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“The gnostic lives in this world of change,
Aware constantly of the Return,
The Return which the origin of true life is.
He sees in Autumn’s majesty, that Return for which he yearns,
Which for him is the Spring of heavenly life.
If Spring be the origin of life below,
Autumn is the Spring of eternal life,
That life for the Return to which the gnostic lives here on earth.
And so for him Autumn is the Spring of life divine,
Heralding the Return to that life that never ends. ”

Autumn - Sayyed Hossin Nasr
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PARIS-DIDEROT UNIVERSITY

Abstract
Laboratoire de physique nucléaire et de hautes énergies, Paris

STEP-UP Ecole Doctroale-ED 560

Doctor of Philosophy

Measurement of Higgs boson production cross sections in the diphoton channel with the full
ATLAS Run-2 data and constraints on anomalous Higgs boson interactions

by Ahmed TAREK ABOUELFADL

This thesis presents the measurement of the fiducial integrated and differential cross sections for the
production of the Higgs boson decaying to two photons. The measurement is performed using 139
fb−1 of proton–proton collision data at

√
s = 13 TeV collected by the ATLAS experiment at the Large

Hadron Collider. The cross section measurement in the two-photon final state is performed in a fiducial
region closely matching the experimental selection and compared to Standard Model (SM) predictions.
The measurement is performed for the inclusive fiducial region and differentially for the Higgs boson
transverse momentum, the Higgs boson absolute rapidity, and various jet variables including the jet
multiplicity, the transverse momentum of the leading jet, the invariant mass of the two leading jets and
Azimuthal-angle separation of the two leading jets. These variables probe precisely the Higgs boson
kinematic and CP properties. This resulted in a measurement of the inclusive H → γγ fiducial cross
section of 65.2 ± 7.1 fb which is in excellent agreement with the SM predictions of 63.6 ± 3.3 fb. The
measured differential cross sections are used to probe the strength and tensor structure of the anomalous
Higgs boson interactions using an effective Lagrangian, which introduces additional CP-even and CP-
odd interactions.

Keywords: LHC – ATLAS - SMEFT – EFT – Higgs boson – Cross section

Resumé

Cette thèse présente une mesure de la section efficace différentielle et intégrée de la production du
boson de Higgs se désintégrant en deux photons, effectuée avec l’expérience ATLAS au grand collision-
neur de hadrons (LHC) avec 139 fb−1 de collisions proton–proton á

√
s = 13 TeV. La mesure de la

section efficace dans l’état final á deux photons est faite dans une région ‘fiducial’ en très bon accord
avec la sélection expérimentale et comparée avec les predictions du modàle standard (SM). La mesure
est effectuée dans la totalité de la région "fiducial", et en fonction du moment transverse du boson de
Higgs, la rapidité absolue du boson de Higgs, et différentes variables de jet: la multiplicité de jets, le mo-
ment transverse de jet principal, la masse invariante des deux jets principaux, et la séparation azimutale
des deux jets principaux. Ces variables sondent précisément la cinématique du boson de Higgs et les
properties CP. La section efficace dans la region fiducial intégrée est mesurée á 65.2± 7.1 ce qui est en
excellent accord avec la prediction du modàle standard de 63.6± 3.3 fb.

Mots clefs : LHC – ATLAS - SMEFT – EFT – Boson de Higgs- Section efficace
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Introduction

Throughout history, attempts were carried out to understand the fundamental building blocks of matter
and the forces that govern their interactions. This evolved from a naive 4-element description of nature,
through theories and discoveries on atoms, arriving at the sub-atomic world with one of the most accu-
rate scientific theories known, the Standard Model (SM) of particle physics [1–5]. The Standard Model of
particle physics is a theory that describes three of the fundamental interactions between the elementary
particles that compose matter: the electromagnetic, strong, and weak forces. The Standard Model was
developed in the early 1970s, and it has successfully explained all experimental results from particle col-
liders. Furthermore, the Standard Model predicted the existence of an additional fundamental particle,
the Higgs boson, to explain how fundamental particles acquire their masses. The Higgs boson particle
was discovered in July 2012 by the ATLAS [6] and CMS [7] experiments at the Large Hadron Collider
(LHC) [8].

The Higgs boson is a massive scalar particle, that was predicted in the context of spontaneous elec-
troweak symmetry breaking (EWSB) theory, proposed by P. Higgs [9], R. Brout and F. Englert [10], and G.
Guralnik, C. Hagen and T. Kibble [11] to generate masses for the massive force carriers. Since the discov-
ery of the Higgs boson, several studies were performed to measure the different properties (mass, spin,
and parity, couplings) of the Higgs boson. These measurements rely on proton-proton collision data
from the LHC, collected at a center of mass energy of 7 and 8 TeV during the LHC Run-1 (2011–2012),
corresponding to an integrated luminosity of approximately 5 and 20 fb−1 respectively, and at a center
of mass energy of 13 TeV during the LHC Run-2 (2015–2018), corresponding to an integrated luminos-
ity of approximately 139 fb−1. In Run-2, the significant increase of the collected data and the increased
center-of-mass energy allowed performing different measurements of the Higgs boson properties at un-
precedented precision [12–14]. These measurements probed the different Higgs boson production and
decay modes. Among those decay modes, is the decay in the two-photon channel H → γγ. Despite its
small branching ratio (around 0.2%), this was one of the main discovery channels in 2012 thanks to the
excellent photon reconstruction and identification efficiency and energy resolution at ATLAS and CMS.

This thesis presents the precise measurement of the Higgs boson cross section measured inclusively
in a fiducial region defined by the detector acceptance, and differentially as a function of several kine-
matic variables. These measurements are performed in a model-independent manner and corrected for
detector effects, which allows for a direct comparison with different theory predictions and with results
of other experiments or decay channels. The results presented in this thesis are based on the full Run-2
data collected by the ATLAS experiment. These measurements are sensitive to (i) the cross-section ratios
between the different Higgs boson production modes, (ii) the amount of additional radiation produced
in association with the Higgs boson, and (iii) the charge conjugation and parity (CP) properties of the
Higgs boson. The measurements show excellent agreement with the Standard Model predictions.

Despite the successes of the Standard Model, there are a few experimental signatures, mostly from
non-collider physics experiments, that do not fit within the framework of the Standard Model, detailed in
Section 1.4. These signatures hint at physics Beyond the Standard Model (BSM). Numerous approaches
are pursued to search for BSM physics with the LHC data, namely a direct and an indirect approach.
The direct approach typically searches for signatures associated with the presence of new particles, such
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as resonant excesses in the invariant mass distribution of the decay products of these new particles. The
indirect approach, on the other hand, looks for hints of BSM physics by searching for deviations between
the measurements of quantities that are precisely predicted by the SM, and the theoretical values of such
quantities. The measured deviations are then interpreted in terms of concrete BSM models or, as is done
in this thesis, using an Effective Field Theory (EFT) approach. This approach is based on the decoupling
theorem [15]. It extends the Standard Model Lagrangian with higher-order operators. These operators
modify the SM Higgs boson couplings and kinematics, and therefore one can use precision Higgs boson
measurement to constrain these operators experimentally. The EFT approach is a model-independent
approach, assuming there are now light resonances, as these additional generic terms can be translated
to model-dependent parameters in a separate step. In this thesis, the EFT approach was used to constrain
anomalous Higgs boson couplings using the precise measurement of the Higgs boson cross section in the
two-photon channel. The precise measurements of the differential Higgs boson production cross sections
obtained in this channel allowed us to set tight limits on the strengths of several anomalous interactions
between the Higgs boson and the gauge bosons, either CP-conserving or CP-violating ones.

Overview of the manuscript and personal contributions

The manuscript is divided into three parts: the first part includes the description of the theoretical frame-
work underlying this work; the second part describes the experimental apparatus, with particular em-
phasis on the calibration of electron and photon energies; the last part illustrates, in detail, the measure-
ment of the Higgs boson cross sections and their interpretation in an EFT framework. The manuscript
includes, as well, two interludes describing the statistical treatment used throughout the manuscript and
the unfolding procedure for the Higgs boson cross section measurement. The three parts are formed by
the following chapters:

• Chapter 1 begins with an overview of the Standard Model and the spontaneous electroweak-
symmetry breaking (the Higgs mechanism). The chapter then focuses on the Higgs boson phe-
nomenology at the LHC, summarizing the different production and decay modes and the state-
of-the-art SM calculations of the relevant processes, including their main sources of theoretical
uncertainties. This chapter includes, as well, a review of the latest Higgs boson properties mea-
surements.

• Chapter 2 is dedicated to the theoretical foundations of the effective field theory (EFT) framework.
It includes motivations and details for the different EFT bases used in this thesis. The phenomenol-
ogy of these bases is also described.

• Chapter 3 describes the experimental setup. It begins with a description of the LHC machine and
performance. The second part of the chapter focuses on the ATLAS experiment, detailing its differ-
ent sub-detectors, with more emphasis on the sub-detector most relevant to this thesis, namely the
liquid-Argon electromagnetic calorimeter. The chapter concludes with an overview of the recon-
struction and identification techniques used for the different particles produced in the final state of
the processes under study in this manuscript.

• Chapter 4 describes the calibration of electron and photon energies. It begins with a description
of the full calibration chain of the response of the ATLAS electromagnetic calorimeter. The chap-
ter emphasizes the calibration of the energy response of the different longitudinal layers of the
calorimeter. In particular, the calibration of the presampler layer, that I have worked on during
the first year of my doctoral studies. The calibration of the energy response of the presampler is
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a complex procedure, exploiting the sensitivity of different particles to non-active material in the
detector. I have extracted the presampler energy scale corrections and computed the relative sys-
tematic uncertainties using 36 fb−1 of 13 TeV pp collisions collected in 2015–2016. This work was
documented in a paper, published in 2018 [16], detailing the different calibration ingredients. Also,
I was one of the authors of the Internal ATLAS support note for the layer calibration [17].

• Chapter 5 details the measurement of the Higgs boson production cross section in the two-photon
channel. The inclusive cross section and the differential cross sections as a function of six kine-
matic variables (pγγ

T , |yγγ|, pj1
T , Njets, mjj and ∆φjj,signed) are measured. All measurements are

performed in fiducial regions defined at the particle-level by criteria that closely match the experi-
mental requirements, to minimize theory uncertainties from extrapolation to the full phase space.
In particular, photons are required to be isolated at particle-level from nearby hadronic activity. All
the results shown in this chapter are based on my work. In particular:

– I have performed the selection of the fiducial region and studies of the particle-level isolation
requirement, including the evaluation of an alternative matching of the detector-level isolation
to particle-level isolation based on a veto of jets in a cone of radius ∆Rγ,j around the photon
direction.

– I have optimized the choice of the binning of the differential cross section measurements.

– I have implemented and executed the maximum likelihood fit to the invariant mass distribu-
tion of the two photons in the selected events to determine the number of signal events, based
on some analytical models for the signal and background distributions.

– I have estimated the expected impact of the experimental and theoretical systematic uncer-
tainties on the Higgs boson signal yield and diphoton invariant mass distribution and imple-
mented them as nuisance parameters in the fit. In particular, I developed a new technique
for the estimation of uncertainties due to jets from pileup events using Monte Carlo-based
subtraction.

– I have contributed to the studies leading to the choice of the analytical background model and
the estimation of the systematic uncertainty related to this choice.

– I have performed extensive comparisons of different unfolding methods to find the method
leading to the best compromise between statistical uncertainty and systematic bias

I was a co-author of the internal ATLAS note documenting this analysis. These results were pub-
lished in a conference note released for 2019 EPS-HEP conference [12]. Previously, in 2018, a cross
section measurement as a function of fewer kinematic variables was performed using a subset of
the full Run-2 data (80 fb−1 collected between 2015–2017) and published in a conference note re-
leased for the 2018 ICHEP conference [18]. For that measurement, I was a co-author of the ATLAS
supporting analysis note and gave major contributions to all the different stages of the analysis. I
have also contributed during the first year to the measurement of the cross sections using 36 fb−1

of data collected in 2015–2016 and published in Phys. Rev. D [19]. I was granted exceptional au-
thorship for my contributions.

• Chapter 6 concludes the manuscript with an interpretation of the measured cross sections of Chap-
ter 5 in an effective field theory framework. The work presented in the chapter was all done by
myself. The interpretation was performed using two EFT bases: the basis of the Strongly Interact-
ing Light Higgs (SILH) lagrangian [20], also used previously to interpret the results of Ref. [19],
and – for the first time in ATLAS – the Warsaw basis of the SMEFT lagrangian [21]. These results
were also included in the 2019 EPS-HEP conference note [12].
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Resumé

Au cours de l’histoire, plusieurs tentatives ont été menées pour comprendre les éléments constitutifs
fondamentaux de la matière et les forces qui régissent leur interaction. Cela a évolué d’une description
naïve de la nature en 4 éléments, à travers des théories et des découvertes sur les atomes, pour a l’une
des théories scientifiques les plus précises, le modèle standard (SM) de la physique des particules [1–5].
Le modèle standard de la physique des particules est une théorie qui décrit trois des interactions fon-
damentales entre les particules élémentaires qui composent la matière: les forces électromagnétiques,
fortes et faibles. Le modèle standard a été mis au point au début des années 70 et a expliqué avec succès
tous les résultats expérimentaux obtenus avec des collisionneurs de particules. En outre, le modèle stan-
dard prédit l’existence d’une particule fondamentale supplémentaire, le boson de Higgs, pour expliquer
comment les particules fondamentales acquièrent leurs masses. La particule de boson de Higgs a été
découverte en juillet 2012 par les expériences ATLAS [6] et CMS [7] au grand collisionneur de hadrons
(LHC) [8].

Le boson de Higgs est une particule scalaire massive, prédite dans le contexte de la théorie de rupture
de symétrie électrofaible spontanée (EWSB), proposée par P. Higgs [9], R. Brout et F. Englert [10], et G.
Guralnik, C. Hagen et T. Kibble [11] pour générer des masses pour les porteurs de forces massives (les
bosons de jauge). Depuis la découverte du boson de Higgs, plusieurs études ont été réalisées pour
mesurer les différentes propriétés (masse, spin et parité, couplages) du boson de Higgs. Ces mesures
reposent sur les données de collision proton-proton du LHC, recueillies à un centre de masse d’énergie
de 7 et de 8 TeV au cours du Run-1 du LHC (2011-2012), ce qui correspond à une luminosité intégrée
d’environ 5 et 20 fb−1 respectivement et à un centre d’énergie de masse de 13 TeV pendant le Run-
2 du LHC (2015-2018), ce qui correspond à une luminosité intégrée d’environ 139 fb−1. Dans Run-
2, l’ugmentation des données collectées et l’énergie accrue du centre de masse ont permis d’effectuer
différentes mesures des propriétés du boson de Higgs avec une précision sans précédent [12–14]. Ces
mesures ont sondé les différents modes de production et de désintégration du boson de Higgs. Parmi ces
modes de désintégration, se trouve la désintégration dans le canal à deux photons H → γγ. Malgré son
faible rapport de branchement (environ 0,2%), il s’agissait de l’un des principaux canaux de découverte
en 2012, grâce à l’excellente efficacité de reconstruction et d’identification des photons et à la résolution
d’énergie d’ATLAS et de CMS.

Cette thèse présente la mesure précise de la section efficace du boson de Higgs mesurée dans une
région inclusive définie par l’acceptation du détecteur et différentiellement en fonction de plusieurs vari-
ables cinématiques. Ces mesures sont effectuées de manière indépendante du modèle et corrigées des
effets de détecteur, ce qui permet une comparaison directe avec différentes prédictions de théorie et avec
les résultats d’autres expériences ou canaux de désintégration. Les résultats présentés dans cette thèse
sont basés sur les données complètes de Run-2 recueillies par l’expérience ATLAS. Ces mesures sont sen-
sibles (i) aux rapports de sections efficaces entre les différents modes de production du boson de Higgs,
(ii) à la quantité de rayonnement supplémentaire produite en association avec le boson de Higgs et (iii)
aux propriétés de conjugaison de charge et de parité (CP) du boson de Higgs. Les mesures montrent un
excellent accord avec les prévisions du modèle standard.

Malgré les succès du modèle standard, quelques signatures expérimentales, issues pour la plupart
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d’expériences de physique sans collisionneur, ne rentrent pas dans le cadre du modèle standard, comme
détaillé dans la section 1.4. Ces signatures font allusion à la physique au-delà du modèle standard
(BSM). De nombreuses approches sont poursuivies pour rechercher la physique BSM avec les données du
LHC. En complément de l’approche «directe», qui recherche généralement des signatures associées à la
présence de nouvelles particules ou à de nouvelles interactions telles que des excès de résonance dans la
distribution de masse invariante des produits de désintégration de ces nouvelles particules, l’approche
«indirecte» recherche des indices de la physique BSM en recherchant les écarts entre les mesures de
quantités prédites avec précision par le SM et les valeurs théoriques de ces quantités. Les écarts mesurés
sont ensuite interprétés en termes de modèles BSM concrets ou, comme dans cette thèse, en utilisant
une approche de la théorie du champ effectif (EFT). Cette approche est basée sur le théorème de décou-
plage [15]. Il étend le modèle standard Lagrangian aux opérateurs d’ordre supérieur qui modifient les
couplages et la cinématique du boson de SM Higgs. Il est donc possible d’utiliser la mesure de précision
du boson de Higgs pour contraindre ces opérateurs de manière expérimentale. L’approche EFT est une
approche indépendante du modèle car ces termes supplémentaires génériques peuvent être convertis en
paramètres dépendant du modèle dans une étape séparée. Dans cette thèse, l’approche EFT a été utilisée
pour contraindre des couplages de bosons de Higgs anormaux à l’aide de la mesure précise de la section
efficace du boson de Higgs dans le canal à deux photons. Les mesures précises des sections efficaces
différentielles de la production de boson de Higgs obtenues dans ce canal nous ont permis de fixer des
limites strictes aux forces de plusieurs interactions anormales entre le boson de Higgs et les bosons de
jauge, soit ceux conservant CP ou violant CP.

Aperçu du manuscrit et contributions personnelles

Le manuscrit est divisé en trois parties: la première partie est consacrée à la description du cadre théorique
sous-jacent à ce travail; la deuxième partie décrit l’appareil expérimental, en mettant l’accent sur l’étalonnage
des énergies des électrons et des photons; la dernière partie illustre en détail la mesure des sections
efficaces du boson de Higgs et leur interprétation dans un cadre EFT. Le manuscrit comprend égale-
ment deux interludes décrivant le traitement statistique utilisé dans le manuscrit et la procédure de
déploiement de la mesure de la section efficace du boson de Higgs. Les trois parties sont formées par les
chapitres suivants:

• Le chapitre 1 commence par un aperçu du modèle standard et de la rupture spontanée de symétrie
électrofaible (mécanisme de Higgs). Le chapitre se concentre ensuite sur la phénoménologie du
boson de Higgs au LHC, en résumant les différents modes de production et de désintégration, ainsi
que les calculs SM les plus récents des processus pertinents, y compris leurs principales sources
d’incertitudes théoriques. Ce chapitre comprend également un examen des dernières mesures des
propriétés du boson de Higgs.

• Le chapitre 2 est consacré aux fondements théoriques du cadre de la théorie du champ effectif
(EFT). Il comprend les motivations et les détails des différentes bases EFT utilisées dans cette thèse.
La phénoménologie de ces bases est également décrite.

• Le chapitre 3 décrit la configuration expérimentale. Il commence par une description de la machine
et des performances du LHC. La deuxième partie du chapitre est consacrée à l’expérience ATLAS,
détaillant ses différents sous-détecteurs, en mettant davantage l’accent sur le sous-détecteur le plus
pertinent pour cette thèse, à savoir le calorimètre électromagnétique à argon liquide. Le chapitre
se termine par un aperçu des techniques de reconstruction et d’identification utilisées pour les
différentes particules produites lors de l’état final des processus étudiés dans ce manuscrit.
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• Le chapitre 4 décrit l’étalonnage des énergies des électrons et des photons. Il commence par une
description de la chaîne de calibration complète de la réponse du calorimètre électromagnétique
ATLAS, en insistant particulièrement sur la calibration de la réponse des différentes couches lon-
gitudinales du calorimètre, et en particulier de la couche de pré-échantillonnage, sur laquelle j’ai
travaillé. pendant la première année de mes études de doctorat. L’étalonnage de la réponse énergé-
tique du pré-échantillonneur est une procédure complexe, exploitant la sensibilité de différentes
particules au matériau non actif dans le détecteur. J’ai extrait les corrections d’échelle d’énergie
du pré-échantillonneur et calculé les incertitudes systématiques relatives en utilisant des collisions
à 36 fb−1 sur 13 TeV de pp collisions en 2015-2016. Ce travail a été documenté dans un article
publié en 2018, intitulé [16], détaillant les différents ingrédients d’étalonnage. De plus, j’étais l’un
des auteurs de la note d’appui interne à ATLAS pour l’étalonnage des couches [17]. La chaîne de
calibration complète génère 0,22% et jusqu’à 0,81% pour les régions les plus avancées du détecteur.
L’incertitude qui en résulte sur la résolution en énergie des photons de la désintégration du bo-
son de Higgs est généralement comprise entre 10% et 20% maximum pour les photons à haute pT.
La calibration présentée a été utilisée pour mesurer la masse du boson de Higgs dans les canaux
H → γγ et H → 4` en utilisant 36 fb−1 de données de Run-2 à

√
s = 13 TeV [22] résultant en une

masse mesurée de:
mH = 124.86± 0.1 (stat.)± 0.19 (sys.) GeV (1)

ce qui est en très bon accord avec la mesure de masse combinée ATLAS + CMS Run-1 mH =

125.09± 0.21 (stat.)± 0.11 (sys.) GeV [23].

• Le chapitre 5 détaille la mesure de la section de production du boson de Higgs dans le canal à deux
photons. La section efficace et les sections efficaces différentielles en fonction de six variables ciné-
matiques (pγγ

T , |yγγ|, pj1
T , Njets, mjj et ∆φjj,signed) sont mesurées. Toutes les mesures sont effectuées

dans des régions de référence définies au niveau des particules par des critères qui correspon-
dent étroitement aux exigences expérimentales, afin de minimiser les incertitudes sur la théorie
de l’extrapolation à l’espace de phase complet. En particulier, les photons doivent être isolés au
niveau des particules de l’activité hadronique à proximité. Tous les résultats présentés dans ce
chapitre sont basés sur mon travail. En particulier:

– J’ai effectué la sélection de la région de référence et étudié l’étude de l’exigence d’isolation
au niveau des particules, y compris l’évaluation d’une correspondance entre l’isolation du
niveau du détecteur et l’isolation au niveau des particules, sur la base d’un veto des jets dans
un cône de rayon. ∆Rγ,j autour de la direction des photons.

– J’ai optimisé le choix du tri des mesures différentielles de la section.

– J’ai mis en oeuvre et exécuté l’ajustement du maximum de vraisemblance à la distribution de
masse invariante des deux photons dans les événements sélectionnés pour déterminer le nom-
bre d’événements de signal, en fonction de certains modèles analytiques pour les distributions
de signaux et d’arrière-plan.

– J’ai estimé l’impact escompté des incertitudes systématiques expérimentales et théoriques sur
le rendement du signal du boson de Higgs et la distribution de masse invariante au dipho-
ton et les ai appliquées en tant que paramètres de nuisance lors de l’ajustement. En partic-
ulier, j’ai développé une nouvelle technique pour l’estimation des incertitudes dues aux jets
d’événements de pileup en utilisant la soustraction basée sur le Monte Carlo.

– J’ai contribué aux études qui ont conduit au choix du modèle de fond analytique et à l’estimation
de l’incertitude systématique liée à ce choix.
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– J’ai effectué des comparaisons approfondies de différentes méthodes en cours pour trouver la
méthode permettant le meilleur compromis entre incertitude statistique et biais systématique

J’étais co-auteur de la note interne d’ATLAS documentant cette analyse. Ces résultats ont été pub-
liés dans une note de conférence publiée pour la conférence EPS-HEP de 2019 [12].

Les mesures sont effectuées dans une région fiduciale définie par l’acceptation du détecteur |η| <
2, 37, à l’exclusion de la région de 1, 37 < |η| < 1, 52 avec des photons sélectionnés répondant à
différentes exigences d’identification et d’isolation, et doivent obligatoirement moment transversal
supérieur à 35% et 25% de la masse invariante du diphoton.

Le rapport de branchement multiplié par rapport de branchement intégré mesuré est:

σ fid = 65.2± 4.5 (stat.)± 5.6 (exp.)± 0.3 (theory) fb (2)

à comparer avec la prédiction par défaut du modèle standard pour une production de bosons de
Higgs inclusive de 63, 5± 3, 3 fb, avec une incertitude totale de 11%, ce qui donne la croix la plus
précise H → γγ mesure de section efficace à ce jour.

En outre, une mesure des sections efficaces différentielles a été réalisée en fonction de différentes
variables observables sensibles à la cinématique de production du boson de Higgs. Ces variables
sondent les distributions transverses de momenutme et de rapidité du boson de Higgs, la multi-
plicité des jets, la cinématique des jets (pj1

T et mjj) et les nombres quantiques CP (∆φjj,signed). Les
résultats présentés dans cette thèse incluent une réduction par un facteur 2 des différentes échelles
systématiques de résolution des photons et des jets d’énergie et une résolution des incertitudes
systématiques par rapport à la précédente publication d’ATLAS [18]. Les résultats ont montré un
excellent accord avec les prévisions du SM. Les résultats ont également été comparés à plusieurs
prédictions théoriques grâce à la nature de la mesure indépendante du modèle, ce qui permet une
comparaison directe avec les prédictions théoriques.

Les sections efficace fiducial et différentielles mesurées ont ensuite été utilisées pour dériver la sec-
tion efficace inclusive et différentielle pour l’espace de phase complet pour la quantité de mouve-
ment transversale du boson de Higgs. Cela a abouti à une section de production totale dans le canal
H → γγ de 58, 6+6,7

−6,5 pb. En outre, une combinaison de la section efficace d’impulsion transversale
du boson de Higgs intégrant l’espace de phase complet et différentiel a été réalisée avec les sections
efficaces mesurées dans le canal H → ZZ∗ → 4`, donnant la section efficace inclusive suivante :

56.1+4.5
−4.3 pb ( ±3.2(stat.) +3.1

−2.8 (sys.) ). (3)

La section totale mesurée est en bon accord avec les prédictions SM de 55.6± 2.5 pb.

Auparavant, en 2018, une mesure de section transversale en fonction de moins de variables ciné-
matiques était réalisée à l’aide d’un sous-ensemble des données complètes de la série 2 (80 fb−1 col-
lectées entre 2015 et 2017) et publiées dans une note de conférence publiée le: la conférence ICHEP
de 2018 [18]. Pour cette mesure, j’étais co-auteur de la note d’analyse complémentaire d’ATLAS
et j’ai apporté une contribution majeure à toutes les étapes de l’analyse. J’ai également contribué
au cours de la première année à la mesure des sections efficaces en utilisant 36 fb−1 de données
collectées en 2015-2016 et publiées dans Phys. Rev. D [19]. On m’a accordé une qualité d’auteur
exceptionnelle pour mes contributions.

• Le chapitre 6 conclut le manuscrit par une interprétation des sections transversales mesurées du
chapitre ref Chapter7 dans un cadre de théorie des champs efficace. Le travail présenté dans ce
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chapitre a été entièrement réalisé par moi-même. L’interprétation a été réalisée à l’aide de deux
bases EFT: la base du [20] de SILH (Strongly Interacting Light Higgs), également utilisée auparavant
pour interpréter les résultats de Ref. [19], et - pour les première participation à LHC - la base de
Varsovie du SMEFT lagrangian [21]. Ces résultats ont également été inclus dans la note de con-
férence de 2019 EPS-HEP [12].
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Chapter 1

The Standard Model of Particle Physics

Since the second half of the 20th century we have been witnessing the triumphs of the Standard Model of
particle physics (SM). The Standard Model of particle physics refers mainly to a set of theories developed
in the mid-1970s. The Standard Model describes the known fundamental constituents of the universe
and their interactions. In this chapter, we will review the different concepts underlying the SM and will
introduce the SM Lagrangian, with a focus on the Higgs sector. We will briefly review the different
production and decay modes of the Higgs boson with particular emphasis on the decay in the diphoton
channel as it is the decay channel used in this thesis to study the Higgs boson production and decay
properties. The chapter also includes a review of the latest measurements of the Higgs boson properties
and motivations for the searches of physics beyond the Standard Model (BSM).

1.1 Introduction

Fundamental concepts

One of the fundamental concepts in the formulation of the Standard Model is that of symmetry. Symmetry
refers to the set of the transformations under which the physical system remains unchanged, or invariant.
The importance of this concept comes from the Noether theorem [24], relating continuous symmetries
of the action of a system to conserved quantities. For example, the invariance or symmetry under space
(time) translations results in the conservation of momentum (energy).

In the context of quantum field theory, one of the cornerstones in the construction of the Standard
Model is that of gauge symmetry. To understand gauge symmetry, let us consider a massive complex
scalar field ψ with mass m described by the Lagrangian density (simply called “Lagrangian” in the fol-
lowing):

L = ∂µψ†∂µψ−m2ψ†ψ (1.1)

This Lagrangian is invariant with respect to a rotation with angle α in the complex plane:

ψ(x)→ ψ(x)eiα , ψ†(x)→ ψ†(x)e−iα (1.2)

Therefore, this Lagrangian is said to be symmetric under global U(1) transformations, with global de-
noting that α is the same for any space-time point x, and U(1) is the one-dimensional group of unitary
transformations. This U(1) symmetry, however, is broken when α depends on x. Therefore, the complex
scalar field Lagrangian does not respect local U(1) symmetry. The invariance under local U(1) transfor-
mation can be restored by introducing a new vector field Aµ(x) that transforms as Aµ → Aµ − 1

q ∂µα(x)
and by replacing the derivative in the Lagrangian of Eq. (1.1) with a covariant derivative Dµ defined as

Dµ = ∂µ + iqAµ(x), (1.3)
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where q is the coupling strength between the scalar field ψ and Aµ. Using these definitions, the La-
grangian is now symmetric with respect to local U(1) transformation. The field Aµ that is introduced to
restore the local symmetry is then known as a gauge field, and the Lagrangian with these modifications
is known as a gauge theory. The terminology gauge implies that the field theory admits different config-
urations of the fields which yield identical observables. The field Aµ, in this case, is thought of as an
interaction mediator that couples to the scalar field ψ. The number of gauge fields required to restore
a given local symmetry is related to the number of generators in the gauge symmetry group. In our
example, it was the U(1) symmetry group with one generator, and hence this resulted in a single gauge
field to restore the local gauge symmetry.

1.1.1 Overview of the Standard Model

The Standard Model is a gauge theory that describes the elementary particles and their fundamental
interactions (aside from gravity). The SM is built from three families of elementary spin- 1

2 particles
(fermions) classified in quarks and leptons with a total of 12 particles (with their anti-particle counter-
parts). The different properties (mass, charge, and spin) of these particles are summarized in Figure 1.1.
The SM describes the electromagnetic, weak, and strong nuclear interactions between these particles as
follows:

• The description of the strong interaction is based on the theory of Quantum Chromo–Dynamics
(QCD) [1, 2]. Quantum Chromo-Dynamics is a gauge theory with SU(3)C symmetry. It is based
on the conservation of the strong charge, referred to as the color charge (hence the subscript C).
The color charge comes in three forms: red, green, and blue. The strong force is mediated by the
exchange of 8 massless vector bosons, known as gluons.

• The description of the electromagnetic and weak interactions is based on the GWS electroweak
theory, unifying electromagnetism and weak interactions. The electroweak model, proposed by
Glashow [3], Salam [4] and Weinberg [5], is based on the gauge symmetry group SU(2)L ⊗U(1)Y,
where the subscripts L and Y refer to left-handed isospin and hypercharge. The electromagnetic
and weak interactions are propagated by four-vector bosons: a massless photon and three massive
bosons respectively, the charged W± bosons and the neutral Z boson.

The full gauge symmetry group of the SM is thus SU(3)C ⊗ SU(2)L ⊗U(1)Y.
Without additional fields, the gauge invariance of the SM is only possible for massless particles since

explicit mass terms for fermions or gauge bosons would not be gauge invariant. However, massless
gauge bosons will lead to long-range forces which contradicts various experimental evidence that the
weak interactions have a very short range and are mediated by massive gauge bosons. This contradiction
was the motivation for the spontaneous electroweak symmetry breaking (EWSB) theory, proposed by P.
Higgs [9], R. Brout and F. Englert [10] and G. Guralnik, C. Hagen and T. Kibble [11] to generate vector
boson and fermion masses. This is done by introducing an SU(2) doublet of a complex scalar field
with the neutral component undergoing a phase transition known as spontaneous symmetry breaking and
developing a non-zero vacuum expectation value (VEV) that gives rise to the W± and Z bosons masses.
The fermion masses, on the other hand, are generated by Yukawa interactions between the fermions and
the additional scalar field. The complex SU(2) doublet also results in an additional scalar particle: the
Higgs boson.
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FIGURE 1.1: A sketch of the Standard Model ingredients [25].

1.2 The Standard Model Lagrangian

The Standard Model Lagrangian can be written as follows:

LSM = Lfermions + Lgauge bosons + LHiggs + LYukawa (1.4)

In this section we will review the first two components; the Higgs sector (LHiggs + LYukawa) will be
reviewed in a dedicated section. Before electroweak symmetry breaking, the SM is composed mainly of
two kinds of fields: the fermion fields and gauge bosons detailed below.

1.2.1 The fermion fields

The first component of the SM Lagrangian, Lfermions, describes the propagation and the interactions
of fermions with gauge bosons. Fermions are spin 1/2 particles that can be categorized into three
types: Weyl (massless), Dirac (massive) and Majorana (each particle is its own anti-particle) fermions.
All Standard Model fermions after the symmetry breaking are Dirac fermions (aside from neutrinos
as their nature is not yet determined to be Dirac or Majorana). The kinetic term of a Dirac fermion
field ψ is iψ̄γµ∂µψ, where γµ are the Dirac matrices [26]. In the SM, a distinction is made between left-
handed and right-handed quarks and leptons. This distinction is a result of the field transformations
under the SU(2)L symmetry group. The left-handed fermions are grouped in weak isospin doublets
fL = 1

2 (1− γ5) f . The right-handed fermions are weak isosinglets fR = 1
2 (1 + γ5) f . This is summarized

below for the three generations [27]:



28 Chapter 1. The Standard Model of Particle Physics

Leptons︷ ︸︸ ︷

L1 =

(
νe

e−

)

L

, eR1 = e−R ,

Quarks︷ ︸︸ ︷

Q1 =

(
u
d

)

L

, uR1 = uR , dR1 = dR

L2 =

(
νµ

µ−

)

L

, eR2 = µ−R , Q2 =

(
c
s

)

L

, uR2 = cR , dR2 = sR (1.5)

L3 =

(
ντ

τ−

)

L

, eR3 = τ−R , Q3 =

(
t
b

)

L

, uR3 = tR , dR3 = bR

In the language of the electroweak unification, one can define the weak hypercharge Yf in terms of
the electric charge (Q f ) and the third component of the weak isospin I3

f by the equation:

Yf = 2Q f − 2I3
f (1.6)

This leads to the hypercharges YL = −1, YQL = 1
3 for the doublets and YR = −2, Yu = 4

3 , Yr =

− 2
3 for the singlets. One of the consequences of the left-handed components being SU(2)L doublets

whereas the right-handed components are singlets is that it is impossible to include an explicit mass
term (−m f ψ̄ψ) for any of the fermions detailed above. The explicit mass terms mix the left- and right-
handed components, which violate the isospin symmetry.

In addition to the electroweak interactions, the quark fields Q(1,2,3), uR(1,2,3) and dR(1,2,3) are charged
under the SU(3) color group. They are represented as triplets transforming with their corresponding
fundamental representation of SU(3), whereas the leptonic fields are color singlets, i.e. not charged
under the strong interaction.

1.2.2 The gauge fields

The second component of the SM Lagrangian, Lgauge bosons, describes the propagation of the gauge
bosons. The gauge bosons are the spin-one bosons mediating the interaction and restoring the local
gauge symmetry as detailed in the introduction. The gauge-fields Lagrangian follows:

Lgauge boson = −1
4

Ga
µνGµν

a −
1
4

Wa
µνWµν

a −
1
4

BµνBµν. (1.7)

These fields correspond to the generators of their respective symmetry groups. The field Bµ correspond
to the generator of the U(1)Y group, the fields Wa=1,2,3

µ correspond to the three generators of the SU(2)L

group and the fields Ga=1..8
µ correspond to the eight generators of SU(3)C. The field strength tensors of

these fields are given by:

Ga
µν = ∂µGa

ν − ∂νGa
µ + gs f abcGb

µGc
ν,

Wa
µν = ∂µWa

ν − ∂νWa
µ + g2εabcWb

µWc
ν , (1.8)

Bµν = ∂µBν − ∂νBµ,

where gs and g2 are the strong and weak coupling constants
The main differences between these fields result from the different nature of their corresponding

symmetry groups. For example, the SU(2)L and SU(3)C groups are non-abelian groups. For the SU(2)L

group, the fields Wa=1,2,3
µ correspond to the the SU(2) group generators Ta that follow the commutation
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relations [Ta, Tb] = iεabcTc where εabc is the antisymmetric tensor. For SU(3)C the fields Ga=1..8
µ cor-

respond to the SU(3) generators λa that result in the commutation [λa, λb] = i f abcλc where the tensor
f abc contains the structure constants of the SU(3) group. The matrices λa are known as the Gell-Mann
matrices [28]. The non-abelian group structure of SU(2) and SU(3) results in self-interactions between
the Wµ and Gµ gauge fields. The behavior of the SU(2) and SU(3) groups is different from that of the
U(1)Y group, where the fields commute, as the generators Y of U(1) follow [Ya, Yb] = 0.

The coupling between the fermion fields and the gauge fields is established by defining the covariant
derivative that preserves gauge invariance. The covariant derivatives Dµ for the case of quarks (that
couple to all gauge bosons) is:

Dµψ =

(
∂µ − igs

λa

2
Ga

µ − ig2TaWa
µ − i

g1

2
YBmu

)
ψ (1.9)

with gs, g2, g1 the coupling constants of the SU(3)C, SU(2)L, and U(1)Y interactions respectively. From
this definition, and by replacing the derivative in the Dirac Lagrangian with the covariant derivative,
the different fermion and gauge boson interactions can be determined for the electroweak and QCD
components.

Quantum Chromo-Dynamics (QCD) The couplings between quarks and gluons are defined from the
SU(3)C covariant derivative. For example, for first generation quarks:

Linteractions
QCD =

gs

2
Q̄1γµλaGa

µQ1 (1.10)

where gs is the coupling constant of the strong interactions and λa are the SU(3) generators. The constant
gs, or equivalently αs =

g2
s

4π , is the fundamental parameter of QCD, along with the quark masses. Using
these parameters one can evaluate the QCD scattering amplitudes in powers of αs. However, loop graphs
are divergent and need to be fixed using a renormalization procedure with a renormalization scale µR

that is typically close to the scale of the momentum transfer of the process. In this case, the dependence
of the coupling constant on the renormalization scale µR is derived using the renormalization group
equations (RGE). For QCD, one finds the following relation [29, §9.1.1]:

µ2
R

dαs

dµ2
R
= β(αs) = −(b0αs + ...), (1.11)

where b0 = (33− 2n f )/(12π), and n f denotes the number of quark flavors. b0 is referred to as the 1-
loop β-function coefficient. The dependence of αs on µR, plotted in Figure 1.2, defines the characteristic
properties of QCD interactions:

• Asymptotic freedom, which refers to the fact that the strong interaction coupling becomes weak for
processes with large momentum transfers (large Q2) and small distances. This is a result of the
minus sign in Eq. (1.11). Solving Eq. (1.11) for αs(µ2

R) and using the experimental data in Figure 1.2
one finds:

αs(µ
2
R) =

1

b0 log( µ2
R

Λ2
QCD

)
, (1.12)

where ΛQCD is the fundamental scale of QCD at which the coupling constant diverges and is esti-
mated to be ΛQCD ' 220 MeV. This scale defines the infrared cutoff of QCD, meaning that the for
µR � ΛQCD the coupling constant becomes small (αS � 1) and perturbation theory is valid.
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• Quark confinement, which refers to the fact that at small Q2 (large distances), the coupling between
the quarks becomes strong and prevents quarks from existing as isolated particles. The increasing
potential energy due to the increasing separation between the quarks is large enough that it pro-
duces quark and anti-quark pairs in a process known as hadronization. This results in the quarks
forming colorless hadrons: baryons (qqq) or mesons (q̄q). These final state hadrons will appear pre-
dominantly in collimated bunches, which are generically called jets. In this case, the momentum
transfer Q2 is similar to the QCD scale, Q2 ≈ Λ2

QCD, hence perturbation theory is not valid. This
problem is tackled using the property of factorization of the non-perturbative hadronization pro-
cess from the perturbative hard process as they occur at different time scales. The predictions of
the non-perturbative component are based on Monte-Carlo simulations using parton-shower event
generators with different hadronization models such as HERWIG [30] and PYTHIA [31].
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reasonably stable world average value of αs(M
2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q

2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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FIGURE 1.2: Summary of measurements of αs as a function of the energy scale Q. The respective degree
of QCD perturbation theory used in the extraction of αs is indicated in parenthesis [29, §9.4.8].

Electroweak theory The couplings between fermions and electroweak bosons can be determined by
expanding the covariant derivative of Eq. (1.9) in the Dirac Lagrangian. For example, for the first gener-
ation leptons:

Linteractions
EW =

U(1) terms︷ ︸︸ ︷
−iL̄1γµ

(
iYLg1

2
Bµ

)
L1 − iēR1γµ

(
iYRg1

2
Bµ

)
eR1 −

SU(2) terms︷ ︸︸ ︷
iL̄1γµ

(
iTag2

2
Wa

µ

)
L1, (1.13)

using L̄γµL = ν̄LγµνL + ēLγµeL and the full expression of the TaWa
µ in SU(2) terms:

TaWa
µ =

(
W3

µ W1
µ − iW2

µ

W1
µ + iW2

µ −W3
µ

)
=

(
W3

µ −
√

2W+
µ

−
√

2W−µ −W3
µ

)
, (1.14)

where W±µ = 1√
2
(W1

µ ∓ iW2
µ) are the physical fields of the charged W±µ bosons. The total Lagrangian of

the electroweak interactions for first generation leptons follows:

Linteractions
EW = − g1

2
[YL (ν̄LγµνL − ēLγµeL)−YR ēRγµeR] Bµ

+
g2

2

[
ν̄LγµνLW3

µ −
√

2ν̄LγµeLW+
µ −
√

2ēLγµνLW−µ − ēLγµeLW3
µ

]
(1.15)
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From this equation, one can deduce the charged current weak interactions, mediated by the W± bosons,
coupling electrons and neutrinos. Eq. (1.15) includes as well terms coupling electrons (and neutrinos)
with themselves. One can then interpret the combinations g2Bµ + g1W0

µ and −g1Bµ + g2W0
µ as the phys-

ical photon Aµ and neutral Zµ boson fields, defined as:

Zµ =
−g1Bµ + g2W0

µ√
g2

1 + g2
2

(1.16)

Aµ =
g2Bµ + g1W0

µ√
g2

1 + g2
2

, (1.17)

One can then define the mixing angle:

θW = sin−1 g1√
g2

1 + g2
2

, (1.18)

also known as the Weinberg weak mixing angle, by which the rotation of the electroweak fields W0 and
B0 occurs and produces the Z0 boson and the photon after spontaneous symmetry breaking.

These relations define as well the relation between the electric charge e (or the electromagnetic cou-
plings constant α = e2

4πε0 h̄c ' 1
137 ) and the electroweak SU(2) and U(1) couplings g1 and g2:

e = g1 cos θW . (1.19)

The experiments have confirmed the existence of the W±µ and Zµ bosons, with masses of mW =

80.363± 0.020 GeV and mZ = 91.1876± 0.0021 GeV respectively [29]. This explains the short range of
the weak interaction (∼ 10−18 m): accounting for the masses mV in the propagator of these gauge bosons
results in a potential U(r) = e−rmV that falls quickly with the distance r. However, including a mass term
1
2 m2

VWµWµ in the SM Lagrangian will violate the local SU(2)×U(1) gauge invariance. This problem,
in addition to the mass problem of fermions, were the motivations for the development of the theory
of spontaneous electroweak symmetry breaking, commonly known as the Higgs mechanism, which is
detailed in the next section.

1.2.3 Electroweak spontaneous symmetry breaking

As detailed in the previous section, explicit mass terms can not be used for fermions and massive gauge
bosons. Therefore, attempts to solve this problem were undertaken using the concept of spontaneous
symmetry breaking. This concept originated in the field of condensed matter physics. A famous example
of this concept is from Landau’s theory of phase transitions [32]. For a ferromagnetic material in the
absence of external fields and at high temperatures, the spatial average of the magnetic moment (or
magnetization) is zero. This results in a global O(3) rotational symmetry for this system, as shown in
the left plot of Figure 1.3. However, it was found that when the system cools down below a certain
critical temperature T < TC, the system undergoes a phase transition and the magnetization becomes
non-zero as all of the spins line up along a single direction, as shown in the right plot of Figure 1.3.
This phase transition breaks the global O(3) rotational symmetry. The symmetry, in this case, is said to
be "spontaneously" broken as there is nothing in the Lagrangian describing the system that can explain
such a symmetry breaking.

A similar idea was brought to the field of particle physics to solve the problem of masses of gauge
bosons. The simplest of such solutions was the introduction of a complex SU(2) doublet scalar field Φ
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T < TcT > Tc

FIGURE 1.3: An example of the Landau theory using a piece of ferromagnetic material. Left: for tempera-
tures T > Tc, the average magnetization (magnetic moment) is zero. The zero magnetization is the same
for any angle of rotation. Right: for temperatures T < Tc, the spins align at a particular direction breaking

the rotational symmetry of the system.

in the SM lagrangian:

Φ =

(
φ+

φ0

)
=

1√
2

(
φ3 + iφ4

φ1 + iφ2

)
(1.20)

This additional scalar field is defined to have weak hypercharge YL = +1. The gauge-invariant La-
grangian term of this scalar is:

LHiggs = (DµΦ)†(DµΦ)−V(Φ) , V(Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (1.21)

where the covariant derivative is defined as

DµΦ =

(
∂µΦ− ig2TaWa

µ −
ig1

2
Bµ

)
Φ. (1.22)

For µ2 > 0 the potential V(Φ) has a minimum at φ = 0, as shown in the left plot of Figure 1.4. The
minimum corresponds to the ground state, also known as the vacuum, 〈0|φ|0〉 = 0. The Lagrangian
LHiggs in this case is that of a scalar particle of mass µ. However, for µ2 < 0, the potential has now a
"Mexican-hat" shape, as shown in the right plot of Figure 1.4, with a continuum set of minima satisfying
the criterium:

| 〈Φ〉0 |2 = | 〈0|Φ|0〉 |2 = v2/2 with v =

(−µ2

λ

)1/2

(1.23)

In the Higgs potential, the self-coupling parameter λ is chosen to be positive to ensure that the po-
tential is bound from below. The minimum of the potential after the spontaneous symmetry breaking
occurs for the neutral component of the doublet to preserve the U(1) symmetry. The non-zero vacuum
expectation value results in the breaking of the symmetry:

SU(2)L ×U(1)Y → U(1)EM (1.24)

Using Eq. (1.23), one can rewrite the field Φ in terms of physical fields using the unitary gauge:

Φ =
1√
2

(
0

v + H

)
, (1.25)
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µ2 < 0

v

V (�)
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V (�)

�

µ2 > 0

FIGURE 1.4: The potential V(Φ) for a scalar field φ with µ2 > 0 (left plot) and with µ2 < 0 (right), giving
rise to the typical "Mexican hat" shape.

where H is the physical Higgs field. Using this definition in Eq. (1.22), one finds immediately the terms
of the vector bosons masses in terms of the non-zero vev (v) as:

(DµΦ)†(DµΦ) =
1
2

∂µH∂µH +
(v + H)2

8

(
2g2

1WµWµ + (g2
1 + g2

2)ZµZµ
)

(1.26)

This leads to the vector boson masses:

m2
W =

1
4

g2
1v2, m2

Z =
1
4
(g2

1 + g2
2)v

2, mA = 0. (1.27)

Therefore, by the introduction of the Higgs field, three of the Goldstone bosons [33] that result from
the breaking of the continuous symmetry were absorbed by the W± and Z bosons to form their longitu-
dinal components and give them masses. The U(1)EM symmetry is still unbroken and hence the photon
remains massless. From Eq. (1.27), the vacuum expectation value is related to the W boson mass, which
in turn is related to the Fermi coupling constant by the relation [34]:

mW =
g1

2
√√

2GF

, (1.28)

where GF = 1.166 × 10−5 GeV−2 is the Fermi coupling constant. From this relation, the value of the
Higgs vacuum expectation value is:

v =

√
1√
2GF

= 246.22 GeV. (1.29)

Using the scalar doublet, we can generate the fermion mass terms by introducing the SU(2)L×U(1)Y

invariant Yukawa Lagrangian:

LYukawa = −λe L̄ΦeR − λdQ̄ΦdRλuQ̄ΦuR + h.c. (1.30)

Similar to Eq. (1.26), by replacing the scalar field as an expansion around the vacuum expectation value
in the unitary gauge one can obtain fermion mass terms as follows (for example, for electrons):

LYukawa =
−1√

2
λe(v + H)ēLeR + . . . , (1.31)
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where the constant term in front of ēLeR is identified with the fermion masses:

me =
λev√

2
, mu =

λuv√
2

, md =
λdv√

2
. (1.32)

Therefore, using the same scalar doublet one can obtain the fermion masses by breaking the SU(2)L ×
U(1)Y electroweak gauge symmetry while preserving the U(1)EM and the SU(3)C symmetries. The
neutrinos remain massless, but one could account for their masses by including right-handed partners
in the model, and the corresponding Higgs boson Yukawa interactions. The upper limits on the neutrino
masses would imply that the Yukawa couplings for the neutrinos would be very small, of the order of
10−12. To summarize, the vector boson and fermion masses are included in the SM by introducing the
Higgs field that undergoes a phase transition giving non-zero vacuum expectation value, resulting in
masses for fermions and gauge bosons. From a cosmological point of view, the universe was cooling
down after the Big Bang till approximately 1016 K (10−12 s after the Big Bang) when the electroweak
phase transition took place, breaking the SU(2)L × (U)Y symmetry. Before the spontaneous symmetry
breaking, particles were massless, and the universe respected the SU(2)L × (U)Y symmetry.

1.2.4 The SM Higgs boson

As detailed in the previous section, the remaining degree of freedom of the added scalar doublet is what
we identify as the Higgs boson particle. The kinematic propagation of the Higgs boson is derived directly
from the covariant derivative in Eq. (1.26), whereas the mass mH and the self-coupling λ are from the
scalar potential V(Φ) giving, the following Higgs Lagrangian:

LHiggs =
1
2
(∂µH)2 − λv2H2 − λvH3 − λ

4
H4 (1.33)

The mass of the Higgs boson is read directly from this Lagrangian: m2
H = 2λv2. The value of the Higgs

mass is a free parameter of the SM since it depends on the unknown parameter λ. Therefore, the mass
of the Higgs boson is determined experimentally. Nevertheless, there are theoretical constraints on the
values of the Higgs bosons mass related to unitarity requirement from W boson scattering, setting an
upper limit mH < 700 GeV; triviality and vacuum stability bounds also limit the Higgs boson mass to
the range 70 GeV ≤ mH ≤ 180 GeV [27]. The SM Higgs boson is a CP-even particle, as the CP-even
component of the scalar doublet is the component that acquires the non-zero vev.

In addition, the Lagrangian shows also Higgs boson triple and quartic self-interaction vertices:

gH3 = 3i
m2

H
v

, gH4 = 3i
m2

H
v2 . (1.34)

The Higgs boson couplings to fermions arise from the same Yukawa interactions giving rise to the
fermion mass terms and are proportional to their masses, as can be derived from in Eq. (1.32); the cou-
plings to the gauge bosons arise from the terms corresponding to the gauge interactions introduced by
the covariant derivatives, after spontaneous symmetry breaking, and are proportional to the square of
the masses of the weak bosons, as one can deduce from Eq. (1.27):

gH f f = i
m f

v
, gHVV = −2i

m2
V

v
, gHHVV = −2i

m2
V

v2 (1.35)

The different vertices of the Higgs boson couplings are summarized in Figure 1.5.
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•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2 mf × (−i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2 M2

V × (igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v2 = 2

√
2Gµ M2

V × (igµν)

•H

H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2 M2

H × (−i)

•H

H

H

H

gHHHH = 3M2
H/v2 = 3

√
2Gµ M2

H × (−i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–
couplings in the SM. The normalization factors of the Feynman rules are also displayed.

This form of the Higgs couplings ensures the unitarity of the theory [7] as will be seen

later. The vacuum expectation value v is fixed in terms of the W boson mass MW or the

Fermi constant Gµ determined from muon decay

MW =
1

2
g2v =

(√
2g2

8Gµ

)1/2

⇒ v =
1

(
√

2Gµ)1/2
≃ 246 GeV (1.30)

We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs boson, as some higher–order effects are

effectively absorbed in this way. The Higgs couplings to fermions, massive gauge bosons as

well as the self–couplings, are given in Fig. 1.2 using both v and Gµ. This general form of

the couplings will be useful when discussing the Higgs properties in extensions of the SM.

18

FIGURE 1.5: The Higgs interactions with fermions (first diagram from the top) and gauge bosons (second
and third diagrams), in addition to the Higgs self-interactions (fourth and fifth diagrams), as well as the

corresponding couplings [27].
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1.3 Phenomenology of the SM Higgs boson at the LHC

In this section we will review the main production and decay modes of the SM Higgs boson at the Large
Hadron Collider. The review is preceded by a brief introduction to initial state and distribution functions
of the partons in the colliding protons.

1.3.1 Parton Distribution Functions

In a hadron-hadron collision (such as the pp collisions at the LHC), the cross-section (σ) for a given
process is calculated as follows [35]:

σ =

parton−1︷ ︸︸ ︷∫
dx1 fqi/p1(x1, µ2)

parton−2︷ ︸︸ ︷∫
dx2 fqj/p2(x2, µ2)

hard process︷ ︸︸ ︷
σ̂(x1 p1, x2 p2, µ2), (1.36)

where the integrals
∫

dx1,2 fq/p(x1,2, µ2) represent the probability of a given parton qi to carry a fraction
x of the initial momentum of the hadron p1,2. The functions fq/p(x1,2, µ2) are known as the parton dis-
tribution functions (PDF) with µ denoting the energy scale of the hard process. PDFs are the probability
density functions for finding a particle with momentum fraction x of the colliding partons at a given
momentum scale µ. The hard process cross section σ̂(x1 p1, x2 p2, µ2) is factorized from the computed
parton-level cross section. The factorization procedure is a result of the complex structure of the col-
liding protons, that are made by three valence quarks as well as the strong gluon field between them,
leading to the creation of a sea of virtual quark and anti-quark pairs. Therefore, the precise knowledge
of the PDFs is an essential ingredient for the computation of the hard process cross section. The shape
of the PDFs, shown in Figure 1.6 at different energy scales, is estimated from a fit to experimental data,
mostly from deep inelastic scattering data at the Hadron-Electron Ring Accelerator (HERA) at DESY [36]
but also including other collider data, and evolved to different energy scales using the DGLAP equa-
tions [37–39]. 18. Structure functions 15
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Figure 18.5: The bands are x times the unpolarized (a,b) parton distributions
f(x) (where f = uv, dv, u, d, s ≃ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0
global analysis [56] at scales µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with
αs(M

2
Z) = 0.118. The analogous results obtained in the NNLO MMHT analysis can

be found in Fig. 1 of Ref [55]. The corresponding polarized parton distributions are
shown (c,d), obtained in NLO with NNPDFpol1.1 [15].
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FIGURE 1.6: Examples of parton distribution functions obtained in NNLO NNPDF3.0 global analysis at
different scales (a) µ2 = 10 GeV2 and (b) µ2 = 104 GeV2 [29].

The determination of the PDFs and their uncertainties is performed by different independent collab-
orations, such as the CT14 [40], MMHT2014 [41], and NNPDF3.0 [42] ones. For the calculation of the
expected cross sections at the LHC, a combination of the results from the different collaborations is per-
formed and a unified set of uncertainties is provided, following the PDF4LHC15 recommendations [36].
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An example of the results from the different collaborations is shown in Figure 1.7. The combination of
the PDF uncertainties resulted in two sets of uncertainties with a total of 100 and 30 eigenvariations that
affect the PDFs and are propagated to the cross section computations. In this thesis, the 30 eigenvariation
set is used to estimate the uncertainties on the cross sections. An additional uncertainty that affects these
computations is that in the value of the strong coupling constant αs. The PDF4LHC15 recommendations
suggests to use a value of αs(m2

Z) = 0.1180± 0.0015. The αs uncertainty is propagated to the procedure
of determining the PDFs from the experimental data, and a combined PDF+αs set of uncertainties is
provided.

(A) Comparison of gluon PDFs. (B) Comparison of up-quark PDFs.

FIGURE 1.7: Examples of (A) the gluon and (B) the up-quark PDFs determined by three different global
PDF fits. The PDFs are evaluated for a scale Q2 = 100 GeV2 and are normalized to the central values of

CT14 [36].

1.3.2 Main Higgs boson production modes

In the LHC, the main production modes for the Higgs boson are: (i) gluon-gluon fusion (ggF), (ii) vector
boson fusion (VBF), (iii) associated production with W/Z boson (VH) and (iv) associated production
with heavy quarks, tt̄H and bb̄H. The Feynman diagrams for these production modes are shown in
Figure 1.10. In this section, we will briefly review the main production mechanisms and their state-of-
the-art cross section calculations. This review is preceded by a summary of the QCD uncertainties and
EW corrections affecting such calculations.

QCD uncertainties For various Higgs boson production modes, the production involves strongly in-
teracting particles. In these cases, the calculation of the production cross section is affected by large
corrections when going from the QCD leading-order calculations (LO) to higher-orders (HO). These cor-
rections are also called K-factors:

K =
σHO(pp→ H + X)

σLO(pp→ H + X)
. (1.37)

The value of the K-factor depends on the process and is larger when there is color annhilation [43], i.e.
when colored objects (such as gluons) result in color singlets (such as the Higgs boson). When going
to higher orders in the perturbative expansion of the cross section calculation, the K-factor tends to
stabilize, i.e. the corrections get smaller and smaller from one order to the next one [27]. In most cases,
QCD processes are already rather well-calculated with the inclusion of next-to-leading order (NLO) QCD
corrections.
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Table 11.1: State-of-the-art of the theoretical calculations in the main Higgs
production channels in the SM, and the major MC tools used in the simulations

ggF VBF VH tt̄H

Fixed order: Fixed order: Fixed order: Fixed order:

NNLO QCD + NLO EW NNLO QCD NLO QCD+EW NLO QCD

(HIGLU, iHixs, FeHiPro, HNNLO) (VBF@NNLO) (V2HV and HAWK) (Powheg)

Resummed: Fixed order: Fixed order: (MG5 aMC@NLO)

NNLO + NNLL QCD NLO QCD + NLO EW NNLO QCD

(HRes) (HAWK) (VH@NNLO)

Higgs pT :

NNLO+NNLL

(HqT, HRes)

Jet Veto:

N3LO+NNLL

Figure 11.1: Main Leading Order Feynman diagrams contributing to the Higgs
production in (a) gluon fusion, (b) Vector-boson fusion, (c) Higgs-strahlung (or
associated production with a gauge boson), (d) associated production with a pair
of top (or bottom) quarks, (e-f) production in association with a single top quark.

uncertainties in the theoretical calculations due to missing higher-order effects and

June 5, 2018 19:47

FIGURE 1.8: Feynman diagrams of the main Higgs boson production mechanisms in the LHC: (a) gluon-
gluon fusion, (b) vector boson fusion, (c) associated production with vector boson and (d) associated

production with a tt̄ pair [29].

Any calculation is affected by uncertainties related to the missing HO corrections that are not in-
cluded in the truncation of the infinite expansion of the perturbative series. From the previous discus-
sion, it is clear that these uncertainties tend to become smaller when higher orders are included in the
calculation. The accuracy of a particular fixed-order calculation is estimated by varying the following
scales [27] used in the calculation:

• The renormalization scale µR at which one defines the strong coupling constant.

• The factorization scale µF at which the matching between the perturbative calculation of the matrix
element and non-perturbative part in the PDFs.

The uncertainty on a given prediction is estimated by varying these scales simultaneously around a cen-
tral value Q assumed to be representative of the physical scale of the process: Q/2 < µR, µF < 2Q
resulting in 9-point variations. These uncertainties only give an estimate of the effect of the missing HO
corrections, but not necessarily the full uncertainty from the missing HO, as sometimes it is observed
that the relative K-factor between calculations at different order of accuracy are larger than the uncer-
tainties estimated with this procedure [29, §9.2.4] as new channels might be available at HO resulting in
convergence problems.

Additional sources of uncertainties affect calculations that involve resummation associated to the
choice of the argument of the logarithms being resummed. For non-perturbative QCD corrections, the
uncertainties are estimated by comparing the different Monte-Carlo simulations or different tunes of a
given generator [29, §9.2.4].

Electroweak corrections In addition to the higher-order QCD calculations, higher-order electroweak
corrections (EWC) are needed to account for additional EW radiative processes and loop corrections.
These corrections are needed, for example, to precisely extract the SM parameters from measured ob-
servables such as the mass of the W boson, mW , or when predicting its mass from Eq. (1.28). EW radia-
tive corrections, however, are more complicated to calculate than QCD ones because of renormalization
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and the treatment of massive unstable particles [44]. Therefore, EWC are currently computed only up
to next-to-leading order in the electromagnetic coupling constant α. The impact of these corrections is
typically expressed in terms of relative corrections δEW defined as:

δEW =
σEW

NLO
σLO

(1.38)

EWC are most relevant for the Higgs boson production with vector bosons (detailed below). EWC can
be numerically at least as important as NNLO QCD corrections, and for certain processes and in certain
kinematic regions (such as large transverse momentum) they may be the dominant corrections. Large
EW corrections can account for the cases when the uncertainties of LO QCD calculations do not cover
the NLO predictions, as there is an important interplay between the two corrections (for example when
a photon is emitted after QCD radiation) [45].

Gluon-gluon fusion

Gluon-gluon fusion, gg → H, is the main Higgs boson production mode at the LHC. This production
mode is mediated by triangular loops of virtual heavy quarks, mainly the top quark and to a lesser
extent the bottom quark. This is due to the large Higgs Yukawa couplings to the heavy quarks. Despite
this production mode being generated via loops, it is the most dominant one at the LHC since gluons
make up most of the proton momentum. The inclusive cross section of this production mode has been
estimated at N3LO accuracy in QCD and NLO in EW accuracy, and at

√
s = 13 TeV has a predicted

value [44] of:
σN3LO

ggF = 48.6 pb+2.2 pb(+4.6%)
−3.3 pb(−6.7%)

(QCD)± 1.6 pb (3.2%)(PDF+αs). (1.39)

The predictions are improved by resumming the soft collinear gluon contribution to the cross section at
N3LL logarithmic accuracy and matched to state-of-the-art QCD calculations [46, 47]. An additional
source of improved accuracy for the calculation is from the setting the top-quark mass to its pole mass
value, rather than using the mt → ∞ approximation.

For gluon-fusion production at leading order, the produced Higgs boson has no transverse momen-
tum. The transverse momentum pT of the Higgs boson is generated with higher orders as the additional
radiation balances the Higgs boson pT. Similarly, the Higgs boson rapidity distribution is affected by
the inclusion of additional partons. The distribution peaks at yH = 0 and decreases at larger rapidity,
reaching almost zero for |yH | ≥ 4 due to the restriction of the available phase space [27].

Vector boson fusion

Vector boson fusion (VBF) is the Higgs boson production process with the second-largest cross section
at the LHC. VBF proceeds by the scattering of two quarks mediated by t− or u− channel exchange of
W or Z bosons, that interact producing a Higgs boson. Therefore, this process is generally known as
the qq → qqH process as the scattered quarks give rise to two hard jets in the forward and backward
regions of the detector. Also, the color singlet nature of the W and Z bosons suppresses additional gluon
radiation from the central rapidity regions. This particular topology can be used to suppress ggF H + 2j
background and obtain a sample that is relatively pure in VBF-produced events. This production mode
can be used to probe the Higgs boson couplings to the W and Z bosons. Besides, the angular distributions
of the additional final-state quarks can be used to probe the CP-properties of the Higgs boson [48]. State-
of-the-art VBF inclusive cross section calculations are performed at an approximate NNLO QCD and
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NLO EW accuracy [49]1, giving the following value at
√

s = 13 TeV:

σNNLO
VBF = 3.92 pb+0.02 pb(+0.5%)

−0.008 pb(−0.2%)
(QCD)± 0.074 pb (1.9%)(PDF+αs) (1.40)

Associated production with a vector boson

Associated production of the Higgs boson with a W or Z boson is the Higgs boson production with
the third-largest cross section at the LHC. This production mode is known as the VH production mode
(V = W, Z) or Higgstrahlung. In this production mode a quark and anti-quark pair interact giving an
off-shell vector boson that then goes on shell radiating a Higgs boson, qq̄ → V∗ → VH. In addition,
for the ZH associated production, and not WH due to charge conservation, an additional contribution
comes from gg→ ZH through top-quark loops, as shown in Figure 1.9.

case of pp → HZ production, because the final state is electrically neutral, two additional

sets of corrections need to be considered at O(α2
s) [280].

Indeed, contrary to charged W bosons, the neutral Z bosons can be produced via an

effective Z–gluon–gluon coupling induced by quark loops. This can occur at the two–loop

level in a box+triangle diagram in qq̄ → Z∗ [to be multiplied by the Born term], or at the

one–loop level where vertex diagrams appear for the qq̄ → gZ∗ and qg → qZ∗ processes [to

be multiplied by the respective O(αs) tree–level terms]. Because gluons have only vector

couplings to quarks and the effective Zgg coupling must be a color singlet, only the axial–

vector part aq = 2I3
Q of the Zqq̄ coupling will contribute as a consequence of Furry’s theorem

[307]. Since aq differs only by a sign for isospin up– and down–type quarks, their contribution

vanishes in the case of quarks that are degenerate in mass. Thus, in the SM, only the top and

bottom quarks will contribute to these topologies. These corrections have been evaluated in

Refs. [308, 309] and have been shown to be extremely small and can be safely neglected.

Another set of diagrams that contribute at O(α2
s) to ZH and not to WH production

[again because of charge conservation] is the gg initiated mechanism gg → HZ [310,311]. It

is mediated by quark loops [see Fig. 3.6] which enter in two ways. There is first a triangular

diagram with gg → Z∗ → HZ, in which only the top and bottom quark contributions

are present, since because of C–invariance, the Z boson couples only axially to the internal

quarks and the contribution of a mass degenerate quark weak–isodoublet vanishes. There

are also box diagrams where both the H and Z bosons are emitted from the internal quark

lines and where only the contribution involving heavy quarks which couple strongly to the

Higgs boson [the top quark and, to a lesser extent, the bottom quark] are important. It

turns out that the two contributing triangle and box amplitudes interfere destructively.

Z∗

Q

g

g

H

Z

H

Q

g

g Z

Figure 3.6: Diagrams for the gg → HZ process, which contributes to O(α2
s).

At the LHC, the contribution of this gluon–gluon fusion mechanism to the pp → HZ total

production cross section can be substantial. This is due to the fact that the suppression of

the cross section by a power (αs/π)2 is partly compensated by the increased gluon luminosity

at high energies. In addition, the tree–level cross section for qq̄ → HZ drops for increasing

c.m. energy and/or MH values, since it is mediated by s–channel gauge boson exchange.

Note that the cross section for this process is negligible at the Tevatron because of the low

gluon luminosity and the reduced phase space.

109

FIGURE 1.9: Feynman diagrams of the gg → ZH production mode. This process contributes at O(α2
s )

order [27].

These production modes can be identified at the LHC using the final state decay products of the
vector bosons. For instance, in the case of leptonic decays of the vector bosons, the process to reconstruct
is pp → WH → ν``H and pp → ZH → `+`−/ν`ν̄`H. The computation of these cross sections is
performed up to NNLO in QCD accuracy and NLO in EW resulting in the following cross sections at√

s = 13 TeV [49]:

σNNLO
WH = 1.48 pb+0.007 pb(+0.5%)

−0.01 pb(−0.7%)
(QCD)± 0.03 pb (1.9%)(PDF+αs) (1.41)

σNNLO
qq→ZH,gg→ZH = 0.91 pb+0.028 pb(+3.2%)

−0.025 pb(−2.7%)
(QCD)± 0.014 pb (1.6%)(PDF+αs) (1.42)

Associated production with heavy quarks

The Higgs boson production mode with the fourth largest cross section at the LHC is the associated
Higgs boson production with heavy quarks: tt̄H and bb̄H. These production modes are initiated by
two initial gluons that produce two top or bottom quarks and the Higgs boson is emitted from the quark
lines. These production modes allow probing the Higgs Yukawa coupling to the third generation quarks.
However, bbH production has a kinematic configuration very similar to that of gluon fusion, which has
a much larger cross section, and is therefore difficult to identify. The cross sections for these production
modes were computed at NLO QCD and EW accuracy for tt̄H [51–53] and NNLO QCD accuracy for
bb̄H [54, 55] at

√
s = 13 TeV:

σNLO
ttH = 0.51 pb+0.0285 pb(+5.8%)

−0.047 pb(−9.2%)
(QCD)± 0.018 pb (3.6%)(PDF+αs) (1.43)

σNNLO
bbH = 0.48 pb+0.096 pb(+20.1%)

−0.115 pb(−23.9%)
(QCD+PDF+αs) (1.44)

1An N3LO QCD accuracy calculation was performed for VBF [50]. The calculation found per-mille corrections with respect to
the NNLO, but resulted in a substantial decrease in QCD scale uncertainty. The approximate NNLO calculation is used, however,
in this work.
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Summary of the different production modes A summary of the different production modes and their
theoretical uncertainties as a function of the pp center of mass energy is shown in Figure 1.10 . The figure
shows a significant increase in production cross sections going from the LHC Run-1 energies (

√
s =

7, 8 TeV) to the Run-2 energy (
√

s = 13 TeV), by approximately a factor 2.3 for ggF up to a factor 4 for t̄tH
(background cross sections also increased, though not with the same factors).

11. Status of Higgs boson physics 11

Table 11.2: The SM Higgs boson production cross sections for mH = 125GeV
in pp collisions (pp̄ collisions at

√
s = 1.96TeV for the Tevatron), as a function of

the center of mass energy,
√

s. The predictions for the LHC energies are taken from
Refs. [40–43], the ones for the Tevatron energy are from Ref. [45]. The predictions
for the ggF channel at the LHC include the latest N3LO results leading to reduced
theoretical uncertainties by a factor around 2 compared to the N2LO results.
√

s (TeV) Production cross section (in pb) for mH = 125GeV

ggF VBF WH ZH tt̄H total

1.96 0.95+17%
−17%

0.065+8%
−7%

0.13+8%
−8%

0.079+8%
−8%

0.004+10%
−10%

1.23

7 16.9+5%
−5%

1.24+2%
−2%

0.58+3%
−3%

0.34+4%
−4%

0.09+8%
−14%

19.1

8 21.4+5%
−5%

1.60+2%
−2%

0.70+3%
−3%

0.42+5%
−5%

0.13+8%
−13%

24.2

13 48.6+5%
−5%

3.78+2%
−2%

1.37+2%
−2%

0.88+5%
−5%

0.50+9%
−13%

55.1

14 54.7+5%
−5%

4.28+2%
−2%

1.51+2%
−2%

0.99+5%
−5%

0.60+9%
−13%

62.1

experimental uncertainties on the determination of SM parameters involved in the
calculations can be found in Refs. [40–43]. These references also contain state-of-the-art
discussions on the impact of PDF uncertainties, QCD scale uncertainties and uncertainties
due to different procedures for including higher-order corrections matched to parton
shower simulations as well as uncertainties due to hadronization and parton-shower
events.
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Figure 11.2: (Left) The SM Higgs boson production cross sections as a function
of the center of mass energy,

√
s, for pp collisions [44]. The VBF process is

indicated here as qqH. The theoretical uncertainties are indicated as bands.
(Right) The branching ratios for the main decays of the SM Higgs boson near
mH = 125GeV [42, 43]. The theoretical uncertainties are indicated as bands.
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FIGURE 1.10: Evolution of the cross section of the different Higgs boson production modes as a function
of the pp center-of-mass [44].

1.3.3 Main Higgs boson decay modes

Using the knowledge of the different Higgs boson couplings detailed in Section 1.3.2, the branching ratios
for the different decay modes can be determined. The Higgs boson couplings to the different particles
(gauge bosons and fermions) are proportional to their mass and hence the Higgs boson will decay to
the heaviest particle allowed by the phase space. The SM Higgs boson total width can be determined
once its mass is known, as shown in Figure 1.11a. The SM Higgs boson with mH = 125 GeV has a width
ΓH = 4.07± 1.6 MeV [44]. This decay width is significantly smaller than the experimental resolution, and
hence the precise measurement of the Higgs boson properties will depend on the decay channel with the
best experimental resolution. The partial widths of the different decay modes are computed with the
HDECAY program [56], and PROPHECY4F for H → 4` decays [57].

The branching ratios of the different decay modes are summarized in Table 1.1 for a Higgs boson
with mH = 125 GeV. The variation of the branching ratios for different mass values are shown in Fig-
ure 1.11b. The branching ratios vary as a function of the Higgs boson mass as other decay channels
become kinematically available and hence the increasing trend with Higgs mass for some of the decay
modes.

The dominant decay mode is H → bb̄, as the bottom quark is the heaviest particle accessible to the
available phase space for mH = 125 GeV. From the experimental viewpoint, this decay mode suffers from
large QCD background from top quarks decaying to bottom quarks. The experimental mass resolution
in this channel typically ranges from 10% to 15%.

The final state with the second-largest branching ratio is the W∗W one, where one of the W bosons
is off-shell. This decay channel can be identified by tagging W boson decays to leptons, leading to a



42 Chapter 1. The Standard Model of Particle Physics

 [GeV]HM

80 100 200 300 1000

 [
G

e
V

]
H

Γ

310

210

110

1

10

210

310

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

0
1
3

(A) Standard Model Higgs boson total decay width.

 [GeV]HM
120 121 122 123 124 125 126 127 128 129 130

B
ra

nc
hi

ng
 R

at
io

-410

-310

-210

-110

1

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

01
6

bb

ττ

µµ

cc

gg

γγ

ZZ

WW

γZ

(B) Branching ratios for the different decay chan-
nels.

FIGURE 1.11: (A) Total Higgs boson decay width as a function of its mass [49]. (B) SM Higgs boson
branching ratios as a function of the the Higgs boson mass [44].

relatively clean final state. Nevertheless, since the W boson leptonic decays involve neutrinos which can
not be detected, the resolution in this channel is quite poor (approximately 20%).

The decay channel with the third-largest branching ratio is the H → ττ, with a resolution similar
to H → bb̄. This decay channel can be used to directly probe the Yukawa couplings to leptons as it is
the only channel with direct lepton coupling and sizable branching ratio given the high mass of the tau
lepton.

Other decay channels with smaller branching ratios include: H → cc̄, which suffers from large
background mainly from Z + jets and tt̄ decays and small branching ratio (approximately 3%) making
the direct search for this coupling very challenging experimentally with only limits set on such decay
mode [58]; the H → µµ decay channel which can be used to directly measure the Yukawa coupling to a
second-generation fermion, this channel, however, has very high background from Drell-Yan processes
and given the very small branching ratio only limits are set on this decay mode [59].

In addition to these decay channels, there are two additional channels with small branching ratios,
but excellent experimental resolution (typically 1-2%) and efficiency leading to reasonable signal-over-
background, which made them the main Higgs boson discovery channels or so-called "golden channels".
They are the H → γγ and H → ZZ∗ → 4` decays. These channels also provide an excellent measure-
ment of the Higgs boson mass and provide means of measuring the Higgs boson production cross section
as a function of several kinematic variables, as will be detailed in Chapter 5.

H → γγ decay channel The H → γγ decay is one of the main Higgs boson discovery channels. This
decay proceeds via loop-induced diagrams resulting in two photons, as shown in Figure 1.12. This is
because the Higgs boson does not couple directly to the massless photons, and hence the branching ratio
of this channel is very small (Table 1.1). The dominant contribution comes from W-mediated loops. The
heavy fermions are the second contributing mediators in the loop diagrams. Among them, the leading
contribution arises from top-quark loops, resulting from the Higgs boson coupling being proportional to
the quark masses, and hence the effect of the light fermions in the loop is very small. This channel has
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Decay channels Branching ratio Rel. uncertainty
H → b̄b 5.84× 10−1 +3.2%

−3.3%
H →W+W− 2.14× 10−1 +4.3%

−4.2%
H → ττ 6.27× 10−2 +5.7%

−5.7%
H → c̄c 2.88× 10−2 +5.45%

−1.97%
H → ZZ 2.62× 10−2 +4.3%

−4.1%
H → γγ 2.27× 10−3 +5.0%

−4.9%
H → Zγ 1.53× 10−3 +9.0%

−8.9%
H → µ+µ− 2.18× 10−4 +6.0%

−5.9%

TABLE 1.1: The branching ratios and their relative uncertainties for a SM Higgs boson with mH =
125 GeV [49].

a high sensitivity to effects from particles beyond the Standard Model that are too heavy to be directly
produced but can affect the loop contributions.

FIGURE 1.12: Feynman diagrams of the H → γγ decay channel. The leading contributions are from W
boson and top quarks loops [60].

The Higgs boson decay to diphotons has a very clean signature. The Higgs boson signal appears as
an excess of events in the diphoton invariant mass spectrum, mγγ, on top of a monotonically decreasing
background of SM diphoton, photon+jet, and dijet events, where the (hadronic) jets are misidentified as
photons. The non-resonant SM diphoton production arises mainly from the following processes (see also
the Feynman diagrams in Figure 1.13):

• The Born process qq→ γγ.

• The box process gg → γγ, through a loop of quarks. Despite being loop induced, this process has
a non-negligible cross section due to the large gluon luminosity at the LHC.

• The bremsstrahlung process gq→ qγγ.

• Jet fragmentation, where photons are produced from the non-perturbative collinear fragmentation
of a hard parton (typically a π0).

1.3.4 Status of the Higgs boson properties measurement

In July 2012, both the ATLAS [61] and CMS [62] collaborations announced the discovery of a new scalar
resonance with a mass of approximately 125 GeV and properties consistent with the SM Higgs boson [6,
7]. Following the discovery, extensive studies were performed in order to determine precisely the differ-
ent parameters of the discovered Higgs boson. This included a precise mass measurement, and measure-
ment of its couplings to fermions and bosons, of its quantum numbers and different kinematic properties.
In this section, we will briefly review the status of the Higgs boson properties measurements.
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FIGURE 1.13: Examples of SM non-resonant diphoton Feynman diagrams: (A) Born process qq→ γγ, (B)
Box process gg → γγ, (C) Bremstrahlung process qg → qγγ and jet fragmentation, resulting in (D) one

and (E) two energetic photons.

Higgs boson mass As detailed in the previous section, the high precision Higgs boson mass measure-
ment is driven by the excellent experimental resolution in the H → γγ and H → 4` channels. The mass
measurement is performed via a signal extraction from a signal+background data sample. The back-
ground in the H → γγ was detailed in the previous section, whereas that of H → 4` is mainly from
non-resonant ZZ∗ SM production and to a lesser extent Z + jets and tt̄. The mass measurement relies
on isolating parts of the phase space with the best resolution and signal-to-background ratios to achieve
the best percision [22]. Examples of such measurements are shown in Figure 1.14. In addition, a combi-
nation of the mass measurement is performed combining different channels of the same experiment and
combining both ATLAS and CMS, as shown in Figure 1.15. The latest ATLAS+CMS combination was
performed using Run-1 data at

√
s = 7, 8 TeV, resulting in a mass measurement [23]:

mH = 125.09± 0.25 (stat.)± 0.11 (sys.) GeV (1.45)

In addition, a mass measurement was performed during the LHC Run-2 using the ATLAS data at
√

s =
13 TeV, as detailed in Section 4.7.

Higgs boson couplings The measurement of the Higgs boson coupling to W and Z boson is mainly
driven by the measurement of Higgs boson decays to ZZ and WW as well as from the measurement of
the VBF and VH production cross sections. The measurement of the Higgs boson coupling to fermions
can be performed either directly through Higgs boson decays to second and third-generation fermions
(b, τ, µ), or indirectly through gluon-fusion or H → γγ loops, or via the Higgs boson production with
top-quarks (tt̄H). The experiments typically measure the product of a production cross section and the
branching ratio for the decay under investigation, usually expressed in terms of the signal strength µ,
defined as:

µ =
σ× BR

(σ× BR)SM
. (1.46)

The signal strenghts in different decay channels and production modes can then be interpreted in terms
of the Higgs boson couplings to the various particles. The observation and measurement of the Higgs
boson couplings to third-generation fermions (top and bottom quarks, tau leptons) was only possible
using Run-2 data. This was the result of the complex algorithms that were developed to distinguish
the signal from the very large QCD backgrounds [63, 64]. Higgs boson couplings to top quarks were
measured by means of the associated production with a tt̄ pair in various different Higgs boson decay
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(A) The diphoton invariant mass distribution in the
H → γγ mass measurement

(B) The four-lepton invariant mass distribution in
the H → 4` mass measurement

FIGURE 1.14: (A) Diphoton invariant mass distribution of all selected data events, overlaid with the re-
sult of the fit (solid red line) using 36 fb−1 of pp collisions at

√
s = 13 TeV. Both for data and the fit,

each category is weighted by a factor log(1 + S/B), where S and B are the fitted signal and background
yields in a mγγ interval containing 90% of the expected signal. The dotted line describes the background
component of the model. The bottom inset shows the difference between the sum of weights and the back-
ground component of the fitted model (dots), compared with the signal model (black line). (B) Invariant
mass distribution for the data (points with error bars) shown together with the simultaneous fit result to
H → ZZ∗ → 4l candidates (continuous line) selected in 36 fb−1 of pp collisions at

√
s = 13 TeV . The

background component of the fit is also shown (filled area). The signal probability density function is
evaluated per-event and averaged over the observed data [22].
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Figure 11.4: Summary of the CMS and ATLAS mass measurements in the γγ
and ZZ channels in Run 1 and Run 2.

a full simulation is still relatively small with respect to the total uncertainty on the mass
and is therefore neglected.

III.1.4. H → W+W − → ℓ+νℓ−ν

In this intricate channel, experiments search for an excess of events with two leptons of
opposite charge accompanied by missing energy and up to two jets. Events are divided into
several categories depending on the lepton flavor combination (e+e−, µ+µ−and e±µ∓)
and the number of accompanying jets (Njet = 0, 1, ≥ 2). The Njet ≥ 2 category is
optimized for the VBF production process by selecting two leading jets with a large
pseudorapidity difference and with a large mass (mjj > 500GeV).

Backgrounds contributing to this channel are numerous and depend on the category
of selected events. Reducing them and accurately estimating the remainder is a major
challenge in this analysis. For events with opposite-flavor lepton and no accompanying
high pT jets, the dominant background stems from non-resonant WW production.
Events with same-flavor leptons suffer from large Drell–Yan contamination. The tt , Wt
and W + jets (with the jet misidentified as a lepton) events contaminate all categories.
Non-resonant WZ, ZZ and Wγ processes also contribute to the background at a
sub-leading level.

June 5, 2018 19:47

FIGURE 1.15: Summary of the ATLAS and CMS mass measurement in the γγ and 4` channels in Run-1
and Run-2 [29].

channels (γγ, bb̄, 4`) [65]. A summary of the measured Higgs boson couplings to the different fermions
and bosons is shown in Figure 1.16 as a function of the particle masses. The Higgs boson couplings
are expressed in terms of couplings strength modifiers, κ [66]. The κ-framework was introduced to
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parameterize SM deviations in production cross section and decay width replacing SM couplings g →
κgg, for example for the gluon-fusion process gg → H → γγ the parameterizations in the κ-framework
is:

(σ · BR) = σSM(gg→ H) · BRSM(H → γγ) ·
κ2

gκ2
γ

κ2
H

, (1.47)

with κi = 1 denoting SM predictions, and κH corresponding to the modification of the Higgs boson total
width.

FIGURE 1.16: Reduced coupling strength modifiers κF = mF/v for fermions (F = t, b, τ, µ) and
√

κVmV/v
for weak gauge bosons (V = W, Z) as a function of their masses mF and mV , respectively, and for a vacuum
expectation value of the Higgs field v = 246 GeV. The SM prediction for both cases is also shown (dotted
line). The couplings strength modifiers κF and κV are measured assuming no BSM contributions to the
Higgs boson decays, and the SM structure of loop processes such as ggF, H → γγ and H → gg. The lower

inset shows the ratios of the values to their SM predictions [67].

The cross section of the different Higgs boson production modes is measured using the different
decay channels summarized in Figure 1.17. The production modes are identified – in addition to the
particles produced by the Higgs boson decay – by additional particles that are typical of one of the
various production modes, such as high-pT jets in VBF, leptons from vector bosons in VH, or b-jets in
ttH events. From these measurements, a combination is performed to measure the global Higgs boson
signal strength:

µ = 1.13+0.09
−0.08 = 1.13± 0.05 (stat.)± 0.05 (exp.)+0.05

−0.04 (sig. the.)± 0.03 (bkg. th.), (1.48)

where the total uncertainty is decomposed into components for statistical uncertainties, experimental
systematic uncertainties, and theory uncertainties on signal and background modeling as detailed in [67].
The measured signal strength is consistent with the SM prediction with a p-value of 13%. More details
in the measurement of the Higgs boson kinematic properties are given in Chapter 5.



1.3. Phenomenology of the SM Higgs boson at the LHC 47

FIGURE 1.17: Measured cross sections times branching fractions for ggF, VBF, VH and t̄tH + tH produc-
tion in each relevant decay mode, normalized to their SM predictions. The values are obtained from a
simultaneous fit to all decay channels. The cross section for the VH, H → ττ process is constrained to
its SM prediction. Combined results for each production mode are also shown, assuming SM values for
the branching ratios into each decay mode. The black error bars, blue boxes and yellow boxes show the
total, systematic, and statistical uncertainties in the measurements, respectively. The grey bands show the

theory uncertainties in the predictions [67].

Higgs boson quantum numbers In addition to the couplings measurement, probing the Higgs boson
quantum numbers is essential to further unveil its properties. These measurements mainly probe the
spin (J), charge conjugation (C) and parity (P) of the Higgs boson, or JPC. The SM Higgs boson is
predicted to have JPC = 0++, i.e. to be a CP-even scalar particle. The discovery of the Higgs boson in
the diphoton channel excludes the spin-1 hypothesis following the Landau-Yang theorem that forbids
such decays [68, 69], and therefore the observed Higgs boson can either be spin-0, spin-2, or a non-pure
state with collimated photons that are detected as diphotons. To differentiate between these spin and
parity hypotheses, several models of spin and parity are compared against the observed data: Spin-2
particle, CP-odd particle, and a mixture of SM CP-even and non-SM CP-odd [70]. Such comparisons rely
on investigating the angular correlations in the Higgs boson decays. For example, for H → γγ decays
the different spin hypotheses are differentiated by means of the Higgs boson transverse momentum
distribution or the production angle of the two photons in the Collins-Soper frame [71] as discriminating
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variables, as shown in Figure 1.18. The latter is known as θ∗ and is defined as:

| cos θ∗| = sinh(∆ηγγ)√
1 + (pγγ

T /mγγ)

2pγ1
T pγ2

T
m2

γγ
(1.49)

(A) Distribution of the diphoton transverse mo-
mentum for different spin-parity hypotheses

(B) Distribution of the production angle | cos θ∗| for
different spin-parity hypotheses

FIGURE 1.18: Expected distributions of kinematic variables sensitive to the spin of the resonance consid-
ered in the H → γγ analysis, (a) transverse momentum of the γγ system pγγ

T and (b) the production angle
of the two photons in the Collins-Soper frame | cos θ∗| , for a SM Higgs boson and for spin-2 particles with

three different choices of the QCD couplings [70].

Similarly looking at the angular distributions, in the Higgs boson decays to four leptons H → ZZ∗ →
4l, to heavy fermions such as H → ττ, or W+W− → eνeµνµ, the different spin and parity hypotheses
can be distinguished [70]. The observed data exclude all non-SM spin and parity models tested at more
than 99.9% confidence level in favor of the SM JP = 0+ hypothesis. The results of these exclusion tests
are shown in Figure 1.19.

The charge conjugation quantum number C is multiplicative, and therefore given that the Higgs
boson was observed in the H → γγ channel with photons being C-odd eigenstates, assuming C conser-
vation, the observed neutral particle should be C-even. Therefore the observed Higgs boson quantum
numbers are JPC = 0++, in agreement with the SM predictions [29, §11.V.1].

1.4 Beyond the Standard Model

Today the Standard Model represents the greatest achievement in particle physics. The SM explains
all observed phenomena in collider physics, covering a wide range of energies [72]. The latest of these
successes was the discovery of the Higgs boson, with properties matching those predicted by the SM as
detailed in the previous section. Nevertheless, there are several experimental signatures, mostly from
non-collider physics, that do not fit within the framework of the Standard Model. These signatures
explicitly hint at some new physics that lies beyond the Standard Model (BSM).

The first and foremost of these phenomena is the fourth force of nature, gravity, which is not included
in the SM.
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FIGURE 1.19: Distributions of the test statistic q for the SM Higgs boson (JP = 0+) and for the JP alterna-
tive hypotheses. They are obtained by combining the H → ZZ∗ → 4` , H → WW∗ → eνµν and H → γγ
decay channels. The expected median (black dashed line) and the ±1, ±2 and ±3 σ regions for the SM
Higgs boson (blue) and for the alternative JP hypotheses (red) are shown for the signal strength fitted to

data. The observed q values are indicated by the black points [70].

A second one is that from a cosmological point of view, ordinary matter (i.e. SM constituents) compose
only 4.9% of the observed universe [73]. The remaining contributions come from dark matter and dark
energy. The prediction of dark matter resulted from astrophysical measurement on rotation curves of
galaxies, which is the orbital velocity of a star in a galaxy as a function of the distance of this star to the
center of this galaxy, that was very different from the predictions assuming only ordinary matter [74].
Therefore, dark matter was introduced as one of the possible solutions to this problem as an additional
massive component. Dark matter has not been discovered yet and would contribute to a sizeable extent
to the total mass of the galaxies, hence modifying their gravitational properties and the velocity curve.
The SM does not include dark matter candidates. Therefore, various BSM models were developed with
dark matter particle candidates [75].

Another experimental hint from cosmology is the matter/anti-matter asymmetry in the universe.
This asymmetry is driven by CP-violation, which results in the prevalence of matter in the universe.
Without this asymmetry, equal amounts of matter and anti-matter would have been produced in the
universe. While the SM provides several sources of CP-violation in the weak sector, the amount is not
large enough to explain the apparent asymmetry [29, 76] and hence hints at BSM physics.

In addition, there are a few theoretical arguments that concern the consistency of the electroweak the-
ory. These arguments arise from the radiative corrections to the SM Higgs boson mass. The corrections
are quadratically divergent in the cut-off scale Λ. For example, the correction to the Higgs boson mass
from one-loop contributions (shown in Figure 1.20) of a fermion f with number of fermion families N f
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and Yukawa coupling λ f =
√

2m f /v is [77]:

∆m2
H = N f

λ2
f

8π2

[
−Λ2 + 6m2

f log
Λ
m f
− 2m2

f

]
+O(1/Λ2). (1.50)

This shows the quadratic divergence as ∆m2
H ∝ Λ2, and therefore for a cut-off scale equal to the Planck

scale Mp ∼ 1018 GeV the corrections are huge. Nevertheless, the stability of the observed Higgs boson
mass mH = 125 GeV requires a high-level of fine tuning between the bare mass and radiative correc-
tions [77, 78], which hints at new physics that should appear at a mass scale smaller than the Planck
scale.

1 The Higgs sector of the MSSM

1.1 Supersymmetry and the MSSM

1.1.1 The hierarchy problem

As is well known1, when calculating the radiative corrections to the SM Higgs boson mass,

one encounters divergences which are quadratic in the cut–off scale Λ at which the theory

stops to be valid and New Physics should appear. To summarize the problem, let us consider

the one–loop contributions to the Higgs mass, Fig. 1.1a, of a fermion f with a repetition

number Nf and a Yukawa coupling λf =
√

2mf/v. Assuming for simplicity that the fermion

is very heavy so that one can neglect the external Higgs momentum squared, one obtains [13]

∆M2
H = Nf

λ2
f

8π2

[
− Λ2 + 6m2

f log
Λ

mf
− 2m2

f

]
+ O(1/Λ2) (1.1)

which shows the quadratically divergent behavior, ∆M2
H ∝ Λ2. If we chose the cut–off scale

Λ to be the GUT scale, MGUT ∼ 1016 GeV, or the Planck scale, MP ∼ 1018 GeV, the Higgs

boson mass which is supposed to lie in the range of the electroweak symmetry breaking

scale, v ∼ 250 GeV, will prefer to be close to the very high scale and thus, huge. For the SM

Higgs boson to stay relatively light, at least MH <∼ 1 TeV for unitarity and perturbativity

reasons, we need to add a counterterm to the mass squared and adjust it with a precision of

O(10−30), which seems highly unnatural. This is what is called the naturalness or fine–tuning

problem [14]. A related question, called the hierarchy problem, is why Λ ≫ MZ .

The problem can be seen as being due to the lack of a symmetry which protects MH

against very high scales. In the case of fermions, chiral symmetry is a protection against

large radiative corrections to their masses [and the breaking of chiral symmetry generates

radiative corrections which are only logarithmically divergent], while local gauge symmetry

protects the photons from acquiring a mass term. In the case of the Higgs boson, there is

no such a symmetry. [Note that the divergence is independent of the Higgs mass and does

not disappear if MH=0; this can be understood since the choice of a massless Higgs boson

does not increase the symmetry of the SM].

f
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Figure 1.1: Diagrams for the contributions of fermions and scalars to the Higgs boson mass.

1Some aspects of this issue have been discussed in section 1.4.3 of the first part of this review: §I.1.4.3.

13

FIGURE 1.20: Diagrams for the contributions of (a) fermions and (b) scalars to the Higgs boson mass [77].

All these signatures hint at the existence of physics beyond the SM. In this thesis, we will use the
Higgs sector to indirectly search for and constrain BSM physics via the effective field theory formulation.
This formulation is detailed in Chapter 2. Such a search relies on precise measurements of the Higgs
boson kinematics detailed in Chapter 5, and the results of the study are shown in Chapter 6.
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Chapter 2

Beyond the Standard Model : The
Effective Field Theory Approach

Since the 1970s, we have been witnessing the triumphs of the standard model of particle physics (SM) in
describing the microscopic behavior of matter in terms of a few elementary constituents and fundamental
interactions. The last of these triumphs was the discovery of the Higgs boson in 2012 by the ATLAS [6]
and CMS [7] experiments. Furthermore, the measured properties of the Higgs boson show excellent
agreement with the SM predictions, as detailed in Section 1.3.4. All these results seem to indicate that
the SM is a valid theory at the electroweak energy scale [79].

Nevertheless, despite the successes of the SM in describing various phenomena up to the energy
scales probed by the LHC, there are hints, as discussed in Section 1.4, that the SM is not valid to arbitrarily
high energies, thus constituting only the low-energy effective limit of a complete unknown theory.

In this chapter, we will review the effective field theory approach as a tool to study and constrain the
general features of the high-energy extension of the Standard Model. This approach will then be ap-
plied in Chapter 6 to the Higgs boson cross sections measured in the diphoton final state (Chapter 5) to
constrain the anomalous Higgs boson couplings to gauge bosons that arise in such extensions of the SM.

2.1 Introduction to the EFT approach

The effective field theory approach is based on the property of decoupling. Decoupling refers to the
screening of high-energy phenomena for interactions at lower energy scales. For example, it is possible to
describe lower energy phenomena (atomic or nuclear physics) without knowing the internal SM details.
Similarly, in classical mechanics, it is possible to describe the motion of a macroscopic body without
having to deal with the motion of the microscopic elements (atoms and molecules) inside it. This is the
result of degrees of freedom at a given energy scale being“integrated out” at lower energies. This idea is
the core of the EFT approach in searching for generic deviations from SM physics.

To understand the nature of decoupling in quantum field theory, let us take a look at the propagator
of a massive particle (with mass m) at low energies:

1
p2 −m2 =

−1
m2

(
1 +

p2

m2 +
p4

m4 . . .
)

(2.1)

From this expansion, when m2 � p2, the propagation of the particle is suppressed. In other words, a non-
local interaction via the exchange of a massive virtual particle can be approximated with a local (contact)
interaction. This can be seen as well from the uncertainty principle. The virtual contribution of a heavy
particle can violate the energy (momentum) conservation required for its production provided it takes
place only over short times (distances). Therefore, at lower energies (momenta) the influence of heavy
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particles appears to be instantaneous, i.e. local in time (space) [80]. This means that one can construct
an effective Lagrangian describing the interactions at lower energies only in terms of the light fields.
This effect of heavy particles on low-energy processes is formally known as the Appelquist-Carazzone
decoupling theorem (1975) [15]:

The only role of the heavy fields in the low-momentum behavior of processes represented
by Feynman diagrams without external heavy field lines is their contribution to coupling-
constant and field-strength renormalization. The heavy fields effectively decouple, and the low-
momentum behavior of the theory is described by a Lagrangian consisting of the massless fields
only.

Using this picture, we can look at the SM as the low-energy renormalizable gauge theory (effective
theory) embedded in a gauge theory at higher energy scales ΛNP. This permits probing BSM effects, even
if the BSM exists at energies much higher than what can be directly produced in the LHC, via their low-
energy behavior (i.e. contribution to coupling constants and field-strength renormalizations). This view
is commonly known as the bottom-up construction of the EFT, where an EFT at lower energies is used
to infer more details of unknown theories at higher energies (shorter distances). This is opposed to the
top-down EFT construction, in which the full theory is known in high energies, but it is used to describe
lower-energy phenomena via its effective Lagrangian approximation.

The bottom-up EFT construction provides the basis for the so-called indirect searches for BSM physics.
Indirect searches use precision measurements – and potential small deviations of these measurements
from the corresponding SM predictions – to constrain BSM physics, as opposed to direct searches. Direct
searches look for signatures of new physics in the final state such as resonances, not corresponding to
known SM particles, in the invariant mass distributions of particles that could be produced by the decays
of those resonances.

The bottom-up EFT construction simplifies the search for BSM physics substantially as follows. Given
the absence of BSM signals, one can safely assume that BSM physics exists at an energy scale that is much
larger than the EW symmetry breaking scale: ΛNP � ν = 246 GeV. Therefore, instead of guessing the
nature of a complete theory with additional degrees of freedom (i.e. additional particles), we can use the
Appelquist-Carazzone decoupling theorem, i.e. use the fact that at low energies the BSM heavy fields
will be integrated out giving rise to additional higher order operators built exclusively of SM fields and
suppressed with powers of 1/ΛNP:

LEFT = LSM + LD=5 + LD=6 . . . , (2.2)

where LSM is the SM Lagrangian (detailed in Chapter 1), and D (D ≥ 5) specifies the mass dimension of
the lagrangian term LD, which is given by

LD = ∑
i

c(D)
i

ΛD−4
NP

O(D)
i . (2.3)

The c(D)
i are dimensionless couplings, known as the Wilson coefficients, specifying the strength of the BSM

interactions.
The SM operators are of dimension-4, which satisfies the renormalizability condition. The effective

operators, on the other hand, are of dimension D ≥ 5, and therefore are non-renormalizable, i.e. the
effective theory is not valid to arbitrarily high energies but only up to energies much lower than the scale
ΛNP. The full effective Lagrangian is then an infinite series. However, the inverse of the high energy
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scale ΛNP plays the role of an expansion parameter. Therefore, one can use dimensional analysis and the
ratio between the energy scale of the experiment E and the energy scale ΛNP (E/ΛNP) to keep only the
most relevant terms of the expansion. This procedure is known as power counting [81].

The O(D≥5) operators are SU(3)× SU(2)×U(1) invariant. These operators will modify the SM cou-
plings, and lead to observables deviating from the SM predictions. This defines the strategy of searching
for BSM effects using the EFT: measure (constrain) the Wilson coefficients of D ≥ 5 operators. The
measured values of the Wilson coefficients at a given value of the high energy scale (ΛNP) can then be
interpreted in a model-dependent manner as parameters of a UV-complete theory. This procedure is
known as matching [44].

In the following section, we will use the Fermi theory of weak interactions as a concrete example of
the different EFT concepts introduced above.

Case study: The Fermi theory of weak-interactions A famous example of the EFT paradigm is from the
Fermi theory of weak interactions [34]. In this paradigm, the Fermi theory plays the role of an effective
theory at lower energies for the SM which plays the role of a UV-complete theory at high energy scale
ΛNP ∼ mW = 80.8 GeV. In this case study, we will use the muon decay µ→ eνµν̄e as an example. For this
process, the SM energy scale is much higher than the energy scale of the interactions,O(mµ ∼ 100 MeV).

In the SM, the muon decay is mediated by the exchange of a W boson, induced by the Lagrangian
term:

LSM ⊃
g2√

2

[
ν̄µγα(1− γ5)µ + ēγα(1− γ5)νe

]
W+

α + h.c. , (2.4)

where g2 is the dimensionless weak coupling constant.
The muon decay width can be computed from this Lagrangian and expanded as a series of the pa-

rameter p2/m2
W :

dΓ(µ→ eνµν̄e)

dp
≈

g4(m2
µ − p2)2(m2

µ + 2p2)

3072π3m3
µm4

W
(1 +

2p2

m2
W

+ . . .). (2.5)

where p is the momentum of the muon [82]. Therefore, given that m2
W � m2

µ ≥ p2, the terms p2/m2
W can

be neglected to a good approximation. The expansion is sketched in Figure 2.1, where the first order of
the fundamental interaction is the effective vertex and the sub-leading terms are of the order p2

m2
W

.

µ

⌫µ ⌫̄e

e

W� GF

µ

⌫µ ⌫̄e

e

= + O(
p2

m2
W

)

CorrectionsExchange of W— boson 
Standard Model [g2]=1

Effective vertex
Fermi Theory [GF]=-2

g2 g2

FIGURE 2.1: An example of the muon decay using the EFT paradigm. The SM picture of exchanging
W− boson can be thought of as the UV complete theory of a lower-energy effective Fermi theory with
the addition of O( 1

m2
W
) corrections. The SM coupling constant g2 is dimensionless (renormalizable theory),

whereas the Fermi constant GF has dimensions [GF] = m−2 (non-renormalizable theory).

On the other hand, in the Fermi effective theory, weak interactions are described by contact 4-fermion
vertices with a coupling c

Λ2 , where c is the Wilson coefficient and Λ is the energy scale of the EFT, via the
effective Lagrangian:

LEFT ⊃
c

Λ2

[
ν̄µγα(1− γ5)µ

]
[ēγα(1− γ5)νe] + h.c. (2.6)
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The coupling c
Λ2 has dimension m−2. From this Lagrangian, the decay width can be obtained as:

dΓ(µ→ eνµν̄e)

dp
=

c2(m2
µ − p2)2(m2

µ + 2p2)

768π3m3
µΛ4

(2.7)

Setting Λ = mW and c =
g2

2
2 in Eq. (2.7), we can match the decay width from the SM with that from the

Fermi theory. The coupling of the EFT Lagrangian that appears in the 4-fermion contact vertex, c/Λ2, is

thus related to the Fermi constant GF by GF =
√

2c
4Λ2 =

√
2g2

2
8m2

W
.

This example illustrates the power of the EFT approach, as the Fermi constant, GF = 1.16× 10−5 GeV−2,
was measured from the muon lifetime much earlier than the discovery of W boson, and could thus be
used to infer constraints on the W boson mass, even without knowing the underlying UV complete the-
ory. However, for this bottom-up approach to work, the matching of the couplings in the EFT (i.e GF) to
the UV complete parameter (i.e. mW) requires an assumption on the value of the coupling in the UV com-
plete theory (g2). Hence, determining the validity of the EFT requires a degree of model-dependence.
For example, for very small values of g2 = O(10−4), the bound on the W-boson mass can be even smaller
than the muon mass which contradicts the initial assumption (mW � mµ). The self-consistency of this
approach thus requires g2 � 10−2. In addition, an upper-limit on the mass mW ≤ 1.5 TeV can be obtained
by setting g2 to its maximally strongly-coupled limit g2 ∼ 4π.

The description of the muon decay using the Fermi (effective) theory can be improved by considering
more terms, of order c(D=8)/Λ4, in the expansion of the EFT Lagrangian. The range of validity of the
Fermi (effective) theory can be deduced directly from Eq. (2.5), as p approaches the W boson mass mW

the approximation breaks down.

2.2 The EFT Expansion

As detailed in the previous section, the EFT framework provides a systematic expansion of the SM La-
grangian with additional operators suppressed by the mass scale, ΛNP. Therefore, one can construct the
most general EFT Lagrangian consistent with symmetry principles. The result of such Lagrangian will
be the most general S-matrix consistent with the assumed symmetry properties [83].

There are two main classes of effective field theories describing BSM physics:

• linear EFT, in which the Higgs boson h is included in a SU(2) doublet H. In this linearly-realized
EFT the doublet H transforms linearly under SU(2).

• non-linear EFT, in which general anomalous couplings are introduced for the physical Higgs boson
h [44]. The EFT, in this case, is known as the electroweak chiral Lagrangian.

In our analysis, we will study only linearly-realized EFT, i.e. the Higgs boson transforms under SU(2)
generating couplings proportional to h + v, where v is the vacuum expectation value.

In this section, we will review the different operators resulting from the EFT expansion at different
orders.

2.2.1 Dimension-5 (Weinberg) operator

The first BSM operators in the EFT expansion of Eq. (2.3) are dimension-5 terms. There exists only a
single dimension-5 operator built with SM fields that respects SU(3)× SU(2)×U(1) gauge invariance,
and is known as the Weinberg operator [84]. This operator violates the conservation of lepton number,
and hence its effects cannot be probed in the LHC due to strong constraints on lepton number violation.
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Therefore, it is not included in our study. Nevertheless, it is of importance to neutrino physics, as the
dimension-5 operator can give rise to Majorana neutrino masses via EWSB [85].

2.2.2 Dimension-6 operators

Dimension six operators are the first BSM operators in the EFT expansion that can be probed using LHC
data. The first attempts to classify dimension-6 operators excluding lepton and baryon number violating
terms date back to 1986 [86]. Using this classification, one finds 80 operators for each flavor. It was found
that there are several ways of constructing the operators, as it is possible to transform one set of operators
to another set. Therefore, it is needed to define a basis of operators that should not be redundant when
using the equations of motion, integration by parts, field re-definitions, and Fierz transformations. There
exist many bases of dimension-6 operators. In general, the different bases are equivalent, meaning that
any complete basis will lead to the same BSM effects [44]. In addition, it is possible to translate between
the different bases using, for example, the ROSETTA tool [87].

In this section, we will review the bases that are studied in this thesis, focusing on their H → γγ

phenomenology. The Higgs boson production in the Standard Model is dominated by gluon fusion
(induced by the effective gluon coupling arising from top-quark mediated loop diagrams) and vector-
boson fusion and associated VH (V = W, Z) production, arising from HVV vertices. The Higgs boson
decay to two photons is dominated by W-mediated loop diagrams induced by the HWW vertex, in
addition to contributions from fermion-loop induced diagrams that are absorbed together with possible
loop diagrams induced by heavier particles in an effective Hγγ coupling. Therefore, in our analysis we
only study operators associated with three-point interactions between the Higgs boson and the gauge
bosons. The different bases that we study also include CP-violating operators allowing us to probe CP-
violation in the Higgs sector.

2.2.2.1 The Warsaw basis (SMEFT)

The Warsaw basis [88] is the first complete and non-redundant set of dimension-6 operators, proposed in
2010. The Warsaw basis includes 59 non-redundant operators (conserving lepton and baryon numbers).
The Warsaw basis is self-consistent at one loop as it has been completely renormalized [89]. In our
analysis, we studied the Warsaw basis as implemented in the Standard Model Effective Field Theory
or SMEFT [21]. The SMEFT is a consistent EFT generalization of the SM constructed out of a series of
SUC(3)× SUL(2)×UY(1) invariant higher-dimensional local contact operators, built using the SM fields
including the Higgs doublet.

A full list of the baryon-number-conserving dimension-6 SMEFT operators can be found in Ref. [21].
Among them, we are interested in the operators that can alter the pp → H → γγ cross sections. These
include the following CP-even operators:

LSMEFT ⊃
CHG

v2 H†HGA
µνGµνA +

CHW
v2 H†HW I

µνWµνI +
CHB

v2 H† HBµνBµν +
CHWB

v2 H†σI HW I
µνBµν, (2.8)

where H is the Higgs boson doublet, Gµν, Wµν and Bµν are the gauge field strength tensors for the SU(3)c,
SU(2)L and U(1)Y generators and σI are the Pauli matrices. CHG, CHW , CHB and CHWB are the different
Wilson coefficients specifying the strength of the coupling. For these coefficients we have absorbed the
scale ΛNP in the definition of the Wilson coefficient, C ≡ v2

Λ2 C. In addition, there are the following
CP-odd operators:

LCP−odd
SMEFT ⊃

C̃HG
v2 H† HG̃A

µνGµνA +
C̃HW

v2 H† HW̃ I
µνWµνI +

C̃HB

v2 H†HB̃µνBµν +
C̃HWB

v2 H†σI HW̃ I
µνBµν, (2.9)
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where G̃µν, W̃µν and B̃µν are the dual field strength tensors, defined as X̃µν = 1
2 εµνρσ Xρσ. Similarly to

the CP-even case, the energy scale ΛNP is absorbed in the definition of the C̃ coefficients.
These operators contain all the possible contractions of two field-strength tensors that form singlets

or triplets of SU(2)L, and singlets of SU(3)C. The operators appear in the form H† H or H†σI H due to
electroweak constraints [88]. A complete dictionary of SM extensions in the Warsaw basis was given in
Ref. [90] matching the different extensions to dimension-6 operators. The LO modifications to the SM
interactions in the SMEFT are derived by expanding around the vacuum expectation value in the unitary
gauge and rotating to mass eigenstate fields [44]. The non-zero values of the Wilson coefficients modify
the SM coupling constants as follows:

ḡs = gs(1 + CHGv2
T), ḡ2 = g2(1 + CHWv2

T), ḡ1 = g1(1 + CHBv2
T), (2.10)

where ḡ denotes the modified coupling constants and vT is the modified VEV in SMEFT. Using the
modified couplings, one can derive the modifications to the Higgs boson interactions with gauge bosons.
These modifications will affect both the production and decay of the Higgs boson in the pp → H → γγ

process.
The operators of the Warsaw basis are of the form |H|2 Aµν Aµν, which is the same as the one stemming

from the SM loop contribution. This results in an overall rescaling of the bosonic partial decay widths, for
example for H → γγ the following analytical expression from Ref. [21] was derived giving the correction
to H → γγ partial width due to non-zero Wilson coefficients :

Γ(H → γγ)

ΓSM(H → γγ)
'| 1 +

8π2v̄2
T

Iγ
Cγγ |2 + | 8π2v̄2

T
Iγ

C̃γγ |2 (2.11)

where
Cγγ =

1
ḡ2

2
CHW +

1
ḡ2

1
CHB −

1
ḡ1 ḡ2

CHWB (2.12)

C̃γγ =
1
ḡ2

2
C̃HW +

1
ḡ2

1
C̃HB −

1
ḡ1 ḡ2

C̃HWB (2.13)

The Wilson coefficients in Eq. (2.8) and (2.9) have the following effects on the main Higgs boson
production modes:

• CHG and C̃HG affect the gluon-fusion production mode. The gluon-fusion production in the SM is
induced by quark-loop diagrams (as detailed in Chapter 1), where the leading contribution arises
from top quark loops. In the limit mt → ∞ the contact term HGA

µνGAµν can be a good approxima-
tion. In SMEFT the gluon-fusion production cross section is modified via CHG and C̃HG as follows:

σ(gg→ H)

σSM(gg→ H)
'| 1 +

16π2v2

Ig ḡ2
3

CHG |2 + | 16π2v2

Ig ḡ2
3

C̃HG |2, (2.14)

where Ig is a Feynman integral accounting for the top-quark loop contribution. The change in the
Higgs boson decay width to two gluons is also modeled with approximately the same corrections
in Eq. (2.14) [21]. This can affect the h → γγ decay by modifying the Higgs boson total width and
hence affect the branching ratio of h→ γγ. However, the effect of this variation on the total Higgs
width is tiny since the SM width to gluon pairs is very small (SM branching ratio = 8.18× 10−2 [49]).

• CHW , CHB and CHWB (and the corresponding CP-odd terms) affect the cross sections of vector
boson fusion (VBF) and of associated production with a vector boson (VH). As an example, the
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following equation gives the analytical expression of the change in the VH production cross sec-
tions [21]:

σ(ψψ̄→ VH)

σSM(ψψ̄→ VH)
⊃ m̂2

Vq2

|−→pH |2 + 3m̂2
V

[
| f V

3 (q2)|2(3m̂2
V + 2|−→pH |2) + 2|−→pH |2| f V

4 (q2)|
]

, (2.15)

where f V
i (q2) are form factors that can be decomposed into f V

i (q2) = f V,SM
i (q2) + δ f V

i (q2) with
δ f V

i (q2) the correction due to non-zero Wilson coefficients, q2 is the four momentum of the fermion
pair (from the proton) and ph is the transverse momentum of the Higgs boson. Therefore, these
variations have a dependence on the Higgs boson kinematics from the momentum structure of the
operators. The corrections δ f V

i (q2) to the SM form factors are functions of the Wilson coefficients,
for example for V = W+ the variation will be δ f W

i (q2) ∝ CHW/m̂2
W . In addition, these coefficients

modify the Higgs boson decay width to photons following Eq. (2.12). The effect of these coefficients
on modifying the Higgs boson decay to photons is much larger than their effect in increasing the
VBF+VH cross sections. In addition, these coefficients modify the Higgs boson decay width in the
channels H → ZZ∗ and H → W+W− in their different decay modes detailed in Chapter 1. There-
fore, these Wilson coefficients modify the Higgs boson branching ratio to two photons through the
change in the total Higgs boson width, in addition to their effect on the two-photon width as in
Eq. (2.12).

2.2.2.2 The SILH basis (HEL)

An additional operator basis that we studied in our analysis is the Strongly Interacting Light Higgs
(SILH) basis [91]. This basis was originally built for composite Higgs models in which ΛNP can be related
to the compositeness scale. We study the SILH basis as implemented in the Higgs effective lagrangian
(HEL) [92] as follows:

LHEL = LSM + LSILH + LCP + LF1 + LF2 + LG , (2.16)

where the dimension-six operators have been grouped in the following way:

• LSILH contains all CP-even three-point interactions between a single Higgs boson and either a pair
of gauge bosons or a fermion-antifermion pair;

• LCP contains the operators describing the corresponding CP-odd interactions;

• LF1 ,LF2 ,LG contain operators that induce anomalous triple and quartic gauge boson interactions,
or four-point interactions between a fermion-antifermion pair, a Higgs boson and a gauge boson
or a second Higgs boson.

The Wilson coefficients in LSILH associated with interactions between a Higgs boson and a fermion-
antifermion pair are not probed. The LSILH part of the HEL Lagrangian is:

LSILH =
cH

v2
1
2

∂µ
[
H† H

]
∂µ

[
H† H

]
+

cT

v2
1
2
[
H†←→D µ

H
][

H†←→D µ H
]
− c6λ

v2

[
H† H

]3

−
[

cu

v2 yuH† H H† ·QLuR +
cd

v2 yd H† H HQLdR +
cl

v2 y` H† H HLLeR + h.c.
]

+
g cW

m2
W

i
2
[
H†σk

←→
D µH

]
DνWk

µν +
g′ cB

m2
W

i
2
[
H†←→D µH

]
∂νBµν

+
g cHW

m2
W

i
[
DµH†σkDνH

]
Wk

µν +
g′ cHB

m2
W

i
[
DµH†Dν H

]
Bµν

+
g′2 cγ

m2
W

H† HBµνBµν +
g2

s cg

m2
W

H† HGa
µνGµν

a ,

(2.17)
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where:

• H is the Higgs doublet;

• QL, LL are the left-handed quark and lepton doublets;

• uR, dR, eR are the right-handed up-type quark, down-type quark and charged lepton fields;

• Gµν, Wµν and Bµν are the gauge field strength tensors for the SU(3)c, SU(2)L and U(1)Y generators;

• λ is the Higgs quartic coupling;

• yu, yd and y` are the 3× 3 Yukawa coupling matrices in flavour space;

• g′, g and gs are the U(1)Y, SU(2)L and SU(3)c coupling constants, respectively;

• σk are the Pauli matrices.

The c coefficients are related to the Wilson coefficients by:

cH ≡ cH
v2

Λ2 cT ≡ cT
v2

Λ2 c6 ≡ c6
v2

λΛ2 (2.18)

cu,d,` ≡ cu,d,`
v2

yu,d,`Λ2 (2.19)

cW ≡ cW
m2

W
gΛ2 cB ≡ cB

m2
W

g′Λ2 cHW ≡ cHW
m2

W
gΛ2 cHB ≡ cHB

m2
W

g′Λ2 (2.20)

cγ ≡ cγ
m2

W
g′Λ2 cg ≡ cg

m2
W

gsΛ2 (2.21)

The corresponding CP-odd interactions are contained in LCP, defined as:

LCP =
g c̃HW

m2
W

i
2

Dµ H†σkDνHW̃k
µν +

g′ c̃HB

m2
W

iDµH†Dν HB̃µν +
g′2 c̃γ

m2
W

H† HBµν B̃µν

+
g2

s c̃g

m2
W

H† HGa
µνG̃µν

a +
g3 c̃3W

m2
W

εijkWi
µνWν j

ρW̃ρµk+
g3

s c̃3G

m2
W

fabcGa
µνGνb

ρG̃ρµc ,

(2.22)

where the G̃µν, W̃µν and B̃µν are the dual field strength tensors, defined as X̃µν = 1
2 εµνρσ Xρσ. Again, the

c̃ coefficients are related to the Wilson coefficients by relations similar to those written before for the c
ones.

The operators that can modify the pp → h → γγ cross sections correspond to the following 12
coefficients:

cγ, c̃γ, cg, c̃g, cT , cB, cH , cW , cHW , c̃HW , cHB and c̃HB . (2.23)

The cT coefficient has been constrained to be −0.0015 < c̄T < 0.0022 [20] at 95% confidence level (CL) by
precision electroweak data from LEP. For these values, the effect on the measured H → γγ cross sections
would be negligible and thus the cT coefficient is set to zero in this analysis. The sum of cW and cB has
been constrained by LEP data to be −0.0014 < cW + cB < 0.0019 at 95% CL. As both the cB and cW

coefficients are found to have a small impact on the normalization and shapes of the distributions, they
are set to zero and not further investigated. Finally, the cH parameter is also observed to have a very
small effect on the differential H → γγ cross sections (< 0.1% for cH = 1). It is therefore also set to zero.

The remaining Wilson coefficients belong to two categories:
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i. Coefficients of operators that pre-dominantly alter the total cross section or change the H → γγ

branching fraction

ii. Coefficients of operators that alter the Higgs boson kinematics, the amount of radiation or the
angular correlations of the radiation.

The coefficients cγ and cg belong to the first category. The coefficient cγ corresponds to an operator that
interferes with the SM H → γγ diagrams, affecting the decay but not the properties of the production.
The interference can be either constructive or destructive. In addition, that operator can introduce a small
γγ → H production cross section that would change the shape of the observed production kinematics.
However, the overall effect is completely negligible with respect to the amount of total cross section
change that will drive any limit. The coefficient cg corresponds to an operator that has the same structure
as the SM gg→ H diagram and can interfere with it, leading to a change in the normalization of the gluon
fusion production cross section, but not in the kinematic distributions. The corresponding CP conjugate
operators, that are multiplied by the c̃γ and c̃g Wilson coefficients, also modify the H → γγ decay and
gg→ H production, though they cannot interfere with the SM amplitudes.

The coefficients cHW and cHB, as well as their CP conjugate partners belong to the second category:
they induce large shape changes in isolated parts of phase space. The corresponding operators are not
proportional to SM contributions, thus no pure interference effects leading to simple changes in normal-
ization are possible. Instead, they induce changes in the kinematic distribution of the Higgs boson, e.g.
produce a Higgs boson with higher transverse momenta.

2.2.2.3 Other bases

In addition to the previous bases, there exist other dimension-6 EFT bases that were not included in our
study, such as the Higgs basis. This basis was proposed by the LHC cross section working group [44] to
separate the Wilson coefficients that are strongly constrained by the electroweak precision tests (EWPT)
and the Higgs studies. This is done by rotating other dimension-6 bases such that one can isolate the
linear combination that is affecting only the Higgs sector. More details can be found in Ref. [93].

More details on other different bases can be found in Refs. [44, 94]. As mentioned before, complete
bases are equivalent, describing the same effects, and there exist tools to translate constraints on the
coefficients of the operators in one basis to constraints on the operators of an alternative basis.

2.2.3 Beyond dimension-6 operators

The next terms in the EFT expansion of Eq. (2.3), beyond dimension-6 operators, are the dimension-
7 terms. These operators violate lepton number conservation, and some of them also violate baryon
number conservation [95]. Therefore, the effects stemming from these operators can not be probed at the
LHC [44], and hence, they are not considered in this thesis.

Operators with dimension ≥ 8 are suppressed by at least 1/Λ4
NP, making their effect negligible

with respect to dimension-6 operators from a simple power counting procedure. The relative size of
the higher dimensional terms (e.g. dimension-8) with respect to the dimension-6 terms is controlled by
C(8)/C(6)(E2

exp/ΛNP) [44], where C(8) and C(6) are generic dimension-8 and dimension-6 Wilson coeffi-
cients, and Eexp is the energy scale of the process. Nevertheless, a complete set of dimension-8 operators
were derived in Ref. [96]. There exist around 900 baryon-number-conserving dimension-8 operators.
Therefore, the inclusion of full dimension-8 operators will over-complicate setting limits on the EFT
models, as the current status of data does not allow lifting the degeneracy between dimension-6 and
dimension-8 [81]. Therefore, for this thesis we will truncate the EFT expansion to dimension-6 oper-
ators. The truncation of the EFT series assumes that the EFT expansion is still valid to describe the



60 Chapter 2. Beyond the Standard Model : The Effective Field Theory Approach

UV-complete theory at higher energy scales ΛNP. The full assessment of this statement can not be done
in a fully model-independent manner as the same values of the Wilson coefficient can be matched to
different energy scales and the UV-complete coupling parameter as was shown in the Fermi theory case.
This degeneracy can be lifted by inserting assumptions on the UV complete model. A concrete example
of this procedure is shown in Ref. [81].

2.2.3.1 Higher order correction

Another modification that can affect dimension-6 operators is due to higher-order (NLO) QCD correc-
tions. Tree-level EFT predictions can be extended with higher-order loop corrections. The NLO correc-
tions can change the cross section value or modify the differential distributions. The one-loop effects of
dimension-6 operators are suppressed by O(g2

SM/16π2), with gSM denoting a SM coupling, thus they
are in general sub-leading [81]. Therefore, the inclusion of the loop corrections for the EFT modification
is less crucial. This is not the case for the nominal SM predictions, in which we use the best known high
order corrections in QCD and EW in order to describe the data with the highest accuracy. More details
are given in Section 5.2.
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Interlude A. Statistical Analysis

It is often said that the language of science is
mathematics. It could well be said that the
language of experimental science is statistics.

Kyle Cranmer

Basic principles

The main challenge in experimental particle physics, after performing the measurements, is the interpre-
tation of the measured observables in terms of the parameters of a theory. Statistical methods come to
the rescue providing tools and concepts for quantifying the correspondence between the measured ob-
servables and model parameters. One of the goals of statistical analysis is the estimation of parameters
of interest for a given model from a measured dataset and quantifying the uncertainty of such estimates.
In our analysis, we aim at estimating the number of Higgs boson signal events from a dataset containing
both Higgs boson signal and background events. The estimated Higgs boson signal yield and the theo-
retically predicted yield from the SM can be used to assess the agreement between our data and the SM.
Similarly, one can assess the agreement of BSM scenarios with the data, and estimate the values of BSM
couplings. In this interlude, we will briefly review the statistical tools that are used in this analysis.

One of the most fundamental concepts in statistics is that of random variables, or in the particle
physics context that of uncertainty. Uncertainties in particle physics measurements can arise from dif-
ferent factors such as the lack of knowledge about the experiment, or the intrinsically random nature
of quantum mechanics. A variable is said to be random if it cannot be predicted with complete cer-
tainty [97]. As this is generally the case in the results of particle physics measurements, the tools of
statistical probability are used to quantify the uncertainties on a given estimate. The mathematical defi-
nition of probability was given by Kolmogorov in a few axioms based on set theory. The axioms give the
probability of a subset A in a sample space S, P(A). Nevertheless, the interpretation of the probability
P(A) can take one of two forms:

• the frequentist interpretation views the probability of an event A as the limit frequency of obtain-
ing A when the experiment is repeated an infinite amount of times.

P(A) = lim
N→∞

N(A)

N
(2.24)

• the Bayesian interpretation, on the other hand, considers P(A) as the degree of belief that A is true.

Both interpretations follow the Kolmogorov axioms. In our analysis, we use the frequentist inter-
pretation, i.e. probabilities are only associated with the outcome of repeatable observations instead of
hypothetical statements that do not change with the repetition of the experiment. Frequentist interpre-
tation tools can also be used to make statements about the different hypotheses.
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Parameter estimation

One of our goals is to estimate a set of parameters of interest (POI) −→µ by measuring a set of observables
−→x whose probability depends on −→µ . For simplicity of notation, we will consider the case of a single
parameter of interest, µ. The definition in Eq. (2.24) can be used for cases where A takes discrete values
(e.g. event counting); however, we are generally interested in continuous variables, such as the diphoton
invariant mass for a given event. For a continuous variable x, the probability can be defined using a
probability density function (PDF), f (x), giving the probability of observing x within an infinitesimal
interval [x, x + dx] as follows:

P(x ∈ [x, x + dx]) = f (x)dx, (2.25)

where the function f (x) satisfies the normalization
∫ ∞
−∞ f (x)dx = 1. The function f (x) should be varying

with our parameter of interest µ, f (x|µ). The analytical form of f (x|µ) can be obtained using simulations
(such as the modeling of the Higgs boson signal shape) or from data control regions (such as the model-
ing of the background shape). In the case of multiple events n, the random variable x becomes the vector
−→x = x1, ...xn, and the combined PDF for all events will be the product of the PDF for each event, also
known as likelihood function, L(−→x |α) = ∏n

i=1 f (xi|µ). In particle physics counting experiments (such as
our analysis), the number of selected events is also a random variable: the observed number of events n
is fluctuating around an expected number ν(µ) according to a Poisson distribution Poisson(n|ν) = νne−ν

n! .
The likelihood function in this case is known as the extended likelihood:

L(−→x |µ) = Poisson(n|ν)
n

∏
i=1

f (xi|µ), (2.26)

Using this likelihood function, we would like to estimate the parameter of interest given the dataset
we collected −→x = x1, ...xn. A good estimator µ̂(−→x ) of the true value of µ must satisfy the following
conditions:

• Consistency. The estimator should converge to the true value in the limit of infinite statistics
limn→∞ µ̂ = µ.

• The difference between the expectation value of the estimator E(µ̂) and the true value µ, known as
the bias, should be minimal with respect to other estimators.

• The variance, defined as var[µ̂] = E((µ− E(µ̂))2), should be minimal as well.

In general, there is a trade-off between the bias and the variance, and even for unbiased estimators, there
is a well-defined minimum variance bound [98]. One of the most widely used estimators is the maxi-
mum likelihood estimator (ML). It is defined as the value of µ that maximizes the likelihood function
L(−→x |µ) of Eq. (2.26). In practice, this is done by minimizing the negative logarithm of L, − logL(−→x |µ),
as it is computationally more efficient, in a numerical procedure known as likelihood fitting. The un-
certainty on the ML estimate of the POI can be obtained using several methods [97]. One of these is a
graphical method where the ±1σ uncertainty on the estimator corresponds to the width of the negative
log-likelihood curve at an increase of 0.5 from the − logLmin. A schematic overview of the ML fit is
shown in Figure 2.2.

Systematic uncertainties

In practice, the likelihood function that is used to estimate the parameter of interest, the number of Higgs
boson signal events in our case, will not be only a function of the parameter of interest µ. This is a result
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FIGURE 2.2: An illustration of the maximum likelihood fit, minimizing the negative log of the likelihood
function. The negative log-likelihood function is shown in blue with the minimum denoting the best fit
estimate for x̂ (vertical red line). The function has been offset to have minimum at zero for clarity. The
uncertainty on the estimate of x̂ is given by the intersection of − logLmin + 0.5 (horizontal dashed line)

with the likelihood curve.

of our imperfect knowledge of other parameters that also affect the distributions of our observables.
These parameters are known as nuisance parameters

−→
θ . Examples of nuisance parameters in our analysis

are the number of background events, the different parameters that describe the signal and background
shapes, and the different systematic uncertainties affecting them. These different parameters affect our
estimate of the Higgs boson signal yield and hence have to be included to describe our dataset fully.
The inclusion of nuisance parameters in the likelihood function will increase the number of degrees
of freedom, as the fit tries to accommodate the observed data, resulting in a larger uncertainty on the
estimate of the parameter of interest.

The number of nuisance parameters can be quite large for our dataset to be able to constrain all of
them at the same time. One can overcome this limitation with the help of auxiliary measurements. An
auxiliary measurement, performed in some data control region, provides a best estimate for a certain
nuisance parameter θ̃ and a measure of its uncertainty σθ . From the auxiliary measurement, we can
build a variational estimate θ± corresponding to ±1σ variations in θ. Then, a constraint term f (θ|θ̃, σθ)

can be multiplied by our full measurement likelihood function, leading to:

L(−→x |µ) = Poisson(n|ν)
n

∏
i=1

f (xi|µ) · f (θ|θ̃, σθ). (2.27)

A common way to implement the constraint is via a Gaussian penalty term parameterized such that
θ = 0 is the nominal value of the parameter, and θ = ±1 are the ±1σ variations. In some cases, however,
a Gaussian constraint term is not appropriate, such as when the parameter can only be positive. The
signal resolution is an example and is typically included via a log-normal constraint term. A concrete
example of adding constraints to the likelihood function is shown in Section 5.6.

The fit procedure will then find the values of µ̂ and θ̂ that maximize the likelihood. From a statistical
point of view, both parameters µ and θ are on equal footing, and in some cases, the fit may constrain
θ better than the auxiliary measurement. While this is “normal” from a statistical point of view, from
an experimental point of view this is generally a sign of the likelihood function not fully describing the
dataset (i.e. missing additional systematic uncertainties). This problem is known as over-constraining and
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might lead to underestimated uncertainties on the parameter of interest. One of the ways to quantify this
effect is by inspecting the post-fit pulls of the nuisance parameters. The pull of a nuisance parameter is
defined as

pull(θ) =
θ̂ − θ̃

σ̂θ
, (2.28)

i.e. the pulls quantifies how far our estimate θ̂ deviates (is pulled) from the expected value θ̃ given the
post-fit uncertainty σ̂θ . Using this definition, the nominal or the pre-fit systematic uncertainties nuisance
parameters are centered at zero with an uncertainty of 1. One can then examine over-constraining by
observing the post-fit pulls. Deviations from a central value of zero indicate that some data features
are absorbed by this non-zero central value of the pull, while a deviation from a standard deviation
of 1 indicates that the data is constraining the systematic uncertainty which might require additional
investigations. The impact of a nuisance parameter on the parameter of interest is defined as follows:

Impact(θ) = ∆µ± = ˆ̂µθ̃±σθ
− µ̂, (2.29)

where ˆ̂µθ̃±σθ
is the fitted value of µ when the nuisance parameter is fixed to its expectation value plus or

minus one standard deviation for the pre-fit impacts, and fixed to their observed values for the post-fit
impacts. Examples of the nuisance parameters pulls and impacts are shown in Section 5.6.1.

Asimov datasets

In a particle physics analysis, such as this thesis, we are interested in estimating the sensitivity and the
expected uncertainties before performing the measurement. This requires the knowledge of the distri-
bution of the likelihood function. This can be obtained via an Asimov dataset, where the parameters of
interest are fixed, and the nuisance parameters are fixed to their best fit values from data resulting in
a post-fit Asimov dataset or by fixing nuisance parameters to their expected values resulting in a pre-
fit Asimov dataset. This results in a distribution (histogram) that matches perfectly the model. Such

histogram is built setting the number of events at each bin nAsimov
i = E[ni](µ,

−→̂
θ̂ ), thus eliminating all

statistical fluctuations. More details on the construction of the Asimov dataset are given in Ref. [99]. An
illustrative example of an Asimov dataset is shown in Figure 2.3 for a simple signal plus background
model.

Hypothesis testing and confidence intervals

Another statistical tool that we will be using in our analysis is that of hypothesis testing. It is a statistical
procedure used to make statements regarding the compatibility of the data collected with two alternative
hypotheses by rejecting one of the hypotheses if the other one is in much better agreement with the data.
As an example, when the Higgs boson was discovered the two hypotheses under test were the SM with
and without a Higgs boson.

In our analysis, we expect to observe a signal (the Higgs boson signal) on top of a background from
known processes. In order to estimate the significance of the Higgs boson signal yield, we can then define
two hypotheses: a background-only hypothesis (Hb) and a signal-plus-background hypothesis (Hs+b).
To distinguish between the two hypotheses, a test statistics t(−→x ) is built in a way such that the value of t
will be different between the two hypotheses. This is done via the definition of an acceptance region such
that if t(−→x ) < k, we accept the background-only hypothesis. The test-statistics should minimize the
probabilities of type-I errors (rejecting the background-only hypothesis when it is true), quantified by
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FIGURE 2.3: An example of an Asimov dataset (black points) built from a simple signal plus background
model (blue line).

the size α of the test, and type-II errors (accepting the background-only hypothesis when the alternative
is true), quantified with the power of the test 1− β.

One of the ways we can use to quantify if the discrepancy between data and one of the alternative
hypotheses is large enough to reject it is the significance. The significance of an observation is related to
the p-value under the alternative hypothesis (background-only hypothesis in our case). The p-value is the
fraction of times one obtains a dataset that is as compatible (or more) with the alternative (background-
only) hypothesis. For example, the famous 5σ significance that is used in particle physics to claim discov-
eries is equivalent to a p-value of 2.87× 10−7. It also quantifies the rate of type-I error α = 2.87× 10−7.

In general, there are various methods to construct test-statistics for hypothesis testing. The most
powerful one is the likelihood ratio test t(−→x ) = L(−→x |HS+B)/L(−→x |HB) according to the Neyman-
Pearson lemma [97, 100]. A generalization of the likelihood ratio is called the profile likelihood ratio, in
which the likelihood functions of the two hypotheses are maximized for all parameters except for the
parameter of interest:

λ(−→µ ) =
L(−→x |µ,

ˆ̂−→
θµ )

L(−→x |µ̂,
−̂→
θ )

(2.30)

where µ is the parameter of interest labeling the hypothesis,
ˆ̂−→

θµ maximizes the likelihood function for a

given µ, and µ̂,
−̂→
θ maximize the likelihood function.

One of the uses of hypothesis testing is to find confidence intervals. A confidence interval is a region
of allowed values for a given model parameter. A confidence interval is defined based on a confidence level
between 0 and 1. Typical examples are 95% and 68% confidence levels. For example, a 95% confidence
interval for a parameter means that the interval determined with this procedure will contain the true
value of the parameter in 95% of identical experiments that could be performed. This property is called
coverage. The procedure for building confidence intervals is called the Neyman Construction. It is based
on inverting a series of hypothesis tests, as shown in Figure 2.4. This means that for each value of µ in the
parameter space, we perform a hypothesis test. A confidence interval I(−→x ) is constructed as follows

I(−→x ) = {µ|P(λ > k|µ) < α}, (2.31)
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there is an ambiguity in the choice of the integration boundaries, which will lead to two-sided intervals,
or one-sided integral bounded from below or above. To sort out the integration limits one needs to specify
an ordering rule (i.e. which measurements should be considered within the integration boundaries and
which should stay out). The construction of the acceptance intervals for all s forms a belt from which
one can easily get the corresponding (e.g.) 68% confidence interval [sd, su](so), given one measurement
so via inversion (Figure 4).

s

s

msl sh
sd

su

so

Fig. 4: An illustration showing the Neyman belt. The horizontal lines are the acceptance intervals in the mea-
sured parameter space sm for a given possible true s, [sl, sh](s). Given an observation so one can construct the
confidence interval [sd, su] via inversion, as indicated in the Figure.

3.12.1 The Feldman-Cousins Method
The full Neyman construction was introduced to HEP by Feldman and Cousins [6]. The test statistic is
the likelihood ratio q(s) = L(s+b)

L(ŝ+b) where ŝ is the MLE of s (in L(ŝ + b) ) under the constraint that s
is physically allowed (i.e. positive). To construct a 68% acceptance interval in the number of observed
events, [n1, n2], one is using q as an ordering rule, i.e.

Pn2
n1

p(n|s, b) � 68% where only terms with
decreasing order of q(n) are included in the sum, till the sum exceeds the 68% confidence (see Fig. 4).
When no events are observed, one is using this constructed Neyman belt to derive a confidence interval,
which, depending on the observation, might be a one-sided or a two-sided interval. This method is
therefore called the unified method, because it avoids a flip-flop of the inference (i.e. one decides to flip
from a limit to an interval if the result is significant enough...).

One can clearly see in Fig. 4 that depending on the observation, so, one gets either a one sided bound, or
a two sided interval.

A noted difficulty with this approach is that an experiment with higher expected background which ob-
serves no events might set a better upper limit than an experiment with lower or no expected background.
This would never occur with the CLs method.

Another difficulty is that this approach does not incorporate a treatment of nuisance parameters. How-
ever, it can either be plugged in "by hand", using the hybrid Cousins and Highland method [7] or in the
LHC way, i.e. using the Profile Likelihood [1] as described above.
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FIGURE 2.4: An illustration of the Neyman constuction. The x-axis shows the measurement parameter
space Sm and the y-axis shows the true parameter space S. The horizontal lines are the acceptance intervals
in the measured space for a given true value s, [Sl , Sh](S). Given an observation S0 one can construct a

confidence interval [Sd, Su] via inversion [100].

where α refers to the size of the test, i.e. α = 5% for a 95% confidence interval. In practice, the confidence
interval can be determined using two alternative methods [101]:

• The asymptotic formula. This approximation is based on the theorems by Wilks and Wald [99],
which show that for a sufficiently large data sample the distributions of the likelihood-ratio-based
test statistics follows a Gaussian distribution. This means that −2 logL(µ) will follow a χ2 distri-
bution with ndo f = 1.

χ2(µ) = −2 logL(µ) (2.32)

The determination of the confidence interval begins by finding all possible global minima (as mul-
tiple solutions may exist). At each minimum χ2 = χ2

min. The confidence level for a given value of µ

(e.g. µ0) is computed from the minimum at µ0 with respect to the nuisance parameters of the model
χ2

min(µ0). The difference in χ2 between the the global minimum and the minimum at µ0 will satisfy
∆χ2 = χ2

min(µ0) − χ2
min ≥ 0. The p-value P ≡ 1− CL will be obtained from the χ2 distribution

with one degree of freedom:

1−CL = Prob(∆χ2, ndof = 1) where Prob(∆χ2, ndof = 1) =
1√

2Γ(1/2)

∫ ∞

∆χ2
e−t/2t−1/2dt (2.33)

The 95% confidence intervals, for example, will be computed from the intersection of the 1−CL =

0.05. The method is commonly known as the PROB method [29, §39.3.2.3].

• Distribution from pseudo-experiments. This method is based on obtaining the test statistics dis-
tribution by generating pseudo datasets, and can be summarized in the following steps, for a given
value (e.g. µ0) of the parameter of interest:

1. Calculate ∆χ2 = χ2
min(µ0)− χ2

min, where χ2
min(µ0) is the χ2 minimum at µ0 with respect to the

nuisance parameters of the model.

2. Generate a pseudo dataset −→x toy at µ = µ0.

3. Calculate ∆χ2′ using −→x toy instead of −→x observed, similar to step (1), where ∆χ2′ is computed
from the difference of the χ2 minima once with µ fixed to µ0, and once with µ floating.
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4. 1− CL can be estimated as the fraction of toy results performing worse than the measured
data

1−CL = N(∆χ2 < ∆χ2′)/Ntoy (2.34)

In general, using pseudo data to estimate the confidence limits results in better coverage, though
not necessarily a perfect one [101].
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Chapter 3

The LHC and the ATLAS Experiment

The results in this thesis are based on pp collision data from the ATLAS experiment at the Large Hadron
Collider (LHC). In this chapter, a brief introduction of the LHC and the ATLAS experiment is given with
an emphasis on the detector systems most relevant for the analysis.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [8] is a circular pp and heavy ion collider at the European Organization
for Nuclear Research (CERN). The LHC lies in a tunnel with approximately 27 kilometers of circumfer-
ence, 100 meters beneath the French-Swiss border near Geneva, Switzerland. The construction of the
LHC relies on the successful operation of various generations of accelerators [102]. The official LHC
proposal took place in Lausanne in March 1984 during the first LHC workshop [103]. Twenty-five years
later, in November 2009, the LHC started its successful operation.

3.1.1 The LHC acceleration chain

The acceleration process at the LHC is done through various phases that successively increase the energy
of the colliding beams via the CERN accelerator complex sketched in Figure 3.1. The acceleration chain
is based on a series of lower energy accelerators that inject their accelerated beams in higher energy
accelerators reaching the target beam energy. Protons are collected from a Hydrogen container, where the
Hydrogen molecules are submitted to an intense electric field, breaking them into protons and electrons.
The protons are first accelerated in the LINAC 2 linear accelerator (which started operation in 1978 and
will be replaced by the new LINAC 4 [104] after 2020) reaching an energy of 50 MeV. They are then
injected into the proton synchrotron booster (PSB), which accelerates them to an energy of 1.4 GeV,
before injecting them into the Proton Synchrotron (PS). The PS is CERN’s first synchrotron (it started
operation in 1959) that accelerates protons to an energy of 26 GeV. After the PS, protons are injected in
the 7 km long Super Proton Synchrotron (SPS) and accelerated to an energy of 450 GeV. The SPS is one
of the pillars of the CERN accelerators complex, providing high-energy proton (and anti-proton) beams
since 1976 that led to several breakthroughs such as the discovery of the W [105] and Z [106] bosons.
At this stage, the protons are injected in the LHC where they get accelerated to multi-TeV energies. The
LHC is designed to collide proton beams with a center-of-mass energy of

√
s = 14 TeV, this requires

accelerating the beam in opposite directions at an energy
√

s/2 = 7 TeV. Due to technical problems the
operational center-of-mass energy was lowered to 7 and 8 TeV in the first run of the LHC (2011 to 2012).
The energy was then increased in the second run of the LHC (2015 to 2018) reaching

√
s = 13 TeV.

The acceleration at the LHC is based on superconducting radio-frequency (RF) cavities for the beam
acceleration and superconducting dipole and quadrupole magnets for beam bending and focusing. The
LHC uses 8 RF cavities per beam (operating at 4.5 K), providing an accelerating field of 5 MV/m at
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FIGURE 3.1: Sketch of the acceleration chain for the LHC. The chain relies on the different accelerators at
CERN [107].

400MHz [108]. This results in an acceleration time of around 20 minutes to reach 7 TeV. The magnets of
the LHC are designed to reach a magnetic field up to 8.3 T, providing the necessary curvature matching
the tunnel radius at a nominal beam energy of 7 TeV. The magnet system consists of 1232 dipoles to
bend the beam and 392 quadrupoles to focus the beam. The magnets are made of superconducting coils
of Niobium-Titanium (NbTi) alloy that are used to generate the required high magnetic field and are
cooled via super-fluid Helium operating at 1.4 K [109]. Along the LHC ring, different particle physics
detectors are built around the beam collision points. There are two big general-purpose experiments:
ATLAS [61] and CMS [62]. These two experiments have quite similar layouts, though they are based on
different detector technologies. They were designed to be sensitive to a broad spectrum of experimental
signatures for new physics searches, in addition to performing Standard Model precision measurements.
Also, there are two other major experiments with more focused aims: the ALICE experiment [110], which
is mainly used for heavy-ion collisions to study the quark-gluon plasma, and the LHCb experiment [111],
detecting bottom and charm quarks mesons produced in the forward direction to study flavor physics
and CP-violation.

3.1.2 Beam structure and Luminosity

The beam in the LHC is not continuous but rather divided in bunches. A bunch is a collection of particles
that get clumped around the synchronous particle which is the particle that is exactly synchronized with
the RF frequency. The LHC beam at full intensity nominally consists of 2808 bunches, with each bunch
containing 1.15 × 1011 protons and spaced by 25 ns [112]. A scheme of the LHC bunch structure is
shown in Figure 3.2. The missing (empty) bunches in that scheme provide the necessary time for various
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procedures such as: the beam dumps, the injection from the SPS to LHC and the rise of the magnetic
field of the kicker magnets.

FIGURE 3.2: Sketch of the nominal bunch structure of the LHC beam [113].

The event rate of a given process with cross section σi is given by:

dN
dt

= Liσi, (3.1)

where the quantity Li is known as the instantaneous luminosity. The instantaneous luminosity is a
characteristic of the accelerator given by the following formula:

Li =
N2

b kb f γ

4πσxσy
F (3.2)

where:

• Nb is the number of particles per bunch

• kb is the number of bunches

• γ is the relativistic factor of the accelerated particles

• f is the revolution frequency of the accelerator. It is 11.2 kHz for the LHC

• σx and σy are the horizontal and vertical beam size. They are typically around 2.5 µm at the LHC

• F is a geometrical correction factor from the crossing-angle of the two beams at the interaction point
(IP). The angle is typically around 150-200 µrad at the LHC

The instantaneous luminosity is measured in units of cm−2s−1. The LHC has a design maximum instan-
taneous luminosity of 1034 cm−2s−1. The peak instantaneous luminosity of the LHC increased grad-
ually between Run-1 and Run-2 even exceeding the design peak instantaneous luminosity, reaching
2.1× 1034 cm−2s−1 in 2018. From the instantaneous luminosity, one can define the integrated luminos-
ity L =

∫
Lidt. The integrated luminosity is related to the number Ni of produced events for a process

of a given cross section σi by Ni = Lσi. The integrated luminosity is measured in units of [area−2] and
typically expressed in inverse femto-barn fb−1, where 1 b = 10−28 m2.

Another quantity that is related to the luminosity is the pileup. Pileup refers to additional low trans-
verse momentum pp inelastic collisions accompanying the hard scattering pp interactions. One can
distinguish between two kinds of pileup:
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• In-time pileup resulting from additional collisions occurring within the same bunch as that of the
hard scatter.

• Out-of-time pileup occurring in the previous or the following bunch crossings relative to that of the
hard scatter.

Pileup represents a challenge to the physics data analysis as it results in additional energy deposits in the
detector and hence complicating the identification of the different physics objects. Pileup is quantified
via the average number of interactions per bunch crossing, 〈µ〉. The average number of interactions per
bunch crossing is directly related to the instantaneous luminosity via the relation:

µ =
Lbunchσinelastic

f
, (3.3)

whereLbunch is the per-bunch instantaneous luminosity, σinelastic is the pp inelastic cross section (σinelastic =

80 mb at
√

s = 13 TeV) and f is the revolution frequency of the LHC.

3.1.3 LHC Run-2 performance

The dataset used in this thesis comprises the events recorded by the ATLAS detector during the LHC
Run-2 at

√
s = 13 TeV. The LHC delivered 156 fb−1 of pp collisions, among which 139 fb−1 of data

were recorded with stable beams and detector conditions providing data that can be used for physics
analysis in ATLAS. The integrated luminosity collected in Run-2 as a function of time is shown in Fig-
ure 3.3a. Run-2 witnessed an outstanding performance of the LHC, exceeding the design instantaneous
luminosity and providing more integrated luminosity than what was predicted. The increase of the in-
stantaneous luminosity also resulted in a higher number of interactions per bunch crossing across the
years with an average number of 〈µ〉 = 33.7 for all of Run-2, compared to 〈µ〉 ≈ 20 for Run-1. The
〈µ〉 distribution for each year in Run-2 is shown in Figure 3.3b. The resulting higher pileup conditions
require additional procedures to mitigate its effects on the calibration and identification of the physics
objects, as will be detailed in the next chapters.

(A) Integrated luminosity per year in Run-2. (B) Mean number of interactions per bunch cross-
ing per year in Run-2.

FIGURE 3.3: (A) Integrated luminosity versus time delivered to ATLAS (green) and recorded by ATLAS
(yellow) during stable beams for pp collisions at 13 TeV center-of-mass energy in the LHC Run 2 (B) Mean

number of interactions per bunch crossing 〈µ〉 per year in Run-2 [114].
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3.2 The ATLAS experiment

ATLAS (A Toroidal LHC ApparatuS) [61] is a general-purpose detector located in an experimental cavern
at point 1 at the LHC. ATLAS is the biggest experiment on the LHC ring. It has a cylindrical shape
extending for 46 meters, with a diameter of 25 meters and weighing about 7000 tonnes. A scheme of the
ATLAS detector is shown in Figure 3.4. The ATLAS detector is made of different sub-detectors, similar
to previous generations of detectors, that are sensitive to different groups of particles. The different sub-
detectors are built as different coaxial layers around the beam pipe, with the collision point at the center
of the detector. The cylindrical shape of the detector is divided into two parts: barrel and endcap. The
sub-detectors start (from the beam) with a tracking detector built from silicon and transition-radiation
gas detectors. The tracking detector lies inside a 2 T magnet, which allows the reconstruction of charged
particles and the measurement of their momentum through their curved tracks. Going further away from
the beam, there are the electromagnetic and hadronic calorimeters measuring the energies of incident
particles via their electromagnetic and hadronic showers of secondary particles. The outermost layer is
a muon spectrometer, where the momentum of muons, which are the only known charged particles that
can cross the previous layers, is measured, thanks to a toroidal magnetic field of 0.5 T (1 T) in the barrel
(endcap) that curves their trajectories. The ATLAS detector is forward-backward symmetric with respect
to the interaction point. The cylindrical geometry allows nearly 4π coverage for the detector.

FIGURE 3.4: A general scheme of the ATLAS detector showing its various sub-detectors [61].

ATLAS is a general-purpose detector, meaning that it was designed to search for various signatures
of new physics in addition to performing very precise Standard Model measurements, on top of which
was the search and discovery of the Higgs boson in 2012 [6]. In this section, we will review the ATLAS
detector with particular emphasis on the sub-detectors systems used in this analysis.

3.2.1 ATLAS coordinate system

ATLAS uses a right-handed coordinate system, sketched in Figure 3.5, with the interaction point (IP)
defining the origin. The x axis is in the plane defined by the LHC ring, oriented from the detector
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center towards the center of the LHC. The x-y plane defines the transverse plane to the beam axis. The
beam direction defines the z-axis of the Cartesian coordinates. In particle physics, we generally use the
azimuthal angle φ and the pseudorapidity η defined as a function of the polar angle θ:

η = − log tan
(

θ

2

)
(3.4)

The change in pseudorapidity ∆η is invariant under boosts along the beam axis. The rapidity y =
1
2 log [(E + pz)(E− pz)] is used when dealing with massive particles, where E is the energy and pz is
the z-component of the momentum. The angular distance between two objects in the detector may be
determined using the variable ∆R, which is computed as ∆R2 = ∆η2 +∆φ2 which is also invariant under
a boost along the z axis.

z

x

y
θ

φ

beam direction

tunnel center

FIGURE 3.5: The ATLAS coordinate system. Scheme based on Ref.[61].

3.2.2 ATLAS magnets

The ATLAS detector has a hybrid system of four large superconducting magnetic systems :

• One solenoid magnet is responsible for curving the charged particles trajectories in the inner tracker.
The solenoid provides an axial magnetic field of 2 T. The solenoid design is optimized to keep the
material thickness in front of the calorimeter as low as possible to reduce the probability of particle
interactions. The solenoid thickness is about 0.66 radiation lengths [115]. The magnetic field is
generated via a superconducting magnet, made out of a Niobium-Titanium alloy, and cooled by
liquid Helium at 4.5 K. The magnetic field is precisely measured using probes based on the Hall
effect. This results in an accurate measurement of the magnetic field in the inner detector (accuracy
of around 0.01 mT) which is necessary for the tracking.

• Three toroidal magnets, one in the barrel region and two in the endcap regions provide the field in
the muon spectrometer. The generated magnetic fields are orthogonal to one another, and together
with the inner tracker, they allow for independent measurements of the muon momentum in the
innermost and outermost part of the ATLAS detector. The barrel system is constituted of 8 large
barrel coils, that are arranged in a star configuration, and of two endcap systems that are also made
of 8 coils each. Similar to the solenoid, they use liquid-Helium cooled superconducting magnets
based on a Niobium-Titanium alloy. The magnetic field provided by these magnets is 0.5 T for the
barrel and 1 T for the endcaps.
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3.2.3 The Inner Detector (ID)

The inner detector aims at providing a precise measurement of the parameters of charged particles tra-
jectories, namely an excellent vertex and momentum resolution. It is composed of four separate parts
based on different technologies. The first three sub-detectors are based on sensors made of silicon semi-
conductors, while the last one uses the transition radiation technique. The inner detector extends up to
|η| = 2.5. A global description of the installation and the composition of the inner detector is schemed
in Figure 3.6.

(A) Cut-away view of the inner detector (B) A cross section of the inner detector
barrel

FIGURE 3.6: (A) General scheme of the ATLAS inner detector and its components. (B) Drawing showing
the sensors and structural elements traversed by a charged track of of pT = 10 GeV in the barrel inner

detector [61].

The inner detector encompasses the following four sub-detectors:

The Insertable B-Layer (IBL) The IBL [116] is the innermost component of the inner detector. The IBL
was added during the shutdown between Run-1 and Run-2 with the aim of providing measurements
closest to the interaction point. The IBL has particular importance for the identification of b-jets, that
relies on precise vertex reconstruction to identify the displaced vertex of the B hadron decays. The IBL
was added as the original pixel detector suffered from radiation damage. The IBL has a barrel structure
with a radius of 3.2 cm composed of 14 carbon fiber staves with 32 or 16 modules in each stave. The
IBL modules include two different kinds of pixel sensors: ATLAS pixel planar sensors and 3D sensors,
with a pixel size of 50 × 250 µm2 providing a resolution on the longitudinal impact parameter, z0, of
approximately 200− 80 µm for 0.4 < pT < 20 GeV.

The Pixel detector The pixel detector [117] consists of three coaxial cylinders and three disks perpen-
dicular to the beam. The pixel detector is designed to provide high-resolution track and vertex recon-
struction. The detector consists of 1744 pixel sensors. Each of the pixels corresponds to a semiconductor
sensor made from silicon with a size of 50× 400 µm2. The complete pixel detector contains approxi-
mately 80 million read-out channels, each one corresponding to a pixel. The resolution of the charged
particle positions is of 10 µm in (R− φ) and 115 µm in z.

The Semiconductor Tracker (SCT) The next part of the inner tracker is the Semiconductor Tracker
(SCT) [118]. The SCT comprises 61 m2 of silicon microstrip sensors arranged into four concentric cylin-
ders and nine disks at each end. It is 5.6 m long and extends to 0.7 m in radius at the disks, providing
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four additional space points for each track. This results in a hit resolution of ∼ 16 µm in the R-φ plane
and ∼ 580 µm along the z direction.

The Transition Radiation Tracker (TRT) The TRT is the outermost part of the inner tracker. It has
different detector technology from that of the Pixel and SCT detectors. The TRT is a transition radiation
detector that uses gas ionization for particle detection [119]. The TRT is composed of straw-tubes filled
mainly with Xenon. Transition radiation will be emitted at the boundary of the radiator material, which
is made of polypropylene and polyethylene fibers. This radiation corresponds to X-ray photons with an
energy of 5− 30 keV and is strictly proportional to the relativistic factor γ = E/m of the incident particle.
Therefore, for a given momentum, it will be much higher for electrons than for pions and muons. This
difference in response is a crucial input to the discrimination between electrons and pions. The TRT is
capable of performing measurements in the R-φ coordinates with a precision of 170 µm per straw-tube.
This is worse than the one from the SCT and the pixel, but this lack of precision is compensated by the
higher number of hits in this sub-detector, as there are 73 parallel planes of straw-tubes in the barrel and
80 planes for each endcap.

3.2.4 The ATLAS Calorimeters

Calorimeters are particle detectors that measure energies of particles. They were initially invented for
the study of cosmic-ray phenomena and later developed for use in collider experiments. Calorimeters
are blocks of material in which the incident particles are fully absorbed, and their energy converted into
a measurable signal. Particles entering the calorimeter initiate a particle shower of secondary particles
that depend on the type and energy of the incident particles, as will be shown below.

Typically, calorimeters are segmented transversely with respect to the origin of the particles to pro-
vide information about the direction of the particles in addition to the energy deposited. They can also
be longitudinally segmented to provide information about the identity of the particle based on the shape
of the shower as it develops as well as standalone direction information. Calorimeters can be classified
as:

• sampling calorimeters, consisting of alternating layers of an absorber which is a dense material used
to degrade the energy of the incident particle and convert it to other particles in an active medium
that provides the detectable signal through the interactions of the extra particles with the active
medium.

• homogeneous calorimeters that are built entirely of one type of material that performs both tasks.

In terms of function, calorimeters can be classified into: electromagnetic calorimeters, used to measure
mainly electrons and photons through their electromagnetic interactions, and hadronic calorimeters used
to measure mainly hadrons through their strong and electromagnetic interactions. The ATLAS experi-
ment includes the following types of calorimeters, sketched in Figure 3.7 :

• An electromagnetic sampling calorimeter [120] covering up to |η| = 3.2. The electromagnetic
calorimeter has a cylindrical shape composed of a barrel section for |η| < 1.475 (EMB) and two
endcaps for 1.375 < |η| < 3.2 (EMEC).

• A hadronic sampling calorimeter (HCal) composed of a tile calorimeter [121], a Hadronic end-cap
(HEC) covering |η| < 3.9 and forward calorimeters (FCal) extending over the pseudorapidity range
3.1 < |η| < 4.9.
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FIGURE 3.7: Scheme of the ATLAS liquid argon electromagnetic and tile calorimeter [61].

3.2.4.1 The Electromagnetic Calorimeter

The ATLAS electromagnetic calorimeter is the main photon detector in ATLAS, and hence, it is a key
part of the measurements presented in this thesis. In this section, the details of the different compo-
nents of the ATLAS electromagnetic calorimeter are described, after an overview of the mechanism of
electromagnetic shower development.

Electromagnetic shower development To understand the electromagnetic shower development, we
review the interactions between electromagnetic particles and matter. This is a very diverse branch of
physics which depends on the energies of the particles involved in the process. We are only interested in
the interactions of high-energy photons and electrons. The average energy lost by electrons in lead (used
as an example as it is the same material used as an absorber in the ATLAS electromagnetic calorimeter)
and the photon interaction cross section are shown in Figure 3.8 as a function of their energies. For
energies larger than ∼ 10 MeV, the primary source of electron energy loss is bremsstrahlung. Photons,
on the other hand, interact mainly by producing electron-positron pairs. For energies above 1 GeV, both
these processes become roughly energy independent. At low energies, electrons lose their energy mainly
through collisions with the atoms and molecules of the material thus giving rise to ionization and thermal
excitation, whereas photons lose their energy through Compton scattering and the photoelectric effect.
Although the Compton scattering process has a non-negligible cross section up to energies of a few GeVs,
in this energy range the primary mechanism for photon energy loss is the conversion of photons to e+e−

pairs, which can only happen in a medium.
Therefore, electrons and photons of sufficiently high energy (≥ 1 GeV) incident on a block of material

produce secondary photons by bremsstrahlung, or secondary electrons and positrons by pair production.
These secondary particles, in turn, produce other particles by the same mechanisms, thus giving rise
to a cascade (shower) of particles with progressively degraded energies. This shower is then used to
detect photons and electrons and to measure their energies in the EM calorimeters. Most of the physics
of these showers may be described using two scales: a distance scale that is the radiation length X0

describing the distance at which the incident particle loses 1/e = 0.37 of its energy, and an energy scale



80 Chapter 3. The LHC and the ATLAS Experiment

(A) Fractional energy loss per radiation length in
lead as a function of electron or positron energy
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Figure 33.15: Photon total cross sections as a function of energy in carbon and lead,
showing the contributions of different processes [50]:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorption)
σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited
σCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole Resonance [51].
In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).
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(B) Photon total cross sections as
function of its energy in lead

FIGURE 3.8: (A) Fractional energy loss per radiation length in lead as a function of electron or positron
energy showing the different contributions. (B) The total cross section of photons as function of photon
energy in lead. The different contributions are: σp.e. is the atomic photoelectric effect (ionization and
excitation), σRayleigh is the Rayleigh scattering where the atom is neither ionized nor excited, σCompton is
incoherent Compton scattering off an electron, κnuc is pair production (nuclear field), κe is pair production

(electron field), and σg.d.r the photonuclear interaction (Giant Dipole Resonance) [29, §33.4].

Ec which is the so-called critical energy at which the energy lost by an electron due to bremsstrahlung
is equal to the energy lost by ionization. This critical energy also defines the energy scale at which the
shower development will stop as for energies below Ec the electron will mainly ionize the medium and
will not generate more electromagnetic particles. Using these parameters, the description of the shower
development of electrons and photons in matter can be achieved via simple empirical formulas [29].
The measurement of the particle energy is then based on the fact that the energy released in the detector
material by the charged particles of the shower, mainly through ionization and excitation, is proportional
to the energy of the incident particle.

Energy resolution of an electromagnetic calorimeter The energy resolution of an electromagnetic
calorimeter can be described by:

σE
E

=
a√
E
⊕ b

E
⊕ c, (3.5)

where the symbol ⊕ denotes a sum in quadrature. The first term a/
√

E is the so-called stochastic term
from the fluctuation of the shower development resulting from purely statistical arguments. In sampling
calorimeters, this term is affected by a sampling contribution accounting for the ratio between the energy
deposited in active and passive layers. The sampling ratio is defined as

fsamp =
Eactive

Eactive + Epassive
, (3.6)

where Eactive and Epassive are the energy deposits in the active and passive layers. Controlling this ra-
tio (during the design phase of calorimeter) can thus improve the resolution as the resolution σ/E ∝√

1/ fsamp. In a sampling calorimeter the energy resolution from this term is typically in the range
5− 20%/

√
E(GeV).

The second term b/E is known as the noise term which arises from the electronic noise of the signal
readout chain and pileup noise. The noise term is also affected by the sampling fraction fsamp as increas-
ing it will result in larger active regions and hence lead to higher signal-to-noise ratio, reducing the noise
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term resolution. The contribution of this term is in general negligible in the high energy ranges. The last
term c is known as the constant term, and it arises from instrumental defects that cause variations of the
calorimeter response (independent of the particle energy) giving rise to nonuniformities. Therefore, the
typical contribution of this term is characteristic of each calorimeter.

3.2.4.2 The ATLAS EM calorimeter

The main part of the ATLAS EM calorimeter, shown in Figure 3.9, is a Lead–liquid Argon (LAr) sampling
detector with accordion-shaped electrodes and lead absorbers [120]. The showers are mainly generated
in the lead layer, which is the denser material, and the LAr layers are primarily used as an active material
in which the ionization electrons will drift toward an electrode where the produced signals are measured.
The overall target resolution of the ATLAS electromagnetic calorimeter is

σ

E
=

10%√
E
⊕ 0.7%, (3.7)

where E is measured in GeV. The noise term is measured from dedicated calibration runs and is typically
0.25/E(GeV) [122]. Given the energy dependence of the different terms in the resolution, the most im-
portant at high energies is the constant term. The contribution of the stochastic term varies as a function
of η, reaching a maximum value of 17%.

FIGURE 3.9: Scheme of the ATLAS liquid argon electromagnetic calorimeter [61].

The accordion The ATLAS EM calorimeter has an accordion-shaped geometry, sketched in Figure 3.10,
consisting of interleaved layers of the LAr gaps, electrodes and lead absorbers. This design has the
advantage that it avoids having readout systems on the side of the electrodes, which will result in cracks
at specific regions where the readout takes place. Instead, the accordion design allows the readout to
be performed either in the front or the back of the calorimeter providing full coverage in φ. The lead
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absorbers are reinforced with two stainless-steel sheets that provide mechanical strength. The lead plates
in the barrel have thickness of 1.53 mm for |η| < 0.8 and 1.13 mm for |η| > 0.8. This change in thickness
limits the decrease of the sampling fraction as |η| increases [61].
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from absorber thickness measurements made during the calorimeter construction [6]. There is a good
agreement between the prediction and the data, except in the transition regions around η= 0, ±0.8 and
−1.4, where the lower field due to edge effects at the end of the electrodes induces a larger Tdri f t .
The measured drift time versus η for the two endcap wheels is shown in Figure 4(b). A general

decrease of Tdri f t with increasing pseudorapidity is observed, as expected from the corresponding
reduction of the design gap size (Figure 3). In addition, regular steps are found, corresponding to the
locations of the boundaries between high voltage regions. The resulted Tdri f t is compared to the Monte
Carlo (MC) calculation using 10 GeV electromagnetic showers. There is a good agreement between data
and MC at the level of 1 %.
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The reconstructed value of the energy deposited in the calorimeter by an electron or photon should
be independent of the position of its impact on the calorimeter. The non-uniformity coming from local
variations of the response due to gap fluctuations can be determined using the drift time measurements.
Figure 5 shows the distribution of the drift time averaged over groups of 4× 4 cells corresponding to

FIGURE 3.10: Accordion structure of the barrel part of the LAr electromagnetic calorimeter [123].

The barrel region of the electromagnetic calorimeter is divided into two half-barrels centered around
the z-axis covering the regions 0 < η < 1.475 and −1.475 < η < 0. A single half-barrel is composed
of 1024 accordion-shaped absorbers, with readout electrodes interleaved between the absorbers with
varying thickness expressed in terms of radiation length X0 that aim to contain the total energy of the
electromagnetic shower. Similarly, the endcap region, extending in the region 1.375 < |η| < 3.2 consists
of 768 lead absorbers interleaved with readout modules. An ATLAS EM calorimeter module (sketched
in Figure 3.9) in the central region (|η| < 2.5) has three layers in depth : front, middle and back as viewed
from the interaction point. This longitudinal segmentation allows the precise measurement of the EM
shower longitudinal development. The layers have different properties as follow:

• Front layer (L1), also known as the strips layer, has a thickness of about 4.4 X0 at η = 0. It has very
fine segmentation along η, with varying width depending on the η position in the barrel. The width
∆η varies between ≈ 0.025/8 for |η| < 1.4 and 0.025 for 1.4 < |η| < 1.475. In the endcap the width
varies between 0.025/8 for |η| < 2.4 and up to 0.025 for 2.4 < |η| < 2.5 as detailed in Ref. [61]. The
fine segmentation in most of the barrel and the end-caps provides a means to discriminate between
prompt photons and photons from π0 → γγ decays that can have a similar signature when the π0

is boosted (small opening angle between the decay photons).

• Middle layer (L2) where the bulk of the energy deposit takes place with thickness up to 22 X0. The
cells in the middle layer are of size ∆η × ∆φ = 0.025× 0.025 in the barrel an ∆η × ∆φ = 0.1× 0.1
in the endcaps.

• Back layer (L3) is a thin layer of about 2 X0 that is used to measure the energy leakage to the
hadronic calorimeter. The cells in the back layer are of size ∆η× ∆φ = 0.05× 0.05 in the barrel and
the endcaps.

The presampler In addition to these layers, the electromagnetic calorimeter is complemented with an
additional module known as the presampler (PS) [124]. The presampler is a thin layer (11 mm in the barrel
and 5 mm in the endcap) of LAr layers with no lead absorbers, covering up to |η| < 1.8. The presampler
has the purpose of measuring the energy lost upstream of the calorimeter due to interaction with material
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and hence providing corrections to the energies measured in the accordion. The presampler layer is
made of 64 identical azimuthal sectors (32 per half-barrel). Each sector is 3.1 m long and 0.28 m wide
thus covering the half-barrel length [61]. The presampler in the barrel is composed of eight modules
of different sizes with increasing length to obtain constant η−granularity of ∆η = 0.2 for each module.
Each PS module is divided into eight cells in η and two cells in φ, leading to a total of 16 cells per
module with granularity ∆η × ∆φ = 0.025× 0.1. In the endcaps, 32 identical modules cover the region
1.5 < |η| < 1.8. The cell granularity in the PS endcaps is ∆η×∆φ = 0.025× 0.1, similar to the barrel. The
presampler modules are made of an interleaved cathode and anode electrodes glued between glass-fiber
composite plates. A negative high voltage potential of 2 kV is applied to the outer layers of the anodes,
and the signal is read out through capacitive coupling to the central layer at ground potential as shown
in Figure 3.11.

FIGURE 3.11: A scheme of presampler modules in the endcap [120].

3.2.4.3 The Hadronic Calorimeter

In addition to the EM calorimeter, a hadronic calorimeter is used to measure jet energies. Jets are sprays
of particles that originate as free (colored) partons leave a hard scattering event due to quark confinement
as detailed in Section 1.2.2. The measurement of the jet energy requires a measurement of the energy of
the hadrons inside the jet, and this requires specific calorimeters as the main interaction of hadrons with
the detector is the strong interaction, and the nuclear interaction length of the LAr EM calorimeter is too
small to absorb and measure with sufficient precision the hadron energy.

Hadronic shower development Similar to electromagnetic showers, hadronic showers are started by
streams of hadrons resulting from hadronic interactions with the detector. The hadronic interaction
is characterized by the interaction length, λ, giving the mean free path between interactions required to
reduce the numbers of relativistic charged particles by the factor 1/e = 0.37. The interaction length varies
with the type of material used as λ ≈ 35A1/3 g cm−2 where A is the mass number [122]. The produced
secondary hadrons carry a fraction of the initial hadron momentum (GeV scale). A significant part of the
primary energy is then consumed through nuclear processes such as excitation, nucleon evaporation,
and spallation, resulting in particles with characteristic nuclear energies at the MeV scale.

The ATLAS hadronic calorimeter Different hadronic calorimeters have been included in ATLAS: a
barrel tile calorimeter up to |η| =1 and an extended barrel with the same technology up to |η| =1.7, a
LAr-copper calorimeter for the endcap, and a forward calorimeter. In the range |η| < 1.6, the ATLAS
hadronic calorimeter is an iron-scintillating tiles calorimeter. For rapidity larger than 1.6, the hadronic
calorimeter is a LAr calorimeter, mainly because of the intrinsic radiation hardness of this technology.
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The Tile Calorimeter [121] consists of a sampling calorimeter as the EM calorimeter; however, it is
made out of steel absorbers to create the particle showers, and of plastic scintillator tiles as the active
medium to measure them as shown in Figure 3.12. The energy measured in this calorimeter is the ultra-
violet scintillation light that is produced when a charged particle crosses the active medium. For each
tile, this scintillation light is collected by a wavelength-shifting optical fiber and is converted into visible
light in this fiber. The output of the fiber is connected to a photo-multiplier where the signal is measured.
The tile calorimeter is segmented into three layers in depth, and the total depth of this system is about
7λ. This ensures a negligible amount of hadronic leakage to the muon spectrometer, especially given that
it should be added to the depth of the LAr calorimeter and the services, giving a total of more than 10 λ

in front of the muon spectrometer everywhere in the detector.

FIGURE 3.12: Scheme of the ATLAS tile calorimeter [121].

Similar to the EM calorimeter, there exists a hadronic endcap calorimeter (HEC) [61] which is also a
sampling calorimeter based on a LAr technology, except that its absorbers are made of copper instead of
lead. Each HEC is built as two separate wheels, the first of which is composed of a series of 25 mm thick
flat copper layer and 8.5 mm wide LAr gaps. In the second wheel, the main change is the thickness of
the copper layers, which is 50 mm. The HEC is approximatively 10 interaction lengths deep.

3.2.4.4 Forward calorimeters

In addition to the hadronic and electromagnetic calorimeters, a forward calorimeter extends the accep-
tance of the calorimeter up to |η| = 4.9. The forward calorimeter (FCal) [61] is a sampling calorimeter
based on LAr as an active medium. The detector is segmented into three layers in depth. The first layer
uses copper absorber layers and targets the measurement of forward electromagnetic particles. The two
other layers that are further downstream use tungsten absorbers. The size of the LAr gap varies between
0.27 mm in the first sampling to 0.51 mm in the third. The thickness of the absorbers in the FCal is
optimized to achieve high absorption, approximately 10 interaction lengths deep.
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3.2.5 The muon spectrometer

The outermost part of the ATLAS detector is the muon spectrometer (MS), which is composed of several
gaseous chambers, whose technology varies as a function of their usage and of their position as shown
in Figure 3.13.

FIGURE 3.13: Scheme of the ATLAS muon spectrometer with the different detector technologies indi-
cated [61].

Up to |η| = 2, the momentum measurement is done by monitored drift tubes (MDT). One MDT
consists of straw tubes in which a gas is ionized by the incident muon, and the ionization electrons are
then collected at a wire in the center of the tube. At every φ there are at least 3 layers of chambers of
this kind. For 2 < |η| < 2.7 the innermost layer changes and uses cathode strip chambers (CSC), which
allow for a higher segmentation of the chamber. The CSC are multi-wire proportional chambers, with
the cathode segmented into strips, and the direction of the strip is perpendicular to one of the wires.
This allows for two independent measurements of the muon: one for the ionization electrons that are
collected at the wire, the other one from the induced signal collected at the strips. This also gives the two
coordinates of the muon, which in the MDTs comes from the trigger chambers. The trigger chambers
extends up to |η| = 2.4. For |η| < 1.05 the trigger is done by Resistive Plate Chambers (RPCs), in which
two parallel plates are separated by a thin layer of gas that the crossing muon will ionize. This ionization
signal will drift toward one of the two metallic plates at which it will be measured. Beyond |η| =1.05 the
trigger uses thin gap chambers (TGCs), in which a layer of anode wires at high voltage lies between two
parallel plates that are at ground.

3.2.6 Forward detectors

In addition to the main ATLAS subdetectors detailed before, three small detectors are built in the very
forward region (|η| > 5). The forward detectors include:

• LUCID: Luminosity measurement using Cherenkov Integrating Detector [61]. The LUCID detec-
tor is composed of two modules located at ±17 m from the IP providing coverage in the region
5.5 < |η| < 5.9. Each LUCID module is composed of 1.5 m long aluminum tubes surrounding
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the beam pipes and filled with C4F10 gas giving a Cherenkov threshold of 10 MeV for electrons
and 2.8 GeV for pions. LUCID has a fast timing response system (few ns) providing counting mea-
surements of the individual bunches estimating the luminosity through the inelastic cross sections
measurements. This cross section is determined by so-called Van Der Meer scans [125].

• ZDC: Zero degree calorimeter [61]. The ZDC detector is located at ±140 m from the IP providing
coverage for |η| > 8.3 neutral particles. The ZDC detector includes four modules (one EM and
three hadronic) with each module made of tungsten plates.

• ALFA: Absolute Luminosity For ATLAS [61]. The ALFA detector is located at ±240 m from the IP.
It is made of two Roman pot stations measuring the elastic scattering cross section at small angles.

• AFP: ATLAS Forward Proton (AFP) [126]. The AFP detector was installed in 2017 to measure
diffractive protons leaving under very small angles ≈ 100 µrad. In these processes, one or both
protons remain intact. Such processes are associated with elastic and diffractive scattering.

3.2.7 The trigger and data acquisition system

The LHC has a design instantaneous luminosity of 1034 cm−2s−1 which amounts to a frequency of col-
lisions of approximately 1.7 GHz given the 40 MHz bunch crossing rate with 25 interactions per bunch
crossing. Therefore, it is technically impossible to store the huge amounts of data, and hence, a trigger
system is used. The trigger system in ATLAS aims at reducing the 40 MHz rate to 1 kHz [127], which is
much more manageable. The trigger system in ATLAS is composed of the following subsystems:

• A hardware Level-1 trigger built from fast electronics. The level-1 trigger selects high transverse
momentum physics objects from trigger information coming from the different detectors such as
muons (from the muon spectrometer), electrons and photons (from the calorimeter), jets and miss-
ing transverse energy. The level-1 trigger defines a region of interest (RoI) which are the regions in
the detector (η, φ) where its selection process has identified interesting features. The information
in the ROIs is then passed to higher-level triggers, as shown in Figure 3.14.

• Software high-level trigger (HLT) seeded by the RoI information provided by the Level-1 trigger.
The HLT selections use the full granularity and precision, all the available detector data within the
RoI. The HLT triggers reduce the event rate to approximately 1.0 kHz.

The output of the trigger system is then passed to the data acquisition system in ATLAS via the
scheme shown in Figure 3.14. Events that are accepted by the hardware Level-1 trigger are transferred
to the HLT via an HLT farm supervisor node (implemented in Run-2) that includes assembly of Re-
gions of Interest. Event data from the detector front-end electronics systems are simultaneously sent to
the Readout System (ROS) via optical links from the Readout Drivers (RODs) in response to a Level-1
trigger accept signal. These data are then buffered in the ROS and made available for sampling by algo-
rithms running in the HLT. Once the HLT accepts an event, it is sent to permanent storage via the Data
Logger [128].

3.3 Reconstruction of physics objects

In this section, we will review the reconstruction of the different physics objects used in this thesis. In
addition, the identification and isolation algorithms for photons will be summarized as they represent
the main final state particles for pp→ H → γγ cross section measurement presented in Chapter 5.
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Figure 2. The ATLAS DAQ System in LHC Run 2. Events passing the Level 1 hardware
trigger (top left) are passed to the HLT (bottom left) via the farm supervisor node (HLTSV),
now including assembly of Regions of Interest. Simultaneously to this, event data from the
detector front-end electronics systems are sent to the Readout System (ROS) via optical links
from the Readout Drivers (RODs) in response to a Level 1 trigger accept signal. These data are
then bu↵ered in the ROS and made available for sampling by algorithms running in the HLT.
Once the HLT accepts an event it is sent to permanent storage via the Data Logger.

Figure 3. Conceptual diagram showing the merger of logical blocks within the combined High
Level Trigger. The old architecture is shown on the left and the new one on the right.

saturation has yet been observed in regular operations.

3. Readout System (ROS)
The ROS is responsible for bu↵ering event data passing Level 1 trigger selection for the period
of time taken for the HLT to perform its more detailed processing. The ROS consists of a set of

FIGURE 3.14: Block diagram of the ATLAS trigger and data acquisition system (DAQ) during Run-2 [128].

3.3.1 Electron and photon reconstruction

As detailed in Section 3.2.4.1, electrons and photons develop EM showers as they interact with the lead
absorbers in the LAr calorimeter. These EM showers ionize the LAr in the gaps between the absorbers,
resulting in electrons that drift via an applied HV (nominally at 2 kV). The drifting electrons from the
ionization processes induce an electrical signal on the copper electrodes that is proportional to the en-
ergy deposited. The signal is then read-out by the Front End Boards (FEB). The resulting signal has a
triangular shape with an amplitude that is proportional to the energy deposited by the incident parti-
cles. The signal is then pre-amplified and shaped via a CR− (RC)2 multi-gain bipolar filter, as shown
in Figure 3.15. The resulting signal shape is amplified with three linear gains: low (LG), medium (MG),
and high (HG). These gains are optimized to accommodate a broad dynamic range, and the signal shape
is chosen such that it reduces the total noise due to electronics and inelastic pp collisions coming from
previous bunch crossings (i.e. out-of-time pileup).

The resulting signals are then sampled with a 40 MHz clock frequency and stored temporarily on a
switched capacitor array until the Level-1 trigger decision is taken. Once the Level-1 trigger decision is
received, the sample corresponding to the maximum amplitude of the physical pulse stored in MG is first
digitized by a 12-bit analog-to-digital converter (ADC). Based on this sample, a hardware gain selection is
used to choose the most suitable gain. The samples with the chosen gain are digitized and transferred to
the read-out drivers via optical fibers [130]. The resulting signal amplitude is then converted to measured
cell energy in MeV via:

Ecell = FµA→MeV × FDAC→µA ×
1

Mphys
Mcali

× G×
Nsamples

∑
j=1

aj(sj − p), (3.8)

where

• sj are the samples of the shaped ionization signal digitized in the selected electronic gain, measured
in ADC counts in time slices spaced by 25 ns (Nsamples = 4).
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FIGURE 3.15: Shapes of the LAr calorimeter current pulse in the detector and of the signal output from
the shaper chip. The dots indicate an ideal position of samples separated by 25 ns [129].

• p is the read-out electronic pedestal, measured for each gain in dedicated calibration runs.

• aj are the optimal filtering coefficients (OFC) derived from the predicted shape of the ionization
pulse and the noise autocorrelation, accounting for both the electronic and the pileup components
[131].

• G is the cell gain, computed by injecting a known calibration signal and reconstructing the corre-
sponding cell response in dedicated calibration runs.

• Mphys
Mcali is a correction factor to the gain G where Mphys is the ionization pulse response and Mcali

is the calibration pulse corresponding to the same input current, to adapt it to physics-induced
signals.

• FDAC→µA is a conversion factor converting the digital-to-analog converter (DAC) counts set on the
calibration board to a current in µA.

• FµA→MeV converts the ionization current to the total deposited energy at the EM scale and is deter-
mined from test-beam studies [132].

The measured cell energies are clustered, providing a seed for different clustering algorithm as de-
tailed below.

Sliding-window algorithm

The sliding-window clustering algorithm [133] can be summarized in the following sequence:

1. The calorimeter is divided into a grid of Nη × Nφ = 200× 256 elements known as towers of size
Stower = ∆η × ∆φ = 0.025 × 0.025. Each tower is built by summing all the cell energies of the
longitudinal layers.

2. A scan is performed using a fixed-size window of 3× 5 towers. A seed is then selected with the
window energy is above 2.5 GeV.
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3. The cluster is then built summing the energies of all cells within 3× 7 (5× 5) of width ∆η × ∆φ =

0.025× 0.025 in the barrel (endcap) around a barycentre that is layer-dependent.

Using this algorithm, the efficiency to reconstruct EM-cluster candidates in the electromagnetic calorime-
ter associated with produced electrons is given by the number of reconstructed EM calorimeter clusters
Ncluster divided by the number of produced electrons Nall. This efficiency is evaluated entirely from
simulation as the reconstructed cluster is associated with a “true” electron produced at generator-level.
The reconstruction efficiency of this clustering algorithm varies as a function of |η| and ET, ranging from
65% at ET = 4.5 GeV, to 96% at ET = 7 GeV, to more than 99% above ET = 15 GeV, as can be seen in
Figure 3.16a (red triangles). The number of reconstructed electron candidates relative to the number of
EM-cluster candidates Ncluster gives the reconstruction efficiency which is above 98% for ET > 15 GeV as
shown in Figure 3.16b.

(A) Breakdown of the reconstruction efficiency
for the the clusters using the sliding-window algo-
rithm, tracks and their matching measured in the

simulation using single-electron samples.

(B) Reconstruction efficiency relating the number
of reconstructed electrons to the number of EM-
clusters as estimated from Z → ee for data and sim-

ulation.

FIGURE 3.16: (A) The total reconstruction efficiency for simulated electrons in a single-electron sample
is shown as a function of the true (generator) transverse momentum pT for each step of the electron-
candidate formation: seed-cluster reconstruction (red triangles), track reconstruction using the Global
Track Fitter (blue open circles), both of these steps together but instead using GSF tracking (yellow
squares), and the final reconstructed electron candidate, which includes the track-to-cluster matching
(black closed circles). As the cluster reconstruction requires uncalibrated cluster seeds with ET > 2.5 GeV,
the total reconstruction efficiency is less than 60% below 4.5 GeV (dashed line). (B) The reconstruction
efficiency relative to reconstructed clusters, εreco, as a function of electron transverse energy ET for Z → ee
events, comparing data (closed circles) with simulation (open circles). The inner uncertainties are statisti-

cal while the total uncertainties include both the statistical and systematic components [134].

Dynamical topological cell clustering algorithm

Since 2017, a new clustering algorithm based on topological clusters was implemented in ATLAS [135].
Historically, the fixed-sized window was used since the calibration of variable-sized clusters was not
feasible as it requires multi-variate techniques. The main advantage of using topological clusters is their
ability to recover low-energy deposits from bremsstrahlung photons and associate them to the electron
cluster, forming what is known as supercluster. A scheme of this procedure is shown in Figure 3.17.

Unlike the fixed-size window algorithm, the topological clustering algorithm relies on cell energy
significance defined as:

ςEM
cell =

∣∣∣∣∣
EEM

cell

σEM
noise,cell

∣∣∣∣∣ , (3.9)
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FIGURE 3.17: Diagram of an example supercluster showing a seed electron cluster and a satellite photon
cluster [135].

where
∣∣EEM

cell

∣∣ is the absolute cell energy at the EM energy scale and σEM
noise,cell is the expected cell noise,

including both electronic and pileup noise. The clustering algorithm follows:

1. A proto-cluster seeded from calorimeter cells with ςEM
cell ≥ 4 is formed and used as initial seed.

2. All immediate neighboring cells with ςEM
cell ≥ 2 around the proto-cluster are added.

3. All cells that are immediate neighbors of those added in steps 1 and 2 are added, regardless of the
ςEM

cell value.

The resulting clusters are commonly known as "4-2-0" topo-clusters. This algorithm includes also cells
from the hadronic calorimeter. Therefore, a selection on the EM fracion is performed as follows:

fEM =
EL1 + EL2 + EL3

ECluster
, (3.10)

where EL1,L2,L3 are the energy deposits in the first, second and third layers. Only clusters with fEM > 0.5
and EM energy greater than 400 MeV are considered. The threshold on fEM was optimized using simu-
lated samples in order to achieve large rejection of pileup as shown in Figure 3.18a. The reconstruction
efficiency for using superclusters is shown in Figure 3.18b using simulated single electron samples. The
resulting efficiency is higher than that of the sliding-window algorithm for low ET as expected (detailed
in Figure 3.20).

From the EM topoclusters, a supercluster is built from a seed topo-cluster after satellite cluster candi-
dates around the seed candidate are resolved. These satellite clusters may have emerged from bremsstrahlung
radiation or other material interactions. A cluster is accepted as a satellite if it falls within a window of
∆η×∆φ = 0.075× 0.125 around the seed cluster barycentre. An identified satellite cluster is then vetoed
from future usage.

Track to cluster matching

The reconstruction of electrons and photons relies as well on the tracking information. Depending on the
number of reconstructed tracks and on the matching of those tracks to the EM clusters, one can identify
electrons and unconverted and converted photons. The matching procedure for an electron candidate is
sketched in Figure 3.19.
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FIGURE 3.18: (A) Distributions of fEM for simulated true electron (detailed in Section 4.2) clusters (black)
and pile-up (red) with 〈µ〉 ≤ 30. (B) The cluster, track, cluster and track, and electron reconstruction

effciencies as a function of the generated electron ET [136].

FIGURE 3.19: A schematic illustration of the path of an electron through the detector (passive material
not shown for clarity). The red trajectory shows the hypothetical path of an electron, which first traverses
the tracking system (pixel detectors, then silicon-strip detectors and lastly the TRT) and then enters the
electromagnetic calorimeter. The dashed red trajectory indicates the path of a photon produced by the

interaction of the electron with the material in the tracking system [134].

The reconstruction of tracks is based on the standard track pattern reconstruction algorithm [137] that
is first performed everywhere in the inner detector. The track reconstruction relies on a silicon track seed
defined as a set of silicon detector hits used to start a track. The track is then identified after accounting
for energy loss due to material interaction using a Kalman filter [138], allowing for up to 30% energy loss
at each material intersection. Track candidates are then fitted with the global χ2 fitter [139], allowing for
additional energy loss in cases that the standard track fit fails. This track fitter was upgraded in 2012 to
a Gaussian Sum Filter (GSF) [140] that re-fits all the loosely matched tracks. The re-fitted tracks are then
used to compute the final matching with the seed cluster and to compute the electron four-momentum.
The GSF algorithm is of most importance for low-pT electrons where the contribution to the resolution
of the four-momentum of the track parameter is dominant, and bremsstrahlung effects are stronger.

The reconstructed tracks are then loosely matched to an EM calorimeter cluster by extrapolating the
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track to the second layer of the calorimeter using either the measured track momentum or rescaling
the magnitude of the momentum to match the cluster energy. A track is considered matched if, with
either momentum magnitude, |∆η| < 0.05 and −0.10 < sign(track) · (φtrack − φclus) < 0.05, where
sign(track) refers to the sign of the charge of the particle making the track. The momentum rescaling is
performed to improve track-cluster matching in cases where the electron suffers significant energy loss
due to bremsstrahlung radiation in the tracker. In case multiple tracks are matched to the same cluster,
they are sorted by their ∆R match to the cluster in the second layer of the calorimeter, and the best one is
chosen. Using this information, one can classify the physics objects as follows:

• Electrons for fixed-size clusters within |η| < 2.47, matched to a well-reconstructed ID track origi-
nating from a vertex found in the beam interaction region. Similarly, for superclusters, an electron
supercluster seed is required to have a minimum ET of 1 GeV and must be matched to a track with
at least four hits in the silicon tracking detector. The “best-matched” tracks for satellite clusters are
required to be the best-matched track for the seed cluster.

• Converted photons for clusters matched to conversion vertices with tracks loosely matched to the
clusters. Both tracks with silicon hits (denoted Si tracks) and tracks reconstructed only in the TRT
(denoted TRT tracks) are used for the conversion reconstruction. Two-track conversion vertices are
reconstructed from two opposite-charged tracks with an invariant mass of zero (mγ = 0). Single-
track vertices are tracks without hits in the innermost sensitive layers. Conversion vertices made
of Si tracks are denoted “Si conversions”, and those made of TRT tracks “TRT conversions”. For
photon superclusters with conversion vertices made up only of tracks containing silicon hits, a
cluster is added as a satellite if either its best-matched (electron) track is one track of the conversion
vertex associated to the seed cluster, or if it has the same matched conversion vertex as the seed
cluster. The determination of the satellite clusters, in this case, relies on tracking information to
discriminate distant radiative photons or conversion electrons from pileup noise or other unrelated
clusters.

• Unconverted photons for fixed-size clusters without matched tracks. For superclusters, an addi-
tional requirement that the cluster must have ET greater than 1.5 GeV to qualify as supercluster
seed is applied.

The performance of the supercluster algorithm is compared with that of the fixed-size clusters by
comparing their the width (resolution) of the energy response, using the effective interquartile range (IQE),
defined as:

IQE =
Q3 −Q1

1.349
, (3.11)

where Q1 and Q3 are the first and third quartiles of the distribution of Ecalib/Etrue, where Ecalib is the
calibrated energy response as will be detailed in Chapter 4 and Etrue is the generator-level particle energy.
The normalization factor is chosen such that the IQE of a Gaussian distribution would equal its standard
deviation. The IQE of the energy response distributions as a function of the particle energy is shown
in Figure 3.20 for electrons, unconverted and converted photons. The IQE is chosen to characterize the
energy resolution in single particles since it factors the asymmetric behavior in the tails of the energy
response more properly with respect to a Gaussian fit around the peak of the response [135].

3.3.1.1 Electron and photon identification

Before the electron and photon candidates can be used in the different analyses, further quality criteria,
referred to as identification, are defined to select a pure sample of prompt electrons and photons. Prompt
photons and electrons are those coming from the hard scattering vertex and not the result of hadronic
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FIGURE 3.20: Calibrated energy response resolution, expressed in terms of IQE, for simulated electrons
(top), converted photons (middle), and unconverted photons (bottom) with no pileup. The plots on the
left are for the central calorimeter (0.8 < |η| < 1.37), while the plots on the right are for the endcaps. The
response for fixed-size clusters based on the sliding window method is shown in dashed red, while the

supercluster-based one is shown in full blue [136].
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activity. The identification criteria require that the longitudinal and transverse shower profiles of the can-
didates are consistent with those expected for EM showers induced by such particles. For this purpose,
various discriminant variables based on the different shower shape parameters, shown in Table 3.1, are
used.

Category Description Name Usage

Hadronic leakage Ratio of ET in the first sampling of the hadronic calorimeter to the ET
of the EM cluster (used over the ranges |η| < 0.8 and |η| > 1.37).

Rhad1 e/γ

Ratio of the ET in the hadronic calorimeter to ET of the EM cluster
(used over the range 0.8 < |η| < 1.37).

Rhad e/γ

EM third layer Ratio of the energy in the third layer to the total energy in the EM
calorimeter.

f3 e

EM middle layer Ratio between the sum of the energies of the cells contained in a 3× 7
η × φ rectangle (measured in cell units) and the sum of the cell energies
in a 7× 7 rectangle, both centered around the most energetic cell.

Rη e/γ

Lateral shower width,
√
(ΣEiη

2
i )/(ΣEi)− ((ΣEiηi)/(ΣEi))2, where

Ei is the energy and ηi is the pseudorapidity of cell i and the sum is
calculated within a window of 3× 5 cells.

wη2 e/γ

Ratio between the sum of the energies of the cells contained in a 3× 3
η × φ rectangle (measured in cell units) and the sum of the cell energies
in a 3× 7 rectangle, both centered around the most energetic cell.

Rφ e/γ

EM strip layer Lateral shower width,
√
(ΣEi(i− imax)2)/(ΣEi), where i runs over all

strips in a window of 3 strips around the highest-energy strip, with
index imax.

ws 3 γ

Total lateral shower width,
√
(ΣEi(i− imax)2)/(ΣEi), where i runs

over all strips in a window of ∆η ≈ 0.0625 and imax is the index of the
highest-energy strip.

ws tot e/γ

Fraction of energy outside core of three central strips but within seven
strips.

fside γ

Difference between the energy of the strip associated with the the sec-
ond maximum in the strip layer and the energy reconstructed in the
strip with the minimal value found between the first and second max-
ima.

∆Es γ

Ratio of the energy difference between the maximum energy deposit
and the energy deposit in the second maximum in the cluster to the
sum of these energies.

Eratio e/γ

Ratio of the energy measured in the first sampling of the electromag-
netic calorimeter to the total energy of the EM cluster.

f1 e/γ

Track conditions Number of hits in the innermost pixel layer. ninnermost e
Number of hits in the pixel detector. nPixel e
Total number of hits in the pixel and SCT detectors. nSi e
Transverse impact parameter relative to the beam-line. d0 e
Significance of transverse impact parameter defined as the ratio of d0
to its uncertainty.

|d0/σ(d0)| e

Momentum lost by the track between the perigee and the last measure-
ment point divided by the momentum at perigee.

∆p/p e

Likelihood probability based on transition radiation in the TRT. eProbabilityHT e
Track–cluster matching ∆η between the cluster position in the first layer of the EM calorimeter

and the extrapolated track.
∆η1 e

∆φ between the cluster position in the second layer of the EM
calorimeter and the momentum-rescaled track, extrapolated from the
perigee, times the charge q.

∆φres e

Ratio of the cluster energy to the track momentum. E/p e

TABLE 3.1: Discriminating variables used for electron and photon identification. The usage column indi-
cates if the variables are used for the identification of electrons, photons, or both. For the variables in the
EM strip layer (shown in Figure 3.7), if the cluster has more than one strip in the φ direction for a given
η, then the two most central strips with that η are merged, and all references below to strips refer to these

potentially merged strips [141, 142].



3.3. Reconstruction of physics objects 95

Photons Different calorimeter discriminating variables are used, exploiting the information in the dif-
ferent layers of the calorimeter, using a cut-based approach, sketched in Figure 3.21. For example, the
variables using the EM strip layer play a particularly important role in rejecting π0 decays into two
highly collimated photons. Three working points are chosen for the photon identification: loose, medium
and tight. The loose working point is typically used for the single and diphoton triggers, and it uses
the Rhad, Rhad1 , Rη , and wη2 shower shape variables. The medium working point includes all the selec-
tion used for the loose working point in addition to a loose cut on Eratio and is used as well for triggering
(mainly in high pileup conditions). The tight selection is the primary photon identification selection used
in offline analyses. It exploits the full granularity of the calorimeter, including the fine segmentation of
the first sampling layer. The tight identification selection is optimized using a multi-variate algorithm,
and is performed separately for converted and unconverted photons (loose and medium identification
are the same for converted and unconverted). The main difference in the shower shapes of converted
photons and unconverted photons is due to the opening angle of the e+e− conversion pair, which is am-
plified by the magnetic field, and from the additional interaction of the conversion pair with the material
upstream of the calorimeters.

FIGURE 3.21: Schematic representation of the photon identification discriminating variables [143].

The efficiency of the photon identification is measured in data and in simulated samples using three
different processes: photons from radiative Z-boson decays, Z → llγ, a matrix method based on inclusive-
photon production, and using electrons from Z → ee decays with their shower shapes modified to re-
semble photons [136]. A combination of the three methods is used to provide an estimate of the photon
identification efficiency in data and simulation, and the difference is used as a correction factor for the
simulation [136]. The correction factor is derived in bins of |η| and ET . The measured photon identifi-
cation efficiency in data and simulation is shown in Figure 3.22 using 81 fb−1 of data collected in 2015 -
2017 for photons with 0 < |η| < 0.6 as a function of the photon ET.

Electrons The identification of prompt electrons relies on a likelihood discriminant constructed from
quantities measured in the inner detector and the calorimeter. A detailed description is given in Ref. [16].
The quantities used in the electron identification are chosen based on their ability to discriminate prompt
isolated electrons from energy deposits from hadronic jets, from converted photons, and from genuine
electrons produced in the decays of heavy-flavor hadrons. Similar to photon identification, three work-
ing points are provided: loose, medium and tight. The efficiency of the identification is measured in data
and simulation using Z → ee and J/ψ→ ee decays in bins of |η| and ET [136] and shown in Figure 3.23.
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FIGURE 3.22: The photon identification efficiency, and the ratio of data to MC efficiencies, for (A) uncon-
verted photons and (B) converted photons with a FixedCutLoose isolation requirement applied as prese-
lection, as a function of ET for 0 < |η| < 0.6. The combined correction factor, obtained using a weighted
average of scale factors from the individual measurements, is also presented; the band represents the total

uncertainty on the correction factor [136].

3.3.1.2 Electron and photon isolation

To further suppress the background from hadronic decay, isolation criteria based on the transverse en-
ergy deposits around the electron or photon candidate or the transverse momenta of the tracks around
the electron (or photon) candidate is required. The calorimeter isolation variable (Eisol

T,raw) [144] is the sum
of the transverse energy of positive-energy topological clusters whose barycenter falls within a cone,
known as the isolation cone, centered around the electron or photon cluster barycenter. The raw EM
particle energy is also included in this cone and hence needs to be subtracted. A scheme of the isola-
tion cone with the core contribution is shown in Figure 3.24a. The subtraction is done by removing EM
calorimeter cells contained in a ∆η×∆φ = 5× 7 (in layer-2 cells) rectangular cluster around the barycen-
ter of the EM particle cluster. If the shower is wider, energy leakage in the isolation cone, outside of the
core 5 × 7 window, can occur and hence a Monte-Carlo based leakage correction (as a function of ET

and |η|) is performed. In addition, the contribution from pileup and underlying-event is estimated and
subtracted [145]. The final, corrected, calorimeter isolation variable is thus:

EconeXX
T = EisolXX

T,raw − ET,core − ET,leakage(ET, η, ∆R)− ET,pileup(η, ∆R) (3.12)

where XX refers to the size of the employed cone, ∆R = XX/100. A cone size ∆R = 0.2 is used for the
electron working points whereas cone sizes ∆R = 0.2 and 0.4 are used for photon working points. An
example of the distribution of the isolation variables for tight photons using inclusive samples in data
and simulation is shown in Figure 3.24b for prompt photons signal and a background template built by
inverting the identification criteria.

The track isolation variable (pconeXX
T ) is the sum of the transverse momentum of selected tracks within

a cone centered around the electron track (or the photon cluster direction) excluding tracks associated
with the electron or the converted photon. The tracks considered are required to have pT > 1 GeV and
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(A) Electron identification efficiency as function of
ET.
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(B) Electron identification efficiency as function of η.

FIGURE 3.23: The electron identification efficiency in data as a function of (A) ET and (B) η for the loose,
medium, and tight operating points. The efficiencies are obtained by applying data-to-simulation effi-
ciency ratios measured in J/ψ → ee and Z → ee events to Z → ee simulation. The inner uncertainties
are statistical, and the total uncertainties are the statistical and systematic uncertainties in the data-to-
simulation efficiency ratio added in quadrature. For both plots, the bottom panel shows the data-to-

simulation ratios [136].

(A) Scheme of the calorimeter isolation.

Photon isolation 2015

Marco Delmastro Diphoton searches in ATLAS 42

 [GeV]T - 0.022 x Eiso
TE

10− 5− 0 5 10 15 20 25 30

Ev
en

ts

0

5000

10000

15000

20000

25000

Data
Bkg template
Sherpa
Pythia

 PreliminaryATLAS
-1 = 13 TeV, 3.2 fbs

 < 145 [GeV]
T

125 < p
| < 0.60η0.00 < |

 [GeV]T - 0.022 x Eiso
TE

10− 5− 0 5 10 15 20 25 30

Ev
en

ts

0

5000

10000

15000

20000

25000

30000

35000

Data
Bkg template
Sherpa
Pythia

 PreliminaryATLAS
-1 = 13 TeV, 3.2 fbs

 < 145 [GeV]
T

125 < p
| < 1.37η0.60 < |

 [GeV]T - 0.022 x Eiso
TE

10− 5− 0 5 10 15 20 25 30

Ev
en

ts

0

2000

4000

6000

8000

10000

12000

14000

Data
Bkg template
Sherpa
Pythia

 PreliminaryATLAS
-1 = 13 TeV, 3.2 fbs

 < 145 [GeV]
T

125 < p
| < 1.81η1.52 < |

 [GeV]T - 0.022 x Eiso
TE

10− 5− 0 5 10 15 20 25 30

Ev
en

ts

0

5000

10000

15000

20000

Data
Bkg template
Sherpa
Pythia

 PreliminaryATLAS
-1 = 13 TeV, 3.2 fbs

 < 145 [GeV]
T

125 < p
| < 2.37η1.81 < |
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able for photon candidates.

FIGURE 3.24: (A) Scheme of the calorimeter isolation method: the grid represents the second-layer
calorimeter cells in the η and φ directions. The candidate electron is located in the centre of the pur-
ple circle that represents the isolation cone. All topological clusters, represented in red, for which the
barycentres fall within the isolation cone are included in the computation of the isolation variable. The
5× 7 cells (which cover an area of ∆η × ∆φ = 0.125× 0.175) represented by the yellow rectangle corre-
spond to the subtracted cells in the core subtraction method [134]. (B) Distributions of the calorimeter
isolation variable for photon candidates fulfilling the tight identification criteria using inclusive prompt
photon samples for data and simulation (Sherpa and Pythia). The background contribution to the 2015
data, shown as "Bkg template", has been subtracted. It has been determined using a control sample with a

subset of the identification requirements inverted and normalized to the data [146].
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|η| < 2.5 and to originate from the primary vertex to avoid tracks from pileup events. The cone size
varies as a function of the transverse momentum of the electron, as objects become closer to the electron
for boosted topologies. Therefore, the isolation cone is reduced for larger transverse momentum, with a
maximum of 0.2 via the relation:

∆R = min(
10 GeV

pT
, 0.2). (3.13)

Photon isolation Similar to the photon identification, different working points of the isolation selection
providing a different balance between prompt photon efficiency and non-prompt photon rejection have
been defined as shown in Table 3.2.

Working point Calorimeter isolation Track isolation
FixedCutLoose Econe20

T < 0.065× ET pcone20
T /ET < 0.05

FixedCutTight Econe40
T < 0.022× ET + 2.45 GeV pcone20

T /ET < 0.05
FixedCutTightCaloOnly Econe40

T < 0.022× ET + 2.45 GeV -

TABLE 3.2: Definition of the photon isolation working points [136].

The photon isolation efficiency for each of these working points is measured in data and simulation as
a function of photon |η| and ET using photons from Z → llγ (10 < ET < 100 GeV) and inclusive photon
(25 GeV < ET < 1.5 TeV) and is shown in Figures 3.25. The difference between data and simulation for
the measured efficiencies is then used to derive correction factors applied to simulation.

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

η

0.6

0.7

0.8

0.9

1

1.1

D
at

a 
ef

fic
ie

nc
y

FixedCutLoose
FixedCutTight
FixedCutTightCaloOnly

γConverted 
 < 40 GeVT20 GeV < E

ATLAS
-1=13 TeV, 44.3 fbs

γ ll→Z 

2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5
η

0.9
0.95

1

1.05
1.1

1.15

D
at

a 
/ M

C

(A) Isolation efficiencies of the different isolation
working points for converted photons.
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(B) Isolation efficiencies of the different isolation
working points for unconverted photons.

FIGURE 3.25: Efficiency of the isolation working points defined in Table 3.2, using Z → ``γ events, for
(A) converted and (B) unconverted photons as a function of photon η. The lower panel shows the ratio
between the efficiency measured in data and in MC simulations. The total uncertainty is shown, including

the statistical and systematic components. [136].

Electron isolation Similarly, for electrons, isolation criteria are implemented using the track and calorime-
ter isolation variables, as shown in Table 3.3. The efficiency of the isolation is measured using electrons
from Z → ee and J/ψ→ ee decays, as shown in Figure 3.26.
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Working point Calorimeter isolation Track isolation
Gradient ε = 0.1143× pT + 92.14% (with Econe20

T ) ε = 0.1143× pT + 92.14% (with pvarcone20
T )

FCHighPtCaloOnly Econe20
T < max(0.015× pT, 3.5 GeV) -

FCLoose Econe20
T /pT < 0.20 pvarcone20

T /pT < 0.15
FCTight Econe20

T /pT < 0.06 pvarcone20
T /pT < 0.06

TABLE 3.3: Definition of the electron isolation working points and isolation efficiency ε. In the Gradient
working point definition, the unit of pT is GeV. All working points use a cone size of ∆R = 0.2 for

calorimeter isolation and Rmax = 0.2 for track isolation [136].
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FIGURE 3.26: Efficiency of the different isolation working points for electrons from inclusive Z → ee events
as a function of (A) the electron ET, and (B) electron η. The electrons are required to fulfill the Medium
selection from the likelihood-based electron identification. The lower panel shows the ratio between the
efficiency measured in data and MC simulations. The total uncertainty is shown, including the statistical

and systematic components [136].

3.3.2 Jet reconstruction

As detailed in Sec. 1.2.2, QCD forbids the existence of free quarks and gluons which forces them to
“hadronize”, producing a stream of particles known as jets. There are several algorithms for the recon-
struction of jets [147]. ATLAS uses the anti-kt algorithm [148] with topo-clusters built from calorime-
ter cells as input. ATLAS uses radius parameters R = 0.4 and R = 1.0 depending on the physics
intent: small radius is used for quark and gluons jets, whereas the larger cones are used for energetic
W → qq̄, Z → qq̄, t → Wb → qq̄b decays [149]. Before reconstructed jets can be used for physics
analyses, an intricate calibration chain is applied [150] to correct the jet energies for pileup effects, non-
compensating calorimeter response, data and simulation differences. Besides, a residual correction is
applied to the jet pT in data using jets produced in balance with additional objects (such as photons or Z
bosons) known as the Jet Energy Scale (JES) corrections [150]. A summary of the JES uncertainties using
80 fb−1 of data is shown in Figure 3.27a. The resulting jet energy resolution (JER) is shown in Figure 3.27b
along with the different uncertainties.

In order to reduce the number of reconstructed jets produced by the additional pileup interactions,
a selection based on the Jet Vertex Tagger (JVT) is used [153]. The JVT, computed for jets with |η| < 2.5
and pT < 120 GeV, estimates the probability of a jet to originate from pileup or a hard scattering, based
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(A) Fraction jet energy scale systematic uncertain-
ties as function of the jet pT

(B) Jet energy resolution as function of the jet pT

FIGURE 3.27: (A) Fractional jet energy scale systematic uncertainty components as a function of jet pT
for R = 0.4 anti-kt jets at η = 0.0, reconstructed from electromagnetic-scale topo-clusters. The total un-
certainty (all components summed in quadrature) is shown as a filled region topped by a solid black
line [151]. (B) The relative jet energy resolution σ(pT)/pT as a function of pT for anti-kt jets with a radius
parameter of R = 0.4 and inputs of EM-scale topoclusters calibrated with the EM+JES scheme followed
by a residual in situ calibration and using the 2017 dataset. The error bars on points indicate the total
uncertainties on the derivation of the relative resolution in dijet events, adding in quadrature statistical
and systematic components. The result of the combination of the in situ techniques is shown as the dark
line. The band indicates the total uncertainty resulting from the combination of in situ techniques, and in-
cludes the statistical and systematic components added in quadrature, although the statistical component

is found to be negligible [152].

on the number of tracks associated to the primary vertex. The distribution of the JVT variable for hard-
scattering and pileup jets is shown in Figure 3.28a. Selected jets are required to have a JVT value larger
than certain thresholds defining three working points: loose, medium, and tight. The default working
point is the medium one. The efficiencies of the JVT selection for hard-scattering jets are determined from
Z+jet events. The JVT selection efficiency for data and the simulation is shown in Figure 3.28b [153].The
ratios of efficiency between data and the simulation are used to derive correction factors as a function of
the jet pT and η that are applied to the jets in the simulation.

3.3.3 Muon reconstruction

Muons are reconstructed using information from the inner detector (ID) and the muon spectrometers
(MS). Muons are reconstructed independently in the ID and MS. The information from the individual
sub-detectors is then combined to form the muon tracks. In the ID, muons are reconstructed using the
same reconstruction algorithms as any charged particle [139]. In the MS, muon reconstruction starts
with a search for hit patterns inside each muon chamber to form segments that are then connected using
different algorithms [154]. Therefore, there are four classes of reconstructed muons [155]:

• Stand-alone muons (SA) where the muon trajectory is reconstructed only in MS with extrapolation
of the track parameters to the interaction point taking into account energy loss in the calorimeter.

• Combined muons (CB) where the track is formed from the successful combination of the SA and
Inner Detector track. CB muons have the highest purity among the different muon classes.

• Segment-Tagged (ST) muons where the ID track is identified as a muon if it is matched to at least
one segment in the precision chambers.
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FIGURE 3.28: (A) Distribution of JVT for pileup and hard-scattering jets with 20 < pT < 30 GeV.
(B)Selection efficiency of hard-scattering jets in data and simulation for the JVT requirement applied to
central jets. The efficiencies are measured from Z+jet events, with Z → µµ. The difference between data

and simulation is used to derive correction factors that are applied to jets in the simulation [153].

• Calorimeter Tagged (CT) muons where calorimeter deposition is used for tagging. It is mainly used
for η ∼ 0. It has the lowest purity of all muon classes.

Similar to electrons and photons, muon candidates are required to pass and identification and isola-
tion criteria that are optimized using Z → µµ and J/ψ→ µµ decays [154]. The reconstruction efficiency
as a function of the muon pT is shown in Figure 3.29.

FIGURE 3.29: Reconstruction efficiency for the Medium muon selection as a function of the pT of the
muon, in the region 0.1 < |η| < 2.5 as obtained with Z → µµ and J/ψ → µµ. The error bars on the
efficiencies indicate the statistical uncertainty. The panel at the bottom shows the ratio of the measured
to predicted efficiencies, that are used to derive correction factors for the simulation, with statistical and

systematic uncertainties [154].
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Chapter 4

Energy Calibration of the ATLAS
Electromagnetic Calorimeter with 2015
and 2016 pp Collisions

4.1 Overview of the Calibration procedure

The calibration of the reconstruction and identification performance of a particle detector is an essen-
tial procedure in any particle physics measurement. The calibration usually exploits control samples of
particles of a well-defined type, selected in data using kinematic requirements that do not bias the per-
formance that has to be calibrated. In this chapter, the procedure used to calibrate the energy of electrons
and photons reconstructed by the ATLAS electromagnetic calorimeter is reviewed. Photons constitute
the main final state particles for the processes that are measured in this thesis. Particular emphasis will be
given to the calibration of the energy response of the presampler layer of the electromagnetic calorimeter,
which was the work that I performed during the first year of my Ph.D. in order to qualify as an ATLAS
author.

Given the complexity of the ATLAS electromagnetic calorimeter, the calibration of the energy mea-
surement of electrons and photons is an intricate process. The result of the calibration is a precise energy
measurement of electrons and photons, which is a crucial requirement for several analyses, including
studies of the Higgs boson in the two-photon and four-lepton decay channels as well as precise studies
of the properties of the W and Z bosons. The energy calibration of the ATLAS electromagnetic calorime-
ter is a sequence of several steps, sketched in Figure 4.1, aims at minimizing the bias, and achieving the
best resolution on the measured energy of electrons and photons. The calibration procedure is as follows:

• The first step of the calibration procedure is a multi-variate (MVA) regression algorithm based on
a Monte-Carlo simulation of the ATLAS detector. The MVA algorithm aims at estimating the true
energy of electrons and photons from the calorimeter cluster properties measured by the detec-
tor. The optimization of the MVA algorithm is performed separately for electrons, converted and
unconverted photons and is detailed in section 4.2. An essential requirement for this simulation-
based calibration is that the simulations describe well the electromagnetic calorimeter geometry
and the material budget upstream of the calorimeter. The details of the estimation procedure of the
material budget are given in section 4.4.3.

• The second step of the calibration chain is the correction of the energy response for small details
that were not included in the simulation. They include, for instance, specific regions of the detector
that were affected by data-taking issues such as operation at non-nominal high voltage, geometric
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effects such as the inter-module widening (IMW), or biases associated with the calorimeter elec-
tronics calibration. These corrections are detailed in section 4.3.

• The third step is the longitudinal layer energy inter-calibration, detailed in section 4.4. The ATLAS
electromagnetic calorimeter is segmented longitudinally into a few layers, and the electron and
photon energies are determined from the energy deposited in each of these layers. A mismatch of
the relative energy response of different layers between data and the simulation can lead to biases
in the calibrated energy. This step equalizes the energy scales of the different longitudinal layers
between data and the simulation.

• The subsequent step is the extraction of the global energy correction factors applied to electrons
and photons (steps 4 and 5). The overall electron response in data is calibrated so that it agrees
with the expectation from simulation, using a large sample of electrons from Z boson decays. The
details of this procedure are shown in section 4.5.

• The final step of the calibration chain is the validation of the extrapolation of the calibration to
low-pT electrons using J/ψ → ee decays, and to photons using Z → llγ decays, as described in
section 4.6.

A summary of the calibration uncertainties and of their effect on the Higgs boson mass measurement is
given in section 4.7.
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FIGURE 4.1: Schematic overview of the procedure used to calibrate the energy response of electrons and
photons in ATLAS [156].

4.2 Multivariate Monte Carlo based calibration

The energy of an electromagnetic particle absorbed by the ATLAS electromagnetic calorimeter is not
fully converted into an electric signal. The accordion geometry of interleaved layers of active (LAr) and
passive (lead) layers means that a sizable part of the energy of incident particles will be absorbed in the
lead layers and not converted to measurable ionization energy in the LAr layers. In order to recover this
energy, various methods were developed.

At the beginning of Run-1 the default method used in ATLAS was the "calibration-hits" method [157],
in which an empirical function was used to parameterize the corrections to the energy and position of
a cluster (as the material budget changes along φ). An upgrade of this method, based on a multivariate
(MVA) regression technique, was developed around the end of Run-1 and replaced the calibration-hits
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method as the default energy calibration procedure of electromagnetic particles. The MVA regression
tool reconstructs the energy of incident particles from a set of input variables using boosted decision
trees (BDT) with gradient boosting training [158]. The MVA calibration provides a tool to derive a new
set of corrections that can be updated relatively easily in cases of changes in the detector simulation or
the geometry description. The MVA also makes it easy to extend the set of input variables, providing a
systematic way for improving the calibration. Another advantage of the MVA algorithm is that it takes
into account the correlations – even non-linear ones – among the input variables, therefore improving
the energy resolution when these correlations are significant.

The MVA regression algorithm is trained using simulated event samples of single particles interact-
ing with the ATLAS detector. The simulation of the detector response is performed using GEANT 4 [159].
Particles are generated with transverse energy up to 3 TeV, with a larger fraction of particles in the energy
range between 7 and 200 GeV as shown in Figure 4.2. The MVA training aims at estimating the gener-
ated energy of the particle, Egen, from the total raw cluster energy measured in the accordion calorimeter,
Eacc. The ratio Egen/Eacc is the target variable of the MVA algorithm, from which the calibrated particle
energy Ecalib can be easily computed through multiplication by the measured value of Eacc.

[GeV]true
TE

10 210 310

P
ar

tic
le

s 
/ G

eV

210

310

410

510
Electron

MC12

MC15

FIGURE 4.2: Input ET distributions of electrons at truth-level used to generate the samples for the MVA
calibration. In black is the distribution used for Run-1 calibration, labeled "MC12", whereas the red curve

is the one used for the Run-2 calibration detailed in this thesis, labeled "MC15" [160].

The following variables are used as an input to the MVA algorithm for electrons and photons:

• Total raw cluster energy of the accordion: Eacc = Eraw
1 + Eraw

2 + Eraw
3 , defined as the sum of the

uncalibrated energies of the three accordion layers (strips, middle and back).

• Ratio of the energy in the presampler to the energy in the accordion: Eraw
0 /Eacc, used only for

clusters within the geometric range of the presampler, |η| < 1.8.

• Ratio of the energy in the first accordion layer to the energy in the second one: Eraw
1 /Eraw

2 . This
variable provides insight on the longitudinal shower depth, to which it is largely correlated.

• Pseudorapidity in the ATLAS frame: ηcluster. This variable takes into account the misalignment of
the detector, in order to correct for the variation of the material upstream of the accordion.

• Cell index: ηcalo/∆η, ηcalo is the pseudorapidity of the cluster in the calorimeter frame and ∆η =

0.025 is the size along η of one cell in the middle layer. The cell index is a variable sensitive to
non-uniformities of the calorimeter.

• η with respect to the cell edge: ηcalo modulus ∆η = 0.025. This variable allows correcting for the
variation of the lateral energy leakage due to the finite cluster size. Such variation is larger for
particles that hit the cell close to the edges.
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• φ with respect to the lead absorbers: φcalo modulus 2π/1024 (2π/768) in the barrel (end-cap)
section of the calorimeter, corresponding to the periodicity of lead sheets in each region. This vari-
able allows correcting for the slight variations of the sampling fraction depending on the particle
trajectory.

For converted photon candidates, i.e. with a reconstructed radius of conversion 0 < R < 800 mm, the
following variables are also used:

• Radius of conversion R: used only for pconv
T > 3 GeV, where pconv

T is the sum of the transverse
momenta of the conversion tracks.

• Ratio of the conversion transverse momentum (pconv
T ) to the transverse energy ET reconstructed

in the accordion calorimeter: Eacc
T /pconv

T , where Eacc
T = Eacc/ cosh(ηcluster)

• Fraction of pconv
T carried by the highest-pT track

The input variables for the MVA algorithm are binned to adjust the MVA response in regions of the
phase space with different behaviors. The MVA algorithm yields an improvement in the energy resolu-
tion for electrons and photons in comparison with the calibration-hits method used in Run-1, translating
into an improved invariant mass resolution of diphoton and dielectron resonances, as shown in Fig-
ure 4.3.
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FIGURE 4.3: Comparison between the MVA calibration and the calibration-hits method. (A) The diphoton
invariant mass distribution mγγ is shown for Standard Model Higgs boson with mass of 125 GeV decaying
to two photons. (B) The dielectron invariant mass is shown for J/ψ decaying to a pair of electrons. The

dashed black line indicates the mass of the simulated particle [156].

In addition to the previous variables, specific variables are used for the transition region (1.4 < |η| <
1.6) between the barrel and the end-cap sections, known as the ’crack’ region (the exact region definition
depends on the type of the study). This region has a large amount of material that will be traversed
by the particles before reaching the first active layer of the calorimeter (from 5 to almost 10 radiation
lengths), yielding a degradation in the energy resolution. The energy calibration of electrons and photons
traversing the crack uses as an additional input the energy measured by the E4 scintillators [61] installed
in this transition region. This leads to an improvement in the resolution of about 20%, as shown in
Figure 4.4. This region, however, is omitted from all analyses in this work.

The energy resolution in the simulation, after the MVA calibration, is shown in Figure 4.5. The res-
olution is defined as the interquartile range of Ecalib/Egen, i.e. the interval excluding the first and last
quartiles of the Ecalib/Egen distribution in each bin, converted to the equivalent standard deviation of a
Gaussian distribution through division by 1.35.
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For unconverted photons, the energy resolution in the simulated samples used for the training of the
MVA regression, which do not include any simulated pileup events, closely follows the expected sam-
pling term of the calorimeter (≈ 10%/

√
E/GeV in the barrel section and≈ 15%/

√
E/GeV in the end-cap

section). For electrons and converted photons, the degraded energy resolution at low energies reflects the
presence of significant tails induced by interactions with the material upstream of the calorimeter. This
degradation is largest in the regions with the largest amount of material upstream of the calorimeter, i.e.
for 1.2 < |η| < 1.8.
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FIGURE 4.4: Distribution of the calibrated energy, Ecalib, divided by the generated energy, Egen, for elec-
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T < 100 GeV. The solid (dashed)
histogram shows the results based on the energy calibration with (without) the E4 scintillator information.

The curves represent Gaussian fits used to estimate the observed resolutions, σ [16].

4.3 Uniformity Corrections

In order to achieve an optimal energy resolution in data, the uniformity of the calorimeter energy re-
construction across pseudorapidity and azimuthal angle and as a function of time and pileup conditions
has to be ensured. Sources of non-uniformity generally arise from non-nominal calorimeter data-taking
conditions or physical effects that are not implemented in the simulation. Examples of known sources of
non-uniformity include: high-voltage inhomogeneities, inter-module widening, and relative miscalibra-
tion of the amplifier gains used in the readout of the signal. These checks also constitute a prerequisite
for the passive material determination and energy scale measurement presented in Sections 4.4 and 4.5.
Below is a summary of the main sources of non-uniformity.

Intermodule widening effect This effect describes the widening of the gaps between the 16 barrel
modules due to gravity. The effect is a consequence of the gaps between the barrel modules, as these
gaps are slightly larger than the other LAr gaps.

These inter-module gaps are located in φ at (2n− 15)π/16 with n ranging from 0 to 15. The energy
leaking in these gaps will yield an underestimation of the energy in data with respect to the simulation.
In particular, these gaps will show up as dips in the φ profile of the E/p distribution of electrons from
Z → ee decays, where E is their energy measured by the electromagnetic calorimeter and p their momen-
tum reconstructed by the inner detector. Since this effect is not modeled in the simulation, a dedicated
correction is applied. An example of such corrections is shown in Figure 4.6.
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FIGURE 4.5: Energy resolution, σEcalib/Egen , estimated from the interquartile range of Ecalib/Egen as a func-
tion of |η| for (A) electrons, (B) converted photons and (C) unconverted photons, for different energy

ranges. The generated transverse momentum is required to be above 5 GeV [16].

HV effect In a small number of sectors of the calorimeter (of size ∆η × ∆φ = 0.2× 0.2), the applied
high voltage during data taking was reduced with respect to the nominal values due to short circuits in
specific LAr gaps. The actual value of the high voltage is used to derive a correction at the cell level.
Residual corrections, however, might be needed when large currents are drawn as they cause dips in
the E/p (η, φ) profiles. The values of the corrections are typically between 1% and 7%, and affect about
2% of the calorimeter acceptance. These corrections were found to be similar to those derived during
Run-1 [156], with the exception of a few cases where voltage settings were different between Run-1 and
Run-2, as shown in Figure 4.7.

Gain effects As detailed in Section 3.3.1, the output signal of the electromagnetic readout system can
be reconstructed using three different amplifier gain settings: high, medium, and low. This allows a wide
range of measured energies. The linearity of the readout electronics was measured for each of the three
gains and found to be better than 0.1% [161]. However, the relative calibration of the different readout
gains is less well known, and might induce a dependence of the energy response on the energy of the
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particle. For this reason, a measurement of the relative calibration was performed using data taken with
special detector conditions in 2015 (corresponding to an integrated pp luminosity of 12 pb−1) and 2017
(60 pb−1). In these special-condition runs, the high-to-medium gain switch thresholds were lowered by
a factor of 5. Under these circumstances, the signal from the highest-energy layer-2 cell of electrons from
Z → ee decays will be read out using medium gain, whereas in normal runs it would be read out with
the high gain. The comparison between the dielectron invariant mass distributions in these runs and in
the normal runs permits the intercalibration of the medium and high gains.

Figure 4.8 shows the measured energy scale difference between the special and the nominal datasets,
αG, as a function of |η|. αG is parameterized in a way such that αG = 0 if the high and medium gains
were perfectly intercalibrated ( ∆E

E ∝ αG). The results show a small but significant difference observed
in the region 0.8 < |η| < 1.37. The observed difference is assigned as a systematic uncertainty. This
uncertainty is assumed to be a correction factor between the calibration of the two gains, independent of
the cell energy. This translates to an uncertainty in the total energy of about 0.05% to 0.1%, depending on
η, for photons of ET = 60 GeV, and up to 0.2% to 1% for electrons and photons with transverse energies
above a few hundreds of GeV.

4.4 Longitudinal Layer Inter-calibration

The precise measurements that use electrons or photons, such as the Higgs or electroweak boson prop-
erty measurements, require that the linearity and absolute scale of the calorimeter measurements are
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FIGURE 4.8: Difference of energy scales, αG, extracted from Z → ee events, as a function of |η| between
data recorded with the standard thresholds for the transition between high and medium gains in the read-
out of the layer-two cells and data with lowered thresholds. Only statistical uncertainties are shown [16].

understood with a high level of precision. Due to the longitudinal segmentation of the EM calorimeter,
a crucial ingredient is the relative calibration of the energy response of its different longitudinal layers.
The layer intercalibration is performed before the extraction of any global data-to-simulation scale factor.
Intercalibrating the energy responses of the various layers will also ensure the correct extrapolation to
the full pT range as required by the various analyses using electrons and photons.

In this section, the energy intercalibration of the longitudinal layers of the EM calorimeter is dis-
cussed in detail. The relative calibration of the first (strips) and second (middle) layers of the accordion
calorimeter is described in section 4.4.1, while the calibration of the presampler is illustrated in sec-
tion 4.4.2. Given the small fraction of energy deposited in the third layer of the calorimeter, no dedicated
inter-calibration of its energy response is performed.

4.4.1 The E1/2 inter-calibration using muons

The relative calibration of the energy response of the first and second layers of the accordion calorimeter,
which contain the bulk of the energy deposited by an electromagnetic particle, is a necessary step before
the extraction of global energy calibration scale factors. The correction of the energy response of the
first two accordion layers is also a crucial step in other calibration processes such as the estimation of
passive material upstream of the calorimeter and of the presampler energy scale. For these reasons, the
energy scale of the first two accordion layers needs to be extracted in a manner that is immune to the
mis-modeling of the detector in the simulation, in order to not bias the remaining measurements relying
on it. Control samples of muons are thus used for this measurement since they are almost unaffected
by upstream material. However, since muons are minimum ionizing particles (the critical energy for
muons to interact with the calorimeter is O(100) GeV [156]), their typical signal yield is about 150 MeV
in the most energetic cell in the second layer, which is only about five times the noise threshold [130]. In
addition, as muons do not induce EM showers in the calorimeter, the energy deposits are localized in few
adjacent cells. Moreover, a significant contribution to the noise will be coming from pileup, especially in
the first layer of the end-cap calorimeter.

For the inter-calibration of the first two accordion layers, a sample of muons from Z → µµ decays
with at least one "Combined" muon with pT > 27 GeV and |η| < 2.4 was used. Only three (two) cells
were used to measure the muon energy in the first (second) accordion layer to minimize the effect of
noise. In the first layer, the energy deposited by the muon is estimated from the sum of the energies
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measured in three neighboring cells along η, centered around the cell crossed by the extrapolated muon
trajectory. In the second layer, the energy deposited by the muon is estimated by summing the energies in
the cells crossed by the extrapolated muon trajectory and in the neighboring cell in φ with higher energy.
The muon energy distribution in each layer, as shown in Figure 4.9 for the case of the first accordion
layer, is modeled with the convolution of a Landau distribution describing the energy deposit, and of
a template accounting for the electronic and pileup noise. The noise has significant contribution from
pileup that results in positive energy deposits, with an average of zero; hence the most probable value
of the noise template is negative (as shown in Figure 4.9). As expected, the final resolution of the muon
energy measurement is significantly affected by the noise, due to the low signal-to-noise ratio resulting
from the small energy deposit.
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FIGURE 4.9: Muon energy deposit distributions for the 1.7 < |η| < 1.8 region in data and the simulation
for the first layer. The energy distribution is fitted with a convolution of the noise distribution and a
Landau function. The result of the fit is shown together with the individual components. The distributions
are shown for an average number of interactions per bunch crossing 〈µ〉 in the range from 20 to 22 [16].

Two alternative methods are used for the estimation of the energy deposit of muons:

• The most probable value (MPV) from a fit using a Landau function convoluted with a template for
the noise. The noise templates are built using "zero-bias events" triggered on random LHC bunch
crossings, thus taking into account also the effect of pileup, and are determined in bins of both η

and average number of interactions per bunch crossing 〈µ〉.

• Truncated mean, estimated from a truncated range of the distribution containing 90% of the energy.
The truncated mean is used to minimize sensitivity to the tails.

The E1/2 layer intercalibration constant α1/2 is then defined as

α1/2 = (〈E1〉data / 〈E1〉MC)/(〈E2〉data / 〈E2〉MC),

where 〈E1〉 (〈E2〉) is the estimated energy deposited in the first (second) layer. The final value of α1/2 is
given by the average of the two methods used to estimate the muon energy deposit with their difference
used as a systematic uncertainty. The relative calibration α1/2 is estimated in bins of the absolute value of
pseudorapidity |η|, as the intercalibration constant values are found to be consistent between the positive
and negative η. The correction α1/2 is then applied as a function of |η| on data such that Ecorr

2 = E2× α1/2.
As mentioned before, a significant fraction of the noise originates from pileup. To reduce the depen-

dence on pileup mis-modeling, the measurements are performed as a function of the average number of
interactions per bunch crossing 〈µ〉 and then extrapolated to the case of no pileup (〈µ〉 = 0) to measure
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the intrinsic energy scale of each calorimeter layer for a pure signal. The extrapolation procedure itself
was validated by performing an identical procedure in the simulation and comparing the extrapolated
result to the prediction of a simulation without pileup. Any difference between the extrapolated result
to 〈µ〉 = 0 and the prediction of the simulation without pileup is taken as a systematic uncertainty. The
difference was found to range from 0.2% to 0.5% depending on |η|. An example of the extrapolation
procedure is shown in Figure 4.10.
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(B) 〈µ〉 = 0 extrapolation in the end-cap section.

FIGURE 4.10: Distribution of the fitted MPV of the muon energy deposit in two |η| intervals (< E1 >) in
(A) the barrel region and (B) the end-cap region as a function of the average number of pileup interactions
per bunch crossing 〈µ〉. The plot shows the MPV obtained from data (full circles) and simulation (empty

circles). The plots include also the MPV using simulations without pileup (triangles) [16].

The final result of α1/2 for both the fitting and truncated-mean methods, including the total statis-
tical and systematic uncertainties, is shown in Figure 4.11. In addition to the systematic uncertainties
mentioned before, the following systematic uncertainties were found to affect the layer inter-calibration
α1/2:

• Energy leakage resulting from the modeling of the energy loss outside the cells used for the mea-
surement. Muons with trajectories close to the boundaries in φ (η) between the first (second) layer
cells can have a significant fraction of their energy deposit outside the used cells. The uncertainty
from the modeling of these effects is computed by repeating the analysis using only muons crossing
the center of the first (second) layer cells within 0.04 (0.008) in the φ (η) direction. The uncertainty
in α1/2 varies from 0.5% to 1%.

• Geometry effects resulting from the choice of the cell in φ in the second layer. The uncertainty is
computed by estimating α1/2 using the neighboring cell closest to the extrapolated muon trajectory
instead of the one with the highest energy. This yields an uncertainty of around 0.2%.

• Truncation range for the truncated-mean method. The resulting uncertainty is 0.5%.

4.4.2 The Presampler Layer Calibration

The presampler (PS) energy scale, αPS, is defined as the ratio of the PS energy (E0) in data and simulation
and is estimated using electrons from Z → ee decays.

To interpret the ratio of the PS energy between data and simulation as an energy scale effect, various
corrections are applied beforehand to the simulation to remove other sources of mis-modeling of the
energy deposits in the PS. In particular, the energy deposited in the presampler depends on the upstream
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FIGURE 4.11: Ratio α1/2 = (〈E1〉data / 〈E1〉MC)/(〈E2〉data / 〈E2〉MC) as a function of |η|, measured with
the fitting (open circles) or the truncated-mean (open square) methods. The final average measurement

with its total uncertainty is also shown (full circles) [16].

material. The ratio E1/2 of the energy deposits in the front and middle layers of the accordion calorimeter
is thus used to obtain an improved estimate Ecorr

0 which accounts for material mis-modeling from the
nominal value of E0 predicted by the simulation (Enom

0 ). The idea is that the presence of more upstream
material in data in comparison to the simulation causes an earlier shower development, resulting in
larger energy deposits in the first layer and therefore larger E1/2 in data with respect to the simulation.
To use the E1/2 distribution to correct for mis-modeling of material upstream of the PS in the simulation,
two factors have to be taken into account. The first one is the correlation between E1/2 and the PS energy
at a given η, due to material upstream of the PS. The second factor is a correction of E1/2 to account
for mis-modeling in the simulation of material that affects E1/2 but not E0, i.e. between the PS and the
accordion.

The correction for the passive material effects is performed exploiting the difference in response and
shower development, sketched in Figure 4.12, of two different particle types:

• Electrons that are sensitive to all detector material crossed along their trajectory, from the interac-
tion point up to the first layer of the calorimeter (L1).

• Photons that did not convert to e+e− pairs before reaching the PS, i.e. reconstructed unconverted
photon candidates with small energy deposit in the PS, that are insensitive to the material upstream
of the presampler, making such photons specifically sensitive to passive material between the PS
and L1.

In the following, the procedure used for the PS calibration is summarised in Section 4.4.2.1. The data
and simulation samples used for the measurement and the event selection are given in Sections 4.4.2.2
and 4.4.2.3. The corrections related to passive material up to the first layer of the accordion calorimeter
and the material between the presampler and this layer are described in Sections 4.4.2.4 and 4.4.2.5. A
closure study of the procedure on simulated event samples is performed in Section 4.4.2.6. Finally, the
results of the PS energy scale calibration in data are shown in Section 4.4.2.7, and checks of its stability in
η and φ and as a function of the high voltage applied are performed in Section 4.4.2.8.
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FIGURE 4.12: Sketch of the electromagnetic shower development for the different particles used in the
calibration/material estimation. The top figure corresponds to the pseudorapidity interval |η| < 1.82
within the PS acceptance, whereas the bottom figure is for |η| > 1.82. The pp interaction point in which

the particles are produced is assumed to be on the left of the figures [156].

4.4.2.1 Formalism

The presampler energy scale correction is defined as:

αPS =
Edata

0 (η)

Ecorr
0 (η)

, (4.1)

where Ecorr
0 (η) is the PS energy in the simulation after applying the various material corrections, and

Edata
0 (η) is the PS energy deposit in data. The total material correction to be applied to the PS energy in

the simulation is computed from the following linear parametrisation:

Ecorr
0 (η)

Eraw
0 (η)

= 1 + A(η)

( Edata
1/2 (η)

Enom
1/2 (η)b1/2(η)

− 1
)

, (4.2)

where :

• A(η) is the correlation factor between E0 and E1/2 under variation of the material upstream of the
presampler, and is estimated with electrons from Z → ee decays from simulation samples with
different amounts of additional material upstream of the PS.

• b1/2(η) is a correction applied to the double ratio E1/2 in data over MC, to correct for imperfect
modeling of passive material between the PS and accordion, and is estimated from control samples
of unconverted photons with low PS activity.

This parameterisation is derived from a systematic study of simulated samples in which the effect on E0

and E1/2 of passive material added upstream of the accordion is examined [162]. A priori, the correction
factors A and b1/2 are functions of η. The total material correction is then computed and Ecorr

0 is extracted
to compute the PS energy scale, αPS. The PS energy scale is determined as a function of η in bins matching
the size of the presampler modules leading to ∆η = 0.2 in the barrel modules and ∆η = 0.25 for the end-
cap. The transition region 1.4 < |η| < 1.55 is excluded from the PS energy scale study.
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Config ID ID-EC Pixel S SCT S SCT/TRT-EC PS/S1-B PS/S1-EC Cryo 1 Calo-EC
A 5% - - - - - - - -
N - - - - - - 0.05 - -
C’+D’ - - 0.1 0.1 - - - - -
E’+L’ - - - - 0.075 - - 0.05 -
F’+M+X - 0.075 - - - 0.05 - - 0.3
G’ 5% 0.075 0.1 0.1 0.075 0.05 0.05 0.05 0.3
IBL Improved IBL geometry
PP0 50% increase in IBL + pixel services

TABLE 4.1: The different distorted geometries used for the estimation of the material correction factor
A(η). The samples have scaled radiation length (X0) with respect to the nominal MC. The table includes
absolute change in number of X0 for all configurations except for configuration A where there is +5%

relative material scaling to the entire Inner Detector.

4.4.2.2 Data and simulation samples

The determination of the PS energy scale is based on a comparison of the PS energy of electrons from Z
boson decays in data and simulation. Data were collected in 2015 and 2016, using a dielectron trigger
with ET thresholds of 12 and 17 GeV, respectively, and requiring the electron candidates to pass identifi-
cation criteria looser than those applied off-line. For the simulation, a large sample (17 million events) of
Z → ee events generated with POWHEG interfaced with PYTHIA for the parton shower and underlying
event model, reweighed with pileup profiles matching those of 2015 and 2016 data, was used. In addi-
tion to the nominal geometry simulations, Monte-Carlo samples with additional material (Table 4.1) were
used for the study of the correlation between E0 and E1/2. These samples are re-reconstructed with the
same 2015-2016 conditions, and each contains about 10 million events. In these alternative simulations,
extra material was added to either:

• the whole inner detector 0 < |η| < 2.4 (ID column in Table 4.1);

• the ID end-cap, in the pseudorapidity region 1.8 < |η| < 2.4) (ID-EC column);

• the pixel or SCT services (Pixel S, SCT S);

• the end of the SCT or TRT end-caps, in the pseudorapidity region 1.6 < |η| < 2.2 (SCT-EC, TRT-
EC);

• the region between the PS and the accordion either in the barrel (PS/S1-B) or in the end-caps
(PS/S1-EC);

• the barrel cryostat before the calorimeter (0 < |η| < 1.6) (Cryo 1);

• the EM calorimeter end-caps (Calo-EC).

Two additional simulations included either an improved description of the IBL geometry (IBL) or addi-
tional material in the IBL and Pixel services (PP0).

The PS energy of electron candidates in the simulation is corrected for mis-modeling of the detector
material, based on the correlation between E0 and E1/E2 induced by material upstream of the presam-
pler. However, to remove the effect on E1/E2 of a mis-modeling of the material between the PS and
the first accordion layer, control samples of unconverted photon candidates from Z → µµγ decays or
inclusive pp → γ + X production are studied. Data collected in 2015 and 2016 were used, recorded
using either muon and dimuon triggers (Z → µµγ), or single-photon triggers requiring the presence of
at least one photon candidate with ET larger than 140 GeV and passing loose photon identification crite-
ria. Simulated Z → µµγ were generated with SHERPA, using leading-order matrix elements for the real
emission of up to three additional partons. In addition, samples of γ+jet events from the hard subpro-
cesses qg→ qγ and qq→ gγ and photon bremsstrahlung in LO QCD dijet were generated with PYTHIA
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8 using the leading-order matrix elements of these 2→ 2 processes. Around 3.6 million MC events were
used for this study.

4.4.2.3 Event selection

Electrons from Z → ee decays Events with Z → ee candidates are required to contain two electrons
with pT > 27 GeV and |η| < 2.47. Both electrons are required to pass the medium likelihood identification
and loose isolation criteria detailed in Sections 3.3.1.1 and 3.3.1.2.

Photons from radiative Z boson decays Events with Z → µµγ candidates are selected by applying the
following selection criteria:

• two opposite charged muons with pµ
T > 12 GeV;

• an unconverted photon candidate with pγ
T > 10 GeV, passing isolation and identification criteria.

The photon is required to have low raw PS energy deposit, Eraw
0 < 0.5 GeV;

• mµµγ ∈ [80− 100] GeV and mµµ ∈ [50− 83] GeV, to select photons from final state radiation, thus
reducing background photons from misidentified hadronic jets in Z+jet(s), Z → µµ events;

• ratio of the photon energy in the first accordion layer to the total photon energy f1 > 0.1, in order
to reduce hadronic backgrounds.

Inclusive photon samples Events are required to contain at least a photon candidate with transverse
momentum pT > 147 GeV to avoid the efficiency turn-on of the photon trigger. The photon is required to
pass the tight identification criteria. In addition, selected photons must pass a pT-dependent requirement
on the isolation variable topoetcone40, which is the sum of the transverse energies of the topological
clusters within a cone of ∆R = 0.4 around the photon candidate. The photons are required to pass
the requirement topoetcone40 < 0.022pT + 2.45 [GeV]. In addition, the photons are required to be
unconverted, and a veto on their raw PS energy, Eraw

0 < 0.5 GeV, is applied to ensure that the photon did
not convert in the material between the ID and the PS. This veto results in a selection purity > 99% for
conversions with at least one Silicon hit in the ID, and > 95% for conversions with TRT-only hits.

4.4.2.4 Upstream Material Correction A(η)

The correction factor A(η) is estimated from the relative variations of E0(η) versus the corresponding
variations in E1/2(η) in Monte-Carlo simulation samples with additional material. The η binning is
optimized to capture the effects of added material in the different detector regions. For this purpose,
ratios of the mean of E0 and E1/2 for the samples with additional material are plotted and fitted using:

Edist
0 (η)

Enom
0 (η)

= 1 + A(η)

( Edist
1/2(η)

Enom
1/2 (η)bMC

1/2(η)
− 1
)

. (4.3)

The coefficient bMC
1/2 is the offset of the linear correlation between E0 and E1/2 due to material after the

presampler, that affects only E1/2. This is different from the coefficient b1/2 of Eq. (4.2), which depends
on the actual amount of extra material between the PS and the accordion in data, and is determined
using the unconverted photon control samples that are sensitive only to this region. The fit is done
initially while fixing bMC

1/2 to one to ensure that there will be no correction for the simulation with nominal
geometry. Geometry configurations with material added between the presampler and the accordion are
not used in the fit since they cause a shift in E1/2 but not in E0. Examples of such correlation plots for the
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η region A(η) Run-2 A(η) Run-1
0.0 < |η| < 0.8 2.51± 0.07 2.48± 0.09

0.8 < |η| < 1.37 1.85± 0.06 1.65± 0.05
1.55 < |η| < 1.8 1.5± 0.1 1.59± 0.09

TABLE 4.2: Average values of A(η) in the three η ranges indicated. The error shown comes only from the
fit.

pseudorapidity regions 0.6 < |η| < 0.7 and 1.0 < |η| < 1.1 are shown in Figure 4.13. The slope of the
linear fit is the correction factor A(η).
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FIGURE 4.13: Example of correlation between E0 and E1/2, in the regions (A) 0.6 < |η| < 0.7 and (B)
1.0 < |η| < 1.1. The different geometry configurations are shown, with the closed circles indicating
variations only in the material upstream of the PS, that are used in the fit, whereas the open circles are
configurations with material added also between PS and accordion, and thus excluded from the fit. The

data point (black circle) is plotted for reference as well.

The fit parametrisation used initially was constructed to ensure that no material corrections are ap-
plied to the nominal geometry, i.e. the fit was constrained to pass by the point (1,1). This was done by
fixing bMC

1/2 to 1 in the fit. However, repeating the fit while floating bMC
1/2 resulted in a small deviation from

1, of the order of < 1%, as shown in Figure 4.14a. This would result in a change in the fitted A(η) of up to
∼ 25%, as shown in Figure 4.14b. The reason of this effect is due to the fact that the likelihood-based elec-
tron identification algorithm used in Run-2 uses as one of its input variables the quantity f1 = E1/Etot,
which is correlated with E1/2. This results in an electron selection efficiency that depends on E1/2, as
shown in Figure 4.15a, and hence introduces the bias that we observe. If the electron identification re-
quirement is not applied, as shown in Figure 4.15b, the correlation slope A(η) is the same when fixing
bMC

1/2 to one or when floating it in the fit. Moreover, as shown in Figure 4.15b, the values of the corre-
lation slope A(η) found without applying the likelihood-based electron identification algorithm matches
the fitted values of A(η) with bMC

1/2 floating. Hence, the value of A(η) is taken as the slope of the fitted
line while floating bMC

1/2 .
Figure 4.15 shows the final Run-2 values of A(η) compared to those determined in Run-1. The values

of A(η) are compatible between the two LHC runs, which indicate that A(η) is not sensitive to pileup.
A(η) is constant inside the regions 0 < |η| < 0.8, 0.8 < |η| < 1.37, and the end-cap region. The step
observed at |η| = 0.8 is the result of the change in the thickness of the lead absorbers in the accordion.
A more precise measurement is thus obtained by averaging A(η) within each of these three regions in
which it is constant. The results are summarised in Table 4.2.
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4.4.2.5 E1/2 intercalibration correction b1/2 using unconverted photons

The second part of the material correction procedure is the residual E1/2 intercalibration correction, b1/2.
This correction factor is necessary to account for material mis-modeling between the presampler and the
accordion. The measurement of b1/2 requires a control sample that is sensitive to sources affecting E1/2

but not E0. This is achieved by using unconverted photon candidates, with an upper limit on the associ-
ated raw PS energy to remove upstream material effects as shown in Figure 4.12. Photons reconstructed
as unconverted (conversion radius > 800 mm) will not be sensitive to inner detector material, and to fur-
ther remove the effect of conversions happening in the material between the inner detector and the PS,
such as the calorimeter cryostat and the solenoid, an upper limit is required on the raw PS energy, Eraw

0 .
For the estimation of b1/2, low-pT photons from Z → µµγ decays, and an inclusive sample of higher-pT

photons, mainly from QCD Compton scattering qq → qγ, are used to cover a wide range of photon pT.
Once the photon candidates are selected, as described in Section 4.4.2.3, the correction b1/2 is computed
as the double ratio of E1/2 between data and simulation.
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EC HV problem Investigations of Edata
1/2 /EMC

1/2 showed an unexpected discrepancy between data and
simulation in the end-cap bin compared to Run-1. The requirement on Enom

0 led to an increase in the
double ratio Edata

1/2 /EMC
1/2 for both the inclusive photon and Z → µµγ control samples. This is not expected

since there was no material added in the region between the PS and the accordion between Run-1 and
Run-2. Investigating the η−φ distribution of raw PS energy deposits Eraw

0 in data, shown in Figure 4.16a,
revealed the localisation of problematic cells in φ extending across the negative η region of the end-caps
(at about φ = ±1).

This issue was traced back to a wrong interpretation of the HV mapping in the endcap. The HV sys-
tem in the PS is organized into 32 modules in φ with 2 cells in each module and 2 gaps per cell. One HV
line powers the two gaps of one cell. However, in the simulation, it is assumed that one HV line powers
one gap of each of the two cells in φ (similar to other parts of the calorimeter). Whenever the HV settings
are changed from the nominal values, a correction factor for the drift time dependence on the HV is ap-
plied to the simulation. However, due to the mismatch in the description of HV lines, the correction was
averaged over the two cells instead of having a proper correction per cell. For this reason, it was decided
to exclude these faulty cells from this study. Removing these cells makes the observed Edata

1/2 /EMC
1/2 in the

endcap much closer to one, as shown in Figure 4.16b, consistently with previous studies.
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Combination of the two methods and systematic uncertainties The values of the double ratio Edata
1/2 /EMC

1/2
measured with inclusive photons and photons from radiative Z → µµγ decays are shown in Figure 4.17.
They are in good agreement with each other and close to one within less than 5%. They are then com-
bined using a weighted average, and the combined value is used as the final correction factor b1/2 for the
measurement of the PS energy scale in data.

The following systematic uncertainties affect the measurement of b1/2:

• Choice of raw PS energy upper limit. Different Eraw
0 upper limits were investigated to optimize the

trade-off between selection efficiency and bias due to remaining upstream material effects. Studies
on Monte-Carlo simulated samples with added material between the PS and the accordion (con-
figuration F′ + M + X in Table 4.1) and with material upstream of the calorimeter and between the
PS and the accordion (configuration G′ in Table 4.1) showed that a veto up to a value of 1.2 GeV on
the raw PS energy can remove the effects of upstream material. The ratios of E1/2 in the simulation
with the added material to the nominal simulation obtained with either a 0.5 GeV veto or a 1.2 GeV
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ments.

veto were found in agreement, as shown in Figure 4.18a. However, the double ratio Edata
1/2 /EMC

1/2 us-
ing the two alternative vetoes yielded a difference of ∼ 1% in the barrel, as shown in Figure 4.18b.
This difference is not the result of the material mis-modeling, as good closure is observed in the
simulation, and is thus considered as a systematic uncertainty on b1/2.

• In the region 1.2 < |η| < 1.37 the double ratio Edata
1/2 /EMC

1/2 for photons was found to decrease,
while no similar effect was observed for electrons. For this reason, the nominal central value of
b1/2 for this bin was taken from the previous η bin, and the full difference between the two bins
was assigned as a systematic uncertainty.
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4.4.2.6 Closure test

A closure test of the procedure used to determine the PS energy scale was performed. This is done
by applying the previous procedure to extract the PS energy to the simulation based on the detector
configuration G′ of Table 4.1. Configuration G′ includes additional material upstream of the PS, and
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between the PS and the accordion. The same values of A(η) estimated in Table 4.2 are used since they
are estimated only from the simulation. On the other hand, b1/2 is estimated from simulated event
samples of inclusive photons in the same modified geometry (G′) and extracted as the double ratio of
E1/2 between configuration G′ and the nominal sample. The material correction is calculated using the
same formula but using EG’

1/2/Enom
1/2 from Z → ee as shown in Figure 4.19. The final PS energy scale is

thus expected to be one if the procedure works well. The estimated PS energy scale was found to be
compatible with αPS = 1, as shown in Figure 4.20. A slight deviation of about 2% is observed in the
barrel. This can be justified by the difference of ≈ 1− 2% in E1/2 between photons and electrons in the
simulation with added material after the PS [162].

Another check was performed on the PS energy scale formula to check the effect on the PS energy
scale of the E1/2 intercalibration corrections derived in Section 4.4.1. The E1/2 intercalibration corrections
are applied to E2 of the G′ sample used for the closure test. The PS energy scale estimation formula is
parameterized by correcting the E1/2 data/MC ratio to any residual effects of material after the PS using
b1/2. Both terms E1/2 and b1/2 include layer intercalibration corrections, and hence the corrections cancel
out, as shown in Figure 4.21. This cancellation yields a measurement of the PS energy scale that is
independent of the E1/2 corrections. However, a requirement for this cancellation is that the material
correction is performed using b1/2 from photons with the same binning as E1/2 from electrons. The final
PS energy scale estimation uses an average b1/2 values of in the barrel and the endcap (bbarrel

1/2 ,bEC
1/2). This is

done to reduce the effect of the fluctuations of finely binned b1/2 on the final PS energy scale. Figure 4.21
shows the effect of the different cases of the b1/2 binning on the PS energy scale.
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FIGURE 4.19: (A) Ratio of E1/2 from Z → ee electrons between G’ and nominal geometry. The high ratio
in the endcap is from the 30% scaled X0 of the material in front of the endcaps in geometry G’. (B) fitted
value of b1/2 estimated from E1/2 ratio between G’ and nominal MC using inclusive photons after PS veto.

4.4.2.7 Total Material correction and Extraction of the PS energy scale

The final material correction is computed after plugging in the values of A(η) and b1/2 with Edata
1/2 /EMC

1/2
from Z → ee with binning ∆η = 0.05 along with Edata

0 /EMC
0 , as shown in Figure 4.22. The final PS

energy scale αPS is then extracted. A module average is then computed in bins of width ∆η = 0.2 in the
barrel and ∆η = 0.25 in the endcap. The RMS of the measurements in a bin is then taken as a systematic
uncertainty and added in quadrature with the statistical and systematic uncertainties propagated from
the A(η) and b1/2(η) estimates, to obtain the total error for the energy scale in each module.
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The PS energy scale was found to be sensitive to the choice of the b1/2 η binning, as expected from the
closure test studies. This is shown in Figure 4.23, where a trade-off is observed between taking finer bins,
which induces larger statistical fluctuations in the PS energy scale, and using a value of b1/2 averaged
over the whole barrel, which gives more stable results, but can hide some η-dependent features. It was
chosen to use for the final PS energy scale measurement the value of b1/2 computed in bins of width
∆η = 0.2 (red points in Figure 4.23).

The final values of the PS energy scale are shown in Figure 4.24. They were found to agree with those
measured in Run-1. The behavior of the PS energy scale in the region η ∈ [1.3− 1.37] is a residual effect
of the E1/2 intercalibration corrections and of b1/2 that show a sudden decrease in this region, and do
not entirely cancel with electrons as explained in Section 4.4.2.6. The final PS energy scale systematic
uncertainties are summarised in Figure 4.25.

4.4.2.8 PS energy scale Stability

PS energy scale variation in η and φ The PS energy scale was estimated using E0 and E1/2 as function
of the pseudorapidity (η) to examine the symmetry of the energy scale around η = 0. The energy scale
was found to be symmetric within the uncertainty of the module average, as shown in Figure 4.26, hence
the final PS energy scale is estimated only as function of the absolute value of the pseudorapdidity.
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FIGURE 4.22: (A) Data/MC ratio of E1/2 from electrons. (B) Final material correction estimated from A(η),
b1/2 and E1/2 from electrons as function of η.
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The dependence of the PS energy scale on the azimuthal angle φ was checked using a φ-dependent
material correction of Enom

0 of the kind:

Ecorr
0 (η, φ)

Enom
0 (η, φ)

= 1 + A(η)

( Edata
1/2 (η, φ)

Enom
1/2 (η, φ)b1/2(η)

− 1
)

. (4.4)

The correction was done using the φ integrated values of A(η) and b1/2(η). The material correction in
this case properly corrects the Edata

0 /Enom
0 distributions since they are flat as a function of φ. An example

of the PS energy scale distribution along φ is shown in Figure 4.27. No significant dependence on φ is
observed.

Material mis-modeling at η ' 0.6 Investigating data/MC ratios for E0 and E1/2 as function of φ, an
unexpected periodic structure was observed around η = 0.6 for φ ≈ 0,±π/2, and ±π, as shown in
Figure 4.27. This discrepancy between data and the simulation was observed for both E0 and E1/2,
shown for E1/2 in the left plot of Figure 4.28, meaning that the discrepancy is due to upstream material.
The discrepancy was properly corrected using the material correction procedure of Section 4.4.2.7 as can
be seen in Figure 4.27. An estimation of the discrepancy in terms of change in radiation length ∆X0,
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shown in Figure 4.28, was performed using the material estimation formula

∆X0(η) = ∆Edata
1/2 (η)

(
∂X/∂relE1/2

)
(η),

where ∆Edata
1/2 (η) is the relative E1/E2 differences between data and nominal MC simulations, and ∂X/∂relE1/2(η)

is the sensitivity of E1/E2 to differences in passive material from MC simulated samples with added ma-
terial (detailed in Section 4.4.3). Further investigations showed that this mis-modeling is related to TRT
services. The detailed TRT services are not included in the simulation but rather are enveloped, and the
periodic structure is related to aluminum pillars used to slide the TRT barrel in case of LAr leakage. The
effect of the mis-modeling is mitigated using the material correction and hence does not affect the PS
energy scale.

PS high voltage change effect The HV modules in the PS are organized in 8 regions in η, and 32
regions in φ. Due to noise issues that first appeared in 2010, the nominal HV in some PS barrel sectors
was lowered from 2000 V to 1600 V and then later to 1200 V, as discussed in Section 4.3. A correction
factor is applied to the drift time to account for its dependence on the HV. The PS energy scale was
checked to determine if further corrections are needed. In June 2016, 25 HV lines were changed from
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1200 V to 1000 V, two lines from 800 V to 700 V. Most of the time both gap sides changed at the same
time. Therefore, the effect of the lowered HV on the PS energy scale was checked by splitting data and
simulation into two data sets corresponding to data-taking conditions before and after the HV lowering.
The PS energy scale values estimated in the two subsets of the data and the simulation were found to
be in agreement, as shown in Figure 4.29. The exact value of PS energy scales for the modules with the
HV changes was also checked, and the resulting PS energy scale shows that the material correction is
sufficient to correct the E0 data/MC ratio and that no residual correction is needed for the HV change,
as shown in Figure 4.30.

4.4.3 Passive material estimation

As shown in the previous sections, a good description of the detector geometry is an essential part of the
Monte Carlo-based calibration of the energy response of the ATLAS EM calorimeter. Therefore, using the
L1/L2 calibration corrections of section 4.4.1, the E1/2 distribution observed for EM showers in data can
be used to quantify the amount of detector material upstream of the calorimeter as higher values of E1/2

in data would indicate earlier shower development, and hence a local excess of material in comparison
with the simulation. The usage of E1/2 to estimate the passive material came after attempts of estimating
the material using shower shape variables of high pT electrons [163]. Using shower shape variables to
estimate the material budget did not succeed because the GEANT 4 simulation poorly models the lateral
shower profile (Rη , ωη2, Fside described in Section 3.3.1.1) [164].
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An estimation of the relative difference in radiation length ∆X/X0 with respect to the nominal simu-
lation can be computed from the following formula

∆X/X0 = ∆Edata
1/2

(
∂X/X0

∂relE1/2

)
. (4.5)

with ∆Edata
1/2 denoting the relative difference of E1/2 between data and the simulation after calibration cor-

rections detailed in Section 4.4.1. The term
(

∂X/X0
∂relE1/2

)
is a material sensitivity factor relating the change

in E1/2 to the change in material in terms of X0. This sensitivity factor is derived from Monte Carlo
simulations with distorted geometries similar to those detailed in Table 4.1. The method is based on the
evaluation of E1/2

(
Xinjected

0

)
where Xinjected

0 is the amount of added material in the distorted geometry
simulations. The material sensitivity curve using electrons and unconverted photons with low PS ac-
tivity is shown in Figure 4.31a. A detailed estimation of the material was performed using Run-1 data
and results were used also to improve the detector simulation to better describe the data, namely an
improvement on the description of the SCT heater tubes as shown in Figure 4.31b.

An estimation of the passive material was performed in Run-2 to assess the material variation of the
detector during the shutdown (LS1) between Run-1 and Run-2. The main material changes in Run-2 are
the insertion of IBL and the installation of a new Pixel patch panel (PP0). Therefore, dedicated distorted
geometries were used with X0 scaling of these regions. The systematic uncertainties of the material
estimation arise from various sources, specifically from the uncertainties of the sensitivity curves and
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the L1/L2 calibration. Any residual discrepancy is then taken as final uncertainty; therefore, additional
systematic uncertainties were estimated from the difference in the PP0 region simulation geometry, this
is shown in Figure 4.32.

4.5 Energy Scale and Resolution Measurement Using Z → ee Decays

After the application of the Monte Carlo-based multivariate regression algorithm to data and simulation,
the uniformity corrections to the simulation, and the layer calibration corrections to data, the next step in
the calibration procedure is the estimation of the difference in energy scale between data and simulation.
Despite the various corrections applied, there remain discrepancies between data and the simulation.
The sources of these discrepancies are not precisely known, and they are corrected using energy scale fac-
tors, α, measured in-situ. The Z-boson decays to electrons are used to estimate the energy scale factors, as
the Z-boson mass is known very precisely from the LEP experiments, mZ = 91.1875± 0.0021 GeV [166].

The Z-boson is used as a standard “candle”, given its copious production, and its clean dielectron
final state Z → ee. However, due to the absence of similar candles for photons, Z → ee decays are
also used to estimate photon energy scale factors through an extrapolation procedure that accounts for
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differences in the reconstruction and possible non-linearity effects that might affect electrons and photons
differently.

The extraction of the energy scale is a delicate process, as various sources can bias the outcome of
the result. This is due to the interplay between the resolution and the energy scale, as resolution effects
can induce shifts in the measured value of the mass peak [167]. Therefore, any uncertainty in the detec-
tor resolution will result in uncertainty in the energy scale. For this reason, both the energy scale and
resolution are always extracted simultaneously.

The energy scale factors α are defined as:

Edata = EMC(1 + αi), (4.6)

where Edata and EMC are the electron energy in data and simulation. The i index represent bins of pseudo-
rapidity. For Z → ee decays, the dielectron invariant mass mee is computed from mee =

√
2E1E2(1− cos θ12),

where θ12 is the opening angle between the two electrons measured by the tracker and E1, E2 are their
energies. Using Eq. (4.6), one finds that

mdata
ee = mMC

ee

√
(1 + αi)(1 + αj), (4.7)

where i and j are the pseudorapidity bins of the two electron candidates. Expanding in α and keeping
only first order terms and assuming that θ12 is known with a resolution significantly better than the
energies E1 and E2, equation (4.7) can be approximated as :

mdata
ee ' mMC

ee (1 +
αi + αj

2
) ≡ mMC

ee (1 + αij), (4.8)

with
αij ≡

αi + αj

2
(4.9)

Likewise, the discrepancy in the resolution of the calorimeter between data and the simulation is
characterized by an additional constant term c′i (detailed in Section 3.2.4.1). This term will smear the
energy of electrons in the simulation with a Gaussian distribution, N (µ = 0, σ = 1), as follows:

Edata
i = EMC

i (1 + ci ×N (0, 1)) (4.10)
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The smearing will lead to a larger width of data with respect to the simulation :

(
σ(E)

E

)data

i
=

(
σ(E)

E

)MC

i
⊕ ci. (4.11)

The correlation between the scale and resolution will then manifest itself because the resolution smearing
propagates to the invariant mass shape of two electrons falling in pseudorapidity bins i and j:

mdata
ee = mMC

ee

√
(1 + ci ×Ni(0, 1))

(
1 + cj ×Nj(0, 1)

)
. (4.12)

Consequently, the relation between the dielectron invariant mass resolution σ(m)
m in data and each

electron’s smeared energy resolution will be given by:

(
σ(m)

m

)2

data
' 1

4

(
( σ(E1)

E1
)2

MC + c 2
i + ( σ(E2)

E2
)2

MC + c 2
j

)

=
(

σ(m)
m

)2

MC
+

c2
i +c2

j
4

=
(

σ(m)
m

)2

MC
+

c 2
ij
2 ,

(4.13)

with

c2
ij ≡

c2
i + c2

j

2
(4.14)

denoting the effective relative invariant mass resolution correction for the two electrons in pseudorapid-
ity bins i and j.

4.5.1 Methodology

As described in the previous section, the correlation between the energy scale and the resolution impose
the simultaneous extraction of both parameters (αij, c′ij) in i, j pseudorapidity bins. For this purpose,
two alternative methods are used, and the difference between the two methods is used as a systematic
uncertainty:

• The template fit method, introduced in Ref. [167], is based on templates of mee from Monte Carlo
simulations of Z decays obtained while shifting the mass scale and smearing the resolution in a
range covering the expected uncertainty in narrow steps, resulting in a two-dimensional grid of
(αij, cij). The templates are built separately for the electron pseudorapidity in pseudorapidity bins
(ηi, ηj). The optimal values, uncertainties and correlations of αij and cij are then obtained by χ2

minimization with a similar configuration of pseudorapidity bins for data. An illustration of the
method is shown in Figure 4.33. The individual electron scale factors αi, c′i are then obtained by an
inversion procedure using equations (4.5)-(4.14) as detailed in Ref. [168].

• The lineshape method on the other hand uses an analytic probability density function (PDF) to
parameterize the invariant mass distributions in pseudorapidity (ηi, ηj). The PDF used for the
parametrization of the invariant mass distributions is a sum of three Gaussian functions. The
shapes of the PDFs are fixed using a fit to distribution in the bins (ηi, ηj) in the simulations. The
parameters of the PDFs for the corresponding data distributions are then expressed in terms of the
simulation parameter values, corrected by the energy scales αi, αj and the additional constant terms
ci, cj. The parameters αi,j, ci,j are then determined from a fit to the data distributions.
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FIGURE 4.33: An illustration of the template-fit method for the extraction of the energy scale α and resolu-
tion c from mee built from Z → ee decays in data and Mont Carlo in pseudorapidity bins 1.63 < ηi < 1.74,

2.3 < ηj < 2.4 [156].

4.5.2 Results and Systematic Uncertainties

Energy scale and resolution corrections measured with 2015-2016 data are shown in Figure 4.34. The
results show that the energy scale corrections range between−3% and +2% with an uncertainty between
0.02% and 1% depending on pseudorapidity. The additional constant term of the energy resolution was
found to be typically less than 1% in most of the barrel region and between 1% and 2% in the end-cap
region, with an uncertainty between 0.03% and 0.6%.

The sources of uncertainty are the following:

• Method Comparison. The difference between the results of the two methods discussed in Section 4.5.1,
yields a systematic uncertainty of at most 0.1% for αi and at most 0.2% for ci. In addition, another
uncertainty is due to the bias on each method estimated from pseudo-experiments varying in the
range (0.001− 0.01)% for αi and (0.01− 0.03)% for ci. An additional uncertainty also results from
the non-closure of the template-fit method, estimated from samples with injected non-zero αi and
ci, giving a non-closure uncertainty of 0.004% for αi and 0.02% for ci.

• Event Selection. These uncertainties result from biases introduced by the event selection on the
measured energy scale and resolution corrections. Such uncertainties can arise from the electron
identification criteria, as small correlations between the electron energy response and the quality of
the electron identification are expected. The electron isolation requirement as well can be a source
of such biases, since residual effects from electrons not originating from vector boson or τ decays
can affect the results. The choice of the mee range can also affect the results if non-Gaussian tails of
the energy resolution are not accurately modeled. For all the previous cases, the energy scale and
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resolution corrections are re-estimated varying the electron identification, electron isolation, and
the mass range criteria, and taking the difference with the nominal values as an uncertainty. The
uncertainty due to electron identification is at most 0.2% for ci and 0.003% for αi. For the electron
isolation, the uncertainty is at most 0.5% for ci and 0.15% for αi. The mass range uncertainty is
found to be at most 0.4% for ci and 0.35% for αi.

• Background. This is a fairly small uncertainty coming from Z → ττ, diboson pair production and
top-quark production, leading to a dielectron final state with both electrons originating from τ-
lepton or vector-boson decays. The differences in the results for αi, ci including and neglecting
these backgrounds are at most 0.005% for αi and 0.004% for ci, and are considered as systematic
uncertainties.

• Effect of Bremsstrahlung. Electrons can lose a significant fraction of their energy by bremsstrahlung
before reaching the calorimeter. The effect of the modeling of bremsstrahlung on the estimation of
αi and ci is performed by imposing requirements on the fraction of electron bremsstrahlung fbrem,
determined from the tracking algorithm using the ratio q

p of the charge to the momentum at the

interaction point and at the outer radius of the tracker, fbrem = 1−
(

q
p

)IP
/
(

q
p

)out
. The energy

scale and resolution corrections are then re-estimated and the differences with the nominal values,
which are at most 0.1% for both ci and αi, are taken as a systematic uncertainty.

The Z → ee invariant mass distributions for data and simulations after the application of the energy
scale and resolution corrections are shown in Figure 4.35. The plot shows a fair agreement between data
and the simulation. The differences are within the uncertainty band being shown, which includes all the
systematic uncertainties detailed before. The decrease in the data/MC ratio near a mass of 96 GeV is
most likely related to imperfect modeling of the tails of the energy resolution by the simulation, which
affects the extraction of the energy scale and resolution correction factors.

4.6 Energy Scale Validation

The global energy scale corrections extracted from Z → ee decays are assumed to be effectively correcting
the electromagnetic calorimeter energy response for electrons and photons of any energy. Therefore, a
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verification process is needed to validate these energy scales for photons and for electrons at energies
different from those of electrons from Z → ee decays.

4.6.1 Energy scale extrapolation to photons

The electron and photon behavior is not identical in the electromagnetic calorimeter (as detailed in Sec-
tion 3.3.1.1). Therefore, an electron-to-photon extrapolation is performed. The extrapolation is per-
formed assuming that the in-situ energy scale corrections extracted from Z → ee are also valid for
photons within the computed uncertainties. These energy scale corrections are then validated using
a sample of photons from final state radiation in Z → ``γ (` = e, µ) decays. This analysis is performed
separately for unconverted, one-track, and two-track converted photons and using the electron and the
muon channels separately and then combined.

The residual energy scale difference between data and simulation is quantified using ∆αi. The resid-
ual correction factor ∆αi will be an additional correction to be applied for photons on top of the full
calibration chain to recover the correct photon energy response. The value of ∆αi is computed by modi-
fying the invariant-mass distribution of the three-body ``γ system after applying all the corrections from
electrons using the double ratio

R(αi) =
〈m(``γ(αi))data〉 / 〈m(``)data〉
〈m(``γ)MC〉 / 〈m(``)MC〉

, (4.15)

where 〈m(``γ)〉 and 〈m(``)〉 are the average values of the three-body and two-body invariant mass
distributions of the selected Z → ``γ and Z → `` candidates, respectively. The use of the double ratio
R(αi) suppresses the lepton energy scale uncertainties. The residual corrections were computed using
2015+2016 data. The residual corrections are shown in Figure 4.36 as function of the photon energy, and
were found to be consistent with zero within the calibration uncertainties.

Additional sources of uncertainty for the photon energy scale are the following:

• Photon Conversion classification. The MVA algorithm described in Section 4.2 is trained separately
for candidates reconstructed as converted or unconverted photons. Therefore, any misclassifica-
tion of the conversion category can lead to biases in the calibration. The fake rate (i.e. the fraction of
unconverted photons reconstructed as converted) is typically between 1% and 4%, depending on
η and pileup conditions [169]. The longitudinal shower shape of the photon candidates is used to
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uncertainties. The band represents the full energy calibration uncertainty for photons from Z → ``γ

decays [16].

provide statistical discrimination between genuine converted and unconverted photons and to esti-
mate the efficiencies and fake rate in both data and simulation, with efficiency typically of 90%. The
impact on the photon energy measurement is estimated from the difference between the original
Monte Carlo simulation and another sample reweighted with the data-to-MC ratio of efficiencies
and fake rates. This results in uncertainties in the energy scale of photons with ET = 60 GeV of
about 0.05%.

• Modeling of the lateral shower shape. This takes into account the difference between electron and
photon showers related to the different interaction probabilities with the material upstream of the
calorimeter. The lateral energy leakage outside of the cluster is studied for data and simulation, and
the difference is taken as an uncertainty. Figure 4.37 shows the distribution of the energy leakage,
defined as the difference between a larger second layer cluster size of 7× 11 and the nominal size
of 3× 7 in units of layer-2 cells. An uncertainty is derived from the double ratio of the difference
between electrons and photons in data and simulation and was found to be at maximum 0.25%.
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photon candidates with ET > 25 GeV and |η| < 0.8. Photons from Z → ``γ decays are compared with

electrons from Z → ee [16].



134 Chapter 4. Energy Calibration of the ATLAS Electromagnetic Calorimeter with 2015 and 2016 pp Collisions

4.6.2 Energy scale cross-checks with J/ψ→ e+e−

The energy scale at low electron energy (ET ∼ 10 GeV ) is probed using electrons from J/ψ → e+e−

decays, exploiting the fact that the mass of J/ψ resonance is well known. The corrections derived from
Z → ee decays are applied to the selected electron candidates, and the residual energy scale corrections
are then derived with a line-shape fit similar to the nominal Z → ee calibration. The difference is quan-
tified with a residual energy difference ∆α, parameterized such that ∆α = 0 if the calibration is correct.
Figure 4.38 shows the extracted values of ∆α. The results show a good agreement between the energy
scale factors derived with low-energy electrons and the nominal calibration. The residual scale factors
are consistent with zero within the systematic uncertainties of the nominal calibration.

η
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FIGURE 4.38: Residual energy scale differences, ∆α, between data and simulation extracted from J/ψ→ ee
events as a function of η after the Z → ee calibration scale factors have been applied. The band shows the

uncertainty of the energy calibration for the energy range of J/ψ→ ee decays [16].

4.7 Summary of Uncertainties and Effect on The Higgs Mass

In summary, the final energy scale derived in Section 4.5 has 6 main sources of systematic uncertainty
(described in their respective sections). Each source is detailed with multiple variations in different re-
gions in |η|. This yields a systematic uncertainty model with an overall 64 independent uncertainty vari-
ations [16]. In addition, a simplified model of the uncertainties is built from the addition in quadrature of
the different sources (assuming they are fully correlated across η). The impact of these uncertainties on
the photon energy scale is shown in Figure 4.39. The typical uncertainty of the energy scale is between
0.2% and 0.3% for the barrel region and 0.45% to 0.8% in the end-cap region.

For the energy resolution, the systematic uncertainties arise from the uncertainties in the modeling
of the sampling and constant terms in the resolution, the energy loss upstream of the calorimeter, the
effect of electronics and pileup noise, and the impact of the residual non-uniformities. This leads to an
uncertainty in the energy resolution for photons and electrons in the range of 30 to 60 GeV of the order
of 5% to 10% and up to 50% for photons or electrons with energies of several hundreds of GeV. This
represents an improvement compared to the Run-1 results reported in Ref. [156]. The impact on the
energy resolution of the different sources is summarized in Figure 4.40. The uncertainty of the energy
resolution for photons from Higgs boson decays is typically between 10% and 20%.

The calibration detailed in this chapter was used to perform a measurement of the Higgs-boson mass
in the diphoton and the 4-lepton channels, summarized in Figure 4.41. The main sources of uncertainty
in the mass measurement in the diphoton channel are, in decreasing order of importance: the LAr cell
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0.3 and (B) |η| = 2.0. The yellow band in the top panels shows the total uncertainty in the resolution. The
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non-linearity, the layer calibration, and the uncertainty in non-ID material. The total relative systematic
uncertainty on the estimated mH is 0.29% [22]. On the other hand, The measurement in the four-lepton
channel has a smaller systematic uncertainty as the measurement is dominated by the four-muon final
state, which is affected by much smaller calibration systematic uncertainties.
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123 124 125 126 127 128
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 CombinedRun 1+2  0.16) GeV± 0.24 ( ±124.97 

 CombinedRun 2  0.18) GeV± 0.27 ( ±124.86 

 CombinedRun 1  0.37) GeV± 0.41 ( ±125.38 
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l4→H Run 1+2  0.30) GeV± 0.30 ( ±124.71 

γγ→H Run 2  0.21) GeV± 0.40 ( ±124.93 

l4→H Run 2  0.36) GeV± 0.37 ( ±124.79 

γγ→H Run 1  0.43) GeV± 0.51 ( ±126.02 

l4→H Run 1  0.52) GeV± 0.52 ( ±124.51 

-1 = 13 TeV, 36.1 fbs: Run 2, -1 = 7-8 TeV, 25 fbs: Run 1

FIGURE 4.41: Summary of the Higgs boson mass measurements from the individual and combined analy-
ses using Run-2 analyses and the Run-1 combined measurement with CMS. The statistical-only (horizontal
yellow-shaded bands) and total (black error bars) uncertainties are indicated. The (red) vertical line and
corresponding (grey) shaded column indicate the central value and the total uncertainty of the combined

ATLAS Run 1 + 2 measurement, respectively [22].
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Interlude B. Unfolding

Introduction

The outcome of a measurement in particle physics is the result of an underlying physical process that we
want to measure (possibly an unknown physics process) convoluted with the response of the detector.
In particular, the finite resolution of the detector will smear the quantities that we want to measure. In
addition, the detector has a limited acceptance and efficiency, meaning that certain events will not be
captured if they produce particles that do not cross the active detector regions or due to reconstruction
inefficiency. In our analysis, the measurements are based on counting events (Higgs boson signal events)
in particular regions (bins) of the phase space. Therefore, the limited resolution of the detector will result
in events migrating to wrong (neighboring) bins. The process of correcting for the resolution migrations
and detector efficiency in order to measure quantities not affected by these effects (typically cross sec-
tions) is called unfolding or deconvolution. A sketch of the unfolding problem is shown in Figure 4.42.
Unfolding is an ill-posed problem since the most straightforward solutions can be very sensitive to data
fluctuations, yielding unstable results, and thus requiring some "regularization" procedure.
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FIGURE 4.42: Illustration of the unfolding procedure.

The problem of unfolding is particularly challenging for particle physics, as the measurements will
include statistical fluctuations and (potentially) background events. For the measurement of the fiducial
integrated and differential Higgs boson production cross sections presented in this thesis, the unfolding
procedure represents an essential ingredient of the analysis. Unfolding allows for an easy comparison of
theory predictions with the measured cross sections. This results in long-lasting measurements that can
be compared to theory models developed long after the measurement is done. In addition, unfolding
allows for easier comparison and combination with the results of other experiments, as the results are
deconvoluted from detector effects.
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Formalism

One can express the PDF of a given measurement fmeas(x) as follows:

fmeas(x) =
∫

R(x|y) ftrue(y)dy , (4.16)

where ftrue(y) is the PDF of the true underlying physics effects convoluted with the detector response
function R(x|y). In practice, we deal usually with binned observables and Eq.(4.16) becomes a matrix
multiplication:

xi =
N

∑
j=1

Rijyj, (4.17)

where N is the number of bins of the distribution of the true quantity y. The detector response matrix Rij

can be interpreted as a conditional probability:

Rij = P(reconstructed in bin i | true value in bin j) (4.18)

The sum:

M

∑
i=1

Rij = P(observed anywhere | true value in bin j) = εj , (4.19)

corresponds to the efficiency for events with true value of y in bin j. In our analysis, we are only interested
in the cases where the binning of true distribution yj and the reconstructed one xi is the same, i.e. M =

N. The task of unfolding is to invert Eq.(4.17) to convert measured values xi to true values yj. For
our analysis, we aim to obtain particle-level cross sections from the measured detector-level cross sections
defined in Section 5.1.1. Several methods exist to perform such procedure, each with its own strengths
and caveats. In all methods, the particle-level event yields (or cross sections) yj are related to the detector-
level quantities xi by linear relations yj = Uijxi, where Uij is known as the unfolding matrix. In the next
section, a summary of the studied unfolding methods is given.

Review of unfolding methods

This review will use as example histograms of Higgs boson signal events as a function of the diphoton
transverse momentum pγγ

T , defined in Section 5.1.1. The pγγ
T distributions are built using the Higgs boson

signal simulated samples detailed in Section 5.2. The chosen binning for the pγγ
T histograms allows us

to test the limits of the different methods as migrations between bins increase with finer binning. The
true (particle-level) distribution is shown in Figure 4.43a, and the reconstructed distribution is shown
in Figure 4.43b. The difference between the two is due to the limited resolution and efficiency of the
detector. One way to visualize the effect of the detector is via the response matrix, shown in Figure 4.44.
This matrix relates the reconstructed (detector-level) events and the true (particle-level) events using a
2D histogram. The off-diagonal elements of this matrix represent events that migrated to neighboring
bins after the measurement by the detector.
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Matrix inversion

The inversion of the detector response matrix is the most straightforward approach to unfolding. The
unfolding matrix Uij will be set as the inverse of the detector response matrix Eq.(4.18), Uij = R−1

ij . The

inversion of the response matrix can be done directly, or by maximizing the likelihood (Rijx)TV−1
ij (Rijx),

where Vij is the covariance matrix of the measurement.
Despite its simplicity, this method has a major drawback. The resulting unfolded distributions have

extremely large variances and strong negative correlations between neighboring bins. This is illustrated
in Figure 4.45a, where the relative statistical error of the unfolded distribution is compared with the
relative statistical error of the initial measured distribution. This is more evident for bins with large mi-
grations (the low pγγ

T bins). The correlation matrix of the unfolded distribution is shown in Figure 4.45b.
This effect is due to the non-zero off-diagonal elements in the detector response matrix. These ele-

ments can result from the finite resolution of the detector especially when the bin size is small compared
to the resolution or when looking at observables with poor resolution. This can be seen in the detector
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response matrix in Figure 4.44. Most of the simulated events populate the diagonal elements in the de-
tector response matrix, whereas the off-diagonal elements are affected by large statistical uncertainties.
These non-zero off-diagonal elements will then appear in the denominator in some of the elements of
the inverted matrix, amplifying the statistical error of the unfolded distribution (including the diagonal
elements of the response matrix).
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FIGURE 4.45: Results of the unfolding using matrix inversion for the pγγ
T distribution. (A) A comparison

of the relative statistical error of the unfolded distribution (in green) with respect to the statistical error
of the measured detector-level distribution (in red). The statistical error of the unfolded distribution is
largely increased due to the off-diagonal elements in the detector response matrix as detailed in the text.
(B) The correlation matrix of the unfolded distribution using matrix inversion. The matrix shows negative

correlations between neighboring bins (most notably for the bins with large migrations).

On the other hand, the advantage of this inversion approach is that the resulting values for y, despite
being affected by significant variances, are in fact unbiased from a statistical point of view. Of course,
the method can be biased if the response matrix does not reflect the actual detector response. Also, the
maximum likelihood solution for the inversion has the smallest possible variance value for any unbiased
estimator [97], i.e. the large variance we observe is the minimum bound for the variance for an unbiased
estimator. Therefore, for the other unfolding methods detailed in this section, the strategy is that one
would accept small bias (that will be added as a systematic uncertainty to the unfolded distribution) in
exchange for reduction in the variance, i.e. trading statistical for systematic uncertainties.

Bin-by-bin unfolding

The bin-by-bin unfolding method is a simple method based on rescaling the detector-level yields with
multiplicative correction factors derived from Monte Carlo simulations. Using the same notation as
Eq.(4.17), the estimator for y in a given bin i is constructed as

yi = Cixi (4.20)

where the correction factor Ci is

Ci =
yMC

i
xMC

i
, (4.21)
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where yMC
i and xMC

i are the expected particle-level (true) and detector-level (reconstructed) yields from
the simulation. In other words, the bin-by-bin unfolding approximates the detector response matrix to
Rij ≈ δij

1
Cj

, and the unfolding matrix Uij = δijCj.
In order to quantify migrations in the detector response matrix we introduce the following two quan-

tities that are sensitive to migrations due to resolution effects:

• The migration purity Pi is defined as Pi = nptcl+det
i /ndet

i , where nptcl+det
i is the yield of events

belonging to bin i of both the detector-level and particle-level distribution, and ndet
i is the yield

of events in the detector-level bin i. The purity is sensitive to fake events which are, incorrectly,
reconstructed in a given at the detector-level, with large purity denoting smaller migrations.

• The reconstruction efficiency εi is defined as εi = nptcl+det
i /nptcl

i , with nptcl
i the number of events

with y in the particle-level bin i. The efficiency is sensitive to events that are, incorrectly, recon-
structed out of a given bin. Therefore, larger efficiency implies better object reconstruction.

The bin-by-bin unfolding correction Ci can then by expressed in terms of purity and efficiency:

Ci =
Pi
εi

(4.22)

The main advantage of the bin-by-bin unfolding is that it has a much smaller variance than the in-
version of the migration matrix, as shown in Figure 4.46. This is a result of the covariance matrix of
the unfolded yields Uij = cov[yi, yj] = CiCjcov[xi, xj] = CiCjvar[xj]δij = C2

i var[xi], with generally
Ci ∼ O(1).
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FIGURE 4.46: The relative statistical error of the unfolded distribution using the bin-by-bin unfolding
method (in green) compared the relative statistical error on the measured detector-level distribution.

On the other hand, bin-by-bin unfolding might result in a bias that is not negligible relative to its
variance. The bias from the bin-by-bin unfolding is estimated from

E[ŷi] = Cixi ≡
(

yMC
i

xMC
i
− yi

xi

)
xi + yi, (4.23)

therefore the bias is:

bi =

(
yMC

i
xMC

i
− yi

xi

)
xi (4.24)

The bias is zero if the simulation predicts correctly the ratio yi/xi, which can not be inferred prior to
a measurement. In order to estimate the bias of the bin-by-bin unfolding, pseudo-data samples are
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generated following specific bias scenarios covering the potential discrepancy that might be observed
between data and the nominal simulation.

Regularized methods

As seen in the case of the matrix-inversion unfolding method, the variance for an unbiased unfolding
method is large. To counterbalance this effect, one might accept a small bias in exchange for reducing the
variance through a so-called regularization procedure. Below, we will briefly review the regularization
techniques that were investigated.

Bayesian iterative unfolding

This method is motivated by Bayesian statistics. Bayes’ theorem is used to estimate the unfolding matrix
Uij = P(iptcl |jdet) from the detector response matrix from the simulation Rij = P(idet|jptcl):

P(iptcl |jdet) =
P(jdet|iptcl)P0(iptcl)

∑kptcl P(jdet|kptcl)P0(kptcl)
(4.25)

where P0(iptcl) is the prior. We can then obtain the truth event yield distribution as

yi =
1
εi

∑
jdet

xiP(iptcl |jdet) (4.26)

The drawback of the method is that the results will depend on the chosen prior P0(iptcl). To overcome
this limitation, an iterative procedure is used, minimizing the model dependence. After each iteration (k)
the prior probability distribution P0(iptcl) is replaced with the obtained unfolded event yield distribution
y(k), and iterated to obtain y(k+1). The unfolded results can be thought of as middle ground between
matrix inversion and bin-by-bin, as we approach more significant variances and negative correlations
(similar to matrix-inversion) with more iterations. This is illustrated in Figure 4.47, where the correlations
matrices and the relative statistical errors of the unfolded distributions are shown using 2 and 5 iterations.

Singular value decomposition (SVD)

The singular value decomposition (SVD) unfolding provides an alternative way to reduce the large vari-
ances resulting from the matrix inversion [170]. The method is based on SVD factorization of the response
matrix R = ASBT , where A and B are orthogonal matrices, and S is a diagonal matrix with real positive
entries si = Sii known as the singular values. The SVD factorization can be considered as a generaliza-
tion to any matrix of the eigendecomposition of positive definite matrices. The singular values contain
very valuable information about the properties of the matrix: for example, the small singular values are
associated with the enhancement of the statistical fluctuations. The statistical fluctuations can then be
dampened by replacing s2

i by s2
i /(s2

i + τ), where τ is a parameter determining the strength of the reg-
ularization. If τ is too large, this will cause over regularization, meaning that the unfolded distribution
will be biased towards the shape from simulation. A too-small τ, on the other hand, will lead to under
regularized results, yielding large oscillations. Therefore, τ is tuned to be τ = s2

k , where k is the effective
rank of the system.

The detector response matrix is re-scaled with the uncertainties of the measured spectrum ∆xi, x̃i =

xi/∆xi and R̃ij = R̂ij/∆xi, or analogously with the full covariance matrix in case of non-zero correlations
before the SVD decomposition of the detector response matrix. Using our pγγ

T distribution, the SVD
unfolding seems to show over-regularization, resulting in positive correlations between neighboring
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(D) Correlation matrix of the unfolded distribution
using iterative Bayesian (5 iterations)

FIGURE 4.47: Results of unfolding using iterative Bayesian. The figures on the left (right) use 2 (5) it-
erations. The top plots show the relative statistical error of the unfolded distribution compared to the
statistical error of measured detector-level distribution. The bottom plots show the correlation matrix of
the unfolded distributions. The results show that the behavior of iterative Bayesian unfolding approaches

that of matrix inversion (large variances and negative correlations) with more iterations.

bins and reduced statistical error for the unfolded distribution (with respect to the statistical error of the
measurement). This is shown in Figure 4.48 for different tuning parameter values k = 5 and 18. The
over-regularization is reduced by increasing the k (approaching more matrix-inversion). However, even
the largest value of k = nbins = 18 slightly reduces the error and results in positive correlations between
neighboring bins.

Choice of unfolding method

The choice of the unfolding method is made by applying the different unfolding methods on pseudo-
data distributions. The pseudo-datasets are required to match the expected level of variations between
our simulated samples and data. These datasets are known as bias scenarios and are generated for each
of the differential variables we investigate. The details of the variables and the selected binning are
shown in Section 5.3.4. The studies are performed using the different variables in order to check the
performance of the different unfolding methods under different scenarios of resolution and statistical
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(D) Correlation matrix of the SVD unfolded distri-
bution with k = 18

FIGURE 4.48: Results of the unfolding using SVD with different tuning parameter k = 5, 18 for the pγγ
T

distribution. The top plots show the relative statistical error of the unfolded (in green) compared to the
the statistical error of the measurement (in red). The SVD results in over-regularization and reduces the
error of the measurement. The bottom plots show the correlation matrix of the unfolded distributions. The
matrices show postive correlations between neighboring bins. The correlations are reduced by increasing

the tuning parameters k.

precision as follows:

(
Poor Resolution
Good Resolution

)
×
(

Good statistical precision
Poor statistical precision

)
. (4.27)

Bias scenarios

In order to estimate the bias of the different unfolding methods, we generate pseudo-data samples fol-
lowing a selection of bias scenarios, in which the central values of the SM expectation are shifted by some
amount. The bias scenarios include realistic scenarios (i.e. introducing distortions similar to fluctuations
we expect in data). In addition, we also check extreme bias scenarios with large distortions used as stress
tests for the unfolding methods. The bias scenarios are produced by simultaneously reweighting the SM
expectations of the Higgs boson pγγ

T and |yγγ| distributions to match the observed distributions from a
previous measurement. These distributions (pγγ

T and |yγγ|) are chosen for the reweighting since they are
uncorrelated to a good approximation. The biases estimated using these scenarios will not be used for
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the actual cross section measurement. The recipe to compute the unfolding bias uncertainty for the final
cross section is detailed in Section 5.5.3.1. The following bias scenarios are investigated:

• both scenario includes a simultaneous re-weighting of the Higgs boson pγγ
T and |yγγ| spectra using

the H → γγ 80 fb−1 dataset [18]. This bias scenario is thought to be a reasonable representation of
the biases that might be expected in real data.

• both_ZZ scenarios includes simultaneous re-weighting of the Higgs boson pγγ
T and |yγγ| spectra

using the H → ZZ∗ 36 fb−1 dataset [171].

• ggF only scenario includes a modification of the Higgs boson signal composition that includes only
gluon-fusion.

For the choice of the methods we concentrated on the bias scenarios with large variations (i.e. both_ZZ
and ggF only). The effect of the bias scenario on the pγγ

T and Njets distributions is shown in Figure 4.49.

(A) Nominal and biased scenarios for pγγ
T . (B) Nominal and biased scenarios for Njets.

FIGURE 4.49: The SM prediction compared to the various bias scenarios for (A) pγγ
T and (B) Njets. The

error bars on the nominal predictions are estimated by scaling the signal yield fit errors to 140 fb−1, as
detailed in the text.

Bias and expected error

In order to assess the effect of the unfolding method on the uncertainty of the unfolded distributions,
we assign a realistic error for the yield of each bin. In the actual data unfolding, this error will be the
result of the fit procedure detailed in Section 5.6. To obtain an estimate for the statistical uncertainty for
a given measurement, we scale the statistical uncertainty from the previous measurement using 80 fb−1

of 13 TeV data to the luminosity of the current measurement (140 fb−1) as follows:

δ140 fb−1

i = δ80 fb−1

i ×
√

140 fb−1 / 80 fb−1 (4.28)

The estimated statistical error is shown in Figure 4.50.
Ensembles of pseudo data are generated in order to estimate the error coverage of each unfolding

method (i.e. ensuring that the error of the unfolded distribution is not underestimated). These pseudo-
datasets are generated for the nominal SM expectation as well as for the different bias scenarios. We use
them to compute the bias in each bin bi from the following formula:

bi =
〈Ntoys〉 − Nparticle-level

Nparticle-level
, (4.29)
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where 〈Ntoys〉 is the mean of the unfolded signal yield for the different pseudo-datasets and Nparticle-level

is the particle-level (true) signal yield that we expect. The pseudo-datasets are generated by smearing
the detector-level spectrum using a Gaussian with a mean equal to the detector-level nominal (or bias-
scenario) yield and standard deviation equal to the expected error. Each of these pseudo-datasets is
unfolded using the nominal response matrix, and the unfolded distribution is compared to the underly-
ing particle-level (truth) spectra. This procedure is performed 1000 times.

Figures of merit

Various figures of merit can be used to compare the performance of the different methods, as well as of
the same method with different parameter settings (number of iterations for iterative methods or tuning
of the regularization for SVD). The chosen figures of merit stem from the following considerations:

• The (statistical) uncertainty of the unfolded distribution should neither be significantly reduced
nor strongly increased by the unfolding with respect to the statistical uncertainty of the measured

distribution, i.e. the ratio
δunfold

i,stat. /µtrue
i

δ
pred
i,stat./µ

pred
i

should be close to one.

• The systematic bias introduced by the unfolding should be small compared to the statistical and
other experimental uncertainties, bi < δi,stat.. The bias will be accounted for as an additional uncer-
tainty on the unfolded distribution.

Therefore, the two figures of merit that we chose to quantify the previous arguments for the distribu-
tion as a whole are:

• The sum of absolute biases Σi|bi|.

• The sum of absolute biases divided by the effective total statistical error taking into account corre-
lations, Σi |bi |√

Σi,jCovi,j(stat.)
. This provides the metric for checking that the total bias due to the unfolding

is smaller than the statistical uncertainty for the overall distribution.

Summary of results and choice of unfolding method

The choice of unfolding method is based on comparing the different figures of merit for the different
methods. We focused on the bin-by-bin, iterative Bayesian, and matrix inversion unfolding methods.

The relative statistical uncertainty of the unfolded distribution using the different methods is shown
in Figure 4.50, where the statistical uncertainty from the input measurement is also shown for reference.
For all variables, the relative statistical uncertainty is mostly unchanged by the bin-by-bin unfolding,
whereas the matrix inversion yields larger statistical uncertainty. This effect is more evident for distribu-
tions with large migrations, such as the Njets distribution where the resulting statistical uncertainty can
be up to double that of the measurement. The iterative Bayesian method with two iterations provides
a middle ground, preserving the statistical uncertainty of the measurement at the cost of increasing the
bias.

The coverage of the statistical error of the unfolded distributions was checked for the different meth-
ods. This check is performed to make sure that the statistical uncertainty of the unfolded distribution
does not underestimate the true statistical uncertainty. The coverage test was performed by checking
the RMS of the pulls of the pseudo-datasets. An RMS compatible with unity ensures that the statistical
uncertainty of the unfolded distribution achieves coverage. The check was performed for different bias
scenarios. The RMS of the pulls for the different bias scenarios using the different unfolding methods was
found to be compatible with one within the statistical uncertainty from the number of pseudo-datasets.
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(A) Relative statistical error pγγ
T . (B) Relative statistical error Njets.

FIGURE 4.50: The relative statistical error of the unfolded distribution for the different unfolding methods
(shown with different colors) for (A) pγγ

T and (B)Njets distributions. The relative statistical uncertainty
of the unfolded distribution is compared with the relative statistical error of the measurement in shaded

purple.

An example is shown in Figure 4.51 for the Njets distribution using bin-by-bin unfolding for different
bias scenarios. To summarize, from the statistical error point of view, the bin-by-bin unfolding method
seems to be the best option, provided that it does not yield large biases.
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FIGURE 4.51: The RMS of the bias pulls for bin-by-bin unfolding estimated from pseudo-datasets for
theboth_ZZ bias scenario. The RMS of the pulls is consistent with 1 within the statistical error resulting
from the number of generated pseudo-datasets. This is an evidence for the coverage of the unfolded

statistical error using bin-by-bin unfolding for this analysis.

The biases of the different methods for the different variables are summarized below:

• pγγ
T : no significant biases were found using the different bias scenarios. In general, the introduced

biases are much smaller than the statistical uncertainty. This is shown in Figures 4.52a, where the
biases from the different methods are compared to the relative statistical error.

• N≥30GeV
jets : the bias using the both_ZZ is found to be comparable for all the three methods and is

small relative to the statistical uncertainty for every bin. This is shown in Figure 4.52b. The extreme
scenario (ggF only) on the other hand, yields larger biases that are around 20% of the expected
statistical uncertainty.
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• The jet variables pj1
T , ∆φjj,signed, and mjj: all the unfolding methods yield comparable biases that

are relatively small compared to the expected uncertainty.

(A) The bias using both_ZZ scenario for pγγ
T . (B) The bias using both_ZZ scenario for Njets.

FIGURE 4.52: The bias of the different unfolding methods for (A) pγγ
T and (B) Njets using the both_ZZ bias

scenario. The biases are compared with the relative statistical error of the input measurement shown in
shaded purple. In general, the biases were found to be very small with respect to the statistical error.

From these results, given its small bias relative to the statistical uncertainty of the measurement, and
comparing with matrix inversion, the bin-by-bin unfolding method is chosen for the unfolding of the
H → γγ cross sections studied in this thesis. The actual unfolding bias that will enter as uncertainty on
the measurement will be estimated from the observed differences between data and simulation. These
differences will be used to reweight the simulation to match the data and then measure the bias with
respect to the nominal simulation. This procedure is detailed in Section 5.5.3.1.
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(A) The bias using both_ZZ scenario for pj1
T . (B) The bias using both_ZZ scenario for mjj.

(C) The bias using both_ZZ scenario for ∆φjj,signed.

FIGURE 4.53: The bias of the different unfolding methods for (A) pj1
T , (B) ∆φjj,signed and (c) mjj using the

both_ZZ bias scenario. The biases are compared with the relative statistical error of the input measurement
shown in shaded purple. In general, the biases were found to be very small with respect to the statistical

error.
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Chapter 5

Measurement of the Higgs Boson
Fiducial Inclusive and Differential
Cross Sections in the H → γγ Channel

5.1 Introduction

Following the discovery of the Higgs boson in July 2012 by ATLAS [6] and CMS [7], several studies
were performed using Run-1 and Run-2 data in order to characterize the newly discovered particle. The
first of these studies measured ratios of the total production rate over the SM expectation (i.e. signal
strengths) [172]. Other studies followed, measuring the different Higgs boson production and decay
rates and coupling strengths modifications with respect to the SM expectation within the so-called κ-
framework [173]. These measurements were performed based on the assumption that the Higgs boson
production and decay kinematics are the same as those expected for the SM Higgs boson.

This approach was extended during Run-2 with the development of the simplified template cross
section (STXS) framework [174]. The STXS are cross sections for the different Higgs boson production
modes in well defined kinematic regions (bins) of the phase space. These kinematic bins are defined
using the SM as a template and rely only on properties related to the Higgs boson production, such as
the Higgs boson pT or the number of accompanying particle-level jets. The STXS framework has the ad-
vantage that it further disentangles the theoretical interpretation (i.e. SM or BSM) from the measurement,
hence reducing the theory dependence of the results on the SM prediction. In addition, the STXS bins
can be split in finer granularity, providing a systematic way to increase the sensitivity and reduce any
residual theory uncertainty. Furthermore, the bins are defined independently of the Higgs boson decay
mode; therefore, measurements with different decay channels can be combined.

A different approach based on the measurement of the fiducial inclusive and differential cross sec-
tions is used in this chapter. This approach consists in choosing the quantities to measure such that they
are largely model-independent, as will be detailed in the following sections. These quantities are inclu-
sive, and differential Higgs boson production cross sections in a fiducial region that is as close as possible
to the detector-level selection. The measurements, which are also documented in a public note [175], are
performed using the full LHC Run-2 pp collision data collected with the ATLAS detector.

5.1.1 Motivation and Strategy

The measurement of the fiducial inclusive and differential Higgs boson cross section provides an alterna-
tive framework to measure the properties of the Higgs boson. In this framework, the Higgs boson cross
sections are measured in regions of the phase space called "fiducial volumes" defined by selections that
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match as closely as possible the experimental selection. Performing the measurement in well defined
"fiducial volumes" has several advantages:

1. It does not require extrapolation to the full phase space. This removes all the additional theoretical
uncertainties associated with such extrapolations. Compared to the STXS approach, the fiducial
region of these cross sections also includes requirements on the final state particles from the Higgs
boson decay, further reducing the extrapolation and corresponding theoretical uncertainties.

2. The model-dependence of the signal efficiencies within the fiducial volumes can be reduced to
be smaller than the overall experimental uncertainty, thus minimizing the impact of theoretical
variations on the signal efficiency [176].

3. Fiducial differential cross section measurements are particularly powerful for testing BSM scenar-
ios that would affect the Higgs boson kinematic distributions, which can not be probed only by a
simple scaling of couplings as in the κ-framework. A detailed example of such procedures to probe
BSM scenarios using effective field theory models using the results of the measurements presented
in this chapter is shown in Chapter 6.

4. Model-independent measurements can be compared to different theoretical models and to other
models that may be developed after the measurement without the need to re-analyze the data.

The measurements presented in this manuscript rely on data collected during the LHC Run-2 and
simulation samples, described in section 5.2. The strategy used to measure the fiducial inclusive and
differential cross sections, illustrated in Figure 5.1, is as follows:

• A selection is applied to the events and the different physics objects that constitute the fiducial
volume. The detector-level and corresponding particle-level selections are detailed in Section 5.3.

• After the selection, the main discriminant variable between the Higgs signal and the background
is the diphoton invariant mass, mγγ. The distributions of this quantity for signal and background
are studied in Section 5.4, where analytical models describing these shapes are described.

• The Higgs boson signal yield in the selected sample is determined by fitting the diphoton invariant
mass distribution in data using the previously found signal and background parameterizations.
The details of the fit are given in Section 5.6.

• The extracted signal in each bin of the differential distributions is corrected for the detector resolu-
tion and migration effects among bins (unfolded). Different unfolding methods have been studied
and the one providing the best compromise between the added variance and the added bias to the
results has been chosen. The details of the different unfolding methods are shown in Interlude B.

• The uncertainties associated with the signal extraction and unfolding steps of the measurement are
summarised in Section 5.5.

• The particle-level cross sections are obtained from the unfolded yields and compared with different
theoretical predictions in Section 5.7.

A similar strategy was used in the previous Higgs boson cross section measurements using
√

s =

8 TeV and
√

s = 13 TeV [19, 177]. The cross section measurement uses a “blind-analysis” approach,
meaning that the optimization and validation of the analysis chain is performed before looking at the
data in the signal region, defined as the events that pass all the selection criteria and whose recon-
structed diphoton invariant mass lie in a narrow window around the mass of the Higgs boson. The
analysis optimization and validation is performed using simulation samples and data in control regions,
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Detector Theory

Particle level
Fiducial phase space

Correction for detector 
effects (unfolding)

Fiducial acceptance 
correction

Signal yield
Detector phase space

Event selection

Observed events
Detector phase space

Signal +  background fit to data

FIGURE 5.1: Schematic representation of the analysis strategy. Stages of processing of quantities measured
by the detector are shown in dark red, and stages involving quantities predicted by theory are shown in
blue. Measured quantities at the particle level fiducial volume are compared to theory. This stage is shown

in green.

either consisting of events in which one or both photon candidates fail some of the selection criteria
(control regions enriched in “reducible” background in which at least one photon candidate arises from
the misidentification of a hadronic jet), or of events passing all the selection criteria but with diphoton
invariant mass in a “sideband” region away from the value of the Higgs boson mass (control region
enriched in “irreducible” background from non-resonant diphoton events).

The measurement of the Higgs boson cross section is performed in a fiducial volume matching closely
the phase space region sampled by the detector. The measured cross section can be inclusive for the whole
fiducial volume or differential constructed by dividing the inclusive fiducial volume into several bins of
a particular kinematic variable. This allows comparison of the shapes and rates of the events to the
predictions, providing more information to test alternative theoretical models. The list of variables that
have been studied and the motivation for their choice is as follows:

Inclusive variables

• pγγ
T , the transverse momentum, and |yγγ|, the rapidity of the diphoton system describe the fun-

damental kinematics of the Higgs boson. The low-pT region of the Higgs boson transverse momen-
tum spectrum exhibits a Sudakov peak due to initial state radiation [178]. Therefore, this region is

very sensitive to resummation effects, as the logarithmic expansion develops with O(αs ln2 pH
T

MH
).

Figure 5.2 shows as an example the effect of the resummation of terms of order up to N3LL [47] on
the Higgs boson pT distribution. In addition, the low-pT region can be used to set bounds on light-
quark Yukawa couplings [179, 180], as shown in Figure 5.3a. On the other hand, the high-pT region
of the spectrum is sensitive to the couplings between the Higgs boson and the heaviest quarks,
i.e. the top quark. For example, in the region pH

T > mt, the top quark mass cannot be considered
infinite, and a dependence on the top quark mass has to be considered. Also, boosted Higgs boson
production can resolve loop effects from heavy BSM particles, yielding sensitivity of the high-pT

region to BSM physics [181, 182]. More details on this will be shown in Chapter 6. The rapidity of
the Higgs boson, |yγγ|, is sensitive to PDFs, and similar to the Higgs boson pT, its distribution can
be used to probe the light-quark Yukawa couplings, as shown in Figure 5.3b [180].
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FIGURE 5.2: Comparison between normalized distributions for the Higgs boson pT at N3LL logarithmic
accuracy matched to fixed order QCD NNLO calculation [47].

(A) Effect of enhanced light-quark Yukawa
couplings on the Higgs boson transverse mo-

mentum pT

(B) Effect of enhanced light quark Yukawa
couplings on the Higgs boson rapidity |yH |

FIGURE 5.3: Comparison between normalized distributions of (A) the Higgs boson transverse momentum
and (B) the Higgs boson rapidity between the Standard Model predictions (in blue) and the case in which
the Yukawa couplings of the light quarks (s, u, d) are significantly enhanced (about 100 times for s and
about 2000 times for u and d) so that they are twice larger than the SM b-quark Yukawa coupling (kq =

yq/ySM
b ) [180].

• N≥30GeV
jets , the jet multiplicity associated with the production of a Higgs boson. The jet multi-

plicity is categorised in 4 bins : 0-jet, 1-jet, 2-jets, ≥ 3-jets, with a jet pT threshold of 30 GeV. The
jet multiplicity can be used to probe the different Higgs boson production mechanisms. The 0-jet
events are dominated by gluon-fusion. The VH and VBF production mechanisms become increas-
ingly important for 1-jet and 2-jet events, making these bins sensitive to the relative strengths of the
ggH effective coupling and the VVH couplings. Higgs bosons produced in association with a top-
antitop quark pair are important for very large jet multiplicities, making the ≥ 3-jets bin sensitive
to the relative strength of the ttH coupling. In addition, the N≥30GeV

jets distribution is also sensi-
tive to the amount of QCD radiation. For example, gluon-fusion with second-order real emission
corrections will produce two additional jets in the event.

Jet kinematics variables

• The leading jet transverse momentum, pj1
T . The leading jet transverse momentum directly probes

hard quark and gluon radiation in inclusive events. This variable predominantly tests fixed-order
QCD calculations of gluon-fusion.

• The dijet invariant mass, mjj. The invariant mass of the leading and sub-leading jets with jet pT of
at least 30 GeV. This variable is sensitive to the VBF production mode (which leads to events with
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large mjj) and is useful in distinguishing it from gluon-fusion.

• The dijet azimuthal angle difference, ∆φjj,signed. The azimuthal angle difference of the leading
and sub-leading jets with jet pT of 30 GeV. The azimuthal angles of the jets are ordered according
to the jet with the highest rapidity. This variable is sensitive to the charge conjugation and parity
properties of the Higgs boson effective interactions with gluons and weak bosons in the gluon-
fusion and VBF production channels respectively, making this variable sensitive to CP violation
in the Higgs sector. For example, in gluon-fusion events with pure CP-even couplings, the distri-
bution of this variable will exhibit a dip at π/2 and peaks at 0 and ±π, whereas a pure CP-odd
coupling would lead to the opposite behavior. VBF events, on the other hand, have a ∆φjj,signed

distribution which is approximately flat with a slight rise towards ∆φjj,signed = ±π. Any addi-
tional anomalous CP-even or CP-odd contribution to the interaction between the Higgs boson and
weak bosons would manifest itself as an additional oscillatory component, and any interference
between the SM and anomalous couplings can produce distributions peaked at either ∆φjj,signed

= 0 or ∆φjj,signed = ±π [183, 184]. More details on using ∆φjj,signed to probe non-SM CP effects are
given in Section 6.1.2.

The procedure used to choose the binning for each differential distribution is detailed in Section 5.3.4.

5.2 Data and MC simulation samples

5.2.1 Data sample

The measurements presented in this chapter are performed on pp collision data collected with the ATLAS
detector during the full Run-2, between 2015 and 2018, with a proton bunch spacing of 25 ns. This corre-
sponds to a total integrated luminosity of 139 fb−1. The baseline luminosity measurement is performed
using the LUCID-2 detector [185]. The luminosity is measured with an uncertainty of 1.7% determined
from a calibration of the luminosity scale using x-y beam-separation scans, following a methodology
similar to that detailed in Ref. [186]. This method is known as the Van Der Meer scan [125]. The luminos-
ity collected in each year, after data quality and trigger requirements have been applied, and its relative
contribution to the full data set is summarized in Table 5.1.

Year Luminosity [fb−1] Fraction

2015 3.2 2.3%
2016 33 23.5%
2017 44.3 31.6%
2018 59.9 42.7%

Total 139± 1.7%

TABLE 5.1: Summary of the Run-2 data set taken between 2015 and 2018 [187].

5.2.2 Monte Carlo Simulation Samples

5.2.2.1 Higgs boson signal default simulation

Simulated event samples of Higgs bosons decaying to two photons are generated for the main pro-
duction mechanisms: gluon-fusion ggF, vector boson fusion VBF, associated production with a vector
boson WH and ZH, associated production with top anti-top pair tt̄H, and associated production with
bottom anti-bottom pair bb̄H. These production mechanisms, described in Section 1.3.2, are used to
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study the shape of the signal mγγ distribution discussed in Section 5.4.1, as well as to calculate the cor-
rection factors described in Interlude B. The hard scattering process leading to the production to the
Higgs boson is generated using POWHEG (Positive Weight Hardest Emission Generator) [188–191], with
the PDF4LHC15 PDF set [36]. All generated samples assume a Higgs boson of mass mH = 125 GeV
and width ΓH = 4.07 MeV [49]. The Higgs boson decay to two photons, as well as the effects of the
underlying event, parton showering, and hadronization, are modeled by interfacing the output of the
pp → H + X event generation with PYTHIA 8 [31], using the AZNLO set of parameters that are tuned
to data [192]. The stable particles created from these simulations (and defined in Section 5.3.2) are then
passed to a GEANT4 simulation [159] of the response of the ATLAS detector, and the same reconstruc-
tion algorithms as those used for data are executed. The samples are normalized according to the most
accurate theoretical predictions of the corresponding Higgs boson production cross sections, multiplied
by the H → γγ branching ratio of 0.227+0.006

−0.006% [44].
The details of the event generation for the different production modes, also summarized in Table 5.2,

are:

• Gluon-fusion events are generated with POWHEG NNLOPS [188], which is a state of the art gen-
erator based on MINLO HJ and the POWHEG method, reaching NNLO+NNLL accuracy in its
description of the Higgs boson pT and rapidity distribution. The ggF sample is normalized to the
total cross section calculated at N3LO (QCD) with additional NLO electroweak corrections [193].
The ggF sample includes approximately 18M events.

• Vector Boson Fusion (VBF) events are generated with POWHEG-BOX [194] at NLO accuracy in QCD.
The VBF sample is normalized to a cross section calculation with an approximate NNLO accuracy
in QCD and includes NLO electroweak corrections [195–197]. The VBF sample includes approxi-
mately 7M events.

• Events from associated production of a Higgs boson and a vector boson (VH, with V = W±, Z
bosons) are generated with POWHEG-BOX. The samples include quark-initiated (qq̄ → VH) and
gluon-initiated (gg → ZH) events. The samples are generated with NLO accuracy in QCD for
quark-initiated production and LO for gluon-initiated production. The samples are normalized to
a cross section calculation at NNLO accuracy in QCD using VH@NNLO with electroweak NLO
correction [198–200] for the quark initiated production and NLO accuracy in QCD for the gluon
initiated production. The VH samples include approximately 5M events.

• Associated production with a top quark pair (tt̄H) samples are generated with POWHEG-BOX at
NLO accuracy in QCD . The samples are normalised to a cross section calculation at NLO accuracy
in QCD with electroweak NLO correction [51–53]. The tt̄H sample includes approximately 8M
events.

• Associated production with bottom quark pair (bb̄H) samples are generated with POWHEG-BOX

with NLO accuracy in QCD. The samples are normalised cross ssection calculation at to NNLO ac-
curacy in QCD with electroweak NLO correction [54, 55]. The bb̄H sample includes approximately
400k events.

The uncertainty on the predicted cross section of the different production modes is computed from
uncertainties from QCD, PDF, and αS as detailed in Section 1.3.

5.2.2.2 Background simulation

Non-resonant diphoton events pp → γγ + X (i.e. irreducible background events) are generated using
SHERPA 2.2.4 [201] and the CT10 PDF set. The matrix elements are calculated at next-to-leading order
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accuracy in the strong coupling constant αs for the real emission of up to one additional parton, and
at leading-order accuracy in αs for the real emission of two or three additional partons. They are then
merged with the Sherpa parton shower using the MEPS@NLO prescription. The background samples are
passed through a fast parametric simulation of the ATLAS detector response [202]. The fast simulation
is used instead of the full detector simulation in order to accelerate the production time due to the large
number of events to be simulated (O(100M) events), given the SM diphoton cross section σ = 19.2 nb.
The sample is then normalized to data using data sidebands, after having estimated the contribution to
the yield in the same control region from reducible background events.

Process Generator Showering PDF set Order of ME σ [pb] Order of σ calculation√
s = 13 TeV

ggF POWHEG NNLOPS PYTHIA 8 PDF4LHC15 NNLO+NLL (QCD) 48.52 N3LO(QCD)+NLO(EW)
VBF POWHEG-BOX PYTHIA 8 PDF4LHC15 NLO (QCD) 3.78 approximate-NNLO(QCD)+NLO(EW)
WH POWHEG-BOX PYTHIA 8 PDF4LHC15 NLO (QCD) 1.37 NNLO(QCD)+NLO(EW)
qq̄′→ZH POWHEG-BOX PYTHIA 8 PDF4LHC15 NLO (QCD) 0.76 NNLO(QCD)+NLO(EW)
gg→ZH POWHEG-BOX PYTHIA 8 PDF4LHC15 LO (QCD) 0.12 NLO(QCD)+NLO(EW)
tt̄H POWHEG-BOX PYTHIA 8 PDF4LHC15 NLO (QCD) 0.51 NLO(QCD)+NLO(EW)
bb̄H POWHEG-BOX PYTHIA 8 PDF4LHC15 NLO (QCD) 0.49 NNLO(QCD)+NLO(EW)

γγ SHERPA SHERPA CT10 NLO (QCD) 19.2× 103 NLO (QCD)

TABLE 5.2: Event generators and PDF sets used to model signal and background processes. The cross
sections of Higgs production processes are reported for a center of mass energy of

√
s = 13 TeV and a SM

Higgs with mass mH = 125.09 GeV. The table reports the order of the ME generation and the order of the
inclusive cross section calculation that is used to normalize the sample.

5.2.2.3 Pileup simulation

Contributions due to in-time pileup are included by overlaying the simulated hard-scatter events with
minimum-bias events generated with PYTHIA8 [31]. Pileup events are overlaid onto the hard scattering
events during digitization. The number of included pileup events is obtained by randomly drawing
a number from a Poisson distribution with a mean of µ, where µ is the average number of additional
proton-proton interactions per bunch crossing. The simulation of pileup is done before data taking was
complete and the actual information about the pileup is known. Therefore, each sample is generated
with a broad range of pileup values, µ, in order to encompass all possible pileup conditions which may
be experienced during data taking. This distribution will then be corrected after data taking to account
for the actual pileup distribution in data. Out-of-time pileup is included by adding detector signals from
previous bunch crossings, also simulated from PYTHIA8 minimum-bias events. The frequency of these
signals is modeled on the nominal bunch structure used by the LHC.

5.2.2.4 Additional SM Higgs boson signal simulation

As detailed in the introduction, one of the main advantages of particle level fiducial cross section mea-
surements is that they can be compared directly to different SM cross section calculations. Therefore, in
addition to the nominal SM predictions detailed in Section 5.2.2.1, the measured cross sections will be
compared to additional state-of-the-art SM predictions. Several of these additional theory predictions
are computed for the inclusive phase space without the selection criteria defining the fiducial volume
(detailed in Section 5.3.2). Therefore, in order to compare these theory predictions to the fiducial cross
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section we apply an acceptance factor, αfid to map the inclusive phase space to the particle level fiducial
volume defined as :

αfid =
σfid(pp→ H → γγ, particle level)
σinc(pp→ H → γγ, particle level)

(5.1)

These acceptance corrections are computed using the default SM predictions and include the same
theoretical uncertainties (QCD, PDF, and αS) as the default predictions. The following predictions for the
gluon-fusion production mode will be compared to the unfolded fiducial cross sections after combining
the default non-gluon-fusion predictions:

• NNLOJET+SCET [203] calculation for the pγγ
T distribution providing predictions using a N3LL

resummation matched to an NNLO fixed-order calculation. These calculations include as well
the effect of the finite top-quark mass which provides an accurate description of the transverse
momentum region above the top-quark mass pH

T > mt.

• The |yγγ| distribution is compared to SCETLIB, which provides predictions for |yγγ| at NNLO+NNLL’φ
accuracy, derived by applying a resummation of the virtual corrections to the gluon form fac-
tor [204, 205]. The subscript φ refers to the fact that the applied resummation is to the gluon form
factor. The underlying NNLO predictions are obtained using the MCFME event generator [206,
207] with zero-jettiness subtractions [208, 209].

• The Njets distribution is compared to the following predictions:

– The perturbative JVE+N3LO prediction of Ref. [46], which includes QCD NNLL resummation
of the pT of the leading jet which is matched to the N3LO total cross section. This calculation
was performed only for the inclusive one-jet cross section.

– The perturbative STWZ-BLPTW predictions of Refs. [210, 211], which include NNLL′+NNLO
QCD resummation for the pT of the leading jet, combined with a NLL′+NLO QCD resum-
mation for the subleading jet.1 The numerical predictions for

√
s = 13 TeV are taken from

Ref. [44].

– The perturbative NNLOJET prediction of Refs. [212, 213]. This is a fixed-order NNLO QCD
prediction inclusive H + 1-jet production.

– The perturbative GOSAM prediction of Refs. [214, 215], which provides the fixed-order loop
contributions accurate at NLO in QCD for the inclusive H + zero-jet, H + one-jet, H + two-jet,
and H + three-jet regions. The real-emission contributions at fixed order in QCD are provided
by SHERPA [201].

– The SHERPA (MEPS@NLO) prediction of Refs. [216–219] that is accurate to NLO in QCD for
the inclusive H + zero-jet, H + one-jet, H + two-jet, and H + three-jet regions and includes
top-quark finite mass effects.

– The MG5_aMC@NLO prediction of Refs. [220, 221], which includes up to two jets at NLO ac-
curacy using the FXFX merging scheme [222]. The central merging scale is taken to be 30 GeV.
These predictions are derived in the full phase space. The MG5_aMC@NLO predictions are
shown for the jet multiplicity. Uncertainties are estimated by varying the merging scale be-
tween 20 and 50 GeV.

• The pj1
T distribution is compared to:

1The prime superscript indicates that the leading contributions from N3LL (resp. NNLL) are included along with with the full
NNLL (resp. NLL) corrections.



5.3. Event selection 161

– The same NNLOJET prediction described above for the Njets distribution.

– SCETLIB(STWZ) [205, 210], which provides predictions for pj1
T at NNLL′+NNLO accuracy by

applying a resummation in pj1
T .

• The mjj and ∆φjj,signed distributions are compared to SHERPA (MEPS@NLO) and GOSAM described
above for the Njets distribution.

5.2.2.5 Corrections to simulations

Several corrections are applied to the Monte-Carlo simulation samples. These correction factors are
different for the samples with the full detector simulation and the fast simulation ones. The corrections
are as follows:

• A reweighting procedure is used to correct the average number of interactions per bunch crossing,
〈µ〉. The reweighting is applied to simulated events to ensure that the pileup distribution of the
simulation matches that observed in data.

• A similar reweighting procedure is applied to match the z distribution of the primary vertex in the
simulation to that observed in the data.

• The photon energy spectrum is smeared to match the resolution observed in data. Also, correction
factors are used to correct shower shapes based on the comparison between data and simulation as
detailed in Section 3.3.1.1.

• Correction factors are applied to simulated samples to account for the residual differences between
data and the simulation for photon identification and (track and calorimeter) isolation efficiencies.

5.3 Event selection

The event selection used in this analysis is described in this section. The selection criteria applied to
data and the detector-level simulations are described in Section 5.3.1. The particle-level selection used to
define the fiducial region is given in Section 5.3.2. More emphasis is given to the particle-level isolation
selection in Section 5.3.3. The choice of the binning of the differential variables is detailed in Section 5.3.4.

5.3.1 Detector-level Event Selection

5.3.1.1 Event preselection

Events first go through a preselection based on data quality and trigger requirements. Only events col-
lected when all detector subsystems were operating in nominal running conditions and with good data
quality are kept. These requirements are applied only to data. Selected events are then required to have
at least one reconstructed primary vertex (PV) candidate. The reconstructed vertices are required to be
consistent with the x and y coordinates of the beam spot.

Events are collected using a high-level trigger that requires at least two reconstructed photons with
ET larger than 35 and 25 GeV. These photons are required to pass photon identification criteria based on
the energy leakage in the hadronic compartment and on the shower shape in the different layers of the
electromagnetic calorimeter. For data collected in 2015 and 2016 the photon candidates were required
to pass loose photon identification criteria (detailed in Section 3.3.1.1). In the data collected in 2017 and
2018, due to the higher pileup, photon candidates were required to pass the medium photon identification
criteria, in order to limit the rate of the diphoton trigger.
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5.3.1.2 Object selection

Photons Photon candidates are reconstructed as detailed in Section 3.3.1. These candidates are then
calibrated using the procedure detailed in Chapter 4. The photon candidates used for the measurement
of this chapter are then required to pass the following requirements:

• Kinematic requirements (ET > 25 GeV, |η| < 2.37) are applied. Photons reconstructed in the
transition region between the barrel and the end-cap 1.37 < |η| < 1.52 are rejected. This is a
result of the poor resolution in this region due to the large amount of material upstream of the
electromagnetic calorimeter, as well as of the poor photon/hadron discrimination in this region
due to the limited segmentation of the readout cells of the first layer of the EM calorimeter.

• An ambiguity requirement is required for photon candidates in order to reduce the number of elec-
trons reconstructed as photons. The e → γ misidentification is a result of electrons and photons
having similar signatures in the detector. Therefore, it may happen that the same particle can be
reconstructed as both electron and photon. This may yield genuine electrons reconstructed as pho-
tons and passing the offline selection. The electron-to-photon fake rates are measured in electron-
enriched control regions (such as the Z → ee) and selecting events using photon reconstruction
and identification criteria instead of electron ones. Electron-to-photon fake rate measurements, de-
tailed in Ref. [223], showed that the measured fake rate ranges from < 2% in the barrel up to 7% in
the end-caps. This fake rate can be mitigated by up to 50% [224] by checking the compatibility of
reconstructed tracks with calorimeter energy deposits for reconstructed photon candidates.

• Loose off-line photon identification requirements are applied.

Diphoton primary vertex The two highest pT photon candidates passing the previous requirements
are used to reconstruct the diphoton candidate of the event and to identify the diphoton primary vertex.
The latter is selected among all reconstructed PV candidates using a neural-network algorithm, detailed
in Ref. [225], based on the following input quantities:

• The scalar sum ∑ pT of the momenta of the tracks associated with each reconstructed vertex.

• The sum ∑ p2
T of the squared momenta of the tracks associated with each reconstructed vertex.

• The difference in azimuthal angle ∆φ between the vector sum of the track momenta and the trans-
verse momentum vector of the diphoton system.

• The pointing based on the hybrid primary vertex variable (zvertex−zHPV)
σHPV

which uses the flight direc-
tion of the photons as determined by the measurement using the longitudinal segmentation of the
calorimeter and the conversion point or hits in the precision tracking devices.

The efficiency to select a reconstructed PV within 0.3 mm of the true interaction point, studied with
simulated H → γγ samples, was found to be significantly higher for this neural-network algorithm
when compared to the default algorithm used in ATLAS, which chooses the PV candidate with the
largest ∑ p2

T of the associated tracks ("hardest vertex"), as shown in Figure 5.4a. The performance of the
diphoton primary vertex neural-network algorithm in data and simulation is studied by selecting Z → ee
candidate events, removing electron tracks from the list of reconstructed tracks, and thus treating the
electron candidates as photons. The results of the validation are shown in Figure 5.4b, demonstrating
good agreement between data and the simulation.
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(A) Diphoton primary vertex selection efficiency. (B) Validation of the primary vertex selection
neural-network.

FIGURE 5.4: (A) A comparison of the vertex selection efficiency using the neural network algorithm (black)
or the highest ΣpT vertex (red). (B) Validation of the neural-network algorithm using Z → ee events in

data and the simulation [175].

Jets Jets are reconstructed using the anti-kt algorithm [148] with the distance parameter R = 0.4. Jets
are required to pass the kinematic requirements |η| < 4.4 and pT > 25 GeV. In order to reduce the
number of reconstructed jets produced by the additional pileup interactions, a selection based on the Jet
Vertex Tagger (JVT, detailed in Section 3.3.2) [153] is used. The JVT, computed for jets with |η| < 2.5 and
pT < 120 GeV, estimates the probability of a jet to originate from pileup or from a hard scattering, based
on the number of tracks associated to the primary vertex. Selected jets are required to have JVT value
larger than 0.59.

Overlap removal Particles produced in the pp collisions and interacting with the detector may be re-
constructed as more than one candidate by different object reconstruction algorithms. In particular, pho-
tons can also be reconstructed as jets. An overlap removal procedure is implemented that removes jets
candidates that are within ∆R(jet, γ) < 0.4 of a reconstructed photon passing tight identification require-
ments.

Diphoton system and final event selection The Higgs boson candidate is formed from the two highest
pT photon candidates. The diphoton candidate must also satisfy the following requirements:

• The photon candidates are required to pass the tight identification criteria, as defined in Section 3.3.1.1.

• The photon candidates are required to pass the following isolation criteria:

– The track isolation variable ptcone20, calculated using only the tracks from the diphoton
primary vertex, must satisfy ptcone20 < 0.05× pT.

– The calorimeter isolation variable topoetcone20 must satisfy topoetcone20 < 0.065× pT

• The diphoton invariant mass must be in the region mγγ ∈ [105, 160] GeV. The diphoton invariant
mass is calculated as:

mγγ =
√

2E1E2(1− cos(θ)), (5.2)
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where E1 and E2 are the leading and sub-leading photon energies and θ is the angle between them.
The angle between the selected photons is estimated using the neural-network selected diphoton
vertex, as the η position of the photons (determined from the barycenter of the energy cluster in
the calorimeter) is corrected to point to the selected diphoton PV.

• The leading (sub-leading) photon must satisfy a relative-pT requirement defined as

pT/mγγ > 0.35 (0.25).

The pT/mγγ distribution is shown in Figure 5.5 for the leading and sub-leading photons using
gluon-fusion signal and γγ background. This relative-pT cut has no significant impact on the signal
shape, but it simplifies the analytical modeling of the invariant mass shape of the background [226].
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FIGURE 5.5: Distribution of pT/mγγ for gluon-fusion Higgs boson signal and γγ background for the (A)
leading photon and (B) sub-leading photon. Selected events are required to have pT/mγγ > 0.35 (0.25)

for the leading (sub-leading) photons.

5.3.2 Particle-level Event Selection

To compare the results to other experiments or to theoretical predictions, the cross sections are measured
in fiducial regions defined at the particle level, i.e. based on event generation information. The definition
of the fiducial volume and of the observables is based on stable final state particles that enter the detector.
Stable particles are defined as particles with lifetime cτ0 > 10 mm that are not created by the GEANT

simulation of the detector response [227]. The type of each particle is represented by the Particle Data
Group’s [29] “Monte Carlo Numbering Scheme” identifier (or "PDG ID"), referred to as PdgId in the
following. Particles originating from the pileup collisions are ignored. The selection criteria applied at
particle-level are as follows:

Photons Particle-level photons are identified by PdgId = 22. They are required to have not originated
during hadronization. This means that their parent should not have |PdgId| ≥ 111. If the parent is a τ

lepton (|PdgId| = 15) or a photon, corresponding to a final state radiative emission, then the PdgId of
the grandparent is checked, and so on.

Particle-level photons are required to have generator-level pT > 25 GeV and |η| < 1.37 or 1.52 <

|η| < 2.37. In addition, they are required to pass a particle-level isolation requirement, detailed in
Section 5.3.3.
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Jets Particle-level jets are clusters of stable particles obtained using the anti-kt clustering algorithm
with a radius parameter R = 0.4 [148]. Muons and neutrinos are not included in the clustering at the
particle-level since they do not leave significant energy deposits in the calorimeters and so do not enter
the detector-level jet finding. Selected particle-level jets are required to pass the kinematic selection
pT > 25 GeV and |y| < 4.4. Jets are rejected if they are reconstructed within ∆R < 0.4 of a selected
photon or within ∆R < 0.2 of a selected electron.

Event selection The two photons with the highest pT are chosen as the Higgs candidate. These photons
are selected after the kinematic photon requirements have been applied. The diphoton invariant mass
mγγ is required to lie in the range mγγ ∈ [105, 160] GeV. The two photon candidates are required to pass
relative-pT requirements of pT/mγγ > 0.35 (0.25) for the leading (sub-leading) photon.

5.3.3 Particle-level Isolation

As detailed in Section 5.1.1, the motivation for a measurement of the Higgs boson cross section in a
fiducial region matching the experimental selection is to reduce model-dependent extrapolations of the
acceptance and efficiency to the full phase space. However, a residual model dependence in the mea-
sured cross section can be present if the correction for detector effects (unfolding), described in Interlude
B, depend on the production mode, as discussed in the following.

Let us consider the simplest of the unfolding methods, which is the bin-by-bin correction factor de-
fined in Equation (5.3):

σi × BR =
ν

sig
i

ci ×Lint
, (5.3)

where σi is the measured cross section in bin i, ν
sig
i is the measured signal yield, Lint is the integrated

luminosity, and

ci =
ndet

i

nptcl
i

(5.4)

is the correction factor. The correction factor is determined from the expected detector and particle level
yields, ndet

i and nptcl
i respectively, as estimated from the simulations. If different Higgs boson production

modes yield different values of the correction factor, when these factors are combined into a single value
used to unfold the measurement, model dependence is introduced via the weights of the combination,
which are determined as the relative fractions of the Standard Model cross sections for each process:

ci =
Σswsndet

i,s

Σswsnptcl
i,s

, (5.5)

where s ∈ {ggF, VBF, WH, ZH, ttH, bbH}. The larger the disagreement between the different ci,s (the
correction factor for each production mode), the bigger the model dependence is.

5.3.3.1 Particle-level photon isolation

As shown in Section 5.3.2, the kinematic selection requirements are similar between the detector-level
and the particle level. The detector-level photon isolation requirement, however, requires further atten-
tion.

The detector-level photon isolation requirement is imposed in order to separate photons originating
from the Higgs boson decay from photons emitted from hadronic jets. For example, collimated photons
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FIGURE 5.6: The probability for an event to fail the detector-level calorimeter or track isolation require-
ments for (A) ggF and (B) ttH. The figures show that the track isolation is much stronger in rejecting events
than the calorimeter isolation at zero pileup, which is the region relevant for the particle level quantities.
The effect of pileup is more evident for ggF where more pileup results in an increased rejection from the
calorimeter isolation, whereas for ttH the existence of hard scatter jets makes the event rejection almost

pileup independent.

from boosted π0 → γγ decays can mimic the signature of single photons in the EM calorimeter. These
photons, nevertheless, will be surrounded by hadronic activity, unlike photons from H → γγ.

Without a corresponding particle-level isolation requirement, this would lead to correction factors
ci that are highly dependent on the Higgs boson production mechanism (as shown in Figure 5.9). This
would cause a significant model dependence of the final measured cross section. To reduce the model
dependence of the measurement, a photon isolation requirement was included in the particle-level selec-
tion, with the drawback that theoretical predictions become more complicated [228]. A different solution
to this problem, based on a veto on ∆R between photons and nearby jets, is shown in Appendix A.

The particle-level isolation requirement was chosen to mimic the efficiency of the experimental one.
Two particle-level isolation quantities are defined, to mimic the calorimeter-based and track-based detector-
level isolation: the particle-level (calorimeter) isolation, truthcalocone20, defined as the sum of trans-
verse energies of stable particles (with pT > 1 GeV) in a cone of radius 0.2 around the photon, and
the particle-level track isolation, ptcone20particle, defined in a similar way but considering only charged
particles [227].

Since pileup is not considered at particle-level, the matching with the detector-level must be done in
the limit of zero 〈µ〉. The inefficiency of the track- and calorimeter-based isolation selection for gluon-
fusion and ttH events as a function of 〈µ〉 is shown in Figure 5.6. The figure shows that for 〈µ〉 = 0, the
track-isolation requirement removes more events than the calorimeter isolation one. For this reason, at
the particle-level, the isolation requirement will be made only on track isolation. This simplifies theory
calculation without compromising the overall isolation requirement.

To find the particle-level isolation requirement to be applied in order to select a phase space closely
matching the one selected by the detector-level isolation requirement, the following mapping procedure
between the detector-level and particle-level isolation variables is followed:

• at detector-level, apply the full cutflow including only the weakest of the two isolation requirements
(i.e. the calorimeter isolation), rejecting events without a reconstructed diphoton system;

• at particle-level, select stable photons with pT > 20 GeV that are not originating from hadrons;

• match detector-level and particle-level diphotons within ∆R < 0.1;
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FIGURE 5.7: (A) Detector-level versus particle-level isolation track-isolation for matched diphotons for the
different Higgs boson production mechanisms weighted by their cross sections. The plot shows also the
1D projections on top of the corresponding axes. (B) Profile of the 2D histogram using the median and
error computed from bootstrapping with 500 toys with the linear fit to determine detector-level isolation

as function of the particle level isolation.

• for each of the two photons, separately for each Higgs boson production mode, fill a 2D histogram
with their detector-level and particle-level track-isolation variables;

• combine the 2D histograms of different Higgs boson production modes weighting them by their
Standard Model cross sections. The combined 2D histogram is shown in Figure 5.7a;

• profile the combined 2D histogram by finding, for each bin of the particle-level isolation, the me-
dian of the detector-level isolation distribution, and its uncertainty through a bootstrap technique
based on the RMS of 500 pseudo datasets. The median is used instead of the mean in order to
account for the peak at zero coming from true isolated photons. The resulting profile histogram is
shown in Figure 5.7b.

• perform a linear fit of the profile to find the relation between detector-level and particle-level track
isolation. The fit is modeled as

ptcone20detector = p0 + p1 × ptcone20particle;

• use the previous formula to find the ptcone20particle threshold corresponding to the detector-level
isolation requirement ptcone20detector < 0.05× pT.

The resulting mapping fit shows that the detector-level and particle level isolation variables are equiva-
lent since the fit parameters are

p1 = 0.997± 0.009 , p0 = −0.121± 0.095,

and therefore the particle-level track isolation requirement will be

ptcone20particle < 0.05× pT

A similar procedure was performed to map the calorimeter isolation (applying the full detector-level
selection, including the track-isolation requirement but excluding the calorimeter-isolation one). The
results are shown in Figure 5.8. The fit was performed in the range corresponding to the events failing



168
Chapter 5. Measurement of the Higgs Boson Fiducial Inclusive and Differential Cross Sections in the H → γγ

Channel

0 2 4 6 8 10 12 14 16 18 20
Particle-level truthcalocone20 (GeV)

0

2

4

6

8

10

12

14

16

18

20

D
et

ec
to

r-
le

ve
l t

op
oe

tc
on

e2
0 

(G
eV

)

8−10

7−10

6−10

5−10

4−10

3−10

2−10

6−10 5−10 4−10 3−10 2−10

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

6−10
5−10
4−10
3−10
2−10
1−10

(A)

0 2 4 6 8 10 12 14 16 18 20 22
Particle level truthcalocone20 (GeV)

0

2

4

6

8

10

D
et

ec
to

r 
le

ve
l t

op
oe

to
co

ne
20

 (
G

eV
)

(B)

FIGURE 5.8: (A) 2D histogram with the detector and particle-level isolation calorimeter isolation variables
for matched diphotons for the different Higgs production mechanisms weighted with their cross sections.
The plot shows also the 1D projections on top of the corresponding axes.(B) Profile of the 2D histogram

using the median and error computed from bootstrapping with 500 toys.

the detector-level calorimeter isolation (topoetcone20 � 1.5 GeV). The resulting fit parameters are

p1 = 0.431± 0.047 , p0 = −1.202± 0.394,

which results into a particle-level calorimeter requirement of

truthcalocone20 < 0.15× pT + 2.789 (GeV).

5.3.3.2 Correction factors dependence on the Higgs boson production mode

Figure 5.9 shows the effect of applying the particle-level isolation requirement on the correction factors.
The plot shows that applying the particle-level track isolation significantly reduces the dependence of
the correction factors on the Higgs boson production mode. This is more evident for the tt̄H production
mode as the jet activity causes more events to fail detector-level isolation criteria and hence results in
a smaller correction factor. The plot also shows that the effect of applying a particle-level calorimeter
isolation requirement in addition to the particle-level track isolation one is minimal, as expected from
the studies of Section 5.3.3.1 and Figure 5.6. The residual dependence of the correction factors on the
Higgs boson production mode after the particle-level isolation requirement and the corresponding model
dependence introduced in the cross section measurement will be estimated in Section 5.5.3.1.

5.3.4 Binning of the differential variables

The choice of the binning for the differential variables is performed before unblinding the data in the mγγ

signal region, i.e. the subset of events passing the full detector-level selection and with the additional
requirement mγγ ∈ [121− 129] GeV. The optimal binning is chosen in order to:

• increase the expected signal significance in each bin, to avoid having bins with low statistics as they
can cause instabilities in the fitting procedure.

• increase the migration purity and the reconstruction efficiency in each bin in order to reduce un-
certainties from the unfolding procedure. The migration purity P is defined as P = nptcl&det/ndet,
where nptcl&det is the event yield at both detector-level and particle-level bin, and ndet is the event
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points show the case when a particle-level track isolation requirement is applied. The red points are for
the case of particle-level track and calorimeter isolation. Production-mode dependence is reduced when
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yield at a given detector-level bin. The purity is sensitive to migrations due to resolution effects,
in addition to fake events wrongly reconstructed in the detector-level fiducial volume. The re-
construction efficiency ε is defined as ε = nptcl&det/nptcl , with nptcl the event yield in a given
particle-level bin.

The following criteria are adopted for the choice of the binning:

• Expected significance close to or greater than 2σ.

• Migration purity and reconstruction efficiency close to or higher than 50%,

The expected significance in each bin is computed as s/
√

b, where s is the number of SM Higgs
boson signal events expected in that bin, and b is the number of background events under the Higgs
boson peak. The number of background events, b, is roughly estimated from a linear extrapolation of
the events counted in data in the mγγ side-bands around the signal region. Using the full Run-2 dataset,
we expect 6247 signal events in the inclusive fiducial region, corresponding to a significance s/

√
b ≈ 12.

The purity in the inclusive fiducial region is 98.2%, and the efficiency is 72%.
Using the above requirements, a simple algorithm is developed to find the optimal binning for the dif-

ferential variables. The algorithm uses the same bin edges of the H → ZZ∗ → 4` analysis to facilitate the
combination of the two measurements. A summary of the chosen binning with purities, efficiencies, and
expected significance is shown in Table 5.3. The table shows large changes in expected significance and
purity between adjacent bins for some differential variables, such as pγγ

T and pj1
T . This is generally due to

the change in bin width, with wider bins yielding higher purities due to smaller migrations. The lower
efficiencies for jet variables are the result of the worse energy resolution of jets and hence jets with true
pparticle−level

T > 30 GeV may not pass the detector-level requirement pdetector−level
T > 30 GeV. In addition,

jets from pileup collisions decrease the purity as they increase the number of detector-level jets without
a corresponding increase in particle-level jets. More details on pileup jets are given in Section 5.5.2.6.
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pγγ
T GeV Bin Purity = nreco.&ptcl.

nreco. Efficiency = nreco.&ptcl.

nptcl. Exp. SM yield Exp. SM unc. Exp. SM Sig.
0− 5 0.84 0.57 275.4 105.2 2.6

5− 10 0.81 0.56 588.7 158.9 3.7
10− 15 0.80 0.55 633.1 177.3 3.5
15− 20 0.80 0.55 582.6 165.3 3.5
20− 25 0.80 0.55 510.4 149.7 3.4
25− 30 0.80 0.55 439.5 135.4 3.2
30− 35 0.79 0.55 375.8 133.3 2.8
35− 45 0.88 0.61 598.0 155.6 3.8
45− 60 0.91 0.62 626.6 151.4 4.1
60− 80 0.93 0.63 527.9 134.2 3.9

80− 100 0.92 0.64 327.8 100.3 3.3
100− 120 0.92 0.65 212.3 60.5 3.5
120− 140 0.91 0.66 147.4 43.6 3.4
140− 170 0.93 0.69 146.7 38.3 3.8
170− 200 0.93 0.69 90.6 25.8 3.5
200− 250 0.95 0.72 82.6 22.3 3.7
250− 350 0.96 0.74 58.3 14.4 4.0
350−∞ 0.98 0.76 23.4 8.7 2.7

|yγγ| Bin Purity = nreco.&ptcl.

nreco. Efficiency = nreco.&ptcl.

nptcl. Exp. SM yield Exp. SM unc. Exp. SM Sig.
0.00− 0.15 0.97 0.70 662.8 142.1 4.7
0.15− 0.30 0.96 0.69 652.2 141.4 4.6
0.30− 0.45 0.96 0.69 634.2 134.5 4.7
0.45− 0.60 0.95 0.69 600.3 134.9 4.4
0.60− 0.75 0.95 0.68 564.7 137.1 4.1
0.75− 0.90 0.95 0.68 524.3 141.9 3.7
0.90− 1.20 0.96 0.67 919.6 201.7 4.6
1.20− 1.60 0.96 0.66 948.1 234.6 4.0
1.60− 2.40 0.97 0.65 741.0 203.4 3.6

Njets[p
j
T > 30] Bin Purity = nreco.&ptcl.

nreco. Efficiency = nreco.&ptcl.

nptcl. Exp. SM yield Exp. SM unc. Exp. SM Sig.
= 0 0.91 0.56 3306.1 407.3 8.1
= 1 0.64 0.48 1783.8 252.6 7.1
= 2 0.58 0.46 806.9 155.2 5.2
≥ 3 0.58 0.56 373.9 104.9 3.6

pj1
T GeV Bin Purity = nreco.&ptcl.

nreco. Efficiency = nreco.&ptcl.

nptcl. Exp. SM yield Exp. SM unc. Exp. SM Sig.
= 0 jet 0.91 0.56 3306.1 407.3 8.1
30− 60 0.60 0.50 1511.3 239.0 6.3
60− 90 0.69 0.48 511.7 132.4 3.9

90− 120 0.67 0.46 532.0 117.5 4.5
120− 350 0.88 0.65 391.7 84.0 4.6
350−∞ 0.89 0.67 17.9 14.5 1.1

∆Φjj Bin Purity = nreco.&ptcl.

nreco. Efficiency = nreco.&ptcl.

nptcl. Exp. SM yield Exp. SM unc. Exp. SM Sig.
< 2 jets 0.95 0.63 5089.9 474.2 10.7

−π −−π/2 0.62 0.50 310.1 113.8 2.7
−π/2− 0.0 0.62 0.53 280.0 70.0 4.0
0.0− π/2 0.62 0.53 280.0 70.0 4.0
π/2− π 0.62 0.50 310.1 113.8 2.7

mjj GeV Bin Purity = nreco.&ptcl.

nreco. Efficiency = nreco.&ptcl.

nptcl. Exp. SM yield Exp. SM unc. Exp. SM Sig.
< 2 jets 0.95 0.63 5089.9 474.2 10.7
0− 170 0.53 0.47 548.9 133.5 4.1

170− 500 0.65 0.52 379.6 89.6 3.8
500− 1500 0.65 0.54 208.2 59.3 3.5
1500−∞ 0.69 0.61 43.9 17.6 2.4

TABLE 5.3: Summary of selected binning for the different differential variables, along expected signif-
cances, migration purities, and reconstruction efficiencies. Red indicates: efficiency<0.5, purity<0.5, ex-
pected significance<2. Bins with significance < 2, typically overflow bins, are not included in the mea-

surement.
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5.3.4.1 Signal composition and migration matrix for the differential variables

The relative fractions of the selected events from the different Higgs boson production modes as a func-
tion of the bins of the differential variables are shown in Figures 5.10 and 5.11. The figures also show the
detector migration matrix, which gives the probability for an event to be reconstructed in a given bin i
of the detector-level observable x giving it was generated in a bin j of the corresponding particle-level
variable y. The migration matrix is a measure of the purities and bin migrations. More details on this are
provided in Interlude B. From the figures, one can observe that:

• Large mjj events are dominated by VBF.

• Events with 3 jets or more receive an important contribution from the tt̄H production mode.

• Events with large pγγ
T and pj1

T receive important contributions from VBF, VH and tt̄H.

5.4 Signal and background invariant mass models

The total Higgs boson event yield and the Higgs boson yield in each bin of the differential distributions
are determined using a fit to the diphoton invariant mass, mγγ. The fitted model (detailed in Section 5.6)
is the sum of two analytic functions that model the signal and background components. The details
of the signal model are shown in Section 5.4.1, while those of the background model are provided in
Section 5.4.2.

5.4.1 Signal model

The shape of the invariant mass distribution for the signal is studied using simulated signal events.
The Higgs boson decay in the diphoton channel H → γγ is resonant. Therefore, the signal is expected
to follow a Breit-Wigner distribution, peaking at the Higgs mass, mH . The effect of the interference
between the diphoton background and the H → γγ signal on the shift of the Higgs mass was found to
be negligible with respect to the experimental uncertainty [229]. The Higgs boson has a narrow width of
4.07 MeV [49]. This width is much smaller than the measured energy resolution of photons (typically ≥
1 GeV, as shown in Figure 4.40). Therefore, the observed distribution will be dominated by the smearing
induced by the finite resolution of the detector. In this study, the mγγ distribution is modeled by a
double-sided Crystal Ball function (DSCB), shown in Eq. (5.6), which is a function chosen empirically
and consisting of a Gaussian core with power-law tails:

CB(mγγ) = N ×





e−t2/2, if − αlow ≤ t ≤ αhigh.

e−
1
2α2

low

[
1

Rlow

(
Rlow − αlow − t

)]−nlow
, if t < −αlow.

e−
1
2α2

high
[

1
Rhigh

(
Rhigh − αhigh − t

)]−nhigh
, if t > αhigh.

(5.6)

where t = (mγγ − µCB)/σCB, Rlow = αlow
nlow

, and Rhigh =
αhigh
nhigh

. Here N is a normalization parameter, µCB

and σCB are the mean and the width of the Gaussian distribution, αlow and αhigh are the positions of the
transitions from the Gaussian core to the exponential tails (in units of σCB on the low and high mass
sides, and nlow and nlow are the exponents of the low and high mass tails. An illustration of this function
is shown in Figure 5.12.

The different shape parameters of the DSCB function are estimated from a fit to the simulated H →
γγ samples. The fit is performed using the combination of the different Higgs boson production modes
samples detailed in Section 5.2.2.1 weighted by their SM cross sections. This parameterization is derived
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FIGURE 5.10: Variations of the relative contributions to the total signal yield from the different Higgs
boson production mode with the bins of (A) pγγ

T (C) |yγγ| and (E) Njets. The migrations matrices for (B)
pγγ

T (D) |yγγ| and (F) Njets, the matrices have the bins in the detector-level in the x-axis and the particle-
level in the y-axis. The bins show the probability of an event generated in particle-level bin j given it was

reconstructed in detector-level bin i.
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FIGURE 5.11: Variations of the relative contributions to the total signal yield from the different Higgs
boson production mode in bins of (A) pj1

T , (C) mjj, (E) ∆Φjj. The migrations matrices for (B) pj1
T , (D) mjj,

(F) ∆Φjj, the matrices have the bins in the detector-level in the x-axis and the particle-level in the y-axis.
The bins show the probability of an event generated in particle-level bin j given that it was reconstructed

in detector-level bin i.
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separately for each bin of the differential variables providing the nominal signal template. The full sig-
nal model will then include shape changes due to systematic uncertainties on µCB and σCB, detailed in
Section 5.5.1.1, as nuisance parameters constrained from the photon energy scale and resolution mea-
surements. The nominal signal model parameters are fixed in the final signal extraction fit to data. The
resulting values of µCB in each bin are shifted by +90 MeV to match the measured Higgs boson mass of
125.09 GeV [23]. Examples of these fits are shown in Figure 5.13 for the inclusive fiducial region and for
the bin pγγ

T ∈ [60-80] GeV.
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FIGURE 5.12: Example of a double-sided Crystal Ball function.

(A) Inclusive fiducial volume. (B) pγγ
T bin 60− 80 GeV.

FIGURE 5.13: Examples of mγγ pf the signal model for (A) the inclusive fiducial volume and (B) the bin
pγγ

T ∈ [60− 80] GeV.

5.4.2 Background model

The estimation of the Higgs boson signal yield requires the precise determination of the background
in the selected data. The main backgrounds affecting this analysis can be categorized into irreducible
and reducible components. The irreducible component comes from non-resonant prompt photon pairs
produced in processes such as qq̄ → γγ, qg → γγ, or gg → γγ. The photons from these processes
are largely indistinguishable from Higgs boson photons, hence the name “irreducible”. The reducible
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component, on the other hand, arises from events with γ-jet and jet-jet final states where jets of hadrons
are misidentified as photons. The photon identification and isolation requirement reject most of these
events, thanks to their jet rejection factor between 5000 and 10000. Hence the reducible component of the
background after the selection is sub-dominant, and the jet-jet component of the reducible background
is negligible (as shown in Figure 5.14).

The background mγγ distributions in each bin of the differential variables and the inclusive sample
are smoothly falling and can be described using analytical functions chosen empirically. The analytical
functions are determined using templates of the background that are built for each bin of the differ-
ential variables and the inclusive sample. These templates include both the reducible and irreducible
components. The procedures for obtaining these templates and for choosing the analytical functions are
detailed in the next sections.

5.4.2.1 Background mγγ templates

The background templates are built from the sum of the reducible and irreducible components, as fol-
lows:

• Irreducible γγ background. The mγγ distribution of this background component is obtained from
large (O(100M) events) simulated γγ event samples generated with SHERPA (Section 5.2.2.2). The
events from this sample are required to pass the nominal event selection detailed in Section 5.3.

• Reducible background. The mγγ distribution of the reducible γ-jet component is determined from
data control regions, defined by inverting the tight photon identification criteria on any of the two
photon candidates while keeping all the other nominal event selection requirements. These control
regions have a small (typically ∼ 10-20%) contamination from γγ events, due to the inefficiency
of the photon identification algorithm. The γγ contamination in each bin is estimated from the
SHERPA diphoton sample and is subtracted from the data control regions. An additional data
control region is built by inverting both the photon identification and isolation requirements of the
nominal selection. This procedure provides higher statistics, resulting in a more accurate estimate
of the shape of the reducible component. This is more evident for bins where the default control
region is poorly populated (e.g. the high pγγ

T or the Njets ≥ 3 bins). A smoothing procedure is then
performed in order to suppress statistical fluctuations since the final mγγ template requires fine
binning (0.25 GeV/bin). The smoothing is performed by fitting the ratio between the irreducible
template from data control regions to the high statistics simulated γγ sample with a second-order
polynomial function. The polynomial function is then used to reweight the shape of the high
statistics γγ simulated event sample to match that of the reducible template.

The final background templates are built by adding the smoothed reducible and irreducible compo-
nents after weighting them with their relative fraction in the signal region. The relative fraction of the
reducible and irreducible components is estimated using a double two-dimensional side-band method
(2× 2D), detailed in Refs. [230, 231]. The 2× 2D side-band method computes the background fraction in
the signal region using the yields in data in background-enriched control regions, populated by events in
which at least one of the two photon candidates that either fail the identification or isolation requirements
or both (i.e. not passing the tight identification and the isolation).

The fractions of the irreducible and reducible background components were found to be
(

75+3
−4

)
%

and
(

25+3.5
−2.4

)
% respectively in the inclusive fiducial region. Figure 5.14 shows the relative fractions of the

reducible and irreducible backgrounds as a function of pγγ
T and Njets bin. The background fractions were

also checked with pileup. The measured fraction was found to be resilient against additional activity
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from higher pileup. The contribution of γγ events is reduced by less than 4% from µ = 15 to µ = 50 as
shown in Figure 5.15.

(A) Background decomposition for pγγ
T . (B) Background decomposition for Njets.

FIGURE 5.14: Background fractions as a function of pγγ
T and Njets [175]. The composition is estimated

using the 2× 2D method detailed in Refs. [230, 231].
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FIGURE 5.15: Fraction of γγ, γ-jet, and jet-jet events in data measured in bins of µ (the average number
of interactions per bunch crossing) using the background decomposition. The error bars on the markers
represent the statistical uncertainty and the filled rectangles the total uncertainty, which is dominated by

systematic sources [232].

The templates are normalized to the event yield in data in the mγγ side-bands. The final background
template for the inclusive fiducial region and that for one particular pγγ

T bin are shown in Figure 5.16.

5.4.2.2 Determination of the background model

Several functional forms were considered for the parametrization of the background mγγ spectrum. They
include:

• A power-law (Pow) function.

• Exponentiated polynomials of first (Exp), second (ExpPoly2) or third (ExpPoly3) degree. As an
example, the exponentiated second-order polynomial has the form:

B
(

mγγ; αbkg
)
= N

(
αbkg

)
· exp

(
−mγγ

α
bkg
1

−
m2

γγ

α
bkg
2

)
, (5.7)
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(A) Background template for the inclusive fiducial
region.

(B) Background template for pγγ
T bin 60-80 GeV.

FIGURE 5.16: Background templates for the inclusive fiducial region and pγγ
T ∈ [60− 80]GeV. The Fig-

ure compares the templates to data sidebands. The reducible component which is part of the template
is shown in yellow. The ratio between the templates and data sidebands is shown, and a linear fit is
performed to assess the agreement between the two. The slope of the fit for each bin was found to be com-
patible with zero, confirming that the final templates describe well the shape of the data sidebands [175].

where α
bkg
1 , α

bkg
2 are nuisance parameters and N

(
αbkg) normalises the function to unity.

• Bernstein polynomials of degree 3 (Bern3), 4 (Bern4), and 5 (Bern5).

An inappropriate choice of the analytical function describing the background can underestimate (or
overestimate) the number of background events under the signal peak, thus biasing the measured signal
events in the signal+background fit to the data. This bias is called the spurious signal and is detailed as
follows.

The spurious signal for each functional form can be used as a measure of the bias in the signal yield
and is used as a tool to select the background function. The spurious signal is estimated by fitting the
background templates detailed in the previous section using a signal + background parameterization.
In an ideal case, where the analytical function describes perfectly the background template, the number
of fitted spurious signal will be zero on average. We look for a background function that minimizes the
spurious signal while limiting the number of degrees of freedom of the model to avoid increasing too
much the statistical uncertainty on the signal yield. More concretely, the selected function must satisfy
the following requirements on the number of spurious signal events (Nsp) and its statistical uncertainty
(∆sp):

• Nsp ± 2∆sp is less than 20% of the background uncertainty, which is an estimate of the statistical
uncertainty on the signal δS.

• Nsp ± 2∆sp is less than 10% of the number of expected signal events Nref for each bin.

The estimation of the spurious signal is performed in the region 121–129 GeV around the expected signal.
This means that the signal+background fit is repeated for S with masses between 121 and 129 GeV. There
is an additional loose goodness-of-fit test which requires the χ2 probability to be higher than 1%, in order
to make sure that the chosen functions can describe reasonably well the background templates.

The main challenge for the estimation of the spurious signal arises from the statistical fluctuations in
the background template. These statistical fluctuations can artificially induce spurious signal, and make
the tested model fail one of the two requirements previously described. This is most likely the case for
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bins with low Monte Carlo statistics. In order to deal with such problem, the MC simulated sample that
is used to build the background template is required to be very large in size, O(100) times the data, in
order to provide smooth mγγ distributions even in the bins with a low number of events. Furthermore, an
envelope around the spurious signal of 2∆sp is considered in order to reduce the effect of the fluctuations,
i.e. avoiding the situation where the spurious-signal criteria rejects a background model when it has no
statistical power to do so. This is known as the relaxed spurious signal criteria, and it is considered when
the nominal spurious signal criteria (Nsp < 20% δS or Nsp < 10% Nref) are not satisfied. An illustration
of the effect of the statistical fluctuations is shown in Figure 5.17.
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FIGURE 5.17: An illustration of the effect of statistical fluctuation on the spurious signal criteria [223]. The
illustration shows the ratio between the fitted spurious signal Ns and the expected Higgs boson signal
Nre f . The light blue band represents double the statistical uncertainty on the fitted spurious signal 2∆sp.

The dashed horizontal lines represent the 10% criteria on Ns/Nre f .

Smoothing using Gaussian processes The number of events in the γγ simulation samples for the
full Run-2 do not satisfy the requirement to be O(100) times the data. This problem manifests itself
more evidently in the lower statistics bins of the kinematic distributions (such as high pγγ

T ). In such
bins, the statistical fluctuations of the background template will be misidentified as spurious signal. An
illustration of such cases is shown in Figure 5.18. In this figure, a low statistics pseudo-dataset was
generated from an exponential background-only function and fitted with a PDF composed of the same
background function and a Gaussian signal. The signal and background fit resulted in a non-zero Nsignal

which in the context of spurious signal test will be identified as spurious signal or uncertainty on the
background modeling despite that the analytical function of the background was known.

To solve this problem, a smoothing procedure using Gaussian Processes regression (GPR) is used [234].
The goal of this technique is to suppress statistical fluctuations in the background template without bias-
ing the shape of wider features in the background template. In order to do this, a prior has to be defined
which is specified in a kernel object. For the presented studies a combination of a Gibbs kernel [235] and
an additional custom error kernel is used.

The Gibbs kernel is motivated for smoothly-falling spectra where the length scale increases linearly
with x. The Gibbs kernel has two hyper-parameters:

• a length scale λ, with larger λ meaning more smoothing.

• the slope of the length scale bλ.

In order to account for the statistical uncertainties in the original background templates, an additional
noise kernel is used. The custom error kernel is a kernel similar to a white noise kernel but with an error
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FIGURE 5.18: An illustration of the limitations of the spurious signal test on a low statistics background
template. A known analytical function is used to generate a pseudo dataset that is then fit with sig-
nal+background PDF resulting in non-zero Nsignal . This is a result of the statistical fluctuations of the

background template. Scheme based on Ref. [233].

magnitude that decreases linearly with x to mimic Poissonian statistical uncertainties. The error kernel
has two hyperparameters: ε and bε. These parameters are highly constrained to approximate the error
bars from the original background template.

The hyperparameters of the Gibbs kernel are optimized to smooth out statistical fluctuations without
removing any real features of the background. The optimization is performed by scanning a 2D space
of the hyper-parameters (λ, bλ) for a background template with injected narrow and wide signals. The
injected signal is of magnitude set to 1% of the total background integral. The narrow signal width is
in the order of the bin width, whereas the wide signal is in the order of the expected signal width. The
difference between the smooth shape (GPR fit without injected signal) and the GPR fit under the injected
signal is compared, and the criteria for the hyperparameters are defined:

• Smooth out at least 33% of narrow injected features defined as with width equal to half the bin
width.

• Smooth out less than 25% of the wide injected features defined as with width equal to that of the
expected signal.

Using these criteria, GPR smoothing was performed. Examples of the results of smoothing are shown
in Figure 5.19 for the inclusive selection and one low statistics bin in pγγ

T .
As expected, there is no visible change for the inclusive selection, but for the pγγ

T bin with fewer statis-
tics, the smoothed template reduces the statistical fluctuation which would otherwise appear a spurious
signal uncertainty. Studies using pseudo-datasets from known analytical functions were performed in
order to check whether the GPR smoothing can introduce a bias to the analysis based on the inclusive
selection. These studies compared the difference between the GPR smoothed templates and the true
known shape for each of the generated pseudo-datasets. These tests found excellent agreement between
the GPR smoothed and the true shape within 1% [175]. A similar test was performed comparing the
estimated spurious signal between the GPR smoothed templates and the non-smoothed templates from
known analytical functions. The results of such studies are shown in Figure 5.20 for different background
shapes showing the mean and standard deviation of the number of spurious signal for the different sig-
nal shapes. The Figure shows a smaller width for the GPR smoothed templates with a mean consistent
with the non-smoothed templates confirming that the smoothing does not bias the background shape
but only reduces statistical fluctuations.
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(A) (B)

FIGURE 5.19: The raw template (black dots) and the smoothed one (red line) for (A) the inclusive selection
(B) and the 15th pγγ

T bin pγγ
T ∈ [200− 250] GeV.

Results The spurious signal test is performed using the different analytical functions described before
as potential background models, using the GPR smoothed background templates. An example of such
tests is shown in Figure 5.21, where the distribution of the number of the fitted spurious signal relative
to the statistical uncertainty δS and expected signal Nref is shown. In case multiple functions satisfy the
above spurious signal requirements, the one with fewest degrees of freedom is be chosen, in order to
reduce the statistical uncertainty on the extracted signal yield. The final selected functions for each bin
are summarized in Table 5.4. Using GPR smoothed templates achieved a significant reduction of the
spurious signal uncertainty, 20% on average. The improvement is more significant for the low-statistics
bins, reaching more than 70% reduction in some bins.

5.4.2.3 F-test

After the background model is selected based on the spurious signal criteria, the selected function is
checked against data in the sidebands of the mγγ distribution, to test if a higher-order function is needed
to model the data better. This is because data might contain features not found in the MC simulation.

This test is performed by comparing the fit χ2 and the number of degrees of freedom for each function
and a higher-order function in which additional degrees of freedom have been introduced. The idea is
to use the higher-order model instead of the simpler one if it gives a significant improvement in the
agreement between data and the model. To quantify the significance of this improvement, the following
test statistic is computed:

F1,2 =

χ2
1−χ2

2
p2−p1

χ2
2

n−p2

, (5.8)

where χ2
1 and χ2

2 are the χ2 of the two fits, p1 and p2 are the number of degrees of freedom for the
functions f1(x) and f2(x), and n is the number of bins used in the fit.

The distribution of the test statistic F1,2 is computed using 1000 pseudo-datasets for each bin of the
differential distributions. The pseudo-datasets are drawn from the function with fewer degrees of free-
dom, after fixing the shape parameters to the values obtained from a fit to the data mγγ sidebands.
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TABLE 5.4: Summary of spurious signal studies for the smoothed background template for the different
bins of the differential observables. The table shows the maximum number of fitted spurious signal rela-
tive to the expected signal in a given bin (max(S)/Sref), the maximum number of the fitted spurious signal

max(S), and the total background uncertainty.

Selection Sel. Func. max(S)/Sref [%] max(S) σtot [%]
Inclusive ExpPoly2 -6.79 -367 10.7
pγγ

T 0− 5 GeV Pow 6.16 13.7 46.8
pγγ

T 5− 10 GeV ExpPoly2 2.69 13 33.2
pγγ

T 10− 15 GeV Bern4 -27.4 -143 43.5
pγγ

T 15− 20 GeV ExpPoly2 -3.24 -15.7 31.6
pγγ

T 20− 25 GeV Bern3 3.67 15.8 36.4
pγγ

T 25− 30 GeV ExpPoly2 1.73 5.56 36.3
pγγ

T 30− 35 GeV Bern4 -1.89 -4.1 40.4
pγγ

T 35− 45 GeV ExpPoly2 -8.46 -43.6 30.7
pγγ

T 45− 60 GeV ExpPoly2 -9.81 -54.2 29
pγγ

T 60− 80 GeV Exponential 5.21 25.1 25.7
pγγ

T 80− 100 GeV Bern3 8.06 24.4 33.3
pγγ

T 100− 120 GeV Exponential 9.56 19.2 30.7
pγγ

T 120− 140 GeV Exponential -4.13 -5.87 29.3
pγγ

T 140− 170 GeV Pow -1.65 -2.12 24.4
pγγ

T 170− 200 GeV Pow 5.76 5.13 26.6
pγγ

T 200− 250 GeV Exponential 2.75 2.25 23.3
pγγ

T 250− 350 GeV Exponential 1.43 0.755 23
pγγ

T 350−∞ GeV Pow -6.52 -1.53 28.1
|yγγ| 0− 0.15 ExpPoly2 -7.12 -41 20.5
|yγγ| 0.15− 0.30 ExpPoly2 3.93 22.3 24.3
|yγγ| 0.30− 0.45 ExpPoly2 -7.55 -41.4 25.6
|yγγ| 0.45− 0.60 ExpPoly2 3.25 17 23.9
|yγγ| 0.60− 0.75 ExpPoly2 14.2 69.7 30.5
|yγγ| 0.75− 0.90 ExpPoly2 -9.54 -43.3 30.8
|yγγ| 0.90− 1.20 ExpPoly2 -2.65 -20.9 24.2
|yγγ| 1.20− 1.60 Bern4 -9.96 -81.6 28.4
|yγγ| 1.60− 2.40 Bern4 -22.7 -147 39.6
Njets = 0 Bern4 9.37 273 16.1
Njets = 1 ExpPoly2 -4.23 -64.2 18.5
Njets = 2 ExpPoly2 3.15 20.3 23.3
Njets ≥ 3 ExpPoly2 12.3 35 37.9
pj1

T 30− 60 GeV ExpPoly2 7.45 83 23.3
pj1

T 60− 90 GeV ExpPoly2 -5.22 -23.5 45.1
pj1

T 90− 120 GeV Exponential -6.72 -33.4 23.8
pj1

T 120− 350 GeV ExpPoly2 -4.75 -18 21.9
pj1

T 350−∞ GeV Pow -4.68 -0.787 78
mjj/∆φjj,signed underflow ExpPoly2 -8.66 -390 12.9
∆φjj,signed −π −−π/2 Bern3 -5.25 -13.2 46
∆φjj,signed −π/2− 0 Exponential -7.86 -16.9 31.8
∆φjj,signed 0− π/2 Exponential -7.86 -16.9 31.8
∆φjj,signed π/2− π Bern3 -5.25 -13.2 46
mjj 0− 170 GeV ExpPoly2 8.85 39.3 31
mjj 170− 500 GeV Bern3 -7.98 -24.4 38.5
mjj 500− 1500 GeV ExpPoly2 -2.35 -3.07 39.4



182
Chapter 5. Measurement of the Higgs Boson Fiducial Inclusive and Differential Cross Sections in the H → γγ

Channel

310 410 510 610
0.04−

0.03−

0.02−

0.01−

0

0.01

0.02

0.03

0.04
ATLASInternal
GPR Toy Tests

Fit Function: PowerLaw

310 410 510 610

0.04−

0.03−

0.02−

0.01−

0

0.01

0.02

0.03

Fit Function: Exponential

310 410 510 610

0.04−

0.03−

0.02−

0.01−

0

0.01

0.02

0.03

0.04

Fit Function: ExpPoly2

310 410 510 610
0.05−

0.04−

0.03−

0.02−

0.01−

0

0.01

0.02

0.03

0.04

Raw Toy
GPR Toy

Fit Function: ExpPoly3

310 410 510 610

0.04−

0.02−

0

0.02

0.04

Fit Function: Bern3

310 410 510 610

0.04−

0.02−

0

0.02

0.04

Fit Function: Bern4

310 410 510 610

0.04−

0.02−

0

0.02

0.04

Fit Function: Bern5

FIGURE 5.20: Comparison of the spurious signal mean and width for the non-smoothed toys (red) and the
GPR-smoothed toys (blue) as function of the number of toy events [175].
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FIGURE 5.21: Results of the spurious signal test for the inclusive fiducial region using the GPR smoothed
templates. (A) the fitted spurious signal S relative to the background uncertainties δS (B) the fitted spuri-

ous signal relative to the expected signal yield S/Sre f .

The F-test is then performed on the functions chosen using the spurious signal tests. The background
function with more degrees-of-freedom is then chosen instead of the lower-degree one if P(F′ ≥ F) <

0.05, where P is the probability of observing a F′ value higher than the observed one if randomly picked
from the test-statistic distribution calculated with pseudo-data. If this is the case, the background func-
tion with one more degree of freedom is used, and the F-test is repeated. All selected background func-
tions passed the F-test criteria with the exception of four bins detailed in Table 5.5 in which the function
with a higher degree of freedom was chosen.



5.5. Systematic Uncertainties 183

Var Bin Func. S/Sre f [%] New Func. new S/Sre f [%]

pγγ
T 20-25 GeV Bern3 3.67 Bern4 16.9

pγγ
T 60-80 GeV Exponential 5.21 ExpPoly2 8.52
|yγγ| 0.75-0.9 ExpPoly2 -9.54 ExpPoly3 -9.53
∆φjj 0-±1.57 Exponential -7.86 ExpPoly2 5.9

TABLE 5.5: F-Test results for analysis bins that required increasing the number of degrees of freedom.

5.5 Systematic Uncertainties

In this Section, we will review the different sources of systematic uncertainty affecting the cross section

measurement. According to the formula σi =
ν

sig
i

ci×Lint
, the uncertainties can be categorized into:

• Uncertainties affecting the signal yield ν
sig
i . These are the systematic uncertainties related to the

signal and background models. They are described in Section 5.5.1. The inclusion of these uncer-
tainties in the signal extraction fit is described in Section 5.6.

• Uncertainties affecting the correction factors ci and the luminosity Lint. Luminosity and experi-
mental uncertainties on the correction factors are discussed in Section 5.5.2. The theoretical uncer-
tainties on the correction factors are discussed in Section 5.5.3.

5.5.1 Signal and background model uncertainties

The sources of signal and background model uncertainties are described in this section.

5.5.1.1 Signal model uncertainties

The main uncertainties in the signal diphoton invariant mass shape arise from the photon energy scale
and resolution uncertainties. The details of these uncertainties are given in Chapter 4. The photon energy
scale uncertainty affects µCB, resulting in a shift of the position of the peak, as shown in Figure 5.22a.
On the other hand, the photon energy resolution uncertainty affects σCB, broadening or narrowing the
width of the signal, as shown in Figure 5.22b. The effects of these uncertainties will be included in the
final signal extraction fits as nuisance parameters, as detailed in Section 5.6.

The signal shape uncertainties are computed using the full decorrelation scheme (detailed in Chap-
ter 4). This scheme includes 9 photon energy resolution uncertainties and 39 photon energy scale uncer-
tainties. The combined effect of these uncertainties, depicted in Figures 4.40-4.39, is shown in Table 5.6
for reference; in the fit, all 9+39 sources are considered.

In addition to the previous uncertainties, the following uncertainties affect the signal shape:

• The uncertainty on the measured Higgs boson mass, 125.09± 0.24 GeV [23], is taken into account
as an additional nuisance parameter in the final signal extraction fit. It affects the position of the
peak of the signal model and is fully correlated among all bins.

• Signal composition uncertainties arise from assuming SM relative cross sections for the different
Higgs boson production modes. The topologies of the different production mechanisms can result
in changes in resolution, as the resolution varies as a function of the pseudorapidity and the photon
energy. This uncertainty is estimated by varying the relative weights of each production mecha-
nism within their measured uncertainty using the procedure detailed in Section 5.5.3.1. These un-
certainties were found to be negligible (� 1%) with respect to the uncertainties on the resolution,
and hence will not be used for the final signal extraction.
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(A) ±1σ variation of the total photon energy scale
uncertainty.
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(B) ±1σ variation of the total photon energy reso-
lution uncertainty.

FIGURE 5.22: Effect of varying the total (A) the photon energy scale and (B) the photon energy resolution
on the Higgs boson signal shape.

Variable Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9 Bin 10 Bin 11 Bin 12 Bin 13 Bin 14 Bin 15 Bin 16 Bin 17 Bin 18
inclusive Scale UP +0.2% X X X X X X X X X X X X X X X X X
inclusive Scale down -0.2% X X X X X X X X X X X X X X X X X
inclusive Resolution UP +8.9% X X X X X X X X X X X X X X X X X
inclusive Resolution down -7.6% X X X X X X X X X X X X X X X X X
pγγ

T Scale UP +0.2% +0.2% +0.2% +0.2% +0.2% +0.2% +0.2% +0.2% +0.2% +0.2% +0.3% +0.3% +0.3% +0.3% +0.3% +0.4% +0.4% +0.5%
pγγ

T Scale down -0.2% -0.2% -0.2% -0.2% -0.2% -0.2% -0.2% -0.2% -0.2% -0.2% -0.3% -0.3% -0.3% -0.3% -0.3% -0.4% -0.4% -0.5%
pγγ

T Resolution UP +8.0% +8.2% +8.2% +8.4% +8.4% +8.3% +8.3% +8.5% +8.7% +9.0% +9.4% +10.0% +11.2% +12.0% +13.5% +14.9% +17.1% +22.2%
pγγ

T Resolution down -6.9% -6.8% -6.9% -6.9% -7.1% -7.1% -7.1% -7.3% -7.4% -7.6% -8.2% -8.9% -9.9% -10.8% -11.9% -13.6% -15.7% -21.2%
|yγγ| Scale UP +0.2% +0.2% +0.2% +0.2% +0.2% +0.3% +0.3% +0.3% +0.4% X X X X X X X X X
|yγγ| Scale down -0.2% -0.2% -0.2%4 -0.2% -0.2% -0.3% -0.3% -0.3% -0.4% X X X X X X X X X
|yγγ| Resolution UP +7.7% +7.7% +7.8% +7.9% +8.2% +8.5% +9.1% +10.4% +13.1% X X X X X X X X X
|yγγ| Resolution down -6.3% -6.3% -6.3% -6.6% -6.9% -7.2% -7.7% -9.2% -12.1% X X X X X X X X X
Njets Scale UP +0.2% +0.2% +0.3% +0.3% X X X X X X X X X X X X X X
Njets Scale down -0.2% -0.2% -0.3% -0.3% X X X X X X X X X X X X X X
Njets Resolution UP +8.4% +9.0% +10.0% +10.5% X X X X X X X X X X X X X X
Njets Resolution down -7.0% -7.7% -8.5% -9.3% X X X X X X X X X X X X X X

pj1
T Scale UP +0.2% +0.2% +0.3% +0.3% +0.3% +0.4% X X X X X X X X X X X X

pj1
T Scale down -0.2% -0.2% -0.2% -0.3% -0.3% -0.4% X X X X X X X X X X X X

pj1
T Resolution UP +8.5% +8.6% +9.2% +10.2% +12.5% +19.0% X X X X X X X X X X X X

pj1
T Resolution down -7.1% -7.3% -7.5% -8.8% -11.1% -17.6% X X X X X X X X X X X X

mjj Scale UP +0.2% +0.3% +03% +0.3% +0.3% X X X X X X X X X X X X X
mjj Scale down -0.2% -0.3% -0.3% -0.3% -0.3% X X X X X X X X X X X X X
mjj Resolution UP +8.7% +9.9% +10.3% +10.2% +10.1% X X X X X X X X X X X X X
mjj Resolution down -7.2% -8.5% -8.8% -9.1% -9.8% X X X X X X X X X X X X X
∆φjj Scale UP +0.2% +0.3% +0.3% +0.3% +0.3% X X X X X X X X X X X X X
∆φjj Scale down -0.2% -0.3% -0.3% -0.3% -0.3% X X X X X X X X X X X X X
∆φjj Resolution UP +8.7% +9.2% +10.9% +10.7% +9.4% X X X X X X X X X X X X X
∆φjj Resolution down -7.2% -8.2% -9.5% -9.5% 8.0% X X X X X X X X X X X X X

TABLE 5.6: Relative change on the µCB and σCB of the signal model, Eq. (5.6), due to the total photon
energy resolution and photon energy scale variations. These total variations do not enter into the final

signal extraction fit, but are shown for reference on their impact.

5.5.1.2 Background model uncertainties

The uncertainty in the fitted signal yield induced by the choice of the analytical model of the background
invariant mass distribution is the spurious signal, described in Section 5.4.2.2.

5.5.2 Experimental Uncertainties

5.5.2.1 Luminosity

The relative uncertainty on the full Run-2 dataset luminosity is 1.7% [187]. This uncertainty is derived
from a calibration of the luminosity scale using Van Der Meer scans [125]. The estimation of the uncer-
tainties is detailed in Ref. [236].
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5.5.2.2 Trigger efficiency

The efficiency of the diphoton trigger is measured in data using a bootstrap method, detailed in Ref. [237],
measuring the trigger efficiency turn-on curve in events collected with prescaled, lower-threshold trig-
gers. This results in an efficiency of 99.16+0.23

−0.49 (stat)+0.34
−0.52 (syst)%, in agreement with predictions from the

simulation. The corresponding uncertainty is taken as an uncertainty on the correction factors.

5.5.2.3 Vertex selection efficiency

As detailed in Section 5.3.1.2, the vertex selection uses pointing information from the diphoton system to
choose the primary vertex candidate of the event. The difference in the efficiency of selecting the primary
vertex between data and the simulation can affect the correction factors (since a reconstructed primary
vertex is a requirement). Therefore, an uncertainty on the correction factor is assigned from the difference
in the vertex selection efficiency between data and the simulation using Z → ee events after ignoring the
electron tracks. The ratio of the efficiency is used to increase the weights of events in the simulation with
|zreconstructed − ztrue| > 0.3 mm. The uncertainty on the efficiency of this selection is generally found to be
< 0.3%.

5.5.2.4 Photon selection

Photon identification efficiency As detailed in Section 5.3.1.2, selected photons are required to pass
tight identification criteria. The efficiency of this selection εtight ID is measured in data using the methods
detailed in Section 3.3.1.1. A per-photon correction factor is then extracted to account for differences in
efficiency between data and the simulation. The uncertainties in these correction factors are translated to
the unfolding correction factors by varying the photon identification efficiency correction factors within
their uncertainties. This variation will cause events to migrate across the boundaries of the fiducial
region. The difference in the correction factor between these variations and the nominal one is taken as
the uncertainty. They are summarized in Table 5.7.

Photon isolation efficiency Similar to the photon identification efficiency, the uncertainty in the simulation-
to-data isolation efficiency corrections, measured using the methods detailed in Section 3.3.1.2, translates
into an uncertainty in the correction factor. The uncertainties are obtained for track and calorimeter iso-
lation and are added in quadrature. They are summarized in Table 5.7.

Photon energy scale and resolution In addition to affecting the signal invariant mass distribution, as
detailed in Section 5.5.1.1, the photon energy scale and resolution uncertainties will also have an effect
on the correction factors due to migrations across the boundaries of the fiducial region. The combined
effect of all scale and resolution uncertainties on the correction factors is shown in Table 5.7. Given the
small size of the total effect of these uncertainties, the combined uncertainty scheme (1 NP) is used. This
uncertainty on the correction factor is in addition to, and uncorrelated with, the uncertainties on the
signal yield from the full decorrelation model (39 PES + 9 PER NPs).

5.5.2.5 Jet selection

Jet energy scale and resolution The correction factors for jet observables (such as Njets) are affected by
the uncertainties in the jet energy scale and resolution (similarly to photons). These uncertainties reflect
the remaining difference in jet energy scale and resolution between data and the simulation as estimated
through the transverse momentum balance technique in Z+jets, γ+jet, and dijet events, as detailed in
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Inclusive PES/PER up PES/PER dn PhotonEff up PhotonEff dn
− 0.06% 0.06% 1.63% 1.64%
pγγ

T PES/PER up PES/PER dn PhotonEff up PhotonEff dn
0− 5 GeV 0.96% 0.86% 1.74% 1.76%
5− 10 GeV 0.6% 0.58% 1.76% 1.77%
10− 15 GeV 0.36% 0.36% 1.77% 1.78%
15− 20 GeV 0.22% 0.32% 1.76% 1.78%
20− 25 GeV 0.2% 0.06% 1.75% 1.77%
25− 30 GeV 0.02% 0.12% 1.74% 1.75%
30− 35 GeV 0.12% 0.09% 1.72% 1.73%
35− 45 GeV 0.13% 0.14% 1.68% 1.7%
45− 60 GeV 0.25% 0.26% 1.63% 1.64%
60− 80 GeV 0.39% 0.34% 1.56% 1.57%
80− 100 GeV 0.48% 0.54% 1.48% 1.49%
100− 120 GeV 0.46% 0.46% 1.39% 1.4%
120− 140 GeV 0.62% 0.54% 1.31% 1.32%
140− 170 GeV 0.77% 0.66% 1.22% 1.23%
170− 200 GeV 0.85% 1.08% 1.13% 1.14%
200− 250 GeV 1.42% 1.28% 1.04% 1.05%
250− 350 GeV 1.9% 1.99% 1% 1.01%
350−∞ GeV 2.92% 2.87% 1.13% 1.14%
|yγγ| PES/PER up PES/PER dn PhotonEff up PhotonEff dn
0.00− 0.15 < 0.01% 0.01% 1.58% 1.59%
0.15− 0.30 < 0.01% 0.01% 1.57% 1.59%
0.30− 0.45 0.04% 0.02% 1.56% 1.58%
0.45− 0.60 0.02% 0.04% 1.55% 1.57%
0.60− 0.75 0.03% 0.01% 1.57% 1.58%
0.75− 0.90 0.03% 0.06% 1.59% 1.6%
0.90− 1.20 0.11% 0.1% 1.66% 1.68%
1.20− 1.60 0.25% 0.26% 1.74% 1.75%
1.60− 2.40 0.13% 0.12% 1.75% 1.77%
Njets, pj

T ≥ 30GeV PES/PER up PES/PER dn PhotonEff up PhotonEff dn
= 0 jet 0.08% 0.08% 2.5% 2.53%
= 1 jet 0.06% 0.06% 2.33% 2.35%
= 2 jets 0.03% 0.04% 2.05% 2.07%
≥ 3 jets 0.04% 0.03% 1.81% 1.83%
pj1

T PES/PER up PES/PER dn PhotonEff up PhotonEff dn
Underflow 0.08% 0.08% 2.5% 2.53%
30− 55 GeV 0.08% 0.08% 2.4% 2.42%
55− 75 GeV 0.03% 0.04% 2.2% 2.22%
75− 120 GeV 0.02% 0.01% 1.98% 2%
120− 350 GeV 0.01% 0.01% 1.67% 1.68%
350−∞ GeV 0.02% 0.03% 1.51% 1.52%
mjj, pj

T ≥ 30GeV PES/PER up PES/PER dn PhotonEff up PhotonEff dn
Underflow 0.08% 0.07% 2.44% 2.46%
0− 170 GeV 0.04% 0.04% 2.12% 2.13%
170− 500 GeV 0.03% 0.03% 1.96% 1.98%
500− 1500 GeV 0.03% 0.05% 1.74% 1.76%
1500−∞ GeV 0.04% 0.02% 1.48% 1.49%
∆φjj, pj

T ≥ 30GeV PES/PER up PES/PER dn PhotonEff up PhotonEff dn
−π −−π/2 0.05% 0.05% 2.03% 2.04%
−π/2− 0 0.02% 0.03% 1.92% 1.94%
0.− π/2 0.03% 0.02% 1.92% 1.94%
π/2− π 0.05% 0.06% 2.03% 2.04%

TABLE 5.7: Magnitude of photon experimental uncertainties on the bin-by-bin correction factors for the
fiducial inclusive and the differential observables. The label PES/PER refers to the combined effects of
photon energy scale and resolution uncertainties, whereas PhotonEff refers to the combined effect of

photon identification and isolation efficiencies.

[150]. The impact of these uncertainty sources (31 in total) on the correction factors was estimated, and
their combined effect is summarized in Table 5.8.

Jet vertex tagging efficiency for jets from the hard scattering The jet vertex tagging (JVT) algorithm
is used to suppress pileup jets (jets originating from additional vertices in the event) [153]. Jets in data
and simulation are required to pass a selection based on the JVT variable (detailed in Section 5.3.1.2).
The difference in the efficiency of this requirement between data and the simulation for jets from the
hard scatter is used to derive an uncertainty in the correction factor. This uncertainty is very small, given
the small uncertainties on the correction factor for data and simulation differences in the JVT selection
efficiencies shown in Figure 3.28b. The computed uncertainty is, at maximum, 0.3%.

5.5.2.6 Pileup

Modeling of inelastic cross section As detailed in Section 5.2.2.1, a pileup reweighting procedure is
performed in which the distribution of the average number of interactions per bunch crossing, 〈µ〉, in
the simulation is reweighted to match that of the data. The modeling of pileup in the simulation is based
on simulations of inelastic pp collisions. The pileup reweighting is varied to cover the uncertainty in
the ratio between the predicted and measured inelastic cross section in the fiducial volume defined by
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Njets, pj
T ≥ 30GeV JES/JER up JES/JER dn

= 0 jet 6.5% 4.57%
= 1 jet 2.33% 3.61%
= 2 jets 6.66% 8.45%
≥ 3 jets 12.6% 19.1%
pj1

T JES/JER up JES/JER dn
Underflow 6.5% 4.57%
30− 55 GeV 6.37% 10.8%
55− 75 GeV 3.69% 4.36%
75− 120 GeV 3.67% 3.84%
120− 350 GeV 3.38% 3.57%
350−∞ GeV 3.04% 3.59%
mjj, pj

T ≥ 30GeV JES/JER up JES/JER dn
Underflow 2.86% 2.08%
0− 170 GeV 8.95% 12.1%
170− 500 GeV 7.39% 10.2%
500− 1500 GeV 9.26% 13.5%
1500−∞ GeV 11.6% 16.5%
∆φjj, pj

T ≥ 30GeV JES/JER up JES/JER dn
−π −−π/2 8.24% 11%
−π/2− 0 8.99% 12.6%
0− π/2 8.99% 12.6%
π/2− π 8.14% 11.4%

TABLE 5.8: Magnitude of the impact of jet energy scale and resolution uncertainties on the correction
factors.

m > 13 GeV, where m is the mass of the non-diffractive hadronic system [238]. This is achieved by
shifting the data µ distribution by ±3% before reweighting the simulated samples. An example of such
variations is shown in Figure 5.23. The effect of such variations on the correction factors are summarized
in Table 5.11.
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FIGURE 5.23: Effect of the pileup reweighting uncertainty variations on the distribution of the number of
primary vertices, Npv.

Jet vertex tagging efficiency for pileup Jets Pileup jets originate from additional inelastic pp collisions
in the event. They are not present in the particle-level fiducial volume, and as such, they reduce the
purity of the bins of the jet-related differential observables. To reduce the fraction of pileup jets in the
selected sample, thus improving the purity and reducing related model uncertainties, the JVT algorithm
is applied for central jets with |η| < 2.5 [153]. The residual pileup jet contamination is corrected for in the
unfolding procedure. However, any difference in the efficiency of the JVT requirement in rejecting fake
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Inclusive PRW up PRW dn
− 1.55% 1.3%
pγγ

T PRW up PRW dn
0− 5 GeV 1.6% 1.36%
5− 10 GeV 1.63% 1.42%
10− 15 GeV 1.72% 1.37%
15− 20 GeV 1.62% 1.4%
20− 25 GeV 1.61% 1.36%
25− 30 GeV 1.72% 1.4%
30− 35 GeV 1.57% 1.35%
35− 45 GeV 1.65% 1.34%
45− 60 GeV 1.63% 1.36%
60− 80 GeV 1.61% 1.34%
80− 100 GeV 1.48% 1.27%
100− 120 GeV 1.42% 1.11%
120− 140 GeV 1.11% 0.9%
140− 170 GeV 1.09% 0.93%
170− 200 GeV 0.96% 0.85%
200− 250 GeV 0.77% 0.69%
250− 350 GeV 0.56% 0.56%
350−∞ GeV 0.27% 0.44%
|yγγ| PRW up PRW dn
0.00− 0.15 1.48% 1.24%
0.15− 0.30 1.53% 1.22%
0.30− 0.45 1.45% 1.23%
0.45− 0.60 1.39% 1.19%
0.60− 0.75 1.49% 1.18%
0.75− 0.90 1.47% 1.23%
0.90− 1.20 1.6% 1.29%
1.20− 1.60 1.66% 1.43%
1.60− 2.40 1.77% 1.56%

Njets, pj
T ≥ 30GeV PRW up PRW dn

= 0 jet 2.87% 2.36%
= 1 jet 0.94% 0.73%
= 2 jets 0.11% 0.24%
≥ 3 jets 2.13% 3%
pj1

T PRW up PRW dn
Underflow 2.87% 2.36%
30− 55 GeV 0.63% 0.8%
55− 75 GeV 1.05% 0.93%
75− 120 GeV 1.26% 1.06%
120− 350 GeV 0.92% 0.84%
350−∞ GeV 0.63% 0.62%
mjj, pj

T ≥ 30GeV PRW up PRW dn
Underflow 2.2% 1.79%
0− 170 GeV 0.93% 1.34%
170− 500 GeV 0.34% 0.58%
500− 1500 GeV 1.06% 1.53%
1500−∞ GeV 0.64% 0.99%
∆φjj, pj

T ≥ 30GeV PRW up PRW dn
−π −−π/2 0.64% 1.04%
−π/2− 0 0.92% 1.29%
0.− π/2 0.83% 1.15%
π/2− π 0.65% 1.01%

TABLE 5.9: Magnitude of the impact of the pileup reweighting uncertainties on the bin-by-bin correction
factors.

jets from pileup between data and simulation can bias the correction factor. For example, having more
pileup jets passing the JVT requirement in the simulation than in data can cause large migrations between
bins of the jet differential distributions. This is most important for the large jet multiplicity distribution
bins where pileup jets will be (wrongly) counted as jets from the hard scatter. Therefore, an uncertainty
in the correction factors due to the uncertainty in the JVT efficiency for pileup jets is computed. The JVT
efficiency for pileup jets is defined as:

εPU central jet, JVT =
Npass JVT req.

PU central jets

NAll PU central jets
(5.9)

In the simulation, a jet is defined as originating from pileup if it has pT > 10 GeV and is not matched
to a particle-level jet within ∆R < 0.2. The fraction of such jets passing the JVT requirement gives the
efficiency in the simulation. In data, the only quantity we can measure is the JVT efficiency for all jets
(hard-scatter and pileup)

εCentral jets, JVT =
Npass JVT req.

Central jets

NAll central jets
≡

Npass JVT req.
HS central jets + Npass JVT req.

PU central jets

NAll central jets
(5.10)

Hard-scatter and pileup jets have very different JVT efficiency, as shown in Figure 5.24. Therefore, the
combined JVT efficiency can not be translated directly to the JVT efficiency of pileup jets, and the number
of jets from the hard-scatter must be subtracted from Eq. (5.10). This number is estimated from the
simulation after normalizing the total number of jets in the simulation to the total number of jets in
data. The number of hard-scatter jets from the simulation can be used to correct the data, as the JVT
correction factors between data and simulation were found to be close to unity [153]. The final pileup jet
JVT efficiency in data and the simulation is summarized in Table 5.10.

The final uncertainty in the correction factors due to the JVT efficiency for pileup jets is then estimated
by randomly removing a fraction of pileup jets in the simulation corresponding to

εData
PU jet, JVT/εMC

PU jet, JVT − 1 = 10%,
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Data simulation Ratio
All jets JVT eff. εAll jet, JVT 63% 63% 1.012
PU jets JVT eff. εPU jet, JVT 17% 15% 1.09

TABLE 5.10: JVT efficiency for all jets and pileup jets computed using Eq.(5.10) and Eq.(5.9), respectively
for data and simulation. The pileup jet JVT efficiency in data is computed by subtracting the hard scatter

jet contribution, as detailed in the text.

re-computing the correction factors, and taking their difference to the nominal correction factors as an
uncertainty. This uncertainty is shown in Table 5.11.
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FIGURE 5.24: (A) Combined JVT efficiency for data and simulation. This efficiency is defined as

εAll jet, JVT =
Npass JVT req.

jets
NAll jets

. (B) JVT efficiency for pileup and hard-scattering jets.

Bin1 Bin2 Bin3 Bin4 Bin5
N≥30GeV

jets +1.1% −0.4% −1.5% −3.8% -

pj1
T −2.0% −0.4% −0.1% −0.1% −0.02%

mjj −2.5% −1.9% −2.0% −1.2% -
∆φjj,signed −2.6% −1.8% −1.8% −2.6% -

TABLE 5.11: Relative uncertainties on the correction factors due to the JVT pileup jet uncertainty.

5.5.3 Theoretical Uncertainties

5.5.3.1 Physics modelling uncertainties

The model dependence of the correction factors and its corresponding uncertainty is evaluated from the
following variations:

1. The relative contributions of the different Higgs production mechanisms are varied within their
corresponding experimental bounds.

2. The bias of the unfolding method, as detailed in Interlude B.

3. The impact of the modeling of the underlying event.

4. The modeling of Dalitz events, H → γγ∗ → γ f f̄
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Signal composition uncertainty As detailed in Section 5.3.3, the final correction factor for each bin of
the differential distributions is the combination of the correction factors from each Higgs boson produc-
tion mode, weighted by its SM cross section. This will introduce model dependence if the correction
factors vary significantly among the different production modes. The uncertainty induced by this model
dependence is estimated by varying the cross sections of the different production modes within their
experimental bounds. These variations are taken from the Run-1 ATLAS+CMS combined Higgs boson
couplings measurement [239]. This combination resulted in the measurement of the signal strength of the
different production modes, µi, defined as µi =

σi
σSM

i
. The measured signal strength of each production

mode is shown in Figure 5.25.

Parameter value
1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4

µ

ttH
µ

ZH
µ

WH
µ

VBF
µ

ggF
µ

 Run 1LHC
CMS and ATLAS ATLAS+CMS

ATLAS

CMS

σ1±
σ2±

FIGURE 5.25: Best-fit results for the production signal strengths for the combination of ATLAS and CMS
data. The results from each experiment are also shown. The error bars indicate the 1σ (thick lines) and 2σ

(thin lines) intervals. The measurements of the global signal strength µ are also shown [239].

An updated measurement of the tt̄H production mode signal strength was performed using 80 fb−1

of Run-2 data, resulting in a measurement of µttH = 1.32+0.28
−0.26 [65]. Similarly, the uncertainty on the

measured signal strength from the observation of the Higgs boson decay to bottom quarks is used to
derive variations for the bb̄H production mode [240]. Using all these measurement, one can obtain the
following up and down orthogonal variations to the different Higgs boson production modes:

−→
λ +1σ =
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µWH
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−→
λ −1σ =
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(5.12)

Each of these variations will then be used to vary the cross section of its respective production mode,
and the correction factor is re-calculated. The difference between the cross section from the varied com-
position and the nominal one defines the uncertainty on the correction factor. These uncertainties are
summarized in Table 5.12.

variable Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8 Bin9 Bin10 Bin11 Bin12 Bin13 Bin14 Bin15 Bin16 Bin17
Inclusive 0.03 – – – – – – – – – – – – – – – –
pγγ

T 0.01 < 0.01 < 0.01 0.01 < 0.01 0.01 0.01 0.02 0.03 0.04 0.06 0.06 0.08 0.08 0.07 0.08 0.09
|yγγ| 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.05 0.02 – – – – – – – –
pj1

T 0.2 0.6 0.3 0.1 0.5 1.0 – – – – – – – – – – –
N≥30GeV

jets 0.2 0.1 1.3 1.5 – – – – – – – – – – – – –
∆φjj 0.2 1.1 0.9 1.0 1.1 – – – – – – – – – – – –
mjj 0.2 0.6 0.9 2.1 1.6 – – – – – – – – – – – –

TABLE 5.12: Impact of production mode variations on the correction factors, given in %.

Unfolding bias As detailed in Interlude B, the bias from the unfolding method is taken into account as
a systematic uncertainty in the measured cross section. The systematic uncertainty from the unfolding
should reflect the difference between the data and the underlying physics model used to compute the cor-
rection factors. Therefore, the unfolded pγγ

T and |yγγ| distributions will be used to derive a reweighting
function. These observables are used since they are, to a good approximation, uncorrelated for dipho-
tons.

The reweighting function is derived by smoothing the ratio between the data and the simulation
using a Gaussian kernel. The smoothed reweighting functions are then applied to the simulation to
make it more closely reflect the observed distributions in data. The pγγ

T and |yγγ| distributions after the
reweighting are shown in Figure 5.26, along with data. The reweighted simulation samples are then
used to compute the correction factors, and the difference to the nominal correction factors is taken as a
systematic uncertainty. The uncertainty due to unfolding bias is summarized in Table 5.13.
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FIGURE 5.26: Distribution of pγγ
T and |yγγ| from the simulation after applying a reweighting from data.

The nominal distribution is shown in blue, the reweighted one in orange and the data points are shown.
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variable Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8 Bin9 Bin10 Bin11 Bin12 Bin13 Bin14 Bin15 Bin16 Bin17
Inclusive +0.2

−0.05 – – – – – – – – – – – – – – – –
pγγ

T
+2.9
−0.2

+0.2
−0.8

+0.2
−0.6

+0.2
−0.2

+0.2
<−0.01

+0.3
−0.060

+0.3
−0.1

+0.3
−0.1

+0.3
−0.1

+0.3
−0.03

+0.2
−0.02

+0.3
−0.02

+0.2
<−0.01

+0.2
−0.01

+0.2
−0.02

+0.2
−0.07

+0.1
−0.3

|yγγ| +0.01
−0.05

<+0.01
−0.05

<+0.01
−0.05

<+0.01
−0.02

<+0.01
−0.05

<+0.01
−0.08

<+0.01
−0.08

+0.01
−0.07

+0.1
−0.02 – – – – – – – –

N≥30GeV
jets

+0.2
−0.5

+2.6
−0.3

+1.1
−0.3

+0.6
−0.2 – – – – – – – – – – – – –

∆φjj
+0.3
−0.06

+0.9
−0.3

+1.2
−0.3

+1.1
−0.2

+0.8
−0.3 – – – – – – – – – – – –

mjj
+0.3
−0.0

+1.4
−0.3

+0.6
−0.2

+0.7
−0.1

+0.5
−0.04 – – – – – – – – – – – –

pj1
T

+0.2
−0.5

+2.6
−0.3

+1.5
−0.3

+0.8
−0.3

+0.1
−0.1

+0.05
−2.6 – – – – – – – – – – –

TABLE 5.13: Impact of the modeling uncertainties on the correction factor, in %, evaluated by reweighting
the Higgs pT and y distributions in MC to the observed spectra in data.

Underlying event modeling As detailed in Section 5.2.2.1, the different simulation samples that are
used in the analysis are interfaced with showering and hadronisation models. These models convert
the inclusive parton-level cross sections into exclusive particle-level ones. In addition, these models also
model the underlying events (i.e. all particles from the same not coming from the hard scatter vertex).
The modeling of such processes can have an effect on the correction factors, as they can cause migrations
in or out of the fiducial region, and hence will be sources of uncertainty in the correction factors. In order
to estimate these uncertainties, the correction factors are computed using two samples with the same
matrix element calculation but interfaced with different hadronization models.

For this study, we use PYTHIA 8 [31] (used for the nominal MC samples) and HERWIG 7 [30]. They use
different algorithms for the parton shower and for the modeling of non-perturbative effects (hadroniza-
tion and multi-parton interactions). The difference between the correction factors using the POWHEG

gluon-fusion sample interfaced with either model is taken as a systematic uncertainty. The uncertainty
is summarized in Table 5.14.

variable Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8 Bin9 Bin10 Bin11 Bin12 Bin13 Bin14 Bin15 Bin16 Bin17 Bin18
Inclusive 0.094 – – – – – – – – – – – – – – – – –

pγγ
T -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086 -0.086

pj1
T 2.23 2.23 2.23 2.23 2.23 2.23 – – – – – – – – – – – –

|yγγ| -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 – – – – – – – – –
Njets 1.78 1.23 -1.563 -1.85 – – – – – – – – – – – – –
mjj 2.19 2.19 2.19 2.19 2.19 – – – – – – – – – – – – –

∆φjj,signed 1.71 1.71 1.71 1.71 1.71 – – – – – – – – – – – – –

TABLE 5.14: Impact of underlying event modelling and parton shower uncertainties on the correction
factors given in %.

Dalitz events The PYTHIA 8 generator that is used to model the Higgs boson decay and the parton
showering includes by default the Dalitz decay channel H → γγ∗ → γ f f̄ , where γ∗ is an off-shell pho-
ton, and f is any charged fermion. These events represent around 6% of the generated events. However,
they are not considered as part of the fiducial volume, as they do not have stable diphoton final states
and they are removed at the particle-level. The remaining events are reweighted to maintain the correct
normalization.

At the detector-level, around 0.3% of all events that pass the fiducial selections in the simulated signal
samples are Dalitz events. This fraction was estimated for the bins of the different distributions and was
found to be constant. These events are not removed at the reconstruction level, and therefore, they will
be corrected for when unfolding to particle-level. However, the Dalitz decay branching ratio is poorly
known, and different generators produce different results. Therefore, a conservative 100% uncertainty is
assigned to the Dalitz contribution. This results in an uncertainty of ≈ 0.3% on the bin-by-bin correction
factor for the different bins of the differential variables.

5.5.4 Summary of Uncertainties

A summary of the different theoretical and experimental uncertainties in the correction factors is shown
in Table 5.15 for the inclusive fiducial region. The leading sources of uncertainties are shown in Fig-
ures 5.27-5.28 for the differential cross section measurements.
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Source Uncertainty (%)
Statistics 6.9
Signal extraction syst. 7.9

Photon energy scale & resolution 4.6
Background modelling (spurious signal) 6.4

Correction factor 2.6
Pile-up modelling 2.0
Photon identification efficiency 1.2
Photon isolation efficiency 1.1
Trigger efficiency 0.5
Theoretical modelling 0.5
Photon energy scale & resolution 0.1

Luminosity 1.7
Total 11.0

TABLE 5.15: The breakdown of uncertainties on the inclusive diphoton fiducial cross section measure-
ment. The uncertainties from the statistics of the data and the systematic sources affecting the signal
extraction are shown. The remaining uncertainties are associated with the unfolding correction factor and

luminosity.
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FIGURE 5.27: Breakdown of the statistical and systematic uncertainties on the cross sections for measure-
ment in bins of (A) pγγ

T and (B) Njets.

5.6 Signal Extraction

The Higgs boson signal yield νsig, in the inclusive fiducial region and each bin of the differential variables,
is extracted using an unbinned extended maximum likelihood fit to data. The fits are done simultane-
ously to mγγ distributions for all the bins of a given differential variable or fiducial region that we are
interested in. The total likelihood function is the product of the per-bin likelihood Li:

Li(mγγ|νsig
i , ν

bkg
i ) =

e−νi

ni!

n

∏
j

[
ν

sig
i S(m

j
γγ|
−→
θsig

i) + ν
bkg
i B(mj

γγ|
−−→
θbkg

i)

]
(5.13)

where ν
sig
i and ν

bkg
i are the fitted number of signal and background events, respectively. In a given bin i,

νi = ν
sig
i + ν

bkg
i is the mean value of the underlying Poisson distribution for the ni events in that bin. For

a given event j, mj
γγ is the diphoton invariant mass. S(mj

γγ|
−→
θsig) is the signal PDF, and it is a function

of the vector of nuisance parameters,
−→
θsig, describing the signal shape and the different uncertainties
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FIGURE 5.28: Breakdown of leading systematic uncertainties due to unfolding on the correction factors
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affecting it, as detailed in Section 5.5.1.1. B(mj
γγ|
−−→
θbkg) is the background PDF, and it is a function of a

vector of nuisance parameters
−−→
θbkg, describing the different shape and normalization parameters of the

background function detailed in Section 5.4.2.

Signal shape nuisance parameters In the simultaneous fit of the diphoton mass spectrum, we con-
sider two sources of uncertainty on the signal shape: uncertainties in the resolution due photon energy
resolution

−→
θ EnRes and uncertainties in the peak position due to photon energy scale

−→
θ EnScale. As de-

tailed in Interlude A, these different uncertainties in the signal shape will be included in the likelihood as
multiplicative constraints ∏k Gk. The choice of constraint, Gk, depends on the type of the uncertainty as
follows:

• The energy scale uncertainties are implemented via a Gaussian constraint. For each uncertainty
in
−→
θ EnScale, the pulls are treated asymmetrically. The constraint term GEnScale(θEnScale; 0, 1) has a

mean of θEnScale = 0 and a width of 1, ensuring that values of θEnScale = ±1 correspond to ±1σ

pulls on the nuisance parameters and correctly penalise the likelihood accordingly.

• The energy resolution uncertainties are implemented via a log-normal constraint, as they can only
have positive values. The log-normal constraint is implemented as:

ΘEnRes = exp

(
θEnRes

√
log
(

1 + δ2
EnRes

))
, (5.14)

where θEnRes and δEnRes are the nuisance parameter and the resolution uncertainty values for a
given resolution uncertainty source.

Higgs mass nuisance parameters The uncertainty on the measurement of the Higgs boson mass, mH =

125.09± 0.24 GeV, is included as an additional nuisance parameter that allows for a shift of the signal
peak position. The nuisance parameter is included in the likelihood as a symmetric Gaussian constraint
GMass uncert(θMass uncert; 0, 1).



5.6. Signal Extraction 195

The nuisance parameters are correlated between all bins in a given distribution. The nuisance parame-
ters are allowed to float for the fit to data, and any deviations from zero will be penalized by a reduction
in the likelihood.

Other uncertainties that do not affect the shape of the diphoton mass spectrum are not included in
the fit and are dealt with as part of the correction for detector effects. The spurious signal, described in
section 5.4.2.2, is not included in the fit. It is added in quadrature to the uncertainty in the signal yield
from the fit.

The total number of nuisance parameters in the fit is thus 49+N = 39 (photon energy scale uncertain-
ties) + 9 (photon energy resolution uncertainties) + N (background function parameters) + 1 (Higgs mass
uncertainty). The free parameters on the fit are therefore θEnScale, θEnRes, θBackground, νsig and νbkg, for
each of the bins considered. The fitted number of signal events is not constrained to be positive. The
results of the fit to the data for the extraction of the signal yields for the inclusive fiducial region, and
in one pγγ

T bin are shown in Figures 5.29. The signal extraction fits for all the bins of the differential ob-
servables are shown in Appendix B. The final results for the extracted signal yield and its total error are
shown in Table 5.16. The fitted signal yield is then used to estimate the final spurious signal uncertainty
by scaling SS/Sref with the ratio Sref/Sobs.

(A) Inclusive fiducial region. (B) Njets = 1.

(C) pγγ
T ∈ 30-35 GeV.

FIGURE 5.29: Signal+background fit to data for (A) the inclusive fiducial region and examples from the fit
to the bins of the differential distributions (B) Njets = 1 and (C) pγγ

T [30,35] GeV.
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Variable Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9 Bin 10 Bin 11 Bin 12 Bin 13 Bin 14 Bin 15 Bin 16 Bin 17 Bin 18
inclusive fit yield 6546.1± 533.4 X X X X X X X X X X X X X X X X X
pγγ

T fit yield 213.2± 105.2 495.7± 158.9 692.0± 177.3 914.2± 165.3 641.1± 149.7 395.0± 135.4 599.2± 133.3 510.4± 155.6 517.8± 151.4 611.1± 134.2 229.8± 100.3 197.3± 60.5 132.9± 43.6 200.6± 38.3 80.4± 25.8 115.3± 22.4 33.4± 14.4 25.9± 8.7
|yγγ| fit yield 866.5± 142.0 825.9± 141.4 448.8± 134.54 669.5± 134.9 609± 137.1 655.4± 141.9 965.6± 201.7 902.5± 234.6 646.6± 203.4 X X X X X X X X X
Njets fit yield 3573.4± 407.2 1773± 252.6 879.1± 155.2 421.4± 104.9 X X X X X X X X X X X X X X

pj1
T fit yield 3573.4± 407.2 1726.9± 239.0 392.1± 132.4 619.4± 117.5 350.4± 84.0 5.1± 14.6 X X X X X X X X X X X X

mjj fit yield 5268.8± 476.0 593.1± 133.5 357.9± 115.8 288.1± 59.3 45.3± 17.6 X X X X X X X X X X X X X
∆φjj fit yield 5268.8± 476.0 409.0± 113.8 216.3± 69.9 265.9± 72.6 386.7± 115.1 X X X X X X X X X X X X X

TABLE 5.16: Fitted signal yield in the inclusive fiducial and different bins of the kinematic distributions.The uncer-
tainties shown account for the data statistics and the different systematic uncertainties that enter the signal extraction

fit (i.e. photon energy scale and resolution, and Higgs mass uncertainty).

5.6.1 Nuisance parameter rankings

In order to check if some of the nuisance parameters (NP) are overconstrained, or significantly pulled
after the fit from their initial best estimate, the pulls and the impacts (defined in Interlude A) of the
different nuisance parameters are inspected. As an example, Figure 5.30 shows the NPs for the inclusive
fiducial region. These plots show the pre-fit and post-fit values of the nuisance parameters, and their
effect on the expected and observed uncertainties on the extracted signal yield. The nuisance parameters
are ranked from top to bottom according to their impact.

The pre-fit impacts are determined by shifting a given nuisance parameter by ±1σ from its nominal
value and redoing the fit while letting the other nuisance parameters float, and then computing the
variation in the fitted signal yield with respect to the nominal case. The post-fit impacts are determined
by setting all the nuisance parameters to their best fit values and reporting the pulls from a fit to the
Asimov dataset. The observed NP ranking plot shows no over-constraints for the different energy scale
and resolution nuisance parameters. There are some small observed negative pulls for the resolution as
the observed data signal is compatible with a smaller resolution of approximately 90 MeV. A similar
pull is observed for the Higgs mass nuisance parameter, corresponding to a change of the Higgs mass
of about +32.5 MeV, which is compatible with the uncertainty from the combined ATLAS+CMS mass
measurement of ±240 MeV.

5.6.2 Break-down of uncertainties

The fit to data leads to an estimate of the signal yield together with its total uncertainty. The following
procedure is then followed in order to separate the total uncertainty into its statistical and systematic
components:

1. Obtain the best-fit values of the nuisance parameters (that were float) in the signal extraction fit.

2. Construct an Asimov dataset using the observed signal yield and nuisance parameters.

3. Perform a fit on the Asimov dataset, fixing the nuisance parameters in the likelihood to the ob-
served best-fit values. The statistical uncertainty is obtained from the uncertainty in the fitted
yield.

4. The systematic uncertainty component can then be computed by subtraction in quadrature of the
total error obtained in (1) and the statistical error obtained in (3)

The expected decomposition of the total uncertainty into systematic and statistical components is
shown in Figure 5.31.

5.6.3 Signal yield cross checks

In the previous sections, the Higgs boson signal yield in each category has been extracted from a simulta-
neous fit to all the bins of a differential distribution. The underflow and overflow bins are included, such
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FIGURE 5.30: Ranking of the pre-fit and post-fit pulls for the inclusive fiducial region for an Asimov
dataset. The red (black) points are the pre(post)-fit NPs with their associated uncertainty. The yellow
(blue hatched) band is the pre(post)-fit uncertainty, showing the expected and observed impact of a given

uncertainty on the extracted signal yield.

(A) (B)

FIGURE 5.31: Breakdowns of the uncertainty components as fractions of the yield using the Asimov
method based on the MC expected yields for inclusive pγγ

T and Njets.

that the sum of the yields in all bins should be equivalent to the yields in the inclusive case. This can be
used as a cross-check between the different distributions, comparing the integrals of these distributions
to check that they are consistent. This is shown in Figure 5.32.
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The uncertainty on the integral is calculated as
√

∑ij Covstat
ij , where Covstat

ij is the statistical covariance
of the different bins. We take into account only the statistical uncertainties since the systematic uncertain-
ties are largely correlated between the different distributions. The statistical covariance is computed by
the product of the correlations between bins ρij and the uncertainties. The statistical correlation between
bins of the same distribution is zero since events are not shared between bins of the same distributions.
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FIGURE 5.32: A comparison of the integrals of the fitted signal yields including the under- and over-flow
bins for the different distributions. The integrals are found to be consistent with the fiducial integrated

signal yield. The spurious signal of the integrated fiducial is shown for reference.

5.7 Fiducial inclusive and differential cross sections

5.7.1 Closure test with an Asimov dataset

A cross-check procedure is performed before the actual signal extraction on data by comparing the
particle-level cross sections from simulations with the expected unfolded cross sections obtained us-
ing an Asimov dataset. The Asimov data-set is built using the signal parameterization from simulation,
and background parameterisations from data sidebands (mγγ ∈ [105− 120] ∪ [130− 160]GeV). The re-
sults are shown in Figure 5.33. The results show that no bias is observed. The results show the expected
statistical and systematic uncertainty (from the fitting and unfolding). The statistical uncertainty is re-
duced by almost a factor of 2 compared to the cross section measurement using the 36 fb−1 dataset [19],
whereas the experimental systematic errors are overall of the same order as those reported 36 fb−1 with
larger contribution from spurious signal uncertainty and jet systematics due to the higher pileup condi-
tions. The experimental uncertainty is largely reduced with respect to the measurement with the 80 fb−1

dataset that was performed using preliminary calibrations [18].

5.7.2 Results

The measured cross sections are obtained using the signal yields estimated in Section 5.6, and the bin-
by-bin correction factors, as detailed in Interlude B. The cross section for pp → H → γγ measured in the
baseline fiducial region is:

σ fid = 65.2± 4.5 (stat.)± 5.6 (exp.)± 0.3 (theory) = 65.2± 7.1 fb, (5.15)
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FIGURE 5.33: Cross-check of the differential cross section estimated from an Asimov dataset compared
with the particle-level simulated cross section.

which is to be compared with the default Standard Model prediction of 63.5 ± 3.3 fb [193]. The mea-
sured cross section is found to be within one standard deviation of the default SM prediction, detailed in
Section 5.2.2.1. The uncertainty on the measured cross section is dominated by systematic uncertainties
the signal extraction: photon energy resolution and background modeling (spurious signal).

Figure 5.34 shows the measured unfolded differential cross sections as a function of the diphoton
kinematics, pγγ

T and |yγγ|. The unfolded differential distributions are compared to the default MC pre-
diction for ggF and XH and to the additional theory predictions detailed in Section 5.2.2.4. In general,
the observed distributions from data are in excellent agreement with the default SM predictions over
the full rapidity range. The pγγ

T distribution extends up to 350 GeV, a region where top mass effects
start to become sizeable. The statistical errors for the last bin prevent any conclusive statement about
the presence of such effects in the data. The inclusive cross section for pγγ

T > 350 GeV is measured to be
0.23± 0.14 fb, with the uncertainty being predominantly statistical, and is in good agreement with the
default prediction of about 0.21± 0.04 fb.

Figures 5.35 and 5.36 show the results for the jet-related observables, Njets, pj1
T , mjj and ∆φjj,signed. The

Njets distribution includes both the exclusive and inclusive jet multiplicities. The inclusive jet multiplici-
ties are computed as follows:

• The Njets ≥ 0 corresponds to the fiducial integrated cross section.

• The Njets ≥ 1, 2 are computed by summing the observed cross section from the exclusive Njets =

1, 2 to the inclusive Njets ≥ 3. The uncertainties are propagated including the full experimental
covariance of the exclusive Njets bins.

Good agreement is observed between the measured Njets distributions and all predictions with preci-
sion better than NLO. The predictions of SHERPA and MG5_aMC@NLO underestimate the inclusive and
zero-jet cross section, but still, give a reasonable description of the shape of the measured distributions.
An overall scaling to the N3LO prediction yields better agreement with the data.
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FIGURE 5.34: Cross sections measured as a function of the diphoton kinematics: (A) pγγ
T , (B) |yγγ|. The

cross section as a function of pγγ
T is shown in the range 0–350 GeV, while for pγγ

T > 350 GeV it is measured
to be 0.23 ± 0.14 fb with the uncertainty being predominantly statistical. The measurement for pγγ

T >
350 GeV agrees with the default prediction within less than one standard deviation. All measurements are
compared to the default MC prediction in additional predictions for different ggF components added to

the same XH prediction.
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bins. All measurements are compared to the default MC prediction and additional predictions for different
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The pj1
T distribution covers the same kinematic range as the Higgs boson pγγ

T measurement, with
coarser binning at low pT. All predictions agree well with the data, with the NNLOJET prediction pro-
viding the best precision in the high pj1

T region. The first bin of the pj1
T distribution represents events that

do not contain a jet passing the corresponding fiducial selections.
The mjj and ∆φjj,signed distributions are compared to SHERPA (MEPS@NLO) and GOSAM predictions

that are of NLO accuracy for this jet multiplicity (Njets ≥ 2). Good agreement is seen between the data
and the predictions, including that of the default MC that is of LO accuracy for this jet multiplicity. In
the highest mjj bin that is the most sensitive to VBF production, the data are in agreement within the
prediction within the uncertainty of the measurement. The ∆φjj,signed distribution that is sensitive to the
CP properties of the Higgs boson is in good agreement with the expected shape in the SM.
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FIGURE 5.36: Cross sections measured as a function of jet kinematic observables: (A) pj1
T , (B) mjj and

(C) ∆φjj,signed. All measurements are compared to the default MC prediction in additional predictions for
different ggF components added to the same XH prediction.
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Observables p(χ2) with
Default MC Prediction

pγγ
T 44%
|yγγ| 68%

pj1
T 77%

Njets 96%
∆φjj,signed 82%

mjj 75%

TABLE 5.17: Probabilities from a χ2 compatibility test comparing data and the default SM prediction for
each differential distribution. The χ2 is computed using the covariance matrix constructed from the full

set of uncertainties on the data measurements and the theory uncertainties on the SM prediction.

Compatibility of measured distributions with the Standard Model The compatibility between the
measured differential distributions and the default SM prediction is assessed using a χ2 test. The χ2 is
computed using the covariance matrix constructed from the full set of uncertainties on the data measure-
ments, taking into account correlations between bins, as well as the theoretical uncertainties on the SM
prediction. Table 5.17 reports the p-values of the χ2 between data and the default MC prediction for all
differential distributions. For all observables, the compatibility between the data and the SM prediction
is excellent.

5.7.3 Combination with the H → 4` channel

A measurement of the Higgs boson fiducial integrated and differential cross section was performed as
well in the H → ZZ∗ → 4` channel using the full Run-2 data. A summary of the fiducial selection in the
H → 4` is shown in Table 5.18. The results of this measurement are shown in Figure 5.37 for p4`

T and
Njets. The results confirm the excellent agreement with the Standard Model, as observed in the H → γγ

channel.

Leptons and jets
Leptons pT > 5 GeV, |η| < 2.7
Jets pT > 30 GeV, |y| < 4.4
remove jets with ∆R(jet, `) < 0.1

Lepton selection and pairing
Lepton kinematics pT > 20, 15, 10 GeV
Leading pair (m12) SFOS lepton pair with smallest |mZ −m``|
Subleading pair (m34) remaining SFOS lepton pair with smallest |mZ −m``|

Event selection (at most one quadruplet per event)
Mass requirements 50 GeV< m12 < 106 GeV and 12 GeV< m34 < 115 GeV
Lepton separation ∆R(`i, `j) > 0.1
J/ψ veto m(`i, `j) > 5 GeV for all SFOS lepton pairs
Mass window 105 GeV< m4` < 160 GeV
If extra leptons with pT > 12 GeV Quadruplet with the largest ME

TABLE 5.18: List of event selection requirements which define the fiducial phase space for the cross section
measurement in the H → 4` channel. SFOS lepton pairs are same-flavour opposite-sign lepton pairs [13].

The results from both channels are then combined to provide a measurement of the inclusive and
differential full phase space Higgs boson production cross sections. The combination is performed from
an extrapolation of measurement in the fiducial region for each channel to the inclusive phase space
using acceptance corrections (defined in Section 5.2.2.4). The inclusive acceptance corrections are ap-
proximately 50% for the H → γγ and 49% for H → 4` for the full phase space. In the differential
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FIGURE 5.37: Differential fiducial cross sections for (A) p4l
T and (B) the number of jets, Njets . The measured

cross sections are compared to ggF predictions by POWHEG NNLOPS and MG5_aMC@NLO -FXFX nor-
malized to the N3LO total cross section with the listed K-factors. MC-based predictions for all other Higgs
boson production modes XH are normalized to the SM predictions. The error bars on the data points
show the total uncertainties, while the systematic uncertainties are indicated by the boxes. The shaded
bands on the expected cross sections indicate the PDF and scale uncertainties. The p-values indicating the
compatibility of the measurement and the SM prediction are shown as well. The p-values do not include
the systematic uncertainty in the theoretical predictions. The central panels of (A) and (B) show the ratio
of different predictions to the data. The grey area represents the total uncertainty of the measurement. The

bottom panels of (A) and (B) show the fitted values of the ZZ normalisation factors [13].

measurement they vary from about 45 (50)% at low pH
T to 65 (75)% at high pH

T for the H → 4` (H → γγ)
channel. The chosen binning of the combination matches the coarser of the two measurements (i.e the
H → 4` one) as both measurements have consistent bin boundaries.

The total Higgs boson production section measured using the H → γγ is 58.6+6.7
−6.5 pb, and in the

H → ZZ∗ → 4` is 54.4+5.6
−5.3 pb. Combining the two channels results in the following cross section [14]:

56.1+4.5
−4.3 ( ±3.2(stat.) +3.1

−2.8 (sys.) ) pb. (5.16)

All measured total cross sections are in agreement with the SM predictions of 55.6 ± 2.5 pb. The re-
sults are shown in Figure 5.38 along with the cross sections measured using Run-1 data at

√
s = 7 and

8 TeV [241]. In addition, the results of the combined differential cross section as function of pH
T are shown

in Figure 5.39 and compared to SM predictions (including QCD, PDF, and αS uncertainties). The re-
sulting combined distribution is dominated by statisical uncertainties with dominant systematic sources
from the H → γγ mainly being due to the background modeling and photon energy resolution.
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Chapter 6

Higgs Boson Cross Section
Interpretation Using the EFT Approach

As detailed in Chapter 5, the measurement of the Higgs boson cross section in a fiducial region results in
a model-independent measurement. In addition, the measured cross sections are corrected for detector
effects (unfolded), resulting in particle-level cross sections that can be compared directly to different
theoretical predictions. In this chapter, we will use the effective field theory (EFT) framework, detailed in
Chapter 2, as a tool to interpret our results in terms of constraints on anomalous Higgs boson interactions.

6.1 Strategy

In the EFT framework, deviations from SM predictions that can be probed using current ATLAS data
arise from the non-zero values of the Wilson coefficients c(6) of dimension-6 operators O(6) of the La-
grangian:

LEFT = LSM + LD=6 where LD=6 =
c(6)

Λ2
NP
O(6). (6.1)

The interpretation relies on comparisons between the observed differential cross sections and those pre-
dicted by simulated samples of the Higgs boson decays to diphotons that include the effect of dimension-
6 operators. This is done using the FEYNRULES tool [242, 243]. FEYNRULES automatizes the computation
of Feynman rules for a given Lagrangian, providing a universal output known as the UFO [244] file, that
can be used as an input to different MC event generators. The event generation is performed with the
MADGRAPH5 [220] generator at leading-order accuracy in QCD. Using these simulated samples, it is
possible to generate leading-order SM and BSM predictions with non-zero Wilson coefficients. Using the
generated events, one can obtain predictions for the fiducial inclusive and differential cross sections. The
leading-order cross sections obtained with MADGRAPH5 are reweighted using the state-of-the-art SM
Higgs boson signal simulations to account for higher-order QCD and electroweak corrections to the SM
process, according to the formula:

dσ

dX
= ∑

j

(dσj

dX

)SM MC

·
(dσj

dX

)MG5

ci 6=0

/(dσj

dX

)MG5

ci=0
, (6.2)

where the summation is performed over the different Higgs boson production mechanisms j,
( dσj

dX

)SM MC

denotes the SM differential cross section prediction for process j obtained from the state-of-the art SM

simulations (detailed in Section 5.2.2.1), and
( dσj

dX

)MG5

ci 6=0
and

( dσj
dX

)MG5

ci=0
are the differential cross sections
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predicted for process j by MADGRAPH5. This reweighting approach assumes that the QCD and elec-
troweak corrections factorize from the EFT effects [245]. The following strategy is followed in order to
measure the values of the Wilson coefficients using the measured differential cross sections as an input:

• Generate samples for a certain number of benchmark configurations, corresponding to different
values of the Wilson coefficients, to calculate the corresponding expected cross sections.

• Use an interpolation procedure to predict the cross sections continuously at any value of the Wilson
coefficient in the search range. This procedure is detailed in Section 6.4.

• Define a set of measured differential cross section as inputs and compute their correlations. This
procedure is described in Section 6.5.2.

• Compute the total experimental and theoretical covariances of the input measurements and simu-
lated samples as detailed in Sections 6.5.3-6.5.4.

• Using all the previous ingredients, one can extract confidence intervals for a given Wilson coeffi-
cient.

In addition to the previous procedure, there are some considerations that need to be taken into account
in order to check the validity of the EFT approach and to facilitate the matching to UV-complete BSM
models, as discussed below.

6.1.1 Linearized approach

As detailed in Chapter 2, in this analysis we only consider dimension-6 terms in the expansion of the EFT
Lagrangian. This truncation requires additional checks to test the self-consistency of the EFT approach
within the search range. Let us consider the EFT expansion of the matrix element:

MEFT =MSM +
c(6)
Λ2 Md6 +

c(8)
Λ4 Md8 + . . . (6.3)

The squared matrix element will be:

|MEFT|2 =

SM component︷ ︸︸ ︷
|MSM|2 +

SM-D6 Interference︷ ︸︸ ︷
2c(6)
Λ2 Re(M∗

SMMd6) +

D6 BSM-squared︷ ︸︸ ︷
c2
(6)

Λ4 |Md6|2 +

SM-D8 Interference︷ ︸︸ ︷
2c(8)
Λ4 Re(M∗

SMMd8) + . . . (6.4)

Here |MSM|2 is the dimension-four Standard Model squared matrix element. The term 2Re(M∗
SMMd6)

represents the interference between the Standard Model and the dimension-six operators in the EFT ex-
pansion. This term is of the orderO( c(6)

Λ2 ), whereas the squared matrix element |Md6|2 of the dimension-

six operators is of the order O( c2
(6)

Λ4 ). This term has the same order, in terms of powers of Λ, as that stem-
ming from the interference between a dimension-8 operator and the SM part 2Re(M∗

SMMd8). The trun-
cation of the EFT series beyond dimension-6 terms assumes that the contribution from the dimension-8
terms is sub-leading. Therefore, and following the recommendations from Ref. [44, 81], the modification( dσj

dX

)MG5

ci
/
( dσj

dX

)MG5

ci=0
to the state-of-the-art SM predictions are derived twice: once considering only the

SM term and its interference with the dimension-6 operators, and once accounting also for the squared
dimension-6 BSM matrix element. This will allow the estimation of the uncertainty due to missing terms
in the EFT series depending on the relative contributions of the two terms. In addition, comparing the
cross section predictions using the interference-only BSM terms to those including the contribution from
the squared BSM matrix element, we can identify a linear regime. In this regime, the BSM-squared terms
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will be sub-dominant, and the interpolation procedure will be simpler, through linearization of the cross
section as a function of c(6)i .

In cases where the cross section change resulting from the inclusion of the dimension-6 squared term
is larger than the interference-only term; this might indicate that the EFT approach is not valid any-
more [44]. Nevertheless, there are cases, detailed in Ref. [81], where the dimension-6 squared term has
larger cross section than the interference-only terms in a valid EFT expansion. This can result from sym-
metries or destructive cancellation that suppress the interference term. Therefore, the validity of such
results will depend on the assumptions of the UV complete coupling as they can modify the simple
power counting (based on the powers of Λ) between the dimension-6 squared terms and the dimension-
8 interference terms. Therefore, deriving the limits using both the interference-only and the squared
dimension-6 terms allows constraining families of UV-complete BSM models.

6.1.2 CP-odd observables

As detailed in the previous section, there are scenarios in which the interference-only cross section can
be smaller than the dimension-6 squared terms. An example of such cases is that of CP-odd operators.
In this case, the SM and the EFT dimension-6 CP-odd operators yield different helicity amplitudes, and
hence their interference is zero [246]. Therefore, there is no contribution from the interference term to
the inclusive rate, or to CP-even observables such as transverse momenta and invariant masses, and the
only contribution is to CP-odd observables [247]. The Higgs boson production via VBF can provide such
CP-sensitive observables via the tensor structure of the Higgs coupling to weak bosons (HVV) [48, 248].
The most general tensor structure of a HVV vertex in the limit of massless quarks can be written as [249]:

Tµν(q1, q2) = a1(q1, q2)gµν + a2(q1, q2)
[
q1 · q2gµν − qµ

2 qν
1

]
+ a3(q1, q2)ε

µνρσq1ρq2σ, (6.5)

where q1, q2 are the four momenta of the weak bosons and a1,2,3 are form factors. For the SM case, a1 is
constant and a2 = a3 = 0. Therefore, sizable form factors a2,3 would represent BSM contributions. The
distributions of the two jets are an important tool for the determination of the tensor structure of a HVV
coupling. The pj1

T or mjj distributions depend strongly on the form factors, and hence can not be used
to determine the tensor structure in a model-independent manner. The distribution of the azimuthal
angle separation of the leading jets |∆φjj|, on the other hand, is not sensitive to form factor effects and
provides a powerful tool to determine the tensor structure as it can distinguish between the three tensor
structures of Eq. (6.5). The |∆φjj| variable has a characteristic distribution that is distinct for CP-even and
CP-odd couplings. For a pure CP-odd coupling, the cross section is suppressed at |∆φjj| = 0, π, whereas
for CP-even couplings it is suppressed at |∆φjj| = π/2. These effects cancel each other when both
CP-even and CP-odd anomalous couplings are present, and no distinction can be made. This missing
information, in this case, is contained in the signed distribution ∆φjj,signed. The ∆φjj,signed variable has
a similar distribution to |∆φjj| with suppressed cross sections at ∆φjj,signed = 0,±π for a pure CP-odd
couplings and at ∆φjj,signed = ±π/2 for a pure CP-odd coupling. However, when CP-odd and CP-even
couplings are mixed with an angle α, the position of the dips due to cross section suppression are shifted
with ∆φjj,signed = −α for CP-even and ∆φjj,signed = −α + π for CP-odd and hence a distinction can be
made. An example for these different cases, from Ref. [249], is shown in Figure 6.1 for given CP-even
and CP-odd couplings values.

The distinction between the CP-even and CP-odd couplings for the ∆φjj,signed distribution can be
understood by looking at the matrix element:

M =MSM + a2MCP−even + a3MCP−odd. (6.6)
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FIGURE 6.1: Normalised distribution of the ∆φjj,signed observable for mH = 120 GeV. The CP-even and
CP-odd couplings are characterized in terms of the parameters d and d̃ which are functions of the HVV
Wilson coefficients. The figure shows a mixed-CP scenario (d = d̃ = 0.18) in red solid curve, a CP-even
anomalous coupling (d̃ = 0, d = 0.18) in green dashed curve, CP-odd coupling (d̃ = 0.18, d = 0.) in blue

dotted curve, and the SM model (d̃ = 0, d = 0.) case with purple dotted line [249].

This results in the squared matrix element:

| M |2 = | MSM |2 +a2
2 | MCP−even |2 +a2

3 | MCP−odd |2 (6.7)

+

SM CP-even interference︷ ︸︸ ︷
a22Re (M∗

SMMCP−even) (6.8)

+

SM CP-odd interference︷ ︸︸ ︷
a32Re

(
(MSM + a2MCP−even)

∗MCP−odd
)

(6.9)

MSM andMCP−even are even functions of ∆φjj,signed whereasMCP−odd is odd in ∆φjj,signed and hence the
CP-odd term interference with the SM is zero when using |∆φjj| as opposed to the interference between
the CP-even term and the SM. An example of such interference is shown in Figure 6.2. Therefore, the
asymmetry in the distribution of ∆φjj,signed due to its parity-odd nature can be used to probe CP-violation
in the Higgs sector, as parity-odd couplings can only originate from the a3 interference term. On the other
hand, the squared CP-even or CP-odd terms will results in CP-even effects regardless of the nature of
the operators [247]. Therefore, they will result in non-zero cross sections for all observables.

6.2 EFT sample generation using MadGraph

Following Eq. (6.2), three different sets of MC samples are required in order to describe the variations of
the differential cross sections as a function of the Wilson coefficients of the model we are interested in :

• State-of-the-art SM predictions that include the best known QCD and EW corrections. For this
purpose, we use the Higgs boson signal samples used from the cross section measurement detailed
in Section 5.2.2.1.

• Leading-order SM predictions generated with MADGRAPH 5 as implemented in a given EFT model
by setting all the Wilson coefficients to zero.

• Leading-order variations of the cross sections generated with MADGRAPH 5 from variations of the
Wilson coefficient that is being investigated.
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FIGURE 6.2: Normalised distribution of the ∆φjj,signed variable for mH = 120 GeV for the interference
between (a) the SM and CP-even anomalous coupling and (b) the SM and anomalous CP-odd cou-

plings [249].

The fiducial differential cross sections can be obtained from the generated events by interfacing the out-
put of the MADGRAPH 5 events to a RIVET [250] routine that applies the fiducial selection detailed in
Section 5.3.2, computes the different observables, detailed in Section 5.1.1, and fills corresponding his-
tograms. In this section, we will review the event generation details of the EFT samples using MAD-
GRAPH5 for the Higgs Effective Lagrangian (SILH basis), in Section 6.2.1, and the SMEFT (Warsaw basis),
in Section 6.2.2.

6.2.1 Higgs Effective Lagrangian (SILH basis) event generation

The Higgs Effective Lagrangian presented in Section 2.2.2.2 has been implemented in FEYNRULES [243].
Samples of ggH and VBF+VH events are produced at the parton level for specific points in EFT

parameter space by interfacing the universal file output (UFO) from Feynrules to the MADGRAPH 5
event generator. The generated events are then passed through the PYTHIA8 generator [31] for modeling
of parton shower and underlying event using the A14 tuned set of parameters [251]. For each production
mode, the Higgs boson mass is set to 125 GeV and the NNPDF23LO parton distribution functions [252]
are used.

Higgs boson production via gluon fusion is generated with up to two additional partons in the final
state using leading-order matrix elements. The 0-parton, 1-parton, and 2-parton events are merged using
the MLM matching scheme [253]. The gluon-fusion events are generated using the following commands
with h denoting the Higgs boson, a a photon, and j a light parton:

generate p p > h NP=1 QED=1 QCD=99, h > a a NP=1 QED=2

add process p p > h j NP=1 QED=1 QCD=99, h > a a NP=1 QED=2

add process p p > h j j NP=1 QED=1 QCD=99, h > a a NP=1 QED=2,

where QED and NP specify the maximum number of electroweak and new physics couplings, respec-
tively. The choice of NP=1 allows one new physics coupling in the production and the decay of the Higgs
boson. Effectively, either the production or the decay is changed since there are no operators that affect
both the production and decay at the same time since the only Wilson coefficients that affect the Higgs
boson decay are cγ and c̃γ. The choice of QED=1 in the production removes the VBF and VH production
modes. The first, second and third lines specify the production of a Higgs boson in association with 0-,
1-, and 2- partons, respectively.
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FIGURE 6.3: The ratio between leading-order BSM cross section from non-zero Wilson coefficients of the
SILH effective Lagrangian and the different SM production modes for the five differential distributions
used in the analysis. For cg and c̃g, the effect on the gluon-fusion cross section is shown. For cHW and
c̃HW , the effect on the sum of the vector-boson fusion and VH associated production cross sections is

shown.

Higgs boson production in the VBF and VH modes is generated using tree-level matrix elements.
The VBF+VH events are generated using the following commands:

generate p p > h j j NP=1 QED=99 QCD=0, h > a a NP=1 QED=2

add process p p > h b b∼ NP=1 QED=99 QCD=0, h > a a NP=1 QED=2

add process p p > h l+ l- NP=1 QED=99 QCD=0, h > a a NP=1 QED=2

add process p p > h ta+ ta- NP=1 QED=99 QCD=0, h > a a NP=1 QED=2

add process p p > h vl vl∼ NP=1 QED=99 QCD=0, h > a a NP=1 QED=2

add process p p > h l+ vl NP=1 QED=99 QCD=0, h > a a NP=1 QED=2

add process p p > h l- vl∼ NP=1 QED=99 QCD=0, h > a a NP=1 QED=2

The choice of QCD=0 in the production removes gluon-fusion events. The first line generates Higgs bosons
in association with two gluons or light quarks, through VBF and VH, V → hadrons. The second line is
the production of a Higgs boson in association with two b-quarks. The third, fourth and fifth lines are
needed to generate ZH, Z → leptons events, while the sixth and seventh lines are needed to generate
WH, W → leptons events.

Anomalous tt̄H interactions could in principle be probed by isolating a phase space region dominated
by signal events from the tt̄H associated production mode. Anomalous H f f̄ interactions would also
alter the Higgs boson total width and thus the H → γγ branching ratio; however, they would manifest
themselves more evidently as deviations of the pp → H → f f̄ measured cross sections. Therefore, no
variations to the tt̄H production mode are considered.

The expected impact of the coefficients cg, cHW and of their CP-odd counterparts on the ggF and
VBF+VH production cross sections respectively for some particular values of such coefficients is illus-
trated in Figure 6.3, and the effect on the total (ggF + VBF + VH + tt̄H) H → γγ differential cross sec-
tions is shown in Figure 6.4. The chosen values correspond to the upper values expected to be excluded
at the 95% confidence level. The effect of the variations of these Wilson coefficients follows directly from
the SILH Lagrangian detailed in Section 2.2.2.2.
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FIGURE 6.4: The ratio between the BSM cross section from non-zero Wilson coefficients of the SILH effec-
tive Lagrangian and the total SM cross section for the five differential distributions used in the analysis of
(a) the coefficients cg, cγ and cHW , and (b) the coefficients c̃g, c̃γ and c̃HW , of the SILH effective Lagrangian

for some particular values of the coefficients.

6.2.2 SMEFT (Warsaw basis) event generation

The SMEFT Lagrangian in the Warsaw basis is implemented in FEYNRULES via the SMEFTSIM pack-
age [254]. The SMEFTsim package provides a complete implementation of the lepton- and baryon-
number conserving dimension-6 Lagrangian operators in the Warsaw basis. The SM Lagrangian tree-
level amplitudes are included, and extended, with the SM loop-induced Higgs couplings to gg, γγ, and
Zγ. The SMEFTsim package provides implementations for three different flavor symmetry assumptions
and two input parameter scheme choices. The work shown in this thesis was performed using the U(3)5

flavor symmetric case, with non-SM CP-violating phases, and using the α scheme which uses the input
parameter set {αew, mZ, G f } for the electroweak sector. Additionally, the SMEFTsim package provides
two alternative implementations (called "A" and "B") of the dimension-6 Lagrangian, differing in the
technical implementation but producing consistent results in a set of benchmark studies [254]. For the
work presented here, the implementation "A" was used.

MADGRAPH5 allows generating the Higgs boson production processes separately with the interference-
only term using the option NP^2==1 or with the quadratic-only term using the option NP^2==2. On the
other hand, MADGRAPH 5 cannot generate the decay process with the option NP^2==1 or 2. Therefore,
for these tests in which we assess the validity of the linear regime by comparing the two cross sections,
the decay to γγ is performed using PYTHIA8. The following lines are added to the PYTHIA8 configura-
tion file to turn off all the Higgs boson decays except for the one to diphotons:
25:onMode = off

25:onIfMatch = 22 22

For all SMEFTsim simulations, the decay process is not included in the MADGRAPH 5 generation, as
the decay vertices are also affected by the same Wilson coefficients, as detailed in Section 2.2.2.1. The
effect of these Wilson coefficients on the H → γγ decay width and the total Higgs boson decay width is
analytically modeled, as shown in Section 6.3.

The resulting amplitude, however, is not consistent with the truncation to the dimension-6 of the EFT
expansion, as the dimension-6 Lagrangian amplitude is only defined up to terms of O( 1

Λ2 ), and beyond
that the amplitude is ill-defined. The inclusion of terms with more than one operator, namely one in the
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production and one in the decay, would require the addition of dimension-8 operators to avoid incon-
sistencies. Nevertheless, when the amplitudes are constructed with up to one operator it is theoretically
consistent to get the dimension-6 squared terms O( 1

Λ4 ). Therefore, the following formula is used to
model the total change in the production cross section × branching ratio for the linear interpolation case
for a generic Wilson coefficient c̄:

σlinear
c̄ 6=0 × BRlinear

c̄ 6=0 = σSM × BRSM + c̄σinterference × BRSM + c̄σSM × ∆BRinterference, (6.10)

where σinterference is cross section from the interference between the SM and dimension-6 terms and
∆BRinterference is the change in branching ratio of the H → γγ due to interference-only terms. For the
case when the linear and quadratic variations are considered:

σ
linear+quadratic
c̄ 6=0 × BRlinear+quadratic

c̄ 6=0 = σlinear
c̄ 6=0 × BRlinear

c̄ 6=0 + c̄2σquadratic × BRSM + c̄2σSM × ∆BRquadratic,
(6.11)

i.e. the terms c̄2σinterference × BRinterference are avoided in the expansion of σ× BR.
Modeling the decay is then performed separately as detailed in Section 6.3, and added analytically in

the fit. For the production, the MADGRAPH 5 scripts used for gluon-fusion and VBF + VH productions
are the same as those used for the SILH basis in Section 6.2.1, excluding the decay part.

The expected impact of the different SMEFT Wilson coefficients for some particular values of such co-
efficients is shown in Figure 6.5. The figure shows the effect of the different coefficients on the production
cross section in addition to the change in the H → γγ branching ratio. The chosen values correspond to
the maximum value expected to be excluded at 95% CL, and their effects follow directly from the SMEFT
Lagrangian (Section 2.2.2.1). The total effect of these variations on the total pp → H → γγ cross section
is shown in Figure 6.6.

6.2.3 Parameter variations and EFT sample generation

To set limits on a single EFT parameter, the parameter space is scanned across a range chosen empirically,
by inspecting the corresponding change induced in expected total cross section, compared to the largest
deviations observed in data (or that are excluded by previous measurements). The chosen parameter
ranges are shown in Table 6.1 for the SILH and SMEFT Wilson coefficients.

For the case of the linear regime, the interpolation is simplified since the cross section from the in-
terference between the dimension-6 operators and the SM scales linearly. Therefore, it is sufficient to
generate only one sample at a given benchmark value of a given Wilson coefficient. Nevertheless, addi-
tional interference-only samples were generated following Table 6.1 to cross-check the linear scaling.

To allow limits to be set on two EFT parameters at the same time, two-dimensional parameter space
is scanned in a 5×5 grid for cg vs c̃g and cHW vs c̃HW . For the scan of cHW vs. c̃HW , the parameters cHB

and c̃HB are set equal to cHW and c̃HW , respectively, to suppress anomalous H → Zγ production, and all
the other coefficients are set to zero. The two-dimensional limits for the linearized regime, on the other
hand, do not require generating events in a two-dimensional grid, benefiting from the linear behavior
of the interference-only cross section. Hence, deriving two-dimensional limits in this case is simplified.
For each point in parameter space, 500k gluon-fusion and 500k VBF+VH events were generated for the
SILH basis, and a similar procedure was performed for the SMEFT (Warsaw) basis. The generated events
were passed through a RIVET routine implementing the particle-level fiducial definition of the Higgs to
diphoton cross section measurement as detailed in Section 5.3.2.
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FIGURE 6.5: The effect on the five differential distributions used in the analysis of the coefficients (A)
CHG, (B) CHW , (C) CHB and (D) CHWB with their CP-odd counterparts. The figures show the effect of each
Wilson coefficient on the Higgs production mode that it affects. The figures also show their effect on the
change in the H → γγ branching ratio either by changing only the total Higgs decay width (CHG) or by

also changing the Higgs to photons decay width.
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Basis Wilson coefficient Min value Max value
SILH cγ -0.001 0.001
SILH c̃γ -0.02 0.02
SILH cg -0.00100 0.00050
SILH c̃g -0.0005 0.0005
SILH cHW -0.25 0.25
SILH c̃HW -0.5 -0.5
SILH cHB -0.25 0.25
SILH c̃HB -0.5 0.5

SMEFT CHG -0.005 0.005
SMEFT C̃HG -0.2 0.2
SMEFT CHW -0.5 0.5
SMEFT C̃HW -0.5 -0.5
SMEFT CHB -0.5 0.5
SMEFT C̃HB -0.5 0.5
SMEFT CHWB -0.5 0.5
SMEFT C̃HWB -0.5 0.5

TABLE 6.1: Scanned parameter ranges for each EFT parameter.

6.3 Higgs boson decay width modelling

Non-zero values of the Wilson coefficients affecting the Higgs boson couplings can change the Higgs
boson branching ratio to two photons. This change can arise from the change in the partial decay width
to two photons (Higgs boson effective couplings to the photon field) or from the change in the total Higgs
boson decay width (due to Higgs boson couplings to gauge bosons) as detailed in Chapter 2.

The MADGRAPH5 event generator is used to study the change in the decay width. Samples are
produced for several values of the Wilson coefficients in the different bases. The partial widths are then
obtained and interpolated with a second degree polynomial, to obtain a parametrization of the partial
width for any arbitrary value of the Wilson coefficients. As an illustration, Figure 6.7 shows the variation
of the Higgs boson partial decay width to two photons as a function of CHW , CHB, and CHWB and of
their CP-odd counterparts, in the SMEFT Warsaw basis. The full parametrization of the variation of the
diphoton decay width (in MeV) in the SMEFT Warsaw basis is:

∆Γγγ = 143.1× 102 C2
HW − 2.4× 102 CHW + 143.1× 102 C̃2

HW (6.12)

+ 1541× 102 C2
HB − 8× 102 CHB + 1541× 102 C̃2

HB

+ 469.5× 102 C2
HWB + 4.4× 102 CHWB + 469.5× 102 C̃2

HWB

with the change in total width (in MeV) [255] found to be:

∆Γtotal = 50.6 CHG − 1.21 CHW − 1.5 CHB + 1.21 CHWB (6.13)

For the parametrization of the decay width in the SILH basis, the following analytical formulae are
used [245]. The change in partial width to diphotons (in MeV) is given by:

∆Γγγ = 1934.7 c2
γ − 8.4655 cγ + 1937.9 c̃2

γ (6.14)
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while the change in total width (in MeV) is given by:

∆Γtotal = ∆Γγγ (6.15)

+ 6810354 c2
g + 3057.12 cg + 6806751 c̃2

g

+ 3.3611 c2
HW + 3.368 cHW + 0.271 c̃2

HW

+ 0.3872 c2
HB + 0.4462 cHB

6.4 Variation of EFT parameters

From Eq. (6.2), deriving the constraints on the Wilson coefficients requires evaluating the cross section as
a function of the Wilson coefficient within the scan range ~p, fMC(~p). However, running a Monte-Carlo
event generator and a subsequent analysis tool for each point in ~p is a CPU-expensive procedure. There-
fore, an interpolation procedure is adopted in order to reduce the complexity of such computations and
to ensure smooth likelihood variations as a function of the Wilson coefficient. The interpolation relies
on the generated samples at given ranges in Table 6.1. The interpolation procedure is then validated
against generated samples as will be detailed in this section. For samples within the linear regime, a
simplified linear interpolation procedure is implemented as detailed in Section 6.4.1, whereas for sam-
ples with a non-negligible quadratic component a quadratic interpolation procedure is used, detailed in
Section 6.4.2.

6.4.1 Linear interpolation

The validity of the linear regime is tested by comparing the cross section from the interference-only terms
and from the squared dimension-6 term for different values of the Wilson coefficient if the latter is much
smaller than the former, then the linear regime is valid. Figures 6.8 and 6.9 show the differential cross
sections, for both the interference-only terms and quadratic-only terms, generated by the variation of
the Wilson coefficient CHG in the SMEFT parametrisation in the range 0.001− 0.002. As can be seen in
Figure 6.10, the effect of the quadratic-only term is around two orders of magnitude smaller than that
of the interference-only term for the chosen range of values of CHG. Therefore, in that range, the linear
approximation can be used. Tests of the linear behavior for some bins of the differential cross sections
for different values of CHG are shown in Figure 6.11.

Similarly, for the other Wilson coefficients (CHW , CHB and CHWB) the linear regime can be checked
by comparing the ratio of the interference-only and the quadratic dimension-6 cross sections, as shown
in Figure 6.12. It can be seen that the linear assumption is valid only for values of the coefficients up to
O(0.001), where the interference-only term dominates; for larger variations of the Wilson coefficients the
quadratic term contribution to the cross section is not negligible with respect to the interference term,
and a quadratic interpolation must be used instead of the simpler linear one.

6.4.2 Quadratic Interpolation with PROFESSOR

As detailed in Section 6.1, a quadratic interpolation is used for samples with non-negligible quadratic
dimension-6 contributions. The interpolation is performed using the PROFESSOR method [256]. The
Professor method is an approach that reduces the time to evaluate fMC dramatically using P-dimensional
polynomial parametrisations.

The key idea is to treat each bin of a histogram as an independent function of the parameter space.
Once the parameterisations fMC(~p) are known, they can be used to implement a fast pseudo-generator
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FIGURE 6.7: Impact of various Wilson coefficients on the Higgs boson partial decay widths to photons,
using the SMEFT parametrisation: (A) CHW , (B) C̃HW , (C) CHB, (D) C̃HB, (E) CHWB, (F) C̃HWB.
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predicted by MADGRAPH, for different values of the Wilson coefficient CHG (SMEFT Warsaw basis), when
considering only the effect the interference term (solid lines) or only that of the quadratic term (dashed
lines) of the matrix element expansion. All other Wilson coefficients are set to zero. The effect of the
quadratic-only term is around two orders of magnitude smaller than that of the interference-only term for

the chosen range of values of CHG.

that yields an approximate response in milliseconds rather than hours. Furthermore, due to the usage
of polynomial functions for the interpolation, the response function is steady. These properties make
fMC(~p) suitable for numeric applications. This method was used in previous ATLAS Higgs to diphoton
EFT interpretation publications [19, 245].

The lowest-order polynomial function to incorporate correlations between its variables is a polyno-
mial of second order. For a certain bin, b, at a point ~p in parameter space, this can be written as:

f (b)MC(~p) = α
(b)
0 + ∑

i
β
(b)
i pi + ∑

i≤j
γ
(b)
ij pi pj, (6.16)

with~c(b) = α
(b)
0 , β

(b)
i , γ

(b)
ij some coefficients to be determined.

The Professor approach for determining ~c(b) consists in constructing an over-constrained system of
equations ~v(b)a = P̃(b)

~C
using the ensemble of bin contents v(b)a , a ∈ [1, N] obtained when running the MC

generator with the parameter settings ~pa = f (b)MC(~pa), a ∈ [1, N], ("anchors" of the parametrisation). Since
the system is overconstrained, the matrix P̃ can be (pseudo-)inverted using the singular value decompo-
sition implemented in EIGEN3 [257]. Once the pseudoinverse matrix P̃−1 is known, the coefficients~c(b)

can be obtained calculating P̃−1 ·~va. The fast pseudo-generator is thus simply a collection of coefficients
~c(b) for all bins b of interest. As an illustration, in the case of a bidimensional (P = 2) parameter space,
~p = (x, y), the~c vector has six components to be determined (α0, βx, βy, γxx, γxy, γyy), requiring a system
of N ≥ 6 equations:
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FIGURE 6.9: Gluon-fusion cross section
(

dσj
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)MG5

ci
as a function of several kinematic variables, predicted by

MADGRAPH, for different values of the Wilson coefficient CHG (SMEFT Warsaw basis), when considering
only the effect of the interference term (solid lines) or the quadratic term (dashed lines) of the matrix
element expansion. All other Wilson coefficients are set to zero. The effect of the quadratic-only term is
around two orders of magnitude smaller than that of the interference-only term for the chosen range of

values of CHG.
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v1

v2
...

vN




︸ ︷︷ ︸
v(b)a

=




1 x1 y1 x2
1 x1y1 y2

1

1 x2 y2 x2
2 x2y2 y2

2
...

1 xN yN x2
N xNyN y2

N




︸ ︷︷ ︸
P̃




α0

βx

βy

γxx

γxy

γyy




︸ ︷︷ ︸
~c(b)

(6.17)

Examples of the quadratic interpolation and its validation are shown in the next section for the dif-
ferent Wilson coefficients of the SILH and the SMEFT bases.

6.4.3 Interpolation validation

The interpolation procedure is validated by comparing the interpolated values of the cross section with
those predicted by the event generator for the same values of the operator coefficients. Figures 6.13 and
6.14 show examples of this comparison for each analyzed variable and different Wilson coefficients in the
SILH basis (and their CP-odd counter-parts). The interpolated values of the cross sections are in excellent
agreement with those predicted by the event generator. Figure 6.15 shows the average residual, defined
as the relative cross section difference between the generator prediction and the interpolation, divided by
the number of generated samples, ~pa. The most significant deviation is of the order of 2% in the highest
pγγ

T bin, and the difference is due to the low statistics of events generated in this bin. The experimental
uncertainty in that bin is 31%, more than an order of magnitude larger. Similar behavior is seen for the
last bin of mjj. Analogous comparison plots using the SMEFT basis for the different Wilson coefficients
and their CP-odd counter-parts are shown in Figure 6.16, while the average residual for the SMEFT basis
is shown in Figures 6.17 and 6.18 for the ggH and VBF+VH cross sections, respectively. Additional tests
were performed, by excluding some of these points and comparing them to the interpolation without
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FIGURE 6.12: Ratio of the non-SM contributions to the inclusive VBF + VH cross section as predicted by
MADGRAPH5, arising from either the interference term NP^2==1 and the quadratic term NP^2==2 (labelled
BSM-only term), for variations of the Wilson coefficients (A) CHB , (B) CHW , and (C) CHWB (between 10−5

and 0.1). The ratio decreases from more than 104 for values of the Wilson coefficientsO(10−5) until the in-
terference and the quadratic terms give similar contributions (ratio close to 1) for values of the coefficients

around O(0.01).
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FIGURE 6.13: The interpolation (red) is compared with the predicted cross section of a given sample
(blue). Shown here are ggH events, and the Wilson coefficients that are varied are cg and cγ, as well as

their CP-odd counter-parts. All Wilson coefficients are varied independently.

these points. The interpolation showed excellent agreement in this case as well (with differences of
< 1% between the average bias and the average residual obtained using all points).

6.5 Limit setting procedure

Limits on Wilson coefficients are set by means of a likelihood function

L(ci) =
1√

(2π)k |C|
exp

(
−1

2

(
~σdata −~σpred(ci)

)T
C−1

(
~σdata −~σpred(ci)

))
(6.18)

where ~σdata and ~σpred are vectors containing the measured and predicted cross sections in each bin of
the five analyzed observables, and C = Cstat + Cexp + Cpred is the total covariance matrix defined by the
sum of the statistical, experimental and theoretical covariances, with |C| denoting its determinant and k
is total number of bins for all observables. This can also be written in a more compact form as

L(ci) = Lmaxe−
χ2(ci)

2 (6.19)



6.5. Limit setting procedure 223

HWc

0.3− 0.2− 0.1− 0 0.1 0.2 0.3

 [p
b]

σ

0

0.002

0.004

0.006

0.008

0.01

0.012

 = 1jetNBin : 

Professor Interpolation

MG5 Generated samples

(A)

HWc~
0.6− 0.4− 0.2− 0 0.2 0.4 0.6

 [p
b]

σ

0.001

0.002

0.003

0.004

0.005
 = 1jetNBin : 

Professor Interpolation

MG5 Generated samples

(B)

HBc

0.3− 0.2− 0.1− 0 0.1 0.2 0.3

 [p
b]

σ

0.8

0.9

1

1.1

1.2

1.3

3−10×

 = 1jetNBin : 

Professor Interpolation

MG5 Generated samples

(C)

HBc~
0.6− 0.4− 0.2− 0 0.2 0.4 0.6

 [p
b]

σ

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

3−10×

 = 1jetNBin : 

Professor Interpolation

MG5 Generated samples

(D)

FIGURE 6.14: The interpolation (red) is compared with the predicted cross section of a given sample (blue).
Shown here are VBF+VH events for a representative bin of each variable, and the Wilson coefficients that
are varied are cHW and cHB, as well as their CP-odd counter-parts. All Wilson coefficients are varied

independently.



224 Chapter 6. Higgs Boson Cross Section Interpretation Using the EFT Approach

30 GeV

jetN

[0,1) [1,2) [2,3) [3,9999)

|D
el

ta
_r

el
|/	

 %

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(A)

γγ

T
P

[0,20)
[20,30)

[30,45)
[45,60)

[60,80)
[80,120)

[120,170)
[170,220)

[220,350)
[350,500)

|D
el

ta
_r

el
|/	

 %

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(B)

jj
m

[-100,0) [0,170) [170,500) [500,1500) [1500,2000)

|D
el

ta
_r

el
|/	

 %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(C)

|
jj

φ∆|

[0,1.0472) [1.0472,2.0944) [2.0944,3.15)

|D
el

ta
_r

el
|/	

 %

0

0.1

0.2

0.3

0.4

0.5

(D)

FIGURE 6.15: The average residual (defined as the relative difference of the generated sample with respect
to the interpolation) for each bin of the probed variables is shown.
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All Wilson coefficients are varied independently.
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ple with respect to the interpolation) for each bin of the probed variables is shown.
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where χ2(ci) =
(
~σdata −~σpred(ci)

)T
C−1

(
~σdata −~σpred(ci)

)
. We use the profile likelihood ratio to set

confidence intervals on the parameter(s) ci. The likelihood ratio is

λ(ci) =
L(ci)

Lmax
= e−

χ2(ci)
2 (6.20)

and the test statistic is
tci = −2 ln λ(ci) = χ2(ci) (6.21)

The p-value of a given hypothetical value of ci is then

pci = n
∫ ∞

−2 lnL(ci)+2 lnLmin

dtci f (tci |ci) , (6.22)

where n = 1 or 1
2 for two-sided or one-sided confidence interval estimation. Wilks’ theorem states that

in the large-sample limit f (tci |ci) is the χ2 probability distribution P(χ2, ν) for ν degrees of freedoms.
Lower λ(ci) values, or equivalently higher tci values, mean worse agreement between data and the
hypothesized ci, and a smaller p-value.

Confidence intervals (CI) at a certain confidence level (CL) for one, or several, Wilson coefficients
are the regions of values of ci for which the corresponding p-value is larger than 1-CL. They are thus
determined by finding their boundaries through the relation:

1− CL = n
∫ ∞

−2 lnL(ci)+2 lnLmin

dx f (x; m) , (6.23)

where m is the number of degrees of freedom. The coverage of a confidence interval and the ef-
fective number of degrees of freedom are checked using ensembles of pseudo-experiments. The GAM-
MACOMBO package [101] is used to estimate the confidence intervals using either the profile likelihood
method ("Prob" label in the following figures) or ensembles of pseudo-experiments ("Plugin" label).

6.5.1 Input measurements

The constraints on the effective Lagrangian coefficients are set using five differential Higgs boson produc-
tion cross sections that are sensitive to the relative cross sections of the ggH and the VBF+VH processes,
and to the CP quantum numbers of the Higgs boson. Such differential cross sections are functions of the
following quantities:

• the Higgs boson pT,

• the number of jets Njets with pT > 30 GeV,

• the invariant mass mjj of the leading di-jet pair in events with at least two jets,

• the signed azimuthal separation between the two leading jets, ∆φjj, and

• the leading jet pT.

Expected limits are calculated using cross section mock measurements, performed on Asimov datasets
built from the SM simulated samples. The cross sections are determined by performing signal+background
fits to the reconstructed diphoton invariant mass distributions to determine the signal yields and then
unfolding the yields to a particle-level fiducial region close to the experimental fiducial volume. Such
unfolded differential cross sections were shown in Section 5.7.1.
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6.5.2 Statistical uncertainties

The limits-setting procedure is based on the measurements of five differential cross sections distributions.
Therefore, in order to use all of the five distributions, a measure of the shared events between the bins
of the different distributions, or their correlation, is computed. The correlation is determined using a
bootstrapping technique, in which a given data set is resampled in order to estimate the observables of
interests, such as the covariance between different bins. The bootstrapping is done as follows:

i. Each event is assigned a random event weight, sampled from a Poisson distribution with variance
ν = 1.

ii. The sum of weights of events in the mγγ sidebands is computed. This procedure is motivated by
the fact that the mγγ distribution in data, which is used to determine the signal yield, is dominated
by the irreducible background, and so is the statistical uncertainty on the signal cross section.

These two steps are repeated until a large enough sample is obtained to estimate the cross-correlations.
This method is applicable as long as all bins adequately sample all corners of phase space. Due to the
sizeable irreducible di-photon background from pp→ γγ, all bins have a population of several hundred
of events. A selection of example scatter plots for the extracted yields are shown in Figure 6.19. The cor-
relation between two bins x and y is calculated using Pearson’s product-moment correlation coefficient,
i.e.

r = rxy =
1

n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
, (6.24)

with sx =
√

1
n−1 ∑n

i=1 (xi − x̄)2 and sy =
√

1
n−1 ∑n

i=1 (yi − ȳ)2. Here xi and yi are the number of back-
ground events in bins x and y in the ith bootstrap sample, and x̄ or ȳ are the average x and y values over
the ensemble of the n bootstrap samples, i.e. x̄ = 1

n ∑n
i=1 xi and ȳ = 1

n ∑n
i=1 yi. The corresponding 68% CI

scales as a function of the number of bootstrap samples and is given by

r ∈
[

tanh(atanh(r)− 1√
n− 3

), tanh(atanh(r) +
1√

n− 3
)

]
(6.25)

This relation is derived from a Fisher-Z transformation z = atanh(r) = 1
2 log 1+r

1−r , with variance V[z] =
1

n−3 [97]. The full correlation matrix is obtained from 10000 bootstrap fits and is shown in Figure 6.20.
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FIGURE 6.20: The estimated statistical cross correlations between the bins of the 5 observables.

The residual 68% statistical uncertainty from the finite number of bootstrap fits ranges from 0.02% for
r = 0.99 to 1% for r = 0. In the following, extracted statistical correlations smaller than 3% are neglected,
as such small contributions should have a negligible impact on the physical result and neglecting them
avoids introducing small eigenvalues in the covariance matrix what can cause problems in the numerical
inversion of the total covariance matrix.

6.5.3 Experimental systematic uncertainties

In addition to the statistical correlation, the systematic uncertainties from the unfolding procedure are
assumed to be fully correlated between the different bins. The experimental systematical uncertainties,
detailed in Section 5.5, are classified according to their source as follows:

a. Background modelling

b. Photon energy scale and resolution

c. Luminosity

d. Photon isolation efficiency

e. Photon identification efficiency

f. Diphoton trigger efficiency

g. Pileup modelling

h. Generator modelling

i. (Jet energy scale effective nuisance param-
eters (NP) 1-8)

j. (Jet energy scale η intercalibration mod-
elling)

k. (Jet energy resolution effective nuisance
parameters (NP) 1-8)

l. (Jet energy scale forward modelling)

m. (Jet energy scale high-pT)

n. (Jet energy scale non-closure )

o. (Jet energy scale pile-up µ)

p. (Jet energy scale pile-up ρ)

q. (Jet energy scale flavour composition)

r. (Jet energy scale flavour response)

s. (JVT modelling)
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The sources in parentheses are only included for the observables that involve the reconstruction of
jets, such as mjj, pj1

T , ∆φjj,signed or Njets. Identical uncertainty sources are assumed to be fully correlated
across bins with the sign of the error amplitude taken into account when computing the covariance
matrix. The full experimental covariance used in the analysis is given by the sum of the statistical and
systematic covariances, and is shown in Figure 6.21.

FIGURE 6.21: Total experimental covariance of the measured diphoton differential cross sections using the
full Run-2 dataset (139 fb−1).

6.5.4 Theory uncertainties

Following Eq. (6.2), variations to the SM predictions are obtained by reweighting the best-known SM
predictions. Therefore, the different theoretical uncertainties affecting the SM predictions of the different
production modes are also included in the total covariance, defined in Section 6.5. The different uncer-
tainties affecting the predictions are detailed in Section 1.3. They include uncertainties from PDF, QCD
order and αs.

For the gluon-fusion production mode, nine uncertainty sources are used to model the QCD theory
uncertainties, following the recommendation of the LHC Higgs cross section working group [44]. These
sources are:

• two sources correspond to yield uncertainties related to the total cross section. Their magnitude
is taken from the STWZ-BLPTW predictions [44, 258, 259] and their impact on the different bins is
evaluated using NNLOPS.

• two sources correspond to migration uncertainties related to splitting the phase space by jet multi-
plicity. Their magnitude and impact are derived similarly to the yield uncertainties
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• two uncertainty sources are related to the pH
T shape and are estimated from scale variations in

NNLOPS, including variations of the HNNLO input scales and the renormalization and factoriza-
tion scales in Powheg [260].

• two uncertainty sources related to the enhancement of uncertainties for events with typical VBF
topology (due to explicit or implicit third-jet vetos), and are estimated by scale variations in MCFM [261],
and the corresponding uncertainties are estimated using the same procedure use for yield and mi-
gration uncertainties.

• one uncertainty source is related to the treatment of mt and is most important at large pH
T .

Following the recommendations of PDF4LHC [36], the PDF uncertainties are evaluated using the 30
eigenvectors set and treating each of them as an uncorrelated source. One additional nuisance parameter
accounts for the uncertainties in αs.

For the VBF + VH production modes, QCD uncertainties are estimated as an envelope of the scale
variations available in Powheg [194, 262]. Uncertainties from the choice of the PDF set and αs are evalu-
ated similar to the gluon-fusion case.

For tt̄H production, the perturbative uncertainties are taken to be +5.8%
−9.2%. The uncertainty on the choice

of the PDF set is taken to be 3%, and the uncertainty from varying αs within its uncertainties is 2% [51–
53], as detailed in Section 1.3.2. For bb̄H production, the combined uncertainty from all three sources is
+20%
−24% [54, 55], and is treated as a separate, uncorrelated, nuisance parameter.

The relative uncertainty in the SM prediction ranges between 6% and 16% depending on the ob-
servable and bin. The breakdown of the different sources for the different distributions is shown in
Figure 6.22. The total theory covariance matrix is shown in Figure 6.23.

6.6 Results

The observed (expected) limits are obtained from the measured (Asimov) unfolded cross sections as
detailed in the previous section. The results are provided in terms of the effective Lagrangian coefficients
in the HEL SILH basis (Section 6.6.1) and in the SMEFT Warsaw basis (Section 6.6.2).

6.6.1 Observed and expected limits in the SILH parametrisation

Constraints are set on the Wilson coefficients of dimension-6 effective Lagrangian operators in the SILH
parametrisation. The results include both 1D confidence intervals on each coefficient, as well as 2D
confidence intervals on pairs of coefficients. The constraints on cg and c̃g are derived while fixing all
the remaining Wilson coefficients to zero. For cHW (c̃HW), the limits are set while setting the remaining
Wilson coefficients to zero, except for cHB (c̃HB), that is set equal to cHW(c̃HW). This ensures that the
partial width for H → Zγ is unchanged from the SM prediction. Values of |cHW − cHB| > 0.03 result
in a large H → Zγ decay rate with respect to the Standard Model (� 11), which is contradicted by the
constraints from ATLAS and CMS searches for this decay, σ

Zγ
obs /σ

Zγ
SM = 11 at 95% CL. The constraints

from Zγ are shown in Figure 8 of Ref. [263].

6.6.1.1 1D confidence intervals

Table 6.2 summarizes the 1D observed and expected limits for the different Wilson coefficients using
the profile likelihood method. The limits were derived using the uncertainties from the cross section
measurement using the full Run-2 data.
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FIGURE 6.22: The relative total theory uncertainties for the different differential distributions used for the
limit setting.

The 1− CL curves and the corresponding ∆χ2 ones for the CP-even Wilson coefficients are shown in
Figure 6.24, and for CP-odd in Figure 6.25.

Overall, the measured cross sections agree with χ2 p0 > 50% with the SM. Therefore, no large
deviations from zero for the best values of the different coefficients are observed. The observed limits
agree with the expected limits. For cg, destructive interference causes the gluon-fusion cross section to
be zero for cg ∼ −2.2× 10−4. This interference results in the two disjoint intervals for the expected limits
in Table 6.2. The observed limits, however, do not show this behavior as the resulting ∆χ2 for the second
solution did not pass the ∆χ2 = 3.84 threshold corresponding to the 95% CL as seen in Figure 6.24a.
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FIGURE 6.23: The total theory covariance including the different PDF, QCD and αS error sources.

TABLE 6.2: Observed allowed ranges at 95% CL for the cg, cHW , cγ Wilson coefficients of the SILH basis
and their CP-conjugates. Limits on a coefficient are obtained by setting all others to zero. Limits on cHW
and c̃HW are derived by setting cHB = cHW and c̃HB = c̃HW , respectively, with remaining coefficients set

to zero.

Coefficient Observed 95% CL interval Expected 95% CL interal
cg [−0.26, 0.26]× 10−4 [−0.25, 0.25] ∪ [−4.7,−4.3]× 10−4

c̃g [−1.3, 1.1]× 10−4 [−1.1, 1.1]× 10−4

cHW [−2.5, 2.2]× 10−2 [−3.0, 3.0]× 10−2

c̃HW [−6.5, 6.3]× 10−2 [−7.0, 7.0]× 10−2

cγ [−1.1, 1.1]× 10−4 [−1.0, 1.2]× 10−4

c̃γ [−2.8, 4.3]× 10−4 [−2.9, 3.8]× 10−4

This is a result of the best fit result, cg = 0.2+1.3
−1.3 × 10−5. This is a consequence of the observed inclusive

cross section being slightly higher the SM expectation (details in Section 5.7.2). The effect of the different
Wilson coefficients on the observed limits on the different observables are shown in Figure 6.26. The
Figures show the ratio between data and the default SM predictions for reference. The error bars on data
reflect the total covariance: statistical, experimental, and theoretical.

In order to assess the improvement in the limits with respect to previous ATLAS publications, the
expected limits obtained with the full Run-2 data (139 fb−1) are compared with the expected limits from
cross section measurement using the 2015-2016 data set (36 fb−1) [19]. The results are shown in Table 6.3.
Overall, there is an improvement of approximately a factor 1.6 with the full Run-2 data set, resulting
from the increased statistics with the full Run-2 data, The limits for cγ and c̃γ are not included as the
measurement was not performed using the 36 fb−1 dataset.

To estimate the sensitivity of the five differential cross sections to the Wilson coefficients and their
constraining power, the limit setting procedure has been repeated using each differential cross section
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(A) (B)

(C) (D)

(E) (F)

FIGURE 6.24: 1−CL and ∆χ2 expected and observed curves using 139 fb−1 for the different SILH CP-even
Wilson coefficients: (A,B) cg (C,D) cHW (E,F) cγ.

Wilson coefficient 36 fb−1 Expected 95% 1-CL Limit [19] 140 fb−1Expected 95% 1-CL Limit
cg [−0.4, 0.4]× 10−4 ∪ [−4.8,−4.1]× 10−4 [−0.25, 0.25] ∪ [−4.7,−4.3]× 10−4

c̃g [−1.4, 1.3]× 10−4 [−1.1, 1.1]× 10−4

cHW [−4.8, 4.5]× 10−2 [−3.0, 3.0]× 10−2

c̃HW [−13, 13]× 10−2 [−7.0, 7.0]× 10−2

TABLE 6.3: Expected 95% confidence level 1D intervals on cg, c̃g, cHW and c̃HW , for different integrated
luminosities.

independently. The results are shown in Figure 6.27. The results show that cg and cγ, which are Wilson
coefficients that result in an overall scaling of the cross section are most sensitive to differential mea-
surements such as pγγ

T and N≥30GeV
jets in which the full sample of diphoton candidates is analyzed, and

less sensitive to measurements of variables such as pj1
T or mjj which require the presence of at least an
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(A) (B)

(C) (D)

(E) (F)

FIGURE 6.25: 1−CL and ∆χ2 expected and observed curves using 139 fb−1 for the different SILH CP-odd
Wilson coefficients: (A,B) c̃g (C,D) c̃HW (E,F) c̃γ.

additional jet with pT > 30 GeV, thus reducing the number of events used in the measurement. Simi-
lar conclusions are reached for c̃g and c̃γ, as these limits are computed using both the interference and
quadratic terms with dominating effects from the quadratic term, which has no sensitivity to CP effects.
On the other hand, the coefficient cHW , and c̃HW , that changes in the Higgs boson kinematics, notably in
the high pγγ

T and pj1
T regions and ∆φjj,signed, is mostly constrained by these three differential cross section,

and significantly less by the other three.

6.6.1.2 2D confidence regions

The 68% and 95% confidence regions for cHW vs c̃HW are shown in Fig. 6.28. The regions are determined
setting cHB = cHW and c̃HB = c̃HW to ensure that the partial width for H → Zγ is unchanged from the
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(A) (B)

(C) (D)

FIGURE 6.26: Effect of the different Wilson coefficients at the observed upper and lower 95% CL on the dif-
ferent kinematic distributions relative to the default SM predictions is shown. The ratio between data and
the default SM is also shown for reference. The error bars on data reflect the total covariance: statistical,

experimental and theoretical.

SM prediction. The improvement of the constraints with the 139 fb−1 dataset, with respect to the 36 fb−1

dataset, is similar to what was found for the cHW and c̃HW 1D confidence intervals in the previous section.
The 68% and 95% confidence regions for cg vs c̃g are shown in Figure 6.29. Destructive interference

causes the gluon-fusion production cross section to be zero around cg ∼ −2.2× 10−4. The impact of this
is apparent in the structure of the obtained limits in the two-dimensional parameter plane.

6.6.2 Observed and expected results in the SMEFT Warsaw basis

Similar to the SILH basis, 1D and 2D limits were derived for the different Wilson coefficients in the
SMEFT Warsaw basis.

6.6.2.1 1D confidence intervals

A summary of the expected and observed 95% CL using the 139 fb−1 dataset is shown in Figure 6.30 for
1D scans varying one Wilson coefficient at a time while setting the remaining coefficients to zero.

The results show a strong constraint for CHG as it affects the gluon-fusion production cross section,
scaling the overall cross section. Similarly, CHW , CHB, and CHWB are strongly constrained as their sen-
sitivity is driven by their effect on the H → γγ decay width and, therefore, the branching ratio. The
constraint on CHG is consistent with that on cg in the SILH basis. The Og operators are similar between

the two bases, and the two Wilson coefficients are related by cg =
m2

W
Λ2 CHG [93]. Therefore, one finds

a factor of 156 between the two coefficients, and hence the limit on CHG translates into the interval
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FIGURE 6.27: ∆χ2 curves for (A) cg, (B) c̃g, (c) cHW , (D) c̃HW , (E) cγ and (F) c̃γ for the five differential
distributions independently in the SILH basis.

cg = [−0.27, 0.27]× 10−4, similar to that obtained in the previous section (Table 6.2). The CP-odd Wilson
coefficients, on the other hand, are loosely constrained. This is a consequence of using the interference-
only cross section so that the only sensitivity for the CP-odd coefficients is from the ∆φjj,signed variable.
The effect of the different Wilson coefficients at the observed limits on the different distributions are
shown in Figure 6.31. The figures show the ratio between data and the default SM predictions for refer-
ence. The error bars on data reflect the total covariance: statistical, experimental, and theoretical.
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(A) (B)

FIGURE 6.28: (A) Expected and (B) observed two-dimensional confidence regions for cHW and c̃HW at the
68% and 95% confidence level using the full Run-2 dataset.

(A) (B)

FIGURE 6.29: (A) Expected and (B) observed two-dimensional confidence regions for cg and c̃g at the 68%
and 95% confidence level using the full Run-2 dataset.

Figures 6.32-6.33 shows the 1− CL curves for CHG, CHW , CHB and their CP-odd counterparts. The
effect of these Wilson coefficients on the different production modes can be seen in Figure 6.5.

In order to validate the linearization procedure, and following the recommendations of Ref. [81],
the limits were also derived using the quadratic interpolation with Professor for samples with both the
interference and the dimension-6 squared terms. This is shown in Table 6.4 for the observed limits and
Table 6.5 for the expected limits. The confidence intervals obtained using both the interference plus
quadratic terms were found to be in good agreement with the limits found with the linear interpolation
for the CP-even operators. The constraints on the CP-odd operators, on the other hand, are significantly
different between the interference-only case and the interference + quadratic terms case. This is a result
of the helicity structure of these operators [246], as they do not interfere with the CP-even operators of
the SM except for ∆φjj,signed as it is a CP-sensitive variable. Therefore, ∆φjj,signed is the only variable
driving the limits, as can be seen from Figure 6.31. This is also apparent in Figure 6.5, where the effect of
the CP-odd Wilson coefficients only results in a variation of the ∆φjj,signed distributions.
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FIGURE 6.30: A summary of the (A) the expected and (B) the observed 95% CL using the SMEFT model
for CHG, CHW , CHB and CHWB along with their CP-odd counterparts using 139 fb−1. The limits are the
results of the individual fits, i.e. allowing only one coefficient to vary, while the remaining ones are set to

zero.

The derived limits on the different Wilson coefficients using both the interference-only and the in-
terference+quadratic terms can be translated to BSM scales (ΛNP) for the different SMEFT operators
assuming C = 1 and using C̄ = v2

Λ2 C. The results of such translation are shown in Figure 6.34. The
results are compatible with those found by a global EFT fit in Ref. [264].

Coefficient 95% CL, interference-only terms 95% CL, interference and quadratic terms
CHG [−4.2, 4.8]× 10−4 [−6.1, 4.7]× 10−4

C̃HG [−2.1, 1.6]× 10−2 [−1.5, 1.4]× 10−3

CHW [−8.2, 7.4]× 10−4 [−8.3, 8.3]× 10−4

C̃HW [−0.26, 0.33] [−3.7, 3.7]× 10−3

CHB [−2.4, 2.3]× 10−4 [−2.4, 2.4]× 10−4

C̃HB [−13.0, 14.0] [−1.2, 1.1]× 10−3

CHWB [−4.0, 4.4]× 10−4 [−4.2, 4.2]× 10−4

C̃HWB [−11.1, 6.5] [−2.0, 2.0]× 10−3

TABLE 6.4: The 95% CL observed limits on the CHG, CHW , CHB, CHWB Wilson coefficients of the
SMEFT basis and their CP-odd counterparts using interference-only terms and using both interference
and quadratic terms. Limits are derived fitting one Wilson coefficient at a time while setting the other

coefficients to zero.

To test the sensitivity of the different observables, the limit setting procedure is done using each of the
different observables independently. The results, shown in Figure 6.35, show that CHG, which is a Wilson
coefficient that results in an overall scaling of the cross section, is most sensitive to pγγ

T and N≥30GeV
jets as the

total cross section is probed. Much smaller sensitivity is seen for variables with an additional selection
on jet pT. The remaining Wilson coefficients result in similar behavior as their sensitivity is due to the
change in the branching ratio, which affects all the production modes and, therefore, more sensitive to
inclusive variables.
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(A) (B)

(C)

FIGURE 6.31: Effect of the observed 95% CL on the different kinematic distributions relative to the default
SM predictions using the 139 fb−1 dataset. The figures show the ratio between data and the default SM
predictions for reference. The error bars on data reflect the total covariance: statistical, experimental, and

theoretical.

Coefficient 95% CL, interference-only terms 95% CL, interference and quadratic terms
CHG [−4.5, 4.5]× 10−4 [−4.6, 4.0]× 10−4

C̃HG [−1.8, 1.8]× 10−2 [−1.3, 1.2]× 10−3

CHW [−7.8, 7.8]× 10−4 [−8.2, 9.1]× 10−4

C̃HW [−0.29, 0.29] [−3.6, 3.6]× 10−3

CHB [−2.3, 2.3]× 10−4 [−2.4, 2.4]× 10−4

C̃HB [−13, 13] [−1.2, 1.2]× 10−3

CHWB [−4.2, 4.2]× 10−4 [−4.4, 4.0]× 10−4

C̃HWB [−8.8, 8.8] [−2.0, 2.0]× 10−3

TABLE 6.5: The 95% CL expected limits on the CHG, CHW , CHB, CHWB Wilson coefficients of the
SMEFT basis and their CP-odd counterparts using interference-only terms and using both interference
and quadratic terms. Limits are derived fitting one Wilson coefficient at a time while setting the other

coefficients to zero.

1D limits using only production effects As detailed in Section 2.2.2.1, different Wilson coefficients
affect both the Higgs boson production cross sections and the branching ratio to two photons. The
confidence intervals shown so far include both effects. In order to test the sensitivity to the production,
the limits were rederived including only variations of the Higgs production cross sections. The results
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FIGURE 6.32: Plots show the the 1− CL curves using the SMEFT model for CHG, CHW , CHBand CHWB
along with their CP-odd counterparts using 140 fb−1.

of this derivation are summarized in Table 6.6. The results show good agreement between the limits
between the two cases for CHG as it mainly affects the gluon-fusion production mode. On the other
hand, for the remaining Wilson coefficients, their sensitivity is mainly coming from their effect on the
Higgs to diphoton decay width and hence there are significant differences between the limits when only
the production cross section is considered, which are much looser, and those including the effect on the
width. The effects of the Wilson coefficients on the production cross section at these limits are shown in
Figure 6.5.
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FIGURE 6.33: Plots show the the 1− CL curves using the SMEFT model for CHG, CHW , CHBand CHWB
along with their CP-odd counterparts using 140 fb−1.

Wilson coefficient 95%1− CL Limit using production
cross section effects and decay effects

95%1− CL Limit using only
production cross section effects

CHG [−4.5, 4.5]× 10−4 [−4.2, 4.2]× 10−4

CHW [−7.8, 7.8]× 10−4 [−9.4, 9.4]× 10−2

CHB [−2.3, 2.3]× 10−4 [−4.4, 4.4]
CHWB [−4.2, 4.2]× 10−4 [−1.1, 1.1]× 10−1

TABLE 6.6: The 95% expected limits on CHG, CHW , CHB, CHWB using only their effects on the Higgs boson
production mode and their total effect including also the decay.



244 Chapter 6. Higgs Boson Cross Section Interpretation Using the EFT Approach

HGC HGC
~

HWC HWC
~

HBC HBC
~

HWBC HWBC
~0

2

4

6

8

10

12

14

16

18

20

  [
T

eV
]

C
 / 

Λ

-1, 139 fbγγ →H  95% CL                        SMEFT

Interference-only

Interference+Quadratic D-6
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FIGURE 6.35: ∆χ2 curves for each Wilson coefficient for the five differential distributions independently
in the SMEFT (Warsaw) basis.

6.6.2.2 2D confidence intervals

In addition to the 1D scans, 2D scans were also performed varying simultaneously two Wilson coef-
ficients while setting the remaining ones to zero. These limits are derived using the interference-only
cross sections as it facilitates the interpolation procedure without the need to produce samples with Wil-
son coefficients variations in 2D as was the case for the SILH basis. The results of the 2D scans are shown
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in Figures 6.36 and 6.37 for the simultaneous variation of the CP-odd and CP-even Wilson coefficients.
The 2D constraints, in this case, are consistent with the 1D ones as there is no correlation between the
CP-even and CP-odd coefficients.

This is different when performing 2D scans of CP-even coefficients as there are non-negligible cor-
relations that can change the limits. For the CHG vs. CHW scans, the expected and observed limits are
shown in Figure 6.38. For this fit, a correlation of approximately 5% was observed. The small correlation,
in this case, is a result of the small effect of CHG on the total Higgs boson decay width and hence the
branching ratio. On the other hand, no constraints can be derived when varying CHW with CHB (or CHB

with CHWB). This is resulting from substantial correlations (> 98%) between CHW , CHB, and CHWB as all
three strongly affect the H → γγ decay width. This is similar to degeneracies observed in Ref. [247, 264].
These operators can be disentangled in a global analysis resulting in tighter constraints [264].

(A) (B)

(C) (D)

FIGURE 6.36: Expected and observed 2D 68% and 95% CL obtained from scanning (A/B) CHG vs. C̃HG,
(C/D) CHW vs. C̃HW using the 139 fb−1 data-set.

6.6.3 Coverage tests using toy datasets

As detailed in Interlude A, one can also obtain the confidence intervals using pseudo-data. This proce-
dure is used to check the frequentist coverage of the confidence intervals computed with the asymptotic
formula. The asymptotic formula is based on the fact that in the limit of large statistics, the likelihood
ratio follows a Gaussian distribution and hence 1−CL is given by the χ2 probability distribution for one
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(A) (B)

(C) (D)

FIGURE 6.37: Expected and observed 2D 68% and 95% CL obtained from scanning (A/B) CHB vs. C̃HB
and (E/F) CHWB vs. C̃HWB using the 139 fb−1 data-set.

degree of freedom. Using pseudo-data, one can fit the ∆χ2 distribution, estimate the effective number of
degrees of freedom, and cross-check the limits using the asymptotic formula. The results of this check
are shown in Figure 6.39, using 2000 toy datasets, where the distribution of ∆χ2 is fitted with a χ2 dis-
tribution whose number of degrees of freedom is floating. These fits are performed excluding the first
bin of the ∆χ2 distribution, as the asymptotic formula has a Dirac delta function at 0 resulting from the
profile likelihood function [98].

The 1− CL curves are shown in Figure 6.40 in comparison with the curves obtained from the asymp-
totic formula (Prob method). Using pseudo-data, the 95% confidence interval were re-estimated, they
are found to be in excellent agreement with the limits from the asymptotic formula as summarized in
Figure 6.40 showing the distribution of 1− CL using both pseudo-data and the asymptotic formula.
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FIGURE 6.39: A fit of the test statistics ∆χ2 computed from an ensemble of pseudodata to χ2-distribution
with a floating number of degrees of freedom m. The fitted value of m are compatible with 1, validating

the asymptotic formula used for obtaining the 1D limits on the coefficients.
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FIGURE 6.40: 1− CL curves obtained using the asymptotic formula (labeled "Prob") in purple and using
an ensemble of pseudo-data (labeled "Plugin"). The figures show excellent agreement between the two,

validating the coverage of the limits using the asymptotic Formula.





251

Conclusions

In this thesis, measurements of Higgs boson cross sections in the two-photon decay channel are per-
formed using pp collision data recorded by the ATLAS experiment at the LHC. The data were recorded
at a center-of-mass energy of

√
s = 13 TeV and correspond to the full Run-2 dataset with an integrated

luminosity of 139 fb−1. The measurements are performed in a fiducial region defined by the detector
acceptance |η| < 2.37, excluding the region of 1.37 < |η| < 1.52. Selected photons satisfy identification
and isolation requirements, and are required to have transverse momentum greater than 35% and 25%
of the diphoton invariant mass.

The measured integrated fiducial cross section times branching ratio is:

σ fid = 65.2± 4.5 (stat.)± 5.6 (exp.)± 0.3 (theory) fb, (6.26)

with a total uncertainty of 11%, which is to be compared with the default Standard Model prediction for
inclusive Higgs boson production of 63.5± 3.3 fb, resulting in the most precise H → γγ fiducial cross
section to date.

In addition, a measurement of the differential cross sections was performed as a function of different
observables sensitive to the Higgs boson production kinematics. These variables probe the Higgs boson
transverse momentum and rapidity distributions, the jet multiplicity, jet kinematics (pj1

T and mjj) and CP
quantum numbers (∆φjj,signed). The results presented in this thesis include a reduction by a factor 2 of the
different photon and jet energy scale and resolution systematic uncertainties with respect to the previous
ATLAS publication [18]. The results show an excellent agreement with the SM predictions. The results
were also compared to several theoretical predictions thanks to the model-independent particle-level
nature of the measurement, which allows a direct comparison to theoretical predictions.

The measured fiducial inclusive and differential cross sections were then used to derive full-phase
space inclusive and differential cross sections for the Higgs boson transverse momentum. This resulted
in the total production cross section in the H → γγ channel of 58.6+6.7

−6.5 pb. In addition, a combination
of the full phase-space inclusive and differential Higgs boson transverse momentum cross sections was
performed with the ones measured in H → ZZ∗ → 4l channel, resulting in the following inclusive cross
section:

56.1+4.5
−4.3 ( ±3.2(stat.) +3.1

−2.8 (sys.) ) pb. (6.27)

The measured total cross sections are in good agreement with the SM prediction of 55.6± 2.5 pb.
The measured cross sections were used to investigate the strength and tensor structure of anomalous

Higgs boson interactions using the effective field theory framework (EFT). In the EFT framework, the
Standard Model Lagrangian is complemented with additional CP-even and CP-odd dimension-6 op-
erators as implemented in the SILH basis of the Higgs Effective Lagrangian [20, 91] and the Warsaw
basis of the SMEFT Lagrangian [21]. Exploring these BSM effects rely on five differential observables
(pγγ

T , Njets, mjj, pj1
T and ∆φjj,signed) and their correlations. No significant new physics contributions are

observed in the measured cross sections, and hence limits on such contributions are reported. The SILH
basis limits show a significant improvement (by a factor of two) in comparison with the previous ATLAS
measurements [19, 245] thanks to the larger size of the data set. The SMEFT limits presented are the first
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SMEFT measurement performed in the LHC. The limits are derived including contributions from the SM
and the dimension-6 operators interference as well as pure dimension-6 contributions. Limits were also
derived on CP-odd operators using the interference with dimension-6 operators which allows probing
pure CP-violating effects using the ∆φjj,signed distributions.

The measurements presented in this thesis rely on performance studies that were carried out and
represent a key ingredient of the analyses. The precise measurement of the Higgs boson cross section
in the two photons decay channel is only possible thanks to the precise calibration of the photon ener-
gies. The calibration of the electron and photon energies was performed based on a multivariate analysis
(MVA). The extraction of the final energy scales from the MVA requires further corrections for discrep-
ancies between data and simulation. Among these corrections, those of the electromagnetic calorimeter
layer energies, which reduce the relative miscalibration of the longitudinal layers of the calorimeter and
ensure a precise energy measurement over a large pT range. The thesis detailed the measurement of the
presampler layer energy calibration. The full calibration chain resulted in a precise energy calibration
of electrons and photons with a typical uncertainty on the photon energy scales of 0.2% and up to 0.8%
in the most forward regions of the detector. The resulting uncertainty on the energy resolution for the
photons from the Higgs boson decays is typically between 10% and up to 20% for the high pT photons.
The calibration presented was used to perform a measurement of the Higgs boson mass in the H → γγ

and H → 4` channels using 36 fb−1 of Run-2 data at
√

s = 13 TeV [22] resulting in the measured mass
of:

mH = 124.86± 0.1 (stat.)± 0.19 (sys.) GeV (6.28)

which is in very good agreement with the Run-1 ATLAS+CMS combined mass measurement mH =

125.09± 0.21 (stat.)± 0.11 (sys.) GeV [23].
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Appendix A

Alternative fiducial definition for the
H → γγ cross section measurement

As motivated in Section 5.1.1, the following considerations need to be taken into account when defining
the fiducial volume:

• Similarity to detector-level selection to avoid extrapolating through phase space, as this assumes
knowledge of the production rate in unsampled regions of phase space, and so introduces model-
dependence.

• Simplicity. A simple fiducial volume definition is easier to interpret, calculate, and combine with
other decay channels.

• Ability to compare to theory. Some common detector-level objects, or quantities, are difficult to
include in theory calculations leading to larger uncertainties into these calculations. Since the aim
of fiducial cross section measurements is to be comparable to many theory predictions, such objects
should be avoided where possible.

As detailed in Section 5.3.3, a particle-level isolation criterion is applied in order to reduce the depen-
dence of the bin-by-bin correction factors on the Higgs boson production mode. This criterion is chosen
in order to match the detector-level photon isolation requirement that is imposed in order to separate the
hard scatter photons (i.e. the Higgs photons) from photons emitted from hadronic jets (can come from
electromagnetic decays of unstable hadrons).

Nevertheless, isolation is a quantity that can complicate the theoretical calculation of cross sections in
a fiducial volume [228]. The main problem with isolation is sketched in Figure A.1. In order for quantities
to be infrared safe, they must not change when a parton undergoes a quasi-collinear splitting, i.e. when
it emits some soft radiation which slightly perturbs its initial momentum. However, such perturbations
can cause a parton to migrate across the boundary of a fixed cone such as that used for computing
isolation, causing the measured isolation energy to change. This means that isolation is not infrared safe.

In this appendix, we explore an alternative method that can be used to reduce model dependence of
the correction factors. This method is based on applying a veto on the ∆R distance between the photons
and jets defined as follows. The jets are clustered using the anti-kt algorithm with a radius parameter of
0.2. The jets are clustered using stable truth particles (defined in Section 5.3.2) excluding neutrinos and
the Higgs decay photons. This jet definition has similar parameters to the detector-level isolation cone.
A proof-of-principle for this alternative definition is shown in Figure A.2 with a tt̄H sample. The tt̄H is
used since it is the production mode with the largest jet activity and the most sensitive production mode
to particle-level isolation. The Figure shows ∆RγLDG ,jet

min of particle-level leading-pT photons matched to
detector-level ones, divided into the different scenarios of passing and failing the detector-level isolation
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FIGURE A.1: Diagram showing the reason why isolation cones are difficult to compute in theory calcu-
lations. In the case on the left: a particle is created at the same vertex as the photon and lies within its
isolation cone. In the case on the right: the particle undergoes a quasi-collinear splitting. It emits some
radiation and migrates across the cone boundary, and so is no longer included in the isolation cone. The
measured isolation energy is therefore dependent on the modelling of real emissions in the final state,

which introduces an uncertainty on the theory calculation.

criteria. The plot shows that photons that fail the detector-level isolation criteria have a nearby jet, and
vice versa. Therefore, an alternative way to define the fiducial region can be done in terms of a veto
on ∆RγLDG ,jet

min . This veto helps to tackle some theoretical problems with the particle-level isolation, such
as the migrations that can take place across the boundaries of the fixed isolation cone in the event of
quasi-linear splitting of a parton.
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FIGURE A.2: Proof-of-principle of vetoing jets with (pT > 15 GeV) based on ∆R with photons from a tt̄H
sample. The plot shows that particle-level photons matched detector-level photons that fail the isolation
requirement (red) have a nearby jets (small ∆RγLDG ,jet

min ) . Whereas photons that pass the detector-level
isolation have jets further away (blue).

Figure A.3 below show the effect applying jet veto on the correction factors using different thresh-
olds for the jet pT and ∆RγLDG ,jet

min . The plots show that some variation of jet pT and ∆Rmin can reduce
model dependence and achieve a relatively flat behavior of the correction factor with the different Higgs
production modes similar to that of the particle-level isolation.

The choice of the jet pT and ∆RγLDG ,jet
min is performed by mapping the different variations of these

variables to the detector-level isolation. This mapping relies on the following criteria:

• A check of robustness against particle-level isolation was performed by mapping the different jet
veto thresholds (∆RγLDG,jet

min ) with different jet pT thresholds to the pT dependent particle-level track
isolation criteria. Figure A.4 shows the mapping of the different jet vetoes with their corresponding
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FIGURE A.3: Correction factor as a function of the production mechanism for the particle-level isolation
(green) and different jet vetoes (red) for jet pT > 15 GeV.

particle-level isolation criteria. The plot shows that jet vetoes matched to the particle-level isolation
have similar model dependence.

• The selection efficiency for using a ∆RγLDG ,jet
min veto is shown in Figure A.5 which is performed by

comparing the selection efficiency for different jet vetoes compared to the particle-level isolation,
and similar conclusions can be driven from the plot, where it shows similar efficiency between the
isolation criteria and jet vetoes with the smallest model dependence.

The use of particle-level isolation significantly reduces the Higgs production model dependence of
the correction factors. These uncertainties are quantified with the signal composition uncertainty shown
in Section 5.5.3.1 that is reduced with the use of particle-level isolation. The use of a jet-veto was also
found to produce similar results to that of the particle-level isolation. For example, for the inclusive
region, the use of particle-level isolation reduces the signal composition uncertainty by approximately
88% compared to no particle-level isolation, whereas the jet-veto case with ∆RγLDG ,jet

min = 0.3 with jet
pT > 15 GeV results in 82% reduction. This is understood as the jet veto criteria can be mapped
directly to particle-level isolation criteria (as shown in Figure A.4). The particle-level track isolation
ptcone20particle < 0.05× pT was mapped to a jet veto of ∆RγLDG ,jet

min = 0.3 with jet pT > 15 GeV. Therefore,
both fiducial definitions will always result in compatible modeling uncertainties on the correction-factor
as they can be mapped to one another, and to the detector-level isolation.
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FIGURE A.4: Plot shows profiling of the pT dependent track isolation criteria to the jet veto ∆RγLDG,jet
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which comes from jets that fall entirely within the isolation cone. The second region is for jets that overlap
with the isolation cone, and hence the profile of the isolation energy decreases with increasing ∆R. The
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of ∆R between the photon and jets.
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photon using different jet pT compared to the efficiency of the mapped track isolation shown as the hor-
izontal dotted line for ggH (a) and ttH (b). The plot shows that the efficiency for ttH drops much faster

than ggH due to the higher jet multiplicity for ttH.
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Appendix B

Higgs boson signal-extraction fits

In this appendix, the Higgs boson signal extraction fits, detailed in Section 5.6, are shown in Figures B.1-
B.9. These fits are performed simultaneously to the diphoton invariant mass, mγγ, for the different bins
of a given observable: pγγ

T , |yγγ|, Njets, pj1
T , mjj, and ∆φjj,signed. The data points are loosely binned for

visualization, although the signal extraction fit is itself an unbinned maximum likelihood fit.

FIGURE B.1: Diphoton invariant mass signal+background fits for the different bins of pγγ
T .
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FIGURE B.2: Diphoton invariant mass signal+background fits for the different bins of pγγ
T .
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FIGURE B.3: Diphoton invariant mass signal+background fits for the different bins of pγγ
T .

FIGURE B.4: Diphoton invariant mass signal+background fits for the different bins of |yγγ|.
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FIGURE B.5: Diphoton invariant mass signal+background fits for the different bins of |yγγ|.

FIGURE B.6: Diphoton invariant mass signal+background fits for the different bins of Njets.
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FIGURE B.7: Diphoton invariant mass signal+background fits for the different bins of pj1
T .

FIGURE B.8: Diphoton invariant mass signal+background fits for the different bins of mjj.
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FIGURE B.9: Diphoton invariant mass signal+background fits for the different bins of ∆φjj,signed.
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