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Résumé

Nous étudions la cohomologie de certaines variétés de caractères et de leurs analogues
additifs, les variétés de carquois en forme de comète. Ces variétés de caractères clas-
sifient les représentations du groupe fondamental d’une surface de Riemann épointée
avec monodromie prescrite autour des points. Le polynôme de Poincaré pour la co-
homologie d’intersection à support compact est calculé. Des actions de groupes de
Weyl sur les escpaces de cohomologie sont également étudiées. Des traces de ces ac-
tions apparaissent comme certain coefficients de structure d’une algèbre engendrée
par les polynômes de Kostka modifiés.

Mots-clefs : Variétés de caractères, variétés de carquois, groupe de Weyl, co-
homologie d’intersection.

Abstract

We study the cohomology of some character varieties and their additive analogous,
comet-shaped quiver varieties. Those character varieties classify representations
of the fundamental group of a punctured Riemann surface with prescribed mon-
odromies around the punctures. The Poincaré polynomial for compactly supported
intersection cohomology is computed. Weyl group actions on the cohomology spaces
are also studied. Some traces of those actions are related to particular structure co-
efficients of an algebra spanned by modified Kostka polynomials.

Keywords: Character varieties, quiver varieties, Weyl group, intersection coho-
mology.
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Résumé en français

Les variétés de caractères étudiées dans cette thèse classifient les systèmes locaux de
rang n sur une surface de Riemann de genre g, épointée en k points (pj)1≤j≤k. La
monodromie autour du point pj étant dans la clôture Cj d’une classe de conjugaison
Cj fixée dans GLn(C). La variété de caractère est alors une variété affine définie par
la théorie géométrique des invariants :

MC :=
{

(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GL2g
n ×C1 × · · · × Ck

∣∣
A1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g X1 . . . Xk = Id
}
//GLn

avec GLn agissant par conjugaison termes-à-termes. Une condition de généricité est
imposée sur le k-uplet de classes de conjugaison. Cette condition permet d’obtenir
un quotient avec des bonnes propriétés (voir 3.5.2). Nous étudions la cohomolo-
gie de ces variétés. Comme elles sont singulières, il est intéressant d’étudier leurs
cohomologie d’intersection. Nous calculons le polynôme de Poincaré pour la coho-
mologie d’intersection à support compact de ces variétés de caractères. Ce polynôme
de Poincaré encode dans ses coefficients la dimension des espaces de cohomologie
d’intersection à support compact IHr

c

(
MC,Ql

)
:

Pc (MC, v) :=
∑
r

dim IHr
c

(
MC,Ql

)
vr

Lorsque les classes de conjugaison sont semisimples (diagonalisables), elles sont alors
fermées et la variétéMC est lisse. La cohomologie d’intersection coincide alors avec
la cohomologie usuelle. Cette cohomologie a été largement étudiée dans différents
contextes.

0.1 Cohomologie des variétés de caractères : état
de l’art

0.1.1 Un seul point marqué avec monodromie centrale

Un premier cas intéressant est lorsqu’il n’y a qu’un seul point marqué et que la mon-
odromie associée est centrale. La condition de généricité impose à la monodromie la
forme e−

2iπd
n Id avec d, n premiers entre eux. La variété de caractère est alors dénotée

Md
B. L’indice B fait référence à l’espace de modules de Betti. La théorie de Hodge

non-Abélienne relie cet espace de modules à un espace de modules de Dolbeault
Md

Dol. Ceci peut être vu comme une généralisation du résultat de Narasimhan-
Seshadri [NS65] reliant représentations unitaires du groupe fondamental et fibrés
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holomorphes. Md
Dol est l’espace de modules des fibrés de Higgs stables de rang

n et degré d. La théorie de Hodge non-Abélienne est prouvé en rang n = 2 par
Hitchin [Hit87] et Donaldson [Don87]. Elle a été généralisée à n’importe quel rang
par Corlette [Cor88] et Simpson [Sim88]. La correspondence est obtenue comme un
homéomorphisme entre espaces de modules par Simpson [Sim94a; Sim94b].

De nombreux calculs de cohomologies sont fait du côté Dolbeault. Tout d’abord
Hitchin [Hit87] a calculé le polynôme de Poincaré pour n = 2. Gothen [Got94] a
généralisé le calcul au rang n = 3. Hausel-Thaddeus [HT03b; HT04] ont calculé
l’anneau de cohomologie en rang n = 2. García-Prada, Heinloth, Schmitt ont donné
un algorithme récursif pour calculer les motifs de l’espace de modules de Dolbeault.
Ils ont calculé une expression explicite en rang n = 4. García-Prada, Heinloth
[GH13] ont calculé une expression explicite pour le genre-y pour n’importe quel
rang.

Il apparaît dans ces derniers exemples qu’il existe des informations cohomologiques
plus précises que le polynôme de Poincaré. Les variétés de caractères sont affines,
par les travaux de Deligne [Del71], leurs cohomologie est dotée d’une structure de
Hodge mixte. La théorie de Hodge non-Abélienne ne préserve pas cette structure
de Hodge mixte. De Cataldo-Hausel-Migliorini [CHM12] ont conjecturé que par la
théorie de Hodge non-Abélienne, la filtration par le poids correspond à une filtration
perverse induite par la fibration de Hitchin. C’est la conjecture P = W . Ils l’ont
prouvé en rang n = 2. Récemment, de Cataldo-Maulik-Shen [CMS19] ont prouvé
cette conjecture en genre g = 2 pour n’importe quel rang.

Un moyen efficace de calculer des invariants cohomologiques et de compter le
nombre de points d’une variété algébrique sur un corps fini. Du côté Betti, Hausel
Rodriguez-Villegas [HR08] ont donné une formule conjecturale pour le polynôme de
Hodge mixte des variétés de caractères avec un point marqué et une monodromie
centrale générique. Ils ont prouvé la spécialisation au E-polynôme de cette conjec-
ture en comptant les points de la variété de caractère sur un corps fini. Avec une
approche similaire Mereb [Mer15] a calculé le E-polynôme pour les SLn variétés de
caractères.

Schiffmann [Sch16] a calculé le polynôme de Poincaré de l’espace de modules de
Dolbeault en comptant les fibrés de Higgs sur un corps fini. Dans les articles suivants
[MS14; MS20] Mozgovoy-Schiffmann ont étendu ce décompte à des fibrés de Higgs
tordus. Chaudouard-Laumon [CL16] ont compté les fibrés de Higgs en utilisant des
formes automorphes.

Mellit [Mel17b] a prouvé que la formule obtenue par Schiffmann [Sch16] est
équivalente à la spécialisation au polynôme de Poincaré de la conjecture de Hausel
et Rodriguez-Villegas [HR08]. Fedorov-Soibelman-Soibelman [FSS17] ont calculé les
motifs du champ des fibrés de Higgs semistables.

0.1.2 Surface de Riemann épointées en un nombre quelconque
de points et monodromies arbitraires

Logares-Muñoz-Newstead [LMN12] ont calculé le E-polynôme des variétés de carac-
tères pour SL2 et genre g = 1, 2. Ils considèrent un point marqué et n’importe quelle
classe de conjugaison, sans même l’hypothèse de généricité. Ils obtiennent également
certains nombres de Hodge lorsque g = 1. Logares-Muñoz [LM13] généralisent ces
résultats pour g = 1 et deux points marqués. Ils calculent le E-polynôme et certains
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nombres de Hodge. Martínez-Muñoz [MM14a; MM14b] calculent le E-polynôme
pour des SL2 variétés de caractères pour n’importe quel genre et n’importe quelle
classe de conjugaison. Martínez [Mar17] traite ensuite le cas des PGL2 variétés
de caractères. Simpson [Sim90] généralise la théorie de Hodge non-Abélienne aux
variétés de caractères pour les surfaces épointées et des monodromies arbitraires.
La généralisation est encore plus large car elle concerne les systèmes locaux filtrés.
Ils correspondent à des fibrés de Higgs paraboliques du côté Dolbeault. L’espace
des modules des fibrés de Higgs paraboliques a été construit algébriquement par
Yokogawa [Yok93]. Certains de ces espaces de modules ont également été construit
analytiquement par Konno [Kon93] et par Nakajima [Nak96]. Ces constructions an-
alytiques fournissent la théorie de Hodge non-Abélienne comme un difféomorphisme.
Biquard-Boalch [BB04] ont construit une version plus générale : la théorie de Hodge
non-Abélienne sauvage. Biquard, García-Prada et Mundet i Riera [BGM15] ont
généralisé la version filtrée de la théorie de Hodge non-Abélienne à une large famille
de groupes.

Hausel, Letellier et Rodriguez-Villegas [HLR11] ont proposé une conjecture pour
le polynôme de Hodge mixte des variétés de caractères pour des classes de conju-
gaison semisimples. Ils prouvent la spécialisation au E-polynôme en comptant le
nombre de points de la variété sur un corps fini. Chuang-Diaconescu-Pan [CDP14] et
Chuang-Diaconescu-Donagi-Pantev [Chu+15] proposent une interprétation de cette
conjecture en théorie des cordes. Cette approche est également appliquée à des var-
iétés de caractères sauvages par Diaconescu [Dia17] et Diaconescu-Donagi-Pantev
[DDP18]. Une autre approche repose sur des relations récursives pour différents gen-
res. Elle est utilisée par Mozgovoy [Moz11], Carlsson et Rodriguez-Villegas [CR18].
González-Prieto [Gon18] a développé une théorie quantique des champs topologique
associée aux variétés de caractères.

Mellit [Mel17a] a prouvé la spécialisation de la conjecture de [HLR11] relative
au polynôme de Poincaré en comptant les fibrés de Higgs paraboliques sur des corps
finis. Ce résultat est de la plus haute importance pour cette thèse. C’est le point de
départ pour le calcul de la cohomologie d’intersection pour les variétés de caractères
avec des monodromies dans des classes de conjugaison quelconques.

0.2 Cohomologie d’intersection des variétés de car-
actères

0.2.1 Polynôme de Poincaré

Letellier [Let13] donne une formule conjecturale pour le polynôme de Hodge mixte
des variétés de caractèresMC, pour des classes de conjugaison génériques de n’importe
quel type. Cette formule généralise celle de [HLR11] valable pour des classes de con-
jugaison semisimples. Elle fait également intervenir le noyau HHLV

n . Ce noyau vit
dans

Sym [X1]⊗ · · · ⊗ Sym [Xk]

avec Sym [Xj] l’espace des fonctions symétriques en Xj un jeu de variable infini. La
spécialisation de la conjecture de Letellier au polynôme de Poincaré est la formule
suivante :

Pc (MC; v) = vdµ
〈
sµ′ ,HHLV

n (−1, v)
〉
. (1)
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µ encode le type de Jordan des classes de conjugaison, voir (3.36). dµ est la dimen-
sion de la variétéMC, la fonction symétrique sµ′ est une variante des fonctions de
Schur, sa définition est rappelé dans (3.47). Un aspect intéressant de cette conjec-
ture est que peu importe le k-uplet de classes de conjugaison fixé, la cohomologie
est encodée dans le même objet HHLV

n .
Mellit [Mel17a] a calculé le polynôme de Poincaré lorsque les classes de con-

jugaison sont semisimples. Soit S = (S1, . . . ,Sk) un k-uplet générique de classes
conjugaison semisimples. Le type de Jordan de ce k-uplet est détérminé par k par-
titions ν1, . . . , νk. Les parties de la partition νj sont les multiplicités des valeurs
propres distinctes de Sj. Le résultat de Mellit est un cas particulier de la conjecture
conjecture:

Pc (MS ; v) = vdν
〈
hν ,HHLV

n (−1, v)
〉
. (2)

avec hν la fonction symétrique

hν := hν1 [X1] . . . hνk [Xk].

Les fonctions symétriques complètes (hλ[X])λ∈Pn forment une base de l’espace des
fonctions symétriques de degré n. L’ensemble des partitions d’un entier n est noté
Pn. Les matrices de transitions entre les bases usuelles de l’espace des fonctions
symétriques sont bien connues, elles sont par exemple dans le livre de Macdon-
ald [Mac15]. Il est donc aisé d’exprimer sµ′ en fonction de hν . Pour calculer le
polynôme de Poincaré des variétés de caractères avec n’importe quel type de classes
de conjugaison, il suffit de comprendre les relations combinatoires entre ces fonctions
symétriques en terme de relations géométrique entreMC etMS . Letellier a obtenu
une relation de ce type, mais entreMC et une résolution des singularité deMC.

0.2.2 Théorie de Springer et résolutions des variétés de car-
actères

Logares-Martens [LM08] ont construit des résolutions de Grothendieck-Springer
pour l’espace des modules des fibrés de Higgs paraboliques. Letellier [Let13] a con-
struit des résolutions des singularités des variétés de caractères

M̃L,P ,σ →MC.

La construction de M̃L,P ,σ est rappelée en 3.5.11, elle repose sur la théorie de
Springer. Cette théorie due à Springer [Spr76] entremêle géométrie des groupes ré-
ductifs et théorie des représentations de leurs groupes de Weyl. Suite aux travaux
de Lusztig [Lus81] sur le groupe linéaire, Borho-MacPherson [BM83] construit la
correspondence de Springer en terme de cohomologie d’intersection. Lusztig définit
la notion plus générale d’induction parabolique [Lus84; Lus85; Lus86]. Letellier ap-
plique cette théorie pour obtenir des relations entre la cohomologie de résolutions
M̃L,P ,σ et la cohomologie d’intersection de variétés de caractères Cρ,σ). Ces relations
sont utilisées pour prouver que plusieurs formulations de la conjecture sont équiv-
alentes [Let11, Proposition 5.7]. En terme de polynôme de Poincaré cette relation
devient

v−dµPc

(
M̃L,P ,σ, v

)
=
∑
ρ�µ

(dimAµ′,ρ) v
−dρPc

(
MCρ,σ , v

)
. (3)
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Cette relation géométrique est commentée en détails en 6.2, c’est le parfait avatar
d’une relation combinatoire entre différentes bases de l’espace des fonctions symétriques
:

hµ′ =
∑
ρ�µ

(dimAµ′,ρ) sρ. (4)

Il s’avère que le polynôme de Poincaré de la résolution M̃L,P ,σ est égal au polynôme
de Poincaré d’une variété de caractères avec des monodromies semisimples MS .
Avec le résultat de Mellit (2), ceci implique

v−dµPc

(
M̃L,P ,σ, v

)
= v−dµPc (MS , v) =

〈
hµ′ ,HHLV

n (−1, v)
〉

Les relations (1.3) (1.4) peuvent être inversées de telle manière que le polynôme
de Poincaré d’une variété de caractère avec des monodromies de n’importe quel
type peut être exprimé en fonction de polynômes de Poincaré de variétés de carac-
tères avec monodromies semisimples. C’est exactement ce qui est nécessaire pour
obtenir la formule générale (1) à partir du résultat de Mellit pour des monodromies
semisimples (2).

En résumé, calculer le polynôme de Poincaré pour la cohomologie d’intersetion
des variétés de caractères fait intervenir trois éléments :

• Le résultat de Mellit pour des monodromies semisimples (2).

• La relation de Letellier (3) entre la cohomologie de résolutions M̃L,P ,σ et la
cohomologie d’intersection de variétés de caractèresMC.

• Une relation entre la cohomologie de M̃L,P ,σ et la cohomologie d’une variété
de caractère avec monodromies semisimplesMS .

Le dernier point est étudié au chapitre 6 où un difféomorphisme entre la réso-
lution M̃L,P ,σ et une variété de caractères avec monodromies semisimplesMS est
construit. L’existence d’un tel difféomorphisme implique l’égalité des polynômes de
Poincaré. Tout d’abord le cas particulier de la sphère épointée en quatre points est
étudié. Dans ce cas les variétés de caractères sont des surfaces cubiques données par
la relation de Fricke [FK97]. Les surfaces cubiques étant bien connues, il est aisé de
construire le difféomorphisme dans ce cas particulier.

Dans le cas général la construction du difféomorphisme repose sur des techniques
analytiques. Elles sont détaillées en 6.6.1 et reposent sur la version filtrée de la
théorie de Hodge non-Abélienne et de la correspondance de Riemann-Hilbert. Ces
correspondances sont dus à Simpson [Sim90]. Les espaces de modules donnant
la correspondance comme un difféomorphisme sont construits par Konno [Kon93],
Nakajima [Nak96] et Biquard-Boalch [BB04] dans le cadre plus général de la théorie
de Hodge non-Abélienne sauvage. Une version filtrée de la théorie de Hodge non-
Abélienne est donnée comme un difféomorphisme par Yamakawa [Yam08]. Une
version filtrée de la théorie de Hodge non-Abélienne est également développée pour
une large famille de groupes par Biquard, García-Prada et Munder i Riera [BGM15].
Dans le chapitre 6 la version filtrée de la théorie de Hodge non-Abélienne est utilisée
pour construire un difféomorphisme entre M̃L,P ,σ etMS . Ceci permet de prouver
en 6.2 la spécialisation de la conjecture de Letellier pour le polynôme de Poincaré :
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Theorem 0.2.1. Soit Cµ,σ un k-uplet générique de classes de conjugaison dans
GLn (les notations sont introduites en (3.36)). Le polynôme de Poincaré pour la
cohomologie d’intersection à support compact de la variété de caractèresMCµ,σ est

Pc

(
MCµ,σ , v

)
= vdµ

〈
sµ′ ,HHLV

n (−1, v)
〉
.

En plus de fournir une relation combinatoire entre des polynômes de Poincaré, un
aspect fondamental de la théorie de Springer et de l’induction parabolique de Lusztig
est d’introduire des actions de groupes de Weyl sur des espaces de cohomologie.

0.2.3 Actions de groupes de Weyl sur la cohomologie des var-
iétés de caractères

La construction des résolutions des variétés de caractères fait intervenir des résolu-
tions de Springer et l’induction parabolique de Lusztig. Ces résolutions apparais-
sent donc avec des actions de groupes de Weyl sur leurs cohomologies (voir Letellier
[Let13]). Ce qui est particulièrment intéressant c’est que les groupes de Weyl agis-
sent sur la cohomologie sans qu’il n’y est d’action évidente sur la variété elle-même.
Une autre action de groupes de Weyl sur la cohomologie de variétés de caractères est
construite par Mellit [Mel19], il s’agit d’une action par monodromie. Cette action est
rappelée au chapitre 5. Suivant une suggestion de Mellit, elle est utilisée pour cal-
culer la cohomologie d’intersection des variétés de caractères quand une seule parmi
les k classes de conjugaison n’est pas semisimple. Ce résultat est moins général que
celui du chapitre 6 où n’importe quel type de k-uplet de classes de conjugaison est
étudié. Cependant il a le mérite d’être établi uniquement du côté Betti et d’éviter
un nouvel appel aux techniques analytiques de la théorie de Hodge non-Abélienne.

Comme expliqué dans les sections précédentes, de manière à calculer la coho-
mologie d’intersection des variétés de caractères pour des monodromies de type
quelconque, un difféomorphisme est construit entre une résolution M̃L,P ,σ est une
variétés de caractères avec monodromies semisimplesMS . Ce difféomorphisme per-
met de transporter l’action à la Springer sur la cohomologie de M̃L,P ,σ en une action
sur la cohomologie de MS . Le groupe de Weyl relatif agissant sur la cohomologie
peut s’interpréter comme le groupe des permutations des valeurs propres ayant la
même multiplicité dans une même classe de conjugaison Sj. On peut alors obtenir
le polynôme de Poincaré tordu. C’est à dire la trace de n’importe quel élément du
groupe de Weyl relatif sur la cohomologie. Le théorème suivant est prouvé en 6.2.2.

Theorem 0.2.2. Soit η indexant une classe de conjugaison dans le groupe de Weyl
relatif, le polynôme de Poincaré η-tordu de la variété de caractèresMS est

P ηc (MS , v) :=
∑
r

tr
(
η, Hr

c (MS ,Ql)
)
vr = (−1)r(η)vdµ

〈
h̃η,HHLV

n (−1, v)
〉
.

h̃η et r(η) sont définies en 3.5.18.

Une approche plus satisfaisante serait de construire directement une action du
groupe de Weyl par monodromie. Comme celle construite par Mellit pour la k-ième
monodromie.
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0.3 Versions additives des variétés de caractères

0.3.1 Variétés de carquois en forme de comète

Il existe une version additive des variétés de caractères. Soit O = (O1, . . . ,Ok) un
k-uplet d’orbite adjointes dans gln l’algèbre de Lie de GLn. L’analogue additif des
variétés de caractères est définit comme le quotient suivant

QO :=
{

(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ gl2gn ×O1 × · · · × Ok
∣∣

g∑
i=1

[Ai, Bi] +
k∑
j=1

Xj = 0

}
//GLn

avec [Ai, Bi] := AiBi−BiAi le crochet de Lie. Tout comme dans le cas multiplicatif
une condition de généricité est imposée aux valeurs propres (définition 3.5.8). De
telles variétés ont été étudiées par Crawley-Boevey [Cra03b; Cra06] en genre g = 0.
Elles ont été étudiées pour des orbites semisimples par Letellier, Hausel et Rodriguez-
Villegas [HLR11], puis pour des orbites quelconques par Letellier [Let11].

De nombreux aspects sont plus aisés dans le cas additif. Par exemple leur
cohomologie est pure. Par conséquent, en comptant les points Letellier, Hausel
et Rodriguez-Villegas [HLR11] puis Letellier [Let11] ont calculé le polynôme de
Poincaré. A la différence des variétés de caractère où seul le E-polynôme est obtenu
par cette méthode de comptage de points.

Un aspect fondamental de cet analogue additif est l’interprétation en termes de
variétés de carquois de Nakajima introduites dans [Nak94]. Suite à cette interpréta-
tion les variétés QO sont appelées variétés de carquois en forme de comète [HLR11].

Les actions de groupes de Weyl sur la cohomologie des variétés de carquois de
Nakajima ont été étudiées par Nakajima [Nak94; Nak00], Lusztig [Lus00] et Maffei
[Maf02]. Elles ont été utilisées pour prouver la conjecture de Kac par Letellier,
Hausel, Rodriguez-Villegas [HLR13]. Une des constructions d’actions de groupes
de Weyl repose sur la structure hyperkähler des variétés de carquois de Nakajima.
Ces variétés sont des quotients hyperkähler au sens de Hitchin-Karlhede-Lindström-
Roček [Hit+87]. Ces quotients sont obtenues comme des quotients par un groupe
compact de la fibre d’une application moment hyperkähler. Une telle application
permet de construire une famille contenant à la fois des résolutions Q̃L,P ,σ et des
variétés QO. L’application moment hyperkähler est une fibration localement triviale
au dessus d’un lieu régulier. C’est cette propriété qui manque pour le moment pour
les variétés de caractères et qui permettrait de construire une action du groupe de
Weyl par monodromie dans le cas général. Cette propriété de l’application moment
hyperkähler pour les variétés de carquois de Nakajima était connue est utilisée par
des experts comme Nakajima et Maffei. Le chapitre 2 est dévoué à une preuve de
ce résultat car nous n’avons pas réussi à en trouver une dans la littérature. Dans
le chapitre 4, il est appliqué aux carquois en forme de comète de manière à avoir
une description unifiée des actions à la Springer et des actions par monodromie. La
combinatoire de ces actions apparaît particulièrement riche.
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0.3.2 Combinatoire des actions de groupes de Weyl sur la co-
homologie des variétés de carquois en forme de comète

Nous étudions des aspects combinatoires de la cohomologie des variétés de cractères
et de leurs analogues additifs. Les polynômes de Macdonald modifiés apparaissant
dans le noyau de Hausel-Letellier-Villegas HHLV

n on été introduit par Garsia-Haiman
[GH96] comme une déformation des polynômes de Macadonald [Mac15]. La matrice
de transition entre les polynômes de Macdonald modifiés et les fonctions de Schur
est formée par les polynômes de Kostka modifiés

(
K̃λ,µ(q, t)

)
λ,µ∈Pn

. Le fait que

ce sont des polynômes en q, t est loin d’être trivial. Ce résultat est connu sous
le nom de conjecture de Macdonald, c’est une conséquence de la conjecture n! de
Garsia-Haiman [GH93] prouvée par Haiman [Hai01].

Dans des notes non publiées, Rodriguez-Villegas étudie une algèbre engendrée
par les polynômes de Kostka modifiés. Les coefficients de structure cλµ,ν (q, t) de cette
algèbre sont définis par

K̃µ,ρK̃ν,ρ =
∑
ν

cλµ,νK̃λ,ρ pour tout ρ ∈ Pn.

Rodriguez-Villegas a conjecturé que ces coefficients sont en fait des polynômes
en q, t à coefficients entiers. De plus il a remarqué qu’ils sont reliés au noyau de
Hausel-Letellier-Villegas. En particulier les coefficients c1n

µ,ν apparaissent comme une
généralisation de la (q, t) suite de Catalan introduite par Garsia-Haiman [GH96].
Rodriguez-Villegas établit une expression pour les coefficients c1n

µ,ν similaire à la
conjecture concernant le polynôme de Hodge mixte des variétés de caractères (en
genre g = 0)

c1n

µ,ν (q, t) = (−1)n−1
〈
sµ[X1]sν [X2]pn[X3]h(n−1,1)[X4],HHLV

n

(
q

1
2 , t

1
2

)〉
.

Dans le chapitre 4 nous prouvons qu’une spécialisation de cette formule s’interprète
en terme de traces d’actions de groupe de Weyl sur la cohomologie de certaines
variétés de carquois en forme de comètes.

Theorem 0.3.1. Considérons un quadruplet générique d’orbite adjointes du type
suivant :

• O1 a une seule valeur propre et pour type de Jordan µ′ ∈ Pn.

• O2 a une seule valeur propre et pour type de Jordan ν ′ ∈ Pn.

• O3 est semisimple régulière (elle a n valeurs propres distinctes).

• O4 est semisimple avec une valeur propre de multiplicité n − 1 et une valeur
propre de multiplicité 1.

Le groupe de Weyl associé à O3 est alors le groupe symétrique Sn et il agit sur la
cohomologie de QO. Soit w un n-cycle dans ce groupe de Weyl, alors

c1n

µ,ν (0, t) = t
− dimQO

2

∑
r

tr
(
w, IH2r

c

(
QO,Ql

))
tr.

Le coefficient c1n

µ,ν (0, t) apparaît donc comme un polynôme de Poincaré tordu par un
n-cycle.
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Un résultat similaire (théorème 6.2.7) existe pour les variétés de caractères et les
coefficients c1n

µ,ν (1, t). Conjecturalement c1n

µ,ν (q, t) s’interprète comme un polynôme
de Hodge mixte tordu d’une résolution de variété de caractères 4.4.3.

Il serait intéressant de trouver également une interprétation géométrique pour
les autres coefficients cλµ,ν .

0.4 Plan de la thèse
Le deuxième chapitre peut être lu indépendamment des autres. Nous y étudions la
trivialisation locale de l’application moment hyperkähler pour les variétés de carquois
au dessus d’un lieu régulier. Ce résultat était connu et utilisé par des experts comme
Nakajima [Nak94] et Maffei [Maf02]. Une preuve est détaillée ici car nous n’avons pu
en localiser une dans la littérature. Ce résultat est appliqué aux variétés de carquois
en forme de de comète dans le chapitre 4.

Le troisième chapitre contient des rappels sur la géométrie et la combinatoire des
variétés de caractères et des variétés de carquois en forme de comète. La plupart
des notations relatives aux classes de conjugaison, aux résolutions et aux groupes
de Weyl sont également introduites dans ce chapitre.

Dans le chapitre 4 nous étudions une famille de variétés de carquois en forme de
comète et leurs résolutions. Cette étude repose sur la trivialité locale de l’application
moment hyperkähler rappelée au chapitre 2. Il est alors habituel dans la théorie des
variétés de carquois de construire une action de groupe de Weyl, par monodromie,
sur la cohomologie. Nous vérifions que les représentations obtenues de cette manière
sont isomorphes à celles obtenues avec la construction à la Springer. Certaines de ces
actions sont ensuite interprétées en terme de l’algèbre engendrée par les polynômes
de Kostka modifiés et le théorème 0.3.1 est prouvé.

Le chapitre 5 est consacré à l’étude de la famille de variété de caractères con-
struite par Mellit [Mel19]. Suivant sa suggestion, l’action du groupe de Weyl par
monodromie est utilisée pour calculer le polynôme de Poincaré pour la cohomologie
d’intersection des variétés de caractères avec k− 1 monodromies semisimples et une
dernière monodromie de type de Jordan quelconque. C’est un cas particulier du
théorème 0.2.1. A l’exception de l’appel au résultat de Mellit sur le polynôme de
Poincaré des variétés de caractères pour des classes de conjugaison semisimples, ce
chapitre reste du côté Betti et utilise uniquement des outils algébriques.

Dans le dernier chapitre, le polynôme de Poincaré des variétés de caractères pour
n’importe quel k-uplet générique de classes de conjugaison est calculé, prouvant ainsi
le théorème 0.2.1. Contrairement au chapitre précédent, le calcul repose désormais
sur des techniques analytiques comme la théorie de Hodge non-Abélienne. Comme
corollaire de la preuve, nous obtenons également une action de groupe de Weyl sur
la cohomologie des variétés de caractères et une expression pour les polynômes de
Poincaré η-tordus : théorème 0.2.2.
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Chapter 1

Introduction

Character varieties studied in this thesis classify rank n local systems over a genus g
Riemann surface with k-punctures (pj)1≤j≤k. The monodromy around the puncture
pj is imposed to be in the closure Cj of a conjugacy class Cj of GLn(C). The character
variety is an affine variety defined as a geometric invaritant theory quotient:

MC :=
{

(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GL2g
n ×C1 × · · · × Ck

∣∣
A1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g X1 . . . Xk = Id
}
//GLn

with GLn acting by overall conjugation. A genericity condition is imposed on the
k-uple of conjugacy classes so that the quotient has good properties (see 3.5.2). We
study the cohomology of those varieties. As they are not smooth, it is convenient
to study their intersection cohomology. We compute the Poincaré polynomial for
compactly supported intersection cohomology of those character varieties. This
Poincaré polynomial encodes the dimension of the compactly supported intersection
cohomology spaces IHr

c

(
MC,Ql

)
as coefficients of a polynomial:

Pc (MC, v) :=
∑
r

dim IHr
c

(
MC,Ql

)
vr

When the conjugacy classes are semisimple, they are closed, and the variety MC
is smooth. Then the intersection cohomology coincides with the usual cohomology.
Cohomology of character varieties has been extensively studied in various context.

1.1 Cohomology of character varieties: state of the
art

1.1.1 One puncture with a central monodromy

A first interesting case is when there is only one puncture and the associated mon-
odromy is central. The genericity condition implies that the monodromy is e−

2iπd
n Id

with d, n coprime. Then the character variety is denoted by Md
B. The index B

stands for Betti moduli space. Non-Abelian Hodge theory relates this Betti moduli
space to a Dolbeault moduli space Md

Dol. This can be seen as a generalization of
Narasimhan-Seshadri [NS65] result relating unitary representations and holomor-
phic vector bundles. Md

Dol is the moduli space of stable Higgs bundles of rank n
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and degree d. Non-Abelian Hodge correspondence was proved in rank n = 2 by
Hitchin [Hit87] and Donaldson [Don87]. It was generalized to higher ranks and
higher dimensions by Corlette [Cor88] and Simpson [Sim88] see also [Sim92]. The
correspondence is obtained as a homeomorphism between moduli spaces by Simpson
[Sim94a; Sim94b].

Many computations of the cohomology are performed from the Dolbeault side.
First Hitchin [Hit87] computed the Poincaré polynomial in rank n = 2. Gothen
[Got94] extended the computation to rank n = 3. Hausel-Thaddeus [HT03b; HT04]
computed the cohomology ring in rank n = 2. García-Prada, Heinloth, Schmitt
[GHS11] gave a recursive algorithm to compute the motive of the Dolbeault moduli
space. They computed an explicit expression in rank n = 4. García-Prada, Heinloth
[GH13] obtained an explicit formula for y-genus in any rank.

As in the last examples, there exist more precise cohomological information than
the Poincaré polynomial. The character varieties are affine, by Deligne [Del71], their
cohomology carries a mixed-Hodge structure. The non-Abelian Hodge theory does
not preserve this mixed-Hodge structure. Indeed the cohomology of the Dolbeault
moduli space is pure contrarily to the cohomology of the affine character variety.
De Cataldo-Hausel-Migliorini [CHM12] conjectured that under non-Abelian Hodge
correspondence, the weight filtration coincides with a perverse filtration induced by
Hitchin fibration. This is known as the P = W conjecture, they proved it in rank
n = 2. Recently, de Cataldo-Maulik-Shen [CMS19] proved the conjecture for genus
g = 2 and any rank.

Another interesting aspect of those moduli spaces is the mirror symmetry. Hausel-
Thaddeus [HT01; HT03a] conjectured that the moduli space of PGLn-Higgs bundles
and the moduli space of SLn-Higgs bundles are related by mirror symmetry, see also
[Hau04]. This conjecture was proved by Groechenig-Wyss-Ziegler [GWZ17] and a
motivic version by Loeser-Wyss [LW21]. Mirror symmetry was also studied in the
parabolic case by Biswas-Dey [BD12]. Gothen-Oliveira [GO17] proved a parabolic
version of the conjecture, for particular ranks.

An efficient approach to compute cohomological invariant is to count points of al-
gebraic varieties over finite fields. On the Betti side, Hausel and Rodriguez-Villegas
[HR08] gave a conjectural formula for the mixed-Hodge polynomial of character
varieties with one puncture and a central generic monodromy. They proved the
E-polynomial specialization of the conjecture by counting points over finite fields.
With a similar approach, Mereb [Mer15] computed the E-polynomial of SLn char-
acter varieties. Hausel [Hau04] also proposed a conjectural formula for the Hodge
polynomial of the associated Dolbeault moduli space. Mozgovoy [Moz11] extended
this conjecture to the motives of the Dolbeault moduli space.

Schiffmann [Sch16] computed the Poincaré polynomial of the Dolbeault moduli
space by counting Higgs bundles over finite fields. In following articles [MS14; MS20]
Mozgovoy-Schiffmann extended this counting to twisted Higgs bundles. Chaudouard-
Laumon [CL16] counted Higgs bundles using automorphic forms.

Mellit [Mel17b] proved that the formula obtained by Schiffmann [Sch16] is equiv-
alent to the Poincaré polynomial specialization of the conjecture of Hausel and Ro-
driguez Villegas [HR08].

Fedorov-Soibelman-Soibelman [FSS17] computed the motivic class of the moduli
stack of semistable Higgs bundles.
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1.1.2 Any number of punctures and arbitrary monodromies

Logares-Muñoz-Newstead [LMN12] computed the E-polynomial of character vari-
eties for SL2 and small genus g = 1, 2. They consider one puncture with any
conjugacy class, without the genericity assumption. They also obtained the Hodge
numbers in genus g = 1. Logares-Muñoz [LM13] extended those results to genus
g = 1 and two punctures. They computed the E-polynomials and some Hodge
numbers. Martínez-Muñoz [MM14a; MM14b] computed the E-polynomial of SL2-
character varieties for any genus and any conjugacy class at the puncture. Martínez
[Mar17] then treated the case of PGL2-character varieties.

Simpson [Sim90] generalized non-Abelian Hodge theory to character varieties
with punctures and arbitrary conjugacy classes. The generalization is even larger as
it concerns filtered local systems. They correspond to parabolic Higgs bundles on
the Dolbeault side. The moduli space of stable parabolic Higgs bundles was con-
structed algebraically by Yokogawa [Yok93]. The moduli spaces were constructed
analytically by Konno [Kon93] for Higgs fields with nilpotent residues and by Naka-
jima [Nak96]. Those analytic constructions provide the non-Abelian Hodge theory as
a diffeomorphism. Biquard-Boalch [BB04] proved a more general wild non-Abelian
Hodge theory and constructed the associated moduli spaces. Biquard, García-Prada
and Mundet i Riera [BGM15] generalized filtered non-Abelian Hodge theory to a
large family of groups.

On the Dolbeault side of this correspondence, Boden-Yokogawa [BY96] computed
the Poincaré polynomial of the moduli space of parabolic Higgs bundles, in rank
n = 2, using Morse theory. García-Prada, Gothen, Muñoz [GGM07] computed the
Poincaré polynomial in rank n = 3.

Hausel, Letellier and Rodriguez-Villegas [HLR11] made a conjecture for the
mixed-Hodge polynomial of character varieties with generic semisimple conjugacy
classes at punctures. Counting points of the character variety over finite field
they proved the E-polynomial specialization. Chuang-Diaconescu-Pan [CDP14] and
Chuang-Diaconescu-Donagi-Pantev [Chu+15] proposed a string theoretic interpre-
tation of the conjecture. This string theoretic approach was also applied to wild
character varieties by Diaconescu [Dia17] and Diaconescu-Donagi-Pantev [DDP18].
Another approach uses recursive relations for various genus. It is used by Moz-
govoy [Moz11], Carlsson and Rodriguez-Villegas [CR18]. Similarly to this recursive
approach, González-Prieto [Gon18] developped a topological quantum field theory
associated to character varieties.

Mellit [Mel17a] proved the Poincaré polynomial specialization of the conjecture
from [HLR11] by counting parabolic Higgs bundles over finite fields. This result is of
the utmost importance for this thesis. This is the starting point of the computation
of intersection cohomology of the character variety with the closure of any generic
conjugacy classes at punctures. Fedorov-Soibelman-Soibelman [FSS20] computed
the motivic class of the moduli stack of semistable parabolic Higgs bundles.
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1.2 Intersection cohomology of character varieties

1.2.1 Poincaré polynomial

Letellier [Let13] gave a conjectural formula for the mixed-Hodge polynomial of the
character variety MC, with any type of generic conjugacy classes at punctures.
This formula generalizes the one for semisimple conjugacy classes [HLR11]. It also
involves Hausel-Letellier-Villegas kernel HHLV

n . This kernel lies in

Sym [X1]⊗ · · · ⊗ Sym [Xk]

with Sym [Xj] the space of symmetric functions in the infinite set of variableXj. The
definition of the kernel is recalled in 3.6.1, it uses modified Macdonald polynomi-
als. The Poincaré polynomial specialization of Letellier’s conjecture is the following
formula

Pc (MC; v) = vdµ
〈
sµ′ ,HHLV

n (−1, v)
〉
. (1.1)

µ encodes the Jordan type of the conjugacy classes, see (3.36). dµ is the dimension
of the varietyMC, the symmetric function sµ′ is a variant of Schur functions, it is
defined in (3.47). A very interesting feature of this relation is that no matter the
k-uple of conjugacy classes, the cohomology is encoded in a single object, the kernel
HHLV
n .
Mellit [Mel17a] computed the Poincaré polynomial of character varieties with

semisimple conjugacy classes. Let S = (S1, . . . ,Sk) a generic k-uple of semisimple
conjugacy classes. The Jordan type of this k-uple is determined by k partitions
ν1, . . . , νk. The parts of the partition νj are the multiplicities of the distinct eigen-
values of Sj. As checked in 3.6.2, Mellit’s result is a particular case of the Poincaré
polynomial specialization of the conjecture:

Pc (MS ; v) = vdν
〈
hν ,HHLV

n (−1, v)
〉
. (1.2)

With hν the symmetric function

hν := hν1 [X1] . . . hνk [Xk].

The complete symmetric functions (hλ[X])λ∈Pn form a basis of the space of sym-
metric functions of degree n. The set of partitions of an integer n is denoted by
Pn. The transition matrices in the space of symmetric functions are well known, for
instance they are in Macdonald book [Mac15]. Hence we can express sµ′ in terms
of hν . To compute the Poincaré polynomial of character varieties with any type
of conjugacy classes it is enough to understand the combinatoric relations between
those symmetric functions in terms of geometric relation between MC and MS .
Letellier obtained such a relation, but betweenMC and a resolution of singularities
ofMC.

1.2.2 Springer theory and resolution of character varieties

Logares-Martens [LM08] constructed Grothendieck-Springer resolutions for moduli
spaces of parabolic Higgs bundles. Letellier [Let13] constructed resolution of singu-
larities of character varieties

M̃L,P ,σ →MC.
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Symplectic resolutions of character varieties were also studied in details by Schedler-
Tirelli [ST19]. The construction of M̃L,P ,σ is recalled in 3.5.11, it relies on Springer
theory. This theory closely intertwines the geometry of reductive groups with the
representation theory of their Weyl groups. A first step in this direction comes from
Green [Gre55] who computed the characters of general linear groups over finite fields
in terms of symmetric functions. Then Springer [Spr76] proved a correspondence
between unipotent conjugacy classes and representations of Weyl groups for any
connected reductive group. Following work of Lusztig [Lus81] for the general linear
group, Borho-MacPherson [BM83] obtained Springer correspondence in terms of
intersection cohomology.

Let us briefly recall their result for the Springer resolution of the unipotent locus
in GLn. Let B the subgroup of upper triangular matrices, U the subgroup of B with
1 on the diagonal. T is the subgroup of diagonal matrices so that B = TU . Let U
the set of unipotent elements in GLn, i.e. the set of matrices with all eigenvalues
equal to 1. Then U is stratified by conjugacy classes (Cλ)λ∈Pn with λ the partition
of n with parts specifying the size of the Jordan blocks. Let

Ũ = {(X, gB) ∈ U ×GLn /B
∣∣g−1Xg ∈ U }

the projection to the first factor Ũ → U is a resolution of singularities. Borho-
Macpherson approach to Springer theory provides the following relation between
cohomology of the resolution Ũ and intersection cohomology of the closure of the
strata of U

Hr+dim Ũ
c

(
Ũ ,Ql

)
∼=
⊕
λ∈Pn

Vλ ⊗ IHr+dim Cλ
c

(
Cλ,Ql

)
.

Vλ is the irreducible representation of the symmetric group indexed by the partition
λ. The indexing is as in Macdonald’s book [Mac15], so that V(n) is the trivial
representation and V(1n) the sign. In terms of Poincaré polynomial previous relation
becomes

v− dim ŨPc

(
Ũ , v

)
=
∑
λ∈Pn

(dimVλ) v
− dim CλPc

(
Cλ, v

)
.

Interestingly, this relation between v− dim ŨPc

(
Ũ , v

)
and v− dim CλPc

(
Cλ, v

)
is exactly

the base change relation expressing the symmetric function h1n in terms of Schur
functions (sλ)λ∈Pn

h1n =
∑
λ∈Pn

(dimVλ) sλ.

In this simple example, a base change relation between complete symmetric functions
and Schur functions has a geometrical interpretation in terms of Springer resolutions.

For character varieties the idea is similar but a more general theory is necessary.
It is provided by Lusztig parabolic induction [Lus84; Lus85; Lus86]. Letellier applied
this theory to obtain relations between cohomology of the resolution M̃L,P ,σ and
intersection cohomology of character varieties MCρ,σ (see 3.36 and 3.3.1 for the
definition of the k-uple of conjugacy classes Cρ,σ). This relation is used to prove
that various formulations of the conjecture are equivalent [Let11, Proposition 5.7].
In terms of Poincaré polynomial the relation reads

v−dµPc

(
M̃L,P ,σ, v

)
=
∑
ρ�µ

(dimAµ′,ρ) v
−dρPc

(
MCρ,σ , v

)
. (1.3)
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This geometric relation is discussed in details in 6.2, it is exactly a combinatoric
relation between various basis of symmetric functions:

hµ′ =
∑
ρ�µ

(dimAµ′,ρ) sρ. (1.4)

It will appear that the Poincaré polynomial of resolution the M̃L,P ,σ is equal to
the Poincaré polynomial of a character variety with semisimple monodromie MS .
Together with Mellit’s result (1.2), this implies

v−dµPc

(
M̃L,P ,σ, v

)
= v−dµPc (MS , v) =

〈
hµ′ ,HHLV

n (−1, v)
〉

Relations (1.3) (1.4) can be inverted so that the Poincaré polynomial of a character
variety with any type of monodromies can be expressed as Poincaré polynomial of
character varieties with semisimple monodromies. This is exactly what is necessary
to obtain the general formula (1.1) from Mellit’s result for semisimple conjugacy
classes (1.2).

To summarize, computing the Poincaré polynomial for intersection cohomology
of character varieties requires three elements:

• Mellit’s result for character varieties with semisimple monodromies (1.2).

• Letellier’s relation (1.3) between cohomology of the resolution M̃L,P ,σ and
intersection cohomology of character varietiesMC.

• Relation between cohomology of the resolution M̃L,P ,σ and cohomology of a
character variety with semisimple monodromiesMS .

The last point is studied in Chapter 6 where a diffeomorphism between the resolution
M̃L,P ,σ and a character variety with semisimple monodromies MS is detailed so
that the Poincaré polynomial coincide. First the particular case of the sphere with
four punctures is studied. Then the character varieties are cubic surfaces given by
an explicit equation, the Fricke relation [FK97]. The geometry of cubic surfaces is
well-known since Cayley [Cay69], see also Bruce-Wall [BW79] and Manin [Man86].
Smooth projective cubic surfaces in P3 are obtained as P2 blow-up in six points. This
description gives a direct prove, on the Betti side, that the resolution is diffeomorphic
to a character variety with semisimple monodromies.

Constructing the diffeomorphism in the general case requires analytical tech-
nics. They are detailed in 6.6.1, they rely on the filtered version of non-Abelian
Hodge theory and Riemann-Hilbert correspondence. Those correspondences are
due to Simpson [Sim90]. The moduli spaces providing non-Abelian Hodge theory
as a diffeomorphism were constructed by Konno [Kon93], Nakajima [Nak96] and
Biquard-Boalch [BB04] in the more general setting of wild non-Abelian Hodge the-
ory. Filtered version of Riemann-Hilbert correspondence is described as a diffeomor-
phism by Yamakawa [Yam08]. A filtered version of non-Abelian Hodge theory was
also developped for a large family of groups by Biquard, García-Prada and Mundet
i Riera [BGM15]. In Chapter 6 this is used to construct a diffeomorphism between
M̃L,P ,σ andMS , see Theorem 6.1.3. Finally it is used in 6.2 to prove the Poincaré
polynomial specialization of Letellier’s conjecture:
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Theorem 1.2.1. Consider a generic k-uple of conjugacy classes Cµ,σ (notations are
introduced in (3.36)). the Poincaré polynomial for compactly supported intersection
cohomology of the character varietyMCµ,σ is

Pc

(
MCµ,σ , v

)
= vdµ

〈
sµ′ ,HHLV

n (−1, v)
〉
.

In addition to provide a combinatorial relation between Poincaré polynomials, a
fundamental aspect of Springer theory and Lusztig parabolic induction is the action
of Weyl group on cohomology spaces.

1.2.3 Weyl group action on the cohomology of character va-
rieties

The construction of resolutions of character varieties relies on Springer resolutions
and Lusztig parabolic induction. Therefore there is a Weyl group action on the co-
homology of resolutions of character varieties (see Letellier [Let13]). It is interesting
to notice that the Weyl group only acts on the cohomology and not on the variety
itsel. Another Weyl group action on the cohomology of character varieties and their
resolutions is constructed by Mellit [Mel19]. He constructed a family containing res-
olutions of character varieties and character varieties with semisimple monodromies.
Different fibers of the family have different conjugacy classes prescribed at the k-th
puncture, the k − 1 first conjugacy classes being fixed and semisimple. With this
family, Mellit constructed a monodromic Weyl group action on the cohomology of
some character varieties. This action is unified with the Springer action on the co-
homology of some resolutions. Both appear as various fibers of an equivariant local
system. It is actually difficult to construct this local system. To obtain it, Mellit
used subtle cell decomposition of character varieties.

In Chapter 5, following a suggestion of Mellit, we use this family and the Weyl
group action to compute the Poincaré polynomial of character varieties with k − 1
semisimple monodromies and any conjugacy class prescribed at the last puncture.
This result is less general than Chapter 6 where any k-uple of generic conjugacy
classes is considered. However, the advantage of this approach is that it remains
on the Betti side and avoids the analytic technicality of non-Abelian Hodge theory.
Except for Mellit’s result about the Poincaré polynomial of character varieties which
was obtained from the Dolbeault side.

As explained in previous section, in order to compute the intersection cohomol-
ogy of character varieties for any conjugacy classes, we construct a diffeomorphism
between a resolution M̃L,P ,σ and a character variety with semisimple monodromies
MS . This diffeomorphism allows to move the Springer-like Weyl group action on
the cohomology of the resolution, to a Weyl group action on the cohomology of the
character varieties with semisimple monodromiesMS . This action is enough for our
purpose of computation of the Poincaré polynomial. Moreover, it also provides the
η-twisted Poincaré polynomials, i.e. the trace of any elements of the Weyl group
on the cohomology spaces, see Definition 3.6.6. Considering a k-uple of generic
semisimple conjugacy classes S = (S1, . . . ,Sk), the relative Weyl group is the group
permuting eigenvalues with the same multiplicity in a given class Sj. Next theorem
is proved in 6.2.2.
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Theorem 1.2.2. For any η conjugacy class in the relative Weyl group, the η-twisted
Poincaré polynomial of the character varietyMS is

P ηc (MS , v) :=
∑
r

tr
(
η, Hr

c (MS ,Ql)
)
vr = (−1)r(η)vdµ

〈
h̃η,HHLV

n (−1, v)
〉
.

The symmetric functions h̃η and r(η) are defined in 3.5.18.

However a more satisfying approach would be to directly construct a monodromic
Weyl group action on the cohomology of character varieties with semisimple mon-
odromies. Like the one constructed by Mellit for the k-th monodromy.

1.3 Additive version of character varieties

1.3.1 Comet-shaped quiver varieties

There is an additive version of character varieties. Let O = (O1, . . . ,Ok) a k-uple
of adjoint orbits in gln the Lie algebra of GLn. The additive analogous of character
variety is defined as the following GIT quotient

QO :=
{

(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ gl2gn ×O1 × · · · × Ok
∣∣

g∑
i=1

[Ai, Bi] +
k∑
j=1

Xj = 0

}
//GLn

with [Ai, Bi] := AiBi−BiAi the Lie bracket and GLn acting by overall conjugation.
Like in the multiplicative case, a genericity condition is imposed to the eigenvalues
of the adjoint orbits (Definition 3.5.8). This condition allows to have a well behaved
quotient. Such varieties were studied by Crawley-Boevey [Cra03b; Cra06] in genus
g = 0, in particular he proved a criteria for non-emptiness. For any genus and
semisimple adjoint orbits, they were studied by Letellier, Hausel and Rodriguez-
Villegas [HLR11]. Letellier [Let11] generalized to any type of conjugacy classes.
Interestingly, the geometry of those varieties is closely related to representation
theory of the general linear group over a finite field GLn(Fq) see [Let12].

Many things are easier to study on the additive versions than on the charac-
ter varieties. For instance the cohomology of those varieties is pure. Therefore,
by counting points, Letellier, Hausel and Rodriguez-Villegas [HLR11] and Letellier
[Let11] obtained the Poincaré polynomial. This is different to the character variety
where only the E-polynomial is obtained by this method.

A fundamental aspect of this additive analogous is the interpretation in terms
of Nakajima’s quiver varieties introduced in [Nak94]. Because of this interpretation,
the varieties QO are referred to as comet-shaped quiver varieties [HLR11] or crab-
shaped quiver varieties for instance by Schedler-Tirelli [ST19].

Weyl group action on the cohomology of Nakajima’s quiver varieties were studied
by Nakajima [Nak94; Nak00], Lusztig [Lus00] and Maffei [Maf02]. They were used to
prove Kac conjecture by Letellier, Hausel, Rodriguez-Villegas [HLR13] and to study
unipotent character of GLn(Fq) by Letellier [Let12]. A construction of Weyl group
action relies on the hyperkähler structure of Nakajima’s quiver varieties. Those
varieties can be constructed as hyperkähler quotients as introduced by Hitchin-
Karlhede-Lindström-Roček [Hit+87]. The quotients are obtained considering the
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action of a compact group on a fiber of the hyperkähler moment map. Such moment
map is useful as it allows to construct a family containing both resolutions Q̃L,P ,σ
and the varietiesQO. Then the hyperkähler moment map is a locally trivial fibration
over a regular locus. This is the property missing so far for character varieties and
which could allow to construct a monodromic Weyl group action in general. This
property of the hyperkähler moment map for quiver varieties was known and used by
experts such as Nakajima and Maffei. Chapter 2 is devoted to its proof as we could
not locate one in the literature. Then in Chapter 4 it is applied to comet shaped
quiver varieties in order to have a coherent description of the Springer-like actions
and the monodromic action. The combinatorics of the action obtained appears to
be rich.

1.3.2 Combinatorics of the Weyl group action on the coho-
mology of comet-shaped quiver varieties

We study combinatorics aspect of the cohomology of character varieties and their
additive analogous. Modified Macdonald polynomial appearing in Hausel-Letellier-
Villegas kernel HHLV

n were introduced by Garsia-Haiman [GH96] as a deformation
of Macdonald polynomials [Mac15]. The transition matrix between the modified
Macdonald polynomials and the Schur function is formed by the so-called modified
Kostka polynomial

(
K̃λ,µ(q, t)

)
λ,µ∈Pn

. The fact that they are polynomials in q, t

with integer coefficients is far from trivial. It is known as Macdonald conjecture, it
is a consequence of the n! conjecture of Garsia-Haiman [GH93], this last conjecture
was proved by Haiman [Hai01].

In unpublished notes, Rodriguez-Villegas studied an algebra spanned by modified
Kostka polynomial. The structure coefficients cλµ,ν (q, t) of this algebra are defined
by

K̃µ,ρK̃ν,ρ =
∑
ν

cλµ,νK̃λ,ρ for all ρ ∈ Pn.

Rodriguez-Villegas conjectured that the coefficients cλµ,ν are actually polynomi-
als in q, t with integer coefficients. Moreover he noticed that they are related to
the Hausel-Letellier-Villegas kernel. He studied in particular the coefficients c1n

µ,ν ,
they appear as a generalization of the (q, t)-Catalan sequence from Garsia-Haiman
[GH96]. Rodriguez-Villegas proved that the coefficient c1n

µ,ν has an expression simi-
lar to the conjecture concerning the mixed Hodge polynomial of character varieties
(with genus g = 0)

c1n

µ,ν (q, t) = (−1)n−1
〈
sµ[X1]sν [X2]pn[X3]h(n−1,1)[X4],HHLV

n

(
q

1
2 , t

1
2

)〉
.

In Chapter 4 we prove that a specialization of this formula indeed relates the co-
efficients c1n

µ,ν to traces of Weyl group actions on the cohomology of comet-shaped
quiver varieties.

Theorem 1.3.1. Consider a generic 4-uple of adjoint orbits of the following type:

• O1 has one eigenvalue with Jordan type µ′ ∈ Pn .

• O2 has one eigenvalue with Jordan type ν ′ ∈ Pn.

27



• O3 is semisimple regular i.e. it has n distinct eigenvalues.

• O4 is semisimple with one eigenvalue of multiplicity n − 1 and the other of
multiplicity 1.

Then the Weyl group with respect to O3 is the symmetric group Sn and it acts on
the cohomology of QO. Let w a n-cycle in this Weyl group then

c1n

µ,ν (0, t) = t
− dimQO

2

∑
r

tr
(
w, IH2r

c

(
QO,Ql

))
tr.

The coefficient c1n

µ,ν (0, t) thus appears as a Poincaré polynomial twisted by an n-cycle.

A similar result (Theorem 6.2.7) relates the coefficients c1n

µ,ν(1, t) to a twisted
Poincaré polynomial of character varieties. Conjecturaly c1n

µ,ν(q, t) is related to a
twisted mixed-Hodge polynomial of resolutions of character varieties 4.4.3.

It would be interesting to also find a geometric interpretation of the others coef-
ficients cλµ,ν .

1.4 Plan of the thesis
The second chapter can be read independently of the others. We study the locally
trivial property of the hyperkähler moment map for quiver varieties over a regular
locus. This result was known and used by expert such as Nakajima [Nak94] and
Maffei [Maf02]. We detail the prove here as we could not locate one in the literature.
This result is used in Chapter 4.

The third chapter contains reminder of the geometric and combinatoric back-
ground behind character varieties and comet-shaped quiver varieties. Most of the
notations relative to conjugacy classes, resolutions and Weyl groups are also intro-
duced in this chapter.

In Chapter 4 we study a family of comet-shaped quiver varieties and their reso-
lutions. It relies on the local triviality of the hyperkähler moment map recalled in
Chapter 2. As usual in the theory of quiver varieties, this local triviality allows to
construct a monodromic Weyl group action on the cohomology of the comet-shaped
quiver varieties. We check that the representations obtained in this family are iso-
morphic to the Springer-like actions. Then those actions are related to particular
coefficients of the algebra spanned by Kostka polynomials and Theorem 1.3.1 is
proved.

Chapter 5 is devoted to the study of the family of character varieties constructed
by Mellit [Mel19]. Following his suggestion, we use the monodromic Weyl group
action to compute the Poincaré polynomial for intersection cohomology of character
varieties with k − 1 monodromies semisimple and any conjugacy class at the last
puncture. This is a particular case of Theorem 1.2.1. Except for Mellit’s result
about the Poincaré polynomial of character varieties with semisimple monodromies,
this chapter remains on the Betti side and uses only algebraic tools.

In the last chapter the Poincaré polynomial of character varieties with any generic
k-uple of conjugacy classes at punctures is computed, thus proving Theorem 1.2.1.
Contrarily to previous chapter, the computation requires analytic methods such as
non-Abelian Hodge theory. As a by-product we obtain a Weyl group action on
the cohomology of character varieties and an expression for the η-twisted Poincaré
polynomials: Theorem 1.2.2.
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Chapter 2

Trivializations of moment maps

We study various trivializations of moment maps. First in the general framework of
a reductive group G acting on a smooth affine variety. We prove that the moment
map is a locally trivial fibration over a regular locus of the center of the Lie algebra
of H a maximal compact subgroup of G. The construction relies on Kempf-Ness
theory [KN79] and Morse theory of the square norm of the moment map studied
by Kirwan [Kir84], Ness-Mumford [NM84] and Sjamaar [Sja98]. Then we apply it
together with ideas from Nakajima [Nak94] and Kronheimer [Kro89] to trivialize the
hyperkähler moment map for Nakajima’s quiver varieties. Notice this trivialization
result about quiver varieties was known and used by experts such as Nakajima and
Maffei but we could not locate a proof in the literature.

2.1 Introduction

2.1.1 Symplectic quotients and GIT quotients of affine vari-
eties

Consider a reductive group G acting on a complex smooth affine variety X. For
χθ ∈ X ∗(G) a linear character, Xθ-ss is the θ-semistable locus and Xθ-s the θ-stable
locus. Mumford’s geometric invariant theory [MF82] provides a quotient

Xθ-ss → Xθ-ss//G.

The affine variety X can be embedded in an hermitian vector spaceW such that the
G-action is linear and restricts to a unitary action of a maximal compact subgroup
H ⊂ G. The hermitian norm on W is denoted by || . . . ||. We study the associated
real moment map

µ : X → h

with h the Lie algebra of H. Its definition relies on the choice of a non degenerate
scalar product 〈. . . , . . . 〉 on h invariant under the adjoint action of H. The real
moment map satisfies for all Y ∈ h

〈µ(x), Y 〉 =
1

2

d

dt
|| exp(itY ).x||2

∣∣∣∣
t=0

(2.1)

Thanks to the invariant scalar product, to a linear character χθ is associated an
element θ in Z(h), the center of the Lie algebra h, such that for all Y ∈ h

〈θ, Y 〉 = idχθId(Y ).
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For a pair (χθ, θ), Kempf-Ness theory [KN79] relates the symplectic quotient (defined
by Meyer [Mey73] and Marsden-Weinstein [MW74]) to the GIT quotient, it gives
an homeomorphism

µ−1(θ)/H
∼−→ Xθ-ss//G.

We study trivialization of the moment map over a regular locus in the center
of the Lie algebra h. First, in Section 2.2, we study the general framework of a
unitary action of a compact group on a smooth affine variety. After a reminder of
Migliorini’s version of Kempf-Ness theory [Mig96], a regular locus in Z(h) is defined.
Over this locus the moment map is proved to be a locally trivial fibration. The case
of a torus action was treated by Kac-Peterson [KP84]. The construction of the
regular locus uses the negative gradient flow of square norm of the moment map
studied by Kirwan [Kir84], Ness-Mumford [NM84], Sjamaar [Sja98], Harada-Wilkin
[HW08] and Hoskins [Hos13].

Nakajima’s quiver varieties introduced in [Nak94] are particular instances of the
symplectic quotients studied in Section 2.2. Moreover they are hyperkähler quo-
tients as defined by Hitchin-Karlhede-Lindström-Roček [Hit+87], the construction
of those varieties is recalled in Section 2.3. In Section 2.4, the idea of Kronheimer
[Kro89] and Nakajima [Nak94] of consecutive use of different complex structures are
applied together with techniques from previous sections to prove that the hyper-
kähler moment map is a locally trivial fibration. This implies in particular that the
cohomology of the fibers forms a local system. This later result is used by Nakajima
in [Nak94, Section 9] to construct a Weyl group action on the cohomology of quiver
varieties. Maffei pursued this construction in [Maf02]. I was informed by Nakajima
that the property of the cohomology of the fibers can also be obtained by general-
izing Slodowy argument from [Slo80] to quiver varieties. Similar results concerning
cohomology of the fibers also exist in the framework of deformations of symplec-
tic quotient singularities in Ginzburg-Kaledin [GK04]. Finally Crawley-Boevey and
Van den Bergh [CV04] trivialize the hyperkähler moment map for Nakajima’s quiver
varieties over complex lines. Nakajima explained to us how to extend their result to
quaternionic lines minus a point thanks to the theory of twistor spaces see Theorem
2.4.15.

In the remaining of the introduction the results are stated and the various steps
of the constructions are outlined.

2.1.2 Real moment map for the action of a reductive group
on an affine variety

In Section 2.2, H ⊂ G is a maximal compact subgroup acting unitarily on a smooth
affine variety X embedded in an hermitian vector space. The differential geometry
point of view from Kempf-Ness theory allows to extend the definition of θ-stability
for elements χθ ∈ X ∗(G)R := X ∗(G)⊗ZR. The correspondence between linear char-
acters and elements in the center of the Lie algebra h thus extends to an isomorphism
of R-vector spaces between X ∗(G)R and Z(h).

In 2.2.4 we prove a Lie group variant of Hilbert-Mumford criterion for θ-stability.
It is adapted to the differential geometric point of view of Kempf-Ness theory and
the use of real parameters θ ∈ X ∗(G)R. Similar criteria are discussed by Georgoulas,
Robbin and Salamon in [GRS13].
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Theorem 2.1.1 (Hilbert-Mumford criterion for stability). Let θ ∈ X ∗(G)R and
x ∈ X. The following statements are equivalent

(i) x is θ-stable.

(ii) For all Y ∈ h, different from zero, such that limt→+∞ exp(itY ).x exists then
〈θ, Y 〉 < 0.

This theorem is applied in 2.3.2 to generalize a result of King [Kin94] characterizing
θ-stability for quiver representations.

The regular locus Breg is introduced in 2.2.5. Its construction relies on the
study of the negative gradient flow of the square norm of the moment map from
Kirwan [Kir84], Ness-Mumford [NM84], Sjamaar [Sja98], Harada-Wilkin [HW08]
and Hoskins [Hos13]. Breg is an open subset of Z(h) such that for θ ∈ Breg, one has
Xθ-ss = Xθ-s 6= ∅ and for all x ∈ Xθ-s the stabilizer of x is trivial. Over the regular
locus, the moment map is a locally trivial fibration. A similar fibration when G is a
torus follows from a result of Kac-Peterson [KP84]. Let us also mention that with
the flow of the norm square in the hermitian space W , Sjamaar [Sja98] constructed
a retraction of the 0-stable locus to the fiber over 0 of the moment map.

Theorem 2.1.2. Let θ0 in Breg, and Uθ0 the connected component of Breg containing
θ0. There is a diffeomorphism f such that the following diagram commutes

Uθ0 × µ−1 (θ0) µ−1(Uθ0)

Uθ0

f

∼

µ

Moreover f is H equivariant so that the diagram goes down to quotient

Uθ0 × µ−1 (θ0) /H µ−1(Uθ0)/H

Uθ0

∼

To prove this theorem, first we prove that for any θ ∈ Uθ0 and x ∈ Xθ0-s there
exists a unique Y (θ, x) ∈ h such that exp(iY (θ, x)).x ∈ µ−1(θ). This is achieved
thanks to Migliorini’s version of Kempf-Ness theory [Mig96] which applies to affine
varieties and real parameters χθ ∈ X ∗(G)R. Then the map f is defined by

f(θ, x) := exp (iY (θ, x)) .x

and similarly for its inverse

f−1(x) = (µ(x), exp (iY (θ0, x)) .x) .

The smoothness of f and its inverse is proved in 2.2.6 with the implicit function
theorem.
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2.1.3 Nakajima’s quiver varieties and hyperkähler moment
map

The quiver varieties considered in this thesis were introduced by Nakajima [Nak94].
Let Γ̃ be an extended quiver with vertices Ω0 and edges Ω̃, fix a dimension vector
v ∈ NΩ0 . The space of representations of Γ̃ with dimension vector v is

Rep
(

Γ̃, v
)

=
⊕
γ∈Ω̃

MatC(vh(γ), vt(γ)).

with h(γ) ∈ Ω0 the head of the edge γ and t(γ) ∈ Ω0 its tail. This space is acted
upon by the group

Gv
∼=

{
(gj)j∈Ω0 ∈

∏
j∈Ω0

GLvj

∣∣∣∣∣ ∏
j∈Ω0

det(gj) = 1

}
.

This action is described in 2.3.1, it restricts to a unitary action of the maximal
compact subgroup

Uv =

{
(gj)j∈Ω0 ∈

∏
j∈Ω0

Uvj

∣∣∣∣∣ ∏
j∈Ω0

det(gj) = 1

}

with Uvj the group of unitary matrices of size vj. Denote by uv the Lie algebra of
Uv. This is a particular instance of the general situation of Section 2.2: a unitary
action of a compact group on a smooth complex affine variety. Let θ ∈ ZΩ0 such
that

∑
j vjθj = 0. Define χθ a linear character of Gv by

χθ ((gj)j∈Ω0) :=
∏
j∈Ω0

det(gj)
−θj . (2.2)

For quiver representations, the correspondence between linear characters and ele-
ments in the center of uv is easily described: to the character χθ is associated the
element (−iθj Idvj)j∈Ω0 ∈ Z(uv). This element is still denoted by θ, and Z(uv) is
identified in this way with a subspace of RΩ0 .

A well-known theorem from King [Kin94] gives a characterization of θ-stability
for quiver representations. In 2.3.2 this result is generalized to real parameters
corresponding to elements χθ ∈ X ∗(G)R.

Theorem 2.1.3. For θ ∈ RΩ0 such that
∑

j∈Ω0
θjvj = 0 and associated element

χθ ∈ X ∗(Gv)
R. A quiver respresentation (V, φ) is θ-stable if and only if for all

subrepresentation W ⊂ V ∑
j∈Ω0

θj dimWj < 0.

unless W = V or W = 0.

The space Rep
(

Γ̃, v
)
admits three complex structures denoted by I, J and K,

they are detailed in 2.4.1. There is a real moment map for each one of this complex
structure, they are denoted by µI , µJ and µK . They are defined as in equation (2.1),
for instance

〈µI(x), Y 〉 =
1

2

d

dt
|| exp(t.I.Y ).x||2

∣∣∣∣
t=0
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and
〈µJ(x), Y 〉 =

1

2

d

dt
|| exp(t.J.Y ).x||2

∣∣∣∣
t=0

.

Together they form the hyperkähler moment map µH = (µI , µJ , µK), it takes values
in u⊕3

v .
Nakajima’s quiver varieties are constructed for (θI , θJ , θK) ∈ Z(uv)

⊕3 as quotients
of fibers of the hyperkähler moment map.

mv(θI , θJ , θK) = µ−1
H (θI , θJ , θK)/Uv.

The hyperkähler regular locus in Z(uv)
⊕3 is defined by:

Definition 2.1.4 (Hyperkähler regular locus). For w ∈ NΩ0 a dimension vector

Hw :=

{
(θI , θJ , θK) ∈

(
RΩ0

)3

∣∣∣∣∣∑
j

wjθI,j =
∑
j

wjθJ,j =
∑
j

wjθK,j = 0

}
.

The regular locus is
Hreg
v = Hv \

⋃
w<v

Hw (2.3)

the union is over dimension vector w 6= v such that 0 ≤ wi ≤ vi.

In 2.4.3 various trivializations of the hyperkähler moment map are discussed. We
prove that the hyperkähler moment map is a locally trivial fibration by consecutive
use of constructions of Theorem 2.1.2 for each complex structure and associated
moment map. The idea of consecutive use of different complex structures comes
from Kronheimer [Kro89] and Nakajima [Nak94].

Theorem 2.1.5 (Local triviality of the hyperkähler moment map). Over the regular
locus Hreg

v , the hyperkähler moment map µH is a locally trivial fibration compatible
with the Uv-action:

Any (θI , θJ , θK) ∈ Hreg
v admits an open neighborhood V , and a diffeomorphism

f such that the following diagram commutes

V × µ−1
H (θI , θJ , θK) µ−1

H (V )

V

f

∼

µH

Moreover f is compatible with the Uv-action so that the diagram goes down to quo-
tient

V × µ−1
H (θI , θJ , θK)/Uv µ−1

H (V )/Uv

V

∼

p

A similar trivialization of the hyperkähler moment map over lines is described
in [CV04, Lemma 2.3.3]. In Theorem 2.4.15 we provide an extension of their result
using twistor spaces as suggested by Nakajima.
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Denote by π the map obtained by taking quotient of the hyperkähler moment
map over the regular locus

µ−1
H (Hreg

v )/Uv
π−→ Hreg

v .

ConsiderHiπ∗Ql, the cohomology sheaves of the derived pushforward of the constant
sheaf. As a direct corollary of the local triviality of the hyperkähler moment map,
those sheaves are locally constant. Moreover as Hreg

v is simply connected, those
sheaves are constant. They provide the local system of the cohomology of the fibers.

2.2 Kempf-Ness theory for affine varieties
Kempf-Ness [KN79] relate geometric invariant theory quotients to symplectic quo-
tients. In this section we recall Migliorini’s version of this theory [Mig96] which
applies to affine varieties and real parameter χθ ∈ X ∗(G)R. Then we prove that the
real moment map is a locally trivial fibration over a regular locus.

G is a connected reductive group acting on a smooth affine variety X. The action
is assumed to have a trivial kernel.

2.2.1 Characterization of semistability from a differential ge-
ometry point of view

For χθ ∈ X ∗(G) a linear character of G, a regular function f ∈ C [X] is θ-equivariant
if there exists a strictly positive integer r such that f(g.x) = χθ(g)rf(x) for all x ∈ X.

Definition 2.2.1. A point x ∈ X is θ-semistable if there exists a θ-equivariant
regular function f such that f(x) 6= 0. The set of θ-semistable points is denoted by
Xθ-ss.

A point x ∈ X is θ-stable if it is θ-semistable and if its orbit G.x is closed in
Xθ-ss and its stabilizer is finite. The set of θ-stable points is denoted by Xθ-s.

The GIT quotient as defined by Mumford [MF82] is denoted byXθ-ss → Xθ-ss//G.
A point of this quotient represents a closed G-orbit in Xθ-ss. When working over the
field of complex numbers, such quotients are related to symplectic quotients. The
affine variety X can be embedded as a closed subvariety of an hermitian space W
with hermitian pairing denoted by p(. . . , . . . ). The embedding can be chosen so that
the action of G on X comes from a linear action on W and the action of a maximal
compact subgroup H ⊂ G preserves the hermitian pairing, p(h.u, h.v) = p(u, v) for
all h ∈ H and u, v ∈ W . Then G can be identified with a subgroup of GL(W ). The
hermitian pairing induces a symplectic form on the underlying real space

ω(. . . , . . . ) := Re p(i . . . , . . . ) (2.4)

with i a square root of −1 and Re the real part. The hermitian pairing on the
ambient space induces an hermitian metric on X. As X is a smooth subvariety of
W , its tangent space is stable under multiplication by i, hence the non-degeneracy of
the hermitian metric implies the non degeneracy of the restriction of the symplectic
form ω to the tangent space of X and the symplectic form on W restricts to a
symplectic form on X. Then the action of G on X induces a symplectic action of
H on X.
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For x ∈ X introduce the Kempf-Ness map

φθ,x : G → R
g 7→ ||g.x||2 − log

(
|χθ(g)|2

)
with || . . . || the hermitian norm.

Theorem 2.2.2 ([Mig96] Theorem A.4 ). A point x0 ∈ X is θ-semistable if and
only if there exists in the closure of its orbit a point x ∈ G.x0 such that φθ,x has a
minimum at the identity.

Remark 2.2.3. Let X ∗(G)R := X ∗(G)⊗Z R, the definiton of φθ,x makes sense not
only for linear characters but for any χθ ∈ X ∗(G)R. It provides the following gener-
alization of the definition of θ-semistability and θ-stability for any χθ ∈ X ∗(G)R.

Definition 2.2.4 (Semistable points). Let χθ ∈ X ∗(G)R, a point x0 is θ-semistable
if there exists x ∈ G.x0 such that φθ,x has a minimum at the identity.

A point x0 is θ-stable if it is θ-semistable, its orbit is closed in Xθ-ss and its
stabilizer is finite.

In the following of this chapter, θ-stability and θ-semistability as well as the
notations Xθ-s and Xθ-ss always refer to this definition.

2.2.2 Correspondence between linear characters and elements
in the center of the Lie algebra of H

The Lie algebra of G is denoted by g and the real Lie algebra of H is h. Fix a
non-degenerate scalar product 〈. . . , . . . 〉 on h invariant under the adjoint action.

Proposition 2.2.5 (Polar decomposition). For all g ∈ G there exists a unique
(h, Y ) ∈ H × h such that g = h exp(iY ) such an expression is called a polar decom-
position. This implies for the Lie algebra g = h⊕ ih.

Proof. It follows from [OVG94] Theorem 6.6.

The first step in Kempf-Ness theory is to associate to a character χθ ∈ X ∗(G) an
element in the center Z(h) of the Lie algebra h. As H is compact, its image under
a complex character lies in the unit circle. Consider the differential of the character
at the identity, it is a C-linear map dχθId : g→ C. The inclusion χθ(H) ⊂ S1 implies
for the Lie algebra dχθId(h) ⊂ iR. By C-linearity, dχθId(ih) ⊂ R and the following
map is R-linear

dχθId(i . . . ) : h → R
Y 7→ dχθId(iY )

. (2.5)

The invariant scalar product on h identifies this linear form with an element of h
denoted by θ satisfying for all Y ∈ h

〈θ, Y 〉 = idχθId(Y ).

Moreover, as the scalar product is invariant for the adjoint action and so is the
character χθ, the element θ lies in the center of h. This construction is Z-linear so
that it extends to an R-linear map

ι : X ∗(G)R → Z(h)
χθ 7→ θ
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Proposition 2.2.6. The R-linear map ι is an isomorphism from X ∗(G)R to Z(h).

Proof. As G is a complex reductive group G = Z(G)D(G) with Z(G) its center and
D(G) its derived subgroup. Then X ∗(G) identifies with the set of linear characters
of the torus Z(G). Hence X ∗(G) is a Z-module of rank the complex dimension of
Z(G) so that dimRX ∗(G)R = dimR Z(h). It remains to prove that ι is injective.
Let χθ a linear character such that dχθId(iY ) = 0 for all Y ∈ h. By C-linearity and
polar decomposition dχθId = 0. Hence for any g ∈ G the differential at g is also zero
dχθg = 0. As G is connected, χθ is the trivial character.

Remark 2.2.7. This isomorphism justifies the notation χθ for elements in X ∗(G)R,
such elements are uniquely determined by a choice of θ ∈ Z(h), moreover

χθχθ
′
= χθ+θ

′
.

2.2.3 Correspondence between symplectic quotient and GIT
quotient

Definition 2.2.8 (Real moment map). The real moment map µ : X → h is defined
thanks to the invariant scalar product 〈. . . , . . . 〉 by

〈µ(x), Y 〉 =
1

2

d

dt
|| exp(itY ).x||2

∣∣∣∣
t=0

for all Y ∈ h and x ∈ X. In this section the real moment map is just called the
moment map. Later on complex and hyperkähler moment maps are also considered.

Example 2.2.9. Assume the compact group H is a torus T . The ambient space
decomposes as an orthogonal direct sum W =

⊕
χαWχα with χα linear characters of

T and
Wχα = {x ∈ W |t.x = χα(t)w for all t ∈ T }

Similarly to 2.2.2, a character χα is uniquely determined by an element α in t the
Lie algebra of T such that

idχαId(Y ) = 〈α, Y 〉 .

Let A the finite subset of elements α ∈ t such that Wχα 6= {0}. Let us compute µT
the moment map for the torus action. Let x =

∑
α∈A xχα in W , for Y in t the Lie

algebra of T

〈µT (x), Y 〉 =
1

2

d

dt
|| exp(itY ).x||2

∣∣∣∣
t=0

=
∑
α∈A

idχαId(Y ) ||xχα||2

=

〈∑
χ∈A

||xχα ||2 α, Y

〉

Therefore the non-degeneracy of the scalar product implies µT (x) =
∑

χ∈A ||xχα||
2 α.

In particular the image of µT is the cone C(A) ⊂ t spanned by positive coefficients
combinations of elements α ∈ A. This example proves to be useful later on.
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Proposition 2.2.10 (Guillemin-Sternberg [GS82]). dxµ the differential of the mo-
ment map at x is surjective if and only if the stabilizer of x in H is finite.

Proof. A computation using the definition of the moment map and the symplectic
form gives for v ∈ TxX a tangent vector at x and Y ∈ h

〈dxµ(v), Y 〉 = ω

(
d

dt
exp(tY ).x

∣∣∣∣
t=0

, v

)
.

This relation is often taken as a definition of the moment map. By non degeneracy
of the symplectic form ω it implies that Y is orthogonal to the image of dxµ if and
only if the stabilizer of x contains exp(tY ) for all t ∈ R. Hence the differential of
the moment map is surjective if and only if the stabilizer of x is finite.

Lemma 2.2.11. Let χθ ∈ X ∗(G)R and x ∈ X, then φθ,x has a minimum at the
identity if and only if µ(x) = θ.

Moreover if φθ,x has a minimun at the identity and at a point h exp(iY ) with
h ∈ H and Y ∈ h, then exp(iY ).x = x.

Proof. Up to a shift in the definition of the moment map, this result is [Mig96,
Corollary A.7]. The proof is recalled as it is useful for next proposition.

For all h ∈ H and g ∈ G
φθ,x(hg) = φθ,x(g)

so that the differential of φθ,x at the identity vanishes on h. For Y ′ + iY ∈ h ⊕ ih
this differential is

dφθ,xId (Y ′ + iY ) = dφθ,xId (iY ) =
d

dt
|| exp(itY ).x||2

∣∣∣∣
t=0

− dχθId(iY )− dχθId(iY )

= 2 〈µ(x), Y 〉 − 2 〈θ, Y 〉 .

last equality follows from the definition of the moment map µ and the discussion in
2.2.2 defining θ and proving the reality of dχθId(iY ).

So far we proved that φθ,x has a critical point at the identity if and only if
µ(x) = θ, it remains to prove that this critical point is necessarily a minimum. Let
φθ,x be critical a the identity and g ∈ G written in polar form g = h exp(iY ). The
action of iY is hermitian so that it can be diagonalized in an orthonormal basis (ej)
such that iY.ej = λjej with λj ∈ R.

φθ,x(h exp(iY ))− φθ,x(Id) = φθ,x(exp(iY ))− φθ,x(Id)

=
∑

j |exp(λj)p(ej, x)|2 − log

(∏
j

exp(2rjλj)

)
−
∑
j

|p(ej, x)|2

with rj real parameters determined by χθ ∈ X ∗(G)R. As φθ,x is critical at the
identity:

0 =
d

dt
φθ,x (exp(itY ))

∣∣∣∣
t=0

=
∑
j

(
2λj |p(ej, x)|2 − 2rjλj

)
.
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Combining the two previous equations

φθ,x(h exp(iY ))− φθ,x(Id) =
∑
j

(exp(2λj)− 2λj − 1) |p(ej, x)|2 .

So that φθ,x(h exp(iY )) − φθ,x(Id) ≥ 0 with equality if and only if exp(iY ).x = x.
Hence when φθ,x has a critical point at the identity, it is necessarily a minimum.

Proposition 2.2.12. Let χθ ∈ X ∗(G)R then µ−1(θ) ⊂ Xθ-ss. Moreover, a point x0

is θ-stable if and only if the orbit G.x0 intersects µ−1(θ) exactly in a H-orbit.

Proof. First statement follows from definition of stability 2.2.4 and Lemma 2.2.11.
Assume x0 is θ-stable, then its orbit is closed in Xθ-ss and G.x0 ∩ µ−1(θ) is not

empty. Let x lies in this intersection, then φθ,x has a minimum at the identity. For
all g, g′ ∈ G

φθ,g.x(g′) = φθ,x(g′g) + log
(∣∣χθ(g)

∣∣2)
Hence φθ,g.x(g′) is minimum for g′ = g−1. Now if g ∈ G verifies g.x ∈ µ−1(θ)
by Lemma 2.2.11, φθ,g.x(g′) has a minimum not only at g′ = g−1 but also at the
identity. By the second statement of previous lemma, g−1 = h exp(iY ) with h ∈ H
and exp(iY ).x = x. As x is stable, its stabilizer is finite so that exp(iY ) = Id and
g−1 ∈ H. Moreover for any h ∈ H, the map φθ,h.x has a minimum at identity hence
h.x ∈ µ−1(θ) so that G.x0 ∩ µ−1(θ) = H.x.

Conversely suppose G.x0∩µ−1(θ) = H.x. First x0 is θ-semistable. By Migliorini
[Mig96, Proposition A.9], the orbit G.x0 is closed in Xθ-ss. It remains to prove
that the stabilizer of x0 is finite. By Lemma 2.2.11 the map φθ,x is minimum at the
identity. Let Y ∈ h such that exp(iY ) is in the stabilizer of x. Then

∣∣χθ (exp(iY ))
∣∣ =

1, otherwise either φθ,x (exp(iY )) < φθ,x(Id) or φθ,x (exp(−iY )) < φθ,x(Id). Hence
φθ,x(exp(iY )) = φθ,x(Id) and exp(iY ) ∈ H so that Y = 0 and the stabilizer of x is
finite.

Remark 2.2.13. For χθ ∈ X ∗(G) such that θ-stability and θ-semistability coincide.
Last proposition implies that the inclusion µ−1(θ) ⊂ Xθ-ss goes down to a continuous
bijective map

µ−1(θ)/H
∼−→ Xθ-ss//G.

This result is a particular instance of Kempf-Ness theory, it gives a natural bijection
between a symplectic quotient and a GIT quotient. Hoskins [Hos13] proved that this
map is actually an homeomorphism.

2.2.4 Hilbert-Mumford criterion for stability

Next theorem is a variant of the usual Hilbert-Mumford criterion for stability. It
applies to real parameters χθ ∈ X ∗(G)R not only to to linear characters. Instead of
algebraic one-parameter subgroups it relies on one-parameter real Lie groups defined
for Y ∈ h by

R → G
t 7→ exp(itY )

Many variants of Hilbert-Mumford criterion for one-parameter real Lie groups are
given in [GRS13]. Before proving the criterion, two classical technical lemmas are
necessary.
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Lemma 2.2.14. Let χθ ∈ X ∗(G)R and Y ∈ h, for t ∈ R

log
∣∣χθ (exp(itY ))

∣∣2 = 2 〈θ, Y 〉 t.

Proof. We prove it for χθ ∈ X ∗(G) and deduce for elements in X ∗(G)R by R-linearity.

d

dt

∣∣∣∣
t=s

log
∣∣χθ (exp(itY ))

∣∣2 =
1

|χθ (exp(isY ))|2
d

dt

∣∣∣∣
t=s

∣∣χθ (exp(itY ))
∣∣2

=
d

dt

∣∣∣∣
t=s

∣∣χθ (exp(i(t− s)Y ))
∣∣2

=
d

dt

∣∣∣∣
t=0

∣∣χθ (exp(itY ))
∣∣2

= 2dχθId(iY )

By the construction of the element θ ∈ Z(h) from 2.2.2 we conclude that

d

dt

∣∣∣∣
t=s

log
∣∣χθ (exp(itY ))

∣∣2 = 2 〈θ, Y 〉

and
log
∣∣χθ (exp(itY ))

∣∣2 = 2 〈θ, Y 〉 t.

Lemma 2.2.15. Let x0 ∈ Xθ-s such that φθ,x0 is minimum at the identity. Let
Z ∈ h and decompose x0 in a basis of eigenvectors of the hermitian endomorphism
iZ

x0 =
∑
λ

x0
λ

with
exp(iZ)x0

λ = exp(λ)x0
λ.

Then either 〈θ, Z〉 < 0 or there exists λ > 0 with x0
λ 6= 0.

Proof. By Lemma 2.2.11 and Proposition 2.2.12, as x0 is θ-stable, the Kempf-Ness
map φθ,x0 reaches its minimum exactly on H. For Z ∈ h consider the map fZ defined
for t real by

fZ(t) = φθ,x0 (exp(iZt)) .

fZ reaches its minimum only at t = 0. We can compute fZ(t) using the decomposi-
tion of x0 in eigenvectors of iZ and Lemma 2.2.14

fZ(t) =
∑
λ

exp(2tλ)
∣∣∣∣x0

λ

∣∣∣∣2 − 2 〈θ, Z〉 t. (2.6)

Its second derivative is

f ′′Z(t) =
∑
λ

4λ2 exp(2tλ)
∣∣∣∣x0

λ

∣∣∣∣2 .
Then fZ is convex, moreover it reaches its minimum only at t = 0 so that

lim
t→+∞

fZ(t) = +∞.

Looking at equation (2.6) this implies either 〈θ, Z〉 < 0 or there exists λ > 0 with
x0
λ 6= 0.
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Theorem 2.2.16 (Hilbert-Mumford criterion for stability). Let θ ∈ X ∗(G)R and
x ∈ X. The following statements are equivalent

(i) x is θ-stable.

(ii) For all Y ∈ h, different from zero, such that limt→+∞ exp(itY ).x exists then
〈θ, Y 〉 < 0.

Proof. not (i) implies not (ii)

Let x ∈ X \Xθ-s. Then if φθ,x admits a minimum, the stabilizer of x is not finite
and this minimum is reached on an unbounded subset of G. Thus there exists an
unbounded minimizing sequence for φθ,x. By polar decomposition and H invariance
we can assume it has the following form (exp iYn)n∈N with (Yn)n∈N ∈ hN unbounded.
The hermitian space W admits an orthonormal basis Bn = (en1 , . . . , e

n
d) made of

eigenvectors of iYn with associated eigenvalues λn1 , . . . , λnd .

exp(iYn).enk = exp(λnk)enk .

This basis allows to compute:

φθ,x (exp iYn) =
d∑

k=1

exp (2λnk) ||xnk ||
2 − 2 〈θ, Yn〉

with xnk = p(x, enk)enk the components of x in the basis Bn. By compactness of the
set of orthonormal frames, we can assume the sequence of basis (Bn)n∈N converges
to an orthonormal basis B = (e1, . . . , ek). Let xk = p(x, ek)ek the components of x
in the basis B. Then limn→+∞ x

n
k = xk. Let

Σn =
d∑

k=1

|λnk |

As (Yn)n∈N is unbounded, up to an extraction of a subsequence, we can assume that
limn→+∞Σn = +∞ and that the following limit exist and are finite:

Y := lim
n→+∞

Yn
Σn

and
λk := lim

n→+∞

λnk
Σn

.

Now one can bound from bellow the values φθ,x (exp iYn) of the minimizing sequence

φθ,x (exp iYn) ≥
∑

{k|xk 6=0}

exp (2λnk) ||xnk ||
2 − 2 〈θ, Yn〉 .

≥
∑

{k|xk 6=0}

exp (2 (λk + o(1)) Σn)
(
||xk||2 + o(1)

)
−2 (〈θ, Y 〉+ o(1)) Σn

with o(1) some sequences going to zero when n goes to infinity. As the left-hand side
is the value of a minimizing sequence, it cannot go to plus infinity. Hence 〈θ, Y 〉 ≥ 0,
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moreover if xk 6= 0 Then λk ≤ 0. We conclude as Y satisfies limt→+∞ exp(itY ).x
exists and 〈θ, Y 〉 ≥ 0.

(i) implies (ii)

Let x ∈ Xθ-s, by Lemma 2.2.11 and Proposition 2.2.12 there exists g0 ∈ G such
that for x0 = g0.x, the Kempf-Ness map φθ,x0 reaches its minimum exactly on H.
Now let Y ∈ h such that limt→+∞ exp(itY ).x exists then limn→+∞ exp(inY ).x exists.
For all n ∈ N polar decomposition provides unique hn ∈ H and Zn ∈ h such that

exp(inY ) = hn exp(iZn)g0.

Then Zn is unbounded. Proceed as in the first part of the proof, iZn is an hermitian
endomorphism denote by λn1 , . . . , λnd its eigenvalues and let

Σn =
d∑

k=1

|λnk | .

We can assume that limn→+∞Σn = +∞ and that the following limits exist and are
finite:

Z := lim
n→+∞

Zn
Σn

and
λk := lim

n→+∞

λnk
Σn

.

Then denoting by x0
k the components of x0 in an orthonormal basis of eigenvectors

of iZ

φθ,x (exp(iZn)g0) ≥
∑

{k|xk 6=0}

exp (2 (λk + o(1)) Σn)
(
||xk||2 + o(1)

)
−2 (〈θ, Z〉+ o(1)) Σn + log

∣∣χθ(g0)
∣∣2

By Lemma 2.2.15 either 〈θ, Z〉 < 0 or there exists λk > 0 with x0
k 6= 0. In any case

lim
n→+∞

φθ,x (exp(iZn)g0) = +∞.

Then the relation (2.2.4) defining Zn implies

lim
n→+∞

φθ,x(exp(inY )) = +∞. (2.7)

Decompose x in a basis of eigenvectors of the hermitian endomorphism iY

x =
∑
λ

xλ

then
φθ,x(exp(inY )) =

∑
λ

exp(2nλ) ||xλ||2 − 2 〈θ, Y 〉n.

As the limit limn→+∞ exp(inY ).x is assumed to exist, λ ≤ 0 if xλ 6= 0. Then the
condition (2.7) implies 〈θ, Y 〉 < 0.
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2.2.5 Regular locus

In this subsection the closed subvariety X is not relevant, the action of G and H on
the ambient hermitian vector space W is studied. First note that the moment map
can be defined not only on X but on the whole space W . Let T ⊂ H a maximal
torus. As in Example 2.2.9 the ambient spaceW decomposes as an orthogonal direct
sum W =

⊕
Wχα with χα characters of T and

Wχα = {x ∈ W |t.x = χα(t)x for all t ∈ T } .

Denote by A the finite subset of elements α ∈ t such that for the character χα the
space Wχα is not zero then

W =
⊕
α∈A

Wχα .

As before the link between linear characters and elements in t is through the invariant
pairing 〈. . . , . . . 〉

idχαId(β) = 〈α, β〉 .
Hence if β is orthogonal to the R vector space spanned by A

χα(exp tβ) = 1

for all α ∈ A so that exp tβ is in the kernel of the action of H on W . From the
beginning this kernel is assumed to be trivial, hence the vector space spanned by A
is t. As in Example 2.2.9, the image of µT , the moment map relative to the T -action,
is the cone spanned by positive combinations of A. For any A′ finite subset of t the
cone spanned by positive combinations of A′ is:

C(A′) :=

{∑
α∈A′

aαα | aα ≥ 0 for all α ∈ A′
}
.

For any β ∈ t

〈µ(x), β〉 =
d

dt
||exp(itβ).x||2

∣∣
t=0

= 〈µT (x), β〉 .

Hence, as noted by Kirwan [Kir84], if µ(x) ∈ t then µ(x) = µT (x). For A′ a finite
subset of t we denote by dimA′ the dimension of the vector space spanned by A′.

Lemma 2.2.17. Let x ∈ W such that for all A′ ⊂ A with dimA′ < dim t, the value
of the moment map µT (x) does not lie in C(A′). Then the stabilizer of x is finite.

Proof. Decompose x according to its weight x =
∑

α∈A xα then

µT (x) =
∑
||xα||2 α.

Denote by Ax the set of elements α such that xα 6= 0. The hypothesis about µT (x)
implies that dimAx = dim t. Now for β ∈ t

exp(βt).x =
∑
α∈Ax

χα(exp βt)xα.

Hence if exp βt is in the stabilizer of x, for all α ∈ Ax the pairing with β vanishes
〈α, β〉 = 0. As Ax spans t this implies that β = 0 and the stabilizer of x in T is
finite.
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Previous lemma justifies the introduction of the following nonempty open subset
of t

C(A)reg := C(A) \
⋂
A′⊂A

dimA′<dim t

C(A′).

As all maximal torus of H are conjugated, the set C(A)reg ∩Z(h) is independent of
a choice of maximal torus T .

Proposition 2.2.18. For θ ∈ C(A)reg∩Z(h), every θ-semistable points are θ-stable,
W θ-ss = W θ-s and in particular Xθ-ss = Xθ-s.

Proof. Let x ∈ W θ-ss, then G.x meets µ−1(θ). But G.x \G.x is a union of G-orbits
of dimension strictly smaller than G.x, points in those orbits has stabilizer with
dimension greater than one. By previous lemma every point in µ−1(θ) has a finite
stabilizer. Thus G.x ∩ µ−1(θ) 6= ∅ and the stabilizer of x is finite so that x is
θ-stable.

Kirwan [Kir84], Ness-Mumford [NM84], Sjamaar [Sja98], Harada-Wilkin [HW08]
and Hoskins [Hos13] studied a stratification of W . It relies on the Morse theory of
the following map. For θ ∈ Z(h)

hθ : W → R
x 7→ |µ(x)− θ|2

with |. . . | the norm defined by the invariant pairing 〈. . . , . . . 〉 on h. A critical point
of a smooth map f is a point x where the differential vanishes dxf = 0. A critical
value of f is the image f(x) of a critical point x. The gradient of hθ is the vector
field defined thanks to the hermitian pairing p(. . . , . . . ) for x ∈ W and v ∈ TxW by

p (gradx hθ, v) = dxhθ.v

For x ∈ W the negative gradient flow relative to hθ is the map

γθx : R≥0 → W
t 7→ γθx(t)

uniquely determined by the condition

dγθx(s)

ds

∣∣∣∣
s=t

= − gradγθx(t) hθ.

and γθx(0) = x. By [Sja98] and [HW08] it is well defined and for any x the limit
limt→+∞ γ

θ
x(t) exists and is a critical point of hθ. Sθ is the set of point x ∈ W with

negative gradient flow for hθ converging to a point where hθ reaches its minimal
value 0:

Sθ :=

{
x ∈ W

∣∣∣∣ lim
t→+∞

γθx(t) ∈ µ−1(θ)

}
.

This is the open strata of the stratification, Sjamaar called it the set of analitically
semistable points. When the stability parameter is a true character i.e. χθ ∈ X ∗(G),
Hoskins [Hos13] proved that this strata coincides with the θ-semistable locus. Here
we want to consider any χθ ∈ X ∗(G)R, the proof of the inclusion Sθ ⊂ W θ-ss is the
same and it is enough for our purpose.
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Proposition 2.2.19. Sθ is a subset of W θ-ss.

Proof. The flow γx(t) belongs to the orbitG.x hence limt→+∞ γx(t) ⊂ G.x. Therefore
if x ∈ Sθ then G.x ∩ µ−1(θ) 6= ∅.

An important feature of the map hθ is that its critical points lie in a finite union⋃
A′⊂A µ

−1 (H.β(A′, θ)) indexed by the subsets of the finite set A. With β(A′, θ)
the projection of θ to the closed convex C(A′) and H.β(A′, θ) the adjoint orbit of
β(A′, θ).

Lemma 2.2.20. By definition of the projection to a closed convex in an euclidian
space |β(A′, θ)− θ| is the distance between θ and the cone C(A′), define

dθ = inf
A′⊂A

β(A′,θ)6=θ

|β(A′, θ)− θ|2 (2.8)

then dθ > 0 and hθ−1 [0, dθ[ ⊂ Sθ.

Proof. For any h ∈ H by invariance of the scalar product under the adjoint action
and as θ ∈ Z(h)

|h.β(A′, θ)− θ|2 = |β(θ, A′)− θ|2 .

Hence if x is a critical point of hθ not in µ−1(θ), then x ∈ µ−1(H.β(A′, θ)) for some
β(A′, θ) different from θ and

|µ(x)− θ|2 = |β(θ, A′)− θ|2 > dθ.

So that the only critical value of hθ0 in the intervalle [0, dθ[ is 0.
Now for any x ∈ W , the map t 7→ hθ

(
γθx(t)

)
can only decrease, and it converges

to a critical value. Therefore if x ∈ h−1
θ [0, dθ[ the negative gradient flow converges

necessarily to a point limt→+∞ γ
θ
x(t) which belongs to h−1

θ (0) = µ−1(θ) so that x ∈
Sθ.

Theorem 2.2.21. Let θ0 ∈ C(A)reg ∩ Z(h), there is an open neighborhood Vθ0 of
θ0 in C(A)reg ∩ Z(h) such that for all θ ∈ Vθ0, θ-stability and θ0-stability coincide
W θ0-ss = W θ-ss.

Proof. Let ε > 0 such that B(θ0, ε) the ball of center θ0 and radius ε in t is included
in C(A)reg. Then when θ varies in B(θ0, ε) it does not meet any frontier of a cone
C(A′) with A′ ⊂ A. So that for θ ∈ B(θ0, ε), for all A′ ⊂ A, β(θ, A′) 6= 0 if and only
if β(θ0, A

′) 6= 0. Thus the subset indexing the infima defining dθ and dθ0 in (2.8) are
identical. As the projection to closed convex is a continuous map, the map θ 7→ dθ
is continuous on B(θ0, ε). Therefore one can chose ε′ > 0 such that

• dθ >
dθ0
2

for all θ ∈ B(θ0, ε
′).

Moreover ε′ can be chosen to satisfy the following conditions

• B(θ0, ε
′) ⊂ C(A)reg

• ε′2 <
dθ0
2
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Let θ in B(θ0, ε
′) ∩ Z(h), we shall see that W θ-ss = W θ0-ss. First note that θ ∈

C(A)reg ∩ Z(h) and Proposition 2.2.18 implies W θ-ss = W θ-s.
For x ∈ W θ-ss = W θ-s, by Proposition 2.2.12 there exists g ∈ G such that

g.x ∈ µ−1(θ). Then |µ(g.x)− θ0|<
dθ0
2

and g.x ∈ h−1
θ0

[0, dθ0 [. By Lemma 2.2.20,
g.x ∈ Sθ0 and by Proposition 2.2.19 g.x is θ0-semistable so that x ∈ W θ0-ss.

Similarly for x ∈ W θ0-ss, there exists g ∈ G such that g.x ∈ µ−1(θ0). Then
|µ(g.x)− θ|2 < dθ0

2
and as dθ0

2
< dθ, the point g.x lies in h−1

θ [0, dθ[ therefore x is
θ-stable.

Considering again the closed subvariety X ⊂ W one defines the regular locus:

Definition 2.2.22 (Regular locus). The regular locus Breg is the set of elements
θ ∈ C(A)reg ∩ Z(h) such that for all x ∈ Xθ-ss the stabilizer of x in G is trivial and
Xθ-ss 6= ∅.

Proposition 2.2.23. The regular locus Breg is the union of some connected com-
ponents of C(A)reg ∩ Z(h).

Proof. By Theorem 2.2.21, if θ and θ′ are in the same connected component of
C(A)reg ∩Z(h) then W θ-ss = W θ′-ss. Hence if θ ∈ C(A)reg ∩Z(h) is such that for all
x ∈ Xθ-ss the stabilizer of x in G is trivial and Xθ-ss 6= ∅, the same holds for θ′ in
the same connected component of C(A)reg ∩ Z(h).

Remark 2.2.24. Note that the regular locus Breg can be empty, for instance if the
center Z(h) is a subset of a cone C(A′) with dimA′ < dim t. Fortunately it is
non-empty for the application to Nakajima’s quiver varieties of next sections.

In next subsection we prove that the real moment map is a locally trivial fibration
over the regular locus Breg.

2.2.6 Trivialization of the real moment map over the regular
locus

Next construction follows ideas from Hitchin-Karlhede-Lindström-Roček and is il-
lustrated in [Hit+87, Figure 3 p.348].

Proposition 2.2.25. For χθ ∈ X ∗(G)R and x a θ-stable point with trivial stabilizer,
there exists a unique Y θ,x ∈ h such that exp

(
iY θ,x

)
.x ∈ µ−1(θ). Moreover for h ∈ H

the adjoint action of h on Y θ,x satisfies

h.Y θ,x = Y θ,h.x. (2.9)

Let θ′ = µ(x) and x′ = exp
(
iY θ,x

)
.x, then

Y θ′,x′ = −Y θ,x. (2.10)

.

Proof. As x is θ-stable, by Proposition 2.2.12 the orbit G.x intersects µ−1(θ) exactly
on aH-orbit. There exists g ∈ G such that g.x ∈ µ−1(θ). Apply polar decomposition
to this element g = h0 exp

(
iY θ,x

)
with h0 ∈ H and Y θ,x ∈ h. Then

µ−1(θ) ∩G.x = H. exp
(
iY θ,x

)
.x
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Take Y ′ such that exp (iY ′) .x ∈ µ−1(θ) then

exp(iY ′).x = h exp(iY θ,x).x

for some h in H. By triviality of the stabilizer of x and uniqueness of polar decom-
position Y ′ = Y θ,x hence Y θ,x is uniquely determined. Let us check H-equivariance,
for h ∈ H

µ−1(θ) 3 h exp(iY θ,x).x = exp
(
ih.Y θ,x

)
.h.x

by uniqueness Y θ,h.x = h.Y θ,x. Equation (2.10) is clear.

Remark 2.2.26. The assumption that x has a trivial stabilizer can be relaxed. Then
there exists Y x,θ ∈ h such that{

Y ∈ h | exp(iY ).x ∈ µ−1(θ)
}

= (StabH x) .Y θ,x

The right-hand side is the orbit of Y θ,x under the adjoint action of the stabilizer of
x in H. For applications to quiver varieties we only need to consider the case of a
trivial stabilizer.

Lemma 2.2.27. Let θ ∈ Z(h) and x0 a θ-stable point with trivial stabilizer. There
exists an open neighborhood Uθ,x0 of (θ, x0) in h×X and a smooth map

Y : Uθ,x0 → h
(θ′, x′) 7→ Y (θ′, x′)

such that µ (exp (iY (θ′, x′)) .x′) = θ′.

Proof. Note that when θ ∈ Z(h) necessarily Y (θ, x) is equal to the Y θ,x introduced in
previous proposition. Let Y θ,x0 such that x := exp

(
iY θ,x0

)
.x0 is in the intersection

G.x0 ∩ µ−1(θ). Consider the map

f : h× h×X → h
(Y ′, θ′, x′) 7→ µ (exp(iY ′).x′)− θ′

in order to use the implicit function theorem on a neighborhood of
(
Y θ,x0 , θ, x0

)
we

first prove that the differential of f with respect to Y ′ at (Y θ,x0 , θ, x0) is invertible. As
x has a finite stabilizer, the embedding of tangent spaces TxH.x ↪−→ TxG.x identifies
with the embedding

h ∼= TIdH ↪−→ TIdG ∼= h⊕ ih. (2.11)

By Proposition 2.2.10, dµ is surjective so that µ−1(θ) is a smooth manifold and
ker dµx = Txµ

−1(θ). Proposition 2.2.12 implies µ−1(θ) ∩G.x = H.x Restricting dxµ
to the tangent space of the G-orbit we obtain the following short exact sequence

0 ↪−→ TxH.x ↪−→ TxG.x
dxµ|TxG.x−−−−−−→ h −→ 0.

the surjectivity follows from dimension counting and the identification of the tangent
spaces with (2.11). Thus we obtain the expected invertibility of the differential
with respect to Y ′ of f at (Y θ,x0 , θ, x0), the map dY ′f(Y θ,x0 ,θ,x0), identifies with an
invertible map ih→ h. The implicit function theorem applies and gives the existence
of Uθ,x0 ⊂ h × X an open neighborhood of (θ, x0) and the expected smooth map
Y (. . . , . . . ).
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Next theorem is a first result concerning local triviality of the moment map, over
the regular locus Breg the real moment map is a locally trivial fibration.

Theorem 2.2.28. Let θ0 in Breg, and Uθ0 the connected component of Breg contain-
ing θ0. There is a diffeomorphism f such that the following diagram commutes

Uθ0 × µ−1 (θ0) µ−1(Uθ0)

Uθ0

f

∼

µ

Moreover f is H equivariant so that the diagram goes down to quotient

Uθ0 × µ−1 (θ0) /H µ−1(Uθ0)/H

Uθ0

∼

Proof. For θ ∈ Uθ0 we know from 2.2.5 that Xθ-s = Xθ0-s 6= ∅. Define f by

f(θ, x) := exp (iY (θ, x)) .x

It follows from Proposition 2.2.25 that it is invertible with inverse

f−1(x′) = (µ(x′), exp (iY (θ0, x
′)) .x′) .

Lemma 2.2.27 implies that f is a diffeomorphism. Equivariance follows from equa-
tion (2.9) so that f(θ, h.x) = h.f(θ, x) and f goes down to a diffeomorphism between
quotients.

In next sections Nakajima’s quiver varieties are considered, they admit an ad-
ditional hyperkähler structure. A similar trivialization is established in this hyper-
kähler context.

2.3 Quiver varieties and stability

2.3.1 Generalities about quiver varieties

The quiver varieties considered in this thesis were introduced by Nakajima [Nak94].
Let Γ be a quiver with vertices Ω0 and edges Ω1. For an edge γ ∈ Ω1 we denote
t(γ) ∈ Ω0 its tail and h(γ) ∈ Ω0 its head, we define the reverse edge γ such that
t(γ) = h(γ) and h(γ) = t(γ).

t(γ)• •h(γ)

γ

γ

Let Ω1 := {γ |γ ∈ Ω1} and Ω̃ := Ω1 t Ω1. For γ ∈ Ω1 we set γ := γ to obtain an
involution on Ω̃. The extended quiver Γ̃ is obtained by adding an inverse to all edges
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in Ω1, its set of vertices is Ω0 and its set of edges is Ω̃. Let ε : Ω̃ → {−1, 1} be the
map {

ε(γ) = 1 if γ ∈ Ω1

ε(γ) = −1 if γ ∈ Ω1

We fix a dimension vector v ∈ NΩ0 . A representation of the quiver Γ with dimension
vector v is a pair (V, φ) with V =

⊕
j∈Ω0

Vj a graded vector space with dimVj = vj
and φ = (φγ)γ∈Ω1 a collection of linear maps φγ : Vt(γ) → Vh(γ). A subrepresentation
is a subspace W ⊂ V with a compatible Ω0-grading and preserved by φ. The set of
quiver representations with dimension vector v is identified with

Rep (Γ, v) :=
⊕
γ∈Ω1

MatC(vh(γ), vt(γ)).

For construction of quiver varieties it is interesting to consider representations of
the extended quiver Γ̃

Rep
(

Γ̃, v
)

:=
⊕
γ∈Ω̃

MatC(vh(γ), vt(γ)).

It is a complex vector space, the complex structure considered in this section is

I.(φγ)γ∈Ω̃ = (iφγ)γ∈Ω̃

The group GLv :=
∏

i∈Ω0
GLvi(C) acts linearly on Rep(Γ̃, v)

g. (φγ)γ∈Ω̃ :=
(
gh(γ)φγg

−1
t(γ)

)
γ∈Ω̃

.

The diagonal embedding of C∗ in GLv acts trivially so that the action goes down to
an action of the group

Gv := GLv /C∗,
which identifies with

Gv
∼=

{
(gj)j∈Ω0 ∈ GLv|

∏
j∈Ω0

det(gj) = 1

}
.

Note that Gv is isomorphic to a product of a special linear group and a finite number
of general linear groups so that it is a reductive group. The Lie algebra of GLv,
respectively Gv is glv =

⊕
j∈Ω0

glvj(C) respectively.

gv =

{
(xj)j∈Ω0 ∈ glv

∣∣∣∣∣∑
j∈Ω0

trxj = 0

}
The center of gv is

Z(gv) =

{
(ξj Idvj)j∈Ω0

∣∣∣∣∣(ξj)j∈Ω0 ∈ (C)Ω0 with
∑
j∈Ω0

vjξj = 0

}
.

Let θ ∈ ZΩ0 such that
∑

j∈Ω0
vjθj = 0, define χθ a character of Gv by

χθ ((gj)j∈Ω0) =
∏
j∈Ω0

det(gj)
−θj . (2.12)

The θ-semistable locus, respectively θ-stable locus in the sense of Mumford’s Geo-
metric Invariant Theory [MF82], are denoted by Rep(Γ̃, v)θ-ss, respectively Rep(Γ̃, v)θ-s.
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Definition 2.3.1 (Complex moment map). The complex moment map is defined by

µC : Rep(Γ̃, v) → gv
(φγ)γ∈Ω̃ 7→

∑
γ∈Ω̃ ε(γ)φγφγ

it is Gv-equivariant for the adjoint action on gv.

This complex moment map will be related to the real moment map of Definition
2.2.8 in next section.

Definition 2.3.2 (Nakajima’s quiver variety). For ξ ∈ Z(gv), the set µ−1
C (ξ) is an

affine variety in Rep(Γ̃, v), it inherits a Gv action. Nakajima’s quiver varieties are
defined as GIT quotients:

Mθ
v(ξ) := µ−1

C (ξ) ∩ Rep(Γ̃, v)θ-ss//Gv.

Those varieties are interesting from the differential geometry point of view and
have an hyperkähler structure. We are interested in the family formed by those
varieties when the parameters ξ and θ are varying. Before studying those family, we
introduce another kind of variety: Nakajima’s framed quiver variety.

Fix another dimension vector w ∈ NΩ0 and denote

Rep (v, w) :=
⊕
j∈Ω0

MatK(vi, wi)

Rep (w, v) :=
⊕
j∈Ω0

MatK(wi, vi)

An element g ∈ GLv acts on a = (aj)j∈Ω0 ∈ Rep (v, w) by

g.a := (ajg
−1
j )j∈Ω0

and on b = (bj)j∈Ω0 ∈ Rep (v, w) by

g.b := (gjbj)j∈Ω0

Introduce framed quiver representations

Rep
(

Γ̃, v, w
)

:= Rep (v, w)⊕ Rep (w, v)⊕ Rep
(

Γ̃, v
)

and extend the moment map

µ′ : Rep(Γ̃, v, w) → glv
(a, b, φ) 7→ (µ(φ)j − bjaj)j∈Ω0

.

Definition 2.3.1. Let θ ∈ RΩ0, a representation (a, b, φ) ∈ Rep(Γ̃, v, w) is θ-
semistable if for any φ-invariant subspace S ⊂ V such that Sj ∈ aj the following
inequality holds ∑

j∈Ω0

θj dimSj ≤ 0

and for any φ-invariant subspace T ⊂ V such that Im bj ⊂ Tj∑
j∈Ω0

θj dimTj ≤
∑
j∈Ω0

θjvj.

It is stable if the inequality are strict unless S = 0 and T = V .
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The result of King extends to the framed case.

Theorem 2.3.2. Let θ ∈ ZI , a point of the affine variety Rep
(
Γ, v, w

)
is stable

(respectivly semistable) with respect to the linearization

χθ : GLv → C∗
(gi)i∈I 7→

∏
i∈I det(gi)

−θi

in the sense of GIT, if and only if it is θ-stable, respectivly θ-semistable in the sense
of definition 2.3.1.

Proof. A result of Crawley-Boevey identifying framed quiver varieties to unframed
ones (remark at the end of Section 1 in [Cra01]) and the discussion following Defi-
nition 4.2.1 in [Let11] bring this theorem back to the unframed case.

Definition 2.3.3 (Nakajima’s framed quiver varieties). For ξ in the center of glv
and θ ∈ ZΩ0 the Nakajima’s framed quiver variety is defined as a GIT quotient

Mθ
v,w(ξ) := µ′

−1
(ξ) ∩ Rep

(
Γ̃, v, w

)θ-ss
//GLv

2.3.2 King’s characterization of stability of quiver represen-
tations

As in Section 2.2 the geometric invariant theory has a symplectic counterpart.
Rep

(
Γ̃, v
)
is an hermitian vector space with norm

∣∣∣∣∣∣(φγ)γ∈Ω̃

∣∣∣∣∣∣2 =
∑
γ∈Ω̃

tr(φγφ
†
γ).

The Gv-action restricts to a unitary action of the maximal compact subgroup

Uv =

{
(gj)j∈Ω0 ∈

∏
j∈Ω0

Uvj

∣∣∣∣∣ ∏
j∈Ω0

det(gvj) = 1

}

The Lie algebra of Uv is

uv =

{
(xj)j∈Ω0 ∈

⊕
j∈Ω0

uvj

∣∣∣∣∣∑
j∈Ω0

trxj = 0

}

with Uvj , respectively uvj , the group of unitary matrices, respectively the space of
skew-hermitian matrices of size vj. The real moment map µI for the Uv action
satisfies

〈µI(x), Y 〉 =
1

2

d

dt
|| exp(it.Y ).x||2

∣∣∣∣
t=0

for Y ∈ uv. The pairing is defined for Y = (Yj)j∈Ω0 and Z = (Zj)j∈Ω0 by

〈Y, Z〉 =
∑
j∈Ω0

tr(YjZj). (2.13)
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As in 2.2.2, to the character χθ defined by (2.12) is associated the following element
of the Lie algebra uv

θ = (−iθj Idvj)j∈Ω0 ∈ uv. (2.14)

Indeed for Y = (Yj)j∈Ω0 in the Lie algebra uv, by the usual differentiation of the
determinant map at identity

dχθId(iYj) = −
∑
j∈Ω0

iθj tr(Yj) = 〈θ, Y 〉 .

We recall here an important result from King giving a characterization of θ-
stability for quiver representations.

Theorem 2.3.3 (King [Kin94] Proposition 3.1). Let θ ∈ ZΩ0 such that
∑
θjvj = 0

and χθ the associated character defined by (2.12) .

1. A quiver representation (V, φ) ∈ Rep
(

Γ̃, v
)
is θ-semistable if and only if for

all subrepresentation W ⊂ V ∑
j∈Ω0

θj dimWj ≤ 0.

2. A quiver representation (V, φ) is a θ-stable if and only if for all subrepresen-
tation W different from 0 and (V, φ)∑

j∈Ω0

θj dimWj < 0.

The symplectic point of view allows to consider real parameters θ ∈ RΩ0 such that∑
j∈Ω0

vjθj = 0. They are associated to elements χθ ∈ X ∗(Gv)
R with well-defined

modulus: ∣∣χθ ((gj)j∈Ω0)
∣∣ =

∏
j∈Ω0

|det(gj)|−θj .

The set of θ-stable points in Rep
(

Γ̃, v
)
is defined by Definition 2.2.4. The end of

this section is devoted to a generalization of the second point of King’s theorem for
real parameters θ ∈ RΩ0 such that

∑
θjvj = 0.

Let Y = (Yj)j∈Ω0
∈ uv, the iYj are hermitian endomorphisms of V j. For λ ∈ R

denote by V j
≤λ the subspace of V j spanned by eigenvectors of iYj with eigenvalues

smaller than λ then define
V≤λ :=

⊕
j∈Ω0

V j
≤λ.

Lemma 2.3.4. Let x = (V, φ) in Rep
(

Γ̃, v
)
and Y ∈ uv. The limit

lim
t→+∞

exp(itY ).x

exists if and only if for every λ real, V≤λ defines a subrepresentation of (V, φ)
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Proof. For all j ∈ Ω0 take a basis of V j formed by eigenvectors of iYj and assume
the eigenvalues repeated according to multiplicities are ordered

λj1 ≤ λj2 ≤ · · · ≤ λjvj .

In those basis of eigenvectors, for γ ∈ Γ̃ one can write the matrix of φγ and compute
the action of exp(itY )

(exp(itY ).φ)γ =


φγ1,1 et(λ

h(γ)
1 −λt(γ)2 )φγ1,2 . . .

et(λ
h(γ)
2 −λt(γ)1 )φγ2,1

... . . . et(λ
h(γ)
a −λt(γ)b )φγa,b . . .

e
t(λ

h(γ)
vh(γ)

−λt(γ)1 )
φγvh(γ),1 . . .


the limit exists if and only if the matrix is upper triangular i.e. φ(V≤λ) ⊂ V≤λ and
V≤λ defines a subrepresentation of (V, φ).

Next result is the generalization of King’s theorem relative to θ-stability of quiver
representations for a real parameter θ. Its proof relies on previous lemma and the
Hilbert-Mumford criterion for real one-parameter Lie groups 2.2.16.

Theorem 2.3.4. Let θ ∈ RΩ0 such that
∑

j∈Ω0
θjvj = 0 and χθ the associated

element in X ∗(Gv)
R. A quiver representation (V, φ) is θ-stable if and only if for all

subrepresentation W ⊂ V different from 0 and (V, φ)∑
j∈Ω0

θj dimWj < 0.

Proof. Let x = (V, φ) in Rep
(

Γ̃, v
)θ-s

a θ-stable point. By Hilber-Mumford criterion
(Theorem 2.2.16), for all Y ∈ uv such that limt→+∞ exp(itY ).x exists then 〈θ, Y 〉 < 0.

LetW be a subrepresentation of (V, φ) different from 0 and (V, φ). For all j ∈ Ω0

define Yj in uvj such that Wj is an eigenspace of iYj with eigenvalue λ1 and W⊥
j

the orthogonal complement of Wj is an eigenspace of iYj with eigenvalue λ2 and
λ2 > λ1. By previous lemma limt→+∞ exp(itY ).x exists.

〈θ, Y 〉 = −
∑
j∈Ω0

θj (λ1 dimWj + λ2 (dimVj − dimWj))

= −
∑
j∈Ω0

(λ1 − λ2)θj dimWj

because
∑
θjvj = 0. Then Hilbert-Mumford criterion implies 〈θ, Y 〉 < 0, hence∑

j∈Ω0
θj dimWj < 0.

Conversely let x = (V, φ) a quiver representation such that for all subrepresen-
tation W  V different from 0 ∑

j∈Ω0

θj dimWj < 0.

Let Y = (Yj)j∈Ω0
∈ uv different from zero. The set of eigenvalues of iYj is ordered

λj1 < · · · < λjdj . The set of all eigenvalues for all j ∈ Ω0 is also ordered{
λjk
}

j∈Ω0
1≤k≤dj

= {λ1, λ2, . . . , λm}
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with λk < λk+1. For convenience add an element λ0 < λ1. If limt→=∞ exp(itY ).x
exists, by previous lemma V≤λ is a subrepresentation of (V, φ). Moreover

〈θ, Y 〉 = −
∑
j∈Ω0

θj

dj∑
k=1

λjk

(
dimV j

≤λjk
− dimV j

≤λjk−1

)

= −
∑
j∈Ω0

θj

m∑
k=1

λk

(
dimV j

≤λk − dimV j
≤λk−1

)
= −

∑
j∈Ω0

θj

m−1∑
k=1

(λk − λk+1) dimV j
≤λk

−λm
∑
j∈Ω0

θj dimV j
≤λm .

The last summand vanishes as
∑
θjvj = 0,

〈θ, Y 〉 = −
m∑
k=1

(λk − λk+1)
∑
j∈Ω0

θj dimV j
≤λk

As Y 6= 0, it has at least two distinct eigenvalues. Then V≤λ1 is a subrepresentation
different from zero and V and

−(λ0 − λ1)
∑
j∈Ω0

θj dimV j
≤λ1 < 0

so that 〈θ, Y 〉 < 0.

This result is useful in next section to characterize a regular locus for the hyper-
kähler moment map.

2.4 Nakajima’s quiver varieties as hyperkähler quo-
tients and trivialization of the hyperkähler mo-
ment map

After some reminder about the hyperkähler structure of Nakajima’s quiver varieties,
trivializations of the hyperkähler moment map are discussed.

2.4.1 Hyperkähler structure on the space of representations
of an extended quiver

The space Rep
(

Γ̃, v
)
is endowed with three complex structures

I. (φγ, φγ) = (iφγ, iφγ)

J. (φγ, φγ) = (−φ†γ, φ†γ)
K. (φγ, φγ) = (−iφ†γ, iφ†γ)
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satisfying quaternionic relations

I2 = J2 = K2 = IJK = −1 (2.15)

and a norm ∣∣∣∣∣∣(φγ)γ∈Ω̃

∣∣∣∣∣∣2 =
∑
γ∈Ω̃

tr
(
φγφ

†
γ

)
.

For each complex structure, polarisation identity defines an hermitian pairing com-
patible with || . . . ||. For example the hermitian pairing compatible with the complex
structure I used in previous section is

pI (u, v) =
1

4

(
||u+ v||2 − ||u− v||2 + i||u+ I.v||2 − i||u− I.v||2

)
pJ(. . . , . . . ) and pK(. . . , . . . ) are similarly defined. One expression is particularly
simple

pI

(
(φγ)γ∈Ω̃, (ψγ)γ∈Ω̃

)
=
∑
γ∈Ω̃

tr(φγψ
†
γ).

Remark 2.4.1. Even if the hermitian metric relies on the choice of complex struc-
ture, by the polarisation identity the real part remains the same, it is the hyperkähler
metric

g(. . . , . . . ) := Re pI(. . . , . . . ) = Re pJ(. . . , . . . ) = Re pK(. . . , . . . ).

Definition 2.4.2 (Real symplectic forms). As in equation (2.4) we define a real
symplectic form for each complex structure

ωI(. . . , . . . ) := g(I . . . , . . . )

ωJ(. . . , . . . ) := g(J . . . , . . . )

ωK(. . . , . . . ) := g(K . . . , . . . )

Notations 2.4.3. I-linear means C-linear with respect to the complex structure I
and similarly for J-linear and K-linear.

Proposition 2.4.4 (Permutation of complex structures). Consider the map

Ψ : Rep
(

Γ̃, v
)
→ Rep

(
Γ̃, v
)

x 7→ 1
2

(1 + I + J +K) .x

It is an isomorphism from the hermitian vector space Rep
(

Γ̃, v
)
with the complex

structure I and hermitian pairing pI to the hermitian vector space Rep
(

Γ̃, v
)
with

the complex structure J and pairing pJ .
More generally it cyclically permutes the three complex structure I, J,K

Ψ(I.x) = J.Ψ(x)
Ψ(J.x) = K.Ψ(x)
Ψ(K.x) = I.Ψ(x).

(2.16)

Such a map is sometimes called an hyperkähler rotation.
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Proof. Relations (2.16) follow from a computation with the quaternionic relations
(2.15). To prove the compatibility with the hermitian structures it is enough to
check that ||Ψ(x)|| = ||x||.

||(1 + I + J +K).x||2 = g ((1 + I + J +K).x, (1 + I + J +K).x) .

The expected result is obtain after cancellations from the identity g(I.u, u) = 0,
similar relations for the other complex structures and quaternionic relations (2.15).

In 2.3.1 an I-linear action of Gv is described. The hyperkähler rotation Ψ pro-
vides the following construction for J-linear andK-linear actions. This three actions
coincide when restricted to the compact subgroup Uv.

Definition 2.4.5 (Complexification of the action). Thanks to polar decomposition,
to define a linear action of Gv compatible with the complex structure J it is enough
to define the action of exp(i.Y ) for Y ∈ uv. To highlight the complex structure used,
this action is written exp(J.Y ) . . . and defined by

exp(J.Y ).x := Ψ
(
exp(i.Y ).Ψ−1(x)

)
with the element exp(i.Y ) of Gv acting by the natural I-linear action previously
described. Similarly

exp(K.Y ).x := Ψ−1 (exp(i.Y ).Ψ(x)) .

Remark 2.4.6. A point x is θ-(semi)stable with respect to the I-linear action if and
only if Ψ(x) is θ-(semi)stable with respect to the J-linear action.

2.4.2 Hyperkähler structure and moment maps

By Proposition 2.4.4 the various Gv-actions previously described are compatible
with the hermitian metrics so that the constructions of section 2.2 apply. They
provide a moment map for each complex structure.

〈µI(x), Y 〉 =
1

2

d

dt
|| exp(t.I.Y ).x||2

∣∣∣∣
t=0

〈µJ(x), Y 〉 =
1

2

d

dt
|| exp(t.J.Y ).x||2

∣∣∣∣
t=0

〈µK(x), Y 〉 =
1

2

d

dt
|| exp(t.K.Y ).x||2

∣∣∣∣
t=0

.

The pairing is defined by (2.13).

Definition 2.4.7 (Hyperkähler moment map). Those three real moment maps fit
together in an hyperkähler moment map µH : Rep

(
Γ̃, v
)
→ uv ⊕ uv ⊕ uv defined by

µH = (µI , µJ , µK).

The moment map µC defined in 2.3.1 by

µC

(
(φγ)γ∈Ω̃

)
:=
∑
γ∈Ω̃

ε(γ)φγφγ. (2.17)
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can be expressed from the real moment maps

µC := µJ + iµK .

it is a polynomial map with respect to the complex structure I.

Remark 2.4.8. By cyclic permutation of the complex structure, µK + iµI is polyno-
mial with respect to the complex structure J and µI + iµJ is polynomial with respect
to the complex structure K.

Take (θJ,j)j∈Ω0 and (θK,j)j∈Ω0 in RΩ0 such that
∑

j vjθJ,j =
∑

j vjθK,j = 0. Asso-
ciate to each of them an element in the center of the Lie algebra uv

θJ :=
(
−iθJ,j Idvj

)
j∈Ω0

θK :=
(
−iθK,j Idvj

)
j∈Ω0

.

Then θJ + iθK defines an element in the center of gv = uv ⊕ iuv. Hence µ−1
J (θJ) ∩

µ−1
K (θK) = µ−1

C (θJ+iθK) is an affine variety embedded in the vector space Rep
(

Γ̃, v
)

endowed with the complex structure I and stable under the Gv-action. Section 2.2
does not apply directly to this situation as µ−1

C (θJ+iθK) might be singular. However
it applies to the action of Gv on the ambiant space Rep

(
Γ̃, v
)
. For θI ∈ RΩ0 such

that
∑

j∈Ω0
vjθI,j = 0 consider the associated element χθI ∈ X ∗(Gv)

R.

Definition 2.4.9 (Hyperkähler regular locus). For w ∈ NΩ0 a dimension vector

Hw :=

{
(θI , θJ , θK) ∈

(
RΩ0

)3

∣∣∣∣∣∑
j

wjθI,j =
∑
j

wjθJ,j =
∑
j

wjθK,j = 0

}
.

The regular locus is
Hreg
v = Hv \

⋃
w<v

Hw (2.18)

the union is over dimension vector w 6= v such that 0 ≤ wi ≤ vi.

Remark 2.4.10. This regular locus is empty unless the dimension vector v is indi-
visible, then Hreg

v is the complementary of a finite union of codimension 3 real vector
space.

Thanks to Kempf-Ness theory, Nakajima’s quiver varieties can be constructed as
hyperkähler quotients. The underlying manifold of the varietyMθI

v (θJ + iθK) (see
definition 2.3.2) is :

mv(θI , θJ , θK) = µ−1
H (θI , θJ , θK)/Uv

2.4.3 Trivialization of the hyperkähler moment map

We study the family of Nakajima’s quiver varieties when the parameters (θI , θJ , θK)
are varying. Nakajima proved by consecutive uses of different complex structures
that for θ and θ′ in Hreg

v the manifolds mv(θI , θJ , θK) and mv(θ
′
I , θ
′
J , θ
′
K) are diffeo-

morphic [Nak94, Corollary 4.2]. We use this idea of consecutive uses of different
complex structures to prove that those manifolds fit in a locally trivial family over
the regular locus Hreg

v . First let us highlight relevant facts about the regular locus.
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Lemma 2.4.11. Let (θI , θJ , θK) ∈ Hreg
v and x ∈ µ−1

J (θJ) ∩ µ−1
K (θK). Then x is

θI-stable if and only if it is θI-semistable.

Proof. If x0 ∈ µ−1
H (θI , θJ , θK) its stabilizer in Gv is trivial. Indeed Maffei proved

that the differential of the moment map at x0 is surjective [Maf02, Lemma 48], then
Proposition 2.2.10 implies the triviality of the stabilizer of x0.

Let x ∈ µ−1
J (θJ) ∩ µ−1

K (θK) a θI-semistable point. Then Gv.x ∩ µ−1
I (θI) is not

empty. As µ−1
J (θJ) ∩ µ−1

K (θK) = µ−1
C (θJ + iθK) is Gv stable, the closure of the

orbit Gv.x meets µ−1
H (θI , θJ , θK) at a point x0. This point necessarily has a trivial

stabilizer, hence x0 ∈ Gv.x and x is θI-stable.

Let (θI , θJ , θK) ∈ Hreg
v and consider first the complex structure I. By previous

lemma and King’s characterisation of stability (Theorem 2.3.4), for θ′I in an open
neighborhood of θI , stability with respect to θ′I is the same as stability with respect
to θI .

Now consider the complex structure J . Thanks to Remark 2.4.6 on the affine
variety µ−1

K (θK) ∩ µ−1
I (θI) all θJ -semistable points are θJ -stable. Moreover for θ′J in

an open neighborhood of θJ , stability with respect to θ′J is the same as stability with
respect to θJ . Similarly for the complex structure K.

Assume that the dimension vector v is a root of the quiver so that the moment
map is surjective, see [Cra06, Theorem 2]. Consider the diagram

µ−1
H (Hreg

v ) Rep
(

Γ̃, v
)

Hreg
v uv ⊕ uv ⊕ uv

µH
.

.

Theorem 2.4.12 (Local triviality of the hyperkähler moment map). Over the regu-
lar locus Hreg

v , the hyperkähler moment map µH is a locally trivial fibration compatible
with the Uv-action:

Any (θI , θJ , θK) ∈ Hreg
v admits an open neighborhood V , and a diffeomorphism

f such that the following diagram commutes

V × µ−1
H (θI , θJ , θK) µ−1

H (V )

V

f

∼

µH

Moreover f is compatible with the Uv-action so that the diagram goes down to quo-
tient

V ×mv(θI , θJ , θK) µ−1
H (V )/Uv

V

∼

Proof. The method is similar to the proof of Theorem 2.2.28 applied consecutively
to the three complex structures. The idea of using different complex structures
comes from [Nak94] and [Kro89]. Take (θI , θJ , θK) ∈ Hreg

v and a connected open
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neighborhood UI × UJ × UK such that for θ′I ∈ UI , any x ∈ µ−1
J (UJ) ∩ µ−1

K (UK) is
θ′I-semistable if and only if it is θI-stable. Similarly for UJ and UK . For any x with
µH(x) = (θ′I , θ

′
J , θ
′
K) ∈ UI × UJ × UK , by Proposition 2.2.25 applied to the I-linear

action of Gv on Rep
(

Γ̃, v
)
, there exists a unique YI(θI , x) ∈ uv such that

exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θ

′
J , θ
′
K).

Then by exchanging the three complex structures with hyperkähler rotations, there
exists unique YJ(θJ , x) and YK(θK , x) such that

exp (J.YJ(θJ , x)) exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θJ , θ

′
K)

and

exp (K.YK(θK , x)) exp (J.YJ(θJ , x)) exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θJ , θK).

This defines the map f−1

f−1(x) := ((θ′I , θ
′
J , θ
′
K), exp (K.YK(θJ , x)) exp (J.YJ(θJ , x)) exp (I.YI(θI , x)) .x) .

Lemma 2.2.27 implies the smoothness of f−1. This map induces a diffeomorphism,
indeed exchanging θ and θ′ in previous construction produces the expected inverse

f (x, (θ′I , θ
′
J , θ
′
K)) := exp (I.YI(θ

′
I , x)) exp (J.YJ(θ′J , x)) exp (K.YK(θ′K , x)) .x

It follows from equation (2.10) that the maps are inverse of each others. The ex-
change in the order of appearance of the complex structures I, J and K in the
definition of f and f−1 are necessary as the exponentials do not necessarily com-
mute. The Uv-equivariance follows from equation (2.9).

Similarly one can consider the complex moment map µC = µJ + iµK instead of
µH. The complex regular locus is Creg

v := Cv \
⋃
w<v Cw with

Cw =

{
ξ ∈ CΩ0

∣∣∣∣∣∑
j∈Ω0

wjξj = 0

}

Theorem 2.4.13. The complex moment map is a locally trivial fibration over Creg
v .

Any ξ ∈ Creg
v admits an open neighborhood V , and a diffeomorphism f such that the

following diagram commutes

V × µ−1
C (ξ) µ−1

C (V )

V

f

∼

µC

Proof. The proof is similar to the hyperkähler situation.

Denote π : µ−1
H (Hreg

v )/Uv → Hreg
v the map obtained taking the quotient of µH.

Consider the cohomology sheaves Hiπ∗Ql of the derived pushforward of the con-
stant sheaf and the cohomology sheaves Hiπ!Ql of the derived compactly supported
pushforward of the constant sheaf.
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Corollary 2.4.14. The sheaves Hiπ∗Ql and Hiπ!Ql are constant sheaves over Hreg
v .

Proof. By Theorem 2.4.12 those sheaves are locally constant. Hreg
v is a comple-

mentary of a finite union of codimension 3 real vector spaces, hence it is simply
connected so that the locally constant sheaves are constant.

Nakajima explained to us that this corollary can also be obtained by generalizing
Slodowy’s construction [Slo80] to quiver varieties.

Finally we extend the trivialization of the hyperkähler moment map over lines
constructed by Crawley-Boevey and Van den Bergh [CV04] using twistor spaces as
told to us by Nakajima.

Denote by H, respectively H0, the set of quaternions, respectively the set of
purely imaginary quaternions and H∗0 = H0 \ {0}. The space u⊕3

v is identified with
H0 ⊗R uv. Then the hyperkähler moment map reads

µH = I ⊗ µI + J ⊗ µJ +K ⊗ µK .

Once an orthonormal basis of R3 is fixed, the triple of complex structures I, J and
K is fixed and we write µR = µI , µC = µJ + iµK . The hyperkähler moment map
is assumed to be surjective and the dimension vector indivisible. Then Hreg

v is the
open subset of generic parameters in H0⊗RZ(uv). For θ ∈ Hreg

v a generic parameter
and S a contractible subset of H∗0, Crawley-Boevey and Van den Bergh constructed
a trivialization of the hyperkähler moment map over S ⊗ θ, see [CV04] proof of
Lemma 2.3.3 (in the statement of this lemma S is chosen to be a complex line). The
assumption contractible is relaxed in next theorem. It relies on the theory of twistor
spaces developped by Penrose [Pen76], Atiyah-Hitchin-Singer [AHS78] and Salamon
[Sal82][Sal86]. The main point is the compatibility between hyperkähler quotients
and twistor spaces from Hitchin-Karlhede-Lindström-Roček [Hit+87] p.560, see also
Hitchin [Hit92]. The following Theorem as well as its proof was told to us by
Nakajima.

Theorem 2.4.15. For θ generic in H0 ⊗R Z(uv) define

H∗0.θ = {h⊗ θ |h ∈ H∗0} .

There exists a diffeomorphism f such that the following diagram commutes

µ−1
H (H∗0.θ)/Uv µ−1

H (θ)/Uv ×H∗0.θ

H∗0.θ

f

µH

the vertical arrow is the projection to H∗0.θ.

Proof. Consider the quaternionic vector space Rep
(

Γ̃, v
)
and the projection

Rep
(

Γ̃, v
)
× S2 → S2.

With S2 the 2-sphere of imaginary quaternions with unit norm

S2 =
{
aI + bJ + cK

∣∣a2 + b2 + c2 = 1
}
.
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S2 is given the usual complex structure of the projective line. The twistor space
associated to Rep

(
Γ̃, v
)
is the manifold Rep

(
Γ̃, v
)
× S2 endowed with a complex

structure such that the fiber over Iu ∈ S2 is Rep
(

Γ̃, v
)
seen as a vector space with

complex structure Iu.
As detailed in [CV04], the group of quaternion of unit norm, identified with

SU(2), acts on H0 ⊗ Z(uv) by

h. (h′ ⊗ θ) = hh′h⊗ θ.

with aI + bJ + cK + d = −aI − bJ − cK + d. Let θ a generic parameter, up to the
choice of orthonormal basis of R3 we can assume θ = I ⊗ θI . The SU(2) orbit of θ
thus identifies with S2 as

SU(2).θ =
{
Iu ⊗ θ

∣∣Iu ∈ S2
}
. (2.19)

The twistor space of the hyperkähler manifold µ−1
H (θ)/Uv is a complex manifold T

with an holomorphic map p to S2

T S2.
p

The underlying differential manifold of the twistor space is just a product and p the
projection to the second factor

µ−1
H (θ)/Uv × S2 S2.

The twistor spaces construction is compatible with hyperkähler quotients as ex-
plained in [Hit+87] p.560. Thus the fiber of p over Iu is µ−1

H (θ)/Uv endowed with the
complex structure inherited from the complex structure Iu on Rep

(
Γ, v
)
. Namely

if Iu ⊗ θ = (θ′I , θ
′
J , θ
′
K) then the fiber of the twistor space over Iu is the complex

manifold
p−1(Iu) = µ−1

C (θ′J + iθ′K) ∩ µ−1
R (θ′I)/Uv

Thus fibers of p are exactly fibers of µH and the twistor space provides trivialization
of the hyperkähler moment map over the orbit SU(2).θ:

µ−1
H (SU(2).θ)/Uv T µ−1

H (θ)/Uv × S2

SU(2).θ S2

µH

β

p

γ

∼
α

α is defined thanks to (2.19), the map β is the identity on the fibers and γ forgets the
complex structure. This diagram traduces the equivalence between, on the right,
varying complex structure on a fixed fiber µ−1

H (θ)/Uv and on the left varying the
fiber for a fixed complex structure I.

The construction is similar to Crawley-Boevey and Van den Bergh’s construction
except that the twistor space formalism allows to obtain a trivialization over the
non-contractible space SU(2).θ.
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As in [CV04], the trivialization can be extended thanks to the R>0 action. Note
that for t a positive real number µH(tx) = t2µH(x). Then identifying S2×R>0 with
H∗0 we obtain the trivialization

µ−1
H (H∗0.θ)/Uv µ−1

H (θ)/Uv ×H∗0

H∗0.θ H∗0

The SU(2)-action on the base of this trivialization traduces the variation of complex
structure on the hyperkähler manifold µ−1

H (θ)/Uv whereas the R>0 action traduces
the rescaling of the metric.
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Chapter 3

Geometric and combinatoric
background

This chapter recalls the geometric and combinatoric tools necessary to study char-
acter varieties and their cohomology. The base field K is either C or an algebraic
closure Fq of a finite field Fq. Section 3.1 introduces the notations for perverse
sheaves and intersection cohomology.

In Section 3.2 some properties of symmetric functions are recalled. They are
used to define Hausel-Letellier-Villegas kernel HHLV

n . This kernel is fundamental in
the description of cohomology of character varieties. Moreover symmetric functions
formalism is useful to study representation of Weyl groups. They are also necessary
to define the algebra spanned by Kostka polynomials mentioned in the introduc-
tion 1.3.2. In order to relate this algebra with cohomology of quiver varieties, an
important result of Garsia-Haiman [GH96] is recalled in 3.2.4.

Section 3.3 contains various notations for conjugacy classes and their Jordan
type, they will be used throughout the thesis.

In 3.4, Springer theory [Spr76; BM83], Lusztig parabolic induction [Lus84; Lus85;
Lus86] and the associated resolutions of closure of conjugacy classes are recalled.

Construction and basic properties of character varieties are given in 3.5. More-
over construction of resolutions from 3.4 are extended to character varieties, follow-
ing Letellier [Let11; Let13].

Finally some conjecture and theorems relating the cohomology of character va-
rieties with the kernel HHLV

n are stated in 3.6.

3.1 Perverse sheaves and intersection cohomology

3.1.1 Perverse sheaves

In this section classical results about perverse sheaves and intersection cohomology
are stated. The constructions come from Beilinson, Bernstein, Deligne and Gabber
[Bei+18].
K is either C or an algebraic closure Fq of a finite field Fq with q elements. X is

an algebraic variety over K. Let l be a prime different from the characteristic and
denote by κX the constant l-adic sheaf on X with coefficients in Ql.

Notations 3.1.1. The category of κ-constructible sheaves on X is denoted by Dbc (X).
Its objects are represented by complexes of sheaves K such that the cohomology
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sheaves HiK are κ-constructible sheaves on X and finitely many of them are non-
zero. For Y a variety over K and f : X → Y a morphism one has the usual
functors

f ∗, f ! : Dbc (Y )→ Dbc (X)

f∗, f! : Dbc (X)→ Dbc (Y )

For m an integer K[m] is the shifted complex such that HiK[m] = Hi+mK. For x a
point in X, the stalk at x of the i-th cohomology sheave of the complex K is denoted
by Hi

xK . The structural morphism of X is p : X → SpecK. The k-th cohomology
space of X with coefficients in κ is

Hk(X, κ) := Hkp∗κX

and the k-th compactly supported intersection cohomology space of X is

Hk
c (X, κ) := Hkp!κX .

The Verdier dual operator is denoted by DX : Dbc (X)→ Dbc (X).

Theorem 3.1.2 (Base change). Consider K ∈ Dbc (Y ′) and a cartesian square

X ′ Y ′

X Y

g

b a

f

(3.1)

then the natural morphism f ∗a!K → b!g
∗K is an isomorphism.

Remark 3.1.3. Let α ↪→ X a geometric point of X and β its image by f . Consider
the fibers of the vertical arrows:

Xα := X ′ ×X α, Yβ := Y ′ ×Y β

In the following diagram h is an isomorphism

Xα Yβ

α β

h

The base change isomorphism for this diagram identifies with the stalk at β of the
base change isomorphism of Diagram (3.1):

f ∗a!Kα → b!g
∗Kα

which is nothing but the morphism obtained by functoriality of the compactly sup-
ported cohomology

H
•

c(Yβ, K)
h∗−→ H

•

c(Xα, h
∗K).
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Definition 3.1.4. Let W a finite group acting from the left on a variety X. For
all w ∈ W there is a morphism w : X → X. An action of W on an element
K ∈ Dbc (X) is the data of morphisms φw : w∗K ∼= K satisfying the following
relation for all w,w′ ∈ W

φw′w = φww
∗(φw′) (3.2)

and such that φ1 = Id. Then we say that the complex K is W -equivariant.

Remark 3.1.5. When the action of W on X is trivial, an action of W on K ∈
Dbc (X) is just a group morphism from the opposite group W op to the group of auto-
morphism Aut(K).

Proposition 3.1.6. Let f : X → Y a W -equivariant morphism between varieties
with left W -action. Let W act on K by morphisms φw : w∗K ∼= K. Then W acts
on f!K.

Proof. The action is defined for w ∈ W the following way. Base change formula
provides an isomorphism w∗f!K → f!w

∗K. Compose this isomorphism with f!φw
to obtain an isomorphism φ̃w : w∗f!K → f!K. The compatibility (3.2) follows from
functoriality of base change.

Definition 3.1.7 (Perverse sheave). A perverse sheave is an object K in Dbc (X)
such that for all i ∈ N

dim
(
SuppHiK

)
≤ −i

dim
(
SuppHiDXK

)
≤ −i.

The category of perverse sheaves on X is denoted byM(X), it is an abelian category.

3.1.2 Intersection cohomology

Definition 3.1.8 (Intersection complex). Let Y ↪→ X a closed embedding and j :
U ↪→ Y an open embedding. Assume U is smooth, irreducible and U = Y . Let ξ be
a local system on U . IC•Y,ξ is the unique perverse sheave K on Y characterized by

HiK = 0 if i < − dimY (3.3)
H− dimYK|U = ξ (3.4)

dim
(
SuppHiK

)
< −i if i > − dimY (3.5)

dim
(
SuppHiDYK

)
< −i if i > − dimY. (3.6)

We also denote IC•Y,ξ its extension j∗IC•Y,ξ. The intersection complex defined by
Goresky-MacPherson [GM83] and Deligne is obtained by shifting this perverse sheaf

IC•Y,ξ := IC•Y,ξ [− dimY ] .

Remark 3.1.9 (Continuation principle). The intersection complex of ξ can also be
defined as the intermediate extension IC•Y,ξ = j!∗ξ. Moreover the functor j!∗ is fully
faithful (see Kiehl-Weissauer [KW01, III - Corollary 5.11]).

Remark 3.1.10. The intersection complex does not depend on the choice of smooth
open subset in Y . When the local system ξ is not specified, it is chosen to be the
constant sheaf κU and IC•X := IC•X,κU .
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Definition 3.1.11 (Intersection cohomology). Let p : X → SpecK the structural
morphism and k an integer. The k-th intersection cohomology space of X is

IHk(X, κ) := Hkp∗IC•X

and the k-th compactly supported intersection cohomology space of X is

IHk
c (X, κ) := Hkp!IC•X .

For K = C, Saito [Sai86] proved that the intersection cohomology spaces carry
a mixed-Hodge structure. Thus there exists on IHk

c (X,Q) an increasing finite fil-
tration called the weight filtration and denoted by W k

• such that the complexified
quotient C ⊗Q W k

r /W
k
r−1 carries a pure Hodge structure of weight r. The Hodge

numbers of this structure are denoted hi,j,kc (X) and satisfy i+ j = r.

Definition 3.1.12. The mixed-Hodge structure is encoded in the mixed-Hodge poly-
nomial:

IHc (X;x, y, v) :=
∑
i,j,k

hi,j,kc (X)xiyjvk. (3.7)

This polynomial has two important specialisations, the Poincaré polynomial

Pc(X; t) := IHc (X; 1, 1, v) =
∑
k

dim IHk
c (X, κ)vk (3.8)

and the E-polynomial

Ec(X;x, y) := IHc (X;x, y,−1) . (3.9)

Remark 3.1.13. For X a smooth variety the intersection cohomology is the usual
l-adic cohomology

IH i(X, κ) = H i(X, κ)

IH i
c(X, κ) = H i

c(X, κ).

3.2 Symmetric functions

3.2.1 Lambda ring and symmetric functions

In this section the combinatorics involved in the cohomology of character varieties
is recalled.

Notations 3.2.1. A partition of an integer n ∈ N is a decreasing sequence of non-
negative integers

λ = (λ1, λ2, . . . , λl(λ)) with |λ| := λ1 + λ2 + · · ·+ λl(λ) = n.

The length of λ is the number l(λ) of non-zero terms. The set of partitions of n is
denoted by Pn and

P∗ :=
⋃

n∈N>0

Pn and P =
⋃
n∈N

Pn
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with P0 a set with a unique element 0 called the empty partition. The Young diagram
of a partition λ is the set

{(i, j) |1 ≤ i ≤ l(λ) and 1 ≤ j ≤ λi} .

A partition is often identified with its Young diagram so that (i, j) ∈ λ means that
(i, j) belongs to the Young diagram of λ. The transpose of a Young diagram is
obtained by permuting i and j. The transpose λ′ of a partition λ is the partition
with Young diagram the transpose of the Young diagram of λ. The Young diagram
of the partition λ = (5, 4, 2) has the following form

x

with x the box (i, j) = (1, 2). The arm length of x is number of box right of x, here
a(x) = 3. The leg length is the number of box under x, here l(x) = 2. The transpose
of λ = (5, 4, 2) is the partition λ′ = (3, 3, 2, 2, 1) with Young diagram

For ν = (ν1, . . . , νl) a partition then

Pν := Pν1 × · · · × Pνl .

Definition 3.2.2 (Dominance orderin �). The dominance ordering on P is defined
by λ � µ if and only if |λ| = |µ| and

k∑
i=1

λi ≤
k∑
i=1

µi for all k ∈ N

Let X = (x1, x2, . . . ) be an infinite set of variable and Sym [X] be the ring of
symmetric functions in (x1, x2, . . . ) over Q. This ring is graded by the degree and
Symn [X] ⊂ Sym [X] are the symmetric functions homogeneous of degree n. We
use the usual notations from Macdonald’s book [Mac15]. A basis of Sym [X] is
given by monomial symmetric functions (mλ)λ∈P . If λ is a partition of length l,
mλ is obtained by summing all distinct monomials of the form xλ1i1 x

λ2
i2

. . . xλlil with
distinct indices ik. Elementary symmetric functions (en)n∈N, complete symmetric
functions (hn)n∈N and power sums (pn)n∈N are defined for n ∈ N>0 by

en [X] :=
∑

1≤i1<···<in

xi1xi2· · · xin

hn [X] :=
∑

1≤i1≤···≤in

xi1xi2· · · xin

pn [X] := xn1 + xn2 + . . .
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and e0 := h0 := p0 := 1. Each one of this family freely generates the ring Sym [X].
We introduce the corresponding basis labelled by partitions λ ∈ P

eλ := eλ1eλ2· · · eλl
hλ := hλ1hλ2· · ·hλl
pλ := pλ1pλ2· · · pλl

When talking about symmetric functions, if we do not need to specify the set of
variable we write just F instead of F [X], we can think of F as an element in the
Q-algebra freely generated by (en)n∈N. A convenient formalism to study symmetric
functions is provided by lambda rings. The following reminder on this topic comes
from Mellit [Mel17a; Mel18].

Definition 3.2.3 (Lambda ring). A lambda ring over Q is a commutative and
unitary Q-algebra Λ endowed, for n ∈ N>0, with ring morphisms

pn : Λ → Λ
a 7→ pn[a]

such that pn ◦ pm = pnm for n,m ∈ N>0. The pn are called the Adams operators.
We use square brackets instead of parenthesis for evaluation of Adams operators.

Example 3.2.4 (Symmetric functions over Q). The ring of symmetric functions
Sym [X] is freely generated, as a Q-algebra by the power sums pn[X]. Adams oper-
ators on Sym [X] can be defined by their values on the power sums

pm [pn[X]] := pmn[X] for m ∈ N>0 and n ∈ N.

This gives Sym [X] a lambda ring structure.

Remark 3.2.5. Note that for all n ∈ N>0, pn[X] = pn[p1[X]] then let X := p1[X].
All the power sums pn[X] with n > 0 are obtained applying Adams operator to X.
The notations used for the power sums agree with the one resulting of applications
of Adams operators to X.

Example 3.2.6. Q(q, t) is endowed with the Adams operator defined by pn[f(q, t)] =
f(qn, tn) for any f(q, t) ∈ Q(q, t).

Example 3.2.7 (Symmetric functions over Q(q, t)). The ring of symmetric func-
tions over Q(q, t) is still denoted Sym [X]. It is a lambda ring, the Adams operators
act by pn [f(q, t)F [X]] = f(qn, tn)pn [F [X]].

Example 3.2.8 (Multivariate symmetric functions).

Sym[X1, . . . , Xk] := Sym[X1]⊗ Sym[X2]⊗ · · · ⊗ Sym[Xk]

is the ring of functions in k sequences of variables Xi = (xi,1, xi,2, . . . ) symmetric
in each sequence. The Adams operators are defined by

pn [F1[X1]⊗ . . . ⊗ Fk[Xk]] = pn [F1[X1]]⊗ . . . ⊗ pn [Fk[Xk]]
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Notations 3.2.9 (Conventions for variable in ring of symmetric functions). When
considering symmetric functions, uppercase characters such as X, Y, Z,Xi will be
infinite set of variable so that (pn[X])n∈N are algebraically free. Lowercase characters
such as q, r, s, t, u, v, w, z will be single variables and Adams operator act on them as
pn[u] = un.

Definition 3.2.10 (Plethystic action). Let α ∈ Λ be an element in a lambda ring
and F [X] ∈ Sym [X]. As the power sums freely generate the ring of symmetric
functions there exists a unique polynomial f such that F [X] = f(p1[X], p2[X], . . . ).
To compute the plethystic action of F on α we evaluate the polynomial f on the
Adams operator F [α] := f(p1, p2, . . . )[α]. It defines a ring morphism from Sym [X]
to Λ. It is also called plethystic substitution of X by α.

Remark 3.2.11. Once again, denoting by X the element p1[X] ∈ Sym [X], nota-
tions are compatible. pn[X] is both the evaluation of the Adams operator pn on the
element X and the plethystic action of the symmetric function pn on the element
X. Plethystic action can be thought of as evaluation of a symmetric function F on
an element of a lambda ring.

For Λ a lambda ring, Λ[[s]] is the ring of power series in s with coefficients in
Λ. It is endowed with a lambda ring structure such that pn[s] = sn. Elements of
Sym[X][[s]] such that the symmetric function in front of sn is of degree n can be
thought of as elements in Sym[[X]] the completion of Sym [X] with respect to the
ideal Sym [X]+ of symmetric functions without constant terms.

Definition 3.2.12 (Plethystic exponential and logarithm). Let Λ be a lambda ring
and sΛ[[s]] the formal series in s with coefficient in Λ without terms in s0. For
G ∈ sΛ[[s]] the plethystic exponential is defined by

Exp[G] :=
+∞∑
n=0

hn[G] = exp

(
+∞∑
n=1

pn[G]

n

)
and the plethystic logarithm

Log[1 +G] :=
+∞∑
n=1

µ(n)

n
pn [log(1 +G)] .

with µ the usual Mobius function. Contrarily to the ordinary ones, the plethystic
exponential and logarithm start with an uppercase character.

Remark 3.2.13. As the Adams operators are ring morphism

Exp[F +G] = Exp[F ] Exp[G]

Log[(1 + F )(1 +G)] = Log[1 + F ] + Log[1 +G]

Remark 3.2.14. As expected, the plethystic logarithm is the inverse of the plethystic
exponential

Log[Exp[G]] =
∑
n,m≥1

µ(n)

nm
pnm[G]

=
∑
n≥1

∑
d|n

µ(d)

n
pn[G]

= G
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This computation follows from the characterisation of Mobius function and the fact
that p1 acts as identity.

Proposition 3.2.15. Let F ∈ Λ[[s]], write the expansion of its logarithm and
plethystic logarithm

log(F ) =
∑
n

Un
n
sn

Log[F ] =
∑
n

Vns
n.

Then the coefficients of those expansions are related by

Vn =
1

n

∑
d|n

µ(d)pd
[
Un
d

]
.

Proof.

Log[F ] =
∑
d,n

µ(d)

d
pd

[
Um
m
sm
]

=
∑
d,n

µ(d)

d

pd[Um]

m
smd

As pd is a ring morphism and pd[s
m] = smd. Conclusion follows by taking the

coefficient in front of sn.

Remark 3.2.16. There is natural way to embed Sym [X] in Sym [X] [[s]], we can
add a variable s to keep track of the degree. For F ∈ Sym [X] written in the basis
of power sums as

F [X] =
∑
λ∈P

cλpλ[X]

we denote also by F the element in Sym [X] [[s]]

F =
∑
λ∈P

cλpλ[X]s|λ|

with cλ the coordinate of F in the basis (pλ)λ∈P .

Proposition 3.2.17 ([HLR13] proof of proposition 3.1). Plethystic logarithm and
plethystic substitution commute. Namely for any α ∈ Λ and F symmetric function
without constant term

Log [1 + F [α]] = Log[1 + F ][α]

where F [α] ∈ Λ[[s]] and Log[1 + F ][α] means plethystic substitution in each coeffi-
cients of the power series in s.

Proof. Use notations from Proposition 3.2.15 and Remark 3.2.16. First the Un[X]
are obtained from the cλpλ[X] by additions and multiplications. Then the Vn[X]
are obtained from the Un[X] by additions, multiplications and Adams operator.
Conclusion follows as plethystic action is a ring morphism commuting with Adams
operator.
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This section ends with the introduction of Hall pairing. Other related pairings
will be discussed in 3.2.3.

Definition 3.2.18 (Hall pairing). The Hall pairing is a symmetric bilinear pairing
on Sym [X] such that the power sums form an orthogonal basis

〈pλ, pµ〉 = δλ,µzλ (3.10)

δλ,µ is 1 if λ = µ and 0 otherwise. zλ is the order of a the stabilizer of a partition
of cycle type λ. Namely

zλ =
k∏
l=1

imll ml!

for a partition λ = (i1, . . . i1︸ ︷︷ ︸
m1

, . . . , ik, . . . ik︸ ︷︷ ︸
mk

) .

3.2.2 Characters of the symmetric group and symmetric func-
tions

Well-known results relating symmetric functions and representation theory of the
symmetric group are recalled, see [Mac15] for more details. A class function on a
finite group W is a Q-valued function constant over conjugacy classes. Important
examples of class functions are given by characters of finite dimensional representa-
tions of the groupW . The space of class functions is actually spanned by irreducible
characters. It is endowed with a scalar product defined by

〈f, g〉W =
1

|W |
∑
σ∈W

f(σ)g(σ−1).

Irreducible characters then form an orthonormal basis of the space of class functions.

Remark 3.2.19. For χ and η two characters of a finite group W and Vχ, Vη the
associated representations

dim HomW (Vχ, Vη) = 〈χ, η〉W

Definition 3.2.20. Let R = ⊕n∈NRn with Rn, n > 0 the space of class function on
the symmetric group Sn and R0 := Q. It is endowed with a non-degenerate pairing
〈. . . , . . . 〉 and a product :

• 〈f, g〉 = 〈f, g〉Sn for f, g ∈ Rn and Rn is orthogonal to Rm if n 6= m.

• Let f ∈ Rn and g ∈ Rm then f × g defines a class function on Sn ×Sm. Fix
an embedding Sn ×Sm ⊂ Sn+m so that class functions can be induced from
Sn×Sm to Sn+m and define the product f.g := Ind

Sm+n

Sn×Sm f ×g. This product
is sometime called external tensor product.

Definition 3.2.21 (Characteristic map). Conjugacy classes in Sn are indexed by
partitions of n specifying the cycle type. For a class function f ∈ Rn define

ch(f) = 〈f,Ψn〉Sn
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where
Ψn : Sn → Sym [X]

σ 7→ pcyc(σ)

with cyc(σ) the partition giving the cycle type of the permutation σ. The map ch
extends by linearity to give the characteristic map ch : R → Sym [X]. R0 is sent to
constants by ch.

Remark 3.2.22. It is convenient to express ch with partitions rather than permu-
tations. For a class function f ∈ Rn with value fλ on the conjugacy class of cycle
type λ

ch(f) =
1

|Sn|
∑
σ∈Sn

f(σ)pcyc(σ) (3.11)

=
∑
|λ|=n

z−1
λ fλpλ (3.12)

In last line the sum over elements of the symmetric group is turned into a sum
over partitions indexing conjugacy classes of the symmetric group. We used that
|Cλ|
|Sn| = z−1

λ where Cλ is the conjugacy class of cycle type λ.

Proposition 3.2.23. The characteristic map ch is an isomorphism between R and
Sym [X] compatible with the products and the pairings (Sym [X] being endowed the
Hall pairing 3.2.18).

Proof. First let us check that 〈ch(f), ch(g)〉 = 〈f, g〉, by linearity we just have to
check it for f, g ∈ Rn. Orthogonality properties of the power sums (Definition
3.2.18) and (3.12) give

〈ch(f), ch(g)〉 =
∑
|λ|=n

z−1
λ fλgλ = 〈f, g〉Sn

last equality comes from the previous trick used to go from a sum over the symmet-
ric group to a sum over partitions in Remark 3.2.22.

To check that it is a ring morphism take f ∈ Rn and g ∈ Rm. By adjunction
between induction and restriction of representations:

ch(f.g) = 〈f.g,Ψ〉Sm+n
= 〈f × g,Ψ〉Sm×Sn

last term splits into a product of sum overs Sm and Sn

1

|Sm ×Sn|
∑

(σ,τ)∈Sm×Sn

f(σ)g(τ)pσpτ = 〈f,Ψ〉Sm 〈g,Ψ〉Sn

so that
ch(f.g) = ch(f) ch(g).

Let 1λ the map 1λ(σ) = 1 if σ is of cycle type λ and 1λ(σ) = 0 otherwise. (1λ)λ∈P
is a basis of R. It is sent to

(
z−1
λ pλ

)
λ∈P by ch. Hence the characteristic map send a

basis to a basis, it is an isomorphism.
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Remark 3.2.24. Under the characteristic map ch, the symmetric function hn is
sent to the constant class function with value 1. The symmetric function en is sent
to the sign.

Irreducible characters of Sn are indexed by partitions of n as in [Mac15] in
such a way that χ(n) corresponds to the trivial representation and χ(1n) to the sign
representation.

Definition 3.2.25. The Schur functions are the images of the irreducible characters
of the symmetric group under the characteristic map. For λ ∈ Pn

sλ[X] := ch(χλ) =
∑
|µ|=|λ|

χλµpµ[X]

zµ
(3.13)

where χλµ is the value of the character of type λ evaluated on a conjugacy class of
cycle type µ.

Proposition 3.2.26. Schur functions (sλ)λ∈P form an orthonormal basis with re-
spect to the Hall pairing and equation (3.13) might be inverted to express the power
sums from the Schur functions

pλ[X] =
∑
|µ|=|λ|

χµλsµ[X]. (3.14)

Proof. The family of Schur functions is the image under the characteristic map of
an orthonormal basis of R. Equation (3.14) follows from (3.13) and orthogonality
of characters of the symmetric group.

Remark 3.2.27. Let χV ∈ Rn the class function defined as the character of a
representation V of Sn. The Schur functions and the power sums have the following
representation theoretic interpretation:

• 〈sλ, ch(χV )〉 is the multiplicity of the irreducible representation Vλ in the rep-
resentation V .

• 〈pµ, ch(χV )〉 is the trace of an element in Sn with cycle type µ on the repre-
sentation V .

Lemma 3.2.28. For ν a partition of n let εν the sign representation of Sν =
Sν1 × · · · × Sνl. A choice of inclusion Sν ⊂ Sn allows to induce εν. Then for
λ ∈ Pn

dim HomSn

(
IndSn

Sν
εν , Vλ

)
= 〈eν , sλ〉 = 〈hν , sλ′〉 .

Proof. dim HomSn

(
IndSn

Sν
εν , Vλ

)
is the multiplicity of the irreducible representation

Vλ in IndSn
Sν
εν . For m ∈ N>0 the symmetric function em is the characteristic of

the sign representation of Sm. Thanks to the compatibility between induction and
product, eν is the characteristic of IndSn

Sν
εν . First equality now follows from Remark

3.2.27. To obtain the second equality, notice that Vλ′ is the representation Vλ twisted
by the sign.
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Definition 3.2.29 (Frobenius characteristic). We extend the characteristic map ch
to bigraded representations of Sn by adding variable q and t to keep track of the
degree. To a bigraded representation of the symmetric group V =

⊕
(i,j)∈N2 Vi,j is

associated a symmetric function over Z(q, t) given by

ch(V ) =
∑
λ∈Pn

∑
(i,j)∈N2

〈Vi,j, χλ〉 qitjsλ (3.15)

where the representation Vi,j is identified with its character so that 〈Vi,j, χλ〉 is the
multiplicity of the irreducible representation of type λ in Vi,j. The symmetric func-
tion ch(V ) is called the Frobenius characteristic of the bigraded representation V .

Example 3.2.30. For any µ ∈ Pn the Macdonald polynomial H̃µ[X; q, t] is obtained
in this way from a bigraded representations of the symmetric group. This is the
famous n!-conjecture of Garsia-Haiman [GH93], proved by Haiman [Hai01].

3.2.3 Orthogonality and Macdonald polynomials

In this section Mellit [Mel17a; Mel18] characterisation of modified Macdonald poly-
nomials is recalled.

Generalities about scalar products on Sym [X]

A scalar product on Sym [X] is a Q(q, t)-bilinear form

(. . . , . . . )S : Sym [X]× Sym [X] → Q(q, t)
F,G 7→ (F [X], G[X])S

which is non-degenerate. It can be extended to multivariate symmetric functions by
specifying the variable acted upon in index

(. . . , . . . )SX : Sym[X, Y1,· · · , Yk]× Sym[X,Z1,· · · , Zl] → Sym[Y1,· · · , Yk, Z1,· · · , Zl]

on pure tensors it reads

(F [X]⊗F ′[Y1,· · · , Yk], G[X]⊗G′[Z1,· · · , Zl])SX := (F [X], G[X])SG′[Z1,· · · , Zl]F ′[Y1,· · · , Yk]

and it extends by linearity.

Assumption 3.2.31 (Homogeneity). When considering families of symmetric func-
tions indexed by partitions such as (uλ)λ∈P , the symmetric function uλ is always
assumed to be homogeneous of degree |λ|.

Definition 3.2.32. Let (uλ)λ∈P , (vµ)µ∈P two basis dual with respect to a scalar
product (. . . , . . . )S. Then the element KS[X, Y ] ∈ Sym[X, Y ] defined by

KS[X, Y ] :=
∑
λ∈P

uλ[X]vλ[Y ]

is called the reproducing kernel of the scalar product (. . . , . . . )S. It depends only on
the scalar product but not on the choice of dual basis as detailed in next proposition.
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Proposition 3.2.33. With the notations of previous definition, two families of sym-
metric functions (aλ)λ∈P , (bµ)µ∈P are dual basis with respect to (. . . , . . . )S if and only
if

KS[X, Y ] =
∑
λ∈P

aλ[X]bλ[Y ] (3.16)

Proof. Express aλ and bν in the basis (uλ)λ∈P and (vλ)λ∈P

aλ[X] =
∑
|µ|=|λ|

cµλuµ[X] (3.17)

bν [Y ] =
∑
|ρ|=|ν|

dρνvρ[Y ]. (3.18)

Equation (3.16) now reads∑
µ,ρ

cµλd
ρ
λuµ[X]vρ[Y ] =

∑
λ∈P

uλ[X]vλ[Y ].

As the family (uλ[X]vµ[Y ])λ,µ∈P is free in Sym[X, Y ] this last equation is equivalent
to ∑

|λ|=|µ|

cµλd
ρ
λ = δµ,ρ. (3.19)

Now (aµ)µ∈P and (bρ)ρ∈P are dual with respect to (. . . , . . . )S if and only if

(aµ, bρ)
S = δµ,ρ.

Using expansions (3.17), (3.18) and duality of (uλ)λ∈P , (vµ)µ∈P this is equivalent to∑
|λ|=|µ|

cλµd
λ
ρ = δµ,ρ. (3.20)

Two last equations can be written with matrices with columns and rows indexed by
partitions of a given integer then Equation (3.19) reads CtD = Id which is clearly
equivalent to (3.20) : CDt = Id.

Remark 3.2.34. The name reproducing kernel comes from the notion of kernel of
an operator see [Mel18]. KS is the kernel of the identity operator with respect to the
pairing (. . . , . . . )S, indeed for any F [X] ∈ Sym [X]

(KS[X, Y ], F [X])SX = F [Y ].

Hall pairing and (q, t)-deformations

The Hall pairing was defined in 3.2.18, it satisfies

〈pλ, pµ〉 = δλ,µzλ

Remark 3.2.35. (pλ)λ∈P and
(
z−1
µ pµ

)
µ∈P form dual basis with respect to the Hall

pairing so that the kernel of Hall pairing is

Exp[XY ] =
∑
λ∈P

pλ[X]
pλ[Y ]

zλ
=
∑
n

hn[XY ].
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Before introducing deformations of the Hall pairing we need the following lemma.

Lemma 3.2.36. For F,G ∈ Sym [X] and S ∈ Q(q, t)

〈F [X], G[SX]〉 = 〈F [SX], G[X]〉 (3.21)

Proof. It follows from successive applications of remark 3.2.34

〈F [X], G[SX]〉X = 〈F [X], 〈Exp[XSY ], G[Y ]〉Y 〉X
= 〈〈F [X],Exp[XSY ]〉X , G[Y ]〉Y
= 〈F [SY ], G[Y ]〉Y .

Definition 3.2.37 (deformations of Hall pairing). The (q, t)-deformation of the Hall
pairing is defined by

(F [X], G[X])q,t := 〈F [X], G[(q − 1)(1− t)X]〉 .

Previous lemma implies that (. . . , . . . )q,t defines scalar products on Sym [X].

Remark 3.2.38. The reproducing kernel of the (q, t) Hall pairing is

Exp

[
XY

(q − 1)(1− t)

]
.

Definition 3.2.39 (Modified Macdonald polynomials). M�λ is the subspace of
Sym [X] spanned by monomials symmetric functions mµ[X] with µ � λ. Macdonald
polynomials

(
H̃λ[X; q, t]

)
λ∈P

are uniquely determined by

• H̃λ[X(t− 1); q, t] ∈M�λ

• H̃λ[X(q − 1); q, t] ∈M�λ′

• normalization H̃[1; q, t] = 1.

Proposition 3.2.40. An equivalent characterization of MacDonald polynomials is

• Orthogonality (H̃λ[X; q, t], H̃µ[X; q, t])q,t = 0 if λ 6= µ

• One of the triangularity condition H̃λ[X(t−1)] ∈M�λ or H̃λ[X(q−1)] ∈M�λ′

• Normalization H̃[1; q, t] = 1

Moreover

aλ(q, t) :=
(
H̃λ[X; q, t], H̃λ[X; q, t]

)q,t
=
∏
x∈λ

(qa(x)+1 − tl(x))(qa(x) − tl(x)+1). (3.22)

the product is over the Young diagram of λ and a(x) is the arm length and l(x) the
leg length (see Notations 3.2.1).

Proof. [Mel17a] corollary 2.8.
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Definition 3.2.41 (Modified Kostka polynomials). The modified Kostka polynomi-
als
(
K̃λ,ρ(q, t)

)
λ,ρ∈Pn

are defined as the coefficients of the transition matrix between

the basis of Schur functions and the basis of modified Macdonald polynomials:

H̃ρ[X; q, t] =
∑
λ∈Pn

K̃λ,ρ(q, t)sλ.

Notations 3.2.42. The variables (q, t) will often be omitted and the modified Kostka
polynomial denoted by K̃λ,ρ and the modified Macdonald polynomial by H̃λ[X].

The Macdonald polynomials H̃λ [X; q, t] where first introduced by Garsia-Haiman
[GH96] as a deformation of polynomials defined by Macdonald [Mac15]. The defi-
nition recalled here comes from [Mel17a].

The remaining of this combinatoric background section is devoted to the presen-
tation of a result of Garsia-Haiman [GH96, Theorem 3.4]. This result will be used
in 4.4 when discussing a combinatoric interpretation of traces of Weyl group actions
on cohomology of quiver and character varieties.

3.2.4 A result of Garsia-Haiman

Proposition 3.2.43. Define an operator ∆1 by

∆1F [X] := F [X]− F
[
X +

(1− q)(1− t)
z

]
Exp [−zX] |z0

Where |z0 means take the coefficient in front of z0. Then

∆1H̃λ [X; q, t] = (1− t)(1− q)
∑

(i,j)∈λ

qj−1ti−1H̃λ [X; q, t]

Moreover
H̃λ [1− u; q, t] =

∏
(i,j)∈λ

(
1− uqj−1ti−1

)
(3.23)

Proof. [GH96] Corollary 3.1 and theorem 3.2

Lemma 3.2.44. At first order in u

H̃λ [1 + u; q, t] = 1 + u
∑

(i,j)∈λ

qj−1ti−1 +O(u2) (3.24)

Proof. One should be careful with plethystic substitution, to compute left hand side
of (3.24) one cannot just substitute −u for u in (3.23). Indeed pn[1 − u] = 1 − un
and pn[1 + u] = 1 + un so that substituting −u for u in the latter gives back the
former only when n is odd. Denote by dλ,µ the coefficient of pµ in the power sum
expansion of H̃λ then

H̃λ [1− u; q, t] =
∑
|µ|=|λ|

dλ,µ
∏
i

(1− uµi)

H̃λ [1 + u; q, t] =
∑
|µ|=|λ|

dλ,µ
∏
i

(1 + uµi).

We conclude by comparing the coefficient in front of u and using (3.23).
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Lemma 3.2.45. Let F ∈ Symn [X] be a symmetric function of degree n ≥ 2. Then
the coefficient in front of u in F [1 + u] is given by the Hall pairing with a complete
symmetric function

F [1 + u]|u =
〈
h(n−1,1)[X], F [X]

〉
Proof. The coefficient of mλ in the monomial expansion of F is denoted by cλ.
The plethystic substitution F [1 +u] corresponds to the evaluation of the symmetric
function F on the set of variables (1, u, 0, . . . ).

F [1 + u] =
∑
|λ|=n

cλmλ[1 + u]

Hence the only mλ contributing are the one with λ of length at most two, and the
coefficient in front of u is c(n−1,1). Conclusion follow as complete symmetric functions
and monomial symmetric functions are dual with respect to the Hall pairing.

Lemma 3.2.46. Let F ∈ Symn [X] be a symmetric function of degree n then

F [1− u]

1− u

∣∣∣∣
u=1

= 〈F [X], pn[X]〉 .

Proof. Let dλ be the coefficient in front of pλ in the power sum expansion of F .

F [1− u] =
∑
|λ|=n

dλpλ[1− u]

=
∑
|λ|=n

dλ
∏
i

(1− uλi).

When dividing by (1 − u) and setting u = 1 all terms coming from partitions of
length at least two will vanish as (1− u)2 divides them

F [1− u]

1− u

∣∣∣∣
u=1

= d(n)
1− un

1− u

∣∣∣∣
u=1

= nd(n).

The size of the centralizer of an n-cycle in Sn is z(n) = n, conclusion follows by
orthogonality of power sums (3.10).

Let us recall an important combinatorics theorem that will be related later to
cohomology of character and quiver varieties.

Theorem 3.2.47 (Garsia, Haiman [GH96] theorem 3.4). We denote by
∏′

(i,j)∈λ a
product over the young diagram of a partition λ omitting the top left corner with
(i, j) = (1, 1).

(−1)n−1s(1n)[X] = (q − 1)(1− t)
∑
|λ|=n

∑
(i,j)∈λ q

j−1ti−1
∏′

(i,j)∈λ(1− qj−1ti−1)H̃λ[X]

aλ(q, t)

(3.25)

Proof. The reproducing kernel of the (q, t)-Hall pairing was given in Remark 3.2.38.
The n-degree term of Exp[Z] is hn[Z]. The basis

(
H̃λ[X]

)
λ∈P

and
(
H̃λ[X]
aλ

)
λ∈P

are
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dual with respect to this scalar product. Following Proposition 3.2.33, the degree n
term of the reproducing kernel of the (q, t)-Hall pairing is

hn

[
XY

(q − 1)(1− t)

]
=
∑
|λ|=n

H̃λ[X]H̃λ[Y ]

aλ
.

Now expand hn in the basis of power sums, proceed to plethystic substitution Y =
1− u and apply (3.23)

∑
|µ|=n

z−1
µ pµ

[
X(1− u)

(q − 1)(1− t)

]
=
∑
|λ|=n

H̃λ[X]
∏

(i,j)∈λ (1− uqj−1ti−1)

aλ
.

Now divide by (1 − u) and set u = 1. Apply lemma 3.2.46 to left hand side and
compute explicitly the right hand side

∑
|µ|=n

z−1
µ

(
pµ

[
XY

(q − 1)(1− t)

]
, p(n)[Y ]

)
Y

=
∑
|λ|=n

H̃λ[X]
∏′

(i,j)∈λ (1− qj−1ti−1)

aλ

as Adams operator are ring morphisms

pµ

[
XY

(q − 1)(1− t)

]
= pµ

[
X

(q − 1)(1− t)

]
pµ[Y ]

and using orthogonality of power sums (3.10)

p(n)

[
X

(q − 1)(1− t)

]
=
∑
|λ|=n

H̃λ[X]
∏′

(i,j)∈λ (1− qj−1ti−1)

aλ
. (3.26)

. We apply the operator ∆1 to (3.26). According to Proposition 3.2.43, ∆1 is
diagonal in the basis of Macdonal polynomials and we obtain, up to a sign, the right
hand side of (3.25). Let us compute the left hand side

∆1p(n)

[
X

(q−1)(1−t)

]
= p(n)

[
X

(q−1)(1−t)

]
− p(n)

[
X

(q−1)(1−t) −
1
z

]
Exp[−zX] |z0

= p(n)

[
X

(q−1)(1−t)

]
− p(n)

[
X

(q−1)(1−t)

]
Exp[−zX] |z0 + p(n)

[
1
z

]
Exp[−zX] |z0

= 1
zn

Exp[−zX] |z0 .

In second line we used that Adam operator pn is a ring morphism and in the last
line that it acts on z as raising to power n. Now Exp[−zX] is the inverse of Exp[zX]
so that if X = (x1 + x2 + . . . )

Exp[−zX] =
∏
i

(1− zxi)

the coefficient in front of zn is (−1)nen[X] so that

(−1)nen[X] = −(q − 1)(1− t)
∑
|λ|=n

∑
(i,j)∈λ q

j−1ti−1
∏′

(i,j)∈λ(1− qj−1ti−1)H̃λ[X]

aλ
.

Conclusion follows as en = s(1n).
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3.3 Conjugacy classes and adjoint orbits for general
linear group

K is either C or an algebraic closure Fq of the finite field with q elements Fq.

3.3.1 Notations for adjoint orbits and conjugacy classes

For r an integer and z ∈ K, denote by Jr(z) the Jordan block of size r with eigen-
value z

Jr(z) :=


z 1

z
. . .
. . . 1

z 1
z

 ∈ glr .

Let µ = (µ1, µ2, . . . , µs) a partition of an integer m and let z ∈ C. Denote by Jµ(z)
the matrix with eigenvalue z and Jordan blocks of size µj.

Jµ(z) :=


Jµ1(z)

Jµ2(z)
. . .

Jµs(z)

 ∈ glm .

Let ν = (ν1, . . . , νl) ∈ Pn a partition of n, introduce the following notation

Pν := Pν1 × Pν2 × · · · × Pνl .

Consider a diagonal matrix σ

σ =


σ1 Idν1

σ2 Idν2
. . .

σl Idνl

 (3.27)

with σi 6= σj for i 6= j, so that νi is the multiplicity of the eigenvalue σi. Let
µ =

(
µ1, . . . , µl

)
∈ Pν .

Notations 3.3.1. Denote by Oµ,σ the adjoint orbit of the matrix:

Jµ,σ :=


Jµ1(σ1)

Jµ2(σ2)
. . .

Jµl(σl).


If all the eigenvalue are non-zero, this adjoint orbit is also a conjugacy class in GLn,
it is then denoted by Cµ,σ.

We recall a well-known proposition.
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Proposition 3.3.2. The Zariski closure of the adjoint orbit Oµ,σ is

Oµ,σ =
⋃
ρ�µ

Oρ,σ

the union is over l-uple ρ =
(
ρ1, . . . , ρl

)
with ρj � µj for all 1 ≤ j ≤ l. The

dominance order on partition was recalled in Definition 3.2.2 .

Proof.

Oµ,σ =
⋂

1≤j≤l

{
X ∈ gln

∣∣∣∣∣dim ker(X − ζj)k =
∑

1≤i≤k

µji
′
for all k ∈ N

}

with µj ′ the transpose of the partition µj so that µji
′

= card {r ∈ N |µjr ≤ i}. The
Zariski closure is

Oµ,σ =
⋂

1≤j≤l

{
X ∈ gln

∣∣∣∣∣dim ker(X − ζj)k ≥
∑

1≤i≤k

µji
′
for all k ∈ N

}
.

Indeed the inequality on the dimension of the kernel is a close condition, it corre-
sponds to the vanishing of all minors of (X − ζj)k of size νj + 1−

∑
1≤i≤k µ

j
i

′
. Then

Oρ,σ ⊂ Oµ,σ if and only if ρj ′ � µj
′ which is equivalent to ρj � µj.

3.3.2 Types and conjugacy classes over finite fields

ix a total order on N>0 × P∗.

Definition 3.3.3 (Type). A type is a non-increasing sequence ω = (d1, ω
1) . . . (dl, ω

l)
with (di, ω

i) ∈ N>0 × P∗. Denote by Tn the set of type ω with
∑
di|ωi| = n and

T =
⋃
n∈N>0

Tn.

Definition 3.3.4 (Type of a GLn(Fq) conjugacy class or of a gln(Fq) adjoint orbit).
Let C be a conjugacy class in GLn(Fq), its characteristic polynomial has its coeffi-
cients in Fq so that its eigenvalues, which live in Fq, are permuted by the Frobenius.
The spectrum of C, with multiplicity, reads(γ1, . . . , γ

qd1−1

1

)
, . . . ,

(
γ1, . . . , γ

qd1−1

1

)
︸ ︷︷ ︸

m1

, . . . ,
(
γl, . . . , γ

qdl−1

l

)
, . . . ,

(
γl, . . . , γ

qdl−1

l

)
︸ ︷︷ ︸

ml


with γi ∈ F

∗
q such that γq

di−1

i 6= γi, γq
di

i = γi and γi 6= γj for i 6= j. Then the
conjugacy class C determines partitions ωi ∈ Pmi giving the size of the Jordan blocks
of the Frobenius orbit of eigenvalues

(
γi, . . . , γ

qdi−1

i

)
. After reordering it defines a

type ω ∈ T n given by ω = (d1, ω1) . . . (dl, ωl). The same description holds for adjoint
orbits instead of conjugacy classes.

Notations 3.3.5. For any family of symmetric functions (uλ)λ∈P indexed by parti-
tions and any type ω = (d1, ω

1) . . . (dl, ω
l) introduce the following notation

uω :=
l∏

i=1

pdi [uωi ] =
l∏

i=1

uωi [X
di ]
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3.3.3 Resolutions of Zariski closure of conjugacy classes and
adjoint orbits

Consider a conjugacy class Cµ,σ. Notations are introduced in previous section, σ in
GLn is a diagonal matrix like in (3.27), denote by M its centralizer in GLn.

M =

GLν1 0
0 GLν2
... 0

. . .


µ = (µ1, . . . , µl) with µi a partition of νi. The transposed partition is denoted by
µi
′
=
(
µi1
′
, µi2

′
, . . .

)
. Let L the subgroup of GLn formed by block diagonal matrices

with blocks of size µir
′, it is a subgroup of M with the following form

L =



ν1︷ ︸︸ ︷
GLµ11

′ 0

0 GLµ12
′

... 0
. . .

ν2︷ ︸︸ ︷
GLµ21

′ 0

0 GLµ22
′

... 0
. . .

. . .


.

Notations 3.3.6. For ν = (ν1, . . . , νl) a partition let

Sν = Sν1 × · · · ×Sνl and GLν := GLν1 × · · · ×GLνl .

For ρ = (ρ1, . . . , ρl) ∈ Pν

GLρ := GLρ1 × . . .GLρl =
∏
r,s

GLρrs

and
Sρ := Sρ1 × . . .Sρl =

∏
r,s

Sρrs

Then the previously introduced Levi subgroups satisfy M ∼= GLν and L ∼= GLµ′.

Denote by P the parabolic subgroup of blocks upper triangular matrices having
L as a Levi factor, P = LUP with

UP =



ν1︷ ︸︸ ︷
Idµ11

′ ∗
0 Idµ12

′

... 0
. . .

*

ν2︷ ︸︸ ︷
Idµ21

′ ∗
0 Idµ22

′

... 0
. . .

. . .


.
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Now we can construct a resolution of singularities of Cµ,σ

X̃L,P,σ :=
{

(X, gP ) ∈ GLn×GLn /P
∣∣g−1Xg ∈ σUP

}
Proposition 3.3.7 (Resolution of Zariski closure of conjugacy classes). The im-
age of the projection to the first factor X̃L,P,σ → GLn is the Zariski closure of the
conjugacy class Cµ,σ. Moreover the following map is a resolution of singularities

pσ : X̃L,P,σ → Cµ,σ
(X, gP ) 7→ X

.

There is a similar result for adjoint orbits. For σ a diagonal matrix in gln as
in (3.27), let l, p, respectively uP the Lie algebras of L, P , respectively UP , then
p = l⊕ uP .

ỸL,P,σ :=
{

(X, gP ) ∈ gln×GLn /P
∣∣g−1Xg ∈ σ + uP

}
.

Proposition 3.3.8 (Resolution of Zariski closure of adjoint orbits). The image of
the projection to the first factor ỸL,P,σ → gln is the Zariski closure of the adjoint
orbit Oµ,σ. Moreover the following map is a resolution of singularities

pσ : ỸL,P,σ → Oµ,σ
(X, gP ) 7→ X

.

3.4 Resolution of conjugacy classes and Weyl group
actions

3.4.1 Borho-MacPherson approach to Springer theory

The approach of Borho-MacPherson [BM83] to Springer theory is recalled, it relies
on perverse sheaves. It follows work of Lusztig [Lus81] for the general linear group.
G is a reductive group overK and B a Borel subgroup ofG. There is a decomposition
B = TU with T a maximal torus and U the unipotent radical of B. Consider the
Grothendieck-Springer resolution

G̃ =
{

(X, gB) ∈ G×G/B
∣∣g−1Xg ∈ B

}
.

Denote by Greg ⊂ G the subset of regular semi-simple elements and

G̃reg =
{

(X, gB) ∈ Greg ×G/B
∣∣g−1Xg ∈ B

}
.

Let T reg := Greg ∩ T , one has the following isomorphism

T reg ×G/T → G̃reg

(t, gT ) 7→ (gtg−1, gB)

The Weyl group W = NG(T )/T acts on T reg × G/T , for w ∈ W and ẇ ∈ G a
representative

w.(t, gT ) := (ẇtẇ−1, gẇ−1T ).
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Thus W acts on G̃reg by

w.(X, gB) = (X, gẇ−1B).

Consider the following map

pG : G̃ → G
(X, gB) 7→ X

.

Denote by preg its restriction to G̃reg. Then preg is a Galois cover with group W .
Denote by U ⊂ G the subset of unipotent elements and

Ũ =
{

(X, gB) ∈ U ×G/B
∣∣g−1Xg ∈ U

}
.

Consider the following diagram, both squares are cartesian

Ũ G̃ G̃reg

U G Greg.

pU pG

ĩ

preg

i

Proposition 3.4.1 (Borho-MacPherson [BM83], 2.6). The Weyl group W acts on
pG! κG̃ and on pU! κŨ .

Proof. Let κG̃reg ∈ Dbc
(
G̃reg

)
be the constant sheaf concentrated in degree 0. It

is W -equivariant with φw : w∗κG̃reg → κG̃reg a morphism which is the identity on
stalks. preg is equivariant for the trivial action of W on Greg so that by Proposition
3.1.6, W acts on preg

! κG̃reg and there is a group morphism W op → Aut(p!κG̃reg). This
morphism is composed with inversion in order to obtain a left action.

This rather formal construction will be relevant later to compare various actions.
In the present situation the action can be easily described without the formalism of
W -equivariant complexes. The complex preg

! κG̃reg is concentrated in degree 0, its stalk
is isomorphic to the group algebra of W , the group W acts by right multiplication.

Springer theory extends this action to the derived pushforward pG! κG̃. First
pG is small, and by base change i∗pG! κG̃ ∼= preg

! i∗κG̃reg . Therefore pG! κG̃[dim G̃] =

IC•preg! κ
G̃reg

. Then Aut(preg
! κG̃reg) ∼= Aut

(
IC•preg! κ

G̃reg

)
so that W acts on pG! κG̃. To

conclude, by base change pU! κŨ is isomorphic to the restriction of pG! κG̃ to U .

To study characters varieties, this construction is used when G is either GLn or
a Levi subgroup of a parabolic subgroup of GLn.

Example 3.4.2. When G = GLn, the Weyl group is isomorphic to a symmetric
group Sn. The irreducible representations of the symmetric group Sn are indexed
by partitions of n. For λ ∈ Pn the associated irreducible representation is Vλ. The
trivial representation is V(n) and V(1n) is the signature. Then there is a nice descrip-
tion of the left W -action on pU! κŨ

pU! κŨ

[
dim Ũ

]
=
⊕
λ∈Pn

Vλ ⊗ IC •Cλ .

With Cλ the unipotent class with Jordan type λ. With notations from previous section
Cλ = Cλ,1.
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Example 3.4.3. For a Levi subgroup M of a parabolic subgroup of GLn with

M ∼= GLν

the Weyl group WM = NM(T )/T is isomorphic to Sν (Notations 3.3.6 are used).
Let UM ⊂M the subset of unipotent element in M and ŨM its Springer resolution.
The result for GLn easily generalizes to

pUM! κŨM

[
dim ŨM

]
=
⊕
ρ∈Pν

Vρ ⊗ IC •CMρ (3.28)

with CMρ the unipotent conjugacy class in M defined for ρ =
(
ρ1, . . . , ρl

)
by

CMρ := Cρ1 × · · · × Cρl ⊂ GLν1 × · · · ×GLνl .

Remark 3.4.4. The same construction exists for adjoint orbits. Denote by g, b,
respectively u the Lie algebras of G, B respectively U . Denote by n the subset of
nilpotents elements in g.

g̃ :=
{

(X, gB) ∈ g×G/B
∣∣g−1Xg ∈ b

}
and

ñ :=
{

(X, gB) ∈ n×G/B
∣∣g−1Xg ∈ u

}
.

They fit in a diagram
ñ g̃

n g.

pn pg

The Weyl group W acts on pg! κg̃ and on pn! κñ. Moreover

pn! κñ [dim ñ] =
⊕
λ∈Pn

Vλ ⊗ IC •Oλ .

With Oλ the nilpotent adjoint orbit of Jordan type λ.

3.4.2 Parabolic induction

In this section Lusztig parabolic induction is recalled [Lus84; Lus85; Lus86]. Most
results hold for any reductive algebraic group G, for our purpose we assume G is
either GLn or a Levi factor of a parabolic subgroup of GLn. Let P be a parabolic
subgroup of G with Levi decomposition P = LUP . The projection to L with respect
to this decomposition is πP : LUP → L. Consider the diagram

L V1 V2 G
ρ ρ′ ρ′′ (3.29)

with

V1 =
{

(x, g) ∈ G×G
∣∣g−1xg ∈ LUP

}
V2 =

{
(x, gP ) ∈ G×G/P

∣∣g−1xg ∈ LUP
}
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ρ(x, g) = πP (g−1xg)

ρ′(x, g) = (x, gP )

ρ′′(x, gP ) = x

Parabolic induction is a functor IndGL⊂P from the category of L-equivariant perverse
sheaves on L to the derived category of G-equivariant complexes of sheaves on G.
Take K an L-equivariant perverse sheaf on L. The morphism ρ is smooth with
connected fibers of dimension m = dimG+ dimUP . Therefore the shifted pull-back
ρ∗K[m] is an L-equivariant perverse sheaf on V1. Hence there exists a perverse sheaf
K̃ on V2, unique up to isomorphism, such that ρ′∗K̃[dimP ] ∼= ρ∗K[m]. Then the
parabolic induction of K is defined by IndGL⊂P K := ρ′′! K̃.

Example 3.4.5. The Springer complex pG! κG̃ is nothing but IndGT⊂B κT and the W -
action on this complex is a particular cass of a more general situation studied by
Lusztig [Lus86].

Example 3.4.6. Parabolic induction also relates to the resolution of closure of con-
jugacy classes from 3.3.3. Consider the following diagram with the first line being
the diagram of parabolic induction

L V1 V2 GLn

{σ} X̂L,P,σ X̃L,P,σ Cµ,σ

then
pσ! κX̃L,P,σ

[
dim X̃L,P,σ

]
∼= IndGLn

L⊂P κ{σ}.

with κ{σ) the constant sheaf with support {σ}.

Proposition 3.4.7 (Lusztig [Lus85] I-4.2). Let P,Q be parabolic subgroups of G
with Levi decomposition P = LUP , Q = MUQ such that P ⊂ Q and L ⊂ M , then
P ∩M is a parabolic sugroup of M with L as a Levi subgroup. Let K a L-equivariant
perverse sheaf on L such that IndML⊂P∩M K is a perverse sheaf on M . Then

IndGL⊂P K
∼= IndGM⊂G

(
IndML⊂P∩M K

)
.

Let us detail the implication of this proposition for Springer complexes. As in
previous section, G = GLn, B is a Borel subgroup of G and T a maximal torus in B.
M is a Levi factor of P a parabolic subgroup of G containing B, it has the following
form for some ν ∈ Pn

M ∼= GLν .

By transitivity of the parabolic induction from previous proposition

IndGT⊂B κT
∼= IndGM⊂P IndMT⊂B∩M κT . (3.30)

The left hand side is the Springer complex for G so that it carries a W -action,
this action restricts to a WM -action as WM ⊂ W . Similarly IndMT⊂B∩M κT carries a
WM -action as it is isomorphic to the Springer complex for M . Under the parabolic
induction functor IndGM⊂P , this WM -action on IndMT⊂B∩M κT induces a WM -action
on IndGM⊂P IndMT⊂B∩M κT . Lusztig [Lus86, 2.5] proved that both WM -action coincide
under the isomorphism (3.30), this implies in particular the next theorem:
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Theorem 3.4.8. Let σ ∈ Z(L) and κ{σ} the constant sheaf with support {σ}. Let
M = ZGLn(σ), assume M ∼= GLν

IndGLn
L⊂P κ{σ}

∼=
⊕
ρ∈Pν

HomWM

(
IndWM

WL
ε, Vρ

)
⊗ IC•Cρ,σ

with ε the sign representation of WL.

Remark 3.4.9. The same constructions exist for Lie algebras, see for instance
[Let05]. Previous theorem then becomes:

Ind
gln
l⊂p κ{σ}

∼=
⊕
ρ∈Pν

HomWM

(
IndWM

WL
ε, Vρ

)
⊗ IC•Oρ,σ

3.4.3 Relative Weyl group actions on multiplicity spaces

An interesting feature of the multiplicity spaces HomWM

(
IndWM

WL
ε, Vρ

)
is that they

carry a relative Weyl group action. Before describing this action, we recall a general
result about symmetric group, see Letellier [Let11, 6.1, 6.2].

Consider a type ω = (d1, ω
1) . . . (dl, ω

l) ∈ Tn (the set of types was defined in
3.3.3). The associated Schur function is

sω = sω1

[
Xd1

]
. . . sωl

[
Xdl
]

and

r(ω) :=
l∑

i=1

(di − 1)|ωi|. (3.31)

Definition 3.4.10 (Twisted Littlewood-Richardson coefficients). As the usual Schur
funtions (sρ)ρ∈Pn form a basis of Symn[X], there exist coefficients cρω such that

sω =
∑
ρ∈Pn

cρωsρ.

Coefficients cρω are called the twisted Littlewood-Richardson coefficients.

Lemma 3.4.11. Let ω′ the transpose of ω, i.e ω′ =
(
d1, ω

1′) . . .(dl, ωl′). Then

cρ
′

ω′ = (−1)r(ω)cρω.

with r(ω) defined in (3.31).

Proof. This follows from a computation in the ring of symmetric functions using the
basis of power sums, see Letellier [Let11, 6.2.4].

Let us recall their interpretation in terms of representations of symmetric group.
The type ω defines an irreducible representation Vω of the groupSω :=

∏l
i=1 S

di
|ωi|.

Vω := ⊗li=1V
⊗di
ωi
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with Vωi the representation of S|ωi| indexed by the partition ωi. Denote by fω the
morphism Sω → GL(Vω) induced by the representation Vω. Introduce the relative
Weyl group

WSn (Sω, Vω) =
{
n ∈ NSn(Sω)

∣∣fω(n−1 . . . n) = fω(. . . )
}
/Sω

This is the group of permutations of the blocks of Sω corresponding to the same
representation Vωi .

Proposition 3.4.12 (Letellier [Let11] Proposition 6.2.5). For ρ ∈ Pn and Vρ the
associated representation of Sn. For ω ∈ Tn a type. The relative Weyl group
WSn (Sω, Vω) acts on

HomSn

(
IndSn

Sω
Vω, Vρ

)
.

Let w ∈ WSn (Sω, Vω) acting by cyclic permutation of the di blocks with representa-
tion Vωi for 1 ≤ i ≤ l. Then

tr
(
w,HomSn

(
IndSn

Sω
Vω, Vρ

))
= cρω.

Remark 3.4.13. Assume the type ω has the following form

ω = (λ1, (1)) . . . (λl, (1)) with λ = (λ1, . . . , λl) ∈ Pn.

Then sω = pλ and by (3.14), for ρ ∈ Pn

cρω = χρλ

Notice that WSn (Sn, Vω) ∼= Sn and the element w associated to ω has cycle type λ.
Therefore the proposition implies that as a WSn (Sn, Vω) representation

HomSn

(
IndSn

Sω
Vω, Vρ

) ∼= Vρ.

With this general result about symmetric group, we go back to the Weyl groups
relative to resolution of conjugacy classes.

Definition 3.4.14 (Relative Weyl group). For L a Levi subgroup ofM , The relative
Weyl group is

WM(L) := NM(L)/L.

Take L and M similarly to Section 3.3.3. Denote by (mi
1, . . . ,m

i
ki

) the multiplic-
ity of the parts of µi′ so that it has the following form

µi
′
=

ai1, . . . , ai1︸ ︷︷ ︸
mi1

, ai2, . . . , a
i
2︸ ︷︷ ︸

mi2

, . . . , aiki , . . . , a
i
ki︸ ︷︷ ︸

miki

 .

Then with notations 3.3.6 L ∼= GLµ′ and the relative Weyl group is

WM(L) ∼=
∏

1≤i≤l
1≤r≤ki

Smir
.

When M = GLn then the relative Weyl group is the group of permutations of
same-sized blocks of L.
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Notations 3.4.15. Conjugacy classes in WM(L) are indexed by elements

η = (ηi,r) 1≤i≤l
1≤r≤ki

∈
∏

1≤i≤l
1≤r≤ki

Pmir .

A conjugacy class then determined l distinct types ωηi with parts
(
ηi,rs , (1

air)
)

1≤r≤ki
1≤s≤l(ηi,r)

.

Note that

sω′
ηi

=

ki∏
r=1

l(ηi,r)∏
s=1

hair

[
Xηi,rs

]
Following notations will be convenient to compute Weyl group actions on the coho-
mology of character varieties.

h̃η :=
l∏

i=1

sω′
ηi

and

r(η) :=
l∑

i=1

r(ωηi).

with r(ωηi) defined by (3.31).

Those data describe the WM(L) action on the multiplicity spaces, Proposition
3.4.12 implies:

Theorem 3.4.16. Let εµ′ the sign representation of WL and ρ ∈ Pν. The relative

Weyl group WM(L) acts on HomWM

(
IndWM

WL
εµ′ , Vρ

)
. The trace of the action of an

element with conjugacy class indexed by η ∈
∏

1≤i≤lj
1≤r≤ki

Pmir is

tr
(
η,HomWM

(
IndWM

WL
εµ′ , Vρ

))
=

l∏
i=1

cρ
i

wηi
.

3.4.4 Relative Weyl group actions and Springer theory

There is another construction of relative Weyl group action using another variant
of Springer theory. It will be useful to construct relative Weyl group actions when
considering family of comet-shaped quiver varieties.

Let P be a parabolic subgroup of GLn and L a Levi factor of P . L is isomorphic
to a group of blocks diagonal matrices GLc1 × · · · × GLcr . The Lie algebra of L,
respectivly UP are denoted l respectivly uP . At the level of the Lie algebras the Levi
decomposition becomes p = l⊕ uP . The center of this Lie algebra l is denoted Z(l)
and its regular locus is

Z(l)reg = {x ∈ Z(l) |ZG(x) = L} .

Define
Ỹreg
L,P =

{
(x, gL) ∈ gln×GLn /L

∣∣g−1xg ∈ Z(l)reg
}

Consider the projection on the first factor preg : Ỹreg
L,P → gln, denote Y

reg
L,P its im-

age. This image consists of semisimple elements with r distinct eigenvalues with
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multiplicities c1, . . . , cr. Consider the relative Weyl group WGLn(L) = NGLn(L)/L,
and for each w ∈ WGLn(L) chose a representative ẇ ∈ NGLn(L). This relative Weyl
group acts on Z(l) by

w.σ := ẇσẇ−1.

Consider the fiber product

Z(l)reg Yreg
L,P ×Z(l)reg/WGLn (L) Z(l)reg

Z(l)reg/WGLn(L) Yreg
L,Pχ

with χ the characteristic polynomial. Note that the following map is an isomorphism

Ỹreg
L,P → Yreg

L,P ×Z(l)reg/WGLn (L) Z(l)reg

(x, gL) 7→ (x, g−1xg)
(3.32)

Therefore the WGLn(L) action on Z(l)reg induces an action on Ỹreg
L,P . It is given

explicitly by
w.(x, gL) = (x, gẇ−1L).

Then
Ỹreg
L,P

preg−−→ Yreg
L,P

is a Galois cover with group WGLn(L). This relative Weyl group acts on the push
forward of the constant sheaf preg

∗ κ. Define

ỸL,P =
{

(x, gP ) ∈ gln×GLn /P
∣∣g−1xg ∈ Z(l)⊕ uP

}
Remark 3.4.17. An element gP ∈ GLn /P identifies with a partial flag

0 = Er ⊂ Er−1 ⊂ · · · ⊂ E1 ⊂ Kn

such that dimEi−1/Ei = ci for all 1 ≤ i ≤ r. Indeed GLn acts transitively on
such flags and the stabilizer is P . Then a point (x, gP ) in ỸL,P consists of an
endomorphism x ∈ gln and a partial flag gP preserved by x such that x acts as a
scalar on Ei−1/Ei for all 1 ≤ i ≤ r.

Denote YL,P the image of the projection to the first factor p : ỸL,P → gln.
Note that the map p is proper. The following theorem is a particular case of
[Lus84, Lemma 4.3 and Proposition 4.5]. It can be seen as a generalization of
Borho-MacPherson result.

Theorem 3.4.18. Yreg
L,P is an open, dense, smooth subset of YL,P and the following

square is cartesian

Ỹreg
L,P ỸL,P

Yreg
L,P YL,P

i

preg p (3.33)

with i the map (x, gL)→ (x, gP ). Moreover p!κ = IC• (YL,P , preg
! κ) so thatWGLn(L)

acts on p∗κ.
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Remark 3.4.19. preg is a Galois cover and i an open embedding so that the dimen-
sions can be easily computed:

dimYL,P = dim ỸL,P = dim Ỹreg
L,P = dim GLn− dimL+ dimZ(L). (3.34)

Let us describe the relation with the resolution of closure of adjoint orbits in-
troduced in 3.3.8. Let σ ∈ Z(l) and M := ZGLn(σ). Then use the same notations
as in 3.3.3 so that M ∼= GLν for ν a partition of n. Moreover L ⊂ M and the
integers (c1, c2, . . . , cr) are relabelled (µ1

1
′
, µ1

2
′
, . . . ) so that µi′ is a partition of νi.

The inclusion L ⊂M comes from inclusions

GLµi1
′ × · · · ×GLµili

′ ⊂ GLνi .

The resolution of the closure of Oµ,σ fits in the following diagram

ỸL,P ỸL,P,σ

YL,P Oµ,σ =
⊔
ρ�µOρ,σ

p pσ (3.35)

The decomposition Oµ,σ =
⊔
ρ�µOρ,σ actualy comes from a decomposition of

YL,P . Define
YM,ρ

L,P :=
⊔

σ′∈Z(m)reg

Oρ,σ′ .

This decomposition is similar to the one introduced by Shoji [Sho88].

Proposition 3.4.20. YM,ρ

L,P is smooth of dimension

dimYM,ρ

L,P = dimOρ,σ + dimZ(m).

Then YL,P admits the following decomposition

YL,P =
⊔
M

⊔
ρ�µ

YM,ρ

L,P .

The first union is over the set of centralizer of elements σ ∈ Z(l). In the second
union, µ depends on M as previously described. The unique part indexed by M = L
is Yreg

L,P .

Proof. Denote by Zρ the centralizer in GLn of the element Jρ,σ in Oρ,σ (see Notations
3.3.1). Then there is a natural finite cover

Z(m)reg ×GLn /Zρ → YM,ρ

L,P(
σ′, gZρ

)
7→ gJρ,σ′g

−1

Therefore YM,ρ

L,P is smooth and

dimYM,ρ

L,P = dimOρ,σ + dimZ(m).
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3.5 Character varieties and their additive counter-
part

In this section the main objects studied in this thesis are introduced.

3.5.1 Character varieties

Let Σ be a compact Riemann surface of genus g. Consider the punctured Riemann
surface Σ = Σ\{p1, . . . , pk} where pj are distinct points on Σ called punctures. The
field K is either C or an algebraic closure Fq of a finite field Fq with q elements. Fix
a non negative integer n. We are concerned by n-dimensional K-representations of
the fundamental group of Σ with prescribed monodromy around the punctures.

For each puncture, specify a conjugacy class Cµj ,σj . The notations are the same
as in previous section, with the addition of an upper index 1 ≤ j ≤ k labelling the
punctures. σj is a diagonal matrix with diagonal coefficients

(σj1, . . . , σ
j
1︸ ︷︷ ︸

νj1

, . . . , σjlj , . . . , σ
j
lj︸ ︷︷ ︸

νjlj

)

and σjr 6= σjs for r 6= s. Moreover, µj =
(
µj,1, . . . , µj,lj

)
with µj,r ∈ Pνjr the partition

giving the size of the Jordan blocks of the eigenvalue σjr .
A bold symbol is used to represent k-uple:

µ :=
(
µ1, . . . , µk

)
σ :=

(
σ1, . . . , σk

)
Cµ,σ :=

(
Cµ1,σ1 , . . . , Cµk,σk

) (3.36)

The representations of the fundamental group of Σ with monodromy around pj
in the closure Cµj ,σj form the following affine variety

RCµ,σ :=
{

(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GL2g
n ×Cµ1,σ1 × · · · × Cµk,σk

∣∣∣
A1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g X1 . . . Xk = Id
}
.

The group GLn acts by simultaneous conjugation on RCµ,σ

g. (A1, . . . , Bg, X1, . . . , Xk) =
(
gA1g

−1, . . . , gBgg
−1, gX1g

−1, . . . , gXkg
−1
)
.

The center of GLn acts trivially so this action factors through an action of PGLn.

Definition 3.5.1 (Character variety). The character variety we are interested in is
the following GIT quotient

MCµ,σ := RCµ,σ//PGLn := SpecK
[
RCµ,σ

]PGLn
.

It is an affine variety with regular functions the PGLn-invariants functions on RCµ,σ .

Under some generecity assumptions, the PGLn action is free.
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Definition 3.5.2 (Generic conjugacy classes). Denote ∆(σj) the multiset of eigen-
values of σj repeated according to multiplicities. σjr appears exactly νjr times in the
multiset ∆(σj). The k-uple of conjugacy classes Cµ,σ is generic if and only if it
satisfy the two following conditions

1.
k∏
j=1

∏
α∈∆(σj)

α = 1

2. For any r ≤ n− 1, for all (R1, . . . , Rk) with Rj ⊂ ∆(σj) of size r

k∏
j=1

∏
α∈Rj

α 6= 1

Throughout the thesis, every character varieties considered are assumed to have
generic conjugacy classes at the punctures.

Remark 3.5.3. If the k-uple of conjugacy classes Cµ,σ is generic and V is a non-
zero subspace of Kn stable by some elements Xj ∈ Cµj ,σj such that

k∏
j=1

det(Xj |V ) = 1

then V = Kn.

Definition 3.5.4. Let RCµ,σ := RCµ,σ ∩
(

GLn(K)2g ×
∏k

j=1 Cµj ,σj
)
and MCµ,σ the

image of RCµ,σ in RCµ,σ .

Proposition 3.5.5. If Cµ,σ is generic then points of RCµ,σ correspond to irreducible
representations of the fundamental group of the punctured Riemann surface Σ.

Proof. Let V be a subrepresentation of (A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ RCµ,σ .
Then V is stable by thoses matrices and the equation defining RCµ,σ restricts to

(A1|V , B1|V ) . . . (Ag |V , Bg |V )X1|V . . . Xk |V = IdV .

Taking determinant, the genericity implies V = 0 or V = Kn.

We recall a proposition from [Let13], and [HLR11] for the semisimple case.

Proposition 3.5.6. If Cµ,σ is generic then RCµ,σ is non-singular, when non-empty
its dimension is

dimRCµ,σ = 2gn2 − n2 + 1 +
k∑
j=1

dim Cµj ,σj .

Proof. The proof combines the one of theorem 2.2.5 in [HR08] and proposition 5.2.8
in [EOR04].
RC = µ−1(In) where µ is the map
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µ : GLn(K)2g ×
∏k

i=1 Ci → SLn(K)
(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) 7→ (A1, B1) . . . (Ag, Bg)X1 . . . Xk.

It is enough to check that the differential dµz of this map at a point

z = (A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ RC
is a surjective map between tangent space. The tangent space of SLn(K) is the Lie
algebra sln(K). The tangent space of Ci at Xi is made of Lie brackets [ri, Xi] for
ri ∈ gln(K). Hence an element of the tangent space at z reads

v = (h1, l1, . . . , hg, lg, [r1, X1], . . . , [rk, Xk])

for ri, hj, lj ∈ gln(K). First we compute the differential with respect to Aj of the
commutator Aj 7→ AjBjA

−1
j B−1

j

dj(hj) := hjBjA
−1
j B−1

j − AjBjA
−1
j hjA

−1
j B−1

j

similarly with respect to Bj

d′j(lj) := AjljA
−1
j B−1

j − AjBjA
−1
j B−1

j ljB
−1
j .

We use the usual rule to differentiate a product of matrix

dµz(v) =
k∑
i=1

(A1, B1) . . . (Ag, Bg)X1 . . . Xi−1[ri, Xi]Xi+1 . . . Xk

+

g∑
j=1

(A1, B1) . . . (Aj−1, Bj−1)dj(hj)(Aj+1, Bj+1) . . . (Ag, Bg)X1 . . . Xk

+

g∑
j=1

(A1, B1) . . . (Aj−1, Bj−1)d′j(lj)(Aj+1, Bj+1) . . . (Ag, Bg)X1 . . . Xk

the first, respectively second and third lines correspond to differenciation with re-
spect to Xi respectively Aj and Bj. Now we use that z satisfies the equation defining
RC

dµz(v) =
k∑
i=1

(Xi . . . Xk)
−1[ri, Xi]Xi+1 . . . Xk

+

g∑
j=1

(A1, B1) . . . (Aj−1, Bj−1)dj(hj) ((A1, B1) . . . (Aj−1, Bj−1)(Aj, Bj))
−1

+

g∑
j=1

(A1, B1) . . . (Aj−1, Bj−1)d′j(lj) ((A1, B1) . . . (Aj−1, Bj−1)(Aj, Bj))
−1

We rewrite to exhibit some conjugation

dµz(v) =
k∑
i=1

(Xi+1 . . . Xk)
−1X−1

i [ri, Xi]Xi+1 . . . Xk

+

g∑
j=1

(A1, B1) . . . (Aj−1, Bj−1)dj(hj)(Aj, Bj)
−1 ((A1, B1) . . . (Aj−1, Bj−1))−1

+

g∑
j=1

(A1, B1) . . . (Aj−1, Bj−1)d′j(lj)(Aj, Bj)
−1 ((A1, B1) . . . (Aj−1, Bj−1))−1 .
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To prove that this differential is surjective we take u ∈ sln(K) such that for any v
tangent to z we have tr(dµz(v)u) = 0 and show that u = 0. For any ri ∈ gln(K) we
must have

tr((Xi+1 . . . Xk)
−1X−1

i [ri, Xi]Xi+1 . . . Xku) = 0 (3.37)
Let us prove by recursion that u commutes with Xi for all 1 ≤ i ≤ k.
When i = k

0 = tr(X−1
k [rk, Xk]u) = tr(X−1

k rkXku)− tr(rku) = tr(rkXkuX
−1
k − rku)

in last equality we use the cyclicity of the trace. This must be true for any rk so
that u = XkuX

−1
k . Now let us assume that u commutes with Xm for any i < m ≤ k,

(3.37) implies
tr(X−1

i [ri, Xi]u) = 0

so that u commutes with Xi. Similarly u commutes with Aj and Bj. By genericity
and Schur lemma this implies that u is a scalar matrix, as it is in sln(K) it must be
zero which achieves the proof.

Proposition 3.5.7 (Stratification of MCµ,σ , [Let13] Corollary 3.6 ). We assume
Cµ,σ is generic. The stratification of Zariski closure of conjugacy classes induces a
stratification of the character variety:

MCµ,σ =
⊔
ρ�µ

MCρ,σ .

The union is over ρ =
(
ρ1, . . . , ρk

)
with ρj =

(
ρj,1, . . . , ρj,lj

)
such that

ρj,i � µj,i, for all 1 ≤ j ≤ k, 1 ≤ i ≤ lj

with � the dominance order on Pνji .
Moreover ifMCµ,σ is non empty, thenMCµ,σ is also non empty. Therefore when

MCµ,σ is non empty, its dimension is

dimMCµ,σ = dµ := n2(2g − 2) + 2 +
k∑
j=1

dim Cµj ,σj . (3.38)

3.5.2 Additive analogous of Character varieties

Instead of the multiplicative equation in GLn defining RCµ,σ , one can consider ad-
ditive equation in gln. This is called the additive Deligne-Simpson problem. It was
studied by Crawley-Boevey [Cra03b], [Cra06] in the case g = 0, by Hausel, Letel-
lier and Rodriguez-Villegas [HLR11] for semisimple adjoint orbits and by Letellier
[Let11] in general.

As before, notation from 3.3.1 are used, and a k-uple of adjoint orbits in gln is
introduced:

Oµ,σ :=
(
Oµ1,σ1 , . . . ,Oµk,σk

)
.

Consider the affine variety

VOµ,σ :=
{

(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ gl2gn ×Oµ1,σ1 × · · · × Oµk,σk
∣∣∣

g∑
i=1

[Ai, Bi] +
k∑
j=1

Xj = 0

}
.

94



This is an affine variety acted upon by GLn by coordinate-wise adjoint action. The
center of GLn acts trivialy so that the action factors through a PGLn action. Con-
sider the GIT quotient

QOµ,σ := VOµ,σ
//

PGLn = Spec

(
K
[
VOµ,σ

]GLn
)
. (3.39)

Definition 3.5.8 (Generic adjoint orbits). Denote ∆(σj) the multiset of eigenvalues
of σj repeated according to multiplicities. σjr appears exactly νjr times in the multiset
∆(σj). The k-uple of adjoint orbits Oµ,σ is generic if and only if it satisfy the two
following conditions

1.
k∑
j=1

∑
α∈∆(σj)

α = 0

2. For any r ≤ n− 1, for all (R1, . . . , Rk) with Rj ⊂ ∆(σj) of size r

k∑
j=1

∑
α∈Rj

α 6= 0

.

Remark 3.5.9. Contrarily to the multiplicative case, generic k-uple of adjoint orbits
do not exist for every multiplicities (ν1, . . . , νk). In particular if an integer d > 1
divides all νj for 1 ≤ j ≤ k.

Character varieties and their additive analogous share many properties in com-
mon. They have the same dimension and similar stratifications. Let

UOµ,σ := UOµ,σ ∩ gl2gn ×Oµ1,σ1 × · · · × Oµk,σk

and QOµ,σ the image of UOµ,σ in QOµ,σ .

Proposition 3.5.10 (Stratification of QOµ,σ). Assume Oµ,σ is generic, then

QOµ,σ =
⊔
ρ�µ

QOρ,σ

is a stratification of QOµ,σ . Moreover

dimQOµ,σ = dµ = n2(2g − 2) + 2 +
k∑
j=1

dimOµj ,σj .

3.5.3 Resolutions of character varieties

The resolutions of conjugacy classes introduced in 3.3.3 induce resolutions of char-
acter variety. As before we consider a generic k-uple of conjugacy classes

Cµ,σ =
(
Cµ1,σ1 , . . . , Cµk,σk

)
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and upper indices 1 ≤ j ≤ k label the puncture. As usual σj is a diagonal matrix
with diagonal coefficients

(σj1, . . . , σ
j
1︸ ︷︷ ︸

νj1

, . . . , σjlj , . . . , σ
j
lj︸ ︷︷ ︸

νjlj

).

Let M j := ZGLn(σj) then with Notation 3.3.6

M j ∼= GLνj

As usual µj,i ∈ Pνji is the Jordan type of σji . Denote by µj,i′ =
(
µj,i1

′
, µj,i2

′
, . . .

)
the

transposed partition. Let Lj ⊂M j the subgroup of diagonal matrices as in 3.3.3

Lj ∼= GL
µj,11

′ ×GL
µj,12

′ × . . .︸ ︷︷ ︸
⊂GL

ν
j
1

× · · · ×GL
µ
j,lj
1

′ ×GL
µ
j,lj
2

′ × . . .︸ ︷︷ ︸
⊂GL

ν
j
lj

.

Let X̃Lj ,P j ,σj a resolution of Cµj ,σj as constructed in 3.3.3. Let

X̃L,P ,σ :=
∏

1≤j≤k

X̃Lj ,P j ,σj .

Letellier [Let13] constructed resolutions of singularities for character varieties.

Definition 3.5.11 (Resolutions of character variety). Define

M̃L,P ,σ :=
{

(Ai, Bi)1≤i≤g, (Xj, gjP
j)1≤j≤k ∈ GL2g

n ×X̃L,P ,σ∣∣A1B1A
−1
1 B−1

1 . . . B−1
g X1 . . . Xk = Id

}
//PGLn . (3.40)

The maps pσj : X̃Lj ,P j ,σj → Cµj ,σj induce a map

pσ : M̃L,P ,σ →MCµ,σ

this map is a resolution of singularity.

Next theorem is a particular case of a result of Letellier [Let13, Theorem 5.4]

Theorem 3.5.12.
pσ! κ[dµ] ∼=

⊕
ρ�µ

Aµ′,ρ ⊗ IC•MCσ,ρ

and in terms of cohomology:

H i+dµ
c

(
M̃L,P ,σ, κ

)
∼=
⊕
ρ�µ

Aµ′,ρ ⊗ IH i+dρ
c

(
MCσ,ρ , κ

)
. (3.41)

The multiplicity space Aµ′,ρ will be described in the remaining of the section.
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Like the resolutions of closure of conjugacy classes, the resolution of character
varieties come with a Weyl group action à la Springer. First we present the Weyl
groups involved. The Weyl group of M j is WMj = NMj(T )/T then

WMj
∼= Sνj .

For ρj =
(
ρj,1, . . . , ρj,lj

)
∈ Pνj and Vρj,i the irreducible representation of Sνji

indexed
by ρj,i let

Vρj :=

lj⊗
i=1

Vρj,i

it is an irreducible representation of WMj .
The Weyl group of Lj is WLj = NLj(T )/T , it is a subgroup of WMj

WLj
∼= S

µj,11

′ ×S
µj,12

′ × . . .︸ ︷︷ ︸
⊂S

ν
j
1

× · · · ×S
µ
j,lj
1

′ ×S
µ
j,lj
2

′ × . . .︸ ︷︷ ︸
⊂S

ν
j
lj

.

The sign representation for this Weyl group is

εµj ′ :=

lj⊗
i=1

⊗
r

ε
µj,ir
′ .

It was previously denoted only by ε, the index is now added to remind the form of
the Weyl group WLj

∼= Sµj ′ .

Definition 3.5.13. The multiplicity space relative to the j-th puncture is

Aµj ′,ρj = HomW
Mj

(
Ind

W
Mj

W
Lj
εµj ′ , Vρj

)
.

Remark 3.5.14. The expression is particularly simple when Lj is a torus T . Then
the multiplicity space is just Vρj .

Define WM :=
∏k

j=1 WMj and similarly WL :=
∏k

j=1WLj . The parameter ρ =

(ρ1, . . . , ρk) ∈ Pν1 × · · · × Pνk indexes irreducible representations of

WM
∼=

k∏
j=1

lj∏
i=1

Sνji
.

Vρ is the following irreducible representation of
∏k

j=1

∏lj
i=1 Sνji

Vρ =
k⊗
j=1

lj⊗
i=1

Vρj,i . (3.42)

Now εµ′ is the sign representation of WL, namely

εµ′ :=
k⊗
j=1

εµj ′

The description of the multiplicity space for resolutions of closure of conjugacy
classes (Theorem 3.4.8) extends to Aµ′,ρ:
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Notations 3.5.15. The multiplicity space Aµ′,ρ is

Aµ′,ρ = HomWM

(
IndWMWL εµ′ , Vρ

)
=

k⊗
j=1

Aµj ′,ρj

Everything in this section also apply to the additive case.

Definition 3.5.16. For Oµ,σ a generic k-uple of adjoint orbits, define

Q̃L,P ,σ :=
{

(Ai, Bi)1≤i≤g, (Xj, gjP
j)1≤j≤k ∈ GL2g

n ×ỸL,P ,σ∣∣∣∣∣
g∑
i=1

[Ai, Bi] +
k∑
j=1

Xj = 0

}
//PGLn . (3.43)

The maps pσj : ỸLj ,P j ,σj → Oµj ,σj induce a resolution of singularities:

pσ : Q̃L,P ,σ → QOµ,σ .

Theorem 3.5.17.
pσ! κ[dµ] ∼=

⊕
ρ�µ

Aµ′,ρ ⊗ IC•QOρ,σ

and in terms of cohomology:

H i+dµ
c

(
Q̃L,P ,σ, κ

)
∼=
⊕
ρ�µ

Aµ′,ρ ⊗ IH i+dρ
c

(
MOρ,σ , κ

)
. (3.44)

3.5.4 Relative Weyl group actions

An interesting feature of the multiplicity spaces Aµ′,ρ is that they carry a relative
Weyl group action. It is constructed by Letellier [Let11, 6.1, 6.2]. The relative Weyl
group is

WM (L) :=
k∏
j=1

WMj(Lj)

with WMj(Lj) the relative Weyl groups described in 3.4.3. Their action on the
multiplicity spaces provide a WM (L)-action on Aµ′,ρ. As usual an index 1 ≤ j ≤ k
is added to label the puncture. Conjugacy classes inWM (L) are labelled by elements

η = (ηj)1≤j≤k

with ηj ∈
∏

1≤i≤lj
1≤r≤kj,i

Pmj,ir as in 3.4.3 with an additional index j for the puncture.

ηj = (ηj,i,r) 1≤i≤lj
1≤r≤kj,i

∈
∏

1≤i≤lj
1≤r≤kj,i

Pmj,ir .

Notations 3.4.15 extend to k-uple:
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Notations 3.5.18.

h̃η :=
k∏
j=1

lj∏
i=1

sω
ηj,i
′ [Xj]

and

r(η) :=
k∑
j=1

lj∑
i=1

r(ωηj,i).

Proposition 3.5.19. The relative Weyl group WM (L) acts on Aµ′,ρ and the trace
of an element in the conjugacy class indexed by η is

tr (η, Aµ′,ρ) =
k∏
j=1

lj∏
i=1

cρ
j,i

ηj,i
.

This proposition will be useful together with the decomposition of the cohomol-
ogy of resolutions of character varieties (3.44).

Theorem 3.5.20. Let Cµ,σ a generic k-uple of conjugacy classes and M̃L,P ,σ the
resolution of MCµ,σ . The relative Weyl group WM (L) acts on the cohomology of
M̃L,P ,σ. The trace of an element in the conjugacy class indexed by η is

tr
(
η, H i+dµ

c

(
M̃L,P ,σ, κ

))
=
∑
ρ�µ

tr (η, Aµ′,ρ)H
i+dρ
c

(
MCσ,ρ , κ

)
.

3.6 Cohomology of character varieties: some results
and conjectures

3.6.1 Conjectural formula for the mixed-Hodge polynomial

Hausel, Letellier and Rodriguez-Villegas [HLR11] introduced a generating function
conjecturally encoding mixed-Hodge structure on the cohomology of character va-
rieties. Let g be a non-negative integer, the genus, and k a positive integer, the
number of punctures.

Definition 3.6.1 (Generating function Ω and Hausel-Letellier-Villegas kernel). The
k-points, genus g Cauchy function is defined by

Ωg
k(z, w) :=

∑
λ∈P

Hλ(z, w)
k∏
i=1

H̃λ

[
Xi, z

2, w2
]
s|λ| (3.45)

with

Hλ(z, w) :=
∏ (

z2a+1 − w2l+1
)2g

(z2a+2 − w2l) (z2a − w2l+2)
. (3.46)

The degree n Hausel-Letellier-Villegas kernel is defined by

HHLV
n (z, w) := (z2 − 1)(1− w2) Log Ωg

k(z, w)
∣∣
sn
.
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The generating function Ωg
k(z, w) belongs to the lambda ring Sym [X1, . . . , Xk] [[s]].

This Cauchy function is known to encode cohomological information about character
varieties and quiver varieties, let us recall these various conjectures and theorems.

When the conjugacy classes are semisimple Hausel, Letellier, Rodriguez-Villegas
stated a conjecture for the mixed-Hodge polynomial of the character variety [HLR11].
They proved the specialisation corresponding to the E-polynomial. Letellier gener-
alized this conjecture to arbitrary types and intersection cohomology.

Let Cµ,σ a k-uple of generic conjugacy classes. Then µ = (µ1, . . . , µk) with
µj =

(
µj,1, . . . , µj,lj

)
. The transposition of the partition µj,i ∈ Pνji is denoted by µj,i′

and

sµ′ :=
k∏
j=1

lj∏
i=1

sµj,i′ [Xj] (3.47)

Conjecture 3.6.2 (Letellier [Let13], Conjecture 1.5). For Cµ,σ a generic k-uple of
conjugacy classes, the mixed-Hodge polynomial of the character varietyMCµ,σ is

IHc(MCµ,σ , q, v) = (v
√
q)dµ

〈
sµ′ ,HHLV

n

(
−1
√
q
, v
√
q

)〉
with q = xy. In particular after specializing to the Poincaré polynomial

Pc(MCµ,σ , v) = vdµ
〈
sµ′ ,HHLV

n (−1, v)
〉
. (3.48)

Some specializations of this conjecture are already proved. The formula ob-
tained after specialization to the E-polynomial is proved by Hausel, Letellier and
Rodriguez-Villegas [HLR11] for semisimple conjugacy classes and by Letellier [Let13]
for any type of conjugacy classes. The proof relies on counting points of character va-
rieties over finite fields and representation theory of GLn(Fq). The formula obtained
after specialization to the Poincaré polynomial is proved by Schiffmann [Sch16] for
one central conjugacy class and by Mellit [Mel17a] for any k-uple of semisimple con-
jugacy classes. The proof relies on counting point of moduli space of stable parabolic
Higgs bundles over finite field.

For the additive case the Poincaré polynomial is known, the cohomology is pure
so that it is obtained by counting points over finite fields. It was computed in the
semisimple case by Hausel, Letellier and Rodriguez-Villegas [HLR11], for any types
of adjoint orbits by Letellier [Let11].

Theorem 3.6.3. Let Oµ,σ a generic k-uple of adjoint orbits. The Poincaré polyno-
mial for compactly supported intersection cohomology of QOµ,σ is

Pc

(
QOµ,σ , v

)
= vdµ

〈
sµ′ ,HHLV

n (0, v)
〉
.

3.6.2 Poincaré polynomial of character varieties with semisim-
ple conjugacy classes at punctures

Let us recall Mellit’s result and check that it is a particular case of the conjecture.
Let S = (S1, . . . ,Sk) a generic k-uple of semisimple conjugacy classes. Then Sj has
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the form Cµj ,σj with µj = (1ν
j
1 , . . . , 1

νjlj ) and

sµ′ =
k∏
j=1

lj∏
i=1

s(νji )[Xj] =
k∏
j=1

hνj [Xj] = hν .

Lemma 3.6.4. IfMS is non-empty, its dimension is

dS = n2(2g + k − 2) + 2−
∑
i,j

(
µij
)2 (3.49)

which is even.

Proof. First note that the centralizer in GLn of an element in Si is isomorphic to∏
j GLµij so that

dimSi = dim GLn−
∑
j

dim GLµij

= n2 −
∑
j

(
µij
)2
.

Equation (3.49) then follows from the general formula (3.38). Reducing modulo 2

dS ≡ n2k −
∑
i,j

(
µij
)2

mod 2

≡ nk −
∑
i,j

µij mod 2

≡ 0 mod 2

The conjecture from Hausel, Letellier, Rodriguez-Villegas [HLR11] for the mixed-
Hodge structure of the character varieties with monodromies specified by S reads

IHc (MS ; q, v) = (v
√
q)dS

〈
hν ,HHLV

n

(
−1
√
q
, v
√
q

)〉
.

Note that as the conjugacy classes are generic semisimple, the character variety is
smooth and the intersection cohomology coincides with the usual cohomology. Then
the specialization to compactly supported Poincaré polynomial of the conjecture is

Pc (MS , v) =
∑
i

vi dimH i
c(MS , κ) = vdS

〈
hν ,HHLV

n (−1, v)
〉
. (3.50)

In order to compare this formula with Mellit’s result we perform a change of
variable v = −1√

u

∑
i

(−1)iu
−i
2 dimH i

c(MS ;κ) =

(
−1√
u

)dS 〈
hν ,HHLV

n

(
−1,
−1√
u

)〉
.
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Note that Ω(z, w) = Ω(w, z) = Ω(−w,−z), moreover the dimension is even by
Lemma 3.6.4, therefore the conjecture is equivalent to∑

i

(−1)2dS−iu
2dS−i

2 dimH i
c(MS ;κ) =

(√
u
)dS 〈hν ,HHLV

n

(
1√
u
, 1

)〉
.

By Poincaré duality this formula becomes∑
i

(−1)iu
i
2 dimH i(MS ;κ) = (

√
u)dS

〈
hν ,HHLV

n

(
1√
u
, 1

)〉
.

Thus the Poincaré polynomial specialization of the conjecture is equivalent to the
formula proved by Mellit [Mel17a, Theorem 7.12] and we have the following theorem.

Theorem 3.6.5. For S = (S1, . . . ,Sk) a generic k-uple of semisimple conjugacy
classes. If the multiplicities of the eigenvalues of Sj are given by a partition νj ∈ Pn
for 1 ≤ j ≤ k. Then the Poincaré polynomial of the character varietyMS is

Pc (MS ; v) = vdS
〈
hν ,HHLV

n (−1, v)
〉
. (3.51)

3.6.3 Weyl group actions on the cohomology

In 3.5.4 a Weyl group action on the cohomology of resolutions of character varieties
was introduced. The conjecture about the mixed-Hodge structure also concerns this
Weyl group action. We present the implications in terms of Poincaré polynomial
using Notations 3.4.15 and 3.5.18.

Definition 3.6.6 (η-twisted Poincaré polynomial). Cµ,σ is a generic k-uple of con-
jugacy classes and M̃L,P ,σ is the resolution of MCµ,σ . For η indexing a conjugacy
class in WM (L), the η-twisted Poincaré polynomial of M̃L,P ,σ is

P ηc

(
M̃L,P ,σ, v

)
:=
∑
i

tr
(
η, H i

c

(
M̃L,P ,σ, κ

))
vi.

In the additive case, η-twisted Poincaré polynomial were computed by Letellier
[Let11, Corollary 7.4.3]. It is a consequence of Theorem 3.5.17 and Theorem 3.6.3.

Theorem 3.6.7. Let Oµ,σ a generic k-uple of adjoint orbits and Q̃L,P ,σ the reso-
lution of QOµ,σ . Let η representing a conjugacy class in the WM (L) the η-twisted
Poincaré polynomial is∑

i

tr
(
η, H i

c(Q̃L,P ,σ, κ)
)
vi = (−1)r(η)vdµ

〈
h̃η,HHLV

n (0, v)
〉
.

Remark 3.6.8. The description of the Weyl group action is particularly simple
when all the Lj are maximal torus. The notations L = T and P = B are used.
Then WM (T ) =

∏k
j=1

∏lj
i=1 Sνji

. The irreducible representation Vρ are indexed by
ρ ∈ Pν1 × · · · × Pνk as in (3.42). Then from 3.44 and the description of the action
on the multiplicity spaces 3.5.15, 3.5.14, the isotypical component of type Vρ is

HomWM (T )

(
Vρ, H

i+dµ
c

(
Q̃T ,B,σ, κ

))
= H i+dρ

c

(
QOρ,σ , κ

)
.

In terms of Poincaré polynomial

v−dµ
∑
i

vi dim HomWM (T )

(
Vρ, H

i+dµ
c

(
Q̃T ,B,σ, κ

))
=
〈
sρ,HHLV

n (0, v)
〉
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Remark 3.6.9. It is also interesting to study the action of a Weyl group relative to
a particuar puncture, for instance the first puncture. This will be used in 4.4.2 to
describe some structure coefficients of an algebra spanned by Kostka polynomial. A
particularly interesting case is when L1 is a maximal torus and M1 = GLn. Then
the component of the Weyl group relative to the first puncture is WM1(L1) ∼= Sn and

WM (L) ∼= Sn ×
k∏
j=2

WMj(Lj).

According to this decomposition consider an element (w, 1, . . . , 1) ∈ WM (L) with
w ∈ Sn an element of cycle type λ ∈ Pn. Then

h̃η = pλ[X1]hµ′2 [X2] . . . hµ′k [Xk]

and (−1)r(η) = ε(λ) the sign of the permutation w with cycle type λ. Previous
theorem reads

P ηc

(
Q̃L,P ,σ, v

)
= vdµε(λ)

〈
pλ[X1]hµ′2 [X2] . . . hµ′k [Xk],HHLV

n (0, v)
〉
.

This can be understood in terms of Frobenius characteristic, see Definition 3.2.29.
Consider the representation of Sn on the cohomology of Q̃L,P ,σ twisted by the sign:
H•(Q̃L,P ,σ, κ)⊗ ε. Its graded Frobenius characteristic is given by the following sym-
metric function in X1

vdµ
〈
hµ′2 [X2] . . . hµ′k [Xk],HHLV

n (0, v)
〉
X2,...,Xk

.

Notice that Vρ ⊗ ε ∼= Vρ′, by Remark 3.2.27, the multiplicity of the irreducible com-
ponent Vρ in H•(Q̃L,P ,σ, κ) is given by

vdµ
〈
sρ′ [X1]hµ′2 [X2] . . . hµ′k [Xk],HHLV

n (0, v)
〉
.

Letellier proved that the Weyl group action on the cohomology of the resolution
M̃L,P ,σ preserves the weight filtration. Therefore similarly to the η-twisted Poincaré
polynomial one can defined the η-twisted mixed-Hodge polynomial IHη

c

(
M̃L,P ,σ, q, v

)
.

Conjecture 3.6.10 (Letellier [Let13] Conjecture 1.8). Let Cµ,σ a generic k-uple of
conjugacy classes. For M̃L,P ,σ the resolution of a character varietyMCµ,σ and η a
conjugacy class in WM (L), the η-twisted Poincaré polynomial is

IHη
c

(
M̃L,P ,σ, q, v

)
= (−1)r(η)(v

√
q)dµ

〈
h̃η,HHLV

n

(
−1
√
q
, v
√
q

)〉
.
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Chapter 4

Weyl group actions on the
cohomology of comet-shaped quiver
varieties and combinatorics

4.1 Introduction
In this chapter the construction of the varieties QOµ,σ and their resolutions Q̃L,P ,σ
as comet-shaped quiver varieties is recalled. The base field K is either C or an
algebraic closure Fq of a finite field Fq. We consider Q̃L,P the family formed by
resolutions Q̃L,P ,σ when σ is varying. In terms of comet-shaped quiver varieties
this family is induced by the moment map. Weyl group actions on the cohomology
of quiver varieties have been studied by Nakajima [Nak94; Nak98], Lusztig [Lus00]
and Maffei [Maf02]. With those methods we construct a monodromic Weyl group
action on the cohomology of fibers of the family Q̃L,P . The construction of this
action relies on the moment map being locally trivial. The local triviality of such
moment was recalled in Chapter 2. Similar Weyl group action were used by Hausel,
Letellier and Rodriguez-Villegas [HLR13] to prove Kac conjecture. Moreover they
computed traces of those actions thanks to Grothendieck trace formula. The same
method is applied in this chapter.

Notice that Theorem 3.5.17 also provides a relative Weyl group action, à la
Springer, on the cohomology of resolutions Q̃L,P ,σ. Letellier [Let11] computed the
trace of the action by counting points over finite fields. In this chapter we check
that the monodromic and the Springer action are isomorphic.

Some combinatoric interpretation are given for those Weyl group actions. Sur-
prisingly, some traces of those actions are related to some structure coefficients of an
algebra spanned by modified Kostka polynomials

(
K̃λ,ρ

)
λ,ρ∈Pn

. The structure co-

efficents
(
cλµ,ν
)
λ,µ,ν∈Pn

were introduces by Rodriguez-Villegas in unpublished notes,
they are defined by

K̃µ,ρK̃ν,ρ =
∑
λ∈Pn

cλµ,νK̃λ,ρ.

We prove that the specialization c1n

µ,ν(0, t) of the coefficients has an interpretation in
terms of Weyl group action on the cohomology of comet-shaped quiver varieties.
Theorem 4.1.1. Consider a generic 4-uple of adjoint orbits of the following type:
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• O1 has one eigenvalue with Jordan type µ′ ∈ Pn

• O2 has one eigenvalue with Jordan type ν ′ ∈ Pn.

• O3 is semisimple regular, it has n distinct eigenvalues.

• O4 is semisimple with one eigenvalue of multiplicity n − 1 and the other of
multiplicity 1.

Then the Weyl group with respect to O3 is the symmetric group Sn and it acts on
the cohomology of QO. Let w a n-cycle in this Weyl group then

c1n

µ,ν (0, t) = t
−dO

2

∑
r

tr
(
w, IH2r

c (QO,C)
)
tr.

4.2 Nakajima’s quiver varieties

4.2.1 Resolution of Zariski closure of adjoint orbits as Naka-
jima’s framed quiver varieties

In this section we recall the construction of resolutions of closure of adjoint orbits
as Nakajima’s framed quiver varieties, see Definition 2.3.3. Those results come from
Kraft-Procesi [KP81], Nakajima [Nak98; Nak01], Crawley-Boevey [Cra03a; Cra03b],
Shmelkin [Shm09] and Letellier [Let11].

Let Oµ,σ an adjoint orbit with semisimple part σ and Jordan type µ ∈ Pν as
in 3.3.1. Consider the resolution ỸL,P,σ → Oµ,σ as in 3.3.8. There is a Nakajima’s
framed quiver variety realizing this resolution. Let d :=

∑l
i=1 µ

i
1 and recall that

L ∼=
l∏

i=1

µi1∏
r=1

GLµir ′ .

The indices
(
µir
′)

1≤i≤l
1≤r≤µi1

are relabelled (cs)1≤s≤d so that

L ∼=
d∏
s=1

GLcs

and introduce the parameter ζ = (ζs)1≤s≤d such that ζs = σi if cs corresponds to µir
′

for some r. Consider the quiver ΓOµ,σ of type Ad−1 with summit indexed by integers
between 1 and d − 1 and arrows going in the decreasing direction. Introduce the
dimension vector vOµ,σ := (v1, ..., vd−1) with

v1 := n− c1, vi := vi−1 − ci for i > 1

and w := (n, 0, . . . , 0).
Define the parameter ξOµ,σ = (ξ1, ..., ξd−1) by

ξi :=

{
σk − σk+1 if i = µ1

1 + · · ·+ µk1
0 otherwise (4.1)
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ξOµ,σ is identified with the element (ξj Idvj)1≤j≤d−1.
We summarize everything in the following diagram showing the quiver, the di-

mension vector, the parameter ζ and the parameter ξ.

•1 •2 · · · •µ11+···+µk1 · · · •d−1

n− c1 n− c1 − c2 · · · n− ν1 − · · · − νk · · · cr

σ1 σ1 · · · σk · · · σr

0 0 · · · σk − σk+1 · · · 0

Remark 4.2.1. When writing the dimension vector under the quiver, we used that
|µi| = νi.

Consider a second dimension vector w = (n, 0, . . . , 0) and an extended represen-
tation (a, b, φ) ∈ Rep

(
Γ̃Oµ,σ , vOµ,σ , w

)
. As wi = 0 unless i = 1, a is just a linear map

a : V1 → W1 and b : W1 → V1 with W1 = Kn. For 1 ≤ i ≤ d−2, denote by φi+1,i the
linear map associated to the edge from i + 1 to i and by φi,i+1 the map associated
to the reverse edge from i to i + 1. Such a representation belongs to µ′−1(ξOµ,σ) if
and only if

φ2,1φ1,2 − ba = (ζ1 − ζ2) Idv1
φi+1,iφi,i+1 − φi−1,iφi,i−1 = (ζi − ζi+1) Idvi for 2 ≤ i ≤ d− 2
−φd−1,d−2φd−1,d−2 = (ζd−1 − ζd) Idvd−1

(4.2)

those equations are called the preprojective relations.
Example 4.2.2. For the adjoint orbit of

σ1 1 0 0 0 0
0 σ1 1 0 0 0
0 0 σ1 0 0 0
0 0 0 σ1 0 0
0 0 0 0 σ2 0
0 0 0 0 0 σ2


the Jordan type is µ = ((3, 1), (1, 1)) ∈ P4 × P2 and we obtain

W1

V1 V2 V3

vOµ,σ : 4 3 2

ζ : σ1 σ1 σ2

ξOµ,σ : 0 σ1 − σ2 0

b a

φ1,2

φ2,1

φ2,3

φ3,2
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Theorem 4.2.3. First consider the Nakajima’s framed quiver varietyM0
vO,w

(ξOµ,σ)
obtained from previous data and stability parameter θ = 0. The following map is
well defined and is a bijection (it is an isomorphism when K = C)

Ψ0 : M0
vOµ,σ ,w

(
ξOµ,σ

)
→ Oµ,σ

(a, b, φ) 7→ ab− σ1 Idn

Now take a stability parameter θ ∈ Zd−1
>0 , the following map is a bijection (an iso-

morphism when K = C).

Ψθ : Mθ
vOµ,σ ,w

(
ξOµ,σ

)
→ ỸL,P,σ

(a, b, φ) 7→ (ab+ σ1 Idn, fa,b,φ)

with fa,b,φ the flag 0 ⊂ Ed−1 ⊂ · · · ⊂ E1 ⊂ Cn defined by

E1 := Im(a)
Ei := Im(a ◦ φ2,1 ◦ φ3,2 ◦ · · · ◦ φi,i−1) for 2 ≤ i ≤ d− 1.

Moreover, the following diagram commutes

Mθ
vOµ,σ ,w

(
ξOµ,σ

)
ỸL,P,σ

M0
vOµ,σ ,w

(
ξOµ,σ

)
Oµ,σ

Ψθ

π pσ

Ψ0

with pσ the resolution of Oµ,σ from Proposition 3.3.8 and π the natural map from
GIT theory.

4.2.2 Comet-shaped quiver varieties

Let Oµ,σ =
(
Oµ1,σ1 , . . . ,Oµk,σk

)
be a genric k-uple of adjoint orbits in gln. We recall

Crawley-Boevey’s result relating the variety QOµ,σ defined in the introduction to a
quiver variety. The idea is to glue together k quivers of type A corresponding to
each adjoint orbit Oµj ,σj to a central vertex 0 and add g loops to this central vertex,
we obtain the following comet-shaped quiver ΓOµ,σ

•[1,1] •[1,2] · · · •[1,d1−1]

•[2,1] •[2,2] · · · •[2,d2−1]

. . . •0 . . .

•[k,1] •[k,2] · · · •[k,dk−1]

The j-th leg is a quiver of type A with vertices labelled from [j, 1] to [j, dj − 1].
The dimension vector vOµ,σ is defined such that its coordinate at the central vertex
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is n and its coordinates on the j-th leg coincide with the dimension vector vO
µj,σj

described in previous section. Similarly the parameter ξOµ,σ is defined such that its
coordinates on the j-th leg coincide with the parameter ξO

µj,σj
. The component at

the central vertex ξOµ,σ ,0 is defined such that vOµ,σ .ξOµ,σ = 0 hence

nξOµ,σ ,0 = −
k∑
j=1

dj−1∑
i=1

vOµ,σ ,[j,i]ξOµ,σ ,[j,i].

Consider a representation of the extended quiver φ ∈ Rep
(

Γ̃Oµ,σ , vOµ,σ

)
.

• Denote by φ[j,i] the linear map associated to the arrow with tail [j, i] and φ[j,i]

the linear map associated to the reversed arrow with head [j, i].

• For 1 ≤ i ≤ g the map associated to the i-th loop is denoted φi and the one
associated to the reverse loop is denoted φi.

As usual µ is the moment map and ξOµ,σ is identified with an element in the center
of the Lie algebra gvOµ,σ . Let

Xj := φ[j,1]φ[j,1] − ζ[j,1]

If φ belongs to µ−1(ξOµ,σ) then Xj ∈ Oµj ,σj . Indeed it follows from previous de-
scription of closure of adjoint orbits as framed quiver varieties and identification,
for each legs, of the vector space at the central vertex with the framing vector space
W1 from previous section.

Now if Ai is the linear map associated to the i-th loop of the quiver and Bi the
map associated to the reversed loop, the preprojective relation at the central vertex
is exactly the equation defining VO. Hence the following map is well defined

ΨOµ,σ : µ−1(ξOµ,σ) → VOµ,σ
φ 7→ (A1, B1, . . . , Ag, Bg, X1, . . . , Xk)

Theorem 4.2.4. In the following diagram where the vertical arrows are quotient
maps, the application ΨOµ,σ goes down to the quotient to a bijective morphism ΦOµ,σ

(when K = C it is an isomorphism).

µ−1(ξOµ,σ) VOµ,σ

M0
vOµ,σ

(ξOµ,σ) QOµ,σ

ΨOµ,σ

ΦOµ,σ

Proof. It is proved by Crawley-Boevey [Cra01; Cra03b], see also Letellier [Let11,
Proposition 5.2.2] for any genus.

Q̃L,P ,σ, the resolution of QOµ,σ introduced in 3.5.16, is also interpreted as Naka-
jima’s quiver variety for the quiver ΓOµ,σ .
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Theorem 4.2.5. Consider a stability parameter θ associated to the quiver QOµ,σ
such that θ[j,i] > 0 for all vertices [j, i]. There is a bijective morphism ΦOµ,σ ,θ :

Mθ
vOµ,σ

(ξOµ,σ) → Q̃L,P ,σ which is an isomorphism when K = C and the following
diagram commutes

Mθ
vOµ,σ

(ξOµ,σ) Q̃L,P ,σ

M0
vOµ,σ

(ξOµ,σ) QOµ,σ

ΦOµ,σ ,θ

π pσ

ΦOµ,σ

with π the natural projection from GIT theory.

Proof. It follows from Letellier’s article [Let11], where the construction of the map
ΦOµ,σ ,θ is given in Section 5.3. This map is induced by the map Ψθ of Theorem
4.2.3. Contrarily to Letellier’s article, we do not consider partial resolution so that
our parameter θ has non-zero components. Therefore the dimension vector for the
quiver variety Mθ

vOµ,σ
(ξOµ,σ) describing the resolution Q̃L,P ,σ is the same as the

dimension vector of the quiver variety describing QOµ,σ .

The quiver variety point of view gives a criteria for non-emptiness. The question
of emptiness of QOµ,σ andMCµ,σ is known as the Deligne-Simpson problem. Kostov
[Kos04] gave a survey about this problem. For a different approach see Soibelman
[Soi16]. The additive version was answered by Crawley-Boevey in terms of roots
of the quiver [Cra03b]. The multiplicative case (for generic conjugacy classes and
genus g = 0) is solved by Crawley-Boevey [Cra03a, Theorem 8.3]. For any genus, the
result follows from Hausel, Letellier, Rodriguez-Villegas [HLR11, 5.2] and Letellier
[Let11, Corollary 3.15]. Those results are summarized in the following theorem:

Theorem 4.2.6. Let Oµ,σ a generic k-uple of adjoint orbit. The variety QOµ,σ is
not empty if and only QOµ,σ is not empty. This happens if and only if the dimension
vector vOµ,σ is a root of the quiver ΓOµ,σ . This is always the case for g > 0.

Let Cµ,σ′ a generic k-uple of conjugacy classes. The varietyMC
µ,σ′ is not empty

if and only if MC
µ,σ′ is not empty. This happens if and only if the the dimension

vector vO
µ,σ′ is a root of the quiver ΓO

µ,σ′ . This is always the case for g > 0.

4.2.3 Family of comet-shaped quiver varieties

When the eigenvalues σ are varying, one obtains a family of varieties.

Notations 4.2.7. From now on the pair L,P is fixed. For short, let

Z(l) := Z(l1)× · · · × Z(lk).

Denote by B the subset of elements σ ∈ Z(l) such that the k-uple of adjoint orbits
Oµ,σ is generic. Note that the genericity condition depends only the semisimple part
σ and not on the type µ. The set B is a Zariski open subset of a codimension one
subspace of Z(l) given by the vanishing of the sum of the traces. Identifying Z(l)
with an affine space, B is either empty or the complementary of a finite union of
hyperplanes in the codimension one subspace.
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Definition 4.2.8 (Family of varieties Q̃L,P ,σ). Define

ṼL,P :=
{(
σ, (Ai, Bi)1≤i≤g, (Xj, gjP

j)1≤j≤k
) ∣∣

σ ∈ B, and (Ai, Bi)1≤i≤g, (Xj, gjP
j)1≤j≤k ∈ VL,P,σ

}
Q̃L,P := ṼL,P //GLn

and denote η the map η : Q̃L,P → B. Thus the varieties Q̃L,P ,σ = η−1(σ) fit in a
family Q̃L,P .

The choice of L determine a unique quiver ΓOµ,σ and a unique dimension vector
vOµ,σ independent of a choice of σ. Assume that the dimension vector is indivisible
so that B is not empty. Then we can make the following assumption

Assumption 4.2.9 (Genericity of the stability parameter θ). θ is a generic stability
parameter, i.e. a stability parameter for the quiver ΓOµ,σ with dimension vector vOµ,σ
such that (θ, 0, 0) ∈ Hreg

vOµ,σ
with notations from 2.1.4.

The construction of Theorem 3.5.17 extends to this family. It provides the fol-
lowing commutative diagram (the left vertical arrows is induced by the moment map
µ)

µ−1(zgen
vOµ,σ

)θ-ss//GvOµ,σ
Q̃L,P

zgen
vOµ,σ

B

Φ

η (4.3)

θ is a fixed generic stability parameter. zgen
vOµ,σ

is the subset of the center of the
Lie algebra gvOµ,σ corresponding to the subset B under the correspondence between
parameters ξOµ,σ and eigenvalues σ. Note that the correspondence between param-
eters of the quiver variety ξOµ,σ ∈ Z(gvOµ,σ ) and Z(l) is not bijective. Thus the
previous diagram relies on a choice of k − 1 eigenvalues. To σ ∈ Z(l) associate the
element (ξOµ,σ , σ

1
1, . . . , σ

k−1
1 ) in Z(gvOµ,σ )×Kk−1 this defines a bijective map

h : Z(l)
∼−→ zvOµ,σ ×K

k−1. (4.4)

Note that for a given parameter ξOµ,σ the genericity conditions is independant of
the choice of the k− 1 eigenvalues, namely h−1(ξOµ,σ , σ

1
1, . . . , σ

k−1
1 ) is generic if and

only if h−1(ξOµ,σ , 0, . . . , 0) is generic. Therefore Diagram (4.3) can be modified to
account for various choices of eigenvalues, then the horizontal arrows are bijections
and isomorphism when K = C.

Kk−1 × µ−1(zgen
vOµ,σ

)θ-ss//GvOµ,σ
Q̃L,P

Kk−1 × zgen
vOµ,σ

B

Φ

Id×µ η (4.5)

Theorem 4.2.10. If K = C, or if the characteristic is large enough, the cohomology
sheaves Hiη!κ are constant sheaves.

Proof. When K = C, this is a consequence of Chapter 2 Corollary 2.4.14 and dia-
gram (4.5). As θ is generic, To prove the result for K = Fq we can change charac-
teristic as in [HLR13] proof of Theorem 2.3. This imply the result in large enough
characteristic.
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4.3 Weyl group action

4.3.1 Decomposition of the family QL,P
Notations 4.3.1. First we recall notations from 3.4.4 in this context. For 1 ≤ j ≤ k

ỸLj ,P j :=
{

(X, gjP
j) ∈ gln×GLn /P

j
∣∣g−1
j Xgj ∈ Z(lj)⊕ uP j

}
and define

ỸL,P := ỸL1,P 1 × · · · × ỸLk,Pk .
Then YL,P is the image in glkn of the map forgetting the partial flags gjP j:

p : ỸL,P → glkn
(Xj, gjP

j)1≤j≤k 7→ (Xj)1≤j≤k.

Similarly VL,P , respectively QL,P , is obtained from ṼL,P , respectively Q̃L,P , by for-
getting the partial flags.

In this section a decomposition of the family QL,P is deduced from the decom-
position Oµ,σ =

⊔
ρ�µOρ,σ and the decomposition introduced in Proposition 3.4.20:

YL,P =
⊔
M

⊔
ρ�µ

YM,ρ

L,P .

The decomposition is used in next section (Lemma 4.3.4) in order to define a Weyl
group action.

Let YBL,P the subset of elements in YL,P with semisimple part generic, i.e. in B.
The dimension of YBL,P is computed similarly to dimYL,P in Remark 3.4.19:

dimYBL,P = kn2 + dimB −
k∑
j=0

dimLj.

The decomposition YL,P =
⊔
M

⊔
ρ�µY

M,ρ

L,P induces a similar decomposition for YBL,P

YBL,P =
⊔
M

⊔
ρ�µ

YB,M ,ρ
L,P

With M = (M1, . . . ,M l) and YB,M ,ρ
L,P the subset of elements in

YB,M
1,ρ1

L1,P 1 × · · · × YB,M
k,ρk

Lk,Pk

with generic semisimple parts. From the computation of the dimension of YM,ρ

L,P in
Proposition 3.4.20, we deduce that when Z(m) ∩ B is not empty

dimYB,M ,ρ
L,P =

n∑
j=1

dimOρj ,σj + dimZ(m) ∩ B. (4.6)

Now the decomposition of YBL,P induces a decomposition of the family of quiver
varieties QL,P . Let

QM ,ρ
L,P :=

(
VL,P ×YL,P Y

B,M ,ρ
L,P

)
//PGLn .

We have the following proposition:
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Proposition 4.3.2.
QL,P =

⊔
M

⊔
ρ�µ

QM ,ρ
L,P .

When non-empty, the dimension of a part is

dimQM ,ρ
L,P = n2(2g − 2) + 2 + dimZ(m) ∩ B +

k∑
j=1

dimOρj ,σj . (4.7)

Proof. The dimension of QM ,ρ
L,P can be computed just like the dimension of QOµ,σ

(see Proposition 3.5.6 for the case of character varieties). The computation relies
on the smoothness of YB,M ,ρ

L,P which follows from the smoothness of YB,M
j ,ρj

Lj ,P j
. Then

from the dimension of YB,M ,ρ
L,P given by (4.6) we obtain

dimQM ,ρ
L,P = n2(2g − 2) + 2 + dimZ(m) ∩ B +

k∑
j=1

dimOρj ,σj .

4.3.2 Construction of a Weyl group action on the cohomology
of the quiver varieties in the family QL,P

The family Q̃L,P → B is used to construct a Weyl group action on the cohomology
of the varieties Q̃L,P ,σ for σ ∈ B. The Weyl group considered in this section is

W := WGLn(L1)× · · · ×WGLn(Lk).

Each WGLn(Lj) is isomorphic to a symmetric group and acts on Z(lj) by permut-
ing the eigenvalues with same multiplicities. Therefore W acts on B, for w =
(w1, . . . , wk) ∈ W and σ =

(
σ1, . . . , σk

)
∈ B

w.σ :=
(
ẇ1σ

1ẇ−1
1 , . . . , ẇkσ

kẇ−1
k

)
with ẇj a representative in GLn of wj ∈ WGLn(Lj). Consider the diagram:

B Q̃L,P

B/W QL,P

π0

η

p

χ

(4.8)

Thanks to the quiver variety point of view, the cohomology sheaves Hiη!κ are con-
stant (Theorem 4.2.10). In this section a W -equivariant structure on those coho-
mology sheaves is constructed. The method comes from Lusztig (see [Let05, Proof
of Proposition 5.5.3]), it is also used by Laumon-Letellier [LL19, Section 5.2].

Before proving this result, let us define the regular locus. Denote by Breg the
subset of regular elements, i.e. elements

(
σ1, . . . , σk

)
∈ B such that ZGLn(σj) = Lj.
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It is the locus of B where the W -action is free. Diagram (4.8) is pulled back to the
regular locus

Breg Q̃reg
L,P

Breg/W Qreg
L,P

πreg

ηreg

preg

χreg

(4.9)

Similarly to 3.32, notice that

Qreg
L,P ×Breg/W B

reg ∼= Q̃reg
L,P . (4.10)

Theorem 4.3.3. The cohomology sheaves Hiη!κ admit a W -equivariant structure
over B.

Proof. Consider the diagram:

Q̃L,P

B QL,P ×B/W B

B/W QL,P

η

p

c

π0

a

b

χ

(4.11)

W acts on QL,P ×B/W B and the morphism a is W -equivariant. Qreg
L,P ×Breg/W Breg is

smooth, dense and open in QL,P ×B/W B. The constant sheaf κ over QL,P ×B/W B
is W -equivariant. Indeed for w ∈ W we can define a morphism

φw : w∗κ→ κ

which is the identity on the stalks. It satisfies the conditions of definitions 3.1.4.
Applying the continuation principle from Remark 3.1.9, thisW -equivariant structure
extends to a W -equivariant structure on IC•QL,P×B/WB. Notice that η!κ ∼= a!c!κ. We
shall see in Lemma 4.3.4 that

c!κ ∼= IC•QL,P×B/WB.

Then the W -equivariant structure on c!κ induces a W -equivariant structure on η!κ.
Up to the isomorphism c!κ ∼= IC•QL,P×B/WB, the theorem is proved.

It remains to prove the lemma:

Lemma 4.3.4. There is an isomorphism c!κ ∼= IC•QL,P×B/WB.

Proof. Because of the isomorphism (4.10), the restriction of c!κ to the smooth locus
Qreg
L,P ×Breg/W Breg is the constant sheaf κ. In order to verify the hypothesis of

Definition 3.1.8 it remains to prove that the map c is small, i.e. that it satisfies the
following inequality

dim
{
x ∈ QL,P ×B/W B

∣∣dim c−1(x) ≥ d
}
≤ dimQL,P ×B/W B − 2d for all d > 0.

It relies on dimension estimates from Lusztig [Lus84, 1.2], see also [Sho88, The-
orem 1.4]. In the Lie algebra gln the estimate becomes, for X in O an adjoint
orbit

dim
{
gP ∈ GLn /P

∣∣g−1Xg ∈ σ + uP
}
≤ 1

2

(
n2 − dimL− dimO

)
. (4.12)
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The proof is then standard in Springer theory. Let d > 0 and x such that

dim c−1(x) ≥ d.

x belongs to some QOρ,σ for σ ∈ B and some adjoint orbits Oρ1,σ1 , . . . ,Oρk,σk . The
dimension estimate (4.12) implies

d ≤ 1

2

(
kn2 −

k∑
j=1

dimLj − dimOρj ,σj
)

so that
k∑
j=1

dimOρj ,σj ≤ kn2 −
k∑
j=1

dimLj − 2d.

Using the decomposition from Proposition 4.3.2, x ∈ QB,M ,ρ
L,P . Previous inequality

and the expression (4.7) for the dimension of QB,M ,ρ
L,P give

dimQB,M ,ρ
L,P ≤ n2(2g − 2) + 2 + dimZ(m) ∩ B + kn2 −

k∑
j=1

dimLj − 2d. (4.13)

Moreover
dimQB,M ,ρ

L,P ×B/W B = dimQB,M ,ρ
L,P (4.14)

and

dimQL,P ×B/W B = dimQL,P = n2(2g− 2) + 2 + dimB+ kn2−
k∑
j=1

dimLj. (4.15)

Combining (4.13)(4.14) and (4.15):

dimQB,M ,ρ
L,P ×B/W B ≤ dimQL,P ×B/W B + 2d+ dimZ(m) ∩ B − dimB. (4.16)

As d is assumed to be strictly positive, necessarily the inclusion L ( M is strict,
hence

dimZ(m) ∩ B < dimB. (4.17)

Now (4.16) and (4.17) provide the estimate

dimQB,M ,ρ
L,P ×B/W B < dimQL,P ×B/W B − 2d. (4.18)

To conclude, the set
{
x ∈ QL,P ×B/W B |dim c−1(x) ≥ d

}
is a finite union of varieties

QB,M ,ρ
L,P ×B/W B with dimension satisfying previous estimate (4.18).

Remark 4.3.5. Let us study the restriction of the W -equivariant sheaves Hiη!κ to
the regular locus. Recall that Qreg

L,P ×Breg/W Breg ∼= Q̃reg
L,P , then for σ ∈ Breg

Hi
ση!κ ∼= H i

c(Q̃L,P ,σ, κ).

For w ∈ W , theW -equivariant structure is given by the functoriality of the compactly
supported cohomology (see Proposition 3.1.6 and Remark 3.1.3)

w∗ : H i
c

(
Q̃L,P ,w.σ, κ

)
→ H i

c

(
Q̃L,P ,σ, κ

)
.

This is called the monodromic action.
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4.3.3 Frobenius morphism and monodromic action

The techniques in this section come from Hausel, Letellier and Rodriguez-Villegas
[HLR13], though we do no consider regular semisimple values of the moment map.
Instead each component of the moment map is central and each leg of the comet-
shaped quiver corresponds to a particular adjoint orbit. Comet-shaped quiver vari-
eties were also studied in this context by Letellier [Let12]. A slightly more general
situation is considered here, as a leg can represents any adjoint orbit and not only
a semisimple regular.

We proved in 4.2.10 that the cohomology sheaves Hiη!κ are constant sheaves
over B. Note that the fiber over σ of this constant sheaf is H i

c(Q̃L,P ,σ;κ). Thus for
any σ, τ ∈ B, there is an isomorphism

fσ,τ : H i
c(Q̃L,P ,σ;κ)→ H i

c(Q̃L,P,τ ;κ).

such that for any ω ∈ B
fσ,τ = fω,τ ◦ fσ,ω.

The W -equivariance of the local system Hiη!κ implies the following theorem. It can
also be proved directly, without referring to equivariance of the local system (see
Maffei [Maf02, Section 5]).

Theorem 4.3.6. Let σ, τ ∈ B, the following diagram commutes

H i
c(Q̃L,P ,σ;κ) H i

c(Q̃L,P,w−1.σ;κ)

H i
c(Q̃L,P,τ ;κ) H i

c(Q̃L,P,w−1.τ ;κ)

w∗

fσ,τ fw−1.σ,w−1.τ

w∗

Remark 4.3.7. Note that if σ ∈ B is not regular, then the map

w∗ : H i
c

(
Q̃L,P ,σ, κ

)
→ H i

c

(
Q̃L,P ,w−1.σ

)
is only the map coming from theW -equivariant structure of the constant sheaf Hiη!κ.
It does not come by functoriality from a morphism a variety. At the level of variety,
W only acts on Q̃reg

L,P .

This theorem allows to define a W -action on the compactly supported cohomol-
ogy space H i

c(Q̃L,P ,σ;κ).

Proposition 4.3.8. For w ∈ W introduce the morphism

ρi(w) = fw.σ,σ ◦ (w−1)∗

This defines an action of W on H i
c(Q̃L,P ,σ;κ).

Proof. Let w1, w2 in W , the following diagram commutes by Theorem 4.3.6.

H i
c(Q̃L,P ,σ;κ) H i

c(Q̃L,P,w2.σ;κ) H i
c(Q̃L,P,w1w2.σ;κ)

H i
c(Q̃L,P ,σ;κ) H i

c(Q̃L,P,w1.σ;κ)

H i
c(Q̃L,P ,σ;κ)

(w−1
2 )
∗

(w−1
1 )
∗

fw2.σ,σ fw1w2.σ,w1.σ

(w−1
1 )
∗

fw1.σ,σ
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Going from top left corner to bottom right corner by top right corner is ρ(w1w2).
Going by the middle gives ρ(w1) ◦ ρ(w2). Therefore ρ(w1w2) = ρ(w1) ◦ ρ(w2).

The representation obtained when K = C is isomorphic to the representation
obtained for K = Fq and large enough characteristic. Indeed this can be proved
by base change exactly like in [HLR13, Theorem 2.5]. Therefore from now on we
assume:

Assumption 4.3.9. K = Fq and the characteristic is large enough.

This assumption is very convenient as it allows to introduce Frobenius endo-
morphism and use Grothendiek’s trace formula to compute the traces of the action
obtained.

F is the Frobenius endomorphism on gln raising coefficients to the power q so
that its set of fixed point if gln(Fq) and similarly for the group GLn. Assume that
the Lj are subgroups of bock diagonal matrices, and P j subgroup of block upper
triangular matrices, so that they are F -stable. F induces a Frobenius endomorphism
on Q̃reg

L,P and on Breg also denoted by F

F
(
σ, (Ai, Bi)1≤i≤g , (Xj, gjLj)1≤j≤k

)
=
(
F (σ), (F (Ai), F (Bi))1≤i≤g , (F (Xj), F (gj)Lj)1≤j≤k

)
This Frobenius can be twisted by an element w = (w1, . . . , wk) in the Weyl group
W . For σ ∈ Breg, define

wF (σ1, . . . ,σk) = (w1.F (σ1), . . . , wk.F (σk)) .

(Breg)wF is the set of points fixed by wF . Similarly the w-twisted Frobenius on Q̃reg
L,P

is
wF := w ◦ F.

They are compatible preg ◦ wF = wF ◦ preg so that for σ, τ ∈ Breg the following
diagram commutes

H i
c(Q̃L,P,σ;κ) H i

c(Q̃L,P,F−1(σ);κ)

H i
c(Q̃L,P,τ ;κ) H i

c(Q̃L,P,F−1(τ );κ)

F ∗

fσ,τ fF−1(σ),F−1(τ)

F ∗

Theorem 4.3.10. Let τ ∈ (Breg)F and σ ∈ (Breg)wF . The cardinal of the set of
wF fixed points of Q̃L,P ,σ is

]Q̃wFL,P ,σ =
∑
i

tr
(
ρ2i(w), H2i

c (Q̃L,P,τ ;κ)
)
qi

Proof. Consider the commutative diagram:

H i
c(Q̃L,P,τ ;κ) H i

c(Q̃L,P,w−1.τ ;κ)

H i
c(Q̃L,P,τ ;κ) H i

c(Q̃L,P,τ ;κ)

H i
c(Q̃L,P,σ;κ) H i

c(Q̃L,P,F (σ);κ) H i
c(Q̃L,P,σ;κ)

w∗

ρ(w−1)
fw−1.τ ,τ

F ∗fσ,τ

w∗

fF (σ),τ

F ∗

fσ,τ

116



Apply Grothendieck trace formula to wF

]Q̃wFL,P ,σ =
∑
i

(−1)i tr
(

(wF )∗, H i
c(Q̃L,P ,σ;κ)

)
=

∑
i

(−1)i tr
(
F ∗ ◦ ρi(w−1), H i

c(Q̃L,P,τ ;κ)
)

The varieties QL,P,τ are pure and polynomial count and ρ(w−1) commutes with F
so that

]Q̃wFL,P ,σ =
∑
i

tr
(
F ∗ ◦ ρ2i(w−1), H2i

c (Q̃L,P,τ ;κ)
)

=
∑
i

tr
(
ρ2i(w−1), H2i

c (Q̃L,P,τ ;κ)
)
qi

Now as W is isomorphic to a product of symmetric group, w is conjugated to its
inverse w−1 and

]Q̃wFL,P ,σ =
∑
i

tr
(
ρ2i(w), H2i

c (Q̃L,P,τ ;κ)
)
qi

The Levi subgroup has the following form

Lj ∼= GLcj1
× · · · ×GLcj1︸ ︷︷ ︸

mj1

× · · · ×GLcjkj
× · · · ×GLcjkj︸ ︷︷ ︸
mjkj

with cjr 6= cjs for r 6= s. Then the relative Weyl group is

WGLn(Lj) ∼= Smj1
× · · · ×Smjkj

The symmetric group Smjr
acts by permuting the blocks of size cjr. Notations are

similar to 3.5.4 except that the index i disappears as M j = GLn. A conjugacy class
in this Weyl group is determined by a kj-uple (ηj,1, . . . , ηj,kj) with ηj,r ∈ Pmjr . Hence
the conjugacy class of w ∈ W determines a k-uple of n-types ω = (ω1, . . . , ωk) with

ωj =
(
ηj,11 , 1c

j
1

)
. . .
(
ηj,1
l(ηj,1)

, 1c
j
1

)
. . .

(
η
j,kj
1 , 1

cjkj

)
. . .

(
η
j,kj

l(ηj,kj )
, 1

cjkj

)
(4.19)

Let Oω = (Oω1 , . . . ,Oωk) be the k-uple of F -stable adjoint orbits such that the F -
fixed points (OFω1

, . . . ,OFωk) is of type ω (the type of adjoint orbit in gln(Fq) is defined
in 3.3.4). Then the natural map Q̃L,P ,σ → QOω is an isomorphism commuting with
the Frobenius so that

]Q̃wFL,P ,σ = ]QFOω (4.20)

Letellier [Let11] computed the number of points of QFOω .

Theorem 4.3.11. The cardinal of QFOω is given by

]QFOω = (−1)r(η)q
dµ
2

〈
h̃η,HHLV

n (0, q
1
2 )
〉
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Proof. As the orbits Oωj are semisimple, the variety QOω is smooth so that the
characteristic function of the intersection complex is constant with value 1. The
result follows from Letellier [Let11, Theorem 6.9.1, Theorem 7.4.1 and Corollary
7.4.3].

Corollary 4.3.12. For σ ∈ B and η representing a conjugacy class in the Weyl
group as described in (4.19), the η-twisted Poincaré polynomial of Q̃L,P ,σ is∑

i

tr
(
η, H i

c(Q̃L,P ,σ, κ)
)
vi = (−1)r(η)vdµ

〈
h̃η,HHLV

n (0, v)
〉
.

Proof. The action comes from the W -equivariant structure of the constant sheaves
Hiη!κ. Therefore up to isomorphism the action does not depend on the choice of
σ ∈ B so that the twisted Poincaré polynomial can be computed for τ ∈ (Breg)F .
Then from Theorem 4.3.10 and (4.20)∑

i

tr
(
ρ2i(η), H2i

c

(
Q̃L,P ,τ , κ

))
qi = (−1)r(η)q

dµ
2

〈
h̃η,HHLV

n (0, q
1
2 )
〉
.

This equality remains true after substituting qn for q for n > 0. Thus it is an equality
between two polynomials and the corollary is proved.

It is interesting to notice that Letellier [Let11, Corollary 7.4.3] obtained exactly
the same formula for twisted Poincaré polynomials with a different construction of
the action. His construction is the one recalled in Theorem 3.5.20 for the character
varieties setting. Notice that it does not necessarily involve the whole group W
but only the subgroup of elements w ∈ W such that w.σ = σ. Interestingly for
such w the action from 4.3.8 is simply given by ρi(w) = (w−1)

∗. In the particular
case where the Levi subgroup is a torus, in the character variety setting, we shall
see in Chapter 5 that both action coincide. Except in that particular case, we do
not have a direct prove that both action coincide. However as the twisted Poincaré
polynomial coincide they are necessarily isomorphic.

It is also interesting to consider this action as an action on the cohomology of
a quiver variety with semisimple adjoint orbits at punctures. Indeed notice that
for σ ∈ Breg the map pσ : Q̃L,P ,σ → QS from 3.5.16 is an isomorphism. Let
S = (S1, . . . ,Sk) a generic k-uple of semisimple adjoint orbit, Sj is the adjoint orbit
of σj. The Weyl group WGLn(Lj) is the group of permutation of the eigenvalues of
Sj with the same multiplicities. We have another formulation of previous corollary

Corollary 4.3.13. For η representing a conjugacy class in the Weyl group as de-
scribed in (4.19), the η-twisted Poincaré polynomial of QS is∑

i

tr
(
η, H i

c(QS , κ)
)
vi = (−1)r(η)vdη

〈
h̃η′ ,HHLV

n (0, v)
〉
.

4.4 Combinatorial interpretation in the algebra spanned
by Kostka polynomials

4.4.1 Description of the algebra

In this section an algebra spanned by Kostka polynomials is studied and some struc-
ture coefficients are related to traces of Weyl group action on the cohomology of
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quiver varieties. Define a linear map ∆# : Sym[X] → Sym[X, Y ] such that on the
basis of modified Macdonald polynomials

∆#
(
H̃λ[X]

)
:= H̃λ[X]H̃λ[Y ] for λ ∈ P .

As in 3.2.42, the variable (q, t) are implicit. Now as the Hall pairing is non-degenerate
there is a uniquely determined bilinear map . . .# . . . such that for all F,G and H
in Sym[X]:

〈F [X]#G[X], H[X]〉 =
〈
F [X]G[Y ],∆# (H[X])

〉
The product # defines an associative and commutative algebra structure on Sym[X].

Definition 4.4.1. For a k-uplet of partitions µ =
(
µ1, . . . , µk

)
∈ Pkn and λ ∈ Pn

we denote by cλµ the structure coefficients of the product # in the basis of Schur
functions

sµ1#sµ2 . . .#sµk =
∑
|µ|=n

cλµsλ. (4.21)

Remark 4.4.2. For µ = (µ, ν), the coefficient cλµ,ν coincides with the one introduced
in the introduction, i.e. the following relation is satisfied

K̃µ,ρK̃ν,ρ =
∑
λ

cλµ,νK̃λ,ρ. (4.22)

Proof. First let
(
L̃η,λ

)
λ,η∈Pn

the inverse of the matrix of Kostka polynomials
(
K̃η,λ

)
λ,η∈Pn

(see Definition 3.2.41)
sλ =

∑
η∈Pn

L̃η,λH̃η[X].

Now the coefficient cλµ,ν is defined by

cλµ,ν = 〈sµ#sν , sλ〉

=

〈
sµ#sν ,

∑
η∈Pn

L̃η,λH̃η[X]

〉
.

Then by definition of the product # and the coproduct ∆#:

cλµ,ν =
∑
η∈Pn

L̃η,λ

〈
sµ[X]sν [Y ], H̃η[X]H̃η[Y ]

〉
cλµ,ν =

∑
η∈Pn

L̃η,λK̃µ,ηK̃ν,η

Multiply last equation by K̃λ,ρ and sum over λ ∈ Pn:

K̃µ,ρK̃ν,ρ =
∑
λ

cλµ,νK̃λ,ρ.

Which is the relation used in introduction to define the coefficients cλµ,ν .
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Example 4.4.3. We computed some coefficients with Sage

c
(2,1,1)
(2,2),(2,1,1) = −q3t− q2t2 − qt3 − q2t− t2q + q2 + qt+ t2

c
(1,1,1,1)
(2,2),(2,1,1) = q3 + q2t+ qt2 + t3 + q2 + 2qt+ t2 + q + t

Next conjecture comes from unpublished notes by Fernando Rodriguez Villegas.

Conjecture 4.4.4. The structure coefficients cλµ lie in Z[q, t].

Some evidences supporting this conjecture will be provided. Following definition
and remark were suggested by François Bergeron.

Definition 4.4.5. Let F be a symmetric function, consider the operator

F# . . . : Sym [X] → Sym [X]
G 7→ F#G.

We denote ψF its adjoint with respect to the Hall pairing so that for any G,H ∈
Sym [X]

〈F#G,H〉 = 〈G,ψF (H)〉 (4.23)

Those operators are diagonal in the basis of modified Macdonald polynomials

ψF (H̃λ[X; q, t]) =
〈
F, H̃λ[X; q, t]

〉
H̃λ[X; q, t]. (4.24)

Remark 4.4.6. Applying (4.24) with en

ψen

(
H̃λ[X; q, t]

)
= qn(λ′)tn(λ)H̃λ[X; q, t]

we recognize the usual expression of the operator ∇ introduced by Bergeron-Garsia
[BG98]. The higher (q, t)-Catalan sequence from Garsia-Haiman [GH96] (see also
Haiman [Hai02, p.95]) is defined by

C(m)
n (q, t) = 〈en,∇men〉

∇ = ψen is the adjoint of en# . . . , moreover s1n = en so that

C(m)
n (q, t) = c1n

1n, . . . , 1n︸ ︷︷ ︸
m+1

.

The higher (q, t)-Catalan sequence are particular cases of the coefficients c1n

µ .

We recall an important theorem which was first conjectured by Garsia-Haiman
[GH96].

Theorem 4.4.7 ([Hai02] theorem 4.2.5). The symmetric function ∇(en) is obtained
as the Frobenius characteristic (see definition 3.2.29) of a bigraded representation
of Sn, the so-called diagonal harmonics. In particular

〈∇(en), sλ〉 ∈ N[q, t].
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Corollary 4.4.8. For any µ ∈ Pn the structure coefficients c1n

1n,µ gives the multiplic-
ity of the irreducible representation of type µ in the bigraded representation of Sn

on diagonal harmonics. In particular are c1n

1n,µ(q, t) ∈ N[q, t] so that the conjecture
4.4.4 is true for those particular coefficients.

Proof. According to remark 4.4.6 and adjonction relation (4.23)

〈sµ,∇(en)〉 = 〈en#sµ, en〉 (4.25)

. By definition of the structure coefficients cλµ,ν and as en = s1n

en#sµ =
∑
λ∈Pn

cλ1nµsλ

substituting in (4.25) we obtain

c1n

1n,µ(q, t) = 〈sµ,∇(en)〉

we conclude by the interpretation of ∇(en) as a Frobenius characteristic from The-
orem 4.4.7.

Next theorem and corollary come from unpublished notes by Rodriguez-Villegas.
The particular structure coefficients c1n

µ are related to the kernel HHLV
n .

Consider the generating function from Definition 3.6.1 for genus g = 0, k + 2
punctures and with variable z = q

1
2 , w = t

1
2 . It is given by

Ω0
k+2 :=

∑
λ∈P

∏k+2
i=1 H̃λ [Xi; q, t]

aλ(q, t)
s|λ|

with aλ(q, t) =
(
H̃λ[X; q, t], H̃λ[X; q, t]

)q,t
as in 3.2.40.

Theorem 4.4.9. We have the following relation:

〈
p(n)[Xk+1]h(n−1,1)[Xk+2],Log

[
Ωg
k+2

]〉
Xk+1,Xk+2

=
∑
|λ|=n

φλΠ
′
λ

aλ

k∏
i=1

H̃λ[Xi]s
|λ|

with

φλ =
∑
i,j∈λ

qj−1ti−1

Π′λ =
∏

i,j∈λ\(1,1)

(1− qj−1ti−1)

Proof. According to Lemma 3.2.45, take the Hall pairing with h(n−1,1)[Xk+2] is equiv-
alent to do plethystic substitution Xk+2 = 1 + u and take the degree n coefficient in
front of u. As plethystic substitution and plethystic logarithm commute according to
Proposition 3.2.17, we can perform this substitution inside the plethystic logarithm.
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We consider terms of order 1 in u using (3.24)

Log
[
Ω0
k+2

]
= Log

[
Ω0
k+1 + u

∑
λ∈P∗

φλ
aλ

k+1∏
i=1

H̃λ[Xi]s
|λ| +O(u2)

]

= Log

[
Ω0
k+1

(
1 + u

1

Ω0
k+1

∑
λ∈P∗

φλ
aλ

k+1∏
i=1

H̃λ[Xi]s
|λ| +O(u2)

)]

= Log
[
Ω0
k+1

]
+ Log

[
1 + u

1

Ω0
k+1

∑
λ∈P∗

φλ
aλ

k+1∏
i=1

H̃λ[Xi]s
|λ| +O(u2)

]
We used that plethystic logarithm turns product into sum. From the definition of
the plethystic logarithm, as pn[u] = un, we easily see the coefficient in front of u in
previous expression

Log
[
Ω0
k+2

]∣∣
u

=
1

Ω0
k+1

∑
λ∈P∗

φλ
aλ

k+1∏
i=1

H̃λ[Xi]s
|λ|.

Keeping the terms of degree n we obtain

〈
h(n−1,1)[Xk+2],Log

[
Ω0
k+2

]〉
Xk+2

=
1

Ω0
k+1

∑
λ∈P∗

φλ
aλ

k+1∏
i=1

H̃λ[Xi]s
|λ|

∣∣∣∣∣
sn

.

Inverting Ω0
k+1 is licit, it is defined by

1

Ω0
k+1

=
1

1 +
(
Ω0
k+1 − 1

) =
∑
k

(
1− Ω0

k+1

)k
.

Now we just have to take Hall pairing with the power sum p(n) [Xk+1]. It is equivalent
to take the coefficient in front of n−1p(n) [Xk+1]. But p(n) cannot be written as the
product of two symmetric functions of degree strictly smaller than n so that the
contribution of Ω0

k+1 in the denominator is irrelevant for the coefficient in front of
n−1p(n) [Xk+1] so that

(
p(n)[Xk+1]h(n−1,1)[Xk+2],Log

[
Ω0
k+2

])
Xk+1,Xk+2

=

(
p(n)[Xk+1],

∑
λ∈P∗

φλ
aλ

k+1∏
i=1

H̃λ[Xi]s
|λ|

)
Xk+1

We conclude with Lemma 3.2.46 and (3.23).

Corollary 4.4.10. With the notations of previous theorem and definition 4.4.1

(−1)n−1c(1n)
µ = (q−1)(1−t)

(
k∏
j=1

sµj [Xj]p(n)[Xk+1]h(n−1,1)[Xk+2],Log
[
Ω0
k+2

])
X1,...,Xk+2

(4.26)

Proof. We apply Theorem 4.4.9 to express the right hand side of (4.26) as

(q − 1)(1− t)

sµ1 [X1] . . . sµk [Xk],
∑
|λ|=n

φλΠ
′
λ

aλ

k∏
i=1

H̃λ[Xi]


X1,...,Xk

.
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By definition of the product #:

(q − 1)(1− t)

sµ1# . . .#sµk [X],
∑
|λ|=n

φλΠ
′

aλ
H̃λ[X]


X

.

Here we recognize the expression of Theorem 3.2.47(
sµ1# . . .#sµk [X], (−1)n−1s(1n)

)
X

so that if we write
sµ1# . . .#sµk [X] =

∑
λ

cλµsλ[X]

the result follows from orthonormality of Schur functions.

4.4.2 Interpretation of coefficients as traces of Weyl group
action on the cohomology of quiver varieties

In this section a cohomological interpretation is given for the coefficients cλµ. In
order to lighten the notations the description is only given for the coefficient cλµ,ν .
The generalization to any µ is straightforward.

First let us detail the data to describe the relevant variety Q̃L,P ,σ. The Levi
subgroups are torus of diagonal matrices Lj = T for 1 ≤ j ≤ 4. The semisimple
part σ = (σ1, . . . , σ4) is such that:

• σ1 = ζ1 Id is central.

• σ2 = ζ2 Id is central.

• σ3 =


α1

α2

. . .
αn

 with αr 6= αs for r 6= s.

• σ4 =


β

γ
. . .

γ

 has two eigenvalues β 6= γ. The multiplicity of α is one

and the multiplicity of β is n− 1.

Notice that such a choice can be made in the regular locus σ ∈ Breg.
First we consider Letellier’s construction of the action in order to compute iso-

typical component. LetM = M1 × · · · ×M4 with M j the centralizer in GLn of σj.
Then WM (L) ∼= S2

n. Letellier’s construction provide an action of WM (L) on the
cohomology of Q̃L,P ,σ. Moreover

HomWM (L)

(
Vµ′ ⊗ Vν′ , H

i+dQ̃L,P ,σ
c

(
Q̃L,P ,σ, κ

))
= H

i+dQO
c (QO, κ) (4.27)

With O = (O1, . . . ,O4) the 4-uple of generic adjoint orbits defined by:
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• O1 has Jordan type µ′ and eigenvalue ζ1.

• O2 has Jordan type ν ′ and eigenvalue ζ2.

• O3 is the orbit of σ3.

• O4 is the orbit of σ4.

Now with the construction from previous section, there is an action of the whole
group W ∼= S4

n on the cohomology of Q̃L,P ,σ. The restriction of this W -action
to WM (L) ∼= S2

n is isomorphic to the Springer action. First take the Vµ′ ⊗ Vν′
isotypical component with respect to the S2

n-action. There remains an action of the
Weyl group S2

n relative to the puncture 3 and 4 on the cohomology IH i+dO
c (QO, κ).

Theorem 4.4.11. Let w an n-cycle in the Weyl group relative to the third puncture.
The coefficient c1n

µ,ν, after specialization q = 0, is given by the w-twisted Poincaré
polynomial of QO, namely

c1n

µ,ν(0, t) = t−
dO
2

∑
i

tr
(
w, IH2i

c (QO, κ)
)
ti

Proof. Combining (4.27), Theorem 3.6.7 and Remark 3.6.9∑
i

tr
(
w, IH i

c (QO, κ)
)
vi = (−1)n−1vdO

〈
sµ[X1]sν [X2]p(n)[X3]h(n−1,1)[X4],HHLV

n (0, v)
〉
.

The theorem follows from Corollary 4.4.10.

4.4.3 Cohomological interpretation in the multiplicative case

Let us mention a conjectural similar interpretation in the multiplicative case. First
introduce the relevant parameters. The Levi subgroups are tori of diagonal matrices
Lj = T for 1 ≤ j ≤ 4. The semisimple par σ = (σ1, . . . , σ4) is such that:

• σ1 = ζ1 Id is central.

• σ2 = ζ2 Id is central.

• σ3 = ζ3 Id is central.

• σ4 =


β

γ
. . .

γ

 has two eigenvalues β 6= γ. The multiplicity of α is one

and the multiplicity of β is n− 1.

Moreover this 4-uple can be chosen in the regular locus. Note that the same notations
for the parameter are the same as in previous section, however objects are different
as we now consider resolutions of character varieties. For instance the eigenvalues
are now necessarily non zero and the genericity condition is the multiplicative one.
The relative Weyl group is WM (L) ∼= S3

n. Now consider the following conjugacy
classes
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• C1 has Jordan type µ′ and eigenvalue ζ1.

• C2 has Jordan type ν ′ and eigenvalue ζ2.

• C3 has Jordan type (n) and eigenvalue ζ3.

• C4 is the conjugacy class of σ4.

Then M̃L,P ,σ is the resolution of MC with C = (C1, . . . , C4). An intermediate
between M̃L,P ,σ andMC is given by the variety

Mµ′,ν′ =
{

(X1, . . . , X4) ∈ C1 × · · · × C4, gB ∈ GLn /B
∣∣g−1X3g ∈ ζ3U

X1 . . . X4 = Id} //PGLn .

Then the resolution M̃L,P ,σ →MC factors throughMµ,ν . This is a particular case
of the partial resolutions of character varieties studied by Letellier [Let13]. As in
the additive case, first take the Vµ′ ⊗ Vν′ isotypical component of the cohomology
H•c

(
M̃L,P ,σ,

)
then take the trace of an n-cycle with respect to the third puncture.

Just like Theorem 4.4.11 is derived from Theorem 3.6.7; next conjecture follows
from Conjecture 3.6.10 for the twisted mixed-Hodge polynomial a resolution M̃L,P ,σ.

Conjecture 4.4.12. Let w an n-cycle in the Weyl group relative to the third punc-
ture. The coefficient c1n

µ,ν relates to the w-twisted mixed Hodge polynomial ofMµ′,ν′:

c1n

µ,ν(q, t) = t
dimMµ′,ν′

2 IHw
c

(
Mµ′,ν′ ,

1

q
,
√
qt

)
.

In 6.2.2, the Poincaré polynomial specialization of this conjecture is proved.
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Chapter 5

Intersection cohomology of character
varieties with k − 1 semisimple
monodromies

5.1 Introduction
In this chapter the base field is C and we study character varieties with one mon-
odromy of any type and the k − 1 others semisimple. With this assumption, the
Poincaré polynomial for intersection cohomology can be computed using only alge-
braic tools. In next chapter the hypothesis k − 1 monodromies are semisimple is
relaxed, then analytic tools are necessary.

Mellit computed the Poincaré polynomial of character varieties with semisimple
conjugacy classes at each punctures [Mel17a]. He also constructed a family M̃ of
character varieties with their resolutions [Mel19]. This chapter relies on both results.
In the family M̃, the k − 1 first conjugacy classes are fixed and are semisimple.

• The family’s generic fiber is a character variety with a regular semisimple
conjugacy class at the k-th puncture.

• Particular fibers are resolutions of character varieties with the closure of a
regular conjugacy class at the k-th puncture.

This family comes with various Weyl group actions. There is a monodromic Weyl
group action on the cohomology of the generic fibers (a character variety with regular
semisimple conjugacy class at the k-th puncture). There is a Springer action on the
cohomology of the particular fibers, it coincides with the action from 3.5.4. Mellit
unified those actions on a local system equivariant for the action of the Weyl group
W . This construction was a motivation for the construction of the Weyl group
action on the cohomology of comet-shaped quiver varieties in 4.3.

Those constructions and the combinatoric relations between cohomology of res-
olutions and intersection cohomology of character varieties allow to compute the
Poincaré polynomial. The idea Mellit suggested us, is to study the restriction of
the W -action to subgroup WM . Then the fiber of the W -equivariant local system
over a point fixed by WM carries a WM -action. The isotypical component corre-
sponding to the sign representation of WM is the cohomology of a character variety
with semisimple conjugacy classes at each punctures. The Poincaré polynomial of
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those character varieties is known. Considering various subgroup WM , the relation
can be inverted. This proves the Poincaré polynomial specialization of Letellier’s
conjecture [Let13] when k − 1 conjugacy classes at punctures are semisimple.

Theorem 5.1.1. S1, . . . ,Sk−1 are k−1 semisimple conjugacy classes, the multiplici-
ties of their eigenvalues is determined by α = (α1, . . . , αk−1) ∈ Pk−1

n . The conjugacy
class Cµ,σ is such that (S1, . . . ,Sk−1, Cµ,σ) is generic. Then the Poincaré polynomial
for compactly supported intersection cohomology of the character variety MS,Cµ,σ
with k−1 monodromies in the semisimple conjugacy classes Sj and one monodromy
in Cµ,σ is

Pc

(
MS,Cµ,σ , t

)
= tdα,µ

〈
hαsµ′ ,HHLV

n (−1, t)
〉
.

Where
hαsµ′ = hα1 [X1] . . . hαk−1 [Xk−1]sµ′ [Xk]

and dα,µ := dimMS,Cµ,σ

First in 5.2 we check compatibility between W -action on the restriction of the
Springer complex and WM -action from parabolic induction for regular conjugacy
classes. Then it is applied to character varieties 5.3. In section 5.4, Mellit’s con-
struction of family of character varieties is detailed. Finally, in 5.5, combinatoric
relations are inverted and the Poincaré polynomial for intersection cohomology is
computed.

5.2 Resolutions of regular conjugacy classes and
parabolic induction

In 3.3.3, resolutions of closure of conjugacy classes were discussed. Those resolutions
come with Weyl group actions. In this section we focus on resolution of regular
conjugacy classes. We check that the Weyl group action coming from such resolution
is compatible with the action coming from restriction of the Springer complex.

Let σ ∈ T and M = ZG(σ) the centralizer of σ in G. The Weyl group WM is the
stabilizer of σ in W . Let Creg

σ the closure of the regular conjugacy class in G with
semisimple part σ. Consider the Cartesian square

G̃
⊔
w∈W/WM

X̃T,B,w.σ

G Creg
σ

pG
⊔
w∈W/WM

pw.σ

iσ

with w.σ := ẇσẇ−1 for ẇ a representative of w in G. Base change gives an isomor-
phism

i∗σp
G
! κ
∼=

⊕
w∈W/WM

pw.σ! κ.

Springer theory recalled in 3.4.1 provides an action of the Weyl group W on pG! κ
therefore on

⊕
w∈W/WM

pw.σ! κ. Next theorem is a direct application of Lusztig
parabolic induction.
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Theorem 5.2.1. The W -action on
⊕

w∈W/WM
pw.σ! κ restricts to an action of WM ⊂

W on pσ! κ moreover

pσ! κ[dim X̃T,B,σ] =
⊕
µ∈Pν

Vµ ⊗ IC •Cµ,σ . (5.1)

The sum is over l-uple µ ∈ Pν = Pν1 × · · · ×Pνl and Vµ is the associated irreducible
representation of WM .

Proof. Note that (5.1) follows from Theorem 3.4.8, however it is detailed here in
order to track the W -action from Springer theory.

Resolutions such as X̃T,B,σ fit in the following diagram where the first line is the
diagram of parabolic induction (3.29) from the torus T to G

T Ĝ G̃ G

⊔
w∈W/WM

{w.σ}
⊔

w∈W/WM

X̂T,B,w.σ
⊔

w∈W/WM

X̃T,B,w.σ Creg
σ

iσ

with
X̂L,P,σ :=

{
(x, g) ∈ G×G

∣∣g−1xg ∈ σUP
}
.

From this diagram where squares are cartesian:

i∗σ IndGT⊂B κT
∼= iσ

∗
⊕

w∈W/WM

IndGT⊂B κ{w.σ}
∼=

⊕
w∈W/WM

pw.σ! κ

With κ{w.σ} the constant sheaf supported on {w.σ}. A W -action is inherited from
the action on IndGT⊂B κT . This action restricts to a WM -action.

Consider the same construction with M instead of G:

T M̂ M̃ M

{σ} X̂T,B∩M,σ X̃T,B∩M,σ CMσ

jσ

CMσ is the regular conjugacy class in M with semisimple part σ and the squares are
cartesian. One obtains

j∗σ IndMT⊂B∩M κT ∼= j∗σ IndMT⊂B∩M κ{σ}

and a WM -action on this complex is inherited from the WM -action on IndMT⊂B∩M κT .
It provides a WM action on

i∗σ IndGT⊂B κ{σ}
∼= i∗σ IndGM⊂P IndMT⊂B∩M κ{σ}.

Both WM -actions coincide as detailed by Lusztig [Lus86]. Moreover Springer theory
for M provides a description of this WM action. Indeed

CMσ = σNM
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and left multiplication by σ provides an isomorphism between NM and σNM . From
the restriction of the Springer complex to NM described in (3.28), we deduce

IndMT⊂B∩M κ{σ} ∼=
⊕
µ∈Pν

Vµ ⊗ IC•CMµ,σ

Finally for µ ∈ Pν notice that

IndGM⊂P IC•CMµ,σ
∼= IC•Cµ,σ .

To conclude, the W -action on
⊕

w∈W/WM
pw.σ! κ restricts to a WM -action such that

pσ! κ is WM -stable and

pσ! κ[dim X̃T,B,σ] ∼=
⊕

µ∈Pν1×···×Pνl

Vµ ⊗ IC•Cµ,σ .

5.3 Resolution of the k-th conjugacy of character
variety

In this section we detail how to apply previous resolution of regular conjugacy
class to character varieties. Fix a (k − 1)-uple of semisimple conjugacy classes
S = (S1, . . . ,Sk−1). Let α = (α1, . . . , αk−1) ∈ Pk−1

n with αi the partition de-
fined by the multiplicites of the eigenvalues of Si. Let σ ∈ T such that the k-uple(
S1, . . . ,Sk−1, Creg

σ

)
is generic.

Consider the resolution of the character variety with specified conjugacy classes
at punctures

(
S1, . . . ,Sk−1, Creg

σ

)
. This is a particular case of the situation described

in 3.5.3, it is detailed here because a precise track of the Springer action is necessary.
ν ∈ Pn is the partition defined by the multiplicities of the eigenvalues of σ. The

Levi subgroup M ∼= GLν is the centralizer of σ in GLn. For any conjugacy class
Cµ,σ ⊂ Creg

σ one can consider the character variety

MS,Cµ,σ := RS,Cµ,σ//PGLn

with

RS,Cµ,σ :=
{

(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GL2g
n ×S1 × · · · × Sk−1 × Cµ,σ

∣∣∣
A1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g X1 . . . Xk = Id
}
.

In previous section we considered X̃T,B,σ, the resolution of Creg
σ the closure of

the regular conjugacy class with semisimple part σ. This is used to construct a
resolution of the character varietyMS,Cregσ . Define

R̃S,σ :=
{

(A1, B1, . . . , Bg, X1, . . . , Xk−1, (Xk, gB)) ∈ GL2g
n ×S1 × · · · × Sk−1 × X̃T,B,σ

∣∣∣
A1B1A

−1
1 B−1

1 . . . AgBgA
−1
g B−1

g X1 . . . Xk = Id
}
.
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The group PGLn acts on this variety by

h. (A1, . . . , Bg, X1, . . . , (Xk, gB)) =
(
hA1h

−1, . . . , hX1h
−1, . . . ,

(
hXkh

−1, hgB
))
.

Consider the geometric quotient defined thanks to Mumford’s geometric invariant
theory

M̃S,σ = R̃S,σ//PGLn .

The map pσ : X̃T,B,σ → Creg
σ induces a map

πσ : M̃S,σ →MS,Cregσ .

Those constructions fit in the following diagram where both squares are Cartesian

M̃S,σ R̃S,σ X̃T,B,σ

MS,Cregσ RS,Cregσ Creg
σ

πσ pσ

pr

This diagram is a particular case of Letellier’s construction and we have the
following theorem [Let13, Theorem 5.4].

Theorem 5.3.1. The map πσ : M̃S,σ → MS,Cregσ is a resolution of singularities.
The Weyl group WM acts on the derived pushforward of the constant sheaf πσ! κ and

πσ! κ [dα] =
⊕
µ∈Pν

Vµ ⊗ IC •MS,Cµ,σ .

The sum is over l-uple µ ∈ Pν1 × · · · ×Pνl, the space Vµ is the associated irreducible
representation of WM and dα := dimM̃S,σ.

Proof. It is a direct consequence of Theorem 5.2.1, base change, and the fact that
pr∗ IC•Cµ,σ

∼= IC•MS,Cµ,σ , see [Let13, Theorem 4.10].

This theorem gives the compatibility between Springer action constructed from
resolutions of closure of conjugacy classes and construction of character varieties. In
particular it provides an action of WM on the cohomology of the resolution M̃S,σ.

5.4 Family of character varieties

Mellit [Mel19] studied the family formed by the varieties M̃S,σ when the parameter
σ is varying. This construction is recalled and used to compute the intersection
cohomology of the varietiesMS,Cµ,σ . As in previous section, semisimple conjugacy
classes are fixed S = (S1, . . . ,Sk−1). For σ ∈ T denote by Sσ its conjugacy class.

Definition 5.4.1. Let T0 ⊂ T the set of elements σ such that the k-uple (S1, . . . ,Sk−1,Sσ)
is generic.
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Denote by W the Weyl group W = WGLn(T ). For X ∈ GLn its characteristic
polynomial is χ(X) ∈ T/W . The family of character varieties defined by Mellit is:

M = R//PGLn

with

R = {A1, . . . , Bg, X1, . . . , Xk ∈ GLn|Xi ∈ Si for i < k and χ(Xk) ∈ T0/W

A1B1A
−1
1 B−1

1 . . . AgBgA
−1
g B−1

g X1 . . . Xk = Id
}
.

χ(Xk) is the characteristic polynomial of Xk and we still denote by χ the induced
map χ :M→ T0/W . For σ ∈ T0 denote by [σ] its class in T0/W . Note that

χ−1([σ]) =MS,Cregσ .

The resolutions M̃S,σ also fit in a family

M̃ = R̃//PGLn

with

R̃ = {A1, . . . , Bg, X1, . . . , Xk ∈ GLn , gB ∈ GLn /B|Xi ∈ Si for i < k

g−1Xkg ∈ T0U and A1B1A
−1
1 B−1

1 . . . AgBgA
−1
g B−1

g X1 . . . Xk = Id
}
.

Denote by η the map induced by the projection T0U → T0. Note that

η−1(σ) = M̃S,σ

There is a natural map π : M̃ → M forgetting gB those constructions fit in the
following commutative diagram

T0 M̃ R̃ G̃Ln

T0/W M R GLn

π0

η

π pGLn

χ q pr

(5.2)

5.4.1 Springer action

Mellit uses the Springer action of W on pGLn
! κ to construct an action of W on

π!κ. Let us recall This construction. The Springer action on pGLn
! κ gives a group

morphism W op ↪→ Aut pGLn
! κ. Base change applied to both squares at the right

hand side of Diagram (5.2) provides an isomorphism

pr∗ pGLn
! κ ∼= q∗π!κ.

Consider the composition of group morphism s

W op ↪→ Aut pGLn
! κ

pr∗−−→ Aut pr∗ pGLn
! κ ∼= Aut q∗π!κ.

The quotient map q is smooth with connected fibers so that q∗ is fully faithful and

Aut q∗π!κ ∼= Autπ!κ.

Composition provides a group morphism

W op −→ Aut π!κ.

By Proposition 3.1.6, it induces an action on (χπ)!κ also referred to as the Springer
action.
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5.4.2 Monodromic action

The Springer action on the complex pGLn
! κ comes from aW -equivariant structure on

the constant sheaf over a regular locus G̃L
reg

n . The same holds for π!κ. Let T reg
0 ⊂ T0

the subset of regular elements. An element σ ∈ T0 is regular if its centralizer in GLn
is ZGLn(σ) = T . Consider the pull back of Diagram (5.2) to the regular locus

T reg
0 M̃reg R̃reg G̃L

reg

n

T reg
0 /W Mreg Rreg GLreg

n

π0,reg

ηreg

χreg

. (5.3)

There is a W -action on M̃reg induced by the maps gB 7→ gẇ−1B, for w ∈ W and
ẇ ∈ GLn a representative. κ ∈ Dbc

(
M̃reg

)
is the constant sheaf concentrated in

degree 0. Define a W -action on κ, for w ∈ W let φw : w∗κ → κ be the morphism
which is the identity on the stalks. Then by Proposition 3.1.6, W acts on ηreg

! κ. Let
σ ∈ T reg

0 , for w ∈ W the action on M̃reg induces an isomorphism

w : M̃S,σ → M̃S,w.σ.

Note that Hi
ση

reg
! κ ∼= H i

c (MS,σ, κ). By Remark 3.1.3, on the stalks, the W -
equivariant structure comes from the functoriality of the compactly supported co-
homology

w∗ : H i
c(M̃S,w.σ, κ)→ H i

c(M̃S,σ, κ).

Pushing forward to T reg
0 /W provides a W -action on (π0,regηreg)!κ.

5.4.3 Comparison of monodromic action and Springer action

Mellit [Mel19] proved that the monodromic action and the Springer action coincide
over the regular locus.

Theorem 5.4.2. The monodromic action on (π0,regηreg)!κ coincides with the Springer
action on (χregπ)!κ under the isomorphism

π0
! η

reg
! κ ∼= χreg

! π!κ.

Proof. Tracking the Springer action over the regular locus through Diagram (5.3),
one sees that it comes from the W -equivariant structure of the constant sheaf over
M̃reg, just like the monodromic action.

An important result is that the cohomology sheaves Hiη!κ are local systems over
T0 [Mel19, Proposition 8.4.1]. This proposition together with Theorem 5.4.2 provide
the following corollary

Corollary 5.4.3 (Corollary 8.4.3 [Mel19]). There exists a W -equivariant structure
on the local systems Hiη!κ extending the W -equivariant structure on Hiηreg

! κ de-
scribed in 5.4.2 and the pushforward of this W -equivariant structure on (π0η)!κ over
T0/W coincide with the Springer action on (χπ)!κ.
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Remark 5.4.4. This result could also be obtained like in the additive case: Theorem
4.3.3. In the additive case, the cohomology sheaves Hiη!κ are constant thanks to
the quiver variety point of view. Here, in the multiplicative case, they are locally
constant thanks to the cell decomposition from Mellit. In both case theW -equivariant
structure can be obtained either with [Mel19, Corollary 8.4.3] or with Theorem 4.3.3.
This last theorem also works when K = Fq.

As in 5.3, let σ ∈ T0 and M the centraliser of σ in G. The following notations
are used

M ∼= GLν =
∏
i

GLνi

WM
∼= Sν =

∏
i

Sνi

Pν =
∏
i

Pνi .

Mellit suggested us to study restriction of the W action to the subgroup WM ⊂ W .

Theorem 5.4.5. WM acts on H i
c

(
M̃S,σ, κ

)
and there is an isomorphism of WM -

representations:

H i
c

(
M̃S,σ, κ

)
=
⊕
µ∈Pν

Vµ ⊗ IH
i+dα,µ−dα
c

(
MS,Cµ,σ , κ

)
with

dα,µ := dimMS,Cµ,σ and dα = dimM̃S,σ.

Proof. Consider the following pull back of Diagram (5.2):

W.σ
⊔

w∈W/WM

M̃S,w.σ
⊔

w∈W/WM

R̃S,w.σ
⊔

w∈W/WM

X̃T,B,w.σ

[σ] MS,Cregσ RS,Cregσ Creg
σ

⊔
w∈W/WM

πw.σ

Previous corollary provides, for the stalk over [σ] ∈ T0/W , an isomorphism⊕
w∈W/WM

H i
c

(
M̃S,w.σ, κ

)
∼= Hi

[σ](π0η)!κ ∼= Hi
[σ](χπ)!κ ∼=

⊕
w∈W/WM

Hi
[σ](χπ

w.σ)!κ.

This isomorphism is compatible with W -action and direct sum decomposition so
that

H i
c

(
M̃S,σ, κ

)
∼= Hi

[σ](χπ
σ)!κ

after restriction of the W action to WM ⊂ W this isomorphism holds as a WM -
representation isomorphism. A way to describe the action on the left hand side is
that H i

c

(
M̃S,σ, κ

)
is the stalk at σ of a W -equivariant local system, WM acts on

this stalk as it fixes σ. The theorem then follows from the description of (χπσ)!κ
from Theorem 5.3.1.
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Let ζ a central element in GLn lying in T0.

Theorem 5.4.6. There is an isomorphism of WM representations⊕
λ∈Pn

ResWWM
Vλ ⊗ IH

i+dα,λ
c

(
MS,Cλ,ζ , κ

)
∼=
⊕
µ∈Pν

Vµ ⊗ IH
i+dα,µ
c

(
MS,Cµ,σ , κ

)
.

with the notations from previous theorem and

dα,λ = dimMS,Cλ,ζ .

Proof. Previous theorem applied with the central element ζ instead of σ gives an
isomorphism of W -representations

H i
c

(
M̃S,ζ , κ

)
∼=
⊕
λ∈Pn

Vλ ⊗ IH
i+dimMS,Cλ,ζ−dimM̃S,ζ
c

(
MS,Cλ,ζ , κ

)
.

H i
c (MS,ζ , κ) ∼= Hi

ζη!κ and H i
c (MS,σ, κ) ∼= Hi

ση!κ are stalks of the same W -
equivariant local system. Both σ and ζ are fixed by WM so that WM acts on
those stalks and the representations are isomorphic. The theorem then follows from
Theorem 5.4.5.

Corollary 5.4.7.⊕
λ∈Pn

HomWM

(
Vµ,ResWWM

Vλ

)
⊗ IH i+dα,λ

c

(
MS,Cλ,ζ , κ

)
∼= IH

i+dα,µ
c

(
MS,Cµ,σ , κ

)
(5.4)

in particular⊕
λ∈Pn

HomWM

(
εν ,ResWWM

Vλ
)
⊗ IH i+dα,λ

c

(
MS,Cλ,ζ , κ

)
∼= H i+dα,ν

c (MS,Sσ , κ) (5.5)

with εν = εν1 ⊗ · · · ⊗ ενl and ενi the signature representation of Sνi.

5.5 Poincaré polynomial for intersection cohomol-
ogy of character varieties with k− 1 semisimple
monodromies

Notations 5.5.1. As in previous section, (S1, . . . ,Sk−1) is a fixed (k − 1)-uple of
semisimple conjugacy classes, their type is determined by α = (α1, . . . , αk−1) ∈
Pk−1
n . For f ∈ Sym[X] a symmetric function

hαf := hα1 [X1] . . . hαk−1 [Xk−1]f [Xk].

Let σ ∈ T0 with multiplicities of the eigenvalues given by a partition ν ∈ Pn.
As in previous subsection Sσ is its conjugacy class in GLn. Before generalizing to
any conjugacy class, let us recall Mellit’s result for semisimple monodromies at each
punctures. From Equation (3.50) one obtains

Pc(MS,Sσ , v) = vdα,ν
〈
hαhν ,HHLV

n (−1, v)
〉
. (5.6)

with dα,ν = dimMS,Sσ .
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Theorem 5.5.2. Let ζ ∈ T0 central in GLn and λ ∈ Pn a partition. The conjugacy
classe Cλ,ζ has semisimple part ζ and Jordan type λ. The Poincaré polynomial for
intersection cohomology ofMS,Cλ,ζ is

Pc

(
MS,Cλ,ζ , v

)
= vdα,λ

〈
hαsλ′ ,HHLV

n (−1, v)
〉
.

Proof. By adjunction

dim HomWM

(
εν ,ResWWM

Vλ
)

= dim HomW

(
IndWWM

εν , Vλ
)
.

Lemma 3.2.28 implies

dim HomW

(
IndWWM

εν , Vλ
)

= 〈hν , sλ′〉 .

Substituting (5.6) in (5.5) and taking the dimension∑
λ∈Pn

〈hν , sλ′〉 t−dα,λPc
(
MS,Cλ,ζ , t

)
=
〈
hαhν ,HHLV

n (−1, t)
〉
. (5.7)

For λ, ν ∈ Pn let
Mν,λ = 〈hν , sλ〉 .

Schur functions form an orthonormal basis of Sym[X] for the Hall pairing, thus

hν =
∑
λ

Mν,λsλ.

As (hν)ν∈Pn and (sλ)λ∈Pn are basis of Symn[X] the matrix (Mν,λ)ν,λ∈Pn is invertible
its inverse is denoted by (Nν,λ)ν,λ∈Pn . Such transition matrices are described by
Macdonald [Mac15, I-6]. We conclude by multiplying (5.7) by Nη,ν and summing
over ν.

For µ = (µ1, . . . , µl) ∈ Pν1 × · · · × Pνl we introduce the notation

sµ[X] := sµ1 [X] . . . sµl [X]

so that
hαsµ = hα1 [X1] . . . hαk [Xk−1]sµ1 [Xk] . . . sµl [Xk].

Corollary 5.5.3. The Poincaré polynomial for intersection cohomology of the char-
acter variety MS,Cµ,σ with k − 1 monodromies in the semisimple conjugacy classes
S and one monodromy in Cµ,σ is

Pc

(
MS,Cµ,σ , t

)
= tdα,µ

〈
hαsµ′ ,HHLV

n (−1, t)
〉
.

Proof. First note that after twisting both representations with the sign one has

dim HomWM

(
Vµ,ResWWM

Vλ

)
= dim HomWM

(
Vµ′ ,ResWWM

Vλ′
)
.

Then as IndWWM
is left adjoint to ResWWM

dim HomWM

(
Vµ′ ,ResWWM

Vλ′
)

= dim HomWM

(
IndWWM

Vµ′ , Vλ′
)

=
〈
sµ′ , sλ′

〉
.

135



Taking dimension in equation (5.4) and substituting result of previous theorem

t−dα,µPc

(
MS,Cµ,σ , t

)
=
∑
λ

〈
sµ′ , sλ′

〉 〈
hαsλ′ ,HHLV

n (−1, t)
〉
.

As Schur functions form an orthonormal basis of Symn[X],

sµ′ =
∑
λ∈Pn

〈
sµ′ , sλ′

〉
sλ′

so that ∑
λ∈Pn

〈
sµ′ , sλ′

〉
tdλ
〈
hαsλ,HHLV

n (−1, t)
〉

=
〈
hαsµ′ ,HHLV

n (−1, t)
〉
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Chapter 6

Intersection cohomology of character
varieties through non-Abelian Hodge
theory

6.1 Introduction
In this chapter, the base field is C, we compute the Poincaré polynomial for inter-
section cohomology of character varieties with the closure of conjugacy classes of
any type at each puncture. This proves the Poincaré polynomial specialization of
a conjecture from Letellier [Let13]. Mellit computed the Poincaré polynomial for
character varieties with semi-simple monodromies [Mel17a]. In previous chapter we
assumed k − 1 among k monodromies are semisimple. This assumption is now re-
laxed. As in previous chapter, the computation relies on the one hand on Mellit’s
result and on the other hand on resolutions of character varieties. Those construc-
tions come with a combinatorial relation between the cohomology of the resolutions
and the intersection cohomology of character varieties. The main technical difficulty
is to prove that the resolution is diffeomorphic to a character variety with semisimple
monodromies. Then the combinatorial relation can be inverted and gives a formula
for the intersection cohomology of character varieties. Contrarily to previous chap-
ter where everything was algebraic, analytic methods such as non-Abelian Hodge
theory are now necessary to construct the diffeomorphism.

6.1.1 Intersection cohomology of character varieties andWeyl
group actions

Consider the resolution M̃L,P ,σ of a character varietyMCµ,σ as introduced in 3.5.3.
Springer theory provides a combinatoric relation between the cohomology of M̃L,P ,σ

and intersection cohomology of character varietiesMCρ,σ :

H i+dµ
c

(
M̃L,P ,σ, κ

)
∼=

⊕
ρ∈Pν1×···×Pνk

Aµ′,ρ ⊗ IH i+dρ
c

(
MCσ,ρ , κ

)
. (6.1)

This relation is the main tool allowing to go from usual cohomology of smooth
varieties to intersection cohomology of singular varieties. We shall see that the
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resolution M̃L,P ,σ is diffeomorphic to a character varietyMS with semisimple con-
jugacy classes at punctures. With S = (S1, . . . ,Sk) and Sj is the class of an element
with centralizer in GLn equal to Lj ∼= GLµj ′ .

Mellit [Mel17a] computed the Poincaré polynomial of those character varieties.
The Poincaré polynomial is invariant under diffeomorphism so we deduce the Poincaré
polynomial of the resolution. Then the combinatoric relation can be inverted using
transition matrices between various basis of the space of symmetric funtions. This
results in the following theorem:

Theorem 6.1.1. For a generic k-uple of conjugacy classes Cµ,σ, the Poincaré poly-
nomial for compactly supported intersection cohomology of the character variety
MCµ,σ is

Pc

(
MCµ,σ , v

)
= vdµ

〈
sµ′ ,HHLV

n (−1, v)
〉
.

Moreover, as a by product of the diffeomorphism between resolution M̃L,P ,σ and
MS , we obtain a Weyl group action on the cohomology ofMS from the Springer
action on the cohomology of M̃L,P ,σ. Similarly to the additive case, the twisted
Poincaré polynomial is computed in 6.2.2

Theorem 6.1.2. WM (L) acts on the cohomology ofMS and the η-twisted Poincaré
polynomial is

P ηc (MS , v) = (−1)r(η)vdimMS
〈
h̃η,HHLV

n (−1, v)
〉
.

The symmetric functions h̃η and r(η) are defined in 3.5.18.

6.1.2 Diffeomorphism between a resolution M̃L,P ,σ and a char-
acter variety with semisimple monodromies MS

The technical part of the proof is to exhibit a diffeomorphism between the resolution
M̃L,P ,σ andMS .

Theorem 6.1.3. Cµ,σ is a generic k-uple of conjugacy classes and M̃L,P ,σ is the
resolution of MCµ,σ . Then M̃L,P ,σ is diffeomorphic to a character variety MS.
With S = (S1, . . . ,Sk) and Sj is the class of an element with centralizer in GLn
equal to Lj ∼= GLµj ′.

This theorem is proved in few steps in 6.6.1.
The first step is the Riemann-Hilbert correspondence, it gives a diffeomorphism

between the resolutionMCµ,σ and a de Rham moduli space of parabolic connections.
Riemann-Hilbert correspondence was developed by Deligne [Del70], and Simpson
for the filtered case [Sim90]. Yamakawa proved that this correspondence induces a
complex analytic isomorphism between moduli spaces [Yam08].

The second step is the non-Abelian Hodge theory, a diffeomorphism between
de Rham moduli space and Dolbeault moduli space. It was established by Hitchin
[Hit87] and Donaldson [Don87] for compact curves. Corlette [Cor88] and Simp-
son [Sim88] generalized it for higher dimensions. The parabolic version over non-
compact curves was proved by Simpson [Sim90]. This is the one needed here. It was
generalized for higher dimension by Biquard [Biq97]. The relevant moduli spaces to
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obtain this correspondence as a diffeomorphism were introduced by Konno [Kon93]
and Nakajima [Nak96]. Biquard-Boalch [BB04] generalized further to wild non-
Abelian Hodge theory and constructed the associated hyperkähler moduli spaces.
We use their construction of the moduli spaces. Biquard, García-Prada and Mundet
i Riera [BGM15] established a parabolic non-Abelian Hodge correspondence for real
groups, generalizing Simpson construction for GLn.

After the diffeomorphism from non-Abelian Hodge theory we use the method
from Nakajima [Nak96] for GL2 and Biquard, García-Prada, Mundet i Riera [BGM15]
for real groups. The weights defining the moduli space of parabolic Higgs bundles
are changed. This is done before going back to another de Rham moduli space
thanks to non-Abelian Hodge theory in the other direction. The change of stability
on the Dolbeault side induces a change of eigenvalues of the residue on the de Rham
side.

Finally Riemann-Hilbert correspondence is applied in the other direction. It
gives a diffeomorphism to a character variety where the eigenvalues σ have been
perturbed, the monodromies are now semisimple.

In Section 6.2, we compute the Poincaré polynomial for intersection of charac-
ter varieties, assuming the resolution is diffeomorphic to a character variety with
semisimple conjugacy classes at punctures.

In Section 6.3 the example of the sphere with four punctures and rank n = 2 is
studied. There, we can obtain the expected diffeomorphism using only tools from
algebraic geometry. This example has been studied for a long time by Vogt [Vog89]
and Fricke-Klein [FK97]. The character varieties are affine cubic surfaces satisfying
Fricke-Klein relation. Cubic surfaces and line over them have been extensively stud-
ied. They are classified for instance by Cayley [Cay69], see also Bruce-Wall [BW79],
Manin [Man86] and Hunt [Hun96]. This rich theory proves that the minimal reso-
lution is diffeomorphic to a character variety with semisimple monodromies. Both
appear to be diffeomorphic to the projective plane blown up in six points minus
three lines.

In Section 6.4 various filtered objects are introduced. First the filtered local
system; the resolution M̃L,P ,σ appears to be the associated moduli space. Then the
parabolic connections and finally the parabolic Higgs bundles.

In Sections 6.5 and 6.6 we recall Biquard-Boalch [BB04] analytic constructions
of Hyperkähler moduli space. This provides the non-Abelian Hodge theory as a
diffeomorphism. Then the stability parameters are perturbed following ideas of
Nakajima [Nak96] for GL2 and Biquard, García-Prada, Mundet i Riera [BGM15] for
a larger family of groups. It finally provides the diffeomorphism between M̃L,P ,σ

andMS .
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6.2 Poincaré polynomial and twisted Poincaré poly-
nomial

6.2.1 Computation of the Poincaré polynomial

Consider a generic k-uple of conjugacy classes Cµ,σ =
(
Cµ1,σ1 , . . . , Cµk,σk

)
. As usual,

the class Cµj ,σj is characterized by its eigenvalues

σj1, . . . , σ
j
1︸ ︷︷ ︸

νj1

, . . . , σjlj , . . . , σ
j
lj︸ ︷︷ ︸

νjlj

and by µj,i ∈ Pνji the Jordan type of the eigenvalue σji . Denote by µj,i′ the transposed
partition. For each of this conjugacy classes consider the resolution of the closure
(see 3.3.3)

X̃Lj ,P j ,σj → Cµj ,σj .

The group Lj used to construct the resolution is

Lj ∼= GL
µj,11

′ ×GL
µj,12

′ × . . .︸ ︷︷ ︸
⊂GL

ν
j
1

× · · · ×GL
µ
j,lj
1

′ ×GL
µ
j,lj
2

′ × . . .︸ ︷︷ ︸
⊂GL

ν
j
lj

.

As detailed in 3.5.3, resolution of closure of conjugacy classes fit together in M̃L,P ,σ

a resolution of the character varietyMCµ,σ .

Definition 6.2.1 (Semisimple conjugacy classes of type µ′). Consider a k-uple
of conjugacy classes S = (S1, . . . ,Sk). We say that S is of type µ′ if one of the
following equivalent condition is satisfied for all 1 ≤ j ≤ k

• The multiplicities of the eigenvalues of Sj are given by the partition
⋃lj
i=1 µ

j,i′.

• The centralizer of an element in Sj is isomorphic to Lj ∼= GLµj ′.

The proof of next theorem is postponed to the remaining sections of this chapter.

Theorem 6.2.2. The resolution M̃L,P ,σ is diffeomorphic to a character variety
MS with S a generic k-uple of semisimple conjugacy classes of type µ′.

With this result we are ready to compute the Poincaré polynomial for intersection
cohomology of character varietiesMCµ,σ . As the Poincaré polynomial is a topological
invariant

Pc

(
M̃L,P ,σ, t

)
= Pc (MS , t) .

Let us translate (6.1) in terms of Poincaré polynomial.

t−dµPc (MS , t) =
∑
ρ�µ

(dimAµ′,ρ) t
−dρPc

(
MCρ,σ , t

)
. (6.2)

The idea is now to invert this relation. First we compute the dimension of the
multiplicity spaces dimAµ′,ρ.
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Lemma 6.2.3. The dimension of the multiplicity space is given by

dimAµ′,ρ =
∏

1≤j≤k
1≤i≤lj

〈
hµj,i′ , sρj,i′

〉

Proof. By definition

Aµ′,ρ = HomWM

(
IndWMWL εµ′ , Vρ

)
=

⊗
1≤j≤k

 ⊗
1≤i≤lj

HomS
ν
j
i

(
εµj,i′ , Vρj,i

) .

We conclude with Lemma 3.2.28.

Theorem 6.2.4. For a generic k-uple of conjugacy classes Cµ,σ, the Poincaré poly-
nomial for compactly supported intersection cohomology of the character variety
MCµ,σ is

Pc

(
MCµ,σ , v

)
= vdµ

〈
sµ′ ,HHLV

n (−1, v)
〉
.

Proof. The complete symmetric functions (hµ)µ∈Pm and the Schur functions (sρ)ρ∈Pm
are two basis of the space of degree m symmetric functions. Let (Mµ,ρ)µ,ρ∈Pm the
transition matrix between between those basis then

hµ =
∑
ρ∈Pm

Mµ,ρsρ.

As the Schur functions form an orthonormal basis, the transition matrix is given
explicitly by

Mµ,ρ = 〈hµ, sρ〉 .

It is invertible and denote by (Nµ,ρ)µ,ρ∈Pm its inverse. Combining Equation (6.2),
Lemma 6.2.3 and the formula for Poincaré polynomial of character varieties with
semisimple conjugacy classes:〈

k∏
j=1

lj∏
i=1

hµj,i′ [Xj],HHLV
n (−1, v)

〉
=
∑
ρ�µ

k∏
j=1

lj∏
i=1

〈
hµj,i′ , sρj,i′

〉
v−dρPc

(
MCρ,σ , v

)
.

This relation can now be inverted. Fix λ ∈ Pν1 × · · · × Pνk . Multiply previous
equation by Nλ1,1′,µ1,1′ and sum over µ1,1′ ∈ Pν11 . Repeating this process gives the
expected result: 〈

sλ′ ,HHLV
n (−1, v)

〉
= v−dλPc

(
MCλ,σ , v

)
.

6.2.2 Weyl group action and twisted Poincaré polynomial

As in [Let13, Proposition 1.9], twisted Poincaré polynomial can be computed thanks
to previous theorem. Using notations from 3.5.4 and Definition 3.6.6 for η-twisted
Poincaré polynomial we have the following theorem
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Theorem 6.2.5. Cµ,σ is a generic k-uple of conjugacy classes and M̃L,P ,σ is the
resolution of MCµ,σ . For η indexing a conjugacy class in WM (L), the η-twisted
mixed-Hodge polynomial of M̃L,P ,σ is

P ηc

(
M̃L,P ,σ, v

)
= (−1)r(η)vdµ

〈
h̃η,HHLV

n (−1, v)
〉

Proof. Theorem 3.5.20 and Proposition 3.5.19 give

v−dµP ηc

(
M̃L,P ,σ, v

)
=
∑
ρ�µ

 k∏
j=1

lj∏
i=1

cρ
j,i

ηj,i

 v−dρPc

(
MCρ,σ , t

)
.

Apply Theorem 6.2.4:

v−dµP ηc

(
M̃L,P ,σ, v

)
=
∑
ρ�µ

 k∏
j=1

lj∏
i=1

cρ
j,i

ηj,i

〈sρ′ ,HHLV
n (−1, v)

〉
.

Then using the relation cµω = (−1)r(ω)cµ
′

ω′ (see Lemma 3.4.11) and Notations 3.5.18

v−dµP ηc

(
M̃L,P ,σ, v

)
= (−1)r(η)

〈
h̃η,HHLV

n (−1, v)
〉

Theorem 6.1.3 (which will be proved in Section 6.6) gives a diffeomorphism
between M̃L,P ,σ and a character variety with semisimple monodromies MS . The
diffeomorphism transports the action on the cohomology of M̃L,P ,σ to an action on
the cohomology ofMS and we have the following corollary.

Corollary 6.2.6. WM (L) acts on the cohomology ofMS and the η-twisted Poincaré
polynomial is

P ηc (MS , v) = (−1)r(η)vdµ
〈
h̃η,HHLV

n (−1, v)
〉
.

One can proceed as in the additive case (see 4.4.2) to give a cohomological
interpretation to another specialization of the coefficients cλµ,ν .

Theorem 6.2.7. For µ, ν in Pn, there exists a generic 4-uple of conjugacy classes
of the following type:

• C1 has one eigenvalue with Jordan type µ′ ∈ Pn

• C2 has one eigenvalue with Jordan type ν ′ ∈ Pn.

• C3 is semisimple regular, it has n distinct eigenvalues

• C4 is semisimple with one eigenvalue of multiplicity n − 1 and the other of
multiplicity 1

Then the Weyl group with respect to C3 is the symmetric group Sn and it acts on
the cohomology ofMC. Let w a n-cycle in this Weyl group then

c1n

µ,ν (1, t) = t
−dC
2

∑
r

tr (w, IHr
c (MC, κ)) t

r
2 .

142



6.3 Example of the sphere with four punctures and
rank 2

We study the particular case n = 2, k = 4. Then the character varieties are affine
cubic surfaces. The defining equation was known by Vogt [Vog89] and Fricke-Klein
[FK97]. The theory of cubic surfaces allows to obtain the expected diffeomorphism.
Cubic surfaces and lines over them have been extensively studied. They are classi-
fied for instance by Cayley [Cay69], see also Bruce-Wall [BW79], Manin [Man86] and
Hunt [Hun96]. This particular example of character varieties also appear in the the-
ory of Painlevé VI differential equation. In this context resolution of cubic surfaces
were studied by Inaba-Iwasaki-Saito [IIS06a; IIS06b; IIS06c] with Riemann-Hilbert
correspondence. It was also studied on the Dolbeault side by Hausel [Hau98].

6.3.1 Fricke relation

We consider representations of the fundamental group of the sphere with four punc-
tures P1\{p1, ..., p4}. First we prescribe no particular condition on the monodromies
around the puncture

R :=
{

(X1, . . . , X4) ∈ GL4
2 |X1 . . . X4 = Id

}
The group GL2 acts by conjugation on R, its center acts trivially, hence the action
factors through an action of PGL2. Points of the following GIT quotient represent
closed orbits for this action.

M := R//PGL2 := SpecC [R]PGL2

where C [R]PGL2 are the invariants under the GL2 action in the algebra of functions
of the affine variety R. There is an explicit description of this algebra. First note
that R ∼= GL3

2 as the fourth coordinate is determined by X4 = (X1X2X3)−1. The
algebra of functions on a k-uple of matrices invariant under conjugation was studied
by Procesi.

Theorem 6.3.1 (Procesi [Pro76]). Let C
[
GLkn

]PGLn be the algebra of regular func-
tion f : GLkn → C invariant under simultaneous conjugation

f(X1, ..., Xk) = f(gX1g
−1, . . . , gXkg

−1).

This algebra is generated by
tr(Xi1 . . . Xil) (6.3)

where 0 ≤ l ≤ k and i1, . . . , il ∈ {1, . . . , l} not necessarily distinct. The relations
between those functions are spanned by∑

σ∈Sl

ε(σ) trσ(M1, . . . ,Ml) = 0 (6.4)

where Mi is any monomial in the coordinates (Xj)1≤j≤k and trσ is defined by

trσ(M1, . . . ,Ml) := tr(Ma1,1 . . .Ma1,l1
) . . . tr(Mar,1 . . .Mar,lr

). (6.5)

for σ a product of r cycles with disjoint supports σ = (a1,1 . . . a1,l1) . . . (ar,1 . . . ar,lr).
Moreover, to obtain a generating family we can restrict to function tr(Xi1 . . . Xil)

with l ≤ 2n − 1.
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In particular C [R]PGL2 is generated by

tr(Xi), tr(XiXj), tr(XiXjXk) (6.6)

for i, j, k ∈ {1, 2, 3} not necessarily distincts. Our aim is to study character varieties
with prescribed closure of conjugacy classes at punctures, we can continue with the
assumption:

Assumption 6.3.2. We assume that the (Xi)1≤i≤4 have determinant 1.

This assumption allows to get rid of some generators. Cayley-Hamilton theorem
implies

X2
i − tr(Xi)Xi + Id = 0 (6.7)

so that
tr(X2

i ) = tr(Xi)
2 − 2. (6.8)

and multiplying (6.7) by Xj before taking trace

tr(X2
iXj) = tr(Xi) tr(XiXj)− tr(Xj). (6.9)

Thus we can pick among (6.6) the following generators

a := tr(X1), b := tr(X2), c := tr(X3),
x := tr(X2X3), y := tr(X1X3), z := tr(X1X2),
d := tr(X1X2X3), d′ := tr(X1X3X2)

(6.10)

Moreover d′ can be expressed with the other generators using relation (6.4) with
the monomials Mi = Xi. The relations between those remaining generators are de-
scribed in general by Procesi but it is convenient to obtain a finite description of the
relations. Such a description was known by Vogt [Vog89] and Fricke-Klein [FK97],
see also Goldman [Gol09] for a detailed discussion and Boalch-Paluba [BP16] for
applications to G2 character varieties. The relations boil down to a single equation
known as the Fricke relation

xyz + x2 + y2 + z2 + Ax+By + Cz +D = 0 (6.11)

with

A = −ad− bc
B = −bd− ac
C = −cd− ab
D = abcd+ a2 + b2 + c2 + d2 − 4.

The character varieties we are interested in are obtained by specifying the Zariski
closure of the conjugacy class of each Xi. First we assume that they are all semi-
simple regular. For i = 1, . . . 4; Si is the conjugacy class of(

λi 0
0 λ−1

i

)
. (6.12)

S = (S1, . . . ,S4) is assumed to be generic. In terms of invariant functions, Xi ∈ Si
for all i, if and only if

tr(Xi) = λi + λ−1
i for 1 ≤ i ≤ 3

tr(X1X2X3) = λ4 + λ−1
4 .

Then Fricke relation translates in next proproisition.
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Proposition 6.3.3. The character variety MS is a smooth cubic surface in A3

given by Fricke relation (6.11) with coordinates x, y and z and constants A,B,C
and D.

Now consider non-semisimple conjugacy classes C = (C1, C2, C3, C4). With C1 the
conjugacy class of (

−1 1
0 −1

)
and C2 = C3 = C4 are the conjugacy classes of(

1 1
0 1

)
.

Note that this 4-uple of conjugacy classes is generic. The (Xi)1≤i≤4 are already
assumed to have determinant 1, then X1 belongs to the closure C1 if and only if

trX1 = −2.

Similarly the condition (X2, X3, X4) ∈ C2 × C3 × C4 is equivalent to

trX2 = trX3 = tr(X1X2X3) = 2.

Substituting this parameters in Fricke relation, the character variety is again a cubic
surface in A3 with equation:

xyz + x2 + y2 + z2 − 4 = 0. (6.13)

This cubic surface has exactly four singularities at (−2,−2,−2), (−2, 2, 2), (2,−2, 2)
and (2, 2,−2). The classification of cubic surfaces (see for instance Bruce-Wall
[BW79]) gives the following theorem:

Theorem 6.3.4. After compactification in P3, the character varietyMC is Cayley’s
nodal cubic, the only cubic surface with four singularities.

This particular character variety was studied by Cantat-Loray [CL09] in the
context of Painlevé VI.

In this example, using only elementary algebraic geometry, we can prove that the
minimal resolution ofMC is diffeomorphic to the character varieties with semisimple
monodromiesMS . We shall see that both varieties are obtained as the plane blown-
up in six points minus three lines.

6.3.2 Projective cubic surfaces

Let us recall an important result in the classification of cubic surfaces. Smooth
projective cubic surfaces in P3 can be constructed by a blow-up of P2 in six points.

Let P = (P1, ..., P6) be six distinct points in the projective plane P2. The blow-up
of P2 with respect to those six points is denoted YP → P2.

Definition 6.3.5 (Generic configuration for six points in P2). Such a configuration
P of 6 points in P2 is called generic if no three of them lie on a line and no five of
them lie on a conic.
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The two following theorems are well-known results about cubic surfaces, see for
instance Manin [Man86] and Hunt [Hun96].

Theorem 6.3.6. Up to isomorphism, smooth projective cubic surfaces in P3 are
obtained as P2 blown-up in six points in generic position.

Theorem 6.3.7. If the six points P = (P1, ..., P6) are the intersection of four lines
(L1, ..., L4) in P2, then YP is isomorphic to a minimal resolution of singularities of
Cayley’s nodal cubic.

The rest of this section is devoted to the proof of Theorem 6.3.7. Along the way,
one direction of Theorem 6.3.6 is also proved: P2 blown-up in six points in generic
position is isomorphic to a smooth cubic surface in P3.

Those results rely on the theory of linear systems we briefly recall. A detailed
presentation can be found in Hartshorne [Har13, II-7].

Definition 6.3.8. A divisor D on a smooth variety Y is a formal sum D =
∑

V nV V
over subvarieties of codimension one with nV ∈ Z and finitely many of them nonzero.
D is effective if nV ≥ 0 for all V . A divisor D is principal if D = (f) for f a non-
zero global section of the sheaf of rational functions. Two divisors D and D′ are
linearly equivalent if D −D′ is principal.

Definition 6.3.9. Let D be a divisor on a projective space Pn, the complete linear
system denoted |D| is the set of effective divisors linearly equivalent to D.

Remark 6.3.10 (Hartshorne [Har13] II - 7.7, 7.8). The complete linear system |D|
is identified with the projective space over the space of global sections of the invertible
sheaf L(D) associated with D. Indeed the zero set (s)0 of a section s is an effective
divisor linearly equivalent to D

P(H0 (Y,L(D))) → |D|
[s] 7→ (s)0

.

Moreover if L(D) is generated by its global section, it provides a morphism

ϕ : Y → P (H0 (Y,L(D))∗)
x 7→ [ϕx]

(6.14)

Set theoretically, this morphism sends a point x ∈ Y to [ϕx] the line spanned by the
linear form

ϕx : H0 (Y,L(D)) → C
s 7→ s(x)

Let P = (P1, . . . , P6) be six points on P2, either in generic position or exactly
the intersection points of four lines. Linear systems allow to construct a morphism
from YP to P3.

Definition 6.3.11. Let L a line in P2, the linear system |3L−P1 · · ·−P6| is a projec-
tive subspace of |3L|. It is defined under the identification |3L| ∼= P (H0 (P2,L(3L)))
by P(VP ) with

VP =
{
s ∈ H0

(
P2,L(3L)

)
|s(Pi) = 0, for all 1 ≤ i ≤ 6

}
.

It is the set of cubic curves in P2 containing all the (Pi)1≤i≤6.
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Now consider YP the blow up of P2 at P1+· · ·+P6. Let Ei the exceptional divisor
over Pi. There is a natural bijection from |3L−P1 · · ·−P6| to |π∗(3L)−E1 · · ·−E6|.
This bijection sends a cubic in P2 passing through all the Pi to its strict transform
in YP .

Lemma 6.3.12. The line bundle L(π∗(3L)−E1 · · · −E6) is generated by its global
section and dimH0(YP ,L(π∗(3L)− E1 · · · − E6)) = 4.

Proof. Under the identification between |π∗(3L)−E1 · · ·−E6| and |3L−P1 · · ·−P6|,
the space H0(YP ,L(π∗(3L)− E1 · · · − E6)) corresponds to{

s ∈ H0(P2,L(3L)) |s(Pi) = 0 for 1 ≤ i ≤ 6
}

which is a codimension 6 subspace of H0(P2,L(3L)). The line bundle L(3L) is
nothing but O(3). The statement about the dimension now follows from

dimH0(P2,O(3)) = 10.

To see that L(π∗(3L)− E1 · · · − E6) is generated by its global section, we use that
for any point P distinct from P1, . . . , P6 there exists a cubic containing the Pi but
not containing P . This is detailed Hartshorne in [Har13, V - 4.3].

Thanks to previous lemma, the line bundle L(π∗(3L)− E1 − · · · − E6) provides
a morphism ϕ : YP → P3 define as in (6.14).

Proposition 6.3.13. The image of the morphism ϕ is a cubic surface in P3.

Proof. We want to compute the number of intersection of the image of the morphism
ϕ with a generic line L in P3. By construction the projective space of dimension three
is naturally obtained as P (H0(YP ,L(π∗(3L)− E1 · · · − E6))∗) the projective space
of the space of sections of L(π∗(3L) − E1 · · · − E6). Take two points P,Q distinct
from the Pi. Then [ϕP ] and [ϕQ] are two points in the image of ϕ. Now every cubic
curve containing the eight points P1, . . . , P6, P,Q also contains a ninth point R, see
[Har13, V-4.5]. Thus the line in P (H0(YP ,L(π∗(3L)− E1 · · · − E6))∗) containing
[ϕP ] and [ϕQ] also intersects the image of ϕ in a third point [ϕR]. Therefore the
degree of the image of ϕ is three, it is a cubic surface in P3.

Last proposition is true either if the points P are in generic position or if they
are the intersection points of four lines. Next propositions present the difference
between both situations.

Proposition 6.3.14. If the points P are in generic position, then the map

ϕ : YP → P3

is an embedding.

Proof. Let P and Q distinct points in P2. Among (P1, . . . , P6, P ), no four points are
aligned. Then there exists a cubic in P2 containing P1, . . . , P6, P but not containing
Q, see [Har13, V-4.4]. Therefore [ϕP ] 6= [ϕQ].

Remark 6.3.15. Last two propositions prove one direction in the theorem of clas-
sification of smooth cubic surfaces 6.3.6. They prove that P2 blown-up in six points
in generic position is a cubic surface in P3.
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Proposition 6.3.16. If the points (P1, . . . , P6) are exactly the intersection points
of four lines (L1, . . . , L4) in P2, then the map

ϕ : YP → P3

is a blow-down along (L̃1, . . . , L̃4) the strict transform of (L1, . . . , L4). Therefore its
image is a cubic surface with four singularities: the Cayley’s nodal cubic.

Proof. Note that as each Li contains three points blown-up, its strict transform L̃i
has self-intersection −2. Therefore L̃i can be blown-down and its image is a singular
point. Let us check that the morphism ϕ is indeed this blow-down. Let P a point
in L̃i. If the strict transform of a conic passing through the (Pj)1≤j≤6 also contains
P , then this conic contains the line Li. Indeed this conic either contains four points
of the line Li or it contains three points of Li and is tangent to this line at one of
this points. Therefore for all P ′ ∈ L̃i one has [ϕP ′ ] = [ϕP ]. Therefore ϕ contracts
the lines (L̃i)1 ≤ i ≤ 4. As in the proof of Proposition 6.3.14, ϕ is an embedding
away from the lines (L̃i)1≤i≤4.

Remark 6.3.17. Last proposition proves Theorem 6.3.7: the projective plane blown-
up at the six intersection points of four lines is a minimal resolution of singularities
of Cayley’s nodal cubic.

Up to diffeomorphism, the manifold obtained by P2 blown-up in six distinct
points, does not depend on the position of the points. This implies next proposition.

Proposition 6.3.18. The minimal resolution of the projective Cayley’s nodal cubic
is diffeomorphic to a smooth projective cubic surface. Both are obtained as the
projective plane P2 blown-up in six points.

6.3.3 Lines on cubic surfaces

So far we saw that the minimal resolution of the projective Cayley’s nodal cubic
is diffeomorphic to a smooth projective cubic surface. However the variety we are
interested in are not projective, they are affine. By Theorem 6.3.4 the varietyMC
is the projective Cayley’s nodal cubic minus three lines at infinity. Those three lines
are given by the equation xyz = 0, they form a triangle. Similarly the varietyMS
is a smooth projective cubic surface minus the triangle at infinity xyz = 0. This
triangle at infinity is a particular case of a general situation studied by Simpson
[Sim16] for n = 2 and any number of punctures k.

The theory of lines on cubic surfaces has been thoroughly studied. See for in-
stance Cayley [Cay69], Bruce-Wall [BW79], Manin [Man86] and Hunt [Hun96].

Proposition 6.3.19 (27 lines on smooth projective cubic surface). There are 27
lines on a smooth projective cubic surface. They all have a nice description in terms
of P2 blown-up in six points (P1, . . . , P6).

• Six of them are exceptional divisors Ei over Pi.

• Fifteen of them are the strict transform L̃i,j of the line through Pi and Pj.

• Six of them are the strict transform C̃j of the conic through all Pi except Pj.
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Following picture is an example of six generic points in the plan, the line L1,6 as
well as the conic C6 are drawn.

P1

•

P2•

P3

•

P4

•

P5•

P6

•
L1,6

C6

Now consider six points not in generic position. Take four lines (L1, . . . , L4) in
P2 with exactly six intersection (P1, . . . , P6), those lines are black in next figure.
Consider the three lines L1,2, L3,4 and L5,6 with Li,j containing Pi and Pj, those
lines are blue in next figure. Up to relabelling we may assume Li,j 6= Lk for all
i, j, k. Cayley’s nodal cubic is obtained by blowing up the six points and then
blowing down the strict transform of the four lines (L1, . . . , L4). The four points
image of this four lines under the blow-down are exactly the four singular points.
See Hunt [Hun96, Chapter 4] for more pictures.

P1

P3 P4

P5

P6

P2

Proposition 6.3.20 (lines on Cayley’s nodal cubic). There are 9 lines on Cayley’s
nodal cubic.

• Six of them are the exceptional divisors Ei over Pi.

• Three of them are the strict transform of L1,2, L3,4 and L5,6.

Proposition 6.3.21. The varietyMC is Cayley’s nodal cubic minus the images of
L1,2, L3,4 and L5,6.
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Proof. We saw that MC is Cayley’s nodal cubic minus the three lines at infinity
xyz = 0. Those three lines does not contains any of the four singularities. Therefore
they are not the image of the exceptional divisors. Then they must be the three
remaining lines, the blue lines on the picture.

Theorem 6.3.22. The character variety with generic semisimple conjugacy classes
at punctures MS is diffeomorphic to the minimal resolution of singularities of the
character varietyMC. Both are obtained as the projective plane P2 blown up in six
points (P1, . . . , P6) minus three lines L̃1,2, L̃3,4, L̃5,6.

Proof. The statement about the minimal resolution of MC follows from previous
proposition. MS is a smooth projective cubic surface minus three lines forming a
triangle. As those three lines intersect each other they cannot be any triple among
the 27 lines over the surface, there are some restriction:

• Exceptional divisor Ei do not intersect each other.

• Strict transform C̃j do not intersect each other.

• Strict transforms of two distinct line containing a same point Pi do not inter-
sect.

Therefore the only possible triples of lines forming a triangle on a smooth cubic
surface have the following form:

1. (L̃1,2, L̃3,4, L̃5,6)

2. (E1, L̃1,6, C̃6).

The first case is exactly the expected result. To get an idea of the second case,
consider the picture below Proposition 6.3.19, the conic C6 and the line L1,6 are
drawn. To relate the second case to the first, proceed in two steps. First P2 is
blown-up in the three points P1, P2 and P3. The resulting variety is blown-down
along L̃1,2, L̃1,3 and L̃2,3 (three lines with self-intersection −1). The variety obtained
is again isomorphic to P2. We consider this copy of the projective plane as the
starting point. This plane is blown up in six points (P ′1, . . . , P

′
6) with

• P ′1 the blow-down of L̃2,3

• P ′2 the blow-down of L̃1,3

• P ′3 the blow-down of L̃1,2

• P ′j the image of Pj for j = 4, 5, 6.

The construction obtained from the new copy of P2 and the points (P ′1, . . . , P
′
6) are

labelled with a prime. Then the triple
(
E1, L̃1,6, C̃6

)
becomes

(
L̃′2,3, L̃

′
1,6, L̃

′
4,5

)
. In

any cases the triangle of lined removed at infinity has the expected form.
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Remark 6.3.23. There is an action of the Weyl group of E6 on the configuration
of the 27 lines on a smooth cubic surface. The Dynkin diagramm of E6 is

•

• • • • •

The generator of the upper vertex corresponds to the transformation previously de-
scribed sending

(
E1, L̃1,6, C̃6

)
to
(
L̃′2,3, L̃

′
1,6, L̃

′
4,5

)
. See Hartshorne [Har13, V-Exercise

4.11].

6.4 Moduli spaces

6.4.1 de Rham moduli space

Parabolic holomorphic bundles were introduced by Mehta-Seshadri [MS80], they
generalized Narasimhan-Seshadri [NS65] result to the parabolic case. Parabolic bun-
dles appear in various area in mathematics and physics, for instance Pauly [Pau96]
related those parabolic bundles with conformal field theory. In this section basic
definitions are recalled.

Let Σ a Riemann surface endowed with a complex structure. Let D the divisor
D = p1 + · · ·+ pk.

Definition 6.4.1 (Filtered holomorphic bundles). A filtered holomorphic bundle is
the data of a holomorphic vector bundle E together with filtrations of Ej the fiber of
E at pj for j = 1, . . . , k

{0} = Ej
0 ⊂ Ej

1 ⊂ · · · ⊂ Ej
mj

= Ej.

The type τ of the filtration is defined by

τ ji = dimEj
i /E

j
i−1

for j = 1, . . . , k and i = 1, . . . ,mj.

Definition 6.4.2 (parabolic degree). Let E a filtered holomorphic bundle of type τ .
Let β =

(
βji
)

1≤j≤k
1≤i≤mj

with βji ∈ R a stability parameter. The parabolic degree of E is

p-degβ E = degE +
∑
i,j

βji dim
(
Ej
i /E

j
i−1

)
.

Let E a holomorphic vector bundle on Σ. A logarithmic connection on E is a
map of sheaves D : E → E ⊗ Ω1

Σ(logD) satisfying the Leibniz rule

D(fs) = df ⊗ s+ fD(s)

for all f holomorphic function and s section of E.
For z a coordinate vanishing at a point pj, in a trivialization of E in a neighbor-

hood of this point the connection reads

D = d+ A(z)
dz

z
.
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A(0) is called the residue of D at pj and denoted by Respj D

Fix some parabolic weights βji ∈ [0, 1[ satisfying βji > βji−1. For j = 1, . . . , k and
i = 2, . . . ,mj fix Aji ∈ C to specify a polar part. A logarithmic connection (E,D) is
compatible with the parabolic structure if the endomorphism

Respj D : Ej → Ej

satisfies
(
Respj D

)
Ej
i ⊂ Ej

i . A logarithmic connection compatible with the parabolic
structure is called a parabolic connection.

It is compatible with the specified polar part if in addition the map induced by
Respj D on the graded spaces Ej

i /E
j
i−1 is A

j
i Id. A logarithmic connection compatible

with the parabolic structure is β-semistable if and only if, for sub bundle F ( E
preserved by D

p-degβ F

rankF
≤

p-degβ E

rankE

it is stable if the inequality is strict unless F = 0. Two pairs of filtered holomorphic
bundle and parabolic connections (E,D) and (E ′, D′) are isomorphic if there is an
isomorphism of holomorphic bundle f : E → E ′ compatible with the filtrations and
such that (f ⊗ Id) ◦D = D′ ◦ f .

Notations 6.4.3 (de Rham moduli space). The de Rham moduli spaceMdR
A,β classi-

fies isomorphism classes of β-stable parabolic connections with prescribed polar part
A and parabolic degree 0.

6.4.2 Filtered local systems and resolutions of character va-
rieties

Definition 6.4.4 (Filtered local system). A filtered local system is a local system
L over Σ \ {p1, . . . , pk} together with a filtration of the restrictions L|Uj to Uj some
punctured neighborhood of pj. Namely for all j = 1, . . . , k there are local systems Lji
such at

0 = Lj0 ( L
j
1 ( · · · ( Ljmj = L|Uj .

The type τ of the filtered local system is defined by

τ ji := rankLji/L
j
i−1.

Definition 6.4.5 (Parabolic degree of a filtered local system). Let γ =
(
γji
)

1≤j≤k
1≤i≤mj

a stability parameter. The parabolic degree of the filtered local system is defined by

p-degγ L =
∑
i,j

γji rankLji/L
j
i−1

A filtered local system L is γ-semistable if and only if for all sub local system
0 ( L′ ( L

p-degγ L′

rankL′
≤

p-degγ L
rankL

it is γ-stable if the inequality is strict.
Consider a character varietyMCµ,σ with a resolution of singularities M̃L,P ,σ. By

the usual equivalence of category between local systems and representations of the

152



fundamental group, the character varietyMCµ,σ is the moduli space of local system
with monodromy around pj in Cµj ,σj . This correspondence extends to the resolution
M̃L,P ,σ and the moduli space of filtered local system.

Proposition 6.4.6. M̃L,P ,σ is the moduli space of filtered local system with filtration
around pj of type µj ′ and such that the endomorphism induced by the monodromy
on Lji/L

j
i−1 is σji Id.

Proof. An element gjP j ∈ GLn /P
j identifies with a partial flag of type µj ′ (see

Remark 3.4.17). The condition g−1
j Xjgj ∈ σjUP j is exactly that the partial flag is

preserved by Xj and that the induced endomorphism on the graded spaces are σji Id.
Note that we study only character varieties for generic choices of conjugacy classes
at punctures. For such a generic choice, the stability parameter is irrelevant as the
local system does not admit any sub local system.

6.4.3 Dolbeault moduli space

A parabolic Higgs bundle is a pair (E, φ) with E a filtered holomorphic vector
bundle on X and a Higgs field φ : E → E ⊗ Ω1(logD) such that Respj φ(Ej

i ) ⊂ Ej
i .

Let α =
(
αji
)

1≤j≤k
1≤i≤nj

a stability parameter. A parabolic Higgs bundle (E, φ) is α-

semistable if and only if for all 0 ( F ( E a sub bundle preserved by φ

p-degα F

rankF
≤ p-degαE

rankE
.

it is α-stable if the inequality is strict. As for the parabolic connections, it is inter-
esting to specify the residue of the Higgs field. For all i, j fix a semisimple adjoint
orbit Bj

i in glνji
. The parabolic Higgs bundle has the prescribed residue if, in an

holomorphic trivialization, the map induced on Ej
i /E

j
i−1 by the residue lies in the

adjoint orbit Bj
i . Note that contrarily to the parabolic connections, the prescribed

adjoint orbits on the graded spaces are not necessarily central. In fact much more
general polar parts are considered by Biquard-Boalch, we restrict here to what is
necessary for our purpose.

Notations 6.4.7 (Dolbeault moduli space). The Dolbeault moduli spaceMDol
B,α clas-

sifies isomorphism classes of α-stable parabolic Higgs bundles with prescribed residue
B and parabolic degree 0.

6.4.4 Various steps of the diffeomorphism

In the remaining of this chapter, analytic construction of the moduli spaces are
recalled. Those spaces are endowed with a manifold structure. Those moduli spaces
will be used to obtain a diffeomorphism from a resolution M̃L,P ,σ to a character
variety MS with semisimple conjugacy classes at punctures. The picture is is the
following:

M̃L,P ,σ MdR
A,β MDol

B,α

MS MdR
Ã,β̃

MDol
B,α̃

R.H N.A.H

α 7→α̃

R.H N.A.H

(6.15)
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All the arrows are diffeomorphisms, R.H stands for Riemann-Hilbert correspondence
and N.A.H for non-Abelian Hodge theory. The vertical arrow accounts for a change
of stability parameter α → α̃. This is the same idea as Biquard, García-Prada
and Mundet i Riera [BGM15, Theorem 7.10]. It is detailed in the remaining of the
chapter for this particular application.

6.5 Local model
In this section the local model used by Biquard-Boalch [BB04] to construct moduli
spaces is recalled.

6.5.1 Local model for Riemann-Hilbert correspondence

Before constructing the moduli space, let us present what happens locally, near a
puncture, and how the parameters of the moduli spaces are related. Consider L
a rank n filtered local system on a punctured disk D0 such that the monodromy
induces a central endomorphism on the graded spaces. The monodromy X has
eigenvalues σi with multiplicity νi for 1 ≤ i ≤ l. We assume the filtration of the
local system is finer than a filtration spanned by generalized eigenspaces ofM . Then
in a trivialization (lj)1≤j≤n compatible with the filtration, the monodromy reads

X =

Xσ1 ∗
0 Xσ2 ∗
... 0

. . .


with Xσi a block of size νi with further decomposition

Xσi =

σi Idµi1′ ∗
0 σi Idµi2

′ ∗
... 0

. . .


The type of the filtration is µ′ = (µ1

1
′
, µ1

2
′
, . . . , µ2

1
′
, µ2

2
′
, . . . ). Let Ai ∈ C such that

exp(−2iπAi) = σi

and 0 ≤ ReAi < 1. Then A is the diagonal matrix with diagonal coefficientsA1, . . . , A1︸ ︷︷ ︸
ν1

, . . . , Al, . . . , Al︸ ︷︷ ︸
νl

 .

Let a a block strictly upper triangular matrix such that exp (−2iπ(A+ a)) = X.
Define E a rank n holomorphic bundle on the disk D spanned by τj = e(A+a) log zlj
for 1 ≤ j ≤ n. Let D the parabolic connection on E defined in the holomorphic
trivialization (τj)1≤j≤n by

D = d+
A+ a

z
dz

= D0 +
a

z
dz
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Then the parabolic local system L is nothing but the local system of flat sections
of the parabolic connection (E,D). This describes locally the Riemann-Hilbert
correspondence between a resolution of a character variety and a de Rham moduli
space.

6.5.2 Metric and parabolic structure

The connection D0 will be the local model for parabolic connections:

D0 = d+
A

z
dz

with A diagonal. In order to continue the path presented in Diagram (6.15), we
need to introduce an Hermitian metric. It will be related to a choice of stability
parameter. Chose some stability parameters βr,s ∈ [0, 1[ for each graded spaces of
the filtration of type µ. Introduce a diagonal matrix β with diagonal coefficients

(β1, β2, . . . , βn) :=

 ν1︷ ︸︸ ︷
β1,1, . . . , β1,1︸ ︷︷ ︸

µ11
′

, β1,2, . . . , β1,2︸ ︷︷ ︸
µ12
′

, . . ., . . . ,

νl︷ ︸︸ ︷
βl,1, . . . , βl,1︸ ︷︷ ︸

µl1
′

, βl,2, . . . , βl,2︸ ︷︷ ︸
µl2
′

, . . .


so that the βi are the βr,s repeated according to the multiplicities µrs

′. Moreover
assume that βi ≥ βi+1 and βr,s 6= βu,v if (r, s) 6= (u, v).

Remark 6.5.1. In this local model, there is a unique puncture p1 so that the sta-
bility parameter intorduced in 6.4.1 are (β1

i )1≤i≤m1
. They are related to the stability

parameters introduced in this section by(
β1

1 , β
1
2 , . . . , β

1
m1

)
= (β1,1, β1,2, . . . , β2,1, β2,2, . . . )

We apologize for the multiplication of similar notations. (β1
i )1≤i≤m1 are adapted to

the algebraic definition of stability whereas (βr,s) 1≤r≤l
1≤s≤µr1

are adapted to the description

of the connections and (β1, β2, . . . , βn) to explicit construction of trivializations.

Define a Hermitian metric h on E such that |τj| = |z|βj . This metric determines
the filtration of E:

Ei =
{
s ∈ E

∣∣∣|s(z)|h = O
(
|z|β

1
i

)}
.

with | . . . |h the norm with respect to the metric h. We obtained an Hermitian vector
bundle E on D with an orthonormal trivialization

(
τj

|z|βj

)
1≤j≤n

.

Notations 6.5.2. The symbol E represents a vector bundle in the sense of differ-
ential geometry, with smooth transition functions; whereas the symbol E represents
a holomorphic bundle.

The parabolic connection D0 on the holomorphic bundle E induces a connection
on E, in the orthonormal trivialization

(
τj

|z|βj

)
1≤j≤n

it reads

D0 = d+

(
A− β

2

)
dz

z
− β

2

dz

z
.
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6.5.3 Local beahaviour for non-Abelian Hodge theory

D0 decomposes as unitary connection plus a self-adjoint term

D0 = Dh
0 + Φ0.

In the orthonormal trivialization
(

τj

|z|βj

)
1≤j≤n

Dh
0 = d+

A

2

dz

z
− A†

2

dz

z

and
Φ0 =

1

2

(
A
dz

z
+ A†

dz

z
− βdz

z
− βdz

z

)
Consider the basis (ej)1≤j≤n defined by

ej :=
τj

|z|βj−i ImAj

with ImAj the imaginary part of the j-th diagonal term of the matrix A.

Notations 6.5.3 (Canonical form). The expression of D0 in the orthonormal triv-
ialization (ej)1≤j≤n is

D0 = Dh
0 + Φ0

Dh
0 = d+

1

2
Re(A)

(
dz

z
− dz

z

)
Φ0 =

1

2

(
A
dz

z
+ A†

dz

z
− βdz

z
− βdz

z

)
.

Such expressions will be referred to as canonical forms.

Let ∂F be the (0, 1)-part of Dh
0 and θ0 the (1, 0)-part of Φ0. In the basis (ej)1≤j≤n

one has
∂
F

= ∂ − 1

2
Re(A)

dz

z
.

This operator defines an holomorphic bundle over the punctured disk with holo-
morphic sections killed by ∂F . This holomorphic bundle can be extended over the
puncture to an holomorphic bundle F , taking as a basis of holomorphic sections
(fj)1≤j≤n defined by

fj = |z|αjej.

with αj the real part of the j-th diagonal term of the matrix A. Then

|fj|h = |z|αj

Similarly to the correspondence 6.5.1 between (β1, . . . , βn) and (β1
i )1≤i≤m1 , a stability

parameter (α1
i )1≤i≤n1 is associated to (α1, . . . , αn). This stability parameter provides

a parabolic structure

Fi =
{
s ∈ F

∣∣∣ |s|h = O
(
|s(z)|α

1
i

)}
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Note that the holomorphic bundle F is different from the holomorphic bundle E.
Even the type of the parabolic structure differ, E is of type µ′ whereas F is of type
ν.

Note that θ0, the (1, 0) part of Φ0, provides an Higgs field:

θ0 =
1

2
(A− β)

dz

z
.

This is the local behaviour of the non-Abelian Hodge theory for the model connec-
tion. To summarize, starting from a logarithmic flat connection D0 with polar part
A, a metric h and a parabolic structure β we obtain a parabolic Higgs bundle with
residue of the Higgs field B and parabolic structure α. The relation between those
parameters are as described by Simpson [Sim90]

B = 1
2

(A− β)
α = ReA.

(6.16)

6.5.4 Local description of weighted Sobolev spaces

Definition 6.5.4 (Weighted L2 spaces). r = |z| is the radial coordinate on the disk,
for δ real, L2

δ is the space of function f on the disk such that f
rδ+1 is L2.

The hermitian metric h on the vector bundle E induces a metric on End(E) and
End(E) ⊗ Ω1. The definition of the spaces L2

δ extends to section of such bundles
using the induced metric. There is an orthogonal decomposition

End(E) = End(E)0 ⊕ End(E)1 (6.17)

with End(E)0 the space of endomorphism commuting with A. It induces an orthog-
onal decomposition

Ω1 ⊗ End(E) =
(
Ω1 ⊗ End(E)0

)
⊕
(
Ω1 ⊗ End(E)1

)
For f ∈ Ω1 ⊗ End(E) this orthogonal decomposition reads

f = f0 + f1.

Definition 6.5.5 (Sobolev spaces Lk,2δ ).

Lk,2δ
(
Ω1 ⊗ End(E)

)
:=

{
f ∈ L2

δ

∣∣∣∣∇jf0,
∇jf1

rk−j
∈ L2

δ for 0 ≤ j ≤ k

}
with ∇ the covariant derivative with respect to the unitary connection Dh

0 .

Definition 6.5.6 (Space of admissible connections). The space of admissible con-
nections is

A =
{
D0 + a

∣∣a ∈ L1,2
−2+δ

(
Ω1 ⊗ End(E)

)}
.

Remark 6.5.7. Note that the space of admissible connections is chosen so that the
connection D = D0 + a introduced at the beginning of this section is admissible.
Indeed, in the orthonormal trivialization (ej)1≤j≤n, the matrix a is strictly block
upper triangular. The non zero coefficients strictly above the diagonal have the
following form

|z|βi−βj ai,j
z

with βi > βj and ai,j constant. Thus a ∈ L1,2
−2+δ for small enough parameter:

0 < δ < βi − βj.
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6.5.5 Variation of the stability parameters and the metric

In order to pursue the path announced in Diagram (6.15), slightly modify the sta-
bility parameter α to a parameter α̃, a diagonal matrix with coefficients

(α̃1, α̃2, . . . ) =

α̃1,1, . . . , α̃1,1︸ ︷︷ ︸
µ11
′

, α̃1,2, . . . , α̃1,2︸ ︷︷ ︸
µ12
′

, . . .


The associated metric h̃ is defined such that the holomorphic trivialization (fj)1≤j≤n
of the holomorphic bundle F is orthogonal and

|fj|h̃ = |z|α̃j .

This provide an hermitian bundle with orthonormal trivialization (ẽj)1≤j≤n defined
by

ẽj =
fj
|z|α̃j

.

We follow the same process as before in the opposite direction. Dh̃
0 is the h̃-unitary

connection with (0, 1)-part ∂F . And

Φ̃0 := θ0 + θ†̃0

the adjoint is taken with respect to the metric h̃. Then

D̃0 := Dh̃
0 + Φ̃0.

In the trivialization (ẽj)1≤j≤n it reads

Φ̃0 =
1

2
(A− β)

dz

z
+

1

2

(
A†̃ − β

) dz
z

Dh̃
0 = d+

1

2
α̃

(
dz

z
− dz

z

)
Setting Ã = α̃ + i ImA and β̃ = β + α̃ − α we obtain a canonical form like in
Notations 6.5.3

Dh̃
0 = d+

1

2
Re(Ã)

(
dz

z
− dz

z

)
Φ̃0 =

1

2

(
Ã
dz

z
+ Ã†̃

dz

z
− β̃ dz

z
− β̃ dz

z

)
Continuing in the opposite direction, the (0, 1)-part of D̃0 defines an holomorphic
bundle Ẽ with holomorphic trivialization (τ̃j)1≤j≤n

τ̃j := |z|β̃j−i Im Ãj ẽj.

D̃0 defines a logarithmic connection on Ẽ, in the trivialization (τ̃j)1≤j≤n it reads

D̃0 = d+ Ã
dz

z

158



and Ã has distinct eigenvalues on each graded of the filtration of type ν and so does
the monodromy of the local system of flat sections.

Let us summarize the local behaviour from Diagram (6.15) in terms of residue.
We look at a particular block of size νj. The stability parameter associated to the
graded of the filtration is specified with over brace. N.A.H stands for non-Abelian
Hodge theory.

βj,1︷ ︸︸ ︷
Aj Id

µj1
′ ∗

0

βj,2︷ ︸︸ ︷
Aj Id

µj2
′ ∗

... 0
. . .





α1
j︷ ︸︸ ︷

(Aj − βj,1) Id
µj1
′ ∗

0 (Aj − βj,2) Id
µj2
′ ∗

... 0
. . .




β̃j,1︷ ︸︸ ︷
Ãj,1 Id

µj1
′ ∗

0

β̃j,2︷ ︸︸ ︷
Ãj,2 Id

µj2
′ ∗

... 0
. . .





α̃j,1︷ ︸︸ ︷
(Aj − βj,1) Id

µj1
′ ∗

0

α̃j,2︷ ︸︸ ︷
(Aj − βj,2) Id

µj2
′ ∗

... 0
. . .



N.A.H

α7→α̃

N.A.H

With Ãj,i = α̃j,i + i ImAj and β̃j,i = βj,i + α̃j,i − α1
j .

6.6 Diffeomorphism between moduli spaces

6.6.1 Analytic construction of the moduli spaces

Analytic construction of moduli spaces relies on methods from Kuranishi [Kur65],
Atiyah-Hitchin-Singer [AHS78] and Atiyah-Bott [AB83]. In this section we recall
the analytic construction of the moduli spaces involved in the parabolic version of
non-Abelian Hodge theory. Some particular cases of those moduli spaces were con-
structed by Konno [Kon93] and Nakajima [Nak96]. However we need more general
construction in order to allow not necessarily central action of the residues of the
Higgs fields on the graded of the filtration. The construction we follow is the one
from Biquard-Boalch [BB04]. Note that a larger family of groups was considered by
Biquard, García-Prada, Mundet i Riera [BGM15].

The local canonical model introduced in 6.5.3 is used to represent behaviour of
connections near the punctures pj. Let E a vector bundle on Σ endowed with an
hermitian metric h. Notation E refers to a vector bundle from differential geometry
point of view whereas E refers to holomorphic bundle. Let D0 a model connection
such that on the neighborhood of the punctures it coincides with the local model
connection of previous subsection. The connection decomposes as

D0 = Dh
0 + Φ

with Dh
0 unitary and Φ self-adjoint with respect to the metric h. We assume for

this model connection that in an orthonormal trivialization (ei)1≤i≤n of E near the
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puncture pj:

Dh
0 = d+

1

2
Re(Aj)

(
dz

z
− dz

z

)
and

Φ =
1

2

(
Aj
dz

z
+ (Aj)†

dz

z
− βj dz

z
− βj dz

z

)
with Aj and βj the residue and the stability parameter for the de Rham moduli space
at the puncture pj. They correspond to the local parameter A and β from Section
6.5, they are constant diagonal matrices. The parameters of the de Rham moduli
space are chosen so that it corresponds under Riemann-Hilbert correspondence to
a resolution of a character varieties with generic monodromies M̃L,P ,σ. Therefore
connections with such polar parts are necessarily irreducible.

Take r a function strictly positive on the punctured Riemann surface Σ0 such
that it coincides with the radial coordinate near each punctures. The global weighted
Sobolev space is defined as the local one from 6.5.4 with this positive function r. It
is still denoted by Lk,2δ (Ω1 ⊗ End (E)). The space of admissible connections is

A =
{
D0 + a

∣∣a ∈ L1,2
−2+δ

(
Ω1 ⊗ End(E)

)}
.

This affine space is actually endowed with various complex structures. Decomposing
according to (1, 0)-part and (0, 1)-part a = a1,0 + a0,1

I.a = ia

and
J.a = i(a0,1)† − i(a1,0)†

The curvature of an admissible connection D = D0 + a is denoted by FD. Consider
the complex gauge group

GI =
{
g ∈ Aut(E)

∣∣(Dh
0g)g−1, gΦ0g

−1 ∈ L1,2
−2+δ

}
It acts on A by

g.D := gDg−1 = D − (Dg) g−1.

Next theorem gives an analytic construction of the set of isomorphism classes of
parabolic flat connection with prescribed polar part. Later on, this set will be
endowed with a manifold structure.

Theorem 6.6.1 (Biquard-Boalch [BB04] Section 8). The de Rham moduli space of
stable flat connection with prescribed polar part on the graded part of the filtration
introduced in 6.4.1 is the following set

MdR
A,β = {D0 + a ∈ A |FD = 0} /GI .

The stability condition does not appear as it is imposed by the generic choice of
eigenvalues of the residue of D0.

Now starting from D = D0 + a ∈ A there is a natural candidate to produce a
parabolic Higgs bundle, like in the local model. First decompose D in a unitary
part and a self-adjoint part

D = Dh + Φ

= Dh
0 +

a− a†

2
+ Φ0 +

a+ a†

2

160



The natural candidate for the underlying holomorphic structure of the parabolic
Higgs bundle is, in the orthonormal trivialization (ej)1≤j≤k

∂
E

= ∂ − 1

2
Re(A)

dz

z
+
a0,1 − (a1,0)†

2
.

and the Higgs field

θ = θ0 +
a1,0 + (a0,1)†

2
.

This data provides a Higgs bundle if ∂Eθ = 0, equivalently if the pseudo curvature
GD vanishes. Note that the complex structure J is compatible with the Higgs
bundles point of view. Indeed if θ is the Higgs field associated to D then iθ is the
Higgs field associated to J.D. The complex gauge group acts on the Higgs bundles
structures by

g.(∂
E
, θ) := (g∂

E
g−1, gθg−1).

Next theorem gives an analytic construction of the set of isomorphism classes of
parabolic Higgs bundles with prescribed residue. Later on, this set will be endowed
with a manifold structure.

Theorem 6.6.2 (Biquard-Boalch [BB04] Section 7). The Dolbeault moduli space of
stable parabolic Higgs bundles with prescribed polar part on the graded part of the
filtration introduced in 6.4.3 is the following set

MDol
B,α =

{
D0 + a ∈ A

∣∣∣∂Eθ = 0
}
/GJ .

The stability condition does not appear as it is imposed by the generic choice of
eigenvalues of the residue. As a group GJ is just GI , we change the upper index to
precise which action is considered, the I-linear action or the J-linear action.

The non-Abelian Hodge theory gives a correspondence between Dolbeault and
de Rham moduli spaces. The parameters are intertwined as in the local model. A
nice way to state this correspondence is with hyperkähler geometry. Introduce the
unitary gauge group

G =
{
g ∈ U(E)

∣∣(D0g) g−1 ∈ L1,2
−2+δ

}
.

Consider the moduli space

M =
{
D ∈ A

∣∣∣ ∂Eθ = 0, FD = 0
}
/G.

The equations definingM can be interpreted as vanishing of an hyperkähler moment
map. Then the moduli spaceM is an hyperkähler reduction as in [Hit+87].

Theorem 6.6.3 (Biquard-Boalch [BB04] Theorem 5.4). The moduli spaceM car-
ries an hyperkähler manifold structure.

Proof. The deformation theory for the moduli space M at a point [D] is encoded
in the following complex

L2,2
−2+δ (u(E)) L1,2

−2+δ (Ω1 ⊗ EndE) L2
−2+δ ((Ω2 ⊗ EndE)⊕ iu(E))D D+D∗

.
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D∗ is the formal adjoint of D with respect to the L2 inner product and the metric h.
The analytic study of this complex is detailed in [BB04]. Its first cohomology group
is represented by the harmonic space H1 ⊂ L1,2

−2+δ (Ω1 ⊗ EndE). The Kuranishi
slice at [D] is defined by

SD := {D + a |Im(D∗a) = 0, GD+a = 0, FD+a = 0} . (6.18)

Taking a small enough neighborhood of D in the Kuranishi slice, one obtains a finite
dimensional manifold transverse to the G-orbits. The Kuranishi map provides an
isomorphism between a neighborhood of 0 in H1 and a neighborhood of D in the
Kuranishi slice, see Konno [Kon93, Lemma 3.8, Theorem 3.9]. This provides an
hyperkähler manifold structure on the moduli space.

Now the non-Abelian Hodge theory can be described the following way.

Theorem 6.6.4 (Biquard-Boalch [BB04] Theorem 6.1). The manifoldM endowed
with the complex structure I is the moduli spaceMdR

A,β.
The manifoldM endowed with the complex structure J is the moduli spaceMDol

B,α.

6.6.2 Construction of the diffeomorphisms

Theorem 6.6.5 (Riemann-Hilbert correspondence). The moduli space MdR
A,β is

complex analytically isomorphic to a resolution of character varieties M̃L,P ,σ.

Proof. As explained in 6.4.6, M̃L,P ,σ is nothing but the moduli space of filtered local
systems with prescribed graded part of the monodromy around the punctures. Fil-
tered version of the Riemann-Hilbert correspondence is established as an equivalence
of category by Simpson [Sim90]. Yamakawa [Yam08] proved that it is a diffeomor-
phism using a particular construction of the de Rham moduli space from Inaba
[Ina13]. The same argument apply with the de Rham moduli space endowed with
the manifold structure fromM. Starting from a flat connection, the associated local
system is obtained by taking flat sections i.e. solving a differential equation. When
the parameters of the equation vary complex analytically, so does the solution.

ThenMdR
A,β andMDol

B,α are diffeomorphic as both areM with a particular complex
structure. The first line in the path announced in Diagram 6.15 is now constructed.
The second line is obtained exactly like the first, but in the other direction. It re-
mains to describe the vertical arrow between two Dolbeault moduli spacesMDol

B,α and
MDol

B,α̃. This is given by Biquard, García-Prada, Mundet i Riera [BGM15, Theorem
7.10]. The construction of the diffeomorphism is detailed in the remaining of the
section.

Because of genericity of the eigenvalues of the residue, the stability parameter
α is irrelevant. The parameter α can be changed to a stability parameter α̃ with
different values for each graded of the filtration. Namely one can chose α̃ such that
the associated matrix satisfies ZGLn(α̃i) = ZGLn(Bi) and such that the parabolic
degree remains 0. The local behaviour near each puncture is described by the right
hand side of the diagram at the end of 6.5.5.

We introduce the following notation

εi := α̃i − αi.
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For the construction of the diffeomorphism in Theorem 6.6.7, it will be conveniant
to assume

max
i,j
|εi − εj| < δ

with δ the parameter appearing in the weighted Sobolev space L1,2
−2+δ.

Proposition 6.6.6. For such choice of parameter there is a natural bijection between
MDol

B,α andMDol
B,α̃.

Proof. MDol
B,α classifies isomorphism classes of parabolic Higgs bundles with parabolic

structure at pj
0 = F j

0 ( F j
1 ( · · · ( F j

nj
= F j

and with the residue of the Higgs fields preserving this filtration and acting as a
semisimple endomorphism Bj

i on the graded spaces

F j
i /F

j
i−1.

Such spaces decomposes as direct sum of eigenspaces for Bj
i . After ordering the

eigenvalues, we obtain a uniquely determined refinement of the initial parabolic
structure:

0 = F̃ j
0 ( F̃ j

1 ( · · · ( F̃ j
mj

= F j.

Then the residue of the Higgs field acts as a central endomorphism on the graded
F̃ j
i /F̃

j
i−1. This gives a map f :MDol

B,α →MDol
B,α̃. Stability is not an issue as the polar

part of the residue is generic. The map forgetting part of the filtration is an inverse
so that there is a natural bijection between both moduli spaces.

Before proving that this bijection is a diffeomorphism the manifold structure on
MDol

B,α̃ is detailed. It is constructed just likeMDol
B,α but with different parameters.

Similarly to M, construct a moduli space Mh̃. Instead of the initial metric h,
we use a metric h̃, similar to the local model from 6.5.5. Namely it is chosen so that
near each puncture it admits as an orthonormal trivialization (ẽi)1≤i≤n with

ẽi = rεiei.

Where (ei)1≤i≤n is the orthnormal trivialization with respect to h near the puncture
and εi = α̃i − αi.

First we construct D̃0, a starting point to construct an affine space of admissible
connections. Recall that

D0 = Dh
0 + Φ0

with Dh
0 a h-unitary connection and Φ0 self-adjoint with respect to h. Take Dh

0
′′ the

(0, 1)-component of Dh
0 and Φ1,0

0 the (1, 0)-component of Φ0. There exists a unique

Dh̃
0

′
such that Dh̃

0

′
+ Dh

0
′′ is h̃-unitary. Let Φ1,0

0

†̃
the adjoint of Φ1,0

0 with respect to
the metric h̃. Then D̃0 is defined by

D̃0 := Dh̃
0

′
+Dh

0

′′
+ Φ1,0

0 + Φ1,0
0

†̃
.

Near the puncture, in the trivialization (ẽi)1≤i≤n, the connection D̃0 behaves exactly
like the local model with the same name introduced in 6.5.5. Define the affine space
of admissible connections with respect to D̃0 and the metric h̃.

Ah̃ :=
{
D̃0 + ã | ã ∈ L1,2

−2+δ̃

(
Ω1 ⊗ End(E)

)}
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The weighted Sobolev space L1,2

−2+δ̃
(Ω1 ⊗ End(E)) is also defined using the metric

h̃. Moreover notice that we do not chose the same parameter δ for A and for Ah̃.
It will be convenient to chose δ̃ such that

0 < δ̃ < δ −max
i,j
|εi − εj|. (6.19)

With this set up, we are ready to prove that the bijection from previous proposition
is a diffeomorphism.

Theorem 6.6.7. The natural bijection between MDol
B,α and MDol

B,α̃ is a diffeomor-
phism.

Proof. MDol
B,α is identified with the manifoldM with the complex structure J .

Take an element inMDol
B,α identified with an element [D] ∈ M. [D] is the class

of D = D0 + a an admissible connection with vanishing curvature and pseudo-
curvature. By construction of the manifold structure, a neighborhood of [D] in
M is diffeomorphic with a neighborhood of D in the Kuranishi slice SD defined in
(6.18). We shall prove that the bijection from Proposition 6.6.6 induces a smooth
map from a neighborhood of D in SD to Ah̃.

First we describe the image of the connection D, it is obtained exactly the
same way D̃0 is obtained from D0. It decomposes as a connection h-unitary plus a
hermitian part

D = Dh
0 +

a− a†

2
+ Φ0 +

a+ a†

2
.

It can be decomposed further in components of type (1, 0) and (0, 1). Then the
(0, 1)-component of the h-unitary part is

∂
F

= Dh
0

′′
+
a0,1 − a1,0†

2

and the (1, 0)-component of the self-adjoint part is

θ = Φ1,0 +
a1,0 + a0,1†

2
.

The parabolic Higgs bundle associated to D is (∂
F
, θ). Now we switch to the metric

h̃. Near each puncture, in the h̃-orthonormal trivialization (ẽi)1≤i≤n

∂
F

= Dh
0

′′
+

(
α̃− α

2

)
dz

z
+ H̃

a0,1 − a1,0†

2
H̃−1

and

θ = φ1,0 + H̃
a1,0 + a0,1†

2
H̃−1.

with H̃ a diagonal matrix with coefficients rεi . Using the metric h̃ we construct D′
h̃

such that D′
h̃

+ ∂
F is h̃-unitary. And θ†̃ the adjoint of θ with respect to h̃. We want

to prove that
D′
h̃

+ ∂
F

+ θ + θ†̃
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belongs to the space of admissible connections Ah̃. Let

ã := D′
h̃

+ ∂
F

+ θ + θ†̃ − D̃0.

Components of ã are obtained from components of a by multiplication by rεi−εj .
Thus for δ̃ small enough (6.19), ã belongs to L1,2

−2+δ̃
. Therefore the bijection from

MDol
B,α toMDol

B,α̃ comes from a map

{D0 + a ∈ A | FD0+a = GD0+a = 0} →
{
D̃0 + ã ∈ Ah̃

∣∣ GD̃0+ã = 0
}

D0 + a 7→ D̃0 + ã.

This restricts to a diffeomorphism from a neighborhood of D in the Kuranishi slice
SD to a manifold transverse to the GJ -orbits in a neighborhood of D. Therefore the
mapMDol

B,α →MDol
B,α̃ is a diffeomorphism.

To finish, let us detail the last step at the bottom left corner of Diagram (6.15).
Applying successively non-Abelian Hodge theory and Riemann-Hilbert correspon-
dence, the moduli space MDol

B,α̃ is diffeomorphic to a moduli space of filtered local
system M̃L,P ,σ̃. The parameters are such that ZGLn(σ̃j) = Lj for 1 ≤ j ≤ k. The
map pσ̃ : M̃L,P ,σ → MS from 3.5.11 is an isomorphism. MS is the character
variety with monodromy at the puncture pj in Sj the conjugacy class of σ̃j.
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