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Glossary

API: Application Programming Interface ­ a software connecting computers or computer
programs and offering a service to other pieces of software.

ARM: Advanced RISC Machines ­ providers of IPs, mainly processors.

CAD software: Computer­Aided Design ­ the use of computer and software to increase
designer’s productivity.
CD: Clock domain ­ the set of components that share the same clock source.

CG: Clock gating ­ dynamic power reduction technique used in synchronous circuits.

CMOS: Complementary Metal–Oxide–Semiconductor ­ a technology for manufacturing
electronic components and the components manufactured using this technology.

CPU: Core Processing Unit ­ a hardware block that retrieves and executes instructions. It
consists of an arithmetic and logic unit (ALU), a control unit, and various registers.

Design Flow: The explicit combination of design tools and steps to perform the design of
an integrated circuit.

DFT: Design For Test ­ IC design techniques to add testability features to a hardware product
design.

DRAM: Dynamic Random­Access Memory ­ volatile store memory, typically based on
MOS technology.

DRC: DRAM Controller ­ component managing the movement of data in and out of DRAM
devices

EDA: Electronic Design Automation ­ software tools for designing electronic systems.

ESL: Electronic System Level ­ a relatively high abstraction level used for SoC architec­
ture definition.

FD­SOI: Fully Depleted Silicon on Insulator ­ planar process technology used for the en­
graving of transistors.
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FinFet: Fin Field­Effect Transistor ­ a type of non­planar transistor, which is the basis for
the fabrication of modern nanoelectronic semiconductor devices.

HDL: Hardware Description Language ­ a specialized computer language used to describe
the structure and behavior of electronic circuits.

HW: Hardware ­ physical part of a computer; electronic device.

IC: Integrated Circuit ­ a set of electronic circuits integrated on one flat piece of semicon­
ductor material, usually silicon.

InterConnect: Hardware module that connects the different elements of a SoC.

ISS: Instruction Set Simulator ­ a simulation model, which mimics the behavior of micro­
processor.

IP: Intellectual Property ­ term used to designate ownership of a design or idea.

LPDDR: Low Power Double Data Rate ­ type of synchronous DRAM that consumes less
power.

MMU: Memory Management Unit ­ element that translates the virtual addresses of queries
into physical addresses using translation tables.

OS: Operating System ­ a software managing the computer hardware and software resources
to provide common services for computer programs.

PD: Power domain ­ a sub­assembly of a SoC whose power can be switched off internally
from the SoC to mainly reduces the static power consumption.

Power/Clock Intent: Power/Clock Intent ­ describes the partitioning of a design into power
domains and clock domains. The Power/Clock Intent also sometimes describes the control
signals used to control these power and clock domains.

QoS: Quality of Service ­ a concept that optimizes the use of resources during a process
and ensures good performance of the targeted applications.

RTL: Register Transfer Level ­ a method for describing microelectronic architectures.

SoC: System on Chip ­ an abbreviation used to name an IC combining all the required com­
puter components onto a single chip.

SW: Software ­ a program/set of instructions executed by one or more hardware components.

TBU / TCU: Translation Buffer Unit / Translation Control Unit ­ components that are part
of the MMU and are used to store and control address translations.
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Technology: Technology can be defined as a systematic study of techniques for making
and doing things.

TLM: Transaction Level Modeling ­ a high­level approach to modeling digital systems by
defining a sets of transactions transferred over a set of channels.

UVM: Universal Verification Methodology ­ a standardized methodology for verifying in­
tegrated circuit designs.

UPF: Unified Power Format ­ standardized power format specification to implement low
power techniques in a design flow.

VD: Voltage domain ­ set of components or part(s) of components sharing a power source.

VLSI: Very­Large­Scale Integration ­ the process of creating an IC by combining millions
of MOS transistors onto a single chip.

VP: Virtual Platform ­ a software based system mirroring the functionality of a hardware
or SoC.

XML: eXtensible Markup Language ­ a markup language that defines a set of rules for en­
coding documents in a format that is both human­readable and machine­readable.

uC: Microcontroller ­ an IC that combines several types of memories, a microprocessor,
and communication peripherals in a single package.
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Abstract

The rapid pace of development in microelectronics enables the semiconductor industry to
constantly surpass itself and to offer ever more innovative and complex products and tech­
nologies. The most modern areas of development, such as 5G, the Internet of Things (IoT)
and automotive, rely on complex, high­performance, low­power designs. Unfortunately,
this increased complexity often leads to higher power consumption and more challenging
designs.

In order to solve these problems and differentiate themselves in the market, System­on­
Chip (SoC) manufacturers and engineers are putting tremendous effort into researching new
development strategies. Numerous studies have shown that one of the key steps to take
is to revisit the early stages of the design flow and, in particular, to integrate simulation­
based modeling and verification at a higher level of abstraction. The early stages of product
development are critical to avoiding costs, delays, and other unexpected problems. As a
result, Hardware/Software (HW/SW) architectural exploration has become a key component
of SoC modeling.

In this thesis, we address this gap and present a framework for mixed performance and
power estimation/management of SoCs using high­level SystemC/TLM2.0 functional mod­
els. Our methodology allows us to dynamically extract performance and power, while con­
sidering functional model activity, power management and reduction strategies, and mem­
ory system consumption. In this way, we can observe the impact of power management on
performance and optimize the trade­off between the two at the very beginning of the de­
sign flow. We address this shortcoming and present our first dynamic approach for mixed
power/performance estimation applied to an NXP Intellectual Property (IP) interconnection
subsystem used in i.MX8 SoC series. This modeling methodology uses the PwClkARCH
library, which follows UPF semantics and enables power estimation and management. Its
key point is that it maintains a strong separation between the functional code and the power
intent description. There is no intrusive power­oriented code in the functional model, which
simplifies architectural exploration, allows joint and separate reuse of behavioral and power
models, and leads to more complete code and easier performance estimation.

Keywords: System­on­Chip; Estimations; Power consumption; System­level modeling; Trans­
action Level Modeling (TLM) ; Abstraction ; SystemC



x Abstract



Resumé

Le rythme rapide de développement de la microélectronique permet à l’industrie des semi­
conducteurs de se surpasser constamment et de proposer des produits et des technologies
toujours plus innovants et complexes. Les domaines de développement les plus modernes,
tels que la 5G, l’Internet des objets (IoT) et l’automobile, reposent sur des conceptions com­
plexes, performantes et à faible consommation. Malheureusement, cette complexité accrue
entraîne souvent une consommation d’énergie plus élevée et des conceptions plus difficiles.

Afin de résoudre ces problèmes et de se différencier sur le marché, les fabricants et les
ingénieurs de Systèmes sur Puce (SoC) déploient des efforts considérables pour rechercher
de nouvelles stratégies de développement. De nombreuses études ont montré que l’une des
mesures clés à prendre consiste à revoir les premières étapes du flot de conception et, en
particulier, à intégrer la modélisation et la vérification basées sur la simulation à un niveau
d’abstraction plus élevé. Les premières étapes du développement d’un produit sont essen­
tielles pour éviter les surcoûts, les retards et autres problèmes inattendus. Par conséquent,
l’exploration architecturale matérielle/logicielle (HW/SW) est devenue un élément clé de la
modélisation des SoC.

Dans cette thèse, nous comblons cette lacune et présentons un cadre pour l’estimation/
gestion mixte des performances et de la puissance des SoCs en utilisant des modèles fonc­
tionnels SystemC/TLM2.0 de haut niveau. Notre méthodologie nous permet d’extraire dy­
namiquement la performance et la puissance, tout en considérant l’activité du modèle fonc­
tionnel, les stratégies de gestion et de réduction de la puissance, et la consommation du
système de mémoire. De cette façon, nous pouvons observer l’impact de la gestion de la
puissance sur la performance et optimiser le compromis entre les deux au tout début du
flot de conception. Nous abordons cette lacune et présentons notre première approche dy­
namique pour l’estimation mixte de la puissance et de la performance appliquée à un sous­
système d’interconnexion de la Propriété Intellectuelle (IP) de NXP utilisé dans la série de
SoC i.MX8. Cette méthodologie de modélisation utilise la bibliothèque PwClkARCH, qui
suit la sémantique de UPF et permet l’estimation et la gestion de la puissance. Son point
clé est qu’elle maintient une forte séparation entre le code fonctionnel et la description de
l’intention de puissance. Il n’y a pas de code intrusif orienté puissance dans le modèle fonc­
tionnel, ce qui simplifie l’exploration architecturale, permet une réutilisation conjointe et
séparée des modèles comportementaux et de puissance, et conduit à un code plus complet et
à une estimation plus facile des performances.

Mots­clés: Système­sur­Puce; Estimations; Consommation de puissance; Modélisation au
niveau système; Modélisation au niveau transactionnel; Abstraction; SystemC
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Preface

This is a CIFRE PhD project started with the collaboration between LEAT and NXP
France. Due to some confidentiality and security measures, we will limit the detailed infor­
mation on the NXP proprietary IPs designs and architectures. The chapter representing
the behavioral modeling and the results will be synthesized, normalized and probably very
generalized, thus it will represent a small fraction of the work actually done. In addition,
all metrics (from measurements and simulation data) and scales in the figures and tables
will be hidden as they are considered sensitive data.
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Chapter 1

Introduction: Thesis overview

1.1 General introduction

We are more and more connected to all kinds of electronic devices. We use hundreds of
them every day without thinking much about the technology behind them, their limits and
the amount of human effort devoted to their production and optimization. The reason for this
is that the semiconductor and electronic engineering industries are doing everything they can
to improve, satisfy and simplify the customer experience. Over the past two decades, these
industries have encountered many vicissitudes, such as approaching the limits of Moore’s
Law [9], chip shortages, rapidly changing technologies, and incredible growth in complex­
ity, the result of which has predetermined the overall development of future technologies.
The “computer era” (90s) was followed by the “mobile era” (2000), which changed and
rearranged priorities in the production of semiconductor devices. Embedded systems have
proven to be very effective in many application areas and have conquered the market. Since
about 2007, they have led to a boom for smartphones and Internet­of­Things (IoT) devices.
Their continuous optimization has led to their implementation in industrial equipments, cars
and the design of all types of sensors and microcontrollers. These advances have led to the
creation of new emerging markets, such as Artificial Intelligence (AI), quantum computers,
advanced wireless networks (including 5G), electric and autonomous vehicles. We have en­
tered a fast­moving circle in which advanced semiconductor devices have led to the creation
of higher quality and more affordable products, which has led to greater profits, which in
turn has led to faster development and the setting of higher goals.

Thanks to this fast pace, we have managed to optimize the already established cloud
computing and complement it with more performant edge computing technology [10]. As a
result, due to the high demand for efficient embedded systems, many benchmark technology
processes have undergone general changes and innovations, and many technological limits
have been reached and/or exceeded. The main reason for this is the change in human percep­
tions and the doors that have been opened by discoveries made before 2000, but buried at that
time due to the inability to develop their maximum potential (such as artificial intelligence,
wearable devices and electric cars). The increased computational power of today’s com­
puting technologies has allowed us to revive these technologies and push their capabilities
further. Both the many challenges and current technological advances have led to the study
of new methods, materials, and architectural strategies that may enable the implementation
of several major projects in the future.
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Motivated by increasingly innovative and complex ideas for electronic devices and em­
bedded systems, semiconductor device manufacturers have been able to push technology
even further and have managed to continue to reduce the size of transistors and to increase
their density in a single chip following probably the last years of Moore’s Law [9]. At the
same time, designers of new electronic devices have innovated their methodologies and pro­
cesses in a way that allowed them to accelerate the design procedure, improve circuit designs
and increase chip performances.

There are many disruptive design approaches, technologies, algorithms, and paradigms
that have made this possible, but this thesis is primarily related to two of them: increasing
the level of abstraction in the design process and developing efficient interoperable devices.
Increasing the level of abstraction in the design flow has played a huge role in increasing
designer productivity. The transition from the gate/schematic level to the Register Transfer
Level (RTL), initiated in the early 1980s, and its continued optimization to this day, has
temporarily slowed the ever­increasing gap between designer productivity and the increasing
density of transistors in a chip [11]. Hardware Description Languages (HDLs) have allowed
designers to increase the level of abstraction at which they work, and as a result, design
capability has increased from hundreds to thousands and millions of transistors. However,
while designer productivity is increasing, chip capacity is increasing at a much higher rate
(Figure 1.1).

Figure 1.1: Design productivity gap [1]

It therefore became inevitable to start looking for possible approaches based on even
higher levels of abstraction. Between 1997 and 2001, a new term, Electronic System Level
(ESL), was coined, indirectly defining the (currently) highest level of abstraction ­ the sys­
tem level [12]. Although the topic and research on moving to a higher level of abstraction
than RTL had begun several years earlier, this is when the term ESL became more concrete.
Initially, the idea of the ESL approach was to simplify the understanding of complex systems
and to add another layer of design and verification that would allow for better implementation
and cost control. Multiple high­level languages, tools, and Electronic Design Automation
(EDAs) focused on ESL have enabled behavioral modeling of entire systems. As such, they
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have greatly improved and accelerated the design definition and exploration processes. This
approach has been widely adopted by System­on­Chip (SoC) designers and is gaining in­
terest. It enables early functional modeling and performance estimation of new designs to
eliminate bugs (or at least avoid their late discovery), choose the optimal partitioning of the
system, and improve its performance. In addition, it has made possible the development of
virtual platforms that are typically used to co­simulate hardware and software models earlier
in the design flow and to initiate software development and verification in parallel with the
hardware. This approach has addressed many flaws in the design process. The more abstract
description and neglect of implementation­specific details accelerate both the design period
and the simulation time. Numerous EDA tools have been created to facilitate this process
and even enabled the synthesis of these hardware models. The ESL approach has proven
again that increasing abstraction is an excellent way to speed up the design process and thus
increase design productivity.

1.2 Context and objectives

The famous Dennard’s scaling law [13], according to which the power density of chips re­
mains constant as the size of transistors decreases, collapsed around 2006. The reason for
this is that as transistor size decreases, current leakage and heat dissipation increase and thus
power consumption becomes too large to manage. Dennard’s downscaling (starting in 2004)
shifted the focus from continuously increasing clock frequency to multicore architectures.
Its collapse was closely related to the inability to significantly increase the clock frequency
of Central Processing Units (CPUs). Multicore architectures were therefore the only solution
to further increase performance and almost the entire industry focused on this. As a result,
the integration of more cores increased the number of active switching elements, resulting
in even higher static and dynamic power consumption. One way to reduce power consump­
tion has been the wider adoption and improved use of existing SoC technology. The British
semiconductor and software design company ARM [14] has been instrumental in this area.
This company licensed the design of a ”fabless” processor that proved to be highly optimized
in terms of power consumption and offered advanced power management features, such as
Sleep and Deep Sleepmodes, different clock gating features and power domains. This break­
through has completely revolutionized mobile devices, which are highly dependent on power
consumption, a monumental constraint for them since forever. From 2006/2007 to today, the
relentless adoption and production of ARM­based SoC devices has pushed the performance,
complexity, and applications of SoCs ever further. As a result, more and more switching el­
ements are added, and the continuous on­chip data circulation has become unscalable. Since
the data conveyance is a major source of power consumption in modern processors [15] and
surrounding nodes, the increase in chip size, wire length, and design complexity has made
the interconnection between multiple nodes a bottleneck for low­power systems [16].

Many power optimization techniques have been introduced, allowing to activate certain
parts of the SoC only when they are used, to distribute the computations between different
blocks (CPU, GPU, DSP etc...) or to vary the voltage and frequency depending on the chip
state. These techniques are described in parallel with the RTL models of the chip. How­
ever, the optimal application of power reduction techniques has become untenable due to
the complexity of the chips and the exorbitant simulation time of the RTL models. Sim­
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ulating relatively complex use cases to test these power optimizations ranges from several
hours to several days. Given the needs, concerns, and constraints presented above, it was in­
evitable to think of a solution to combine them and find a reasonable and relatively accurate
power estimation approach, applicable to separate blocks or/and entire SoCs, from the early
stages of the design flow (system level). In addition, it was important to enable energy man­
agement modeling capabilities at this level and dynamically extract energy­related metrics
during simulation at a higher speed.

This work is the result of a collaboration between NXP [17] and LEAT laboratory [18].
The objective is to define a simple and reusable system­level modeling framework for i.MX8
SoCs, to develop a model for a complex architecture and, most importantly, to test and eval­
uate a specific approach to estimate the power consumed by this architecture and the new
generation of high complexity SoCs. The architecture chosen for this study is a complex
and custom interconnect Intellectual Property (IP) from NXP, called Switch Matrix (SM),
that is a central unit in several SoCs of the NXP i.MX8 family. Its purpose is to establish
communication between all IPs on the chip, route data transfers, and schedule transactions
using several multi­level algorithms. For modeling the Design Under Test (DUT) and the
entire testbench from scratch, we used the C++ based SystemC and TLM2.0 libraries. The
idea was to create a purely temporal (power­insensitive) behavior/performance model and
wrap it, non­intrusively, in a power model description for power management and estima­
tion. The motivation is to have both power and performance estimation capabilities with a
single model without overloading it with non­behavioral code. Since there are many high­
level, industrialized and academic performance estimation tools, libraries and approaches,
our efforts remain focused on early power estimation, which is currently a major gap in the
design process. In order to prove the possibility of such mixed power/performance esti­
mation frameworks, we have developed simple and basic observation modules capable of
extracting the most important performance metrics, but their evaluation is outside the scope
of this study.

For the power estimation, we used an academic tool, called PwClkARCH developed by
LEAT researchers. This tool covers all our concerns regarding the separation of power and
behavioral models and the co­estimation of power and performance. In addition, it includes
power and clock management features that allow us to test multiple power reduction tech­
niques well before RTL. The power estimates are based on modules‘ activity (transactional
level) and some area information (detailed in Section 3.4). It can be performed before the
HW/SW implementation; thus, it allows us to consider different architecture options and
power management strategies and optimize the exploration of the design space.

The strategy adopted in this thesis is to start with a kind of reverse engineering to prove
the correctness of this methodology, then transfer it to new architectures and integrate it into
the flow. What follows is a very generic overview of the phases and objectives of the thesis.

The first objective was to create the behavioral and power models of the Switch Ma­
trix interconnect IP with an existing i.MX8 SoC configuration. The purpose of this model
is to calibrate the power intent and power management related parameters, so that we can
correlate our simulations with power measurements on silicon. Next, we needed to reuse
the interconnect IP with its power definition and testbench to develop a model of another
existing chip to test the interoperability of our functional and power models, perform addi­
tional power­on­silicon correlation, and evaluate the modeling effort. The final goal was to
reuse this same power­sensitive IP model and carry it over to NXP’s next­generation i.MX8
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SoC to extract power measurements early in the design definition. The flow of these generic
objectives is visualized in Figure 1.2.

Figure 1.2: Thesis objectives flow

1.3 Summary of contributions
Widely used and well­established approach for early performances estimation of chip is to
create functionalmodels using languages like C, C++ and SystemC.At each functionalmodel
refinement, we can make the necessary performance analysis by some monitoring or using
existing EDA tools. On the other hand, the power consumption is barely studied at this
high abstraction level, which is due to the limited information at the beginning of the design
flow and the difficulty to specify and test the power management strategies. A commonly
used approach, at this level, is a static approach consisting of taking characteristics of the
technology for static power consumption estimation, different IP power numbers (given by
IP providers) for the worst/best case dynamic power consumption and components area in­
formation. Then, the total power consumption is calculated using Excel tables or automated
tools and by applying power equations. This ad hoc approach works well for static or pseudo
static use cases but cannot be applied on more complex dynamic ones, such as memory copy,
display refresh, GPU traffic etc. Therefore, the need for a method to dynamically estimate
the energy consumed by the SoC in complex use cases prompted us to investigate ESL­level
power estimation methodologies.

With this thesis, we address this gap and present and evaluate the first industrial ap­
plication of the dynamic PwClkARCH approach for mixed power/performance estimation
applied on a complex custom interconnect system from NXP. The framework helps us to
develop transaction level models described exclusively in C++/SystemC­TLM2.0 and to ex­
tract power consumption and performance metrics. It also enables the use of some well­
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known power reduction techniques. The key point of this approach is that it maintains a
strong separation between the functional code and the power intent description. There is no
intrusive power­oriented code in the functional model, which simplifies architectural explo­
ration, allows joint and separate reuse of behavioral and power models, and leads to more
complete code and easier performance estimation. On NXP side, this is the first system level
modelisation of a subsystem integrated in the i.MX8 platforms and a first evaluation of a dy­
namic system level power estimation approach. On the LEAT side, this is the first complex
and large industrial proof­of­concept of the PwClkARCH tool performed on an interconnect
module and supported by a silicon correlation. Overall, this is an interesting case study,
as similar interconnect structures (custom or standard) are used in almost all modern high­
performance SoCs, and their power and performance analysis is currently a global bottleneck
in SoC development.

1.4 Dissertation structure

Chapter II provides a quick overview of some key insights related to the SoC design flow
and analyzes some existing work that inspired and pushed our research further. We then
answer the why, how and what of our research and present its significance. The main objec­
tive of this chapter is to simplify the understanding of current design flow problems and to
identify where exactly this research can be placed and why it is important.

Chapter III describes some strategies, tools and flows for modeling power and performance
at the electronic system level. Then, our framework for studying system­level power based
on functional chip models at a high level of abstraction is presented. Finally, the technology
on which the study was applied is outlined, starting with a brief introduction of the NXP
i.MX family as a whole, and then focusing attention on the members modeled and analyzed
during this thesis. The purpose of this chapter is to present other research and tools that have
contributed to the development of this solution and to compare them to this one. The brief
presentation of the technology used in the study provides a better understanding of its archi­
tecture, which is important especially when focusing on interoperability.

Chapter IV describes in detail our choices of abstraction level and granularity, as well as
some of our strategies for functional modeling and description of the SystemC/TLM com­
munication protocol, performance monitoring and power management. Its purpose is to
better explain the structure of this framework and the power/performance extraction tools
employed.

Chapter V is devoted to the analysis of the simulation results. In addition, our processes and
the results of the power measurements on silicon are presented here. Finally, the correlation
between the simulation results and the silicon measurements is performed. Considering that
this is a reverse engineering methodology, the performance and accuracy of this framework
is evaluated at this stage.

Chapter VI presents the first application of our approach on the new generation of NXP
SoCs. Furthermore, some additional tests have been performed in order to integrate some
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third­party tools into the framework and to allow their co­simulation. The objective of this
chapter is to present how this framework can be integrated into the design flow and its flex­
ibility in terms of co­simulation.

Finally, in Chapter VII, a summary of the results is presented, along with some limitations
and possible future work. Finally, a general conclusion is drawn.
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Chapter 2

Low­Power System­on­Chip (SoC):
Background

2.1 System­on­Chip (SoC) definition
Themarket for SoCs is growing every day, and they are used in all kinds of electronic devices,
from small home automation devices to smartphones, cars and spacecraft. By definition,
System­on­Chip is an Integrated Circuit (IC) that incorporates a complete electronic system
on a single die (Figure 2.1). It is based on interconnected processing units with multiple
logic and analog functions. Primary objectives are reducing cost through system integration
and improving power consumption. Fully integrated systems reduce the energy consumed
when communicating between separate components and reduce the distance between them,
thus increasing performance and reducing latency.

Figure 2.1: NXP SoC i.MX8QuadMax Evaluation Kit
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As explained in Section 1.2, most SoCs are heterogeneous devices containing multiple
processing elements. These devices are also referred to as multiprocessor SoCs (MPSoCs)
and they may contain multi­core blocks or/and logically distinct processing modules. In­
creasing the number of these processing units also increases the overall number of active
switching elements and the amount of data transfers. As a result, power consumption in­
creases significantly. The design of such devices is a complex process and every error or
bug found too late in the flow can lead to a significant increase in expenses. That is why it is
important to strictly follow a well­defined methodology for their design, or what is called the
design flow. In order to better situate our work in the design flow, it is necessary to present
a quick overview of its general steps.

2.2 The modern power­aware SoC technologies and design
flow shortfalls

The modern power­aware SoC designs must support the integration of advanced CMOS IPs
in order to create digital processor­based systems. Its structure is primarily based on digital
components, but in some cases may require a Mixed­Signal Design Environment (MSDE)
for co­design and analysis of digital and analog IPs into Mixed­Signal subsystems (Figure
2.2).

Figure 2.2: Basic SoC sub­systems

For SoC designs, it is essential to establish a well­structured and commonly accepted
design methodology. A hierarchical structure is usually adopted for the design flow (see
2.2.1), as it allows it to be decomposed into design flow tasks that can be further broken
down into design flow steps. This decomposition can be done separately at each level of the
overall flow. To reduce the complexity and cover different types of technology products and
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their development needs, the main SoC design flow is divided into 4 distinct design flows
based on their technology and constraints. The 4 design flows are:

• Analog Design Flow – which is intended for analog and mixed­signals design archi­
tectures.

• Digital Design Flow – which is aimed at digital design architectures or mixed­signal
designs dominated by digital components. Again, it is often extended with mixed­
signal capabilities to integrate Analog Mixed­Signal (AMS) blocks into the digital de­
sign.

• RFDesign Flow – based on theAnalog design flow, it builds on it. The RFDesign flow
adds frequency­based simulations and EM analysis capabilities on top of the Analog
design flow.

• SoC Design Flow – primarily composed of digital components and makes use of some
AMS components. In addition to the digital design flow, it targets larger and more
advanced multi­processor digital CMOS designs. Moreover, it includes HW/SW sys­
tem level verification and is heavily based on IP and Platforms reuse and import of
3rd party IPs (memory, AMS blocks, GPUs) as hard­IP or digital Register Transfer
Level (RTL) soft­IPs.

These flows can be enriched and readapted depending on the manufacturer’s needs and
internal processes. During the decomposition of the overall design, hierarchy layers can
be introduced, resulting in a block­wise approach that allows the reuse of IPs composed of
multiple sub­blocks and sub­systems. The interoperability of these Analog and Digital IPs
between different design environments is crucial for such complex high­performance SoCs in
order to share a common design database that can be reused in subsequent chip generations.
In this study, we are workingwith the SoC design flow, without directly using the analog
part of the device. Thus, our work is closely related to the digital part of the SoC design
flow and most of the following information will be based on it.

2.2.1 Quick overview of SoC digital design methodology and flow
By definition, Design Flow is amature and silicon­proven design process based on sequential
design and verification tasks executed at multiple levels of design abstraction and comple­
tion [19]. The complete design flow includes various levels such as system level design,
functional/electrical design and physical design. There are multiple steps and processes that
need to be performed at each level or are level specific. By following these sequential tasks,
the level of abstraction decreases with each further design step and the architecture become
more exhaustive. In Figure 2.3, we can observe an abstract view of the main levels and steps
present in the flow (detailed later in this section). At each level of design completion, the
results from the verification tasks can trigger a feedback loop in the design flow and kick­
start a top­down, bottom­up or meet­in­the­middle design flow depending on the available
blocks or IPs.

• Top­down approach – (also known as stepwise design) is a high­level analysis. In this
approach the design process begins with a top­level view of the system. Sub­systems
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Figure 2.3: Hardware Design Flow

are first instantiated as “black boxes” and refined step by step until they are reduced
to basic elements. It is very often associated with a V­model [20] design approach
(detailed below).

• Bottom­up approach – is sort of the opposite of the top­down. It starts with the
detailed definition of each individual sub­system which is then connected to build a
more complex and complete design. It is often used for virtual prototyping based on
instances of sub­system descriptions taken from IP models libraries and used to build
an architecture.

• Meet­in­the­middle flow approach – is a successive refinement method interleav­
ing between the top­down and the bottom­up approaches in order to converge on a
physical solution. It starts with a top­down approach and uses the same refinement
methodology.

A structured, top­down design and verification flow follows a serie of specific steps from
product specification to design implementation. The application of the V­model approach
(Figure 2.4) can easilymatch thismethodology. It allows us to set a commonway­of­working
and maintain an easier and more efficient design verification process. There are standardized
andwell­structured design and verificationworkflowswith common guidelines and rules and
they are widely suitable for integrating top­down and V­model approaches.



2.2 The modern power­aware SoC technologies and design flow shortfalls 13

Figure 2.4: V­model design approach

The left side of the V­model describes the product specification and the architecture dis­
tribution. At this point, the product specification is translated into functions or/and algorith­
mic description, and then decomposed into a system architecture. After that, the architecture
is further decomposed into sub­systems and blocks, which are sufficiently precise and ready
for implementation. Each level of this part of the flow results in the creation of executable
descriptions of the implementation at each level, allowing for continuous refinement of the
product specification.

The right side of the V­model captures the verification and integration processes at each
level and their specific test regressions. Testing is performed via the Verification & Valida­
tion (V&V) processes, where various tests are performed and their results are compared to
the previously extracted executable descriptions in order to verify and validate whether the
actual implementation meets the product specification.

Of course, this is a very simplified view of the whole process and, as mentioned earlier,
each level has its own internal design flow, which can also be based on top­down, bottom­up
or meet­in­the­middle methodologies.

By combining the information in Figure 2.3 and Figure 2.4, we can extract the following
top­level design flow describing the main sequential and parallel tasks and steps (Figure
2.5). The relation and interaction between these tasks result in a refinement and reiteration
of some of the steps (the tiny orange loop arrows).
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Figure 2.5: Top­down design flow

Architecture and Design specification

The flow begins with the Requirements definition, which leads to the specification of the
device. At this level, architecture teams work on specifications and explore architectural
options and available components. The intended application and key functionalities are cap­
tured in a high­level algorithm or functional model, typically described using approaches
such as UML/SysML [21] or languages such as Matlab/Simulink [22] or C/C++ [23]. The
objective of this model is to generate an executable specification that can be used and re­
fined in later stages of the design. Then, these algorithms are mapped to a system architec­
ture, where they are tested with different mapping options and evaluated in order to find the
optimal solution.

The methodology used at this level is called Electronic System Level, or ESL, which
refers to architectural design and exploration at a relatively high level of abstraction. This
means that architecture team defines a Virtual Prototype (VP) of a system‘s architecture
starting with only the key behavioral parts of the DUT and works with approximately timed
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models. ESL can have different definitions, as the accuracy and level of abstraction of these
behavioral models depends on the targeted IP, IP­reuse, the application, and even the de­
signer‘s perspective.

A SoC combines analog, digital and software functionalities, so we need to use different
domain­specific modeling techniques to describe each of these. For example, processor­
based system models use Instruction Set Simulators (ISS) [24] for software execution,
digital subsystems are based on Transaction­level Models (TLM) in SystemC [25], and
analog/mixed­signal models are described with languages like SystemC­AMS [26]. Hard­
ware models can be used in different ways, depending on their purpose. They can be used
for architectural exploration and performance estimates, or they can be continuously refined
until they become synthesizable and reusable for RTL code generation. This is possible with
High­Level Synthesis (HLS) tools such as Verilator [27]. The design is entered in the high­
level SystemC language and the HLS tool compiles it into RTL code, ensuring consistency
in the design flow. The verification at this level is primarily requirements­driven and serves
to maintain the traceability, test execution and back­annotation of the results. The initial
functional verification is also covered.

Design Front­end and Design Back­end

The next layer refers to the RTL model definition made by the Front­end designers or result­
ing from HLS synthesis, and the testbench definitions made by the Design for Test (DFT)
teams. The goal is to create a synthesizable RTL description and subject it to rigorous veri­
fication. At this level, logic designs are simulated at the RTL level and after logic synthesis
(with RTL synthesis solutions like [28] and [29]) at the gate level using the netlist and tech­
nology logic library cells. Since the RTL model is pin and cycle accurate, it is more complex
and much more time consuming than the ESL model, but can deliver very realistic perfor­
mance metrics. In the standard design flow, the power analysis and optimization task
is initiated at this level. During this stage of the flow, multiple verifications and checks,
such as constraints, power intent, power implementation verifications and equivalence, and
clock domains checks are performed to ensure that the timing and power intent descriptions
are correct and complete. The SoC flow also needs to support mixed­abstraction level sim­
ulation allowing to co­simulate system level models with schematic, behavioral and/or RTL
models.

The goal at back­end is to translate the gate­level netlist into a physical implementation
[30] with respect to the floorplan. The floorplan describes the physical area, boundaries
and pin positions of all digital components. The clock tree is inserted, and the logics are
optimized in order to describe and complete the final gate­level netlist. At the end of this
task, we have a fully placed and routed circuit stored in the design database and ready for
electrical and physical verification.

Verification

The main objective of the verification process [31] is to determine whether a given product
meets the requirements identified during its specification phase. It is an iterative process
based on a verification plan (also called a Vplan) that should list all the functional and de­
sign features and requirements that need to be verified in the hardware. At each stage of the
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development cycle, the product is tested to determine if it is consistent and complete and
if the stage­specific requirements are met. This is the most critical and resource­intensive
part of the flow. Without a complete design check, every mistake can cost the cancella­
tion of the entire project. At each level of the complete flow, there are appropriate verifi­
cation methodologies, generally based on two main typologies of verification techniques:
Functional/Simulation­based techniques and Formal­based techniques.

• Functional Verification – includes different local verification workflows that are used
depending on the level of accuracy required and the given simulation time constraints
[32].

– Scenario generation – enables the execution of the verification plan and ensures
that the design implementation satisfies all elements of the verification plan de­
rived from the design requirements.

– Event­based verification – an event can be identified as a change in the input
stimulus or lower level entities that can occur multiple times in a cycle. Event­
based verification works by taking events and propagating them through the de­
sign until a stable condition is reached. These simulations take into account the
temporal information in the design and are therefore very accurate, but time con­
suming. They are used for relatively small designs (e.g., at the block or IP level),
because for large designs, the simulation time becomes completely unmanage­
able.

– Cycle­based verification – evaluates the state of the logic and ports once per
cycle. Accuracy is reduced compared to event­based verification and glitch de­
tection is less effective. Time information from the design is not taken into ac­
count, but simulation time is reduced (by 5 to 100 times) compared to event­
based verification. It is used for large simulation vectors (e.g. microprocessors,
Application­Specific Integrated Circuits (ASICs), SoCs).

– Transaction­based verification – allows for higher level of abstraction simula­
tions compared to previous techniques and serves to increase productivity. It sim­
plifies testbench creation and reuse, simulation debugging and coverage analysis.
Signal­level protocol details are hidden by the Transaction Verification Model
(TVM) at the RTL level or in hybrid simulations and neglected or abstracted at
the ESL level (depending on the model­specific abstractions).

– Processors verification ­ ensures that the implementation of a given corematches
its architectural specification. In addition, it allows verification of multi­core
systems interacting via a coherent shared memory interconnect. The input for
this task is an ISS completed with a verification plan and the output generated is
a coverage and closure report.

– Code coverage – allows the quantification of the functional coverage obtained by
the applied test suite. It can be used at each level of abstraction of the flow on the
block, system or higher level. Using this analysis, we can also check which parts
of the design are not sufficiently tested and therefore contain a higher probability
of bugs.
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– Emulation flow – allows for much faster execution than HDL simulations and
reduce time­to­market. It uses specially designed hardware and software sys­
tems to emulate the behavior of the target design. The latest generation hardware
emulators (like [33] and [34]) provides considerably better hardware debugging
than Field Programmable Gate Arrays (FPGAs) prototyping systems. For this
purpose, we need the valid RTL files of the SoC and various external libraries
such as verification IPs, memory models, and interface standards. Emulation is
typically applied with longer and more complex runs in the final stages of the pre­
silicon validation process. The resulting emulation builds are released and passed
to various teams such as SoC verification, pre­silicon validation, early software,
performance testing.

• FormalVerification – uses algorithms tomathematically verify that the design specifi­
cation is preserved during implementation [35]. Formal verification is not benchmark­
based, but property­based, which means that we check whether the design meets the
property coverage of the design intent using theHardware Design Language (HDL)
code of the DUT. For this purpose, it does not use user­defined test vectors, but au­
tomatically analyzes all legal behaviors. With this technique, we analyze the space
of possible behaviors of a design without executing all tests, but using mathematical
models instead. It is applicable to several phases of the flow and allows us to discover
inconsistencies and incompleteness in the specifications. Some of its subcategories
are:

– Theorem proving – consists of tests described as a theorem composed of a set
of axioms and inference rules allowing the mathematical proof of this theorem.
It can be used at all levels of abstraction and allows to compare the descriptions
at these different levels.

– Model checking – allows to check the properties of the design specifications
through temporal logic formulas and has a relatively good automation. Its ab­
straction is user­defined. There is some risk that important properties are not
covered and are not valid for a model, which may lead to undefined behaviors at
a given stage.

– Equivalence checking – as the name implies, it is a method to test and com­
pare several design descriptions to check if they have the same behavior or to
check that there are no inconsistencies between their behaviors (e.g. models with
different abstraction levels).

Due to the high complexity and shorter development cycle of the design, the selection of
the optimal verification process is a critical and challenging step that must be performed by
design engineers. In general, the techniques presented earlier are combined and assembled
into several verification methodologies with different advantages and disadvantages. Some
of the widely adopted methodologies are:

• Direct Test Method – which is a straightforward method for evaluating test cases
defined by the product specifications. It is typically used for digital designs built to
perform specific well­defined tasks. This method allows us to test the behavior of the
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product in the context in which it is intended to be used. It is a very good choice for pre­
cisely defined DUTs, but its coverage is low because it only tests essential and defined
functionality. It can be used at every stage of the design cycle and is an essential part of
ESL and RTL verification. As for the functional verification technique, it consists of
a verification/simulation engine, a testbench (e.g. written in SystemC or SystemVer­
ilog) and a DUT with well­defined states and applications. In this type of verification,
it is essential to build an environment that is easy to reuse and update. Its structure
can vary depending on the designer’s intent and the level of abstraction. It can be built
entirely with SystemC/TLM models, it can be a hybrid structure that allows analysis
of SystemC/TLM and/or HDLmodels with command­stimuli files, or a complete RTL
structure composed of HDL analyzers and emulators. For all these conditions, we use
sequences of test cases generating commands and transactions that are processed by
the different blocks in the architecture. During the simulation, different report files are
generated, containing the messages issued by the DUT, the models and the emulators.
The main advantage of this methodology is its modularity and its ease of use and reuse.
Its main disadvantage is the low coverage of non­essential functionalities, which are
not taken into account in the scenarios and which can hide critical bugs.

• Coverage­Driven verification (CDV) – which is based on the repetitive execution of
the verification environment using different tests and allowing to confirm if the cover­
age objectives are reached. These tests can be aimed at verifying different constraints
and/or verifying behavior with random stimuli generation. Each test is usually scored
according to several criteria (functional coverage, bug detection, simulation time, etc.).
The results of the coverage tests are merged, and the process is iterated until it reaches
the required coverage grade. The main advantage of this methodology is the high level
of automation (randomly generated stimulus) that allows to speed up the verification
process. However, it requires the creation and debugging of a coverage model, which
is time consuming.

• Metric­Driven verification (MDV) – which allows the verification of large digital
designs. The huge state space of modern SoCs does not allow to simulate all possible
transitions and state combinations. MDV allows defining guidelines to achieve good
functional coverage. It is guided by a functional specification rather than a design
implementation. This specification is decomposed into a hierarchy of smaller features
and then correlated to a subset of the design space to generate a much smaller coverage
space. At this level, a technique, called Constraint Random Testing, is applied to run
a large number of simulations with random perturbations to optimize the process and
increase coverage. Today, this methodology is widely adopted because it improves
the quality, predictability and productivity of the entire verification process. It allows
for a high degree of automation, through scripting, and enables the achievement of
objectives and milestone reports in the verification plan.

As we can clearly notice, these methodologies are complementary and can be easily com­
bined. These techniques and methodologies can be enhanced with assertion­based coverage,
error injection, IP view generation, and other additional techniques. Environments such as
UVM [36] are incredibly useful for creating reusable testbenches and new verification envi­
ronments. The introduction of highly configurable Verification Intellectual Property (VIP)
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modules allows for horizontal (between projects) and vertical (block to system level) reuse
of these environments. However, these environments are out of the scope of this study, so
we will not go into detail about them here.

Conclusion on the design flow overview

At the ESL level, we can use almost all these verification methods. Since this is not the main
focus of this thesis, but it is perhaps the most important part of the design cycle (consuming
almost 70% of the project resources for ASICs, reusable IPs and SoCs), we will at least men­
tion some of the tests that have been performed. We work with SystemC/TLM models, so
we favor verification based on functional simulation. All three methodologies are applied
in our study in one way or another. The functional model is verified with the direct test­
ing method combined with the Metric­Driven verification flow and our power­aware model
includes assertion­based coverage. Error injection techniques allowed us to enforce the as­
sertion mechanisms and to test and eliminate undefined behaviors. It is important to mention
here that due to the increased complexity of the design, these techniques and methodologies
are not only applied to the functional model, but they are also used to ensure the security and
safety aspects and to verify the performance and power objectives.

This traditional design flow is becoming less suitable for complex systems, due to the
large number of blocks and signals they contain. Their simulations and applications become
time consuming and the verification process becomes less efficient. A major hardware de­
sign problem discovered at RTL stage or later can lead to significant production delays and
unforeseen expenses. Furthermore, until recently, software testing and verification only be­
gan when a low­level RTL model existed. Fortunately, many efforts have been made over
the past decade and the development of high­level system models and VPs [37] has enabled
the early co­simulation of software and hardware. However, in its current form, the V­model
alone is not flexible enough. One important problem is still relevant, and it is related to the
power consumption. The only early stage power analysis performed at ESL level is a static
one and it is not representative for complex use cases (only for worst/best case scenarios).
Given the increasing importance of power consumption, it is totally unacceptable to initiate
its advanced analysis so late in the design.

The methodology for power investigation and estimation, studied in this thesis, can be
efficiently placed in the beginning of the design flow and can improve design predictability,
early metrics extraction, and architecture exploration.

2.2.2 Theweight of power in the Power/Performance/Area (PPA) trade­
off

Nowadays, the power consumption is a major design constraint that can cause a number of
flaws due to a limited power budget, glitches, or suboptimal power intentions taken too late
in the design flow. The newly released Wilson Research Group and Mentor Functional Ver­
ification Study [38] shows that power consumption is still the third major flaw contributing
to ASIC design respin, despite the positive trend compared to previous years (Figure 2.6).
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Figure 2.6: Type of ASIC Flaws contributing to Respin

This positive trend stems from the significant involvement of IC engineers in the design
and development of energy­efficient systems and the improved understanding and appli­
cation of existing power reduction technics [39]. Using the same Wilson Research Group
studies [38] [40], we can compare the percentage of power­aware design projects in the two
most recent releases and conclude on the current involvement in the low­power design. From
2014 to 2018, there is no major changes in this percentage, but only from 2018 to 2020 we
have a 10% increase in favor of power­aware designs (Figure 2.7).

Figure 2.7: Designs that actively manage power

Unfortunately, this effort is not sufficient, because the heterogeneous designs of ASIC
and SoC are too complex and it is difficult to select and describe an optimal power intent
without penalizing the performance.
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2.2.3 Power estimation predictability issues at architecture specifica­
tion stage

Early stage power consumption estimates applied in the standard SoC design flow are lim­
ited to worst­case and best­case power consumptions and are not suitable for complex use
cases. In general, the idea of this analytical approach [41] is to use static technique based
on equations and Excel tables or automated tools that may work well for simple use cases
but are hardly applicable to complex ones. The activity factor is estimated for dynamic en­
ergy consumption using available information and leakage is approximated using some area
estimates. The basis for the calculations is data from IP data sheets and IP suppliers. Further­
more, it does not take into account the actual functional top­level platform, but the statically
calculated sum of the energy consumption of all IPs in the design. We can deduce some
simple data about the maximum and minimum power consumption at different temperatures
and the simplest IP states. With this approach, it is not possible to estimate the power con­
sumption of given test cases or the dynamic activity/behavior of the design (functional nor
power). Theoretically, we can start thinking about the implementation of the power manage­
ment strategy, but it is very difficult to optimize it and it is impossible to observe it. Figure
2.8 illustrate an example of input/output information used for this kind of power estimation.
Due to confidentiality reasons, only the titles are presented, and the values are masked. We
use information such as IP area estimations/data, clock frequency, supply voltage, number
of cores, transistor technology related data and others.

Figure 2.8: Power estimation ­ Static approach (Excel)

The approach studied in this thesis aims at improving the IP qualification and architec­
ture definition steps in the design of complex heterogeneous systems. This is achieved by
adding power modeling capabilities and allowing their reuse throughout the flow. Metrics
are not calculated manually for different states, but rather they are calculated and visualized
dynamically during the simulation. To this end, we reuse some of the inputs used in the first
static approach and pass them to the automatic power estimation tool. In addition, we asso­
ciate a power management strategy with the simulation, and observe its influence on power
consumption and functional behavior. The activity, clock and power metrics extracted for
the whole simulation are plotted and multiple reports are generated (assertion violations, er­
rors, inconsistency problems between power/functional models etc.). Our methodology is
implemented at the very beginning of the design flow, where system modeling is initiated
and ESL investigations are performed. In order to clearly express our main motivations and
the added value of this approach, we consider necessary to give a more in­depth overview
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of the system modeling design flow and the most significant reasons for the integration of
energy management/estimation approaches at the beginning of the design specification and
design. This is done in the next section.

2.3 Shift­left urgency: Kick­off the design flow with high­
level power/performance investigations

2.3.1 System modeling
System modeling is the process of specifying, structuring, and designing a given IC. In this
phase, we specify the functionality/behavior, concept, and architecture. Following the top­
down design process, we start the modeling process with the most abstract concept model,
followed by a functional/behavioral model. The result is an architecture model describing
both the structural decomposition and the behavior of the system.

System modeling flow and tools

The starting points for system modeling are the market and application requirements for
the product, where the functional and non­functional requirements and its application are
found. The system model consists of three main modeling tasks and each task delivers an
executable specification or requirements description (Figure 2.9). Thanks to the strong link
between these deliverables and the system model, the accuracy and design are continuously
verified, compared, and validated against the requirements. Executable descriptions are also
stored in a design database and serve as reference models during the flow.

Figure 2.9: System modeling flow

• Conceptmodel task – this is the first task, where we capture the customer‘s view of the
product. It should contain the definition of the intended functionality, programmable
features and targeted/supported interfaces and protocols. The model captures the ab­
stract behavior and structure, and it is represented by a high­level block diagram (for
example, using UML/SysML).
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• Functional/Behavioral model – in this task, we capture the behavior of the system.
This is done by modeling the algorithms and functionalities using languages or/and
tools, such as SystemC/C++ or Platform Architect [42].

• Architecture model – at this stage, we capture the architectural decomposition of the
system. The goal is to conceptualize the structure with bus interfaces, interconnects,
registers, and certain behaviors. At first, the intrinsic behavior of each IP is not mod­
eled. When the concept is clear, we start refining the IP‘s description by adding intrin­
sic structures and system level models describing the functionalities. For this purpose,
we create a framework combining the functional/behavioral SystemC models, TLM
interfaces and eventually the available more refined RTL­described blocks.

At the end of this stage of the main SoC design flow, we should theoretically be able to
synthesize the system model using HLS. Unfortunately, there is still a lack of good transla­
tion, due to poor optimization. A lot of work is put in place in order to improve the standard­
ized synthesizable subset of SystemC and to increase the optimization capabilities of HLS
tools [43]. Due to these limitations, these system models are typically used for functional
validation and reference models in order to enhance the RTL designing and verification.
Since we are using this kind of framework which is based on SystemC, TLM2.0 and VPs,
it is important to understand their semantics. Thus, the next few subsections are devoted to
their presentation.

Overview of SystemC

1. Introduction

SystemC is an open source event­driven system design language. Specifically, it is a
library built with the use of C++ classes that allows the hardware and software design
and verification using high­level language syntax.

Figure 2.10: Languages comparison [2]
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SystemC deliberately mimics the hardware description languages VHDL and Verilog
but is better suited for system level modeling, system‘s partitioning and architectural
exploration. It is a ratified IEEE 1666 standard defined by the Open SystemC Initia­
tive (OSCI) which later merged with the Accellera Systems initiative [44]. The main
purpose of this language is to offer the possibility to model hardware/software blocks
at various abstraction levels from RTL to transactional (Figure 2.10).
The most remarkable features and capabilities of SystemC are:

• Hierarchical decomposition – It provides processes and modules allowing to
implement complex hierarchical structures. Processes are C++ functions serving
to support the execution and the uncoupling of small concurrent/parallel pieces
of code which describe the behavior/logic of the design. They are generally en­
capsulated in modules that serves to better define large systems granularity and to
separate the large designs into smaller pieces. Modules are generally composed
of processes, interfaces, events, member data/functions and instances of other
modules.

• Structural connectivity – it provides communication mechanisms like inter­
faces, ports and channels enabling the communication between different mod­
ules.

• Scheduling and synchronization mechanisms ­ SystemC library provides syn­
chronization mechanisms like events and sensitivity lists for processes schedul­
ing.

• Concurrency ­ execution of several processes in parallel. A specific simulation
kernel is put in place to ensure that parallel activities are modeled correctly. Sys­
temC is a mono­threaded language (sequential execution) but emulates the paral­
lelism that takes place at the hardware level. For this purpose, it uses a scheduler
based on discrete event simulator principle [45]. This notion of concurrency fa­
cilitates the parallel modeling of hardware and software.

• Bit accuracy ­ SystemC provides all C++ variable types, but it is also enhanced
with other types close to these used in an RTL description. This way we can
execute bit level operations. For example, we have the types sc_logic, sc_bv,
sc_uint<size>.

• Simulation time progress ­ the notion of time present in SystemC allows to
model hardware components and communication mechanisms with their laten­
cies and tomanage the execution order of methods. Finally, we can derive metrics
related to power consumption and performance by using other additional libraries.

As previously mentioned, the discrete­event simulator of SystemC supports timed sim­
ulations. This feature is based on a specific SystemC guest clock. This clock is dif­
ferent from the host system wall­clock and it measures the simulation time from the
inside of the simulated system. As it is based on discrete events, it is not continuously
evolving, and it is known only for some instants of the continuous system wall­clock.
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2. Execution
Underneath the SystemC public shell defining all classes, functions, and macros is the
core functionality implementation private kernel. The execution of SystemC applica­
tion consists of two phases: elaboration and simulation (illustrated in Figure 2.11).

Figure 2.11: SystemC execution (simulation kernel)

The elaboration phase builds the modules hierarchy and prepare the execution with
some kernel support functions. At this level, the design structure is created and fixed
(cannot be modified during simulation), all ports and channels are bound, and all static
processes are declared.
The simulation phase is closely related to the kernel‘s scheduler responsible to plan
and choose a coherent processes execution. It can be seen as a closed loop with sev­
eral steps. The first step is the initialization step, where the first runnable processes are
prepared for simulation and the update and delta notification steps are executed once
before passing to the evaluation step. During the evaluation step a runnable process
is selected and executed. It can result in another immediate notification creating new
ready to run process. This loop is repeated until an update call is made or until all
runnable processes are finished. An update call brings the simulation to the update
phase step, where any pending call to update function are executed. If there are no
remaining pending calls, the simulation moves to the delta notification step. There, all
processes instances sensitive to the delta notification event are added in the runnable
processes set. Consequently, if the set is not empty, the scheduler returns to the evalu­
ation phase and restarts the loop. If it is empty, the scheduler checks for timed notifi­
cations, advances the simulation time to the time of the earliest timed notification and
adds the given event processes to the runnable processes set and executes. Finally, if
there are no more timed notifications, the simulation is finished.
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3. Processes
Processes play a key role in SystemC. As we previously mentioned, they allow us to
describe concurrent pieces of code and to simplify and structure our design. There are
several ways to describe and classify them. They can be automatically activated thanks
to events and sensitivity lists, but they also can be explicitly activated as normal C++
methods. Processes can be statically declared at elaboration time or dynamically de­
clared at simulation time. Generally, for the static declarationwe use three unspawned
process macros SC_METHOD, SC_THREAD providing two different execution mod­
els.

• SC_METHOD – is a method that can be run multiple times during simulation
but cannot be suspended during execution. The SC_METHOD is activated thanks
to its sensitivity list.

• SC_THREAD – is a versatile thread which is automatically executed only once
in the beginning of the simulation. One of the threads characteristics is that they
can be halted multiple times at any point of execution (using “wait()” function),
and this can be very useful during simulation. Thus, enrobing the thread in an
infinite loop is a great trick to prevent the thread reaching its sequential end, and
allowing us to have access to haltable processes during the entire simulation.

The dynamic declaration is done using the spawned process sc_spawn(). It allows us
to declare processes during the simulation time. This can be useful when the design
needs to respond to some conditions which are not known at the elaboration time.

Overview of TLM2.0

OSCI TLM2.0 standard [46] is an overlay of SystemC that allows us to simulate the com­
munication between the different modules/components in an abstract manner. HDL codes
require sending a large number of signals and connections between different inputs/outputs,
whereas with TLM2.0 a large part of these connections is abstracted and replaced by func­
tion calls. TLM is useful to hide complexity in more complex heterogeneous systems. Thus,
it increases the level of abstraction and it can speed up the simulation by a factor of x1000
(or more) compared to a classical RTL simulation. TLM2.0 is often used for architecture
exploration, building virtual simulation platforms and performance analysis.

Its predecessor, TLM­1, defined a set of core interfaces for transporting transactions, but
it was not well suited for the principles of today‘s SoC design methodologies, which are
mainly based on blocks assembling, 3rd party IP reuse and the choice between various com­
munication protocols. Moreover, simulations were still not fast enough, due to the realistic
model of data transfer. For this purpose, the TLM2.0 standard was developed in a way to in­
crease models’ interoperability and to define a common rule for protocols modeling. It also
replaced the data type used for inter­modules communication from data copy to a reference
to the data value. In this way, the simulation time is largely decreased. There are two main
sections in the TLM2.0 description allowing to increase the model’s interoperability and to
give larger use case testing possibilities.



2.3 Shift­left urgency: Kick­off the design flow with high­level power/performance investigations27

1. Interfaces and communication tools
The first section defines a set of Application Programming Interfaces (APIs) fixing
a common transaction transport methods and formats that ensure the interoperability.
The master/slave (also called initiator/target) semantics are followed and a common
data packet structures, called payloads, are used. These payloads are extensible and/or
replaceable, but their base provided with the standard is called generic payload. The
generic payload is closely related to the TLM2.0 base protocol defining the rules of
communication to ensure interoperability when using the generic payload. The generic
payload is designed to model memory­mapped buses. It includes the most impor­
tant attributes for communication between modules. These are the attributes found in
most protocols: command, address, data, byte enables, simple word transfers, bursts,
streaming and response status. The generic payload also allows the modeling of other
types of protocols, thanks to an extension mechanism with which it is possible to add
all attributes necessary to the specific protocol. The extensions mechanism does not
impose any restrictions on the number and type of extensions added. In fact, the exten­
sions are not stored in the generic payload, but in a memory external to the transaction.
The generic payload contains an array with pointers to the extensions associated with
the transaction in question. This allows to have fewer heavy transactions, because we
do not send the data, but only a pointer to this data. In addition, you can choose and
retrieve only the extensions that the transaction needs. The addition of extensions ex­
tends the basic protocol and makes it possible to model a specific protocol. However,
instantiating a large number of extensions enlarges the table and slows down the sim­
ulation. There are other ways to model specific protocols, but we will not go into the
details of these methods.
An initiator module is the one creating new transactions and sending them to the target
(or intermediate module) by calling a transport interface on its forward path (ex. Traf­
fic generator). The target module is the one accepting the transactions, and in some
cases, returning an acknowledgement on backward path (ex. Memory module). These
paths are created using the so­called sockets. The socket is the combination of a port
(sc_port) and an export (sc_export). The sc_port handles outgoing transactions, and
the sc_export handles incoming transactions. Thus, there are two types of sockets ­ Ini­
tiator socket and Target socket. The connections between the sc_port of the Initiator
and the sc_export of the Target are called forward path and the connections between
the sc_export of the Initiator and the sc_port of the Target are called backward path
(Figure 2.12).

Figure 2.12: Sockets and connections
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Initiator sockets provide the interface method calls on the forward path, and an export
for interface method calls on the backward path. Target sockets provide the oppo­
site. There are also more elaborate sockets, which offer additional features. These are
called convenience sockets. Each type of convenience socket implements additional
functionality to make the component models easier to write. They derive from the
classes tlm_initiator_socket and tlm_target_socket which are the basic sockets. For
our application, we are interested in two types:

• simple_initiator_socket / simple_target_socket

• simple_initiator_socket_tagged / simple_target_socket_tagged

Simple sockets (including simple_socket_tagged) are so called because they are in­
tended to be simple to use. They are derived from the interoperability layer sock­
ets tlm_initiator_socket and tlm_target_socket and can therefore be directly linked to
sockets of those types. Instead of having to bind a socket to an object that implements
the corresponding interface, each simple_socket provides methods that register call­
back methods, called register callbacks. These callbacks are in turn called whenever
an incoming interface method call arrives. Callbackmethods can be registered for each
of the interfaces supported by the socket.

A core feature in TLM2.0 are the transport mechanisms, and more precisely, the trans­
port interfaces. The standard sockets provide all transport interfaces and enable their
parallel execution. There is a blocking transport interface transferring fast untimed
transactions with higher level of abstraction. It is largely used for software model­
ing in combination with Loosely­timed (LT) coding style (detailed later in this sec­
tion). There is also a non­blocking transport interface giving more control on the
transaction and its timing. This is done by separating the interface in two parts – for­
ward and backward interfaces. These interfaces enable us to cut the transactions into
multiple phases and associate a timing points to each part of the transfer. It is gen­
erally used for hardware modeling and architectural exploration in combination with
the Approximately­timed (AT) coding style (detailed later in this section). There are
other interfaces, such as DMI interface and Debug interface, but they are out of the
scope of this thesis.

2. Coding style

In TLM2.0 there are two predefined coding styles. These styles are not mandatory, but
they bring simplicity and clarity to the code writing. They are Loosely­timed (LT)
and Approximately­timed (AT).

• Loosely­timed coding style is often associated with the blocking transport inter­
face. This interface allows only two synchronization points to be associated with
each transaction, corresponding to the call and return of the blocking transport
function. In the case of the basic protocol, the first time point marks the begin­
ning of the request and the second marks the beginning of the response. These
two timing points can occur at the same time in the simulation or at different
times. This coding style is suitable for the use case of software development us­
ing a SoC virtual platform model, where the software content may include one
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or more operating systems. We will not go into detail about this coding style,
because we do not use it in our model.

• Approximately­timed is supported by the non­blocking transport interface, which
is suitable for use cases in architectural exploration and performance analysis.
The non­blocking transport interface allows synchronization between transmis­
sion phases throughout the lifetime of a transaction. For approximate modeling,
a transaction is decomposed into multiple phases, with an explicit timing point
marking the transition between phases. In the case of the base protocol, there
are exactly four timing points marking the start and end of the request, and the
start and end of the response. Specific protocols may add additional synchroniza­
tion points, which may result in the loss of direct compatibility with the Generic
payload. Each process typically executes in a lock phase with the SystemC sched­
uler. Process interactions are annotated with specific delays that are associated
with different types of transactions (read or write).

In our study we use the non­blocking transport interface and the Approximately­
timed coding style. An approximately­timed transaction consists of 4 phases:

• BEGIN_REQ and END_REQ (Start/End of the request)
• BEGIN_RESPONSE and END_RESP (Start/End of the response)

A timing annotation can delay the timing point for a phase transition. This is done by
using a sc_time argument, which is sent with the non­blocking transport interface and
is called delay. Since the communication is bidirectional, with a forward path and a
backward path, we need two non­blocking transport methods ­ nb_transport_fw and
nb_transport_bw. The execution of these methods is done by function calls.
Note: For example, the initiator creates the payload and passes a reference to this
payload on the forward path. The initiator calls nb_transport_fw interface of the ini­
tiator socket, which calls the method registered as callback in the target. Similarly,
the target answers using the nb_transport_bw interface of the target socket.
On reception of each phase, the calling module responds with a return signal which
validates the correct reception. This signal is called return value and can take three
values:

• TLM_ACCEPTED ­ this value indicates that the callingmodule does not change
the phase, time or transaction object during the call. The called module can ne­
glect the values of the nb_transport arguments that were returned, because they
are unchanged. Thus, the return path can be considered unused.

• TLM_UPDATED ­ The calling module changes one or more arguments in the
transaction object. This means that the return path is used, and the calling module
moves to the next state in the protocol state machine.

• TLM_COMPLETED ­ The calling module modifies the transaction object and
the transaction is completed. There are nomore transfers related to this object and
the called module can test the response status to make sure that the transaction
has been completed.
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3. Memory management

Figure 2.13: Memory management

In Figure 2.13 we notice that the main blocks point to a Transaction object. This is
also a feature of TLM2.0 that helps to optimize the code. The transaction object is lo­
cated in a storage space called Transaction pool which is part of a TLM2.0 tool called
generic payload Memory Manager. The Memory Manager is a user­defined class that
inherits from the tlm_mm_interface and tlm_generic_payload classes. It contains all
transactions and takes care of, at least, their allocation and release. The memory man­
ager provides an acquire()method to allocate a generic payload transaction object from
the transaction pool and implements a free() method to return a transaction object to
the same pool.

The initiator is responsible for setting the attributes of the object that was retrieved
from the existing storage (transaction pool). He must not delete this storage before the
end of the transaction lifetime. Each block calls the acquire() method when the trans­
action is received and release() when it is released. These two methods increment and
decrement the reference counter. The free()method is called by the release()method of
the tlm_generic_payload class when the reference count of a transaction object reaches
0.The construction and destruction of objects of type tlm_generic_payload are costly
in terms of execution time of the simulation, because of the implementation of the array
of extensions contained in the generic payload, hence the Memory Manager.

To summarize and conclude on this tool, we can say that the memory manager helps
us to manage the allocation of transactions, in order not to build and destroy several
objects of type tlm_generic_payload. To do this, we use the transaction pool containing
a limited number of objects, which we reuse for each transaction.

The same principle is used for each block. In Figure 2.14 we can see an example of how
a transaction is executed in a simple model. The Traffic Generator creates the Transac­
tion pool, retrieves the pointer to the transaction object, associates the address, order,
size and all other attributes with it and sends the BEGIN_REQ request to the next block
on the forward path. On reception, the following block accepts the transaction (by a
TLM_ACCEPTED signal sent on the return path of the forward path) and increments
the reference counter (by the acquire() method). Then it performs its processing on
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Figure 2.14: Memory manager and non­blocking interfaces

the transaction, returns END_REQ to the previous block and BEGIN_REQ to the next
block. The Target receives this request, accepts it and responds on the backward path
with an END_REQ to inform the previous module that the request has been accepted.
Once the END_REQ phase has arrived and been accepted by the Initiator (Traffic Gen­
erator), the Target (Memory) sends the next phase BEGIN_RESP. During this phase
the request to write or read to the memory is executed and when the execution is com­
plete, the Initiator sends the new phase END_RESP which ends the transaction. On
receiving END_RESP, each block releases the object using the release() method.
Thanks to these SystemC and TLM2.0 functionalities and semantics, we are able to
create early timing approximative Virtual Prototypes of the design.

Virtual Platforms (VPs) using SystemC/TLM

SystemC/TLM­based Virtual Platform‘s (VP) purpose is to model and simulate the
SoC behavior at a sufficiently high level of abstraction and high execution speed. How­
ever, the hardware model must be accurate enough to enable the parallel development
and testing of software. VPs aim to improve the design flow and start the software de­
velopment in parallel with the hardware. They can be used for multiple purposes like
early software development, as a golden reference for hardware verification, design
functional verification, architecture exploration, soft IP vendors early models etc. The
major advantages of VPs are their controllability (being a software program), visibil­
ity (thanks to simple observation and analysis tools), portability (can be easily shared
across distributed teams) and determinism (reproducing fixed test cases). A VP con­
tains multiple hardware blocks, that can be modeled at different abstraction levels. It
enables the co­simulation between functional, TLM and RTL models. In this way, we
can directly include reused IPs, with already existent RTL, and simulate them with
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our new IP models, at different stages of their development. However, the simula­
tion speed is kind of proportional to the level of abstraction. The RTL models slow
down the simulation and it is better to use accurate SystemC and TLM2.0 models in­
stead. Many industrial solutions, such as [42] [47] [48] and some academic solutions,
like [49] [50] present frameworks or/and several emulators allowing to accelerate the
process of prototyping and to use libraries of already tested models.

2.3.2 The necessity of early stage power and performance dynamic
estimation

With the increasing use of battery­driven devices, the importance of power consump­
tion increases drastically. As mentioned earlier, in the current flow the device power
modeling is initiated at RTL level, which is already an advanced stage of the flow.
Therefore, it is risky to “neglect” power in its preceding steps. At the RTL level, in
order to reduce complexity, power modeling is applied individually to each IP and can
be effective at this level. However, the complexity and the fact to apply IP­level power
optimization leads to extremely high simulation time for the top­level and difficult ver­
ification. We believe that there is a lot of room for simplification and extension in the
study of power consumption during the design flow. Thus, following the shift­left ten­
dency in its evolution, we have studied a few more hypothetical steps by raising the
level of abstraction. The biggest gap here comes at the very beginning of the flow.
In the early stages of architecture definition, we have only a rough idea of what en­
ergy consumption can be. As explained page 21, at this stage, architects are swapping
between calculations, specifications, manufacturers‘ documentation, tables, and Excel
sheets. Hence, there are not many tools or methodologies to help architects define an
optimal architecture and power intent. The lack of automation in the architectural ex­
ploration process is one of the well­known flaws in the design flow. At this point, the
power consumption can be optimized through careful components and power manage­
ment strategy selection, but this is not obvious without Simulation­Based Dynamic
Analysis (SBDA), verifications and exploration.

2.3.3 Power­aware IP­reuse and Platform­Based Design (PBD) ex­
tension to ESL VPs

Over the yearsmanywell­established designmethodologies and tools have been adopted
to simplify the advanced designs handling and reduce expenses. All these methodolo­
gies are based on the idea of raising the level of design abstraction and automating
complex and time­consuming workflow processes. A well­known and widely used
methodology to reduce the cost, effort and time­to­market of designs is the IP­reuse
or Block­Based Design reuse (BBD­reuse). Today, it is unthinkable to write a com­
plete RTL HW design from scratch for complex chips [51]. This approach completely
revolutionized the SoC design flow and pushed us to a block­based ‘lego’ approach,
combining soft, firm and hard macros. However, this introduced other new challenges
and constraints [52]. Following the same principles, the Platform­based design added
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another layer of abstraction and made possible the reuse of entire platforms composed
of multiple IPs. Since developing designs or platforms for reuse takes much more
time and effort than developing standard non­reusable designs, it may become more
expensive to make them than to purchase them. Therefore, the ”plug and play” design
approaches with high­quality third­party IPs is often preferred, but the development of
reusable internal macros are inevitable for final product differentiation.
In this line of though, VPs and languages like SystemC and TLM2.0 allowed us to
extend these methodologies to the system level and to simplify the functional model­
ing and performance analysis. Thanks to this approach we found a way to efficiently
evaluate hardware components early in the design process and extract some impor­
tant metrics. However, the early power analysis still suffers from the lack of a good
methodology for dynamically evaluating the impact of different use­cases on power
consumption and a methodology for power intent reuse. The early power analysis can
be extremely beneficial for the entire design flow because it can help us avoid errors
and unnecessary design respins, present early metrics to our customers and serve as a
golden reference for the rest of the flow (details on benefits from early power analy­
sis will be presented in the next chapter). In the same time, the insertion of portable
and reusable power description to each IP (creating power­aware IP) can increase our
productivity and decrease the time­to­market period.
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Chapter 3

Put it all together: Early
Power/Performance estimations – State
of the Art

3.1 Design Space Exploration (DSE) ­ challenges and ben­
efits

Design space exploration (DSE) is a term referring to the exploration of different design
options and their comparison based on design specific parameters of interest. These parame­
ters depend on the systems that we want to model, but the most common ones are the Power,
Performance, Area and Cost (PPAC).

The sum of the challenges presented in Chapter 2 has led to many researches on the
industrialization of higher­level SystemC/TLM DSE and more precisely on power and per­
formance estimation methodologies. At system architecture definition one main task is to
balance between PPAC of the chip by investigating different architecture options and pos­
sible bottlenecks. Adding abstraction layers to the design flow is an already proven and
widely adopted technique for this. In fact, modern digital design flow is entirely based on
an approach combining abstraction, decomposition, and refinement techniques, masking the
complexity of the schematic connections of electronic components. By increasing the level
of abstraction, implementation details can be ignored with justified and limited timing and
accuracy loss. Omitting these implementation details and using high­level languages for
the first functional models allows us to increase simulation speed and reduce coding effort.
Thus, the system level exploration of design scenarios is way more manageable and faster
than at RTL level. Multiple architecture options can be tested with lower effort and cost than
at RTL level. The DSE can be divided in two main areas: Formal analytical method and
Simulation­based method.

Formal analytical methods are often used as the first step in the flow, as they can be
very accurate for best­/worst­ case estimations. There are many variations and mathematical
solutions based on different holistic and combinatorial approaches and tools [53] [54] [55],
and for many years this method has been the golden standard. The strategy was mainly to
use individual components analysis and later extrapolate them to the complete system. With
the increase in design complexity and the insertion of shared resources, the designs behavior
became more interdependent and difficult to predict and analyze.
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Therefore, the simulation­based methods took the privilege for a while with the trend for
full system simulation. The most commonly used simulation­based methods for early stage
design space exploration are based on execution­ or trace­ driven models, because these
methods are more flexible and can be applied for specific use cases [56] [57] [58]. How­
ever, the number of IPs in a chip keeps increasing from one generation to another, making
simulation­based methodologies too slow and complex. Using SystemC/TLM2.0, we are
able to apply a combination of several important techniques related to the execution of these
tasks. One of them is the ”divide and conquer” [59] technique, which consists in decom­
posing a module into sub­modules and the sub­modules into blocks to obtain a manageable
complexity. This technique allows for the natural creation of reusable and similar blocks;
it thus reduces the verification time of the functional model. In addition, it enforces block
locality and independence, which facilitates the portability of our power and performance es­
timation techniques (described later). Combined with a top­down design approach it allows
for better control over granularity and complexity.

However, one major, still relevant, challenge is that there is no single standard level of
abstraction that provides maximum accuracy, fast simulation, and minimal coding effort.
Often, greater abstraction means lower precision and lower abstraction means slower simu­
lation speed. Thus, we must always keep in mind that in order to obtain optimal results for
estimating power and performance metrics, we must implement sufficiently accurate Sys­
temC/TLM models, where “sufficiently accurate” is not a constant, but a variable term and
this remains an open issue. We should efficiently model the hardware functionality and in
the same time, we should keep the high level of abstraction in order to maintain acceptable
simulation speed.

Different studies try to evaluate and balance the trade­off between accuracy and simu­
lation speed/performance. In [60] [61], a comparison between latency error measurements
at different modeling detail levels is performed. In [62] we can find some techniques and
simple rules allowing to simulate relatively accurate SystemC/TLM­based VPs with OS and
software/firmware (SW/FW), while optimizing the simulation speed. Another approach is
taken in [63] [50] [64], trying to benefit from the host system computational power, paral­
lelize the simulation and distribute it between multiple cores. However, as the nature of our
study is not closely related to simulation speed and parallelism, we target this issue by con­
centrating our development effort on the reduction of context switching and following some
well­known C++ coding guidelines [65] [66]. The meaning of “sufficiently accurate” can
be also different depending on our target. The power estimation methodology used in this
approach is based on the activity/transactions observation and some timing information. The
performance estimation methodology takes additional information on transactions ordering,
buffering, pipelining and treatment, so it demands more functionally accurate model. Fortu­
nately, using SystemC/TLM­based structured development, the model refinement is easily
manageable and estimates extraction can be done at each refinement.

Generally, the energy consumption can be considered as part of the performance metrics
of the IC. However, we will consider it as a separate measure for reasons of separation of con­
cerns and because its introduction to the ESL is the main contribution of our new approach.
In this chapter, we will:

1. Review the existing methodologies for early­stage performance and power estimates,

2. Present the library we use for power intent description and power estimates,
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3. Provide a brief overview of the SoC family used for demonstrations in this study.

3.2 ESL Performance modeling & estimation methodolo­
gies

3.2.1 Introduction
Chip performance analysis is a critical point for the design of advanced heterogeneous sys­
tems; therefore, it is inevitable to incorporate early performance estimates into the flow.
Using the Simulation­Based Dynamic Analysis (SBDA) approach, the accuracy of the per­
formance estimation depends largely on the accuracy of the functional model. The more
the functional model respects the actual behavior of the hardware and its timing, the more
accurate the performance estimation will be. This section is devoted to some key points of
performance estimation of a memory­based system. In order to perform this estimation, we
need to be able to configure several limits for each IP. In memory­based systems, some of the
most important configurable parameters are READ/WRITE access delays, MAX/MIN arbi­
tration delays, port width, and burst length. The key metrics for performance evaluation are
bandwidth and latency, deadline respect for real­time systems, the influence of configura­
tions on performance. Of course, the existence of application­specific performance metrics
requires the ability to add user­defined performance observation and estimation models in a
simplified way. In order to accurately configure our models, we need to take into account
some functional and physical information such as communication delays, communication
protocol, and initial floorplan ideas.

Some of the metrics used for accuracy quantification are:

• Transaction duration ([sec] or [cycles]) ­ Time between the start and the end of each
transaction.

Tduration = EndTime− StartT ime (3.1)

• Throughput ­ Number of transactions during the total simulation time or during a
given time frame. It can be represented in [Bytes/sec] or in a more abstract way [trans­
actions/sec]. The term Data in the following equation can represent the size of each
transaction or a count of the number of transactions.

TP =

∑Transnumber
n=0 Data

TotalT ime
(3.2)

• Transaction reordering ­ Important for modules receiving/transmitting multiple si­
multaneous transactions. The accurate modeling of transactions order can have a sig­
nificant impact on performance estimation accuracy. There are two main types:

– Port Transaction ordering ­ ordering on each port
– Global Transaction ordering ­ global view on system

If we have the RTL model, we can also perform the correlation between RTL and ESL
results for each metric by running the same use cases on both models.
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3.2.2 Existing approaches and related works

There are many ways to approach this problem. Solutions for performance estimation can
be more generic and reusable for several types of components, they can be solely processor
or memory oriented, or specific to another type of component.

In [67], the authors propose a framework based on SystemC and the older version of
TLM (TLM­1). They provide a library of reusable components for executing and observing
computations and specific channels for delay observation. Their strategy is based on cycle­
accurate (not fully functional) performance models propagating predefined delays. This ap­
proach hasmany limitations, as TLM­1 does not target interoperability issues and is therefore
not suitable for heterogeneous SoCs and their complex communication models.

A performance estimation of a NoC, based on an internal traffic analyzer (SystemC/TLM
target module) is performed in [68]. They use Loosely­timed transactional level models and
study latency and throughput for different mesh and traffic configurations using this traffic
analyzer. The LT coding style allows for very fast simulations, but it is difficult to model
the specific semantics of communication protocols. The loss of accuracy will therefore be
significant when modeling complex SoCs.

Similarly, the authors of [69] propose another framework containing a parameterizable
SystemC/TLM router base structure for recording a set of measurements during simulation.
They also provide utility components and correctness verification. The main performance
metrics evaluated in this approach are overall average latency, fifo occupancy, total data
transfers, and average distance (hop count).

A processor­oriented approach is presented in [70] where the synchronization model is
attached to processor core models (RISC­V HiFive1 case study). Three main components
track runtime dependencies related to synchronization (pipeline), branch and jump predic­
tion, and cache hit/miss. The authors indicate that this approach can be extended by integrat­
ing a complementary synchronization model of the bus system.

There are also open­source EDAs and methodologies available to model, debug, and
explore architecture options and their performance at the ESL level.

For example, in [8] the authors propose a flexible DRAM subsystem design space ex­
ploration framework based on SystemC/TLM2.0. It can be used with a standalone simulator
or it can also be coupled with gem5 simulator and TLM AT­complient libraries. A special
Trace Analyzer (not open­source) is used to explore the usual performance­related outputs,
such as requests/responses/commands trace. These traces can be evaluated using the Python
interface of the Analyzer. Similar approach is taken in [71] solution.

Another framework allowing the modeling and analysing of ESL virtual platforms is
presented in [72] [73]. It contains a library of many useful models and utilities simplifying
the construction of virtual platforms. It also contains analysis tools allowing to add various
counters for throughput and activity monitoring.

Industrial solutions and frameworks like [42] [47] [48] [50] are very complete and widely
adopted when talking about design conception and performance analysis. These frameworks
and tools present large model libraries and enable the in­depth transactions monitoring, tim­
ing tracking and performance estimations.
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3.2.3 Performance summary
In general, performance analysis is relatively easy to perform when we have an accurate
functional model of the platform. Since SystemC and TLM2.0 allow virtual prototyping at
an early stage, we can have functional models relatively early in the design flow. Thus, many
modeling and performance estimation solutions already exist and are widely adopted at the
system level. For this reason, the goal of this study is not to compete with and innovate ex­
isting performance estimation approaches. Our study focuses on ESL­level power modeling
and estimation problems, as they remain an open topic and there is no widely accepted solu­
tion. Our performance estimation technique is presented only to prove that our framework
can be used for the joint study of power and performance.

3.3 ESL Power modeling & estimation methodologies

3.3.1 Introduction
Earlier, we explained the design flow, discussed the importance of power estimation, and
mentioned the fact that power estimation methods are usually applied at low level. The main
reason for this is the low­level information needed to effectively estimate power consump­
tion.

However, using generic CMOS power equations and IP area estimates or data extracted
from IP reuse reverse engineering methodologies, we can obtain fairly accurate estimates
even at the system level with SystemC/TLM models. Which estimation and approach to
take often depends on the information available and the flexibility targeted. For example, a
top­down approach based on experimental characterization of the power of existing devices
can give very good accuracy, but its flexibility and subsequent availability may be limited.
This lack of flexibility may make them unsuitable for initial power studies, but making them
more application specific can reduce their complexity and speed up simulations. This type
of model, once validated, can be used in broader platforms aimed at developing/integrating
new device models based on a bottom­up approach. The bottom­up approach is better suited
to study power management, due to its flexibility and adaptability to different specifica­
tions. However, for power estimation and modeling, we can use already available functional
models (top­down approach) and wrap them with reconfigurable power models (bottom­up
approach). In this way, we can start the power study with a less precise configuration of the
power intent and readjust it as the flow progresses (reducing the abstraction). This method­
ology allows us to have a semantically correct exploration of ”what­if” power management
strategies with less precise estimates of power values at the beginning, and to increase the
precision with progress. In all cases, we can base our approach on standard power equations.

The energy E [J] is calculated as the time integral of the instantaneous power:

E =

∫ t

0

P (t)dt (3.3)

The classical power equationP(t) [W] is the product of the voltageV(t) [V] and the current
I(t) [A] flowing in the circuit (3.4).

P (t) = V (t)× I(t) (3.4)
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In many cases, V(t) remains nearly constant, so the only variable that needs to be calcu­
lated is the current drawn I(t).

The power dissipation of an SoC can be divided into two general parts:

• Static Power ­ often due to transistor leakage current.

• Dynamic Power ­ due to the switching activity of the transistors.

The total power consumption is simply the sum of these two parts.

Ptotal = Pstatic + Pdynamic (3.5)

Static Power [W]

As mentioned above, static power consumption is due to several current flows and one of
them is the transistor leakage current. In CMOS architectures, the leakage current is respon­
sible for almost all of the static power consumption. In more recent technologies, there are
more contributors, but in our methodology, we only consider the leakage current, because
at this level of abstraction, it is difficult to predict the behavior of the other contributors.
Therefore, it is easy to deduce that in modern SoCs, this leakage part becomes more and
more important, due to the higher density of transistors. Static power is the product of power
supply (V) and leakage current, which depend on the technology. It is observed when a de­
vice is powered, but no information/signal is transmitted. In other words, it is the so­called
”sub­threshold” or ”leakage” carrier diffusion current, appearing between the source and
the drain of the transistors when the gate voltage is lower than the threshold voltage.

Pstatic = V × Ileakage =
V 2

Rleakage

(3.6)

Dynamic Power [W]

Dynamic power is the result of charging and discharging the CMOS transistors’ load capaci­
tance. It is therefore only observed when the device in question is active and carrying signals.
It is related to two important factors, namely the short­circuit currents and the switching cur­
rents.

Pdynamic = Pshort−circuit + Pswitching (3.7)

The short­circuit power is the power dissipated by an instantaneous short­circuit connec­
tion when the gate changes state.

If we observe a simple CMOS inverter structure (Figure 3.1), the upward movement of
the voltage (Vin) leads to a simultaneous switching of the two transistors, which creates, for
a short time, a direct path between the power supply and the ground, giving rise to a short­
circuit current. The expression of the short­circuit dissipated power is:

Pshort−circuit = V dd× Isc (3.8)

In general, during an increasing voltage operation (Vin), the output load capacitance (C)
alternately charges and discharges, resulting in power dissipation. In theory, if all the tran­
sistors switch at the same time and on every cycle of a clock, then the dynamic power is the
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Figure 3.1: CMOS inverter

product of the transistor’s load capacitance (C), the transistor’s supply voltage (Vdd) squared
and the frequency (F). In reality, we will never have all the transistors switching at the same
time, so for each IP we can add an activity factor (α) with a value between 0 and 1, which
will be in charge of modeling the average activity according to the number of transistors
switching.

Pdynamic = α× C × V 2
dd × F (3.9)

In the literature it is considered that the short­circuit power is negligible compared to the
switching power, so it is often ignored.

Total Power [W]

(3.5), (3.6) and (3.9), results in the total power equation:

Ptotal = (
V 2

Rleakage

) + (α× C × V 2
dd × F ) (3.10)

The parameters in this equation are obviously technology dependent. Some of them can
be easily found in device datasheets, others can be inferred from previous simulations or
physical measurements (in the case of IP reuse), and still others can be estimated for the
first time to compare different architecture/power intent strategies and refined during the
development cycle. The strategy is explained in Sections 3.4 and 4.6.

Existing power reduction techniques play with some of these parameters, such as clock
frequency and supply voltage, to reduce the power consumption of the device. The idea is
to adapt the power consumption to the needs of the device, in order to provide the optimal
power for the execution of the given task. Some of them target static power consumption,
some target dynamic power consumption and still others can influence both.

Static power reduction techniques

The successful reduction of the CMOS supply voltage Vdd in modern technologies has led
to the reduction of the transistor threshold voltage Vt. This has introduced some negative
effects, such as increasing the leakage current and thus the static power consumption. Con­
sidering the positive effects of the decrease in supply voltage, it was inevitable to implement
more mechanisms to maintain this trend and limit these leakage currents.



42 3. Put it all together: Early Power/Performance estimations – State of the Art

• Multi­Vdd ­ a multi­voltage supply that provides a high voltage Vdd to the high perfor­
mance transistors and a low voltage Vdd to the low performance transistors. Thus, the
cells of the circuit belonging to a critical path would be supplied by relatively high
voltages, in order not to degrade the overall performance, while the other cells could
be supplied by lower voltages. In this way, the static power can be largely reduced.

• Multi­Vt and Body Biasing ­ Multi­Vt and Body Biasing are used to adapt the threshold
voltage to the system requirements. The principle is that transistors on critical paths
operate at a low threshold voltage Vt while others can have a high Vt with a low leakage
current. In theAdaptive BodyBiasing (ABB) an adaptive system controls the threshold
voltage Vt, by changing the substrate voltage, and the Vdd according to the performance
requirements of the application so as to have an optimal leakage current. This system
continuously checks and adjusts the substrate voltage to achieve a constant leakage
current.

• Power Gating ­ Power gating is performed by cutting off the supply voltage to inactive
blocks in the circuit. The supply voltage to these blocks is temporarily cut off to elim­
inate leakage currents. When a block in the circuit needs to return to the active state
(perform an operation), the supply voltage can be reapplied. For this purpose, properly
sized pMOS and nMOS transistors are used. In order to stabilize Vdd, additional delay
and energy are required.

Dynamic power reduction techniques

Since dynamic power consumption is strongly related to the switching activity of the tran­
sistors, we can reduce it by optimizing the terms of the equation (3.9). We can reduce the
activity factor (α) by reducing the number of switching transistors. We can also reduce the
load capacity (C) by reducing the length of the connections. The terms over which we have
a little more control are the frequency (F) and the supply voltage Vdd. We can, for example,
decrease or cut clock frequencies for separate inactive logic cells. Here are some widely
adopted techniques:

• Pipelining and parallel processing ­ These techniques are twofold and can be used to
replace, for example, a single­core architecture with an architecture containing multi­
ple cores running in parallel at a lower frequency. If a computation can be pipelined,
it can also be executed in parallel. In this approach, we trade area for energy dissipa­
tion. The frequency is decreased, which means that the computation time of a given
function is increased. Thus, the supply voltage can be reduced (readjusted to the prop­
agation delay). This approach does not fall within the spectrum of our study as it is
more oriented towards processing units, but a more detailed description can be found
in [74] and [75].

• Clock Gating ­ Clock gating is the best technique for reducing the dynamic power. The
reason is that clock signals are mandatory in every synchronous circuit. The switching
rate of this clock signal is very important and is a major consumer in the circuit. Its
functionality is somehow similar to that of power gating. We cut the clock signals of the
unused components in the circuit. Cutting the clock signals of idle components can lead
to significant power gains (up to 70%). To apply this technique, we need to divide the
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circuit into areas belonging to different clock domains (groups of components receiving
clock signals from the same source clock). In this approach, when a set of flip­flops
is clocked by the same clock signal and the same enable signal, we can mix these two
signals by a simple AND gate. This leads to a clock signal being active only when
its enable signal is also active. However, this type of operation modifies the clocks
themselves and must be implemented very carefully. A more detailed description can
be found in [76].

• Dynamic voltage and frequency scaling (DVFS) ­ DVFS is an active power reduction
technique based on supply voltage and frequency scaling [eq. (3.9)]. The frequency is
directly related to the supply voltage, so we can think of a reduction technique using
this relationship. A decrease in the value of the supply voltage results in a quadratic
reduction in power, and a decrease in the value of the frequency results in a linear re­
duction in power (this can be seen in the equations (3.10) and (3.9)). An additional
benefit of the voltage reduction is a collateral reduction in static power. However, if
we reduce the value of the transistor frequency, we immediately increase the response
time. Thus, in order to use this technique safely, we must consider the time constraints
and ensure that they are met. In this case, it may be beneficial to use an Operational
Performance Point (OPP) table containing a frequency and its associated supply volt­
age. When the frequency changes, the OPP table is consulted and the corresponding
new voltage is applied.

To illustrate the importance of these power management strategies, we consider a very
theoretical and schematic example. Figure 3.2 shows an example architecture where we run
a periodic computational traffic load with a large idle cycle between activations. Here we
can observe the difference between the power behavior of a simple (non­power­aware) archi­
tecture and a power­aware architecture. In Figure 3.2a the static power remains constant and
the dynamic power varies with activity. In Figure 3.2b we apply clock gating whenever the
activity is zero and we apply power gating only when the IDLE mode is longer (to avoid too
much states switching resulting in higher power consumption). In this schematic example,
only power gating and clock gating mechanisms are applied and the power consumption is
already significantly reduced.

Figure 3.2: Architecture with and without power optimization
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3.3.2 Voltage, Power and Clock domains
Voltage domain

The voltage domain is a single power domain or a group of power domains supplied with the
same voltage value defined for that domain. The supply voltage is supplied to the voltage
domain by an internal or external voltage regulator and is distributed in the circuit by supply
rails. This distribution is achieved by the external voltage regulator method, based on a
specific circuit called Power Management Integrated Circuit (PMIC) or on integrated
voltage regulators in the case of the internal method. In some cases, the voltages can be
adjusted (or cut) dynamically using operations internal to the circuit. As mentioned earlier
in this section, reducing the supply voltage of some components can have a significant and
direct impact on the total power consumption. High­performance blocks (such as the CPU
and GPU) can often require a higher supply voltage than low­performance components (such
as some interface controllers). Therefore, it may make sense to include them in two different
voltage domains. Figure 3.3 is an example that shows the distribution of voltage domains
applied in the NXP i.MX8M Quad [77].

Figure 3.3: NXP i.MX8M Quad power rails
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Power domain

The power domain is a group of blocks powered by the same voltage regulator and an ar­
ray of power switches distributed over the area of the power domain. It can have a hier­
archical structure, so a power domain can contain one or more other power domains. In
the example shown in Figure 3.4 there are five power domains: PD_TOP, PD_INTERC,
PD_DRAMCTRL, PD_DRAMCTRL0 and PD_DRAMCTRL1.
These power domains are supplied by two different voltages. The top power domain con­
taining all the others is called PD_TOP. PD_INTERC is a non­switchable power domain
and its power supply cannot be switched off. PD_DRAMCTRL contains two power do­
mains ­ PD_DRAMCTRL0 and PD_DRAMCTRL1. The PD_DRAMCTRL power domain
can have its power cut off via switch SW0, thus PD_DRAMCTRL0 and PD_DRAMCTRL1
receive no power. If SW0 is closed, we can cut the power supply of PD_DRAMCTRL0 or/and
PD_DRAMCTRL1 separately, if one of them is inactive, via the switches SW00 or/and SW01
respectively.

Figure 3.4: Example of Power domains structure

This example is a simplified version of the power domain distribution. In general, in order
to synchronize and optimize the communication, power consumption and efficiency of the
low­power design, specific components have been developed. For example, there are level
shifters allowing to normalize signals transferred from one power domain to another, there
are isolation cells that set a logic level to 1 or 0when the power domain fromwhich the signals
originate is power gated (not supplied), and there are retention registers allowing to save
the state/data of inactive (power gated) power domains. These components are mandatory
for low­power design to eliminate functional bugs and remove the possibility of undefined
behavior. The disadvantage of these specific components is that they add delays, increase
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complexity, and some of them can result in significant area overhead. For this reason, some
trade­offs must be made in defining the power domains and their granularity.

These principles of structuring the division of circuits into power domains are well cov­
ered by the UPF standard (detailed later in the section).

Clock domain

A block in the hardware architecture may require one or more clocks to operate. A clock
domain is a set of blocks clocked by synchronous or constant phase clock signals coming
from the same source. Unlike the case of power domains, there is no hierarchy possible in
a clock domain. The clock source of a clock domain can be an external signal or a signal
generated internally from an external signal. Often, a Digital Phase Locked Loop (DPLL)
is associated with each clock domain, allowing a multiplication and division factor to be set
at initialization or dynamically. This DPLL represents the primary source clock of the given
clock domain and its outputs are connected to the different blocks that make up the clock
domain. The logic for this clock distribution and control of the clock tree is usually integrated
intoClockManagement blocks (CM) located between the clock generator and the function
blocks. These CM blocks typically consists of multiplexers, dividers and gates to enable or
disable the clock. The logic can be controlled by HW or SW and allows us to control the
clock more finely, which can allow us to optimize the trade­off between performance and
power consumption. An example for clock domains partitioning is shown in Figure 3.5.

Figure 3.5: Example of clock domains structure

Dividing a circuit into voltage domains, power domains, and clock domains define the
knobs a power management strategy can play with. Defining the right configuration of those
knobs can significantly reduce the power consumption of the device without affecting the
behavior of the application being executed.
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The implementation of power reduction techniques, such as those presented above, re­
quires the use of several tools and standards that are generally available at the RTL level
and below. These techniques are difficult to test at the ESL level due to the lack of tools
allowing to define power sensitive system level models and due to the presence of many
unknown parameters. In the following section, we will review some of the standards that
can be used as a reference and extended to the ESL level and discuss some of the currently
missing standards.

3.3.3 Presentation of existing standards
There are a some widely used standards at the RTL level to initiate the description of power
management at this level. The description of power intent cannot be performed in the RTL
model, so different notations have been deployed and several standards have been defined.
Figure 3.6 illustrates the observations of Wilson Research Group and Mentor Graphics, a
Siemens company, in their 2020 Functional Verification Study [38] on the different standards
used to describe power intent. The trend in recent years has been to use the Unified Power
Format (UPF) standard and to slowly adapt to its latest versions.

Figure 3.6: Notation used to describe power intent

IEEE 1801/UPF3.0 ­ System­level semantics

IEEE UPF [78] is an evolving standard for specifying power intent that has been and contin­
ues to be a major game changer for power optimization.

It describes the elements involved in the control of power consumption, independently
of the functional specification. This concept is based on an approach where the functional
and performance aspects of a model are studied and validated before optimizing the power
consumption. UPF is implemented using the Tool Control Language (TCL) syntax and is
typically used at the RTL level and below. Its semantics define power domains as a set
of design elements sharing a common primary supply set (e.g., power and ground supply
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nets). Power management strategies are implemented using Power State Tables (PSTs)
containing valid combinations of power states from each power domain. These combinations
are referred to as power modes. The implementation of this semantics in a system is called
Power Intent. An example of defining power intent and creating PST is given in Figure 3.7.

Figure 3.7: Example of UPF concepts [3]

In this example, in Figure 3.7a TX_AON is a power domain containing the function block
Transmitter powered by the supply netVDD_HIGH. The power domainRECEIVER contains
a Power Switch that turns on or off the power to the receiver function block based on the
power control signal (crc_sd). In addition, retention registers (RR), level shifters (LS), and
isolation elements can be instantiated. Figure 3.7b shows a valid PST composed of the power
modes (lines) defining the power network states of the power domains corresponding to each
mode (columns).

Coupled with a hardware description, the UPF standard enables portability of low­power
designs and eliminates the problem of choosing and relying on a single electronic design
automation (EDA) tool. Its growing use and integration within EDAs and IPs makes it a
prime candidate for further enhancements and expanded use.

The latest version of UPF, also called UPF3.0 [79], suggests an increase in the level of
abstraction to begin the power strategy definition at system level. The strategy consists of
using IP models that control their corresponding power models to enable or toggle between
different power states and recalculate power consumption. Each power model is attached
to an IP model and can only communicate with it and potentially with its power data char­
acterization layer. The three key elements to be defined in the system­level power models
are the enumeration of power states, the power state consumption data, and the power state
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legal transitions. All possible target power states must be defined, regardless of whether
they are triggered by the supply network or by a mode change. The power consumption is
recalculated each time the parameters in the IP sensitivity list are changed or each time a
power state is activated. Power state consumption data should be provided separately for
static and dynamic consumption using floating values or power functions (­power_expr ­
suggested solution). Using the power function, we can define static build time parameters,
dynamic run­time parameters and dynamic parameters based on the event­controlled rate.
All parameters related to the specific power model must be instantiated in its body.

The UPF is not intended to describe a standard method for the representation and de­
scription of system­level power data. A new standard, called IEEE 2416 or Unified Power
Modeling (UPM), has therefore addressed this topic. It aims to define the standardization
of power data representation to enable early power and thermal analysis.

Figure 3.8: UPF/UPM relationship [4]

IEEE 2416/UPM ­ System­level semantics

The IEEE 2416 standard [4] enables the system, software and hardware power analysis and
optimization with a parameterized and abstracted power model. It describes an approach that
includes several extensions to the IEEE 1801/UPF power expressions, such as a power and
thermal management interface and architecture parameterization.

The standard is based on Process, Voltage, Temperature (PVT) independence, which en­
ables cross­platform interoperability and portability at all levels of the development flow.
The primary considerations and concerns addressed in this standard are the modeling stan­
dards interoperability (interfaces), data representation, and model evaluation capabilities.
The goal is to allow the reuse of a model throughout the development cycle and to facilitate
the design development and use of other power, workload, and function modeling standards
(UPF, SystemC, SystemVerilog). UPM semantics are based on XML elements and attributes
with extensions to represent expression using Verilog­AMS.
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Figure 3.9: UPM: General model architecture [4]

Depending on the level of abstraction, mandatory and optional attributes, cells and sub­
elements must be defined in the UPM model. There are two main modeling levels (Figure
3.9) ­ system level and gate level. Figure 3.10 illustrates the difference between the UPM
models at the gate­level and at the system­level.

Figure 3.10: UPM: Gate­level vs System­level

• At the gate­level, we need to define cells and sub­elements such as cell pins, functional
and power modes (where all signals are implemented), and energy consuming events.

• At the system­level we need to define cell parameters (set of parameters defining the
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power model) and the functional and power states (where certain signals are imple­
mented). The approach is designed to ensure interoperability with the UPF power(­
state) models, which take as input a pair of static and dynamic power values/expres­
sions for a given state.

These standards can be taken as a reference when talking about power modeling, as they
are actively evolving and a very large community is contributing to their development. How­
ever, some points still need to be addressed in order to meet the needs of the industry.

Areas of improvements

These standards are more focused on defining power intent. In contrast to this case, to date
there is no commonly established definition of the clock domain concept. Almost any block
in the hardware architecture may need one or more clocks to operate. Clock routing is usually
performed after placement and routing in the design and is done based on the results of
synthesis. Since UPF contains very few clock­related concepts, there is no well­defined
standard for specifying and designing clock trees in a circuit. Nevertheless, the best practices
applied by leading companies converge on very similar clock domain definition concepts
(presented above). Due to the lack of a clock domains unification standard, the majority of
ESL power estimation tools and approaches do not implement a realistic clock management
mechanism, which limits the testing of power management strategies and thus the modeling
of complex low power designs.

In the following section, we will present some of the existing academic and industrial
solutions for ESL power estimation and then compare them to the one used in this study.

3.3.4 Existing approaches and related works
Previously, many power estimation methodologies have been studied or developed, mainly
based on static and/or purely mathematical approaches [41], [80] such as the one presented
in 2.2.3.

With the increase in software and hardware complexity, the need for dynamic approaches
to account for the impact of the application on energy consumption, has led to the search for
several simulation­based power estimation methods.

In the following approach [81], the authors use the IP activity during TLM simulation and
extract it into a VCD file. Then, they synthesize the TLMmodel and compile the design using
the design constraints. The power consumption is estimated based on cell reports extracted
from the design.

In another study [82], the approach is also based on IP activity. Different types of ac­
tivity are defined, and counters are added for each of them. Each counter increments when
the corresponding activity is executed during the simulation. The corresponding power con­
sumption is applied to each type, which allows to calculate the activity of the entire module.
Each IP type has its own modelling approach: i.e. memory, processor, crossbar etc.

In the article [83], the power­related information is added to the SystemC functional
model. In this work, it is assumed that power­related transactions are developed before the
functional transactions. Each corresponding IP transaction is identified, and its consumption
is characterized. Macro models of IPs with multiple parameters are created and the TLM
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functional models are enriched in order to dynamically call these macro models during the
simulation.

The authors of [84] use power monitors adaptable to different levels of abstraction.
Some solutions are processor specific (in particular in articles [85], [86]) and present the

power estimation using instruction consumption. In the first case, such a simulation is done
using IASI (Instruction Accurate Simulator Imperas). In the second, SystemC, PERFidiX
(to add OS tools to communicate with the SW) are used.

The SEAS approach [87], does not use functional models. The objective is to estimate
performance, timing and power as early as possible in the flow. SEAS analyzes functional­
ity in combination with analysis tools. It allows the user to create a typical block diagram
description. The component descriptions, models and characterizations are contained in a
library. For performance analysis, they use only FSMs and not functional models (high
abstraction) in order to represent only the impact of the component on performance. Data
processing is not modeled, they only model the number of cycles and latencies. FSMmodels
communicate through tokens. The arrival of a token can trigger a state transition or an event
that generates new tokens. For planning analysis, they need to give characteristics about
the size and shape of the components. During the planning analysis and routing simulation,
the size of the connections between the components is approximated. This data is used for
timing analysis, but is not meant to be representative. They are only used to find critical de­
lays on connections. The power analysis is performed by the familiar spreadsheet formulas,
but expanded to include power modes. Each IP is associated with a Power State Machine
(PSM) that defines its power state, transition, and delay (cycles to change the power state).
The performance model captures the power states of the IPs and records the activities of the
IPs (idle, sleep, on, off). By summing the power values for the states, we estimate the power
consumption. There is a PMU that monitors the power information of the IPs. They use a
tool called CORAL that recognizes the block diagram and automatically associates it with
an RTL description that is then analyzed.

Some approaches, such as [88], [89], aim to track signal and register activity for power
estimation. They use UVM to create an interoperable testbench between TLM and RTL and
perform a direct comparison.

In this methodology [90], applied to chip devices, a power consumption is associated with
different ”driver calls”. Driver calls are a set of assembly instructions corresponding to an
API. Instead of giving a power consumption value to each instruction, they abstract a set of
them. An ArchC CPU simulator is used for accurate cycle simulation. Their model is based
on a platform that considers all devices and they use finite power state machines containing
the power states for each device. Then power monitors are implemented to extract power
estimates.

All of these methods require a significant amount of time and coding effort in order to
extract power estimates. In addition to that, there is no information on the application of any
power reduction technique.

Several UML­based model­driven approaches [91] [92] have been developed to enable
the generation of power­sensitive models, but they are tightly bound to specific system­level
power descriptions/tools.

The open­source TLM POWER3 library [93] provides a power estimation and manage­
ment methodology based on the characterization and annotation of the power of individual
TLM models. The advantage of this method is that it can be used with either loosely or
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approximate timing TLM models. This approach can give significant accuracy, as it can
contain low­level information, but it seems to be very difficult to use, especially for com­
plex heterogeneous systems (we did not find any such examples available). Also, it does
not follow the UPF standard, which means that the whole description of the power intent
has to be rethought when moving to a lower level of abstraction. They allow the use of
TLM generic payloads, but suggest the use of their own extended payloads (without using
the generic payload extension mechanism), which can largely decrease the interoperability
of the models and complicate their reuse. The authors mention that it is possible to create
energy management strategies and enable modeling of energy reduction techniques, but from
what we understand, this would add significant and highly intrusive energy­related code to
the models (unmanageable for complex heterogeneous systems). One of our main goals,
which is the separation of concerns between power and behavior models, is not sufficiently
emphasized in this approach.

The following approach [94] provides a configurable power modeling methodology that
uses power state machines taking state names, current and voltage as parameters. Their
approach allows the creation of power components containing a mechanism for defining
power states. In each functional model, possible power states must be added and a user­
defined function update() must be created to drive transitions between power states. Their
approach does not include a description of the clock domains (nor the real power domains)
and no direct tools for applying power reduction techniques are provided. However, the
authors present a fairly good correlation with real hardware measurements.

The authors of [95], propose an approach that respects the separation of concerns be­
tween application, hardware and power models. They use task graphs to recreate traffic
and different strategies to model the IP (depending on whether it is a third party, custom
IP, or software). They use power state machines, but dynamically extract information from
functional models. Their approach allows the creation of power islands (f, Vdd) and the ap­
plication of DVFS. For the software part, the power consumption per block is determined
using an instruction­dependent power model generated by a simulation of the processor RTL
model. For the hardware IP part (SystemC/TLM models), they use simple activity monitors
extracting power data and an internal monitor­specific PSM is triggered (based on predefined
power states).

In [96] there is an approximately timed SystemC/TLM approach applied to a NoC ar­
chitecture with DVFS. The authors mention that they do not use pure functional models
and describe IP specific power model for each IP. In their approach, the DVFS modeling is
independent to the actual power modelling.

In [97] and [98], the authors present a well­structured approach, which is inspired by
many studies. They use SystemC functional models augmented with their PMS library to
create UPF­like power intent. Once the SystemC/PMS model is sufficiently accurate and
detailed, they proceed to High­Level Synthesis (HLS) to generate RTL code and UPF file.
The main Power intent verification is done with the generated RTL and UPF. Like their
solution is provided for HLS, they use SystemC interfaces for the communication. Thus,
it remains a highly time­consuming approach for modelling complex and protocol­based
systems.

Besides, there are many industrialized methods and tools that are being used for power
estimation.

We can cite tools like Synopsys Platform Architect [42] which uses a high­level state
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machine description based on UPF. A power consumption is associated to each state and for
each state triggered by given events, the virtual prototype detects these events and updates
the total power consumption. This is a relatively common approach for power estimation.
However, the lack of easyway to describe clock/power domains and to apply power reduction
techniques make it unsuitable for power management investigation.

Another industrial solution is Intel Docea Power Simulator (IDPS) [99] used to create
system­level SoC power and thermalmodels and apply post­processing power analysis [100].
Intel‘s simulator is mainly based on dynamic approach for power estimation. For each com­
ponent, it needs a description of the power state transition events, translated into PSM. For
each power state, the user has to provide the corresponding power profile. Extracting spe­
cific data from the SystemC­TLM functional model to VCD files allows us to co­simulate the
power model with these VCD files. Thus, it is an efficient method for power and temperature
estimation. However, the IDPS does not provide a tool for describing power optimization
strategies. The only way to do this is to integrate the entire description into the functional
model. There is not a direct co­simulation of the functional and power models, thus it may
be more time consuming and the relationship between the functional and power models may
become less stable.

Mentor Graphics presents another solution at the TLM level calledMentor Graphics Vista
[48] but similar to the previously cited industrial solutions, it is not suitable for power man­
agement strategies investigation.

3.3.5 Conclusion
The goal of our work is to propose and study a methodology allowing the joint estimation
of power and performance values for any chip and for any use case. This method must be
easily adaptable and integrable to the design flow, and must therefore be compatible with the
standards currently used. Furthermore, it must be based on high­level (system­level) models
in order to start extracting metrics and analyzing the architecture and power intent early in
the design flow. The first reason to do this is that we need to enrich the static datasheet/Ex­
cel approach with a dynamic approach increasing the architectural exploration capabilities.
Simulation­based dynamic verification can allow us to explore different architectural options
early in the design process and optimize the trade­off between power and performance. If
we want to go even further, the metrics extracted at the beginning of the flow, can be used as
a reference by the designers and developers who will follow our specifications. Moreover,
we can avoid some bugs and reduce the number of design iterations. In our solution, we
use the well­known SystemC library for functional modeling of IPs, TLM2.0 to abstract the
communication between IPs, while considering timing and protocols, and we use a power
management library called PwClkARCH. The solution we will present is based on the UPF
standard and can be used as an extension and association to the IEEE UPF3.0 standard and
the IEEE 2416 standard for system­level power modeling. The PwClkARCH library does
not rely on state machines, but on relatively accurate surface information and IP activity
reports. The power estimate is extracted from the sum of this information and is therefore
more accurate than the one based on power states.
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3.4 PWClkARCH library for power­aware VPs

3.4.1 Introduction

PwClkARCH [101] [102] is a C++/SystemC­TLM library developed for ESL power esti­
mation. It has been developed for 10 years in the LEAT laboratory by M.Auguin. Most of
the semantics included in this library are based on the UPF standard and abstracted at the
TLM level (Figure 3.11). The details of the low­level power description are neglected in
order to allow power modeling at a very early stage. An automated generic assertion verifi­
cation mechanism is integrated in the library in order to ensure the consistency between the
behavioral and power models.

Figure 3.11: Extending UPF to System­level

The library includes components such as Design Elements (DEs), Power State Table
(PST), power switches and supply nets. Since there is no current standard for the descrip­
tion of the clock domains, PwClkARCH introduces a methodology that allows for the inser­
tion of external clocks, generated clocks, DPLLs, Clock Managers (CMs) and a Clock
State Table (CST) similar to the UPF PST. This unified clock domains description approach
is inspired by the current most widely used clock distributions (briefly described in 3.3.2).

Figure 3.12 illustrates the decomposition of the library. There are four main types of
classes. One of them is dedicated to the verification mechanism. Two of them are com­
posed of C++ classes containing the definition and description of the components necessary
for the Power/Clock intent specification and their observers. And the last one contains the
SystemC/TLM classes defining the control components and mechanisms.
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These components allow us to describe a power and clock intent structures and divide
the architecture into different power and clock domains. The power switches, DPLLs and
Clock Managers allow us to control the supply voltage and clock frequency of each power
and clock domain separately. The DPLL controllers, PST, CST and the use of an Operating
Performance Point (OPP) table, based on the one used in the Linux kernel, allows us to define
power management strategies such as Clock gating, Power gating, DVS, Frequency
ramping/CPU throttling, DVFS etc...

Figure 3.12: PwClkARCH structure [5]

3.4.2 Separation of concerns

Similarly to UPF, PwClkARCH allows us to maintain the separation between the func­
tional model and the power intent (Figure 3.13). This means that there is no intrusive
power­related code in the functional model, allowing it to be reused for performance esti­
mation alone and making it more readable and efficient. This also allows parallel simulation
between the functional/performance model and the power model and to easily study multi­
ple power/clock intent structures and power management strategies for the same functional
model. Thus ”what if” analyses are largely facilitated with this approach.

We can observe the influence of each power management strategy on the performance of
the functional model and easily detect bugs, such as poor power management and possible
data loss. The PwClkARCH library is able to continuously monitor the power consumption
of all IPs in any architecture running any application.

The relevance of this approach can only be validated if the power consumption mod­
els are sufficiently accurate with respect to the real system and if the performance/power
consumption relationship is also sufficiently accurate.
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Figure 3.13: Example of PwClkARCH semantics

3.4.3 Power/Clock intents & management ­ user/designer view
The classes defined in the PwClkARCH library provide an API to control its state changes
from a functional module via TLM transactions. To control the power/clock intents accord­
ing to a power management strategy, a PowerManagement Unit (PMU) (Figure 3.13) must
be added to the functional model. It establishes the connection between the functional and
power models by adjusting the voltages and clock states of the components according to their
current operating point. The PMU contains many elements necessary for power management
(described later in this section).

Methodology

The methodology behind PwClkARCH can be divided into 4 phases.

• Power and Clock intent specification stage ­ in this step, architects analyze the be­
havior of the device and define the possible power intents based on the activity of the
different components. They choose the power structures that are worth testing and
divide the design into several power and clock domains. At this point, all necessary
components are instantiated, such as DPLLs, generated and external clocks, supply
networks and power switches.

• PMUmodeling stage ­ at this point, we define the module establishing the connection
between the functional and power models. This module acts as a relay and switches
between power and clock modes based on requests (TLM transactions) from an ini­
tiator module in the functional model. This initiator module can be any processing
unit or it can also be a specific controlling module defined for the purpose of power
management control.
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• Full Power­aware simulation stage ­ once we have defined the power intent and mod­
eled the PMU, we are ready to simulate the complete architecture composed by the
functional model and its power model. During the simulation, several power and
clock/activity values are automatically extracted to binary data log files that can be
plotted and analyzed. All architecture options can be simulated and compared in order
to choose the optimal solution.

• Verification stage ­ the verification step is conducted in parallel with the three pre­
vious steps. It allows us to verify that the simulations were successful and that the
power intentions and power management strategies do not generate functional design
errors. This step is based on an assertion mechanism that verifies the power and clock
management properties during the simulation. It ensures the correctness of the model
by asserting different clauses, such as a warning if an activity is captured in an idle
block, or indicating if components of the power intent are missing or misconnected.
An exception is thrown if a clause is violated and an error report is written to a report
file, called the Design Error Report File (DERF).

These steps are illustrated on Figure 3.14.

Figure 3.14: PwClkARCH modeling flow [5]
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Power intent structure

Figure 3.15 shows the components needed to define and configure the power and clock intent.
The instantiation of these components is done in the main/top file of the project.

Figure 3.15: Power Intent specification

A brief presentation of each element is made here in the order of declaration.

• Clock Domain (CD) ­ following the definition given in section 3.3.2, we divide the ar­
chitecture into several clock domains clocked by synchronous or constant phase clock
signals. A pair of a DPLL and a CM is associated with each CD. The DPLL provides
a clock signal to the CM, which reconfigures it and passes it to each individual block
in the given clock domain. As already mentioned in the clock domain definition, the
CM allows us to use a division factor of the input clock and pass the result to the IP.
An example of clock domain instantiation is given in Listing 3.1.

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample
3 {
4 // STEP 1.1: CREATE CLOCK DOMAINS - (container , name, scope)
5 Clock_Domain* TopCD = new Clock_Domain(NULL, "TopCD", "TOP");
6 Clock_Domain* CD1 = new Clock_Domain(TopCD, "CD1", "TOP/CD1");
7 Clock_Domain* CD2 = new Clock_Domain(TopCD, "CD2", "TOP/CD2");
8 ...
9 }

Listing 3.1: Clock domain example

There is always a top level topCD clock domain containing all the others. This is the
only possible hierarchy in the clock domains structure.
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Once all the CDs are instantiated, we can add their corresponding DPLLs (Listing 3.2).
1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample
3 {
4 ...
5 // STEP 1.2: CREATE DPLLs - (clock domain, name, penalty delay in

ns )
6 DPLL* DPLL1 = new DPLL(CD1, "DPLL1", 2);
7 DPLL* DPLL2 = new DPLL(CD2, "DPLL2", 2);
8 ...
9 }
10

Listing 3.2: DPLLs example

Similarly, we can declare the external clocks (Listing 3.3).
1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample
3 {
4 ...
5 // STEP 1.3: CREATE Clocks - (name, type, DPLL, frequency [Hz])
6 Clock_Externe* CLK1_R = new Clock_Externe("CLK1_R", "reference",

DPLL1, 24*(std::pow(10,6));
7 Clock_Externe* CLK1_B = new Clock_Externe("CLK1_B", "bypass", DPLL1

, 32*(std::pow(10,3));
8 ...
9 }
10

Listing 3.3: External clocks example

• Power Domain (PD) ­ There is always a top level power domain topPD containing all
the others. The power domains can be hierarchical (ex. PD11 in Listing 3.4).

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample
3 {
4 ...
5 // STEP 2.1: CREATE POWER DOMAINS - (container , name, scope)
6 Power_Domain* TopPD = new Power_Domain(NULL, "TopPD", "top");
7 Power_Domain* PD1 = new Power_Domain(TopPD, "PD1", "top/PD1");
8 Power_Domain* PD11 = new Power_Domain(TopPD, "PD11", "top/PD1/PD11"

);
9 Power_Domain* PD2 = new Power_Domain(TopPD, "PD2", "top/PD2");
10 ...
11 }

Listing 3.4: Power domains example

Each power domain is powered by a Supply Net (SN), which can feed several PDs,
but allows us to control them separately.
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An SN can be of type “power_net”, “ground_net” or of type “SWITCHED” (Listing
3.5).

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample {
3 ...
4 // STEP 2.2: CREATE Supply Nets - (name, type, PD)
5 primary_supply_net* GND = new primary_supply_net("GND", "ground_net

", "topPD");
6 primary_supply_net* VDD1 = new primary_supply_net("VDD1", "

power_net", "PD1");
7 primary_supply_net* VDD11 = new primary_supply_net("VDD11", "

SWITCHED", "PD11");
8 primary_supply_net* VDD2 = new primary_supply_net("VDD2", "

power_net", "PD2");
9 ...
10 PD1->set_domain_supply_net(VDD1,GND);
11 PD11->set_domain_supply_net(VDD11,GND);
12 PD2->set_domain_supply_net(VDD2,GND);
13 ...
14 }

Listing 3.5: Supply Nets example

Power gating can be applied to SNs using Power Switches (SW) whose declaration is
presented in Listing 3.6. The SN is of type “SWITCHED” if it is the output of a power
switch, otherwise it is of type “power_net” (except the ground).

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample {
3 ...
4 // STEP 2.3: CREATE Power Switch - (PD, name)
5 Power_Switch* SW1 = new Power_Switch(PD11, "SW1");
6 (SW1->_input_supply_nets).push_back(VDD1);
7 SW1->SetOutput_supply_net(VDD11);
8 ...
9 }

Listing 3.6: Power Switches example

In order to specify supply voltage values, we must define different states for the supply
nets, as in Listing 3.7.

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample {
3 ...
4 // STEP 2.4: CREATE Supply Net States - supply voltage [V]
5 GND->net_valid_states["OFF"]=0.0;
6 VDD1->net_valid_states["ON"]=1.0;
7 VDD11->net_valid_states["ON"]=1.0;
8 VDD11->net_valid_states["OFF"]=0.0;
9 VDD2->net_valid_states["ON_H"]=1.0;
10 VDD2->net_valid_states["ON_L"]=0.8;
11 VDD2->Set_Net_Voltage_Scaling_Penalty(100.0);
12 ...
13 }

Listing 3.7: Supply Net States example
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In this example, if the voltage of VDD2 changes (between the states ”ON_H” and
”ON_L”), a time penalty of 100ns per mV is applied until the transition to the target
voltage is complete.

• Design Element (DE) ­ the concept of DE has also been adopted in PwClkARCH
from the UPF standard. Design Elements can be compared to ”shadows” of IPs in the
functional model. Each IP instantiated in the platform and included in a Clock/Power
domain is associated with a DE. The parameters needed for the power calculation,
such as capacitance and leakage current (leakage resistance), are specified during the
instantiation of the Design Element (Figure 3.16). The power/clock specification is
built on top of the DEs (not the functional models), in order to define the power intent.
In this way, the separation between the hardware design and the power/clock intent is
enforced. The DE block is responsible for computing the generic static and dynamic
power equations for its corresponding IP. Whenever there is a state change, an update
of the power calculation is performed at the IP level and then transferred to the upper
platform level. Thus, at the end of the simulation, we obtain the power consumed per
module, per clock domain, per power domain and the total power of the hole platform.

Figure 3.16: Example of Design Element instance

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample
3 {
4 ...
5 // STEP 3: Create Design Elements - (CD, PD, ptrFuncMod ,

capacitance , initial activity , leakage resistance)
6 Design_elem* DE_CPU = new Design_elem(CD1, PD1, (top->ss_cpu),

CPU_CAPACITY , CPU_ACTIVITY , CPU_LEAK_RESISTANCE);
7

8 Design_elem* DE_MEM = new Design_elem(CD2, PD2, (top->ss_dram),
DRAM_CAPACITANCE , DRAM_ACTIVITY , DRAM_LEAK_RESISTANCE);

9 ...
10 }

Listing 3.8: Design Elements example

• Clock State Table (CST) ­ The CST serves to set a frequency value to each block
for a specific clock state in the executed scenario. The goal is to dynamically change
the values of the clock frequencies applied to DEs. The Clock state table takes as
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parameters the source clock inputs from the Design Elements (clock signals coming
from Clock Managers). We can add several clock states and for each one of them we
need to set a frequency divider value to all DEs clock inputs. The frequency divider is
applied to the reference clock distributed by the CM of the given CD for each IP (or its
DE, to be more concrete). Logically, when the value of the frequency divider is zero,
the clock is gated.

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample
3 {
4 ...
5 // STEP 4: Create Clock State Table - (name, CD, nbDEs, div_fact1 ,

div_fact2 , ...)
6 S2.create_clkst("CST_top",topCD,"3","CM1_DE_Bus","CM1_DE_SRAM","

CM1_DE_CPU"); //line 0
7 S2.add_clkst_state("CLKST_top","boot","3", "16","32","8"); //

line 1
8 S2.add_clkst_state("CLKST_top","low_active","3", "8","4","2"); //

line 2
9 S2.add_clkst_state("CLKST_top","cpu_active","3", "8","4","4"); //

line 3
10 ...
11 }
12

Listing 3.9: Clock State Table example

The first line (i.e. line 0) of the CST lists the names of the generated clocks (from the
CMs) connected to the DEs. They should be arranged in CDs (one after the other).
The other lines are the clock states that can be taken in the specific scenario and the
division factors that should be applied to each DE clock for the given state.

• Power State Table (PST) ­ The PST serves to set a voltage value to each supply net
for a specific power state in the executed scenario. The goal is to dynamically change
the values of voltage of the supply nets and the states of the power switches attached
to the PDs (same as UPF).

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample {
3 ...
4 // STEP 5: Create Power State Table - (name, PD, nbNets, netState1 ,

netState2 , ...)
5 S1.create_pst("PST_top",topPD,"3", "VDD1","VDD11","VDD2"); //line 0
6 S1.add_pst_state("PST_top","all_on","3", "ON", "ON", "ON_H"); //

line 1
7 S1.add_pst_state("PST_top","cpu_off","3", "ON", "OFF", "ON_L"); //

line 2
8 ...
9 //Transitions - (pst_name , from, to)
10 PSTrans* Trans = new PSTrans("PST_top","*","*");
11 }
12

Listing 3.10: Power State Table example
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The first line contains all the supply nets in the power intent. The other lines contain
the power states with the valid supply net states for each supply net.
We can also specify the legal transitions between power states. All transitions that are
not specified here are illegal. The ”*” character denotes any power state specified in
the PST. Thus, in this example all transitions are legal.

• Operating Performance Point Table (OPPT) ­ The OPPs are used to manage the
overall power states of the entire system. From here, we can dynamically control the
power and clock domains as well as the DPLL states. This table provides a set of
available operating points.

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample
3 {
4 ...
5 // STEP 6: OPP Table - (name, CD, PD, nbdplls, opState1 , opState2 ,

...)
6 S2.create_OPP_table("OPPtable", topCD,topPD,"3","DPLL1","DPLL2","

index");
7 S2.add_OPP_state("OPPtable","boot","3", "8,1","4,8","1,1"); //OPP1

: PD: "all_on"; CD : "boot"
8 S2.add_OPP_state("OPPtable","cpu_off","3", "0,0","4,8","2,2");//

OPP2: PD: "cpu_off"; CD: "low_act"
9 ...
10 }
11

Listing 3.11: Operating Performance Points Table example

In the first line we list all DPLLs in the design. The last column of this linemust contain
the string ”index”. The following lines correspond to the possible OPP states. For each
state, we give a pair of multiplication and division factors for each DPLL. In the last
column of each OPP state, we have a index 2­tuple. The first value in the 2­tuple is the
index in the PST of the state of power domains and the second value of the 2­tuple is
the index in the CST. Applying an OPP to the architecture results in specifying voltage
values on supply nets, states of power switches and the clock frequencies of DEs.

• Power Management Unit (PMU) instantiation ­ The PMU is instantiated in the
power intent and connected to a system master block that sends transactions to the
PMU and implements the power management strategy. The PMU is instantiated by:

1 template <typename FUNCMOD_NAME >
2 class PowerIntentExample {
3 ...
4 // STEP 7: PMU instance - (name, vpAll_PDs , pPST, vpAll_CDs , pCST,

vpAll_DPLLs , pOPPT)
5 PMU pmu("PMU", topPD->power_domains_list , PST::get_PST("PST_top"),

topCD->clock_domains_list , ClkST::get_ClkST("CST_top"), DPLL1->
dpll_list , opp_table::get_opp_table("OPPtable");

6 ...
7 }
8

Listing 3.12: PMU instantiation example
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The arguments are vectors of pointers to all PDs, CDs, DPLLs, and three pointers
to PST, CST and OPPT. The Master block (initiating transactions to the PMU) can
have different forms. It can be any initiator module (CPU, GPU, HWAccellerators ...)
initiating transactions to a PMU connected to the HW transactional bus, or using the
approach that we have defined and used it can be an isolated Master block receiving
simple control signals from initiators and communicating only with the PMU. Figure
3.17 is a simple example of how the architecture will look for the first case:

Figure 3.17: Example of Power­aware architecture without Master module

In the second case, it is not necessary to connect the PMU to the functional model.
In this way, the power­related code in the functional initiator modules is considerably
reduced and the power management strategy is applied in a single module. The master
module and PMU are responsible for the entire power management. Figure 3.18 is a
simple example of how the architecture will look for the second case:

Figure 3.18: Example of Power­aware architecture with Master module
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PMU structure

The PMU contains ”copies” of the CST, PST and OPPT plus several important blocks and
signals responsible for the automated power and clock management.

Figure 3.19: Example of PMU structure

• Power Manager (PM) ­ this block is the primary power management component and
is the block that contains the TLM socket and provides the interface to themaster block.
It includes all function calls to the power/clock intents and is responsible for imple­
menting the power management strategy defined in the master. It interprets requests
from the master module and automatically executes the necessary actions.

• Power Domain Controller (PDC) ­ this block is responsible for controlling the power
domains. It is activated by the PM block whenever a supply network update operation
is performed in the power domain. The number of PDCs in the PMU is equal to the
number of power domains including a power switch in the architecture.

• DPLL Controller ­ there is a single DPLL controller for all the DPLLs in the archi­
tecture. It receives the configurations of the DPLLs from the PM and executes them
to update their states.

• Clock Managers (CMs) ­ There are as many CMs as there are clock domains in the
architecture. They are activated by the PM when an operation has to be performed on
a clock (one or more clocks). This operation is applied on the clock inputs of the DEs.

Master/Initiator implementation

As mentioned earlier, the Master module can be implemented in multiple ways. We have
given two examples of how the block can be integrated into the structure. Regardless of the
approach chosen, there are mandatory fixed implementations (included in the PwClkARCH
library).
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Each Master block coordinates the power management strategy based on the application
activities. In a given strategy, when the power/clock state needs to be changed, the Master
sends first a transaction to the PMU to activate the newOPP (ex. deactivate/activate different
modules). In this way, we can apply the multiplication and division factors on the different
clocks and readjust the voltage supply with a single update of the OPP state. Thus, the master
module can be considered as a power supply control unit with different switching statements.
If a condition is met, then change the OPP.

A simple functions write_mem()/read_mem() is used to send write/read transactions to
the PMU with the b_transport() method via a simple_initiator_socket. The write_mem()
function takes as parameters an address and a data. The address indicates the command
that we want the PM to execute and the data may indicate different things depending on
the command. The Power Manager accepts a relatively large set of commands that allow a
master to set a power state to the functional model. A command corresponds to an address
offset added to the base address of the Power Manager.

The first most commonly used command is PM_STATUS_REGwhich indicates a change
to a newOPPwhose value is a line number in the OPP Table passed as data in the transaction.

The second command that we use is PM_ENABLE_AUTO_CLK_GATING which acti­
vates the auto­clock­gating mode at DE level according to the integer value transmitted in
the transaction (as a data argument), one bit per DE, in the order of creation of the DEs. In the
case of Auto­clock gating, the functional module executes the function set_functional_state
(true/false), i.e. when it is in the idle/active state and if the associated DE is enabled for auto
clock gating, the clock manager automatically gates/activates its clock. Listing 3.13 shows
how the write_mem() looks like:

1 void write_mem(unsigned int addr, int data)
2 {
3 sc_time delay;
4 tlm::tlm_generic_payload* trans = new tlm::tlm_generic_payload;
5

6 trans->set_command(tlm::TLM_WRITE_COMMAND);
7 trans->set_address(addr);
8 trans->set_data_ptr(reinterpret_cast <unsigned char*>(&data);
9 trans->set_data_length(4);
10 trans->set_streaming_width(4);
11 trans->set_byte_enable_ptr(0);
12 trans->set_dmi_allowed(false);
13 trans->set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);
14

15 socket->b_transport( *trans, delay);
16

17 tlm::tlm_response_status trans_status;
18 trans_status = trans->get_response_status();
19 if (trans_status == tlm::TLM_OK_RESPONSE && delay > SC_ZERO_TIME)
20 wait(delay);
21 delete trans;
22 }
23

Listing 3.13: write_mem() definition

For example, the transaction write_mem(PM_STATUS_REG, 0x1); asks the PMU to set
up the OPP1 (0x1 is the first line in the OPP table, so it is the OPP1 state) in the architecture.
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The transaction write_mem(PM_ENABLE_AUTO_CLK_GATING, 0x1000) activates the
auto­clock gating mode for the fourth DE created in the power intent structure. From there,
the functional module to which this DE corresponds, reports its functional state to the PMU
using the function de­>set_functional_state(state) where “de” is a pointer to its design el­
ement and “state” is either true or false. True means that the functional unit is in the IDLE
state while false means that it is in the ACTIVE state. Changing the functional state to false
(resp. true) enables (resp. disables) the clock to the unit. This is only necessary for the mod­
ules that are in auto­clock gating mode. The other modules are controlled by the master and
the OPP. The rest of the Master module implementation depends on the designer‘s choice
and the power management strategy.

SystemC/TLM modules activity

The internal activity factor of each SystemC/TLM functional module is very important for
dynamic power consumption. It depends on the functional state of the module, which means
that when the module is active, it can have a much higher activity factor than when it is in
idle mode. For this reason, it is important to consider this factor and make it as accurate
as possible. The range of this factor is [0;1]. In PwClkARCH, this can be done by adding
the function setActivity(float activity) (Listing 3.14) to each functional module, and having
it track the active elements in the module. Each time the setActivity(float activity) function
is called in a module, the current activity rate is provided to the DE and its dynamic power
consumption is updated. This update is then performed at the PD and CD level (where the
DE is located).

1 void SetActivity(float activity)
2 {
3 sc_core::sc_object& obj = dynamic_cast <sc_core::sc_object&>(*this);
4 Design_elem* de=Design_elem::get_DE(obj);
5 de->Update_dpow(activity);
6 }

Listing 3.14: setActivity() function definition

An important and very intuitive question comes to mind:
How do we adjust this activity factor?
This largely depends on the information we have. The initial approach that can be used

is to use 0 and 1 as the activity factor. To do this, we need to make maximum estimates of
the value of the load capacity. Then we can try to estimate the number of transistors that a
given system may have and the blocks that are activated when transactions pass. In this way,
we can estimate a ratio of active blocks for a transaction. We can then track each block in
the system model and automate the calculation of the average value of the activity factor. In
later steps, we can use the toggle ratio defined by the physical engineers for more accurate
estimates.

However, this function is not mandatory and if we do not need a dynamic value for the
activity factor, the library uses the fixed initial activity passed as an argument when instan­
tiating the DE.
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Consistency between power states and functional states

In order to maintain consistency between functional and power states, PwClkARCH uses
an optional assertion mechanism. This mechanism uses a power observer class attached to
the functional module. It is usually performed in the block model constructor. There are
three types of tests that can be enabled/disabled in the power observer ­ AssumeEnabled,
GuaranteeEnabled and SatisfyEnabled.

1 class Bus: public Subject, public Assertions
2 {
3 Bus(sc_module_name name, protocol::bus_type protocol, sc_time clk)
4 {
5 ...
6 sc_object& obj = dynamic_cast <sc_object&>(*this);
7 power_observer = new Observer<sc_object >(obj,"pow_ob");
8 this->attach(*power_observer);
9 AssumeEnabled=true;
10 GuaranteeEnabled=true;
11 SatisfyEnabled=true;
12 ...
13 }
14 }

Listing 3.15: Power observer

The Subject class contains the method notify(), which is used to notify the power observer
whenever a read or write transaction is received. The observer checks the state of the clock
and verifies whether the module is active when the transaction is received. If it is not, an
error is triggered in the error log file.

Results visualisations and reports

At the end of the simulation, two gnuplot [103] scripts (and multiple binary files) are gener­
ated to plot the results provided by the simulation.

These scripts allow us to view the different results separately (system by system) or all at
once. The first script contains all the extracted metrics related to the clock frequency and ac­
tivity, the supply voltage and the OPP state transitions. The second contains all power­related
metrics, such as total, dynamic and static consumption and energy consumption. Some ex­
amples are shown in figures 3.20 and 3.21.

Using PwClkARCH, the power intents and power management strategies are very easy
to modify in order to test different options. We can easily modify the OPP, PST or/and CST
tables by adding, deleting or replacing states. In addition, the Master module can be easily
modified to change the power management strategy and the OPP activations. Furthermore,
we can change the power and clock domains fairly easy and test different structures. None of
these modifications require changes in the SystemC/TLM functional models. Thus, the study
of power strategies is greatly simplified and can be evaluated in conjunction with system
performance.
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Figure 3.20: Power plots examples

Figure 3.21: Clock plots examples

3.4.4 Model­Driven Engineering ­ TUI and GUI

PwClkARCH also has a model­based layer built on a Model­Driven Engineering (MDE)
approach. It further simplifies the specification of the power/clock intent and the definition
of the energy management strategy. The GUI and TUI are not part of this study and were
not used for our model generation. However, they are a very useful feature worth mention­
ing here in the semantics of PwClkARCH. Almost all the semantics mentioned above can be
generated automatically based on the UML approach presented in [104]. A graphical mod­
eling tool built on Eclipse with the Sirius and Acceleo plugins allows to graphically and/or
textually describe the power model and to automatically generate the SystemC/TLM code
corresponding to the top level of the DUT model. It is an easy­to­use framework that allows
to generate the entire power/clock intent and PMU module from a single metamodel [105],
[106], [107], [108]. The code is then included in the hardware architecture model. As men­
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tioned at the beginning of this section, the TUI and GUI were not used in the development
of our models, and the following sections will instead focus on a coding framework.

3.4.5 Summary and Comparisons
The various academic and industrial solutions do not offer us all the mechanisms that Pw­
ClkARCH can provide. Some of them are based on static approaches that require a lot of
human effort, others do not allow the use of power reduction techniques or at least not out­
side the functional models. The majority require a lower level of abstraction and a large
part of them are based on power state machines, where we manually associate the energy
consumption to each state. PwClkARCH uses a different approach based on relatively ac­
curate information about the area and activity of the tested IP. In Table 3.1 we have made a
comparison between the most commonly used industrial tools and the PwClkARCH library.

Table 3.1: Comparison table
Tool Simulation

model
Power

estimation
Power

management
Thermal
impact

Platform
Architect

SystemC­TLM YES NO NO

Intel CoFluent
Studio

SystemC­TLM NO NO NO

Intel Docea
Power

SystemC­TLM YES YES
(MANUAL­
no func/pow
co­sim)

YES

Mentor Graph­
ics/Siemens
Vista

SystemC­TLM YES NO NO

PwClkARCH SystemC­TLM YES YES NO

The major drawback of the PwClkARCH library is the fact that we cannot consider the
thermal impact on power consumption directly through the simulations. Since component
temperature is an important topic that can lead to very significant static consumption values,
it deserves to be included in our power estimation methodology. Since in this study we are
only ”users” of the PwClkARCH library and our goal is to evaluate this approach, this topic
is outside the scope of our study and can be added to the possible improvement perspectives.
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3.5 Technology used in this study

3.5.1 Introduction to NXP i.MX SoC family
NXP’s i.MX family members are ARM­based, multimedia­oriented microcontrollers. These
low­power SoCs integrate a wide variety of analog and digital modules and processing units,
such as clusters of multiple Core Processing Units (CPUs), Video Processing Units (VPUs),
Graphics Processing Units (GPUs), Display Controllers (DCs) and other advanced functions.

Figure 3.22: NXP i.MX family applications processors [6]

The wide architectural variety of i.MX members (Figure 3.22) allows customers to make
the right choices and trade­offs depending on the intended application. These SoCs are con­
stantly being improved and keep up with all the latest technologies. Thus, they have many
important customers such as Ford, Sony, Amazon, Garmin, Logitech, Toshiba and many
other market leaders.

• The first member of the i.MX family released on the market in 2001 is the ARM920T
based i.MX1 series, which was designed for personal digital assistants (PDAs).

• The first i.MXmembers targeting the automotive market was the ARM11 based i.MX3
series released in 2005, followed by the ARM Cortex A8 based i.MX5 (in 2007) and
the ARM Cortex A9 based i.MX6 (in 2011).

• The i.MX6 series offered a scalable and functional multi­core platform that includes
single, dual and quad­core structures.

• The next series was the i.MX7, which has a similar architecture to i.MX6, but they are
oriented towards IoT (Internet of Things) applications.

• Another more IoT­oriented series is the i.MX RT used for real­time functionality re­
quiring high computing power and multimedia capabilities.

• The i.MX8 series are the ones that will interest us in this report. It is the new generation
that is in production and pre­production and starts to be released on the market.
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3.5.2 NXP i.MX8 series overview
Designed with advanced multimedia processing, secure domain partitioning and innovative
processing vision, the i.MX8 series of application processors revolutionize multi­display
automotive applications, industrial systems and vision. It is the current most powerful and
elaborated multimedia solution compared to the other i.MX family members. The series
includes combined solutions based on Cortex­A72, Cortex­A53, Cortex­A35 and Cortex­
M4. The major i.MX8 series ­ i.MX8M (Figure 3.23), i.MX8X (Figure 3.24) and i.MX8
(Figure 3.25), can differs significantly from each other in terms of architecture and targeted
application.

Figure 3.23: NXP i.MX8M serie applications processors

Figure 3.24: NXP i.MX8X serie applications processors
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Figure 3.25: NXP i.MX8 serie applications processors

• i.MX8M serie ­ reinforces the ability of advanced audio, image and video processing

• i.MX8X serie ­ reinforces the ability of advanced graphics and efficient performance
+ safety certifiable

• i.MX8 serie ­ reinforces the ability of advanced graphics, efficient performance and
virtualization.

In this study we are working with two platforms of the i.MX8 serie and one plat­
form from i.MX8X. To be more precise, these platforms are the i.MX8QuadMax (QM),
i.MX8nextGen and i.MX8QuadXPlus (QXP) respectively. They have very similar ar­
chitectures, but different complexities and i.MX8nextGen is the new generation of i.MX8
series SoC.

3.5.3 NXP i.MX8QuadMax
i.MX8QuadMax is a fully comprehensive multimedia device built on 28nm FD­SOI tech­
nology to achieve both high performance and low power consumption. Automotive and
industrial applications are its main market segments. The following diagram (Figure 3.26)
highlights the IPs and peripherals present on i.MX8QM.

It is assembled around two ARM clusters using big.LITTLE 64­bit ARMv8 technology.
The chip relies on a powerful, fully coherent complex core based on a dual Cortex­A72 clus­
ter for use cases requiring high computational performance and a quad Cortex­A53 cluster
for less power­hungry use cases where computational capacity is not paramount. This saves
more power than using multiple processors of the same capacity in parallel, while maintain­
ing high computational strength. Graphics processing is handled by twoGPUs supporting the
latest graphics APIs, including Vulkan and OpenVX for computer vision. Video is handled
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Figure 3.26: NXP i.MX8QM Diagram

by a dedicated video decoding engine for decoding formats including HEVC (H.265) up to
4K60 and H.264 encoding up to 1080p60. The device provides various display interfaces to
connect up to four displays. To be able to deliver data to these demanding blocks, i.MX8QM
has two DRAM controllers supporting DDR4 and LP­DDR4 memory types. Both DRAM
controllers can deliver up to 25.6 GB/s peak bandwidth with 1600 MHz LP­DDR4 memory.
i.MX8QM provides additional computing resources and peripherals:

• A dedicated System Control Unit (SCU) and a dedicated security subsystem that pro­
vides secure boot functionality and cryptographic acceleration.

• An audio subsystem with a wide range of audio interfaces

• Two general purpose Cortex­M4s with their own peripherals

• A large number of peripherals commonly used in the automotive and industrial markets

Figure 3.27 shows a typical platform that can be built around i.MX8QuadMax in the
automotive domain:
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Figure 3.27: NXP i.MX8QM typical platform

3.5.4 NXP i.MX8QXP
i.MX8QXP is a fully comprehensive multimedia device targeting the mid­range automotive
and industrial market segments. Similarly to i.MX8QM it is built in 28 FDSOI technol­
ogy. Its computing power relies on a power efficient quad Cortex­A35 cluster providing full
ARMv8­A and ARMv7­A support. Graphics processing is handled by single GPU support­
ing the latest graphics APIs. The video is handled by similar to i.MX8QM, but with lower
FPS (30fps instead of 60fps). The device provides various display interfaces to connect up
to three displays.

In order to feed data into those subsystems, i.MX8QXP embeds a single DRAM 32­bits
channel running at 1066MHz and supporting DDR3 and LP­DDR3 types of memories. It
provides a peak bandwidth of 8.5GB/s.
Same as i.MX8QM it provides similar additional computing resources and peripherals:

• A dedicated System Control Unit (SCU) and a dedicated security subsystem that pro­
vides secure boot functionality and cryptographic acceleration.

• An audio DMA subsystem with a wide range of audio and generic purpose interfaces

• A general purpose Cortex­M4 with its own peripherals

• A large set of peripherals commonly used in automotive and industrial markets
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Figure 3.28 highlights the IPs and peripherals present on i.MX8QXP.

Figure 3.28: NXP i.MX8QXP Diagram

3.5.5 What’s next?

The i.MX8nextGen devices will also be full­featured multimedia devices targeting the high­
end automotive and industrial market segments. They will be built in smaller technology
node to achieve both high performance and low power consumption. They will integrate up
to four Dual Cortex­A72 clusters, two dual­core GPUs, two ISPs, one VPU, three imaging
subsystems supporting up to six input streams each.

In order to feed data to these very demanding blocks, the i.MX8nextGen will likely
have two DRAM controllers supporting LP­DDR4 and LP­DDR5 memory types. Both
DRAM controllers are expected to be capable of delivering up to 34.1 GB/s peak with LP­
DDR4(X) memory at 2133 MHz and 44 GB/s peak with LP­DDR5 memory at 2750 MHz.
i.MX8nextGen is expected to provide the same set of computing resources and additional
peripherals as i.MX8QM and i.MX8QXP. Platforms incorporating the i.MX8nextGen Qual­
ity Managed device should be certifiable with the appropriate ASIL level related to the use
cases addressed by the item.
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3.5.6 Common structures overview
Each of these platforms groups together modules that contain complex hierarchies (Figure
3.29). In order to facilitate understanding, we will give a common name to all the modules
present on the chip (CPU, VPU, GPU, etc...). We will call them Subsystems. All subsystems
are composed of several hierarchical blocks/units and have a similar base structure. Each
subsystem has:

• A block that deals with the distribution and adaptation of the clock

• Different peripherals

• Interconnection blocks

• Blocks that adapt the transactions for communication with the memory or with the
other subsystems

Figure 3.29: General subsystems structure

Each element of the subsystems contributes to the creation or adaptation of a transaction.
Each transaction sent to a target, must be able to:

1. Exit the subsystem

2. Reach the target in an understandable form

3. Return to its initiator, or to send back at least one signal that confirms the reception.
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There are several subsystems that must communicate with each other and one or two
memories that all subsystems must have access to. It is necessary to use a shared bus to
ensure communication between the SCU, the peripherals and the memory (Figure 3.30).

The structure of this shared bus module is a little more complex than one might imagine.
For simplicity, we will call it SwitchMatrix subsystem and we will use the abbreviation SM .

Figure 3.30: General platform structure

This is the main technology targeted in our study and we will build our powermodel
around it.

3.5.7 Switch Matrix (SM) structure
The interface to the SoC has multiple ports to allow multiple subsystem connections to the
SwitchMatrix. The buses used to connect the subsystems to the SM and to the main memory
functions of the chip are asynchronous bidirectional point­to­point interfaces (i.e., at each use
there is a master and a slave connection). They carry a bidirectional AXI (or ACE) protocol.

Each subsystem sends data of different sizes. For example, the size of a graphic data
sent by the GPU will be larger than a data sent by the Audio subsystem. Therefore, the
buses between the Switch Matrix and the subsystems must be able to handle multiple data
sizes. Taking this problem into account, an adaptation must be made to the size of the data
in the Switch Matrix in order to normalize the transactions. We do not know the order in
which the transactions access the memory, nor the time they take to access it, nor the way in
which the handshakes are managed. This is a high­performance chip, so there may be several
subsystems that require memory accesses at the same time, and the Switch Matrix must take
care of their scheduling. Hence the complexity in the structure of the SM. Therefore, the
role of the SM is to manage the scheduling, routing and adaptation of the transactions
sent by the subsystems, in order to establish an efficient communication between the
subsystems and the two memories.
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In input and output, the SM has N Master or Slave interfaces that support the AXI proto­
col. The SM, like all other subsystems, is composed of several hierarchical blocks and each
block performs a processing on the transactions in progress, in order to schedule them and
adapt them for sending to the next block. The first adaptation at the SM level consists of
grouping the interfaces into blocks that we will call Groups (G#). Each group is connected,
by its interfaces, to several Subsystems (number of Subsystems equal to the number of in­
terfaces). The number of subsystems per Group is fixed and all Groups have more or less
the same structure and the same number of subsystems to manage.

Figure 3.31: Groups inside the Switch Matrix

For the grouping we take into account the location of the subsystems on the chip with
respect to the SM, in order to avoid too long and inefficient connections. The other criterion
for grouping is to have only one high bandwidth Subsystem per group.

A group returns two or three outputs (depending on the number of external DRAMmem­
ories) directed to an arbiter (called Big Arbiter), and each output represents the path the
transaction can pursue:

• Output 0: Transaction to DRC0

• Output 1: Transaction to DRC1 (if there is a second memory subsystem)

• Output 2: Transaction to another subsystem (SYS)

Big Arbiter structure

The Big Arbiter takes care of routing the transactions to their targets. The function of the Big
Arbiter is to route the targeted DRC (0 or 1) and SYS (subsystems) transactions through the
system. The traffic to the memories enters the Big Arbiter in an already interleaved manner
(interleaving explained later in this section). Thus, the direction, DRC0 or 1, is already
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predetermined and encoded in the transaction. The DRC0 traffic enters into index 0 and
DRC1 traffic into index 1. The SYS_NIC simply routes the SYS transactions to the correct
destination based on a decoding mechanism. There are one or two DRC arbiters, built using
an arbitration policy based on the QOS signal contained in each transaction following the
AXI protocol. Thus, the structure of the Big Arbiter is shown in Figure 3.32 as follows:

Figure 3.32: Big Arbiter structure

Group structure

The Group is designed to serve ports with an interleaving/rescheduling function. A group
contains several sequential blocks that process transactions (Figure 3.34).

• TBU ­ it is the Translation Buffer Unit and is actually a component of the SMMU,
with N/m instances (N ­ number of subsystems and m ­ number of Groups) placed in
each Group. The AXI Stream interface is multiplexed onto the TBUs in each Group
and connected to the TCU via an interface designed for AXI Stream (Figure 3.33).

Figure 3.33: TBU structure

The SMMU accepts virtual address domain requests and translates them into the phys­
ical address domain through a memory mapping table.
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• Resizer ­ there are data size adapters, if needed, under the TBUs. The Resizers struc­
tures consist of simple cascaded NIC­301 interconnects.

• MemISO ­ it is the memory region controller. It acts as a firewall controlling the
distribution of the memory parts between the entities.

• QOS ­ the QOS block is an inter­leaver and prioritymanager for transactions, as well as
a read replenishment buffer for return data. Since there are twomemory channels on the
i.MX8QM chip, the QOS interleaves DRC requests evenly across the programmable
4/8/16KB address boundaries. The QOS also routes transactions intended for inter­
system communication (sub­system output from each group) to the Arbiter.

• Little Arbiter ­ the function of the Little Arbiter is to route the targeted DRC (0 or 1)
and SYS (subsystem) transactions through the system. It has the same structure and
operation as the Big Arbiter. The difference is that Little Arbiter takes input from QOS
blocks and handles transactions at that level, while Big Arbiter takes input from Group
blocks, so it is one level higher in the hierarchy. The Little Arbiters (one in each group)
pass the transactions to the Big Arbiter.

Figure 3.34: Group structure

NOTE: The QOS block hides the main structure needed for the interleaving and
scheduling of AXI transactions. The in­depth study of the QOS block was essential for
the success of this study. For a question of confidentiality, the structure of the block is
not revealed, but its operation is exposed in this part.
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QOS structure

• Definition of Quality of Service (QoS) ­ it is the ability to manage the smooth run­
ning of a given traffic transmission. The services that are monitored depend on the
application, but often they are throughput, transmission delay, availability, informa­
tion loss and scheduling. Traffic management is a concept that allows us to optimize
the use of resources during a process and to ensure good performance for the targeted
applications. The AXI protocol has channels reserved for Quality of Service (QOS)
that are used for scheduling and routing transactions.

• Definition of interleaving/scheduling ­ interleaved memory is designed to compen­
sate for the relatively slow speed of dynamic random access memory (DRAM) or main
memory by distributing memory addresses evenly across memory banks. In this way,
contiguous reads and writes take turns using each memory bank. This results in higher
memory throughputs due to the reduced expectation of memory banks to prepare for
the desired operations. This architecture is different from multi­channel memory ar­
chitectures, mainly because interleaved memory does not add more channels between
the main memory and the memory controller. However, interleaving between two
channels is also possible in the NXP i.MX processors, and in fact exactly this type of
interleaving is used in i.MX8QuadMax for communication between the Subsystems
and the two memories. There are two DRC addressing regions on i.MX8QM, one
below 4 GB and one above (Figure 3.35).

Figure 3.35: Memory mapping from a CPU perspective

These two spaces are merged into one contiguous space, i.e., the lower region (the 2
GB region) is moved into the reserved DRAM hole just below the upper 30 GB (Figure
3.36).

From the Switch Matrix perspective, the memory space forms a contiguous 32GB re­
gion (Figure 3.37).
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Figure 3.36: Moving the 2GB DRAM space

Figure 3.37: 32GB contiguous region

Once the contiguous region is formed, the high­order bit is cancelled so that the mem­
ory space reserved for DRAM is moved to address 0 (Figure 3.38).

Figure 3.38: Contiguous region seen by the Switch Matrix

Figure 3.39: Interleaving

The 32 GB memory space is divided into 2 parts of 16 GB and the two memory
ports, DRC0 and DRC1, each receive 16 GB of space. They are evenly interleaved
on the address boundaries (Figure 3.39). The interleaving is programmable and can
perform jumps of 4/8/16KB. In the case of i.MX8QuadMax the interleaving used is
programmed to 4KB.
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• Categorization ­ thanks to the hierarchy present in a subsystem, and more precisely
the interconnection, there are several paths through which the transactions can pass.
Therefore, each path must associate different IDs to the transactions in order to indicate
the return path when the response is received. There are some modules that send more
important transactions than others and they must be given priority during a busy com­
munication (several transactions in progress). The categorization of a request is the
process of identifying the initiator or groups of initiators within a subsystem that sent
the request. There are N categories and each subsystem interface is associated with
at least one category. The categorization algorithm contains a set of COMPARE_IDs
that it compares to the ID bits of the transaction and selects the corresponding cat­
egory. Each category can store a limited number of transactions. Once categorized,
some routing algorithms are applied to the transactions. As mentioned earlier, the QoS
value of the transaction is encoded in the QoS bits (AXI ­ AWQOS and ARQOS sig­
nals). Each category tests the QoS bits and retrieves the highest priority. This value
becomes the priority of all transactions in that category over the others.

• Routing algorithms ­ Between these algorithms we recognize the HPR and Under­
run Detector.

– HPR (High Priority Request) ­ The transaction with the highest priority is de­
termined by its QoS value. After categorization, there is a QoS value that is main­
tained for all transactions in a category. This value is formed by keeping track
of the highest QoS value in the category’s queue. There is also a programmable
bias QoS offset that is unconditionally added to theHPR_QOS_OFFSETQoS[N].
This is:

1 hp_qos[N] = max(req_QOS_in_CAT[N]) + HPR_QOS_OFFSET[N]

Each category has an HPR_QOS_OFFSET which can take values between 0­15.
This offset allows us to manage the priorities between the different groups.
Reminder: Each Group contains several identical QOS blocks, so each QOS
block contains categories identical to the categories of the other QOS blocks.
The only difference between these blocks will be the offset and the number of
categories used.

– Under­run Detector and Panic offset ­ The purpose of this algorithm is to de­
tect the condition in which a request (actually an entire category) is running
or to get an external panic signal from the initiator, indicating that service is
not being provided often enough. When a transaction is written, a counter for
its category is incremented by the number of requests currently residing in the
category (including the writing of that current request). When a transaction is
read, the counter for its category is decremented by a programmable amount
CAT_SCHEDULED_DECR[N]. The algorithm representing this operation is:

1 case ({req_write[N], req_read[N]})
2 2'b00: ud_count_nxt[N] = ud_count[N];
3 2'b01: ud_count_nxt[N] = ud_count[N] - ud_decr[N];
4 2'b10: ud_count_nxt[N] = ud_count[N] + ud_incr[N];
5 2'b11: ud_count_nxt[N] = ud_count[N] + ud_incr[N] - ud_decr[N];
6 end case
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Where:

1 ud_incr[N] = req_num_resident[N];
2 ud_decr[N] = CAT_SCHEDULED_DECR[N];

Note that this results in a nonlinear increase in number and a linear decrease in
number. Thus, the underfunction detector accelerates the count increase towards
the QoS increase threshold as the category comes under pressure (becomes more
congested), and a steady decrease in count from the threshold. The ud_countmay
not be reduced to zero, even when all requests in the category have been executed.
In this case, this category will be inactive, and ud_count will decrease by 1 with
each clock cycle passed until it gets to zero, or a new request is pushed into the
category to set the condition for increasing it again. There are two thresholds in
action based on the ud_count, the first threshold being an increase in the QoS
value, and the upper threshold being an increase in the PANIC QoS value. When
the first threshold is reached, the programmable amount UD_QOS_OFFSET[N]
is added to the QoS. When the second threshold is reached, the programmable
amount PANIC_QOS_OFFSET[N] is added. The algorithm representing this op­
eration is:

1 ud_panic_qos_adder[N] =
2 (((ud_count[N]> = UD_COUNT_THRESH2) & UD_ENABLE) |

ss_panic) ? PANIC_QOS_OFFSET[N] :
3 (ud_count[N]> = UD_COUNT_THRESH1) & UD_ENABLE ?
4 UD_QOS_OFFSET[N] : 0;
5

The PANIC_QOS_OFFSET[N]will be added to QoS even ifUD_ENABLE[N] is
not set.
The contribution ofUD_QOS_OFFSET[N] is enabled with theUD_ENABLE[N]
bit. The contribution of PANIC_QOS_OFFSET[N] is enabled either with the
UD_ENABLE[N] bit or with external PANIC input signals.
Both PANIC_QOS_OFFSET and UD_QOS_OFFSET can be set between 0 and
15.

– Quality of Service ­ The final Quality of Service (QoS) will be the sum of all the
QoS adders listed below:

1 final_qos_pre_clamp[N] = hpr_qos[N] + ud_panic_adder[N] + the other
algorithms.

Each category has a MAX_QOS[N] and a MIN_QOS[N]. These parameters lock
the final QoS to set values (maximum and minimum) if the calculated QoS is out
of range of [MIN_QOS : MAX_QOS].

Once the QoS is calculated, the QOS block uses these routing algorithms to schedule
transaction requests. Requests with the highest QoS go first, followed by lower priority
requests. The QOS block hands over to Little Arbiter, which will follow the QoS routing
policy defined earlier.
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ADB

ADB­400s are the standard connections between Groups and the Big Arbiter; 128 bits for
DDR traffic, 32 bits for control traffic (Subsystem output). ADB components are used in
pairs ­ one slave and one master ­ to provide temporal isolation; the pair is asynchronous to
each other. These asynchronous bridges between components allow us to connect systems
that are in different clock, power or voltage domains.

Routing

The routing is done according to a QoS (Quality of Service) policy. When sending a trans­
action using the AXI protocol, several pieces of information are sent with the transaction.
According to the AXI protocol, the address bits, the identification bits, the USER bits and
the data are sent on different channels (plus other complementary signals). This allows us
to send them at the same time and not to add latency while waiting for a response. Each
subsystem will transmit QoS related information through these different channels.

• The address bits are used for interleaving and to identify the information sought in the
memory cells.

• The ID bits allow us to recognize the initiator of the transaction and to find the return
path during the response.

• The User bits allow us to store all the types of information we want to send with the
transaction. In our case, we use these bits to move and temporarily store the QoS bits
(which are sent on the specific AXI QoS channels). By default, the Adapters take into
account the priority bits. It turns out that this is not necessary in our case, so we force
the adapter to ignore them. The forcing is done by removing the QoS information (AXI
QoS channels) and storing it in the User bits when passing through the adapters.

3.5.8 Switch Matrix power and clock intents distribution
The subdivision of the Switch Matrix into power and clock domains requires that elements
powered by the same power source be grouped into a power domain and elements with the
same clock source be grouped into a clock domain, yet this is not the most important re­
quirement for mastering power consumption management. We need to split the domains
according to the operation and activity of the internal module set.
For confidentiality reasons, we do not describe precisely the decomposition into power and
clock domains.
Figure 3.40 shows the chosen subdivision assuming we have N subsystems (The number of
subsystems connected to each Group is equal to the number of sequential paths in it, which
is equal to the number of clock domains in it plus one for the Little Arbiter). In order to man­
age the power consumption of the SM, i.MX SoCs use several power reduction mechanisms.
Two of them are Power and Clock Gating which change the state of the domains according
to the state signals (Active and Idle) and the reactivation time. To be more precise, in the
SM subsystem and both DRC subsystems, the clock mechanism is automatically controlled
by the hardware (hardware auto clock gating). Therefore, it does not use an OPP table for
the clock management (present in PwClkARCH), but uses specific cycle counters and direct
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clock control commands. This functionality will be presented in more detail in Chapter 4.
With this section, we have covered the basics of how the Switch Matrix works and we can
move on to the general conclusion of this state­of­the­art chapter.

Figure 3.40: i.MX8QM Power Intent decomposition

3.6 Conclusion
In this chapter, we have presented the main challenges present in exploring the system­level
design space. We presented the basics and standards for performance and power modeling
and estimation at a high level of abstraction and reviewed several existing academic and
industrial solutions. In addition, we introduced the PwClkARCH library that we will use
for power modeling and compared it to other existing solutions. Finally, we described the
technologywe are investigating and need tomodel with respect to its power intent and critical
functionality. This project is a collaboration between the LEAT lab andNXP,whose objective
is to test and find an optimal solution for power modeling and estimation at a very early stage
of the design flow. The choice of technologies imposed by the project was selected because
of their high complexity and the lack of standard studies andmethodsworking in interconnect
modeling.

In the following chapters, we present the approaches we chose to address the problem,
the granularity and abstraction of our modeling strategy, and the framework we created to
simplify the application of this methodology on NXP i.MX SoCs.In addition, we present
our simplified performance estimation technique and power model structure. Next, we will
review the experiments we conducted and the correlation between our simulations and real
silicon measurements. Finally, we will review some additional tests performed during the
study and conclude with our results and potential future prospects.



Chapter 4

Definition of functional modeling and
power/performance analysis approaches

4.1 Abstraction level, reusability and granularity

The transactional level (TL) is currently the most promising level of abstraction for the nec­
essary extension of design methodologies and improvement of design flow. TL is capable of
providing easy modeling style and high simulation speed [109], while allowing the creation
of sufficiently accurate behavioral models of separate subsystems or complete platforms.
By using TLM2.0’s modeling styles, we can efficiently handle the modeling of communica­
tion protocols, giving us the ability to describe data transfers in complex architectures. The
fact that SystemC and TLM2.0 are built on top of the C++ OOP language allows us to use
semantics such as polymorphism, inheritance, design patterns and many other features that
simplify development, increase interoperability, reusability, configurability and, of course,
simulation speed. Analysis and verification mechanisms and tools can be created or inte­
grated relatively quickly. Data transfers are a good indicator of modules activities when
coupled with registers monitoring, which can be used for performance or power estimates.
The PwClkARCH library can be easily used with these principles, as its calculations can
be based on both power management modules or/and local module events related to their
activity. Therefore, this is the level of abstraction that best suits this approach.

Usually, new designs are derived from existing ones. Since IPs are reused from one
design to another, the goal for TLM models is to be able to reuse them as well. Regardless
of the level of abstraction we are working at, there is a set of fundamental requirements
for the development and integration of reusable IPs, which include meeting interoperability
criteria such as portability, configurability, standardization, quality, mapping strategies, and
rigorous verification. Similarly, the approach to describing potential power intent should
follow these same requirements. In addition, it is highly recommended to adopt automation
of tasks such as consistency checking, code generation and assertions, which can help avoid
power­related functional failures and improve productivity. It is very important to build
reusability requirements into the design specifications and onlymakemodules reusable when
it makes sense, as this is an expensive process. Tomaintain the reusability of the power intent
and the IP, we need easily configurable models and good documentation.

We try to keep the structure of the behavioral models as condensed as possible and base
them on a generic skeleton structure with a small number of mandatory processes/threads
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and extension possibilities. Our models are not synthesizable, so we don‘t need to create
multi­process structures like those needed for RTL. With high­level languages, such as C++
and SystemC, we can create precise behavioral models, without the need to define all the
registers, logic, pins and signals as in RTL. The behavioral model must be described in a way
that represents the precise functionality of the IP. At the transaction level of abstraction, we
need to be able to make fairly accurate and fast power/performance estimates using timed
performance models and some high­level estimates of the area and activity of the IP [37]
[110]. In addition, we should be able to begin to define and test power optimization solutions
and reduce or eliminate their impact on system performance.

Following the idea and semantics of the reverse engineering approach, we started with
an in­depth study of the i.MX8QM platform and more precisely, the Switch Matrix module.
The first step was to study the possible granularity and decomposition of the blocks for our
model. In order to ”mimic” a top­down approach and start with an abstract ”black box” that
can be refined later, we first started with a relatively high granularity. Then, we described the
main structures and algorithms independently so that we can use them as separate functions.
In this way, we can easily move them to a lower child block when refining the model. The
first steps of the refinement process are shown in Figure 4.1.

Figure 4.1: Model refinement process

To do so, during the modeling process, we had to define which blocks of the SM sub­
system can be reused and which parameters can be reconfigured for these blocks. Then, we
limited the granularity of the model to the smallest reusable blocks, allowing to neglect the
instantiation of all signals and registers present in the subsystem, without losing the config­
urability of the components.

Depending on the complexity of the platform and the number of elements/subsystems,
the power model can be created at the top level or divided into several groups. For the pur­
pose of our study, which is the Switch Matrix, we can use the top­level technique. Our ap­
proach follows and adapts to these reuse criteria and provides the same functionality as UPF
and UPM but extended to the transactional level and enhanced by the clock tree description
methodology allowing for clock domain distribution. The main concerns addressed by our
methodology are to simplify the definition of power intent, extract accurate power metrics,
ensure interoperability and portability, unify the language used for the performance model
and power intent, and avoid the extensive verbosity of the UPF syntax.
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To achieve these goals, we need a framework that allows us to easily build new platforms
using module libraries, define different scenarios and test cases, add third­party emulators
and libraries and automatically generate model documentation.

4.2 Framework construction
Project construction plays an important role in the development cycle. When working with
large platforms that are divided into several blocks, subsystems and modules, it is important
to ensure that the build and linkage part is well controlled and that only the modules that
need to be tested are built. An essential part of this work was to define a simple and complete
solution for hierarchizing projects and to make it as easy and reliable as possible. To this end,
we chose to build our framework with a fixed layered structure and non­recursive makefiles
for linking and compilation. There are six main fixed top­level directories (Figure 4.2):

Figure 4.2: Framework structure ­ Top level

• TopLevelDoc – contains all the high­level documentation related to the framework,
such as project documentation generated by the doxyfile, installation guides, informa­
tion about using the framework.

• CommonTools – combines some common headers used in each simulation, such as
memory managers, performance estimation observers, functional checkers, transac­
tion pools, protocol definitions, different types of extensions, reporting and tracing
mechanisms, etc.

• GenericModules – contains all generic modules that can be reused in our simulations,
such as virtual intellectual properties, traffic generators, memory models, etc.

• Libs – contains all external libraries that can be used individually or in a co­simulation
with our framework. We have developed a solution to easily choose the library we
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want to use for the current simulation and a makefile structure to easily integrate new
libraries into the framework.

• ReusedIPs – contains all generic IPs that can be reused in multiple platforms, such as
bridges, interconnect modules, etc.

• Platforms – contains complete platforms assembled with multiple IPs, such as mem­
bers of the i.MX8 series.

The complete framework (with all IPs, Platforms, Testbenches, Documentations) can
be compiled from the top level with the top level makefile. This takes more time and is not
optimal when we want to test specific IPs/Platforms. Two cases where the top­level makefile
is useful are the generation of the documentation (Doxygen) representing the entire project
structure and the cleanup of the entire project to remove all object, executable and output
files. The first layer of IP definitions can be found in the ReusedIPs directory. The structure
of ReusedIPs directory is illustrated in Figure 4.3:

Figure 4.3: Framework structure ­ ReusedIPs

Each individual IP directory contains its documentation, the functional model and the
testbenchs for functional verification at the IP level. Each IP contains two types of local
makefiles allowing to compile the IP and create a static library or to directly compile a test­
bench using the static library of the IP or to compile the scenario with the IP model. The
static IP library can be very useful when we have verified and validated the IP design and
do not need to modify or recompile them for each simulation. However, each testbench can
either use the IP as a static library or rebuild its source files if necessary. The PMU folder
contains the power­oriented modules, such as the PMU module set for the given testbench,
the Master module responsible for the power management, and the description of the power
intent of the platform. We can have different power models here, but we should be able to
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run all scenarios with each of them. The Scenarios directory contains all the use cases de­
fined by the designers that are relevant to this IP. Each scenario has its own directories for
the build/compilation process, simulation output, and configurations. Each Testbench has
its own copy of the reusable fixed Makefile and a unique Makefile.config file containing
the use case specific variable definitions and build paths. In the Platforms directory (top­
level), users can add specific structures containing their full designs. In our case, we added
a directory containing all the i.MX designs we want to model and simulate (Figure 4.4).

Figure 4.4: Framework structure ­ Platforms

The structure of each of the added platforms is based on a structure similar to that of the
top level and the directory of each component used in the complete platform is similar to
that presented in ReusedIPs. This structure allows for configurable and maintainable multi­
level functional verification. In addition, we have added scripts capable of automatically
generating the complete structure in cases where we want to design a new IP, a new testbench
or a complete new user directory project.

4.3 Testbench systems modeling
In order to test and analyze all IPs and platforms, we need to be able to easily create new test
cases, reconfigure existing cases, and use generic components for integration of the tested
design into test benches. We also need to be able to easily switch between communica­
tion protocols in order to optimize communication between subsystems on a chip. For this
purpose, we have developed several generic modules. In this section, we will present our
approach to modeling communication protocols, traffic generation and memory models. All
these components drive the activity of the model, so they are essential for visualizing energy
consumption.
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4.3.1 ARM­based communication protocols modeling
Each of the multiple sets of rules, called communication protocols, developed to create a
common communication language between IPs is tailored to a specific application. Thus,
we may often need to use multiple communication protocols when designing a SoC. The
TLM2.0 transactional level modeling standard has been provided to give a generic protocol
base and to allow the modeling of specific protocols using some extension mechanisms. It
allows us to abstract all low­level information, such as pin and port descriptions, and es­
tablish communication between SystemC processes using functional calls through sockets.
Through these sockets, we send packets, called payloads, which contain some generic infor­
mation such as data, address and size (previously described in 2.3.1). These payloads can be
extended with other protocol­specific signals. In addition, TLM2.0 coding styles allow us
to pipeline transactions and add approximate timing information to achieve more accurate
communication.

As we are modeling a complex module (the Switch Matrix) connecting all subsystems
of an heterogeneous SoC, we have to take into account the communication protocols, their
pipelining capabilities, the ongoing transactions and the approximate timing of the different
phases. For this reason, the LT coding style was not feasible and we had to choose the AT
coding style for our modeling framework (which can, of course, contain other hybrid LT and
AT modules).

During architectural exploration, we may need to test different blocks and protocols, and
thus switch between them. In addition, modeling the protocol can be error­prone and time­
consuming if we code it separately in each IP. The main semantics of TLM2.0 is oriented
exactly towards this separation of behavioral and communication models. However, the AT
coding style contains multiple phases, which can carry over from one protocol to another.
Information about these phases may or may not be required by the behavioral model, and
additional registers or other features may be needed for the correct implementation of the
protocol.

Thus, in order to create reusable, clearer and configurable interfaces and to avoid any
protocol­specific code in the behavioral description, we separated the communication part
from the behavioral part and created reusable communication interface modules. These
modules are based on generic protocol initiator and target skeletons, called SimpleTarget and
SimpleInitiator (Figure 4.5).

Figure 4.5: Simple Target/Initiator communication modules
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• SimpleTarget – Internal IP module (containing simple_target_socket) attached to its
corresponding target TLM socket. It uses the target TLM socket to communicate with
other IPs and callback functions to communicate with its parent IP.

• SimpleInitiator – Internal IP module (containing simple_initiator_socket)attached to
its corresponding initiator TLM socket. It uses the initiator TLM socket to communi­
cate with other IPs and callback functions to communicate with its parent IP.

These are abstract classes containing a tagged simple_target/initiator_socket, several
pure virtual functions, callback methods, TLM transaction checkers and socket performance
observers (Listing 4.1). The implementation of the pure virtual functions is left to the derived
classes, where the protocol specifications is built.

1 template <typename MODULE, unsigned int BUSWIDTH>
2 class SimpleTarget: public ARK_Protocols::IProtocol , public ARK_Utils::

Observable
3 {
4 tlm_utils::simple_target_socket <SimpleTarget <MODULE,BUSWIDTH >, BUSWIDTH >

socket;
5

6 ...
7

8 SimpleTarget(const char* name, sc_time period, size_t idx=0, bool
enableChecks=true, bool enableObs=true);

9

10 void registerModuleCallback(MODULE* mod, void (MODULE::*cb)
11 (tlm::tlm_generic_payload& payload, const tlm::tlm_phase& phase,

const sc_core::sc_time& delay, size_t idx));
12

13 virtual tlm::tlm_sync_enum nbTransportFWCallback
14 (tlm::tlm_generic_payload& payload, tlm::tlm_phase& phase, sc_core::

sc_time& delay);
15

16 tlm::tlm_sync_enum callBWChannel
17 (tlm::tlm_generic_payload& payload, tlm::tlm_phase& phase, sc_core::

sc_time& delay);
18

19 void notifyModule
20 (tlm::tlm_generic_payload& payload, const tlm::tlm_phase& phase,

const sc_core::sc_time& delay);
21

22 virtual tlm::tlm_sync_enum manageFWCallback
23 (tlm::tlm_generic_payload& payload, tlm::tlm_phase& phase, sc_core::

sc_time& delay)=0;
24

25 virtual void sendResponse
26 (tlm::tlm_generic_payload& payload, const sc_core::sc_time& delay)

=0;
27 ...
28

29 ARK_Utils::TLMChecker1 mChecker;
30 ARK_Utils::SocketsObserver mTracer;
31 }

Listing 4.1: SimpleTarget module
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Some of these methods are local (i.e. implemented and called in the modules SimpleTar­
get/Initiator) and others are implemented or called from the derived protocol class:

• Exactly as in TLM2.0 convenience sockets, the SimpleTarget (idem SimpleInitiator)
provides methods for registering callbacks for incoming interface method calls. The
method registerModuleCallback(...) is used to register a callbackmethod in themodule
allowing the SimpleTarget (SimpleInitiator) to interact with it. It is somewhat equiva­
lent to the register_nb_transport_fw(...) method in the convenience target sockets. A
callback method must be implemented in the functional module and registered when
the module is built. This method can then be called whenever an incoming interface
method call arrives. Since this is the method for connecting these communication
blocks to the behavioral model, it is mandatory to register a corresponding callback
function.

• The method nbTransportFWCallback(...) is the registered callback method for the for­
ward channel and is called whenever the socket receives a request on it (BEGIN_REQ
or BEGIN_RESP). We use it to easily apply TLM checkers and observers without en­
croaching on the protocol definition classes.

• The module callBWChannel(...) is a method that can be called from the derived com­
munication protocol in order to send transactions on the backward channel when neces­
sary. Its use may differ from one protocol to another, which is why it is implemented in
the SimpleTarget module, but it can/should be called in the derived protocol. As in the
module nbTransportFWCallback(...), we use it to apply TLM checkers and observers.

• The method notifyMethod(...) is also implemented here, but called in the derived pro­
tocol definition classes. It is used to notify the module of the arrival of a payload or
to update its phase. This method allows us to use a stronger connection between inter­
faces and behavioral models when the protocol requires it. When called in the protocol
class, it activates the callback method connected to the registerModuleCallback(...).

• The method manageFWCallback(...) is a pure virtual method, which must be imple­
mented in the derived protocol class, because different protocols may require different
strategies for transaction control. It is called inside the nbTransportFWCallback(...)
method whenever the socket receives a request on its transfer channel.

• The method sendResponse(...) is also a pure virtual function used in the protocol defi­
nition to respond directly to the initiator module (i.e. the update phase) without passing
it to the behavioral model.

The SimpleInitiatormodule has a similar structure and semantics, but for the other end of
the communication. We instantiate the simple protocol modules in the IP behavioral model
without defining the specific communication protocol (Listing 4.2).
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1 template < unsigned int WIDTH_in, unsigned int WIDTH_out >
2 class Bridge: public IPBase {
3 SimpleTarget <Bridge, WIDTH_IN >* inSocket;
4 SimpleInitiator <Bridge, WIDTH_OUT >* outSocket;
5

6 Bridge(sc_module_name name, protocol::bus_type protocol, sc_time freq):
... {

7 inSocket->registerModuleCallback(this, &IPBase::request_path_cb);
8 outSocket ->registerModuleCallback(this, &IPBase::response_path_cb);
9 ... }
10 ...
11 }

Listing 4.2: SimpleTarget/Initiator instances example

The definition of the communication protocol is done when the IP in question is
instantiated in the platform being simulated. The clock frequency of the subsystem is
also passed as a parameter to the constructor and is used by the communication modules and
the behavioral SystemC models (Listing 4.3).

1 class PlatformSim: public topBase {
2 TrafficGenerator <Bridge, WIDTH_IN > trafficGen;
3 Bridge<WIDTH_IN , WIDTH_OUT > bridge;
4 DramCtrl target;
5

6 PlatformSim(sc_module_name name): topBase(name),
7 trafficGen( ... , protocol::AXI, ..., "Cortex-A72", NB_POOLS,

READ_POOL_SIZE , WRITE_POOL_SIZE),
8 bridge( ... , protocol::AXI, ...),
9 target( ... , protocol::AXI, ...)
10 { ... }
11 ...
12 }

Listing 4.3: Protocol definition

The enumeration protocol::AXI allows us to generate the allocation function defining
the protocol for each module SimpleTarget/Initiator. Since the main components tested
in our platform are based on the AXI communication protocol [111], we will give a
quick overview of how we modeled the AXITarget communication module (Listing 4.4).
This example is important, in order to show the level of abstraction we use when modeling,
which is relative to the needs of our model and its power analysis.

• AXITarget – Slave communication module derived from SimpleTarget. It describes
the sequence and control required to handle transactions according to the AXI protocol
specification on the slave side.

• AXIInitiator – A master communication module derived from SimpleInitiator. It de­
scribes the sequence and control required to handle transactions according to the AXI
protocol specifications on the master side.

The communication blocks AXITarget/Initiator trigger a notifyMethod(...) that ”wakes
up” the behavioral model for processing, when the transaction transmission/reception re­
quires it. AXITarget has two operating models to recognize the request phase:
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• Automatic (by default) ­ AXITarget instance acknowledges the request phase as soon
as possible.

• Manual ­ it’s up to the module to trigger the end request.

This allows better control of the relationship between the request and response phases.
It is recommended to keep the checkers activated/enabled in manual mode to signal any
erroneous scheduling of the module. AXITarget calls the callback method of the module
according to the phases:

• BEGIN_REQ ­ to signal the module that a new transaction has just arrived. At this
point, the module can call:

1. sendResponse(payload, delay)
(a) If the response can be scheduled immediately, the END_REQ phase is ig­

nored (delay = 0) or if a response is in progress on the corresponding chan­
nel, END_REQ is sent one cycle later at the earliest and the response is put
on hold until it can be programmed (delay = SC_ZERO_TIME).

(b) If the response is programmed at the earliest with the corresponding delay
(delay=[value of sc_time]).

2. triggerEndRequest(payload, delay) ­ in manual mode only and when the module
has full control over the moment when the request is acknowledged and over the
temporal relationship between the request and response phases.

• END_REQ ­ to signal to the module that the request phase of the transaction is over/­
completed. At this point, the module can:

1. Do nothing if the response has already been programmed at the BEGIN_REQ step
2. Call sendResponse(payload, delay) to schedule a response

• BEGIN_RESP ­ to signal that a response has been sent to the initiator.
The delay associated with this phase is always SC_ZERO_TIME. In general, the mod­
ule has no interaction with the AXITarget at this stage (but in some cases it is necessary
and possible to do so).

• END_RESP ­ to indicate that the initiator has acknowledged the response.
When the delay is not SC_ZERO_TIME, it means that the response actually ends at
sc_time_stamp() + delay. If the module always uses this step to schedule a pending
response, it ensures that it has precise control over when the response is sent.
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1 template <typename MODULE , unsigned int BUSWIDTH = DEFAULT_BUSWIDTH >
2 class AXITarget: public SimpleTarget <MODULE, BUSWIDTH > {
3 AXITarget(const char* name, sc_core::sc_time clkPeriod , size_t maxRdOT =

DEFAULT_MAX_RD_OT , size_t maxWrOT = DEFAULT_MAX_WR_OT , size_t maxTotalOT
= DEFAULT_MAX_OT , size_t idx=0, bool enableChecks=true);

4 void arChannelMethod();
5 void awChannelMethod();
6 void rChannelMethod();
7 void bChannelMethod();
8 void rChannelEndRespMethod();
9 void bChannelEndRespMethod();
10 public:
11 virtual void sendResponse(tlm::tlm_generic_payload& payload, const

sc_core::sc_time& delay);
12 virtual void triggerEndRequest(tlm::tlm_generic_payload& payload, const

sc_core::sc_time& delay);
13 ...
14 protected:
15 tlm::tlm_sync_enum manageFWCallback(tlm::tlm_generic_payload& payload,

tlm::tlm_phase& phase, sc_core::sc_time& delay);
16 private:
17 tlm_utils::peq_with_get <tlm::tlm_generic_payload > mARChannel;
18 tlm_utils::peq_with_get <tlm::tlm_generic_payload > mAWChannel;
19 tlm_utils::peq_with_get <tlm::tlm_generic_payload > mRChannel;
20 tlm_utils::peq_with_get <tlm::tlm_generic_payload > mBChannel;
21 sc_core::sc_event mArChannelEndReqEvent;
22 sc_core::sc_event mAwChannelEndReqEvent;
23 sc_core::sc_event mRChannelEndRespEvent;
24 sc_core::sc_event mBChannelEndRespEvent;
25 AXIChecker1 mAxiChecker;
26 ...
27 }

Listing 4.4: AXI protocol selection example

The callback methodmanageFWCallback(...) and the SC_METHODs [X]ChannelMethod()
(sensitive to the [X]Channel[phase]Event) are used for synchronization and implementation
of this strategy. Payload event queues with the get (peq_with_get) mechanism are used to
put the back pressure in case of outstanding transactions. The AXIChecker checks if the AXI
ordering rules are respected. In addition to implementing the AXI protocols, we need to
model the AXI signals. For this, we used the generic payload extension mechanisms. At this
level of abstraction and for our application, we are not really interested in the presence of all
AXI signals. Thus, we have extended the generic payload with only a few AXI signals (of
course, we can add them all) selected according to our needs:

• AxID ­ A common extension corresponding to AR/AW ID. We only need one exten­
sion here, because each payload carries its command type attribute and has only one
extension table with it. So there is no need to separate the signals for this purpose.

• AxQOS ­ A common extension for the AR/AWQOS signal. Used for the priority­based
arbitration mechanism.

• AxUSER ­ Used to carry user bits.
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These extensions can be defined and attached to the payload inside the traffic generator
modules. They can also be modified from any component of the system responsible for
processing that transaction as it passes through the component. In order to generate and send
AXI transactions, we created a module AXITransactor that serves as the basis for our traffic
generators (described in the next section). There are some limitations in the implementation
of our AXITarget and AXIInitiator modules. One of them is that the transactions are atomic,
so we cannot model a system interleaving bursts with different AxIDs. However, at the level
of our DUT, there is no burst interleaving and this is quite sufficient for the level of abstraction
targeted in this study. Furthermore, we can use these skeletons and follow the same approach
to create and test other communication protocols without significant (or any) change to the
behavioral models. If the communication rules allow it, we can switch from one protocol
to another very easily and choose the optimal one (after a functional/performance/power
analysis).

4.3.2 Testbench ­ Traffic generation
Payloads memory management

Since we typically use an AT coding style and non­blocking transport interfaces, traffic gen­
eration requires the use of an explicit payloadmemorymanager with reference counting. Dif­
ferent traffic generators may require a different memory management strategy. We therefore
created an interface class (containing only pure virtual functions) declaring the main generic
methods required for each memory manager (Listing 4.5). Using this interface allows us to
create traffic generators without specifying their memory manager internally. We can instan­
tiate a memory manager interface instead and pass the necessary memory manager (derived
from IPoolManager) as a parameter when instantiating the module at the top level (the same
way as the communication protocol). In this way we can test different memory management
strategies and adapt them to the type of traffic we are targeting.
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1 class IPoolManager : public tlm::tlm_mm_interface , public ARK_Utils::
Observable {

2 public:
3 // main interface
4 virtual tlm::tlm_generic_payload* getPayload(size_t poolIdx)=0;
5 virtual tlm::tlm_generic_payload* getPayload(const char* poolName)=0;
6

7 // get information from pool manager
8 virtual const std::deque<const char*>* getPoolList() const=0;
9 virtual size_t getPoolIndex(const char* poolName) const=0;
10 virtual const char* getPoolName(size_t poolIdx) const=0;
11 virtual bool isExisting(size_t poolIdx) const=0;
12 virtual bool isExisting(const char* poolName) const=0;
13 virtual bool isEmpty() const=0;
14 virtual size_t getNbFlyingPayload() const=0;
15

16 // get information from pools
17 virtual bool isEmpty(size_t poolIdx) const=0;
18 virtual bool isEmpty(const char* poolName) const=0;
19 virtual size_t getNbPayload(size_t poolIdx) const=0;
20 virtual size_t getNbPayload(const char* poolName) const=0;
21 virtual size_t getNbAvailablePayload(size_t poolIdx) const=0;
22 virtual size_t getNbAvailablePayload(const char* poolName) const=0;
23

24 // tlm_mm_interface
25 virtual void free(tlm::tlm_generic_payload* payload)=0;
26 };

Listing 4.5: Pool manager interface

Following this approach, we defined a memory manager that implements two transaction
object pools (one for read transactions and one for write transactions) with configurable sizes.
At each transaction initiation, we allocate a payload object from its corresponding pool and
release it when its reference counter reaches 0. The transaction object pools implemented
in the memory manager are constructed using instances of the GenericPool objects (Listing
4.6). The capacity of the pool (read or/and write) is passed to them as a parameter. The
number of available payloads is tracked internally in theGenericPool so as not to exceed the
capacity of the pool (using the mAvailPayloadList map). For auditing purposes and transac­
tions tracing, two IDs (LocalID and GlobalID) are associated with each object/transaction
leaving the pool.



102 4. Definition of functional modeling and power/performance analysis approaches

1 class GenericPool {
2 public:
3 // Constructor
4 GenericPool(const char* name, size_t nbPayload = DEFAULT_NB_PAYLOAD);
5 virtual ~GenericPool();
6

7 // interface for pool manager
8 tlm::tlm_generic_payload* getPayload();
9 bool recyclePayload(tlm::tlm_generic_payload* payload);
10 bool isEmpty() const {return (mNbAvailPayload == 0);};
11 size_t getNbAvailablePayload() const {return mNbAvailPayload;};
12 size_t getNbPayload() const {return mNbPayload;};
13 ...
14 private:
15 std::map<tlm::tlm_generic_payload*, bool> mAvailPayloadList;
16 size_t mNbPayload;
17 size_t mNbAvailPayload;
18 static size_t mGlobalId;
19 size_t mLocalId;
20 ...
21 };

Listing 4.6: Generic pool structure

An example of a CPU pool manager is given in Listing 4.7. It generally defines the
functions declared in IPoolManager according to the structure and the strategy. Generic
pools are generated in a deque, in case we want to extend their number to more than two
(one read & one write).

1 class CpuPoolManager : public IPoolManager {
2 public:
3 CpuPoolManager(const char* name, uint8_t nbCpu, uint8_t rdCap, uint8_t

wrCap); // nbCpu is useful to manage exclusive transaction , strongly
ordered or device memory type accesses

4

5 // main interface (IPoolManager)
6 virtual tlm::tlm_generic_payload* getPayload(size_t poolIdx);
7 virtual tlm::tlm_generic_payload* getPayload(const char* poolName);
8 // get information from IPoolManager
9 virtual const std::deque<const char*>* getPoolList() const;
10 virtual size_t getPoolIndex(const char* poolName) const;
11 ...
12 // get information from pools (IPoolManager)
13 virtual bool isEmpty(size_t poolIdx) const;
14 ...
15 private:
16 std::deque<GenericPool*> mPools;
17 uint8_t mRemainRd;
18 uint8_t mRemainWr;
19 ...
20 };

Listing 4.7: CPU pool memory manager example
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The main interface function getPayload is the one that extracts the payload from the pool
and sets some of its generic attributes (Listing 4.8). At the end of each transfer, the payload
is recycled and can be reused.

1 ...
2 tlm::tlm_generic_payload* CpuPoolManager::getPayload(size_t poolIdx) {
3 tlm::tlm_generic_payload* payload = NULL;
4

5 switch (poolIdx) {
6 case CPU_POOL_RD_IDX:
7 if (mRemainRd > 0) {
8 mRemainRd --;
9 payload = mPools[CPU_POOL_RD_IDX]->getPayload();
10 payload->set_data_ptr(mDataBufferPtr);
11 payload->set_command(tlm::TLM_READ_COMMAND);
12 payload->set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);
13 payload->set_dmi_allowed(false);
14 payload->set_byte_enable_ptr(0);
15 payload->set_mm(this);
16 } break;
17 ...
18 default: SC_REPORT_ERROR(basename(), "Request payload from unknown

pool"); break;
19 }
20 return payload;
21 }
22 ...

Listing 4.8: getPayload() implementation

Traffic Generators and test case scenarios

Using the payload memory management blocks described earlier, we can create our traf­
fic generators. All the traffic generators we create are derived from a base class, called
no_scenario_traffic_gen serving as the interface linking the callbacks (generator module
and communication module).

1 template <unsigned int WIDTH>
2 class no_scenario_traffic_gen : public sc_module {
3 public:
4 tlm::tlm_initiator_socket <WIDTH> socket;
5

6 SC_HAS_PROCESS(no_scenario_traffic_gen);
7 no_scenario_traffic_gen(const char* nm, const char* port_nm, protocol::

bus_type protocol, sc_core::sc_time clk, IPoolManager* pmi);
8

9 virtual void start() = 0;
10 virtual void callback(tlm::tlm_generic_payload& pld, const tlm::

tlm_phase& ph, const sc_core::sc_time& d, size_t idx)=0;
11 protected:
12 SimpleInitiator <no_scenario_traffic_gen <WIDTH>, WIDTH>* m_protocol;
13 IPoolManager* m_pool_manager;
14 ...
15 };

Listing 4.9: Generators base module
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We have a method callback declared as a pure virtual function, which must be imple­
mented in each traffic generator to schedule the generation and transmission of transactions.
The start() method is a SC_THREAD that can be used to start the traffic generation at the
beginning of the simulation. We mentioned earlier that we have created a AXI transactor
module that is used to generate AXI compliant transactions. This module is nothing more
than an abstract helper class derived from the no_scenario_traffic_gen class and includes
some functions that simplify the creation of traffic generators. There are functions such as:

• do_valid_write(size_t addr, size_t ID, sizet QOS, size_t data, sc_time& delay) ­ checks
if the AWchannel is free and, if so, generates a transactionwith a given address, AWID,
AWQOS, data and delay.

• do_valid_read(size_t addr, size_t ID, size_t QOS, sc_time& delay) ­ checks if the AR
channel is free and if so, generates a transaction with the given address, ARID, ARQOS
and delay.

• do_valid_random(size_t addr, size_t ID, size_t QOS, sizet w_data, sc_time& delay) ­
checks if the AR or AW channels are free and if so, generates a random write or read
transaction.

• check_complete (tlm::tlm_generic_payload& transaction_ptr) ­ checks if a read trans­
action was successful

The helper functionsAXI Transactor and the abstract base class no_scenario_traffic_gen,
allow us easily create and reconfigure different traffic generators. The three main types of
traffic generators used in our testbench are:

• Phased traffic generator ­ This is a complete generic solution for traffic generation
where we can define the number of transactions we want to send, the number of times
we want to repeat the procedure, the type of transactions we want to send READ­
/WRITE/RANDOM and possibly the delay between the different phases and between
transactions. This traffic generator also contains an identification (AxID) map for the
transactions, which allows us to reproduce some specific CPU traffic scenarios, such
as memory copy.

• Per file traffic generator ­ Generate traffic from a trace file. We can use two different
formats depending on the details we have for the generated traffic. We can create a
common trace file for all initiatormodules and have them generate only the transactions
associated with them. In this case, the format of the commands is as follows:
<name/identifier>, <command>, <timeframe>, <number of transactions>

If we have a detailed traffic trace extracted from other simulations (RTL, SystemC,
TLM, ...) in the standard STL format, we can associate separate traffic trace files to
each initiator. Our traffic generator works only with a subset of commands in this
format. The STL format is as follows:

<timestamp>, <command>, <address>
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• Display controller traffic generator ­ Generate traffic that mimics the use case of a
display refresh. It is configurable and can be easily used for different display reso­
lutions. A header file containing several configurations describing different resolu­
tions extracted from a VESA is attached. Some of them are QVGA, VGA, SVGA and
HD1080. It has two modes of operation:

– with prefetch ­ multiple transactions are prefetched and stored in two registers,
which ensures that there are always transactions to display. Moreover, this in­
creases performances and reduces the energy consumption.

– without prefetch ­ the transactions are directly addressed to the memory block and
displayed as soon as they are received (if the delay is not exceeded)

On Figure 4.6 we can see the representation of the inheritance of the traffic generators.

Figure 4.6: Traffic Generators inheritance

Each of these traffic generators also contains a port interface that communicates
its status to the Master module via a signal when the status is updated. In this way,
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it allows the Master module to move to the next power­related OPP if necessary. It is
only used for power management. The power consumption of the traffic generators is
outside the scope of this study.

4.3.3 Testbench ­ Memory model and transactions monitoring
We are not interested in developing a cycle­accurate memory model, as this is not the main
objective of the thesis. There are various open­source and non­open­source tools that we
can reuse. Considering that the accuracy of the memory model has a significant impact on
the accuracy of the interconnect power estimation, we made several observations at different
levels of abstraction for the memory system and compared the results. The main goal is
to be able to find a sufficiently accurate solution that can be tested and evaluated with the
PwClkARCH library. To this end, we implemented several approaches:

1. We created a Simple Target/Memory module that receives transactions, checks their
validity and addresses, and adds delays for the accept and read/write process. A map­
ping process is implemented to track the order of transactions (using AxID) and to
ensure that responses with identical AxID are sent in the order of reception.

2. We used the DRAMPower memory power consumption estimation tool. DRAM­
Power performs high­precision modeling of the power consumption of various DRAM
operations, state transitions, and power­saving modes at the ESL level. We have cre­
ated a parsing module to co­simulate our AT functional model with PwClkARCH and
DRAMPower. In this way, we have a more accurate estimate of the functionality and
power of the memory.

3. We used the DRAMSys4.0 library to completely replace our target/memory module.
We added a simple power description using the PwClkARCH library and we have
extracted the power related metrics (without DRAMPower).

4. We integrated our platformmodel into PlatformArchitect Ultra and simulated it with
its memory models. This solution did not allow us to fully integrate PwClkARCH and
extract power metrics. With the UPF methodology available in the tool, we cannot
describe a power management strategy, so even if we create a power model, we will
not be able to correlate the results with simulations or measurements. Moreover, we
did not have access to a ”power model development guide” for custom created IPs
(with TLM Creator). This solution will be presented at the end of this thesis as an
additional work.

Each of these approaches has its advantages and disadvantages in terms of simulation
time, accuracy and effort required.

Simple Target/Memory module approach

In the first one, we have a rather simple solution of a memory controller module with DRAM
memory implementing the request callback. In this module, we define our strategy for mem­
ory access. Once BEGIN_REQ is received, it tests the payload, accepts/rejects it, and if it is
accepted, it performs the READ/WRITE operation using the DRAM memory module. Then
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we add the delay of the operation to the current simulation time and notify the target socket
to send BEGIN_RESP. Configurable parameters in these models are READ/WRITE memory
acceptance and response delays, memory size and width, and power contribution for differ­
ent states, such as clock gated, IO down, and PLL down states. We automate the function­
al/power state evolution using simple module activity monitoring and hysteresis counting,
which is a mechanism allowing to switch the power state after a given number of inactivity
cycles (in our case we wait 32 cycles before switching the state). It is common for initiators
(ex. CPUs) to sequentially send transactions with the same AxID, but the responses do not
arrive in order, because for some reason the latest transaction is processed faster than the
earliest (eg. opening/closing rows and banks in DRAM memory). In this case, we need to
make sure that all transactions with the same AxID are returned to the initiator in order, so
transactions should go First­In­First­Out (FIFO) when they have the same AxID. Therefore,
the controller must be able to store and release them in the correct order. For this purpose
we implement a request reordering map which is a container using AxID as the key and a
queue of payloads as the value. It is used to track the order of execution of transactions and
ensure correct rescheduling. We use a vector for the response register because the responses
are stored in an unordered fashion and we need to retrieve them in order according to the
request reordering map.

Usually, all modules use the PwClkARCH design elements for power calculation. Since
the memory module is more specific and its power consumption is not similar to most other
existing systems, we had to create a specific Design Element for it. The generic model of a
Design Element in PwClkARCH is based on the classical equations for calculating dynamic
power consumption and static power consumption. Here, the power states of the DRC are a
bit more complex because, in addition to the clock gated state, we need to take into account
at least the state where the IO buffers can be set to the OFF state, while the internal PLL
is still active, and the state where the PLL is also OFF. To do this, we have defined a class
Design_elem_DRC which inherits from the PwClkARCH class Design_elem in which we
redefine the power consumption calculation model (Listing 4.10). In addition to the normal
active mode of the module, we define 3 states: CLK_GATED, IO_DOWN and PLL_DOWN
in which we directly set the value of the dynamic power consumption.



108 4. Definition of functional modeling and power/performance analysis approaches

1 #define ACTIVITY_CLK_GATED (int)-1.0
2 #define ACTIVITY_IO_DOWN (int)-2.0
3 #define ACTIVITY_PLL_DOWN (int)-3.0
4 #define DRC_POWER_CLK_GATED (int)294.0 // 294.0
5 #define DRC_POWER_IO_DOWN (int)52.0 // 52.0
6 #define DRC_POWER_PLL_DOWN (int)0.0 // 0.0
7 #define PLL_DOWN_DELAY (int)5 // in US
8 #define IO_UP_PENALTY (int)30 // in NS
9

10 class Design_elem_DRC : public Design_elem {
11 public:
12 Design_elem_DRC(Clock_Domain* pClock_Domain ,Power_Domain* pDomain_name ,

sc_core::sc_object& a_obj,float capacitance , float activity, float
Rleakage){}

13

14 void Update_dpow(float activity) {
15 Clock_Domain::log_power_update();
16 Power_Domain::log_power_update();
17

18 //Update DRC dynamic power using the new activity ratio
19 if (activity >= 0) {
20 _dynamic_pow = _dynamic_pow_base*activity;
21 _activity = activity ;
22 } else if (activity == ACTIVITY_CLK_GATED) {
23 _dynamic_pow_fixed = DRC_POWER_CLK_GATED ;
24 _dynamic_pow = _dynamic_pow_fixed;
25 _activity = 0.0;
26 } else if (activity == ACTIVITY_IO_DOWN) {
27 _dynamic_pow_fixed = DRC_POWER_IO_DOWN ;
28 _dynamic_pow = _dynamic_pow_fixed;
29 _activity = 0.0;
30 } else if (activity == ACTIVITY_PLL_DOWN) {
31 _dynamic_pow_fixed = DRC_POWER_PLL_DOWN ;
32 _dynamic_pow = DRC_POWER_PLL_DOWN ;
33 _activity = 0.0;
34 } else{} //False Dynamic Power activity value
35

36 Clock_Domain* CD_to_update = this->GetClock_Domain();
37 CD_to_update ->update_all_activity(CD_to_update);
38 Power_Domain* PD_to_update = this->GetPower_Domain();
39 PD_to_update ->update_all_activity();
40 }
41 };

Listing 4.10: DRC Design Element

Since the DRAM controller modules use the auto clock gating mechanism, they com­
municates the functional state of the module via particular values of the activity parameter
(negative values). For example, we can use a hysteresis approach, if no transactions are
received for 32 cycles, then the DRAM controller transmits a corresponding activity to the
Design_elem_DRC and puts it in the CLK_GATED state. One way to do this is to add a
SC_THREAD in the functional module that is evaluated each time the callback method is
activated (each time the payload phase is updated). We called this thread check_state() and
the event it is sensitive to is m_check_mode. The implementation is given in Listing 4.11.
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1 void DramCtrl::request_path_cb(tlm::tlm_generic_payload& pld, const tlm::
tlm_phase& phase, const sc_core::sc_time& delay, size_t idx) {

2 drc_state = ACTIVE;
3 check_idle_mode.cancel(); //cancel the idle mode if a new pld arrive
4 check_idle_mode.notify();
5 ...
6 }
7

8 void DramCtrl::check_state() {
9 int activity_ratio = 0;
10 while (true) {
11 wait (m_check_mode);
12 sc_core::sc_object& obj = dynamic_cast <sc_core::sc_object&>(*this);
13 de=Design_elem_DRC::get_DE(obj);
14

15 switch (drc_state) {
16 case ACTIVE :
17 de->set_functional_state(false);
18 this->notify();
19 SetActivity(1.0);
20 drc_state = CLK_GATED;
21 m_check_mode.notify(32.0*pow(10,9)/m_Frequency ,SC_NS);
22 break;
23 case CLK_GATED :
24 if (m_pendingCounter == 0){ //CLK_GATED
25 activity_ratio = ACTIVITY_CLK_GATED;
26 SetActivity(activity_ratio);
27 de->set_functional_state(true);
28 drc_state=IO_DOWN;
29 } else if (m_pendingCounter > 0) drc_state = ACTIVE;
30 else SC_REPORT_ERROR(basename()," Neg pending pld value");
31 m_check_mode.notify(32.0*pow(10,9)/m_Frequency ,SC_NS);
32 break;
33 case IO_DOWN :
34 activity_ratio = ACTIVITY_IO_DOWN ;
35 SetActivity(activity_ratio);
36 drc_state=PLL_DOWN;
37 m_check_mode.notify(ceil(PLL_DOWN_DELAY/2.0),SC_US);
38 break;
39 case PLL_DOWN :
40 activity_ratio = ACTIVITY_PLL_DOWN ;
41 SetActivity(activity_ratio);
42 break;
43 }
44 }
45 }
46

47 void DramCtrl::SetActivity(float activity)
48 {
49 sc_core::sc_object& obj = dynamic_cast <sc_core::sc_object&>(*this);
50 de = Design_elem_DRC::get_DE(obj);
51 de->Update_dpow(activity);
52 }

Listing 4.11: check_state implementation
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DRAMPower/PWClkARCH co­simulation approach

The second solution was inspired by the work done in [5] presenting the co­simulation be­
tween a simple LT SystemC/TLM model, PwClkARCH and DRAMPower.

DRAMPower [112] [113] is an open source tool for DRAMpower and energy estimation.
It includes models of DDRs, LPDDRs and Wide IO DRAM JEDEC standard memories.
These models are created using data sheets from memory vendors, including architectural,
timing and current/voltage specifications. The tool uses two types of traces as inputs, which
also determines its abstraction. These two types are command­level traces and transaction­
level traces.

• At the control level, it is assumed that we are able to provide a DRAM controller model
or directly a trace generated by such a controller. The command level traces contain the
detailed memory commands (such as ACT, RDA, WRA, SREN, SREX...). The format
used in the trace files is as follows:

<timestamp>, <command>, <bank>

• At the transaction level, a simple DRAMcontroller (command scheduler) is considered
internal to the tool. Thus, it only requires read or write commands for transactions,
instead of full memory commands. The format it uses is as follows:

<timestamp>, <READ | WRITE>, <address>

In the representation of a general SDRAM controller (Figure 4.7), we can see that there
are front­end and back­end processing elements. At the front­end interface, the controller
receives transactional type commands, schedules them to the appropriate time slots, and
sends the scheduled requests to the back­end. At the back­end interface, transactions are
transformed into command­level commands with physical addresses before being passed to
the memory itself. Power consumption is dynamically evaluated at the back­end based on
memory specifications, timing, states and traffic to memory.

Figure 4.7: General SDRAM controller [7]

In our study, we developed a parser module, similar to the one presented in [5], but for
the AT SystemC/TLM model, allowing to create transaction­level trace files. The connec­
tion between DRAMPower and PwClkARCHwas set up in order to obtain the most accurate
power consumption values while maintaining optimal simulation speed. For this purpose, it
is preferable to calculate and extract the average power consumed for windows of several
transactions and to reduce the exchanges between the two simulators. Calculating the power



4.3 Testbench systems modeling 111

consumed by DRAM on a transaction­by­transaction basis can lead to very erroneous power
values. Thus, DRAMPower is invoked by the SystemC­TLM functional model only once
per window of N read/write transactions. It then returns the average power consumed by the
memory for that window and updates the overall consumption calculated by PwClkARCH
(Figure 4.8). The larger the window, the more we lose accuracy and increase the simula­
tion speed, as DRAMPower is rarely invoked. And conversely, the smaller the window size
(maybe = 1), the more we decrease the simulation speed (but with limited accuracy improve­
ment ­ window size must be greater than 1).

Figure 4.8: Connection of DRAMPower/SystemC­TLM model/PwClkARCH [5]

We also enhanced the DRAMPower tool to calculate the average response time per trans­
action for each window to improve the timing accuracy of the functional model. In order to
handle the swapping between the two simulators (DRAMPower and PwClkARCH) and not
lose too much accuracy in the power evaluation, we implemented a solution similar to the
one cited above that allows to take into account the periodic refresh commands generated
at periods tREFI by the command scheduler. As in the first solution, we need to generate a
specific design element for the memory module, which is part of the parsing between tools.
We will call this design element Design_elem_DRC again.
The power consumption evaluation is divided into two steps:

1. In the first step, for eachwindow, DRAMPower is invoked only for the first transaction
in the window and evaluates its power. The particularity here is that the timestamp of
this transaction is not when it occurs, but when the previous refresh command occurred.
In this way, the power consumption we extract for this transaction is the sum of the
IDLE power consumption and the power consumption of a single transaction.

2. Then, in the second step, we invoke DRAMPower for the evaluation of the entire win­
dow of transactions and the result is equal to the sum of the IDLE power consumption
and the approximate power consumption of N(=window size) transactions. In order
not to omit the IDLE power consumption of long idle periods, in the parser DRAM
module we always keep track of the last occurred transaction (including refresh) and
keep a constant power consumption, representing the power consumed during the idle
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phase. This constant value is extracted from the DRAM characteristics. When a new
transaction is received, we call the design element to stop using this constant value and
revert to the DRAMPower model.

Consider the example in Figure 4.9 for the sequence of read/write transactions at the
DRAM controller:

Figure 4.9: RD/WR Sequence example

The current time of the SystemC simulation is indicated by t2r with the first transaction
of a new NB_TRANS transaction window. Prior to t2r, the DDR was in idle mode and the
value of dynamic_pow_fixed set the power consumed by the DDR. The refresh events occur
at regular intervals with a period equal to tREFI . Thus, in the example, there are 2 refreshes
that occurred during the idle state of theDDR and therewill be another refresh ((n+1)∗tREFI)

that will occur during the new transaction window.
If at the end of the NB_TRANS transaction window we activate DRAMPower only on

the window, DRAMPower may not take into account power due to refreshment because this
refreshment will be simulated by DRAMPower at the tREFI date of the beginning of the
window and not relative to the date of the last refreshment (n∗ tREFI). Similarly, we activate
DRAMPower on a window that starts at SystemC’s (n ∗ tREFI) date (thus in the past) to
ensure the correct occurrences of refresh events in the future. However, during the interval
x, the DRAMPower is already accounted for with dynamic_pow_fixed. Therefore, from the
average power returned by DRAMPower over the window originating at t_rw_prev, we need
to subtract the power consumed in the x­interval which corresponds to [t_rw_prev, t2r] i.e.
from t_rw_prev until the first transaction in the window.
The value of t_rw_prev is:

t_rw_prev = ⌊ t2r

tREFI

⌋ × tREFI (4.1)
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where ⌊x⌋ represents the integer immediately below the real number x.

The evaluation in Design_elem_DRC.cpp of the average power _dynamic_pow of the
NB_TRANS transactions starting from the first transaction is shown in Figure 4.10:

Figure 4.10: NB_TRANS average power evaluation

The evaluation of the average power from t = 0 (local time at DRAMPower) to t =

date_of_first_transaction is done by sending to DRAMPower a first trace with the only
first transaction dated at date_of_first_transaction. The value returned by DRAMPower
is power_from_refresh in the C++ code and also noted P1 in Figure 4.10. Then DRAM­
Power is used on the complete trace from t = 0 to t = elapse_time and returns the aver­
age power mpm.power.average_power also noted P2 in the figure. This power can con­
tain the refresh power if such events occur in the window, as is the case in the figure.
We can then deduce _dynamic_pow by subtracting the two energies produced by P1 and
P2, i.e. P1 ∗ date_of_first_transaction and P2 ∗ elapse_time, and dividing the result by
elapse_time.

As in the first solution, we need to add the methods check_state() and SetActivity() in
the functional model, which are responsible for updating the calculations in the design el­
ement. The implementation of the SetActivity() method is the same as before (and as for
any IP model), but the callback method (request_path_cb) and check_state() are modified to
achieve the behavior shown here. The implementation should look like the simplified code
snippet given in the appendix A. The approach we took to this solution is explained in the
additional work section 5.7.1 from Chapter 5.

NOTE: In the latest version of DRAMPower, transaction­level traces are an obsolete
feature and are no longer supported. The future version of DRAMPower will rely on
simulators like DRAMSys4.0 and Ramulator for this. This was not the case during our
study.
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DRAMSys4.0/PWClkARCH co­simulation approach

In this third solution, we used the DRAMSys4.0 flexible and open source DRAM subsystem
framework based on SystemC/TLM2.0 [8]. This framework incorporates a fast and fully
cycle­accurate SystemC/TLM2.0 DRAM models and supports the latest JEDEC DRAM
standards (e.g., DDR4, LPDDR4, GDDR6 and HBM2). The simulator uses the Approx­
imately Timed (AT) coding style for DRAM behavior, which allows modeling pipelined
behavior and out­of­order responses to initiators. This means that we can couple it directly
to our TLM model. It also has its own custom protocol, called DRAM­AT, which defines
application­specific phases for all DRAM commands [114] and allows projection of DRAM
into TLM with cycle accuracy.

The framework can be used for timing, thermal, error and power modeling. Its polymor­
phic structure allows for easy configuration of individual blocks and can be reused for newer
standards. Moreover, it is relatively new (github release in July 2020) and still under devel­
opment. It is greatly improved over its predecessors (DRAMSys3.0 and DRAMSys2.0) in
terms of simulation speed, accuracy, and configurability.

Figure 4.11: Architecture of DRAMSys4.0 [8]

For the power modeling, DRAMSys4.0 usually uses the DRAMPower tool.
In our case, as an initial study, we want to integrate DRAMSys4.0 into our framework

and co­simulate it with PwClkARCH. Therefore, we decided not to use its DRAMPower
extension and simply use it as an accurate DRAM functional model in our platforms. We
wrapped it with its PwClkARCH power description and reused the same design element that
was defined for the first solution (Simple Target/Memory module approach 4.3.3). Thus, we
increase the accuracy of the functional module, which results in increased power consump­
tion accuracy without the simulation speed penalties added by DRAMPower. Since it is
entirely based on SystemC/TLM2.0, its integration into our project is quite easy. Exactly as
we did with the DRAMPower solution, we cloned the project into our Libs directory (project
structure described in 4.2) and compiled it as a library. Then we derived a new class from
the top DRAMSys class (called DRAMSys). The constructor parameters of the new class are
those required by DRAMSys (Listing 4.12).
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1

2 class DRAMSysPow: public DRAMSys, public ARK_Utils::Observable , public
Subject, public Assertions {

3 public:
4 SC_HAS_PROCESS(DRAMSysPow);
5 DRAMSysPow(sc_module_name nm, std::string simToRun, std::string

pathToRes);
6

7 virtual ~DRAMSysPow();
8

9 void check_state(void);
10 void SetActivity(float activity);
11 ...
12 ARK_Utils::ModuleObserver mModuleObserver;
13 ARK_Utils::PerfObserver mPerfObserver;
14 ...
15 int m_drc_state;
16 sc_event m_check_mode ;
17 Design_elem_DRC* de;
18 sc_core::sc_port<sc_signal_in_if <double>,0> activity_in;
19 sc_core::sc_signal <double> m_activitySig;
20 };

Listing 4.12: DRAMSys derived module

1 DRAMSysPow::DRAMSysPow(sc_module_name name, std::string simulationToRun , std
::string pathToResources):

2 DRAMSys(name, simulationToRun , pathToResources)
3 ...
4 {
5 m_clock_period = Configuration::getInstance().memSpec->tCK;
6 m_Frequency = 1/(m_clock_period.to_seconds());
7 this->arbiter->activity_out(m_activitySig);
8 activity_in(m_activitySig);
9 drc_state = ACTIVE ;
10 ...
11 SC_THREAD(check_state);
12 SC_METHOD(update_activity);
13 sensitive << activity_in ;
14 dont_initialize();
15 }
16

17 void DRAMSysPow::update_activity() {
18 drc_state = ACTIVE;
19 if (activity_in ->read() == 1.0) {
20 m_check_mode.cancel();
21 m_check_mode.notify();
22 }
23 }

Listing 4.13: DRAMSys derived module constructor

As in this case we do not use our SimpleTarget interfaces, but the DRAM TLM sockets,
we do not define a callback function. However, it is already defined in theDRAMSysmodule
from which we are derived. The methods check_state(), SetActivity() and the specific design
elementDesign_elem_DRC are exactly the same as in the first solution, but here we added an
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additional SC_METHOD, called update_activity(), to activate them (Listing 4.13). In order
to avoid the inclusion of intrusive code (and relationships) inside the DRAMSys library,
we simply added a port/export connection between DRAMSysPow and the Arbiter inside
DRAMSys by passing a signal that indicates when the module is active and when it is not.
There are several ways to realize this simple connection between them, but the purpose of
this solution is to make a first test if the co­simulation between these frameworks is possible.

The solution combining our SystemC/TLM2.0 framework, PwClkARCH and DRAM­
Sys4.0 could be the optimal solution for accurate power estimation. Furthermore, it will be
interesting to use this approach in combination with the DRAMPower power simulator. We
have already done this work separately, once only with DRAMPower and once only with
DRAMSys4.0. Thus, it could be quite easy to combine the two. In addition, DRAMSys in­
troduced new JEDEC standard memory specifications (i.e. LPDDR4), which were not avail­
able in the DRAMPower tool. However, for this study, targeting the power consumption of
the Switch Matrix, we need a more accurate behavioral representation of the memory
module, which is available in DRAMSys4.0 even without the DRAMPower extension.

Platform Architecture Ultra approach

The fourth solution to provide our framework with an accurate memory model was to inte­
grate our models into the Platform Architect Ultra tool. However, this solution is not open
source and for this reason, we only had ”user level” access to this tool and we were not able
to integrate PwClkARCH within it. It is worth mentioning that we ported our behavioral
model to this platform using the TLMCreator (part of Platform Architect Ultra) and modify­
ing our interfaces (SimpleTarget/SimpleInitiator) with their FT sockets (part of SCML) with
AXI extensions. We were able to use models already available in the tool’s library. We used
cycle­accurate memory controller and memory models, as well as trace­based and/or task­
based traffic generators, generating workloads from .STL files. The integration was fairly
straightforward, but it left us with limited options for estimating the power of our platforms.
The approach we took to this solution is explained in the additional work section 5.7.2 from
Chapter 5.

4.4 Switch Matrix system modeling ­ Design Under Test
In architectural exploration, the description of the behavioral models should be as close as
possible to the actual hardware. At the ESL, the prototyping time is limited, therefore, the
granularity and level of abstraction in the definition of the functional model must be kept as
high as possible.

Some of the mandatory specifications that need to be considered at this stage are the
communication protocol, the frequency of the component’s clock, the synchronous and asyn­
chronous processes, the approximate time required for the component to process transactions,
and the maximum number of details about the component’s functionality.

At this level, HDLs are not suitable because their semantics are relative to a lower level of
abstraction and their development and simulation time is too large. This is why a high­level
language, such as C++/SystemC, is more suitable for this type of modeling. Since SystemC
is entirely based on C++, it therefore makes use of object­oriented programming (OOP),
C++ data types and the C++ code compilation process. Inheriting these semantics, SystemC
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provides an event­driven simulation interface that allows designers to simulate concurrent
processes. Combined with its TLM2.0 layer for communication between different IPs, it
becomes a rapid reference solution for ESL hardware prototyping.

4.4.1 Skeleton structure
When we want to describe a behavioral model, it is very important to model the entire trans­
action processing process in order to maintain functional accuracy and to meet the timing
and deadlines. In order to reduce the simulation time, we do not use clock­sensitive method­
s/threads and we call the required processes only when they have to perform a certain task.
To do this, we use payload event queues (PEQ) and event­sensitive methods and threads.
For the sake of simplicity, it is also important to keep a fixed common structure for all IP
components and add additional processing threads if needed. With this in mind, we decided
to create skeletons that can be reused when creating/coding a new IP model. Following the
structure of HDL languages, we created an entity class containing all ports, interfaces and in­
stances of other subsystems. An architecture class is derived from it to define the description
of the internal module.

Each IP model contains at least two PEQ:

• AcceptReadPEQ – notified when read transaction is received;

• AcceptWritePEQ – notified when write transaction is received;

These PEQs are used in two SC_THREAD processes that perform scheduling and pro­
cessing of IP­specific requests:

• AcceptReadThread() – waits for the AcceptReadPEQ notification and performs its IP­
specific request acceptance processing;

• AcceptWriteThread() – waits for the AcceptWritePEQ notification and performs its IP­
specific request acceptance processing;

Once accepted, these threads wake up their corresponding forwarding/transfer methods
using the m_forwardRdEvent and m_forwardWrEvent events. These events can be called at
three different times during the simulation:

• When a request is accepted (end of AcceptReadThread() or AcceptWriteThread());

• When a request has been transmitted to a targeted IP and that IP indicates receipt of
the complete request (phase END_REQ);

• When the complete transaction (Request+Data) has been sent to a targeted IP and this
IP indicates the reception of the complete transaction (phase END_RESP);

The forwarding methods are:

• ForwardReadMethod() – if the transmission channel is free, it forwards the scheduled
read transaction;

• ForwardWriteMethod() – if the transmission channel is free, it forwards the scheduled
write transaction;
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Each intermediate module may require a reordering map. Let’s imagine the structure of
Figure 4.12. The interleaver will receive ordered transactions from the Initiator and forward
them to Target 0 and/or Target 1. These transactions may take a different amount of time
to be processed by the targets, and we may have out­of­order responses. However, if the
transactions have different AxIDs, we can send them without reordering them, but in case
we receive transactions with the same AxID in disorder, we need to make sure that the first
received transaction will be executed first (FIFO). The structure of the reordering map is
exactly the same that was used in DRAM memory modules.

Figure 4.12: One initiator ­ Two targets structure example

Intermediate processes can be easily added, which guarantees the interoperability of the
behavioral skeletons. An example of these skeletons is given in the Appendix B. Moreover,
the separation between entity and architecture classes allows us to reuse them separately and
test different configurations.

4.4.2 Switch Matrix model quick overview: architecture, power intent
and power management strategy

The granularity of our model is the same as presented in the technology section 3.5. Figure
4.13 shows the example of the SM functional model in a i.MX8QM­based tesbench. The
lower level modules (the sequential modules) are based on the skeletons presented earlier.
The upper level modules (Switch Matrix and Groups) can be thought of as top­level modules
containing the instances and connections of their child modules.

The implementation of the code corresponding to the internal functional behavior
of these models cannot be shown here for confidentiality reasons.

However, we can mention that a configuration file is attached to each of these mod­
ules. The configuration strategy is passed as a parameter to the Switch Matrix, which in
turn passes the correct configuration command to its child modules. Each of these modules
is independent and reusable. In order to achieve configurability (and thus reusability), we
have separated the algorithmic and transaction processing parts. Reusable algorithms are
defined in external classes and their instantiation and application strategy in the modules is
defined in the configuration passed by the user. Thus, algorithms, such as those responsible
for interleaving, HPR and UDP in the QOS module, can be instantiated whenever they are
needed. For example, the interleaving algorithm is not needed when we have a platformwith
a single DRAMmemory, so the configuration of such platforms excludes it from the model,
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Figure 4.13: SM functional model blocks + Master/PMU

without creating a new separate module for each platform. The same applies to the number
of sockets.

Each tool has a referenced method of use and recommended best practices. The same is
true for the PwClkARCH library. The methodology behind PwClkARCH is quite simple.
Each module must instantiate a signal port that will be connected to the external PwClkA­
RCH Clock Manager. The developer must ensure that the clock frequency used for the syn­
chronous components is synchronized with this external clock generated by PwClkARCH.
We do not use real clock signals, because this can be very expensive in terms of simulation
time due to all the clock switching and because the TLM2.0 non­blocking transport inter­
faces provide us with all the necessary information. Thus, the only information transmitted
through this channel is the frequency associated with this module. PwClkARCH is respon­
sible for updating the frequency of the component if there is a change (e.g. DVFS and Clock
gating) from the Master and PMU modules. Then, following the previous recommendation,
we can generate events based on the clock frequency and activity updates in the module.

Decoupling the performance model from the power intent is a very important point for
interoperability, simulation speed and debugging. As explained in the section 3.4, we use
the same approach as UPF, except that we do not directly associate IP instantiations with
power intent (Power Domains and Clock Domains), but rather Design Element components
referencing SystemC IP models. In all IP models except the memory and memory con­
troller models, we use the standard Design Elements built into PwClkARCH. Since these
DE calculate the static and dynamic power equations only when there is activity in the func­
tional model or an update to the power/clock domain state, the impact on simulation speed
is smaller (and also developer dependent). Furthermore, by separating the concerns between
the performance and power models, the interoperability of the power intent is increased and
we can reuse it for other IPs (e.g., when improving a reusable IP).

The functional models developed prior to the integration of the PwClkARCH library re­
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quired minimal and fairly identical adaptations in order to be properly linked to the library.
However, it is recommended to use event­sensitive threads or methods for SystemC/TLM
model development, as this approach simplifies the control and notifications from the func­
tional models to the power/clock models. This approach allows us to maintain a stronger
separation.

Exactly as in the memory models presented in Section 4.3.3 whose clock is controlled in­
ternally by the automatic clock gating mechanism, we need to add the methods check_state()
and SetActivity(). We can use a simple generic implementation (ACTIVE, IDLE,CLK_GATED)
equivalent for all IPs or we can override it with specific clock management strategies for the
IP that requires it. Then, in the behavioral model, it is enough to notify the method whenever
there is an activity update (for example, when the IP is idle and BEGIN_REQ is received or
when all registers are empty and there are no new transactions after the last END_RESP).

The Listing 4.14 presents an example of a generic implementation of check_state():
1 #ifdef PWARCH
2 template(void)::check_state() {
3 de=Design_elem::get_DE(obj);
4 while(true) {
5 wait(m_check_mode);
6 if (m_State) { // Activate
7 de->set_functional_state(false);
8 SetActivity(1.0);
9 } else {
10 SetActivity(0.8);
11 wait((32/m_Frequency)*pow(10,9),SC_NS);
12 if (!m_State) // IDLE for 32 cycles -> Clk gating
13 de->set_functional_state(true); // Activity=0
14 else {} // Activated during the cycles count
15 }
16 }
17 }
18 #endif

Listing 4.14: Generic check_state() method

The method de­>set_functional_state(true/false) allows us to change the clock states to
ON (=false) and OFF (=true) directly from the subsystem. But in order to use it, the Master
module must inform the Power Manager that some IPs are running in automatic clock gating
mode using the write_mem(PM_ENABLE_AUTO_CLK_GATING, 0xffff) (process described
in the section 3.4.3).

The Master module is responsible for reporting OPP state changes to the PMU mod­
ule. The implementation of this Master module is done by the prototype developer, so there
are different ways to do it. As we mentioned earlier in the PwClkARCH section (Master
implementation, page 66), each initiator module can play the role of Master if the PMU is
connected to the bus. In our case, we chose to separate it from the functional model (for
the reasons mentioned earlier in the technology overview) and add signal port/export inter­
faces to the initiator modules and the master module carrying the control commands. The
master reads the commands when they are updated and updates the OPP as necessary. A De­
sign Element has also been associated with the Master because this unit receives the Power
Manager’s state end transition event (from PwClkARCH) when the Master requests a OPP
change. To avoid the occurrence of energy consumption by this Master that has no direct



4.4 Switch Matrix system modeling ­ Design Under Test 121

correspondent in the functional model of the Switch Matrix, we have parameterized it ac­
cordingly. Regardless of the scenario or testbench, we associate a capacitance of 0.0 F with
the Master design element and a leakage resistance of 106Ω so that no significant power
consumed by the Master pollutes the simulation results.

We still need to be able to simulate the IP model separately with and without a power
intent specification. In addition, we need to ensure that we maintain consistency between
these simulations and instantiate the same performance model in both simulations. For this
reason, we need to keep a clean and easy way to define the type of simulation we want to
perform. To do this, we add the #ifdef PWARCH directive to each piece of power­related
code and use a simple main function (Listing 4.15) and a few command­line arguments to
set simulation conditions, such as the type of simulation (perf or power­aware), verbosity
level, and performance tracking and reporting (IP level and socket level).

1 int sc_main(int argc, char* argv[]) {
2 ...
3 // PERFORMANCE MODEL + TB instantiation
4 SwitchMatrixSim0 top("SMarch0");
5

6 // POWER INTENT instantiation
7 #ifdef PWARCH
8 PowerIntentSM0 <SwitchMatrixSim0 > PowerIntent(&top);
9 #endif
10

11 sc_start();
12 ...
13 return 0;
14 }

Listing 4.15: Separation between performance model and power intent

The SwitchMatrixSim0 object represents the functional/performance model, given as a
parameter to the PowerIntentSM0 template containing the full description of the power intent
of the reusable IP. Isolating the power intent from the functional model, allows us to reuse it
with multiple IP models and test different IP options and their impact on power consumption.
It also allows us to define and test different power intents for the same functional model
and choose the most optimal solution. Since the functional/performance models and power
intents are co­simulated, the accuracy of the power figures from the simulation is strongly
related to the accuracy of the corresponding functional models and power intents. In the
PowerIntentSM0 template, all Design Elements, Power and Clock Domains, Supply Nets,
Power Switches, the PST and CST and the OPPT are declared. The main components of the
SM power intent are shown in Figure 4.14. In addition to the auto clock gating mechanism,
we need to add a CST to dynamically change the values of the clock frequencies applied to
the design elements, a PST to dynamically change the voltage values of the power supply
networks and the state of the power switches attached to the power domains, and an OPPT to
define the global states of the system. The tables in Figures 4.15, 4.16 and 4.17 summarize
some example scenarios and module states corresponding to the global system state.

The frequency of a clock domain is calculated using its DPLL reference clock, the divi­
sion factor from the CST and the pair of multiplication and division factors from the OPPT
applied to the DPLL clock frequency. For example, the DPLL in the CD_A0 clock domain
have a reference clock running at 24MHz. In the clock state ALL_ON, its division factor is
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Figure 4.14: i.MX Power intent definition

Figure 4.15: i.MX Clock State Table (CST) example

Figure 4.16: i.MX Power State Table (PST) example

4 (from CST) and in the OPP state ALL_ON, its multiplication and division factors are 500
and 4 respectively (from OPPT). Thus, following the simple equation (4.2) we calculate the
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frequency applied to the clock domain.

fCD_A0 =
fref_clk

DivFactCST

× MultFactOPPT

DivFactOPPT

=
24× 106

4
× 500

4
= 750MHz (4.2)

Figure 4.17: i.MX Operating Performance Points (OPP) example

Figure 4.18 shows an example of a power management strategy:

Figure 4.18: i.MX Power management strategy example

At the beginning of the simulation, PwClkARCH should start by setting the operation
point ”Boot” that puts all the system clocks into Bypass mode which results in a wait time
equal to the maximum of the clock penalties. Next, we start the communication scenario by
setting the operation points (OPPs) with respect to the global system state. In this example,
after the Boot, we use the Master module to set the different operation points. We start with
the operating point ALL_ON to activate all the subsystems.
Once activated, we send a command to the PMU to activate the automatic triggering of
the clock (write_mem(PM_ENABLE_AUTO_CLK_GATING, 0xffff)). During this phase, all
the activity of the scenario requiring a communication between the subsystems and the
memories is processed. If we consider that the memories do not use the auto clock gat­
ing mechanism and that there is no more activity, we must define the next OPP, which is
the DRCs_CLK_OFF. During this phase, the clocks of the two memories are gated/cut and
if there is any activity inside, the PwClkARCH assertion mechanism will produce an error
message indicating the timestamp and information about the activity. If there is no error in
the behavior and the scenario is completed, the Master sets the last OPP ALL_OFF which
performs Power Gating on bothmemories (OFF state), gates the clock of all other subsystems
and changes their supply voltage from ON_H to ON_L. We will illustrate it by applying
this implementation on an industrialized reusable IP in the next chapter.
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4.5 Performance estimation and transactions monitoring
approach

The performance estimation approach we use is based on transaction­level monitoring. It
allows us to start with a higher functional abstraction and refine our behavioral model along
the way. For the implementation, we use the Observer design pattern [115].

4.5.1 IP­level performance observation
Each IP model in our framework is derived from a subject Observable. To simplify this,
we have created a module IPBase (an abstract class derived from sc_module and the class
Observable) responsible for instantiating, adding and notifying all observers attached to it
when necessary. Then, we use this class IPBase to derive our IP models. This class contains
the request callback function (request_path_cb(pld, phase, delay,idx)) and response callback
function (response_path_cb(pld, phase, delay,idx)) used for communication between the be­
havioral model and the interfaces SimpleTarget/SimpleInitiator. The request and response
callback functions are the ones we attach to the callback registers of SimpleTarget/SimpleIni­
tiator, so they are called every time a transaction is passed through the IP model. In their
implementation, we simply collect the required data, notify the Observers and call the man­
age[Forward/Backward]Path(pld, phase, delay, idx) which is a pure virtual function in this
class and implemented in every IP model derived from this class (Listing 4.16).

1 void request_path_cb(tlm::tlm_generic_payload& payload, const tlm::tlm_phase
& phase, const sc_core::sc_time& delay, size_t idx) {

2 #ifdef PERF
3 if ( (phase == tlm::BEGIN_REQ) ) {
4 this->m_PldArgs.payload = &payload;
5 this->m_PldArgs.phase = &phase;
6 this->m_PldArgs.delay = &delay;
7 this->notifyObservers(&this->m_PldArgs);
8 } else {} //do nothing
9 #endif
10

11 manageForwardPath(payload, phase, delay, idx);
12 }
13

14 void response_path_cb(tlm::tlm_generic_payload& payload, const tlm::
tlm_phase& phase, const sc_core::sc_time& delay, size_t idx) {

15 #ifdef PERF
16 if ( (phase == tlm::END_REQ) || (phase == tlm::BEGIN_RESP) || (phase ==

tlm::END_RESP) ) {
17 this->m_PldArgs.payload = &payload;
18 this->m_PldArgs.phase = &phase;
19 this->m_PldArgs.delay = &delay;
20 this->notifyObservers(&this->m_PldArgs);
21 } else {} //do nothing
22 #endif
23

24 manageBackwardPath(payload, phase, delay, idx);
25 }

Listing 4.16: request/response_path_cb() implementation
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With these functions, we have access to IP occupancy information (such as transiting
payloads, phase updates, transaction delays, and port indexes), which is sufficient to track
module activity and thus extract performance information about it.

We can also run simulations without using the performance observers. To do so, we just
need to encapsulate all the code related to performance estimation in a #ifdef PERF direc­
tive. In each Makefile.config file, we choose whether we want to compile the power and/or
performance estimation code/tools or add other libraries/tools/emulators to the compilation.
Then we can use or ignore them in the simulation (only if they have been compiled) by us­
ing the UNIX shell run command with some custom arguments. A larger code snippet of
the IPBase class, containing the instantiation and inclusion of the performance observer, is
provided in the Appendix B.

IP­level activity report

Using the performance observer, we can generate an IP activity report file for each IP in
the testbench at the end of the simulation. This report contains certain statistics, such as the
number of arbitrated transactions, the number of read/write transactions, the clock period, the
simulation time, the approximate number of transactions per cycle, the approximate number
of cycles per transaction, the number of seconds/cycles the IP was active, and the approxi­
mate latency of the requests/responses/complete transactions. This information is available
for the joint calculation of read and write transaction data and separately for each type of
transaction. An example of a generated activity report file is given in Listing 4.17.
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1 Simulation.[module].[...].[submodule]_[enumeration]_PerformanceReport.report
2 ************************************************************
3 ********************** Statistics ************************
4 ************************************************************
5 Nb of arbitrated transactions:[hidden]
6 Nb of arbitrated READ:[hidden]
7 Nb of arbitrated WRITE:[hidden]
8 IP clock period: [hidden] ps
9 Simulation time: [hidden] ps
10 Simulation cycles: [hidden]
11 BANDWIDTH (Approx Transactions per cycle): [hidden]
12 BANDWIDTH (Approx cycles per transaction): [hidden]
13 ************************************************************
14 ************************************************************
15 ************************************************************
16 ********************** Performance ************************
17 ************************************************************
18 The module was active for [hidden] ps or [hidden] cycles.
19 The maximum transaction latency is L_max = [hidden] ps.
20 The minimum transaction latency is L_min = [hidden] ps.
21 Scenario simulation executes [hidden] transactions for [hidden] ps
22 Theoretical 'wire' throughput = 1/(Tcycle) = [hidden] cycles/sec.
23 Average throughput = 1/(L_average) = [hidden] cycles/sec.
24 ************************************************************
25 ********************** READ Performance ************************
26 The maximum READ request latency is L_max = [hidden] ps.
27 The minimum READ request latency is L_min = [hidden] ps.
28 The average READ request latency for [hidden] transactions is [hidden] ps
29 The maximum READ response latency is L_max = [hidden] ps.
30 The minimum READ response latency is L_min = [hidden] ps.
31 The average READ response latency for [hidden] transactions is [hidden] ps
32 The maximum READ full transaction latency is L_max = [hidden] ps.
33 The minimum READ full transaction latency is L_min = [hidden] ps.
34 The average READ full transaction latency for [hidden] transactions is [

hidden] ps
35 Scenario simulation executes [hidden] transactions for [hidden] ps
36 The last READ transaction was finished at [hidden] ps
37 nb_read_transactions*average_latency = [hidden] ps = [hidden] ps
38 Average READ throughput = 1/(L_average) = [hidden] transactions/sec.
39 ************************************************************
40 ********************** WRITE Performance ************************
41 The maximum WRITE request latency is L_max = [hidden] ps.
42 The minimum WRITE request latency is L_min = [hidden] ps.
43 ...
44 ...
45 ************************************************************

Listing 4.17: Performance report file
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If we need a more detailed report on the execution of each transaction, we can also op­
tionally generate a debug payload tracking report for each IP. It generates a file containing
information about all transactions passed through that IP.

1 Simulation.[module].[...].[submodule]_[enumeration]_pldTrack.report
2 ************************************************************
3 Timestamp: [hidden] ps ; cmd: READ ; addr: [hidden] ; Start request time: [

hidden] ps ; End request time: [hidden] ps ; Start response time: [hidden
] ps ; End response time: [hidden] ps

4

5 Timestamp: [hidden] ps ; cmd: WRITE ; addr: [hidden] ; Start request time: [
hidden] ps ; End request time: [hidden] ps ; Start response time: [hidden
] ps ; End response time: [hidden] ps

6 ....
7 Timestamp: [hidden] ps ; cmd: READ ; addr: [hidden] ; Start request time: [

hidden] ps ; End request time: [hidden] ps ; Start response time: [hidden
] ps ; End response time: [hidden] ps

8

9 Timestamp: [hidden] ps ; cmd: WRITE ; addr: [hidden] ; Start request time: [
hidden] ps ; End request time: [hidden] ps ; Start response time: [hidden
] ps ; End response time: [hidden] ps

10 ************************************************************

Listing 4.18: Payloads tracking report file

In addition, when we enable the detailed performance reporting option, the performance
observer generates a .CSV file for each IP containing the latency variations for the arbi­
trated transactions. In this way, we can track the latency variation for all payloads (Figure
4.19). The axes [x;y] are [Payload Global ID; Payload duration]where the Payload Global
ID is a unique identifier to track payloads (payload counter ­ incremented in the order of
transaction generation) and the Payload duration which is equal to the transaction end time
(END_RESP)minus the transaction start time (BEGIN_REQ). This allows us to track if there
is any unexpected behavior during transaction processing by a given IP, such as transaction
stacking, bottlenecks, etc.

Figure 4.19: IP­level arbitrated transactions latency trace example
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IP­level payload trace

The Performance Observer also adds TLM2.0 tracing capabilities to analyze TLM2.0 de­
signs. To this end, it generates VCD files, which we can view using a tool such as GTKWave
[116] for example. The tracing mechanism works by tracking payload objects throughout
their lifetime as they travel through the transport interfaces (forward and backward). The
performance observer automatically detects when a significant update occurs within the IP
(e.g. activation of read/write req/resp channels, phase/address/data updates, number of read­
/write arbitrated transactions etc...) and records the information. The traces of all IPs are
grouped in one file, this way we can add all/many payload objects of all/many IP traces and
we can track the path and timing of the transactions. The transaction view can be separated
into READ and WRITE streams to observe them separately, or it can also be viewed in one
stream regardless of the command. We can track recorded information such as command,
address, data, state attributes, phase updates + handshakes, and number of arbitrated trans­
actions (Figure 4.20).

Figure 4.20: IP­level TLM2.0 GTKWave trace example

4.5.2 Socket­level performance observation
At the socket­level, we do not need to use an abstract class IPBase, as all protocol interfaces
are derived from the abstract class SimpleTarget/SimpleInitiator, so they are perfectly suited
to be used as subjects/observables. We use a socket observer module that extracts the same
metrics as the performance observer, but at the socket level. It is added and notified by the
SimpleTarget/SimpleInitiatormodules. As in the IPBase class, the observer is notified when­
ever the forward and backward callback functions are called and an update occurs (Listing
4.19).
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1 template <typename MODULE, unsigned int BUSWIDTH>
2 tlm::tlm_sync_enum SimpleTarget <MODULE, BUSWIDTH >::callBWChannel(tlm::

tlm_generic_payload& payload, tlm::tlm_phase& phase, sc_core::sc_time&
delay) {

3 tlm::tlm_sync_enum status;
4 mTrans.payload = &payload;
5 mTrans.phase = &phase;
6 mTrans.delay = &delay;
7 mTrans.status = NULL;
8

9 Observable::notifyObservers(&mTrans);
10 status = socket->nb_transport_bw(payload, phase, delay);
11 mTrans.status = &status;
12 Observable::notifyObservers(&mTrans);
13

14 return status;
15 }
16

17 template <typename MODULE, unsigned int BUSWIDTH>
18 tlm::tlm_sync_enum SimpleTarget <MODULE, BUSWIDTH >::nbTransportFWCallback(tlm

::tlm_generic_payload& payload, tlm::tlm_phase& phase, sc_core::sc_time&
delay) {

19 tlm::tlm_sync_enum status;
20 mTrans.payload = &payload;
21 mTrans.phase = &phase;
22 mTrans.delay = &delay;
23 mTrans.status = NULL;
24

25 Observable::notifyObservers(&mTrans);
26 status = manageFWCallback(payload, phase, delay);
27 mTrans.status = &status;
28 Observable::notifyObservers(&mTrans);
29

30 return status;
31 }

Listing 4.19: Socket observer notification

In the same way as for the performance observer, the following metrics are observed
here:

• Latency ­ the time it takes to execute a task or group of tasks or to read/write a data sam­
ple to a channel. Some applications have strict latency constraints (e.g., the execution
of a data packet must not exceed a delay of X ms).

• Throughput ­ average message delivery rate ­ average rate of data transferred over a
communication pattern during system execution (bytes/sec or bytes/cycle)

• Mapping efficiency ­ resource utilization and resource access contention. Resource
utilization refers to the ability of the modeled system to efficiently use the resources
of the architecture (e.g., one CPU is overloaded while another is underused). If the
mapping is not appropriate or if the execution requirements are underestimated, the
resource utilization will not be optimal.
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Socket­level activity report and payload trace

Using this observer, we can extract the socket­level activity report and payload trace con­
taining similar information to that extracted at the IP­level. Examples are given in Figures
4.21 and 4.22.

Figure 4.21: Socket­level arbitrated transactions latency trace example

Figure 4.22: Socket­level TLM2.0 GTKWave trace example

4.5.3 Summary

The database generated by these TLM2.0 tracing mechanisms contains a complete history
of payload object lifetimes in the simulation. This information is sufficiently representative
of the behavior and performance of the simulated design. In addition, we have control over
the details generated, which is useful for limiting simulation time.
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4.6 PwClkARCH: Power metrics extraction and visualiza­
tion

In the introductory section of PwClkARCH, we quickly mentioned that we use the Gnuplot
plotting program [103] for visualization of extracted power metrics. During the simulation,
PwClkARCH automatically and dynamically records several metrics in binary files .gnu. At
the end of each simulation, a global C++ function generates two simple gnuplot scripts:

• gnuplot_fvi_script.cmd ­ visualizes the clock/activity variations of all design elements,
the voltage variations on the supply networks of all power domains, the power state
transitions (from OPPT) and the supply current evolution by power domain.

• gnuplot_p_script.cmd ­ visualization of power consumption by power domains, by
clock domains, by design elements, static power by power domains, total power con­
sumption and energy consumption.

We use these scripts to visualize the results of the simulations related to power. We
can run them directly using the gnuplot command load gnuplot_[fvi/p]_script.cmd or we
can choose to view separate parts of them. The simulation output traces generated with
these gnuplot scripts will be shown in the next chapter (Chapter 5) containing the results and
analysis of several use cases and their correlation with the silicon measurements.

In addition, PwClkARCH triggers exceptions in a Design Error Report File (DERF)when
a violation occurs between the power model and the behavioral model. These are in the form
of warnings with some information written to the DERF without interrupting the simulation
to simplify debugging. In Figure 4.23we have an example of an assertion violation indicating
that an activity is noticed in a design element (its name is hidden for privacy reasons) while
its clock is disabled. This means that the power management strategy that was applied in
this simulation is not suitable for this behavior.

Figure 4.23: Design Error Report File (DERF)

In addition our framework and the library PwClkARCH included offer configurable ver­
bosity for the reporting mechanism. We can ignore all reports and speed up the simulation,
we can have multiple intermediate levels and a full debugging report. The verbosity of the
behavioral model is controlled separately from the verbosity of PwClkARCH. This way, if
we are aware of the type of problem, we can limit the simulation overhead due to reports.
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4.7 Conclusion
In this chapter, we presented how we created the generic SystemC/TLM2.0 framework used
for simulating different kinds of IPs and SoC models. We presented the ARM­based AXI
communication protocol interfaces we created and their reusable skeleton simplifying the
development of other protocols. We presented the generic traffic generators we use to stim­
ulate our designs under test and some configurable application­specific traffic generators.
We also presented the four solutions we investigated for power­aware DRAM memory tar­
get modeling and provided insights into how we applied them and what their advantages and
disadvantages are. Next, we presented the generic and mostly reusable structures that we
have created and used for the behavioral and energy modeling of the hierarchical structure
of our DUT (the Switch Matrix) and several other blocks. We described the power intent
used for all i.MX8 platforms studied during this thesis and gave an example of a power
management strategy relevant to the actual power management of the targeted SoCs.

In addition, we presented the structure of our simple performance observation/monitoring
approach and a brief presentation of how the power­related output files are dynamically
generated by PwClkARCH during simulation, what they contain, and how we can use them.
The purpose of this brief presentation is to link the presentation of the PwClkARCH tool
(section 3.4) with our modeling strategy and visualization of the outputs to be analyzed.

In the next chapter, we will elaborate on the targeted reverse engineering approach we
apply in this study (introduced in the Section 1.2 Context andObjective). Wewill first present
an overview of the experimentation we performed, the power management strategy we used,
and how we addressed the problem related to the parameters required by PwClkARCH for
power estimation (such as activity, leakage resistance and load capacity). Next, we will
take an in­depth look at the simulation of several use cases performed on the i.MX8QM and
i.MX8QXP and the analysis of their results. At the end of the Chapter 5, we will present a
brief summary of the correlation between the simulations and the silicon measurements and
conclude with the analysis and results.



Chapter 5

i.MX8 power estimations, correlation
and design flow integration

5.1 Experiments

5.1.1 Simulated use cases
Using the traffic generators we developed, we were able to run multiple scenario simulations
on the i.MX8QM and i.MX8QXP Switch Matrix models and extract and visualize the power
data for each. The most representative simulations will be presented and analyzed in this
chapter. The first use case we will present is a generic multi­task use case that we used for
the calibration of our power model. The second is a memory copy use case with different
data sizes and the third is a display refresh use case with multiple resolutions and screen
configurations.

5.1.2 Power management strategy
For almost all use cases on both platforms, we will use the same power management strategy.
We have defined 3 OPPs as shown in Figure 5.1.

Figure 5.1: Generic Power management strategy

The first OPP (OPP1­Boot) acts as a boot and is automatically declared in the PwClkA­
RCH library (no need to declare it in the OPPT). We just have to launch it using the Master
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module. It changes the reference clock frequency to a so­called bypass mode, a quick one­
cycle operation before traffic generation to reset the process/memories to a default value. The
second OPP (OPP2­ALL_ON) indicates the activation of all subsystems. Once activated, we
trigger the automatic clock gating mechanism on all the internal units of the Switch Matrix
and the two memories. This is the main OPP and is kept running for the duration of the
traffic generation/activity. Once the traffic is finished, the third OPP (OPP3­ALL_OFF) is
activated. The third OPP applies clock gating to all subsystems, changes the supply voltage
of all Switch Matrix internal units from ON_H to ON_L, and applies power gating to the
memories.

5.1.3 PWClkARCH parameters supply

Estimating or providing the activity factor, leakage resistance, and load capacity values re­
quired by PwClkARCH for power calculations (presented on page 39 equation 3.10) can be
considered one of the major difficulties of this approach related to the accuracy of power con­
sumption values. In reality, these values are given by the developer only during the creation
of the power intention. They are centralized in a header file and can be easily modified and
corrected. The same top­down approach applied to functional model development, which
starts with a more abstract view and is then refined, can be used for the power model.

We can start with non­accurate proven values, estimated using physical data, data sheets,
technology information, and possibly values extracted from the previous generation or simi­
lar technologies. The following approaches can be taken sequentially (or individually) early
in the power modeling process, depending on the data we have available.

Design initiation approach

As a starting point, we can use activity factors equal to 0 (when inactive) and 1 (when active)
or similar strategies based on simple, straightforward values (e.g., =0 when the clock is gated,
=0.5 when the clock is not gated but the module is inactive, =1 when the unit is active, etc.).

If we can estimate or extract a top­level value for the leakage current of the entire platform
or subsystem, we can estimate the leakage current of the lower­level child units (and the
resistance per equation V = R∗ I) using physical data, such as the number of cells or simply
a ratio of the estimated sizes/areas of the elements that are part of the target system.

The load capacitance of a transistor depends on the technology used and on parameters
such as the permitivity ξxo and thickness txo of the insulators (formed between the doped
regions, the gate and the substrate), and the height, length and width of the transistors. Thus,
in the same way as for the leakage resistance, using the information on the number of cells,
the technological data of the transistors and some assumptions, we can have first estimates
more or less precise of this value.

At this level and with this approach, we may not have the most accurate power estimation
values, but we will have sufficiently accurate power model behavior and an accurate visual­
ization of the impact of power management strategies on the power consumed by the design.
We will be able to test different power models and strategies on complex use cases applied
to a realistic hardware behavioral model early in the design flow. Thus, we can initiate the
built of an power management strategy well before the RTL model development begins.
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However, as the phases of the design process progress, we will have more and more
information about the physical data of the targeted design and will be able to refine the
power model in parallel and further increase the accuracy of the power estimates. To take
this a step further, we can then create a database that can be used to configure designs for
subsequent generations of similar chips and have more accurate power models earlier in the
flow.

Back­end physical data assumptions approach

An example of how to refine these metrics at a slightly later stage of the flow is to use
data extracted from back­end teams using Computer­Aided Design (CAD) software tools
performing IR­drop analysis reports (e.g. Red Hawk [117]), Chip Power Models (CPM)
reports extracted with Spice simulations and synthesis reports.

• From the IR­drop reports, we can use the applied toggle­rates in their IR runs, which
can be used as activity factors in our PwClkARCH models.

• From the CPM models in Cdie mode, we can extract information about the values of
leakage resistances and load capacities of subsystems.

• From the synthesis reports, we can extract information about the number of cells for
the subsystems.

If the CPM reports present information for an entire subsystem, we can use the cell count
information to distribute the resistance and capacitance values among the internal blocks.

With this approach, we significantly increase the accuracy of our model, but at a later
stage of the design flow. However, this approach is still very useful for design reuse (even
for parallel development of similar designs).

Design reuse based approach

The final approach is based on the reuse of IPs from previous generations. We can have
accurate data on the different parameters and cell counts, which can be used in the early stages
of the development flow of new IPs/SoCs. Typically, if the new chip generation switches to
a new transistor technology, multiplication/division factors are available and can be used to
adapt the available data.

Approach applied in this study

The approach applied in our study is a kind of mixture of the three previous approaches.
We followed them more or less sequentially, except that we initially had more data. Since
we started the development of the SystemC/TLM2.0 model and the PwClkARCH model in
parallel with the development of the i.MX8QM (which was in the medium to final production
phase), we had a test version of the silicon and an initial power measurement curve of the
silicon containing information about the power consumption for several states of the SoC.
The power model parameters estimates for the functional model modules are defined from
the Figure 5.2 below, which represents the results of measurements performed by NXP on a
real circuit.
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Figure 5.2: Initial silicon power measurements curve

From these measurements, we first estimate the current values for each SM unit described
in the SystemC­TLM functional model, and then derive the leakage resistances and load ca­
pacitances of these units. From event 109 to event 937 in Figure 5.2, only DRAM controllers
(DRCs) are active, except for SM­related leakage currents that are present in this interval.
At event 109, we disable the SM clock. Therefore, the dynamic consumption of the SMwith
the clock active but without transaction transfer 1 is derived by:

IdynSM_notransfer
= A−B = 1 [mA] (5.1)

The two DRCs consume 2 :

IdynDRCs_notransfer
= B −H = 2 [mA] (5.2)

or, each DRC consumes:

IdynDRC_notransfer
=

B −H

2
[mA] (5.3)

So, for one DRC:

• The PLL of the DRC consumes IdynDRC_notransfer_PLL
= G−H = 3 [mA]

• The IOs of the DRC consume IdynDRC_notransfer_IOs
= F −G = 4 [mA]

• The clock of a DRC consumes IdynDRC_notransfer_clk = C −D = 5 [mA]
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The total power consumption for one DRC is therefore:

IdynDRC_notransfer_total = 3 + 4 + 5 = IdynDRC_notransfer
[mA] (5.4)

Since the entire SM consumes 1 , we can look at the ratio of the number of cells be­
tween the Groups and the Big Arbiter. This approach is not completely accurate for dynamic
energy consumption, but it is the only way we have found to go down in granularity and is
sufficiently representative in this case. From this, we derive the dynamic energy consump­
tion of the blocks internal to the SMs.

We assume that 6 is the leakage current consumption of the SM+DRCs (IleakageSM+DRCs
).

The approach using the number of cells/ratio is more accurate in this case and we can find
the leakage current consumption of each of the internal subsystems and units. In our case,
we had the number of cells, but in the case of developing a new design, we need to estimate
them at least as size difference ratios.

Using the information from Figure 5.2, we can see that from event 937 to event 1081, a
CPU performs DDR accesses (period marked as 7 ). This can be seen as the consumption
when there is a sequential path activation of one Group (one clock domain in the SM) and one
DRC at a time. All other components are clock gated. We have already found the dynamic
consumption of each block when there is no activity, so if we subtract from 7 the value
of one active sequential path + one DRC and the value of the leakage current consumption,
we can deduce the current related to transactions activity. We distribute this value among
the activated components (sequential path and DRCs). Using the ratios between the traffic­
free consumption of the sequential path and the DRCs, we deduce what percentage of the
transaction activity consumption should be associated with each unit.

These values and some assumptions allow us to calculate the values of the load capacity
and leakage resistance of all blocks.

1. The capacity is calculated using the equation C = I
V F

and the assumption that 100%
activity is linked to transactions. The minimum used activity factor of each block is
calculated by dividing the dynamic current of the active block without transactions by
the dynamic current of the active block with transactions. This is the activity rate when
the block is powered up, its clock is active but no transactions are active in the block.
This consumption occurs, for example, in the time intervals when the activity counter
(hysteresis mechanism) has not yet reached its maximum value and no transaction is
present in the block.

2. The leakage resistances (deduced from V = RI) of the units can be deduced by know­
ing the supply voltage. We already know the leakage current of each unit, so we can
find an equivalent resistance distributed among the units (with the help of the cell count
reports).

In this approach, we considered that the leakage resistance and load capacity values are
not available and that we have some reused results from previous simulations/measures or
similar technologies. We did not have specific information on the activity ratios that can be
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used for activity factors, so we took the assumptionmentioned above. This approach allowed
us to calibrate our first power model fairly accurately and extract some initial estimates.

Later in the design process, we had the back­end physical information (presented in the
Back­end physical data assumptions approach, page 135) and could easily refine our model.
The results were more refined, but very close to the initial results, meaning that even with the
calibration approach, we got pretty good estimates. Once we had the accurate power models
for the i.MX8QM, we could simply reuse them for the i.MX8QXP case. This reuse of the
power model saved a lot of development effort and significantly reduced the time required
to model and analyze the power of the i.MX8QXP. The simulation results extracted from
these models were correlated with silicon measurements for similar use cases. Then, these
models and power parameters were reused for modeling the new, more complete generation
of i.MX8 SoCs, which wewill call i.MX8nexGen. This new generation of SoCs is in the very
early stages of the design flow. This means that we are able to extract power consumption
metrics and behaviors from system­level simulations as early as the specification phase of
the design.

In the next sections of this chapter, we will take a closer look at some of the analysis
performed on the i.MX8QM and i.MX8QXP.
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5.2 Power and performance investigation onNXP i.MX8QM
SoC

5.2.1 Generic multi­task calibration use cases
These types of generic simulations were extremely useful during the development of the
functional model, as the power curves gave us a clear view of the activity of each module and
simplified the debugging and analysis phase. In addition, we had our first power estimates
and a promising first correlation with silicon. This can be a good first step when developing
new platforms and we don’t have IP models for traffic generation (like CPU, GPU, Display
Controllers....).

In one of our first test cases, we consider the i.MX8QM architecture integrating several
transaction initiators and two LPDDR DRAMs connected via the Switch Matrix. The tested
use case consists of 4 functional phases (Figure 5.3). In the first phase, all data traffic gen­
erators send 512 READ/WRITE transactions to recreate the complete Switch Matrix block
activity. In the second phase, there is a short idle period of about 10µs that is used to test the
clock management. In the third phase, only half of our traffic generators remain active for an
additional 512 READ/WRITE transactions, which allows us to test the automatic clock gating
mechanism. In the fourth and final phase, when there is no activity, we test the power man­
agement. The reason we chose this use case is that we have a real silicon power measurement
extracted from an existing chip similar to this type of use case.

Figure 5.3: Functional use case

Wemerged our functional use case with the power intent and power management strategy
(Figure 5.4) and simulated.

Figure 5.4: Power management strategy

In Figure 5.5, we can observe the different phases of the use case and the effect of the
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applied power management strategy. The figure shows the simulated total power consumed
by the design (green curve) and the static power consumption (yellow curve).

Figure 5.5: Calibration use case: Overall power consumption profile in test case [mW]

In the first phase, all traffic generators are active, so all subsystems are active as well. The
first half of the traffic generators start with addresses equal to 0x00000 (i.e. to DRC0) while
the other half starts with addresses equal to 0x01000, i.e. pointing to DRC1 since this is the
next 4K data block. In this way both memories are active at the same time. The maximum of
the total power obtained by simulation (hidden in the figure) corresponds well to the value
deduced from Figure 5.2 using the design element parameters calculated with the approach
described in the previous section.

During the second phase, dynamic power is completely eliminated because all clocks
are in clock gated mode, the IOs and PLLs of the DRCs are in the OFF state and the only
power consumption is static. The state change of the DRCs is sequential, as the execution
of the transactions is done sequentially. This may be because the execution time of one
transaction is longer than the other (i.e., the read execution is slower than thewrite execution),
or the execution of the transactions started at different times. The PLL state change is also
visible through the configurable delay/penalty (around 2µs). Again, the static consumption
corresponds to the value deduced from Figure 5.2.

In the third phase, only half of the traffic generators have been activated. Therefore, only
half of the SM sequential paths (in a Group) are also active with the Little Arbiter and Big
Arbiter units. In Figure 5.5, we can observe that during the third phase, the consumption is
almost halved.

The main reason for this is that there is globally only one active DRC at a time, which
is more clearly seen in Figure 5.6 where DRC1 (green curve) and DRC0 (yellow curve)
change state one after another in the third phase due to the interleaving applied in the QOS
unit. Figure 5.6 represents the total power (dynamic + static) of each design element and,
therefore, each curve describes the power state changes (and thus the functional idle vs.
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active states) performed by each module during the simulation. The power consumption
spikes in the first and third phases are due to a short overlap between two pipelinedmemories,
i.e., one transaction started for DRC0 and another ends for DRC1.

Figure 5.6: Calibration use case: Total power consumption per Design Element [mW]

Note: It is important to mention here that in Figure 5.6 we do not observe the activity
of DRC0 (yellow curve) during the first phase, because it is hidden by the activity of DRC1
(green curve) and this is only valid for this visualization. This can be easily verified by hiding
the consumption of DRC1 or by changing the colors.

Figure 5.7: Calibration use case: Zoom on total power per Design Element [mW]

Figure 5.7 zooms in on the Figure 5.6 between the 270 µs and 300 µs instants. Before 275
µs, the 2 DRCs are active because the traffic generators are sending transactions related to
two contiguous 4K blocks in memory. After time 283 µs, only one DRC is active because the
active traffic generators generate transactions in the same 4K memory block. The transitions
to the clock gated, IOs down and PLL down states of the DRC and SM sequential paths
appear.

Figure 5.8 zooms in on the third phase of Figure 5.6 and more specifically on the timing
of the transition between two 4K blocks pointed to by the traffic generators. At the beginning
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Figure 5.8: Calibration use case: Zoom on third phase in total power per DE [mW]

of the third phase, transactions are directed only to DRC1 as shown in Figure 5.7. In Figure
5.8, in the interval 314 µs ­ 316 µs, there is an overlap between the activities of the twoDRCs,
this is due to the transaction processing pipeline in the SM and DRCs, so the last transactions
related to DRC1 are processed while DRC0 receives the first transactions related to the next
4K block.

In the fourth phase, the traffic is terminated, clock gating is applied to all subsystems,
and the voltage value changes from ON_H to ON_L for the SM units and from ON to OFF
for the DRCs, which means that the DRCs are power gated (Figure 5.9).

Figure 5.9: Calibration use case: Voltage evolution per Power domains [V]

In Figure 5.10 we can observe the variation of the clock frequency. The two DRCs are
active during the first phase, inactive during the second and interleaved during the third. We
can also observe some of the internal units of the SM (e.g. QOS) and the impact of the clock.
During the first phase, all subsystems are active, then during the third phase, half of them
are clock gated (we illustrate only two subsystems with different behaviors).
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Figure 5.10: Calibration use case: Clock frequency variation during simulation [Hz]

The accumulation of the power consumed over time corresponds to the energy consumed
[mJ] whose curve is given in Figure 5.11. The absence of activity (second phase) is visible.
Also, the slope of the curve of the third phase is lower than that of the first phase because
about half of the modules are in clock gated mode.

Figure 5.11: Calibration use case: Overall energy consumption profile in test case [mJ]

All the above results are obtained with fixed LPDDR4 read response times of 60 ns and
write response times of 40 ns (values approximated using the platform specifications).

By changing these values to 30 ns and 20 ns respectively for the LPDDR4 connected to
DRC1 (and keeping the previous response times for the memory on DRC0), we get different
simulation results as shown in Figure 5.12.

The decrease in response times has a direct impact on the transaction execution time.
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Figure 5.12: Calibration use case: Total power per DE (reduced memory response delay)
[mW]

It appears that decreasing the memory access times on DRC1 allows us to almost double
the throughput compared to the previous simulation: during the first phase, on the initial
45400 ns (zoomed in Figure 5.13) we have the processing of the first 4K blocks (blocks sent
to DRC0 and DRC1) sent during the activation of all traffic generators. Half of the traffic
generators finish their first phase in 17660 ns (green curve of DRC1 in the Figure 5.13)
which leads to initiate from this date by these traffic generators additional transactions to
DRC0 (yellow curve) with the rest of the traffic generators.

Figure 5.13: Calibration use case: Zoom on first phase in total power per DE (reduced mem­
ory response delay) [mW]

By setting the write and read times on the two LPDDR4s to 20ns for writing and 30ns
for reading, we obtain the behavior described in Figure 5.14. Globally the processing time
of all the transactions is almost divided by 2 compared to the Figure 5.5.

Figure 5.15 illustrates that, compared to Figure 5.7, the number of DRC runs in IOs down
mode is logically decreased whenmemory response times are themselves reduced. However,
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Figure 5.14: Calibration use case: Overall power consumption (reduced memory response
delay) [mW]

Figure 5.15: Calibration use case: Zoom on total power per DE (reduced memory response
delay) [mW]

since the overall processing time of all transactions is lower, the overall energy consumption
is reduced.

In all the previous simulations, the value of the accept_delay parameter of both DRCs is
20ns. This is the delay set by a DRC to signify that it has accepted a transaction transmitted
by an arbiter. By reducing this delay from 20 ns to 5ns, we obtain the curve in Figure 5.16,
which gives the total power consumption. Comparing with Figure 5.14, we can verify that
the number of DRCs in IO down mode is higher since each transaction is processed faster,
leaving the DRC in idle state for a longer time between 2 transactions.

Continuing to reduce the LPDDR4 response times (to 8ns for reading and 5ns for writing),
we obtain the result in Figure 5.17 which represents the total power consumption. It is clear
that the transitions of the DRCs to the IOs down state are very rare in the first phase compared
to the previous cases (Figure 5.14 and Figure 5.16). The delay between two transactions
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Figure 5.16: Calibration use case: Overall power consumption (reduced memory access
delay) [mW]

transmitted to the DRCs becomes less than 32 cycles most of the time after the DRC clock
gated (which itself occurs after 32 cycles of inactivity).

Figure 5.17: Calibration use case: Overall power consumption (reduced memory access/resp
delays) [mW]

We can verify on these results the impact of LPDDR4 behavior on the time performance
and power consumption. As the response times of LPDDR4 are not at all constant in reality,
it seems important to evolve the functional model of SystemC­TLM to include a behavioral
model of LPDDR4 in order to obtain a more realistic global behavior of the system.

For this reason, we opted for the DRAMSys4.0 solution, presented in section 4.3.3,
to incorporate an accurate DRAMmodel with variable response and acceptance values.
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The same analysis we did in this use case for DRC/DRAM memory models and total
high­level power can be done for the internal SM units. The same metrics we estimated
for DRAM/DRC were extracted for each of the SM blocks. This analysis is not presented
here for confidentiality reasons.

5.2.2 MemCopy use case
The memory copy use case is a relatively straightforward use case with a monotonic energy
profile. However, since we use QOS­based arbitration and scheduling (using AxID) at mul­
tiple levels in the SM, it is very useful to test the implementation of the internal scheduling
mechanisms and their energy profile with such a traffic­dense use case. In this use case, we
have only one active application­specific traffic generator that performs 256KB, 1MB, and
32MB read accesses to an LPDDR4 performed by a cluster of CPUs. Each data access is 16
bytes and we consider 4K interleaved sequential accesses between the two memories (DRC0
and DRC1). Since we only have one active traffic generator, this means that we only activate
one sequential path in the SM (+ Little and Big Arbiters), so all other groups and internal
units are clock gated throughout the simulation. The entire SM is installed in a single power
domain, so we cannot cut off the power supply net and its static power consumption is the
same as if we had full activity in the SM.

256KB memory copy

The first simulation runs 256KB of sequential read accesses to the LPDDR4 memories. Fig­
ure 5.18 shows the total power consumption of the simulated platform.

Figure 5.18: 256KB Memory copy use case: Overall power consumption [mW]

We can observe the constant activity due to the continuous memory accesses. Since we
interleave the two memories, there are short periods of time when both memories are active
at the same time, which is visualized in Figure 5.18 as short consumption peaks. Figure 5.19
shows a zoomed­in view of the interleaving between the two memories.
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Figure 5.19: 256KB Memory copy use case: Zoom on DRCs power consumption [mW]

Figure 5.20 shows the power consumption of the only active sequential path in the SM.
In this use case, we are constantly loading it with transactions, so it is active throughout the
entire simulation.

Figure 5.20: 256KB Memory copy use case: SM sequential path power consumption [mW]

Figure 5.21 shows the power consumption of the two internal units of the Big Arbiter
module responsible for DRC arbitration.

Figure 5.21: 256KBMemory copy use case: Big Arbiter (0 and 1) power consumption [mW]
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As explained in the technology section, the Big Arbiter contains one arbiter for transac­
tions destined for DRC0, one for transactions destined for DRC1, and one for communication
between the subsystems. In this figure, we can see that since we interleave between memo­
ries, we also interleave between arbiters. The same behavior can also be observed using the
clock frequency variations for each module.

The total energy consumption for this use case is shown in Figure 5.22. As expected,
it increases linearly, as we have constant traffic. If we zoom in, we can see that there are
small steps where the energy consumption increases a bit faster, which is also due to the
interleaving between memories.

Figure 5.22: 256KB Memory copy use case: Total energy [mJ]

We can also observe the static consumption of the SM and DRCs (by power domain) in
Figure 5.23.

Figure 5.23: 256KB Memory copy use case: Static power consumption [mW]

In order to measure the power consumption gains due to the applied power management
strategy, we created another power intent where the entire SM is under one clock domain
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and the two memories are under another common clock domain. In this case, the internal
hardware mechanism for automatic clock gating is not enabled. The use case executions of
the 256KB memory copy using the IP without power management and with it are compared
in Figure 5.24 illustrating the total simulated power consumption.

Figure 5.24: 256KB Memory copy use case: With and Without power management [mW]

It can be observed that the power consumption without power management strategy is
significantly higher (almost 3x higher) than the power consumption implementing the power
management strategy (andmore precisely the auto clock gating). In the case of the simulation
without power optimization, all unused units of the SM are always active (their clocks are
active), so the power consumption is much higher and stable. The only variations are due to
the consumption of the transaction transfers passing through the different units.

In Figure 5.25 we can see the total power consumption of a single unused sequential path
of the SM subsystem (red curve) and the total static consumption of the SM (for all SM
sequential paths and the other units).

Figure 5.25: 256KB Memory copy use case (without power management): unused SM seq.
path (Total Power per DE) + entire SM static power [mW]
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The unused units remain active, because the entire SM is in a clock domain and there is
activity inside, so the clock and the dynamic consumption of all units cannot be turned off.
All unused SM sequential paths have the same behavior and since there are multiple of them
in this architecture, it can be inferred that they contribute significantly to the higher total
power consumption.

The power consumption of the single SM sequential path used in this use case is shown
in Figure 5.26, along with the power consumption of the two units internal to the Big Arbiter
responsible for memory accesses.

Figure 5.26: 256KB Memory copy use case (without power management): active SM seq.
path + Big Arbiter total power [mW]

Due to the dense traffic, the power consumption of the used SM sequential path is constant
as long as there are transactions. We interleave between the two memories, thus the two
internal units of the Big Arbiter. Therefore, we have variations in their power consumption
due to the consumption of transactions when they are present or not. We have the maximum
toggle rate/activity factor when we have transactions and a lower toggle rate/activity factor
when there are no transactions.

This comparison allowed us to highlight the benefits of power management strate­
gies, and specifically the ability to observe their influence at the system level using this
framework and the PwClkARCH library.

1MB and 32MB memory copy

The same memory copy use case was simulated for 1MB (Figure 5.27) and for 32MB of read
memory access. The observations on power consumption and management are quite similar
to the previous ones. There are no significant behavioral changes (functional and power),
except for the longer simulation window and simulation time.
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Figure 5.27: 1MB Memory copy use case: Total power consumption [mW]

5.2.3 Display refresh VGA­32bpp use cases

In this use case, we consider a VGA display with a resolution of 640x480 and we execute
a frame of transactions. The data paths are 256 bits and each pixel is 32 bits, so we have
8 pixels per transaction. We consider the pixel frequency to be 23.5 MHz and the refresh
rate to be 60 Hz (frame rate of 60 fps). One line of active display data represents 640 pixels,
which means 80 transactions. We have a total of 480 lines, so a total of 38400 transactions
for one image. We also take into account horizontal and vertical blanking periods to increase
the accuracy of the generated traffic. Each data access is 32 bytes and we consider sequential
memory accesses (previous_address+32bytes).

Using prefetch mechanism

Figure 5.28 shows the total power consumption of the SM+DRCs testbench.

Figure 5.28: Display refresh VGA use case: Total power consumption [mW]
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In this use case, we use the prefetching mechanism of the display controller, which allows
us to always store about 4 rows in advance before displaying them. The power profile is
periodic, because we retrieve several lines, then let the display consume them, so the SM
and DRCs are in idle (and clocked) mode during this time. Once the available lines are
consumed, it starts consuming the prefetched lines, while we prefetch another bunch of lines
for the next cycle. In Figure 5.28 we see a constant static activity (reduced at the end) and a
periodic dynamic activity. There are 120 peaks for the dynamic consumption. Since we have
80 transactions per line and we prefetch 4 lines in advance, we have 320 transactions in each
activation cycle. One frame is equal to 38400 transactions, so we have about 38400

320
= 120

cycles, which is the currently observed behavior.

Figure 5.29: Display refresh VGA use case: Zoom on total power consumption [mW]

We can also see that the power consumption during almost half of the cycles is higher
than the rest. As with the memory copy use case, this is due to the 4k interleaving mechanism
and the short parallel activation of both DRCs. This is visualized more clearly in Figure 5.29
by zooming in on the total power consumption peaks and in Figure 5.30 by zooming in on
the DRCs’ power consumption.

Figure 5.30: Display refresh VGA use case: Zoom on DRCs power consumption [mW]

The consumption of the SM sequential path is shown in Figure 5.31. Transaction process­
ing is scheduled and stored or transmitted, and then if there are no transactions in progress,
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the hysteresis mechanism starts counting 32 cycles before triggering the clock gating.

Figure 5.31: Display refresh VGA use case: Zoom on SM sequential path consumption
[mW]

In Figure 5.32 we can see the evolution of the clocks of the Big Arbiter module (and its
internal units), which have a very similar behavior to the clocks of the DRCs. The clocks are
enabled only when there is traffic passing through the arbiter module and disabled when the
module is not in use.

Figure 5.32: Display refresh VGA use case: Zoom on Big Arbiter clock evolution [Hz]

Figure 5.33 shows again the reduction in power consumption due to the use of more
refined power management compared to the non­optimized power management strategy.
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Figure 5.33: Display refresh VGA use case: Total power with and without power manage­
ment [mW]

Not using prefetch mechanism

Without the display controller’s prefetching mechanism, we must access memory for each
fetched line before the display consumes it. Figure 5.34 shows the power behavior of this
simulation. It can be seen that the number of memory accesses is approximately equal to the
number of display lines. The switching activity is much higher, because for each transaction
we reactivate the SM and DRCs.

Figure 5.34: Display refresh VGA without prefetch use case: Total power consumption
[mW]

Moreover, in this use case, the display controller is the only active traffic generator, so
there is not much contention for memory accesses. If we have multiple active traffic gener­
ators, we may not meet the display refresh rate. There are many more memory activations,
so its occupancy is higher and the PLLs are never put in a down state (Figure 5.35).
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Figure 5.35: Display refresh VGA without prefetch use case: Zoom on DRCs power con­
sumption [mW]

In Figure 5.36, we can compare the energy profiles with and without the prefetching
mechanism and observe the higher switching activity of the display refresh simulation with­
out the prefetching mechanism. The prefetching mechanism provides a better power and
performance profile, ensuring that the bus and memories are less loaded and the possibility
of bottlenecks is significantly reduced.

Figure 5.36: Display refresh VGA with/without prefetch: Overall energy [mJ]
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5.2.4 Display refresh HD1080­32bpp use cases
In this use case, we consider an HD display with a resolution of 1920x1080 and we execute
a frame of transactions. The data paths are always 256 bits and each pixel is 32 bits. We
use a pixel frequency of 138.5MHz and a refresh rate of 60Hz. One line of active display
data represents 1920 pixels, which means 240 transactions. We have a total of 1080 rows,
so a total of 259200 transactions for one image. Again, each data access is 32 bytes and we
consider sequential memory accesses.

In Figure 5.37, we can again observe the simulations with and without the prefetch mech­
anism, but for a higher resolution display.

Figure 5.37: Display refresh HD with/without prefetch: Total power [mW]

5.2.5 Multiple displays and CPUs use case
Another more complex and realistic use case is presented in Figure 5.38. In this simulation,
we consider that two VGA displays simultaneously execute a display refresh use case, a
cluster of two traffic generators (ex. cores) executes two sequential 256KB read memory
accesses with a 20us idle time between each iteration, and a cluster of four traffic generators
(ex. cores) executes four sequential 256KB read memory accesses with a 50us idle time
between each iteration.
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Figure 5.38: Display refresh 2 VGAs + 2 processor cores + 4 processor cores: Total power
[mW]

All traffic generators are started at the same time at the beginning of the simulation, which
also activate the SM sequential paths (Figure 5.39 shows a zoom on the energy consumption
when all use cases are active at the same time).

Figure 5.39: Display refresh 2 VGAs + 2 processor cores + 4 processor cores: SM seq. paths
­ Total power [mW]
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The two DRAM memories are the ones that contribute the most to the power consump­
tion. Thus, their behavior and impact can be easily observed and recognized on the total
power curve. In Figure 5.40, we highlight this by placing the curves next to each other.
DRAM 0 is always active during this period (all traffic generators start with accesses to this
memory) and the variation in DRAM 1 activations is visible on the total power when we
transpose them.

Figure 5.40: Display refresh 2 VGAs + 2 processor cores + 4 processor cores: DRAMs total
power [mW]
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5.3 Power­aware IP­reuse strategy applied onNXP i.MX8QXP
SoC

In the next phase of this study, using the configurable and power­aware SM model, we were
able to easily reconfigure and reuse it for another existing SoC platform of the same fam­
ily, called i.MX8QXP. Again, the silicon is already available and the power intent already
defined, which allowed us to successfully correlate our simulations with the silicon measure­
ments. The real goal here was to test the interoperability and effort required to integrate the
power­aware soft macro IP into the new platform. The i.MX8QXP has a similar architecture
to the i.MX8QM, but with fewer subsystems, a smaller SM (fewer Group blocks), a lower
clock rate, and a single external LPDDR4 memory. Thus, in order to model it, we reused
the already available components (models of the SM sequential path units, arbiters, groups
and testbench structures). As these are reconfigurable components, we reconfigured them
(without changing their code). The same is almost true for the power intent. We reused the
one defined for QM, but we defined a different number of instances of power components.
Thanks to the granularity chosen for modeling the SM, we only had to disable some func­
tional and power blocks when instantiating the module using its parameters. It took less
than 2 days of work (one person effort) to complete the full integration (+verification) and
simulate the HD­1080 display refresh and 1MB memory copy use cases considered for the
silicon power consumption correlation.

5.3.1 MemCopy use case
Figure 5.41 illustrates the total power consumption that shows the main difference between
the i.MX8QM and i.MX8QXP power profiles.

Figure 5.41: Memory copy: Total power [mW]

Since there is only one external LPDDR4memory, there is no interleaving betweenmem­
ories, so the total power consumption is almost halved and kept constant during this high
traffic use case simulation. Since all memory accesses are performed on this memory, there
is not enough time to change states and its clock is constantly active (Figure 5.42).
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Figure 5.42: Memory copy: DRC clock evolution [Hz]

5.3.2 Display refresh QVGA­32bpp use case
Similarly to the i.MX8QM, the power behavior of the QVGA use case (such as for the
VGA and HD) is periodic, but with a single memory. Figure 5.43 shows the total power
of SM+DRC during this use case.

Figure 5.43: QVGA use case: Total power [mW]

In reality, thememory power profile will bemore dynamic even during these types of sim­
ulations, but the variations are minimal and often can be neglected at this level of abstraction.
Creating an accurate memory power model with PwClkARCH or including DRAMPower
in this co­simulation between PwClkARCH and DRAMSys4.0 may be a good approach to
catch more details of memory consumption. However, the main goal of this study was to
evaluate the power consumption of the SM (which is confidential), so the most essential part
was to have an accurate functional model of the LPDDR4 memory.
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5.4 Correlation

To correlate the results of these simulations with silicon measurements, we extracted power
measurements from the i.MX8QMand i.MX8QXPusingBaylibre ACME+Beaglebone board
for power measurements [118] and a maxTC temperature forcing system [119]. We placed
Analog­to­Digital Converters (ADCs) and 50 mOhms shunt resistors in series with the load
and the voltage of the SM+DRCs power networks (PMIC level) and connected them to the
various probes on the Baylibre ACME chip. The main components are shown in Figure 5.44.

Figure 5.44: Power measurement tools

The results were visualized with the PyACMEGraph [120] tool which automatically cal­
culates the current using Ohm’s law. We monitored the temperature of the SoCs using the
temperature forcing system maxTC while running the use cases and extracted the measure­
ments for different temperatures. Figure 5.45 shows the power measurement benches of the
i.MX8QM and i.MX8QXP using the tools mentioned above.

Figure 5.45: i.MX8QM and i.MX8QXP benches
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In addition, in Figure 5.46, we can observe the process of extraction of power measure­
ments for a temperature of zero degrees.

Figure 5.46: i.MX8QM bench for zero degrees temperature

In order to track the temperature of the SoCs, we used a debug monitor embedded in the
System Control Unit Firmware (SCFW) that has a temperature monitoring function. The test
case simulations were performed under a Linux OS. The test cases we simulated correspond
to four important key states:

• Key State 1 (KS1): System idle ­ This is a short term idle, the system has been running
and can resume immediately based on an interrupt from a timer or a peripheral. Usually
there is no memory traffic going on, but the resumption can be done immediately and
does not require any software or firmware interaction. The PLLs and analog functions
are all enabled and in “run mode”. Its likely that the SCU is in an idle state waiting for
an interrupt. The CPU and SM+DRCs are powered up. This implies that the screen is
blank and no I/O traffic is taking place, the CPUs are currently idle and waiting.

• Key State 2 (KS2): Leakage measurement for tester ­ This is a measurement intended
to be performed on the tester and provide a simple summary of the overall ”leakage”
of the device. As such, it should include all components of the device, even if it is not
a realistic use case.

• Key State 3 (KS3): System idle with display ­ The intention is to replicate the case
where the entire system is idle (similar to KS2 above) with the rather significant dif­
ference that a screen (potentially more in a real system but for this case we define the
case as having a screen) is added. This implies that there is some memory traffic going
on and some level of CPU activity.

• Key State 4 (KS4): Stream ­ In this key state, we execute sequential memory read
transactions from a CPU cluster where all 4 CPUs are active.
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KS1 and KS2 were used to find the leakage current for both platforms and to extract
some information about the power consumption when the systems are active, but no trans­
actions are sent. The goal was to compare once with our simulation results and once with
the calibration model used at the very beginning with i.MX8QM. KS2 was replicated for the
measurement using some of the power commands available in SCFW that allow changing
the power state of each component. Thus, we used a script that places all subsystems in the
correct power state.

KS3 and KS4 are very similar to the simulation we performed using our framework with
very minor differences, so they were used for correlation. The results of the i.MX8QM
measurement for KS3 and KS4 are shown in figures 5.47 and 5.48.

Figure 5.47: i.MX8QM: KS3 ­ Stream measurements

Figure 5.48: i.MX8QM: KS4 ­ Display ON measurements

The KS3 test case executed here represents 5000 iterations of 32MB memory copy. The
resolution of the measurement is very low compared to our system­level simulations, which
show the detailed power evolution during the execution of the use case. Due to the lower
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measurement resolution, these curves sequentially show the average power consumption cal­
culated for different windows of time. To establish the correlation, we extracted the average
value from our memory copy simulation (1 iteration of 32MB) and compared it to the visi­
bly stable power consumption extracted from the measurement. The correlation between the
simulation and the temperature­controlled KS3 measurements for the i.MX8QM showed an
accuracy of about 95% (at ambient temperature).

The KS4 visualize the power consumption of the system when a display is connected to
it. Thus, again due to the lower resolution, we compared the average values extracted from
the HD display refresh simulations and the KS4 power measurements (for a short period of
time). The average power consumption correlation obtained from several simulations and
measurements is about 90% with temperature control and 80% without temperature control.
The power consumption correlation of this use case appears to be slightly less accurate than
that of the memory copy (KS3), but this is not due to the accuracy of the power consumption
modeling, but to the additional activity of the IPs and SM during actual display activity (and
eventually the activity of the CPUs accessing the memory), which was not modeled here.

Using some physical data, the calibration model, and the results of KS1 and KS2, we
estimated the accuracy of the separate units. The summary of the power correlation is sum­
marized in Table 5.1.

i.MX8QM Hardware Silicon/Simulation correlation
SM dynamic power 85­99%
SM static power 85­90%
2 DRCs dynamic power 85­90%
2 DRCs static power 90­96%
Total power 88­92%

Table 5.1: Silicon/Simulation range of power correlation observed between multiple runs

In the case of the i.MX8QXP, we have a few additional components that are part of the
power domain where the SM and DRCs are located. These components were not modeled,
but their power consumption was estimated using the spreadsheet approach. For the KS3
use case, the power consumption is very stable for this platform (in both simulations and
measurements), which facilitates comparison. We deduced the power consumption estimates
for the additional components from the total power consumption and found that the power
correlation results show an accuracy of about 90­95%.

The correlation of power consumption between the simulation of these use cases and sil­
icon measurements showed that the methodology applied with PwClkARCH and the tool
itself are applicable to heterogeneous SoC systems of high complexity and IPs with a large
number of elements in their power intent. The separation of concerns between functional
and power models has proven to be extremely useful in the case of modeling reusable IPs.
It allows us to easily swap and test different power intents/power management strategies for
an IP or swap and test different functional models with one power intent/power manage­
ment strategy. The correlation results are sufficiently accurate for this level of abstraction.
In addition, at present, the silicon power measurement tools accessible without significant
investment have relatively low resolution. Their results are usually an average value for a
period of time/number of samples. For example, the resolution of our measurement tools is
almost equal to the time needed to execute a display refresh. Thus, at the end of the measure­
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ment, the value we observe is the average value of all power consumption variations during
the retrieval of an image. With high­level simulation tools like PwClkARCH, we can extract
a more detailed power consumption profile than with these measurement tools and closely
observe its behavior.

The accuracy of our correlation allowed us to move to the final phase of the study and
return to the top­down development approach. In this final part, we reuse the functional
model units, parameters, power intent, and power management strategy to create a power­
aware model of the next generation of the i.MX8 SoC series, which we will refer to here as
i.MX8nextGen.

5.5 Application on new upcoming generation NXP SoC
In this final step, we reuse the units from the functional/power model again and integrate
them on a higher performance and more complex next­generation i.MX8 platform. On this
platform, the SM is separated into two smaller, connected SMs, which are responsible for
the communication between more subsystems and external LPDDR memories. The clock
frequency of the components is higher and the clock and power domains follow the same
strategy as before, but their number is significantly higher.

The architecture of this platform is confidential (including all clock and power infor­
mation), so we will focus the presentation on the effort required to generate the model with
the reusable components and comparing parts of its power profile that show the increased
performance.

5.5.1 Integration effort
The integration of the reusable IPs and simulation of the existing use cases was very intu­
itive and took less than a week (one person effort), which is slightly longer than the first case
due to the use and verification of additional logic and algorithms embodied in the IP model,
but not used for the previous platforms. All functional components have their automatic
clock mechanism already associated and the necessary observers related to PwClkARCH
and performance monitors. The granularity chosen for the modeling allowed us to maximize
reuse, so we only needed to redefine the top­level modules of the SMs (more than one here)
and add the additional power intent components into the already available power descrip­
tion file. Therefore, we reused the IP functional models, power intent descriptions, power
management strategy, PMU and Master module. We reused the same testbenchs used in the
previous two platform designs, but reconfigured with the appropriate identification indices,
power supply and clock frequencies.

We first recompiled and re­tested each unit separately after reconfiguration and then the
entire platform to ensure proper functionality.
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5.5.2 i.MX8QM, i.MX8QXP and i.MX8nextGen power profile compar­
ison

In Fig. 5.49, we illustrate the total power obtained after executing a QVGA display refresh
use case on each of the three platforms.

Figure 5.49: QVGA use case: i.MX8 platforms comparison [mW] All power­related axis
scales had to be masked for confidentiality reasons. Let us consider the fixed value ”X”
[mW] as the most significant power consumption between the 3 platforms presented here.

We have a periodic generation of traffic corresponding to the different lines fetched from
the memory. The width of each pulse, which represents a packet of a few fetched lines,
depends on the screen resolution, SM bandwidth occupancy, transaction priorities, mem­
ory availability and SM+DRAM clock frequencies. In the case of the i.MX8QM, we have
some peaks in maximum power consumption (= 1X) when both memories are accessed si­
multaneously and relatively stable power consumption (about 0.6X) when only one memory
is used and the second is clocked. While the display consumes the captured lines, the dy­
namic consumption of the SM and DRAMs is reduced because they are not used. Using
the i.MX8QuadMax results, we are able to compare the total consumption pulse width and
height of the QVGA use case with the other two platforms. This may be important for the
comparison of total power consumption.

In the case of the i.MX8QXP, we can see that the maximum power consumption per line
retrieved (about 0.5X) is lower than that of the i.MX8QuadMax (= 1X). On the individual
pulses (line retrieval), we can observe that there are no consumption peaks, which is due to
the single memory architecture of the i.MX8QXP. On the contrary, the width of individual
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pulses for i.MX8QXP is about three times larger than for i.MX8QuadMax. Thus, we can
conclude that in the case of i.MX8QuadMax, we have high peak power consumption, but
lower latency and in i.MX8QXP there are no peaks, but stable power consumption and higher
latency. This is due to the lower clock frequency of the i.MX8QXP.

In the case of the i.MX8nextGen, we can observe that the maximum power consumption
is about 0.8X. The maximum power consumption is higher than the i.MX8QXP, due to the
dual memory architecture, and lower than the i.MX8QM, due to the higher frequency and
lower voltage. When comparing the pulse width, the latency is 0.2 times lower than the
i.MX8QM. The energy consumption of the i.MX8nextGen can also be compared to the other
two platforms.

Figure 5.50: QVGA use case: i.MX8 platforms energy comparison [mJ] All energy­related
axis scales had to be masked for confidentiality reasons. Let us consider the fixed value ”X”
[mJ] as the most significant energy consumption between the 3 platforms presented here.

In Figure 5.50, we can observe that the energy consumption of the i.MX8nextGen for
the QVGA use case is significantly lower than its predecessors. This is due to the much
lower latency compared to i.MX8QXP, the lower voltage and the higher clock rate. Even
though the maximum power consumption of i.MX8nextGen is higher than i.MX8QXP, the
final power consumption is much lower and its performance is significantly improved.

This can also be observed for the use case of the memory copy (Figure 5.51). In this case,
there is no fixed simulation time, as with the display refresh where all simulations end almost
at the same time (due to the similar vertical frequency around 60Hz) and the simulation is
finished when the memory copy is complete. i.MX8QM and i.MX8nextGen are much faster
than i.MX8QXP, due to the higher clock frequency and the use of two memories instead of
one. The power consumption slope of i.MX8QXP is lower, but it needs much more time to
perform the task.
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Figure 5.51: Memory copy use case: i.MX8 platforms energy comparison [mJ]

The correlation will be done when RTL or silicon is available. This will serve as proof­
of­concept for this new methodology.

5.6 Simulation time impact of PwClkARCH
In order to scale the simulation time overhead due to PwClkARCH and the power model,
we extracted and compared the simulation time of each use case presented in this study. The
results are presented in Figure 5.52.

Figure 5.52: Approach simulation time overhead

The simulation time overhead due to PwClkARCH is about 3x compared to simulating
the functional models alone. This simulation time overhead is relatively high, but it is mainly
due to the opening/reading/writing of all log files with the power values. Furthermore, it can
be reduced also by several optimizations that are part of future PwClkARCH work, such as
distributed PMU for example. However, since we do not have access to solutions that can be
compared to the one applied here (no open source code or licenses available), it is difficult
to compare it to other studies. However, we can compare the run time of similar use cases
at the RTL level, executed for performance analysis (without power analysis). For example,
running a memory copy use case using the full RTL model of a similar platform takes from
one to several hours (depending on the size of the memory copy). Executing a similar use
case on a similar platform using UVM takes between 30 minutes and an hour and a half.
Thus, the speedup in system­level simulation using SystemC and TLM2.0 is significant.
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5.7 Additional co­simulation tests conductedwith third­party
tools

Some additional work has been done to increase the capabilities of our framework. The main
objective is to integrate more accurate IP models for testbench construction.

5.7.1 Co­simulation with DRAMPower
In Figure 5.53, we illustrate a comparison between identical simulations on i.MX8QM with
the only difference that for the first we use a simple memory model and for the second we use
DRAMPower with an LPDDR4 specification derived from the MICRON­16Gb­LPDDR3­
1600_32bit specification. The reason for this is that DRAMPower does not support LPDDR4
and therefore there is no associated specification file. The main difference between LPDDR3
and LPDDR4 architectures (except for the values of internal parameters) is that LPDDR3
provides a single data channel, while LPDDR4 provides a dual channel (width of 16 bits
each). Fortunately, in the i.MX8 series platforms, the dual channel of LPDDR4 is used
as one large channel. Thus, we were able to reuse the LPDDR3 model, with an LPDDR4
specification.

Figure 5.53: Generic Multi­task with DRAMPower: Total power [mW]

During the high activity phase, all traffic generators and both DRAMs are activated, thus
achieving the maximum power consumption. During the medium and low activity phases,
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we activate several (not all) traffic generators, but most of them access only one memory.
There are small fractions of time when both memories are activated simultaneously. The
non­activity phase is a rest phase added to test the clock triggering mechanisms. We can
clearly observe the differences between the two simulations. The PwClkARCH simulation
with DRAMPower uses more realistic and variable response timing values (considering re­
fresh rates, bank and rank interleaving and more), while the single memory module uses
constant values deduced and approximated from previous hardware measurements. The red
rectangle shows a selected time in the simulation and highlights the timing error introduced
by the constant value methodology. Thus, the PwClkARCH/DRAMPower combination im­
proves our functional model and thus increases the accuracy of the power and performance
estimation.

Figure 5.54: Generic Multi­task with DRAMPower: Overall energy [mJ]

In Figure 5.54, we illustrate the overall energy consumed during the two simulations.
The [index] represents a fixed value used to compare the two energy consumptions. We
can distinguish that the simulation using DRAMPower executes the same number of trans­
actions in less time than the one using simple memory. Therefore, the slope of its curve is
steeper. At this level, with these generic traffic generators, we can have a good correlation for
the maximum, average and minimum energy consumption (with or without DRAMPower).
However, if we want to simulate a real use case, we need more application­specific traffic
generators, such as those used for the Memory Copy and Display Refresh use cases.
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Memory copy

In this use case, we have an application­specific active traffic generator running 256 KB
DRAM read accesses performed by a CPU cluster. Each data access is 16 bytes and we
consider sequential memory accesses. To optimize memory utilization, we apply the 4K
interleaving between our two DRAM memories.

Figure 5.55: Memory copy with DRAMPower: Total power [mW]

In Figure 5.55, we can see the constant activity due to the continuous memory accesses.
The spikes come from the interleaving moments between the two memories. The simulation
with DRAMPower ignores some of the spikes due to interleaving, because we use multiple
transaction windows (described in 4.3.3) and the memory power consumption is normalized
to show the average power for entire window.

The main contribution of DRAMPower to our study was the improved temporal accu­
racy of the memory model and the consideration of memory refresh. However, we found
the same contributions using DRAMSys4.0 memory models, but with reduced simulation
time (because it is a SystemC/TLM2.0 model and uses the SystemC core) and an accurate
functional model. In addition, it is compatible with DRAMPower, which can be very useful
in a co­simulation between PwClkARCH, DRAMSys4.0 and DRAMPower.

5.7.2 Co­simulation with Platform Architect (PA) Ultra
The first steps we took with PA Ultra were to adapt our SM sequential path units from the
functional model to the SystemC Modeling Language (SCML) FT sockets using TLM Cre­
ator and add them into the PA Ultra library for testing with Platform Creator. Then, using
the IP libraries defined in Platform Creator, such as VPUs, AXI protocols, buses, clocks,
generic memories, and STL workloads, we encapsulated our SM sequential path model and
created a Group and SMmodules with their corresponding testbench (Figures 5.56 and 5.57).
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We performed several simulations (without power management and estimation) to test the
functionality and analyze the performance using the PA Ultra tool.

Figure 5.56: Platform Architect Ultra: Example of Group model

Figure 5.57: Platform Architect Ultra: Example of SM model

Then we found that, due to limited access (as users), at the moment the only way to
integrate PwClkARCH into PA Ultra was to put our entire model (including the testbench)
into a TOP module. We did this to test if the two tools can be easily compiled together and
if they will work the same way as the external definition.
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Using TLM Creator, we encapsulated the entire testbench into a TOP project, and in­
cluded the PwClkARCH library. Then, using Platform Creator, we opened our project and
started the simulation (Figure 5.58).

Figure 5.58: Platform Architect Ultra: SM power model

Using VP Explorer, we generated the power­related output files and used gnuplot to ob­
tain the curves (Figure 5.59).

Figure 5.59: Platform Architect Ultra: VP Explorer output files generation

We observed the results of a generic multi­task use case where all traffic generators send
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512 transactions at first, and then half of them repeat the procedure with another 512. In this
use case, we do not have the IDLE phase between the two traffic phases and the memories
are accessed randomly.

Figure 5.60: Platform Architect Ultra: Total power [mW]

Figure 5.61: Platform Architect Ultra: DRCs dynamic power [mW]

On the total power (Figure 5.60), we observe the same maximum consumption as in
the generic multi­task use cases studied outside the tool. We extracted the full dynamic
consumption of a DRC using the results in Figure 5.61. Once the DRC is clock gated, we can
extract its inactive power consumption (IOs and PLLs are still active). Thus, if we consider
that due to the activity of a single SM sequential path, which interleaves between the two
memories, we have one memory that is fully active and the other one that is clock gated, but
still active (no time to go into IO down mode), we can estimate the total power consumption
of the DRCs (one active + one inactive) and the active SM. The value calculated from here
is approximately the same as the one found using the silicon measurements.
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Figure 5.62: Platform Architect Ultra: SM sequential paths frequencies [Hz]

In the Figure 5.62, we can observe the clock trigger activations for several SM sequen­
tial paths. SM sequential paths 0 and n­1 are those activated during the two phases. SM
sequential paths 1 and n are those which are active only for one phase. We can see that the
transactions on SM sequential paths n­1 and n lose their priority compared to SM sequential
paths 0 and 1 almost during all the first phase and for this reason SM sequential path n is
finished after SM sequential path 0 in spite of the fact that it sends the half of the transactions
that it sends. The reason for this is that we used fixed priority arbitration in the Arbiters that
are connected to the SM sequential paths. This proves that PwClkARCH also allows us to
observe the behavioral part and the activity report of the clock.

In order to integrate modules (IP models) from the PA Ultra library into our platform,
we need to at least have access to the static top file (HARDWARE.cpp), which was not the
case for us because this file was generated dynamically at each recompilation in Platform
Architect. In addition, we need access to the VPU and Generic Memory code or just their
top­level modules. If we have access to the code, we can use the VPUs to initiate OPP state
changes, and if we only have access to their top­level modules, we can derive from them and
add a strategy similar to the onewe use in our framework (i.e., add a port communicatingwith
a master module). However, this was the only reason to integrate all modules (including our
testbench) into a top­level project and we managed to prove the first layer of compatibility
between the two tools.
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5.8 Conclusion
In this chapter, we developed the targeted reverse engineering approach on NXP i.MX8QM
and i.MX8QXP SoCs. We presented an overview of the experimentation we performed on
each platform and showed some power­related observations in each. We presented our ”go­
to” approach for choosing power parameter values (activity, load capacity, and leakage resis­
tance) and model calibration. We presented simulation results for several generic and more
realistic use cases for each of the modeled platforms. We have indicated the effort required
to reuse the power­aware IP models, which has proven to be a significant benefit for mod­
eling later generation designs. Starting with the model of an existing platform (i.MX8QM),
we successfully ported the required units to a lower performance SoC (i.MX8QXP) and cor­
related the simulation results with silicon measurements. We have also showed the power
consumption benefits from the power management definition using a comparison between
a model with and without power management. It is important to highlight again that this
comparison is done at ESL level, thanks to the PwClkARCH library. In addition, we created
a model of our next generation high performance SoC, which is currently in its product def­
inition phase (early design stage), and extracted some power estimates for this SoC, which
can be correlated once RTL or/and silicon is/are available.

Due to the confidentiality of the SM architecture information, a significant portion of our
power analysis was presented on the memory side, but the same analysis was performed for
the entire SM subsystem.

In order to improve and complete our framework, we have done some additional work to
include some important IPs in our modeling library. We included DRAMPower and DRAM­
Sys4.0 for cycle­accurate memory models and started the integration of the gem5 tool which
has a library containing CPUs, GPUs and other useful models that can further increase the
capability of our framework (initial stage ­ not included in the report). We have shown some
initial steps to integrate PwClkARCH into the Platform Architect Ultra tool which might
be the most optimal solution, as this tool has a very rich IP library and strong performance
estimation capability. PwClkARCH can be a very powerful add­on, as both tools follow
the UPF standard for the power modeling approach and PwClkARCH allows the definition
of power intent around functional models and the definition of power management strategy
without implementing power state machines requiring lower level design information.

We also presented the overhead of simulation time due to the inclusion of a power model
and some ideas on how to reduce it. The easy reuse of functional and/or power models
showed the usefulness of the separation of concerns semantics applied in our approach. We
were able to simulate the model with and without its power intent and observe the differences
in simulation speed.
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Chapter 6

General conclusion & perspectives

6.1 Conclusion

The increasing complexity and performance ofmodern integrated circuits is driving the open­
ing of new and challenging application areas. However, this same complexity creates the
need to look for improved design flows, especially in the complex heterogeneous SoCs that
are increasingly used in different industries. We are creating a world where battery­powered
mobile devices are all around us and need to be sufficiently reliable and resilient and es­
pecially power­efficient, while executing millions of different commands and tasks. Using
old, slow design flow methodologies is no longer possible with these new levels of com­
plexity and power efficiency constraints. Therefore, a proven approach to speeding up the
design flow and increasing design performance and power analysis capabilities is raising the
level of abstraction and start design explorations earlier. Part of the inevitable improvements
is to include techniques such as virtual platforms, hardware/software co­simulations, early
exploration of the design space and, more concretely, early power and performance analysis.

In conclusion, during this PhD, we have thoroughly studied the main semantics and ap­
proaches to power modeling and estimation that could be applied at the system level. We
have created a framework that allows us to develop transactional level models of an SoC
described exclusively in C++/SystemC­TLM2.0 and extract power consumption and per­
formance metrics from these models. This type of high­level modeling methodology is not
widely adopted in the industry, but it is becoming essential for all companies producing high­
performance, low­power SoCs in order to be competitive. This is the first work on modeling
and evaluation of an IP part of the i.MX8 SoC family and an introduction to system­level
modeling in the NXP team responsible for this project.

The proof of concept for this approachwas done on a very interesting custom interconnect
subsystem called Switch Matrix, which is also a vital and very challenging component for
power analysis. For confidentiality reasons, we were not able to present the concrete analysis
of the Switch Matrix block. Therefore, we have provided an identical analysis of the entire
voltage domain (including the Switch Matrix and memory systems). Nevertheless, the main
contributions have been covered. Since at the system level there are no standards defining
the exact granularity and abstraction when creating models for architectural exploration, we
had to investigate and define how to approach this problem. The SwitchMatrix is a relatively
large and complex custom IP, where we cannot reuse existing models, so we had to develop
it from scratch with an appropriate level of abstraction.
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The power estimation and modeling approach we adopted (as users/testers of PwClkA­
RCH) is unique because its implementation is less dependent on low­level component infor­
mation and at the same time, it does not use power state machines for power modeling, but
a few physical parameters allowing for more accurate power estimates. The accuracy of this
approach is due to the full automation of dynamic power calculations performed in parallel
of a functional model and the reduction of human intervention in the power consumption
estimated data supply (e.g., there is no need to provide power consumption estimation for
different power states). In addition, this approach allows the most common power reduction
techniques to be applied in a simplified and straightforward manner. The strong UPF­like
separation between the functional code and the power intent description significantly in­
creases the design space exploration and power modeling capabilities, as we can easily test
different combinations of power/functional models (jointly or separately) without having to
modify the code. In addition, the PwClkARCH library follows the UPF standard, but it also
adds the inclusion of DPLL components and the definition of clock domains, which are not
present in other currently available tools and solutions at the same level.

The type and complexity of the subsystem, the use of the TLM2.0 AT coding style in
the functional modeling and the silicon­power correlation, make this study a first industrial
proof­of­concept of the power estimation capabilities of the PwClkARCH library for com­
plex architectures (i.e. more than 40 clock domains, automatic clock gating mechanisms
…).

This approach has the potential to improve the exploration of the design space at the
system level and even the entire design flow, as it can help us detect bugs or sub­optimal
power management strategies early in the flow. By avoiding the discovery of bugs at later
stages of the design flow, we can avoid very significant expenses when developing new
circuits.

6.2 Perspectives & future works
The prospects for future work after this study are numerous. With this and previous studies on
PwClkARCH, we have proven that this approach is not IP specific and allows for accurate
modeling and power estimation of different types of components with different levels of
complexity and different use cases. We performed a power analysis on amuchmore complex
SoC subsystem than any previously studied. However, the approach has not yet been tested
on processors or full SoC platformwith its hundreds of clock domains and design elements or
with the implementation of more complex use cases (e.g., GPU and CPU traffic), which may
give further conviction of the accuracy and capabilities of this framework. Both of these
perspectives require the availability of such SystemC/TLM2.0 models, which can only be
achieved by accessing a large library of IP components, or by developing an effortful model
for each block of the SoC.

We have shown the importance of memory model accuracy in energy estimates and have
proven the interoperability of PwClkARCH with other tools and models, such as DRAM­
Power, DRAMSys4.0 and Platform Architect. A logical future work is to co­simulate the
PwClkARCH library and DRAMSys4.0 tool with the enabled DRAMPower memory power
emulator. Using this setup, we can extract accurate models of memory power, as well as the
rest of the systems. In addition, the inclusion of the gem5 or QEMU tools in this framework
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can allow for the simulation of more complex use cases. In our study, this was not the goal, as
we were looking for specific CPU and display traffic simulations, which were not available
with gem5 or QEMU. However, it can have a significant added value for the environment.

On the PwClkARCH side, the modeling work has shown some limitations of the central
PMU approach. A future work that can greatly increase the flexibility of the power model
and the speed of simulation is to move to a distributed PMU model. In this way, it will
simplify the power modeling of very complex architectures. This will allow the creation of
multiple PMUs in a design, which means smaller clock, power and operating performance
points tables to define and traverse and more efficient and concise code.

Furthermore, the PwClkARCH library does not take into account the thermal impact on
power consumption. If we take the example of our platform, the simulation/measurement
power correlation without temperature control during measurements (with maxTC) is signif­
icantly reduced. The thermal impact on the static and total power consumption is important
and its modeling can significantly increase the capabilities of the tool. Hypothetically, the
optimal solution would be to include an already existing thermal estimation tool in PwClkA­
RCH (or co­simulation).

Another future work on the side of PwClkARCH, is its adaptation to new semiconduc­
tor technologies. Several extensions can be considered in order to adapt to semiconductor
innovations and to allow internal consideration of the technology used for the design, while
being careful not to require too low­level information.

PwClkARCH is based on the UPF standard. Its textual user interface contains a simple
UPF­like language parser to integrate a UPF­like power partitioning file and automatically
generate the code related to the PwClkARCH power model. This is very useful, as this file
can be reused at multiple levels in the design. The same type of integration for the new UPM
standard, targeting system­level power modeling, can be a very logical step in the future
development of PwClkARCH.

The most optimal solution to enhance the capabilities of this framework may be to inte­
grate it into a tool containing a library of cycle­accurate functional models and comprehen­
sive testbenches, allowing for the inclusion of third­party IPs.
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Appendix A

DRAMPower/PWClkARCH parsing and
co­simulation

1 void DramCtrl::request_path_cb(tlm::tlm_generic_payload& payload, const tlm
::tlm_phase& phase, const sc_core::sc_time& delay, size_t idx) {

2 ...
3 check_mode.cancel();
4 de->set_functional_state(false);
5 switch(phase) {
6 case tlm::BEGIN_REQ:
7 if (payload.is_read()) {
8 ...
9 if(nb_trans_until_calc_power == NB_TRANS ||

nb_trans_until_calc_power == 0) {
10 ...
11 if (t2r - t_abs_rw_prev > tREFI) t_abs_rw_prev = t2r;
12 t_rw_prev = tREFI*(t_abs_rw_prev/tREFI);
13 int x = freq_ghz*(t2r-t_rw_prev); //freq*(Cycles last RD/WR

req)
14 ...
15 first_trans_file_DRAM1 << std::dec << x;
16 first_trans_file_DRAM1 << ",READ,0x" << std::hex << payload.

get_address() << std::endl;
17 ...
18 } else ...
19

20 de->Remove_dynamic_pow_fixed(); //idle consumption
21

22 int tt = freq_ghz*(t2r-t_rw_prev);//freq*(Cycles last RD/WR req)
23 trace_file_DRAM1 << std::dec << tt ;
24 trace_file_DRAM1 << ",READ,0x" << std::hex << payload.

get_address() << std::endl;
25 ...
26 t_rw_prev = t2r;
27 t_abs_rw_prev = t2r;
28 current_nb_trans = nb_trans_until_calc_power;
29 nb_trans_until_calc_power++;
30

31 if (nb_trans_until_calc_power == NB_TRANS)
32 check_mode.notify();
33 } ...
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34 case tlm::END_REQ:
35 ...
36 mean_t_acces = de->get_access_time();//req acc delay
37 LATENCY = sc_time(mean_t_acces ,SC_NS);
38 resp_delay = LATENCY+delay;
39 ...
40 case tlm::END_RESP:
41 drc_state = ACTIVE;
42 ...
43 drc_state = CLK_GATED;
44 check_mode.notify();
45 ...
46 }
47 }
48 void DramCtrl::check_state() {
49 while (true) {
50 wait (check_mode);
51 ...
52 int max_trans_from_prev = (current_time - t_prev)/interval_rw;
53 int activity_ratio = nb_trans/(float) max_trans_from_prev ;
54 if (current_nb_trans == nb_trans_until_calc_power) {
55 nb_trans_until_calc_power = 0;
56 de->Set_dynamic_pow_fixed(SDRAM_POWER_IDLE_MODE);
57 switch (drc_state) {
58 case ACTIVE :
59 ...
60 SetActivity(activity_ratio);
61 ...
62 case IO_DOWN :
63 ...
64 SetActivity(activity_ratio);
65 ...
66 case PLL_DOWN :
67 ...
68 SetActivity(activity_ratio);
69 ...
70 default:
71 ...
72 }
73 mean_t_access = de->get_access_time();
74 t_prev = current_time;
75 LATENCY = sc_time(mean_t_acces ,SC_NS);
76 }
77 }
78

79 void DramCtrl::SetActivity(float activity)
80 {
81 sc_core::sc_object& obj = dynamic_cast <sc_core::sc_object&>(*this);
82 de = Design_elem_DRAM1::get_DE(obj);
83 de->Update_dpow(activity);
84 }

Listing A.1: Trace file generation code snippet
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1 void Design_elem_DRC::Update_dpow(float activity) {
2 ...
3 TraceParser traceparser;
4

5 trace_file.open(DRAM_FIRST_TRANS_FILE1 , ifstream::in);
6 traceparser.parseFile(memSpec, trace_file , CMD_ANALYSIS_WINDOW_SIZE ,

grouping , interleaving , burst, power_down , trans);
7 mpm.power_calc(memSpec, traceparser.counters, term);
8 double power_from_refresh = mpm.power.average_power ;
9 trace_file.close();
10

11 trace_file.open(DRAM_TRACE_FILE1 , ifstream::in);
12 traceparser.parseFile(memSpec, trace_file , CMD_ANALYSIS_WINDOW_SIZE ,

grouping , interleaving , burst, power_down , trans);
13 mpm.power_calc(memSpec, traceparser.counters, term);
14 long int total_cycles = mpm.total_cycles; //nb tot cycles in curr window
15 mean_access_time = clk_period * traceparser.cmdsched.mean_access_time ;
16 trace_file.close();
17

18 elapse_time = clk_period*total_cycles; //one window
19 date_of_first_transaction = clk_period*traceparser.cmdsched.

date_of_first_transaction ; //window start-point
20

21 if (activity >= 0) {
22 _dynamic_pow = _dynamic_pow_base*activity + ((mpm.power.average_power*

elapse_time - power_from_refresh*date_of_first_transaction)/(elapse_time
- date_of_first_transaction));

23 _activity = activity ;
24 } else if (activity == ACTIVITY_CLK_GATED){
25 _dynamic_pow = DRC_POWER_CLK_GATED + _dynamic_pow_fixed;
26 _activity = 0.0;
27 } else if (activity == ACTIVITY_IO_DOWN){
28 _dynamic_pow = DRC_POWER_IO_DOWN + _dynamic_pow_fixed;
29 _activity = 0.0;
30 } else if (activity == ACTIVITY_PLL_DOWN) {
31 _dynamic_pow = DRC_POWER__PLL_DOWN + _dynamic_pow_fixed;
32 _activity = 0.0;
33 } else {}
34

35 ...
36 }

Listing A.2: Design Element code snippet
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Appendix B

Models skeleton

1 class IPBase: public ModuleBase , public ARK_Utils::Observable {
2 public:
3 SC_HAS_PROCESS(IPBase);
4 IPBase(sc_module_name name, sc_core::sc_time clk_period): ModuleBase(

name), m_name(name)
5 , ...
6 , m_AcceptReadPEQ("acceptReadPEQ")
7 , m_AcceptWritePEQ("acceptWritePEQ")
8 , mPerfObserver("PerfObserver",this) {
9

10 SC_METHOD(writeRequestThread); //AW scheduling
11 this->sensitive << forwardWrReqEvent;
12 this->dont_initialize();
13

14 SC_METHOD(readRequestThread); //AR scheduling
15 this->sensitive << forwardRdReqEvent;
16 this->dont_initialize();
17

18 SC_THREAD(acceptReadThread);
19 SC_THREAD(acceptWriteThread);
20

21 this->addObserver(&mPerfObserver ,this->name());
22 }
23

24 IPBase(sc_module_name name, sc_core::sc_time clk_period_in , sc_core::
sc_time clk_period_out): ModuleBase(name)

25 , ...
26 , m_AcceptReadPEQ("acceptReadPEQ")
27 , m_AcceptWritePEQ("acceptWritePEQ")
28 , mPerfObserver("PerfObserver",this) {
29

30 SC_METHOD(writeRequestThread); //AW scheduling
31 this->sensitive << forwardWrReqEvent;
32 this->dont_initialize();
33

34 SC_METHOD(readRequestThread); //AR scheduling
35 this->sensitive << forwardRdReqEvent;
36 this->dont_initialize();
37

38 SC_THREAD(acceptReadThread);
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39 SC_THREAD(acceptWriteThread);
40 this->addObserver(&mPerfObserver ,this->name());
41 }
42

43 //Helper functions - name of the inst where the module is used - @return
const char*

44 virtual const char* basename() const { return m_name; };
45 virtual const char* fullname() const { return this->name(); };
46

47 //Behavioral model callbacks
48 virtual void manageForwardPath(tlm::tlm_generic_payload& payload, const

tlm::tlm_phase& phase, const sc_core::sc_time& delay, size_t idx) = 0;
49 virtual void manageBackwardPath(tlm::tlm_generic_payload& payload, const

tlm::tlm_phase& phase, const sc_core::sc_time& delay, size_t idx) = 0;
50

51 /**
52 * Request Callback (forward)
53 * @param receive index, payload reference and delay reference from

protocol interfaces
54 */
55 void request_path_cb(tlm::tlm_generic_payload& payload, const tlm::

tlm_phase& phase, const sc_core::sc_time& delay, size_t idx) {
56 ...
57 manageForwardPath(payload, phase, delay, idx);
58 }
59

60 /**
61 * Response Callback (backward)
62 * @param receive index, payload reference and delay reference from

protocol interfaces
63 */
64 void response_path_cb(tlm::tlm_generic_payload& payload, const tlm::

tlm_phase& phase, const sc_core::sc_time& delay, size_t idx) {
65 ...
66 manageBackwardPath(payload, phase, delay, idx);
67 }
68

69 tlm_utils::peq_with_get <tlm::tlm_generic_payload > m_AcceptReadPEQ;
70 tlm_utils::peq_with_get <tlm::tlm_generic_payload > m_AcceptWritePEQ;
71

72 protected:
73 sc_event forwardRdReqEvent;
74 sc_event forwardWrReqEvent;
75

76 TLMObsArg m_PldArgs;
77 ARK_Utils::PerfObserver mPerfObserver;
78 };
79

Listing B.1: IPBase skeleton



189

1 class BridgeModule: public IPBase
2 #ifdef PWARCH
3 , public Subject, public Assertions
4 #endif
5 {
6 public:
7 SC_HAS_PROCESS(BridgeModule);
8 BridgeModule(sc_module_name name, protocol::bus_type UsedProtocol ,

sc_time period);
9 ~BridgeModule();
10 ...
11 #ifdef PWARCH
12 void check_state();
13 void SetActivity(float);
14

15 uint32_t m_pendingCounter;
16 int m_check_state;
17 Observer<sc_core::sc_object >* m_PowObserver;
18 Design_elem* de;
19 #endif
20

21 tlm::tlm_target_socket <WIDTH_in > input;
22 tlm::tlm_initiator_socket <WIDTH_out > output;
23 protected:
24 ARK_Protocols::SimpleTarget <BridgeModule , WIDTH_in >* inProtocolIF;
25 ARK_Protocols::SimpleInitiator <BridgeModule , WIDTH_out >* outProtocolIF;
26 ...
27 };

Listing B.2: Entity skeleton
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1

2 template < unsigned int WIDTH_in, unsigned int WIDTH_out >
3 class BridgeArch: public BridgeModule <WIDTH_in , WIDTH_out >
4 {
5 typedef typename std::deque<tlm::tlm_generic_payload*> IdRegister;
6 typedef typename std::map<sc_dt::sc_uint <16>, IdRegister*> ReorderingMap

;
7 typedef typename std::vector<tlm::tlm_generic_payload*> RespRegister;
8 typedef typename std::map<sc_dt::sc_uint <16>, RespRegister*>

RespReorderingMap;
9

10 private:
11 using BridgeModule <WIDTH_in , WIDTH_out >::m_pendingCounter;
12 using BridgeModule <WIDTH_in , WIDTH_out >::inProtocolIF;
13 using BridgeModule <WIDTH_in , WIDTH_out >::outProtocolIF;
14 public:
15

16 SC_HAS_PROCESS(BridgeArch);
17 BridgeArch(sc_module_name name, protocol::bus_type UsedProtocol , sc_time

period);
18 ~BridgeArch();
19

20 /**ReadRequestThread
21 * Request Callback (forward)
22 * @param payload reference , phase, delay and index
23 */
24 virtual void manageForwardPath(tlm::tlm_generic_payload& payload, const

tlm::tlm_phase& phase, const sc_core::sc_time& delay, size_t idx);
25

26 /**
27 * Response Callback (backward)
28 * @param payload reference , phase, delay and index
29 */
30 virtual void manageBackwardPath(tlm::tlm_generic_payload& payload, const

tlm::tlm_phase& phase, const sc_core::sc_time& delay, size_t idx);
31

32 /**
33 * Scheduling threads
34 * @brief - new transaction pulling from the max priority queue
35 * @param receive index, payload reference and delay reference from

protocol interfaces
36 */
37 virtual void acceptReadThread();
38 virtual void acceptWriteThread();
39 virtual void writeRequestThread();
40 virtual void readRequestThread();
41

42 /**
43 * Helper functions - Functions used for Read and Write transactions (

avoid code repetition)
44 * @param - payload reference , required reordering tables, delay and

index from protocol interfaces
45 */
46 virtual void pushToOrderingTable(tlm::tlm_generic_payload& payload,

ReorderingMap& ReorderingMap);
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47 virtual void reorderAfterEndResp(tlm::tlm_generic_payload& payload,
RespReorderingMap& RespOrderMap , ReorderingMap& ReorderingMap , const
sc_core::sc_time& delay, size_t idx);

48 virtual void reorderAfterBeginResp(tlm::tlm_generic_payload& payload,
RespReorderingMap& RespOrderMap , ReorderingMap& ReorderingMap , const
sc_core::sc_time& delay, size_t idx);

49 virtual void forwardRequest(ReqQueuesVect& requestQueuesVector , uint32_t
high_priority_queue_index);

50

51 protected:
52 ReorderingMap m_readReorderingMap;
53 ReorderingMap m_writeReorderingMap;
54 RespReorderingMap m_readRespOrderMap;
55 RespReorderingMap m_writeRespOrderMap;
56 };

Listing B.3: Architecture skeleton
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