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Résumé

Nous étudions la cohomologie de certaines variétés de caractéres et de leurs analogues
additifs, les variétés de carquois en forme de comeéte. Ces variétés de caracteres clas-
sifient les représentations du groupe fondamental d’une surface de Riemann épointée
avec monodromie prescrite autour des points. Le polynome de Poincaré pour la co-
homologie d’intersection a support compact est calculé. Des actions de groupes de
Weyl sur les escpaces de cohomologie sont également étudiées. Des traces de ces ac-
tions apparaissent comme certain coefficients de structure d’une algeébre engendrée
par les polynémes de Kostka modifiés.

Mots-clefs : Variétés de caractéres, variétés de carquois, groupe de Weyl, co-
homologie d’intersection.

Abstract

We study the cohomology of some character varieties and their additive analogous,
comet-shaped quiver varieties. Those character varieties classify representations
of the fundamental group of a punctured Riemann surface with prescribed mon-
odromies around the punctures. The Poincaré polynomial for compactly supported
intersection cohomology is computed. Weyl group actions on the cohomology spaces
are also studied. Some traces of those actions are related to particular structure co-
efficients of an algebra spanned by modified Kostka polynomials.

Keywords: Character varieties, quiver varieties, Weyl group, intersection coho-
mology.
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Résumé en francais

Les variétés de caractéres étudiées dans cette thése classifient les systémes locaux de
rang n sur une surface de Riemann de genre g, épointée en k points (p;j)i<j<i. La
monodromie autour du point p; étant dans la cloture Ej d’une classe de conjugaison
C, fixée dans GL,(C). La variété de caractére est alors une variété affine définie par
la théorie géométrique des invariants :

Me = {(A1,B1,..., Ay, By, X1,..., X}) € GLY XCy X -+ x Cy]
ABIAT'BT L ABA BT X L. X, =1d} // GL,

avec GL,, agissant par conjugaison termes-a-termes. Une condition de généricité est
imposée sur le k-uplet de classes de conjugaison. Cette condition permet d’obtenir
un quotient avec des bonnes propriétés (voir 3.5.2). Nous étudions la cohomolo-
gie de ces variétés. Comme elles sont singuliéres, il est intéressant d’étudier leurs
cohomologie d’intersection. Nous calculons le polynéme de Poincaré pour la coho-
mologie d’intersection & support compact de ces variétés de caractéres. Ce polynéme
de Poincaré encode dans ses coefficients la dimension des espaces de cohomologie
d’intersection a support compact I H, (Méa@z) :

P.(Mg,v) == Zdim [H! (Mg, Q) v"

Lorsque les classes de conjugaison sont semisimples (diagonalisables), elles sont alors
fermées et la variété Mg est lisse. La cohomologie d’intersection coincide alors avec
la cohomologie usuelle. Cette cohomologie a été largement étudiée dans différents
contextes.

0.1 Cohomologie des variétés de caractéres : état
de 'art

0.1.1 Un seul point marqué avec monodromie centrale

Un premier cas intéressant est lorsqu’il n’y a qu’un seul point marqué et que la mon-
odromie associée est centrale. La condition de généricité impose a la monodromie la
forme e~ %" Id avec d,n premiers entre eux. La variété de caractére est alors dénotée
M%. Lindice B fait référence a 1’espace de modules de Betti. La théorie de Hodge
non-Abélienne relie cet espace de modules & un espace de modules de Dolbeault
M3, Ceci peut étre vu comme une généralisation du résultat de Narasimhan-
Seshadri [NS65] reliant représentations unitaires du groupe fondamental et fibrés
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holomorphes. M4, , est I'espace de modules des fibrés de Higgs stables de rang
n et degré d. La théorie de Hodge non-Abélienne est prouvé en rang n = 2 par
Hitchin |Hit87] et Donaldson [Don87|. Elle a été généralisée & n’importe quel rang
par Corlette [Cor88| et Simpson [Sim88|. La correspondence est obtenue comme un
homéomorphisme entre espaces de modules par Simpson [Sim94a; Sim94b)].

De nombreux calculs de cohomologies sont fait du c6té Dolbeault. Tout d’abord
Hitchin [Hit87] a calculé le polynéme de Poincaré pour n = 2. Gothen [Got94] a
généralisé le calcul au rang n = 3. Hausel-Thaddeus [HT03b; HT04] ont calculé
I’anneau de cohomologie en rang n = 2. Garcia-Prada, Heinloth, Schmitt ont donné
un algorithme récursif pour calculer les motifs de I’espace de modules de Dolbeault.
Ils ont calculé une expression explicite en rang n = 4. Garcia-Prada, Heinloth
[GH13] ont calculé une expression explicite pour le genre-y pour n’importe quel
rang.

Il apparait dans ces derniers exemples qu’il existe des informations cohomologiques
plus précises que le polynéome de Poincaré. Les variétés de caractéres sont affines,
par les travaux de Deligne [Del71], leurs cohomologie est dotée d'une structure de
Hodge mixte. La théorie de Hodge non-Abélienne ne préserve pas cette structure
de Hodge mixte. De Cataldo-Hausel-Migliorini [CHM12| ont conjecturé que par la
théorie de Hodge non-Abélienne, la filtration par le poids correspond & une filtration
perverse induite par la fibration de Hitchin. C’est la conjecture P = W. Ils I'ont
prouvé en rang n = 2. Récemment, de Cataldo-Maulik-Shen [CMS19| ont prouvé
cette conjecture en genre g = 2 pour n’importe quel rang.

Un moyen efficace de calculer des invariants cohomologiques et de compter le
nombre de points d’une variété algébrique sur un corps fini. Du coté Betti, Hausel
Rodriguez-Villegas [HR08| ont donné une formule conjecturale pour le polynéme de
Hodge mixte des variétés de caractéres avec un point marqué et une monodromie
centrale générique. Ils ont prouvé la spécialisation au E-polynéme de cette conjec-
ture en comptant les points de la variété de caractére sur un corps fini. Avec une
approche similaire Mereb [Merl5| a calculé le E-polynome pour les SL,, variétés de
caracteres.

Schiffmann [Sch16] a calculé le polynéme de Poincaré de I'espace de modules de
Dolbeault en comptant les fibrés de Higgs sur un corps fini. Dans les articles suivants
[MS14; MS20] Mozgovoy-Schiffmann ont étendu ce décompte a des fibrés de Higgs
tordus. Chaudouard-Laumon [CL16] ont compté les fibrés de Higgs en utilisant des
formes automorphes.

Mellit [Mell7b| a prouvé que la formule obtenue par Schiffmann [Sch16| est
équivalente a la spécialisation au polyndéme de Poincaré de la conjecture de Hausel
et Rodriguez-Villegas [HR08]. Fedorov-Soibelman-Soibelman [FSS17| ont calculé les
motifs du champ des fibrés de Higgs semistables.

0.1.2 Surface de Riemann épointées en un nombre quelconque
de points et monodromies arbitraires

Logares-Munoz-Newstead [LMN12] ont calculé le E-polynome des variétés de carac-
téres pour SLy et genre g = 1, 2. Ils considérent un point marqué et n’importe quelle

sty 2

certains nombres de Hodge lorsque g = 1. Logares-Munoz [LM13| généralisent ces
résultats pour g = 1 et deux points marqués. Ils calculent le F-polyndme et certains
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nombres de Hodge. Martinez-Munoz [MM14a; MM14b] calculent le E-polynéme
pour des SL, variétés de caractéres pour n’importe quel genre et n’importe quelle
classe de conjugaison. Martinez [Marl7| traite ensuite le cas des PGLy variétés
de caractéres. Simpson [Sim90| généralise la théorie de Hodge non-Abélienne aux
variétés de caractéres pour les surfaces épointées et des monodromies arbitraires.
La généralisation est encore plus large car elle concerne les systémes locaux filtrés.
Ils correspondent & des fibrés de Higgs paraboliques du coté Dolbeault. L’espace
des modules des fibrés de Higgs paraboliques a été construit algébriquement par
Yokogawa [Yok93|. Certains de ces espaces de modules ont également été construit
analytiquement par Konno [Kon93| et par Nakajima [Nak96|. Ces constructions an-
alytiques fournissent la théorie de Hodge non-Abélienne comme un difféomorphisme.
Biquard-Boalch [BB04] ont construit une version plus générale : la théorie de Hodge
non-Abélienne sauvage. Biquard, Garcia-Prada et Mundet i Riera [BGM15| ont
généralisé la version filtrée de la théorie de Hodge non-Abélienne & une large famille
de groupes.

Hausel, Letellier et Rodriguez-Villegas [HLR11| ont proposé une conjecture pour
le polynome de Hodge mixte des variétés de caractéres pour des classes de conju-
gaison semisimples. Ils prouvent la spécialisation au E-polynéme en comptant le
nombre de points de la variété sur un corps fini. Chuang-Diaconescu-Pan [CDP14] et
Chuang-Diaconescu-Donagi-Pantev [Chu-+15| proposent une interprétation de cette
conjecture en théorie des cordes. Cette approche est également appliquée & des var-
iétés de caractéres sauvages par Diaconescu [Dial7| et Diaconescu-Donagi-Pantev
[DDP18|. Une autre approche repose sur des relations récursives pour différents gen-
res. Elle est utilisée par Mozgovoy [Mozl1|, Carlsson et Rodriguez-Villegas [CR18].
Gonzalez-Prieto |[Gon18| a développé une théorie quantique des champs topologique
associée aux variétés de caractéres.

Mellit [Mell7a| a prouvé la spécialisation de la conjecture de [HLR11]| relative
au polynome de Poincaré en comptant les fibrés de Higgs paraboliques sur des corps
finis. Ce résultat est de la plus haute importance pour cette thése. C’est le point de
départ pour le calcul de la cohomologie d’intersection pour les variétés de caractéres
avec des monodromies dans des classes de conjugaison quelconques.

0.2 Cohomologie d’intersection des variétés de car-
acteéres

0.2.1 Polynoéme de Poincaré

Letellier [Let13] donne une formule conjecturale pour le polyndéme de Hodge mixte
des variétés de caracteres Mg, pour des classes de conjugaison génériques de n’importe
quel type. Cette formule généralise celle de [HLR11] valable pour des classes de con-
jugaison semisimples. Elle fait également intervenir le noyau HZLV. Ce noyau vit
dans

Sym [X;] © -+~ ® Sym [X]

avec Sym [X;] 'espace des fonctions symétriques en X; un jeu de variable infini. La
spécialisation de la conjecture de Letellier au polynéme de Poincaré est la formule
suivante :

P. (Mg;v) = v® (s, HI? (=1,0)). (1)

12



p encode le type de Jordan des classes de conjugaison, voir (3.36). d,, est la dimen-
sion de la variété Mg, la fonction symétrique s,/ est une variante des fonctions de
Schur, sa définition est rappelé dans (3.47). Un aspect intéressant de cette conjec-
ture est que peu importe le k-uplet de classes de conjugaison fixé, la cohomologie
est encodée dans le méme objet HZLV,

Mellit [Mell7a| a calculé le polynéme de Poincaré lorsque les classes de con-
jugaison sont semisimples. Soit & = (Si,...,Sk) un k-uplet générique de classes
conjugaison semisimples. Le type de Jordan de ce k-uplet est détérminé par k par-
titions v',...,v*. Les parties de la partition 7/ sont les multiplicités des valeurs
propres distinctes de S;. Le résultat de Mellit est un cas particulier de la conjecture
conjecture:

P.(Ms;v) = o™ (h,, HI"V(=1,0)). (2)

avec h,, la fonction symétrique
hy == ha[Xq] .o e [ X

Les fonctions symétriques complétes (hy[X]),op forment une base de I'espace des
fonctions symétriques de degré n. L’ensemble des partitions d’un entier n est noté
P,.. Les matrices de transitions entre les bases usuelles de 'espace des fonctions
symétriques sont bien connues, elles sont par exemple dans le livre de Macdon-
ald [Macl5]. Il est donc aisé d’exprimer s,/ en fonction de h,. Pour calculer le
polynoéme de Poincaré des variétés de caracteres avec n'importe quel type de classes
de conjugaison, il suffit de comprendre les relations combinatoires entre ces fonctions
symétriques en terme de relations géométrique entre Mg et M. Letellier a obtenu
une relation de ce type, mais entre Mg et une résolution des singularité de Mg.

0.2.2 Théorie de Springer et résolutions des variétés de car-
actéres

Logares-Martens [LMO0S8| ont construit des résolutions de Grothendieck-Springer
pour l'espace des modules des fibrés de Higgs paraboliques. Letellier [Let13| a con-
struit des résolutions des singularités des variétés de caractéres

ML,P,o- — Ma.

La construction de M rL.po est rappelée en 3.5.11, elle repose sur la théorie de
Springer. Cette théorie due a Springer [Spr76] entreméle géométrie des groupes ré-
ductifs et théorie des représentations de leurs groupes de Weyl. Suite aux travaux
de Lusztig [Lus81] sur le groupe linéaire, Borho-MacPherson [BM83] construit la
correspondence de Springer en terme de cohomologie d’intersection. Lusztig définit
la notion plus générale d’induction parabolique [Lus84; Lus85; Lus86|. Letellier ap-
plique cette théorie pour obtenir des relations entre la cohomologie de résolutions
My p o et la cohomologie d’intersection de variétés de caractéres Cp ). Ces relations
sont utilisées pour prouver que plusieurs formulations de la conjecture sont équiv-
alentes |Let11, Proposition 5.7]. En terme de polynome de Poincaré cette relation
devient .

v P, (ML,pv,,,v> = Z (dim A, ) v %P, <./\/l5p’a, v) : (3)

pRp
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Cette relation géométrique est commentée en détails en 6.2, c’est le parfait avatar
d’une relation combinatoire entre différentes bases de I’espace des fonctions symétriques

hw = Z (dim Ay ) 5. (4)

P

Il s’avere que le polynéme de Poincaré de la résolution M L.p,o est égal au polynéme
de Poincaré d’une variété de caractéres avec des monodromies semisimples Mgs.
Avec le résultat de Mellit (2), ceci implique

v P, (./T/IJL,R,,, U) =v %P, (Ms,v) = (b, HI"V (-1, 0))

Les relations (1.3) (1.4) peuvent étre inversées de telle maniére que le polynéme
de Poincaré d’une variété de caractére avec des monodromies de n’importe quel
type peut étre exprimé en fonction de polynémes de Poincaré de variétés de carac-
téres avec monodromies semisimples. C’est exactement ce qui est nécessaire pour
obtenir la formule générale (1) & partir du résultat de Mellit pour des monodromies
semisimples (2).

En résumé, calculer le polynéme de Poincaré pour la cohomologie d’intersetion
des variétés de caractéres fait intervenir trois éléments :

e Le résultat de Mellit pour des monodromies semisimples (2).

e La relation de Letellier (3) entre la cohomologie de résolutions M LpPo €t la
cohomologie d’intersection de variétés de caractéres Mg.

e Une relation entre la cohomologie de My, p, et la cohomologie d'une variété
de caractére avec monodromies semisimples M.

Le dernier point est étudié¢ au chapitre 6 ot un diffeomorphisme entre la réso-
lution My, p, et une variété de caractéres avec monodromies semisimples Mg est
construit. L’existence d’un tel difféfomorphisme implique 1’égalité des polynoémes de
Poincaré. Tout d’abord le cas particulier de la sphére épointée en quatre points est
étudié. Dans ce cas les variétés de caractéres sont des surfaces cubiques données par
la relation de Fricke [FK97]. Les surfaces cubiques étant bien connues, il est aisé de
construire le difféomorphisme dans ce cas particulier.

Dans le cas général la construction du difféomorphisme repose sur des techniques
analytiques. Elles sont détaillées en 6.6.1 et reposent sur la version filtrée de la
théorie de Hodge non-Abélienne et de la correspondance de Riemann-Hilbert. Ces
correspondances sont dus a Simpson [Sim90]. Les espaces de modules donnant
la correspondance comme un difféomorphisme sont construits par Konno [Kon93|,
Nakajima [Nak96] et Biquard-Boalch [BB04| dans le cadre plus général de la théorie
de Hodge non-Abélienne sauvage. Une version filtrée de la théorie de Hodge non-
Abélienne est donnée comme un difféeomorphisme par Yamakawa [YamO8|. Une
version filtrée de la théorie de Hodge non-Abélienne est également développée pour
une large famille de groupes par Biquard, Garcia-Prada et Munder i Riera [BGM15].
Dans le chapitre 6 la version filtrée de la théorie de Hodge non-Abélienne est utilisée
pour construire un difféomorphisme entre My, p » et Mgs. Ceci permet de prouver
en 6.2 la spécialisation de la conjecture de Letellier pour le polynéme de Poincaré :
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Theorem 0.2.1. Soit C, , un k-uplet générique de classes de conjugaison dans
GL,, (les notations sont introduites en (3.36)). Le polynéme de Poincaré pour la
cohomologie d’intersection a support compact de la variété de caracteres ./\/lg‘w est

P, (Mgwr, v) =v% (s, HIPV (—1,0)) .

En plus de fournir une relation combinatoire entre des polynémes de Poincaré, un
aspect fondamental de la théorie de Springer et de I'induction parabolique de Lusztig
est d’introduire des actions de groupes de Weyl sur des espaces de cohomologie.

0.2.3 Actions de groupes de Weyl sur la cohomologie des var-
iétés de caractéres

La construction des résolutions des variétés de caractéres fait intervenir des résolu-
tions de Springer et 'induction parabolique de Lusztig. Ces résolutions apparais-
sent donc avec des actions de groupes de Weyl sur leurs cohomologies (voir Letellier
[Let13]). Ce qui est particulierment intéressant c’est que les groupes de Weyl agis-
sent sur la cohomologie sans qu’il n’y est d’action évidente sur la variété elle-méme.
Une autre action de groupes de Weyl sur la cohomologie de variétés de caracteéres est
construite par Mellit [Mel19], il s’agit d’une action par monodromie. Cette action est
rappelée au chapitre 5. Suivant une suggestion de Mellit, elle est utilisée pour cal-
culer la cohomologie d’intersection des variétés de caractéres quand une seule parmi
les k classes de conjugaison n’est pas semisimple. Ce résultat est moins général que
celui du chapitre 6 ot n’importe quel type de k-uplet de classes de conjugaison est
étudié. Cependant il a le mérite d’étre établi uniquement du coté Betti et d’éviter
un nouvel appel aux techniques analytiques de la théorie de Hodge non-Abélienne.

Comme expliqué dans les sections précédentes, de maniére a calculer la coho-
mologie d’intersection des variétés de caractéres pour des monodromies de type
quelconque, un difféomorphisme est construit entre une résolution My, p , est une
variétés de caracteres avec monodromies semisimples Ms. Ce difféomorphisme per-
met de transporter I’action & la Springer sur la cohomologie de My, p » en une action
sur la cohomologie de M. Le groupe de Weyl relatif agissant sur la cohomologie
peut s’interpréter comme le groupe des permutations des valeurs propres ayant la
méme multiplicité dans une méme classe de conjugaison S;. On peut alors obtenir
le polynome de Poincaré tordu. C’est a dire la trace de n’importe quel élément du
groupe de Weyl relatif sur la cohomologie. Le théoréme suivant est prouvé en 6.2.2.

Theorem 0.2.2. Soit ) indexant une classe de conjugaison dans le groupe de Weyl
relatif, le polynome de Poincaré n-tordu de la variété de caractéres Mg est

(Mg, v) Ztr n, H: (Ms, Q@) v" (—1)T(")vd“<7Ln,HfLV(—1,v)>.

hy et r(n) sont définies en 3.5.18.

Une approche plus satisfaisante serait de construire directement une action du
groupe de Weyl par monodromie. Comme celle construite par Mellit pour la k-iéme
monodromie.
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0.3 Versions additives des variétés de caractéres

0.3.1 Variétés de carquois en forme de cométe

Il existe une version additive des variétés de caractéres. Soit O = (Oy,...,O) un
k-uplet d’orbite adjointes dans gl, l'algébre de Lie de GL,,. L’analogue additif des
variétés de caractéres est définit comme le quotient suivant

Q5 = {(A1,B1,..., Ay, By, X1,..., Xy) € gl xOy x -+ x Oy
g

D AL B+ X :O}//GLn

i=1 j=1

avec [A;, B;| :== A;B; — B;A; le crochet de Lie. Tout comme dans le cas multiplicatif
une condition de généricité est imposée aux valeurs propres (définition 3.5.8). De
telles variétés ont été étudiées par Crawley-Boevey [Cra03b; Cra06] en genre g = 0.
Elles ont été étudiées pour des orbites semisimples par Letellier, Hausel et Rodriguez-
Villegas [HLR11]|, puis pour des orbites quelconques par Letellier [Let11].

De nombreux aspects sont plus aisés dans le cas additif. Par exemple leur
cohomologie est pure. Par conséquent, en comptant les points Letellier, Hausel
et Rodriguez-Villegas |[HLR11| puis Letellier |[Let1l] ont calculé le polynome de
Poincaré. A la différence des variétés de caractére ou seul le F-polynéme est obtenu
par cette méthode de comptage de points.

Un aspect fondamental de cet analogue additif est I'interprétation en termes de
variétés de carquois de Nakajima introduites dans [Nak94|. Suite a cette interpréta-
tion les variétés Qg sont appelées variétés de carquois en forme de comete [HLR11].

Les actions de groupes de Weyl sur la cohomologie des variétés de carquois de
Nakajima ont été étudiées par Nakajima [Nak94; Nak00|, Lusztig [Lus00| et Maffei
[Maf02]. Elles ont été utilisées pour prouver la conjecture de Kac par Letellier,
Hausel, Rodriguez-Villegas [HLR13]. Une des constructions d’actions de groupes
de Weyl repose sur la structure hyperkéihler des variétés de carquois de Nakajima.
Ces variétés sont des quotients hyperkéhler au sens de Hitchin-Karlhede-Lindstrom-
Rocek [Hit+87]. Ces quotients sont obtenues comme des quotients par un groupe
compact de la fibre d’'une application moment hyperkéihler. Une telle application
permet de construire une famille contenant a la fois des résolutions Qr p, et des
variétés Qg. L’application moment hyperkahler est une fibration localement triviale
au dessus d’un lieu régulier. C’est cette propriété qui manque pour le moment pour
les variétés de caractéres et qui permettrait de construire une action du groupe de
Weyl par monodromie dans le cas général. Cette propriété de ’application moment
hyperkahler pour les variétés de carquois de Nakajima était connue est utilisée par
des experts comme Nakajima et Maffei. Le chapitre 2 est dévoué a une preuve de
ce résultat car nous n’avons pas réussi a en trouver une dans la littérature. Dans
le chapitre 4, il est appliqué aux carquois en forme de cométe de maniére a avoir
une description unifiée des actions a la Springer et des actions par monodromie. La
combinatoire de ces actions apparait particuliérement riche.

16



0.3.2 Combinatoire des actions de groupes de Weyl sur la co-
homologie des variétés de carquois en forme de cométe

Nous étudions des aspects combinatoires de la cohomologie des variétés de cractéres
et de leurs analogues additifs. Les polynémes de Macdonald modifiés apparaissant
dans le noyau de Hausel-Letellier-Villegas HZLV on été introduit par Garsia-Haiman
[GHI96| comme une déformation des polynomes de Macadonald [Macl5|. La matrice
de transition entre les polynomes de Macdonald modifiés et les fonctions de Schur

est formée par les polynémes de Kostka modifiés (I? Ayu(q,t)> . Le fait que
A UEPn,
ce sont des polynomes en ¢,t est loin d’étre trivial. Ce résultat est connu sous

le nom de conjecture de Macdonald, c’est une conséquence de la conjecture n! de
Garsia-Haiman [GH93| prouvée par Haiman [Hai01].

Dans des notes non publiées, Rodriguez-Villegas étudie une algébre engendrée
par les polyndomes de Kostka modifiés. Les coefficients de structure cﬁ)u (q,t) de cette
algébre sont définis par

K,,K,,=Y ¢ Ky, pour tout p € P,.
v

Rodriguez-Villegas a conjecturé que ces coefficients sont en fait des polyndémes
en ¢,t a coefficients entiers. De plus il a remarqué qu’ils sont reliés au noyau de
Hausel-Letellier-Villegas. En particulier les coefficients c}:,/ apparaissent comme une
généralisation de la (g¢,t) suite de Catalan introduite par Garsia-Haiman [GH96].
Rodriguez-Villegas établit une expression pour les coefficients c}:l, similaire a la
conjecture concernant le polynome de Hodge mixte des variétés de caractéres (en

genre g = 0)
)

Dans le chapitre 4 nous prouvons qu’une spécialisation de cette formule s’interpréte
en terme de traces d’actions de groupe de Weyl sur la cohomologie de certaines
variétés de carquois en forme de cométes.

N[

oy (q:1) = (-1 <SM[X1]SV[X2]Z%[XS]h(nfl,l)[X4LH,?LV <q%,t

Theorem 0.3.1. Considérons un quadruplet générique d’orbite adjointes du type
sutvant :

e O a une seule valeur propre et pour type de Jordan i’ € P,.
e Oy a une seule valeur propre et pour type de Jordan v' € P,.
e O3 est semisimple réguliere (elle a n valeurs propres distinctes).

e O, est semisimple avec une valeur propre de multiplicité n — 1 et une valeur
propre de multiplicité 1.

Le groupe de Weyl associé a Oz est alors le groupe symétrique &,, et il agit sur la
cohomologie de Qg. Soit w un n-cycle dans ce groupe de Weyl, alors

— dim QB

o, (0t)=t— =2 > tr(w, IH (Q.Q)) t".

Le coefficient c}:,j (0,t) apparait donc comme un polynéme de Poincaré tordu par un
n-cycle.
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Un résultat similaire (théoréme 6.2.7) existe pour les variétés de caractéres et les
coefficients ¢, (1,t). Conjecturalement c,’, (¢,t) s'interpréte comme un polynome
de Hodge mixte tordu d’une résolution de variété de caractéres 4.4.3.

Il serait intéressant de trouver également une interprétation géométrique pour
les autres coefficients cl)‘W.

0.4 Plan de la thése

Le deuxiéme chapitre peut étre lu indépendamment des autres. Nous y étudions la
trivialisation locale de I’application moment hyperkihler pour les variétés de carquois
au dessus d’un lieu régulier. Ce résultat était connu et utilisé par des experts comme
Nakajima [Nak94| et Maffei [Maf02]. Une preuve est détaillée ici car nous n’avons pu
en localiser une dans la littérature. Ce résultat est appliqué aux variétés de carquois
en forme de de cométe dans le chapitre 4.

Le troisieme chapitre contient des rappels sur la géométrie et la combinatoire des
variétés de caractéres et des variétés de carquois en forme de comeéte. La plupart
des notations relatives aux classes de conjugaison, aux résolutions et aux groupes
de Weyl sont également introduites dans ce chapitre.

Dans le chapitre 4 nous étudions une famille de variétés de carquois en forme de
comete et leurs résolutions. Cette étude repose sur la trivialité locale de I'application
moment hyperkdhler rappelée au chapitre 2. Il est alors habituel dans la théorie des
variétés de carquois de construire une action de groupe de Weyl, par monodromie,
sur la cohomologie. Nous vérifions que les représentations obtenues de cette maniére
sont isomorphes a celles obtenues avec la construction & la Springer. Certaines de ces
actions sont ensuite interprétées en terme de 1’algébre engendrée par les polynomes
de Kostka modifiés et le théoréme 0.3.1 est prouvé.

Le chapitre 5 est consacré a 1’étude de la famille de variété de caractéres con-
struite par Mellit [Mell9]. Suivant sa suggestion, l'action du groupe de Weyl par
monodromie est utilisée pour calculer le polynéme de Poincaré pour la cohomologie
d’intersection des variétés de caractéres avec k — 1 monodromies semisimples et une
derniére monodromie de type de Jordan quelconque. C’est un cas particulier du
théoréeme 0.2.1. A D'exception de 'appel au résultat de Mellit sur le polynéme de
Poincaré des variétés de caracteres pour des classes de conjugaison semisimples, ce
chapitre reste du coté Betti et utilise uniquement des outils algébriques.

Dans le dernier chapitre, le polynéome de Poincaré des variétés de caractéres pour
n’importe quel k-uplet générique de classes de conjugaison est calculé, prouvant ainsi
le théoréme 0.2.1. Contrairement au chapitre précédent, le calcul repose désormais
sur des techniques analytiques comme la théorie de Hodge non-Abélienne. Comme
corollaire de la preuve, nous obtenons également une action de groupe de Weyl sur
la cohomologie des variétés de caractéres et une expression pour les polynomes de
Poincaré n-tordus : théoréme 0.2.2.
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Chapter 1

Introduction

Character varieties studied in this thesis classify rank n local systems over a genus g
Riemann surface with k-punctures (p;)1<j<x. The monodromy around the puncture
p; is imposed to be in the closure C; of a conjugacy class C; of GL,,(C). The character
variety is an affine variety defined as a geometric invaritant theory quotient:

Ma = {(Al,Bl,...,Ag,Bg,Xl,...,Xk> S GLi‘g Xal Xoeee sz’
A\BAT' BT ABA BT X L. X, =1d} // GL,

with GL,, acting by overall conjugation. A genericity condition is imposed on the
k-uple of conjugacy classes so that the quotient has good properties (see 3.5.2). We
study the cohomology of those varieties. As they are not smooth, it is convenient
to study their intersection cohomology. We compute the Poincaré polynomial for
compactly supported intersection cohomology of those character varieties. This
Poincaré polynomial encodes the dimension of the compactly supported intersection
cohomology spaces [H] (Ma, @z) as coefficients of a polynomial:

P, (Mg,v) =Y _dimIH (Mg, @) v"

When the conjugacy classes are semisimple, they are closed, and the variety Mg
is smooth. Then the intersection cohomology coincides with the usual cohomology.
Cohomology of character varieties has been extensively studied in various context.

1.1 Cohomology of character varieties: state of the
art

1.1.1 One puncture with a central monodromy

A first interesting case is when there is only one puncture and the associated mon-
odromy is central. The genericity condition implies that the monodromy is e~ T 1d
with d,n coprime. Then the character variety is denoted by M%. The index B
stands for Betti moduli space. Non-Abelian Hodge theory relates this Betti moduli
space to a Dolbeault moduli space M%_,. This can be seen as a generalization of
Narasimhan-Seshadri [NS65| result relating unitary representations and holomor-

phic vector bundles. M$ , is the moduli space of stable Higgs bundles of rank n
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and degree d. Non-Abelian Hodge correspondence was proved in rank n = 2 by
Hitchin [Hit87] and Donaldson [Don87|. It was generalized to higher ranks and
higher dimensions by Corlette [Cor88| and Simpson [Sim88| see also [Sim92|. The
correspondence is obtained as a homeomorphism between moduli spaces by Simpson
[Sim94a; Sim94b|.

Many computations of the cohomology are performed from the Dolbeault side.
First Hitchin [Hit87] computed the Poincaré polynomial in rank n = 2. Gothen
|Got94] extended the computation to rank n = 3. Hausel-Thaddeus [HT03b; HT04]
computed the cohomology ring in rank n = 2. Garcia-Prada, Heinloth, Schmitt
[GHS11| gave a recursive algorithm to compute the motive of the Dolbeault moduli
space. They computed an explicit expression in rank n = 4. Garcia-Prada, Heinloth
[GH13] obtained an explicit formula for y-genus in any rank.

As in the last examples, there exist more precise cohomological information than
the Poincaré polynomial. The character varieties are affine, by Deligne [Del71], their
cohomology carries a mixed-Hodge structure. The non-Abelian Hodge theory does
not preserve this mixed-Hodge structure. Indeed the cohomology of the Dolbeault
moduli space is pure contrarily to the cohomology of the affine character variety.
De Cataldo-Hausel-Migliorini [CHM12] conjectured that under non-Abelian Hodge
correspondence, the weight filtration coincides with a perverse filtration induced by
Hitchin fibration. This is known as the P = W conjecture, they proved it in rank
n = 2. Recently, de Cataldo-Maulik-Shen [CMS19] proved the conjecture for genus

= 2 and any rank.

Another interesting aspect of those moduli spaces is the mirror symmetry. Hausel-
Thaddeus [HT01; HT03a| conjectured that the moduli space of PGL,,-Higgs bundles
and the moduli space of SL,-Higgs bundles are related by mirror symmetry, see also
[Hau04]. This conjecture was proved by Groechenig-Wyss-Ziegler [GWZ17| and a
motivic version by Loeser-Wyss [LW21|. Mirror symmetry was also studied in the
parabolic case by Biswas-Dey [BD12]. Gothen-Oliveira [GO17| proved a parabolic
version of the conjecture, for particular ranks.

An efficient approach to compute cohomological invariant is to count points of al-
gebraic varieties over finite fields. On the Betti side, Hausel and Rodriguez-Villegas
[HRO8| gave a conjectural formula for the mixed-Hodge polynomial of character
varieties with one puncture and a central generic monodromy. They proved the
E-polynomial specialization of the conjecture by counting points over finite fields.
With a similar approach, Mereb [Merl5| computed the E-polynomial of SL,, char-
acter varieties. Hausel [Hau04| also proposed a conjectural formula for the Hodge
polynomial of the associated Dolbeault moduli space. Mozgovoy [Moz11| extended
this conjecture to the motives of the Dolbeault moduli space.

Schiffmann [Sch16| computed the Poincaré polynomial of the Dolbeault moduli
space by counting Higgs bundles over finite fields. In following articles [MS14; MS20]
Mozgovoy-Schiffmann extended this counting to twisted Higgs bundles. Chaudouard-
Laumon [CL16] counted Higgs bundles using automorphic forms.

Mellit [Mel17b| proved that the formula obtained by Schiffmann [Sch16] is equiv-
alent to the Poincaré polynomial specialization of the conjecture of Hausel and Ro-
driguez Villegas [HRO0S|.

Fedorov-Soibelman-Soibelman [FSS17] computed the motivic class of the moduli
stack of semistable Higgs bundles.
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1.1.2 Any number of punctures and arbitrary monodromies

Logares-Munoz-Newstead [LMN12]| computed the E-polynomial of character vari-
eties for SLy and small genus ¢ = 1,2. They consider one puncture with any
conjugacy class, without the genericity assumption. They also obtained the Hodge
numbers in genus g = 1. Logares-Mufioz [LM13| extended those results to genus
g = 1 and two punctures. They computed the E-polynomials and some Hodge
numbers. Martinez-Mutioz [MM14a; MM14b| computed the E-polynomial of SLo-
character varieties for any genus and any conjugacy class at the puncture. Martinez
[Mar17] then treated the case of PGLa-character varieties.

Simpson [Sim90| generalized non-Abelian Hodge theory to character varieties
with punctures and arbitrary conjugacy classes. The generalization is even larger as
it concerns filtered local systems. They correspond to parabolic Higgs bundles on
the Dolbeault side. The moduli space of stable parabolic Higgs bundles was con-
structed algebraically by Yokogawa [Yok93]. The moduli spaces were constructed
analytically by Konno [Kon93| for Higgs fields with nilpotent residues and by Naka-
jima [Nak96]. Those analytic constructions provide the non-Abelian Hodge theory as
a diffeomorphism. Biquard-Boalch [BB04| proved a more general wild non-Abelian
Hodge theory and constructed the associated moduli spaces. Biquard, Garcia-Prada
and Mundet i Riera [BGM15] generalized filtered non-Abelian Hodge theory to a
large family of groups.

On the Dolbeault side of this correspondence, Boden-Yokogawa [BY 96| computed
the Poincaré polynomial of the moduli space of parabolic Higgs bundles, in rank
n = 2, using Morse theory. Garcia-Prada, Gothen, Munioz [GGMO07| computed the
Poincaré polynomial in rank n = 3.

Hausel, Letellier and Rodriguez-Villegas [HLR11| made a conjecture for the
mixed-Hodge polynomial of character varieties with generic semisimple conjugacy
classes at punctures. Counting points of the character variety over finite field
they proved the E-polynomial specialization. Chuang-Diaconescu-Pan [CDP14] and
Chuang-Diaconescu-Donagi-Pantev [Chu+15] proposed a string theoretic interpre-
tation of the conjecture. This string theoretic approach was also applied to wild
character varieties by Diaconescu [Dial7| and Diaconescu-Donagi-Pantev [DDP18].
Another approach uses recursive relations for various genus. It is used by Moz-
govoy [Mozl11], Carlsson and Rodriguez-Villegas [CR18|. Similarly to this recursive
approach, Gonzalez-Prieto |Gonl8| developped a topological quantum field theory
associated to character varieties.

Mellit [Mell17a] proved the Poincaré polynomial specialization of the conjecture
from [HLR11| by counting parabolic Higgs bundles over finite fields. This result is of
the utmost importance for this thesis. This is the starting point of the computation
of intersection cohomology of the character variety with the closure of any generic
conjugacy classes at punctures. Fedorov-Soibelman-Soibelman [FSS20] computed
the motivic class of the moduli stack of semistable parabolic Higgs bundles.
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1.2 Intersection cohomology of character varieties

1.2.1 Poincaré polynomial

Letellier [Let13] gave a conjectural formula for the mixed-Hodge polynomial of the
character variety Mg, with any type of generic conjugacy classes at punctures.
This formula generalizes the one for semisimple conjugacy classes [HLR11]. It also
involves Hausel-Letellier-Villegas kernel HE XY This kernel lies in

Sym [Xi] @ - - - @ Sym [X}]

with Sym [X] the space of symmetric functions in the infinite set of variable X;. The
definition of the kernel is recalled in 3.6.1, it uses modified Macdonald polynomi-
als. The Poincaré polynomial specialization of Letellier’s conjecture is the following

formula
P. (Mg;v) = v (s, HI? (=1,0)). (1.1)

p encodes the Jordan type of the conjugacy classes, see (3.36). d,, is the dimension
of the variety Mg, the symmetric function s, is a variant of Schur functions, it is
defined in (3.47). A very interesting feature of this relation is that no matter the
k-uple of conjugacy classes, the cohomology is encoded in a single object, the kernel
HALV

Mellit [Mell7a] computed the Poincaré polynomial of character varieties with
semisimple conjugacy classes. Let & = (Sy,...,Sk) a generic k-uple of semisimple
conjugacy classes. The Jordan type of this k-uple is determined by k partitions
v, ..., v*. The parts of the partition 1/ are the multiplicities of the distinct eigen-
values of S;. As checked in 3.6.2, Mellit’s result is a particular case of the Poincaré
polynomial specialization of the conjecture:

P.(Ms;v) = o™ (h,, HI"V(=1,0)). (1.2)
With A, the symmetric function
hy = ha[Xq] .. hoe[ Xk

The complete symmetric functions (hx[X]),cp form a basis of the space of sym-
metric functions of degree n. The set of partitions of an integer n is denoted by
P... The transition matrices in the space of symmetric functions are well known, for
instance they are in Macdonald book [Macl5|. Hence we can express s, in terms
of h,. To compute the Poincaré polynomial of character varieties with any type
of conjugacy classes it is enough to understand the combinatoric relations between
those symmetric functions in terms of geometric relation between Mg and M.
Letellier obtained such a relation, but between Mg and a resolution of singularities

of ./\/lé.

1.2.2 Springer theory and resolution of character varieties

Logares-Martens |[LMO08| constructed Grothendieck-Springer resolutions for moduli
spaces of parabolic Higgs bundles. Letellier [Let13] constructed resolution of singu-
larities of character varieties

ML’pp- — M@.
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Symplectic resolutions of character varieties were also studied in details by Schedler-
Tirelli [ST19]. The construction of My, p » is recalled in 3.5.11, it relies on Springer
theory. This theory closely intertwines the geometry of reductive groups with the
representation theory of their Weyl groups. A first step in this direction comes from
Green |Greb5] who computed the characters of general linear groups over finite fields
in terms of symmetric functions. Then Springer [Spr76] proved a correspondence
between unipotent conjugacy classes and representations of Weyl groups for any
connected reductive group. Following work of Lusztig [Lus81] for the general linear
group, Borho-MacPherson [BMS83| obtained Springer correspondence in terms of
intersection cohomology.

Let us briefly recall their result for the Springer resolution of the unipotent locus
in GL,,. Let B the subgroup of upper triangular matrices, U the subgroup of B with
1 on the diagonal. T is the subgroup of diagonal matrices so that B = TU. Let U
the set of unipotent elements in GL,,, i.e. the set of matrices with all eigenvalues
equal to 1. Then U is stratified by conjugacy classes (Cy),cp, With A the partition
of n with parts specifying the size of the Jordan blocks. Let

U={(X,9B)€UxGL,/Blg ' XgeU}

the projection to the first factor U — U is a resolution of singularities. Borho-
Macpherson approach to Springer theory provides the following relation between
cohomology of the resolution ¢/ and intersection cohomology of the closure of the
strata of U L

[ tdimd (u’@l) ~ @ Vy @ THI™0 (C, @) .

AEPy

V) is the irreducible representation of the symmetric group indexed by the partition
A. The indexing is as in Macdonald’s book [Macl5|, so that V{,y is the trivial
representation and V{;») the sign. In terms of Poincaré polynomial previous relation
becomes _ _

p~dmU p. (U,v) = Z (dim V) p~dme p (E,\,v) )

AEP,

Interestingly, this relation between v~ 4m¥ p, (1/7 , ’U> and v~ 4mC P, (Cy, v) is exactly
the base change relation expressing the symmetric function hAq» in terms of Schur
functions (3/\)/\67%
hln = Z (dlm V)\) S)-
AEP,,

In this simple example, a base change relation between complete symmetric functions
and Schur functions has a geometrical interpretation in terms of Springer resolutions.

For character varieties the idea is similar but a more general theory is necessary.
It is provided by Lusztig parabolic induction [Lus84; Lus85; Lus86|. Letellier applied
this theory to obtain relations between cohomology of the resolution M L.po and
intersection cohomology of character varieties ./\/lgw (see 3.36 and 3.3.1 for the
definition of the k-uple of conjugacy classes C, ). This relation is used to prove
that various formulations of the conjecture are equivalent [Let11l, Proposition 5.7].
In terms of Poincaré polynomial the relation reads

v P, (/T/l/va,a,v> = Z (dim A, ,) v %P, <M6p,a: v) . (1.3)

pPp
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This geometric relation is discussed in details in 6.2, it is exactly a combinatoric
relation between various basis of symmetric functions:

h =Y (dim Ay ) 5, (1.4)

PR

It will appear that the Poincaré polynomial of resolution the M Lpo is equal to
the Poincaré polynomial of a character variety with semisimple monodromie Mgs.
Together with Mellit’s result (1.2), this implies

v P, </f\;lJL,p7a,v> =v %P, (Ms,v) = (h,y, HI"V (=1,0))

Relations (1.3) (1.4) can be inverted so that the Poincaré polynomial of a character
variety with any type of monodromies can be expressed as Poincaré polynomial of
character varieties with semisimple monodromies. This is exactly what is necessary
to obtain the general formula (1.1) from Mellit’s result for semisimple conjugacy
classes (1.2).

To summarize, computing the Poincaré polynomial for intersection cohomology
of character varieties requires three elements:

e Mellit’s result for character varieties with semisimple monodromies (1.2).

e Letellier’s relation (1.3) between cohomology of the resolution M Lpo and
intersection cohomology of character varieties Mg.

e Relation between cohomology of the resolution M r.p.o and cohomology of a
character variety with semisimple monodromies Mg.

The last point is studied in Chapter 6 where a diffeomorphism between the resolution
My pos and a character variety with semisimple monodromies Mg is detailed so
that the Poincaré polynomial coincide. First the particular case of the sphere with
four punctures is studied. Then the character varieties are cubic surfaces given by
an explicit equation, the Fricke relation [FK97]. The geometry of cubic surfaces is
well-known since Cayley [Cay69], see also Bruce-Wall [BW79] and Manin [Man86|.
Smooth projective cubic surfaces in P? are obtained as P2 blow-up in six points. This
description gives a direct prove, on the Betti side, that the resolution is diffeomorphic
to a character variety with semisimple monodromies.

Constructing the diffeomorphism in the general case requires analytical tech-
nics. They are detailed in 6.6.1, they rely on the filtered version of non-Abelian
Hodge theory and Riemann-Hilbert correspondence. Those correspondences are
due to Simpson [Sim90]. The moduli spaces providing non-Abelian Hodge theory
as a diffeomorphism were constructed by Konno [Kon93|, Nakajima [Nak96| and
Biquard-Boalch [BB04] in the more general setting of wild non-Abelian Hodge the-
ory. Filtered version of Riemann-Hilbert correspondence is described as a diffeomor-
phism by Yamakawa [YamO08|. A filtered version of non-Abelian Hodge theory was
also developped for a large family of groups by Biquard, Garcia-Prada and Mundet
i Riera [BGM15|. In Chapter 6 this is used to construct a diffeomorphism between
/W L.po and Mg, see Theorem 6.1.3. Finally it is used in 6.2 to prove the Poincaré
polynomial specialization of Letellier’s conjecture:
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Theorem 1.2.1. Consider a generic k-uple of conjugacy classes C,, » (notations are
introduced in (3.36) ). the Poincaré polynomial for compactly supported intersection
cohomology of the character variety Mg, s

P, (Mgwr, v) =v% (s, HIPV (—1,0)) .

In addition to provide a combinatorial relation between Poincaré polynomials, a
fundamental aspect of Springer theory and Lusztig parabolic induction is the action
of Weyl group on cohomology spaces.

1.2.3 Weyl group action on the cohomology of character va-
rieties

The construction of resolutions of character varieties relies on Springer resolutions
and Lusztig parabolic induction. Therefore there is a Weyl group action on the co-
homology of resolutions of character varieties (see Letellier [Let13]). It is interesting
to notice that the Weyl group only acts on the cohomology and not on the variety
itsel. Another Weyl group action on the cohomology of character varieties and their
resolutions is constructed by Mellit [Mel19]|. He constructed a family containing res-
olutions of character varieties and character varieties with semisimple monodromies.
Different fibers of the family have different conjugacy classes prescribed at the k-th
puncture, the k£ — 1 first conjugacy classes being fixed and semisimple. With this
family, Mellit constructed a monodromic Weyl group action on the cohomology of
some character varieties. This action is unified with the Springer action on the co-
homology of some resolutions. Both appear as various fibers of an equivariant local
system. It is actually difficult to construct this local system. To obtain it, Mellit
used subtle cell decomposition of character varieties.

In Chapter 5, following a suggestion of Mellit, we use this family and the Weyl
group action to compute the Poincaré polynomial of character varieties with £ — 1
semisimple monodromies and any conjugacy class prescribed at the last puncture.
This result is less general than Chapter 6 where any k-uple of generic conjugacy
classes is considered. However, the advantage of this approach is that it remains
on the Betti side and avoids the analytic technicality of non-Abelian Hodge theory.
Except for Mellit’s result about the Poincaré polynomial of character varieties which
was obtained from the Dolbeault side.

As explained in previous section, in order to compute the intersection cohomol-
ogy of character varieties for any conjugacy classes, we construct a diffeomorphism
between a resolution My, p » and a character variety with semisimple monodromies
M. This diffeomorphism allows to move the Springer-like Weyl group action on
the cohomology of the resolution, to a Weyl group action on the cohomology of the
character varieties with semisimple monodromies Mg. This action is enough for our
purpose of computation of the Poincaré polynomial. Moreover, it also provides the
n-twisted Poincaré polynomials, i.e. the trace of any elements of the Weyl group
on the cohomology spaces, see Definition 3.6.6. Considering a k-uple of generic
semisimple conjugacy classes 8 = (S, ..., Sk), the relative Weyl group is the group
permuting eigenvalues with the same multiplicity in a given class §;. Next theorem
is proved in 6.2.2.
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Theorem 1.2.2. For any n conjugacy class in the relative Weyl group, the n-twisted
Poincaré polynomial of the character variety Mg is

T (Ms,v) Ztr n, H (Ms, Ql)) = (- 1)7"(’7)11‘1“ <E,,,]HI£ILV (-1, v)> )

The symmetric functions E,, and r(n) are defined in 3.5.18.

However a more satisfying approach would be to directly construct a monodromic
Weyl group action on the cohomology of character varieties with semisimple mon-
odromies. Like the one constructed by Mellit for the k-th monodromy.

1.3 Additive version of character varieties

1.3.1 Comet-shaped quiver varieties

There is an additive version of character varieties. Let @ = (Oy,...,Of) a k-uple
of adjoint orbits in gl the Lie algebra of GL,,. The additive analogous of character
variety is defined as the following GIT quotient

Qp = {(A1,B1,..., Ay, By, X1,...,Xp) € glf xO1 x -+ x Oy
g

Y [ALBl+) X, = 0} //GL,

i=1 j=1

with [A;, B;] :== A;B; — B;A; the Lie bracket and GL,, acting by overall conjugation.
Like in the multiplicative case, a genericity condition is imposed to the eigenvalues
of the adjoint orbits (Definition 3.5.8). This condition allows to have a well behaved
quotient. Such varieties were studied by Crawley-Boevey [Cra03b; Cra06] in genus
g = 0, in particular he proved a criteria for non-emptiness. For any genus and
semisimple adjoint orbits, they were studied by Letellier, Hausel and Rodriguez-
Villegas [HLR11|. Letellier |Let1l] generalized to any type of conjugacy classes.
Interestingly, the geometry of those varieties is closely related to representation
theory of the general linear group over a finite field GL,,(F,) see |Let12].

Many things are easier to study on the additive versions than on the charac-
ter varieties. For instance the cohomology of those varieties is pure. Therefore,
by counting points, Letellier, Hausel and Rodriguez-Villegas [HLR11| and Letellier
[Let11] obtained the Poincaré polynomial. This is different to the character variety
where only the E-polynomial is obtained by this method.

A fundamental aspect of this additive analogous is the interpretation in terms
of Nakajima’s quiver varieties introduced in [Nak94|. Because of this interpretation,
the varieties Qg are referred to as comet-shaped quiver varieties [HLR11]| or crab-
shaped quiver varieties for instance by Schedler-Tirelli [ST19].

Weyl group action on the cohomology of Nakajima’s quiver varieties were studied
by Nakajima [Nak94; Nak00|, Lusztig [Lus00] and Maffei [Maf02|. They were used to
prove Kac conjecture by Letellier, Hausel, Rodriguez-Villegas [HLR13| and to study
unipotent character of GL,(IF,) by Letellier [Let12|. A construction of Weyl group
action relies on the hyperkédhler structure of Nakajima’s quiver varieties. Those
varieties can be constructed as hyperkdhler quotients as introduced by Hitchin-
Karlhede-Lindstrom-Roc¢ek |[Hit+87|. The quotients are obtained considering the
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action of a compact group on a fiber of the hyperkéhler moment map. Such moment
map is useful as it allows to construct a family containing both resolutions Oy, p »
and the varieties Qg. Then the hyperkahler moment map is a locally trivial fibration
over a regular locus. This is the property missing so far for character varieties and
which could allow to construct a monodromic Weyl group action in general. This
property of the hyperkidhler moment map for quiver varieties was known and used by
experts such as Nakajima and Maffei. Chapter 2 is devoted to its proof as we could
not locate one in the literature. Then in Chapter 4 it is applied to comet shaped
quiver varieties in order to have a coherent description of the Springer-like actions
and the monodromic action. The combinatorics of the action obtained appears to

be rich.

1.3.2 Combinatorics of the Weyl group action on the coho-
mology of comet-shaped quiver varieties

We study combinatorics aspect of the cohomology of character varieties and their
additive analogous. Modified Macdonald polynomial appearing in Hausel-Letellier-
Villegas kernel HLV were introduced by Garsia-Haiman |[GH96] as a deformation
of Macdonald polynomials [Macl5|. The transition matrix between the modified
Macdonald polynomials and the Schur function is formed by the so-called modified

Kostka polynomial <[? ,\,u(q,t)) . The fact that they are polynomials in ¢,
AN UEPn
with integer coefficients is far from trivial. It is known as Macdonald conjecture, it

is a consequence of the n! conjecture of Garsia-Haiman [GH93], this last conjecture
was proved by Haiman [HaiO1].

In unpublished notes, Rodriguez-Villegas studied an algebra spanned by modified
Kostka polynomial. The structure coeflicients c;\W (q,t) of this algebra are defined
by

K,,K,,= c;\“,f(,\,p for all p € P,,.

)

v

Rodriguez-Villegas conjectured that the coefficients Cl/\h'/ are actually polynomi-
als in ¢,t with integer coefficients. Moreover he noticed that they are related to
the Hausel-Letellier-Villegas kernel. He studied in particular the coefficients c}:l,,
they appear as a generalization of the (g, t)-Catalan sequence from Garsia-Haiman
[GH96]. Rodriguez-Villegas proved that the coefficient c}[fu has an expression simi-

lar to the conjecture concerning the mixed Hodge polynomial of character varieties
(with genus g = 0)

In Chapter 4 we prove that a specialization of this formula indeed relates the co-
efficients c}:,/ to traces of Weyl group actions on the cohomology of comet-shaped
quiver varieties.

D=

iy (a,8) = (=1 (sulXa]su [Xalpa [ X1 [Xa), HEEY (51

Theorem 1.3.1. Consider a generic 4-uple of adjoint orbits of the following type:
e 1 has one eigenvalue with Jordan type u' € P, .

e O, has one eigenvalue with Jordan type v’ € P,,.
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o O3 is semisimple reqular i.e. it has n distinct eigenvalues.

o Oy is semisimple with one eigenvalue of multiplicity n — 1 and the other of
multiplicity 1.
Then the Weyl group with respect to Oz is the symmetric group S, and it acts on
the cohomology of Q. Let w a n-cycle in this Weyl group then

— dim QE

0.8 =t 2 S b (w, THY (Qg, @) .

The coefficient 02:1, (0,t) thus appears as a Poincaré polynomial twisted by an n-cycle.

A similar result (Theorem 6.2.7) relates the coefficients ¢, (1,) to a twisted
Poincaré polynomial of character varieties. Conjecturaly c};j(q,t) is related to a
twisted mixed-Hodge polynomial of resolutions of character varieties 4.4.3.

It would be interesting to also find a geometric interpretation of the others coef-
ficients cﬁ,y.

1.4 Plan of the thesis

The second chapter can be read independently of the others. We study the locally
trivial property of the hyperkidhler moment map for quiver varieties over a regular
locus. This result was known and used by expert such as Nakajima [Nak94| and
Maffei [Maf02]. We detail the prove here as we could not locate one in the literature.
This result is used in Chapter 4.

The third chapter contains reminder of the geometric and combinatoric back-
ground behind character varieties and comet-shaped quiver varieties. Most of the
notations relative to conjugacy classes, resolutions and Weyl groups are also intro-
duced in this chapter.

In Chapter 4 we study a family of comet-shaped quiver varieties and their reso-
lutions. It relies on the local triviality of the hyperkdhler moment map recalled in
Chapter 2. As usual in the theory of quiver varieties, this local triviality allows to
construct a monodromic Weyl group action on the cohomology of the comet-shaped
quiver varieties. We check that the representations obtained in this family are iso-
morphic to the Springer-like actions. Then those actions are related to particular
coefficients of the algebra spanned by Kostka polynomials and Theorem 1.3.1 is
proved.

Chapter 5 is devoted to the study of the family of character varieties constructed
by Mellit [Mell9]. Following his suggestion, we use the monodromic Weyl group
action to compute the Poincaré polynomial for intersection cohomology of character
varieties with £ — 1 monodromies semisimple and any conjugacy class at the last
puncture. This is a particular case of Theorem 1.2.1. Except for Mellit’s result
about the Poincaré polynomial of character varieties with semisimple monodromies,
this chapter remains on the Betti side and uses only algebraic tools.

In the last chapter the Poincaré polynomial of character varieties with any generic
k-uple of conjugacy classes at punctures is computed, thus proving Theorem 1.2.1.
Contrarily to previous chapter, the computation requires analytic methods such as
non-Abelian Hodge theory. As a by-product we obtain a Weyl group action on
the cohomology of character varieties and an expression for the n-twisted Poincaré
polynomials: Theorem 1.2.2.
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Chapter 2

Trivializations of moment maps

We study various trivializations of moment maps. First in the general framework of
a reductive group G acting on a smooth affine variety. We prove that the moment
map is a locally trivial fibration over a regular locus of the center of the Lie algebra
of H a maximal compact subgroup of G. The construction relies on Kempf-Ness
theory [KNT79| and Morse theory of the square norm of the moment map studied
by Kirwan [Kir84|, Ness-Mumford [NM84| and Sjamaar [Sjad8|. Then we apply it
together with ideas from Nakajima [Nak94| and Kronheimer [Kro89] to trivialize the
hyperkéahler moment map for Nakajima’s quiver varieties. Notice this trivialization
result about quiver varieties was known and used by experts such as Nakajima and
Maffei but we could not locate a proof in the literature.

2.1 Introduction

2.1.1 Symplectic quotients and GIT quotients of affine vari-
eties

Consider a reductive group G acting on a complex smooth affine variety X. For
x? € X*(G) a linear character, X% is the f-semistable locus and X%* the f-stable
locus. Mumford’s geometric invariant theory [MF82| provides a quotient

X@—ss N X@—SS//G.

The affine variety X can be embedded in an hermitian vector space W such that the
G-action is linear and restricts to a unitary action of a maximal compact subgroup
H C G. The hermitian norm on W is denoted by ||...||. We study the associated
real moment map

w:X —b
with b the Lie algebra of H. Its definition relies on the choice of a non degenerate
scalar product (...,...) on b invariant under the adjoint action of H. The real
moment map satisfies for all Y € b
1 d .
wumw=§£mmewW (2.1)

t=0
Thanks to the invariant scalar product, to a linear character x? is associated an
element 6 in Z(h), the center of the Lie algebra b, such that for all Y € b

(0.Y) = idxiy(Y).
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For a pair (x?, §), Kempf-Ness theory [KN79] relates the symplectic quotient (defined
by Meyer [Mey73| and Marsden-Weinstein [MW74]) to the GIT quotient, it gives
an homeomorphism

p=HO)/H = X"//G.

We study trivialization of the moment map over a regular locus in the center
of the Lie algebra h. First, in Section 2.2, we study the general framework of a
unitary action of a compact group on a smooth affine variety. After a reminder of
Migliorini’s version of Kempf-Ness theory [Mig96|, a regular locus in Z(h) is defined.
Over this locus the moment map is proved to be a locally trivial fibration. The case
of a torus action was treated by Kac-Peterson [KP84|. The construction of the
regular locus uses the negative gradient flow of square norm of the moment map
studied by Kirwan [Kir84|, Ness-Mumford [NM84], Sjamaar [Sjad8|, Harada-Wilkin
[HWO08] and Hoskins [Hos13].

Nakajima’s quiver varieties introduced in [Nak94| are particular instances of the
symplectic quotients studied in Section 2.2. Moreover they are hyperkéhler quo-
tients as defined by Hitchin-Karlhede-Lindstrom-Roc¢ek [Hit+87], the construction
of those varieties is recalled in Section 2.3. In Section 2.4, the idea of Kronheimer
[Kro89] and Nakajima [Nak94] of consecutive use of different complex structures are
applied together with techniques from previous sections to prove that the hyper-
kihler moment map is a locally trivial fibration. This implies in particular that the
cohomology of the fibers forms a local system. This later result is used by Nakajima
in [Nak94, Section 9| to construct a Weyl group action on the cohomology of quiver
varieties. Maffei pursued this construction in [Maf02]. I was informed by Nakajima
that the property of the cohomology of the fibers can also be obtained by general-
izing Slodowy argument from [Slo80] to quiver varieties. Similar results concerning
cohomology of the fibers also exist in the framework of deformations of symplec-
tic quotient singularities in Ginzburg-Kaledin [GK04|. Finally Crawley-Boevey and
Van den Bergh [CV04] trivialize the hyperk&hler moment map for Nakajima’s quiver
varieties over complex lines. Nakajima explained to us how to extend their result to
quaternionic lines minus a point thanks to the theory of twistor spaces see Theorem
2.4.15.

In the remaining of the introduction the results are stated and the various steps
of the constructions are outlined.

2.1.2 Real moment map for the action of a reductive group
on an affine variety

In Section 2.2, H C G is a maximal compact subgroup acting unitarily on a smooth
affine variety X embedded in an hermitian vector space. The differential geometry
point of view from Kempf-Ness theory allows to extend the definition of #-stability
for elements \? € X*(G)¥ := X*(G) @z R. The correspondence between linear char-
acters and elements in the center of the Lie algebra h thus extends to an isomorphism
of R-vector spaces between X*(G)® and Z(h).

In 2.2.4 we prove a Lie group variant of Hilbert-Mumford criterion for #-stability.
It is adapted to the differential geometric point of view of Kempf-Ness theory and
the use of real parameters § € X*(G)®. Similar criteria are discussed by Georgoulas,
Robbin and Salamon in [GRS13].
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Theorem 2.1.1 (Hilbert-Mumford criterion for stability). Let § € X*(G)® and
x € X. The following statements are equivalent

(i) x is O-stable.

(i) For all'Y € b, different from zero, such that lim;, o exp(itY).z exists then
0,Y) <0.

This theorem is applied in 2.3.2 to generalize a result of King [Kin94| characterizing
f-stability for quiver representations.

The regular locus B™# is introduced in 2.2.5. Its construction relies on the
study of the negative gradient flow of the square norm of the moment map from
Kirwan [Kir84|, Ness-Mumford [NM84|, Sjamaar [Sja98|, Harada-Wilkin [HWOS]
and Hoskins [Hos13|. B*™# is an open subset of Z(h) such that for § € B™#, one has
X0 = X0 o£ () and for all # € X% the stabilizer of x is trivial. Over the regular
locus, the moment map is a locally trivial fibration. A similar fibration when G is a
torus follows from a result of Kac-Peterson [KP84]. Let us also mention that with
the flow of the norm square in the hermitian space W, Sjamaar [Sja98| constructed
a retraction of the 0-stable locus to the fiber over 0 of the moment map.

Theorem 2.1.2. Let 6y in B*®, and Uy, the connected component of B™® containing
0. There is a diffeomorphism f such that the following diagram commutes

O\l%

Moreover f is H equivariant so that the diagram goes down to quotient

Us,

Ug 90 /H —= ,LL er

To prove this theorem, first we prove that for any § € Uy, and x € X% there
exists a unique Y (A, z) € b such that exp(iY (0, z)).x € ' (). This is achieved
thanks to Migliorini’s version of Kempf-Ness theory [Mig96] which applies to affine
varieties and real parameters x? € X*(G)®. Then the map f is defined by

f0,z) :=exp(iY(0,2)).x

and similarly for its inverse

F7H (@) = (u(x), exp (iY (00, 2)) .2) -

The smoothness of f and its inverse is proved in 2.2.6 with the implicit function
theorem.

31



2.1.3 Nakajima’s quiver varieties and hyperkdhler moment
map

The quiver varieties considered in this thesis were introduced by Nakajima [Nak94].
Let I" be an extended quiver with vertices {2y and edges €2, fix a dimension vector
v € N The space of representations of I' with dimension vector v is

Rep< ) @Mat@ Un(v)> Vt(+))-

with h(y) € Qo the head of the edge v and t(y) € € its tail. This space is acted
upon by the group

G, = {(gj)jeﬂo e [] GL,

JE€Qo

H det(g;) = 1} :

JE€Qo

This action is described in 2.3.1, it restricts to a unitary action of the maximal
compact subgroup

Uv = {(gj)jGQo € H Uvj

JEQo

[T det(g)) = 1}

7€Q0

with U, the group of unitary matrices of size v;. Denote by u, the Lie algebra of
U,. This is a particular instance of the general situation of Section 2.2: a unitary
action of a compact group on a smooth complex affine variety. Let § € Z% such
that > ;005 = 0. Define x? a linear character of G, by

X7 ((95)ie0,) : Hdet (g;)7%. (2.2)

J€Q0

For quiver representations, the correspondence between linear characters and ele-
ments in the center of u, is easily described: to the character x? is associated the
element (—i6;1d,,)jeq, € Z(u,). This element is still denoted by ¢, and Z(u,) is
identified in this way with a subspace of R,

A well-known theorem from King [Kin94| gives a characterization of #-stability
for quiver representations. In 2.3.2 this result is generalized to real parameters
corresponding to elements x? € X*(G)E.

Theorem 2.1.3. For € R® such that > jea, 0v; = 0 and associated element
X! € X*(G,)R. A quiver respresentation (V,¢) is 0-stable if and only if for all
subrepresentation W C V

J€Q0

unless W =V or W = 0.

The space Rep (f, v) admits three complex structures denoted by 7, J and K,
they are detailed in 2.4.1. There is a real moment map for each one of this complex
structure, they are denoted by py, py and pg. They are defined as in equation (2.1),
for instance

1
(@), Y) = 5 Gllexp(t.LY) |
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and

Q.l&

N exp(t.JY) 2|

N —

(s (2),Y) =

t=0
Together they form the hyperkihler moment map ug = (pur, ftg, fi ), it takes values
in u®3,

Nakajima’s quiver varieties are constructed for (67,0, 0x) € Z(u,)®? as quotients
of fibers of the hyperkdhler moment map.

mv<917 9J7 QK) = lu]ljlll(gla eJa HK)/U’U
The hyperkihler regular locus in Z(u,)®? is defined by:

Definition 2.1.4 (Hyperkiihler regular locus). For w € N*® a dimension vector

Hw = {(9[,0],9[( RQO Z’LU](QIJ ijQJJ = ijHKJ = 0} .
J J

The regular locus is
s = H,\ | ] H, (2.3)

w<v

the union is over dimension vector w # v such that 0 < w; < v;.

In 2.4.3 various trivializations of the hyperkidhler moment map are discussed. We
prove that the hyperkidhler moment map is a locally trivial fibration by consecutive
use of constructions of Theorem 2.1.2 for each complex structure and associated
moment map. The idea of consecutive use of different complex structures comes
from Kronheimer [Kro89] and Nakajima [Nak94].

Theorem 2.1.5 (Local triviality of the hyperk&hler moment map). Over the regular
locus H,®®, the hyperkdhler moment map py is a locally trivial fibration compatible
with the U,-action:

Any (0;1,05,0K) € H® admits an open neighborhood V', and a diffeomorphism
f such that the following diagram commutes

VXMH (01,0,0K) —> NH
\ lMH

Moreover f is compatible with the U,-action so that the diagram goes down to quo-
tient

VX[I,H (0[,0J,0K /U — ,uH

A similar trivialization of the hyperkdhler moment map over lines is described
in [CV04, Lemma 2.3.3]. In Theorem 2.4.15 we provide an extension of their result
using twistor spaces as suggested by Nakajima.
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Denote by 7 the map obtained by taking quotient of the hyperkidhler moment
map over the regular locus

i (H2%)/U, & HI.

Consider H'm,Q;, the cohomology sheaves of the derived pushforward of the constant
sheaf. As a direct corollary of the local triviality of the hyperkidhler moment map,
those sheaves are locally constant. Moreover as H,;® is simply connected, those
sheaves are constant. They provide the local system of the cohomology of the fibers.

2.2 Kempf-Ness theory for affine varieties

Kempf-Ness [KNT79] relate geometric invariant theory quotients to symplectic quo-
tients. In this section we recall Migliorini’s version of this theory [Mig96] which
applies to affine varieties and real parameter x? € X*(G)R. Then we prove that the
real moment map is a locally trivial fibration over a regular locus.

(G is a connected reductive group acting on a smooth affine variety X. The action
is assumed to have a trivial kernel.

2.2.1 Characterization of semistability from a differential ge-
ometry point of view

For x? € X*(G) a linear character of G, a regular function f € C [X] is f-equivariant
if there exists a strictly positive integer 7 such that f(g.7) = x%(g)" f(z) forallz € X.

Definition 2.2.1. A point x € X 1is 0-semistable if there exists a 0-equivariant
reqular function f such that f(x) # 0. The set of 6-semistable points is denoted by
X@—ss.

A point x € X s 0-stable if it is 0-semistable and if its orbit G.x is closed in
X955 and its stabilizer is finite. The set of 0-stable points is denoted by X%,

The GIT quotient as defined by Mumford [MF82| is denoted by X% — X% //G.
A point of this quotient represents a closed G-orbit in X%, When working over the
field of complex numbers, such quotients are related to symplectic quotients. The
affine variety X can be embedded as a closed subvariety of an hermitian space W
with hermitian pairing denoted by p(...,...). The embedding can be chosen so that
the action of G on X comes from a linear action on W and the action of a maximal
compact subgroup H C G preserves the hermitian pairing, p(h.u, h.v) = p(u,v) for
all h € H and uw,v € W. Then G can be identified with a subgroup of GL(W). The
hermitian pairing induces a symplectic form on the underlying real space

wW(oooy...):=Rep(i...,...) (2.4)

with 7 a square root of —1 and Re the real part. The hermitian pairing on the
ambient space induces an hermitian metric on X. As X is a smooth subvariety of
W, its tangent space is stable under multiplication by ¢, hence the non-degeneracy of
the hermitian metric implies the non degeneracy of the restriction of the symplectic
form w to the tangent space of X and the symplectic form on W restricts to a
symplectic form on X. Then the action of G on X induces a symplectic action of
H on X.
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For x € X introduce the Kempf-Ness map

AR G R
g +— lg.z|> —log (|x?(9)]?)

with || .. .|| the hermitian norm.

Theorem 2.2.2 (|[Mig96] Theorem A4 ). A point xg € X is 0-semistable if and
only if there exists in the closure of its orbit a point x € G.xy such that ¢** has a
manimum at the identity.

Remark 2.2.3. Let X*(G)F := X*(G) @z R, the definiton of ¢%* makes sense not
only for linear characters but for any x° € X*(G)®. It provides the following gener-
alization of the definition of 0-semistability and -stability for any x° € X*(G)E.
Definition 2.2.4 (Semistable points). Let x? € X*(G)%, a point xq is O-semistable
if there exists v € G.xg such that ¢°® has a minimum at the identity.

A point xo is O-stable if it is O-semistable, its orbit is closed in X% and its
stabilizer is finite.

In the following of this chapter, #-stability and 6-semistability as well as the
notations X% and X% always refer to this definition.

2.2.2 Correspondence between linear characters and elements
in the center of the Lie algebra of H

The Lie algebra of G is denoted by g and the real Lie algebra of H is h. Fix a
non-degenerate scalar product (...,...) on h invariant under the adjoint action.

Proposition 2.2.5 (Polar decomposition). For all g € G there exists a unique
(h,Y) € H x by such that g = hexp(iY') such an expression is called a polar decom-
position. This implies for the Lie algebra g = b @ ib.

Proof. 1t follows from [OVG94| Theorem 6.6. O

The first step in Kempf-Ness theory is to associate to a character X/ € X*(G) an
element in the center Z(h) of the Lie algebra h. As H is compact, its image under
a complex character lies in the unit circle. Consider the differential of the character
at the identity, it is a C-linear map dx?, : g — C. The inclusion x?(H) C S! implies
for the Lie algebra dx{(h) C iR. By C-linearity, dx?,(ih) C R and the following
map is R-linear

dxd(i...) + b — R
Y o= dxy(iY)
The invariant scalar product on b identifies this linear form with an element of b
denoted by 6 satisfying for all Y € b

(0,Y) = idxza(Y).

(2.5)

Moreover, as the scalar product is invariant for the adjoint action and so is the
character x?, the element 6 lies in the center of . This construction is Z-linear so
that it extends to an R-linear map

Lo XM (G)R
N

Z(b)

_>
— 0
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Proposition 2.2.6. The R-linear map ¢ is an isomorphism from X*(G)® to Z(b).

Proof. As G is a complex reductive group G = Z(G)D(G) with Z(G) its center and
D(G) its derived subgroup. Then X*(G) identifies with the set of linear characters
of the torus Z(G). Hence X*(G) is a Z-module of rank the complex dimension of
Z (@) so that dimg X*(G)® = dimg Z(h). It remains to prove that ¢ is injective.
Let x? a linear character such that dx¥%,(iY) = 0 for all Y € h. By C-linearity and
polar decomposition dyx?, = 0. Hence for any g € G the differential at g is also zero
dXZ = 0. As G is connected, Y is the trivial character. O

Remark 2.2.7. This isomorphism justifies the notation x° for elements in X*(G)F,

such elements are uniquely determined by a choice of 0 € Z(h), moreover

O =0

2.2.3 Correspondence between symplectic quotient and GIT
quotient

Definition 2.2.8 (Real moment map). The real moment map p: X — b is defined
thanks to the invariant scalar product (..., ...) by

d
5l exp(itY).z| °

(). Y) =

t=0

for all Y € b and x € X. In this section the real moment map s just called the
moment map. Later on complex and hyperkdahler moment maps are also considered.

Example 2.2.9. Assume the compact group H is a torus T. The ambient space

decomposes as an orthogonal direct sum W = ®x“ Wya with x© linear characters of
T and
Wya ={z e W|tx = x*(t)w for allt € T'}

Similarly to 2.2.2, a character x is uniquely determined by an element o in t the
Lie algebra of T such that

Let A the finite subset of elements a € t such that W,a # {0}. Let us compute iy
the moment map for the torus action. Let x = Y, Tya in W, for Y in t the Lie
algebra of T

1d , )
(pr(z),Y) = §%HGXP(%Y)-$H »
= ) idxfy(Y) oy
acA
_ <z||mxau2a,y>
XEA

Therefore the non-degeneracy of the scalar product implies pr(x) = 3 4 |[vye] .
In particular the image of pr is the cone C(A) C t spanned by positive coefficients
combinations of elements a € A. This example proves to be useful later on.
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Proposition 2.2.10 (Guillemin-Sternberg [GS82|). d,u the differential of the mo-
ment map at x is surjective if and only if the stabilizer of x in H 1is finite.

Proof. A computation using the definition of the moment map and the symplectic
form gives for v € T, X a tangent vector at x and Y € b

t=0

This relation is often taken as a definition of the moment map. By non degeneracy
of the symplectic form w it implies that Y is orthogonal to the image of d,u if and
only if the stabilizer of x contains exp(tY’) for all ¢ € R. Hence the differential of
the moment map is surjective if and only if the stabilizer of x is finite. m

(dpp(v),Y) =w (% exp(tY).x

Lemma 2.2.11. Let X’ € X*(G)® and z € X, then ¢°® has a minimum at the
identity if and only if p(x) = 6.

Moreover if ¢** has a minimun at the identity and at a point hexp(iY) with
he H andY €, then exp(iY).x = z.

Proof. Up to a shift in the definition of the moment map, this result is [Mig96,
Corollary A.7]. The proof is recalled as it is useful for next proposition.
Forallhe Hand g € G

¢"*(hg) = ¢"*(g)

so that the differential of ¢** at the identity vanishes on . For Y’/ +iY € h @ ih
this differential is

dogy' (V' +iY) = doy (i) = —H exp(itY).z’|  — diy(iY) — dxiy(iY)

t=

= 2(u(x),Y) —2(0,Y).

last equality follows from the definition of the moment map p and the discussion in
2.2.2 defining § and proving the reality of dx¥,(iY").

So far we proved that ¢ has a critical point at the identity if and only if
p(x) = 0, it remains to prove that this critical point is necessarily a minimum. Let
¢** be critical a the identity and g € G written in polar form g = hexp(iY). The
action of 7Y is hermitian so that it can be diagonalized in an orthonormal basis (e;)
such that 7Y.e; = \je; with \; € R.

¢ (hexp(iY)) — ¢"*(1d) = ¢**(exp(iY)) — ¢"*(1d)

= 5 lexp(\)ples o) —log(Hexp<2rjAj>)
_Z‘p(ej’x

with 7; real parameters determined by x’ € X*(G)®. As ¢%" is critical at the
identity:

d
0= 2" (eap(itY))| =3 (2A;[p(e; 2)|” = 2r;;)

J

t=0
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Combining the two previous equations

0" (hexp(iY)) — ¢"*(1d) = Y _(exp(2X;) = 2X; — 1) [p(ej. ).

J

So that ¢?®(hexp(iY)) — ¢**(Id) > 0 with equality if and only if exp(iY).z = .
Hence when ¢%* has a critical point at the identity, it is necessarily a minimum.
O

Proposition 2.2.12. Let x\? € X*(G)® then u=1(0) € X%*5. Moreover, a point xq
is O-stable if and only if the orbit G.xq intersects = *(0) exactly in a H-orbit.

Proof. First statement follows from definition of stability 2.2.4 and Lemma 2.2.11.

Assume g is f-stable, then its orbit is closed in X5 and G.zo N p=1(#) is not
empty. Let x lies in this intersection, then ¢?* has a minimum at the identity. For
all g, € G

"(g') = 9"(d'9) +log (| (9)]")

Hence ¢%9%(¢') is minimum for ¢ = ¢g~'. Now if g € G verifies g.x € pu~'(0)
by Lemma 2.2.11, ¢?9%(¢') has a minimum not only at ¢’ = ¢! but also at the
identity. By the second statement of previous lemma, g=' = hexp(iY) with h € H
and exp(iY).x = x. As z is stable, its stabilizer is finite so that exp(:Y) = Id and
g~' € H. Moreover for any h € H, the map ¢?"® has a minimum at identity hence
h.x € u='(0) so that G.zo N p~'(0) = H.z.

Conversely suppose G.zoNp~1(0) = H.z. First x¢ is f-semistable. By Migliorini
[Mig96, Proposition A.9|, the orbit G.zg is closed in X%, It remains to prove
that the stabilizer of z is finite. By Lemma 2.2.11 the map ¢%* is minimum at the
identity. Let Y € b such that exp(iY') is in the stabilizer of z. Then |x? (exp(iY))| =
1, otherwise either ¢?% (exp(iY)) < ¢?¢(Id) or ¢® (exp(—iY)) < ¢?%(Id). Hence
% (exp(iY)) = ¢%*(Id) and exp(iY) € H so that Y = 0 and the stabilizer of x is
finite. [

Remark 2.2.13. For X’ € X*(G) such that 0-stability and -semistability coincide.
Last proposition implies that the inclusion p=*(0) C X% goes down to a continuous
bijective map

T O)/H S XP//G.
This result is a particular instance of Kempf-Ness theory, it gives a natural bijection
between a symplectic quotient and a GIT quotient. Hoskins [Hos13] proved that this
map 1s actually an homeomorphism.

2.2.4 Hilbert-Mumford criterion for stability

Next theorem is a variant of the usual Hilbert-Mumford criterion for stability. It
applies to real parameters x? € X*(G)¥ not only to to linear characters. Instead of
algebraic one-parameter subgroups it relies on one-parameter real Lie groups defined
for Y € h by

R — G

t — exp(itY)

Many variants of Hilbert-Mumford criterion for one-parameter real Lie groups are
given in [GRS13|. Before proving the criterion, two classical technical lemmas are
necessary.
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Lemma 2.2.14. Let X’ € X*(G)® and Y € b, fort € R
log |x’ (exp(itY))|2 =2(0,Y)t.
Proof. We prove it for x/ € X*(G) and deduce for elements in X*(G)® by R-linearity.

d 2 1 d 2
—| log|y? ity = — 9 (exp(itY
dt e Og ’X (eXp( ))| |X9 (exp(st))|2 dt s |X ( Xp( ))‘
= G W syl
d 0 . 2
= — Y
7| W ey
= 2dX1d<iY)

By the construction of the element 6 € Z(h) from 2.2.2 we conclude that
d

| log [ (@Y )| = 2(0.Y)

t=s

and ,
log |x? (exp(itY))|" = 2(0,Y) t.

]

Lemma 2.2.15. Let 2y € X% such that ¢%%° is minimum at the identity. Let
Z € b and decompose xg in a basis of eigenvectors of the hermitian endomorphism

1z
Tog = E l‘g
A

with
exp(iZ)x = exp(\)ay.

Then either (8, Z) < 0 or there exists A\ > 0 with x3 # 0.

Proof. By Lemma 2.2.11 and Proposition 2.2.12, as xq is #-stable, the Kempf-Ness
map ¢%% reaches its minimum exactly on H. For Z € b consider the map f; defined
for t real by

F2(t) = 6 (expliZt).
fz reaches its minimum only at ¢ = 0. We can compute fz(t) using the decomposi-
tion of zq in eigenvectors of 17 and Lemma 2.2.14

F2(8) = exp(2tA) [|23]|* — 240, Z) t. (2.6)

Its second derivative is

St =S 4X exp(2tN) |[a3]]”
A

Then f7 is convex, moreover it reaches its minimum only at ¢ = 0 so that

t——+o0

Looking at equation (2.6) this implies either (¢, 7) < 0 or there exists A > 0 with
0
zy # 0. O
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Theorem 2.2.16 (Hilbert-Mumford criterion for stability). Let § € X*(G)® and
x € X. The following statements are equivalent

(i) z is O-stable.

(1) For all Y € b, different from zero, such that lim,_, . exp(itY).z exists then
0,Y) <0

Proof. not (i) implies not (47)

Let x € X \ X%, Then if ¢** admits a minimum, the stabilizer of z is not finite
and this minimum is reached on an unbounded subset of G. Thus there exists an
unbounded minimizing sequence for ¢%*. By polar decomposition and H invariance
we can assume it has the following form (expiY;,), .y With (Y7,)nen € HY unbounded.
The hermitian space W admits an orthonormal basis B" = (ef,...,e}) made of
eigenvectors of ¢Y,, with associated eigenvalues AT,... AJ.

exp(iYy).ep = exp(A})ey

This basis allows to compute:

¢ (expiYs) Zexpw |23 ]1* =20, Y)

with x} = p(z, e})e} the components of x in the basis B". By compactness of the
set of orthonormal frames, we can assume the sequence of basis (B"),en converges
to an orthonormal basis B = (e, ..., ex). Let z, = p(x, ex)ex the components of x
in the basis B. Then lim,,_, . 2} = ). Let

AR

I
M=

k=1

As (Y},)nen is unbounded, up to an extraction of a subsequence, we can assume that
lim,, , 1 2, = +00 and that the following limit exist and are finite:

Y,
Y := lim —=>
n—-+oo n
and v
A= lim =X,
n—-+oo

n

Now one can bound from bellow the values ¢** (expiY},) of the minimizing sequence

¢ (expiY,) > Y exp (A9 |2} — 20, Y,) .
{klzr#0}

> 30 exp (20 +0(1) ) ([l + o(1))
{klox0}
~2((8,Y) +o(1)) Z,

with o(1) some sequences going to zero when n goes to infinity. As the left-hand side
is the value of a minimizing sequence, it cannot go to plus infinity. Hence (0,Y) > 0,
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moreover if xp # 0 Then A\, < 0. We conclude as Y satisfies lim;_, ., exp(itY).x
exists and (0,Y) > 0.

() implies (i7)

Let z € X% by Lemma 2.2.11 and Proposition 2.2.12 there exists gy € G such
that for xy = go.z, the Kempf-Ness map ¢ reaches its minimum exactly on H.
Now let Y € b such that lim;_,  , exp(itY).z exists then lim,,_, , exp(inY’).z exists.
For all n € N polar decomposition provides unique h,, € H and Z, € b such that

exp(inY’) = h, exp(iZ,)go-

Then Z,, is unbounded. Proceed as in the first part of the proof, iZ,, is an hermitian
endomorphism denote by A}, ..., \] its eigenvalues and let

d
k=1

We can assume that lim,, ., ., >, = 400 and that the following limits exist and are
finite:

Z
Z:= lim ==
n—+00 2.,
and v
M i g

Then denoting by 29 the components of z in an orthonormal basis of eigenvectors
of iZ

6" (exp(iZa)go) = D exp (2 +0(1) Zn) (||zal[* + (1))
{k|zx#0}

~2((6, Z) + o(1)) £, + log | X" (g0)|”

By Lemma 2.2.15 either (6, Z) < 0 or there exists Ay > 0 with z2 # 0. In any case

lim ¢9,a: (exp(iZ,)g0) = +00.

n—-+o0o

Then the relation (2.2.4) defining Z,, implies

lim ¢”*(exp(inY’)) = +oo. (2.7)

n—-+00

Decompose x in a basis of eigenvectors of the hermitian endomorphism 7Y
r = E T\
A

then
¢"*(exp(inY)) = Y _exp(2nA) ||zl — 2(6,Y) n.
A
As the limit lim, o exp(inY’).z is assumed to exist, A < 0 if xy # 0. Then the
condition (2.7) implies (0,Y) < 0.
0
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2.2.5 Regular locus

In this subsection the closed subvariety X is not relevant, the action of G and H on
the ambient hermitian vector space W is studied. First note that the moment map
can be defined not only on X but on the whole space W. Let T' C H a maximal
torus. Asin Example 2.2.9 the ambient space W decomposes as an orthogonal direct
sum W = @ W, with x characters of 7" and

Wya ={x € W|tx=x“(t)rforallt e T}.

Denote by A the finite subset of elements o € t such that for the character xy* the
space W, is not zero then
W@

acA
As before the link between linear characters and elements in t is through the invariant
pairing (...,...)
ZdX?d(B) = <Oé, ﬁ> :

Hence if § is orthogonal to the R vector space spanned by A
X" (exptf) =1

for all @ € A so that exptf is in the kernel of the action of H on W. From the
beginning this kernel is assumed to be trivial, hence the vector space spanned by A
is t. Asin Example 2.2.9, the image of 7, the moment map relative to the T-action,
is the cone spanned by positive combinations of A. For any A’ finite subset of t the
cone spanned by positive combinations of A’ is:

C(A) ::{Zaacﬂ aaZOforallaeA’}.

acA’

For any g €t

(@) 6) = 5 llexp(its)al Y,
= {pr(e).6)-

Hence, as noted by Kirwan [Kir84]|, if u(x) € t then u(x) = pr(x). For A" a finite
subset of t we denote by dim A’ the dimension of the vector space spanned by A’.

Lemma 2.2.17. Let x € W such that for all A C A with dim A’ < dimt, the value
of the moment map pr(x) does not lie in C(A"). Then the stabilizer of x is finite.

Proof. Decompose z according to its weight z = ) _, ¥, then

pr(e) = 3 llaalP o

Denote by A, the set of elements « such that z, # 0. The hypothesis about ur(x)
implies that dim A, = dimt. Now for § € t

exp(ft).x = Z X (exp Bt)xq.
€A,

Hence if exp §t is in the stabilizer of z, for all o € A, the pairing with § vanishes
(a, ) = 0. As A, spans t this implies that 5 = 0 and the stabilizer of z in T is
finite. O]
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Previous lemma justifies the introduction of the following nonempty open subset
of t
cAyE=cA)\ [ CA).

A'CA
dim A’<dim t

As all maximal torus of H are conjugated, the set C'(A)™8 N Z(h) is independent of
a choice of maximal torus 7.

Proposition 2.2.18. For 0 € C(A)*¢NZ(h), every 0-semistable points are 0-stable,
Woss = W and in particular X% = X9,

Proof. Let x € W% then G.z meets u~'(0). But G.z \ G.x is a union of G-orbits
of dimension strictly smaller than G.x, points in those orbits has stabilizer with
dimension greater than one. By previous lemma every point in p~!(#) has a finite
stabilizer. Thus G.x N u~ () # 0 and the stabilizer of z is finite so that z is
f-stable. O

Kirwan [Kir84|, Ness-Mumford [NM84], Sjamaar [Sjad8|, Harada-Wilkin [HWO0S]
and Hoskins [Hos13| studied a stratification of W. It relies on the Morse theory of
the following map. For 6 € Z(b)

he W = R
o |u(e) -0

with |...| the norm defined by the invariant pairing (...,...) on h. A critical point
of a smooth map f is a point z where the differential vanishes d,f = 0. A critical
value of f is the image f(x) of a critical point x. The gradient of hy is the vector
field defined thanks to the hermitian pairing p(...,...) for x € W and v € T,W by

p (gradx h’@a U) = dxhg.’U
For x € W the negative gradient flow relative to hy is the map

7§:R20—> W

t = ()
uniquely determined by the condition
dy(s)
;3 » = — gradwg(t) h@.

and 72(0) = z. By [Sja98] and [HWOS] it is well defined and for any x the limit
limy_, 4o Y2(t) exists and is a critical point of hg. S? is the set of point x € W with
negative gradient flow for hy converging to a point where hy reaches its minimal
value 0:

Sa::{xEW

. ) -1
75 (8) € pm(0) } :

This is the open strata of the stratification, Sjamaar called it the set of analitically
semistable points. When the stability parameter is a true character i.e. ¥ € X*(G),
Hoskins [Hos13| proved that this strata coincides with the §-semistable locus. Here
we want to consider any x? € X*(G)¥, the proof of the inclusion S C WS is the
same and it is enough for our purpose.
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Proposition 2.2.19. S? is a subset of W9,

Proof. The flow 7,.(t) belongs to the orbit G.z hence limy_, o 7, (t) C G.z. Therefore
if z € S? then G.z N p~1(0) # 0. O

An important feature of the map hy is that its critical points lie in a finite union
Uaca ™t (H.B(A,0)) indexed by the subsets of the finite set A. With S(A’,0)
the projection of 6 to the closed convex C'(A’) and H.B(A’,0) the adjoint orbit of

B(A,0).

Lemma 2.2.20. By definition of the projection to a closed convex in an euclidian

space |B(A",0) — 0| is the distance between 6 and the cone C(A’), define

dg = inf 1B(A,0) — 6] (2.8)

Al

B(A,0)#0
then dg > 0 and hy~' [0, dg[ C S?.

Proof. For any h € H by invariance of the scalar product under the adjoint action
and as 6 € Z(h)
\h.B(A,0) — 0> =|5(0,A") — 6.

Hence if x is a critical point of hy not in u=1(0), then x € u~(H.5(A’,0)) for some
B(A,0) different from 6 and

|u(z) — 6> = [B(0, A") — 0° > dp.

So that the only critical value of hg, in the intervalle [0, dy] is 0.

Now for any x € W, the map ¢ — hy (vﬁ (t)) can only decrease, and it converges
to a critical value. Therefore if x € h, 110, dg[ the negative gradient flow converges
necessarily to a point lim,_, ., 7/(¢) which belongs to h,'(0) = p~1(#) so that = €
Se. O

Theorem 2.2.21. Let 0y € C(A)*¢ N Z(h), there is an open neighborhood Vg, of
o in C(A)*8 N Z(h) such that for all 8 € Vp,, O-stability and Oy-stability coincide
W90—35 — W@—ss.

Proof. Let € > 0 such that B(6y, €) the ball of center 6, and radius € in t is included
in C(A)™&. Then when 6 varies in B(6y, €) it does not meet any frontier of a cone
C(A’) with A’ C A. So that for 6 € B(fy,¢), for all A’ C A, §(0, A") # 0 if and only
if 5(6p, A") # 0. Thus the subset indexing the infima defining dy and dy, in (2.8) are
identical. As the projection to closed convex is a continuous map, the map 6 +— dy
is continuous on B(fy, €). Therefore one can chose ¢ > 0 such that

o dy > d% for all € B(6y, €).
Moreover ¢ can be chosen to satisfy the following conditions
o B(by,€) C C(A)es

dp,
° 6’2<42l
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Let 0 in B(6y,€') N Z(h), we shall see that W% = W%=s_ First note that 6 €
C(A)*e N Z(h) and Proposition 2.2.18 implies W= = W,

For x € W% = W% by Proposition 2.2.12 there exists ¢ € G such that
gx € pu~ (). Then |u(g.x) — | d% and g.x € hy'[0,dg,[. By Lemma 2.2.20,
g.x € S% and by Proposition 2.2.19 g.x is §y-semistable so that x € W%,

Similarly for z € W% there exists ¢ € G such that gz € pu~1(6y). Then

d,

\u(g.x) — 0] < > and as d% < dy, the point g.x lies in h, ' [0, dy[ therefore z is

f-stable. O
Considering again the closed subvariety X C W one defines the regular locus:

Definition 2.2.22 (Regular locus). The reqular locus B*8 is the set of elements
0 € C(A)eN Z(h) such that for all x € X9 the stabilizer of x in G is trivial and
X9—ss % (Z)

Proposition 2.2.23. The reqular locus B™® is the union of some connected com-
ponents of C(A)*& N Z(h).

Proof. By Theorem 2.2.21, if § and ¢ are in the same connected component of
C(A)e N Z(h) then W = W, Hence if § € C(A)™8 N Z(h) is such that for all
x € X% the stabilizer of z in G is trivial and X% £ (), the same holds for ¢ in
the same connected component of C'(A)"& N Z(bh). O

Remark 2.2.24. Note that the reqular locus B™® can be empty, for instance if the
center Z(h) is a subset of a cone C(A") with dim A" < dimt. Fortunately it is
non-empty for the application to Nakajima’s quiver varieties of next sections.

In next subsection we prove that the real moment map is a locally trivial fibration
over the regular locus B™%.

2.2.6 Trivialization of the real moment map over the regular
locus

Next construction follows ideas from Hitchin-Karlhede-Lindstrom-Rocek and is il-
lustrated in [Hit+87, Figure 3 p.348).

Proposition 2.2.25. For x? € X*(G)® and x a §-stable point with trivial stabilizer,
there exists a unique Y%® € b such that exp (Z'Ya’m) x € u~(0). Moreover forh € H
the adjoint action of h on Y% satisfies

hY?%® = ybhe (2.9)
Let 0 = p(z) and o’ = exp (iY"") .z, then

y?e = _yfe, (2.10)

Proof. As x is f-stable, by Proposition 2.2.12 the orbit G.z intersects =1 (6) exactly
on a H-orbit. There exists g € G such that g.z € u=*(0). Apply polar decomposition
to this element g = hgexp (iYe"'”) with hy € H and Y?* € . Then

p ' (0) NG = H.exp (iY"") .z
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Take Y’ such that exp (1Y’) .z € u~1(6) then
exp(iY”).x = hexp(iY?").x

for some h in H. By triviality of the stabilizer of x and uniqueness of polar decom-
position Y’/ = Y% hence Y%7 is uniquely determined. Let us check H-equivariance,
for he H

1t (0) 2 hexp(iY?").z = exp (ih.Y"") .h.x

by uniqueness Y% = h.Y%% Equation (2.10) is clear. O]

Remark 2.2.26. The assumption that x has a trivial stabilizer can be relaxed. Then
there exists Y*? € b such that

{Y e p|exp(iY).x € p='(0)} = (Staby z) yoe

The right-hand side is the orbit of Y%* under the adjoint action of the stabilizer of
x in H. For applications to quiver varieties we only need to consider the case of a
trivial stabilizer.

Lemma 2.2.27. Let 6 € Z(b) and x¢ a 0-stable point with trivial stabilizer. There
exists an open neighborhood Uy ., of (8,x0) in b x X and a smooth map

Y Ug,xo — b
0,2 — Y(¢, 1)

such that p (exp (1Y (0',2')) .2') = 0'.

Proof. Note that when § € Z(h) necessarily Y (6, z) is equal to the Y% introduced in
previous proposition. Let Y% such that z := exp (iYH’xO) .xo is in the intersection
G.xo N p~1(0). Consider the map

f @ hxhxX — b
Y 0,2) — p(exp(iY').x') -6

in order to use the implicit function theorem on a neighborhood of (YG"EO, 0, 930) we
first prove that the differential of f with respect to Y at (Y0 6, x¢) is invertible. As
x has a finite stabilizer, the embedding of tangent spaces T, H.x — T,G.x identifies
with the embedding

h 2 TaH — TG = h & ib. (2.11)

By Proposition 2.2.10, du is surjective so that p~!(#) is a smooth manifold and
ker dji, = Tppu~(6). Proposition 2.2.12 implies u~1(0) N G.xz = H.x Restricting d, p
to the tangent space of the G-orbit we obtain the following short exact sequence

dm“'TzG.w
—

0—=T,Hx —T,Gx h— 0.

the surjectivity follows from dimension counting and the identification of the tangent
spaces with (2.11). Thus we obtain the expected invertibility of the differential
with respect to Y’ of f at (Y%, 0, 1,), the map dy' fyo.s0 0 ,4,), identifies with an
invertible map th — b. The implicit function theorem applies and gives the existence
of Up., C h x X an open neighborhood of (6, x) and the expected smooth map
Y(i.o,..0).

O
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Next theorem is a first result concerning local triviality of the moment map, over
the regular locus B™® the real moment map is a locally trivial fibration.

Theorem 2.2.28. Let 0 in B™%, and Uy, the connected component of B**® contain-
g 0y. There is a diffeomorphism f such that the following diagram commutes

O\l%

Moreover f is H equivariant so that the diagram goes down to quotient

Up,

U, x 0=t (00) JH —=— 1i=1(Uy,)/

Proof. For § € Uy, we know from 2.2.5 that X% = X% £ (). Define f by

f(0,x) :=exp (1Y (0,2)) .x

It follows from Proposition 2.2.25 that it is invertible with inverse

fHa') = (@), exp (iY (6, 2')) ).

Lemma 2.2.27 implies that f is a diffeomorphism. Equivariance follows from equa-
tion (2.9) so that f(0,h.x) = h.f(0,x) and f goes down to a diffeomorphism between
quotients. ]

In next sections Nakajima’s quiver varieties are considered, they admit an ad-
ditional hyperkéhler structure. A similar trivialization is established in this hyper-
kéhler context.

2.3 Quiver varieties and stability

2.3.1 Generalities about quiver varieties

The quiver varieties considered in this thesis were introduced by Nakajima [Nak94].
Let I" be a quiver with vertices €2y and edges €. For an edge v € €); we denote
t(y) € Q its tail and h(y) € Qq its head, we define the reverse edge 7 such that

t(y) = h(7) and h(7) = t(7).

t(7) o o)

o

~—

~_ —
2

Let Q; := {7\7 €O} and Q= = |_|Ql For ¥ € Q; we set 7 := v to obtain an
involution on Q. The extended quiver [ is obtained by adding an inverse to all edges
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in Q, its set of vertices is Qy and its set of edges is Q. Let € : © — {—1,1} be the

map
e(fy) =1 if v e 91
e(y)=-1 if yey

We fix a dimension vector v € N0 A representation of the quiver I' with dimension
vector v is a pair (V, ¢) with V =P e, Vi @ graded vector space with dim V; = v,
and ¢ = (¢4)ecq, a collection of linear maps ¢, : Viyy = Vi) A subrepresentation
is a subspace W C V with a compatible {2p-grading and preserved by ¢. The set of
quiver representations with dimension vector v is identified with

Rep (I, v) = @ Matc (V) s Vi) )-
YEQ

For construction of quiver varieties it is interesting to consider representations of
the extended quiver I'

Rep (f, U) = @ Matc(va(y), ve(y))-

veQ

It is a complex vector space, the complex structure considered in this section is

]‘<¢’Y)7€S~2 - (i¢7>7eﬁ
The group GL, := [[;cq, GLv (C) acts linearly on Rep(T, v)

9. (gbv)yeﬁ = <gh(7)¢”/gi“l/)>

The diagonal embedding of C* in GL, acts trivially so that the action goes down to
an action of the group

76()

G, = GL, /C*,
which identifies with

Gy = {(gj>j690 € GL,| ] det(g)) = 1} :

J€Qo
Note that GG, is isomorphic to a product of a special linear group and a finite number

of general linear groups so that it is a reductive group. The Lie algebra of GL,,
respectively G, is gl, = @ ;cq, 8l,, (C) respectively.

Ztrxj:o}

J€Qo

gy = {(%’)jeﬂo € gl,

The center of g, is

Z(gv) = {(53 Idvj)jEQO (5]')]'600 € (C)Qo with Z U]fj = 0} .

JEQ
Let 6 € Z% such that Zjeﬂo v;0; = 0, define x? a character of G,, by

X7 ((g)ie,) = [ det(g;)™". (2.12)
J€Qo

The f-semistable locus, respectively f-stable locus in the sense of Mumford’s Geo-
metric Invariant Theory [MF82], are denoted by Rep(I", v)%, respectively Rep(T', v)%.
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Definition 2.3.1 (Complex moment map). The complez moment map is defined by

Hc - I{ep(f,v) - G
(D)ea P 2ea ()05

it 1s Gy-equivariant for the adjoint action on g,.

This complex moment map will be related to the real moment map of Definition
2.2.8 in next section.

Definition 2.3.2 (Nakajima’s quiver variety). For £ € Z(g,), the set ugz'(€) is an

affine variety in Rep(f, v), it inherits a G, action. Nakajima’s quiver varieties are
defined as GIT quotients:

M) == pc'(€) N Rep(T, )"/ /G,

Those varieties are interesting from the differential geometry point of view and
have an hyperkihler structure. We are interested in the family formed by those
varieties when the parameters £ and 6 are varying. Before studying those family, we
introduce another kind of variety: Nakajima’s framed quiver variety.

Fix another dimension vector w € N** and denote

Rep (v, w) = @MatK (v, wy;)

J€Qo

Rep (w, v) @ Matx (w;, v;)

J€Qo
An element g € GL, acts on a = (a;)jeq, € Rep (v, w) by
g-a = (a;9;")jeqy

and on b = (b;)jeq, € Rep (v, w) by

g.b:= (g]b )JEQO

Introduce framed quiver representations
Rep (f, v, w) := Rep (v, w) & Rep (w,v) & Rep <f,v>

and extend the moment map

/

# o Rep(T,v,w) — gl,
(a,b,0) = (u(9); — bjaj)jeq,

Definition 2.3.1. Let § € R® q representation (a,b,¢) € Rep(f,v,w) is 0-
semistable if for any ¢-invariant subspace S C V' such that S; € a; the following
inequality holds
Y 0;dimS; <0
J€Q0
and for any ¢-invariant subspace T' C 'V such that Imb; C T}
D 6;dimT; <> 6u;.
JEQ JEQ

It is stable if the inequality are strict unless S =0 andT'=V.
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The result of King extends to the framed case.

Theorem 2.3.2. Let € Z!, a point of the affine variety Rep (f,v,w) s stable
(respectivly semistable) with respect to the linearization

xe : GL, — C*
(Gi)ier — Hiejdet(gi)igi

in the sense of GIT, if and only if it is 0-stable, respectivly 0-semistable in the sense
of definition 2.5.1.

Proof. A result of Crawley-Boevey identifying framed quiver varieties to unframed
ones (remark at the end of Section 1 in [Cra0l]) and the discussion following Defi-
nition 4.2.1 in [Let11] bring this theorem back to the unframed case. O

Definition 2.3.3 (Nakajima’s framed quiver varieties). For & in the center of gl,
and € 7% the Nakajima’s framed quiver variety is defined as a GIT quotient

M0, (€)= (€ N Rep (Fo,w) /G

2.3.2 King’s characterization of stability of quiver represen-
tations

As in Section 2.2 the geometric invariant theory has a symplectic counterpart.

Rep (f, v) is an hermitian vector space with norm

‘ =3 tr(,0h).

'yGQ

H gb’Y veQ

The G,-action restricts to a unitary action of the maximal compact subgroup

Uv = {(gj)jEQO € H Uvj H det(QUj) = 1}

IS J€Qo

The Lie algebra of U, is

Uy = {($j>jeﬂo € @ Uy,

J€Qo

Ztrszo}

J€Qo

with U,,, respectively u,,, the group of unitary matrices, respectively the space of
skew-hermitian matrices of size v;. The real moment map pu; for the U, action
satisfies

(@), ) = § Sl eplity ).l

t=0

for Y € u,. The pairing is defined for Y = (Y});ecq, and Z = (Z;)jeq, by

= (Y;Z). (2.13)

J€Qo
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As in 2.2.2, to the character XY defined by (2.12) is associated the following element
of the Lie algebra u,
0 = (—203 Idvj>j€QO € U,. (214)

Indeed for Y = (Y});eq, in the Lie algebra u,, by the usual differentiation of the
determinant map at identity

dxf(iY;) = = i tx(Y;) = (0,Y).
J€Q0

We recall here an important result from King giving a characterization of 6-
stability for quiver representations.

Theorem 2.3.3 (King |[Kin94| Proposition 3.1). Let 6 € Z*% such that Y 60, =0
and X the associated character defined by (2.12) .

1. A quiver representation (V,¢$) € Rep <f, v) s 0-semistable if and only if for
all subrepresentation W C V

> 6;dimW; < 0.

J€Qo

2. A quiver representation (V,¢) is a 6-stable if and only if for all subrepresen-
tation W different from 0 and (V, )

J€Qo

The symplectic point of view allows to consider real parameters § € R such that
Zjeﬂo v;0; = 0. They are associated to elements y’ € X*(G,)® with well-defined

modulus:
.y
X’ ((9)5e0)| = T Idet(g;)I™" .
J€Q0

The set of f-stable points in Rep (f, v) is defined by Definition 2.2.4. The end of

this section is devoted to a generalization of the second point of King’s theorem for
real parameters 6 € R such that 3 6;v; = 0.
Let Y = (Yj)jGQO € u,, the ¢Y; are hermitian endomorphisms of V7. For A € R

denote by Vi , the subspace of V7 spanned by eigenvectors of iY; with eigenvalues

smaller than \ then define 4
Vg,\ = @ Vg)\
JEQ0
Lemma 2.3.4. Let x = (V,¢) in Rep (f,v) and Y € w,. The limit
tlgrnoo exp(itY).x

exists if and only if for every A real, V< defines a subrepresentation of (V,¢)
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Proof. For all j € Q take a basis of V7 formed by eigenvectors of iY; and assume
the eigenvalues repeated according to multiplicities are ordered

NN < <N

In those basis of eigenvectors, for v € T one can write the matrix of ¢Y and compute
the action of exp(itY)
)yt
Y,l =25 )92512

I B

exp(itY).¢)., = h(v) ¢
vy : et(Aa Ap )¢Z,b

t()\,}UL(W) 7)\75(’7)) v
e h(y) 1 Vniyl
the limit exists if and only if the matrix is upper triangular i.e. ¢(V<y) C V<, and
V< defines a subrepresentation of (V) ¢). O

Next result is the generalization of King’s theorem relative to f-stability of quiver
representations for a real parameter . Its proof relies on previous lemma and the
Hilbert-Mumford criterion for real one-parameter Lie groups 2.2.16.

Theorem 2.3.4. Let § € R such that > ica,bivi = 0 and X the associated

element in X*(G,)%. A quiver representation (V,$) is 0-stable if and only if for all
subrepresentation W C V' different from 0 and (V, ¢)

J€Qo

~ 0-s
Proof. Let x = (V, ¢) in Rep (F, v) a f-stable point. By Hilber-Mumford criterion

(Theorem 2.2.16), for all Y € u,, such that lim;_, ;- exp(itY").z exists then (0, Y) < 0.

Let W be a subrepresentation of (V, ¢) different from 0 and (V, ¢). For all j € Qq
define Y; in u,, such that W; is an eigenspace of iY; with eigenvalue A\; and VVjL
the orthogonal complement of W; is an eigenspace of ¢Y; with eigenvalue Ay and
Ao > Aj. By previous lemma lim;_, |, exp(itY).z exists.

0.Y) = = 0; (A dim W, + Xy (dim V; — dim W)
J€Q0
= =) (M= M) dim W
J€Q0

because ) 6;u; = 0. Then Hilbert-Mumford criterion implies (#,Y) < 0, hence
> jeq, 05 dim W; < 0.

Conversely let x = (V, ¢) a quiver representation such that for all subrepresen-
tation W ¢ V different from 0

J€Qo

J

Let Y = (Y’)jeﬂo € u, different from zero. The set of eigenvalues of 7Y; is ordered
M<.o< /\fij. The set of all eigenvalues for all j € €} is also ordered

{A?C} VSO {)‘1’)‘2a"-7>\m}

1<k<d;
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with Ay < Agy1. For convenience add an element \g < Aj. If lim; ,_. exp(itY).x
exists, by previous lemma V<, is a subrepresentation of (V, ¢). Moreover

d;
O.Y) = =D 0> N (dim V2, —dim Vg%l)

JEQ k=1

= — Z 0; Z Ak (dim ngxk — dim Vsj>wﬁ1>

JEQ k=1

m—1
= =) 0> (A= M) dimVZ,

VIS k=1

A Y 0;dimVZ,

J€Qo

The last summand vanishes as ) 6,v; = 0,

0.Y)==>" (A= Mg1) > 0;dimVZ,
k=1 jEQo

AsY # 0, it has at least two distinct eigenvalues. Then V<, is a subrepresentation
different from zero and V' and

—(Ao— M) D> 6;dimVZ, <0

J€Q0
so that (0,Y) < 0. O

This result is useful in next section to characterize a regular locus for the hyper-
kéhler moment map.

2.4 Nakajima’s quiver varieties as hyperkahler quo-
tients and trivialization of the hyperkahler mo-
ment map

After some reminder about the hyperkéhler structure of Nakajima’s quiver varieties,
trivializations of the hyperkdhler moment map are discussed.

2.4.1 Hyperkihler structure on the space of representations
of an extended quiver

The space Rep <f, U) is endowed with three complex structures

L9y, 07) = (idy,195)
J(¢r.05) = (=0l ¢h)
K. (¢y,05) = (=il igh)
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satisfying quaternionic relations
P=r=K=I1JK=-1 (2.15)

and a norm

= tr(ene)).

76(2

H ¢’Y veQ

For each complex structure, polarisation identity defines an hermitian pairing com-
patible with ||...||. For example the hermitian pairing compatible with the complex
structure [ used in previous section is

(Jlu+v]]* = [Ju = o] +il|lu+ Lo||* = i||u — Lv|]?)

ps(-..,...) and pg(...,...) are similarly defined. One expression is particularly

<(¢7)/\/EQ7 @Z’v 769) Ztr Cb%DT

'yEQ

Remark 2.4.1. FEven if the hermitian metric relies on the choice of complex struc-
ture, by the polarisation identity the real part remains the same, it is the hyperkdhler
metric

g(...,...):=Repr(...,...) =Repy(-..,...) =Repg(...,...).

Definition 2.4.2 (Real symplectic forms). As in equation (2.4) we define a real
symplectic form for each complex structure

wrleveyon) == g(I...,..0)
wiloooyoon) = g(J...,...)
Wr(oveyeon) == g(K ... .00)

Notations 2.4.3. I-linear means C-linear with respect to the complex structure I
and similarly for J-linear and K -linear.

Proposition 2.4.4 (Permutation of complex structures). Consider the map
¥ : Rep <f, v) — Rep <f, v)
x = s(1+I+J+K)x

It is an isomorphism from the hermitian vector space Rep (f, v) with the complex

structure I and hermitian pairing pr to the hermitian vector space Rep (f, U) with

the complex structure J and pairing py.
More generally it cyclically permutes the three complex structure I, J, K

V(lz) = JU(z)
V(Ir) = KW(x) (2.16)
U(K.x) = 1.Y(x)

Such a map is sometimes called an hyperkdahler rotation.
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Proof. Relations (2.16) follow from a computation with the quaternionic relations
(2.15). To prove the compatibility with the hermitian structures it is enough to
check that ||V (z)|| = ||z|].

A+ T+J+K)a|P=g(1+T1+J+K)a,(1+1+J+K).x).

The expected result is obtain after cancellations from the identity g(/.u,u) = 0

similar relations for the other complex structures and quaternionic relations (2.15).
O

In 2.3.1 an [-linear action of GG, is described. The hyperkéhler rotation ¥ pro-
vides the following construction for J-linear and K-linear actions. This three actions
coincide when restricted to the compact subgroup U,,.

Definition 2.4.5 (Complexification of the action). Thanks to polar decomposition,
to define a linear action of G, compatible with the complex structure J it is enough
to define the action of exp(i.Y') for'Y € w,. To highlight the complex structure used,
this action is written exp(J.Y) ... and defined by

exp(JY).x := ¥ (exp(i.Y). 0! (z))

with the element exp(i.Y) of G, acting by the natural I-linear action previously
described. Similarly

exp(K.Y).x := ¥ (exp(i.Y).¥(z)).

Remark 2.4.6. A point x is 0-(semi)stable with respect to the I-linear action if and
only if ¥(x) is 0-(semi)stable with respect to the J-linear action.

2.4.2 Hyperkahler structure and moment maps

By Proposition 2.4.4 the various G,-actions previously described are compatible
with the hermitian metrics so that the constructions of section 2.2 apply. They
provide a moment map for each complex structure.

(@), Y) = 5 GllewrV)alf|
bs@),Y) = & Ljjexp(t.gy).al?

’ 2 dt o
(@), V) = & L fexp(t.KY).al

’ 2 dt -

The pairing is defined by (2.13).

Definition 2.4.7 (Hyperkihler moment map). Those three real moment maps fit
together in an hyperkdhler moment map py : Rep (f, v) — u, du, G u, defined by
i = (1, fr, pc) -

The moment map ¢ defined in 2.3.1 by

e ((61),e6) == D (4)6,05. (2.17)

vEQ
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can be expressed from the real moment maps

pe = pg + ik
it is a polynomial map with respect to the complex structure I.

Remark 2.4.8. By cyclic permutation of the complex structure, px ~+ipy is polyno-
maal with respect to the complex structure J and py + ipy is polynomial with respect
to the complex structure K.

Take (07;)jeq, and (0x.;);eq, in R® such that > viflr; =22 v0Kk,; = 0. Asso-
ciate to each of them an element in the center of the Lie algebra u,

9J = (—iﬁjyj Id”j)jEQo
91{ = (—Z'QKJ' Idvj)

JEQ
Then 6 + 10 defines an element in the center of g, = u, @ iu,. Hence ,ujl(ej) N

1t (0x) = ugs'(0,+i0x) is an affine variety embedded in the vector space Rep (f, v>
endowed with the complex structure I and stable under the G,-action. Section 2.2
does not apply directly to this situation as pg 1(6;410x) might be singular. However
it applies to the action of GG, on the ambiant space Rep (f, v). For 0; € R such

that > .., v;0r; = 0 consider the associated element X e x*(G,)E.

Definition 2.4.9 (Hyperkiihler regular locus). For w € N a dimension vector

Hy = {(HI,QJ,QK) € (R™) Y wibry =Y wilbsyy = Y wibie, = 0} :
J J J

The reqular locus is
He=H,\ | J H, (2.18)

w<v

the union is over dimension vector w # v such that 0 < w; < v;.

Remark 2.4.10. This reqular locus is empty unless the dimension vector v is indi-
vistble, then H:® is the complementary of a finite union of codimension 3 real vector
space.

Thanks to Kempf-Ness theory, Nakajima’s quiver varieties can be constructed as
hyperkihler quotients. The underlying manifold of the variety M% (6; + ifx) (see
definition 2.3.2) is :

m, (07, 07,0x) = p' (01,05,0k) /U,

2.4.3 Trivialization of the hyperkihler moment map

We study the family of Nakajima’s quiver varieties when the parameters (0,6, 0k )
are varying. Nakajima proved by consecutive uses of different complex structures
that for # and #" in H,°® the manifolds m, (0,0, 0x) and m, (67,6, 0% ) are diffeo-
morphic [Nak94, Corollary 4.2]. We use this idea of consecutive uses of different
complex structures to prove that those manifolds fit in a locally trivial family over
the regular locus H}*®. First let us highlight relevant facts about the regular locus.
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Lemma 2.4.11. Let (0;,0,,0k) € H™*® and x € u;*(05) N pug'(0x). Then x is
Or-stable if and only if it is O;-semistable.

Proof. If xg € pg'(0r,05,0k) its stabilizer in G, is trivial. Indeed Maffei proved
that the differential of the moment map at xy is surjective [Maf02, Lemma 48], then
Proposition 2.2.10 implies the triviality of the stabilizer of xy.

Let z € pu;'(0;) N ug'(0k) a Or-semistable point. Then G,.z N u; ' (0r) is not
empty. As pu;'(0;) N pit(0x) = us'(0; + ifx) is G, stable, the closure of the
orbit G,.r meets ,uﬁl(ef, 05,0K) at a point xg. This point necessarily has a trivial
stabilizer, hence xy € G,.x and z is 6;-stable. O

Let (0;,0;,0k) € H!® and consider first the complex structure I. By previous
lemma and King’s characterisation of stability (Theorem 2.3.4), for 7 in an open
neighborhood of 6, stability with respect to 0} is the same as stability with respect
to 91.

Now consider the complex structure J. Thanks to Remark 2.4.6 on the affine
variety p' (0x) N p;(07) all @ -semistable points are @ -stable. Moreover for ¢’ in
an open neighborhood of 6, stability with respect to ¢ is the same as stability with
respect to #;. Similarly for the complex structure K.

Assume that the dimension vector v is a root of the quiver so that the moment
map is surjective, see [Cra06, Theorem 2|. Consider the diagram

pig' (H®) — Rep (f,v)

| |

H%® —— u, Qu, du,

Theorem 2.4.12 (Local triviality of the hyperkdhler moment map). Over the regu-
lar locus H:8, the hyperkdhler moment map py s a locally trivial fibration compatible
with the U,-action:

Any (0;1,05,0K) € HI® admits an open neighborhood V, and a diffeomorphism
f such that the following diagram commutes

VXMH (01,0,0K) —> NH
\ lMH

Moreover f is compatible with the U,-action so that the diagram goes down to quo-
tient
V x mv<0],0J,€K — IMH

\l

Proof. The method is similar to the proof of Theorem 2.2.28 applied consecutively
to the three complex structures. The idea of using different complex structures
comes from [Nak94| and [Kro89|. Take (0;,0,,0x) € H® and a connected open
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neighborhood Ur x U; x Uy such that for 0 € Uy, any z € ;' (Uy) N pi' (Uk) is
0}-semistable if and only if it is #;-stable. Similarly for U; and Uk. For any = with
pm(x) = (07,05,0%) € Uy x Uy x Uk, by Proposition 2.2.25 applied to the /-linear
action of GG, on Rep (f, v ], there exists a unique Y;(r,z) € u, such that

eXp (I}/}(917 x)) S :u]ljﬂl (917 6:77 6/1()

Then by exchanging the three complex structures with hyperkahler rotations, there
exists unique Y;(0,z) and Yk (0, z) such that

exp (JY;(0s, %)) exp (1.Y1(0r, %)) @ € pg (01,01, )
and
exp (K.Y (0, x)) exp (LY (0, 2)) exp (1.Y(0;,7)) .2 € ug' (01,0, 0k).
This defines the map f~!
FH @) = (07,07, 0 ), exp (K.Y (0,5, 2)) exp (LY (0, 2)) exp (I.Y7(0r, )) ) .

Lemma 2.2.27 implies the smoothness of f~!. This map induces a diffeomorphism,
indeed exchanging 6 and #’ in previous construction produces the expected inverse

[ (2, (07,6,0%)) :==exp (I.Y7(0},2)) exp (JY; (0, x)) exp (K.Yg (05, 2)) .x

It follows from equation (2.10) that the maps are inverse of each others. The ex-
change in the order of appearance of the complex structures /,J and K in the
definition of f and f~! are necessary as the exponentials do not necessarily com-
mute. The U,-equivariance follows from equation (2.9). O

Similarly one can consider the complex moment map uc = py + i instead of

pr. The complex regular locus is Cy® := C, \ ., Cw With
Cp = {56690 > wig :o}
J€Qo

Theorem 2.4.13. The complex moment map is a locally trivial fibration over C}.
Any & € CI°% admits an open neighborhood V', and a diffeomorphism f such that the
following diagram commutes

Vo 6~ 1 (V)
\ I
Vv
Proof. The proof is similar to the hyperkéhler situation. O

Denote 7 : pug' (H!®)/U, — H™® the map obtained taking the quotient of juy.
Consider the cohomology sheaves H'm,Q; of the derived pushforward of the con-
stant sheaf and the cohomology sheaves H'm@Q, of the derived compactly supported
pushforward of the constant sheaf.
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Corollary 2.4.14. The sheaves H'w,Q; and H'mQ, are constant sheaves over HM.

Proof. By Theorem 2.4.12 those sheaves are locally constant. H® is a comple-
mentary of a finite union of codimension 3 real vector spaces, hence it is simply
connected so that the locally constant sheaves are constant. O

Nakajima explained to us that this corollary can also be obtained by generalizing
Slodowy’s construction [Slo80] to quiver varieties.

Finally we extend the trivialization of the hyperkidhler moment map over lines
constructed by Crawley-Boevey and Van den Bergh [CV04] using twistor spaces as
told to us by Nakajima.

Denote by H, respectively Hy, the set of quaternions, respectively the set of
purely imaginary quaternions and Hj = Hy \ {0}. The space ul*® is identified with
Hy ®gr u,. Then the hyperkdhler moment map reads

pa =1 Q@ pur+J @ pu;+ K pg.

Once an orthonormal basis of R? is fixed, the triple of complex structures I, J and
K is fixed and we write ug = py, puc = py + ipg. The hyperkdhler moment map
is assumed to be surjective and the dimension vector indivisible. Then H;°® is the
open subset of generic parameters in Hy ®g Z(u,). For § € H!*¢ a generic parameter
and S a contractible subset of Hj, Crawley-Boevey and Van den Bergh constructed
a trivialization of the hyperkdhler moment map over S ® 6, see [CV04] proof of
Lemma 2.3.3 (in the statement of this lemma S is chosen to be a complex line). The
assumption contractible is relaxed in next theorem. It relies on the theory of twistor
spaces developped by Penrose [Pen76|, Atiyah-Hitchin-Singer [AHS78] and Salamon
[Sal82|[Sal86]. The main point is the compatibility between hyperkédhler quotients
and twistor spaces from Hitchin-Karlhede-Lindstrom-Roc¢ek [Hit+87| p.560, see also
Hitchin [Hit92]. The following Theorem as well as its proof was told to us by
Nakajima.

Theorem 2.4.15. For 0 generic in Hy ®g Z(u,) define
H.0 ={h®60|h e Hj}.

There exists a diffeomorphism f such that the following diagram commutes

i (H3.0) /U, —Ls 15! (9)/U, x Hy.6
\ l

the vertical arrow is the projection to HE.0.
Proof. Consider the quaternionic vector space Rep (f, v) and the projection
Rep (f, v) x 8% —» S2
With S? the 2-sphere of imaginary quaternions with unit norm
={al +bJ+cK|a*+ b+ =1}.
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S? is given the usual complex structure of the projective line. The twistor space
associated to Rep (F, v) is the manifold Rep (F, v) x 82 endowed with a complex

structure such that the fiber over I, € S? is Rep (f, v) seen as a vector space with

complex structure I,,.
As detailed in [CV04], the group of quaternion of unit norm, identified with
SU(2), acts on H® ® Z(u,) by

h.(W ®60) =hhh .

with al +bJ +cK +d = —al —bJ — cK + d. Let 0 a generic parameter, up to the
choice of orthonormal basis of R? we can assume 6 = I ® ;. The SU(2) orbit of ¢
thus identifies with S? as

SU@2).0 ={I,®0|I, €S*}. (2.19)

The twistor space of the hyperkiihler manifold yug'(6)/U, is a complex manifold T~
with an holomorphic map p to S?

T 82

The underlying differential manifold of the twistor space is just a product and p the
projection to the second factor

pg (0)/U, x 8 —— S%.

The twistor spaces construction is compatible with hyperkéhler quotients as ex-
plained in [Hit+87] p.560. Thus the fiber of p over I, is ug' (9)/U, endowed with the
complex structure inherited from the complex structure I, on Rep (f, v). Namely
if I, ® 0 = (0,0',,0%) then the fiber of the twistor space over I, is the complex
manifold

P~ (L) = pg (05 +0) N g (07)/ U

Thus fibers of p are exactly fibers of uy and the twistor space provides trivialization
of the hyperkdhler moment map over the orbit SU(2).6:

ngt(SU2).0)/U, = T —— uz'(0)/U, x S?

e \ e

SU(2).06 —= 5 S?

a is defined thanks to (2.19), the map [ is the identity on the fibers and ~ forgets the
complex structure. This diagram traduces the equivalence between, on the right,
varying complex structure on a fixed fiber ug'(0)/U, and on the left varying the
fiber for a fixed complex structure I.

The construction is similar to Crawley-Boevey and Van den Bergh’s construction
except that the twistor space formalism allows to obtain a trivialization over the
non-contractible space SU(2).6.
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As in [CV04], the trivialization can be extended thanks to the R action. Note
that for ¢ a positive real number pg(tx) = t?>um(z). Then identifying §? x Ry with
H{ we obtain the trivialization

i (H.0) /U, —— i5"(0)/U, x H

| |

H.0 > H

The SU(2)-action on the base of this trivialization traduces the variation of complex
structure on the hyperkihler manifold pg'(0)/U, whereas the R action traduces
the rescaling of the metric. O]
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Chapter 3

(Geometric and combinatoric
background

This chapter recalls the geometric and combinatoric tools necessary to study char-
acter varieties and their cohomology. The base field K is either C or an algebraic
closure Fq of a finite field F,. Section 3.1 introduces the notations for perverse
sheaves and intersection cohomology.

In Section 3.2 some properties of symmetric functions are recalled. They are
used to define Hausel-Letellier-Villegas kernel HZ XY This kernel is fundamental in
the description of cohomology of character varieties. Moreover symmetric functions
formalism is useful to study representation of Weyl groups. They are also necessary
to define the algebra spanned by Kostka polynomials mentioned in the introduc-
tion 1.3.2. In order to relate this algebra with cohomology of quiver varieties, an
important result of Garsia-Haiman [GH96] is recalled in 3.2.4.

Section 3.3 contains various notations for conjugacy classes and their Jordan
type, they will be used throughout the thesis.

In 3.4, Springer theory [Spr76; BM83|, Lusztig parabolic induction [Lus84; Lus85;
Lus86| and the associated resolutions of closure of conjugacy classes are recalled.

Construction and basic properties of character varieties are given in 3.5. More-
over construction of resolutions from 3.4 are extended to character varieties, follow-
ing Letellier [Let11; Let13].

Finally some conjecture and theorems relating the cohomology of character va-
rieties with the kernel HZEV are stated in 3.6.

3.1 Perverse sheaves and intersection cohomology

3.1.1 Perverse sheaves

In this section classical results about perverse sheaves and intersection cohomology
are stated. The constructions come from Beilinson, Bernstein, Deligne and Gabber
[Bei+18].

K is either C or an algebraic closure Fq of a finite field F, with ¢ elements. X is
an algebraic variety over K. Let [ be a prime different from the characteristic and
denote by kx the constant l-adic sheaf on X with coefficients in Q.

Notations 3.1.1. The category of k-constructible sheaves on X is denoted by D% (X).
Its objects are represented by complexes of sheaves K such that the cohomology
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sheaves H'K are k-constructible sheaves on X and finitely many of them are non-
zero. For'Y a wvariety over K and f : X — Y a morphism one has the usual
functors

frof DY) = Dg (X)

For m an integer K|m] is the shifted complex such that H'K[m] = H"T"K. For z a
point in X, the stalk at x of the i-th cohomology sheave of the complex K is denoted
by HLK . The structural morphism of X is p: X — SpecK. The k-th cohomology
space of X with coefficients in K s

H*(X, k) == HFporx

and the k-th compactly supported intersection cohomology space of X is
HY (X, k) = Hrpikx.

The Verdier dual operator is denoted by Dx : D% (X) — Db (X).

Theorem 3.1.2 (Base change). Consider K € Db (Y') and a cartesian square

X sy

bl la (3.1)

then the natural morphism f*a/K — big* K is an isomorphism.

Remark 3.1.3. Let a« — X a geometric point of X and [ its image by f. Consider
the fibers of the vertical arrows:

XaizX/XXOé, Y@Z:Y/Xyﬁ
In the following diagram h is an isomorphism

X, —— Y

|

a— 0

The base change isomorphism for this diagram identifies with the stalk at 3 of the
base change isomorphism of Diagram (3.1):

f*a[Ka — bgg*Ka

which is nothing but the morphism obtained by functoriality of the compactly sup-
ported cohomology

H:(Ys K) %5 H (X, h*K).
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Definition 3.1.4. Let W a finite group acting from the left on a variety X. For
all w € W there is a morphism w : X — X. An action of W on an element
K € D%(X) is the data of morphisms ¢, : w*K = K satisfying the following
relation for all w,w' € W

¢w’w = gbww*(gbw’) (32)
and such that ¢1 = 1Id. Then we say that the complex K is W -equivariant.

Remark 3.1.5. When the action of W on X 1s trivial, an action of W on K €
Db (X) is just a group morphism from the opposite group WP to the group of auto-
morphism Aut(K).

Proposition 3.1.6. Let f : X — Y a W-equivariant morphism between varieties
with left W-action. Let W act on K by morphisms ¢, : w*K = K. Then W acts

on K

Proof. The action is defined for w € W the following way. Base change formula
provides an isomorphism w*fiK — fiw*K. Compose this isomorphism with fi¢,,
to obtain an isomorphism ¢, : w*fiK — fiK. The compatibility (3.2) follows from
functoriality of base change. O]

Definition 3.1.7 (Perverse sheave). A perverse sheave is an object K in D5 (X)
such that for all i € N

dim (Supp ’HiK)
dim (Supp HiDXK)

< —i
< —i

The category of perverse sheaves on X is denoted by M(X), it is an abelian category.

3.1.2 Intersection cohomology

Definition 3.1.8 (Intersection complex). Let Y < X a closed embedding and j :
U <Y an open embedding. Assume U is smooth, irreducible and U =Y. Let £ be
a local system on U. ICy,. is the unique perverse sheave K on'Y characterized by

HK = 0 if i<—dimY (3.3)

H YK, = ¢ (3.4)

dim (SuppH'K) < —i if i>—dimY (3.5)
dim (SuppH'DyK) < —i if i >—dimY. (3.6)

We also denote ZC5 . its extension j.ZC3 v The intersection complex defined by
Goresky- MacPherson [GM83] and Deligne is obtained by shifting this perverse sheaf

ICYy = ICy [~ dimY].

Remark 3.1.9 (Continuation principle). The intersection complex of & can also be
defined as the intermediate extension ZCy, . = ji.&. Moreover the functor ji. is fully
faithful (see Kiehl-Weissauer [KWO01, III - Corollary 5.11]).

Remark 3.1.10. The intersection complex does not depend on the choice of smooth
open subset in Y. When the local system & is not specified, it is chosen to be the
constant sheaf ky and ZC% = IC% . .
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Definition 3.1.11 (Intersection cohomology). Let p : X — SpecK the structural
morphism and k an integer. The k-th intersection cohomology space of X is

THY(X, k) := Hp,ICY
and the k-th compactly supported intersection cohomology space of X is
TH{ (X, k) == H'pIC.

For K = C, Saito [Sai86] proved that the intersection cohomology spaces carry
a mixed-Hodge structure. Thus there exists on IH*(X, Q) an increasing finite fil-
tration called the weight filtration and denoted by W¥ such that the complexified
quotient C ®g Wk /Wk | carries a pure Hodge structure of weight 7. The Hodge
numbers of this structure are denoted h%/*(X) and satisfy i + j = r.

Definition 3.1.12. The mixed-Hodge structure is encoded in the mized-Hodge poly-
nomial: N o
[H, (X;2,y,0) = > hiH(X)a'y/o. (3.7)
ij,k

This polynomial has two important specialisations, the Poincaré polynomial

P.(X:t) :=IH,(X;1,1,v) =Y dim TH}(X, k)0 (3.8)
k

and the E-polynomial
Eo(X;z,y) = IH.(X;z,y,—1). (3.9)

Remark 3.1.13. For X a smooth variety the intersection cohomology is the usual
l-adic cohomology

TH (X, k) = H'(X,k)
TH(X,rk) = H{(X,k

3.2 Symmetric functions

3.2.1 Lambda ring and symmetric functions

In this section the combinatorics involved in the cohomology of character varieties
is recalled.

Notations 3.2.1. A partition of an integer n € N is a decreasing sequence of non-
negative integers

A= ()\1, >\2, e )\l()\)> with |>\‘ = )\1 + )\2 + -+ )\l()\) = n.

The length of X is the number [(\) of non-zero terms. The set of partitions of n is
denoted by P, and

P = |J Pu and P=JP,

’I’LGN>() ’VLEN
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with Py a set with a unique element 0 called the empty partition. The Young diagram
of a partition X is the set

()N <i<I)) and1< 5 < \).

A partition is often identified with its Young diagram so that (i,7) € X\ means that
(1,7) belongs to the Young diagram of X\. The transpose of a Young diagram is
obtained by permuting i and j. The transpose N of a partition X\ is the partition
with Young diagram the transpose of the Young diagram of X. The Young diagram
of the partition A = (5,4,2) has the following form

z |

with © the box (i,7) = (1,2). The arm length of x is number of box right of x, here
a(x) = 3. The leg length is the number of box under x, here l[(x) = 2. The transpose
of A= (5,4,2) is the partition N = (3,3,2,2,1) with Young diagram

For v = (11,...,1) a partition then
P, =P, X - XPy.

Definition 3.2.2 (Dominance orderin <). The dominance ordering on P is defined
by A < p if and only if |\ = |p| and

k k
Z)\i < Zui forall k € N
i=1 i=1

Let X = (z1,x2,...) be an infinite set of variable and Sym [X] be the ring of
symmetric functions in (x1,zy,...) over Q. This ring is graded by the degree and
Sym,, [X] C Sym [X] are the symmetric functions homogeneous of degree n. We
use the usual notations from Macdonald’s book [Macl5]. A basis of Sym [X] is
given by monomial symmetric functions (my),.p. If A is a partition of length I,
m, is obtained by summing all distinct monomials of the form xl’-\ll :v;-\; e .CE;;Z with
distinct indices 7. Elementary symmetric functions (ey), oy, complete symmetric

functions (hy),,cy and power sums (py),, oy are defined for n € N5y by

€n [X] = Z Ly Ly * + Ty,
1<y <--<in

hn [X] = Z Ti Tiye Xy,
1<i; <+ <in

oo [X] = a2l +a)+ ...
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and ey := hg := po := 1. Each one of this family freely generates the ring Sym [X].
We introduce the corresponding basis labelled by partitions A € P

Ex = EXNExyr €y
Py = by,
Px = DPxPxy P

When talking about symmetric functions, if we do not need to specify the set of
variable we write just F instead of F[X], we can think of F' as an element in the
Q-algebra freely generated by (e,),,cy. A convenient formalism to study symmetric
functions is provided by lambda rings. The following reminder on this topic comes
from Mellit [Mell7a; Mell8].

Definition 3.2.3 (Lambda ring). A lambda ring over Q is a commutative and
unitary Q-algebra A endowed, for n € Nyq, with ring morphisms

P o A — A
a +— pplal

such that p, © pm = Pam for n,m € Nyg. The p, are called the Adams operators.
We use square brackets instead of parenthesis for evaluation of Adams operators.

Example 3.2.4 (Symmetric functions over Q). The ring of symmetric functions
Sym [X] is freely generated, as a Q-algebra by the power sums p,|X]. Adams oper-
ators on Sym [X| can be defined by their values on the power sums

P [Pu[X]] := prn[X] for m € Nog and n € N.

This gives Sym [X| a lambda ring structure.

Remark 3.2.5. Note that for all n € Ny, p,[X] = pu[p1[X]] then let X = p1[X].
All the power sums p,[X] with n > 0 are obtained applying Adams operator to X.
The notations used for the power sums agree with the one resulting of applications
of Adams operators to X.

Example 3.2.6. Q(q,t) is endowed with the Adams operator defined by p,[f(q,t)] =
f(q",t") for any f(q,t) € Q(q,1).

Example 3.2.7 (Symmetric functions over Q(q,t)). The ring of symmetric func-
tions over Q(q,t) is still denoted Sym [X]. It is a lambda ring, the Adams operators

act by pn [f(q, ) F [X]] = f(¢",t")pn [F[X]].

Example 3.2.8 (Multivariate symmetric functions).
Sym([Xy, ..., Xi] = Sym[Xi] ® Sym[X5] ® - - - @ Sym[Xy]

is the ring of functions in k sequences of variables X; = (x;1, %2, ... ) symmetric
i each sequence. The Adams operators are defined by

P [F1[X1] ® .0 @ F[Xe]] = 0o [F[XG]] ® .0 @ pp [FR[X4]]
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Notations 3.2.9 (Conventions for variable in ring of symmetric functions). When
considering symmetric functions, uppercase characters such as X,Y, Z, X; will be
infinite set of variable so that (p,[X]), ey are algebraically free. Lowercase characters
such as q,r,s,t,u,v,w, z will be single variables and Adams operator act on them as
pulu] = u™.

Definition 3.2.10 (Plethystic action). Let o« € A be an element in a lambda ring
and F[X] € Sym|[X]. As the power sums freely generate the ring of symmetric
functions there exists a unique polynomial f such that F[X]| = f(p1[X], p2[X], ... ).
To compute the plethystic action of F' on o we evaluate the polynomial f on the
Adams operator Fla] := f(p1, p2, ... )[a]. It defines a ring morphism from Sym [X]
to A. It is also called plethystic substitution of X by «.

Remark 3.2.11. Once again, denoting by X the element pi[X] € Sym [X], nota-
tions are compatible. p,|X] is both the evaluation of the Adams operator p, on the
element X and the plethystic action of the symmetric function p, on the element
X. Plethystic action can be thought of as evaluation of a symmetric function F on
an element of a lambda ring.

For A a lambda ring, A[[s]] is the ring of power series in s with coefficients in
A. Tt is endowed with a lambda ring structure such that p,[s] = s". Elements of
Sym[X][[s]] such that the symmetric function in front of s is of degree n can be
thought of as elements in Sym[[X]] the completion of Sym [X]| with respect to the
ideal Sym [X]" of symmetric functions without constant terms.

Definition 3.2.12 (Plethystic exponential and logarithm). Let A be a lambda ring
and sA[[s]] the formal series in s with coefficient in A without terms in s°. For
G € sA\[[s]] the plethystic exponential is defined by

Exp|G] := Z hn|G] = exp (Z ]#)

and the plethystic logarithm

+
Log[l + G] : Z n [log(1+ G-

with p the usual Mobius function. Contrarily to the ordinary ones, the plethystic
exponential and logarithm start with an uppercase character.

Remark 3.2.13. As the Adams operators are ring morphism
Exp[F + G] = Exp|F]|Exp|G]|
Log[(1+ F)(1+ G)] = Log[l+ F]+ Log[l + G]

Remark 3.2.14. As expected, the plethystic logarithm is the inverse of the plethystic
exponential

Log[Exp|G]] = Z %pnm[G]

n,m>1

- M

n>1 dn

= G
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This computation follows from the characterisation of Mobius function and the fact
that p1 acts as identity.

Proposition 3.2.15. Let F' € A[[s]], write the expansion of its logarithm and
plethystic logarithm

Uy
log(F) = —s"
og(F) ; s
Log[F| = Z Vias™.
Then the coefficients of those expansions are related by

Vo= udpa [Uy).

din
Proof.
u(d)  [Un
Log[F] = S A&, |Zmgm
og[F] 2 P [ ot
_ Zﬂ(d)pd[Um] md
= —t——3
d m
dn
As pq is a ring morphism and py[s™] = s™¢. Conclusion follows by taking the
coefficient in front of s™. O

Remark 3.2.16. There is natural way to embed Sym [X] in Sym [X][[s]], we can
add a variable s to keep track of the degree. For F' € Sym [X| written in the basis
of power sums as

FIX] = ZCAPA[X]

AEP

we denote also by F' the element in Sym [X| [[s]]

F= Z expa[X]s

with ¢y the coordinate of F in the basis (py)aep-

Proposition 3.2.17 ([HLR13| proof of proposition 3.1). Plethystic logarithm and
plethystic substitution commute. Namely for any a € A and F symmetric function
without constant term

Log[1 + Fla]] = Log[1l + F[a]

where Fla] € A[[s]] and Log[l + F]la] means plethystic substitution in each coeffi-
cients of the power series in s.

Proof. Use notations from Proposition 3.2.15 and Remark 3.2.16. First the U,[X]
are obtained from the c\p,[X] by additions and multiplications. Then the V,,[X]
are obtained from the U,[X] by additions, multiplications and Adams operator.
Conclusion follows as plethystic action is a ring morphism commuting with Adams
operator. ]
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This section ends with the introduction of Hall pairing. Other related pairings
will be discussed in 3.2.3.

Definition 3.2.18 (Hall pairing). The Hall pairing is a symmetric bilinear pairing
on Sym [X] such that the power sums form an orthogonal basis

<P>\:P;¢> = 5)\,uzA (310)

Orp @8 1 if X = p and O otherwise. zy is the order of a the stabilizer of a partition

of cycle type \. Namely
k

N !
A = 1 my

1=1
for a partition A = (i1,... i1,... ik, ... %) -
—— ———

m1 mpe
3.2.2 Characters of the symmetric group and symmetric func-
tions
Well-known results relating symmetric functions and representation theory of the
symmetric group are recalled, see [Macl5| for more details. A class function on a
finite group W is a Q-valued function constant over conjugacy classes. Important
examples of class functions are given by characters of finite dimensional representa-

tions of the group W. The space of class functions is actually spanned by irreducible
characters. It is endowed with a scalar product defined by
1 _
(f,9)w = W Z flo)g(e™).

oceW

Irreducible characters then form an orthonormal basis of the space of class functions.

Remark 3.2.19. For x and n two characters of a finite group W and V,, V;, the
associated representations

dim Homw (V4, V3,) = (X, M)w

Definition 3.2.20. Let R = ®,enR, with R, n > 0 the space of class function on
the symmetric group &,, and Ry := Q. It is endowed with a non-degenerate pairing
(...,...) and a product :

o (f.9)=(f,9)s, for f,g € R, and R, is orthogonal to R,, if n # m.

o Let f € R, and g € R,, then f X g defines a class function on G, X &,,. Fiz
an embedding S, x &,, C S, so that class functions can be induced from
S, x6,, to S, ., and define the product f.g := Indg:;%m fxg. This product
18 sometime called external tensor product.

Definition 3.2.21 (Characteristic map). Congjugacy classes in S,, are indexed by
partitions of n specifying the cycle type. For a class function f € R, define

ch(f) = (f, ¥n)s,
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where
v, : 6, — Sym[X]

o = Deyc(o)
with cyc(o) the partition giving the cycle type of the permutation o. The map ch

extends by linearity to give the characteristic map ch : R — Sym [X]. Rq is sent to
constants by ch.

Remark 3.2.22. [t is convenient to express ch with partitions rather than permu-
tations. For a class function f € R, with value f\ on the conjugacy class of cycle
type A

Ch(f) = é Z f(a)pcyc(a) (311)
n ceG,
= Zzilf,\]h (3.12)
[A|l=n

In last line the sum over elements of the symmetric group is turned into a sum
over partitions indexing conjugacy classes of the symmetric group. We used that

% = z;l where C is the conjugacy class of cycle type .

Proposition 3.2.23. The characteristic map ch is an isomorphism between R and
Sym [X] compatible with the products and the pairings (Sym [X] being endowed the
Hall pairing 3.2.18).

Proof. First let us check that (ch(f),ch(g)) = (f,g), by linearity we just have to
check it for f,g € R™. Orthogonality properties of the power sums (Definition
3.2.18) and (3.12) give

<Ch(f)7 Ch(g)> = Z Z)Tlfkgk - <f7 g>6n
[A|l=n
last equality comes from the previous trick used to go from a sum over the symmet-

ric group to a sum over partitions in Remark 3.2.22.

To check that it is a ring morphism take f € R"™ and ¢ € R™. By adjunction
between induction and restriction of representations:

Ch(fQ) - <f'g7 \Ij>6m+n = <f X g, qj>6m><6"

last term splits into a product of sum overs &,, and &,

! S o) pers = Ve, (9, Ve,

|6m X 6n| (0,7)ECmXGy,

so that
ch(f.g) = ch(f)ch(g).

Let 1) the map 15(c) = 1 if o is of cycle type A and 15(c) = 0 otherwise. (1,),.p
is a basis of R. It is sent to (z;lp,\) \ep by ch. Hence the characteristic map send a
basis to a basis, it is an isomorphism.

m
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Remark 3.2.24. Under the characteristic map ch, the symmetric function h,, is
sent to the constant class function with value 1. The symmetric function e, is sent
to the sign.

Irreducible characters of &,, are indexed by partitions of n as in [Macl5| in
such a way that (™ corresponds to the trivial representation and x*") to the sign
representation.

Definition 3.2.25. The Schur functions are the images of the irreducible characters
of the symmetric group under the characteristic map. For A € P,

s[X] = ch(x)) = ¥ Xupul X (3.13)

z
|l=IAl a

where Xﬁ is the value of the character of type \ evaluated on a conjugacy class of
cycle type .

Proposition 3.2.26. Schur functions (sy),.p form an orthonormal basis with re-
spect to the Hall pairing and equation (3.13) might be inverted to express the power
sums from the Schur functions

pAX] = D xhsulX]. (3.14)
lp|=[Al

Proof. The family of Schur functions is the image under the characteristic map of
an orthonormal basis of R. Equation (3.14) follows from (3.13) and orthogonality
of characters of the symmetric group. m

Remark 3.2.27. Let xy € R, the class function defined as the character of a
representation V of &,,. The Schur functions and the power sums have the following
representation theoretic interpretation:

e (sy,ch(xvy)) is the multiplicity of the irreducible representation Vy in the rep-
resentation V.

o (pu,ch(xv)) is the trace of an element in &, with cycle type j on the repre-
sentation V.

Lemma 3.2.28. For v a partition of n let €, the sign representation of G, =
S, x -+ x6,. A choice of inclusion &, C &, allows to induce €,. Then for
AeP,

dim HOH]@n (Indgf €y, V,\) = <€,,, 8)\> = <h,/, S,\/> .

Proof. dim Homg,, (Indg: €, VA) is the multiplicity of the irreducible representation
Vy in Indg: €,. For m € Ny the symmetric function e,, is the characteristic of
the sign representation of &,,. Thanks to the compatibility between induction and
product, e, is the characteristic of Indg: €,. First equality now follows from Remark
3.2.27. To obtain the second equality, notice that V) is the representation V) twisted
by the sign. O]
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Definition 3.2.29 (Frobenius characteristic). We extend the characteristic map ch
to bigraded representations of &, by adding variable q and t to keep track of the
degree. To a bigraded representation of the symmetric group V = @(m)eNz Vij is
associated a symmetric function over Z(q,t) given by

ch(V)=>" > (Vijxa) q't's (3.15)

AP, (’i,j)ENQ

where the representation V; ; is identified with its character so that (V;;, x») is the
multiplicity of the irreducible representation of type A in V; ;. The symmetric func-
tion ch(V') is called the Frobenius characteristic of the bigraded representation V.

Example 3.2.30. For any p € P, the Macdonald polynomial I:I#[X; q,t] is obtained
i this way from a bigraded representations of the symmetric group. This is the
famous n!-conjecture of Garsia-Haiman [GH93|, proved by Haiman [Hai01].

3.2.3 Orthogonality and Macdonald polynomials

In this section Mellit [Mell7a; Mell8] characterisation of modified Macdonald poly-
nomials is recalled.

Generalities about scalar products on Sym [X]

A scalar product on Sym [X] is a Q(q, t)-bilinear form

(...,...)° : Sym[X]x Sym[X] — Q(q, 1)
F.G — (F[X],G[X])*

which is non-degenerate. It can be extended to multivariate symmetric functions by
specifying the variable acted upon in index

(.oy )% 0 Sym[X Yy, Y] x Sym[X, Zy,--+, 2] — Sym[Yi, -, Vi, Z1, 0, Z)
on pure tensors it reads
(FIXIQF Y1, Y, GIXIRGC 21, -, Z))% = (FIX], GIX) G2y, - Z)F' Y, Y]
and it extends by linearity.

Assumption 3.2.31 (Homogeneity). When considering families of symmetric func-
tions indeved by partitions such as (ux),cp, the symmetric function uy is always
assumed to be homogeneous of degree |A|.

Definition 3.2.32. Let (ux)ycp, (vu),cp two basis dual with respect to a scalar
product (...,...)5. Then the element Ks[X,Y] € Sym[X,Y] defined by

Ks[X,Y]:=) uy[X]u\[Y]
AEP

is called the reproducing kernel of the scalar product (.. .,...)%. It depends only on
the scalar product but not on the choice of dual basis as detailed in next proposition.
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Proposition 3.2.33. With the notations of previous definition, two families of sym-

metric functions (ax)yep, (by),cp are dual basis with respect to (..., . .. )% if and only
if
Ks[X,Y] =) a\[X]h[Y] (3.16)
AeP

Proof. Express ay and b, in the basis (u),cp and (vy),cp

aX] = ) du,X] (3.17)
=l

b[Y]= ) du,[Y]. (3.18)
lpl=Iv|

Equation (3.16) now reads
S bl Xl [¥] = Y uslX]alY]
w,p AEP

As the family (u\[X]v,[Y]) is free in Sym[X, Y] this last equation is equivalent

A HEP
to
> Ads =6, (3.19)
[Al=lpl
Now (a,) ,cp and (by) p are dual with respect to (...,...)" if and only if

(au, bp)s = Opp-

Using expansions (3.17), (3.18) and duality of (ux),cp, (vu) ,op this is equivalent to

neEP
> ad) =4, (3.20)
Al=ul

Two last equations can be written with matrices with columns and rows indexed by
partitions of a given integer then Equation (3.19) reads C*D = Id which is clearly
equivalent to (3.20) : C'D' = 1d. O

Remark 3.2.34. The name reproducing kernel comes from the notion of kernel of
an operator see [Mell8]. Kg is the kernel of the identity operator with respect to the
pairing (..., ...)%, indeed for any F[X] € Sym [X]

(Ks[X, Y], FIX))} = FIY].

Hall pairing and (¢, t)-deformations

The Hall pairing was defined in 3.2.18, it satisfies

<p)\7 p,u) = 5,\,‘”2)\

Remark 3.2.35. (py),.p and (z;lpu)uef form dual basis with respect to the Hall

pairing so that the kernel of Hall pairing is

Bxpxv] = 3 p 2 = 3 [y
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Before introducing deformations of the Hall pairing we need the following lemma.

Lemma 3.2.36. For F,G € Sym|[X] and S € Q(q,1)
(FIX],G[SX]) = (F[SX],G[X]) (3.21)
Proof. Tt follows from successive applications of remark 3.2.34

(FIX],GISX])x = (FIX], (Exp[XSY],G[Y])y)
= ((FIX], Exp[XSYT]) s, G[Y])y
= (FISY],G[Y])y .

]

Definition 3.2.37 (deformations of Hall pairing). The (q,t)-deformation of the Hall
pairing 1s defined by

(FIX],GIXD™ = (F[X],G(q— 1)1 - 1)X]).
Previous lemma implies that (...,...)%" defines scalar products on Sym [X].
Remark 3.2.38. The reproducing kernel of the (q,t) Hall pairing is
XY
Exp {—} .
(¢—1(1—1)

Definition 3.2.39 (Modified Macdonald polynomials). Mz, is the subspace of
Sym [X] spanned by monomials symmetric functions m,[X| with p < . Macdonald

polynomials (]:I,\[X; q, t])/\ep are uniquely determined by
o M\[X(t—1);q,t] € Mxy
o H\[X(q—1);q,1] € My
e normalization H[1;q,t] = 1.

Proposition 3.2.40. An equivalent characterization of MacDonald polynomials is
o Orthogonality (HA\[X; q,t], H,[X;q,1])%" = 0 if A\ #
e One of the triangularity condition Hy\[X (t—1)] € M<y or Hy[X(q—1)] € M<y
e Normalization H[1;q,t] = 1

Moreover

~ ~ q;t
ax(q,t) = (HA[X;qvt],HA[X;q,tD = [ (@@ = @) (g"® — ¢ =F) - (3.22)

TEA

the product is over the Young diagram of A and a(x) is the arm length and l(z) the
leg length (see Notations 3.2.1).

Proof. [Mell7a] corollary 2.8. O
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Definition 3.2.41 (Modified Kostka polynomials). The modified Kostka polynomi-

als <I?A7p(q, t)))\ are defined as the coefficients of the transition matriz between
7pepn

the basis of Schur functions and the basis of modified Macdonald polynomials:

X Q7 Z K)xp Q7
>\E7p7L

Notations 3.2.42. Thifuam’ables (q,t) will often be omitted and the modified Kostka
polynomial denoted by K , and the modified Macdonald polynomial by Hy[X].

The Macdonald polynomials Hy [X; q,t] where first introduced by Garsia-Haiman
|[GH96] as a deformation of polynomials defined by Macdonald [Macl5|. The defi-
nition recalled here comes from [Mell7a).

The remaining of this combinatoric background section is devoted to the presen-
tation of a result of Garsia-Haiman |[GH96, Theorem 3.4]. This result will be used
in 4.4 when discussing a combinatoric interpretation of traces of Weyl group actions
on cohomology of quiver and character varieties.

3.2.4 A result of Garsia-Haiman
Proposition 3.2.43. Define an operator Ay by

—q)(1 -t

AF[X] = F[X] = F [X L u )} Exp [—2X] |0

Where .0 means take the coefficient in front of 29, Then

AHy[Xiqt]=(1—t)(1—q) > ¢ " H\[X;q.t]

(3,7)EN
Moreover . o
Hyl—uqt]= [] (1—ug't) (3.23)
(4,7)EX
Proof. |GH96| Corollary 3.1 and theorem 3.2 O
Lemma 3.2.44. At first order in u
Hy1+uqt]=1+u Z ¢+ Ou?) (3.24)
(4,7)EX

Proof. One should be careful with plethystic substitution, to compute left hand side
of (3.24) one cannot just substitute —u for u in (3.23). Indeed p,[1 —u] =1 —u"
and p,[1 + u] = 1 4+ u™ so that substituting —u for u in the latter gives back the
former only when n is odd. Denote by d) , the coefficient of p, in the power sum
expansion of H, then

Hy[1—u;qt] = Z d/\,,uH(l_uM>

IR i
Hy[1+u;q,t] = Z dxp H(l + uh).
e[ =[Al i
We conclude by comparing the coefficient in front of u and using (3.23). O
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Lemma 3.2.45. Let F' € Sym,, [X] be a symmetric function of degree n > 2. Then
the coefficient in front of u in F[1 + u] is given by the Hall pairing with a complete
symmetric function

Fl1+ 4], = (hp1n[X], FIX])

Proof. The coefficient of m, in the monomial expansion of F' is denoted by c,.
The plethystic substitution F[1+ u] corresponds to the evaluation of the symmetric
function F' on the set of variables (1, u,0,...).

Fl1+u] = Z exma[l + ul
IX=n

Hence the only m, contributing are the one with A of length at most two, and the
coefficient in front of u is ¢(,,—1,1). Conclusion follow as complete symmetric functions
and monomial symmetric functions are dual with respect to the Hall pairing. O

Lemma 3.2.46. Let F' € Sym,, [X] be a symmetric function of degree n then

F[1 — ]
1—u

= (F[X], pn[X]) .

u=1

Proof. Let dy be the coefficient in front of p) in the power sum expansion of F.

Fl—u] = Z dapa[l — u]

[Al=n

= Y dJJa-uM).

A=n

When dividing by (1 — u) and setting v = 1 all terms coming from partitions of
length at least two will vanish as (1 — u)? divides them

F[1 — ]
1—u

1—u”

1—u

= d(n)

u=1 u=1

The size of the centralizer of an n-cycle in &,, is z(,) = n, conclusion follows by
orthogonality of power sums (3.10). O

Let us recall an important combinatorics theorem that will be related later to
cohomology of character and quiver varieties.

Theorem 3.2.47 (Garsia, Haiman [GH96| theorem 3.4). We denote by H/(ij)e/\ a
product over the young diagram of a partition \ omitting the top left corner with

(4,5) = (L,1).

Dper @t H/(i,j)e/\(l — ¢ HA[X]
a)x(q7 t)

()" Tsam[X] = (g-1)(1—1t) >

[A|l=n
(3.25)

Proof. The reproducing kernel of the (g, t)-Hall pairing was given in Remark 3.2.38.
The n-degree term of Exp[Z] is h,[Z]. The basis (]:I,\ [X]) and (HA_[X]) are
AeP AEP

ax
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dual with respect to this scalar product. Following Proposition 3.2.33, the degree n
term of the reproducing kernel of the (g, t)-Hall pairing is

XY B H,\[X]H,[Y]
n {(q—l)(l—t)] _;:n G '

Now expand h,, in the basis of power sums, proceed to plethystic substitution ¥ =
1 — w and apply (3.23)
) j—14i—1
Z p [ X(1—u) } _ Z H,\[X] H(z‘,j)e)\ (1 —ug™'t )
P L@ -1 =) ax

|ul=n [Al=n

Now divide by (1 — u) and set v = 1. Apply lemma 3.2.46 to left hand side and
compute explicitly the right hand side

2w (p“ {%} ,p(n>[Y])Y => HyX] H/(z‘,j)e;(l — ¢t

|lul=n [Al=n

as Adams operator are ring morphisms

O e R [ e A

and using orthogonality of power sums (3.10)

X1 DX (1 - @)
ro (=) = = -

(3.26)
Y “

We apply the operator A; to (3.26). According to Proposition 3.2.43, A; is
diagonal in the basis of Macdonal polynomials and we obtain, up to a sign, the right
hand side of (3.25). Let us compute the left hand side

X X X 1
Arp) [m} = Pn) [m] — P(n) [m - ;] Exp[—2X] [0

X X 1
= P(n) [m} — Pw) [m] Exp[—2X] [0 + p(m) [Z] Exp[—2X] |0
= & Exp[—2X] .0 .
In second line we used that Adam operator p, is a ring morphism and in the last

line that it acts on z as raising to power n. Now Exp[—z.X] is the inverse of Exp[zX]
so that if X = (zy +za+...)

Exp[—zX] = H(l — zx;)
the coefficient in front of 2™ is (—1)"e,[X] so that

Z Z(i,j)e)\ ¢! H/(i,j)e)\(l - qjiltifl)ﬁ/\ [X]

(~1)enliX) = ~(g = D1 =1 -

[A|l=n

Conclusion follows as e, = 5(in). O
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3.3 Conjugacy classes and adjoint orbits for general
linear group

K is either C or an algebraic closure Fq of the finite field with ¢ elements F,.

3.3.1 Notations for adjoint orbits and conjugacy classes

For r an integer and z € K, denote by J.(z) the Jordan block of size r with eigen-
value z

Let o = (g1, pt2, - - ., its) a partition of an integer m and let z € C. Denote by J,(2)
the matrix with eigenvalue z and Jordan blocks of size f;.

Ju(2) = . egl,.
Jus (2)
Let v = (v1,...,1) € P, a partition of n, introduce the following notation
P, =Py, X Py, X -+ xXPy.
Consider a diagonal matrix o

oy 1d,,
o= 72 1dv, ) (3.27)
| o;1d,,
with o; # o; for ¢ # j, so that v; is the multiplicity of the eigenvalue ;. Let
p=(p'....ut) €P,.
Notations 3.3.1. Denote by Oy, the adjoint orbit of the matriz:

S (o1)
J&U - Sy (02)

J#I(O'l).

If all the eigenvalue are non-zero, this adjoint orbit is also a conjugacy class in GL,,
it is then denoted by Cq.

We recall a well-known proposition.
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Proposition 3.3.2. The Zariski closure of the adjoint orbit O, is
0.0 =J 0,0
P2

the union is over l-uple p = (pl,...,pl) with p? < @ foralll < j < 1. The
dominance order on partition was recalled in Definition 3.2.2 .

Proof.

Ouo = [ {X € gl,

1<j<1

dim ker(X — ¢;)* = Z M?l for all k£ € N}

1<i<k

with 27" the transpose of the partition 47 so that p/ = card {r € N|u/ <i}. The
Zariski closure is

@Hﬂ = ﬂ {X egl,

1<j<l

dim ker(X — ¢;)* > Z ,ug/ for all k N} :
1<i<k

Indeed the inequality on the dimension of the kernel is a close condition, it corre-

sponds to the vanishing of all minors of (X — ¢;)* of size v; +1— 37,4 Mgl. Then

Opo C @HJ if and only if p?’ = p/" which is equivalent to p/ < . O

3.3.2 Types and conjugacy classes over finite fields
ix a total order on N5y x P*.

Definition 3.3.3 (Type). A type is a non-increasing sequence w = (dy,w') ... (d;, w!)
with (d;,w") € Nsg x P*. Denote by T, the set of type w with Y d;|w'| = n and
T = UneN>0 T,.

Definition 3.3.4 (Type of a GL,(F,) conjugacy class or of a gl,(F,) adjoint orbit).
Let C be a conjugacy class in GL,(F,), its characteristic polynomial has its coeffi-
cients in IF, so that its eigenvalues, which live in Ep are permuted by the Frobenius.
The spectrum of C, with multiplicity, reads

dy—1 dy—1 d;—1 dj—1
<717"'7’Yi]1 )7"'7(717"'77?1 )7"‘7(/717"'77211 )7"‘7(/777"'77[(]1 )

(& 2 .
~~ N~

mi my

with ~; € FZ such that fyfdrl # Y, ’yfdi = and v; # 7; for i # j. Then the
conjugacy class C determines partitions w* € P,,. giving the size of the Jordan blocks
of the Frobenius orbit of eigenvalues (’yi, e ,fyl-qdrl) After reordering it defines a

type w € T, given by w = (dy,wq) ... (dj,w;). The same description holds for adjoint
orbits instead of conjugacy classes.

Notations 3.3.5. For any family of symmetric functions (u))ep indexed by parti-
tions and any type w = (di,w') ... (d;,w') introduce the following notation

! I
Uy, = dei [ugi] = Huwi [X %]
i=1 i=1
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3.3.3 Resolutions of Zariski closure of conjugacy classes and
adjoint orbits

Consider a conjugacy class C,,. Notations are introduced in previous section, o in
GL,, is a diagonal matrix like in (3.27), denote by M its centralizer in GL,,.

GL, 0
M _= O GLVQ
: 0

n= (ut, ..., ) with u® a partition of ;. The transposed partition is denoted by
pi' = (pi' b, .. .). Let L the subgroup of GL, formed by block diagonal matrices
with blocks of size ,uf,,, it is a subgroup of M with the following form

vy
A

CL, 0
0 GL,y
0
L= X
GL 0
0 GLug/
0

Notations 3.3.6. For v = (v1,...,1;) a partition let
6, =6, x---x6, and GL,:=GL,, x---xGL,,.
Forp=(p',...,p") € P,
GL, := GL, x...GL, = [[ GL,,
and
G, =6, x...6,=]][6,
Then the previously introduced Levi subgroups satisfy M = GL, and L = GL,.

Denote by P the parabolic subgroup of blocks upper triangular matrices having
L as a Levi factor, P = LUp with

vy

Id‘u%/ *
0 Id,y *
0
Up = - N <
Idu%l *
0 Idugf
0
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Now we can construct a resolution of singularities of C,, ,

Xrpo = {(X,gP) € GL, x GL, /P|¢g"' Xg € oUp }

Proposition 3.3.7 (Resolution of Zariski closure of conjugacy classes). The im-
age of the projection to the first factor Xp p, — GL,, is the Zariski closure of the
congugacy class C, 5. Moreover the following map is a resolution of singularities

There is a similar result for adjoint orbits. For ¢ a diagonal matrix in gl, as
in (3.27), let I, p, respectively up the Lie algebras of L, P, respectively Up, then
p=I[1Dup.

Y po = {(X,gP) € gl, xGL, /P|g"' Xg€ o +up}.

Proposition 3.3.8 (Resolution of Zariski closure of adjoint orbits). The image of
the projection to the first factor Yi p, — gl, is the Zariski closure of the adjoint
orbit O, .. Moreover the following map is a resolution of singularities

3.4 Resolution of conjugacy classes and Weyl group
actions

3.4.1 Borho-MacPherson approach to Springer theory

The approach of Borho-MacPherson [BM83] to Springer theory is recalled, it relies
on perverse sheaves. It follows work of Lusztig [Lus81]| for the general linear group.
G is areductive group over K and B a Borel subgroup of GG. There is a decomposition
B = TU with T a maximal torus and U the unipotent radical of B. Consider the
Grothendieck-Springer resolution

G={(X.gB)€GxG/Blg'Xge B}.
Denote by G™ C G the subset of regular semi-simple elements and
G5 = {(X,gB) € G™* x G/Blg~'Xg € B}.
Let T™# := G N T, one has the following isomorphism

e x G/T — Gres
(t,gT)  +— (g9tg~', ¢gB)

The Weyl group W = Ng(T')/T acts on 7% x G/T, for w € W and w € G a
representative
w.(t, gT) := (it !, g 'T).
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Thus W acts on G™# by
w.(X,gB) = (X, g™ B).
Consider the following map

p¢ G - G
(X,9B) — X

Denote by p'® its restriction to G, Then p¢ is a Galois cover with group W.
Denote by U C G the subset of unipotent elements and

U={(X.gB)eUxG/Blg'XgeU}.

Consider the following diagram, both squares are cartesian

U « s G Gres

v [

U < > G < > (78,

Proposition 3.4.1 (Borho-MacPherson [BM83|, 2.6). The Weyl group W acts on
kg and on pfkg;.

Proof. Let Kgy € DY (éreg> be the constant sheaf concentrated in degree 0. It
is W-equivariant with ¢, : W*Kgzws — Kgree @ morphism which is the identity on
stalks. p™® is equivariant for the trivial action of W on G so that by Proposition
3.1.6, W acts on p;** k., and there is a group morphism W — Aut(pikgre; ). This
morphism is composed with inversion in order to obtain a left action.

This rather formal construction will be relevant later to compare various actions.
In the present situation the action can be easily described without the formalism of
W-equivariant complexes. The complex p,* k., is concentrated in degree 0, its stalk
is isomorphic to the group algebra of W, the group W acts by right multiplication.

Springer theory extends this action to the derived pushforward p!G/fé. First

p© is small, and by base change *pPrgz = p|*®i*kg.s. Therefore prg[dim G| =

TC* e . Then Aut(pf®rz:) = Aut (IC;!regNéreg> so that W acts on pCrg. To

Py "Kgreg
conclude, by base change p,u/{a is isomorphic to the restriction of p!G/{@ to U.
O

To study characters varieties, this construction is used when G is either GL,, or
a Levi subgroup of a parabolic subgroup of GL,,.

Example 3.4.2. When G = GL,,, the Weyl group is isomorphic to a symmetric
group &,,. The irreducible representations of the symmetric group S, are indexed
by partitions of n. For A € P, the associated irreducible representation is V. The
trwial representation is Vi, and V(iny is the signature. Then there is a nice descrip-
tion of the left W-action on p!“/{a

p?mg [diml}] = /\e? Vi ®I_CC'—A.
€Pn

With Cy the unipotent class with Jordan type . With notations from previous section
C)\ - C)\’l .
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Example 3.4.3. For a Levi subgroup M of a parabolic subgroup of GL,, with
M = GL,

the Weyl group Wyr = Ny (T)/T is isomorphic to &, (Notations 3.3.6 are used).
Let Uy C M the subset of unipotent element in M and Uy, its Springer resolution.
The result for GL,, easily generalizes to

M Ekg, [dimLNlM} Pv. ® ICo (3.28)

PGPU
with Céw the unipotent conjugacy class in M defined for p = (,01, e ,pl) by

C/],W::Cplx---xszCGLylx---xGLw.

Remark 3.4.4. The same construction exists for adjoint orbits. Denote by g, b,
respectively u the Lie algebras of G, B respectively U. Denote by n the subset of
nilpotents elements in g.

g:= {(X,gB) € g X G/B|g_1Xg € b}

and
={(X,9B)enxG/Blg'Xgeu}.

They fit in a diagram
% g

pg

’E:S
34— 3

% g

The Weyl group W acts on p{kz and on plrs. Moreover
e [dimn] = @ Vi® IC—

AEPy,

With Oy the nilpotent adjoint orbit of Jordan type A.

3.4.2 Parabolic induction

In this section Lusztig parabolic induction is recalled [Lus84; Lus85; Lus86|. Most
results hold for any reductive algebraic group G, for our purpose we assume G is
either GL,, or a Levi factor of a parabolic subgroup of GL,,. Let P be a parabolic
subgroup of G with Levi decomposition P = LUp. The projection to L with respect
to this decomposition is wp : LUp — L. Consider the diagram

L+ ‘s v, s a (3.29)

with

i = {(x,g)GGxG‘g_lxgeLUp}
Vo = {(x,gP)GGxG/P|g_lxg€LUp}
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plz,g) = wp(g~'zg)
p(x,9) = (z,9P)
p'(x,gP) = z

Parabolic induction is a functor IndgC p from the category of L-equivariant perverse
sheaves on L to the derived category of G-equivariant complexes of sheaves on G.
Take K an L-equivariant perverse sheaf on L. The morphism p is smooth with
connected fibers of dimension m = dim G + dim Up. Therefore the shifted pull-back
p*K|m] is an L-equivariant perverse sheaf on V;. Hence there exists a perverse sheaf
K on Vj, unique up to isomorphism, such that p’*}? [dim P] = p*K[m|. Then the
parabolic induction of K is defined by Ind¥ -, K := p/’ K.

Example 3.4.5. The Springer complex p!GK@ s nothing but Ind?cB kr and the W -
action on this complex is a particular cass of a more general situation studied by
Lusztig [Lus86].

Example 3.4.6. Parabolic induction also relates to the resolution of closure of con-
Jugacy classes from 3.3.3. Consider the following diagram with the first line being
the diagram of parabolic induction

L < Vi > VL y GL,
[ A

{0’} — XL’p’g — XL,RU Em— EE’U

[\

then _
Ping, ., [dim Xy p,| 2 dfly ko).

with Ky the constant sheaf with support {o}.

Proposition 3.4.7 (Lusztig [Lus85| 1-4.2). Let P,Q be parabolic subgroups of G
with Levi decomposition P = LUp, Q = MUg such that P C Q and L C M, then
PN M s a parabolic sugroup of M with L as a Levi subgroup. Let K a L-equivariant
perverse sheaf on L such that Indﬁ/lcpnM K is a perverse sheaf on M. Then

Indfp K = Ind§ ¢ (Ind}e poy K) -

Let us detail the implication of this proposition for Springer complexes. As in
previous section, G = GL,,, B is a Borel subgroup of G and T" a maximal torus in B.
M is a Levi factor of P a parabolic subgroup of G containing B, it has the following
form for some v € P,

M =GL, .

By transitivity of the parabolic induction from previous proposition
IndS . ki = nd§cp Indye 50 fir (3.30)

The left hand side is the Springer complex for GG so that it carries a W-action,
this action restricts to a Wy-action as Wy, € W. Similarly Ind}. 5., k7 carries a
Wr-action as it is isomorphic to the Springer complex for M. Under the parabolic
induction functor Ind]\GK p, this Wj-action on Indé‘ffC pna Fr induces a Wj-action
on Ind{;. p Ind}L 5, k7. Lusztig [Lus86, 2.5] proved that both Wj-action coincide
under the isomorphism (3.30), this implies in particular the next theorem:
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Theorem 3.4.8. Let 0 € Z(L) and ks the constant sheaf with support {o}. Let
M = Zg, (0), assume M = GL,

nd$¥, gy = @) Homy,, (Ind%f e, V£> ©IC;
PEPY

with e the sign representation of Wr,.

Remark 3.4.9. The same constructions exist for Lie algebras, see for instance
[Let05]. Previous theorem then becomes:

I, k(o) = @ Homw,, (Ind}f e,V,) © IC3

PEPY

3.4.3 Relative Weyl group actions on multiplicity spaces

An interesting feature of the multiplicity spaces Homyy,, (Indwf €, VB) is that they

carry a relative Weyl group action. Before describing this action, we recall a general
result about symmetric group, see Letellier [Let11, 6.1, 6.2].

Consider a type w = (di,w')...(d;,w') € T, (the set of types was defined in
3.3.3). The associated Schur function is

Sw = Spt [Xdl] Syl [Xdl}

and
l

r(w) ==Y (di — D). (3.31)

=1

Definition 3.4.10 (Twisted Littlewood-Richardson coefficients). As the usual Schur
funtions (s,),ep, form a basis of Sym,,[X], there exist coefficients ¢, such that

Sy = g clsy.
PEPn

Coefficients c? are called the twisted Littlewood-Richardson coefficients.

Lemma 3.4.11. Let W' the transpose of w, i.e w' = (dl,wll) e <dl,wl/>. Then

with r(w) defined in (3.31).

Proof. This follows from a computation in the ring of symmetric functions using the
basis of power sums, see Letellier [Let11, 6.2.4]. ]

Let us recall their interpretation in terms of representations of symmetric group.
The type w defines an irreducible representation V,, of the group &, := H§=1 Gt

|t

! d;
V., = ®i:1‘/ﬁ g
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with V., the representation of &, indexed by the partition w'. Denote by f, the
morphism &, — GL(V,,) induced by the representation V,,. Introduce the relative
Weyl group

We, (64, V) = {n € Ne, (6,) | fuln™...n) = fu(...) } /&,

This is the group of permutations of the blocks of &, corresponding to the same
representation V.

Proposition 3.4.12 (Letellier [Let11| Proposition 6.2.5). For p € P, and V, the
associated representation of &,. For w € T, a type. The relative Weyl group
Ws, (6., V) acts on

Home, (Indg" Vi, V,) .

Let w € Wg, (6, V,,) acting by cyclic permutation of the d; blocks with representa-
tion Vi for 1 <i <. Then

tr (w, Homg, (Indg” V,,V,)) = ¢
Remark 3.4.13. Assume the type w has the following form
w= (A, (1)... (A, (1) with A= (A1,...,\) € Pp.
Then s, = px and by (3.14), for p € P,

Notice that W, (6,,,V,) = &,, and the element w associated to w has cycle type \.
Therefore the proposition implies that as a W, (&, V,,) representation

Homeg, (Indg" Vi, V,) 2V,

With this general result about symmetric group, we go back to the Weyl groups
relative to resolution of conjugacy classes.

Definition 3.4.14 (Relative Weyl group). For L a Levi subgroup of M, The relative
Weyl group s

Take L and M similarly to Section 3.3.3. Denote by (mf, ..., mj,_) the multiplic-
ity of the parts of *’ so that it has the following form

Then with notations 3.3.6 L = GL, and the relative Weyl group is

Wy (L) = ” 6,@.
1<i<l
1<r<k;

When M = GL, then the relative Weyl group is the group of permutations of
same-sized blocks of L.
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Notations 3.4.15. Conjugacy classes in Wy (L) are indexed by elements

n=m") 1< € H P -

1<r<k; 1<i<i
1<r<k;

A conjugacy class then determined | distinct types w,: with parts <77§”", (1“£)> 1<r<k;
1<s<l(nb™)

Note that .
ki 1(n"")

Rt [Xné”}
r=1 s=1
Following notations will be convenient to compute Weyl group actions on the coho-
mology of character varieties.

and

with (w,:) defined by (3.31).

Those data describe the W), (L) action on the multiplicity spaces, Proposition
3.4.12 implies:

Theorem 3.4.16. Let €,/ the sign representation of Wi, and p € P,. The relative
Weyl group Wi (L) acts on Homyy,, (Ind%f s VB)' The trace of the action of an

element with conjugacy class indeved by 1 € [J1<i<i; Pmi is
1<r<k;

!
tr (77, Homyy,, (Ind s B)) = Hcﬁj ;
i=1

3.4.4 Relative Weyl group actions and Springer theory

There is another construction of relative Weyl group action using another variant
of Springer theory. It will be useful to construct relative Weyl group actions when
considering family of comet-shaped quiver varieties.

Let P be a parabolic subgroup of GL,, and L a Levi factor of P. L is isomorphic
to a group of blocks diagonal matrices GL., x--- x GL... The Lie algebra of L,
respectivly Up are denoted [ respectivly up. At the level of the Lie algebras the Levi
decomposition becomes p = [ @ up. The center of this Lie algebra [ is denoted Z(I)
and its regular locus is

Z(1y*5 = {z € Z(1) | Za(x) = L} .

Define N
YTLG,%D = {(a:,gL) € gl, xGL, /L ‘gilxg € Z([)reg}

Consider the projection on the first factor p™® : iiv{’fgp — gl,, denote Y% its im-
age. This image consists of semisimple elements with r distinct eigenvalues with
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multiplicities ¢y, ..., ¢.. Consider the relative Weyl group Wey, (L) = Ngr, (L)/L,
and for each w € Wy, (L) chose a representative w € Ngr, (L). This relative Weyl
group acts on Z(I) by

w.o = wow .

Consider the fiber product

Z(hres ¢ YI;%D X Z()ree /War,, (L) Z(1)ree

! |

Z(0E/Wa, (L) < Yip

X

with x the characteristic polynomial. Note that the following map is an isomorphism

Yr% = Yob Xzerewe, ) Z(1)®

(0.9L) (z.g-179) (3.32)

Therefore the Wer, (L) action on Z([)**® induces an action on @fgp. It is given
explicitly by
w.(z,9L) = (z,9u "' L).

Then

PO
is a Galois cover with group Wer,, (L). This relative Weyl group acts on the push
forward of the constant sheaf pi°¢x. Define

Yop= {(z,9P) € gl, x GL,, /P |9 'zg € Z(1) Dup }
Remark 3.4.17. An element gP € GL,, /P identifies with a partial flag
OZETCET,1C“’CE1CKH

such that dim E; 1 /E; = ¢; for all 1 < i < r. Indeed GL, acts transitively on
such flags and the stabilizer is P. Then a point (x,gP) in Y p consists of an

endomorphism x € gl, and a partial flag gP preserved by x such that x acts as a
scalar on E;_1/E; for all 1 <i <r.

Denote Y p the image of the projection to the first factor p : ?Lﬁp — gl,.
Note that the map p is proper. The following theorem is a particular case of
[Lus84, Lemma 4.3 and Proposition 4.5]. It can be seen as a generalization of
Borho-MacPherson result.

Theorem 3.4.18. Yﬁgp is an open, dense, smooth subset of Y, p and the following
square s cartesian

§If7gp _z> §{L,P
- lp (3.33)
legp — YL,P

with i the map (z, gL) — (x,g9P). Moreover pik = ZC* (Y p,p, *k) so that Wa,, (L)
acts on p.k.
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Remark 3.4.19. p*& is a Galois cover and v an open embedding so that the dimen-
stons can be easily computed:

dimY; p = dim Y, p = dim Y% = dim GL, — dim L + dim Z(L). (3.34)

Let us describe the relation with the resolution of closure of adjoint orbits in-
troduced in 3.3.8. Let 0 € Z([) and M := Zgy,, (0). Then use the same notations
as in 3.3.3 so that M = GL, for v a partition of n. Moreover L C M and the
integers (cy,cs,...,¢,) are relabelled (p!, 1, ...) so that " is a partition of v;.
The inclusion L C M comes from inclusions

GL,ir X X GL%/ Cc GL,, .
The resolution of the closure of 5&0 fits in the following diagram

Yop<— Yo p,

lp lp" (3.35)

YL,P < OH,O’ = Uﬁjﬁ Oﬁ,a

The decomposition 6&0 = ||
Yz, p. Define

=i O, actualy comes from a decomposition of

M,p
Yir= || O

o' € Z(m)res

This decomposition is similar to the one introduced by Shoji [Sho88].

Proposition 3.4.20. Yﬁg is smooth of dimension
. M,p . .
dimY; 5 =dimO,, + dim Z(m).

Then Y p admits the following decomposition

Yop=| || |Y.p

M p=p

The first union is over the set of centralizer of elements o € Z(l). In the second
union, p depends on M as previously described. The unique part indexed by M = L
is Y7 .

Proof. Denote by Z, the centralizer in GL,, of the element J,, in O, , (see Notations
3.3.1). Then there is a natural finite cover

Z(m)s x GL, /Z, — Y5
(0’,gZB> —> gJB,(,/g_1

Therefore Yf}g is smooth and

dimY; 5 = dim O,, + dim Z(m).
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3.5 Character varieties and their additive counter-
part

In this section the main objects studied in this thesis are introduced.

3.5.1 Character varieties

Let ¥ be a compact Riemann surface of genus g. Consider the punctured Riemann
surface ¥ = X\ {py, ..., px} where p; are distinct points on X called punctures. The
field K is either C or an algebraic closure F, of a finite field F, with ¢ elements. Fix
a non negative integer n. We are concerned by n-dimensional K-representations of
the fundamental group of ¥ with prescribed monodromy around the punctures.

For each puncture, specify a conjugacy class C,; ,;. The notations are the same
as in previous section, with the addition of an upper index 1 < j < k labelling the
punctures. o’ is a diagonal matrix with diagonal coefficients

J J J J
(01,...,07, ,alj,...,alj)
— -

v J

and o7 # ol for r # 5. Moreover, p/ = (p?', ... ) with p/" € P,; the partition
giving the size of the Jordan blocks of the eigenvalue o7.
A bold symbol is used to represent k-uple:

noo= (u', ..., p1b)
o (o' ... 0") (3.36)
Cro = (cul,al, o ,cﬁkﬁok>

q =

The representations of the fundamental group of ¥ with monodromy around p;
in the closure C,; ,; form the following affine variety

Re,. = {(Al, Bi,..., Ay, By, X1, ..., Xp) € GLE xCp g1 X -+ X Cpp g

A\BIAT' B U ABGA BT X L X = 1d )

The group GL,, acts by simultaneous conjugation on Re..

9 (A1, By, Xy X)) = (94197 - 9Beg g Xag ™ 9 Xeg )
The center of GL,, acts trivially so this action factors through an action of PGL,.

Definition 3.5.1 (Character variety). The character variety we are interested in is
the following GIT quotient

PCL,
Mg#,o‘ = RE“VO_// PGLn = SpeCK [R@}lﬁa}

It is an affine variety with reqular functions the PGL,,-invariants functions on R@M iy

Under some generecity assumptions, the PGL,, action is free.
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Definition 3.5.2 (Generic conjugacy classes). Denote A(o?) the multiset of eigen-
values of o7 repeated according to multiplicities. o appears ezactly v3 times in the
multiset A(o?). The k-uple of conjugacy classes Cp o is generic if and only if it
satisfy the two following conditions

1.

1 1] o=

J=1 aeA(q7)
2. For anyr <n—1, for all (Ry,...,Ry) with R; C A(c?) of size r

T[T o

j=1 OtERj

Throughout the thesis, every character varieties considered are assumed to have
generic conjugacy classes at the punctures.

Remark 3.5.3. If the k-uple of conjugacy classes Ema 15 generic and V' 1s a non-
zero subspace of K" stable by some elements X; € Cﬁjﬂj such that

k
[T det(X;,) =1
j=1

then V = K".
Definition 3.5.4. Let Re, . = Re,,, N (GLa(K)? x [[L; Co s ) and Me, . the

image of Re,,, in R@H L

Proposition 3.5.5. If C, » is generic then points of Re, , correspond to irreducible
representations of the fundamental group of the punctured Riemann surface 3.

Proof. Let V' be a subrepresentation of (A, Bi,..., Ay, By, X1,...,Xi) € Re,,-
Then V' is stable by thoses matrices and the equation defining R, , restricts to

(Al'v, B1|V> N <A9|V’ Bg|V)X1‘V e Xk'v - IdV .

Taking determinant, the genericity implies V' =0 or V = K". ]
We recall a proposition from |Let13], and [HLR11]| for the semisimple case.

Proposition 3.5.6. If C,, » is generic then R, , is non-singular, when non-empty
its dimension is

k
dimRe, , =2gn® —n®+1+ Z dimC o

=1

Proof. The proof combines the one of theorem 2.2.5 in [HR08| and proposition 5.2.8
in [EORO4].
Re = p (1) where u is the map
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T GL,(K)% x [[", C; — SL,(K)
(Al, Bi,... ,Ag7 Bg7X1, S ,Xk) — (Al, Bl) . (Ag, Bg)Xl oo X

It is enough to check that the differential du, of this map at a point
Z = (Al,Bl,...,Ag,Bg,Xl,...,Xk) € RC

is a surjective map between tangent space. The tangent space of SL, (K) is the Lie
algebra s, (K). The tangent space of C; at X; is made of Lie brackets [r;, X;] for
r; € gl,(K). Hence an element of the tangent space at z reads

v = (hl,ll,...7hg7lg,[Tl,Xl],...,[Tk,Xk])

for r;, h;,l; € gl,(K). First we compute the differential with respect to A; of the
commutator A; — A]-BjAj_lBj_l

dj(hj) = thjA}lle — AijA{lthngjl
similarly with respect to B;
d() = Al AT B — A;BiAT B BT

We use the usual rule to differentiate a product of matrix

k
dp-(v) = > (A1,B1)...(Ag, By) X1 ... Xia[ri, Xi| Xija ... Xy
=1
+ Z Ay, By) o (Ajey, Bioa)d(hy) (Ajyr, Bja) - - (Ag, Bg) Xi - X
+Z AL By) o (Ao, Bio)d (1) (Ajar, Biaa) - (Ag, Bo) X .. X

the first, respectlvely second and third lines correspond to differenciation with re-
spect to X; respectively A; and B;. Now we use that z satisfies the equation defining
Re

k

du.(v) = Z(Xi LX) X X X
+Z AL By) ... (Aj1, Bj1)d;(hy) (A1, By) ... (Aj_1, Bj 1) (A, By)) ™!
+Z Ay, By) ... (Ajor, Bi)d(l;) (A, By) ... (Aj1, Bi-1)(A;, By) ™

We rewrite to exhlblt some conjugation

k
d/llz(?}) = Z(Xi+1 Ce Xk)ilXiil[T‘i, XfL']X/L'Jrl .. -Xk
=1
+Z A1, Br) . (A, Bia)d;(hy) (Ay, B) 7 ((Av, Bi) - (A1, By)) ™
+§ZALBI (Ajor, By () (A, By) ™ ((An, By) - (Aja, Byo)) ™
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To prove that this differential is surjective we take u € sl,(K) such that for any v
tangent to z we have tr(du,(v)u) = 0 and show that u = 0. For any r; € gl,,(K) we
must have

tr((Xigr - X)X rs, Xa) Xigr ... Xpu) =0 (3.37)

Let us prove by recursion that u commutes with X; for all 1 < < k.
When 1 = k

0 = tr(X; e, XiJu) = tr(X i Xpu) — tr(rpu) = tr(r Xpu X, — ryu)

in last equality we use the cyclicity of the trace. This must be true for any ry so
that u = XkuXk_l. Now let us assume that u commutes with X, for any i < m < k,
(3.37) implies

tr( X,

7

Yri, Xilu) = 0

so that u commutes with X;. Similarly v commutes with A; and B;. By genericity
and Schur lemma this implies that u is a scalar matrix, as it is in s[,(K) it must be
zero which achieves the proof. ]

Proposition 3.5.7 (Stratification of Mg, [Let13] Corollary 3.6 ). We assume
Cu,o is generic. The stratification of Zariski closure of conjugacy classes induces a
stratification of the character variety:

Méu,a - I_l Mép,a'
P2
The union s over p = (gl, e ,Bk) with BJ = (p“, e ,pj’lj) such that
PR forall1 <G <k, 1<i<l

with <X the dominance order on P ;.
Moreover if Mg is non empty, then M, , is also non empty. Therefore when
M@w 1s non empty, its dimension is

k
dim Mg, | =dy :==n*(2g —2) +2+ Y dimCp 0. (3.38)

Jj=1

3.5.2 Additive analogous of Character varieties

Instead of the multiplicative equation in GL,, defining RC ,» one can consider ad-
ditive equation in gl,. This is called the additive Deligne- SlHlpSOIl problem. It was
studied by Crawley-Boevey [Cra03b|, [Cra06] in the case g = 0, by Hausel, Letel-
lier and Rodriguez-Villegas [HLR11]| for semisimple adjoint orbits and by Letellier
[Let11] in general.

As before, notation from 3.3.1 are used, and a k-uple of adjoint orbits in gl is
introduced:

Opo = (oﬂlﬂl, o ,oﬁkyak) .

Consider the affine variety

V@;L,a = {(AlaBla---,Ag,Bg,Xl,...,X ) c g[2g XOM ol X oo X

ﬁ
g k
ZAZ,B Z = }
=1 j=1
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This is an affine variety acted upon by GL,, by coordinate-wise adjoint action. The
center of GL,, acts trivialy so that the action factors through a PGL,, action. Con-
sider the GIT quotient

Qp,. = Vo, / / PGL, = Spec (K [VO“,E,]GL”) . (3.39)

Definition 3.5.8 (Generic adjoint orbits). Denote A(a?) the multiset of eigenvalues
of 07 repeated according to multiplicities. o) appears ezactly V2 times in the multiset
A(o?). The k-uple of adjoint orbits O,, , is generic if and only if it satisfy the two
following conditions

1.

2. For anyr <n—1, for all (R, ...,Rg) with R; C A(d?) of size r

k

IPITT

j=1 a€R;

Remark 3.5.9. Contrarily to the multiplicative case, generic k-uple of adjoint orbits

do not exist for every multiplicities (v*,...,v¥). In particular if an integer d > 1

divides all 17 for 1 < j <k.

Character varieties and their additive analogous share many properties in com-
mon. They have the same dimension and similar stratifications. Let

N Y 29
Uo, , = Z/{Ouva N gl XOH1’C,1 X oo X Oﬁk’ak
and Qo’w the image of Up, , in Q@m‘

Proposition 3.5.10 (Stratification of Q@w). Assume O, , is generic, then
Q.. = || Qo,.
p=p

18 a stratification of Q@L .- Moreover

k
dim Qp, , =du=n*29—2) +2+ Y dimOu .

J=1

3.5.3 Resolutions of character varieties

The resolutions of conjugacy classes introduced in 3.3.3 induce resolutions of char-
acter variety. As before we consider a generic k-uple of conjugacy classes

Cma = <CM17017 o ,C'uk’o-k>
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and upper indices 1 < j < k label the puncture. As usual ¢/ is a diagonal matrix
with diagonal coefficients

J J J J
(0],...,07, ,O’lj7...,0’lj).
—_——— N

l/‘{ J

Let M7 := Zgp, (07) then with Notation 3.3.6
M7 =~ GL,;

As usual g/ € P ; is the Jordan type of o7. Denote by p/#' = ( {’i/,ué’i/, .. > the
transposed partition. Let L’ C M7 the subgroup of diagonal matrices as in 3.3.3

L]gGL j71/XGL j71/X...><"‘><GL j,lj/XGL j,l]./x....
oM 12 My Mo

4

J/

v ~~
CGL ; CGL
1 Vl].

Let §N§Lj7pj70j a resolution of aujp-j as constructed in 3.3.3. Let
XL po = H Xi pigi-
1<j<k
Letellier [Let13] constructed resolutions of singularities for character varieties.

Definition 3.5.11 (Resolutions of character variety). Define

MVL,P,O’ = {(Ai, Bi)i<i<gs (Xjangj)lgjgk € GLig ><§§L,P,a
|A\BIAT'B . B Xy L. X =1d} //PGL, . (3.40)

i = .
The maps p” : Xpi pigi — Cui g induce a map

p7 ML7p7a - Mz, .,
this map is a resolution of singularity.
Next theorem is a particular case of a result of Letellier [Let13, Theorem 5.4]
Theorem 3.5.12.
p?’f[du] = @ Au’,p ® I—C;\AEU’

P

pRp
and in terms of cohomology:
i+ (MLP,(,, /<;) ~ P A © TH (Ma,,,,a m) . (3.41)
pRp

The multiplicity space A, , will be described in the remaining of the section.
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Like the resolutions of closure of conjugacy classes, the resolution of character
varieties come with a Weyl group action a la Springer. First we present the Weyl
groups involved. The Weyl group of M7 is Wy;; = Ny, (T)/T then

WMj g 6Vj.

For p/ = (p'!,...,p') € P,; and V. the irreducible representation of &, indexed
by pit let

lj
Ve @V
i=1

it is an irreducible representation of Wj,;.
The Weyl group of L7 is Wp; = Ny, (T)/T, it is a subgroup of Wy,

WngGujl',lfXGILL%'J’X...X"'XGquj/XGjaljlx""
N 1

P H Ho

-

c6
vy

The sign representation for this Weyl group is

L
€pi’ = ® ®€;d§’i"
=1 r

It was previously denoted only by €, the index is now added to remind the form of
the Weyl group Wy, = & ;.

"

Definition 3.5.13. The multiplicity space relative to the j-th puncture is

W,
MJI .
it pi = Homyy (IndWLJ_ €' VpJ) .

A

Remark 3.5.14. The expression is particularly simple when L7 is a torus T. Then
the multiplicity space is just V,,;.

Define Wy = H;?:l Wy and similarly Wp, := H?Zl Wp;. The parameter p =
(/_)1, e /_)k) € P, x --- x P indexes irreducible representations of

L

1T S,

7j=11i=1

12

Wt

V), is the following irreducible representation of H?:l H?Zl S,

V, =) ® V. (3.42)

Now ¢, is the sign representation of W, namely

k
€ = ® Epi’
i=1

The description of the multiplicity space for resolutions of closure of conjugacy
classes (Theorem 3.4.8) extends to A, ,:

97



Notations 3.5.15. The multiplicity space A,y , is
k
Ay p = Homyp,, (Indiy™ €1, V) = Q) A,
j=1

Everything in this section also apply to the additive case.

Definition 3.5.16. For O, , a generic k-uple of adjoint orbits, define

éL,P,a = {(AiaBi)lgigga (Xjagjpj)lgjgk € GLig X,{{L,P,a

i[Ai,Bz‘]-i-in 20} //PGL,, .

j=1
i A : ; ; it
The maps p” : Y pigi — O o induce a resolution of singularities:

p7 QL,P,U — Qam-

Theorem 3.5.17.
b ’f[du] = @ Au’,p ®I—695p

pPRp

N4

and in terms of cohomology:

H2+d“ (éL,P,av ﬁ) = @ A“/’p ® ]H2+dp (Mépp, Ii) .

pPRp

3.5.4 Relative Weyl group actions

(3.43)

(3.44)

An interesting feature of the multiplicity spaces A, , is that they carry a relative
Weyl group action. It is constructed by Letellier [Let11, 6.1, 6.2]. The relative Weyl

group is

War(L) == HWMj(Lj)

with Wy, (L7) the relative Weyl groups described in 3.4.3. Their action on the
multiplicity spaces provide a Wjs(L)-action on A, ,. As usual an index 1 < j <k
is added to label the puncture. Conjugacy classes in Wy, (L) are labelled by elements

n = (7 )i<j<

with 7/ € 11 1<i<l; ng;,i as in 3.4.3 with an additional index j for the puncture.

1<r<k;;

j ‘7i7T .
W= i<y, € [ P
Isr<kin <<,
1<r<k;;

Notations 3.4.15 extend to k-uple:
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Notations 3.5.18.

and

Proposition 3.5.19. The relative Weyl group War(L) acts on A, , and the trace
of an element in the conjugacy class indexed by m is

kol

tr(m, Aw,) = [[T] -

j=1i=1

This proposition will be useful together with the decomposition of the cohomol-
ogy of resolutions of character varieties (3.44).

Theorem 3.5.20. Let C,, » a generic k-uple of conjugacy classes and .//\-/le7P7o- the
resolution of ./\/lg;w. The relative Weyl group Wyg(L) acts on the cohomology of

./K/le,p,a. The trace of an element in the conjugacy class indexed by n is

tr (777H2+d" (//\\A/L,P,Ua H)) = Z tr(n, A ,) H % (Mamp, li) .
p=
3.6 Cohomology of character varieties: some results
and conjectures

3.6.1 Conjectural formula for the mixed-Hodge polynomial

Hausel, Letellier and Rodriguez-Villegas [HLR11]| introduced a generating function
conjecturally encoding mixed-Hodge structure on the cohomology of character va-
rieties. Let g be a non-negative integer, the genus, and k a positive integer, the
number of punctures.

Definition 3.6.1 (Generating function 2 and Hausel-Letellier-Villegas kernel). The
k-points, genus g Cauchy function is defined by

Y (z,w) = Z’H,\(z,w) HI:I,\ [XZ-, 22,w2] s (3.45)

with
(Z2a+1 _ w21+1)29

(3.46)

Halz,w) = H (22072 — 2l (220 — 242)’
The degree n Hausel-Letellier- Villegas kernel is defined by

HALY (2,w) == (2% — 1)(1 — w?) Log Q(z, w)’s

n
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The generating function Q7 (z, w) belongs to the lambda ring Sym [ X, . .., Xg] [[s]].
This Cauchy function is known to encode cohomological information about character
varieties and quiver varieties, let us recall these various conjectures and theorems.

When the conjugacy classes are semisimple Hausel, Letellier, Rodriguez-Villegas
stated a conjecture for the mixed-Hodge polynomial of the character variety [HLR11].
They proved the specialisation corresponding to the E-polynomial. Letellier gener-
alized this conjecture to arbitrary types and intersection cohomology.

Let C, o a k-uple of generic conjugacy classes. Then p = (El, ce Hk> with
p = (p?', ..., ). The transposition of the partition /' € P,; is denoted by T

and
kU

sw = [T s 1X] (3.47)

j=11i=1

Conjecture 3.6.2 (Letellier |Let13|, Conjecture 1.5). For C,, » a generic k-uple of
conjugacy classes, the mized-Hodge polynomial of the character variety M@m 18

L Me, . 0.0) = (v (s BV (Z2vd) )

with ¢ = xy. In particular after specializing to the Poincaré polynomial
P(Me, . v) = v (s, HIPY (=1,0)). (3.48)

Some specializations of this conjecture are already proved. The formula ob-
tained after specialization to the E-polynomial is proved by Hausel, Letellier and
Rodriguez-Villegas [HLR11] for semisimple conjugacy classes and by Letellier [Let13]
for any type of conjugacy classes. The proof relies on counting points of character va-
rieties over finite fields and representation theory of GL,(F,). The formula obtained
after specialization to the Poincaré polynomial is proved by Schiffmann [Sch16]| for
one central conjugacy class and by Mellit [Mell7a| for any k-uple of semisimple con-
jugacy classes. The proof relies on counting point of moduli space of stable parabolic
Higgs bundles over finite field.

For the additive case the Poincaré polynomial is known, the cohomology is pure
so that it is obtained by counting points over finite fields. It was computed in the
semisimple case by Hausel, Letellier and Rodriguez-Villegas [HLR11], for any types
of adjoint orbits by Letellier [Let11].

Theorem 3.6.3. Let O, » a generic k-uple of adjoint orbits. The Poincaré polyno-
maal for compactly supported intersection cohomology of Q@M 08

Pc <Q6M,07’U> = Ud“ <Su'>H7[z{LV(O>U)> :

3.6.2 Poincaré polynomial of character varieties with semisim-
ple conjugacy classes at punctures

Let us recall Mellit’s result and check that it is a particular case of the conjecture.
Let 8 = (S1,...,Sk) a generic k-uple of semisimple conjugacy classes. Then S; has

100



the form C, 55 with p/ = (1'/{7 c 11’5’) and

lj k

Sp = H swn Xl = [T hlX5] = ho.

j=1i=1 j=1
Lemma 3.6.4. If Mg is non-empty, its dimension is
ds =n*2g+k—2)+2- > (1)’ (3.49)
2%
which is even.

Proof. First note that the centralizer in GL,, of an element in S; is isomorphic to
[I; GL,: so that
J

dimS; = dimGL,—» dimGL,

J

= Y ()

J

Equation (3.49) then follows from the general formula (3.38). Reducing modulo 2
ds = n’k— Z (u§)2 mod 2
1,

= nk— Zu; mod 2
1,J

= 0 mod?2

]

The conjecture from Hausel, Letellier, Rodriguez-Villegas [HLR11]| for the mixed-
Hodge structure of the character varieties with monodromies specified by & reads

IH, (Ms:.0) = (o) (. HI (;—;\@» -

Note that as the conjugacy classes are generic semisimple, the character variety is
smooth and the intersection cohomology coincides with the usual cohomology. Then
the specialization to compactly supported Poincaré polynomial of the conjecture is

P.(Mgs,v) = Zvi dim H)(Ms, &) = v* (h,,HI"Y (=1, v)). (3.50)

In order to compare this formula with Mellit’s result we perform a change of

; =1
variable v = NG

Z(—Uiu%" dim H (Mg; ) = <\_/—%)ds <h,,,]1—]IfLV (-1, ;—%» .

7
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Note that Q(z,w) = Q(w,z) = Q(—w, —2z), moreover the dimension is even by
Lemma 3.6.4, therefore the conjecture is equivalent to

S (1) TS dim H(Ms; k) = (V)™ <h,,H§W (% 1)> ,

7

By Poincaré duality this formula becomes

S (1)t dim H (Ms; k) = (Vu)'s <hw H, (% 1)> '

Thus the Poincaré polynomial specialization of the conjecture is equivalent to the
formula proved by Mellit [Mell7a, Theorem 7.12] and we have the following theorem.

i

Theorem 3.6.5. For S = (Si,...,8k) a generic k-uple of semisimple conjugacy
classes. If the multiplicities of the eigenvalues of S; are given by a partition 7 € P,
for 1 < 3 < k. Then the Poincaré polynomial of the character variety Mg is

P.(Ms;v) = v (h,,HI" (=1,0)) . (3.51)

3.6.3 Weyl group actions on the cohomology

In 3.5.4 a Weyl group action on the cohomology of resolutions of character varieties
was introduced. The conjecture about the mixed-Hodge structure also concerns this

Weyl group action. We present the implications in terms of Poincaré polynomial
using Notations 3.4.15 and 3.5.18.

Definition 3.6.6 (n-twisted Poincaré polynomial). C, » is a generic k-uple of con-
Jugacy classes and My p o is the resolution of M@a' For ) indexing a conjugacy

class in Wy (L), the n-twisted Poincaré polynomial of /f\;l/va,a 15
P </f\;l/L7p70-,U> = Ztr (77, H! (/T/l/vaJ, /{)) v
In the additive case, n-twisted Poincaré polynomial were computed by Letellier

[Let11, Corollary 7.4.3]. It is a consequence of Theorem 3.5.17 and Theorem 3.6.3.

Theorem 3.6.7. Let O, » a generic k-uple of adjoint orbits and é,;p,a the reso-
lution of Q@w' Let m representing a conjugacy class in the Wy (L) the n-twisted
Poincaré polynomial is

Ztr <77, Hé(évaya, /i)) vt = (—1)"Myde <E,,,H5LV(O, v)> .

Remark 3.6.8. The description of the Weyl group action is particularly simple
when all the L7 are mazimal torus. The notations L = T and P = B are used.
Then Wy (T) = Hle Hijzl S&,;. The irreducible representation V, are indexed by
PpEPLX - XPu asin (3.421). Then from 3.4 and the description of the action
on the multiplicity spaces 53.5.15, 3.5.14, the isotypical component of type V, is

Homuy,(z) (Vo H¥ % (Qr.p o) ) = Hi (Qg, ).

In terms of Poincaré polynomial

v~ Zvi dim Homyy,, (1) (Vp7Hé+d“ (éT,B,aa ff)) = <3p>HnHLV(O7U)>

%
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Remark 3.6.9. [t is also interesting to study the action of a Weyl group relative to
a particuar puncture, for instance the first puncture. This will be used in 4.4.2 to
describe some structure coefficients of an algebra spanned by Kostka polynomial. A
particularly interesting case is when L' is a mazimal torus and M' = GL,. Then
the component of the Weyl group relative to the first puncture is Wy (LY) = &,, and

k
Wi (L) 2 &, x [[ W (L)

Jj=2

According to this decomposition consider an element (w,1,...,1) € Wyy(L) with
w € S, an element of cycle type A € P,,. Then

and (—1)"™ = ¢(\) the sign of the permutation w with cycle type \. Previous
theorem reads

P2 (Qpsv) = ve(N) (pAlX Iy [Xa] oy X HEEY (0,0))

This can be understood in terms of Frobenius characteristic, see Definition 5.2.29.
Consider the representation of &,, on the cohomology of Qr p o twisted by the sign:

H*(Qpr po,k)®e€. Its graded Frobenius characteristic is given by the following sym-
metric function in X,

e <h [Xs] ... b [X], HEEV (o,v)>

/"‘7/2 'U;/k

X2,..., Xk

Notice that V, ® € =2V, by Remark 3.2.27, the multiplicity of the irreducible com-
ponent V, in H*(Qpr p.o, k) is given by

e <s,,, (X2 [Xa] .. Ry [ X0), HEEY (0, v)> .

__ Letellier proved that the Weyl group action on the cohomology of the resolution
M p o preserves the weight filtration. Therefore similarly to the n-twisted Poincaré

polynomial one can defined the n-twisted mixed-Hodge polynomial 1 H7? (/\7 L.Po,q, v) .

Conjecture 3.6.10 (Letellier |Let13] Conjecture 1.8). Let C,» a generic k-uple of

conjugacy classes. For My p o the resolution of a character variety M@w and n a
conjugacy class in Wpyr(L), the n-twisted Poincaré polynomial is

[HT (ML,p,a,q,v) = (=1)"™ (v, /g)% <%n,HnHLV (\_/—;,v\/&) > .
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Chapter 4

Weyl group actions on the
cohomology of comet-shaped quiver
varieties and combinatorics

4.1 Introduction

In this chapter the construction of the varieties Qo - and their resolutions é LPo
as comet-shaped quiver varieties is recalled. The base field K is either C or an
algebraic closure ]Fq of a finite field F,. We consider QL, p the family formed by
resolutions @vaya when o is varying. In terms of comet-shaped quiver varieties
this family is induced by the moment map. Weyl group actions on the cohomology
of quiver varieties have been studied by Nakajima [Nak94; Nak98|, Lusztig [Lus00]
and Maffei [Maf02]. With those methods we construct a monodromic Weyl group
action on the cohomology of fibers of the family éL, p. The construction of this
action relies on the moment map being locally trivial. The local triviality of such
moment was recalled in Chapter 2. Similar Weyl group action were used by Hausel,
Letellier and Rodriguez-Villegas [HLR13| to prove Kac conjecture. Moreover they
computed traces of those actions thanks to Grothendieck trace formula. The same
method is applied in this chapter.

Notice that Theorem 3.5.17 also provides a relative Weyl group action, a la
Springer, on the cohomology of resolutions Qr, p . Letellier [Let11l] computed the
trace of the action by counting points over finite fields. In this chapter we check
that the monodromic and the Springer action are isomorphic.

Some combinatoric interpretation are given for those Weyl group actions. Sur-
prisingly, some traces of those actions are related to some structure coefficients of an

algebra spanned by modified Kostka polynomials (I} M)) . The structure co-
ApEPn

were introduces by Rodriguez-Villegas in unpublished notes,

~ o A
T2 : : C},L,VK)‘7p'

AEP,

efficents ( ;w) AP
they are defined by

We prove that the specialization CIIL(O, t) of the coefficients has an interpretation in
terms of Weyl group action on the cohomology of comet-shaped quiver varieties.

Theorem 4.1.1. Consider a generic 4-uple of adjoint orbits of the following type:
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O; has one eigenvalue with Jordan type (' € P,

Oy has one eigenvalue with Jordan type v' € P,,.

o 05 is semisimple regular, it has n distinct eigenvalues.

o O, is semisimple with one eigenvalue of multiplicity n — 1 and the other of
multiplicity 1.

Then the Weyl group with respect to Oz is the symmetric group S,, and it acts on
the cohomology of Q. Let w a n-cycle in this Weyl group then

¢y (0,1) = 5> Z tr (w, IH." (Qg,C)) t'.

4.2 Nakajima’s quiver varieties

4.2.1 Resolution of Zariski closure of adjoint orbits as Naka-
jima’s framed quiver varieties

In this section we recall the construction of resolutions of closure of adjoint orbits

as Nakajima’s framed quiver varieties, see Definition 2.3.3. Those results come from

Kraft-Procesi [KP81], Nakajima [Nak98; Nak01|, Crawley-Boevey [Cra03a; Cra03b],

Shmelkin [Shm09] and Letellier [Let11].
Let O,, an adjoint orbit with semisimple part o and Jordan type p € P, as

in 3.3.1. Consider the resolution ?L,pp — @ﬁp as in 3.3.8. There is a Nakajima’s

framed quiver variety realizing this resolution. Let d := Zizl pi and recall that

G
L= H H GLy-
i=1r=1
The indices (p2') 1<i<; are relabelled (Cs)1<g<q SO that

1<r<pt

L

2

d
[]cr.
s=1

and introduce the parameter ¢ = (¢, ),  such that ¢, = o, if ¢, corresponds to p?’
for some r. Consider the quiver I'p, , of type A4_; with summit indexed by integers
between 1 and d — 1 and arrows going in the decreasing direction. Introduce the
dimension vector vo, , := (v1, ..., v4-1) with

v i=n—cy, U i=v_1—¢ fori>1

and w := (n,0,...,0).
Define the parameter {o, , = (&1,..,&4-1) by

. Ok — Ok+1 if izu%+"'+ﬂlf
S { 0 otherwise (4.1)
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£o, ., is identified with the element (&;1d,;)1<j<a-1-

N

- We summarize everything in the following diagram showing the quiver, the di-

mension vector, the parameter ( and the parameter &.

1 2 ol Hut

A

o < o° < e g
n—«a n—=Cc — Co n—vy—---—Vg

o1 o O

0 0 O — Ok+1

Cr

Or

0

Remark 4.2.1. When writing the dimension vector under the quiver, we used that

W' = v

Consider a second dimension vector w = (n,0,...,0) and an extended represen-

tation (a, b, ¢) € Rep (fow, V0,0 w). As w; = 0 unless 7 = 1, a is just a linear map
a:Vy—Wyand b: W, — Vi with W, = K". For 1 <i <d—2, denote by ¢;,;; the
linear map associated to the edge from 7 + 1 to 7 and by ¢; ;41 the map associated
to the reverse edge from ¢ to ¢ + 1. Such a representation belongs to ,ul_l(fo,w) if

and only if
¢2,1¢1,2 — ba = (Cl - C2> Idm
Git1,iPiit1 — Gic1iPiic1 = (G — G1) Id,, for2<7:<d-2
—Pd—1,d—20Pd—1,d—2 = (Ca—1 — Ca)Idy,_,

those equations are called the preprojective relations.
Example 4.2.2. For the adjoint orbit of

op 1 0 0 0 O
0O o0 1 0 0 O
0 0 oo 0 O O
0 0 0 o 0O O
0 0 0 0 oo O
0 0 0 0 0 o9

Wi
b({ I>a $2,1 ®3,2
/—\ J/—\
Vi Vo V3
~_ 7 ~_ 7
®1,2 ®2,3
Uouo 4 3 2
¢ 01 01 02
&gﬁﬁ : 0 o1 — 09 0
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Theorem 4.2.3. First consider the Nakajima’s framed quiver variety Mgw(g‘@w)
obtained from previous data and stability parameter 8 = 0. The following map is
well defined and is a bijection (it is an isomorphism when K = C)

Ty MO (g%,) ~ O,

VO, W

(a,b, ®) — ab— oy 1d,

Now take a stability parameter 6 € Zif)l, the following map is a bijection (an iso-

morphism when K = C).
Uy = M (&9&,[,) — §{L,P,a

VO, W

(aa b7 ¢) = (a'b + 01 Idn7 fa,b,qﬁ)
with fape the flag 0 C Eq_y C -+ C By C C" defined by

E, = Im(a)
E; = Im(aogaiopgpo---0¢;—1) for2<i<d-—1

Moreover, the following diagram commutes

M? (5@,(,) L §(L,P,a

VO, oW

d b

0 __
MUOﬁ,ng <€(’)ﬂ,g> \I’—>0 OHJ

with p° the resolution of 6g70 from Proposition 3.3.8 and m the natural map from
GIT theory.

4.2.2 Comet-shaped quiver varieties

Let Op0 = (OH}’UI, e O“k’o.k) be a genric k-uple of adjoint orbits in gl,. We recall
Crawley-Boevey’s result relating the variety Q@MJ defined in the introduction to a
quiver variety. The idea is to glue together k quivers of type A corresponding to
each adjoint orbit O,; ,; to a central vertex 0 and add g loops to this central vertex,

we obtain the following comet-shaped quiver lo,.

.[171] — .[1’2} < e & .[ladl_l}

/ .[271] — .[272} < e 4 .[27d2_1}
o’

\ .[kvl] — .[ka] ¢ el .[kudk_l]

The j-th leg is a quiver of type A with vertices labelled from [j,1] to [j,d; — 1].
The dimension vector vp, , is defined such that its coordinate at the central vertex
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is n and its coordinates on the j-th leg coincide with the dimension vector vp i i
described in previous section. Similarly the parameter {o,, , is defined such that its

coordinates on the j-th leg coincide with the parameter 5% _;+ The component at
the central vertex {o,, , 0 is defined such that vo, , .So, . = 0 hence

k d]'—l

ngou,vvo = z : z :vou,av[j»i]gomaa[jyi]'

j=1 i=1
Consider a representation of the extended quiver ¢ € Rep (FOM o Ou,a)-

e Denote by ¢j;;) the linear map associated to the arrow with tail [j, 4] and G
the linear map associated to the reversed arrow with head [7, i].

e For 1 <1 < g the map associated to the ¢-th loop is denoted ¢; and the one
associated to the reverse loop is denoted ¢;.

As usual y is the moment map and {p,, , is identified with an element in the center
of the Lie algebra Gvo,, - Let

Xj = o0l — Sl

If ¢ belongs to ,ufl(f(’)u,c,) then X; € 5!”70_]-. Indeed it follows from previous de-
scription of closure of adjoint orbits as framed quiver varieties and identification,
for each legs, of the vector space at the central vertex with the framing vector space
Wy from previous section.

Now if A; is the linear map associated to the i-th loop of the quiver and B; the
map associated to the reversed loop, the preprojective relation at the central vertex
is exactly the equation defining V. Hence the following map is well defined

L T (T Vo, .
¢ —> (Al,Bl,...,Ag,Bg,Xl,...,Xk)

Theorem 4.2.4. In the following diagram where the vertical arrows are quotient
maps, the application WO goes down to the quotient to a bijective morphism ®Cr-o
(when K = C it is an isomorphism,).

O ’
! (50;1,,0) % V@p,,o’

l !

Mo, . 80u0) o7 20,

®Ou,o

Proof. 1t is proved by Crawley-Boevey [Cra0l; Cra03b], see also Letellier [Letll,
Proposition 5.2.2] for any genus. ]

Q L.Po, the resolution of QO introduced in 3.5.16, is also interpreted as Naka-
jima’s quiver variety for the quiver lo, .-
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Theorem 4.2.5. Consider a stability parameter 0 associated to the quiver Q@w
such that 05, > 0 for all vertices [7,4]. There is a bijective morphism POu.o0
Mzoua(&gw) — Qr p.o which is an isomorphism when K = C and the following

diagram commutes

POu,0.0 <

Mzou (5(9“,0) ? L,P,o

1k

Mg(gu (fou,o’) QO” o

with 7 the natural projection from GIT theory.

o%u,o

Proof. Tt follows from Letellier’s article [Let11], where the construction of the map
®Onof is given in Section 5.3. This map is induced by the map ¥y of Theorem
4.2.3. Contrarily to Letellier’s article, we do not consider partial resolution so that
our parameter 6 has non-zero components. Therefore the dimension vector for the
quiver variety Miow(&ow) describing the resolution Qf, p, is the same as the
dimension vector of the quiver variety describing Q@Ma. ]

The quiver variety point of view gives a criteria for non-emptiness. The question
of emptiness of Qo and Mc is known as the Deligne-Simpson problem. Kostov
[Kos04]| gave a survey about this problem. For a different approach see Soibelman
[Soil6]. The additive version was answered by Crawley-Boevey in terms of roots
of the quiver [Cra03b]. The multiplicative case (for generic conjugacy classes and
genus g = 0) is solved by Crawley-Boevey [Cra03a, Theorem 8.3|. For any genus, the
result follows from Hausel, Letellier, Rodriguez-Villegas [HLR11, 5.2| and Letellier
[Let11, Corollary 3.15]. Those results are summarized in the following theorem:

Theorem 4.2.6. Let O, , a generic k-uple of adjoint orbit. The variety Q@m 18
not empty if and only Qo,, , is not empty. This happens if and only if the dimension
vector vo,, , s a root of the quiver I'o, . This is always the case for g > 0.

Let Cu o a generic k-uple of conjugacy classes. The variety Mg o 15 not empty
if and only if ./\/lc ., is not empty. This happens if and only if the the dimension
vector Vo, is a root of the quiver I'p et This is always the case for g > 0.

4.2.3 Family of comet-shaped quiver varieties

When the eigenvalues o are varying, one obtains a family of varieties.

Notations 4.2.7. From now on the pair L, P is fized. For short, let
Z({)=Z(ly) x -+ x Z(lg).

Denote by B the subset of elements o € Z(l) such that the k-uple of adjoint orbits
O 1s generic. Note that the genericity condition depends only the semisimple part
o and not on the type w. The set B is a Zariski open subset of a codimension one
subspace of Z(l) given by the vanishing of the sum of the traces. Identifying Z(1)
with an affine space, B is either empty or the complementary of a finite union of
hyperplanes in the codimension one subspace.
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Definition 4.2.8 (Family of varieties vaL,pJ). Define

17L,P = {(U, (Ai7Bi)1§i§gu (Xj7ngj)1§j§k:) ’
o € B, and (A, Bi)i<i<g, (Xj,9;P")1<j<r € VLpo}

@L,P = 17L,P// GL,
and denote n the map n : éL’p — B. Thus the varieties éL,P,a =n1(o) fitin a
famaly éL, p.
The choice of L determine a unique quiver I'p, , and a unique dimension vector

V0, , independent of a choice of o. Assume that the dimension vector is indivisible
so that B is not empty. Then we can make the following assumption

Assumption 4.2.9 (Genericity of the stability parameter 6). 6 is a generic stability
parameter, i.e. a stability parameter for the quiver I'o, , with dimension vector vo, ,
such that (0,0,0) € Hf}ffua with notations from 2.1.4.

The construction of Theorem 3.5.17 extends to this family. It provides the fol-

lowing commutative diagram (the left vertical arrows is induced by the moment map
)

pt(zEe )G'SS//GUOH’G 2, éL,P

VOu,o

l l" (4.3)
3o, » B

0 is a fixed generic stability parameter. 357" is the subset of the center of the

Lie algebra Gvo,, o corresponding to the subset B under the correspondence between
parameters {p, , and eigenvalues o. Note that the correspondence between param-
eters of the quiver variety o, , € Z(gvo, ) and Z(l) is not bijective. Thus the
previous diagram relies on a choice of k — 1 eigenvalues. To o € Z(l) associate the

element (£, ,,01,...,01" ") in Z(gu,, ) x KF! this defines a bijective map
h:Z() = 3o, x KN (4.4)

Note that for a given parameter {p,, the genericity conditions is independant of

the choice of the k — 1 eigenvalues, namely h™' (o, 071, . . . , o) is generic if and

only if h (&0, ,,0,...,0) is generic. Therefore Diagram (4.3) can be modified to
account for various choices of eigenvalues, then the horizontal arrows are bijections
and isomorphism when K = C.

KF1 % (5200 )G_SS//GUO,L,G _® . éL,P

”Ou,a
| l (4.5)
KF1 x geen » B

Theorem 4.2.10. If K = C, or if the characteristic is large enough, the cohomology
sheaves Hinik are constant sheaves.

Proof. When K = C, this is a consequence of Chapter 2 Corollary 2.4.14 and dia-
gram (4.5). As 0 is generic, To prove the result for K = Fq we can change charac-
teristic as in [HLR13] proof of Theorem 2.3. This imply the result in large enough
characteristic. O
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4.3 Weyl group action

4.3.1 Decomposition of the family 9Oy, p
Notations 4.3.1. First we recall notations from 3.4.4 in this context. For1 < j <k
Ypipi o= {(X,g;P7) € gl, x GL, /P? |g:'X g; € Z(V) D ups }
and define B B B
YL’p = YLI,PI X oo X YLkJDk.

Then Yy, p is the image in g[ﬁ of the map forgetting the partial flags g; P’ :

p §{L’p — g[];’;

(X5 9iP h<j<e = (Xji<jzk

Similarly Vi, p, respectively Qr, p, is obtained from 9L7p, respectively @Lp, by for-
getting the partial flags.

In this section a decomposition of the family Qf p is deduced from the decom-
position O, , = L] =i 0,0 and the decomposition introduced in Proposition 3.4.20:

M,p
ver =L viE
M p=p

The decomposition is used in next section (Lemma 4.3.4) in order to define a Weyl
group action.

Let Yg p the subset of elements in Y, p with semisimple part generic, ¢.e. in B.
The dimension of Yf p is computed similarly to dim Y, p in Remark 3.4.19:

k
dim Y} p = kn® + dim B — ) " dim L.

=0
The decomposition Y, p = | |;, L o= Y1, £ induces a similar decomposition for Y: p
B B7M7
YL,P = |_| |_| YL,P P
M p=p
With M = (M',..., M") and Y3 5* the subset of elements in

B,Ml,gl BMk,Bk

popr X XY

Y

with generic semisimple parts. From the computation of the dimension of Yf}g in
Proposition 3.4.20, we deduce that when Z(m) N B is not empty

dim Y257 =) dim O, o5 + dim Z(m) N B. (4.6)

Jj=1

Now the decomposition of Y% p induces a decomposition of the family of quiver
varieties Qr, p. Let

QLMJ’;) = (VL,P XYy p Y?:Jg”o) // PGLn .

We have the following proposition:
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Proposition 4.3.2.

QLp = |_| |_| Q%If-

M p=p

When non-empty, the dimension of a part is

k
dim Q7 = n’(29 —2) + 2+ dim Z(m) N B+ ) dim Oy . (4.7)

J=1

Proof. The dimension of Qﬁ/{l’f can be computed just like the dimension of Qo
(see Proposition 3.5.6 for the case of character varieties). The computation relies

B,MI pi
= . Then

on the smoothness of Y%I}\é”p which follows from the smoothness of Y} .

from the dimension of Yi’j\f’p given by (4.6) we obtain

k
dim Q)" =n*(2g —2) + 2+ dim Z(m) N B+ Y _dim O, ..

J=1

]

4.3.2 Construction of a Weyl group action on the cohomology
of the quiver varieties in the family 9y p

The family Q r.p — B is used to construct a Weyl group action on the cohomology
of the varieties Qr, p » for o € B. The Weyl group considered in this section is

W= War, (L') x -+ x War, (LF).

Each Wqr, (L7) is isomorphic to a symmetric group and acts on Z(F) by permut-
ing the eigenvalues with same multiplicities. Therefore W acts on B, for w =
(wi,...,wy) € Wand o = (d',...,0%) € B

w.o = (wlalwl—l, . ,wkakw,;l)
with ), a representative in GL,, of w; € Wy, (L?). Consider the diagram:

B — éL,P

Wol l,, (4.8)

Thanks to the quiver variety point of view, the cohomology sheaves H'nx are con-
stant (Theorem 4.2.10). In this section a W-equivariant structure on those coho-
mology sheaves is constructed. The method comes from Lusztig (see [Let05, Proof
of Proposition 5.5.3]), it is also used by Laumon-Letellier [LL19, Section 5.2].
Before proving this result, let us define the regular locus. Denote by B the
subset of regular elements, i.e. elements (o, ...,0") € B such that Zgy,,(07) = L7.
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It is the locus of B where the W-action is free. Diagram (4.8) is pulled back to the
regular locus

Breg s éreg
< L.P

l lp (4.9)

Breg/W (Xr_eg Q?igp
Similarly to 3.32, notice that
Ql}f’g‘P XBreg/W Breg = é;?i; (410)

Theorem 4.3.3. The cohomology sheaves Himk admit a W -equivariant structure
over B.

Proof. Consider the diagram:

n

/xc éL,P
S

B <~ QL,p XB/WB (411)
“Ol J,b p
B/W (T QLJJ

W acts on Qr, p xpw B and the morphism a is W-equivariant. Qf:gp X gres jyy BT is
smooth, dense and open in Qr p Xz/w B. The constant sheaf x over Qr p X5/w B
is W-equivariant. Indeed for w € W we can define a morphism

Ouw : WK — K

which is the identity on the stalks. It satisfies the conditions of definitions 3.1.4.
Applying the continuation principle from Remark 3.1.9, this W-equivariant structure
extends to a W-equivariant structure on IC'QL x5 B Notice that mx = ajc;k. We
shall see in Lemma 4.3.4 that

K = IC.

QL. pxp/whB"

Then the W-equivariant structure on ¢x induces a W-equivariant structure on 7.
Up to the isomorphism ¢k = ZC? the theorem is proved. O

QL. pxXp/whb’

It remains to prove the lemma:

Lemma 4.3.4. There is an isomorphism cjx = ZCq R

Proof. Because of the isomorphism (4.10), the restriction of ¢k to the smooth locus

f:gp X gregyyy B is the constant sheaf x. In order to verify the hypothesis of
Definition 3.1.8 it remains to prove that the map c is small, i.e. that it satisfies the
following inequality

dim{x € Qrp Xgw B |dimc_1(x) > d} <dim Qr p Xg/w B —2d for all d > 0.

It relies on dimension estimates from Lusztig [Lus84, 1.2], see also [Sho88, The-
orem 1.4]. In the Lie algebra gl, the estimate becomes, for X in O an adjoint
orbit

—_

dim {gP e GL, /P ‘gleg Eo —i—up} < (n2 —dim L — dim@) . (4.12)

2
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The proof is then standard in Springer theory. Let d > 0 and z such that
dimc*(z) > d.

r belongs to some Qp, , for o € B and some adjoint orbits O,
dimension estimate (4.12) implies

d<= </m —ZdlmLJ dim O, 0])

< Opkyo.k. The

pU)"

so that
k k
> dimOy o < kn? =) dim I — 2d.
j=1 j=1

Using the decomposition from Proposition 4.3.2, x € Qi’]}f’p . Previous inequality

and the expression (4.7) for the dimension of le]gp give

k
dim Q7 p” < n*(2g —2) + 2+ dim Z(m) N B+ kn® =Y dim L7 — 2d. (4.13)
j=1

Moreover
dlmQLP P xpw B = dlmQBMp (4.14)

and

k
dim Q. p xp/w B = dim Qp p = n*(29 — 2) + 2+ dim B+ kn® = ) " dim L. (4.15)
j=1
Combining (4.13)(4.14) and (4.15):
dim Qi:ll\f’p XB/W B < dim QLJJ XB/W B+ 2d + dim Z(m) NB —dimB. (416)

As d is assumed to be strictly positive, necessarily the inclusion L C M is strict,
hence
dim Z(m) N B < dim B. (4.17)

Now (4.16) and (4.17) provide the estimate
dim Q7 F° 3w B < dim Qp p xp/w B — 2d. (4.18)

To conclude, the set {z € Qp p x5/w B|dimc!(z) > d} is a finite union of varieties
Qi’j‘f’p xg/w B with dimension satisfying previous estimate (4.18). O

Remark 4.3.5. Let us study the restriction of the W -equivariant sheaves Hink to
the reqular locus. Recall that Qreg X gres jyy BY8 = Ql}fgp, then for o € B8

HE ke =2 HZ(@L,P,av K).

Forw € W, the W -equivariant structure is given by the functoriality of the compactly
supported cohomology (see Proposition 3.1.6 and Remark 3.1.3)

w* : Hé (éL,P,w.a’a /€> % Hé (éL,P,O’? KZ) '

This is called the monodromic action.
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4.3.3 Frobenius morphism and monodromic action

The techniques in this section come from Hausel, Letellier and Rodriguez-Villegas
[HLR 13|, though we do no consider regular semisimple values of the moment map.
Instead each component of the moment map is central and each leg of the comet-
shaped quiver corresponds to a particular adjoint orbit. Comet-shaped quiver vari-
eties were also studied in this context by Letellier [Let12]. A slightly more general
situation is considered here, as a leg can represents any adjoint orbit and not only
a semisimple regular.

We proved in 4.2.10 that the cohomology sheaves Hinmk are constant sheaves
over B. Note that the fiber over o of this constant sheaf is H:(Qp p ;). Thus for
any o, T € B, there is an isomorphism

for: Hé(éL,P,a’? K) = HZ(@L,P,T; K).
such that for any w € B
fo-,r = fw,r o fcr,w-

The W-equivariance of the local system H'nx implies the following theorem. It can

also be proved directly, without referring to equivariance of the local system (see
Matffei [Maf02, Section 5]).

Theorem 4.3.6. Let o, T € B, the following diagram commutes

Hé(éL,P,a; K) v, Hé(éL,P,w—l.a; /‘i)

fo’,‘rl/ lfwfl.o',wfl.‘r

Hé(éL,P,T; K) S HZ;(@L,P,WLT; K)
Remark 4.3.7. Note that if o € B is not regular, then the map
w* : H! (@L,P,m ff) — H! (éL,P,wl..;)

is only the map coming from the W -equivariant structure of the constant sheaf Himk.
It does not come by functoriality from a morphism a variety. At the level of variety,
W only acts on Q;?P.

This theqreln allows to define a WW-action on the compactly supported cohomol-
ogy space H(Qr p.o; k).
Proposition 4.3.8. For w € W introduce the morphism
pi(w) = fuooo (W)
This defines an action of W on H{(Qp p o K).
Proof. Let wy,wy in W, the following diagram commutes by Theorem 4.3.6.

(wy )" (wih)”

i) 1 ) i)
HC(QL,P,GW) I HC(QL,P,wQ.a; /f) — HC(QLP,wle.a; /f)

lfwg.a,a lfwlw?a,wl‘a

L~ (wiH” o~
H(Qrpo; k) —— H(QLPw .o} k)

lfwl.o',o'

Hg(@L,P,a’; K)
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Going from top left corner to bottom right corner by top right corner is p(wiws).
Going by the middle gives p(w;) o p(ws). Therefore p(wyws) = p(wq) o p(ws).
O

The representation obtained when K = C is isomorphic to the representation
obtained for K = IF, and large enough characteristic. Indeed this can be proved
by base change exactly like in [HLR13, Theorem 2.5|. Therefore from now on we
assume:

Assumption 4.3.9. K = Fq and the characteristic is large enough.

This assumption is very convenient as it allows to introduce Frobenius endo-
morphism and use Grothendiek’s trace formula to compute the traces of the action
obtained.

F is the Frobenius endomorphism on gl, raising coefficients to the power ¢ so
that its set of fixed point if gl,(F,) and similarly for the group GL,,. Assume that
the L7 are subgroups of bock diagonal matrices, and P’ subgroup of block upper
triangular matrices, so that they are F-stable. F' induces a Frobenius endomorphism
on Qrfig and on B" also denoted by F'

F (0, (A B cicy - (X5, giLihizian) = (F(0), (F(A) F(B) ey - (FOG). F(g)) L)1)

This Frobenius can be twisted by an element w = (wy, ..., wy) in the Weyl group
W. For o € B2, define

wl(oy,...,01) = (w1.F(01),...,wg.F(oy)) .
(Breg)wF is the set of points fixed by wF'. Similarly the w-twisted Frobenius on ér,fi,

is
wF :=wo L.

They are compatible p'®® o wF = wF o p*® so that for o, 7 € B*® the following
diagram commutes

HZ(QL,P,G3 K) RN HZ(éL,P,F—l(a) )

lfw lfF—lw),F—l(r)

HZj(éL,p,r; K) s Hi(éL,P,F*(r)% K)

Theorem 4.3.10. Let 7 € (B™8)" and o € (B*8)"". The cardinal of the set of
wkF' fized points of Qr po s

100 = D tr (4 (w), H (Qrp i) )
Proof. Consider the commutative diagram:
HZ(@LJ?,T; /‘f) s HZ(@L,P,UJ*LT; /f)

\\\\\\\\ lfwflﬂ"r
plw™!) Ty 7
for H(QLpr;K) = H{(QLp+;K)

fF(o'),TT fa,‘r]\

Hé(éL,P,a;fi) s Hﬁ(éL,P,F(a);fi) S Hﬁ(éL,P,a;"i)
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Apply Grothendieck trace formula to wF

1Qipe = D (~1)'tr ((WF) HiQrpoin))

i

= Y (-t (F* op'(w™), H(Qup,r: ’f)>

)

The varieties Qy, p , are pure and polynomial count and p(w™') commutes with F
so that

Qip = Yo (F*Op%(w—l»Hfi(éL,p,f;@)
_ Ztr( ), H2(Qrprik)) ¢

Now as W is isomorphic to a product of symmetric group, w is conjugated to its
inverse w™! and

LPcr Ztr( *( H2Z<QLP‘M ))ql

The Levi subgroup has the following form

Lj%’GLC{-x---xGLC{x---xGLCj ><---><GLC,]7;_

-~

J
mi

with ¢/ # ¢ for r # s. Then the relative Weyl group is

WGLn<Lj) = ijl X e X Gmi

i
The symmetric group &, ; acts by permuting the blocks of size ¢!. Notations are
similar to 3.5.4 except that the index i disappears as M’ = GL,. A conjugacy class
in this Weyl group is determined by a kj;-uple (!, ..., 7%) with " € P ;. Hence
the conjugacy class of w € W determines a k-uple of n-types w = (w?, ..., w") with

' L , g e " ;|
w! = (77{’1, 1 {> (77[](7717@1)’ 1 {> (77{ k], 1 ka) (nlj(sj”“j)’ lc’“1> (4.19)

Let O, = (O, ..., 0,,) be the k-uple of F-stable adjoint orbits such that the F-
fixed points (Of , ..., Of ) is of type w (the type of adjoint orbit in gl,,(F,) is defined
in 3.3.4). Then the natural map é LPo — Q@w is an isomorphism commuting with
the Frobenius so that

107/p , = 195 (4.20)
Letellier [Let11] computed the number of points of QL .

Theorem 4.3.11. The cardinal of Q% s given by
dp [~ 1
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Proof. As the orbits O, are semisimple, the variety Qg is smooth so that the
characteristic function of the intersection complex is constant with value 1. The
result follows from Letellier [Let11, Theorem 6.9.1, Theorem 7.4.1 and Corollary
7.4.3|. m

Corollary 4.3.12. For o € B and m representing a conjugacy class in the Weyl
group as described in (4.19), the n-twisted Poincaré polynomial of Qr p o is

Ztr <77, Hé(évaya, /i)) vt = (1) My <E,7,H5LV(O, v)> .

Proof. The action comes from the W-equivariant structure of the constant sheaves
Himk. Therefore up to isomorphism the action does not depend on the choice of
o € B so that the twisted Poincaré¢ polynomial can be computed for = € (B&)F.
Then from Theorem 4.3.10 and (4.20)

d

Ztr (p%(’n), HY (éL,P,T, Fu)) ¢ = (—1)yMg¥ <%meLV(0, q%)> :

This equality remains true after substituting ¢” for g for n > 0. Thus it is an equality
between two polynomials and the corollary is proved. O]

It is interesting to notice that Letellier [Let11, Corollary 7.4.3] obtained exactly
the same formula for twisted Poincaré polynomials with a different construction of
the action. His construction is the one recalled in Theorem 3.5.20 for the character
varieties setting. Notice that it does not necessarily involve the whole group W
but only the subgroup of elements w € W such that w.oc = o. Interestingly for
such w the action from 4.3.8 is simply given by p;(w) = (w™')". In the particular
case where the Levi subgroup is a torus, in the character variety setting, we shall
see in Chapter 5 that both action coincide. Except in that particular case, we do
not have a direct prove that both action coincide. However as the twisted Poincaré
polynomial coincide they are necessarily isomorphic.

It is also interesting to consider this action as an action on the cohomology of
a quiver variety with semisimple adjoint orbits at punctures. Indeed notice that
for o € B'® the map p° : Qrpos — Qs from 3.5.16 is an isomorphism. Let
S = (851, ...,Sk) a generic k-uple of semisimple adjoint orbit, S; is the adjoint orbit
of o7. The Weyl group Wqr, (L7) is the group of permutation of the eigenvalues of
S, with the same multiplicities. We have another formulation of previous corollary

Corollary 4.3.13. For m representing a conjugacy class in the Weyl group as de-
scribed in (4.19), the n-twisted Poincaré polynomial of Qs is

3 tr (n Hi@s. ) ' = (1™ (T B (0.0)).

4.4 Combinatorial interpretation in the algebra spanned
by Kostka polynomials

4.4.1 Description of the algebra

In this section an algebra spanned by Kostka polynomials is studied and some struc-
ture coefficients are related to traces of Weyl group action on the cohomology of
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quiver varieties. Define a linear map A# : Sym[X] — Sym[X,Y] such that on the
basis of modified Macdonald polynomials

A# (ﬁA[X]) = H\[X]H,\[Y] for A e P.

Asin 3.2.42, the variable (g, t) are implicit. Now as the Hall pairing is non-degenerate
there is a uniquely determined bilinear map ...# ... such that for all F,G and H
in Sym[X]:

(FIXJ#G([X], H[X]) = (FIX|G[Y], A" (H[X]))

The product # defines an associative and commutative algebra structure on Sym[X].
Definition 4.4.1. For a k-uplet of partitions p = (/ﬂ, e ,,uk) € P and X € P,

we denote by Cil the structure coefficients of the product # in the basis of Schur
functions

S FES2 . HS . = Z CpSa- (4.21)

|ul=n

Remark 4.4.2. For pu = (u,v), the coefficient ¢\ , coincides with the one introduced

N4
in the introduction, i.e. the followmg relation is satisﬁed

KoK,y =Y c) Ky, (4.22)
A
Proof. First let (Zn ,\> the inverse of the matrix of Kostka polynomials (lN( m )\>
ANEPy AnNEPy

(see Definition 3.2.41)
sx= ) LyxH,[X
NEPn

Now the coefficient cl’ly is defined by

Cl);,y - <S/L#SV7 8)\
= <su#s,,, Z L, AH >
nePn

Then by definition of the product # and the coproduct A#*

S = D Lo <su[X]sy[Y1,ﬁn[X1ﬁn[Y]>

NEPn

Cf;’y = Z Zm)\f?

n€Pn

Multiply last equation by K A,p and sum over A € Py:
- Z C/);'?VK)\’p'
A

Which is the relation used in introduction to define the coefficients C;/)w' O
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Example 4.4.3. We computed some coefficients with Sage

2,1,1 .
Comporny = —t—¢ T —qt’ =t —Pq+ ¢ +qt + 1
cyyihy = CH Pt A 2t + P g+t

Next conjecture comes from unpublished notes by Fernando Rodriguez Villegas.
Conjecture 4.4.4. The structure coefficients ¢, lie in Zq,1].

Some evidences supporting this conjecture will be provided. Following definition
and remark were suggested by Francois Bergeron.

Definition 4.4.5. Let F' be a symmetric function, consider the operator

F# ... : Sym[X] — Sym|[X]
G —  F#G.

We denote Yr its adjoint with respect to the Hall pairing so that for any G, H €
Sym [X]
(F#G, H) = (G, ¢p(H)) (4.23)

Those operators are diagonal in the basis of modified Macdonald polynomials

Vr(\Xsq,1)) = (F, H[X:0,1) By[X;4.1] (4.24)
Remark 4.4.6. Applying (4.24) with e,
W, (ﬁfx [X:q, t]) = "MV L [X g, 1]

we recognize the usual expression of the operator V introduced by Bergeron-Garsia
[BGI8|. The higher (q,t)-Catalan sequence from Garsia-Haiman [GHI6] (see also
Haiman [Hai02, p.95]) is defined by

Cr(zm)(qv t) = <6n’ vmen>
V =1, s the adjoint of e,# ..., moreover s;» = e, so that

C;lm)(q, t) - Ci7;7,7 e 1TL
m—+41

The higher (gq,t)-Catalan sequence are particular cases of the coefficients CL".

We recall an important theorem which was first conjectured by Garsia-Haiman

[GHY6].

Theorem 4.4.7 (|[Hai02] theorem 4.2.5). The symmetric function V(e,,) is obtained
as the Frobenius characteristic (see definition 3.2.29) of a bigraded representation
of &, the so-called diagonal harmonics. In particular

(V(en), sz € N[g, 1.
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Corollary 4.4.8. For any p € P, the structure coefficients c%zw gives the multiplic-
ity of the irreducible representation of type p in the bigraded representation of &,
on diagonal harmonics. In particular are c%z#(q,t) € Ng, t] so that the conjecture
4.4.4 18 true for those particular coefficients.

Proof. According to remark 4.4.6 and adjonction relation (4.23)

<5M7 V(en)> = <en#3u7 en> (425)
. By definition of the structure coefficients C;/\w and as e, = Syn
en#sp Z Cln Sx
AEP,

substituting in (4.25) we obtain

01" (q,t) = <Sm V(en))

we conclude by the interpretation of V(e,) as a Frobenius characteristic from The-
orem 4.4.7. O

Next theorem and corollary come from unpublished notes by Rodriguez-Villegas.
The particular structure coefficients ¢, are related to the kernel H*".

Consider the generating function from Definition 3.6.1 for genus g = 0, k + 2
punctures and with variable z = q%, w=t2. It is given by

" Hy [Xi5q,
Qk+2 = Z H s d s

NP a)\(Q7 t)

~ ~ q,t
with ay(q,t) = <H,\[X; q,t], H\[X; q,t]> as in 3.2.40.

Theorem 4.4.9. We have the following relation:

IT'
<p(n) [Xe41)P(n—1,1)[Xk12], Log [Qi+2}>xk+l,xk+2 - Z % : HH IAI

[A|l=n
with
N WAl
1,JEA
I | R
1,762\ (1,1)

Proof. According to Lemma 3.2.45, take the Hall pairing with h,—11)[Xk12] is equiv-
alent to do plethystic substitution X2 = 14 u and take the degree n coefficient in
front of u. As plethystic substitution and plethystic logarithm commute according to
Proposition 3.2.17, we can perform this substitution inside the plethystic logarithm.
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We consider terms of order 1 in u using (3.24)

k+1

Qg+1+uz %1—[}[A 1sA 1 O@u?)

rep* i=1
¢ k+1
%H0+u X:AHH IA+O()>
k+1 AeP* i=1
1 ¢ k+1
A
1+%F_§: [[ 2 xi]s™ + ow?)

E+1 yep~ i=1

Log [Q}5] = Log

= Log

= Log [QZH] + Log

We used that plethystic logarithm turns product into sum. From the definition of
the plethystic logarithm, as p,[u] = u", we easily see the coefficient in front of u in
previous expression

1 & 17
Log [, = Q0 Z H Hy[Xi]sM.
k41 \ep* ax i=1
Keeping the terms of degree n we obtain
" k+1
(hn) [Xiso] Log [Ro] ), = Z ~ [ A
+1 AP+ i=1 on

Inverting €, is licit, it is defined by

Qol - (Qol ) - Z (1 - Q%H)k'

k+1 k+1 k

Now we just have to take Hall pairing with the power sum p(,) [Xp41]. It is equivalent
to take the coefficient in front of n_lp(n) [Xk41]. But p(,) cannot be written as the
product of two symmetric functions of degree strictly smaller than n so that the
contribution of Q) in the denominator is irrelevant for the coefficient in front of
N p(ny [Xes1] so that

k+1
Px
(p(n [Xk+1]h(n 11)[Xk+2] Log [Qk+2])Xk+17Xk+2 (p(n Xk+1 Z HH W
)\EP* =1 Xps1

We conclude with Lemma 3.2.46 and (3.23). O

Corollary 4.4.10. With the notations of previous theorem and definition 4.4.1

(—1)"710,(?) = (H 8, [ X1 n) [ Xkt 1) P (n—1,1) [ X k2], Log [Qgﬂ])

Proof. We apply Theorem 4.4.9 to express the right hand side of (4.26) as

(0= 1)1 — 1) [ X 5.0 (X Z@mﬂm

[Al=n
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By definition of the product #:

oAl -
(0=~ 1) (st #s,0[X], 3 P[]
M=n A .
Here we recognize the expression of Theorem 3.2.47
(8#1# .. #S#k [X], (—1)”718(171)))(
so that if we write
S Hsw[X] = ch’\is,\[X]
A
the result follows from orthonormality of Schur functions. O]

4.4.2 Interpretation of coefficients as traces of Weyl group
action on the cohomology of quiver varieties

In this section a cohomological interpretation is given for the coefficients c;\L. In
order to lighten the notations the description is only given for the coefficient c;\W.
The generalization to any g is straightforward. B

First let us detail the data to describe the relevant variety Qr po. The Levi
subgroups are torus of diagonal matrices L’ = T for 1 < j < 4. The semisimple
part o = (0o!,...,0%) is such that:

e o' = (;1d is central.
e 02 = (,1d is central.
&3]

Qo

e 03 = ‘ with a,. # a, for r # s.

On

° 0" = ) has two eigenvalues 8 # ~. The multiplicity of « is one

~
and the multiplicity of 5 is n — 1.

Notice that such a choice can be made in the regular locus o € B"™%.

First we consider Letellier’s construction of the action in order to compute iso-
typical component. Let M = M x --- x M* with M7 the centralizer in GL,, of 7.
Then Was(L) = &2. Letellier’s construction provide an action of Was(L) on the
cohomology of éL, P, Moreover

i+dg6

i+d@L Po ~
Homyy,, 2y | Vi ® Vi, He - <QL7P,U,/1> =H, (Qa, k) (4.27)
With O = (04, ...,0,) the 4-uple of generic adjoint orbits defined by:
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O; has Jordan type u' and eigenvalue (;.

O, has Jordan type v/ and eigenvalue (.

Oj is the orbit of o3.

e (), is the orbit of o*.

Now with the construction from previous section, there is an action of the whole
group W = &2 on the cohomology of Qr p,. The restriction of this W-action
to W (L) = &2 is isomorphic to the Springer action. First take the V, @ V,,
isotypical component with respect to the G2-action. There remains an action of the
Weyl group &2 relative to the puncture 3 and 4 on the cohomology I Hé+d6 (95, k).

Theorem 4.4.11. Let w an n-cycle in the Weyl group relative to the third puncture.

The coefficient c}:y, after specialization q = 0, is given by the w-twisted Poincaré

polynomial of Qe, namely
i . ,
C}:V(O, H=t"7% Z tr (w, [H? (Qp, K)) t'

Proof. Combining (4.27), Theorem 3.6.7 and Remark 3.6.9

D tr(w, TH (Qg, #)) v' = (—=1)" 00 ([ X ], [Xa]pim) [Xa) 1,1 [Xa], HI Y (0, 0))
The theorem follows from Corollary 4.4.10. O

4.4.3 Cohomological interpretation in the multiplicative case

Let us mention a conjectural similar interpretation in the multiplicative case. First
introduce the relevant parameters. The Levi subgroups are tori of diagonal matrices
L7 =T for 1 < j < 4. The semisimple par o = (c!,...,0%) is such that:

e 0! = (;Id is central.
e 02 = (,1d is central.

e 03 = (31d is central.

o 0t = ) has two eigenvalues 3 # . The multiplicity of « is one

8
and the multiplicity of 8 is n — 1.

Moreover this 4-uple can be chosen in the regular locus. Note that the same notations
for the parameter are the same as in previous section, however objects are different
as we now consider resolutions of character varieties. For instance the eigenvalues
are now necessarily non zero and the genericity condition is the multiplicative one.
The relative Weyl group is Wys(L) = &3. Now consider the following conjugacy
classes
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e (; has Jordan type p’ and eigenvalue (.
e Cy has Jordan type v/ and eigenvalue (.
e (3 has Jordan type (n) and eigenvalue (3.
e C, is the conjugacy class of oy.

Then /T/IJL,p,U is the resolution of Mg with C = (Cy,...,Cs). An intermediate
between My, p, and Mg is given by the variety

My = {(Xl,...,X4) €C x--xC4ygBeGL, /B ‘glesg € U
Xi...X,=1d} //PGL,.

Then the resolution M L,p,o — Mg factors through M, . This is a particular case
of the partial resolutions of character varieties studied by Letellier [Let13]. As in
the additive case, first take the V,, ® V,, isotypical component of the cohomology

H? (./K/lv[”p?o-,) then take the trace of an n-cycle with respect to the third puncture.

Just like Theorem 4.4.11 is derived from Theorem 3.6.7; next conjecture follows
from Conjecture 3.6.10 for the twisted mixed-Hodge polynomial a resolution My, p ..

Conjecture 4.4.12. Let w an n-cycle in the Weyl group relative to the third punc-
ture. The coefficient c}:V relates to the w-twisted mized Hodge polynomial of M,y ,:
dimMM/ ’

n v 1
C;’V(q7 t) =1 2 IHEU (MN'1V" 57 \/a) .

In 6.2.2, the Poincaré polynomial specialization of this conjecture is proved.
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Chapter 5

Intersection cohomology of character
varieties with k£ — 1 semisimple
monodromies

5.1 Introduction

In this chapter the base field is C and we study character varieties with one mon-
odromy of any type and the & — 1 others semisimple. With this assumption, the
Poincaré polynomial for intersection cohomology can be computed using only alge-
braic tools. In next chapter the hypothesis £ — 1 monodromies are semisimple is
relaxed, then analytic tools are necessary.

Mellit computed the Poincaré polynomial of character varieties with semisimple
conjugacy classes at each punctures [Mell7a]. He also constructed a family M of
character varieties with their resolutions [Mel19|. This chapter relies on both results.

In the family Mv, the k£ — 1 first conjugacy classes are fixed and are semisimple.

e The family’s generic fiber is a character variety with a regular semisimple
conjugacy class at the k-th puncture.

e Particular fibers are resolutions of character varieties with the closure of a
regular conjugacy class at the k-th puncture.

This family comes with various Weyl group actions. There is a monodromic Weyl
group action on the cohomology of the generic fibers (a character variety with regular
semisimple conjugacy class at the k-th puncture). There is a Springer action on the
cohomology of the particular fibers, it coincides with the action from 3.5.4. Mellit
unified those actions on a local system equivariant for the action of the Weyl group
W. This construction was a motivation for the construction of the Weyl group
action on the cohomology of comet-shaped quiver varieties in 4.3.

Those constructions and the combinatoric relations between cohomology of res-
olutions and intersection cohomology of character varieties allow to compute the
Poincaré polynomial. The idea Mellit suggested us, is to study the restriction of
the W-action to subgroup Wj,. Then the fiber of the W-equivariant local system
over a point fixed by Wy, carries a Wj,-action. The isotypical component corre-
sponding to the sign representation of W), is the cohomology of a character variety
with semisimple conjugacy classes at each punctures. The Poincaré polynomial of
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those character varieties is known. Considering various subgroup Wj,, the relation
can be inverted. This proves the Poincaré polynomial specialization of Letellier’s
conjecture |Let13] when k — 1 conjugacy classes at punctures are semisimple.

Theorem 5.1.1. Sy, ...,S,_1 are k—1 semisimple conjugacy classes, the multiplici-
ties of their eigenvalues is determined by o = (at, ..., a*"1) € P*=1. The conjugacy
class Cﬁﬁ is such that (S1,...,Sk—1,Cuo) is generic. Then the Poincaré polynomial

for compactly supported intersection cohomology of the character variety Ms,éw
with k—1 monodromies in the semisimple conjugacy classes S; and one monodromy
mn C&U 18
o HLV
P (Mg, t) =t (hasy I (<1,8)).

Where
hasﬁ/ = hy [Xl] oo hgr— [Xk_ﬂSE/ [Xk]

and de,y, = dim/\/lsgw

First in 5.2 we check compatibility between W-action on the restriction of the
Springer complex and W -action from parabolic induction for regular conjugacy
classes. Then it is applied to character varieties 5.3. In section 5.4, Mellit’s con-
struction of family of character varieties is detailed. Finally, in 5.5, combinatoric
relations are inverted and the Poincaré polynomial for intersection cohomology is
computed.

5.2 Resolutions of regular conjugacy classes and
parabolic induction

In 3.3.3, resolutions of closure of conjugacy classes were discussed. Those resolutions
come with Weyl group actions. In this section we focus on resolution of regular
conjugacy classes. We check that the Weyl group action coming from such resolution
is compatible with the action coming from restriction of the Springer complex.

Let 0 € T and M = Zg(o) the centralizer of o in G. The Weyl group W)y is the
stabilizer of o in W. Let Co® the closure of the regular conjugacy class in G with
semisimple part o. Consider the Cartesian square

G < I—leW/WM XT,B,w.a

pGJ ll—lweW/WM pe

Teg

Gé+————Cs
o
with w.o := woew ™! for W a representative of w in G. Base change gives an isomor-
phism
i’ @ opk
’LUEW/W]\/[

Springer theory recalled in 3.4.1 provides an action of the Weyl group W on p©k
therefore on @weW/WM pi”?k. Next theorem is a direct application of Lusztig
parabolic induction.
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Theorem 5.2.1. The W-action on @weW/WM "7 Kk restricts to an action of Wy C
W on p]k moreover

piR[dimXrp,] = PV, @IC; . (5.1)

PEPY

The sum is over l-uple JIAS P, =P, x---xP, and Vﬁ 18 the associated irreducible
representation of Wyy.

Proof. Note that (5.1) follows from Theorem 3.4.8, however it is detailed here in
order to track the W-action from Springer theory.

Resolutions such as X7 g, fit in the following diagram where the first line is the
diagram of parabolic induction (3.29) from the torus 7" to G

T < s G s G

J J ]

|_| {UJU} — |_| XT,B,w-U — |_| §/gT,B,w.a — @
wEW/WM wGW/WM ’LUGW/W]\/I

—

with R
Xppoi= {(x,g) elG@xG }g‘lxg € UUp}.

From this diagram where squares are cartesian:

% G - G w.o
i, Indp-prr =i, @ Ind7 g Ffw.o) = @ bR
weW/Wn wEW/ Wy

With {0y the constant sheaf supported on {w.c}. A W-action is inherited from
the action on IndgC g <. This action restricts to a Wj-action.
Consider the same construction with M instead of G:

— —~

T < M >y M >y M
] b

{0} «— Xrprme — Xrpam,e —— C¥

CM is the regular conjugacy class in M with semisimple part o and the squares are
cartesian. One obtains

% M ~ ¥ M
Jo Indgc gy 1 = J, Indpc gy K{o}

and a Wj-action on this complex is inherited from the Wy-action on Indyi gy, Fr-
It provides a W), action on

%k G ~Y X G
ZO’ InchB /{:{U} = ZO’ IndMCP IndYMCBﬂM K;{O'}

Both Wy -actions coincide as detailed by Lusztig [L.us86]. Moreover Springer theory
for M provides a description of this W), action. Indeed

CY = oNu
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and left multiplication by ¢ provides an isomorphism between Ny, and oAy, From
the restriction of the Springer complex to Ny, described in (3.28), we deduce

Indé‘!cBmM I‘{z{o—} = @ VH ® 1._CEIW

o
HEPY -

Finally for u € P, notice that

Ind§cp ICe = IC3,

To conclude, the W-action on €D, cyy/y,, PI'*7f restricts to a Wy-action such that
pi K is Wyr-stable and

py k[dim XT,B,U} = @ V., ® I_CC:M g

HEPYy XX Py

]

5.3 Resolution of the k-th conjugacy of character
variety

In this section we detail how to apply previous resolution of regular conjugacy
class to character varieties. Fix a (k — 1)-uple of semisimple conjugacy classes
S =(8,...,8.1). Let a = (a,...,a* ) € P*! with o' the partition de-
fined by the multiplicites of the eigenvalues of S;. Let o € T such that the k-uple
(Sl, o ,Skq,@) is generic.

Consider the resolution of the character variety with specified conjugacy classes
at punctures (81, ooy Sk, @) This is a particular case of the situation described

in 3.5.3, it is detailed here because a precise track of the Springer action is necessary.

v € P, is the partition defined by the multiplicities of the eigenvalues of o. The
Levi subgroup M = GL, is the centralizer of ¢ in GL,. For any conjugacy class
Cuo C Co® one can consider the character variety

/\/lsygw = RS’@U// PGL,,
with

,R’S,Eu,o = {(Al,Bl, . ,Ag, Bg,Xl, .. ,Xk) c GLig XSl X -+ X Sk—l X Eﬁ’g
A\BIAT'B L UABy A B X L X = 1d )

In previous section we considered §§T’ B.o, the resolution of C5™® the closure of
the regular conjugacy class with semisimple part ¢. This is used to construct a

resolution of the character variety M g grez. Define

7/5,570 = {(Al, Bl, N Bg, Xl, - 7Xk—1, (Xk,gB)) - GLig XSl X oo X 'Sk—l X XT,B,U
A\BIAT'B U ABGA BT X L X = 1d )
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The group PGL,, acts on this variety by
h.(Ai,...,By, X1,..., (X, 9B)) = (RAR™Y, ... R Xah ™ L (RXh ™! hgB)) .

Consider the geometric quotient defined thanks to Mumford’s geometric invariant
theory . B
Msos =TRs.//PGL,.

The map p° : Xy 5, = Co® induces a map
77 MS,O‘ — MS’C;-Tg.

Those constructions fit in the following diagram where both squares are Cartesian

MS,U S RS,O’ — XT,B,U

4

. —
Moo +—— R 2

S.C S,C8

This diagram is a particular case of Letellier’s construction and we have the
following theorem [Let13, Theorem 5.4].

Theorem 5.3.1. The map 77 : MS,U — M e is a resolution of singularities.

The Weyl group Wy acts on the derived pushfohi;ard of the constant sheaf 77k and

w7k [da] = €D Vi ®LC s, .-

o
HEPY

The sum is over l-uple pp € Py, X - -+ X Py, the space V, is the associated irreducible
representation of Wy, and do = dim .//\>l/3,g.

Proof. 1t is a direct consequence of Theorem 5.2.1, base change, and the fact that
pr* I_CCiu = I—C:"‘sa , see |Let13, Theorem 4.10]. O
o Cp,o

This theorem gives the compatibility between Springer action constructed from
resolutions of closure of conjugacy classes and construction of character varieties. In
particular it provides an action of W)y, on the cohomology of the resolution Mg ,.

5.4 Family of character varieties

Mellit [Mel19] studied the family formed by the varieties /\A/l/gﬁ when the parameter
o is varying. This construction is recalled and used to compute the intersection
cohomology of the varieties M ST As in previous section, semisimple conjugacy

classes are fixed § = (Sy,...,Sk_1). For o € T denote by S, its conjugacy class.

Definition 5.4.1. Let Ty C T the set of elements o such that the k-uple (S1, ..., Sk-1,Ss)
1S generic.
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Denote by W the Weyl group W = Wqr, (T). For X € GL, its characteristic
polynomial is x(X) € T/W. The family of character varieties defined by Mellit is:

M =TR//PGL,
with
R={A,....By, X1,...., X € GL,| X; € S, for i < k and x(Xj) € To/W
A\BIAT'By U AByA B X L X = 1d )

X(Xg) is the characteristic polynomial of X} and we still denote by x the induced
map x : M — Ty/W. For o € T; denote by [o] its class in Tp/W. Note that

X ([o]) = Mgz
The resolutions //\;lig,g also fit in a family
M =TR//PGL,
with
R={A,....,B;,X1,..., X, €CL,, gBeGL, /B|X; € S; for i < k
g ' Xpg € TyU and A\ BIAT'By' .. ABJA B X X = 1d} .
Denote by 1 the map induced by the projection ToU — Tj. Note that
N (o) = Ms,

There is a natural map 7 : M — M forgetting gB those constructions fit in the
following commutative diagram

Ty < ! M < R > éan
q] lﬂ l = (5.2)
To/W < — M<+— R —F— GL,
5.4.1 Springer action
Mellit uses the Springer action of W on p!GL”ri to construct an action of W on
mk. Let us recall This construction. The Springer action on p!GL"H gives a group

morphism WP — Aut p!GL”Ii. Base change applied to both squares at the right

hand side of Diagram (5.2) provides an isomorphism
pr* p!GL"Ii > g'mk.
Consider the composition of group morphism s
WP — Aut p!GL”/i P Aut pr* p!GL"/i > Aut ¢*mk.
The quotient map ¢ is smooth with connected fibers so that ¢* is fully faithful and
Aut ¢"mr = Aut mk.
Composition provides a group morphism

WP — Aut mk.

By Proposition 3.1.6, it induces an action on (y7)x also referred to as the Springer
action.
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5.4.2 Monodromic action

The Springer action on the complex p, Ln i comes from a W-equivariant structure on

the constant sheaf over a regular locus GL,, . The same holds for m. Let 5% C Ty,
the subset of regular elements. An element o € Tj is regular if its centralizer in GL,,
is Zg1, (0) = T. Consider the pull back of Diagram (5.2) to the regular locus

—~—reg

reg — ~
Ty 1 — M™8 «—— R —— GL,

l l l l . (5.3)

Téeg/W <Xr—eg Mg —— RreE —— GL;eg

There is a W-action on M™# induced by the maps gB + g !B, for w € W and
w € GL, a representative. x € D’ (Mreg is the constant sheaf concentrated in

degree 0. Define a W-action on k, for w € W let ¢, : w*x — k be the morphism
which is the identity on the stalks. Then by Proposition 3.1.6, W acts on 1,“*k. Let

o € Ty, for w € W the action on M™8 induces an isomorphism

w MS,U — M&w_a.

Note that Hin®k = H!:(Ms,, k). By Remark 3.1.3, on the stalks, the -
equivariant structure comes from the functoriality of the compactly supported co-
homology

w* Hi(/i\/l/gjw,a, K) — Hé(/f\/lvsva,/i).

Pushing forward to T;° /W provides a W-action on (7%r&n™e) k.

5.4.3 Comparison of monodromic action and Springer action

Mellit [Mel19] proved that the monodromic action and the Springer action coincide
over the regular locus.

Theorem 5.4.2. The monodromic action on (7°™8n™8),x coincides with the Springer
action on (X"®71),k under the isomorphism

Tk 2 X B k.
Proof. Tracking the Springer action over the regular locus through Diagram (5.3),
one sees that it comes from the W-equivariant structure of the constant sheaf over
M8 just like the monodromic action. ]

An important result is that the cohomology sheaves Hink are local systems over
To [Mel19, Proposition 8.4.1|. This proposition together with Theorem 5.4.2 provide
the following corollary

Corollary 5.4.3 (Corollary 8.4.3 [Mell9]). There exists a W -equivariant structure
on the local systems H'mk extending the W-equivariant structure on H'n®k de-
scribed in 5.4.2 and the pushforward of this W -equivariant structure on (7°n)x over
To/W coincide with the Springer action on (x7)k.
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Remark 5.4.4. This result could also be obtained like in the additive case: Theorem
4.5.8. In the additive case, the cohomology sheaves H'mk are constant thanks to
the quiver variety point of view. Here, in the multiplicative case, they are locally
constant thanks to the cell decomposition from Mellit. In both case the W -equivariant
structure can be obtained either with [Mel19, Corollary 8.4.3] or with Theorem /.3.3.
This last theorem also works when K = TF,.

As in 5.3, let 0 € Ty and M the centraliser of ¢ in GG. The following notations
are used

M= GL, =]]GL,
Wy= 6, = H 6%‘

P, =][]Pn

Mellit suggested us to study restriction of the W action to the subgroup W, C W.

Theorem 5.4.5. Wy, acts on H! <//\Zg’g, /1) and there is an isomorphism of Wy;-
representations:

Hz <.//\-\/l—/$7o—, /ﬁ;) = @ Vﬁ ® IH2+da,g*da <M$,€ﬁ,o‘7 /{:)

HEPy

with .
doy = dim Mgz —and do = dim Ms,.

Proof. Consider the following pull back of Diagram (5.2):

Wo «—— |_| -//\\/l/S,w.a A |_| ﬁs,w.o — I_I §§T,B,w.a

wGW/WM U)GW/WM U)GW/WA[
luweW/WM e l l
re,
o] e Mg R Yo

Previous corollary provides, for the stalk over [o] € Ty/W, an isomorphism

D u (ﬂs,wm ,.g) = U (mon)is = Hiy (xmhe = @D Hiy (er un.

”LUEW/WM 'LUGW/W]\/I

This isomorphism is compatible with W-action and direct sum decomposition so
that

H, <Ms,m'f) = Hiy(x7
after restriction of the W action to W), C W this isomorphism holds as a Wj,-
representation isomorphism. A way to describe the action on the left hand side is
that H! (./\/lgp, /<;> is the stalk at o of a W-equivariant local system, W}, acts on

this stalk as it fixes 0. The theorem then follows from the description of (y77)ik
from Theorem 5.3.1. [
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Let ¢ a central element in GL,, lying in 7.

Theorem 5.4.6. There is an isomorphism of Wy, representations

P Resty, Vi @ THI = (Mg, 6) = @@ Vuw 1™ (Mg, 5)

AEP, PEP,
with the notations from previous theorem and
da = dim MS,EM-

Proof. Previous theorem applied with the central element ( instead of o gives an
isomorphism of W-representations

s i+dim Mgz —dim M ¢
H, <M8,c> R) =~ P vielH. e (M&Q, ”) :

H; (Msg, k) = Hime  and  H. (Msq, k) = Hink are stalks of the same WW-
equivariant local system. Both ¢ and ( are fixed by Wy, so that W), acts on
those stalks and the representations are isomorphic. The theorem then follows from
Theorem 5.4.5. O

Corollary 5.4.7.

@ Homu, (Vﬁ, Res, VA> @ [HI (MS@@, /<;> o T s <M3@m, n)

in particular
@ Homyy,, (€, Resyy, Vi) ® TH e <M37q, /@) >~ [itder (Mss,, k) (5.5)
AEP,

with €, = €,, ® - ® €, and €,, the signature representation of &,,.

5.5 Poincaré polynomial for intersection cohomol-
ogy of character varieties with £ — 1 semisimple
monodromies

Notations 5.5.1. As in previous section, (Si,...,Sk-1) is a fived (k — 1)-uple of
1

semisimple conjugacy classes, their type is determined by o = (at,...,a* 1) €
PE-L For f € Sym[X] a symmetric function
haf :=ha[Xa] .. hor—1[Xp_ 1] f1Xk]-

Let ¢ € Ty with multiplicities of the eigenvalues given by a partition v € P,,.
As in previous subsection S, is its conjugacy class in GL,. Before generalizing to
any conjugacy class, let us recall Mellit’s result for semisimple monodromies at each
punctures. From Equation (3.50) one obtains

P.(Ms.s,,v) = v (hoh,, HI®Y (=1,0)). (5.6)

with daﬂj = dim MS,SU-
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Theorem 5.5.2. Let ¢ € Ty central in GL,, and A € P,, a partition. The conjugacy
classe Cy¢ has semisimple part ¢ and Jordan type N\. The Poincaré polynomial for
intersection cohomology of M&EM is

P, (MS,EM’ v) = v (hosy, HIPY (—1,0)) .
Proof. By adjunction
dim Homyy,, (ey, Res%M V,\) = dim Homyy (Ind%M €, V,\) .
Lemma 3.2.28 implies
dim Homyy (Ind%M €y, VA) = (hy, Sx) -

Substituting (5.6) in (5.5) and taking the dimension

3" (b sy) %Py (M&@,t) = (hohy, HIPV (=1,1)) (5.7)
AEPn

For \,v € P, let
M, = (hy,sa) -

Schur functions form an orthonormal basis of Sym[X] for the Hall pairing, thus
hV = Z A]\fy7 ASA-
A

As (h,)vep, and (sy)rep, are basis of Sym, [X] the matrix (M, 1), ep, is invertible
its inverse is denoted by (N, a)yaep,. Such transition matrices are described by
Macdonald [Macl5, I-6]. We conclude by multiplying (5.7) by N, , and summing
over v. O

For pn= (p',. .. 1) € Py, x --+ x P, we introduce the notation

so that
hasy = hat[Xa] .o hor [ X80 [Xa] 5[ X4

Corollary 5.5.3. The Poincaré polynomial for intersection cohomology of the char-
acter variety ./\/1375M with k — 1 monodromies in the semisimple conjugacy classes

S and one monodromy in C, , is

P, <M3’5ﬁ7g, t) e <hasﬁl, HEEY (-1, t)> .
Proof. First note that after twisting both representations with the sign one has
dim Homyy,, <Vﬁ : Res%M V,\> = dim Homyy,, (V&' , ResWW/M V,\/> .
Then as Ind%M is left adjoint to Res%M
dim Homyy,, <Vﬁ” Res%M VA/) = dim Homyy,, (Ind%M Vi V,\/) = <5/L’ , S A/> .
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Taking dimension in equation (5.4) and substituting result of previous theorem
tie P, (Ms,a wt) = <3M’7 ‘5“’> (hasy, Hy ™ (=1,1)).
u —\'E

As Schur functions form an orthonormal basis of Sym,,[X],

S/Ll: E <S#7/,8)\/>S)\/

AEP,

so that

Z <Su7’a S)\’> td)\ <hoc8)\7 HnHLV(_]-a t)> = <ha8ﬁ/, H'{;{LV(_L t)>
AEP,
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Chapter 6

Intersection cohomology of character
varieties through non-Abelian Hodge
theory

6.1 Introduction

In this chapter, the base field is C, we compute the Poincaré polynomial for inter-
section cohomology of character varieties with the closure of conjugacy classes of
any type at each puncture. This proves the Poincaré polynomial specialization of
a conjecture from Letellier [Let13]. Mellit computed the Poincaré polynomial for
character varieties with semi-simple monodromies [Mel17al. In previous chapter we
assumed k& — 1 among k& monodromies are semisimple. This assumption is now re-
laxed. As in previous chapter, the computation relies on the one hand on Mellit’s
result and on the other hand on resolutions of character varieties. Those construc-
tions come with a combinatorial relation between the cohomology of the resolutions
and the intersection cohomology of character varieties. The main technical difficulty
is to prove that the resolution is diffeomorphic to a character variety with semisimple
monodromies. Then the combinatorial relation can be inverted and gives a formula
for the intersection cohomology of character varieties. Contrarily to previous chap-
ter where everything was algebraic, analytic methods such as non-Abelian Hodge
theory are now necessary to construct the diffeomorphism.

6.1.1 Intersection cohomology of character varieties and Weyl
group actions

Consider the resolution ./\A/l/ L.po of a character variety M@u , as introduced in 3.5.3.

Springer theory provides a combinatoric relation between the cohomology of M LPo
and intersection cohomology of character varieties /\/lgp I

Hé+d“ (./K/T[”p’o-, H) = @ A“/,p X [Hé+dp (Mza,p’ IQ) . (61)

PEP, 1 X XP

This relation is the main tool allowing to go from usual cohomology of smooth
varieties to intersection cohomology of singular varieties. We shall see that the
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resolution .//\/7 L.po is diffeomorphic to a character variety Mg with semisimple con-
jugacy classes at punctures. With 8 = (S, ..., Sy) and S; is the class of an element
with centralizer in GL, equal to I/ = GL,;.

Mellit [Mel17a] computed the Poincaré polynomial of those character varieties.
The Poincaré polynomial is invariant under diffeomorphism so we deduce the Poincaré
polynomial of the resolution. Then the combinatoric relation can be inverted using
transition matrices between various basis of the space of symmetric funtions. This
results in the following theorem:

Theorem 6.1.1. For a generic k-uple of conjugacy classes C,, , the Poincaré poly-
nomial for compactly supported intersection cohomology of the character variety

M@Ma 18
P. (Mg‘w,v) =y <5H/,HnHLV(—1, v)).

Moreover, as a by product of the diffeomorphism between resolution M L.po and
M, we obtain a Weyl group action on the cohomology of Ms from the Springer
action on the cohomology of My p,. Similarly to the additive case, the twisted
Poincaré polynomial is computed in 6.2.2

Theorem 6.1.2. Wy, (L) acts on the cohomology of Ms and the n-twisted Poincaré
polynomial is

Pcn (M57 U) = (_1)1"("7)Udim./\/ls <ZW7H7€1LV <_17U)> :

The symmetric functions %,7 and r(n) are defined in 3.5.18.

6.1.2 Diffeomorphism between a resolution M L.p.o and a char-
acter variety with semisimple monodromies Mg

The technical part of the proof is to exhibit a diffeomorphism between the resolution
ML,P,U and ./\/ls.

Theorem 6.1.3. C, » is a generic k-uple of conjugacy classes and ﬂgga is the
resolution of M@M’a. Then .//\/le,p,G is diffeomorphic to a character variety Ms.
With 8 = (S1,...,Sk) and S; is the class of an element with centralizer in GL,
equal to L7 = GL,.

This theorem is proved in few steps in 6.6.1.

The first step is the Riemann-Hilbert correspondence, it gives a diffeomorphism
between the resolution /\/law and a de Rham moduli space of parabolic connections.
Riemann-Hilbert correspondence was developed by Deligne [Del70], and Simpson
for the filtered case [Sim90|. Yamakawa proved that this correspondence induces a
complex analytic isomorphism between moduli spaces [YamO§].

The second step is the non-Abelian Hodge theory, a diffeomorphism between
de Rham moduli space and Dolbeault moduli space. It was established by Hitchin
[Hit87] and Donaldson [Don87| for compact curves. Corlette [Cor88] and Simp-
son [Sim88| generalized it for higher dimensions. The parabolic version over non-
compact curves was proved by Simpson [Sim90|. This is the one needed here. It was
generalized for higher dimension by Biquard [Biq97|. The relevant moduli spaces to
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obtain this correspondence as a diffeomorphism were introduced by Konno [Kon93]
and Nakajima [Nak96]. Biquard-Boalch [BB04| generalized further to wild non-
Abelian Hodge theory and constructed the associated hyperkéhler moduli spaces.
We use their construction of the moduli spaces. Biquard, Garcia-Prada and Mundet
i Riera [BGM15]| established a parabolic non-Abelian Hodge correspondence for real
groups, generalizing Simpson construction for GL,,.

After the diffeomorphism from non-Abelian Hodge theory we use the method
from Nakajima [Nak96] for GL, and Biquard, Garcia-Prada, Mundet i Riera [BGM15]
for real groups. The weights defining the moduli space of parabolic Higgs bundles
are changed. This is done before going back to another de Rham moduli space
thanks to non-Abelian Hodge theory in the other direction. The change of stability
on the Dolbeault side induces a change of eigenvalues of the residue on the de Rham
side.

Finally Riemann-Hilbert correspondence is applied in the other direction. It
gives a diffeomorphism to a character variety where the eigenvalues ¢ have been
perturbed, the monodromies are now semisimple.

In Section 6.2, we compute the Poincaré polynomial for intersection of charac-
ter varieties, assuming the resolution is diffeomorphic to a character variety with
semisimple conjugacy classes at punctures.

In Section 6.3 the example of the sphere with four punctures and rank n = 2 is
studied. There, we can obtain the expected diffeomorphism using only tools from
algebraic geometry. This example has been studied for a long time by Vogt [Vog89|
and Fricke-Klein [FK97|. The character varieties are affine cubic surfaces satisfying
Fricke-Klein relation. Cubic surfaces and line over them have been extensively stud-
ied. They are classified for instance by Cayley [Cay69], see also Bruce-Wall [BWT79|,
Manin [Man86] and Hunt [Hun96]. This rich theory proves that the minimal reso-
lution is diffeomorphic to a character variety with semisimple monodromies. Both
appear to be diffeomorphic to the projective plane blown up in six points minus
three lines.

In Section 6.4 various filtered objects are introduced. First the filtered local
system; the resolution My, p » appears to be the associated moduli space. Then the
parabolic connections and finally the parabolic Higgs bundles.

In Sections 6.5 and 6.6 we recall Biquard-Boalch [BB04]| analytic constructions
of Hyperkédhler moduli space. This provides the non-Abelian Hodge theory as a
diffeomorphism. Then the stability parameters are perturbed following ideas of
Nakajima [Nak96| for GL, and Biquard, Garcia-Prada, Mundet i Riera [BGM15| for
a larger family of groups. It finally provides the diffeomorphism between M LPo
and ./\/ls.
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6.2 Poincaré polynomial and twisted Poincaré poly-
nomial
6.2.1 Computation of the Poincaré polynomial

Consider a generic k-uple of conjugacy classes C,, » = (Culﬂl, e ,Cuk’o.k>. As usual,
the class C,; s is characterized by its eigenvalues

J J J J
oy, 7017""Ulj7"‘70lj
N— —_——

V{ I

and by 47" € P ; the Jordan type of the eigenvalue ag . Denote by uj’i/ the transposed
partition. For each of this conjugacy classes consider the resolution of the closure
(see 3.3.3)

XL]"PJ'?g-j — EH@JJ‘.

The group L7 used to construct the resolution is

LJgGL j71/XGL j71/X...><"‘XGL j,l]./XGL j,l]./x....
oM 2 My Ha

J/

J/

g ~~
CGL CGL
1 v

Ly

As detailed in 3.5.3, resolution of closure of conjugacy classes fit together in M L.Po
a resolution of the character variety Mg .

Definition 6.2.1 (Semisimple conjugacy classes of type w'). Consider a k-uple
of conjugacy classes & = (Si,...,Sk). We say that 8 is of type p' if one of the
following equivalent condition is satisfied for all 1 < 57 < k

o The multiplicities of the eigenvalues of S; are given by the partition Ui’zl T
e The centralizer of an element in S’ is isomorphic to L7 = GL,;.
The proof of next theorem is postponed to the remaining sections of this chapter.

Theorem 6.2.2. The resolution /WL,RU is diffeomorphic to a character variety
M with 8§ a generic k-uple of semisimple conjugacy classes of type p'.

With this result we are ready to compute the Poincaré polynomial for intersection
cohomology of character varieties M@y - As the Poincaré polynomial is a topological
invariant

P, (MLP,G, t) — P.(Ms,1).

Let us translate (6.1) in terms of Poincaré polynomial.

WP (Ms,t) = 3 (dim Ayr,) t %P, (MEM, t> . (6.2)
P=p
The idea is now to invert this relation. First we compute the dimension of the

multiplicity spaces dim A, ,.
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Lemma 6.2.3. The dimension of the multiplicity space is given by

dimA“,,p: H <huj,i/’ pj,i/>

1<j<k
1<i<ly
Proof. By definition
_ Wt
Ay, = Homy,, (IndWL eM/,Vp)

= ® ® HOIHGVJ. (Euj,i/,‘/p]',i)

1<5<k \ 1<i<ly
We conclude with Lemma 3.2.28. OJ

Theorem 6.2.4. For a generic k-uple of conjugacy classes C,, », the Poincaré poly-
nomial for compactly supported intersection cohomology of the character variety
ME 18
®,o
P. (ME‘W, v) = v (s, HIPY (—1,0)) .

Proof. The complete symmetric functions (h,),ep,, and the Schur functions (s,) ep,,
are two basis of the space of degree m symmetric functions. Let (M, ,), ep,. the
transition matrix between between those basis then

hy, = Z M, ,5,.

p€P7n

As the Schur functions form an orthonormal basis, the transition matrix is given
explicitly by
Myp = (hys 8p) -

It is invertible and denote by (N, ,)upep,, its inverse. Combining Equation (6.2),
Lemma 6.2.3 and the formula for Poincaré polynomial of character varieties with

semisimple conjugacy classes:

J

ko1 kol
<HHhuj,i’[Xj],HgLV(—l,U)> = Z HH <huj,i’, pj,i/> U_dppc (M@pﬂ,@) .

j=11i=1 p=p j=1i=1

This relation can now be inverted. Fix A € P,1 x --- X Px. Multiply previous
equation by Nyi1 11 and sum over ptt e P,1. Repeating this process gives the
expected result:

<S>\/,H£{Lv(_]—7?})> — fU_dAPC <M6A,U’U) .

6.2.2 Weyl group action and twisted Poincaré polynomial

As in [Let13, Proposition 1.9], twisted Poincaré polynomial can be computed thanks
to previous theorem. Using notations from 3.5.4 and Definition 3.6.6 for n-twisted
Poincaré polynomial we have the following theorem
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Theorem 6.2.5. C,, , is a generic k-uple of conjugacy classes and /\7L7p,,, 15 the
resolution of ME“U. For m indexing a conjugacy class in War(L), the n-twisted

mized-Hodge polynomial of .K\/l/L,p,,, 18
1 (Mypo,v) = (=1) o (T B (~1,0) )

Proof. Theorem 3.5.20 and Proposition 3.5.19 give

k
v~ P <./\/lL7p7a,v> = Z H cZiz v P, (M@pa,t) )

Apply Theorem 6.2.4:

E ol

U*dupc?? (MVL,P,G'a U) = Z H H CZ?: <3p'7 Hi]LV <_17 U)> :

p=3p \J=11i=1

/

Then using the relation ¢ = (—1)"@c", (see Lemma 3.4.11) and Notations 3.5.18
P (Mypg,v) = (<17 (g, BIE (<1,0))

]

Theorem 6.1.3 (which will be proved in Section 6.6) gives a diffeomorphism
between My p, and a character variety with semisimple monodromies Mg. The

diffeomorphism transports the action on the cohomology of M L,P,s 1O an action on
the cohomology of Mg and we have the following corollary.

Corollary 6.2.6. Wy, (L) acts on the cohomology of Mg and the n-twisted Poincaré
polynomial is

PP (Ms,v) = (=1) @ (i, HESY (<1,0))

One can proceed as in the additive case (see 4.4.2) to give a cohomological
interpretation to another specialization of the coefficients cﬁ,y.

Theorem 6.2.7. For u,v in P,, there exists a generic 4-uple of conjugacy classes
of the following type:

e Ci has one eigenvalue with Jordan type i’ € P,
e Cy has one eigenvalue with Jordan type v € P,.
e C3 is semistmple reqular, it has n distinct eigenvalues

e C, is semisimple with one eigenvalue of multiplicity n — 1 and the other of
multiplicity 1

Then the Weyl group with respect to Cs is the symmetric group &, and it acts on
the cohomology of Mg. Let w a n-cycle in this Weyl group then

e (Lt) = 125 tr (w, TH, (Mg, 1)) £5.
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6.3 Example of the sphere with four punctures and
rank 2

We study the particular case n = 2, k = 4. Then the character varieties are affine
cubic surfaces. The defining equation was known by Vogt [Vog89] and Fricke-Klein
[FK97]. The theory of cubic surfaces allows to obtain the expected diffeomorphism.
Cubic surfaces and lines over them have been extensively studied. They are classi-
fied for instance by Cayley [Cay69], see also Bruce-Wall [BW79], Manin [Man86] and
Hunt [Hun96]. This particular example of character varieties also appear in the the-
ory of Painlevé VI differential equation. In this context resolution of cubic surfaces
were studied by Inaba-Iwasaki-Saito [[IS06a; 1IS06b; 11S06¢| with Riemann-Hilbert
correspondence. It was also studied on the Dolbeault side by Hausel [Hau9§|.

6.3.1 Fricke relation

We consider representations of the fundamental group of the sphere with four punc-
tures P\ {pi, ..., ps}. First we prescribe no particular condition on the monodromies
around the puncture

R:={(X1,...,X4) € GLy|X;... Xy =1d}

The group GLy acts by conjugation on R, its center acts trivially, hence the action
factors through an action of PGLs. Points of the following GIT quotient represent
closed orbits for this action.

M :=R//PGL, := SpecC [R]"!

where C [R]"“" are the invariants under the GL; action in the algebra of functions
of the affine variety R. There is an explicit description of this algebra. First note
that R = GLj as the fourth coordinate is determined by X; = (X;X,X3)~!. The
algebra of functions on a k-uple of matrices invariant under conjugation was studied
by Procesi.

Theorem 6.3.1 (Procesi [Pro76]). Let C [GLY] PG be the algebra of regular func-

tion f : GLZ — C invariant under simultaneous conjugation

FXa, o Xe) = flgXag™ o 9 Xeg ™).

This algebra is generated by

where 0 < I < k and iy,...,4 € {1,...,1} not necessarily distinct. The relations
between those functions are spanned by

> (o) tro(My,..., M) =0 (6.4)

where M; is any monomial in the coordinates (X;)i1<j<k and tr, is defined by

trg (M, ..., M) o= tr(My, ... My, ). tx(M,,, ... M, ). (6.5)

- ay s arg,

for o a product of r cycles with disjoint supports o = (a1 ...a15) - (Qry ... Gy, ).
Moreover, to obtain a generating family we can restrict to function tr(X;, ... X;,)
with | < 2™ — 1.
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In particular C [R]"“" is generated by
tI'(Xi), tI‘(Xin), tI‘(XzXJXk) (66)

for i, j, k € {1,2,3} not necessarily distincts. Our aim is to study character varieties
with prescribed closure of conjugacy classes at punctures, we can continue with the
assumption:

Assumption 6.3.2. We assume that the (X;)1<i<4 have determinant 1.

This assumption allows to get rid of some generators. Cayley-Hamilton theorem
implies

so that
tr(X7) = tr(X;)* — 2. (6.8)
and multiplying (6.7) by X; before taking trace
tr(X7X;) = tr(X;) tr( X, X;) — tr(X;). (6.9)
Thus we can pick among (6.6) the following generators
a = tr(Xy), b = tr(Xy), c = tr(Xj),
r o= tr(XeX3), vy = tr(XiX3), =z = tr(Xi1Xy), (6.10)

d = tr(X1X2X3), d/ = tI‘(XngXQ)

Moreover d’ can be expressed with the other generators using relation (6.4) with
the monomials M; = X;. The relations between those remaining generators are de-
scribed in general by Procesi but it is convenient to obtain a finite description of the
relations. Such a description was known by Vogt [Vog89] and Fricke-Klein [FK97],
see also Goldman [Gol09] for a detailed discussion and Boalch-Paluba [BP16| for
applications to GGy character varieties. The relations boil down to a single equation
known as the Fricke relation

ryz+ a2+ + 22+ Ar+By+Cz+D =0 (6.11)
with
A = —ad-bc
B = —bd—ac
C = —cd—ab

D = abed+a®+b+ 2+ d* — 4.

The character varieties we are interested in are obtained by specifying the Zariski
closure of the conjugacy class of each X;. First we assume that they are all semi-
simple regular. For 1 = 1,...4; §; is the conjugacy class of

Ao 0
( 0 Al ) . (6.12)
S = (81,...,8,) is assumed to be generic. In terms of invariant functions, X; € S;
for all 4, if and only if
tr(X;) = )\i—i-)\;l for1<i<3
tr(X1XoX3) = A+ A

Then Fricke relation translates in next proproisition.
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Proposition 6.3.3. The character variety Mg is a smooth cubic surface in A3
given by Fricke relation (6.11) with coordinates z,y and z and constants A, B,C
and D.

Now consider non-semisimple conjugacy classes C = (Cy,Cy,Cs,Cy). With C; the

conjugacy class of
-1 1
0 -1

and C, = C3 = Cy4 are the conjugacy classes of

(1)

Note that this 4-uple of conjugacy classes is generic. The (Xi_)lgi§4 are already
assumed to have determinant 1, then X; belongs to the closure C; if and only if

tr X1 = -2
Similarly the condition (X3, X3, X4) € Cy x C3 x Cy4 is equivalent to
tr X2 = tr X3 = tI‘(XlXQXg) = 2.

Substituting this parameters in Fricke relation, the character variety is again a cubic
surface in A% with equation:

vyz + 2 + oy + 22 —4=0. (6.13)

This cubic surface has exactly four singularities at (—2, —2, —2), (—2,2,2), (2, —2,2)
and (2,2,—2). The classification of cubic surfaces (see for instance Bruce-Wall
[BWT79]) gives the following theorem:

Theorem 6.3.4. After compactification in P3, the character variety Mg is Cayley’s
nodal cubic, the only cubic surface with four singularities.

This particular character variety was studied by Cantat-Loray [CL09| in the
context of Painlevé VI.

In this example, using only elementary algebraic geometry, we can prove that the
minimal resolution of Mg is diffeomorphic to the character varieties with semisimple
monodromies Mg. We shall see that both varieties are obtained as the plane blown-
up in six points minus three lines.

6.3.2 Projective cubic surfaces

Let us recall an important result in the classification of cubic surfaces. Smooth
projective cubic surfaces in P? can be constructed by a blow-up of P? in six points.

Let P = (P, ..., Bs) be six distinct points in the projective plane P2. The blow-up
of P2 with respect to those six points is denoted Yp — P2.

Definition 6.3.5 (Generic configuration for six points in P?). Such a configuration
P of 6 points in P? is called generic if no three of them lie on a line and no five of
them lie on a conic.
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The two following theorems are well-known results about cubic surfaces, see for
instance Manin [Man86] and Hunt [Hun96|.

Theorem 6.3.6. Up to isomorphism, smooth projective cubic surfaces in P? are
obtained as P? blown-up in siz points in generic position.

Theorem 6.3.7. If the siz points P = (P, ..., Ps) are the intersection of four lines
(Ly,...,Ly) in P2, then Yp is isomorphic to a minimal resolution of singularities of
Cayley’s nodal cubic.

The rest of this section is devoted to the proof of Theorem 6.3.7. Along the way,
one direction of Theorem 6.3.6 is also proved: P? blown-up in six points in generic
position is isomorphic to a smooth cubic surface in P3.

Those results rely on the theory of linear systems we briefly recall. A detailed
presentation can be found in Hartshorne [Har13, II-7].

Definition 6.3.8. A divisor D on a smooth variety Y is a formal sum D =3, ny'V
over subvarieties of codimension one with ny € Z and finitely many of them nonzero.
D is effective if ny >0 for all V. A divisor D is principal if D = (f) for f a non-
zero global section of the sheaf of rational functions. Two divisors D and D' are
linearly equivalent if D — D’ is principal.

Definition 6.3.9. Let D be a divisor on a projective space P, the complete linear
system denoted |D| is the set of effective divisors linearly equivalent to D.

Remark 6.3.10 (Hartshorne [Harl3] II - 7.7, 7.8). The complete linear system |D|
is identified with the projective space over the space of global sections of the invertible
sheaf L(D) associated with D. Indeed the zero set (s)g of a section s is an effective
divisor linearly equivalent to D

P(H(Y,L(D))) — |D|
[s] = (8)o

Moreover if L(D) is generated by its global section, it provides a morphism

p 2 Y = P(H(Y,L(D)))

v (0] (6.14)

Set theoretically, this morphism sends a point x € Y to [p,] the line spanned by the

linear form
0, : H°(Y,L(D)) — C
s = s(x)

Let P = (Py,..., ) be six points on P?] either in generic position or exactly
the intersection points of four lines. Linear systems allow to construct a morphism
from Yp to IP3.

Definition 6.3.11. Let L a line in P?, the linear system |3L— Py - - -— Pg| is a projec-
tive subspace of |3L|. It is defined under the identification |3L| = P (H° (P?, L(3L)))
by P(Vp) with

Vp={se H°(P* L(3L)) [s(P) =0, foralll<i<6}.

It is the set of cubic curves in P? containing all the (P;)1<i<e-
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Now consider Yp the blow up of P? at P, +- - -+ FPs. Let E; the exceptional divisor
over P;. There is a natural bijection from [3L— P, ---— Fg| to |7*(3L) — Ey - - - — Eg|.
This bijection sends a cubic in P? passing through all the P; to its strict transform
n Yp.

Lemma 6.3.12. The line bundle L(7*(3L) — E; - -- — Ejg) 1is generated by its global
section and dim H*(Yp, L(7*(3L) — Ey--- — Eg)) = 4.

Proof. Under the identification between |7*(3L) — E) - - - — Eg| and [3L— Py - - - — P,
the space H*(Yp, L(7*(3L) — Ey - -+ — Eg)) corresponds to

{s € H'(P?,L(3L))|s(P) =0 for 1 <i <6}

which is a codimension 6 subspace of H°(P?, £(3L)). The line bundle £(3L) is
nothing but O(3). The statement about the dimension now follows from

dim H°(P?, O(3)) = 10.

To see that L(7*(3L) — E, --- — Ej) is generated by its global section, we use that
for any point P distinct from Pj,..., Ps there exists a cubic containing the P; but
not containing P. This is detailed Hartshorne in [Harl3, V - 4.3]. O

Thanks to previous lemma, the line bundle £(7*(3L) — Ey — -+ - — Ej) provides
a morphism ¢ : Yp — P? define as in (6.14).

Proposition 6.3.13. The image of the morphism ¢ is a cubic surface in P3.

Proof. We want to compute the number of intersection of the image of the morphism
¢ with a generic line L in P2, By construction the projective space of dimension three
is naturally obtained as P (H°(Yp, L(7n*(3L) — E; --- — E))*) the projective space
of the space of sections of L(7*(3L) — E; -+ — Eg). Take two points P, Q) distinct
from the P;. Then [pp] and [pg] are two points in the image of ¢. Now every cubic
curve containing the eight points P, ..., P, P, Q) also contains a ninth point R, see
[Har13, V-4.5]. Thus the line in P(H®(Yp, L(7*(3L) — E;--- — Eg))*) containing
[op| and [pg] also intersects the image of ¢ in a third point [pg]. Therefore the
degree of the image of ¢ is three, it is a cubic surface in P3. n

Last proposition is true either if the points P are in generic position or if they
are the intersection points of four lines. Next propositions present the difference
between both situations.

Proposition 6.3.14. If the points P are in generic position, then the map
©:Yp —P3
s an embedding.

Proof. Let P and @ distinct points in P2. Among (P, ..., P, P), no four points are
aligned. Then there exists a cubic in P? containing P, ..., Ps, P but not containing
(Q), see [Harl3, V-4.4]. Therefore [¢p] # [¢g]- O

Remark 6.3.15. Last two propositions prove one direction in the theorem of clas-
sification of smooth cubic surfaces 6.3.6. They prove that P? blown-up in six points
in generic position is a cubic surface in P3.

147



Proposition 6.3.16. If the points (P,..., Ps) are exactly the intersection points
of four lines (Ly, ..., Ly) in P2, then the map

QOSYP—>]P)3

is a blow-down along (Zl, o ,Z4) the strict transform of (L, ..., Ly). Therefore its
image is a cubic surface with four singularities: the Cayley’s nodal cubic.

Proof. Note that as each L; contains three points blown-up, its strict transform L,
has self-intersection —2. Therefore L; can be blown-down and its image is a singular
point. Let us check that the morphism ¢ is indeed this blow-down. Let P a point
in L;. If the strict transform of a conic passing through the (P;);1<;<¢ also contains
P, then this conic contains the line L;. Indeed this conic either contains four points
of the line L; or it contains three points of L; and is tangent to this line at one of

this points. Therefore for all P’ € L; one has [pp] = [pp]. Therefore ¢ contracts
the lines (L;)1 < i < 4. As in the proof of Proposition 6.3.14, ¢ is an embedding
away from the lines (Li)1§i§4' ]

Remark 6.3.17. Last proposition proves Theorem 6.3.7: the projective plane blown-
up at the siz intersection points of four lines is a minimal resolution of singularities
of Cayley’s nodal cubic.

Up to diffeomorphism, the manifold obtained by P? blown-up in six distinct
points, does not depend on the position of the points. This implies next proposition.

Proposition 6.3.18. The minimal resolution of the projective Cayley’s nodal cubic
is diffeomorphic to a smooth projective cubic surface. Both are obtained as the
projective plane P? blown-up in siz points.

6.3.3 Lines on cubic surfaces

So far we saw that the minimal resolution of the projective Cayley’s nodal cubic
is diffeomorphic to a smooth projective cubic surface. However the variety we are
interested in are not projective, they are affine. By Theorem 6.3.4 the variety Mg
is the projective Cayley’s nodal cubic minus three lines at infinity. Those three lines
are given by the equation xyz = 0, they form a triangle. Similarly the variety Ms
is a smooth projective cubic surface minus the triangle at infinity zyz = 0. This
triangle at infinity is a particular case of a general situation studied by Simpson
[Sim16] for n = 2 and any number of punctures k.

The theory of lines on cubic surfaces has been thoroughly studied. See for in-
stance Cayley [Cay69], Bruce-Wall [BW79|, Manin [Man86] and Hunt [Hun96].

Proposition 6.3.19 (27 lines on smooth projective cubic surface). There are 27
lines on a smooth projective cubic surface. They all have a nice description in terms
of P2 blown-up in siz points (Py,. .., Pg).

e Siz of them are exceptional divisors E; over P;.

o [ifteen of them are the strict transform z” of the line through P; and P;.

e Six of them are the strict transform 5j of the conic through all P; except P;.
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Following picture is an example of six generic points in the plan, the line Lig as
well as the conic Cg are drawn.

Py

P,

Py

Now consider six points not in generic position. Take four lines (Lq,...,L4) in
P, with exactly six intersection (Py,..., FPs), those lines are black in next figure.
Consider the three lines Ly, L34 and Lsg with L;; containing P; and P;, those
lines are blue in next figure. Up to relabelling we may assume L, ; # Lj for all
1,7,k. Cayley’s nodal cubic is obtained by blowing up the six points and then
blowing down the strict transform of the four lines (L4,...,Ls). The four points
image of this four lines under the blow-down are exactly the four singular points.
See Hunt [Hun96, Chapter 4| for more pictures.

P

Py

P

Proposition 6.3.20 (lines on Cayley’s nodal cubic). There are 9 lines on Cayley’s
nodal cubic.

e Six of them are the exceptional divisors E; over P;.
o Three of them are the strict transform of L1, Ls4 and Lsg.

Proposition 6.3.21. The variety Mg is Cayley’s nodal cubic minus the images of
Ly, Lsa and Lsg.
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Proof. We saw that Mg is Cayley’s nodal cubic minus the three lines at infinity
xyz = 0. Those three lines does not contains any of the four singularities. Therefore
they are not the image of the exceptional divisors. Then they must be the three
remaining lines, the blue lines on the picture. O

Theorem 6.3.22. The character variety with generic semisimple conjugacy classes
at punctures Mg 1is diffeomorphic to the minimal resolution of singularities of the
character variety Mg. Both are obtained as the projective plane P? blown up in siz

points (Py, ..., Ps) minus three lines Ly o, L3 4, Ls 6.

Proof. The statement about the minimal resolution of Mg follows from previous
proposition. Mg is a smooth projective cubic surface minus three lines forming a
triangle. As those three lines intersect each other they cannot be any triple among
the 27 lines over the surface, there are some restriction:

e Exceptional divisor E; do not intersect each other.
e Strict transform @- do not intersect each other.

e Strict transforms of two distinct line containing a same point P; do not inter-
sect.

Therefore the only possible triples of lines forming a triangle on a smooth cubic
surface have the following form:

1. (Zl,Qa Z3,47£5,6)
2. (E17 zl,ﬁa 66)

The first case is exactly the expected result. To get an idea of the second case,
consider the picture below Proposition 6.3.19, the conic Cs and the line L;¢ are
drawn. To relate the second case to the first, proceed in two steps. First P? is
blown-up in the three points P, P> and P3. The resulting variety is blown-down
along Ly 2, Ly 3 and Lo 3 (three lines with self-intersection —1). The variety obtained
is again isomorphic to Py. We consider this copy of the projective plane as the
starting point. This plane is blown up in six points (Pj,. .., P}) with

e P/ the blow-down of Egg,
e P the blow-down of 5173

e P4 the blow-down of ZLQ

e P the image of P; for j = 4,5,6.

The construction obtained from the new copy of P? and the points (P, ..., P}) are
labelled with a prime. Then the triple <E1, 5176,5’6> becomes <Z’2,3,E’LG,ZQ75>. In
any cases the triangle of lined removed at infinity has the expected form. O
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Remark 6.3.23. There is an action of the Weyl group of Eg on the configuration
of the 27 lines on a smooth cubic surface. The Dynkin diagramm of Eg is

R B

The generator of the upper vertex corresponds to the transformation previously de-
scribed sending (El, Ly, C’6> <L2 35 L’1 6 Ly 5) See Hartshorne [Har13, V-Ezxercise

4.11].

6.4 Moduli spaces

6.4.1 de Rham moduli space

Parabolic holomorphic bundles were introduced by Mehta-Seshadri [MS80|, they
generalized Narasimhan-Seshadri [NS65| result to the parabolic case. Parabolic bun-
dles appear in various area in mathematics and physics, for instance Pauly [Pau96]
related those parabolic bundles with conformal field theory. In this section basic
definitions are recalled.

Let ¥ a Riemann surface endowed with a complex structure. Let D the divisor
D=p+-+ps

Definition 6.4.1 (Filtered holomorphic bundles). A filtered holomorphic bundle is
the data of a holomorphic vector bundle E together with filtrations of E7 the fiber of
E atpj forj=1,...,k
{0y =EjcE/C---CE}, =F.
The type T of the filtration is defined by
7/ = dim B/ /E}_,
forj=1,...kandi=1,...,m;.

Definition 6.4.2 (parabolic degree). Let E a filtered holomorphic bundle of type T.
Let B = (ﬁf) 1<k with ﬁj € R a stability parameter. The parabolic degree of E is

1<i<im;
p-degy E = deg E + Z B! dim (EY/EL ).
.3
Let E a holomorphic vector bundle on Y. A logarithmic connection on FE is a
map of sheaves D : F — E ® QL (log D) satisfying the Leibniz rule

D(fs) =df @ s+ fD(s)

for all f holomorphic function and s section of E.
For z a coordinate vanishing at a point p;, in a trivialization of E in a neighbor-
hood of this point the connection reads
dz
D=d+ A(z)—

z
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A(0) is called the residue of D at p; and denoted by Res,, D

Fix some parabolic weights 3/ € [0, 1] satisfying 8/ > /. For j =1,...,k and
i=2,...,m; fix A{ € C to specify a polar part. A logarithmic connection (E, D) is
compatible with the parabolic structure if the endomorphism

Res,, D : B/ — E’

satisfies (Res,, D) E! ¢ E!. Alogarithmic connection compatible with the parabolic
structure is called a parabolic connection.

It is compatible with the specified polar part if in addition the map induced by
Res,; D on the graded spaces E’/E! | is A71d. A logarithmic connection compatible
with the parabolic structure is f-semistable if and only if, for sub bundle F' C F
preserved by D

d _
p-degg F' < p-degy £

rank F' = rank F
it is stable if the inequality is strict unless F' = 0. Two pairs of filtered holomorphic
bundle and parabolic connections (F, D) and (E’, D’) are isomorphic if there is an

isomorphism of holomorphic bundle f : E — E’ compatible with the filtrations and
such that (f ® Id)o D = D'o f.

Notations 6.4.3 (de Rham moduli space). The de Rham moduli space ./\/ldfﬂ classi-
fies isomorphism classes of B-stable parabolic connections with prescribed polar part
A and parabolic degree 0.

6.4.2 Filtered local systems and resolutions of character va-
rieties

Definition 6.4.4 (Filtered local system). A filtered local system is a local system
L over Y\ {p1,...,px} together with a filtration of the restrictions Ly, to U; some

punctured neighborhood of pj. Namely for all j =1, ...,k there are local systems 55
such at ' ' '
0=LiCLiC - C Ll =Ly,

The type T of the filtered local system is defined by
7/ i=rank L] /L] |.

Definition 6.4.5 (Parabolic degree of a filtered local system). Let v = (’yf) 1<j<k
1<i<m;

a stability parameter. The parabolic degree of the filtered local system is defined by
p-deg, L = Z v/ rank £ /L]
4,3

A filtered local system L is v-semistable if and only if for all sub local system
0cLcL

p-deg, L' - p-deg, L
rank £/ = rank L
it is y-stable if the inequality is strict. .
Consider a character variety MEM with a resolution of singularities M p ». By
the usual equivalence of category between local systems and representations of the
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fundamental group, the character variety M@H . is the moduli space of local system
with monodromy around p; in Eﬂj,oj. This correspondence extends to the resolution

M r.po and the moduli space of filtered local system.

Proposition 6.4.6. .//\_/le’pya- 1s the moduli space of filtered local system with filtration
around p; of type Hj/ and such that the endomorphism induced by the monodromy

on L£1/L]_| is 0! 1d.

Proof. An element g;P? € GL,, /P’ identifies with a partial flag of type ﬁj’ (see
Remark 3.4.17). The condition gj-’lngj € 0/Up; is exactly that the partial flag is
preserved by X; and that the induced endomorphism on the graded spaces are af Id.
Note that we study only character varieties for generic choices of conjugacy classes
at punctures. For such a generic choice, the stability parameter is irrelevant as the
local system does not admit any sub local system. O

6.4.3 Dolbeault moduli space

A parabolic Higgs bundle is a pair (E,¢) with E a filtered holomorphic vector
bundle on X and a Higgs field ¢ : E — E ® Q'(log D) such that Res,, ¢(E]) C EJ.
Let o = (al)1<j<k a stability parameter. A parabolic Higgs bundle (E,¢) is a-
1<i<ng
semistable if and only if for all 0 € F' C E a sub bundle preserved by ¢
p-deg, F' < p-deg, &
rank ¥ — rank F

it is a-stable if the inequality is strict. As for the parabolic connections, it is inter-
esting to specify the residue of the Higgs field. For all 4, j fix a semisimple adjoint
orbit B in gl ;. The parabolic Higgs bundle has the prescribed residue if, in an

holomorphic trivialization, the map induced on E?/E?_| by the residue lies in the
adjoint orbit Bg . Note that contrarily to the parabolic connections, the prescribed
adjoint orbits on the graded spaces are not necessarily central. In fact much more
general polar parts are considered by Biquard-Boalch, we restrict here to what is
necessary for our purpose.

Notations 6.4.7 (Dolbeault moduli space). The Dolbeault moduli space /\/llB)ii clas-
sifies isomorphism classes of a-stable parabolic Higgs bundles with prescribed residue
B and parabolic degree 0.

6.4.4 Various steps of the diffeomorphism

In the remaining of this chapter, analytic construction of the moduli spaces are
recalled. Those spaces are endowed with a manifold structure. Those moduli spaces
will be used to obtain a diffeomorphism from a resolution My p, to a character
variety Mg with semisimple conjugacy classes at punctures. The picture is is the
following:

lwa (6.15)
dR Dol
Ms R.H ME,B’ v Mba
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All the arrows are diffeomorphisms, R.H stands for Riemann-Hilbert correspondence
and N.A.H for non-Abelian Hodge theory. The vertical arrow accounts for a change
of stability parameter a« — «. This is the same idea as Biquard, Garcia-Prada
and Mundet i Riera [BGM15, Theorem 7.10|. It is detailed in the remaining of the
chapter for this particular application.

6.5 Local model

In this section the local model used by Biquard-Boalch [BB04] to construct moduli
spaces is recalled.

6.5.1 Local model for Riemann-Hilbert correspondence

Before constructing the moduli space, let us present what happens locally, near a
puncture, and how the parameters of the moduli spaces are related. Consider £
a rank n filtered local system on a punctured disk D° such that the monodromy
induces a central endomorphism on the graded spaces. The monodromy X has
eigenvalues o; with multiplicity v; for 1 < ¢ < [. We assume the filtration of the
local system is finer than a filtration spanned by generalized eigenspaces of M. Then
in a trivialization (/;)1<;<, compatible with the filtration, the monodromy reads

Xoy %
X=]0 X5 =x
0

with X, a block of size v; with further decomposition

o; Idui' *
X, = 0 o; Idué' *
0

The type of the filtration is p/ = (u}’,pd’,. .., 13, 13, ...). Let 4; € C such that
exp(—2iT4;) = o;

and 0 < Re A; < 1. Then A is the diagonal matrix with diagonal coefficients

Ar o A AL A
NS > NS

Let a a block strictly upper triangular matrix such that exp (—2im(A +a)) = X.
Define £ a rank n holomorphic bundle on the disk D spanned by 7; = eAta) log 2],
for 1 < j < n. Let D the parabolic connection on E defined in the holomorphic
trivialization (7;)1<j<n by

A+a
z

= Do—i‘gdz
V4

D = d+ dz
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Then the parabolic local system L is nothing but the local system of flat sections
of the parabolic connection (F,D). This describes locally the Riemann-Hilbert
correspondence between a resolution of a character variety and a de Rham moduli
space.

6.5.2 Metric and parabolic structure

The connection Dy will be the local model for parabolic connections:
A
DO =d + —dz
z

with A diagonal. In order to continue the path presented in Diagram (6.15), we
need to introduce an Hermitian metric. It will be related to a choice of stability
parameter. Chose some stability parameters 3,5 € [0, 1] for each graded spaces of
the filtration of type p. Introduce a diagonal matrix 8 with diagonal coefficients

141 vy

A A
N le
(517627 s 7Bn) = ?1,1; s 751,117\51,27 s 751,%? sy 7\5l,17 s 7ﬁl,ljapl,27 s 761,%7 s

-~ -~ -~

TV
17 1/ I 1
M1 M M Mo

so that the §; are the (3, repeated according to the multiplicities pl’. Moreover
assume that f; > (41 and B, # By if (1, 5) # (u,v).

Remark 6.5.1. In this local model, there is a unique puncture p, so that the sta-
bility parameter intorduced in 6.4.1 are (@,})1§i§ml. They are related to the stability
parameters introduced in this section by

(B1:Bas -+ Bmy) = (But, Bras -5 B, Baay )

We apologize for the multiplication of similar notations. (8})1<i<m, are adapted to
the algebraic definition of stability whereas (B,s) 1<r<i are adapted to the description

1<s<puy
of the connections and (51, Ba, ..., Bn) to explicit construction of trivializations.
Define a Hermitian metric h on E such that |7;| = |2]%. This metric determines

the filtration of E:
E - {s cE )ys(z)\h ~0 (|z

)

with | ... |, the norm with respect to the metric h. We obtained an Hermitian vector
"

bundle E on D with an orthonormal trivialization <

E >1<j<n'

Notations 6.5.2. The symbol E represents a vector bundle in the sense of differ-
ential geometry, with smooth transition functions; whereas the symbol E represents
a holomorphic bundle.

The parabolic connection Dy on the holomorphic bundle E induces a connection

on [, in the orthonormal trivialization ( Tiaj

it reads
|2]

>1§j§n



6.5.3 Local beahaviour for non-Abelian Hodge theory

Dy decomposes as unitary connection plus a self-adjoint term

D() == Dg + (I)O.
In the orthonormal trivialization ( TJ@.)
2177 J1<j<n
Db =d Adz _ ﬁd_z
2 z 2 Zz

and

q)o:l(A@+AT$—Bd—Z—5dg>
2 z z z z

Consider the basis (e;)1<j<n defined by

7j

€j ::W

with Im A; the imaginary part of the j-th diagonal term of the matrix A.

Notations 6.5.3 (Canonical form). The expression of Dy in the orthonormal triv-
ialization (e;)1<j<n 1S
Dy = D{+
1 dz dz
D} = d+4 -Re(d) | = - =
0 * 2 e(4) ( z z )
1 dz

B = —(A—Hﬁ—ﬁ@—ﬁ@).
2 z Z z z

Such expressions will be referred to as canonical forms.

Let ' be the (0, 1)-part of D} and 6 the (1,0)-part of ®. In the basis (e;)1<j<n
one has ) .
=F = Z
0 =0—=-Re(A)—.
g Reld)3
This operator defines an holomorphic bundle over the punctured disk with holo-
morphic sections killed by EF. This holomorphic bundle can be extended over the

puncture to an holomorphic bundle F', taking as a basis of holomorphic sections

(fi)1<j<n defined by
fi = |z|%e;.

with «; the real part of the j-th diagonal term of the matrix A. Then
| filn = 2™

Similarly to the correspondence 6.5.1 between (531, . .., 8,) and (8!)1<i<m,, a stability
parameter (o} );<j<p, is associated to (v, . .., a,). This stability parameter provides
a parabolic structure

")}

E-:{seF

sl = 0 (Is(2)
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Note that the holomorphic bundle F' is different from the holomorphic bundle F.
Even the type of the parabolic structure differ, E is of type ' whereas F' is of type
v.
Note that 6y, the (1,0) part of ®y, provides an Higgs field:
1 dz
0p=—-(A—-0)—.
b=5(A-5)"

This is the local behaviour of the non-Abelian Hodge theory for the model connec-
tion. To summarize, starting from a logarithmic flat connection Dy with polar part
A, a metric h and a parabolic structure 5 we obtain a parabolic Higgs bundle with
residue of the Higgs field B and parabolic structure o. The relation between those
parameters are as described by Simpson [Sim90]

B = ;(A-p)

a = Re A. (6.16)

6.5.4 Local description of weighted Sobolev spaces

Definition 6.5.4 (Weighted L? spaces). r = |z| is the radial coordinate on the disk,
for & real, L% is the space of function f on the disk such that r(;]_il is L2,

The hermitian metric h on the vector bundle E induces a metric on End(E) and
End(E) ® Q. The definition of the spaces L? extends to section of such bundles
using the induced metric. There is an orthogonal decomposition

End(E) = End(E)y & End(E), (6.17)

with End(E), the space of endomorphism commuting with A. It induces an orthog-
onal decomposition

Q' ® End(E) = (Q' ® End(E)o) @ (' @ End(E);)
For f € Q! ® End(E) this orthogonal decomposition reads
f=l+ h
Definition 6.5.5 (Sobolev spaces L?).

) J
Vg S g2 forOSjSk}

rk=i

Ly (9 ® End(E)) = {f €L;

with ¥V the covariant derivative with respect to the unitary connection DE.

Definition 6.5.6 (Space of admissible connections). The space of admissible con-
nections 1s

A={Dy+alae L'}, ; (2 ®End(E))}.

Remark 6.5.7. Note that the space of admissible connections is chosen so that the
connection D = Dy + a introduced at the beginning of this section is admissible.
Indeed, in the orthonormal trivialization (ej)1<j<n, the matriz a s strictly block
upper triangular. The non zero coefficients strictly above the diagonal have the
following form
| Z|Bi—/3j%
z

with B; > B; and a; j constant. Thus a € LE%H for small enough parameter:

0<6<pi—pB;
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6.5.5 Variation of the stability parameters and the metric

In order to pursue the path announced in Diagram (6.15), slightly modify the sta-
bility parameter « to a parameter a, a diagonal matrix with coefficients

(Oél,(l/g, .. ) = 0[1717 e ,041’1,04172, .. 7041727 e

-~ -~

1/ 1/
My M3

The associated metric 7 is defined such that the holomorphic trivialization (fi)i<j<n
of the holomorphic bundle F' is orthogonal and

|fil = 121,
This provide an hermitian bundle with orthonormal trivialization (€;);<;<, defined

by
~

a2

We follow the same process as before in the opposite direction. Dg is the %—unitary
connection with (0, 1)-part 9. And

By := 0 + 0}
the adjoint is taken with respect to the metric h. Then
Zjo = Dg —+ (50.

In the trivialization (€;)1< <y it reads

B = (AN T4 (a1-p)Z

9 2 z
= 1 dz dz
Dl = dt+-al—=-=
0 +2Q<z Z)

Setting A=ada+ilmA and E = [/ + a — a we obtain a canonical form like in
Notations 6.5.3

= 1 ~ (dz dz

h— — —_— — —
Do—d+2Re<A>(z 2)
b=y (A2 + FE -5 - 5%)

2 z Z z z

Continuing in the opposite direction, the (0, 1)-part of Dy defines an holomorphic
bundle E with holomorphic trivialization (7;)1<;<n

~ . E-—ilmg-""
T = || ie;.
Dy defines a logarithmic connection on E, in the trivialization (7;)i<;<, it reads

Do—d+ A%
4
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and A has distinct eigenvalues on each graded of the filtration of type v and so does
the monodromy of the local system of flat sections.

Let us summarize the local behaviour from Diagram (6.15) in terms of residue.
We look at a particular block of size v;. The stability parameter associated to the
graded of the filtration is specified with over brace. N.A.H stands for non-Abelian
Hodge theory.

Bj1 i
— J
Aj Idﬂ{/ * (A] — 6]’,1) Idujl'/ *
5;‘,2 N-A-H; 0 (AJ — ng) Id#él *
0 A] Id 3’ *
Ha 0
0

Bj1 s
— _ XL -
Aj71 Id#{, ~>I< (A] — 6j,1) Id#{, ~>|<
Bj,2 y a2
—— N.AH p ~
0 Aj72 Iduj/ * 0 (Aj - ﬁj,?) Idﬂ%, *
2 ) ‘
0 : 0

With gj,i = &j,i + 7 Im Aj and Ej,i = 6]',@' + &j,i — 06]1-.

6.6 Diffeomorphism between moduli spaces

6.6.1 Analytic construction of the moduli spaces

Analytic construction of moduli spaces relies on methods from Kuranishi [Kur65],
Atiyah-Hitchin-Singer [AHS78| and Atiyah-Bott [AB83]. In this section we recall
the analytic construction of the moduli spaces involved in the parabolic version of
non-Abelian Hodge theory. Some particular cases of those moduli spaces were con-
structed by Konno [Kon93| and Nakajima [Nak96|. However we need more general
construction in order to allow not necessarily central action of the residues of the
Higgs fields on the graded of the filtration. The construction we follow is the one
from Biquard-Boalch [BB04|. Note that a larger family of groups was considered by
Biquard, Garcia-Prada, Mundet i Riera [BGM15].

The local canonical model introduced in 6.5.3 is used to represent behaviour of
connections near the punctures p;. Let E a vector bundle on > endowed with an
hermitian metric h. Notation E refers to a vector bundle from differential geometry
point of view whereas F refers to holomorphic bundle. Let Dy a model connection
such that on the neighborhood of the punctures it coincides with the local model
connection of previous subsection. The connection decomposes as

with D} unitary and ® self-adjoint with respect to the metric h. We assume for
this model connection that in an orthonormal trivialization (e;)1<;<, of E near the
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puncture p;:

z z

D=+ ety (£ )

and _ _
b = 1 (Aj%_F(Aj)Tﬁ _ﬁp’@ _5j$)
2 z z z Z

with A7 and 3/ the residue and the stability parameter for the de Rham moduli space
at the puncture p;. They correspond to the local parameter A and 5 from Section
6.5, they are constant diagonal matrices. The parameters of the de Rham moduli
space are chosen so that it corresponds under Riemann-Hilbert correspondence to
a resolution of a character varieties with generic monodromies My, p . Therefore
connections with such polar parts are necessarily irreducible.

Take r a function strictly positive on the punctured Riemann surface 3° such
that it coincides with the radial coordinate near each punctures. The global weighted
Sobolev space is defined as the local one from 6.5.4 with this positive function r. It
is still denoted by L5* (Q' ® End (E)). The space of admissible connections is

A={Dy+alae L'}, ; (2 ®End(E))}.

This affine space is actually endowed with various complex structures. Decomposing
according to (1, 0)-part and (0, 1)-part a = a*° + a%!

l.a=1a
and
Ja=i(a®) —i(a")T

The curvature of an admissible connection D = Dy + a is denoted by Fp. Consider
the complex gauge group

G" = {g € Aut(E)|(Dig)g™", gPog™' € L5 5}

It acts on A by
9-D:=gDg™" =D —(Dg)g".

Next theorem gives an analytic construction of the set of isomorphism classes of
parabolic flat connection with prescribed polar part. Later on, this set will be
endowed with a manifold structure.

Theorem 6.6.1 (Biquard-Boalch [BB04| Section 8). The de Rham moduli space of
stable flat connection with prescribed polar part on the graded part of the filtration
introduced in 6.4.1 1s the following set

MY ={Dy+ae AlFp=0}/G".

The stability condition does mot appear as it is imposed by the generic choice of
eigenvalues of the residue of Dy.

Now starting from D = Dy + a € A there is a natural candidate to produce a
parabolic Higgs bundle, like in the local model. First decompose D in a unitary
part and a self-adjoint part

D = D'+d

a—aT+q) _’_a—l—off
2 0 2

= DI+
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The natural candidate for the underlying holomorphic structure of the parabolic
Higgs bundle is, in the orthonormal trivialization (e;)1<j<

dz  a%' — (oMt
&, = @y

—E —
0 =0- z 2

Re(A)

N | —

and the Higgs field
a0 + (g%t

0= 0o+ 5

This data provides a Higgs bundle if 970 = 0, equivalently if the pseudo curvature
Gp vanishes. Note that the complex structure J is compatible with the Higgs
bundles point of view. Indeed if # is the Higgs field associated to D then 0 is the
Higgs field associated to J.D. The complex gauge group acts on the Higgs bundles
structures by

=E —=E _ _
9-(07,0) == (90 g~", g0g7").
Next theorem gives an analytic construction of the set of isomorphism classes of

parabolic Higgs bundles with prescribed residue. Later on, this set will be endowed
with a manifold structure.

Theorem 6.6.2 (Biquard-Boalch [BB04| Section 7). The Dolbeault moduli space of
stable parabolic Higgs bundles with prescribed polar part on the graded part of the
filtration introduced in 6.4.3 is the following set

ML ={Dy+aeAld"0=0} /g’

The stability condition does not appear as it is imposed by the generic choice of
eigenvalues of the residue. As a group G’ is just G!, we change the upper index to
precise which action is considered, the I-linear action or the J-linear action.

The non-Abelian Hodge theory gives a correspondence between Dolbeault and
de Rham moduli spaces. The parameters are intertwined as in the local model. A
nice way to state this correspondence is with hyperkihler geometry. Introduce the
unitary gauge group

G={9€UE)|(Dog)g ' €L}

Consider the moduli space
M:{DeA(éEezo, FD:o}/g.

The equations defining M can be interpreted as vanishing of an hyperkéhler moment
map. Then the moduli space M is an hyperkéhler reduction as in [Hit-+87].

Theorem 6.6.3 (Biquard-Boalch [BB04| Theorem 5.4). The moduli space M car-
ries an hyperkdahler manifold structure.

Proof. The deformation theory for the moduli space M at a point [D] is encoded
in the following complex

L2 (wE) —2— L2, (2" ® EndE) 2225 12, (92 ® EndE) @ iu(E)) .
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D* is the formal adjoint of D with respect to the L? inner product and the metric h.
The analytic study of this complex is detailed in [BB04|. Its first cohomology group
is represented by the harmonic space H' ¢ L3 15 (V' ® EndE). The Kuranishi
slice at [D] is defined by

Sp={D +a|lm(D*a) =0, Gp4o =0, Fpya=0}. (6.18)

Taking a small enough neighborhood of D in the Kuranishi slice, one obtains a finite
dimensional manifold transverse to the G-orbits. The Kuranishi map provides an
isomorphism between a neighborhood of 0 in H' and a neighborhood of D in the
Kuranishi slice, see Konno [Kon93, Lemma 3.8, Theorem 3.9]. This provides an
hyperkéhler manifold structure on the moduli space. O

Now the non-Abelian Hodge theory can be described the following way.

Theorem 6.6.4 (Biquard-Boalch [BB04| Theorem 6.1). The manifold M endowed
with the complex structure I is the moduli space Mfff?ﬁ.

The manifold M endowed with the complex structure J is the moduli space MIB)%.

6.6.2 Construction of the diffeomorphisms

Theorem 6.6.5 (Riemann-Hilbert correspondence). The moduli space M‘fﬁ s

complex analytically isomorphic to a resolution of character varieties My p o.

Proof. As explained in 6.4.6, M L.P,o is nothing but the moduli space of filtered local
systems with prescribed graded part of the monodromy around the punctures. Fil-
tered version of the Riemann-Hilbert correspondence is established as an equivalence
of category by Simpson [Sim90]. Yamakawa [YamO08| proved that it is a diffeomor-
phism using a particular construction of the de Rham moduli space from Inaba
[[nal3]. The same argument apply with the de Rham moduli space endowed with
the manifold structure from M. Starting from a flat connection, the associated local
system is obtained by taking flat sections i.e. solving a differential equation. When
the parameters of the equation vary complex analytically, so does the solution. [

Then M%’fﬁ and M gf’i are diffeomorphic as both are M with a particular complex
structure. The first line in the path announced in Diagram 6.15 is now constructed.
The second line is obtained exactly like the first, but in the other direction. It re-
mains to describe the vertical arrow between two Dolbeault moduli spaces M3 and
Mgf’é. This is given by Biquard, Garcia-Prada, Mundet i Riera [BGM15, Theorem
7.10]. The construction of the diffeomorphism is detailed in the remaining of the
section.

Because of genericity of the eigenvalues of the residue, the stability parameter
« is irrelevant. The parameter a can be changed to a stability parameter a with
different values for each graded of the filtration. Namely one can chose a such that
the associated matrix satisfies Zqr,, (@') = Zgr,(B?) and such that the parabolic
degree remains 0. The local behaviour near each puncture is described by the right
hand side of the diagram at the end of 6.5.5.

We introduce the following notation

€ = 0 — Q.
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For the construction of the diffeomorphism in Theorem 6.6.7, it will be conveniant
to assume
max |e; — ¢;| <6
,L?]

with 0 the parameter appearing in the weighted Sobolev space Ll_g Py

Proposition 6.6.6. For such choice of parameter there is a natural bijection between
MBS and /\/lD ol

Proof. /\/lD °l classifies isomorphism classes of parabolic Higgs bundles with parabolic
structure at D; . .

0=F CF ¢ CF, =F
and with the residue of the Higgs fields preserving this filtration and acting as a
semisimple endomorphism B] on the graded spaces

FJF

Such spaces decomposes as direct sum of eigenspaces for Bij . After ordering the
eigenvalues, we obtain a uniquely determined refinement of the initial parabolic
structure: _ _ _
0=F CF C---CF), =F.

Then the residue of the Higgs field acts as a central endomorphism on the graded
Fl-j / Fl-j This gives a map f : ./\/lD ob Mg%. Stability is not an issue as the polar
part of the residue is generic. The map forgetting part of the filtration is an inverse
so that there is a natural bijection between both moduli spaces. O]

Before proving that this bijection is a diffeomorphism the manifold structure on
MD is detailed. It is constructed just like ./\/lDOl but with different parameters.

Slmllarly to M, construct a moduli space ./\/l . Instead of the initial metric h,
we use a metric E, similar to the local model from 6.5.5. Namely it is chosen so that
near each puncture it admits as an orthonormal trivialization (€;);<;<, with

g@' = rqei.

Where (€;)1<i<n is the orthnormal trivialization with respect to h near the puncture
and € = o; — ;. B
First we construct Dy, a starting point to construct an affine space of admissible
connections. Recall that
Dy = D} + @,
with D} a h-unitary connection and ®, self-adjoint with respect to h. Take D(’}H the
(0,1)-component of D} and ®,° the (1,0)-component of ®,. There exists a unique

~/ ~/ ~
D! such that DI + Dé‘" is h-unitary. Let @é’OT the adjoint of ®;” with respect to
the metric h. Then Dy is defined by

~ ! T
Do := D} + D" + " + a3,

Near the puncture, in the trivialization (€;)1<;<n, the connection 50 behaves exactly
like the local model with the same name introduced in 6.5.5. Define the affine space
of admissible connections with respect to Dg and the metric h.

Ay ={Do+alaer" (0 @ End(E)}
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The weighted Sobolev space Lﬁg (2! ® End(E)) is also defined using the metric

h. Moreover notice that we do not chose the same parameter 0 for A and for A;.
It will be convenient to chose ¢ such that

0<g<5—max\ei—ej]. (6.19)
Z?]

With this set up, we are ready to prove that the bijection from previous proposition

is a diffeomorphism.

Theorem 6.6.7. The natural bijection between ng;i and Mgf’al 1s a diffeomor-
phism.

Proof. Mg is identified with the manifold M with the complex structure .J.

Take an element in Mp% identified with an element [D] € M. [D] is the class
of D = Dy + a an admissible connection with vanishing curvature and pseudo-
curvature. By construction of the manifold structure, a neighborhood of [D] in
M is diffeomorphic with a neighborhood of D in the Kuranishi slice Sp defined in
(6.18). We shall prove that the bijection from Proposition 6.6.6 induces a smooth
map from a neighborhood of D in Sp to Aj;.

First we describe the image of the connection D, it is obtained exactly the
same way Dy is obtained from Dy. It decomposes as a connection h-unitary plus a
hermitian part

—af T
D:D(})L—i‘%—i-q)o—i-a—;a

It can be decomposed further in components of type (1,0) and (0,1). Then the
(0, 1)-component of the h-unitary part is

%l — al,OT

5F _ Dg” + 5

and the (1,0)-component of the self-adjoint part is

a0 4 ao,ﬂ

0 =o'
T

The parabolic Higgs bundle associated to D is (EF, 0). Now we switch to the metric
h. Near each puncture, in the h-orthonormal trivialization (€;)1<i<n

~ ]
5 _ D+ (a ; a> dz N ﬁao’l —a? F-1

z 2

and

41,0 0,1t _
6= + H%H—l‘

with H a diagonal matrix with coefficients r“. Using the metric h we construct D;~L

such that D;~1 —|—5F is E—unitary. And 6" the adjoint of # with respect to h. We want
to prove that

Dt 04060
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belongs to the space of admissible connections A;. Let
~ v | AF T~
Components of a are obtained from components of a by multiplication by r<~<.

Thus for § small enough (6.19), a belongs to Ll_’;g. Therefore the bijection from

MEL to MEL comes from a map

{DQ+CL€A| FD0+a:GDo+a:O} — {EO—I—EGAﬂ GEO—FE:O}
DO—I—(I — 50+5

This restricts to a diffeomorphism from a neighborhood of D in the Kuranishi slice
Sp to a manifold transverse to the G’-orbits in a neighborhood of D. Therefore the
map Mgﬁ — Mgf’al is a diffeomorphism. n

To finish, let us detail the last step at the bottom left corner of Diagram (6.15).
Applying successively non-Abelian Hodge theory and Riemann-Hilbert correspon-

dence, the moduli space ./\/lg%l is diffeomorphic to a moduli space of filtered local

system .//\-/le’p75-. The parameters are such that Zqgp, (67) = L7 for 1 < j < k. The

map p° : Mppos — Mg from 3.5.11 is an isomorphism. Mg is the character
variety with monodromy at the puncture p; in S; the conjugacy class of 7.
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