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ABSTRACT

When we make a free choice, we feel conscious and in control of our
decision processes. However, over the past decades, studies on intro-
spection demonstrated that our self-knowledge faculties are crippled
by illusory content. In Part i, we suggest that introspection can be
framed as a hierarchically organized inference process and we pro-
posed an innovative methodological approach to challenge this hy-
pothesis. We used a free decision paradigm in which no high order
nor low motor level processing were solicited. Further, we track in
real time internal decision variables through a Brain Computer Inter-
face (BCI), and probe both implicitly and explicitly participants” de-
cision awareness. The present thesis investigates two main questions.
First, what are the conditions for people to be aware of their impend-
ing decisions? Second, does people’s introspections access genuine
mental activity or are they pure retrospective illusions? Our results
suggest that despite the general impression of a rich internal life,
people are only partially aware of their impending decisions. If they
can consciously track their upcoming decisions, they have no con-
scious access to those decisions” content. Yet, when recalling their
recent choices, people can access internal representation of the cho-
sen alternative. However, our results suggest that introspection has
no privileged access to internal decision variables but rather stem
from an integrative process involving both endogenous and exoge-
nous cues. Introspective illusions thus reflect an imbalanced integra-
tion process, where weak and noisy internal variables are dominated
by deceptive feedback. Overall, the present thesis provides new in-
sights and methodological tools for the study of decision awareness
emergence. Our results converge toward the idea that self-knowledge
of decision is a hierarchically organized Bayesian inference process
involving multiple cues.

Résumé

Nous concevons d’ordinaire nos choix comme conscients et sous
notre controle. Toutefois, de nombreuses études montrent que nos
processus introspectifs sont largement illusoires. Dans notre premiere
partie, nous proposons que l'introspection peut étre conceptualisée
comme un processus d’inférence hiérarchique, et nous avangons une
nouvelle approche pour en étudier les mécanismes sous-jacents. A
cette fin, nous employons un protocole de prise de décision dans
lequel les sujets ne peuvent accéder ni a leurs informations motrices,
ni a des informations de haut niveau. En outre, nous mesurons les sig-
naux neuronaux impliqués dans la prises de décision ainsi que la con-
science que les sujets ont de leurs décisions. Cette these se penche sur
deux questions: Premiérement sous quelles conditions peut-on étre
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conscient de ses décisions? Deuxiémement pouvons nous accéder a
nos processus mentaux par l'introspection, ou cette derniere n’est elle
qu’une illusion? Nos résultats suggerent, qu’en dépit d’un sentiment
de richesse subjective, nous n’avons qu'un acces partiel aux contenus
de nos décisions. Si I'on peut savoir qu'une décision est imminente,
son contenu échappe a la conscience. Toutefois, les sujets peuvent
accéder a une représentation interne de leur choix a posteriori. Nos
résultats soulignent cependant que cet acces reflete un processus inté-
gratif au terme duquel notre introspection assimile a la fois des don-
nées internes et des informations exogenes. Les illusions introspec-
tives sont dés lors le résultats d'une intégration déséquilibrée entre
ces différents éléments. En conclusion, cette thése offre de nouvelles
perspectives ainsi que des outils méthodologiques pour 1'étude de
I"émergence de la conscience des décisions. Nos résultats convergent
vers l'idée que la connaissance de soi est un processus d’inférence
bayésien organisé hiérarchiquement et impliquant de multiples infor-
mations.
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THEORETICAL INTRODUCTION

GENERAL OUTLINE

How conscious are we of our impending decisions? Such a question
might seem trivial at first glance. Indeed, in our daily life, we usually
think we are aware of our decisions and feel in control of their execu-
tions and consequences. However, that our introspective faculties are
at least partially illusory is well established and documented since
the early times of experimental psychology. In the present work, we
investigate the conditions under which people can access the content
of their decisions. In other words, we sought to understand whether
people choosing between several alternatives are conscious of the op-
tion selected during the deliberation process but also when recalling
their decisions. Another hypothesis could be that this self-knowledge
is a pure narration retrospectively inferred to comply with other cues.

Indeed, decision content can be redundantly encoded in different
brain signals. In one hand, internal decision process could inform peo-
ple awareness about the choice their are about to make. Conversely,
people might retrospectively infer their decisions based either on the
motor preparation signals implemented to execute them, the external
sensory consequences of their decisions or the memory of a long term
planned decision.

To address this issue, we propose to study decision awareness through

a Brain Computer Interface (BCI) based on the decoding of top-down
covert attention. A first advantage of this approach is to remove any
motor contribution from the decision process. Here, participants’ de-
cisions consisted in preferentially attending one over two overlapping
stimuli at the center of the screen. Secondly, our BCI allows us to
adapt the outcome of participants” decisions to their brain signals and
thereby to control the external information relative to recent decisions.
Finally, our setup allow us to measure through attention allocation a
proxy for internal decision variables. We can thus confront this mea-
sure to participants” explicit reports of decision awareness, thereby
assessing the condition under which internal decision variables are
available to consciousness.

In Chapter 1 we review the theoretical and empirical literature on
introspective illusions. We describe how the conception of illusion has
evolved from a mere hindrance to experimental psychology to a natu-
ral outcome of introspection re-framed as an integrative process. We
then discuss the implications for decision awareness of recent models
and we propose that different aspect of the decision (i.e. the timing,
the triggering and the content of the decision) are differently avail-



able at the different levels of the decision hierarchy (i.e. long term
planning, concrete implementation or motor execution). We suggest
that two mechanisms are responsible for the appearance of introspec-
tive illusions: First an imbalanced integrative process where internal
decision variables are dominated by external cues. Second, a limited
access to internal information at a certain level of the hierarchy dur-
ing the decision process.

In Chapter 2, we show how BCI provides a novel approach to iso-
late a specific level of the decision hierarchy and study which aspects
of decision are available to people’s consciousness at each level. We
review the cognitive mechanisms of attention upon which our BCI
is built together with our approach to capture and exploit them. We
then describe the implementation of real-time attention monitoring
by our BCI allowing us to continuously track participants” decision
processes. We further detail in Appendix A our visual stimulation
which materializes the binary choice participants were asked to make.
Our stimulation is designed to offer a simple picking decision to par-
ticipants, thus removing any high level aspect from their decisions
such as long term planning or preferences.

1.1 RETHINKING INTROSPECTIVE ILLUSION

What is the nature of our introspective illusions? When asked to ex-
plain our decision or justify our recent actions, we can flawlessly pro-
vide detailed justifications that motivated our behavior. Furthermore,
we believe that these explanations reflect our privileged access to our
mind. Stated in William James terms: "All people unhesitatingly believe
that they feel themselves thinking, and that they distinguish the mental state
as an inward activity or passion, from all the objects with which it may
cognitively deal." (James, 1890). Yet, a large part of the European philo-
sophical tradition considers that our faculties for self-observation are
partial if not illusory. Such illusion could be the substrate of a signif-
icant portion of our mental life, from slight misinterpretations of our
common cognitive process (like finding yourself stating that "an idea
came to my mind") to well established social facts (like believing that
"I share my mind with a spirit" during possession ritual).

In Section 1.1, we review the ambivalent status occupied by in-
trospective illusion in experimental psychology. Long considered as
a mere noise contaminating experimental data, these illusions have
been reconsidered in contemporary cognitive frameworks as an op-
portunity to study the mechanisms of introspection and conscious-
ness. Furthermore, modern metacognitive paradigms, along with con-
tinuously refined methodological operationalizations of introspection,
allow to consider illusion as an object of study per se.

In Section 1.2, we describe the integrative processes involved in the
formation of introspection. Indeed, introspection over decision pro-



1.1 RETHINKING INTROSPECTIVE ILLUSION

cesses integrate both endogenous and -potentially deceiving- exoge-
nous cues. Such integrative accounts provide mechanistic explana-
tions for illusions and transform the central question from “is intro-
spection accurate?” to "under which conditions are illusion occurring?”.
Finally, in Section 1.3, we suggest that various aspects of decisional
processes are differently available to consciousness. If people might
show reasonable faculty access to their intention to act (i.e when and
whether they will execute their choices), they might remain unaware
of the content of those impending decisions.

1.1.1 A hindrance for early psychological science

Contrary to a vision popularized by Watson, 1913, the advent of ex-
perimental psychology is a constant endeavor to diminish the source
of illusion in introspective data (Costall, 2006). After a rapid overview
of the epistemic and philosophical debates influencing early psycho-
logical science, we will show that early psychologists already had an
advanced understanding of the phenomena of introspective illusions
and that their practices of psychology were adapted accordingly. Con-
sequently, the range of psychological investigation has been tightly
linked to the methodological apparatus deployed to minimize the in-
fluence of illusions.

Introspective illusion: a epistemological obstacle for self knowledge

This is no recent idea that the "sense" by which people come to know
themselves is deficient. Far from an exhaustive review of the philo-
sophical debates on this subject, here are exposed some of the central
ideas that influenced the birth of experimental psychology. A main
dissociation in the methodological and theoretical approaches to in-
trospection promptly emerged between the German and British tradi-
tion as a reflection of diverging conception of consciousness.

As expounded by William James (James, 1890) the very existence of
a human predisposition for introspective observation has not in itself
suffer much debate:

" Introspective Observation is what we have to rely on first and foremost and
always. The word introspection need hardly be defined - it means, of
course, the looking into our own minds and reporting what we there
discover. Every one agrees that we there discover states of consciousness. SO
far as I know, the existence of such states has never been doubted by
any critic, however skeptical in other respects he may have been."

However, whether this introspective observation is reliable at all in
discovering internal mental states was, and remains nowadays a divi-
sive issue. One one hand for the empiricist, reflection - the inner sense
from which one obtains knowledge about her own mind- though in-
direct, is not subject to error (Locke, 1690). Empiricism will have a
great influence on early experimental psychology and more particu-
larly on the British tradition. As a result, British and Scottish schools



established psychological science as the study of the mind with intro-
spection as its obvious and privileged method.

On the other hand German school was more reserved when it came
to the use of introspective methods. This could be explained by a dif-
ference in the philosophical tradition that influenced German early
psychologists. Following Leibniz’s concept of petites perceptions, the
mind processes an infinity of "small perceptions" and "integrates"
them to give rise to an aperception (conscious perception) (Leibniz,
1765). Leibniz expresses here a fundamental dissociation between the
sensory processing (perception) and its conscious experience (aper-
ception) that will strongly influence the German school of psychol-
ogy. On a similar ground, Kant considered introspection to be re-
stricted to the phenomenal self, a representation of the mind that has
no tangible existence outside of our thoughts and does not necessar-
ily reflect the true nature of our mental life (Kant, 1910). Naturally,
this philosophical background have promoted dissimilar practices of
experimental psychology, emphasizing logic and rationality over in-
trospective methods (Boring, 1953; Danziger, 1980).

Overall, contrary to the British perspective, the German tradition
considered introspective illusion as a major hindrance for the foun-
dation of experimental psychology. Attempting to address those con-
cerns, Wilhelm Wundt delimited the use of introspection in psycho-
logical investigation.

Circumuvent the illusion: early psychological approach of introspection

Wundt began by a fundamental distinction between Selbstbeobach-
tung (translated by "self observation") on one hand and innere Wuhrnehmung
(internal perception) on the other. Selbstbeobachtung corresponds to
the conscious observation of the self in the scientific sense (i.e. at the
third person). It is thereby subject to -potentially deceiving- conscious
inference. Conversely, innere Wuhrnehmung is compared with an im-
mediate perception of internal mental life. Yet it can neither be reli-
able since it can become conscious and fall back in the first category.
Therefore, Wundt recognized that the critics addressed to introspec-
tion are legitimate, but that they concern the Selbstbeobachtung, a
reflexive process crippled with known illusory phenomena. Thereby,
his efforts were directed toward preventing innere Wuhrnehmung to
become conscious Selbstbeobachtung by rendering it similar to imme-
diate sensory perception Wundt, 1888; Danziger, 1980.

Consequently, Wundt’s methods aimed at minimizing the time in-
terval between the internal perception and the report. Beyond avoid-
ing memory distortion in introspective report, this shortening of perception-
report time interval was meant to copy the observation in natural
science which was considered as more direct and recognized as an
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legitimate scientific method *. This led Wundt’s to conduct his exper-
iments preferentially on highly trained students. By training them,
Wundt’s hope was to turn students into "super introspecter” who
could report their inner perception the same way they would have
describe a visual scene (Wundt, 1883).

If this method reduces contamination by illusion and increases repro-
ducibility of the reports, Wundt went a step further by drastically
restricting both the extent of mechanisms affordable by introspection
but also the very use of introspection (Danziger, 1980).

Introspective failures: impassable horizon of psychological science?

Indeed, Wundt considered that experiment could provide useful data
only for a restricted portion of the psychological field. While percep-
tion and sensation were suitable for introspection, social psychology
or voluntary decision were subject to an insurmountable degree of
illusory processes and should be addressed by historical, anthropo-
logical or sociological approaches. Thus, "introspection" in Wundt’s
laboratory was mostly reduced to simple judgments like stimulus
intensity, size or time perception while more complex reports like
qualitative description were almost banished. Furthermore, contrary
to a popular belief, Wundt primarily relied on objective methods like
behavioral measure and language analysis (Costall, 2006; Danziger,
1980).

Overall, until the early 2oth century the introspective illusion has
been conceptualized as a hindrance for psychological investigation.
The strong constraint imposed by early psychologist to avoid pollu-
tion of their measures by illusion phenomena have drastically cur-
tailed the reach of their research and the attempts to overcome this
problem ended in a drastic discrediting of introspection and the ad-
vent of behaviorism (Blumenthal, 2001). However, contrary to the sim-
plistic view that behaviorism replaced "introspectionism" in the early
XXt century, introspection has never been a dominant practice in the
psychological field, neither will it disappear with the expansion of
behaviorist school (Costall, 2006). Instead, introspective methods will
be progressively refined to settle on more rigorous ground. Further-
more, a regain of interest of consciousness in the second half of the
XXt century will accompany a progressive shift in the conceptual-
ization of introspection. From a research method, introspection will
become an object of interest per-se and the associated illusion will be
used as an observable manifestation of its mechanisms.

1.1.2  An object of study per se

Although the use of introspection did not completely disappear, its
use has been more discrete in a large first half of the XX century

We can find in James Sully’s Illusions of introspection the idea that introspective il-
lusion can affect internal perception and thus the psychological data the same way
perceptual illusion are affecting external observation (Sully, 1881)



(Costall, 2006). The 60’s however, are marked by a resurgence of
interest for consciousness and the re-emergence of studies relying
upon introspective reports. This resurgence of interest for subjective
variables has been permitted by both methodological and theoreti-
cal re-conceptualization of introspection that, above being a suitable
method, will become an object of study per-se. These early work will
be followed by a characterization of metacognition first in child de-
velopment and soon extended to all fields of psychology, formalizing
a framework to study introspective illusion.

Methodological and theoretical rehabilitation of introspection

The emergence of modern techniques in neuroscience has deep im-
plications for the use of introspection in experimental psychology.
Indeed, regularities between measurable brain features and verbal
reports can now be systematically assessed (Gazzaniga and Sperry,
1967). Yet, introspection has not only taken advantage of new neu-
roimaging approaches but also benefited of a continuous method-
ological refinement permitting its systematization while preserving
its subjective dimensions (Sackur, 2009).

The re-conceptualization of introspection in the 60’s is nicely illus-
trated by the seminal study of Sperling on brief visual presentation.
Considered as one of the founding paper of the cognitive science,
Sperling, 1960 associated careful timing of the visual stimulation with
a dual condition verbal report demand. In a nutshell, after a brief vi-
sual exposition to a grid of letters, participants claim to perceive all
the letters but are only able to report 4. Yet, when asked to report only
one line of the grid (designated after the visual presentation), partic-
ipants recover the ability to report the 4 letters of this specific line.
Although the consequences of this work are still debated (Kouider
et al., 2010; Block, 2011), it unravels a distinction between conscious
experience and the information available to report.

Thus, introspection progressively acquired a dual status, both as
an object of study and as an investigation tool. Associating these two
aspects opened new questions (Nisbett and Wilson, 1977): (a) What
is the basis of [...] accurate reports? (b) Are accurate reports funda-
mentally different in kind from inaccurate ones? (c) Is it possible to
specify what sorts of reports will be accurate and what sorts will be
inaccurate? Although those questions receive contrasted answers (Er-
icson and Simon, 1980; Nisbett and Wilson, 1977), they paved the way
to the formalization of monitoring and control processes over mental
states under the concept of metacognition.

Metacognition: a reinterpretation and emancipation of introspection

Metacognition has been defined as a combination of introspective and
control processes. The first definition will be given by Flavell, 1976 as
follows:



1.1 RETHINKING INTROSPECTIVE ILLUSION

"The knowledge of each individual regarding its own cognitive processes
and products [...] Metacognition refers to active control and subsequent reg-
ulation of the objects of knowledge (mental contents)”.

From this definition, the metacognitive processes associated with a
wide range of cognitive process will be described. Starting with learn-
ing in children (Flavell, 1979), metacognition will be reported for at-
tention(Yussen and Bird, 1979), memory (Nelson and Narens, 1990),
decision making (Yeung and Summerfield, 2012) or social cognition
(Frith, 2012) among many other cognitive processes. A second struc-
turing account of metacognition is proposed by Nelson and Narens,
1990 which framework relies on three principles:

e The cognitive processes are split into two or more specifically interre-
lated levels.

* The meta-level contains a dynamic model (e.g., a mental simulation)
of the object-level

* There are two dominance relations, called “control” and "monitoring”
which are defined in terms of the direction of the flow of information
between the meta-level and the object-level.

The object-level entails here the mental process involved in cogni-
tive task such as memory, learning or decision making. On the other
side, a meta-level that monitor and control the object-level processes.
Furthermore, Nelson and Narens, 1990 proposed that meta-level im-
plement control a representation (or model) of the object-level (Co-
nant and Ross Ashby, 1970).Thus the formalization of metacognition
render introspection indissociable from control processes. Thereby, in-
trospection could not only be illusory but also directly impact the
system through control instances.

Interim conclusion

Overall, introspection illusions were a documented phenomena since
the foundation of experimental psychology. The debate about their
suitability as a tool for experimental psychology have progressively
evolved in interrogation about their underlying mechanisms. Indeed,
methodological refinements together with the introduction of the con-
cept of metacognition in psychology allowed us to consider illusion
as a rightful object of investigation. Yet, the interrogations about the
nature of introspection remain centered on its accuracy. In the next
section, we will review how integrative account of metacognition of
decision conciliates empirical findings in support of both illusory and
accurate introspection. This line of research further redefines the rel-
evant questions on illusion, centering them on the conditions under
which an information impacts the awareness.
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Figure 1: Metacognition principles applied to decision process. Figure is
adapted from Nelson and Narens, 1990; Qiu et al., 2018; Heyes et al.,
2020.

The object level computes first order representation of the world.
Dashed line show (unconscious) information flow within the
perception-decision-action loop. Perceptual information is shown
in blue. Motor signals are shown in yellow. Unconscious cognitive
process at the object level are shown in green.

The meta level computes second order representation such as the
decision maker state. It encapsulates an internal model of the ob-
ject level that is constantly updated through the ascending moni-
toring system (solid lines). Furthermore, the meta level supervised
the object level through a descending control system (half dashed
lines). Text color in the meta level corresponds to the associated
states and processes supervised at the object level.

1.2 FROM ILLUSION TO INTEGRATIVE PROCESS: BEYOND THE IN-
TROSPECTION ACCURACY DEBATE

1.2.1  Illusion: the default mode of self-knowledge?

In the metacognitive framework, introspection is described as a cen-
tral mechanism impacting a wide variety of cognitive processes through
its associated control instance. Imperfection of introspective processes
would result in under-optimal control of the behavior as participants
fail to monitor their precise mental states. However, a rapidly grow-
ing literature formulated a substantially different hypothesis. Illusion
according to them, could be the default mode of introspective pro-
cesses. According to such an account, introspective illusions would
not be an exception in a normal, accurate monitoring process but
rather the norm of our mental life. One major consequence of such
an account is that our impression of consciously controlling and caus-
ing our behavior would be illusory.
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1.2 FROM ILLUSION TO INTEGRATIVE PROCESS: BEYOND THE
INTROSPECTION ACCURACY DEBATE

Illusion is the common output of introspection.

This conclusion has been proposed by Nisbett and Wilson, 1977. In
their seminal study, they concluded after an extensive review of the
social psychology literature that if people can access their mental
states (e.g. "I am cold", "I am hungry", etc.), their reports on cogni-
tive processes are confabulated. As an example, participants taking a
placebo pill could endure more electric shocks but attribute this en-
hanced resistance to their personal history or unrelated event rather
than to the pill (Nisbett and Schachter, 1966). Such experiments illus-
trate that people remain usually unaware of the external stimuli af-
fecting their behavior. Therefore, even accurate introspection would
merely reflect the accidental correspondence between the cognitive
actual process and the unrelated personal narration that people built
from their experiences and implicit causal theory Nisbett and Wilson,
1977; Wilson and Dunn, 2004.

A major critic addressed to this hypothesis is that it relies on a
dubious distinction between cognitive process and cognitive states
Ericson and Simon, 1980; Reyes, 2015. In effect, Nisbett and Wilson,
1977 describe cognitive process essentially as the "cause" (Neisser and
Becklen, 1975; Miller, 1962) that guide a behavior or that link exter-
nal event with participants actions. However, causality is largely criti-
cized as being a theoretical intractable construct. It is therefore unsur-
prising that this concept is not a consciously accessible substrate of
participants” mental life (Engelbert and Carruthers, 2010).

Yet, in spite of the challenges addressed to Nisbett and Wilson, 1977,
recent innovative protocols provide additional cues that people barely
know their own thinking and decision (Johansson et al., 2005).

In Choice Blindness (CB) paradigm (Johansson et al., 2005), partic-
ipants have to choose between two face pictures the one they prefer.
Immediately after, they are given the chosen pictures and asked to
provide justifications for their decision. Crucially, a legerdemain was
used on certain trials to present instead the non preferred picture.
In a large majority of manipulated trials, participants continue to
provide justifications that could even be in clear contradiction with
their original choice (e.g. "I choose this face because I prefer blond
women" while the original choice designated a brown-haired woman).
Even during funneled debriefing, participants presented no aware-
ness about the manipulation.

Early attempts to unravel cognitive mechanisms supporting CB
episodes compared the introspective reports following manipulated
and non-manipulated conditions. Interestingly, linguistic analysis in-
cluding psychological rating of reports, word-frequency analysis and
latent semantic analysis did not succeed in differentiating between re-
ports across conditions (Johansson et al., 2005; Johansson et al., 2006;
Johansson, Hall, and Sikstrom, 2008). Such absence of result may re-
flect the similarity in the cognitive processes involved during reports
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following manipulated and normal feedback. Thereby, those analyses
cast doubt on the propensity of all introspective reports to actually
reflect participants” actual motivations * rather than retrospective illu-
sions.

Thus, illusion could constitute people’s "normal psychological life"
during introspection. Yet, if introspection does not reflect the actual
cognitive processes underlying people’s action, then the question of
the basis of its illusory content should be asked.

Illusion stems from retrospective interpretation.

In line with Nisbett and Wilson, 1977, Wegner, 2002 argues that peo-
ple have poor knowledge about the cause of their actions. Moreover,
their conscious experiences of free will would result from a retro-
spective narration based on elements such as the perception of the
executed movement or congruent instructions to act. This hypothesis
is exemplified in the seminal Libet et al., 1983 study where partici-
pants are asked to perform "when they feel an urge to move" a button
press. Libet compared the timing of the appearance of cerebral activ-
ity preceding the voluntary action (namely the Readiness Potential
-RP-) with the appearance of the conscious experience of wanting to
perform this action (W time). Surprisingly, W lag several hundreds of
milliseconds behind the initiation of RP leading Wegner and others
to suggest that introspection about action is mostly a retrospective
process.

This account is further developed by Wegner’s own empirical re-
search on apparent mental causation. In a series of studies, he shows
that people can feel in control for an action when they obviously
have no part in it. For example when subjects are instructed to move
their hand while observing an experimenter’s hand moving, they will
report a higher feeling of control on the movement than without in-
structions? (Wegner, Sparrow, and Winerman, 2004).

Following Wegner hypothesis and epiphenomenalist account (Hux-
ley, 1874), both action and thought would have unconscious origins
that independently drive them. Then, a thought to be retrospectively
considered as the conscious causal origin of an action must meet three
criteria (Wegner, 2002; Wegner, 2003):

e Principle of priority: The thought has to appear in consciousness
before the action.

* Principle of consistency: The thought has to be consistent with the
unfolding action.

In Johansson et al., 2005 own words: "Confabulation could be seen to be the norm
and truthful reporting something that needs to be argued for"

Similarly, in a Ouija-like setup, while the experimenter induce all the movement of
the pointer, participants can feel in control of the pointer notably if the movement
match participant’s instruction (e.g. to point a specific item on a picture Wegner and
Wheatley, 1999; Wegner, 2004)
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1.2 FROM ILLUSION TO INTEGRATIVE PROCESS: BEYOND THE
INTROSPECTION ACCURACY DEBATE

* Principle of exclusivity: The thought has to be the most likely
origin of the action.

Yet, both Libet and Wegner empirical and theoretical findings have
been largely criticized. Among theoretical, methodological and even
statistical criticisms (Dennett, 1991; Walter, 2014), two axes of discus-
sion are of interest for the present work. First the experimental setup
they used were often meaningless. Both the setup and the instruc-
tions had little if any resemblance with real life decision scenarios.
This is notably Libet’s experiment (Libet et al., 1983) where the in-
struction of waiting an "urge to move" has been widely criticized.
Furthermore, the choices made by participants were not involving
the distant planning components that constitute every day decisions
(Mele, 2014). Such over simplification of the decision-making proto-
cols are thought to shortcut certain psychological mechanisms (Robin-
son, 2019). A second axis of criticism concedes the existence of situ-
ations in which introspection might be a retrospective illusion while
the behavior is mainly driven by unconscious processes. However the
existence of such episodes do not imply that this situation prevails
and even less that it constitutes the standard for our self knowledge
faculties.

1.2.2  Beyond illusion: integrative perspective of introspection

To demonstrate that introspection is not a pure retrospective illusion,
one approach is to distinguish the cues participating to the introspec-
tive process given their origin. On one hand, introspection can be
based on exogenous cues like perceptual or contextual information.
Choice blindness illustrates such a situation nicely as participants” in-
trospection mostly reflects the presented outcome rather than their
preferences. On the other hand, introspection could rely on endoge-
nous cues such as people preferences, prior belief or motor prepa-
ration signal. Under this framework, introspection can still be view
as a monitoring process, but its accuracy will depend on the cues
it encompasses. Importantly, the origin of a cue does not guarantee
its validity as confabulation can be based on people’s preferences or
prior beliefs (Nisbett and Wilson, 1977; Johansson et al., 2005). Yet,
such distinction allows us to consider introspection as an integrative
process where both endogenous and exogenous cues can be involved.

As a matter of fact, endogenous information has been shown to
impact participants’ decision awareness. Indeed, motor preparation
signals influence the awareness participants have of their intention
to perform an action. Recent empirical and theoretical studies pro-
posed an integrative model of certain introspective features such as
the sense of control over our own actions.

Introspective process involve endogenous information

Inspired by engineering closed loop models, the motor prediction
view (Frith, Blakemore, and Wolpert, 2000) holds that control pro-
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cesses of motor action are based on the coupling of inverse and for-
ward models through a series of comparators. From a desired state,
an inverse model computes the motor command that would lead to
this state. The motor command is then sent to the effector motor sys-
tem but also to a forward model that will emulate the predicted state
of the system after the command execution. Three comparators serve
as control instances (see Figure 2):

¢ Predicted/Desired states: Finds the optimal command to attain
system desired states.

¢ Predicted/Actual states: Filters in the sensory feedback what is
attributable to the system action and what is caused by other,
external sources.

® Desired/Actual states: Detects mismatches and improves the
forward model to reduce them.

Goal

Desired
State

# Predicted / Desired
Comparator

Forward
Model

Desired / Actual

Comparator k4
5 & Inverse Predicted
S E Model ’ State
=t
(3]

( Actual State )

Sensory Feedback Predicted / Desired
Comparator

Estimated
Actual State

Figure 2: The motor prediction framework. Figure is adapted from Frith, Blake-
more, and Wolpert, 2000.
The model is described in Section 1.2.2. Internal models are shown
in blue. Comparators are shown in red. The different representa-
tional states involved in the control of the action are shown in

green.

One of the main idea of the motor prediction view is that the out-
put of these comparators are the principal cues for the sense of agency
(the feeling to be at the origin, in control and responsible for the con-
sequences of our action). The awareness of initiating one action would
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INTROSPECTION ACCURACY DEBATE

come from a comparison between predicted and desired states rather
than a retrospective interpretation of the current states. In line with
this hypothesis, the sense of agency is gradually reduced as discrep-
ancies between predictions and sensory re-afferences increase (see for
example Fourneret and Jeannerod, 1998; Sato and Yasuda, 2005). Fur-
thermore, people are aware of their intentions to act at relatively early
stage of motor preparation. This awareness is specifically associated
with the RP (Parés-Pujolras et al., 2019) and is impaired by posterior
parietal lesions (Desmurget and Sirigu, 2009).

Overall, those findings temper the illusionist account of introspec-
tion of our decisions. However, the motor prediction view and the
cognitive reconstruction account are not mutually exclusive. Indeed
both endogenous and exogenous cues could interact to form con-
scious experience of the diverse aspects of decision, from deliberation
to their execution.

Wrapping up endogenous and exogenous influences

Can endogenous and exogenous cues simultaneously contribute to
introspective processes? Research on awareness of decision and ac-
tion have largely operationalized this question with intentional bind-
ing measure. Intentional binding refers to the subjective temporal
attraction between a voluntary action and its sensory consequences.
This measure offers an indirect access to awareness of action and the
sense of agency (Haggard, Clark, and Kalogeras, 2002) and has been
shown to correlate with introspective reports of agency (Imaizumi
and Tanno, 2019). As such, it could be considered as an operational-
ization of introspection. Interestingly, intentional binding is not only
modulated by predictive motor process but also by retrospective in-
ference and outcome probability (Moore and Haggard, 2008; Moore,
Wegner, and Haggard, 2009; Evans et al., 2015). Crucially, the con-
tribution of endogenous and exogenous cues is modulated by their
respective reliability (Moore, Wegner, and Haggard, 2009; Wolpe et
al., 2013). As an example, motor signals contribution will be stronger
(i.e. drive a larger subjective temporal compression between action
and outcome) if the outcome is unpredictable (Moore and Haggard,
2008).

Following these empirical findings, theoretical integrative accounts
of the sense of agency have been proposed (Moore and Fletcher, 2012;
Synofzik, Vosgerau, and Newen, 2008; Legaspi and Toyoizumi, 2019).
In line with multi-sensory perception models (Ernst and Banks, 2002;
Knill and Pouget, 2004), recent models propose that sense of agency
results from a Bayesian integration. According to this view, the reli-
ability of motor preparation and exogenous cues together with the
prior expectation of the participants will mediate their respective in-
fluences on the the sense of agency (Moore and Fletcher, 2012).

Bayesian approach has crucial consequences for the conceptualiza-
tion of metacognition or introspection. First, it considers internal vari-
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ables as a noisy source of information for metacognitive processes.
Thereby it rejects the idea of a privileged access to one’s own mental
life. Second, since external cues also contribute to the formation of
introspection, the central question becomes whether and how the differ-
ent cues contribute to metacognitive processes. One framework to address
this question can be the predictive coding, which proposes that the
processing of the different cues is distributed in a Bayesian hierar-
chical organization (Srinivasan, Laughlin, and Dubs, 1982; Mumford,
1992; Rao and Ballard, 1999; Friston, 2008; Friston et al., 2017).

The predictive coding framework

What is perception? Predictive coding rely on the core concept that the
brain is constantly generating and updating a model of the environ-
ment (Friston, 2010). More precisely, the brain encodes the statistical
regularities of the environment in a hierarchy of top-down generative
models of various temporal and space scales. Those models predict
and suppress inputs ascending from lower levels. Predictions (prior)
are compared to the lower level inputs (likelihood) and if their dis-
crepancy (i.e. the prediction error PE) is sufficiently large, it causes
the generative model to be revised. Otherwise, a negligible PE reflects
an accurate model, which posterior probability is thereby increased.
Thus, perception under predictive coding is mostly a prediction pro-
cess aiming at reducing PE#4, where sensory inputs only affect percept
in the form of PE propagating up the hierarchy (Hohwy, 2013; Fris-
ton, 2012; Wikipedia, 2020).

What are attention and metacognition? When adjusting a model, the
influence of top down prediction> and bottom-up information® are
weighted by their relative precisions. Precision can be understood as
the confidence attributed by the hierarchical model to the prior belief
and sensory evidence respectively. Therefore, the brain does not only
predict the content of the sensory information but also the precision
-or confidence- that contextualize this information at each level of the
hierarchy. The parameters encoding for precision are called "hyperpa-
rameters" and the prior beliefs about them "hyperprior" (Friston, 2008;
Friston, Lawson, and Frith, 2013). Crucially in the framework, a key
metacognitive feature is to optimize hyperpriors or, in other words,
to optimally infer the relative confidence attributed to sensory inputs
and prior beliefs (Asai, 2017). From a psychological point of view,
precision modulation is associated with attentional gain. Predicting
that a sensory input is precise is equivalent to attributing attention
to its processing (Friston, 2012; Picard and Friston, 2014). Indeed, if a
source is precise, we attribute attention to its information and adapt

In the predictive coding theory, PE reduction is proposed as the only thing the brain
ever does Hohwy, 2013. Doing so, the brain reduces its free energy and maintain
itself in a restricted number of states, which entail beliefs about the world. Restricting
the potential number of occupied states is suggested as a solution for living being to
stay in a non-equilibrium steady state (Friston, 2010)

The internal prior beliefs

Information traveling from the environment up to the cortical hierarchy
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our prediction according to them.

What is a decision? Instead of updating an internal model, a second
option to reduce PE in the brain is to act on the environment. One
can decide to move by formulating a high level prior about his body
(e.g. "I am moving my arm"). This prior will generate predictions
about the current state of the world and the expected sensory conse-
quences of the action. In turn, this prediction will drive the behavior
until the movement is performed (Clark, 2015). But since the arm is
not moving yet, the PE resulting from the discrepancy between sen-
sory inputs and prediction is high. To prevent PE from updating the
prior and thereby cancel the movement, active inference theory pro-
poses that the brain minimizes PE impact by attenuating the precision
(i.e. withdraw attention) of sensory inputs until the action terminates.
Thus, our own decisions are characterized by the reduced attention
we attribute to their sensory consequence (Asai, 2017; Picard and Fris-
ton, 2014; Vasser et al., 2019). Again here, a metacognitive feature (the
monitoring of one’s decision process) is described as an optimization
of precision expectation.

What is an illusion? Metacognitive illusions can be explained in
terms of deficient allocation of precision (Picard and Friston, 2014).
Reducing the precision of sensory input compared to prior belief can
simulate illusion of control over others” movement. Indeed such re-
duction could label other’s movement as "attenuated" and therefore
controlled. On the contrary if one failed to attenuate the precision of
a self-generated movement, she will experience alien control of her
limb (Picard and Friston, 2014; Brown et al., 2013; Asai, 2017). Prop-
agation of these non-attenuated PE can lead to actualization of high
order models to account for them, resulting in delusional belief as
observed in schizophrenia (Fletcher and Frith, 2009).

Interim conclusion

As we saw, recent models of metacognition allow us to revisit the
question of introspection accuracy. Rather than a read out of internal
variables eventually contaminated by external elements, introspective
processes are described as probabilistic inferences about properties
(i.e. the precision) of the mental states (i.e. prediction on sensory in-
puts) (Friston, Lawson, and Frith, 2013). In this context, metacogni-
tive failures can be re-interpreted as failure to estimate the respective
influence (or precision) of the different sources of information con-
tributing to a mental state. 7.

In the next section, we propose a theoretical and empirical frame-
work to investigate whether people are aware of the content of their

In line with this theory, participants reporting their confidence are thought to mon-
itor precision (Meyniel, Sigman, and Mainen, 2015). Indeed, it has been proposed
that precision in Bayesian neural computation and the confidence in psychology are
related like a set data and its summary statistic (mean, standard deviation, median
etc...)
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decisions. In line with study on intention to act (Schultze-Kraft et
al., 2020), we suggest to confront participants’ introspective reports
to their internal decision evidence. Furthermore, we propose that the
hierarchical organization of the processing of exogenous and endoge-
nous information impacts the quality of introspection.

1.3 MONITORING AND CONTROLLING DECISIONS

While a decision process is unfolding, several features have to be com-
puted. Brass and Haggard, 2008 distinguish three main aspects form-
ing a decision to act, namely the when (timing of the action), whether
(triggering of the action) and what (content of the action) aspects. In
this section we will see that those aspects are thought to be hierar-
chically processed and we will propose that this hierarchical organi-
zation impact the availability of the different features to awareness.
Recent studies demonstrated that people can be aware and in con-
trol of the initiation of their decision execution (when and whether
aspects) even for arbitrary choice essentially processed at lower level
(Schultze-Kraft et al., 2016; Schultze-Kraft et al., 2020; Parés-Pujolras
et al., 2019). Here, we will suggest that awareness and control of the
what aspect of a decision is dependent on higher order levels of pro-
cessing. In other terms, people could be conscious and in control of
the object of their choices at the level of decision planning but not
during concrete implementation of the decision execution.

1.3.1 Reframing decision

1.3.1.1  Theoretical account

Voluntary decisions along with intention to act have recently been
suggested to be hierarchically organized processes (Mele and William,
1992; Pacherie, 2008; Brass, Furstenberg, and Mele, 2019). These the-
ories distinguish between distal intentions that are high-level, motor
intentions that concern low level motor execution and proximal inten-
tions which implement motor intention according to distal planning.

At a higher level of the hierarchy, the distal intention encompasses
the intention to act in the future according to long term goals (e.g.
wanting to eat fish). Distal intentions are conceptual and keep a de-
gree of abstraction allowing to adapt concrete decisions to the situa-
tion. Furthermore distal intentions play a metacognitive role toward
lower levels of the decision hierarchy since they monitor and control
the decision process downstream (the series of decisions leading to
eat fish). Therefore distal intentions have to be maintained in mem-
ory and are thought to be available to conscious access.

At a lower level, proximal decisions imply the more immediate fu-
ture and serve the achievement of higher level decisions (e.g. go fish-
ing on the river). Proximal decision thus integrates higher order in-
tention and the present context to adapt decision to the environment.

18
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In addition, proximal decisions are in charge of controlling the execu-
tion of decisions by monitoring motor implementation. This type of
intention is thought to have a brief lifespan as they are bound to the
impending action. Thus, as far as the proximal level is responsible for
"initiating, sustaining, and guiding intentional actions" people may
have only limited conscious access to the content of their proximal
decisions (Mele and William, 2009).

After reviewing recent theories on the neural implementation of
decision, we will suggest that people could only be partially aware of
their proximal decisions content (Kouider et al., 2010). Indeed, while
people could be aware of whether and when they are about to act at
the proximal level, awareness about the content of the decision would
depend on a higher level of the hierarchy.

1.3.1.2 Neural implementation

Popular models of decisions based on perceptual evidence rely on
integration-to-bound (ITB) principles by which the perceptual evi-
dence is sampled and accumulated until reaching a threshold, thereby
triggering the decision (Bogacz et al., 2006; Mulder, Van Maanen, and
Forstmann, 2014). Diverse implementations of ITB include race model
(Usher and McClelland, 2001), where the evidence is separately accu-
mulated for each choice alternatives, or drift diffusion model (Ratcliff
and McKoon, 2008), where the accumulator represents the relative
evidence of one decision over the other. Those models accurately pre-
dict choices but also other variables like reaction time in simple 2
alternatives forced choices paradigms (Ratcliff et al., 2016).

Recent studies suggest that internal based decisions also rely on
ITB mechanisms. Yet, instead of sampling and accumulating percep-
tual evidence, the decision to act is reached by accumulating the neu-
ral random fluctuations of the motor system (Schurger, Sitt, and De-
haene, 2012; Murakami et al., 2014). Furthermore, these internal ev-
idence and perceptual evidence based decisions exhibit a common en-
coding in the fronto-parietal cortex (Wisniewski, Goschke, and Haynes,
2016). Indeed, similar to how external evidence accumulation drives
the perceptual-based choices (Soon et al., 2008; Bode et al., 2011), in-
ternal random fluctuation of the decision neural precursors are ac-
cumulated to break the symmetry between the alternative options
and trigger endogenous decision (Schurger, Sitt, and Dehaene, 2012;
Maoz et al., 2013; Murakami et al., 2014; Furstenberg et al., 2015; Deco
and Romo, 2008).

In the following paragraph, we will see how those approaches
could help us to interpret recent findings linking neural decision pre-
cursors and participants” awareness.
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1.3.2 Introspect decision timing and execution

Already evoked in the present manuscript, the readiness potential
(RP) is a ramping EEG activity over pre-SMA (a frontal motor ar-
eas) initiated around 1 s before voluntary movement onset (Hag-
gard, 2008). Early interpretations suggested that RP would reflect
unconscious initiation of -not so- "voluntary" movement. Yet, con-
sidering that endogenous decisions rely on accumulation of neural
random fluctuation, recent study showed that RP-like signals can be
obtained by averaging the leaky accumulator across trials (Schurger,
Sitt, and Dehaene, 2012). Furthermore, active reduction of random
fluctuation has been proposed as a key neural signature of voluntary
decision process, independent from motor execution (Khalighinejad
et al., 2018), which could result from a controlled reduction noise sam-
pled by the accumulator during voluntary decision preparation (Kha-
lighinejad et al., 2018; Khalighinejad et al., 2019). Having identified
these precursors of voluntary action, the question becomes whether
and how the information they convey can be accessed and exploited
by participants.

Since Libet et al., 1983, the faculty to veto is regarded as a hall-
mark of conscious access to decision processes (Block, 2007). Even
after initiation of a RP, participants are still able to veto their deci-
sions and refrain from acting (Libet et al., 1983; Schultze-Kraft et al.,
2016). Externally triggered cancellation have been found to be possi-
ble up to 200 milliseconds before the movement onset (Schultze-Kraft
et al., 2016). Recent study ask people to perform a self-paced but-
ton press and regularly probe them to report their intention to move.
They found stronger RP-like activity in the period preceding an inten-
tion to move (Parés-Pujolras et al., 2019). Furthermore, innovative ap-
proach uses Brain computer Interface to trigger probes when detect-
ing a RP (Schultze-Kraft et al., 2020). Those probes inform the partici-
pants to either move or refrain from moving. Participants where then
asked to report whether they were intending to move at the probe
appearance. This study shows that both go-probe and the presence
of RP increase the probability of reporting an intention to move. To-
gether, these studies demonstrate that participants have at least some
access to the neural precursor of their voluntary action, including the
random neural fluctuations thought to trigger action (Parés-Pujolras
et al., 2019). Especially, people seem to access and thereby control the
initiation of their voluntary actions.

Brass, Furstenberg, and Mele, 2019 recently proposed a model of
decision wrapping together hierarchical organization, accumulator
model and empirical evidence on conscious access. The model sug-
gests that high level instances of the decision hierarchy implement
the accumulator parameters, and that threshold crossing triggers the
proximal decision (Kang et al., 2017; Schurger, 2018) to act rather than
the action. In this context, distal decision is thought to determine the
following parameters:
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1.3 MONITORING AND CONTROLLING DECISIONS

* The accumulated variable: The model proposes that the only dif-
ference between externally and internally driven decisions is the
nature of the accumulated variable. Externally driven decisions
would rely on sampling of perceptual evidence while sampling
of internal random fluctuations supports endogenous decisions.

* The threshold(s) : Setting the threshold controls the timing of the
future decision. In an internally driven decision it ensures that
the decision can be achieved within a given window.

* The initial bias: Bias represent initial preference for a given alter-
natives which might reflect prior beliefs (e.g. preferences, choice
history ...) or perceptual primes. Importantly in the present model,
arbitrary picking choice and meaningful choice can be placed
on a continuum depending on how the threshold is crossed. A
purely arbitrary choice results from random noise accumulation
driven threshold crossing while the bias plays a dominant role
for triggering meaningful decisions.

By accounting for the emergence of proximal decision rather than
decision execution, this "conditional intention and integration to bound
model" (Brass, Furstenberg, and Mele, 2019) endorses a large amount
of theoretical and empirical findings. In particular, it leaves room for
a time between the emergence of decision in consciousness and its
execution, thus providing a mechanistic explanation for vetoing op-
portunities, even for arbitrary decisions. From an evolutionary per-
spective, the faculty to veto an impending decision might always be
advantageous even for arbitrary choice as it permits environmental
adaptation and danger avoidance. It is therefore unsurprising to find
an access to neural precursors of the intention to act even at a rela-
tively low level of the decision hierarchy. However, when the choice
alternatives are equivalent, consciously controlling the content of the
proximal decision might be irrelevant.

1.3.3 Introspecting the decision content

Neural signals predicting the content of motor and abstract decisions
(e.g. mathematical operation) have been identified using fMRI and
Libet-like paradigm (Soon et al., 2008; Soon et al., 2013). Of course,
when people have to make meaningful decisions reflecting their pref-
erences, they should be aware of their internal deliberations and in
control of their decisions. One way to study the awareness of the de-
cision content is to use choice blindness (CB) paradigm with different
choice alternatives. A simple operationalization of people awareness
consists in counting the number of manipulated trials going unde-
tected by participants (CB episodes). In line with our hypothesis, de-
cisions involving familiar choices (e.g., known brands, political prefer-
ences, etc) are rarely followed by CB episodes (Hall, Johansson, and
Strandberg, 2012; Sauerland et al., 2014; Somerville and McGowan,
2016; Rieznik et al., 2017). Moreover, expert guidance during a de-
cision prevents occurrence of CB episode (Petitmengin et al., 2013).
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Noteworthy however, rewarding a decision might not necessarily im-
prove participants’ conscious access (Hall et al., 2010). Yet, this ab-
sence of effect might also be attributable to social factors (Reyes et al.,
2018, unpublished data).

To investigate whether this conscious access remains when no dis-
tal component guide the decision, a strategy consists in using arbi-
trary picking choices. Picking is differentiated from choosing as it
involves no reasoning (Ullmann-Margalit and Morgenbesser, 1977).
Picking are conceptualized as reflecting purely proximal decision,
free of long term intention (Pacherie, 2008; Mele and William, 2009;
Furstenberg et al., 2015). In a sense, a vast panel of decision paradigms
used in experimental psychology can be classified under this label,
often provoking critics on their lack of realism compared to real-life
choices. Yet, as we emphasized in the previous section, there are good
reasons to believe that picking and choosing reflect two extremes of
the same evidence accumulation processes. In line with this hypoth-
esis, changes of intention after subliminal priming have been shown
during picking decisions. Despite being primed to perform a (e.g.
left) button press, participants sometimes "change their mind" and
push the right button (Furstenberg et al., 2015). This phenomenon
could be explained by positing that, despite the bias imposed by the
prime, accumulation of random neural fluctuations dominate the pro-
cess of threshold crossing, resulting in the opposite-to-bias decision
to emerge.

In the present work, we further isolate proximal decisions by re-
moving lower levels of hierarchy in a picking scenario. Indeed, our
participants did not perform any motor action which they could mon-
itor to gain information about the content of their impending deci-
sions. Instead, they were asked to decide to preferentially attend one
of two overlapping items on the screen. Under the predictive coding
theory, to attend one item is equivalent to increase the expected preci-
sion of the PE resulting from the perception of this item. Thus, partic-
ipants’ ‘choices can be reformulated as attributing higher precision to
one of the two alternative items. Since the precision are equal among
choices, the attention allocation must result from endogenous factors
(Clark, 2017; Ransom, Fazelpour, and Mole, 2017). Those endogenous
factors usually entail desire and motivations but are restricted in a
picking scenario to proximal aspects of the intention. To summarize,
we isolate the proximal level of decision by removing on one hand
the distal aspect of decision using a picking scenario, and the sensori-
motor cues on the other hand using an attention allocation driven
choice.

In Chapter 2, we will see how we track participants’ feature based
covert attention allocation using decoding methods. This highly non
ecological paradigm allows us to investigate whether and how partic-
ipants could become aware of their impending decisions at the proxi-
mal level, i.e the level of concrete implementation of decision.
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CAPTURING DECISION SIGNALS IN REAL TIME.

As we have seen in Chapter 1, research on the conscious experience of
volition addresses a intriguing contradiction. On one side, a growing
corpus of studies using imaging methods have identified brain sig-
nals predicting the content of a forthcoming decision (see Section 1.3).
However, cognitive psychological studies on introspective abilities
have shown that people are differentially aware of the different as-
pects of their impending decision. While they can prospectively ac-
cess and control their intentions to act, they are remarkably unaware
of their impending decision (see Section 1.2). This apparent contradic-
tion has usually been explained in terms of the illusory introspective
process underlying the conscious experiment of our intention. Never-
theless, recent innovative studies unravel genuine metacognitive ac-
cess to internal motor preparatory signals as the action unfolds. Yet
when retrospectively monitoring their intentions, people’s introspec-
tive content would be dominated by the decision they took and the
perceptual feedback they received (Schultze-Kraft et al., 2020). Those
studies depict the subjective feeling of intending to act (i.e the when
and whether aspects of intention) as a metacognitive process that inte-
grates both preparatory signals and retrospective elements in a hierar-
chical organization. Coupled with real-time approach, this theoretical
framework allows to inquire "whether and how motor preparation in-
forms the conscious experience of intention" (Pares Pujolras, 2019).

In the present work, we investigate the condition under which peo-
ple are aware of the content of their decisions. As mentioned in Chap-
ter 1, the decision content (i.e. the alternative chosen by the decision
maker) could be encoded at different level of the decision process.
First people might be prospectively aware of their intention to choose
a given alternative by accessing their action selection process. Yet in
the physical world, different decisions always correspond to different
motor action. Therefore, people might retrospectively infer the option
they unconsciously chosen based on the monitoring of the motor sig-
nals executing this choice.

In this chapter, we described how our experimental approach based
on a BCI decoding covert, feature based, selective attention can help
us to tackle this issue. In a nutshell, our BCI setup allows people to
make a decision of preferentially attending one among two items on
the computer screen. Those items are presented at the same location
to prevent spatial cues and gaze monitoring from participating in the
inference processes on decision content. In Section 2.1, we detail the
characteristics of covert, feature-based selective visual attention that
bring us to specifically target this cognitive process for our BCI. As
a direct decoding approach of selective attention might be challeng-

23



ing, we present in Section 2.2 the steady state visual evoked potential
methods that allow to measure consequences of attention allocation
on the visual system. Finally in Section 2.3 , we describe the theo-
retical concept and the mathematical procedure underlying our BCI
setup.

2.1 SELECTIVE VISUAL ATTENTION IN THE BRAIN

Although cognitive paradigm emphasized the analogy between brain
and computer (Searle, 1990b; Searle, 1990a), brain computation has
to minimize the number of spikes needed to transmit a given sig-
nal(Barlow, 1961). Indeed, neural activity, and more precisely neural
firing rates account for the larger part of brain metabolic cost (At-
twell and Laughlin, 2001). As we have seen in Chapter 1, one way to
tackle complex environments at reduced cost is to adopt a predictive
coding approach, where only the difference between brain prediction
and actual sensory inputs travel up the cortical hierarchy. In addition,
structural solution such as sparse coding have been described in the
brain (Chalk, Marre, and Tkacik, 2018; Perez-Orive et al., 2002; Vinje
and Gallant, 2000; Harris and Mrsic-Flogel, 2013; Perez-Orive et al.,
2002; Vinje and Gallant, 2000; Harris and Mrsic-Flogel, 2013). Indeed,
the sparseness of neural coding ranges on a continuum from dense,
highly redundant representation, to local representation encoded in
one single neuron (Barlow, 1969; Quiroga et al., 2005). Recent stud-
ies reveal that different coding schemes meet different computational
requests (Raymond and Medina, 2018) like predicting the future or
encoding past events.

Above its account by predictive coding theory (Friston, 2012; Ho-
hwy, 2013; Clark, 2015), attention can be primarily described as a
mechanism contributing to efficient coding. Indeed, neuron spikes
metabolic cost imposes a drastic limitation to the number of neurons
that can be simultaneously activated (Lennie, 2003). Thus attention
operates as a mechanism of selective attribution of computational re-
sources. From a bottom up perspective, visual stimuli compete for the
access to computational resources such that neurons representing dif-
ferent features of the visual scene engage in competitive interaction,
resulting in the suppression of the non selected features (Desimone
and Duncan, 1995; Carrasco, 2011). From a top down perspective, at-
tention selectively allocates available computational resources at the
attended features to the detriment of the unattended ones (Carrasco,
2011).

Although both perspectives reflect the limitation of the brain com-
putational ability, they also illustrate different aspects of selective
pressure exerted on the brain by its environement. In fact, bottom-
up perspective corresponds to the need for the brain to stick with
environmental dynamics while top-down perspective reflects the ne-
cessity for the agents to comply with their current goals. In line with
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2.1 SELECTIVE VISUAL ATTENTION IN THE BRAIN

this disjunction, neuroimaging studies described three networks un-
derlying different aspects of selective attention mechanism (Posner
and Petersen, 1990).

2.1.1  Neuro-anatomy of visual selective attentional process

According to Posner and Petersen, 1990, the attentional system fulfill
three main functions that have been associated to three distinct brain
networks (Posner et al., 1988; Posner and Petersen, 1990; Carrasco,
2011; Petersen and Posner, 2012):

* The orienting system prioritizes sensory inputs by selecting a
modality or location via either "foveating" specific stimulus or
covertly attending it. Thereby, computation of the attended stim-
ulus is improved. Orienting function has been associated with
posterior brain areas including the superior parietal lobe, the
temporal parietal junction and the frontal eye fields .

* The executive control system regroups top down executive control
networks involved in conflict monitoring and top down control.
Anatomically, it has been associated with an anterior attentional
system, which involves the anterior cingulate and the lateralpre-
frontal cortex.

* The alerting system maintains a certain degree of sensitivity or
arousal to incoming stimuli. This modulation of general excitabil-
ity is controlled by a network spanning over the frontal and
parietal regions of the right hemisphere.

On top of this neuro-anatomical description, psychophysics and
cognitive psychology studies classified selective attention along three
main axis (Moore and Zirnsak, 2017). Although these forms of atten-
tion might be similar at certain mechanistic level (e.g. Hohwy, 2013), it
can be relevant to separate them experimentally as can have different
effects on the rest of cognition.

* Spatial versus Feature-based attention Attention can be directed
toward spatial location of the environment (e.g. stimulus on the
right visual field) or directed toward a specific feature (e.g. blue
stimulus versus red stimulus).

* QOvert versus Covert attention Attention can selectively process
a stimulus in absence of any orienting movement toward this
stimulus. It is distinguished from a selective process accompa-
nied by orientation (e.g. of the gaze) toward the selected stimu-
lus location.

* Top-down versus Bottom-up attention Attention could be an en-
dogenously generated process, reflecting motivation, preferences
or strategy. Alternatively attention could be an exogenously driven
process whose selection is solely based on the salience of stim-
uli.
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As we mentioned before, we address in the present work whether
and how decision processes inform participants about their choices.
Therefore, participants have to make decisions in a situation in which
we can control or measure all the cues that could potentially notify
them about their choice. To address this issue, participants make a
choice which consists in preferentially attending one among two over-
lapping items presented at the center of the screen. This decision in-
volves top-down, feature based covert attention and avoids cues like
eye movement or spatial location to grant participants with informa-
tion about their choice.

2.1.2 Feature-based covert attention (FBCA)

FBCA has been shown to increase visually driven fire rates encoding
the attended stimulus along the all visual path, beginning as soon as
the thalamic relay of visual stream, namely the dorsal lateral genic-
ulate nucleus (Saenz, Buracas, and Boynton, 2002). FBCA not only
increases the strength of spiking activity but also the information
those spikes convey at both single neuron and population scale. In
addition, attention could be linked with increased synchrony among
the neurons and neuron populations coding for the attended stimu-
lus (Moore and Zirnsak, 2017).

From a behavioral perspective, knowing in advance a feature of the
target stimulus improves participants’ detection performance. More-
over, such pre-cueing can affect low level sensitivity like motion detec-
tion or direction discrimination. Indeed when cued with the direction
of moving dots, participants are more sensitive in motion detection.
Importantly, improvements are still effective in the presence of distrac-
tor. This could indicate that FBCA specifically boost the behaviorally
relevant psychophysical channel (Carrasco, 2011) and thereby reflect
the cue driven decision process.

Figure 3: Example of visual stimulation targeting FBCA.
In the three examples shown here, participants were asked to at-
tend either red or blue dots while their gaze remained located on
the central cue.
Data presented here are extracted from our pilot study inspired by Miiller
et al., 2006 work.
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2.2 MEASURING THE CONSEQUENCE OF SELECTIVE ATTENTION.

2.1.3 Selective attention and decision

As described by the predictive coding theory, attention filters behav-
iorally relevant information by modulating their expected precision
(see Section 1.2). Indeed attention favors processing of relevant infor-
mation and allows the attenuation of distractors (Kinchla, 1992; Car-
rasco, 2011). Furthermore, motivation and reward alter attention al-
location (Bourgeois, Chelazzi, and Vuilleumier, 2016). Drift diffusion
models of decision posit that decisions are based on evidence accumu-
lation operated during gaze fixation (Krajbich and Rangel, 2011). Yet,
attention should not be reduced to a passive information sampling
process, as it rather plays an active role in decision. Attention is not
solely guided by top down preferences but also reflects bottom up
process and interaction with working memory. Attention is known
to impact value integration and confidence during decision (Kunar
et al.,, 2017; Kurtz et al.,, 2017). Thereby, decision emerges from an
interaction between preference, external stimulation, attentional and
memory processes (for a detailed review of influence of attention on
decision see Orquin and Loose, 2013).

Recent neuroimaging studies began to dissect the complex inter-
connexion of higher order cognitive function involved in decision
processes. Indeed, the relationship between executive control of at-
tention and the decision based processing of information have been
associated with inter-connected sub-region of the pre-frontal cortex
(PFC) (Hunt et al., 2018). These sub-region are thought to concomi-
tantly process information and guide its sampling by attention shift.
In line with those results, sub-region of the PFC reflecting categorical
decisions about ambiguous stimuli also drive modulation of visual
attention (Roy, Buschman, and Miller, 2014).

Altogether, these studies show the tight relationship between selec-
tive attention and decision processes. Attention does not only provide
indication about a decision related top-down guidance in information
sampling. Instead, it constitutes a core element of the decision process
and interact with working memory and valuation process through
pre-frontal parallel networks.

2.2 MEASURING THE CONSEQUENCE OF SELECTIVE ATTENTION.

As we have seen, selective attention recruits an ensemble of neural
networks spreading through the entire cortex. It is noteworthy that
many of the studies having identified those selective attention related
networks rely on fMRI measures and non human primate studies.
This method achieves a good spatial resolution and provides access
to deeper cortical layers at the cost of poor temporal resolution and
invasive procedure. Brain computer interfaces on the other hand re-
quire fast and reliable decoding of a neural feature. Since frontal areas
are highly integrated regions dealing with a wide range of functions,
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decoding the attentional process directly might prove unreliable. We
thus opted for a method assessing the consequences of selective at-
tention on an evoked visual feature: the steady states visual evoked
potential.

2.2.1 The steady-state visual evoked potential (ssVEP)

Visual evoked potentials are stereotypical responses to transient vi-
sual stimulation, usually assessed through EEG or MEG (magnetoen-
cephalography). If the stimulation is periodically modulated as a
function of time, the evoked response obtain by averaging over trials
with time locked to the stimulation will be a visual evoked poten-
tial of small amplitude termed "steady-state" visual evoked potential
(ssVEP) (Adrian and Matthews, 1934; Regan, 1966). Therefore, it is
possible to define ssVEP as follows:

ssVEPs are evoked responses induced by flickering visual stimuli. ssVEPs
are periodic, with a fundamental frequency corresponding to the visual stim-
ulation frequency. The spectrum of ssVEP is characterized by peaks at stim-
ulation frequencies and related harmonics and is stable over time. (Vialatte
et al., 2010).

The brain areas generating ssVEP depends on the frequency of
stimulation: high frequencies(> 10-12 Hz) evoked ssVEP sources are
localized mostly on V1, lower frequencies evoked ssVEP are likely
to originate from pre-cortical structure including retina and lateral
geniculate nucleus (Vialatte et al., 2010). If a consensus about the com-
plexity of ssVEP localization has yet to be found, it appears that V1
exhibits the strongest signals across a wide range of stimulation fre-
quencies and visual features (Herrmann, 2001; Vialatte et al., 2010;
Norcia et al., 2015). On the mechanistic aspect, ssVEP have been asso-
ciated with non-linear propagation of visual information through the
visual pathway. From non linearity stem the presence of harmonics
in the ssVEP spectrum even in absence of those harmonics in the vi-
sual stimulation (Labecki et al., 2016). Furthermore, inter-modulation
frequencies are found in the ssVEP spectrum when two or more vi-
sual stimulations at distinct frequencies are concomitantly presented
to participants.

ssVEP have been found to be less sensitive to artifacts like eye move-
ments and blinks, but also to electromyographic noise contamination
compared with regular transient visual evoked potential. Since the
late 60’s, ssVEP have been applied to the study of a wide range of
phenomena spanning over both clinical research and cognitive sci-
ence. Yet in the next section we will focus on the relationship between
selective visual attention and ssVEP.
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2.2 MEASURING THE CONSEQUENCE OF SELECTIVE ATTENTION.

2.2.2  Visual selective attention modulates ssVEP

Although ssVEPs has primarily been viewed as a tool to study early
cortical stages of sensory processes, they have since been successfully
used to explore higher order processes. As the measure they provide
is directly attributable to one specific visual stimulus on the screen
and presents a high signal to noise ratio (SNR), ssVEPs are partic-
ularly adapted to the study of attention (Norcia et al., 2015). In a
previous study, participants were presented with two spatially sepa-
rated letters flickering at distinct frequencies. It results that attending
to one letter increases the ssVEP amplitude corresponding to the let-
ter oscillation frequency (Morgan, Hansen, and Hillyard, 1996).

ssVEP can also be used when two stimuli are present at the same
spatial location. Feature-based selective attention was first addressed
by Pei, Pettet, and Norcia, 2002 in a study where horizontal and ver-
tical bars of 16 cross were oscillating at different frequencies. The
study showed that attention modulated neural processing in a spa-
tial non specific manner. Indeed, the ssVEP amplitude was larger
at the frequency corresponding to the attended orientation. Disso-
ciating further the contribution of spatial and feature-based selective
attention, Miiller et al., 2006 used a stimulus consisting in two super-
imposed random dots kinematograms of distinct colors. The study
confirms that covert feature-based selective attention selectively in-
creases ssVEP amplitude of the attended item. Notably, this increase
was found to be maximal over occipital area of V1-V3 . Follow up
studies dissected the temporal dynamic of the ssVEP modulation by
selective attention. Cues were displayed on the screen asking partici-
pants to preferentially attend one colored group of dots. The enhance-
ment of ssVEPs amplitude occurs around 220 ms after the cue ap-
pearance and is accompanied about 140 ms later by a decrease of the
ssVEP amplitude related to unattended dots (Andersen and Miiller,
2010).

If ssVEP can reliably track the identity of the currently attended
features, whether they can provide information on the quantity of al-
located attentional resources is not clear. Clinical studies established
that schizophrenic patients have reliably smaller ssVEP during pas-
sive exposition but show an hyper-activation compared to control
subjects when actively attending a stimulation in the 1-30 Hz range.
Schizophrenic patients are known to endure attentional deficits since
the early stage of the disease (McGhie and Chapman, 1961). Such
deficits include global enhancement of background noise leading to
difficulty to selectively allocate attention to relevant part of the en-
vironment. Thus, compensatory over-allocation of attention are often
observed. This compensation effect echo Bayesian account of schizophre-
nia according to which schizophrenic patient might fail to attenuate
sensory precision of incoming perceptual inputs, leading to compen-
satory increase in the precision of high-level prior beliefs (Fletcher
and Frith, 2009). Similarly, children having lived febrile seizure episode
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Figure 4: Attention allocation modulates ssVEP amplitude.

A) We presented two superimposed kinematograms of red and
blue dot flickering at respectively 4.5 and 7 Hz. Participants were
asked to preferentially attend one of the kinematogram for 5 sec-
onds. The color of the target kinematogram was specified by the
central dot on which participants were asked to maintain their
gaze. B) Allocating attention to one color enhances the amplitude
of the Fourier component associated with the corresponding fre-
quency. Fourier transform is presented for one participant average
over 20 trials calculated at the electrode Oz. Peak at 4.5Hz and
7Hz are enhanced when participants focus on red or blue kine-
matogram respectively.

Data presented here are extracted from our pilot study inspired by Miiller
et al., 2006 work.

show a superior control over working memory, distraction avoidance
and attention (Chang et al., 2000; Ku et al., 2014). In parallel, their
ssVEP amplitude is larger than age-matched control across the all fre-
quency range (Vialatte et al., 2010). Altogether, those results link the
quantitative variation of attention allocation with variation in ssVEP
amplitude. Therefore, a ssVEP based decoding approach would be
able not only to infer the attended object on the screen but also to
track the strength of allocated attention.

Although its use has mostly been circumscribed to the study of vi-
sual information processing and attention, ssVEP have recently been
employed in paradigm addressing other integrated cognitive mecha-
nisms.

2.2.3 ssVEP to investigate cognition.

The effect of attention on ssVEP amplitude predicts behavioral out-
put. As an example in Andersen and Miiller, 2010, the lag between
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2.3 BRAIN COMPUTER INTERFACE (BCI): TOWARD A REAL-TIME
MEASURE OF SELECTIVE ATTENTION

the cue indicating the color of the target dots and the ssVEP ampli-
tude enhancement was strongly correlated with the response time to
detect a transient coherent movement in the target dots. Similarly, the
performance in an orientation discrimination task was predicted by
the orientation-selective ssVEP response (Garcia, Srinivasan, and Ser-
ences, 2013).

Recent studies have used ssVEP to differentially tag different levels
of visual hierarchical perception (Gordon et al., 2017; Gordon et al.,
2019). They combined semantic wavelet induced frequency tagging
(SWIFT) (Koenig-Robert and VanRullen, 2013) with classical ssVEP
(Norcia et al., 2015) to disentangle bottom up from top down pro-
cessing. Indeed, ssVEP predominantly tag low level sensory inputs
in the visual hierarchy while SWIFT method has been shown to re-
flect high level top-down processing. They track the degree of inte-
gration between top down predictions and bottom-up sensory sig-
nals through inter-modulation components of the EEG spectrum (fre-
quencies corresponding to linear combination of SWIFT and ssVEP
frequencies). They showed that the participation of top-down predic-
tions' decreased as reliability of sensory inputs increase, lending sup-
port to predictive coding theory.

In summary, ssVEP analysis provides an indirect measure of sev-
eral aspects of visual selective attention. Indeed ssVEP grants access
to qualitative aspects of selective attention such as the location of the
attentional spot or the identity of the preferentially attended object.
Furthermore, ssVEP also gives insight about quantitative aspects of
the attentional process like the strength of allocated attention or its
timing. Recent studies have demonstrated that appropriate stimula-
tion allows us to use of ssVEP to investigate a wide range of cognitive
mechanisms. In the next section, we will describe how we implement
a BCI exploiting ssVEP to continuously track selective attention and
thereby the decision of our participants.

2.3 BRAIN COMPUTER INTERFACE (BCI)I TOWARD A REAL-TIME
MEASURE OF SELECTIVE ATTENTION

To continuously track the content of the decision of our participants,
we used a BCI combining stimulus reconstruction approach with
sweep-ssVEP (Regan, 1973; Ales et al., 2012). Stimulus reconstruction
has been successfully used to decode the attended stimulation in au-
ditory (O’Sullivan et al., 2015) and visual paradigm (Sprague, Saproo,
and Serences, 2015). Although this method achieves a good accuracy,
decoding attention toward natural stimulus requires a fair amount of
data. To continuously track attention, we follow the most recent devel-
opment in the field of BCI (Rezeika et al., 2018; Chen et al., 2015) that
apply stimulus reconstruction to a simple pattern of oscillation. We
describe our stimulation in detail in the next chapter. In the following

1 indexed by SWIFT signal to noise ratio
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section, we expose BCI’s general concept for decoding participants’
decision content.

2.3.1 Linear stimulus reconstruction and individual model creation

As we have previously seen, selective attention specifically alters the
attended stimulus processing. One way to infer which stimulus among
many is attended is to assess those processing modulations via a
stimulus-reconstruction approach. This method attempts to recon-
struct an estimate of the input by combining the neural signals recorded
during stimulus presentation according to a participant-specific model.
After the reconstruction steps, the reconstructed signal is correlated
with each stimulus oscillations pattern and the correlation factors can
be compared to infer the attended stimulus (O’Sullivan et al., 2015).

The reconstructed stimulus is a linear combination of the neural
signals received from the electrodes (in the case of an EEG based
approach) according to a participant’s specific model. To build the in-
dividual model, we rely on labeled trials (e.g. trials where the target
stimulus is known). We detailed the method in the methodological
section of Chapter 3. In a nutshell, the model minimizes the differ-
ence between on one hand the combination between the EEG elec-
trodes and on the other hand the target stimulus oscillations pattern.

Applying this method to detect the attended audio stream in a cock-
tail party results in robust accuracy on a single trial level (O’Sullivan
et al., 2015). It includes all the scalp information and thus encom-
passes top-down and bottom-up contribution to attended stimulus
processing. Furthermore, as the model tends to attribute a very low
weight to irrelevant information, it does not necessitate advanced
methods of filtering and can be conducted without removing blink,
muscle or electrical artifact, or even without average-referencing data.

However, studies achieving a good (>80%) classification accuracy
rely on a large amount of data. For example, O’Sullivan et al., 2015
classifies 1 minute of auditory data per trial. To gain a better insight in
the temporal dynamic of participant decisions, one needs a finer tem-
poral grain in the decoding approach. In line with innovative work in
the domain of BCI based speller (Chen et al., 2015), we drastically re-
duced the required amount of data to 3 seconds by applying the stim-
ulus reconstruction approach to a simple modulation pattern. This
procedure allows us to modulate the feedback according to partici-
pants” decision to attend one stimulus among two in 5 seconds long
trial.

2.3.2  The BCI loop

Brain Computer Interface is a recent neuro-technology which devel-
opment is giving rise to a flourishing field of research, both in the
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engineering and fundamental aspects. Although its first description
can be traced back in the 70’s (Vidal, 1973; Vidal, 1977), BCI setup long
remained mere proof of concept and concrete application for general
public use began only recently to be extensively developed (McFar-
land and Wolpaw, 2017). BCI setups have been developed with just
about every neuro-imaging method (invasive or not) existing, con-
necting vision but also sensory-motor system (Wolpaw et al., 1991),
audition (Klobassa et al., 2009) and even taste (Canna et al., 2019). In
the present work, we focus on EEG-based visual BCI.

Among its several applications, the main effort has been put in restor-
ing communication and control in paralyzed patients (McFarland et
al., 2017). Derived from this line of research, BCI based spellers al-
low people to write by only attending a virtual keyboard (Rezeika et
al., 2018). Other domains of application like video game control are
progressively emerging, building on methodological breakthroughs
of their predecessors (Kerous, Skola, and Liarokapis, 2018).

Pro-active on this domain, the engineer literature usually define 4
modular subsystems in a BCI (Wolpaw and Wolpaw, 2012; McFarland
and Wolpaw, 2017):

o Stimulation: Here visual, the stimulation elicits an appropriate
neural pattern to be decoded. In Appendix A, we detail our
method to present participants with two equivalent choice op-
tions distinguishable patterns.

e Signal recording: The neuro-imaging method used to continu-
ously extract brain signals. In the present work, we used a 64
electrodes electroencephalography.

e Signal processing: This subsystem regroups the processing of the
raw brain signals along with the extraction of features relevant
for BCI mediated interaction. We described the detailed proce-
dure in the Methodology section of Chapter 3. Our goal is to
maintain a robust and accurate classification while capturing
the dynamic of selective attention allocation. We thus applied a
stimulus reconstruction approach on a sliding window of 3 sec-
onds. Each 250 milliseconds, we computed the reconstructed
stimulus and correlated it with the pattern of oscillation of our
two potential targets.

* Interaction: Finally, the fourth subsystem specifies system opera-
tion. It notably entails how, from the relevant features extracted
by the signal processing subsystem (in our case the results of cor-
relation between reconstructed signal and display stimuli pat-
tern), the BCI decides which item was attended. Thereby,BCI
adapts the feedback to the participant’s neural signals.

Below is illustrated our implementation of BCI subsystems allow-
ing us to investigate the simple decision of preferentially attending
one over two items overlapping in the screen center.
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Figure 5: Brain Computer Interface principle.
The four subsystems of a BCI are detailled in Section 2.3.2. Top
panel) Stimulation. Left panel)Signal recording. Bottom panel) Sig-
nal processing. Right panel) Interaction implementation.

2.3.3 Summary

To conclude, attention is an omnipresent cognitive mechanism inter-
mingled with virtually all other brain mechanisms. Especially rele-
vant for the present work, participants” decisions influence covert fea-
ture based attention allocation. Therefore, to track decisions in time,
we choose to rely on a BCI approach to decode selective attention
allocated to one among two overlapping items. We present in Ap-
pendix A the visual stimulation we developed for our BCI allowing
participants to perform a voluntary covert decision. Although such
a picking choices lack the motivational aspect that characterize real-
life decisions, they are thought to rely on similar mechanism. Fur-
thermore, a non-ecological approach allows us to specifically target
proximal aspect of decision while neither long term planning nor mo-
tor preparation can be informative for participant awareness. Thus,
we can address whether and how the representation available at this
specific level are susceptible to enter consciousness.
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2.3.4 Empirical contribution overview

We then present 2 experimental contributions on decision content
awareness, using covert attention-based Brain Computer Interface ap-
proach.

In Chapter 3, we directly address the details of endogenous and ex-
ogenous contribution to people’s introspection about their recent de-
cision. We used BCI to continuously measure endogenous variables
and control external feedback during participants” decisions. We then
probe participant’s recent decision awareness and compare their an-
swer to the decision inferred by our stimulus reconstruction approach.
This first study provides evidence that introspection results from a
Bayesian integration process involving both external feedback and in-
ternal decision variables.

Then in Chapter 4, we go further by exploring whether and how
people could be prospectively conscious and in control of the content
of their impending decision. We develop a new approach based on
the combination of stimulus reconstruction to track ongoing deliber-
ation with a process dissociation procedure (PDP) (Jacoby, 1991). In
PDP, participants try to avoid using their early deliberation (exclusion
task) or make sure they do use it (inclusion task) when asked to make
a decision. This second study demonstrates that before decision exe-
cution, participants can be aware of an ongoing deliberation process
but can not access the option selected during the deliberation.
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IMBALANCED EXOGENOUS AND ENDOGENOUS
CONTRIBUTION TO INTROSPECTION LEAD TO
ILLUSION AND ASSOCIATED METACOGNITIVE
FAILURES.

3.1 SYNOPSIS

People can introspect on their internal state and report the reasons
driving their decisions but Choice Blindness (CB) experiments sug-
gest that this ability can sometimes be a retrospective illusion. In-
deed, when presented with deceptive cues, people justify choices
they did not make in the first place, suggesting that external cues
largely contribute to introspective processes. Yet, it remains unclear
what are the respective contributions of external cues and internal de-
cision variables in forming introspective report. Here, using a brain-
computer interface, we show that internal variables continue to be
monitored but are integrated and dominated by deceptive cues dur-
ing CB episodes. Moreover, we show that deceptive cues overturn
the classical relationship between confidence and accuracy: introspec-
tive failures are associated with higher confidence than accurate in-
trospective reports. We tracked back the origin of these overconfident
confabulations by revealing their prominence when internal decision
evidence is weak and variable. Thus, introspection is neither a direct
reading of internal variables nor a mere retrospective illusion, but
rather reflects the integration of internal decision evidence and exter-
nal cues, with CB being a special instance where internal evidence is
inconsistent.

3.2 INTRODUCTION

Humans constantly monitor their choices and actions to adapt their
behavior (Ericson and Simon, 1980; Ridderinkhof et al., 2004; Ullsperger
and Von Cramon, 2004). This ability typically involves introspective
mechanisms that are used to evaluate and justify decisions (Mosh-
man, 2014). Yet, introspection turns out to be unreliable on many
occasions (Nisbett and Wilson, 1977). For instance, participants can
believe they have intentionally performed an action that was actually
initiated by another agent (Wegner and Wheatley, 1999; Wegner, 2002).
Similarly, participants can confabulate about why they choose an op-
tion while they actually made the opposite choice in the first place
(Johansson et al., 2005; Johansson et al., 2006; Hall et al., 2010). A
striking example of introspective illusion is given by choice blindness
(CB) experiments. In this paradigm, participants select which one of
two faces is more attractive, and are then presented with the option
they selected and asked to justify their decision. On some trials, they
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are lured to have chosen the non-preferred face. Yet, they provide con-
fabulated justifications about why this face is more attractive than the
other. This phenomenon, which has been extended to economic de-
cisions, political preferences and moral judgments, reveals that intro-
spection can be, under certain circumstances, a retrospective illusion
(Hall, Johansson, and Strandberg, 2012; Hall et al., 2013; Hall et al.,
2013; McLaughlin and Somerville, 2013; Strandberg et al., 2018).

Yet, participants have also been shown to have reasonable intro-
spective access to the elements driving their decision (Ericson and
Simon, 1980; Grover, 1982; Schultze-Kraft et al., 2016; Reyes et al.,
2018; Parés-Pujolras et al., 2019). These apparently contradicting re-
sults could be reconciliated under an integrative account of introspec-
tion where both internal decision variables and external, contextual
cues contribute to participants’ introspective reports. Yet, although
such view began to receive empirical support (Schultze-Kraft et al.,
2020), the modalities under which these two components could be
integrated during introspective processes remained unsettled.

One way to investigate the formation of introspection about deci-
sions consists in studying how internal decision variables impact CB
episodes. In line with previous Bayesian integrative accounts of intro-
spective processes (Moore and Fletcher, 2012; Legaspi and Toyoizumi,
2019), we predicted that impact of internal decision evidence on in-
trospection would be mediated by their availability and reliability.
Furthermore, the integrative process would modulate not only the
quantity of introspective failures (i.e., the amount of CB episodes),
but also their quality (i.e., how much participants are convinced in
their confabulation). That is, when a reliable source of external cue
sometimes provides a deceptive information, participants would con-
fabulate with high confidence (dominated by external cues) when
their internal decision evidence is weaker.

Here, to address this issue, we relied on a brain-computer interface
(BCI) setup to track participants” internal decision variables during
the original choice (i.e., prior to the external cue and report). Partici-
pants had to freely choose to preferentially attend for 5s to one out of
two overlapping stimuli while their EEG was recorded and a marker
of selective attention was measured in real-time (decision phase, see
Figure 1A). Recent neuroimaging studies revealed that top-down at-
tentional mechanism reflect decision processes (Gottlieb and Balan,
2010; Roy, Buschman, and Miller, 2014; Hunt et al., 2018). Although
we did not measure decision mechanisms per se, our neural index al-
lowed us to track their consequence in the form of selective attention
allocation to one category over the other. This BCI setup allowed not
only to measure a proxy of internal decision evidence independently
of introspective reports but also to control de reliability of external
cues. Following the decision phase, participants were presented with
a feedback cue that matched their original choice in 75% of the tri-
als (informative feedback). Importantly, they were presented with the
alternative, non-preferred choice as the outcome of their decision in
25% of the trials (deceptive feedback). Moreover, in order to assess the
impact of internal decision variables not only on the quantity of in-
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trospective failures but also on their quality, participants were asked
to rate the confidence they experienced in their decision.
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Figure 6: A) Experimental paradigm. Each trial comprised three phases. 1)

Decision phase: participants were presented with overlapping face
and spiral oscillating at 1.875Hz in temporal phase opposition and
asked to choose one or the other category and focus on it until the
end of the 5s period . 2) Feedback phase: participants were then
presented with a feedback cue for 500 ms, reflecting their recent
decision on 75% of the trials (green, informative trial) or the op-
posite choice in the 25% remaining trials (orange, deceptive trial).
3) Report phase: participants were then requested to report the
object they preferentially attended before the feedback cue along
with their confidence in this report on a 4 steps scale.
B) Real-time decoding procedure. Each 250 ms, a reconstructed
stimulus was computed by linearly combining the 64 EEG elec-
trodes signal over a 3s window according to the model weights
computed beforehand. We then obtain correlation scores for both
face (green) and spiral (red) stimuli by computing the correlation
between the reconstructed stimulus and the expected face and spi-
ral oscillations respectively. On the end of each trial, correlation
scores computed during the last 1.5 seconds were averaged sepa-
rately for each category, and the highest average was considered
the attended category for the presentation of the feedback cue.

3.3 RESULTS

3.3.1 Impact of internal decision evidence and external cues on introspec-
tion.

Does introspection integrate internal evidence supporting just-made
decisions or is it a pure reconstructive process shaped by external
cueing? We here operationalize introspective accuracy as being cor-
rect when the reported object matches the object decoded by the BCI
(e.g., for instance face reported, face decoded), and incorrect other-
wise (e.g., face reported, spirale decoded). Together with this measure
of introspective accuracy, we computed a proxy for internal evidence
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accumulation during the decision phase called internal evidence (IE).
During the decision phase, our BCI continuously outputs correla-
tion scores associated with each object (Figure 6B). These correlation
scores reflect how close are the brain signals from being generated by
the observation of the face or the spiral respectively. Then, IE consists
in the accumulated difference between the correlation scores associ-
ated with each object over the last 3 seconds of the decision phase,
and provides an objective measure of how strongly participants pref-
erentially attended one object over the other one (See Methods). Fi-
nally, the type of feedback cue displayed on each trial was encoded
as either deceptive (opposite to IE in 25% of the trials) or informative
(corroborating the IE in 75% of the trials). To determine the respective
influences of internal decision evidence and external information on
introspective processes, we modelled accuracy using IE and the type
of feedback cue as fixed effect and participants as random effect.

We first thought to determine the relationship between the inter-
nal evidence that was available during the decision phase and the
accuracy of introspective reports. As shown in Figure 7A, introspec-
tive accuracy significantly increases with the amount of internal ev-
idence (generalized linear mixed effect model (GLME): Odds Ratio
(OR)=1.33, confidence interval (CI)=[1.26 1.41], x? = 211.5, Pp<0.001).
Moreover, the type of feedback had a significant influence on intro-
spective reports as we observed a higher accuracy following an in-
formative feedback (M=o0.71, SD=0.11), compared with a deceptive
feedback (M=0.57,SD=o0.16). (Figure 7B, Section B.3 Table 1) (OR=1.72,
ClI=[1.45 2.04], x*> =151.2, p<0.0001), revealing that the contextual cue
influences introspective reports. We found no significant interaction
between IE and the type of feedback (OR=1,04, CI=[0,98-1,17], x? =
2.2, p>0.1), revealing that feedback cues modulate the accuracy of
introspective reports regardless of the internal information available
during the decision phase (Figure 7C).

Is introspection impaired by deceptive feedback or improved by
informative external cues? To address this question, we ran an ad-
ditional control experiment for 16 out of the 30 participants. They
performed an additional block with the exact same structure except
that no feedback cue was now presented between the decision and re-
port phase. The results of this control session confirm that informative
feedback presentation increases the accuracy of participants” reports
compared with reports without feedback (t(15) = 2.60, corrected p-
value < 0.05). Conversely, we observed that accuracy decreases follow-
ing a deceptive feedback compared to a condition without feedback
(t(29) = 1.96, corrected p-value = 0.069; see Figure 7D and Section B.1).
Together, these results reveal that both internal decision evidence and
external cues influence participants” introspective reports.
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Figure 7: (A-C) Impact of Internal Evidence (IE) on the accuracy of intro-
spective reports. For each participant, we computed the distribu-
tion of internal evidence across trials in terms of percentile. Verti-
cal bars represent bootstrapped confidence intervals across partic-
ipants (1000 iterations). (B-D) Impact of the feedback cue on the
accuracy of introspective reports.

3.3.2  Metacognitive failures:

We then studied whether external cueing impacts not only reports,
but also decision confidence. Confidence is known to track perfor-
mance for decisions conducted under perceptual uncertainty (Yeung
and Summerfield, 2012; Pouget, Drugowitsch, and Kepecs, 2016). There-
fore, we aimed at investigating the relationship between introspection
and confidence, and in particular whether the misleading influence of
the deceptive feedback would also impact the confidence associated
with introspective reports. We thus modeled introsepction accuracy
using confidence and the type of the feedback as fixed effect and par-
ticipants as random effect.

We found that when participants are presented with a deceptive
feedback cue, the classical relationship between confidence and ac-
curacy is overturned. We observed a significant interaction between
the nature of the feedback and the confidence attributed to deci-
sion reports (GLME: OR= 3.46, Cl= [2.29-4.01], X? =274.4, p<0.001,
See Section B.3, Table 1) (Figure 8A). Indeed, when participants re-
ceived an informative feedback, we found a positive correlation be-
tween confidence and introspective accuracy (high confidence: M =
0.80, SEM = 0.02; low confidence: M = 0.58, SEM = 0.03, z(29)=5.2,
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d=1.53, p<o.0001 signed-rank test). However, strikingly, when partic-
ipants received a deceptive feedback, this correlation was inverted,
with confidence rising up as accuracy decreased (high confidence:
M=0.46, SEM=0.04; low confidence: M = 0.66, SEM = 0.03, z=-4,19,
d=-1.07, p<o0.0001 signed-rank test). Moreover, we found that partic-
ipants exhibit a lower confidence after detecting a deceptive feed-
back (M=1.39 SEM=0.04) than when the deceptive feedback went
undetected (M=1.58, SEM=0.04) (signhed rank test, z(29)=4.6, d=0.93,
p<0.0001, see Figure 21A). Therefore, participants show higher confi-
dence for asserted confabulation than for genuine introspection. To-
gether, these results reveal that a deceptive feedback can not only
delude participants about the choices they made (i.e., choice blind-
ness) but also falsify the feeling of confidence they associate with
their introspection (i.e., aberrant metacognitive failures).

3.3.3 Reliability of internal decision evidence:

How external cues can impact qualitative aspect of introspection such
as the confidence? To better understand the underlying mechanisms
of this overconfident confabulations, we investigated the conditions
that permit exeternal cues to dominate introspective reports. The hu-
man brain constantly integrates information coming from multiple
noisy sources. Several models propose that in multi-sensory percep-
tion, the respective participation of each source of evidence to the
final percept is regulated by their own strength and reliability (Ernst
and Banks, 2002; Knill and Pouget, 2004; Moore and Fletcher, 2012).
Here, we propose that a similar mechanism operates between internal
decision evidence and external cues in the production of introspec-
tive reports. Under this hypothesis, introspective processes should be
dominated by external cues if the internal decision evidence are in-
consistent (i.e., weak and noisy).

We built an index of internal consistency acounting for the strength
and reliability of internal decision evidence during each trial. To com-
pute internal consistency, we took for each trial the ratio of the in-
ternal decision evidence strength divided by its variance (see Meth-
ods). Then, to understand how internal decision consistency evolve
during confident confabulations, we modeled internal consistency us-
ing accuracy and confidence as fixed effect and participants as ran-
dom effect. To distinguish confabulations from correct introspections,
this analysis was restricted to deceptive trials (see Section B.1). We
predicted that confabulations associated with high confidence corre-
spond to decisions supported by low internal consistency. In such
cases, external cues should prevail in the formation of introspective
reports, both in the reported decision and in the associated confi-
dence.

Consistency of internal evidence was higher during correct internal
monitoring than for confabulations regardless of confidence (differ-
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Figure 8: (A) Effect of Feedback on the Accuracy-Confidence relationship.
Accuracy in y-axis is the percentage of correct trials and was com-
puter for trial associated with respectively a low and a high con-
fidence separately for deceptive (orange) and informative (green)
freedback. (B) Effect of internal decision evidence consistency on
confidence in confabulation and accurate introspective reports. In-
ternal Evidence consistency in y-axis was averaged across trials
grouped by confidence and accuracy. Only trials followed by de-
ceptive feedback are represented as this condition allows to disen-
tangle correct introspection from confabulation.

ence between correct and incorrect trial, signed rank test: Low confi-
dence: z=2.4, d=0.6 p<o.05, High confidence: z=5.2, d=1.4, corrected
p-value<o.001). Furhtermore, we observed a different relationship be-
tween confidence and internal consistency for confabulation and ac-
curate introspection (interaction between confidence and accuracy,
LME: Estimate=0,18, CI=[0,09 0,3], x2 = 8.2, p<0,01), see Figure 8B
and Section B.3, table 5. Indeed, consistency was inversely correlated
with confidence for confabulated reports (Low confidence: M = o.15,
SEM= o.07; High confidence M=-0.08, SEM= 0.05), signed rank test
7(29)=2.4, d=0.51, p<0,05. Conversely, consistency tended to increase
with confidence for accurate introspection, although this trend did
not reach significance (low confidence: M=0.35 SEM=0.05; high confi-
dence: M=0.43, SEM= 0.06; paired t-test t(29)=-1.32, d=-0.19, p=0,19).
These results reveal that confabulation occurs when internal decision
evidence are weak and noisy. Furthermore in such condition, external
cues influence not only the content but also the metacognitive aspects
of introspective reports on decision.

3.4 DISCUSSION

In the present study, we used a Brain-Computer Interface to covertly
track a correlate of internal evidence supporting decisions and study
how it affects introspective illusions. We found that participants” in-
trospective reports combine both internal decision evidence and ex-
ternal cues about their decisions. When presented with feedback cues
that opposed their original internal decision evidence, participants
tended to report it as reflecting their own decision. Furthermore, we
found that the noisier and weaker was the original internal decision
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evidence, the more they were confident about having made the choice
corresponding to the external cue. In other words, external cues dom-
inate introspective reports and decision confidence when internal ev-
idence supporting the original decision was inconsistent.

Combining multiple sources of noisy information has been pro-
posed to account for multisensory perception (Ernst and Banks, 2002;
Knill and Pouget, 2004) and for the sense of agency (Synofzik, Vos-
gerau, and Newen, 2008; Moore and Fletcher, 2012; Legaspi and Toy-
oizumi, 2019). The sense of agency appears to result from an integra-
tion of both internal motor signals (Blakemore, Wolpert, and Frith,
2002; Haggard, Clark, and Kalogeras, 2002; Haggard, 2017) and ex-
ternal information (e.g., action outcome) (Moore and Haggard, 2008;
Moore, Wegner, and Haggard, 2009). Moreover, this integration ap-
pears to follow Bayesian principles, whereby sources of information
are weighted by their respective reliability (Moore and Fletcher, 2012;
Legaspi and Toyoizumi, 2019). Here, we propose to extend this frame-
work to account for introspective illusions such as CB. In the context
of our study, both external cues and internal variables (here indexed
by a correlate of internal evidence supporting the decision) can be
considered as noisy sources of information with their own relative
contributions to introspection. Therefore, we propose that external
cues are combined with internal decision evidence in inverse pro-
portion to internal evidence availability and reliability when form-
ing introspective reports (for similar accounts in the perceptual do-
main, see (Ernst and Banks, 2002; Clark and Yuille, 2013; Farrell and
Lewandowsky, 2018). That is, when a choice was made on the basis of
weak or unreliable internal evidence, introspective reports are more
likely to be dominated by exogenous elements such as the decision’s
outcome feedback, thereby resulting in a CB episode.

To unravel which factors influence CB, previous studies relied on
behavioral measures and compared the detection rate of deceptive
trials across various types of stimuli. For instance, decisions involv-
ing familiar choices (e.g., known brands, political preferences, etc) are
rarely followed by CB episodes (Hall et al., 2010; Hall, Johansson, and
Strandberg, 2012; Sauerland et al., 2014; Somerville and McGowan,
2016; Rieznik et al., 2017; Strandberg et al., 2018). Our work offers an
interpretation of those findings by suggesting that familiarity with
the choices might increase the weight of internal decision evidence
during introspection. Consequently, the influence of internal decision
evidence on introspection will prevail over the influence of deceptive
cues, thus improving introspective accuracy.

Conversely, one might expect a similar effect if, instead of increas-
ing the consistency of internal decision evidence, it was the external
outcome consistency that was decreased. For instance, a recent study
(Reyes et al., 2018) manipulated the confidence that participants have
on the experimenter and showed that they undergo stronger CB ef-
fects when the experimenter appears in control of the experimental
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setup or if they have been primed about her professionalism. On the
other hand, when primed with an apparent lack of competence of the
experimenter or if the experimenter looks overwhelmed by a fake bug
on the experimental setup, the detection of deceptive trials largely in-
creases.

Other attempts to address the underlying mechanisms of CB phe-
nomena relied on linguistic analysis but failed to differentiate be-
tween reports following deceptive versus non-deceptive trials (Johans-
son et al., 2005; Johansson et al., 2006; Johansson, Hall, and Sikstrom,
2008). Together with previous studies (Nisbett and Wilson, 1977),
these results argue that introspective reports are based on partici-
pants’ belief about their decision rather than the mental states sup-
porting those decisions. Participants remain ignorant of those under-
lying mental states even in the absence of deceptive feedback (Pe-
titmengin et al., 2013). Our results corroborate those conclusions by
offering a mechanistic account for why no linguistic difference should
be observed between reports following deceptive and non-deceptive
feedback. Indeed in both types of trial, internal evidence supporting
the decision can be weak and noisy, leading subsequent justifications
to mostly reflect the feedback presentation rather than internal vari-
ables. Therefore, no difference should be expected in the justification
of informative and deceptive trials.

While the use of confidence judgment is widespread in psycholog-
ical studies, its relationship with confabulation is still unclear. While
some argue that introspective illusions are subjectively indistinguish-
able from alleged introspection (Carruthers 2009, 2010), other studies
show that illusions often come with a reduced confidence (Nisbett
and Wilson, 1977; Wheatley and Haidt, 2005; Hall, Johansson, and
Strandberg, 2012; Rieznik et al., 2017; Strandberg et al., 2018). Alto-
gether, our results nuance this debate by showing that the subjec-
tive distinction between illusory and alleged introspections depends
on the availability and reliability of internal variables. When internal
decision variables are weak and noisy, confabulation can’t be distin-
guished from accurate introspection, and both will be reported with
high confidence (Carruthers, 2009; Carruthers, 2010). If the consis-
tency of the internal decision evidence is high, participants directly
access their recent decision variables and easily detect external manip-
ulations. Finally, if the internal evidence supporting decisions shows
intermediate consistency, participants will eventually fail to notice ex-
ternal manipulation but their subjective experience will be affected
as they report a lower confidence compared to correct introspections
(Fiala, Nichols, and Carruthers, 2009) (see Figure 8B).

Although our task presents many similarities with the original
Choice Blindness paradigm, we must note that it also differs on sev-
eral aspects. We manipulate the feedback more often (random order-
ing assignment in 25% of the trials) and in a more explicit manner
(participants were informed of the potential deceptive nature of the
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outcome) compared with the original paradigm. Importantly, how-
ever, we still observed a large portion of CB episodes though reduced
compared to the original study (40% here versus 60% to 80% in origi-
nal study (Johansson et al., 2005) (see Figure 21B ).

In the present study, we propose participants could introspect some
of their internal information but are subject to introspective illusions
when those information are weak and noisy. Yet this interpretation
rely on the assumption that our BCI decode accurately the object
participants choose to focus on. Nonetheless, our BCI could some-
times misclassified participants decision, leading to the presentation
of the opposite feedback. The reliability of our decoder approximate
80% during externally driven choice (i.e. the model building). In line
with recent findings (Schurger, Sitt, and Dehaene, 2012; Murakami et
al., 2014; Wisniewski, Goschke, and Haynes, 2016; Brass, Furstenberg,
and Mele, 2019), we argue that performance of the decoder should
be similar for voluntary decision. Yet, our decoding method could be
sensitive to decision change in the last second of the decision phase.
We improve further the robustness of our decoding methods by av-
eraging several BCI outputs together to perform the decision classifi-
cation. Moreover to account for the potential late change of decision,
we first identified trials where those changes potentially occurred and
confirmed our results after having removed them (see Appendix B,
Materials).

3.4.1  Conclusion

In conclusion, we combined a choice blindness paradigm with a brain-
computer interface to demonstrate that introspective reports about re-
cent, private decisions result from the integration of internal evidence
and external cues. When internal variables supporting the original
choice are weak and noisy, participants accept external outcomes as
their original intention even when the two are in contradiction. More-
over, our study reveals that not only the object of a decision but also
the metacognitive aspects of this decision are subject to reconstruc-
tion. When internal decision evidence is weak or unreliable, partici-
pants show high confidence for their confabulations. Our study shed
new lights on the mechanisms underlying introspective illusions, un-
raveling a continuum in the awareness people have about their deci-
sions. Indeed, their introspective experience ranges from relying on
internal information to being purely driven by external factors as a
function of the availability and reliability of the evidence supporting
their original decision.
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3.5 METHODS
3.5.1 Participants

Thirty healthy participants with normal or corrected-to-normal vision
took part in the experiment (14 males; all right-handed; mean age:
25.1 years, SEM = 3.4). Two additional participants were tested but
were not included in the analysis because of EEG artifacts (N=1) or
technical failures (N=1) altering the online experiment. All partici-
pants signed a written consent and received financial compensation
in exchange for their participation. This experimental protocol was
approved by the local ethical committee (Conseil d’évaluation éthique
pour les recherches en santé, Paris, France).

Participants performed 480 trials in the main experiment. All trials
contained a decision and feedback phase. The feedback was informa-
tive in 75% of the trials, but deceptive in the remaining 25%. Intro-
spective reports were required on all deceptive trials, but only on a
third of the informative trials, in order to balance them across cue
validity. This led to the analysis of 120 deceptive trials and 120 infor-
mative trials per participant. In addition, 16 out of the 30 participants
underwent a session with a control condition consisting of an extra
160 control trials where no feedback was presented, here again with
half the trials including introspective reports. To account for potential
order effect, the control session was presented after 1 third, 2 third or
at the end of the main experiment.

3.5.2 Visual stimulation.

Visual stimuli consisted of the superposition of two half transparent
animated images, a face and a spiral, at the center of the screen
(iyama ProLite E2483HS-B3). The spiral rotated around its center
while the face alternatively opened and closed its mouth. Such super-
position of half transparent animated streams has been shown to re-
duce the stability of the percept containing the two streams and thus
facilitates the voluntary switch from one item to the other (Neisser
and Becklen, 1975; Clark, 2017; Ransom, Fazelpour, and Mole, 2017).
In addition, the two animated streams had to evoke distinguishable
brain responses in order for our BCI to decode the attentional focus
of the participant. We therefore continuously modulated the spatial
phase scrambling of each item, eliciting “sweep” steady state visually
evoked potential (ssVEP) responses (Ales et al., 2012; Norcia et al.,
2015) at the frequency of 1.875 Hz for both streams but in temporal
phase opposition.

To build our animated stimuli, we used 12 images of a face reg-
ularly spanning an animation of mouth opening and 8 images of
a homemade spiral at different steps of a rotation animation. We
cropped each image with a gaussian filter to obtain smooth edges.
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We then inserted each image in a noisy background with the same
Fourier amplitude. As a result, the items of both categories appear
to emerge from the noise as phase scrambling decreases (Ales et al.,
2012). Then, for each step of animation and each item we selected the
correct amount of phase scrambling to produce the desired sweep
ssVEP. Spatial phase scrambling was computed by a phase interpo-
lation method (Ales et al., 2012). Finally, we superimposed pairs of
images to create a complete dynamic stimulus of two superimposed
animated images, producing oscillatory signals at the same frequency
but in phase opposition.

In half of the trials, participants were asked to report the object of
their decision (i.e., object they had decided to preferentially attend)
and how confident they were about this decision. Both the object of
decision and their confidence in that decision were reported at the
same time on a 4 levels scale. Eight circles were thus displayed on a
horizontal line (i.e., 4 circles for each object). A reference central dot
was displayed between the two most central circles to ensure forced-
choice decisions. Participants reported their decision by choosing to
move the dot either to the left or to the right (counterbalanced across
trials), and their confidence was rated by choosing a circle that was
close (very unconfident) or far (very confident) from the reference
central dot (see Figure 6A).

3.5.3 EEG recording.

We recorded scalp EEG using a 64-channel Biosemi ActiveTwo system
(Biosemi, Amsterdam, Netherlands). EEG analog signal was digitized
at a 2048 Hz sampling rate. During recording, electrode offset was
reduced to between +50 uV for each individual electrode by softly
abrading the underlying scalp with a blunt plastic needle and insulat-
ing the electrode tip with saline gel (Sigma Gel, Parker Laboratories,
USA).

3.5.4 Brain Computer Interface.

Overview.

Our setup comprises one decoding computer and one stimulation
computer. The stimulation computer continuously displays the vi-
sual stimulation (overlapping face and spiral) placed at the center
of the screen oscillating in phase opposition. During the real-time ex-
periment (training, experimental and control phases), the decoding
computer continuously receives EEG data and loads them in a buffer
for on-line analysis (Oostenveld et al., 2011). Data are also saved for
later offline analysis. During on-line analysis, the decoding computer
outputs correlation scores for both items presented on the stimula-
tion screen to the stimulation computer. At the end of each trial, the
stimulation computer decides based on the correlation scores which
stimulus has been preferentially attended during the decision phase

50



3.5 METHODS

(See Figure 6B).

Decoding procedure.

The decoding model was inspired by backward models of stimulus
reconstruction used in recent psychoacoustics studies (O’Sullivan et
al., 2015). The decoding computer continuously receives EEG data
at a rate of 2048 Hz. Before further processing the recorded data is
down-sampled to 256 Hz. The EEG data is next filtered between 1 and
30 Hz with a one-pass Butterworth filter of order 6 and re-referenced
to the average signal. Then from a 3 seconds segment R of EEG data,
we try to infer a unidimensional signal Y called the reconstructed
signal, that represents the visual stimulus most probably attended
by the subject during this segment. Along the reconstructed signal
we also compute a representation of the 2 concurrent visual stimuli
(the oscillation of the face and the oscillations of the spiral) called
Yr and Ys (Andersen and Miiller, 2010). The reconstructed signal Y
and the abstract representations Yr and Ys of the visual stimuli are
vectors with one value per time sample (256 samples/s in our case).
The correlations scores cr and cs are obtained by correlating Y and
Yr on one hand and Y and Ys on the other hand.

cs = corr(Y,Ys) (1)

cg = corr(Y, Yg) (2)

The stimulation computer thus receives one pair of correlation score
(cr,cs) every 250ms. Correlation scores were saved for offline analysis
on one hand and used to infer the preferentially attended item of the
current trial on the other hand. At the end of the trial, we averaged
the correlation scores over the last 1.5s of the decision phase (6 cor-
relations scores) for the face and spiral, respectively. The item having
the higher averaged scores is designated as preferentially attended by
the participants for this trial.

Then the stimulation computer displays the appropriate feedback
given the attended item (guessed by the model described beforehand)
and the nature of the trial. This feedback corresponds to the decoded
decision during the whole training phase and for informative trials
of the experimental phase. For deceptive trials of the experimental
phase, the opposite item was displayed as feedback.

The reconstructed signal is obtained by applying a linear operation

to the EEG data matrix R of dimensions time by channels. The model
comprises a series of so-called lags Ty that account for how the stim-
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ulus experienced at time t influences the EEG data at time t + Ty .
More precisely, we have:

V(1) = Y werR(t+1ic,¢) (3)
c,k

where c stands for channel and k for an index of our list of lags
and wck are the coefficients that define the backward model.

The model was trained from EEG data collected during the model
building phase. Each trial was labelled with the item (face or spiral)
the participants were asked to attend to during this trial. The EEG
data was preprocessed prior to the training of the model by apply-
ing a common average reference (mean EEG is subtracted from all
channels) and filtering between 1 and 30 Hz with the same one pass
Butterworth filter of order 6 that we use for online decoding proce-
dure.

We find the coefficients wck of the backward model by solving the
regression problem:

Y = wX (4)

where the regressor variable Y contains EEG data from all trials and
channels and Y contains the representation of the attended stimulus
at each trial (see details in O’Sullivan et al., 2015). To evaluate the ac-
curacy of this model, we performed a cross-validation on the dataset
comprising all trials from the model building phase.

3.5.5 Experimental procedure.

The experimental protocol was divided in 3 phases: participants first
underwent the model building and the training phase before perform-
ing the main phase. The main phase consists of 3 identical blocks to
which we add a 4th control block for 16 participants.

Model building phase.

For our BCI to decode in real time the preferentially attended item,
we first gathered labelled data to train the participant’s individual
model. At the beginning of each of the 30 trials of this phase, a target
was designated by a letter (F for face, S for spiral) overlapping a fix-
ation cross at the center of the screen for 1 second. Participants were
asked to preferentially attend the designated items during the whole
5 seconds of the trial.

Training phase.

Participants were then offered to familiarize with the BCI setup for
30 training trials. As in the previous phase, a target was designated
at the beginning of each trial. In addition, as soon as participants
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continuously attended the same item for 2 seconds, they received
feedback for 500 ms consisting of the attended item surrounded by a
black square.

Main Phase.

Participants then performed 480 trials presented in 3 successive blocks
of 160 trials of 5 seconds. Visual stimulation was continuously dis-
played on the screen across trials and disappeared only every 8 tri-
als. No target was designated and participants were encouraged to
choose their object of attention (i.e., face or spiral) and to change at
will across trials. As for the training phase, feedback was provided
for 5ooms at the end of each trial about the object participants prefer-
entially attended. Crucially, feedback was only informative (reflecting
the allegedly attended item) in 75% of the trials (Informative trials). In
the remaining 25% of the trials, the other item was displayed instead
(Deceptive trials). During one third of the informative trials and dur-
ing all deceptive trials, participants were asked to report the object
they decided to attend, and to perform a confidence judgment about
this decision (very unconfident, unconfident, confident, very confi-
dent). This distribution of report requests provides an equal amount
of report following informative and deceptive trials to analyse. Fur-
thermore, it ensures that receiving a report request does not inform
participants on whether the feedback was informative or deceptive.

Control Phase.

Sixteen participants performed 1 block of 160 trials for the control
phase. This phase is the same as in the Main phase except that no
feedback was provided at the end of the trials. The control block and
the 3 blocks of the main phase were presented in random order coun-
terbalanced across participants.

3.5.6 Data Processing.

Internal decision evidence (IE). For each trial, we compute a corre-
late of participants’ internal evidence supporting their recent deci-
sion. During the decision phase, our BCI continuously outputs corre-
lation scores associated with each object (Figure 1B). These correlation
scores reflect how close are the brain signals from being generated by
the observation of the face or the spiral respectively. Then, our proxy
for internal (decision) evidence (IE) consists in the absolute value of
the accumulated difference between the correlation scores associated
with each object over the last 3 seconds of the decision phase, and pro-
vides an objective measure of how strongly participants preferentially
attended one object over the other one.

Accuracy of introspective reports.

We determined for every trial the preferentially attended item the
same way we did it online (See Decoding procedure in Brain com-
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puter Interface section of the Methods). We operationalized introspec-
tive accuracy as being correct when the reported object matches the
object decoded by the BCI (e.g., for instance face reported, face de-
coded), and incorrect otherwise (e.g., face reported, spiral decoded).

Confidence in introspective report.

At the end of the trials, participants reported the confidence they have
in their decision along with the decision itself on a 2x4 points scale.
Confidence reports were median-split, reports of confidence 1 and 2
were labelled as “Low confidence” trials and reports of 3 and 4 were
labelled as “High confidence”. For modelling purposes, confidence
was coded as a 2-level factor.

Consistency of internal decision evidence.

We computed an index approximating for each trial the ratio of the
internal decision evidence strength over its variance. Our consistency
index is thus described by the formula:

InternalEvidence
Var(lcg —csl)

(5)

Consistency =

where Internal Evidence is described in the previous paragraph
and Var(|cr — cs|) represents the bootstrapped variance of the corre-
lation difference over the period of accumulation (3 second before the
feedback apparition).

3.5.7 Statistical Analysis.

Summary statistics were calculated in Matlab (Matlab 2018b, The
MathWorks, Inc.). All other statistical tests were calculated in R (Team,
2012). Before applying pairwise comparison, the Shapiro-Wilk method
was used to test for the normality of the data. If the normality hypoth-
esis was not rejected, we applied a two-sided paired Student’s t-test
to our data. Data containing too many empty values or not meeting
normality assumptions were analyzed with Wilcoxon rank test. Holm-
Bonferroni corrections for multiple comparisons were calculated with
R. Cohen d was calculated using the R effsize library (Torchiano, 2016)
for approximating effect size.

Both linear mixed effect models and generalized linear mixed ef-
fect models were fitted using Imer4 packages (Bates et al., 2007). To
operate model reduction we removed non or least significant terms
and compared Akaike information criterion (AIC) of more complex
and simplified models. Moreover, we operated a Chi-square test to
decide whether the more complex model was significantly better at
explaining our data. The reported p-values of each fixed effect of lin-
ear mixed-effects models and generalized linear mixed-effects models
were obtained with this Chi-square test comparing one model with
all the possible simplification obtained by removing a single effect.
For each model, we detailed the model reduction procedure (see Sec-
tion B.3).
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PARTIAL AWARENESS DURING VOLUNTARY
ENDOGENOUS DECISION

4.1 SYNOPSIS

People generally feel in control of their free decisions even when they
involve equivalent alternatives. Recent studies unraveled a prospec-
tive access to neural precursors of intention to act, allowing people
to veto their impending decisions. Yet, whether people can also ac-
cess the content of their ongoing decision remains a debated question.
Here we address this question by tracking through a stimulus recon-
struction approach the neural signals predicting participants” future
free decisions. Participants were asked to either use or avoid to use
the content of their early deliberation when making a decision. We
showed that participants were unaware of their impending decision
as they could they could not depart from them when explicitly asked.
Nevertheless, participants report to be conscious of their decision con-
tent. We showed that those reports instead correlate with detection
of a neural marker of self-initiated decision. Finally we showed that
attention allocation during decision execution could retrospectively
promote early deliberation content awareness. By suggesting that peo-
ple are only partially aware of their impending decision, our study
provides novel insight on the metacognitive process supervising free
choices.

4.2 INTRODUCTION

Facing two equivalent piles of hay, the story says that Buridan’s don-
key starved to death, unable to choose one. Even facing with a similar
situation, people are able to deliberately pick one among equivalent
alternatives and generally feel in control of their decisions (Ullmann-
Margalit and Morgenbesser, 1977; Haggard, 2017). In the past decades,
the cognitive and neural basis of free decisions have brought a lot of
interest (Libet et al., 1983; Haggard, 2008). These decisions can be de-
scribed along three main axis: their content (“what” dimension), their
timing (“when” dimension) and their triggering (“whether” dimen-
sion) (Brass and Haggard, 2008). From here, a decision is said “free”
if at least one of those dimensions is set by the decision maker in-
dependently of the environment. Free decisions have been associated
with specific fronto-parietal neural circuitry whose activity predicts
forthcoming motor choices and abstract intention (Passingham, 1987;
Soon et al., 2008; Soon et al., 2013; Passingham, Bengtsson, and Lau,
2010; Bode et al., 2011). Furthermore, these decisions share common
principles with decisions based on exogenous factors (Wisniewski,
Goschke, and Haynes, 2016). Indeed, environment based choices have
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been shown to stem from the accumulation of external sensory evi-
dence (Shadlen and Newsome, 2001; Soon et al., 2008; Bode et al.,
2011). Similarly, voluntary internal decisions are thought to result
from the accumulation of the random fluctuation of the neural sig-
nals (Deco and Romo, 2008; Schurger, Sitt, and Dehaene, 2012; Maoz
et al., 2013; Murakami et al., 2014; Furstenberg et al., 2015).

Yet, those mechanistic accounts do not shed any light on the aware-
ness and control people have towards their impending decision (Block,
1995). One one hand, people can cancel an upcoming action up to
200ms before the movement onset (Schultze-Kraft et al., 2016). This
veto faculty reveals early conscious access to the “whether” dimen-
sion of free decision. At the neural level, this conscious access has
been associated to the monitoring of the random fluctuation of neu-
ral signal (Parés-Pujolras et al., 2019; Schultze-Kraft et al., 2020). On
the other hand, awareness of an upcoming decision content seems to
lag behind the appearance of its neural precursors (Soon et al., 2008;
Soon et al., 2013; Bode et al., 2011). Free decision could therefore be
triggered unconsciously. In line with this perspective, free decisions
have long been considered as a mere retrospective illusion (Libet et
al., 1983; Wegner, 2002; Wegner, 2003).

Thus, whether participants can prospectively access and control the
content of their decision is still debated. One possibility is that peo-
ple could be aware of the content of their ongoing decisions. Indeed,
participants can change their decision, even when the presented al-
ternatives are equivalent (Ullmann-Margalit and Morgenbesser, 1977;
Furstenberg et al., 2015). Yet, since choice alternatives are compara-
ble, option selection could mostly rely on automatic processes (Block,
1995; Kool, Shenhav, and Botvinick, 2017). Thus, participants might
remain unaware of the option they are about to pick until retrospec-
tively inferring it (Wegner, 2002; Wegner, 2003; Brass and Haggard,
2007; Shepherd, 2015). To sum up, it remains unclear whether people
can be prospectively aware of the deliberation supporting their up-
coming decisions.

One way to address this issue, is to confront the information en-
coded in participants” decision neural precursors with participants’
impending decision awareness. We suggest that participants are mostly
unconscious of the content of their forthcoming decision. Nonethe-
less, participant could be aware that a decision is impeding by moni-
toring the variability of their neural decision precursors (Parés-Pujolras
et al., 2019). Furthermore, as previously observed in partial aware-
ness situations, attention allocation may retrospectively promotes con-
scious awareness of latent representation of decision content (Sper-
ling, 1960; Block, 2007; Kouider et al., 2010; Sergent et al., 2013).

Here, we relied on a brain-computer interface (BCI) setup to track

participants” decision neural precursor before they take a decision. To
probe participants” awareness of their impending decision, we adapt a
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process dissociation procedure (Jacoby, 1991). Participants had to wait
for a cue to appear (pre-cue period) before freely choosing to prefer-
entially attend one out of two overlapping stimuli (post-cue period).
In the mean time, their EEG was recorded and a marker of selective
attention was continuously measured. After the post-cue period, par-
ticipants were presented with a feedback showing the results of their
decision. Crucially, if participants become aware of choosing an item
before the cue appearance, they should adapt their post-cue decision
as follows: In half of the trials, participants must stick with their early
choice (inclusive trials, green in Figure g). On the remaining half of
the trials, participants were asked to select the other option (exclu-
sive trials, red in Figure 9). Surely, participants can perform inclusion
by being merely driven by their unconscious pre-cue deliberation to-
ward one of the two options. However such facilitation effects would
impair them while performing an exclusion, which requires a con-
scious access to the content of the early decision. Although we are not
measuring directly the decision neural precursor, we track their direct
consequences under the form of participants’ selective attention bias
toward one of the alternative items. Importantly, our BCI also pro-
vides an instrument to act on the environment without any motoric
contribution. Indeed, the decision neural precursors we measure are
not intermingled with motor preparation signals that could inform
participants about their forthcoming decision (Blakemore, Wolpert,
and Frith, 2002; Brass, Furstenberg, and Mele, 2019).

4.3 RESULTS

Can people access the content of their forthcoming decisions? To ad-
dress this question, we first sought to establish whether the measure
provided by our BCI could predict the content of participants” future
decision. To do so, we computed a measure of participants” internal
bias (IB) toward one item before the cue. Based on a stimulus re-
construction approach (O’Sullivan et al. 2015), our BCI continuously
outputs correlation scores associated with each object. These corre-
lations scores estimate how close are the brain signals from being
generated by preferentially attending the face or the spiral respec-
tively. Then, IB consists in the accumulated difference between the
correlation scores associated with each object over the last 2 seconds
of the pre-cue period. Thus, IB reflects how strongly the two options
were discriminated by the neural precursors of decision (See Meth-
ods). Furthermore, we operationalized accuracy for an inclusive trial
as being correct if the item decoded as attended in the pre-cue and
post-cue period match and incorrect otherwise. On the contrary, ex-
clusive trials were labeled as correct if the pre-cue and post-cue at-
tended items differ and incorrect otherwise.
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Figure 9: Each trial comprised four phases. 1) Pre-cue period: participants
were presented with overlapping face and spiral oscillating at
1.875Hz in temporal phase opposition and asked to wait 4 to 6 s
for a cue to appear. 2) Cue: participants were then presented with
a colored cue as the visual stimulation disappeared for 500ms and
were asked to randomly pick one or the other category by prefer-
entially attending to it. Importantly, if they noticed a premature
decision during the pre-cue period, they were asked to keep the
item early chosen if the cue was inclusive (green) or the other if the
cue was exclusive (red). 3) Post-cue period: participants were then
requested to maintain their attention on the chosen category for
4 to 6 second. 4) a) Feedback phase: participants were presented
with feedback for 1 s corresponding to the category they preferen-
tially attend during the post-cue period (experiment 1). b) Report
phase: participants were asked to report how they choose between
the two categories, either randomly or by adapting their choice to
the content of their premature decision occurring in the pre-cue
period (experiment 2).

Could IB predict post-cue decision? As shown in Figure 10a, IB
influences post-cue decision as accuracy increases with IB in inclu-
sion trials (General Linear Mixed Effect Model (GLME): Odd Ratio
(OR):1.27, 95% Confidence Interval (CI): [1.08-1.48], x*=8.7, p<o.01).
To understand whether the impact of IB results from a conscious pro-
cessing of early decision content or reflects a mere unconscious fa-
cilitation effect, we tested the influence of IB on decision following
exclusive cue. Indeed, conscious processing of early decision content
would allow participants to correctly revert their impending decision.
Conversely, if IB solely act as an unconscious facilitators for future de-
cision, the accuracy would decrease as IB increases. Our results show
that despite the presentation of an exclusive cue, participants keep
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choosing preferentially the item corresponding to their pre-cue de-
liberations. Thus, we found an inversion of the relationship between
accuracy and IB as underline by the interaction between IB and the
nature of the cue (GLME, OR: 0.67, CL:[0.54-0.84],x*=12.3 , p<0.001).
Indeed, the correlation was negative between accuracy and IB in ex-
clusive trials (GLME, OR: 0.84, CI:[0.71-0.99],x*=4.5 , p<0.05). This
reveals that although decision derives from early deliberation pro-
cesses, the latter remain largely unconscious.
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Figure 10: Impact of internal bias on participants” decision awareness.

a-b) Impact of decision neural precursors (IB) on participants” ac-
curacy in inclusive (green) and exclusive (red) trials of experi-
ment 1 (a) or 2 (b). c-d) Impact of decision IB on participants” ac-
curacy in experiment 2 for random (yellow) or determined (blue)
choice reports in inclusive (c) or exclusive trials (d). For each par-
ticipant, we computed the distribution of internal evidence across
all trials in terms of percentile. Vertical bars represent standard er-
ror to the mean across participants. Stars correspond to intervals
of percentile where accuracy significantly departs from chance
level tested with paired t-test corrected for multiple comparison
by sample permutation (50000 permutations).

In the present paradigm, participants have to adapt their decision
depending on whether they noticed early decision process taking
place before the cue. Yet, since instructions encouraged participants
to wait for the cue before taking their decision, they may have no-
ticed early deliberation process on rare occasion, thereby impairing
their decision control faculties. To rule out this possibility, we repeat
our first experiment (seeFigure 9) with a probe at the end of each
trial. Participants were asked to report whether they pick an item
randomly (random choice) or in compliance with our inclusion/ex-
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clusion instruction (determined choice). Each possibility came with
two level of confidence.

As in experiment 1, pre-cue IB impacts participants” decision al-
though its effect remains largely unconscious (Figure 10b). Indeed, ac-
curacy increases with IB during inclusive trials (OR=1.28, CI=[1.14,1.45],X2=16.9,
p<0.001) but this correlation was largely overturned in exclusive tri-
als as reflected by the interaction between IB and the nature of the
cue (OR=0.69, CI=[0.59-0.82],x*=19.3 , p<0.001). Indeed, the correla-
tion between IB and accuracy was negative following exclusive cue
(OR=0.89, CI=[0.79-1.00],x%=4.2 , p=<0.05). However intriguingly, par-
ticipants reported an equivalent amount of random (M=125.7, SEM=18.3)
and determined choices (M=126.3, SEM=23.7) in total (paired t-test
t=-0.02, p=1, Cohen’s d =-0.01) and for inclusive and exclusive tri-
als separately (see Appendix C). Those results show that the general
poor performances in exclusive trials are not attributable to partici-
pants being rarely aware of their early deliberations.

We thus sought to determine whether subjective reports actually
capture participants” early deliberation awareness. In both inclusive
and exclusive trials, reporting a determined choice increases accuracy
(inclusive trials Figure 10c OR=1.16, CI:[0.97—1.38],X2:2.6 , P=0.1; ex-
clusive trials Figure 10d OR=1.2, CI=[1.02-1.42],x*=5.0 , p<0.05). How-
ever, the performance of participants remains below than, or equal to
chance level in the exclusive case (random choice: OR= 0.77, Cl=[0.65-
0.90],x*=10.1, p<o.05; determined choice: OR=1.0, CI=[0.86-1.17],x%=0.0
, P=1). On the contrary, performances exceeds chance level in the in-
clusive case (random choice: OR=1.17, CI=[1.00-1.37],x%>=3.9 , p<0.05;
determined choice: OR=1.45, CI=[1.2-1.76],x*=15.4 , p<0.001). Together,
those results show that, even when reporting determined choices, par-
ticipants were not reliably accessing the content of their early deci-
sions.

Nonetheless, should they remain completely blind to their early
deliberations, no difference between random and determined reports
would have been found. One hypothesis is that participants ‘s re-
ports reflect a partial access, restricted to certain aspects of their in-
ternal variables. More specifically, as participants are known to have
prospective access to their intention to act (Schultze-Kraft et al., 2016;
Parés-Pujolras et al., 2019; Schultze-Kraft et al., 2020), we suggest that
they can be aware of whether a decision is impending but not of its
content.

Active noise reduction has recently been identified as a key neu-
ral signature of self-initiated action preparation (Khalighinejad et al.,
2018; Khalighinejad et al., 2019). More specifically, noise reduction
would be specifically associated with decision process, independently
from their motor execution (Khalighinejad et al., 2019). Therefore, we
sought to determine whether participant’s reports could reflect the
variability of their neural signals in the pre-cue period rather than
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4.3 RESULTS

IB. Since participants’ decision are mediated by our BCI, we analyzed
the variability of the neural signal driving our BCI. We thus com-
puted the standard deviation of this signal over the pre-cue period of
the trial (see Section 4.5).

To determine whether participant’s reports reflect detection of an
early decision rather than its content, we modeled introspective re-
ports using pre-cue neural variability and IB. We found an absence
of effect of IB on introspective reports (Cumulative Link Mixed Mod-
els (CLMM), OR=0.98, Cl=[0.91-1.05],x*=0.3 , p=0.59). Crucially, as
the variability of neuronal signals decreases, participants were more
likely to report a determined choice (see Figure 11a, CLMM, OR=0.87,
ClI=[0.78-0.96],x*=7.9 , p<0.01). Indeed, pre-cue variance was higher
for random (M=-0.03, SEM=0.02) than for determined choice reports
(M=-0.12, SEM=0.02), pairwise comparison z=-2.3, d=1.2, p<0.05 see
Figure 11b. Thus, participants” awareness reports reflect the variabil-
ity of the neural signals supporting early deliberation processes. To-
gether, our results demonstrate that despite pretending so, partici-
pant are not aware of the content of their early deliberation. Instead,
their awareness reports reflect an inflated interpretation of neural
noise reduction.
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Figure 11: Impact of neural random fluctuations on participants” decision
awareness.
a)lmpact of the variability of the reconstructed signals on the
participants” subjective reports. Reports are given on a 4 points
scale where higher scores correspond to determined choice while
smaller scores correspond to random choice. Scale was normal-
ized for each participant by referencing each report to the mean.
For each participant, we computed the distribution of variability
of the pre-cue reconstructed signal across trials in terms of per-
centile. Vertical bars represent standard error to the mean across
participants. b)Level of variability in the pre-cue reconstructed
signal for determined and random choice. Star corresponds to
pairwise wilcoxon rank test.

In other terms, participants could only access some but not all rep-
resentational levels of their internal decision processes. Similar sit-
uation has been previously documented for external stimulus pro-
cessing (Kouider and Dupoux, 2004; Kouider et al., 2010), where par-
ticipants might only reach a partial awareness of their environment
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while reporting a richer experience. Importantly, conscious access of
the environment in such partial awareness situations can be selec-
tively recovered by retrospective cues (Sperling, 1960; De Gardelle,
Sackur, and Kouider, 2009) and attention allocation (Sergent et al.,
2013). In line with these studies, we suggest that participants might
recover an access to the content of their early decision processes
through retrospective allocation of attention during the post-cue pe-
riod.

Thus, we investigated whether attention allocation can retrospec-
tively promote participants” access to the content of their early delib-
erations, allowing them to accurately control their subsequent deci-
sions. We computed an index for attention allocation strength (AAS)
during the post-cue decision following the same procedure as for IB
repeated over the post-cue period. AAS provides a measure of how
strongly participants preferentially attended one object over the other
one. We model participants’ accuracy on exclusive trials in which
they reported a determined choice using both IB and AAS. Results
show that the impact of decision IB on accuracy is modulated by
AAS (see Figure 12b) (GLMER, OR= 1.66, CI= [1.13, 2.45],)(2:6.7 ,
p<o.01). Indeed, when AAS is low, accuracy decreases when IB in-
creases (slope (s)= -0.54, 95% Confidence Interval (CI)= [-1.02, -0.06]).
However, when AAS is high, accuracy becomes positively correlated
with decision IB (s=0.52, CI=[0.04-1.1]) (wilcoxon pairwise test: z=-
2.6, p<0.05). These results show that high post-cue attention alloca-
tion promotes retrospective access to early deliberation content and
allows for the control of the upcoming decision.

Together, our results disclose a discrepancy between the informa-
tion found in participants’ neural signals on one hand and partici-
pants” decision awareness on the other. We show that both “what”
and “whether” dimension of early decisions were encoded in neural
signals preceding decision. Yet, only the fact that a decision is impend-
ing was prospectively available to participants” awareness. Strikingly
however, the early decision content could be retrospectively access
depending on attention allocation.
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Figure 12: Retrospective attention allocation promote decision awareness.
Figures show the impact of decision neural precursor (IB) on ac-
curacy for different levels of post-cue attentional strength (AAs)
in exclusive trials. Trials were sorted following subjective report
with random choice report (a) and determined choice report
(b) respectively. For each participant, we computed the distribu-
tion of IB and AAS across all trials in terms of percentile. Low,
medium and high levels of post-cue internal evidence correspond
to the following percentile intervals: 0-2, 20-80 and 8o-100 respec-
tively. Vertical bars represent standard error to the mean across
participants.

4.4 DISCUSSION

In the present study, we investigated whether and how participants
were conscious of their impending decisions. We compared the in-
formation contained in participants” decision neural precursors with
participants’ control faculties towards their forthcoming choices. We
first identify neural signals predicting future decision content. Re-
markably, we found that participants had no access to the content of
their upcoming decision since they were unable to revert their choices
when asked to do so. Intriguingly though, participants often report
to have based their decision on their early deliberations content. Yet,
reports mostly reflect an inflated interpretation of neural noise re-
duction rather than an access to the decision content. Nevertheless
the content of early deliberation could be retrospectively accessed via
retrospective attention allocation. Together, these results show that
participants are only partially aware of their ongoing decision.

Our first result is that participants are not able to adapt their deci-
sion regarding their preceding internal deliberations. This result ex-
tends previous accounts that participants” awareness of their decision
to act is largely a retrospective illusion and may not be prospectively
accessed and used for subsequent control process (Wegner, 2002; Weg-
ner, 2003; Lau, Rogers, and Passingham, 2007). Yet on the other hand,
recent studies emphasized participants’ faculty to prospectively ac-
cess neural precursors of their intention to move, and thereby veto
upcoming actions (Schultze-Kraft et al., 2016; Parés-Pujolras et al.,
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2019). Together, these results show that the different aspects of an on-
going free decision are not evenly accessible by participants as the
decision unfolds. Indeed, if participants can control whether an ac-
tion will be triggered, they can’t, at least in absence of motor cue,
exert a control on what their decision will turn out to be.

Remarkably, participants report to consciously access the content
of their early decision despite being unable to properly use it (Block,
1995; Block, 2007). Here, we show these reports correspond to de-
liberation episode supported by reduced neuronal noise (Brass and
Haggard, 2007; Schultze-Kraft et al., 2016; Brass, Furstenberg, and
Mele, 2019). This result corroborates recent findings positing that
prospective access to an intention to act could be related to conscious
monitoring of neural random fluctuations (Parés-Pujolras et al., 2019).
Furthermore, neural noise reduction is thought to be a key precur-
sor of voluntary self-initiated decision (Schurger, Sitt, and Dehaene,
2012; Murakami et al., 2014; Khalighinejad et al., 2018; Brass, Fursten-
berg, and Mele, 2019). Thereby, similar to motor intention, partici-
pants might be aware of whether an early deliberation takes place
but remain blind to its content (Schultze-Kraft et al., 2016; Schultze-
Kraft et al., 2020; Parés-Pujolras et al., 2019).

Similar illusory feelings of rich conscious experience is known to
happen following the presentation of a degraded perceptual stimu-
lus (O'Regan and Noé, 2001; Sergent and Dehaene, 2004; Block, 2007;
Kouider et al., 2010). When briefly presented with a grid of letters,
participants reported seeing almost all letters but were only able to
report a few (Sperling, 1960; Block, 2007). Such an illusion is thought
to reflect a dissociated access between the different representational
levels of a perceptual stimuli (Kouider et al., 2010). Here we suggest
that this framework could be extended to the awareness of early delib-
eration processes. Indeed, while participants report a rich experience
of their early decision making process, their consciousness is actually
limited to the sole knowledge of whether a decision is impending.

Furthermore, retrospective allocation of attention is thought to trig-
ger conscious perception of certain representational levels of external
stimulus that would have remained subliminal otherwise (Kouider et
al., 2010; Sergent et al., 2013). For the example, retrospective cues can
recover reports faculties for a subset of the letter grid evoked above
(Sperling, 1960). Similarly participants were able to control the up-
coming decision solely when the decision execution was supported
by strong attention allocation. According to this finding, we argue
that retrospective attention allocation can trigger conscious awareness
of certain representational levels (namely the content) of internal de-
liberation that would have remained unconscious otherwise.

In the present study, we argue that people are generally unaware

of the internal deliberation preceding their decisions. Yet, another in-
terpretation of our results could be that people are mostly aware of
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the content of their deliberation but fail to select the desired item in
the post cue period. Under this view, AAS would rather reflect the
success to interact with the BCI than the strength of attention alloca-
tion. To account for this alternative hypothesis, we analyzes the effect
of AAS on participants” accuracy (see Appendix C) and conclude that
correct trials are not attributable to a mere improvement in the use of
the BCI setup.

In conclusion, we combine an inclusion-exclusion task with an on-
line decoding approach to demonstrate that participants are only par-
tially aware of their forthcoming decisions. Indeed contrary to their
claims, people were only aware of whether a decision was building
but not of its content. Our study shed new lights on the mechanism
underlying the formation of awareness during the decision process,
unraveling a qualitative difference between the information prospec-
tively and retrospectively accessed. Despite the general impression
of a rich internal life, participants were only partially aware of the
information carried by their decision neural precursors. However, a
more complete pictures could be recovered via retrospective attention
allocation.

4.5 METHODS
4.5.1 Participants

For experiment 1, thirteen healthy participants with normal or corrected-
to-normal vision took part in the experiment (4 male; all right-handed;
mean age: 27.1 years, SEM = 2.8). One additional participant was
tested but was not included in the analysis because technical failures
altering the online experiment. Moreover, ten healthy participants
with normal or corrected-to-normal vision took part in the experi-
ment 2 (3 male; all right-handed; mean age: 24.1 years, SEM = 3.4). All
participants signed a written consent and received financial compen-
sation in exchange for their participation. This experimental protocol
was approved by the local ethical committee (Conseil d’évaluation
éthique pour les recherches en santé, Paris, France).

Participants performed 288 trials in the main experiment 1. All tri-
als contained a pre-cue, a post cue and feedback phase. and were
included in the analysis. In half of the trials the cue requires the par-
ticipant to perform an inclusion, the remaining half require to per-
form an exclusion. This led to the analysis of 144 inclusive trials and
144 exclusive trials per participant. Similarly, participants performed
288 trials in the main experiment 2. In the experiment, participants
did not receive feedback at the end of each trial. Instead they were
required to perform a subjective report about how they made their
choice after the cue appearance.
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4.5.2 EEG recording

We recorded scalp EEG using a 64-channel Biosemi ActiveTwo system
(Biosemi, Amsterdam, Netherlands). EEG analog signal was digitized
at a 2048 Hz sampling rate. During recording, electrode offset was
reduced to between +50 uV for each individual electrode by softly
abrading the underlying scalp with a blunt plastic needle and insulat-
ing the electrode tip with saline gel (Sigma Gel, Parker Laboratories,
USA). Electrode offset was verified between the different phases of
our experiment and between the blocks of the main phase.

4.5.3 Visual Stimulation

We used the same visual stimulation that in Chapter 3. we provide in
Appendix A a detailed description of its creation procedure.

In the first experimental groups, participants receive feedback cor-

responding to their post cue selective attention. For 1 seconds, the
same stimulation with only the object of attention during the post-
cue period was displayed. The word “Result” was also prompt above
the visual stimulation.
For the second experimental group, no feedback was displayed at the
end of each trial. Instead, participants were asked to report how they
made the choice between the two objects at the apparition of the cue.
They do so by selecting among four propositions : “My choice was
surely random”, “My Choice was perhaps random”, “My choice was
perhaps determined by pre-cue focus”, and “My choice was surely
determined by pre-cue focus”. The choice was performed by mov-
ing a dot using left and right arrows of the keyboard, pressing the
space-bar validated the chosen position (see also Figure 1).

4.5.4 Brain Computer Interface

We use the same BCI that in Chapter 3. For further details about
online decoding of attention allocation, see Section 3.5.4.

4.5.5 Experimental procedure

The experimental protocol was divided in 3 phases: participants first
underwent the model building and the training phase before perform-
ing the main phase. The main phase consists of 3 identical blocks.

Model building phase

We first gather labeled data to train the model used in real-time to
distinguish current object of participant’s attention. To do so, partic-
ipants were asked to actively bring their attention on one of the two
items being simultaneously presented on the screen. Each of the 30
trials lasted 5 seconds, a target item was randomly designated during
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1 second by a letter overlaying the fixation cross. The two items were
then displayed continuously for 5 seconds during which the partici-
pants were asked to maintain their focus of attention.

Training phase

Training phase was meant to both familiarize participants with the
BCI setup and with the protocol of the main experiment. Therefore
the training phase consists in 20 trials of the main phase of experi-
ment 1. Participants were presented with the same visual stimulation
as in the model building phase surrounded by a black square. After 4
to 6 seconds, the black square turned either red or green and partici-
pants were instructed to freely choose either the face or the spiral and
to focus on it until the end of the trial (4 to 6 seconds after the color
change). The color cue remained on screen until the end of the trials.
Importantly, if they had chosen the object of their decision before the
cue, or if their attention was grabbed by one of the item before the
cue, participants were instructed to either keep focusing on this ob-
ject (inclusion trial yellow cue on Figure 1) or to change the object of
their focus (exclusion trials clue cue on Figure 1). To facilitate switch
from one item to the other, the visual stimulation disappears for 500
ms after the cue apparition. At the end of the trial, participants re-
ceived feedback showing the object they attended after the color cue.
Feedback was displayed for 1 second with the word “Result” printed
above.

Experiment 1 main phase

In this phase, participants performed 288 trials presented in 4 succes-
sive blocks of 72 trials of 10.5 seconds. This phase was exactly the
same as the training phase. Before beginning this phase, we verify if
participants understood the instructions correctly by asking them to
summarize the instructions given in the previous phase.

Experiment 2 main phase

For this phase, participants performed 288 trials presented in succes-
sive 4 blocks of 72 trials of 10.5 seconds. This phase was the same
as the training phase except participants did not receive feedback
about their post cue decision. Instead, they were required to perform
a metacognitive report about how they made their choice at the cue
appearance. They were asked in each trial to choose one among the
four following propositions: “My choice was surely random”, “My
Choice was perhaps random”, “My choice was perhaps determined
by pre-cue focus”, and “My choice was surely determined by pre-cue
focus”.
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4.5.6  Data Processing

pre-decision internal decision bias (IB) and attention allocation strength
(AS)

For each trial, we compute a proxy for participants’ internal evidence
supporting their post-cue decision. We first calculate the difference be-
tween correlation scores of the two items over the 2 seconds recorded
after the cue presentation (between 2.5 and 4.5 second after the cue ap-
parition). We thus compute the accumulated sum over time of this dif-
ference. We use the absolute value of the total accumulated evidence
to estimate how much internal signals can discriminate between the
two items at the time participants execute their decision. This score is
referenced as attention allocation strength (AS).

We reiterate this operation on the 2 seconds preceding the cue
apparition while participants are required to wait. Although partic-
ipants were required to refrain from choosing an item during this pe-
riod, our measure of pre-decision internal decision bias (IB) provides
a proxy for how much brain signals were already discriminating be-
tween the two items before the cue appearance.

Characterizing the accuracy of a trial

We determine for every trial the preferentially attended item the same
way we did online. This ensures our classification corresponds to the
feedback the participants receive during the online experiment (See
Online analysis in Brain computer Interface section of the Methods).
We then determine following the same method the preferentially at-
tended item during the pre-cue period. We then compared the pre-
cue and post-cue attended items. An inclusive trial was labeled as
correct if the two items match, it was otherwise labeled as an incor-
rect trial. Conversely, an exclusive trial was labeled as correct if the
pre- and post-cue items differ and incorrect otherwise.

Pre-cue neural variability

To assess the variability of the pre-cue internal evidence, we compute
for each trial the standard deviation of the reconstructed signal Y
(see “decoding procedure” section in Section 3.5.4) over the 2 seconds
before the cue.

Analysis of the subjective reports. In the main phase of experiment
2, participants report whether their post-cue decision was random or
determined by their pre-cue behavior. Reports were given with two
degrees of confidence (“certainly random”, “perhaps random” ). To
investigate the effect of neural signals variability on the participants’
reports, the latter were encoded as an ordered factor for cumulative
link mixed model analysis, with certainly random choice coded as 1,
perhaps random choice coded 2, perhaps determined coded as 3 and
certainly determined choice coded as 4. When included as a fixed ef-
fect in a general linear mixed model, reports were binarized to reflect
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the disjunction between “random choice” versus “determined choice”
report.

4.5.7 Statistical analysis

Summary statistics were calculated in Matlab (Matlab 2018b, The
MathWorks, Inc.). All other statistical tests were calculated in R (Team,
2012).

Before applying pairwise comparison, the Shapiro-Wilk method
was used to test for the normality of the data. If the normality hypoth-
esis was not rejected, we applied paired Student’s t-test to our data.
Data containing too many empty values or not meeting normality as-
sumptions were analyzed with Wilcoxon rank test. Holm-Bonferroni
or Tukey correction for multiple comparisons were calculated with R.
Cohen d was calculated using R for approximating effect size.

Both linear mixed effect models and generalized linear mixed ef-
fect models were fitted using Ime4 package (Bates et al., 2007), cu-
mulative link mixed models were computed using ordinal package
(Christensen, 2015). Continuous data (pre- and post-cue IE and pre-
cue neural variability) were log transformed and centered to avoid
convergence issues. To operate model reduction we removed non or
least significant terms and compared Akaike information criterion
(AIC) of more complex and simplified models. Moreover we oper-
ated a Chi-square test to decide whether the more complex model
was significantly better at explaining our data. The reported p-values
of each fixed effect of linear mixed-effects models and generalized
linear mixed-effects models were obtained with this Chi-square test
comparing one model with all the possible simplification obtained by
removing a single effect. For each model, we detailed the model re-
duction procedure (see Appendix C).

Post-hoc probing of interaction between continuous variables 1B
and AS was done using emmeans package (Lenth et al., 2018). We
compare the regression slope between accuracy and IB with either
low, medium or high level of AS. Levels of AS correspond to the aver-
age AS (medium level) plus (high level) or minus (low level) 1.5 stan-
dard deviation. Pairwise slope comparison consists of non parametric
Wilcoxon test corrected for multiple comparison by Tukey method.
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GENERAL DISCUSSION

This thesis describes two studies on introspective illusions during free
decisions. The central goal of this work was to address whether and
how people can become aware of their voluntary, self-driven deci-
sions. More precisely we investigated the conditions under which
humans could consciously access the internal variables supporting
their decisions. We relied on a novel approach using a Brain Com-
puter Interface to assess participants” hidden decision variables and
confront them with their introspective reports. This work provides
new insights on the underlying mechanisms of introspection and the
emergence of introspective illusion. It also sheds a new light on the
relationship between the hierarchical organization of the brain, the
measured neural signals and the conscious experience of self-driven
decisions.

5.1 SUMMARY OF RESULTS

In Chapter 1, we further detailed our approach to study participants’
free decision awareness. In line with recent theoretical models, we

proposed that introspection and metacognition can be framed as a

Bayesian inference processes on hierarchically organized decision Mele
and William, 1992; Pacherie, 2008; Hohwy, 2013. This view of intro-
spection has several consequences.

First, it implies that introspection can not be merely described as an

inner sense with privileged access to internal cognitive processes. In-
stead, in line with the Bayesian brain hypothesis (Knill and Pouget,

2004), introspective content integrates several sources of information

from both endogenous processes and the external world.

Secondly, we suggested that the hierarchical organization of decision

processes impacts the information available to introspection. We pro-
posed that the different aspects of a free decision could depend on

the specific level of the decision hierarchy involved in their computa-
tion. This implies that decision-makers could remain unaware of the

outcome of their decision when they are deprived of certain levels of

the decision hierarchy.

In Chapter 2 we proposed a methodological approach to test these
hypotheses by adapting a stimulus reconstruction method to the real-
time decoding of top-down endogenous covert attention. We show
how our attention-based BCI can isolate specific levels of the decision
hierarchy. On the one hand, BCI replaces decision motor execution
by providing a unique way to interact with the environment. On the
other hand, we limited the contribution of higher order processes by
presenting participants with choices between equivalent alternatives.
Moreover, our BCI setup allows us to adapt the outcome of a decision
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in real-time in order to manipulate the information available during
introspection.

In Chapter 3, we investigated the respective contributions of exter-
nal cues and internal decision variables to the formation of introspec-
tive reports. To do so, we induced choice blindness episodes using
our BCI setup. We decoded participants” decisions while they per-
formed a simple choice, and provided visual feedback. This feedback
was manipulated in 25% of the trials and reflects the desired alterna-
tives in only 75%. Participants were then probed to report their orig-
inal choice along with their confidence. We managed to elicit Choice
Blindness episodes as our participants tend to report the presented
feedback as their own choice, even when it contradicts their original
preferences. In line with a Bayesian integrative account, we found
that the content of introspective reports depend on the reliability of
internal variables:

* Unreliable internal variables are dominated by external feed-
back leading to confabulation reported with high confidence.

* On the contrary when internal evidence supporting the original
decision is reliable, participants directly accessed the decision
content and easily detected external manipulations.

¢ Finally, when the reliability of internal variables is intermediate,
participants failed to notice external manipulations but their
subjective experience was affected as they reported a lower con-
fidence compared to correct introspections.

In Chapter 4, we investigated whether participants can be aware of
the content of the deliberation supporting their upcoming free deci-
sions prospectively. Participants were asked to wait for a cue before
making a simple two-alternative choice (namely, focusing their atten-
tion on one of two items). Crucially, when a choice was made before
the cue, participants were asked to either pursue or to revert that
choice.

We used our decoding approach to infer participants’ preference
toward one item before the cue appearance and investigated whether
and how these internal biases impact the awareness of their current in-
ternal deliberations. We showed that participants could access some,
but not all representational levels of their internal decision processes.
More specifically, while they could be aware of their impending de-
cision, they could remain unaware and unable to control its content.
Our results also show that retrospective attribution of attention could
promote conscious access to the content of the initial deliberation.

By addressing the mechanisms of the emergence of decision aware-

ness and its associated illusions, the present thesis provides new in-
sights on diverse subjects. Below, we further detail the implications
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5.2 THEORETICAL IMPLICATIONS

of our results for research on the domains of free decision awareness,
choice blindness and agentive attention allocation. Yet, the original-
ity of our work also relies on the methodological approach we em-
ployed. We will therefore also discuss the methodological challenges
encountered when studying complex cognitive processes using BCL
We will complete this discussion by detailing the empirical and the-
oretical limits of our work, and accompany those considerations by
proposing empirical studies to extend our current results and further
confront our predictions.

5.2 THEORETICAL IMPLICATIONS
5.2.1 Implication for awareness of decision

In the present manuscript, we implicitly considered that dynamic
models of intention (Pacherie, 2008; Mele and William, 1992; Brass,
Furstenberg, and Mele, 2019) could be interpreted within the pre-
dictive coding framework (Friston, 2008; Hohwy, 2013). We suggest
that the distal, proximal and motor levels' of decision-making rep-
resent a manifestation of the Bayesian brain at spatial and temporal
scales relevant for decision and action. Conceptually, the distal level
is thought to hold the representation of future choices. Those choices
are then translated into parameters of the evidence accumulation pro-
cesses leading to decision (Brass, Furstenberg, and Mele, 2019). From
a mechanistic point of view, the distal level modulates the expected
precision of bottom-up sensory information and orients the accumu-
lation of evidence toward the desired choice* (Friston et al., 2017).

The results presented in Chapter 4 are consistent with this frame-
work. Indeed, when deprived of high order guidance, participants
had no access to the content of their decision. Mechanistically, we sug-
gest that the distal level estimates that the precision of evidence sup-
porting both choice alternatives are equal. Naturally during a motor
decision, participants could rely on their motor preparation signals to
infer the content of their impending decision. This was not the case
in our protocol since only the proximal decision level was mobilized.
At this level, the brain is thought to adapt long term choices to the
immediate context. When all alternatives are equivalent, we suggest
that the need for control instances is low. Consequently, the aware-
ness of the decision content would be tenuous. Yet, one might argue
that adapting to the immediate context is useful as it might facilitate
withdrawal from a dangerous situation. Consistent with this ecolog-
ical consideration and previous studies (Schultze-Kraft et al., 2016),
we suggest that one could become aware that a decision is imminent,
allowing her to veto it at the last moment.

Referring to the planning, immediate implementation and execution of a decision
Gain modulation of superficial pyramidal cells has been proposed to encode this
expected precision (FitzGerald et al., 2015).
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As a consequence, we suggest that subjects are only partially aware
of their proximal decision. The partial awareness hypothesis proposes
that representational levels of perceptual processes are hierarchically
organized and independently accessed (Kouider et al., 2010). Extend-
ing this account to the processing of internal evidence, we propose
that different aspects of decision implemented at different levels of
the hierarchy are not homogeneously accessed. In other terms, we
suggest that before the decision execution, participants can be aware
of whether a proximal decision is impending, but can not access its
content.

Yet, if participants might not be able to access the neural signals en-
coding the content of their ongoing decision, we provide evidence in
Chapter 3 that those signals participate in post-decision introspective
processes. Below, we further discuss how our results provide new per-
spectives on how internal variables together with various cues could
be integrated to form introspective content.

5.2.2  Implication for interpretation of introspection and Choice Blindness

In Chapter 1, we proposed that a significant breakthrough in the
study of introspection has been to substitute the question of its ac-
curacy by the question of the condition under which a given cue
could enter the introspective content. In line with an abundant liter-
ature on introspective illusion, choice blindness (CB) paradigms (Jo-
hansson et al., 2005) illustrate the impact of exogenous cues on self
monitoring processes. In Chapter 3, we went a step further by demon-
strating that CB phenomena could result from an integrative process
following Bayesian-like principles. Indeed, we showed that unreliable
internal decision evidence is dominated by external cues, leading to
introspective illusion episodes.

Yet, in the present work, participants were placed in a highly non
ecological situation where both distal and motor level of the decision
hierarchy were removed while the exogenous cue was under the con-
trol of our BCI. As a result, introspection contributions were confined
to the proximal level of decision. Participants could extract informa-
tion about their recent decisions from two sources: the BCI-controlled
feedback or their internal attention allocation processes.

Our daily introspective episodes embed higher order belief about
both ourselves and the world (Nisbett and Wilson, 1977). Virtually all
CB paradigms imply high order priors about the proposed choices,
generally under the form of personal preferences or familiarity. Here,
we suggest that our Bayesian account could be extended throughout
the decision process hierarchy. Broadly speaking, the participation of
different cues to introspection could not only be mediated by their in-
trinsic reliability but also by high order priors (Friston, 2008; Hohwy,
2013). Those priors (e.g. preferences, familiarity etc.) should come in
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the form of expectation about the precision of the features processed
at the proximal level, thereby modulating their influence on introspec-
tion. Therefore, in line with (Hall, Johansson, and Strandberg, 2012;
Sauerland et al., 2014; Somerville and McGowan, 2016; Rieznik et al.,
2017; Strandberg et al., 2018), a choice involving familiar alternatives
would rarely be subject to introspective illusion because the influence
of endogenous cues is boosted by distal priors.

Nonetheless, our accounts could be questioned since CB seems
unaffected by reward attribution (Hall et al., 2010; Somerville and
McGowan, 2016). Although such an approach should inflate the ex-
pected precision of the rewarded option, participants are still subject
to numerous CB episodes. We proposed that those CB episodes are
attributable to social context which can also be translated as a prior
on the precision of exogenous cue (i.e. the feedback). A recent un-
published study (Reyes et al., 2018) lends support to this claim by
showing that the frequency of CB episodes is proportional to the
confidence participants have in the experimental setup. In (Hall et
al., 2010), we proposed that the experimental set-up (a supermarket
stand) increases participants’ trust in the feedback, thus compensat-
ing the reward-induced boost of internal variables.

Crucially, as mentioned in Chapter 1, incorrect attributions of pre-
cision at a lower level of the hierarchy have been shown to propagate
upward, resulting for schizophrenic patients in higher order delu-
sional inferences (Fletcher and Frith, 2009). We suggest that a mecha-
nistically similar phenomenon is taking place in our daily introspec-
tive life. Indeed, we shown in Chapter 3 that not only first order
content but also second order metacognitive content (i.e., confidence
judgments) can be impacted by exogenous cue when the precision of
endogenous cue was weak.

Overall,in line with hierarchical Bayesian brain hypothesis (Friston,
2008; Hohwy, 2013; Clark, 2015), introspection results from an inte-
grative process involving first order cue such as internal decision vari-
ables and external cues monitoring but also high order priors about
the decision maker (i.e. preferences, familiarity etc.) and the exter-
nal world (i.e. reward value, social factor etc.). Introspective illusions
thus reflect the respective expected precision of the cues entering in-
trospective content.

Since our results rely on attention-driven BCI, we must be care-
ful when extending their consequences to ecological decision-making
contexts. Indeed, sensori-motor feedback are also integrated during
formation of introspective content, further discriminating alternative
decisions (Moore and Fletcher, 2012; Legaspi and Toyoizumi, 2019).
Yet, by endowing the attention with a direct impact on the environ-
ment through our BCI, our work may help to better understand the
the process of its agentive allocation.
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5.2.3 Implication for allocation of attention

In both Chapter 3 and Chapter 4, our BCI substitutes motor action by
attention allocation. Attention results, according to predictive coding
framework, from the modulation of the expected precision of a given
stimulus by the brain. Endogenous decisions, motivations, and other
mental actions cast predictions about the precision the different ele-
ments of the outer world, thereby reconfiguring the top down atten-
tional landscape (Clark, 2017). Alternatively, change in the precision
in the world (e.g. apparition of a salient stimulus) can capture atten-
tion through ascending highly precise prediction errors (PE) (Hohwy,
2013). Yet, even in absence of environmental or internal distinction be-
tween different stimuli, participants still claim to be able to voluntar-
ily focus on one (Neisser and Becklen, 1975; Ransom, Fazelpour, and
Mole, 2017) or switch to other features of their environment (Neisser
and Becklen, 1975; Furstenberg et al., 2015).

A first account of such agentive attention allocation could be that
newly emerging internal beliefs (e.g. being habituated of one stimu-
lus or suddenly wanting to attend the other one) drive voluntary at-
tention allocation through modulation of expecting precision (Clark,
2015; Hohwy, 2013; Clark, 2017). Instead of relying on desires and mo-
tivations suddenly emerging, our results suggest that subjects might
remain unaware of the target of their voluntary allocation of atten-
tion. As suggested in Chapter 4, participants’ reports of controlling
the target of their attention could stem from an inflated interpretation
of neural noise reduction.

At the neuronal level, noise reduction has been identified as a neu-
ral correlate of attention allocation (Mitchell, Sundberg, and Reynolds,
2007). Furthermore, attention decreases correlation between neurons
encoding a common representation which results in noise reduction
in the neural population3 (Mitchell, Sundberg, and Reynolds, 2009;
Cohen and Maunsell, 2009; Pestilli et al., 2011). Such noise reduction
could constitute an ideal neural correlate for attention as measured
by EEG since the latter averages signals over large groups of neurons.

In Chapter 4, we show that participants’ reports of conscious ac-
cess to their premature decision correlate with a reduced neural noise.
Since in our BCI context, decisions correspond to attention allocation,
we suggest that participants can consciously access their attention al-
location process. Yet, we demonstrate that participants may have not
been aware of the object they preferentially attend. In other terms, we
suggest that top-down agentive allocation of selective attention could
rather be a partially unconscious process retrospectively interpreted

Indeed, averaging correlated neurons will not attenuate biases induced by correlated
noise. Thus, preliminary decorrelation allows averaging to decrease noise at the pop-
ulation level Serences, 2011
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as controlled4.

In both Chapter 3 and Chapter 4, we considered the external cues
to be kept constant. However, attention allocation has been shown to
drive change in perception itself (Carrasco, 2011). Yet those changes
might be too subtle to participate in attention monitoring processes.
Nevertheless, participants” genuine access to the object of their atten-
tion was sustained by strong and reliable attention in both Chapter 3
and Chapter 4. We proposed that this result reflects a Bayesian inte-
gration process whereby the contribution of a cue to introspection is
modulated by its saliency and its reliability. However, an alternative
interpretation could be that strong attention allocation drives percep-
tual modulation that could be retrospectively used to infer the object
of attention. Such a hypothesis could be tested by manipulating the
contrast of the two items on the screen as a function of the attention
that they received.

Overall we suggest that our results are compatible with the predic-
tive coding framework. Moreover, this framework allows us to make
specific predictions on the formation of decision awareness and its
illusions. In Section 5.4, we will propose some new ideas to address
those predictions. Before doing so, we further discuss the benefits
and limitations brought by our real-time decoding methodological
approach.

5.3 METHODOLOGICAL CONSIDERATION AND LIMITS
5.3.1 Real time decoding and introspection

Classical CB paradigm operationalized introspective illusion as the
non-detection of a manipulated feedback (i.e. feedback which does
not correspond to participants’ choices). However, given the impact of
external cues on introspection, correct answers following non manip-
ulated trial can also reflect the blind acceptance of external -informative-
cue rather than an alleged internal monitoring. In Chapter 3 we tackle
this issue by tracking the internal decision variables and confronting
them with participants” introspective reports. This approach exploits
one of the most interesting aspects of BCI, namely the real time adap-
tation of experimental conditions to participants” internal state. Yet
this novel paradigm brings a certain number of limits inherited from
both report (Overgaard and Fazekas, 2016) and no-report (Tsuchiya et
al., 2015) approaches and that can be summarized as follows: should
we trust participants’ report or our BCI outputs?

In Appendix B, we provide control analyses to increase the reliabil-
ity of our decoding process. We delete all trials suspected of inaccu-
rate classification before repeating our statistical analyses. Yet, since

4 Notice here that we demonstrated that participants were not in control of the object
of their selective attention. Yet they might be in control of other aspects of their
attention allocation, namely its triggering, its termination or its intensity.
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our work involves a novel paradigm, replication of the reported re-
sults remains required to confirm them. Furthermore, our approach
could have benefited from the measure of a third, independent corre-
late of participants” free decisions. We further discuss in Section 5.4
how measure of an event related potential (ERP) such as the Feedback
Related Negativity (FRN) could provide supplementary information
on participants” decision.

Furthermore, subjective reports remain central in the study of con-
sciousness though the optimal way to use and interpret them remains
debated (Overgaard, 2015). Indeed identical reports can designate
very different subjective experiences across participants but also for
one single individual along the experiment. Our analysis copes with
inter-individual differences by using a mixed-model approach with
the identity of participants systematically set as a random effect. A
way to address within subject variations could be to replace our 4
points scale with a continuous scale. Aside from enhancing the preci-
sion of the subjective evaluation (Wierzchon et al., 2019), such scales
might provide results that are easier to correlate with our continu-
ous estimation of attention allocation. A second flaw in introspective
reports concern the comprehension and good application of the re-
port demands. In Appendix B, we control that participants of Chap-
ter 3 did report their confidence and not other variables such as the
strength of their attention allocation.

5.3.2 Probing complex cognitive mechanisms

Studying the neural correlates of complex cognitive mechanism can
prove challenging for several reasons (Golub et al., 2016):

¢ We often record only a small portion of the neurons involved in
the process of interest.

* The relationship between measured neuronal activity and the
final behavior might be non linear.

* Multiple modalities might participate in the control of the pro-
cess of interest.

BCI appears as a simple solution to tackle these specific issues, es-
pecially in the study of motor behavior (Golub et al., 2016). Indeed,
classification algorithms consider all the electrodes of the scalp that
are engaged in the targeted behavior. Therefore, all the control in-
stances operating on the studied process will eventually affect the
decoded signal. Furthermore, this approach defines one single men-
tal action by which participants can interact with the environment.
Thereby, we ensure which process participants need to modulate to
solve the task. Consequently, aside from the sole classification perfor-
mance, a crucial question is to know whether our model targets the
desired process.

It follows that the dataset on which a participant’s model is trained
is of primary importance. In the present version of our BCI, partici-
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5.4 THEORETICAL LIMITS AND FUTURE DIRECTIONS

pants were explicitly asked to intentionally attend one specific item
during each trial of the model training phase. As a general rule, the
outcomes provided by our BCI should be analyzed in regard to the
particular (mental) action participants had to perform during model
training. Here, we use signals identified in conscious, exogenously
driven decisions to study awareness of self-driven free decisions.

As mentioned in Chapter 1, self-driven and exogenously driven de-
cisions may be mechanistically closed (Brass, Furstenberg, and Mele,
2019). However, working with a novel paradigm, we need to demon-
strate that our procedure did capture endogenous decisions. We do
so in Chapter 3 and Chapter 4 by showing the correlation between
our measure and participants’ choices. We notably show that partici-
pants’ neural signals measured by our BCI predict upcoming choices
even when participants were unaware of their ongoing deliberation
(see exclusion condition in Chapter 4).

Another potential issue in our decoding method is that the cogni-
tive mechanisms captured by our model at a certain time might be
process differently during the experiment (e.g. due to fatigue, change
in motivation or in strategy etc. Li et al., 2007). Recent investigations
on model construction proposed to regularly update participant’s
model along the task (Shenoy et al., 2006; Li et al., 2007; Huebner et al.,
2018). However, such approach requires in general to obtain labeled
data with the same concern as during the model training phase: we
could target another process (i.e. exogenous driven decision process)
that has no reason to have been affected during the main experiment
(whose engages self-driven decision process only).

5.4 THEORETICAL LIMITS AND FUTURE DIRECTIONS

In Chapter 1, we suggested that introspection stems from a Bayesian
integrative process embedding diverse types of cues. Notably, we sug-
gest that introspective illusions emerge when external deceptive cues
dominate the integrative process. As such, evidence supporting our
claim could be reinforced. In Chapter 3, we brought indirect proof by
showing that illusory introspective content is supported by weak and
noisy internal cues. In the following section, we further discuss the
influence of exogenous cues reliability on introspection and proposed
a supplementary protocol to directly assess their impact.

5.4.1  Concomitant measure of endogenous and exogenous cues

Apart from a very few exceptions (Hall et al., 2010), studies using CB
paradigm start by inducing confidence in the external feedback by a
series of non-manipulated trials (i.e. where feedback correspond to
participants” choices) (Johansson et al., 2005; Johansson et al., 2006;
Somerville and McGowan, 2016) before introducing a small propor-
tion of manipulated trials. We argue that this procedure increases the
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expected precision of feedback, and thereby its weight in the intro-
spection formation process.

Intriguingly, Johansson et al., 2006 rejects the fact that more reli-
able or precise cues have a stronger impact on the introspective con-
tent. Johansson et al., 2006 argues that participants are subject to the
same amount of CB episodes whether the underwent the task with a
computer or with a human experimenter. Yet, as the argument goes,
legerdemain are rare while computer bugs are more frequent. Thus,
should the reliability argument stand, participants would detect more
easily manipulation in the computer context. However, this argument
might be flawed since it ignores the continuous update of precision
estimation done at each feedback presentation (Friston et al., 2013).
Furthermore, we propose in a follow up experiment to directly ad-
dress this question.

We claim in Chapter 3 that introspective illusions result from de-
cisions supported by weak and noisy variables. Yet in line with our
original proposition, such claim could be extended by suggesting that
following a Bayesian hypothesis, both internal decision variables and
external feedback impacts are mediated by their respective availabil-
ity and reliability (Moore and Fletcher, 2012; Knill and Pouget, 2004;
Legaspi and Toyoizumi, 2019; Meyniel, Sigman, and Mainen, 2015).
However to support such hypothesis, we lacked a measure of avail-
ability (i.e. the strength) and of the reliability of the feedback.

We sought to measure the strength of the impact of feedback by
assessing at each trial the magnitude of the Feedback Related Nega-
tivity (FRN), an Event Related Potential triggered by surprising out-
comes (Oliveira, McDonald, and Goodman, 2007; Hauser et al., 2014).
Measured over the mid-central area, FRN is thought to reflect the er-
ror of prediction associated with an outcome (Talmi et al., 2012; Talmi,
Atkinson, and El-Deredy, 2013). Yet, our efforts to extract ERP from
the EEG recording remained vain.

Indeed, the emphasis put on attention decoding accuracy led us to
opt for a trial structure unadapted to the analysis of post decision ERP.
Because participants were asked to minimize eye movement and blink
during the presentation of the stimuli, blinks frequently occur just af-
ter feedback apparition, corrupting specifically the time window of
interest for FRN analysis. Moreover, the feedback presentation was
short and embedded in visual noise, limiting the maximal amplitude
of potential ERP. Finally, the feedback was revealed by continuing the
animated sequence with only one item. Therefore, the feedback might
not reach its maximum visibility at the same time for every trial, blur-
ring the result of our ERP approach.
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5.4 THEORETICAL LIMITS AND FUTURE DIRECTIONS

Here, to control the reliability of the feedback>, we propose an ex-
periment where the percentage of deceptive feedback varies across
blocks. We propose a protocol with 3 blocks presented in random-
ized order with correct feedback in 75%, 50% and 25% of the trials
respectively (see Figure 13A).

We aim first at reproducing our results in the 75% block. In the
block of lower reliability, we predict that deceptive feedback will have
a smaller impact on introspective reports. We first expect an inter-
action between the nature and the reliability of the feedback when
modeling introspective reports accuracy. Indeed, deceptive feedback
should impair more strongly the introspective reports in the 75%
block than in the other ¢. Metacognitive failures observed in our orig-
inal experiment should also be impacted by modulation of feedback
reliability. Indeed, we suggest that confidence attributed to decisions
supported by weak and noisy internal variables mostly reflect the
confidence attributed to the external feedback. Therefore, we predict
that the negative correlation between confidence and internal variable
reliability would be flatten while reliability of the feedback decreases
(see Figure 13C).

5.4.2 Probing the limits of awareness of decision content

In Chapter 4, we investigate how participants can be conscious of the
content of their impending decision. We operationalized participants’
decision awareness through their ability to revert their choices when
asked to. Yet, this approach relies on the hypothesis that conscious-
ness and control faculties are indissociable (Block, 1995). Yet, in other
theoretical paradigm such as higher-order thoughts theories, control
can be operated while the relevant cognitive process remains uncon-
scious (Carruthers, 2011). This notably account for strategic behavior
adopted by hypnotized participants (Dienes and Perner, 2007). There-
fore, a replication of Chapter 4 results would benefit from a direct
probing of the content of the decision.

From a predictive coding perspective, modulating the reliability of the feedback will
influence the hyperpriors about the expected precision of external outcome. It would
thus modulate the participation of those external cues in the process of model up-
dating to account for incoming PE. In other terms, a feedback associated with low
expected precision will not have much influence on our representation of the world.
As shown in Figure 13B, the positive impact of informative feedback should also be
reduced, resulting in accuracy decreasing with feedback reliability in the informative
condition.
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Figure 13: Modulating Feedback reliability in BCI-induced Choice blindness
paradigm
A) Experimental paradigm. Each trial consists in the three same
phase as in Figure 6 with extra fixation time between feedback
and report phase for ERP analysis purpose. Moreover, the feed-
back now consist in fixed images of maximal visibility instead of
the animated sequence. B) Prediction on participants’ introspec-
tive accuracy. Accuracy is computed as the proportion of trials in
which explicit reports correspond to the decoded decision. Gen-
eral mixed effect modeling is used to assess the effect of feedback
reliability and feedback nature on accuracy. C) Prediction on par-
ticipants” confidence during introspective illusion. Confidence is
evaluated on a 4 point scale. Analysis is restrained to incorrect
reports following deceptive trials. Internal evidence variability
could either be continuous or discrete (by median split).

Noteworthy in the second experiment of Chapter 4, we probe par-
ticipants on whether their decisions complied with the inclusion/ex-
clusion demand. This formulation is questionable as it encloses two
sub-questions. First did the participants notice a premature decision,
second did the participants manage to select the desired target ac-
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cording to the task demand. Tying the two questions together might
have created a confusion for participants. Here we propose a protocol
to further probe the awareness of conscious content.

Our task consists in an implicit process dissociation procedure pro-
tocol where the decision is imposed by the BCI. Participants are asked
to wait for a cue to appear at a random time before choosing to pref-
erentially attend one among two items. During the waiting time, our
BCI track participant’s early deliberation process. On 30% of the trial,
a neutral cue indicates that participants can freely choose to attend
one item (free cue). On 30% of the trials, participants are ask to attend
the item corresponding to their early deliberation (inclusive cue). On
30% of trials, participants were asked to focus on the item opposing
their early deliberation (exclusive cue). Participants have to focus on
the target designated by the cue until a green cross appears. Then
participants are asked to report what object they intended to choose
when the cue appears along with their confidence. Finally in the last
10% of trials, participants were asked to immediately report the ob-
ject of their current deliberation along with confidence (probe cue)
(see Figure 14A).

We predict that both the nature of the cue and internal variables
would impact participants” reports at the trial end (Figure 14B). Fur-
thermore, we suggest that the influence of internal variables will be
mediated by post-cue attention allocation (Figure 14C). Finally, we
hypothesize that if early action selection could impact introspective
report (Chambon and Haggard, 2012), it could hardly be consciously
accesses as decisions unfold. Comparing reports following free cue
and probe cue, we hypothesize that impact of internal variable will
be reduced in the immediate report condition (Figure 14D).

5.4.3 Neural noise and awareness

In Chapter 4, we first suggested that participants could be aware of
whether a decision was impending. However, we only brought indi-
rect evidence in support of such a claim. Indeed, our argument relies
on a correlation between participants’” report and an identified neu-
ral precursor of voluntary decision (Khalighinejad et al., 2018; Kha-
lighinejad et al., 2019). As mentioned in Chapter 4, noise reduction
monitoring has already been suggested to directly impact awareness
of forthcoming motor decision (Parés-Pujolras et al., 2019; Schultze-
Kraft et al., 2020; Schultze-Kraft et al., 2016).
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Probing awareness of decision content along the decision process
A) Experimental paradigm. Participants wait for a cue appearing
at random time to pick one item on the screen while the BCI
tracks their ongoing preferences. They are then asked to choose
the item either comforting (inclusive cue) or opposing (exclusive
cue) their original preferences or to pick one freely (free cue). A
green validation sign appears after participants focus enough on
their target. Participants are finally probed to report their pre-cue
preferences. On an extra 10% of trials, probing was done at the
cue time (probe cue). B,C,D) Predictions. We show an example
where a "face choice" has been decoded in the pre-cue period.
B)Influence of internal and external cue on report. C) Influence
of post-cue attention of decision content awareness. Confidence
is evaluated on a 4 point scale. Analysis is restrained to incorrect
reports following deceptive trials. D) Emergence of decision con-
tent awareness. We compare preferences reports at the time of the
probe and after the pre-cue period to assess the effect of decision
execution on decision awareness.

Yet this claim rests upon an indirect three steps reasoning. First,
a competence model proposed that RP reflects the accumulation of
neural random fluctuations” (Schurger, Sitt, and Dehaene, 2012). Sec-
ond, a correlation between RP detection and participants” intention
awareness was established. Third the authors concluded that partic-
ipants could have some access to their neural random fluctuations.

7 This account has been criticized notably because it predict that RP-like signals
should be widely present, which does not appear to be the case (Travers et al., 2020)
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5.4 THEORETICAL LIMITS AND FUTURE DIRECTIONS

Here we show a direct correlation between neural noise reduction
and modulation of decision awareness in a non motor paradigm. Yet,
as mentioned in the previous section, our probe did not target specif-
ically the awareness of an upcoming decision. Further investigations
are thus required to directly assess the link between random neural
fluctuations and decision awareness

5.4.4 Toward a metacognitive prosthesis

We show in Chapter 3 that introspective illusions could be accompa-
nied by metacognitive failures. In other words, subjects might feel
confident for their illusions. Such dissociation between performance
and confidence have already been documented and are suspected to
result from a coupled yet distinct sampling of evidence for first or-
der and metacognitive reports (Lau and Passingham, 2006; Wilimzig
et al., 2008; Graziano and Sigman, 2009; Rahnev et al., 2011; Bona and
Silvanto, 2014; Vlassova, Donkin, and Pearson, 2014).

Metacognition in a predictive coding framework is thought to con-
trol the precision accorded to the different cues participating in our
model of the world. From an evolutionary perspective, according a
large credit to external cues when making inference on your own be-
havior could save cognitive resources with only a limited chance of er-
ror (Shenhav et al., 2017; Kool, Shenhav, and Botvinick, 2017). Indeed,
experimental environments aside, external cues are generally infor-
mative about our recent decisions. Yet, the emergence and spreading
of new technologies such as BCI can be a rule changer by placing
cognition in novel and highly non ecological situations. As we have
shown, participants might be unable to monitor some aspects of their
mental actions, thereby impairing subsequent behavioral control. In
such context, the advantageous posture of a metacognition according
credit to external cues could be revised.

Here, we proposed that BCI related metacognition should be trained
in order to increase the precision of internal cues. Metacognition plays
an important role in the development of expert skills (MacIntyre et al.,
2014). We describe a protocol for a metacognitive prosthesis whose
function is to increase the users’ control over their BCI actions. Previ-
ous studies have proposed to train participants to guess the results of
their BCI actions in the absence of feedback with only limited success
(Schurger et al., 2017). Here, we propose to improve metacognitive
faculty by rewarding participants depending on the precision of their
internal variables.

Participants would first undergo a probing session which consists

in a block of the main experiment of Chapter 3. At the end of this ses-
sion, we would compute the distribution of the precision of internal
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variables during the decision phase®.

Participants would then be presented with a training session. They
would be asked to optimize their gains by freely choosing one among
two items before receiving a reward. Yet, unknown to the partici-
pants, the reward would not be associated with the choice but rather
increases with the precision of internal decision variables (see Fig-
ure 15). To continuously adapt the setup to participants” performance,
the distribution of the precision would be dynamically updated dur-
ing the task .

After the training session, we would repeat the probing session. We
predict that the number of choice blindness episodes should decrease
after the training sessions, in proportion with the increase in internal
signals precision. To control for habituation, fatigue and other adap-
tation phenomena, a group control is presented with a third probe
session instead of the training session.

5.5 FINAL CONCLUSION

We usually consider that we have privileged and exhaustive access to
our internal mental life. In particular, we feel in control of our volun-
tary action and provide extensive justification for them if needed. Yet,
illusion and external influences are known to be integral parts of our
self-knowledge processes. Therefore, investigating whether and how
participants can access the neural underpinnings of their decisions
is a challenging issue. In the present thesis, we opt for a novel strat-
egy to address this problem. We start from a conception of decision
processes embedded in a hierarchical Bayesian theory of the brain.
Then, we design a non ecological decisional paradigm where partic-
ipants make simple free choices between equivalent alternatives and
where motor actions were replaced by attention allocation process.
This approach allows us to dissect both the origin and the dynamic
of the formation of decision awareness. We suggest that awareness
of our recent decision involves endogenous and exogenous cues in-
tegrated following Bayesian principles. Furthermore, we suggest that
conscious control of decision is distributed across the hierarchical lev-
els of the decision organization. Our work provides new empirical
insights on the formation of the decision related metacognitive con-
tent. More generally, this work emphasizes that real-time decoding
and BCI based experimental work can be used on a regular basis to
investigate complex cognitive processes.

8 Precision of internal cue is operationalized as the standard deviation of the recon-
structed signals computed along the decision phase.
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Figure 15: Metacognitive prosthesis

Top) First probing session. See Chapter 3 for further details. Pre-
cision of internal cues is estimated by computing the inverse of
the variance of the reconstructed signal over the 5 s of the deci-
sion phase (see Section 4.5 in Chapter 4 for further detail. Middle)
Training session. Participants are asked to maximize their gain by
freely picking one over two items. Reward is estimated based on
the precision of internal evidence. If the precision of internal cues
supporting the current decision falls below the mean on the distri-
bution (red zone), reward is drawn from a distribution centered
around a small value (red reward distribution). On the contrary
reward is picked from a (green) high mean distribution if pre-
cision of current trial internal cue are high (green zone) Down)
Second probing session, identical to the first one. The number of
CB episodes are compared between the first (light purple) and
the second (dark purple) probing session. We predict a correla-
tion between lower CB episode number and an increase in the
precision of neural signals (orange arrows).
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METHODOLOGICAL FOREWORD: THE VISUAL
STIMULATION

A word here on stimulus reconstruction going online

We present here the process we followed to create our visual stimu-
lation. To begin with, we will expose the specifications that our visual
stimulation must meet. These specifications respond at the same time
to the technical constraints imposed by the ssVEP mediated BCI and
to the experimental requirement that our research imposed. We will
then detail the step-by-step procedure of creation of the visual stimu-
lus.

A.1 SPECIFICATIONS

Technical specifications define the requirement our stimulation must
meet to elicit brain signals that can be decoded by our BCI. On the
other side, the research-related specifications are shaped by the the-
oretical question we aim to assess in our experimental work. As we
have seen in Section 2.1 of Chapter 2, diverse form of selective atten-
tion can modulate ssVEP and thereby serve as brain input in the BCI
loop. In all our experiment, participants were invited to make a free
decision of choosing to selectively attend on of the two proposed al-
ternative on the screen. To keep control on the variables participating
to metacognitive process, we choose to rely only on features-based se-
lective attention. Thus, to control the information participants receive
about their decision, the visual stimulation should limit other form
of selective attention to be involved in the decision process. Note-
worthy, our work is guided by the scientific question and not by the
optimization of our BCI performance. Therefore the research-related
specifications prevail in the stimulation creation process. Nonetheless,
as a reliable decoding is a key condition to address our scientific ques-
tion, performance of the BCI remains a crucial factor. Thereby, we can
compile a list of requirement for our stimulus:

* Experimental specifications

1. Our stimulation needs to contains two interactive elements.

— Our stimulation presents two alternative choices: a face
and a spiral.

2. To avoid spatial attention to inform participants about their
current decision, the two elements have to occupy the same
spatial location.

— We present the two elements overlapped. Moreover, the
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salient part of each element were located at the center of
the display which correspond to fovea of participants.

3. Feature-based attention should be easy to maintain for long
period on a single element(10-20 seconds).
—Item were animated in short looping sequence. This ani-
mation help sustaining feature-based selective attention for
long period.

4. Participants should be able to change their decision at will.

Therefore the attentional cost for switching from on item
to the other should remain low.
— We choose items that were unlikely to be found over-
lapping at a similar scale in natural scene. Therefore, the
hyper-prior associated with seeing the mixture of both ele-
ments was low (Ransom, Fazelpour, and Mole, 2017; Clark,
2017). One can thus switch easily from one item to the
other without having its attention grab by their superposi-
tion (Neisser and Becklen, 1975).

5. The two elements should be present at the screen an equal
amount of time to avoid introducing a bias in the decision
process.

— Face and spiral oscillate at the same frequency. There-
fore they appear an equal number of frame on the screen.

* Technical specification

1. Oscillation of the elements must elicit distinguishable vi-
sual evoked potential.
— Although the modulation frequency of the both ele-
ments was identical, they were oscillating in temporal phase
opposition. Thereby, both item produce distinguishable steady
state visual evoked potential.

2. Oscillation have to be visually comfortable to allow for 2
hours long experimental sessions.
— To obtain smooth blending of our features, we used a
method called sweep-ssVEP (Regan, 1973; Ales et al., 2012)
that we further detail in Section A.2.

A.2 CREATION PROCEDURE

THE SWEEP-SSVEP APPROACH The sweep-ssVEP approach (Re-
gan, 1973) consist in eliciting ssVEP by systematically varying the
visibility of a stimulus. For this variation to be smooth while elicit-
ing strong and reliable ssVEP signals, visibility is controlled trough
spatial phase scrambling Ales et al., 2012. This method keep power
spectrum fixed for all images and vary only the spatial phase from
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A.2 CREATION PROCEDURE

a random phase (minimal visibility) to the original item phase (max-
imal visibility). This manipulation preserves distribution of low-level
image statistics like the mean luminance between the different level
of visibility. As an example, the spatial phase of the spiral image will
be cyclically scrambled and descrambled to produce ssVEP at the re-
quested frequency (see Figure 17).

A.2.1  Background (see Figure 16)

We first created a background matching the overlapping face and spi-
ral in average power spectrum and luminance. This procedure mini-
mize abrupt transition between background and target elements and
produce the impression that face and spiral are smoothly emerging
from the background. We extracted 12 images from an animation rep-
resenting a face opening and closing the mouth and 8 images from
an animation representing a rotating spiral. We then cropped each
image and smoothed the contour by applying a gaussian filter. Next,
we computed the average power spectrum separately for the set of
faces and spirals images (1 in Figure 16). We then create one image of
background for each set by applying inverse Fourier transform to the
average power spectrum with a random spatial phase (2 in Figure 16).
Finally, we superimpose both face and spiral-extracted background in
one single image (3 in Figure 16). As explained below, we generated
a total of 96 frames of visual stimulation that were played on a loop.
Therefore we produce 96 images for stimulus background by drawing
different random phase for each images.

A.2.2  Animation and phase modulation (see Figure 17)

To compute a sequence of animation that can be play in loop, both
animations should start at the beginning of the sequence and end si-
multaneously. To do so we create a sequence of 8 repetitions of the
face animation and 12 repetition of the spiral animation, resulting in
a 96 frames long animation. Following this, for each frame, we se-
lect the face and spiral image corresponding to this frame animation
step.

To elicit visual evoked potential, we then determined the degree of
phase scrambling respectively for face and spiral at each frame of the
animated sequence. We first computed 20 uniformly distributed level
of phase scrambling for each image. The level of phase scrambling
that will actually be used for a given participant are determined on
the next step . This distribution was obtained by linearly interpolating
phase angle and choosing the shortest distance between the phases.
The interested reader will find details and motives for this methods
in (Ales et al., 2012).

Animated streams are easier to attend if they never completely dis-
appear. On the other hand, the larger the range of used phase, the
stronger will be the evoked signals. Therefore, for each participant we
found a trade-off between the strength of the evoked signals and the
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Figure 16: Creation of one frame of visual background.

easiness to attend both streams. This procedure determined the mini-
mum and maximum level of scrambling between which the phase of
each elements will vary during the animation. We then compute the
precise temporal sequence of phase variation for each item separately.
We use a number of frame for one cycle of variation that divide 96
and choose 32. Therefore, both item elicit ssVEP at the frequency of
1.875 Hz and in temporal phase opposition.

As switching from one stream to the other should be effortless, we
keep the duty cycle of the phase modulation low (at 0.2). Thereby, the
most visible version of each elements are not displayed for more than
two successive frames, avoiding unintentional exogenous capture of
the attention by one element.

After this step, we end up with the step of the animation and the level
of phase scrambling to apply respectively for face and spiral for each
of the 96 frames of the visual stimulation(see Figure 17).
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A.2 CREATION PROCEDURE
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Figure 17: Animation and phase modulation.

For each frame, show the level of phase scrambling and the steps of
animation applied to face and spiral respectively to create the image.
The process is describe in detailed in Section A.2.2. Y axis: level of
spatial phase scrambling. X axis: steps to obtain the animated
stimulation. Blue and violet curves: phase scrambling modulation of
the spiral and face respectively across time. Below the graphic:
successive steps of the animation. Left to the graphic: levels of phase
scrambling for our two stimulus. Above the graphic: resulting
stimulation.

A.2.3 Single frame creation (see Figure 18)

For one given frame we begin by the same steps as in background
creation: we obtained average power spectrum over the entire set of
face and spiral images separately (1 in Figure 18). We then select for
the face and the spiral the image corresponding to the animation step
at this frame. The we apply the following procedure on the face and
the spiral separately (example is given for the spiral):

We first compute an image having the phase of the original spiral and
the power spectrum equal to the computed average over all spirals of
the animation (2 in Figure 18). We then apply spatial band-pass filter
to remove the highest spatial frequency (3 in Figure 18). Indeed pre-
vious studies shown that strength of evoked signal peak for relatively
low spatial frequency (Arakawa et al., 1999; Zhu et al., 2010; Norcia
et al., 2015). To ensure that both elements occupy the same spatial
position, we apply the same alpha mask to each of them along with
the opposite alpha mask to the background selected for this frame (4
in Figure 18). Finally, the two separate elements and the background
were concatenate to form one of the 96 frames of our visual stimula-
tion (5 in Figure 18).
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EXTENDED DATA FOR CHAPTER 3

B.1 RESULTS

B.1.1 Effect of internal decision evidence on introspective accuracy in the
absence of feedback.

As exposed in the main text, we confirmed that internal decision ev-
idence has an influence on introspective accuracy independently of
external cues by running a control experiment where participants
were not presented with the outcome of their decision at the end
of the trials. As shown in Figure 19A, positive correlation between
accuracy and IE was not due to the presentation of a feedback as it
remains present without feedback (GLME, OR=1.19, CI= [1.13-1.26],
x> = 111.1, p<0.0001, Table 2 in Section B.3). Interaction between the
feedback type and IE was not significant (GLME, x? = 2.2, P>0,3),
confirming that feedback cues modulate the accuracy of introspective
reports regardless of the internal information available during the de-

cision phase (see Figure 19B).

B.1.2 Distinguishing accurate introspection from confabulation.

To better understand the underlying mechanisms of overconfident
confabulations, we first needed to identified trials in which confabu-
lations could be distinguished from accurate internal monitoring. We
remarked that following a deceptive feedback, a confabulatory report
of the displayed feedback instead of the original decision is labelled
as an erroneous trial, while a correct introspection results in a correct
trial. Alternatively, following an informative feedback presentation, a
confabulatory report of the displayed feedback (i.e. a report unrelated
to introspection of internal decision variable) will be labelled as a cor-
rect trial as feedback correspond to the original decision. Therefore,
confabulations should be mixed up with correct trials when occur-
ring after the administration of informative feedback cues. This re-
mark was confirmed by a significantly different relationship between
consistency, accuracy and confidence for deceptive and informative
feedback (linear mixed effect model (LME): Estimate=-0,23, CI=[-0,39
-0,06], x* =6.9, , p=0,009, Section B.3 Table 4). Thus, to investigate
the relationship between confidence and internal decision evidence
consistency during confabulated and correct reports, we regressed
consistency against accuracy and confidence for deceptive trials (see
Chapter 3).

99



B.1.3 Relationship between confidence and consistency of internal decision
evidence following informative feedback cues.

According to our hypothesis, confabulations occur when internal ev-
idence supporting the decision is weak and noisy. However, consis-
tency should not vary with accuracy nor confidence following infor-
mative feedback administration, because trials labelled as correct re-
group both accurate introspection and reports driven by external cues.
As expected, consistency did not differ between high and low confi-
dence for trials followed by informative feedback: Neither confidence
and accuracy interaction (LME: Estimate=-0.01, CI=[-0.13 -0.11], X2
=0.052, p=0.5) nor confidence effects (LME: Estimate=0.01, CI=[-0.09
-0.11], x* =0.03, p=0.8) were significant (Figure 20 and Section B.3
Table 6).

B.1.4 Controlling for late changes of decision.

We addressed the potential misclassification by our BCI of partici-
pant’s decision on certain trials, which would have led to the wrong
feedback being displayed. Indeed, BCI classification was sometimes
inaccurate as underlined by the cross-fold validation procedure fol-
lowing the model construction phase (average model accuracy over 3
seconds window = 80.1%, SD= 12.3%). To improve BCI accuracy, the
preferentially attended item for each trial was the item showing the
highest correlation scores averaged over the 6 last output correlations
before the feedback presentation. This allows eventual classification
error to be compensated by a majority of correct output over this pe-
riod. To ensure the robustness of individual correlation scores, each
of them was based on correlation between reconstructed signals and
the face and spiral target signals over a 3 seconds sliding window
(see Figure 6 and Methods in Chapter 3). However, with this method,
participant’s change of decision lag to be correctly decoded since the
3 s window might contain a majority of signals related to the previ-
ous decision.

We identified late change of decision as change of decision occur-
ring in the last 1,5 second before feedback presentation as it is the
time-window we used to determine the current target of the partic-
ipant. To account for such late change of decision, we looked at the
evolution of the difference between the correlation score of the item
reported as the decision minus the correlation score of the other item.
We thus look at the slope of these signed differences over the last 1,5
second of the trial. We use the most liberal criterion possible as each
trial with negative slope was considered to reflect a change of mind.

We fit a logistic model to the number of change of decision with
Confidence, Accuracy and Feedback nature as fixed effect and the
intercept per participants as random effect. Results are detailed in
Table 7. As the distribution of feedback nature was orthogonal to de-
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B.1 REsULTS

coding performance, the number of change of decision was evenly
distributed between trial where informative (M = 0.060; SD= 0,02)
and deceptive (M=0.069; SD=0,02) feedback were presented (GLME:
OR=o0.95, CI=[0.7-1.28],x% =0.8, Pp=0.4). As we suspected erroneous tri-
als contain a larger share of late decision change (GLME: OR=0,56,
Cl=[o0,4-0,7], Xz =2.2, p<0.0001) (post-hoc paired t-test: t(58)=-5.09,
p<0,0001). Moreover, we found more decision change in trials re-
ported with high confidence (M=0,11, SD=0,06) than trials reported
with low confidence (M=0,07, SD=0,07) (paired t-test: t(58)=3,00, p=0.004).
Thus, we remove from our analysis the data potentially containing
undetected change of mind.

B.1.4.1 Exogenous influence on confidence.

Since deceptive trials reported with high confidence present lower
accuracy than those reported with low confidence, we suggest that
confidence is impacted by external cues. An alternative hypothesis is
that high confidence has been attributed to trials with undetected late
change of decision, inaccurately classified as confabulation. We did
not find a significantly higher rate of undetected late change when
participants report high confidence for their confabulation (paired t
test t=-1,54, p=0,13). Although this difference failed to reach a signif-
icant threshold, we nonetheless repeat our previous analysis exclud-
ing trials containing a late change of decision.

Deceptive feedback still overturns the classical relationship between
confidence and accuracy (GLME: OR= 3.46, Cl= [2.29-4.01], X? = 235.8,
p<0.0001, See supplementary Table 8). As shown previously, we found
a positive correlation by which confidence increased when accuracy
increased: (high confidence: M = 0.81, SE = 0.03; low confidence: M =
0.58, SE = 0.03), z=-5,3, d=-1,49, p<0.0001 signed-rank test. Moreover,
when participants received a deceptive feedback, this correlation was
inverted by confidence rising up as accuracy decreased: (high confi-
dence: M=0.48, SD=0.04; low confidence: M = 0.66, SD = 0.03), z=-4,5,
d=0,93, p<o0.0001 signed-rank test. These results reinforced our orig-
inal assumption that external cues not only influence the content of
introspection but also the confidence participants have in this intro-
spective process.

B.1.4.2 Internal decision evidence consistency modulate the impact of ex-
ternal cues on confidence.

If a change of decision occurs during the 1.5 second preceding the
feedback, some correlation scores will favour alternatively one and
the other item. It results that the internal decision evidence computed
as the accumulated difference between the correlation scores will be
artificially lowered. Consistency, since proportional to internal deci-
sion evidence will be impacted in the same way. Therefore, we need
to confirm that confabulations reported with high confidence were
actually supported by less consistent decision evidence and not the
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mere result of undetected change of mind.

To do this, we model consistency using accuracy and confidence
after excluding trials containing late change of decision (see Table 9
in Section B.3). Relationship between internal decision evidence con-
sistency and confidence report was still different for accurate and
confabulated introspection (LME: Estimate=0.19, Cl=[0.07 0.31], X2
=6.9 , p<0.01). Indeed, consistency was inversely correlated with con-
fidence for confabulated reports (Low confidence: M = 0.19, SEM=
0.07; High confidence M=-0.03, SEM= 0.06), signed rank test z=-1,98,
d=0.64, p<0,05. Again, consistency of internal evidence supporting ac-
curate introspections fail to present a clear increase with confidence
as we suggest that a ceiling effect prevent consistency to grow further
(low confidence: M=0.38 SEM=0.05; high confidence: M=0.47, SEM=
0.07; paired t-test t=-1.1, d=0,24, p=0,27). These results confirm our
original interpretation and show that absence of detection by our BCI
of late change of mind does not account for the weaker internal evi-
dence consistency associated with confident confabulation.
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Figure 19: A.Decisions followed by no outcome: Accuracy in y-axis as per-
centage of correct trial . For each participant, we look at the dis-
tribution of internal evidence across trials. We group trials hav-
ing their internal evidence between the 5th and 25th percentiles
(1st point), the 25th and 50th percentiles(2nd point), the 50th and
75th percentiles (3rd point) and the 75thand g5th percentiles (4th
point) respectively. Within each group for each participant we av-
erage the accuracy. Vertical bars represent across participants 1
ooo times bootstrapped confidence intervals. B. Same plot for de-
cision followed by either a deceptive (orange), informative (green)
or no outcome (violet).

102



B.2 FIGURES

Accuracy
- © Wrong
© Correct
06
< ——
= 04} -
=
-
0.2
)
E ————— -0
e ol
(=)
(&
0.2
= r 1 1
Low High
Confidence Confidence

Figure 20: Consistency of internal decision evidence is shown for correct
(blue) and incorrect (red) introspective report following the pre-
sentation of informative feedback. Reports are separated given
the confidence attributed by participants. Vertical bars represent
across-participants standard error to the mean.
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Figure 21: (A) Confidence as a function of manipulation detection: Confi-
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dence was coded as a binary variable: low confidence was la-
belled as o and High confidence was labelled as 1. We average
confidence acros trials ended by a deceptive feedback respectively
for cases where this feedback manipulation went detected (blue)
or undetected (yellow). (B) Introspective reports accuracy regard-
ing the feedback: The plot shows the accuracy in introspective
reports in the y-axis averaged by participants. Trials followed by
informative feedback are represented in green. Trials followed by
deceptive feedback are represented in orange and indicated how
much participants can detect feedback manipulation.



B3 METHODS AND TABLES

B.3 METHODS AND TABLES

To assess the respective influences of internal decision evidence and
external cues on introspective reports, accuracy was modelled using
generalized mixed-effect model with IE, Feedback and their interac-
tion as fixed effect and Subject as random effect. Model was fitted to
data of the experimental phase, with Feedback coded as deceptive or
informative.

The model used was:

Accuracy ~ IE x Feedback + (1|Subject). (6)

The same model was fitted to data including both experimental
and control phases. This time, Feedback was coded as deceptive, in-
formative or none. The model used was:

Accuracy ~ IE x Feedback + (1/Subject). (7)

To measures the effect of external cues on reported confidence, Ac-
curacy was modelled using generalized mixed-effect model with Con-
fidence and Feedback as fixed effect and Subject as random effect
following the original formula:

Accuracy ~ Confidence x Feedback + (1|Subject). (8)

Before we analysed the effect of internal decision evidence consis-
tency on confabulation, we verified that accuracy of introspective re-
ports do not separate confabulation from accurate reports the same
way following informative and a deceptive feedback. We model log
transformed consistency using a linear mixed effect model with Accu-
racy, Feedback and Confidence as fixed effects and Subject as random
effect. The model used was:

Consistency ~ Accuracy x Confidence x Feedback + (1|Subject).
(9)

As we report a significant triple interaction, we then looked specifi-
cally at trials followed by deceptive feedback because in this condition
incorrect reports correspond to confabulation. We do so by fitting lin-
ear mixed effect models to trials followed by deceptive feedback with
log-transformed Consistency as dependant variable, Accuracy and
Confidence as fixed effect and Subject as random effect. The model
used was:

Consistency ~ Accuracy x Confidence + (1|Subject). (10)

We reproduced the former analyses for trials followed by informa-
tive feedback. The model used was:

Consistency ~ Accuracy x Confidence + (1/Subject). (11)
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Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.03 0.79 — 1.35 0.22 0.827
IE 1.19 1.13 — 1.26 6.34 <0.001
Feedback [De- 0.86 0.67 — 1.12 -1.12 0.264
ceptive]

Feedback [Infor- 1.55 1.19 — 2.02 3.27 0.001
mative]

IE * Feedback 0.95 0.88 — 1.02 -1.47 0.143
[Deceptive]

IE *  Feed- 0.98 0.91 — 1.05 -0.66 0.508
back[Informative]

RANDOM EFFECTS

02 3-29
Too Subject 0.13
ICC 0.04
Nsubject 16

Observations 4911

Marginal R? / 0.059 / 0.096
Conditional R?

Table 1

As a sanity check, we modelled the occurrence of a late and poten-
tially undecoded change of mind by fitting a generalized mixed-effect
model to all our data using Confidence Feedback and Accuracy as
fixed effect and Subject as a random effect. The model used was:

ChangeofMind ~ Confidence x Feedback x Accuracy + (1|Subject)
(12)

We then rerun analysis presented respectively in Table 3 and Table
5 to control that the observed effects were not attributable to a larger
proportion of non decoded late change of mind in high confidence
condition.
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Accuracy
PREDICTORS ODDS RATIOS CI Z-VALUE P

(Intercept) 1.33 1.11 — 1.60 3.12 0.002
Confidence.L 0.61 0.55 — 0.68 -9.44 <0.001
Feedback [Infor- 1.93 1.74 — 2.15 12.34 <0.001
mative]

Confidence * 3.46 2.98 — 4.01 16.37 <0.001
Feedback

RANDOM EFFECTS

02 3.29
Too Subject 0.22
ICC 0.06
Nsubject 30

Observations 6956

Marginal R? / 0.084 / 0.141
Conditional R?

Table 2
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Consistency

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.18 0.09 — 0.27 3.95 <0.001
Accuracy [Cor- 0.33 0.25 — 0.42 7.64 <0.001
rect]

Feedback [In- 0.03 -0.07 — 0.13 0.58 0.564
formative]
Confidence.L -0.11 -0.20 — -0.02 -2.37 0.018
Accuracy -0.02 -0.15 — 0.10 -0.38 0.705
*Feedback
Accuracy 0.18 0.06 — 0.30 3.01 0.003
:Confidence
Feedback 0.14 -0.00 — 0.29 1.96 0.050
:Confidence
Accuracy -0.24 -0.42 — -0.06 -2.62 0.009
:Feedback
:Confidence
RANDOM EFFECTS
02 1.49
Too Subject 0.03
ICC 0.02
Nsubject 30
Observations 6956
Marginal R? / 0.017 / 0.038
Conditional R?
Table 3
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Consistency

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.17 0.08 — 0.26 3.56 <0.001
Confidence.L -0.11 -0.20 — -0.02 -2.29 0.022
Accuracy [Cor- 0.36 0.27 — 0.44 7.82 <0.001
rect]
Confidence * 0.18 0.06 — 0.30 2.86 0.004
Accuracy
RANDOM EFFECTS
02 1.57
Too Subject 0.03
ICC 0.02
N Subject 30
Observations 3469

Marginal R? /
Conditional R?

0.021 / 0.042

Table 4
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Consistency

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.21 0.10 — 0.31 3.81 <0.001
Confidence.L 0.03 -0.08 — 0.14 0.51 0.611
Accuracy [Cor- 0.32 0.22 — 0.41 6.73 <0.001
rect]

Confidence.LL * -0.05 -0.18 — 0.08 -0.73 0.468
Accuracy

RANDOM EFFECTS

02 1.39

Too Subject 0.04

ICC 0.03

Nsubject 30

Observations 3487

Marginal R? /
Conditional R?

0.014 / 0.042
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Change of Mind

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.07 0.06 —0.09  -24.64 <0.001
Confidence.L 1.37 1.02 — 1.84 2.07 0.038
Accuracy [Cor- 0.54 0.39 — 0.75 -3.76 <0.001
rect]
Feedback [Infor- 0.96 0.69 — 1.35 -0.21 0.835
mative]
Confidence * Ac- 0.57 0.37 — 0.90 -2.42 0.016
curacy
Confidence * 0.63 0.39 — 1.02 -1.89 0.059
Feedback
Accuracy * 0.87 0.54 — 1.41 -0.57 0.569
Feedback
Confidence * Ac- 2.74 1.39 — 5.40 2.91 0.004
curacy * Feed-
back
RANDOM EFFECTS
02 3-29
Too Subject 0.00
Nsubject 30
Observations 6956
Marginal R? / 0.041 / NA
Conditional R?

Table 6
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Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.38 1.14 — 1.66 3.31 0.001
Feedback [Infor- 1.94 1.74 — 2.16 12.06 <0.001
mative]

Confidence.L 0.63 0.57 — 0.70 -8.62 <0.001
Feedback :Confi- 3.28 2.81 — 3.82 15.19 <0.001
dence

RANDOM EFFECTS

02 3.29
Too 0.24
ICC 0.07
N Subject 30

Observations 6620

Marginal R? / 0.080 / 0.143
Conditional R?

Table 7
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Consistency

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.23 0.13 — 0.33 4.64 <0.001
Confidence.L -0.11 -0.21 — -0.02 -2.34 0.019
Accuracy [Cor- 0.33 0.24 — 0.42 7.14 <0.001
rect]
Confidence.L * 0.18 0.05 — 0.30 2.75 0.006
Accuracy

RANDOM EFFECTS

02 1.55

Too Subject 0.04
ICC 0.02
Nsubject 30
Observations 3286
Marginal R? / 0.019 / 0.043

Conditional R?

Table 8
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EXTENDED DATA FOR CHAPTER 4

C.1 RESULTS
c.1.1  Number of random versus determined reports.

Participants report an equal amount of determined (M=58.2, SEM=14.0)
and random (M=65,6 SEM=12.4) choice in inclusive trials paired t-
test t=-0.3, p=0.8, Cohen’s d =o0.17. Same was true for exclusive tri-
als where determined choice (M=65.7,SEM=12.6) and random choice
(M=56.6, SEM=8.9) were reported at comparable frequency (paired
t-test t=-0.45, p=0.6, Cohen’s d =0.27).

c.1.2  AAS level does not reflect a successful decision phase.

Noteworthy an alternative interpretation of those results could be
that participants are mostly aware of the content of their deliberation
but barely succeed to correctly attend the desired item in the post-cue
period. AAS would therefore reflect a successful decision phase. To
control for this alternative explanation, we look at the impact of AAS
on participants” accuracy. We conduct this analysis both for experi-
ment 1 and 2. In both case, AAS does affect the accuracy during exclu-
sion trials (experiment 1: GLME, OR: 1.07, CL:[1-1.14],x?=4.2 , p<0.05
; experiment 2: GLME, OR: 1.14, CI:[1.06—1.23],XZ:11.5 , p<0.001; see
Figure 22A). However, should AAS reflect the ability to focus on the
desired item, we would expect it to also influence accuracy in in-
clusion trials. As shown in Figure 22B, that was neither the case in
experiment 1 (GLME, OR: 0.95, CL[o.89-1.01],x?=2.5 , p>0.1) nor in
experiment 2 (GLME, OR: 1, CI:[0.92-1.08],)(2 =4.7%1075, p=0.99) .

We complete our control analysis by looking at the impact of AAS
on the relationship between accuracy and IB for inclusion trials re-
ported as determined choices. Again, should AAS reflect the ability
to focus on the desired item, we would expect it to also influence the
effect of IB on accuracy in inclusive trials. We found no effect of the in-
teraction between IB and AAS on accuracy (see Figure 22D) (GLMER,
OR:1.11, Cl:[0.72-1.71],x%=0.22 , p=0.6). Along with the good perfor-
mance of our decoding model (M=76.2, SEM= 2.2) checked by cross-
fold validation, we conclude that the effect of AAS on accuracy does
not reflect a mere improvement in the use of the BCI setup.
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Accuracy does not reflect a mere success in using BCI setup.

(a-b)Influence of post-cue attention allocation strength (AAS) on
accuracy for experiment 1 (light purple) and 2 (dark purple) in
exclusive (a) and exclusive (b) trials. For each participant, we com-
puted the distribution of AAS across all trials in terms of per-
centile. (c-d)Impact of decision neural precursor (IB) on accuracy
for different levels of post cue attention allocation strength (AAS)
in inclusive trials. Trials were sorted following subjective report
with random choice report (a) and determined choice report (b)
respectively. Data are presented in the same way they are on Fig-

ure 12.

C.2 METHODS AND TABLES

To assess a potential effect of pre-cue deliberation on subsequent
free decisions, we modelized accuracy using generalized mixed-effect
model (GLME) with IB and the nature of the cue as fixed effect and

the identity of participants as random effect (Table 9).

After reduction, the model used was:

Accuracy ~ IB x Cue + (1|Subject).

Since the interaction terms reveal a different relationship between
IB and accuracy in inclusive and exclusive trials, we run two separate

GLME model for each type of cue (Table 10,Table 11).
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C.2 METHODS AND TABLES

Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.14 1.00 — 1.31 1.92 0.055
IB 1.26 1.08 — 1.47 2.95 0.003
Cue [Exclusive] 0.80 0.65 — 0.97 -2.24 0.025
IB * 0.67 0.54 — 0.84 -3.51 <0.001
Cue[Exclusive]

RANDOM EFFECTS

02 3.29
Too Subject 0.00
Nsubject 13
Observations 3246
Marginal R? / 0.022 / NA

Conditional R?

Table 9: Experiment 1, all data.

After reduction, the model used was:

Accuracy ~ IB + (1|Subject). (14)

The exact same analyses were repeated in our second experiment
(Table 12,Table 13,Table 14):

We then investigate whether subjective reports reflected partici-
pants awareness by measuring the impact of reports on accuracy. We
run the analyses for inclusive and exclusive trials separately since
accuracy only in exclusive trial did accuracy reflects a conscious pro-
cessing of early deliberations.

We first model the impact of IB on accuracy as a function of re-
ported choice. We used a GLME with IB and report as fixed effect
and participants as a random effect. (Inclusive trial Table 15. Exclu-
sive trial Table 16)

After reduction, the model used was:

Accuracy ~ IB x Report + (1|Subject). (15)

To evaluate the difference of impact of IB on accuracy for report of
random and determined choice, we separate our data depending of
the participants’ reports (Table 17,Table 18,Table 19,Table 20).

After reduction, the model used was:

Accuracy ~ IB + (1|Subject). (16)
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Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.16 0.98 — 1.37 1.78 0.075
1B 1.27 1.08 — 1.48 2.95 0.003

RANDOM EFFECTS

02 3.29
Too Subject 0.02
ICC 0.01
Nsubject 13

Observations 1622

Marginal R?> /  0.007 / 0.014
Conditional R?

Table 10: Inclusve Cue

We then investigate the respective impact of early decision content
and neural signal variability on participants” subjective reports. We
used a Cumulative linked mixed effect model (CLMM) to regress the
reports with IB and Variability as fixed effects and participants as ran-
dom effect. The report were coded as follow: 1) Random choice high
confidence, 2) Random choice low confidence, 3) Determined choice
low confidence, 4) Determined choice high confidence (Table 21).

After reduction, the model used was:
Report ~ IB + Variability + (1|Subject). (17)

Finally, we assess the effect of post-cue attentional allocation on
awareness of early deliberation. We model using GLME the impact
of AAS on the relationship between IB and accuracy. We conducted
this analysis separately in inclusive and exclusive trials as only the
latter track participants awareness (Table 22,Table 23).

After reduction, the model used was:

Accuracy ~ IB x AAS + (1|Subject). (18)
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C.2 METHODS AND TABLES

Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.91 0.77 — 1.08 -1.07 0.287
IB 0.84 0.71 — 0.99 -2.13 0.033
RANDOM EFFECTS
02 3-29
Too Subject 0.02
ICC 0.01
Nsubject 13
Observations 1624
Marginal R?> /  0.003 / 0.010
Conditional R?

Table 11: Exclusive Cue.

Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.40 1.12 — 1.74 2.98 0.003
IB 1.28 1.14 — 1.45 4.05 <0.001
Cue [Exclusive] 0.75 0.64 — 0.88 -3.54 <0.001
IB * 0.69 0.59 — 0.82 -4.36 <0.001
Cue[Exclusive]
RANDOM EFFECTS
02 3-29
Too Subject 0.09
ICC 0.03
Nsubject 10
Observations 2479
Marginal R? / 0.017 / 0.044

Conditional R?

Table 12: Experiment 2, all data
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Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.40 1.14 — 1.71 3.28 0.001
IB 1.28 1.14 — 1.45 4.04 <0.001
RANDOM EFFECTS
02 3.29
Too Subject 0.07
ICC 0.02
Nsubject 10
Observations 1240
Marginal R? / 0.017 / 0.038
Conditional R?

Table 13: Inclusive Cue
Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.04 0.84 — 1.29 0.36 0.722
IB 0.89 0.79 — 1.00 -2.05 0.041
RANDOM EFFECTS
02 3-29
Too Subject 0.09
ICC 0.03
Nsubject 10
Observations 1239

Marginal R? /
Conditional R?

0.004 / 0.030
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C.2 METHODS AND TABLES

Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.42 1.17 — 1.72 3.55 <0.001
report.L 1.15 0.95 — 1.38 1.47 0.141
IB 1.31 1.16 — 1.48 4.24 <0.001
report.L * IB 1.16 0.97 — 1.38 1.62 0.105
RANDOM EFFECTS
02 3-29
Too Subject 0.06
ICC 0.02
Nsubject 10
Observations 1240
Marginal R? / 0.024 / 0.041
Conditional R?

Table 15: Inclusive Cue

Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.04 0.84 —1.29 0.34 0.734
IB 0.88 0.79 — 0.99 -2.17 0.030
report.L 0.99 0.83 - 1.19 -0.09 0.931
IB : report.L 1.20 1.02 — 1.42 2.23 0.026
RANDOM EFFECTS
02 3-29
Too Subject 0.08
ICC 0.03
Nsubject 10
Observations 1239
Marginal R? /  0.009 / 0.034

Conditional R?

Table 16: Exclusive Cue
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Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.25 1.07 — 1.45 2.79 0.005
IB 1.17 1.00 — 1.37 1.97 0.049
RANDOM EFFECTS
02 3-29
Too Subject 0.00
Nsubject 10
Observations 656
Marginal R? / 0.008 / NA
Conditional R?

Table 17: Inclusive cue, Random choice.
Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.99 0.84 — 1.16 -0.14 0.885
IB 0.77 0.65 — 0.90 -3.13 0.002
RANDOM EFFECTS
02 3.29
Too Subject 0.00
Nsubject 10
Observations 577
Marginal R? / 0.022 / NA

Conditional R?

Table 18: Exclusive cue, Random choice.
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C.2 METHODS AND TABLES

Accuracy
PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.54 1.14 — 2.07 2.82 0.005
IB 1.45 1.20 — 1.76 3.80 <0.001
RANDOM EFFECTS
02 3.29
Too Subject 0.12
ICC 0.04
Nsubject 9
Observations 584
Marginal R? / 0.036 / 0.070

Conditional R?

Table 19: Inclusive cue, Determined choice.

Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 1.00 0.75 — 1.34 0.02 0.987
IB 1.00 0.86 — 1.17 0.03 0.972
RANDOM EFFECTS
02 3-29
Too Subject 0.14
ICC 0.04
Nsubject 10
Observations 662

Marginal R? /
Conditional R?

0.000 / 0.040

Table 20: Exclusive cue, Determined choice.
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Report

PREDICTORS ODDS RATIOS CI Z-VALUE P
112 0.40 0.20 — 0.79 -2.63 0.009
213 1.21 0.61 —2.39 0.55 0.583
314 6.09 3.07 — 12.08 5.16 <0.001
IB 0.98 0.91 — 1.05 -0.54 0.590
Variability 0.87 0.78 — 0.96 -2.80 0.005
RANDOM EFFECTS

02 3-29

Too Subject 1.21

ICC 0.27

Nsubject 10

Observations 2479

Marginal R? /
Conditional R?

0.003 / 0.271

124

Table 21: All data



C.2 METHODS AND TABLES

Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.89 0.60 — 1.30 -0.62 0.536
AAS 1.17 0.82 — 1.67 0.86 0.392
IB 0.67 0.45 — 0.98 -2.07 0.039
AAS * 1B 1.70 1.16 — 2.49 2.72 0.007
RANDOM EFFECTS
02 3-29
Too Subject 0.08
ICC 0.02
Nsubject 10
Observations 667
Marginal R? / 0.054 / 0.075
Conditional R?

Table 22: Exclusive Cue

Accuracy

PREDICTORS ODDS RATIOS CI Z-VALUE P
(Intercept) 0.93 0.62 — 1.39 -0.35 0.724
AAS 1.04 0.71 — 1.53 0.19 0.846
IB 1.73 1.11 — 2.69 2.43 0.015
AAS * 1B 1.11 0.72 — 1.70 0.47 0.636
RANDOM EFFECTS
02 3-29
Too Subject 0.06
ICC 0.02
Nsubject 9
Observations 593
Marginal R? /  0.049 / 0.067

Conditional R?

Table 23: Inclusive Cue
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Abstract

When we make a free choice, we feel conscious and in control of our decision pro-
cesses. However, over the past decades, studies on introspection demonstrated that
our self-knowledge faculties are crippled by illusory content. In Part i, we suggest
that introspection can be framed as a hierarchically organized inference process and
we proposed an innovative methodological approach to challenge this hypothesis.
We used a free decision paradigm in which no high order nor low motor level
processing were solicited. Further, we track in real time internal decision variables
through a Brain Computer Interface (BCI), and probe both implicitly and explicitly
participants’ decision awareness. The present thesis investigates two main questions.
First, what are the conditions for people to be aware of their impending decisions?
Second, does people’s introspections access genuine mental activity or are they pure
retrospective illusions? Our results suggest that despite the general impression of
a rich internal life, people are only partially aware of their impending decisions.
If they can consciously track their upcoming decisions, they have no conscious ac-
cess to those decisions’ content. Yet, when recalling their recent choices, people can
access internal representation of the chosen alternative. However, our results sug-
gest that introspection has no privileged access to internal decision variables but
rather stem from an integrative process involving both endogenous and exogenous
cues. Introspective illusions thus reflect an imbalanced integration process, where
weak and noisy internal variables are dominated by deceptive feedback. Overall, the
present thesis provides new insights and methodological tools for the study of deci-
sion awareness emergence. Our results converge toward the idea that self-knowledge
of decision is a hierarchically organized Bayesian inference process involving multi-
ple cues.

Résumé

Nous concevons d’ordinaire nos choix comme conscients et sous notre controle.
Toutefois, de nombreuses études montrent que nos processus introspectifs sont large-
ment illusoires. Dans notre premiére partie, nous proposons que l'introspection peut
étre conceptualisée comme un processus d’inférence hiérarchique, et nous avangons
une nouvelle approche pour en étudier les mécanismes sous-jacents. A cette fin,
nous employons un protocole de prise de décision dans lequel les sujets ne peuvent
accéder ni a leurs informations motrices, ni a des informations de haut niveau. En
outre, nous mesurons les signaux neuronaux impliqués dans la prises de décision
ainsi que la conscience que les sujets ont de leurs décisions. Cette these se penche
sur deux questions: Premiérement sous quelles conditions peut-on étre conscient de
ses décisions? Deuxiémement pouvons nous accéder a nos processus mentaux par
I'introspection, ou cette derniere n’est elle qu'une illusion? Nos résultats suggerent,
qu’en dépit d'un sentiment de richesse subjective, nous n’avons qu'un acces partiel
aux contenus de nos décisions. Si 1’'on peut savoir qu'une décision est imminente,
son contenu échappe a la conscience. Toutefois, les sujets peuvent accéder a une
représentation interne de leur choix a posteriori. Nos résultats soulignent cependant
que cet acces reflete un processus intégratif au terme duquel notre introspection
assimile a la fois des données internes et des informations exogeénes. Les illusions
introspectives sont dés lors le résultats d’une intégration déséquilibrée entre ces dif-
férents éléments. En conclusion, cette these offre de nouvelles perspectives ainsi que
des outils méthodologiques pour 1'étude de I"émergence de la conscience des déci-
sions. Nos résultats convergent vers l'idée que la connaissance de soi est un pro-
cessus d’inférence bayésien organisé hiérarchiquement et impliquant de multiples
informations.

Benjamin Rebouillat: Beyond introspective illusions, a Brain Computer
Interface approach to decision awareness, , © September 2020



RESUME

Nous concevons d’ordinaire nos choix comme conscients et sous notre contréle. Toutefois, de nombreuses
études montrent que nos processus introspectifs sont largement illusoires. Dans notre premiére partie,
nous proposons que l'introspection peut étre conceptualisée comme un processus d’inférence hiérarchique,
et nous avangons une nouvelle approche pour en étudier les mécanismes sous-jacents. A cette fin, nous
employons un protocole de prise de décision dans lequel les sujets ne peuvent accéder ni a leurs
informations motrices, ni a des informations de haut niveau. En outre, nous mesurons les signaux
neuronaux impliqués dans la prises de décision ainsi que la conscience que les sujets ont de leurs
décisions. Cette thése se penche sur deux questions: Premieérement sous quelles conditions peut-on étre
conscient de ses décisions? Deuxiemement pouvons nous accéder a nos processus mentaux par
l'introspection, ou cette derniere n’'est elle qu’une illusion? Nos résultats suggérent, qu'en dépit d'un
sentiment de richesse subjective, nous n’avons qu’un acces partiel aux contenus de nos décisions. Si I'on
peut savoir qu'une décision est imminente, son contenu échappe a la conscience. Toutefois, les sujets
peuvent accéder a une représentation interne de leur choix a posteriori. Nos résultats soulignent cependant
que cet acces reflete un processus intégratif au terme duquel notre introspection assimile a la fois des
données internes et des informations exogenes. Les illusions introspectives sont dés lors le résultats d’'une
intégration déséquilibrée entre ces différents éléments. En conclusion, cette thése offre de nouvelles
perspectives ainsi que des outils méthodologiques pour I'étude de I'émergence de la conscience des
décisions. Nos résultats convergent vers I'idée que la connaissance de soi est un processus d’inférence
bayésien organisé hiérarchiquement et impliquant de multiples informations.
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ABSTRACT

When we make a free choice, we feel conscious and in control of our decision processes. However, over
the past decades, studies on introspection demonstrated that our self-knowledge faculties are crippled by
illusory content. In Part i, we suggest that introspection can be framed as a hierarchically organized
inference process and we proposed an innovative methodological approach to challenge this hypothesis.
We used a free decision paradigm in which no high order nor low motor level processing were solicited.
Further, we track in real time internal decision variables through a Brain Computer Interface (BCI), and
probe both implicitly and explicitly participants’ decision awareness. The present thesis investigates two
main questions. First, what are the conditions for people to be aware of their impending decisions? Second,
does people’s introspections access genuine mental activity or are they pure retrospective illusions? Our
results suggest that despite the general impression of a rich internal life, people are only partially aware of
their impending decisions. If they can consciously track their upcoming decisions, they have no con scious
access to those decisions’ content. Yet, when recalling their recent choices, people can access internal
representation of the chosen alternative. However, our results suggest that introspection has no privileged
access to internal decision variables but rather stem from an integrative process involving both endogenous
and exogenous cues. Introspective illusions thus reflect an imbalanced integration process, where weak
and noisy internal variables are dominated by deceptive feedback. Overall, the present thesis provides new
insights and methodological tools for the study of decision awareness emergence. Our results converge
toward the idea that self-knowledge of decision is a hierarchically organized Bayesian inference process
involving multiple cues.
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