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1. GENERAL INTRODUCTION 
 
 
 
 The enteric nervous system (ENS) is the largest division of the autonomic nervous system, 

containing as much neurons as the spinal cord. It is capable of controlling the function of the gut 

(propulsion of the alimentary bolus and secretions of hormones), in isolation, even though the 

central nervous system can influence it. For this reason, and because it contains a large variety of 

neurotransmitter, like the central nervous system, including serotonergic and dopaminergic neurons, 

it was famously called the “second brain”. 

 For some reason the study of this second brain has lagged behind that of the first, even 

though its study started in the XIXth century (Auerbach and Meissner, discoverers of the eponymous 

plexi, died in 1897 and 1905 respectively). One reason is that mouse as a model, and the genetic 

tools that were developed for it, have only slowly been adopted by the field, while guinea pig, a 

major original main model was still largely used during the 1990’s to explore the structure of the 

ENS. Possibly the main reason however, is that the peripheral nervous system, unlike the central one, 

as little spatial organization. The main paradigm to explain the formation of the CNS, i.e. the 

patterning of the CNS anlage along a grid of cartesian coordinates, on the rostro-caudal and dorso-

ventral axis, which has been so successful over the past 30 years, seems largely irrelevant in the ENS. 

The only spatial structure that can be detected there is the division in two plexi (myenteric and 

submucosal) and the grouping of neurons in ganglia, more or less regularly spaced. However, the size 

of these ganglia is varied, no ganglion is distinguished from others so far by its constituent cell type, 

and no spatial organization of the cell types in the ganglia is evident. This apparently random 

organization and the lack of groupings of cell types (as they are in the CNS in the form of nuclei), has 

probably played a role in delaying the description of the ENS in terms of constituent neuron types. 

The identification of neural-type specific transcription factors (which are not only markers but in 

many cases presumably determinants), which started for the CNS in the early 1990’s (with to this day 

hundreds of transcription factors involved in neuron-type specification, most prominently in the 

spinal cord, hindbrain and cortex), has barely started for the ENS, helped by the advent of next 

generation sequencing and single cell transcriptomics. 

 My PhD has focused on the ontogeny of the ENS, except for a contribution to a study of the 

sacral autonomic outflow which established, on the basis of developmental genetics, that it is 

affiliated to the sympathetic rather than parasympathetic nervous system, as was though since the 

beginning of the XXth century. I contributed to describe gene expression in the preganglionic cells 

that project in the pelvic nerve, and show that they are indistinguishable from the thoracolumbar, 

i.e. sympathetic ones, in their expression of several transcription factors (Article 1). It is one the best 
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arguments to claim that the sacral outflow is sympathetic, even though most of the debate and 

controversy has subsequently focused on the targets of these neurons, the pelvic ganglion (e.g. 

(Horn, 2018; Neuhuber et al., 2017)). Unfortunately, preganglionic neurons are relatively rare and 

embedded in the spinal cord, thus difficult to study with a single cell transcriptomics approach, such 

as is currently used in the lab to further investigate the cell identities in the pelvic ganglion. 

 I then contributed to a revision of the way in which the neural crest invades the gut to form 

the ENS. The main neural crest source for the ENS has long thought to be the so-called “vagal crest”, 

a more modest contribution being the sacral crest. We examined the “vagal crest” in more detail and 

found that this term is suited only for part of it: the crest that faces somites 1 and 2, thus the roots of 

the vagus nerve, and that this crest actually migrates along the vagal nerve (in the same way as 

parasympathetic precursors do along other cranial nerves) to invade exclusively the esophagus and 

antral stomach. On the other hand, the crest facing somites 3 to 7, classically lumped together with 

the vagal crest, has no relation to the vagal nerve and migrates ventrally directly into the foregut 

mesenchyme. On its way, it contributes to the superior-cervical ganglion, so that we called this crest 

“sympatho-enteric”. This term was criticized by M. Gershon for “implying that the ENS may be 

considered to be a component of the sympathetic nervous system” (Rao & Gershon, 2018), in the 

same way that we claimed that the sacral autonomic outflow was sympathetic (see above), which 

was also criticized. But this is not the case. In our paper, the term “sympatho-enteric” refers to the 

neural crest, not the part of the nervous system that it forms, and means that collectively this crest 

has two fates, sympathetic and enteric (and no relationship with the vagus nerve, hence is not 

“vagal”). Possibly a better term would have been “trunk crest”. My contribution was to examine the 

fate of the of S1-S2 and S3-S7 grafts from a GFP transgenic chicken onto a wild type one, to show the 

differential contribution to the gut. 

 Going further in the analysis of the development of the ENS, I then contributed, on the same 

paper, to establish the role of the ErbB3/Nrg1 signaling pathway in the development of the ENS 

showing that its absence leads to a gradient of depletion from the duodenum to the colon of 

respectively 75 to 50% (Article 2). After that, as Nrg1 was already known to be a co-factor of Ret in 

the human genetic of Hirschsprung disease, I wondered and tested if a similar mechanism could exist 

between ErbB3 and Ret where ErbB3 mutation would worsen Ret effects with a mouse model. 

 I then started studying the role of three transcription factors in the formation of the ENS. 

First Hmx2 and Hmx3, which are markers of both the parasympathetic ganglia and the ENS. I 

engineered three knockouts (Hmx2, Hmx3, and Hmx2/Hmx3 double KO) using CripsR:Cas9. I recount 

this experience, and how surprisingly difficult it actually was to get a clean knockout with this 

technology which just received the Nobel Prize, as a part of my results in this report. I found that 

even in the double Hmx2/Hmx3 KO, the ENS and the parasympathetic ganglia are present, but I could 
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not characterize these lines in more detail so far, and I actually might have lost these three lines 

because of the pandemic.  

 I also created a conditional KO of Tbx3, using an existing Tbx3lox/lox allele combined with a 

Phox2b::Cre allele previously generated some time ago in the lab. The study of the ENS in these 

conditional knockouts makes up the main part of the result section of this report. 

 As an introduction, I will review the development of the ENS, emphasizing aspects that seem 

more relevant to the data I obtained.  
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2. DEVELOPMENT OF THE ENTERIC NERVOUS SYSTEM 

  
 
I. Overview of the development of the ENS   
 

 The ENS ganglia are formed, just like sympathetic and parasympathetic ones, by neural crest 

cells (NCC) (Le Douarin et al., 1981; Nagy & Goldstein, 2017). Even if most of modern research is 

made on mice and zebrafish (Ganz, 2018; Obata & Pachnis, 2016), the original studies on the 

development of this system were made in chicken, originally by ablation experiments (Yntema & 

Hammond, 1954) and then by quail-chicken xenografts (Douarin & Teillet, 1973) to discover that the 

cells of the enteric nervous system are derived from neural crest cells at two rostro caudal levels: so 

called “vagal neural crest”, adjacent to somites 1-7, and the sacral crest ((derived from the neural 

tube posterior to somite 28). The concept of “vagal neural crest” was recently revisited (Isabel 

Espinosa-Medina et al., 2017) and it appeared that only NCC at the level of somites 1-2 deserve that 

denomination, because they are in register with the roots of the vagal nerve and migrate along the 

nerve itself, like precursors of the parasympathetic ganglia were previously shown to do ((I Espinosa-

Medina et al., 2014), while NCC facing somites 3-7 have no relation to the vagal nerve, participate in 

the formation of the superior cervical ganglion (the rostral-most ganglion of the paravertebral 

sympathetic chain) and continue their ventral migration pathway beyond the dorsal aorta to enter 

the foregut: they are better viewed as post-vagal (i.e. cervical) or “sympatho-enteric” crest. The vagal 

crest proper invades only the esophagus and oral stomach, while the cervical or sympatho-enteric 

crest invades the entire length of the digestive tube. 

 The process of ENS formation starts at E8.5 in mouse, when the neural crest cells delaminate 

from the neural tube, and invasion of the digestive tube starts at E9.5 (Anderson et al., 2006). These 

cells migrate along the tube caudally (Allan & Newgreen, 1980; Young et al., 2004) and this 

migration, while the gut itself is still growing, is thought to be fueled by proliferation (Landman et al., 

2007), at a speed which reaches 35µm/h (Young et al., 2004). At the level of the cecum, where the 

gut forms a loop, the mode of migration shifts from following the length of the gut to a trans-

mesenteric short-cut that bypasses the cecum, and cells directly start to colonize the hindgut – from 

cecum to the rectum (Nishiyama et al., 2012). At least to the cecum itself, the migration of the NCC is 

guided by a gradient of Glia Cell Line-Derived Neurotrophic Factor (GDNF) with a maximum of 

expression in the cecum (Natarajan et al., 2002; Young et al., 2001). Its expression starts as soon as 

E9.5 in the stomach and at E10.5 in the cecum before establishing a gradient between both regions. 

In addition, GDNF has a role in increasing the proliferation rate of NCC, as shown in vitro where 

GDNF can double the proliferation rate (Hearn et al., 1998). This factor also help to maintain cells in 
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an undifferentiated condition: in the absence of GDNF the pool of progenitors is depleted by 

precocious differentiation and as a consequence the hindgut is not properly colonized (Gianino et al., 

2003).  GDNF acts through its receptor GFRα and the co-receptor Ret, a tyrosine kinase (Robertson & 

Mason, 1997), expressed at the surface of enteric NCC (Enomoto et al., 1998; Pachnis et al., 1993), 

while the ligand GDNF is expressed in the mesenchyme of the gut (Trupp et al., 1995). Inactivation of 

GDNF, GFRα or Ret leads to massive depletion of enteric ganglia, in most or all the length of the gut 

(Uesaka et al., 2008; Enomoto et al., 1998; Moore et al., 1996).  

 Other signaling pathways involved in ENS formation include G-protein coupled receptors 

(GPCR), and among them the endothelin receptor B (EDNRB) with its ligand endothelin-3 (EDN3), 

revealed by the study of knockout mice (Baynash et al., 1994; Hosoda et al., 1994) :these two 

mutants show an aganglionosis with an upstream formation of a megacolon. An interaction between 

the EDNRB and Ret pathways lead to a more severe phenotype, at least in a mouse model (McCallion 

et al., 2003). The receptor EDNRB is expressed by the NCC (Nataf et al., 1996), and its ligand, EDN3, is 

expressed in the mesenchyme (Leibl et al., 1999). EDN3 has a spatiotemporal specific expression 

appropriate to guide the NCC to their intermediate target organs one after the other, firstly the skin, 

then in the branchial arches and finally in the digestive tract (Nataf et al., 1998). This signaling 

pathways is also involved in survival, proliferation, migration and differentiation (Bondurand et al., 

2018; Lahav et al., 1998; Wu et al., 1999).  

 Finally, a third signaling pathway has emerges as involved in the ENS development: the 

ErbB3/Neuregulin1 (Nrg1) pathway. Nrg1 belongs to the EGF-like signaling molecules. It was already 

known to be essential for the development of parasympathetic and sympathetic ganglia (Britsch et 

al., 1998; Dyachuk et al., 2014). The receptor ErbB3 is expressed by the NCC, while its ligand Nrg1 is 

expressed at the surface of the axons (Britsch et al., 2001; Perlin et al., 2011), as well has another 

source, likely to be the mesenchyme, which provide secreted isoforms of Nrg1 (Birchmeier, 2009; 

Birchmeier & Nave, 2008). Its absence leads to a gradient of atrophy along the ENS from to 

duodenum to the rectum with a loss from 75 to 50% (Isabel Espinosa-Medina et al., 2017b).  

The second major source of cells of the ENS is the sacral neural crest, delaminating at the 

level of somite 28 and below, mostly responsible for colonizing the hindgut (Burns & Douarin, 1998). 

These sacral NCC first form the pelvic ganglia (Serbedzija et al., 1991), and then a sub-population 

continue to migrate along the pelvic nerve to reach the rectum at E13.5 (Wang et al., 2011) and start 

a rostral migration through the hindgut where they encounter and mix with the caudally migrating 

cervical (formally vagal) neural crest cells. These sacral neural crest cells never go further than the 

umbilicus (Burns & Douarin, 1998), even if in the absence of the caudally migrating cervical 

population (Burns et al., 2000). With the redefinition of the pelvic ganglia as sympathetic (I. Espinosa-

Medina et al., 2016) (which means that there is no longer any reason to call the sacral crest 
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“parasympathetic”), the distinction of the “sympatho-enteric” neural crest (Isabel Espinosa-Medina 

et al., 2017) from the vagal, and the newly recognized contribution of trunk Schwann cell precursors 

to the ENS (Uesaka et al., 2015), it appears that from the cervical level to the sacral, the neural crest 

has a dual fate, sympathetic and enteric.  

 This whole process initially form the myenteric plexus of the ENS; later a portion of these 

cells start a second wave of migration, this time in the radial direction, to go deeper in the wall of the 

gut, toward the mucosa, and form the submucosal plexus (McKeown et al., 2001). Because of this 

delayed  process, the differentiation of the neurons of this plexus is shifted in time: whereas the first 

differentiated neurons are visible at E10 in the myenteric plexus, they appear only at E14 in the 

submucosal plexus (Pham et al., 1991). An intriguing evolutionary complication is that in the hindgut 

of the chick, the neurons from a sacral origin firstly form the submucosal plexus and then effectuate 

a radial migration to form the myenteric one (Burns & Douarin, 1998). In zebrafish the submucosal 

plexus is missing altogether (Holmberg et al., 2003).  

  

II. Regulation of neuron numbers in the ENS 
 

II.A. Embryonic proliferation and death 

 

The enteric neural crest probably represents one of the most proliferative cell populations 

during embryogenesis, since a small number of crest cells (albeit not precisely quantified to my 

knowledge) at vagal, cervical and sacral level gives rise to a number of neurons equivalent to that in 

the spinal cord (Furness et al., 2014). However, the exact extent and pattern of cell division during 

ENS formation is incompletely understood. 

Initial size of the pre-enteric population is essential for ENCC migration as demonstrated 

after partial ablation of the neural crest that leads to reduced speed of the wavefront (Young et al., 

2001) and distal agangliosis of the GI tract (Barlow et al., 2008; Burns et al., 2000; Druckenbrod & 

Epstein, 2005), which could be relevant to the common developmental defect observed in 

Hirschsprug disease (see below). An even more compelling demonstration that the number of pre-

enteric neural crest cells is essential to generate a pool big enough to colonize the whole gut was 

obtained by back transplanting one-somite length of neural crest in chicken embryos where the crest 

facing somites 3-6 had been removed. Unexpectedly, this operation restored colonization of the 

entire gut even in cases where the graft itself could not participate in the colonization per se (i.e. if it 

was taken at thoracic level), but presumably restored an adequate population pressure in migrating 

neural crest prior to its entrance in the gut (Barlow et al., 2008).  
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Conversely, if apoptosis is blocked early on, by electroporation of an inhibitor, thus 

presumably in pre-enteric crest, the mature ENS is hypertrophic (Wallace et al., 2009), with an 

increase in the number of ganglia rather than of their size, in the midgut – from duodenum to the 

caecum – and hindgut. Incidentally, this study revealed an unexpected level of apoptosis in the early 

migrating crest. 

 

The GDNF gradient also has a function in the regulation of neuronal numbers: it increases the 

proliferative capacities of cells, and in absence of GDNF the pool of precursors differentiate before 

reaching the caecum, the point of highest GDNF concentration in the gut (Gianino et al., 2003). The 

wavefront of migration is composed of progenitors that are dividing at the same time as migrating, 

but once a segment of the gut is colonized the proliferation occurs only in 4% of the cells, while the 

other cells are differentiating into neurons – expressing HuC/D – or even into mature neurons – 

expressing such specific neurotransmitter as Nitric Oxyde Synthase (NOS) (Young et al., 2005). 

 

While the highly proliferative ENCC wavefront migrates into unpopulated gut regions, less 

proliferative rearguard cells populate already colonized regions by migrating non-directionally 

(Theveneau & Mayor, 2011). The previous studies mostly focused on the colonization of the distal 

bowel, but the early migration from the neural tube to the foregut is still poorly understood. 

 

The first extensive study of the pattern of cell division in the ENS is very recent (Lasrado et 

al., 2017). It makes use of lineage analysis with the confetti reporter or the MADM complementation 

system. Recombination of these reporters were triggered at E12.5 to show the following: i) cells did 

not migrate extensively once they were behind the wave front; ii) they formed a mosaic of 

overlapping clones; iii) their degree of dispersion was proportional to the number of divisions and 

best explained by a model where neuronal progenitors intermingle with unrelated dividing cells of 

the mesenchyme; iv) cell fate decisions occurred at the last or penultimate division; v) formation of 

ganglia in the submucosal plexus was by descendants of myenteric precursors situated immediately 

radial to them; vi) Clonal analysis of Ret— cells showed that decrease in Ret signaling cell-

autonomously favors proliferation over neuronal differentiation (i.e. leads to larger clones containing 

fewer neurons and more glia).  

 A limitation of this study is that it was performed at a time when most of the gut is 

colonized, and a lot of proliferation has already occurred, and might thus explain the favored 

proliferation in absence of Ret. It would be interesting to repeat this analysis of clonal architecture of 

the ENS at earlier time points, to better understand the lineage of the ENS. However, image analysis 

of colored clones might be more challenging, if too many clones become intermingled. 
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II.B. Post-natal proliferation and death 

 

The development of the ENS continues during post-natal life, including neurogenesis and 

neuronal differentiation, so that the birth of the animal might be considered as a somewhat arbitrary 

time point during ENS development. This is a debated topic however, and rather confusing in its 

details. I use the occasion of this report to try and clarify the literature on the subject. I will 

distinguish evidence concerning i) the number of neurons at different post-natal ages, ii) cell division 

and iii) cell death.  

 

II.B.1. Evolution of the number of enteric neurons after birth 

 

Gabella (1971), referring to the papers by Altman & Das (1965) and collaborators which 

famously put an end the “no new neuron” dogma in the central nervous system, sought evidence for 

the same phenomenon in the ENS. The author counted the density of neurons in the myenteric 

plexus of the small intestine of rats (i.e. the number of neurons per mm2 of intestinal wall) in the 

newborn rat and the adult (6 months old) rat. After correction of this number by the enlargement of 

the gut wall during the same time window, an increase in neuronal numbers was estimated, 

from 420,000 to 1, 850,000, i.e. 4.4 fold. This would mean that around 75% of the enteric neurons 

found in the adult are born postnatally (during an unspecified time window between P0 and 6 

months). This spectacular level of neurogenesis seems to have been neither contradicted nor 

confirmed by later studies and, to the best of my knowledge, the paper has not been cited for this 

piece of evidence in several decades. 

 

In apparent contradiction Marese et al. (2007) found a stable number of neurons from 21 

days-old rats to 60 days-old rats, albeit redistributed on a larger surface. However, this study leaves 

unexplored a time-window from P0 to P21, which is when the massive increase reported by Gabella 

could conceivably have taken place. 

 

Liu et al. (2009) report an increase in neuronal density in the first 4 months after birth in wild 

type mice, by 20% (contrary to Gabella, who found that the surface of the gut increased more than 

the number of neurons, thus that there was a decrease in density). The total size of the intestine was 

not taken into account in that study and the Methods section is clear that the total number of 

neurons was not calculated. Thus, if the size of the gut wall increases between P0 and P120, which is 

16



 

likely, it is possible that the increase in total cell numbers after P0 is much larger than 20% increase 

in density. In line with this possibility, the authors also report direct detection of neurogenesis 

(discussed below). 

 

I could not find published evidence for the evolution of neuronal numbers during most of the 

adult life. Kulkarni et al. (2017) mention that the “numbers of enteric neurons in the healthy adult rat 

remain remarkably constant for most of adult life” with a reference to Gabella, which contains in fact 

only one sentence on that topic in the discussion: “the number of nerve cells seems only slightly 

reduced, if at all, in rats more than 1 year old”, not illustrated by any data or reference.  

 

On the other hand, a large literature has been devoted to enteric neuron loss in the aging 

animal by up to 50%. (Marese et al., 2007; Thrasivoulou et al., 2006) provide references for studies in 

the myenteric plexus of rats, mice, guinea pigs and humans, with evidence that cholinergic neurons 

are more affected than nitrergic ones. Thrasivoulou et al. (2006) show that caloric restriction, of the 

type that prolongs the life of rats by 40%, completely prevents this neuronal loss. 

 

II.B.2. Evidence for ongoing neurogenesis 

 

   Early postnatal stages and juveniles 

 

Gabella is probably the first to discuss this question, without providing original data, 

however. The author deduces a requirement for neurogenesis after birth from considering i) the 

need to generate new neurons in the young adult (i.e. to account for the massive increase in 

neuronal numbers during the first 6 months of life he reported, see above), ii) electron microscopy 

evidence of neuronal death (from the authors, but unpublished), despite iii) stability of the number 

of neurons in adults (with no data or no reference on the subject, see above). Speculations on the 

mechanism of neurogenesis are accompanied by ancient references (back to the 1920’s and 1930’s), 

with the underlying idea that a persisting pool of progenitors would explain the increase in neuronal 

numbers in juveniles and their stability in adults, while its exhaustion would explain neuronal loss in 

aged animals. 

 

Pham et al. (1991), might be the first to report direct evidence for significant levels of 

neurogenesis until P30, mostly in the submucosal plexus, by administration of tritiated thymidine 

during 24 hours, at ages ranging from E8 to P21, and detection of the label at P30. Only the cells that 

are about to withdraw from the cell cycle at the time of labeling can retain the label by this method. 
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Detection of incorporated H3 was combined with that of the neurotransmitter phenotype: 

serotonergic, cholinergic, and peptidergic (including Vip, Enk, Npy and Cgrp). Different dynamics of 

cell birth (i.e. withdrawal from the cell cycle) were detected for different phenotypes. Cholinergic 

and serotonergic neurons were all born before birth, as well as Vip, Enk and Npy neurons of the 

myenteric plexus. In contrast, a large fraction of Vip, Npy and Cgrp neurons of the submucosal plexus 

were born after birth. (These data were interpreted as arguing for an influence of early 

differentiating neurons on later ones, although they do not rule out the existence of separate 

lineages each with its intrinsic dynamic). 

 

Two decades later, the same lab, (H. Wang et al., 2010), could detect BrdU incorporation (i.e. 

neuronal birth) a few hours after treatment, at stages ranging from P0 to P8, in different part of the 

digestive tube, accounting for a proportion of total PGP9.5+ cells (i.e. neurons) ranging from 16% in 

submucosal plexus of the colon at P8 to 2% for the myenteric plexus of the small intestine at P8.  

 

By a completely different approach, Laranjeira et al. (2011) evaluated the number of neurons 

in an adult mouse that were born from Sox10+ progenitors present at several embryonic and 

postnatal stages, using lineage tracing with a tamoxifen inducible Cre transgene driven by the Sox10 

promoter (Sox10::CreERT2). The main finding was that, although large amounts of neurons in the adult 

ENS are born from progenitors present at E8.5 or E12.5, very few ((2.8%) are born from Sox10-

positive progenitors present at P0, even fewer (1.6%) from progenitors present at P30 (those being 

presumably included in the former), and none from progenitors present at P84 (6 months). So that, 

for all practical purposes, no neurogenesis from Sox10+ cells present at post-natal stages would 

contribute to make-up the adult myenteric plexus. These findings are hard to reconcile with the 

massive increase in neuronal numbers proposed by Gabella, or even the increase in cell density 

described in Liu et al. (2009), and are even substantially lower than those reported by Wang et al. 

(2010), but the different experimental designs prevent direct confrontation of the data. Possible 

caveats of the Laranjeira study are: i) the possibility that neurons generated postnatally would 

undergo a massive turnover, while those born in the embryo would last for the life of the animal, but 

this is unlikely. ii) the possibility that postnatal progenitors do not express Sox10 (see below). iii) The 

possibility that the efficiency of recombination of the reporter transgene dramatically goes down 

with age (see below). 

 

Finally, Uesaka et al. (2015), taking for proven the existence of a postnatal neurogenesis, 

with references to Pham et al. (1991), Wang et al. (2010) and Laranjeira et al. (2011) (despite the low 

level reported by the latter, see above), explore a possible mechanism for this neurogenesis. The 
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authors propose that one of its sources are Schwann Cell Precusrors (SCPs) of the extrinsic nerves of 

the gut. By lineage tracing SCPs with a Cre driven by the immature SCP marker Desert Hedgehog 

(Dhh) and a reporter gene for enteric neurons (a conditional knock-in of GFP in the GFRα locus), they 

show that about 5% of the submucosal ENS of the small intestine, and 20% of both myenteric and 

submucosal plexi of the colon are made of descendant of SCPs. Conversely, the destruction of these 

cells by a conditional mutation of Ret depletes the distal colon by about 30% of its neurons. 

Importantly for this discussion, SCP-derived neuronal precursors start acquiring neuronal features 

(expression of tyrosine kinase Ret and the neuronal marker PGP9.5) at P1 and all of them are Ret+ 

and PGP9.5+ at P21, so that neuronal differentiation from SCPs is post-natal. However, this 

observation cannot ascertain the birth date of these cells, so does not quite answer the question of 

postnatal neurogenesis per se, only of neuronal differentiation. 

 

Adult animals 

 

There is an abundant literature, spanning from 1913 to 1993, rather inconclusive in the 

aggregate, that documents the state of the myenteric plexus upstream of an experimentally induced 

stenosis, or after denervation by means of benzalkonium chloride (BAC) (reviewed in (Geuna et al., 

2002)). Some authors have described addition of new neurons, others (like (Gabella & Trigg, 1984)) 

have denied it and found only an increase in the size of neurons, still others described DNA synthesis 

attributed to induction of polyploïdy but not followed by cell division, others yet have proposed the 

addition of new neurons without cell division, thus presumably by late induction of differentiation of 

post-mitotic precursors, in particular in the vicinity of the mesenteric nerves. 

 

This line of research has been reactivated more recently, probably inspired by the revival of 

the question of postnatal neurogenesis in the central nervous system initiated by Altman et al. (see 

above) (although debate is ongoing on that subject) and also fueled by the hope that one could 

isolate stem cells from the ENS of adult animals that were earlier shown to generate neurons in vitro 

(Burns et al., 2004; Joseph et al., 2011; M. Kuwahara et al., 2004; Mosher et al., 2007; Takaki et al., 

2006), and use them for cell replacement therapy of Hirschprung disease. 

 

Liu et al. (2009) reported that they call “the first demonstration of adult enteric 

neurogenesis”, in wildtype animals treated with agonists of the 5-HT4 receptor. BrdU was taken up 

by extra-ganglionic cells which, over the course of several weeks, integrated the myenteric ganglia.  

The subject was then taken up by Joseph et al. (2011), whose study examines two topics: the 

in vivo source of the cells that are well-known, in vitro, to give rise to self-renewing enteric neural 
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crest stem cells (eNCSCs) (Kruger et al., 2002; Mosher et al., 2007); and the assessment of their 

actual progenitor role in vivo. The latter point is explored by several weeks-long pulses of BrdU, 

followed by chases ranging from 2 weeks to 6 months, at ages ranging from P30 to P120, in a broad 

— indeed  extraordinary — variety of normal and pathological conditions: normal young adults, old 

adults, pregnant rats, hyperglycemic rats, rats undergoing dietary changes, mice undergoing 

voluntary exercise, mice with gut inflammation due to bacterial infection or chemical treatment, 

rodents with focal ablation of the myenteric plexus due to topical BAC treatment, Gfap-tk mice after 

ablation of enteric glia, and rats with osmotic minipumps that released growth factors into their 

peritoneum. The presence of labeled cells — that is, which were born during or shortly after the 

BrdU pulse — was assessed at various ages afterwards. Even though the exhaustiveness of this study 

was clearly driven by the hope of finding adult enteric neurogenesis, no BrdU+ cell was ever detected 

except in one animal during an injury scheme, in a non-reproducible fashion. A caveat of this 

experiment is that if newly born cells have very short life time and are constantly replaced they 

would not be detected weeks after their birth (see below).  

 

Joseph et al. (2011) also addressed the old idea that neurogenesis could occur by neuronal 

differentiation of enteric glia, without cell division (i.e. impossible to detect by BrdU incorporation). 

For this, they employed a lineage tracing scheme with a Cre driven by the promoter of Glial Fibrillary 

Acid Protein (GFAP) and a Cre-dependent reporter gene. GFAP was chosen because the vast majority 

of enteric glia is GFAP-positive and because in vitro neurogenesis by isolated ENS cells occurs from 

GFAP+ cells. A very limited proportion of YFP+ neurons were found that corresponded to neuronal 

differentiation from GFAP+ cells soon after birth, but no further additions of YFP+ neurons occurred 

later. The same experiment with a Tamoxifen-inducible GFAP::Cre (hGFAP-creERT2) during adult life, 

with or without BAC induced injury, showed no detectable recombination in neurons. 

 

The cautious conclusion of the article is that enteric glia are multipotent in culture but 

“primarily” form glia in the adult gut — in fact almost exclusively. 

 

In line with this result, we already saw that Laranjeira et al. (2011) could not find any neuron 

born from Sox10+ progenitors at P84, suggesting that none is born later either. A caveat though, is 

that recombination efficiency could go down with age, and this is exactly what Joseph et al. (2011) 

report with their hGFAP-CreERT2, with a mere 5% recombination efficiency in glia of 4 to 8 months of 

mice. Concerning neurogenesis in the adult in response to injury, Lanrajeira et al. (2011), unlike 

Joseph et al (2011), find neurogenesis from glia in response to injury: up to 9% of neurons in enteric 

ganglia bordering a BAC-induced lesion of the enteric nervous system are derived from Sox10+ glia 
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months after the injury. Joseph et al. (2011) resolve their discrepancy with Laranjeira et al. (2011) 

(published back to back) by hypothesizing that there are Sox10+ cells, either too rare to be identified 

with hGFAP-CreERT2 or which altogether do not express GFAP, that would differentiate without cell 

division during an injury scheme. 

 

This line of research recently took a striking and unexpected turn with Kulkarni et al. (2017) 

(cited 50 times to this day) who frontally contradicts the two previous studies. The paper first tries to 

establish that there is a great amount of cell death in the ENS, which would create a paradox with the 

stability of neuron numbers throughout life. The authors then proceed to show that cells not only 

disappear but are replaced at a high rate, which would solve the paradox. This is achieved, like in 

Joseph et al. (2011), by lineage tracing in adult animals with a tamoxifen inducible Cre, this time a 

Nos1::CreERT2 that targets nitrergic neurons. Tamoxifen was administered for a week and labeled cells 

were counted either immediately or 7 days after treatment. Over these 7 days, the authors find a 

striking 31% decrease in the number of double tdT+/Nos1+ cells (thus already differentiated at the 

time of the treatment), and a concomitant appearance of tdT-/Nos1+ cells, (thus born or 

differentiated after the treatment). An extrapolation would be that after 3 to 4 weeks most of the 

nitrergic cells present during the tamoxifen treatment should have disappeared. However, no time 

course is documented.  

 

Since extraordinary claims require an extraordinary level of evidence, I shall review the 

evidence in more detail. The statistics of cell renewal are obtained by counting neurons per enteric 

ganglion: 6 tdT+/Nos1+ double positive cells on average per myenteric ganglion on day 0, versus 4 

cells on day 7, with the weakest p-value commonly accepted for “significance”, p<0.05. Elsewhere in 

the paper the average size of ganglia is measured at 20.52 cells ±1.58. In my experience, the size of 

ganglia, which moreover are not always neatly separated from each other, is much more variable. At 

any rate, more convincing statistic could have been to count, on several hundred cells, the ratio of 

tdT+/Nos1+ double positive cells (i.e. recombined Nos1+ cells that are still present) to all Nos1+ cells (= 

the latter + newly generated ones), which would directly measure the turnover, with a better chance 

of being statistically significant. One can also note that the images provided bear little relationship to 

the numbers in the text or the graph: day zero is illustrated by a field in which 7 Nos1+ cells are 

visible (all of them double positive for tdT), and day 7 by a field where only 3 Nos1+ cells are visible 

(1 double positive, and two single Nos1+), as if the vast majority of tdT+ cells had already 

disappeared and were replaced. The authors propose to reconcile their data with the negative 

finding of Laranjeira et al. (2011), by presenting evidence that the adult enteric neural stem cell is not 

Sox10+ (thus would not be traced by a Sox10::Cre), but Nestin+. 
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In the second part of the paper, another tracing scheme is used whereby two base analogues 

are injected in succession, IdU for a week followed by CIdU for a week: 88% neurons retained one of 

the other label, i.e., were born during the two weeks span of IdU and CIdU injections, the vast 

majority of which being double labeled (i.e. born from progenitors that underwent one division 

during the IdU treatment and one more during the CIdU treatment). A striking aspect of the data is 

that if 18% of neurons are single labeled with IdU (i.e. were born from a neurogenic division that 

occurred during the first week of labeling), there should logically also be around 20% of neurons 

labeled with CIdU, (i.e. born from a division that occurred during the second week of labeling), some 

of them being double labeled, if their progenitor divided twice. However, the authors find 70% of 

single CIdU+ cells instead. One explanation could be that many IdU-labeled cells have already died at 

the time of analysis, i.e. a week after their birth. But that death would have to be higher than the 

31% death in one week reported in Nos1::CreERT2 animals. Another way of analyzing these data is to 

say that if the number of neurons remains constant, and if 88% were born in the two weeks before 

counting (as shown by their incorporation of IdU and/or CIdU), 88% have died during the same time. 

Such an extremely high rate of turnover, i.e. of cell death, would make neurogenesis inherently 

difficult to detect by the previously used techniques. However, many studies report the detection, 

even in the adult, of large amounts of neurons labeled at various embryonic stages, using various 

methods, including incorporation of base analogs. This detection seems impossible to reconcile with 

the permanent renewal of all neurons on the scale of a few weeks proposed by Kulkarni et al., and is 

not discussed in the paper. One can also note that there is no example remotely approaching this 

level of cell replacement in any other part of the nervous system. 

 

The above studies are difficult to reconcile with each other, even though the different 

experimental schemes prevent any single one from strictly contradicting the others.  
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3. NEURONAL DIVERSITY IN THE ENS 
  

I. Introduction 

 

The composition of the enteric nervous system in neuronal types has been studied, at the 

morphological level, since the XIXth century. In the XXth century, one of the main animal models for 

this study has been the guinea pig. Large mammals, like pig, have also been studied, and found to 

differ extensively from small mammals, both at gross neuroanatomical levels (for example with extra 

subdivisions of the submucosal plexus) and in term of cell types (see review by (Brookes, 2001)), 

from which it was concluded that the guinea pig does not necessarily model other species, including 

humans, whose diseases or malfunctions of the ENS motivate much of the field of enteric 

neuroscience. Unfortunately, mouse, which might not be a general model either, but at least 

provides a wealth of genetic tools for functional analysis of enteric circuits, has only slowly and 

recently emerged as a model animal in the field. This entails that even the most basic descriptive 

aspects of the enteric nervous system are sketchy in mouse. Finally, the topic is further complicated 

by the variation of cell types, and of their proportions, along the gut, from esophagus to the rectum 

(Mongardi Fantaguzzi et al., 2009; Qu et al., 2008), combined with the fact that most studies focus on 

a specific segment of the digestive tract. 

 

II. Criteria for classification 

 
Historically, the first criterion for classifying neurons has been the morphology of their cell 

bodies (according the original work by Dogiel in the XIXth century (Dogiel, 1895a, 1895b, 1896, 

1899), which was later refined (Brehmer et al., 1999). The number of morphologically distinct neuron 

types ranges from 3 in mouse to 6 in pigs, not including some unclassified neurons (Brehmer et al., 

1999). Figure 1 shows the classification proposed by Timmermans et al. (1997) for the guinea pig 

(modified from (Furness et al., 2009)):  
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Figure 1: Morphological classification of enteric neurons 

on the basis of their shape. Drawings from whole mount 

preparations in guinea-pig small intestine. (a–c): multi 

(short, lamellar) dendritic uniaxonal type I neurons; 

(d,e): adendritic pseudouni- or multiaxonal type II 

neurons; (f): multi(long)dendritic uniaxonal type III 

neurons; (g): filamentous neuron. 

 

 

This classification, although classical and still commonly referred to, is difficult to use in 

conventional histological analyses of the ENS since, most often, it implies the filling of individual 

neurons with biocytin and other dyes. Another limit to its use is that different functional classes of 

neurons can have the same morphology. 

 

 The second major criterion has progressively become the neurotransmitter phenotype, 

which can be inferred from the expression of biosynthetic enzymes or the presence of 

neurotransmitters: Choline acetyl transferase (ChAT) for cholinergic neurons, GABA for Gabaergic 

neurons, 5-HT for serotonergic neurons, Nitric oxide synthase (NOS) for nitrergic neurons. In 

addition, enteric neurons, collectively, synthesize an impressive list of neuropeptides, which include 

(in alphabetical order): a-neoendorphin (a-NEOEND), calcitonin gene-related peptide (CGRP), 

cholecystokinin (CCK), dynorphin (DYN), enkephalin (ENK), galanin (GAL), gastrin-releasing peptide 

(GRP), neuromedin U (NMU), neuropeptide Y (NPY), pituitary adenylate cyclase activating peptide 

(PACAP), peptide histidine isoleucine (PHI), somatostatin (SOM), substance P (SP) and vasoactive 

intestinal polypeptide (VIP).  

 Finally, to this list of markers, one can add non-ubiquitous neural molecules such as medium 

molecular weight neurofilament (NF-M), or the calcium binding peptides Calbindin and Calretinin 

(also known as Calbindin2).  

 Most of these markers are expressed in complex combinations and few of them (or even 

combinations of two of them) allow for the unambiguous assignment of a neuron to a type, because 

they are shared by different types.  

 The third major criterion for classifying enteric neurons is electrophysiological, in two types: 

“S” (for synaptic”) and “AH” (for “After hyperpolarizing”). Obviously this criterion is never used in 

developmental studies. 

 It is only by combining molecular markers with the criteria of the plexus to which the neuron 

belongs (myenteric or submucosal) and the projections of its neurites (to different targets — 
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muscles, glands, or mucosa — and in different directions — rostral, caudal, etc…), that the type of a 

neuron can be uniquely identified. Combined with the fact that, as is generally the case in the 

peripheral nervous system, neuronal types do not occupy stereotypic positions, this situation makes 

it difficult to recognize neuron types by conventional histological methods.  

 Like in the central nervous system, it is likely that different neuronal types express distinct 

transcription factor signatures, at least transiently during development, but this line of study has only 

begun and lags far behind our knowledge in the central nervous system or in dorsal root ganglia, 

where transcription factors are among the best defining criteria for neuron types. Some indications 

of transcriptional codes can be found in Memic et al. (2018): for example Meis2, FoxD1, EBF1 and 

Pbx3 are co-expressed with CGRP and Th, thus presumably mark intrinsic primary afferents, and 

more recently in Morarach et al. (2020) (see below).  

 Most classes of neurons have been attributed functions, based on a variety of experimental 

evidence, including patterns of projections and physiological or pharmacological data (I will not 

review the latter). 

 

 III. Types of enteric neurons defined by classical studies 

 

 No complete code has yet been established in human (Anetsberger et al., 2018). I will restrict 

this review to rodents: guinea pig (the best studied model by far), and whatever is known about 

mouse (the model which is slowly becoming current, and on which I worked). The ENS is classically 

thought to be composed of 14 subtypes of neurons in mouse (J. B Furness, 2000) (but see later the 

recent single-cell RNA-Seq effort by Morarach et al. (2020)) and up to 18 in guinea pig (Brookes, 

2001). I will treat separately the two anatomically distinguishable divisions of the ENS: the myenteric 

plexus and the submucosal plexus.  

 

 III.A. Myenteric plexus 

 

III.A.1. Motor neurons 

 

 The ENS being in charge of the constant peristaltic movement of the digestive tract, a 

prominent class of neurons is predictably represented by motor neurons to the smooth muscle of the 

digestive tract. In small mammals, these motor neurons are located exclusively in the myenteric 

plexus and project either to the externally situated longitudinal muscles or to the internally situated 

circular muscles. Some motor neurons are excitatory, some are inhibitory, collectively ensuring the 
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propulsion of the alimentary bolus by upstream contraction and downstream relaxation. The main 

neurotransmitters for excitatory motor neurons are on one hand, acetylcholine and on the other 

hand, peptides of the Tachykinin family (mainly Subtance P and Neurokinin A, often collectively 

referred to as “tachykinins”, TK, or sometimes as products of the Tac1 gene) (Costa et al., 1982, 

1985). The main neurotransmitters for the inhibitory motoneurons are Nitric Oxid (NO) and vaso-

intestinal peptide (VIP). However, it is of note that animals in which the synthesis of NO is blocked by 

the knockout of its biosynthetic enzyme nitric-oxid synthase (Nos) have few motility problems apart 

from a slowing down of gastric emptying, due to piloric stenosis (Mashimo et al., 1996). Likewise for 

VIP, its role is verified by Vip knockouts, which have an impaired intestinal transit, although the effect 

(30%) is rather subtle and compatible with life (Lelievre et al., 2007). It could be that one 

neurotransmitter compensates for the other, but double knockouts have apparently not been 

analyzed. 

 Minor candidates as co-transmitters are ATP (Kenton M. Sanders, 2016), and peptides such 

as PACAP and PHI, encephalin (ENK) — at least in the guinea pig (Furness, Costa, & Miller, 1983)— 

and Neuropeptide Y (NPY) in the inhibitory motor neurons of the circular muscle (Holzer et al., 1987). 

Finally, Gamma-Aminobutyric Acid (GABA) is also found in several types of inhibitory neurons and, 

more surprisingly, excitatory motor neurons (Greg Baetge & Gershon, 1986; Jessen, 1981; Krantis, 

2000) but its function is unclear.  

Some neurons for the circular (internal) muscle project at long distance, others at short 

distance, and a few locally, these different projection patterns correlating with slightly different 

neurochemical or other genetic codes. Thus, by combining all these criteria, one can distinguish 5 

types of motor neurons for the circular muscle and 2 for the longitudinal one. The situation for motor 

neurons of the circular muscle was clarified by Brookes et al. (1991), through the use of retrograde 

DiI labeling from the circular muscle, combined with immunofluorescence for various markers, and is 

summarized by the authors as follows: 
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Figure 2: Schematic showing that motoneurons of the 5 types coexist in 

the same ganglia. This arrangement can explain, provided that the 

neurons of the same ganglion are activated together (for example by 

being targeted by the terminals of the same interneurons), that a local 

mechanical stimulus triggers relaxation downstream (anally) and 

contraction upstream (orally), thereby mediating a typical peristaltic 

movement. 

 

Motoneurons represent 60% of the myenteric plexus (respectively 34% of excitatory motor 

neurons and 26% of inhibitory motor neurons). Because of the nature of their target, the projections 

of motor neurons are relatively easy to diagnose by histological techniques, as shown in Figure 3: 
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Figure 3: Various visualization of motoneurons: (A) Drawing of motor neurons made 

by Cajal (1895). (B) Drawing from Furness et al. (1991). (C) Appearance of a single 

circular muscle motor neuron filled with a marker dye via an intracellular 

microelectrode. Reproduced from Nurgali et al. (2004). 

 

The inhibitor neurons to the circular muscle can be observed by immunohistology against 

NOS or by the NADPH diaphorase reaction which reveals this enzyme with a chromogenic substrate, 

and display the following typical pattern on the gut wall:s 

 

D 

 

 

 

 

Figure 4: Projections of NoS+ neurons on flatmounts of the proximal, and distal small 

intestine and colon (from left ot right) by the NADPH-diaphorase reaction, from (Viader et 

al., 2011) 

 

On the other hand, the motoneurons to the longitudinal muscle layer project in the tertiary 

plexus under this muscle layer: 

 

 

 

 

 

Figure 5: Drawing of the projection of a motoneuron 

for the longitudinal muscle. A single motor neuron 

was filled with a marker dye through an electrode 

(Furness, 2006). Note that the projections of the 

neuron do not follow the main strands of the plexus, 

but form the so-called “tertiary plexus”. 
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III.A.2. Sensory (afferent) neurons 

  

After motor neurons, the second largest type of neurons are sensory neurons, called IPANs 

for Intrinsic Primary Afferent Neurons. The terminology “afferent” is preferred over “sensory” 

because these neurons do not convey conscious information (i.e. mostly pain, which is carried by 

spinal sensory neurons located in the dorsal root ganglia); and the term “intrinsic” distinguishes them 

from both, extrinsic afferents (which have cell bodies in the nodose ganglion and transmit visceral 

information from the gut to the central nervous system, more precisely, the nucleus of the solitary 

tract) (Langley & Magnus, 1905; Furness et al., 1995), and intestinofugal afferents (sometimes 

abbreviated as IFANS), which have cell bodies inside the ENS but project outside the gut, to the 

prevertebral sympathetic chain (see below). IPANs sense the composition of the alimentary bolus in 

the lumen, and mechanical deformation of the villi or intestinal wall, and participate in local, 

intestino-intestinal reflexes. They have been identified by a combination of projection patterns and 

electrophysiological recordings. They represent 26% of neurons of the myenteric plexus of the small 

intestine in both guinea pig (Furness, 2000) and mouse (Qu et al., 2008). They are the only neurons 

of the ENS which are unambiguously characterized by a morphology, that of Dogiel type II neurons 

(see Figure 1): an oblong soma with several axons, usually including a principal one which ramifies 

outside the ganglion into long and thin branches, and smaller ones (Grider, 1994; Nurgali et al., 

2004). The neurotransmitter(s), which allows them to signal to interneurons or other IPANs, are not 

entirely elucidated. In the guinea pig, IPANs contain peptides of the tachykinin family (TK), and anti-

tachykinin drugs blocks EPSPs in IPANs, presumably evoked from other IPANs. However, in mice 

IPANs do not express TK. In both guinea pigs and mouse, IPANs express ChAT but there is no 

published evidence that they are cholinergic. CGRP appears as another marker in mouse, and 

calbindin is a marker in guinea pig, but less constant in mouse. In conclusion, in mouse, histochemical 

identification of IPANs in the myenteric plexus mainly relies on CGRP immunoreactivity of cell bodies 

after colchicine treatment (without this treatment only fibers are detected, many of which come 

from extrinsic neurons). 

 

  III.A.3. Interneurons 

   

The third class of neurons comprises interneurons (representing 12% of myenteric neurons in 

mouse), which relay information between IPANs and motor neurons, and also form chains of 

interconnected neurons (as determined in guinea pigs). They fall into two broad classes depending 

on the direction of their projection: descending (i.e. projecting anally) (8%) and ascending (i.e. 
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projecting orally) (4%). In both guinea pigs and mouse there are three types of descending 

interneurons and one type of ascending interneurons, all expressing ChAT, together with either NOS, 

5-HT or somatostatin (for descending interneurons) and calretinin (for ascending ones).  

 

  III.A.4. Intestinofugal neurons 

  

A small fraction of neurons have their cell bodies in the myenteric plexus and project outside 

of the ENS to synapse on prevertebral sympathetic ganglia (mainly the celiac ganglion) in order to 

inhibit secretory and motor neurons in another part of the gut or in the stomach, forming 

intersegmental reflexes (Furness, 2003). These intestinofugal neurons (IFANs) express ChAT and VIP 

and their proportion was not fully established but they are thought to be few. Finally, it was 

described that extremely rare neurons of the myenteric plexus project directly to the sacral spinal 

cord through the pelvic nerve (WI Neuhuber et al., 1993) or to the dorsal vagal complex through the 

vagal nerve (Holst et al., 1997). 

 

 III.B. Submucosal plexus 

 

Concerning the submucosal plexus, much more is known about guinea pig than about mouse. 

Many neurons in the submucosal plexus project to the intestinal villi, including its blood vessels and 

secretory epithelium as schematized below. 

 

 

 

 

 

Figure 6: Schematic of projections of submucosal ganglia to the 

intestinal villi. Taken from (Furness, 2006) 
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  III.B.1. Secretomotor/Vasodilator neurons 

  

 The dominant functional class (around 80% of the neurons) of submucosal neurons in both 

guinea pigs and mouse are secretomotor neurons and vasodilator neurons, which are sometimes the 

same neurons. Their presence was first evidenced by the demonstration in organotypic preparations 

that nerve stimulation activates a chloride current in the mucosa, followed by secretion of water and 

sodium, a phenomenon which is blocked by tetrodoxin (thus dependent on action potentials). 

Secretomotor/Vasolidator neurons were classified by Furness into three types:  

 

VIP+ secremotor neurons 

 

They are up 50% of the submucosal plexus (Kuwahara et al., 2019; Mourad et al., 2003; 

Furness, 2000). The demonstration of abundant VIP+ cell bodies and fibers in the gut (and in 

particular in the mucosa) of guinea pig was made by (Larsson et al., 1976), and extended to many 

species by (Keast et al., 1985).   

 

 

 

 

 

 

 

 

Figure 7: Two visualizations of VIP+ neurites in the intestinal villi, by immunofluorescence in 

cat (Larsson et al., 1976) (left) and in mouse in  a VIP::Cre;tdTmoato transgenic mouse 

(Talbot et al., 2020) (right). 

 

 VIP innervation of the villi is preserved after sympathetic denervation, which proves that it 

comes from the submucosal plexus and not from the sympathetic chain (in which many neurons also 

synthesize VIP). The physiological “secretomotor” role of VIP neurons is suggested, or made likely, by 

the demonstration that VIP is a potent stimulant of secretion in the intestine. 
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Cholinergic secretomotor neurons  

 

They representing 30% of the submucosal plexus and their presence was first suggested by 

an additional cholinergic component to the transmission to the mucosa. This class can be in turn 

subdivided into two types: 

 

  Calretinin+/ChAT secretomotor which are mentioned in (Furness, 2006) without any 

reference as to their innervation pattern. I did not find any bibliographic reference on these neurons. 

 

  NPY+/ChAT secretomotor which are non-vasodilator neurons and would represent a 

second cholinergic component. (Furness, Costa, Emson, et al., 1983) described NPY+ cell bodies in 

the submucosal ganglia (as well as in the myenteric ganglia), and NPY+ fibers inside the ganglia, along 

the blood vessels but also in the core of the villi, this morphological aspect being typical of 

“secretomotor” neurons (see VIP+ neurons above). The latter are said to be preserved after extrinsic 

denervation (sympathetic and vagal), in contrast to the perivascular ones, which disappear. The 

original figure actually shows only that NPY+ cell bodies in the submucosal ganglia are preserved 

after extrinsic denervation. Thus, strictly speaking, the claim that NPY+ cells of the submucosal plexus 

innervate the mucosa seems unsubstantiated (but likely). 

  

 In mouse, several markers for neurotransmitter phenotypes expressed in guinea pig 

submucosal plexus are also expressed, but in different combinations. For example, VIP is co-

expressed with NPY and Calretinin, whereas it is mutually exclusive with them in guinea pig. In 

practice, it is next to impossible to relate the submucosal neuronal types of mouse with those of 

guinea pig, which is probably the reason why the Furness lab does not provide a table of 

correspondence (Mongardi Fantaguzzi et al., 2009), as they do for the myenteric plexus (Qu et al., 

2008). By extrapolation from studies in guinea pig, one can only speculate that most neurons of the 

submucosal plexus of mouse are of the secretomotor/vasodilator type, and fall into 3 classes: VIP+ 

secretomotor (30%), VIP+ vasomotor (20%) (the two being distinguished by the fact that the latter 

but not the former co-expresses TH) (in total 50% VIP neurons), and cholinergic (ChAT+)/CGRP+ 

secretomotor (30%).  

 

  III.B.2. IPANs 

 

IPANs make up 11% of the guinea pig submucosal plexus, but cannot be detected in mice on 

the basis of Dogiel morphology type II or immunoreactivity for NF-M.  
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III.B.3. Other types 

 

Two other types of neurons are without identity or function: ChAT+/CGRP— (10%), and 

ChAT—/VIP— (8%) whose neurotransmitter identity (let alone function) is unknown. 

 

III.C. Conclusion on the detection of enteric neuronal types 

 

 Since markers for neurotransmitter phenotype (enzymes, neurotansmitters and 

neuropeptides) are to this day the main tools to identify neuronal types in the ENS, it can be useful to 

keep in mind the full complement of neuronal types that are detected by a given marker. I will 

represent this summary as a table to clarify and simplify as possible the current knowledge on this 

field:  

 

 

III.D. Glia 

 

 Enteric neurons are, like in the central nervous system, surrounded by several types of glia, 

four of them being described so far. Type-I glia cells display an astrocyte-like morphology and are 

present within the enteric ganglia of both plexi; Type-II glia has a fibrous morphology and are present 

along interganglionic fibers in each plexus; Type-III have multiple branches and are detected in the 

mucosa of the gut; Type-IV are bipolar and line the enteric fibers in the muscles layers (Gulbransen & 
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Sharkey, 2012). The four types have similar molecular signature, but no marker labels all of them, 

and no marker is specific to any of them (Boesmans et al., 2015; Grundmann et al., 2019).  

 

IV. Types of enteric neurons newly defined by single cell transcriptomics 

 

Recently, three studies from the same laboratory have reexamined the diversity of enteric 

neurons from scratch, by the method of single cell transcriptomics. A first glimpse of enteric neuron 

types was provided in the context of abroad assessment of the “molecular architecture of the mouse 

nervous system” (Zeisel et al., 2018), which found 9 neuron types: 

 

 

 

 

 

 

 

Figure 8: Marker gene expression in 9 enteric 

neuronal subtypes as determined by single cell 

transcriptomic. Adapted from supplementary Figure 

4 of Zeisel et al. (2018) 

 

 

 

 

 

 

More recently Morarach et al. (2020) analyzed 9141 cells sorted from juvenile (P21) mouse 

intestines by expression of reporter triggered by a neuron-specific Cre, reduced to 3468 neurons 

after several exclusion and quality check, which resolved themselves in 12 clusters numbered ENC1-

ENC12. The authors attempted at relating this cell taxonomy to classical ones by using classical 

markers for broad categories mostly based on a combination of data from (Qu et al., 2008; Sang et 

al., 1997; Sang & Young, 1996): 

 

IPANS marked by Calca, Calcb, ChAT, Slc18a3, Nefm, Calb1, Calb2 

Excitatory motoneurons marked by ChAT , Slc18a3, Calb2 (Calr), Tac1 
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Inhibitory motoneurons marked by Nos1, Gal, VIP, Npy 

Interneuron 1 marked by ChAT, Slc18a3, Nos1,VIP 

Interneuron 2 marked by ChAT, Slc18a3, Calb2, Sst 

Interneuron 3 marked by ChAT, Slc18a3, Ddc, Slc6a4 

 

In that way, a tentative table of correspondence between the single cell Seq data and 

classical categories was proposed (no partition was proposed between the myenteric and submucous 

plexi): 

 

 

 

 

 

Figure 9: Types of enteric neurons, from Figure 1 of Morarach et al. (2020) 

 

This classification cannot be matched entirely with that of (Zeisel et al., 2018) and few “top 

genes” allow for cross-correlation between the two studies, possibly because of the very different 

context in which the bioinformatic analysis was made (in the former study a cell purification 

technique applied to the entire embryo, that co-selected neurons and glia versus a pure population 

of enteric neurons in the more recent study). Some type-specific markers were discovered in the 

previous study such as Nmu (for former ENT9 which thus corresponds to current ENC6), Ucn3 (for 

former ENT8 which thus corresponds to current ENC7), but, for example, CCK did not appear as a 

specific marker in the first study, possibly because it also marks many neurons of the central nervous 

system. Salient features of these new data are: 

 

IPANs (ENC6, ENC7, ENC12)  

 

They were identified by their expression of the classical markers (CGRP, Calb, and NFm) 

which collectively defined the global category “IPAN” in previous studies, although the new study 

reveals them to be differentially expressed among the 3 subcategories. Another argument, however, 

to label ENC6/7/12 as putative IPANS is that their projections are either local or to the mucosa but 

never to the muscle. On the other hand, the old notion that IPANS are all Dogiel Type II, has to be 

abandoned according to the new study: by labeling the cytoplasm with conditional transgenic or viral 

reporters driven by Nmu::Cre or CCK::cre, or with antibodies, it is revealed that putative IPANS have a 

variety of morphologies, included, but not limited to Dogiel type II (displayed only by ENC6). If this 
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identification is confirmed, IPANS, which were poorly resolved until now, now fall into 3 (possibly 4) 

classes, each with a single, or even two specific markers, respectively Nmu, Ucn3/CCK, and Nxph2.  

 

Motoneurons 

 

5 types are discovered: 3 (possibly 4) excitatory, and 2 inhibitory. It is not resolved how each 

related to the 4 excitatory and 3 inhibitory types previously described, distinguished from each other 

by target muscle (circular or longitudinal) and distance of projection 

 

Interneurons  

 

Three types are discovered (ENC5, ENC10 and possibly ENC12), all expressing VAChT 

(Slc18a3) (but one, ENC10, strangely devoid of ChAT) and the following codes: respectively 

SSt/Chat/Calcb, Vip/Gal/Nos1, and the serotonergic markers Ddc and Slc18a2, thus roughly 

corresponding to previous descriptions. One class of interneuron seems capable of synthesizing Gaba 

(ENC10).  

 

One potential novel cell type (ENC11)  

 

Expressing markers of the noradrenergic phenotype (Th, Dbh), previously undetected in the 

ENS. 

 

This same dataset provides the beginnings of a transcriptional code for various neuron types, 

although the expression of any single transcription factor or even combination thereof is rarely 

restricted to a given neuron type or even to a coherent class of neuron types, except for Neurod6 

which is expressed in 100% ENC10 (but also 25% of ENC11). For example, no transcription factor or 

combination of transcription factor cleanly demarcates either motoneurons, or excitatory 

motoneurons or inhibitory motoneurons, as a group, as seen in Figure 10. 

 

 

Figure 10: Expression of transcription factor in 

the 12 enteric neuron types, as determined by 

single cell transcriptomic, from figure 2 of 

Morarach et al. (2020). 

 

36



 

V. Differentiation of enteric neurons into their different types 

 

V.A. Timing of neuronal diversification 

 

 The migrating neural crest, which gives rise to all enteric neuronal types, invades the foregut 

at E9.5 and the first morphological neurons can be observed from E12 , even if expression of HuC/D 

and neurofilament starts as early as E10.5 (Bergner et al., 2014). From then on, birth (i.e. cell cycle 

exit) and differentiation of neuronal classes described above is progressive and occurs during a long 

time-window that spans the second half of gestation and the first post-natal weeks. The 

development of the submucous plexus is almost entirely post-natal (McKeown et al., 2001).  

 The time windows of birth of different neuronal types was studied by Bergner et al. (2014) 

and Pham et al. (1991), and I summarize the results in the following graph: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Time of birth of different neuron types as assessed by BrdU incorporation 

combined with immunofluorescence, according to Bergner et al. (2014) and Pham et al. 

(1991) 

 

The protracted date of birth of neuronal types, and the fact that some are born earlier than 

others has prompted the speculation that early-born neurons could influence the birth (or 

differentiation) of later-born ones (Pham et al., 1991). The only evidence so far came much later 

from the same lab: Li et al. (2011) report that by genetic inactivation of the neuronal isoform of 

tryptophane hydroxylase, by definition expressed in the small fraction of serotonergic neurons, leads 
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to the complete loss of the (even smaller) population of dopaminergic neurons that differentiate 

after birth. Much more strikingly, however, it also leads to a loss of 50% of neurons in the ENS. This 

astounding non-cell autonomous defect of a neurotransmitter on the development of a part of the 

nervous system, without precedent to my knowledge, is strangely not discussed in the paper. 

 

A limitation of the studies on the order of neuronal birth, however, is that neurotransmitter 

phenotypes were taken as proxies for neuronal types, but we now know that most neurotransmitter 

phenotypes are shared by different types of neurons. Possibly related to this, the neurotransmitter 

phenotype which has the narrowest time-window of birth (E10.5-E12.5) is the serotonergic 

phenotype, which is one of the rare neurotransmitters to represent a single neuron type: 5HT-

descending interneurons (Sang et al., 1997; Sang & Young, 1996), and possibly for that reason one 

the most extensively studied neuronal type, despite its scarcity (about 1% of the mature myenteric 

plexus). 

 

A distinct question from neuronal birth (i.e. cell cycle exit), is the timing of their acquisition of 

differentiation traits, in practice of detection of a handful of markers. Again, this dynamic has been 

assessed by immunohistology for the main markers of neurotransmitter phenotype (plus calbindin):  

 

 

 

 

 

 

 

Figure 12: Schematic of the dates of detection of ENS markers, summarized from 

(G. Baetge & Gershon, 1989; Branchek & Gershon, 1989; Hao et al., 2010; 

Rothman et al., 1984) 

 

The same limitation applies as before, and it could be, for example, that some classes of 

cholinergic neurons differentiate well after E12, the first day of ChAT detection. The first marker for a 

neurotransmitter phenotype that can be detected (as early as E10) is tyrosine hydroxylase (Th), but 

this phenotype is mostly transient and can in principle be expressed by several types for neurons, 

even if some Th+ neurons are still found in the mature ENS (Baetge & Gershon, 1989). Other early-

differentiated neurons are Nitric Oxide Synthase (Nos1) expressing neurons (including inhibitory 

motor neurons (Sanders & Ward, 1992) and interneurons, and representing overall around 30% of 
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the neurons in the myenteric plexus). Nos1 expression is detectable at E11.5 (Branchek & Gershon, 

1989; Hao et al., 2010) but some Nos1+ neurons are still being born postnatally, up to P10, the peak 

of birth being at E15.5. Again, this protracted period of differentiation could reflect the 

heterogeneity of Nos1+ neurons. 

 

Finally, these data might not all me reproducible. For example, in the case of NPY, it could be 

that the antibody used in the 1989 study is not specific or that the positive cells are not neurons, as 

for example in the following image, where immunoreactive cells are shown in the presumptive 

myenteric and submucosal plexi at E14.5 (there is, however, no submucosal plexus at E14.5 

(McKeown et al., 2001)), and this study also reports  NPY positive cells in the gut epithelium or 

mesenchyme): 

 

  
Figure 13: From figure 4 of Branchek & Gershon (1989), 
whose legend says: Day E14 jejunum; NPY-
immunoreactive cell bodies were seen segregating into 
layers corresponding to the locations of the presumptive 
myenteric (M) and submucosal (S) plexuses.  

 

 

 

 

On the other hand, a convincing NPY signal is reported at E18.5 in Memic et al. (2018): 

 

 

Figure 14: From Figure 4 in Memic et al. 
(2018). Immunofluorescence with the 
indicated markers on a E18.5 mouse embryo. 
NPY is co-expressed with Sox6. 

 

 

It is thus could be that the onset of expression of Npy is at around birth. 
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V.B.  Mechanisms of neuronal differentiation 

 

A first attempt at describing the dynamic of neuronal differentiation in the developing ENS 

was accomplished in Memic et al. (2018) who compared the transcriptome of all ENS cells (sorted 

from a Wnt::Cre;RosaYFP embryos) to that of progenitors specifically (sorted from 

Sox10CreERT2;RosaYFP embryos) at two developmental stages, E11.5 and E15.5. In that way, many 

genes, including TFs could be classified as expressed in progenitors or post-mitotic precursors, and as 

“early” or “late”. Moreover, in situ detection of many of markers for post-mitotic precursors showed 

that they were expressed in subpopulations of neurons. One of those, Sox6, was analyzed by 

knockout (see below). 

A completely new layer of data and level of understanding was recently added to these 

notions, using single cell RNA-Seq analysis of enteric neurons at embryonic days E15.5 and E18.5 in 

Morarach et al. (2020) from which the next two figures are taken. Cells were displayed on UMAPs 

that show them to emerge from a pool of progenitors along two main directions or “branches” of 

differentiation, as shown below: 

 

 

 

 

Figure 15: UMAP of enteric neurons in an E15.5 pup, with cell cycle genes (thus 

phase) mapped on the left, and the terminal differentiation marker Tbb2a mapped 

on the right. 

 

Strikingly, 10 of the 12 ENCs defined at P21, mapped on this E15.5 UMAP by bioinformatically 

matching shared genetic signatures between the two stages, are arranged in a linear succession on 

the branches. For example, markers for ENC10-12 map distal to those of ENC8-10 along Branch2. 

 

 

 

 

 

Figure 16: UMAP of enteric neurons in a E15.5 

pups, with markers for neuro types mapped. 
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Collectively these data suggest that a binary fate split first gives rise to ENC1-4 and ENC8-10, 

but that most diversification events taking place later, among post-mitotic precursors. These data fit 

well with the protracted chronology of differentiation traits apparent from earlier studies, and in 

particular for markers 5-HT and CGRP, known to appear late, and fittingly map to the end of the 

UMAP branches. This mode of neuronal diversification differs from most of what we know about the 

central nervous system, whereby many categories of neurons are generated from distinct pools of 

progenitors. This difference in turn could result from the lack, in the ENS, of the spatial arrangement 

of progenitors of the CNS (see iontroduction), which would have favored a temporal rather than 

spatial logic of neuron specification. However, it is not excluded that such a temporal mode of 

differentiation of post-mitotic precursors is also used in the CNS, for example to produce the many 

interneuron types of the dorsal spinal cord (Häring et al., 2018), most of which cannot be accounted 

for by the 9 progenitor domains defined (Alaynick et al., 2011) and whose mechanism of generation 

is largely unknown. 

 

 VI. Transcriptional control of ENS development 
 

 Here I will briefly review our current knowledge of the role of transcription factors in the 

development of the ENS. A striking aspect of these studies is that so far, in the ENS unlike many other 

parts of the nervous system, very few transcription factors have emerged as a determinant of 

specific neuronal types. This, however could simply reflect our relatively poor knowledge of these 

types — the current markers being shared by several types (see above). 

 

 Several TFs are active in the pre-enteric neural crest (premigratory or migratory) and their 

inactivation impedes to various degrees the colonization of the digestive tract, leading to hypo- or 

aganglionosis, such as Sox10 (Bondurand & Sham, 2013, bl 10), Pax3 (Lang et al., 2000, bl 3), SufU (J. 

A.-J. Liu et al., 2015), Foxd3 (Mundell et al., 2012, bl 3), etc… I will not review those here. 

 

 Other TFs are expressed in progenitors or post-mitotic precursors only once they have 

entered the wall of the gut. This is the case of 3 TFs that are expressed in all or the vast majority of 

enteric precursors as they enter the foregut mesenchyme: the bHLH ‘”proneural” TFs Ascl1 and 

Hand2 and the homeobox gene Phox2b. 

 

Ascl1 is switched on in Sox10+ neural crest cells as they enter the foregut (Memic et al., 

2016) and persists until early stages of differentiation (i.e. soon after onset of Hu), and lineage 
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tracing established that neurons of all the subtypes detectable at around birth with classical markers 

of neurotransmitter phenotypes, have expressed Aslc1. 

The KO of Aslc1 was shown to delay early neuronal differentiation in the ENS, with a late 

appearance of HUC/D+ cells. This is reminiscent of other observations of delayed neuronal 

differentiation in Ascl1 mutants, in the nucleus of the solitary tract and in the sympathetic ganglia 

(Pattyn et al., 2006). In the esophagus, neurogenesis is almost completely blocked (Guillemot et al., 

1993; Sang et al., 1999), while downstream of the stomach the mutation only partially depletes the 

ENS. These two situations, however, could be the consequence of the same phenomenon if, for 

some environmental reason, the time-window available for neuronal differentiation is shorter in the 

esophagus. Concerning terminal neuronal differentiation events, an early report claimed that 5-HT 

neurons were missing in Aslc1 KO (Blaugrund et al., 1996), but a later report found them intact 

(Memic et al., 2016), the discrepancy probably explained by the fact that the early study detected 5-

HT neurons indirectly (by uptake of tritiated 5-HT), which is possibly non-specific. On the other hand, 

several other subtypes of enteric neurons were reduced in the proportion they formed of a globally 

depleted ENS: those expressing Calb1, VIP, and Th but not those expressing NPY, NOS or CGRP (or 5-

HT). It is important to note that these markers are still expressed, albeit in lower proportions (in 30 

to 40% of the cells that should express them), which stands in contrast with, for instance the 

serotonergic phenotype of the hindbrain, which is all but abolished in Ascl1 KO (Alexandre Pattyn et 

al., 2004). Thus, these data leave open the possibility that Ascl1 acts in the progenitors of several 

classes of neurons, affecting for example their division or maturation rate, rather than in the 

specification of phenotypic traits per se (i.e. in the transcriptional control of marker, effector genes). 

On the other hand, Ascl1 provides more than a generic proneural function since a knock-in of 

another proneural gene (Neurog2) in the Ascl1 locus, rescues the total number of neurons produced 

but not the proportion of Calb1+, VIP+, and Th+ cells (Memic et al., 2016). 

 

Hand2. Two conditional knockouts of Hand2 have been analyzed in the ENS, which both 

suffer from limitations: the Wnt1::Cre;Hand2lox/lox mice die from cardiovascular causes at E12.5 

(because Hand2 is also deleted in the cardiac crest) (D’Autréaux et al., 2007) and the 

Nestin::Cre;Hand2lox/lox inactivates the gene in only 80% of enteric precursors allowing for a degree of 

compensation from precursors which do not express Nestin::Cre (Lei & Howard, 2011). Nevertheless, 

collectively, these studies suggest that Hand2 is required neither for colonization of the gut, 

proliferation, or early differentiation events (expression of b-III tubulin, Gap-43 or PGP9.5) but for 

terminal neuronal differentiation (expression of NOS or Dbh), and the ontogeny of properly 

organized enteric ganglia. The Nestin::Cre animals die around P20 (i.e. soon after weaning) with a 

distended digestive tract. 
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Phox2b is a pan autonomic marker and determinant (Brunet & Pattyn, 2002). During 

formation of the ENS, it is switched on at around E10, in two populations of progenitors: Schwann 

Cell Precursors of the vagus nerve, that go on to colonize the esophagus and proximal stomach,  and 

in the rostral  sympathetic crest (“sympathetic” or rather sympatho-enteric in the sense that it also 

gives rise to the superior cervical ganglion and which is not in any way “vagal” despite its classical 

name) as soon as it penetrates the foregut mesenchyme and stay on until postnatal stages (Isabel 

Espinosa-Medina et al., 2017). In Phox2b KO, only the esophagus and proximal stomach are invaded 

by Sox10+ cells (most likely corresponding to the Schwann cell precursors population whose 

migration along the nerve does not depend on Phox2b, like it does not depend on this gene during 

the formation of parasympathetic ganglia (Coppola et al., 2010; I Espinosa-Medina et al., 2014) but 

not beyond the stomach (which is the place where the left vagus nerve ramifies terminally and 

where the right vagus leaves the digestive tract), and they fail to turn on Ret expression. These cells 

disappear later and the entire length of the gut is aganglionic (Pattyn et al., 1999). Dominant 

mutations in Phox2b can lead (in the larger context of Congenital Central Hypoventilation Syndrome) 

to partial distant agenesis of the ENS, i.e. to a Hirschprung syndrome (Amiel et al., 2003, 2009). 

 

Five other homeobox genes have been claimed to be involved in ENS development: 

 

Tlx2 (formerly known as Enx or Ncx) is widely expressed throughout the autonomic nervous 

system, including many enteric neurons (Hatano, Iitsuka, et al., 1997), at least from E13.5. Knockout 

mice display hyperganglionosis in the colon, i.e. an increase in the number of enteric ganglia and of 

neurons per ganglia (Hatano, Aoki, et al., 1997; Shirasawa et al., 2000), which was later attributed to 

an impairment of post-natal neuronal death (Aoki et al., 2007) (although there is no other report to 

our knowledge of massive normal cell death in the ENS). 50% of the animals die at around 5 weeks 

with a megacolon. 

Hoxb5 A chimeric Hoxb5 molecule, whose C-terminus was replaced by the repressor domain 

of engrailed, causes a defect in the migration of enteric neuronal precursors, hypoganglionosis, delay 

in intestinal transit and occasionally lethal megacolon. This phenotype was attributed to a down 

regulation of Ret (Lui et al., 2008). However, it is unclear to what extent this gain of repressive 

function is informative about the normal function of Hoxb5 in enteric precursors, all the more 

because no defect in the ENS was reported in Hoxb5 KO (Rancourt et al., 1995). 

Dlx2, also expressed in enteric neurons was listed as having a role in ENS development (Qiu 

et al., 1995). However, the main “enteric” phenotypes of Dlx2 KO was a distended stomach filled 

with air, combined with a massive remodeling of the first and second branchial arch mesenchymal 
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derivatives leading to a cleft palate, which could easily explain by itself the stomach phenotype. Thus, 

the case for a role of Dlx2 in enteric neurons themselves can be considered open. 

 Sox6. The only subtype-specific TF which has been discovered so far by gene inactivation is 

Sox6 (Memic et al., 2018), expressed in 2 gastric sub-populations of neurons, characterized 

respectively by late and strong expression of Th (thus presumably dopaminergic) or Npy/Calb1 

expression, thus presumably secremotor neurons (see table 1 above). The conditional knockout of 

Sox6 (in a Wnt1::Cre;Sox6lox/lox background) reduces by 70% the number of Th+ neurons in the adult 

stomach, while leaving the other neuron types investigated (Npy/Calb1+ or Vip+) intact. Sox6 is thus 

the first transcription factor linked to the generation of a single neuronal subtype in the developing 

ENS. Strikingly, Sox6 is also involved in the specification of dopaminergic neurons in the midbrain. 

Mutant mice have an enlarged stomach, with slower gastric emptying, and a weigh 20% less than 

wild types. These functional defects are reminiscent of gastrointestinal dysfunction of Parkinson 

disease (Fasano et al., 2015). 

Other TFs have been shown to be expressed in the enteric neuronal precursors (Heanue & 

Pachnis, 2006) such as Dlx1, Ebf3, Hmx2, Hmx3, Etv1, Tbx3, but they not been examined yet for a 

developmental role in these neurons, with the exception of Tbx3, which I will treat in the second part 

of this introduction. 

 

 

  

44



 

4. THE TRANSCRIPTION FACTOR TBX3 
 

 
I. The T-Box family of TFs 

 

Tbx3 is a TF of the T-box family that now counts around 20 members all sharing the “T-box” 

domain: a 180 amino acids DNA-binding domain. These TFs have various roles during development in 

metazoans, ranging from sponges to humans (Sebé-Pedrós & Ruiz-Trillo, 2017). 

 

II. Tbx3 in stem cells  
 

During mouse embryogenesis, Tbx3 is first expressed at the morula stage (Chapman et al., 

1996), which inspired research on its roles in embryonic stem cells (ESC). One of the main 

characteristics of ESC is their capacity of self-renewal, i.e. that they can be kept in culture without 

losing their differentiating properties, provided by the presence of Leukemia inhibitory factor (LIF) in 

the medium (Burdon et al., 2002). To know if Tbx3 could be an actor in this self-renewal capacity, 

derived-ESC were cultured in the absence of LIF but with a constitutive expression of Tbx3, and the 

cells could still renew themselves without any difference, and if LIF is added to the culture later and 

these cells are injected in a blastocyst of mouse, pups can be born from them (Niwa et al., 2009). A 

possible mechanism for this action of Tbx3 is that it regulates the expression of Nanog (Zhao et al., 

2014) and Oct4 (Han et al., 2010) known factors of the pluripotency of ESC. Furthermore, when Tbx3 

is blocked in culture thanks to doxycycline-inducible expression of shRNAs, the self-renewal capacity 

of the cells is suppressed, and the expression of Nanog and Oct4 switched off within 8 days, while 

early markers of mesoderm differentiation are up-regulated (Ivanova et al., 2006).  This mesodermal 

differentiation is possible due to a direct inhibiton of the Wnt pathway by Tbx3 (Waghray et al., 

2015). Thus, Tbx3 can be considered as a promoter of ESC renewal and maintenance of their 

undifferentiated state, in parallel with the other major transcriptional determinants of the ESC state, 

Oct4, Nanog, Sox2 and Klf4.   

During development ESC eventually differentiate into various cell types, to do so switch off 

the key regulators of “stemness” is needed. To study this process microRNA (miRNA) became a very 

interesting target: they are short non-coding RNAs being able to modulate a gene’s expression by 

binding the 3’UTR part of an mRNA, whose it possesses the complementary sequence (Bartel, 2004). 

A very interesting miRNA is miR-137 because its expression is regulated by Nanog, Oct4 and Sox2 and 

so leads ESC self-renewal and pluripotency (Boyer et al., 2005). Because of this, miR-137 was tested 

for its capacity to be regulated by Tbx3 in a luciferase reporter assay, and it appears that miR-137 

reduces the level of expression of Tbx3 directly so Tbx3 is a target of miR-137, thereby reducing the 
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proliferation and inducing the differentiation of the ESC (Jiang et al., 2013). This shows that more 

than having the same function than master genes of ESC regulation; Tbx3 is downstream of these 

masters genes because they regulated Tbx3 regulators. 

The master genes of ESC regulation (Nanog, Sox2, Oct2, Klf4) are also known for being able 

to reprogram differentiated cells into induced pluripotent stem cells (iPSC) which can be used as 

models of ESC (Takahashi & Yamanaka, 2006). Due to the shared functions of Tbx3 with these genes, 

it was asked whether Tbx3 could help inducing an iPSC state: when Tbx3 is added to the cocktail of 

reprogramming genes, the efficacy of reprogramming is increased as calculated by the expression of 

a GFP-reporter under the control of the Oct4 promoter. The first iPSC appear at 10 days of induction 

instead of 16 under the standard conditions. Moreover, when Tbx3 is among the reprogramming 

genes, there is a better contribution of the iPSCs to the germ-line (Han et al., 2010).  

Taken all together, these studies unveil a major role of Tbx3 in the maintenance and renewal 

of stem cells, as well as for the reprogramming into artificial ESCs. All these data were obtained in 

mouse, but similar results were described using human ESC (Esmailpour & Huang, 2012).  

 

III. Tbx3 in cancer  

 

Aside of these role in the maintenance of undifferentiated state and being a promoter of 

proliferation in ESC, Tbx3 has also been reported as an actor in tumirogenesis, alongside other 

member of the Tbx family (Rowley et al., 2004; Wansleben et al., 2014). 

Tbx3 is expressed in a various number of cancers in human such as breast, melanoma, 

pancreatic, lung, ovarian, liver, head and neck (Burgucu et al., 2012; Fan et al., 2004; Hoek et al., 

2004; N. Liu et al., 2012; Lomnytska et al., 2006; Renard et al., 2007). The most common one being 

the breast cancer in which the expression of Tbx3 is up-regulated (Douglas & Papaioannou, 2013), 

with a proportional increase of its expression correlating with clinicopathological parameters 

allowing to use Tbx3 staining on biopsy as a diagnosis (Aliwaini et al., 2019).  

To fight against cancer, many genes and their related proteins are involved among them 

p19ARF (or p14ARF in humans) which is an activator of senescence and so avoid cancer formation by 

replicating aging cells (Kamijo et al., 1997). This specific pathway is inhibited by Tbx3 by down-

regulating p19ARF expression (Lingbeek et al., 2002) and thus disable senescence which leads to 

immortalization, at least in mouse embryonic fibroblast in culture (Brummelkamp et al., 2002). On a 

similar way, because they are related to each other, Tbx3 is also able to suppress the expression of 

p53 and p21, which are both as well known for their function in apoptosis and cell cycle arrest 

(Carlson et al., 2002; Willem M. H. Hoogaars et al., 2008), and in particular P21  which can be directly 

repressed by Tbx3 binding its promoter (Willmer et al., 2016). Finally, Tbx3 also represses the 
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expression of PTEN, an apoptosis activator, by direct interaction with its promoter as well (Burgucu 

et al., 2012). By this mechanism, Tbx3 is showing a major function as an activator of survival and 

proliferation of cells in cancer on a very specific pathway because p53 activate p21 and PTEN, while 

p19ARF inhibits p53’s inhibitor MDM2 (Lowe, 1999; Nakanishi et al., 2014; Kulaberoglu et al., 2016).  

Asides of this, Tbx3 is also involved in the ability of cancer cells to migrate, it has been tested 

in melanoma cells: if they are injected with a siRNA to repress Tbx3 then the cells do not migrate and 

either invade a culture plate, this process is due to the capacity of Tbx3 to repress the expression of 

E-Cadherin, which is in charge of cell-cell contact and so tissue stability, in a human melanoma cell 

line there are 4 times less E-Cadherin in the presence of Tbx3, because it directly binds E-Cadherin 

promoter to repress it  (Rodriguez et al., 2008). Similar results have also been found in human breast 

cancer cells (Peres et al., 2010; Mowla et al., 2011), as well as bladder cancer cells (Du et al., 2014), 

and in head and neck squamous cell carcinoma (HNSCC) where the silencing of Tbx3 stops the 

invasion of the cells and even leads them to death (Humtsoe et al., 2012) showing that this 

mechanism is common to several cancer involving Tbx3. Furthermore, Tbx3 is actually more than 

essential to promote tumor because it is sufficient: when Tbx3 is artificially expressed in a non-

tumorigenic melanoma cell lines, cells are then able to form tumorigenic melanoma and invade a 

culture plate (Peres & Prince, 2013).  

Finally, during embryonic development as well as cancer development some similar 

mechanisms are used, among them the silencing of specific genes by methylation: the addition of 

methyl groups on a gene promoter or regulator leads to the impossibility of any transcriptase to bind 

it and therefore its silencing (Kulis & Esteller, 2010). Several studies have then performed genome 

wide analysis of comparative methylation in healthy and cancer cells, Tbx3 appeared methylated in 

bladder and gastric cancers (Kandimalla et al., 2012; Yamashita et al., 2006). Moreover, this 

methylation of Tbx3 was also observed in some glioblastoma, and the patients having this 

methylation, and so a silenced Tbx3, had a significantly lower survival rate then the other patients 

(Etcheverry et al., 2010). These results lead to an ambivalent role of Tbx3 which can promote cancer 

growth and migration or being a tumor repressor silenced by cancer cells.   

 

IV. Developmental roles of Tbx3  
  

The first indication that Tbx3 plays multiple roles during embryogenesis at stages much later 

than in the inner cell mass or extraembryonic mesoderm, came when it was recognized that in 

humans, heterozygous mutations of TBX3 cause the Ulnar Mammary Syndrome (UMS, OMIM 

181450) (Bamshad et al., 1997), an autosomal dominant developmental disorder. Ulnar Mammary 

Syndrome has a highly variable clinical presentation and is characterized by a long list of 
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incompletely penetrant clinical features (Ramirez & Kozin, 2014) including upper limb defects, 

apocrine gland hypoplasia (mammary and sweat glands), hypogenitalism, orofacial dysmorphia and 

abnormal teeth. Several of these developmental defects, and more, are also observed in mice 

heterozygous or homozygous for a null allele of Tbx3. However, due to differences between the 

phenotypes of the mouse null alleles and of the truncated or otherwise mutated human ones, it has 

been questioned that the human disease results from mere haplo-insufficiency, and proposed that it 

could also reflect abnormal gain-of-functions, including in non-transcriptional roles, such as RNA 

splicing (Kumar P. et al., 2014). 

Predictably, it turns out to be rather difficult, in fact impossible, to extract, among all the 

described developmental roles of Tbx3, a common theme at the cellular or molecular level, at least in 

the current stage of our mechanistic knowledge, except for the recurrent theme that Tbx3 often acts 

as a transcriptional repressor. Thus, it is unlikely that exploring its role in the enteric nervous system 

can benefit much from the existing literature on other body parts. I will nevertheless summarize the 

most salient features below: 

Mammary glands: Tbx3 is expressed first in mesenchyme then in the epithelium of the 

mammary glands from E11.5 to E18.5 (Chapman et al., 1996; Davenport et al., 2003; Douglas & 

Papaioannou, 2013). Homozygous mutant mice have no mammary placode induction and 

heterozygous mutants have decreased ductal tree development and failed nipple formation. This 

phenotype is reminiscent of the aplasia or hypoplasia of the mammary glands and nipples of human 

UMS. Mechanistically, Tbx3 has been implicated in feedforward loops with Wnt and Fgf signals, and a 

negative feedback loop with BMPs, and as being a direct upstream negative regulator of Lef1 and 

Wnt10b. 

Limbs: Tbx3 is expressed early, widely and dynamically in the mesenchyme and the apical 

ectodermal ridge of the developing limb. In homozygous nulls (but not in heterozygotes) mouse 

mutants morphological anomalies of the limb range from deletions of the posterior skeletal elements 

(digits 4 /5, and ulna/fubula) to polydactyly (Tümpel et al., 2002; Sheeba & Logan, 2017). 

Mechanistically, a complex web of interactions link Tbx3 (but also Tbx2 and Tbx5) with the main 

players of limb morphogenesis. In particular, Tbx3 is involved through its regulation of Tbx5 in the 

maintenance of the posterior Shh+ zone of polarizing activity and, through its upregulation of Hand2, 

in setting the posterior boundary of Gli3 expression in the anterior limb (which can explain the 

polydactyly). Whereas in mouse both forelimbs and hindlimbs are affected, in humans the hindlimbs 

are spared for an unknown reason (although an extensive list of symptoms cites cases of “short, 

crooked and stiff terminal phalanges of fourth to fifth tows”(Chen, 2017)). 

Pituitary gland: Tbx3 is expressed in the ventral diencephalon, which then gives rise to the 

infundibulum, i.e. the anlage of the neurohypophysis. In the absence of Tbx3 the infundibulum does 
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not form. The development of the neurohypophysis is integrated with that of the adenohypophysis 

or pituitary gland, which in Tbx3 knockouts becomes hypoplastic in a non-cell autonomous fashion. 

This phenotype is most likely related to the delayed puberty and other signs of hypogonadism 

observed in many UMS patients. Mechanistically, Tbx3 normally sequesters Sox2 in the ventral 

diencephalon, away from an enhancer in Shh, with the effect of blocking the expression of Shh 

whose downregulation is required to form the neurohypophysis (Pontecorvi et al., 2008; Trowe et 

al., 2013). In the absence of Tbx3, the ventral diencephalon remains hyper-proliferative and acquires 

an abnormal cellular architecture. 

 In addition to these three organs, homozygous null mice have developmental defects which 

are not found in the human syndrome (either because one dose of Tbx3, or other co-expressed 

members of the Tbx3 family, are sufficient to rescue these defects) but nevertheless unveil further 

developmental roles of Tbx3:   

Heart: Tbx3 null homozygotes die at around mid-gestation, a major cause of death being 

attributed to heart defects (W. M. H. Hoogaars et al., 2007; Mesbah et al., 2008). Tbx3 is expressed 

early on in the “non-chamber myocardium” where it represses the program for myocardium 

formation and allows the formation of the atrioventricular canal, the cardiac conduction system, and 

the cardiac outflow tract. As a consequence, Tbx3 inactivation disrupts early morphogenetic events 

and leads to ventricular septal defects, delays in heart looping and outflow tract malformations. In 

addition, Tbx3 (together with Tbx18 and Sox2) later directs the formation of the heart pacemaker, 

the sinoatrial node (Mohan et al., 2018). It does so in part by repressing the atrial differentiation 

program in the precursors of the sinoatrial node. As a consequence, a series of hypomorphic alleles 

of Tbx3 lead to pre and post-natal arrhythmias (Frank et al., 2012).  

The general lack of cardiac phenotype in humans (although two cases have been reported 

(Ramirez & Kozin, 2014)) could be explained by different dosage requirements, or redundancy among 

the 6 members of the T-box family reported to play a role in heart development (Willem M. H. 

Hoogaars et al., 2007; Plageman & Yutzey, 2005) especially Tbx2, Tbx4 or Tbx5 which, together with 

Tbx3 form the Tbx2 subfamily (Papaioannou, 2014) by virtue of coming from a common ancestor 

gene after two duplication (Agulnik et al., 1996).  

Lungs: Tbx3, together with Tbx2, is expressed in the lung mesenchyme where they both play 

a key role in lung branching morphogenesis by maintaining the “mesenchymal signaling center” 

crucial to epithelial branching. They are activated by Shh, Wnt and other signaling molecules secreted 

by the overlying epithelium, and in the mesenchyme inhibit cell-cycle dependent kinases involved in 

cell cycle arrest, as well as Shisa3 and Frzb, diffusible inhibitors of the pro-proliferative Wnt pathway. 

As a consequence, inactivation of Tbx3 leads to hypomorphic lungs (Lüdtke et al., 2016). 
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Finally, and possibly more relevant to the topic of my thesis, Tbx3 is expressed in several 

classes of neurons (Eriksson & Mignot, 2009; Heanue & Pachnis, 2006),. Expression in the 

hypothalamus and in the enteric nervous system prompted the first studies of its neuronal function 

(López et al., 2018; Quarta et al., 2019). In the hypothalamus, Tbx3 is specific for several types of 

neurons of the arcuate nucleus, previously defined by their neuropeptide content: pro-

opiomelanocortin (Pomc) and Agouti-related protein (Argp) neurons. Based on a lineage tracing 

strategy, conditional inactivation of the gene (with a Pomc::Cre recombinase) either during 

embryogenesis or postnatally does not impede the production or survival of these neurons, at least 

until adulthood, but it downregulates several peptides (Pomc, Npy and Carpt) and makes their level 

of synthesis irresponsive to feeding patterns (which they normally respond to). In vitro evidence 

corroborates the fact that Tbx3 transcriptionally regulates Pomc, Npy and Carpt. Collectively, the 

data implicate Tbx3 in the peptide content of energy-responsive neurons during feeding and fasting, 

and hence the regulation of energy homeostasis. A caveat of this study though, which the authors do 

not discuss, is that the inactivation triggered after the initial expression of Pomc, thus of Tbx3, cannot 

rule out an additional and earlier role of Tbx3, i.e. in the generation or initial differentiation of these 

neurons. 

The role of Tbx3 in the development of enteric neurons has been the occasion of one 

publication so far (see below). 

 
V. Tbx3 and the enteric nervous system  
 

 Tbx3 expression in the ENS was first reported in (Heanue & Pachnis, 2006). In this paper, an 

RNA microarray differential screen on the mouse gut, in wild type versus Ret KO E15.5 embryos (the 

latter being a model of Hirschprung disease, and completely devoid of enteric neurons (Uesaka et al., 

2008)) retrieved hundreds of differentially expressed genes, by definition candidate markers of 

enteric neurons. Among them were two transcription factors previously undescribed in the ENS, Etv1 

and Tbx3. Expression of Tbx3 in the ENS was confirmed by in situ hybridization on sections of 

embryonic gut, where neuronal expression appears as a dotted pattern at the periphery of the gut 

wall, as seen in the figure below (Tbx3 in the lower left panel): 
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A similar approach was used by (López et al., 2018) who performed a microarray differential 

analysis between neuronal and non-neuronal cells of the gut, sorted thanks to a EYFP reporter driven 

by Wnt1 (a signaling factor expressed in neural crest precursors, from which all enteric neurons 

derive). Several transcription factors were found enriched in the EYFP+ versus the EYFP- cell fraction, 

including Tbx3, as summarized in the heatmap below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

A more detailed transcriptomic analysis of gene expression in the murine ENS was published 

by (Memic et al., 2018), who performed multiple pairwise comparisons between 3 cell populations: 

ENS progenitors (marked by a YFP transgene driven by Sox10, a marker for dividing neural crest 

progenitors), ENS neural cells —including progenitors, glia and neurons — marked by a YFP 

transgene driven by Wnt1), and gut non-neural cells (YFP—) at two developmental stages, E11.5 and 

E15.5. Tbx3 was found enriched at both stages in both progenitors and total neural cells. 

Immunofluorescence on sections of embryonic gut confirmed the expression in progenitors and post-

mitotic neurons from E11 to E19, at the level of both stomach and intestine. This expression was 

conserved in human embryos at developmental stages W5 and W10, as summarized in the following 

table: 
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 An example of immunofluorescence is shown (at an unspecified stage) where Tbx3 was 

detected in Sox10+ progenitors (yellow arrowheads) and in HUC/D+ neurons (white arrowheads): 

 

 

 

 

 

 

 

 

In mouse, the following chronology of expression was found: 

 

 

 

 

 

 

 

 

  

Although not commented in the paper, from the above picture it remains possible that, in the 

stomach, expression of Tbx3, while present in all neural cells from E11 to E16, is down regulated 

specifically in some neurons at E18-19 (but maintained in Sox10+ cells which, at this stage, could 

represent progenitors or glia). At the same stage, most neurons in the intestine are Tbx3+. 

 

 (López et al., 2018) went on to analyze the function of Tbx3 in the enteric nervous system, by 

crossing a floxed allele of Tbx3 (Frank et al., 2013) with a Wnt1::Cre allele, thus deleting Tbx3 in all 

neural crest cells and their derivatives. While this conditional inactivation scheme prevented the 

cardiovascular death at mid-gestation of constitutive knockouts (Frank et al., 2012), an unexpected 

consequence was that the pups died at birth with a cleft palate. The defect in palatal fusion (already 

partially described as requiring Tbx2 and/or Tbx3 (Zirzow et al., 2009), prevented feeding at birth, 

precluding postnatal analysis of digestive function. Analysis of embryos and newborns demonstrated 

a normal colonization of the entire gut by the neural crest, and a normal number of neurons at P0. 

The total number of Sox10+ cells — presumably representing both progenitors and glia at this stage 

— was slightly decreased in the “distal small intestine”, and the mature glia (marked by both Sox10 
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and S100β) was decreased in the small intestine, proximal and distal, by 24% and 48% respectively. 

This potential role of Tbx3 is glial differentiation, however, was attributed to an activity in early glial 

progenitors, because Tbx3 was switched off in both Sox10+ or S100+ cells (the latter being a subset 

of the former) at P0, as seen on panels P and Q of the following figure: 

 

 

 

 

 

 

 

 

 

 

The Tbx3 negativity of the Sox10-positive cells at P0 is surprising given the positivity reported by 

(Memic et al., 2018) at E19, which in practice represents P0 in most laboratory mouse strains. 

In a functional test of intestinal transit at P0, the tracer fluorescein isothiocyanate (FITC)-

dextran was fed to pups, and was transported at a normal rate in Wnt1::Cre;Tbx3lox/lox mutants 

compared to controls, all the way to the small intestine in 6 hours (the colon not being reached at 

this time point even in wild types). Thus, no disturbance of the intestinal function was detected in 

the narrow time window that could be explored. 
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5. HMX2 AND HMX3 IN DEVELOPMENT 

 

I. Hmx2 and Hmx3 during embryonic development  

 

Hmx2 and Hmx3, together with Hmx1, form the Hmx family of homeobox transcription 

factors. The literature concerning these genes is complicated by several changes of names and 

parallel work on different animal models. The first Hmx gene was called H6 at its discovery (now 

Hmx1), when it was isolated from a cDNA library of the human craniofacial region, screened for 

homeobox genes (Stadler et al., 1992). Three years later, two novel homeobox genes were cloned in 

mouse and found to resemble the drosophila gene Nk1 gene and, despite a slight sequence 

divergence from the NK family (and without recognizing that they formed a separate family), were 

called Nkx5.1 and Nkx5.2 (now respectively Hmx3 and Hmx2), which are closely linked on the same 

chromosome (7 in mouse, and 10 in humans) (Bober et al., 1994; W. Wang & Lufkin, 1997). These 

three genes are likely present in all mammals (Stadler et al., 1995). Their homeodomain is very 

similar (although, with 5 amino acid differences between Hmx2 and Hmx3, the conservation is less 

than for other pairs of paralogous homeodomains, such as Phox2a and Phox2b which have identical 

homeodomains). 

The developmental expression of Hmx2 and Hmx3 overall has not been studied in great 

detail and mostly with now outdated techniques such as radioactive in situ hybridization, imprecise 

ones like wholemount in situ hybridization or indirect ones, like knock-ins of LacZ reporter genes (e.g. 

(Weidong Wang et al., 2000) or Cre recombinase (Niquille et al., 2018) and some interpretations 

should be taken with caution. For example Hmx2 was found expressed in sympathetic ganglia at 

E12.4  (Wang et al., 2000), based on sections though a Hmx2::LacZ embryo, but no sympathetic 

expression was detected by in situ hybridization at E13.5 (I. Espinosa-Medina et al., 2016a) or by 

single cell transcriptomics at P5 (unpublished data from my lab). No antibody exists to our 

knowledge, and the Alllen Brain Atlas or Genepaint database do not provide a clear pattern for either 

gene. 

The best studied expression (and the best studied loss-of-function phenotype) is by far in the 

inner ear where Hmx3 expression starts at E8.5 in otic placode and Hmx2 expression 0.5 day later 

(Rinkwitz-Brandt et al., 1996; Wang et al., 2001). Mouse lacking Hmx3 give birth to a decreased ratio 

of homozygous null mutants (Hmx3-/-), display a reduced capacity of pregnancy in the females, and a 

highly abnormal locomotory behavior: they continuously locomote in circles, stopping only to groom, 

feed and sleep, suggesting a defect in the inner ear. Indeed, the mutants present a non-separation of 

the utricle and saccule during development of the inner ear, leading to a reduced sensory epithelial 
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area for both; aside from this, the horizontal semi-circular duct is not properly shaped, hence a non-

properly working inner ear and a loss of equilibrium. The expression of Hmx2 and Hmx1 remain 

unchanged by the lack of Hmx3 (Wang et al., 1998).  

The case of Hmx2 was examined some years later. Mice lacking Hmx2 also present a circling 

behavior, in this case combined with head tilting. Unlike Hmx3, the loss of Hmx2 leads to the 

complete absence of the 3 semi-circular ducts as well as a fused utricle and saccule, all of this 

entailing a general 60% decrease of the number of neurons in the inner ear at E18.5 (due to a 

decrease of cell proliferation during development, rather than premature cell death) (Wang et al., 

2001). 

The similar pattern of expression of Hmx2 and Hmx3 in the inner ear, and the fact that the 

expression of the later gene (Hmx2) does not depend on the earlier one (Hmx3) suggested the 

possibility of a partial redundancy and inspired the creation of a double mutant. This was not trivial 

since the two genes are separated by only 8kb (Wang et al., 2004), which in practice prevents 

recombination between the two loci. Thus, a third knockout line was created, with a 11 kb deletion 

encompassing the two genes. Animals lacking both Hmx2 and Hmx3 die at around 5 days after birth 

with a more severe loss of balance than either single knockout: starting at day 3 the Hmx2-/-;Hmx3-/- 

pups show a fully penetrant loss of balance and are incapable of righting themselves. The inner ear of 

Hmx2/3 knockouts develops normally until E12.5 but then starts to degenerate and the vestibular 

part of the inner ear is completely missing at E18.5. At the molecular level, the expression of a 

number of early markers of the otic vesicle is altered as early as E11.5, among them Bmp4, FoxG1, 

Pax2, and Dlx5. The double knockout also shows a complete absence of Netrin1 around the otic 

vesicle, while its expression was not affected in either Hmx2 or Hmx3 simple knockout, showing 

shared redundant functions, for some aspects at least. At the moment of their death, pups lacking 

Hmx2/3 present dwarfism which can be explained by a 40% reduction of circulating Growth 

Hormone, as well as a complete loss of Growth Hormone Releasing Hormone in the arcuate nucleus 

of the hypothalamus, attributed to the absence of expression of Gsh1, which is regulated by Hmx2/3 

only in this specific nucleus (Wang et al., 2004).  

Hmx genes are well conserved in evolution. Not only the homeodomain of the Hmx genes is 

very similar to that of the ancestral unique orthologue in Drosophila (Wang et al., 2000), but the 

latter can rescue a great part of the phenotype of Hmx2/3 double mutants, in particular the lethality 

and growth deficit, the inner ear phenotype persisting albeit with a variable penetrance (Wang et al., 

2004).   
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II. Expression of Hmx2/3 in the Nervous system  

 

In addition to the inner ear and the arcuate nucleus, Hmx2 and Hmx3 are expressed in other 

regions of the nervous system, without any clear function established yet. As early as E10.5, they are 

both expressed all along the spinal cord (probably in interneurons), as well as in dorsal root ganglia; 

later at E11.5 they can be detected in midbrain, hindbrain and trigeminal ganglia (Bober et al., 1994). 

Hmx3 is also expressed in the preoptic area from where are generated many neurons populating the 

striatum, olfactory bulb, septum, amygdala or GABAergic interneurons in the cortex (D. Gelman et 

al., 2011; D. M. Gelman et al., 2009). More precisely, Hmx3 expressing progenitors were shown, by 

lineage tracing to give rise to the neurogliaform cortical interneurons, an important inhibitory 

interneuron type in the cortex (Niquille et al., 2018). The function of Hmx3 in these neuronal types is 

however unexplored. 

The expression of Hmx2 and Hmx3 was also reported in the peripheral nervous system 

(Bober et al., 1994) and more recently established as differential marker of parasympathetic ganglia 

versus sympathetic ones (Espinosa-Medina et al., 2016). These two genes are also found to be 

expressed in the enteric nervous system (Heanue & Pachnis, 2006), in the same study that uncovered 

Tbx3: 

 

 

 

 

 

In situ hybridization of transcription factors in the enteric nervous system at E15.5. 

Image reproduced from (Heanue & Pachnis, 2006) 

 

 Common expression of Hmx3 in the ENS and parasympathetic ganglia might be considered 

as an additional trait shared by these two divisions of the autonomic nervous system. No functional 

study was made so far. 
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conclude that the soluble UGT85B1 interacts
with both CYP79A1 and CYP71E1, but that it is
not necessary for CYP79A1-CYP71E1 complex for-
mation (Fig. 4E). CYP79A1, CYP71E1, CYP98A1,
and POR2b are situated very close together at
the ER surface and have comparable pairwise
FRET values (Fig. 4F and table S11). All micro-
somal P450s require electron donation fromPOR;
therefore, it is not surprising that CYP98A1 is
proximal to the dhurrin biosynthetic enzymes
(Fig. 4, A, B, and D). UGT85B1 was situated close
to thenonpartnerERmembraneproteins, CYP98A1
and POR2b, when CYP79A1 and CYP71E1 were
coexpressed (table S12).
A prerequisite to understanding how cells co-

ordinate diverse metabolic activities is to under-
stand how the enzyme systems catalyzing these
reactions are organized and their possible en-
rollment as part of dynamic metabolons. Efforts
to maximize product yield from genetically en-
gineered pathways (14–17) would benefit from
this information. In this study, we showed that
the dhurrin pathway forms an efficient metab-
olon. CYP79A1 and CYP71E1 form homo- and
hetero-oligomers, which enable recruitment of
the cytosolic soluble UGT85B1 (Fig. 4G). UGT85B1
regulates the flux of L-tyrosine and stimulates
channeling between CYP79A1 and CYP71E1. Effi-
cient metabolic flux and channeling require an
overall negatively charged lipid surface and may
provide an additional means for regulating the
dynamic assembly necessary to respond swiftly to
environmental challenges. A similar organization
may characterize the biosynthetic pathways of
other specialized metabolites as well.
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◥NEURODEVELOPMENT

The sacral autonomic outflow
is sympathetic
I. Espinosa-Medina,1* O. Saha,1* F. Boismoreau,1 Z. Chettouh,1 F. Rossi,1

W. D. Richardson,2 J.-F. Brunet1†

A kinship between cranial and pelvic visceral nerves of vertebrates has been accepted for a
century. Accordingly, sacral preganglionic neurons are considered parasympathetic, as are their
targets in the pelvic ganglia that prominently control rectal, bladder, and genital functions. Here,
we uncover 15 phenotypic and ontogenetic features that distinguish pre- and postganglionic
neurons of the cranial parasympathetic outflow from those of the thoracolumbar sympathetic
outflow in mice. By every single one, the sacral outflow is indistinguishable from the
thoracolumbar outflow.Thus, the parasympathetic nervous system receives input from cranial
nerves exclusively and the sympathetic nervous system from spinal nerves, thoracic to sacral
inclusively.This simplified, bipartite architecture offers a new framework to understand pelvic
neurophysiology as well as development and evolution of the autonomic nervous system.

T
he allocation of the sacral autonomic out-
flow to the parasympathetic division of the
visceral nervous system—as the second tier
of a “cranio-sacral outflow”—has an ancient
origin, yet a simple history: It is rooted in

thework ofGaskell (1), was formalized by Langley
(2), and has been universally accepted ever since
[as in (3)]. The argument derived from several
similarities of the sacral outflow with the cranial
outflow: (i) anatomical—a target territory less
diffuse than that of the thoracolumbar outflow,
a separation from it by a gap at limb levels, and a
lack of projections to the paravertebral sympa-
thetic chain (1); (ii) physiological—an influence
on someorgansopposite to that of the thoracolum-
bar outflow (4); and (iii) pharmacological—an
overall sensitivity to muscarinic antagonists (2).
However, analysis of cellularphenotypewas lacking.
Here, we define differential genetic signatures and
dependencies for parasympathetic and sympa-
thetic neurons, bothpre- andpostganglionic.When
we reexamine the sacral autonomic outflow of
mice in this light, we find that it is better char-
acterized as sympathetic than parasympathetic.

Cranial parasympathetic preganglionic neu-
rons are born in the “pMNv” progenitor domain
of the hindbrain (5) that expresses the homeogene
Phox2b and produces, in addition, branchiomotor
neurons (6). The postmitotic precursorsmigrate
dorsally (7) to form nuclei (such as the dorsal
motor nucleus of the vagus nerve) and project
through dorsolateral exit points (7) in several
branches of the cranial nerves to innervate para-
sympathetic and enteric ganglia. In contrast,
thoracic and upper lumbar (hereafter “thoracic”)
preganglionic neurons, which are sympathetic,
are thought to have a common origin with so-
matic motoneurons (8, 9). By implication, they
would be born in the pMN progenitor domain
(just dorsal to p3)—thus from progenitors that
express the basic helix-loop-helix (bHLH) tran-
scription factor Olig2 (10). The sympathetic pre-
ganglionic precursors then segregate from somatic
motoneurons to form the intermediolateral col-
umn inmammals (11), project in the ventral roots
of spinal nerves together with axons of somatic
motoneurons, and, via the white rami commu-
nicantes, synapse onto neurons of the paravertebral
and prevertebral sympathetic ganglia.
We sought to compare the genetic makeup

and dependencies of lower lumbar and sacral
(hereafter “sacral”) preganglionic neurons with
that of cranial (parasympathetic) and thoracic
(sympathetic) ones. As representative of cranial
preganglionic neurons, we focused on the dorsal
motor nucleus of the vagus nerve, a cluster of

SCIENCE sciencemag.org 18 NOVEMBER 2016 • VOL 354 ISSUE 6314 893

1Institut de Biologie de l’École Normale Supérieure (IBENS),
INSERM, CNRS, École Normale Supérieure, Paris Sciences et
Lettres Research University, Paris, 75005 France. 2Wolfson
Institute for Biomedical Research, University College London,
London, UK.
*These authors contributed equally to this work †Corresponding
author. Email: jfbrunet@biologie.ens.fr

RESEARCH | REPORTS
on O

ctober 28, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

61

http://science.sciencemag.org/


neurons already well delineated at 13.5 days of
embryonic development (E13.5), that expresses
the vesicular acetylcholine transporter (VAChT)
(Fig. 1B). Thoracic and sacral preganglionic neu-
rons, which both form amediolateral column in

the spinal cord, did not express VAChT at this
stage despite their eventual cholinergic nature. To
localize them,we thus used their commonmarker
nitric oxide synthase (NOS) (12) (Fig. 1, A and B),
which was absent from the dorsal motor nucleus

of the vagus nerve at E13.5 (Fig. 1B) or later (fig.
S1). Thus, NOS expression characterizes thoracic
and sacral, but not cranial, preganglionic neurons.
In contrast to cranial (parasympathetic) pre-

ganglionic neurons, thoracic (sympathetic) ones

894 18 NOVEMBER 2016 • VOL 354 ISSUE 6314 sciencemag.org SCIENCE

Fig. 1. Sacral preganglionic neurons develop like sympathetic, not
parasympathetic, ones. (A) Longitudinal thick section of the spinal cord
reacted for a reduced form of nicotinamide adenine dinucleotide phosphate
(NADPH) diaphorase activity indicative of NOS expression, revealing the
thoracolumbar and sacral visceromotor columns (arrowheads) sep-
arated by a gap. (B to K) Transverse sections at E13.5 through the right
half of the medulla (left column in both panels), thoracolumbar spinal
cord (middle), and sacral spinal cord (right), stained with the indicated
antibodies and probes, or for NOS expression, in the genetic backgrounds
indicated on the right. (B) The dorsal motor nucleus of the vagus nerve
(nX) expresses VAChT but not NOS, whereas the thoracic and sacral
preganglionic neurons (arrowheads) express NOS but not yet VAChT.
The ventrally located somatic motoneurons, including the hypoglossal nu-
cleus (nXII) in the hindbrain, express VAChT. [(C) and (D)] Phox2b (C) and
Phox2a (D) are expressed in nX but in neither thoracic nor sacral pre-
ganglionic neurons (arrowheads). Lower panels in (C) and (D): higher
magnifications of the preganglionic neurons. (E) Neurons of nX but
neither thoracic nor sacral preganglionic ones (labeled by an antibody to
Islet1/2, white arrowheads) derive from Phox2b+ precursors, perma-

nently labeled in a Phox2b::Cre;RosatdT background. (F) nX is missing in Phox2b knockouts (red arrowhead), but thoracic and sacral preganglionic neurons
are spared (black arrowheads). (G) nX is spared in Olig2 knockouts (black arrowhead), but thoracic and sacral preganglionic neurons are missing (red
arrowheads). nXII is also missing, as expected of a somatic motor nucleus (red arrowhead). [(H) to (J)] Tbx20, Tbx2, and Tbx3 are expressed in all or a
subset of nX neurons (arrowheads in panels of the left column) but in no thoracic or sacral preganglionic neuron (arrowheads in panels of the middle and
right columns). (K) Foxp1 is not expressed in the nX (arrowhead in left column) but is a marker of both thoracic and sacral preganglionic neurons
(arrowheads in middle and right columns). nTS, nucleus of the solitary tract. Scale bars: 1 mm (A), 100 mm [(B) to (K)].
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Fig. 3. The pelvic ganglion
forms independently of its
nerve, like sympathetic and
unlike parasympathetic ones.
(A and C).Whole-mount immu-
nofluorescence with the indicated
antibodies on E11.5 embryos
either heterozygous (A) or homo-
zygous (C) for an Olig2 null muta-
tion.The nascent pelvic nerves
[yellow arrowhead in (A)] seem to
derive mostly from the L6 nerve
at that stage.The Olig2 null muta-
tion (C) spares two thin sensory
pelvic projections.The pelvic gang-
lion (PG) lies ahead of most fibers
in both heterozygous and mutant
background. (B andD).View of the
L6 nerve, covered with Sox10+ cells
but no Phox2b+ cells (yellow arrow-
heads), unlike cranial nerves that
give rise to parasympathetic ganglia
at the same stage [Jacobson’s
nerve in (E)]. (Fand G) In situ
hybridization for Phox2b and
immunohistochemistry for neuro-
filament (NF) on heterozygous and
homozygous Olig2 knockouts at
E13.5, when parasympathetic gan-
glia have formed elsewhere in the
body.Graph: the pelvic ganglion has
the same volume whether its pre-
ganglionic nerve is present [black
arrowhead in (F)] or not (6369 mm3

± 1066 versus 6441 mm3 ± 919,
P = 0.96, n = 5 embryos). gt, genital
tubercle; L5 and L6, 5th and 6th lumbar roots; S1, 1st sacral root; SC, sympathetic chain.

Fig. 2. All pelvic ganglionic cells have a sympathetic, not parasympa-
thetic, transcriptional signature. Sagittal sections through parasympathetic
ganglia (columns headed “Parasympathetic”), the lumbar paravertebral
sympathetic chain (columns headed “Sympathetic”), and the pelvic ganglion
(columns headed “Pelvic”) at E13.5, stained by inmmunohistochemistry for
Phox2b, a determinant of all autonomic ganglia (31), and in situ hybridization
for the indicated probes.GG, geniculate ganglion (a cranial sensory ganglion);
O, otic ganglion; S, sphenopalatine ganglion; SM, submandibular ganglion (all
parasympathetic ganglia).
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not only failed to express Phox2b or its paralogue
Phox2a at E13.5 but also arose from Phox2b-
negative progenitors anddidnot dependonPhox2b
for their differentiation (Fig. 1, C to F, left and
middle columns) but instead depended on Olig2
(Fig. 1G). Sacral preganglionic neurons shared all
these features with thoracic ones (Fig. 1, C to G,
middle and right columns). At E13.5, the T-box
transcription factors Tbx20, Tbx2, and Tbx3were
expressed by cranial (parasympathetic) neurons
but by neither thoracic (sympathetic) nor sacral
preganglionic ones (Fig. 1, H to J, and fig. S2).
The F-box transcription factor Foxp1, a determi-
nant of thoracic preganglionic neurons (13), was
expressed by sacral but not cranial preganglionic
neurons (Fig. 1K).Differential expressionofPhox2b,
Tbx20, and FoxP1 between cranial and all spinal
preganglionic neurons, thoracic and sacral, was
still observed at E16.5 (fig. S3). In sum, the onto-
geny and transcriptional signature of sacral pre-
ganglionic neurons was indistinguishable from
that of thoracic ones and therefore sympathetic
as well.
Thoracic and sacral preganglionic neurons share

a settling site in the mediolateral region of the
spinal cord and a ventral exit point for their axons,
whereas cranial preganglionics have a less system-
atized topography and a dorsal axonal exit point.
These similarities of thoracic with sacral, and
differences of both with cranial, are at odds with
the notion of craniosacral outflow since its first
description (1).
The targets of the sacral preganglionic neu-

rons are in the pelvic plexus (figs. S4 and S5) and
are considered, by definition, parasympathetic
(14). Because a proportion of pelvic ganglionic
neurons receive input from upper lumbar levels
[half of them in rats (15)] and thus from sympa-
thetic preganglionic neurons, the pelvic ganglion is
consideredmixed sympathetic andparasympathetic
(16). This connectivity-based definition runs into
a conundrum for cells that receive a dual lumbar/

sacral input (17). The sympathetic identity of both
thoracic and sacral preganglionic neurons that we
unveil here makes the issue moot. Regardless, we
looked for a cell-intrinsic criterion that would
corroborate the sympathetic nature of all pelvic
ganglionic cells in the formof genes differentially
expressed in sympathetic versus parasympathetic
ganglionic cells elsewhere in the autonomic ner-
vous system. Neurotransmitter phenotypes do
not map on the sympathetic/parasympathetic
partition because cholinergic neurons in the pelvic
ganglion comprise both “parasympathetic” and
“sympathetic” ganglionic cells, as defined by con-
nectivity (14), and bona fide sympathetic neurons
of the paravertebral chain are cholinergic [re-
viewed in (18)]. However, we found that three
transcription factors expressed and required in
the sympathoadrenal lineage—Islet1 (19), Gata3
(20), andHand1 (21)—were not expressed in para-
sympathetic ganglia such as the sphenopalatine,
the submandibular, or the otic ganglia (Fig. 2 and
fig. S6) [although Islet1 is expressed in ciliary
ganglia (22) and Gata3 in cardiac ones (20), which
thus diverge from the canonical parasympathetic
molecular signature]. Conversely, we found that
the two paralogous homeobox genes Hmx2 and
Hmx3 are specific markers of all parasympathetic
versus sympathetic ganglia and adrenal medulla
(Fig. 2 and figs. S6 and S7). All cells of the pelvic
ganglion were Islet1+, Gata3+, Hand1+, Hmx3–,
and Hmx2– at E13.5 (Fig. 2) and at E16.5 (fig. S8),
as were smaller scattered ganglia of the pelvic
organs (fig. S8). Thus, all had a sympathetic
transcriptional fingerprint. Similarly, the chicken
ganglion of Remak, classically considered para-
sympathetic (23), displayed an Islet1+, Hand1+,
Hmx3– signature, and thus is sympathetic (fig. S9).
Finally, we tested the pelvic ganglion for the

contrasted modes of development of sympathetic
and parasympathetic ganglia. Parasympathetic
ganglia, unlike sympathetic ones, arise through
the migration of Sox10+/Phox2b+ Schwann cell

precursors along their future preganglionic nerve
toward the site of ganglion formation and do not
form if these nerves are absent (24, 25). At E11.5,
the lumbosacral plexus, which gives rise to the
pelvic nerve, extended some fibers that reached
the lateral and rostral edge of the pelvic ganglion
anlagen, most of which was already situated well
ahead of them (Fig. 3A andmovie S1). These fibers
were coated with Sox10+ cells, none of which,
though, expressed Phox2b (Fig. 3B), in contrast
to the cranial nerves that produce parasympathetic
ganglia at the same stage (Fig. 3E). Deletion of
all motor fibers in Olig2–/– embryos spared only
two thin, presumably sensory, projections from
the lumbosacral plexus (Fig. 3C), also devoid of
Phox2b+ cells (Fig. 3D and fig. S10). Despite this
massive atrophy, the pelvic ganglion appeared
intact (Fig. 3C, fig. S10, and movie S2). This was
verified quantitatively at E13.5 (Fig. 3, F and G).
Thus, even though 50% of its cells are post-
ganglionic to the pelvic nerve, the pelvic ganglion
forms before and independently of it, as befits a
sympathetic ganglion but contrary to parasym-
pathetic ones.
Thus, the sacral visceral nervous system is the

caudal outpost of the sympathetic outflow (Fig. 4
and fig. S11), the autonomic nervous system being
divided in a cranial and a spinal autonomic sys-
tem, in linewith certain evolutionary speculations
(26). This new understanding of the anatomy
accounts for many data that were at odds with
the previous one. For example, although schematics
generally represent the sacral pathway to the
rectum as disynaptic—i.e., vagal-like—[e.g., (3)],
it is in fact predominantly (27) if not exclusively
(28) trisynaptic—i.e., sympathetic-like (29). Despite
the dogma of lumbosacral antagonism on the
bladder detrusor muscle, the lumbar inhibition
is experimentally absent (4) or of dubious func-
tional relevance (30). The synergy of the lumbar
and sacral pathway for vasodilatation in external
sexual organs [reviewed in (29)] shows a conti-
nuity of action—rather than antagonism, as the
old model suggested—across the gap between
the thoracolumbar and sacral outflows.
The sympathetic identity of all sacral and pelvic

autonomic neurons, which our data unveil, pro-
vides a new framework for discoveries on pelvic
neuroanatomy and physiology.
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◥PLANT SCIENCE

Phytochrome B integrates light and
temperature signals in Arabidopsis
Martina Legris,1 Cornelia Klose,2* E. Sethe Burgie,3* Cecilia Costigliolo Rojas,1*
Maximiliano Neme,1 Andreas Hiltbrunner,2,4 Philip A. Wigge,5 Eberhard Schäfer,2,4†
Richard D. Vierstra,3† Jorge J. Casal1,6‡

Ambient temperature regulates many aspects of plant growth and development, but its
sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor
participates in temperature perception through its temperature-dependent reversion from the
active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing
Arabidopsis seedlings to warm environments reduce both the abundance of the biologically
active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight.
Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally
stable variants under various combinations of light and temperature revealed that phyB is
physiologically responsive to both signals.We therefore propose that in addition to its
photoreceptor functions, phyB is a temperature sensor in plants.

P
lants have the capacity to adjust their growth
and development in response to light and
temperature cues (1). Temperature-sensing
helps plants determine when to germinate,
adjust their body plan to protect themselves

from adverse temperatures, and flower. Warm

temperatures as well as reduced light resulting
from vegetative shade promote stem growth, en-
abling seedlings to avoid heat stress and canopy
shade from neighboring plants. Whereas light
perception is driven by a collection of identified
photoreceptors—including the red/far-red light-
absorbing phytochromes; the blue/ultraviolet-A
(UV-A) light–absorbing cryptochromes, photo-
tropins, andmembers of the Zeitlupe family; and
the UV-B–absorbing UVR8 (2)—temperature
sensors remain to be established (3). Finding
the identity (or identities) of temperature sensors
would be of particular relevance in the context of
climate change (4).
PhytochromeB (phyB) is themainphotoreceptor

controlling growth in Arabidopsis seedlings ex-
posed to different shade conditions (5). Like others
in the phytochrome family, phyB is a homodi-
meric chromoprotein,with each subunit harboring
a covalently bound phytochromobilin chromo-
phore. phyB exists in two photo-interconvertible
forms: a red light–absorbing Pr state that is bio-

logically inactive and a far-red light–absorbing
Pfr state that is biologically active (6, 7). Whereas
Pr arises upon assemblywith the bilin, formation
of Pfr requires light, and its levels are strongly
influenced by the red/far-red light ratio. Conse-
quently, because red light is absorbed by photo-
synthetic pigments, shade light from neighboring
vegetation has a strong impact on Pfr levels by
reducing this ratio (8). phyB Pfr also spontaneously
reverts back to Pr in a light-independent re-
action called thermal reversion (9–11). Tradi-
tionally, thermal reversion was assumed to be
too slow relative to the light reactions to affect
the Pfr status of phyB, even under moderate ir-
radiances found in natural environments, but
two observations contradict this view. First, the
formation of phyB nuclear bodies, which reflects
the status of Pfr, is affected by light up to ir-
radiances much higher than expected if thermal
reversion were slow (12). Second, it is now clear
that thermal reversion occurs in two steps. Al-
though the first step, from the Pfr:Pfr homo-
dimer (D2) to the Pfr:Pr heterodimer (D1), is
slow (kr2), the second step, from the Pfr:Pr het-
erodimer to the Pr:Pr homodimer (D0), is almost
two orders of magnitude faster (kr1) (Fig. 1A) (11).
Physiologically relevant temperatures could

change the magnitude of kr1 and consequently
affect Pfr and D2 levels, even under illumination
(Fig. 1A). To test this hypothesis, we used in vitro
and in vivo spectroscopy and analysis of phyB
nuclear bodies by means of confocal microscopy.
For the first of these approaches, we produced
recombinant full-length phyB bearing its phyto-
chromobilin chromophore.When irradiated under
continuous red light, the in vitro absorbance at
725 nm reached lower values at higher temper-
atures, which is indicative of reduced steady-state
levels of Pfr (Fig. 1, B and C). We calculated the
differences between the steady-state absorb-
ance spectra in darkness and continuous red light
(D absorbance). The amplitude between the max-
imumandminimumpeaks ofD absorbance,which
represents the amount of Pfr, strongly decreased
between 10 and 30°C (Fig. 1, D and E). This char-
acteristic of phyB differs from the typical behavior
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Materials and Methods 

Histology. 

-In situ hybridization and immunochemistry have been described in ref (32).  

-Diaphorase staining on cryostat sections was performed as described in ref (33). 

-Immunofluorescence on cryostat or vibratome sections was performed as 

previously described (25).  Whole-processed embryos where fixed overnight in 4% 

paraformaldehyde (in PBS) and dissected spinal cords were fixed for 2 hours at room 

temperature. Antigen retrieval, by boiling for 10 minutes in sodium citrate (10mM) was 

needed for optimal labeling with the α-Islet antibody. 

 

Wholemount immunofluorescent staining using the 3DISCO method was adapted 

from ref (34). All steps up to the imaging of the embryos were performed under nutation. 

Embryos at stage E11.5 were fixed overnight in 4% paraformaldehyde (in PBS), serially 

dehydrated in graded methanol (in PBS) up to 100% methanol and then bleached using 

Dent’s bleach overnight at 4°C. Following serial washes in 100% methanol, the embryos 

were incubated in Dent’s fixative overnight at 4°C. The embryos were then serially 

rehydrated in graded methanol (in PBS) up until re-immersion in PBS. Embryos were 

further subjected to incubation at 70°C to optimize antigen recognition by the anti-

Phox2b antibody. Following washes in PBS-Tween (0.1%), tiny superficial perforations 

were made in the embryo with a minutien pin to facilitate antibody penetration. The 

embryos were then incubated with primary antibodies in blocking buffer (20% DMSO, 

5% FCS in PBS) for 5 days at room temperature. Following washes in PBS-Tween 

(0.1%) at room temperature, secondary antibodies in blocking buffer were then applied 

for 4 days at room temperature. Finally, embryos were cleared following the 3DISCO 

protocol subsequent to washes in PBS-Tween (0.1%) at room temperature, Embryos were 

imaged using a SP8 confocal microscope (Leica). 3D reconstructions and videos were 

obtained using the IMARIS imaging software.  

 

Antibodies 

The following primary antibodies were used for immunochemistry and 

immunofluorescent staining: 

 

α-2H3 (NF), Mouse, 1:500, Hybridoma Bank (#2H3) 

α-bIII Tubulin (Tuj1), Mouse, 1:500, Covance (#MMS-435P) 

α-dsRed, Rabbit, 1:500, Clontech (#632496) 

α-Tomato, Goat, 1:1000, Sicgen (#AB0040-200) 

α-Islet1:2, Mouse, 1:400 (40.2D6 and 39.4D5, Hybridoma Bank) 

α-Phox2b, Rabbit, 1:500 (35) 

α-Phox2b, Guinea Pig, 1:500 (36) 

α-Phox2a, Rabbit, 1:500 (37) 

α-Sox10, Goat, 1:250, Santa Cruz (#SC-17342) 

α-FoxP1, Rabbit, Abcam,1:200 (#AB-16645) 

 

The following secondary antibodies were used: 
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α-rabbit Cy3, 1:500, Jackson Immunoresearch Laboratories (#711-165-152) 

α-rabbit A488, 1:500, Jackson Immunoresearch Laboratories (#711-545-152) 

α-goat Cy3, 1:500, Jackson Immunoresearch Laboratories (#705-166-147)  

α-goat A647, 1:500, Jackson Immunoresearch Laboratories (#705-606-147) 

α-rabbit Cy3, 1:500, Jackson Immunoresearch Laboratories (#711-165-152) 

α-mouse Cy3, 1:500, Jackson Immunoresearch Laboratories (#715-165-150) 

α-mouse A488, 1:500, Invitrogen (#A-21202) 

α-mouse Cy5, 1:500, Jackson Immunoresearch Laboratories (#715-175-150) 

 

Immunohistochemical reactions were processed with the Vectastain Elite ABC kits 

(PK-6101 and PK-6012; Vector Laboratories) as per manufacturer’s guidelines followed 

by colour development using DAB (3,3'-Diaminobenzidine). 

 

Probes  

For the Phox2b riboprobe, primers containing SP6 and T7 overhangs were used to 

amplify a 635 bp region (nucleotides 123 – 757) from a plasmid containing the full-

length Phox2b cDNA sequence. The purified amplicon was then used as the template for 

antisense probe synthesis using T7 RNA polymerase. 

Forward Primer: 5’-CCGTCTCCACATCCATCTTT-3’ 

Reverse Primer: 5’-TCAGTGCTCTTGGCCTCTTT-3’ 

The other probes were: Gata3 (gift of JD Engel), Hand1 (Stratagene), Hmx2 (gift of 

E.E. Turner), Hmx3 (gift of S. Mansour), Islet1 (37), Tbx2 (gift of A. Kispert), Tbx3 (gift 

of V.M Christoffels), Tbx20 (38), VAChT (Source BioScience, UK, 40129421 (CK3-

a14) IMAGE clone). 

 

Transgenic Mouse Lines: 

-Phox2b::Cre (39): BAC transgenic line expressing Cre under the control of the 

Phox2b promoter. 

-Rosa
lox-stop-lox-tdTomato

 (Rosa
tdT

) (40): Knock in line expressing the reporter gene 

tdTomato from the Rosa locus in a Cre-dependent manner. 

-Phox2b
LacZ/+

 line (31): Knock in line expressing the reporter gene LacZ from the 

second exon of the Phox2b locus, which is disrupted and lead to a null phenotype in 

Phox2b
LacZ/LacZ

 embryos.  

-Olig2Cre line (41):  Knock in of Cre in the Olig2 locus (Jackson Laboratories, 

Stock #25567).  

 

All animal studies were done in accordance with the guidelines issued by the French 

Ministry of Agriculture and have been approved by the Direction Départementale des 

Services Vétérinaires de Paris. 

 

Image Analyses. 

To measure the size of the pelvic ganglion on cryosections from E13.5 Olig2
+/—

 and 

Olig2
—/—

 embryos hybridized for Phox2b and immunostained for neurofilament, we used 

the open source image analyses tool ilastik (42). Pixels were segmented by a Random 

Forest Classifier into signal (corresponding to the pelvic ganglion) and background 

(corresponding to surrounding tissues and nerve fibers). Segmentation on one section was 
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optimized through an iterative training procedure based on color/intensity, edge and 

texture, and subsequently applied to the batch processing of all sections passing through 

one pelvic ganglion. Local neighborhoods for calculating edge and texture were defined 

as 3 X 3 pixels and 5 X 5 pixels. Finally, scattered signal areas smaller than 0.2μm2 were 

removed on FIJI. The remaining signal area corresponded to the pelvic ganglion and was 

measured on 5 to 6 consecutive sections, depending on ganglia. The volume of the 

ganglion was deduced by multiplying the surface by the thickness of the sections (20μm). 

Wild-type and mutant ganglia were compared by a paired two-tailed Student’s t-test. 
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Figure S1 

 

NOS is not expressed neither in branchiomotor neurons nor in hindbrain 

preganglionic neurons. Transverse sections of the hindbrain at E17.5 stained for 

diaphorase activity and Phox2b immunohistochemisty and passing through: (A) the facial 

nucleus (nVII); (B) the nucleus ambiguus (nA); (C) the dorsal nucleus of the vagus nerve 

(nX); (D) the pons, showing NOS+ neurons of the raphe (blue arrowhead). No double 

Phox2b+/NOS+ neurons were found in the hindbrain. 
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Figure S2 

Expression of Tbx3 in all branchial and visceral motoneurons of the hindbrain. 

Longitudinal section though an E11.5 medulla, stained by combined Phox2b 

immunohostochemistry and Tbx3 in situ hybridization. In addition to nX (Fig. 2), Tbx3 is 

expressed in salivatory motoneurons (nSal) and the nucleus ambiguus (nA). Expression is 

also found in a subset of migrating facial motoneuronal precursors (red arrowheads). 

nVII: facial motor nucleus. 
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Figure S3 

 

Maintenance at E16.5 of a parasympathetic genetic signature by cranial 

preganglionics and of a sympathetic genetic signature by both thoracic and sacral 

preganglionics. Transverse sections at E16.5 through the right half of the medulla (left 

column), thoracolumbar spinal cord (middle column) and sacral spinal cord (right 

column), stained with the indicated antibodies and probes. Arrowheads point to the nX in 

the left column and to spinal preganglionics in the middle and right columns. 
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Figure S4 

 

Anatomical location of sympathetic and parasympathetic ganglia in mouse embryos 

at E11.5 and E13.5. (a-c) Parasagittal sections through a whole mouse embryo at E11.5 

(a) or E13.5 (b,c), stained by immunohistochemistry for Phox2b. (d-f) Parasagittal 

sections through the urogenital region of an E13.5 embryo, showing different aspects of 

the pelvic ganglion. (d) is a higher magnification of the area boxed in (b). Red arrow: an 

intramural ganglion of the bladder. gg: ganglion; dmnX: dorsal motor nucleus of the 

vagus nerve; nTS: nucleus of the solitary tract. Scale bar: a-c, 1mm; d-f, 0.5mm. 

  

74



 

 

9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5 

 

Pelvic and accessory ganglia at E16.5. Two parasagittal sections through the bladder 

and the pelvic ganglion at E16.5 stained by immunohistochemistry for Phox2b. The main 

ganglion appears split in a number of lobes. As previously described (43), small ganglia 

or isolated Phox2b+ neurons can be seen in the wall of the bladder (red arrowheads), 

along the urethra (black arrowhead) and along the ureter (blue arrowhead). 
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Figure S6 

 

Sympathetic genetic signature of the adrenal medulla. Parasagittal sections through 

the adrenal medulla at E13.5 stained with the indicated probes or antibodies. The 

transcriptional signature is Phox2b+/Gata3+/Hand1+/Islet+/Hmx2-/Hmx3-, thus 

sympathetic. 
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Figure S7 

 

Expression of Hmx2 and Hmx3 in cardiac and ciliary ganglia. Parasagittal sections in 

an E13.5 embryo stained for immunhistochemistry against Phox2b and Hmx3 (left) or 

Hmx2 (right) in situ hybridization, showing expression of all three genes in the ciliary 

ganglion (upper panels) and the cardiac ganglia (lower panels).  
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Figure S8 

Pelvic and bladder intramural ganglia retain a sympathetic signature at E16.5. 

Sagittal sections through parasympathetic ganglia (left), the lumbar paravertebral 

sympathetic chain (middle) and the pelvic ganglion (right) and intramural ganglia of the 

bladder (arrowheads in the right panels) at E16.5, stained by inmmunohistochemistry for 

Phox2b, a determinant of all autonomic ganglia (31), and in situ hybridization for the 

indicated probes. O: otic ganglion; S: sphenopalatine ganglion; SM: submandibular 

ganglion (all parasympathetic ganglia). By this stage Hmx2 expression has been partially 

downregulated in parasympathetic ganglia. Note that some intramural ganglia of the 

bladder have been previously shown to contain noradrenalin (43), in line with their 

sympathetic nature demonstrated here. 
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Figure S9 

 

The ganglion of Remak has a sympathetic genetic identity. Transverse sections 

through a chicken embryo at 5 days post fertilization, passing through the hindgut. The 

ganglion of Remak (arrowhead) coexpresses Phox2b with the sympathetic markers Islet 

(detected by an Islet1-2 antibody) and Hand1, but not the parasympathetic marker Hmx3, 

which is expressed at the same stage in the ciliary ganglion (cg). Islet and Hand1 are also 

expressed in the mesenchymal wall of the gut (m).  
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Figure S10 

The pelvic ganglion forms in the absence of the pelvic nerve. Wholemount 

immunofluorescence with the indicated antibodies on an Olig2
—/—

  littermate of the 

E11.5 embryo shown in Fig. 3. In this embryo, no nerve projection is seen at all towards 

the pelvic ganglion, which nevertheless is present and indistinguishable from its 

counterpart in heterozygotes (see Fig. 3). L5, L6 and S1: fifth and sixth lumbar and first 

sacral roots. PG: pelvic ganglion. 
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Figure S11. Revised anatomy of the autonomic nervous system. The efferent path of 

the autonomic nervous system is made up of a spinal sympathetic outflow (in red) and a 

cranial parasympathetic outflow (in blue). III: occulumotor nerve; VII: facial nerve; IX: 

glossopharyngeal nerve; X: vagus nerve; gg: ganglion. 
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Movie S1 

The pelvic ganglion at E11.5 in a wild type. The pelvic nerve (in green) reaches the 

rostral dorsal and lateral edge of the pelvic ganglion (that expresses Phox2b, in red), 

whose cells lie for the most part distal and medial to them. 

Movie S2  

The pelvic ganglion at E11.5 in an Olig2 null mutant. When all motoneurons are 

deleted, a vestigial pelvic nerve, made up exclusively of sensory fibers, barely touches 

the pelvic ganglion (that expresses Phox2b, in red), which has the same appearance and 

size than in wild type embryos (see Movie S1). 
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Most of the enteric nervous system derives from the “vagal” neural
crest, lying at the level of somites 1–7, which invades the digestive
tract rostro-caudally from the foregut to the hindgut. Little is known
about the initial phase of this colonization, which brings enteric pre-
cursors into the foregut. Here we show that the “vagal crest” sub-
sumes two populations of enteric precursors with contrasted origins,
initial modes of migration, and destinations. Crest cells adjacent to
somites 1 and 2 produce Schwann cell precursors that colonize the
vagus nerve, which in turn guides them into the esophagus and
stomach. Crest cells adjacent to somites 3–7 belong to the crest
streams contributing to sympathetic chains: they migrate ventrally,
seed the sympathetic chains, and colonize the entire digestive tract
thence. Accordingly, enteric ganglia, like sympathetic ones, are atro-
phic when deprived of signaling through the tyrosine kinase receptor
ErbB3, while half of the esophageal ganglia require, like parasympa-
thetic ones, the nerve-associated formof the ErbB3 ligand, Neuregulin-1.
These dependencies might bear relevance to Hirschsprung disease,
with which alleles of Neuregulin-1 are associated.

enteric nervous system | neural crest | chicken | mouse | Neuregulin1

The enteric nervous system (ENS) is, for the most part, formed
by one rostro-caudal wave of migrating neural crest-derived

precursors that originate in the “vagal neural crest,” lying from the
levels of somites 1–7 (refs. 1 and 2 and references therein). The
progression of enteric precursors through the postgastric digestive
tract has been extensively studied (3, 4), in particular with respect
to its dependency on Glial-derived neurotrophic-factor (GDNF)
signaling through the tyrosine kinase receptor Ret and its di-
merization partner GFRα1. In contrast, the inception of the in-
vasive process (i.e., the events that bring the vagal neural crest in
the walls of the esophagus) remain controversial. Early observa-
tions inspired the hypothesis that enteric precursors were nerve-
associated cells that followed the vagus (Xth) cranial nerve (which
provides extrinsic innervation to the gut) (5). However, these
studies ignored the neural crest as such and were evinced from the
corpus of accepted knowledge once the neural crest origin of
enteric neurons was firmly established (6, 7) and are now long
forgotten. Moreover, enteric precursors were later spotted ahead
of the incipient vagus nerve, which has thus been viewed as fol-
lowing and “overtaking” them (8). An ensuing paradox is that the
adjective “vagal” has stuck to the enteric crest after the vagus
nerve was no longer assigned any role. In mouse embryos, it was
proposed that the vagal crest, defined as spanning somites 1–5 (9),
colonizes most of the gut in addition to forming the superior
cervical ganglion (and was hence called “sympatho-enteric”),
while an adjacent “anterior trunk” (cervical) crest would populate
the esophagus exclusively. This dichotomy, however, was never
fully integrated in the canonical narrative of ENS development (e.
g., ref. 10) and remains at odds with the situation in chicken,
where the most-caudal vagal crest (corresponding to the anterior
trunk crest of ref. 9) colonizes not the most rostral but the most
caudal part of the digestive tract (11). More recently, the vagal

crest was proposed as a transitional entity between the cranial and
trunk region, where both a dorsal and a ventral migration pathway
would take place in temporal succession (12). Finally, several
mutations, while they completely block the rostro-caudal invasion
of the gut mesenchyme by enteric precursors past the stomach,
respect, to an extent or for a while, the colonization of the
esophagus and stomach (see below). Altogether, this slim body of
data, some of them contradictory, shows that foregut colonization
by enteric precursors obeys rules different from the rest of the
digestive tract, and is still poorly understood.

Results
Schwann Cell Precursors of the Vagus Nerve Contribute Neurons to the
Foregut. Null mutations in the genes for GDNF, its receptor
GFRα1, its coreceptor Ret (9, 13–16), and for the pan-autonomic
homeodomain transcription factor Phox2b (17), partially spare en-
teric neuronal precursors in a region that, strikingly, is coextensive
with the stretch of the vagus nerve that travels alongside the di-
gestive tract (Fig. S1): from the larynx down to the stomach, where
the left vagus arborizes terminally and the right vagus veers off to
join the prevertebral sympathetic plexi. This suggests that the vagus
nerve itself could guide enteric precursors to the esophagus and
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stomach, independently of Phox2b or GDNF signaling, as it
guides—and other cranial nerves guide—parasympathetic gangli-
onic precursors (18, 19). Evocative of such a mechanism was the
fact that, at embryonic day (E) 11.5, the vagus nerve was covered
with Sox10+, Phox2b+ cells coexpressing the Schwann cell precursor
markers PLP-1 and Cadherin 19 (Fig. S2).
We investigated a role for the vagus nerve in the formation of

esophageal ganglia in two ways. First, we prevented the formation
of the nerve by deleting most neurons that project into it: viscer-
osensory neurons born in epibranchial placodes, as well as branchial
and visceral motor neurons of the hindbrain were killed using a
toxic variant of the sodium channel ASIC2a conditionally expressed
from the promoter of Phox2a (18), the paralogue of Phox2b
expressed in all these cell types (20). In Pgk:Cre;Phox2aASIC2a em-
bryos, where Cre-mediated recombination occurs in the egg—thus
where all Phox2a+ cells are killed by ASIC2a—the vagus nerve was
reduced to a vestigial ramus, most likely composed of somatosen-
sory fibers emanating from its proximal ganglion (Fig. 1A). Conse-
quently, Sox10+ cells in the esophageal region were fewer at E11.5
(Fig. 1A) and, 2 days later, 36% of Phox2b+ neuronal precursors
were missing in the wall of the esophagus (Fig. 1B). Second, we
hampered signaling by the vagus nerve to its Schwann cell

precursors through the epidermal growth factor family protein
Neuregulin-1 (Nrg1) (21) by partnering a floxed allele of Nrg1
with a Cre recombinase driven by the Phox2b promoter, thus
expressed in all cranial visceral sensory and motor neurons (20).
Phox2b::Cre;Nrg1lox/lox embryos lacked Schwann cell precursors asso-
ciated with the facial and glossopharyngeal nerves, which moreover
appeared defasciculated (Fig. S3). Concordantly all parasympathetic
ganglia appended to these nerves were missing 2 days later (Fig. S3),
phenocopying the constitutive knockouts for the receptor of Nrg1, the
tyrosine kinase receptor ErbB3, which has been documented after
birth (19). Similarly, the vagus nerve was depleted of Schwann cell
precursors and, concomitantly, the esophageal ganglia were atrophic
by 46% (Fig. 1 C and D). The effect was noncell-autonomous, as
shown by the lack of phenotype ofWnt1::Cre;Nrg1lox/lox embryos (Fig.
1D) and the lack of expression of Nrg1 by enteric precursors (Fig. S5).
Thus, about half of the esophageal nervous system (or more if
compensatory mechanisms take place in the mutants) derives from
Schwann cell precursors of the vagus nerve.

The Cervical Sympathetic Crest Contributes Most of the ENS. In con-
trast, the postgastric ENS was not affected in Pgk:Cre;Phox2aASIC2a

and only mildly so in Phox2b::Cre;Nrg1lox/lox mutants (Fig. S4).

Fig. 1. Genetic damage to the vagus nerve depletes the esophageal nervous system. (A and C) Lateral views of whole-mount E11.5 (A) or E10.5 (C) embryos
stained for Sox10 and Neurofilament, in the indicated genotypes. For each genotype, the Middle and Bottom panels are a magnified view of the area boxed
in the Top panel. Atrophy of the vagus nerve (A), or deletion of Neuregulin-1 from vagal fibers (C), leads to depletion of the pool of Sox10+ cells (Middle)
along the vagus path (Bottom) and defasciculation of the nerve (C). (B and D) (Upper) Cross-sections through the esophagus at E13.5 in the indicated
genotypes, stained for Phox2b. (Lower) Count of Phox2b+ neuronal precursors in the esophagus at E13.5, in the indicated genotypes. Esophageal
precursors were depleted in Pgk:Cre;Phox2aASIC2a (64 ± 1.6%/wild-type; P = 0.001, n = 4) and Phox2b::Cre;Nrg1lox/lox (54 ± 2.6%/wild-type; P = 0.004,
n = 3) embryos, but were not significantly affected in Wnt1::Cre;Phox2aASIC2 a (90 ± 4.2%/wild-type; P = 0.898, n = 4) or in Wnt1::Cre;Nrg1lox/lox (105 ±
4.77%/wild-type; P = 0.842, n = 3) embryos. Error bars indicate SEM. **P < 0.005, ***P < 0.001. The Wnt1::Cre;Phox2aASIC2a and Wnt1::Cre;Nrg1lox/lox genetic
backgrounds serve as controls, in which the expression of ASIC2a or the recombination of Nrg1 respectively, is targeted to the neural-crest derived enteric
precursors, rather than all Phox2a+ or Phox2b+ cells. The lack of phenotype—most likely because only a small subset of enteric precursors express Phox2a (20), and
none express Nrg1 at this stage (Fig. S5)—ensures that in Pgk:Cre;Phox2aASIC2aand Phox2b::Cre;Nrg1lox/lox embryos the enteric phenotype is noncell‐autonomous,
and due to the damage of the Phox2a- or Phox2b-expressing components of the vagus nerve. (Scale bars: A and B, 500 μm; B and D, 50 μm.)
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Therefore, either a compensatory mechanism acts during the mi-
gration of enteric precursors to mitigate cell loss downstream of the
stomach, or a second, nerve-independent population of cells in-
vades the postgastric digestive tract (as well as the esophagus, since
only half of its resident neurons are missing when the vagus nerve is
damaged). Consistent with the latter hypothesis, we spotted a
contingent of Sox10+ cells at E10 in continuity with the incipient
cervical sympathetic chain at the level of the esophagus (red ar-
rowhead in Fig. 2 A and D and Movie S1). On transverse sections
(Fig. 2 B and C), these cells formed a stream that followed the

ventral neural crest pathway (Fig. 2C, sections 3, 4, and compatible
images in refs. 9, 12, and 22), passed by the lateral edges of the
dorsal aortas, overshot them, and invaded the walls of the digestive
tract (red arrowhead in Fig. 2C, section 4). The bulk of these
“postvagal” (i.e., cervical) cells were mostly segregated from the
rostrally situated vagus-associated ones (Fig. 2 A and D, white ar-
rowhead), both populations mingling only at a narrow junction
(white asterisk in Fig. 2C, section 3).
To directly demonstrate the contrasting migratory behavior of the

two types of enteric crest—vagal proper and postvagal—we turned
to the chicken embryo, where enteric neurons develop in a similar
manner as in mouse (1, 2). We performed isotopic grafts of neural
tubes from GFP transgenic chicken embryos into wild-type hosts.
Grafts of neural tubes adjacent to somites 1 and 2 produced—in
addition to the circumpharyngeal crest (marked Cc in Fig. 3A) that
contributes to the heart and third branchial arch (23)—a neural
crest that was intimately associated with the fibers of the vagus
nerve at E3.5 (Fig. 3A). These cells correspond to the contingent of
enteric precursors previously described as following a “dorsolateral”
migration path (ref. 23 and references therein). At E7, these grafts
had seeded mostly the esophagus and stomach, although a few cells
could be found all of the way to the colon (Fig. 3C). In contrast,
grafts adjacent to somites 3–7 produced exclusively a neural crest
that followed the ventral path and invaded the digestive tract ahead
of, and at a right angle to, the descending vagus nerve and its as-
sociated cells (Fig. 3B). At E7, cells arising from such grafts had
contributed to the entire ENS (Fig. 3D). These different rostro-
caudal extents of enteric colonization are compatible with pre-
vious reports using grafts with different limits, which blurred the
sharp dichotomy (24).
An additional contrast between the vagal grafts (facing somites

1–2) and postvagal, cervical grafts (facing somites 3–7), is that the
latter colonized the sympathetic chain (Fig. 3F and Fig. S6), while
the former did not (Fig. 3E and Fig. S6). Even grafts restricted to
the level of somite 3 or 4 contributed many cells to the superior
cervical ganglia, mostly glia [as was previously observed with S1–
S3 grafts (25)] and an occasional Th+ cell in the case of S4 grafts
(Fig. S6). Thus, the sympathetic and enteric crest overlap, not only
between somites 5 and 7, as previously recognized (26), but all of
the way to somite 3 (but no further rostrally), and nothing distin-
guishes their ventral migratory paths toward the aorta.

Nrg1/ErbB3 Signaling Is Required for the Formation of the ENS. Schwann
cell precursors colonize nerves by responding to axonal Nrg1 (21)
(Fig. 1 and Fig. S3) through the tyrosine kinase receptor ErbB3.
Sympathetic precursors also express ErbB3, through which they
respond to mesenchymal Nrg1 that directs their ventral migration
toward the aorta (27, 28). Consequently, the sympathetic chains are
massively atrophic in ErbB3 knockouts (28) (white arrowheads in
Fig. S7). Because at cervical levels the sympathetic crest is also the
source of most of the ENS, we surmised that the latter should
likewise depend on Erbb3. Following deletion of ErbB3 from the
neural crest—in a Wnt1::Cre;ErbB3lox/lox background—the cervical
sympatho-enteric population was depleted at E10 (red arrow-
heads in Fig. S7) and the corresponding region of the foregut
contained fewer Sox10+ cells at E10.5 (Fig. 4A). At E13.5, the
esophageal ganglia were atrophic by 68% (Fig. 4B) [i.e., more
than in Phox2b::Cre;Nrg1lox/lox embryos (Fig. 1), likely due to
the depletion of both the vagal and cervical contributions]. In
addition, the postgastric ENS displayed a gradient of atrophy,
from 76% just caudal to the stomach to 68% rostral to the cecum
(Fig. 4B). To test whether the atrophy also affects the rectal aspect
of the digestive tube (typically aganglionic in Hirschsprung dis-
ease), we examined the ENS at E17.5 and found a 51% atrophy
in Wnt1::Cre;ErbB3lox/lox embryos (Fig. 4C). The diminishing
rostro-caudal gradient of atrophy of the ENS suggests that the
digestive tract provides compensatory proliferative signals.

Fig. 2. Two distinct streams of cells migrate to the esophagus in mouse
embryos. (A) Lateral view of a whole mount at E10 stained with the in-
dicated markers and showing the four planes of sections displayed in B and C
and a boxed area enlarged in D. (B) Oblique transverse sections through an
E10 wild-type mouse embryo along the four planes indicated in A, stained
for neurofilament (NF, the signal in the lining of the esophagus is due to
cross-reactivity of the secondary antibody), with indications of anatomical
landmarks: Ao, dorsal aorta; Cv, cardinal vein; X, nodose ganglion; Xn, vagus
nerve. (C) Same sections as in B costained for Phox2b, NF, and Sox10. At the
more rostral levels (sections 1, 2) Sox10+ cells migrate along a dorsal path-
way (DP), following the nascent vagus nerve, lateral to the anterior cardinal
vein, and joining the forming nodose ganglion; at more caudal levels (sec-
tions 3, 4), a stream of Sox10+ cells follows the ventral migratory pathway
(VP) and colonizes the sides of the dorsal aortas and the lateral walls of the
esophagus (red arrowhead, also in A and D). The two populations are con-
nected only at a narrow junction (white asterisk in section 3). (D) Sagittal
optical sections at the level of the boxed area in A, along a lateral (Left) and
more medial (Right) plane. The white arrowhead marks the discontinuity
between the vagal-associated cell population and the postvagal one (red
arrowhead). (Scale bars: A and D, 500 μm; B and C, 50 μm.)
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Discussion
In sum, our data substantiate the proposal that the vagal crest is a
pseudo or “hybrid” entity (12, 23). More precisely, we show that it is
a juxtaposition of three radically different cell populations, two of
them precursors for the ENS: on the one hand, emerging from
somites 1 and 2, (i) the circumpharyngeal crest (destined to the
heart and third branchial arch) and (ii) Schwann-cell precursors of

the vagus nerve; on the other hand, emerging from somites 3–7,
(iii) the cervical (upper cervical in chicken) region of the trunk crest.
Schwann cell precursors destined to the ENS behave like

parasympathetic precursors (18): they migrate along a nerve and
form autonomic ganglia at their final destination, here, enteric
ganglia in the walls of esophagus and stomach. They derive from a
crest that is vagal indeed, and more literally than the original term
intended, since it populates the vagus nerve. Of note, vagus nerve-
derived enteric precursors have been proposed back in the 1910s
based on histological descriptions (5), but have been overlooked
since then.

Fig. 3. Two distinct streams of cells migrate into the esophagus in chicken
embryos. (A) E3.5 chicken embryo after a stage 10 isotopic graft of the neural
tube facing somites 1 and 2, from a GFP transgenic donor to a wild-type host.
(Upper) Whole-mount lateral view showing that the graft has produced cir-
cumpharyngeal crest (Cc) and cells associated with fibers, mostly in the vagus
nerve (X) but also in a connecting meshwork between the hypoglossal nerve
and the nodose ganglion (green arrowhead); a few cells have migrated ahead
of the vagus nerve, all of the way to the stomach (St). (Lower) Transverse
section at the level indicated on the Upper panel, showing that the crest
produced by the graft reaches the esophagus (Oe) by following the vagus, not
the sides of the aorta (Ao) which is populated only by HNK1+;GFP− cells (red
arrowhead). (B, Upper) Same as above but with a graft facing somites 3–7. The
graft has produced cells associated with spinal nerves—and the hypoglossal
(XII)—the nascent sympathetic chain (white arrowhead), a few cells in the
esophagus and many more cells in the stomach than for the somite1-2 grafts.
(Lower) Transverse section at the level indicated on the Upper panel, showing
that the crest from the graft, apart from colonizing the hypoglossal (XII),
follows the ventral path and reaches the esophagus by circumnavigating the
dorsal aorta (yellow arrowhead), not by following the vagus. (C and D) Whole-
mount views of the digestive tube at E7 showing the presence of graft-derived
cells, after somite1–2 grafts (C) versus somite 3–7 grafts (D), at the rostro-
caudal levels indicated in the schematic on the right: (i) esophagus; (ii) gizzard;
(iii) preumbilical intestine; (iv) colon. At this stage the colon is still incompletely
colonized (level iv). (E and F) Sagittal sections through the superior cervical
ganglion at E5.5, stained with the indicated markers. [Scale bars: A and B
(Upper), 500 μm; A and B (Lower), 100 μm; C–F, 50 μm.]

Fig. 4. The ENS is atrophic in the absence of the tyrosine kinase receptor ErbB3.
(A) Lateral views of wholemount E10.5 embryos stained for Sox10, in the in-
dicated genotypes. In mutants where ErbB3 is deleted from the neural crest,
Sox10+ cells are partially depleted in the foregut. (Lower) Magnified views of the
area boxed in the Upper panels. (B) Sections through the esophagus (Upper) and
whole mounts of the midgut at two rostro-caudal levels [(Lower) low magnifi-
cations at Left, enlarged views (7× zoom) of the boxed area at Right] indicated
on the schematic on the Left, in E13.5 wild-type (Left column) and conditional
ErbB3 mutants (Right column), stained for Phox2b. The atrophy of the enteric
ganglia is quantified on the graphs. Wnt1::Cre;ErbB3lox/lox mutants showed
fewer esophageal precursors (level i: 32 ± 0.6%/wild-type; P = 0.003, n = 3) and
postgastric precursors (level ii: 24 ± 1.3%/wild-type; P = 0.0001, n = 4; level iii:
32 ± 2.8%/wild type; P = 0.007, n = 4). (C). Whole mounts of the distal hindgut
(enlarged views of the boxed area on the Right), in E17.5 wild-type (Left column)
and conditional ErbB3 mutants (Right column) stained for Phox2b (49 ± 0.41%;
P = 0,00001, n = 5. (Scale bars: A, 500 μm; B and C, 100 μm.). Error bars indicate
SEM. **P < 0.01, ***P < 0.005, ****P < 0.0005.

Espinosa-Medina et al. PNAS | November 7, 2017 | vol. 114 | no. 45 | 11983

D
EV

EL
O
PM

EN
TA

L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 IN

IS
T

 C
N

R
S

 o
n 

O
ct

ob
er

 2
8,

 2
02

0 

92



In contrast, the cervical crest migrates along the classically de-
scribed ventral pathway toward the dorsal aorta—where it con-
tributes to the sympathetic chain—and part of it, possibly the
major part at that level, overshoots the dorsal aorta to invade the
nearby esophageal mesenchyme. It remains to be explored what
determines some cells to home close to the aorta and others to
continue their voyage to the gut. This crest is thus sympatho-
enteric and has nothing vagal about it, not even a registration
with the vagal motor roots, as evidenced by the failure of isotopic
grafts of the neural tube at that level to contribute fibers to the
vagus nerve (Fig. 3B). [The term sympatho-enteric, which we
repurpose, was originally coined to describe the crest from somites
1–5 (9), which straddles the two populations that we identify here,
and therefore obscures their contrasted nature].
A third source of enteric precursors is the sacral crest, which

contributes 20% of the neurons in the descending colon and
rectum (29, 30). Since the major contribution of the sacral crest to
the autonomic nervous system, the pelvic ganglion, is entirely
sympathetic (31), the trunk crest is sympatho-enteric at both ends
(Fig. 5). Given that thoracic crest will produce enteric neurons
when transposed rostrally (32) and, more generally, that neural
crest cells are not specified before migration (33, 34), the re-
striction of the dual sympatho-enteric fate to the cervical and sa-
cral levels of the trunk crest is likely to stem, less from cell-intrinsic
fate restriction than from topological factors, such as the conti-
nuity of the peri-aortic and foregut mesenchymes at one end, and
the contiguity of the pelvic ganglion—a “staging site” for the en-
teric sacral crest (30, 35)—to the rectum at the other end.
A fourth, recently discovered source of enteric neurons are

Schwann cell precursors at a later differentiation stage than the
vagal ones we describe here, which travel along the mesenteric and
pelvic nerves and become enteric neurons after birth (36). Many
of them are presumably born in the thoracolumbar neural crest
and it thus appears that the trunk crest has been co-opted in all of
its regions (cervical, thoracolumbar, and sacral) to invade the gut,
but at different stages of development, according to a variety of
mechanisms and intermediates, in a seemingly opportunistic
fashion. It will be interesting to explore the evolutionary history of
this complicated and presumably stepwise assemblage. A recent
study in lamprey (37) showed a contribution of the trunk crest but
not of the vagal crest to the ENS. Since agnathans are suggested to
have no sympathetic neural crest derivative (38), the absence of
vagal contribution to the ENS fits with our data that the formerly
called “vagal” crest of gnathostomes is for the most part cervical
and sympathetic; but it also entails the surprising notion that the
vagus nerve itself does not carry Schwann cell precursors-like
enteroblasts to the gut of lampreys, when trunk nerves do.
Finally, after an early suggestion (39), we conclusively demon-

strate a role for ErbB-mediated signaling during the embryonic
development of the ENS. Better than the previous implication of
ErbB/Nrg1 signaling in postnatal enteric ganglia in vivo (40) or
in vitro (41), it could explain that common variants of Neuregulin-1,
the ErbB3 ligand, are associated with Hirschsprung’s disease,
which results from a partial agenesis of enteric ganglia (42). Given
the missing heritability in Hirschprung disease, our results are also
a suggestion to look for ErbB3 variants. Another possible clinical
relevance is to neuropathic cases of chronic intestinal pseudo-
obstruction (43).

Materials and Methods
In situ hybridization and immunochemistry have been described previously (44).
Immunofluorescence on cryostat or vibratome sections was performed as pre-
viously described (18). Whole-mount immunofluorescent staining using the
3DISCO method was adapted from ref. 45, as previously described (31). Whole
mounts of chicken embryos were treated as described in SI Materials and
Methods. Transgenic chicken expressing the GFP reporter ubiquitously (46) were
obtained from the Roslin Institut (University of Edinburgh). Chicken chimeras
were generated via transplantation of discrete segments of the neural tube,

including the neural crest, from GFP+ donors to wild-type hosts, as previously
described (47). References for all antibodies and mouse lines are in SI Materials
and Methods. Quantification of esophageal neurons and measurements of the

Fig. 5. Rostro-caudal levels of the neural crest contribution to the ENS.
Schematic of the central and autonomic nervous systems of a tetrapod
showing the three types of neural crest cells that can be distinguished
according to their fates: (i) sympathetic and sympathoadrenal (yellow) from
somite 8–28, that contributes to most para- and prevertebral sympathetic
ganglia (C: celiac; M: mesenteric) and the adrenal medulla (AM); (ii) sym-
patho-enteric (green) from somite 3–7 and caudal to somite 28, that con-
tributes to the superior cervical ganglion (SCG) and forms the pelvic
ganglion (P) [as well as the ganglion of Remak in chicken (RG)], and most of
the ENS; and (iii) parasympatho-enteric (blue), from preotic levels to somite
2, that forms parasympathetic ganglia and contributes to the foregut ner-
vous system. Gray dots represent postnatal contribution of Schwann cell
precursors of enteric extrinsic nerves to the ENS (36).
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surface occupied by enteric neuron nuclei in the postgastric ENS were per-
formed by use of FIJI software, as described in more details in SI Materials and
Methods. All animal studies were done in accordance with the guidelines issued
by the French Ministry of Agriculture and have been approved by the Direction
Départementale des Services Vétérinaires de Paris.
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Histology. Whole chicken and mice guts were fixed for 1 h in 4%
paraformaldehyde (in PBS), permeabilized in 1% Triton (in PBS)
for 30 min and incubated over night at 4 °C with primary antibodies
in blocking solution (1% DMSO, 0.1% Triton in PBS, 20% FCS).
After extensive washes in blocking solution, whole guts were in-
cubated over night at 4 °C, with secondary antibodies in blocking
solution. After several washes in 0.1% Triton in PBS, samples
were cleared in Glycerol 80% in PBS.
Whole chicken chimeras were cleared using ScaleA2 solution as

previously described (48). Samples were imaged using a SP8 or
SP5 confocal microscope (Leica). Three-dimensional reconstruc-
tions and videos were obtained using the IMARIS imaging soft-
ware. In situ hybridization and immunochemistry have been
described previously (44). Immunofluorescence on cryostat sec-
tions was performed as previously described (18). Whole-mount
immunofluorescent staining using the 3DISCO method was per-
formed as previously described (31).

Image Generation and Processing. Samples were imaged using a
SP8 or SP5 confocal microscope (Leica). Whole-embryo images
were obtained by tile-scanning with a 20×-immersion objective and
automatic stitching on a Leica SP8 confocal. Three-dimensional
reconstructions and videos were obtained using the IMARIS im-
aging software. Note that the rendering process in IMARIS
sometimes leads to the appearance of horizontal or vertical splices
in the final whole-embryo images, which are processing artifacts.
GFP/TH overlap panels in Fig. S6 are binary masks generated
using the ImageJ software. Each .lif confocal file was first con-
verted into .tiff, then run through a customized Macro involving
the following processing steps: (i) background subtraction of the
whole image; (ii) “despeckling”; (iii) “autothresholding”; (iv) bi-
nary mask generation (selection of the area of interest exclusively,
i.e. the ganglion area); and (v) image calculator: calculates final
binary image of the colocalized GFP/TH surfaces.

Antibodies and Probes. Antibodies and probes were as follows:

α-2H3 (NF), mouse, 1:500, Hybridoma Bank (#2H3);

α-bIII Tubulin (Tuj1), mouse, 1:500, Covance (#MMS-435P);

α-Phox2b, rabbit, 1:500 (20);

α-Phox2b, guinea pig, 1:500 (48);

α-Sox10, goat, 1:250, Santa Cruz (#SC-17342);

α-βgal, rabbit, 1:400, Cappel (#55976);

α-HuC/D mouse, 1:200, Invitrogen (MABN153);

α-GFP, chicken, 1:500, Aveslab (#GFP-1020);

α-HNK-1, mouse, 1:50, Hybridoma Bank (#3H5);

α-TH, rabbit, 1:800, Merck (#AB152);

α-rabbit Cy3, 1:500, Jackson Immunoresearch Laboratories
(#711–165-152);

α-rabbit A488, 1:500, Jackson Immunoresearch Laboratories
(#711–545-152);

α-goat Cy3, 1:500, Jackson Immunoresearch Laboratories
(#705–166-147);

α-goat A647, 1:500, Jackson Immunoresearch Laboratories
(#705–606-147);

α-mouse Cy3, 1:500, Jackson Immunoresearch Laboratories
(#715–165-150);

α-mouse A488, 1:500, Invitrogen (#A-21202);

α-guinea pig Cy3, 1:500, Invitrogen (#A-11073);

α-chicken A488, 1:500, Jackson Immunoresearch Laboratories
(#103–545-155).

Immunohistochemical reactions were processed with the Vec-
tastain Elite ABC kits (PK-6101 and PK-6012; Vector Laboratories)
as indicated by the manufacturer and color development was per-
formed using DAB.
The probes for Cadherin19 and PLP-1 (cDNA from Source

Bioscience, clones #IRCKp5014H0217Q and #IRAVp968G0365D,
respectively) were synthesized following the distributor’s informa-
tion. The other probe used was Peripherin (obtained from M. M.
Portier, Collège de France, Paris).

Transgenic Mouse Lines. Mouse lines used were as follows:

Phox2b::Cre(50): BAC transgenic line expressing Cre under
the control of the Phox2b promoter.

Phox2bLacZ/+ (17): Knockin line expressing the reporter gene
LacZ from the second exon of the Phox2b locus, which is
disrupted and lead to a null phenotype in Phox2bLacZ/LacZ

embryos.

Retfl-CFP/+ (51): Knockin line comprising floxed human Ret9
cDNA and CFP reporter in the first exon of the mouse Ret
locus. Activation of Cre recombinase results in the removal of
floxed Ret9, generating a CFP-knockin (Ret-null) allele.

Wnt1::Cre(52): Transgenic line expressing Cre under the con-
trol of the 3′ enhancer of Wnt1.

Pgk::Cre (53): Transgenic line expressing Cre in the germ line.

Phox2aASIC2a (P2aASIC) (18): Knockin line expressing the
toxic G430 mutant of the ASIC2a cation channel upon Cre
recombination under the control of Phox2a promoter.

ErbB3f (ErbB3Lox/Lox) (54): Activation of Cre recombinase re-
sults in the removal of floxed ERBB3, generating a ErbB3-null
allele, which lacks the same coding sequences as the previously
described ErbB3Δallele (55).

Nrg1tm3Cbm (Nrg1Lox/Lox) (56): A floxed allele of the Nrg-1 gene
containing loxP sites flanking exons 7 (containing sequence
alterations), 8 and 9 was generated. Activation of Cre recom-
binase results in the removal of floxed Nrg1, generating a Nrg-1
null allele.

NeuregulinΔEGF-lacZ (Nrg LacZ/+) (57, 58): Knock in line express-
ing the reporter gene LacZ from the exon of the Neuregulin1
locus.

All animal studies were done in accordance with the guidelines
issued by the French Ministry of Agriculture and have been
approved by theDirectionDépartementale des Services Vétérinaires
de Paris.

Statistical Analyses. For esophageal neuronal counting, transverse
sections of whole E13.5 embryos where immunostained for
Phox2b and one section of three was selected. The total number
of Phox2b+ cells in the esophageal walls was recorded using FIJI
Cell Counter.
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For postgastric neuronal countings, whole E13.5 guts were
dissected and immunostained for Phox2b. The surface occupied
by Phox2b+ enteric neurons was measured in three regions up to
the cecum (at equal distances from the stomach for both wild-
type and mutant embryos). First, stacked confocal images were
transformed into Binary images, with a threshold restricted to
the Phox2b+ cell surfaces. The total surface was then measured

automatically by the FIJI Measuring tool applied to a specific
perimeter of the total image (this perimeter was created to avoid
areas of the image empty of gut tissue). Then the relation be-
tween total surface area/perimeter per region was recorded.
The similarity of variances between each group of data were tested

using the F test. Statistical analysis was performed using unpaired
two-tailed t test. Results are expressed as mean ±SEM%/wild-type.

Fig. S1. Presence of enteric precursors associated with vagal nerve fibers in Ret and Phox2b mutants. (A) Lateral views of whole-mount E10.5 embryos of the
indicated genotypes stained with the indicated markers. A yellow circle indicates the position of the stomach primordium. (B) Close-ups of the esophageal
region stained with Sox10. (C) Close-ups on the esophageal region stained with Neurofilament. In Wnt1::Cre;RetCFP/CFP and Phox2bLacZ/LacZ mice Sox10+ (thus
neural crest-derived) cells are mostly confined to the fibers of the vagus nerve, unlike in the wild-type. (D, Upper) Transverse sections through the gut at the
positions indicated in A, stained for the indicated markers. (Lower) Higher magnifications of groups of cells costained for Sox10 and DAPI and either the
reporter Ret-CFP or Phox2b-LacZ. NCC are absent from the postgastric ENS in both Wnt1::Cre;RetCFP/CFP and Phox2bLacZ/LacZ mutants (D, sections d′ and f′). C1:
first cervical spinal nerve. DRG, dorsal root ganglia; Oe, esophagus; X, vagus nerve; XII, hypoglossal nerve. (Scale bars: A–C, 500 μm; D 50 μm.)
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Fig. S2. Vagal-associated enteric precursors share their molecular signature with Schwann cell precursors. (A–C) Sagittal sections through the foregut of an
E11.5 wild-type embryo, stained with the indicated antibodies and probes. Phox2b+ enteric precursors alongside the esophagus express the Schwann cell
precursor markers PLP-1 (B) and Cadh19 (C). Insets show higher magnifications of double-positive enteric precursors scattered in the esophageal wall. Oe,
esophagus; St, stomach. (Scale bars, 100 μm.)
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Fig. S3. Axonal Nrg1 is required for the migration of parasympathetic precursors along cranial nerves. (A and B) Lateral views of the head of whole-mount
embryos at E11.5 of the indicated genotypes, immunostained with the indicated markers, showing the facial nerve (VII), Jacobson’s nerve (JN), the corda
tympani (CT), and the greater petrosal nerve (GSPN), covered with Sox10+ neural crest-derived cells (some of them coexpressing Phox2b) in the wild-type (A),
but naked in the Nrg1 mutant (white arrowheads in B). (C and D) Parasagittal sections at E13.5 showing parasympathetic ganglia associated with these nerves
in the wild-type embryo (C)—the otic ganglion (Og), the submandibular ganglion (Smg), and the Sphenopalatine ganglion (Spg)—but absent in the
Nrg1 mutant (asterisks in D). Gg, geniculate ganglion; V, trigeminal ganglion. (Scale bars: A and B, 200 μm; C and D, 100 μm.)
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Fig. S4. Consequences on the postgastric ENS of the deletion of the vagus nerve or abrogation of its expression of Nrg1. (Upper) Quantitative analysis (see
Methods) of the surface occupied by Phox2b+ ENS neurons in the indicated mutant backgrounds. Phox2b::Cre;Nrg1lox/lox embryos have a mild atrophy of the
postgastric ENS (79 ± 1.1%/wild-type, P = 0.0047; n = 9; and 90 ± 2%/Wnt1::CreNrg1lox/lox, P = 0.0040; n = 5), due to loss of Nrg1 expression by the vagus nerve,
and not by enteric precursors, as shown by the lack of phenotype in Wnt1::Cre;Nrg1lox/lox (87 ± 2.3%/wild-type, P = 0.237; n = 5). Pgk::Cre;P2aASIC have no
phenotype (93 ± 1.2%/wild-type, P = 0.283; n = 4), presumably because genetic deletion of the nerve is less efficient or occurs later than abrogation of its
expression of Nrg1 (and in line with a weaker phenotype in the esophagus) (Fig. 1B). (Lower) Representative transverse sections through the postgastric ENS of
the indicated mutant backgrounds, immunostained for Phox2b. (Scale bar: 50 μm.) Error bars indicate SEM; **P < 0.005.
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Fig. S5. Esophageal neuronal precursors do not express Nrg1. (A) Transverse sections through the esophagus of E11.5 Nrg1LacZ/+ embryos, immunostained for
Sox10 (which labels all enteric precursors at this stage), NF (neurofilament, which labels fibers of the vagus nerve), and β-galactosidase (which labels cells that
express the Nrg1 reporter LacZ). Vagus nerve fibers are LacZ+, whereas enteric precursors are LacZ−. (Insets) Close up (3× zoom of a cell in the lower mag-
nification image) of a representative enteric precursor. (B) Transverse section through an E13.5 embryo at the level of a dorsal root ganglion (Left), the
esophagus (Center), and an intestinal loop (Right). Dorsal root ganglionic cells serve as a LacZ+ control, Sox10+/Phox2b+ esophageal and enteric precursors are
LacZ−. (Scale bars: A, 50 μm; B, 100μm.)
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Fig. S6. The superior cervical ganglion receives contribution of the neural crest from level S3 to S10. Sections through the rostral pole of cervical sympathetic
chain of chicken embryos at E5.5, after they received an isotopic graft of the neural tube from a GFP-transgenic donor at stage 10, at the indicated levels,
stained with the indicated antibodies. Two sections from two embryos are shown for each type of graft. GFP/TH overlap panels show higher-magnification
(Insets) of a GFP+/TH+ neuron or group of neurons (indicated by white arrowheads, Upper, corresponding to yellow arrowheads, Lower). S1–2 grafts do not
contribute any cell to the SCG, S3 only glia, S4 glia, and an occasional neuron, S5–S10 many neurons and glia. (Scale bar, 50 μm.)

Fig. S7. Atrophy of the sympathetic chain in Wnt1Cre;ErbB3lox/lox mutants. Whole-mount views of E10 embryos of the indicated genotypes, immunostained
with the indicated antibodies. White arrowhead: sympathetic chain (SC); red arrowhead: cervical contingent of sympatho-enteric cells; X, vagus nerve. (Scale
bar, 500 μm.)
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Movie S1. Two distinct streams of cells migrate to the esophagus in an E10 mouse embryo. Three-dimensional reconstruction of an E10 Wnt1::Cre ;RetCFP/+

embryo. The vagus nerve (NF+, blue) projects dorsolaterally from the hindbrain to the foregut accompanied by neural crest cells (Sox10+, red). Ahead of the
vagus nerve and medially to it, a swarm of neural crest cells emerge from the incipient sympathetic chain toward the foregut. Enteric precursors at the level of
the future esophagus express the reporter CFP (green) from the Ret promoter. The images were captured with a 20× objective on a SP8 confocal microscope.

Movie S1
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Unpublished Results 

 

I. Genetic interaction between ErbB3 and Ret 

 

 The role of the ErbB3/Nrg1 signaling pathway in the development of the ENS has been previously 

established (Espinosa-Medina et al., 2017), its abrogation entailing a deficit in neuron numbers, 

according to a gradient from esophagus to rectum, from 75 to 50%. On the other hand, in large Genome 

Wide Associated Studies of Hirschsprung disease, whose major causative gene is RET, variants of NRG1 

have been statistically associated with variants of RET,  making NRG1 a modifier of RET (Tang et al., 2016). 

Given the novel role discovered for Erbb3 (a coreceptor for Nrg1) in the development of the ENS, I 

explored the possibility that it could interact with Ret in mouse, more precisely whether a heterozygous 

null mutation in Ret (asymptomatic in mice) could worsen the neuronal deficit of a homozygous null 

mutation in Erbb3 and lead to a more pronounced hypoganglionosis, or even possibly a partial 

aganglionosis of the distal colon, pathognomonic of Hirschsprung disease. To do so, I generated an 

ErbB3lox/lox; Retlox/lox line that I crossed with a Wnt1::Cre; ErbB3lox/+ line to generate, from a same litter, 

double Wnt1::Cre; ErbB3lox/ lox; Retlox/+ mutants, and control Wnt1::Cre; ErbB3lox/ lox embryos, at E17.5.  

 I immunostained flatmounts of the gut for Phox2b and estimated the surface occupied by nuclei 

of enteric neurons. In the context of a homozygous null ErbB3 background, the loss of one allele of Ret 

caused a loss of 20% of enteric neurons. Compared to the WT condition, the effect of the double 

Wnt1::Cre; ErbB3lox/lox; Retlox/+ mutation was thus a reduction by 60% of the number of neurons in the 

rectum at E17.5 (Fig. 1). Therefore, a null Erbb3 mutation unmasks a haploinsufficiency of Ret. On the 

other hand, I did not detect aganglionosis of the rectum, so that this double mutation is not a bona fide 

model of Hirschsprung disease. However, a caveat to this conclusion is that there was a large variation in 

the effect of the double mutation from animal to animal, and one of the 8 Wnt1::Cre; ErbB3lox/ lox; Retlox/+ 

mutants had a 80% deficit in rectal enteric neurons (Fig. 2). It remains thus possible that a bona fide 

Hirschsprung-like deficit occurs at low penetrance, and would be found in a larger cohort of mutants. 
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Figure 1: The reduction in Ret dosage worsens the ENS phenotype of the ErbB3 null mutation. Whole 

mounts of dissected rectum at E17.5 in WT (left), Wnt1::Cre; ErbB3lox/lox (middle) and Wnt1::Cre; 

ErbB3lox/lox; Retlox/+ (right) stained for Tuj1 (green) and Phox2b (red) in upper panels and Phox2b on the 

close ups (4x zoom) in the lower panels.  The atrophy of the enteric ganglia is quantified on the graph. 

Wnt1::Cre; ErbB3lox/lox (red) showed fewer neurons than WT (49 ± 0.41%; P = 0,00001, n=4)(red), and 

Wnt1::Cre; ErbB3lox/lox; Retlox/+ (green) even fewer (61 ±  1,22% ; P = 0,0085, n=8). Scale bars are 100µm. 

Error bars indicate SEM. ***P<0.01, ****P<0.0005.  
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Figure 2: Large variations in the effect of Ret mutation in the context of the ErbB3 mutation. Whole 

mount of dissected rectum at E17.5 of two Wnt1::Cre; ErbB3lox/lox; Retlox/+ animals, stained for Tuj1 (green) 

and Phox2b (red) in upper panels and Phox2b in the lower panels (4x zoom) where the boxed area 

corresponds to the inset on the right hand of each panel.  The atrophy of the enteric ganglia is quantified 

on the graph relative to the single Erbb3 mutant (respectively 47% and 81% of Wnt1::Cre; ErbB3lox/lox). 

Scale bars are 100µm.  
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II. Hmx2 and Hmx3 knockouts 

 

II.A. Construction 

 

 The two paralogues Hmx2 and Hmx3 are expressed in the parasympathetic ganglia (Espinosa-

Medina et al., 2016), and in the ENS (Heanue and Pachnis, 2006), where a potential effect of their 

mutation was never analyzed. As it happens the Hmx2 mutant and the Hmx2/3 double mutants that had 

been generated in the lab of Thomas Lufkin (Wang et al., 2001, 2004)  were lost and the Hmx3 mutant 

generated by Eva Bober (Hadrys et al., 1998) exists only in the form of frozen sperm. I thus set out to 

recreate these mutants, which meant generating independently 3 knockout line (Hmx2, Hmx3 and 

Hmx2/3), because the similar expression of both paralogues in the ENS makes redundancy likely, and 

their extreme genetic linkage precludes the production of a double mutant by intercrosses of the single 

ones. 

 I opted for the use of the CRISPR/Cas9, a technique which was becoming standard. Despite the 

very preliminary, and thus far inconclusive, phenotypic analysis of the mutants (and moreover their 

possibly loss because of the COVID crisis), I will report here the process of their production, which proved 

much less straightforward than one could have surmised from the literature.  

Two single guide RNAs (sgRNA) were designed and assayed on in vitro culture for their efficiency 

by J.P. Concordet (Muséum National d’Histoire Naturelle). These two sgRNA were conceived so that, in 

theory, they could produce a single cut followed by repair in the first exon of Hmx2, a single cut followed 

by repair in the first exon of Hmx3, a cut followed by repair in both Hmx2 and Hmx3 and a large deletion 

of the whole segment in between the cuts (Fig. 3A). To maximize the odds of creating null mutations, I 

designed a matrix that could be used to repair the sequence of Hmx2 and/or Hmx3 after the cut: the 

matrix was composed of two arms of 40bp of Hmx2 or Hmx3 that surround the cut site, 3 STOP codons 

that insured the production of a truncated protein in case of in-phase repair, and 2 restriction sites to 

facilitate the future genotyping of the animals.  

 Eggs were injected with 100ng/µl of Cas9 RNA, 50ng/µl of each sgRNA and 100µl of each matrix 

by F. El Marjou (Genetic Platform of Institut Curie). In the following weeks, 12 pups were born, most of 

whom had a strong circling behavior, previously described in double Hmx2/3 homozygous knockouts 

(Wang et al., 2004) due to a massive defect of the inner ear. As expected from their previous description, 

they all died before they could be crossed. A genotyping test on their tail tissue, by PCR followed by 

restriction digestion of the amplicon, revealed no integration of the repair matrix. The conclusion was i) 
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that repair occurred without integration of the matrix and ii) that the cuts were too efficient and 

presumably occurred systematically on the 4 alleles of Hmx2/3. A second injection was thus planned 

with reduced amounts of Cas9 RNA and sg RNA, to diminish the efficiency of the system: one batch of 

eggs was injected with 50ng/µl of Cas9 RNA and 20ng/µl of each sgRNA and a second batch with 20ng/µl 

of Cas9 RNA and 10ng/µl of each sgRNA. Because the matrix did not seem to integrate well, it was 

omitted altogether to reduce DNA toxicity. From this second round of injections, 50 pups were born, a 

fraction of them presenting with a circling phenotype of various intensity. PCR analysis revealed a 

complex landscape of cases: 

-First, many animals were clearly mosaic suggesting that the cut and non-homologous end 

junction event occurred after the first cell division. For example, some animals produced more than two 

bands for Hmx3 after PCR (Fig. 3B). Another sign of mosaicism was when none of the two or three bands 

amplified for Hmx2 or Hmx3 corresponded to the wild type band, yet the animal presented no vestibular 

phenotype. Another animal appeared by PCR as a double homozygous Hmx2/3 null yet had no vestibular 

phenotype and survived well beyond the classical maximum of 10 days for the double knockouts (Wang 

et al., 2004). One of the worst cases of mosaicism displayed 3 bands of the wrong size (thus with 

deletions) plus a large Hmx2+Hmx3 deletion, meaning that 4 types of mutations affected the Hmx3 locus. 

- For the Hmx3 knockouts some animals displayed two bands, one of which of the wild type size. 

The two bands were sequenced, the wild type band was confirmed, and one founder of that type was 

selected in which the mutated band displayed a deletion of 100 nucleotides, a frame shift and shortening 

the protein (Fig. 3B). It was outcrossed twice and its descendants were used to produce Hmx3 KO 

animals.  

-For the Hmx2 knockouts all animals displayed a single band of the wild type size, yet several of 

them had a vestibular phenotype, thus were homozygous nulls. I therefore proceeded to sequence that 

band in an asymptomatic animal, and in a number of cases the sequence was double, with deletions of a 

few nucleotides in on the allele (Fig. 3B,C). Several of these individuals were selected and outcrossed 

twice, their offspring intercrossed, their progeny containing individuals with a vestibular phenotype but 

viable, as expected of Hmx2 knockouts. The Hmx2 PCR band was sequenced and one line was selected as 

the Hmx2 knockout line: it has a 10 nucleotides-long deletion in the first exon, that changes the reading 

frame and shortens the protein and has lost a restriction site for BsaH1 in the PCR fragment, which 

allowed relatively easy genotyping of WT, homozygous and heterozygous knockout. 

 -Finally, some animals had a large deletion encompassing the Hmx2 and Hmx3 loci (Fig. 3B). One 

of them was used to create the Hmx2/3 double KO line. The deletion created an out-of-phase fusion of 
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the coding sequences of Hmx2 and Hmx3. Genotyping could be achieved by a simple PCR using the 

forward primer of Hmx3 with the reverse primer of Hmx2, which amplifies a band only in the mutants 

(the wild type band being too long). No living homozygote could be obtained at the moment of the 

genotyping (P21), which fits with the previously described death of double knockouts between P0 and 

P10 (Wang et al., 2004).  

This whole process (from the design of the sgRNA to 3 established and unambiguously 

genotyped lines) took around two years, mosaicism (difficult to diagnose and entailing multiple 

outcrosses), and difficulties in genotyping representing major obstacles. Although it is possible that this 

technology is evolving and becoming more efficient, and that my first-hand experience is now slightly out 

of date, my conclusion was that this technique was too laborious and imprecise (amounting to what 

George Church once called “genetic vandalism”) to arrive in the end at a simple constitutive knockout, 

with none of the advantages made possible by homologous recombination (e.g. knockin of reporters, of 

Cre or Flp recombinases, of lox and FRT sites for conditionality).    
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Figure 3: Strategy for the knockouts of Hmx2, Hmx3 and Hmx2/3. (A) Position of the sg RNAs and 

expected consequences of the cuts: I, a single cut on Hmx2 first exon; II, a single cut on Hmx3 first exon; 

III, a cut of Hmx2 and Hmx3 first exons on the same chromosome; IV, a large deletion of the region 

between the two site of cut of Hmx3 and Hmx2. Blue: endogen coding sequence of Hmx3, Dark blue: 

damage of the sequence of Hmx3 due to the cut, Pale blue: modified non coding sequence of Hmx3, 

Green: endogen coding sequence of Hmx2, Dark green: damage of the sequence of Hmx2 due to the cut, 

Pale green: modified non coding sequence of Hmx2, Orange: endogen coding sequence of Bub3. (B) Gels 

of PCR bands obtained after genotyping F0 animals showing a variety of patterns: two bands (Hmx3 

upper left), one band (Hmx2), a large deletion (Hmx2/3 lower left) or mosaicism (Hmx3 lower right). (C) 

Results of sequencing the single band for Hmx2 to distinguish homozygote from heterozygote after the 

site of cut by Cas9. 
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II.B. Phenotype of the Hmx knockouts 

 

 Only a preliminary and superficial analysis of the mutant could be done so far: heterozygote 

animals for Hmx3 and Hmx2/3 lines were crossed and homozygous embryos were analyzed at E17.5. 

After a staining for Phox2b, the ENS of the mutants was detectable in both lines and did not present any 

gross anomaly (Fig. 4). 

 

 

 

Figure 4: The ENS is present despite the inactivation of Hmx3 or of Hmx2/3. Sagittal section of embryos 

at E17.5 WT (left), Hmx3 KO (middle) or Hmx2/3 KO (right) immunostained for Phox2b. The ENS is 

present and looks normal in all three conditions. Scale bar 100µm. 
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III. Role of Tbx3 in the development of the ENS 

 

III.A. Expression of Tbx3 in the ENS  

 

 The transcription factor Tbx3 has been reported to be expressed in the ENS (Heanue and Pachnis, 

2006). There is also anecdotal evidence of expression in the medulla, in the region of the nucleus of the 

solitary tracts and/or dmnX (Eriksson and Mignot, 2009) and several years ago the Brunet lab found Tbx3 

in a screen for genes expressed in the epibranchial ganglia (unpublished results). Thus, the intriguing 

possibility arose that Tbx3 would be expressed in most neurons innervating the gut, according to a 

circuit-wide logic (i.e. in the intrinsic as well as extrinsic sensorimotor circuits of the gut), similar, albeit 

on a smaller scale, to that of Phox2b throughout the sensorimotor circuits of the autonomic nervous 

system. I thus sought to verify this hypothesis by studying Tbx3 expression in mouse embryos, by 

combining in situ hybridization for Tbx3 and immunohistochemistry for Phox2b. I confirmed the 

expression of Tbx3 in the ENS (Fig. 5D) and in addition detected expression in about half the neurons of 

the nodose ganglion (Fig. 5A), thus presumably corresponding to neuronal subtypes. This expression is 

not salt-and-pepper, but rather seems to define regions or lobes of the ganglion. Compatible with this 

non-ubiquitous expression pattern is the single cell transcriptomic study by Kupari et al. (2019) which 

finds Tbx3 in several subtypes of one of the two large classes of nodose ganglion neurons, the polymodal 

nociceptors (but absent from the second large class, the mechanoreceptors). I also found expression in 

the dorsal motor nucleus of the vagus nerve (dmnX) (Fig 5B), again in a large fraction of cells but not 

ubiquitously. These two structures are the main component of the extrinsic innervation of the gut (apart 

from sympathetic neurons), containing respectively first order viscero-sensory neurons and 

preganglionic neurons for the ENS, i.e. the substrates of extrinsic enteric reflexes. In the CNS, expression 

of Tbx3 was actually wider than the dmnX, and could be detected, at least transiently, in all branchial and 

visceromotor neurons: the salivary nucleus, nucleus ambiguus (nA) and migrating facial motoneurons 

(Fig. 5C).  
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Figure 5: The extrinsic and intrinsic ENS express 

Tbx3 during development. (A) Sagittal section of 

a WT embryo through the nodose ganglia at E13.5. 

(B) Coronal section through the dmnX at E13.5. (C) 

Transverse section through the medulla at E11.5. 

(D) Sagittal section through the gut at E16.5. All 

the sections are stained by in situ hybridization 

for Tbx3 and immunohistochemistry against 

Phox2b. Tbx3 is also expressed in a subset of 

migrating facial motoneuronal precursors (red 

arrowheads). dmnX: dorsal motor nucleus of the 

vagus nerve, nSal: salivatory nucleus, nVIII: facial 

nucleus, nA: nucleus ambiguus. Scale bars are 

100µm (A, B, D) and 200µm (C). 

 

 

 

 

To guide future functional explorations, I explored the dynamic of Tbx3 expression during 

development of the ENS by immunofluorescence on wholemounts of the gut at several developmental 

stages (Figure 6). At E11.5 cells started expressing Tbx3 in a salt-and-pepper pattern compared to 

Phox2b which was used as a general marker of the ENS cells, in the duodenum and ileum; expression in 

the ileum appeared sparser, presumably because the cells are younger; two days later, at E13.5, in these 

same regions, expression of Tbx3 was still salt-and-pepper, and this pattern persisted until P15 at least. 

(Fig 6). Although Tbx3 expression is strongly heterogeneous, it did not appear to occur in an all-or-none 

fashion: there was strong expression in some cells, and in many others, it was very weak and close to the 

background, and it was completely undetectable in only a few cells (see insets in the lower panels of 

Figure 6). Thus, Tbx3 seems to be switched on by most enteric neuronal precursors during colonization 

of the gut, but at vastly different levels. Thus, these data could suggest some neuron-type specific 

functions, without excluding a role in most neurons. 
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Figure 6: Dynamic of Tbx3 expression 

during ENS development. Whole mount 

of guts at E11.5, E13.5, E17.5 and P15, at 

the level of the duodenum, ileum, colon 

and rectum, co-stained for Tbx3 and 

Phox2b. Scale bars are 100µm (full 

pictures) and 50µm (insets).  

 

 

 

 

 

 

 

 

 

III.B. Gross phenotype of a Tbx3 conditional KO 

 

 To explore the function of Tbx3 I first crossed a mouse line in which the 1st exon of Tbx3 is floxed 

(Frank et al., 2013) with a Pgk::Cre line — in which Cre is under the promoter of Phosphoglycerate kinase, 

thus active in the zygote and producing the equivalent of a constitutive knockout. Because Tbx3 is 

involved in the development of the pacemaker of the heart (Frank et al., 2012), the embryos could not 

be obtained later than E12.5. At this stage, staining by in situ hybridization for Peripherin and 

immunohistochemistry for Phox2b, revealed that all Phox2b-expressing neuronal groups that co-express 

Tbx3 (epibranchial ganglia, dmnX and other branchio-visceral nuclei, and the ENS) are still present (Fig. 7), 

although subtle deficits are not ruled out. 
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Figure 7: Presence of neurons innervating the gut in Tbx3 KO. Sagittal sections through WT or Pgk::Cre, 

Tbx3lox/lox embryos at E12.5 stained by in situ hybridization for Peripherin and immunohistochemistry 

against Phox2b. The dmnX (upper panel), the nodose ganglia (bottom left) and ENS (bottom right) 

develop in the absence of expression of Tbx3. dmnX: dorsal motor nucleus of the vagus nerve. Scale bars 

are 100µm.  

 

To explore the possibility of a later role of Tbx3, and bypass the heart failure and embryonic 

death of constitutive knockouts (Frank et al., 2013), I crossed the Tbx3lox/lox into a Phox2b::Cre 

background. This combination proved fortunate, since the alternative strategy that was available, which 

was to recombine the same floxed Tbx3 allele in the neural crest with a Wnt1::Cre, was undertaken 

simultaneously in another lab, and turned out to cause a cleft palate and consequent neonatal death 

(López et al., 2018). Phox2b::Cre; Tbx3lox/lox animals were born in a Mendelian proportion, and were 

indistinguishable from wild types for the first two weeks. However, out of 15 Phox2b::Cre; Tbx3lox/lox pups 

from 7 litters, none survived after P27. A closer monitoring of two subsequent litters revealed that the 

mutant pups develop normally and thrived at the same rate than their control littermates until P18, at 

which stage (which roughly correspond to weaning) they suddenly stopped gaining weight and even 

started to lose some, leading to their death in the 3-5 following days (Fig. 8B). To avoid suffering of the 

animals, the rest of the experiments were conducted at P15.  

Gross histological examination of the gut at P15 showed an incompletely penetrant but frequent 

malformation of the cecum, sometimes longer and more twisted than the wild type, sometimes enlarged, 

and sometimes filled with air (Fig. 8A). No obvious morphological anomaly was apparent in other 
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segments of the gut. I tested the intestinal transit of the mutants: the animals were fasted for 2 hours, 

then force-fed a non-absorbable charcoal tracer and sacrificed 2 hours later. In all animals, irrespective 

of genotype, the charcoal pellets had passed the cecum and had reached the colon (Fig. 8C). Thus, I 

could not detect any impairment of intestinal transit. 

 

 

Figure 8: Animals lacking Tbx3 in the autonomic nervous system die at weaning and have a malformed 

cecum. (A) Cecum from animals at P15, either WT (white arrowhead) or from Phox2b::Cre; Tbx3lox/lox 

pups (yellow arrowheads) and exhibiting a twist, or an enlarged base, or being longer and full of air. (B) 

Weight of animal from P2 to P24, either WT (black), Phox2b::Cre;Tbx3lox/+ (blue) or Phox2b::Cre; Tbx3lox/lox 

(red). (C) Intestinal transit assays for WT (upper) or Phox2b::Cre;Tbx3lox/lox (bottom) animals force-fed 

with charcoal , which reaches the colon (red arrowheads) after two hours. The guts are oro-anally 

oriented from left to right. Scale bars are 0,5cm (A) and 1cm (C).  
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III.C. Histological analysis of the enteric nervous system of Phox2b::Cre;Tbx3lox/lox mutants 

  

To explore a potential histological defect in the ENS of Tbx3 mutants, I first evaluated the 

number of enteric neurons at P15, when the thriving phenotype is already apparent, and about to 

precipitate death within a few days. Cryosections of the gut at 4 levels (duodenum, ileum, colon and 

rectum) were immunostained for Phox2b. The myenteric and submucosal plexi were readily detectable 

in the Phox2b::Cre;Tbx3lox/lox mutants, but in most places appeared formed by a monolayer of neurons, as 

opposed to two or three layers of neurons in wild type animals, suggesting a decrease in neuronal 

numbers. Counting Phox2b+ nuclei on three sections per region of the gut revealed a decrease in the 

mutants relative to wild type, by 35% in the duodenum, 48% in the ileum, 50% in the colon and 16% in 

the rectum (Fig. 9). The cecum of the mutants contained neurons, but due to its massive enlargement 

and misshape, it was not possible to quantify neurons there (Fig 10).  

 

Figure 9: The ENS is atrophic 

at P15 in Tbx3 knockouts. 

Transverse section of the gut 

at the level of the duodenum, 

ileum, colon and rectum at 

P15 in WT (left) or 

Phox2b::Cre;Tbx3lox/lox (right) 

stained for Phox2b, with an 

enlarged view (4x zoom) of 

the boxed area. The atrophy 

of the enteric ganglia is 

quantified on the graph. 

Phox2b::Cre;Tbx3lox/lox (red) 

showed fewer neurons (in the 

duodenum 19,82 ± 3,4 

neurons/mm versus 30,32 ± 

2,9 ; p = 0,037, n=4; in the ileum 21,18 ± 2,7 neurons/mm versus 40,59 ± 5,9; p = 0,035, n=4; in the colon 

27,72 ± 3,1 neurons/mm versus 56,37 ± 4,6; p = 0,009, n=3; in the rectum 22,66 ± 1,3 neurons/mm 

versus 27,03 ± 1,2 ; p = 0,034, n=4). Scale bar is 100µm. Error bars indicate SEM. *P<0.05, **P<0.01. 
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Figure 10: The cecum is misshape but still has neurons in Tbx3 knockouts. Sections through the cecum 

at P15 in WT (left) or Phox2b::Cre;Tbx3lox/lox (right) stained for Phox2b, with an enlarged view (4x zoom) 

of the boxed area. Scale bar is 200µm. 

 

 To detect at which stage the deficit of neuronal numbers becomes manifest, I counted Phox2b+ 

nuclei at E17.5 and E15.5. At E17.5, a loss of neurons was already happening, by 27% in the duodenum, 

31% in the ileum, 37% in the colon and 38% in the rectum (Fig. 11). On the other hand, neuron numbers 

at E15.5 were not statistically different from wild type (Fig. 12).  

 Thus, the absence of Tbx3 during development of the ENS leads to a quantitatively normal 

development of the system until E15.5, followed by a significant loss of neurons at E17.5 which worsens 

postnatally.  

 

Figure 11: The ENS is atrophic at E17.5 in 

Tbx3 knockouts. Transverse section of 

the gut at the level of the duodenum, 

ileum, colon and rectum at E17.5 of WT 

(left) or Phox2b::Cre;Tbx3lox/lox (right) 

stained for Phox2b, with an enlarged view 

(4x zoom) of the boxed area. The atrophy 

of the enteric ganglia is quantified on the 

graph. Phox2b::Cre;Tbx3lox/lox (red) 

showed fewer neurons (in the duodenum 

39,6 ± 3,6 neurons/mm versus 54,6 ± 2,8 ; 

p = 0,034, n=3; in the ileum 64,7 ± 6,8 

neurons/mm versus 95,4 ± 7,8; p = 0,042, 

n=3; in the colon 88,2 ± 9,9 neurons/mm 

versus 147,4 ± 6,5; p = 0,010, n=3; in the rectum 65,3 ± 2,6 neurons/mm versus 106,2 ± 4,1 ; P = 0,002, 

n=3). Scale bars are 100µm. Error bars indicate SEM. *P<0.05, **P<0.01, ***P<0,005 
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Figure 12: The ENS is quantitatively 

normal at E15.5 in Tbx3 knockouts. 

Transverse sections of the gut at the 

level of the duodenum, ileum, colon 

and rectum at E15.5 of WT (left) or 

Phox2b::Cre; Tbx3lox/lox (right) stained 

against Phox2b, with an enlarged 

view (4x zoom) of the boxed area. 

The number of the enteric neurons is 

quantified on the graph. 

Phox2b::Cre;Tbx3lox/lox (red) had as 

many neurons as the WT (in the 

duodenum 98,9 ± 4,4 neurons/mm 

vs 107,0 ± 7,3 ; P = 0,29, n=3; in the ileum 120,8 ± 12,9 neurons/mm vs 123,8 ± 14,7; P = 0,85, n=3; in the 

colon 184,6 ± 24,9 neurons/mm vs 198,2 ± 39,2; P = 0,72, n=3; in the rectum 165,7 ± 9,9 neurons/mm vs 

156,9 ± 8,5 ; P = 0,43, n=3). Scale bars are 50µm. Error bars indicate SEM.  

 

 

As the expression of Tbx3 is heterogeneous among ENS neurons, and even absent of some, I 

explored the possibility that Tbx3 has neuron-type specific roles and that one or several subtypes of 

neurons are missing at P15, using classical markers of neurotransmitter phenotype.  

First, I examined the expression of VIP, that characterizes inhibitory motor neurons of the 

myenteric plexus and secretomor neurons of the submucosal plexus, and by simple immunofluorescence 

is detectable mostly in fibers (as opposed to cell somas). In both wild types and Tbx3 KO, I could detect 

VIP+ fibers inside the myenteric plexus, in the circular muscle (oriented parallel to the plane of section), 

and in the core of the intestinal villi, projecting to the mucosa (Fig. 13). Essentially the same result was 

obtained for SP (which characterizes excitatory motor neurons and sensory neurons), although the 

reduction in projections to the circular muscle seemed dramatically reduced in the mutants at the level 

of the colon (Fig. 13). Then, I tested the calcium binding molecule CalB, expressed in the cytoplasm and 

fibers of sensory neurons, which was still present in the knockout (Fig. 13). Finally, I tested the Choline 
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Acetylfransferase (ChAT), expressed in the cytoplasm of all the neurons of the ENS, except the inhibitory 

motoneurons, which was as well still present in the knockout (Fig. 13). Expression in the fibers made it 

difficult to quantify the neurons expressing these three markers.   

 

 

 

 

 

 

 

 

Figure 13: The neurotransmitters VIP, SP, CalB 

and ChAT are expressed in the ENS of Tbx3 

knockouts. Transverse section of the gut at the 

level of the duodenum (left), ileum (middle) 

and colon (right) at P15 in WT or 

Phox2b::Cre;Tbx3lox/lox  pups (as mentioned on 

the left) stained for Phox2b (red) and VIP (black, 

top), or SP (black, middle), or Calb (green, 

middle), or ChAT (green, bottom). Scale bar is 

50µm.  

 

  

 

 

 

 

 

 

 

 

 

119



 

 

 Lastly, I examined the expression of NOS, which characterizes inhibitory motor neurons 

and descending interneurons.  The staining for NOS activity by NADPH diaphorase allows precise 

delineation of the cell bodies surrounding Phox2b+ nuclei, which allowed counting them. There was a 

decrease of 54% of NOS neurons in the duodenum, 61% in the ileum and 40% in the colon (Fig. 14). At 

the level of the duodenum and the ileum, the loss was larger than the total loss of neurons, suggesting 

that Tbx3 has a preferential (albeit not essential) role in the generation of NOS neurons. Concurrently to 

the loss of neurons, a massive loss of fibers in the circular muscle layer was evident at all the levels of the 

gut, but especially in the ileum. This suggests that inhibitory motor neurons rather than descending 

interneurons (which only projects within the plexus itself) are affected.  

  

 

 

 

 

 

 

 

 

 

 

  

 

Figure 14: The number of nitrergic is decreased in Tbx3 knockouts Transverse section of the gut at the 

level of the duodenum, ileum, and colon at P15 of WT (left) or Phox2b::Cre;Tbx3lox/lox (middle) stained for 

NOS (blue) and Phox2b (brown), with an enlarged view (4x zoom) of the boxed area. The atrophy of the 

enteric ganglia is quantified on the graph. Phox2b::Cre;Tbx3lox/lox  pups (red) had fewer NOS neurons (in 

the duodenum 6,32 ± 0,77 % of NOS/Phox2b neurons vs 13,85 ± 0,95 ; p=0,023, n=3; in the ileum 5,83 ± 

0,54 % of NOS/Phox2b neurons vs 14,93 ± 1,11; p=0,027, n=3; in the colon 10,48 ± 0,71 % of 

NOS/Phox2b neurons vs 17,43 ± 0,74; p= 0,021, n=3). Scale bars are 25µm. Error bars indicate SEM. 

*P<0.05.  
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Conclusion & Discussion 

 

I have characterized a role for Tbx3 in the development of the nervous system, which had eluded 

the first study devoted to the subject (López et al., 2018). The total number of neurons is reduced by 15-

50% depending on the region of the digestive tract, while the earlier study did not find any change. The 

reason for this discrepancy is unclear and could be related to the method of counting, on wholemounts 

in (López et al., 2018) and on section in the current study. The second phenotype (failure to thrive after 

P15 and death before P21) could be observed only by restricting the Tbx3 mutation to Phox2b neurons, 

because restriction to the neural crest entailed a cleft palate, precluding feeding altogether and leading 

to neonatal death. It is of note however, that in my study, restriction to Phox2b+ neurons does not 

completely ensure that the cause of neonatal death resides in the ENS, since two other populations of 

neurons co-express Phox2b and Tbx3: the dmnX and the nodose ganglion (gX), both involved in 

innervating the gut: the dmnX contains preganglionic neurons to enteric motor neurons and gX contains 

extrinsic sensory primary neurons for the gut. This circuit-wide expression was actually one reason to 

study this gene in the first place. My preliminary assessment rules out a massive impairment in the 

development of gX and dmnX, which are both present in E12.5 Pgk::Cre;Tbx3lox/lox embryos; but the 

dmnX is still present without apparent abnormalities at P15 (Fig. 15). However, the phenotype in the ENS 

proper is not massive either in terms of total cell counts. Thus, it is not excluded that the dmnX and/or 

gX, either are smaller or lack some neuron subtype that could explain neonatal death, by itself or in 

combination with the deficit in the ENS.  

 

Figure 15: The Dorsal motor nucleus of the vagus nerve (dmnX) is present in Tbx3 knockouts. Coronal 

section of a brain at P15 in a WT or Phox2b::Cre;Tbx3lox/lox animal stained for Phox2b. The dmnX (dashed 

circle) is present irrespective of the genotype. Scale bar is 50µm.  
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 I attempted at ruling out a role for gX by creating a Foxg1::Cre;Tbx3lox/lox mouse in which Tbx3 is 

removed selectively from the three placode-derived cranial ganglia (geniculate (gVII), petrose (gIX) and 

gX). The Foxg1::Cre;Tbx3lox/lox animals turned out fully viable and fertile. However, I found that deletion 

of Phox2b in the epibranchial placodes, in Foxg1::Cre;Phox2blox/lox, were also viable and fertile, which is 

surprising since Phox2b is a well-established determinant of epibranchial ganglia, its abrogation leading 

to massive loss of neurons (Dauger et al., 2003), those that remain having switched identity to that of 

somatic sensory neurons and projected to the spinal nucleus of the trigeminal nerve, instead of the nTS 

(d’Autréaux et al., 2011). I have not yet examined the state of epibranchial ganglia in 

Foxg1::Cre;Tbx3lox/lox or Foxg1::Cre;Phox2blox/lox but the absence of a clear phenotype could be due to a 

mosaicism of the recombination by Foxg1::Cre. Indeed, such a mosaicism was evident from the 

expression pattern of the dual FREPE reporter gene in Foxg1::Cre;Phox2bFlpo;FREPE. embryos (Fig. 16).  

 

 

Figure 16: Mosaicism of recombination by 

Foxg1::Cre. Sagittal section through the nodose (gX) 

and superior cervical (SCG) ganglia at E15.5 in a 

Foxg1::Cre;Phox2bFlpo;Ai65 mouse embryo where 

GFP is triggered by the dual recombination by 

Foxg1::Cre and Phox2b::Flpo. In the nodose ganglion, 

only a fraction of the Phox2b+ neurons are doubly 

recombined, despite the fact that all their placodal 

precursors express endogenous Foxg1 (not shown). 

The mosaicism is most likely due to the Foxg1::Cre, 

since none were found with the Phox2b::Flpo 

(Hirsch et al., 2013) (and data not shown). 

 

 

To rule out the role of the dmnX in the lethality of Phox2b::Cre;Tbx3lox/lox mutants, a similar 

experiment could be attempted by removing Tbx3 from the dmnX only in Brn4::Cre;Phox2blox/lox where 

Cre is expressed from the Brn4 promoter (Zechner et al., 2003), thus exclusively in the central nervous 

system. However, both experiments would fail to be informative if death results from a combined 

ENS/gX or ENS/CNS lesion. A better way of incriminating the ENS alone would be restrict the Tbx3 
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deletion to this structure. However, I am not aware of Cre-driver that would be specific for early enteric 

precursors. In collaboration with the laboratory of Carmen Birchmeier we are currently engineering a 

Hmx3::Cre, but it is possible that Hmx3 is switched on too late (e.g. post-mitotically) to completely 

prevent the action of Tbx3. 

 

 Tbx3 inactivation leads to a deficit in enteric neuron numbers. We do not know at this moment 

whether this is due to a decrease in proliferation or in cell survival. A deficit of proliferation could result 

from a role of Tbx3 akin to that in stem cells (Carlson et al., 2002; Niwa et al., 2009). However, such a 

role will be difficult to demonstrate in vivo: a minor deficit of proliferation has the potential to cause 

significant cell loss after several days of development. Moreover, enteric cells are embedded in a 

mesenchymal which also undergoes massive proliferation (Fig. 17). Thus, it does not appear practical or 

even possible to detect this deficit with conventional markers of cell proliferation.  

 

 

 Figure 17: Detection of 

proliferative neurons in the ENS 

at E17.5. Whole mount (A) and 

transverse section (B) of a gut at 

E17.5 at the level of the ileum 

stained for Ki67 (green) and 

Phox2b (red) (top) and each 

channel separated (bottom) to 

visualize double positive cells 

(white arrowheads). Scale bars 

are 100µm (A) and 50µm (B).  

 

 

 

 Like all TFs studied, to this date, for their role in the development of the ENS, Tbx3 does not 

seem to be a neuron type-specific determinant. The closest candidate for that role so far is Sox6, but 

even in this case, the specified cell type, dopaminergic neurons, is only reduced, not abolished (Memic et 

al., 2018). The role of Tbx3 could be reminiscent of Ascl1, which does affect selectively some neuron 
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types, but several of them, and only partially (Memic et al., 2016). This conclusion though, must be 

qualified by the fact that no single marker tested so far, for any knockout including that of Tbx3, is 

specific for one cell type. A more informative survey of the conditional Tbx3 KO could be inspired by 

some of the markers discovered in (Morarach et al., 2020). 

  

Tbx3 knockouts die at the time of weaning, with a complete penetrance. The proximal cause for 

death likely involves energy metabolism since it is preceded for a few days, by a dramatic arrest of gain 

weight. It is of note that weaning is a critical survival period for a number of knockouts, including in the 

ENS. For example, mice in which ChAT has been inactivated in the ENS (in a Wnt1::Cre;ChATlox/lox 

background) also thrive for 2 weeks after birth but stop gaining weight during the third week and die 

around P30 (Johnson et al., 2018). It is likely that the drastic change of diet, from maternal milk to solid 

food (pellets in captivity), unmasks or decompensates a digestion defect which was latent until then. In 

the case of ChAT knockouts, a reduction of intestinal transit and impacted fecal content were diagnosed 

in the days before death, as well as dysbiosis (modification of the intestinal flora). For the Tbx3 knockout, 

I ruled out the most intuitive mechanism, which is an arrest in intestinal transit, in agreement with 

(López et al., 2018), and with more complete evidence than in the latter paper, since the authors were 

limited by neonatal death to exploring the transport of the alimentary bolus to the duodenum. On the 

other hand, it could be that the failure to thrive is due to an arrest in food intake (which is observed in 

ChAT knockouts), which I did not assess yet. Since weaning entails changes in bacterial flora, and that 

several mutant pups had a cecum distended with gas, I tried to explore a role for bacteria in death, and 

to produce axenic pups by treating the mother with antibiotics. However, the mother failed to deliver 

and I abandoned this line of research, which lacks, so far, concrete preliminary evidence (such as 

dysbiosis, which should be explored) while entailing a lot of animal suffering. The proximal cause of 

death, probably digestive but mysterious so far, could be a very indirect consequence of the neuronal 

lesion caused by the abrogation of Tbx3 (such as a deficit in nutrient absorption, anorexia from pain or 

other digestive cause, disruption of the intestinal epithelial barrier and consequent sepsis, etc.), and 

might not model any human pathology. Thus, it might be less interesting to pursue than a more fine-

grained analysis of the neuronal lesion in the ENS due to loss of Tbx3 function, using newly discovered 

markers for cell types (Morarach et al., 2020). 
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Materials and Methods 

 

Histology  

Embryos  

Mouse embryos of different stages (E11.5, E12.5, E13.5, E15.5, E16.5, and E17.5) were fixed in 4% 

Paraformaldehyde (PFA). For cryostat sections, tissues were embedded in OCT after a cryoprotection of 

30% Sucrose in PBS and then stocked at -80°C, then sectioned at 20µm in the appropriated plan.  

Guts 

Mouse embryos or pups of different stages (E11.5, E13.5, E15.5, E17.5, and P15) were taken and the gut 

were freshly dissected and fixed in 4% PFA overnight. They were cryoprotected in 30% Sucrose in PBS 

and segments of interest were cut and oriented oro-anally in OCT before being frozen, and then stocked 

at -80°C. In the case of P15, the guts were segmented and flushed by PBS and then PFA. The blocs were 

then cut at 20µm on a transverse plan. For wholemount immunofluorescence, the guts were dissected, 

fixed in 4% PFA overnight, washed in PBS 1X before staining.  

Brains 

Mouse pup at P15 were injected with Pentobarbital (30mg/kg) and perfused with 4%PFA, the brains 

were then dissected out of the skull and fixed by immersion in 4%PFA overnight. For cryostat sections, 

tissues were embedded in OCT after a cryoprotection of 30% Sucrose in PBS and then stocked at -80°C, 

then sectioned at 20µm on a coronal plan.  

In Situ Hybridization, Immunohistochemistry, Immunofluorescence 

In situ hybridization and immunohistochemistry were performed as described in (Coppola et al., 2010), 

while immunofluorescence was performed as described in (Espinosa-Medina et al., 2014). The 

wholemount of gut was performed as described in (Espinosa-Medina et al., 2017).  

Diaphorase Staining 

Diaphorase staining on cryostat sections was performed as described in (Elphick et al., 1997) 

 

 

Probes 

The used probes were the following:  

Tbx3 (gift of V.M. Christoffels) 

Peripherin (gift of F. Guillemot) 
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Antibodies 

 

The primary antibodies used in this study were the following:  

 α-Phox2b, Rabbit, 1:500 (Pattyn et al., 1997)  

 α-Phox2b, Goat, 1:100, R&D (#AF4940) 

 α-Tuj1, Mouse, 1:500, BioLegend (#801201) 

 α-Tbx3, Goat, 1:250, Santa Cruz (#SC-17871) 

 α-VIP, Rabbit, 1:500, Immunostar (#20077) 

 α-Calbindin, Rabbit, 1:1000, Swant (#CB-38a) 

 α-Sub.P, Rat, 1:400, Milipore (#MAB356) 

 α-Ki67, Rabbit, 1:500, Abcam (ab15580) 

 α-GFP, Chicken, 1:400, Aves Lab (GFP-1010) 

 

The secondary antibodies were the following:  

 α-rabbit A488, Jackson Immunoresearch Laboratories (# 711-545-152) 

 α-rabbit Cy3, Jackson Immunoresearch Laboratories (#711-165-152) 

 α-goat A647, Jackson Immunoresearch Laboratories (# 705-605-147) 

 α-mouse 488, Jackson Immunoresearch Laboratories (# 715-545-150) 

 α-rat Cy3, Jackson Immunoresearch Laboratories (# 712-165-153) 

 α-chicken 488, Jackson Immunoresearch Laboratories (# 703-545-155) 

α-phalloidin 647, Thermofisher (A22287) 

 

  

For Immunohistochemistry, the secondary antibodies were α-Rabbit, and α-Goat respectively PK-6101 

and PK-4005 from Vector Laboratories ; the color development was performed using DAB (3,3’-

Diaminobenzidine, Sigma-Aldrich, D4293). 

  

Transgenic Mouse Line  

 

Phox2b::Cre (D’Autreaux et al., 2011): BAC transgenic line expressing Cre under the control of the 

Phox2b promoter. 

Tbx3lox/+  (Frank et al., 2013): Lox insertion around the first exon of Tbx3. 
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Pgk::Cre (Lallemand et al., 1998) : Transgenic line expressing Cre in the germ line. 

Wnt1::Cre (Danielian et al., 1998): transgenic line expressing Cre under the control of the 3’ enhancer of 

Wnt1. 

ErbB3Lox/Lox (Sheean et al., 2014): Knock in line comprising floxed human ErbB3 cDNA in the exon 12 of 

the mouse ErbB3 locus. 

Retfl-CFP/+ (Uesaka et al., 2008): Knock in line comprising floxed human Ret9 cDNA and CFP reporter in 

the first exon of the Ret locus. 

Phox2b::FLPo (Hirsch et al., 2013): BAC transgenic line expressing FLP under the control of the Phox2b 

promoter. 

Foxg1::Cre (Kawagachi et al., 2016): Knock in of a transgenic construct integrating an internal ribosomal 

entry site (IRES) fused to Cre Recombinase after the sequence of FoxG1.  

RC::FREPE (Bang et al., 2012): Dual-recombinase responsive fluorescent indicator allele has a frt-flanked 

STOP and loxP-flanked mCherry::STOP preventing transcription of an eGFP sequence in the ROSA locus. 

 

Gut Motility 

Mouse pups at P15 were removed from their mother and fasted 2h before the experiments. Each animal 

received a 0.1ml of 10% charcoal, 5% gum acacia in PBS directly in the stomach, adapted from Pol et al, 

1996. The animals were sacrificed after 2h by cervical elongation.  

 

Imaging  

Tissues processed by in situ hybridization, immunohistochemistry, and diaphorase staining were 

photographed on bright field at 10X or 20X objective. Tissues processed by fluorescence were 

photographed on confocal microscope SP5 at 25X objective.  

 

Statistics 

Measurements of the surface occupied by enteric neurons, counting of the number of neurons and 

periphery of the gut were performed by use of FIJI software.  

The similarity of variances between each group of data was tested using the F test. Statistical analysis 

was performed using unpaired two tailed t test. Results are expressed as %mean/WT ±SEM or number of 

neurons/mm±SEM. 
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ABSTRACT 

 
The enteric nervous system which is present in the wall of the digestive tract, and contains 
as many neurons as the spinal cord, controls the gut mouvement and the secretion of 
hormones allowing the digestion. Its development is a slow and complex process starting 
at mi-gestation and ending during the first week after birth. It is controlled by many 
parameters among them guidance signals for the neuronal migration but few is known 
about the genetics of the development of the multiple neuronal types present in it. During 
my thesis, I showed that the transcription factor Tbx3 is essential for the well development 
of the enteric nervous system because its absence leads to the death of the animals with 
a loss of half of the neurons, however the identification of a precise missing subtype is 
difficult with nowadays knowledge. I also showed that the inactivation of the transcription 
factors Hmx2 and Hmx3, despite their expression during the differentiation phases, do not 
lead to a massive loss of neurons in the enteric nor parasympathetic systems. 

MOTS CLÉS 

 
Système nerveux entérique – Développement – Ontogénie – Tbx – Souris  

RÉSUMÉ 

 
Le système nerveux entérique qui occupe la paroi du tube digestif et contient autant de 
neurones que la moelle épinière, contrôle les mouvements de l’intestin et la sécrétion 
d’hormone permettant la digestion. Son développement est un processus lent et complexe 
commençant vers le milieu de la gestation et se terminant durant les premières semaines 
de vie. Il est contrôlé par de nombreux paramètres dont des signaux des guidages de la 
migration des neurones, mais peu d’éléments sont connus quant à la génétique du 
développement des nombreux types de neurones qui composent ce système. Durant ma 
thèse j’ai montré que le facteur de transcription Tbx3 est essentiel au bon développement 
du système nerveux entérique puisque son absence provoque la mort des animaux avec 
une perte d’environ la moitié des neurones, cependant l’identification d’un sous-type 
particulier manquant est difficile en l’état actuel des connaissances. J’ai aussi montré que 
l’inactivation de facteurs de transcription Hmx2 et Hmx3, malgré leur expression pendant 
les phases de différenciation, n’engendre pas de perte neuronal massive dans les 
systèmes entérique ni parasympathique. 
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