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Finite Element Methods for Shallow Water Equations: Analysis, Modeling and Applications to Coastal
Hydrodynamic

Abstract: This phd will be carried out as part of the Inria CARDAMOM team’s activities concerning adaptive
methods for coastal flows. The work will benefit from the team’s interactions with the BRGM in terms of real
applications, as well as exchanges with the University of Zurich on certain methodological aspects.
The main objective is to develop and compare high order and adaptative methods for the simulation of Shallow
Water flows. More precisely, the objective is to obtain continuous finite element methods without mass matrix,
stable and explicit in time with performances comparable to Galerkin discontinuous methods.
The implementation will be done in an object-oriented finite element library used by the INRIA CARDAMOM
and CAGIRE teams, as well as at BRGM. The final validation will be done on real cases of interest for the Ré-
gion Nouvelle-Aquitaine and in close collaboration with the BRGM Orléans with exchanges with the Rivages
Pro-Tech center of SUEZ. Further exchanges are envisaged on certain aspects of the work, in particular with
the University of Zurich, concerning residual distribution methods and the analysis of stabilized continuous
methods. The main scientific contributions of this work will be:
- Multidimensional spectral analysis of continuous stabilized finite element methods.
- Comparison and optimization of these at different orders.
- The implementation of high order and well-balanced approaches near flood fronts.
- Numerical validation of methods on university cases as well as real cases (example of a case in Nouvelle-
Aquitaine).
Keywords: Continuous Galerkin methods, Dispersion analysis, stabilization techniques, high order accuracy,
nonstandard elements, mass lumping, Shallow Water equations.

Méthodes éléments finis pour la simulation d’écoulements en eaux peu profondes: Analyse,
modélisation et applications à l’hydrodynamique côtière

Résumé : Cette thèse se fera dans le cadre des activités de l’équipe Inria CARDAMOM en matière de méth-
odes adaptatives pour les écoulements côtiers. Le travail bénéficiera d’interactions avec le BRGM en matière
d’applications réelles, ainsi que d’échanges avec l’Université de Zurich sur certains aspects méthodologiques.
L’objectif principal de la thèse est de développer et comparer des approches d’ordres élevés pour la simulation
d’écoulements en eaux peu profondes. Plus précisément, l’objectif est d’obtenir des méthodes d’éléments finis
continues sans matrice de masse, stables et explicites en temps avec des performances comparables à des sché-
mas de type Galerkin discontinus.
La mise en œuvre se fera dans une bibliothèque éléments finis orientée objets utilisée dans les équipes INRIA
CARDAMOM et CAGIRE, ainsi qu’au BRGM. La validation finale se fera sur des cas réels d’intérêt pour la
Région Nouvelle Aquitaine et en collaboration étroite avec le BRGM Orléans avec des échanges avec le centre
Rivages Pro-Tech de SUEZ. D’autres échanges sont envisagés sur certains aspects du travail, en particulier
avec l’Université de Zurich, concernant les méthodes aux résidus et l’analyse des méthodes continues dites
stabilisées. Les principales contributions scientifiques de ce travail seront :
- L’analyse spectrale multidimensionnelle des méthodes numériques éléments finis continues stabilisées.
- Comparaison et optimisation de celles-ci à différents ordres.
- La mise en œuvre d’approches d’ordres élevés et well-balanced en proximité de fronts d’inondation.
- La validation numérique des méthodes sur des cas universitaires ainsi que des cas réels (exemple d’un cas en
Nouvelle-Aquitaine).
Mots clés: Méthodes Galerkin Continues, Analyse de dispersion, techniques de stabilisation, méthodes d’ordre
élevé, Élements non standards, mass lumping, Équations de Saint-Venant.

Team CARDAMOM (INRIA Bordeaux Sud-Ouest)
UMR 5152, Université de Bordeaux, 351 Cours de la Libération, 33400 Talence, France.
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Résumé en francais

Contexte et motivations
Du aux effets du changement climatique, les centres habités proches de la mer ou de

cours d’eau sont exposés à des risques de submersion. Pour atténuer les conséquences de ces
événements et mieux se préparer à réagir, il est nécessaire de mener des études d’évaluation
des risques avec certaines exigences en terme de précision et de résolution. Il faut notam-
ment prendre en compte les phénomènes pertinents tels que l’effet des vagues, les incer-
titudes qui les affectent, et la possibilité de décrire de manière flexible des phénomènes à
différentes résolutions spatiales pour des petites et grandes échelles. Pour cela, la disponi-
bilité de codes très performants et précis est essentielle. Ce projet fait suite aux recherches
menées par l’équipe CARDAMOM du centre INRIA Bordeaux Sud-Ouest. En particulier,
la thèse contribuera à terme au projet UHAINA1, une plateforme opérationnelle open-source
de simulation de l’impact des vagues sur la côte. Cette plateforme fonctionne avec la col-
laboration de cinq instituts, dont INRIA et le BRGM d’Orléans également impliqués dans le
projet de co-financement soumis à la Région Nouvelle Aquitaine.

Dans ce contexte, cette thèse s’intéresse à des problématiques de recherche en amont:
l’étude d’approches améliorées de l’hydrodynamique côtière. L’objectif de la thèse sera
d’obtenir un modèle efficace/optimal du point de vue de la précision (pour un nombre donné
d’inconnues de calcul), de la robustesse et de la rapidité de calcul. En effet, aujourd’hui nous
disposons de données et de cartes haute résolution des grandes agglomérations urbaines. Si
ces données permettent des prévisions précises (à l’échelle urbaine), les résolutions qui en
résultent conduisent à des temps de calcul importants. Ce qui représente un frein lorsqu’on
envisage leur application dans un contexte opérationnel. Il semble donc essentiel de rendre
disponible des codes d’ordre élevé, adaptatifs, géométriquement flexibles et massivement
parallèles pour ce type d’applications.

Pour modéliser la submersion et l’inondation, nous pouvons utiliser les équations dites
"Shallow Water": un ensemble de lois de conservation, avec un caractère hyperbolique sous-
jacent. Ces équations permettent d’approximer avec une précision surprenante le défer-
lement et la montée des vagues. De plus, elles ont un certain potentiel pour modéliser la
propagation des vagues, en particulier pour les vagues longues (comme par exemple les
vagues de tempête ou de tsunami). Ce modèle trouve également des applications en hydrolo-
gie et en météorologie (voir [31, 119, 120] et ses références).

Une caractéristique fondamentale des lois de conservation non-linéaires est que des dis-
continuités peuvent apparaître pendant la simulation, même à partir de données initiales
lisses. Le principal enjeu numérique est de traiter ces discontinuités à la fois mathématique-
ment et informatiquement. Historiquement, les premières méthodes utilisées pour discrétiser
un système hyperbolique étaient les méthodes de différences finies et de volumes finis [78],
car elles permettent de décrire de manière précise les chocs. Cependant, même si elles ont

1https://gitlab.inria.fr/uhaina1/uhaina/-/wikis/home
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été les premières introduites dans la littérature de par leur caractère intuitif, l’extension à des
ordres de précisions élevés conduit à des coûts de calculs élevés, relatifs aux stockages de
données (de structure) à considérer. Les méthodes de Galerkin ont alors été envisagées afin
d’atteindre une convergence spatiale d’ordre élevé [61, 35] à des coûts de calcul moindre. Il
est bien connu que la méthode standard des éléments finis de Galerkin n’est en général pas
bien adaptée à la résolution des problèmes d’advection et d’advection-diffusion. Il est alors
apparu deux possibilités pour améliorer la stabilité tout en gardant la précision. La première
est la formulation Galerkin discontinue (DG) [36], qui considère des solutions approchées
discontinues. La seconde utilise la formulation Galerkin continue (CG), en ajoutant un terme
de stabilisation conçu de manière appropriée.

Méthodes numériques
Dans cette dernière approche (Galerkin continue stabilisée), l’une des techniques de sta-

bilisation les plus populaires est le Streamline-Upwind Petrov-Galerkin (SUPG), introduit
dans [65] (voir aussi [67, 21]). La formulation est fortement consistante dans le sens où l’on
stabilise le résidu complet, et la stabilisation disparaît lorsqu’elle est appliquée à des solu-
tions exactes de l’équation différentielle. Dans ce travail, nous considérerons également des
techniques de stabilisation symétriques qui sont plus simples à mettre en œuvre par rapport
aux méthodes de stabilisation basées sur les résidus. La première alternative est la stabil-
isation dite Continuous Interior Penalty (CIP) utilisée dans [25, 27, 23]. Cette méthode a
été développée par E. Burman et P. Hansbo dans [24], mais elle peut aussi être vue comme
une variante de la méthode initialement proposée par Douglas et Dupont [46]. La méthode
stabilise la formulation de Galerkin en ajoutant un terme proportionnel au saut du gradient
de la solution à travers les interfaces du maillage. Ce terme est calculé sur la solution au pas
de temps précédent, il n’affecte donc pas la structure de la matrice de masse. La deuxième
alternative est l’approche Orthogonal Subscale Stabilization (OSS). Introduite à l’origine
sous le nom de Pressure Gradient Projection (PGP) dans [38] pour les équations de Stokes,
elle a été étendu à la méthode OSS dans [37, 8] pour différents problèmes d’instabilités
numériques, tels que les problèmes de convection–diffusion–réaction. La méthode stabilise
la formulation de Galerkin en pénalisant les fluctuations de gradient.

Dans la résolution numérique d’équations aux dérivées partielles (EDP), l’intégration
en temps joue également un rôle majeur. Les méthodes utilisées pour atteindre une con-
vergence temporelle d’ordre élevé dans ce travail sont les méthodes générales Runge-Kutta
(RK), ainsi que Strong Stability Preserving Runge-Kutta introduites dans [117] (SSPRK). De
nombreuses variantes de SSPRK existent [117, 118, 112, 56, 30], et nous allons comparer
certaines d’entre elles numériquement afin de sélectionner la plus stable. Ces méthodes ex-
plicites seront également comparées aux méthodes dites Deferred Corrections (DeC), qui
ont été introduites à l’origine dans [47] en tant que solveurs explicites d’équations différen-
tielles ordinaires (EDO), et par la suite en tant que solveurs implicites dans [90]. Puis sont
apparues des versions et extensions préservant la positivité des solveurs d’EDP [100, 2].
Dans [2, 104, 107] la méthode est également étendue afin d’éviter l’inversion de la matrice
de masse. L’idée est d’appliquer une condensation de la matrice de masse (mass lumping) et
d’effectuer un processus itératif de correction pour atteindre l’ordre de convergence recher-
ché. Ceci n’est réalisable que lorsque la matrice (locale et globale) contient uniquement
des valeurs positives sur sa diagonale. L’utilisation des polynômes de Bernstein fut alors
recommandée dans [2], mais d’autres choix sont également possibles comme par exemple
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l’utilisation d’éléments dit de Cubature sous certaines conditions.

Ceci permet d’introduire les deux derniers aspects fondamentaux des méthodes éléments
finis (MEF) : l’approximation polynomiale et la discrétisation spatiale. En pratique, et c’est
ce qui sera utilisé dans cette thèse, des éléments triangulaires sont utilisés pour manipuler
des géométries complexes (en 2D). L’approche classique consiste à définir les degrés de lib-
erté placés uniformément dans le triangle et à définir les fonctions de base correspondantes
(qui sont en général des fonctions de base de Lagrange). Suivant la procédure de discrétisa-
tion pour la MEF, la résolution d’un système hyperbolique consiste à résoudre un système
en inversant une matrice appelée la matrice de masse. Le temps CPU de cette opération
ne peut pas être négligé. Une façon de réduire ce coût est de recourir au principe du mass-
lumping, éventuellement sans affecter la précision. Parmi les solutions possibles, on peut
citer les éléments de Cubature, introduits par G. Cohen et P. Joly (2001) dans [39] qui sont
une extension des polynômes de Lagrange dans le but d’optimiser l’erreur sous-jacente des
formules de quadrature (tous les détails de ces éléments peuvent être trouvés dans [39, 55,
69]). Des techniques similaires ont été utilisées pour minimiser l’erreur d’interpolation en
utilisant les points de Fekete et Gauss–Lobatto [70, 115, 122]. Cependant, les points de
quadrature de Gauss – Lobatto ne sont connus que pour les domaines de type ligne en 1D et
quadrangulaire en 2D, ce qui ne permet pas d’étendre leurs défintinitions à des domaines de
type "produits non tensoriels" comme le triangle. Cependant, de part leurs définitions, ces
derniers éléments ne permettent pas d’appliquer le principe du mass-lumping: ils ne garan-
tissent ni les coefficients strictement positifs dans la diagonale, ni l’ordre de convergence.
À noter que les points de Fekete (étant connus pour être les points Gauss–Lobatto en 1D
[50] et dans le cube de dimension d ≥ 2 [14])) sont une généralisation possible des points
de Gauss–Lobatto pour le triangle. L’objectif de ces polynômes est d’utiliser les points de
l’interpolation lagrangienne des polynômes comme points de quadrature. Un autre type de
fonction de base sera également utilisé dans ce travail : les fonctions polynomiales de Bern-
stein. Ils vérifient des propriétés supplémentaires en plus de celle des points de Lagrange.
En particulier, ces propriétés conduisent également au fait que la valeur en chaque point est
une combinaison convexe des coefficients des polynômes. Par conséquent, il est facile de
borner la valeur minimale et maximale de la fonction par le minimum et le maximum des
coefficients. Cela a été utilisé dans différentes techniques pour préserver la positivité de la
solution [7, 75].

Travail effectué
Dans cette thèse, nous décrirons, analyserons et optimiserons ces différents aspects de la

résolution numérique, via la résolution de problèmes hyperboliques. En particulier, dans
les chapitres 4 et 5, l’analyse sera effectuée selon la méthode de Fourier appelée aussi
l’analyse spectrale. Plusieurs travaux montrent la méthode appliquée à un cas particulier
(DG, CG et CIP, etc) [116, 115] mais aucun d’entre eux ne compare à la fois les discrétisa-
tions numériques, les méthodes d’intégration en temps et les techniques de stabilisation. De
plus, il est plus commun de trouver dans la littérature des analyses semi-discrètes. Dans cette
thèse, nous vous présenterons une étude partiellement et entièrement discrète (semi discrete
et fully discrete) et tous ces résultats sont disponibles (en libre accès) [87, 86]. Via ces anal-
yses spectrales dites de von Neumann, nous optimiserons les paramètres du schéma défini
dans les techniques de stabilisation (notamment la CFL et le paramètre de stabilisation noté
δ) pour toutes les combinaisons de schémas numériques énoncées précedemment. Un autre
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point important est que tous les résultats seront soigneusement vérifiés numériquement à la
fois sur des problèmes linéaires et non-linéaires (résolution des systèmes de Burger et Shal-
low Water) par l’évaluation de la stabilité et de l’ordre de convergence. Nous comparerons
également les temps de calcul afin de converger vers la méthode la plus précise, permet-
tant les meilleures performances en terme de temps de calcul. Il est important de noter que
dans la littérature, il n’est pas commun de trouver une analyse spectrale bi-dimensionnelle,
car à la différence de l’étude mono-dimensionnelle [88], l’étude bi-dimensionnelle fait in-
tervenir un degré de liberté supplémentaire de la topologie du maillage, dont l’influence est
également prise en compte. En particulier, dans cette thèse nous effectuerons pour l’analyse
bi-dimensionnelle, une analyse de Fourier entièrement discrète en considérant deux config-
urations de maillage différentes et différents angles d’onde.
Nos conclusions finales concernant l’analyse de von Neumann et les tests numériques de
convergence suggèrent que les éléments de Cubature combinés avec la stabilisation SSPRK
et CIP ou OSS sont les combinaisons les plus prometteuses pour la résolution d’équations
hyperboliques.

Ensuite dans le chapitre 6, nous proposerons une autre analyse comparative sur des cas
tests faisant intervenir plusieurs complexités en hydrodynamique côtière, en résolvant les
équations bi-dimensionnelles Shallow Water. Suite aux travaux effectués précedemment sur
solutions lisses, nous évaluerons nos méthodes/approches numériques en présence de so-
lutions non lisses et de topographies non constantes. En particulier, nous utiliserons entre
autre une topographie discontinue, puis une solution initiale discontinue. D’une part nous
étudierons le caractère dit well-balanced de la discrétisation en présence de bathymétrie (ie
la capacité à préserver le lac au repos). Ensuite, pour améliorer la stabilité de la solution,
nous ajouterons un terme dit à capture de choc. Une vérification de l’ordre de convergence
sur solutions lisses, et une comparaison erreur/temps CPU seront aussi réalisées pour ap-
puyer la pertinence de ces méthodes. Pour tout ce chapitre, nous choisirons de comparer les
meilleures approches numériques Galerkin continues mises en avant dans les analyses précé-
dentes. En particulier le CIP et l’OSS, combinées avec deux choix différents d’éléments finis
continus: les polynômes lagrangiens sur les nœuds équidistants et les polynômes lagrangiens
sur les nœuds de Cubature utilisant les schémas SSPRK d’intégration temporelle.
La principale contribution de cette comparaison sera de proposer une méthode entièrement
explicite, sans matrice de masse, d’ordre élevé, well-balanced et à capture de choc pour ré-
soudre les équations Shallow Water. Les résultats sont très prometteurs pour les applications
d’ingénierie côtière dans les codes opérationnels. En effet, nous proposerons en particulier
par l’utilisation des éléments de Cubature, une méthode numérique robuste en hydrody-
namique côtière, permettant d’améliorer considérablement le temps de calcul comparé aux
méthodes classiques.

Pour finir, dans le dernier chapitre 7 du manuscrit nous proposerons une mise en évidence
de l’intérêt d’utiliser le mass-lumping dans un contexte opérationnel en soulignant le gain de
temps de calcul. Les cas tests seront exécutés en utilisant une formulation Galerkin dis-
continue (pour une question d’implémentation), well-balanced, avec la même technique de
capture de choc et les mêmes méthodes SSPRK que précedement, pour les éléments Basic et
Cubature. Nous commencerons avec deux cas tests sphériques proposés dans [5]. Puis, nous
effectuerons un benchmark de submersion de la Région Nouvelle-Aquitaine. Le premier cas
test sphérique est un état stable (équilibre geostrophysique) qui n’utilise pas de technique à
capture de choc. Pour ce cas test, nous réaliserons des tests de convergence et comparerons
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les discrétisations numériques en termes de précision et de temps de calcul. Le second cas
test sphérique correspond à l’ajout d’une perturbation qui parcourt le globe. La complexité
de ce cas test est qu’il crée des champs de vorticité élevés pendant la simulation. Nous com-
parerons alors les champs de vorticité suivant la discrétisation spatiale choisie (avec ou sans
mass-lumping). Nous terminerons par un cas test réel qui modélise la submersion provoquée
par la tempête Xynthia (2010) aux "Boucholeurs" (Nouvelle-Aquitaine). La complexité du
cas test est qu’il utilise des termes de viscosité entropique et doit aussi faire face au déplace-
ment d’une interface sec/mouillé. Toutes les simulations sont réalisées dans le code Aerosol
via la Plateforme Uhaina. Encore une fois, nous constaterons le gain en CPU notamment
dans l’inversion de la matrice de masse. De plus, ces derniers tests mettront aussi en lumière
différentes pistes d’améliorations dans le code Aerosol.

https://gitlab.inria.fr/uhaina1/uhaina
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Chapter 1

Introduction

Chapter Abstract
Due to the effect of climate change during this century, the rising sea levels
and storms are threatening more and more urban areas near the coast. Urban
areas in the vicinity of the sea, of the ocean, as well as of rivers are exposed to
increasing submersion risks. To mitigate the consequences of these events and to
be better prepare to react, it is necessary to carry out risk assessment studies with
accuracy and resolution requirements beyond traditional methods: in particular,
one needs to take into account the relevant phenomena (such as wave effect),
the uncertainties affecting them, and have the possibility to flexibly describe
phenomena at different large and small spatial resolutions.

Outline
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis accomplishments and outline . . . . . . . . . . . . . . . . . . . 5

1.3.1 Scientific contributions . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Outline of the manuscript . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Context and motivation
Inhabited centers near the sea or rivers subject to flooding are exposed to the risk of

submersion. These risks are linked either to the rise in sea level during strong tides or
storms, or to catastrophic events such as tsunamis. Coastal management guidelines (e.g.
the DGPR2014 Report [45]) make it necessary to forecast risks that go beyond the most tra-
ditional methods of submersion modeling concerning: physical phenomena (e.g. effect of
waves), the required parameters (dynamics of submersion, current speeds), the taking into
account of uncertainties, the spatial resolution which can go as far as interactions with the
building and the structures.

For the French territory, we have high resolution MNT and MNE type data (digital terrain
and elevation model), or maps of large urban agglomerations via platforms such as Open-
StreetMap (www.openstreetmap.org, for France data also available on www.data.gouv.fr) or
as the OpenData portal for Bordeaux Métropole (data.bordeaux-metropole.fr). While these
data allow city-scale forecasts [77], the necessary resolutions lead to computation times so
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long that they cannot be used in an operational setting.

The availability of codes with very high performance and precision is essential. This
project follows on from the research carried out by the CARDAMOM1 team at the IN-
RIA Bordeaux Sud-Ouest center. In particular, the thesis will ultimately contribute to the
UHAINA project2 an open source operational platform for the simulation of the impact
of waves at the coast. UHAINA is a medium / long term action undertaken by the CAR-
DAMOM team, the EPOC laboratory (UMR 5805, Dr. P. Bonneton), CAGIRE team (V.
Perrier), the Institute of Mathematics of Bordeaux (UMR 5251, Dr. D. Lannes) and the
Montpellier Institute Alexander Grothendieck (UMR 5149, Dr. F. Marche). The objective of
this action is to provide French actors involved in coastal risk assessment with a forecasting
tool using the most modern digital models and techniques, as well as a high performance
implementation based on libraries developed at INRIA as Aerosol3 for the hydrodynamic
core, and PaMPA4 and SCOTCH5 for parallelism.

In this context, this thesis focuses on upstream research issues: the study of improved
approaches to coastal hydrodynamics. The objective of the thesis will be to obtain an effi-
cient/optimal model from the point of view of precision (for a given number of computational
unknowns), robustness and speed of computation. The implementation in the hydrodynamic
core of UHAINA will make it possible to benefit from the performance of this kernel and to
guarantee, once these techniques are mature enough, a transfer to the users of this platform.
I will benefit from the interaction of the CARDAMOM team with BRGM, also involved in
the co-financing project submitted to the Nouvelle Aquitaine Region.

1.2 State of the art
Nowadays, we have high-resolution data and maps of big urban agglomerations 1.1. If

these data allow forecasts on an urban scale, the resulting resolutions lead to significant com-
puting times when considering their application in an operational context. This makes the
availability of high order, adaptive, geometrically flexible, massively parallel codes an es-
sential building block for applications. To model submersion and inundation, we can use the
so-called Shallow Water equations: a set of depth averaged balance law, with an underlying
hyperbolic character. These equations allow to account with surprising accuracy for wave
breaking, and wave runup, and have some potential to model wave propagation, especially
for long waves (as e.g. storm or tsunami waves). This model finds also applications in hy-
drology, and meteorology (see [31, 119, 120] and references therein).
To resolve them with high accuracy, we need to design a solver allowing to handle propa-
gation with great accuracy, to deal with discontinuous features, to manage inundation and
flooding in a complex environment with as much geometrical flexibility as possible. The
aims of my work is to find a such solver capable of being sufficiently accurate and having a
good computation times.

1https://team.inria.fr/cardamom/
2https://gitlab.inria.fr/uhaina1/uhaina/-/wikis/home
3https://team.inria.fr/cardamom/aerosol/
4https://project.inria.fr/pampa/
5http://www.labri.fr/perso/pelegrin/scotch/
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FIGURE 1.1: Modeling of submersion - Nouvelle-Aquitaine: Arcachon and
La-Teste-de-Buch [92]

The coastal hydrodynamic is not the only application of fluid dynamics problem. More
generally, in aerospace several engineering application can be mentioned: gas dynamics,
structure/fluid interaction, etc. A fundamental characteristic of nonlinear conservation laws
is that discontinuities can appear during simulation even from smooth initial data. The main
issue is to deal with these discontinuities both mathematically and computationally. Histor-
ically, method used to discretize hyperbolic system are finite difference and finite volume
methods [78], because they can describe shocks relatively well. However, even is the low
order of accuracy is intuitive to create, the extension to higher order is not straightforward.
Galerkin methods have also been considered in order to achieve high order spatial conver-
gence [61, 35]. It is well known that the standard Galerkin finite element method is in gen-
eral not well suited for the solution of advection and advection–diffusion problems. There
are two possibilities to enhance stability while keeping accuracy. The first one is the Discon-
tinuous Galerkin [36] formulation, which considers discontinuous approximated solutions.
The second one uses the Continuous Galerkin formulation, adding an appropriately designed
stabilization term.

One of the most popular stabilization techniques is the streamline-upwind Petrov-Galerkin
(SUPG), introduced in [65] (see also [67, 21]). The formulation is strongly consistent in the
sense that the stabilization contains the full residual and vanishes when applied to exact so-
lutions of the PDE. In this work we will also consider symmetric stabilization techniques
which are somewhat simpler to implement compared to residual based stabilization meth-
ods. The first alternative, is the continuous interior penalty (CIP) stabilization used in [25,
27, 23]. This method has been developed by E. Burman and P. Hansbo in [24], but it can
be seen as a variation of the method originally proposed by Douglas and Dupont [46]. The
method stabilizes the Galerkin formulation by adding a least-square term proportional to the
jump of the gradient of the derivatives of the solution across the cell interfaces. The CIP
introduces high order viscosity to the formulation, allowing the solution to tend to the van-
ishing viscosity limit. This term is computed on the solution at the previous time step, so
it does not affect the structure of the LHS matrix. The second alternative is the Orthogonal
Subscale Stabilization (OSS) approach. Originally introduced as Pressure Gradient Projec-
tion (PGP) in [38] for Stokes equations, it was extended to the OSS method in [37, 8] for
different problems with numerical instabilities, such as convection–diffusion–reaction prob-
lems. The method stabilizes the Galerkin formulation by penalizing gradient fluctuations.
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Time integration also plays a major role. The methods used to achieve high order tem-
poral convergence in this work are the general Runge-Kutta ones (RK), as well as Strong
Stability Preserving Runge-Kutta introduced in [117] (SSPRK). Numerous SSPRK variant
exist [117, 118, 112, 56, 30], we will compare some of them numerically in order to select
the most stable one. These explicit methods will be also compared to the Deferred Correc-
tion methods (DeC), which were originally introduced in [47] as explicit solvers of ODEs,
but soon implicit [90] or positivity preserving [100] versions and extensions to PDE solvers
[2] have appeared. In [2, 104, 107] the method is also used to avoid the inversion of the
mass matrix, applying a mass lumping and adding correction iterations to regain the order of
convergence. This is only achievable when the lumped matrix have only positive values on
its diagonal. The use of Bernstein polynomials is recommended in [2], but other choices are
also possible as e.g. Cubature elements under some conditions.

This allows to introduce the last fundamental aspect of finite element methods : the poly-
nomial approximation. In practice, in this thesis, triangular elements are used to handle
complex geometries (in 2D). The classical approach consists in defining degree of freedom
place uniformly in the triangle and define corresponding basis functions (which are in gen-
eral Lagrange basis functions). Following the FEM discretization procedure, the resolution
of a hyperbolic system consists in solving a system by inverting a matrix called the mass
matrix. The cpu-time of this operation cannot be neglected. A way to reduce this cost is
to resort to the mass-lumping principle, possibly without affecting the accuracy. Among the
possible solutions, we can cite Cubature elements, introduced by G. Cohen and P. Joly in
2001 [39] which are an extension of Lagrange polynomials with the goal of optimizing the
underlying quadrature formulas error (all the details of such elements can be found in [39,
55, 69]). Similar techniques have been used to minimize the interpolation error using Fekete
and Gauss–Lobatto points [70, 115, 122]. However, Gauss–Lobatto quadrature points are
only known for tensor-product domains such as the line and square, making it unclear how to
extend a Gauss–Lobatto numerical method to non-tensor-product domains like the triangle.
Since Fekete points are known to be the Gauss–Lobatto points on the line [50] and in the
d-dimensional cube [14], Fekete points are one possible generalization of Gauss–Lobatto
points for the triangle. The objective of these polynomials is to use the points of the La-
grangian interpolation of the polynomials as quadrature points. Another type of basis func-
tion will be also used in this work: Bernstein polynomial functions. They verify additional
properties besides the one for Lagrangian points. They form a partition of unity, the basis
functions are non-negative in any point of the triangle, and, hence, their integrals are positive.
These properties lead also to the fact that the value at each point is a convex combination of
the coefficients of the polynomials, hence, it is easy to bound the minimum and maximum
value of the function by the minimum and maximum of the coefficients. This has been used
in different techniques to preserve positivity of the solution [7, 75].

In this PhD, I will describe, analyze and optimize these methods which solve hyperbolic
problems. The analysis will be performed in the Fourier way called the Fourier or the Spec-
tral analysis. Several works show the method applied to one specific case (DG, CG and
CIP, etc) [116, 115] but none of those compare in a same time numerical discretizations,
time integration methods and stabilization techniques. Moreover, in the fully discrete study,
we will optimize scheme parameters defined in stabilization techniques. Another point is
that all results are also used in numerical test using linear and non-linear systems to validate
our study. We will also compare the time of computation in order to converge to the most



1.3. Thesis accomplishments and outline 5

accurate method, allow performance in terms of time of computation.

1.3 Thesis accomplishments and outline

1.3.1 Scientific contributions
The thesis has contributed to different scientific projects. In particular, by the imple-

mentation of high order methods raised in an object-oriented finite element library used in
INRIA teams CARDAMOM and CAGIRE, as well as at BRGM6. The validation of these
methods is done on academics cases from Aerosol as well as large scale cases (example of a
spherical case, comparison of the results obtained with the work of L. Arpaia et al. [5]) and
of real interest for the Nouvelle Aquitaine region (example of Boucholeurs - 17340) in close
collaboration with the BRGM d’Orléans via the Uhaina platform.

In this context, I worked in particular with Benjamin Lux, Mario Ricchiuto, Héloïse
Beaugendre and Vincent Perrier in the implementation of the continuous Galerkin formu-
lation in Aerosol. As well as the implementation of Cubature finite element discretization
and stabilization method. The aims of this work are related to the optimization of the time
of computation. The first aspect is to compare for a same test case, using a continuous or
discontinuous Galerkin approach, different spatial discretizations in terms of accuracy and
time of computation. The first spatial discretization used high order quadrature formula to
compute the entire matricial system which is not straight to solve. The second discretization
is based on Cubature quadrature points, and allows to obtain a matricial system "easy to
solve" in the sense that it is mass matrix inversion free. The second aspect of this work is the
impletementation of a stabilized Continuous Galerkin method in Aerosol. This method al-
lows in particular to reduce considerably the number of degree of freedom and so the length
of the system to solve. In this direction, and combined with the use of Cubature elements,
we expect to optimize the time of computation in Aerosol.

Other scientific contributions have been made, notably in collaboration with the Uni-
versity of Zurich concerning the mathematical analysis of the methods used. A first mono-
dimensional analysis work has been published in the Journal of Scientific Computing [88],
and the extension for the two-dimensional case will soon be submitted for this same journal.
In the context of these two publications, numerous spectral analysis results are available as
open source in [87, 86]. The main contributions of this work are:
1/ Study continuous finite element discretizations for one and two-dimensional hyperbolic
partial differential equations.
2/ Provide a multidimensional fully discrete spectral analysis, which is used to suggest opti-
mal values of the CFL number and of the stabilization parameters involved in different types
of stabilization operators.
3/ Compare three different choices for the continuous finite element space.
4/ Compare different time stepping strategies, namely Runge-Kutta (RK), strong stability
preserving RK (SSPRK) and deferred correction time integration methods.
5/ To understand the effects of these choices, we compare all the different combinations in

6Bureau de recherches géologiques et minières https://www.brgm.fr/fr

https://gitlab.inria.fr/uhaina1/uhaina
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terms of accuracy and stability. The results are verified numerically both on linear and non-
linear problems, and error-CPU time curves are provided and compared.

In the continuity of this work, we also proposed an extension of these numerical methods
applied to coastal hydrodynamic. I.e. taking into account the topography, and shock forma-
tion during the wave propagation. This last work is also in preparation as a third publication.

Still in the context of these three publications, I developed from scratch a full Finite El-
ement code that I called Parasol, as well as a graphic interface able to reproduce the mono-
dimensional spectral analysis using all combination of scheme. This code is available for use
by the CARDAMOM team in order to run easily spectral analysis and academic numerical
test.

To summarize, this thesis has contributed scientifically through three different publica-
tions:

• Spectral analysis of continuous FEM for hyperbolic PDEs: influence of approxi-
mation, stabilization, and time-stepping. published in the Journal of Scientific Com-
puting [88] (see chapter 4),

• The two dimensional extension, Spectral analysis of high order continuous FEM for
hyperbolic PDEs on triangular meshes: influence of approximation, stabilization,
and time-stepping, which is in preparation and will be submit very soon in the same
journal (see chapter 5),

• A extension to Shallow Water equations and applications : A high order mass-matrix
free, stabilized and well-balanced continuous FEM for Shallow water equations,
which is also in preparation and will be submit soon (see chapter 6).

Additionally, through two different talks:

• A high-order stabilized finite element method to solve advection equation, during
a research visit at the Institute of Mathematics, Univ. of Zurich, in January 2020.

• Fourier analysis of continuous FEM for hyperbolic PDEs: influence of approxi-
mation and stabilization terms, during the ICOSAHOM conference, in July 2021.

1.3.2 Outline of the manuscript
The manuscript is organized as follows: this chapter introduce the context and the motiva-

tion of the study, a synthesis of what has been done in the research areas of our studies (state
of the art) and thesis accomplishment. In the second and the third chapter, we introduce gov-
erning equations (see chapter 2) and numerical methods used in this work (see chapter 3).
The two next chapters are the study of the linear stability of scalar hyperbolic equations
and of several stabilized variants using Fourier’s analysis for the mono-dimensional case
(see chapter 4) and the two-dimensional case (see chapter 5). We aim at characterizing the
schemes both in terms of their stability range and their accuracy in the fully discrete case, for
different choices of the stabilization strategy and of the time stepping. For these both chap-
ters, we then perform numerical tests to illustrate our results and conclude about the most
efficient numerical scheme. To finish, the sixth and the seventh chapter present a compari-
son of our numerical methods in a realistic context. We propose in particular a continuous
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Galerkin well-balanced and shock capturing formulation in chapter 6. And then, we show the
benefit of using mass-lumping in the discontinuous Galerkin context in chapter 7.We finally
conclude by a synthesis of the work done during the PhD, the improvements and scientific
contributions, and finally perspectives in chapter 8.
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Chapter 2

Governing equations

Chapter Abstract
In this chapter, we introduce some generalities concerning the partial differen-
tial equations used in this work, and in particular hyperbolic equations through
several examples. The particularity of these equations is that they evolve dis-
continuous solutions in time and in space, even for smooth initial and boundary
data. We will mainly follow [113, 79].

Outline
2.1 Introduction to hyperbolic system . . . . . . . . . . . . . . . . . . . . 9

2.2 Hyperbolic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Linear and non linear advection equations . . . . . . . . . . . . . 11

2.2.2 Burgers’ equations . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Euler’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Shallow Water equations . . . . . . . . . . . . . . . . . . . . . . 14

2.3 A notion of stability and stabilization methods . . . . . . . . . . . . . 14

2.3.1 Entropy condition . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Numerical stabilization . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction to hyperbolic system
There are three categories of partial differential equations:

â Elliptic equations, as for example the Poisson equation:

−∆u = f

where u(x) is the unknown, x ∈ Ω ⊂ Rn and f is given.

â Parabolic equations, which often model transient evolution irreversible phenomena
associated with diffusion processes. The heat equation is a prototype:

∂u
∂t
− ∆u = f

where u(x, t) is the unknown, x ∈ Ω ⊂ Rn, t > 0, and f is given.
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â Hyperbolic equations which model time dependent transport phenomena as for exam-
ple wave propagation. We identify two prototypes for this class of PDE:

– The advection equation
∂u
∂t

+ c
∂u
∂x

= 0

where u(x, t) is the unknown, x ∈ Ω ⊂ Rn, t > 0.

– The wave equation
∂2u
∂2t
− ∆u = f

where u(x, t) is the unknown, x ∈ Ω ⊂ Rn, t > 0 and f is given.

In this manuscript, we are interested on hyperbolic balance equations. Hyperbolic balance
laws appear in the description of many physical processes. Indeed considering a domain
Ω ∈ Rn and a quantity of interest U : a pressure, a concentration, or a density for example,
we can describe the evolution of U in time by: The temporal rate of change of U in any fixed
sub-domain ω ⊂ Ω is equal to the total amount of U produced or destroyed inside ω and
the flux of U across the boundary ∂ω [113]. In other word, it can be defined mathematically
by eq. (2.1)

d
dt

∫
w

Udx = −
∫

∂ω
f · ndσ(x)︸ ︷︷ ︸
flux

+
∫

w
Sdx︸ ︷︷ ︸

source

(2.1)

where n is the unit outward normal, f the flux and S the source term. To obtain the hyper-
bolic equation define above, we use the integration by part

eq. (2.1) ⇔ d
dt

∫
w

Udx +
∫

ω
∇ · f · νdx =

∫
w

Sdx (2.2)

then, using an infinitesimal ω, we obtain the balanced law

Ut +∇ · f = S ∀(x, t) ∈ (Ω, R+) (2.3)

The system 2.3 is referred as conservation laws when S = 0, i.e. when the change of U
comes only from the quantity entering and leaving the domain of interest. For example, the
scalar transport equation can be defined as follow: U = U ∈ R a density of car in a road
traffic, a(x, t) ∈ R2 a velocity field at all points on the road. The flux in this case is f = aU.
And so, the corresponding conservation law 2.3 takes the form

Ut +∇ · (a(x, t)U) = 0 (2.4)

Considering a space of dimension d, f = (F1, · · · , Fd), the hyperbolicity definition come
from the interpretation of the Jacobian of the flux Jd(U) defined as

Jd(U) := ∂U fd(U) =

(
∂Fdi
∂Uj

(U)

)
i,j=1,··· ,D

, ∀d = 1, · · · , D. (2.5)
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The system is called hyperbolic if for any U in the state space and any w = (ω1, · · · , ωD) ∈
Rd, the matrix J(U, w) defined by

J(U, w) :=
D

∑
d=1

ωd Jd(U) (2.6)

has S real eigenvalues and S corresponding linearly independent eigenvectors. If the eigen-
values are all distinct, we call the system strictly hyperbolic.

2.2 Hyperbolic systems
In this section, we briefly introduce some hyperbolic systems.

2.2.1 Linear and non linear advection equations
The classical linear advection equation reads

ut + a · ∇u = 0, u ∈ R, a ∈ R2 (2.7)

with u the solution which correspond to an entity (a density for example). To understand
properties of this equation, we consider the mono-dimensional Cauchy problem: find u :
R+ ×R −→ R such as{

∂tu(t, x) + a∂xu(t, x) = 0 with a a velocity field ∈ R

u(0, x) = u0(x) and u0 the initial data (2.8)

Depending on the definition of a, the solution of the problem can take different form. If a is
constant, it exists a unique solution which is uex(t, x) = u0(x− at). We call Characteristic
curves of ∂tu(t, x) + a∂xu(t, x) = 0 solutions of{

X′(t) = a
X(0) = x0

(2.9)

i.e. if a is constant, characteristic curves are describe by X(t) = x0 + at.
NB: it is easy to prove that the solution uex is constant along any characteristic curve (see
fig. 2.1).

In the linear advection case, characteristic curves are parallel lines of slope a. We now
look at the non-linear conservation law:{

∂tu(t, x) + ∂x f (u(t, x)) = 0 with f = a(u) the numerical flux ∈ R

u(0, x) = u0(x) and u0 the initial data

Equivalently, a(u) = J(u) in eq. (2.6), and we can mention two different types of fluxes: if
a(u)↗when u↗ (i.e. the flux f is convex), the characteristics form a bundle of converging
lines and we call this effect a shock, and then if a(u) ↘ if u ↗ (i.e. the flux f is concave),
the characteristics form a bundle of divergent lines and we call this effect a rarefaction.
These two different fluxes are reported in fig. 2.2.
To define a solution of this problem, we have to solve the Riemann problem, by using the



12 Chapter 2. Governing equations

FIGURE 2.1: Solution u at time t = 0 in blue and t = T in green at
representative characteristic curve at X(0) = x1 and X(0) = x2.

FIGURE 2.2: Rarefaction wave at left and shock at right.

Rankine-Hugoniot condition [124, 79]. This condition respects the property of conservation.

2.2.2 Burgers’ equations
We briefly introduce another example of nonlinear transport equation called Burger’s

equation:
ut + div( f (u)) = 0 ∀(x, t) ∈ (Ω, R+) (2.10)

where f (u) is a nonlinear function of u such as f ′′(u) > 0 ∀u i.e. f is a convex function, or
f ′′(u) < 0 ∀u i.e. f is a concave function.
A example and probably the most use Burgers’ equation that we will use in our numerical
tests is

ut +∇ ·
u2

2
= 0 (2.11)

The Buger’s equation 2.11 can be written in the same form as the advection velocity with
a = a(u) = u. The corresponding characteristics are

x′(t) = u(x(t), t). (2.12)

For convex initial data, even smooth, a shock appears since characteristics cross (see fig. 2.2)
in a given time. It can be shown that the shock appears at Ts =

−1
minu′0(x) . We can note that



2.2. Hyperbolic systems 13

for concave initial data, a rarefaction phenomenon appears.

2.2.3 Euler’s equations
The Euler equations are a system of conservation laws governing the dynamics of a

compressible fluid. They can be written as follows :

â Let ρ be the density of a fluid (in kg · m−3). The conservation of mass is reflected
locally by the so-called continuity equation:

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.13)

Where ~v denotes the Eulerian velocity of a fluid particle (m · s−1).

â The conservation of momentum is described by:

∂(ρ~v)
∂t

+∇ · (ρ~v⊗~v) = −∇p + F (2.14)

Where p denotes the hydrostatic pressure (Pa) and F the external forces exerted in the
fluid.

â And the conservation of total energy is characterized by

∂(ρE)
∂t

+∇ · (ρE~v) = −∇ · (p~v) + F ·~v (2.15)

Where E denotes the total energy per unit mass (J · kg−1). It is expressed as a function
of the internal energy per unit of mass e: E = e + 1

2 ν. Moreover E and p the pressure
are coupled by p = (γ− 1)(ρE− 1

2 ρν2).

This system with three equations is called the Navier-Stokes system. It can be also read as ρ
ρ~v
ρE


t

+∇ ·

 ρ~v
ρ~v⊗~v + pId
ρE~v +~vpId

 =

 0
F

F ·~v

 (2.16)

with Id the d× d identity matrix.

However, these equations include the effects of fluid viscosity in F and the resulting flux
function depends not only on the state variables but also on their gradients, so the equations
are not of the form 2.3 and are not hyperbolic.
Euler’s equation comes from Navier-Stokes equations considering viscous effects known
(and equal to zero). They are used to defining gas dynamics. Euler’s equations in the con-
servative form are given by ρ

ρ~v
ρE


t

+∇ ·

 ρ~v
ρ~v⊗~v + pId
ρE~v +~vpId

 =

0
0
0

 (2.17)
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2.2.4 Shallow Water equations
In the case of tsunamis and for coastal hydrodynamic models, it is considered that the

wavelength of the waves is very large compared to the depth (λ� d). Using this hypothesis,
we can define Shallow Water equations also called Saint-Venant equations, which describe
the propagation of waves. They can be derived from the incompressible Navier Stokes equa-
tions 2.16 (neglecting the vertical acceleration) (see [53] and references therein).
In Cartesian coordinates, neglecting the effects of bottom friction, the Shallow Water equa-
tions read  h

hu
hv


t

+

 hu
ρhu2 + 1

2 gh2

huv


x

+

 hv
huv

hv2 + 1
2 gh2


y

=

0
0
0

 (2.18)

where ν = (u, v)T now represents a depth averaged horizontal flow. And where g is ac-
celeration due to gravity and ρ is the fluid density. The first equation is derived from mass
conservation eq. (2.13), the second two from momentum conservation eq. (2.14).

FIGURE 2.3: Definition of parameters.

2.3 A notion of stability and stabilization methods

2.3.1 Entropy condition
Following the approach of the entropy condition describe in [79, sec. 3.8], we define an

entropy function η(u). The idea of the entropy condition is that the entropy function η(u)
respects a conservation law for smooth solutions, and becomes an inequality for discontin-
uous solutions. To illustrate this condition, let us define η(u), which satisfies the following
conservation law:

ηt(u) +∇ · φ(u) = 0 ∀(x, t) ∈ (Ω, R+) (2.19)

with φ(u) an entropy flux. By taking the one-dimensional cartesian space, for smooth solu-
tion u, the relation eq. (2.19) is equivalent to

η′(u)∂tu + φ′(u)∂xu = 0 ∀(x, t) ∈ (Ω, R+) (2.20)
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Considering now the initial transport equation ut + f (u)x = 0 ⇔ ut + f ′(u)∂xu = 0 and
multiplying the relation by η′(u), we obtain

η′(u)∂tu + η′(u) f ′(u)∂xu = 0 ⇔ φ′(u)∂xu = η′(u) f ′(u)∂xu (2.21)

⇒ φ′(u) = η′(u) f ′(u) (2.22)

Now, the eq. (2.22) reads ∇φ(u) = f ′(u)∇η(u) (this system of m equations for the two
variables η and φ may have no solution if m > 2). We also imposed the entropy function
being convex, i.e. η′′(u) > 0, for reasons that will be seen below.

As we said, the entropy η(u) is conserved for smooth solutions. However, for discontin-
uous solutions, this property is not valid. In order to select the physically relevant solution,
we introduce the so–called vanishing viscosity approximations. We explore the entropy be-
haviour for the vanishing viscosity weak solution. Considering a small ε > 0, the viscous
equation is

∂tu + ∂x f (u) = ε∂xxu (2.23)

Multiplying eq. (2.23) by η′(u), we obtain

η′(u)∂tu + η′(u) f ′(u)∂xu = εη′(u)∂xxu (2.24)

⇔ ηt(u) + φx(u) = εη′(u)∂xxu (2.25)

⇔ ηt(u) + φx(u) = ε∂x(η
′(u)∂xu)− εη′′(u)∂xxu2 (2.26)

To simplify, we denote by ηt = ∂tη and ux = ∂xu. Then, integrating this equation over
Ω× T = [x1, x2]× [t1, t2] gives∫ t2

t1

∫ x2

x1

ηt(u) + φx(u)dxdt = ε
∫ t2

t1

[(η′(u(x2, t))ux(x2, t))− (η′(u(x1, t))ux(x1, t))]dt︸ ︷︷ ︸
−−→

ε→0
0

(2.27)

−
∫ t2

t1

∫ x2

x1

εη′′(u)u2
xdxdt︸ ︷︷ ︸

≥ 0

(2.28)

The last inequality is obtained knowing that ε > 0, u2
x > 0 and η′′ > 0. We finally obtain

the following inequality: the vanishing viscosity weak solution satisfies∫ t2

t1

∫ x2

x1

ηt(u) + φx(u)dxdt ≤ 0 (2.29)

Consequently, the total integral of η is not necessarily conserved, but can only decrease.
In gas dynamics, there is a physical quantity called entropy, which is known to be constant
along particle paths in a reversible process. However, an irreversible process increases the
entropy of the system and so do not satisfy the conservation of the entropy.
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Theorem 2.3.1 (The entropy condition) The function u(x, t) is the entropy solution of eq. (2.3)
if, for all convex entropy functions and corresponding entropy fluxes, the inequality

η(u)t + φ(u)x ≤ 0 (2.30)

is satisfied in the weak sense.

This property is a necessary condition of stability of numerical methods. As an example, for
the linear advection equation 2.7, a possible entropy pair (η, φ) is given by{

η(u) = u2/2
φ(u) = au2/2

(2.31)

And η(u) = u2/2 correspond to the kinetic energy of the system.

2.3.2 Numerical stabilization
Embedding stability in the discrete equations is very important in both smooth regions

and in proximity of discontinuities. We can find several approaches in the literature in differ-
ent settings as finite differences, finite volumes and discontinuous Galerkin methods which
are based on the resolution of the Riemann problem. They are historically developed from
one-dimensional flows (see [12, 52, 57, 97] and references therein). Although some exam-
ples of multidimensional formulations exist [99, 97, 98, 130, 44, 63, 96].

Other examples existing in literature involve stabilized finite element techniques (see [59,
68, 66, 64, 19, 20, 21] and references therein) and residual distribution schemes (see [15, 84,
110, 43, 3, 4] and references therein). In this manuscript, we mainly follow the continuous
stabilized finite element approach. In particular, in the next section 3.2, we introduce differ-
ent stabilization terms, that we then explore and compare by some numerical analysis and
tests. As an example, in figure 2.4, we model a lake at rest with a non-constant topography
(in brown). The water elevation is represented with the scale on the right, and the time of the
simulation is t f = 1s. We can observe that if we do not use a stabilized technique, we obtain
a smeared water elevation. Some oscillations appear during the simulation.

FIGURE 2.4: Lake at rest simulation [109]. Representation of the water
elevation at t f = 1s. At left: using stabilization technique, at right: without

stabilization technique.

Another issue is the stabilization in correspondence of shocks. In this case too several
approaches exist. In the context of continuous finite elements, this requires in general the
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definition of a first order regularization allowing to provide an oscillation free solution. Ex-
ample of approaches to achieve this are given in (see [58, 3, 72, 73] and references therein).
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Chapter 3

Numerical methods

Chapter Abstract
In this chapter, we describe the Finite Element Method methods used in this
manuscript to solve hyperbolic systems. We firstly introduce the Galerkin method
in section 3.1. Then, stabilization techniques in section 3.2, section 3.3 and
section 3.4 used to dump instabilities and smooth discontinuities. And finally,
we introduce different spatial discretizations in section 3.5 and time integration
techniques in section 3.6 which have all their advantages and disadvantages.
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3.1 The Finite Element Methods
We are interested in the approximation of solutions of the following conservation law

∂tu(x, t) +∇ · f (u(x, t)) = 0 x ∈ Ω ⊂ R, t ∈ R+, (3.1)

on a domain Ω of finite dimension. The resulting finite element space is built with ele-
mentary structures Ke such as triangles, rectangles or polygons. The finite element method
or Galerkin method uses a piecewise continuous polynomial approximation (continuous in
each Ke). We denote by Ωh =

⋃
e Ke, and we also introduce the set of internal element

boundaries (cell faces in 2 and 3 dimensional domains, cell nodes in 1 dimensional one) by
Fh. h is the characteristic mesh size of Ωh, as for example the largest element diameter.

3.1.1 The Continuous Galerkin approach
From here on, we will simplify the notation, focusing on the scalar equation case D = 1,

but the description can be easily generalized. When necessary, we will explicitely recall
some details related to this generalization.
We introduce H1(Ω) the Hilbert space defined by

H1(Ω) := {u ∈ L2(Ω); ∃v ∈ L2(Ω) such as ∀x, y ∈ Ω, u(y) = u(x) +
∫ y

x
v(t)dt}

(3.2)
Then H1

0(Ω) a closed subset of H1(Ω). Considering V = H1
0(Ω), the discrete solution is

sought in a continuous finite element space Vp
h = {vh ∈ C0(Ωh) : vh|K ∈ Pp(K) ∀K ∈

Ωh} a subset of V of finite dimension and made of linear functions. Considering a finite
element K ∈ Ωh, we introduce the notion of degree of freedom (DOF) (see fig. 3.1) which
are nodes in elements. By abuse of notation, we write (j)j∈K the set of DOF in K.

FIGURE 3.1: Finite elements with 3 DOF at left, 6 DOF on the middle and 10
at right.

We are interested in particular nodal finite elements, and we will denote by ϕj the basis
functions associated to the degree of freedom j, so that Vp

h = span
{

ϕj
}

j∈Ωh
and we can

write uh(x) = ∑j∈Ωh
uj ϕj(x), where, with an abuse of notation, with j ∈ Ωh we mean the

set of degrees of freedom with support in Ωh. With a similar meaning, we will also use the
notation j ∈ K to mean the degrees of freedom with support on the cell K.

The variational formulation of the unstabilized approximation of eq. (3.1) reads: find
uh ∈ Vp

h such that for any vh ∈ Wh ⊂ L2(Ωh) := {v : Ωh → R :
∫

Ωh
|v|2 < ∞}. The

choice of Wh will be based on Vh, but it might take different forms for different stabilizations.∫
Ω

vh∂tuhdx−
∫

Ω
∂xvh f (uh) dx + [vh f (uh)]∂Ω = 0. (3.3)
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As already said, we will consider several stabilized variants of eq. (3.3) which can be all
written in the generic form: find uh ∈ Vp

h that satisfies∫
Ω

vh(∂tuh + ∂x f (uh))dx + S(vh, uh) = 0, ∀vh ∈ Vp
h (3.4)

having re-integrated by parts and used the continuity of the approximation, and the period-
icity of the boundary conditions to pass to the strong form of the PDE, and with S being a
bilinear operator defined on Vp

h ×Vp
h . Several different choices for S exist, and are discussed

in details in the following section 3.2.
The two-dimensional unstabilized CG variational formulation reads:∫

Ωh

vh∂tuhdx−
∫

Ωh

∇ · vh f (uh) dx +
∫

∂Ωh

vh f (uh) · ndΓ = 0, (3.5)

where n is the normal to the boundary facing outward the domain. This formulation can be
also re-integrated by parts, and using the continuity of the solution, we obtain∫

Ωh

vh∂tuhdx +
∫

Ωh

vh∇ · f (uh) dx +
∫

∂Ωh

vh(gn − f (uh) · n)dΓ = 0, (3.6)

with gn is the boundary flux.

NB: the general space of basis functions used in the finite element method is the set of
Lagrange polynomial functions. The particularity of these functions is that considering the
set degree of freedom (DOF) TK of K, and (ϕi)i∈TK the set of basis function relative to the
DOF i,

∀xj ∈ TK, ϕi(xj) =

{
1 if i = j,
0 else. (3.7)

A complete definition of this set will be given later.

3.1.2 The Discontinuous Galerkin approach
The Discontinuous Galerkin (DG) method comes from the Finite Element Method con-

sidering that the solution u is piecewise continuous in K ∈ Ωh but discontinuous over Ω. As
it is well known, DG method gives very satisfying results to solve hyperbolic equations. The
solution of system using DG methods will be useful in order to compare our results with the
stabilized CG methods. This will be mainly used in the chapter 7 for complex and realistic
cases.

The discrete solution is now sought in a discontinuous finite element space Vp
h = {vh ∈

C0(Ωh) : vh|K ∈ Pp(K), ∀K ∈ Ωh}. The solution u is piecewise continuous in K. Vp
h =

{vh ∈ C0(K) : vh|K ∈ Pp(K), ∀K ∈ Ωh}. The DG approximation reads: find uh ∈ Vp
h

such that for any vh ∈Wh ⊂ L2(Ωh) := {v : Ωh → R :
∫

Ωh
|v|2 < ∞}

∑
K∈Ωh

∫
K

vh∂tuhdx−
∫

K
∇ · vh f (uh) dx +

∫
∂K

vh f ∗(u+
h , u−h ) · ndΓ = 0, (3.8)

where n is the normal to the boundary facing outward of the domain and f ∗(u+
h , u−h ) the

numerical flux through element’s edges. An example of formulation for Euler equations is
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given in [60, sec 6.6]. A CFL condition is also given in [60, sec 4.8, 4.7]. For our study, we
use by default CFL = 1/(2p + 1), with p the degree of basis function space.
Numerical fluxes used for our studies are developed in section 3.4.

In practice, the DG method is used due to the locality of its approximation, which trans-
lates in a mass matrix which has a simple block diagonal structure. However, due to the
discontinuity of the solution, the DG method need a high number of DOF over the domain
and the system to solve require a high time of computation because of its size. For this rea-
son, we decide to reduce the number of DOF by using Continuous Galerkin (CG) method
(see fig. 3.2), add a stabilization term to treat/smooth discontinuities 3.2.

FIGURE 3.2: Discontinuous Galerkin configuration at left - Continuous
Galerkin confirguration at right.

3.1.3 Approximation error
In a general framework, we study the error ‖ uex − uh ‖ in H1(Ω), where uex is the

exact solution of eq. (3.1) and uh the approximated solution of eq. (3.5). As before, Ωh
denotes a tessellation of non-overlapping cells of Ω. We write the approximation error as:

∀x ∈ K, ‖ uex(x)− uh(x) ‖ . (3.9)

We control the approximation error by the interpolation error with x ∈ K

∀x ∈ K, ‖ uex(x)− uh(x) ‖ ≤‖ uex(x)− ∑
i∈TK

ϕi(x)ui ‖ (3.10)

where TK denotes the set of degree of freedoms in K, (ϕi)i∈TK the set of basis function of
Pp(K) and ui the approximated solution evaluated at the DOF i.

Then, knowing that Pp(K) is composed by Lagrange polynomial basis functions 3.7, we
can use the error estimation of Lagrange interpolation, we obtain the bound

∀x ∈ K, ‖ uex(x)− uh(x) ‖L2≤ hp+1C, C a constant. (3.11)

The proof of this inequality can be easely found in [48] for example. In conclusion, using
polynomial basis function in Pp(K) leads to an error approximation maximizes by hp+1

max C,
C ∈ R+.
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3.2 Stabilization techniques

3.2.1 Streamline-Upwind/Petrov-Galerkin - SUPG
The SUPG method was introduced in [65] (see also [67, 21] and references therein) and

is strongly consistent in the sense that it vanishes when replacing the discrete solution with
the exact one. It can be written as a Petrov-Galerkin method replacing vh in (3.3) with a test
function belonging to the space

Wh := {wh : wh = vh + τK∇u f (uh) · ∇vh; vh ∈ Vp
h }, (3.12)

or equivalently, using the notation eq. (2.6)

Wh := {wh : wh = vh + τK J(uh,∇vh); vh ∈ Vp
h }, (3.13)

with∇u f (uh) = Jd(uh) ∈ RD×D×2, D the dimensions of the system, τK denotes a positive
definite stabilization parameter with the dimensions of D × D that we will assume to be
constant for every element. Although other definitions are possible, here we will evaluate
this parameter as

τK = δhK(JK)
−1 (3.14)

where hK is the cell diameter, JK represents a reference norm of the flux Jacobian norm on
the element K and δ denotes a tunable stabilization parameter constant in space and time.
E.g. δ is chosen as 1/2 in [21]. In the scalar case, JK = ||∇u f (u)||K.

The final stabilized variational formulation of eq. (3.4) reads∫
Ω

vh∂tuh dx+
∫

Ω
vh∇· f (uh) dx+ ∑

K∈Ω

∫
K

(
∇u f (uh) · ∇vh

)
τK (∂tuh +∇ · f (uh)) dx︸ ︷︷ ︸

S(vh,uh)

= 0.

(3.15)
The main problem of this stabilization method is that it depends on the time derivative of

u and, hence, it does not maintain the structure of the mass matrix in most of the cases.
To characterize the accuracy of the method, we can use the consistency analysis discussed

e.g. in [3, sec. 3.1.1, sec. 3.2]. In particular, with a finite element polynomial approxima-
tion of degree p we can easily show that given a smooth exact solution ue(t, x), replacing
formally uh by the projection of ue on the finite element space, we can write

ε(ψh) :=
∣∣∣ ∫

Ω
ψh∂t(ue

h − ue) dx−
∫

Ω
∇ψh · (∇ f (ue

h)−∇ f (ue)) dx

+ ∑
K∈Ω

∑
l,m∈K

ψl − ψm

k + 1

∫
K

(
∇u f (uh) · ∇ϕi)τK (∂t(ue

h − ue) +∇ · ( f (ue
h)− f (ue))) dx

∣∣∣
≤ Chp+1,

(3.16)

with C a constant independent of h, for all functions ψ of class at least C1(Ω), of which
ψh denotes the finite element projection. A key point in this estimate is the strong consis-
tency of the method allowing to subtract its formal application to the exact solution (thus
subtracting zero), and obtaining the above expression featuring differences between the ex-
act solution/flux and its evaluation on the finite element space. Preserving this error estimate
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precludes the possibility of lumping the mass matrix, and in particular the entries associated
to the stabilization term. This makes the scheme relatively inefficient when using standard
explicit time stepping.

As a final note, for a linear flux eq. (3.1), and for exact integration with τK = τ, a
classical result is obtained for homogeneous boundary conditions and in the time continuous
case by testing with vh = uh + τ ∂tuh to obtain [21]

∫
Ωh

∂t

(
u2

h
2

+ τ2 (a · ∇uh)
2

2

)
+
∫

Ωh

a · ∇
(

u2
h

2
+ τ2 (∂tuh)

2

2

)
= −

∫
Ωh

τ(∂tuh + a · ∇uh)
2.

(3.17)

For periodic, or homogeneous boundary conditions this easily shows that the norm |||u|||2 :=∫
Ωh

u2
h

2
+ τ2 (a · ∇uh)

2

2
dx is non-increasing. The interested reader can refer to [21] for the

analysis of some (implicit) fully discrete schemes.

Note on the SUPG technique applied to non scalar system

The extension of the SUPG method to a non scalar problem is not obvious. Here we
describe the method used for the numerical simulation.
We define the following non scalar system of dimension D:{

∂tU +∇ · F (U) = S(U)
F = (F1, F2)

(3.18)

with U ∈ RD, F (U) ∈ R2×D and S(U) ∈ RD. Equation (3.18) can also be written in its
quasi-linear form

∂tU +∇UF (U) · ∇U = S(U), (3.19)

where ∇UF (Uh) ∈ RD×D×2 is the Jacobian of the flux F (Uh).
Following the definition of the SUPG method and [111, sec. 5] we define a positive defi-

nite stabilization matrix øK ∈ RD×Dconstant for every element. Although other definitions
are possible, here we will evaluate this parameter as in [111]

øK = δhK

(
∑

j∈SK

∣∣∇UF (ŪK) · nj
∣∣)−1

, (3.20)

with SK the set of vertices of K, and nj the outward normal of the edge opposite to the vertex
j ∈ SK. hK is the cell diameter and ∇uF (ŪK) represents the flux Jacobian of the average
value of Uh on the element K.

The SUPG stabilized formulation reads, for each equation of the system i = 1, . . . , D∫
Ω

vh (∂tUh +∇ · F (Uh)− S(Uh))i +
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∑

K∈Ω

∫
K

(
∇vh · ∇UF (Uh)

)
øK (∂tUh +∇ · F (Uh)− S(Uh)) dx

)
i︸ ︷︷ ︸

S(vh,Uh)i

= 0,

where (V)i denotes the i-th component of a vector V ∈ RD.

3.2.2 Continuous Interior Penalty - CIP
An alternative, which maintains the sparse symmetric structure of the Galerkin matrix,

is the continuous interior penalty (CIP) stabilization used in [25, 27, 23]. This method has
been develop by E. Burman and P. Hansbo in [24], but it can be seen as a variation of the
method originally proposed by Douglas and Dupont [46].

The method stabilizes the Galerkin formulation by adding a least-square term propor-
tional to the jump of the gradient of the derivatives of the solution across the cell interfaces.
The CIP introduces high order viscosity to the formulation, allowing the solution to tend to
the vanishing viscosity limit. This term is computed on the solution at the previous time step,
so it does not affect the structure of the LHS matrix.

The method reads∫
Ωh

vh∂tuh dx +
∫

Ωh

vh∇ · f (uh) dx + ∑
f∈Fh

∫
f

τf [n f · ∇vh] · [n f · ∇uh] dΓ︸ ︷︷ ︸
S(vh,uh)

= 0, (3.21)

where [·] denotes the jump of a quantity across a face f, nf is a normal to the face f and where
Fh is the collection of internal boundaries, and f are its elements. Although other definitions
are possible, we evaluate the scaling parameter in the stabilization as

τf = δ h2
f ‖∇u f ‖f (3.22)

where ‖∇u f ‖f a reference value of the norm of the flux Jacobian on f, hf a characteristic
size of the mesh neighboring f and δ denotes a tunable stabilization parameter > 0 [28], and
constant in space and time. E.g. δ is chosen as 1 in [27].

As stated above, a clear advantage of CIP is that it does not modify the mass matrix,
allowing to obtain efficient schemes if a mass lumping strategy can be devised. On the
other side, the stencil of the scheme increases as the jump of a degree of freedom interacts
with cells which are not next to the degree of freedom itself (up to 2 cells distance). Note
that for higher order approximations [26, 76] suggest the use of jumps in higher derivatives
to improve the stability of the method. However, here we consider the jump in the first
derivatives in order to be able to apply the stability analysis and to study the influence of
δ on the stability of the method. Some results might be definitely improved adding these
stabilizations on higher derivatives.

The accuracy of CIP can be assessed with a consistency analysis as discussed in [3,
sec. 3.1.1, sec. 3.2]. This consists in, formally substituting uh by the projection onto the
finite element polynomial of degree p space of ue, a given smooth exact solution ue(t, x),
we can show that for all functions ψ of class at least C1(Ω), of which ψh denotes the finite
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element projection, we have the truncation error estimate

ε(ψh) :=
∣∣∣ ∫

Ω
ψh∂t(ue

h − ue) dx−
∫

Ω
∇ψh · ( f (ue

h)− f (ue)) dx

+ ∑
f∈Fh

∫
f

τf [n f · ∇vh] · [n f · ∇(ue
h − ue)]

∣∣∣ ≤ Chp+1,

(3.23)

with C a constant independent of h. The estimate can be derived from standard approxima-
tion results applied to ue

h− ue and to its derivatives, noting that τf is anO(h2), which allows
to obtain the estimation with the right order.

The symmetry of the stabilization allows to easily derive an energy stability estimate
for the space discretized scheme only. In particular, for periodic boundary conditions and a
linear flux we can easily show that∫

Ωh

∂t
u2

h
2

= − ∑
f∈Fh

∫
f

τf [n f · ∇uh]
2, (3.24)

which gives a bound in time on the L2 norm of the solution.

Note that for higher than second order it may be relevant to consider additional penalty
terms based on higher derivatives (see e.g. [26, 22, 107]). We did not do this in this work.

3.2.3 Orthogonal Subscale Stabilization - OSS
Another symmetric stabilization approach is the Orthogonal Subscale Stabilization (OSS)

method. Originally introduced as Pressure Gradient Projection (PGP) in [38] for Stokes
equations, it was extended to the OSS method in [37, 8] for different problems with numer-
ical instabilities, such as convection–diffusion–reaction problems. This stabilization penal-
izes the fluctuations of the gradient of the solution with a projection of the gradient onto the
finite element space. The method applied to (3.3) reads: find uh ∈ Vp

h such that ∀vh ∈ Vp
h

∫
Ωh

vh∂tuh dx +
∫

Ωh
vh∇ · f (uh) dx + ∑

K∈Ωh

∫
K

τK∇vh · (∇uh − wh) dx

︸ ︷︷ ︸
S(vh,uh)

= 0,

∫
Ωh

vhwh dx−
∫

Ωh
vh∇uh dx = 0.

(3.25)
For this method, the stabilization parameter is evaluated as

τK = δhK‖∇u f ‖K (3.26)

where δ denotes a tunable stabilization parameter > 0 [37], and constant in space and time.
The drawback of this method, with respect to CIP, is the requirement of a matrix inversion
to project the gradient of the solution in the second equation of (3.25). This cost can be
alleviated by the choice of elements and quadrature rules if they result in a diagonal mass
matrix, as it will be the case for Cubature elements that we will describe below.
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As before we can easily characterize the accuracy of this method. The truncation error
estimate for a polynomial approximation of degree p reads in this case

ε(ψh) :=
∣∣∣ ∫

Ωh

ψh∂t(ue
h − ue) dx−

∫
Ωh

∇ψh · ( f (ue
h)− f (ue)) dx

+ ∑
K∈Ωh

τK

∫
K

∇ψh · ∇(ue
h − ue) + ∑

K∈Ωh

τK

∫
K

∇ψh · (∇ue − we
h)
∣∣∣ ≤ Chp+1,

(3.27)

where the last term is readily estimated using the projection error and the boundness of
ψh as ∫

Ωh

ψh(we
h −∇ue) dx =

∫
Ωh

ψh(∇ue
h −∇ue) ≤ O(hp).

Finally, for a linear flux, periodic boundaries and taking τK = τ constant along the mesh,
we can test with vh = uh in the first equation of (3.25), and with vh = τwh in the second
one and sum up the result to get∫

Ωh

∂t
u2

h
2

= −∑
K

∫
K

τK(∇uh − wh)
2, (3.28)

which can be integrated in time to obtain a bound on the L2 norm of the solution.

The truncation consistency error analysis presented above for the three stabilization terms
is completely formal and it does not comprehend an entire classical error analysis. These
estimations tell us that the stabilization terms that we introduced are of the wanted order
of accuracy and that they are usable to aim at the prescribed order of accuracy. This type
of analysis has been already done for multidimensional problems inter alia in [1]. More
rigorous proof of error bounds with hp+ 1

2 estimates can be found in [22] for the CIP. We did
not consider in this work projection stabilizations involving higher derivatives.

3.3 Shock capturing technique
So far, we considered a continuous solution of our hyperbolic problem. However, in cer-

tain configurations, discontinuities can appear. In presence of discontinuities, it is necessary
to add some diffusion in the scheme. An additional term must be added to smooth discontinu-
ities and allows them to propagate. In particular, we introduce the entropy viscosity method
developed in [101, 58] for linear and non-linear hyperbolic problems, which allows keeping
a control region where entropy production is large (i.e. in presence of discontinuities). The
main advantage of this technique is that it is very simple to implement, since it does not use
slope limiters. Many other shock capturing techniques exist in the literature such in [121]
also based on the entropy dissipation.

This supplementary term will be mainly used in the last chapter 6 and 7 for complex and
realistic cases, where discontinuities can appear.
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The stabilized variationnal formulation of 3.4 reads∫
Ωh

vh∂tuh dx +
∫

Ωh

vh∇ · f (uh) dx + ∑
K

µK(uh)
∫

K
∇uh · ∇vh dx︸ ︷︷ ︸

S(vh,uh)

= 0, (3.29)

with µK(uh) the entropy viscosity parameter computed as follow: remembering the advec-
tion problem

ut +∇ · f (u) = 0, u ∈ R, a ∈ R2. (3.30)

Considering the system eq. (3.30) admits a convex entropy function (see section 2.3.1) that
satisfy the entropy inequality

∂tE +∇ ·G ≤ 0, (3.31)

The resulting energy dissipation can be defined by

− D = ∂tE +∇ ·G. (3.32)

In practice, D should be ≈ 0 in smooth region and ≥ 0 around discontinuity. It is a good
criterion to detect shocks.
For each triangle K, we evaluate the cell-average value of the residual entropy (rE)

n
K at t = tn

by

(rE)
n
K =

1
|K|

(∫
K

∂tEn
h dx +

∫
K
∇ ·Gn

hdx
)

(3.33)

=
1
|K|

(∫
K

∂tEn
h dx +

∫
∂K

Ĝn
h · ndl

)
, (3.34)

with n the outward normal, and the numerical entropy flux Ĝn is evaluated on the triangle
edge in the CG formulation and by a consistent flux in the DG case, although the use of the
internal value is also possible. In practice, this choice has little impact.

We evaluate ∂tEn by a (p + 1)th order BDF time scheme (Backward Difference For-
mula), see appendix C for all BDF, p = 1, 2, 3. (rE)

n
K is computed once per time step and

used for each intermediate RK stages.

We now introduce the artificial viscosity parameter µK following [101, 58]: we define a
viscosity µE such that

µE =
cE|(rE)

n
K|h2

K
∆E

(3.35)

where ∆E is the reference entropy, cE a control parameter > 0. Then µmax the viscosity
upper bound based on the numerical flux

µmax = cmaxhK max
K

(
| f ′(u)|

)
,

where cmax is a O(1) user defined parameter. Then the entropy viscosity parameter

µK = min(µmax, µE) (3.36)
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Note on the entropy viscosity technique applied to SW system in the Uhaina plaform
This method, used in BRGM and INRIA code for Shallow Water system is described in [58,
101]. Remembering the Shallow Water system from section 2.2.4:

∂th + ∂x(hu) + ∂y(hv) = 0
∂t(hu) + ∂x(hu2 + g h2

2 ) + ∂y(huv) = −gh(Sox + S f x)

∂t(hv) + ∂x(huv) + ∂y(hv2 + g h2

2 ) = −gh(Soy + S f y)

(3.37)

The system eq. (3.37) admits a convex entropy function (see section 2.3.1) that satisfy the
entropy inequality

∂tE +∇ ·G ≤ 0, (3.38)

with E =
1
2
(h ‖ u ‖2 +gh) + ghb, G =

(
E +

gh
2

)
u (3.39)

with u = (u, v)T.
NB: The entropy function E describe the total energy of the system and G the energy flux.
Then, the artificial viscosity parameter µK is computed as follow: we define a viscosity µE
such that

µE =
|(rE)

n
K|hK

τβN
(3.40)

where τ, β and N are control parameters > 0. Then µmax the viscosity upper bound based

µmax = ακhK max
K

(
| f ′(u)|

)
,

where α and κ are O(1) user defined parameters. Then the entropy viscosity

µK = µmaxmin(1, µE) (3.41)

Then, to compute the entropy flux, the maximum wave celerity of the SW system λ is
given by:

λ = max
K∈Ω

max
f∈∂K

(
|un · n|+

√
ghn
)

. (3.42)

Following [18], α is chosen from 0 and increased till removing all spurious oscillations,
τ is chosen to be the best compromise to get stabilized shocks with a minimal imposed
viscosity (in [18] they reduce the value until removing unwanted oscillations, τ = 1/10), β
is chosen from > 0 and is larger as the solution is smoother, i.e. we reduce the value of the
viscosity term if the solution is smooth (ex: β = 0.057 for breaking waves), then µ should
have a lower value for higher order methods, so it is shown in [18] that κ = 1/p with p the
degree of polynomial approximation gives satisfactory results and N = g3/2h̄5/2. Finally

µmax = ακhK max
K

(
|u · n|+

√
gh
)

.
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3.4 Numerical Fluxes
Numerous fluxes exist in the literature, the book of Professor Eleuterio F. Toro [124]

contains most of them. A general interpretation of the numerical flux is given by:

f |K+(uh)
∗ · n+ =

1
2
( f |K+(uh) + f |K−(uh)) · n+ +

c
2
(uh|K+ − uh|K+) , (3.43)

with c a velocity field. A classical flux used in the coastal hydrodynamic context using a
discontinuous Galerkin approach is the Rusanov flux which is the local interpretation of the
Lax-Friedrich flux where cLF =

Cc f l∆x
∆t with Cc f l the Courant number coefficient, usually

chosen (empirically) ≈ 0.9. The Rusanov flux is defined by the maximum wave speed by
elements. For Shallow Water equations, cR = max(Sp1, Sp2) with Sp1 and Sp2 defined in
section 6.2.

3.5 Finite Element Spaces and Quadrature Rules

3.5.1 The one-dimensional finite element spaces
We describe the one-dimensional finite element spaces we consider in the Fourier anal-

ysis. References to the corresponding multi-dimensional extensions are suggested for com-
pleteness where appropriate.

In a one dimensional discretized space Ωh an element K is a segment, i. e., K = [xi, xi+1]
for some i. We define in this section the restriction of the basis functions of Vp

h on each
element K, which are polynomials of degree at most p. We denote with {ϕ1, . . . , ϕN} the
basis functions of Pp(K), and their definitions amount to describe the degrees of freedom,
i.e., the dual basis. In one dimension, N = p + 1. We consider two families of polynomials:

1. Lagrange polynomials. They are uniquely defined by the interpolation points ξ j with
ξ1 = xi < . . . < ξ j < . . . < ξN = xi+1. We study two cases

• Equidistant points: ξ j = xi + j xi+1−xi
p for j = 0, . . . , p,

• Gauss–Lobatto points: the roots of Legendre polynomial of degree p+ 1 mapped
onto [xi, xi+1].

FIGURE 3.3: Lagrange polynomial basis functions defined on equidistant
points, p = 3
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2. Bernstein polynomials. Linearly mapping K onto [0, 1] they are defined for j =
0, . . . , p by

Bj(x) =
(

p
j

)
xp−j(1− x)j.

FIGURE 3.4: Bernstein polynomial basis functions defined on equidistant
points, p = 3

Bernstein polynomials verify the following properties

p

∑
j=0

Bj(x) ≡ 1, Bj(x) ≥ 0 ∀x ∈ [0, 1].

Even if the degrees of freedom associated to this approximation have no physical
meaning, we identify them geometrically with the Greville points ξ j =

j
p .

The use of different polynomial basis functions leads to different properties of the in-
volved matrices and thus to different stability properties due to the full discretization of
the problem. Let us remark that the evaluation of integrals is done by Gaussian quadrature
formulas, because of their efficiency. If Gauss points are used in the discretization of the
polynomials, the same points will be used in the quadrature formula. Thanks to this, we see
that for Lagrange polynomials defined on Gauss quadrature points∫ xi+1

xi

ϕl(x)ϕj(x) dx = (xi+1 − xi)ωlδ
j
l with ωl :=

1
(xi+1 − xi)

∫ xi+1

xi

ϕ2
l (x) dx > 0.

This leads to a diagonal local mass matrix

Mi
l,j =

(∫ xi+1
xi

ϕl(x)ϕj(x) dx
)

.

This does not hold for Lagrange polynomials defined on equidistant points or the Bernstein
polynomials.

Another important property that we need to effectively apply mass lumping [107] is
the positivity of the lumped mass matrix entries, i.e., Dk,k := ∑N

j=0
∫ xi+1

xi
ϕj ϕk dx =∫ xi+1

xi
ϕk dx > 0. The positivity of these values is trivially verified for Bernstein poly-

nomials and for Lagrange polynomials with matching quadrature formulas. In the case of
equispaced points Lagrangian polynomials, the lowest degree (p ≤ 7 in one dimension) they
also verify the positivity of the lumped matrix. This is not true in the case of two dimen-
sional problems and triangular meshes, where already for degree p = 2 we have nonpositive
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values in the diagonal of the lumped matrix. This mainly motivated the choice of Bernstein
polynomials, as well as the Lagrange interpolation with the Gauss–Lobatto points.

In the following we will use the wording

• Basic elements for Lagrangian polynomials on equispaced points with Gauss–Legendre
quadrature;

• Cubature elements for Lagrangian polynomials on Gauss–Lobatto points and quadra-
ture rule using the same points;

• Bernstein elements for Bernstein polynomials with Gauss–Legendre quadrature.

3.5.2 The two-dimensional finite element spaces
In this section we describe three finite element spaces on triangular grids that will be the

object of the stability analysis. The first elements are locally defined by classical Lagrangian
polynomials on equispaced points, then we will introduce the Cubature elements which are
accompanied by carefully chosen quadrature rule, and finally the Bernstein polynomials. An
example of an equispace repartition is given in fig. 3.1 for elements of degree p = 1, 2 and
3.

Consider a triangular element K of Ωh. We define in this section the restriction of the
basis functions of Vp

h on each element K, which are polynomials of degree at most p. We
denote by {ϕ1, . . . , ϕN} the basis functions and they will have degree at most p, and their
definitions amounts to describe the degrees of freedom, i.e., the dual basis.

3.5.3 Basic Lagrangian equispaced elements
On triangles, we consider Lagrange polynomials with degrees at most p:

Pp = { ∑
α+β≤p

cα,βxαyβ}

. We define the barycentric coordinates λi(x, y) which are affine functions on R2 verifying
the following relations

λi(vj) = δij, ∀i, j = 1, . . . , 3, (3.44)

where vj = (xj, yj) are the vertices of the triangle and, with an abuse of notation, they can
be written in barycentric coordinates as vj = (δ1j, δ2j, δ3j). Using these coordinates, we can
define the Lagrangian polynomials on equispaced points on triangles. The equispaced points
are defined on the intersection of the lines λj =

k
p for k = 0, . . . , p. A way to define the

basis functions corresponding to the point (xα, yα) = (α1/p, α2/p, α3/p) in barycentric
coordinates, with αi ∈ J0, . . . , pK and ∑i αi = 1, is in algorithm 1.

The polynomials so defined in a triangle form a partition of unity, but they have also neg-
ative values. This leads to negative or zero values of their integrals. This is problematic for
some time discretization and we will see why. We will use these polynomials in combina-
tion with exact Gauss–Lobatto quadrature formulas for such polynomials and we will refer
to them as Basic elements. An example of basis functions for p = 3 and α3 = 0 is shown in
3.5. In other words, basis functions corresponding to DOF vj = (xj, yj) when yj = 0.
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Algorithm 1 Lagrangian basis function in barycentric coordinates
Require: Point (xα, yα) = (α1/p, α2/p, α3/p) in barycentric coordinates

ϕα(x)← 1
for i = 1, 2, 3 do

for z = 0, . . . , ai do
ϕα(x, y)← ϕα(x, y) · (λi(x, y)− z

p )

end for
end for

FIGURE 3.5: Basis functions of Basic Lagrangian equispaced elements for
p = 3 and α3 = 0

3.5.4 Bernstein polynomials
Bernstein polynomials are as well a basis of Pp but they are not Lagrangian polynomi-

als, hence, there is not a unique correspondence between point values and coefficients of
the polynomials. Anyway, there exist a geometrical identification with the Greville points
(xα, yα) = (α1/p, α2/p, α3/p). Given a triplet α ∈ N3 with αi ∈ J0, . . . , pK and ∑i αi =
p, the Bernstein polynomials are defined as

ϕα(x, y) = p!
3

∏
i=1

λ
αi
i (x, y)

αi!
. (3.45)

Bernstein polynomials verify additional properties besides the one already cited for La-
grangian points. As before, they form a partition of unity, the basis functions are non-
negative in any point of the triangle, and, hence, their integrals are positive. These properties
lead also to the fact that the value at each point is a convex combination of the coefficients of
the polynomials, hence, it is easy to bound minimum and maximum of the function by the
minimum and maximum of the coefficients. This has been used in different techniques to
preserve positivity of the solution [7, 75]. We will use these polynomials with corresponding
high order accurate quadrature formulas. We will denote these elements with the symbol Bp
and we refer to them as Bernstein elements. An example of basis functions for p = 3 and
α3 = 0 is shown in 3.6. In other words, basis functions corresponding to DOF vj = (xj, yj)
when yj = 0.



34 Chapter 3. Numerical methods

FIGURE 3.6: Basis functions of Basic Bernstein equispaced elements for
p = 3 and α3 = 0

3.5.5 Cubature elements
Contrary to the work done in 1D [88], the extension of Legendre–Gauss–Lobatto points

which minimize the interpolation error do not exist for the triangle. They have to be com-
puted numerically such as Fekete points [70, 115, 122]. The problem of this approach is that
it requires as classical finite elements the inversion of a sparse global mass matrix.
Cubature elements were introduced by G. Cohen and P. Joly in 2001 [39] for the wave equa-
tion (second order hyperbolic equation), and are an extension of Lagrange polynomials with
the goal of optimizing the underlying quadrature formula error. We will denote with the
symbol P̃p and they will be contained in another larger space of Lagrange elements, i.e.,
Pp ⊆ P̃p ⊆ Pp′ , with p′ the smallest possible integer. Similar techniques have been used
to minimize the interpolation error [70, 115, 122]. The objective of these polynomials is to
use the points of the Lagrangian interpolation of the polynomials as quadrature points. This
means that the obtained quadrature is

∫
K f (x, y) = ∑α ωα f (xα, yα), where

∫
K ϕα = ωα

and ϕα(xβ, yβ) = δαβ. This approach can be considered an extension of the Gauss–Lobatto
quadrature in 1D for non Cartesian meshes. The biggest advantage of this approach is to
obtain a diagonal mass matrix and, hence, saving a lot of computational time. The drawback
is that one needs to increase the number of basis function inside one element to obtain an
accurate enough quadrature rule. In our work, we propose to extend this approach to first
order hyperbolic equations. A successful extension to elliptic problem is proposed in [102].
A comparison between the equispace repartition and the Cubature repartition for elements
of degree p = 3 is shown in 3.7.

FIGURE 3.7: Comparison of the equispace repartition at left and the cubature
repartition at right for elements of degree p = 3.

The challenges of this approach are the following:

• Obtain a quadrature which is highly accurate, at least p + p′ − 2 order accurate [34];
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• Obtain positive quadrature weights ωα > 0 for stability reasons [123];

• Minimize the number of basis functions of P̃p;

• The set of quadrature points has to be P̃p-unisolvent;

• The number of quadrature points of edges has to be sufficient ensure the conformity of
the finite element.

The optimization procedure that leads to these elements consists of several steps where the
different goals are optimized one by one. The optimization strategy exploits heavily the
symmetry properties that the quadrature point must have.

For p = 1 the Cubature elements do not differ from the Basic elements but in the quadra-
ture formula. For p = 2 the Cubature elements introduce an other degree of freedom at the
center of the triangle, leading to 7 quadrature points and basis functions per element. For
p = 3 the additional degree of freedom in the triangle are 3, leading to 12 basis functions
per triangle.

All the details of such elements can be found in [39, 55, 69] and appendix A. In the
same appendix we also report all the details on the polynomial basis functions used here,
not available in the published literature. We will use the symbol P̃p and the name Cubature
elements to refer to them.

Other elements such as Fekete-Gauss points [55] exist in the literature. They are opti-
mized to interpolate and integrate with high accuracy. However, it is shown that they require
more computing time to achieve similar results than Cubature points for high order of accu-
racy.

3.6 Time integration
The finite element semi-discrete equations constitute a coupled system of ordinary dif-

ferential equations which can be written as

M
dU
dt

= r(t) (3.46)

where U is the collection of all the degrees of freedom, M and r are the global mass matrix
and right-hand side term defined in the previous sections through the element definition and
stabilization terms. We must remark that M is diagonal only in the case of the Cubature
elements without the SUPG stabilization, while, for all other choices, it is a sparse non–
diagonal matrix.

In the following, we describe two different time integration strategies: explicit Runge–
Kutta (RK) methods and their strong stability preserving (SSP) variant; Deferred Correction,
which allows to avoid the mass matrix inversion through correction iterations.
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3.6.1 Explicit Runge–Kutta and Strong Stability Preserving Runge–
Kutta schemes

Runge–Kutta time integration methods are described by the following one step procedure

U(0) := Un,

U(s) := Un + ∆t
s−1

∑
j=0

αs
jM
−1r(U(j)) s = 1, . . . , S,

Un+1 := Un + ∆t
S

∑
s=0

βsM
−1r(U(s)).

(3.47)

Here, we use for the solution the superscript n to indicate the time step and the superscript in
brackets (s) to denote the stage of the method. In particular, we will refer to Heun’s method
with RK2, to Kutta’s method with RK3 and the original Runge–Kutta fourth order method
as RK4. The respective Butcher’s tableau can be found in appendix B in table B.1.

A particular case is that of SSPRK methods introduced in [117]. They are essentially
convex combinations of forward Euler steps, and can be rewritten as follows

U(0) := Un,

U(s) :=
s−1

∑
j=0

(
γs

j U
(j) + ∆tµs

jM
−1r(U(j))

)
s = 1, . . . , S,

Un+1 := U(S),

(3.48)

with γs
j , µs

j ≥ 0 for all j, s = 1, . . . , S. We will consider here the second order 3 stages
SSPRK(3,2) presented by Shu and Osher in [117], the third order SSPRK(4,3) presented in
[112, Page 189], and the fourth order SSPRK(5,4) defined in [112, Table 3]. For complete
reproducibility of the results, we put all their Butcher’ tableaux in appendix B in table B.3.

3.6.2 The Deferred Correction scheme
Deferred correction methods were originally introduced in [47] as explicit solvers of

ODEs, but soon implicit [90] or positivity preserving [100] versions and extensions to PDE
solvers [2] were studied. In [2, 104, 107] the method is also used to avoid the inversion of the
mass matrix, applying a mass lumping and adding correction iterations to regain the order of
convergence. This is only achievable when the lumped matrix have only positive values on
its diagonal. Hence, the use of Bernstein polynomials is recommended in [2], but also the
Cubature elements can serve the purpose.

tn = tn,0

Un,0

tn,1

Un,1

tn,m

Un,m

tn,M = tn+1

Un,M

FIGURE 3.8: Subtimesteps inside the time step [tn, tn+1]

Consider a discretization of each timestep into M subtimesteps as in fig. 3.8. For each
subtimestep the goal is to find the solution of the integral form of the semidiscretized ODE
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eq. (3.46) as

M
(

Un,m −Un,0
)
−
∫ tn,m

tn,0
r(U(s))ds ≈ Ł2(U)m

:= M
(

Un,m −Un,0
)
− ∆t ∑

z∈J0,MK
ρm

z r(U
n,z) = 0, (3.49)

with U =
(
Un,0, . . . , Un,M) and having used high order quadrature with points tn,0, . . . , tn,M

and weights ρm
z for every different subinterval (see [2, 104, 107] for details). The algebraic

system Ł2(U∗) = 0 is in general implicit and nonlinear and may not be easy to solve. The
DeC procedure approximates iteratively this solution by successive corrections relying on a
low order easy–to–invert operator Ł1. This operator is typically obtained using an explicit
timestepping and a lumped mass matrix, i.e.,

M
(

Un,m −Un,0
)
−
∫ tn,m

tn,0
r(U(s))ds ≈ Ł1(U)m

:= D
(

Un,m −Un,0
)
− ∆tβmr(Un,0) = 0. (3.50)

Here, D denotes a diagonal matrix obtained from the lumping of M, i.e., Dii := ∑j Mij,

and βm := tn,m−tn,0

tn+1−tn . The values of the coefficients βm and ρm
z for equispaced subtimesteps

can be found in appendix B. Denoting with the superscript (k) index the iteration step, we
describe the DeC algorithm as

Un,m,(0) := Un m = 0, . . . , M, (3.51a)

Un,0,(k) := Un k = 0, . . . , K, (3.51b)

Ł1(U(k)) = Ł1(U(k−1))− Ł2(U(k−1)) k = 1, . . . , K, (3.51c)

Un+1 := Un,M,(K). (3.51d)

It has been proven [2] that if Ł1 is coercive, Ł1−Ł2 is Lipschitz with a constant α1∆t > 0
and the solution of Ł2(U∗) = 0 exists and is unique, then, the method converges with an
error of O(∆tK). Hence, choosing K = M + 1 we obtain a K-th order accurate scheme.

Relying only on the inversion of the low order operator, the method has for each iteration
a cost equivalent essentially to the assembly of the right hand side, whatever the complexity
of the mass matrix appearing in Ł2. The only requirement that is necessary for the DeC
approach is the invertibility of the lumped mass matrix, which limits its application to equis-
paced Lagrange elements only to the degrees for which this is the case, and to other choices
as the Bernstein and Cubature elements introduced earlier.

Finally, for the following analysis we note that the DeC method can be cast in a form
similar to a Runge–Kutta method by rewriting eq. (3.51c) as

Un,m,(k+1) = Un,m,(k)−D−1M
(

Un,m,(k) −Un,0,(k)
)
+

M

∑
j=0

∆tρm
j D−1r(Un,j,(k)). (3.52)

Comparing with eq. (3.48), we can immediately define the SSPRK coefficients associated to
DeC as γ

m,(k+1)
m,(k) = I−D−1M with I the identity matrix, γ

m,(k+1)
0,(0) = D−1M, µ

m,(k+1)
r,(k) =

ρm
r for m, r = 0, . . . , M and k = 0, . . . , K − 1 and instead of the mass matrix, we use the
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diagonal one.

Remark 3.6.1 (DeC with SUPG) The iterative procedure of the DeC method allows even to
overcome the difficulties that some implicit stabilization as the SUPG has. Indeed, the SUPG
stabilization term can be added only to the Ł2 operator, keeping the high order accuracy of
this operator. Since the Ł2 operator is applied to the previously computed iteration, all the
terms of the SUPG, included the time derivative of u in eq. (3.15), can be explicitly computed
on U(k−1), keeping then the diagonal mass matrix for the whole scheme.
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Chapter 4

Analysis of the one-dimensional
formulation

Chapter Abstract
We study continuous finite element discretizations for one dimensional hyper-
bolic partial differential equations. The main contribution of this chapter is to
provide a fully discrete spectral analysis, which is used to suggest optimal val-
ues of the CFL number and of the stabilization parameters involved in differ-
ent types of stabilization operators. In particular, we analyze the streamline-
upwind Petrov-Galerkin (SUPG) stabilization technique, the continuous inte-
rior penalty (CIP) stabilization method and the orthogonal subscale stabilization
(OSS). Three different choices for the continuous finite element space are com-
pared: Bernstein polynomials, Lagrangian polynomials on equispaced nodes,
and Lagrangian polynomials on Gauss-Lobatto cubature nodes. For the last
choice, we only consider inexact quadrature based on the formulas correspond-
ing to the degrees of freedom of the element, which allows to obtain a fully di-
agonal mass matrix. We also compare different time stepping strategies, namely
Runge-Kutta (RK), strong stability preserving RK (SSPRK) and deferred correc-
tion time integration methods. The latter allows to alleviate the computational
cost as the mass matrix inversion is replaced by the high order correction itera-
tions.

To understand the effects of these choices, both time-continuous and fully dis-
crete Fourier analysis are performed.It allows to compare all the different com-
binations in terms of accuracy and stability, as well as to provide suggestions for
optimal values discretization parameters involved. The results are thoroughly
verified numerically both on linear and non-linear problems, and error-CPU time
curves are provided. Our final conclusions suggest that Cubature elements com-
bined with SSPRK and CIP or OSS stabilization are the most promising combi-
nations.
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4.1 Introduction
In this work we compare different numerical methods that can approximate the solution

of the one dimensional hyperbolic conservation laws

∂tu(x, t) + ∂x f (u(x, t)) = 0 x ∈ Ω ⊂ R, t ∈ R+, (4.1)

where Ω ⊂ R is an interval, f : RD → RD is the flux function and u : Ω → RD is the
unknown of the system of equations. For the spectral analysis of the numerical methods we
will mainly focus on the particular case of a linear flux

f (u(x, t)) = au(x, t) , a = const . (4.2)

In this work, we compare different explicit high order accurate schemes based on the
continuous Galerkin (CG) approach. In general, the standard Finite Element Method (FEM)
derived by this approach require the inversion of a large sparse mass matrix. This procedure
can be expensive as the matrix multiplication must be iterated for all the time steps. Various
techniques have been introduced to overcome the mass matrix inversion while keeping the
high order accuracy of the scheme.

The first strategy we study is the one proposed in [2]. There, to avoid the inversion of
the mass matrix, a mass lumping is introduced, transforming the mass matrix into a diagonal
one. The deferred correction (DeC) iterative time integration method alters the right–hand
side in order to recover the original order of accuracy. Another approach consists of a careful
choice of quadrature points and basis functions in order to automatically obtain a diagonal
mass matrix. We denote such elements as Cubature elements [82]. The classical use of
Runge–Kutta methods will provide the high order accuracy also for the time discretization.

The second aspect we will focus on is the stabilization technique. We emphasize that
without any special treatment on the boundaries, such as the ones in [106, 105], the CG
methods are not always L2–stable at the discrete level for hyperbolic problems and there is
the need of additional stabilization terms. In particular, when periodic boundary conditions
(BC) are applied to the problem, the instability shows larger effects. That is why many
different stabilization techniques have been introduced for CG methods. These techniques
can have dissipation levels that are comparable to the ones brought by discontinuous Galerkin
(DG) with upwind numerical flux of the same order of accuracy, still remaining L2–stable
[108, 91]. The stabilization terms play an important role and we will compare three of them.
The first is the streamline upwind Petrov–Galerkin (SUPG) stabilization [28, 21], which
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is strongly consistent, but it is also introducing new terms in the mass matrix which are
necessary to retain the appropriate consistency order. This can only be alleviated when using
DeC time stepping. The second approach is the so–called continuous interior penalty (CIP)
method [25, 27, 23], which penalizes the jump of the derivative of the solution across cell
boundaries. This stabilization does not affect the mass matrix and, therefore, can be easily
combined with mass–matrix free methods. The last is the orthogonal subscale stabilization
[37], which penalizes the L2 projection of the gradient of the error within the elements.
This technique does not affect the mass matrix, but it requires the solution of another linear
system for the L2 projection. In this respect, the choice of the finite element space and of the
quadrature have enormous impact on the cost of the method.

The goal of this work is to analyze the different methods and their combinations, and
give suggestions concerning the most convenient choices in terms of accuracy, stability, and
cost. To achieve this objective an important role is played by a spectral analysis which we
perform both in the time-continuous and fully discrete cases. The analysis reveals the best
parameters (stabilization and CFL coefficients) that can be used in practice. The stability of
such schemes will be practically computed thanks to a von Neumann analysis, which allows
to determine whether the L2–norm of the approximated solution is bounded by the initial
one. Other types of norms are sometimes more interesting as object of study, or simpler
to be bound in other contexts, for example in an analytical one. We will focus on the L2
discrete norm stability in the majority of this work.

Numerical simulations both linear and non-linear scalar problems, and for the shallow
water system confirm the theoretical results, and allow to further investigate the impact of
the discretization choices on the performance of the schemes and on their cost. The chap-
ter is organized as follows. In section 4.2, we introduce some notions about the Spectral
theory. sections 4.3 and 4.4 are dedicated to the Fourier stability analysis. In section 4.5
we provide some elements concerning the extension of the stabilization methods discussed
to nonlinear problems, and finally in section 4.6 we show numerical results on linear and
nonlinear problems. The paper is ended by a summary and overlook on future perspectives
in section 4.7.

4.2 Basic spectral theory
In general, the numerical solution uh does not satisfy the original PDE

∂tu + a∂xu = 0 (4.3)

exactly, but only approximately, i.e. in general we have

∂tuh + a∂xuh 6= 0. (4.4)

To quantify the errors, we will consider the so-called modified equation or equivalent differ-
ential equation

∂tuh + a∂xuh =
∞

∑
l=2

cl
∂luh
∂xl

(4.5)

which is solved exactly by the numerical method. An analysis of the eq. (4.5) gives important
informations concerning the stability, the accuracy and the dispersive behaviour of methods
used. The error coefficients cl are depending on the advection speed a, the mesh size and the
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time step.

To understand the physical effects of the error, we consider the evolution of one single
Fourier mode (monochromatic wave) as follows:

u(x, t) = Aei(kx−ωt), with k =
2π

λ
, ω =

2π

T
, i2 = −1, (4.6)

where k denotes the wave number and ω the angular frequency. Substitution of this equation
into eq. (4.5), we obtain the dispersion relation of the PDE

− iω + aik =
∞

∑
l=2

cl(ik)l, with il =

{
(−1)m, if l = 2m
i(−1)m, if l = 2m + 1 (4.7)

Then, the angular frequency ω is defined by

ω = ak + i
∞

∑
m=1

(−1)mc2mk2m −
∞

∑
m=1

(−1)mc2m+1k2m+1 (4.8)

The exact solution of eq. (4.5) for a single Fourier mode is given by

u(x, t) = Ae

ik


x−t


a−

dispersion error︷ ︸︸ ︷
∞

∑
m=1

(−1)mc2m+1k2m




· e

t

diffusion error︷ ︸︸ ︷
∞

∑
m=1

(−1)mc2mk2m

(4.9)

We can clearly identify the dispersion and the diffusion terms. To assure the stability of the
methods, this quantity must be ≤ 0, in order to non increase the amplitude of the Fourier
mode.

4.3 Fourier Analysis
The dispersion and the stability properties of numerical methods can be shown by means

of a spectral analysis. We will focus on the linear case (4.2) with periodic boundary condi-
tions:

∂tu + a∂xu = 0, x ∈ [0, 1]. (4.10)

The main idea is to investigate the semi and fully discrete evolution of periodic waves repre-
sented by the ansatz

u = Aei(kx−ξt) = Aei(kx−ωt)eεt with ξ = ω + iε, i =
√
−1. (4.11)

Here, ε denotes the damping rate, while the wavenumber is denoted by k = 2π/L with L
the wavelength. We recall that the phase velocity defined as

C =
ω

k
(4.12)

represents the celerity with which waves propagate in space, and it is in general a function
of the wavenumber. Substituting eq. (4.11) in the advection equation eq. (4.10) leads to the
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well known result

C = a and ε = 0. (4.13)

The objective of the next sections is to provide the semi and fully discrete equivalents of
the above relations for the finite element methods introduced earlier. We will consider poly-
nomial degrees up to 3, for all combinations of different stabilization methods and time
integration. This will also allow to investigate the parametric stability with respect to the
time step (CFL number) and stabilization parameter δ. In practice, for each choice we will
evaluate the accuracy of the discrete approximation of ω and ε, and we will provide con-
ditions for the non-positivity of the damping ε. For completeness, the study is performed
first in the semi-discrete time continuous case in section 4.3.1. We then consider the fully
discrete schemes in section 4.3.3.

4.3.1 Preliminaries and time continuous analysis
The Fourier analysis for numerical schemes on the periodic domain is based on Parseval

theorem.

Theorem 4.3.1 (Parseval) Let û(k) :=
∫ 1

0 u(x)e−i2πkxdx for k ∈ Z be the Fourier modes
of the function u. The L2 norms of the function u and of the Fourier modes coincide, i.e.,∫ 1

0
u2(x)dx = ∑

k∈Z

|û(k)|2. (4.14)

Thanks to this theorem, we can study the amplification and the dispersion of the basis func-
tions of the Fourier space. The key ingredient of this study is the repetition of the stencil of
the scheme from one cell to another one. In particular, using the ansatz eq. (4.11) we can
write local equations coupling degrees of freedom belonging to neighbouring cells through
a multiplication by the factor of eiθ representing the shift in space along the oscillating solu-
tion. The dimensionless coefficient

θ := k∆x (4.15)

is a discrete reduced wave number which naturally appears all along the analysis. Formally
replacing the ansatz in the scheme we end up with a dense algebraic problem of dimension
p (the polynomial degree) reading in the time continuous case

eq. (4.10) and eq. (4.11) ⇒ −iξMU + aKxU = 0 (4.16)

with (M)ij =
∫

Ωh

φiφjdx, (Kx)ij =
∫

Ωh

φi∂xφjdx + S(φi, φj), (4.17)

with φj the finite element basis functions and U the array of all the degrees of freedom. A
difference must be pointed out for the SUPG stabilization. In that case the time derivative
appears in the stabilization term, hence it contributes to the mass matrix with an additional
term

Mij = ∑
K∈Ωh

∫
K
(φiφj + τK∂xφiφj)dx

and the corresponding term must be removed in stabilization term S(φi, φj).
Although system (4.16) is in general a global eigenvalue problem, we can reduce its com-

plexity by exploiting more explicitly the ansatz eq. (4.11). More exactly, we can introduce
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elemental vectors of unknowns ŨK, which, for continuous finite elements, are a arrays of p
degrees of freedom including only one of the two boundary nodes. Using the periodicity of
the solution and denoting by K± 1 the neighboring elements, we have

ŨK±1 = e±iθŨK. (4.18)

This allows to show that (4.16) is equivalent to a compact system (we drop the subscript K
as this system is equivalent for all cells)

− iξM̃Ũ + aK̃xŨ = 0, (4.19)

where the matrices M̃ and K̃ are readily obtained from the elemental discretization matrices
by using eq. (4.18). In practice, for one dimensional problems, the construction of M̃ from
M can be done as follows [116]: if DOFs in the element K` ∈ PP−1 are placed as follows

Ũ0e−iθ Ũ0 Ũ0e+iθ

i = 0 1 2 · · · i = P
K`−1 K` K`+1

Denoting by K̃` = {0, 1, · · · , P− 1}. ∀(k, j) ∈ K̃` × K̃`,

M̃`[k, j] = M`[k, j] + M`[k, P]eiθδj0 + M`[P, j]e−iθδk0 + M`[P, P]δj0δk0 (4.20)

where M`[k, P]eiθδj0 corresponds to the contribution of Ũ0e+iθ on the element K̃`, M`[P, j]e−iθδk0

corresponds to the contribution of DOFs from K̃`−1 on Ũ0, and M`[P, P]δj0δk0 comes from
the assembly procedure of the global mass matrix.

As shown in [116] some particular cases can be easily studied analytically. For example
for the semidiscretized P1 CG scheme without stabilization one easily finds that

ω

k
= a

sin(θ)
θ

3
2 + cos(θ)

and ε = 0. (4.21)

Indeed, considering the neighboring of K, K± 1, the matricial system is written as follow

M =
∆x
6

2 1 0
1 4 1
0 1 2

 , Kx =
1
2

−1 1 0
−1 0 1
0 −1 0

 (4.22)

and so, using eq. (4.18) the system becomes(
(iω + ε)∆x

e−ik∆x + 4 + eik∆x

6
+ a
−e−ik∆x + eik∆x

2

)
UK = 0 (4.23)(

(iω + ε)∆x
2 + cos(k∆x)

3
+ a sin(k∆x)

)
UK = 0. (4.24)

As the degree of the approximation increases, so does the size of the eigenvalue problem.
For the non stabilized CG P2 scheme we can still find an analytical solution associated to
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the quadratic equation (cf also [116]) reading

ω1,2

k
= a

4 sin(θ)± 2
√

40 sin2( θ
2)− sin2(θ)

θ(cos(θ)− 3)
. (4.25)

Here, two eigenvalues are the solution of the problem, the positive one is the principal one,
while the negative one is the parasite one. They are both depicted in fig. 4.1. For more gen-
eral cases, the study needs to be performed numerically.

Defining with λi(θ) the eigenvalues of eq. (4.19), ωi(θ) = Im(λi(θ)) and εi(θ) =
−Re(λi(θ)) are the respective phase and damping coefficients of each mode of the solution.
In practice, we solve numerically the eigenvalue problem eq. (4.19) for θ = k∆xp = 2π

Nx
varying in [0, π], where Nx is the number of the nodes in each wavelength and ∆xp = ∆x/p
is the average distance between degrees of freedom. However, to satisfy the Nyquist stability
criterion, it is necessary to have ∆xp ≤ L

2 , with L the wavelength.

As an example, in fig. 4.1 we plot ω and ε and we see that the CG scheme does not have
diffusive terms, or, in other words, there is no damping (ε = 0) in the CG scheme. We plot
in fig. 4.1 the principal and the parasite eigenvalues for each system p = 1, 2, 3. We can
clearly identify the principal one, being the one that minimizes |ωi − ak|, when θ � π,
while for larger values of θ the distinction is not so clear, from a numerical point of view.
As expected, with P1 elements, the scheme is more dispersive than with P2 or P3 elements,
i.e., the principal eigenvalue is more distant from the line ω = ak, while, for all of them,
there is no dissipation, since the scheme is not stabilized and there is no time discretization
providing further dissipation.

We apply the same analysis to stabilized methods. The results obtained with SUPG, CIP
and OSS stabilizations lead to almost identical results, that is why we show in fig. 4.2 only
the OSS data. A similar analysis, with analogous results, for CIP and standard elements
can also be found in [108]. The interested reader can access all the other plots online [87].
From the plot we can see that the increase in polynomial degree provides the expected large
reduction in dispersion error, while retaining a small amount of numerical dissipation, which
permits the damping of parasite modes.
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FIGURE 4.1: Phase ω (left) and amplification ε (right) with Basic elements
without stabilization for P1, P2 and P3.
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FIGURE 4.2: Phase ω (left) and amplification ε (right) with Basic elements
with OSS stabilization for P1, P2 and P3.

The number of modes for each system depends on the spatial discretization and p the
degree of elements. In other word, the number of modes depends on the number of DOF
(degree of freedom per element). In 1D, the number of modes is exactly p, see table 4.1 for
the number of modes for all schemes (which is not true in 2D, see table 5.1).

Element P1 P2 P3

Cub. 1 2 3
Basic. 1 2 3
Bern. 1 2 3

TABLE 4.1: Summary table of number of modes per systems.
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4.3.2 Space-continuous analysis for Runge-Kutta schemes
Following the RK or SSPRK formulation, we can write

U(i) =
i−1

∑
k=0

(
αikU(k) + ∆tβikL(U(k))

)
, i ∈ J1, mK, L(U) = −∂xU

U(0) = Un, U(m) = Un+1 (4.26)

where αij and βik are defined in section 3.6.

In the case continuous in space and discrete in time, we can also write

eq. (4.10) & eq. (4.11) ⇒ Un+1 = Un +
step

∑
α=1

γα(−ika)α(∆t)αUn

Or
∣∣∣Un+1

∣∣∣ = (1 +
step

∑
α=1

γα(−ika)α(∆t)α) |Un|

⇒ eε∆te−iω∆t = (1 +
step

∑
α=1

γα(−ika)α(∆t)α) = λ

⇔ w
k
= atan

(
−I(λ)

R(λ)

)
1

k∆t

Following this approximation, we compute the dispersion Ck/C with Ck = w
k for all

wave-number k and C = a in eq. (4.13).
For classical Runge-Kutta methods (RK) [117], we show dispersion curves in fig. 4.4. The
first and already known result is that the larger the order of accuracy is, the less the method
is dispersive. Now we compare the dispersion behaviour with several Strong-Stability-
Preserving Rung-Kutta methods (SSPRK).

FIGURE 4.3: Dispersion analysis, SSPRK3 schemes
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Notation: SSPRK(s,o) corresponds to a oth order of approximation SSPRK method with
s steps, with s ≥ o. And RKo corresponds to a oth order of approximation RK method.

Methods used can be found in [118] for the third order of approximation (see figure 4.3)
and [118, 112, 56] for the fourth order (see figure 4.5).

FIGURE 4.4: Dispersion analysis, RK schemes

The figure 4.3 show that the SSPRK(3,3) scheme is as much accurate than RK3. Then,
it’s clear that the SSPRK(5,3) is the less dispersive than others third order method, including
SSPRK(4,3) which already less dispersive than SSPRK(3,3). However, to see the benefit of
the use of SSPRK(5,4) instead of SSPRK(4,3) in term of cpu-time, it requires a CFL condi-
tion at least multiply by 5/4. Even if it is possible, we choose to limit our time integration
methods at s = p + 1 steps, as it is chosen in the Aerosol code.

FIGURE 4.5: Dispersion analysis, SSPRK4 schemes
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In fig. 4.5, we compare three different types of fourth order SSPRK with 5 steps. They
are quite similar in terms of dispersion. Because of negative coefficients in the Butcher’s
tab of the method SSPRK(5,4) - Ruuth & Gottlieb 2006, we decide to do not use it. Indeed,
non-negative coefficient schemes are more appropriate to apply to general problems because
they do not use downwind-biased (positive coefficients correspond to upwind-biased [112].
Then, knowing that SSPRK(5,4) - Ruuth 2006 is an improvement of SSPRK(5,4) - Spitteri &
Ruuth 2002 [112], we decide to keep it for our numerical tests.

4.3.3 Fully discrete analysis
Methodology

We analyze now the fully discrete schemes obtained using the RK, SSPRK and DeC time
marching methods presented in 3.6. Let us consider as an example the SSPRK schemes 3.48.
If we define as A := M−1Kx we can write the schemes as follows

U(0) := Un

U(s) := ∑s−1
j=0

(
γsjU(j) + ∆tµsj AU(j)

)
, s ∈ J1, SK,

Un+1 := U(S).

(4.27)

Expanding all the stages, we can obtain the following formulation:

Un+1 = U(0) +
S

∑
j=1

νj∆tj AjU(0) =

(
I +

S

∑
j=1

νj∆tj Aj

)
Un, (4.28)

where coefficients νj in eq. (4.28) are obtained as combination of coefficient γsj and µsj in
eq. (4.27) and I is the identity matrix. For example, coefficients of the fourth order of accu-
racy scheme RK4 are ν1 = 1, ν2 = 1/2, ν3 = 1/6 and ν4 = 1/24.

We can now compress the problem proceeding as in the time continuous case. In partic-
ular, using eq. (4.18) one easily shows that the problem can be written in terms of the local
p× p matrices Ã := aM̃−1K̃x and in particular that

Ũn+1 = GŨn with G := eε∆te−iω∆t =

(
Ĩ +

S

∑
j=1

νj∆tj Ãj

)
,

where G ∈ Rp×p is the amplification matrix depending on θ, ∆t and ∆x. Considering each
eigenvalue λi of G, we can write the following formulas for the corresponding phase ωi and
damping coefficient εi{

eεi∆t cos(ωi∆t) = Re(λi),
−eεi∆t sin(ωi∆t) = Im(λi),

⇔
{

ωi∆t = arctan
(
−Im(λi)
Re(λi)

)
,

(eεi∆t)2 = Re(λ)2 + Im(λ)2,

⇔
{ωi

k
= arctan

(
−Im(λi)
Re(λi)

)
1

k∆t ,

εi = log (|λi|) 1
∆t .



50 Chapter 4. Analysis of the one-dimensional formulation

For the DeC method we can proceed with the same analysis transforming also the other in-
volved matrices into their Fourier equivalent ones. Using (3.52) these terms would contribute
to the construction of G not only in the Ã matrix, but also in the coefficients νj, which be-
come matrices as well. At the end we just study the final matrix G and its eigenstructure,
whatever process was needed to build it up.

The matrix G represents the evolution in one timestep of the Fourier modes for all the
p different types of degrees of freedom. The damping coefficients εi tell if the modes are
increasing or decreasing in amplitude and the phase coefficients ωi describe the phases of
such modes.

We remark that a necessary condition for von Neumann stability of the scheme is that
|λi| ≤ 1 or, equivalently, εi ≤ 0 for all the eigenvalues. The goal of our study is to find the
largest CFL number for which the stability condition is fulfilled and such that the dispersion
error is not too large. In particular, we are looking for the largest CFL number

CFL := |a| ∆t
∆x

, (4.29)

with constant a, that provides stability to the method [42]. Implicitly, the CFL constraint
implies a bound on the timestep ∆t. We remark that this CFL constraint is comprehensive of
the whole space–time discretization and cannot hence be assumed only by the time scheme
or the spatial discretization. In particular for the DeC schemes, it is not possible to decouple
the spatial and the time discretization. Furthermore, we notice that the matrix G depends not
only on θ, ∆x and ∆t, but also on at the stabilization coefficients τK. Hence, the proposed
analysis should contain an optimization process also along the stabilization parameter. With
the notation of section 3.2, we will in particular set

SUPG : τK = δ∆x/|a|,

OSS : τK = δ∆x|a|,

CIP : τf = δ∆x2|a|.

One of our objectives is to explore the space of parameters (CFL,δ), and to propose
criteria allowing to set these parameters to provide the most stable, least dispersive and
least expensive methods. A clear and natural criterion is to exclude all parameter values for
which we obtain a positive damping coefficient ε(θ) > 10−12 for any value of the reduced
wavenumber θ (taking into account the machine precision errors that might occur). Doing
so, we obtain what we will denote as stable area in (CFL, θ) space. For all the other points
we propose 3 strategies to minimize the product between error and computational cost. In
the following we describe the 3 strategies to find the best parameters couples (CFL,δ):

1. maximize the CFL in the stable area;

2. minimize a global solution error, denoted by ηu, while maximizing the CFL in the
stable area. In particular, we start from the relative square error of u[

u(t)− uex(t)
uex(t)

]2

=
[
eεt−it(ω−ωex) − 1

]2
(4.30)

=
[
eεt cos(t(ω−ωex))− 1

]2
+
[
eεt sin(t(ω−ωex))

]2
(4.31)

=e2εt − 2eεt cos(t(ω−ωex)) + 1. (4.32)
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Here, we denote with ε and ω the damping and phase of the principal mode. For
a small enough dispersion error |ω − ωex| � 1, we can expand the cosine in the
previous formula in a truncated Taylor series as[

u(t)− uex(t)
uex(t)

]2

≈
[
eεt − 1

]2︸ ︷︷ ︸
Damping error

+ eεtt2 [ω−ωex]
2︸ ︷︷ ︸

Dispersion error

. (4.33)

We then compute an error at the final time T = 1, over the whole phase domain, using
at least 3 points per wave 0 ≤ k∆xp ≤ 2π

3 , with ∆xp = ∆x
p , and p the degree of the

polynomials. We obtain the following L2 error definition,

ηu(ω, ε)2 :=
3

2π

[∫ 2π
3

0
(eε − 1)2dk +

∫ 2π
3

0
eε(ω−ωex)

2dk

]
. (4.34)

Recalling that ε = ε(k∆x, CFL, δ) and ω = ω(k, ∆x, CFL, δ) and ωex = ak, we need
to further set the parameter ∆xp. We choose it to be large ∆xp = 1, with the hope
that for finer grids the error will be smaller. Finally, we seek the couple (CFL∗, δ∗)
allowing to solve

(CFL∗, δ∗) := arg max
CFL

{
η(ω(CFL, δ)), ε(CFL, δ)) < µ min

(CFL,δ)stable
η(ω(CFL, δ), ε(CFL, δ))

}
.

(4.35)

3. minimize the dispersion error ηω while maximizing the CFL in the stable area. In
particular we set in this case

η2
ω(ω) :=

∫ 2π
3

0

(
ω−ωex

ωex

)2

dk. (4.36)

As before we choose the optimal parameters from eq. (4.35).

For the second and third strategies, the parameter µ must be chosen in order to balance the
requirements on stability and accuracy. After having tried different values, we have set µ
to 1.3 providing a sufficient flexibility to obtain results of practical usefulness, which we
verified in numerical computations as we will see later.

In the following we will compare all the methods with these error measures, in order to
suggest the best possible schemes between the proposed ones.

4.4 Results of the fully discrete spectral analysis
The typical results reported in figs. 4.6 to 4.10 show in the plane (δ, CFL) the unstable

(crossed) and stable regions, and with colored symbols the optimal points corresponding to
the three strategies introduced earlier.

In case of ambiguity, the point with maximum δ is marked in the figures. A summary of
the results for all combinations of schemes is provided in tables 4.2 to 4.4.

Before commenting these results we remark that some of the schemes are equivalent. For
example without mass lumping Bernstein and Basic elements are the same up to an orthogo-
nal change of variable. This is not the case when using DeC due to the difference in lumped
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ηu. (CFL, δ) plot of ηu (blue scale) and instability area (black crosses) for

Cubature elements SSPRK scheme with CIP stabilization method. From left
to right P1, P2, P3. The purple circle is the optimizer of ηu, the green cross is

the optimizer of ηω, the red star is the maximum stable CFL.

mass matrices. Similarly, the mass matrix used for Cubature elements is already diagonal,
which makes the DeC procedure entirely equivalent to the RK scheme with Butcher tableau
corresponding to the quadrature weights of the DeC. Only for SUPG a difference is observed
due to the contributions to the mass matrix of the stabilization.

Concerning the plots, it is interesting to remark the appearance of four different structures
which have an impact on the practical usefulness of some of the combinations.

• The first kind of structures are associated to schemes presenting V-shaped stability
regions. We can observe these on figs. 4.6 and 4.7, for p = 1. This shape requires a
very careful choice of the stability parameter as small perturbations of δ may lead, for a
given CFL, to an unstable behavior. Generally, lowering the CFL increases somewhat
the robustness allowing more flexibility in the choice of δ. We highlight that this type
of topology is common to all the second order schemes, as well as to all DeC schemes
with Basic and Bernstein elements for degree p ≥ 2.

• Another structure typically observed is an L-shaped stability region as in figs. 4.6
and 4.7 for p = 2, 3. This shape is characterized by a CFL bound CFL ≤ C1 and
a one–sided bound on the stabilization coefficient δ ≤ C2CFLC3 , and it much more
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robust concerning the choice of the stability parameter as all values below a certain
maximum are stable. Most of the schemes with p ≥ 2, besides those listed in the first
group, belong to this category.

• The third kind of structures involve “broom"- or “box”-shaped stability domains. In
the first case we observe two clear bounds δ ≥ C1CFLC2 and δ < C3 plus a small
stable stripe with higher CFL > (C3/C1)

1/C2 and δ > C3. This is for example visible
in fig. 4.9. In the second case, see for example fig. 4.8, we also have two bounds of the
type CFL ≥ C1 and δ < C2, with an additional stable stripe outside these bounds. The
problem with this type of methods is that the optimal parameters, viz. those involving
the highest CFL, are within a stripe which means that instability may be introduced by
lowering the CFL1 . For applications involving multiscale problems, or variable mesh
sizes this is clearly unacceptable in practice. Schemes showing this sort of behaviors
are all the SUPG schemes with DeC time stepping, and with p ≥ 2, for which we
indicate good values (CFL, δ) in table 4.5.

• Finally, the DeC scheme with Basic elements and p = 3 shows essentially everywhere
instability for CIP and OSS stabilization. The study finds some very thin oblique
stripes of stability, but they are not wide enough to find stable regions. See fig. 4.10
for an example.

4.4.1 Dispersion and damping
In figs. 4.11 and 4.12 are represented the phase and the damping of the principal eigen-

value depending on θ = k∆x = 2π
Nx

for few schemes (cubature DeC OSS and Bernstein
SSPRK CIP), using the best parameters (CFL, δ) found in the previous analysis with the
optimization of ηu. As before, we notice that the mode for p = 1 is particularly dispersive.
Nevertheless, the frequencies on which the scheme is dispersive are also much damped as
we see in the right plots. For higher order methods, the phase ω of the principal mode is

1These values do not allow to decrease the CFL
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Element & No stabilization SUPG
Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
as

ic RK / 0.389 0.389 0.624 (0.464) 0.492 (0.07) 0.389 (0.027)
SSPRK / 0.492 0.389 0.889 (0.464) 0.554 (0.089) 0.438 (0.027)

DeC / / / 1.701 (0.588) 0.492 (0.229)∗ 0.492 (0.089)∗
C

ub
. RK / 0.492 0.492 0.971 (0.767) 0.624 (0.13) 0.464 (0.064)

SSPRK / 0.624 0.492 1.512 (0.642) 0.838 (0.13) 0.538 (0.064)
DeC / 0.492 0.492 1.701 (0.398) 1.0 (0.081)∗ 0.588 (0.041)∗

B
er

n.

RK / 0.389 0.389 0.624 (0.464) 0.492 (0.07) 0.389 (0.027)
SSPRK / 0.492 0.389 0.889 (0.464) 0.554 (0.089) 0.438 (0.027)

DeC / / / 1.701 (0.588) 1.0 (0.367)∗ 0.702 (0.229)∗

Element & OSS CIP
Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
as

ic RK 0.681 (0.767) 0.478 (0.077) 0.378 (0.032) 0.838 (0.094) 0.538 (5.54e-03) 0.4 (8.38e-04)
SSPRK 1.093 (0.767) 0.605 (0.109) 0.425 (0.038) 1.125 (0.119) 0.624 (7.02e-03) 0.464 (6.61e-04)

DeC 0.744 (2.29) 0.554 (0.289) / 0.838 (0.289) 0.588 (0.02) /

C
ub

. RK 1.093 (0.702) 0.681 (0.143) 0.538 (0.049) 0.971 (0.191) 0.723 (0.011) 0.538 (1.84e-03)
SSPRK 1.557 (1.0) 0.863 (0.17) 0.605 (0.049) 1.512 (0.242) 0.838 (0.014) 0.538 (3.93e-03)

DeC 1.093 (0.702) 0.681 (0.143) 0.538 (0.049) 0.971 (0.191) 0.723 (0.011) 0.538 (1.84e-03)

B
er

n.

RK 0.681 (0.767) 0.478 (0.077) 0.378 (0.032) 0.838 (0.094) 0.538 (5.54e-03) 0.4 (8.38e-04)
SSPRK 1.093 (0.767) 0.605 (0.109) 0.425 (0.038) 1.125 (0.119) 0.624 (7.02e-03) 0.464 (6.61e-04)

DeC 0.744 (2.29) 0.052 (0.215) 0.109 (0.215) 0.838 (0.289) 0.059 (0.016) 0.119 (7.02e-03)

TABLE 4.2: Optimized CFL and penalty coefficient δ in parenthesis, only
maximizing CFL. The sign / means unconditionally unstable.

∗ These values do not allow to decrease the CFL.

closer to the exact phase ωex = ak in the left figures. We observe that the principal mode
of higher order methods is much more precise in terms of dispersion than the first order one,
but also less damped in the low frequency area θ ≥ 2π

3 .
For completeness, a comparison of damping and phase coefficients for DeC and SSPRK

for all the stabilization techniques and elements can be found in Appendix D. There we used
the (CFL,δ) coefficients found by minimizing ηu in table 4.3, and we try also to compare
the obtained results. Nevertheless, we must remark that the different CFLs used for different
schemes do not allow a direct comparison.

The different strategies lead to different values of best CFL and δ. In general, the most
reliable is the one that optimizes ηu. Looking at table 4.3, we can compare the different
elements, stabilization terms and time integration techniques and obtain some conclusions.

• All the first order unstabilized p = 1 schemes are unconditionally unstable, i.e., for all
CFL.

• In general SSPRK time integration methods allow to use higher CFL with respect to
both classical RK methods and DeC. In particular, for some of these tests CFL> 1,
meaning that the combination of spatial discretization and the time discretization allow
to set the ratio ∆t/∆x larger than usual. This should not be a surprise as the SSPRK
schemes are taylored to maximize the CFL number.
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FIGURE 4.11: Comparison of dispersion in the fully discrete case, using
coefficients from 4.3, Cubature elements, DeC scheme and OSS stabilization
method. P1 elements in red, P2 elements in blue and P3 elements in green.

The phase ω of the principal eigenvalues is on the left and the damping εi on
the right
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FIGURE 4.12: Comparison of dispersion in the fully discrete case, using
coefficients from 4.3, Bernstein elements, SSPRK scheme and CIP

stabilization method. B1 elements in red, B2 elements in blue and B3
elements in green. The phase ω of the principal eigenvalues is on the left and

the damping εi on the right.



4.4. Results of the fully discrete spectral analysis 57

Element & No stabilization SUPG
Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
as

ic RK / 0.151 0.191 0.389 (0.089) 0.17 (2.57e-03) 0.215 (8.38e-03)
SSPRK / 0.191 0.242 0.492 (0.089) 0.215 (2.57e-03) 0.273 (5.22e-03)

DeC / / / 0.702 (0.588) 0.143 (0.022) 0.024 (0.013)
C

ub
. RK / 0.492 0.242 0.971 (0.538) 0.624 (0.045) 0.222 (0.019)

SSPRK / 0.624 0.307 1.304 (0.378) 0.723 (0.038) 0.298 (3.78e-03)
DeC / 0.492 0.242 0.346 (0.642) 0.702 (0.026) 0.203 (0.041)

B
er

n.

RK / 0.151 0.191 0.389 (0.089) 0.17 (2.57e-03) 0.215 (8.38e-03)
SSPRK / 0.191 0.242 0.492 (0.089) 0.215 (2.57e-03) 0.273 (5.22e-03)

DeC / / / 0.702 (0.588) 0.346 (0.367)∗ 0.588 (0.289)∗

Element & OSS CIP
Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
as

ic RK 0.335 (0.077) 0.165 (3.78e-03) 0.209 (0.013) 0.4 (0.011) 0.165 (1.60e-04) 0.222 (2.03e-04)
SSPRK 0.478 (0.077) 0.209 (3.78e-03) 0.265 (9.15e-03) 0.624 (0.011) 0.191 (2.03e-04) 0.257 (3.26e-04)

DeC 0.229 (0.522) 0.197 (0.049) / 0.346 (0.077) 0.203 (2.42e-03) /

C
ub

. RK 0.863 (0.492) 0.605 (0.041) 0.235 (0.012) 0.971 (0.119) 0.624 (3.46e-03) 0.257 (1.13e-04)
SSPRK 1.23 (0.412) 0.767 (0.041) 0.298 (4.12e-03) 1.304 (0.094) 0.723 (3.46e-03) 0.298 (1.45e-04)

DeC 0.863 (0.492) 0.605 (0.041) 0.235 (0.012) 0.971 (0.119) 0.624 (3.46e-03) 0.257 (1.13e-04)

B
er

n.

RK 0.335 (0.077) 0.165 (3.78e-03) 0.209 (0.013) 0.4 (0.011) 0.165 (1.60e-04) 0.222 (2.03e-04)
SSPRK 0.478 (0.077) 0.209 (3.78e-03) 0.265 (9.15e-03) 0.624 (0.011) 0.191 (2.03e-04) 0.257 (3.26e-04)

DeC 0.229 (0.522) 0.052 (0.215) 0.109 (0.215) 0.346 (0.077) 0.059 (0.016) 0.119 (7.02e-03)

TABLE 4.3: Optimized CFL and penalty coefficient δ in parenthesis,
minimizing ηu. The sign / means unconditionally unstable.

∗ These values do not allow to decrease the CFL.

• With Cubature elements we can use larger CFL conditions than with Basic and Bern-
stein elements.

• Concerning efficiency, we do not observe any impact of the choice of the stabilization
approach on the magnitude of the allowed CFL. Other factors are much more relevant
in this respect. For example, for SUPG we need to stress the advantage of using DeC
w.r.t. the possibility of avoiding the inversion of the non-diagonal mass matrix required
by the full consistency of the method. For CIP the larger stencil and non-local data
structure gives a small overhead, and, for OSS, the gradient projection favors clearly
cubature elements for which this phase requires no matrix inversion.

• Some combinations produce very unstable schemes. As remarked also before, DeC
with high order Basic elements may have problems in the mass lumping, and we can
see an example with the OSS and CIP stabilization.

• DeC with SUPG stabilization leads to stability regions that are not comprehending all
the CFLs smaller than the one inside the region, for a fixed δ. This is very danger-
ous, for instance when doing mesh adaptation algorithms, hence, we marked with an
asterisk in tables 4.2 to 4.4 such schemes and we put in table 4.5 reliable values of
(CFL,δ).
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Element & No stabilization SUPG
Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
as

ic RK / 0.191 0.307 0.059 (0.289) 0.191 (0.027) 0.307 (0.044)
SSPRK / 0.242 0.307 0.084 (0.289) 0.242 (0.027) 0.346 (0.035)

DeC / / / 0.412 (0.367) 0.242 (0.089)∗ 0.017 (0.113)∗

C
ub

. RK / 0.492 0.389 0.538 (0.767) 0.298 (0.316) 0.165 (0.156)
SSPRK / 0.624 0.492 0.624 (0.915) 0.4 (0.316) 0.257 (0.186)

DeC / 0.492 0.389 0.346 (0.642) 0.346 (0.179)∗ 0.1 (0.09)∗

B
er

n.

RK / 0.191 0.307 0.059 (0.289) 0.191 (0.027) 0.307 (0.044)
SSPRK / 0.242 0.307 0.084 (0.289) 0.242 (0.027) 0.346 (0.035)

DeC / / / 0.412 (0.367) 0.289 (0.289)∗ 0.203 (0.289)∗

Element & OSS CIP
Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
as

ic RK 0.478 (0.186) 0.13 (0.265) 0.116 (0.13) 0.464 (0.037) 0.123 (0.011) 0.165 (3.46e-03)
SSPRK 0.605 (0.378) 0.165 (0.265) 0.335 (0.026) 0.624 (0.046) 0.143 (0.014) 0.346 (5.22e-04)

DeC 0.412 (0.943) 0.147 (0.389) / 0.588 (0.13) 0.143 (0.016) /

C
ub

. RK 0.971 (0.492) 0.538 (0.119) 0.425 (0.024) 0.971 (0.119) 0.538 (0.011) 0.4 (4.00e-04)
SSPRK 1.23 (0.492) 0.681 (0.119) 0.478 (1.43e-03) 1.304 (0.119) 0.723 (7.02e-03) 0.257 (1.11e-03)

DeC 0.971 (0.492) 0.538 (0.119) 0.425 (0.024) 0.971 (0.119) 0.538 (0.011) 0.4 (4.00e-04)

B
er

n.

RK 0.478 (0.186) 0.13 (0.265) 0.116 (0.13) 0.464 (0.037) 0.123 (0.011) 0.165 (3.46e-03)
SSPRK 0.605 (0.378) 0.165 (0.265) 0.335 (0.026) 0.624 (0.046) 0.143 (0.014) 0.346 (5.22e-04)

DeC 0.412 (0.943) 0.052 (0.215) 0.109 (0.215) 0.588 (0.13) 0.059 (0.016) 0.119 (7.02e-03)

TABLE 4.4: Optimized CFL and penalty coefficient δ in parenthesis,
minimizing ηω. The sign / means unconditionally unstable.

∗ These values do not allow to decrease the CFL.

DeC SUPG
Element p = 2 p = 3

Basic 0.08 (0.025) 0.059 (0.035)
Cubature 0.346 (0.025) 0.242 (2.22 e-03)
Bernstein 0.03 (0.025) 0.1 (0.1)

TABLE 4.5: Optimized CFL and penalty coefficient δ in parenthesis, stable
for all smaller CFLs

4.5 A note on nonlinear stability
The stability analysis performed before holds only for linear problems. For nonlinear

ones the original ansatz of supposing that the solutions can be decomposed orthogonally
into waves that propagate at constant speed does not hold anymore. Nevertheless, the sta-
bilization methods presented also introduces some nonlinear stabilization. To show it we
will briefly consider their potential for dissipating entropy. In order to test so, we neglect
the time discretization, the used elements and the quadrature and the discrete differentiation
formulas.

Consider any convex smooth entropy ρ(u), i.e., ρuu(u) > 0, the respective entropy
variables ν := ρu(u) and the entropy flux g(u) such that ρu fu = gu. In the following
discussion, we consider the entropy variable νh = ρu(u)h to be in the finite element space,
while uh will be defined as the projection onto the finite element space of the uniquely
defined function ν→ u = u(ν), as proposed in [1].
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When substituting vh = νh, the Galerkin discretization of the conservation law becomes

∑
K

∫
K

νh (∂tuh + ∂x f (uh)) dx = ∑
K

∫
K

∂tρh + ∂xghdx =
∫

Ω
∂tρh + [gh]∂K , (4.37)

which, according to the boundary conditions, gives us a measure of the variation of the
entropy.

The CIP stabilization must be slightly modified for nonlinear equations with nontrivial
entropies, so that it reads

s(v, u) := ∑
K,f∈K

∫
f
[∂xvT]ρuu(u)−1[∂xν(u)]dΓ, (4.38)

where the inverse of the hessian of the entropy must be added for unit of measure reasons and
it is positive definite and invertible. So that when we substitute v = νh in the stabilization
term, we obtain

s(ν, uh) = ∑
K,f∈K

∫
f
[∂xνT

h ]ρuu(uh)
−1[∂xνh]︸ ︷︷ ︸

>0

dΓ. (4.39)

It would guarantee a decrease in the discrete total entropy. Moreover, this formulation coin-
cide with (3.21) when we are dealing with the energy as entropy.

For the OSS we modify, similarly the formulation (3.25) into{
s(v, u) := ∑K τK

∫
K ∂xvTρuu(u)−1(∂xν(u)− w)dx, with∫

K zT(w− ∂xν(u)), ∀z ∈ Vh
(4.40)

As in the linear case, we can take τK = τ, and test with vh = νh in the stabilization term and
we substitute z = τρuu(u)−1,Tw in the previous equation and we sum this 0 contribution to
the stabilization term, we obtain

s(νh, uh) =∑
K

τ
∫

K
∂xνT

h ρuu(uh)
−1(∂xνh − wh) + ρuu(uh)wT

h ρuu(uh)
−1(wh − ∂xνh)dx =

∑
K

τ
∫

K
(∂xνh − wh)

Tρuu(uh)
−1(∂xνh − wh)dx ≥ 0.

(4.41)

As for the CIP we can say that the OSS stabilization reduces entropy. Anyway, this analy-
sis does not guarantee that the fully discrete method will be entropy stable, as all the other
discretizations (time, quadrature, differentiation and interpolation) are not taken into consid-
eration.

For the SUPG stabilization, as the linear analysis of section 3.2.1 shows, the spatial and
temporal derivatives need to be properly combined. This can be done easily for space-time
discretizations (see e.g. in [10]), context in which SUPG and least squares stabilization co-
incide. In simple cases with constant convexity entropy, namely the energy, one can bound
other types of energy norm in time, but not the entropy itself. For explicit methods, and
general convex entropies, the non-symmetric nature of the method requires ad-hoc analysis
which we leave out of this paper. More elaborated analysis are possible with other types
of stabilization, as the ones proposed in [1, 73, 58], and they will be the object of future
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research.

In the next sections, we perform also some nonlinear tests, where we use the coefficients
we found in the stability analysis for the linear case, in order to understand if this information
is also relevant for nonlinear problems.

4.6 Numerical Simulations
We perform numerical tests to check the validity of our theoretical findings. We will use

elements of degree p, with p up to 3, with time integration schemes of the corresponding
order to ensure an overall error of O(∆xp+1), under the CFL conditions presented earlier in
table 4.3. The integral formulas are performed with high order quadrature rules, for Cubature
elements they are associated with the definition points of the elements themselves, for Basic
and Bernstein we use Gauss–Legendre quadrature formulas with p + 1 points per cell.

4.6.1 Linear advection equation
We start with the one dimensional initial value problem for the linear advection eq. (4.10)

on the domain Ω = [0, 2] using periodic boundary conditions:
∂tu(x, t) + a∂xu(x, t) = 0 (x, t) ∈ Ω× [0, 5], a ∈ R,
u(x, 0) = u0(x),
u(0, t) = u(2, t), t ∈ [0, 5],

(4.42)

where u0(x) = 0.1 sin(πx). Clearly the exact solution is uex(x, t) = u0(x − at) for all
x ∈ Ω. We discretize the mesh with uniform intervals of length ∆x. In particular, we will use
different discretization scales to test the convergence: ∆x1 = {0.05, 0.025, 0.0125, 0.00625}
for P1 elements, ∆x2 = 2∆x1 for P2 elements and ∆x3 = 3∆x1 for P3 elements. This
allows to guarantee the use of the same number of degrees of freedom for different p.

We will compare the errors obtained with SSPRK and DeC time integration method, with
all the stabilization methods (SUPG, OSS and CIP) and with Basic, Cubature and Bernstein
elements.

A representative result is provided as an example in figs. 4.13(a) and 4.13(b): it shows a
comparison between Cubature and Basic elements with OSS stabilization and SSPRK time
integration. As we can see, the two schemes have very similar error behavior, but the Basic
elements require stricter CFL conditions, see table 4.3, and have larger computational costs
because of the inversion of the mass matrix. A summary table with the order of accuracy
reached by each simulations in table 4.6. The plots and all the errors are available at the
repository [87].
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third order
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fourth order

(a) Basic elements.
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SSPRK4 & P3 - CFL : 0.2981
fourth order

(b) Cubature elements.

FIGURE 4.13: Error decay for linear advection with the OSS stabilization
and SSPRK. P1, P2 and P3 elements are, respectively, in blue green and red.

Element & No stabilization SUPG OSS CIP
Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

C
ub

. SSPRK / 1.98 3.98 2.04 2.93 3.98 2.03 2.95 3.98 2.05 2.94 3.98
DeC / 1.98 3.98 2.0 2.88 3.97 2.03 2.95 3.98 2.12 2.96 3.98

B
as

ic SSPRK / 3.84 3.97 2.0 2.81∗∗ 3.98 2.0 3.05∗∗ 3.98 2.0 3.03∗∗ 3.97
DeC / / / 2.02 2.72 2.05 1.95 2.93 / 1.98 2.82 /

B
er

n. SSPRK / 3.84 3.97 2.0 2.81∗∗ 3.98 2.0 3.05∗∗ 3.98 2.0 3.03∗∗ 3.97
DeC / / / / / / 1.98 3.05 2.04 1.98 3.0 2.0

TABLE 4.6: Summary table of convergence orders, using coefficients
obtained by minimizing ηu in table 4.3.

∗∗ These values are computed using parameters from the minimization of ηω

in table 4.4

Looking at the table we can make the following observations. First of all, we remark
that despite the weak stability obtained for unstabilized methods in the spectral analysis, in
practice the absence of damping makes it difficult to obtain converging results with a fixed
CFL and for all p. For this reason, in the following we will only focus on stabilized methods.

We observe otherwise that almost all the stabilized scheme provide the expected order
of accuracy. When the order is correct there are minor differences in the errors. There are
however few cases that fail in doing so and deserve some comments. In particular, we notice
the failure of DeC for Basic P3 and Bernstein B3 elements.While disappointing, this negative
result is not completely new. Indeed, in [107] obtaining correct convergence with DeC for
some orders required both increasing the number of substeps, thus making the method more
expensive than the corresponding RK scheme, as well as including penalty terms on the
jumps of higher order derivatives. Finally, note that this is in line with these methods falling
in the family of “broom”, “box”, and thin striped shaped stability regions which we expect
to be difficult to use in practice. Concerning the stabilization of high order derivatives this is
also something a few authors advocate, for instance using time relaxation methods [40, 11],
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Cubature elements

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r
DeC

P1 SUPG stab
P1 OSS stab
P1 CIP stab
P2 no stab
P2 SUPG stab
P2 OSS stab
P2 CIP stab
P3 no stab
P3 SUPG stab
P3 OSS stab
P3 CIP stab

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 SUPG stab
P1 OSS stab
P1 CIP stab
P2 no stab
P2 SUPG stab
P2 OSS stab
P2 CIP stab
P3 no stab
P3 SUPG stab
P3 OSS stab
P3 CIP stab

Basic elements

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

DeC
P1 SUPG stab
P1 OSS stab
P1 CIP stab
P2 SUPG stab
P2 OSS stab
P2 CIP stab
P3 SUPG stab

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 SUPG stab
P1 OSS stab
P1 CIP stab
P2 no stab
P2 SUPG stab
P2 OSS stab
P2 CIP stab
P3 no stab
P3 SUPG stab
P3 OSS stab
P3 CIP stab

Bernstein elements
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FIGURE 4.14: Error for linear advection problem (4.42) with respect to
computational time for all elements and stabilization techniques: DeC on the

left, SSPRK on the right

or using the jumps of high-order derivatives of variables [62]. While this mayor explains
the behavior observed, since we did not observe the need of including these terms for other
cases than the DeC, we decided to focus on the simplest and most efficient approaches.

An interesting comparison is the one in fig. 4.14 where we plot the error of each method
against computational time. Note that the simulations are all obtained using the CFL and the
penalty coefficient δ reported in table 4.3, except in particular cases∗∗ where the minimiza-
tion process with ηu found values that do not dissipate enough the most dispersive waves,
hence for these schemes we use the parameters reported in table 4.4. In general, we can state
that the Cubature elements obtain the best computational time as they are mass matrix free.
On the other side, Bernstein elements are slightly more expensive than Basic elements for
DeC, because of the CFL restrictions that table 4.3 requires.

Comparing time discretizations, we see that despite the inversion of the mass matrix,
SSPRK converges more rapidly than DeC. We think this is related to several reasons. First
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of all, the DeC CFL conditions are stricter, and also DeC requires more stages. Even though
not explicitly inverted, the mass matrix still needs to be assembled and multiplied to the
solutions in the correction terms. Note however that the situation might radically change in
the multidimensional case in which the mass matrix inversion in the SSPRK will provide a
much larger overhead.

On the stabilization side, OSS and CIP behave very similarly (also their CFLs do), but
overall, the CIP is a little faster as it does not require the inversion of the mass matrix, for ex-
ample, in DeC. As expected, the SUPG stabilization requires more computational time, even
if it often has larger CFL conditions. This is even clearer when using Cubature elements,
where SUPG is the only case in which we still need to invert the mass matrix with RK time
stepping.

Such a care in avoiding the inversion of mass matrices is meaningful when talking about
mass matrices coming, for example, from multi-dimensional problems or, at least, high order
methods. In simple cases where the mass matrix is tridiagonal (P1 elements in one dimen-
sional problems), the linear systems given by the mass matrix can be solved with anO(N) of
arithmetical computations, hence, not changing the computational cost order of these types
of methods.

To see the benefit of stabilization techniques when the initial solution is not continuous,
we consider now the step initial data

u(x, 0) =

{
1, if x < 1.1,
0, else.

(4.43)

For this study, with consider t f = 0.35s and 201 nodes, i.e. ∆x1 = 0.01, ∆x2 = 0.02
and ∆x3 = 0.03. As expected, all stabilization terms reduce numerical instabilities which
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FIGURE 4.15: Solution of linear advection equation with discontinuous
initial condition using Cubature elements and SSPRK schemes: P1 at left, P2

at the center and P3 at right.

appear without any stabilization (in cyan in fig. 4.15). The SUPG, OSS and CIP techniques
behave similarly, moreover the first order unstabilized method shows wild oscillations that
scale differently from all the other solutions. All the stabilized solutions have comparable
accuracy for all orders.

4.6.2 Application to Burgers’ equation
We consider here application to a simple nonlinear problem to verify the applicability of

the conditions obtained in the linear case. We test the numerical schemes on the solution of
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the Burgers’ equation
∂tu(x, t) + ∂x

u2(x,t)
2 = 0 (x, t) ∈ Ω× [0, t f ],

u(x, 0) = u0(x), x ∈ Ω
u(xD, t) = g(xD, t), xD ∈ ∂Ω,

(4.44)

where Ω = [0, 2] and u0(x) = − tanh(4(x − 1)) and g(x, t) = uex(x, t) is the bound-
ary condition. The exact solution is obtained using the method of characteristics and reads
uex(x, t) = u0(χ) where

χ = x− u0(χ)t (4.45)

for all (x, t) ∈ Ω× [0, t f ], solving the nonlinear equation (4.45) for χ at every point (x, t).
To obtain the exact solution we employed the Broyden method implemented in SciPy library
[125]. Note that the analytical solution shows a shock at time

ts = −
1

min
x∈Ω

u′0(x)
=

1
4

. (4.46)

This knowledge allows to set for this study t f = 0.5ts = 0.125, at which the solution is
still smooth and the convergence of the higher order approximations can be investigated. As
before, in doing this we perform conformal refinement of the 1D grid, while paying attention
to guarantee to use the same number of degrees of freedom for different p, and in particular
taking: ∆x2 = 2∆x1 for P2 elements and ∆x3 = 3∆x1 for P3 elements.

Using the CFL and δ obtained in table 4.3 we obtain the experimental order of conver-
gence in table 4.7.

Element & No stabilization OSS CIP
Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

C
ub

. SSPRK / 1.99 3.71 2.05 2.85 3.67 2.05 2.85 3.68
DeC / 1.99 3.71 2.06 2.85 3.57 2.06 2.85 3.69

B
as

ic SSPRK / 1.99 3.82 2.07 2.56 3.66 2.06 2.48 3.66
DeC / / / 2.7 2.92 / 2.59 2.85 /

B
er

n. SSPRK / 1.99 3.82 2.07 2.56 3.66 2.06 2.48 3.66
DeC / / / 2.7 2.9 1.41 2.59 2.87 1.37

TABLE 4.7: Summary table of convergence order, using coefficients obtained
in table 4.3. The sign / means unstable.

The results are very similar to the ones obtained for the linear advection case. There
is a small improvement in Basic and Bernstein P2 SSPRK cases, while the DeC Basic and
Bernstein P3 cases are even worse than the linear advection ones. The DeC P1 Basic and
Bernstein cases show a super–convergent behavior. The interested reader will find the con-
vergence plots for all the combinations on the repository [87]. Here we focus on the com-
parison between error and computational time, reported in fig. 4.16.
Again for Cubature elements it is clear that there is an advantage in using high order meth-

ods, in particular for SSPRK methods, which has less stages than DeC. For this test, we only
compare CIP and OSS and they systematically out-perform SUPG. For these two, the differ-
ence in computational time is very minimal for all element choices. This may change in the
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FIGURE 4.16: Error for Burgers’ equation (4.44) with respect to
computational time for all elements and stabilization techniques: DeC on the

left, SSPRK on the right

multidimensional case where the OSS may be penalized on elements requiring the inversion
of the mass matrix.

For DeC Basic and Bernstein P1 elements, the superconvergence of the second order
schemes makes them the best in their category, see table 4.7. For SSPRK the expected
order of convergence of fourth order scheme shows how the high order accurate methods
can provide the fastest and most precise solutions.

To see the benefit of stabilization techniques when a shock occurs, we consider now
t f = 0.3 > ts in fig. 4.17. The simulation is done using 201 nodes, i.e. ∆x1 = 0.01,
∆x2 = 0.02 and ∆x3 = 0.03. As expected, all the solutions introduce some numerical
dispersion around the shock, even if, the L2 norm of the solutions is dissipated. As we
can see, stabilization terms slightly reduce the numerical instability which appears in the
simulations without any stabilization (in cyan in fig. 4.17). Once again, OSS and CIP behave
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Cubature elements and SSPRK schemes
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FIGURE 4.17: Non linear instabilities for Burgers’ equation (4.44) when
t f > ts using Cubature elements and SSPRK schemes: P1 at left, P2 at the

center and P3 at right.

similarly with a shock, and first order accurate schemes behave slightly better than high order
schemes when a shock occurs.

4.6.3 Application to Shallow Water equations
As a final application we consider the non linear Shallow Water equations:{

∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(hu2 + g h2

2 ) + Φ = 0,
x ∈ Ω, t ∈ [0, 5]. (4.47)

Here, h is the water elevation, u the velocity field, g the gravitational acceleration. We will
solve the system on the domain Ω = [0, 200], and add the source term Φ = Φ(x, t) in order
to impose the solution to be equal to

hex(x, t) = h0 + εh0sech2(κ(x− ct)),

uex(x, t) = c
(

1− h0
hex(x,t)

)
,

κ =
√

3ε
4h2

0(1+ε)
, c =

√
gh0(1 + ε).

(4.48)

Following the classical manufactured solution method, we set

Φ(x, t) = −
[

∂t (hex(x, t)uex(x, t)) + ∂x

(
hex(x, t)u2

ex(x, t) + g
h2

ex(x, t)
2

)]
= − [hex(∂tuex + uex∂xuex + g∂xhex)] .

For our study, we set ε = 1.2, h0 = 1 and the initial and Dirichlet boundary condition given
by the exact solution at time 0 and at the borders of the domain.

We discretize the mesh with uniform intervals of length ∆x, and as before we perform a
grid convergence by respecting the constraint ∆x2 = 2∆x1 for P2 elements and ∆x3 = 3∆x1
for P3 elements. In table 4.8 we show the convergence orders for this Shallow Water problem
with the CFL and δ coefficients found in table 4.3.
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Element & No stabilization OSS CIP
Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

C
ub

. SSPRK / 1.96 5.17 2.26 2.69 5.02 2.39 2.68 5.05
DeC / 1.97 5.17 2.28 2.65 4.79 2.7 2.66 5.07

B
as

ic SSPRK / 1.98 5.54 1.94 2.31 4.93 1.95 2.29 4.98
DeC / / / 2.23 2.74 / 2.01 2.58 /

B
er

n. SSPRK / 1.97 2.44 1.94 2.07 2.19 1.95 2.09 2.21
DeC / / / 2.23 2.0 2.0 2.01 2.0 1.98

TABLE 4.8: Summary tab of convergence order, using coefficients obtained
by minimizing ηu. The sign / means unstable.

The results obtained are similar to those of the other cases. The convergence rates are
at least the expected ones with Cubature elements while we still see problems with DeC
and basic elements in the fourth order case, as well as with Bernstein elements for both B2
and B3. On the other hand, some superconvergence is measured in the P3 case with both
Cubature and Basic elements. This creates an even larger bias in the error-cpu time plots,
fig. 4.18, in favor of these higher polynomial degrees.

4.7 Conclusion
In summary, we propose a comparison of high order continuous Galerkin methods with

stabilization techniques for hyperbolic problems. On the linear advection equation, we per-
form a Fourier analysis on the spatial discretization, then a von Neumann analysis on the
space–time discretization given by each combination of stabilization, time discretization and
finite elements. This provides reliable parameters and CFL conditions for all the mentioned
methods that can be used both in the linear advection case and in nonlinear problems, as the
Burgers’ and Shallow Water simulations showed.

The Fourier analysis is limited to one dimensional problems (or structured multidimen-
sional meshes), so the main ongoing development is the verification of the properties of the
methods studied in a multidimensional setting based on the approximation choices suggested
e.g. in [122, 39, 55] and references therein. Note that the parameters found in the present
study may not provide stable results in all cases when passing to multiple space dimensions,
especially when considering non-tensorial representations as e.g. on simplex elements. How-
ever, our preliminary investigations suggest that similar constraints can be formulated also
in these cases.
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Chapter 5

Extension to the two-dimensional
formulation

Chapter Abstract
In this chapter, we study continuous finite element dicretizations for two-dimensional
hyperbolic partial differential equations. The main contribution of this chapter
as in [88], is to provide a fully discrete spectral analysis, which is used to sug-
gest optimal values of the CFL number and of the stabilization parameters in-
volved in different types of stabilization operators. In particular, we analyze the
streamline-upwind Petrov-Galerkin (SUPG) stabilization technique, the contin-
uous interior penalty (CIP) stabilization method and the orthogonal subscale sta-
bilization (OSS). Three different choices for the continuous finite element space
are compared: Bernstein polynomials, Lagrangian polynomials on equispaced
nodes, and Lagrangian polynomials on cubature nodes. For the last choice, we
only consider inexact quadrature based on the formulas corresponding to the de-
grees of freedom of the element, which allows to obtain a fully diagonal mass
matrix. We also compare different time stepping strategies, namely Runge-Kutta
(RK), strong stability preserving RK (SSPRK) and deferred correction time in-
tegration methods. The latter allows to alleviate the computational cost as the
mass matrix inversion is replaced by the high order correction iterations.
The new aspect of this study comparing with the mono-dimensional one [88],
is the additional degree of freedom of mesh topology, whose influence is also
accounted for. In particular, fully discrete Fourier analysis are performed con-
sidering two different mesh configurations and different wave angles. These al-
low to compare all the different combinations in terms of accuracy and stability,
as well as to provide suggestions for optimal values discretization parameters
involved. The results are thoroughly verified numerically both on linear and
non-linear problems, and error-CPU time curves are provided. Our final conclu-
sions suggest that Cubature elements combined with SSPRK and CIP or OSS
stabilization are the most promising combinations.
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5.1 Introduction
We will perform a spectral analysis of the two-dimensional form of the continuous sta-

bilized finite elements methods introduced in chapter 3. To this end we consider the scalar
advection equation

∂tu(x, t) +~a · ∇u(x, t) = 0 x ∈ Ω ⊂ R2, t ∈ R+, (5.1)

with periodic boundary conditions. The analysis follows and extends the one of chapter 4
(cf. [88]).

5.2 Fourier Analysis

5.2.1 Preliminaries and time continuous analysis
In order to study the stability and the dispersion properties of the previously presented

numerical schemes, we will perform a dispersion analysis on the linear advection problem
with periodic boundary conditions. It reads

∂tu(t, x) + a · ∇u(t, x) = 0, a ∈ R2, (t, x) ∈ R×Ω, (5.2)

with Ω = [0, 1] × [0, 1]. For simplicity, we consider a = (cos(Φ), sin(Φ)) with Φ ∈
[0, 2π].
The main idea is to investigate the fully discrete evolution of periodic waves using the fol-
lowing ansatz for the approximated solution

uh(x, t) = Aei(k·x−ξt) = Aei(k·x−ωt)eεt (5.3)

with ξ = ω + iε, i =
√
−1, k = (kx, ky)

T. (5.4)
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Here, ε denotes the damping rate, while the wavenumbers are denoted by k = (kx, ky), with
kx = 2π/Lx and ky = 2π/Ly with Lx and Ly the wavelengths in x and y directions respec-
tively. In the ansatz we also include the parametrization of the wave number as proportional
to the speed a, i.e., (kx, ky) = (k cos(Φ), k sin(Φ)).
We recall that the phase velocity defined as

C =
ω

k
(5.5)

represents the celerity with which waves propagate in space, and it is in general a function
of the wavenumber. Substituting (5.3) in the advection equation (5.2) for an exact solution
we obtain that

C = |a| and ε = 0. (5.6)

The objective of the next sections is to provide the semi and fully discrete equivalents of
the above relations for the finite element methods introduced earlier. We will consider poly-
nomial degrees up to 3, for all combinations of stabilization methods and time integration
techniques. This will also allows us to investigate the parametric stability with respect to
the time step (through the CFL number) and stabilization parameter δ. In practice, for each
choice we will evaluate the accuracy of the discrete approximation of ω and ε, and we will
provide conditions for the non-positivity of the damping ε, i.e., the von Neumann stability
of the method.

5.2.2 The eigenvalue system
The Fourier analysis for numerical schemes on the periodic domain is based on the Par-

seval theorem 4.3.1.
Thanks to this theorem, we can study the amplification and the dispersion of the basis

functions of the Fourier space. The key ingredient of this study is the repetition of the stencil
of the scheme from one cell to another one. In particular, using the ansatz (5.3) we can
write local equations coupling degrees of freedom belonging to neighbouring cells through
a multiplication by factors eiθx and eiθy representing the shift in space along the oscillating
solution. The dimensionless coefficient

θx := kx∆x and θy := ky∆y (5.7)

are the discrete reduced wave numbers which naturally appear all along the analysis. Here,
∆x and ∆y are defined by the size of the elementary periodic unit that is highlighted with a
red square as an example in fig. 5.1.

Formally replacing the ansatz in the scheme we end up with a dense algebraic problem
of dimension Ndo f , where Ndo f is the number of all the degrees of freedom in the mesh. The
obtained system with dimension Ndo f in the time continuous case reads

(5.2) and (5.3) ⇒ −iξMU + a · (KxU,KyU) + δSU = 0 (5.8)

with (M)ij =
∫

Ω
φiφjdx, (Kx)ij =

∫
Ω

φi∂xφjdx, (Ky)ij =
∫

Ω
φi∂yφjdx (5.9)

with φj being any finite element basis functions, U the array of all the degrees of freedom
and S being the stabilization matrix defined through one of the stabilization techniques of
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FIGURE 5.1: The X type triangular mesh. At left, the Basic finite element
discretisation with P2 elements. At right, the grid configuration for P̃2

Cubature elements. The red square represents the periodic elementary unit
that contains the degrees of freedom of interest for the Fourier analysis

section 3.2. Although system (5.8) is in general a global eigenvalue problem, we can reduce
its complexity by exploiting more explicitly the ansatz (5.3). More precisely, as it is done
in [115] we can introduce elemental vectors of unknowns ŨKij , which, for continuous finite
elements, is an array of d degrees of freedom inside a periodic unitary block, excluding two
boundaries (one on the top and one on the right for example). This number depends on the
chosen (periodic) mesh type and on the elements. As an example, in fig. 5.1 we display for
the X type mesh the periodic elementary unit (in the red square) with Basic and Cubature
degrees of freedom with p = 2. All the degrees of freedom inside the red square are repeated
periodically in the mesh and we consider only one block of degrees of freedom inside ŨKi,j .
In the X mesh for Basic elements p = 2 we have d = 8, while for Cubature p = 2 we have
d = 12. Using the periodicity of the solution and the ansatz (5.3) and denoting by Ki±1,j±1
the neighboring elementary units, we can write the neighboring degrees of freedom by

ŨKi±1,j = e±θx ŨKi,j , ŨKi,j±1 = e±θy ŨKi,j , (5.10)

and by induction all other degrees of freedom of the mesh. This allows to show that (5.8) is
equivalent to a compact system of dimension d (we drop the subscript K as they system is
equivalent for all cells)

− iξM̃Ũ + axK̃xŨ + ayK̃yŨ + δS̃Ũ = 0, (5.11)

where the matrices M̃, K̃x, K̃y and S̃ are readily obtained from the elemental discretization
matrices by using (5.10).

We apply the same analysis to stabilized methods. The interested reader can access all 2D
dispersion plots online [86]. From the plot we can see that the increase in polynomial degree
provides the expected large reduction in dispersion error, while retaining a small amount of
numerical dissipation, which permits the damping of parasite modes.

An example of dispersion curves is given in fig. 5.2. The picture refers to Cubature P̃2
elements, the CIP stabilization technique, and a wave angle θ = 5π/4. We here show all
12 parasite modes (see fig. 5.1). The principal mode of this system is represented in green.
This figure also shows the complexity of the analysis because of the number of modes to
consider.



5.2. Fourier Analysis 73

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4

2

0

2

4

6

Ph
as

e 
: 

 ex = a*k
modes

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

40

30

20

10

0

Da
m

pi
ng

 
 =

 lo
g 

(| 
 |)

 / 
dt

FIGURE 5.2: Dispersion curves using Cubature P̃2 elements, the CIP
stabilization technique, and a wave angle θ = 5π/4.

Phases ω (left) and amplifications ε (right).

We summarize the number of modes for the X mesh in 5.1. A representation of each
mesh is done in E.1 for element of degree p = 2 and 3.

Element P1 P2 P3

Cub. 2 12 26
Basic. 2 8 18
Bern. 2 8 18

TABLE 5.1: X mesh: Summary table of number of modes per systems.

5.2.3 The fully discrete analysis
We analyze now the fully discrete schemes obtained using the RK, SSPRK and DeC

time marching methods. Let us consider as an example the SSPRK schemes. If we define as
A := M−1(axKx + ayKy + δS) we can write the schemes as follows

U(0) := Un

U(s) := ∑s−1
j=0

(
γsjU(j) + ∆tµsj AU(j)

)
, s ∈ J1, SK,

Un+1 := U(S).

(5.12)

Expanding all the stages, we can obtain the following representation of the final stage:

Un+1 = U(0) +
S

∑
j=1

νj∆tj AjU(0) =

(
I +

S

∑
j=1

νj∆tj Aj

)
Un, (5.13)

where coefficients νj in (5.13) are obtained as combination of coefficient γsj and µsj in (5.12)
and I is the identity matrix. For example, coefficients of the fourth order of accuracy scheme
RK4 are ν1 = 1, ν2 = 1/2, ν3 = 1/6 and ν4 = 1/24.
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We can now compress the problem proceeding as in the time continuous case. In particu-
lar, using (5.10) one easily shows that the problem can be written in terms of the local d× d
matrices Ã := M̃−1

(
axK̃x + ayK̃y + δS̃

)
and in particular that

Ũn+1 = GŨn with G :=

(
Ĩ +

S

∑
j=1

νj∆tj Ãj

)
= eε∆te−iω∆t, (5.14)

where G ∈ Rd×d is the amplification matrix depending on θ, δ, ∆t, ∆x and ∆y. Considering
each eigenvalue λi of G, we can write the following formulas for the corresponding phase
ωi and damping coefficient εi{

eεi∆t cos(ωi∆t) = Re(λi),
−eεi∆t sin(ωi∆t) = Im(λi),

⇔
{

ωi∆t = arctan
(
−Im(λi)
Re(λi)

)
,

(eεi∆t)2 = Re(λ)2 + Im(λ)2,

⇔
{ωi

k
= arctan

(
−Im(λi)
Re(λi)

)
1

k∆t ,

εi = log (|λi|) 1
∆t .

For the DeC method we can proceed with the same analysis transforming also the other in-
volved matrices into their Fourier equivalent ones. Using (3.52) these terms would contribute
to the construction of G not only in the Ã matrix, but also in the coefficients νj, which be-
come matrices as well. At the end we just study the final matrix G and its eigenstructure,
whatever process was needed to build it up.

The matrix G describes one timestep evolution of the Fourier modes for all the d different
types of degrees of freedom. The damping coefficients εi tell if the modes are increasing or
decreasing in amplitude and the phase coefficients ωi describe the phases of such modes.
We remark that a necessary condition for stability of the scheme is that |λi| ≤ 1 or, equiva-
lently, εi ≤ 0 for all the eigenvalues. The goal of our study is to find the largest CFL number
for which the stability condition is fulfilled and such that the dispersion error is not too large.

For our analysis, we focus on the X type triangular mesh in fig. 5.1 with elements of
degree 1, 2 and 3. This X type triangular mesh is also used in [81] for Fourier analysis of the
acoustic wave propagation system.

5.2.4 Methodology
The methodology we explain in the following, will be applied to all the combination of

schemes we presented above (in time: RK, SSPRK and DeC, discretisation in space: Basic,
Cubature and Bernstein elements, stabilization techniques: CIP, OSS and SUPG), in order
to find the best coefficients (CFL, δ), as in [88].

It must be remarked that the dispersion analysis must satisfy the Nyquist stability cri-
terion, i.e., ∆xmax ≤ L

2 with ∆xmax the maximal distance between two nodes on edges.
In other words, kmax = 2π

Lmin
= 2π

2∆xmax
= π

∆xmax
. This tells us where k should vary, i.e.,

k ∈ (0, π/∆xmax].
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What we aim to do is an optimization process also on the stabilization parameter and the
CFL number. With the notation of [88], we will set for the different stabilizations

OSS : τK = δ∆x|a|,

CIP : τf = δ∆x2|a|,

SUPG : τK = δ∆x/|a|.

One of our objectives is to explore the space of parameters (CFL,δ), and to propose cri-
teria allowing to set these parameters to provide the most stable, least dispersive and least
expensive methods. A clear and natural criterion is to exclude all parameter values for which
there exists at least a wavenumber θ or an angle Φ ∈ [0, 2π] such that we obtain an amplifi-
cation of the mode, i.e., ε(θ) > 10−12 (taking into account the machine precision errors that
might occur). Doing so, we obtain what we will denote as stable area in (CFL, θ) space. For
all the other points we propose 3 strategies to minimize a combination of dispersion error
and computational cost.

In the following we describe the strategy we adopt to find the best parameters couple
(CFL,δ) that minimizes a global solution error, denoted by ηu, while maximizing the CFL
in the stable area. In particular, we use the relative square error of u defined in the previous
chapter (eq. (4.32)). Moreover, we need to check that the stability condition holds for all the
possible angles Φ ∈ [0, 2π]. We seek for the couple (CFL∗, δ∗) such that

(CFL∗, δ∗) = arg max
CFL

{
η(ω, ε, Φ′) < µ min

stable (CFL,δ)
max

Φ
η(ω, ε, Φ), ∀Φ′ ∈ [0, 2π]

}
,

(5.15)
where the dependence on Φ of η is highlighted with an abuse of notation. For this strategy,
the parameter µ must be chosen in order to balance the requirements on stability and accu-
racy. After having tried different values, we have set µ to 10 providing a sufficient flexibility
to obtain results of practical usefulness. Indeed, the found values will be tested in the nu-
merical section.

To show the influence of the angle Φ on the optimization problem we show an example
for the X mesh. For a given couple of parameters (CFL,δ) = (0.4, 0.01) we compare the
results for Φ = 0 and Φ = 3π/16. In fig. 5.3 we compare the phases ωi and the damping
coefficients εi for the two angles. It is clear that for the angle Φ = 0, on the left, there are
some modes which are not stable εi > 0, while for Φ = 3π/16 all modes are stable.

The angle can widely influence the whole analysis as one can observe in the plot of
maxi εi in fig. 5.4, where we observe that for the only angle Φ = 3π/16 we would obtain
an optimal parameter in (CFL,δ) = (0.4, 0.01), while, using all angles, this value is not stable
anymore.

Remark: In theory, we should see only machine precision damping coefficients inside
the stable area, but, since the eigenvalue problem we need to solve in eq. (5.14) is only
approximated thanks to the linear algebra package of numpy, the results might be not so
accurate.



76 Chapter 5. Extension to the two-dimensional formulation

0 1 2 3 4 5 6
k*dx*deg = 2*pi / Nc

15

10

5

0

5

10

15

ph
as

e 

 ex = a*k
modes

0 1 2 3 4 5 6
k*dx*deg = 2*pi / Nc

8

6

4

2

0

2

Da
m

pi
ng

 
 =

 lo
g 

(| 
 |)

 / 
dt

(a) Φ = 0

0 1 2 3 4 5 6
k*dx*deg = 2*pi / Nc

15

10

5

0

5

10

15

ph
as

e 

 ex = a*k
modes

0 1 2 3 4 5 6
k*dx*deg = 2*pi / Nc

8

6

4

2

0
Da

m
pi

ng
 

 =
 lo

g 
(| 

 |)
 / 

dt

(b) Φ = 3π/16

FIGURE 5.3: Comparison of dispersion curves ωi and damping coefficients
εi, for Cubature P̃2 elements, with SSPRK time discretization and OSS

stabilization: Φ = 0 and Φ = 3π/16.
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FIGURE 5.5: Damping coefficients log(maxi εi) for B3 Bernstein elements
and the DeC method with, from left to right, SUPG, OSS and CIP

stabilization.

5.2.5 Results of the fourier analysis using the X type mesh
In this section, we illustrate the result obtained with the methodology explained above.

For clarity not all the results are reported in this chapter, however, we place all the plots
for all possible combination of schemes in an online repository [86]. We will provide some
examples here and a summary of the main results that we obtained.

The first type of plot we introduce is helping us in understanding how we can define
the stability region in the (CFL, δ) plane. So, for every (CFL, δ) we plot the maximum of
log(εi) over all modes and angles Φ ∈ [0, 2π] (thanks to the symmetry of the mesh we can
reduce this interval). An example is given in the right plot of fig. 5.4, it is clear that the whole
blue area is stable and the yellow/orange area is unstable. In other cases, this boundary is not
so clear and setting a threshold to determine the stable area can be challenging. In fig. 5.5
we compare different stabilizations for DeC with B3 elements. In the CIP stabilization case,
we clearly see that there is no clear discontinuity between unstable values and stable ones,
as in SUPG, because there is a transient region where maxi εi varies between 10−7 and 10−4.

The second type of plot combines the chosen stability region with the error ηu. We plot
on the (CFL, δ) plane some black crosses on the unstable region, where there exists an i
and Φ such that εi > 10−7. The color represents log(ηu) and the best value according to
the previously described method is marked with a red dot. In figs. 5.6 to 5.9 we show some
examples of these plots for some schemes, for different p = 1, 2, 3. In figs. 5.6 and 5.7 we
test the Basic elements with the SSPRK time discretization, while in figs. 5.8 and 5.9 we use
the Cubature elements with DeC time discretization. We compare also different stabilization
technique: in figs. 5.6 and 5.8 we use the OSS, while in figs. 5.7 and 5.9 the CIP. One can
observe many differences among the schemes. For instance, for p = 3 we see a much wider
stable area for SSPRK than with DeC and, in the Cubature DeC case, we see that the CIP
requires a reduction in the CFL number with respect to the OSS stabilization.

We summarize the results obtained by the optimization strategy in table 5.2 for all the
combinations of spatial, time and stabilization discretization. The CFL and δ presented
there are optimal values obtained by the process above described, which we aim to use
in simulations to obtain stable and efficient schemes. Unfortunately, as already mentioned
above, for some schemes the stability area is not so well defined for several reasons. One of
these reasons is the "shape" of the stability area as for one-dimensional problems, see [88].
Other issues that affect this analysis are the numerical precision, see section 5.2.6, and the
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FIGURE 5.7: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left
to right P1, P2, P3 Basic elements with SSPRK scheme and CIP stabilization
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FIGURE 5.10: Logarithm of the amplification coefficient log(maxi(ε i)) for
SUPG stabilization with P̃3 Cubature elements and the SSPRK method.

Unstable region in yellow, optimal (5.15) parameters in red

mesh configuration, see section 5.2.7. In the following we study more in details these cases
and how one can find better values.

Element & SUPG
Time scheme P1 P2 P3

B
as

ic SSPRK 0.739 (0.127) 0.298 (0.058) 0.22 (0.026)
RK 0.403 (0.127) 0.298 (0.026) 0.22 (5.46e-03)

C
ub

. DeC 0.616 (0.28) 0.234 (0.04)∗ 0.144 (0.04)
SSPRK 1.062 (0.28) 0.379 (0.021)∗ 0.234 (0.011)∗

RK 0.616 (0.28) 0.234 (0.04) 0.144 (0.04)

B
er

n.

DeC 0.739 (0.298) 0.455 (0.298)∗ 0.455 (0.153)∗

SSPRK 0.739 (0.127) 0.298 (0.058) 0.22 (0.026)
RK 0.403 (0.127) 0.298 (0.026) 0.22 (5.46e-03)

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

B
as

ic SSPRK 0.403 (0.127) 0.298 (0.026) 0.22 (0.026) 0.403 (0.012) 0.298 (1.73e-03) 0.22 (7.85e-04)∗

RK 0.22 (0.058) 0.22 (0.026) 0.22 (0.012) 0.298 (0.012) 0.22 (1.73e-03) 0.22 (3.57e-04)

C
ub

. DeC 0.379 (0.207) 0.248 (0.03) 0.162 (0.018) 0.379 (0.026) 0.045 (7.85e-03)∗ /
SSPRK 0.58 (0.336) 0.379 (0.03) 0.248 (0.018) 0.58 (0.048) 0.07 (7.85e-03)∗ /

RK 0.379 (0.207) 0.248 (0.03) 0.162 (0.018) 0.379 (0.026) 0.045 (7.85e-03) /

B
er

n.

DeC 0.173 (0.58) 0.036 (0.298) 0.025 (0.078)∗ 0.173 (0.153) 0.012 (0.021) 0.004 (0.021)∗

SSPRK 0.403 (0.127) 0.298 (0.026) 0.22 (0.026) 0.403 (0.012) 0.298 (1.73e-03) 0.22 (7.85e-04)
RK 0.22 (0.058) 0.22 (0.026) 0.22 (0.012) 0.298 (0.012) 0.22 (1.73e-03) 0.22 (3.57e-04)

TABLE 5.2: X mesh: Optimized CFL and penalty coefficient δ in parenthesis,
minimizing ηu.

"/" means that the fourier analysis shown that the scheme is unstable.
∗ These values are not reliable, see section 5.2.6.

5.2.6 Comparison with a space-time split stability analysis
In this section, we show another stability analysis to slightly improve the results obtained

above. Indeed, the solution of the eigenvalue problem (5.14) is computed with numerical
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FIGURE 5.11: Eigenvalues of Ã using Cubature discretization and the SUPG
stabilization (varying k) and stability area of the SSPRK method. In red the

stable eigenvalues, in blue the unstable ones.

solver and it might bring numerical error. In order to have a different result to compare, we
can decompose the time integration and the spatial discretization for methods which use the
method of line (not DeC). In this way, we find the eigenvalues only of the spatial discretiza-
tions, and then we check whether they belong to the stability area of the time discretization.

As an example, we explore the case of Cubature P̃3 elements, using SSPRK method and
the SUPG stabilization technique of which the previously presented analysis results in the
plot of fig. 5.10. The red point represents the optimal parameters (CFL,δ), in the sense of
eq. (5.15). The optimal value is surrounded by unstable schemes, hence, it is not so safe to
use the parameters found. Intuitively one should try to decrease the CFL and increase δ, in
order to move the parameters in a safer region.

Following [29], we write the time discretization for Dahlquist’s equation

∂tu− λu = 0, (5.16)

in this example, we consider the SSPRK discretization eq. (5.12). From eq. (5.13) we can
write the amplification coefficient Γ(λ), i.e.,

Un+1 = U(0) +
S

∑
j=1

νj∆tjλjU(0) =

(
I +

S

∑
j=1

νj∆tjλj

)
︸ ︷︷ ︸

Γ(λ)

Un. (5.17)

The stability condition for this SSPRK scheme is given by Γ(λ) ≤ 1. Now, when we substi-
tute the Fourier transform of the spatial semidiscretization Ã to the coefficient λ and we di-
agonalize the system (or we put it in Jordan’s form), we obtain a condition on the eigenvalues
of Ã. Then, using the parameters provided by the previous analysis (CFL,δ)=(0.234, 0.011),
in table 5.2, we plot the eigenvalues of Ã and the stability region of the SSPRK scheme for
different θ ∈ [0, π]. We notice that for some values of θ, not all the eigenvalues belong to
the stable area, see fig. 5.11(a). There are, indeed, few eigenvalues dangerously close to the
imaginary axis and some of them have actually positive real part (blue dots). As suggested
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FIGURE 5.12: The T type triangular mesh with degrees of freedom in blue
and periodic unit in the red square for the Fourier analysis

Element P1 P2 P3

Cub. 1 6 13
Basic. 1 4 9
Bern. 1 4 9

TABLE 5.3: Number of modes in the periodic unit for different elements in
the T mesh

before, if we decrease the CFL and increase δ, we move towards a safer region, so consid-
ering (CFL,δ)=(0.18, 0.04) with the same θ, we obtain all stable eigenvalues, as shown in
fig. 5.11(b).

The summary of the optimal parameters of table 5.2 updated taking into account also
a larger safety region in the (CFL, δ) plane (as explained in this section) can be found in
table E.1 in Appendix E.2.

5.2.7 Different mesh patterns
Another important aspect about this stability analysis is the influence of the mesh struc-

ture on the results. As an example, we introduce another regular and structured mesh type
that we denote by T mesh depicted in fig. 5.12. In fig. 5.12 we plot also the degrees of free-
dom for elements of degree 2 and the periodic elementary unit that we take into consideration
for the Fourier analysis. The number of modes in the periodic unit for this mesh type are
summarized in table 5.3. The elements of degree 3 can be found in fig. E.1 in Appendix E.1.

Even if for several methods we observe comparable results for the two mesh types, for
some of them the analyses are quite different. An example is given by the Basic elements
with SSPRK schemes and CIP stabilization. For this method, we plot the dispersion error
eq. (4.36) and the stability area in fig. 5.13(a) for the X mesh and in fig. 5.13(b) for the T
mesh. We see huge differences in P2 and P3 where in the former a wide region becomes
unstable for δL ≤ δ ≤ δR and for the latter we have to decrease a lot the value of δ to obtain
stable schemes.
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FIGURE 5.13: log(ηu) values (blue scale) and stable area (unstable with
black crosses), on (CFL, δ) plane. The red dot denotes the optimal value.

From left to right P1, P2, P3 Basic elements with SSPRK scheme and CIP
stabilization

In the case of Cubature elements with the OSS stabilization and SSPRK time integration,
we have already seen in the previous section that the optimal parameters found were in a
dangerous area. Repeating the stability analysis for the T mesh we see that the situation is
even more complicated. In fig. 5.14(a) we plot the analysis for the X mesh and in fig. 5.14(b)
the one for the T mesh. P̃3 elements, though being stable for some parameters for the X
mesh, are never stable on the T mesh. This means, that, when searching general parameters
for the schemes, we have to keep in mind that different meshes leads to different results.

For completeness, we present the optimal parameters also for the T mesh in table E.2 in
Appendix E.2.

In general, it is important to consider more mesh types when doing this analysis. In
practice, we will use the two presented above (X and T meshes). In the following, we will
consider the stability region as the intersection of stability regions of both meshes.

5.2.8 Final results of the stability analysis
Taking into consideration all the aspects seen in the previous sections, it is important to

have a comprehensive result, which tells which parameters can be used in the majority of
the situations. A summary of the parameters obtained for the X and T mesh is available in
Appendix E.2. In table 5.4, instead, we present parameters obtained using the most restrictive
case among different meshes and that insure an enough big area of stability around them, as
explained in section 5.2.6. These parameters can be safely used in many cases and we will
validate them in the numerical sections, where, first, we validate the results of the X mesh
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FIGURE 5.14: log(ηu) values (blue scale) and stable area (unstable with
black crosses), on (CFL, δ) plane. The red dot denotes the optimal value.
From left to right P̃1, P̃2, P̃3 Cubature elements with SSPRK scheme and

OSS stabilization
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(a) SSPRK with OSS
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(b) SSPRK with CIP
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(c) DeC with OSS
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(d) DeC with CIP

FIGURE 5.15: Maximum logarithm of the amplification coefficient
log(maxi(ε i)) for P̃3 Cubature elements on the X and T meshes
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(a) SSPRK with OSS
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(b) SSPRK with CIP
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(c) DeC with OSS
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(d) DeC with CIP

FIGURE 5.16: Logarithm of the amplification coefficient log(maxi(ε i)) for
P̃3 Cubature elements on the X mesh



84 Chapter 5. Extension to the two-dimensional formulation

Element & SUPG
Time scheme P1 P2 P3

Basic SSPRK 0.739 (0.127) 0.2 (0.1)∗ 0.22 (0.026)

Cub. SSPRK 1.062 (0.28) 0.12 (0.13)∗ 0.09 (0.05)∗

DeC 0.616 (0.28) 0.144 (0.078) 0.05 (0.05)∗

Bern. DeC 0.739 (0.298) 0.12 (0.45)∗ 0.2 (0.153)∗

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 0.403 (0.127) 0.2 (0.05)∗ 0.22 (0.026) 0.403 (0.012) 0.1 (1.00e-03)∗ 0.1 (5.00e-04)∗

Cub. SSPRK 0.58 (0.336) 0.2 (0.08)∗ 0.28 (0.018)∗∗ 0.58 (0.048) 0.06 (0.01)∗ /
DeC 0.379 (0.207) 0.12 (0.07)∗ 0.162 (0.018)∗∗ 0.379 (0.026) 0.025 (0.01)∗ /

Bern. DeC 0.173 (0.58) 0.02 (0.2)∗ 0.015 (0.078)∗ 0.173 (0.153) 0.012 (0.01)∗ 0.001 (0.01)∗

TABLE 5.4: Optimized CFL and penalty coefficient δ in parenthesis,
combining the two mesh configurations. The values denoted by ∗ are not the

optimal one, but they lay in a safer region, see Section 5.2.6. The values
marked by ∗∗ cannot be used on the T mesh. “/" means that it is unstable for

every parameter

on a linear problem on an X mesh, then we used the more general parameters in table 5.4 for
nonlinear problems on unstructured meshes.

A special remark must be done for Cubature P̃3 elements used with the OSS and the
CIP stabilizations. In fig. 5.15 we see how the amplification coefficient maxi εi has always
values far away from zero. For the CIP stabilization this is always true and even for the P̃2
elements the stability region is very thin. As suggested in [26, 76] higher order derivatives
jump stabilization terms might fix this problem, but it introduces more parameters. This has
not been considered here. Another remark is that the T configuration is very peculiar and,
as we will see, on classical Delaunay triangulations the issue seem to not affect the results.
Finally, the use of additional discontinuity capturing operators may alleviate this issue as
some additional, albeit small, dissipation is explicitly introduced in smooth regions.

In section 5.2.9, we propose to add an additional stabilization term for these unstable
schemes, i.e., Cubature P̃3 elements and OSS or CIP stabilization techniques. This term is
based on viscous term [1, 58, 74, 83] and allows to stabilize numerical schemes for any mesh
configuration.

For the OSS stabilization we observe a similar behavior in fig. 5.15. The stability that
we see in that plot are only due to the the T mesh. Indeed, for the OSS stabilization on
the X mesh there exists a corridor of stable values, which turn out to be unstable for the T
mesh, see fig. 5.16. In practice, on unstructured grids we have not noticed instabilities when
running with the parameters found with the X mesh. Hence, we suggest anyway some values
of CFL and δ for these schemes, which are valid for the X mesh, noting that they might be
dangerous for very simple structured meshes. The validation on unstructured meshes also
for more complicated problems will be done in the next sections.

Overall, table 5.4 gives some insight on the efficiency of the schemes. We remind that, in
general, we prefer matrix free schemes, so this aspect must be kept in mind while evaluating
the efficiency of the schemes. All the SUPG schemes, except when with DeC, and all the
basic element schemes have a mass matrix that must be inverted. Among the others we see
that for first degree polynomials schemes the DeC with Bernstein polynomials and SUPG
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stabilization gives one of the largest CFL result, while for second degree polynomials the
OSS Cubature SSPRK scheme seems the one with best performance and, for fourth order
schemes, again the Bernstein elements combined with the DeC and SUPG is one of the best.

In conclusion of this section, there are important points to highlight:

• The extension of the Fourier analysis to the two-dimensional space leads to signifi-
cantly different results with respect to the one-dimensional one. Both in terms of global
stability of the schemes, and in terms of optimal parameters. Moreover, in opposition
to [88], Bernstein elements with SUPG stabilization technique lead to stable and effi-
cient schemes. Cubature elements, which were the most efficient in one-dimensional
problems, have stability issues on the 2D mesh topologies studied.

• The complexity of the analysis in two-dimensional space is increased. This not only
implies a larger number of degrees of freedom, but also more parameters to keep ev-
erything into account, including the angle of the advection term and the possible dif-
ferent configuration of the mesh. The visualization of the stability region of the time
scheme as shown in fig. 5.11 with the eigenvalues of the semidiscretization operators
helps in understanding the effect of CFL and penalty coefficient on the stability of the
scheme, only for methods of lines. This helps in choosing and optimizing the couple
of parameters.

Remark 5.2.1 Another possibility to characterize the linear stability of numerical method
is proposed by J. Miller [89]. This method is based on the study of the characteristic poly-
nomial of the amplification matrix G. However, this method does not provide information
about the phase ω, since it does not compute eigenvalues of G. For this reason, we choose
the eigenanalysis.

5.2.9 Complementary analysis using viscosity terms
To ensure the stability of numerical scheme also in the configurations for which the

stabilization techniques are not stable, we can introduce a further viscosity term (e.g. for
non-linear term based on the local entropy production [1, 71] for discontinuous Galerkin
formulation, [58, 74, 83] for continuous Galerkin formulation and references therein). The
variational formulation reads: for any vh ∈Wh, find uh ∈ Vp

h that satisfies∫
Ω

vh(∂tuh +∇ · f (uh))dx + S(vh, uh) + ∑
K

∫
K

µK(uh)∇vh · ∇uh︸ ︷︷ ︸
Viscosity term

= 0, (5.18)

where S(vh, uh) corresponds to stabilization technique described in section 3.2 and µK =
O(hp+1) > 0 is the viscosity parameter for K ∈ Ωh.

Note on the stability of the method

As it is done for previous stabilization terms in section 3.2, we can characterize the
accuracy of this method estimating the truncation error for a polynomial approximation of
degree p. Considering the smooth exact solution ue(t, x) of (5.18), for all functions ψ of
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class at least C1(Ω) of which ψh denotes the finite element projection, we obtain

ε(ψh) :=
∣∣∣ ∫

Ωh

ψh∂t(ue
h − ue) dx−

∫
Ωh

∇ψh · ( f (ue
h)− f (ue)) dx

+ ∑
K∈Ωh

µK

∫
K

∇ψh · ∇(ue
h − ue)

∣∣∣ ≤ Chp+1,
(5.19)

with C a constant independent of h. The estimate can be derived from standard approxima-
tion results applied to ue

h − ue and to its derivatives, knowing that µK = O(hp+1).

Then, for a linear flux, periodic boundaries and taking µK = µ constant along the mesh,
we can test with vh = uh in (5.18), we get∫

Ωh

dt
u2

h
2

= −∑
K

∫
K

µ(∇uh)
2 ≤ 0, (5.20)

which can be integrated in time to obtain a bound on the L2 norm of the solution.

The von Neumann analysis

As we saw in section 5.2.8, the T mesh configuration has stability issues. In particular, the
numerical schemes using Cubature P̃3 elements, SSPRK and DeC time integration methods,
and the OSS and the CIP stabilization techniques are unstable. We propose to evaluate
these schemes adding the viscosity term in (5.18). For the von Neumann analysis, we use
µK(u) = chp+1

K in (5.18), with c ∈ R+, hK the cell diameter and p the degree of polynomial
approximation. We show the plot of maxi εi to understand how the stability region behaves
with respect to c using Cubature P̃3 elements. In fig. 5.17 the maximum amplification factor
ε is represented for varying c, using the OSS stabilization technique and the SSPRK time
integration method. We note that the same behaviour is observed with CIP and DeC. Plots
are available online [86].

We can observe two main results. First, increasing the parameter c up to around 0.1 al-
lows to expand the stability region. Second, when the viscosity coefficients reaches too high
values, it is necessary to decrease the CFL (see fig. 5.17(c) with µ = 0.05 and fig. 5.17(d)
with µ = 0.5 as an example).

Remark 5.2.2 (Stability of entropy viscosity) In our formulation the coefficient µK = chp+1

leads to nongeneralizable conclusions and, hence, it is not recommended for general cases.
Indeed, with this formulation, the amplification matrix G depends on CFL, on c, on δ, and
also on hp. This means that changing h, keeping all the other coefficients fixed might lead
to unstable schemes. A more reliable formulation, which can be used for general cases, is
given in J.L. Guermond et al. [58]. The viscous term is non-linear and it is based on the
local entropy production.



5.3. Validation of the fourier analysis 87

10 3 10 2 10 1 100 101

penalty coefficient 

10 3

10 2

10 1

100

CF
L

1 & SSPRK2 - OSS

14

12

10

8

6

4

2

0

10 3 10 2 10 1 100 101

penalty coefficient 

10 3

10 2

10 1

100

CF
L

2 & SSPRK3 - OSS

minimize u
14

12

10

8

6

4

2

0

10 3 10 2 10 1 100 101

penalty coefficient 

10 3

10 2

10 1

100

CF
L

3 & SSPRK4 - OSS

14

12

10

8

6

4

2

0

lo
g(

m
ax

(
))

(a) µ = 0

10 3 10 2 10 1 100 101

penalty coefficient 

10 3

10 2

10 1

100

CF
L

3 & SSPRK4 - OSS - c = 0.005

14

12

10

8

6

4

2

0

lo
g(

m
ax

(
))

(b) µ = 0.005hp+1
K

10 3 10 2 10 1 100 101

penalty coefficient 

10 3

10 2

10 1

100

CF
L

3 & SSPRK4 - OSS - c = 0.05

14

12

10

8

6

4

2

0

lo
g(

m
ax

(
))

(c) µ = 0.05hp+1
K

10 3 10 2 10 1 100 101

penalty coefficient 

10 3

10 2

10 1

100

CF
L

3 & SSPRK4 - OSS - c = 0.5

14

12

10

8

6

4

2

0

lo
g(

m
ax

(
))

(d) µ = 0.5hp+1
K

10 3 10 2 10 1 100 101

penalty coefficient 

10 3

10 2

10 1

100

CF
L

3 & SSPRK4 - OSS - c = 5.0

14

12

10

8

6

4

2

0

lo
g(

m
ax

(
))

(e) µ = 5hp+1
K

FIGURE 5.17: T mesh - Von Neumann analysis using an additional viscosity
term (see (5.18)). Cubature P̃3 elements with SSPRK and OSS. Comparison

of different µ.

5.3 Validation of the fourier analysis
We now perform numerical tests to check the validity of our theoretical findings using the

X mesh configuration. We will use elements of degree p, with p up to 3, with time integration
schemes of the corresponding order of accuracy to ensure an overall error of O(∆xp+1),
under the CFL conditions discussed earlier and available in table E.1 in appendix E.2. The
integral formulas are performed with high order quadrature rules, for Cubature elements they
are associated with the definition points of the elements themselves, for Basic and Bernstein
elements we use Gauss–Legendre quadrature formulas.

The mesh used in the Fourier analysis is the basis of the one we will use in the numer-
ical simulations. We will extend it periodically for the whole domain, see an example in
fig. 5.18(a).

5.3.1 Linear advection equation test
We start with the linear advection eq. (5.1) on the domain Ω = [0, 2] × [0, 1] using

Dirichlet boundary conditions:
∂tu(t, x) + a · ∇u(t, x) = 0, (t, x) ∈ [t0, t f ]×Ω, a = (ax, ay)T ∈ R2,
u(0, x) = u0(x),
u(t, xD) = uex(t, xD), xD ∈ ΓD = {(x, y) ∈ R2, x ∈ {0, 2} or y ∈ {0, 1}},

(5.21)
where u0((x, y)T) = 0.1 cos(2πr(x, y)), with r(x, y) = cos(θ)x + sin(θ)y the rotation by
an angle θ around (0, 0), a = (ax, ay)T = (cos(θ), sin(θ))T and θ = 3π/16. The final time
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(a) X mesh on Ω = (0, 2)× (0, 1) (b) Cosinus test case with θ = 3π/16

FIGURE 5.18: Linear advection simulation on the X mesh
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FIGURE 5.19: Error decay for linear advection problem with different
elements and OSS stabilization and SSPRK time discretization: P1 in blue,

P2 in green and P3 in red

of the simulation is t f = 2s. Clearly the exact solution is uex(x, t) = u0(x− axt, y− ayt)
for all x = (x, y) ∈ Ω and t ∈ R+. The initial conditions are displayed in fig. 5.18(b).
We discretize the domain with uniform squares with edge length ∆x and then in each square
we reproduce the X mesh pattern, see fig. 5.18(a). In particular, we will use different ∆x to
test the convergence for each order of accuracy: ∆x1 = {0.1, 0.05, 0.025} for P1 elements,
∆x2 = 2∆x1 for P2 elements and ∆x3 = 3∆x1 for P3 elements. This guarantees to have
approximately the same number of degrees of freedom for different p.

A representative result is provided in figs. 5.19(a) and 5.19(b): it shows a comparison
between Cubature and Basic elements with OSS stabilization and SSPRK time integration.
As we can see, the two schemes have very similar errors except for P1 where the larger CFL
increases the error. The Basic elements require stricter CFL conditions, see table E.1, and
have larger computational costs because of the inversion of the mass matrix.

To show the main benefit of using the Cubature elements (diagonal mass matrix), we
plot in fig. 5.20 the computational time of Basic and Cubature elements for the SSPRK
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FIGURE 5.20: Error for linear advection problem (5.21) with respect to
computational time for SSPRK time discretization, comparing Basic and

Cubature elements and all stabilization techniques

time scheme and all stabilization techniques. As a first interesting result of numerical test,
looking at the fig. 5.20, we can clearly see that, for a fixed accuracy, Cubature elements
obtain better computational times with respect to Basic elements. Moreover, as expected, the
SUPG stabilization technique requires more computational time as it requires the inversion
of a mass matrix, even in the case where the CFL used in is larger than the ones for OSS or
CIP stabilization, see table E.1.

The order of accuracy reached by each simulations is shown in table 5.5. The plots and
all the errors are available at the repository [86].

Element & SUPG OSS CIP
Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

Basic SSPRK 1.93 2.96 4.02 2.0 2.62 4.1 1.44 2.45 3.77

Cub.
SSPRK 1.97 2.39 4.38 2.03 2.49 4.41 1.96 2.35 /

DeC 1.97 2.27 4.34 2.02 2.49 4.41 2.01 2.35 /
Bern. DeC 1.97 2.61 1.8 2.29 2.52 2.27 1.97 2.7 2.06

TABLE 5.5: Convergence order for all schemes on linear advection test, using
coefficients obtained in table E.1.

“/" means that the Fourier analysis showed that the scheme is unstable.

Looking at the table 5.5, we observe that almost all the stabilized schemes provide the
expected order of accuracy. Exception to this rule are several P2 discretization which reach
an order of accuracy of ≈ 2.5, and all Bernstein B3 elements with the DeC which reach an
order of accuracy of 2. This result is very disappointing and it does not improve even adding
more corrections, as suggested in [107, 2]. We will show in section 5.4.3 that the previous
problem does not appear in a steady case, which opens the door to further research.
Note that we do not show results for Bernstein elements with SSPRK technique because
they are identical to Basic elements, but are more expensive because of the projection in the
Bernstein element space and the interpolation in the quadrature points.
More comparisons on different grids (unstructured) will be done in section 5.4.
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5.3.2 Shallow Water equations
We consider the non linear Shallow Water equations (no friction and constant topogra-

phy):
∂th + ∂x(hu) + ∂y(hv) = 0, x ∈ Ω = [0, 2]× [0, 1],
∂t(hu) + ∂x(hu2 + g h2

2 ) + ∂y(huv) = 0, t ∈ [0, t f ]

∂t(hv) + ∂x(huv) + ∂y(hv2 + g h2

2 ) = 0, t f = 1s.
(5.22)

An analytical solution of this system is given by travelling vortexes [85]. We use here a
vortex with compact support and in C6(Ω) described by the following parameters:

Xc = (0.5, 0.5) the center of the vortex at t=0s
r0 = 0.45 radius of the vortex,
∆h = 0.1 amplitude of the vortex,
ω = π/r0 angular wave frequency,

Γ =
12π
√

g∆h
r0
√

315π2−2048
vortex intensity parameter,

hc = 1. stady state,
uc = 0.6 speed in x direction,
vc = 0. speed in y direction,
I(x, t) = x− Xc − (uct, vct)T coordinates with respect to the vortex center,
R(x, t) = ‖I(x, t)‖ distance from the vortex center.

(5.23)
The analytical solution is written as

h(x, t)
u(x, t)
v(x, t)

 =



 hc +
1
g

Γ2

ω2 × (λ(ωR(x, t))− λ(π)) ,

uc + Γ(1 + cos(ωR(x, t)))2 × (−I(x, t)y),
vc + Γ(1 + cos(ωR(x, t)))2 × (I(x, t)x),

 , if ωR(x, t) ≤ π,

(
hc uc vc

)T
, else,

(5.24)

with

λ(r) =
20 cos(r)

3
+

27 cos(r)2

16
+

4 cos(r)3

9
+

cos(r)4

16
+

20r sin(r)
3

+
35r2

16
+

27r cos(r) sin(r)
8

+
4r cos(r)2 sin(r)

3
+

r cos(r)3 sin(r)
4

.
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FIGURE 5.21: Initial water elevation and velocity field (red arrows) -
Travelling vortex test case, Ω = [0, 2]× [0, 1].

We discretize the mesh with uniform square intervals of length ∆x (see figure 5.18(a)),
and as before we perform a grid convergence by respecting the constraint ∆x2 = 2∆x1 for
P2 elements and ∆x3 = 3∆x1 for P3 elements. Because of the high cost of the SUPG
technique, we only compare the OSS and the CIP stabilization techniques. As an example
of results, we again show the benefit of using Cubature elements in 5.22. We can see that
since the dimension of the discretized system is even larger than before (three times larger),
the differences between Cubature and Basic elements are even more highlighted in the error-
computational time plot.
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FIGURE 5.22: Error for Shallow Water system (5.22) with respect to
computational time for SSPRK method with Cubature (left) and Basic (right)

elements and CIP and OSS stabilizations.

In table 5.6 we show the convergence orders for this Shallow Water problem with the
CFL and δ coefficients found in table E.1.



92 Chapter 5. Extension to the two-dimensional formulation

FIGURE 5.23: Unstructured mesh on Ω = [0, 2]× [0, 1].

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 2.3 3.18 3.8 2.34 3.3 4.47

Cub.
SSPRK 1.25 3.31 3.94 2.03 2.56 /

DeC 1.45 3.31 3.94 1.98 2.56 /
Bern. DeC 1.52 2.93 2.97 2.92 2.12 2.91

TABLE 5.6: Convergence order on Shallow Water, using coefficients
obtained in E.1.

"/" means that the fourier analysis shown that the scheme is unstable.

The results obtained are similar to those of the linear advection case. We can also no-
tice the P2 discretization reaching the proper convergence order, i.e., 3, and Bernstein B3
elements reaching an order of accuracy of ≈ 3 which is more satisfying than the results ob-
tained for the linear advection test, but still disappointing knowing that we were expecting
4.

5.4 Numerical Simulations on arbitrary mesh
We now perform numerical tests to check the validity of our theoretical findings using

an unstructured mesh, and the most restrictive parameters in table 5.4. These parameters
make sure that we are stable for both T and X mesh configurations. The results have similar
convergence rate to the tests on the structured meshes of the previous section.
The unstructured mesh used in this section is shown in fig. 5.23, and it was created by the
mesh generator gmsh1.

1https://gmsh.info/
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5.4.1 Linear advection test

Element & SUPG OSS CIP
Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

Basic SSPRK 1.9 2.57 3.76 1.99 2.5 3.76 1.57 2.14 3.66

C
ub

. SSPRK 1.73 2.4 3.83 1.81 2.53 3.98∗∗ 1.8 2.17 /
DeC 1.81 2.21 2.56 1.82 2.48 3.98∗∗ 1.83 2.17 /

Bern. DeC 1.78 2.12 1.94 2.31 2.48 2.12 1.56 2.03 2.24

TABLE 5.7: Convergence order for linear advection on unstructured mesh,
using coefficients obtained in table 5.4.

∗∗ These values are found using only the X mesh (see fig. 5.15).
"/" means that the scheme is clearly unstable.

We use the same test case of section 5.3.1. Convergence orders for all schemes are sum-
marized in table 5.7. We observe that all P1 discretizations provide the proper convergence
order. For P2 discretization we spot a slight reduction of the order of accuracy, which lays
for most of the schemes between 2 and ≈ 2.5 instead of being 3. For polynomials of de-
gree 3, we observe an order reduction to 2 for the same schemes that lost the right order of
accuracy also for X mesh in the previous section. In particular, we have that Bernstein B3
elements with the DeC result in an order of accuracy of ≈ 2 instead of 4, as well as the P̃3
discretization with the combination DeC and SUPG stabilization. As for the X mesh, the
Basic P3 discretization reach order of accuracy ≈ 4 for all stabilization techniques, as well
as Cubature P̃3 with SUPG and OSS stabilizations.
Also in this case, the results obtained with P̃3 Cubature elements and OSS stabilization are
stable as we can see from the convergence analysis. This might mean that just few unfortu-
nate mesh configurations, as the T one, result in an unstable scheme and that, most of the
time, the parameters found in table 5.4 are reliable for this scheme. On the other hand, the
combination P̃3 and CIP gives an unstable scheme.

We compare error and computational time for all methods presented above in fig. 5.24.
Looking at P2 and the P3 discretizations, as expected, the mass-matrix free combination,
i.e., Cubature elements with SSPRK and OSS, gives smaller computational costs than other
combinations with Basic elements. Conversely, the SUPG technique increase the computa-
tional costs with respect to all other stabilizations for all schemes. That is why we will not
use it for the next test. The plots and all the errors are available at the repository [86].

Remark 5.4.1 (Entropy viscosity) As remarked in section 5.2.9, we can improve the stabil-
ity of some schemes (Cubature OSS) with extra entropy viscosity. Here, we test the conver-
gence rate on the T mesh configuration, i.e., the one with more restrictive CFL conditions
and most unstable. This test is performed using Cubature P̃3 elements, SSPRK and DeC
time integration methods, and the OSS and the CIP stabilization techniques. We solve again
problem (5.21).

Using formulation (5.18) and tuning stability coefficient δ, CFL and viscosity coefficient
c found in fig. 5.17, we obtain fourth order accurate schemes. These tuned coefficients, and
the corresponding convergence orders are summarized in table 5.8.
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FIGURE 5.24: Error for linear advection problem (5.21) with respect to
computational time for all elements and stabilization techniques

Element & Cubature P̃3 OSS Cubature P̃3 CIP
Time scheme CFL (δ) c order CFL (δ) c order

Cub.
SSPRK 0.15 (0.02) 0.05 4.08 0.12 (0.0004) 0.5 3.60

DeC 0.15 (0.02) 0.05 4.09 0.08 (0.001) 0.2 3.76

TABLE 5.8: Convergence order of methods using Cubature P̃3 elements and
viscosity term (5.18) with tuned parameters

Many other formulations of viscosity terms exist in literature and can ensure convergent
methods of order p + 1 (using Pp elements) [58, 74, 83]. The majority use a nonlinear
evaluation of the parameter µK, based on the local entropy production.
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5.4.2 Shallow Water equations

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 1.94 2.98 4.25 2.15 2.52 4.11

C
ub

. SSPRK 1.03 3.17 3.59∗∗ 1.39 2.57 /
DeC 1.2 3.14 3.59∗∗ 1.48 2.57 /

Bern. DeC 1.28 3.14 3.15 1.36 2.73 2.66

TABLE 5.9: Convergence order on Shallow Water for unstructured mesh,
using coefficients obtained in table 5.4.

∗∗ These values are found using only the X mesh (see fig. 5.15).
"/" means that the scheme is clearly unstable.

In this section we test the proposed schemes on the test case of section 5.3.2 with the
unstructured mesh in fig. 5.23. Convergence orders are summarized in table 5.9. Also for

100 102 104

Computational time
10 6

10 5

10 4

10 3

10 2

Er
ro

r

DeC
P1 OSS stab
P1 CIP stab
P2 OSS stab
P2 CIP stab
P3 OSS stab

(a) Cubature elements with DeC

100 102 104

Computational time
10 6

10 5

10 4

10 3

10 2

Er
ro

r

SSPRK
P1 OSS stab
P1 CIP stab
P2 OSS stab
P2 CIP stab
P3 OSS stab

(b) Cubature elements with SSPRK

100 102 104

Computational time
10 6

10 5

10 4

10 3

10 2

Er
ro

r

DeC
P1 OSS stab
P1 CIP stab
P2 OSS stab
P2 CIP stab
P3 OSS stab
P3 CIP stab

(c) Bernstein elements with DeC

100 102 104

Computational time
10 6

10 5

10 4

10 3

10 2

Er
ro

r

SSPRK
P1 OSS stab
P1 CIP stab
P2 OSS stab
P2 CIP stab
P3 OSS stab
P3 CIP stab

(d) Basic elements with SSPRK

FIGURE 5.25: Error for Shallow Water problem (5.22) with respect to
computational time for all elements and stabilization techniques

the Shallow Water equations, we have results that resemble the ones of the structured mesh.
There are small differences in the order of accuracy in both directions in different schemes.
Comparing also the computational time of all the schemes in fig. 5.25, we can choose what
we consider the best numerical method for these test cases: Cubature discretization with
the OSS stabilization technique. This performance seems fully provided by the free mass-
matrix inversion, as the CFLs for the OSS technique (with SSPRK scheme) is approximately
the same between Basic and Cubature elements (see table 5.4).
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The plots and all the errors are available at the repository [86].

5.4.3 Remark on the steady vortex case
We now do a quick remark on the steady vortex case as in [107] for the isentropic Eu-

ler equations. Consider the travelling vortex proposed in section 5.3.2 with t f = 0.1s. We
compare the convergence orders between uc = 0 (steady case) and uc = 0.6 (unsteady case)
in, respectively, table 5.10 and table 5.11. As we can see, in the steady case we obtain the
expected convergence order for all schemes, in particular for the DeC with Bernstein poly-
nomial function. These results agree with the ones in [107]. Comparing with the unsteady
case, all the other schemes reach similar order of accuracy as obtained in table 5.9. Running
the test with additional corrections in DeC scheme, as often suggested in [107, 2], does not
improve the convergence order in the unsteady case (we tried even with K = 50).

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 2.31 2.67 3.89 1.97 2.64 3.62

C
ub

. SSPRK 2.05 3.2 3.56 1.79 2.83 /
DeC 2.17 3.18 3.57 1.74 2.83 /

Bern. DeC 2.33 3.28 3.65 1.85 3.0 3.63

TABLE 5.10: Summary tab of convergence order, steady vortex, t f = 0.1s.
"/" means that the scheme is clearly unstable.

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 2.34 2.68 3.86 1.94 2.53 3.61

C
ub

. SSPRK 2.03 3.13 3.57 1.74 2.7 /
DeC 2.13 3.09 3.57 1.71 2.7 /

Bern. DeC 2.33 3.19 2.87 1.75 2.77 2.76

TABLE 5.11: Summary tab of convergence order, unsteady vortex, t f = 0.1s.
"/" means that the scheme is clearly unstable.

This results show that a numerical error appears in the spatio-temporal integration part
of the solution eq. (3.49), which might be related to the fact that the high order derivatives
are never penalized in our stabilizations and might produce some small oscillations.

5.5 Conclusion
This chapter shows also that the stability results obtained in the one dimensional analy-

sis [88] can not be generalized for two dimensional problems on triangular meshes. In this
direction, it could be interesting to perform the stability analysis on Cartesian quadrilateral
meshes, to check whether in that situation the one dimensional results still hold true.

In the numerical test section, the order of accuracy found is not the expected one for
all the methods, i.e., p + 1 using Pp elements. For several cases, we reach only p + 1/2
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or p. Among the schemes that are stable and with the right order of accuracy, the method
that uses Cubature elements with OSS stabilization technique and SSPRK method of order
4 has proven to be the most accurate and less expensive. Secondly, comparing to the SUPG
stabilization technique, very often used in the literature for hyperbolic system, we showed
that other stabilization techniques such as CIP and OSS can provide the same accuracy and
are cheaper in term of computational costs.

In this direction, it would be interesting to evaluate the stability of the CIP adding a ad-
ditional penalty term on the jump of higher order derivatives as suggested in [26, 22, 107].
Moreover, it could be interesting to see the stability of Cubature elements using higher de-
gree polynomials. Another interesting point to explore is the loss of accuracy obtained using
the DeC with Bernstein third order polynomial basis functions for unsteady cases.

To finish, as it is proposed in section 5.2.9, we suggest to add viscous term in our numer-
ical models [58, 74], which smoothen discontinuities in the solution when shock appears,
and alleviate instabilities also in smooth regions.
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Chapter 6

Shallow Water equations: bore capturing
and well balanced

Chapter Abstract
In this benchmarking chapter, we will perform more complex benchmarks solv-
ing the two-dimensional Shallow Water equations. Following the work done
in chapter 4 (or [88]) and chapter 5 for the one and two-dimensional case on
smooth solution, we evaluate our numerical methods/approaches in presence of
non-smooth solution and non constant topography. In particular, having a dis-
continuous topography, then having a discontinuous initial solution. On one
hand we study the well balanced character of the discretization in presence of
bathymetry. Then, to improve the stability of the solution, we add an additional
shock capturing term (see section 3.3).
In this chapter, we choose to compare best continuous Galerkin numerical ap-
proaches highlighted in previous chapters. In particular the continuous inte-
rior penalty (CIP) stabilization method and the orthogonal subscale stabilization
(OSS), combining with two different choices for the continuous finite element
space: Lagrangian polynomials on equispaced nodes, and Lagrangian polyno-
mials on Cubature nodes using the strong stability preserving RK (SSPRK) time
integration technique.
The principal contribution of this chapter is to propose a fully explicit, mass ma-
trix free, high order, well-balanced and shock capturing method to solve Shallow
Water equations. The chapter is organized as follows, we firstly introduce the
well-balanced property in section 6.2. Secondly, we perform in several numeri-
cal tests to validate the well-balanced formulation in section 6.3. Then, using the
additional entropy viscosity term, we propose several numerical tests to firstly
verify the order of accuracy and highlight the benefit of using mass lumping
in section 6.4, and secondly to evaluate the behaviour of this shock capturing
method in presence of discontinuities in the solution with a constant topography
in section 6.5 and a non constant topography in section 6.6.

Outline
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6.2 The well balanced formulation . . . . . . . . . . . . . . . . . . . . . . 100
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6.1 Introduction
Numerous numerical methods are given in the literature to solve the Shallow Water equa-

tions. The main numerical challenges are the discretization of the bathymetry and friction
terms. In the literature, we talk about asymptotic preserving character or well balancedness
of a discretization [109, 57] also called the Conservation property, or C-property [12].
This property refers to the ability of the numerical discretization to preserve some steady
equilibrium. The typical example, and perhaps the one most commonly encountered in na-
ture, is the lake at rest state: flat free surface, and no flow.

Another important numerical challenge when solving the Shallow Water system is the
numerical treatment of nearly dry regions. We talk about wetting/drying strategy [6, 16, 17,
33, 32, 49]. We won’t deal with in this work.

6.2 The well balanced formulation
As it is written in section 2.2.4 the Shallow Water system can be write as follows:

∂th + ∂x(hu) + ∂y(hv) = 0
∂t(hu) + ∂x(hu2 + g h2

2 ) + ∂y(huv) = −gh(Sox + S f x)

∂t(hv) + ∂x(huv) + ∂y(hv2 + g h2

2 ) = −gh(Soy + S f y)

(6.1)

It is well known that Shallow Water equations provide satisfactory results for long wave
phenomena such as tid/storm surge and tsunami (the wave length λ � A the amplitude of
the wave). However, they can create discontinuity in time even from smooth initial state.
For these reasons, we will develop several numerical properties to satisfy in order to ensure
the stability of methods. We also add stabilization technique developed above to deal with
discontinuities.
Writing 6.1 in a matricial form, we obtain{

∂tU +∇ · F (U) = S(U)
F = (F1, F2)

(6.2)

U =

 h
hu
hv

 , F1(U) =

 hu
hu2 + g h2

2
huv

 , F2(U) =

 hv
huv

hv2 + g h2

2

 , and S(U) =

 0
−gh(Sox + S f x)
−gh(Soy + S f y)


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With (S fx, S fy) the friction term which is equal to zero in our case. Then

(eq. (6.2)) ⇔ ∂tU +∇uF (U) · ∇U = S(U)

⇔ ∂tU + (K1,K2) · ∇U = S(U)

with K1 =

 0 1 0
gh− u2 2u 0
−uv v u

 and K2 =

 0 0 1
−uv v u

gh− v2 0 2v

 (6.3)

Spectrum of matrices K1 and K2 are respectively

Sp1(u) = {u, u +
√

gh, u−
√

gh} and Sp2(v) = {v, v +
√

gh, v−
√

gh}

We introduce now several notations: the celerity of the flow c =
√

gh, the free surface eleva-

tion η = h+ b, the specific total energy εs = gη + k with k the kinetic energy k = ‖(u,v)T‖2

2 ,

the discharge ~q = h(u, v)T and the Froude number Fr = ‖(u,v)T‖
c . The Froude number

characterizes the ratio between the flow speed (or the kinetic energy) and the celerity (or the
gravity potential energy). If Fr < 1 the flow is called a subcritical flow, if Fr > 1 the flow
is characterized as supercritical flow and if Fr ≈ 1 the flow is denoted as critical flow.

Another very important notion is the lake at rest which corresponds to the hydrostatic
equilibrium. The lake at rest is characterized by the discharge ~q = h(u, v)T = 0 and
∇(g h2

2 ) + gh∇b = gh∇(h + b) = 0.
This is always satisfied by the physical steady state (u, v)T =~0 and η = η0 = cst.
To preserve the lake at rest, we use a different approach of the initial shallow-water formu-
lation. The mono dimensional shallow-water frictionless system is written as follows{

∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(hu2 + g h2

2 ) + gh∂xb = 0.
(6.4)

However, considering the finite elements approximation of h, u = 0 and b, and the space of
basis function (ϕi)i∈TK of each elements K, the spatial derivative approximation becomes

∑
i∈K

h2
i

2
∂x ϕi + ∑

j∈K
hj ϕj ∑

i∈K
bi∂x ϕi (6.5)

which is not necessarily equal to 0. Following Y. Xing and C.W. Shu [128], we can rewrite
the formulation as

eq. (6.4) ⇔
{

∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(hu2) + (gh∂xh− gb∂xb) + g(h + b)∂xb = 0, (6.6)

⇔
{

∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(hu2) + (g∂x

h2−b2

2 ) + g(h + b)∂xb = 0.
(6.7)
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The spatial derivative approximation becomes (knowing that h + b = cst = η0)

∑
i∈K

h2
i − b2

i
2

∂x ϕi + η0 ∑
i∈K

bi∂x ϕi (6.8)

= ∑
i∈K

η0
hi − bi

2
∂x ϕi + η0 ∑

i∈K
bi∂x ϕi (6.9)

= η0

(
∑
i∈K

hi + bi

2
∂x ϕi

)
=

η2
0

2

(
∑
i∈K

∂x ϕi

)
= 0 (6.10)

Similarly, eq. (6.2) becomes{
∂tU +∇ · FWB(U) = S(U)
FWB = (FWB

1 , FWB
2 )

(6.11)

FWB
1 (U) =

 hu
hu2 + g h2−b2

2
huv

 FWB
2 (U) =

 hv
huv

hv2 + g h2−b2

2


and S(U) =

 0
−g(h + b)∂xb
−g(h + b)∂yb


This last formulation eq. (6.11) preserves the lake at rest in the sense that for any high order
spatial discretization and time integration scheme, if initial conditions are defined by (h0 +
b0) = η0 = cst and (u0, v0)

T = ~0, we obtain ∂th = ∂t(hu) = ∂t(hv) = 0. This property
is commonly call the well-balanced property.

6.3 The lake at rest solution
In this section, we propose a comparison between the well-balanced and non well-

balanced approaches. Two important things are considered: the lake at rest conservation
and the accuracy of numerical methods. The first one will be tested using initial lake at rest
condition with a smooth and a non-smooth topography. Then, the second one considering
a perturbation of the lake at rest, by comparing our results with those obtain in [109]. The
aim is to preserve the lake at rest, away from perturbation, and converge to a smooth solution.

We start by considering the lake at rest solution initial condition on two different bathyme-
tries. The spatial domain Ω = [0, 2]× [0, 1], and the bathymetries are defined by:

b(x, y) = b0eψ(x,y) (6.12)

The first smooth bathymetry, which is generally used to verify the C-property (see e.g. [129,
114, 80] and references therein) is obtained with

b0 = 0.8, and ψ = −5(x− 0.9)2 − 50(y− 0.5)2 (6.13)
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The second non-smooth bathymetry proposed in [109] is the same on which we add a dis-
continuity:

b0 = 0.6, and ψ =

{ √
(x− 0.9)2 + (y− 0.5)2 if (x, y) ∈ [0.9, 1.1]× [0.3, 0.7],
−5(x− 0.9)2 − 50(y− 0.5)2 otherwise

(6.14)

6.3.1 The lake at rest initial condition
In a first time, we consider the initial lake at rest solution (η, q) = (1, 0), ∀(x, y) ∈ Ω

using the Well-Balanced definition of methods and without. The numerical computation is
done using an unstructured mesh. The mesh size used is ∆x1 = 0.05, ∆xp = p × ∆x1,
so ≈ 1000 nodes per mesh. An example of the Well-Balanced and non Well-Balanced be-
haviour is represented in fig. 6.1 and in fig. 6.2. The numerical method consider in this
example is Basic P1 discretization, SSPRK time integration method and the OSS stabiliza-
tion technique. The physical time of this test is t f = 1s.
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(a) not Well-Balanced.
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(b) Well-Balanced.

FIGURE 6.1: Lake at rest solution with a smooth topography, t f = 1s using
Basic P1 discretization with the OSS stabilization technique and the

SSPRK(3,2) scheme. Amplification factor of water instabilities = 100.
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(b) Well-Balanced.

FIGURE 6.2: Lake at rest solution with a discontinuous topography,
t f = 0.02s using Basic P1 discretization with the OSS stabilization technique

and the SSPRK(3,2) scheme.

As expected, using the Well-Balanced formulation, the lake at rest is preserved even in
the presence of discontinuity in the bathymmetry, see fig. 6.1(b) and fig. 6.2(b). However,
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using a non Well-Balanced formulation does not allow to preserve the lake at rest. Indeed,
small perturbations appear even with a smooth topography as it is shown in fig. 6.1(a), and
high oscillations appear in presence of discontinuities in the bathymetry as we can see in
fig. 6.2(a).

6.3.2 The Lake at rest with a perturbation
To visualize better this fact, we now add a perturbation of the lake at rest state defined by

(hu, hv) = 0, and ∀(x, y) ∈ Ω

η0(x, y) = 1 + e−(x×30)2
× 0.01 (6.15)

which corresponds to a gaussian function centered in 0, and we add a wall condition on the
left boundary of the domain x = 0.
In [109] and references therein (i.e. [80, 109, 111, 114, 129]), they use a discontinuous initial
solution (η0(x, y) = 1.01 if x ∈ [0.05, 0.15], 1 else), which is possible only if we are able to
treat shock with entropy viscosity stabilization technique for example [58, 74].
We choose a mesh size ∆x1 = 0.025m, and so ≈ 4500 nodes for the CG case. Firstly, we
show the 3d view of the free surface in fig. 6.3 to understand properly the global behaviour
of the wave at different time.

(a) t = 0.07s. (b) t = 0.22s. (c) t = 0.33s.

(d) t = 0.37s. (e) t = 0.41s. (f) t = 0.48s.

FIGURE 6.3: Propagation of the perturbation eq. (6.15) at different time step
using Basic P1 elements with the OSS stabilization technique and the

SSPRK(3,2) scheme.

The perturbation behaves uniformly in the ~x direction until t ≈ 0.20s, then the wave
is deformed during the propagation above the hill. This behaviour corresponds to what is
observed in the literature. The lake at rest seems to be preserved away from the perturbation.
To see better this fact, we plot the 2d view from the top with line contour of water elevation
for the Cubature elements, with the OSS stabilization technique in fig. 6.4. In particular,
we compare the approximated solution using and not using the well-balanced formulation.
Comparison using Basic and the CIP stabilization technique are presented in Appendix F.1.1.
The free surface elevation using the non-smooth topography and the well-balanced formula-
tion is placed in Appendix F.1.2.
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(a) Cubature P̃1, P̃2, P̃3 elements (from left to right) using the well-balanced formulation.
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(b) Cubature P̃1, P̃2, P̃3 elements (from left to right) not using the well-balanced formulation.

FIGURE 6.4: 2D view of the free surface elevation at t = 0.48s with the
smooth topography eq. (6.13). All simulation are performed using Cubature

elements, the OSS stabilization technique, and SSPRK schemes.

We observe the perfect preservation of the lake at rest away from the perturbation using
the well-balanced formulation, see fig. 6.4(a). While, if we do not use a well-balanced for-
mulation, oscillations appear upstream and downstream of the perturbation, see fig. 6.4(b).
The preservation of the lake at rest away from the perturbation is also the case with a dis-
continuous topography, even if very small smooth oscillations appear behind the wave (see
Appendix F.1.2). This result show in particular the well balancedness of the numerical meth-
ods.

6.4 The entropy viscosity technique
In this section, we consider the entropy viscosity proposed by J.L. Guermond et al. [101,

58], described in section 3.3. We already highlighted the benefit of using mass lumping with
Cubature elements in the previous chapters using linear stabilization techniques. The aim is
now to preserve this order of accuracy using the additional viscosity term for smooth solu-
tions. We expect as in the previous chapters, to see a benefit in using mass lumping in term
of cpu-time.

We consider the travelling vortex proposed in section 5.3.2 on the same meshes, and
t f = 0.5s. The initial free surface elevation is represented in fig. 6.5. Numerical methods
compared in this study are SSPRK time integration methods, with the CIP and the OSS
stabilization techniques, combined with Basic and Cubature elements. Convergence orders
for all of these schemes are summarized in table 6.1. By default we use penalty coefficient
from the two-dimensional analysis table 5.4 in the previous chapter. Then, taking in account
CFL values in table 5.4, we choose to compare both spatial discretization with the same
value: CFL = 0.4, 0.2 and 0.1 for respectively p = 1, 2 and 3. We summarize parameters
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FIGURE 6.5: Initial water elevation and velocity field (red arrows) -
Travelling vortex test case, Ω = [0, 2]× [0, 1].

used for the convergence tests in table 6.2. We note that the viscosity parameter cE (from
section 3.3) was chosen after several tests.

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

Basic & SSPRK 1.6 2.4 3.8 1.8 2.5 3.6
Cub. & SSPRK 1.2 2.8 3.6 1.6 2.5 3.7

TABLE 6.1: Convergence order for Shallow Water problem (5.22) on
unstructured mesh, t f = 0.5s.

As we can see in table 6.1, for the majority of numerical methods, convergence orders
are between p + 1/2 and p + 1. This first information is very promising. In particular,
for the two fourth order of accuracy and mass matrix free methods, i.e. using Cubature P̃3
elements combined with the CIP or the OSS stabilization techniques. A disappointing result
is the convergence order obtained with Cubature P̃1 elements with the OSS. This result
was also observed in the previous chapter (see section 5.4.2). We now compare error and
computational time for all methods presented above in fig. 6.6.
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(a) Basic elements
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(b) Cubature element

FIGURE 6.6: Error for Shallow Water problem (5.22) with respect to
computational time for all elements, the linear stabilization techniques and

the additional viscosity term.

As expected, using the mass lumping, fastest methods are obtained using the mass lump-
ing. When we now look at the ratio error/cpu-time, for elements of degree p = 1, as the
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order of accuracy of Cubature P̃1 elements with the OSS is low, the advantage goes to Basic
P1 elements and Cubature P̃1 with the CIP which are equivalent. Then, for elements of de-
gree p = 2 the advantage goes to Cubature with the OSS and the CIP which are equivalent.
And finally for elements of degree p = 3, the advantage goes clearly to Cubature elements,
with the OSS.

Element & OSS
Time scheme P1 P2 P3

Basic & SSPRK 0.4 ( 0.13, 0.05 ) 0.2 ( 0.05, 0.05 ) 0.1 ( 0.026, 0.05)
Cub. & SSPRK 0.4 ( 0.34, 0.05) 0.2 ( 0.08, 0.05 ) 0.1 ( 0.018, 0.001)
Element & CIP

Time scheme P1 P2 P3

Basic & SSPRK 0.4 ( 0.012, 0.05) 0.2 ( 0.0008, 0.05) 0.1 ( 0.0005, 0.05)
Cub. & SSPRK 0.4 ( 0.048, 0.05 ) 0.2 ( 0.002, 0.05 ) 0.1 ( 0.0004, 0.5 )

TABLE 6.2: CFL, penalty coefficient δ and viscosity term cE in parenthesis
used for convergence tests: CFL (δ, cE)

6.5 The asymmetric break of dam on flat bathymetry
As we saw in section 5.4 using linear stabilization techniques, for smooth solution, all of

our numerical schemes gives approximated solutions with the accuracy expected, i.e. order
of accuracy ≈ p + 1 using elements Pp. However, for coastal engineering applications, we
need to use shock capturing techniques to deal with possible discontinuities. In section 6.4,
we showed in particular that entropy viscosity method proposed in section 3.3 allows to con-
serve the order of accuracy expected in smooth region using Basic and Cubature elements
with mass lumping. The aim of this work being to propose a mass matrix free, stabilized and
shock capturing technique for Shallow Water equations, we now consider a discontinuous
initial solution. This test case corresponds to a break of a dam. In this section, we simu-
late the propagation without using shock capturing technique in section 6.5.1 and then using
shock capturing technique (from section 3.3) in section 6.5.2.

This test is taken from [84, 114]. It consists of the asymmetric break of dam separating
two basins with two different water depths: 5 and 10 meters. The dam is contained in the
computational domain Ω = [0, 200]2 , and the breaking is initially placed at x = 95[m],
and y from 84.5[m] to 179.5[m]. A representation of the test case is shown in fig. 6.7 for the
initial state and in fig. 6.8 for the final state using Basic P1 elements, the OSS stabilization
technique and ∆x1 = 2m (≈ 13500 nodes and 26500 triangles in P1). Reflective boundary
conditions are used on all boundaries, see [84, 114] for more details. This benchmark will
show us in particular the benefit of using stabilization technique when the initial condition is
not continuous.

For this test case, to be comparable with results obtained in [109] and [111], we now
choose ∆x1 = 2m which correspond to ≈ 13500 nodes (and 26500 triangles in P1) and
we report the water elevation at t = 7.2s. We plot in a first time the 3d contour of the free
surface elevation, view from the top to see the global free surface elevation over the domain.
Then we plot the 1d water elevation along y = 132m (equidistant to both walls, see the
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FIGURE 6.7: Asymmetric dam break. At left, visualisation of the domain Ωh
and initial conditions. At right: 3d view of the initial state.
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FIGURE 6.8: Asymmetric dam break. At left, 3d view of the final state at
t = 7.2. At right: 2d view from the top of the final state, contour line of water

elevations

blue line in fig. 6.7), which is the position of the trough due to the interaction of the corner
rarefactions to see the approximated solution around discontinuities.

6.5.1 Without shock capturing technique
For this test case, we only show results using the OSS stabilization technique with the

OSS because P2 and P3 Basic and Cubature elements using the CIP lead to an unstable
scheme. This result is not surprising in the sense that these dispersion methods are not
supposed to be stable in presence of a discontinuity.

As we can see in the 2d view from the top with line contour of water elevation (see fig. 6.9
for the Basic discretization and in fig. 6.10 for the Cubature discretization), all numerical
schemes behave similarly around corner and discontinuity. The waves are propagated with
the same speed and the surface elevations are quite similar. This behaviour is also equivalent
to the behaviour observed in [109, sec. 5.1]. We now compare the free surface elevation at
y = 132m (see blue line in fig. 6.7) in fig. 6.11. Both spatial discretizations lead to the same
dispersive behaviour that we already observed in 1d in fig. 4.15 for a linear advection case.
The Cubature discretization seems to oscillate more than the Basic discretization around
discontinuities. But the scheme stay stable and converge. Moreover, the steady state of the
solution in the rest of the domain, away from the discontinuities, is preserved (x < 25m and
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(a) Basic P1.
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(b) Basic P2.
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(c) Basic P3.

FIGURE 6.9: 2D view of the free surface elevation at t = 7.2s, Basic
elements with the OSS stabilization technique.
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(a) Cubature P̃1.
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(b) Cubature P̃2.
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(c) Cubature P̃3.

FIGURE 6.10: 2D view of the free surface elevation at t = 7.s, Cubature
elements with the OSS stabilization technique.

x > 175m). The main difference with [109, 111] is the use of a diffusive scheme which
smoothen shocks, instead of our schemes which are dispersive. Their results are reported in
fig. 6.12 We can clearly see a difference between our dispersive schemes and the diffusive
scheme from [109]. The solution is much smoother, however we can see that the global
behaviour of the solutions are comparable.

6.5.2 Using shock capturing technique
We use now the additional stabilization term describe in section 3.3 using the definition

of parameters from [18], and we test different values for α in order to remove all spurious
oscillations, κ = 1/p, τ = 1/10 stabilized shocks and impose a minimal viscosity and see
the global behaviour of our numerical test, β = 0.057. We still consider our both stabiliza-
tion technique (OSS and CIP) and we add the diffusive term.

A first improvement is that all numerical schemes are stable and gives comparable re-
sults. Indeed, we obtain the same behaviour than in [109]. To understand the effect of the
viscosity stabilization term, we plot the 1d water elevation at y = 132m, t = 7.2s along the
shock (x ∈ [150, 180]) using different value of α. We here consider the CFLs and penalty
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(a) Basic elements. At left: x ∈ [0, 200], at right x ∈ [150, 180].

(b) Cubature elements. At left: x ∈ [0, 200], at right x ∈ [150, 180].

FIGURE 6.11: Asymmetric dam break: water height at time t = 7.2s. Data
extracted along the line y = 132m. Use of the OSS stabilization technique.

coefficients from the analysis done previously, and we consider for the numerical scheme us-
ing Cubature P̃3 discretization and CIP stabilization (which were not stable in the previous
chapter) coefficients from the Basic P3 discretization, CIP stabilization and SSPRK method
by default. An important point is that if ακ is "too high", we have to decrease the CFL to
be stable. In our test, we only plot the water elevation when the method is stable using the
CFLs describe above.

We confirm in this test the fact that for a same method (time scheme, type of discretization
and stabilization technique), µ must have a lower value for higher order methods, and so ακ
has to be lower for higher polynomial degree. Moreover, as we can see in figures 6.13
and 6.15 using the OSS stabilization technique, the additional viscous term dumps spurious
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FIGURE 6.12: Asymmetric dam break: water height at time t = 7.2s. Data
from [109], extracted along the line y = 132m

(a) ακ = 0× 1/p (b) ακ = 0.05× 1/p (c) ακ = 0.075× 1/p (d) ακ = 0.1× 1/p

FIGURE 6.13: Asymmetric dam break: water height at time t = 7.2s. Data
extracted along the line y = 132m. Use of the Basic discretization, the OSS

and entropy stabilization technique.

oscillations until remove it (increasing the term ακ). Also, we can see this fact in figures
6.14 and 6.16 with the CIP stabilization technique. We can also notice that the choice of
coefficients seem very sensitive considering the numerical test.

6.6 Circular discontinuous perturbation on a lake at rest
For this final numerical test case using the continuous Galerkin approach, we consider a

perturbation of a lake at rest, which is propagated circularly on a domain Ω = [0, 2]× [0, 2].
The bathymetry is defined by

b(x, y) = b0 cos(θ π
4
(x, y)× τ0π) (6.16)

θ π
4
(x, y) = cos(−π/4)× x − sin(−π/4)× y, which corresponds to a rotation of π/4,

and b0, τ0 ∈ R.
In the first case, we choose b0 = 0.05 and τ0 = 6 (see fig. 6.17(a)), the topography does

no influence on the wave propagation while b0 � η0. This fact is not valid in the second case
where b0 = 0.05 and τ0 = 6 (see fig. 6.17(b)). The time of the simulation is t f = 0.18. To
stabilize numerical method, we add the viscous stabilization term (the entropy stabilization
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(a) ακ = 0.05× 1/p (b) ακ = 0.075× 1/p (c) ακ = 0.1× 1/p

FIGURE 6.14: Asymmetric dam break: water height at time t = 7.2s. Data
extracted along the line y = 132m. Use of the Basic discretization, the CIP

and entropy stabilization technique.

(a) ακ = 0× 1/p (b) ακ = 0.05× 1/p (c) ακ = 0.075× 1/p (d) ακ = 0.1× 1/p

FIGURE 6.15: Asymmetric dam break: water height at time t = 7.2s. Data
extracted along the line y = 132m. Use of the Cubature discretization, the

OSS and entropy stabilization technique.

term) and we choose α = 0.05. The initial water elevation is described ∀(x, y) ∈ Ω by

η0(x, y) =
{

0.7 if dc(x, y) < 0.12
0.5 else , dc(x, y) =

√
(x− 1)2 + (y− 1)2. (6.17)

η0 is discontinuous, while b0 ∈ C∞. We add viscous stabilization term to smooth disconti-
nuities.

A 3d representation of the final state is shown in fig. 6.18(a) and fig. 6.18(b). As an
example, we plot the 2d view from the top with line contour of water elevation (see fig. 6.19
using the OSS stabilization technique and Basic and Cubature discretizations) for the case 2.

Again, we observe that the lake at rest is preserved away from the perturbation and the
perturbation is propagated smoothly. This is the case for base case 1 (b0 = 0.05 and τ0 = 6)
and case 2 (b0 = 0.05 and τ0 = 6) for all numerical methods. These results show again the
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(a) ακ = 0.05× 1/p (b) ακ = 0.075× 1/p (c) ακ = 0.1× 1/p

FIGURE 6.16: Asymmetric dam break: water height at time t = 7.2s. Data
extracted along the line y = 132m. Use of the Cubature discretization, the

CIP and entropy stabilization technique.
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(a) Perturbation of a lake at rest, case 1.
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(b) Perturbation of a lake at rest, case 2.

FIGURE 6.17: Perturbation of a lake at rest, initial solution.
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(a) Perturbation of a lake at rest, case 1.
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(b) Perturbation of a lake at rest, case 2.

FIGURE 6.18: Final state of the perturbation eq. (6.17) using Basic P1
elements with the OSS stabilization technique and the SSPRK(3,2) scheme.

well-balancedness and the entropy conservative character of our numerical methods. More-
over, we also shown these properties for numerical schemes which use the sparse matrix
inversion (Basic discretization) and the mass-lumping (Cubature discretization).
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(a) Basic P1, P2, P3 elements (from left to right) with the OSS stabilization technique.
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(b) Cubature P̃1, P̃2, P̃3 elements (from left to right) with the OSS stabilization technique.

FIGURE 6.19: 2D view of the free surface elevation at t = 0.18s with the
oscillating topography eq. (6.16). All simulation are performed using SSPRK

schemes.
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6.7 Conclusion
To summarize this chapter, we showed the capacities of stabilized continuous Galerkin

methods, using a well-balanced formulation to deal with the topography and adding a shock
capturing term (viscosity term) to stabilize shocks and allow to propagate them. The main
success of this chapter is the conservation of these properties using mass-lumping with Cuba-
ture elements. The extension of Cubature elements to hyperbolic equations if very promis-
ing. Indeed, for coastal engineering applications in operational codes, it should improve
considerably the cpu-time. Moreover, these results are particularly interesting in the sense
that we proposed a high order, fully explicit, well-balanced and shock capturing method to
solve Shallow Water equations, which is mass matrix free. In the next chapter, we propose
to evaluate the gain of cpu-time on three coastal engineering test cases in a operational code.
These test cases will be perform using a well-balanced discontinuous Galerkin formulation,
with the same shock capturing technique and SSPRK methods, for Basic and Cubature ele-
ments.
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Chapter 7

Spherical and real benchmarks

Chapter Abstract
In this final chapter, we will mainly show the benefit of using mass lumping
in an operational context, by brought light to the gain of time of computation.
Only using the DG formulation (for a question of implementation), we compare
the time of computation using Basic finite elements and Cubature elements. We
start with two spherical test case from [5] in section 7.2. Then, we perform a
submersion benchmark of the Région Nouvelle-Aquitaine in section 7.3.2. The
first spherical test case is a steady state which does not use shock capturing
technique. For this test case we perform convergence tests and compare numer-
ical discretizations in terms of accuracy and time of computation. The second
spherical test represents an unstable jet which travels around the globe. The
complexity of this test case is that it creates high vorticity fields during the sim-
ulation.
We then finish with a real test case which models the submersion caused by the
Xynthia storm (2010) in "les Boucholeurs" (Nouvelle-Aquitaine). The complex-
ity of the test case is that it uses the entropy viscosity stabilization technique and
has at wet/dry interface. All simulations are performed in the Aerosol code via
the Uhaina platform.
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7.1 Introduction to the 3d/2d-covariant formulation
In this section firstly introduce the extension to spherical coordinates based on a pro-

jection from the cartesian plan to the sphere following the methodology from Arpaia et al.
in [5]. Then, in the next section 7.2, we evaluate the proposed methods on standard global
benchmarks for the Shallow Water equations on the sphere using Basic and Cubature dis-
cretization. In a first time, we consider a steady state in section 7.2.1, then a perturbation of
a steady state in section 7.2.2, which creates high vorticity fields.

In the literature, there are three common approaches used for spherical problems such
as the Earth. The first one is based on the two-dimensional parametrization of the sphere
through a proper curvilinear coordinate system which means that all the differential opera-
tors are transformed in curvilinear coordinates also called the curved manifold. This tradi-
tional latitude-longitude parametrization is used particularly in regional models. However,
it has a singular point in the Arctic Ocean at the North Pole, where the meridians converge
[126]. The Jacobian of the coordinate transformation is not anymore defined and the sin-
gularity imposes a severe restriction on the maximum time step allowed for stability. The
second approach consist to resolve the governing PDEs in a three-dimensional Cartesian
framework and then adding a constraint to force the currents to remain tangent to the sphere
[41, 54]. Using this approach, no special treatment is required in polar regions to preserve
accuracy and to conserve global mass. The third approach combine the advantages of both
methods [13]: momentum time derivative is written with respect to 2d components while
the right-hand side is first expressed in 3d and then projected back onto the sphere surface
by a simple scalar product with respect to the tangent basis. The advantage is that the num-
ber of unknown is kept at a minimum (water depth and two momentum components) and,
at the same time, the right-hand side maintains Cartesian form, thus it is independent from
the parametrization of the sphere, and moreover there is no need to transform differential
operators. For example, in tsunami applications this could be laborious for depth averaged
non-hydrostatic models with dispersive terms that involve mixed high order derivatives. If
requested, Riemann solvers are formulated easily in 3d Cartesian framework, and then pro-
jected on the sphere surface along with the right-hand side.

We will mainly follow Arpaia et al. in [5], which proposes some improvements of the
third approach.

7.1.1 Notations
Let us introduce the following notation: we consider the sphere S2 with the radius R

described by curvilinear coordinates X1, X2 and othogonal (but not orthonormal) covariant
basis g1, g2. The coordinate vector x writes:

x = xiei = x1e1 + x2e2 + x3e3 (7.1)

= Xαgα = X1g1 + X2g2 (7.2)

We define the spherical transformation x = G(X), the inverse X = G−1(x) and a Jacobian

JG =
∂x
∂X

and J−1
G =

∂X
∂x

(7.3)
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The covariant vectors define the tangent plane to the sphere. They can be obtained by
differentiation as the columns of the Jacobian gi =

∂x
∂Xi . We denote by (g∗)i the normalized

basis. Note the g∗i · g∗j = δij.
For us, X1 corresponds to the longitude and X2 the latitude.
Now, rewriting SW equations 6.1 in 3d cartesian coordinates{

∂th +∇(hu) = 0
∂t(hu) +∇ · T = S (7.4)

The source term S includes the effects of bathymetry, Coriolis force, and meteorological
forcing:

S = gh∇b + Ωk× hu +
gh
ρ0
∇patm + fw (7.5)

with Ω the Earth rotation rate, k the Earth rotation axis, patm the atmospheric pressure, ρ0
the water density and fw the wind forcing. The momentum vector hu can be expressed in
both systems as:

hu = huiei (7.6)

= huαgα = huα ‖ gα ‖
gα

‖ gα ‖
= hu∗αg∗α (7.7)

Note that ui = Jiα
G uα and ui = J∗,iαG u∗α, with J∗,iαG = Jiα

G / ‖ gα ‖ the normalized Jacobian.
Similarly, we write the flux tensor T as

T = Tijeiej (7.8)

= Tα,βgαgβ = huα ‖ gα ‖
gα

‖ gα ‖
= hu∗αg∗α (7.9)

with Cartesian components Tij = huuij + Pδij and curvilinear components Tαβ = huuαβ +

GP. The hydrostatic pressure is defined as P = gh2/2 and G the determinant of the metric
tensor constructed from the Jacobian matrix as G = JT

G JG.

7.1.2 The Well Balanced property
As said before, we denote the free surface level η = h + b = const = K = K0

and hu = 0. In presence of atmospheric pressure forcing, a relevant state is the inverted
barometer balance that is an exact solution of the SWEs in case of full adjustment of sea
level to changes in barometric pressure:

hu = 0, K = η +
patm

gρ0
= const = K1 (7.10)

The numerical method to solve eq. (7.4) is said Well-Balanced if eq. (7.10) is also exact so-
lution of the discrete equations. We write ∇ · PI = −gh∇

(
b + patm

gρ0

)
.
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7.1.3 Fully diagonal mixed 3d/2d-covariant formulation

∂t(hu · g∗α) + (∇ · T) · g∗α = S · g∗α (7.11)

See [5] for the formulation by components α. The main advantage of this formulation with
respect to full 3d equations is that we keep the number of unknowns (h, hu1, hu2). Another
attractive feature is that the flux function is in 3d form and does not depend on a particular
transformation. This means that line integrals are defined intrinsically and mass/momentum
is easily conserved circumventing implementation issue related to the use of composite
meshes in the 2d approach.

The final variational formulation reads

∂t

∫
Θ

hh ϕidx +
∫

∂Θ
hu
′
h ϕi · nds−

∫
Θ

huh · ∇ϕidx = 0 (7.12)

∂t

∫
Θ

huh · g∗α ϕidx +
∫

∂Θ
T
′
hg∗α ϕi · nds−

∫
Θ

Th : ∇(g∗α ϕi)dx =
∫

Θ
Sh · g∗α ϕidx (7.13)

with Θ the domain in the CG context, and Θ = K a triangle in the DG context. T′h denotes
the numerical flux evaluated at the elements boundaries, and the symbole ":" correspond to
the scalar product between second order tensors A : B = AijBij.

This method has been validated in [5] on academic benchmarks involving both smooth
and discontinuous solutions. Following global atmospheric tests are taken from Williamson
et al. [127] for the first and J. Galewsky et al. [51] for the second one. The numerical tests
are performed using the Aerosol software.

7.2 Global atmospheric tests

7.2.1 Steady-State
It corresponds to a Global Steady-State. This exact steady geostrophic equilibrium al-

lowing to measure the order of accuracy in presence of Earth rotation. We define the Eart
radius R = 6371.22× 103m, the gravitationnal constant g = 9.80616m2s−1, the rotation
rate parameter Ω = 7.295× 10−5s−1 and the water density ρ0 = 1025kg/m3. The velocity
and height fields are initially given by:

h(x, 0) = h0 −
1
g

(
ΩRu0 +

u2
0

2

)
(− cos λ2 cos λ1 sin α + sin λ2 cos α)2 (7.14)

u∗1(x, 0) = u0(cos λ2 cos α + cos λ1 sin λ2 sin α) (7.15)

u∗2(x, 0) = −u0 sin λ1 sin α (7.16)
with (λ1, λ2) = TLat,Long(x), α the rotation angle, (7.17)

where TLat,Long the transformation from Cartesian to Latitude/Longitude, gh0 = 2.94 ×
104m2s−2, u0 = 2πR

12×days and α = 0. A representation of the initial condition is given in
fig. 7.5.
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FIGURE 7.1: Initial state of the Global atmospheric test at left, representation
of velocity field at right. The green scale represents the momentum

magnitude.

This comparison will be performed using the DG formulation. The time of the simulation
is 5 days, i.e. t f = 432000s. To show the benefit of the use of Cubature elements and
Mass-Lumping, we compare the error and the time of computation using Basic and Cubature
elements. Grid convergence are defined by 3 levels: from hk = 446km to hk = 1785km.
Convergence curves are compared in fig. 7.2(a) for the L1 error and fig. 7.2(b) for the L2
error, then we summarize error, cpu-time and convergence order in table 7.1. The relative
error is computed as follow: ep =

‖h−hex‖Lp

‖hex‖Lp
.
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(b) Using the L2 error.

FIGURE 7.2: Global steady state simulation, convergence rates.

The convergence orders are relatively satisfying comparing to what we were expecting,
i.e. order p + 1 using Pp discretization. However, we can clearly see in fig. 7.2 and in ta-
ble 7.1 that using P̃1 and P̃3 Cubature elements leads to a loose of accuracy for the same
mesh length (≈ factor 10). Results using the P̃2 Cubature discretization are very positive
and promising for the future. Moreover, even the loose of accuracy for P̃1 and P̃3, we show
in fig. 7.3(a) and fig. 7.3(b) an evaluation of the error relatively to the cpu-time in order to
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Element & e1 P1 cpu-time (s) e1 P2 cpu-time (s) e1 P3 cpu-time (s)
Time scheme

B
as

ic
SS

PR
K

hK = 1785km 8.57e-3 22 2.28e-4 110 1.48e-5 257
hK = 893km 1.46e-3 164 2.28e-5 854 8.11e-7 2498
hK = 446km 2.83e-4 1045 2.57e-6 6189 4.79e-8 19772
hK = 223km 6.25e-5 8746 3.08e-7 37728 2.97e-9 126304

convergence order 2.37 3.18 4.11

C
ub

.
SS

PR
K

hK = 1785km 5.00e-2 10 2.30e-4 47 3.69e-5 191
hK = 893km 9.08e-3 74 2.30e-5 376 2.42e-6 1543
hK = 446km 1.31e-3 601 2.57e-6 3035 1.88e-7 12002
hK = 223km 2.01e-4 4262 3.07e-7 26960 1.81e-8 101206

convergence order 2.67 3.19 3.68

TABLE 7.1: Global steady state. Summary tab of numerical results. At left:
the numerical schemes, at right: results.

show the benefit of mass-lumping in term of time of computation.
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(a) Using the L1 error.
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FIGURE 7.3: Global steady state simulation, error with respect to
computational time.

As expecting, P̃2 discretization leads to a much better ratio error/cpu-time than P2 dis-
cretization. Moreover, the ratio error/cpu-time for P1 and P3 seems give the advantage to
the Basic discretization because of the loose of accuracy using mass-lumping. This result is
a bit disappointing comparing to CG results, but can be easily justified by the fact that for a
DG approach, whatever the spatial discretization, we can solve the numerical system using a
block-diagonal solver which allows to optimize considerably the cpu-time.

NB: The previous remark concerning the solver used and the gain of cpu-time can be
brought to light by comparing cpu-time using the Petsc and the Block-diagonal solvers of
Aerosol. This comparison is done in fig. 7.4. As before, with the Petsy solver, we can see
in fig. 7.4(a) that the P̃2 discretization leads to a much better ratio error/cpu-time than P2



7.2. Global atmospheric tests 123

discretization. Then, using P1 and P̃1 discretization, the ratio seems equivalent because of
the loose of accuracy using mass-lumping for P̃1. We can also notice that the Cubature P̃1
goes under the P1 curve at cpu-time = 4× 103s which means than using a thinner mesh, the
Cubature P̃1 discretization should be better than P1.

In the same direction, even the loose of accuracy using P̃3 discretization, the ratio
error/cpu-time is better than using P3 discretization in fig. 7.4(a).
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(a) Using the Petsc solver.
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(b) Using a Block-diagonal solver.

FIGURE 7.4: Global steady state simulation, L1 error with respect to
computational time. Comparison of the use of two different solvers.

To finish the study of this test case, we also give an approximation of proportion of time
spent in the computation of the residual vector, and in the mass matrix inversion in table 7.2.
The rest of the time is spent in post processing.

Element & Total Residual Limit Mass matrix
Time scheme cpu-time (s) computation (s) solution (s) inversion (s)

B
as

ic
SS

PR
K P1 8746 6130 ( 70.1%) 1707 (19.5 %) 34 (0.39 %)

P2 37728 22945 (60.8 %) 9512 (25.2 %) 158 (0.42 %)
P3 126304 64478 (51.0%) 33967 (26.9 %) 768 (0.61 %)

C
ub

.
SS

PR
K P̃1 4262 2768 ( 64.9 %) 940 (22.1 %) 10 (0.23 %)

P̃2 26960 16429 ( 60.9%) 8185 (30.4 %) 57 (0.21 %)
P̃3 101206 53140 ( 52.5 %) 41375 (40.9 %) 243 (0.24 %)

TABLE 7.2: Global steady state. Summary tab of cpu-time repartition for the
mesh hk = 223km, in parenthesis the pourcentage).

As expecting, regarding table 7.2, using the Cubature discretisation leads to a lower cpu-
time. Indeed for a same order of discretization, the time spent in the residual computation are
quite similar, this can be explained by the fact that Cubature elements have more DOF, but
allows to use quadrature formulas using less quadrature points than the Basic discretization
which uses high order quadrature formula. Moreover, even is the mass matrix inversion is
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computed using a block diagonal solver for the Basic discretization, using the mass lumping
allows to decrease considerably the time of computation by two using the Cubature dis-
cretization which is very promising considering the error obtained using P̃2. Furthermore,
for all Cubature discretization, this result is very promising in an operational context where
we work with a given mesh and we need fast and accurate results.

Remark: For both discretizations, a huge percentage of the cpu-time is spent in the
limiting of the solution. This point will be discussed later.

7.2.2 Unstable Jet
For this last spherical test introduced in [51] and also used in [5], we consider a geostroph-

ically mid-latitude jet, i.e. a small perturbation is added at the initial condition and we prop-
agate it. The zonal velocity component u is a function of latitude:

u(x) = u(λ1) =


0 for λ1 ≤ ψ0
umax

en
exp

(
1

(λ1−ψ0)(λ1−ψ1)

)
for ψ0 < λ1 < ψ1

0 for λ1 ≥ ψ1

(7.18)

with (λ1, λ2) = TLat,Long(x), umax the maximum zonal velocity, ψ1 the latitude of the
northern boundary of the jet in radians, ψ0 the latitude of the southern boundary of the jet
in radians, and en a non-dimensional parameter that normalizes the magnitude of the jet to a
value of u max at the jet’s mid-point. From [51], we choose umax = 80ms−1, ψ0 = π/7,
ψ1 = π/2 − ψ0, en = exp(−4(ψ1 − ψ0)

2) for which the jet’s mid-point is located at
λ1 = π/4.

Considering the initial zonal flow from eq. (7.18), the water height h can be described by

gh(x) = gh(λ1) = gh0 −
∫ λ1
Ru(l)

(
f +

tan(l)
R u(l)

)
dl (7.19)

with h0 is chosen so that the global mean layer depth is equal to 10km. We now initiate the
barotropic instability by adding a perturbation / localized bump:

h′(x) = h′(λ1, λ2) =

{
ĥ cos(λ1)e−(λ2/α)2

e−(ψ2−λ1)
2/β2

for − π < λ2 < π
(7.20)

where ψ2 = π/4, α = 1/3, β = 1/15 and ĥ = 120.

A representation of the initial state is shown in fig. 7.5 for the velocity field, the water
elevation and the perturbation.

We look to the vorticity field (i.e. the local rotational motion) using Basic and Cubature
Pp discretisations (p = 1, 2, 3) using the mesh size hk = 223km.A representation of con-
tour levels is showed in fig. 7.6, and compared with results from J. Galewsky et al. [51] in
fig. 7.7.We then compare the cpu-time for all methods. The time of the simulation is 6 days
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(a) Velocity field from eq. (7.18). (b) Water elevation from eq. (7.19).
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(c) Initial perturba-
tion from eq. (7.20).

FIGURE 7.5: Initial state of the Unstable Jet test.

(a) Basic P1, P2, P3 elements (from left to right).

(b) Cubature P̃1, P̃2, P̃3 elements (from left to right).

FIGURE 7.6: Unstable Jet - 2D view from the northen pole of the vorticity
field contour levels (from −1.1e− 4 to 1.5e− 4) at t f = 6 days.

hK = 223km

(t f = 518400s).

With a mesh size of hK = 223km, we can see in fig. 7.6 that for both discretization,
solution obtained with P1 is not accurate enough to propagate the vortex evolution. But with
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FIGURE 7.7: Approximated solution of the vorticity field after 6 days.
Sources from J. Galewsky et al. [51].

P2 and P3 elements, we obtain the correct dynamic proposed in [51, 5] (see fig. 7.7). More-
over, the behaviour of the solution seems to be the same between the Basic and the Cubature
discretization. We note that refining the mesh size to hk = 111km as it is done in [5], it
allows to draw more properly contour line and approximate better the solution.

We now analyze the time of computation for both spatial discretizations in table 7.3.

Element & Total Residual Limit Mass matrix
Time scheme cpu-time (s) computation (s) solution (s) inversion (s)

B
as

ic
SS

PR
K P1 12701.6 8635.9 (70.0%) 2421.1 (19.0%) 99.4 (0.78%)

P2 64081.9 40776.7 (63.6%) 17791.2 (27.8%) 318.4 (0.50%)
P3 247554.0 146648 (59.2%) 84582.7 (34.2%) 1612.0 (0.65%)

C
ub

.
SS

PR
K P̃1 10686.3 6783.08 (63.5%) 2340.7 (21.9%) 24.6 (0.23%)

P̃2 64890.2 39260.7 (60.5%) 19503.2 (30.1%) 132.3 (0.20%)
P̃3 257276.7 138813 (54.0%) 100132 (38.9%) 619.3 (0.24%)

TABLE 7.3: Unstable Jet. Summary tab of cpu-time repartition for the mesh
hk = 223km, in parenthesis the percentage. t f = 6 days.

Concerning the cpu-time, several points can be discussed. In particular:

• As we showed in the previous test case (see table 7.2), the time spent for the mass
matrix inversion is approximately 2 times lower for Cubature elements with mass-
lumping which is very encouraging. Then, we again obtain approximately the same
cpu-time spent in the residual computation for Basic and Cubature element with a
small advantage for Cubature elements which use less quadrature points.

• A second observation which is not advantageous for Cubature elements is the time
spent in the limit solution computation. Indeed, for P̃1, only 21.9% against 30.1% for
P̃2 and almost 40% for P̃3 elements. These percentages are very high comparing to
Basic elements and are also observed for the smooth steady case in table 7.2. This point
deserves to be explored and optimized in Aerosol. We can also notice that for lower
physical time of simulation, even for the same cpu-time repartition, Cubature elements
allow to reduce the time of computation. To illustrate this assumption, we re-do the
same test in same conditions with t f = 96h. Results are available in Appendix F.2.
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This choice is made regarding results from [51] which show that the vorticity field
appears after 4 days. The same results are also obtained previously in the steady case
(see table 7.2)

• Finally, for this test, the total cpu-time using element of degree 1 gives the advantage
to Cubature elements. However, using elements of degree 2 and 3, the advantage goes
to Basic discretization. This last point may depend on the final time of the simulation,
for shorter times of simulation, the difference in terms of cpu-time between the reso-
lution of the full mass matrix and Cubature approach being smaller (see table 7.1 and
table F.1 for more comparisons).

7.3 A real benchmark: Les Boucholeurs

7.3.1 The datas
This benchmark corresponds to the submersion during the Xynthia storm, the 28th of

February 2010. A representation of the storm trajectory is shown in fig. 7.8(a). All data and
results come from the report [103]:

1. The topography: 1m of resolution + probes SHOM1.
2. Input: water height evaluate by harmonic analysis (see Pedreros & Paris (2012)) rep-

resented in fig. 7.8(b). The water elevation is introduced by the West boundary. The
physical final time of the simulation is t f = 72000s = 20h.

3. Domain of computation: ≈ 36km2, resolution ≈ 25m for the sea and ≈ 1m for road

(a) Location of the Boucholeurs and trajectoria of the
Xynthia storm. Source Müller et al. 2016 [95].

(b) Temporal sea elevation introduced by the west
boundary. Source Brgm. Red points on the tempo-
ral axis correspond to the high tides.

FIGURE 7.8: Representation of the test case: Les Boucholeurs
(Nouvelle-Aquitaine).

NB: The high tides are at approximately 5h30, 18h and 31h30 (in the Atlantic face of
France, the tide has a periodicity of approximately 12h30).

We are able to reproduce numerically particularly well the flooding, comparing to debris
lines (seaweeds, sea muds). The snapshot views of the flooding are reported in fig. 7.9.

1https://www.shom.fr/
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FIGURE 7.9: Snapshot views of the marine submersion in the Boucholeurs
sector during the Xynthia storm at different hours: at left 00:20 am

(ts ≈ 14h), on the middle 03:50 am (ts ≈ 18h), at right 05:30 am (ts ≈ 20h).
Source Brgm, model MARS-2DH.

7.3.2 The results
The main objective of this study will be to compare the water elevation and the flooding

using the mass lumping method for a very complex test case (complex topography, adaptive
mesh, wet/dry interface, flooding, etc). Then, we compare the time of computation for this
test case in order to see if the use of mass lumping allows to be faster without loosing in accu-
racy. This comparison will be performed using the DG entropy conservative formulation in
the Aerosol code (defined in section 3.3), using 128 processors. Because of the complexity
of the test case, we run it only using P1 elements. We report cpu-time for both simulation in
table 7.4. The number of triangles is 194407.

Element & Basic P1 Cub. P̃1
Time scheme SSPRK SSPRK

Mass-matrix inversion 1576.01 (1.30 %) 1572.44 (1.30 %)
Residual computation 57399.9 (47.3 %) 56739.8 (47.0 %)

Compute entropy viscosity terms 30393.8 (25.1 %) 30721.8 (25.4 %)
Limit the solution 20274.7 (16.7 %) 20144.1 (16.7 %)

Total cpu-time 121260 120840

TABLE 7.4: Summary tab of numerical results. At left: the numerical
schemes, at right: results.

As we can see in table 7.4, using the mass-lumping allow to save ≈ 2500s for a sim-
ulation of ≈ 36h. This is not as much as we were expecting, considering results obtain
previously for the global atmospheric test (see table 7.1). Indeed, the benefit of using Cuba-
ture elements is only highlighted in the Residual and the viscous terms computations. There
is no benefit from the inversion of the mass matrix. The benefice of the use of mass lumping
can be dumped by two different points in the total cpu-time:
1/ the cpu-time spent in the "computation of the entropy viscosity terms" and "limit the so-
lution" which is very high for both discretization (≈ 40%) of the total cpu time.
2/ the cpu-time spent in the processor communication for the inversion of the mass lumping.
Indeed, seeing the percentage of the cpu-time spent in the Mass-matrix inversion, comparing
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to other simulation performed with the same code, we should be lower than 1% for the Basic
discretization and lower than 0.25% for Cubature discretization.

We now look at the submersion at four different simulation times: ts ≈ 0h, 14h, 18h,
and 20h. A representation is shown in fig. 7.10(a) using Basic P1 elements and in fig. 7.10(b)
using Cubature P̃1 elements.

(a) Basic P1, ts ≈ 0h, 14h, 18h, 20h (from left to right).

(b) Cubature P̃1, ts ≈ 0h, 14h, 18h, 20h (from left to right).

FIGURE 7.10: Les Boucholeurs simulation, Xynthia storm (2010) - 2D view
from the top of the water elevation η = h + b at different time steps.

As we can see in fig. 7.10, the submersion obtained with both discretizations is similar.
Moreover, they reproduce the same behaviour than the one observed in fig. 7.9. We note
that in fig. 7.9, a submersion appears at the top-right of the road (described in blue) and
is not visible with our simulation in fig. 7.10. This submersion is possible thanks to the
hydrolic connections which are implemented in the BRGM model MARS-2DH, but not in
Aerosol. For this case, we can say that the use of mass-lumping allows to reduce the cpu-
time, which is very promising for the future, knowing that the Aerosol code is not already
optimized for Cubature elements. Indeed, the facts that quadrature nodes match with degree
of freedom, and that φi(xj) = δij, numerous multiplication by zeros are hidden (in the
residual computation as example), and can be removed.

7.4 Conclusion
In this chapter, we compare our spatial discretizations (Basic and Cubature) using the

discontinuous Galerkin approach. We note that in a DG context, the numerical solver used
for Basic discretizations is a block-diagonal solver which is already optimized compared to
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sparse solver used in the CG formulation. Even considering the block-diagonal solver, we
showed the benefice in using mass-lumping in an operational context. Indeed, we shown in
section 7.2.1 an important reduction of the cpu-time by two for a long time (and spherical)
smooth test cases, which allows to keep the order of accuracy. However, we also showed
that the error becomes higher enough to consider the ratio error/cpu-time better using the
classical discretization than using the Cubature one. Then, for a longer and unsteady simu-
lation with the same mesh in section 7.2.2, the cpu-time repartition is the same. However,
we observed disadvantage for Cubature P̃2 and P̃3 elements and mass-lumping. Indeed,
the cpu-time spent in the limitation of the solution increase considerably with the degree of
elements, and so for longer time simulation, Cubature elements do not allows to be faster
anymore. An optimization of the actual limiter or a possibility to switch of limiters seems to
be necessary for smooth cases. This could optimizes considerably the cpu-time. In particu-
lar, the actual limiter loops over elements and degree of freedoms four times:
1/ dry cells: cutOff correction on velocity,
2/ wet/dry detection,
3/ shock limiter (Barth and Jespersen Limiter [9]),
4/ Positivity Preserving Limiter (Zhang and Shu Limiter [131, 132]).

Finally, we proposed in section 7.3.2 a comparison of both spatial discretizations (P1 ba-
sic and P̃1 Cubature elements) for complex test cases with flooding (wet/dry interface) and
with a complex topography. We showed again the benefit of using mass-lumping for Cuba-
ture elements in terms of cpu-time. However, when adding the shock capturing operator, and
using positivity preserving limiter this benefit is masked from the cost of these two. We also
saw that mass-lumping does not impact the submersion approximation and allow to obtain
accurate results comparing to results obtained by the BRGM (numerical results and submer-
sion observations). An optimization of the code could be interesting for these elements and
easy to implement in the Aerosol code.

In conclusion, when considering the DG solver, when using lower order elements (P2 at
most), there is an interest in using the Cubature approach in terms of cpu-time. This is not
true anymore for higher polynomial degrees, especially when propagating smooth data for
long times.
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In this thesis we have studied several fully explicit numerical methods for hyperbolic
equations. The underlying objective is to achieve a continuous finite element type method
with a structure similar to discontinuous Galerkin. To this end, the use of Cubature elements
combined with symmetric stabilization techniques is explored as a path toward fully explicit,
mass matrix free high order methods.

Several elements play an important role in this construction, and in this PhD we have
tried to account for the most important, namely:

1. the use of different stabilization approaches, using residual based strategies, or solu-
tion/gradient variations (chapter 3),

2. the use of different one-step time integration methods (RK or DeC - chapter 3),
3. the linear stability of all the possible combinations for an appropriate choice of the

stabilization parameters (chapter 4 and chapter 5),
4. an extension to the nonlinear Shallow Water equations with variable topography guar-

anteeing the stable approximation of moving bores, as well as well balanced (chap-
ter 6),

5. some applications to realistic coastal engineering simulations (chapter 7).

A summary of these contributions, with some perspectives is provided in this final chapter.

8.1 The von Neuman numerical analysis
The global work done for the von Neuman analysis applied to linear advection equa-

tion in chapter 4 and chapter 5 is to evaluate the stability and the dispersion of numerical
methods considering different parameters (CFL,δ) and optimize them taking into account
dispersion and solution errors. The Fourier analysis has been developed progressively as a
spatial-eigenanalysis, a temporal-eigenanalysis and finally a spatio-temporal-eigenanalysis
to optimize the CFLs and penalty coefficients δ. We proposed one methodology for the one
dimensional case that we extended and improved for the two-dimensional space.
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As a scientific contribution, this work has been performed comparing different time in-
tegration methods, spatial discretizations and stabilization techniques to provide reliable pa-
rameters and CFL conditions. Firstly in the mono-dimensional context and secondly ex-
tended to the two-dimensional approach using different triangular mesh configurations.

Based on the results of the analysis, we have performed a comparison of our numerical
schemes in terms of accuracy and time of computation. In particular, we showed the potential
of the mass matrix free approach proposed in minimizing the cpu-time for a given error level.

8.2 Shallow water equations and applications
Still in a Continuous Galerkin context, we have proposed in chapter 6 a well balanced

extension to the Shallow Water equations, using an entropy viscosity operator to stabilize
bores and hydraulic jumps. Moreover, we proposed a comparison of our numerical schemes
in terms of accuracy and time of computation. As expected, Cubature elements using mass
lumping showed very good results comparing with Basic elements. The validation performed
for the mass matrix free Cubature continuous finite elements is very promising for, in gen-
eral hyperbolic equations, and in particular Shallow Water equations.

In the last chapter 7 we investigate the benefit of using mass-lumping in discontinuous
Galerkin context. In this case, the basic Lagrange approximation already provides a block
diagonal mass matrix, which is relatively easy to invert. For smooth solution, Cubature el-
ements allow to achieve a reduction of the computational time by a factor of 2. However,
when comparing the ratio error/cpu-time, with regard Cubature P̃1 and P̃3 elements, the
advantage goes to standard elements which allow to better approximate the numerical solu-
tion. Moreover, especially for realistic applications, the inversion of the mass matrix is not
the computationally most demanding step (as e.g. compared to the evaluation of the entropy
viscosity). So for long time simulations with higher order elements (at least three), and for
realistic applications the Cubature DG approximation is not of great interest.

Finally, in section 7.3.2 we performed a comparison of both spatial discretizations (P1
Basic and P̃1 Cubature elements) for complex test cases with flooding (wet/dry interface)
and with a complex topography. We showed again the benefit of using mass-lumping for
Cubature elements in terms of computational time. In this case this is expected, as the cuba-
ture approximation uses the same space with a considerable reduction of quadrature points.
We also saw that mass-lumping does not impact the submersion approximation and allow to
obtain accurate results comparing to results obtained by the BRGM (numerical results and
submersion observations). An optimization of the code could be interesting for these ele-
ments and easy to implement in the Aerosol code co-developed with BRGM via the Uhaina
platform.

As a first conclusion, using the discontinuous Galerkin formulation in the Aerosol code,
for benchmarks using elements of degree 1, Cubature elements seems always better to use.
However, for long time simulation using high order elements, Basic discretization provides
the lower cpu-time. Furthermore, in an operational context, the topography is generally not
constant, the mesh is generally given, and discontinuities can appear in the solution during
the simulation and force to go back to first or second order approximation. In this context, we
showed in section 7.3.1 that using mass-lumping allows to reduce the cpu-time. This result

https://gitlab.inria.fr/uhaina1/uhaina
https://gitlab.inria.fr/uhaina1/uhaina
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is very promising, because the Aerosol code is not already optimized for Cubature elements.
Indeed, as we said before, the fact that quadrature nodes match with degree of freedom, and
that φi(xj) = δij, numerous multiplication by zeros are hidden (in the residual computation
as example), and can be removed.

As a second conclusion, using the continuous Galerkin formulation, we showed several
results to see the benefit of Cubature elements for hyperbolic equations. It is clear that these
elements allow to decrease considerably the cpu-time. All our von Neumann analysis pre-
sented in this manuscript allowed to characterize the stability of our numerical models, and
so "tun" parameters to obtain very efficient schemes. This global study allowed in particular
to propose a high order and mass matrix free method for complex test cases, such as for
coastal engineering applications.

8.3 Future investigations and developments
This PhD belongs in the continuity of the CARDAMOM team researches in two aspects:

the analysis of PDE and the coastal engineering applications through the development of the
Aerosol code and the collaboration with the BRGM (via Uhaina).

Concerning the analysis of hyperbolic equations, several additional things can be done, in
particular it would be interesting to evaluate the stability of the CIP using additional penalty
terms on the jump of higher order derivatives as suggested in [26, 22, 107]. Then, the non-
convergence for unsteady case of the DeC time integration scheme, combined with Berntein
B elements, has to be clarified. Finally, in the continuity of the analysis, it could be inter-
esting to generalize the analysis to higher degrees of approximations, based on the Cubature
elements proposed by Mulder [93, 94], and see if the mass-lumping provides as good results
as we obtained for elements of degree p ≤ 3..

Concerning applications, we proposed in the two last chapters, two different axis. Firstly,
a stable, shock capturing and well-balanced formulation using continuous Cubature ele-
ments. This formulation can be used for continuous and discontinuous Galerkin formulation.
In this direction, it could be interesting to test different shock capturing techniques more op-
timal in terms of algorithm cost and implementation. Indeed, we saw that the viscous term
computation is costly comparing to the total cpu-time (25% for P1 elements in Aerosol with
the DG formulation), and need numerous parameters (α, β, κ, N, etc.. (see section 3.3)).
In a second time, we proposed to highlight the gain of cpu-time using the mass-lumping
procedure with Cubature elements in a DG context. In this direction, it seems obvious and
necessary to optimize the computation of all terms for the Cubature discretization knowing
that nodes of quadrature formula match with degree of freedom of elements, which hides
numerous multiplications by zero. Then a change or an optimization of the actual limiter is
necessary to do for smooth solutions.

Finally, the Aerosol code is written for discontinuous Galerkin formulation (the algorith-
mic is optimized for DG). This fact implies that it is not relevant to compare the continuous
and the discontinuous methods in terms of cpu-time. Moreover, several additional imple-
mentations and tests has to be performed to validate the CG formulation in Aerosol before
using it as reference. It is also possible to compare these CG formulations using another
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operational codes written and optimized for CG, to validate our formulations on complex
test cases.
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Appendix A

Cubature elements, definition and
construction

In this section we give a description of the Cubature finite elements [55, 39]. In fig. A.1
we show the P̃3 example comparing the Lagrangian nodes of Basic and Cubature elements.
As defined in section 3.5.5, there are several requirements and optimization procedures in
order to obtain the Cubature elements. These elements are very import in our study because
they permit to obtain diagonal mass matrix, and so they decrease considerably the time of
computation.
We re-write the requirements of this approach:

1. Obtain a quadrature which is highly accurate, at least p + p′ − 2 order accurate [34];
2. Obtain positive quadrature weights ωα > 0 for stability reasons [123];
3. Minimize the number of basis functions of P̃p;
4. The set of quadrature points has to be P̃p-unisolvent;
5. The number of quadrature points of edges as to be sufficient ensure the conformity of

the finite element.

The optimization procedure that lead to these elements consists of several steps where the
different goals are optimized one by one. We describe these steps for p = 1, 2, 3 in the
following sections and give basis functions of these Cubature elements, using these notation:
λi(x, y) define the barycentric coordinates which are affine functions on R2, and verify the
following relations

λi(vj) = δij, ∀i, j = 1, . . . , 3, (A.1)

where vj = (xj, yj) are the vertices of the triangle and, with an abuse of notation, they can
be written in barycentric coordinates as vj = (δ1j, δ2j, δ3j).

FIGURE A.1: Comparison of two element of degree three: at left the classical
one P3, at right the Cubature one P̃3.
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A.1 Cubature elements of degree 1
For element of degree 1, we start with p′ = p = 1 and DOF are vertices of the triangle.

We know that basis functions at the vertices v1 = (1, 0, 0) , v2 = (0, 1, 0) and v3 = (0, 0, 1)
are given by

φvi(λ) = λi, for i = 1, 2, 3.

And corresponding weights are wvi =
1
3 .

The corresponding integration quadrature formula is

Iapp
K ( f ) =

|K|
3
( f (v1) + f (v2) + f (v3)). (A.2)

All condition are verified.

A.2 Cubature elements of degree 2
We start with p′ = p = 2 and P̃2 is initialized as P2 elements. Unfortunately at mid-

edge eij =
vi+vj

2 , weij =
∫

K φeij = 0, which implies that a term in the diagonal mass matrix
is equal to zero, and so the mass matrix is not invertible.
We now consider p′ = 3 and so P̃2 = P2 + bP0, b ∈ R.

The P̃2 element contains 7 degrees of freedom: three at the vertices v1, v2 and v3 and
three at the midpoint of the edges that we denote as eij =

vi+vj
2 for (i, j) ∈ {(1, 2), (2, 3), (3, 1)}

and one at the centroid point Gβ := v1+v2+v3
3 . Respectively, we have the following basis

functions and weights:

• At vertices of the triangle

φvi(λ) = λi(2λi − 1) + 3λ1λ2λ3, for i ∈ J1, . . . , 3K,

wv =
1

20
;

• At edge midpoints

φeij(λ) = 4λiλj(1− 3λk), for all i 6= j 6= k 6= i ∈ J1, . . . , 3K,

we =
2

15
;

• At the centroid

φGβ
(λ) = 27λ1λ2λ3,

wβ =
9

20
.

The corresponding integration quadrature formula is

Iapp
K ( f ) = |K|

(
wv

3

∑
j=1

f (vj) + we ∑
1≤i 6=j≤3

f (eij) + wβ f (Gβ)

)
. (A.3)
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All condition are verified (p + p′ − 2 = 3), indeed the polynomial degree of basis function
of P̃2 is three, and so we can approximate perfectly polynome of degree 3.

A.3 Cubature elements of degree 3
We start with p′ = p = 3 and P̃3 is initialized as P3 elements. However, to integrate

exactly polynomial function of degree 4 (3 + 3− 2), we have to modify the initial P̃3. The
only possibilty now (without adding DOF) is to modify the parameter α which evaluate edge
mid-points eα

ij = αvi + (1− α)vj. We obtain a first value of α = 3−
√

3
6 which gives cor-

responding basis functions. Unfortunately we obtain wv = −1/60 < 0, wα = 1/10 and
wβ = 9/20.

Following [39, 55], we now consider p′ = 4 and so P̃3 = P3 + bP1, b ∈ R. The
new space P̃3 contains 12 degrees of freedom: 3 vertices v1, v2 and v3, 6 on edges: eα

ij

for i, j ∈ J1, . . . , 3K with i 6= j and three internal points Gβ
i for i ∈ J1, . . . , 3K, with

Gβ
i = βvi +

1−β
2 (vj + vk).

p′ + p− 2 = 5, so we have to integrate perfectly polynomial functions of degree 5.
1/ We consider the function f : x → λ1λ2λ3(λ1 − 1−β

2 )(λ1 − λ). The approximation of
the integral is

Iapp
K ( f ) =

1

∑
l=1

2wl f (xl) = 0. (A.4)

But
∫

K f = 1
2×7! (−2 + 28β− 42β2). We obtain

Iapp
K ( f ) =

∫
K

f ⇔ 0 = −1 + 14β− 21β2 (A.5)

⇒ β± =
−14± 4

√
7

−42
=

1
3
± 2
√

7
21

. (A.6)

And so β = 1/3 + 2
√

7/21 (β has to be positive).
Then, considering f : x → λ1λ2λ3, we obtain wβ = 21

√
7

40(2
√

7+1)
.

2/ We consider the function f : x → λ1(λ1 − α)(λ1 − (1− α))(1− λ1). The approxi-
mation of the integral is

Iapp
K ( f ) =

1

∑
l=1

2wl f (xl) =
3

∑
i=1

wβ f (Gβ
i ). (A.7)

And
∫

K f = − 1
60 +

α
12 −

α2

12 . We obtain α± = −15
√

7−21±
√

168+174
√

7
2(−15

√
7−21)

which are symmetric

regarding 1/2. We choose α = −15
√

7−21+
√

168+174
√

7
2(−15

√
7−21)

as in [39, 55].

Then, considering f : x → λ1(1− λ1), we obtain wα = 287+115
√

7
40(173+49

√
7)

.
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3/ And finally wβ = 21
√

7
40(2
√

7+1)
.

All condition are verified, we now define basis functions. In order to simply the formu-
lation of the basis functions, let us introduce some polynomials:

pi(λ) := λi

(
3

∑
l=1

λ2
l −

1− 2α + 2α2

α(1− α)
λi(λj + λk) + Aiλjλk

)
, with j 6= i 6= k,

(A.8)
with (obtained solving

∫
K φvi = |K|wv)

Ai =

(
wv −

1
10
− 1

15

(
1− 1− 2α + 2α2

α(1− α)

)
− 1

90
8

β(1− β)2(3β− 1)

(
3

∑
l=1

pi(Gl)

))
× 360

6 + 8(1+β)
β(1−β)(3β−1)

;

(A.9)

pij(λ) :=
1

α(1− α)(2α− 1)
λiλj(αλi − (1− α)λj + (1− 2α)λk), with i 6= j 6= k 6= i.

(A.10)
We can then write the definition of the basis functions:

• At vertices of the triangle, for i ∈ J1, . . . , 3K

φvi(λ) =pi(λ)−
8

β(1− β)2(3β− 1)

(
3

∑
l=1

pi(Gl)

(
λl −

1− β

2

)) 3

∏
l=1

λl;

• At the nodes on edges, for i 6= j ∈ J1, . . . , 3K

φeα
ij
(λ) =pij(λ)−

8
β(1− β)2(3β− 1)

(
3

∑
l=1

pij(Gl)

(
λl −

1− β

2

)) 3

∏
l=1

λl;

• At the internal points, for i ∈ J1, . . . , 3K

φ
Gβ

i
(λ) =

8
β(1− β)2(3β− 1)

(
λi −

1− β

2

) 3

∏
l=1

λl.
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Appendix B

Butcher tab

In this appendix we introduce the time integration coefficients used in this work, to make
the study fully reproducible. In table B.1 there are the RK coefficients, in table B.3 the
SSPRK coefficients and in table B.2 the DeC coefficients.

RK2
α 1
β 1

2
1
2

RK3
α 1

2
-1 2

β 1
6

2
3

1
6

RK4
α 1

2
0 1

2
0 0 1

β 1
6

1
3

1
3

1
6

TABLE B.1: Butcher Tableau of RK methods

Order 2
m βm ρm

z

1 1 1
2

1
2

Order 3
m βm ρm

z

1 1
2

5
24

1
3 − 1

24
2 1 1

6
2
3

1
3

Order 4
m βm ρm

z

1 1
3

1
8

19
72 − 5

72
1

72
2 2

3
1
9

4
9

1
9 0

3 1 1
8

3
8

3
8

1
8

TABLE B.2: DeC coefficients for equispaced subtimesteps.
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SSP
R

K
(3,2)by

[117]
γ

µ

1
12

0
1

0
12

13
0

23
0

0
13

C
FL

=
2.

SSP
R

K
(4,3)by

[112,Page
189]

γ
µ

1
12

0
1

0
12

23
0

13
0

0
16

0
0

0
1

0
0

0
12

C
FL

=
2.

SSP
R

K
(5,4)by

[112,Table
3]

γ

1
0.444370493651235

0.555629506348765
0.620101851488403

0
0.379898148511597

0.178079954393132
0

0
0.821920045606868

0
0

0.517231671970585
0.096059710526147

0.386708617503269
µ

0.391752226571890
0

0.368410593050371
0

0
0.251891774271694

0
0

0
0.544974750228521

0
0

0
0.063692468666290

0.226007483236906
C

FL
=

1.50818004918983

T
A

B
L

E
B

.3:
B

utcherTableau
ofSSPR

K
m

ethods
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Appendix C

Backward Difference Formula

In this appendix we introduce the time integration coefficients of the Backward Differ-
ence Formula (BDF) used for the partial derivative evaluation of the entropy dissipation at
the order k = 1, 2, 3, 4. The BDF is a family of implicit integration methods. Considering
the linear system eq. (3.46):

dtU = r(t, U) (C.1)

• BDF1 also called the backward Euler method:

Un+1 −Un = ∆tr(tn+1, Un+1) (C.2)

• BDF2
Un+2 −

4
3

Un+1 +
1
3

Un =
2
3

∆tr(tn+2, Un+2) (C.3)

• BDF3
Un+3 −

18
11

Un+2 +
9

11
Un+1 −

2
11

Un =
6

11
∆tr(tn+3, Un+3) (C.4)

• BDF4

Un+4 −
48
25

Un+3 +
36
25

Un+2 −
16
25

Un+1 +
3
25

Un =
12
25

∆tr(tn+4, Un+4) (C.5)
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Appendix D

1D dispersion curves

In this appendix we present a summary of the fully discrete Fourier analysis of sec-
tion 4.3.3, comparing different time schemes (SSPRK and DeC), discretizations (Basic, Cu-
bature, Bernstein elements), and stabilization methods (OSS, CIP, SUPG). We show the
phase ω and the damping ε coefficients using the best parameters obtained by minimizing
the relative error of the solution ηu for each scheme in table 4.3. When the scheme was
unstable we did not plot the mode. In fig. D.1 one finds the phase and the damping for Ba-
sic elements, in fig. D.2 for Cubature elements and in fig. D.3 for Bernstein elements. We
remark that for Cubature elements in fig. D.2, ∆x3 is scaled differently with respect to the
other orders because the point distribution is not equispaced.

In general, we can observe that the phase error increases passing from full matrix SSPRK
methods to diagonal one DeC. This is noticeable even more for Bernstein elements. Cubature
elements, which are not affected by the mass lumping, do not show this behavior, and have a
dispersion error which is greater than the other lumped methods, but smaller than the other
non–diagonal mass matrix methods. This step is also associated to a greater damping in the
higher frequencies.
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FIGURE D.1: Dispersion and damping coefficients for Basic elements, with
DeC and SSPRK methods and all stabilization techniques
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FIGURE D.2: Dispersion and damping coefficients for Cubature elements,
with DeC and SSPRK methods and all stabilization techniques



146 Appendix D. 1D dispersion curves

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e 
: 

SSPRK scheme - Dispersion
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ph

as
e 

: 

DeC scheme - Dispersion
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 
 =

 lo
g 

(| 
 |)

 / 
dt

SSPRK scheme - Damping

2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.2 0.4 0.6 0.8 1.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 
 =

 lo
g 

(| 
 |)

 / 
dt

DeC scheme - Damping

(a) Without any stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e 
: 

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

1

0

1

2

3

4

Ph
as

e 
: 

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Da

m
pi

ng
 

 =
 lo

g 
(| 

 |)
 / 

dt
SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 
 =

 lo
g 

(| 
 |)

 / 
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
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FIGURE D.3: Dispersion and damping coefficients for Bernstein elements,
with DeC and SSPRK methods and all stabilization techniques
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Appendix E

Fourier analysis, several 2D results

In this section we collect all the plots and results that are essential to show the results of
this work, but for structural reasons were not put in the main text.

E.1 Mesh types and degrees of freedom
We represents in Figure E.1 the mesh configurations used in the Fourier analysis and

the degrees of freedom of the elements of degree 3. The red square represents the periodic
elementary unit that contains the degrees of freedom of interest for the Fourier analysis.

E.2 Fourier analysis results - Optimal Parameters
In this section, we put the optimal values of the stability analysis of Section 5.2.5 after

the modification proposed in Section 5.2.6. In Table E.1 we show the parameters for the X
mesh and in Table E.2 we show the parameters for the T mesh.

Element & SUPG
Time scheme P1 P2 P3

Basic SSPRK 0.739 (0.127) 0.298 (0.058) 0.22 (0.026)

Cub.
SSPRK 1.062 (0.28) 0.1 (0.1)∗ 0.18 (0.04)∗

DeC 0.616 (0.28) 0.1 (0.04)∗ 0.144 (0.04)
Bern. DeC 0.739 (0.298) 0.2 (0.2)∗ 0.2 (0.153)∗

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 0.403 (0.127) 0.298 (0.026) 0.22 (0.026) 0.403 (0.012) 0.298 (1.73e-03) 0.1 (1.00e-03)∗

Cub.
SSPRK 0.58 (0.336) 0.379 (0.03) 0.248 (0.018) 0.58 (0.048) 0.06 (0.01)∗ /

DeC 0.379 (0.207) 0.248 (0.03) 0.162 (0.018) 0.379 (0.026) 0.06 (0.01)∗ /
Bern. DeC 0.173 (0.58) 0.036 (0.298) 0.015 (0.078)∗ 0.173 (0.153) 0.012 (0.021) 0.002 (8.00e-03)∗

TABLE E.1: X mesh: Optimized CFL and penalty coefficient δ in
parenthesis. The symbol "/" means that the fourier analysis for the scheme

results always in instability. The values denoted by ∗ are not the optimal one,
but they lay in a safer region, see Section 5.2.6.
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FIGURE E.1: Degrees of freedom and periodic unit for different mesh
patterns and elements of degree 3
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Element & SUPG
Time scheme P1 P2 P3

Basic SSPRK 0.739 (0.127) 0.403 (0.026) 0.298 (0.012)

Cub.
SSPRK 1.062 (0.28) 0.234 (0.078) 0.055 (0.153)

DeC 1.062 (0.127) 0.144 (0.078) 0.034 (0.153)
Bern. DeC 0.739 (0.298) 0.739 (0.153) 0.455 (0.153)

Element & OSS CIP
Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 0.546 (0.127) 0.403 (0.058) 0.298 (0.012) 0.546 (0.026) 0.298 (7.39e-05) 0.298 (3.36e-05)

Cub.
SSPRK 0.886 (0.336) 0.379 (0.048) / 0.886 (0.048) 0.106 (7.85e-03) /

DeC 0.58 (0.207) 0.379 (0.03) / 0.58 (0.026) 0.045 (7.85e-03) /
Bern. DeC 0.28 (0.58) 0.025 (0.153) 0.074 (0.078) 0.455 (0.078) 0.025 (5.46e-03) 0.017 (0.04)

TABLE E.2: T mesh: Optimized CFL and penalty coefficient δ in parenthesis.
The symbol "/" means that the fourier analysis for the scheme results always

in instability.

E.3 Fourier analysis results - stability area
Finally, we present a comparison of stability area between the T and the X mesh. This

comparison is performed as before, for all wave angle θ.

The comparison using Basic element, SSPRK time integration method and the OSS, the
CIP and the SUPG stabilization techniques are represented in repectively fig. E.2, fig. E.3
and fig. E.4.

The comparison using Cubature element, SSPRK time integration method and the OSS,
the CIP and the SUPG stabilization techniques are represented in repectively fig. E.5, fig. E.6
and fig. E.7.

The comparison using Cubature element, DeC time integration method and the OSS, the
CIP and the SUPG stabilization techniques are represented in repectively fig. E.8, fig. E.9
and fig. E.10.

The comparison using Bernstein element, DeC time integration method and the OSS, the
CIP and the SUPG stabilization techniques are represented in respectively fig. E.11 , fig. E.12
and fig. E.13.
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FIGURE E.2: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left

to right P1, P2, P3 Basic elements with SSPRK scheme and OSS
stabilization.
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FIGURE E.3: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left
to right P1, P2, P3 Basic elements with SSPRK scheme and CIP stabilization.
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FIGURE E.4: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left

to right P1, P2, P3 Basic elements with SSPRK scheme and SUPG
stabilization.
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FIGURE E.5: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left

to right P̃1, P̃2, P̃3 Cubature elements with SSPRK scheme and OSS
stabilization.
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FIGURE E.6: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left

to right P̃1, P̃2, P̃3 Cubature elements with SSPRK scheme and CIP
stabilization.
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FIGURE E.7: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left

to right P̃1, P̃2, P̃3 Cubature elements with SSPRK scheme and SUPG
stabilization.
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FIGURE E.8: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left

to right P̃1, P̃2, P̃3 Cubature elements with DeC scheme and OSS
stabilization.
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FIGURE E.9: log(ηu) values (blue scale) and stable area (unstable with black
crosses), on (CFL, δ) plane. The red dot denotes the optimal value. From left

to right P̃1, P̃2, P̃3 Cubature elements with DeC scheme and CIP
stabilization.
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FIGURE E.10: log(ηu) values (blue scale) and stable area (unstable with
black crosses), on (CFL, δ) plane. The red dot denotes the optimal value.
From left to right P̃1, P̃2, P̃3 Cubature elements with DeC scheme and

SUPG stabilization.
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FIGURE E.11: log(ηu) values (blue scale) and stable area (unstable with
black crosses), on (CFL, δ) plane. The red dot denotes the optimal value.

From left to right P1, P2, P3 Bernstein elements with DeC scheme and OSS
stabilization.
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FIGURE E.12: log(ηu) values (blue scale) and stable area (unstable with
black crosses), on (CFL, δ) plane. The red dot denotes the optimal value.

From left to right P1, P2, P3 Bernstein elements with DeC scheme and CIP
stabilization.
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FIGURE E.13: log(ηu) values (blue scale) and stable area (unstable with
black crosses), on (CFL, δ) plane. The red dot denotes the optimal value.
From left to right P1, P2, P3 Bernstein elements with DeC scheme and

SUPG stabilization.
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Appendix F

Shallow Water tests, additional results

F.1 Perturbation of the lake at rest
This section is complementary results of section 6.3.2 with a smooth and non-smooth

bathymetry.

F.1.1 With a smooth topography
We remember the Laket at rest solution with the non-smooth topography in fig. 6.1 (in

section 6.3.1). We use the perturbation defined by eq. (6.15) from section 6.3.2. Regarding
the 2d view from the top with line contour of water elevation, we compare the approximated
solution using and not using the well-balanced formulation. The Comparison using Basic
elements and the OSS is represented in fig. F.1, Basic elements and the CIP in fig. F.2, and
Cubature elements and the CIP in fig. F.3.
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(a) Basic P1, P2, P3 elements (from left to right) using the well-balanced formulation.
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(b) Basic P̃1, P̃2, P̃3 elements (from left to right) not using the well-balanced formulation.

FIGURE F.1: 2D view of the free surface elevation at t = 0.48s with the
smooth topography eq. (6.13). All simulation are performed using Basic

elements, the OSS stabilization technique, and SSPRK schemes.
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(a) Basic P1, P2, P3 elements (from left to right) using the well-balanced formulation.
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(b) Basic P̃1, P̃2, P̃3 elements (from left to right) not using the well-balanced formulation.

FIGURE F.2: 2D view of the free surface elevation at t = 0.48s with the
smooth topography eq. (6.13). All simulation are performed using Basic

elements, the CIP stabilization technique, and SSPRK schemes.
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(a) Cubature P̃1, P̃2 elements (from left to right) using the well-balanced formu-
lation.
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(b) Cubature P̃1, P̃2 elements (from left to right) not using the well-balanced for-
mulation.

FIGURE F.3: 2D view of the free surface elevation at t = 0.48s with the
smooth topography eq. (6.13). All simulation are performed using Cubature

elements, the CIP stabilization technique, and SSPRK schemes.

F.1.2 With a non-smooth topography
We remember the Laket at rest solution with the non-smooth topography in fig. 6.2 (in

section 6.3.1). We use the perturbation defined by eq. (6.15) from section 6.3.2 and we show
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Basic elements. At rigth P1, on the middle P2, at left P3 elements.
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Cubature elements. At rigth P̃1, on the middle P̃2, at left P̃3 elements.
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FIGURE F.4: 2D view of the free surface elevation at t = 0.48s with the
non-smooth topography eq. (6.14). Both discretization use the OSS

stabilization technique and SSPRK schemes.

numerical results in fig. F.4 using the OSS stabilization technique and fig. F.5 using the CIP
stabilization technique.

Basic elements. At rigth P1, on the middle P2, at left P3 elements.
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Cubature elements .At rigth P̃1, at left P̃2.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

FIGURE F.5: 2D view of the free surface elevation at t = 0.48s with the
non-smooth topography eq. (6.14). Both discretization use the CIP

stabilization technique and SSPRK schemes.
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F.2 Global atmospheric tests - Unstable jet
This section is complementary results of section 7.2.2. We present the vorticity field after

96h (=4 days) from J. Galewsky et al. [51] in fig. F.6. A representation of contour levels for

FIGURE F.6: Approximated solution of the vorticity field after 4 days.
Sources from J. Galewsky et al. [51].

our simulation is showed in fig. F.7.

We summarize the cpu-time for all methods in table F.1. The time of the simulation is 4
days.

Element & Total Residual Limit Mass matrix
Time scheme cpu-time (s) computation (s) solution (s) inversion (s)

B
as

ic
SS

PR
K P1 8673 5882 (67.8%) 1615 (18.6%) 34 (0.39%)

P2 48720 28718 (58.9%) 11737 (24.1%) 199 (0.41%)
P3 157539 96944 (61.2%) 50406 (32.0%) 1138 (0.72%)

C
ub

.
SS

PR
K P̃1 7400 4642 (62.7%) 1606 (21.7%) 17 (0.23%)

P̃2 48458 26657 (55.0%) 13127 (27.1%) 89 (0.18%)
P̃3 154996 83666 (54.0%) 60141 (38.8%) 377 (0.24%)

TABLE F.1: Unstable Jet. Summary tab of cpu-time repartition for the mesh
hk = 223km, in parenthesis the pourcentage. t f = 4 days.

In table F.1, we observe the same behaviour in the cpu-time repartition than in table 7.2
and table 7.3. However, Cubature elements with mass-lumping allow to decrease the cpu-
time for elements of degree 1, 2 and 3. And the approximated solution is equivalent between
the Basic and the Cubature discretization.
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(a) Basic P1, P2, P3 elements (from left to right).

(b) Cubature P̃1, P̃2, P̃3 elements (from left to right).

FIGURE F.7: Unstable Jet - 2D view from the northen pole of the vorticity
field contour levels (from −1.1e− 4 to 1.1e− 4) at t f = 4 days.

hK = 223km
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