van den Heuvel and Sporns, 2013). Although the functional spatial topology of the brain is very
complex in neonates but it is generally believed that the brain networks evolve from a local
architecture dominated by frontal, temporal and parietal regions to a more diffuse topology in
adults (Dosenbach et al., 2010; Fair et al., 2009).

The neonatal functional networks exhibiting small-world properties may suggest that the
neonatal brain support primary as well as higher cognitive functions (Bullmore and Sporns, 2009;
Collin and van den Heuvel, 2013). The presence of small-word features (high clustering
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coefficient and global efficiency/path length) in neonates and adults has been previously
demonstrated (Fair et al., 2009; Fransson et al., 2011) though small-world connectivity properties
are likely to increase as functional connectivity spatial patterns evolve from local connectivity in
neonates to long-distance connectivity in adult (Cao et al., 2014; Gao et al., 2015; Supekar et al.,
2009). The small-world features of EEG functional brain networks present in different frequency
bands are highly heritable (Smit et al., 2008; Stam and van Straaten, 2012). The clustering
coefficient and characteristic path lengths were found to be increasing by age (Betzel et al., 2014;
Smit et al., 2012) with a maximum value during the youth period. This means that as the brain
matures, distant brain regions communicate through strong long distance connectivity. This
finding is in contrast with those reported in the fMRI studies (Fransson et al., 2011, 2007) which
showed that neonates have distributed brain networks at some regions throughout the childhood
and adolescence. This might be due to the differences between these modalities (for instance
voxel/hemodynamic activity in fMRI and sensors/electrical activity in EEG). In general, the
temporal dynamics of the brain neuronal signal (André et al., 2010) cannot be captured by the
fMRI. Previous comparisons between EEG and fMRI signals in adult (Mantini et al., 2007) have
shown the consistency and discrepancy between them in different frequency bands. There is,
however, very little information available on the relationships between underlying neuronal and
hemodynamic mechanisms in neonates.

In conclusion, our findings indicate that only local connectivity is present in neonates with
higher activity and connection density at the frontal, posterior and temporal regions. This study
indicated that the long range functional connectivity is limited and healthy full-term neonatal brain
network exhibit small word properties. Our study supports the hypothesis that the neonatal brain
network developed from local networks in neonates toward more integrated networks in adults.

These studies show that early brain activity of preterm is densely localized at the frontal and the
occipital regions and long-range functional connectivity is limited. The presence of endogenous
activity such as theta temporal activity plays an important role in the neurodevelopmental period
with increased connection density at the temporal regions. Full-term neonates exhibited high
connection density at the frontal, posterior and temporal regions during both quiet and active
sleeps. The small world network properties were present in neonates, suggesting the presence of
both information segregation and integration at local networks.
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Chapter 7
General conclusions

7.1 Introduction

This chapter summarizes all the studies carried out in this thesis. The directions for future are also
discussed. The purpose of this thesis was to investigate changes in the resting-state EEG functional
connectivity topology in BCECTS patients in comparison to healthy controls as well as to
investigate functional organization of brain networks in preterm and full-term neonates during the
resting state.

7.2 Benign childhood epilepsy with centrotemporal spikes

In the first part of this thesis, we investigated whether the resting-state brain functional
connectivity patterns in BCECTS patients in comparison to healthy controls were disrupted. In the
first study, the EEG spectral power analysis in both the sensor and source spaces revealed that
BCECTS patients had significantly higher 6 power in all the brain regions and lower o power at
the occipital region. The individual alpha frequency (IAF) was significantly lower in patients in
all cortical regions compared to the healthy controls especially due to the presence of IEDs in EEG
segments. The resting state EEG cortical source analysis also revealed stronger activity at the
centrotemporal regions involved in the generation and propagation of the epileptic activity.
Bilateral temporal regions displayed higher cortical activity in patients in all frequency bands and
weaker activity at the frontal and occipital lobes in comparison to healthy controls.

We also found that the presence of IEDs impacted the global and local functional
connectivity (FC) in comparison to healthy controls. For patients, the FC analysis using EEG
segments with 1EDs revealed significantly higher global 6 phase synchronization and lower
global connection density in the & band in comparison to healthy controls. The topological
distribution of the network degree revealed higher connection density at the epileptic zone
(centrotemporal region) due to the presence of IEDs in all the frequency bands. A higher
connection density was observed at the same zone in the absence of IEDs in higher frequency
bands. Under both the epileptic conditions (with and without IEDs) patients exhibited lower
connection density at the frontal and occipital regions especially in the o band in comparison to
the healthy controls. Without IEDs, patients displayed higher lagged phase synchronization values
(LPS) in the 6 and o bands and lower LPS in the  band. The changes in the FC pattern support
the idea that the disruption in the functional connectivity topology in BCECTS patients may not
be restricted to the epileptic zone.
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The characterization of the brain functional connectivity networks by the graph metrics
revealed that the BCECTS brain networks was functionally more ordered in low frequency bands
compared to the healthy controls. However, patients under both conditions (with and without
IEDs) were characterized with less global information processing and stronger integration in
higher frequency bands. In the absence of IEDs, patients exhibited less ordered brain networks
compared to the healthy controls, a pathological network presented for rapid transition to the onset
of epileptic discharges.

The seed-based functional connectivity analysis confirmed the functional reorganization
of the brain in BCECTS patients compared to healthy subjects. It was shown that the epileptogenic
networks were always activated. The existence of functional connections between the epileptic
zone and the ipsilateral frontal and temporal regions suggested the involvement of distant cerebral
regions in the generation and propagation of IEDs. We further found higher local efficiency in the
contralateral hemisphere of the epileptic zone and the frontal region and weaker functional
connections between the prefrontal cortex and the regions that were correlated with the default
mode network (DMN). This may imply that DMN in BCECTS patients might be impaired.

The last study on the BCECTS functional connectivity was the identification of major
drivers (brain regions) that were involved in the generation and propagation of IEDs, and the
connectivity pattern with the aid of time-varying effective connectivity. Major drivers identified
with higher outflow were the epileptic zone (pre and post central regions), ipsilateral parietal,
rolandic, supramarginal and supplementary motor areas (SMA) and superior frontal regions. There
was stronger causal influence from these regions to the frontal regions, indicating the involvement
of frontal regions in the propagation of IEDs. The BCECTS brain networks also exhibited laterality
toward the epileptic focus.

Clinical relevance

Higher source activity and functional connection density at the epileptic zone with the presence of
IEDs is expected due to high amplitude of IEDs. However, higher functional connection density
in high frequency bands in the absence of IEDs at the epileptic zone revealed that functional
connectivity can detect transient activity of IEDs in EEG segment without IEDs. Lower activity at
the frontal (especially prefrontal), parietal and posterior regions indicate the primary effect of
IEDs. These regions correlated with the default mode network (DMN) and consistent with fMRI
studies (Archer et al., 2003; lbrahim et al., 2014) that reported the deactivation of the epileptic
zone. The lower activity at these regions might related to the cognitive impairment and learning
problems (Datta et al., 2013; Jambaqué et al., 1993; Verrotti et al., 2014) in these patients. In
addition, lower activity and functional connection density at the frontal region at the ipsilateral of
epileptic zone might be related to growth disturbance at the frontal region of the patients(Kanemura
et al., 2011; Kanemura and Aihara, 2009).

Higher 0 spectral power and synchronization with and without IEDs is a common feature of
epilepsy and other neurological disorders most especially in young children. However, lower o
activity especially at the posterior of the patients might relate to their cognitive and mental skills
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deficits (Holmes and Lenck-Santini, 2006; Klimesch, 1999; Metz-Lutz et al., 1999). The lower
beta 3 synchronization in patients shows that brain network of patients is frequency dependent.

The presence of IEDs increase source activity and functional connectivity at the epileptogenic
networks. Epileptogenic networks in this group of patients is similar to the sensorimotor network
which include central regions and supplementary motor areas. Higher activity and functional
connectivity at these regions might related to the movement disturbance and jerking of mouth and
throat(Boor et al., 2007; Tang et al., 2014) in patients during IEDs. Also, in the presence of IEDs
the ipsilateral temporal region always had higher source activity which might have impact on the
imbalanced auditory processing in patients as well as language and phonologic deficits(Amaral et
al., 2015; Overvliet et al., 2011). The dynamic of directed interictal connectivity showed that the
central regions drove frontal regions during IEDs which might be related clinical diagnosis of this
type of epilepsy with the dipole pointing from from posterior to anterior position and vice versa.
The occurrence of frontal-central connectivity during IEDs might also related to attention deficits
and transient cognitive deficits in patients as some of these patients were diagnosed with attention
deficit hyperactive disorder(ADHD) (Dunn, 2014; Dunn et al., 2003).

7.3 Brain functional connectivity in neonates

In the second part of the thesis, we assessed the brain functional connectivity in preterm and full-
term neonates using high density EEG. The brain neuronal activity in neonates is different from
that in adults. The neonatal EEG is characterized with different features such as theta temporal
activity (TTA) in preterm and slow delta waves at the occipital region in full-term neonates. In
preterm neonates, the results of functional connectivity analysis showed high connection density
at the bilateral frontal and posterior regions. We further found that the direct long-range functional
connections between the two hemispheres and between the anterior and posterior regions were
limited. However, the presence of TTA burst at the bilateral temporal regions increased the
connection density at the temporal region especially in the 6 band and decreased the connection
density at the left parietal regions in the 6 band. The presence of TTA at the temporal region
increased also the global network degree, global clustering coefficient and global efficiency in
comparison to the normal EEG activity. Meanwhile, the preterm brain network exhibited the
small-worldness features with local dense short-range and sparse long-range functional
connectivity within and between the brain regions. The preterm brain also showed functional
rightward asymmetry in the frontal and temporal regions and leftward asymmetry in the posterior
region in terms of the network degree, global efficiency and clustering coefficient.

In full-term neonates, we investigated changes in the brain functional connectivity pattern
during the quiet (QS) and active (AS) sleep. The spectral power analysis showed decreases in
power with increasing frequency during both the quiet and active sleep periods. We also found
higher source activity at frontal regions during AS and higher source activity at posterior region
during QS especially in lower frequency bands (6 and 6 bands). The right temporal regions
displayed higher source activity during QS in higher frequency band. The functional connectivity
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analysis revealed increased phase synchronization in lower frequency bands. The local functional
connectivity topology was similar to that of preterm neonates. However, full term babies exhibited
higher degree at the frontal and posterior regions and lower network degrees at the central region
in all frequency bands under both conditions. We further found higher betweenness centrality at
the bilateral temporal regions. Similarly, the full-term neonates showed distributed clustering
coefficient throughout the brain excluding the central brain region. The global network metrics
were also similar in all frequency bands. The full-term neonates exhibited small-worldness
properties with an average small-worldness index of 2.7.

7.4 Methodological considerations and limitations

The thesis developed and implemented different techniques and analyses. Both EEG data of
BCECTS patients and neonates were filtered within 0.5 to 40 Hz in order to remove high frequency
noise. The laplacian Current Source Density (CSD) (Perrin et al., 1989) was applied to neonate
EEG data to obtained distinct topography, effectively reducing the negative impact of volume
conduction, which widely blurs the EEG signal. The CSD wasn’t applied to the study of BCECTS
because the IEDs is at the cortical surface (not deeper structure) and application of CSD can
reduced the strength and intensity of IEDs.

Phase synchronization is the common functional connectivity measure used in this thesis.
Phase synchronization is a nonlinear functional connectivity that measure relative phase difference
between two nodes or brain regions. The phase locking value (PLV) (Lachaux et al., 1999;
Schmidt et al., 2014) is zero-lag phase synchronization techniques that are developed based on
scalp sensors and sensitive to volume conduction. The PLV was applied to all functional
connectivity studies with scalp EEG data. For neonate EEG data, we created surrogate data to test
for the significance of functional connectivity because neonatal EEG is different from mature adult
EEG. In source space, the lagged phase synchronization (LPS) (Pascual-Marqui, 2007) was used
to estimate the functional connectivity between brain regions. LPS is non-zero lag phase
synchronization that is resistant to artifact of volume conduction by excluding instantaneous zero-
lag contribution. However, LPS is also sensitive to uncorrelated perturbation especially strong
noise which can turn phase lags into leads which could be a problem in sensor space. In addition,
LPS was motivated due to its implementation in the eLORETA toolbox that was used for
functional connectivity study in source space. We further used a ROI-based approached to reduced
volume conduction as it is shown that spatial correlation between sources decays with increasing
distance between them (Mehrkanoon et al., 2014). The imaginary coherence was used to estimated
voxel-wise whole brain functional connectivity in source space. The imaginary coherence is based
on the imaginary part of spectral coherence between two signals and has been shown to be less
sensitive to volume conduction (Nolte et al., 2004) and measure true brain interaction. Imaginary
coherence is one of the promising techniques have been proposed that are aimed at tackling the
effects of field spread (Nunez et al., 1997; Schoffelen and Gross, 2009) which is common effect
of source connectivity. In the dynamic interictal connectivity, the effective connectivity was
estimated by the partial directed coherence (PDC), that measure the directed functional
connectivity unlike PLV, LPS and imaginary coherence that measure non-directed functional
connectivity.
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Before the computation of graph metrics, the connectivity matrices were thresholded.
However, the thresholding of the graph metrics were different for each study. This was motivated
by the group of patients involved. Generally, threshold was applied in such a way all the groups
and the conditions in the same study have the similar brain topology with similar connection
density. However, in BCECTS studies compare to healthy control, both patients and control had
similar topology and graph metrics were computed as a function of range of threshold values. In
preterm neonates, the threshold was based on the first discovery rate (FDR) due to the nature of
functional connectivity of the group.

The functional connectivity matrices in all the studies by the graph metrics most especially
in term of functional integration and segregation. However, the degree was also computed which
is the basic and the most important graph metric. For the second and third studies of BCECTS, the
functional segregation was computed by clustering coefficient and functional integration by
characteristics path length (or global efficiency). In the fourth study of BCECTS, the whole brain
functional connectivity was characterized by the betweeness centrality and local efficiency. These
graph metrics were employed in order to characterized the presence of regions involve in transfer
of information between other regions and efficiency of local connectivity. Similarly, in preterm
neonate, in addition to degree, the functional connectivity was characterized by the clustering
coefficient and local efficiency both measured functional segregation. This was motivated by
general idea that neonatal brain network consists of local connectivity in preterm neonate.
However, in full-term neonate which is the starting period of linear brain progression, the
functional connectivity was characterized by the betweeness centrality in order to detect the
regions that involve in transfer of information between cortical regions; by functional segregation
(by clustering coefficient) and functional segregation (by characteristic path length) and the small-
world index to investigate the presence of small-world features in full-term neonates.

Before the computation of graph metrics, the connectivity matrices were thresholded.
However, the thresholding of the graph metrics were different for each study. This was motivated
by the group of patients involved. Generally, threshold was applied in such a way all the groups
and the conditions in the same study have the similar brain topology with similar connection
density. However, in BCECTS studies compare to healthy control, both patients and control had
similar topology and graph metrics were computed as a function of range of threshold values. In
preterm neonates, the threshold was based on the first discovery rate (FDR) due to the nature of
functional connectivity of the group.

7.5 Directions for future research

In this thesis, the majority of the studies conducted on BCECTS patients was conducted on a
homogeneous group of patients with right centrotemporal spikes with the same age and epileptic
zone. Only in one study, we included whose epileptic zone was located in the left centro-temporal
regions. This helped us to study patients with similar epileptic characteristics. However, due to
low sample size, statistical comparisons between the patient groups with right and left epileptic
foci were not possible. It would be interesting to compare patients with right centro-temporal
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spikes with those with left hemispheric focus in terms of brain functional reorganization mainly
because the left brain hemisphere is dominant in understanding and processing language, memory
while the right brain hemisphere tends to be more dominant in creative activities such as decision
making and non-verbal processing. Both of these studies will help us to investigate the impact of
epileptic activity of the brain functional organization. In addition, we only used EEG signals to
investigate the functional connectivity patterns in these patients. Combination of EEG and fMRI
or Near-infrared spectroscopy (NIRS) would help to better investigate the topology of functional
connections with high temporal and spatial resolutions.

Concerning neonates, our findings open new avenues to better understanding of brain
functions during the early periods of neurodevelopment. However, there are still some features to
be investigated in neonates such as frontal transients and slow delta waves superimposed with
rapid activity (Delta Brushs) at the temporal/occipital region. Longitudinal studies would be very
important to establish links between the brain functional organizations in preterm and full-term
neonates. This could provide an opportunity for identifying functional biomarkers at early stages
of the brain maturation process. However, it could be interesting to see how the brain networks are
organized in the presence of neurological conditions such as neonatal seizures, hypoxic-ischemic,
periventricular leukomalacia with Positive Rolandic Spikes (PRS), intracranial hemorrhage,
cerebrovascular malformations, hydrocephalus and as well as newborn EEG abnormal patterns
such as synchrony/asynchrony or symmetry/asymmetry. Further exploration of the EEG features
and understanding of the brain functional organization in the outcome prediction of these
abnormalities is needed to determine the urgent aids required in neonatal intensive care unit
(NICU). Developing an integrated neonatal EEG assessment system with high density could assist
not only for monitoring brain development but also for identification of neurological problems at
earliest possible time after birth.

127



Résumeé en Francais de la problématique et
des principaux résultats de la These

Chapitre 1 : Introduction
Problématique

Des progres importants ont été réalisés pour améliorer la compréhension de I'épilepsie notamment chez les
jeunes enfants, portant par exemple sur la reconnaissance de nouveaux syndromes et l'utilisation de
nouveaux traitements antiépileptiques. 1l y a de nombreuses caractéristiques de 1’épilepsie qui sont liées a
I'age, la clinique ou 1’électroencéphalographiques (EEG). Les conséquences de I'épilepsie sur le
développement cérébral en relation avec les fonctions cognitives n'est toujours pas totalement élucidés.
Toutefois, le chemin & parcourir est encore long concernant la compréhension des différents mécanismes
impliqués. La compréhension du développement cérébral fonctionnelle chez les jeunes enfants et en
particulier chez les nouveau-nés est nécessaire pour guider la prise en charge clinique. Il est ainsi opportun
de tirer profit des connaissances acquises dans le domaine de la science des réseaux pour étudier le réseau
cérébral. Cette approche peut apporter des connaissances fondamentales sur les relations complexes des
réseaux cérébraux et éclairer sur la dynamique de l'organisation fonctionnelle cérébrale. Cette thése se
concentre sur deux études portant (i) sur la connectivité fonctionnelle a 1’état de repos chez les enfants
atteints d'épilepsie bénigne avec pointes Centro-temporales (EPCT) et (ii) sur I'évaluation des réseaux
cérébraux au cours du développement chez le nouveau-né a terme et prématuré.

L’EPCT est le syndrome épileptique idiopathique le plus commun avec 8 & 20 % des épilepsies
de I'enfant (Holmes, 1993 ; Panayiotopoulos, 1999). Les décharges épileptiques intercritiques (IEDs)
proviennent de régions centrales autour des zones sensorimotrices. L’EPCT et souvent appelé épilepsie
rolandique en raison de I'implication des régions autour du sillon de Rolando. L’EPCT est une épilepsie
focale sans changements structurels cérébraux majeurs (Camfield and Camfield, 2014) a I’inverse d’autres
épilepsies temporales par exemple (Taylor et al., 2015). Toutefois, des déficiences cognitives ont été
rapportées (Datta et al., 2013) chez les enfants avec EPCT. Les altérations cognitives concernent entre autre
I’attention, la mémoire auditive et visuelle. Toutefois, I'influence directe des pointes intercritiques sur les
déficiences cognitives reste peu explorée. Plusieurs études (Clemens, 2004 ; Fonseca et al., 2007) ont
rapporté des altérations fonctionnelles de I'activité cérébrale dans les EPCT. Toutefois, certaines de ces
études souffraient de I'hétérogénéité des patients, des approches méthodologiques et du nombre de patients
évalués.

Chez les nouveau-nés, l'activité neuronale cérébrale précoce du cerveau néonatal immature est
différente de l'activité observée dans le cerveau adulte mature. Particulierement, 1’électroencéphalographie
(EEG) du prématuré est caractérisée par I'occurrence de courtes bouffées activités intriquées a des périodes
de discontinuité (André et al., 2010). Il existe plusieurs neurobiomarqueurs (activités théta temporales,
Delta brushs, Encoches Frontales) de ’activité cérébrale du prématuré qui sont utilisés en clinique pour
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caractériser I’activité fonctionnelle néonatale et la dynamique de la maturation cérébrale a cette période du
développement (André et al., 2010 ; Wallois, 2010). L’organisation fonctionnelle du réseau cérébrale
néonatale reste encore a préciser. Cependant, différentes études ont tentées de préciser la connectivité
cérébrale chez le nouveau-né avec I'imagerie par résonance magnétique (IRM) (Doria et al., 2010 ; Fransson
etal., 2011, 2007). Cependant la faible résolution temporelle de I’IRM ne permet pas de rendre compte les
caractéristiques dynamiques spécifiques de I’EEG du prématuré (asynchronie, discontinuité,
neurobiomarqueurs spécifiques....). Plusieurs études (Gonzélez et al., 2011 ; Meijer et coll., 2014) ont
tentées d’évaluer la connectivité fonctionnelle chez les nouveau-nés a partir de I'EEG, mais ’interprétation
des résultats est limitée par la faible résolution spatiale des EEG classiques utilisant 8 électrodes. (Lamblin
et de Villepin-Touzery, 2015). Des études récentes en EEG (Grieve et al., 2008 ; Omidvarnia et coll., 2014)
avec une augmentation significative du nombre d'électrodes, ont permis de montrer qu’il était possible de
préciser l'organisation fonctionnelle de I'activité électrique des nouveau-nés en prenant en considération
I'impact de certains des biomarqueurs. En attendant, 1l est généralement admis que les réseaux cérébraux
évoluent a partir d’une connectivité essentiellement locale vers une connectivité plus distribuée chez
I’adulte. (Foire et coll., 2009). Comprendre I'organisation fonctionnelle du réseau cérébrale chez les
nouveau-nés élargira notre compréhension des étapes de la maturation cérébrale et pourrait permettre une
meilleure prise en charge clinique.

Objectif de la these

La premiére partie de la thése porte sur 1’étude des modifications de la connectivité cérébrale a I'état de
repos des patients présentant une EPCT en comparant des périodes avec et sans pointes intercritiques chez
les patients avec EPCT et des périodes similaires chez des sujets sains sans EPCT. Les étapes de cette étude
sont les suivantes :

«  Etude a partir des données EEG & I'état de repos des modifications de la puissance spectrale et de
la distribution spatiale des sources corticales dans différentes bandes de fréquence selon la présence
ou non de pointes interictales en comparaison avec le sujet sains.

«  Etudier la connectivité fonctionnelle cérébrale dans les espaces capteur et source chez les patients
EPCT vs témoins sains afin d'identifier plus particuliérement le pattern de connectivité cérébrale
dans les EPCT.

« Caracteériser la connectivité fonctionnelle des patients EPCT en utilisant les outils de la théorie des
graphs pour préciser la topologie locale et globale tels que la centralité, I’intégration et la
ségrégation fonctionnelle des réseaux.

« Evaluer les profils de connectivité en fonction de la présence ou non de pointes interictales dans
les EPCT.

 Identifier les profils de connectivité en étudiant la connectivité dynamique et les régions cérébrale
impliquées dans la production et la propagation de I'activité épileptique.
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La deuxieme partie de la these porte sur I'évaluation fonctionnelle du réseau cérébral des prématurés et des
nouveau-nés nés a terme a partir d’enregistrements EEG en haute densité pendant les périodes de sommeil
calme et agité. Les étapes de cette étude sont les suivantes :

« Etudier l'organisation fonctionnelle cérébrale précoce chez les nouveau-nés prématurés et les
nouveau-nés nés a terme. L’objectif est de mieux comprendre la fonctionnalité du réseau cérébrale
et son organisation au cours du développement.

» Etudier I'impact d'une activité endogéne (Activité Theta Temporale, delta brush, Encoche frontal,)
sur la connectivité cérébrale chez les nouveau-nés.

» Caractérisation de la connectivité fonctionnelle en utilisant les outils de théorie des graphs comme
la centralité, I’intégration fonctionnelle et la ségrégation des réseaux pour une meilleure
compréhension de la topologie cérébrale néonatal et la distribution spatiale de cette connectivité.

« Etudier l'organisation fonctionnelle du cerveau chez les nouveau-nés nés & terme pendant les
périodes de sommeil calme et agité qui pourrait donner un apercu de la maturation cérébrale
néonatale.

Les contours de la Thése

Ce chapitre présente la vue d'ensemble et I'objectif principal de la these. Le reste de la thése est organisé
comme suit.

Le chapitre 2 présente le contexte lié a cette thése. Le chapitre décrit brievement I'évolution de
I'anatomie du cerveau et de la maturation fonctionnelle du nouveau-né a l'adulte. Un rappel est réalisé du
principe et de la méthodologie de I'enregistrement de I'EEG chez le nouveau-né et I’adulte. La dynamique
de I’évolution de I’EEG néonatal est décrite. Une bréve description de plusieurs fonctionnalités est réalisée.
La derniére partie du chapitre 2 présente une vue d'ensemble de l'activité épileptique en EEG avec une
attention particuliére portée sur I'épilepsie bénigne a pointe centro-temporale (EPCT)

Le chapitre 3 porte sur l'analyse de la connectivité cérébrale. Les trois types ou modes de
connectivité cérébrale, notamment la connectivité structurelle, fonctionnelle et effective sont examinées.
Une attention particuliere est portée sur I'analyse de la connectivité fonctionnelle Différents concepts tels
que la connectivité fonctionnelle axée sur la puissance, sur la phase et sur la théorie de 1’information sont
présentés dans des applications en neuro-imagerie. Quelques exemples sont donnés sur certaines mesures
de connectivité fonctionnelle. De méme, la connectivité effective est expliquée en détail avec certains
aspects tels que la fonction de transfert direct et la cohérence partielle dirigée. Par la suite, la théorie des
graphs est introduite avec une description des étapes requises pour la caractérisation des matrices de
connectivité. Certains aspects de la théorie des graphs comme la centralité, la segrégation et I’intégration
fonctionnelle ainsi que la notion de « small world network » sont également abordés.
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Dans le chapitre 4, I’'impact des EPCT sur I’activité cérébrale est étudié en comparaison avec des
sujets sains. Cette étude porte sur un groupe homogene de patients avec les mémes sources épileptiques
focales afin d’éliminer une éventuelle hétérogénéité et d’améliorer la comparaison méthodologique par
rapport aux témoins sains. Les différences par rapport aux témoins sains de l'activité cérébrale a I'état de
repos des patients EPCT sont étudiées par des mesures de puissance spectrale et de sources corticales dans
différentes bandes de fréquence. La connectivité fonctionnelle dans 1’espace capteur et 1’espace source est
évaluée pour étudier l'effet de la présence et de 1’absence de pointes épileptiques interictales sur la
dynamique de la connectivité des réseaux cérébraux. Les différentes mesures utilisant la théorie des graphs
servent a caractériser la connectivité fonctionnelle en mesurant les caractéristiques d'intégration
fonctionnelle globale et locale et de ségrégation des réseaux cérébraux des patients EPCT par rapport aux
témoins sains.

De méme, le chapitre 5 est centré sur I’analyse des patients EPCT. Certaines régions cérébrales
sont initialement choisies en fonction des études antérieures et la connectivité est mesurée a partir des
« seeds » points placés dans ces régions d’intéréts. Cela s'applique aux patients épileptiques avec ou sans
pointes épileptiques interictales en comparaison aux sujets sains. La seconde étude porte sur la dynamique
de la connectivité effective intercritique pour étudier la génération et la propagation et des pointes
épileptiques interictales. Les principales sources et régions impliquées dans les EPCT sont identifiées a
partir des patterns de connectivité.

Le chapitre 6 porte sur la connectivité des réseaux neuronaux chez le nouveau-né prématuré et le
nouveau-né a terme. Les rythmes corticaux et la connectivité cérébrale fonctionnelle sont étudiés a partir
des données EEG haute densité obtenus chez les nouveau-nés prématurés et les nouveau-nés a terme. lls
sont étudiés dans différentes gammes de fréquences. Les caractéristiques spécifiques de I’EEG des
nouveau-nés prématurés comme les activités théta temporales (TTA) sont prises en considérations dans les
deux phases de sommeil calme et agité. Les mesures issues de la théorie des Graphs sont appliqués
(centralité, ségrégation, intégration) a la connectivité fonctionnelle afin de mieux quantifier et caractériser
I’organisation du réseau cérébral immature.

Le chapitré 7 constitue le résumé de la these. Il contient les principales conclusions de la thése sur
les patients EPCT et les caractéristiques des réseaux fonctionnelles chez les nouveau-nés. Il ouvre vers de
nouvelles perspectives.

Chapitre 2 : EEG et Epilepsie

Introduction
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La dynamique temporelle des réseaux neuronaux est déterminée par des successions spatio-temporelles de
modeles transitoires d'activités cérébrales qui sont intégrées au niveau de la structure cérébrale et qui sont
sous tendues par des connections dont I'une des caractéristiques est leur importante adaptabilité. La
cohérence temporelle est obtenue par la synchronisation des réseaux neuronaux fonctionnant en harmonie
dans des bandes de fréquences distinctes. Le fonctionnement cérébral peut s'expliquer au niveau des réseaux
neuronaux interconnectés par un modéle complexe. Dans cette perspective, le cerveau peut étre considéré
comme un ensemble de systemes dynamiques connectés reliant les entrées et les sorties de ces différents
constituants. Ce chapitre décrit brievement 1’anatomie cérébrale et ses principales fonctions, les
caractéristiques de I’EEG, les rythmes de base de I’EEG a I'état de repos chez les adultes, les jeunes enfants
et les nouveau-nés. Un bref apergu des grands principes de I'épilepsie est également propose avec une
attention particuliére portée aux EPCT.

Structure et fonction cérébrale

Le tissu cérébral est constitué de milliards de neurones qui sont protégés par le créne, la dure mére,
I'arachnoide et la pie mere. L'espace entre la pie mére et I'arachnoide est rempli de liquide céphalo-rachidien
(LCR) (Silverthorn, 2007). La structure du cerveau humain mature rapidement dés le début de la période
feetale durant laquelle le cerveau est relativement lisse. 1l développe progressivement un aspect mature plus
caractéristique avec notamment une gyrification qui se met en place. La formation de circonvolutions et de
sillons suit une séquence ordonnée, en fonction de 1’age (Stiles et Jernigan, 2010). Certaines structures
cérébrales sont identifiées plus rapidement tels que le cortex cingulaire, le cortex pariétal et le cortex
occipital (14-16 semaines). Les régions centrales temporales supérieures, puis le cortex frontal supérieur,
precentral, frontal inférieur et les régions postcentrales apparaissent entre 20 et 26 semaines. Les sillons
secondaires apparaissent plus tardivement entre 30 et 35 semaines.

La maturation cérébrale néonatale est fonctionnellement caractérisée par des graphoéléments
EEG spécifiques qui servent de marqueurs biologiques pour le développement fonctionnel du cerveau
(André et al., 2010). La plupart des systémes sensoriels primaires sont déja établis a la naissance mais la
connectivité fonctionnelle est limitée chez les nourrissons agés de moins de 2 ans (Stiles et Jernigan, 2010).
Le développement fonctionnel cérébral chez les nouveau-nés est concomitant de la maturation fonctionnelle
séquentielle des différentes régions corticales. Le cortex cérébral constitue un centre d’intégration des
informations sensorielles et participe a la prise de décision. Le cortex cérébral est divisé en plusieurs régions
(Silverthorn, 2007).

Origine et Enregistrement de I'EEG

L’EEG représente l'activité électrique du cerveau enregistré a distance au moyen délectrodes dispsoées sur
le scalp. Plus précisément, cela représente la somme des flux extracellulaires de grand groupe de neurones
(Holmes et Khazipov, 2007). L’EEG découle de I'activité synaptique synchronisée dans de populations de
neurones corticaux, appelées cellules pyramidales. Les neurones pyramidaux sont organisés de telle sorte
que les arbres dendritiques voisins sont paralléles les uns aux autres et presque orthogonaux a la surface
corticale. Ces neurones pyramidaux sont censés étre le principal générateur de I’EEG. Pour plus
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d'informations sur la génération de I'EEG, les lecteurs peuvent consulter les commentaires suivants (Holmes
et Khazipov, 2007). La haute résolution temporelle de I'EEG représente un excellent outil de I’analyse de
I'activité neuronale des différentes régions cérébrales.

Les enregistrements EEG sont effectués en placant des électrodes dans des positions standard
prédefinies sur la téte. La position des électrodes est basée sur des repéres anatomiques. Dans la pratique
clinique, généralement 20 & 32 électrodes sont utilisés chez 1’adulte en routine. A des fins de recherche, il
faut habituellement, pour augmenter la résolution spatiale, augmenter le nombre d'électrodes (Sohrabpour
etal., 2015).

Activité a I'état de repos

L’état de repos est le substrat dynamique de 1'état actuel au repos du cerveau tout en considérant
I’intégration des informations entrantes. Au repos, le cerveau englobe tous les modes de fonctionnement
tels que la sensorialité, 1’attention, le contrdle exécutif et le contrdle de certaines fonctions telles que le
langage. Certaines régions du cerveau sont activées ou désactivées au repos, 1’état de repos peut aussi étre
abordé avec I'imagerie par résonance magnétique fonctionnelle (IRMf).

L’EEG a I'état de repos est utilisé pour caractériser I'activité cérébrale en I'absence de stimulation
ou de tache. Il peut étre utilisé pour identifier certains dysfonctionnements en analysant les capacités
d’intégration a partir des potentiels évoqués visuels ou autres dans différentes situations pathologiques a
1’état de repos. La maniére la plus courante utilisée pour caractériser ’EEG au repos est la séparation des
patterns oscillatoires en différentes bandes de fréquence. L’analyse de la puissance spectrale est la méthode
le plus couramment utilisée pour quantifier I'EEG a I'état de repos dans les différentes bandes de fréquence.

L’EEG chez le nouveau-né est tres différent de celui de I’enfant plus 4gé et de I’adulte. Il nécessite
une expérience spécifique pour l'interprétation. Cela est dii aux changements de maturation rapides des
réseaux neuronaux chez le nouveau-né et notamment le prématuré entre 26 et 40 semaines de gestation
(André et al., 2010). L’EEG s'est avéré indispensable pour I'évaluation clinique des pathologies cérébrales
telles que I'épilepsie, 1l permet par ailleurs le monitoring en réanimation néonatale (Vecchierini et coll.,
2003).

Activité épileptique et EEG

L'épilepsie est un trouble cérébral qui affecte environ 0,5 a 1 % de la population mondiale. Elle est
caractérisée par une activité cérébrale récurrente, excessive et incontrolée. L'épilepsie peut commencer a
tous les ages, mais est plus fréquente chez les enfants par rapport aux adultes. La crise d'épilepsie est
caractérisée par une décharge anormale hypersynchrone d’une large population neuronale. Les
manifestations cliniques sont présentes sous de nombreuses formes selon les régions cérébrales impliquées
dans I’activité épileptique. Les mécanismes sous-jacents a I'épilepsie sont encore mal connus. Il existe de
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nombreuses classifications de I'épilepsie. Selon I'étiologie de I'épilepsie ou selon le caractére focal ou
distribué. Ainsi, elle peut étre classée en épilepsie partielle ou généralisée. Les épilepsies partielles ont une
origine focale. Elles peuvent étre simple (sans perte de conscience) ou complexe (avec perte de conscience).
L'épilepsie partielle peut évoluer vers une épilepsie généralisée. L'épilepsie généralisée implique de
nombreuses régions cérébrales.

Une des applications importantes de I'EEG est 1’étude de 1'épilepsie. L'apparition des ondes
d'amplitude supérieures (pointes) et de plusieurs autres paroxysmes sont des points de repere permettant de
caractériser 1’activité épileptique. Ces graphoéléments participent a I’identification, le classement et la
localisation des phénomeénes épileptiques (crises ou pointes interictales). Les graphoéléments épileptiques
varient en termes de fréquence, de durée, et de topographie. Quand ils apparaissent entre les crises sous
forme de pointes, pointes ondes ou polypointes ondes ils sont considérés comme des éléments épileptiques
intercritiques et constituent des biomarqueurs de 1’activité épileptique entre les crises.

Epilepsie bénigne de I'enfance

L’¢épilepsie bénigne de I’enfant représente 10 & 20 % des épilepsies de 1’enfant (Camfield and Camfield,
2014). Le risque de déficit cognitif est plus élevé chez les enfants avec épilepsie bénigne que chez les
enfants sains du méme &ge (Datta et al., 2013). L’épilepsie bénigne la plus courante est I'EPCT
(Panayiotopoulos, 1999). Typiquement, la crise débute dans le sommeil ou a I’endormissement et
correspond a une crise partielle. La généralisation secondaire n’est pas systématique. L'outil diagnostic le
plus utile est certainement I’EEG dans les épilepsies bénignes, il permet de caractériser les pointes
interictales qui ont un aspect bi ou triphasiques qui sont localisées dans les zones rolandiques ou
périroloandiques et qui sont tres évocatrices de I’EPCT. Elles apparaissent tantot a droite, tant6t a gauche,
le plus souvent asynchrones et de localisation variable d’un examen a 1’autre entre les deux hémisphéres.

Chapitre 3 : Analyse de la connectivité cérébrale

Le cerveau est un systeme complexe, distribué, a grande échelle, dans lequel un trés grand nombre de
processus sont traités simultanément, en parallele. La complexité du cerveau peut étre définie a partir de
ses populations neuronales, qui, a I'échelle macroscopique ont un fonctionnement en modes aléatoires et/ou
réguliers. L'architecture complexe du cerveau implique des réseaux neuronaux qui sont hautement
specialises dans plusieurs opérations en paralléles fonctionnant en interaction pour permettre des
perceptions et des actions cohérentes. La connectivité anatomique et fonctionnelle entre les réseaux de
neurones peut se mettre en place entre des structures proches et/ou distantes. Les connections entre
structures proches ayant une plus grande probabilité d’occurrence. Les connectivités fonctionnelles entre
les réseaux cérébraux sont organisées de telle maniére a permettre un traitement effectif de 1’information
incluant les capacités de ségrégation et d’intégration des informations. Plus particuliérement, la ségrégation
et I’intégration des informations doivent pouvoir étre traitées dans une architecture unique de réseaux
cérébraux. A I'échelle microscopique, le cerveau est constitué de circuits électriques constitués par
I'interconnexion de milliards d'unités élémentaires de traitement de I’information (neurones et cellules
gliales) (Bear et coll., 2001).
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Le cerveau adulte a été décrit comme correspondant a un maillage de type Web avec de
nombreuses interconnections impliquant I’ensemble des réseaux neuronaux. Chez 1’adulte certaines régions
montrent un haut niveau, disproportionné, de connectivité anatomique appelée « cortical hubs » ou centres
corticaux qui pourraient controler le flux d’information.

Les réseaux de hubs ou de centres corticaux recouvrent dans une large mesure le réseau en mode par défaut
et le réseau attentionnel fronto-pariétal (Buckner et al., 2009). Ainsi, I'organisation des réseaux adultes
basée sur cette notion de hubs sous-tend complexité de la fonctionnalité cérébrale chez 1’adulte (Heuvel et
Sporns, 2011).

Le cerveau de I’enfant contient des réseaux moins complexes avec des connexions relativement plus labiles
et moins fonctionnelles. La connectivité fonctionnelle associée a des hubs corticaux recouvre chez I'enfant
en grande partie les régions sensorimotrices, auditives et visuelles primaires (Fransson et al., 2009, 2007).
Au cours du processus de maturation, se produit une réorganisation progressive de la connectivité des
réseaux qui passent d’une organisation " local et ségrégée " & une organisation " distribuée et intégrée " (Fair
et al., 2009).

Ce chapitre décrit les méthodes d’analyse de connectivité utilisées avec une attention particuliére
pour les mesures de connectivité fonctionnelle et effective. Les mesures utilisant la théorie de graphs sont
également décrites. Le chapitre commence par un bref examen des signaux analytiques qui sont nécessaires
au calcul de la connectivité fonctionnelle et imagerie de source EEG.

Connectivité cérébrale

La connectivité cérébrale révéle les voies par lesquelles, ou la fagon dont les informations sont échangées
entre les régions du cerveau (Breakspear et Jirsa, 2007). Les mesures de connectivité cérébrales sont
bivariées, c'est-a-dire, qu'elles concernent les interactions entre deux régions cérébrales ou les électrodes
du cuir chevelu.

Il existe trois modes de connectivité cérébrale structurelle, fonctionnelle et effective (Friston, 2005 ;
Horwitz, 2003). La connectivité structurelle ou anatomique se réfere a un réseau de connexions
(synaptiques) structurales, reliant des ensembles de neurones ou éléments neuronaux. Fondamentalement,
la connectivité fonctionnelle est une notion statistique qui permet d'estimer la corrélation temporelle entre
deux signaux au fil du temps. En général, la connectivité fonctionnelle capture les écarts par rapport a
I'indépendance statistique entre les unités neuronales distribuées et souvent distantes. La connectivité
effective examine la directionnalité¢ du flux d’informations d'un élément neural par rapport a un autre.

Connectivité fonctionnelle

La connectivité fonctionnelle est définie en tant que dépendances statistiques entre deux régions cérébrales
(Friston, 1994). La connectivité fonctionnelle en neuro-imagerie peut étre estimée a partir de I'lRMf et /ou
de séries chronologiques EEG/MEG. Il y a beaucoup de mesures de la connectivité fonctionnelle. Dans
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cette thése nous nous limiterons aux mesures de la connectivité fonctionnelle basées sur la puissance, sur
la phase et sur I’information.

La connectivité fonctionnelle basée sur la puissance du signal

La connectivité fonctionnelle basée sur la puissance du signal est une mesure linéaire, dépendante, entre
deux signaux dans le domaine temporel, évaluée par le coefficient de corrélation ou dans le domaine
fréquentiel par la cohérence. Le coefficient de corrélation de Pearson est une méthode courante de
corrélation utilisée et est définie comme la covariance de deux signaux x et y. La cohérence spectrale est
semblable au coefficient de corrélation, mais dans le domaine fréquentiel. La cohérence spectrale inclut des
informations sur la puissance (amplitude et phase).

La connectivité fonctionnelle basée sur la phase

Ce type de connectivité fonctionnelle est une mesure non linéaire. Elle repose sur I'hypothése que les séries
chronologiques neuronales ont des caractéristiques non linéaires. Une méthode commune pour obtenir la
force de la synchronisation de phase entre les différentes régions du cerveau est la valeur de la phase de
verrouillage (Phase Locking value, PLV) (Lachaux et coll., 1999). D autres méthodes incluent le délai de
phase (phase lag, PLI) (Stam et coll., 2007), ou I’indice de délai de phase pondéré (Weighted phase lag
indice, wPLI) (Vinck et al., 2011).

La connectivité fonctionnelle basée sur I'information

la connectivité fonctionnelle basée sur I'information capture les dépendance statistiques linéaires et non
linéaires entre deux séries temporelles (Hurtado et al., 2004 ; Jeong et al., 2001). Cette technique est basée
sur le concept d'entropie qui mesure la probabilité de la variable.

Connectivité effective

La connectivité effective correspond aux dépendances asymétriques ou causales entre les régions
cérébrales. Elle identifie quelle région du cerveau, dans un réseau fonctionnel, influence d'autres régions
cérébrales (Friston, 1994). Contrairement a la connectivité fonctionnelle, la connectivité effective indique
la direction du flux d'informations entre les différentes régions (Friston, 1994). L'interaction directionnelle
peut étre définie comme une technique basée sur des modéles tels que la modélisation dynamique causale
(Friston et coll., 2003), la modélisation par équation structurelle (Ullman et Bentler, 2003), ou le modele
libre avec la causalité de Granger (Hesse et al., 2003).

La connectivité effective nécessite un model autorégressif et une estimation des parametres du
modele avant l'estimation de la connectivité. Les mesures les plus courantes de connectivité incluent la
cohérence partielle dirigée (partial directed coherence, PDC) (Baccala et Sameshima, 2001) et la fonction
de transfert direct (direct transfer function , DTF) (Kaminski et coll., 2001).
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Analyse des réseaux par la théorie des Graph

La théorie des graphs est un cadre mathématique mis au point pour étudier les systemes physiques,
biologiques et d'informations. Il y a une augmentation des applications de la théorie des graphs en neuro-
imagerie pour étudier les réseaux cérébraux fonctionnels et structurels. La théorie des Graphs est aussi
utilisé pour caractériser la connectivité des réseaux dans les études expérimentales cognitives (il et Evans,
2010 ; Sporns, 2011) Cela permet d'élargir nos connaissances sur les maladies cérébrales, le vieillissement
et les fonctions cognitives supérieures (Bullmore et Bassett, 2011 ; Deuker et al., 2009 ; Netoff et al., 2004
; Stam, 2014).

Tous les réseaux sont constitués de deux éléments de base : les nceuds et les bords appariées
(liens) entre les nceuds (Bullmore et Sporns, 2009). Les nceuds dans les réseaux cérébraux sont
généralement représentés par les régions cérébrales ou les positions des électrodes EEG. Les nceuds sont
parfois déterminés par l'activité fonctionnelle et la parcellisation de la surface du cortex ou de I'ensemble
du cortex (Figure 3.3). La parcellisation se fait parfois a I'aide d'atlas de cerveau (Stanley et al., 2013). Les
bords et les liens sont généralement des mesures de la connectivité fonctionnelle et effective. Le choix des
mesures de connectivité dépend des questions de recherche et des expériences menées. Tous les réseaux
sont représentés par leurs matrices de connectivité (contiguité). Lignes et colonnes dans ces matrices
correspondent aux neceuds, tandis que les entrées désignent les bords.

Les mesures dans la théorie des Graphs

Il 'y a de nombreux paramétres qui peuvent étre utilisés pour étudier la connectivité des réseaux a 1’aide de
la théorie des graphs (Roubinov et Sporns, 2010). Avant de réalise le calcul des parameétres de réseaux, le
graph est parfois seuillé. Le seuil est trés important parce que les liens faibles et non significatifs peuvent
représenter des connexions fallacieuses, qui pourraient augmenter le rapport signal / bruit. La méthode
courante consiste & choisir une valeur arbitraire commune pour tous les sujets ou une condition dans une
expérience. Une autre option consiste a spécifier le nombre de connexions (densité de connexion) et garder
les connexions les plus fortes tout en définissant le reste a zéro. Les autres méthodes de seuillage consistent
a générer des données de remplacement pour I'évaluation statistique des mesures fonctionnelles, en
particulier pour des signaux brefs (Drakesmith et al., 2015 ; Langer et al., 2013). Les mesures de
connectivité des réseaux cérébraux sont toujours classifiées selon les interprétations neurobiologiques
comme la centralité des réseaux, la ségrégation fonctionnelle, I’intégration fonctionnelle, les réseaux de
type petit monde (small word network), les patterns des réseaux et bien d'autres.

La centralité des réseaux est la propriété la plus importante de n'importe quel réseau. Elle évalue
I'importance des nceuds individuels ou des régions du cerveau en mesurant combien de fois un nceud
particulier interagit avec plusieurs autres nceuds du réseau. La mesure la plus commune de centralité est le
degré qui correspond au nombre de connexions d'un des nceuds rattaché au reste du réseau. D’autres
mesures incluent la betweenness centrality (BC) (Freeman, 1979) qui mesure la fraction de tous les chemins
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les plus courts dans le réseau qui passent par un nceud donné. La centralité de la proximité est une autre
mesure.

La ségrégation fonctionnelle du réseau cérébrale est caractérisée par l'existence de régions
cérébrales spécialisées comme des modules organisés en populations distinctes (Tononi et al., 1994). Des
mesures de segrégation fonctionnelle calculent la présence de clusters ou de modules au sein du réseau qui
suggerent une organisation de dépendances statistiques. La commune mesure de ségrégations fonctionnelle
est le « clustering coefficient » qui mesure la fraction des triangles autour des nceuds individuels (Watts et
Strogatz, 1998). Une alternative est la mesure de I'efficacité locale d’un nceud ou d’une région particuliére
du cerveau.

L'intégration fonctionnelle mesure la facilité de transfert d'information ou de communication entre
les régions du cerveau (Tononi et al., 1994). La communication entre les réseaux neuronaux est mesurée
par les chemins qui les relient. La longueur du trajet caractéristique (Characteristic path length, L) est le
plus couramment utilisée pour mesurer l'intégration fonctionnelle. L est le plus court chemin entre les
régions cérébrales (Watts et Strogatz, 1998).

L’inverse de la moyenne de la longueur du plus court chemin est connu comme I'efficacité globale (E).

Le cerveau est un réseau complexe supportant le traitement d'informations spatio-temporelles. Un
réseau cérébral normal combine la présence de modules fonctionnels distincts et de liens fonctionnels
robustes. Ce type de réseau est appelé un réseau en petit monde (SWN) soutenant l'intégration fonctionnelle
optimale et la ségrégation (Bassett et Bullmore, 2006 ; Sporns et Zwi, 2004). Cette structure en réseau SWN
est ordonné avec un coefficient de clusters élevé (clustering coefficient élevé) et une longueur du plus court
chemin courte (ou haute effectivité) entre les régions du cerveau qui est un intermédiaire entre un réseau
ordonnée (C élevé et L long) et un réseau aléatoire (faible C et L court) (Watts et Strogatz, 1998).

Chapitres 4 et 5 : Analyse de la connectivité a I'état de repos chez les enfants atteints d'épilepsie
bénigne a pointes centrotemporales

La relation entre I'épilepsie et les incapacités cognitives et neuropsychologiques chez les enfants a été
largement étudiée (Datta et al., 2013). Malgré le grand nombre d'études sur ce sujet, les effets propres de
I'activité épileptique sur le fonctionnement cognitif et le développement ne sont pas encore clairement
définis. De nombreuses études sont réalisées sur des patients avec différentes sources focales d'épilepsie,
différents ages, selon la fréquence des crises et selon les syndromes épileptiques. Les déficits cognitifs et
comportementaux observés chez des enfants épileptiques sont parfois considérés comme le résultat
d'interactions complexes entre des facteurs biologiques, psychologiques et sociaux (Ay et al., 2009 ;
Boucliers et Snead, 2009).
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L’épilepsie bénigne de I’enfant représente 10 a 20 % des épilepsies de I’enfant (Camfield and
Camfield, 2014). Le risque de déficit cognitif est plus élevé chez les enfants avec épilepsie bénigne que
chez les enfants sains du méme age (Datta et al., 2013). L’épilepsie bénigne la plus courante est 'EPCT
(Panayiotopoulos, 1999). La plupart des crises surviennent pendant le sommeil ou a I'endormissement
(Camfield et Camfield, 2014). Contrairement aux autre types d’épilepsie tels que I'épilepsie du lobe
temporal (Taylor et al., 2015), ’EPCT est connu pour ne pas étre liée a des anomalies structurales (Hughes,
2010). Toutefois, l'activité épileptique peut provoquer différents dysfonctionnements entre les régions sous-
corticales et corticales qui peuvent entrainer des changements dans l'activité EEG a 1’état de repos.

Dans ce chapitre, nous examinons des différences d'activité cérébrale a I'état de repos les yeux fermés entre
les patients EPCT et les témoins sains dans 2 conditions en présence et en absence de pointes épileptiques
intercritiques (EEI). A cette fin, nous avons étudié les variations de la puissance spectrale de I'EEG et la
connectivité fonctionnelle dans I’espace capteur et I’espace source. Les outils de la théorie de graphs ont
aussi servis a caractériser la connectivité fonctionnelle entre réseaux cérébraux des patients EPCT par
rapport aux témoins sains.

Analyse spectrale et source de puissance EEG

L’analyse de la puissance spectrale est lI'une des méthodes standards utilisées pour la quantification de
I'EEG. La puissance de la densité spectrale (spectre de puissance) refléte la distribution de la puissance du
signal en fonction de la fréquence. L’analyse de la puissance spectrale dans les différentes bandes de
fréquence mélange les différentes propriétés physiologiques (Clément et al., 2013 ; Klimesch et coll., 2007).

Il existe plusieurs études de I'analyse de la puissance spectrale de I’EEG et de I’analyse des sources dans
les épilepsie bénignes de I'enfant (Clemens et al., 2010 ; Kikumoto et al., 2006). Toutes montrent une
puissance spectrale élevée notamment autour de la région épileptique. La plupart de ces études ont été
effectuée sur divers groupes de patients avec différentes sortes de foyers épileptiques, différents groupes
d'age et une hétérogénéité syndromique.

Dans la premiére étude, nous avons recruté vingt et un patients avec EPCT avec une moyenne
d'age de 9,84 £ 1,75 ans et onze témoins sains dans la méme tranche d'age pour analyser I'état de repos. Les
données EEG en haute densité ont été enregistrées sous la condition yeux fermés pendant au moins 14
minutes pour chaque sujet. Un groupe homogéne de douze patients a été sélectionné a partir de la
localisation des sources des décharges épileptiques intercritiques (IEDs). Les données EEG Haute densité
ont été prétraitées pour supprimer les artefacts. Les segments sans artéfact ont été ensuite segmentés par
époques de 2s sans overlap pour chaque sujet. Deux conditions ont été utilisées pour les patients
épileptiques, les segments avec ou sans pointe épileptiques intercritiques. Les puissances spectrales absolue
et relative ont été calculées pour ces conditions dans cinq bandes de fréquences différentes (3, 0, a, B1 et
B2) dans I'espace capteur. Statistiquement, les trois conditions ont été comparées avec des tests statistiques
non paramétriques.
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Nos résultats ont montré que les réseaux a I’état de repos des patients EPCT étaient
fonctionnellement perturbés en présence et en absence de pointes épileptiques. Les principales conclusions
ont été de mettre en évidence un dysfonctionnement dans la région centrotemporale, le désengagement
corticale dans les régions frontales et occipitales chez les patients, indiquant une dysfonction du réseau de
repos chez les patients EPCT. On retrouve la puissance élevée dans la bande 6 par rapport aux autres les
régions cérébrales et une puissance spectrale significativement plus faible dans la bande a plus
particulierement dans les régions occipitales en présence de pointes épileptiques intercritiques.

L'interaction entre les régions du cerveau peut étre analysée par des analyses bivariées et
multivariées telles que de la connectivité cérébrale. La connectivité fonctionnelle se référe a la relation
fonctionnellement intégrée entre les régions cérébrales spatialement séparées. Ceci a été appliqué a
plusieurs études, y compris I'épilepsie (Centeno et Carmichael, 2014). La caractérisation de la dynamique
des réseaux corticaux en EEG et ECoG chez des patients épileptiques a I'état de repos a démontré des
perturbations globales et régionales des réseaux neuronaux qui pouvaient étre estimées par la connectivité
fonctionnelle (Douw et al., 2010 a, 2010 b ; Coran et coll., 2013). La connectivité fonctionnelle des réseaux
neuronaux est souvent caractérisée par la théorie des graphs (Roubinov et Sporns, 2010) qui est une
application courante dans le domaine des neurosciences dont I'épilepsie (Netoff et al., 2004). Un grand
nombre de parametres de la théorie des graphs a été proposé et le plus commun est le degré qui mesure la
centralité du réseau.

La théorie des graphs et la connectivité fonctionnelle

Dans cette étude, la théorie des graphs et la connectivité fonctionnelle ont été appliquées pour explorer
I'altération fonctionnelle des réseaux cérébraux chez les patients EPCT en comparaison avec les sujets sains.
Cela a été fait en présence et en 1’absence de décharges intercritiques dans le groupe patient. Cela a été
réalisé dans I’espace capteur et 1’espace source pour étudier l'impact des décharges épileptiques
intercritiques sur les interactions fonctionnelles entre réseaux cérébraux. Il existe différentes mesures de
connectivité fonctionnelle et toutes ont leurs propres avantages et inconvénients. Dans la premiére étude,
la valeur de verrouillage de phase (PLV) (Lachaux et al., 1999) a été appliquée pour estimer la connectivité
fonctionnelle et caractériser la connectivité avec les différents paramétres issus de la théorie des graphs. La
connectivité fonctionnelle dans la seconde étude a été estimée par le délai de synchronisation de phase
(LPS) (Pascual-Marqui, 2007) dans I'espace source avec 84 régions cérébrales définies selon l'atlas de
Brodmann (Brodmann, 1909). La mesure de LPS est moins sensible aux signaux non physiologiques, y
compris les artefacts et I'effet de volume de conduction (Pascual-Marqui et al., 2011).

Dans l'espace capteur, les patients présentent une densité de connexion plus élevée autour de la
zone épileptique dans toutes les bandes de fréquences. Le réseau cérébral des patients EPCT a été dévié du
mode small word par rapport aux témoins sains selon la fréquence analysée. Le réseau cérébral des patients
EPCT était plus ordonné en présence de pointes interictales quand il était comparé au réseau des sujets
sains. Toutefois, en l'absence de pointes interictales, le réseau cérébral des patients EPCT était moins
ordonné par rapport aux contrdles sains dans toutes les bandes de fréquence.
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La connectivité fonctionnelle peut perturber les résultats du fait du volume de conduction dans la
mesure ou I’EEG de surface détecte une moyenne spatiale de signaux se chevauchant provenant de plusieurs
sources cérébrales. Ceci a motivée la troisieme étude dans I'espace source et I’analyse du délai de la
synchronisation de phase (LPS) qui est généralement considéré comme insensible au volume de conduction
par rapport aux autres métriques de connectivité fonctionnelle tel que le zéro délai ou la mesure de
cohérence classique. Dans cette étude, 84 région d’intéréts (ROIs) ont été définis par I'atlas de Brodmann
afin de réduire la variabilité de la taille du cerveau pour I'ensemble des sujets et de minimiser l'effet de
volume de conduction par rapport a I'approche voxel-par-voxel. Par rapport aux témoins, les patients (sans
pointes interictales) ont montré plus de LPS dans la bande 6 et o mais moins de LPS dans la bande B. Les
patients affichent aussi des valeurs d’intégration supérieures et de ségrégations inférieures dans les bandes
0 et o par rapport aux témoins sains. Ils montrent également une connectivité fonctionnelle locale plus
élevée au niveau du réseau épileptogene comprenant les aires motrices, la région centrale et la région
temporale ipsilatérale a la zone épileptique. La connectivité locale est aussi plus faible dans la région
frontale controlatérale chez les patients. Toutes ces résultats sont en faveur d’une altération de la
connectivité fonctionnelle a 1’état de repos chez les patients EPCT et ce dans différentes bandes de
fréquence.

Ces deux études montrent que la connectivité fonctionnelle a 1’état de repos chez les patients
EPCT avec et sans pointes interictales a été modifiée selon la fréquence des activités cérébrales. Toutefois,
dans ce chapitre, nous avons utilisé la connectivité fonctionnelle non dirigé. Dans le chapitre suivant, nous
nous concentrons sur le sens de circulation de I’information entre les différentes régions cérébrales chez les
patients EPCT.

Connectivité fonctionnelle a I’état de repos dans I’espace Source

Dans cette étude, nous avons étudié I'impact des pointes interictales sur la connectivité fonctionnelle (FC)
dans I’espace source a I'état de repos chez les patients EPCT par rapport aux témoins sains. Le FC dans
I'espace source a été calculé par la cohérence imaginaire (IC), qui a été démontrée pour étre insensible au
volume de conduction (Nolte et al., 2004) et donc qui permet de refléter plus exactement la mesure de la
connectivité cérébrale a partir des données EEG a I'état de repos. Certaines régions d'intéréts (ROIls) ont été
choisies comme « seed points » incluant la zone épileptique (centrale droite), le cortex central gauche, le
cortex préfrontal et les régions occipitales. Ces régions se sont révélées étre activées/désactivées dans nos
études précédentes. Les patterns de FC issus de ces régions vers d'autres régions ont été étudiés sous trois
conditions (contrdles, avec ou sans pointes intercritique chez les patients). La topologie de la connectivité
fonctionnelle était caractérisée en utilisant deux types de mesures : la betweenness et 1’effectivité locale.
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Gréce a l'analyse de connectivité fonctionnelle dans 1’espace source a I'état de repos, hous avons
constaté que les régions centrales, y compris les aires motrices supplémentaires ont montré une activation
en présence de pointes interictales. Des patterns de FC plus élevée ont été également observés dans la région
frontale supérieure homolatérale a la zone épileptique chez ces patients

Cette étude présente une méthode claire et robuste permettant d’évaluer les patterns de
connectivité fonctionnelle a 1’état de repos dans ’espace source et de démontrer leurs perturbations chez
les patients EPCT. Bien que nos études antérieures aient montré la forte incidence des pointes épileptique
intercritiques sur 1’organisation fonctionnelle cérébrale des patients EPCT, les techniques dynamiques de
connectivité intercritique apportent des informations importantes sur la directionnalité des interactions entre
les régions cérébrales chez les patients EPCT.

Directionnalité et dynamique de la connectivité interictale

Dans cette étude, le modéle de directionnalité de la connectivité intercritique associé aux pointes
intercritiques a été étudié tout d’abord en reconstruisant la source de I’EEG pour 90 ROIs a l'aide de ’EEG
haute densité pour chaque patient épileptique. Nous avons ensuite utilisé la cohérence partielle dirigée
(PDC) en guise de mesure de la connectivité effective entre les régions cérébrales. La sortie de la matrice
de connectivité a été étudiée afin d'identifier les principaux triggers dans les différentes régions cérébrales
impliqués dans la génération et la propagation de I'activité épileptique. Nous avons constaté que les régions
centrales rolandiques, les aires motrices supplémentaires et les régions frontales supérieures toutes
ipsilatérales aux zones épileptiques étaient les principaux triggers chez les patients EPCT. La PDC nous a
permis d'étudier le sens de circulation de I'information entre les régions du cerveau de maniere causale. En
outre, la PDC est insensible a I'artefact de volume de conduction.

Chapitre 6 : Connectivité fonctionnelle chez les nouveau-nés

Le réseau cérébral adulte est le résultat d'interactions complexes entre les différentes régions du cerveau.
Plusieurs études utilisant la science des réseaux ou la théorie des graphs ont élargi notre connaissance sur
la connectome fonctionnelle du cerveau adulte (Bassett et Bullmore, 2006 ; Bassett et Gazzaniga, 2011 ;
Sporns et coll., 2000). Néanmoins, on connait mal la connectome fonctionnelle du cerveau chez les
nouveau-nés. Il y a eu des hypothéses selon lesquelles la connectivité fonctionnelle du cerveau humain
évolue a partir d’un réseau organisé de maniére locale a la naissance, vers un réseau distribué chez I’adulte
(Foire et coll., 2009). Plusieurs études en IRMf chez les nouveau-nés ont montré la présence de centres
corticaux dans les régions postérieures, frontales et sensorimotrices (Ball et al., 2014 ; Fransson et coll.,
2007). Cependant, l'activité cérébrale précoce en particulier chez les nouveau-nés prématurés est trés
différente de celle du cerveau mature. L'activité neuronale cérébrale néonatale est caractérisée par la
présence de graphoéléments caractéristiques comme les activités théta temporales chez les grands
prématurés ou les encoches frontales chez le nouveau-né a terme. L’EEG chez le prématuré est aussi
caractérisé par des périodes de discontinuité. Toutes ces caractéristiques spécifiques servent de
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biomarqueurs utilisés en clinique pour préciser les stades de maturation cérébrales (André et al., 2010 ;
Wallois, 2010). Les études récentes (Gonzalez et al., 2011 ; Meijer et coll., 2014 ; Omidvarnia et coll., 2014
; Tokariev et coll., 2016) ont tenté d'introduire la notion de connectivité fonctionnelle chez le nouveau-né.
Toutes ces études ont été réalisées a l'aide d'un nombre restreint d’électrodes. Cependant, les études de
connectivité fonctionnelle chez les nouveau-nés nécessitent un grand nombre d'électrodes en raison de la
spécificité spatiale de I'EEG chez le prématuré (Odabaee et coll., 2013). En outre, la plupart des spécificités
néonatales y compris les stades du sommeil n'ont pas été prise en considération dans ces études de
connectivité fonctionnelle.

Dans ce chapitre, les patterns de connectivité fonctionnelle cérébrale chez les nouveau-nés
prématurés et nouveau-nés a terme ont été étudiés en utilisant des données EEG haute densité. Les
spécificités de ’EEG du prématuré comme les activités théta temporales et les phases de sommeil ont été
prises en considération.

Ces études montrent que l'activité cérébrale précoce des nouveau-nés prématurés est densément
localisée aux régions frontales et occipitales et surtout que la connectivité fonctionnelle a longue distance
est limitée. La présence d'une activité endogéne comme I’activité théta temporale joue un réle important
dans cette période de développement avec une densité de connexion accrue dans les régions temporales.
Les nouveau-nés a terme montrent une haute densité de connexion dans les régions frontales, postérieures
et temporales durant le sommeil calme et agité. Les propriétés de « small world network » présents chez les
nouveau-nés, suggeérent que les principes de ségrégation et d'intégration de I'information sont présents a
cette période du développement.

Chapitre 7 : Conclusions générales

Ce chapitre résume toutes les études menées dans cette these. Les différentes perspectives sont explorées
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Appendix: Supplementary information

Supporting information for section 4.2

Figure S1. Average normalized spectral power maps (z standard deviation) in the sensor space under the eyes-closed condition for
the control group (ECcr, left boxplots), patient group (ECns, no spike condition, middle boxplots) and patient group (ECws, with
spike condition, right boxplots) in 1 and B2 bands. Significant differences between ECcr and ECns/ECws are shown in solid

boxplots. Asterisks indicate statistically significant differences (p<0.01) between ECns and ECws.
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Figure S2. Statistical maps of differences between cortical sources computed under the eyes-closed condition for the control group
(ECecr, left boxplots) and patient group (ECns, no spike condition, right boxplots) in 8, B1 and B2 bands. The results have been
projected onto the cortical layer of the realistic head model (a) and the MNI1152 MRI (b). Color bars indicate significant differences

between ECct and ECns, red (ECct > ECns) and blue (ECct < ECns).
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Figure S3. Statistical maps of differences between cortical sources computed under the eyes-closed condition for the control group
(ECecr, left boxplots) and patient group (ECws, with spike condition, right boxplots) in 8, B1 and P2. The results have been projected
onto the cortical layer of the realistic head model (a) and the MNI1152 MRI (b). Color bars indicate significant differences between
ECct and ECws, red (ECct > ECws) and blue (ECct < ECws).
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Figure S4. Statistical maps of differences between cortical sources computed under the no-spike (ECns, left boxplots) and with-
spike (ECws, right boxplots) eyes-closed conditions in 6, B1 and B2 bands for the epileptic group. The results have been projected
onto the cortical layer of the realistic head model (a) and the MNI1152 MRI (b). Color bars indicate significant differences between
ECns and ECws, red (ECns > ECws) and blue (ECns > ECws).
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Coronal Axial Sagittal

Figure S5. Average eLORETA localization of interictal spikes from the patients’ scalp EEG.

Supporting information for section 4.3

Epileptic subjects

Dipole source analysis of the centrotemporal spikes region of the patients was performed with Advanced
Source Analysis (ASA) software (http://www.ant-neuro.com). The location of interictal epileptic spikes
(IES) was identified for each patient using the spatiotemporal dipole modeling method [1] (S2 Fig) . All
dipoles were oriented in the anterior to posterior direction or vice versa and were located in the right
precentral and postcentral regions, confirming the homogeneity of the patient population. The
C4/C6/CP2/CP6 always recorded IES in BCECTS patients as shown in S2 Fig.
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S1 Fig. Dipole locations of the averaged spikes for patients.

S2 Fig. A sample interictal EEG recording from patient 1. The spikes have been outlined in blue.

Functional connectivity

The phase locking value (PLV) was computed from the analytical signals obtained from Hilbert
transformation of the band-pass filtered signals, filtered by a linear-phase FIR (finite impulse response)

filter. The analytical signals (x (t, f)) were first computed by:
Xt f) =x(tf) + ixu(t, f)

Where xu (t, ) is the Hilbert transform of the input signals x (t,f).
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The phases of the analytical signals were then extracted:

xH(trf)>
x(t, f)

The relative phase between each channel pair x and y was obtained by:

B@t) = ox(t,f) = @y (. f)

The PLV was finally computed by calculating the exponential of the relative phase:

Ot f) = arctan(

N

Z RICIO))

n=1

1
PLVCoy) =5

Where N is the time point.

Computation of graph theory parameters
Degree

The degree of a node is the number of links connected to that node. The degree (K) is mathematically
defined as:

Ki = ZAU

JEN

Where K; is the degree for the ith node, and Ajj is the connection status between nodes i and j. The degree
is a characteristic measure of the functional interactions between brain regions.

Clustering coefficient

The clustering coefficient C and characteristic path length L were computed as described in [2,3]. The
clustering coefficient C; of the node i is defined as:

C 12 Zti
e
niEN ki(ki 1)

Where n is the number of nodes, t; is the number of existing connections among the neighbours of node i,
and k; is the actual number of neighbours of node i (i.e. degree). The mean clustering coefficient (C) of a
network is defined as the mean clustering coefficient over all nodes in the network:

Characteristic path length
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The characteristic path length L; of a node i is defined as

N
_ Dj=1,jz1dij

L:
' N-1

Where is dj; is the absolute distance between the nodes i and j and the mean characteristic path length L
over a network is defined as:

Threshold optimization procedure for computation of degree

Before computing the graph parameters, we applied the threshold (t) based on the three constraints
described in Methods. The first method consists of obtaining one standard deviation above the median
connectivity value as shown in S3 Fig. The connectivity matrix before thresholding has shown in Figure
A of S3Fig. The distribution of the PLV values has been plotted in Figure B of S3 Fig. In this plot, the
vertical pink line represents T (one standard deviation above the median connectivity value) for a
particular subject and frequency band. The optimal threshold was applied to the connectivity matrix
(Figure A of S3 Fig) to obtain the binary matrix, as shown in Figure C of S3 Fig.

(b) (c)

LI el

1

c6 CP6 P6 PO4

0.2 0.4 0.6 0.8 1
PLV

S3 Fig. (a) Example of the functional connectivity matrix obtained for Subject 1, (b) the distribution of the PLV
values of the functional connectivity matrix; the vertical line shows the optimal threshold, (c) the binarized
functional connectivity matrix obtained after applying the optimal threshold.
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Resting-state EEG functional connectivity analysis in benign
childhood epilepsy and neonates

Abstract

The thesis investigated the functional connectivity in children with benign childhood epilepsy
with centrotemporal spike and functional brain network organization in preterm and full-term
neonates. The patients with the epilepsy had functional brain disruption and the alterations of
resting state functional connectivity is frequency dependent in comparison to the healthy
controls. The epileptic brain network is disrupted in the presence and absence of interictal
epileptic discharges. The regions involved in the generation and propagation of epilepsy were
identified including epileptic zone (central region), rolandic region and the supplementary
motor areas. In the neonates, preterm neonates were characterized with the high functional
connectivity at the frontal and posterior regions. The presence of endogenous activity in
preterm such as theta temporal activity revealed high functional connectivity at the temporal
region. Similar functional brain network organization was observed in full-term neonates with
the high functional activity at the frontal, temporal and posterior regions in both active and
quite sleep periods.

Analyse de connectivite EEG régime reposant dans I'épilepsie
bénigne de I'enfance et des nouveau-nés

Résumé

Le travail réalisé au cours de cette thése a porté sur 1’étude de la connectivité cérébrale
fonctionnelle des réseaux épileptiques chez des enfants présentant des épilepsies avec pointes
centro temporales (EPCT), et sur ’organisation fonctionnelle des réseaux de repos chez des
nouveau-né sains et des prématurés. Les patients épileptiques présentent une désorganisation
fonctionnelle cérébrale qui participe a une altération des réseaux de repos selon la gamme de
fréquence des activités cérébrales. Cette désorganisation fonctionnelle bien que plus
importante durant les périodes de pointes épileptiques intercritiques est aussi observée dans les
périodes sans pointes intercritiques. Les régions impliquées dans la genese et la propagation
des pointes intercritiques englobent la région centrale (zone épileptiques), la région rolandique
et ’aire prémotrice. Chez le nouveau-né et le prématuré la connectivité fonctionnelle est
majeure dans les régions frontales et postérieures. Les activités endogenes théta temporales du
prématuré présentent une connectivité restreinte aux seules régions temporales. Chez le
nouveau-né a terme I’organisation fonctionnelle est similaire avec une forte connectivité dans
les régions frontales temporales et postérieures dans le sommeil calme et le sommeil agité.

© Azeez Adebimpe, 2016



